Midler City Industrial Park

Site No. C734103

Periodic Review Report

March 1, 2019 to September 1, 2022

Prepared by

C&S Engineers, Inc. 499 Colonel Eileen Collins Blvd. Syracuse, New York 13212

November 2022

TABLE OF CONTENTS

	<u>Page</u>			
Executive Summ	ary1			
Section 1 - Intro	duction and Site Overview3			
Section 2 - Evalu	Section 2 - Evaluation of Remedy Performance, Effectiveness, and Protectiveness 6			
Section 3 - IC/EC	Section 3 - IC/EC Plan Compliance Report8			
Section 4 - Moni	toring Plan Compliance Report			
Section 5 - Oper	ation and Maintenance Plan11			
Section 6 - Overa	all PRR Conclusions and Recommendations			
FIGURES				
Figure 1 - Site Location Map Figure 2 - ASB-01 from December 2007 Final Engineering Report Figure 3 – Re-subdivision Map – 2006 & 2017 Figure 4 – ISTD Layout Plan Figure 5 – Golden Corral Site Layout Plan				
APPENDICES				
Appendix A Appendix B Appendix C	NYSDEC Correspondence Letters Change in Use Documentation Laboratory Reports – Lot R-1 (Golden Corral), Lot-7, and mine fill permit information			
Appendix D	Groundwater Quality Summary through March 2022 and 2022 Laboratory Reports			
Appendix E	endix E SSDS Layout and Inspection/Operational Documentation and Property Inspection Forms			
Appendix F Appendix G	Approved Corrective Measures Work Plan – October 2022 Institutional and Engineering Controls Certification Form			

EXECUTIVE SUMMARY

Brief Summary

The Midler City Industrial Park site encompasses approximately 22 acres and is located in the eastern portion of the City of Syracuse, as shown on Figure 1. Further detail concerning the property boundary is shown on Figure 2. In addition, included in Figures section are drawings showing the latest development recently constructed and finished in 2019 of the Golden Corral restaurant. The Golden Corral portion (3.387 acres) of the site incurred a change in use (granted by NYSDEC) for the site but Pioneer Midler, LLC will continue to comply with all outstanding requirements of the Environmental Easement and Site Management Plan which includes monitoring the site.

During remedial investigations and demolition activities that occurred in 2004-2006, areas impacted by petroleum and chlorinated volatile organic compounds were discovered. The main CVOCs found at the site were tetrachloroethene (PCE), trichloroethene (TCE), vinyl chloride (VC), cis-1,2-dichloroethene (cis-1,2-DCE), and trans-1,2-dichloroethene (trans-1,2-DCE). The occurrence of CVOCs was found within the marl and peat layers and extended to depths of approximately 26 feet below ground surface. No.6 fuel oil and other petroleum hydrocarbons were discovered during earthwork where several underground storage tanks were once present for the boiler house and beneath certain floor slabs of the manufacturing complex where equipment was once located. Those areas of petroleum contamination were excavated and disposed of off-site.

An IRM was conducted from 2006-2007 to remove CVOCs from four source areas identified during the RI. The technology adopted to remove CVOCs was ISTD. As a result of the ISTD treatment, approximately 86,000 pounds of CVOCs were removed from the subsurface and treated on site via thermal oxidation. Further information regarding remedial efforts is presented in the December 2007 IRM report prepared by C&S.

Monitored Natural Attenuation (MNA), using protocol established by the United States Environmental Protection Agency (USEPA), was the final remedy selected for the site relative to groundwater.

Effectiveness of the Remedial Program

Data and discussion presented in this report indicate that chlorinated volatile organic compounds (CVOCs) in groundwater at the Midler City Industrial Park site (Site No. C734103) continue to decrease. Current concentrations are significantly less than those observed at the commencement of the Remedial Investigation and ensuing in-situ

thermal treatment of significant source areas, and, except for MW-10D and MW-13D, have declined to levels consistent with Class GA Groundwater Standards since the end of the cool-down period (assumed to be December 2008). The decrease in contaminant levels in most wells, combined with the lines of evidence associated with reductive dechlorination, indicate that Monitored Natural Attenuation (MNA) continues to be an appropriate remedial technology for site groundwater.

At this point in the monitoring program for this site, several trends with respect to the presence and extent of CVOCs and MNA parameters in groundwater have been established:

- The original source contaminant, PCE, and the primary level reductive product, TCE, are no longer present at concentrations exceeding the 5 ug/l NYSDEC Class GA Groundwater Standard at any of the monitoring locations;
- The lower level degradation compounds (cis- and trans- DCE and vinyl chloride) exhibit marked variability in the short term; and
- Lines of evidence associated with reductive dechlorination indicate the dechlorination pathways remain viable.

Starting in June 2014, monitoring wells MW-14D and MW-16D were removed from the monitoring rounds due to non-detect or below standards results and MW-9D, MW-10D, MW-13D, and MW-15D were monitored for continued PRR events.

Compliance

Since the last PRR, a significant event that occurred is the SSDS system at the Golden Corral was found to be non-operational at the time of the April 2022 inspection. A CMWP was produced and approved by the NYSDEC to address the issue and is included in Appendix F.

Recommendations

Relative to institutional controls and engineering controls (ICs/ECs) for the site, no changes are recommended at this time.

Section 1 - Introduction and Site Overview

C&S Engineers, Inc., on behalf of our client, Pioneer Midler Avenue, LLC, submits this Site Management Periodic Review Report (PRR) and IC/EC Certification Submittal for Reporting Period March 1, 2019 to September 1, 2022 for the site known as Midler City Industrial Park - Site No. C734103.

The Midler City Industrial Park site encompasses approximately 22 acres and is located in the eastern portion of the City of Syracuse, as shown on Figure 1. Further detail concerning the property boundary is shown on Figure 2 (ASB-01 from the December 2007 *Final Engineering Report* for the site). In addition, included as Figure 5 is a site layout plan showing the latest development recently constructed and finished in 2019 of the Golden Corral restaurant.

Developed as an industrial facility in the late nineteenth century and utilized as such through the mid-twentieth century, the Midler City Industrial Park is relatively flat and is bounded as follows:

- North by Interstate Route 690.
- East by undeveloped property owned by the City of Syracuse
- South by property owned by CSX Transportation.
- West by Midler Avenue.

Currently, a Lowe's home center, a branch of SEFCU bank, and the Golden Corral Restaurant occupy much of the site.

During the RI and demolition activities that occurred in 2004-2006, areas impacted by petroleum and chlorinated volatile organic compounds were discovered. The main CVOCs found at the site were tetrachloroethene (PCE), trichloroethene (TCE), vinyl chloride (VC), cis-1,2-dichloroethene (cis-1,2-DCE), and trans-1,2-dichloroethene (trans-1,2-DCE). The occurrence of CVOCs was found within the marl and peat layers and extended to depths of approximately 26 feet below ground surface. The source of the CVOCs is attributed to past manufacturing and or waste management practices of the former Prosperity Laundry Equipment Company. No.6 fuel oil and other petroleum hydrocarbons were discovered during earthwork where several underground storage tanks were once present for the boiler house and beneath certain floor slabs of the manufacturing complex where equipment was once located. Those areas of petroleum contamination were excavated and disposed of off-site. Clean-up objectives for petroleum impacted media were consistent with NYSDEC TAGM 4046/STARS which were in effect at the time the work was completed.

An IRM was conducted from 2006-2007 to remove CVOCs from four source areas identified during the RI. The technology adopted to remove CVOCs was ISTD. The smallest of the four source areas ("B-5" Area) was excavated and the impacted materials were placed within the two largest areas ("B-1" and "B-3" Areas) for CVOC removal via ISTD. Based upon the high organic content of subsurface soils (10.8% average), a site specific soil clean-up objective of 31,200 µg/kg total CVOCs was established consistent with TAGM 4046 guidance which was in affect at the time of the IRM. As a result of the ISTD treatment, approximately 86,000 pounds of CVOCs were removed from the subsurface and treated on site via thermal oxidation. Further information regarding remedial efforts is presented in the December 2007 IRM report prepared by C&S.

Monitored Natural Attenuation (MNA), using protocol established by the United States Environmental Protection Agency (USEPA), was the final remedy selected for the site relative to groundwater, given:

- The significant source removal effort;
- Presence of soils with high organic content (10.8% average);
- Nature of CVOCs over 40 years of site inactivity;
- 40 years of site inactivity;
- Evidence of reductive dechlorination;
- Characteristics of groundwater including Oxidation-Reduction Potential (ORP), methane/ethane/ethene concentrations; and,
- The presence of *Dehalococcoides*, a genus of bacteria that obtains energy via the oxidation of hydrogen gas and subsequent reductive dehalogenation of halogenated organic compounds.

The groundwater MNA program commenced in 2008 and has been documented in a series of periodic data reports since that time. Evaluation of the data has been presented in reports to the NYSDEC entitled:

- First Annual Site Monitoring Report (February 2009)
- Second Annual Periodic Review Report (April 2010)
- Third Annual Site Monitoring Report (March 2011)
- Fourth Annual Periodic Review Report (April 2012)
- Fifth Annual Periodic Review Report (August 2013-Revised October 2013)
- Sixth Annual Periodic Review Report (June 2014)
- Seventh Annual Periodic Review Report (May 2015)
- Eighth Annual Periodic Review Report (June 2016)
- Periodic Review Report March 1, 2016 to March 1, 2019 (January 2020)

Quarterly groundwater monitoring was conducted through the third quarter of 2010 with results transmitted to NYSDEC Region 7 on a regular basis. Based on the progress of CVOC attenuation observed, the New York State Department of Environmental Conservation (NYSDEC) Region 7 office, in a letter dated September 14, 2010 agreed to reduce the frequency of groundwater sampling and analysis to twice per year, with those events occurring in Spring and Fall.. That same letter also allowed the deletion of monitoring well MW-2D from the sampling program. A copy of that letter is provided in **Appendix A**. Implementation of the modified groundwater monitoring program began in 2011 with full annual reporting as specified in the December 2007 Remedial Work Plan, Site Management Plan and, as required by the Brownfield Cleanup Agreement for the site.

Another modification took place with the 2014 sampling events with the deletion of wells MW-14 and MW-16. An email correspondence with NYSDEC is attached in **Appendix A** confirming the discontinuing of sampling these two wells.

In a June 28, 2016 letter, after reviewing the PRR from June 2016, the NYSDEC agreed to another modification to reduce the groundwater sampling frequency from semi-annually to once every 3-years which brings us to this current PRR for reporting period March 1, 2016 to March 1, 2019.

Prior to sampling for the current PRR, C&S requested in a December 6, 2018 letter, requesting a reduction in the Monitored Natural Attenuation (MNA) parameter analyses being eliminated from the program. The NYSDEC agreed to that reduction along with the use of Passive Diffusion Bags (PDBs) for volatile organic compound (VOC) sample collection/analysis. Copies of NYSDEC correspondence is in **Appendix A**.

In 2022, a Change-of-Use was issued to the NYSDEC for a 3.387 acre, parcel of land that was sold by Golden Corral to SGC Via Tavdi, LLC. Pioneer Midler Avenue, LLC will continue to comply will all outstanding requirements of the Environmental Easement and Site Management Plan. A copy of the Change of Use documentation is included in **Appendix B**.

The Golden Corral parcel development that occurred in 2018 followed the Soil Management Plan (SoMP) put forth for the property in 2007. The Midler City Industrial Park includes a site cover system that has to be maintained to avoid contact with the pre-existing urban fill and native soils.

In May 2015, representative samples were collected from the Lot R-1 site (Golden Corral Property) berm areas and the laboratory report is attached in **Appendix C**. It was

determined that the material can be disposed of at a facility permitted to receive non-hazardous industrial solid waste in accordance with state regulations. Further sampling was completed in May 2018 on Lot 7 stockpiles and also attached in **Appendix C**. This material was eventually hauled off-site along with the Lot R-1 stockpiles/berms. According to Ricelli, a total of 7,778.77 tons of soil was taken to Ontario County Landfill for proper disposal.

Clean fill material was requested to use on the Golden Corral parcel and a permit was issued and attached in **Appendix C**. It was estimated that 500-800 cubic yards of stone was used on site.

Also, as part of the Golden Corral project, groundwater was encountered as part utility line work for the project. Frac tank samples were collected by Paragon Environmental Services and sent to Paradigm for analysis for total VOCs and the results were all non-detect. The laboratory report from Paradigm is included in **Appendix C**.

SECTION 2 - EVALUATION OF REMEDY PERFORMANCE, EFFECTIVENESS, AND PROTECTIVENESS

Natural Attenuation Parameters

Samples collected during February 9, 2022 and March 7, 2022 were analyzed for VOCs.

Groundwater quality data (relative to chlorinated compounds) for each of the wells are presented on a table shown in **Appendix D**.

Evaluation of Data Trends and Rate Constants

The February 2009 First Annual Site Monitoring Report developed rate constants from cool-down period data which were determined to be of minimal relevance with respect to long-term natural attenuation trends. The USEPA instructs that, to make a statistically valid projection of the rate of monitored natural attenuation, monitoring periods of at least three years should be considered. With data from sampling events since 2008 (which includes data from the cool down period) we offer the following observations and calculations regarding the apparent rate of CVOC reduction at each of the site monitoring wells during the 14-year period extending from February 12, 2008 through March 2022.

CVOC Evaluation

The following discussion refers to recent comparison of individual CVOC analytical results for each monitoring well. By using all the data, there was much scatter and in some instances the resultant trend line suggested that concentrations of certain CVOCs were increasing. Nevertheless, groundwater quality has generally improved and at certain wells, detected CVOCs do not exceed Class GA Groundwater Standards. **Appendix D** contains plots of all the wells for Total CVOCs Concentrations vs. Time. With the exception of MW-10D and MW-13D all wells show a downward trend in concentrations. MW-10D and MW-13D shows a generally flat trend in concentrations of CVOCs over time.

MW-9D - Trans-1,2-DCE and cis-1,2-DCE were undetected. Cis-1,2-DCE decreased from 2.4 µg/l in 2015 non-detect in 2022. The vinyl chloride concentration was undetected.

MW-10D - The concentration of vinyl chloride decreased from 25 μ g/l in 2015 to non-detect in 2022.

Cis-1,2-DCE data exhibited a slight increase from 390 μ g/l in December 2015 to 420 μ g/l in 2022.

The trans-1,2-DCE data exhibited a slight increase from 16 μ g/l in December 2015 to 18 μ g/l in 2022.

MW-13D – The vinyl chloride concentration increased from 490 μ g/l in January 2019 to 1600 μ g/l in February 2022.

Cis-1,2-DCE concentrations increased from 260 μ g/l during the January 2019 event to 600 μ g/l in the February 2022 event. It would appear that long-term improvements to groundwater quality are continuing to stay stable if you plot all the years as evident in the Total CVOCs Concentration vs Time plot in **Appendix D**.

Trans-1,2-DCE concentrations have remained consistent throughout the sampling events. From June 2012 to June 2013 the concentrations were "non-detect", but at concentrations ranging from 20 μ g/l to 200 μ g/l. In December 2013 the concentrations were at 25 μ g/l. In the 2015 sampling events, the concentrations were "non-detect" at 50 μ g/l. The result in January 2019 was 3.1 μ g/l which is below the 5 μ g/l Class GA Groundwater Standard. The result in February 2022 was 5.1 μ g/l which is just above the 5 μ g/l Class GA Groundwater Standard.

MW-15D–CVOC concentrations have been generally less than their respective Class GA groundwater Standards since sampling was begun. In February 2022, the concentration of vinyl chloride decreased to 0.64 μ g/l from 0.83 μ g/l in January 2019. Cis-1,2-Dichloroethene decreased from 3.9 μ g/l in January 2019 to 3.2 μ g/l in February 2022. The concentration of trans-,2-DCE was at 0.73 μ g/l in February 2022 which is well below the 5 μ g/l Class GA Groundwater Standard.

Conclusions

Data and discussion presented in the preceding text and accompanying data tables confirm that CVOCs in groundwater continue to exhibit an overall trend of decrease. Current concentrations are consistently less than those observed at the commencement of the RI and ensuing in-situ thermal treatment of significant source areas, and with the exception of MW-10D and MW-13D, have declined significantly since the end of the cooldown period. The decrease in contaminant levels in most wells combined with the lines of evidence associated with reductive dechlorination, indicate that MNA was the appropriate remedial technology for site groundwater at the site.

SECTION 3 - IC/EC PLAN COMPLIANCE REPORT

Residual subsurface contamination remained after completion of the IRM performed under the BCP. Engineering Controls were incorporated into the site remedy to provide proper management of this contamination to ensure protection of public health and the environment. A site-specific Environmental Easement has been recorded with the Onondaga County Clerk that provides an enforceable means to ensure the continued and proper management of residual contamination and protection of public health and the environment. It requires strict adherence to ICs and ECs placed on this Site by NYSDEC by the grantor of the Environmental Easement and any and all successors and assigns of the grantor.

Site Specific Engineering Controls

As described in the December 2007 Site Management Plan (SMP), as approved by NYSDEC, the following site specific ECs have been implemented.

Sub-slab depressurization systems (SSDSs) - SSDSs have been installed and maintained on both the Lowe's home center, SEFCU branch building, and the newly constructed Golden Corral Restaurant. A site plan showing the location of the monitoring points for each building is provided in **Appendix E** of this report. Inspection of the system is performed on a regular basis by Pioneer Midler Avenue, LLC as documented on the forms in

Appendix E of this PRR. Operational problems were noted in the Golden Corral Restaurant upon an inspection of the SSDS system in April 2022. It was determined that the Golden Corral SSDS blower was not running. As a result, Pioneer retained a mechanical contractor to assess the blower to determine the reason for its failure. Upon evaluation it was noted that a new blower motor had to be installed to make the system operational.

Due to these issues, a Corrective Measures Work Plan (CMWP) was requested by the NSYDEC to address the motor issues and planned procedures to prevent this from occurring in the future. A copy of the CMWP and NYSDEC correspondence is attached in **Appendix F.**

Pioneer will continue weekly inspections of all SSDS systems associated with the site, including the system at the Golden Corral restaurant. If abnormal readings are recorded during a weekly inspection of any of the SSDSs, NYSDEC and NYSDOH will be notified within 24-hours.

If in the future additional buildings are constructed on the site, similar type SSDS will be designed, installed, and maintained. The designs and system performance requirements will be in accordance with applicable regulations and/or guidance.

Public water supply - The site and surrounding properties receive their domestic water from municipal service connections supplied by the City of Syracuse. The source of the municipal water supply is surface water from Skaneateles Lake, Otisco Lake, and Lake Ontario. All current buildings on the property are connected to and obtain potable water from the municipal water supply described above. Currently there are no other known buildings or users of water on the site.

Paved and concrete surfaces -- To the extent reasonable, surfaces outside of the building footprints were paved or covered with conventional asphalt or concrete. Areas beneath the asphalt and/or concrete pavement received one foot of clean Type 1 or 2 crushed limestone from an approved quarry (i.e., T. H. Kinsella, Hansen). Areas beyond the footprint of the buildings and limits of paved areas received either a combination of clean crushed limestone fill, and/or clean topsoil to a depth of one foot. The clean crushed limestone fill and/or topsoil has been maintained to avoid direct contact with pre-existing urban fill material and native soils. As required by the Site Management Plan, Pioneer Midler Avenue, LLC performs a visual inspection of the site twice each year. Those inspections completed during the PRR period are documented on the forms shown in **Appendix E** of this PRR. Inspections will continue going forward will include the newly paved and concrete surfaces at the Golden Corral restaurant parcel.

Site-Specific Institutional Controls

As described in the December 2007 Site Management Plan (SMP) the following site specific ICs have been implemented.

Environmental Easement - Pioneer has granted the NYSDEC an environmental easement for the Site to ensure that use restrictions or engineering controls remain in place and will be binding to future owners and lessees, or until modified, extinguished, or amended by a written instrument executed by the Commissioner of the NYSDEC.

In June 2022, a change of use was issued for the Midler Site issuing the Deed from Golden Corral Corporation to SGC Via Tavdi, LLC transferring the 3.387 acre parcel. Pioneer Midler Avenue, LLC will continue to comply with all outstanding requirements of the Environmental Easement and Site Management Plan, including the monitoring of the Site. **Appendix B** contains a copy of the Change of Use documentation at the site.

Groundwater Use Restriction - The use or discharge of untreated groundwater for any purpose will not be permitted at the Site. As stated above, each building is connected to the City of Syracuse municipal water supply.

Soil Management Plan - A site-specific Soil Management Plan (SoMP) dated December 2007 was approved by NYSDEC and has been implemented at this Site. The objective of the SoMP is to set guidelines for management of soil material during any future activities which would breach the cover system at the site.

Section 4 - Monitoring Plan Compliance Report

The December 2007 *Monitoring Plan* and the December 2007 *Remedial Work Plan* described the measures for evaluating the performance and effectiveness of Monitored Natural Attenuation (MNA). The elements of these plans, relative to groundwater monitoring, consisted of sampling and laboratory analysis for chlorinated volatile organic compounds via EPA Method 8260. In a December 2018 letter from the NYSDEC, approval was granted to eliminate MNA parameter analysis.

Groundwater data (quality and water levels) are tabulated and entered into the cumulative summary tables after each sampling event. That information is submitted to NYSDEC Region 7 following each monitoring event. The cumulative groundwater data summary tables (groundwater quality) are shown in **Appendix D** of this PRR. The individual laboratory reports are also provided in **Appendix D**.

Section 5 - Operation and Maintenance Plan

The December 2007 *Operation and Maintenance Plan* for the site describes the measures necessary to operate and maintain mechanical components of the SSDS systems installed at each of the three buildings at the site. The *Operation & Maintenance Plan* also included a description of visual inspections to be conducted to document the condition of the exterior paved surfaces.

SSDS Operation and Maintenance

During the PRR period, verification of normal operating status was conducted on an approximately weekly basis. This verification, performed by Pioneer Midler Avenue, LLC, is by visual observation of the magnehelic gauge attached to each discharge stack. These observations are recorded and kept on file. Copies of the inspection forms are presented in **Appendix E** of this PRR.

Since the last PRR, the Golden Corral Restaurant was closed for approximately 2-years and wasn't inspected during that time. During the April 2022 inspection it was found that a blower fan stop working and a CMWP was completed to address the issue. A copy of that CMWP is included in **Appendix F**. A new blower fan was installed and made operational. C&S inspected the SSDS system on August 23, 2022 to confirm that sufficient negative pressure was achieved with the replacement blower.

Routine maintenance will be performed every 12 months and includes:

- Visual inspection of above grade components
- Verification that no building intakes have been added within ten feet of the SSDS ventilation stacks
- Verification that floor penetrations are not leaking and if leaks are detected appropriate repairs are to be completed.

No operational problems or significant building modifications were reported to have occurred with the systems installed at the SEFCU branch and Lowe's home center during this PRR period.

As appropriate, preventative maintenance, repairs, and/or adjustments will be made to the systems to ensure its continued effectiveness. If significant changes are made to the buildings, the systems will be modified and/or expanded to ensure the systems are functioning properly.

Pavement and Concrete Surfaces

All paved and concreted surfaces are maintained such that extensive perforations or cracks are sealed or repaired on an on-going basis. The Property Manager performed semiannual inspection of these surfaces. Documentation of the visual inspections performed during this PRR period is presented in **Appendix E** of this PRR. The inspection of all the newly paved and concreted surfaces as part of the Golden Corral parcel will be included in the future.

Conclusion

Based on the information gathered, it is our opinion that no changes in the Operation and Maintenance Plan should be implemented for the next PRR with the exception of continued inspections of the newly constructed Golden Corral property to confirm proper operation.

Section 6 - Overall PRR Conclusions and Recommendations

Compliance with Site Management Plan

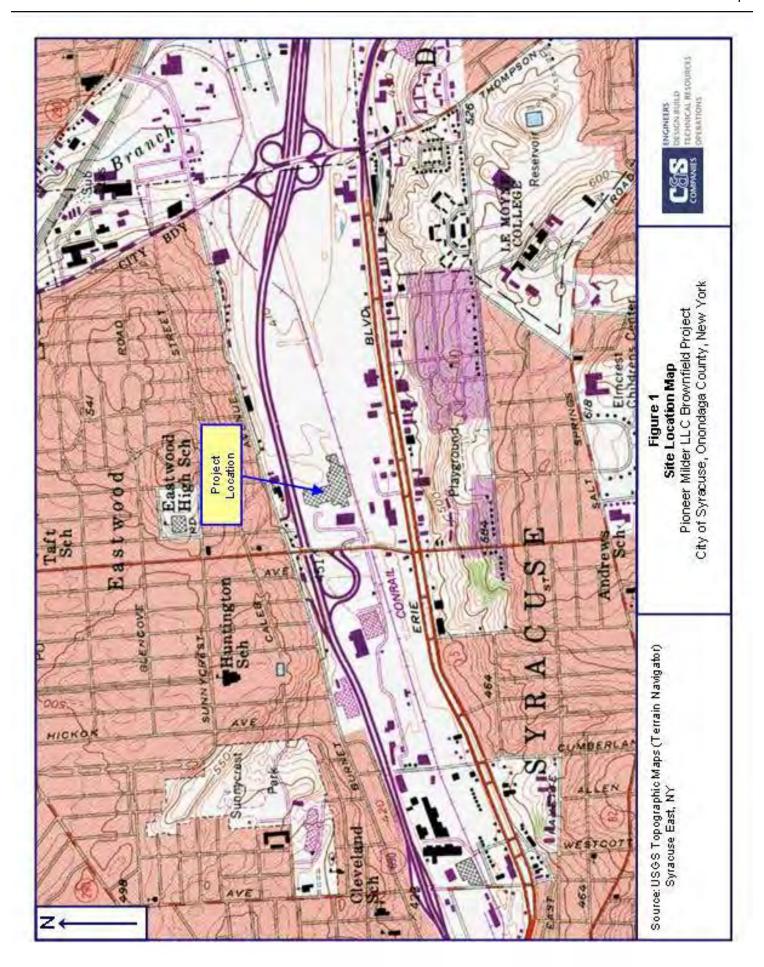
A single comprehensive Site Management Plan was developed in 2007 and amended in 2010 for the property. During this PRR period, all the requirements of the *Site Management Plan* prepared in 2007 and amended in September 2010 were satisfied and no changes or modifications are contemplated at this time. This PRR demonstrates that the requirements of the current SMP have been achieved such as Engineering and Institutional Controls, Site monitoring plans, and Operation and Maintenance Plans.

Performance and Effectiveness of the Remedy

Data from site monitoring confirm that CVOCs in groundwater, while displaying some variability in the short term, continue to decrease. Current CVOC concentrations are greatly reduced compared to those observed at the commencement of the Remedial Investigation and ensuing in-situ thermal treatment, and, with the exception of MW-10D and MW-13D, have declined significantly since the end of the cool-down period. The decrease in CVOC levels (in most wells) indicate that MNA continues to be an appropriate remedial technology for site groundwater.

At this point in the monitoring program for this site, several trends with respect to the presence and extent of CVOCs in groundwater have been established:

- The original source contaminant, PCE, and the primary level reductive product, TCE, are no longer present at concentrations exceeding the 5 ug/l NYSDEC Class GA Groundwater Standard at any of the monitoring locations;
- The lower level degradation compounds (cis- and trans- DCE and vinyl chloride) exhibit marked variability in the short term; and
- Lines of evidence associated with reductive dechlorination indicate the dechlorination pathways remain viable.


In scheduled future PRR events, the monitoring will be continued for monitoring wells MW-9D, MW-10D, MW-13D, and MW-15D and we will continue providing PRRs as scheduled.

Future PRR Submittals

Future PRRs will submitted every three years as part of this program.

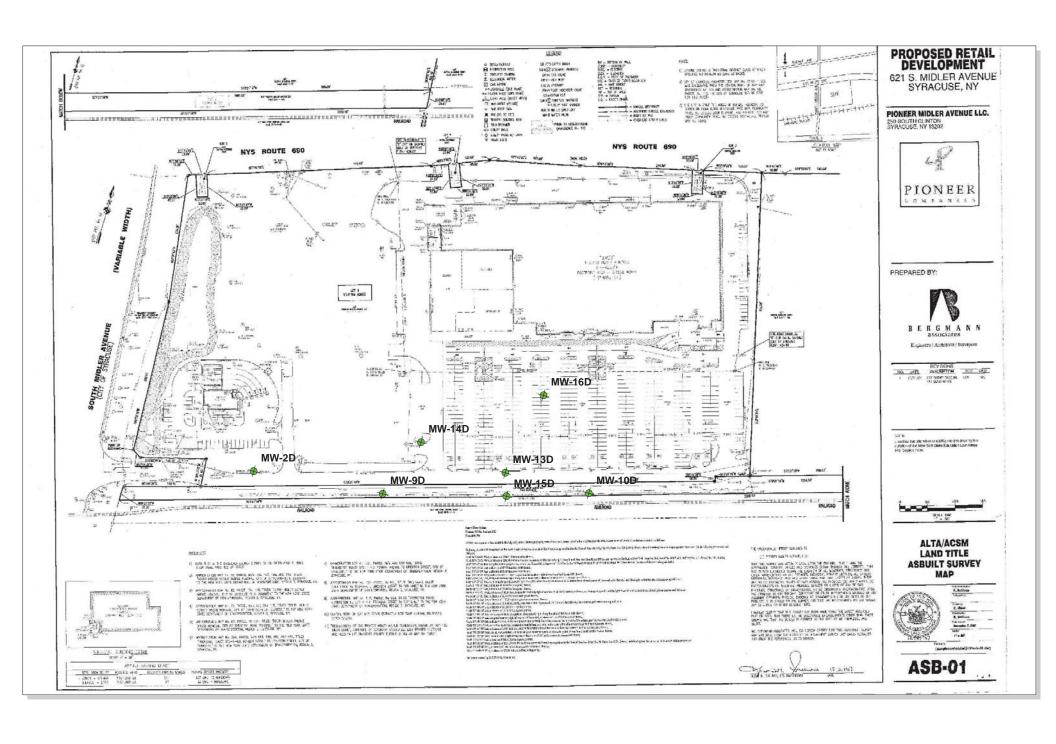

 $f:\project \c 81 - pioneer development \c 81015001 - gw sampling prr - 2022 \planning-study \endown year 2022 prr. docx and the project \c 81 - pioneer development \c 81015001 - gw sampling prr - 2022 \planning-study \endown year 2022 prr. docx and \c 81 - pioneer development \c 81015001 - gw sampling prr - 2022 \planning-study \endown year 2022 \c 81 - pioneer development \c 81015001 - gw sampling prr - 2022 \c 81 - pioneer development \c 81015001 - gw sampling prr - 2022 \c 81 - pioneer development \c 81015001 - gw sampling prr - 2022 \c 81 - pioneer development \c 81015001 - gw sampling prr - 2022 \c 81 - pioneer development \c 81015001 - gw sampling prr - 2022 \c 81 - pioneer development \c 81015001 - gw sampling prr - 2022 \c 81 - pioneer development \c 81015001 - gw sampling prr - 2022 \c 81 - pioneer development \c 81015001 - gw sampling prr - 2022 \c 81 - pioneer development \c 81015001 - gw sampling prr - 2022 \c 81 - pioneer development \c 81015001 - gw sampling prr - 2022 \c 81 - pioneer development \c 81015001 - gw sampling prr - 2022 \c 81 - pioneer development \$

FIGURE 1 SITE LOCATION MAP SYRACUSE EAST USGS


FIGURE 2

ASB-01 FROM DECEMBER 2007 FINAL ENGINEERING REPORT

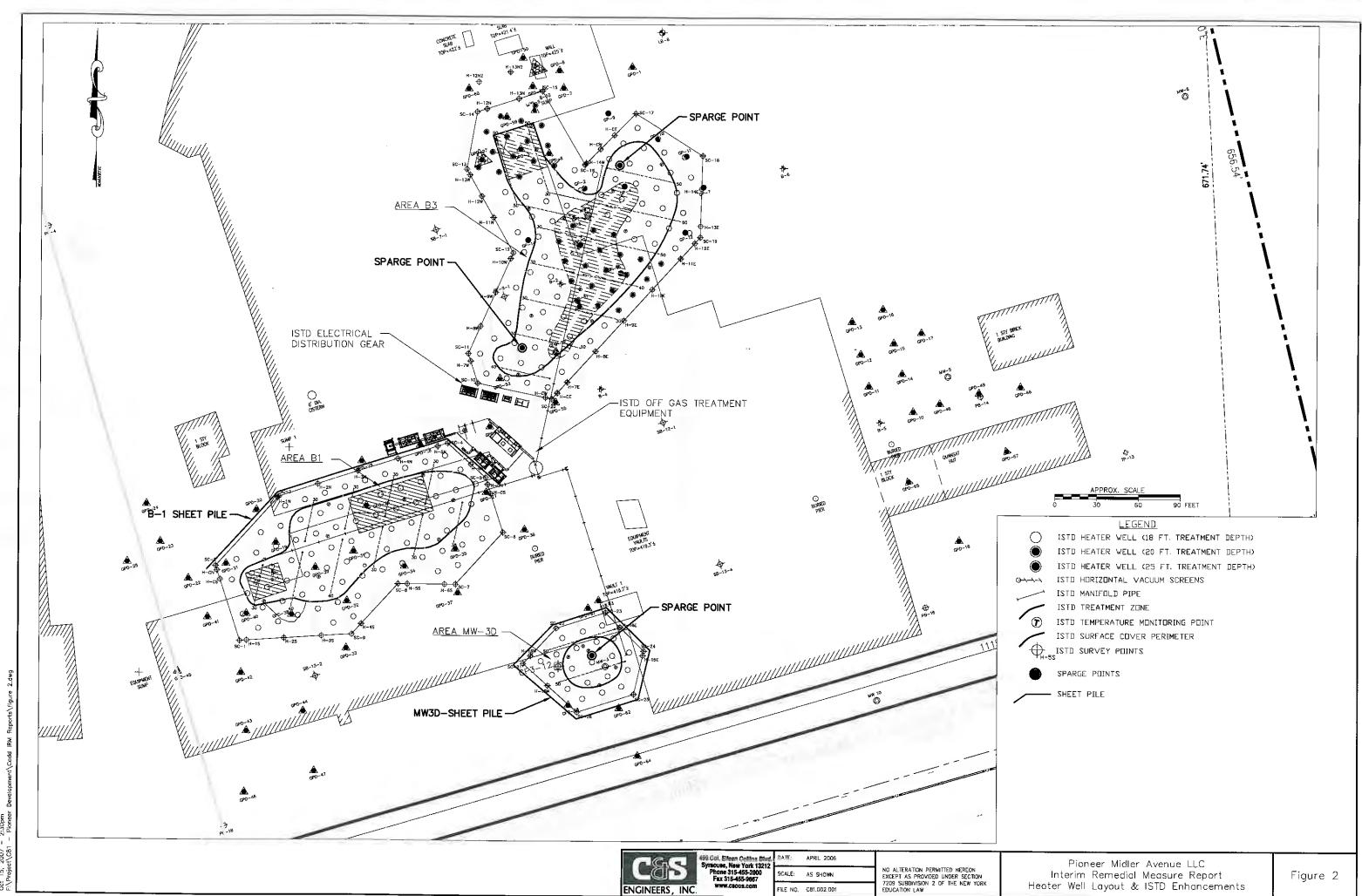
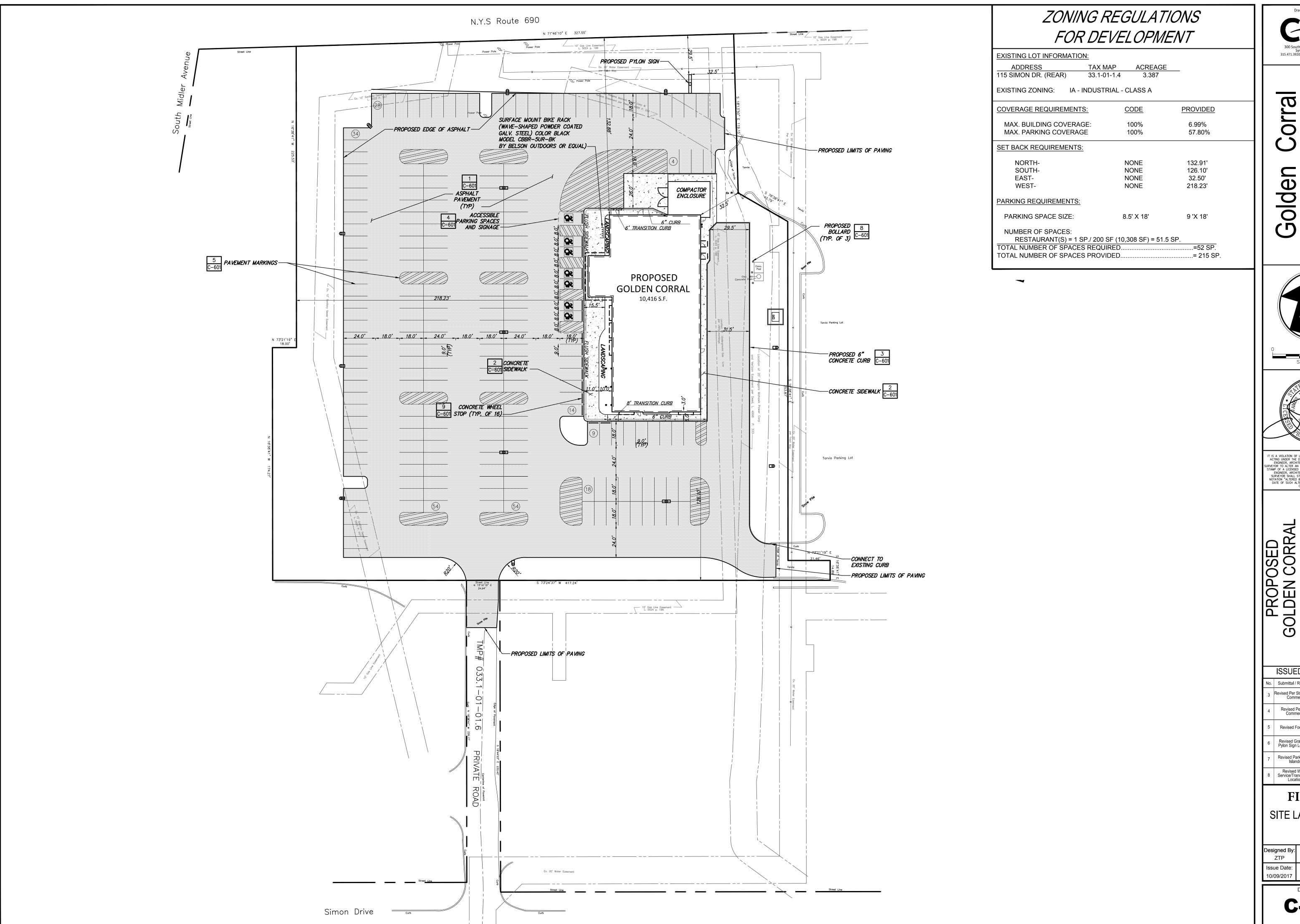
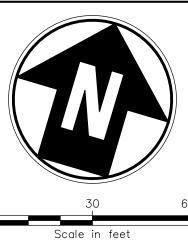
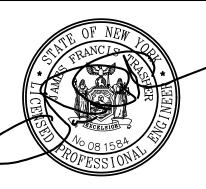


FIGURE 3 RE-SUBDIVISION MAP - 2006 & 2017


FIGURE 4 ISTD LAYOUT PLAN

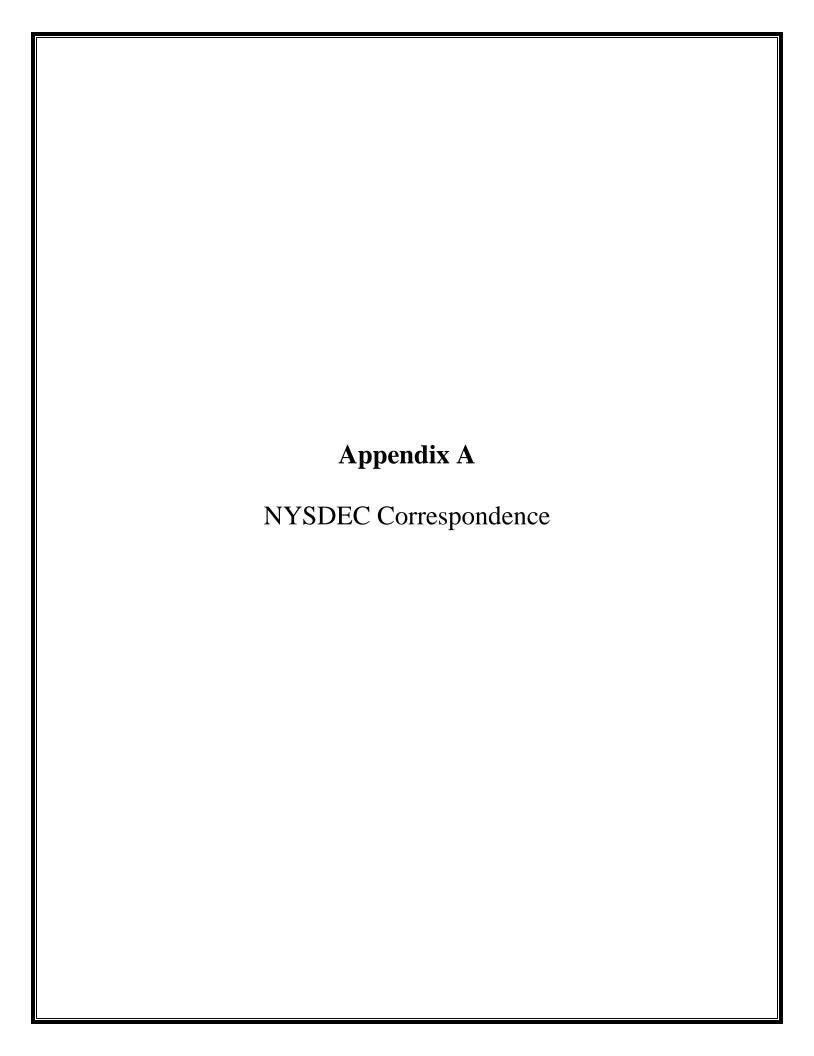
Oct 15, 2007 - 2:30pm


FIGURE 5


Golden Corral Site Layout Plan

300 South State Street - Suite 600 Syracuse, NY 13202 315.471.3920 • www.chacompanies.com

5151 GLENWOOD AVE RALEIGH, NC 27612



ISSUED FOR PERMIT				
No.	Submittal / Revision	App'd.	Ву	Date
3	Revised Per Stormwater Comment	JFT	ZTP	01/18/18
4	Revised Per Fire Comments	JFT	ZTP	02/26/18
5	Revised Footprint	JFT	ZTP	05/15/18
6	Revised Grading & Pylon Sign Location	JFT	ZTP	06/21/18
7	Revised Parking Lot Islands	JFT	ZTP	11/05/18

FIGURE 5

SITE LAYOUT PLAN

Designed By: ZTP	Drawn By: ZTP	Checked By: JFT
Issue Date:	Project No:	Scale:
10/09/2017	33281	AS SHOWN

New York State Department of Environmental Conservation

Division of Environmental Remediation, Region 7 615 Erie Boulevard West, Syracuse, New York 13204-2400

Phone: (315) 426-7551 • Fax: (315) 426-7499

Website: www.dec.ny.gov

September 14, 2010

Mr. Jed Schneider Pioneer Midler Avenue, LLC 250 South Clinton Street, Suite 200 Syracuse, New York 13202-1258

Re: Midler City Industrial Park

Site No. C734103

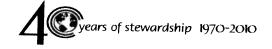
Groundwater Sampling Frequency

Dear Mr. Schneider:

The New York State Department of Environmental Conservation (NYSDEC) has reviewed your August 3, 2010 letter requesting that the groundwater sampling frequency be reduced from quarterly to bi-annually (spring and fall). This request is hereby approved. In addition, based on the analytical data (i.e. non-detect levels of contaminants of concern since 2005), MW-2D can be removed from the list of wells sampled.

Respectfully,

Karen A. Cahill Project Manager


Division of Environmental Remediation

cc: T. Barba/S. Vinci, C&S

R. Jones, DOH

ec: M. Peachey, DEC

G. Townsend, DEC

Wayne Randall

From: Karen Cahill <kacahill@gw.dec.state.ny.us>
Sent: Wednesday, June 25, 2014 10:12 AM

To: Wayne Randall

Subject: Re: NYSDEC Midler Site No. C734103

Yes. Thank you.
Karen A. Cahill
Div. of Environmental Remediation
NYSDEC Region 7
615 Erie Blvd. West, Syracuse, NY 13204-2400
Phone (315) 426 7432

Phone - (315) 426-7432 Fax - (315) 426-2653 Cell - (315) 289-6788

E-Mail: kacahill@gw.dec.state.ny.us

>>> Wayne Randall <WRandall@cscos.com> 6/25/2014 9:59:58 AM >>> Good Morning Karen,

Are you OK with discontinuing MW-14D and MW-16D? Please let me know as I will be ordering the glassware today.

Thanks, Wayne

Wayne N. Randall

Geologist, Environmental Services
C&S Engineers, Inc.
wrandall@cscos.com, linkedIn

Direct: (315) 703-4110

CONFIDENTIALITY NOTICE: This e-mail, including any attachment(s) to it, is intended for the exclusive use of the addressee(s) and may contain proprietary, confidential, or privileged information. If you are not the intended recipient, you are hereby notified that any use, disclosure, copying, distribution, or taking of any action in reliance on this information is strictly prohibited. If you have received this e-mail in error, please notify the sender immediately by e-mail and delete the message.

From: Rory Woodmansee

Sent: Friday, June 06, 2014 1:21 PM

To: Karen Cahill; Marshall, Edward; Denise Seton

Cc: Wayne Randall; Warner, Harry

Subject: RE: NYSDEC Midler Site No. C734103

Hi Karen,

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation, Region 7 615 Erie Boulevard West, Syracuse, NY 13204-2400 P: (315) 426-7519, (315) 426-7551 | F: (315) 426-2653 www.dec.ny.gov

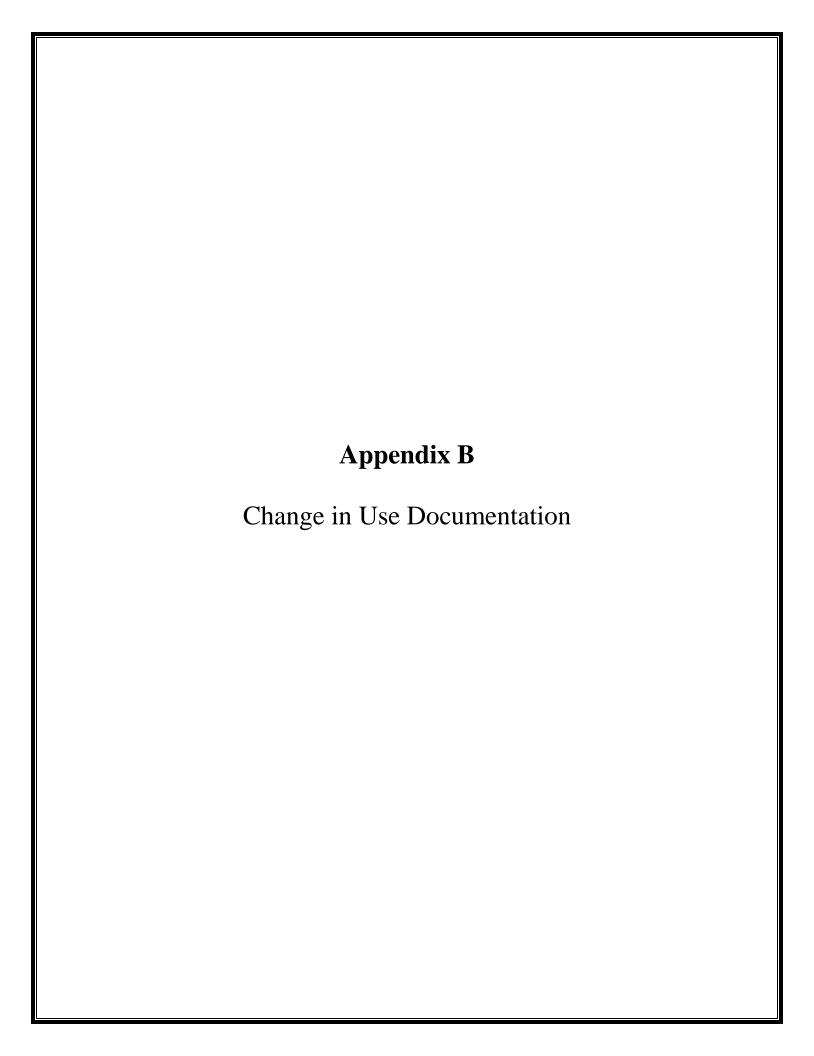
June 28, 2016

Ms. Melissa Zell Pioneer Companies 333 West Washington Street Suite 600 Syracuse, NY 13202

Re:

Midler City Industrial Park, Syracuse, NY, Site No. C734103 2015 Periodic Review Report, June 8, 2016

Dear Ms. Zell:


The Department has reviewed your Periodic Review Report (PRR) and IC/EC Certification for following period: January 1, 2015 to December 31, 2015.

The Department hereby accepts the PRR and associated Certification. In addition, based on the general decline in total CVOC concentration in groundwater at the site over the last two years, and the static conditions at the site, the Department is approving a reduction in the frequency of periodic reviews from annually to once every three (3) years.

As such, modifications to the monitoring program that are acceptable to the Department include:

- A reduction in groundwater sampling frequency from semi-annually to once every 3yrs;
- The use of Passive Diffusion Bags (PDBs) to collect groundwater samples rather than low-flow;
- Specification of Method 624 (Purgeable Organics) or Method 601 (Purgeable Halocarbons) in lieu of Method 8260;
- A reduction from Category B to Category A deliverables, unless a decision is expected to be made based on the data (in this case delisting).

CHARLES H. GRUNDNER, ESQ. Direct Dial No: (315) 565-4577 Direct Fax No: (315) 565-4677 cgrundner@hancocklaw.com

June 15, 2022

VIA E-MAIL

Kelly A. Lewandowski New York State Department of Environmental Conservation Division of Environmental Remediation 615 Erie Boulevard West Syracuse, New York 13204-2400

Re: Midler Site C734103 – Change of Ownership

Dear Ms. Lewandowski:

This law firm represents Pioneer Midler Avenue, LLC in this matter.

Attached is the completed and signed Change of Use and/or Ownership Notice which was signed by my client this afternoon, as well as a copy of the Deed from Golden Corral Corporation to SGC Via Tavdi, LLC and a copy of a Survey Map showing the 3.387 acre parcel described in the attached Deed.

Please note that the attached Deed contains (at the bottom of page 3) the required language stating that the property conveyed is subject to the Environmental Easement held by the New York State Department of Environmental Conservation which was recorded in the Onondaga County Clerk's Office on December 28, 2007 in Book 5028 of Deeds, Page 624.

Please also note that the Certificate of Completion will <u>not</u> be transferred to SGC Via Tavdi, LLC. Pioneer Midler Avenue, LLC will continue to comply with all outstanding requirements of the Environmental Easement and Site Management Plan, including the

{H4789693.1}

continuing monitoring of the Site.

Very truly yours,

HANCOCK ESTABROOK, LLP

Charles II. Grundner

CHG:jms Enclosures

cc: Michael P. Falcone (w/encl. via e-mail)

Mark W. Roney (w/encl. via e-mail)
Greg Henson (w/encl. via email)
Karen A. Cahill (w/encl. via e-mail)

R. Chappell Phillips, Esq. (w/encl. via e-mail)

Niral A. Patel (w/encl. via e-mail)

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

60-Day Advance Notification of Site Change of Use, Transfer of Certificate of Completion, and/or Ownership

Required by 6NYCRR Part 375-1.11(d) and 375-1.9(f)

To be submitted at least 60 days prior to change of use to:

Chief, Site Control Section New York State Department of Environmental Conservation Division of Environmental Remediation, 625 Broadway Albany NY 12233-7020

I.	Site Name:	Midler City Industrial Park DEC Site ID No. C734103	
II.	Contact Information of Person Submitting Notification:		
	Name: Charles H. Grundner, Esq.		
	Address1: Hancock Estabrook, LLP		
		1800 AXA Tower I, 120 Madison Street, Syracuse, NY 13202	
	35	(315) 565-4577 E-mail: cgrundner@hancocklaw.com	
III.	67	nange and Date: Indicate the Type of Change(s) (check all that apply): in Ownership or Change in Remedial Party(ies)	
	Transfer of Certificate of Completion (CoC)		
	Other (e.g., any physical alteration or other change of use)		
	Proposed I	Date of Change (mm/dd/yyyy): 08/06/2021	
IV.	Description: Describe proposed change(s) indicated above and attach maps, drawings, and/or parcel information.		
	Sale o	f a 3.387 acre parcel, described in the attached Deed and shown	
	on the attached map, from Golden Corral Corporation to SGC Via Tavdi, LLC		
	_		
	If "Other," the description must explain <u>and</u> advise the Department how such change may or may not affect the site's proposed, ongoing, or completed remedial program (attach additional sheets if needed).		

V.	Certification Statement: Where the change of use results in a change in ownership or in responsibility for the proposed, ongoing, or completed remedial program for the site, the following certification must be completed (by owner or designated representative; see §375-1.11(d)(3)(i)):		
	I hereby certify that the prospective purchaser and/or remedial party has been provided a copy of an order, agreement, Site Management Plan, or State Assistance Contract regarding the Site's remedial program as well as a copy of all approved remedial work plans and reports.		
	Name: (Signature) (Date)		
	Michael P. Falcone (Print Name)		
	Address1: The Pioneer Companies, 333 West Washington Street, Suite 600 Address2: Syracuse, NY 13202		
	Phone: 315-200-1864 E-mail: michael.falcone@pioneercos.com		
VI.	Contact Information for New Owner, Remedial Party, or CoC Holder: If the site will be sold or there will be a new remedial party, identify the prospective owner(s) or party(ies) along with contact information. If the site is subject to an Environmental Easement, Deed Restriction, or Site Management Plan requiring periodic certification of institutional controls/engineering controls (IC/ECs), indicate who will be the certifying party (attach additional sheets if needed). X Prospective Owner Prospective Remedial Party Prospective Owner Representative		
	Name: Niral Patel		
	Addressl: 17 Old Gick Road, Saratoga Springs, New York 12866		
	Address2: E-mail: niralapatel@gmail.com		
	Certifying Party Name:		
	Address1:		
	Address2:		
	Phone: E-mail:		

VII. Agreement to Notify DEC after Transfer: If Section VI applies, and all or part of the site will be sold, a letter to notify the DEC of the completion of the transfer must be provided. If the current owner is also the holder of the CoC for the site, the CoC should be transferred to the new owner using DEC's form found at http://www.dec.ny.gov/chemical/54736.html. This form has its own filing requirements (see 6NYCRR Part 375-1.9(f)).

Signing below indicates that these notices will be provided to the DEC within the specified time frames. If the sale of the site also includes the transfer of a CoC, the DEC agrees to accept the notice given in VII.3 below in satisfaction of the notice required by VII.1 below (which normally must be submitted within 15 days of the sale of the site).

Within 30 days of the sale of the site, I agree to submit to the DEC:

1.	the name and contact information for the	new owner(s) (see §375-1.11(d)(3)(ii));

2. the name and contact information for any owner representative; and

3. a notice of transfer using the DEC's form found at http://www.dec.ny.gov/chemical/54736.html (see §375-1.9(f)).

Name:

(Signature)

06/15/2022 (Date)

Michael P. Falcone (Print Name)

Addressl: The Pioneer Companies, 333 West Washington Street, Suite 600

Address2: Syracuse, NY 13202

Phone: 315-200-1864 E-mail: michael.falcone@pioneercos.com

Lisa Dell, County Clerk 401 Montgomery Street Room 200 Syracuse, NY 13202 (315) 435-2229

Onondaga County Clerk Recording Cover Sheet

Received From:
HANCOCK ESTABROOK
1800 AXA TW 1
100 MADISON ST
SYRACUSE, NY 13202

Return To:
HANCOCK ESTABROOK
1800 AXA TW 1
100 MADISON ST
SYRACUSE, NY 13202

Method Returned: MAIL

First PARTY 1

COLDEN CORRAL CORPORATION

First PARTY 2

SGC VIA TAVDI LLC

Index Type: Land Records

Instr Number: 2021-00037399
Book: Page:

Type of Instrument: Deed

Type of Transaction: Deed Comm Or Vacant

Recording Fee:

Recording Pages:

\$315.50

The Property affected by this instrument is situated in Syracuse, in the

County of Onondaga, New York

Real Estate Transfer Tax

RETT#:

308

Deed Amount:

\$3,800,000.00

RETT Amount:

\$15,200.00

Total Fees:

\$15,515.50

State of New York

County of Onondaga

I hereby certify that the within and foregoing was recorded in the Clerk's office for Onondaga

County, New York

On (Recorded Date): 08/06/2021

At (Recorded Time): 12:48:05 PM

Doc ID - 044460900004

Lisa Dell, County Clerk

g^{*}.

WARRANTY DEED WITH LIEN COVENANT

THIS INDENTURE is made as of the 21 day of July, 2021.

BETWEEN: GOLDEN CORRAL CORPORATION,

a North Carolina corporation, having an office at

5400 Trinity Road, Suite 309, Raleigh, North Carolina 27607

("Grantor")

AND:

SGC VIA TAVDI, LLC, a New York limited

<u>liability company, having an office at</u> 17 Old Gick Road, Saratoga Springs, New York 12866 ("Grantee")

WITNESSETH, that the Grantor, in consideration of One and 00/100 (\$1.00) Dollar and other good and valuable consideration paid by the Grantee, hereby grants and releases unto the Grantee, the heirs or successors and assigns of the Grantee forever,

ALL THAT TRACT OR PARCEL OF LAND described in Schedule A attached hereto and made a part hereof.

BEING the same premises conveyed by Pioneer Midler Avenue, LLC to Golden Corral Corporation (Grantor herein) by Warranty Deed dated June 11, 2018 and recorded in the Onondaga County Clerk's Office on June 15, 2018 as Instrument No. 2018-00025501.

SUBJECT to all easements, covenants and restrictions of record.

TOGETHER with the appurtenances and all the estate and rights of the Grantor in and to said premises.

TO HAVE AND TO HOLD the premises herein granted unto the Grantee, the heirs or successors and assigns of the Grantee forever. AND the Grantor covenants as follows:

FIRST. - The Grantee shall quietly enjoy the said premises; **SECOND**. - The Grantor will forever warrant the title to said premises.

THIS Deed is subject to the trust provisions of Section 13 of the Lien Law. The words "Grantor" and "Grantee" shall be construed to read in the plural whenever the sense of this deed so requires.

IN WITNESS WHEREOF, the Grantor has executed this Deed the day and year first above written.

GOLDEN CORRAL CORPORATION

Name:

Title:

SVP-FINANCE + ADMINISTRATION

STATE OF NORTH CAROLINA) SS.: COUNTY OF WAKE)

On the 2/st day of July, 2021, before me, the undersigned, a notary public in and for said State, personally appeared Janes D. Laverty, personally known to me or proved to me on the basis of satisfactory evidence to be the individual whose name is subscribed to the within instrument and acknowledged to me that he executed the same in his capacity and that by his signature on the instrument, the individual, or the person upon behalf of which the individual acted, executed this instrument; and that such individual made such appearance before the undersigned in the (Town) (City) of Raisingh, State of North Carolina.

Notary Public

R. CHAPPELL PHILLIPS NOTARY PUBLIC ORANGE COUNTY, NC My Commission Expires 12-1-2023

Record and Return to:

CHARLES H. GRUNDWER

HANCOCK ESTABROOK, LLP

1800 AXA TOWER I

100 MADISON STREET

SYRACUSE, NY 13202

S:\CHG\Deeds\Pioneer Midler Avenue - Golden Corral Corporation Deed.doc

SCHEDULE A

ALL THAT TRACT OR PARCEL OF LAND situate in the City of Syracuse, County of Onondaga and State of New York, being part of Military Lot Number 40 of the former Town of DeWitt, bounded and described as follows:

BEGINNING at a concrete monument at the intersection of the easterly right-of-way line of South Midler Avenue, as appropriated to the State of New York (Map No. 66, Parcel No. 106), and the southerly right-of-way line of New York State Route 690, as appropriated to the State of New York (Interstate Route 570-1-4.0, Map No. 354, Parcel No. 450); thence North 71° 46' 10" East, along the southerly right-of-way line of said Route 690, a distance of 72.87 feet to the Point of Beginning; thence

North 71° 46' 10" East, along said southerly right-of-way line of Route 690, a distance of 327.55 feet to a point on the division line with Lot R-2 on the east; thence, the following five courses and distances on said division line:

South 18° 13' 50" East, a distance of 119.15 feet to a point; thence,

South 76° 38' 41" East, a distance of 42.79 feet to a point; thence,

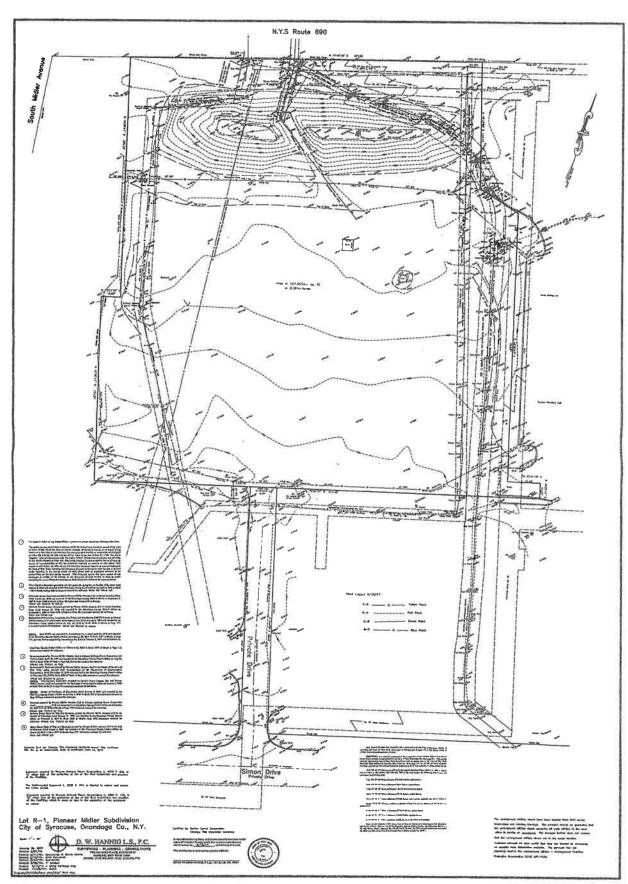
South 16° 38' 41" East, a distance of 253.87 feet to a point; thence,

North 73° 21' 19" East, a distance of 31.46 feet to a point; thence,

South 16° 38' 41" East, a distance of 14.89 feet to a point on the northerly line of Lot 7; thence,

South 73° 24' 37" West, on said northerly line of Lots 7, 9 and 8, a distance of 417.24 feet to a point; thence,

North 16° 38' 41" West, a distance of 174.27 feet to a point; thence,


North 73° 21' 19" East, a distance of 18.00 feet to a point; thence,

North 16° 38' 41" West, a distance of 225.53 feet to the Point of Beginning.

Said Lot R-1 contains 3.387 acres, more or less, as shown on a map prepared by Bergmann Associates entitled "Proposed Retail Development, Pioneer Midler Avenue Resubdivision, Known as 101-153 Simon Drive", Drawing No. SM-01, dated October 19, 2004 and last revised on November 22, 2006, and filed in the Onondaga County Clerk's Office as Map No. 10571.

TOGETHER WITH AND SUBJECT TO the Declaration of Easements, Covenants, Conditions and Restrictions ("ECCR") made by Pioneer Midler Avenue, LLC and Lowe's Home Centers, Inc. dated January 6, 2006 and recorded in the Onondaga County Clerk's Office on July 26, 2006 in Book 4950 of Deeds at Page 541, as amended by Amendment No. 1 dated April 26, 2007 and recorded in the Onondaga County Clerk's Office on February 20, 2009 in Book 5077 of Deeds at Page 117, and as further amended by Amendment No. 2 dated February 5, 2009 and recorded in the Onondaga County Clerk's Office on February 20, 2009 in Book 5077 of Deeds at Page 135.

THIS PROPERTY IS SUBJECT TO AN ENVIRONMENT EASEMENT HELD BY THE NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION PURSUANT TO TITLE 36 OF ARTICLE 71 OF THE ENVIRONMENTAL CONSERVATION LAW DATED DECEMBER 17, 2007 AND RECORDED IN THE ONONDAGA COUNTY CLERK'S OFFICE ON DECEMBER 28, 2007 IN BOOK 5028 OF DEEDS, PAGE 624.

Appendix C Laboratory Reports for stockpiled soil – Lot R-1 (Golden Corral), Lot-7, and mine fill permit information	

May 27, 2015

Mr. Albert M. Giannino
Director of Leasing
Pioneer Companies
333 West Washington Street, Suite 600
Syracuse, New York 13202

Re: Berm Sampling Report

Pioneer Midler Avenue

File: 1537.005.001

Dear Mr. Giannino:

Barton & Loguidice D.P.C (B&L) has prepared this Sampling Report to describe observations and analytical results from the sampling conducted at the above referenced site. The sampling was conducted in accordance to B&L's proposal dated April 28, 2015. Representative soil/fill samples were collected from the berms at the northwest corner of the Midler Avenue property.

Background

Additional development may occur at the northwest corner of the site where two grass-covered berms are present with a combined estimated volume of 2,600 cubic yards (approximately 3,600 tons). This area and surrounding site (now occupied by a Lowes and SEFCU) were formerly known as the Midler Avenue Brownfield Project. Interim Remedial Measures (IRMs) were conducted on the site prior to 2007 under the Brownfield Cleanup Program (NYSDEC Site #C734103).

A Site Management Plan (SMP) and Environmental Easement were prepared in 2007 to describe procedures required to manage residual contamination at the site. The SMP includes a site cover system to be maintained to avoid direct contact with pre-existing urban fill and native soils. The berms apparently contain urban fill covered with site cover system materials. The SMP states that one composite and one duplicate sample will be collected for 2,000 cubic yards of stockpiled soil (assuming the material does not exhibit visual evidence of contamination). Further waste characterization of the berms was necessary to determine disposal options pursuant to the SMP.

Sampling Methodology

Sample Collection and Handling Procedures

B&L retained the services of NYEG Drilling, LLC of Brewerton, New York to provide drilling services. Sample recovery was conducted using a MacroCore® barrel sampler equipped with single-use, disposable acetate sleeves. The barrel sampler was decontaminated prior to each boring with an Alconox solution and potable water rinse.

Mr. Albert M. Giannino Pioneer Companies May 27, 2015 Page 2

B&L supervised the advancement of eight borings using direct-push drilling equipment on May 6, 2015. Four borings were advanced in the western berm (WB-1 to WB-4) and four borings were advanced in the eastern berm (EB-1 to EB-4). The boring locations are shown on the sketch in Attachment A. Boring target depths were approximately 6 to 8 feet to penetrate the soil/fill to the approximate ground surface of the surrounding area. Soil/fill encountered in each boring was logged by a B&L environmental scientist and was field screened using a calibrated photo-ionization detector (PID).

B&L composited aliquots of the samples collected on the western berm to achieve a 4-point composite sample and a duplicate sample from that berm. Similar sampling was conducted from the eastern berm. Soil samples for laboratory analyses were placed into laboratory supplied bottle-ware, packed in a cooler with ice, and submitted with chain of custody documentation.

Analytical Parameters and Laboratory

The composite samples were analyzed for parameters typically required by non-hazardous waste landfills. Specifically:

- Toxicity characterization leaching procedure (TCLP) volatile organic compounds (VOCs)
- TCLP semi-volatile organic compounds (SVOCs)
- TCLP metals
- Total polychlorinated biphenyls (PCBs)
- Flashpoint
- Corrosivity as pH
- Ignitability
- Paint filter test
- Reactivity

Total VOC and SVOC samples were also collected (two samples and two duplicate samples). All analyses were completed by Spectrum Analytical, Inc., an appropriately accredited laboratory (ELAP Accreditation No. 11393).

Sampling Findings and Analytical Results

Soil Field Observations

The berms are mainly composed of mixed urban soil consisting of brown reworked soil (e.g., silt, sand, gravel, and clay) with grey cinders. In locations where the fill unit is generally thinner, a fine to coarsegrained sand unit of limited thickness is present beneath the fill. Water saturated soils were not observed.

In general, visual and/or olfactory impacted soil was not encountered. Petroleum staining, oily sheens or petroleum/chemical odors were not noted in the borings. PID readings were at non-detect or below 1 part per million by volume (ppmv) in each boring with the exception of borings WB-1 and WB-3. The 0 to 4 feet bgs interval in WB-1 contained peak PID readings of 2.4 ppmv. PID readings in this boring

Mr. Albert M. Giannino Pioneer Companies May 27, 2015 Page 3

decreased with depth. The 0 to 4 feet bgs interval in WB-3 contained peak PID readings of 2.3 ppmv. PID readings in this boring also decreased with depth.

Soil Quality Results

Summary tables with the analytical results are provided in Attachment B. Laboratory analytical reports prepared by Spectrum Analytical, Inc. and are provided in Attachment C. Reported concentrations were compared to regulatory thresholds for determining hazardous waste for purposes of land disposal. TCLP VOCs, TCLP SVOCs and TCLP Metals concentrations did not exceed maximum contaminant concentrations (40 CFR 261). Corrosivity, ignitability, and reactivity were also below limits that would result in the material being classified as hazardous waste.

Total organic compound concentrations were compared to NYSDEC Commissioner's Policy 51 Soil Cleanup Guidance (CP-51) Soil Cleanup Levels. Individual SVOCs were detected in each of the four samples and several SVOC concentrations exceeded CP-51 Soil Cleanup Levels in two of the four samples. The sum of individual SVOC concentrations ranged from 4350 to 65,195 micrograms per kilogram (ug/kg) in the samples. PCBs were detected at concentrations ranging from 36.4 to 262 ug/kg below the CP-51 Soil Cleanup Levels of 1,000 ug/kg for surface soils and 10,000 ug/kg for subsurface soils. Individual VOCs were not detected in the samples collected with the exception of a trace concentration of xylene at 19.8 ug/kg in the West Berm sample. The CP-51 Soil Cleanup Level for total xylene is 260 ug/kg. The organic compound concentrations detected appear to be typical of urban fill/soils and not from a point-source petroleum release.

er Soi Dis osa an Re se O tions

The observations and analytical data demonstrate that the soil within the east and west berm areas do not have characteristics that would cause the material to be classified as hazardous waste. The berm material contains concentrations of organic compounds that exceed CP-51 Soil Cleanup Levels, and therefore the material would not meet the criteria for clean fill. Based on this sampling and consistent with the SMP, berm material that cannot be reused on the property must be disposed of at a facility permitted to receive non-hazardous industrial solid waste in accordance with Local, State and Federal regulations.

The SMP Section 3.4.5 allows for site soil that is excavated to be used as backfill provided it contains no visual or olfactory evidence of contamination and it is placed beneath a cover system component. Therefore, onsite re-use is an option for this material. If onsite re-use is chosen, site development plans should incorporate the use of this material and selecting a suitable cover. Site cover components in the SMP include the following:

- Clean Type 1 or 2 crushed gravel, or combination of clean crushed gravel fill and topsoil. Minimum of 12 inches.
- Asphalt roadways, sidewalks, or parking lots. Minimum of 4 inches.
- Concrete slab-on-grade structures, roads, sidewalks, and parking lots in lieu of asphalt. Minimum of 6 inches.

Mr. Albert M. Giannino Pioneer Companies May 27, 2015 Page 4

Other Consi erations

The Contractor or owner representative should prepare a Health and Safety Plan and a Community Air Monitoring Plan prior to excavation of the berm or subsurface materials. The property is part of a Brownfield Cleanup Program project where an Environmental Easement restricts land use and if the lot containing the berm is divided or land use classification changes, then amending the Environmental Easement with the NYSDEC will be necessary.

If you have any questions or require further information, please contact me at (585) 325-7190.

Very truly yours,

BARTON & LOGUIDICE, D.P.C.

Greg V. Lesina

Greg V. Lesniak, P.G.

Senior Project Hydrogeologist

GVL/akg Attachments

Attachment A Soil Boring Locations

Soil Boring Locations
 East Berm: EB-1 to EB-4
 West Berm: WB-1 to WB-4

Attachment B Results Summary Table

Summary Table - Berm Samples Hazardous Characteristics

Project:	Midler A	Avenue, Syracuse, Ne	ew York			
Project Number:	1537.00	5.001				
Client Sample ID:		TCLP Maximum Contaminant	East Berm	East Berm - Duplicate	West Berm	West Berm- Duplicate
Lab Sample ID:		Concentrations	SCO7186-01	SCO7186-02	SCO7186-04	SCO7186-03
Date Sampled:		(40 CFR 261	5/6/2015	5/6/2015	5/6/2015	5/6/2015
Matrix:		6/96)	Soil	Soil	Soil	Soil
		, ,		I I		l .
General Chemistry						
pН		-	8.24	8.21	7.8	7.76
Flashpoint	Deg. F	-	>200	>200	>200	>200
Ignitability		-	Negative	Negative	Negative	Negative
Solids, Percent	%	-	86	83.6	84.5	84.5
Free Liquids	N/A	-	Absent	Absent	Absent	Absent
Cyanide Reactivity	mg/kg	-	<24.7	<24.7	<24.8	<25
Sulfide Reactivity	mg/kg	-	<49.4	<49.4	<49.6	<50
,		<u> </u>		L		1
TCLP VOCs (SW846 8260C)						
, , , , , , , , , , , , , , , , , , , ,						
Benzene	mg/l	0.5	<0.0009	<0.0009	<0.0009	<0.0009
2-Butanone (MEK)	mg/l	200	<0.0062	<0.0062	<0.0062	<0.0062
Carbon tetrachloride	mg/l	0.5	<0.0011	<0.0011	<0.0011	<0.0011
Chlorobenzene	mg/l	100	<0.001	<0.001	<0.001	<0.001
Chloroform	mg/l	6	<0.002	0.0024	<0.002	0.0026
1,4-Dichlorobenzene	mg/l	7.5	<0.0012	<0.0012	<0.0012	<0.0012
1,2-Dichloroethane	mg/l	0.5	<0.0008	<0.0008	<0.0008	<0.0008
1,1-Dichloroethene	mg/l	0.7	<0.0014	<0.0014	<0.0014	<0.0014
Hexachlorobutadiene	mg/l	0.5	<0.002	<0.002	<0.002	<0.002
Tetrachloroethene	mg/l	0.7	0.0099	0.0108	<0.0029	<0.0029
Trichloroethene	mg/l	0.5	<0.0019	<0.0019	<0.0019	<0.0019
Vinyl chloride	mg/l	0.2	<0.0017	<0.0017	<0.0017	<0.0017
•						•
TCLP SVOCs (SW846 8270D)						
2-Methylphenol	mg/l	200	< 0.00214	< 0.00214	< 0.00214	< 0.00214
3&4-Methylphenol	mg/l	200	< 0.00214	< 0.00214	< 0.00214	< 0.00214
Pentachlorophenol	mg/l	100	< 0.00222	< 0.00222	< 0.00222	< 0.00222
2,4,5-Trichlorophenol	mg/l	400	< 0.00210	< 0.00210	< 0.00209	< 0.00210
2,4,6-Trichlorophenol	mg/l	2	< 0.00203	< 0.00196	< 0.00196	< 0.00196
1,4-Dichlorobenzene	mg/l	7.5	< 0.00202	< 0.00202	< 0.00202	< 0.00202
2,4-Dinitrotoluene	mg/l	0.13	< 0.00238	< 0.00238	< 0.00238	< 0.00202
Hexachlorobenzene	mg/l	0.13	< 0.00238	< 0.00235	< 0.00238	< 0.00238
Hexachlorobutadiene	mg/l	0.13	< 0.00213	< 0.00213	< 0.00213	< 0.00213
Hexachloroethane	mg/l	3	< 0.00203	< 0.00203	< 0.00205	< 0.00203
Nitrobenzene	mg/l	2	< 0.00213	< 0.00213	< 0.00213	< 0.00213
Pyridine	mg/l	5	< 0.00212	< 0.00212	< 0.00162	< 0.00212
i yridino	ilig/i	<u> </u>	~ 0.00 TOZ	~ 0.0010Z	~ 0.0010Z	~ 0.00 TOZ
TCLP Metals Analysis						
Arsenic	mg/l	5	< 0.0026	0.0028	0.0049	0.0054
Barium	mg/l	100	0.374	0.418	0.416	0.41
Cadmium	mg/l	1	0.0005	0.0007	0.0012	0.0012
Chromium	mg/l	5	0.0003	0.004	0.0012	0.0012
Lead	mg/l	5	< 0.0028	0.004	0.0036	0.0136
Mercury	mg/l	0.2	< 0.0009	< 0.0009	< 0.00009	< 0.00009
iviercury		1				
Selenium	mg/l		< 0.0043	0.0057	0.0044	0.0072

Notes:

Refer to Laboratory Analytical Reports for full list of compounds analyzed, qualifiers and analytical notes.

Summary Table - Berm Samples - Organic Compounds

Project:		Avenue, Syracuse, New	York			
Project Number:	1537.00	5.001				
Client Sample ID:			East Berm	East Berm - Duplicate	West Berm	West Berm- Duplica
Lab Sample ID:		CP-51	SC07188-01	SC07188-02	SC07188-03	SC07188-04
Date Sampled:		Soil Cleanup Levels	5/6/2015	5/6/2015	5/6/2015	5/6/2015
Matrix:			Soil	Soil	Soil	Soil
	l .	I I				
NYSDEC STARS List Petroleum C	Constitue	ents VOCs (SW846 8260)	C)			
Benzene	ug/kg	60	< 1.4	< 1.5	< 12.0	< 1.0
n-Butylbenzene	ug/kg	12000	< 2.1	< 2.3	< 18.9	< 1.6
sec-Butylbenzene	ug/kg	11000	< 5.8	< 6.3	< 51.7	< 4.4
tert-Butylbenzene	ug/kg	5900	< 4.9	< 5.3	< 43.4	< 3.7
Ethylbenzene	ug/kg	1000	< 1.3	< 1.4	< 11.6	< 1.0
Isopropylbenzene	ug/kg	100000	< 1.4	< 1.5	< 12.6	< 1.1
4-Isopropyltoluene	ug/kg	NS	< 7.0	< 7.6	< 62.0	< 5.3
Methyl tert-butyl ether	ug/kg	930	< 2.9	< 3.1	< 25.5	< 2.2
Naphthalene	ug/kg	12000	< 6.8	< 7.4	< 60.6	< 5.1
n-Propylbenzene	ug/kg	3900	< 7.2	< 7.8	< 64.0	< 5.4
Toluene	ug/kg	700	< 1.7	< 1.9	< 15.2	< 1.3
1,2,4-Trimethylbenzene	ug/kg	3600	< 1.9	< 2.0	< 16.6	< 1.4
1,3,5-Trimethylbenzene	ug/kg	8400	< 2.1	< 2.3	< 19.0	< 1.6
m,p-Xylene	ug/kg	260	< 1.5	< 1.6	19.8	< 1.1
o-Xylene	ug/kg	260	< 1.6	< 1.7	< 14.1	< 1.2
						•
IYSDEC STARS List Petroleum C	Constitue	ents SVOCs (SW846 827)	0D)			
Acenaphthene	ug/kg	2000	< 99.3	< 100	1300	390
Acenaphthylene	ug/kg	100000	< 90.3	< 91.2	213	185
Anthracene	ug/kg	100000	151	120	2720	851
Benzo (a) anthracene	ug/kg	1000	613	410	5450	3280
Benzo (a) pyrene	ug/kg	1000	598	395	4170	2850
Benzo (b) fluoranthene	ug/kg	1000	764	537	6010	4220
Benzo (g,h,i) perylene	ug/kg	100000	311	219	2170	1640
Benzo (k) fluoranthene	ug/kg	800	292	163	1750	1200
Chrysene	ug/kg	1000	517	376	4280	2980
Dibenzo (a,h) anthracene	ug/kg	330	< 78.2	< 78.9	605	411
Fluoranthene	ug/kg	100000	1070	743	13100	7150
Fluorene	ug/kg	30000	< 102	< 103	1590	322
Indeno (1,2,3-cd) pyrene	ug/kg	500	387	253	2680	1890
1-Methylnaphthalene	ug/kg	NS	< 108	< 109	492	< 101
2-Methylnaphthalene	ug/kg	410	< 87.8	< 88.7	525	103
Naphthalene	ug/kg	12000	< 86.7	< 87.6	510	179
Phenanthrene	ug/kg	10000	474	479	9950	4140
Pyrene	ug/kg	10000	898	655	7680	6190
Total SVOCs		500000	6075	4350	65195	37981
		•		•		
PCBs (SW846 8082)						
Aroclor-1016	ug/kg	1,000	< 20.9	< 20.9	< 20.6	< 20.1
Aroclor-1221	ug/kg	1,000	< 17.8	< 17.8	< 17.5	< 17.1
Aroclor-1232	ug/kg	1,000	< 20.8	< 20.8	< 20.5	< 20.0
Aroclor-1242	ug/kg	1,000	< 14.4	< 14.4	< 14.2	< 13.8
Aroclor-1248	ug/kg	1,000	< 14.5	< 14.5	< 14.3	< 14.0
Aroclor-1254	ug/kg	1,000	< 16.0	< 16.0	< 15.7	< 15.4
Aroclor-1260	ug/kg	1,000	208	262	50	36.4
Aroclor-1262	ug/kg	1,000	< 20.8	< 20.8	< 20.4	< 20.0
Aroclor-1268	ug/kg	1,000	< 22.8	< 22.8	< 22.4	< 21.9

Refer to Laboratory Analytical Reports for full list of compounds analyzed, qualifiers and analytical notes. CP-51 Soil Cleanup Levels - NYSDEC Commissioners Policy Soil Cleanup Guidance

PCB CP-51 Soil Cleanup Level is 1,000 ug/kg for surface soils and 10,000 ug/kg for subsurface soils. Shaded results exceed CP-51 Soil Cleanup Levels

NS - no individual soil cleanup level

Attachment C Laboratory Analytical Report

Report Date: 18-May-15 11:40

V	Final Report
	Re-Issued Repor
	Revised Report

Laboratory Report

Barton & Loguidice, D.P.C. 11 Centre Park Suite 203 Rochester, NY 14614

Attn: Greg Lesniak

Project: Pioneer Midler Ave - Syracuse, NY

Project #: 1537.005.001

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SC07188-01	East Berm	Soil	06-May-15 08:51	06-May-15 11:30
SC07188-02	East Berm - Dupe	Soil	06-May-15 08:51	06-May-15 11:30
SC07188-03	West Berm	Soil	06-May-15 09:45	06-May-15 11:30
SC07188-04	West Berm - Dupe	Soil	06-May-15 09:45	06-May-15 11:30

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011 New York # 11393 Pennsylvania # 68-04426/68-02924 Rhode Island # LAO00098 USDA # S-51435

Authorized by:

Nicole Leja Laboratory Director

Nicole Leja

Spectrum Analytical holds certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 19 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our Quality'web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey, Pennsylvania and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (PA-68-04426).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

CASE NARRATIVE:

Data has been reported to the MDL. This report includes estimated concentrations detected below the RDL and above the MDL (J-Flag).

All non-detects and all results below the detection limit are reported as "<" (less than) the detection limit in this report.

The samples were received 12.5 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of +/- 1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

All VOC soils samples submitted and analyzed in methanol will have a minimum dilution factor of 50. This is the minimum amount of solvent allowed on the instrumentation without causing interference. Soils are run on a manual load instrument. 100ug of sample (MEOH) is spiked into 5ml DI water along with the surrogate and added directly onto the instrument. Additional dilution factors may be required to keep analyte concentration within instrument calibration range.

Method SW846 5035A is designed to use on samples containing low levels of VOCs, ranging from 0.5 to 200 ug/Kg. Target analytes that are less responsive to purge and trap may be present at concentrations over 200ug/Kg but may not be reportable in the methanol preserved vial (SW846 5030). This is the result of the inherent dilution factor required for the methanol preservation.

All volatile soil/product/solid samples should be collected in accordance method SW846 5035/5035A. Any sample with a result below 200ug/Kg that has not been collected in accordance with method 5035/5035A must be evaluated as potentially biased low.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

SW846 8260C

Calibration:

1504013

Analyte quantified by quadratic equation type calibration.

Naphthalene

This affected the following samples:

S502844-ICV1

1504015

Analyte quantified by quadratic equation type calibration.

Naphthalene

This affected the following samples:

1509227-BLK1 1509227-BS1

1509227-BSD1

East Berm

East Berm - Dupe

S503006-ICV1

S504458-CCV1

West Berm - Dupe

Samples:

SC07188-03

West Berm

Elevated Reporting Limits due to the presence of high levels of non-target analytes; sample may not meet client requested reporting limit for this reason.

SW846 8270D

Samples:

SC07188-01 East Berm

The Reporting Limit has been raised to account for matrix interference.

SC07188-02 East Berm - Dupe

The Reporting Limit has been raised to account for matrix interference.

SC07188-03 West Berm

The Reporting Limit has been raised to account for matrix interference.

SC07188-04 West Berm - Dupe

The Reporting Limit has been raised to account for matrix interference.

Sample Acceptance Check Form

Barton & Loguidice, D.P.C. - Rochester, NY

Client:

Project:	Pioneer Midler Ave - Syracuse, NY / 1537.005.001			
Work Order:	SC07188			
Sample(s) received on:	5/6/2015			
The following outlines to	he condition of samples for the attached Chain of Custody upon receipt.			
		Yes	No	N/A
Were custody se	als present?		\checkmark	
Were custody se	als intact?			\checkmark
Were samples re	c Order: SC07188			
Were samples co	ooled on ice upon transfer to laboratory representative?	✓		
Were sample con	ntainers received intact?	✓		
		V		
Were samples ac	companied by a Chain of Custody document?	✓		
include sample I	D, site location, and/or project number, date and time of collection, collector's name,			
Did sample cont	ainer labels agree with Chain of Custody document?	\checkmark		
Were samples re	ceived within method-specific holding times?	\checkmark		

Sample Id East Berr SC07188-	-				Client Project # 1537.005.001			Collection Date/Time 06-May-15 08:51			Received 06-May-15		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Volatile O	rganic Compounds												
	VOC Extraction	Lab extracted		N/A			1	VOC Soil Extraction	08-May-1 5	08-May-1 5	DT	1509058	
	rganic Full Aromatics by S	W846											
8260 Prepared	by method SW846 5035A	Soil (low lev	el)			Init	ial weight:	5.32 g					
71-43-2	Benzene	< 1.4	UJL	μg/kg dry	7.5	1.4	1	SW846 8260C	12-May-1 5	12-May-1 5	SJB	1509227	X
104-51-8	n-Butylbenzene	< 2.1	UJL	μg/kg dry	7.5	2.1	1	"	"	"	"	"	Х
135-98-8	sec-Butylbenzene	< 5.8	UJL	μg/kg dry	7.5	5.8	1	II .	"		"	"	Х
98-06-6	tert-Butylbenzene	< 4.9	UJL	μg/kg dry	7.5	4.9	1	II	"	"	"	"	Х
100-41-4	Ethylbenzene	< 1.3	UJL	μg/kg dry	7.5	1.3	1	n .	"	u	"	"	Χ
98-82-8	Isopropylbenzene	< 1.4	UJL	μg/kg dry	7.5	1.4	1	n	"	"	"	"	Χ
99-87-6	4-Isopropyltoluene	< 7.0	UJL	μg/kg dry	7.5	7.0	1	n .	"	u	"	"	Χ
1634-04-4	Methyl tert-butyl ether	< 2.9	UJL	μg/kg dry	7.5	2.9	1	"	"	"	"		Χ
91-20-3	Naphthalene	< 6.8	UJL	μg/kg dry	7.5	6.8	1	"	"	"	"	"	Χ
103-65-1	n-Propylbenzene	< 7.2	UJL	μg/kg dry	7.5	7.2	1	"	"	"	"		Χ
108-88-3	Toluene	< 1.7	UJL	μg/kg dry	7.5	1.7	1	"	"	"	"	"	Χ
95-63-6	1,2,4-Trimethylbenzene	< 1.9	UJL	μg/kg dry	7.5	1.9	1	"	"	"	"	"	Χ
108-67-8	1,3,5-Trimethylbenzene	< 2.1	UJL	μg/kg dry	7.5	2.1	1	"	"	"	"	"	Χ
179601-23-1	m,p-Xylene	< 1.5	UJL	μg/kg dry	14.9	1.5	1	"	"	"	"	"	Χ
95-47-6	o-Xylene	< 1.6	UJL	μg/kg dry	7.5	1.6	1	W .	"	u u	"	"	Χ
Surrogate i	recoveries:												
460-00-4	4-Bromofluorobenzene	94			70-13	80 %		"	"	u	"	"	
2037-26-5	Toluene-d8	105			70-13	80 %		"	"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	113			70-13	80 %		"	"	"	"	"	
1868-53-7	Dibromofluoromethane	121			70-13	80 %		"	"	"	"	"	
Semivolati	ile Organic Compounds by	GCMS											
-	SW846 8270 by method SW846 3545A		R01										
83-32-9	Acenaphthene	< 99.3	U, D	μg/kg dry	426	99.3	5	SW846 8270D	11-May-15	15-May-1 5	MSL	1509090	Х
208-96-8	Acenaphthylene	< 90.3	U, D	μg/kg dry	426	90.3	5	m .	"	"		"	Х
120-12-7	Anthracene	151	J, D	μg/kg dry	426	97.4	5	"	"	"	"	"	Х
56-55-3	Benzo (a) anthracene	613	D	μg/kg dry	426	88.2	5		"	"	"		Х
50-32-8	Benzo (a) pyrene	598	D	μg/kg dry	426	88.7	5	"	"	"	"	"	Х
205-99-2	Benzo (b) fluoranthene	764	D	μg/kg dry	426	97.0	5		"	"	"		Х
191-24-2	Benzo (g,h,i) perylene	311	J, D	μg/kg dry	426	92.2	5	"	"		"	"	Х
207-08-9	Benzo (k) fluoranthene	292	J, D	μg/kg dry	426	97.0	5	"	"			"	Х
218-01-9	Chrysene	517	D	μg/kg dry	426	104	5	"	"			"	Х
53-70-3	Dibenzo (a,h) anthracene	< 78.2	U, D	μg/kg dry	426	78.2	5	n n	"		"	"	Х
206-44-0	Fluoranthene	1,070	D	μg/kg dry	426	107	5	II .	"	"	"	"	Х
86-73-7	Fluorene	< 102	U, D	μg/kg dry	426	102	5	II .	"	"	"	"	Х
193-39-5	Indeno (1,2,3-cd) pyrene	387	J, D	μg/kg dry	426	87.1	5	II .	"	"	"	"	Х
90-12-0	1-Methylnaphthalene	< 108	U, D	μg/kg dry	426	108	5	II .	"	"	"	"	
91-57-6	2-Methylnaphthalene	< 87.8	U, D	μg/kg dry	426	87.8	5	II .	"	"	"	"	Х
91-20-3	Naphthalene	< 86.7	U, D	μg/kg dry	426	86.7	5	n n	"		"	"	Х
	•												
85-01-8	Phenanthrene	474	D	μg/kg dry	426	104	5	"	"	"	"	"	Χ

Sample Identification East Berm SC07188-01			<u>Client Project #</u> 1537.005.001			<u>Matrix</u> Soil	<u></u>	6-May-15 08:51		Received 06-May-15			
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	ile Organic Compounds	by GCMS											
	SW846 8270 by method SW846 35	<u>45A</u>	R01										
Surrogate	recoveries:												
321-60-8	2-Fluorobiphenyl	69			30-13	0 %		SW846 8270D	11-May-15	15-May-15	MSL	1509090	ı
1718-51-0	Terphenyl-dl4	66			30-13	0 %		"	"	"	"	"	
4165-60-0	Nitrobenzene-d5	75			30-13	0 %		п	"	"	"	"	
General C	Chemistry Parameters												
	% Solids	77.9		%			1	SM2540 G Mod.	11-May-15	11-May-15	DT	1509145	j

	Cast Berm - Dupe CO7188-02				Client Project # 1537.005.001			Collection Date/Time 06-May-15 08:51			Received 06-May-15		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Volatile O	rganic Compounds												
	VOC Extraction	Lab extracted		N/A			1	VOC Soil Extraction	08-May-1 5	08-May-1 5	DT	1509058	
	rganic Full Aromatics by S	W846											
8260 Prepared	by method SW846 5035A	Soil (low leve	el)			Init	tial weight:	4.99 g					
71-43-2	Benzene	< 1.5	UJL	μg/kg dry	8.1	1.5	1	SW846 8260C	12-May-1 5	12-May-1 5	SJB	1509227	X
104-51-8	n-Butylbenzene	< 2.3	UJL	μg/kg dry	8.1	2.3	1	"	"	"	"	"	Х
135-98-8	sec-Butylbenzene	< 6.3	UJL	μg/kg dry	8.1	6.3	1	"	"	"	"	"	Х
98-06-6	tert-Butylbenzene	< 5.3	UJL	μg/kg dry	8.1	5.3	1	"	"	"	"		Χ
100-41-4	Ethylbenzene	< 1.4	UJL	μg/kg dry	8.1	1.4	1	"	"	"	"	"	Χ
98-82-8	Isopropylbenzene	< 1.5	UJL	μg/kg dry	8.1	1.5	1	"	"	"	"	"	Χ
99-87-6	4-Isopropyltoluene	< 7.6	UJL	μg/kg dry	8.1	7.6	1	"	"	"	"	"	Χ
1634-04-4	Methyl tert-butyl ether	< 3.1	UJL	μg/kg dry	8.1	3.1	1	"	"	"	"		Χ
91-20-3	Naphthalene	< 7.4	UJL	μg/kg dry	8.1	7.4	1	"	"	"	"	"	Χ
103-65-1	n-Propylbenzene	< 7.8	UJL	μg/kg dry	8.1	7.8	1	"	"	"	"	"	Χ
108-88-3	Toluene	< 1.9	UJL	μg/kg dry	8.1	1.9	1	"	"	"	"	"	Χ
95-63-6	1,2,4-Trimethylbenzene	< 2.0	UJL	μg/kg dry	8.1	2.0	1	"	"	"	"	"	Χ
108-67-8	1,3,5-Trimethylbenzene	< 2.3	UJL	μg/kg dry	8.1	2.3	1	"	"	"	"	"	Χ
179601-23-1	m,p-Xylene	< 1.6	UJL	μg/kg dry	16.1	1.6	1	"	"	"	"	"	Χ
95-47-6	o-Xylene	< 1.7	UJL	μg/kg dry	8.1	1.7	1	"	"	"	"	"	Χ
Surrogate r	recoveries:												
460-00-4	4-Bromofluorobenzene	93			70-13	80 %		"	"	"	"	"	
2037-26-5	Toluene-d8	107			70-13	80 %		"	"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	113			70-13	80 %		"	"	"	"	"	
1868-53-7	Dibromofluoromethane	115			70-13	80 %		"	"	"	"	"	
	le Organic Compounds by	GCMS											
-	SW846 8270		R01										
83-32-9	by method SW846 3545A Acenaphthene	< 100	U, D	μg/kg dry	430	100	5	SW846 8270D	11-May-15	-	MSL	1509090	Х
208-96-8	Acenaphthylene	< 91.2	U, D	μg/kg dry	430	91.2	5	"	"	5		"	Х
120-12-7	Anthracene	120	J, D	μg/kg dry μg/kg dry	430	98.3	5	"	"		"	"	X
56-55-3	Benzo (a) anthracene	410	J, D	μg/kg dry μg/kg dry	430	89.0	5	п	"			"	X
50-32-8	Benzo (a) pyrene	395	J, D	μg/kg dry μg/kg dry	430	89.6	5	"	"			"	X
205-99-2	Benzo (b) fluoranthene	537	D	μg/kg dry	430	97.9	5		"			"	X
191-24-2	Benzo (g,h,i) perylene	219	J, D	μg/kg dry	430	93.1	5		"				Х
207-08-9	Benzo (k) fluoranthene	163	J, D	μg/kg dry	430	97.9	5	"	"	"	"		Х
218-01-9	Chrysene	376	J, D	μg/kg dry	430	105	5	•	"		"	"	Х
53-70-3	Dibenzo (a,h) anthracene	< 78.9	U, D	μg/kg dry	430	78.9	5	•	"		"	"	Х
206-44-0	Fluoranthene	743	D	μg/kg dry	430	108	5	"	"	"	"	"	Х
86-73-7	Fluorene	< 103	U, D	μg/kg dry	430	103	5	"	"	"	"	"	X
193-39-5	Indeno (1,2,3-cd) pyrene	253	D, J	μg/kg dry	430	87.9	5	"	"			"	Х
90-12-0	1-Methylnaphthalene	< 109	U, D	μg/kg dry	430	109	5	"	"			"	
91-57-6	2-Methylnaphthalene	< 88.7	U, D	μg/kg dry	430	88.7	5	"	"			"	Х
	Naphthalene	< 87.6	U, D	μg/kg dry	430	87.6	5	"	"			"	Х
91-20-3													-
91-20-3 85-01-8	Phenanthrene	479	D	μg/kg dry	430	105	5	"	"	"		"	Х

Sample Identification East Berm - Dupe SC07188-02			Client Project # 1537.005.001			<u>Matrix</u> Soil		6-May-15 08:51		Received 06-May-15			
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	le Organic Compound	ls by GCMS											
	SW846 8270 by method SW846 3	<u>545A</u>	R01										
Surrogate i	recoveries:												
321-60-8	2-Fluorobiphenyl	58			30-13	0 %		SW846 8270D	11-May-15	15-May-15	MSL	1509090	
1718-51-0	Terphenyl-dl4	56			30-13	0 %		"	"	"	"		
4165-60-0	Nitrobenzene-d5	66			30-13	0 %		п	"	"	"	"	
General C	hemistry Parameters												
	% Solids	76.6		%			1	SM2540 G Mod.	11-May-15	11-May-15	DT	1509145	

Sample Id West Bern SC07188-	-				Client Project # 1537.005.001				Collection Date/Time 06-May-15 09:45			Received 06-May-15		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.	
Volatile Or	rganic Compounds													
	VOC Extraction	Lab extracted		N/A			1	VOC Soil Extraction	08-May-1 5	08-May-1 5	DT	1509058		
Volatile Or 8260	rganic Full Aromatics by S	W846	R05											
	by method SW846 5035A	Soil (high lev	<u>/el)</u>			<u>Init</u>	ial weight:	14.78 g						
71-43-2	Benzene	< 12.0	UJL, D	μg/kg dry	66.1	12.0	50	SW846 8260C	13-May-1 5	13-May-1 5	SJB	1509327	X	
104-51-8	n-Butylbenzene	< 18.9	UJL, D	μg/kg dry	66.1	18.9	50	m .	"	"	"	"	Х	
135-98-8	sec-Butylbenzene	< 51.7	UJL, D	μg/kg dry	66.1	51.7	50		"	"	"	"	X	
98-06-6	tert-Butylbenzene	< 43.4	UJL, D	μg/kg dry	66.1	43.4	50		"	"	"	"	X	
100-41-4	Ethylbenzene	< 11.6	UJL, D	μg/kg dry	66.1	11.6	50	"	"	"	"		Х	
98-82-8	Isopropylbenzene	< 12.6	UJL, D	μg/kg dry	66.1	12.6	50	"	"	"	"	"	X	
99-87-6	4-Isopropyltoluene	< 62.0	UJL, D	μg/kg dry	66.1	62.0	50	"	"	"	"	"	X	
1634-04-4	Methyl tert-butyl ether	< 25.5	UJL, D	μg/kg dry	66.1	25.5	50	"	"	"	"	"	X	
91-20-3	Naphthalene	< 60.6	UJL, D	μg/kg dry	66.1	60.6	50	"	"	"	"	"	X	
103-65-1	n-Propylbenzene	< 64.0	UJL, D	μg/kg dry	66.1	64.0	50	"	"	"	"	"	Х	
108-88-3	Toluene	< 15.2	UJL, D	μg/kg dry	66.1	15.2	50	"	"	"	"	"	X	
95-63-6	1,2,4-Trimethylbenzene	< 16.6	UJL, D	μg/kg dry	66.1	16.6	50	"	"	"	"	"	Х	
108-67-8	1,3,5-Trimethylbenzene	< 19.0	UJL, D	μg/kg dry	66.1	19.0	50		"	"	"		Х	
179601-23-1	m,p-Xylene	19.8	JL, D	μg/kg dry	132	13.0	50	•	"	"	"	"	Х	
95-47-6	o-Xylene	< 14.1	UJL, D	μg/kg dry	66.1	14.1	50	II .	"	"	"	"	Χ	
Surrogate r	recoveries:													
460-00-4	4-Bromofluorobenzene	102			70-13	0 %		"	"	"	"	"		
2037-26-5	Toluene-d8	100			70-13	0 %		"	"	"	"	"		
17060-07-0	1,2-Dichloroethane-d4	89			70-13	0 %		"	"	"	"	"		
1868-53-7	Dibromofluoromethane	95			70-13	0 %		"	"	"	"	"		
Semivolati	le Organic Compounds by	GCMS												
-	SW846 8270 by method SW846 3545A		R01											
83-32-9	Acenaphthene	1,300	D	μg/kg dry	383	89.4	5	SW846 8270D	11-May-15	15-May-1 5	MSL	1509090	Х	
208-96-8	Acenaphthylene	213	D, J	μg/kg dry	383	81.3	5	п	"	"	"	"	Х	
120-12-7	Anthracene	2,720	D	μg/kg dry	383	87.7	5	w w	"	"	"	u	Х	
56-55-3	Benzo (a) anthracene	5,450	D	μg/kg dry	383	79.4	5	"	"	"	"	"	Х	
50-32-8	Benzo (a) pyrene	4,170	D	μg/kg dry	383	79.9	5	II .	"	"	"	"	Х	
205-99-2	Benzo (b) fluoranthene	6,010	D	μg/kg dry	383	87.4	5	w w	"	"	"	u	Х	
191-24-2	Benzo (g,h,i) perylene	2,170	D	μg/kg dry	383	83.1	5	"	"	"	"		Х	
207-08-9	Benzo (k) fluoranthene	1,750	D	μg/kg dry	383	87.4	5	•	"	"	"	"	Х	
218-01-9	Chrysene	4,280	D	μg/kg dry	383	93.7	5	n	"	"			Х	
53-70-3	Dibenzo (a,h) anthracene	605	D	μg/kg dry	383	70.4	5	"	"	"	"		Х	
206-44-0	Fluoranthene	13,100	D	μg/kg dry	383	96.3	5	**	"		"		Х	
86-73-7	Fluorene	1,590	D	μg/kg dry	383	91.9	5	"	"	"		"	Х	
193-39-5	Indeno (1,2,3-cd) pyrene	2,680	D	μg/kg dry	383	78.4	5	"	"	"	"	"	Х	
90-12-0	1-Methylnaphthalene	492	D	μg/kg dry	383	97.0	5		"	"	"	"	-	
91-57-6	2-Methylnaphthalene	525	D	μg/kg dry	383	79.1	5	m .	"	"		"	Х	
	. ,						-							
	Naphthalene	510	D	ug/ka drv	383	78 1	5	"	"	"	"	"	X	
91-20-3 85-01-8	Naphthalene Phenanthrene	510 9,950	D D	μg/kg dry μg/kg dry	383 383	78.1 93.6	5 5	"	"	"	"	"	X X	

Sample Identification West Berm SC07188-03			<u>Client Project #</u> 1537.005.001			<u>Matrix</u> Soil	<u></u>	lection Date/Time 6-May-15 09:45		Received 06-May-15			
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	ile Organic Compounds	s by GCMS											
	SW846 8270 by method SW846 35	45 <u>A</u>	R01										
Surrogate	recoveries:												
321-60-8	2-Fluorobiphenyl	56			30-13	0 %		SW846 8270D	11-May-15	15-May-15	MSL	1509090	1
1718-51-0	Terphenyl-dl4	57			30-13	0 %			u u	"	"	"	
4165-60-0	Nitrobenzene-d5	59			30-13	0 %		п	"	"	"	"	
General C	Chemistry Parameters												
	% Solids	86.8		%			1	SM2540 G Mod.	11-May-15	11-May-15	DT	1509145	i

Sample Ic	dentification			Client P	roiect#		Matrix	Colle	/Time	Received					
	m - Dupe			1537.00			Soil		-May-15 09		06-1				
SC07188-	-04			1337.00	33.001		5011	00	141ay 15 07	. 13	00 1				
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.		
Volatile O	rganic Compounds														
	VOC Extraction	Lab		N/A			1	VOC Soil	08-May-1	08-May-1	DT	1509058			
		extracted						Extraction	5	5					
	rganic Full Aromatics by S	SW846													
8260 Prepared	by method SW846 5035A	Soil (low leve	(اد			Init	ial weight:	6.48 a							
71-43-2	Benzene	< 1.0	UJL	μg/kg dry	5.6	1.0	1	SW846 8260C	12-May-1	12-May-1	SJB	1509227	X		
	Bonzono	1.0		pg/ng ary	0.0	1.0		01101002000	5	5	COD	1000227	^		
104-51-8	n-Butylbenzene	< 1.6	UJL	μg/kg dry	5.6	1.6	1	"	"	"		"	Х		
135-98-8	sec-Butylbenzene	< 4.4	UJL	μg/kg dry	5.6	4.4	1	"	n .	"		"	Х		
98-06-6	tert-Butylbenzene	< 3.7	UJL	μg/kg dry	5.6	3.7	1	"	"	"	"	"	Х		
100-41-4	Ethylbenzene	< 1.0	UJL	μg/kg dry	5.6	1.0	1	"	"	"	"	"	Х		
98-82-8	Isopropylbenzene	< 1.1	UJL	μg/kg dry	5.6	1.1	1	"	"	"		"	Х		
99-87-6	4-Isopropyltoluene	< 5.3	UJL	μg/kg dry	5.6	5.3	1	"	"	"	"	"	Х		
1634-04-4	Methyl tert-butyl ether	< 2.2	UJL	μg/kg dry	5.6	2.2	1	"	"		"	"	Х		
91-20-3	Naphthalene	< 5.1	UJL	μg/kg dry	5.6	5.1	1	"	"				Х		
103-65-1	n-Propylbenzene	< 5.4	UJL	μg/kg dry	5.6	5.4	1		"				Х		
108-88-3	Toluene	< 1.3	UJL	μg/kg dry	5.6	1.3	1	"	"				Х		
95-63-6	1,2,4-Trimethylbenzene	< 1.4	UJL	μg/kg dry	5.6	1.4	1	"	"				Х		
108-67-8	1,3,5-Trimethylbenzene	< 1.6	UJL		5.6	1.6	1	"	"	"			X		
179601-23-1	-	< 1.0	UJL	µg/kg dry	11.2	1.0	1	"	"				X		
95-47-6	7 · 7 · ·		UJL	μg/kg dry	5.6	1.2	1		"						
	o-Xylene	< 1.2	032	μg/kg dry	5.0	1.2	'						X		
Surrogate	recoveries:														
460-00-4	4-Bromofluorobenzene	93			70-13	80 %		"	"	"	"	"			
2037-26-5	Toluene-d8	105			70-13	80 %		"	"	"	"	"			
17060-07-0	1,2-Dichloroethane-d4	118			70-13	80 %		"	"	"	"	"			
1868-53-7	Dibromofluoromethane	127			70-13	80 %		"	"	"	"	"			
Semivolati	ile Organic Compounds by	GCMS													
	SW846 8270		R01												
	by method SW846 3545A		Б.		000	00 7	_	0141040000000		45.14		4500000	,		
83-32-9	Acenaphthene	390	D, J	μg/kg dry	398	92.7	5	SW846 8270D	11-May-15	15-May-1 5	MSL	1509090	Χ		
208-96-8	Acenaphthylene	185	J, D	μg/kg dry	398	84.4	5	"	"	,,		"	Х		
120-12-7	Anthracene	851	D	μg/kg dry	398	91.0	5	"	"				Х		
56-55-3	Benzo (a) anthracene	3,280	D	μg/kg dry	398	82.3	5	"	"	"	"	"	Х		
50-32-8	Benzo (a) pyrene	2,850	D	μg/kg dry	398	82.9	5	"	"	"	"	"	Х		
205-99-2	Benzo (b) fluoranthene	4,220	D	μg/kg dry	398	90.6	5	"	"	"	"	"	X		
191-24-2	Benzo (g,h,i) perylene	1,640	D	μg/kg dry μg/kg dry	398	86.2	5	"	"	"	"	"	X		
207-08-9	Benzo (k) fluoranthene		D		398	90.6	5	"	"	,,	"	"	X		
218-01-9		1,200	D	μg/kg dry				11	"		"	"	X		
53-70-3	Chrysene	2,980		μg/kg dry	398	97.2	5		"	,,	"	"			
	Dibenzo (a,h) anthracene	411	D	μg/kg dry	398	73.0	5	"			"	"	X		
206-44-0	Fluoranthene	7,150	D	μg/kg dry	398	99.9	5				"	"	X		
86-73-7	Fluorene 322		J, D	μg/kg dry " .	398	95.3	5	-			"		X		
193-39-5	Indeno (1,2,3-cd) pyrene 1,890		D	μg/kg dry	398	81.3	5	"	"	"	"	"	Х		
90-12-0	1-Methylnaphthalene	< 101	U, D	μg/kg dry	398	101	5	"	"	"	"	"			
91-57-6	2-Methylnaphthalene	103	D, J	μg/kg dry	398	82.0	5	"	"	"	"	"	Х		
	Naphthalene	179	J, D	μg/kg dry	398	81.0	5	"	"	"	"	"	Χ		
91-20-3															
91-20-3 85-01-8	Phenanthrene	4,140	D	μg/kg dry	398	97.1	5	"	"	"	"	"	Χ		

Sample Id West Berr SC07188-	•				Project # 05.001		<u>Matrix</u> Soil		ection Date -May-15 09		<u>Re</u> 06-		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	ile Organic Compound	s by GCMS											
	SW846 8270 by method SW846 3	545 <u>A</u>	R01										
Surrogate i	recoveries:												
321-60-8	2-Fluorobiphenyl	72			30-13	0 %		SW846 8270D	11-May-15	15-May-15	MSL	1509090	1
1718-51-0	Terphenyl-dl4	73			30-13	0 %		"	u u	"	"	"	
4165-60-0	Nitrobenzene-d5	76			30-13	0 %		11	"	"	"	"	
General C	hemistry Parameters												
	% Solids	83.4		%			1	SM2540 G Mod.	11-May-15	11-May-15	DT	1509145	į.

Volatile Organic Compounds - Quality Control

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1509227 - SW846 5035A Soil (low level)										
Blank (1509227-BLK1)					<u>Pre</u>	epared & Ar	nalyzed: 12-	May-15		
Benzene	< 0.9		μg/kg wet	0.9						
n-Butylbenzene	< 1.4		μg/kg wet	1.4						
sec-Butylbenzene	< 3.9		μg/kg wet	3.9						
tert-Butylbenzene	< 3.3		μg/kg wet	3.3						
Ethylbenzene	< 0.9		μg/kg wet	0.9						
Isopropylbenzene	< 1.0		μg/kg wet	1.0						
4-Isopropyltoluene	< 4.7		μg/kg wet	4.7						
Methyl tert-butyl ether	< 1.9		μg/kg wet	1.9						
Naphthalene	< 4.6		μg/kg wet	4.6						
n-Propylbenzene	< 4.8		μg/kg wet	4.8						
Toluene	< 1.2		μg/kg wet	1.2						
1,2,4-Trimethylbenzene	< 1.3		μg/kg wet	1.3						
1,3,5-Trimethylbenzene	< 1.4		μg/kg wet μg/kg wet	1.4						
m,p-Xylene	< 1.4		μg/kg wet μg/kg wet	1.4						
o-Xylene	< 1.1		μg/kg wet	1.1						
Surrogate: 4-Bromofluorobenzene	47.8		μg/kg wet		50.0		96	70-130		
Surrogate: Toluene-d8	54.2		μg/kg wet μg/kg wet		50.0		108	70-130		
Surrogate: 1,2-Dichloroethane-d4	54.5		μg/kg wet μg/kg wet		50.0		109	70-130 70-130		
Surrogate: 1,2-Dichioroethane	58.0		μg/kg wet μg/kg wet		50.0		109 116	70-130 70-130		
LCS (1509227-BS1)	30.0		µg/kg wet			anared & Ar	nalyzed: 12-			
Benzene	21.3		μg/kg wet		20.0	spareu & Ai	107	70-130		
n-Butylbenzene	16.2		μg/kg wet		20.0		81	70-130		
sec-Butylbenzene	20.2		μg/kg wet		20.0		101	70-130		
tert-Butylbenzene	20.2		μg/kg wet		20.0		101	70-130		
Ethylbenzene	19.6		μg/kg wet μg/kg wet		20.0		98	70-130		
Isopropylbenzene	19.9		μg/kg wet μg/kg wet		20.0		99	70-130		
4-Isopropyltoluene					20.0		99	70-130		
, ,,	18.4		μg/kg wet							
Methyl tert-butyl ether	23.3		μg/kg wet		20.0		116	70-130		
Naphthalene	17.5		μg/kg wet		20.0		87	70-130		
n-Propylbenzene	20.2		μg/kg wet		20.0		101	70-130		
Toluene	21.6		μg/kg wet		20.0		108	70-130		
1,2,4-Trimethylbenzene	23.5		μg/kg wet		20.0		118	70-130		
1,3,5-Trimethylbenzene	21.6		μg/kg wet		20.0		108	70-130		
m,p-Xylene	19.8		μg/kg wet		20.0		99	70-130		
o-Xylene	20.7		μg/kg wet		20.0		104	70-130		
Surrogate: 4-Bromofluorobenzene	53.5		μg/kg wet		50.0		107	70-130		
Surrogate: Toluene-d8	52.7		μg/kg wet		50.0		105	70-130		
Surrogate: 1,2-Dichloroethane-d4	45.4		μg/kg wet		50.0		91	70-130		
Surrogate: Dibromofluoromethane	53.6		μg/kg wet		50.0		107	70-130		
LCS Dup (1509227-BSD1)					Pre	epared & Ar	nalyzed: 12-	May-15		
Benzene	21.8		μg/kg wet		20.0		109	70-130	2	30
n-Butylbenzene	15.9		μg/kg wet		20.0		79	70-130	2	30
sec-Butylbenzene	20.5		μg/kg wet		20.0		102	70-130	1	30
tert-Butylbenzene	20.2		μg/kg wet		20.0		101	70-130	0.3	30
Ethylbenzene	19.9		μg/kg wet		20.0		100	70-130	2	30
Isopropylbenzene	20.2		μg/kg wet		20.0		101	70-130	2	30
4-Isopropyltoluene	17.7		μg/kg wet		20.0		89	70-130	4	30
Methyl tert-butyl ether	24.1		μg/kg wet μg/kg wet		20.0		121	70-130	4	30
Naphthalene	18.0		μg/kg wet μg/kg wet		20.0		90	70-130	3	30
n-Propylbenzene	20.2		μg/kg wet μg/kg wet		20.0		101	70-130 70-130	ა 0.05	30
Toluene	20.2 22.1		μg/kg wet μg/kg wet		20.0		110	70-130 70-130	0.05	30

Volatile Organic Compounds - Quality Control

analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPI Lim
Batch 1509227 - SW846 5035A Soil (low level)										
LCS Dup (1509227-BSD1)					Pre	epared & Ar	nalyzed: 12-	May-15		
1,2,4-Trimethylbenzene	22.2		μg/kg wet		20.0		111	70-130	6	30
1,3,5-Trimethylbenzene	20.8		μg/kg wet		20.0		104	70-130	4	30
m,p-Xylene	20.3		μg/kg wet		20.0		101	70-130	2	30
o-Xylene	20.9		μg/kg wet		20.0		104	70-130	0.7	30
Surrogate: 4-Bromofluorobenzene	54.5		μg/kg wet		50.0		109	70-130		
Surrogate: Toluene-d8	53.3		μg/kg wet		50.0		107	70-130		
Surrogate: 1,2-Dichloroethane-d4	45.8		μg/kg wet		50.0		92	70-130		
Surrogate: Dibromofluoromethane	54.2		μg/kg wet		50.0		108	70-130		
atch 1509327 - SW846 5035A Soil (high level)										
Blank (1509327-BLK1)					Pre	epared & Ar	nalyzed: 13-	May-15		
Benzene	< 9.1	D	μg/kg wet	9.1						
n-Butylbenzene	< 14.3	D	μg/kg wet	14.3						
sec-Butylbenzene	< 39.1	D	μg/kg wet	39.1						
tert-Butylbenzene	< 32.8	D	μg/kg wet	32.8						
Ethylbenzene	< 8.8	D	μg/kg wet	8.8						
Isopropylbenzene	< 9.5	D	μg/kg wet	9.5						
4-Isopropyltoluene	< 46.9	D	μg/kg wet	46.9						
Methyl tert-butyl ether	< 19.3	D	μg/kg wet	19.3						
Naphthalene	< 45.8	D	μg/kg wet	45.8						
n-Propylbenzene	< 48.4	D	μg/kg wet	48.4						
Toluene	< 11.5	D	μg/kg wet	11.5						
1,2,4-Trimethylbenzene	< 12.6	D	μg/kg wet	12.6						
1,3,5-Trimethylbenzene	< 14.4	D	μg/kg wet	14.4						
m,p-Xylene	< 9.8	D	μg/kg wet	9.8						
o-Xylene	< 10.6	D	μg/kg wet	10.6						
Surrogate: 4-Bromofluorobenzene	30.4		μg/kg wet		30.0		101	70-130		
Surrogate: Toluene-d8	30.1		μg/kg wet		30.0		100	70-130		
Surrogate: 1,2-Dichloroethane-d4	27.3		μg/kg wet		30.0		91	70-130		
Surrogate: Dibromofluoromethane	29.1		μg/kg wet		30.0		97	70-130		
LCS (1509327-BS1)					Pre	epared & Ar	nalyzed: 13-	May-15		
Benzene	18.7	D	μg/kg wet		20.0		93	70-130		
n-Butylbenzene	18.4	D	μg/kg wet		20.0		92	70-130		
sec-Butylbenzene	21.8	D	μg/kg wet		20.0		109	70-130		
tert-Butylbenzene	22.1	D	μg/kg wet		20.0		110	70-130		
Ethylbenzene	20.1	D	μg/kg wet		20.0		100	70-130		
Isopropylbenzene	21.0	D	μg/kg wet		20.0		105	70-130		
4-Isopropyltoluene	19.3	D	μg/kg wet		20.0		96	70-130		
Methyl tert-butyl ether	17.0	D	μg/kg wet		20.0		85	70-130		
Naphthalene	20.2	D	μg/kg wet		20.0		101	70-130		
n-Propylbenzene	20.5	D	μg/kg wet		20.0		102	70-130		
Toluene	19.4	D	μg/kg wet		20.0		97	70-130		
1,2,4-Trimethylbenzene	20.7	D	μg/kg wet		20.0		103	70-130		
1,3,5-Trimethylbenzene	20.8	D	μg/kg wet		20.0		104	70-130		
m,p-Xylene	20.9	D	μg/kg wet		20.0		105	70-130		
o-Xylene	20.8	D	μg/kg wet		20.0		104	70-130		
Surrogate: 4-Bromofluorobenzene	30.9		μg/kg wet		30.0		103	70-130		
Surrogate: Toluene-d8	30.0		μg/kg wet		30.0		100	70-130		
Surrogate: 1,2-Dichloroethane-d4	27.2		μg/kg wet		30.0		91	70-130		
Surrogate: Dibromofluoromethane	30.1		μg/kg wet		30.0		100	70-130		
LCS Dup (1509327-BSD1)						epared & Ar				

Volatile Organic Compounds - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1509327 - SW846 5035A Soil (high level)										
LCS Dup (1509327-BSD1)					Pre	epared & Ai	nalyzed: 13-	-May-15		
Benzene	18.6	D	μg/kg wet		20.0		93	70-130	0.6	30
n-Butylbenzene	18.7	D	μg/kg wet		20.0		94	70-130	2	30
sec-Butylbenzene	22.4	D	μg/kg wet		20.0		112	70-130	3	30
tert-Butylbenzene	22.6	D	μg/kg wet		20.0		113	70-130	2	30
Ethylbenzene	20.4	D	μg/kg wet		20.0		102	70-130	2	30
Isopropylbenzene	21.6	D	μg/kg wet		20.0		108	70-130	3	30
4-Isopropyltoluene	19.2	D	μg/kg wet		20.0		96	70-130	0.2	30
Methyl tert-butyl ether	16.7	D	μg/kg wet		20.0		84	70-130	2	30
Naphthalene	19.2	D	μg/kg wet		20.0		96	70-130	5	30
n-Propylbenzene	20.9	D	μg/kg wet		20.0		105	70-130	2	30
Toluene	19.5	D	μg/kg wet		20.0		98	70-130	0.6	30
1,2,4-Trimethylbenzene	21.1	D	μg/kg wet		20.0		106	70-130	2	30
1,3,5-Trimethylbenzene	21.2	D	μg/kg wet		20.0		106	70-130	2	30
m,p-Xylene	20.8	D	μg/kg wet		20.0		104	70-130	0.3	30
o-Xylene	21.4	D	μg/kg wet		20.0		107	70-130	3	30
Surrogate: 4-Bromofluorobenzene	31.1		μg/kg wet		30.0		104	70-130		
Surrogate: Toluene-d8	30.2		μg/kg wet		30.0		101	70-130		
Surrogate: 1,2-Dichloroethane-d4	27.0		μg/kg wet		30.0		90	70-130		
Surrogate: Dibromofluoromethane	30.1		μg/kg wet		30.0		100	70-130		

Semivolatile Organic Compounds by GCMS - Quality Control

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPE Limi
atch 1509090 - SW846 3545A										
Blank (1509090-BLK1)					Pre	epared & Ar	nalyzed: 11-	Mav-15		
Acenaphthene	< 15.5	U	μg/kg wet	15.5						
Acenaphthylene	< 14.1	U	μg/kg wet	14.1						
Anthracene	< 15.2	U	μg/kg wet	15.2						
Benzo (a) anthracene	< 13.7	U	μg/kg wet	13.7						
Benzo (a) pyrene	< 13.8	U	μg/kg wet	13.8						
Benzo (b) fluoranthene	< 15.1	U	μg/kg wet	15.1						
Benzo (g,h,i) perylene	< 14.4	U	μg/kg wet	14.4						
Benzo (k) fluoranthene	< 15.1	U	μg/kg wet	15.1						
Chrysene	< 16.2	U	μg/kg wet	16.2						
Dibenzo (a,h) anthracene	< 12.2	U	μg/kg wet	12.2						
Fluoranthene	< 16.7	U	μg/kg wet	16.7						
Fluorene	< 15.9	U	μg/kg wet	15.9						
Indeno (1,2,3-cd) pyrene	< 13.6	U	μg/kg wet	13.6						
1-Methylnaphthalene	< 16.8	U	μg/kg wet	16.8						
2-Methylnaphthalene	< 13.7	U	μg/kg wet	13.7						
Naphthalene	< 13.5	U	μg/kg wet	13.5						
Phenanthrene	< 16.2	U	μg/kg wet	16.2						
Pyrene	< 14.1	U	μg/kg wet	14.1						
Surrogate: 2-Fluorobiphenyl	1230		μg/kg wet		1660		74	30-130		
Surrogate: Terphenyl-dl4	1290		μg/kg wet		1660		78	30-130		
Surrogate: Nitrobenzene-d5	1280		μg/kg wet		1660		77	30-130		
LCS (1509090-BS1)					Pre	epared: 11-	May-15 An	alyzed: 12-M	<u>1ay-15</u>	
Acenaphthene	1120		μg/kg wet	15.4	1650	•	68	40-140	-	
Acenaphthylene	1180		μg/kg wet	14.0	1650		71	40-140		
Anthracene	1290		μg/kg wet	15.1	1650		78	40-140		
Benzo (a) anthracene	1230		μg/kg wet	13.7	1650		75	40-140		
Benzo (a) pyrene	1350		μg/kg wet	13.8	1650		82	40-140		
Benzo (b) fluoranthene	1420		μg/kg wet	15.1	1650		86	40-140		
Benzo (g,h,i) perylene	1230		μg/kg wet	14.3	1650		75	40-140		
Benzo (k) fluoranthene	1260		μg/kg wet	15.1	1650		76	40-140		
Chrysene	1270		μg/kg wet	16.2	1650		77	40-140		
Dibenzo (a,h) anthracene	1260		μg/kg wet	12.1	1650		76	40-140		
Fluoranthene	1280		μg/kg wet	16.6	1650		78	40-140		
Fluorene	1210		μg/kg wet	15.8	1650		73	40-140		
Indeno (1,2,3-cd) pyrene	1390		μg/kg wet	13.5	1650		84	40-140		
1-Methylnaphthalene	1070		μg/kg wet	16.7	1650		65	40-140		
2-Methylnaphthalene	1110		μg/kg wet	13.6	1650		67	40-140		
Naphthalene	952		μg/kg wet	13.5	1650		58	40-140		
Phenanthrene	1230		μg/kg wet	16.1	1650		75	40-140		
Pyrene	1310		μg/kg wet	14.1	1650		79	40-140		
Surrogate: 2-Fluorobiphenyl	1140		μg/kg wet		1650		69	30-130		
Surrogate: Terphenyl-dl4	1340		μg/kg wet		1650		81	30-130		
Surrogate: Nitrobenzene-d5	1100		μg/kg wet		1650		66	30-130		

General Chemistry Parameters - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1509145 - General Preparation										
<u>Duplicate (1509145-DUP2)</u>			Source: So	C07188-01	Pre	epared & Aı	nalyzed: 11-	May-15		
% Solids	80.3		%			77.9			3	5

The following list indicates the date and time low-level VOC soil/sediment samples were placed in the freezer at the lab:

SC07188-01	East Berm	5/8/2015 5:57 PM
SC07188-02	East Berm - Dupe	5/8/2015 5:57 PM
SC07188-03	West Berm	5/8/2015 5:57 PM
SC07188-04	West Berm - Dupe	5/8/2015 5:57 PM

Notes and Definitions

- D Data reported from a dilution
- J Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).
- JL Estimated Concentration is potentially biased low (per NYSDEC).
- R01 The Reporting Limit has been raised to account for matrix interference.
- R05 Elevated Reporting Limits due to the presence of high levels of non-target analytes; sample may not meet client requested
 - reporting limit for this reason.
- U Analyte included in the analysis, but not detected at or above the MDL.
- UJL Non-detect is potentially biased low (per NYSDEC).
- dry Sample results reported on a dry weight basis
- NR Not Reported
- RPD Relative Percent Difference

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

Method Blank: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification:</u> The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

Validated by: June O'Connor Rebecca Merz

	Jony (501.20)	Ding Carry Carry (or	THE MINE SHAPE	Relinquished by:					oy west Bom - Ope	03 West Bern	1 of Eigh Rom-Dope	SCO 7188 2) FAST BOM 5/16/15	Lab ID: Sample ID: Date:	G= Grab C=Co	X1=X2=	O=Oil SO=Soil SL=Sludge A=Indoor/Ambient Air St	DW =Dinking Water GW=Groundwater SW=Surface Water	7=CH3OH 8=NaHSO ₄ 9=Detonized Water 10=H ₃ PO ₄	ered 1=Na	Project Mgr:	Telephone #: 535 - 325 - 7140	11 WHE BUT DIF COS	Borton fild Logidale	Report To: Ath. Gran Lesyak	SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY		2	
ces) 5/1/18		20:16, 81/2/5 ORLIN	100 5/6/r 1-4	Received by: Date: Time:					9/45 CSO 2	9.45 6 8 2	2 8.3 15.8	8:51 / 80 2	Time: T: Ma # of # of # of	C=Compsite ype attrix VOA Ambee Clear	r Glas Glass	SG=Soil Gas	WW=Waste Water Containers	11=_ <u>N)M</u> 12=	5=NaOH 6=As	P.O No.: Quote/RQN:				Invoice To: $\mathcal{S}_{\mathcal{H}}$	Page of	CHAIN OF CUSTODY R		
Ambient Aced Refrigerated DI VOA Frozen	Connected Connected Connected Custody Seals: Present	Corection Factor Mkid: lak (a) (1	Observed 3 E-mail to: GES Nickes Butter and	Temp °C		300			X	X X	9		Chee	ek if c	hlorin		Analysis		List Preservative Code below: OA		Sampler(s): Nath J. Kalibb		D	Project No: 1537,005,	All TATs subject to laboratory approval Min. 24-hr notification needed for rushes Samples disposed after 60 days unless otherwise instructed.	RECORD Rush TAT - Date Needed:	Special Handling: Standard TAT - 7 to 10 business days	SC07188 By
A Frozen Soil Jar Frozen	☐ Intact ☐ Broken	11"	barionico com		O IN R	STORY OF THE STORY		*		· ·			Other: State-specific reporting standards:	NJ Reduced* NJ Full* Tier II* Tier IV*	, —,	□ No QC	MA DEP MCP CAM Report? Yes No	* additional charges may appply	OA/OC Reporting Notes:		State: [V]	NIV	Are	χ)	approval d for rushes unless otherwise instructed.		lling: iness days	

	Jony (20102)	The Sound Sound	Le sun Camic	Relinquished by:		•	.4	4	04 West Bem - Ope	Bem	1 of East Burn-Dage	SCO7188 0) End Ben 5	Lab ID: Sample ID:	G= Grab	X1=X2=	O=Oil SO=Soil SL=Sludge A=Indoor/Ambient Air	DW=Dinking Water GW=Groundwater SW=Surface Water		F=Field Filtered 1=Na ₂ S2O ₃ 2=HCl 3=H ₂ SO ₄ 2 7=CH3OH 8=NaHSO ₄ 9=Deionized Water 10=H ₃ PO ₄	They have	Telephone #: 575 - 7140	11 worke facts soile 203	Buto	Report To: Ath. Gran Lesnik	SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY		2	
SIDIS (0)		(Spir23) (5)7/18	JOBA 5/6/15 !	Received by: Date:					◆ 9/45 C SO 121	1× C 8 ×	1 2 8.3 15.8	5/6/15 8:51 / 50 21	# of	C=Compsite /pe ttrix VOA Ambee	r Glas	SG=Soil Gas	Water WW=Waste Water Containers		4= HNO_3 5= $NaOH$ 6=Ascorbic Acid 11= NO_3 12=	P.O No.: Quote/RQN:				Invoice To: B+1	Page of	CHAIN OF CUSTODY	F. Jan	
(G)S Ambient Diged		or L	Observed S. E-mail to:	Time: Temp °C ☐ EDD format:					XX	X	9			Plastic		ćs TAXS AKS		11 11 11	List Preservative Code below:		Location: Sampler(s):	Site Name:		Project No:		RECORD		SC07188
☐ Refrigerated ☐ DI VOA Frozen ☐ Soil Jar Frozen	Custody Seals: Present Intact Broken	nkidi bk @ "	skinder and by which com in		O CO O R	1 20 02 D			9n5/11	a worker	a saine dies	a for refleived per	Other: State-specific reporting standards:	M Reduced* N Full* IT In II* Ther IV*			teport? Yes	- additional enarges may applyiy			MALUSE 109 State: NY	ASE INVO	A	1537,005,001	All TATs subject to laboratory approval Min. 24-hr notification needed for rushes Samples disposed after 60 days unless otherwise instructed.	Rush TAT - Date Needed:	Special Handling: Standard TAT - 7 to 10 business days	

Report Date: 18-May-15 13:16

74	Final Report
	Re-Issued Repor
П	Revised Report

Laboratory Report

Barton & Loguidice, D.P.C. 11 Centre Park Suite 203 Rochester, NY 14614

Attn: Greg Lesniak

Project: Pioneer Midler Ave - Syracuse, NY

Project #: 1537.005.001

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SC07186-01	East Berm	Soil	06-May-15 10:30	06-May-15 11:30
SC07186-02	East Berm - Dupe	Soil	06-May-15 10:30	06-May-15 11:30
SC07186-03	West Berm - Dupe	Soil	06-May-15 10:45	06-May-15 11:30
SC07186-04	West Berm	Soil	06-May-15 10:45	06-May-15 11:30

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011 New York # 11393 Pennsylvania # 68-04426/68-02924 Rhode Island # LAO00098 USDA # S-51435

Authorized by:

Nicole Leja Laboratory Director

Vicole Leja

Spectrum Analytical holds certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 32 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our Quality'web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey, Pennsylvania and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (PA-68-04426).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

CASE NARRATIVE:

Data has been reported to the MDL. This report includes estimated concentrations detected below the RDL and above the MDL (J-Flag).

All non-detects and all results below the detection limit are reported as "<" (less than) the detection limit in this report.

The samples were received 12.5 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of +/- 1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

All VOC soils samples submitted and analyzed in methanol will have a minimum dilution factor of 50. This is the minimum amount of solvent allowed on the instrumentation without causing interference. Soils are run on a manual load instrument. 100ug of sample (MEOH) is spiked into 5ml DI water along with the surrogate and added directly onto the instrument. Additional dilution factors may be required to keep analyte concentration within instrument calibration range.

Analyses for Total Hardness, pH, and Total Residual Chlorine fall under the state of Pennsylvania code Chapter 252.6 accreditation by rule.

Reactivity (40 CFR 261.23) Case Narrative:

These samples do not exhibit the characteristics of reactivity as defined in 40 CFR 261.23, sections (1), (2) and (4); however, Spectrum Analytical, Inc. does not test for detonation, explosive reaction or potential, or forbidden explosives as defined in 40 CFR 261.23, sections (3), (6), (7) and (8).

Reactive sulfide and cyanide are tested at a pH of 2 and not tested at all conditions between pH 2 and 12.5 as stated in 40 CFR 261.23, section (5); thus reactive cyanide and sulfide results as reported in this document can not be used to support the nonreactive properties of these samples.

The responsibility falls on the generator to use knowledge of the waste to determine if the waste meets or does not meet the descriptive, prose definition of reactivity.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

SW846 1030

Samples:

SC07186-01 East Berm

A hold time of 24 hours has been set to expedite the analyses through the laboratory. However, the hold time for Ignitability is not specified within the method other than to state that the samples should be analyzed as soon as possible.

Ignitability by Definition

SC07186-02 East Berm - Dupe

A hold time of 24 hours has been set to expedite the analyses through the laboratory. However, the hold time for Ignitability is not specified within the method other than to state that the samples should be analyzed as soon as possible.

Ignitability by Definition

SC07186-03 West Berm - Dupe

A hold time of 24 hours has been set to expedite the analyses through the laboratory. However, the hold time for Ignitability is not specified within the method other than to state that the samples should be analyzed as soon as possible.

Ignitability by Definition

SC07186-04 West Berm

SW846 1030

Samples:

SC07186-04 West Berm

A hold time of 24 hours has been set to expedite the analyses through the laboratory. However, the hold time for Ignitability is not specified within the method other than to state that the samples should be analyzed as soon as possible.

Ignitability by Definition

SW846 1311/7470A

S504734-CRL2

Standard was rerun and passed within the method criteria

Mercury

SW846 1311/8270D

Calibration:

1505031

Analyte quantified by quadratic equation type calibration.

2,4-Dinitrophenol

4,6-Dinitro-2-methylphenol

4-Nitrophenol

Benzoic acid

This affected the following samples:

1509444-BLK1

1509444-BS1

1509444-BSD1

East Berm

East Berm - Dupe

S504308-ICV1

S504640-CCV1

West Berm

West Berm - Dupe

Laboratory Control Samples:

1509444 BS/BSD

4-Chloroaniline percent recoveries (34/30) are outside individual acceptance criteria (40-140), but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

East Berm

East Berm - Dupe

West Berm

West Berm - Dupe

Aniline percent recoveries (29/32) are outside individual acceptance criteria (40-140), but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

East Berm

East Berm - Dupe

West Berm

West Berm - Dupe

SW846 1311/8270D

Laboratory Control Samples:

1509444 BS/BSD

Benzidine percent recoveries (12/17) are outside individual acceptance criteria (40-140), but within overall method allowances.

All reported results of the following samples are considered to have a potentially low bias:

Fact Rerm

East Berm - Dupe

West Berm

West Berm - Dupe

1509444 BSD

3-Nitroaniline RPD 22% (20%) is outside individual acceptance criteria.

Benzidine RPD 30% (20%) is outside individual acceptance criteria.

Benzyl alcohol RPD 25% (20%) is outside individual acceptance criteria.

Samples:

S504640-CCV1

Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.

Benzidine (-51.2%)

Analyte percent drift is outside individual acceptance criteria (20), but within overall method allowances.

4-Nitrophenol (39.0%)

This affected the following samples:

1509444-BLK1

1509444-BS1

1509444-BSD1

East Berm

East Berm - Dupe

West Berm

West Berm - Dupe

Sample Acceptance Check Form

Barton & Loguidice, D.P.C. - Rochester, NY

Client:

Project:	Pioneer Midler Ave - Syracuse, NY / 1537.005.001			
Work Order:	SC07186			
Sample(s) received on:	5/6/2015			
The following outlines th	ne condition of samples for the attached Chain of Custody upon receipt.			
		Yes	No	N/A
Were custody se	als present?		\checkmark	
Were custody se	als intact?			✓
Were samples re	ceived at a temperature of $\leq 6^{\circ}$ C?		\checkmark	
Were samples co	oled on ice upon transfer to laboratory representative?	✓		
Were sample con	ntainers received intact?	\checkmark		
	operly labeled (labels affixed to sample containers and include sample ID, site project number and the collection date)?	~		
Were samples ac	companied by a Chain of Custody document?	\checkmark		
include sample I	ustody document include proper, full, and complete documentation, which shall D, site location, and/or project number, date and time of collection, collector's name, e, sample matrix and any special remarks concerning the sample?	\overline{C}		
Did sample cont	ainer labels agree with Chain of Custody document?	\checkmark		
Were samples re	ceived within method-specific holding times?	\checkmark		

Sample Id East Bern SC07186-	C07186-01			<u>Client F</u> 1537.0	Project # 05.001		<u>Matrix</u> Soil		ection Date -May-15 10			<u>ceived</u> May-15	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile Or	rganic Compounds TCLP Extraction	Completed		N/A			1	SW846 1311	13-May-1 5	14-May-1 5	BD	1509403	X
	atile Organic Compounds								· ·	· ·			
	by method SW846 5030 V						tial weight:						
71-43-2	Benzene	< 0.9	U, D	μg/l	5.0	0.9	5	SW846 1311/8260C	15-May-1 5	15-May-1 5	GMA	1509535	X
78-93-3	2-Butanone (MEK)	< 6.2	U, D	μg/l	50.0	6.2	5	"	"		"	"	Х
56-23-5	Carbon tetrachloride	< 1.1	U, D	μg/l	5.0	1.1	5	"	"	"	"	"	Х
108-90-7	Chlorobenzene	< 1.0	U, D	μg/l	5.0	1.0	5	u u	"	u	"	"	Х
67-66-3	Chloroform	< 2.0	U, D	μg/l	5.0	2.0	5	"	"	"	"	"	Х
106-46-7	1,4-Dichlorobenzene	< 1.2	U, D	μg/l	5.0	1.2	5	u u	"	u	"	"	Х
107-06-2	1,2-Dichloroethane	< 0.8	U, D	μg/l	5.0	0.8	5	u u	"	u	"	"	Х
75-35-4	1,1-Dichloroethene	< 1.4	U, D	μg/l	5.0	1.4	5	"	"	"	"	"	Х
87-68-3	Hexachlorobutadiene	< 2.0	U, D	μg/l	2.5	2.0	5	"	"	"	"		Х
127-18-4	Tetrachloroethene	9.9	D	μg/l	5.0	2.9	5	"	u u	"	"	"	Х
79-01-6	Trichloroethene	< 1.9	U, D	μg/l	5.0	1.9	5	"	"	"	"	"	Х
75-01-4	Vinyl chloride	< 1.7	U, D	μg/l	5.0	1.7	5	II .	u u	"	"	"	Х
Surrogate r	ecoveries:												
460-00-4	4-Bromofluorobenzene	94			70-13	0 %			"	"	"		
2037-26-5	Toluene-d8	95			70-13				"	"	"		
17060-07-0	1,2-Dichloroethane-d4	111			70-13				"	"	"		
1868-53-7	Dibromofluoromethane	97			70-13			"	"	"	"	"	
Semivolati	le Organic Compounds by (- /•							
	raction for Semivolatiles	GCMS											
	by method SW846 1311												
	TCLP Extraction	Completed		N/A			1	SW846 1311	11-May-15	12-May-1 5	BD	1509197	X
	Final pH of leachate	6.57		N/A			1	"	"	"	"	"	
TCLP Sen	nivolatiles by method SW846 3535A												
83-32-9	Acenaphthene	< 2.13	U	μg/l	5.00	2.13	1	SW846 1311/8270D	14-May-1 5	14-May-1 5	MSL	1509444	X
208-96-8	Acenaphthylene	< 2.16	U	μg/l	5.00	2.16	1	"	"	"	"	"	Х
62-53-3	Aniline	< 2.34	U	μg/l	5.00	2.34	1	"	u u	"	"	"	Х
120-12-7	Anthracene	< 2.33	U	μg/l	5.00	2.33	1	"	"	"	"	"	Х
103-33-3	Azobenzene/Diphenyldiaz ene	< 2.46	U	μg/l	5.00	2.46	1	"	"	"	"	"	
92-87-5	Benzidine	< 2.68	U	μg/l	5.00	2.68	1	"	"	"	"	"	Х
56-55-3	Benzo (a) anthracene	< 2.26	U	μg/l	5.00	2.26	1		"	u	"		Х
50-32-8	Benzo (a) pyrene	< 2.40	U	μg/l	5.00	2.40	1	"	"	"	"	"	Х
205-99-2	Benzo (b) fluoranthene	< 2.08	U	μg/l	5.00	2.08	1		"	u	"		Х
191-24-2	Benzo (g,h,i) perylene	< 2.40	U	μg/l	5.00	2.40	1	"	"	"	"	"	Х
207-08-9	Benzo (k) fluoranthene	< 2.73	U	μg/l	5.00	2.73	1	"	"	"	"	"	Х
65-85-0	Benzoic acid	< 1.98	U	μg/l	5.00	1.98	1	"	"	"		"	Х
100-51-6	Benzyl alcohol	< 2.14	U	μg/l	5.00	2.14	1	"	"	"		"	Х
111-91-1	Bis(2-chloroethoxy)metha	< 2.23	U	μg/l	5.00	2.23	1	"	"	"	"	"	Х
111-44-4	Bis(2-chloroethyl)ether	< 2.14	U	μg/l	5.00	2.14	1	"	"	"	"	"	Х

East Ber	Sample Identification Cast Berm SC07186-01				Project # 05.001		<u>Matrix</u> Soil		ection Date 6-May-15 10			ceived May-15	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
TCLP Se	rile Organic Compounds by Omivolatiles by method SW846 3535A	GCMS											
108-60-1	Bis(2-chloroisopropyl)ethe	< 2.22	U	μg/l	5.00	2.22	1	SW846 1311/8270D	14-May-1 5	14-May-1 5	MSL	1509444	X
117-81-7	Bis(2-ethylhexyl)phthalate	< 2.34	U	μg/l	5.00	2.34	1		"	"	"		Х
101-55-3	4-Bromophenyl phenyl ether	< 2.26	U	μg/l	5.00	2.26	1	u	"	"	ıı	"	X
85-68-7	Butyl benzyl phthalate	< 2.63	U	μg/l	5.00	2.63	1	11	"	"	"		Х
86-74-8	Carbazole	< 2.63	U	μg/l	5.00	2.63	1	п	"		"	"	Х
59-50-7	4-Chloro-3-methylphenol	< 2.43	U	μg/l	5.00	2.43	1	"	"	"	"	"	Х
106-47-8	4-Chloroaniline	< 2.63	U	μg/l	5.00	2.63	1	п	"		"	"	Х
91-58-7	2-Chloronaphthalene	< 2.00	U	μg/l	5.00	2.00	1	п	"		"	"	Х
95-57-8	2-Chlorophenol	< 2.03	U	μg/l	5.00	2.03	1	п	"		"	"	Х
7005-72-3	4-Chlorophenyl phenyl ether	< 2.34	U	μg/l	5.00	2.34	1	"	"	"	"	"	X
218-01-9	Chrysene	< 2.33	U	μg/l	5.00	2.33	1	"	"	"	"		X
53-70-3	Dibenzo (a,h) anthracene	< 2.52	U	μg/l	5.00	2.52	1	"	"	"	"		X
132-64-9	Dibenzofuran	< 2.15	U	μg/l	5.00	2.15	1	II .	"	"	"		Х
95-50-1	1,2-Dichlorobenzene	< 2.05	U	μg/l	5.00	2.05	1	"	"	"	"		X
541-73-1	1,3-Dichlorobenzene	< 2.02	U	μg/l	5.00	2.02	1	"	"	"	"	"	Х
106-46-7	1,4-Dichlorobenzene	< 2.02	U	μg/l	5.00	2.02	1	"	"	"	"		Х
91-94-1	3,3'-Dichlorobenzidine	< 2.22	U	μg/l	5.00	2.22	1	"	"	"	"		X
120-83-2	2,4-Dichlorophenol	< 1.84	U	μg/l	5.00	1.84	1	"	"	"	"	"	Х
84-66-2	Diethyl phthalate	< 2.38	U	μg/l	5.00	2.38	1	"	"	"	"	"	Х
131-11-3	Dimethyl phthalate	< 2.28	U	μg/l	5.00	2.28	1	"	"	"	"	"	Х
105-67-9	2,4-Dimethylphenol	< 2.12	U	μg/l	5.00	2.12	1	"	"	"	"	"	Х
84-74-2	Di-n-butyl phthalate	< 2.62	U	μg/l	5.00	2.62	1	"	"	"	"	"	Х
534-52-1	4,6-Dinitro-2-methylphenol	< 2.50	U	μg/l	5.00	2.50	1	"	"	"	"	"	Х
51-28-5	2,4-Dinitrophenol	< 1.87	U	μg/l	5.00	1.87	1	"	"	"	"	"	Χ
121-14-2	2,4-Dinitrotoluene	< 2.38	U	μg/l	5.00	2.38	1	"	"	"	"	"	Х
606-20-2	2,6-Dinitrotoluene	< 2.30	U	μg/l	5.00	2.30	1	"	"	"	"	"	Χ
117-84-0	Di-n-octyl phthalate	< 2.79	U	μg/l	5.00	2.79	1	11	"	"	"	"	Χ
206-44-0	Fluoranthene	< 2.32	U	μg/l	5.00	2.32	1	11	"	"	"	"	Χ
86-73-7	Fluorene	< 2.31	U	μg/l	5.00	2.31	1	11	"	"	"	"	Χ
118-74-1	Hexachlorobenzene	< 2.15	U	μg/l	5.00	2.15	1	II	"	"	"	"	Х
87-68-3	Hexachlorobutadiene	< 2.03	U	μg/l	5.00	2.03	1	II	"	"	"	"	Х
77-47-4	Hexachlorocyclopentadien e	< 1.55	U	μg/l	5.00	1.55	1	u	"	"	"	"	X
67-72-1	Hexachloroethane	< 2.15	U	μg/l	5.00	2.15	1	"	"	"	"	"	Χ
193-39-5	Indeno (1,2,3-cd) pyrene	< 2.30	U	μg/l	5.00	2.30	1	"	"	"	"	"	Χ
78-59-1	Isophorone	< 2.62	U	μg/l	5.00	2.62	1	"	"	"	"	"	Χ
91-57-6	2-Methylnaphthalene	< 2.19	U	μg/l	5.00	2.19	1	"	"	"	"	"	Χ
95-48-7	2-Methylphenol	< 2.14	U	μg/l	5.00	2.14	1	"	"	"	"	"	Χ
108-39-4, 106-44-5	3 & 4-Methylphenol	< 2.22	U	μg/l	10.0	2.22	1	u	"	"	"	"	X
91-20-3	Naphthalene	< 2.04	U	μg/l	5.00	2.04	1	"	u	"	"	"	Χ
88-74-4	2-Nitroaniline	< 2.34	U	μg/l	5.00	2.34	1	"	· ·	"	"	"	Χ
99-09-2	3-Nitroaniline	< 2.72	U	μg/l	5.00	2.72	1	"	u	"	"	"	Χ
100-01-6	4-Nitroaniline	< 2.62	U	μg/l	5.00	2.62	1	"	"	"	"	"	Χ

East Beri	umple Identification ast Berm C07186-01			Client Pr 1537.00			<u>Matrix</u> Soil		ection Date -May-15 10			<u>ceived</u> May-15	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Semivolati	ile Organic Compounds by O	GCMS											
	mivolatiles												
	by method SW846 3535A												
98-95-3	Nitrobenzene	< 2.12	U	μg/l	5.00	2.12	1	SW846 1311/8270D	14-May-1 5	14-May-1 5	MSL	1509444	Х
88-75-5	2-Nitrophenol	< 2.20	U	μg/l	5.00	2.20	1	"	"	"	"	"	Χ
100-02-7	4-Nitrophenol	< 1.91	U	μg/l	5.00	1.91	1	"	"	"	"	"	Χ
62-75-9	N-Nitrosodimethylamine	< 1.84	U	μg/l	5.00	1.84	1	"	"	"	"	"	Χ
621-64-7	N-Nitrosodi-n-propylamine	< 2.32	U	μg/l	5.00	2.32	1	"	"	"	"	"	Χ
86-30-6	N-Nitrosodiphenylamine	< 2.58	U	μg/l	5.00	2.58	1	"	"	"	"	"	Χ
87-86-5	Pentachlorophenol	< 2.15	U	μg/l	5.00	2.15	1	"	"	"	"		Χ
85-01-8	Phenanthrene	< 2.26	U	μg/l	5.00	2.26	1	"	"	"	"	"	Χ
108-95-2	Phenol	< 2.04	U	μg/l	5.00	2.04	1	"	"	"	"	"	Χ
129-00-0	Pyrene	< 2.42	U	μg/l	5.00	2.42	1		"	"	"	"	Χ
110-86-1	Pyridine	< 1.62	U	μg/l	5.00	1.62	1		"	"	"	"	Χ
120-82-1	1,2,4-Trichlorobenzene	< 1.99	U	μg/l	5.00	1.99	1		"	"	"	"	Χ
90-12-0	1-Methylnaphthalene	< 1.96	U	μg/l	5.00	1.96	1	"	"	"	"	"	
95-95-4	2,4,5-Trichlorophenol	< 2.09	U	μg/l	5.00	2.09	1	"	"	"	"	"	Х
88-06-2	2,4,6-Trichlorophenol	< 1.96	U	μg/l	5.00	1.96	1	"	"	"	"		Χ
82-68-8	Pentachloronitrobenzene	< 2.22	U	μg/l	5.00	2.22	1	"	"	"	"		Χ
95-94-3	1,2,4,5-Tetrachlorobenzen e	< 1.97	U	μg/l	5.00	1.97	1	п	"	"	"	"	Х
Surrogate i	recoveries:												
321-60-8	2-Fluorobiphenyl	73			30-13	80 %		"	"	"	"	"	
367-12-4	2-Fluorophenol	78			15-11	0 %		"	"	"	"	"	
4165-60-0	Nitrobenzene-d5	79			30-13	80 %		"	"	"	"	"	
4165-62-2	Phenol-d5	79			15-11	0 %		"	"	"	"	"	
1718-51-0	Terphenyl-dl4	81			30-13	80 %		"	"	"	"	"	
118-79-6	2,4,6-Tribromophenol	76			15-11	0 %		"	"	"	"	"	
Semivolati	ile Organic Compounds by (GC											
	inated Biphenyls												
<u> </u>	by method SW846 3545A	~ 20 O	U	ua/ka da	22.2	20.0	4	C/M/0.46 0000.4	11 May 15	11 May 15	IMD	1500000	V
11104-28-2		< 20.9		μg/kg dry	23.2	20.9	1	SW846 8082A	11-May-15	11-May-15	IMR "	1509089	
	Aroclor-1221	< 17.8	U	μg/kg dry	23.2	17.8	1	,				"	X
11141-16-5	Aroclor-1232	< 20.8	U	μg/kg dry	23.2	20.8	1					"	X
53469-21-9	Aroclor-1242	< 14.4	U	μg/kg dry	23.2	14.4	1					"	X
12672-29-6	Aroclor-1248	< 14.5	U	μg/kg dry	23.2	14.5	1					"	X
11097-69-1	Aroclor-1254	< 16.0	U	μg/kg dry	23.2	16.0	1		"		"	"	X
11096-82-5	Aroclor-1260	208		μg/kg dry	23.2	16.2	1	"		"	"		X
37324-23-5	Aroclor-1262	< 20.8	U 	μg/kg dry 	23.2	20.8	1		"		"	"	X
11100-14-4	Aroclor-1268	< 22.8	U	μg/kg dry	23.2	22.8	1	"		"			Х
-	recoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	80			30-15	50 %		u	"	"	"	"	
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	90			30-15	50 %		"	п	"	"	ıı	
2051-24-3	Decachlorobiphenyl (Sr)	95			30-15	50 %		"	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	105			30-15	50 %		u	"	II .	"	"	

Sample Id East Berr SC07186-	07186-01			Client P 1537.0			<u>Matrix</u> Soil	· · · · · · · · · · · · · · · · · · ·	ection Date -May-15 10			ceived May-15	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cer
TCLP Ext	tals by EPA 1311 & 6000/70 raction for Hg by method SW846 1311	000 Series Meth	ods										
	TCLP Extraction	Completed		N/A			1	SW846 1311	11-May-15	12-May-1 5	BD	1509195	X
	Final pH of leachate	6.65		N/A			1	"	"	"	"	"	
	raction for Metals by method SW846 1311												
	TCLP Extraction	Completed		N/A			1	"	"	"	"	"	Χ
	Final pH of leachate	6.65		N/A			1	"	"	"	"	"	
7440-22-4	Silver	< 0.0014	U	mg/l	0.0050	0.0014	1	SW846 1311/6010C	14-May-1 5	15-May-1 5	EDT	1509320	X
7440-38-2	Arsenic	< 0.0026	U	mg/l	0.0040	0.0026	1	п	"	15-May-1 5	"	1509548	X
7440-39-3	Barium	0.374		mg/l	0.0500	0.0004	1	n .	"	15-May-1 5	"	1509320	X
7440-43-9	Cadmium	0.0005	J	mg/l	0.0025	0.0002	1	"	"	"	"	"	Χ
7440-47-3	Chromium	0.0028	J	mg/l	0.0050	0.0010	1	"	"	"	"	"	Χ
7439-97-6	Mercury	< 0.00009	U	mg/l	0.00020	0.00009	1	SW846 1311/7470A	"	15-May-1 5	YR	1509321	Х
7439-92-1	Lead	< 0.0018	U	mg/l	0.0075	0.0018	1	SW846 1311/6010C	"	15-May-1 5	bjw	1509548	X
7782-49-2	Selenium	< 0.0043	U	mg/l	0.0150	0.0043	1	"	"	15-May-1 5	"	1509320	X
General C	hemistry Parameters												
	% Solids	86.0		%			1	SM2540 G Mod.	11-May-15	11-May-15	DT	1509144	
Toxicity C	haracteristics												
	Flashpoint	>200		°F			1	SW846 1010A	12-May-1 5	12-May-1 5	BD	1509275	X
	Free Liquid	Absent		N/A			1	SW846 9095B	08-May-1 5	08-May-1 5	BD	1508979	X
	Ignitability by Definition	Negative	IgHT	N/A			1	SW846 1030	08-May-1 5 17:00	08-May-1 5 17:30	BD	1508980	X
	рН	8.24	pН	pH Units			1	SW846 9045D	11-May-15 10:59	11-May-15 16:27	BD	1509150	Х
	Cyanide/Sulfide by method General Prepa	aration											
. 1000100	Reactivity	See Narrative		mg/kg dry			1	SW846 Ch. 7.3	11-May-15	11-May-15	TN	1509189	i
57-12-5	Reactive Cyanide	< 24.7	U	mg/kg dry	24.7	24.7	1	"	"	"	"	"	
18496-25-8	Reactive Sulfide	< 49.4	U	mg/kg dry	49.4	49.4	1	"	"	"	"	"	

East Bern	ample Identification ast Berm - Dupe C07186-02			Client F 1537.0	Project # 05.001		<u>Matrix</u> Soil		ection Date -May-15 10			eceived May-15	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds TCLP Extraction	Completed		N/A			1	SW846 1311	13-May-1 5	14-May-1 5	BD	1509403	Х
	atile Organic Compounds	Notor MC				Init	tial waight: I	- ml	· ·	ŭ			
71-43-2	by method SW846 5030 V Benzene	< 0.9	U, D	μg/l	5.0	0.9	tial weight: 5	SW846 1311/8260C	15-May-1 5	15-May-1 5	GMA	1509535	X
78-93-3	2-Butanone (MEK)	< 6.2	U, D	μg/l	50.0	6.2	5	"	"	"	"	"	Х
56-23-5	Carbon tetrachloride	< 1.1	U, D	μg/l	5.0	1.1	5	"	"	"	"	"	Х
108-90-7	Chlorobenzene	< 1.0	U, D	μg/l	5.0	1.0	5	"	"	"	"	"	Х
67-66-3	Chloroform	2.4	D, J	μg/l	5.0	2.0	5	"	"	"	"	"	Х
106-46-7	1,4-Dichlorobenzene	< 1.2	U, D	μg/l	5.0	1.2	5	"	"		"		Х
107-06-2	1,2-Dichloroethane	< 0.8	U, D	μg/l	5.0	0.8	5	"	"		"		Х
75-35-4	1,1-Dichloroethene	< 1.4	U, D	μg/l	5.0	1.4	5	"	"	"	"		X
87-68-3	Hexachlorobutadiene	< 2.0	U, D	μg/l	2.5	2.0	5		"				X
127-18-4	Tetrachloroethene	10.8	D	μg/l	5.0	2.9	5	"	"		"		Х
79-01-6	Trichloroethene	< 1.9	U, D	μg/l	5.0	1.9	5	"		"			Х
75-01-4	Vinyl chloride	< 1.7	U, D	μg/l	5.0	1.7	5	"			"		X
	•	- 1.7		μ9/1	3.0	1.7							
Surrogate r													
460-00-4	4-Bromofluorobenzene	94			70-13			"	"	"	"	"	
2037-26-5	Toluene-d8	95			70-13			"	"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	110			70-13	0 %		"	"	u	"	"	
1868-53-7	Dibromofluoromethane	98			70-13	0 %		"	"	"	"	"	
TCLP Ext	le Organic Compounds by Oraction for Semivolatiles by method SW846 1311 TCLP Extraction	Completed		N/A			1	SW846 1311	11-May-15	12-May-1	BD	1509197	×
	Final pH of leachate	6.48		N/A			1	"	"	5 "	"	"	
TCLP Ser	•	0.40		IV/A			ı						
83-32-9	Acenaphthene	< 2.13	U	μg/l	5.00	2.13	1	SW846 1311/8270D	14-May-1 5	14-May-1 5	MSL	1509444	X
208-96-8	Acenaphthylene	< 2.16	U	μg/l	5.00	2.16	1	n n	"	"	"	"	Х
62-53-3	Aniline	< 2.34	U	μg/l	5.00	2.34	1	"	"		"	"	Х
120-12-7	Anthracene	< 2.33	U	μg/l	5.00	2.33	1	"	"	u	"		Х
103-33-3	Azobenzene/Diphenyldiaz ene	< 2.46	U	μg/l	5.00	2.46	1	u	"	"	"	"	
92-87-5	Benzidine	< 2.68	U	μg/l	5.00	2.68	1	"	"		"	"	Х
56-55-3	Benzo (a) anthracene	< 2.26	U	μg/l	5.00	2.26	1	n .	"	"	"	"	Х
50-32-8	Benzo (a) pyrene	< 2.40	U	μg/l	5.00	2.40	1	n n	"	"	"	"	Х
205-99-2	Benzo (b) fluoranthene	< 2.08	U	μg/l	5.00	2.08	1	n n	"	"	"	"	Х
191-24-2	Benzo (g,h,i) perylene	< 2.40	U	μg/l	5.00	2.40	1	n n	"		"	"	Х
207-08-9	Benzo (k) fluoranthene	< 2.73	U	μg/l	5.00	2.73	1	"	"		"	"	Х
65-85-0	Benzoic acid	< 1.98	U	μg/l	5.00	1.98	1	m .	"	"	"	"	Х
100-51-6	Benzyl alcohol	< 2.14	U	μg/l	5.00	2.14	1	m .	"	"	"	"	Х
111-91-1	Bis(2-chloroethoxy)metha	< 2.23	U	μg/l	5.00	2.23	1	u u	"	"	"	"	X
	ne												

Sample Id	<u>dentification</u>			Client I	Project #		Matrix	Coll	ection Date	/Time	R _e	ceived	
East Ber	m - Dupe				005.001		Soil	· · · · · · · · · · · · · · · · · · ·	-May-15 10			May-15	
SC07186	-02			1337.0	703.001		5011	00	Way 15 10	7.50	00 1	viuy 13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	tile Organic Compounds by C	GCMS											
	mivolatiles												
	by method SW846 3535A												
108-60-1	Bis(2-chloroisopropyl)ethe r	< 2.22	U	μg/l	5.00	2.22	1	SW846 1311/8270D	14-May-1 5	14-May-1 5	MSL	1509444	X
117-81-7	Bis(2-ethylhexyl)phthalate	< 2.34	U	μg/l	5.00	2.34	1	п	"	"	"	"	Х
101-55-3	4-Bromophenyl phenyl ether	< 2.26	U	μg/l	5.00	2.26	1	u	"	"	"	"	Х
85-68-7	Butyl benzyl phthalate	< 2.63	U	μg/l	5.00	2.63	1	"	"	"	"	"	Х
86-74-8	Carbazole	< 2.63	U	μg/l	5.00	2.63	1	II .	"	"	"	"	Х
59-50-7	4-Chloro-3-methylphenol	< 2.43	U	μg/l	5.00	2.43	1	"	"	"	"	"	Χ
106-47-8	4-Chloroaniline	< 2.63	U	μg/l	5.00	2.63	1	"	"	u u	"	"	Χ
91-58-7	2-Chloronaphthalene	< 2.00	U	μg/l	5.00	2.00	1	"	"	"	"	"	Х
95-57-8	2-Chlorophenol	< 2.03	U	μg/l	5.00	2.03	1	"	"	"	"	"	Χ
7005-72-3	4-Chlorophenyl phenyl ether	< 2.34	U	μg/l	5.00	2.34	1	u	"	"	"	"	Х
218-01-9	Chrysene	< 2.33	U	μg/l	5.00	2.33	1	"	"	"	"	"	Χ
53-70-3	Dibenzo (a,h) anthracene	< 2.52	U	μg/l	5.00	2.52	1	"	"	"	"	"	Χ
132-64-9	Dibenzofuran	< 2.15	U	μg/l	5.00	2.15	1	"	"	"	"	"	Χ
95-50-1	1,2-Dichlorobenzene	< 2.05	U	μg/l	5.00	2.05	1	"	"	"	"	"	Χ
541-73-1	1,3-Dichlorobenzene	< 2.02	U	μg/l	5.00	2.02	1	"	"	"	"	"	Χ
106-46-7	1,4-Dichlorobenzene	< 2.02	U	μg/l	5.00	2.02	1	"	"	"	"	"	Χ
91-94-1	3,3'-Dichlorobenzidine	< 2.22	U	μg/l	5.00	2.22	1	"	"	"	"	"	Χ
120-83-2	2,4-Dichlorophenol	< 1.84	U	μg/l	5.00	1.84	1	"	"	"	"	"	Χ
84-66-2	Diethyl phthalate	< 2.38	U	μg/l	5.00	2.38	1	"	"	"	"	"	Χ
131-11-3	Dimethyl phthalate	< 2.28	U	μg/l	5.00	2.28	1	II .	"	"	"	"	Χ
105-67-9	2,4-Dimethylphenol	< 2.12	U	μg/l	5.00	2.12	1	"	"	"	"	"	Χ
84-74-2	Di-n-butyl phthalate	< 2.62	U	μg/l	5.00	2.62	1	II .	"	"	"	"	Χ
534-52-1	4,6-Dinitro-2-methylphenol	< 2.50	U	μg/l	5.00	2.50	1	"	"	"	"	"	Х
51-28-5	2,4-Dinitrophenol	< 1.87	U	μg/l	5.00	1.87	1	"	"	"	"	"	Χ
121-14-2	2,4-Dinitrotoluene	< 2.38	U	μg/l	5.00	2.38	1	II .	"	"	"	"	Χ
606-20-2	2,6-Dinitrotoluene	< 2.30	U	μg/l	5.00	2.30	1	"	"	"	"	"	Х
117-84-0	Di-n-octyl phthalate	< 2.79	U	μg/l	5.00	2.79	1	"	"	"		"	Х
206-44-0	Fluoranthene	< 2.32	U	μg/l	5.00	2.32	1	"	"	"	"	"	Х
86-73-7	Fluorene	< 2.31	U	μg/l	5.00	2.31	1	"	"	"	"	"	Х
118-74-1	Hexachlorobenzene	< 2.15	U	μg/l	5.00	2.15	1	"	"	"	"	"	Х
87-68-3	Hexachlorobutadiene	< 2.03	U	μg/l	5.00	2.03	1	"	"	"	"	"	Х
77-47-4	Hexachlorocyclopentadien e	< 1.55	U	μg/l	5.00	1.55	1	"	•	"	"	"	Х
67-72-1	Hexachloroethane	< 2.15	U	μg/l	5.00	2.15	1	"	"	"	"	"	Χ
193-39-5	Indeno (1,2,3-cd) pyrene	< 2.30	U	μg/l	5.00	2.30	1	II .	"	"	"	"	Χ
78-59-1	Isophorone	< 2.62	U	μg/l	5.00	2.62	1	"	"	"	"	"	Х
91-57-6	2-Methylnaphthalene	< 2.19	U	μg/l	5.00	2.19	1	II .	u u	"	"	"	Х
95-48-7	2-Methylphenol	< 2.14	U	μg/l	5.00	2.14	1	"	II	"	"	"	Χ
108-39-4, 106-44-5	3 & 4-Methylphenol	< 2.22	U	μg/l	10.0	2.22	1	u	"	"	"	"	Х
91-20-3	Naphthalene	< 2.04	U	μg/l	5.00	2.04	1	"	"	"	"	"	Х
88-74-4	2-Nitroaniline	< 2.34	U	μg/l	5.00	2.34	1	"	"	"	"	"	X
99-09-2	3-Nitroaniline	< 2.72	U	μg/l	5.00	2.72	1	"	"	"	"	"	X
100-01-6	4-Nitroaniline	< 2.62	U	μg/l	5.00	2.62	1	"	"	"	"	"	X

East Berr	mple Identification st Berm - Dupe 207186-02			Client Pr 1537.00	-		<u>Matrix</u> Soil		ection Date -May-15 10			<u>ceived</u> May-15	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	ile Organic Compounds by O	GCMS											
	mivolatiles												
Prepared	by method SW846 3535A												
98-95-3	Nitrobenzene	< 2.12	U	μg/l	5.00	2.12	1	SW846 1311/8270D	14-May-1 5	14-May-1 5	MSL	1509444	Х
88-75-5	2-Nitrophenol	< 2.20	U	μg/l	5.00	2.20	1	"	"	"	"	"	X
100-02-7	4-Nitrophenol	< 1.91	U	μg/l	5.00	1.91	1	"	n n	"	"	"	X
62-75-9	N-Nitrosodimethylamine	< 1.84	U	μg/l	5.00	1.84	1	"	"	"	"	"	X
621-64-7	N-Nitrosodi-n-propylamine	< 2.32	U	μg/l	5.00	2.32	1	"	"	"	"	"	X
86-30-6	N-Nitrosodiphenylamine	< 2.58	U	μg/l	5.00	2.58	1	"	"	"	"	"	X
87-86-5	Pentachlorophenol	< 2.15	U	μg/l	5.00	2.15	1	"	"	"	"		Х
85-01-8	Phenanthrene	< 2.26	U	μg/l	5.00	2.26	1	"	"	"	"	"	Х
108-95-2	Phenol	< 2.04	U	μg/l	5.00	2.04	1		u u	"	"	"	X
129-00-0	Pyrene	< 2.42	U	μg/l	5.00	2.42	1		u u	"	"	"	X
110-86-1	Pyridine	< 1.62	U	μg/l	5.00	1.62	1	"	"	"	"	"	Х
120-82-1	1,2,4-Trichlorobenzene	< 1.99	U	μg/l	5.00	1.99	1	"	"	"	"	"	Х
90-12-0	1-Methylnaphthalene	< 1.96	U	μg/l	5.00	1.96	1	"	"	"	"	"	
95-95-4	2,4,5-Trichlorophenol	< 2.09	U	μg/l	5.00	2.09	1	"	"	"	"	"	Х
88-06-2	2,4,6-Trichlorophenol	< 1.96	U	μg/l	5.00	1.96	1	"	"	"	"		Х
82-68-8	Pentachloronitrobenzene	< 2.22	U	μg/l	5.00	2.22	1	"	"	"	"		Х
95-94-3	1,2,4,5-Tetrachlorobenzen e	< 1.97	U	μg/l	5.00	1.97	1	u	"	"	"	"	Х
Surrogate i	recoveries:												
321-60-8	2-Fluorobiphenyl	70			30-13	30 %		"	n n	"	"	"	
367-12-4	2-Fluorophenol	76			15-11	10 %		"	II .	"	"	"	
4165-60-0	Nitrobenzene-d5	76			30-13	30 %		"	II .	"	"	"	
4165-62-2	Phenol-d5	79			15-11	10 %		"	n n	"	"	"	
1718-51-0	Terphenyl-dl4	77			30-13	30 %		"	n n	"	"	"	
118-79-6	2,4,6-Tribromophenol	73			15-11	10 %		"	II .	"	"	"	
Semivolati	ile Organic Compounds by (GC											
	inated Biphenyls by method SW846 3545A												
12674-11-2	•	< 20.9	U	μg/kg dry	23.2	20.9	1	SW846 8082A	11-Mav-15	11-May-15	IMR	1509089	Х
11104-28-2	Aroclor-1221	< 17.8	U	μg/kg dry	23.2	17.8	1		"	"	"		Х
11141-16-5	Aroclor-1232	< 20.8	U	μg/kg dry	23.2	20.8	1		"	"	"		Х
53469-21-9	Aroclor-1242	< 14.4	U	μg/kg dry	23.2	14.4	1		"	"	"		Х
12672-29-6	Aroclor-1248	< 14.5	U	μg/kg dry	23.2	14.5	1	"		"	"	"	Х
11097-69-1	Aroclor-1254	< 16.0	U	μg/kg dry	23.2	16.0	1	п	n n	"	"	"	X
11096-82-5	Aroclor-1260	262		μg/kg dry	23.2	16.3	1	"	"	"			Х
37324-23-5	Aroclor-1262	< 20.8	U	μg/kg dry μg/kg dry	23.2	20.8	1	п	"	"		"	X
11100-14-4	Aroclor-1268	< 22.8	U	μg/kg dry μg/kg dry	23.2	22.8	1	u	"	"	"	"	X
Surrogate i	recoveries:												
10386-84-2		70			30-15	50 %		u	"	"	"	"	
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	85			30-15	50 %		п	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr)	95		30-150 %				u u	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	105		30-150 %				п	"	"	"	"	

East Berr SC07186	-			· ·	Project # 005.001		<u>Matrix</u> Soil		ection Date -May-15 10			<u>ceived</u> May-15	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
TCLP Me	tals by EPA 1311 & 6000/70	000 Series Meth	ods										
	traction for Hg												
Prepared	by method SW846 1311												.,
	TCLP Extraction	Completed		N/A			1	SW846 1311	11-May-15	12-May-1 5	BD	1509195	Х
	Final pH of leachate	6.57		N/A			1	"	"	"	"	"	
	traction for Metals												
Prepared	by method SW846 1311	0		N 1/A				"			"	"	V
	TCLP Extraction	Completed		N/A			1	"					Х
7440 22 4	Final pH of leachate	6.57		N/A	0.0050	0.0044	1		44 Ман 4			4500000	V
7440-22-4	Silver	< 0.0014	U	mg/l	0.0050	0.0014	1	SW846 1311/6010C	14-May-1 5	15-May-1 5	EDT	1509320	Х
7440-38-2	Arsenic	0.0028	J	mg/l	0.0040	0.0026	1	u u	"	15-May-1 5	"	1509548	X
7440-39-3	Barium	0.418		mg/l	0.0500	0.0004	1	"	"	15-May-1 5	"	1509320	Х
7440-43-9	Cadmium	0.0007	J	mg/l	0.0025	0.0002	1	"	"	"	"	"	X
7440-47-3	Chromium	0.0040	J	mg/l	0.0050	0.0010	1	"	"	"	"	"	X
7439-97-6	Mercury	< 0.00009	U	mg/l	0.00020	0.00009	1	SW846 1311/7470A	"	15-May-1 5	YR	1509321	Х
7439-92-1	Lead	0.0057	J	mg/l	0.0075	0.0018	1	SW846 1311/6010C	n	15-May-1 5	bjw	1509548	X
7782-49-2	Selenium	0.0057	J	mg/l	0.0150	0.0043	1	"	"	15-May-1 5	"	1509320	Х
General C	Chemistry Parameters												
	% Solids	83.6		%			1	SM2540 G Mod.	11-May-15	11-May-15	DT	1509144	
Toxicity C	Characteristics												
	Flashpoint	>200		°F			1	SW846 1010A	12-May-1 5	12-May-1 5	BD	1509275	Х
	Free Liquid	Absent		N/A			1	SW846 9095B	08-May-1 5	08-May-1 5	BD	1508979	Х
	Ignitability by Definition	Negative	IgHT	N/A			1	SW846 1030	08-May-1 5 17:00	08-May-1 5 17:30	BD	1508980	Х
	рН	8.21	pН	pH Units			1	SW846 9045D	11-May-15 10:59	11-May-15 16:28	BD	1509150	Χ
	v Cyanide/Sulfide by method General Prep	<u>aration</u>											
	Reactivity	See Narrative		mg/kg dry			1	SW846 Ch. 7.3	11-May-15	11-May-15	TN	1509189	
57-12-5	Reactive Cyanide	< 24.7	U	mg/kg dry	24.7	24.7	1	п	"		"	"	
18496-25-8	Reactive Sulfide	< 49.4	U	mg/kg dry	49.4	49.4	1	"	"	"		"	

	03			1537.0	Project # 05.001		<u>Matrix</u> Soil		ection Date -May-15 10			<u>ceived</u> May-15	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
_	ganic Compounds TCLP Extraction	Completed		N/A			1	SW846 1311	13-May-1 5	14-May-1 5	BD	1509403	X
TCLP Vola	tile Organic Compounds								J	J			
	by method SW846 5030 V						tial weight:						
71-43-2	Benzene	< 0.9	U, D	μg/l	5.0	0.9	5	SW846 1311/8260C	15-May-1 5	15-May-1 5	GMA	1509535	X
78-93-3	2-Butanone (MEK)	< 6.2	U, D	μg/l	50.0	6.2	5	"	"		"	"	Х
56-23-5	Carbon tetrachloride	< 1.1	U, D	μg/l	5.0	1.1	5	"	"	"	"	"	Х
108-90-7	Chlorobenzene	< 1.0	U, D	μg/l	5.0	1.0	5	u u	"	u	"	"	Х
67-66-3	Chloroform	2.6	D, J	μg/l	5.0	2.0	5	"	"	"	"	"	X
106-46-7	1,4-Dichlorobenzene	< 1.2	U, D	μg/l	5.0	1.2	5	u u	"	u	"	"	Х
107-06-2	1,2-Dichloroethane	< 0.8	U, D	μg/l	5.0	0.8	5	u u	"	u	"	"	Х
75-35-4	1,1-Dichloroethene	< 1.4	U, D	μg/l	5.0	1.4	5	"	"	"	"	"	Х
87-68-3	Hexachlorobutadiene	< 2.0	U, D	μg/l	2.5	2.0	5	"	"	"	"		Х
127-18-4	Tetrachloroethene	< 2.9	U, D	μg/l	5.0	2.9	5	"	u u	"	"	"	Х
79-01-6	Trichloroethene	< 1.9	U, D	μg/l	5.0	1.9	5	"	u u	"	"	"	Х
75-01-4	Vinyl chloride	< 1.7	U, D	μg/l	5.0	1.7	5	u u	"	u	"	"	Х
Surrogate re	ecoveries:												
460-00-4	4-Bromofluorobenzene	93			70-13	0 %		"	"	"	"		
2037-26-5	Toluene-d8	96			70-13	0 %		"	"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	110			70-13	0 %		"	"	"	"	"	
1868-53-7	Dibromofluoromethane	97			70-13	0 %		"	"	"		"	
Semivolatile	e Organic Compounds by (GCMS											
	action for Semivolatiles												
Prepared b	oy method SW846 1311												
	TCLP Extraction	Completed		N/A			1	SW846 1311	11-May-15	12-May-1 5	BD	1509197	X
	Final pH of leachate	6.42		N/A			1	"	"	"		"	
TCLP Sem													
	by method SW846 3535A												
83-32-9	Acenaphthene	< 2.13	U	μg/l	5.00	2.13	1	SW846 1311/8270D	14-May-1 5	14-May-1 5	MSL	1509444	X
208-96-8	Acenaphthylene	< 2.16	U	μg/l	5.00	2.16	1	"	"	"	"	"	Х
	Aniline	< 2.34	U	μg/l	5.00	2.34	1	"	"	"	"	"	Х
120-12-7	Anthracene	< 2.33	U	μg/l	5.00	2.33	1	"	"	"	"	"	Х
	Azobenzene/Diphenyldiaz	< 2.46	U	μg/l	5.00	2.46	1	"	"	"		"	
	ene												
	Benzidine	< 2.68	U	μg/l	5.00	2.68	1	"	"	"	"	"	Х
	Benzo (a) anthracene	< 2.26	U	μg/l	5.00	2.26	1	"	"	"	"	"	Х
	Benzo (a) pyrene	< 2.40	U	μg/l	5.00	2.40	1	"	"	"	"	"	Х
	Benzo (b) fluoranthene	< 2.08	U	μg/l	5.00	2.08	1	"	"	"	"	"	Х
	Benzo (g,h,i) perylene	< 2.40	U	μg/l	5.00	2.40	1	"	"	"	"	"	Х
	Benzo (k) fluoranthene	< 2.73	U	μg/l	5.00	2.73	1	"	"	"	"	"	Х
65-85-0	Benzoic acid	< 1.98	U	μg/l	5.00	1.98	1	"	"	"	"	"	X
	Benzyl alcohol	< 2.14	U	μg/l	5.00	2.14	1	"	"	"	"	"	X
	Bis(2-chloroethoxy)metha ne	< 2.23	U	μg/l	5.00	2.23	1	"	"	"	"	"	Х
111-44-4	Bis(2-chloroethyl)ether	< 2.14	U	μg/l	5.00	2.14	1	"	"	"	"	"	Χ

Sample Id	dentification			Client I	Project #		Matrix	Coll	ection Date	/Time	R _e	ceived	
West Ber	m - Dupe)05.001		Soil	· · · · · · · · · · · · · · · · · · ·	-May-15 10			May-15	
SC07186	-03			1337.0	703.001		5011	00	Way 15 10	7.13	00 1	viuy 13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by G	GCMS											
	mivolatiles												
	by method SW846 3535A											.===	.,
108-60-1	Bis(2-chloroisopropyl)ethe r	< 2.22	U	μg/l	5.00	2.22	1	SW846 1311/8270D	14-May-1 5	14-May-1 5	MSL	1509444	X
117-81-7	Bis(2-ethylhexyl)phthalate	< 2.34	U	μg/l	5.00	2.34	1	u u	"	"	"	"	Х
101-55-3	4-Bromophenyl phenyl ether	< 2.26	U	μg/l	5.00	2.26	1	u	"	"	"	"	Х
85-68-7	Butyl benzyl phthalate	< 2.63	U	μg/l	5.00	2.63	1	"	"	"	"	"	Χ
86-74-8	Carbazole	< 2.63	U	μg/l	5.00	2.63	1	II .	"	"	"	"	Х
59-50-7	4-Chloro-3-methylphenol	< 2.43	U	μg/l	5.00	2.43	1	"	"	"	"	"	Χ
106-47-8	4-Chloroaniline	< 2.63	U	μg/l	5.00	2.63	1	"	"	"	"	"	Χ
91-58-7	2-Chloronaphthalene	< 2.00	U	μg/l	5.00	2.00	1	"	"	"	"	"	Χ
95-57-8	2-Chlorophenol	< 2.03	U	μg/l	5.00	2.03	1	"	"	"	"	"	Χ
7005-72-3	4-Chlorophenyl phenyl ether	< 2.34	U	μg/l	5.00	2.34	1	n	"	"	"	"	Х
218-01-9	Chrysene	< 2.33	U	μg/l	5.00	2.33	1	"	"	"	"	"	Χ
53-70-3	Dibenzo (a,h) anthracene	< 2.52	U	μg/l	5.00	2.52	1	"	"	"	"	"	Χ
132-64-9	Dibenzofuran	< 2.15	U	μg/l	5.00	2.15	1	"	"	"	"	"	Χ
95-50-1	1,2-Dichlorobenzene	< 2.05	U	μg/l	5.00	2.05	1	"	"	u	"	"	Χ
541-73-1	1,3-Dichlorobenzene	< 2.02	U	μg/l	5.00	2.02	1	н	"	·	"	"	Х
106-46-7	1,4-Dichlorobenzene	< 2.02	U	μg/l	5.00	2.02	1	н	"	·	"	"	Х
91-94-1	3,3'-Dichlorobenzidine	< 2.22	U	μg/l	5.00	2.22	1	"	"	"	"	"	Χ
120-83-2	2,4-Dichlorophenol	< 1.84	U	μg/l	5.00	1.84	1	"	"	u	"	"	Χ
84-66-2	Diethyl phthalate	< 2.38	U	μg/l	5.00	2.38	1	"	"	"	"	"	Χ
131-11-3	Dimethyl phthalate	< 2.28	U	μg/l	5.00	2.28	1	"	"	"	"	"	Χ
105-67-9	2,4-Dimethylphenol	< 2.12	U	μg/l	5.00	2.12	1	"	"	"	"	"	Χ
84-74-2	Di-n-butyl phthalate	< 2.62	U	μg/l	5.00	2.62	1	"	"	"	"	"	Χ
534-52-1	4,6-Dinitro-2-methylphenol	< 2.50	U	μg/l	5.00	2.50	1	"	"	"	"	"	Χ
51-28-5	2,4-Dinitrophenol	< 1.87	U	μg/l	5.00	1.87	1	"	"	"	"	"	Χ
121-14-2	2,4-Dinitrotoluene	< 2.38	U	μg/l	5.00	2.38	1	"	"	"	"	"	Χ
606-20-2	2,6-Dinitrotoluene	< 2.30	U	μg/l	5.00	2.30	1	II	"	"	"	"	Χ
117-84-0	Di-n-octyl phthalate	< 2.79	U	μg/l	5.00	2.79	1	"	"	"		"	Х
206-44-0	Fluoranthene	< 2.32	U	μg/l	5.00	2.32	1	"	"	"	"	"	Х
86-73-7	Fluorene	< 2.31	U	μg/l	5.00	2.31	1	"	"	"	"	"	Х
118-74-1	Hexachlorobenzene	< 2.15	U	μg/l	5.00	2.15	1	"	"	"	"	"	Х
87-68-3	Hexachlorobutadiene	< 2.03	U	μg/l	5.00	2.03	1	"	"	"	"	"	Х
77-47-4	Hexachlorocyclopentadien e	< 1.55	U	μg/l	5.00	1.55	1	"	"	"	"	"	Х
67-72-1	Hexachloroethane	< 2.15	U	μg/l	5.00	2.15	1	"	"	"	"	"	Χ
193-39-5	Indeno (1,2,3-cd) pyrene	< 2.30	U	μg/l	5.00	2.30	1	"	"	"	"	"	Х
78-59-1	Isophorone	< 2.62	U	μg/l	5.00	2.62	1	"	"	"	"	"	Х
91-57-6	2-Methylnaphthalene	< 2.19	U	μg/l	5.00	2.19	1	"	"	"	"	"	Х
95-48-7	2-Methylphenol	< 2.14	U	μg/l	5.00	2.14	1	II	II	"	"	"	Χ
108-39-4, 106-44-5	3 & 4-Methylphenol	< 2.22	U	μg/l	10.0	2.22	1	u	"	"	"	"	Х
91-20-3	Naphthalene	< 2.04	U	μg/l	5.00	2.04	1	"	"	"	"	"	Х
88-74-4	2-Nitroaniline	< 2.34	U	μg/l	5.00	2.34	1	"	"	"	"	"	X
99-09-2	3-Nitroaniline	< 2.72	U	μg/l	5.00	2.72	1	"	"	"	"	"	X
100-01-6	4-Nitroaniline	< 2.62	U	μg/l	5.00	2.62	1	"	"	"	"	"	X

	lentification_			Client P	roiect#		Matrix	Colle	ection Date	/Time	Re	ceived	
West Ber	-			1537.00			Soil		-May-15 10			May-15	
SC07186-	03												
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	le Organic Compounds by G	GCMS											
TCLP Ser													
	by method SW846 3535A	. 0.40		,,	5 00	0.40		014040				4500444	.,
98-95-3	Nitrobenzene	< 2.12	U	μg/l	5.00	2.12	1	SW846 1311/8270D	14-May-1 5	14-May-1 5	MSL	1509444	X
88-75-5	2-Nitrophenol	< 2.20	U	μg/l	5.00	2.20	1	II .	"	"	"	"	Χ
100-02-7	4-Nitrophenol	< 1.91	U	μg/l	5.00	1.91	1	u u	"	"	"	"	Χ
62-75-9	N-Nitrosodimethylamine	< 1.84	U	μg/l	5.00	1.84	1	II .	"	"	"	"	Χ
621-64-7	N-Nitrosodi-n-propylamine	< 2.32	U	μg/l	5.00	2.32	1	"	"	·	"	"	Χ
86-30-6	N-Nitrosodiphenylamine	< 2.58	U	μg/l	5.00	2.58	1	"	"	"	"	"	Χ
87-86-5	Pentachlorophenol	< 2.15	U	μg/l	5.00	2.15	1	"	"	"	"	"	X
85-01-8	Phenanthrene	< 2.26	U	μg/l	5.00	2.26	1	"	"	"	"	"	Х
108-95-2	Phenol	< 2.04	U	μg/l	5.00	2.04	1	"	"	"	"	"	Х
129-00-0	Pyrene	< 2.42	U	μg/l	5.00	2.42	1	"	"	"	"	"	X
110-86-1	Pyridine	< 1.62	U	μg/l	5.00	1.62	1	"	"	"	"	"	Х
120-82-1	1,2,4-Trichlorobenzene	< 1.99	U	μg/l	5.00	1.99	1	"	"	"	"	"	X
90-12-0	1-Methylnaphthalene	< 1.96	U	μg/l	5.00	1.96	1	"	"	"	"	"	
95-95-4	2,4,5-Trichlorophenol	< 2.09	U	μg/l	5.00	2.09	1	"	"	"	"	"	Х
88-06-2	2,4,6-Trichlorophenol	< 1.96	U	μg/l	5.00	1.96	1	"	"	"	"	"	X
82-68-8	Pentachloronitrobenzene	< 2.22	U	μg/l	5.00	2.22	1	"	"	"	"	"	Х
95-94-3	1,2,4,5-Tetrachlorobenzen e	< 1.97	U	μg/l	5.00	1.97	1	"	"	"	"	"	Х
Surrogate r	recoveries:												
321-60-8	2-Fluorobiphenyl	70			30-13	0 %		u u	"	"	"	"	
367-12-4	2-Fluorophenol	75			15-11	0 %		"	"	"	"	"	
4165-60-0	Nitrobenzene-d5	73			30-13	0 %		"	"	·	"	"	
4165-62-2	Phenol-d5	75			15-11	0 %		"	"	·	"	"	
1718-51-0	Terphenyl-dl4	75			30-13	0 %		"	"	u	"	"	
118-79-6	2,4,6-Tribromophenol	70			15-11	0 %		"	"	"	"	"	
Semivolati	le Organic Compounds by C	GC											
	nated Biphenyls												
	by method SW846 3545A	- 00 4			22.2	20.4	4	CW04C 0000A	44 Ман 45	40 May 4	IMD	4500000	v
12074-11-2	Aroclor-1016	< 20.1	U	μg/kg dry	22.3	20.1	1	SW846 8082A	11-May-15	12-May-1	IMR	1509089	Х
11104-28-2	Aroclor-1221	< 17.1	U	μg/kg dry	22.3	17.1	1	"	"	u	"	"	Х
11141-16-5	Aroclor-1232	< 20.0	U	μg/kg dry	22.3	20.0	1	"	"	"	"	"	Х
53469-21-9	Aroclor-1242	< 13.8	U	μg/kg dry	22.3	13.8	1	"	"	u	"	"	Х
12672-29-6	Aroclor-1248	< 14.0	U	μg/kg dry	22.3	14.0	1	"	"	"	"	"	Х
11097-69-1	Aroclor-1254	< 15.4	U	μg/kg dry	22.3	15.4	1	"	"				Х
11096-82-5	Aroclor-1260 [2C]	36.4		μg/kg dry	22.3	13.9	1	"	"	"	"	"	Х
37324-23-5	Aroclor-1262	< 20.0	U	μg/kg dry	22.3	20.0	1	"	"	"	"	"	Х
11100-14-4	Aroclor-1268	< 21.9	U	μg/kg dry	22.3	21.9	1	"	"	"	"	"	Χ
Surrogate r	recoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	65			30-15	0 %		"	"	"	"	"	
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	70			30-15	0 %		"	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr)	95			30-15	0 %		"	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	110			30-15	0 %		"	"	"	"	"	

-	dentification m - Dupe -03			<u>Client P</u> 1537.0			<u>Matrix</u> Soil		ection Date -May-15 10			<u>ceived</u> May-15	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
TCLP Me	tals by EPA 1311 & 6000/7	000 Series Meth	ods										
	raction for Hg												
Prepared	by method SW846 1311 TCLP Extraction	Completed		N/A			1	SW846 1311	11-May-15	12-May-1	BD	1509195	Х
										5	,,	,	
	Final pH of leachate	6.52		N/A			1	"	"	"	"	"	
	raction for Metals by method SW846 1311												
<u> </u>	TCLP Extraction	Completed		N/A			1	"	"	"	"	"	Х
	Final pH of leachate	6.52		N/A			1	"	"		"	"	
7440-22-4	Silver	< 0.0014	U	mg/l	0.0050	0.0014	1	SW846 1311/6010C	14-May-1 5	15-May-1 5	EDT	1509320	Х
7440-38-2	Arsenic	0.0054		mg/l	0.0040	0.0026	1	"	"	15-May-1 5	"	1509548	Χ
7440-39-3	Barium	0.410		mg/l	0.0500	0.0004	1	"	"	15-May-1 5	"	1509320	Х
7440-43-9	Cadmium	0.0012	J	mg/l	0.0025	0.0002	1	"	"		"	"	Х
7440-47-3	Chromium	0.0044	J	mg/l	0.0050	0.0010	1	"	"	"	"	"	Х
7439-97-6	Mercury	< 0.00009	U	mg/l	0.00020	0.00009	1	SW846 1311/7470A	"	15-May-1 5	YR	1509321	Х
7439-92-1	Lead	0.0136		mg/l	0.0075	0.0018	1	SW846 1311/6010C	"	15-May-1 5	bjw	1509548	Χ
7782-49-2	Selenium	0.0072	J	mg/l	0.0150	0.0043	1	"	"	15-May-1 5	"	1509320	Х
General C	Chemistry Parameters												
	% Solids	84.5		%			1	SM2540 G Mod.	11-May-15	11-May-15	DT	1509144	
Toxicity C	haracteristics												
	Flashpoint	>200		°F			1	SW846 1010A	12-May-1 5	12-May-1 5	BD	1509275	Х
	Free Liquid	Absent		N/A			1	SW846 9095B	08-May-1 5	08-May-1 5	BD	1508979	Х
	Ignitability by Definition	Negative	lgHT	N/A			1	SW846 1030	08-May-1 5 17:00	08-May-1 5 17:30	BD	1508980	Х
	рН	7.80	pН	pH Units			1	SW846 9045D	11-May-15 10:59	11-May-15 16:29	BD	1509150	Х
	Cyanide/Sulfide by method General Prep	aration_											
	Reactivity	See Narrative		mg/kg dry			1	SW846 Ch. 7.3	11-May-15	11-May-15	TN	1509189	
57-12-5	Reactive Cyanide	< 25.0	U	mg/kg dry	25.0	25.0	1	"	"	"	"	"	
18496-25-8	Reactive Sulfide	< 50.0	U	mg/kg dry	50.0	50.0	1	"	"	"	"	"	

West Berr SC07186-				Client F 1537.0	Project # 05.001		<u>Matrix</u> Soil	'	ection Date -May-15 10			<u>ceived</u> May-15	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile Or	rganic Compounds TCLP Extraction	Completed		N/A			1	SW846 1311	13-May-1 5	14-May-1 5	BD	1509403	X
TCLP Vol	atile Organic Compounds								J	J			
	by method SW846 5030 V						tial weight:						
71-43-2	Benzene	< 0.9	U, D	μg/l	5.0	0.9	5	SW846 1311/8260C	15-May-1 5	15-May-1 5	GMA	1509535	X
78-93-3	2-Butanone (MEK)	< 6.2	U, D	μg/l	50.0	6.2	5	"	"		"	"	Х
56-23-5	Carbon tetrachloride	< 1.1	U, D	μg/l	5.0	1.1	5	"	"	"	"	"	Х
108-90-7	Chlorobenzene	< 1.0	U, D	μg/l	5.0	1.0	5	"	"	"	"	"	X
67-66-3	Chloroform	< 2.0	U, D	μg/l	5.0	2.0	5	"	"		"		Х
106-46-7	1,4-Dichlorobenzene	< 1.2	U, D	μg/l	5.0	1.2	5	"	"	"	"	"	Х
107-06-2	1,2-Dichloroethane	< 0.8	U, D	μg/l	5.0	8.0	5	"	"	"	"	"	Х
75-35-4	1,1-Dichloroethene	< 1.4	U, D	μg/l	5.0	1.4	5		"	"	"	"	Х
87-68-3	Hexachlorobutadiene	< 2.0	U, D	μg/l	2.5	2.0	5	"	"	"	"	"	Х
127-18-4	Tetrachloroethene	< 2.9	U, D	μg/l	5.0	2.9	5	"	"	"	"		Х
79-01-6	Trichloroethene	< 1.9	U, D	μg/l	5.0	1.9	5	"	"	"	"		Х
75-01-4	Vinyl chloride	< 1.7	U, D	μg/l	5.0	1.7	5	"	"		"	"	Х
Surrogate r	recoveries:												
460-00-4	4-Bromofluorobenzene	91			70-13	0 %		"	"				
2037-26-5	Toluene-d8	95			70-13			"	"	"			
17060-07-0	1,2-Dichloroethane-d4	113			70-13			"	"	"			
1868-53-7	Dibromofluoromethane	94			70-13			"	"		"	"	
Semivolati	ile Organic Compounds by 0	GCMS											
	raction for Semivolatiles	30.125											
	by method SW846 1311												
	TCLP Extraction	Completed		N/A			1	SW846 1311	11-May-15	12-May-1 5	BD	1509197	X
	Final pH of leachate	6.54		N/A			1	"	"	"	"	"	
TCLP Ser	mivolatiles												
Prepared	by method SW846 3535A												
83-32-9	Acenaphthene	< 2.13	U	μg/l	5.00	2.13	1	SW846 1311/8270D	14-May-1 5	14-May-1 5	MSL	1509444	X
208-96-8	Acenaphthylene	< 2.16	U	μg/l	5.00	2.16	1	"	"	"	"	"	Х
62-53-3	Aniline	< 2.34	U	μg/l	5.00	2.34	1	"	"	"			Х
120-12-7	Anthracene	< 2.33	U	μg/l	5.00	2.33	1	"	"	"	"	"	Х
103-33-3	Azobenzene/Diphenyldiaz	< 2.46	U	μg/l	5.00	2.46	1	"	"	"	"	"	
92-87-5	ene Benzidine	< 2.68	U	μg/l	5.00	2.68	1	"			,,	"	Х
56-55-3	Benzo (a) anthracene	< 2.26	U		5.00	2.26	1	11				"	X
50-32-8				μg/l							"	"	
	Benzo (a) pyrene	< 2.40	U	μg/l	5.00	2.40	1	"			"	"	X
205-99-2	Benzo (b) fluoranthene	< 2.08	U	μg/l	5.00	2.08	1					"	X
191-24-2	Benzo (g,h,i) perylene	< 2.40	U	μg/l	5.00	2.40	1	"				"	X
207-08-9	Benzo (k) fluoranthene	< 2.73	U	μg/l "	5.00	2.73	1	"	"	"		"	X
65-85-0	Benzoic acid	< 1.98	U	μg/l 	5.00	1.98	1						X
100-51-6	Benzyl alcohol	< 2.14	U	μg/l	5.00	2.14	1	"	"	"	"	"	X
111-91-1	Bis(2-chloroethoxy)metha ne	< 2.23	U	μg/l	5.00	2.23	1	"	"	"	"	"	Х
111-44-4	Bis(2-chloroethyl)ether	< 2.14	U	μg/l	5.00	2.14	1	"					Χ

Sample Io	dentification			Client I	Project #		Matrix	Coll	ection Date	/Time	R e	ceived	
West Ber	·m				005.001		Soil		-May-15 10			May-15	
SC07186	-04			1337.0	703.001		5011	00	iviuy 15 IV	7.13	00 1	viay 15	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by O	GCMS											
	<u>mivolatiles</u>												
	by method SW846 3535A												
108-60-1	Bis(2-chloroisopropyl)ethe r	< 2.22	U	μg/l	5.00	2.22	1	SW846 1311/8270D	14-May-1 5	14-May-1 5	MSL	1509444	X
117-81-7	Bis(2-ethylhexyl)phthalate	< 2.34	U	μg/l	5.00	2.34	1	"	"	"	"	"	Х
101-55-3	4-Bromophenyl phenyl ether	< 2.26	U	µg/l	5.00	2.26	1	н	"	"	"	"	Х
85-68-7	Butyl benzyl phthalate	< 2.63	U	μg/l	5.00	2.63	1	"	"	"	"	"	Χ
86-74-8	Carbazole	< 2.63	U	μg/l	5.00	2.63	1	II .	"	"	"	"	Χ
59-50-7	4-Chloro-3-methylphenol	< 2.43	U	μg/l	5.00	2.43	1	II .	"	ıı	"	"	Χ
106-47-8	4-Chloroaniline	< 2.63	U	μg/l	5.00	2.63	1	II .	"	"	"	"	Х
91-58-7	2-Chloronaphthalene	< 2.00	U	μg/l	5.00	2.00	1	u	"	"	"	"	Х
95-57-8	2-Chlorophenol	< 2.03	U	μg/l	5.00	2.03	1	u	"	"	"	"	Х
7005-72-3	4-Chlorophenyl phenyl ether	< 2.34	U	μg/l	5.00	2.34	1	u	"	"	"	"	Х
218-01-9	Chrysene	< 2.33	U	μg/l	5.00	2.33	1	II .	"	"	"	"	Х
53-70-3	Dibenzo (a,h) anthracene	< 2.52	U	μg/l	5.00	2.52	1	u	"	"	"	"	Х
132-64-9	Dibenzofuran	< 2.15	U	μg/l	5.00	2.15	1	u	"	"	"	"	Х
95-50-1	1,2-Dichlorobenzene	< 2.05	U	μg/l	5.00	2.05	1	"	"	"	"	"	Х
541-73-1	1,3-Dichlorobenzene	< 2.02	U	μg/l	5.00	2.02	1	"	"	"	"	"	Х
106-46-7	1,4-Dichlorobenzene	< 2.02	U	μg/l	5.00	2.02	1	"	"	"	"	"	Х
91-94-1	3,3'-Dichlorobenzidine	< 2.22	U	μg/l	5.00	2.22	1	II .	"	"	"	"	Х
120-83-2	2,4-Dichlorophenol	< 1.84	U	μg/l	5.00	1.84	1	"	"	"	"	"	Х
84-66-2	Diethyl phthalate	< 2.38	U	μg/l	5.00	2.38	1	"	"	"	"	"	Х
131-11-3	Dimethyl phthalate	< 2.28	U	μg/l	5.00	2.28	1	u	"	"	"	"	Х
105-67-9	2,4-Dimethylphenol	< 2.12	U	μg/l	5.00	2.12	1	"	u u	u	"	"	Χ
84-74-2	Di-n-butyl phthalate	< 2.62	U	μg/l	5.00	2.62	1	u	"	"	"	"	Х
534-52-1	4,6-Dinitro-2-methylphenol	< 2.50	U	μg/l	5.00	2.50	1	II .	"	"	"	"	Х
51-28-5	2,4-Dinitrophenol	< 1.87	U	μg/l	5.00	1.87	1	"	"	"	"	"	Х
121-14-2	2,4-Dinitrotoluene	< 2.38	U	μg/l	5.00	2.38	1	"	"	"	"	"	Χ
606-20-2	2,6-Dinitrotoluene	< 2.30	U	μg/l	5.00	2.30	1	"	"	"	"	"	Х
117-84-0	Di-n-octyl phthalate	< 2.79	U	μg/l	5.00	2.79	1	u	"	"	"	"	Х
206-44-0	Fluoranthene	< 2.32	U	μg/l	5.00	2.32	1	II .	"	ıı	"	"	Χ
86-73-7	Fluorene	< 2.31	U	μg/l	5.00	2.31	1	u	"	"	"	"	Х
118-74-1	Hexachlorobenzene	< 2.15	U	μg/l	5.00	2.15	1	"	u u	u	"	"	Χ
87-68-3	Hexachlorobutadiene	< 2.03	U	μg/l	5.00	2.03	1	"	u u	u	"	"	Χ
77-47-4	Hexachlorocyclopentadien e	< 1.55	U	μg/l	5.00	1.55	1	"	"	"	"	"	Х
67-72-1	Hexachloroethane	< 2.15	U	μg/l	5.00	2.15	1	"	"	"	"	"	X
193-39-5	Indeno (1,2,3-cd) pyrene	< 2.30	U	μg/l	5.00	2.30	1	"	"			"	X
78-59-1	Isophorone	< 2.62	U	μg/l	5.00	2.62	1	"	"	"	"	"	Χ
91-57-6	2-Methylnaphthalene	< 2.19	U	μg/l	5.00	2.19	1	"	"	"	"	"	Χ
95-48-7	2-Methylphenol	< 2.14	U	μg/l	5.00	2.14	1	"	"	"	"	"	Χ
108-39-4, 106-44-5	3 & 4-Methylphenol	< 2.22	U	µg/l	10.0	2.22	1	11	"	"	"	"	Х
91-20-3	Naphthalene	< 2.04	U	μg/l	5.00	2.04	1	"	"	"	"	"	Χ
88-74-4	2-Nitroaniline	< 2.34	U	μg/l	5.00	2.34	1	"	"	"	"	"	Χ
99-09-2	3-Nitroaniline	< 2.72	U	μg/l	5.00	2.72	1	"	"	"	"	"	Χ
100-01-6	4-Nitroaniline	< 2.62	U	μg/l	5.00	2.62	1	"	"	"	"		Χ

-	lentification			Client P	roject#		Matrix	Colle	ection Date	/Time	Re	ceived	
West Bern				1537.0			Soil		-May-15 10			May-15	
SC07186-	.04											_	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Semivolati	le Organic Compounds by C	GCMS											
TCLP Ser													
	by method SW846 3535A												
98-95-3	Nitrobenzene	< 2.12	U	μg/l	5.00	2.12	1	SW846 1311/8270D	14-May-1 5	14-May-1 5	MSL	1509444	X
88-75-5	2-Nitrophenol	< 2.20	U	μg/l	5.00	2.20	1	u u	"	"	"	"	Х
100-02-7	4-Nitrophenol	< 1.91	U	μg/l	5.00	1.91	1	"	"	"	"	"	Χ
62-75-9	N-Nitrosodimethylamine	< 1.84	U	μg/l	5.00	1.84	1	"	"	"	"	"	Χ
621-64-7	N-Nitrosodi-n-propylamine	< 2.32	U	μg/l	5.00	2.32	1	II .	"	"	"	"	Χ
86-30-6	N-Nitrosodiphenylamine	< 2.58	U	μg/l	5.00	2.58	1	"	"	·	"	"	Χ
87-86-5	Pentachlorophenol	< 2.15	U	μg/l	5.00	2.15	1	"	"	"	"	"	Χ
85-01-8	Phenanthrene	< 2.26	U	μg/l	5.00	2.26	1	"	"	"	"	"	Χ
108-95-2	Phenol	< 2.04	U	μg/l	5.00	2.04	1	"	"	"	"	"	Χ
129-00-0	Pyrene	< 2.42	U	μg/l	5.00	2.42	1	"	"	"	"	"	Χ
110-86-1	Pyridine	< 1.62	U	μg/l	5.00	1.62	1	"	"	"	"	"	Χ
120-82-1	1,2,4-Trichlorobenzene	< 1.99	U	μg/l	5.00	1.99	1	"	"	"	"	"	Χ
90-12-0	1-Methylnaphthalene	< 1.96	U	μg/l	5.00	1.96	1	"	"	"	"	"	
95-95-4	2,4,5-Trichlorophenol	< 2.09	U	μg/l	5.00	2.09	1	"	"	"	"	"	Χ
88-06-2	2,4,6-Trichlorophenol	< 1.96	U	μg/l	5.00	1.96	1	"	"	"	"	"	Χ
82-68-8	Pentachloronitrobenzene	< 2.22	U	μg/l	5.00	2.22	1	"	"	"	"	"	Χ
95-94-3	1,2,4,5-Tetrachlorobenzen e	< 1.97	U	μg/l	5.00	1.97	1	"	"	"	"	"	Х
Surrogate r	recoveries:												
321-60-8	2-Fluorobiphenyl	75			30-13	0 %		"	"	"	"	"	
367-12-4	2-Fluorophenol	78			15-11	0 %			"	"	"	"	
4165-60-0	Nitrobenzene-d5	77			30-13	0 %		"	"	"	"	"	
4165-62-2	Phenol-d5	77			15-11	0 %		"	"	"	"	"	
1718-51-0	Terphenyl-dl4	80			30-13	0 %		"	"	"	"	"	
118-79-6	2,4,6-Tribromophenol	80			15-11	0 %		u u	"	"	"	"	
Semivolati	le Organic Compounds by C	GC											
	nated Biphenyls												
	by method SW846 3545A											.=	.,
12674-11-2	Aroclor-1016	< 20.6	U	μg/kg dry	22.8	20.6	1	SW846 8082A	11-May-15	12-May-1 5	IMR	1509089	Х
11104-28-2	Aroclor-1221	< 17.5	U	μg/kg dry	22.8	17.5	1	"	"	"	"	"	Х
11141-16-5	Aroclor-1232	< 20.5	U	μg/kg dry	22.8	20.5	1	"	"	"	"	"	Х
53469-21-9	Aroclor-1242	< 14.2	U	μg/kg dry	22.8	14.2	1	"	"	"	"	"	Х
12672-29-6	Aroclor-1248	< 14.3	U	μg/kg dry	22.8	14.3	1	ii .	"	"	"	"	Х
11097-69-1	Aroclor-1254	< 15.7	U	μg/kg dry	22.8	15.7	1	"	"	"	"	"	X
11096-82-5	Aroclor-1260	50.0		μg/kg dry	22.8	16.0	1		"	"	"	"	Χ
37324-23-5	Aroclor-1262	< 20.4	U	μg/kg dry	22.8	20.4	1	"	"	u	"	"	Χ
11100-14-4	Aroclor-1268	< 22.4	U	μg/kg dry	22.8	22.4	1	"	"	"	"	"	Χ
Surrogate r	recoveries:												
10386-84-2		75			30-15	0 %		"	"	"	"	"	
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	90			30-15	0 %		"	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr)	100			30-15	0 %		"	"		"	"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	110			30-15	60 %		"	n .	"	"	"	

West Ber	<u>lentification</u> m				Project #		Matrix		ection Date		Re	ceived	
SC07186				1537.0	05.001		Soil	06-	-May-15 10):45	06-1	May-15	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cer
TCLP Me	tals by EPA 1311 & 6000/70	000 Series Meth	ods										
	raction for Hg												
<u>Prepared</u>	by method SW846 1311												
	TCLP Extraction	Completed		N/A			1	SW846 1311	11-May-15	12-May-1 5	BD	1509195	Х
	Final pH of leachate	6.55		N/A			1	n n	"	u	"	"	
	raction for Metals by method SW846 1311												
	TCLP Extraction	Completed		N/A			1	"	"	"	"	"	Х
	Final pH of leachate	6.55		N/A			1	"	"	"	"	"	
7440-22-4	Silver	< 0.0014	U	mg/l	0.0050	0.0014	1	SW846 1311/6010C	14-May-1 5	15-May-1 5	EDT	1509320	Х
7440-38-2	Arsenic	0.0049		mg/l	0.0040	0.0026	1	"	"	15-May-1 5	"	1509548	X
7440-39-3	Barium	0.416		mg/l	0.0500	0.0004	1	u	"	15-May-1 5	"	1509320	X
7440-43-9	Cadmium	0.0012	J	mg/l	0.0025	0.0002	1	"	"	"	"	"	Х
7440-47-3	Chromium	0.0036	J	mg/l	0.0050	0.0010	1		"	"	"	"	Х
7439-97-6	Mercury	< 0.00009	U	mg/l	0.00020	0.00009	1	SW846 1311/7470A	"	15-May-1 5	YR	1509321	Х
7439-92-1	Lead	0.0214		mg/l	0.0075	0.0018	1	SW846 1311/6010C	"	15-May-1 5	bjw	1509548	X
7782-49-2	Selenium	0.0044	J	mg/l	0.0150	0.0043	1	"	"	15-May-1 5	"	1509320	Х
General C	hemistry Parameters												
	% Solids	84.5		%			1	SM2540 G Mod.	11-May-15	11-May-15	DT	1509144	
Toxicity C	haracteristics												
	Flashpoint	>200		°F			1	SW846 1010A	12-May-1 5	12-May-1 5	BD	1509275	Х
	Free Liquid	Absent		N/A			1	SW846 9095B	08-May-1 5	08-May-1 5	BD	1508979	Х
	Ignitability by Definition	Negative	IgHT	N/A			1	SW846 1030	08-May-1 5 17:00	08-May-1 5 17:30	BD	1508980	Х
	рН	7.76	pН	pH Units			1	SW846 9045D	11-May-15 10:59	11-May-15 16:32	BD	1509150	Х
	Cyanide/Sulfide												
Prepared	by method General Prepa	aration_											
	Reactivity	See Narrative		mg/kg dry			1	SW846 Ch. 7.3	11-May-15	11-May-15	TN	1509189	
57-12-5	Reactive Cyanide	< 24.8	U	mg/kg dry	24.8	24.8	1	II .	"	"	"	"	
18496-25-8	Reactive Sulfide	< 49.6	U	mg/kg dry	49.6	49.6	1	"	"	"	"	"	

Volatile Organic Compounds - Quality Control

Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPI Lim
				Dra	anared & Ar	nalyzed: 15	.Mav-15		
< 0.2	- 11	ua/l	0.2	<u> </u>	spareu & Ai	iaiyzeu. 13-	-iviay-13		
< 0.3	U	μg/l	0.3						
48.2		μg/l		50.0		96	70-130		
47.9		μg/l		50.0		96	70-130		
54.8		μg/l		50.0		110	70-130		
48.8		μg/l		50.0		98	70-130		
				Pre	epared & Ar	nalyzed: 15-	-May-15		
< 0.9	U, D	μg/l	0.9				•		
< 6.2	U, D		6.2						
< 1.1	U, D		1.1						
< 1.0	U, D								
2.4	J, D								
	U, D								
				50.0		94	70-130		
40.9		μул							
	Б				epared & Ar				
		μg/l							
24.3		μg/l		20.0			70-130		
20.7	D	μg/l		20.0		104	70-130		
17.9	D	μg/l		20.0		90	70-130		
17.5	D	μg/l		20.0		87	70-130		
49.3		μg/l		50.0		99	70-130		
48.3		μg/l		50.0		97	70-130		
55.4		μg/l		50.0		111	70-130		
	< 0.2 < 0.2 < 0.2 < 0.4 < 0.2 < 0.3 < 0.4 < 0.6 < 0.4 < 0.3 48.2 47.9 54.8 48.8 < 0.9 < 6.2 < 1.1 < 1.0 2.4 < 1.2 < 0.8 < 1.4 < 2.0 < 2.9 < 1.9 < 1.7 46.8 47.3 54.6 48.9 19.4 21.6 23.2 18.8 20.7 20.7 21.4 18.6 24.3 20.7 17.9 17.5 49.3 48.3	 < 0.2 < 0.2 < 0.2 < 0.4 < 0.2 < 0.3 < 0.4 < 0.6 < 0.4 < 0.3 < 0.4 < 0.3 < 0.4 < 0.5 < 0.6 < 0.7 < 0.8 < 0.9 < 0.8 < 0.9 <	 < 0.2 < 0.2 U U<td> < 0.2 U µg/l 0.2 < 0.2 U µg/l 0.2 < 0.2 U µg/l 0.2 < 0.4 U µg/l 0.4 0.2 < 0.2 U µg/l 0.4 < 0.2 U µg/l 0.2 < 0.3 U µg/l 0.3 < 0.4 U µg/l 0.4 < 0.6 U µg/l 0.4 < 0.6 U µg/l 0.4 < 0.6 U µg/l 0.4 < 0.3 U µg/l 0.4 < 0.9 U µg/l 0.9 < 6.2 U µg/l 1.0 < 1.1 U µg/l 1.0 < 1.2 U µg/l 1.0 < 1.4 U µg/l 1.0 < 1.4 U µg/l 1.0 < 1.4 U µg/l 2.0 < 2.9 U µg/l 2.0 < 2.9 U µg/l 2.0 < 2.9 U µg/l 1.9 < 1.7 < 1.6 µg/l 1.9 < 1.7 < 1.6 µg/l 1.7 < 1.6 µg/l 1.7 < 1.6 µg/l 1.6 < 1.7 < 1.9 < 1.9 < 1.9 < 1.9 < 1.7 < 1.8 < 1.9 < 1.9 < 1.7 < 1.8 < 1.9 < 1.9 < 1.9 < 1.9 < 1.9 < 1.7 < 1.8 < 1.9 < 1.9 < 1.9 < 1.9 < 1.7 < 1.8 < 1.9 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.2 <</td><td> Result Flag Units *RDL Level </td><td> Result Flag Units *RDL Level Result </td><td> Result Flag Units *RDL Level Result %REC </td><td> Result Flag Units *RDL Level Result %REC Limits </td><td> Result Flag Units</td>	 < 0.2 U µg/l 0.2 < 0.2 U µg/l 0.2 < 0.2 U µg/l 0.2 < 0.4 U µg/l 0.4 0.2 < 0.2 U µg/l 0.4 < 0.2 U µg/l 0.2 < 0.3 U µg/l 0.3 < 0.4 U µg/l 0.4 < 0.6 U µg/l 0.4 < 0.6 U µg/l 0.4 < 0.6 U µg/l 0.4 < 0.3 U µg/l 0.4 < 0.9 U µg/l 0.9 < 6.2 U µg/l 1.0 < 1.1 U µg/l 1.0 < 1.2 U µg/l 1.0 < 1.4 U µg/l 1.0 < 1.4 U µg/l 1.0 < 1.4 U µg/l 2.0 < 2.9 U µg/l 2.0 < 2.9 U µg/l 2.0 < 2.9 U µg/l 1.9 < 1.7 < 1.6 µg/l 1.9 < 1.7 < 1.6 µg/l 1.7 < 1.6 µg/l 1.7 < 1.6 µg/l 1.6 < 1.7 < 1.9 < 1.9 < 1.9 < 1.9 < 1.7 < 1.8 < 1.9 < 1.9 < 1.7 < 1.8 < 1.9 < 1.9 < 1.9 < 1.9 < 1.9 < 1.7 < 1.8 < 1.9 < 1.9 < 1.9 < 1.9 < 1.7 < 1.8 < 1.9 < 1.1 < 1.1 < 1.1 < 1.1 < 1.1 < 1.2 <	Result Flag Units *RDL Level	Result Flag Units *RDL Level Result	Result Flag Units *RDL Level Result %REC	Result Flag Units *RDL Level Result %REC Limits	Result Flag Units

Volatile Organic Compounds - Quality Control

.nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1509535 - SW846 5030 Water MS										
LCS Dup (1509535-BSD2)					Pre	epared & Ar	nalyzed: 15-	<u>May-15</u>		
Benzene	18.3	D	μg/l		20.0		91	70-130	6	20
2-Butanone (MEK)	21.5	D	μg/l		20.0		108	70-130	0.7	20
Carbon tetrachloride	21.9	D	μg/l		20.0		109	70-130	6	20
Chlorobenzene	18.3	D	μg/l		20.0		92	70-130	2	20
Chloroform	19.9	D	μg/l		20.0		99	70-130	4	20
1,4-Dichlorobenzene	20.1	D	μg/l		20.0		100	70-130	3	20
1,2-Dichloroethane	20.8	D	μg/l		20.0		104	70-130	3	20
1,1-Dichloroethene	17.7	D	μg/l		20.0		88	70-130	5	20
Hexachlorobutadiene	23.8	D	μg/l		20.0		119	70-130	2	20
Tetrachloroethene	19.4	D	μg/l		20.0		97	70-130	6	20
Trichloroethene	16.8	D	μg/l		20.0		84	70-130	6	20
Vinyl chloride	17.0	D	μg/l		20.0		85	70-130	3	20
Surrogate: 4-Bromofluorobenzene	48.9		μg/l		50.0		98	70-130		
Surrogate: Toluene-d8	48.0		μg/l		50.0		96	70-130		
Surrogate: 1,2-Dichloroethane-d4	54.3		μg/l		50.0		109	70-130		
Surrogate: Dibromofluoromethane	49.4		μg/l		50.0		99	70-130		

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1509444 - SW846 3535A										
Blank (1509444-BLK1)					Pre	epared & Ar	nalyzed: 14-	May-15		
Acenaphthene	< 2.13	U	μg/l	2.13						
Acenaphthylene	< 2.16	U	μg/l	2.16						
Aniline	< 2.34	U	μg/l	2.34						
Anthracene	< 2.33	U	μg/l	2.33						
Azobenzene/Diphenyldiazene	< 2.46	U	μg/l	2.46						
Benzidine	< 2.68	U	μg/l	2.68						
Benzo (a) anthracene	< 2.26	U	μg/l	2.26						
Benzo (a) pyrene	< 2.40	U	μg/l	2.40						
Benzo (b) fluoranthene	< 2.08	U	μg/l	2.08						
Benzo (g,h,i) perylene	< 2.40	U	μg/l	2.40						
Benzo (k) fluoranthene	< 2.73	U	μg/l	2.73						
Benzoic acid	< 1.98	U	μg/l	1.98						
Benzyl alcohol	< 2.14	U	μg/l	2.14						
Bis(2-chloroethoxy)methane	< 2.23	U	μg/l	2.23						
Bis(2-chloroethyl)ether	< 2.14	U	μg/l	2.14						
Bis(2-chloroisopropyl)ether	< 2.22	U	μg/l	2.22						
Bis(2-ethylhexyl)phthalate	< 2.34	U	μg/l	2.34						
4-Bromophenyl phenyl ether	< 2.26	U	μg/l	2.26						
Butyl benzyl phthalate	< 2.63	U	μg/l	2.63						
Carbazole	< 2.63	U	μg/l	2.63						
4-Chloro-3-methylphenol	< 2.43	U	μg/l	2.43						
4-Chloroaniline	< 2.63	U	μg/l	2.63						
2-Chloronaphthalene	< 2.00	U	μg/l	2.00						
2-Chlorophenol	< 2.03	U	μg/l	2.03						
4-Chlorophenyl phenyl ether	< 2.34	U	μg/l	2.34						
Chrysene	< 2.33	U	μg/l	2.33						
Dibenzo (a,h) anthracene	< 2.52	U	μg/l	2.52						
Dibenzofuran	< 2.15	U	μg/l	2.15						
1,2-Dichlorobenzene	< 2.05	U	μg/l	2.05						
1,3-Dichlorobenzene	< 2.02	U	μg/l 	2.02						
1,4-Dichlorobenzene	< 2.02	U 	μg/l 	2.02						
3,3´-Dichlorobenzidine	< 2.22	U	μg/l	2.22						
2,4-Dichlorophenol	< 1.84	U	μg/l	1.84						
Diethyl phthalate	< 2.38	U	μg/l	2.38						
Dimethyl phthalate	< 2.28	U	μg/l	2.28 2.12						
2,4-Dimethylphenol	< 2.12 < 2.62	U	μg/l	2.12						
Di-n-butyl phthalate 4,6-Dinitro-2-methylphenol	< 2.62 < 2.50	U	μg/l	2.62						
2,4-Dinitro-z-methylphenol	< 1.87	U	μg/l	2.50 1.87						
2,4-Dinitrophenoi	< 2.38	U	μg/l μg/l	2.38						
2,4-Dinitrotoluene	< 2.30	U	μg/l μg/l	2.30						
Di-n-octyl phthalate	< 2.79	U	μg/l	2.79						
Fluoranthene	< 2.79	U	μg/l	2.79						
Fluorene	< 2.31	U	μg/l μg/l	2.32						
Hexachlorobenzene	< 2.15	U	μg/l	2.15						
Hexachlorobutadiene	< 2.03	U	μg/l	2.13						
Hexachlorocyclopentadiene	< 1.55	U	μg/l	1.55						
Hexachloroethane	< 2.15	U	μg/l	2.15						
Indeno (1,2,3-cd) pyrene	< 2.30	U	μg/l	2.15						
Isophorone	< 2.62	U	μg/l	2.62						
2-Methylnaphthalene	< 2.19	U	μg/l	2.19						
2-Methylphenol	< 2.14	U	μg/l	2.14						

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1509444 - SW846 3535A										
Blank (1509444-BLK1)					Pre	epared & Ar	nalyzed: 14-	May-15		
3 & 4-Methylphenol	< 2.22	U	μg/l	2.22						
Naphthalene	< 2.04	U	μg/l	2.04						
2-Nitroaniline	< 2.34	U	μg/l	2.34						
3-Nitroaniline	< 2.72	U	μg/l	2.72						
4-Nitroaniline	< 2.62	U	μg/l	2.62						
Nitrobenzene	< 2.12	U	μg/l	2.12						
2-Nitrophenol	< 2.20	U	μg/l	2.20						
4-Nitrophenol	< 1.91	U	μg/l	1.91						
N-Nitrosodimethylamine	< 1.84	U	μg/l	1.84						
N-Nitrosodi-n-propylamine	< 2.32	U	μg/l	2.32						
N-Nitrosodiphenylamine	< 2.58	U	μg/l	2.58						
Pentachlorophenol	< 2.15	U	μg/l	2.15						
Phenanthrene	< 2.26	U	μg/l	2.26						
Phenol	< 2.04	U	μg/l	2.04						
Pyrene	< 2.42	U	μg/l	2.42						
Pyridine	< 1.62	U	μg/l	1.62						
1,2,4-Trichlorobenzene	< 1.99	U	μg/l	1.99						
1-Methylnaphthalene	< 1.96	U	μg/l	1.96						
2,4,5-Trichlorophenol	< 2.09	U	μg/l	2.09						
2,4,6-Trichlorophenol	< 1.96	U	μg/l	1.96						
Pentachloronitrobenzene	< 2.22	U	μg/l	2.22						
1,2,4,5-Tetrachlorobenzene	< 1.97	U	μg/l	1.97						
Surrogate: 2-Fluorobiphenyl	37.0		μg/l		52.6		70	30-130		
Surrogate: 2-Fluorophenol	39.1		μg/l		52.6		74	15-110		
Surrogate: Nitrobenzene-d5	38.5		μg/l		52.6		73	30-130		
Surrogate: Phenol-d5	38.4		μg/l		52.6		73	15-110		
Surrogate: Terphenyl-dl4	40.6		μg/l		52.6		77	30-130		
Surrogate: 2,4,6-Tribromophenol	36.1		μg/l		52.6		69	15-110		
LCS (1509444-BS1)					Pre	epared & Ar	nalyzed: 14-	May-15		
Acenaphthene	39.3		μg/l	2.13	50.0		79	40-140		
Acenaphthylene	40.3		μg/l	2.16	50.0		81	40-140		
Aniline	14.6	QC2	μg/l	2.34	50.0		29	40-140		
Anthracene	43.0		μg/l	2.33	50.0		86	40-140		
Azobenzene/Diphenyldiazene	42.7		μg/l	2.46	50.0		85	40-140		
Benzidine	6.24	QC2	μg/l	2.68	50.0		12	40-140		
Benzo (a) anthracene	42.6		μg/l	2.26	50.0		85	40-140		
Benzo (a) pyrene	45.9		μg/l	2.40	50.0		92	40-140		
Benzo (b) fluoranthene	47.4		μg/l	2.08	50.0		95	40-140		
Benzo (g,h,i) perylene	42.1		μg/l	2.40	50.0		84	40-140		
Benzo (k) fluoranthene	40.0		μg/l	2.73	50.0		80	40-140		
Benzoic acid	49.3		μg/l	1.98	50.0		99	30-130		
Benzyl alcohol	27.6		μg/l	2.14	50.0		55	40-140		
Bis(2-chloroethoxy)methane	38.8		μg/l	2.23	50.0		78	40-140		
Bis(2-chloroethyl)ether	37.5		μg/l	2.14	50.0		75	40-140		
Bis(2-chloroisopropyl)ether	39.0		μg/l	2.22	50.0		78	40-140		
Bis(2-ethylhexyl)phthalate	42.5		μg/l	2.34	50.0		85	40-140		
4-Bromophenyl phenyl ether	44.7		μg/l	2.26	50.0		89	40-140		
Butyl benzyl phthalate	42.0		μg/l	2.63	50.0		84	40-140		
Carbazole	45.9		μg/l	2.63	50.0		92	40-140		
4-Chloro-3-methylphenol	45.9		μg/l	2.43	50.0		92	30-130		
4-Chloroaniline	17.2	QC2	μg/l	2.63	50.0		34	40-140		

Result	Flag	Units	*RDI	Spike Level	Source Result	%RFC	%REC	RPD	RPD Limit
Result	1 lag	Omis	KDL	revei	Kesuit	/UKEC	Limits	MD	Lillit
				_					
		_			epared & Ar				
						87	40-140		
40.7						81	40-140		
			2.15	50.0		94	40-140		
37.6			2.03	50.0		75	40-140		
41.8			1.55	50.0		84	40-140		
35.8		μg/l	2.15	50.0		72	40-140		
47.2		μg/l	2.30	50.0		94	40-140		
40.4		μg/l	2.62	50.0		81	40-140		
44.6		μg/l	2.19	50.0		89	40-140		
41.4		μg/l	2.14	50.0		83	30-130		
39.5		μg/l	2.22	50.0		79	30-130		
39.6		μg/l	2.04	50.0		79	40-140		
47.0		μg/l	2.34	50.0		94	40-140		
25.7		μg/l	2.72	50.0		51	40-140		
44.2		μg/l	2.62	50.0		88	40-140		
42.0		μg/l	2.12	50.0		84	40-140		
46.0		μg/l	2.20	50.0		92	30-130		
55.6		μg/l	1.91	50.0		111	30-130		
40.0		μg/l	1.84	50.0		80	40-140		
41.3		μg/l	2.32	50.0		83	40-140		
47.3		μg/l	2.58	50.0		95	40-140		
39.3		μg/l	2.15	50.0		79	30-130		
43.1		μg/l	2.26	50.0		86	40-140		
37.7		μg/l	2.04	50.0			30-130		
41.5		μg/l	2.42				40-140		
32.7		μg/l	1.62				40-140		
40.2		μg/l	1.99			80	40-140		
		μg/l 							
44.4		μg/l							
39.4		μg/l	1.96 2.22	50.0 50.0					
45.1		μg/l				90	40-140		
	46.8 37.6 41.8 35.8 47.2 40.4 44.6 41.4 39.5 39.6 47.0 25.7 44.2 42.0 46.0 55.6 40.0 41.3 47.3 39.3 43.1 37.7 41.5 32.7 40.2 39.8	39.6 40.0 42.5 41.2 44.5 40.7 39.2 38.5 38.2 33.4 43.8 41.0 40.4 43.2 43.4 48.3 46.8 47.1 45.7 44.0 43.7 40.7 46.8 37.6 41.8 35.8 47.2 40.4 44.6 41.4 39.5 39.6 47.0 25.7 44.2 42.0 46.0 55.6 40.0 41.3 47.3 39.3 43.1 37.7 41.5 32.7 40.2 39.8	39.6	39.6	Result Flag Units *RDL Level	Result Flag Units *RDL Level Result	Result Flag Units *RDL Level Result %REC	Result Flag Units *RDL Level Result *AREC Limits	Result Flag Units *RDL Level Result %REC Limits RPD

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
	Result	1 lag	Oilits	KDL	Level	Result	70KLC	Lillius	- Ki D	Lillit
Batch 1509444 - SW846 3535A					Des			Ma.: 45		
LCS (1509444-BS1)						epared & Ar	nalyzed: 14-			
Surrogate: 2-Fluorobiphenyl	42.0		μg/l		50.0		84	30-130		
Surrogate: 2-Fluorophenol	40.5		μg/l		50.0		81	15-110		
Surrogate: Nitrobenzene-d5	46.3		μg/l		50.0		93	30-130		
Surrogate: Phenol-d5	42.2		μg/l		50.0		84	15-110		
Surrogate: Terphenyl-dl4	45.0		μg/l		50.0		90	30-130		
Surrogate: 2,4,6-Tribromophenol	50.6		μg/l		50.0		101	15-110		
LCS Dup (1509444-BSD1)					Pre	epared & Ar	nalyzed: 14-	-May-15		
Acenaphthene	41.4		μg/l	2.13	50.0		83	40-140	5	20
Acenaphthylene	42.4		μg/l	2.16	50.0		85	40-140	5	20
Aniline	15.8	QC2	μg/l	2.34	50.0		32	40-140	8	20
Anthracene	44.6		μg/l	2.33	50.0		89	40-140	4	20
Azobenzene/Diphenyldiazene	45.1		μg/l	2.46	50.0		90	40-140	6	20
Benzidine	8.42	QC2, QR5	μg/l	2.68	50.0		17	40-140	30	20
Benzo (a) anthracene	46.2	-	μg/l	2.26	50.0		92	40-140	8	20
Benzo (a) pyrene	48.4		μg/l	2.40	50.0		97	40-140	5	20
Benzo (b) fluoranthene	49.5		μg/l	2.08	50.0		99	40-140	4	20
Benzo (g,h,i) perylene	46.1		μg/l	2.40	50.0		92	40-140	9	20
Benzo (k) fluoranthene	43.0		μg/l	2.73	50.0		86	40-140	7	20
Benzoic acid	55.2		μg/l	1.98	50.0		110	30-130	11	20
Benzyl alcohol	35.5	QR2	μg/l	2.14	50.0		71	40-140	25	20
Bis(2-chloroethoxy)methane	41.1		μg/l	2.23	50.0		82	40-140	6	20
Bis(2-chloroethyl)ether	40.3		μg/l	2.14	50.0		81	40-140	7	20
Bis(2-chloroisopropyl)ether	41.1		μg/l	2.22	50.0		82	40-140	5	20
Bis(2-ethylhexyl)phthalate	45.2		μg/l	2.34	50.0		90	40-140	6	20
4-Bromophenyl phenyl ether	47.1		μg/l	2.26	50.0		94	40-140	5	20
Butyl benzyl phthalate	44.3		μg/l	2.63	50.0		89	40-140	5	20
Carbazole	49.7		μg/l	2.63	50.0		99	40-140	8	20
4-Chloro-3-methylphenol	46.4		μg/l	2.43	50.0		93	30-130	1	20
4-Chloroaniline	15.2	QC2	μg/l	2.63	50.0		30	40-140	12	20
2-Chloronaphthalene	41.4		μg/l	2.00	50.0		83	40-140	4	20
2-Chlorophenol	43.0		μg/l	2.03	50.0		86	30-130	7	20
4-Chlorophenyl phenyl ether	44.9		μg/l	2.34	50.0		90	40-140	6	20
Chrysene	43.8		μg/l	2.33	50.0		88	40-140	6	20
Dibenzo (a,h) anthracene	47.2		μg/l	2.52	50.0		94	40-140	6	20
Dibenzofuran	43.7		μg/l	2.15	50.0		87	40-140	7	20
1,2-Dichlorobenzene	40.9		μg/l	2.05	50.0		82	40-140	4	20
1,3-Dichlorobenzene	40.8		μg/l	2.02	50.0		82	40-140	6	20
1,4-Dichlorobenzene	40.0		μg/l	2.02	50.0		80	40-140	5	20
3,3'-Dichlorobenzidine	37.9		μg/l	2.22	50.0		76	40-140	13	20
2,4-Dichlorophenol	46.2		μg/l	1.84	50.0		92	30-130	5	20
Diethyl phthalate	43.2		μg/l	2.38	50.0		86	40-140	5	20
Dimethyl phthalate	42.6		μg/l	2.28	50.0		85	40-140	5	20
2,4-Dimethylphenol	44.9		μg/l	2.12	50.0		90	30-130	4	20
Di-n-butyl phthalate	45.3		μg/l	2.62	50.0		91	40-140	4	20
4,6-Dinitro-2-methylphenol	52.9		μg/l	2.50	50.0		106	30-130	9	20
2,4-Dinitrophenol	53.1		μg/l	1.87	50.0		106	30-130	13	20
2,4-Dinitrotoluene	51.3		μg/l	2.38	50.0		103	40-140	9	20
2,6-Dinitrotoluene	50.2		μg/l	2.30	50.0		100	40-140	9	20
Di-n-octyl phthalate	45.7		μg/l	2.79	50.0		91	40-140	4	20
Fluoranthene	45.9		μg/l	2.32	50.0		92	40-140	5	20
Fluorene	43.2		μg/l	2.31	50.0		86	40-140	6	20

malvita(a)	Dagy 14	Elec	Limita	*DDI	Spike	Source	0/DEC	%REC	DDD	RPI	
nalyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Lim	
atch 1509444 - SW846 3535A											
LCS Dup (1509444-BSD1)					Pre	epared & Ar	nalyzed: 14-	May-15			
Hexachlorobenzene	49.1		μg/l	2.15	50.0		98	40-140	5	20	
Hexachlorobutadiene	39.6		μg/l	2.03	50.0		79	40-140	5	20	
Hexachlorocyclopentadiene	46.4		μg/l	1.55	50.0		93	40-140	10	20	
Hexachloroethane	37.5		μg/l	2.15	50.0		75	40-140	5	20	
Indeno (1,2,3-cd) pyrene	51.0		μg/l	2.30	50.0		102	40-140	8	20	
Isophorone	42.9			μg/l	2.62	50.0		86	40-140	6	20
2-Methylnaphthalene	45.8		μg/l	2.19	50.0		92	40-140	2	20	
2-Methylphenol	43.5		μg/l	2.14	50.0		87	30-130	5	20	
3 & 4-Methylphenol	41.8		μg/l	2.22	50.0		84	30-130	6	20	
Naphthalene	41.0		μg/l	2.04	50.0		82	40-140	3	20	
2-Nitroaniline	49.6		μg/l	2.34	50.0		99	40-140	5	20	
3-Nitroaniline	20.6	QR2	μg/l	2.72	50.0		41	40-140	22	20	
4-Nitroaniline	48.6		μg/l	2.62	50.0		97	40-140	10	20	
Nitrobenzene	43.9		μg/l	2.12	50.0		88	40-140	4	20	
2-Nitrophenol	49.0		μg/l	2.20	50.0		98	30-130	6	20	
4-Nitrophenol	62.7		μg/l	1.91	50.0		125	30-130	12	20	
N-Nitrosodimethylamine	43.0		μg/l	1.84	50.0		86	40-140	7	20	
N-Nitrosodi-n-propylamine	45.3		μg/l	2.32	50.0		91	40-140	9	20	
N-Nitrosodiphenylamine	49.9		μg/l	2.58	50.0		100	40-140	5	20	
Pentachlorophenol	46.6		μg/l	2.15	50.0		93	30-130	17	20	
Phenanthrene	45.9		μg/l	2.26	50.0		92	40-140	6	20	
Phenol	40.1		μg/l	2.04	50.0		80	30-130	6	20	
Pyrene	45.1		μg/l	2.42	50.0		90	40-140	8	20	
Pyridine	34.3		μg/l	1.62	50.0		69	40-140	5	20	
1,2,4-Trichlorobenzene	41.7		μg/l	1.99	50.0		83	40-140	4	20	
1-Methylnaphthalene	41.9		μg/l	1.96	50.0		84	40-140	5	20	
2,4,5-Trichlorophenol	41.2		μg/l	2.09	50.0		82	30-130	8	20	
2,4,6-Trichlorophenol	43.2		μg/l	1.96	50.0		86	30-130	9	20	
Pentachloronitrobenzene	47.8		μg/l	2.22	50.0		96	40-140	6	20	
1,2,4,5-Tetrachlorobenzene	44.1		μg/l	1.97	50.0		88	40-140	5	20	
Surrogate: 2-Fluorobiphenyl	42.7		μg/l		50.0		85	30-130			
Surrogate: 2-Fluorophenol	41.7		μg/l		50.0		83	15-110			
Surrogate: Nitrobenzene-d5	46.9		μg/l		50.0		94	30-130			
Surrogate: Phenol-d5	43.6		μg/l		50.0		87	15-110			
Surrogate: Terphenyl-dl4	47.0		μg/l		50.0		94	30-130			
Surrogate: 2,4,6-Tribromophenol	51.6		μg/l		50.0		103	15-110			

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
atch 1509089 - SW846 3545A										
Blank (1509089-BLK1)					Pre	epared & Ar	nalyzed: 11-	May-15		
Aroclor-1016	< 17.8	U	μg/kg wet	17.8						
Aroclor-1016 [2C]	< 10.1	U	μg/kg wet	10.1						
Aroclor-1221	< 15.1	U	μg/kg wet	15.1						
Aroclor-1221 [2C]	< 16.9	U	μg/kg wet	16.9						
Aroclor-1232	< 17.8	U	μg/kg wet	17.8						
Aroclor-1232 [2C]	< 12.9	U	μg/kg wet	12.9						
Aroclor-1242	< 12.3	U	μg/kg wet	12.3						
Aroclor-1242 [2C]	< 11.9	U	μg/kg wet	11.9						
Aroclor-1248	< 12.4	U	μg/kg wet	12.4						
Aroclor-1248 [2C]	< 11.1	U	μg/kg wet	11.1						
Aroclor-1254	< 13.6	U	μg/kg wet	13.6						
Aroclor-1254 [2C]	< 11.1	U	μg/kg wet	11.1						
Aroclor-1260	< 13.9	U	μg/kg wet	13.9						
Aroclor-1260 [2C]	< 12.4	U	μg/kg wet	12.4						
Aroclor-1262	< 17.7	U	μg/kg wet	17.7						
Aroclor-1262 [2C]	< 10.7	U	μg/kg wet	10.7						
Aroclor-1268	< 19.4	U	μg/kg wet	19.4						
Aroclor-1268 [2C]	< 19.0	U	μg/kg wet	19.0						
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	16.8		μg/kg wet		19.8		85	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	18.8		μg/kg wet		19.8		95	30-150		
Surrogate: Decachlorobiphenyl (Sr)	15.8		μg/kg wet		19.8		80	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	20.8		μg/kg wet		19.8		105	30-150		
LCS (1509089-BS1)					Pre	epared & Ar	nalyzed: 11-	May-15		
Aroclor-1016	219		μg/kg wet	17.7	245		89	40-140		
Aroclor-1016 [2C]	219		μg/kg wet	9.97	245		89	40-140		
Aroclor-1260	187		μg/kg wet	13.7	245		76	40-140		
Aroclor-1260 [2C]	194		μg/kg wet	12.3	245		79	40-140		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	16.7		μg/kg wet		19.6		85	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	17.7		μg/kg wet		19.6		90	30-150		
Surrogate: Decachlorobiphenyl (Sr)	15.7		μg/kg wet		19.6		80	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	19.6		μg/kg wet		19.6		100	30-150		
LCS Dup (1509089-BSD1)					Pre	epared & Ar	nalyzed: 11-	May-15		
Aroclor-1016	220		μg/kg wet	17.7	245		90	40-140	0.9	30
Aroclor-1016 [2C]	226		μg/kg wet	9.96	245		92	40-140	4	30
Aroclor-1260	186		μg/kg wet	13.7	245		76	40-140	0.5	30
Aroclor-1260 [2C]	201		μg/kg wet	12.2	245		82	40-140	3	30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	16.7		μg/kg wet		19.6		85	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	17.6		μg/kg wet		19.6		90	30-150		
Surrogate: Decachlorobiphenyl (Sr)	16.7		μg/kg wet		19.6		85	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	19.6		μg/kg wet		19.6		100	30-150		

TCLP Metals by EPA 1311 & 6000/7000 Series Methods - Quality Control

A	D 1	El	TT. 12	*DD1	Spike	Source	0/DEC	%REC	מתח	RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 1509320 - SW846 3010A										
Blank (1509320-BLK1)					<u>Pre</u>	epared: 14-l	May-15 Ar	nalyzed: 15-N	/lay-15	
Chromium	0.0032	J	mg/l	0.0010						
Silver	< 0.0014	U	mg/l	0.0014						
Cadmium	< 0.0002	U	mg/l	0.0002						
Selenium	0.0076	J	mg/l	0.0043						
Barium	0.0008	J	mg/l	0.0004						
LCS (1509320-BS1)					<u>Pre</u>	epared: 14-l	May-15 Ar	nalyzed: 15-N	/lay-15	
Silver	1.22		mg/l	0.0014	1.25		98	85-115		
Cadmium	1.09		mg/l	0.0002	1.25		87	85-115		
Chromium	1.15		mg/l	0.0010	1.25		92	85-115		
Selenium	1.33		mg/l	0.0043	1.25		107	85-115		
Barium	1.19		mg/l	0.0004	1.25		95	85-115		
LCS Dup (1509320-BSD1)					Pre	pared: 14-l	May-15 Ar	nalyzed: 15-N	/lay-15	
Chromium	1.16		mg/l	0.0010	1.25		93	85-115	1	20
Cadmium	1.11		mg/l	0.0002	1.25		89	85-115	2	20
Silver	1.28		mg/l	0.0014	1.25		102	85-115	4	104
Selenium	1.41		mg/l	0.0043	1.25		113	85-115	5	20
Barium	1.22		mg/l	0.0004	1.25		97	85-115	3	20
Batch 1509321 - EPA200/SW7000 Series										
Blank (1509321-BLK1)					Pre	pared: 14-l	May-15 Ar	nalyzed: 15-N	//ay-15	
Mercury	< 0.00009	U	mg/l	0.00009						
LCS (1509321-BS1)					Pre	epared: 14-l	May-15 Ar	nalyzed: 15-N	//ay-15	
Mercury	0.00493		mg/l	0.00009	0.00500		99	85-115		
Batch 1509548 - SW846 3010A										
Blank (1509548-BLK1)					Pre	pared: 14-l	Mav-15 Ar	nalyzed: 15-N	/lav-15	
Lead	< 0.0018	U	mg/l	0.0018			•	•		
Arsenic	0.0036	J	mg/l	0.0026						
LCS (1509548-BS1)			Ü		Pre	epared: 14-l	Mav-15 Ar	nalyzed: 15-N	/lav-15	
Lead	1.16		mg/l	0.0018	1.25		92	85-115		
Arsenic	1.20		mg/l	0.0026	1.25		96	85-115		
LCS Dup (1509548-BSD1)			3			nared: 14-l		nalyzed: 15-N	/av-15	
Arsenic	1.14		mg/l	0.0026	1.25	, parca. 1 1- 1	91	85-115	5	20
, a como	1.14		mg/l	0.0020	1.25		89	85-115	4	20

Toxicity Characteristics - Quality Control

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 1508980 - General Preparation										
<u>Duplicate (1508980-DUP1)</u>			Source: SC	<u>07186-04</u>	Pre	epared & A	nalyzed: 08	-May-15		
Ignitability by Definition	Negative		N/A			Negative				35
Batch 1509150 - General Preparation										
<u>Duplicate (1509150-DUP1)</u>			Source: SC	07186-01	Pre	epared & A				
рН	8.27		pH Units			8.24			0.4	5
Reference (1509150-SRM1)					Pre	epared & A	nalyzed: 11	-May-15		
рН	6.04		pH Units		6.00		101	97.5-102. 5		
Reference (1509150-SRM2)		-May-15								
pН	6.07		pH Units		6.00		101	97.5-102. 5		
Batch 1509189 - General Preparation										
Blank (1509189-BLK1)					Pre	epared & A	nalyzed: 11	-May-15		
Reactivity	See Narrative		mg/kg wet							
Reactive Cyanide	< 25.0	U	mg/kg wet	25.0						
Reactive Sulfide	< 50.0	U	mg/kg wet	50.0						
<u>Duplicate (1509189-DUP1)</u>			Source: SC	<u>07186-01</u>	Pre	epared & A	-May-15			
Reactivity	See Narrative		mg/kg dry			ee Narrativ	,			200
Reactive Cyanide	< 25.0	U	mg/kg dry	25.0		BRL				35
Reactive Sulfide	< 50.0	U	mg/kg dry	50.0		BRL				35
Reference (1509189-SRM1)					<u>Pre</u>	epared & A	nalyzed: 11	- <u>May-15</u>		
Reactive Cyanide	< 25.0	U	mg/kg wet	25.0	600		0	0-200		
Reference (1509189-SRM2)				Prepared & Analyzed: 11-May-15				- <u>May-15</u>		
Reactive Sulfide	56.1		mg/kg wet	50.0	40200		0.1	0-200		
Batch 1509275 - General Preparation										
Reference (1509275-SRM1)					Pre	epared & A	nalyzed: 12	-May-15		
Flashpoint	80		°F		81.0		99	95-105		

Notes and Definitions

D Data reported from a dilution

IgHT A hold time of 24 hours has been set to expedite the analyses through the laboratory. However, the hold time for

Ignitability is not specified within the method other than to state that the samples should be analyzed as soon as possible.

J Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration

(CLP J-Flag).

QC2 Analyte out of acceptance range in QC spike but no reportable concentration present in sample.

QR2 The RPD result exceeded the QC control limits; however, both percent recoveries were acceptable. Sample results for the

QC batch were accepted based on percent recoveries and completeness of QC data.

QR5 RPD out of acceptance range.

U Analyte included in the analysis, but not detected at or above the MDL.

Z-2 Standard was rerun and passed within the method criteria

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

pH The method for pH does not stipulate a specific holding time other than to state that the samples should be analyzed as

soon as possible. For aqueous samples the 40 CFR 136 specifies a holding time of 15 minutes from sampling to analysis. Therefore all aqueous pH samples not analyzed in the field are considered out of hold time at the time of sample receipt.

All soil samples are analyzed as soon as possible after sample receipt.

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

Matrix Spike: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification:</u> The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

Validated by: Rebecca Merz

	Jony (321,130)	The Roll of Many 6	THE SAME	Relinquished by:				Del's	Bern -1		5(0)1860) East Bern 5/6/1	Lab ID: Sample ID: Date:	G= Grab C=C	X1=X2=	O-OH SO-SOH SE-SHARE A-HIGOOFAHISISH AH	CI -Cludge A-Indoor/Ambient Air	DW=Dinking Water GW=Groundwater SW=Surface Water	F=Field Filtered 1=Na ₂ SZO ₃ 2=HCl 3=H ₂ SO ₄ 4=HNO ₃ 7=CH3OH 8=NaHSO ₄ 9=Deionized Water 10=H ₃ PO ₄	Project Mgr: Grey Lesniak	325	6 15 h 110 12/14	Harry De Logistus	Report To: Marca Lashiak	SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY		2		
July 1915 (625)		on 23) S/7/15 7:05	100tt 5/1/15 1/30	Received by: Date: Time:				10:45 C 50 Bu	10:45 C 50 84	10.30 C SD SH	5 10:30 C 50 84	Time: Ty Ma # of ' # of ' # of '	C=Compsite //pe ttrix VOA Ambee	Glass		ADV TT AVA	WW=Waste Water Containers	5_3 $5=NaOH$ $6=Ascorbic Acid$ $11= $	P.O No.: Quote/RQN:				Invoice To: B+4.	Page of	CHAIN OF CUSTODY RECORD			^
IKID#	Connected Condition upon receipt: Custody Seals: Present Intact Broken	mección Factor mikadilyka il	33 S. E-mail to: also niaka barten and topidice con	Temp °C ☐ EDD format:				XXXXXX 0 0 %S/	XXXXX 0 mithing	XXXXXX O	XXXXXXX 0 4 Tay received in	FC In Con Fla	Professional Control of the Internal Control of the In	hlori	natec	CT DPH RCP Report? Yes	Analysis MA DEP MCP CAM Report? Yes No	List Preservative Code below: QA/QC Reporting Notes: * additional charges may appply		Sampler(s): May Knd/lab	Similar All	Site Name: Proper Midler Arc.	Project No: 1537.005,00	All TATs subject to laboratory approval Min. 24-hr notification needed for rushes Samples disposed after 60 days unless otherwise instructed.		Standard TAT - 7 to 10 business days	Snocial Handling:	

CITY OF AUBURN DEPARTMENT OF MUNICIPAL UTILITIES PETROLEUM CONTAMINATED SOIL TESTING PROTOCOL

Physical Characteristics

Corrosivity (pH) = Greater than 2 Std. Units and Less Than 12.5 Std. Units Ignitability (Flashpoint) = 60°C or 140°F Maximum % Solids = 20% Minimum

• TCLP Laboratory Analysis (40 CFR 261)

Maximum Concentration of Contaminants for Toxicity Characteristic (mg/L)

5.0
100.0
0.5
1.0
0.5
0.03
100.0
6.0
5.0
200.0
200,0
200.0
200.0
10.0
7.5
0.5
0.7
0.13
0.02
0.008

Hexachlorobenzene	0.13
Hexachlorobutadiene	0.5
Hexachloroethane	3.0
Lead	5.0
Lindane	0.4
Mercury	0.2
Methoxychlor	10.0
Methyl ethyl ketone	200.0
Nitrobenzene	2.0
Pentachlorophenol	100.0
Pyridine	5.0
Selenium	1 0
Silver •	5.0
Tetrachloroethylene	0.7
Toxaphene	0.5
Trichloroethylene	0.5
2,4,5-Trichlorophenol	400.0
2,4,6-Trichlorophenol	2.0
2,4,5-TP (Silvex)	1.0
Vinyl Chloride	0.2

Total PCB Analysis:

- PCB's should be analyzed as "total" per EPA Method 8082 or equivalent.

Additional Testing Protocols (If Necessary):

- Sampling and testing protocols may be modified or increased at any time by the City of Auburn depending on the origin or nature of the material.

OBG | There's a way

May 31, 2018

Albert Giannino

Director of Leasing Pioneer Companies 333 West Washington Street, Suite 600 Syracuse, NY, 13202

RE: Midler Crossing - Lot 7 Sampling Results

FILE: 4293/68868

Dear Al:

This letter serves to describe the observations and analytical results associated with the Lot 7 stockpile material sampling conducted by O'Brien & Gere Engineers, Inc. (OBG) on April 20, 2018 at the Midler Crossing property located off Midler Avenue in the City of Syracuse. The sampling was performed in accordance with OBG's proposal dated January 12, 2018.

SAMPLING METHODS

The Site Management Plan (SMP) for the site states that one composite and one duplicate sample will be collected for 2,000 cubic yards of stockpiled material (assuming the material does not exhibit visual evidence of contamination). Based on measurements of the stockpiled material on Lot 7, the estimated volume is 1,700 cubic yards. As discussed below, two samples, rather than one, were collected to more conservatively represent the material quality in the stockpile.

To characterize the stockpiled material for off-site disposal options, four borings were advanced through the full stockpile thickness (estimated at 6 feet thick), one in the northeast (NE), southeast (SE), southwest (SW), and northwest (NW) quadrants of the stockpile. The attached **Figure 1** presents the sample locations. OBG subcontracted Parratt-Wolff, Inc. to provide the boring services. The borings were advanced using direct-push drilling methods. The direct-push drill rig was positioned atop the stockpile. Samples were collected from the full thickness of the stockpile using 4-ft long Macro-Core® samplers. Upon retrieval, the samples were screened using a photoionization detector (PID) to evaluate the potential presence of volatile organic compounds (VOCs) and bulk VOC concentrations.

For waste characterization purposes, material was collected from the NW and SW quadrants and composited into one sample, identified as NW-SW-Berm-042018. Likewise, material was collected from the NE and SE quadrants and composited into one sample identified as NE-SE-Berm-042018. In addition, one grab sample from the east and west quadrants was also collected for the volatile organic compound (VOC) samples. One blind duplicate sample, identified as X-1-042018, was collected for quality assurance/quality control (QA/QC) purposes. The samples were analyzed by Test America for the following waste characteristics:

Toxicity Characteristic Leaching Procedure (TCLP) VOCs

- TCLP semivolatile organic compounds (SVOCs)
- TCLP metals
- Reactivity
- Ignitability
- Corrosivity
- Paint filter

To evaluate potential on-site reuse options, two discrete samples were collected from the eastern and western halves of the stockpile and identified as E-Berm-042018 and W-Berm-042018. These samples were analyzed by Test America for the following:

- Target Compound List (TCL) VOCs
- TCL SVOCs
- Target Analyte List (TAL) metals, including mercury
- TCL polychlorinated biphenyls (PCBs)
- TCL pesticides

RESULTS

Field Observations

Based on visual observations of the samples collected from the Lot #7 soil pile, the material consists of brownish gray, damp, silt with some fine-grained sand and little gravel, brick fragments, and cinders. No visual or olfactory impacted material was observed in the samples collected. PID readings were non-detect.

Analytical Results

Waste characterization analytical data is provided on the attached **Table 1**. These data are compared to 6 NYCRR Part 371 maximum concentration of contaminants for toxicity characteristics. TCLP VOCs, TCLP SVOCs and TCLP Metals concentrations did not exceed maximum contaminant concentrations (40 CFR 261). Corrosivity, ignitability, and reactivity were also below limits that would result in the material being classified as hazardous waste.

As shown on the attached Table 2, to assess potential reuse, total organic and inorganic compound concentrations were compared to 6 NYCRR Part 375 Unrestricted Soil Cleanup Objectives (SCOs), Commercial SCOs, Protection of Groundwater SCOs, and NYSDEC Commissioner's Policy 51 (CP-51) Commercial SCOs. PCBs and pesticides were not detected in the samples. Comparison of the detected concentrations to the comparison criteria indicates the following:

VOCs

Methylene chloride and tetrachloroethene were each detected in the E-Berm-042018 and W-Berm-042018 samples. Trichloroethene was detected in the duplicate sample X-2-042018. Concentrations of these detected constituents were well below the comparison criteria.

Metals

The mercury concentration in sample E-Berm-042018 was 0.39 mg/Kg, which exceeded the Unrestricted SCO of 0.18 mg/Kg, but less than the Commercial and Protection of Groundwater SCOs of 2.8 mg/Kg and 0.73 mg/Kg, respectively.

SVOCs

- Benzo(a)pyrene was detected in the W-Berm-042018 and X-2-042018 samples at concentrations of 3,300 μg/Kg and 2,000 μg/Kg respectively, which exceeded the Part 375 Unrestricted and Commercial, and CP-51 Commercial SCOs of 1,000 μg/Kg.
- Concentrations of benzo(a)anthracene, benzo(b)fluoranthene, and chrysene were detected in the W-Berm-042018 sample and its duplicate sample X-2-042018 exceeding the Unrestricted SCO, Protection of Groundwater SCO and CP-51 Commercial SCO.
- Indeno(1,2,3-cd)pyrene was detected in the W-Berm-042018 and X-2-042018 samples at estimated concentrations of 1,900 μg/Kg and 1,200 μg/Kg respectively, which exceeded the Unrestricted SCOS and CP-51 Commercial SCO criteria of 500 μg/Kg.

DISPOSAL OPTIONS

In accordance with the SMP, the Lot 7 stockpile material could be re-used as backfill on-site since observations made during the stockpile sampling did not indicate visual or olfactory evidence of contamination. However, this material must be placed beneath a cover system component as described in the SMP. If the Lot #7 stockpile is to be disposed of off-site, this material must be transported and disposed to a facility permitted to accept non-hazardous waste in accordance with local, state, and federal regulations.

Thank you for the opportunity to provide Pioneer Companies with assistance with the Midler Avenue Project. Please don't hesitate to contact me with any questions you may have.

Very truly yours,

O'BRIEN & GERE ENGINEERS

13 Mismey

Steve Mooney Project Manager

Attachments

cc: Dave Carnevale - OBG

I:\Pioneer-Dev.4293\68868\Docs\Reports\Lot 7 Sampling Letter.docx

PIONEER COMPANIES MIDLER CROSSING SYRACUSE, NEW YORK

LOT 7 MATERIAL PILE BORING LOCATIONS

Table 1: Hazardous Characteristics

Table 1: Hazardous Characteristics			TCLP Limits			
	CAS#	Units	1	NE-SE-BERM-042018	NW-SW-BERM-042018	X-1-042018*
TCLP Volatile Organic Compounds	CAS #	Offics	40 CHR1 art 201	14L 3L BENIVI 042010	TVV SVV BEITIVI 042010	X 1 042010
Trichloroethene	79-01-6	mg/L	0.5	<0.010	<0.010	<0.010
1.2-Dichloroethane	107-06-2	mg/L	0.5	<0.010	<0.010	<0.010
1,1-Dichloroethene	75-35-4	mg/L	0.7	<0.010	<0.010	<0.010
Vinyl chloride	75-01-4	mg/L	0.7	<0.010	<0.010	<0.010
Benzene	71-43-2	mg/L	0.5	<0.010	<0.010	<0.010
2-Butanone (MEK)	78-93-3	mg/L	200	<0.010	<0.010	<0.010
Chlorobenzene	108-90-7	mg/L	100	<0.030	<0.010	<0.010
Carbon tetrachloride	56-23-5	mg/L	0.5	<0.010	<0.010	<0.010
Chloroform	67-66-3	mg/L	6	<0.010	<0.010	<0.010
Tetrachloroethene	127-18-4		0.7	<0.010	0.010 0.0057 J	0.0071 J
	127-18-4	mg/L	0.7	<0.010	0.0057 J	0.00713
TCLP Semivolatile Organic Compounds	05.40.7	/1	200	10.0050	10.0050	-0.0050
2-Methylphenol	95-48-7	mg/L	200	<0.0050	<0.0050	<0.0050
4-Methylphenol	106-44-5	mg/L	200	<0.010	<0.010	<0.010
Pyridine	110-86-1	mg/L	5	<0.025	<0.025	<0.025
Hexachlorobenzene	118-74-1	mg/L	0.13	<0.0050	<0.0050	<0.0050
3-Methylphenol	108-39-4	mg/L	200	<0.010	<0.010	<0.010
2,4-Dinitrotoluene	121-14-2	mg/L	0.13	<0.0050	<0.0050	<0.0050
2,4,6-Trichlorophenol	88-06-2	mg/L	2	<0.0050	<0.0050	<0.0050
Hexachlorobutadiene	87-68-3	mg/L	0.5	<0.0050	<0.0050	<0.0050
1,4-Dichlorobenzene	106-46-7	mg/L	7.5	<0.010	<0.010	<0.010
Pentachlorophenol	87-86-5	mg/L	100	<0.010	<0.010	<0.010
2,4,5-Trichlorophenol	95-95-4	mg/L	400	<0.0050	<0.0050	<0.0050
Nitrobenzene	98-95-3	mg/L	2	<0.0050	<0.0050	<0.0050
Hexachloroethane	67-72-1	mg/L	3	<0.0050	<0.0050	<0.0050
TCLP Metals						
Lead	7439-92-1	mg/L	5	0.037	<0.020	<0.020
Arsenic	7440-38-2	mg/L	5	<0.015	<0.015	<0.015
Chromium	7440-47-3	mg/L	5	<0.020	<0.020	<0.020
Cadmium	7440-43-9	mg/L	1	0.0035	0.0022	0.0022
Barium	7440-39-3	mg/L	100	0.46 J	0.40 J	0.35 J
Selenium	7782-49-2	mg/L	1	<0.025	<0.025	<0.025
Silver	7440-22-4	mg/L	5	<0.0060	<0.0060	<0.0060
Mercury	7439-97-6	mg/L	0.2	<0.00020	<0.00020	<0.00020
General Chemistry						
Free Liquid	NA	mL/100g	NA	Passed	Passed	Passed
Cyanide, Reactive	NA	mg/Kg	NA	<9.9	<9.9	<9.9
Sulfide, Reactive	NA	mg/Kg	NA	<9.9	<9.9	<9.9
Flashpoint	NA	Degrees F	<140	>180	>180	>180
На	NA	SU	≤2 or ≥12.5	10.5 HF	8.7 HF	9.1 HF
Temperature	NA	Degrees C	NA	25.5 HF	19.8 HF	20.1 HF

Notes:

 $^{{\}rm J}$ - Result is less than the RL but greater than or equal to the MDL and the concentration is approximate

 $[\]ensuremath{\mathsf{HF}}$ - Analyzed outside of holding time.

^{*} Parent sample is NW-SW-BERM-042018

Table 2: Organic and Inorganic Compounds

ble 2: Organic and Inorganic Compoun	ds								
			Part 375-6.8	Part 375-6.8	Part 375-6.8	CP-51			
	CAS #	Units	Unrestricted Use SCO	Commercial SCO	Protection of GW	Commercial SCO	E-BERM-042018	W-BERM-042018	X-2-042018*
L Volatile Organic Compounds									
1,1,1-Trichloroethane	71-55-6	ug/Kg	680	500,000	680	NC	<5.4	<5.7	<5.6
1,1,2,2-Tetrachloroethane	79-34-5	ug/Kg	NC	NC	NC	NC	<5.4	<5.7	<5.6
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	ug/Kg	NC	NC	NC	NC	<5.4	<5.7	<5.6
1,1,2-Trichloroethane	79-00-5	ug/Kg	NC	NC	NC	NC	<5.4	<5.7	<5.6
1,1-Dichloroethane	75-34-3	ug/Kg	270	240,000	270	NC	<5.4	<5.7	<5.6
1,1-Dichloroethene	75-35-4	ug/Kg	330	500,000	330	NC	<5.4	<5.7	<5.6
1,2,4-Trichlorobenzene	120-82-1	ug/Kg	NC	NC	NC	NC	<5.4	<5.7	<5.6
1,2-Dibromo-3-Chloropropane	96-12-8	ug/Kg	NC	NC	NC	NC	<5.4	<5.7	<5.6
1,2-Dibromoethane	106-93-4	ug/Kg	NC	NC	NC	NC	<5.4	<5.7	<5.6
1,2-Dichlorobenzene	95-50-1	ug/Kg	1,100	500,000	1,100	NC	<5.4	<5.7	<5.6
1,2-Dichloroethane	107-06-2	ug/Kg	20	30,000	20	NC	<5.4	<5.7	<5.6
1,2-Dichloropropane	78-87-5	ug/Kg	NC	NC	NC	NC	<5.4	<5.7	<5.6
1,3-Dichlorobenzene	541-73-1	ug/Kg	2,400	280,000	2,400	NC	<5.4	<5.7	<5.6
1,4-Dichlorobenzene	106-46-7	ug/Kg	1,800	130,000	1,800	NC	<5.4	<5.7	<5.6
2-Butanone (MEK)	78-93-3	ug/Kg	120	500,000	120	NC	<27	<29	<28
2-Hexanone	591-78-6	ug/Kg	NC	NC	NC	NC	<27	<29	<28
4-Methyl-2-pentanone (MIBK)	108-10-1	ug/Kg	NC NC	NC	NC NC	NC	<27	<29	<28
Acetone	67-64-1	ug/Kg	50	500,000	50	NC	<27	<29	<28
Benzene	71-43-2	ug/Kg	60	44,000	60	60	<5.4	<5.7	<5.6
Bromodichloromethane	75-27-4	ug/Kg	NC NC	NC NC	NC NC	NC NC	<5.4	<5.7	<5.6
Bromoform	75-25-2	ug/Kg	NC NC	NC	NC NC	NC NC	<5.4	<5.7	<5.6
Bromomethane	74-83-9	ug/Kg	NC NC	NC	NC NC	NC NC	<5.4	<5.7	<5.6
Carbon disulfide	75-15-0	ug/Kg	NC NC	NC NC	NC NC	NC NC	<5.4	<5.7	<5.6
Carbon tetrachloride	56-23-5		760	22,000	760	NC NC	<5.4	<5.7	<5.6
Carbon tetrachionde	108-90-7	ug/Kg	1,100	500.000	1,100	NC NC	<5.4		<5.6
	75-00-3	ug/Kg		NC	1,100 NC	NC NC	<5.4 <5.4	<5.7 <5.7	<5.6
Chloroethane		ug/Kg	NC 270						
Chloroform	67-66-3	ug/Kg	370	350,000	370	NC NG	<5.4	<5.7	<5.6
Chloromethane	74-87-3	ug/Kg	NC	NC	NC	NC	<5.4	<5.7	<5.6
cis-1,2-Dichloroethene	156-59-2	ug/Kg	250	500,000	250	NC	<5.4	<5.7	<5.6
cis-1,3-Dichloropropene	10061-01-5	ug/Kg	NC	NC	NC	NC	<5.4	<5.7	<5.6
Cyclohexane	110-82-7	ug/Kg	NC	NC	NC	NC	<5.4	<5.7	<5.6
Dibromochloromethane	124-48-1	ug/Kg	NC	NC	NC	NC	<5.4	<5.7	<5.6
Dichlorodifluoromethane	75-71-8	ug/Kg	NC	NC	NC	NC	<5.4	<5.7	<5.6
Ethylbenzene	100-41-4	ug/Kg	1,000	390,000	1,000	1,000	<5.4	<5.7	<5.6
Isopropylbenzene	98-82-8	ug/Kg	NC	NC	NC	2,300	<5.4	<5.7	<5.6
Methyl acetate	79-20-9	ug/Kg	NC	NC	NC	NC	<27	<29	<28
Methyl tert-butyl ether	1634-04-4	ug/Kg	930	500,000	930	930	<5.4	<5.7	<5.6
Methylcyclohexane	108-87-2	ug/Kg	NC	NC	NC	NC	<5.4	<5.7	<5.6
Methylene Chloride	75-09-2	ug/Kg	50	500,000	50	NC	5.2 J	7.4	6.5
Styrene	100-42-5	ug/Kg	NC	NC	NC	NC	<5.4	<5.7	<5.6
Tetrachloroethene	127-18-4	ug/Kg	1,300	150,000	1,300	NC	<5.4	2.3 J	7.4
Toluene	108-88-3	ug/Kg	700	500,000	700	700	<5.4	<5.7	<5.6
trans-1,2-Dichloroethene	156-60-5	ug/Kg	190	500,000	190	NC	<5.4	<5.7	<5.6
trans-1,3-Dichloropropene	10061-02-6	ug/Kg	NC	NC	NC	NC	<5.4	<5.7	<5.6
Trichloroethene	79-01-6	ug/Kg	470	200,000	470	NC	<5.4	<5.7	1.5
Trichlorofluoromethane	75-69-4	ug/Kg	NC	NC	NC	NC	<5.4	<5.7	<5.6
Vinyl chloride	75-01-4	ug/Kg	20	13,000	20	NC	<5.4	<5.7	<5.6
Xylenes, Total	1330-20-7	ug/Kg	260	500,000	1,600	260	<11	<11	<11

Table 2: Organic and Inorganic Compounds									
			Part 375-6.8	Part 375-6.8	Part 375-6.8	CP-51			
	CAS#	Units	Unrestricted Use SCO	Commercial SCO	Protection of GW	Commercial SCO	E-BERM-042018	W-BERM-042018	X-2-042018*
TCL Semivolatile Organic Compounds									
2,4,5-Trichlorophenol	95-95-4	ug/Kg	NC	NC	NC	NC	<3800	<2000	<2000
2,4,6-Trichlorophenol	88-06-2	ug/Kg	NC	NC	NC	NC	<3800	<2000	<2000
2,4-Dichlorophenol	120-83-2	ug/Kg	NC NC	NC NC	NC NC	NC NC	<3800	<2000	<2000
2,4-Dimethylphenol	105-67-9	ug/Kg	NC NC	NC NC	NC NC	NC NC	<3800	<2000	<2000
2,4-Dinitrophenol	51-28-5	ug/Kg	NC NC	NC NC	NC NC	NC NC	<38000	<19000	<19000
2,4-Dinitrotoluene	121-14-2 606-20-2	ug/Kg	NC NC	NC NC	NC NC	NC NC	<3800 <3800	<2000 <2000	<2000 <2000
2,6-Dinitrotoluene 2-Chloronaphthalene	91-58-7	ug/Kg	NC NC	NC NC	NC NC	NC NC	<3800	<2000	<2000
2-Chlorophenol	95-57-8	ug/Kg ug/Kg	NC NC	NC NC	NC NC	NC NC	<3800	<2000	<2000
2-Methylnaphthalene	91-57-6	ug/Kg	NC NC	NC NC	NC NC	NC NC	<3800	<2000	<2000
2-Methylphenol	95-48-7	ug/Kg ug/Kg	330	500,000	330	NC NC	<3800	<2000	<2000
2-Nitroaniline	88-74-4	ug/Kg	NC NC	NC	NC NC	NC NC	<7500	<3800	<3900
2-Nitrophenol	88-75-5	ug/Kg	NC NC	NC	NC NC	NC NC	<3800	<2000	<2000
3,3'-Dichlorobenzidine	91-94-1	ug/Kg	NC NC	NC	NC NC	NC NC	<7500	<3800	<3900
3-Nitroaniline	99-09-2	ug/Kg	NC NC	NC	NC NC	NC NC	<7500	<3800	<3900
4,6-Dinitro-2-methylphenol	534-52-1	ug/Kg	NC	NC	NC	NC	<7500	<3800	<3900
4-Bromophenyl phenyl ether	101-55-3	ug/Kg	NC NC	NC	NC NC	NC NC	<3800	<2000	<2000
4-Chloro-3-methylphenol	59-50-7	ug/Kg	NC	NC	NC	NC	<3800	<2000	<2000
4-Chloroaniline	106-47-8	ug/Kg	NC	NC	NC	NC	<3800	<2000	<2000
4-Chlorophenyl phenyl ether	7005-72-3	ug/Kg	NC	NC	NC	NC	<3800	<2000	<2000
4-Methylphenol	106-44-5	ug/Kg	330	500,000	330	NC	<7500	<3800	<3900
4-Nitroaniline	100-01-6	ug/Kg	NC	NC	NC	NC	<7500	<3800	<3900
4-Nitrophenol	100-02-7	ug/Kg	NC	NC	NC	NC	<7500	<3800	<3900
Acenaphthene	83-32-9	ug/Kg	20,000	500,000	98,000	20,000	<3800	540 J	<2000
Acenaphthylene	208-96-8	ug/Kg	100,000	500,000	107,000	100,000	<3800	300 J	<2000
Acetophenone	98-86-2	ug/Kg	NC	NC	NC	NC	<3800	<2000	<2000
Anthracene	120-12-7	ug/Kg	100,000	500,000	1,000,000	100,000	<3800	1,300 J	600 J
Atrazine	1912-24-9	ug/Kg	NC	NC	NC	NC	<3800	<2000	<2000
Benzaldehyde	100-52-7	ug/Kg	NC	NC	NC	NC	<3800	<2000	<2000
Benzo[a]anthracene	56-55-3	ug/Kg	1,000	5,600	1,000	1,000	560 J	3800 ^{1,3,4}	2000 ^{1,3,4}
Benzo[a]pyrene	50-32-8	ug/Kg	1,000	1,000	22,000	1,000	800 J	3300 ^{1,3,4}	2000 ^{1,3,4}
Benzo[b]fluoranthene	205-99-2	ug/Kg	1,000	5,600	1,700	1,000	1,100 J	4300 ^{1,3,4}	2400 ^{1,3,4}
Benzo[g,h,i]perylene	191-24-2	ug/Kg	100,000	500,000	1,000,000	100,000	490 J	1,800 J	1,200 J
Benzo[k]fluoranthene	207-08-9	ug/Kg	800	56,000	1,700	800	<3800	1,600 J	1,400 J
Biphenyl	92-52-4	ug/Kg	NC	NC	NC	NC	<3800	<2000	<2000
bis (2-chloroisopropyl) ether	108-60-1	ug/Kg	NC	NC	NC	NC	<3800	<2000	<2000
Bis(2-chloroethoxy)methane	111-91-1	ug/Kg	NC	NC	NC	NC	<3800	<2000	<2000
Bis(2-chloroethyl)ether	111-44-4	ug/Kg	NC	NC	NC	NC	<3800	<2000	<2000
Bis(2-ethylhexyl) phthalate	117-81-7	ug/Kg	NC	NC	NC	NC	<3800	<2000	<2000
Butyl benzyl phthalate	85-68-7	ug/Kg	NC	NC	NC	NC	<3800	<2000	<2000
Caprolactam	105-60-2	ug/Kg	NC	NC	NC	NC	<3800	<2000	<2000
Carbazole	86-74-8	ug/Kg	NC	NC	NC	NC	<3800	600 J	230 J
Chrysene	218-01-9	ug/Kg	1,000	56,000	1,000	1,000	<3800	3500 ^{1,3,4}	2200 ^{1,3,4}
Dibenz(a,h)anthracene	53-70-3	ug/Kg	330	560	1,000,000	330	<3800	<2000	<2000
Dibenzofuran	132-64-9	ug/Kg	NC	NC	NC	NC	<3800	400 J	<2000
Diethyl phthalate	84-66-2	ug/Kg	NC	NC	NC	NC	<3800	<2000	<2000
Dimethyl phthalate	131-11-3	ug/Kg	NC	NC	NC	NC	<3800	<2000	<2000
Di-n-butyl phthalate	84-74-2	ug/Kg	NC	NC	NC	NC	<3800	<2000	<2000
Di-n-octyl phthalate	117-84-0	ug/Kg	NC	NC	NC	NC	<3800	<2000	<2000
Fluoranthene	206-44-0	ug/Kg	100,000	500,000	1,000,000	100,000	1,400 J	7,700	4,200
Fluorene	86-73-7	ug/Kg	30,000	500,000	386,000	30,000	<3800	700 J	<2000
Hexachlorobenzene	118-74-1	ug/Kg	NC	NC	NC	NC	<3800	<2000	<2000
Hexachlorobutadiene	87-68-3	ug/Kg	NC	NC	NC	NC	<3800	<2000	<2000
Hexachlorocyclopentadiene	77-47-4	ug/Kg	NC	NC	NC	NC	<3800	<2000	<2000
Hexachloroethane	67-72-1	ug/Kg	NC	NC	NC	NC	<3800	<2000	<2000
Indeno[1,2,3-cd]pyrene	193-39-5	ug/Kg	500	5,600	8,200	500	<3800	1,900 J ^{1,4}	1,200 J ^{1,4}
Isophorone	78-59-1	ug/Kg	NC	NC	NC	NC	<3800	<2000	<2000
Naphthalene	91-20-3	ug/Kg	12,000	500,000	12,000	12,000	<3800	740 J	<2000
Nitrobenzene	98-95-3	ug/Kg	NC	NC	NC	69000	<3800	<2000	<2000
N-Nitrosodi-n-propylamine	621-64-7	ug/Kg	NC	NC	NC	NC	<3800	<2000	<2000
N-Nitrosodiphenylamine	86-30-6	ug/Kg	NC	NC	NC	NC	<3800	<2000	<2000
Pentachlorophenol	87-86-5	ug/Kg	800	6,700	800	NC	<7500	<3800	<3900
Phenanthrene	85-01-8	ug/Kg	100,000	500,000	1,000,000	100,000	<3800	5,500	2,200
Phenol	108-95-2	ug/Kg	330	500,000	330	NC	<3800	<2000	<2000
Pyrene	129-00-0	ug/Kg	100,000	500,000	1,000,000	100,000	990 J	6,300	3,600

Table 2: Organic and Inorganic Compounds

Antimony	CAS#	Units	Part 375-6.8 Unrestricted Use SCO	Part 375-6.8 Commercial SCO	Part 375-6.8 Protection of GW	CP-51 Commercial SCO	E-BERM-042018	W DED14 042040	
Aluminum 7		Units	Unrestricted Use SCO	Commercial SCO	Protection of GW				
Aluminum 7					Trotection of GIV	Commercial 3CO	E-BERIVI-042018	W-BERIVI-042018	X-2-042018*
Antimony									
	7429-90-5	mg/Kg	NC	NC	NC	NC	8,520	6720	6,760
Arsenic	7440-36-0	mg/Kg	NC	NC	NC	NC	<16.6	<18.1	<17.4
	7440-38-2	mg/Kg	13	16	16	NC	4.9	5.1	5.0
	7440-39-3	mg/Kg	350	400	820	NC	54.2	80.7	72.9
Beryllium 7	7440-41-7	mg/Kg	7.2	590	47	NC	0.39	0.33	0.34
Cadmium	7440-43-9	mg/Kg	2.5	9.3	7.5	NC	0.14 J	0.29	0.29
Calcium	7440-70-2	mg/Kg	NC	NC	NC	NC	128,000 B	98,100 B	128,000 B
Chromium 7	7440-47-3	mg/Kg	30	1,500	NC	NC	18 B	14.9 B	13.2 B
Cobalt	7440-48-4	mg/Kg	NC	NC	NC	NC	4.9	4.8	3.7
Copper	7440-50-8	mg/Kg	50	270	1,720	NC	60.7	37.4	42.6
	7439-89-6	mg/Kg	NC	NC	NC	NC	15,700 B	17,300 B	16,200 B
	7439-92-1	mg/Kg	63	1.000	450	NC	85.7	38.7	38.7
	7439-95-4	mg/Kg	NC NC	NC	NC	NC	14,900	13,500	7,790
	7439-96-5	mg/Kg	1,600	10,000	2,000	NC	369	287	323
			·		,				
	7439-97-6	mg/Kg	0.18	2.8	0.73	NC NC	0.39 1	0.056	0.062
	7440-02-0	mg/Kg	30	310	130	NC	14.6	13.5	14.1
	7440-09-7	mg/Kg	NC	NC	NC	NC	3,160	1,630	1,900
<u> </u>	7782-49-2	mg/Kg	3.9	1,500	4	NC	<4.4	<4.8	<4.6
	7440-22-4	mg/Kg	2	1,500	8.3	NC	<0.66	<0.73	<0.70
Sodium 7	7440-23-5	mg/Kg	NC	NC	NC	NC	189	190	196
Thallium 7	7440-28-0	mg/Kg	NC	NC	NC	NC	<6.6	<7.3	<7.0
Vanadium	7440-62-2	mg/Kg	NC	NC	NC	NC	34.1	22.0	21.8
Zinc 7	7440-66-6	mg/Kg	109	10,000	2,480	NC	56.5	102	99.9
TCL Organochlorine Pesticides									
4,4'-DDD	72-54-8	ug/Kg	3.3	92,000	14,000	NC	<93	<98	<96
4,4'-DDE	72-55-9	ug/Kg	3.3	62,000	17,000	NC	<93	<98	<96
4,4'-DDT	50-29-3	ug/Kg	3.3	47,000	136,000	NC	<93	<98	<96
	309-00-2	ug/Kg	5	680	190	NC	<93	<98	<96
l	319-84-6	ug/Kg	20	3,400	20	NC	<93	<98	<96
	319-85-7	ug/Kg	36	3,000	90	NC	<93	<98	<96
l	5103-71-9	ug/Kg	94	24,000	2.900	NC NC	<93	<98	<96
	319-86-8	ug/Kg	40	500,000	250	NC	<93	<98	<96
Dieldrin	60-57-1		5	1.400	100	NC NC	<93	<98	<96
		ug/Kg							
	959-98-8	ug/Kg	2,400	200,000	102,000	NC	<93	<98	<96
	33213-65-9	ug/Kg	2,400	200,000	102,000	NC	<93	<98	<96
	1031-07-8	ug/Kg	2,400	200,000	1,000,000	NC	<93	<98	<96
	72-20-8	ug/Kg	14	89,000	60	NC	<93	<98	<96
· · · · · · · · · · · · · · · · · · ·	7421-93-4	ug/Kg	NC	NC	NC	NC	<93	<98	<96
	53494-70-5	ug/Kg	NC	NC	NC	NC	<93	<98	<96
gamma-BHC (Lindane)	58-89-9	ug/Kg	100	9,200	100	NC	<93	<98	<96
Heptachlor	76-44-8	ug/Kg	42	15,000	380	NC	<93	<98	<96
Heptachlor epoxide 1	1024-57-3	ug/Kg	NC	NC	NC	NC	<93	<98	<96
Methoxychlor	72-43-5	ug/Kg	NC	NC	NC	NC	<93	<98	<96
Toxaphene 8	8001-35-2	ug/Kg	NC	NC	NC	NC	<930	<980	<960
trans-Chlordane 5	5103-74-2	ug/Kg	NC	NC	NC	NC	<93	<98	<96
PCBs		<u> </u>							
	12674-11-2	mg/Kg	0.1	1000	3,200	NC	<0.28	<0.25	<0.21
	11104-28-2	mg/Kg	0.1	1000	3,200	NC	<0.28	<0.25	<0.21
	11141-16-5	mg/Kg	0.1	1000	3,200	NC	<0.28	<0.25	<0.21
	53469-21-9	mg/Kg	0.1	1000	3,200	NC NC	<0.28	<0.25	<0.21
	12672-29-6	mg/Kg	0.1	1000	3,200	NC NC	<0.28	<0.25	<0.21
			0.1	1000		NC NC	<0.28	<0.25	<0.21
	11097-69-1	mg/Kg			3,200				
	11096-82-5	mg/Kg	0.1	1000	3,200	NC	<0.28	<0.25	<0.21
	37324-23-5	mg/Kg	0.1	1000	3,200	NC NC	<0.28	<0.25	<0.21
Aroclor-1268 1	11100-14-4	mg/Kg	0.1	1000	3,200	NC	<0.28	<0.25	<0.21

Notes: NC - No Criteria

 $\label{eq:J-Result} \textbf{J-Result} \ \text{is less than the RL but greater than or equal to the MDL} \ \text{and the concentration is an approximate value}$

B - Compound was found in blank and sample
Bold value indicates detected concentration
Shaded cell indicates detected conscituent concentration exceeds criteria
* Parent sample is W-Berm-042018

¹ Concentration exceeds Part 375 Unresticted SCO

² Concentration exceeds Part 375 Commercial SCO

³ Concentration exceeds Part 375 Protection of Groundwater

⁴ Concentration exceeds CP-51 Soil Cleanup Guidance

5

7

9

12

14

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-134628-1

Client Project/Site: Midler Crossing - Characteristic Soil

For:

O'Brien & Gere Inc of North America 333 West Washington St. PO BOX 4873 East Syracuse, New York 13221

Attn: Mr. David J Carnevale

Authorized for release by: 5/10/2018 10:59:28 AM
Rebecca Jones, Project Management Assistant I rebecca.jones@testamericainc.com

Designee for

Melissa Deyo, Project Manager I (716)504-9874 melissa.deyo@testamericainc.com

.....LINKS

Review your project results through
Total Access

Have a Question?

Visit us at:www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: O'Brien & Gere Inc of North America Project/Site: Midler Crossing - Characteristic Soil

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	6
Client Sample Results	10
Surrogate Summary	27
QC Sample Results	30
QC Association Summary	51
Lab Chronicle	57
Certification Summary	62
Method Summary	63
Sample Summary	64
Chain of Custody	65
Receipt Checklists	66

11

12

14

Definitions/Glossary

Client: O'Brien & Gere Inc of North America Project/Site: Midler Crossing - Characteristic Soil

Qualifier Description

Qualifier Description

Surrogate is outside control limits

TestAmerica Job ID: 480-134628-1

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
vs	Reported analyte concentrations are below 200 ug/kg and may be biased low due to the sample not being collected according to 5035A-L
	low-level specifications.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
F1	MS and/or MSD Recovery is outside acceptance limits.

GC/MS Semi VOA

J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
GC Semi VOA	

Qualifier

Qualifier

X

Metals	
Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
В	Compound was found in the blank and sample.
^	ICV,CCV,ICB,CCB, ISA, ISB, CRI, CRA, DLCK or MRL standard: Instrument related QC is outside acceptance limits.

General Chemistry

Qualifier	Qualifier Description
HF	Field parameter with a holding time of 15 minutes. Test performed by laboratory at client's request.

Glossary Abbreviation

RPD

TEF

TEQ

¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)

These commonly used abbreviations may or may not be present in this report.

Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

TestAmerica Buffalo

5/10/2018

Page 3 of 66

2

3

4

7

10

11

4.6

14

1!

Case Narrative

Client: O'Brien & Gere Inc of North America Project/Site: Midler Crossing - Characteristic Soil TestAmerica Job ID: 480-134628-1

Job ID: 480-134628-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-134628-1

Receipt

The samples were received on 4/21/2018 1:45 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 0.4° C.

GC/MS VOA

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-410294 recovered above the upper control limit for 2-Butanone (MEK). The samples associated with this CCV were non-detects for the affected analyte; therefore, the data have been reported. The following samples are impacted: E-BERM-042018 (480-134628-8), W-BERM-042018 (480-134628-10) and X-2-042018 (480-134628-12).

Method(s) 8260C: The following samples were diluted due to the nature of the TCLP matrix: NE-SE BERM-042018 (480-134628-7), NW-SW-BERM-042018 (480-134628-9), X-1-042018 (480-134628-11) and LB 480-411593/3-A. Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method(s) 8270D: The following samples were diluted due to the nature of the sample matrix: E-BERM-042018 (480-134628-2), W-BERM-042018 (480-134628-4) and X-2-042018 (480-134628-6). Elevated reporting limits (RLs) are provided.

Method(s) 8270D: The following sample required a dilution due to the nature of the sample matrix: E-BERM-042018 (480-134628-2). Because of this dilution, the surrogate spike concentration in the sample was reduced to a level where the recovery calculation does not provide useful information.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

Method(s) 8081B: The following samples were diluted due to the nature of the sample matrix: E-BERM-042018 (480-134628-2), W-BERM-042018 (480-134628-4) and X-2-042018 (480-134628-6). As such, surrogate recoveries are below the calibration range, estimated and not representative. Elevated reporting limits (RLs) are provided.

Method(s) 8082A: The continuing calibration verification (CCV) associated with batch 480-411578 recovered above the upper control limit for PCB-1232, PCB-1242, PCB-1262 and PCB-1268. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: E-BERM-042018 (480-134628-2), W-BERM-042018 (480-134628-4) and X-2-042018 (480-134628-6).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

Method(s) 6010C: The Low Level Continuing Calibration Verifications, (CCVL 480-410722/17 and CCV 480-410722/29) associated with batch 480-410722, contained Total Manganese above the upper quality control limit. The associated samples were either ND for the affected analyte or contained this analyte at a concentration greater than 10X the value found in the CCVL; therefore, re-analysis of samples E-BERM-042018 (480-134628-2), W-BERM-042018 (480-134628-4) and X-2-042018 (480-134628-6) was not performed.

Method(s) 6010C: The following sample was diluted due to the presence of Total Calcium which interferes with Copper: E-BERM-042018 (480-134628-2). Elevated reporting limits (RLs) are provided.

Method(s) 6010C: The following sample was diluted due to the presence of Total Calcium which interferes with Copper: X-2-042018 (480-134628-6). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

4

4

6

റ

9

11

14

Case Narrative

Client: O'Brien & Gere Inc of North America Project/Site: Midler Crossing - Characteristic Soil TestAmerica Job ID: 480-134628-1

Job ID: 480-134628-1 (Continued)

Laboratory: TestAmerica Buffalo (Continued)

General Chemistry

Method(s) 9045D: This analysis is normally performed in the field and has a method-defined holding time of 15 minutes. The following samples has been qualified with the "HF" flag to indicate analysis was performed in the laboratory outside the 15 minute timeframe: NW-SW-BERM-042018 (480-134628-3) and X-1-042018 (480-134628-5).

Method(s) 9045D: This analysis is normally performed in the field and has a method-defined holding time of 15 minutes. The following sample has been qualified with the "HF" flag to indicate analysis was performed in the laboratory outside the 15 minute timeframe: NE-SE BERM-042018 (480-134628-1).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

Method(s) 3550C: The following samples required a Florisil clean-up, via EPA Method 3620C, to reduce matrix interferences: E-BERM-042018 (480-134628-2), W-BERM-042018 (480-134628-4) and X-2-042018 (480-134628-6).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

-5

4

5

7

8

9

4 4

12

TestAmerica Job ID: 480-134628-1

Client: O'Brien & Gere Inc of North America Project/Site: Midler Crossing - Characteristic Soil

Lab Sample ID: 480-134628-1

Client Sample ID: NE-SE BERM-042018

Analyte	Result	Qualifier	NONE	NONE	Unit	Dil Fac	D	Method	Prep Type
Free Liquid	passed				mL/100g	1	_	9095B	Total/NA
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Barium	0.46	J	1.0	0.10	mg/L	1	_	6010C	TCLP
Cadmium	0.0035		0.0020	0.00050	mg/L	1		6010C	TCLP
Lead	0.037		0.020	0.0030	mg/L	1		6010C	TCLP
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
Flashpoint	>180		50.0	50.0	Degrees F	1	_	1010A	Total/NA
рН	10.5	HF	0.1	0.1	SU	1		9045D	Total/NA
Temperature	25.5	HF	0.001	0.001	Degrees C	1		9045D	Total/NA

Client Sample ID: E-BERM-042018

Lab Sample I	D: 480-134628-2
--------------	-----------------

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac		Method	Prep Type
Benzo[a]anthracene	560	J	3800	380	ug/Kg	20	₩	8270D	Total/NA
Benzo[a]pyrene	800	J	3800	560	ug/Kg	20	₽	8270D	Total/NA
Benzo[b]fluoranthene	1100	J	3800	610	ug/Kg	20	₩	8270D	Total/NA
Benzo[g,h,i]perylene	490	J	3800	410	ug/Kg	20	₽	8270D	Total/NA
Fluoranthene	1400	J	3800	410	ug/Kg	20	₽	8270D	Total/NA
Pyrene	990	J	3800	450	ug/Kg	20	₽	8270D	Total/NA
Aluminum	8520		11.0	4.9	mg/Kg	1	₽	6010C	Total/NA
Arsenic	4.9		2.2	0.44	mg/Kg	1	₽	6010C	Total/NA
Barium	54.2		0.55	0.12	mg/Kg	1	₽	6010C	Total/NA
Beryllium	0.39		0.22	0.031	mg/Kg	1	₽	6010C	Total/NA
Cadmium	0.14	J	0.22	0.033	mg/Kg	1	₽	6010C	Total/NA
Calcium	128000	В	276	18.2	mg/Kg	5	₩	6010C	Total/NA
Chromium	18.0	В	0.55	0.22	mg/Kg	1	₽	6010C	Total/NA
Cobalt	4.9		0.55	0.055	mg/Kg	1	₽	6010C	Total/NA
Copper	60.7		5.5	1.2	mg/Kg	5	₽	6010C	Total/NA
Iron	15700	В	11.0	3.9	mg/Kg	1	₽	6010C	Total/NA
Lead	85.7		1.1	0.26	mg/Kg	1	₽	6010C	Total/NA
Magnesium	14900		22.1	1.0	mg/Kg	1	₽	6010C	Total/NA
Manganese	369	^	1.1	0.18	mg/Kg	5	₽	6010C	Total/NA
Nickel	14.6		5.5	0.25	mg/Kg	1	₽	6010C	Total/NA
Potassium	3160		33.1	22.1	mg/Kg	1	₽	6010C	Total/NA
Sodium	189		154	14.3	mg/Kg	1	₩	6010C	Total/NA
Vanadium	34.1		0.55	0.12	mg/Kg	1	₩	6010C	Total/NA
Zinc	56.5		2.2	0.71	mg/Kg	1	₽	6010C	Total/NA
Mercury	0.36		0.021	0.0086	mg/Kg	1	₩	7471B	Total/NA

Client Sample ID: NW-SW-BERM-042018

Lab Sample ID: 480-134628-3

Analyte	Result	Qualifier	NONE	NONE	Unit	Dil Fac	D	Method	Prep Type
Free Liquid	passed				mL/100g	1	_	9095B	Total/NA
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Barium	0.40	J	1.0	0.10	mg/L	1	_	6010C	TCLP
Cadmium	0.0022		0.0020	0.00050	mg/L	1		6010C	TCLP
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
Flashpoint	>180		50.0	50.0	Degrees F	1	_	1010A	Total/NA
рН	8.7	HF	0.1	0.1	SU	1		9045D	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Buffalo

Page 6 of 66

2

5

7

9

10

12

13

L

Client: O'Brien & Gere Inc of North America Project/Site: Midler Crossing - Characteristic Soil TestAmerica Job ID: 480-134628-1

Client Sample ID: NW-SW-BERM-042018 (Continued)

Lab	Sample	ID: 460	-134626-3

Analyte	Result Qualifier	RL	RL Unit	Dil Fac D Method	Prep Type
Temperature	19.8 HF	0.001	0.001 Degrees C	1 9045D	Total/NA

Lab Sample ID: 480-134628-4

Client Sample ID: W-BERM-042018

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acenaphthene	540	J	2000	290	ug/Kg		₩	8270D	Total/NA
Acenaphthylene	300	J	2000	260	ug/Kg	10	₩	8270D	Total/NA
Anthracene	1300	J	2000	490	ug/Kg	10	₩	8270D	Total/NA
Benzo[a]anthracene	3800		2000	200	ug/Kg	10	₽	8270D	Total/NA
Benzo[a]pyrene	3300		2000	290	ug/Kg	10	₽	8270D	Total/NA
Benzo[b]fluoranthene	4300		2000	310	ug/Kg	10	₩	8270D	Total/NA
Benzo[g,h,i]perylene	1800	J	2000	210	ug/Kg	10	₩.	8270D	Total/NA
Benzo[k]fluoranthene	1600	J	2000	260	ug/Kg	10	₩	8270D	Total/NA
Carbazole	600	J	2000	230	ug/Kg	10	₽	8270D	Total/NA
Chrysene	3500		2000	440	ug/Kg	10	₩	8270D	Total/NA
Dibenzofuran	400	J	2000	230	ug/Kg	10	₽	8270D	Total/NA
Fluoranthene	7700		2000	210	ug/Kg	10	₩	8270D	Total/NA
Fluorene	700	J	2000	230	ug/Kg	10	₩	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	1900	J	2000	240	ug/Kg	10	₽	8270D	Total/NA
Naphthalene	740	J	2000	260	ug/Kg	10	₩	8270D	Total/NA
Phenanthrene	5500		2000	290	ug/Kg	10	₽	8270D	Total/NA
Pyrene	6300		2000	230	ug/Kg	10	₽	8270D	Total/NA
Aluminum	6720		12.1	5.3	mg/Kg	1	₩	6010C	Total/NA
Arsenic	5.1		2.4	0.48	mg/Kg	1	₽	6010C	Total/NA
Barium	80.7		0.60	0.13	mg/Kg	1	₽	6010C	Total/NA
Beryllium	0.33		0.24	0.034	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.29		0.24	0.036	mg/Kg	1	₩	6010C	Total/NA
Calcium	98100	В	60.5	4.0	mg/Kg	1	₩	6010C	Total/NA
Chromium	14.9	В	0.60	0.24	mg/Kg	1	₽	6010C	Total/NA
Cobalt	4.8		0.60	0.060	mg/Kg	1	₩	6010C	Total/NA
Copper	37.4		1.2	0.25	mg/Kg	1	₩	6010C	Total/NA
Iron	17300	В	12.1	4.2	mg/Kg	1	₩	6010C	Total/NA
Lead	38.7		1.2	0.29	mg/Kg	1	₩	6010C	Total/NA
Magnesium	13500		24.2	1.1	mg/Kg	1	₽	6010C	Total/NA
Manganese	287	^	0.24	0.039	mg/Kg	1	₽	6010C	Total/NA
Nickel	13.5		6.0	0.28	mg/Kg	1	φ.	6010C	Total/NA
Potassium	1630		36.3	24.2	mg/Kg	1	₽	6010C	Total/NA
Sodium	190		169	15.7		1	₽	6010C	Total/NA
Vanadium	22.0		0.60	0.13	mg/Kg	1	₩.	6010C	Total/NA
Zinc	102		2.4	0.77	mg/Kg	1	₽	6010C	Total/NA
Mercury	0.056		0.024	0.0095	ma/Ka	1	₩	7471B	Total/NA

Client Sample ID: X-1-042018				Lab Sample ID: 48	0-134628-5
Analyta	Beault Qualifier	NONE	NONE Unit	Dil Foo D. Mothod	Bron Tuno

Analyte	Result	Qualifier	NONE	NONE	Unit	Dil Fac	D	Method	Prep Type
Free Liquid	passed				mL/100g	1	_	9095B	Total/NA
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Barium	0.35	J	1.0	0.10	mg/L	1	_	6010C	TCLP
Cadmium	0.0022		0.0020	0.00050	mg/L	1		6010C	TCLP

This Detection Summary does not include radiochemical test results.

5/10/2018

Page 7 of 66

TestAmerica Buffalo

Client: O'Brien & Gere Inc of North America Project/Site: Midler Crossing - Characteristic Soil

Client Sample ID: X-1-042018 (Continued)

TestAmerica Job ID: 480-134628-1

Lab Sample ID: 480-134628-5

Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
Flashpoint	>180		50.0	50.0	Degrees F	1		1010A	 Total/NA
pH	9.1	HF	0.1	0.1	SU	1		9045D	Total/NA
Temperature	20.1	HF	0.001	0.001	Degrees C	1		9045D	Total/NA

Client Sample ID: X-2-042018 Lab Sample ID: 480-134628-6

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Anthracene	600	J	2000	490	ug/Kg		₩	8270D	Total/NA
Benzo[a]anthracene	2000		2000	200	ug/Kg	10	₩	8270D	Total/NA
Benzo[a]pyrene	2000		2000	290	ug/Kg	10	₽	8270D	Total/NA
Benzo[b]fluoranthene	2400		2000	320	ug/Kg	10	₩	8270D	Total/NA
Benzo[g,h,i]perylene	1200	J	2000	210	ug/Kg	10	₽	8270D	Total/NA
Benzo[k]fluoranthene	1400	J	2000	260	ug/Kg	10	₩	8270D	Total/NA
Carbazole	230	J	2000	230	ug/Kg	10	₽	8270D	Total/NA
Chrysene	2200		2000	440	ug/Kg	10	₽	8270D	Total/NA
Fluoranthene	4200		2000	210	ug/Kg	10	₽	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	1200	J	2000	250	ug/Kg	10	₽	8270D	Total/NA
Phenanthrene	2200		2000	290	ug/Kg	10	₽	8270D	Total/NA
Pyrene	3600		2000	230	ug/Kg	10	₽	8270D	Total/NA
Aluminum	6760		11.6	5.1	mg/Kg	1	₩.	6010C	Total/NA
Arsenic	5.0		2.3	0.46	mg/Kg	1	₩	6010C	Total/NA
Barium	72.9		0.58	0.13	mg/Kg	1	₽	6010C	Total/NA
Beryllium	0.34		0.23	0.032	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.29		0.23	0.035	mg/Kg	1	₽	6010C	Total/NA
Calcium	128000	В	290	19.1	mg/Kg	5	₽	6010C	Total/NA
Chromium	13.2	В	0.58	0.23	mg/Kg	1	₩	6010C	Total/NA
Cobalt	3.7		0.58	0.058	mg/Kg	1	₽	6010C	Total/NA
Copper	42.6		5.8	1.2	mg/Kg	5	₩	6010C	Total/NA
Iron	16200	В	11.6	4.1	mg/Kg	1	₽	6010C	Total/NA
Lead	38.7		1.2	0.28	mg/Kg	1	₽	6010C	Total/NA
Magnesium	7790		23.2	1.1	mg/Kg	1	₩	6010C	Total/NA
Manganese	323	^	0.23	0.037	mg/Kg	1	₽	6010C	Total/NA
Nickel	14.1		5.8	0.27	mg/Kg	1	₩	6010C	Total/NA
Potassium	1900		34.8	23.2	mg/Kg	1	₽	6010C	Total/NA
Sodium	196		162	15.1	mg/Kg	1	₩	6010C	Total/NA
Vanadium	21.8		0.58	0.13	mg/Kg	1	₽	6010C	Total/NA
Zinc	99.9		2.3	0.74	mg/Kg	1	₽	6010C	Total/NA
Mercury	0.062		0.023	0.0095	mg/Kg	1	₩.	7471B	Total/NA

Client Sample ID: NE-SE BERM-042018

No Detections.

Client Sample ID: E-BERM-042018

Lab Sample ID: 480-134628-8

Analyte		alifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Methylene Chloride	5.2 J vs	5.4	2.5	ug/Kg	1	₩	8260C	Total/NA

Client Sample ID: NW-SW-BERM-042018

Lab Sample ID: 480-134628-9

Lab Sample ID: 480-134628-7

This Detection Summary does not include radiochemical test results.

TestAmerica Buffalo

5/10/2018

Page 8 of 66

Detection Summary

Client: O'Brien & Gere Inc of North America Project/Site: Midler Crossing - Characteristic Soil

Client Sample ID: NW-SW-BERM-042018 (Continued)

TestAmerica Job ID: 480-134628-1

	_			
1	Sample	ID. 4	റെ ദാ	4620 (
l an	Samble	11). 4	กบ-1.5	4り/೧->

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fa	D :	Method	Prep Type	
Tetrachloroethene	0.0057	J	0.010	0.0036	mg/L	1	5 —	8260C	TCLP	_

Client Sample ID: W-BERM-042018 Lab Sample ID: 480-134628-10

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Methylene Chloride	7.4	vs	5.7	2.6	ug/Kg	1	₩	8260C	Total/NA
Tetrachloroethene	2.3	J vs	5.7	0.77	ug/Kg	1	₽	8260C	Total/NA

Client Sample ID: X-1-042018 Lab Sample ID: 480-134628-11

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Tetrachloroethene	0.0071 J	0.010	0.0036 mg/L	10	8260C	TCLP

Client Sample ID: X-2-042018 Lab Sample ID: 480-134628-12

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Methylene Chloride	6.5	vs	5.6	2.6	ug/Kg	1	₩	8260C	Total/NA
Tetrachloroethene	7.4	vs	5.6	0.75	ug/Kg	1	₽	8260C	Total/NA
Trichloroethene	1.5	J vs F1	5.6	1.2	ug/Kg	1	₽	8260C	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Job ID: 480-134628-1

Client: O'Brien & Gere Inc of North America Project/Site: Midler Crossing - Characteristic Soil

Lab Sample ID: 480-134628-1

Matrix: Solid

Client Sample	ID: NE-SE	BERM-042018
---------------	-----------	-------------

Date Collected: 04/20/18 09:30 Date Received: 04/21/18 01:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	ND		0.010	0.00046	mg/L		05/02/18 14:55	05/03/18 20:51	1
2,4-Dinitrotoluene	ND		0.0050	0.00045	mg/L		05/02/18 14:55	05/03/18 20:51	1
Hexachlorobenzene	ND		0.0050	0.00051	mg/L		05/02/18 14:55	05/03/18 20:51	1
Hexachlorobutadiene	ND		0.0050	0.00068	mg/L		05/02/18 14:55	05/03/18 20:51	1
Hexachloroethane	ND		0.0050	0.00059	mg/L		05/02/18 14:55	05/03/18 20:51	1
3-Methylphenol	ND		0.010	0.00040	mg/L		05/02/18 14:55	05/03/18 20:51	1
2-Methylphenol	ND		0.0050	0.00040	mg/L		05/02/18 14:55	05/03/18 20:51	1
4-Methylphenol	ND		0.010	0.00036	mg/L		05/02/18 14:55	05/03/18 20:51	1
Nitrobenzene	ND		0.0050	0.00029	mg/L		05/02/18 14:55	05/03/18 20:51	1
Pentachlorophenol	ND		0.010	0.0022	mg/L		05/02/18 14:55	05/03/18 20:51	1
Pyridine	ND		0.025	0.00041	mg/L		05/02/18 14:55	05/03/18 20:51	1
2,4,5-Trichlorophenol	ND		0.0050	0.00048	mg/L		05/02/18 14:55	05/03/18 20:51	1
2,4,6-Trichlorophenol	ND		0.0050	0.00061	mg/L		05/02/18 14:55	05/03/18 20:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	95		41 - 120				05/02/18 14:55	05/03/18 20:51	1
2-Fluorobiphenyl	82		48 - 120				05/02/18 14:55	05/03/18 20:51	1
2-Fluorophenol	45		35 - 120				05/02/18 14:55	05/03/18 20:51	1
Nitrobenzene-d5	77		46 - 120				05/02/18 14:55	05/03/18 20:51	1
p-Terphenyl-d14	104		59 ₋ 136				05/02/18 14:55	05/03/18 20:51	1
Phenol-d5	30		22 - 120				05/02/18 14:55	05/03/18 20:51	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.015	0.0056	mg/L		05/01/18 10:12	05/01/18 22:39	1
Barium	0.46	J	1.0	0.10	mg/L		05/01/18 10:12	05/01/18 22:39	1
Cadmium	0.0035		0.0020	0.00050	mg/L		05/01/18 10:12	05/01/18 22:39	1
Chromium	ND		0.020	0.010	mg/L		05/01/18 10:12	05/01/18 22:39	1
Lead	0.037		0.020	0.0030	mg/L		05/01/18 10:12	05/01/18 22:39	1
Selenium	ND		0.025	0.0087	mg/L		05/01/18 10:12	05/01/18 22:39	1
Silver	ND		0.0060	0.0017	mg/L		05/01/18 10:12	05/01/18 22:39	1

Method: 7470A - TCLP Mercury - T	CLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	ma/l		05/01/18 13:35	05/01/18 20:14	1

General Chemistry Analyte Free Liquid	Result passed	Qualifier	NONE	NONE	Unit mL/100g	_ <u>D</u>	Prepared	Analyzed 04/25/18 15:22	Dil Fac
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Reactive	ND		9.9	9.9	mg/Kg		04/30/18 05:03	04/30/18 16:38	1
Sulfide, Reactive	ND		9.9	9.9	mg/Kg		04/30/18 05:03	04/30/18 15:45	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Flashpoint	>180		50.0	50.0	Degrees F			05/01/18 09:30	1
рН	10.5	HF	0.1	0.1	SU			04/25/18 17:57	1
Temperature	25.5	HF	0.001	0.001	Degrees C			04/25/18 17:57	1

Client: O'Brien & Gere Inc of North America Project/Site: Midler Crossing - Characteristic Soil TestAmerica Job ID: 480-134628-1

Lab Sample ID: 480-134628-2

Matrix: Solid Percent Solids: 88.3

Client Sample ID: E-BERM-042018

Date Collected: 04/20/18 10:15 Date Received: 04/21/18 01:45

Method: 9270D Seminoletile O	umania Carrar	nde (00/850	\						as: 88.3
Method: 8270D - Semivolatile O Analyte	•	nds (GC/MS Qualifier) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND		3800	560	ug/Kg	<u> </u>	05/02/18 07:03	05/04/18 01:21	20
bis (2-chloroisopropyl) ether	ND		3800	770	ug/Kg	₩	05/02/18 07:03	05/04/18 01:21	20
2,4,5-Trichlorophenol	ND		3800	1000	ug/Kg	₩	05/02/18 07:03	05/04/18 01:21	20
2,4,6-Trichlorophenol	ND		3800	770	ug/Kg	₩.	05/02/18 07:03	05/04/18 01:21	20
2,4-Dichlorophenol	ND		3800	410	ug/Kg	₩	05/02/18 07:03	05/04/18 01:21	20
2,4-Dimethylphenol	ND		3800	930	ug/Kg	₩	05/02/18 07:03	05/04/18 01:21	20
2,4-Dinitrophenol	ND		38000	18000	ug/Kg		05/02/18 07:03	05/04/18 01:21	20
2,4-Dinitrotoluene	ND		3800	790	ug/Kg	₩	05/02/18 07:03	05/04/18 01:21	20
2,6-Dinitrotoluene	ND		3800	450	ug/Kg	₩	05/02/18 07:03	05/04/18 01:21	20
2-Chloronaphthalene	ND		3800	630	ug/Kg		05/02/18 07:03	05/04/18 01:21	20
2-Chlorophenol	ND		3800	700	ug/Kg	₩	05/02/18 07:03	05/04/18 01:21	20
2-Methylnaphthalene	ND		3800	770	ug/Kg	₩	05/02/18 07:03	05/04/18 01:21	20
2-Methylphenol	ND		3800	450	ug/Kg		05/02/18 07:03	05/04/18 01:21	20
2-Nitroaniline	ND		7500	560	ug/Kg	₩	05/02/18 07:03	05/04/18 01:21	20
2-Nitrophenol	ND		3800	1100	ug/Kg	₩	05/02/18 07:03	05/04/18 01:21	20
3,3'-Dichlorobenzidine	ND		7500	4500	ug/Kg	φ.	05/02/18 07:03	05/04/18 01:21	20
3-Nitroaniline	ND		7500	1100	ug/Kg	₩	05/02/18 07:03	05/04/18 01:21	20
4,6-Dinitro-2-methylphenol	ND		7500	3800	ug/Kg	₩	05/02/18 07:03	05/04/18 01:21	20
4-Bromophenyl phenyl ether	ND		3800	540	ug/Kg		05/02/18 07:03	05/04/18 01:21	20
4-Chloro-3-methylphenol	ND		3800	950	ug/Kg	₽	05/02/18 07:03	05/04/18 01:21	20
4-Chloroaniline	ND		3800	950	ug/Kg	₽	05/02/18 07:03	05/04/18 01:21	20
4-Chlorophenyl phenyl ether	ND		3800	470	ug/Kg		05/02/18 07:03	05/04/18 01:21	20
4-Methylphenol	ND		7500	450	ug/Kg	₽	05/02/18 07:03	05/04/18 01:21	20
4-Nitroaniline	ND		7500	2000	ug/Kg	₽	05/02/18 07:03	05/04/18 01:21	20
4-Nitrophenol	ND		7500	2700	ug/Kg		05/02/18 07:03	05/04/18 01:21	20
Acenaphthene	ND		3800	560	ug/Kg	₽	05/02/18 07:03	05/04/18 01:21	20
Acenaphthylene	ND		3800	500	ug/Kg	₽	05/02/18 07:03	05/04/18 01:21	20
Acetophenone	ND		3800	520	ug/Kg		05/02/18 07:03	05/04/18 01:21	20
Anthracene	ND		3800	950	ug/Kg	₩	05/02/18 07:03	05/04/18 01:21	20
Atrazine	ND		3800	1300	ug/Kg	₩	05/02/18 07:03	05/04/18 01:21	20
Benzaldehyde	ND		3800	3100	ug/Kg		05/02/18 07:03	05/04/18 01:21	20
Benzo[a]anthracene	560	J	3800	380	ug/Kg	₩	05/02/18 07:03	05/04/18 01:21	20
Benzo[a]pyrene	800	J	3800	560	ug/Kg	₩	05/02/18 07:03	05/04/18 01:21	20
Benzo[b]fluoranthene	1100		3800	610	ug/Kg		05/02/18 07:03	05/04/18 01:21	20
Benzo[g,h,i]perylene	490	J	3800		ug/Kg ug/Kg	₩	05/02/18 07:03	05/04/18 01:21	20
Benzo[k]fluoranthene	ND	3	3800		ug/Kg ug/Kg	₩	05/02/18 07:03	05/04/18 01:21	20
Bis(2-chloroethoxy)methane	ND		3800		ug/Kg		05/02/18 07:03	05/04/18 01:21	20
Bis(2-chloroethyl)ether	ND		3800	500	ug/Kg ug/Kg	₽	05/02/18 07:03	05/04/18 01:21	20
Bis(2-ethylhexyl) phthalate	ND		3800	1300	ug/Kg ug/Kg	₽	05/02/18 07:03	05/04/18 01:21	20
				630					
Butyl benzyl phthalate	ND ND		3800 3800		ug/Kg		05/02/18 07:03	05/04/18 01:21	20
Caprolactam Carbazole	ND ND		3800	1200	ug/Kg		05/02/18 07:03 05/02/18 07:03	05/04/18 01:21	20
				450 860	ug/Kg		05/02/18 07:03	05/04/18 01:21	20
Chrysene Di n hutul phthalate	ND ND		3800		ug/Kg	₩		05/04/18 01:21	20
Di-n-butyl phthalate	ND		3800	660	ug/Kg		05/02/18 07:03	05/04/18 01:21	20
Di-n-octyl phthalate	ND		3800	450	ug/Kg	 	05/02/18 07:03	05/04/18 01:21	20
Dibenz(a,h)anthracene	ND		3800	680	ug/Kg		05/02/18 07:03	05/04/18 01:21	20
Dibenzofuran	ND		3800	450	ug/Kg	‡ *	05/02/18 07:03	05/04/18 01:21	20
Diethyl phthalate Dimethyl phthalate	ND ND		3800		ug/Kg ug/Kg		05/02/18 07:03 05/02/18 07:03	05/04/18 01:21 05/04/18 01:21	20

TestAmerica Buffalo

2

5

7

9

11

1 1

4 E

Client: O'Brien & Gere Inc of North America Project/Site: Midler Crossing - Characteristic Soil TestAmerica Job ID: 480-134628-1

Lab Sample ID: 480-134628-2

Matrix: Solid Percent Solids: 88.3

Client Sample ID: E-BERM-042018

Date Collected: 04/20/18 10:15 Date Received: 04/21/18 01:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoranthene	1400	J	3800	410	ug/Kg	₩	05/02/18 07:03	05/04/18 01:21	20
Fluorene	ND		3800	450	ug/Kg	₽	05/02/18 07:03	05/04/18 01:21	20
Hexachlorobenzene	ND		3800	520	ug/Kg	₽	05/02/18 07:03	05/04/18 01:21	20
Hexachlorobutadiene	ND		3800	560	ug/Kg	₽	05/02/18 07:03	05/04/18 01:21	20
Hexachlorocyclopentadiene	ND		3800	520	ug/Kg	₽	05/02/18 07:03	05/04/18 01:21	20
Hexachloroethane	ND		3800	500	ug/Kg	₽	05/02/18 07:03	05/04/18 01:21	20
Indeno[1,2,3-cd]pyrene	ND		3800	470	ug/Kg	₽	05/02/18 07:03	05/04/18 01:21	20
Isophorone	ND		3800	810	ug/Kg	₽	05/02/18 07:03	05/04/18 01:21	20
N-Nitrosodi-n-propylamine	ND		3800	660	ug/Kg	₽	05/02/18 07:03	05/04/18 01:21	20
N-Nitrosodiphenylamine	ND		3800	3100	ug/Kg	₽	05/02/18 07:03	05/04/18 01:21	20
Naphthalene	ND		3800	500	ug/Kg	₽	05/02/18 07:03	05/04/18 01:21	20
Nitrobenzene	ND		3800	430	ug/Kg	₽	05/02/18 07:03	05/04/18 01:21	20
Pentachlorophenol	ND		7500	3800	ug/Kg	₽	05/02/18 07:03	05/04/18 01:21	20
Phenanthrene	ND		3800	560	ug/Kg	₽	05/02/18 07:03	05/04/18 01:21	20
Phenol	ND		3800	590	ug/Kg	₽	05/02/18 07:03	05/04/18 01:21	20
Pyrene	990	J	3800	450	ug/Kg	₽	05/02/18 07:03	05/04/18 01:21	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	116		54 - 120				05/02/18 07:03	05/04/18 01:21	20
2-Fluorobiphenyl	96		60 - 120				05/02/18 07:03	05/04/18 01:21	20
2-Fluorophenol	94		52 - 120				05/02/18 07:03	05/04/18 01:21	20
Nitrobenzene-d5	91		53 - 120				05/02/18 07:03	05/04/18 01:21	20
p-Terphenyl-d14	111		65 - 121				05/02/18 07:03	05/04/18 01:21	20
Phenol-d5	89		54 ₋ 120				05/02/18 07:03	05/04/18 01:21	20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND		93	18	ug/Kg	*	04/24/18 07:51	04/26/18 13:57	50
4,4'-DDE	ND		93	20	ug/Kg	₽	04/24/18 07:51	04/26/18 13:57	50
4,4'-DDT	ND		93	22	ug/Kg	₩	04/24/18 07:51	04/26/18 13:57	50
Aldrin	ND		93	23	ug/Kg	\$	04/24/18 07:51	04/26/18 13:57	50
alpha-BHC	ND		93	17	ug/Kg	₽	04/24/18 07:51	04/26/18 13:57	50
cis-Chlordane	ND		93	46	ug/Kg	₩	04/24/18 07:51	04/26/18 13:57	50
beta-BHC	ND		93	17	ug/Kg	₩.	04/24/18 07:51	04/26/18 13:57	50
delta-BHC	ND		93	17	ug/Kg	₩	04/24/18 07:51	04/26/18 13:57	50
Dieldrin	ND		93	22	ug/Kg	₩	04/24/18 07:51	04/26/18 13:57	50
Endosulfan I	ND		93	18	ug/Kg	\$	04/24/18 07:51	04/26/18 13:57	50
Endosulfan II	ND		93	17	ug/Kg	₩	04/24/18 07:51	04/26/18 13:57	50
Endosulfan sulfate	ND		93	17	ug/Kg	₽	04/24/18 07:51	04/26/18 13:57	50
Endrin	ND		93	18	ug/Kg	₽	04/24/18 07:51	04/26/18 13:57	50
Endrin aldehyde	ND		93	24	ug/Kg	₽	04/24/18 07:51	04/26/18 13:57	50
Endrin ketone	ND		93	23	ug/Kg	₽	04/24/18 07:51	04/26/18 13:57	50
gamma-BHC (Lindane)	ND		93	17	ug/Kg	₩.	04/24/18 07:51	04/26/18 13:57	50
trans-Chlordane	ND		93	30	ug/Kg	₩	04/24/18 07:51	04/26/18 13:57	50
Heptachlor	ND		93	20	ug/Kg	₩	04/24/18 07:51	04/26/18 13:57	50
Heptachlor epoxide	ND		93	24	ug/Kg	₩.	04/24/18 07:51	04/26/18 13:57	50
Methoxychlor	ND		93	19	ug/Kg	☼	04/24/18 07:51	04/26/18 13:57	50
Toxaphene	ND		930	540	ug/Kg	₩	04/24/18 07:51	04/26/18 13:57	50

TestAmerica Buffalo

6

8

10

11

13

14

Client: O'Brien & Gere Inc of North America Project/Site: Midler Crossing - Characteristic Soil

Client Sample ID: E-BERM-042018

Date Collected: 04/20/18 10:15

TestAmerica Job ID: 480-134628-1

Lab Sample ID: 480-134628-2

Matrix: Solid

Wati ix. 30	Jiiu
Percent Solids: 8	8.3

Date Received: 04/21/18 01:45			
Surrogate	%Recovery	Qualifier	Limits

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl		X	45 - 120	04/24/18 07:51	04/26/18 13:57	50
Tetrachloro-m-xylene	0	X	30 - 124	04/24/18 07:51	04/26/18 13:57	50
_						

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.28	0.055	mg/Kg	₩	04/27/18 07:20	04/30/18 21:26	1
PCB-1221	ND		0.28	0.055	mg/Kg	₽	04/27/18 07:20	04/30/18 21:26	1
PCB-1232	ND		0.28	0.055	mg/Kg	≎	04/27/18 07:20	04/30/18 21:26	1
PCB-1242	ND		0.28	0.055	mg/Kg	₽	04/27/18 07:20	04/30/18 21:26	1
PCB-1248	ND		0.28	0.055	mg/Kg	≎	04/27/18 07:20	04/30/18 21:26	1
PCB-1254	ND		0.28	0.13	mg/Kg	≎	04/27/18 07:20	04/30/18 21:26	1
PCB-1260	ND		0.28	0.13	mg/Kg	₽	04/27/18 07:20	04/30/18 21:26	1
PCB-1262	ND		0.28	0.13	mg/Kg	≎	04/27/18 07:20	04/30/18 21:26	1
PCB-1268	ND		0.28	0.13	mg/Kg	₽	04/27/18 07:20	04/30/18 21:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	100		60 - 154				04/27/18 07:20	04/30/18 21:26	1
DCB Decachlorobiphenyl	91		65 - 174				04/27/18 07:20	04/30/18 21:26	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	8520		11.0	4.9	mg/Kg	₽	04/21/18 11:57	04/24/18 11:42	1
Antimony	ND		16.6	0.44	mg/Kg	₽	04/21/18 11:57	04/24/18 11:42	1
Arsenic	4.9		2.2	0.44	mg/Kg	₽	04/21/18 11:57	04/24/18 11:42	1
Barium	54.2		0.55	0.12	mg/Kg	\$	04/21/18 11:57	04/24/18 11:42	1
Beryllium	0.39		0.22	0.031	mg/Kg	≎	04/21/18 11:57	04/24/18 11:42	1
Cadmium	0.14	J	0.22	0.033	mg/Kg	₽	04/21/18 11:57	04/24/18 11:42	1
Calcium	128000	В	276	18.2	mg/Kg	φ.	04/21/18 11:57	04/24/18 11:46	5
Chromium	18.0	В	0.55	0.22	mg/Kg	₽	04/21/18 11:57	04/24/18 11:42	1
Cobalt	4.9		0.55	0.055	mg/Kg	₽	04/21/18 11:57	04/24/18 11:42	1
Copper	60.7		5.5	1.2	mg/Kg	\$	04/21/18 11:57	04/24/18 11:46	5
Iron	15700	В	11.0	3.9	mg/Kg	₽	04/21/18 11:57	04/24/18 11:42	1
Lead	85.7		1.1	0.26	mg/Kg	≎	04/21/18 11:57	04/24/18 11:42	1
Magnesium	14900		22.1	1.0	mg/Kg	₽	04/21/18 11:57	04/24/18 11:42	1
Manganese	369	^	1.1	0.18	mg/Kg	₽	04/21/18 11:57	04/24/18 11:46	5
Nickel	14.6		5.5	0.25	mg/Kg	≎	04/21/18 11:57	04/24/18 11:42	1
Potassium	3160		33.1	22.1	mg/Kg	\$	04/21/18 11:57	04/24/18 11:42	1
Selenium	ND		4.4	0.44	mg/Kg	≎	04/21/18 11:57	04/24/18 11:42	1
Silver	ND		0.66	0.22	mg/Kg	₽	04/21/18 11:57	04/24/18 11:42	1
Sodium	189		154	14.3	mg/Kg	\$	04/21/18 11:57	04/24/18 11:42	1
Thallium	ND		6.6	0.33	mg/Kg	₽	04/21/18 11:57	04/24/18 11:42	1
Vanadium	34.1		0.55	0.12	mg/Kg	₽	04/21/18 11:57	04/24/18 11:42	1
Zinc	56.5		2.2	0.71	mg/Kg	₩.	04/21/18 11:57	04/24/18 11:42	1

Method: 7471B - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.36		0.021	0.0086	mg/Kg	\	05/02/18 15:10	05/02/18 16:43	1

Client: O'Brien & Gere Inc of North America Project/Site: Midler Crossing - Characteristic Soil TestAmerica Job ID: 480-134628-1

Lab Sample ID: 480-134628-3

Client Sample ID: NW-SW-BERM-042018

Date Collected: 04/20/18 10:30 Matrix: Solid Date Received: 04/21/18 01:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,4-Dichlorobenzene	ND		0.010	0.00046	mg/L		05/02/18 14:55	05/03/18 21:19	
2,4-Dinitrotoluene	ND		0.0050	0.00045	mg/L		05/02/18 14:55	05/03/18 21:19	
Hexachlorobenzene	ND		0.0050	0.00051	mg/L		05/02/18 14:55	05/03/18 21:19	
Hexachlorobutadiene	ND		0.0050	0.00068	mg/L		05/02/18 14:55	05/03/18 21:19	
Hexachloroethane	ND		0.0050	0.00059	mg/L		05/02/18 14:55	05/03/18 21:19	
3-Methylphenol	ND		0.010	0.00040	mg/L		05/02/18 14:55	05/03/18 21:19	
2-Methylphenol	ND		0.0050	0.00040	mg/L		05/02/18 14:55	05/03/18 21:19	
4-Methylphenol	ND		0.010	0.00036	mg/L		05/02/18 14:55	05/03/18 21:19	
Nitrobenzene	ND		0.0050	0.00029	mg/L		05/02/18 14:55	05/03/18 21:19	
Pentachlorophenol	ND		0.010	0.0022	mg/L		05/02/18 14:55	05/03/18 21:19	
Pyridine	ND		0.025	0.00041	mg/L		05/02/18 14:55	05/03/18 21:19	
2,4,5-Trichlorophenol	ND		0.0050	0.00048	mg/L		05/02/18 14:55	05/03/18 21:19	
2,4,6-Trichlorophenol	ND		0.0050	0.00061	mg/L		05/02/18 14:55	05/03/18 21:19	
Surrogate %F	Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2,4,6-Tribromophenol	89		41 - 120				05/02/18 14:55	05/03/18 21:19	
2-Fluorobiphenyl	77		48 - 120				05/02/18 14:55	05/03/18 21:19	
2-Fluorophenol	42		35 - 120				05/02/18 14:55	05/03/18 21:19	
Nitrobenzene-d5	78		46 - 120				05/02/18 14:55	05/03/18 21:19	
	400		59 ₋ 136				05/02/18 14:55	05/03/18 21:19	
p-Terphenyl-d14	106		<i>59 - 13</i> 6				00/02/10 11:00	00,00,00	
Phenol-d5	106 29		22 - 120				05/02/18 14:55	05/03/18 21:19	
Phenol-d5 Method: 6010C - Metals (ICP) - TCLP Analyte	29 Result	Qualifier	22 - 120 RL		Unit	_ <u>D</u>	05/02/18 14:55 Prepared	05/03/18 21:19 Analyzed	Dil Fa
Method: 6010C - Metals (ICP) - TCLP Analyte Arsenic	Result ND	· ·	22 - 120 RL 0.015	0.0056	mg/L	_ <u>D</u>	05/02/18 14:55 Prepared 05/01/18 10:12	05/03/18 21:19 Analyzed 05/01/18 23:10	Dil Fa
Method: 6010C - Metals (ICP) - TCLP Analyte Arsenic Barium	Result ND 0.40	· ·	22 - 120 RL 0.015 1.0	0.0056 0.10	mg/L mg/L	_ <u>D</u>	05/02/18 14:55 Prepared 05/01/18 10:12 05/01/18 10:12	05/03/18 21:19 Analyzed 05/01/18 23:10 05/01/18 23:10	Dil Fa
Method: 6010C - Metals (ICP) - TCLP Analyte Arsenic Barium Cadmium	Result ND 0.40 0.0022	· ·	22 - 120 RL 0.015 1.0 0.0020	0.0056 0.10 0.00050	mg/L mg/L mg/L	_ D_	O5/02/18 14:55 Prepared 05/01/18 10:12 05/01/18 10:12 05/01/18 10:12	Analyzed 05/01/18 23:10 05/01/18 23:10 05/01/18 23:10	Dil Fa
Phenol-d5 Method: 6010C - Metals (ICP) - TCLP Analyte Arsenic Barium Cadmium Chromium	Result ND 0.40 0.0022	· ·	22 - 120 RL 0.015 1.0 0.0020 0.0020	0.0056 0.10 0.00050 0.010	mg/L mg/L mg/L mg/L	_ <u>D</u>	Prepared 05/01/18 10:12 05/01/18 10:12 05/01/18 10:12 05/01/18 10:12	Analyzed 05/01/18 23:10 05/01/18 23:10 05/01/18 23:10 05/01/18 23:10	Dil Fa
Method: 6010C - Metals (ICP) - TCLP Analyte Arsenic Barium Cadmium Chromium Lead	Result ND 0.40 0.0022 ND ND	· ·	RL 0.015 1.0 0.0020 0.020 0.020	0.0056 0.10 0.00050 0.010 0.0030	mg/L mg/L mg/L mg/L mg/L	_ <u>D</u>	Prepared 05/01/18 10:12 05/01/18 10:12 05/01/18 10:12 05/01/18 10:12 05/01/18 10:12	Analyzed 05/01/18 23:10 05/01/18 23:10 05/01/18 23:10 05/01/18 23:10 05/01/18 23:10	Dil Fa
Phenol-d5 Method: 6010C - Metals (ICP) - TCLP Analyte Arsenic Barium Cadmium Chromium	Result ND 0.40 0.0022	· ·	22 - 120 RL 0.015 1.0 0.0020 0.0020	0.0056 0.10 0.00050 0.010	mg/L mg/L mg/L mg/L mg/L mg/L	_ <u>D</u>	Prepared 05/01/18 10:12 05/01/18 10:12 05/01/18 10:12 05/01/18 10:12	Analyzed 05/01/18 23:10 05/01/18 23:10 05/01/18 23:10 05/01/18 23:10	Dil Fa
Method: 6010C - Metals (ICP) - TCLP Analyte Arsenic Barium Cadmium Chromium Lead Selenium Silver	Result	· ·	RL 0.015 1.0 0.0020 0.020 0.020 0.020 0.025	0.0056 0.10 0.00050 0.010 0.0030 0.0087	mg/L mg/L mg/L mg/L mg/L mg/L	_ <u>D</u>	Prepared 05/01/18 10:12 05/01/18 10:12 05/01/18 10:12 05/01/18 10:12 05/01/18 10:12 05/01/18 10:12	Analyzed 05/01/18 23:10 05/01/18 23:10 05/01/18 23:10 05/01/18 23:10 05/01/18 23:10 05/01/18 23:10	Dil Fa
Method: 6010C - Metals (ICP) - TCLP Analyte Arsenic Barium Cadmium Chromium Lead Selenium	Result	· ·	RL 0.015 1.0 0.0020 0.020 0.020 0.020 0.025	0.0056 0.10 0.00050 0.010 0.0030 0.0087 0.0017	mg/L mg/L mg/L mg/L mg/L mg/L	_ D_	Prepared 05/01/18 10:12 05/01/18 10:12 05/01/18 10:12 05/01/18 10:12 05/01/18 10:12 05/01/18 10:12	Analyzed 05/01/18 23:10 05/01/18 23:10 05/01/18 23:10 05/01/18 23:10 05/01/18 23:10 05/01/18 23:10	Dil Fac
Method: 6010C - Metals (ICP) - TCLP Analyte Arsenic Barium Cadmium Chromium Lead Selenium Silver Method: 7470A - TCLP Mercury - TCLP	Result	J	RL 0.015 1.0 0.0020 0.020 0.020 0.025 0.0060	0.0056 0.10 0.00050 0.010 0.0030 0.0087 0.0017	mg/L mg/L mg/L mg/L mg/L mg/L mg/L		05/02/18 14:55 Prepared 05/01/18 10:12 05/01/18 10:12 05/01/18 10:12 05/01/18 10:12 05/01/18 10:12 05/01/18 10:12	Analyzed 05/01/18 23:10 05/01/18 23:10 05/01/18 23:10 05/01/18 23:10 05/01/18 23:10 05/01/18 23:10 05/01/18 23:10	Dil Fa
Method: 6010C - Metals (ICP) - TCLP Analyte Arsenic Barium Cadmium Chromium Lead Selenium Silver Method: 7470A - TCLP Mercury - TCLP Analyte Mercury	Result ND 0.40 0.0022 ND ND ND ND Result	J	RL 0.015 1.0 0.0020 0.020 0.020 0.025 0.0060	0.0056 0.10 0.00050 0.010 0.0030 0.0087 0.0017	mg/L mg/L mg/L mg/L mg/L mg/L mg/L		Prepared 05/01/18 10:12 05/01/18 10:12 05/01/18 10:12 05/01/18 10:12 05/01/18 10:12 05/01/18 10:12 05/01/18 10:12 05/01/18 10:12	Analyzed 05/03/18 21:19 Analyzed 05/01/18 23:10 05/01/18 23:10 05/01/18 23:10 05/01/18 23:10 05/01/18 23:10 05/01/18 23:10 Analyzed	Dil Fa
Method: 6010C - Metals (ICP) - TCLP Analyte Arsenic Barium Cadmium Chromium Lead Selenium Silver Method: 7470A - TCLP Mercury - TCLP Analyte	Result ND 0.40 0.0022 ND ND ND ND ND ND Result	J	RL 0.015 1.0 0.0020 0.020 0.020 0.025 0.0060	0.0056 0.10 0.00050 0.010 0.0030 0.0087 0.0017	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L		Prepared 05/01/18 10:12 05/01/18 10:12 05/01/18 10:12 05/01/18 10:12 05/01/18 10:12 05/01/18 10:12 05/01/18 10:12 05/01/18 10:12	Analyzed 05/03/18 21:19 Analyzed 05/01/18 23:10 05/01/18 23:10 05/01/18 23:10 05/01/18 23:10 05/01/18 23:10 05/01/18 23:10 Analyzed	Dil Fa
Method: 6010C - Metals (ICP) - TCLP Analyte Arsenic Barium Cadmium Chromium Lead Selenium Silver Method: 7470A - TCLP Mercury - TCLP Analyte Mercury General Chemistry Analyte	Result ND 0.40 0.0022 ND ND ND ND ND ND Result	J	RL 0.015 1.0 0.0020 0.020 0.025 0.0060 RL 0.00020	0.0056 0.10 0.00050 0.010 0.0030 0.0087 0.0017 MDL	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	_ D	Prepared 05/01/18 10:12 05/01/18 10:12 05/01/18 10:12 05/01/18 10:12 05/01/18 10:12 05/01/18 10:12 05/01/18 10:12 Prepared 05/01/18 13:35	Analyzed 05/01/18 23:10 05/01/18 23:10 05/01/18 23:10 05/01/18 23:10 05/01/18 23:10 05/01/18 23:10 05/01/18 23:10 05/01/18 23:10 Analyzed 05/01/18 20:22	Dil Fa
Method: 6010C - Metals (ICP) - TCLP Analyte Arsenic Barium Cadmium Chromium Lead Selenium Silver Method: 7470A - TCLP Mercury - TCLP Analyte Mercury General Chemistry Analyte Free Liquid	Result ND 0.40 0.0022 ND ND ND ND Result Passed	J	RL 0.015 1.0 0.0020 0.020 0.025 0.0060 RL 0.00020	0.0056 0.10 0.00050 0.010 0.0030 0.0087 0.0017 MDL 0.00012	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	_ D	Prepared 05/01/18 10:12 05/01/18 10:12 05/01/18 10:12 05/01/18 10:12 05/01/18 10:12 05/01/18 10:12 05/01/18 10:12 Prepared 05/01/18 13:35	Analyzed 05/03/18 21:19 Analyzed 05/01/18 23:10 05/01/18 23:10 05/01/18 23:10 05/01/18 23:10 05/01/18 23:10 05/01/18 23:10 Analyzed 05/01/18 20:22 Analyzed	Dil Fa
Method: 6010C - Metals (ICP) - TCLP Analyte Arsenic Barium Cadmium Chromium Lead Selenium Silver Method: 7470A - TCLP Mercury - TCLP Analyte Mercury General Chemistry Analyte Free Liquid Analyte	Result ND 0.40 0.0022 ND ND ND ND Result Passed	J Qualifier	RL 0.015 1.0 0.0020 0.020 0.025 0.0060 RL 0.00020	0.0056 0.10 0.00050 0.010 0.0030 0.0087 0.0017 MDL 0.00012	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	_ D	Prepared 05/01/18 10:12 05/01/18 10:12 05/01/18 10:12 05/01/18 10:12 05/01/18 10:12 05/01/18 10:12 05/01/18 10:12 05/01/18 10:12 Prepared 05/01/18 13:35	Analyzed 05/03/18 21:19 Analyzed 05/01/18 23:10 05/01/18 23:10 05/01/18 23:10 05/01/18 23:10 05/01/18 23:10 05/01/18 23:10 Analyzed 05/01/18 20:22 Analyzed 04/25/18 15:22	Dil Fa
Method: 6010C - Metals (ICP) - TCLP Analyte Arsenic Barium Cadmium Chromium Lead Selenium Silver Method: 7470A - TCLP Mercury - TCLP Analyte Mercury General Chemistry	Result ND 0.40 0.0022 ND ND ND Result Passed Result	J Qualifier	RL 0.015 1.0 0.0020 0.020 0.025 0.0060 RL 0.00020 NONE	0.0056 0.10 0.00050 0.010 0.0030 0.0087 0.0017 MDL 0.00012 NONE	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	_ D	Prepared 05/01/18 14:55 Prepared 05/01/18 10:12 05/01/18 10:12 05/01/18 10:12 05/01/18 10:12 05/01/18 10:12 05/01/18 10:12 Prepared 05/01/18 13:35 Prepared Prepared	Analyzed 05/03/18 21:19 Analyzed 05/01/18 23:10 05/01/18 23:10 05/01/18 23:10 05/01/18 23:10 05/01/18 23:10 05/01/18 23:10 Analyzed 05/01/18 20:22 Analyzed 04/25/18 15:22 Analyzed	Dil Fa
Method: 6010C - Metals (ICP) - TCLP Analyte Arsenic Barium Cadmium Chromium Lead Selenium Silver Method: 7470A - TCLP Mercury - TCLP Analyte Mercury General Chemistry Analyte Free Liquid Analyte Cyanide, Reactive	Result ND 0.40 0.0022 ND ND ND ND Result Passed Result ND	J Qualifier	RL 0.015 1.0 0.0020 0.020 0.025 0.0060 RL 0.00020 NONE RL 9.9	0.0056 0.10 0.00050 0.010 0.0030 0.0087 0.0017 MDL 0.00012 NONE 9.9 9.9	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	_ D	Prepared 05/01/18 14:55 Prepared 05/01/18 10:12 05/01/18 10:12 05/01/18 10:12 05/01/18 10:12 05/01/18 10:12 05/01/18 10:12 Prepared 05/01/18 13:35 Prepared Prepared 04/30/18 05:03	Analyzed 05/03/18 21:19 Analyzed 05/01/18 23:10 05/01/18 23:10 05/01/18 23:10 05/01/18 23:10 05/01/18 23:10 05/01/18 23:10 Analyzed 05/01/18 20:22 Analyzed 04/25/18 15:22 Analyzed 04/30/18 16:38	Dil Fa Dil Fa
Method: 6010C - Metals (ICP) - TCLP Analyte Arsenic Barium Cadmium Chromium Lead Selenium Silver Method: 7470A - TCLP Mercury - TCLP Analyte Mercury General Chemistry Analyte Free Liquid Analyte Cyanide, Reactive Sulfide, Reactive	Result ND 0.40 0.0022 ND ND ND ND Result Passed Result ND	J Qualifier Qualifier Qualifier	RL 0.015 1.0 0.0020 0.020 0.025 0.0060 RL 0.00020 NONE RL 9.9 9.9	0.0056 0.10 0.00050 0.010 0.0030 0.0087 0.0017 MDL 0.00012 NONE 9.9 9.9 RL	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	_ D _ D _ D	Prepared 05/02/18 14:55 Prepared 05/01/18 10:12 05/01/18 10:12 05/01/18 10:12 05/01/18 10:12 05/01/18 10:12 Prepared 05/01/18 13:35 Prepared Prepared 04/30/18 05:03 04/30/18 05:03	Analyzed 05/03/18 21:19 Analyzed 05/01/18 23:10 05/01/18 23:10 05/01/18 23:10 05/01/18 23:10 05/01/18 23:10 05/01/18 23:10 Analyzed 05/01/18 20:22 Analyzed 04/25/18 15:22 Analyzed 04/30/18 16:38 04/30/18 15:45	Dil Fa

04/25/18 14:13

0.001

19.8 HF

Temperature

0.001 Degrees C

Client: O'Brien & Gere Inc of North America Project/Site: Midler Crossing - Characteristic Soil TestAmerica Job ID: 480-134628-1

Lab Sample ID: 480-134628-4

Matrix: Solid Percent Solids: 84.2

Client Sample ID: W-BERM-042018

Date Collected: 04/20/18 11:00 Date Received: 04/21/18 01:45

nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
iphenyl	ND		2000	290	ug/Kg		05/02/18 07:03	05/04/18 01:48	
is (2-chloroisopropyl) ether	ND		2000	400	ug/Kg	₽	05/02/18 07:03	05/04/18 01:48	
,4,5-Trichlorophenol	ND		2000	540	ug/Kg	₽	05/02/18 07:03	05/04/18 01:48	
,4,6-Trichlorophenol	ND		2000	400	ug/Kg		05/02/18 07:03	05/04/18 01:48	
,4-Dichlorophenol	ND		2000	210	ug/Kg	₩	05/02/18 07:03	05/04/18 01:48	
,4-Dimethylphenol	ND		2000	480	ug/Kg	₩	05/02/18 07:03	05/04/18 01:48	
,4-Dinitrophenol	ND		19000	9100	ug/Kg		05/02/18 07:03	05/04/18 01:48	
,4-Dinitrotoluene	ND		2000	410	ug/Kg ug/Kg	₩	05/02/18 07:03	05/04/18 01:48	
,6-Dinitrotoluene	ND		2000	230	ug/Kg ug/Kg	₩	05/02/18 07:03	05/04/18 01:48	
	ND		2000	330			05/02/18 07:03	05/04/18 01:48	
-Chloronaphthalene					ug/Kg	~ ⇔			
-Chlorophenol	ND		2000	360	ug/Kg		05/02/18 07:03	05/04/18 01:48	
-Methylnaphthalene	ND		2000	400	ug/Kg	<u></u> .	05/02/18 07:03	05/04/18 01:48	
-Methylphenol	ND		2000	230			05/02/18 07:03	05/04/18 01:48	
-Nitroaniline	ND		3800	290	ug/Kg	₩	05/02/18 07:03	05/04/18 01:48	
Nitrophenol	ND		2000	560	ug/Kg		05/02/18 07:03	05/04/18 01:48	
3'-Dichlorobenzidine	ND		3800	2300	ug/Kg	₩.	05/02/18 07:03	05/04/18 01:48	
Nitroaniline	ND		3800	550	ug/Kg	₽	05/02/18 07:03	05/04/18 01:48	
6-Dinitro-2-methylphenol	ND		3800	2000	ug/Kg		05/02/18 07:03	05/04/18 01:48	
Bromophenyl phenyl ether	ND		2000	280	ug/Kg	₩	05/02/18 07:03	05/04/18 01:48	
Chloro-3-methylphenol	ND		2000	490	ug/Kg	₽	05/02/18 07:03	05/04/18 01:48	
Chloroaniline	ND		2000	490	ug/Kg	₽	05/02/18 07:03	05/04/18 01:48	
Chlorophenyl phenyl ether	ND		2000	240	ug/Kg	₽	05/02/18 07:03	05/04/18 01:48	
Methylphenol	ND		3800	230	ug/Kg	₽	05/02/18 07:03	05/04/18 01:48	
Nitroaniline	ND		3800	1000	ug/Kg	₽	05/02/18 07:03	05/04/18 01:48	
Nitrophenol	ND		3800	1400	ug/Kg	₽	05/02/18 07:03	05/04/18 01:48	
cenaphthene	540	J	2000	290	ug/Kg	☼	05/02/18 07:03	05/04/18 01:48	
cenaphthylene	300	J	2000	260	ug/Kg	☼	05/02/18 07:03	05/04/18 01:48	
etophenone	ND		2000	270	ug/Kg		05/02/18 07:03	05/04/18 01:48	
nthracene	1300	J	2000	490	ug/Kg	₽	05/02/18 07:03	05/04/18 01:48	
trazine	ND		2000	690	ug/Kg	₽	05/02/18 07:03	05/04/18 01:48	
enzaldehyde	ND		2000	1600	ug/Kg		05/02/18 07:03	05/04/18 01:48	
enzo[a]anthracene	3800		2000	200	ug/Kg	₽	05/02/18 07:03	05/04/18 01:48	
enzo[a]pyrene	3300		2000	290	ug/Kg	₽	05/02/18 07:03	05/04/18 01:48	
enzo[b]fluoranthene	4300		2000	310	ug/Kg	-	05/02/18 07:03	05/04/18 01:48	
enzo[g,h,i]perylene	1800	J	2000	210		₽	05/02/18 07:03	05/04/18 01:48	
enzo[k]fluoranthene	1600		2000		ug/Kg	₽	05/02/18 07:03	05/04/18 01:48	
s(2-chloroethoxy)methane	ND		2000		ug/Kg		05/02/18 07:03	05/04/18 01:48	
s(2-chloroethyl)ether	ND		2000		ug/Kg	₽	05/02/18 07:03	05/04/18 01:48	
s(2-ethylhexyl) phthalate	ND		2000		ug/Kg ug/Kg	₽	05/02/18 07:03	05/04/18 01:48	
ityl benzyl phthalate	ND		2000		ug/Kg		05/02/18 07:03	05/04/18 01:48	
	ND		2000		ug/Kg ug/Kg	₽	05/02/18 07:03	05/04/18 01:48	
aprolactam						т Ф			
arbazole	600	J	2000		ug/Kg		05/02/18 07:03	05/04/18 01:48	
nrysene	3500		2000		ug/Kg	\$	05/02/18 07:03	05/04/18 01:48	
-n-butyl phthalate	ND		2000		ug/Kg	‡	05/02/18 07:03	05/04/18 01:48	
-n-octyl phthalate	ND		2000		ug/Kg	<u></u> .	05/02/18 07:03	05/04/18 01:48	
benz(a,h)anthracene	ND		2000	350		₩	05/02/18 07:03	05/04/18 01:48	
benzofuran	400	J	2000	230	ug/Kg	*	05/02/18 07:03	05/04/18 01:48	
iethyl phthalate	ND		2000	260	ug/Kg	₩	05/02/18 07:03	05/04/18 01:48	

TestAmerica Buffalo

5/10/2018

Client: O'Brien & Gere Inc of North America Project/Site: Midler Crossing - Characteristic Soil

Client Sample ID: W-BERM-042018

Date Collected: 04/20/18 11:00

Date Received: 04/21/18 01:45

Nitrobenzene-d5

p-Terphenyl-d14

Phenol-d5

TestAmerica Job ID: 480-134628-1

Lab Sample ID: 480-134628-4

Matrix: Solid Percent Solids: 84.2

05/02/18 07:03

05/02/18 07:03

05/02/18 07:03

05/04/18 01:48

05/04/18 01:48

05/04/18 01:48

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoranthene	7700		2000	210	ug/Kg	₩	05/02/18 07:03	05/04/18 01:48	10
Fluorene	700	J	2000	230	ug/Kg	₽	05/02/18 07:03	05/04/18 01:48	10
Hexachlorobenzene	ND		2000	270	ug/Kg	₽	05/02/18 07:03	05/04/18 01:48	10
Hexachlorobutadiene	ND		2000	290	ug/Kg	₽	05/02/18 07:03	05/04/18 01:48	10
Hexachlorocyclopentadiene	ND		2000	270	ug/Kg	₽	05/02/18 07:03	05/04/18 01:48	10
Hexachloroethane	ND		2000	260	ug/Kg	₽	05/02/18 07:03	05/04/18 01:48	10
Indeno[1,2,3-cd]pyrene	1900	J	2000	240	ug/Kg	₽	05/02/18 07:03	05/04/18 01:48	10
Isophorone	ND		2000	420	ug/Kg	₽	05/02/18 07:03	05/04/18 01:48	10
N-Nitrosodi-n-propylamine	ND		2000	340	ug/Kg	₽	05/02/18 07:03	05/04/18 01:48	10
N-Nitrosodiphenylamine	ND		2000	1600	ug/Kg	₩	05/02/18 07:03	05/04/18 01:48	10
Naphthalene	740	J	2000	260	ug/Kg	₽	05/02/18 07:03	05/04/18 01:48	10
Nitrobenzene	ND		2000	220	ug/Kg	₽	05/02/18 07:03	05/04/18 01:48	10
Pentachlorophenol	ND		3800	2000	ug/Kg	₽	05/02/18 07:03	05/04/18 01:48	10
Phenanthrene	5500		2000	290	ug/Kg	₽	05/02/18 07:03	05/04/18 01:48	10
Phenol	ND		2000	300	ug/Kg	₽	05/02/18 07:03	05/04/18 01:48	10
Pyrene	6300		2000	230	ug/Kg	₽	05/02/18 07:03	05/04/18 01:48	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	81		54 - 120				05/02/18 07:03	05/04/18 01:48	10
2-Fluorobiphenyl	85		60 - 120				05/02/18 07:03	05/04/18 01:48	10
2-Fluorophenol	76		52 - 120				05/02/18 07:03	05/04/18 01:48	10

53 - 120

65 - 121

54 - 120

80

97

82

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND		98	19	ug/Kg	₩	04/24/18 07:51	04/26/18 14:16	50
4,4'-DDE	ND		98	20	ug/Kg	₽	04/24/18 07:51	04/26/18 14:16	50
4,4'-DDT	ND		98	23	ug/Kg	₽	04/24/18 07:51	04/26/18 14:16	50
Aldrin	ND		98	24	ug/Kg	₽	04/24/18 07:51	04/26/18 14:16	50
alpha-BHC	ND		98	18	ug/Kg	₽	04/24/18 07:51	04/26/18 14:16	50
cis-Chlordane	ND		98	49	ug/Kg	₽	04/24/18 07:51	04/26/18 14:16	50
beta-BHC	ND		98	18	ug/Kg	₽	04/24/18 07:51	04/26/18 14:16	50
delta-BHC	ND		98	18	ug/Kg	₽	04/24/18 07:51	04/26/18 14:16	50
Dieldrin	ND		98	23	ug/Kg	₽	04/24/18 07:51	04/26/18 14:16	50
Endosulfan I	ND		98	19	ug/Kg	₽	04/24/18 07:51	04/26/18 14:16	50
Endosulfan II	ND		98	18	ug/Kg	₽	04/24/18 07:51	04/26/18 14:16	50
Endosulfan sulfate	ND		98	18	ug/Kg	₽	04/24/18 07:51	04/26/18 14:16	50
Endrin	ND		98	19	ug/Kg	₽	04/24/18 07:51	04/26/18 14:16	50
Endrin aldehyde	ND		98	25	ug/Kg	₽	04/24/18 07:51	04/26/18 14:16	50
Endrin ketone	ND		98	24	ug/Kg	₽	04/24/18 07:51	04/26/18 14:16	50
gamma-BHC (Lindane)	ND		98	18	ug/Kg	₽	04/24/18 07:51	04/26/18 14:16	50
trans-Chlordane	ND		98	31	ug/Kg	₽	04/24/18 07:51	04/26/18 14:16	50
Heptachlor	ND		98	21	ug/Kg	₽	04/24/18 07:51	04/26/18 14:16	50
Heptachlor epoxide	ND		98	25	ug/Kg	₽	04/24/18 07:51	04/26/18 14:16	50
Methoxychlor	ND		98	20	ug/Kg	₽	04/24/18 07:51	04/26/18 14:16	50
Toxaphene	ND		980	570	ug/Kg	₽	04/24/18 07:51	04/26/18 14:16	50

TestAmerica Buffalo

10

10

Client: O'Brien & Gere Inc of North America Project/Site: Midler Crossing - Characteristic Soil TestAmerica Job ID: 480-134628-1

Lab Sample ID: 480-134628-4

Matrix: Solid Percent Solids: 84.2

Client Sample ID: W-BERM-042018

Date Collected: 04/20/18 11:00 Date Received: 04/21/18 01:45

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	0	X	45 - 120	04/24/18 07:51	04/26/18 14:16	50
Tetrachloro-m-xylene	0	X	30 - 124	04/24/18 07:51	04/26/18 14:16	50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.25	0.049	mg/Kg	\$	04/27/18 07:20	04/30/18 21:41	1
PCB-1221	ND		0.25	0.049	mg/Kg	₩	04/27/18 07:20	04/30/18 21:41	1
PCB-1232	ND		0.25	0.049	mg/Kg	₩	04/27/18 07:20	04/30/18 21:41	1
PCB-1242	ND		0.25	0.049	mg/Kg	₩	04/27/18 07:20	04/30/18 21:41	1
PCB-1248	ND		0.25	0.049	mg/Kg	₩	04/27/18 07:20	04/30/18 21:41	1
PCB-1254	ND		0.25	0.12	mg/Kg	₩	04/27/18 07:20	04/30/18 21:41	1
PCB-1260	ND		0.25	0.12	mg/Kg	₩	04/27/18 07:20	04/30/18 21:41	1
PCB-1262	ND		0.25	0.12	mg/Kg	₩	04/27/18 07:20	04/30/18 21:41	1
PCB-1268	ND		0.25	0.12	mg/Kg	₽	04/27/18 07:20	04/30/18 21:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	105		60 - 154				04/27/18 07:20	04/30/18 21:41	1
DCB Decachlorobiphenyl	101		65 - 174				04/27/18 07:20	04/30/18 21:41	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	6720		12.1	5.3	mg/Kg	<u></u>	04/21/18 11:57	04/24/18 11:50	1
Antimony	ND		18.1	0.48	mg/Kg	₽	04/21/18 11:57	04/24/18 11:50	1
Arsenic	5.1		2.4	0.48	mg/Kg	₽	04/21/18 11:57	04/24/18 11:50	1
Barium	80.7		0.60	0.13	mg/Kg	₽	04/21/18 11:57	04/24/18 11:50	1
Beryllium	0.33		0.24	0.034	mg/Kg	₽	04/21/18 11:57	04/24/18 11:50	1
Cadmium	0.29		0.24	0.036	mg/Kg	₽	04/21/18 11:57	04/24/18 11:50	1
Calcium	98100	В	60.5	4.0	mg/Kg	₽	04/21/18 11:57	04/24/18 11:50	1
Chromium	14.9	В	0.60	0.24	mg/Kg	₽	04/21/18 11:57	04/24/18 11:50	1
Cobalt	4.8		0.60	0.060	mg/Kg	₽	04/21/18 11:57	04/24/18 11:50	1
Copper	37.4		1.2	0.25	mg/Kg	φ.	04/21/18 11:57	04/24/18 11:50	1
Iron	17300	В	12.1	4.2	mg/Kg	₽	04/21/18 11:57	04/24/18 11:50	1
Lead	38.7		1.2	0.29	mg/Kg	₽	04/21/18 11:57	04/24/18 11:50	1
Magnesium	13500		24.2	1.1	mg/Kg	₽	04/21/18 11:57	04/24/18 11:50	1
Manganese	287	^	0.24	0.039	mg/Kg	₽	04/21/18 11:57	04/24/18 11:50	1
Nickel	13.5		6.0	0.28	mg/Kg	₽	04/21/18 11:57	04/24/18 11:50	1
Potassium	1630		36.3	24.2	mg/Kg	₽	04/21/18 11:57	04/24/18 11:50	1
Selenium	ND		4.8	0.48	mg/Kg	₽	04/21/18 11:57	04/24/18 11:50	1
Silver	ND		0.73	0.24	mg/Kg	☼	04/21/18 11:57	04/24/18 11:50	1
Sodium	190		169	15.7	mg/Kg	₽	04/21/18 11:57	04/24/18 11:50	1
Thallium	ND		7.3	0.36	mg/Kg	₽	04/21/18 11:57	04/24/18 11:50	1
Vanadium	22.0		0.60	0.13	mg/Kg	₽	04/21/18 11:57	04/24/18 11:50	1
Zinc	102		2.4	0.77	mg/Kg		04/21/18 11:57	04/24/18 11:50	1

Method: 7471B - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.056		0.024	0.0095	mg/Kg	\	05/02/18 15:10	05/02/18 16:45	1

Client: O'Brien & Gere Inc of North America Project/Site: Midler Crossing - Characteristic Soil TestAmerica Job ID: 480-134628-1

Lab Sample ID: 480-134628-5

Matrix: Solid

Client Sample ID: X-1-042018

Date Collected: 04/20/18 00:00 Date Received: 04/21/18 01:45

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
1,4-Dichlorobenzene	ND		0.010	0.00046	mg/L		05/02/18 14:55	05/03/18 21:46	
2,4-Dinitrotoluene	ND		0.0050	0.00045	mg/L		05/02/18 14:55	05/03/18 21:46	
Hexachlorobenzene	ND		0.0050	0.00051	mg/L		05/02/18 14:55	05/03/18 21:46	
Hexachlorobutadiene	ND		0.0050	0.00068	mg/L		05/02/18 14:55	05/03/18 21:46	
Hexachloroethane	ND		0.0050	0.00059	mg/L		05/02/18 14:55	05/03/18 21:46	
3-Methylphenol	ND		0.010	0.00040	mg/L		05/02/18 14:55	05/03/18 21:46	
2-Methylphenol	ND		0.0050	0.00040	mg/L		05/02/18 14:55	05/03/18 21:46	
4-Methylphenol	ND		0.010	0.00036	mg/L		05/02/18 14:55	05/03/18 21:46	
Nitrobenzene	ND		0.0050	0.00029	mg/L		05/02/18 14:55	05/03/18 21:46	
Pentachlorophenol	ND		0.010	0.0022	mg/L		05/02/18 14:55	05/03/18 21:46	
Pyridine	ND		0.025	0.00041	mg/L		05/02/18 14:55	05/03/18 21:46	
2,4,5-Trichlorophenol	ND		0.0050	0.00048	mg/L		05/02/18 14:55	05/03/18 21:46	
2,4,6-Trichlorophenol	ND		0.0050	0.00061	mg/L		05/02/18 14:55	05/03/18 21:46	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
2,4,6-Tribromophenol	95		41 - 120				05/02/18 14:55	05/03/18 21:46	
2-Fluorobiphenyl	85		48 - 120				05/02/18 14:55	05/03/18 21:46	
2-Fluorophenol	42		35 - 120				05/02/18 14:55	05/03/18 21:46	
litrobenzene-d5	80		46 - 120				05/02/18 14:55	05/03/18 21:46	
p-Terphenyl-d14	102		59 - 136				05/02/18 14:55	05/03/18 21:46	
Phenol-d5	29		22 - 120				05/02/18 14:55	05/03/18 21:46	
Method: 6010C - Metals (ICP) - TC	LP								
Analyte		Qualifier	RL		Unit	_ D	Prepared	Analyzed	Dil Fa
Arsenic	ND		0.015	0.0056	mg/L		05/01/18 10:12	05/01/18 23:14	
Barium	0.35	J	1.0	0.10	mg/L		05/01/18 10:12	05/01/18 23:14	
Cadmium	0.0022		0.0020	0.00050	mg/L		05/01/18 10:12	05/01/18 23:14	
Chromium	ND		0.020	0.010	mg/L		05/01/18 10:12	05/01/18 23:14	
Lead	ND		0.020	0.0030	mg/L		05/01/18 10:12	05/01/18 23:14	
Selenium	ND		0.025	0.0087	mg/L		05/01/18 10:12	05/01/18 23:14	
Silver	ND		0.0060	0.0017	mg/L		05/01/18 10:12	05/01/18 23:14	
Method: 7470A - TCLP Mercury -									
Analyte		Qualifier	RL -		Unit	_ D	Prepared	Analyzed	Dil F
/lercury	ND		0.00020	0.00012	mg/L		05/01/18 13:35	05/01/18 20:24	
noi oui y									
General Chemistry		0 115				_			- ··-
General Chemistry		Qualifier	NONE	NONE		_ D	Prepared	Analyzed	Dil F
General Chemistry	Result passed	Qualifier	NONE	NONE	Unit mL/100g	_ <u>D</u>	Prepared	Analyzed 04/25/18 15:22	Dil F
General Chemistry Analyte Free Liquid	passed Result	Qualifier Qualifier	RL	MDL		_ D _ D	Prepared		
General Chemistry Analyte Free Liquid Analyte	passed				mL/100g			04/25/18 15:22	
General Chemistry Analyte Free Liquid Analyte Cyanide, Reactive	passed Result		RL	MDL	mL/100g Unit mg/Kg		Prepared	04/25/18 15:22 Analyzed	
General Chemistry Analyte Free Liquid Analyte Cyanide, Reactive Sulfide, Reactive	passed Result ND ND		RL 9.9 9.9 RL	MDL 9.9 9.9	mL/100g Unit mg/Kg mg/Kg Unit		Prepared 04/30/18 05:03	04/25/18 15:22 Analyzed 04/30/18 16:38	Dil F
General Chemistry Analyte Free Liquid Analyte Cyanide, Reactive Sulfide, Reactive Analyte	passed Result ND ND	Qualifier	RL 9.9 9.9	MDL 9.9 9.9	mL/100g Unit mg/Kg mg/Kg		Prepared 04/30/18 05:03 04/30/18 05:03	04/25/18 15:22 Analyzed 04/30/18 16:38 04/30/18 15:45	Dil F
General Chemistry Analyte Free Liquid Analyte Cyanide, Reactive Sulfide, Reactive Analyte Flashpoint pH	passed Result ND ND Result >180	Qualifier	RL 9.9 9.9 RL	MDL 9.9 9.9	mL/100g Unit mg/Kg mg/Kg Unit Degrees F		Prepared 04/30/18 05:03 04/30/18 05:03	04/25/18 15:22 Analyzed 04/30/18 16:38 04/30/18 15:45 Analyzed	Dil Fa

Client: O'Brien & Gere Inc of North America Project/Site: Midler Crossing - Characteristic Soil

Client Sample ID: X-2-042018

Date Collected: 04/20/18 00:00

Date Received: 04/21/18 01:45

Dibenzofuran

Diethyl phthalate

Dimethyl phthalate

TestAmerica Job ID: 480-134628-1

Lab Sample ID: 480-134628-6

Matrix: Solid

Percent Solids: 85.1

Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Biphenyl	ND		2000	290	ug/Kg	*	05/02/18 07:03	05/04/18 02:14	10
bis (2-chloroisopropyl) ether	ND		2000	400	ug/Kg	₽	05/02/18 07:03	05/04/18 02:14	1
2,4,5-Trichlorophenol	ND		2000	540	ug/Kg	₽	05/02/18 07:03	05/04/18 02:14	1
2,4,6-Trichlorophenol	ND		2000	400	ug/Kg	₽	05/02/18 07:03	05/04/18 02:14	10
2,4-Dichlorophenol	ND		2000	210	ug/Kg	₽	05/02/18 07:03	05/04/18 02:14	1
2,4-Dimethylphenol	ND		2000	480	ug/Kg	₽	05/02/18 07:03	05/04/18 02:14	1
2,4-Dinitrophenol	ND		19000	9200	ug/Kg	₽	05/02/18 07:03	05/04/18 02:14	1
2,4-Dinitrotoluene	ND		2000	410	ug/Kg	≎	05/02/18 07:03	05/04/18 02:14	1
2,6-Dinitrotoluene	ND		2000	230	ug/Kg	₩	05/02/18 07:03	05/04/18 02:14	1
2-Chloronaphthalene	ND		2000	330	ug/Kg	₽	05/02/18 07:03	05/04/18 02:14	1
2-Chlorophenol	ND		2000	360	ug/Kg	₽	05/02/18 07:03	05/04/18 02:14	1
2-Methylnaphthalene	ND		2000	400	ug/Kg	₽	05/02/18 07:03	05/04/18 02:14	1
2-Methylphenol	ND		2000	230	ug/Kg	₽	05/02/18 07:03	05/04/18 02:14	1
2-Nitroaniline	ND		3900	290	ug/Kg	₩	05/02/18 07:03	05/04/18 02:14	1
2-Nitrophenol	ND		2000	560	ug/Kg	₩	05/02/18 07:03	05/04/18 02:14	1
3,3'-Dichlorobenzidine	ND		3900	2300	ug/Kg		05/02/18 07:03	05/04/18 02:14	1
3-Nitroaniline	ND		3900	550	ug/Kg	₩	05/02/18 07:03	05/04/18 02:14	1
4,6-Dinitro-2-methylphenol	ND		3900	2000	ug/Kg	₽	05/02/18 07:03	05/04/18 02:14	1
4-Bromophenyl phenyl ether	ND		2000	280	ug/Kg	ф.	05/02/18 07:03	05/04/18 02:14	
4-Chloro-3-methylphenol	ND		2000	490	ug/Kg	₽	05/02/18 07:03	05/04/18 02:14	1
4-Chloroaniline	ND		2000	490	ug/Kg	₽	05/02/18 07:03	05/04/18 02:14	10
4-Chlorophenyl phenyl ether	ND		2000	250	ug/Kg	₽	05/02/18 07:03	05/04/18 02:14	10
4-Methylphenol	ND		3900	230	ug/Kg	₽	05/02/18 07:03	05/04/18 02:14	10
4-Nitroaniline	ND		3900	1000	ug/Kg	₽	05/02/18 07:03	05/04/18 02:14	10
4-Nitrophenol	ND		3900	1400	ug/Kg		05/02/18 07:03	05/04/18 02:14	10
Acenaphthene	ND		2000	290	ug/Kg	₽	05/02/18 07:03	05/04/18 02:14	1
Acenaphthylene	ND		2000	260	ug/Kg	₽	05/02/18 07:03	05/04/18 02:14	1
Acetophenone	ND		2000	270	ug/Kg	ф.	05/02/18 07:03	05/04/18 02:14	1
Anthracene	600	J	2000	490	ug/Kg	₽	05/02/18 07:03	05/04/18 02:14	10
Atrazine	ND		2000	690	ug/Kg	₽	05/02/18 07:03	05/04/18 02:14	10
Benzaldehyde	ND		2000	1600	ug/Kg		05/02/18 07:03	05/04/18 02:14	<u>.</u> 10
Benzo[a]anthracene	2000		2000	200	ug/Kg	₽	05/02/18 07:03	05/04/18 02:14	1
Benzo[a]pyrene	2000		2000	290	ug/Kg	₽	05/02/18 07:03	05/04/18 02:14	1
Benzo[b]fluoranthene	2400		2000	320	ug/Kg		05/02/18 07:03	05/04/18 02:14	<u>.</u> 1
Benzo[g,h,i]perylene	1200	J	2000		ug/Kg	₽	05/02/18 07:03	05/04/18 02:14	1
Benzo[k]fluoranthene	1400	J	2000		ug/Kg	₽	05/02/18 07:03	05/04/18 02:14	1
Bis(2-chloroethoxy)methane	ND		2000		ug/Kg		05/02/18 07:03	05/04/18 02:14	<u>.</u> 1
Bis(2-chloroethyl)ether	ND		2000		ug/Kg	₽	05/02/18 07:03	05/04/18 02:14	10
Bis(2-ethylhexyl) phthalate	ND		2000		ug/Kg	₽	05/02/18 07:03	05/04/18 02:14	1
Butyl benzyl phthalate	ND		2000		ug/Kg	 ф	05/02/18 07:03	05/04/18 02:14	
Caprolactam	ND		2000	600		₽	05/02/18 07:03	05/04/18 02:14	1
Carbazole	230	J	2000		ug/Kg	₩	05/02/18 07:03	05/04/18 02:14	1
Chrysene	2200		2000		ug/Kg		05/02/18 07:03	05/04/18 02:14	
Di-n-butyl phthalate	ND.		2000		ug/Kg	₩	05/02/18 07:03	05/04/18 02:14	1
Di-n-octyl phthalate	ND		2000		ug/Kg	₩	05/02/18 07:03	05/04/18 02:14	1
Dibenz(a,h)anthracene	ND		2000		ug/Kg	 \$	05/02/18 07:03	05/04/18 02:14	
(\alpha ,) \alpha			_555	200	-59	· Li	05/02/15 57 55	20.00 02.17	

TestAmerica Buffalo

05/04/18 02:14

05/04/18 02:14

05/04/18 02:14

2000

2000

2000

ND

ND

ND

230 ug/Kg

260 ug/Kg

230 ug/Kg

05/02/18 07:03

05/02/18 07:03

05/02/18 07:03

Client: O'Brien & Gere Inc of North America Project/Site: Midler Crossing - Characteristic Soil

Client Sample ID: X-2-042018

Date Collected: 04/20/18 00:00

Date Received: 04/21/18 01:45

TestAmerica Job ID: 480-134628-1

Lab Sample ID: 480-134628-6

Matrix: Solid

Percent Solids: 85.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoranthene	4200		2000	210	ug/Kg	₩	05/02/18 07:03	05/04/18 02:14	10
Fluorene	ND		2000	230	ug/Kg	₽	05/02/18 07:03	05/04/18 02:14	10
Hexachlorobenzene	ND		2000	270	ug/Kg	₽	05/02/18 07:03	05/04/18 02:14	10
Hexachlorobutadiene	ND		2000	290	ug/Kg	₽	05/02/18 07:03	05/04/18 02:14	10
Hexachlorocyclopentadiene	ND		2000	270	ug/Kg	₽	05/02/18 07:03	05/04/18 02:14	10
Hexachloroethane	ND		2000	260	ug/Kg	₽	05/02/18 07:03	05/04/18 02:14	10
Indeno[1,2,3-cd]pyrene	1200	J	2000	250	ug/Kg	₽	05/02/18 07:03	05/04/18 02:14	10
Isophorone	ND		2000	420	ug/Kg	₽	05/02/18 07:03	05/04/18 02:14	10
N-Nitrosodi-n-propylamine	ND		2000	340	ug/Kg	₽	05/02/18 07:03	05/04/18 02:14	10
N-Nitrosodiphenylamine	ND		2000	1600	ug/Kg	₽	05/02/18 07:03	05/04/18 02:14	10
Naphthalene	ND		2000	260	ug/Kg	₽	05/02/18 07:03	05/04/18 02:14	10
Nitrobenzene	ND		2000	220	ug/Kg	\$	05/02/18 07:03	05/04/18 02:14	10
Pentachlorophenol	ND		3900	2000	ug/Kg	₽	05/02/18 07:03	05/04/18 02:14	10
Phenanthrene	2200		2000	290	ug/Kg	₽	05/02/18 07:03	05/04/18 02:14	10
Phenol	ND		2000	300	ug/Kg	₽	05/02/18 07:03	05/04/18 02:14	10
Pyrene	3600		2000	230	ug/Kg	₽	05/02/18 07:03	05/04/18 02:14	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	75	54 - 120	05/02/18 07:03	05/04/18 02:14	10
2-Fluorobiphenyl	84	60 - 120	05/02/18 07:03	05/04/18 02:14	10
2-Fluorophenol	87	52 - 120	05/02/18 07:03	05/04/18 02:14	10
Nitrobenzene-d5	75	53 - 120	05/02/18 07:03	05/04/18 02:14	10
p-Terphenyl-d14	98	65 - 121	05/02/18 07:03	05/04/18 02:14	10
Phenol-d5	78	54 - 120	05/02/18 07:03	05/04/18 02:14	10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND		96	19	ug/Kg	₩	04/24/18 07:51	04/26/18 14:36	50
4,4'-DDE	ND		96	20	ug/Kg	₽	04/24/18 07:51	04/26/18 14:36	50
4,4'-DDT	ND		96	22	ug/Kg	₽	04/24/18 07:51	04/26/18 14:36	50
Aldrin	ND		96	24	ug/Kg	≎	04/24/18 07:51	04/26/18 14:36	50
alpha-BHC	ND		96	17	ug/Kg	₽	04/24/18 07:51	04/26/18 14:36	50
cis-Chlordane	ND		96	48	ug/Kg	₽	04/24/18 07:51	04/26/18 14:36	50
beta-BHC	ND		96	17	ug/Kg	₽	04/24/18 07:51	04/26/18 14:36	50
delta-BHC	ND		96	18	ug/Kg	₩	04/24/18 07:51	04/26/18 14:36	50
Dieldrin	ND		96	23	ug/Kg	₽	04/24/18 07:51	04/26/18 14:36	50
Endosulfan I	ND		96	18	ug/Kg	\$	04/24/18 07:51	04/26/18 14:36	50
Endosulfan II	ND		96	17	ug/Kg	₽	04/24/18 07:51	04/26/18 14:36	50
Endosulfan sulfate	ND		96	18	ug/Kg	₽	04/24/18 07:51	04/26/18 14:36	50
Endrin	ND		96	19	ug/Kg	₽	04/24/18 07:51	04/26/18 14:36	50
Endrin aldehyde	ND		96	25	ug/Kg	₽	04/24/18 07:51	04/26/18 14:36	50
Endrin ketone	ND		96	24	ug/Kg	₽	04/24/18 07:51	04/26/18 14:36	50
gamma-BHC (Lindane)	ND		96	18	ug/Kg	₽	04/24/18 07:51	04/26/18 14:36	50
trans-Chlordane	ND		96	31	ug/Kg	₽	04/24/18 07:51	04/26/18 14:36	50
Heptachlor	ND		96	21	ug/Kg	₽	04/24/18 07:51	04/26/18 14:36	50
Heptachlor epoxide	ND		96	25	ug/Kg	≎	04/24/18 07:51	04/26/18 14:36	50
Methoxychlor	ND		96	20	ug/Kg	₽	04/24/18 07:51	04/26/18 14:36	50
Toxaphene	ND		960	560	ug/Kg	₽	04/24/18 07:51	04/26/18 14:36	50

TestAmerica Buffalo

2

4

6

0

3

11

12

14

Client: O'Brien & Gere Inc of North America Project/Site: Midler Crossing - Characteristic Soil TestAmerica Job ID: 480-134628-1

Lab Sample ID: 480-134628-6

Matrix: Solid

Percent Solids: 85.1

Client Sample ID: X-2-042018

Date Collected: 04/20/18 00:00 Date Received: 04/21/18 01:45

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	0	X	45 - 120	04/24/18 07:51	04/26/18 14:36	50
Tetrachloro-m-xylene	0	X	30 - 124	04/24/18 07:51	04/26/18 14:36	50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.21	0.041	mg/Kg	<u> </u>	04/27/18 07:20	04/30/18 21:56	1
PCB-1221	ND		0.21	0.041	mg/Kg	₽	04/27/18 07:20	04/30/18 21:56	1
PCB-1232	ND		0.21	0.041	mg/Kg	₽	04/27/18 07:20	04/30/18 21:56	1
PCB-1242	ND		0.21	0.041	mg/Kg	₽	04/27/18 07:20	04/30/18 21:56	1
PCB-1248	ND		0.21	0.041	mg/Kg	₽	04/27/18 07:20	04/30/18 21:56	1
PCB-1254	ND		0.21	0.098	mg/Kg	₩	04/27/18 07:20	04/30/18 21:56	1
PCB-1260	ND		0.21	0.098	mg/Kg	₽	04/27/18 07:20	04/30/18 21:56	1
PCB-1262	ND		0.21	0.098	mg/Kg	₽	04/27/18 07:20	04/30/18 21:56	1
PCB-1268	ND		0.21	0.098	mg/Kg	₩	04/27/18 07:20	04/30/18 21:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	91		60 - 154				04/27/18 07:20	04/30/18 21:56	1
DCB Decachlorobiphenyl	93		65 - 174				04/27/18 07:20	04/30/18 21:56	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	6760		11.6	5.1	mg/Kg	₩	04/21/18 11:57	04/24/18 11:57	1
Antimony	ND		17.4	0.46	mg/Kg	₽	04/21/18 11:57	04/24/18 11:57	1
Arsenic	5.0		2.3	0.46	mg/Kg	₽	04/21/18 11:57	04/24/18 11:57	1
Barium	72.9		0.58	0.13	mg/Kg	₽	04/21/18 11:57	04/24/18 11:57	1
Beryllium	0.34		0.23	0.032	mg/Kg	₽	04/21/18 11:57	04/24/18 11:57	1
Cadmium	0.29		0.23	0.035	mg/Kg	₽	04/21/18 11:57	04/24/18 11:57	1
Calcium	128000	В	290	19.1	mg/Kg	₽	04/21/18 11:57	04/25/18 10:15	5
Chromium	13.2	В	0.58	0.23	mg/Kg	₽	04/21/18 11:57	04/24/18 11:57	1
Cobalt	3.7		0.58	0.058	mg/Kg	₽	04/21/18 11:57	04/24/18 11:57	1
Copper	42.6		5.8	1.2	mg/Kg	φ.	04/21/18 11:57	04/25/18 10:15	5
Iron	16200	В	11.6	4.1	mg/Kg	₽	04/21/18 11:57	04/24/18 11:57	1
Lead	38.7		1.2	0.28	mg/Kg	₽	04/21/18 11:57	04/24/18 11:57	1
Magnesium	7790		23.2	1.1	mg/Kg	₽	04/21/18 11:57	04/24/18 11:57	1
Manganese	323	^	0.23	0.037	mg/Kg	₽	04/21/18 11:57	04/24/18 11:57	1
Nickel	14.1		5.8	0.27	mg/Kg	₽	04/21/18 11:57	04/24/18 11:57	1
Potassium	1900		34.8	23.2	mg/Kg	₽	04/21/18 11:57	04/24/18 11:57	1
Selenium	ND		4.6	0.46	mg/Kg	₽	04/21/18 11:57	04/24/18 11:57	1
Silver	ND		0.70	0.23	mg/Kg	₽	04/21/18 11:57	04/24/18 11:57	1
Sodium	196		162	15.1	mg/Kg	₽	04/21/18 11:57	04/24/18 11:57	1
Thallium	ND		7.0	0.35	mg/Kg	₽	04/21/18 11:57	04/24/18 11:57	1
Vanadium	21.8		0.58	0.13	mg/Kg	₽	04/21/18 11:57	04/24/18 11:57	1
Zinc	99.9		2.3	0.74	mg/Kg		04/21/18 11:57	04/24/18 11:57	1

Method: 7471B - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.062		0.023	0.0095	mg/Kg	\	05/02/18 15:10	05/02/18 16:46	1

Client: O'Brien & Gere Inc of North America Project/Site: Midler Crossing - Characteristic Soil TestAmerica Job ID: 480-134628-1

Client Sample ID: NE-SE BERM-042018

Date Collected: 04/20/18 09:30 Date Received: 04/21/18 01:45 Lab Sample ID: 480-134628-7

. Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.010	0.0041	mg/L			05/08/18 23:33	10
Carbon tetrachloride	ND		0.010	0.0027	mg/L			05/08/18 23:33	10
Chlorobenzene	ND		0.010	0.0075	mg/L			05/08/18 23:33	10
Chloroform	ND		0.010	0.0034	mg/L			05/08/18 23:33	10
1,2-Dichloroethane	ND		0.010	0.0021	mg/L			05/08/18 23:33	10
1,1-Dichloroethene	ND		0.010	0.0029	mg/L			05/08/18 23:33	10
2-Butanone (MEK)	ND		0.050	0.013	mg/L			05/08/18 23:33	10
Tetrachloroethene	ND		0.010	0.0036	mg/L			05/08/18 23:33	10
Trichloroethene	ND		0.010	0.0046	mg/L			05/08/18 23:33	10
Vinyl chloride	ND		0.010	0.0090	mg/L			05/08/18 23:33	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		77 - 120			-		05/08/18 23:33	10
Toluene-d8 (Surr)	94		80 - 120					05/08/18 23:33	10
4-Bromofluorobenzene (Surr)	104		73 - 120					05/08/18 23:33	10
Dibromofluoromethane (Surr)	106		75 - 123					05/08/18 23:33	10

Client Sample ID: E-BERM-042018 Lab Sample ID: 480-134628-8

Date Collected: 04/20/18 10:15

Date Received: 04/21/18 01:45

Matrix: Solid
Percent Solids: 91.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	vs	5.4	0.39	ug/Kg	₩	04/23/18 09:21	04/23/18 19:10	1
1,1,2,2-Tetrachloroethane	ND	vs	5.4	0.87	ug/Kg	₩	04/23/18 09:21	04/23/18 19:10	1
1,1,2-Trichloroethane	ND	VS	5.4	0.70	ug/Kg	₩	04/23/18 09:21	04/23/18 19:10	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	VS	5.4	1.2	ug/Kg	*	04/23/18 09:21	04/23/18 19:10	1
1,1-Dichloroethane	ND	vs	5.4	0.66	ug/Kg	₩	04/23/18 09:21	04/23/18 19:10	1
1,1-Dichloroethene	ND	VS	5.4	0.66	ug/Kg	₩	04/23/18 09:21	04/23/18 19:10	1
1,2,4-Trichlorobenzene	ND	vs	5.4	0.33	ug/Kg	₽	04/23/18 09:21	04/23/18 19:10	1
1,2-Dibromo-3-Chloropropane	ND	vs	5.4	2.7	ug/Kg	₩	04/23/18 09:21	04/23/18 19:10	1
1,2-Dichlorobenzene	ND	vs	5.4	0.42	ug/Kg	₽	04/23/18 09:21	04/23/18 19:10	1
1,2-Dichloroethane	ND	VS	5.4	0.27	ug/Kg	*	04/23/18 09:21	04/23/18 19:10	1
1,2-Dichloropropane	ND	VS	5.4	2.7	ug/Kg	₽	04/23/18 09:21	04/23/18 19:10	1
1,3-Dichlorobenzene	ND	VS	5.4	0.28	ug/Kg	₽	04/23/18 09:21	04/23/18 19:10	1
1,4-Dichlorobenzene	ND	VS	5.4	0.75	ug/Kg	*	04/23/18 09:21	04/23/18 19:10	1
2-Butanone (MEK)	ND	vs	27	2.0	ug/Kg	₽	04/23/18 09:21	04/23/18 19:10	1
2-Hexanone	ND	VS	27	2.7	ug/Kg	₽	04/23/18 09:21	04/23/18 19:10	1
4-Methyl-2-pentanone (MIBK)	ND	VS	27	1.8	ug/Kg	\$	04/23/18 09:21	04/23/18 19:10	1
Acetone	ND	VS	27	4.5	ug/Kg	₽	04/23/18 09:21	04/23/18 19:10	1
Benzene	ND	VS	5.4	0.26	ug/Kg	₽	04/23/18 09:21	04/23/18 19:10	1
Bromodichloromethane	ND	VS	5.4	0.72	ug/Kg	₽	04/23/18 09:21	04/23/18 19:10	1
Bromoform	ND	VS	5.4	2.7	ug/Kg	₽	04/23/18 09:21	04/23/18 19:10	1
Bromomethane	ND	VS	5.4	0.48	ug/Kg	₽	04/23/18 09:21	04/23/18 19:10	1
Carbon disulfide	ND	VS	5.4	2.7	ug/Kg	\$	04/23/18 09:21	04/23/18 19:10	1
Carbon tetrachloride	ND	vs	5.4	0.52	ug/Kg	₽	04/23/18 09:21	04/23/18 19:10	1
Chlorobenzene	ND	VS	5.4	0.71	ug/Kg	☼	04/23/18 09:21	04/23/18 19:10	1
Dibromochloromethane	ND	VS	5.4	0.69	ug/Kg	₽	04/23/18 09:21	04/23/18 19:10	1
Chloroethane	ND	vs	5.4	1.2	ug/Kg	☼	04/23/18 09:21	04/23/18 19:10	1
Chloroform	ND	vs	5.4	0.33	ug/Kg	₽	04/23/18 09:21	04/23/18 19:10	1

TestAmerica Buffalo

Page 22 of 66

2

3

_

6

8

10

11

12

TestAmerica Job ID: 480-134628-1

Client: O'Brien & Gere Inc of North America Project/Site: Midler Crossing - Characteristic Soil

Client Sample ID: E-BERM-042018

Date Collected: 04/20/18 10:15 Date Received: 04/21/18 01:45

Lab Sample ID: 480-134628-8

Matrix: Solid

Percent Solids: 91.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	MD	VS	5.4	0.32	ug/Kg	₩	04/23/18 09:21	04/23/18 19:10	1
cis-1,2-Dichloroethene	ND	VS	5.4	0.69	ug/Kg	₽	04/23/18 09:21	04/23/18 19:10	1
cis-1,3-Dichloropropene	ND	VS	5.4	0.77	ug/Kg	₽	04/23/18 09:21	04/23/18 19:10	1
Cyclohexane	ND	VS	5.4	0.75	ug/Kg	₽	04/23/18 09:21	04/23/18 19:10	1
Dichlorodifluoromethane	ND	VS	5.4	0.44	ug/Kg	₽	04/23/18 09:21	04/23/18 19:10	1
Ethylbenzene	ND	VS	5.4	0.37	ug/Kg	₽	04/23/18 09:21	04/23/18 19:10	1
1,2-Dibromoethane	ND	VS	5.4	0.69	ug/Kg	₽	04/23/18 09:21	04/23/18 19:10	1
Isopropylbenzene	ND	VS	5.4	0.81	ug/Kg	₽	04/23/18 09:21	04/23/18 19:10	1
Methyl acetate	ND	VS	27	3.2	ug/Kg	₽	04/23/18 09:21	04/23/18 19:10	1
Methyl tert-butyl ether	ND	VS	5.4	0.53	ug/Kg	\$	04/23/18 09:21	04/23/18 19:10	1
Methylcyclohexane	ND	VS	5.4	0.82	ug/Kg	₽	04/23/18 09:21	04/23/18 19:10	1
Methylene Chloride	5.2	J vs	5.4	2.5	ug/Kg	₽	04/23/18 09:21	04/23/18 19:10	1
Styrene	ND	VS	5.4	0.27	ug/Kg	₽	04/23/18 09:21	04/23/18 19:10	1
Tetrachloroethene	ND	VS	5.4	0.72	ug/Kg	₽	04/23/18 09:21	04/23/18 19:10	1
Toluene	ND	VS	5.4	0.41	ug/Kg	₽	04/23/18 09:21	04/23/18 19:10	1
trans-1,2-Dichloroethene	ND	VS	5.4	0.55	ug/Kg	₽	04/23/18 09:21	04/23/18 19:10	1
trans-1,3-Dichloropropene	ND	VS	5.4	2.4	ug/Kg	₽	04/23/18 09:21	04/23/18 19:10	1
Trichloroethene	ND	VS	5.4	1.2	ug/Kg	₽	04/23/18 09:21	04/23/18 19:10	1
Trichlorofluoromethane	ND	VS	5.4	0.51	ug/Kg	₽	04/23/18 09:21	04/23/18 19:10	1
Vinyl chloride	ND	vs	5.4	0.66	ug/Kg	₩	04/23/18 09:21	04/23/18 19:10	1
Xylenes, Total	ND	VS	11	0.90	ug/Kg	₽	04/23/18 09:21	04/23/18 19:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	105		71 - 125				04/23/18 09:21	04/23/18 19:10	1
1,2-Dichloroethane-d4 (Surr)	105		64 - 126				04/23/18 09:21	04/23/18 19:10	1
4-Bromofluorobenzene (Surr)	102		72 - 126				04/23/18 09:21	04/23/18 19:10	1

Client Sample ID: NW-SW-BERM-042018

106

Date Collected: 04/20/18 10:30

Dibromofluoromethane (Surr)

Date Received: 04/21/18 01:45

Lab	Samp	le ID:	480-1	34628-9
-----	------	--------	-------	---------

04/23/18 19:10

04/23/18 09:21

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.010	0.0041	mg/L			05/08/18 23:57	10
Carbon tetrachloride	ND		0.010	0.0027	mg/L			05/08/18 23:57	10
Chlorobenzene	ND		0.010	0.0075	mg/L			05/08/18 23:57	10
Chloroform	ND		0.010	0.0034	mg/L			05/08/18 23:57	10
1,2-Dichloroethane	ND		0.010	0.0021	mg/L			05/08/18 23:57	10
1,1-Dichloroethene	ND		0.010	0.0029	mg/L			05/08/18 23:57	10
2-Butanone (MEK)	ND		0.050	0.013	mg/L			05/08/18 23:57	10
Tetrachloroethene	0.0057	J	0.010	0.0036	mg/L			05/08/18 23:57	10
Trichloroethene	ND		0.010	0.0046	mg/L			05/08/18 23:57	10
Vinyl chloride	ND		0.010	0.0090	mg/L			05/08/18 23:57	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		77 - 120			-		05/08/18 23:57	10
Toluene-d8 (Surr)	92		80 - 120					05/08/18 23:57	10
4-Bromofluorobenzene (Surr)	98		73 - 120					05/08/18 23:57	10
Dibromofluoromethane (Surr)	100		75 - 123					05/08/18 23:57	10

60 - 140

TestAmerica Buffalo

Page 23 of 66

5/10/2018

Client: O'Brien & Gere Inc of North America Project/Site: Midler Crossing - Characteristic Soil TestAmerica Job ID: 480-134628-1

Lab Sample ID: 480-134628-10

Matrix: Solid

Percent Solids: 86.6

Client Sample ID: W-BERM-042018

Date Collected: 04/20/18 11:00 Date Received: 04/21/18 01:45

Method: 8260C - Volatile Organic (-	•							
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	VS	5.7	0.42	ug/Kg	*	04/23/18 09:21	04/23/18 19:36	•
1,1,2,2-Tetrachloroethane	ND	VS	5.7	0.93	ug/Kg	₩	04/23/18 09:21	04/23/18 19:36	•
1,1,2-Trichloroethane	ND	VS	5.7	0.75	ug/Kg	#	04/23/18 09:21	04/23/18 19:36	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	VS	5.7	1.3	ug/Kg	₽	04/23/18 09:21	04/23/18 19:36	1
1,1-Dichloroethane	ND	VS	5.7	0.70	ug/Kg	₩	04/23/18 09:21	04/23/18 19:36	1
1,1-Dichloroethene	ND	VS	5.7	0.70	ug/Kg	₩	04/23/18 09:21	04/23/18 19:36	1
1,2,4-Trichlorobenzene	ND	vs	5.7	0.35	ug/Kg	\$	04/23/18 09:21	04/23/18 19:36	1
1,2-Dibromo-3-Chloropropane	ND	VS	5.7	2.9	ug/Kg	₽	04/23/18 09:21	04/23/18 19:36	1
1,2-Dichlorobenzene	ND	VS	5.7	0.45	ug/Kg	₽	04/23/18 09:21	04/23/18 19:36	1
1,2-Dichloroethane	ND	VS	5.7	0.29	ug/Kg		04/23/18 09:21	04/23/18 19:36	1
1,2-Dichloropropane	ND	vs	5.7	2.9	ug/Kg	₽	04/23/18 09:21	04/23/18 19:36	1
1,3-Dichlorobenzene	ND	vs	5.7	0.29	ug/Kg	₽	04/23/18 09:21	04/23/18 19:36	1
1,4-Dichlorobenzene	ND	VS	5.7	0.80	ug/Kg		04/23/18 09:21	04/23/18 19:36	1
2-Butanone (MEK)	ND	vs	29	2.1	ug/Kg	₽	04/23/18 09:21	04/23/18 19:36	1
2-Hexanone	ND	vs	29	2.9	ug/Kg	₩	04/23/18 09:21	04/23/18 19:36	1
4-Methyl-2-pentanone (MIBK)	ND	VS	29	1.9	ug/Kg		04/23/18 09:21	04/23/18 19:36	1
Acetone	ND		29	4.8	ug/Kg	₽	04/23/18 09:21	04/23/18 19:36	1
Benzene	ND		5.7	0.28	ug/Kg	₩	04/23/18 09:21	04/23/18 19:36	1
Bromodichloromethane	ND		5.7	0.77	ug/Kg		04/23/18 09:21	04/23/18 19:36	1
Bromoform	ND		5.7		ug/Kg	₽	04/23/18 09:21	04/23/18 19:36	1
Bromomethane	ND		5.7		ug/Kg	*	04/23/18 09:21	04/23/18 19:36	1
Carbon disulfide	ND		5.7		ug/Kg		04/23/18 09:21	04/23/18 19:36	1
Carbon tetrachloride	ND		5.7	0.56	ug/Kg	*	04/23/18 09:21	04/23/18 19:36	1
Chlorobenzene	ND		5.7		ug/Kg ug/Kg	*	04/23/18 09:21	04/23/18 19:36	1
Dibromochloromethane	ND		5.7		ug/Kg ug/Kg		04/23/18 09:21	04/23/18 19:36	
Chloroethane			5.7 5.7				04/23/18 09:21	04/23/18 19:36	1
	ND			1.3	ug/Kg				1
Chloroform	ND		5.7	0.35	ug/Kg		04/23/18 09:21	04/23/18 19:36	
Chloromethane	ND		5.7		ug/Kg	‡	04/23/18 09:21	04/23/18 19:36	1
cis-1,2-Dichloroethene	ND		5.7	0.73	ug/Kg	*	04/23/18 09:21	04/23/18 19:36	1
cis-1,3-Dichloropropene	ND		5.7	0.83	ug/Kg	<u></u>	04/23/18 09:21	04/23/18 19:36	1
Cyclohexane	ND		5.7	0.80	ug/Kg		04/23/18 09:21	04/23/18 19:36	1
Dichlorodifluoromethane	ND		5.7	0.47	ug/Kg	*	04/23/18 09:21	04/23/18 19:36	1
Ethylbenzene	ND	VS	5.7	0.40	ug/Kg		04/23/18 09:21	04/23/18 19:36	1
1,2-Dibromoethane	ND	VS	5.7	0.74	ug/Kg	₩.	04/23/18 09:21	04/23/18 19:36	1
sopropylbenzene	ND		5.7		ug/Kg	₽	04/23/18 09:21	04/23/18 19:36	1
Methyl acetate	ND	VS	29		ug/Kg	₩	04/23/18 09:21	04/23/18 19:36	1
Methyl tert-butyl ether	ND	VS	5.7	0.56	ug/Kg	₽	04/23/18 09:21	04/23/18 19:36	1
Methylcyclohexane	ND	VS	5.7	0.87	ug/Kg	₽	04/23/18 09:21	04/23/18 19:36	1
Methylene Chloride	7.4	vs	5.7	2.6	ug/Kg	₽	04/23/18 09:21	04/23/18 19:36	1
Styrene	ND	VS	5.7	0.29	ug/Kg	₩	04/23/18 09:21	04/23/18 19:36	
Tetrachloroethene	2.3	J vs	5.7	0.77	ug/Kg	₩	04/23/18 09:21	04/23/18 19:36	,
Гoluene	ND	VS	5.7	0.43	ug/Kg	₩	04/23/18 09:21	04/23/18 19:36	,
rans-1,2-Dichloroethene	ND	VS	5.7	0.59	ug/Kg	*	04/23/18 09:21	04/23/18 19:36	1
trans-1,3-Dichloropropene	ND	vs	5.7	2.5	ug/Kg	₽	04/23/18 09:21	04/23/18 19:36	1
Trichloroethene	ND	vs	5.7	1.3	ug/Kg	₽	04/23/18 09:21	04/23/18 19:36	1
Trichlorofluoromethane	ND	VS	5.7	0.54	ug/Kg		04/23/18 09:21	04/23/18 19:36	1
Vinyl chloride	ND		5.7		ug/Kg	₩	04/23/18 09:21	04/23/18 19:36	1
Xylenes, Total	ND		11		ug/Kg	₽	04/23/18 09:21	04/23/18 19:36	1

_

4

6

8

10

12

14

Client: O'Brien & Gere Inc of North America Project/Site: Midler Crossing - Characteristic Soil TestAmerica Job ID: 480-134628-1

Client Sample ID: W-BERM-042018

Date Collected: 04/20/18 11:00

Lab Sample ID: 480-134628-10

Matrix: Solid

Date Received: 04/21/18 01:45 Percent Solids: 86.6

Surrogate	%Recovery	Qualifier Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	105	71 - 125	04/23/18 09:21	04/23/18 19:36	1
1,2-Dichloroethane-d4 (Surr)	105	64 - 126	04/23/18 09:21	04/23/18 19:36	1
4-Bromofluorobenzene (Surr)	99	72 - 126	04/23/18 09:21	04/23/18 19:36	1
Dibromofluoromethane (Surr)	108	60 - 140	04/23/18 09:21	04/23/18 19:36	1

Client Sample ID: X-1-042018 Lab Sample ID: 480-134628-11

Dibromofluoromethane (Surr)

05/09/18 00:21

Date Collected: 04/20/18 00:00 **Matrix: Solid** Date Received: 04/21/18 01:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.010	0.0041	mg/L			05/09/18 00:21	10
Carbon tetrachloride	ND		0.010	0.0027	mg/L			05/09/18 00:21	10
Chlorobenzene	ND		0.010	0.0075	mg/L			05/09/18 00:21	10
Chloroform	ND		0.010	0.0034	mg/L			05/09/18 00:21	10
1,2-Dichloroethane	ND		0.010	0.0021	mg/L			05/09/18 00:21	10
1,1-Dichloroethene	ND		0.010	0.0029	mg/L			05/09/18 00:21	10
2-Butanone (MEK)	ND		0.050	0.013	mg/L			05/09/18 00:21	10
Tetrachloroethene	0.0071	J	0.010	0.0036	mg/L			05/09/18 00:21	10
Trichloroethene	ND		0.010	0.0046	mg/L			05/09/18 00:21	10
Vinyl chloride	ND		0.010	0.0090	mg/L			05/09/18 00:21	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101	-	77 - 120			=		05/09/18 00:21	10
Toluene-d8 (Surr)	90		80 - 120					05/09/18 00:21	10
4-Bromofluorobenzene (Surr)	98		73 - 120					05/09/18 00:21	10

Client Sample ID: X-2-042018 Lab Sample ID: 480-134628-12

75 - 123

103

Date Collected: 04/20/18 00:00 Matrix: Solid Date Received: 04/21/18 01:45 Percent Solids: 89.9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	vs	5.6	0.40	ug/Kg	<u> </u>	04/23/18 09:21	04/23/18 20:01	1
1,1,2,2-Tetrachloroethane	ND	vs F1	5.6	0.90	ug/Kg	₽	04/23/18 09:21	04/23/18 20:01	1
1,1,2-Trichloroethane	ND	vs F1	5.6	0.72	ug/Kg	₽	04/23/18 09:21	04/23/18 20:01	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	VS	5.6	1.3	ug/Kg	₽	04/23/18 09:21	04/23/18 20:01	1
1,1-Dichloroethane	ND	vs	5.6	0.68	ug/Kg	₽	04/23/18 09:21	04/23/18 20:01	1
1,1-Dichloroethene	ND	VS	5.6	0.68	ug/Kg	₽	04/23/18 09:21	04/23/18 20:01	1
1,2,4-Trichlorobenzene	ND	vs F1	5.6	0.34	ug/Kg	₽	04/23/18 09:21	04/23/18 20:01	1
1,2-Dibromo-3-Chloropropane	ND	vs F1	5.6	2.8	ug/Kg	₽	04/23/18 09:21	04/23/18 20:01	1
1,2-Dichlorobenzene	ND	vs F1	5.6	0.43	ug/Kg	₽	04/23/18 09:21	04/23/18 20:01	1
1,2-Dichloroethane	ND	vs F1	5.6	0.28	ug/Kg	₽	04/23/18 09:21	04/23/18 20:01	1
1,2-Dichloropropane	ND	VS	5.6	2.8	ug/Kg	₽	04/23/18 09:21	04/23/18 20:01	1
1,3-Dichlorobenzene	ND	vs F1	5.6	0.29	ug/Kg	₽	04/23/18 09:21	04/23/18 20:01	1
1,4-Dichlorobenzene	ND	vs F1	5.6	0.78	ug/Kg	₽	04/23/18 09:21	04/23/18 20:01	1
2-Butanone (MEK)	ND	vs F1	28	2.0	ug/Kg	₽	04/23/18 09:21	04/23/18 20:01	1
2-Hexanone	ND	vs F1	28	2.8	ug/Kg	₽	04/23/18 09:21	04/23/18 20:01	1
4-Methyl-2-pentanone (MIBK)	ND	vs F1	28	1.8	ug/Kg	₽	04/23/18 09:21	04/23/18 20:01	1
Acetone	ND	vs F1	28	4.7	ug/Kg	₽	04/23/18 09:21	04/23/18 20:01	1

TestAmerica Buffalo

Page 25 of 66

Client: O'Brien & Gere Inc of North America Project/Site: Midler Crossing - Characteristic Soil

Dibromofluoromethane (Surr)

TestAmerica Job ID: 480-134628-1

Client Sample ID: X-2-042018 Lab Sample ID: 480-134628-12

Date Collected: 04/20/18 00:00 Matrix: Solid Date Received: 04/21/18 01:45 Percent Solids: 89.9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND	vs	5.6	0.27	ug/Kg	\	04/23/18 09:21	04/23/18 20:01	1
Bromodichloromethane	ND	vs F1	5.6	0.74	ug/Kg	\$	04/23/18 09:21	04/23/18 20:01	1
Bromoform	ND	vs F1	5.6	2.8	ug/Kg	₽	04/23/18 09:21	04/23/18 20:01	1
Bromomethane	ND	VS	5.6	0.50	ug/Kg	₽	04/23/18 09:21	04/23/18 20:01	1
Carbon disulfide	ND	vs F1	5.6	2.8	ug/Kg	₽	04/23/18 09:21	04/23/18 20:01	1
Carbon tetrachloride	ND	vs F1	5.6	0.54	ug/Kg	₽	04/23/18 09:21	04/23/18 20:01	1
Chlorobenzene	ND	vs F1	5.6	0.73	ug/Kg	₽	04/23/18 09:21	04/23/18 20:01	1
Dibromochloromethane	ND	vs F1	5.6	0.71	ug/Kg	₽	04/23/18 09:21	04/23/18 20:01	1
Chloroethane	ND	vs	5.6	1.3	ug/Kg	₽	04/23/18 09:21	04/23/18 20:01	1
Chloroform	ND	vs	5.6	0.34	ug/Kg	₽	04/23/18 09:21	04/23/18 20:01	1
Chloromethane	ND	VS	5.6	0.34	ug/Kg	₽	04/23/18 09:21	04/23/18 20:01	1
cis-1,2-Dichloroethene	ND	vs F1	5.6	0.71	ug/Kg	₽	04/23/18 09:21	04/23/18 20:01	1
cis-1,3-Dichloropropene	ND	vs F1	5.6	0.80	ug/Kg	₽	04/23/18 09:21	04/23/18 20:01	1
Cyclohexane	ND	VS	5.6	0.78	ug/Kg	ф.	04/23/18 09:21	04/23/18 20:01	1
Dichlorodifluoromethane	ND	vs	5.6	0.46	ug/Kg	₽	04/23/18 09:21	04/23/18 20:01	1
Ethylbenzene	ND	vs F1	5.6	0.38	ug/Kg	₽	04/23/18 09:21	04/23/18 20:01	1
1,2-Dibromoethane	ND	vs F1	5.6	0.71	ug/Kg	\$	04/23/18 09:21	04/23/18 20:01	1
Isopropylbenzene	ND	VS	5.6	0.84	ug/Kg	₽	04/23/18 09:21	04/23/18 20:01	1
Methyl acetate	ND	vs	28	3.4	ug/Kg	₽	04/23/18 09:21	04/23/18 20:01	1
Methyl tert-butyl ether	ND	VS	5.6	0.55	ug/Kg	\$	04/23/18 09:21	04/23/18 20:01	1
Methylcyclohexane	ND	vs F1	5.6	0.84	ug/Kg	₽	04/23/18 09:21	04/23/18 20:01	1
Methylene Chloride	6.5	vs	5.6	2.6	ug/Kg	₽	04/23/18 09:21	04/23/18 20:01	1
Styrene	ND	vs F1	5.6	0.28	ug/Kg	\$	04/23/18 09:21	04/23/18 20:01	1
Tetrachloroethene	7.4	vs	5.6	0.75	ug/Kg	₽	04/23/18 09:21	04/23/18 20:01	1
Toluene	ND	vs	5.6	0.42	ug/Kg	☼	04/23/18 09:21	04/23/18 20:01	1
trans-1,2-Dichloroethene	ND	vs F1	5.6	0.57	ug/Kg		04/23/18 09:21	04/23/18 20:01	1
trans-1,3-Dichloropropene	ND	vs F1	5.6	2.4	ug/Kg	₽	04/23/18 09:21	04/23/18 20:01	1
Trichloroethene	1.5	J vs F1	5.6	1.2	ug/Kg	☼	04/23/18 09:21	04/23/18 20:01	1
Trichlorofluoromethane	ND	VS	5.6	0.53	ug/Kg		04/23/18 09:21	04/23/18 20:01	1
Vinyl chloride	ND	vs	5.6	0.68	ug/Kg	₽	04/23/18 09:21	04/23/18 20:01	1
Xylenes, Total	ND	vs F1	11	0.93	ug/Kg	₽	04/23/18 09:21	04/23/18 20:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	112		71 - 125				04/23/18 09:21	04/23/18 20:01	1
1,2-Dichloroethane-d4 (Surr)	104		64 - 126				04/23/18 09:21	04/23/18 20:01	1
4-Bromofluorobenzene (Surr)	92		72 - 126				04/23/18 09:21	04/23/18 20:01	1

04/23/18 20:01

04/23/18 09:21

60 - 140

TestAmerica Job ID: 480-134628-1

Client: O'Brien & Gere Inc of North America Project/Site: Midler Crossing - Characteristic Soil

Method: 8260C - TCLP Volatiles

Matrix: Solid Prep Type: Total/NA

_				Percent Sur	rogate Reco
		TOL	DCA	BFB	DBFM
Lab Sample ID	Client Sample ID	(80-120)	(77-120)	(73-120)	(75-123)
LCS 480-412741/5	Lab Control Sample	97	108	104	107
LCS 480-413229/5	Lab Control Sample	94	102	101	106
MB 480-412741/7	Method Blank	95	105	99	103
MB 480-413229/7	Method Blank	105	107	104	111

Surrogate Legend

TOL = Toluene-d8 (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8260C - TCLP Volatiles

Matrix: Solid Prep Type: TCLP

				Percent Sur	rogate Rec
		DCA	TOL	BFB	DBFM
Lab Sample ID	Client Sample ID	(77-120)	(80-120)	(73-120)	(75-123)
480-134628-7	NE-SE BERM-042018	104	94	104	106
480-134628-9	NW-SW-BERM-042018	100	92	98	100
480-134628-11	X-1-042018	101	90	98	103
LB 480-411593/1-A	Method Blank	108	95	101	103

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Solid Prep Type: Total/NA

			Percent Sur	ercent Surrogate Recove		
		TOL	DCA	BFB	DBFM	
Lab Sample ID	Client Sample ID	(71-125)	(64-126)	(72-126)	(60-140)	
480-134628-8	E-BERM-042018	105	105	102	106	
480-134628-10	W-BERM-042018	105	105	99	108	
480-134628-12	X-2-042018	112	104	92	107	
480-134628-12 MS	X-2-042018	110	95	97	107	
480-134628-12 MSD	X-2-042018	111	92	95	105	
LCS 480-410288/1-A	Lab Control Sample	106	99	105	106	
MB 480-410288/2-A	Method Blank	104	106	102	106	

Surrogate Legend

TOL = Toluene-d8 (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TestAmerica Buffalo

Page 27 of 66

-

3

6

Q

9

11

13

14

Client: O'Brien & Gere Inc of North America Project/Site: Midler Crossing - Characteristic Soil

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Solid Prep Type: Total/NA

_				Percent Su	rogate Reco	very (Accept	ance Limits)
		TBP	FBP	2FP	NBZ	TPHd14	PHL
Lab Sample ID	Client Sample ID	(54-120)	(60-120)	(52-120)	(53-120)	(65-121)	(54-120)
480-134628-2	E-BERM-042018	116	96	94	91	111	89
480-134628-4	W-BERM-042018	81	85	76	80	97	82
480-134628-6	X-2-042018	75	84	87	75	98	78
LCS 480-411993/2-A	Lab Control Sample	93	76	69	78	107	75
MB 480-411993/1-A	Method Blank	77	88	80	88	106	83

Surrogate Legend

TBP = 2,4,6-Tribromophenol

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol

NBZ = Nitrobenzene-d5

TPHd14 = p-Terphenyl-d14

PHL = Phenol-d5

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Solid Prep Type: Total/NA

=			Percent Surrogate Recovery (Acceptance Limits)							
		ТВР	FBP	2FP	NBZ	TPHd14	PHL			
Lab Sample ID	Client Sample ID	(41-120)	(48-120)	(35-120)	(46-120)	(59-136)	(22-120)			
LCS 480-412129/2-A	Lab Control Sample	100	86	44	82	100	30			
LCSD 480-412129/3-A	Lab Control Sample Dup	91	84	43	77	100	30			
MB 480-412129/1-A	Method Blank	89	98	48	95	111	33			

Surrogate Legend

TBP = 2,4,6-Tribromophenol

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol

NBZ = Nitrobenzene-d5

TPHd14 = p-Terphenyl-d14

PHL = Phenol-d5

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Solid **Prep Type: TCLP**

_		Percent Surrogate Recovery (Acceptance Limits)						
		ТВР	FBP	2FP	NBZ	TPHd14	PHL	
Lab Sample ID	Client Sample ID	(41-120)	(48-120)	(35-120)	(46-120)	(59-136)	(22-120)	
480-134628-1	NE-SE BERM-042018	95	82	45	77	104	30	
180-134628-3	NW-SW-BERM-042018	89	77	42	78	106	29	
480-134628-5	X-1-042018	95	85	42	80	102	29	
LB 480-411629/1-D	Method Blank	87	85	44	81	104	32	

Surrogate Legend

TBP = 2,4,6-Tribromophenol

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol

NBZ = Nitrobenzene-d5

TPHd14 = p-Terphenyl-d14

PHL = Phenol-d5

TestAmerica Buffalo

Page 28 of 66

Surrogate Summary

Client: O'Brien & Gere Inc of North America Project/Site: Midler Crossing - Characteristic Soil TestAmerica Job ID: 480-134628-1

Method: 8081B - Organochlorine Pesticides (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		DCBP2	TCX2	
Lab Sample ID	Client Sample ID	(45-120)	(30-124)	
480-134628-2	E-BERM-042018	0 X	0 X	
480-134628-4	W-BERM-042018	0 X	0 X	
480-134628-6	X-2-042018	0 X	0 X	
LCS 480-410453/2-A	Lab Control Sample	73	53	
MB 480-410453/1-A	Method Blank	73	54	
Surrogate Legend				

DCBP = DCB Decachlorobiphenyl

TCX = Tetrachloro-m-xylene

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		TCX1	DCBP1	
Lab Sample ID	Client Sample ID	(60-154)	(65-174)	
480-134628-2	E-BERM-042018	100	91	
480-134628-4	W-BERM-042018	105	101	
480-134628-6	X-2-042018	91	93	
LCS 480-411220/2-A	Lab Control Sample	128	124	
MB 480-411220/1-A	Method Blank	106	106	

Surrogate Legend

TCX = Tetrachloro-m-xylene

DCBP = DCB Decachlorobiphenyl

Client: O'Brien & Gere Inc of North America Project/Site: Midler Crossing - Characteristic Soil

Method: 8260C - TCLP Volatiles

Lab Sample ID: MB 480-412741/7

Matrix: Solid

Analysis Batch: 412741

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		0.0010	0.00029	mg/L			05/05/18 10:08	1
1,2-Dichloroethane	ND		0.0010	0.00021	mg/L			05/05/18 10:08	1
2-Butanone (MEK)	ND		0.0050	0.0013	mg/L			05/05/18 10:08	1
Benzene	ND		0.0010	0.00041	mg/L			05/05/18 10:08	1
Carbon tetrachloride	ND		0.0010	0.00027	mg/L			05/05/18 10:08	1
Chlorobenzene	ND		0.0010	0.00075	mg/L			05/05/18 10:08	1
Chloroform	ND		0.0010	0.00034	mg/L			05/05/18 10:08	1
Tetrachloroethene	ND		0.0010	0.00036	mg/L			05/05/18 10:08	1
Trichloroethene	ND		0.0010	0.00046	mg/L			05/05/18 10:08	1
Vinyl chloride	ND		0.0010	0.00090	mg/L			05/05/18 10:08	1

MB MB

Surrogate	%Recovery	Qualifier Limits	Pre	epared	Analyzed	Dil Fac	С
Toluene-d8 (Surr)	95	80 - 120			05/05/18 10:08	- 1	1
1,2-Dichloroethane-d4 (Surr)	105	77 - 120			05/05/18 10:08	1	1
4-Bromofluorobenzene (Surr)	99	73 - 120			05/05/18 10:08	1	1
Dibromofluoromethane (Surr)	103	75 - 123			05/05/18 10:08	:::::::::::::::::::::::::::::::::::::::	1

Lab Sample ID: LCS 480-412741/5

Matrix: Solid

Analysis Batch: 412741

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	0.0250	0.0267		mg/L		107	66 - 127	
1,2-Dichloroethane	0.0250	0.0270		mg/L		108	75 - 120	
2-Butanone (MEK)	0.125	0.164		mg/L		131	57 ₋ 140	
Benzene	0.0250	0.0254		mg/L		102	71 _ 124	
Carbon tetrachloride	0.0250	0.0273		mg/L		109	72 _ 134	
Chlorobenzene	0.0250	0.0246		mg/L		98	80 _ 120	
Chloroform	0.0250	0.0247		mg/L		99	73 - 127	
Tetrachloroethene	0.0250	0.0284		mg/L		113	74 - 122	
Trichloroethene	0.0250	0.0252		mg/L		101	74 - 123	
Vinyl chloride	0.0250	0.0249		mg/L		99	65 - 133	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	97		80 - 120
1,2-Dichloroethane-d4 (Surr)	108		77 - 120
4-Bromofluorobenzene (Surr)	104		73 - 120
Dibromofluoromethane (Surr)	107		75 123

Lab Sample ID: MB 480-413229/7

Matrix: Solid

Analysis Batch: 413229

Client Sample ID: Method Blank

Prep Type: Total/NA

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		0.0010	0.00029	mg/L			05/08/18 22:46	1
1,2-Dichloroethane	ND		0.0010	0.00021	mg/L			05/08/18 22:46	1
2-Butanone (MEK)	ND		0.0050	0.0013	mg/L			05/08/18 22:46	1

TestAmerica Buffalo

Page 30 of 66

Client: O'Brien & Gere Inc of North America Project/Site: Midler Crossing - Characteristic Soil

Method: 8260C - TCLP Volatiles (Continued)

Lab Sample ID: MB 480-413229/7

Matrix: Solid

Analysis Batch: 413229

Client Sample ID: Method Blank
Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.0010	0.00041	mg/L			05/08/18 22:46	1
Carbon tetrachloride	ND		0.0010	0.00027	mg/L			05/08/18 22:46	1
Chlorobenzene	ND		0.0010	0.00075	mg/L			05/08/18 22:46	1
Chloroform	ND		0.0010	0.00034	mg/L			05/08/18 22:46	1
Tetrachloroethene	ND		0.0010	0.00036	mg/L			05/08/18 22:46	1
Trichloroethene	ND		0.0010	0.00046	mg/L			05/08/18 22:46	1
Vinyl chloride	ND		0.0010	0.00090	mg/L			05/08/18 22:46	1

MB MB

Surrogate	%Recovery Qualifie	r Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	105	80 - 120		05/08/18 22:46	1
1,2-Dichloroethane-d4 (Surr)	107	77 - 120		05/08/18 22:46	1
4-Bromofluorobenzene (Surr)	104	73 - 120		05/08/18 22:46	1
Dibromofluoromethane (Surr)	111	75 - 123		05/08/18 22:46	1

Lab Sample ID: LCS 480-413229/5

Matrix: Solid

Analysis Batch: 413229

Client Sample ID: Lab Control Sample Prep Type: Total/NA

· · · · · · · · · · · · · · · · · · ·	0.11						0/ 5
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1-Dichloroethene	0.0250	0.0263		mg/L		105	66 - 127
1,2-Dichloroethane	0.0250	0.0255		mg/L		102	75 - 120
2-Butanone (MEK)	0.125	0.149		mg/L		119	57 - 140
Benzene	0.0250	0.0256		mg/L		102	71 - 124
Carbon tetrachloride	0.0250	0.0261		mg/L		104	72 - 134
Chlorobenzene	0.0250	0.0243		mg/L		97	80 - 120
Chloroform	0.0250	0.0243		mg/L		97	73 - 127
Tetrachloroethene	0.0250	0.0281		mg/L		112	74 - 122
Trichloroethene	0.0250	0.0256		mg/L		103	74 - 123
Vinyl chloride	0.0250	0.0274		mg/L		110	65 _ 133

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	94		80 - 120
1,2-Dichloroethane-d4 (Surr)	102		77 - 120
4-Bromofluorobenzene (Surr)	101		73 - 120
Dibromofluoromethane (Surr)	106		75 - 123

Lab Sample ID: LB 480-411593/1-A

Matrix: Solid

Analysis Batch: 412741

lientاد	Sample	ID:	Method	Blank	

Prep Type: TCLP

	LB	LB
Analyte	Result	Qua

Analyte	Result C	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND	0.010	0.0029	mg/L			05/05/18 11:02	10
1,2-Dichloroethane	ND	0.010	0.0021	mg/L			05/05/18 11:02	10
2-Butanone (MEK)	ND	0.050	0.013	mg/L			05/05/18 11:02	10
Benzene	ND	0.010	0.0041	mg/L			05/05/18 11:02	10
Carbon tetrachloride	ND	0.010	0.0027	mg/L			05/05/18 11:02	10
Chlorobenzene	ND	0.010	0.0075	mg/L			05/05/18 11:02	10
Chloroform	ND	0.010	0.0034	mg/L			05/05/18 11:02	10

TestAmerica Buffalo

Page 31 of 66

5/10/2018

QC Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Midler Crossing - Characteristic Soil TestAmerica Job ID: 480-134628-1

3

3

А

5

8

11

14

Method: 8260C - TCLP Volatiles (Continued)

Lab Sample ID: LB 480-411593/1-A

Matrix: Solid

Analysis Batch: 412741

Client Sample ID: Method Blank
Prep Type: TCLP

•	LB LB							
Analyte	Result Qualifie	r RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	ND	0.010	0.0036	mg/L			05/05/18 11:02	10
Trichloroethene	ND	0.010	0.0046	mg/L			05/05/18 11:02	10
Vinyl chloride	ND	0.010	0.0090	mg/L			05/05/18 11:02	10

	LB	LB			
Surrogate	%Recovery	Qualifier Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	95	80 - 120		05/05/18 11:02	10
1,2-Dichloroethane-d4 (Surr)	108	77 - 120		05/05/18 11:02	10
4-Bromofluorobenzene (Surr)	101	73 - 120		05/05/18 11:02	10
Dibromofluoromethane (Surr)	103	75 - 123		05/05/18 11:02	10

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-410288/2-A	Client Sample ID: Method Blank
Matrix: Solid	Prep Type: Total/NA
Analysis Batch: 410294	Prep Batch: 410288
MB MB	

	МВ	МВ						Frep Batch.	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.36	ug/Kg		04/23/18 09:21	04/23/18 14:45	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.81	ug/Kg		04/23/18 09:21	04/23/18 14:45	1
1,1,2-Trichloroethane	ND		5.0	0.65	ug/Kg		04/23/18 09:21	04/23/18 14:45	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.0	1.1	ug/Kg		04/23/18 09:21	04/23/18 14:45	1
1,1-Dichloroethane	ND		5.0	0.61	ug/Kg		04/23/18 09:21	04/23/18 14:45	1
1,1-Dichloroethene	ND		5.0	0.61	ug/Kg		04/23/18 09:21	04/23/18 14:45	1
1,2,4-Trichlorobenzene	ND		5.0	0.30	ug/Kg		04/23/18 09:21	04/23/18 14:45	1
1,2-Dibromo-3-Chloropropane	ND		5.0	2.5	ug/Kg		04/23/18 09:21	04/23/18 14:45	1
1,2-Dichlorobenzene	ND		5.0	0.39	ug/Kg		04/23/18 09:21	04/23/18 14:45	1
1,2-Dichloroethane	ND		5.0	0.25	ug/Kg		04/23/18 09:21	04/23/18 14:45	1
1,2-Dichloropropane	ND		5.0	2.5	ug/Kg		04/23/18 09:21	04/23/18 14:45	1
1,3-Dichlorobenzene	ND		5.0	0.26	ug/Kg		04/23/18 09:21	04/23/18 14:45	1
1,4-Dichlorobenzene	ND		5.0	0.70	ug/Kg		04/23/18 09:21	04/23/18 14:45	1
2-Butanone (MEK)	ND		25	1.8	ug/Kg		04/23/18 09:21	04/23/18 14:45	1
2-Hexanone	ND		25	2.5	ug/Kg		04/23/18 09:21	04/23/18 14:45	1
4-Methyl-2-pentanone (MIBK)	ND		25	1.6	ug/Kg		04/23/18 09:21	04/23/18 14:45	1
Acetone	ND		25	4.2	ug/Kg		04/23/18 09:21	04/23/18 14:45	1
Benzene	ND		5.0	0.25	ug/Kg		04/23/18 09:21	04/23/18 14:45	1
Bromodichloromethane	ND		5.0	0.67	ug/Kg		04/23/18 09:21	04/23/18 14:45	1
Bromoform	ND		5.0	2.5	ug/Kg		04/23/18 09:21	04/23/18 14:45	1
Bromomethane	ND		5.0	0.45	ug/Kg		04/23/18 09:21	04/23/18 14:45	1
Carbon disulfide	ND		5.0	2.5	ug/Kg		04/23/18 09:21	04/23/18 14:45	1
Carbon tetrachloride	ND		5.0	0.48	ug/Kg		04/23/18 09:21	04/23/18 14:45	1
Chlorobenzene	ND		5.0	0.66	ug/Kg		04/23/18 09:21	04/23/18 14:45	1
Dibromochloromethane	ND		5.0	0.64	ug/Kg		04/23/18 09:21	04/23/18 14:45	1
Chloroethane	ND		5.0	1.1	ug/Kg		04/23/18 09:21	04/23/18 14:45	1
Chloroform	ND		5.0	0.31	ug/Kg		04/23/18 09:21	04/23/18 14:45	1
Chloromethane	ND		5.0	0.30	ug/Kg		04/23/18 09:21	04/23/18 14:45	1
cis-1,2-Dichloroethene	ND		5.0	0.64	ug/Kg		04/23/18 09:21	04/23/18 14:45	1
cis-1,3-Dichloropropene	ND		5.0	0.72	ug/Kg		04/23/18 09:21	04/23/18 14:45	1
Cyclohexane	ND		5.0	0.70	ug/Kg		04/23/18 09:21	04/23/18 14:45	1

TestAmerica Buffalo

Client: O'Brien & Gere Inc of North America Project/Site: Midler Crossing - Characteristic Soil

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

MB MB

Lab Sample ID: MB 480-410288/2-A

Matrix: Solid

Analysis Batch: 410294

Client Sample ID: Method Blank **Prep Type: Total/NA**

Prep Batch: 410288

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Dichlorodifluoromethane	ND		5.0	0.41	ug/Kg		04/23/18 09:21	04/23/18 14:45	-
Ethylbenzene	ND		5.0	0.35	ug/Kg		04/23/18 09:21	04/23/18 14:45	
1,2-Dibromoethane	ND		5.0	0.64	ug/Kg		04/23/18 09:21	04/23/18 14:45	
Isopropylbenzene	ND		5.0	0.75	ug/Kg		04/23/18 09:21	04/23/18 14:45	
Methyl acetate	ND		25	3.0	ug/Kg		04/23/18 09:21	04/23/18 14:45	
Methyl tert-butyl ether	ND		5.0	0.49	ug/Kg		04/23/18 09:21	04/23/18 14:45	
Methylcyclohexane	ND		5.0	0.76	ug/Kg		04/23/18 09:21	04/23/18 14:45	
Methylene Chloride	ND		5.0	2.3	ug/Kg		04/23/18 09:21	04/23/18 14:45	
Styrene	ND		5.0	0.25	ug/Kg		04/23/18 09:21	04/23/18 14:45	
Tetrachloroethene	ND		5.0	0.67	ug/Kg		04/23/18 09:21	04/23/18 14:45	
Toluene	ND		5.0	0.38	ug/Kg		04/23/18 09:21	04/23/18 14:45	
trans-1,2-Dichloroethene	ND		5.0	0.52	ug/Kg		04/23/18 09:21	04/23/18 14:45	
trans-1,3-Dichloropropene	ND		5.0	2.2	ug/Kg		04/23/18 09:21	04/23/18 14:45	
Trichloroethene	ND		5.0	1.1	ug/Kg		04/23/18 09:21	04/23/18 14:45	
Trichlorofluoromethane	ND		5.0	0.47	ug/Kg		04/23/18 09:21	04/23/18 14:45	
Vinyl chloride	ND		5.0	0.61	ug/Kg		04/23/18 09:21	04/23/18 14:45	
Xylenes, Total	ND		10	0.84	ug/Kg		04/23/18 09:21	04/23/18 14:45	

MB MB

Surrogate	%Recovery Qualific	er Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	104	71 - 125	04/23/18 09:21	04/23/18 14:45	
1,2-Dichloroethane-d4 (Surr)	106	64 - 126	04/23/18 09:21	04/23/18 14:45	1
4-Bromofluorobenzene (Surr)	102	72 - 126	04/23/18 09:21	04/23/18 14:45	1
Dibromofluoromethane (Surr)	106	60 - 140	04/23/18 09:21	04/23/18 14:45	1

Lab Sample ID: LCS 480-410288/1-A

Matrix: Solid

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 410294							Prep Batch: 410288
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	50.0	47.0		ug/Kg		94	77 - 121
1,1,2,2-Tetrachloroethane	50.0	48.1		ug/Kg		96	80 - 120
1,1,2-Trichloroethane	50.0	48.0		ug/Kg		96	78 - 122
1,1,2-Trichloro-1,2,2-trifluoroetha	50.0	47.8		ug/Kg		96	60 - 140
ne							
1,1-Dichloroethane	50.0	48.6		ug/Kg		97	73 - 126
1,1-Dichloroethene	50.0	47.4		ug/Kg		95	59 ₋ 125
1,2,4-Trichlorobenzene	50.0	46.9		ug/Kg		94	64 - 120
1,2-Dibromo-3-Chloropropane	50.0	42.6		ug/Kg		85	63 - 124
1,2-Dichlorobenzene	50.0	48.9		ug/Kg		98	75 _ 120
1,2-Dichloroethane	50.0	45.6		ug/Kg		91	77 - 122
1,2-Dichloropropane	50.0	48.8		ug/Kg		98	75 _ 124
1,3-Dichlorobenzene	50.0	49.8		ug/Kg		100	74 - 120
1,4-Dichlorobenzene	50.0	49.9		ug/Kg		100	73 _ 120
2-Butanone (MEK)	250	240		ug/Kg		96	70 _ 134
2-Hexanone	250	230		ug/Kg		92	59 - 130
4-Methyl-2-pentanone (MIBK)	250	225		ug/Kg		90	65 _ 133
Acetone	250	236		ug/Kg		95	61 _ 137
Benzene	50.0	49.9		ug/Kg		100	79 - 127

Page 33 of 66

Client: O'Brien & Gere Inc of North America Project/Site: Midler Crossing - Characteristic Soil

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-410288/1-A

Matrix: Solid

Analysis Batch: 410294

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 410288

Analysis Batom 410204	Spike		LCS				%Rec.	
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	
Bromodichloromethane	50.0	48.4		ug/Kg		97	80 - 122	
Bromoform	50.0	46.1		ug/Kg		92	68 - 126	
Bromomethane	50.0	44.4		ug/Kg		89	37 - 149	
Carbon disulfide	50.0	56.0		ug/Kg		112	64 - 131	
Carbon tetrachloride	50.0	45.6		ug/Kg		91	75 _ 135	
Chlorobenzene	50.0	51.1		ug/Kg		102	76 - 124	
Dibromochloromethane	50.0	50.2		ug/Kg		100	76 - 125	
Chloroethane	50.0	43.0		ug/Kg		86	69 _ 135	
Chloroform	50.0	49.4		ug/Kg		99	80 - 120	
Chloromethane	50.0	40.4		ug/Kg		81	63 _ 127	
cis-1,2-Dichloroethene	50.0	49.7		ug/Kg		99	81 - 120	
cis-1,3-Dichloropropene	50.0	47.8		ug/Kg		96	80 - 120	
Cyclohexane	50.0	48.4		ug/Kg		97	65 _ 120	
Dichlorodifluoromethane	50.0	45.3		ug/Kg		91	57 - 142	
Ethylbenzene	50.0	50.9		ug/Kg		102	80 - 120	
1,2-Dibromoethane	50.0	49.3		ug/Kg		99	78 - 120	
Isopropylbenzene	50.0	50.2		ug/Kg		100	72 _ 120	
Methyl acetate	100	93.5		ug/Kg		93	55 _ 136	
Methyl tert-butyl ether	50.0	44.8		ug/Kg		90	63 _ 125	
Methylcyclohexane	50.0	48.5		ug/Kg		97	60 - 140	
Methylene Chloride	50.0	42.4		ug/Kg		85	61 - 127	
Styrene	50.0	50.3		ug/Kg		101	80 _ 120	
Tetrachloroethene	50.0	53.2		ug/Kg		106	74 - 122	
Toluene	50.0	49.8		ug/Kg		100	74 - 128	
trans-1,2-Dichloroethene	50.0	50.7		ug/Kg		101	78 ₋ 126	
trans-1,3-Dichloropropene	50.0	46.7		ug/Kg		93	73 - 123	
Trichloroethene	50.0	51.6		ug/Kg		103	77 ₋ 129	
Trichlorofluoromethane	50.0	48.2		ug/Kg		96	65 - 146	
Vinyl chloride	50.0	41.1		ug/Kg		82	61 - 133	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	106		71 - 125
1,2-Dichloroethane-d4 (Surr)	99		64 - 126
4-Bromofluorobenzene (Surr)	105		72 - 126
Dibromofluoromethane (Surr)	106		60 - 140

Lab Sample ID: 480-134628-12 MS

Matrix: Solid

Analysis Batch: 410294

Client Sa	mple I	D: X-2	-042018	
	Prep T	ype: 1	Total/NA	

Prep Batch: 410288

Sample Sample Spike MS MS Analyte Result Qualifier Added Result Qualifier D %Rec Limits Unit 1,1,1-Trichloroethane ND vs 55.5 46.8 vs ₩ 84 77 - 121 ug/Kg 55.5 80 - 120 1,1,2,2-Tetrachloroethane ND vs F1 44.2 vs ug/Kg 80 ₩ 1,1,2-Trichloroethane ND vs F1 55.5 43.7 vs ug/Kg 79 78 - 122 ₩ 60 - 140 ND vs 55.5 49.7 vs ug/Kg 89 1,1,2-Trichloro-1,2,2-trifluoroetha ne 1,1-Dichloroethane ND vs 55.5 49.9 vs ug/Kg Ü 90 73 - 126 1,1-Dichloroethene ND vs 55.5 ug/Kg 85 59 - 125 47.0 vs

TestAmerica Buffalo

Page 34 of 66

5/10/2018

TestAmerica Job ID: 480-134628-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-134628-12 MS

Matrix: Solid

Analysis Batch: 410294

Client Sample ID: X-2-042018 **Prep Type: Total/NA Prep Batch: 410288**

randyolo Batom 110201	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
1,2,4-Trichlorobenzene	ND	vs F1	55.5	13.5	vs F1	ug/Kg	\	24	64 - 120		
1,2-Dibromo-3-Chloropropane	ND	vs F1	55.5	28.3	vs F1	ug/Kg	₩.	51	63 - 124		
1,2-Dichlorobenzene	ND	vs F1	55.5	30.5	vs F1	ug/Kg	₩	55	75 - 120		
1,2-Dichloroethane	ND	vs F1	55.5	41.7	vs F1	ug/Kg	₩.	75	77 - 122		
1,2-Dichloropropane	ND	VS	55.5	47.6	VS	ug/Kg	₩	86	75 - 124		
1,3-Dichlorobenzene	ND	vs F1	55.5	28.9	vs F1	ug/Kg	₩	52	74 - 120		
1,4-Dichlorobenzene	ND	vs F1	55.5	27.7	vs F1	ug/Kg	₽	50	73 - 120		
2-Butanone (MEK)	ND	vs F1	278	175	vs F1	ug/Kg	₩	63	70 - 134		
2-Hexanone	ND	vs F1	278	159	vs F1	ug/Kg	₩	57	59 - 130		
4-Methyl-2-pentanone (MIBK)	ND	vs F1	278	184	VS	ug/Kg	\$	66	65 _ 133		
Acetone	ND	vs F1	278	175	VS	ug/Kg	₽	63	61 - 137		
Benzene	ND	vs	55.5	48.0	VS	ug/Kg	₽	86	79 ₋ 127		
Bromodichloromethane	ND	vs F1	55.5	44.7	VS	ug/Kg	₩	80	80 - 122		
Bromoform	ND	vs F1	55.5	32.1	vs F1	ug/Kg	₽	58	68 - 126		
Bromomethane	ND	vs	55.5	48.1	VS	ug/Kg	₽	87	37 _ 149		
Carbon disulfide	ND	vs F1	55.5	39.4	VS	ug/Kg	₩	71	64 - 131		
Carbon tetrachloride	ND	vs F1	55.5	42.3	VS	ug/Kg	₩	76	75 - 135		
Chlorobenzene	ND	vs F1	55.5	38.3	vs F1	ug/Kg	₩	69	76 - 124		
Dibromochloromethane	ND	vs F1	55.5	42.3	VS	ug/Kg	₩.	76	76 - 125		
Chloroethane	ND	vs	55.5	50.7	VS	ug/Kg	₩	91	69 - 135		
Chloroform	ND	VS	55.5	49.1	VS	ug/Kg	₩	88	80 - 120		
Chloromethane	ND	VS	55.5	45.6	VS	ug/Kg	₩.	82	63 - 127		
cis-1,2-Dichloroethene	ND	vs F1	55.5	45.5	VS	ug/Kg	₩	82	80 - 120		
cis-1,3-Dichloropropene	ND	vs F1	55.5	35.2	vs F1	ug/Kg	₩	63	80 - 120		
Cyclohexane	ND	VS	55.5	41.9	VS	ug/Kg	₩.	75	65 - 120		
Dichlorodifluoromethane	ND	VS	55.5	51.5	VS	ug/Kg	₩	93	57 - 142		
Ethylbenzene	ND	vs F1	55.5	41.1	vs F1	ug/Kg	₩	74	80 - 120		
1,2-Dibromoethane	ND	vs F1	55.5	37.4	vs F1	ug/Kg	₩	67	78 - 120		
Isopropylbenzene	ND	VS	55.5	47.2	VS	ug/Kg	₩	85	72 - 120		
Methyl acetate	ND	VS	111	89.8	VS	ug/Kg	₩	81	55 ₋ 136		
Methyl tert-butyl ether	ND	VS	55.5	44.6	VS	ug/Kg		80	63 - 125		
Methylcyclohexane	ND	vs F1	55.5	34.6	VS	ug/Kg	₽	62	60 - 140		
Methylene Chloride	6.5	VS	55.5	50.0	VS	ug/Kg	₽	78	61 - 127		
Styrene	ND	vs F1	55.5	34.2	vs F1	ug/Kg	₩.	62	80 _ 120		
Tetrachloroethene	7.4	vs	55.5	53.4	VS	ug/Kg	₽	83	74 ₋ 122		
Toluene	ND	VS	55.5	44.3	VS	ug/Kg	₽	80	74 - 128		
trans-1,2-Dichloroethene	ND	vs F1	55.5	43.8	VS	ug/Kg		79	78 ₋ 126		
trans-1,3-Dichloropropene		vs F1	55.5		vs F1	ug/Kg	₩	58	73 - 123		
Trichloroethene		J vs F1	55.5	43.2	vs F1	ug/Kg	₩	75	77 - 129		
Trichlorofluoromethane	ND		55.5	57.4		ug/Kg		103	65 - 146		
Vinyl chloride	ND		55.5	43.0		ug/Kg	₽	77	61 - 133		
	MS	MS									

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	110		71 - 125
1,2-Dichloroethane-d4 (Surr)	95		64 - 126
4-Bromofluorobenzene (Surr)	97		72 - 126
Dibromofluoromethane (Surr)	107		60 - 140

TestAmerica Buffalo

Spike

Added

MSD MSD

Result Qualifier

Unit

TestAmerica Job ID: 480-134628-1

%Rec.

Limits

%Rec

₩

₩

₩

ă.

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

79

76

72

54

69

93

71

74 - 122

74 - 128

78 - 126

73 - 123

77 - 129

65 - 146

61 - 133

Client: O'Brien & Gere Inc of North America Project/Site: Midler Crossing - Characteristic Soil

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Sample Sample

7.4 vs

ND vs

ND vs F1

ND vs F1

ND vs

ND vs

1.5 J vs F1

Result Qualifier

Lab Sample ID: 480-134628-12 MSD

Matrix: Solid

Tetrachloroethene

Trichloroethene

Vinyl chloride

trans-1,2-Dichloroethene

Trichlorofluoromethane

trans-1,3-Dichloropropene

Toluene

Analyte

Analysis Batch: 410294

Client Sample ID: X-2-042018	
Prep Type: Total/NA	

Prep Batch: 410288

RPD

Limit

, j			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			•	_	,0		–	
1,1,1-Trichloroethane	ND	VS	54.6	43.1	VS	ug/Kg	-	79	77 - 121	8	30
1,1,2,2-Tetrachloroethane	ND	vs F1	54.6	41.4	vs F1	ug/Kg	₽	76	80 - 120	6	30
1,1,2-Trichloroethane	ND	vs F1	54.6	40.6	vs F1	ug/Kg	₽	74	78 - 122	7	30
1,1,2-Trichloro-1,2,2-trifluoroetha	ND	VS	54.6	43.6	VS	ug/Kg	*	80	60 - 140	13	30
ne											
1,1-Dichloroethane	ND		54.6	46.3		ug/Kg	₽	85	73 - 126	7	30
1,1-Dichloroethene	ND		54.6	42.4	vs	ug/Kg		78	59 - 125	10	30
1,2,4-Trichlorobenzene		vs F1	54.6	11.1	vs F1	ug/Kg	₽	20	64 - 120	19	30
1,2-Dibromo-3-Chloropropane	ND	vs F1	54.6	25.6	vs F1	ug/Kg	₩	47	63 _ 124	10	30
1,2-Dichlorobenzene	ND	vs F1	54.6	26.7	vs F1	ug/Kg		49	75 - 120	13	30
1,2-Dichloroethane	ND	vs F1	54.6	38.5	vs F1	ug/Kg	₽	71	77 - 122	8	30
1,2-Dichloropropane	ND	VS	54.6	44.1	VS	ug/Kg	₽	81	75 - 124	8	30
1,3-Dichlorobenzene	ND	vs F1	54.6	25.2	vs F1	ug/Kg	₽	46	74 - 120	14	30
1,4-Dichlorobenzene	ND	vs F1	54.6	23.8	vs F1	ug/Kg	₽	44	73 - 120	15	30
2-Butanone (MEK)	ND	vs F1	273	156	vs F1	ug/Kg	₩	57	70 - 134	12	30
2-Hexanone	ND	vs F1	273	146	vs F1	ug/Kg	₩	54	59 - 130	8	30
4-Methyl-2-pentanone (MIBK)	ND	vs F1	273	167	vs F1	ug/Kg	\$	61	65 - 133	10	30
Acetone	ND	vs F1	273	164	vs F1	ug/Kg	₽	60	61 - 137	6	30
Benzene	ND	VS	54.6	44.0	VS	ug/Kg	₽	81	79 - 127	9	30
Bromodichloromethane	ND	vs F1	54.6	41.7	vs F1	ug/Kg	₽	76	80 - 122	7	30
Bromoform	ND	vs F1	54.6	29.4	vs F1	ug/Kg	₽	54	68 - 126	9	30
Bromomethane	ND	vs	54.6	43.3	vs	ug/Kg	₽	79	37 - 149	11	30
Carbon disulfide	ND	vs F1	54.6	34.4	vs F1	ug/Kg	₽	63	64 - 131	14	30
Carbon tetrachloride	ND	vs F1	54.6	39.6	vs F1	ug/Kg	₽	72	75 - 135	7	30
Chlorobenzene	ND	vs F1	54.6	35.1	vs F1	ug/Kg	₽	64	76 - 124	9	30
Dibromochloromethane	ND	vs F1	54.6	39.4	vs F1	ug/Kg	\$	72	76 - 125	7	30
Chloroethane	ND	VS	54.6	45.1	VS	ug/Kg	₽	83	69 - 135	12	30
Chloroform	ND	VS	54.6	46.3	VS	ug/Kg	₽	85	80 - 120	6	30
Chloromethane	ND	VS	54.6	41.1	VS	ug/Kg	\$	75	63 - 127	10	30
cis-1,2-Dichloroethene	ND	vs F1	54.6	42.3	vs F1	ug/Kg	₽	77	80 - 120	7	30
cis-1,3-Dichloropropene	ND	vs F1	54.6	32.7	vs F1	ug/Kg	₽	60	80 - 120	7	30
Cyclohexane	ND	VS	54.6	36.7	VS	ug/Kg	\$	67	65 - 120	13	30
Dichlorodifluoromethane	ND	VS	54.6	44.6	VS	ug/Kg	₽	82	57 ₋ 142	14	30
Ethylbenzene	ND	vs F1	54.6	37.6	vs F1	ug/Kg	₽	69	80 - 120	9	30
1,2-Dibromoethane	ND	vs F1	54.6	34.3	vs F1	ug/Kg	₽	63	78 - 120	9	30
Isopropylbenzene	ND	vs	54.6	43.1	vs	ug/Kg	₽	79	72 - 120	9	30
Methyl acetate	ND	vs	109	80.1	vs	ug/Kg	₽	73	55 - 136	11	30
Methyl tert-butyl ether	ND	VS	54.6	41.4	vs	ug/Kg		76	63 _ 125	8	30
Methylcyclohexane	ND	vs F1	54.6		vs F1	ug/Kg	₽	54	60 - 140	17	30
Methylene Chloride	6.5	VS	54.6	46.2		ug/Kg	₩	73	61 - 127	8	30
Styrene		vs F1	54.6		vs F1	ug/Kg		55	80 - 120	12	30
•		-			- •	5					

TestAmerica Buffalo

5/10/2018

5

6

10

9

10

10

30

30

30

30

30

30

30

Page 36 of 66

54.6

54.6

54.6

54.6

54.6

54.6

54.6

50.6 vs

41.5 vs

39.5 vs F1

29.6 vs F1

39.1 vs F1

50.5 vs

38.9 vs

QC Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Midler Crossing - Characteristic Soil TestAmerica Job ID: 480-134628-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-134628-12 MSD

Matrix: Solid

Analysis Batch: 410294

Client Sample ID: X-2-042018

Prep Type: Total/NA

Prep Batch: 410288

	IVISD	MSD	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	111		71 _ 125
1,2-Dichloroethane-d4 (Surr)	92		64 - 126
4-Bromofluorobenzene (Surr)	95		72 - 126
Dibromofluoromethane (Surr)	105		60 - 140

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-411993/1-A

Matrix: Solid

Analysis Batch: 412413

Benzo[k]fluoranthene

Client Sample ID: Method Blank
Prep Type: Total/NA
Prop Patch: 411002

Prep Batch: 411993

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND		170	25	ug/Kg		05/02/18 07:03	05/03/18 21:19	1
bis (2-chloroisopropyl) ether	ND		170	34	ug/Kg		05/02/18 07:03	05/03/18 21:19	1
2,4-Dichlorophenol	ND		170	18	ug/Kg		05/02/18 07:03	05/03/18 21:19	1
2,4-Dimethylphenol	ND		170	41	ug/Kg		05/02/18 07:03	05/03/18 21:19	1
2,4-Dinitrophenol	ND		1600	780	ug/Kg		05/02/18 07:03	05/03/18 21:19	1
2,4-Dinitrotoluene	ND		170	35	ug/Kg		05/02/18 07:03	05/03/18 21:19	1
2,6-Dinitrotoluene	ND		170	20	ug/Kg		05/02/18 07:03	05/03/18 21:19	1
2-Chloronaphthalene	ND		170	28	ug/Kg		05/02/18 07:03	05/03/18 21:19	1
2-Chlorophenol	ND		170	31	ug/Kg		05/02/18 07:03	05/03/18 21:19	1
2,4,5-Trichlorophenol	ND		170	46	ug/Kg		05/02/18 07:03	05/03/18 21:19	1
2-Methylnaphthalene	ND		170	34	ug/Kg		05/02/18 07:03	05/03/18 21:19	1
2,4,6-Trichlorophenol	ND		170	34	ug/Kg		05/02/18 07:03	05/03/18 21:19	1
2-Methylphenol	ND		170	20	ug/Kg		05/02/18 07:03	05/03/18 21:19	1
2-Nitroaniline	ND		330	25	ug/Kg		05/02/18 07:03	05/03/18 21:19	1
2-Nitrophenol	ND		170	48	ug/Kg		05/02/18 07:03	05/03/18 21:19	1
3,3'-Dichlorobenzidine	ND		330	200	ug/Kg		05/02/18 07:03	05/03/18 21:19	1
3-Nitroaniline	ND		330	47	ug/Kg		05/02/18 07:03	05/03/18 21:19	1
4,6-Dinitro-2-methylphenol	ND		330	170	ug/Kg		05/02/18 07:03	05/03/18 21:19	1
4-Bromophenyl phenyl ether	ND		170	24	ug/Kg		05/02/18 07:03	05/03/18 21:19	1
4-Chloro-3-methylphenol	ND		170	42	ug/Kg		05/02/18 07:03	05/03/18 21:19	1
4-Chloroaniline	ND		170	42	ug/Kg		05/02/18 07:03	05/03/18 21:19	1
4-Chlorophenyl phenyl ether	ND		170	21	ug/Kg		05/02/18 07:03	05/03/18 21:19	1
4-Methylphenol	ND		330	20	ug/Kg		05/02/18 07:03	05/03/18 21:19	1
4-Nitroaniline	ND		330	88	ug/Kg		05/02/18 07:03	05/03/18 21:19	1
4-Nitrophenol	ND		330	120	ug/Kg		05/02/18 07:03	05/03/18 21:19	1
Acenaphthene	ND		170	25	ug/Kg		05/02/18 07:03	05/03/18 21:19	1
Acenaphthylene	ND		170	22	ug/Kg		05/02/18 07:03	05/03/18 21:19	1
Acetophenone	ND		170	23	ug/Kg		05/02/18 07:03	05/03/18 21:19	1
Anthracene	ND		170	42	ug/Kg		05/02/18 07:03	05/03/18 21:19	1
Atrazine	ND		170	58	ug/Kg		05/02/18 07:03	05/03/18 21:19	1
Benzaldehyde	ND		170	130	ug/Kg		05/02/18 07:03	05/03/18 21:19	1
Benzo[a]anthracene	ND		170	17	ug/Kg		05/02/18 07:03	05/03/18 21:19	1
Benzo[a]pyrene	ND		170	25	ug/Kg		05/02/18 07:03	05/03/18 21:19	1
Benzo[b]fluoranthene	ND		170	27	ug/Kg		05/02/18 07:03	05/03/18 21:19	1
Benzo[g,h,i]perylene	ND		170	18	ug/Kg		05/02/18 07:03	05/03/18 21:19	1

TestAmerica Buffalo

05/03/18 21:19

05/02/18 07:03

Page 37 of 66

170

22 ug/Kg

ND

5/10/2018

Client: O'Brien & Gere Inc of North America Project/Site: Midler Crossing - Characteristic Soil

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-411993/1-A

Matrix: Solid

Analysis Batch: 412413

Client Sample ID: Method Blank **Prep Type: Total/NA**

Prep Batch: 411993

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bis(2-chloroethoxy)methane	ND		170	36	ug/Kg		05/02/18 07:03	05/03/18 21:19	1
Bis(2-chloroethyl)ether	ND		170	22	ug/Kg		05/02/18 07:03	05/03/18 21:19	1
Bis(2-ethylhexyl) phthalate	ND		170	57	ug/Kg		05/02/18 07:03	05/03/18 21:19	1
Butyl benzyl phthalate	ND		170	28	ug/Kg		05/02/18 07:03	05/03/18 21:19	1
Caprolactam	ND		170	50	ug/Kg		05/02/18 07:03	05/03/18 21:19	1
Carbazole	ND		170	20	ug/Kg		05/02/18 07:03	05/03/18 21:19	1
Chrysene	ND		170	38	ug/Kg		05/02/18 07:03	05/03/18 21:19	1
Di-n-butyl phthalate	ND		170	29	ug/Kg		05/02/18 07:03	05/03/18 21:19	1
Di-n-octyl phthalate	ND		170	20	ug/Kg		05/02/18 07:03	05/03/18 21:19	1
Dibenz(a,h)anthracene	ND		170	30	ug/Kg		05/02/18 07:03	05/03/18 21:19	1
Dibenzofuran	ND		170	20	ug/Kg		05/02/18 07:03	05/03/18 21:19	1
Diethyl phthalate	ND		170	22	ug/Kg		05/02/18 07:03	05/03/18 21:19	1
Dimethyl phthalate	ND		170	20	ug/Kg		05/02/18 07:03	05/03/18 21:19	1
Fluoranthene	ND		170	18	ug/Kg		05/02/18 07:03	05/03/18 21:19	1
Fluorene	ND		170	20	ug/Kg		05/02/18 07:03	05/03/18 21:19	1
Hexachlorobenzene	ND		170	23	ug/Kg		05/02/18 07:03	05/03/18 21:19	1
Hexachlorobutadiene	ND		170	25	ug/Kg		05/02/18 07:03	05/03/18 21:19	1
Hexachlorocyclopentadiene	ND		170	23	ug/Kg		05/02/18 07:03	05/03/18 21:19	1
Hexachloroethane	ND		170	22	ug/Kg		05/02/18 07:03	05/03/18 21:19	1
Indeno[1,2,3-cd]pyrene	ND		170	21	ug/Kg		05/02/18 07:03	05/03/18 21:19	1
Isophorone	ND		170	36	ug/Kg		05/02/18 07:03	05/03/18 21:19	1
N-Nitrosodi-n-propylamine	ND		170	29	ug/Kg		05/02/18 07:03	05/03/18 21:19	1
N-Nitrosodiphenylamine	ND		170	140	ug/Kg		05/02/18 07:03	05/03/18 21:19	1
Naphthalene	ND		170	22	ug/Kg		05/02/18 07:03	05/03/18 21:19	1
Nitrobenzene	ND		170	19	ug/Kg		05/02/18 07:03	05/03/18 21:19	1
Pentachlorophenol	ND		330	170	ug/Kg		05/02/18 07:03	05/03/18 21:19	1
Phenanthrene	ND		170	25	ug/Kg		05/02/18 07:03	05/03/18 21:19	1
Phenol	ND		170	26	ug/Kg		05/02/18 07:03	05/03/18 21:19	1
Pyrene	ND		170	20	ug/Kg		05/02/18 07:03	05/03/18 21:19	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	77		54 - 120	05/02/18 07:03	05/03/18 21:19	1
2-Fluorobiphenyl	88		60 - 120	05/02/18 07:03	05/03/18 21:19	1
2-Fluorophenol	80		52 - 120	05/02/18 07:03	05/03/18 21:19	1
Nitrobenzene-d5	88		53 - 120	05/02/18 07:03	05/03/18 21:19	1
p-Terphenyl-d14	106		65 - 121	05/02/18 07:03	05/03/18 21:19	1
Phenol-d5	83		54 - 120	05/02/18 07:03	05/03/18 21:19	1

Lab Sample ID: LCS 480-411993/2-A

Matrix: Solid

Analysis Batch: 412413

Client Sample ID:	Lab Control Sample
I	Prep Type: Total/NA
	Prep Batch: 411993

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Biphenyl	1650	1320		ug/Kg		80	59 - 120	
bis (2-chloroisopropyl) ether	1650	1050		ug/Kg		63	44 - 120	
2,4-Dichlorophenol	1650	1340		ug/Kg		81	61 - 120	
2,4-Dimethylphenol	1650	1380		ug/Kg		83	59 - 120	
2,4-Dinitrophenol	3300	2500		ug/Kg		76	41 - 146	

TestAmerica Buffalo

Page 38 of 66

Client: O'Brien & Gere Inc of North America Project/Site: Midler Crossing - Characteristic Soil

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-411993/2-A **Client Sample ID: Lab Control Sample** Matrix: Solid **Prep Type: Total/NA**

Analysis Batch: 412413							Prep Batch: 411993		
	Spike	LCS	LCS				%Rec.		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
2,4-Dinitrotoluene	1650	1540		ug/Kg		93	63 - 120		
2,6-Dinitrotoluene	1650	1520		ug/Kg		92	66 - 120		
2-Chloronaphthalene	1650	1280		ug/Kg		78	57 - 120		
2-Chlorophenol	1650	1200		ug/Kg		73	53 - 120		
2,4,5-Trichlorophenol	1650	1320		ug/Kg		80	59 - 126		
2-Methylnaphthalene	1650	1330		ug/Kg		81	59 - 120		
2,4,6-Trichlorophenol	1650	1310		ug/Kg		80	59 ₋ 123		
2-Methylphenol	1650	1260		ug/Kg		76	54 - 120		
2-Nitroaniline	1650	1450		ug/Kg		88	61 - 120		
2-Nitrophenol	1650	1310		ug/Kg		80	56 - 120		
3,3'-Dichlorobenzidine	3300	2980		ug/Kg		90	54 - 120		
3-Nitroaniline	1650	1380		ug/Kg		83	48 - 120		
4,6-Dinitro-2-methylphenol	3300	2860		ug/Kg		87	49 - 122		
4-Bromophenyl phenyl ether	1650	1380		ug/Kg		84	58 ₋ 120		
4-Chloro-3-methylphenol	1650	1470		ug/Kg		89	61 - 120		
4-Chloroaniline	1650	1170		ug/Kg		71	38 - 120		
4-Chlorophenyl phenyl ether	1650	1330		ug/Kg		80	63 - 124		
4-Methylphenol	1650	1330		ug/Kg		81	55 ₋ 120		
4-Nitroaniline	1650	1510		ug/Kg		92	56 - 120		
4-Nitrophenol	3300	3340		ug/Kg		101	43 - 147		
Acenaphthene	1650	1330		ug/Kg ug/Kg		81	62 - 120		
Acenaphthylene	1650	1350		ug/Kg ug/Kg		82	58 ₋ 121		
Acetophenone	1650	1320		ug/Kg		80	54 - 120		
Anthracene	1650	1530		ug/Kg ug/Kg		93	62 - 120		
Atrazine	3300	3530		ug/Kg ug/Kg		107	60 ₋ 127		
	3300	1450					10 - 150		
Benzaldehyde	1650	1700		ug/Kg ug/Kg		44	65 ₋ 120		
Benzo[a]anthracene	1650	1680				103 102	64 ₋ 120		
Benzo[a]pyrene				ug/Kg					
Benzo[b]fluoranthene Benzo[g,h,i]perylene	1650 1650	1820 1660		ug/Kg		110	64 ₋ 120 45 ₋ 145		
10. 11. 1				ug/Kg		100			
Benzo[k]fluoranthene	1650	1540		ug/Kg		93	65 - 120		
Bis(2-chloroethoxy)methane	1650	1310		ug/Kg		79	55 ₋ 120		
Bis(2-chloroethyl)ether	1650	1210		ug/Kg		74 106	45 ₋ 120		
Bis(2-ethylhexyl) phthalate	1650	1750		ug/Kg		106	61 - 133		
Butyl benzyl phthalate	1650	1780		ug/Kg		108	61 - 129		
Cartagala	3300	3260		ug/Kg		99	47 - 120		
Carbazole	1650	1610		ug/Kg		98	65 - 120		
Chrysene	1650	1750		ug/Kg		106	64 - 120		
Di-n-butyl phthalate	1650	1780		ug/Kg		108	58 - 130		
Di-n-octyl phthalate	1650	1820		ug/Kg		110	57 _ 133		
Dibenz(a,h)anthracene	1650	1700		ug/Kg		103	54 - 132		
Dibenzofuran	1650	1380		ug/Kg		84	63 - 120		
Diethyl phthalate	1650	1580		ug/Kg		96	66 - 120		
Dimethyl phthalate	1650	1490		ug/Kg		90	65 - 124		
Fluoranthene	1650	1640		ug/Kg		99	62 - 120		
Fluorene	1650	1430		ug/Kg		87	63 - 120		
Hexachlorobenzene	1650	1450		ug/Kg		88	60 - 120		
Hexachlorobutadiene	1650	1240		ug/Kg		75	45 - 120		

TestAmerica Buffalo

Page 39 of 66

Client: O'Brien & Gere Inc of North America Project/Site: Midler Crossing - Characteristic Soil

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-411993/2-A

Matrix: Solid

Analysis Batch: 412413

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 411993

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Hexachlorocyclopentadiene	1650	1180		ug/Kg		72	47 - 120	_
Hexachloroethane	1650	1150		ug/Kg		70	41 - 120	
Indeno[1,2,3-cd]pyrene	1650	1660		ug/Kg		101	56 - 134	
Isophorone	1650	1370		ug/Kg		83	56 - 120	
N-Nitrosodi-n-propylamine	1650	1280		ug/Kg		78	52 _ 120	
Naphthalene	1650	1260		ug/Kg		76	55 - 120	
Nitrobenzene	1650	1260		ug/Kg		76	54 - 120	
Pentachlorophenol	3300	2730		ug/Kg		83	51 - 120	
Phenanthrene	1650	1560		ug/Kg		95	60 - 120	
Phenol	1650	1260		ug/Kg		76	53 - 120	
Pyrene	1650	1770		ug/Kg		107	61 - 133	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol	93		54 - 120
2-Fluorobiphenyl	76		60 - 120
2-Fluorophenol	69		52 - 120
Nitrobenzene-d5	78		53 - 120
p-Terphenyl-d14	107		65 - 121
Phenol-d5	75		54 - 120

Client Sample ID: Method Blank

Prep Type: Total/NA **Prep Batch: 412129**

Lab Sample ID: MB 480-412129/1-A **Matrix: Solid**

Analysis Batch: 412361

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	ND		0.0025	0.00012	mg/L		05/02/18 14:55	05/03/18 18:33	1
3-Methylphenol	ND		0.0025	0.00010	mg/L		05/02/18 14:55	05/03/18 18:33	1
2,4-Dinitrotoluene	ND		0.0013	0.00011	mg/L		05/02/18 14:55	05/03/18 18:33	1
Pyridine	ND		0.0063	0.00010	mg/L		05/02/18 14:55	05/03/18 18:33	1
2,4,5-Trichlorophenol	ND		0.0013	0.00012	mg/L		05/02/18 14:55	05/03/18 18:33	1
2,4,6-Trichlorophenol	ND		0.0013	0.00015	mg/L		05/02/18 14:55	05/03/18 18:33	1
2-Methylphenol	ND		0.0013	0.00010	mg/L		05/02/18 14:55	05/03/18 18:33	1
4-Methylphenol	ND		0.0025	0.000090	mg/L		05/02/18 14:55	05/03/18 18:33	1
Hexachlorobenzene	ND		0.0013	0.00013	mg/L		05/02/18 14:55	05/03/18 18:33	1
Hexachlorobutadiene	ND		0.0013	0.00017	mg/L		05/02/18 14:55	05/03/18 18:33	1
Hexachloroethane	ND		0.0013	0.00015	mg/L		05/02/18 14:55	05/03/18 18:33	1
Nitrobenzene	ND		0.0013	0.000073	mg/L		05/02/18 14:55	05/03/18 18:33	1
Pentachlorophenol	ND		0.0025	0.00055	mg/L		05/02/18 14:55	05/03/18 18:33	1

MB	MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	89		41 - 120	05/02/18 14:55	05/03/18 18:33	1
2-Fluorobiphenyl	98		48 - 120	05/02/18 14:55	05/03/18 18:33	1
2-Fluorophenol	48		35 - 120	05/02/18 14:55	05/03/18 18:33	1
Nitrobenzene-d5	95		46 - 120	05/02/18 14:55	05/03/18 18:33	1
p-Terphenyl-d14	111		59 - 136	05/02/18 14:55	05/03/18 18:33	1
Phenol-d5	33		22 - 120	05/02/18 14:55	05/03/18 18:33	1

TestAmerica Buffalo

Page 40 of 66

5/10/2018

Client: O'Brien & Gere Inc of North America Project/Site: Midler Crossing - Characteristic Soil

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-412129/2-A

Matrix: Solid

Analysis Batch: 412361

Client Sample ID: Lab Control Sample Prep Type: Total/NA **Prep Batch: 412129**

	Spike	LCS I	LCS				%Rec.	
Analyte	Added	Result (Qualifier	Unit	D	%Rec	Limits	
1,4-Dichlorobenzene	0.0500	0.0285		mg/L		57	51 - 120	
3-Methylphenol	0.0500	0.0303		mg/L		61	39 _ 120	
2,4-Dinitrotoluene	0.0500	0.0475		mg/L		95	69 - 120	
Pyridine	0.100	0.0405		mg/L		41	10 - 120	
2,4,5-Trichlorophenol	0.0500	0.0458		mg/L		92	65 - 126	
2,4,6-Trichlorophenol	0.0500	0.0474		mg/L		95	64 - 120	
2-Methylphenol	0.0500	0.0322		mg/L		64	39 - 120	
4-Methylphenol	0.0500	0.0303		mg/L		61	29 _ 131	
Hexachlorobenzene	0.0500	0.0488		mg/L		98	61 - 120	
Hexachlorobutadiene	0.0500	0.0321		mg/L		64	35 - 120	
Hexachloroethane	0.0500	0.0264		mg/L		53	43 - 120	
Nitrobenzene	0.0500	0.0407		mg/L		81	53 - 123	
Pentachlorophenol	0.100	0.0807		mg/L		81	29 _ 136	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol	100		41 - 120
2-Fluorobiphenyl	86		48 - 120
2-Fluorophenol	44		35 - 120
Nitrobenzene-d5	82		46 - 120
p-Terphenyl-d14	100		59 - 136
Phenol-d5	30		22 - 120

Lab Sample ID: LCSD 480-412129/3-A

Matrix: Solid

Analysis Batch: 412361

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA **Prep Batch: 412129**

Analysis Batom +12001							1.00	Buton. 4	
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,4-Dichlorobenzene	0.0500	0.0282		mg/L		56	51 - 120	1	36
3-Methylphenol	0.0500	0.0299		mg/L		60	39 - 120	1	30
2,4-Dinitrotoluene	0.0500	0.0493		mg/L		99	69 - 120	4	20
Pyridine	0.100	0.0432		mg/L		43	10 - 120	6	49
2,4,5-Trichlorophenol	0.0500	0.0476		mg/L		95	65 - 126	4	18
2,4,6-Trichlorophenol	0.0500	0.0448		mg/L		90	64 - 120	6	19
2-Methylphenol	0.0500	0.0311		mg/L		62	39 - 120	3	27
4-Methylphenol	0.0500	0.0299		mg/L		60	29 - 131	1	24
Hexachlorobenzene	0.0500	0.0424		mg/L		85	61 - 120	14	15
Hexachlorobutadiene	0.0500	0.0308		mg/L		62	35 - 120	4	44
Hexachloroethane	0.0500	0.0263		mg/L		53	43 - 120	0	46
Nitrobenzene	0.0500	0.0376		mg/L		75	53 - 123	8	24
Pentachlorophenol	0.100	0.0766		mg/L		77	29 - 136	5	37

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol	91		41 - 120
2-Fluorobiphenyl	84		48 - 120
2-Fluorophenol	43		35 - 120
Nitrobenzene-d5	77		46 - 120
p-Terphenyl-d14	100		59 - 136

TestAmerica Buffalo

Page 41 of 66

Client: O'Brien & Gere Inc of North America Project/Site: Midler Crossing - Characteristic Soil

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 480-412129/3-A

Matrix: Solid

Analysis Batch: 412361

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Batch: 412129

LCSD LCSD

Surrogate %Recovery Qualifier Limits Phenol-d5 22 - 120 30

Client Sample ID: Method Blank

Prep Type: TCLP

Prep Batch: 412129

Lab Sample ID: LB 480-411629/1-D **Matrix: Solid**

Analysis Batch: 412361

	LB	LB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	ND		0.010	0.00046	mg/L		05/02/18 14:55	05/03/18 19:56	1
3-Methylphenol	ND		0.010	0.00040	mg/L		05/02/18 14:55	05/03/18 19:56	1
2,4-Dinitrotoluene	ND		0.0050	0.00045	mg/L		05/02/18 14:55	05/03/18 19:56	1
Pyridine	ND		0.025	0.00041	mg/L		05/02/18 14:55	05/03/18 19:56	1
2,4,5-Trichlorophenol	ND		0.0050	0.00048	mg/L		05/02/18 14:55	05/03/18 19:56	1
2,4,6-Trichlorophenol	ND		0.0050	0.00061	mg/L		05/02/18 14:55	05/03/18 19:56	1
2-Methylphenol	ND		0.0050	0.00040	mg/L		05/02/18 14:55	05/03/18 19:56	1
4-Methylphenol	ND		0.010	0.00036	mg/L		05/02/18 14:55	05/03/18 19:56	1
Hexachlorobenzene	ND		0.0050	0.00051	mg/L		05/02/18 14:55	05/03/18 19:56	1
Hexachlorobutadiene	ND		0.0050	0.00068	mg/L		05/02/18 14:55	05/03/18 19:56	1
Hexachloroethane	ND		0.0050	0.00059	mg/L		05/02/18 14:55	05/03/18 19:56	1
Nitrobenzene	ND		0.0050	0.00029	mg/L		05/02/18 14:55	05/03/18 19:56	1
Pentachlorophenol	ND		0.010	0.0022	mg/L		05/02/18 14:55	05/03/18 19:56	1

	LD	LD				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	87		41 - 120	05/02/18 14:55	05/03/18 19:56	1
2-Fluorobiphenyl	85		48 - 120	05/02/18 14:55	05/03/18 19:56	1
2-Fluorophenol	44		35 - 120	05/02/18 14:55	05/03/18 19:56	1
Nitrobenzene-d5	81		46 - 120	05/02/18 14:55	05/03/18 19:56	1
p-Terphenyl-d14	104		59 ₋ 136	05/02/18 14:55	05/03/18 19:56	1
Phenol-d5	32		22 - 120	05/02/18 14:55	05/03/18 19:56	1

Method: 8081B - Organochlorine Pesticides (GC)

Lab Sample ID: MB 480-410453/1-A

Matrix: Solid

Analysis Batch: 410968

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 410453

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND		1.6	0.32	ug/Kg		04/24/18 07:51	04/26/18 11:19	1
4,4'-DDE	ND		1.6	0.34	ug/Kg		04/24/18 07:51	04/26/18 11:19	1
4,4'-DDT	ND		1.6	0.38	ug/Kg		04/24/18 07:51	04/26/18 11:19	1
Aldrin	ND		1.6	0.40	ug/Kg		04/24/18 07:51	04/26/18 11:19	1
alpha-BHC	ND		1.6	0.29	ug/Kg		04/24/18 07:51	04/26/18 11:19	1
cis-Chlordane	ND		1.6	0.81	ug/Kg		04/24/18 07:51	04/26/18 11:19	1
beta-BHC	ND		1.6	0.29	ug/Kg		04/24/18 07:51	04/26/18 11:19	1
delta-BHC	ND		1.6	0.30	ug/Kg		04/24/18 07:51	04/26/18 11:19	1
Dieldrin	ND		1.6	0.39	ug/Kg		04/24/18 07:51	04/26/18 11:19	1
Endosulfan I	ND		1.6	0.31	ug/Kg		04/24/18 07:51	04/26/18 11:19	1
Endosulfan II	ND		1.6	0.29	ug/Kg		04/24/18 07:51	04/26/18 11:19	1

TestAmerica Buffalo

5/10/2018

Page 42 of 66

Client: O'Brien & Gere Inc of North America Project/Site: Midler Crossing - Characteristic Soil

Method: 8081B - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: MB 480-410453/1-A

Matrix: Solid

Analysis Batch: 410968

Client Sample ID: Method Blank **Prep Type: Total/NA**

Prep Batch: 410453

	MB	MB						•	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Endosulfan sulfate	ND		1.6	0.30	ug/Kg		04/24/18 07:51	04/26/18 11:19	1
Endrin	ND		1.6	0.32	ug/Kg		04/24/18 07:51	04/26/18 11:19	1
Endrin aldehyde	ND		1.6	0.42	ug/Kg		04/24/18 07:51	04/26/18 11:19	1
Endrin ketone	ND		1.6	0.40	ug/Kg		04/24/18 07:51	04/26/18 11:19	1
gamma-BHC (Lindane)	ND		1.6	0.30	ug/Kg		04/24/18 07:51	04/26/18 11:19	1
trans-Chlordane	ND		1.6	0.52	ug/Kg		04/24/18 07:51	04/26/18 11:19	1
Heptachlor	ND		1.6	0.35	ug/Kg		04/24/18 07:51	04/26/18 11:19	1
Heptachlor epoxide	ND		1.6	0.42	ug/Kg		04/24/18 07:51	04/26/18 11:19	1
Methoxychlor	ND		1.6	0.33	ug/Kg		04/24/18 07:51	04/26/18 11:19	1
Toxaphene	ND		16	9.5	ug/Kg		04/24/18 07:51	04/26/18 11:19	1

мв мв

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	73		45 - 120	04/24/18 07:51	04/26/18 11:19	1
Tetrachloro-m-xylene	54		30 - 124	04/24/18 07:51	04/26/18 11:19	1

Lab Sample ID: LCS 480-410453/2-A

Matrix: Solid

Analysis Batch: 410968

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 410453

Allalysis Datcil. 410300							Frep Daten. 4 10433
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
4,4'-DDD	16.4	11.9		ug/Kg		73	56 - 120
4,4'-DDE	16.4	11.4		ug/Kg		70	44 - 120
4,4'-DDT	16.4	12.5		ug/Kg		76	38 - 120
Aldrin	16.4	8.25		ug/Kg		50	38 - 120
alpha-BHC	16.4	9.77		ug/Kg		60	39 - 120
cis-Chlordane	16.4	11.6		ug/Kg		71	47 - 120
beta-BHC	16.4	10.1		ug/Kg		62	40 - 120
delta-BHC	16.4	9.62		ug/Kg		59	45 - 120
Dieldrin	16.4	12.0		ug/Kg		73	58 - 120
Endosulfan I	16.4	11.4		ug/Kg		69	49 - 120
Endosulfan II	16.4	11.1		ug/Kg		68	55 - 120
Endosulfan sulfate	16.4	10.2		ug/Kg		62	49 - 124
Endrin	16.4	11.8		ug/Kg		72	58 - 120
Endrin aldehyde	16.4	9.63		ug/Kg		59	37 - 121
Endrin ketone	16.4	11.3		ug/Kg		69	46 - 123
gamma-BHC (Lindane)	16.4	10.4		ug/Kg		63	50 - 120
trans-Chlordane	16.4	11.3		ug/Kg		69	48 - 120
Heptachlor	16.4	11.4		ug/Kg		70	50 - 120
Heptachlor epoxide	16.4	9.82		ug/Kg		60	50 _ 120
Methoxychlor	16.4	12.1		ug/Kg		73	58 - 133

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	73		45 - 120
Tetrachloro-m-xylene	53		30 - 124

Client: O'Brien & Gere Inc of North America Project/Site: Midler Crossing - Characteristic Soil

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

MD MD

Lab Sample ID: MB 480-411220/1-A

Matrix: Solid

Analysis Batch: 411578

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 411220

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.19	0.037	mg/Kg		04/27/18 07:20	04/30/18 20:09	1
PCB-1221	ND		0.19	0.037	mg/Kg		04/27/18 07:20	04/30/18 20:09	1
PCB-1232	ND		0.19	0.037	mg/Kg		04/27/18 07:20	04/30/18 20:09	1
PCB-1242	ND		0.19	0.037	mg/Kg		04/27/18 07:20	04/30/18 20:09	1
PCB-1248	ND		0.19	0.037	mg/Kg		04/27/18 07:20	04/30/18 20:09	1
PCB-1254	ND		0.19	0.089	mg/Kg		04/27/18 07:20	04/30/18 20:09	1
PCB-1260	ND		0.19	0.089	mg/Kg		04/27/18 07:20	04/30/18 20:09	1
PCB-1262	ND		0.19	0.089	mg/Kg		04/27/18 07:20	04/30/18 20:09	1
PCB-1268	ND		0.19	0.089	mg/Kg		04/27/18 07:20	04/30/18 20:09	1

мв мв

Surrogate	%Recovery Qua	alifier Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	106	60 - 154	04/27/18 07:20	04/30/18 20:09	1
DCB Decachlorobiphenyl	106	65 ₋ 174	04/27/18 07:20	04/30/18 20:09	1

Lab Sample ID: LCS 480-411220/2-A

Matrix: Solid

Analysis Batch: 411578

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 411220

Spike LCS LCS Analyte Added Result Qualifier Unit %Rec Limits PCB-1016 1.89 2.62 mg/Kg 139 51 - 185 PCB-1260 1.89 2.86 mg/Kg 152 61 - 184

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	128		60 - 154
DCB Decachlorobiphenyl	124		65 - 174

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-410124/1-A

Matrix: Solid

Analysis Batch: 410498

Client Sample ID: Method Blank
Prep Type: Total/NA
Prop Ratch: 410124

Prep Batch: 410124

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		9.7	4.3	mg/Kg		04/21/18 11:57	04/24/18 04:26	1
Antimony	ND		14.6	0.39	mg/Kg		04/21/18 11:57	04/24/18 04:26	1
Arsenic	ND		1.9	0.39	mg/Kg		04/21/18 11:57	04/24/18 04:26	1
Barium	ND		0.49	0.11	mg/Kg		04/21/18 11:57	04/24/18 04:26	1
Beryllium	ND		0.19	0.027	mg/Kg		04/21/18 11:57	04/24/18 04:26	1
Cadmium	ND		0.19	0.029	mg/Kg		04/21/18 11:57	04/24/18 04:26	1
Calcium	5.02	J	48.5	3.2	mg/Kg		04/21/18 11:57	04/24/18 04:26	1
Chromium	0.265	J	0.49	0.19	mg/Kg		04/21/18 11:57	04/24/18 04:26	1
Cobalt	ND		0.49	0.049	mg/Kg		04/21/18 11:57	04/24/18 04:26	1
Copper	ND		0.97	0.20	mg/Kg		04/21/18 11:57	04/24/18 04:26	1
Iron	3.40	J	9.7	3.4	mg/Kg		04/21/18 11:57	04/24/18 04:26	1
Lead	ND		0.97	0.23	mg/Kg		04/21/18 11:57	04/24/18 04:26	1
Magnesium	ND		19.4	0.90	mg/Kg		04/21/18 11:57	04/24/18 04:26	1
Manganese	ND		0.19	0.031	mg/Kg		04/21/18 11:57	04/24/18 04:26	1

TestAmerica Buffalo

Page 44 of 66

Client: O'Brien & Gere Inc of North America Project/Site: Midler Crossing - Characteristic Soil

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: MB 480-410124/1-A

Matrix: Solid

Analysis Batch: 410498

Client Sample ID: Method Blank **Prep Type: Total/NA**

Prep Batch: 410124

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nickel	ND		4.9	0.22	mg/Kg		04/21/18 11:57	04/24/18 04:26	1
Potassium	ND		29.1	19.4	mg/Kg		04/21/18 11:57	04/24/18 04:26	1
Selenium	ND		3.9	0.39	mg/Kg		04/21/18 11:57	04/24/18 04:26	1
Silver	ND		0.58	0.19	mg/Kg		04/21/18 11:57	04/24/18 04:26	1
Sodium	ND		136	12.6	mg/Kg		04/21/18 11:57	04/24/18 04:26	1
Thallium	ND		5.8	0.29	mg/Kg		04/21/18 11:57	04/24/18 04:26	1
Vanadium	ND		0.49	0.11	mg/Kg		04/21/18 11:57	04/24/18 04:26	1
Zinc	ND		1.9	0.62	mg/Kg		04/21/18 11:57	04/24/18 04:26	1

Lab Sample ID: LCSSRM 480-410124/2-A **Client Sample ID: Lab Control Sample**

Matrix: Solid

Analysis Batch: 410498

Prep Type: Total/NA

Prep Batch: 410124

Analysis Batch: 410498	.						Prep Batch: 410124
Analyte	Spike Added		LCSSRM Qualifier	Unit	D	%Rec	%Rec. Limits
Aluminum		9695	Qualifier	mg/Kg		120.5	39.4 - 160.
Adminum	8040	9093		mg/Rg		120.5	39.4 - 160. 4
Antimony	91.4	86.39		mg/Kg		94.5	25.1 ₋ 275.
,	0	00.00		99		00	7
Arsenic	146	119.3		mg/Kg		81.7	69.9 - 132.
				0 0			9
Barium	102	96.12		mg/Kg		94.2	71.5 - 136.
							3
Beryllium	134	107.0		mg/Kg		79.8	75.4 - 138.
							1
Cadmium	63.2	49.31		mg/Kg		78.0	73.3 - 141.
							5
Calcium	5930	4958		mg/Kg		83.6	73.7 - 136.
- ·							1
Chromium	89.3	80.06		mg/Kg		89.6	69.1 - 143.
Caball	440	404.0				404.4	3
Cobalt	119	124.3		mg/Kg		104.4	74.6 - 142.
Copper	60.8	51.61		mg/Kg		84.9	0 72.7 - 141.
Соррег	00.0	31.01		mg/rtg		04.3	6
Iron	14400	17020		mg/Kg		118.2	35.6 _{- 163} .
				99			9
Lead	98.5	105.3		mg/Kg		106.8	70.8 - 137.
				0 0			1
Magnesium	2580	2289		mg/Kg		88.7	63.6 - 136.
							0
Manganese	370	324.9		mg/Kg		87.8	75.7 - 134.
							3
Nickel	66.6	68.88		mg/Kg		103.4	70.7 - 146.
							2
Potassium	2340	2865		mg/Kg		122.4	59.8 - 140.
							2
Selenium	136	108.2		mg/Kg		79.5	67.1 - 136.
011	40.0	00.00				00.0	8
Silver	48.9	39.29		mg/Kg		80.3	66.5 - 139.
Sodium	318	327.5		malka		102.0	5
Souluiii	318	327.5		mg/Kg		103.0	40.6 - 159.
							7

TestAmerica Buffalo

Client: O'Brien & Gere Inc of North America Project/Site: Midler Crossing - Characteristic Soil

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LCSSRM 480-410124/2-A

Matrix: Solid Analysis Batch: 410498 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Prep Batch: 410124

	Spike	LCSSRM	LCSSRM				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Thallium	138	137.3		mg/Kg		99.5	68.0 - 136.	
							2	
Vanadium	69.7	73.47		mg/Kg		105.4	58.7 - 141.	
							3	
Zinc	177	137.4		mg/Kg		77.6	69.5 - 131.	
							1	

Lab Sample ID: MB 480-411807/2-A

Matrix: Solid

Analysis Batch: 412567

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 411807

	мв	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.015	0.0056	mg/L		05/01/18 10:12	05/01/18 22:31	
Barium	ND		1.0	0.10	mg/L		05/01/18 10:12	05/01/18 22:31	
Cadmium	ND		0.0020	0.00050	mg/L		05/01/18 10:12	05/01/18 22:31	
Chromium	ND		0.020	0.010	mg/L		05/01/18 10:12	05/01/18 22:31	
Lead	ND		0.020	0.0030	mg/L		05/01/18 10:12	05/01/18 22:31	
Selenium	ND		0.025	0.0087	mg/L		05/01/18 10:12	05/01/18 22:31	•
Silver	ND		0.0060	0.0017	mg/L		05/01/18 10:12	05/01/18 22:31	

Lab Sample ID: LCS 480-411807/3-A

Matrix: Solid

Analysis Batch: 412567

Client Sample ID: Lab Control Sample

Prep Type: Total/NA **Prep Batch: 411807**

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	1.00	1.00		mg/L		100	80 - 120	
Barium	1.00	1.01		mg/L		101	80 - 120	
Cadmium	1.00	1.03		mg/L		103	80 - 120	
Chromium	1.00	1.00		mg/L		100	80 - 120	
Lead	1.00	0.980		mg/L		98	80 - 120	
Selenium	1.00	1.05		mg/L		105	80 - 120	
Silver	1.00	0.988		mg/L		99	80 - 120	

Lab Sample ID: LB 480-411629/1-B

Matrix: Solid

Analysis Batch: 412567

Client Sample ID: Method Blank **Prep Type: TCLP**

Prep Batch: 411807

	LB	LB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.015	0.0056	mg/L		05/01/18 10:12	05/01/18 22:27	1
Barium	ND		1.0	0.10	mg/L		05/01/18 10:12	05/01/18 22:27	1
Cadmium	ND		0.0020	0.00050	mg/L		05/01/18 10:12	05/01/18 22:27	1
Chromium	ND		0.020	0.010	mg/L		05/01/18 10:12	05/01/18 22:27	1
Lead	ND		0.020	0.0030	mg/L		05/01/18 10:12	05/01/18 22:27	1
Selenium	ND		0.025	0.0087	mg/L		05/01/18 10:12	05/01/18 22:27	1
Silver	ND		0.0060	0.0017	mg/L		05/01/18 10:12	05/01/18 22:27	1

TestAmerica Buffalo

Client: O'Brien & Gere Inc of North America Project/Site: Midler Crossing - Characteristic Soil

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: 480-134628-1 MS Client Sample ID: NE-SE BERM-042018 **Matrix: Solid Prep Type: TCLP** Analysis Batch: 412567 Prep Batch: 411807

Spike MS MS Sample Sample %Rec. Result Qualifier Added Result Qualifier %Rec Limits Analyte Unit D Arsenic ND 1.00 1.09 mg/L 109 75 - 125 Barium 0.46 1.00 1.47 mg/L 100 75 - 125 0.0035 Cadmium 1.00 1.09 mg/L 109 75 - 125 Chromium ND 1.00 0.950 mg/L 95 75 - 125 Lead 0.037 1.00 1.05 mg/L 101 75 - 125 Selenium ND 1.00 1.12 mg/L 112 75 - 125 75 - 125 Silver ND 1.00 1.08 108 mg/L

Lab Sample ID: 480-134628-1 MSD Client Sample ID: NE-SE BERM-042018

Matrix: Solid Prep Type: TCLP Analysis Batch: 412567 Prep Batch: 411807

MSD MSD %Rec. RPD Sample Sample Spike Analyte Limit Qualifier Added Qualifier %Rec Limits RPD Result Result Unit D Arsenic ND 1.00 1.08 mg/L 108 75 - 125 20 Barium 0.46 1.00 1.45 mg/L 98 75 - 125 20 Cadmium 0.0035 1.00 1.08 mg/L 108 75 - 125 20 0.934 Chromium ND 1.00 mg/L 93 75 - 125 20 0.037 1.00 100 75 - 125 20 Lead 1.03 mg/L 2 Selenium ND 1.00 1.11 mg/L 111 75 - 125 20 Silver ND 106 1.00 1.06 mg/L 75 - 125 2 20

Method: 7470A - TCLP Mercury

Lab Sample ID: MB 480-411863/2-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 412067 MB MB

Result Qualifier MDL Unit Analyte RL Prepared Analyzed Dil Fac Mercury ND 0.00020 0.00012 mg/L 05/01/18 13:35 05/01/18 20:11

Lab Sample ID: LCS 480-411863/3-A Client Sample ID: Lab Control Sample **Matrix: Solid**

Prep Type: Total/NA Analysis Batch: 412067 Prep Batch: 411863 Spike LCS LCS %Rec.

Analyte Added Result Qualifier Unit D %Rec Limits Mercury 0.00668 0.00623 mg/L 80 - 120

Lab Sample ID: LB 480-411629/1-C Client Sample ID: Method Blank

Matrix: Solid Prep Type: TCLP Analysis Batch: 412067 **Prep Batch: 411863** LB LB

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 0.00012 mg/L Mercury ND 0.00020 05/01/18 13:35 05/01/18 20:09

TestAmerica Buffalo

Prep Batch: 411863

TestAmerica Job ID: 480-134628-1

1

5

Method: 7470A - TCLP Mercury (Continued)

Lab Sample ID: 480-134628-1 MS Client Sample ID: NE-SE BERM-042018 **Matrix: Solid Prep Type: TCLP**

Analysis Batch: 412067 Prep Batch: 411863 Sample Sample Spike MS MS %Rec.

Result Qualifier Added Result Qualifier Limits Analyte Unit D %Rec Mercury ND 0.00668 0.00600 mg/L 90 80 - 120

Lab Sample ID: 480-134628-1 MSD Client Sample ID: NE-SE BERM-042018

Matrix: Solid Prep Type: TCLP Analysis Batch: 412067 **Prep Batch: 411863**

Sample Sample Spike MSD MSD Result Qualifier Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Mercury ND 0.00668 0.00600 mg/L 90 80 - 120 20

Method: 7471B - Mercury (CVAA)

Lab Sample ID: MB 480-411938/1-A Client Sample ID: Method Blank

Matrix: Solid Prep Type: Total/NA Analysis Batch: 412200 Prep Batch: 411938

MR MR Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 0.020 Mercury ND 0.0082 mg/Kg 05/02/18 15:10 05/02/18 16:37

Lab Sample ID: LCSSRM 480-411938/2-A ^10 Client Sample ID: Lab Control Sample

Matrix: Solid Prep Type: Total/NA Analysis Batch: 412200 Prep Batch: 411938

Spike LCSSRM LCSSRM %Rec. Analyte Added Result Qualifier Unit %Rec Limits 13.3 13.20 51.2 - 148. 99.3 Mercury mg/Kg

Method: 1010A - Ignitability, Pensky-Martens Closed-Cup Method

Lab Sample ID: LCS 480-411934/1 **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 411934

Spike LCS LCS %Rec. Analyte Added Qualifier Unit %Rec Limits Flashpoint 81.0 82.00 Degrees F 97.5 - 102

Method: 9012 - Cyanide, Reactive

Lab Sample ID: MB 480-411671/1-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 411713 **Prep Batch: 411671** мв мв

Analyte Result Qualifier RLMDL Unit Prepared Analyzed Dil Fac Cyanide, Reactive ND 10.0 10.0 mg/Kg 04/30/18 05:03 04/30/18 16:38

5/10/2018

Client Sample ID: Method Blank

Method: 9012 - Cyanide, Reactive (Continued)

Lab Sample ID: LCS 480-411671/2-A					Client	Sample	ID: Lab C	ontrol Sample
Matrix: Solid							Prep 1	ype: Total/NA
Analysis Batch: 411713							Prep	Batch: 411671
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Cyanide, Reactive	1000	ND		mg/Kg		22	10 - 100	

Method: 9034 - Sulfide, Reactive

Lab Sample ID: MB 480-411676/1-A

Matrix: Solid Analysis Batch: 411721								Prep Type: T Prep Batch:	
	MB	MB						•	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfide, Reactive	ND		10.0	10.0	mg/Kg		04/30/18 05:03	04/30/18 15:45	1
_									

Lab Sample ID: LCS 480-411676/2-A					Client	Sample	e ID: Lab C	ontrol Sample
Matrix: Solid							Prep 1	Γype: Total/NA
Analysis Batch: 411721							Prep	Batch: 411676
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Sulfide, Reactive	 860	801.5		mg/Kg		93	10 - 100	

Method: 9045D - pH

Matrix: Solid

Lab Sample ID: LCS 480-410913/1 Matrix: Solid					Client	Sample		ontrol Sample ype: Total/NA
Analysis Batch: 410913								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
рН	7.00	7.0		SU		100	99 - 101	
Lab Sample ID: LCS 480-410915/1					Client	Sample	ID: Lab C	ontrol Sample
Matrix: Solid							Prep 1	ype: Total/NA
Analysis Batch: 410915							_	
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
рН	10.0	10.0		SU		100	99 - 101	

Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
рН	10.0	10.0		SU		100	99 - 101		
Lab Sample ID: 480-134628-1 DU					Client	Sample	ID: NE-SE	BERM-042	2018

Analysis Batch: 410915								•	
	Sample	Sample	DU	DU					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit
рН	10.5	HF	 10.5		SU		 	0.4	5
Temperature	25.5	HF	25.5		Degrees C			0	10

Prep Type: Total/NA

QC Sample Results

Client: O'Brien & Gere Inc of North America Project/Site: Midler Crossing - Characteristic Soil TestAmerica Job ID: 480-134628-1

Method: 9095B - Paint Filter

Lab Sample ID: 480-134628-3 DU

Matrix: Solid

Analysis Batch: 410886

Client Sample ID: NW-SW-BERM-042018

Prep Type: Total/NA

Sample Sample DU DU RPD Analyte Result Qualifier Result Qualifier RPD Limit Unit D NC Free Liquid mL/100g passed passed

Client: O'Brien & Gere Inc of North America Project/Site: Midler Crossing - Characteristic Soil

GC/MS VOA

Prep Batch: 410288

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-134628-8	E-BERM-042018	Total/NA	Solid	5035A_L	
480-134628-10	W-BERM-042018	Total/NA	Solid	5035A_L	
480-134628-12	X-2-042018	Total/NA	Solid	5035A_L	
MB 480-410288/2-A	Method Blank	Total/NA	Solid	5035A_L	
LCS 480-410288/1-A	Lab Control Sample	Total/NA	Solid	5035A_L	
480-134628-12 MS	X-2-042018	Total/NA	Solid	5035A_L	
480-134628-12 MSD	X-2-042018	Total/NA	Solid	5035A_L	

Analysis Batch: 410294

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-134628-8	E-BERM-042018	Total/NA	Solid	8260C	410288
480-134628-10	W-BERM-042018	Total/NA	Solid	8260C	410288
480-134628-12	X-2-042018	Total/NA	Solid	8260C	410288
MB 480-410288/2-A	Method Blank	Total/NA	Solid	8260C	410288
LCS 480-410288/1-A	Lab Control Sample	Total/NA	Solid	8260C	410288
480-134628-12 MS	X-2-042018	Total/NA	Solid	8260C	410288
480-134628-12 MSD	X-2-042018	Total/NA	Solid	8260C	410288

Leach Batch: 411593

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-134628-7	NE-SE BERM-042018	TCLP	Solid	1311	
480-134628-9	NW-SW-BERM-042018	TCLP	Solid	1311	
480-134628-11	X-1-042018	TCLP	Solid	1311	
LB 480-411593/1-A	Method Blank	TCLP	Solid	1311	

Analysis Batch: 412741

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LB 480-411593/1-A	Method Blank	TCLP	Solid	8260C	411593
MB 480-412741/7	Method Blank	Total/NA	Solid	8260C	
LCS 480-412741/5	Lab Control Sample	Total/NA	Solid	8260C	

Analysis Batch: 413229

Client Sample ID	Prep Type	Matrix	Method	Prep Batch
NE-SE BERM-042018	TCLP	Solid	8260C	411593
NW-SW-BERM-042018	TCLP	Solid	8260C	411593
X-1-042018	TCLP	Solid	8260C	411593
Method Blank	Total/NA	Solid	8260C	
Lab Control Sample	Total/NA	Solid	8260C	
	NE-SE BERM-042018 NW-SW-BERM-042018 X-1-042018 Method Blank	NE-SE BERM-042018 TCLP NW-SW-BERM-042018 TCLP X-1-042018 TCLP Method Blank Total/NA	NE-SE BERM-042018 TCLP Solid NW-SW-BERM-042018 TCLP Solid X-1-042018 TCLP Solid Method Blank Total/NA Solid	NE-SE BERM-042018 TCLP Solid 8260C NW-SW-BERM-042018 TCLP Solid 8260C X-1-042018 TCLP Solid 8260C Method Blank Total/NA Solid 8260C

GC/MS Semi VOA

Leach Batch: 411629

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-134628-1	NE-SE BERM-042018	TCLP	Solid	1311	<u> </u>
480-134628-3	NW-SW-BERM-042018	TCLP	Solid	1311	
480-134628-5	X-1-042018	TCLP	Solid	1311	
LB 480-411629/1-D	Method Blank	TCLP	Solid	1311	

TestAmerica Buffalo

3

4

6

9

4 4

12

1 /

Client: O'Brien & Gere Inc of North America Project/Site: Midler Crossing - Characteristic Soil

GC/MS Semi VOA (Continued)

Prep Batch: 411993

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-134628-2	E-BERM-042018	Total/NA	Solid	3550C	
480-134628-4	W-BERM-042018	Total/NA	Solid	3550C	
480-134628-6	X-2-042018	Total/NA	Solid	3550C	
MB 480-411993/1-A	Method Blank	Total/NA	Solid	3550C	
LCS 480-411993/2-A	Lab Control Sample	Total/NA	Solid	3550C	

Prep Batch: 412129

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-134628-1	NE-SE BERM-042018	TCLP	Solid	3510C	411629
480-134628-3	NW-SW-BERM-042018	TCLP	Solid	3510C	411629
480-134628-5	X-1-042018	TCLP	Solid	3510C	411629
LB 480-411629/1-D	Method Blank	TCLP	Solid	3510C	411629
MB 480-412129/1-A	Method Blank	Total/NA	Solid	3510C	
LCS 480-412129/2-A	Lab Control Sample	Total/NA	Solid	3510C	
LCSD 480-412129/3-A	Lab Control Sample Dup	Total/NA	Solid	3510C	

Analysis Batch: 412361

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-134628-1	NE-SE BERM-042018	TCLP	Solid	8270D	412129
480-134628-3	NW-SW-BERM-042018	TCLP	Solid	8270D	412129
480-134628-5	X-1-042018	TCLP	Solid	8270D	412129
LB 480-411629/1-D	Method Blank	TCLP	Solid	8270D	412129
MB 480-412129/1-A	Method Blank	Total/NA	Solid	8270D	412129
LCS 480-412129/2-A	Lab Control Sample	Total/NA	Solid	8270D	412129
LCSD 480-412129/3-A	Lab Control Sample Dup	Total/NA	Solid	8270D	412129

Analysis Batch: 412413

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-134628-2	E-BERM-042018	Total/NA	Solid	8270D	411993
480-134628-4	W-BERM-042018	Total/NA	Solid	8270D	411993
480-134628-6	X-2-042018	Total/NA	Solid	8270D	411993
MB 480-411993/1-A	Method Blank	Total/NA	Solid	8270D	411993
LCS 480-411993/2-A	Lab Control Sample	Total/NA	Solid	8270D	411993

GC Semi VOA

Prep Batch: 410453

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-134628-2	E-BERM-042018	Total/NA	Solid	3550C	<u> </u>
480-134628-4	W-BERM-042018	Total/NA	Solid	3550C	
480-134628-6	X-2-042018	Total/NA	Solid	3550C	
MB 480-410453/1-A	Method Blank	Total/NA	Solid	3550C	
LCS 480-410453/2-A	Lab Control Sample	Total/NA	Solid	3550C	

Analysis Batch: 410968

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-134628-2	E-BERM-042018	Total/NA	Solid	8081B	410453
480-134628-4	W-BERM-042018	Total/NA	Solid	8081B	410453
480-134628-6	X-2-042018	Total/NA	Solid	8081B	410453
MB 480-410453/1-A	Method Blank	Total/NA	Solid	8081B	410453

TestAmerica Buffalo

5/10/2018

Page 52 of 66

3

4

6

8

10

4.6

13

14

Client: O'Brien & Gere Inc of North America Project/Site: Midler Crossing - Characteristic Soil

GC Semi VOA (Continued)

Analysis Batch: 410968 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 480-410453/2-A	Lab Control Sample	Total/NA	Solid	8081B	410453

Prep Batch: 411220

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-134628-2	E-BERM-042018	Total/NA	Solid	3550C	
480-134628-4	W-BERM-042018	Total/NA	Solid	3550C	
480-134628-6	X-2-042018	Total/NA	Solid	3550C	
MB 480-411220/1-A	Method Blank	Total/NA	Solid	3550C	
LCS 480-411220/2-A	Lab Control Sample	Total/NA	Solid	3550C	

Analysis Batch: 411578

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-134628-2	E-BERM-042018	Total/NA	Solid	8082A	411220
480-134628-4	W-BERM-042018	Total/NA	Solid	8082A	411220
480-134628-6	X-2-042018	Total/NA	Solid	8082A	411220
MB 480-411220/1-A	Method Blank	Total/NA	Solid	8082A	411220
LCS 480-411220/2-A	Lab Control Sample	Total/NA	Solid	8082A	411220

Metals

Prep Batch: 410124

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-134628-2	E-BERM-042018	Total/NA	Solid	3050B	<u> </u>
480-134628-4	W-BERM-042018	Total/NA	Solid	3050B	
480-134628-6	X-2-042018	Total/NA	Solid	3050B	
MB 480-410124/1-A	Method Blank	Total/NA	Solid	3050B	
LCSSRM 480-410124/2-A	Lab Control Sample	Total/NA	Solid	3050B	

Analysis Batch: 410498

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 480-410124/1-A	Method Blank	Total/NA	Solid	6010C	410124
LCSSRM 480-410124/2-A	Lab Control Sample	Total/NA	Solid	6010C	410124

Analysis Batch: 410722

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-134628-2	E-BERM-042018	Total/NA	Solid	6010C	410124
480-134628-2	E-BERM-042018	Total/NA	Solid	6010C	410124
480-134628-4	W-BERM-042018	Total/NA	Solid	6010C	410124
480-134628-6	X-2-042018	Total/NA	Solid	6010C	410124

Analysis Batch: 410770

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-134628-6	X-2-042018	Total/NA	Solid	6010C	410124

Leach Batch: 411629

Γ					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-134628-1	NE-SE BERM-042018	TCLP	Solid	1311	
480-134628-3	NW-SW-BERM-042018	TCLP	Solid	1311	
480-134628-5	X-1-042018	TCLP	Solid	1311	
LB 480-411629/1-B	Method Blank	TCLP	Solid	1311	

TestAmerica Buffalo

Page 53 of 66

6

3

4

5

_

10

13

14

Client: O'Brien & Gere Inc of North America Project/Site: Midler Crossing - Characteristic Soil

Metals (Continued)

Leach Batch: 411629 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LB 480-411629/1-C	Method Blank	TCLP	Solid	1311	
480-134628-1 MS	NE-SE BERM-042018	TCLP	Solid	1311	
480-134628-1 MSD	NE-SE BERM-042018	TCLP	Solid	1311	

Prep Batch: 411807

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-134628-1	NE-SE BERM-042018	TCLP	Solid	3010A	411629
480-134628-3	NW-SW-BERM-042018	TCLP	Solid	3010A	411629
480-134628-5	X-1-042018	TCLP	Solid	3010A	411629
LB 480-411629/1-B	Method Blank	TCLP	Solid	3010A	411629
MB 480-411807/2-A	Method Blank	Total/NA	Solid	3010A	
LCS 480-411807/3-A	Lab Control Sample	Total/NA	Solid	3010A	
480-134628-1 MS	NE-SE BERM-042018	TCLP	Solid	3010A	411629
480-134628-1 MSD	NE-SE BERM-042018	TCLP	Solid	3010A	411629

Prep Batch: 411863

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-134628-1	NE-SE BERM-042018	TCLP	Solid	7470A	411629
480-134628-3	NW-SW-BERM-042018	TCLP	Solid	7470A	411629
480-134628-5	X-1-042018	TCLP	Solid	7470A	411629
LB 480-411629/1-C	Method Blank	TCLP	Solid	7470A	411629
MB 480-411863/2-A	Method Blank	Total/NA	Solid	7470A	
LCS 480-411863/3-A	Lab Control Sample	Total/NA	Solid	7470A	
480-134628-1 MS	NE-SE BERM-042018	TCLP	Solid	7470A	411629
480-134628-1 MSD	NE-SE BERM-042018	TCLP	Solid	7470A	411629

Prep Batch: 411938

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-134628-2	E-BERM-042018	Total/NA	Solid	7471B	
480-134628-4	W-BERM-042018	Total/NA	Solid	7471B	
480-134628-6	X-2-042018	Total/NA	Solid	7471B	
MB 480-411938/1-A	Method Blank	Total/NA	Solid	7471B	
LCSSRM 480-411938/2-A ^10	Lab Control Sample	Total/NA	Solid	7471B	

Analysis Batch: 412067

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-134628-1	NE-SE BERM-042018	TCLP	Solid	7470A	411863
480-134628-3	NW-SW-BERM-042018	TCLP	Solid	7470A	411863
480-134628-5	X-1-042018	TCLP	Solid	7470A	411863
LB 480-411629/1-C	Method Blank	TCLP	Solid	7470A	411863
MB 480-411863/2-A	Method Blank	Total/NA	Solid	7470A	411863
LCS 480-411863/3-A	Lab Control Sample	Total/NA	Solid	7470A	411863
480-134628-1 MS	NE-SE BERM-042018	TCLP	Solid	7470A	411863
480-134628-1 MSD	NE-SE BERM-042018	TCLP	Solid	7470A	411863

Analysis Batch: 412200

_					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-134628-2	E-BERM-042018	Total/NA	Solid	7471B	411938
480-134628-4	W-BERM-042018	Total/NA	Solid	7471B	411938
480-134628-6	X-2-042018	Total/NA	Solid	7471B	411938
MB 480-411938/1-A	Method Blank	Total/NA	Solid	7471B	411938

TestAmerica Buffalo

Page 54 of 66

9

3

6

_

9

1 1

QC Association Summary

Client: O'Brien & Gere Inc of North America Project/Site: Midler Crossing - Characteristic Soil TestAmerica Job ID: 480-134628-1

Metals (Continued)

Analysis Batch: 412200 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCSSRM 480-411938/2-A ^10	Lab Control Sample	Total/NA	Solid	7471B	411938

Analysis Batch: 412567

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-134628-1	NE-SE BERM-042018	TCLP	Solid	6010C	411807
480-134628-3	NW-SW-BERM-042018	TCLP	Solid	6010C	411807
480-134628-5	X-1-042018	TCLP	Solid	6010C	411807
LB 480-411629/1-B	Method Blank	TCLP	Solid	6010C	411807
MB 480-411807/2-A	Method Blank	Total/NA	Solid	6010C	411807
LCS 480-411807/3-A	Lab Control Sample	Total/NA	Solid	6010C	411807
480-134628-1 MS	NE-SE BERM-042018	TCLP	Solid	6010C	411807
480-134628-1 MSD	NE-SE BERM-042018	TCLP	Solid	6010C	411807

General Chemistry

Analysis Batch: 410104

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-134628-2	E-BERM-042018	Total/NA	Solid	Moisture	
480-134628-4	W-BERM-042018	Total/NA	Solid	Moisture	
480-134628-6	X-2-042018	Total/NA	Solid	Moisture	

Analysis Batch: 410886

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-134628-1	NE-SE BERM-042018	Total/NA	Solid	9095B	
480-134628-3	NW-SW-BERM-042018	Total/NA	Solid	9095B	
480-134628-5	X-1-042018	Total/NA	Solid	9095B	
480-134628-3 DU	NW-SW-BERM-042018	Total/NA	Solid	9095B	

Analysis Batch: 410913

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-134628-3	NW-SW-BERM-042018	Total/NA	Solid	9045D	
480-134628-5	X-1-042018	Total/NA	Solid	9045D	
LCS 480-410913/1	Lab Control Sample	Total/NA	Solid	9045D	

Analysis Batch: 410915

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-134628-1	NE-SE BERM-042018	Total/NA	Solid	9045D	
LCS 480-410915/1	Lab Control Sample	Total/NA	Solid	9045D	
480-134628-1 DU	NE-SE BERM-042018	Total/NA	Solid	9045D	

Prep Batch: 411671

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-134628-1	NE-SE BERM-042018	Total/NA	Solid	7.3.3	
480-134628-3	NW-SW-BERM-042018	Total/NA	Solid	7.3.3	
480-134628-5	X-1-042018	Total/NA	Solid	7.3.3	
MB 480-411671/1-A	Method Blank	Total/NA	Solid	7.3.3	
LCS 480-411671/2-A	Lab Control Sample	Total/NA	Solid	7.3.3	

TestAmerica Buffalo

Page 55 of 66

QC Association Summary

Client: O'Brien & Gere Inc of North America Project/Site: Midler Crossing - Characteristic Soil TestAmerica Job ID: 480-134628-1

General Chemistry (Continued)

Prep Batch: 411676

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-134628-1	NE-SE BERM-042018	Total/NA	Solid	7.3.4	
480-134628-3	NW-SW-BERM-042018	Total/NA	Solid	7.3.4	
480-134628-5	X-1-042018	Total/NA	Solid	7.3.4	
MB 480-411676/1-A	Method Blank	Total/NA	Solid	7.3.4	
LCS 480-411676/2-A	Lab Control Sample	Total/NA	Solid	7.3.4	

Analysis Batch: 411713

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-134628-1	NE-SE BERM-042018	Total/NA	Solid	9012	411671
480-134628-3	NW-SW-BERM-042018	Total/NA	Solid	9012	411671
480-134628-5	X-1-042018	Total/NA	Solid	9012	411671
MB 480-411671/1-A	Method Blank	Total/NA	Solid	9012	411671
LCS 480-411671/2-A	Lab Control Sample	Total/NA	Solid	9012	411671

Analysis Batch: 411721

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-134628-1	NE-SE BERM-042018	Total/NA	Solid	9034	411676
480-134628-3	NW-SW-BERM-042018	Total/NA	Solid	9034	411676
480-134628-5	X-1-042018	Total/NA	Solid	9034	411676
MB 480-411676/1-A	Method Blank	Total/NA	Solid	9034	411676
LCS 480-411676/2-A	Lab Control Sample	Total/NA	Solid	9034	411676

Analysis Batch: 411934

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-134628-1	NE-SE BERM-042018	Total/NA	Solid	1010A	<u> </u>
480-134628-3	NW-SW-BERM-042018	Total/NA	Solid	1010A	
480-134628-5	X-1-042018	Total/NA	Solid	1010A	
LCS 480-411934/1	Lah Control Sample	Total/NA	Solid	1010A	

Analysis Batch: 412609

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-134628-8	E-BERM-042018	Total/NA	Solid	Moisture	
480-134628-10	W-BERM-042018	Total/NA	Solid	Moisture	
480-134628-12	X-2-042018	Total/NA	Solid	Moisture	

Lab Sample ID: 480-134628-1

Lab Sample ID: 480-134628-2

Lab Sample ID: 480-134628-2

Matrix: Solid

Percent Solids: 88.3

Matrix: Solid

Client Sample ID: NE-SE BERM-042018

Date Collected: 04/20/18 09:30 Date Received: 04/21/18 01:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			411629	04/30/18 11:22	RLT	TAL BUF
TCLP	Prep	3510C			412129	05/02/18 14:55	ATG	TAL BUF
TCLP	Analysis	8270D		1	412361	05/03/18 20:51	PJQ	TAL BUF
TCLP	Leach	1311			411629	04/30/18 11:22	RLT	TAL BUF
TCLP	Prep	3010A			411807	05/01/18 10:12	EMB	TAL BUF
TCLP	Analysis	6010C		1	412567	05/01/18 22:39	LMH	TAL BUF
TCLP	Leach	1311			411629	04/30/18 11:22	RLT	TAL BUF
TCLP	Prep	7470A			411863	05/01/18 13:35	BMB	TAL BUF
TCLP	Analysis	7470A		1	412067	05/01/18 20:14	BMB	TAL BUF
Total/NA	Analysis	1010A		1	411934	05/01/18 09:30	AED	TAL BUF
Total/NA	Prep	7.3.3			411671	04/30/18 05:03	LAW	TAL BUF
Total/NA	Analysis	9012		1	411713	04/30/18 16:38	MDL	TAL BUF
Total/NA	Prep	7.3.4			411676	04/30/18 05:03	LAW	TAL BUF
Total/NA	Analysis	9034		1	411721	04/30/18 15:45	MDL	TAL BUF
Total/NA	Analysis	9045D		1	410915	04/25/18 17:57	ALZ	TAL BUF
Total/NA	Analysis	9095B		1	410886	04/25/18 15:22	ALZ	TAL BUF

Client Sample ID: E-BERM-042018

Date Collected: 04/20/18 10:15

Date Receive

ted: 04/20/18 10:15			Matri	x: Solid
ed: 04/21/18 01:45				
	 	 _		

l		Batch	Batch		Dilution	Batch	Prepared		
	Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
l	Total/NA	Analysis	Moisture		1	410104	04/21/18 08:45	CSW	TAL BUF

Client Sample ID: E-BERM-042018

Date Collected: 04/20/18 10:15

Date Received: 04/21/18 01:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			411993	05/02/18 07:03	CAM	TAL BUF
Total/NA	Analysis	8270D		20	412413	05/04/18 01:21	MKP	TAL BUF
Total/NA	Prep	3550C			410453	04/24/18 07:51	SMP	TAL BUF
Total/NA	Analysis	8081B		50	410968	04/26/18 13:57	JLS	TAL BUF
Total/NA	Prep	3550C			411220	04/27/18 07:20	SMP	TAL BUF
Total/NA	Analysis	8082A		1	411578	04/30/18 21:26	W1T	TAL BUF
Total/NA	Prep	3050B			410124	04/21/18 11:57	JAK	TAL BUF
Total/NA	Analysis	6010C		1	410722	04/24/18 11:42	LMH	TAL BUF
Total/NA	Prep	3050B			410124	04/21/18 11:57	JAK	TAL BUF
Total/NA	Analysis	6010C		5	410722	04/24/18 11:46	LMH	TAL BUF
Total/NA	Prep	7471B			411938	05/02/18 15:10	BMB	TAL BUF
Total/NA	Analysis	7471B		1	412200	05/02/18 16:43	BMB	TAL BUF

TestAmerica Buffalo

Lab Sample ID: 480-134628-3

Matrix: Solid

Client Sample ID: NW-SW-BERM-042018

Date Collected: 04/20/18 10:30 Date Received: 04/21/18 01:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			411629	04/30/18 11:22	RLT	TAL BUF
TCLP	Prep	3510C			412129	05/02/18 14:55	ATG	TAL BUF
TCLP	Analysis	8270D		1	412361	05/03/18 21:19	PJQ	TAL BUF
TCLP	Leach	1311			411629	04/30/18 11:22	RLT	TAL BUF
TCLP	Prep	3010A			411807	05/01/18 10:12	EMB	TAL BUF
TCLP	Analysis	6010C		1	412567	05/01/18 23:10	LMH	TAL BUF
TCLP	Leach	1311			411629	04/30/18 11:22	RLT	TAL BUF
TCLP	Prep	7470A			411863	05/01/18 13:35	BMB	TAL BUF
TCLP	Analysis	7470A		1	412067	05/01/18 20:22	BMB	TAL BUF
Total/NA	Analysis	1010A		1	411934	05/01/18 09:30	AED	TAL BUF
Total/NA	Prep	7.3.3			411671	04/30/18 05:03	LAW	TAL BUF
Total/NA	Analysis	9012		1	411713	04/30/18 16:38	MDL	TAL BUF
Total/NA	Prep	7.3.4			411676	04/30/18 05:03	LAW	TAL BUF
Total/NA	Analysis	9034		1	411721	04/30/18 15:45	MDL	TAL BUF
Total/NA	Analysis	9045D		1	410913	04/25/18 14:13	ALZ	TAL BUF
Total/NA	Analysis	9095B		1	410886	04/25/18 15:22	ALZ	TAL BUF

Client Sample ID: W-BERM-042018

Date Collected: 04/20/18 11:00

Date Received: 04/21/18 01:45

Lab Sample	ID: 480-134628-4
	Matrix: Solid

Lab Sample ID: 480-134628-4

Matrix: Solid

Percent Solids: 84.2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	410104	04/21/18 08:45	CSW	TAL BUF

Client Sample ID: W-BERM-042018

Date Collected: 04/20/18 11:00

Date Received: 04/21/18 01:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			411993	05/02/18 07:03	CAM	TAL BUF
Total/NA	Analysis	8270D		10	412413	05/04/18 01:48	MKP	TAL BUF
Total/NA	Prep	3550C			410453	04/24/18 07:51	SMP	TAL BUF
Total/NA	Analysis	8081B		50	410968	04/26/18 14:16	JLS	TAL BUF
Total/NA	Prep	3550C			411220	04/27/18 07:20	SMP	TAL BUF
Total/NA	Analysis	8082A		1	411578	04/30/18 21:41	W1T	TAL BUF
Total/NA	Prep	3050B			410124	04/21/18 11:57	JAK	TAL BUF
Total/NA	Analysis	6010C		1	410722	04/24/18 11:50	LMH	TAL BUF
Total/NA	Prep	7471B			411938	05/02/18 15:10	BMB	TAL BUF
Total/NA	Analysis	7471B		1	412200	05/02/18 16:45	BMB	TAL BUF

Lab Sample ID: 480-134628-5

Lab Sample ID: 480-134628-6

Lab Sample ID: 480-134628-6

Matrix: Solid

Client Sample ID: X-1-042018

Date Collected: 04/20/18 00:00 Date Received: 04/21/18 01:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			411629	04/30/18 11:22	RLT	TAL BUF
TCLP	Prep	3510C			412129	05/02/18 14:55	ATG	TAL BUF
TCLP	Analysis	8270D		1	412361	05/03/18 21:46	PJQ	TAL BUF
TCLP	Leach	1311			411629	04/30/18 11:22	RLT	TAL BUF
TCLP	Prep	3010A			411807	05/01/18 10:12	EMB	TAL BUF
TCLP	Analysis	6010C		1	412567	05/01/18 23:14	LMH	TAL BUF
TCLP	Leach	1311			411629	04/30/18 11:22	RLT	TAL BUF
TCLP	Prep	7470A			411863	05/01/18 13:35	BMB	TAL BUF
TCLP	Analysis	7470A		1	412067	05/01/18 20:24	BMB	TAL BUF
Total/NA	Analysis	1010A		1	411934	05/01/18 09:30	AED	TAL BUF
Total/NA	Prep	7.3.3			411671	04/30/18 05:03	LAW	TAL BUF
Total/NA	Analysis	9012		1	411713	04/30/18 16:38	MDL	TAL BUF
Total/NA	Prep	7.3.4			411676	04/30/18 05:03	LAW	TAL BUF
Total/NA	Analysis	9034		1	411721	04/30/18 15:45	MDL	TAL BUF
Total/NA	Analysis	9045D		1	410913	04/25/18 14:13	ALZ	TAL BUF
Total/NA	Analysis	9095B		1	410886	04/25/18 15:22	ALZ	TAL BUF

Client Sample ID: X-2-042018

Date Collected: 04/20/18 00:00

Date Received: 04/21/18 01:45

Batch Batch Dilution Batch Prepared

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture	-	1	410104	04/21/18 08:45	CSW	TAL BUF

Client Sample ID: X-2-042018

Date Collected: 04/20/18 00:00

Date Received: 04/21/18 01:45

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			411993	05/02/18 07:03	CAM	TAL BUF
Total/NA	Analysis	8270D		10	412413	05/04/18 02:14	MKP	TAL BUF
Total/NA	Prep	3550C			410453	04/24/18 07:51	SMP	TAL BUF
Total/NA	Analysis	8081B		50	410968	04/26/18 14:36	JLS	TAL BUF
Total/NA	Prep	3550C			411220	04/27/18 07:20	SMP	TAL BUF
Total/NA	Analysis	8082A		1	411578	04/30/18 21:56	W1T	TAL BUF
Total/NA	Prep	3050B			410124	04/21/18 11:57	JAK	TAL BUF
Total/NA	Analysis	6010C		1	410722	04/24/18 11:57	LMH	TAL BUF
Total/NA	Prep	3050B			410124	04/21/18 11:57	JAK	TAL BUF
Total/NA	Analysis	6010C		5	410770	04/25/18 10:15	AMH	TAL BUF
Total/NA	Prep	7471B			411938	05/02/18 15:10	BMB	TAL BUF
Total/NA	Analysis	7471B		1	412200	05/02/18 16:46	BMB	TAL BUF

TestAmerica Buffalo

Page 59 of 66

Banaio

5/10/2018

5

4.0

11

13

14

15

Percent Solids: 85.1

Matrix: Solid

Matrix: Solid

Lab Sample ID: 480-134628-7

Client Sample ID: NE-SE BERM-042018

Date Collected: 04/20/18 09:30 Date Received: 04/21/18 01:45

Lab Sample ID: 480-134628-8

Lab Sample ID: 480-134628-9

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			411593	04/30/18 10:14	RLT	TAL BUF
TCLP	Analysis	8260C		10	413229	05/08/18 23:33	SV	TAL BUF

Client Sample ID: E-BERM-042018

Date Collected: 04/20/18 10:15	Matrix: Solid
Date Received: 04/21/18 01:45	

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	412609	05/04/18 10:57	KPK	TAL BUF

Client Sample ID: E-BERM-042018 Lab Sample ID: 480-134628-8 **Matrix: Solid**

Date Collected: 04/20/18 10:15

Date Received: 04/21/18 01:45 Percent Solids: 91.1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A_L			410288	04/23/18 09:21	CDC	TAL BUF
Total/NA	Analysis	8260C		1	410294	04/23/18 19:10	AEM	TAL BUF

Client Sample ID: NW-SW-BERM-042018

Date Collected: 04/20/18 10:30

Date Received: 04/21/18 01:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			411593	04/30/18 10:14	RLT	TAL BUF
TCLP	Analysis	8260C		10	413229	05/08/18 23:57	SV	TAL BUF

Client Sample ID: W-BERM-042018	Lab Sample ID: 480-134628-10
Date Collected: 04/20/18 11:00	Matrix: Solid
Date Received: 04/21/18 01:45	

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture			412609	05/04/18 10:57	KPK	TAL BUF

Client Sample ID: W-BERM-042018 Lab Sample ID: 480-134628-10

Date Collected: 04/20/18 11:00

Matrix: Solid Date Received: 04/21/18 01:45 Percent Solids: 86.6

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A_L			410288	04/23/18 09:21	CDC	TAL BUF
Total/NA	Analysis	8260C		1	410294	04/23/18 19:36	AEM	TAL BUF

TestAmerica Buffalo

5/10/2018

Page 60 of 66

Matrix: Solid

Lab Chronicle

Client: O'Brien & Gere Inc of North America Project/Site: Midler Crossing - Characteristic Soil TestAmerica Job ID: 480-134628-1

Lab Sample ID: 480-134628-11

Matrix: Solid

Date Collected: 04/20/18 00:00 Date Received: 04/21/18 01:45

Client Sample ID: X-1-042018

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
TCLP	Leach	1311			411593	04/30/18 10:48	RLT	TAL BUF	_
TCLP	Analysis	8260C		10	413220	05/09/18 00:21	SV	TAL BUF	

Client Sample ID: X-2-042018 Lab Sample ID: 480-134628-12

Date Collected: 04/20/18 00:00 Matrix: Solid

Date Received: 04/21/18 01:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	412609	05/04/18 10:57	KPK	TAL BUF

Client Sample ID: X-2-042018 Lab Sample ID: 480-134628-12

Date Collected: 04/20/18 00:00 Matrix: Solid

Date Received: 04/21/18 01:45 Percent Solids: 89.9

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A_L			410288	04/23/18 09:21	CDC	TAL BUF
Total/NA	Analysis	8260C		1	410294	04/23/18 20:01	AEM	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

2

3

6

9

11

40

14

Accreditation/Certification Summary

Client: O'Brien & Gere Inc of North America

Project/Site: Midler Crossing - Characteristic Soil

TestAmerica Job ID: 480-134628-1

Laboratory: TestAmerica Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority	Program		EPA Region	Identification Number	Expiration Date
ew York	NELAP		2	10026	03-31-18 *
The following analytes	are included in this report, bu	it accreditation/certifica	ition is not offered by th	ne governing authority:	
Analysis Method	Prep Method	Matrix	Analyt	te	
7470A	7470A	Solid	Mercu	iry	
9012	7.3.3	Solid	Cyanio	de, Reactive	
9034	7.3.4	Solid	Sulfide	e, Reactive	
9045D		Solid	Tempo	erature	
Moisture		Solid	Perce	nt Moisture	
Moisture		Solid	Perce	nt Solids	

4

5

6

7

Ö

10

11

12

14

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

Method Summary

Client: O'Brien & Gere Inc of North America Project/Site: Midler Crossing - Characteristic Soil TestAmerica Job ID: 480-134628-1

Method	Method Description	Protocol	Laboratory
3260C	TCLP Volatiles	SW846	TAL BUF
3260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
3270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL BUF
3081B	Organochlorine Pesticides (GC)	SW846	TAL BUF
3082A	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	TAL BUF
010C	Metals (ICP)	SW846	TAL BUF
7470A	TCLP Mercury	SW846	TAL BUF
' 471B	Mercury (CVAA)	SW846	TAL BUF
010A	Ignitability, Pensky-Martens Closed-Cup Method	SW846	TAL BUF
012	Cyanide, Reactive	SW846	TAL BUF
0034	Sulfide, Reactive	SW846	TAL BUF
045D	рН	SW846	TAL BUF
095B	Paint Filter	SW846	TAL BUF
loisture	Percent Moisture	EPA	TAL BUF
311	TCLP Extraction	SW846	TAL BUF
010A	Preparation, Total Metals	SW846	TAL BUF
050B	Preparation, Metals	SW846	TAL BUF
510C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	TAL BUF
550C	Ultrasonic Extraction	SW846	TAL BUF
030C	Purge and Trap	SW846	TAL BUF
035A_L	Closed System Purge and Trap	SW846	TAL BUF
.3.3	Cyanide, Reactive	SW846	TAL BUF
.3.4	Sulfide, Reactive	SW846	TAL BUF
470A	Preparation, Mercury	SW846	TAL BUF
471B	Preparation, Mercury	SW846	TAL BUF

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Sample Summary

Matrix

Solid

Client: O'Brien & Gere Inc of North America Project/Site: Midler Crossing - Characteristic Soil

Client Sample ID

E-BERM-042018

W-BERM-042018

E-BERM-042018

W-BERM-042018

X-1-042018

X-2-042018

X-1-042018

X-2-042018

NE-SE BERM-042018

NW-SW-BERM-042018

NE-SE BERM-042018

NW-SW-BERM-042018

Lab Sample ID

480-134628-1

480-134628-2

480-134628-3

480-134628-4

480-134628-5

480-134628-6

480-134628-7

480-134628-8

480-134628-9

480-134628-10

480-134628-11

480-134628-12

TestAmerica Job ID: 480-134628-1

04/20/18 09:30

04/20/18 10:15

04/20/18 10:30

04/20/18 11:00

04/20/18 00:00

04/20/18 00:00

Collected	Received	
04/20/18 09:30	04/21/18 01:45	
04/20/18 10:15	04/21/18 01:45	
04/20/18 10:30	04/21/18 01:45	E
04/20/18 11:00	04/21/18 01:45	5
04/20/18 00:00	04/21/18 01:45	
04/20/18 00:00	04/21/18 01:45	

04/21/18 01:45

04/21/18 01:45

04/21/18 01:45

04/21/18 01:45

04/21/18 01:45

04/21/18 01:45

	10 Hazelwood Drive Amherst, NY 14228-2298	ဌ	ain of	Chain of Custody Record	dy Re	cord							2	200		31
	(716) 691-7991												THELE	ADER IN ENV	THE LEADER IN ENVIRONMENTAL TESTING	5
	mation	Sampler. C.YUII	11 Veu	2.5	Lab PM: Deyo,	Lab PM: Deyo, Melissa L				0	Carrier Tra	7	COC No:	COC No: 480-112151-26023.	3.1	
	Client Contact: Mr. Yuri Veliz	Phone:			E-Mail: meliss	E-Mail: melissa.deyo@testamericainc.com	testamer	icainc.c	mo.				Page: Page 1 of 1	of 1		
	Company: O'Rrian & Gera Inc of North America							Δn	lveis	Reg	Analysis Reguested	480-134628 COC				
	4073	Due Date Requested:			1000						_			-		
	City Communication	TAT Requested (days):			T							_	A - HCL B - NaOF		M - Hexane	
	East of process State, Zip: NY, 13221	Resul	/ar										D - Nitric Acid E - NaHSO4		O - ASNAO2 P - Na204S Q - Na2SO3	
	00(Tel) 315-463-7554(Fax)	PO#: Purchase Order Requested	equested			- (F - MeOF G - Amch H - Asco		R - Na2S2O3 S - H2SO4 F - TSP Dodecahydrat	Φ
		WO #:			N 30	(0)									J - Acetone	
	aracteristic Soil	Project #: 48017926			30,70	10 29							L-EDA		N - pH 4-5 Z - other (specify)	
	Site:	SSOW#:			Junes	SD (Y	-			- G072	- 50		of cor			
	Sample Identification	Sample Date	Sample (6	Sample Type (C=comp, G=grab)	Watrix (W-water, S=solid, O=wasteoll, BT=Tissue, A=Air)	Field Filtered S MSM mohey Seitises Stoe	9095B - Paint Fil	B260C - TCLP Vo	1010A, 9045D	8 (AS808, B1808	8260C - TCL VOO		TedmuM lstoT	opecial Inst	Special Instructions/Note:	
0		V	1	TO		X		z	Z	1000	z			Λ		
s əsn	NE-36 Bern-042018	4-20-180	0730	U	Solid	_	×		~	W	糊		7			
Syrac	NE-56 Berm-042018	81-0	0330	5	Solid			×					1			
352 -	E-Berm - 042018	4-20-18 10	1015	C	Solid				×	×			3			
483		4-20-18 12	1015	9	50110						×		1			
	NW-5W-BEIM-042018	81-0	1050	U	_	×	×	×	×				7			
	NW-5W-BUM-042018	420-18 16	1050	0				×	-				1			
	W-Bern-042018	11-22-18	0011	V					×	×			w			- 1
	W- BCIM-092018	1181-22-1	0011	9							×		1			
	X-1-042018	81-02-13	Ì	0/0		×	X	×	×				5 610	6 See 21	ple DOC	
	X-2-0-12018	4-00-K	(6/6	>				×	×	×		4 640	il sam	note voc	11
	Series of the se	4	Ŷ	1	1			柳	-	-	N CXX	_				
	Possible Hazard Identification Non-Hazard Elammable Skin Irriant Pois	Poison B Unknown		Radiological		Samp	le Disposal (A f Return To Client	sal (A	ee ma	/ be a	assessed if san	samples are	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month Return To Cilent Disposal RV I ab Mon	yer than 1	month) Months	
	sted: I, II, III, IV, Other (specify)					Specia	Special Instructions/QC Requirements:	tions/Q(Redn	iremer	ts:					
	Empty Kit Relinquished by:		Date:			Time:					Method	Method of Shipment:				
	Relinquished by:	Date/Time:	1	145-0	Company OS	. 1	Received by:	1/4	11	1		Date/Time:	1	14:00	Company	
	Relinquished by: Reflection of the Relinquished by:	Date/Time:	8,19	in	Company &	Rece	cented by:	M				Date/Time:	18,014	111	Company	
						3	Looler Temperature(s) °C and Other Remarks:	erature(s)	°C and C	ther Re	narks:		1	7	#	
	Δ Yes Δ No												U		Var. 08/04/5016	

TestAmerica Buffalo

Login Sample Receipt Checklist

Client: O'Brien & Gere Inc of North America Job Number: 480-134628-1

Login Number: 134628 List Source: TestAmerica Buffalo

List Number: 1

Creator: Williams, Christopher S

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or campered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and he COC.	True	
samples are received within Holding Time (Excluding tests with immediate ITs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
/OA sample vials do not have headspace or bubble is <6mm (1/4") in liameter.	N/A	
necessary, staff have been informed of any short hold time or quick TAT eeds	True	
fultiphasic samples are not present.	True	
samples do not require splitting or compositing.	True	
sampling Company provided.	True	OBG
samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

2

Λ

9

11

13

14

15

	FOR STATE USE ONLY	Y
SITE NO.	APPLICATION NO.	DATE RECEIVED
DEPARTMENT ACT	TION Disapproved	DATE

SPECIAL WASTE CHARACTERIZATION PROFILE

Disposal Facility Location (Choose	se All That Apply): Casella rese	rves the right to make cl	hanges to this section	n based upon review.
Hyland Landfill Chemung 6653 Herdman Road Angelica, NY 14709 Tel: (585) 466.7271 Fax: (585) 466.3206 Tel: (607) Fax: (607)	Rte. 60 1879 Rt. 5 & 20 NY 14861 Stanley, NY 14561 737.2980 Tel: (585) 526.4420 737.2967 Fax: (585) 526.5459	Clinton Cty LF 286 Sand Road Morrisonville, NY 12 Tel: (518) 563.5514 Fax: (518) 563.5598	Tel: (802) 334.5 Fax: (802) 334.5	ne 581 Trudeau Road 05825 Bethlehem, NH 03574 5796 Tel: (603) 869.3366
Disposal Option: Casella reserve	es the right to make changes to th	is section based upon re	view.	
Waste Profile is destined for: ⊠D Drill Cuttings Only: ☐ Raw Cut			MUST CHECK OF	NE: Air/Water Oil-based
Waste Characterization Data:				
1) Company Generating Waste: Pioneer Midler Ave, LLC	Address of Facility Generating V Street: Simon Drive City, State, Zip: Syracuse, NY 1322			County of Origin: Onondaga
2) Generator's Representative (must match signature on pg 2)	Mailing Address of Representat (if different from above)	ive:	l'elephone No.	Fax No. & Email: 315-471-1154
michael J. Falcone	Street: c/o Pioneer Managemen West Washington St, Suite 600 City, State, Zip: Syracuse, NY 13:		315-200-1842	albert.giannino@pioneercos.c om
3) Bill To Customer:	Bill To Address:		Telephone No.	Fax No. & Email:
Riccelli Enterprises Inc	PO Box 6418	1.3		315-433-5115
	Syracuse NY 13217	315-433-5115	miker@riccellienterprises.co m	
Mixed urban soil consisting of bro	3 W. Washington Street, Syracuse,	NY currently staged on to NY mixture, etc.) fine grained sand and gr	former Midler Aven	ue Brownfield Site under
6) Is Waste Considered Hazardou	s by Federal or State Hazardous W	aste Regulations? (Must	Choose One):	Yes 🛛 No
7) Expected <u>Annual</u> Amount of W	aste To Be Delivered	Approximate Dens	ity of Waste	
<u>2,354</u> tons/year <u>1,700</u> cubic y	ards/year	2,769 pounds/cu	ubic yard	
8) Expected Frequency of Deliver X one-time daily weekly		cify, if known)		
9) Hauler Name Riccelli Enterprises Inc	Address PO Box 6418 Syracuse NY 13217	Transporter Permit N 7A-402 Exp. Date: 7/2018	Telephone No. 315-433-5115	
10) Method of Delivery roll-off page	cker truck X tractor trailer	other		

11) Previous Disposal Location: NA	Address	Telephone No.	Contact Person	
Waste Characterization Data (Cont'd)				
12) Is the waste classified as a "listed" (If yes, see box #6, please explain.) No	or "characteristic" hazardous	waste as defined by USEI	PA, or State of origin, or	: State where disposed?
13) Describe all hazardous or nuisance None	properties associated with th	e waste.		
14) Does the waste require any special No	handling or disposal procedu	res? If so, explain.		
15) Analytical Data Submitted (TCLP/C Total VOCs, SVOCs, PCBs, Pesticides TCLP VOCs, SVOCs, Metals, PCBs, pF Ignitability, Paint filter, Reactivity.		2-VOC grab 2 com	icate # of each type bel posite borings ed if test pit/boring data is p	
Pesticides/Herbicides), special waste submitted	inimum, the submittal of fui Total PCB's, pH, Reactivity for landfill acceptance unles below for submittal of less co zation.	y, Ignitibility, and % solid is the applicant can provid	ls testing results for an le an acceptable	- luci- li-ci-
16) Justification for not submitting full Full TCLP conducted, excepting herbicides identified during historical site investigation herbicides. In accordance with Casella's question conce was contacted and their project manager statements concentration.	because historic site operations on efforts. Therefore, characterizating the detection limits for so	tion samples collected for dis me SVOCs, namely 2,4-Dinit	posal of the subject materi rotoluene and Hexachloro	al were not analyzed for benzene, the analytical lab
GENERATOR CERTIFICATION				
I hereby certify that (1) I am the a supplemental materials is complete herein, including any supplemental to be delivered to the facility and the directly to discuss our attached winformation, any deviation in the secribed herein, may render the wany deviation from the information disposal.	and accurate to the best of information, such as labo nat all known or suspected aste stream. I understand source, composition, constants the stream unacceptable for	Tmy knowledge and abile ratory analytical, MSD hazards have been discentate that, once the waste stituents or characteristic or disposal, at the sole of	ity to determine; (3) t. S, etc., accurately des losed; (4) Casella ca. tream is approved by cs of the waste strea liscretion of Casella.	the information provided scribes the waste stream in contact the laboratory of Casella based on this im from the information of further understand that
Generator or Authorized Representation Signature: Mulkel J Palcow		Print Title:	oner	Date: 6/8/18
Municip Land		M AND ATTACHMENTS T	°O:	

Special.Waste@Casella.com

INSTRUCTIONS

Special Waste Characterization Profile (SWCP) Form

A separate application is required for each special wastestream and must be approved by Casella Special Waste Technical Approval Team prior to transport and disposal to any of our facilities.

Disposal Facility Location - If known, please select the preferred disposal facility.

Disposal Option - If known, please select the preferred disposal option.

Waste Characterization Data - Please complete ALL sections on the SWCP form.

- Generator of Waste: Enter the GENERATOR information in section (1). The generator is the individual or entity that has ultimate
 responsibility for the waste. The generator is the person or company that created the waste or physically changed the waste
 last, typically the property owner, a municipality, a Company, a State Agency, etc. (not the engineer or contractor hired to
 do the work) Include the physical address where the waste was generated, including the county (not country) of origin.
- 2. Generator's Representative: The name and mailing address of the generator; the individual certifying the information provided on the profile is accurate, true and representative of the waste being disposed. The 'Representative of the Generator' should be the same individual signing the Form and must be an <u>authorized</u> representative of the generator (i.e. an officer of the company, or their authorized designee). Only the generator is authorized to sign the SWCP Form. In the rare event that the generator assigns responsibility to sign on their behalf, an Authorized Agent Form must accompany the SWCP Form.
- 3. Bill To Customer: Name and mailing address of the landfill's customer
- 4. Description of Facility: Indicate the type of facility or event generating the waste Process Generating the Waste: Provide a detailed description of the process and/or manner in which the material was generated, including the source of contamination. Include as much information as possible; attach a process flow diagram, if applicable.
 - <u>Example</u>: Site is former ABC Manufacturing Facility. The Plant manufactured plastic widgets and closed in 1970. Waste is remediation of contaminated soils from historic facility use not the result of a spill of release.
- 5. Description of Waste (debris-containing, composition, uniform or mixture, etc.): Provide a detailed description of the waste, including all known or potential contaminates, composition, whether it is uniform or a mixture, or contains debris.
 - Example: The waste is contaminated soil excavated from various areas of the former ABC Manufacturing Facility site; paints and varnishes were widely used in the process. The soil contamination is due to historic use, contaminates of concern include VOCs, SVOCs and heavy metals. Waste is uniform in nature with no detectable discoloration or odors.

Note: "soil" is <u>NOT</u> an acceptable description of waste.

- 6. Is Waste Hazardous by Federal OR State <u>Waste</u> Regulations?: It is the Generator's responsibility to identify any hazardous waste; you must check the appropriate box.
- 7. Expected Annual Amount of Waste To Be Delivered(Approximate Density of Waste): Indicate the anticipated amount of waste to be delivered in tons or cubic yards. If waste is estimate in cubic yards, please include the estimated waste density in pounds/cubic yard. If waste generated is a one-time event (not an on-going process), indicate the total project volume (or tons). If a waste density is not provided on the Form an estimate will be made based on the information provided.

Waste Approvals will have an annual or one-time tonnage limit and require a renewal certification form to be completed and signed by the generator annually (anniversary date of the Approval) or if the approved tonnage limit is reached.

SWCP Instructions (cont'd)

- 8. Expected Frequency of Delivery: On-going wastes are typically manufacturing or industrial process waste. Please indicate if delivery will be daily, weekly, monthly or other. If it is not an on-going process that is generating the waste, it is considered a one-time event (even if it will be delivered over a period of time)
- 9. Hauler Name: Provide name, address, hauling permit number, permit expiration date and phone number of hauler. (Most States require waste haulers to be permitted and/or registered.)
- 10. Method of Delivery: Indicate the vessel or vehicle-type used for waste delivery. If "other" please provide a description
- 11. Previous Disposal Location: Enter information about any other facilities where the material has been disposed. If it has not been disposed at another location, enter "None" (do not leave blank).
- 12. Is the waste classified as a "listed" or "characteristic" hazardous waste?: Refer to 40 CFR 261.31-33 for Listed Waste and 40 CFR 261.21-24 for Characteristic Waste to make this determination.
- 13. Describe all Hazardous or Nuisance Properties associated with the waste: Such as dust, odors or size of material that may require special handling at the disposal facility.
- 14. Does the Waste Require Special Handling or Disposal Procedures: Indicate any special handling requirements at the disposal facility to address the above listed nuisance properties.
 - Example: Waste is friable asbestos and will be managed and packaged accoroding to State and Federal regulations.
- 15. Analytical Data Submitted: Describe the analysis provided for evaluation; include the laboratory, report number and sample ID#s. Waste to be disposed of in NY State must be analyzed by NYS Certified lab. Indicate the type (i.e. grab samples /boring samples, composite samples), AND number of samples collected. Contaminated soil or remediation sites require representative composite samples collected from stockpiled material; include a brief description of how the composite sample was taken and the volume of material it represents. Test pit samples or boring samples will be evaluated case-by-case at Casella's discretion. TP or Borings MUST include a description of how the samples were collected, MUST be representative of the entire waste stream and include a site plan depicting sampling locations.
- 16. Justification for not submitting a Full TCLP Analysis: All special wastes require Full TCLP Analysis, minimum testing requirements are listed on the Profile Form. If the minimum testing is not submitted, the generator MUST provide justification for reduced analytical.

<u>Example</u>: Waste is Non-friable PCB contaminated building debris with lead-based paint. Attached engineering report includes TCLP analysis for lead, totals analysis for PCBs and an asbestos survey. Applicable Report sections and analysis is highlighted for the waste included in this application. Full TCLP is not needed because the waste is not contaminated with heavy metals or volatile organic compounds. Waste is not combustible, does not contain reactive sulfides or reactive cyanides.

Minimum testing requirements for any special waste submitted for landfill acceptance. The generator is responsible for proper waste characterization.

- Full TCLP analysis for (RCRA 8 Metals, VOCs, SVOCs, and Pesticides/Herbicides),
- PCBs totals analysis,
- pH, Reactivity, Ignitibility, and % solids
- TPH is required for disposal in Vermont.
- Paint Filter will be required for any 'wet wastes' to confirm no free liquids.

Additional testing may be required for applications seeking Beneficial Use, or at Casella's sole discretion.

Generator's Certification: Once all information is completed on the form, the authorized <u>GENERATOR REPRESENTATIVE</u> must certify the accuracy of the information. The individual signing the form must be the same as person listed in Section 2.

Casella will not accept a Special Waste Characterization Profile signed by anyone other than the generator (i.e. contractor, broker, or consultant) without express written delegation by Authorized Agent Form signed by the generator.

	FOR STATE USE ONLY	
SITE NO.	APPLICATION NO.	DATE RECEIVED
DEPARTMENT ACTION		DATE
☐ Approved	□Disapproved	

SPECIAL WASTE CHARACTERIZATION PROFILE

Disposal Facility Location (Choos	e All That Apply): Casella reser	ves the right to make c	hanges to this section	n based upon review.
Hyland Landfill Chemung 6653 Herdman Road 1488 Cnty Angelica, NY 14709 Lowman, I Tel: (585) 466.7271 Tel: (607) Fax: (585) 466.3206 Fax: (607) 7	Rte. 60 1879 Rt. 5 & 20 NY 14861 Stanley, NY 14561 737.2980 Tel: (585) 526.4420 37.2967 Fax: (585) 526.5459	Clinton Cty LF 286 Sand Road Morrisonville, NY 12 Tel: (518) 563.5514 Fax: (518) 563.5598	Tel: (802) 334.: Fax: (802) 334.:	ne 581 Trudeau Road 05825 Bethlehem, NH 03574 5796 Tel: (603) 869.3366
Disposal Option: Casella reserve	s the right to make changes to this	s section based upon re	view.	
Waste Profile is destined for: □D Drill Cuttings Only: □ Raw Cutt	-	, ,		<u>NE</u> : ☐ Air/Water ☐ Oil-based
Waste Characterization Data:				
1) Company Generating Waste: Pioneer Companies	Address of Facility Generating W Street: Simon Drive City, State, Zip: Syracuse, NY 13224			County of Origin: Onondaga
2) Generator's Representative (must match signature on pg 2)	Mailing Address of Representati (if different from above) Street: 333 West Washington St, City, State, Zip: Syracuse, NY 132	Suite 600	Telephone No. 315-200-1842	Fax No. & Email: 315-471-1154 albert.giannino@pioneercos.c om
3) Bill To Customer: Riccelli Enterprises Inc	Bill To Address: PO Box 6418 Syracuse NY 13217		Telephone No. 315-433-5115	Fax No. & Email: 315-433-5115 miker@riccellienterprises.co m
4) Description of Facility (i.e. Residence Commercial construction on former				
5) Description of waste (debris-commixed urban soil consisting of brotypically less than 2.5" in any dime	wn reworked silt/sand/gravel mixe	·	d brick debris. The g	ray cinders in the material are
6) Is Waste Considered Hazardous	by Federal or State Hazardous Wa	ste Regulations? (Must	Choose One):	Yes 🛛 No
7) Expected <u>Annual</u> Amount of Wa	ste To Be Delivered	Approximate Densi	ity of Waste	
<u>3,600</u> tons/year <u>2,600</u> cubic ya	ds/year	<u>2,769</u> pounds/cu	ıbic yard	
8) Expected Frequency of Delivery X one-time daily weekly		fy, if known)		
9) Hauler Name	Address	Transporter Permit No	o. Telephone No.	
Riccelli Enterprises Inc	PO Box 6418 Syracuse NY 13217	7A-402 Exp. Date: 7/2018	315-433-5115	
10) Method of Delivery.				
	er truck X tractor trailer _	<u>other</u>		
11) Previous Disposal Location:	Address	Telephone No.	Contact Person	

NA				
Waste Characterization Data (Cont'd)				
12) Is the waste classified as a "listed" or (If yes, see box #6, please explain.) No	: "characteristic" hazardous v	vaste as defined	by USEPA, or State of origin, o	or State where disposed?
13) Describe all hazardous or nuisance p None	roperties associated with the	waste.		
14) Does the waste require any special h. No	andling or disposal procedur	es? If so, explai	n.	
15) Analytical Data Submitted (TCLP/Ot Total VOCs, SVOCs, PCBs TCLP VOCs, SVOCs, Metals, Flashpoint filter, Reactivity.	•	grab	ples (indicate # of each type below 2 composite borings be provided if test pit/boring data is p	
Pesticides/Herbicides), T special waste submitted fo	for landfill acceptance unless Plow for submittal of less com	Ignitibility, and the applicant ca	d % solids testing results for an	
16) Justification for not submitting full Thistoric site operations did not include the management of the site application. Therefore, characterization samples	nanufacture, use or storage of here, nor were they identified as con	taminants of conc	ern by NYSDEC under the Brownf	fields Cleanup Program
GENERATOR CERTIFICATION				
I hereby certify that (1) I am the au supplemental materials is complete a herein, including any supplemental is to be delivered to the facility and that directly to discuss our attached was information, any deviation in the so described herein, may render the was any deviation from the information of disposal.	nd accurate to the best of n information, such as labora it all known or suspected h iste stream. I understand to inree, composition, constit iste stream unacceptable for contained herein will requ	ny knowledge a atory analytica azards have be hat, once the v uents or chara disposal, at th ire immediate	and ability to determine; (3) the land ability to determine; (3) the land ability to determine; (3) the land ability to determine the land ability that the land ability to determine the land ability to determine; (3) the land ability to determine; (4) the land ability to determine; (4) the land ability to determine the land ability the land ability to determine the land ability	the information provided scribes the waste stream in contact the laboratory y Casella based on this im from the information I further understand that facility and cessation of
Generator or Authorized Representative Signature:	- Print name:	Print	Title:	Date:
	SUBMIT THIS FORM		ENTS TO:	
	Special.Was	ste@Casella.com		

INSTRUCTIONS

Special Waste Characterization Profile (SWCP) Form

A separate application is required for each special wastestream and must be approved by Casella Special Waste Technical Approval Team prior to transport and disposal to any of our facilities.

Disposal Facility Location - If known, please select the preferred disposal facility.

Disposal Option - If known, please select the preferred disposal option.

Waste Characterization Data - Please complete ALL sections on the SWCP form.

- 1. Generator of Waste: Enter the GENERATOR information in section (1). The generator is the individual or entity that has ultimate responsibility for the waste. The generator is the person or company that created the waste or physically changed the waste last, typically the property owner, a municipality, a Company, a State Agency, etc. (not the engineer or contractor hired to do the work) Include the physical address where the waste was generated, including the county (not country) of origin.
- 2. Generator's Representative: The name and mailing address of the generator; the individual certifying the information provided on the profile is accurate, true and representative of the waste being disposed. The 'Representative of the Generator' should be the same individual signing the Form and must be an <u>authorized</u> representative of the generator (i.e. an officer of the company, or their authorized designee). Only the generator is authorized to sign the SWCP Form. In the rare event that the generator assigns responsibility to sign on their behalf, an Authorized Agent Form must accompany the SWCP Form.
- 3. Bill To Customer: Name and mailing address of the landfill's customer
- 4. Description of Facility: Indicate the type of facility or event generating the waste Process Generating the Waste: Provide a detailed description of the process and/or manner in which the material was generated, including the source of contamination. Include as much information as possible; attach a process flow diagram, if applicable.
 - <u>Example</u>: Site is former ABC Manufacturing Facility. The Plant manufactured plastic widgets and closed in 1970. Waste is remediation of contaminated soils from historic facility use not the result of a spill of release.
- 5. Description of Waste (debris-containing, composition, uniform or mixture, etc.): Provide a detailed description of the waste, including all known or potential contaminates, composition, whether it is uniform or a mixture, or contains debris.
 - <u>Example</u>: The waste is contaminated soil excavated from various areas of the former ABC Manufacturing Facility site; paints and varnishes were widely used in the process. The soil contamination is due to historic use, contaminates of concern include VOCs, SVOCs and heavy metals. Waste is uniform in nature with no detectable discoloration or odors.

Note: "soil" is NOT an acceptable description of waste.

- 6. Is Waste Hazardous by Federal OR State <u>Waste</u> Regulations?: It is the Generator's responsibility to identify any hazardous waste; you must check the appropriate box.
- 7. Expected Annual Amount of Waste To Be Delivered(Approximate Density of Waste): Indicate the anticipated amount of waste to be delivered in tons or cubic yards. If waste is estimate in cubic yards, please include the estimated waste density in pounds/cubic yard. If waste generated is a one-time event (not an on-going process), indicate the total project volume (or tons). If a waste density is not provided on the Form an estimate will be made based on the information provided.

Waste Approvals will have an annual or one-time tonnage limit and require a renewal certification form to be completed and signed by the generator annually (anniversary date of the Approval) or if the approved tonnage limit is reached.

- 8. Expected Frequency of Delivery: On-going wastes are typically manufacturing or industrial process waste. Please indicate if delivery will be daily, weekly, monthly or other. If it is not an on-going process that is generating the waste, it is considered a one-time event (even if it will be delivered over a period of time)
- 9. Hauler Name: Provide name, address, hauling permit number, permit expiration date and phone number of hauler. (Most States require waste haulers to be permitted and/or registered.)
- 10. Method of Delivery: Indicate the vessel or vehicle-type used for waste delivery. If "other" please provide a description
- 11. Previous Disposal Location: Enter information about any other facilities where the material has been disposed. If it has not been disposed at another location, enter "None" (do not leave blank).
- 12. Is the waste classified as a "listed" or "characteristic" hazardous waste?: Refer to 40 CFR 261.31-33 for Listed Waste and 40 CFR 261.21-24 for Characteristic Waste to make this determination.
- 13. Describe all Hazardous or Nuisance Properties associated with the waste: Such as dust, odors or size of material that may require special handling at the disposal facility.
- 14. Does the Waste Require Special Handling or Disposal Procedures: Indicate any special handling requirements at the disposal facility to address the above listed nuisance properties.

Example: Waste is friable asbestos and will be managed and packaged accoroding to State and Federal regulations.

- 15. Analytical Data Submitted: Describe the analysis provided for evaluation; include the laboratory, report number and sample ID#s. Waste to be disposed of in NY State must be analyzed by NYS Certified lab. Indicate the type (i.e. grab samples /boring samples, composite samples), AND number of samples collected. Contaminated soil or remediation sites require representative composite samples collected from stockpiled material; include a brief description of how the composite sample was taken and the volume of material it represents. Test pit samples or boring samples will be evaluated case-by-case at Casella's discretion. TP or Borings MUST include a description of how the samples were collected, MUST be representative of the entire waste stream and include a site plan depicting sampling locations.
- 16. Justification for not submitting a Full TCLP Analysis: All special wastes require Full TCLP Analysis, minimum testing requirements are listed on the Profile Form. If the minimum testing is not submitted, the generator MUST provide justification for reduced analytical.

<u>Example</u>: Waste is Non-friable PCB contaminated building debris with lead-based paint. Attached engineering report includes TCLP analysis for lead, totals analysis for PCBs and an asbestos survey. Applicable Report sections and analysis is highlighted for the waste included in this application. Full TCLP is not needed because the waste is not contaminated with heavy metals or volatile organic compounds. Waste is not combustible, does not contain reactive sulfides or reactive cyanides.

Minimum testing requirements for any special waste submitted for landfill acceptance. The generator is responsible for proper waste characterization.

- Full TCLP analysis for (RCRA 8 Metals, VOCs, SVOCs, and Pesticides/Herbicides),
- PCBs totals analysis,
- pH, Reactivity, Ignitibility, and % solids
- TPH is required for disposal in Vermont.
- Paint Filter will be required for any 'wet wastes' to confirm no free liquids.

Additional testing may be required for applications seeking Beneficial Use, or at Casella's sole discretion.

Generator's Certification: Once all information is completed on the form, the authorized <u>GENERATOR REPRESENTATIVE</u> must certify the accuracy of the information. The individual signing the form must be the same as person listed in Section 2.

Casella will not accept a Special Waste Characterization Profile signed by anyone other than the generator (i.e. contractor, broker, or consultant) without express written delegation by Authorized Agent Form signed by the generator.

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Request to Import/Reuse Fill or Soil

This form is based on the information required by DER-10, Section 5.4(e). Use of this form is not a substitute for reading the applicable Technical Guidance document.

SECTION 1 – SITE BACKGROUND

The allowable site use is:

Have Ecological Resources been identified?

Is this soil originating from the site?

How many cubic yards of soil will be imported/reused?

If greater than 1000 cubic yards will be imported, enter volume to be imported:

SECTION 2 – MATERIAL OTHER THAN SOIL

Is the material to be imported gravel, rock or stone?

Does it contain less than 10%, by weight, material that would pass a size 80 sieve?

Is this virgin material from a permitted mine or quarry?

Is this material recycled concrete or brick from a DEC registered processing facility?

SECTION 3 - SAMPLING

Provide a brief description of the number and type of samples collected in the space below:

Example Text: 5 discrete samples were collected and analyzed for VOCs. 2 composite samples were collected and analyzed for SVOCs, Inorganics & PCBs/Pesticides.

If the material meets requirements of DER-10 section 5.5 (other material), no chemical testing needed.

SECTION 3 CONT'D - SAMPLING
Provide a brief written summary of the sampling results or attach evaluation tables (compare to DER-10, Appendix 5):
Example Text: Arsenic was detected up to 17 ppm in 1 (of 5) samples; the allowable level is 16 ppm.
If Ecological Resources have been identified use the "If Ecological Resources are Present" column in Appendix 5.
SECTION 4 – SOURCE OF FILL
Name of person providing fill and relationship to the source:
Location where fill was obtained:
Identification of any state or local approvals as a fill source:
Identification of any state or local approvals as a fill source:
Identification of any state or local approvals as a fill source: If no approvals are available, provide a brief history of the use of the property that is the fill source:
If no approvals are available, provide a brief history of the use of the property that is the fill source:
If no approvals are available, provide a brief history of the use of the property that is the fill source:

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Materials Management, Region 8 6274 East Avon-Lima Road, Avon, NY 14414-9516 P: (585) 226-5411 | F: (585) 226-2909 www.dec.ny.gov

May 22, 2018

Ms. Karen Flanders Special Waste Department Casella Waste Systems, Resource Solutions 25 Greens Hill Lane Rutland, VT 05701

Dear Ms. Flanders:

RF.

Ontario County Landfill; Approval Request for Beneficial Use Determination (BUD) for Contaminated Soil from Midler Avenue

Brownfield Project, NYSDEC Site No. C835027A, for use as Alternative

Daily Cover (ADC) Stanley (T) Ontario (C)

The above request was received by this office via e-mail on April 27, 2018. The request seeks Department approval for the Ontario County landfill to accept approximately 3,600 tons of contaminated soil, for use as BUD-ADC at the landfill. The soil in question was generated at, and is currently stock piled in two soil berms at the Midler Avenue Brownfield Project site (NYSDEC Site #C734103) in Syracuse NY.

I've reviewed the analytical data you submitted and have calculated the benzo(a)pyrene equivalent (BAP) for the east and west berm. The BAP for the west berm is 5.86 mg/kg, and 0.803 mg/kg for the east berm. The Part 375-6.8(b) restricted use soil cleanup objective for industrial use for benzo(a)pyrene is 1.1 mg/kg. Due to the elevated BAP level, it would not be prudent to use soil from the west berm as ADC at the landfill, as a result the soil from the west berm may be accepted by the landfill for disposal as waste but it may not be used as ADC. The soil from the east berm may be accepted and used as BUD ADC at the landfill.

Department approval to use a waste as BUD-ADC at the landfill is a determination that based on the information you provided, the material may be used for the requested reuse, it is not an authorization to exceed existing stockpile limits, use the material for non-approved purposes, and/or use material as BUD if it exhibits properties significantly different than those represented in the approval request. All BUD-ADC must be managed such that all stromwater run-off from the material is captured by the landfills leachate collection system and the generation of dust resulting from the handling, storage and/or use of the material is minimized. I remind you the landfill is limited to a

10,000-ton stock pile of BUD ADC, the acceptance and use of all BUD ADC must be managed to remain in compliance with this requirement.

If you have any questions concerning this letter I can be reached at 585-226-5414 or gary.maslanka@dec.ny.gov.

Sincerely,

Gary M. Maslanka

Environmental Engineer

Division of Materials Management

cc: J. Boliver, D. Kay, M. Miles,

G. MacLean, Karen Cahill

R. Fadden, Amy Dill,

W. Klinesmith

T. Jensen

NYSDEC

NYSDEC

Casella

Casella

Ontario County

The information provided on this form is accurate and complete. Michael J. Falcone

Print Name

Pioneer Companies

Firm

PERMIT

Under the Environmental Conservation Law (ECL)

Permittee and Facility Information

Permit Issued To:

CALLANAN INDUSTRIES INC

PO BOX 15097 -

Albany, NY 12212-5097

(518) 374-2222

Facility:

MADISON MINE

QUARRY RD - OPPOSITE INGALLS RD

PERRYVILLE, NY 13037

Facility Location: in SULLIVAN in MADISON COUNTY

Facility Principal Reference Point: NYTM-E: 434.166

NYTM-N: 4763.182

Latitude: 43°01'06.5" Longitude: 75°48'28.6"

Authorized Activity: This permit authorizes mining activity on 79 acres of land during the permit term, within a 146 acre life-of-mine facility, within a 154 acre parcel of land, including specified processing

equipment, on lands owned by Callanan Industries, Inc.

Permit Authorizations

Mined Land Reclamation - Under Article 23, Title 27

Permit ID 7-2548-00051/00001

(Mined Land ID 70045)

Renewal

Effective Date: 6/7/2018

Expiration Date: 6/6/2023

NYSDEC Approval

By acceptance of this permit, the permittee agrees that the permit is contingent upon strict compliance with the ECL, all applicable regulations, and all conditions included as part of this permit.

Permit Administrator: ELIZABETH A TRACY, Deputy Regional Permit Administrator

Address: NYSDEC Region 7 Headquarters

615 Erie Boulevard W Syracuse, NY_13204 -2400

Authorized Signature:

Date 5/24/18

Permit Components

MINED LAND RECLAMATION PERMIT CONDITIONS

GENERAL CONDITIONS, APPLY TO ALL AUTHORIZED PERMITS

Page 1 of 12

Ms. Melissa Zell Page 2 June 28, 2016

Your next PRR will be due on March 31, 2019. You will receive a reminder letter and updated certification form approximately 45 days prior to the due date.

Sincerely,

Karen A. Cahill Project Manager

ec:

Harry Warner harry.warner@dec.ny.gov, NYSDEC Richard Jones richard.jones@doh.ny.gov, NYSDOH Wayne Randall wrandall@cscos.com, C&S

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation, Region 7 615 Erie Boulevard West, Syracuse, NY 13204-2400 P: (315) 426-7519, (315) 426-7551 | F: (315) 426-2653 www.dec.ny.gov

December 7, 2018

Mr. Greg Henson Pioneer Companies 333 West Washington St. Suite 600 Syracuse, NY 13202

Re:

Midler City Industrial Park, Syracuse, NY, Site No. C734103

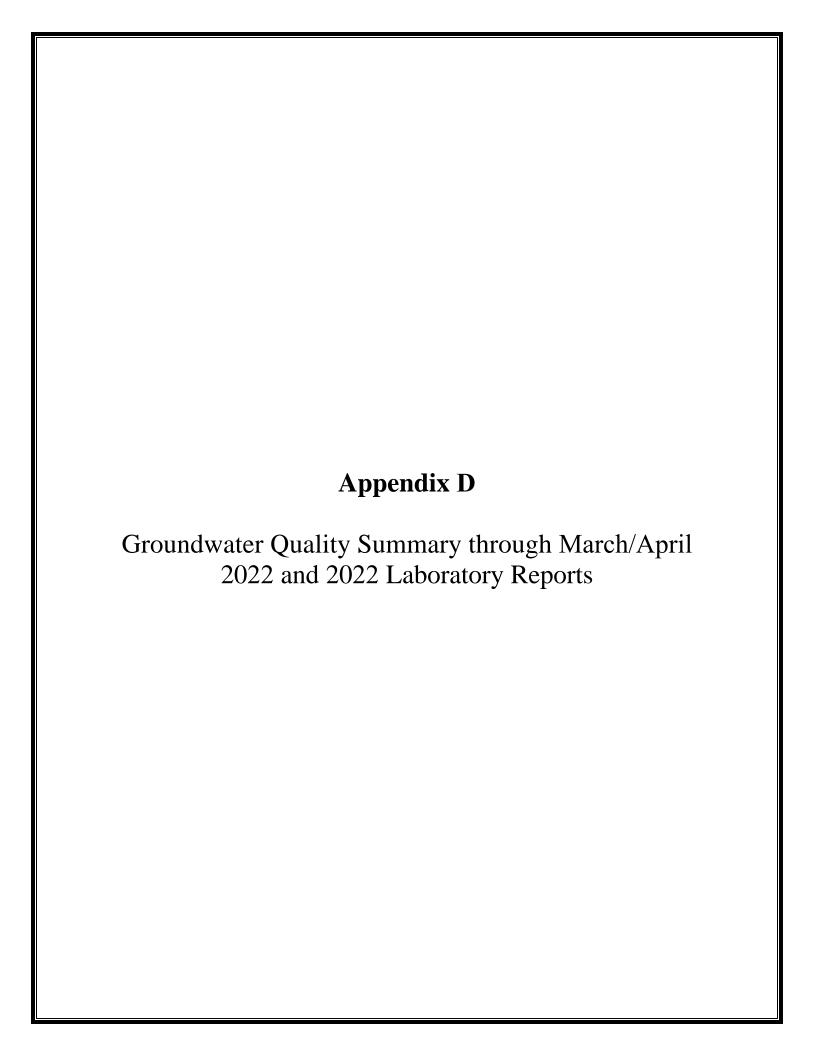
SMP Monitoring Requirements

Dear Mr. Henson:

The Department has reviewed C&S's December 6, 2018 letter requesting that the Monitored Natural Attenuation (MNA) parameter analyses be eliminated from the monitoring program and hereby approve this request.

Additionally, as stated in our June 28, 2016 letter, the use of Passive Diffusion Bags (PDBs) for volatile organic compound (VOC) sample collection/analysis is also approved.

Sincerely.

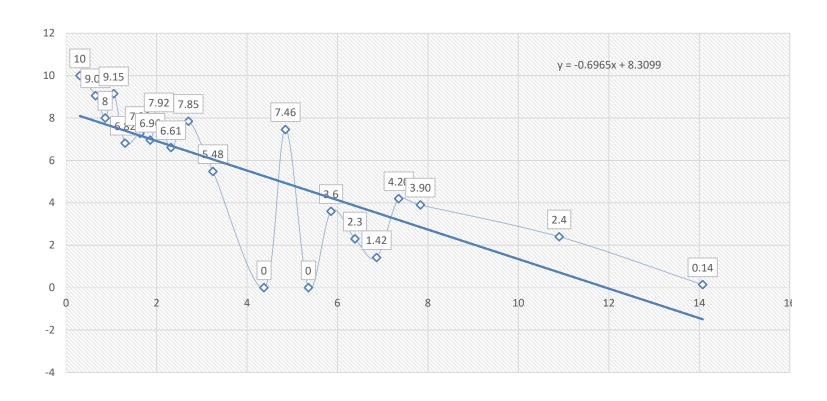

Karen A. Cahill Project Manager

ec:

Harry Warner harry.warner@dec.ny.gov, NYSDEC

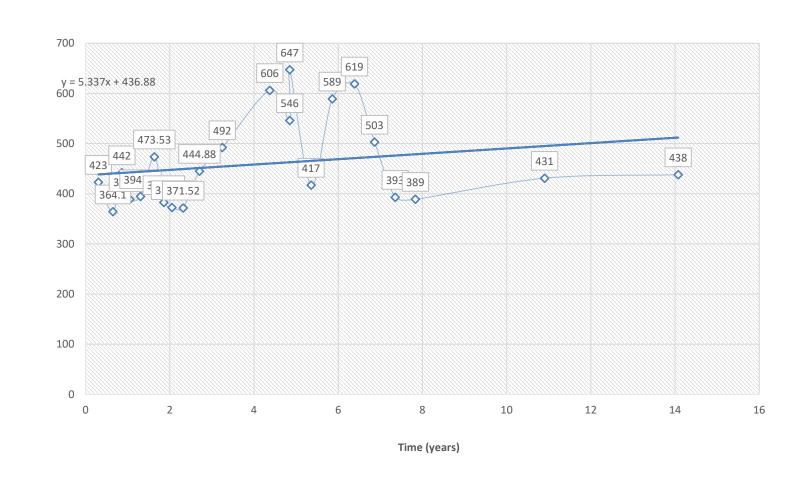
Richard Jones Richard jones@doh.ny.gov, NYSDOH

Wayne Randall wrandall@cscos.com, C&S

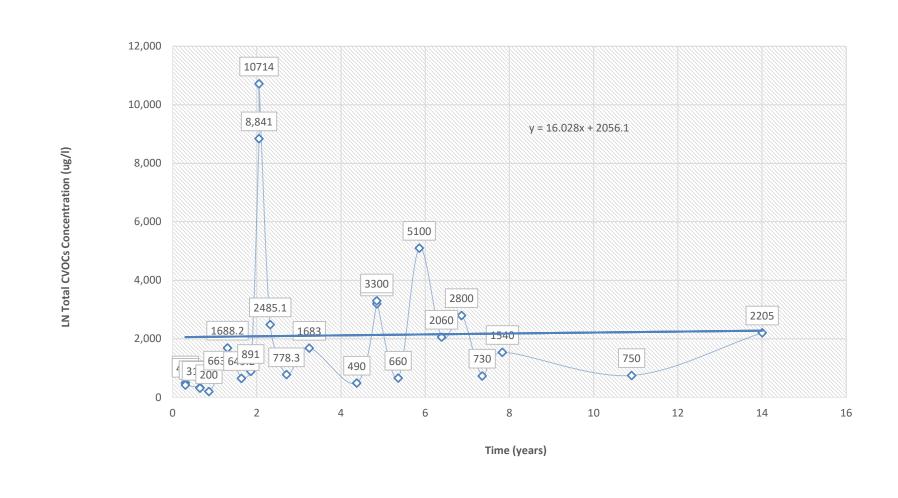


Pioneer Midler Avenue LLC Summary of Groundwater VOC Data

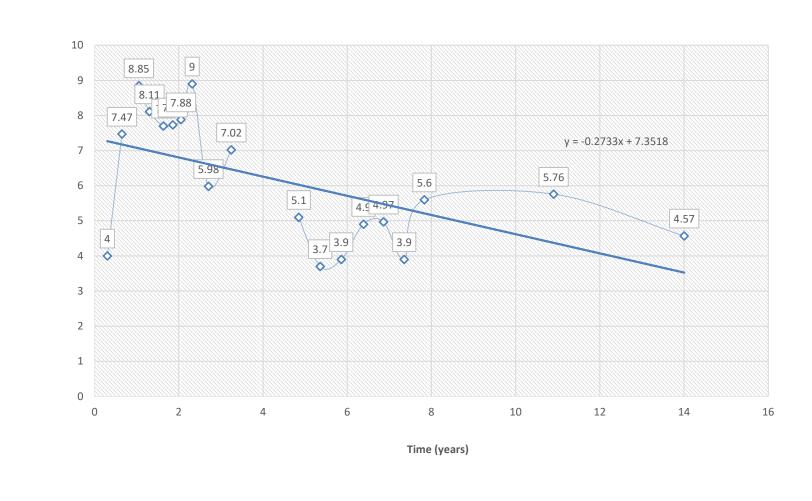
Devemeter	Unita	NIVOE	NEO 04	MW-9D MW-9D MW-9D	MW QD	MW-9D MW0	MWOOD	MWOOD	MW 10D	M\\\/ 10D	M\M 10D	MW 10D M	W/ 10D	MW 10D	M/M/ 10F	D MW-10D	IW 13D D	M/M/ 13D M	W 13D MW	/ 13D	MW-13D MW-	13D M/V/ 13I) M/M/ 13F	MW 15D	MW 15D A	1\1\15D \ M\1\1	5D MW 15D	MW 15D	MM 15D	M\M/ 15D
Parameter	Units		DEC GA	06/20/13 12/20/13 07/01/14			/15 01/04/19									9 03/07/22										07/01/14 12/22				
Sample Date			Guidance						06/20/13			1 12/22/14 06									06/19/15 12/1									
1,1,1-Trichloroethane	ug/l	5		2 U 2 U 2 U	1 U	1 U		2.5 U	20 U				40 U	25 U	13 U		20 U	20 U		00 U		U 13 U		J 4 U	4 U		U 1 U		5 U	2.5 U
1,1,2,2-Tetrachloroethane	ug/l	5		2 U 2 U 2 U	1 U			0.5 U	20 U				40 U	25 U	13 U		20 U	20 U		00 U		U 13 U		J 4 U	4 U		U 1 U		5 U	
1,1,2-Trichloroethane	ug/l	5		2 U 2 U 2 U	1 U			1.5 U	20 U				40 U	25 U	13 U		20 U	20 U		00 U		U 13 U		J 4 U	4 U		U 1 U		5 U	
1,1,2-Tricloro-1,2,2,-triflouroethane	ug/l	5		NA NA NA	1 U	10	I U 5 U		NA	NA	NA	40 U	40 U	25 U	13 U		NA	NA		00 U		U 13 U		NA	NA	NA NA		NA	5 U	
1,1-Dichloroethane	ug/l	5		2 U 2 U 2 U	1 U			2.5 U	20 U				40 U	25 U	13 U		20 U	20 U		00 U		U 13 U		J 4 U	4 U		U 1 U		5 U	
1,1-Dichloroethene	ug/l	5		2 U 2 U 2 U	1 U	1 U -		0.5 U	20 U				40 U	25 U	13 U		20 U	20 U		00 U		U 13 U		4 U	4 U		U 1 U		5 U	
1,2,4-Trichlorobenzene	ug/l	5		2 U 2 U 2 U	1 U	1 U -		2.5 U	20 U				40 U	25 U	13 U		20 U	20 U		00 U		U 13 U		J 4 U	4 U		U 1 U		5 U	
1,2-Dibromo-3-chloropropane	ug/l	0.04		2 U 2 U 2 U	1 U	1 U	I U 5 U	2.5 U	20 U	20 U	20 U	J 40 U	40 U	25 U	13 U	10 U	20 U	20 U	20 U 2	00 U	50 U 50	U 13 U	12 L	J 4 U	4 U	4 U 1	U 1 U	1 U	5 U	2.5 U
1,2-Dibromoethane	ug/l			2 U 2 U 2 U	1 U	1 U -	I U 5 U	2 U	20 U	20 U	20 U	J 40 U	40 U	25 U	13 U	8 U	20 U	20 U	20 U 2	00 U	50 U 50	U 13 U	10 L	J 4 U	4 U	4 U 1	U 1 U	1 U	5 U	2 U
1,2-Dichlorobenzene	ug/l	3		2 U 2 U 2 U	1 U	1 U 1	I U 5 U	2.5 U	20 U	20 U	20 U	J 40 U	40 U	25 U	13 U	10 U	20 U	20 U	20 U 2	00 U	50 U 50	U 13 U	12 L	J 4 U	4 U	4 U 1	U 1 U	1 U	5 U	2.5 U
1,2-Dichloroethane	ug/l	0.6		2 U 2 U 2 U	1 U	1 U	I U 5 U	2.5 U	20 U	20 U	20 U	J 40 U	40 U	25 U	13 U	2 U	20 U	20 U	20 U 2	00 U	50 U 50	U 13 U	2.5 L	J 4 U	4 U	4 U 1	U 1 U	1 U	5 U	0.5 U
1,2-Dichloropropane	ug/l	1		2 U 2 U 2 U	1 U	1 U	I U 5 U	0.5 U	20 U	20 U	20 U	J 40 U	40 U	25 U	13 U	4 U	20 U	20 U	20 U 2	00 U	50 U 50	U 13 U	5 L	J 4 U	4 U	4 U 1	U 1 U	1 U	5 U	1 U
1,3-Dichlorobenzene	ug/l	3		2 U 2 U 2 U	1 U	1 U	I U 5 U	2.5 U	20 U	20 U	20 U	40 U	40 U	25 U	13 U	10 U	20 U	20 U	20 U 2	00 U	50 U 50	U 13 U	12 l	J 4 U	4 U	4 U 1	U 1 U	1 U	5 U	2.5 U
1,4-Dichlorobenzene	ug/l	3		2 U 2 U 2 U	1 U	1 U	I U 5 U	2.5 U	20 U	20 U	20 U	40 U	40 U	25 U	13 U	10 U	20 U	20 U	20 U 2	00 U	50 U 50	U 13 U	12 L	J 4 U	4 U	4 U 1	U 1 U	1 U	5 U	2.5 U
2-Butanone (MEK)	ug/l		50	10 U 10 U 10 U	5 U	5 U 5	5 U 10 U	5 U	100 U	100 U	100 U	200 U	200 U	130 U	25 U	20 U	100 U	100 U	100 U 10	00 U	250 U 250	U 25 U	25 L	J 20 U	20 U	20 U 5	U 5 U	5 U	10 U	5 U
2-Hexanone	ug/l		50	10 U 10 U 10 U	5 U	5 U .5	5 U 10 U	5 U	100 U	100 U	100 U	J 200 U	200 U	130 U	25 U	20 U	100 U	100 U	100 U 10	00 U	250 U 250	U 25 U	25 L	J 20 U	20 U	20 U 5	U 5 U	5 U	10 U	5 U
4-Methyl-2-pentanone (MIBK)	ug/l			10 U 10 U 10 U	5 U	5 U 5	5 U 10 U	5 U	100 U	100 U	100 U	J 200 U	200 U	130 U	25 U	20 U	100 U	100 U	100 U 10	00 U	250 U 250	U 25 U	25 L	J 20 U	20 U	20 U 5	U 5 U	5 U	10 U	5 U
Acetone	ug/l		50	12 10 U 4 J	5 U	5 U 5	5 U 10 U	4.3 J	100 U	100 U	100 U	200 U	200 U	130 U	25 U	20 U	100 U	100 U	100 U 2	00 U	50 U 50	U 25 U	25 L	J 20 U	20 U	1.5 J 5	U 5 U	5 U	10 U	1.5 J
Benzene	ug/l	1		2 U 2 U 2 U	1 U	1 U	I U 5 U	0.5 U	20 U	20 U	20 U	40 U	40 U	25 U	13 U	2 U	20 U	20 U	20 U 2	00 U	50 U 50	U 2.2 J	5.2	4 U	4 U	4 U 1	U 1U	1 U	5 U	0.5 U
Bromodichloromethane	ug/l		50	2 U 2 U 2 U	1 U	1 U	I U 5 U	2.5 U	20 U	20 U	20 U	J 40 U	40 U	25 U	13 U	10 U	20 U	20 U	20 U 2	00 U	50 U 50	U 13 U	2.5 L	J 4 U	4 U	4 U 1	U 1 U	1 U	5 U	2.5 U
Bromoform	ug/l		50	2 U 2 U 2 U	1 U	1 U	I U 5 U		20 U				40 U	25 U	13 U	8 U	20 U	20 U		00 U		U 13 U		J 4 U	4 U	4 U 1	U 1 U	1 U	5 U	
Bromomethane	ug/l			2 U 2 U 2 U	1 U			2.5 U	20 U				40 U	25 U	13 U		20 U	20 U		00 U		U 13 U		J 4 U	4 U		U 1 U		5 U	
Carbon disulfide	ug/l	60		0.55 J 2 U 2 U	1 U		U 5.8 J		20 U				40 U	25 U	8.5 J	20 U	20 U	20 U		00 U		U 15 J	10 L	J 1.3 J	4 U		U 1U		3.3 J	5 U
Carbon tetrachloride	ug/l	5		2 U 2 U 2 U	1 U			0.5 U	20 U				40 U	25 U	13 U		20 U	20 U		00 U		U 13 U		J 4 U	4 U		U 1 U	 		0.5 U
Chlorobenzene	ug/l	5		2 U 2 U 2 U	1 U			2.5 U	20 U				40 U	25 U	13 U		20 U	20 U		00 U		U 13 U		J 4 U	4 U		U 1 U		5 U	
Chloroethane	ug/l	5		2 U 2 U 2 U	1 U			2.5 U	20 U				40 U	25 U	13 U		20 U	20 U		00 U		U 13 U		J 4 U	4 U		U 1U		5 U	
Chloroform	ug/l	7		2 U 2 U 2 U	1 11	1 U		2.5 U	20 U				40 U	25 U	13 U		20 U	20 U		00 U		U 13 U		J 4 U	4 U		U 1 U	 	5 U	
Chloromethane	ug/l			2 U 2 U 2 U	1 11			2.5 U	20 U				40 U	25 U	13 U		20 U	20 U		00 U		U 13 U		J 4 U	4 U		U 1U			
cis-1,2-Dichloroethene	ug/l	5		2 U 1.9 J 2.3 J	0.84 J	2.1 2.3			320	480	510 J		330	320 E	390	420	260			00	240 620		600	3.7 J	3.9 J	4.9 4.2		4.5	3.9 J	
cis-1,3-Dichloropropene	ug/l	0.4		2 U 2 U 2 U				0.5 U	20 U				40	25 U	13 U		20 U	20 U		00 U		U 13 U		J 4 U	4 U		U 1 U		5.5 U	
Cyclohexane	ug/l	0		NA NA NA	NA NA	NA NA			NA NA	NA NA	NA NA	NA NA	NA	NA NA	25 U		NA NA	NA NA		NA AV	NA NA			J NA	NA NA	NA NA		NA NA	10 U	
Dibromochloromethane	ug/l	5		2 U 2 U 2 U		1 11		0.5 U	20 U				40	25 U	13 U		20 U	20 U		00 U		U 13 U		J 4 U	4 U		U 1U	1 11	5 U	
Dichlorodifluoromethane	ug/l	5		NA NA NA	NA NA		1 U 5 U		NA NA	NA NA	NA NA	NA	NA NA	NA NA	13 U		NA NA	NA NA		NA AV	NA NA			J NA	NA NA	NA NA		NA NA	5 U	
Ethylbenzene	ug/l	5		2 U 2 U 2 U				2.5 U	20 U				40	25 U	13 U		20 U	20 U		00 U		U 13 U		J 4 U	4 U		U 1U		5 U	
Isopropylbenzene	ug/l	5		NA NA NA	NA NA	NA NA		2.5 U	NA NA	NA NA	NA NA	NA	NA NA	NA NA	13 U		NA NA	NA NA		NA A	NA NA			J NA	NA NA	NA NA		NA NA		2.5 U
Methyl acetate	ug/l	J		NA NA NA	NA NA	NA NA		2.5 U	NA NA	NA NA	NA NA		NA NA	NA NA	25 U		NA NA	NA NA		NA NA	NA NA			J NA J NA	NA NA	NA NA		NA NA	10 U	
Methyl tert butyl ether	ug/l	10		NA NA NA	NA NA	NA NA			NA NA	NA NA	NA NA		NA	NA NA	13 U		NA NA	NA NA		NA NA	NA NA			J NA	NA	NA NA		NA NA	5 U	
Methylcyclohexane	ug/l	10			NA NA			10 U 2.5 U	NA NA			NA NA		NA NA			NA NA			NA NA				J NA J NA	NA NA	NA NA		NA NA		
		5								NA 40 II	NA 40 L		NA		25 U			NA II											10 U	
Methylene chloride	ug/l			4 U 2 U 2 U				2.5 U	40	40 U			80	50 U	13 U		40 U	40 U		00 U	100 U 100			J 8 U	8 U		U 2 U		5 U	
Styrene	ug/l	5		2 U 2 U 2 U		1 U		2.5 U	20 U				40	25 U	13 U		20 U	20 U		00 U		U 13 U		J 4 U	4 U		U 1 U		5 U	
Tetrachloroethene	ug/l	5		2 U 2 U 2 U		1 U		0.5 U	20 U				40	25 U	13 U		20 U	20 U		00 U		U 13 U		J 4 U	4 U		U 1 U		5 U	
Toluene	ug/l	5		2.6 2 U 2 U				2.5 U	20 U				40	25 U	13 U		20 U	20 U		00 U		U 0.85 J	12 L	J 4 U	4 U		U 1 U			
trans-1,2-Dichloroethene	ug/l	5		2 U 2 U 2 U		1 U		2.5 U	16 J	19 J		19 J	18 J	25 U	16	18	20 U	25		00 U		U 3.1 J	5.1	4 U	4 U	1 0.77		1 U		0.73 J
trans-1,3-Dichloropropene	ug/l	0.4		2 U 2 U 2 U				0.5 U	20 U				40	25 U	13 U		20 U	20 U		00 U		U 13 U		J 4 U	4 U		U 1 U	 	5 U	0.5 U
Trichloroethene	ug/l	5		2 U 2 U 2 U		1 U		0.5 U	20 U				40	25 U	0.89 J	2 U	20 U	20		00 U		U 13 U		J 4 U	4 U		U 1 U		0.21 J	0.5 U
Trichlorofluoromethane	ug/l	5		NA NA NA	NA	NA NA		2.5 U	NA	NA	NA		NA	NA	13 U		NA	NA		AV	NA NA			J NA	NA	NA NA		NA	5 U	2.5 U
Vinyl chloride	ug/l	2		2 U 1.7 J 2 U		2.1 1.6		0.14 J	81	90	84	74	45	56	25	38	400	3200		00	490 920		1600	4 U	4 U		U 1	1.1		0.64 J
Xylenes, Total	ug/l	5		2 U 2 U 2 U	1 U	1 U	I U 5 U	2.5 U	20 U	20 U	20 U	J 40	40	25 U	13 U	10 U	20 U	20 U	20 U 2	00 U	50 U 50	U 13 U	12 U	4 U	4 U	4 U 1	U 1 U	1 U	5 U	2.5 U


Data Qualifiers:
U- Not Detected, undetected,
J or E - Estimated value
RE - re-extraction, Diluted
B-Analyte found in associated blank as well as in the sample

12/5/2022 Page 1 of 1


Time (years)

Total CVOCs Concentration vs. Time at MW-10D



LN Total CVOCs Concentration (ug/I)

Total CVOCs Concentration vs. Time at MW-13D

Total CVOCs Concentration vs. Time at MW-15D

LN Total CVOCs Concentration (ug/I)

ANALYTICAL REPORT

Lab Number: L2206926

Client: C&S Companies

499 Col. Eileen Collins Blvd.

Syracuse, NY 13212

ATTN: Wayne Randall Phone: (315) 455-2000

Project Name: MIDLER AVE GW SAMPLING

Project Number: C81
Report Date: 02/16/22

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: MIDLER AVE GW SAMPLING

Lab Number: L2206926 Project Number: Report Date: 02/16/22 C81

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2206926-01	MW-15D	WATER	MIDLER AVE, SYRACUSE, NY	02/09/22 14:10	02/09/22
L2206926-02	MW-13D	WATER	MIDLER AVE, SYRACUSE, NY	02/09/22 14:15	02/09/22
L2206926-03	TRIP BLANK	WATER	MIDLER AVE, SYRACUSE, NY	02/09/22 00:00	02/09/22

Project Name:MIDLER AVE GW SAMPLINGLab Number:L2206926Project Number:C81Report Date:02/16/22

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name: MIDLER AVE GW SAMPLING

Lab Number:

L2206926

Project Number:

C81

Report Date:

02/16/22

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

L2206926-01: The sample identified as "MW-15D" on the chain of custody was identified as "MW-15" on the container label. At the client's request, the sample is reported as "MW-15D".

L2206926-02: The sample identified as "MW-13D" on the chain of custody was identified as "MW-13" on the container label. At the client's request, the sample is reported as "MW-13D".

Volatile Organics

L2206926-02D2: The pH was greater than two; however, the sample was analyzed within the method required holding time.

The WG1604755-6/-7 MS/MSD recoveries, performed on L2206926-02, are outside the acceptance criteria for vinyl chloride (0%/0%) and cis-1,2-dichloroethene (60%/20%). The unacceptable percent recoveries are attributed to the elevated concentrations of target compounds present in the native sample.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Cattlin Wallet Caitlin Walukevich

Authorized Signature:

Title: Technical Director/Representative

Date: 02/16/22

ORGANICS

VOLATILES

L2206926

02/16/22

02/09/22

Project Name: MIDLER AVE GW SAMPLING

Project Number: C81

SAMPLE RESULTS

Lab Number:

Report Date:

Date Received:

Lab ID: L2206926-01 Date Collected: 02/09/22 14:10

Client ID: MW-15D

Field Prep: Sample Location: MIDLER AVE, SYRACUSE, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 02/11/22 18:39

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbor	ough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	0.64	J	ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	0.73	J	ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: MIDLER AVE GW SAMPLING Lab Number: L2206926

Project Number: C81 Report Date: 02/16/22

SAMPLE RESULTS

Lab ID: L2206926-01 Date Collected: 02/09/22 14:10

Client ID: MW-15D Date Received: 02/09/22 Sample Location: MIDLER AVE, SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbord	ough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	3.2		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	1.5	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	106	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	94	70-130	
Dibromofluoromethane	104	70-130	

Project Name: MIDLER AVE GW SAMPLING Lab Number: L2206926

Project Number: C81 Report Date: 02/16/22

SAMPLE RESULTS

Lab ID: L2206926-02 D2 Date Collected: 02/09/22 14:15

Client ID: MW-13D Date Received: 02/09/22

Sample Location: MIDLER AVE, SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 02/14/22 20:52

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westborou	igh Lab						
Vinyl chloride	1600		ug/l	25	1.8	25	
O. www. words			a. =			eptance	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	109		70-130	
Toluene-d8	97		70-130	
4-Bromofluorobenzene	100		70-130	
Dibromofluoromethane	108		70-130	

L2206926

02/09/22

Not Specified

Project Name: MIDLER AVE GW SAMPLING

Project Number: C81

SAMPLE RESULTS

Date Collected: 02/09/22 14:15

Report Date: 02/16/22

Lab Number:

Date Received:

Field Prep:

Lab ID: L2206926-02 D

Client ID: MW-13D

Sample Location: MIDLER AVE, SYRACUSE, NY

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 02/11/22 19:04

Analyst: PD

1,1-Dichloroethane	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,1-Dichloroethane	Volatile Organics by GC/MS - Westk	oorough Lab					
ND	Methylene chloride	ND		ug/l	12	3.5	5
Carbon tetrachloride ND ug/l 2.5 0.67 5 1,2-Dichloropropane ND ug/l 5.0 0.68 5 Dibromochloromethane ND ug/l 2.5 0.74 5 1,1,2-Trichloroethane ND ug/l 2.5 0.90 5 Tetrachloroethane ND ug/l 12 3.5 5 Chlorobenzene ND ug/l 12 3.5 5 Trichlorofluoromethane ND ug/l 12 3.5 5 Trichlorofluoromethane ND ug/l 2.5 0.66 5 1,2-Dichloromethane ND ug/l 2.5 0.66 5 Bromodichloromethane ND ug/l 2.5 0.96 5 Bromodichloropropene ND ug/l 2.5 0.96 5 trans-1,3-Dichloropropene ND ug/l 2.5 0.84 5 Bromoform ND ug/l 2.5 0.84	1,1-Dichloroethane	ND		ug/l	12	3.5	5
1,2-Dichloropropane ND Ug/l 5.0 0.68 5 5 5 5 5 5 5 5 5	Chloroform	ND		ug/l	12	3.5	5
Dibromochloromethane ND ug/l 2.5 0.74 5 1,1,2-Trichloroethane ND ug/l 7.5 2.5 5 5 5 5 5 5 5 5 5	Carbon tetrachloride	ND		ug/l	2.5	0.67	5
1,1,2-Trichloroethane	1,2-Dichloropropane	ND		ug/l	5.0	0.68	5
Tetrachloroethene ND ug/l 2.5 0.90 5 Chlorobenzene ND ug/l 12 3.5 5 Trichlorofluoromethane ND ug/l 12 3.5 5 1,2-Dichloroethane ND ug/l 2.5 0.66 5 1,1,1-Trichloroethane ND ug/l 12 3.5 5 Bromodichloromethane ND ug/l 2.5 0.96 5 Bromodichloropropene ND ug/l 2.5 0.96 5 Itrans-1,3-Dichloropropene ND ug/l 2.5 0.82 5 Gis-1,3-Dichloropropene ND ug/l 2.5 0.72 5 Bromoform ND ug/l 10 3.2 5 Inj.2,2-Tetrachloroethane ND ug/l 2.5 0.84 5 Benzene 5.2 ug/l 2.5 0.80 5 Tolluene ND ug/l 12 3.5 5	Dibromochloromethane	ND		ug/l	2.5	0.74	5
Chlorobenzene ND ug/l 12 3.5 5 Trichlorofluoromethane ND ug/l 12 3.5 5 Trichloroethane ND ug/l 2.5 0.66 5 1,1,1-Trichloroethane ND ug/l 2.5 0.96 5 Bromodichloromethane ND ug/l 2.5 0.96 5 Bromodichloropropene ND ug/l 2.5 0.96 5 cis-1,3-Dichloropropene ND ug/l 2.5 0.82 5 cis-1,3-Dichloropropene ND ug/l 2.5 0.72 5 Bromoform ND ug/l 10 3.2 5 Bromoform ND ug/l 2.5 0.84 5 Benzene 5.2 ug/l 2.5 0.80 5 Toluene ND ug/l 12 3.5 5 Ethylbenzene ND ug/l 12 3.5 5 <t< td=""><td>1,1,2-Trichloroethane</td><td>ND</td><td></td><td>ug/l</td><td>7.5</td><td>2.5</td><td>5</td></t<>	1,1,2-Trichloroethane	ND		ug/l	7.5	2.5	5
Trichlorofluoromethane ND ug/l 12 3.5 5 1,2-Dichloroethane ND ug/l 2.5 0.66 5 1,1,1-Trichloroethane ND ug/l 12 3.5 5 Bromodichloromethane ND ug/l 2.5 0.96 5 Bromodichloropropene ND ug/l 2.5 0.82 5 cis-1,3-Dichloropropene ND ug/l 2.5 0.72 5 Bromoform ND ug/l 10 3.2 5 Bromoform ND ug/l 10 3.2 5 1,1,2,2-Tetrachloroethane ND ug/l 2.5 0.84 5 Benzene 5.2 ug/l 2.5 0.80 5 Toluene ND ug/l 12 3.5 5 Ethylbenzene ND ug/l 12 3.5 5 Chloromethane ND ug/l 12 3.5 5 <	Tetrachloroethene	ND		ug/l	2.5	0.90	5
1,2-Dichloroethane ND ug/l 2.5 0.66 5 1,1,1-Trichloroethane ND ug/l 12 3.5 5 Bromodichloromethane ND ug/l 2.5 0.96 5 trans-1,3-Dichloropropene ND ug/l 2.5 0.82 5 cis-1,3-Dichloropropene ND ug/l 2.5 0.72 5 Bromoform ND ug/l 10 3.2 5 Bromoform ND ug/l 2.5 0.84 5 1,1,2,2-Tetrachloroethane ND ug/l 2.5 0.84 5 Benzene 5.2 ug/l 2.5 0.80 5 Toluene ND ug/l 12 3.5 5 Ethylbenzene ND ug/l 12 3.5 5 Chloromethane ND ug/l 12 3.5 5 Stromomethane ND ug/l 5.0 0.36 5 <	Chlorobenzene	ND		ug/l	12	3.5	5
1,1,1-Trichloroethane	Trichlorofluoromethane	ND		ug/l	12	3.5	5
Bromodichloromethane ND ug/l 2.5 0.96 5 ttrans-1,3-Dichloropropene ND ug/l 2.5 0.82 5 cis-1,3-Dichloropropene ND ug/l 2.5 0.72 5 Bromoform ND ug/l 10 3.2 5 1,1,2,2-Tetrachloroethane ND ug/l 2.5 0.84 5 Benzene 5.2 ug/l 2.5 0.80 5 Toluene ND ug/l 12 3.5 5 Ethylbenzene ND ug/l 12 3.5 5 Chloromethane ND ug/l 12 3.5 5 Bromomethane ND ug/l 12 3.5 5 Vinyl chloride 1200 E ug/l 5.0 0.36 5 Chloroethane ND ug/l 12 3.5 5 1,1-Dichloroethene 1.5 J ug/l 2.5 0.84	1,2-Dichloroethane	ND		ug/l	2.5	0.66	5
trans-1,3-Dichloropropene ND ug/l 2.5 0.82 5 cis-1,3-Dichloropropene ND ug/l 2.5 0.72 5 Bromoform ND ug/l 10 3.2 5 1,1,2,2-Tetrachloroethane ND ug/l 2.5 0.84 5 Benzene 5.2 ug/l 2.5 0.80 5 Toluene ND ug/l 12 3.5 5 Ethylbenzene ND ug/l 12 3.5 5 Chloromethane ND ug/l 12 3.5 5 Chloromethane ND ug/l 12 3.5 5 Bromomethane ND ug/l 12 3.5 5 Chloromethane ND ug/l 12 3.5 5 Chloromethane ND ug/l 12 3.5 5 Toluene ND ug/l 12 3.5 5 Trichloroethane ND ug/l 12 3.5 5 Toluene ND ug/l 12 3.5 5 Trichloroethene ND ug/l 12 3.5 5 Trichloroethene ND ug/l 12 3.5 5	1,1,1-Trichloroethane	ND		ug/l	12	3.5	5
cis-1,3-Dichloropropene ND ug/l 2.5 0.72 5 Bromoform ND ug/l 10 3.2 5 1,1,2,2-Tetrachloroethane ND ug/l 2.5 0.84 5 Benzene 5.2 ug/l 2.5 0.80 5 Toluene ND ug/l 12 3.5 5 Ethylbenzene ND ug/l 12 3.5 5 Chloromethane ND ug/l 12 3.5 5 Bromomethane ND ug/l 12 3.5 5 Vinyl chloride 1200 E ug/l 5.0 0.36 5 Chloroethane ND ug/l 12 3.5 5 1,1-Dichloroethene 1.5 J ug/l 2.5 0.84 5 Trichloroethene ND ug/l 2.5 0.84 5 Trichloroethene ND ug/l 2.5 0.88 5	Bromodichloromethane	ND		ug/l	2.5	0.96	5
Bromoform ND ug/l 10 3.2 5 1,1,2,2-Tetrachloroethane ND ug/l 2.5 0.84 5 Benzene 5.2 ug/l 2.5 0.80 5 Toluene ND ug/l 12 3.5 5 Ethylbenzene ND ug/l 12 3.5 5 Chloromethane ND ug/l 12 3.5 5 Bromomethane ND ug/l 12 3.5 5 Vinyl chloride 1200 E ug/l 5.0 0.36 5 Chloroethane ND ug/l 12 3.5 5 1,1-Dichloroethene 1.5 J ug/l 2.5 0.84 5 Trichloroethene ND ug/l 12 3.5 5 Trichloroethene ND ug/l 2.5 0.84 5	trans-1,3-Dichloropropene	ND		ug/l	2.5	0.82	5
1,1,2,2-Tetrachloroethane ND ug/l 2.5 0.84 5 Benzene 5.2 ug/l 2.5 0.80 5 Toluene ND ug/l 12 3.5 5 Ethylbenzene ND ug/l 12 3.5 5 Chloromethane ND ug/l 12 3.5 5 Bromomethane ND ug/l 12 3.5 5 Vinyl chloride 1200 E ug/l 5.0 0.36 5 Chloroethane ND ug/l 12 3.5 5 1,1-Dichloroethene 1.5 J ug/l 2.5 0.84 5 trans-1,2-Dichloroethene 5.1 J ug/l 12 3.5 5 Trichloroethene ND ug/l 2.5 0.88 5	cis-1,3-Dichloropropene	ND		ug/l	2.5	0.72	5
Benzene 5.2 ug/l 2.5 0.80 5 Toluene ND ug/l 12 3.5 5 Ethylbenzene ND ug/l 12 3.5 5 Chloromethane ND ug/l 12 3.5 5 Bromomethane ND ug/l 12 3.5 5 Vinyl chloride 1200 E ug/l 5.0 0.36 5 Chloroethane ND ug/l 12 3.5 5 1,1-Dichloroethene 1.5 J ug/l 2.5 0.84 5 Trichloroethene ND ug/l 12 3.5 5 Trichloroethene ND ug/l 2.5 0.84 5	Bromoform	ND		ug/l	10	3.2	5
Toluene ND ug/l 12 3.5 5 Ethylbenzene ND ug/l 12 3.5 5 Chloromethane ND ug/l 12 3.5 5 Bromomethane ND ug/l 12 3.5 5 Winyl chloride 1200 E ug/l 5.0 0.36 5 Chloroethane ND ug/l 12 3.5 5 Trichloroethene 5.1 J ug/l 2.5 0.84 5 Trichloroethene ND ug/l 12 3.5 5 Trichloroethene ND ug/l 12 3.5 5	1,1,2,2-Tetrachloroethane	ND		ug/l	2.5	0.84	5
Ethylbenzene ND ug/l 12 3.5 5 Chloromethane ND ug/l 12 3.5 5 Bromomethane ND ug/l 12 3.5 5 Vinyl chloride 1200 E ug/l 5.0 0.36 5 Chloroethane ND ug/l 12 3.5 5 1,1-Dichloroethene 1.5 J ug/l 2.5 0.84 5 trans-1,2-Dichloroethene 5.1 J ug/l 12 3.5 5 Trichloroethene ND ug/l 2.5 0.88 5	Benzene	5.2		ug/l	2.5	0.80	5
Chloromethane ND ug/l 12 3.5 5 Bromomethane ND ug/l 12 3.5 5 Vinyl chloride 1200 E ug/l 5.0 0.36 5 Chloroethane ND ug/l 12 3.5 5 1,1-Dichloroethene 1.5 J ug/l 2.5 0.84 5 trans-1,2-Dichloroethene 5.1 J ug/l 12 3.5 5 Trichloroethene ND ug/l 2.5 0.88 5	Toluene	ND		ug/l	12	3.5	5
Bromomethane ND ug/l 12 3.5 5 Vinyl chloride 1200 E ug/l 5.0 0.36 5 Chloroethane ND ug/l 12 3.5 5 1,1-Dichloroethene 1.5 J ug/l 2.5 0.84 5 trans-1,2-Dichloroethene 5.1 J ug/l 12 3.5 5 Trichloroethene ND ug/l 2.5 0.88 5	Ethylbenzene	ND		ug/l	12	3.5	5
Vinyl chloride 1200 E ug/l 5.0 0.36 5 Chloroethane ND ug/l 12 3.5 5 1,1-Dichloroethene 1.5 J ug/l 2.5 0.84 5 trans-1,2-Dichloroethene 5.1 J ug/l 12 3.5 5 Trichloroethene ND ug/l 2.5 0.88 5	Chloromethane	ND		ug/l	12	3.5	5
Chloroethane ND ug/l 12 3.5 5 1,1-Dichloroethene 1.5 J ug/l 2.5 0.84 5 trans-1,2-Dichloroethene 5.1 J ug/l 12 3.5 5 Trichloroethene ND ug/l 2.5 0.88 5	Bromomethane	ND		ug/l	12	3.5	5
1,1-Dichloroethene 1.5 J ug/l 2.5 0.84 5 trans-1,2-Dichloroethene 5.1 J ug/l 12 3.5 5 Trichloroethene ND ug/l 2.5 0.88 5	Vinyl chloride	1200	E	ug/l	5.0	0.36	5
trans-1,2-Dichloroethene 5.1 J ug/l 12 3.5 5 Trichloroethene ND ug/l 2.5 0.88 5	Chloroethane	ND		ug/l	12	3.5	5
Trichloroethene ND ug/l 2.5 0.88 5	1,1-Dichloroethene	1.5	J	ug/l	2.5	0.84	5
, and the second	trans-1,2-Dichloroethene	5.1	J	ug/l	12	3.5	5
1,2-Dichlorobenzene ND ug/l 12 3.5 5	Trichloroethene	ND		ug/l	2.5	0.88	5
	1,2-Dichlorobenzene	ND		ug/l	12	3.5	5

Project Name: MIDLER AVE GW SAMPLING Lab Number: L2206926

Project Number: C81 Report Date: 02/16/22

SAMPLE RESULTS

Lab ID: L2206926-02 D Date Collected: 02/09/22 14:15

Client ID: MW-13D Date Received: 02/09/22 Sample Location: MIDLER AVE, SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	gh Lab					
1,3-Dichlorobenzene	ND		ug/l	12	3.5	5
1,4-Dichlorobenzene	ND		ug/l	12	3.5	5
Methyl tert butyl ether	ND		ug/l	12	3.5	5
p/m-Xylene	ND		ug/l	12	3.5	5
o-Xylene	ND		ug/l	12	3.5	5
cis-1,2-Dichloroethene	600		ug/l	12	3.5	5
Styrene	ND		ug/l	12	3.5	5
Dichlorodifluoromethane	ND		ug/l	25	5.0	5
Acetone	ND		ug/l	25	7.3	5
Carbon disulfide	ND		ug/l	25	5.0	5
2-Butanone	ND		ug/l	25	9.7	5
4-Methyl-2-pentanone	ND		ug/l	25	5.0	5
2-Hexanone	ND		ug/l	25	5.0	5
Bromochloromethane	ND		ug/l	12	3.5	5
1,2-Dibromoethane	ND		ug/l	10	3.2	5
1,2-Dibromo-3-chloropropane	ND		ug/l	12	3.5	5
Isopropylbenzene	ND		ug/l	12	3.5	5
1,2,3-Trichlorobenzene	ND		ug/l	12	3.5	5
1,2,4-Trichlorobenzene	ND		ug/l	12	3.5	5
Methyl Acetate	ND		ug/l	10	1.2	5
Cyclohexane	ND		ug/l	50	1.4	5
1,4-Dioxane	ND		ug/l	1200	300	5
Freon-113	ND		ug/l	12	3.5	5
Methyl cyclohexane	ND		ug/l	50	2.0	5

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	105	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	102	70-130	

Serial_No:02162213:20

L2206926

02/16/22

Not Specified

02/09/22

Project Name: MIDLER AVE GW SAMPLING

Project Number: C81

SAMPLE RESULTS

Date Collected: 02/09/22 00:00

Lab Number:

Report Date:

Date Received:

Field Prep:

Lab ID: L2206926-03

Client ID: TRIP BLANK

Sample Location: MIDLER AVE, SYRACUSE, NY

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 02/11/22 16:53

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	tborough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Trichloroethene	ND		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1	

Serial_No:02162213:20

Project Name: Lab Number: MIDLER AVE GW SAMPLING L2206926

Project Number: Report Date: C81 02/16/22

SAMPLE RESULTS

Lab ID: Date Collected: 02/09/22 00:00 L2206926-03

Date Received: Client ID: 02/09/22 TRIP BLANK Field Prep: Not Specified

Sample Location: MIDLER AVE, SYRACUSE, NY

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westborough Lab							
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	1.5	J	ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
Bromochloromethane	ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl Acetate	ND		ug/l	2.0	0.23	1	
Cyclohexane	ND		ug/l	10	0.27	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Methyl cyclohexane	ND		ug/l	10	0.40	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	101	70-130	
Dibromofluoromethane	103	70-130	

Project Number: C81 Report Date: 02/16/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 02/11/22 08:47

Analyst: PD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	03 Batch:	WG1604726-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Number: C81 Report Date: 02/16/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 02/11/22 08:47

Analyst: PD

Parameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - We	stborough Lab	for sample(s): 03	Batch:	WG1604726-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
1,4-Dioxane	ND	ug/l	250	61.
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

Project Number: C81 Report Date: 02/16/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 02/11/22 08:47

Analyst: PD

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 03 Batch: WG1604726-5

		Acceptance		
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	106		70-130	
Toluene-d8	96		70-130	
4-Bromofluorobenzene	99		70-130	
Dibromofluoromethane	105		70-130	

Project Number: C81 Report Date: 02/16/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 02/11/22 10:59

Analyst: PD

Parameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - W	estborough Lab	for sample(s):	01-02 Batch:	WG1604755-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Number: C81 Report Date: 02/16/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 02/11/22 10:59

Analyst: PD

A-Dichlorobenzene ND	arameter	Result C	tualifier Units	RL	MDL
Methyl tert butyl ether ND ug/l 2.5 0.70 p/m-Xylene ND ug/l 2.5 0.70 o-Xylene ND ug/l 2.5 0.70 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 Styrene ND ug/l 5.0 1.0 Dichlorodifluoromethane ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 <	olatile Organics by GC/MS - V	estborough Lab fo	or sample(s): 01-02	Batch:	WG1604755-5
p/m-Xylene ND ug/l 2.5 0.70 o-Xylene ND ug/l 2.5 0.70 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 Styrene ND ug/l 5.0 0.70 Dichlorodifluoromethane ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1sopropylbenzene ND ug/l 2.5 0.70 1sopropylbenzene ND ug/l 2.5 0.70	1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
o-Xylene ND ug/l 2.5 0.70 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 Styrene ND ug/l 2.5 0.70 Dichlorodifluoromethane ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 <	Methyl tert butyl ether	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene ND ug/l 2.5 0.70 Styrene ND ug/l 2.5 0.70 Dichlorodifluoromethane ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1sopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0	p/m-Xylene	ND	ug/l	2.5	0.70
Styrene ND ug/l 2.5 0.70 Dichlorodifluoromethane ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.5 <	o-Xylene	ND	ug/l	2.5	0.70
Dichlorodiffluoromethane ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.5 0.70 1,4-Dioxane ND ug/l 2.5	cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 250 61. Freon-113 ND ug/l 2.5 0.70	Styrene	ND	ug/l	2.5	0.70
Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 2.5 0.70	Dichlorodifluoromethane	ND	ug/l	5.0	1.0
2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 2.0 0.27 1,4-Dioxane ND ug/l 2.5 0.70	Acetone	ND	ug/l	5.0	1.5
4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.0 0.65 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61 Freon-113 ND ug/l 2.5 0.70	Carbon disulfide	ND	ug/l	5.0	1.0
2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.0 0.65 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61 Freon-113 ND ug/l 2.5 0.70	2-Butanone	ND	ug/l	5.0	1.9
Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.0 0.65 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61 Freon-113 ND ug/l 2.5 0.70	4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
1,2-Dibromoethane ND ug/l 2.0 0.65 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61 Freon-113 ND ug/l 2.5 0.70	2-Hexanone	ND	ug/l	5.0	1.0
1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61 Freon-113 ND ug/l 2.5 0.70	Bromochloromethane	ND	ug/l	2.5	0.70
Isopropylbenzene	1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61. Freon-113 ND ug/l 2.5 0.70	1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61. Freon-113 ND ug/l 2.5 0.70	Isopropylbenzene	ND	ug/l	2.5	0.70
Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61. Freon-113 ND ug/l 2.5 0.70	1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61. Freon-113 ND ug/l 2.5 0.70	1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dioxane ND ug/l 250 61. Freon-113 ND ug/l 2.5 0.70	Methyl Acetate	ND	ug/l	2.0	0.23
Freon-113 ND ug/l 2.5 0.70	Cyclohexane	ND	ug/l	10	0.27
	1,4-Dioxane	ND	ug/l	250	61.
Methyl cyclohexane ND ug/l 10 0.40	Freon-113	ND	ug/l	2.5	0.70
	Methyl cyclohexane	ND	ug/l	10	0.40

Project Number: C81 Report Date: 02/16/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 02/11/22 10:59

Analyst: PD

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01-02 Batch: WG1604755-5

			Acceptance		
Surrogate	%Recovery	Qualifier	Criteria		
1,2-Dichloroethane-d4	103		70-130		
Toluene-d8	99		70-130		
4-Bromofluorobenzene	98		70-130		
Dibromofluoromethane	102		70-130		

Project Number: C81 Report Date: 02/16/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 02/14/22 19:31

Analyst: KJD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lab	for sample(s):	02 Batch:	WG1604988-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

L2206926

Project Name: MIDLER AVE GW SAMPLING Lab Number:

Project Number: C81 Report Date: 02/16/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 02/14/22 19:31

Analyst: KJD

Parameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - Wes	stborough Lab	for sample(s): 02	Batch:	WG1604988-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
1,4-Dioxane	ND	ug/l	250	61.
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

Project Number: C81 Report Date: 02/16/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 02/14/22 19:31

Analyst: KJD

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 02 Batch: WG1604988-5

		Acceptance
Surrogate	%Recovery Qu	alifier Criteria
1,2-Dichloroethane-d4	109	70-130
Toluene-d8	96	70-130
4-Bromofluorobenzene	97	70-130
Dibromofluoromethane	111	70-130

Project Name: MIDLER AVE GW SAMPLING

Project Number: C81

Lab Number: L2206926

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by GC/MS - Westbo	orough Lab Associated	sample(s): 03	Batch: WG16	604726-3	WG1604726-4				
Methylene chloride	100		110		70-130	10		20	
1,1-Dichloroethane	110		110		70-130	0		20	
Chloroform	110		110		70-130	0		20	
Carbon tetrachloride	120		120		63-132	0		20	
1,2-Dichloropropane	100		100		70-130	0		20	
Dibromochloromethane	100		100		63-130	0		20	
1,1,2-Trichloroethane	100		110		70-130	10		20	
Tetrachloroethene	110		110		70-130	0		20	
Chlorobenzene	100		110		75-130	10		20	
Trichlorofluoromethane	130		130		62-150	0		20	
1,2-Dichloroethane	110		110		70-130	0		20	
1,1,1-Trichloroethane	120		120		67-130	0		20	
Bromodichloromethane	110		110		67-130	0		20	
trans-1,3-Dichloropropene	95		100		70-130	5		20	
cis-1,3-Dichloropropene	88		95		70-130	8		20	
Bromoform	92		96		54-136	4		20	
1,1,2,2-Tetrachloroethane	94		100		67-130	6		20	
Benzene	110		110		70-130	0		20	
Toluene	110		110		70-130	0		20	
Ethylbenzene	110		110		70-130	0		20	
Chloromethane	110		110		64-130	0		20	
Bromomethane	78		86		39-139	10		20	
Vinyl chloride	110		120		55-140	9		20	

Project Name: MIDLER AVE GW SAMPLING

Project Number: C81

Lab Number: L2206926

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough	n Lab Associated	sample(s): (3 Batch: WG16	604726-3	WG1604726-4			
Chloroethane	110		120		55-138	9	20	
1,1-Dichloroethene	110		120		61-145	9	20	
trans-1,2-Dichloroethene	110		110		70-130	0	20	
Trichloroethene	100		100		70-130	0	20	
1,2-Dichlorobenzene	100		100		70-130	0	20	
1,3-Dichlorobenzene	100		110		70-130	10	20	
1,4-Dichlorobenzene	100		100		70-130	0	20	
Methyl tert butyl ether	97		110		63-130	13	20	
p/m-Xylene	115		115		70-130	0	20	
o-Xylene	110		110		70-130	0	20	
cis-1,2-Dichloroethene	100		110		70-130	10	20	
Styrene	110		110		70-130	0	20	
Dichlorodifluoromethane	120		120		36-147	0	20	
Acetone	84		91		58-148	8	20	
Carbon disulfide	110		110		51-130	0	20	
2-Butanone	93		94		63-138	1	20	
4-Methyl-2-pentanone	90		98		59-130	9	20	
2-Hexanone	94		98		57-130	4	20	
Bromochloromethane	110		110		70-130	0	20	
1,2-Dibromoethane	96		100		70-130	4	20	
1,2-Dibromo-3-chloropropane	82		90		41-144	9	20	
Isopropylbenzene	110		110		70-130	0	20	
1,2,3-Trichlorobenzene	95		100		70-130	5	20	

Project Name: MIDLER AVE GW SAMPLING

Project Number: C81

Lab Number: L2206926

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s): 03	Batch: WG	1604726-3	WG1604726-4				
1,2,4-Trichlorobenzene	99		110		70-130	11		20	
Methyl Acetate	86		96		70-130	11		20	
Cyclohexane	120		120		70-130	0		20	
1,4-Dioxane	96		116		56-162	19		20	
Freon-113	120		130		70-130	8		20	
Methyl cyclohexane	110		110		70-130	0		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	108	109	70-130
Toluene-d8	100	101	70-130
4-Bromofluorobenzene	100	97	70-130
Dibromofluoromethane	102	102	70-130

Project Name: MIDLER AVE GW SAMPLING

Project Number: C81

Lab Number: L2206926

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics by GC/MS - We	estborough Lab Associated	sample(s):	01-02 Batch: V	VG1604755-3	WG1604755-4			
Methylene chloride	95		92		70-130	3		20
1,1-Dichloroethane	100		98		70-130	2		20
Chloroform	99		92		70-130	7		20
Carbon tetrachloride	110		110		63-132	0		20
1,2-Dichloropropane	98		96		70-130	2		20
Dibromochloromethane	96		91		63-130	5		20
1,1,2-Trichloroethane	98		92		70-130	6		20
Tetrachloroethene	110		100		70-130	10		20
Chlorobenzene	100		100		75-130	0		20
Trichlorofluoromethane	96		94		62-150	2		20
1,2-Dichloroethane	96		97		70-130	1		20
1,1,1-Trichloroethane	110		100		67-130	10		20
Bromodichloromethane	97		96		67-130	1		20
trans-1,3-Dichloropropene	96		91		70-130	5		20
cis-1,3-Dichloropropene	95		92		70-130	3		20
Bromoform	88		92		54-136	4		20
1,1,2,2-Tetrachloroethane	93		94		67-130	1		20
Benzene	100		100		70-130	0		20
Toluene	100		100		70-130	0		20
Ethylbenzene	110		100		70-130	10		20
Chloromethane	91		87		64-130	4		20
Bromomethane	82		74		39-139	10		20
Vinyl chloride	100		97		55-140	3		20

Project Name: MIDLER AVE GW SAMPLING

Project Number: C81

Lab Number: L2206926

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-02 Batch: W0	G1604755-3 WG1604755-4		
Chloroethane	120		110	55-138	9	20
1,1-Dichloroethene	110		100	61-145	10	20
trans-1,2-Dichloroethene	100		100	70-130	0	20
Trichloroethene	110		100	70-130	10	20
1,2-Dichlorobenzene	100		100	70-130	0	20
1,3-Dichlorobenzene	100		100	70-130	0	20
1,4-Dichlorobenzene	100		99	70-130	1	20
Methyl tert butyl ether	89		91	63-130	2	20
p/m-Xylene	110		105	70-130	5	20
o-Xylene	105		100	70-130	5	20
cis-1,2-Dichloroethene	96		95	70-130	1	20
Styrene	105		100	70-130	5	20
Dichlorodifluoromethane	74		75	36-147	1	20
Acetone	90		93	58-148	3	20
Carbon disulfide	100		99	51-130	1	20
2-Butanone	77		83	63-138	8	20
4-Methyl-2-pentanone	87		91	59-130	4	20
2-Hexanone	86		88	57-130	2	20
Bromochloromethane	110		100	70-130	10	20
1,2-Dibromoethane	93		95	70-130	2	20
1,2-Dibromo-3-chloropropane	88		84	41-144	5	20
Isopropylbenzene	110		100	70-130	10	20
1,2,3-Trichlorobenzene	90		91	70-130	1	20

L2206926

Lab Control Sample Analysis Batch Quality Control

Project Name: MIDLER AVE GW SAMPLING

Project Number: C81

Report Date: 02/16/22

Lab Number:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-02 Batch:	WG1604755-3	WG1604755-4			
1,2,4-Trichlorobenzene	94		92		70-130	2		20
Methyl Acetate	90		91		70-130	1		20
Cyclohexane	110		110		70-130	0		20
1,4-Dioxane	96		104		56-162	8		20
Freon-113	100		100		70-130	0		20
Methyl cyclohexane	110		100		70-130	10		20

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	105	107	70-130
Toluene-d8	101	100	70-130
4-Bromofluorobenzene	96	96	70-130
Dibromofluoromethane	101	99	70-130

Project Name: MIDLER AVE GW SAMPLING

Project Number: C81

Lab Number: L2206926

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limit	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): (02 Batch: WG10	604988-3	WG1604988-4			
Methylene chloride	100		99		70-130	1	20	
1,1-Dichloroethane	110		100		70-130	10	20	
Chloroform	100		100		70-130	0	20	
Carbon tetrachloride	110		110		63-132	0	20	
1,2-Dichloropropane	100		100		70-130	0	20	
Dibromochloromethane	99		100		63-130	1	20	
1,1,2-Trichloroethane	100		99		70-130	1	20	
Tetrachloroethene	110		100		70-130	10	20	
Chlorobenzene	100		100		75-130	0	20	
Trichlorofluoromethane	110		100		62-150	10	20	
1,2-Dichloroethane	100		100		70-130	0	20	
1,1,1-Trichloroethane	110		100		67-130	10	20	
Bromodichloromethane	100		100		67-130	0	20	
trans-1,3-Dichloropropene	98		100		70-130	2	20	
cis-1,3-Dichloropropene	96		98		70-130	2	20	
Bromoform	96		94		54-136	2	20	
1,1,2,2-Tetrachloroethane	96		92		67-130	4	20	
Benzene	100		100		70-130	0	20	
Toluene	100		100		70-130	0	20	
Ethylbenzene	100		99		70-130	1	20	
Chloromethane	100		97		64-130	3	20	
Bromomethane	100		98		39-139	2	20	
Vinyl chloride	110		100		55-140	10	20	

Project Name: MIDLER AVE GW SAMPLING

Project Number: C81

Lab Number: L2206926

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s): 0	2 Batch: WG10	604988-3	WG1604988-4			
Chloroethane	100		99		55-138	1		20
1,1-Dichloroethene	100		99		61-145	1		20
trans-1,2-Dichloroethene	100		98		70-130	2		20
Trichloroethene	110		110		70-130	0		20
1,2-Dichlorobenzene	110		99		70-130	11		20
1,3-Dichlorobenzene	110		100		70-130	10		20
1,4-Dichlorobenzene	110		100		70-130	10		20
Methyl tert butyl ether	95		99		63-130	4		20
p/m-Xylene	110		105		70-130	5		20
o-Xylene	110		105		70-130	5		20
cis-1,2-Dichloroethene	100		100		70-130	0		20
Styrene	110		105		70-130	5		20
Dichlorodifluoromethane	110		100		36-147	10		20
Acetone	86		97		58-148	12		20
Carbon disulfide	110		100		51-130	10		20
2-Butanone	93		99		63-138	6		20
4-Methyl-2-pentanone	79		81		59-130	3		20
2-Hexanone	83		88		57-130	6		20
Bromochloromethane	110		110		70-130	0		20
1,2-Dibromoethane	100		100		70-130	0		20
1,2-Dibromo-3-chloropropane	95		94		41-144	1		20
Isopropylbenzene	100		97		70-130	3		20
1,2,3-Trichlorobenzene	100		97		70-130	3		20

Project Name: MIDLER AVE GW SAMPLING

Project Number: C81

Lab Number: L2206926

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated s	sample(s): 02	Batch: WO	G1604988-3	WG1604988-4				
1,2,4-Trichlorobenzene	99		93		70-130	6		20	
Methyl Acetate	100		110		70-130	10		20	
Cyclohexane	93		91		70-130	2		20	
1,4-Dioxane	84		84		56-162	0		20	
Freon-113	100		100		70-130	0		20	
Methyl cyclohexane	95		94		70-130	1		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	101	102	70-130
Toluene-d8	102	100	70-130
4-Bromofluorobenzene	97	95	70-130
Dibromofluoromethane	103	101	70-130

Matrix Spike Analysis Batch Quality Control

Project Name: MIDLER AVE GW SAMPLING

Project Number: C81

Lab Number: L2206926

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSE Qual Foun	_	/ Qual	Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS MW-13D	- Westborough	Lab Asso	ciated sample(s): 01-02 QC	Batch ID: WG16	04755-6 WG160)4755-7	QC Sample	e: L220	6926-02 Client ID:
Methylene chloride	ND	50	44	88	46	92		70-130	4	20
1,1-Dichloroethane	ND	50	46	92	49	98		70-130	6	20
Chloroform	ND	50	47	94	49	98		70-130	4	20
Carbon tetrachloride	ND	50	53	106	55	110		63-132	4	20
1,2-Dichloropropane	ND	50	45	90	47	94		70-130	4	20
Dibromochloromethane	ND	50	43	86	46	92		63-130	7	20
1,1,2-Trichloroethane	ND	50	45	90	47	94		70-130	4	20
Tetrachloroethene	ND	50	48	96	50	100		70-130	4	20
Chlorobenzene	ND	50	47	94	48	96		75-130	2	20
Trichlorofluoromethane	ND	50	45	90	47	94		62-150	4	20
1,2-Dichloroethane	ND	50	47	94	49	98		70-130	4	20
1,1,1-Trichloroethane	ND	50	52	104	54	108		67-130	4	20
Bromodichloromethane	ND	50	45	90	48	96		67-130	6	20
trans-1,3-Dichloropropene	ND	50	40	80	41	82		70-130	2	20
cis-1,3-Dichloropropene	ND	50	40	80	41	82		70-130	2	20
Bromoform	ND	50	40	80	43	86		54-136	7	20
1,1,2,2-Tetrachloroethane	ND	50	44	88	47	94		67-130	7	20
Benzene	5.2	50	53	96	55	100		70-130	4	20
Toluene	ND	50	49	98	51	102		70-130	4	20
Ethylbenzene	ND	50	48	96	50	100		70-130	4	20
Chloromethane	ND	50	43	86	45	90		64-130	5	20
Bromomethane	ND	50	14	28	Q 13	26	Q	39-139	7	20
Vinyl chloride	1200E	50	1200E	0	Q 1100E	0	Q	55-140	9	20

Matrix Spike Analysis Batch Quality Control

Project Name: MIDLER AVE GW SAMPLING

Project Number: C81

Lab Number: L2206926

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - MW-13D	- Westborough	Lab Asso	ociated sample(s): 01-02 QC	Batch ID: WG1604	1755-6 WG160	4755-7	QC Sample	e: L2206	6926-02	Client ID:
Chloroethane	ND	50	53	106	54	108		55-138	2		20
1,1-Dichloroethene	1.5J	50	50	100	54	108		61-145	8		20
trans-1,2-Dichloroethene	5.1J	50	52	104	55	110		70-130	6		20
Trichloroethene	ND	50	49	98	49	98		70-130	0		20
1,2-Dichlorobenzene	ND	50	48	96	49	98		70-130	2		20
1,3-Dichlorobenzene	ND	50	47	94	49	98		70-130	4		20
1,4-Dichlorobenzene	ND	50	46	92	47	94		70-130	2		20
Methyl tert butyl ether	ND	50	40	80	42	84		63-130	5		20
o/m-Xylene	ND	100	98	98	100	100		70-130	2		20
o-Xylene	ND	100	96	96	100	100		70-130	4		20
cis-1,2-Dichloroethene	600	50	630	60	Q 610	20	Q	70-130	3		20
Styrene	ND	100	92	92	96	96		70-130	4		20
Dichlorodifluoromethane	ND	50	36	72	39	78		36-147	8		20
Acetone	ND	50	35	70	42	84		58-148	18		20
Carbon disulfide	ND	50	44	88	46	92		51-130	4		20
2-Butanone	ND	50	35	70	38	76		63-138	8		20
4-Methyl-2-pentanone	ND	50	40	80	43	86		59-130	7		20
2-Hexanone	ND	50	37	74	40	80		57-130	8		20
Bromochloromethane	ND	50	51	102	53	106		70-130	4		20
1,2-Dibromoethane	ND	50	44	88	46	92		70-130	4		20
1,2-Dibromo-3-chloropropane	ND	50	37	74	41	82		41-144	10		20
Isopropylbenzene	ND	50	48	96	49	98		70-130	2		20
1,2,3-Trichlorobenzene	ND	50	41	82	43	86		70-130	5		20

Matrix Spike Analysis Batch Quality Control

Project Name: MIDLER AVE GW SAMPLING

Project Number: C81

Lab Number:

L2206926

Report Date:

02/16/22

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	/ Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - MW-13D	- Westborough	Lab Asso	ciated sample(s	s): 01-02 Q	C Batch ID:	WG16047	755-6 WG1604	4755-7	QC Sample	: L2206	6926-02	Client ID:
1,2,4-Trichlorobenzene	ND	50	42	84		44	88		70-130	5		20
Methyl Acetate	ND	50	42	84		46	92		70-130	9		20
Cyclohexane	ND	50	51	102		52	104		70-130	2		20
1,4-Dioxane	ND	2500	2400	96		2500	100		56-162	4		20
Freon-113	ND	50	48	96		48	96		70-130	0		20
Methyl cyclohexane	ND	50	49J	98		49J	98		70-130	0		20

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
1,2-Dichloroethane-d4	107	108	70-130
4-Bromofluorobenzene	94	92	70-130
Dibromofluoromethane	103	102	70-130
Toluene-d8	98	97	70-130

Serial_No:02162213:20 *Lab Number:* L2206926

Report Date: 02/16/22

Project Name: MIDLER AVE GW SAMPLING

Project Number: C81

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler		рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2206926-01A	Vial HCl preserved	Α	NA		4.3	Υ	Absent		NYTCL-8260-R2(14)
L2206926-01B	Vial HCl preserved	Α	NA		4.3	Υ	Absent		NYTCL-8260-R2(14)
L2206926-01C	Vial HCl preserved	Α	NA		4.3	Υ	Absent		NYTCL-8260-R2(14)
L2206926-02A	Vial HCl preserved	Α	NA		4.3	Υ	Absent		NYTCL-8260-R2(14)
L2206926-02B	Vial HCl preserved	Α	NA		4.3	Υ	Absent		NYTCL-8260-R2(14)
L2206926-02C	Vial HCl preserved	Α	NA		4.3	Υ	Absent		NYTCL-8260-R2(14)
L2206926-02D	Vial HCl preserved	Α	NA		4.3	Υ	Absent		NYTCL-8260-R2(14)
L2206926-02E	Vial HCl preserved	Α	NA		4.3	Υ	Absent		NYTCL-8260-R2(14)
L2206926-03A	Vial HCl preserved	Α	NA		4.3	Υ	Absent		NYTCL-8260-R2(14)
L2206926-03B	Vial HCl preserved	Α	NA		4.3	Υ	Absent		NYTCL-8260-R2(14)

Project Name: MIDLER AVE GW SAMPLING Lab Number: L2206926

Project Number: C81 Report Date: 02/16/22

GLOSSARY

Acronyms

EDL

LOD

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Fig. 1.1D (1) It is the state of moisture coment, where applicable. (DOD report formats only.)

 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:MIDLER AVE GW SAMPLINGLab Number:L2206926Project Number:C81Report Date:02/16/22

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name:MIDLER AVE GW SAMPLINGLab Number:L2206926Project Number:C81Report Date:02/16/22

Data Qualifiers

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Serial_No:02162213:20

Project Name:MIDLER AVE GW SAMPLINGLab Number:L2206926Project Number:C81Report Date:02/16/22

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:02162213:20

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 19

Page 1 of 1

Published Date: 4/2/2021 1:14:23 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

Name 100 Nam	Дена	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Albeny, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Coo	ay	05	Page		D	ate Rec	d:'d	21	10123		ALPHA Job# Laa 0 6926
Client: C.S. Compared Client: C.S. Compared C	TEL: 508-898-9220 FAX: 508-898-9193	320 Forbes Blvd TEL: 508-822-9300	Project Name: // Project Location:	idler /	tre 61	W San	se, Ky		ASP-A EQuIS (1	File)				Same as Client Info
Address:	Client: C&S	Englards,		oject#)				Regula	itory Req	uireme	nt	1311	Sal Inge	Disposal Site Information
Fax: Email:		8	1	ayre	Rund	٤[[=		dards				Please identify below location of applicable disposal facilities.
These samples have been previously analyzed by Alpha Other project specific requirements/comments: Done	Fax:	all @ .Cscos. 16V	Standard						IY Unrestr	icted Us		Other		□ ил □ ич
Please specify Metals or TAL. ALPHA Lab ID (Lab Use Only) Sample ID Collection Date Time Matrix Initials Collection Date Time Matrix Initials Collection Date Time Matrix Initials Date Time Matrix Initials Collection Date Time Matrix Initials Date Time Initials Date Time Date Time Initials Date Time Date Time Initials Date Time Preservative Initials Date Time Initials Date Time Date Time Initials Date Time Preservative Initials Date Time Initials Date Time Date Time Preservative Initials Date Time Initials Dat					-			ANAL	rsis					Sample Filtration
ALPHA Lab ID Collection Sample			nents:					JC _{J.}						Lab to do Preservation
Cliquit O	AMERICAN DESIGNATION OF THE PERSON OF THE PE	Sa	ample ID	100000000000000000000000000000000000000				2						Cample Carellie Comments
Preservative Code: A = None B = Hcl C = HNO ₃ D = H ₃ SO ₄ E = NaOH F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃ H = Na ₂ S	06,926-01	M	11-15 p		-			X	\dashv	+	\vdash	\vdash	_	Sample Specific Comments e
A = None P = Plastic Westoro: Certification No: MA935 C = HCl A = Amber Glass V = Vial D = H ₂ SO ₄ G = Glass E = NaOH B = Bacteria Cup F = MeOH C = Cube G = NaHSO ₄ O = Other H = Na ₂ S ₂ O ₃ E = Encore H = Na ₂ S ₂ O ₃ E = Encore H = Na ₂ S ₂ O ₃ E = Roop R = Westoro: Certification No: MA935 Container Type V D = Please print clearly, I and completely. Sam not be logged in and turnaround time clock start until any ambigute resolved. By EXECUTATION THIS COC, THE CLI	-02 -62 -02	mu mu Tri	1-130 MS		1415	420	un	X						Limited Quantity of MW-13p only 5 Vials
A = None P = Plastic Westboro: Certification No: MA935 B = HCl A = Amber Glass Mansfield: Certification No: MA935 C = HNO ₃ V = Vial D = H ₂ SO ₄ G = Glass E = NaOH B = Bacteria Cup F = MeOH C = Cube G = NaHSO ₄ O = Other H = Na ₂ S ₂ O ₃ E = Encore H = Na ₂ S ₂ O ₃ E = Encore Westboro: Certification No: MA935 Container Type V and Completely. Sam not be logged in and turnaround time clock start until any ambigute resolved. BY EXECUTE Start Secure Start 2/4/22 15/5 THIS COC, THE CLI														
D = H ₂ SO ₄ G = Glass E = NaOH B = Bacteria Cup turnaround time clock start until any ambigut start until any ambigut resolved. BY EXECUTE G = NaHSO ₄ H = Na ₂ S ₂ O ₃ E = Encore Way We Kend & Z 9 2 5 5 6 15 5 5 5 5 5 5 5 5	A = None B = HCl	P = Plastic A = Amber Glass				Con	tainer Type	٧						Please print clearly, legibly and completely. Samples can
F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃ Relinquished By: Date/Time Received By: Date/Time Received By: Date/Time Tesolved. BY EXECUTE THIS COC. THE CLIT HAS READ AND AG HAS READ AND AG	D = H ₂ SO ₄ E = NaOH	G = Glass B = Bacteria Cup				Р	reservative	8						not be logged in and turnaround time clock will not start until any ambiguities are
0 = Other APIL 8 / CUTE Storage 2/9/22 1815 - APIL 2/9/22 1815 TO BE BOUND BY A	G = NaHSO ₄ H = Na ₂ S ₂ O ₃ K/E = Zn Ac/NaOH O = Other	O = Other E = Encore D = BOD Bottle	ARI Grouse Storage 2/9/22			1515	ccure Storage			2/4/22 1515			resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA'S TERMS & CONDITIONS.	

ANALYTICAL REPORT

Lab Number: L2211761

Client: C&S Companies

499 Col. Eileen Collins Blvd.

Syracuse, NY 13212

ATTN: Wayne Randall Phone: (315) 455-2000
Project Name: MIDLER AVE

Project Number: C81

Report Date: 03/13/22

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: MIDLER AVE

Project Number: C81

Lab Number:

L2211761

Report Date:

03/13/22

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2211761-01	MW-10D	WATER	MIDLER AVE, SYRACUSE, NY	03/07/22 09:30	03/07/22
L2211761-02	MW-9D	WATER	MIDLER AVE, SYRACUSE, NY	03/07/22 10:00	03/07/22

L2211761

Lab Number:

Project Name: MIDLER AVE

Project Number: C81 Report Date: 03/13/22

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Serial_No:03132220:52

Project Name: MIDLER AVE Lab Number: L2211761

Project Number: C81 Report Date: 03/13/22

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 03/13/22

Custen Walker Cristin Walker

ORGANICS

VOLATILES

L2211761

Project Name: MIDLER AVE Lab Number:

Project Number: C81 Report Date: 03/13/22

SAMPLE RESULTS

Lab ID: L2211761-01 D Date Collected: 03/07/22 09:30

Client ID: MW-10D Date Received: 03/07/22

Sample Location: MIDLER AVE, SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 03/09/22 11:18

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	ıh Lab					
Methylene chloride	ND		ug/l	10	2.8	4
1,1-Dichloroethane	ND		ug/l	10	2.8	4
Chloroform	ND		ug/l	10	2.8	4
Carbon tetrachloride	ND		ug/l	2.0	0.54	4
1,2-Dichloropropane	ND		ug/l	4.0	0.55	4
Dibromochloromethane	ND		ug/l	2.0	0.60	4
1,1,2-Trichloroethane	ND		ug/l	6.0	2.0	4
Tetrachloroethene	ND		ug/l	2.0	0.72	4
Chlorobenzene	ND		ug/l	10	2.8	4
Trichlorofluoromethane	ND		ug/l	10	2.8	4
1,2-Dichloroethane	ND		ug/l	2.0	0.53	4
1,1,1-Trichloroethane	ND		ug/l	10	2.8	4
Bromodichloromethane	ND		ug/l	2.0	0.77	4
trans-1,3-Dichloropropene	ND		ug/l	2.0	0.66	4
cis-1,3-Dichloropropene	ND		ug/l	2.0	0.58	4
Bromoform	ND		ug/l	8.0	2.6	4
1,1,2,2-Tetrachloroethane	ND		ug/l	2.0	0.67	4
Benzene	ND		ug/l	2.0	0.64	4
Toluene	ND		ug/l	10	2.8	4
Ethylbenzene	ND		ug/l	10	2.8	4
Chloromethane	ND		ug/l	10	2.8	4
Bromomethane	ND		ug/l	10	2.8	4
Vinyl chloride	38		ug/l	4.0	0.28	4
Chloroethane	ND		ug/l	10	2.8	4
1,1-Dichloroethene	ND		ug/l	2.0	0.68	4
trans-1,2-Dichloroethene	18		ug/l	10	2.8	4
Trichloroethene	ND		ug/l	2.0	0.70	4
1,2-Dichlorobenzene	ND		ug/l	10	2.8	4

Project Name: MIDLER AVE Lab Number: L2211761

Project Number: C81 Report Date: 03/13/22

SAMPLE RESULTS

Lab ID: L2211761-01 D Date Collected: 03/07/22 09:30

Client ID: MW-10D Date Received: 03/07/22 Sample Location: MIDLER AVE, SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,3-Dichlorobenzene	ND		ug/l	10	2.8	4
1,4-Dichlorobenzene	ND		ug/l	10	2.8	4
Methyl tert butyl ether	ND		ug/l	10	2.8	4
p/m-Xylene	ND		ug/l	10	2.8	4
o-Xylene	ND		ug/l	10	2.8	4
cis-1,2-Dichloroethene	420		ug/l	10	2.8	4
Styrene	ND		ug/l	10	2.8	4
Dichlorodifluoromethane	ND		ug/l	20	4.0	4
Acetone	ND		ug/l	20	5.8	4
Carbon disulfide	ND		ug/l	20	4.0	4
2-Butanone	ND		ug/l	20	7.8	4
4-Methyl-2-pentanone	ND		ug/l	20	4.0	4
2-Hexanone	ND		ug/l	20	4.0	4
Bromochloromethane	ND		ug/l	10	2.8	4
1,2-Dibromoethane	ND		ug/l	8.0	2.6	4
1,2-Dibromo-3-chloropropane	ND		ug/l	10	2.8	4
Isopropylbenzene	ND		ug/l	10	2.8	4
1,2,3-Trichlorobenzene	ND		ug/l	10	2.8	4
1,2,4-Trichlorobenzene	ND		ug/l	10	2.8	4
Methyl Acetate	ND		ug/l	8.0	0.94	4
Cyclohexane	ND		ug/l	40	1.1	4
1,4-Dioxane	ND		ug/l	1000	240	4
Freon-113	ND		ug/l	10	2.8	4
Methyl cyclohexane	ND		ug/l	40	1.6	4
· · · · · · · ·			∽ფ.			

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	106	70-130	
Toluene-d8	94	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	103	70-130	

03/07/22 10:00

Not Specified

03/07/22

Project Name: MIDLER AVE

Project Number: C81

SAMPLE RESULTS

Lab Number: L2211761

Report Date: 03/13/22

Date Collected:

Date Received:

Field Prep:

Lab ID: L2211761-02

Client ID: MW-9D

Sample Location: MIDLER AVE, SYRACUSE, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 03/09/22 11:41

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	ıh Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	0.14	J	ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: MIDLER AVE Lab Number: L2211761

Project Number: C81 Report Date: 03/13/22

SAMPLE RESULTS

Lab ID: L2211761-02 Date Collected: 03/07/22 10:00

Client ID: MW-9D Date Received: 03/07/22 Sample Location: MIDLER AVE, SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	4.3	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	94	70-130	
4-Bromofluorobenzene	98	70-130	
Dibromofluoromethane	103	70-130	

Project Number: C81 Report Date: 03/13/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 03/09/22 09:23

Analyst: PD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-02 Batch:	WG1614007-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Number: C81 Report Date: 03/13/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 03/09/22 09:23

Analyst: PD

A-Dichlorobenzene ND	arameter	Result 0	Qualifier Units	RL	MDL
Methyl tert butyl ether ND ug/l 2.5 0.70 p/m-Xylene ND ug/l 2.5 0.70 o-Xylene ND ug/l 2.5 0.70 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 Styrene ND ug/l 5.0 1.0 Dichlorodifluoromethane ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 <	olatile Organics by GC/MS - W	estborough Lab fo	or sample(s): 01-02	Batch:	WG1614007-5
p/m-Xylene ND ug/l 2.5 0.70 o-Xylene ND ug/l 2.5 0.70 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 Styrene ND ug/l 5.0 0.70 Dichlorodifluoromethane ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1sopropylbenzene ND ug/l 2.5 0.70 1sopropylbenzene ND ug/l 2.5 0.70	1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
o-Xylene ND ug/l 2.5 0.70 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 Styrene ND ug/l 2.5 0.70 Dichlorodifluoromethane ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1sopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 <td>Methyl tert butyl ether</td> <td>ND</td> <td>ug/l</td> <td>2.5</td> <td>0.70</td>	Methyl tert butyl ether	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene ND ug/l 2.5 0.70 Styrene ND ug/l 2.5 0.70 Dichlorodifluoromethane ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1sopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0	p/m-Xylene	ND	ug/l	2.5	0.70
Styrene ND ug/l 2.5 0.70 Dichlorodifluoromethane ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 250	o-Xylene	ND	ug/l	2.5	0.70
Dichlorodiffluoromethane ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.5 0.70 1,4-Dioxane ND ug/l 2.5	cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 250 61. Freon-113 ND ug/l 2.5 0.70	Styrene	ND	ug/l	2.5	0.70
Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 2.5 0.70	Dichlorodifluoromethane	ND	ug/l	5.0	1.0
2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 2.0 0.27 1,4-Dioxane ND ug/l 2.5 0.70	Acetone	ND	ug/l	5.0	1.5
4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.0 0.65 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61 Freon-113 ND ug/l 2.5 0.70	Carbon disulfide	ND	ug/l	5.0	1.0
2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.0 0.65 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61 Freon-113 ND ug/l 2.5 0.70	2-Butanone	ND	ug/l	5.0	1.9
Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.0 0.65 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61 Freon-113 ND ug/l 2.5 0.70	4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
1,2-Dibromoethane ND ug/l 2.0 0.65 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61 Freon-113 ND ug/l 2.5 0.70	2-Hexanone	ND	ug/l	5.0	1.0
1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61 Freon-113 ND ug/l 2.5 0.70	Bromochloromethane	ND	ug/l	2.5	0.70
Isopropylbenzene	1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61. Freon-113 ND ug/l 2.5 0.70	1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61. Freon-113 ND ug/l 2.5 0.70	Isopropylbenzene	ND	ug/l	2.5	0.70
Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61. Freon-113 ND ug/l 2.5 0.70	1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61. Freon-113 ND ug/l 2.5 0.70	1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dioxane ND ug/l 250 61. Freon-113 ND ug/l 2.5 0.70	Methyl Acetate	ND	ug/l	2.0	0.23
Freon-113 ND ug/l 2.5 0.70	Cyclohexane	ND	ug/l	10	0.27
	1,4-Dioxane	ND	ug/l	250	61.
Methyl cyclohexane ND ug/l 10 0.40	Freon-113	ND	ug/l	2.5	0.70
	Methyl cyclohexane	ND	ug/l	10	0.40

Project Number: C81 Report Date: 03/13/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 03/09/22 09:23

Analyst: PD

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01-02 Batch: WG1614007-5

			Acceptance
Surrogate	%Recovery	Qualifier	Criteria
1,2-Dichloroethane-d4	104		70-130
Toluene-d8	95		70-130
4-Bromofluorobenzene	96		70-130
Dibromofluoromethane	102		70-130

Lab Control Sample Analysis Batch Quality Control

Project Name: MIDLER AVE

Project Number: C81

Lab Number: L2211761

Report Date: 03/13/22

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by GC/MS - \	Westborough Lab Associate	d sample(s):	01-02 Batch: \	WG1614007-3	WG1614007-4				
Methylene chloride	110		110		70-130	0		20	
1,1-Dichloroethane	100		100		70-130	0		20	
Chloroform	110		110		70-130	0		20	
Carbon tetrachloride	100		110		63-132	10		20	
1,2-Dichloropropane	100		110		70-130	10		20	
Dibromochloromethane	94		94		63-130	0		20	
1,1,2-Trichloroethane	100		100		70-130	0		20	
Tetrachloroethene	96		96		70-130	0		20	
Chlorobenzene	97		94		75-130	3		20	
Trichlorofluoromethane	110		110		62-150	0		20	
1,2-Dichloroethane	100		100		70-130	0		20	
1,1,1-Trichloroethane	100		100		67-130	0		20	
Bromodichloromethane	100		110		67-130	10		20	
trans-1,3-Dichloropropene	95		96		70-130	1		20	
cis-1,3-Dichloropropene	100		100		70-130	0		20	
Bromoform	93		97		54-136	4		20	
1,1,2,2-Tetrachloroethane	100		100		67-130	0		20	
Benzene	110		110		70-130	0		20	
Toluene	98		96		70-130	2		20	
Ethylbenzene	96		95		70-130	1		20	
Chloromethane	89		92		64-130	3		20	
Bromomethane	62		62		39-139	0		20	
Vinyl chloride	96		96		55-140	0		20	

Lab Control Sample Analysis Batch Quality Control

Project Name: MIDLER AVE

Project Number: C81

Lab Number: L2211761

Report Date: 03/13/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough I	_ab Associated	sample(s):	01-02 Batch: W0	G1614007-	3 WG1614007-4		
Chloroethane	99		98		55-138	1	20
1,1-Dichloroethene	100		100		61-145	0	20
trans-1,2-Dichloroethene	100		100		70-130	0	20
Trichloroethene	100		100		70-130	0	20
1,2-Dichlorobenzene	90		91		70-130	1	20
1,3-Dichlorobenzene	91		93		70-130	2	20
1,4-Dichlorobenzene	90		92		70-130	2	20
Methyl tert butyl ether	98		100		63-130	2	20
p/m-Xylene	100		100		70-130	0	20
o-Xylene	100		100		70-130	0	20
cis-1,2-Dichloroethene	100		100		70-130	0	20
Styrene	95		95		70-130	0	20
Dichlorodifluoromethane	99		100		36-147	1	20
Acetone	160	Q	180	Q	58-148	12	20
Carbon disulfide	99		98		51-130	1	20
2-Butanone	120		140	Q	63-138	15	20
4-Methyl-2-pentanone	95		100		59-130	5	20
2-Hexanone	110		120		57-130	9	20
Bromochloromethane	100		100		70-130	0	20
1,2-Dibromoethane	100		100		70-130	0	20
1,2-Dibromo-3-chloropropane	84		95		41-144	12	20
Isopropylbenzene	100		100		70-130	0	20
1,2,3-Trichlorobenzene	85		94		70-130	10	20

L2211761

Lab Control Sample Analysis Batch Quality Control

Project Name: MIDLER AVE

Project Number: C81

Report Date: 03/13/22

Lab Number:

Parameter	LCS %Recovery	Qual	_	SD covery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-02 B	Batch:	WG1614007-3	WG1614007-4				
1,2,4-Trichlorobenzene	89		9	94		70-130	5		20	
Methyl Acetate	120		1	130		70-130	8		20	
Cyclohexane	110		1	110		70-130	0		20	
1,4-Dioxane	120		1	122		56-162	2		20	
Freon-113	110		1	110		70-130	0		20	
Methyl cyclohexane	110		1	110		70-130	0		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	102	105	70-130
Toluene-d8	95	95	70-130
4-Bromofluorobenzene	99	101	70-130
Dibromofluoromethane	103	105	70-130

Project Name: MIDLER AVE

Project Number: C81 Report Date: 03/13/22

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2211761-01A	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2211761-01B	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2211761-01C	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2211761-02A	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2211761-02B	Vial HCl preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)
L2211761-02C	Vial HCI preserved	Α	NA		3.5	Υ	Absent		NYTCL-8260-R2(14)

Project Number: C81 Report Date: 03/13/22

GLOSSARY

Acronyms

EDL

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.
 LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:MIDLER AVELab Number:L2211761Project Number:C81Report Date:03/13/22

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte was detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name:MIDLER AVELab Number:L2211761Project Number:C81Report Date:03/13/22

Data Qualifiers

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name:MIDLER AVELab Number:L2211761Project Number:C81Report Date:03/13/22

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:03132220:52

ID No.:17873 Revision 19

Published Date: 4/2/2021 1:14:23 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

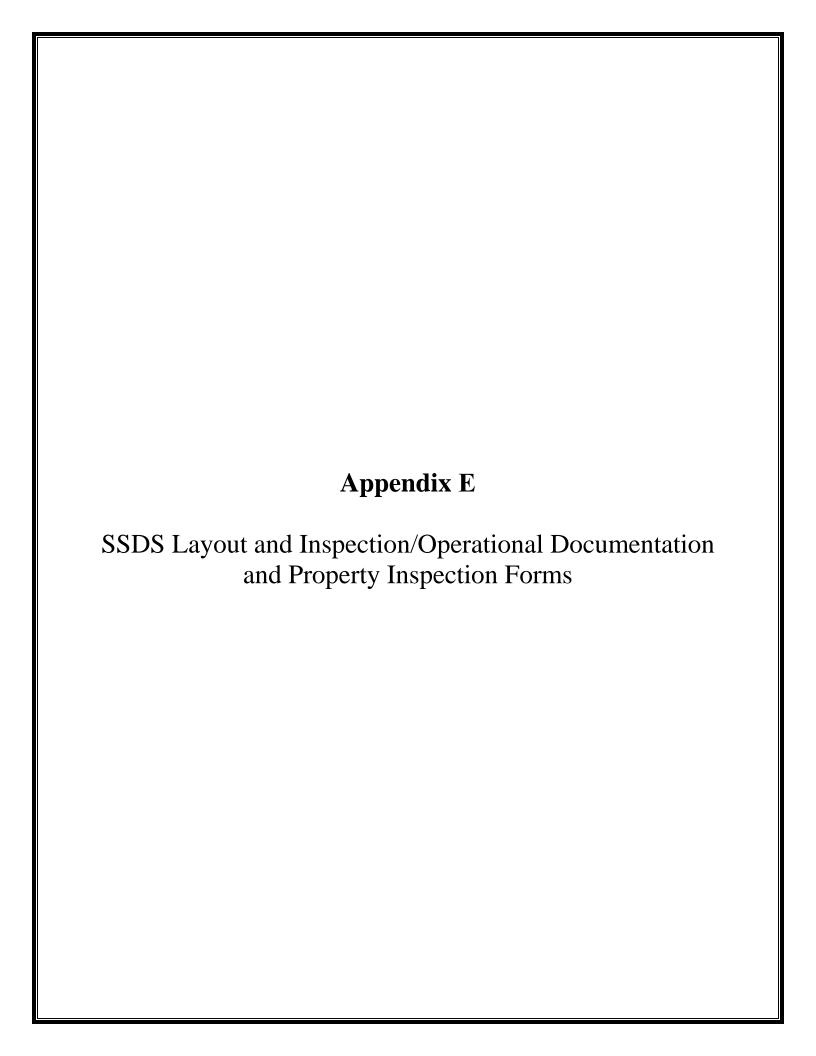
EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

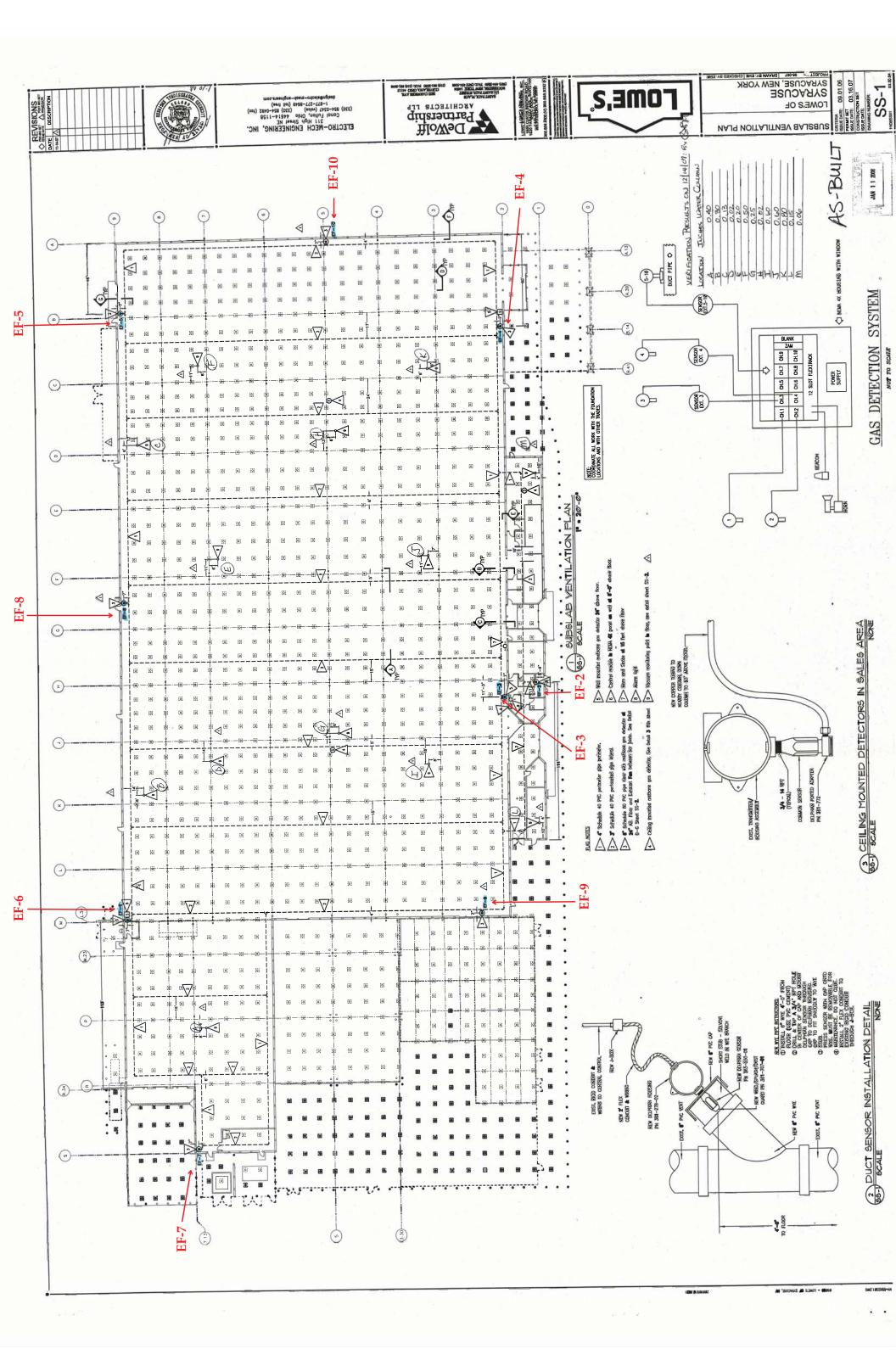
Non-Potable Water

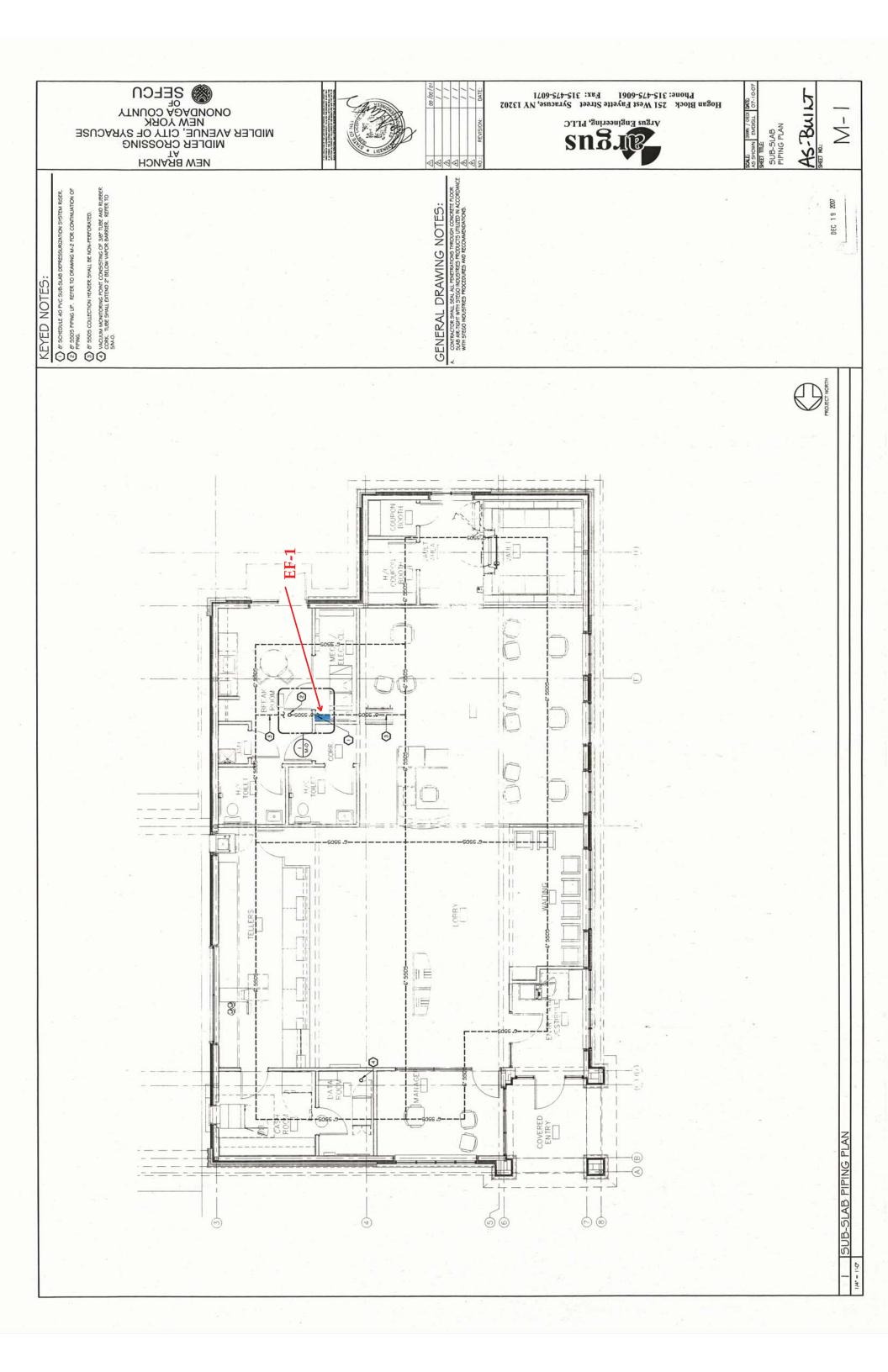
EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

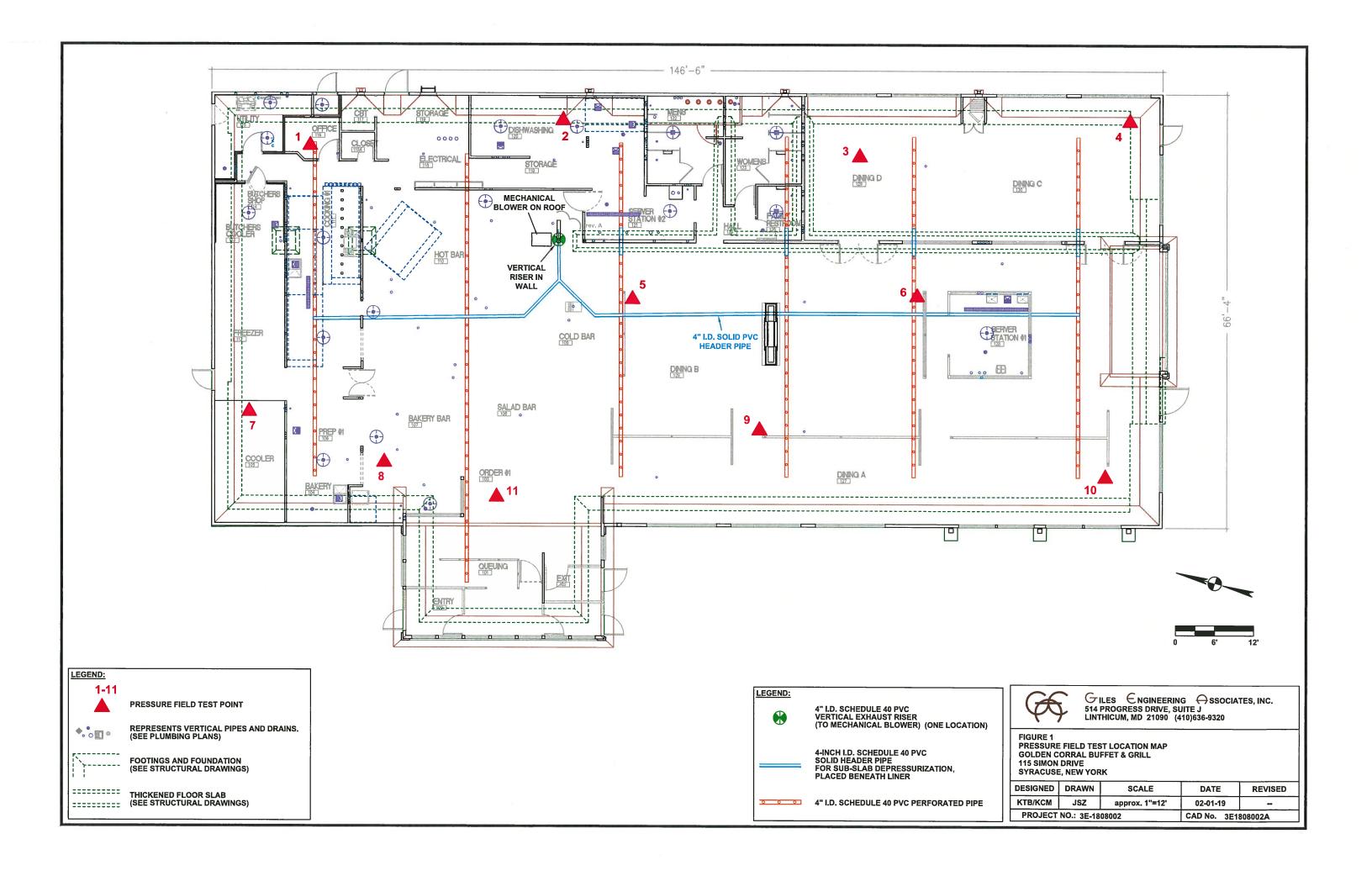
EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg


SM2340B


Page 22 of 23


For a complete listing of analytes and methods, please contact your Alpha Project Manager.


Document Type: Form

Διρна	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Co	Way	05	Page	e of		Date	Rec'd	19h	12		ALPHA Job#	1
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information		TE E	**		Deli	verabl		U	V	Charles of the last of the las	Billing Information	-
TEL: 508-898-9220	TEL: 508-822-9300		rilder An	vl		No.		ASP		*	ASP	-В	Same as Client Info	
FAX: 508-898-9193	FAX: 508-822-3288			ve, syrac	057 110	,	1 =	100000	IS (1 File)			IS (4 File)	PO#	
Client Information	A Section Control	Project # C8/	710	1 /1	1 / N/7		1 =	Othe			-	10 (11110)	100	
Client: CSS	Биргест.	(Use Project name as Pr	roject #)				Red	-	Requiren	ent	910	A	Disposal Site Information	
Address: 499	el Giber Coll 1							NYT			NYP	art 375	100000	
Syra		ALPHAQuote #:					1 =		Standards	F	NYC		Please identify below location applicable disposal facilities.	of
Phone:	, ,	Turn-Around Time	418 41	4-7-3	A VINCENTER	0			estricted Us	. F	-		Disposal Facility:	
Fax:		Standard	X	Due Date:			1 =		nrestricted L		1 Onie			
Email: Wrando	all Q CXXXIII	Rush (only if pre approved)		# of Days:			1 =		Sewer Disch				□ NJ . □ NY	
These samples have b	The second second second second	Contract of the Contract of th		# Of Days.	6		ANA	LYSIS		narge			Other:	District.
Other project specific	requirements/comm	nents:					ANA	T	,	_	_		Sample Filtration	- 0
Please specify Metals							UNC.						□ Done □ Lab to do Preservation □ Lab to do (Please Specify below)	t a l B o
ALPHA Lab ID	See.	and ID	Colle	ection	Sample	Sampler's	#	M			1		(rease openly below)	L.
(Lab Use Only)	Sa	ample ID	Date	Time	Matrix	Initials	1	1			1	1 1	Sample Specific Comments	-
11761 - 01	mw-	100	3/7/22	930	420	w	$\overline{}$	M	\vdash	+	\vdash		Comple Opecinic Comments	е
n	mw-		1/1/	1000	iteu	an	1	100		+-	\vdash			+
			.,	7000	1720	001		- MA	1	+	-	_		+
THE STATE OF							1	-		+	\vdash			+
							-	-	-	+-	+			+
							-	-		+-	-			+
								-		+	\vdash			+
							-	-	-	+-	-			_
								-		+	-	\vdash		1
CASSAGE SERVICE					_		_	-		+	-			\perp
Preservative Code:	Container Code	Worthern Caste Hank	141000					_	_	-	-			
	P = Plastic	Westboro: Certification No			Con	tainer Type	۸_	1					Please print clearly, legit	oly
	A = Amber Glass V = Vial	Mansfield: Certification No): MA015				A	A	_	_			and completely. Sample:	s can
	G = Glass				P	reservative	B	В					not be logged in and turnaround time clock wi	II not
	B = Bacteria Cup C = Cube						V	υ		_		/ J	start until any ambiguitie	s are
G = NaHSO ₄	O = Other	Relinquished B		Date/1	100000	F	Receiv	ed By	:		Date	Time	resolved. BY EXECUTIN	(G
11020203	E = Encore D = BOD Bottle	Warne Ronda		3/7/2	2 1000	AAL S	cur	75	torage	3/7	1/22	1000	THIS COC, THE CLIENT HAS READ AND AGREE	[
VE = Zn Ac/NaOH) = Other	s - BOD Bottle	AAL Socure Sto	ruse	3/7/22	1505	_	-	_	MAL	3/2	1/22	1505	TO BE BOUND BY ALPI	HA'S
			′			Wend	4 1	lor	un	3/8	122	00:28		
form No: 01-25 HC (rev. 30-	-Sept-2013)						, ,		- ((See reverse side.)	

DATE: 01/02/20

EXHAUST FAN #	LOWE'S	<u>SEFCU</u>
2 3	- /	1
4 5	~/	
6		
7	7/	
8	-/	•
9	7/	
10	-1	
COMMENTS:		ater" taken from Dwyer Series 2000.
-		
INSPECTED BY:		
(Print Name)	FDBryon	(Signature)

DATE: 01/09/20

EXHAUST FAN #	LOWE'S	<u>SEFCU</u>
	/	SEPCO
2		1
3	~/	1
4	~/	
5	~ /	
6	~ /	
7	~ /	
8		
9		
10		
		
INSPECTED BY:		
Dand E. C. (Print Name)	Forgan	Signature)
(and runne)		(Signature) \mathcal{U}

DATE: 01/16/20

EXHAUST FAN #	LOWE'S	<u>SEFCU</u>
2	(1
3	~ /	
4	~ /	
5 _	~/	
6 _	~ ′ /	
7 _	~'/	
8	~/	
9		
10	~/	
COMMENTS:		
INSPECTED BY:		
(Print Name)	O Bryan	(Signature)

DATE: 1/24/20

EXHAUST FAN #	LOWE'S	SEFC	<u>TU</u>
2 3 4 5 6 7 8 9	((/ / / /	1	xe /
*The above measurement COMMENTS:	ents are in "inches of wa	er" taken from Dwyer Se	ries 2000.
INSPECTED BY:			
David F. (Print Name)	O'Bryan	(Sig	mature)

DATE: 08/29/20

EXHAUST FAN #	LOWE'S	<u>SEFCU</u>
2	\/	1 7 (
3		1
4		
5		
6		
7		
8		
9		
10		•
10		
COMMENTS:		
INSPECTED BY:		
Davido. 61 (Print Name)	Bryon	(Signature)
		(2.Dimente)

DATE: 02/05/20

EXHAUST FAN #	<u>LOWE'S</u>	<u>SEFCU</u>
2 3 4 5 6 7 8 9	-/ -/ -/ -/ -/	
*The above measure: COMMENTS:	ments are in "inches of wat	er" taken from Dwyer Series 2000.
	· · · · · · · · · · · · · · · · · · ·	
INSPECTED BY:		
Day W. H. (Print Nar	E. O'Brypery	(Signature)

DATE: 02/12/20

EXHAUST FAN #	LOWE'S	<u>SEFCU</u>
2 3 4 5 6 7 8 9	-/ -/ -/ -/ -/ -/	1
*The above measurem COMMENTS:	ents are in "inches of wat	er" taken from Dwyer Series 2000.
INSPECTED BY:		
David F. (Print Name)	O'Bryan	(Signature)

DATE: 02/19/20

SUBSLAB DEPRESSURIZATION SYSTEMS MIDLER CROSSING SYRACUSE, NEW YORK

EXHAUST FAN #	LOWE'S	<u>SEFCU</u>
2 3 4 5 6 7 8 9		1
*The above measurem COMMENTS:	ents are in "inches of wa	ter" taken from Dwyer Series 2000.

INSPECTED BY:

David F. O'Bryan
(Print Name)

(Signature)

DATE: 2/26/20

SUBSLAB DEPRESSURIZATION SYSTEMS MIDLER CROSSING SYRACUSE, NEW YORK

EXHAUST FAN #	LOWE'S	<u>SEFCU</u>
2		1 m.)
3	- 1	1
4	- 1	
5	-/	
6	- /	
7	- /	
8	~ /	
9	-1	
10	7	
*The above measurer	nents are in "inches of wat	ter" taken from Dwyer Series 2000.
COMMENTS:		
INSPECTED BY:		

(Print Name)

(Signature)

DATE: 3/6/20

SUBSLAB DEPRESSURIZATION SYSTEMS MIDLER CROSSING SYRACUSE, NEW YORK

EXHAUST FAN #	LOWE'S	<u>SEFCU</u>
2	-1	1 7 /
3		<u> </u>
4		
5		
6	<u> </u>	
7	-1	
8		
9	~/	
10	<u> </u>	
*The above measuren	nents are in "inches of water"	taken from Dwyer Series 2000.
COMMENTS:		
COMMEN 15:		

INSPECTED BY:

Day JF 6'3rya (Print Name)

(Signature)

DATE: 03/12/20

EXHAUST FAN #	LOWE'S	<u>SEFCU</u>
2 3 4 5 6 7 8 9	~/ ~/ ~/ ~/ ~/ ~/	1
*The above measurem	ents are in "inches of wa	ater" taken from Dwyer Series 2000.
COMMENTS:		
INSPECTED BY:		
David O'C	o y an	(Signature)

DATE: 3/20/20

EXHAUST FAN #	LOWE'S	<u>SEFCU</u>
2	-/	1/
3	-/	<u> </u>
4	-/	_
5	-/	_
6		-
7	-/	
8	7	-
9	-/	_
10	-/	-
*The above measurem	ents are in "inches of w	vater" taken from Dwyer Series 2000.
COMMENTS:		
COMMENTS.		
INSPECTED BY:		
1 .1		
Copex LANS	٠	TAUN
(Print Name	2)	(Signature)

DATE: 3/24/20

EXHAUST FAN #	LOWE'S	SEFCU
2	-/	1/
3	-/	
4	-/	
5	_/	
6	-/	
7	-/	
8	1000/	
9	_/	
10	_/	_
COMMENTS:		vater" taken from Dwyer Series 2000.
	 	
	/	
INSPECTED BY:		
Copey He	ssal	Sul
(Print Nam	ie)	(Signature)

DATE: 4/3/20

EXHAUST FAN #	LOWE'S	<u>SEFCU</u>
2 3 4 5 6 7 8 9	-/ -/ -/ -/ -/	1
*The above measurem COMMENTS:	ents are in "inches of wa	ater" taken from Dwyer Series 2000.
INSPECTED BY:	soy	A.
(Print Name	e)	(Signature)

DATE: 4/9/20

EXHAUST FAN #	LOWE'S	<u>SEFCU</u>
2	-/	1
3	-/	-
4	-/	
5		
6	~/	
7	-/	
8	41-100	
9		
10		
*The above measurem COMMENTS:	ents are in "inches of water"	taken from Dwyer Series 2000.
INSPECTED BY:		
(Print Name	<u> </u>	(Signature)

DATE: 4/16/20

EXHAUST FAN #	LOWE'S	SEFCU
2	/	1
3	/	
4	-/	
5	-/	
6	/	
7	-/	
8	/	
9	/	
10	/_	
COMMENTS:		
INSPECTED BY:		
Cony	Hensol	
(Print Nam	e)	(Signature)

DATE: $\frac{1/23/20}{}$

EXHAUST FAN #	LOWE'S	SEFCU
2	_/_	1 -/
3	-/	
4	-/	
5	=/	
6		
7	<u>-/</u>	
8	-/	
9 10	7	
10		
*The above measure COMMENTS:	ments are in "inches of wa	ter" taken from Dwyer Series 2000.
1	· · · · · · · · · · · · · · · · · · ·	
INSPECTED BY:		
Crint Nam		
V (FILIT Nan	ue)	(Signature)

EXHAUST FAN #	LOWE'S	SEFCU
2	-1	1/
3	~/	
4	-/	
5	_/	
6		
7	-/	-
8	_/	
9	-/	
10	-1	
*The above measure COMMENTS:	ments are in "inches o	f water" taken from Dwyer Series 2000.
,		
INSPECTED BY:		
(Print Nan	ne)	(Signature)

DATE: 5/5/20

EXHAUST FAN #	LOWE'S	<u>SEFCU</u>
2	/	1 -/
3	-/	
4	-/	_
5	-/	_
6	_~/	_
7	/	_
8	-/	_
9		_
10		_
*The above measurem COMMENTS:	nents are in "inches of w	vater" taken from Dwyer Series 2000.
		The state of the s
	· · · · · · · · · · · · · · · · · · ·	**************************************
INSPECTED BY:		
Copy Hons	in I	Am
(Print Name	e)	(Signature)

DATE: 5/2//20

EXHAUST FAN #	LOWE'S	<u>SEFCU</u>
2 3 4 5 6 7 8 9 10	-/ -/ -/ -/ -/ -/	1 _/
*The above measure COMMENTS:	ments are in "inches of wa	ter" taken from Dwyer Series 2000.
INSPECTED BY:	./	1
- Chry	HENSIN	Show
(Print Nar	ne)	(Signature)

DATE: 5/29/20

EXHAUST FAN #	LOWE'S	SEFCU
2 3 4 5 6 7 8 9	-/ -/ -/ -/ -/ -/	1 _/
*The above measure COMMENTS:	ments are in "inches of wa	ter" taken from Dwyer Series 2000.
INSPECTED BY:	Hensul	Am
(Print Nan	ne)	(Signature)

DATE: (///w

EXHAUST FAN #	LOWE'S	<u>SEFCU</u>
2	-/	1 _/
3	-/	
4	-/	
5	-/	
6	-/	
7	_/	
8	/	
9		
10	-1	
*The above measure COMMENTS:	ments are in "inches of wa	ter" taken from Dwyer Series 2000.
INSPECTED BY:		
Opy /	for su-	An
(Print Nan	ne)	(Signature)

DATE: 6/12/20

EXHAUST FAN #	LOWE'S	SEFCU
2	-1	1
3		
4		
5		
6		
7		
8 9		
10		
10	*	
*The above measurem	ents are in "inches of wa	ater" taken from Dwyer Series 2000.
		And the company of th
INSPECTED BY:		
Open Her	ss	
(Print Name	<u>e</u>)	(Signature)

DATE: <u>6/18/20</u>

EXHAUST FAN #	LOWE'S	<u>SEFCU</u>
2	ed	1/
3	-/	
4	-/	
5	-/	
6	-/	
7		
8	-/	
9	-/	
10	7	
*The above measure:	ments are in "inches of wa	ater" taken from Dwyer Series 2000.
	······································	
INSPECTED BY:		
<u>Cps</u>	Horison	An
(Print Nan	ne)	/ (Signature)

DATE: L/25/20

EXHAUST FAN #	LOWE'S	<u>SEFCU</u>
2	. /	4
3	~/	1
4	-/	
5	-/	
6	7	
7	-1	
8		
9	7	
10	7	
*The above measure COMMENTS:	ments are in "inches of wate	er" taken from Dwyer Series 2000.
INSPECTED BY:		
(Print Nan	ne)	(Signature)

DATE: <u>-1/9/20</u>

EXHAUST FAN #	LOWE'S	<u>SEFCU</u>
2	-/	1
3	4	
4 .	-	
5	-/	
6	·/	
7		
8	-(
9	<u></u>	
10	-/	
*The above measurem COMMENTS:	ents are in "inches of wate	r" taken from Dwyer Series 2000.
INSPECTED BY:		
(Print Name) sn/	(Signature)

DATE: 1/4/20

LOWE'S	SEFCU
-/	1 ~
ements are in "inches of wa	ter" taken from Dwyer Series 2000.
Lew Sn	(Signature)
	-/

DATE: 7/20/20

EXHAUST FAN #	LOWE'S	<u>SEFCU</u>
2		_ 1
3	/	_
4	/	son.
5		_
6		_
7		_
8		_
9		_
10		_
COMMENTS:		vater" taken from Dwyer Series 2000.
		· · · · · · · · · · · · · · · · · · ·
INSPECTED BY:		Am
(Print Nam	e)	(Signature)

DATE: $\frac{7/2\omega/2\omega}{}$

EXHAUST FAN #	LOWE'S	<u>SEFCU</u>
2		1/
3	-/	
4	-1	
5	~/	
6	-/	
7	-/	
8	-/	
9	-/	
10	-1	
were 1		
*The above measure	ments are in "inches of wat	er" taken from Dwyer Series 2000.
COMMENTS:		
INSPECTED BY:		
Com	Henrin	An
(Print Nan	/	(Signature)

DATE: 8/4/20

EXHAUST FAN #	LOWE'S	<u>SEFCU</u>
2		1 _/
3	-/	
4	-/	
5	-/	
6	-/	
7	-/	
8	-/	
9	7	
10	-1	
COMMENTS:	ments are in "inches of wa	ater" taken from Dwyer Series 2000.
INSPECTED BY:		
(Print Nan	Hars for	
(1.110tr1/st)	ue)	/ (Signature)

DATE: 8/4/20

EXHAUST FAN #	LOWE'S	SEFCU
2	4	1 _/
3	-1	
4	-/	
5	_/_	
6	-/	
7	_/	
8	7	
9	-/	
10	-1	
*The above measure COMMENTS:	ments are in "inches of wa	ter" taken from Dwyer Series 2000.
	·	
INSPECTED BY:	, /	
_ (Ons /	fen cm	
(Print Nan	ne)	(Signature)

DATE: 6 /20/20

EXHAUST FAN #	LOWE'S	<u>SEFCU</u>
2 3 4 5 6 7 8 9	-/ -/ -/ -/ -/ -/ -/	1 —/
*The above measure COMMENTS:	ments are in "inches of wa	ter" taken from Dwyer Series 2000.
···		
INSPECTED BY:	//	~ 1
- ORay F	fen son	SY VY
(Print Nan	ne)	(Signature)

DATE: 8/27/26

EXHAUST FAN #	<u>LOWE'S</u>	<u>SEFCU</u>
2	-	1/
3	-1	
4	1	
5	1	
6	7	
7	-1	
8	<u>-1</u>	
9	-/	
10	-/	
*The above measure	ements are in "inches of wa	ter" taken from Dwyer Series 2000.
COMMENTS:		
	· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·	
		
INSPECTED BY:		
	1/	
(gr	for in	Alm
(Print Nar	ne)	(Signature)

DATE: 9/1/20

EXHAUST FAN #	LOWE'S	SEFCU
2	-/	1
3	7	
4	-1	
5	-/	
6	7	
7	-/	
8	-/	
9	7	
10	-1	
*The above measurem	ents are in "inches of wat	er" taken from Dwyer Series 2000.
COMMENTS:		
	· · · · · · · · · · · · · · · · · · ·	
INSPECTED BY:		
	/	4
On 4	/ or br	2 n
(Print Name)	(Signature)

DATE: 9/10/2W

EXHAUST FAN #	LOWE'S	<u>SEFCU</u>
2	-/	1 -)
3	-/	
4	-/	
5	-/	
6	-/	
7	1	
8	r=/	
9	-1	
10	~/	
*The above measure COMMENTS:	ements are in "inches of wa	ter" taken from Dwyer Series 2000.
INSPECTED BY:	/	
Copy Hon	1 For	Ja
(Print Nan	ne)	/ (Signature)

DATE: 9// 0 /-20

EXHAUST FAN #	LOWE'S	SEFCU
2	-/	1 -/
3	1	
4	-/	
5	-/	
6	-1	
7	-/	
8	-/	
9	-1	
10	-	
*The above measure COMMENTS:	ements are in "inches of wa	ter" taken from Dwyer Series 2000.
1		
INSPECTED BY:	,/	
Ora H	en fun	
(Print Nar	ne)	(Signature)

DATE: 9/25/20

EXHAUST FAN #	LOWE'S	SEFCU
2	-1	1
3	-/	
4	-/	
5	-1	
6	~	
7	-)	
8		
9	-/	
10	-1	
*The above measure		-// 1
The above measure	ments are in "inches of wat	er" taken from Dwyer Series 2000.
COMMENTS:		
1		
		
	· · · · · · · · · · · · · · · · · · ·	
INSPECTED BY:	/	
(Ohe s	Language	Au
(Print Nam		(Signature)

DATE:_	10/7/20
--------	---------

SUBSLAB DEPRESSURIZATION SYSTEMS MIDLER CROSSING SYRACUSE, NEW YORK

EXHAUST FAN #	LOWE'S		
2	== 1745	SEFCU	
2			
3		1	
4 5			
6 7			
8			
9			
	~/		
10			
*The above measurem	ents are in "inches of "		
*The above measurem COMMENTS:	ents are in "inches of water" take	n from Dwyer Series 2000.	
*The above measurem COMMENTS:	ents are in "inches of water" take	n from Dwyer Series 2000.	
*The above measurem COMMENTS:	ents are in "inches of water" take	n from Dwyer Series 2000.	
*The above measurem COMMENTS:	ents are in "inches of water" take	n from Dwyer Series 2000.	
*The above measurem COMMENTS:	ents are in "inches of water" take	n from Dwyer Series 2000.	
*The above measurem COMMENTS:	ents are in "inches of water" take	n from Dwyer Series 2000.	
*The above measurem COMMENTS:	ents are in "inches of water" take	n from Dwyer Series 2000.	
*The above measurem COMMENTS:	ents are in "inches of water" take	n from Dwyer Series 2000.	
*The above measurem COMMENTS:	ents are in "inches of water" take	n from Dwyer Series 2000.	
*The above measurem COMMENTS:	ents are in "inches of water" taker	n from Dwyer Series 2000.	
*The above measurem COMMENTS:	ents are in "inches of water" take	n from Dwyer Series 2000.	
*The above measurem COMMENTS:	ents are in "inches of water" taker	n from Dwyer Series 2000.	

INSPECTED BY:

Print Name)

(Signature)

DATE: 10/15/20

EXHAUST FAN #	LOWE'S	<u>SEFCU</u>
2	- (_ 1 ~/
3	- (1
4	-/	_
5	/	-
6		-
7		_
8		
9		_
10		_
COMMENTS:		rater" taken from Dwyer Series 2000.
INSPECTED BY:		
David F. (Print Name	O'Bryan	(Signature)
		(0

DATE: 10/23/20

SUBSLAB DEPRESSURIZATION SYSTEMS MIDLER CROSSING SYRACUSE, NEW YORK

EXHAUST FAN #	LOWE'S	<u>SEFCU</u>
2	~/	1 -/
3	~	•
<u> </u>	-/	
6 _		
7	N	
8	-/	
	_/	
		*V
		the of the second
		1
SPECTED BY:		
Davido		d on's

(Print Name)

DATE: 10/29/20

(Signature)

SUBSLAB DEPRESSURIZATION SYSTEMS MIDLER CROSSING SYRACUSE, NEW YORK

EXHAUST FAN #	LOWE'S	<u>SEFCU</u>
2		1/
3	-1	
4	/	-
5	-1	
6	-1	
7	-/	
8	~/	
9	~(
10	-/	-
INSPECTED BY:		
David F. a	Sterena.	Drow & 40 3

(Print Name)

DATE: 11/4/20

EXHAUST FAN #	LOWE'S	<u>SEFCU</u>
2	71	
3		1
4		
5		
6		
7		
8		
9		
10		
10	~/	
INSPECTED BY:		
Decid F. E (Print Name)	Bayen	(Signature)

DATE: 11/12/20

EXHAUST FAN #	LOWE'S	<u>SEFCU</u>
2	~/	~/
3		1
4		
5		
6		
7		
8		
9		
10		
*The above measurement COMMENTS:	ents are in "inches of water	r" taken from Dwyer Series 2000.
INSPECTED BY:		
Print Name)	0Bryan	(Signature)

DATE: 41/20/20

EXHAUST FAN #	LOWE'S	<u>SEFCU</u>
2 3 4 5 6 7 8 9 10		
*The above measuren COMMENTS:	nents are in "inches of w	ater" taken from Dwyer Series 2000.
INSPECTED BY:		
David F. (Print Name	6 Evyon	(Signature)

DATE: 11/2.5-/20

EXHAUST FAN #	LOWE'S	<u>SEFCU</u>
2	-/	1 -/
3		
4	/	
5		
6	-/	
7	-/	
8	~/	_
9		
10		
*The above measurem COMMENTS:	ents are in "inches of w	vater" taken from Dwyer Series 2000.
	V-1.	
INSPECTED BY:		
David F. C	3) Bryan	DuetoBan
(Print Name)) /	(Signature)

DATE: 12/2 /20

EXHAUST FAN #	LOWE'S	<u>SEFCU</u>
2		1 /
3	-/	1
4	~ /	
5	~ /	
6	- /	
7	~/	
8	-/	
9	- /	
10	-/	
COMMENTS:		
INSPECTED BY:		
David F. (Print Name)	Bryan	(Signature)

DATE: 12/11/20

2 - () 1 - (
4	
4	
E .	
6	
7	
8	
9	
10	
*The above measurements are in "inches of water" taken from Dwyer Series 2000. COMMENTS:	
INSPECTED BY:	
David F. O'Bryken Quetofo	

DATE: 12/16/20

EXHAUST FAN #	LOWE'S	<u>SEFCU</u>
2	-1	. (
3	- /	
4	- /	-
5	~ (
6	- /	
7	- /	
8	- /	
9	- /	
10	~ /	
INSPECTED BY:		
Dave O's (Print Name)	3 you	(Signature)

DATE: 12/30/20

EXHAUST FAN #	LOWE'S	<u>SEFCU</u>
2 3 4 5 6 7 8 9	-0.8 -1 -1 -1 -1 -1	1
COMMENTS:	ents are in "inches of wa	ter" taken from Dwyer Series 2000.
INSPECTED BY:		
Devil O'R (Print Name)	wyare	(Signature)

DATE: 1/4/2/

EXHAUST FAN #	LOWE'S	<u>SEFCU</u>
2	/	1
3	-/	
4	/	
5	/	
6	/	
7		
8		
9	-/	
10		
COMMENTS:	nents are in "inches of w	ater" taken from Dwyer Series 2000.
· · · · · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·	
INSPECTED BY:		
Car Hall		• •
Print Name	e)	(Signature)

EXHAUST FAN #	LOWE'S	<u>SEFCU</u>
2	-:0.9	1
3	- 6	
4	- /	
5	-/	
6	- /	
7	-/	
8	-/	
9	-1	
10	-/	
*The above measurer COMMENTS:	ments are in "inches of wa	ater" taken from Dwyer Series 2000.
IMODEOTED DV		
INSPECTED BY:		
Davidt. O	Evicen	Munico Dougne
(Print Nam	e) /	(Signature)

DATE: 01/15/21

EXHAUST FAN #	LOWE'S	<u>SEFCU</u>
2 3 4 5 6 7 8 9 10	0.9 (! ! ! ! ! !	1
*The above measurem COMMENTS:	ents are in "inches of wa	ter" taken from Dwyer Series 2000.
INSPECTED BY:		
(Print Name	<u>Веде</u> е)	(Signature)

DATE: 1/20/21

EXHAUST FAN #	LOWE'S	<u>SEFCU</u>
2 3 4 5 6 7 8 9	-0:4 -1 -1 -1 -1	1
*The above measurer COMMENTS:	ments are in "inches of wa	ater" taken from Dwyer Series 2000.
INSPECTED BY:		
Des oid (Print Nar	ne)	(Signature)

DATE: 01/29/21

SUBSLAB DEPRESSURIZATION SYSTEMS MIDLER CROSSING SYRACUSE, NEW YORK

EXHAUST FAN #	LOWE'S	<u>SEFCU</u>
2 3 4 5 6 7 8 9	-100 -100 -100 -100 -100 -100	1
*The above measuren COMMENTS:	nents are in "inches of w	ater" taken from Dwyer Series 2000.

INSPECTED BY:

David FORryan (Print Name)

(Signature)

DATE: 2/5/21

EXHAUST FAN #	LOWE'S	<u>SEFCU</u>
2 3 4 5 6 7 8 9 10	09 -/ -/ -/ -/ -/ -/	1/
*The above measurem COMMENTS:	nents are in "inches of wa	ater" taken from Dwyer Series 2000.
INSPECTED BY:	e)	(Signature)

DATE: 2/11/21

EXHAUST FAN #	LOWE'S	SEFCU
2	-0-9	
3	-/	
4	-/	
5	-/	
6	-/	
7	-1	
8	-/	
9	~/	
10	-/	
*The above measureme	nts are in "inches of water"	taken from Dwyer Series 2000.
INSPECTED BY:		
Parid Fo Oi	Zupan	Margod Her segen
(Print Name)		(Signature)

DATE: 02/18/2/

EXHAUST FAN #	LOWE'S	SEFCU
2	-0.4	11,0
3	-1.0	1
4	-1.0	
5	-1.8	
6	-1.3	
7	-10	
8	-1,0	
9	-40	
10	-1.0	
*The above measurem COMMENTS:	ents are in "inches of wa	ater" taken from Dwyer Series 2000.
INSPECTED BY:		
David Of	Zryan e)	(Signature)

DATE: 2/25/2/

PACIFIC PARI	I OME'C	SEFCU_
EXHAUST FAN #	<u>LOWE'S</u>	<u> 3BPCO</u>
2	-0-9	1 - (.0
3	-1.0.	
4	-10	
5	+1.0	
6	41.0	
7	060	
8	-1,0	
9	-10	
10	~1.0	
COMMENTS:		ater" taken from Dwyer Series 2000.
INSPECTED BY:		
15 CF Y	144	Dans
(Print Nar	ne)	(Signature)

DATE: 03/05/2/

EXHAUST FAN #	LOWE'S	SEFCU
2 3 4 5 6 7 8 9	-0.9 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0	- - - - -
*The above measurem COMMENTS:	ents are in "inches of w	rater" taken from Dwyer Series 2000.
INSPECTED BY:		
Oct vi of Co (Print Name	3,2 ogan	Signature)

DATE: 03/12/2)

EXHAUST FAN #	LOWE'S	SEFCU
2	-0.9	1/2
3	- 60.	
4	-1.0	-
5	-1.0	na.
6	-60	_
7	-1.0	_
8	-1.0	
9	-1,0	
10	-60	_
*The above measures	ments are in "inches of v	water" taken from Dwyer Series 2000.
COMMENTS:		
INSPECTED BY:		
David 0/2	20196	Janel & Brogen
David 0/2 (Print Nan	. 9 6	(Signature)
(Frint Nan	ne)	(Signature)

DATE: 3/19/2

(Signature)

SUBSLAB DEPRESSURIZATION SYSTEMS MIDLER CROSSING SYRACUSE, NEW YORK

EXHAUST FAN #	LOWE'S	<u>SEFCU</u>
2	- O. 9	1 -1,0
3	-1.0	_
4	-1,0	
5	~ 1.0	
6	-1.0	_
7	-100	_
8	-15	
9	-1.0	
10	-1.0	_
*The above measuren	ents are in inches of w	vater" taken from Dwyer Series 2000.
INSPECTED BY:		
David C	Bryan	Deside The

(Print Name)

DATE: 3/2/e/Z/

SUBSLAB DEPRESSURIZATION SYSTEMS MIDLER CROSSING SYRACUSE, NEW YORK

EXHAUST FAN #	LOWE'S	SEFCU
2	-0,9	16268
3	-1.0	
4	-1.0	
5	7100	
6	-100	
7	-110	
8	-120	
9	-1,0	
10	-1.0	
COMMENTS:		ater" taken from Dwyer Series 2000.

INSPECTED BY:

(Print Name)

(Signature)

DATE: 04/02/2/

EXHAUST FAN #	LOWE'S	<u>SEFCU</u>
2	-:0,9	1
3	-1.0	
4	-10	
5	-1.0	
6	-1,0	
7	~/.0	
8	~ /. 0	
9	-1.0	
10	-1.0	
COMMENTS:		
INSPECTED BY:		
Dasid O	Buysa ne)	Dar at 1-OB kypan

DATE: 04/08/2(

SUBSLAB DEPRESSURIZATION SYSTEMS MIDLER CROSSING SYRACUSE, NEW YORK

EXHAUST FAN #	<u>LOWE'S</u>	<u>SEFCU</u>
2 3 4 5 6 7 8 9	- 0.9 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0	1 -1.0
*The above measurer COMMENTS:	nents are in "inches of wa	ater" taken from Dwyer Series 2000.
INICOECTED BV.		

INSPECTED BY:

Deve O'Bryane
(Print Name)

(Signature)

DATE: 04/16/2/

SUBSLAB DEPRESSURIZATION SYSTEMS MIDLER CROSSING SYRACUSE, NEW YORK

EXHAUST FAN #	LOWE'S	<u>SEFCU</u>
2	-0,9	1/-0
3	-1,0	
4	~1.6	
5	-1:0	
6		
7		
8		
9		
10	100	
INSPECTED BY:		

(Print Name)

(Signature)

DATE: 04/22/26

EXHAUST FAN #	LOWE'S	<u>SEFCU</u>
2	-0: 9	1 ~/
3	-1.0	*
4	-1,0	
5	- 2, 16	
6	-1.0	
7	-1,0	
8	~ (10	
9	-1.0	
10	-1:0	
10		
COMMENTS:	ments are in Inches of war	er" taken from Dwyer Series 2000.
		
INSPECTED BY:		
DowidE	0'Byou	David 30' Bryan
(Print Na	me)	(Signature)

DATE: 04/29/21

EXHAUST FAN #	LOWE'S	SEFCU
2	-0:9	1/,6
3	-1.0	
4	- 1.0	
5	- 1.0	
6	-10	
7	-/6	
8	-1.0	
9	100	
10	-110	
COMMENTS:		
INSPECTED BY:		
David O'Brya (Print Na	*1/2	(Signature)
(Print Na	me)	(Signature)

DATE: 05/3/2)

SUBSLAB DEPRESSURIZATION SYSTEMS MIDLER CROSSING SYRACUSE, NEW YORK

EXHAUST FAN #	LOWE'S	SEFCU
2 3 4 5 6 7 8 9	- Qu 8 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0	1/
*The above measuren	nents are in "inches of wa	ter" taken from Dwyer Series 2000.

INSPECTED BY:

 $\frac{\text{Parial F. O.B.-again}}{\text{(Print Name)}}$

(Signature)

DATE: 5/14/21

EXHAUST FAN #	LOWE'S	<u>SEFCU</u>
2	00	1 _/
3	/	1
4	-1	
5	-/	
6	~/	
7	-/	
8	-/	
9	-1	
10	-/	
*The above measuren COMMENTS:	nents are in "inches of wa	ater" taken from Dwyer Series 2000.
	· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·	
	<u></u>	
INSPECTED BY:		_
	150	Aly
(Print Nam	e)	(Signature)

DATE: 03 /21/21

SUBSLAB DEPRESSURIZATION SYSTEMS MIDLER CROSSING SYRACUSE, NEW YORK

EXHAUST FAN #	LOWE'S	<u>SEFCU</u>
2	-0.8	1
3 4	- (- B	
5 6	-1.0	
7 8	-10	
9	-10	
10		

*The above measurements are in "inches of water" taken from Dwyer Series 2000.

COMMENTS:		

INSPECTED BY:

David O'Bryan
(Print Name)

Signature)

DATE: 05/27/20

EXHAUST FAN #	LOWE'S	<u>SEFCU</u>
2	-0:8	1/
3		
4	-1.0	
5	10	
6	-1.0	
7	-10	
8	-1.0	
9	-1.0	
10	-10	
COMMENTS:		
INSPECTED BY:		
David & Sp (Print Name)		(Signature)

DATE: $\frac{6/2/21}{}$

EXHAUST FAN #	<u>LOWE'S</u>	<u>SEFCU</u>
2		1
2 3	- 1	1
_		
4 5		•
6		
7		
8		•
9		
10	-1	•
10		•
COMMENTS:	ients are in "inches of wa	ater" taken from Dwyer Series 2000.
	· .	
		-
INSPECTED BY:		
\circ	amilton	(Signature)
(FILITINAME	<i>?)</i>	(Signature)

DATE: 6/9/21

EXHAUST FAN #	LOWE'S	<u>SEFCU</u>
2	~- l	-1
2 3	-1	1
4		
5	-	
6	-1	
7	<u> </u>	
8	/ '	
9	Company of the Compan	
10		
*The above measuren	nents are in "inches of wate	er" taken from Dwyer Series 2000.
COMMENTS:		
	<u></u>	
	-	
INSPECTED BY:		\mathcal{L}
	1	$\mathcal{A}(\mathcal{A})$
Kyan	amilton	3
(Print Nam	DANAIL I I D. I	/Signature)
trimit ivalli	C1	/ ABIZHALUIEI

DATE: 6/15/21

EXHAUST FAN #	LOWE'S		<u>SEFCU</u>
2 3		- -	1
4	=	_	
5 6	-1	_	
7	-1	- -	
8	-1	_	
9	<u>- l</u>	_	
10		_	
*The above measurem COMMENTS:	nents are in "inches of w	vater" taken from Dv	vyer Series 2000.
		-	
-			
INSPECTED BY:	14.	7	10
(Print Name	2)		(Signature)

DATE: 6/22/21

EXHAUST FAN #	<u>LOWE'S</u>	SEFCU
2	≈	1 - 1
3	-	
4		
5		
6		
7		
8		
9	-1	
10		
COMMENTS:		er" taken from Dwyer Series 2000.
<u></u>		
,		
	8 4	
INSPECTED BY:		
Ryan H (Print Nam	amilton	(Signature)

DATE: 6/29/21

EXHAUST FAN #	LOWE'S	<u>SEFCU</u>
2	~/	. –1
2 3		1
4		
5		
6	1	
7	-1	
8		
9	-1	
10		
*The above measure	ments are in "inches of wa	ater" taken from Dwyer Series 2000.
		,
COMMENTS:		
		· · · · · · · · · · · · · · · · · · ·
•		
INSPECTED BY:		
Ryan Ho	amilton	3-41
(Print Nam		(Signature)

DATE: 7/7/21

EXHAUST FAN #	LOWE'S	SEFCU
2	-1	
2 3		1
4	-1	
5	-1	
6	+)	
7	-1	
8	-1	
9		
10		
COMMENTS:		ter" taken from Dwyer Series 2000.
·		
		·
INSPECTED BY:		1.0
Ryan Ha (Print Name	any ton	(Signature)

DATE: 7/15/21

EXHAUST FAN #	LOWE'S	<u>SEFCU</u>
2 3 4 5 6 7 8 9 10		1
*The above measurer COMMENTS:	ments are in "inches of v	water" taken from Dwyer Series 2000.
INSPECTED BY:		
(Print Nam	ne)	(Signature)

DATE: 7/23/21

EXHAUST FAN #	LOWE'S	<u>SEFCU</u>
2	-1	1 -1
3		1
4	- 1	
5	-1	
6	-1	
7	-1	
8	-1	
9		
10		
COMMENTS:	Theres of water	er" taken from Dwyer Series 2000.
-		
INSPECTED BY:	1.1	$\rightarrow \mathcal{A}\mathcal{O}$
(Print Nam	amilton e)	(Signature)

DATE: 7/29/21

EXHAUST FAN #	<u>LOWE'S</u>	<u>SEFCU</u>
2		1
3		
4		
5	_	
6		
7	-	
8		
9		
10		
*The above measurem	santa ana in Win ah sa af suatsa	ell talens from Domes Coning 2000
The above measurem	ients are in "inches of wate	r" taken from Dwyer Series 2000.
COMMENTS:		
		· · · · · · · · · · · · · · · · · · ·
		······
		
INSPECTED BY:		
4		210
Ryan Ha	millan	3 H
(Print Name))	(Signature)

DATE: \$/5/21

EXHAUST FAN #	LOWE'S	<u>SEFCU</u>
2	- 1	1 - (
3	-1	·
4	-1	
5	-4	
6	- 1	
7		
8		
9		
10	-1	
COMMENTS:		
1		
INSPECTED BY:		
Ryan H (Print Name	lamilta	(Signature)

DATE: 8/13/21

EXHAUST FAN #	LOWE'S	<u>SEFCU</u>
2	-1	-1
2 3		1
4	-1	
5	-1	
6	- 1 × /	
7	-1	
8	4	
9		
10		
*The above measurem COMMENTS:	ents are in "inches of wa	ter" taken from Dwyer Series 2000.
		·
		
INSPECTED BY:		
Ryan Ham (Print Name	1 Hon	(Signature)

DATE: 8/20/21

EXHAUST FAN #	LOWE'S	<u>SEFCU</u>	
2		1	
3			
4			
5			
6 7	CONTROL OF THE CONTRO	S	
8	-1		
9	41		
10	/		
*The above measuren	nents are in "inches of wate	er" taken from Dwyer Series 2000.	
COMMENTS:			
The state of the s			
And the second s			1 990000 9874
INSPECTED BY:			
Ryan Ha	im Hon	(Signature)	· · · · · · · · · · · · · · · · · · ·

DATE: 8/30/21

EXHAUST FAN #	LOWE'S	<u>SEFCU</u>	
2	_1	1 -1	
3	-		
4	the f		
5	.5/		
7	-		
8	-1		
9	~ 1		
10	Name .		
*The above measurem	ents are in "inches of water"	taken from Dwyer Series 2000.	
COMMENTS:			
Months and the second s	,		
INSPECTED BY:			
Ryan H	amilton	z #f)
(Print Name)		(Signature)	
		/ P - 1	

DATE: 9/9/21

EXHAUST FAN #	LOWE'S		<u>SEFCU</u>	
2]		1 - K	
3	-1		1	
4	-			
5				
6				
7	-1			
8				
9	<u> </u>			
10				
*The above measurem COMMENTS:	ents are in "inches of wat	er" taken from l	Dwyer Series 2000).
		-		
		-		
				· · · · ·
INSPECTED BY:				
Ryan Hami			>#)
(Print Name)		(Signature))

DATE: 9/15/21

EXHAUST FAN #	LOWE'S	<u>SEFCU</u>
2	-1	1
3	-1	<u> </u>
4	+1	
5	-1	
6		
7	-1	
8	-1	
9	-1	
10	-1	
COMMENTS:		
INSPECTED BY:		
Ryan Han (Print Name	nllan	(Signature)

DATE: $\frac{9/21/21}{2}$

EXHAUST FAN #	LOWE'S	<u>SEFCU</u>
2	-/	1
3		,
4		
5		
6 7		
8		
9		
10	-/	
*The above measurem COMMENTS:	ents are in "inches of wat	ter" taken from Dwyer Series 2000.
**		
		4.4
INSPECTED BY:		
	// /	\sim 1
(Over L	forsal	AL
(Print Name		(Signature)

DATE: 4/21/21

EXHAUST FAN #	<u>LOWE'S</u>	<u>SEFCU</u>
2	<u>-1</u>	1 - 1
3	-1 /	<u> </u>
4	< t	
5	-	
6		
7		
8	-1	
9		
10		
*The above measuren	nents are in "inches of water	r" taken from Dwyer Series 2000.
INSPECTED BY:		
Ryan Ha	milton	SAL
(Print Nam	e)	(Signature)

DATE: 10/8/21

EXHAUST FAN #	<u>LOWE'S</u>	<u>SEFCU</u>	
2	> l	1	
3	-1	-	
4			
5	-1		
6	- (
7	-1		
8			
9			
10	· ·		
	ents are in "inches of water"	taken from Dwyer Series 2000.	
COMMENTS:			
		<u> </u>	
INSPECTED BY:			
II TOI LCILD DI,		10	
Ryan Ha	milton	X AH	
(Print Name		(Signature)	

DATE: <u>/0/14/24</u>

EXHAUST FAN #	LOWE'S	<u>SEFCU</u>
2 3 4 5 6 7 8 9	-+ -/ -/ -/ -/ -/	1
COMMENTS:	ents are in "inches of wa	ter" taken from Dwyer Series 2000.
INSPECTED BY:	ensul	(Signature)

DATE: 16/18/21

EXHAUST FAN #	LOWE'S	<u>SEFCU</u>
2	-1	1 1
3	-1	1
4	-1	
5	-1	
6	-1	
7		
8	-1	
9	-1	
10	5	
*The above measurer	ments are in "inches of wa	ter" taken from Dwyer Series 2000.
COMMENTS:		
		•
•		
-		
INSPECTED BY:		
Ryan H	am, Iton	3 Al
(Print Nam	ne)	(Signature)

DATE: 10/27/21

EXHAUST FAN #	<u>LOWE'S</u>	<u>SEFCU</u>
2	~	1 -1
3	-1	
4	-1	
5	-1	
6		
7	-1	
8		
9	<u>-i</u>	
10		
*The above measurer	nents are in "inches of wat	ter" taken from Dwyer Series 2000.
COMMENTS:		
INSPECTED BY:		
Ryan Ha	miller	
(Print Nam	e)	(Signatura)
(1 11111 140111	,	(Signature)

DATE: 11/4/21

EXHAUST FAN #	LOWE'S	SEFCU
2	and the same	1 = 1
3	-	
4	~	
5	i	
6	-1	
7		
8	-1	
9	-1	
10		
COMMENTS:	·	
INSPECTED BY:		
Ryan Ha (Print Name		(Signature)

DATE: 11/11/21

SUBSLAB DEPRESSURIZATION SYSTEMS MIDLER CROSSING SYRACUSE, NEW YORK

EXHAUST FAN #	<u>LOWE'S</u>	<u>SEFCU</u>
2	M85	1
3 4	03	
5 6	09	
7		
8 9		
10	08	

*The above measurements are in "inches of water" taken from Dwyer Series 2000.

COMMENTS:	ordered	Fans	from	Johnstone	When the
tans come	In I will	mast	Powe/Co	om at Lo	WES
					<u> </u>

INSPECTED BY:

(Print Name)

(Signature)

INVOICE

 Remit Address:
 Rochester

 77 Halstead Street, Suite 3
 95 Halstead Street

 Rochester, NY 14610-1955
 Rochester, NY 14610-1955

 585-441-039
 585-482-8000

 585-482-2789 Fax
 896-482-8000 Fax

 AR141@JohnstoneSupply.com
 31ore141@JohnstoneSupply.com

Syrecuse 835 Canal Street Syrecuse. NY 13210-1161 315-479-8800 315-479-8800 Fax Store269% Johnstone Supply.com

1/1 Page

Sold To

PIONEER COMPANIES 333 WEST WASHINGTON ST SUITE 600 SYRACUSE NY 13202-6103

Ship To PIONEER COMPANIES 333 WEST WASHINGTON ST SUITE 600 SYRACUSE NY 13202-6103

Customer#	Order Date	Sales Order # Buyer	Customer P/0 #	Ship Via Salesma
0006641	11/12/2021	2052486 GREG 439-9780	1651	WILL CALL 201
Invoice #	Invoice Date	Ship Date Freight Terms	Job Number	Terms
2052486	11/23/2021	11/23/21 PREPAID		NET 30 DAYS

LN	ONTY ORB	ONEY SHIP	ONTY B/O	PRO NUM	DUCT BER		DE.	SCRII	PTO	ų					UCM	net Pri	CE.			EXT	ens:	ON	
1	3	3		X81	-999		FG	5 FAI	N IN	LIN	E CE	NTRI	UGA	L 	EA			220.	13	Ş	660.	.39	
					* * * * * * * * * * * * * * * * * * *																		
							······································	6	0														
									5)Ql	O	\ C	JU	P									
													H										
::::																							

Signature Proof of Delivery:

11/23/21 08:28

Sent Copy

Pay By 12/23/2021

NYS Contract #: PC67222 Group: 39000 Ind & Comm Splys & Eqpt NYS Vendor ID: 1000008135

Terms & Conditions Merchandise Returns may be subject to a restock

No return for electrical items, special orders, installed parts, or parts older than 90 days.

Writer: CG

660.39 0.00 0.00 Merchandise Freight Misc Charges Sub Total 660.39 660.39 52.83 Taxable Tax (3121) \$713.22 TOTAL

DATE: 11/19/21

THAUST FAN #	LOWE'S	SEFCU
2	- 1	1 -1
3	-1	
4	-103	
5	- , 09	
6		
7	-1	
8		
9		
10	-,08	
NSPECTED BY:		
		. ~
Prom Ho	100	$\rightarrow A0$
		-/ ~/ /

DATE:///20/2/

EXHAUST FAN #	LOWE'S	<u>SEFCU</u>
2 3 4 5 6 7 8 9	-/ -/ -/ -/ -/ -/ -/	1/
*The above measurem COMMENTS:	ents are in "inches of wa	ater" taken from Dwyer Series 2000.
INSPECTED BY:	fen h	(Signature)

DATE: 12/1/21

EXHAUST FAN #	LOWE'S	<u>SEFCU</u>	
2	-	1 12 1 -1	
3			
4	-		
5			
6	<u>-i</u>		
7			
8			
9			
10			
*The above measurem COMMENTS:	ents are in "inches of wat	er" taken from Dwyer Series 2000.	
			_
			_
			_
			_
	(Hon	SH	_
/ (Print Name)	(Signature)	

DATE: /2/8/2/

EXHAUST FAN #	LOWE'S	<u>SEFCU</u>
2 3 4 5 6 7 8 9	-/ -/ -/ -/ -/ -/	1
*The above measureme	ents are in "inches of wat	er" taken from Dwyer Series 2000.
INSPECTED BY: (Print Name	Jen (w	(Signature)

DATE: 12/10/21

EXHAUST FAN #	LOWE'S	<u>SEFCU</u>
2	- /	1 -1
3	Allega and the second	
4	-	
5		
6	· company	
7	-	
8		
9		
10		
SPECTED BY:		
NSPECTED BY:		

DATE: /2/16/20

EXHAUST FAN #	LOWE'S	<u>SEFCU</u>
2 3		1
4 5	<u>-1</u>	
6 7 8	<u>/</u>	
9 10	7	
*The above measurem	ents are in "inches of wa	ter" taken from Dwyer Series 2000.
INSPECTED BY:		
(Print Name	kusu e)	(Signature)

DATE: 12/22/21

EXHAUST FAN #	LOWE'S	<i>y</i> -3	<u>SEFCU</u>	
2	- j		1 -1	
3	-1.	_		_
4	&]			
5	To contact the second s			
6				
7	-1			
8	-			
9		·		
10				
COMMENTS:				
the state of the s				
INSPECTED BY: Ryan Ham (Print Name)	Hoy		Z \$10	

DATE: /2/30/21

EXHAUST FAN #	LOWE'S	<u>SEFCU</u>
2 3 4 5 6 7 8 9	-/ -/ -/ -/ -/ -/	1/
*The above measurem COMMENTS:	nents are in "inches of wa	ter" taken from Dwyer Series 2000.
INSPECTED BY:	den su	(Signature)

DATE: 3/2/22

EXHAUST FAN #	LOWE'S		SEFCU
2	-1		1
3	-/		1
4	-1		
5	<u>1</u>		
6	-1		
7			
8	~		
9			
10	***		
COMMENTS:			
4 - Samuel and Administrative (Administrative Control of the State of		and the second s	and the state of t
and a resident first pay another representative and resident and resid		Address of the same of the sam	
		And the state of t	
	от в доставления от в доставления выполнения поставления поставления от подавления от 1944 выполня в поставления		
INSPECTED BY:			10
Ryan Ha (Print Name)	milteon		(Signature)

DATE: 11/23/22

EXHAUST FAN #	LOWE'S	<u>SEFCU</u>
2	-1	-/
3		1
4	-1	
5	51	
6	_	
7	-1	
8	-1	
9		
10	-1	
COMMENTS:		ter" taken from Dwyer Series 2000.
Physical Company of the Company of t		
emin garage and a second secon		1
INSPECTED BY:		
Ryan H (Print Name)	amilton	(Signature)

DATE: 10/7/22

SUBSLAB DEPRESSURIZATION SYSTEMS MIDLER CROSSING SYRACUSE, NEW YORK

EXHAUST FAN #

H1 1.5	#2 120
*The above measurements are in "inches of west	had talen from During Coming 2000
*The above measurements are in "inches of wat	taken from Dwyer Series 2000.
COMMENTS:	
INSPECTED BY:	
morecies si.	1
Open Howcar	A VI
(Print Name)	(Signature)

DATE: 10/14/22

SUBSLAB DEPRESSURIZATION SYSTEMS MIDLER CROSSING SYRACUSE, NEW YORK

EXHAUST FAN #

H 1.5	#2 020
The above measurements are in "inches of wal	ter" taken from Dwyer Series 2000.
COMMENTS:	
INSPECTED BY:	
Crey Henson	Da
(Print Name)	(Signature)

DATE: $\frac{i\sqrt{2}i\sqrt{22}}{2}$

SUBSLAB DEPRESSURIZATION SYSTEMS MIDLER CROSSING SYRACUSE, NEW YORK

EXHAUST FAN #

H1 1.5	#2 ,20
The above measurements are in "inches of water"	taken from Dwyer Series 2000.
COMMENTS:	
NSPECTED BY:	,
Cres Honson	An
(Print Name)	(Signature)

DATE: 10/28/22

EXHAUST FAN #	. •
此	#2,22
*The above measurements are in "inches of wat	tar" takan from Druggar Sorias 2000
COMMENTS:	er taken nom Dwyer Series 2000.
	44444
INSPECTED BY:	
Can Hora	An
(Print Name)	(Signature)

DATE: ////22

EXHAUST FAN #	
H	#2,22
*The above measurements are in "inch	es of water" taken from Dwyer Series 2000.
COMMENTS:	
INSPECTED BY:	
	A

DATE: 1///22

EXHAUST FAN #	. •
#1 _ 1,5	#2 . 20
*The above measurements are in "in the actions."	add tallow (arm Dames Carios 2000
*The above measurements are in "inches of wate	er taken from Dwyer Series 2000.
COMMENTS:	
INSPECTED BY:	
	1
- Cay Honson	Dan
(Print Name)	(Signature)

DATE:///9/22

EXHAUST FAN #	. •
#1	#2 . 21
"The above measurements are in "inches of water"	' taken from Dwyer Series 2000.
COMMENTS:	
INSPECTED BY:	
	ACN
(Print Name)	(Signature)

DATE: ///z2/22

EXHAUST FAN #	. *
41	#2 . 20
	1.1 (D C 2000
The above measurements are in "inches of water"	taken from Dwyer Series 2000.
OMMENTS:	
NSPECTED BY:	
	100/
Opy Henson	2) > / / \
(Print Name)	(Signature)

PROPERT	TY NAME	Midlen Crossing Inspected By Inspected By
PROPERT	TY NO.	1650 Date 4119119
		Approved S. D. popula Min
l.	Exterior:	Site & Building LOT CONDITION ONLY
*	A.	Parking Lot Asphalt (holes, fractures, low spots, liability hazards, oil & stone, shim).
		All in good Shape & Reprin
	В.	Storm Water Drainage (catch basins, swails, ditches, culverts: clean & operating, pumps operating and PM program in force, hour meters working; clean out catch basins).
		All Axeas in good Repair
	C.	Fire Hydrants (protected, painted, visibility, access, shown on drawing). Well marked at time of inspect, 'under the company of the company
	D.	Fire Lanes and Handicapped Parking (properly marked & signed). Neil Markel
*	E.	Snow removal (stock pile areas established, delineator posts needed, drainage problems, damaged areas).
ŵ	F.	Parking Lot Lighting (operation, test to verify operation, lens/lamp replacement, paint, photocell, timeclocks, manual override switch, anchor bolts & base secure, base cover secure).
		Gonational of in good Rapain
	G.	Water/Gas Shutoffs, Sewer Cleanouts (properly covered, locations known and shown on drawing, test shutoffs).
		NA
Monthly	Inspection	SC.1

Н.	Buffer Areas (properly cut, debris removed). All areas hell main trained
l.	Sidewalks & Curbs (maintenance, drainage, handicap ramps, re-caulk, refuse containers, tripping hazards). All areas in good Conde from
J.	Striping (condition of paint, areas to be relined, skip next year). All one as in good Repair
K	Traffic Control Devices (traffic signal operation, speed limit/vehicle signage - faded/additions needed).
Ł.	Paint (exterior walls, trim, service doors, trash areas, compactors, canopies).
M.	Caulking (type of failures & exterit).
N.	Landscaping (cleanliness, maintenance program, drainage, add plantings, weed killer at curbs, cracks, etc.). All areas well main faired
0.	Pylon & other signs (paint, rusting, fading, lighting, time clock control, reader board letter inventory).
P.	Other Items (compactor locked off, propane tank safety, water silcocks, loading areas; Put tenant info on tenant sheets).

PROPERTY NAME	Midden Charcon Inspected By AM
PROPERTY NO.	1650 Date 101/81/9,
•	Approved by 5. Hers Peranty m
I. Exterior:	Site & Building LOT CONDITION ONLY
* A.	Parking Lot Asphalt (holes, fractures, low spots, liability hazards, oil & stone, shim).
	No fot Holes on Trip Hazards noted
В.	Storm Water Drainage (catch basins, swails, ditches, culverts: clean & operating, pumps operating and PM program in force, hour meters working; clean out catch basins).
	All areas in good Chape
C.	Fire Hydrants (protected, painted, visibility, access, shown on drawing). All Hydrants painted + Wisible
D.	Fire Lanes and Handicapped Parking (properly marked & signed). Fine Lanes & Handicapped Spots visitate
* E.	Snow removal (stock pile areas established, delineator posts needed, drainage problems, damaged areas).
* F.	Parking Lot Lighting (operation, test to verify operation, lens/lamp replacement, paint, photocell, timeclocks, manual override switch, anchor bolts & base secure, base cover secure). All fight operation at at time of inspection
G.	Water/Gas Shutoffs, Sewer Cleanouts (properly covered, locations known and shown on drawing, test shutoffs).
*Monthly Inspection	SC-1

' Н.	Buffer Areas (properly cut, debris removed). All areas Are well groomed
l.	Sidewalks & Curbs (maintenance, drainage, handicap ramps, re-caulk, refuse containers, tripping hazards). All curbs in and condition
J.	Striping (condition of paint, areas to be relined, skip next year). All noted in good repair
' K	Traffic Control Devices (traffic signal operation, speed limit/vehicle signage - faded/additions needed).
Ł.	Paint (exterior walls, trim, service doors, trash areas, compactors, canopies).
М.	Caulking (type of failures & extent).
N.	Landscaping (cleanliness, maintenance program, drainage, add plantings, weed killer at curbs, cracks, etc.). All areas well maintained
0.	Pylon & other signs (paint, rusting, fading, lighting, time clock control, reader board letter inventory).
P.	Other Items (compactor locked off, propane tank safety, water silcocks, loading areas; Put tenant info on tenant sheets).

PROPER	TY NAME	Midles Gusting Inspected By Inspected By
PROPER	TY NO.	1650 Date 4 170/20
l.	Exterior:	Site & Building LOT CONDITION ONLY Approved Approved people Many
*	A.	Parking Lot Asphalt (holes, fractures, low spots, liability hazards, oil & stone, shim). Area in good shape At time of inspection
	В.	Storm Water Drainage (catch basins, swails, ditches, culverts: clean & operating, pumps operating and PM program in force, hour meters working; clean out catch basins).
	C.	Fire Hydrants (protected, painted, visibility, access, shown on drawing). Nell montes a access ble
	D.	Fire Lanes and Handicapped Parking (properly marked & signed). Roperly Marked
*	E.	Snow removal (stock pile areas established, delineator posts needed, drainage problems, damaged areas).
*	F.	Parking Lot Lighting (operation, test to verify operation, lens/lamp replacement, paint, photocell, timeclocks, manual override switch, anchor bolts & base secure, base cover secure). All Interpretion All Int
	G.	Water/Gas Shutoffs, Sewer Cleanouts (properly covered, locations known and shown on drawing, test shutoffs).
Monthly	Inspection	SC-1

Buffer Areas (properly cut, debris removed).
Mell main famed
Sidewalks & Curbs (maintenance, drainage, handicap ramps, re-caulk, refuse containers, tripping hazards). Nell main hamed
Striping (condition of paint, areas to be relined, skip next year). All in good condition
Traffic Control Devices (traffic signal operation, speed limit/vehicle signage - faded/additions needed).
Paint (exterior walls, trim, service doors, trash areas, compactors, canopies).
Caulking (type of failures & extent).
Landscaping (cleanliness, maintenance program, drainage, add plantings, weed killer at curbs, cracks, etc.).
Pylon & other signs (paint, rusting, fading, lighting, time clock control, reader board letter inventory).
Other Items (compactor locked off, propane tank safety, water silcocks, loading areas; Put tenant info on tenant sheets).

PROPER'	ty name	Midler Crocky Inspected By E. Sant mand
PROPER	TY NO.	1650 Date 1019120
	,	Approved A
1.	Exterior:	Site & Building LOT CONDITION ONLY
*	A.	Parking Lot Asphalt (holes, fractures, low spots, liability hazards, oil & stone, shim).
		Prating lot in good condition
		<u> </u>
	В.	Storm Water Drainage (catch basins, swails, ditches, culverts: clean & operating, pumps operating and PM program in force, hour meters working; clean out catch basins).
		all areas in good andition
	C.	Fire Hydrants (protected, painted, visibility, access, shown on drawing).
		All in good and it in
	D.	Fire Lanes and Handicapped Parking (properly marked & signed).
		Well marked
*	E.	Snow removal (stock pile areas established, delineator posts needed, drainage problems, damaged areas).
		damage problems, damaged areas).
*	F.	Parking Lot Lighting (operation, test to verify operation, lens/lamp replacement, paint, photocell, timeclocks,
		manual override switch, anchor boils & base secure, base cover secure).
		all lighting operationAl
	•	
	G.	Water/Gas Shutoffs, Sewer Cleanouts (properly covered, locations known and shown on drawing, test shutoffs).
		NA
'Monthly	Inspectio	SC-1
		v ·

Buffer Areas (properly cut, debris removed).
Well Maintoned
Sidewalks & Curbs (maintenance, drainage, handicap ramps, re-caulk, refuse containers, tripping hazards).
Striping (condition of paint, areas to be relined, skip next year). All in good shape at time of inspection
Traffic Coptrol Devices (traffic signal operation, speed limit/vehicle signage - faded/additions needed).
Paint (exterior walls, trim, service doors, trash areas, compactors, canopies).
-A/A
Caulking (type of failures & extent).
Landscaping (cleanliness, maintenance program, drainage, add plantings, weed killer at curbs, cracks, etc.)
Pylon & other signs (paint, rusting, fading, lighting, time clock control, reader board letter inventory).
Other Items (compactor locked off, propane tank safety, water silcocks, loading areas; Put tenant info on tenant

		SHOPPING CENTER PROPERTY INSPECTION
PROPERTY NAME PROPERTY NO.		Midler Cooping Inspected By Sopration Middler Cooping Inspected By Date 4 1,16121
		Approved
I.	Exterior:	Site & Building LOT CONDITION ONEX
*	A.	Parking Lot Asphalt (holes, fractures, low spots, liability hazards, oil & stone, shim).
	В.	Storm Water Drainage (catch basins, swails, ditches, culverts: clean & operating, pumps operating and PM program in force, hour meters working; clean out catch basins). All oness in good cond, '4' or
	C.	Fire Hydrants (protected, painted, visibility, access, shown on drawing). Fire Hydrants (protected, painted, visibility, access, shown on drawing).
	D.	Fire Lanes and Handicapped Parking (properly marked & signed). Well marked
*	E.	Snow removal (stock pile areas established, delineator posts needed, drainage problems, damaged areas).
*	F.	Parking Lot Lighting (operation, test to verify operation, lens/lamp replacement, paint, photocell, timeclocks, manual override switch, anchor bolts & base secure, base cover secure). Operational of manual overrides witch, and the production of
	G.	Water/Gas Shutoffs, Sewer Cleanouts (properly covered, locations known and shown on drawing, test shutoffs).

SC-1

*Monthly Inspection

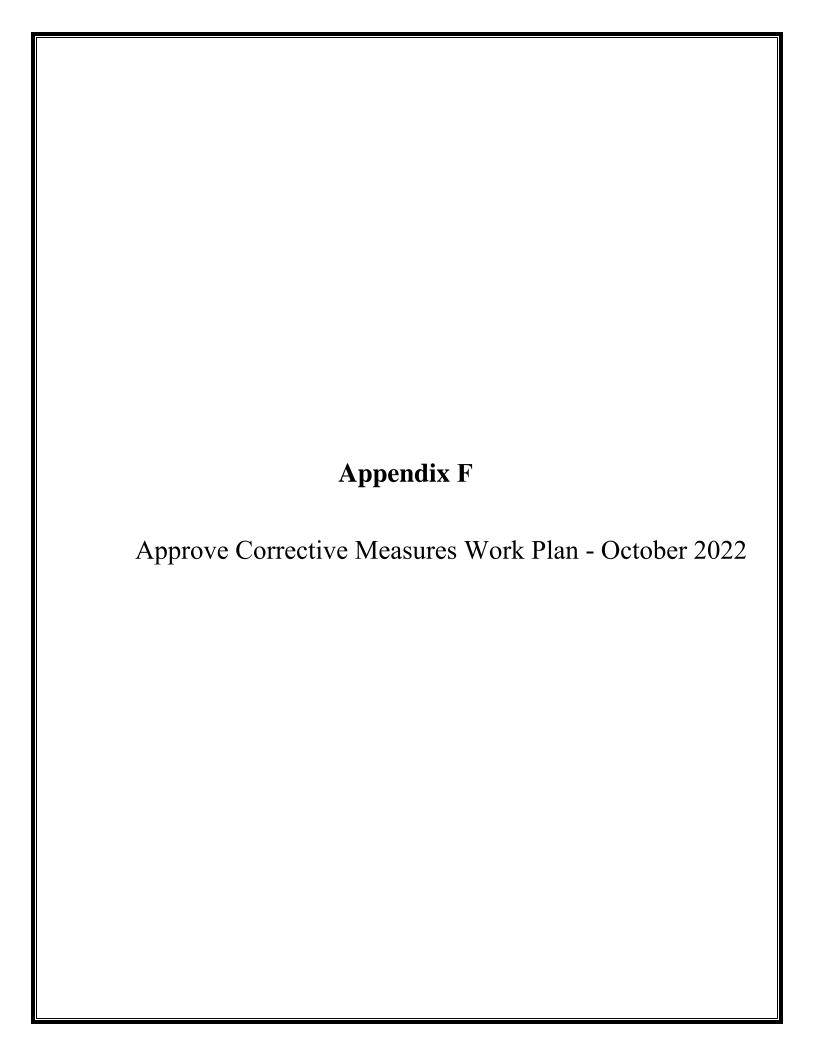
Buffer Areas (properly cut, debris removed).
Vell main transed
Sidewalks & Curbs (maintenance, drainage, handicap ramps, re-caulk, refuse containers, tripping hazards
All areas in good respain
Striping (condition of paint, areas to be relined, skip next year).
All in good Shape
Traffic Control Devices (traffic signal operation, speed limit/vehicle signage - faded/additions needed).
Paint (Antogor wells, trim, consider doors, trush areas, consider and
Paint (exterior walls, trim, service doors, trash areas, compactors, canopies).
NA
Caulking (type of failures & extent).
NA
Landscaping (cleanliness, maintenance program, drainage, add plantings, weed killer at curbs, cracks, etc. Nell manfeled
Pylon & other signs (paint, rusting, fading, lighting, time clock control, reader board letter inventory).
Other Items (compactor locked off, propane tank safety, water silcocks, loading areas; Put tenant info on tena sheets).

SHOPPING CENTER PROPERTY INSPECTION

	P 39
	SHOPPING CENTER PROPERTY INSPECTION
PROPERTY NAME	Midden Crassing Inspected By Super Manger
THOI EITH NO.	
I. Exterior:	Site & Building LOT CONDITION ONLY
* A.	Parking Lot Asphalt (holes, fractures, low spots, liability hazards, oil & stone, shim).
	All aseas i'm gud sagain
В.	Storm Water Drainage (catch basins, swails, ditches, culverts: clean & operating, pumps operating and PM program in force, hour meters working; clean out catch basins).
	All in good paper
C.	Fire Hydrants (protected, painted, visibility, access, shown on drawing).
	Clearly markal
D.	Fire Lanes and Handicapped Parking (properly marked & signed).
	Clearly Marked
* E.	Snow removal (stock pile areas established, delineator posts needed, drainage problems, damaged areas).
* F.	Parking Lot Lighting (operation, test to verify operation, lens/lamp replacement, paint, photocell, timeclocks, manual override switch, anchor bolts & base secure, base cover secure).
	Operational and in good Stappe
G.	Water/Gas Shutoffs, Sewer Cleanouts (properly covered, locations known and shown on drawing, test shutoffs).
	N/A
*Monthly Inspection	n V SC-1

•	Buffer Areas (properly cut, debris removed).
	Sidewalks & Curbs (maintenance, drainage, handicap ramps, re-caulk, refuse containers, tripping hazards).
	Striping (condition of paint, areas to be relined, skip next year). All in good reguments
	Traffic Control Devices (traffic signal operation, speed limit/vehicle signage - faded/additions needed).
	Paint (exterior walls, trim, service doors, trash areas, compactors, canopies).
	Caulking (type of failures & extent).
	Landscaping (cleanliness, maintenance program, drainage, add plantings, weed killer at curbs, cracks, etc.). Well main fam doct
	Pylon & other signs (paint, rusting, fading, lighting, time clock control, reader board letter inventory).
	Other Items (compactor locked off, propane tank safety, water silcocks, loading areas; Put tenant info on tenant sheets).
	t

SHOPPING CENTER PROPERTY INSPECTION


PROPERTY NAME	Midlen Crossing Inspected By S. A. Date 418 122
	Approved Ary Regnety Miss
I. Exterior:	Site & Building LOT CONDITION ONLY
* A.	Parking Lot Asphalt (holes, fractures, low spots, liability hazards, oil & stone, shim). All in good Repair
В.	Storm Water Drainage (catch basins, swails, ditches, culverts: clean & operating, pumps operating and PM program in force, hour meters working; clean out catch basins). All Areas in Sood Repair
C.	Fire Hydrants (protected, painted, visibility, access, shown on drawing). Well marked at fine of in spection
D.	Fire Lanes and Handicapped Parking (properly marked & signed). Well Manked
* E.	Snow removal (stock pile areas established, delineator posts needed, drainage problems, damaged areas).
* F.	Parking Lot Lighting (operation, test to verify operation, lens/lamp replacement, paint, photocell, timeclocks, manual override switch, anchor bolts & base secure, base cover secure). Opena hand din 3 and Repair.
G	Water/Gas Shutoffs, Sewer Cleanouts (properly covered, locations known and shown on drawing, test shutoffs).
"Monthly Inspection	SC-1

•	A TOTAL OF	Aners well maintained
٠ ١		maintenance, drainage, handicap ramps, re-caulk, refuse containers, tripping hazards).
•		paint, areas to be relined, skip next year).
* 1	Traffic Control Device	es (traffic signal operation, speed limit/vehicle signage - faded/additions needed).
l	Paint (exterior walls,	trim, service doors, trash areas, compactors, canopies).
1	Caulking (type of faile	ures & extent).
• 1		ness, maintenance program, drainage, add plantings, weed killer at curbs, cracks, etc.).
• (Pylon & other signs ((paint, rusting, fading, lighting, time clock control, reader board letter inventory).
* 	Other Items (compactor sheets).	or locked off, propane tank safety, water silcocks, loading areas; Put tenant info on tenant

SHOPPING CENTER PROPERTY INSPECTION

PROPERTY NAME	Midden Charry Inspected By			
PROPERTY NO.	Date 10 120/22			
	Approved Approved Approved			
I. Exterior:	Site & Building LOT CONDITION ONLY			
* A.	Parking Lot Asphalt (holes, fractures, low spots, liability hazards, oil & stone, shim). All in good Chape			
В.	Storm Water Drainage (catch basins, swails, ditches, culverts: clean & operating, pumps operating and PM program in force, hour meters working; clean out catch basins). All - Good Repair			
C.	Fire Hydrants (protected, painted, visibility, access, shown on drawing). Wey manked			
D.	Fire Lanes and Handicapped Parking (properly marked & signed).			
* E.	Snow removal (stock pile areas established, delineator posts needed, drainage problems, damaged areas).			
* F. (Parking Lot Lighting (operation, test to verify operation, lens/lamp replacement, paint, photocell, timeclocks, manual override switch, anchor bolts & base secure, base cover secure). Openation A 4 in Sand Repair			
G. \	Water/Gas Shutoffs, Sewer Cleanouts (properly covered, locations known and shown on drawing, test shutoffs).			
Monthly Inspection	SC-1			

•	н.	All Arens Well Maintained
it.	l.	Sidewalks & Curbs (maintenance, drainage, handicap ramps, re-caulk, refuse containers, tripping hazards). All areas in good conditions
	J.	Striping (condition of paint, areas to be relined, skip next year). All aleas in good Repain
*	K	Traffic Control Devices (traffic signal operation, speed limit/vehicle signage - faded/additions needed).
	L	Paint (exterior walls, trim, service doors, trash areas, compactors, canopies).
	M.	Caulking (type of failures & extent).
r	N.	Landscaping (cleanliness, maintenance program, drainage, add plantings, weed killer at curbs, cracks, etc.). All anar well maintanese.
×	0.	Pylon & other signs (paint, rusting, fading, lighting, time clock control, reader board letter inventory).
	P.	Other Items (compactor locked off, propane tank safety, water silcocks, loading areas; Put tenant info on tenant sheets).

Corrective Measures Work Plan

Midler City Industrial Park – Site No. C734103 621 South Midler Avenue, Syracuse, NY

Prepared for:

Pioneer Midler LLC 333 West Washington Street Suite 600 Syracuse, NY 13202

TABLE OF CONTENTS

1.	INT	RODUCTION	
2.	BAC	EKGROUND	2
	2.1	Site Description	2
	2.2	Regulatory Background	2
3.	COI	RRECTIVE MEASURES	7
	3.1	Corrective Measures - Implemented	7
	3.2	Corrective Measures - Planned	7
4.	CER	RTIFICATION	6

Acronyms and Abbreviations

Name	Description
CM	Corrective Measure

CMWP Corrective Measures Work Plan

DER Division of Environmental Remediation

EC Engineering Control IC Institutional Control

NYSDEC New York State Department of Environmental Conservation

NYSDOH New York State Department of Heath

SMP Site Management Plan

SSDS Sub-slab depressurization system

1. INTRODUCTION

On behalf of Pioneer Midler Avenue, LLC (Pioneer), C&S Engineers, Inc. (C&S) has prepared this Corrective Measures Work Plan (CMWP) for the Midler City Industrial Park - Site No. C734103 (the "Site"). During the Periodic Review process, a deficiency was identified during the verification of normal operating status of the Golden Corral restaurant's SSDS system. As such, this CMWP is developed in accordance with paragraphs 6.3(a) 6 and 7 of New York State Department of Environmental Conservation's (NYSDEC) Division of Environmental Remediation (DER)-10 "Technical Guidance for Site Investigation and Remediation", effective 18 June 2010.

This CMWP was prepared to address repairs to Golden Corral sub-slab depressurization system (SSDS).

CORRECTIVE MEASURES WORK PLAN

BACKGROUND

2. BACKGROUND

2.1 Site Description

The Midler City Industrial Park site encompasses approximately 22 acres and is located in the eastern portion of the City of Syracuse, as shown on Figure 1. Further detail concerning the property boundary is shown on Figure 2.

Developed as an industrial facility in the late nineteenth century and utilized as such through the mid-twentieth century, the Midler City Industrial Park is relatively flat and is bounded as follows:

- North by Interstate Route 690
- East by undeveloped property owned by the City of Syracuse
- South by property owned by CSX Transportation
- West by Midler Avenue

Currently, a Lowe's home center, a branch of SEFCU bank, and the Golden Corral restaurant occupy much of the site.

2.2 Regulatory Background

Residual subsurface contamination remained after completion of the IRM performed under the Brownfield Cleanup Program. Engineering Controls (ECs) were incorporated into the site remedy to provide proper management of this contamination to ensure protection of public health and the environment. A site-specific Environmental Easement (a form of Institutional Control or IC) has been recorded with the Onondaga County Clerk that provides an enforceable means to ensure the continued and proper management of residual contamination and protection of public health and the environment. It requires strict adherence to ICs and ECs placed on this Site by NYSDEC by the grantor of the Environmental Easement and any and all successors and assigns of the grantor.

As described in the December 2007 Site Management Plan (SMP), as approved by NYSDEC, the following site-specific ECs have been implemented.

- Sub-slab depressurization systems (SSDSs) SSDSs have been installed and maintained on the Lowe's home center, SEFCU branch building, and the Golden Corral restaurant.
- Public Water Supply The site and surrounding properties receive their domestic water from municipal service connections supplied by the City of Syracuse. The source of the municipal water supply is surface water from Skaneateles Lake, Otisco

C&S Companies Project No.: C81.016.001 October 13, 2022 Page 2

CORRECTIVE MEASURES WORK PLAN

BACKGROUND

Lake, and Lake Ontario. All current buildings on the property are connected to and obtain potable water from the municipal water supply described above. Currently there are no other known buildings or users of water on the site.

• Paved and concrete surfaces - To the extent reasonable, surfaces outside of the building footprints were paved or covered with conventional asphalt or concrete. Areas beneath the asphalt and/or concrete pavement received one foot of clean Type 1 or 2 crushed limestone from an approved quarry (i.e., T. H. Kinsella, Hansen). Areas beyond the footprint of the buildings and limits of paved areas received either a combination of clean crushed limestone fill, and/or clean topsoil to a depth of one foot. The clean crushed limestone fill and/or topsoil has been maintained to avoid direct contact with pre-existing urban fill material and native soils. This cover system must me adequately protected, maintained and repaired, as necessary.

The SSDS EC, specifically the blower located on the roof of the Golden Corral restaurant and part of the SSDS system, is the subject of this CMWP.

3. CORRECTIVE MEASURES

The 2022 Periodic Review Report (PRR) was due on March 31, 2022; however a two-month extension to May 31, 2022 was granted by the Department on April 2, 2022. During a site inspection on April 25, 2022, it was determined that the Golden Corral sub-slab depressurization system (SSDS) blower was not running. As a result, Pioneer retained a mechanical contractor to assess the blower to determine the reason for its failure. Due to difficulties reaching the new property owner, access to the system was not provided for this assessment until May 2022. Due to these issues, the DEC requested that a CMWP be submitted.

3.1 Corrective Measures - Implemented

The following CMs have occurred to address repairs for the Golden Corral SSDS identified during the annual Site inspection on April 25, 2022:

- A replacement blower motor (same make and model as original blower) was installed and made operational. The operation was confirmed by C & S on August 5, 2022. Following inspection, replacement, and installation of the new blower motor for the SSDS system, the system was started in general accordance with the SMP.
- The SSDS system at the Golden Corral facility was inspected on August 23, 2022 to confirm that sufficient negative pressure was achieved with the replacement blower. The magnehelic gauges located on the proximal and distal ends of the sub-slab extraction lateral indicated negative pressures of -1.5 inches water column at the proximal end (nearest the blower), and -0.15 inches water column at the distal (south) end of the lateral. These levels are comparable to the initial design readings, as recorded by Giles Engineering in January 2019, of the proximal gauge reading of -1.46 "wc and the distal end reading of -0.07 "wc. At those initial operational conditions, it was verified through pressure field extension testing that an adequate negative pressure was achieved beneath the entire building slab.

3.2 Corrective Measures - Planned

Also, as part of the CMWP, modifications to the existing SMP will include the following:

- Pioneer will continue weekly inspections of all SSDS systems associated with the site, including the system at the Golden Corral restaurant. These weekly inspections will be recorded on a field log that documents field observations and pressure differential readings taken from monitoring devices within each building.
- If abnormal readings are recorded during a weekly inspection of any of the SSDSs,

 C&S Companies
 Project No.: C81.016.001
 October 13, 2022
 Page 4

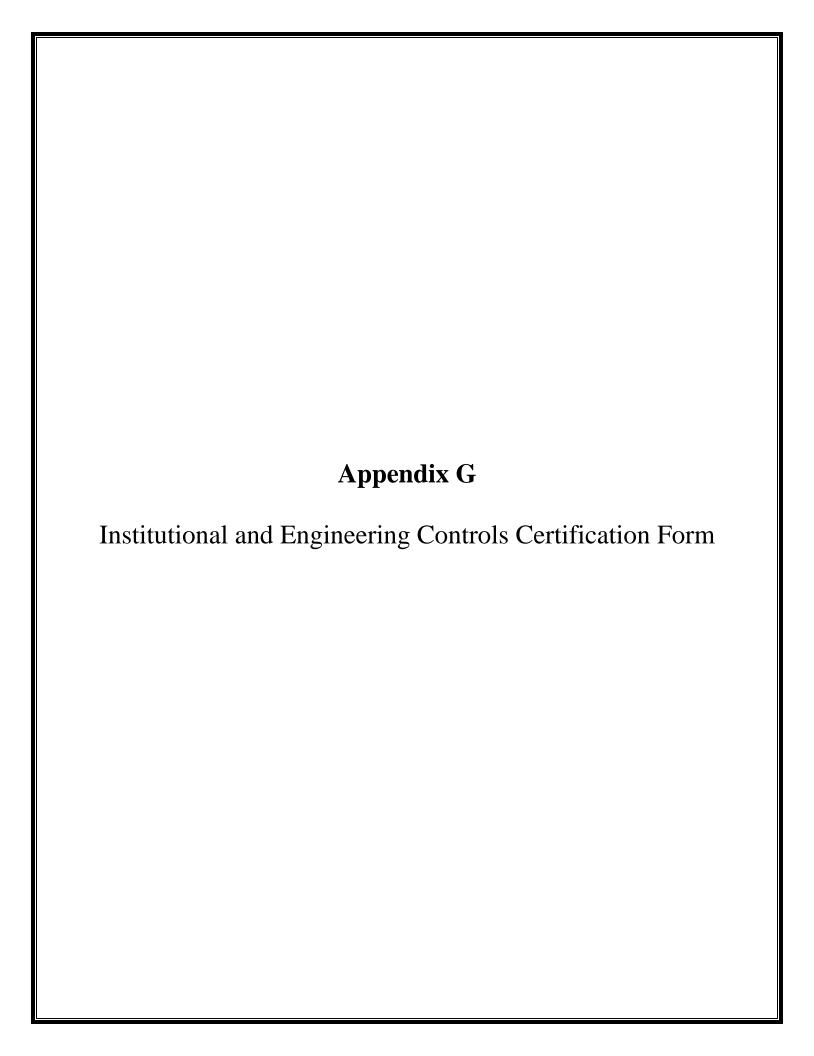
CORRECTIVE MEASURES WORK PLAN

NYSDEC and NYSDOH will be notified within 24-hours.

- If the design vacuum cannot be achieved, indoor air samples will be collected from the main floor of the affected Site building to verify the efficacy of the SSDS. The number and location of indoor air samples will be based upon the observed propagation by the system and reviewed with NYSDEC prior to conducting the sampling. Indoor air concentrations will be compared to the New York State Department of Health (NYSDOH) Guidance for Evaluating Soil Vapor Intrusion in the State of New York. If indoor air concentrations are reported below their respective Air Guideline Values, then no further action will be necessary. If indoor air concentrations exceed their respective Air Guideline Values, then additional assessment of the system will be conducted in coordination with NYSDEC.
- Following implementation of the CMs, a memorandum will be prepared and submitted to NYSDEC summarizing the activities and monitoring results, as applicable. Upon completion of the CMs, the Periodic Review Report will be resubmitted with certification.

 C&S Companies
 Project No.: C81.016.001
 October 13, 2022
 Page 5

4. **CERTIFICATION**


I, H. Nevin Bradford, certify that I am currently a NYS registered professional engineer and that this Corrective Measures Work Plan was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10).

Professional Engineer: H. Nevin Bradford, III, P.E.

Date: October 21, 2022

 C&S Companies
 Project No.: C81
 October 13, 2022
 Page 6

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

C #	o No	Site Details		Box 1		
	e No.	C734103				
Sit	e Name Mid	ller City Industrial Park				
Cit Co	y/Town: Syra	ndaga				
Re	porting Peri	od: March 01, 2019 to September 30, 2022				
				YES	NO	
1.	Is the inform	nation above correct?		X		
	If NO, includ	de handwritten above or on a separate sheet.				
2.		or all of the site property been sold, subdivided, merged, or undergo sendment during this Reporting Period?	ne a	X		
3.		een any change of use at the site during this Reporting Period RR 375-1.11(d))?			X	
4.	•	ederal, state, and/or local permits (e.g., building, discharge) been iss property during this Reporting Period?	sued		X	
		vered YES to questions 2 thru 4, include documentation or evid nentation has been previously submitted with this certification				
5.	Is the site c	urrently undergoing development?			X	
				Box 2		
				YES	NO	
6.		nt site use consistent with the use(s) listed below? I and Industrial		X		
7.	Are all ICs i	n place and functioning as designed?	X)			
	IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.					
A	A Corrective Measures Work Plan must be submitted along with this form to address these issues.					
Sic	ınature of Owi	ner, Remedial Party or Designated Representative	Date		_	

SITE NO. C734103 Box 3

Description of Institutional Controls

<u>Parcel</u> <u>Owner</u> <u>Institutional Controls</u>

033.1-01-01.3 Pioneer Midler Avenue, LLC Site Management Plan
Ground Water Use Restriction
Soil Management Plan

The Controlled Property may be used for commercial use as long as the following long-term engineering controls are employed:

- (i) compliance with the Department-approved Site Management Plan ("SMP") for the implemented remedy until the remedial goals for the Controlled Property are attained or deemed complete by the Department;
- (ii) maintenance at a minimum of a one foot cover system or a six inch pavement system or buildings over the Site and any disturbance of or excavation from the Site cover system at depths greater than the one foot shall be done in accordance of the requirements of the SMP;
- (iii) the groundwater beneath the Controlled Property cannot be used as a potable water source or for any other use without prior written permission of the Department and the pumping and discharge of groundwater to the waters of the State shall not be allowed without appropriate treatment and approval of the governing State, County or Municipal authority;
- (iv) continued groundwater monitoring in accordance with the SMP until the Department determines that such monitoring is unnecessary;
- (v) installation and maintenance in accordance with the standards and procedures specified in the SMP of subslab depressurization ("SSD") systems for all buildings and building additions to be constructed on the Site and the continued operation and maintenance in accordance with the SMP of those SSD systems already installed on the Site;

ParcelOwnerInstitutional Controls033.1-01-01.4SGC VIA TAVDI, LLCSite Management PlanGround Water Use Restriction
Soil Management Plan

The Controlled Property may be used for commercial use as long as the following long-term engineering controls are employed:

- (i) compliance with the Department-approved Site Management Plan ("SMP") for the implemented remedy until the remedial goals for the Controlled Property are attained or deemed complete by the Department;
- (ii) maintenance at a minimum of a one foot cover system or a six inch pavement system or buildings over the Site and any disturbance of or excavation from the Site cover system at depths greater than the one foot shall be done in accordance of the requirements of the SMP;
- (iii) the groundwater beneath the Controlled Property cannot be used as a potable water source or for any other use without prior written permission of the Department and the pumping and discharge of groundwater to the waters of the State shall not be allowed without appropriate treatment and approval of the governing State, County or Municipal authority;
- (iv) continued groundwater monitoring in accordance with the SMP until the Department determines that such monitoring is unnecessary;
- (v) installation and maintenance in accordance with the standards and procedures specified in the SMP of subslab depressurization ("SSD") systems for all buildings and building additions to be constructed on the Site and the continued operation and maintenance in accordance with the SMP of those SSD systems already installed on the Site;

Parcel 033.1-01-01.5 <u>Owner</u>

Pioneer Midler Avenue, LLC

Institutional Controls

Site Management Plan
Ground Water Use Restriction
Soil Management Plan

The Controlled Property may be used for commercial use as long as the following long-term engineering controls are employed:

- (i) compliance with the Department-approved Site Management Plan ("SMP") for the implemented remedy until the remedial goals for the Controlled Property are attained or deemed complete by the Department;
- (ii) maintenance at a minimum of a one foot cover system or a six inch pavement system or buildings over the Site and any disturbance of or excavation from the Site cover system at depths greater than the one foot shall be done in accordance of the requirements of the SMP;
- (iii) the groundwater beneath the Controlled Property cannot be used as a potable water source or for any other use without prior written permission of the Department and the pumping and discharge of groundwater to the waters of the State shall not be allowed without appropriate treatment and approval of the governing State, County or Municipal authority;
- (iv) continued groundwater monitoring in accordance with the SMP until the Department determines that such monitoring is unnecessary;
- (v) installation and maintenance in accordance with the standards and procedures specified in the SMP of subslab depressurization ("SSD") systems for all buildings and building additions to be constructed on the Site and the continued operation and maintenance in accordance with the SMP of those SSD systems already installed on the Site;

Parcel 033.1-01-01.6

<u>Owner</u>

Pioneer Midler Avenue, LLC

Institutional Controls

Site Management Plan Ground Water Use Restriction Soil Management Plan

The Controlled Property may be used for commercial use as long as the following long-term engineering controls are employed:

- (i) compliance with the Department-approved Site Management Plan ("SMP") for the implemented remedy until the remedial goals for the Controlled Property are attained or deemed complete by the Department;
- (ii) maintenance at a minimum of a one foot cover system or a six inch pavement system or buildings over the Site and any disturbance of or excavation from the Site cover system at depths greater than the one foot shall be done in accordance of the requirements of the SMP;
- (iii) the groundwater beneath the Controlled Property cannot be used as a potable water source or for any other use without prior written permission of the Department and the pumping and discharge of groundwater to the waters of the State shall not be allowed without appropriate treatment and approval of the governing State, County or Municipal authority;
- (iv) continued groundwater monitoring in accordance with the SMP until the Department determines that such monitoring is unnecessary;
- (v) installation and maintenance in accordance with the standards and procedures specified in the SMP of subslab depressurization ("SSD") systems for all buildings and building additions to be constructed on the Site and the continued operation and maintenance in accordance with the SMP of those SSD systems already installed on the Site;

Parcel 033.1-01-01.7

<u>Owner</u>

Pioneer Midler Avenue, LLC

Institutional Controls

Ground Water Use Restriction
Soil Management Plan
Site Management Plan

The Controlled Property may be used for commercial use as long as the following long-term engineering controls are employed:

- (i) compliance with the Department-approved Site Management Plan ("SMP") for the implemented remedy until the remedial goals for the Controlled Property are attained or deemed complete by the Department;
- (ii) maintenance at a minimum of a one foot cover system or a six inch pavement system or buildings over the Site and any disturbance of or excavation from the Site cover system at depths greater than the one foot shall be done in accordance of the requirements of the SMP;
- (iii) the groundwater beneath the Controlled Property cannot be used as a potable water source or for any other use without prior written permission of the Department and the pumping and discharge of groundwater to the waters of the State shall not be allowed without appropriate treatment and approval of the governing State, County or Municipal authority;
- (iv) continued groundwater monitoring in accordance with the SMP until the Department determines that such monitoring is unnecessary;
- (v) installation and maintenance in accordance with the standards and procedures specified in the SMP of subslab depressurization ("SSD") systems for all buildings and building additions to be constructed on the Site and the continued operation and maintenance in accordance with the SMP of those SSD systems already installed on the Site;

ParcelOwnerInstitutional Controls033.1-01-02.4Lowes Home Centers, Inc.Site Management PlanGround Water Use RestrictionSoil Management Plan

The Controlled Property may be used for commercial use as long as the following long-term engineering controls are employed:

- (i) compliance with the Department-approved Site Management Plan ("SMP") for the implemented remedy until the remedial goals for the Controlled Property are attained or deemed complete by the Department;
- (ii) maintenance at a minimum of a one foot cover system or a six inch pavement system or buildings over the Site and any disturbance of or excavation from the Site cover system at depths greater than the one foot shall be done in accordance of the requirements of the SMP;
- (iii) the groundwater beneath the Controlled Property cannot be used as a potable water source or for any other use without prior written permission of the Department and the pumping and discharge of groundwater to the waters of the State shall not be allowed without appropriate treatment and approval of the governing State. County or Municipal authority:
- (iv) continued groundwater monitoring in accordance with the SMP until the Department determines that such monitoring is unnecessary;
- (v) installation and maintenance in accordance with the standards and procedures specified in the SMP of subslab depressurization ("SSD") systems for all buildings and building additions to be constructed on the Site and the continued operation and maintenance in accordance with the SMP of those SSD systems already installed on the Site;

ParcelOwnerInstitutional Controls033.1-01-20.0Pioneer Midler Avenue, LLCSite Management PlanGround Water Use RestrictionSoil Management Plan

The Controlled Property may be used for commercial use as long as the following long-term engineering controls are employed:

- (i) compliance with the Department-approved Site Management Plan ("SMP") for the implemented remedy until the remedial goals for the Controlled Property are attained or deemed complete by the Department;
- (ii) maintenance at a minimum of a one foot cover system or a six inch pavement system or buildings over the Site and any disturbance of or excavation from the Site cover system at depths greater than the one foot shall be done in accordance of the requirements of the SMP; the groundwater beneath the Controlled Property cannot be used as a potable water source or for any other use without prior written permission of the Department and the pumping and discharge of groundwater to the waters of the State shall not be allowed without appropriate treatment and approval of the governing State, County or Municipal authority;
- (iii) continued groundwater monitoring in accordance with the SMP until the Department determines that such monitoring is unnecessary;
- (iv) installation and maintenance in accordance with the standards and procedures specified in the SMP of subslab depressurization ("SSD") systems for all buildings and building additions to be constructed on the Site and the continued operation and maintenance in accordance with the SMP of those SSD systems already installed on the Site;

Cover System

Box 4

Description of Engineering Controls

<u>Parcel</u> 033.1-01-01.3	Engineering Control Vapor Mitigation Cover System
033.1-01-01.4	Vapor Mitigation Cover System
033.1-01-01.5	Vapor Mitigation Cover System
033.1-01-01.6	Vapor Mitigation Cover System
033.1-01-01.7	Vapor Mitigation Cover System
033.1-01-02.4	Vapor Mitigation Cover System
033.1-01-20.0	Vapor Mitigation

_

	Box 5	
tion of,	and	
this ce	ertification epted	
YES	NO	
X		
f the		
artmen	t;	
oublic h	ealth and	
the		
n the		

1.	I certify by checking "YES" below that:					
	a) the Periodic Review report and all attachments were prepared under the direct reviewed by, the party making the Engineering Control certification;	ction of,	and			
	b) to the best of my knowledge and belief, the work and conclusions described in this cer are in accordance with the requirements of the site remedial program, and generally acce					
	engineering practices; and the information presented is accurate and compete.	YES	NO			
		X				
	For each Engineering control listed in Box 4, I certify by checking "YES" below that all confollowing statements are true:	of the				
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Dep	partment	;			
	(b) nothing has occurred that would impair the ability of such Control, to protect the environment;	public he	ealth and			
	(c) access to the site will continue to be provided to the Department, to evaluate remedy, including access to evaluate the continued maintenance of this Control;	the				
	(d) nothing has occurred that would constitute a violation or failure to comply wit Site Management Plan for this Control; and	h the				
	(e) if a financial assurance mechanism is required by the oversight document for mechanism remains valid and sufficient for its intended purpose established in the					
		YES	NO			
		X				
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.					
Α	Corrective Measures Work Plan must be submitted along with this form to address t	hese iss	ues.			
Si	ignature of Owner, Remedial Party or Designated Representative Date					

IC CERTIFICATIONS SITE NO. C734103

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Mark W Roney print name	at 333 U. Dadington 87- print business address	Syvacure NY13202
am certifying as Other		_(Owner or Remedial Party)
for the Site named in the Site Details S	ection of this form.	1//29/22
Signature of Owner, Remedial Party, o	r Designated Representative	Date

EC CERTIFICATIONS

Box 7

Qualified Environmental Professional Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

_I Wayne Randall	at C&S Engineers, Inc.	
print name	print business address	
am certifying as a Qualified Environmen	ntal Professional for the Pioneer Midler Avenue, LLC	
(Owner or Remedial Party)		
Wandel		
Signature Qualified Environmental P the Owner or Remedial Party, Renderir	·	