REMEDIAL INVESTIGATION REPORT

700 Outparcel

701 and 709 East Water Street Syracuse, New York

NYSDEC Brownfield Site No. C734111

October 14, 2013

Prepared For:

700 Out Parcel, LLC 505 East Fayette Street Syracuse, New York 13202

BDA Project #08921 5789 Widewaters Parkway DeWitt, New York 13214 Telephone: (315) 472-6980 Fax: (315) 472-3523

TABLE OF CONTENTS

1.4.1 Phase Environmental Site Assessment 3 1.4.2 Limited Phase Environmental Site Assessment 4 1.4.3 UST Closure and Supplemental Subsurface Investigation 4 1.4.4 Interim Remedial Measure 7 7 1.5.4 Recarderistics 7 1.5.1 Geography 7 1.5.2 Topography 7 1.5.2 Topography 7 1.5.3 Geology 7 1.5.4 Hydrology 9 9 9 9 9 9 9 9 9	SEC1	<u>rion</u>	<u>P4</u>	<u>AGE</u>
1.2 Remedial Investigation Objectives 2 1.3 Site Background and History 2 2 1.4 Property Environmental History 3 3 1.4 Phase I Environmental Site Assessment 3 3 1.4 2 Imited Phase I Environmental Site Assessment 4 4 1.4 1.4 Interim Remedial Measure 7 7 1.5 Area Characteristics 7 7 1.5 Geography 7 1.5 Geology 7 1.5 Hydrology 9 9 1.5 Hydrology 9 9 1.5 Hydrology 9 1.5 Hydrology 9 1.5 Field Investigations 11 2.1 Preliminary Site Reconnaissance 11 2.1 On-Site Subsurface Investigations 11 2.1 Off-site Investigations 11 2.1 Off-site Investigations 13 2.1 Groundwater Flow Directions 14 2.2 Media Not Investigated 15 2.2 Surface Soil Investigations 15 2.2 Surface Soil Investigations 15 2.2 Sample Delivery Group K1108291 and K1108314 17 3.2 Sample Delivery Group K1108291 and K1201142 20 3.4 Sample Delivery Group K1201165 22 2.5 Sample Delivery Group W1201165 22 2.5 3.5 Sample Delivery Group W1201165 2.5 2.5 3.5	1.0	INTR	ODUCTION	1
1.2 Remedial Investigation Objectives 2 1.3 Site Background and History 2 2 1.4 Property Environmental History 3 1.4.1 Phase I Environmental Site Assessment 3 1.4.2 Limited Phase I Environmental Site Assessment 4 4 1.4.3 UST Closure and Supplemental Subsurface Investigation 4 1.4.4 Interim Remedial Measure 7 7 1.5 Area Characteristics 7 7 1.5 Geography 7 1.5.2 Topography 7 1.5.3 Geology 7 1.5.4 Hydrology 9 7 1.5.4 Hydrology 9 9 1.5.4 Hydrology 9 9 1.5.4 Hydrology 9 1.5.4 Hydrology 9 1.5.1 Field Investigations 11 2.1.1 Preliminary Site Reconnaissance 11 2.1.2 On-Site Subsurface Investigations 11 2.1.3 Off-site Investigations 11 2.1.3 Off-site Investigations 11 2.1.4 Orn-Site Subsurface Investigations 13 2.1.4 Groundwater Flow Directions 14 2.2 Media Not Investigated 15 2.2.1 Surface Soil Investigations 15 2.2.2 Soil-Vapor 16 3.1 Sample Delivery Group K1108291 and K1108314 17 3.2 Sample Delivery Group K1108291 and K1201142 20 3.4 Sample Delivery Group K1201165 22 3.5 Sample Delivery Group W1201165 22 3.5 Sample Delivery Group W12011084 3.5		1.1	Site Location and Description	1
1.4 Property Environmental History. 3 1.4.1 Phase I Environmental Site Assessment				
1.4.1 Phase Environmental Site Assessment 3 1.4.2 Limited Phase II Environmental Site Assessment 4 1.4.3 UST Closure and Supplemental Subsurface Investigation 4 1.4.4 Interim Remedial Measure 7 1.5 Area Characteristics 7 7 1.5.1 Geography 7 1.5.2 Topography 7 1.5.2 Topography 7 1.5.3 Geology 7 1.5.4 Hydrology 7 1.5.4 Hydrology 9 9 9 9 9 9 9 9 9		1.3	Site Background and History	2
1.4.2 Limited Phase II Environmental Site Assessment		1.4		
1.4.3 UST Closure and Supplemental Subsurface Investigation				
1.4.4 Interim Remedial Measure				
1.5 Area Characteristics				
1.5.1 Geography		1 =		
1.5.2 Topography		1.5		
1.5.3 Geology			<u> </u>	
1.5.4 Hydrology			1 0 1 0	
2.0 REMEDIAL INVESTIGATION ACTIVITIES AND METHODOLOGIES 10 2.1 Field Investigations 11 2.1.1 Preliminary Site Reconnaissance 11 2.1.2 On-Site Subsurface Investigations 11 2.1.3 Off-site Investigations 13 2.1.4 Groundwater Flow Directions 14 2.2 Media Not Investigated 15 2.2.1 Surface Soil Investigations 15 2.2.2 Soil-Vapor 16 3.0 DATA USABILITY REVIEW 16 3.1 Sample Delivery Group K1108291 and K1108314 17 3.2 Sample Delivery Group K1108318 19 3.3 Sample Delivery Group K1201113 and K1201142 20 3.4 Sample Delivery Group K1201165 22 3.5 Sample Delivery Group O903011 23 3.6 Sample Delivery Group O903011 23 3.6 Sample Delivery Group O903019 25 4.0 SITE INVESTIGATION RESULTS 26 4.1 On-site Subsurface Soil Sample Results 26 4.1.1 On-site Subsurface Soil Sample Results 29 4.2 Groundwater Investigation Results 30 4.2.1 Results of On-site Groundwater Quality Sampling and Analysis 30 4.2.2 Results of Off-site and Property Boundary Groundwater Quality Sampling and Analysis 32 5.0 QUALITATIVE HUMAN AND ENVIRONMENTAL HEALTH EXPOSURE ASSESSMENT 34 5.1 Contaminant Identification 34 5.2 Exposure Assessment 36			\sim	
2.1 Field Investigations. 11 2.1.1 Preliminary Site Reconnaissance. 11 2.1.2 On-Site Subsurface Investigations 11 2.1.3 Off-site Investigations 13 2.1.4 Groundwater Flow Directions. 14 2.2 Media Not Investigated. 15 2.2.1 Surface Soil Investigations 15 2.2.2 Soil-Vapor 16 3.0 DATA USABILITY REVIEW 16 3.1 Sample Delivery Group K1108291 and K1108314 17 3.2 Sample Delivery Group K1201113 and K1201142 20 3.4 Sample Delivery Group K12011165 22 3.5 Sample Delivery Group P0903011 23 3.6 Sample Delivery Group 0903019 25 4.0 SITE INVESTIGATION RESULTS 26 4.1 On-site Subsurface Soil Sample Results 26 4.1.2 Off-site and Property Boundary Subsurface Soil Sample Results 29 4.2 Groundwater Investigation Results 26 4.1.2 Results of On-site Groundwater Quality Sampling and Analysis 30 4.2.1 <t< td=""><td></td><td></td><td></td><td></td></t<>				
2.1.1 Preliminary Site Reconnaissance	2.0	REM	EDIAL INVESTIGATION ACTIVITIES AND METHODOLOGIES	10
2.1.1 Preliminary Site Reconnaissance		2.1	Field Investigations	11
2.1.2 On-Site Subsurface Investigations				
2.1.4 Groundwater Flow Directions. 14 2.2 Media Not Investigated 15 2.2.1 Surface Soil Investigations 15 2.2.2 Soil-Vapor 16 3.1 Sample Delivery Group K1108291 and K1108314 17 3.2 Sample Delivery Group K1108318 19 3.3 Sample Delivery Group K1201113 and K1201142 20 3.4 Sample Delivery Group K1201115 22 3.5 Sample Delivery Group O903011 23 3.6 Sample Delivery Group O903011 23 3.6 Sample Delivery Group O903019 25 4.0 SITE INVESTIGATION RESULTS 26 4.1.1 On-site Subsurface Soil Sample Results 26 4.1.2 Off-site and Property Boundary Subsurface Soil Sample Results 26 4.1.2 Off-site and Property Boundary Groundwater Quality Sampling and Analysis 30 4.2.2 Results of Off-site and Property Boundary Groundwater Quality Sampling and Analysis 32 5.0 QUALITATIVE HUMAN AND ENVIRONMENTAL HEALTH EXPOSURE ASSESSMENT 34 5.1 Contaminant Identification 34 5.2 Exposure Assessment 36 36 36 36 36 36 36 3			· · · · · · · · · · · · · · · · · · ·	
2.2 Media Not Investigated			2.1.3 Off-site Investigations	13
2.2.1 Surface Soil Investigations 15 2.2.2 Soil-Vapor 16 3.0 DATA USABILITY REVIEW 16 3.1 Sample Delivery Group K1108291 and K1108314 17 3.2 Sample Delivery Group K1201113 and K1201142 20 3.4 Sample Delivery Group K1201165 22 3.5 Sample Delivery Group 0903011 23 3.6 Sample Delivery Group 0902127 and 0902135 24 3.7 Sample Delivery Group 0903019 25 4.0 SITE INVESTIGATION RESULTS 26 4.1.1 On-site Subsurface Soil Sample Results 26 4.1.2 Off-site and Property Boundary Subsurface Soil Sample Results 29 4.2 Groundwater Investigation Results 26 4.2.1 Results of On-site Groundwater Quality Sampling and Analysis 30 4.2.2 Results of Off-site and Property Boundary Groundwater Quality Sampling and Analysis 32 5.0 QUALITATIVE HUMAN AND ENVIRONMENTAL HEALTH EXPOSURE ASSESSMENT 34 5.1 Contaminant Identification 34 5.2 Exposure Assessment 36				
2.2.2 Soil-Vapor 16 3.0 DATA USABILITY REVIEW 16 3.1 Sample Delivery Group K1108291 and K1108314 17 3.2 Sample Delivery Group K1108318 19 3.3 Sample Delivery Group K1201113 and K1201142 20 3.4 Sample Delivery Group K1201165 22 3.5 Sample Delivery Group 0903011 23 3.6 Sample Delivery Group 0902127 and 0902135 24 3.7 Sample Delivery Group 0903019 25 4.0 SITE INVESTIGATION RESULTS 26 4.1.1 On-site Subsurface Soil Sample Results 26 4.1.2 Off-site and Property Boundary Subsurface Soil Sample Results 29 4.2 Groundwater Investigation Results 30 4.2.1 Results of On-site Groundwater Quality Sampling and Analysis 30 4.2.2 Results of Off-site and Property Boundary Groundwater Quality Sampling and Analysis 32 5.0 QUALITATIVE HUMAN AND ENVIRONMENTAL HEALTH EXPOSURE ASSESSMENT 34 5.1 Contaminant Identification 34 5.2 Exposure Assessment 36		2.2		
3.0 DATA USABILITY REVIEW				
3.1 Sample Delivery Group K1108291 and K1108314			2.2.2 Soil-Vapor	16
3.2 Sample Delivery Group K1108318 19 3.3 Sample Delivery Group K1201113 and K1201142 20 3.4 Sample Delivery Group K1201165 22 3.5 Sample Delivery Group 0903011 23 3.6 Sample Delivery Group 0902127 and 0902135 24 3.7 Sample Delivery Group 0903019 25 4.0 SITE INVESTIGATION RESULTS 26 4.1 On-site Subsurface Soil Sample Results 26 4.1.1 On-site Subsurface Soil Sample Results 26 4.1.2 Off-site and Property Boundary Subsurface Soil Sample Results 29 4.2 Groundwater Investigation Results 30 4.2.1 Results of On-site Groundwater Quality Sampling and Analysis 30 4.2.2 Results of Off-site and Property Boundary Groundwater Quality Sampling and Analysis 32 5.0 QUALITATIVE HUMAN AND ENVIRONMENTAL HEALTH EXPOSURE ASSESSMENT 34 5.1 Contaminant Identification 34 5.2 Exposure Assessment 36	3.0	DAT	A USABILITY REVIEW	16
3.2 Sample Delivery Group K1108318 19 3.3 Sample Delivery Group K1201113 and K1201142 20 3.4 Sample Delivery Group K1201165 22 3.5 Sample Delivery Group 0903011 23 3.6 Sample Delivery Group 0902127 and 0902135 24 3.7 Sample Delivery Group 0903019 25 4.0 SITE INVESTIGATION RESULTS 26 4.1 On-site Subsurface Soil Sample Results 26 4.1.1 On-site Subsurface Soil Sample Results 26 4.1.2 Off-site and Property Boundary Subsurface Soil Sample Results 29 4.2 Groundwater Investigation Results 30 4.2.1 Results of On-site Groundwater Quality Sampling and Analysis 30 4.2.2 Results of Off-site and Property Boundary Groundwater Quality Sampling and Analysis 32 5.0 QUALITATIVE HUMAN AND ENVIRONMENTAL HEALTH EXPOSURE ASSESSMENT 34 5.1 Contaminant Identification 34 5.2 Exposure Assessment 36		3.1	Sample Delivery Group K1108291 and K1108314	17
3.4 Sample Delivery Group 0903011 23 3.5 Sample Delivery Group 0902127 and 0902135 24 3.7 Sample Delivery Group 0903019 25 4.0 SITE INVESTIGATION RESULTS 26 4.1 Subsurface Soil Investigation Results 26 4.1.1 On-site Subsurface Soil Sample Results 26 4.1.2 Off-site and Property Boundary Subsurface Soil Sample Results 29 4.2 Groundwater Investigation Results 30 4.2.1 Results of On-site Groundwater Quality Sampling and Analysis 30 4.2.2 Results of Off-site and Property Boundary Groundwater Quality Sampling and Analysis 32 5.0 QUALITATIVE HUMAN AND ENVIRONMENTAL HEALTH EXPOSURE ASSESSMENT 34 5.1 Contaminant Identification 34 5.2 Exposure Assessment 36		3.2	Sample Delivery Group K1108318	19
3.5 Sample Delivery Group 0903011				
3.6 Sample Delivery Group 0902127 and 0902135 24 3.7 Sample Delivery Group 0903019 25 4.0 SITE INVESTIGATION RESULTS 26 4.1 Subsurface Soil Investigation Results 26 4.1.1 On-site Subsurface Soil Sample Results 26 4.1.2 Off-site and Property Boundary Subsurface Soil Sample Results 29 4.2 Groundwater Investigation Results 30 4.2.1 Results of On-site Groundwater Quality Sampling and Analysis 30 4.2.2 Results of Off-site and Property Boundary Groundwater Quality Sampling and Analysis 32 5.0 QUALITATIVE HUMAN AND ENVIRONMENTAL HEALTH EXPOSURE ASSESSMENT 34 5.1 Contaminant Identification 34 5.2 Exposure Assessment 36				
3.7 Sample Delivery Group 0903019				
4.0 SITE INVESTIGATION RESULTS				
4.1 Subsurface Soil Investigation Results		3.1	Sample Denvery Group 0903019	25
4.1.1 On-site Subsurface Soil Sample Results	4.0	SITE	INVESTIGATION RESULTS	26
4.1.2 Off-site and Property Boundary Subsurface Soil Sample Results		4.1	Subsurface Soil Investigation Results	26
4.2 Groundwater Investigation Results			4.1.1 On-site Subsurface Soil Sample Results	26
4.2.1 Results of On-site Groundwater Quality Sampling and Analysis			- · · · · · · · · · · · · · · · · · · ·	
4.2.2 Results of Off-site and Property Boundary Groundwater Quality Sampling and Analysis		4.2	Groundwater Investigation Results	30
and Analysis				
5.1 Contaminant Identification				
5.1 Contaminant Identification	5.0	OIIA		
5.2 Exposure Assessment	2.0	•		
•				

TABLE OF CONTENTS

6.0	CONTAMINANT FATE AND TRANSPORT			
	6.1	Contaminant Persistence	39	
	6.2	Contaminant Migration	39	
7.0	SITE	INVESTIGATION FINDINGS AND CONCLUSIONS	40	
	7.1	Subsurface Soil Investigation Findings	40	
	7.2	Subsurface Soil Investigation Conclusions		
	7.3	Groundwater Investigation Findings	41	
	7.4	Groundwater Investigation Conclusions		
	7.5	Remedial Alternatives Analysis		

- 1. Summary of On-Site Soil Sample Analysis VOCs
- 2. Summary of On-Site Soil Sample Analysis SVOCs
- 3. Summary of On-Site Soil Sample Analysis Metals
- 4. Summary of On-Site Soil Sample Analysis PCBs
- 5. Summary of Off-Site and Property Boundary Soil Sample Analysis VOCs
- 6. Summary of Off-Site and Property Boundary Soil Sample Analysis SVOCs
- 7. Summary of Off-Site and Property Boundary Soil Sample Analysis Metals
- 8. Summary of On-Site Groundwater Sample Analysis VOCs
- 9. Summary of On-Site Groundwater Sample Analysis SVOCs
- 10. Summary of On-Site Groundwater Sample Analysis Metals
- 11. Summary of Off-Site and Property Boundary Groundwater Sample Analysis VOCs
- 12. Summary of Off-Site and Property Boundary Groundwater Sample Analysis SVOCs
- 13. Summary of Off-Site and Property Boundary Groundwater Sample Analysis Metals
- 14. Summary of TPH Sample Analysis Data

FIGURES

- 1. Site Location Plan
- 2. Site Plan
- 3. Former UST & Remedial Excavation Limits
- 4. Prior Test Pit Locations & Results of Soil Sample Headspace Analyses
- 5. 2009 Groundwater Contour Plan
- 6. 2012 Groundwater Contour Plan
- 7. Subsurface Soil VOC/SVOC Concentration Map
- 8. Groundwater VOC/SVOC Concentration Map

ATTACHMENTS

- A. Test Pit and Boring Logs
- B. Monitoring Well Installation and Sampling Records
- C. Data Usability Summary Reports (provided on compact disk)
- D. Laboratory Analytical Reports (provided on compact disk)

October 14, 2013

Page 1

1.0 INTRODUCTION

1.1 Site Location and Description

The Property, currently owned by 700 Out Parcel, LLC, consists of two parcels of land totaling 0.43 acres located at the northeast corner of East Water and Almond Streets in the City of Syracuse, New York (see Figures 1 and 2). The parcels, which have addresses of 701 and 709 East Water Street, are identified by Tax Map Identification numbers 030.-14-01.0 (Parcel No. 1) and 030.-14-02.0 (Parcel No. 2), respectively. The site is bordered to the north by Erie Boulevard East, to the east by a commercial facility, to the south by East Water Street, and to the west by Almond Street.

The Property is currently flat with asphalt pavement covering approximately two-thirds of the surface.

October 14, 2013

Page 2

1.2 Remedial Investigation Objectives

The primary objective of the Remedial Investigation is to further characterize the extent of impacted soil and groundwater in specific areas both on and off the Property. Previous assessments and investigations conducted by Beardsley Design Associates (BDA) serve as the basis for conducting the Remedial Investigation activities as described in the following sections. The purpose of the Remedial Investigation activities is to further delineate the limits of impacted soil and groundwater that were identified during previous environmental investigations, and to assess the potential for off-site migration of contaminants from the Property.

The secondary objective of the Remedial Investigation is to obtain all necessary data to complete a Remedial Alternatives Analysis. The data obtained throughout the Remedial Investigations will be used to identify and screen remedial technologies such that a range of remedial alternatives that protect human health and the environment can be developed.

1.3 Site Background and History

As part of a December 1997 Phase I Environmental Site Assessment (ESA) of the property, C&H Engineers, P.C. reviewed historic records related to the Property and surrounding area in order to develop an understanding of previous site use and ownership. Detailed information regarding the property history was included within the Phase I ESA Report. The tables provided below reveal the approximate tenure of past occupants at the site, based on information reported in the 1997 Phase I ESA:

HISTORICAL OWNERSHIP				
Owner/Lessee	From	То		
The Market Manufacturing Co.	Unknown	12/30/1948		
Robert, Herbert & Zetta Market	12/30/1948	11/29/1962		
Shell Oil Company, Inc. (Lessee) ¹	6/1/1949	5/31/1964		
Marine Midland Trust Company (currently HSBC Bank USA, N.A.)	11/29/1962	2/9/1968		
701 East Washington Realty Corp.	2/9/1968	2/10/1968		
NYS Teachers' Retirement System	2/10/1968	12/31/1975		
Alpha Collateral, Ltd.	12/31/1975	2/9/1979		
NYS Teachers' Retirement System	2/09/1975	6/17/1981		
Tygate Towers, Inc.	6/17/1981	4/12/1983		
Charles Square, Ltd.	4/12/1983	8/4/1989		
700 Outparcel Corp.	8/4/1989	12/1997		
Swanson Fayette Associates, LLC ²	12/1997	4/2007		
700 Out Parcel, LLC ²	4/2007	Present		

¹ This entry in the Abstract of Title, describing the terms and conditions of said Lease, refers to "...gasoline filling and automobile service station equipment and apparatus..." including "4-1,000 gallon, 1-4,200 gallon, and 2-550 gallon underground storage tanks" on the property.

October 14, 2013

Page 3

HISTORICAL OCCUPANTS				
Occupant	From	То		
Kenneth Murdock Gasoline Service Station	1940	1942		
Warren Everson Gasoline Service Station	1943	1944		
Chas. Jones Gasoline Service Station	1945	1945		
Anton Zarachowicz Gasoline Service Station	1946	1946		
Anton Zarachowicz Gasoline Service Station and Daniel Morris	1947	1947		
Used Cars				
Anton Zarachowicz Gasoline Service Station and Fix Fred Used	1948	1949		
Cars				
Anton Zarachowicz Gasoline Service Station and Reynolds Motors,	1950	1952		
Inc.				
A.F. Zarach & Sons Gasoline Service Station and Reynolds	1953	1960		
Motors, Inc.				
George's Shell Gas Station	1961	1961		
George C. Macks, Inc. Gasoline Service Station and B&S Used	1962	1963		
Cars				
Ed and Bob's Shell Gasoline Service Station	1964	1964		
Shell Oil Company, Inc. (Lessee)	6/1/1949	5/31/1964		
Vacant	1964	2007		

1.4 Property Environmental History

The Property is known to have petroleum impacts, which were released to the subsurface from leaky underground storage tanks (USTs) and associated distribution lines of a former gasoline service station that operated at the site during the period 1949-1964. Upon discovery of petroleum-impacted soil, the New York State Department of Environmental Conservation (NYSDEC) Spill Hotline was called, and spill ID numbers 01-11549 and 06-10014 were assigned to the site.

1.4.1 Phase I Environmental Site Assessment

A Phase I Environmental Site Assessment of the Property was prepared for the City of Syracuse Industrial Development Agency by C&H Engineers, P.C. in December 1997. The ESA was prepared in accordance with ASTM Standard E1527-97, *Standard Practice for Environmental Site Assessments*. Based on the results of the Phase I ESA, C&H Engineers cited the following conclusions:

- 1. During the site reconnaissance, C & H Engineers observed two (2) holes in the asphalt surface at the Property which appeared to be UST fill ports.
- 2. The Abstract of Title and the Sanborn Fire Insurance Maps identified four (4) 1,000-gallons and one (1) 550-gallon UST at the site.
- 3. Historical records also indicated that the Property was a gasoline filling station from 1949 to 1964, which may have exposed the site to activities of environmental concern in addition to the presence of the USTs.

BDA#:08921

October 14, 2013

Page 4

1.4.2 Limited Phase II Environmental Site Assessment

A Limited Phase II Environmental Site Assessment was conducted at the Property in May 2002. The following conclusions were noted during the Phase II Environmental Site Assessment:

1. Four 2,000-gallon (approximate) USTs were encountered during the advancement of test pit TP-3. The backfill material surrounding the USTs, consisting of pea stone gravel, was determined to be significantly impacted. The backfill material was contained within an approximate 40-foot by 20-foot area. The surrounding native silt soils did not appear to be significantly impacted. Based on the information provided to the NYSDEC Spill Hotline, a spill file number (01-11549) was assigned to the Property.

Conclusion: Although some contamination of the adjacent native silt/glacial till material was expected, these types of soils exhibit minimal permeability, and as such, only limited contaminant migration beyond the backfill materials was anticipated. Since groundwater was not encountered during the exploratory excavations, however, the vertical extent of gasoline contaminated soils was unknown. It is also possible that some contaminant migration to the adjacent utility trench (gas main) backfill materials extending along the eastern side of Almond Street (western property boundary) may have

occurred. It is estimated that 400 to 500 cubic yards of contaminated backfill material and native soils existed in the vicinity of the gasoline USTs.

2. An approximate 550-gallon UST was encountered during the advancement of test pit TP-1. The UST, which had apparently been utilized for the storage of oil product, was found to be holding water. No staining, odors, or sheens were observed on the soils in the vicinity of the 550-gallon UST. Although parameter-specific concentrations of one VOC (acetone) and two SVOCs (fluoranthene and pyrene) were detected within the subsurface soil sample collected from the bottom of test pit TP-1, the concentrations did not exceed relative TAGM 4046 recommended soil cleanup objectives.

Conclusion: Potentially petroleum-impacted soils in the vicinity of the 550-gallon UST appeared to be limited to approximately 50 cubic yards.

1.4.3 UST Closure and Supplemental Subsurface Investigation

In November/December 2006 and March 2007, BDA performed a UST closure, soil remedial excavation activities, and supplemental subsurface investigation at the Property (see Figures 3 and 4). The site activities were performed in accordance with NYSDEC guidelines regarding UST removals and in general accordance with ASTM Standard E1903-97. The following conclusions were drawn from this investigation:

Site Subsurface Geology

Subsurface soil units underlying the Property were interpreted as:

BDA#:08921

October 14, 2013

Page 5

- 1. The basal soil unit (GC) that occurs at approximately 14.5-16 feet below grade surface (bgs) is interpreted as a highly compact, clay-rich gravelly lodgment till with a predicted very low hydraulic conductivity.
- 2. The middle soil units (lower ML, GP, upper ML, and Peat/ML) that occur at approximately 4-14 feet bgs are collectively interpreted as a glacio-lacustrine sequence of fine-grained lake deposits. The lower ML/GP subsequence is a coarsening-upward package possibly representing a small lake delta. This interpretation is consistent with the description of Pleistocene glacio-lacustrine deposits published on the Surficial Geologic Map of New York State (Cadwell and Pair 1991). Corresponding hydraulic conductivities of the peat and ML subunits are predicted to be low. However, the hydraulic conductivity of the GP subunit is predicted to be high and potentially capable of allowing subsurface petroleum impacts in soil and groundwater to migrate.

Gasoline UST Excavations

- 1. On December 4 and December 12, 2006, seven USTs were decommissioned and removed from the site. These USTs included:
 - Four 1,000-gallon gasoline USTs
 - Two 550-gallon USTs (one fuel oil and one waste oil)
 - One 4,200-gallon gasoline UST
- 2. Upon discovery of petroleum-impacted soil, the NYSDEC Spill Hotline was called by Seabird personnel on December 4, 2006 and spill ID #06-10014 was assigned to the Property.
- 3. Upon completion of post-excavation soil sampling and laboratory analysis, residual gasoline-impacted soil above NYSDEC guidance values persists along the north, east, and south sidewalls of the north excavation pit of the gasoline UST field.
- 4. The highest headspace concentrations of total volatile organic compounds (VOCs) in soil appear to be confined to the sand and gravel unit (GP) at approximately 10-12 feet bgs, with the exception of the footprints of petroleum releases in the upper silt and fine sand unit (ML) emanating from the gasoline USTs and associated distribution line piping. A total of approximately 1,810 tons of gasoline-impacted soil was excavated and stockpiled from these areas pending transport and disposal to a sanitary landfill. Mr. Richard Brazell of NYSDEC Region 7 granted 700 Out Parcel, LLC an extension for disposal of the stockpiled soil pending further investigation and remedial actions at the Property. Concentrations of residual gasoline-impacted soil remain on site, especially beneath the former distribution line piping along the eastern sidewall of the north excavation pit of the gasoline UST field.
- 5. Gasoline impacted soil extends to and potentially beyond the north property boundary.
- 6. Upon completion of post-excavation soil sampling and laboratory analysis within the south excavation pit of the gasoline UST field, no VOCs or semi-volatile organic compounds (SVOCs) were detected above NYSDEC guidance values.

BDA#:08921

October 14, 2013

Page 6

Fuel Oil UST Pit

1. Upon completion of post-excavation soil sampling and laboratory analysis, no concentrations of VOCs and SVOCs were detected above the laboratory detection limit or NYSDEC guidance values in the subsurface soil samples.

Waste Oil UST Pit

- 1. Upon completion of post-excavation soil sampling and laboratory analysis, concentrations of VOCs were detected in the sidewall composite and excavation bottom samples, but were well below the NYSDEC guidance values, with the exception of total xylenes detected in the sidewall composite sample above the NYSDEC guidance value.
- 2. Concentrations of SVOCs were detected in the sidewall composite sample, but were well below the NYSDEC guidance values. No concentrations of SVOCs were detected above the laboratory detection limit in the remaining subsurface soil samples.

Limited Subsurface Investigation

- 1. Photo-ionization detector (PID) measurements of soils excavated from 13 test pits advanced in the central and western portions of the site indicate that residual gasoline-impacted soil extends to and potentially beyond the northern property boundary. Gasoline-impacted soil extends to within 35 feet of the eastern property boundary and to the fence line at the southern and western property boundaries. Soil analytical results of samples collected from the south and west sidewalls within the former UST excavation indicate that contamination has not likely migrated off-site. However, based on test pit soil screening results, it is inconclusive whether or not petroleum subsurface impacts have migrated off-site to the south from on-site areas to the east of the former UST excavation.
- 2. An extensive area of elevated VOC concentrations in TP-1 (maximum of 1,439 ppm at 11 feet bgs), TP-2 (maximum of 1,732 ppm at 12.7 feet bgs), and TP-4 (maximum of 1,970 ppm at 12.5 feet bgs) located at the eastern portion of Parcel No. 1 suggests a source of petroleum contamination from former pump islands and distribution lines in this area.
- 3. An anomaly of elevated VOC concentrations in TP-11 located at the north-central portion of Parcel No. 2 (maximum of 2,000+ ppm at 10 feet bgs) suggests that there may be a secondary source of petroleum contamination in this area.
- 4. A section of concrete uncovered in the vicinity of TP-3 is believed to be a remnant of a former pump island, which suggests that former distribution line piping may have released petroleum to the subsurface from this area as well.
- 5. A section of former brick foundation and concrete footers uncovered in the vicinity of TP-11 and TP-12 is a potential remnant of a former automobile dealership and service center building, which is known to have existed concurrently on Parcel No. 2 during operations of the gasoline service station on Parcel No. 1.
- 6. A rectangular wooden subsurface structure with a wooden plank floor and localized visual evidence of congealed used motor oil beneath the wooden planks was uncovered in TP-13, which is believed to be a former automobile service pit for changing motor oil in vehicles. Although congealed used motor oil was observed, no headspace concentrations of total VOCs were detected in soil samples collected from this horizon, which may be indicative of degradation of SVOC constituents over an extended period of time.

BDA#:08921

October 14, 2013

Page 7

7. The extent of the VOC plume does not appear to have impacted the southeastern portion of Parcel No. 2 in the vicinity of TP-7, TP-8, TP-10, and TP-13. However, since the soils were merely screened for volatile vapors, SVOC and metals contaminants may exist within this area.

1.4.4 Interim Remedial Measure

Approximately 1,800 tons of contaminated soil was staged on-site during the removal of the former USTs (see Section 1.3.3). On May 14-16, 2008, these soils were removed from the site and disposed at a regulated landfill as an interim remedial measure.

1.5 Area Characteristics

1.5.1 Geography

The Property is located in an urbanized area on the near northeast side of downtown Syracuse (see Figure 1). The site is positioned immediately adjacent to the overpass interchange of Interstate Highways I-81 and I-690. At street level beneath the highways, the Property is located at the intersection of East Water Street and Almond Street. Onondaga Creek is the nearest water body located approximately 0.5 miles to the west.

1.5.2 Topography

A United States Geologic Survey (USGS) map of the area (Syracuse East, NY, Photo revised 1978) indicates that the site is at an elevation of approximately 405 feet. The topography of the landscape is generally flat with a gentle slope toward the west-southwest (see Figure 1).

1.5.3 Geology

Regional and Local Geology

The site is located near the border of two physiographic provinces within New York State known as the Erie-Ontario Plain to the north and the Allegheny Plateau to the south. The Erie-Ontario Plain slopes toward the north and represents the southern extension of the Lake Ontario drainage basin, while the northern margin of the Allegheny Plateau includes the Finger Lakes troughs. The geology of the area in which the site is located consists of bedrock and overburden deposits. Bedrock in Central New York is dominated by flat-lying Sulurian-age and Devonian-age sedimentary strata, which exhibit a regional southward dip of approximately 20 feet to 30 feet per mile.

The Onondaga Lake Valley is underlain by a soft shale known as the Vernon Formation. The Vernon Formation is overlain by the Syracuse and Camillus Formations. The Syracuse Formation consists of shales, dolostones, gypsum, and rock salt. The Camillus Formation consists of soft, dolomitic shales and thin, gypsiferous shales. Bedrock at the site consists of the Syracuse Formation.

The pre-glacial bedrock beneath the site was modified by overriding Pleistocene glaciers.

BDA#:08921 October 14, 2013

Page 8

Deepening of the Onondaga Valley by glacial ice, in a manner similar to that which formed the Finger Lakes and surrounding valleys, produced a bedrock basin extending below sea level. Glacial sculpting of the area has produced a pronounced north-northwest to south-southeast orientation of hills and valleys. This orientation is partly the result of erosion of the underlying bedrock by glacial ice and the deposition of glacial till into elliptical hills known as drumlins.

Till is typically a compact, unsorted, and poorly stratified mixture of sands, silt, clay, gravel, and boulders deposited by glacial ice. A layer of till generally 10 to 15 feet thick overlies bedrock in this area. During glacial retreat in the Onondaga Valley, pre-glacial drainage to the north was blocked by an ice front producing a proglacial lake in which significant quantities of glaciolacustrine sediments were deposited. Drainage in adjacent north-south valleys, to the east and west of the Onondaga Valley, were also blocked by the ice front producing a series of lakes standing against the ice.

As the level of the lakes rose, surface water flow was predominantly to the south, over relatively high spillways or to the east or west over inter-valley divides. The large volumes of melt-water from the ice, spilling from one basin to another, cut numerous east-west trending channels into the valley divides. With the decay of the ice, lower spillways opened resulting in drainage of the proglacial lakes and the establishment of the existing system of lakes and surface drainage in the area.

During the time the proglacial lakes existed, they accumulated large volumes of sediment washed out from the ice and from the channels crossing the valley divides. These sediments consist primarily of fine sand and silt. Gravel, sand, and clay, however, are also present in some locations. Surficial soil near the site, however, has been mapped as urban land, which consists of built-up areas that have been so altered or obscured by urban works and structures that specific identification of the soils is not feasible

Site Geology

During subsurface investigations conducted by BDA, native soil was classified using the Unified Soil Classification System (USCS) in general accordance with the American Society for Testing and Materials (ASTM) Standard D 2487-11. A generalized cross-section of the surficial geologic units encountered is summarized in the table below:

GENE	GENERALIZED CROSS-SECTION OF SUBSURFACE GEOLOGIC UNITS					
Depth (feet below ground surface)	USCS Unit Designation	Lithologic Description of Soil				
0-4	FILL	Asphalt/Macadam (0-0.5 feet) then FILL; Medium Gray-Brown				
	(GM/GC)	SILT; Some Clay and f-c Gravel; Little vf-c Sand (Slightly moist				
		Brick, concrete, and glass fragments present)				
4-6.0	PT/ML	PEAT with Dark Gray to Black SILT; Little vf-f Sand (Slightly				
	FILL	moist; Abundant wood, reeds, and organic matter)				
		Brick, concrete, and glass fragments present				
6.0-10	ML	Light Gray-Brown SILT and vf-f SAND with thin alternating				
		lenses of pure vf-m sand, silt, and clay (Moist; Laminations				

October 14, 2013

Page 9

GENE	GENERALIZED CROSS-SECTION OF SUBSURFACE GEOLOGIC UNITS					
Depth (feet below USCS Unit ground surface) Designation		Lithologic Description of Soil				
		and bedding present; Abundant root casts and decayed root matter; Localized clay intervals exhibit moderate plasticity)				
10-13	GP	Light Greenish Brown m-c SAND and f GRAVEL; Trace vf-f Sand (Very moist; Wet at approximately 10.5-11 feet; subangular to subrounded clasts)				
13-14.5	ML	Light Brown vf-f SAND; Some Silt and Clay (Wet; Sand, silt, and clay occurs in alternating thin beds and lenses)				
14.5-18	GM Reddish Brown f-m GRAVEL and SILT; Little clay and vf-c Sand (Slightly moist to dry; Very stiff and compact; Difficult digging with excavator)					

The subsurface soil units are interpreted as:

- The basal soil unit (GC) that occurs at approximately 14.5-16 feet bgs is interpreted as a highly compact, clay-rich gravelly lodgment till with a predicted very low hydraulic conductivity.
- The middle soil units (lower ML, GP, upper ML, and Peat/ML) that occur at approximately 4-14 feet bgs are collectively interpreted as a glacio-lacustrine sequence of fine-grained lake deposits. The lower ML/GP subsequence is a coarsening-upward package possibly representing of a small lake delta. This interpretation is consistent with the description of Pleistocene glacio-lacustrine deposits published on the Surficial Geologic Map of New York State (Cadwell and Pair 1991). Corresponding hydraulic conductivities of the peat and ML subunits are predicted to be low. However, the hydraulic conductivity of the GP subunit is predicted to be high and potentially capable of allowing subsurface petroleum impacts in soil and groundwater to migrate.

1.5.4 Hydrology

Regional and Local Hydrology

The site is situated within the 230-square-mile Onondaga Lake drainage basin and within the larger Eastern Oswego River drainage basin, which covers approximately 2,500 square miles. Surface water drains north from the Onondaga Lake drainage basin into the Seneca River, into the Oswego River, and finally into Lake Ontario. Surface water in the area of the site is influenced by Onondaga Lake and its tributaries. The tributary nearest to the site is Onondaga Creek, which is located approximately 0.8 miles west of the site (see Figure 1).

Onondaga Creek, which flows from south to north through the Onondaga Valley and the City of Syracuse into Onondaga Lake, drains a watershed of approximately 100 square miles and has an average annual flow rate of approximately 190 cubic feet per second, before it discharges into the south end of Onondaga Lake. Onondaga Creek has been relocated from its former discharge point, which was once located at the southeast corner of Onondaga Lake.

BDA#:08921

October 14, 2013

Page 10

The geology of the Onondaga Valley has a significant impact on the movement of groundwater in the valley and its tributaries. The pre-development groundwater flow patterns and water quality have been changed by construction projects, waste disposal, and groundwater pumping. Groundwater flow in Onondaga Valley and its tributaries is primarily driven by topography. Water flows from the valley divides into the surface and groundwater systems within each tributary valley. Surface and groundwater then flow towards Onondaga Lake. The flow patterns, velocities, and the groundwater/surface water ratio in each tributary valley are dependent on the local geologic conditions within each valley.

Site Hydrology and Groundwater Vulnerability

According to NYSDEC, groundwater beneath the site is classified as class GA groundwater. The site does not appear to directly overlie any aquifers and does not appear to be located near any primary or principal water supply aquifers as classified by NYSDEC. A surficial (unconfined) aquifer is located approximately six miles south of the site.

The approximate depth to groundwater, as measured during field activities, ranges from 7-14 feet. An interpretation of the topographic expression shown on the 1978 USGS 7.5-minute topographic map (Syracuse West Quadrangle) suggests that predicted groundwater flow beneath the Property is to the west-southwest. However, based on the findings of the remedial investigation the local groundwater has more of a south-easterly component than the topographic map would suggest (see Figure 5 and 6). In addition, local construction projects, subsurface utilities and, especially the former Erie Canal, are likely to have impacted site groundwater flow.

Groundwater vulnerability from contamination sources is defined as the tendency or likelihood for contaminants to reach a specified position in the groundwater system after introduction at some location above the uppermost aquifer. Since the City of Syracuse supplies public potable water throughout the entire city, properties in the vicinity of the Property are not used for the extraction of potable groundwater. Furthermore, there are no wellhead protection areas, groundwater recharge areas, residential wells, or commercial wells within a one-mile radius of the site. Therefore, the potential vulnerability of groundwater from hazardous substances or petroleum products dissolved in groundwater that emanate from the site is considered to be low. It is also important to note that it appears unlikely that the groundwater system in the vicinity of the Property will be used in the future as a potable groundwater supply.

2.0 REMEDIAL INVESTIGATION ACTIVITIES AND METHODOLOGIES

The Remedial Investigation was conducted in accordance with the September 2008 Remedial Investigation Work Plan which was approved by the NYSDEC. The primary tasks of the Remedial Investigation involved site characterization, which included activities to determine the nature and extent of contamination emanating from the Property. For this project, site characterization included:

- 1. The collection and assessment of existing data,
- 2. Subcontractor procurement,
- 3. Completion of field investigations,
- 4. Evaluation of data,

BDA#:08921

October 14, 2013

Page 11

- 5. Qualitative human and environmental health exposure assessment, and
- 6. Evaluation of fate and transport of contaminants.

2.1 Field Investigations

The following field investigations were completed as part of the Remedial Investigation to determine the nature and extent of contamination at the site.

2.1.1 Preliminary Site Reconnaissance

Several preliminary site reconnaissance events were completed in an effort to identify obvious areas of environmental concern, areas of concern identified in previous investigations, general site conditions, and mapping underground utility locations. Information gathered during the preliminary site reconnaissance was used to assist in the development of on and off-site subsurface investigations.

2.1.2 On-Site Subsurface Investigations

To further characterize the extent of impacted soil and groundwater throughout the Property, and to assess the potential for off-site migration of contaminants, a series of phased subsurface investigations were completed at the site. The location of test pits, soil borings, and monitoring wells are shown on Figures 7 and 8. Test pit and boring logs are located in Attachment A. Soil and groundwater samples collected during the investigation were analyzed for Target Compound List (TCL) Volatile Organic Compounds (VOCs), TCL Semi-Volatile Organic Compounds (SVOCs), and Target Analyte List (TAL) metals (including mercury and cyanide). An additional analysis was conducted on two soil samples for polychlorinated biphenyls and on three samples for Total Petroleum Hydrocarbons. Spill Technology and Remediation Series (STARs) list parameters were also analyzed for certain samples since the laboratory indicated that petroleum related compounds were noted during the preliminary analysis. Laboratory analytical reports are provided electronically in Attachment D.

Subsurface Test Pit Investigation

On August 22-24, 2011 personnel from BDA and Lyon Drilling, Inc. (Lyon) completed a subsurface test pit investigation at the Property.

Lyon excavated seventeen test pits utilizing a rubber tired backhoe. Test pits were advanced horizontally in lengths ranging from 6'-10' and to a depth of up to 13.5' bgs except, test pit TP-1 and TP-3 where collapsing backfill prevented advancement of the test pits. Soil conditions, odors, and soil vapor screening using a PID were noted for each excavation. Areas displaying stained soil conditions, odors, or high PID readings were carefully noted for each excavation. A soil sample was then collected from each test pit and placed in laboratory prepared containers were soils exhibited gross contamination or the highest PID readings. An additional soil sample was collected and placed in a glass container and sealed with aluminum foil. The soil sample was then allowed to heat to approximately 70° F and the container's headspace was screened using a PID. Ten additional miscellaneous soil samples were collected at locations chosen by BDA. The miscellaneous samples were collected from areas which were identified as having gross contamination or elevated PID readings outside of the gravel layer (i.e. near former fuel lines) or to

BDA#:08921

October 14, 2013

Page 12

verify that layers above the gravel layer were not contaminated.

After each sampling event occurred, the test pits were backfilled using excavated soils and/or clean backfill that was delivered to the Property. Excavated soils exhibiting characteristics of gross contamination (stains, odors, etc.) or PID readings above 50 parts per million (ppm) were staged on-site and covered with polyethylene sheeting for subsequent removal and disposal.

Removal of the staged soil was completed on August 30, 2012, in accordance with the NYSDEC approved Soil Pile Removal Work Plan.

On-Site Groundwater Investigation

On January 12, 13, and 17, 2012, personnel from BDA and Lyon mobilized to the site to complete two shallow groundwater monitoring well installations (MW-8 and MW-9) within the Property to assess the presence of potential shallow groundwater quality impacts at the site. Each of the subsurface monitoring well borings was completed using continuous split spoon sampling, consistent with ASTM D-1586-84, and advanced using a 4¼" inside diameter hollow stem auger without the use of air or drilling fluids. Continuous sampling was completed as a means to define the unconsolidated geology prior to boring advancement.

During the completion of shallow monitoring well borings, retrieved soil samples were field screened for the presence of volatile organic compounds using a PID. Each of the monitoring well installations was constructed of two-inch diameter PVC tri-lock jointed screen and riser, with locking caps. Consistent with the gravel, sand, and silt conditions identified at the site, each monitoring well was constructed using 10-slot (0.01-inch) well screens and "00-N" silica sandpack. Split spoons and down-hole apparatus/tools were decontaminated (triple wash rinse) between samples.

For each of the shallow wells, the screen interval was installed to "straddle" the perceived groundwater surface that was noted during the installation of the monitoring wells. A bentonite seal, at least 0.5 feet in thickness, was placed following the installation of the sand pack to minimize the potential downward communication (or short-circuiting) of infiltrating surface waters to the local shallow groundwater regime. The balance of the hole was backfilled with a cement/bentonite grout. The placement of annular material was coordinated with the withdrawal of augers or casing to minimize caving around the well screen and riser pipe. Annular material was placed in a manner to prevent bridging between riser and borehole. A vented flush-mount casing with a locking steel cap was installed to surround each PVC well location to maintain well integrity. Each of the monitoring wells was finished by installing a concrete cap. The void between each steel casing and PVC riser was filled with heavy grade sand to prevent invasion by rodents and insects.

Monitoring wells were developed and purged using an electric peristaltic pump and dedicated polyethylene tubing on January 16 and 18, 2012. During well development, turbidity readings were found to improve to values between 39.8-58.0 NTUs over the duration of well development. Further well development did not have a significant effect on turbidity.

Monitoring well installation logs completed by Lyon and sampling logs are provided in Attachment B.

BDA#:08921

October 14, 2013

Page 13

Groundwater samples were collected on January 19, 2012, from each monitoring well by means of an electric peristaltic pump and dedicated polyethylene tubing.

2.1.3 Off-site Investigations

The purpose of the off-site investigation activities was to identify the approximate nature and extent of off-site migration, of contaminants from the Property. The location of soil borings and monitoring wells are shown on Figure 7 and 8. Boring logs are located in Attachment A. Soil and groundwater samples collected during the investigation were analyzed for TCL VOCs, SVOCs, and TAL metals in accordance with NYSDEC Analytical Services Protocol. Select soil samples were also chosen to be analyzed for Total Petroleum Hydrocarbons. STARs list parameters were also analyzed for certain samples since the laboratory indicated that petroleum related compounds were noted during the preliminary analysis. Laboratory analytical reports are provided electronically in Attachment D.

East Water Street Subsurface Investigation

Prior to advancement of the exploratory subsurface borings on adjoining roadways, 700 Out Parcel, LLC, submitted written request to the City of Syracuse for permission to conduct the proposed exploratory subsurface borings on streets owned by the municipality. On February 26, 27, and March 2, 2009 Lyon advanced a total of ten soil borings near the centerline of East Water Street and the sidewalk on the southern border of East Water Street. Six groundwater monitoring wells were installed within certain borings chosen by BDA. Soil borings were advanced utilizing a 4½" hollow stem auger to a depth of 0.5-1.0 feet bgs through the asphalt roadway and gravel subbase. Borings were then advanced using hydraulic direct push methodologies. Soil samples were collected continuously in each boring using a 2-inch diameter macro-core sampling tube to subsurface depths ranging from 14-20 feet bgs. During the completion of subsurface borings at these locations soil conditions were recorded and soil samples were collected for field headspace analysis utilizing a PID. Samples were collected from each of the borings at depths that exhibited gross contamination and/or high PID readings.

Each of the temporary monitoring well installations were constructed of one-inch diameter PVC tri-lock jointed screen and riser, with locking caps. Consistent with the gravel, sand, and silt conditions identified at the site, each monitoring well was constructed using 10-slot (0.01-inch) well screens and sandpack.

Well screen intervals were placed at the chosen elevation due to depth of groundwater observed during the installation of the monitoring wells. For each of the shallow wells, the screen was installed to "straddle" the perceived groundwater surface. The temporary monitoring wells were developed and purged using an electric peristaltic pump and dedicated polyethylene tubing after installation. During well development efforts an attempt was made to reduce turbidity readings to 50 NTUs. Due to the fine nature of the silty soils encountered at a depth of ±10 feet, improvement of turbidity readings was generally limited to values between 111-641 NTUs.

Groundwater samples were collected from each monitoring well by means of an electric peristaltic pump and dedicated polyethylene tubing following development. The temporary monitoring wells were removed after sample collection and bore holes were filled with bentonite grout. No

BDA#:08921

October 14, 2013

Page 14

monitoring well construction logs were prepared for the temporary monitoring wells. The monitoring well sampling logs are provided in Attachment B.

Property Boundary Subsurface Investigation

On January 12, 13, and 17, 2012, a total of eight soil borings were advanced along the Property's boundary of Almond Street, Erie Boulevard, and the east adjoining property (U-Haul). Boring locations that were proposed on Almond Street and Erie Boulevard in the Remedial Investigation Work Plan were relocated along the property boundaries during this phase of the subsurface investigation to avoid significant delays related to obtaining permits from the City of Syracuse and New York State Department of Transportation. Four groundwater monitoring wells (MW-4 to MW-7) were installed within certain borings chosen by BDA in order to assess the presence of potential shallow groundwater quality impacts at the north, east, and west property boundaries. Each of the subsurface monitoring well borings was completed using continuous split spoon sampling, consistent with ASTM D-1586-84, and advanced using a 4½ inside diameter hollow stem auger without the use of air or drilling fluids. Soil borings were advanced using hydraulic direct push methodologies. Continuous sampling was completed to define the unconsolidated geology prior to boring advancement.

Soil samples were field screened for the presence of VOCs using a PID. Groundwater monitoring wells were constructed in a similar manner as those installed on the Property. See Section 2.1.2 for more information.

Monitoring wells were developed and purged using an electric peristaltic pump on January 16 and 18, 2012. During well development, turbidity readings were found to improve to values between 10.2-39.1 NTUs over the duration of well development. Further well development did not have a significant effect on turbidity. Well construction details completed by Lyon and sampling records are provided in Attachment B.

2.1.4 Groundwater Flow Directions

Monitoring well locations and elevations were surveyed by BDA relative to an assumed benchmark elevation to establish the horizontal location and elevation of the measuring point, so that depth to water measurements could be utilized to calculate site specific groundwater elevations, groundwater contours, and groundwater flow directions.

East Water Street Subsurface Investigation

On March 4, 2009, depths to groundwater were measured within each of the six East Water Street temporary monitoring wells. The depth to groundwater and calculated groundwater elevations for each of the temporary monitoring wells are summarized in the following table:

October 14, 2013

Page 15

SUMMARY OF GROUNDWATER DEPTH AND ELEVATION MEASUREMENTS MARCH 4, 2009						
Monitoring Well	Screen Interval (ft - bgs)	Surface Elevation (ft)	Depth to Water (ft)	Groundwater Elevation (ft)		
MW-1	9.8-19.8	97.32	13.56	83.76		
MW-2	4.8-14.8	97.33	11.35	85.98		
MW-3	4.6-14.6	97.25	9.10	88.15		
CMW-1	7.5-17.5	97.40	12.97	84.43		
CMW-2	4.9-14.9	97.22	10.73	86.49		
CSB/CMW-3	4.9-14.9	97.38	14.00	83.38		

As shown on Figure 5, shallow groundwater flow along East Water Street was calculated to trend towards the southeast with a hydraulic gradient of approximately 2.3 percent.

On-site and Property Boundary Subsurface Investigation

On January 19, 2012, depths to groundwater were measured within each of the four property boundary and two on-site monitoring wells. The depth to groundwater and calculated groundwater elevations for each of the monitoring wells are summarized in the following table:

SUMMARY OF GROUNDWATER DEPTH AND ELEVATION MEASUREMENTS JANUARY 19, 2012					
Monitoring Well	Screen Interval (ft - bgs)	Surface Elevation (ft)	Depth to Water from PVC Riser (ft)	Groundwater Elevation (ft)	
MW-4	7.53-17.53	98.95	8.86	89.66	
MW-5	7.18-17.18	100.18	7.02	92.93	
MW-6	7.01-17.01	100.35	7.05	92.89	
MW-7	9.54-19.54	100.19	13.39	86.56	
MW-8	7.32-17.32	100.08	11.11	88.75	
MW-9	5.49-15.49	99.95	13.30	86.24	

Shallow groundwater flow data collected in 2012 is consistent with data from 2009 and the groundwater flow direction trends towards the south and southeast with a hydraulic gradient of approximately 5.8 percent, as shown on Figure 6.

2.2 Media Not Investigated

2.2.1 Surface Soil Investigations

Collection and analysis of surface soils is not warranted at this site based upon the following reasons:

- The native surface soils within the underground storage tank removal excavation were removed and replaced with clean fill.
- A majority of the remainder of the site is currently covered with asphalt.

BDA#:08921

October 14, 2013

Page 16

- The planned redevelopment of the property will likely require excavation and removal of a vast majority of surface soils.
- Deed restrictions, covers, etc. can adequately address any surface soils remaining after site development excavations.

2.2.2 Soil-Vapor

A soil vapor evaluation will not occur until a later phase of the project since any buildings constructed on the site will include a soil vapor extraction system. The soil-vapor intrusion evaluation will be performed in accordance with New York State Department of Health requirements and procedures.

3.0 DATA USABILITY REVIEW

As part of the Remedial Investigation, media samples were collected from subsurface test pit excavations, subsurface borings, and groundwater monitoring wells. The collected groundwater and subsurface soil samples were analyzed for TCL or TAL parameters, in accordance with Environmental Protection Agency approved methodologies. For the samples collected for TCL and TAL parameter analysis, the project-specific analytical laboratory, Life Science Laboratories, Inc., provided analytical data reports in the form of NYSDEC Analytical Services Protocol Category B reportables/deliverables packages.

The analytical laboratory completed a review of the generated analytical data for compliance with Quality Control acceptance limits as specified in the applicable Analytical Services Protocol method for each analysis. The following Quality Control operations and items are considered in the validation of reported results: holding times; surrogate recovery; spiked sample recovery; duplicates/spike duplicate precision; tuning criteria; internal standard variation; continuing calibration variation; reference (check) sample recovery, and instrument, method, trip, and field blanks. The appropriate frequency for each operation is also considered.

Laboratory data was evaluated according to the quality assurance/quality control requirements of the NYSDEC Analytical Services Protocol, September 1989, Rev. 07/2005, and the cited method.

In an effort to provide adequate, compliant, and defensible data, consistent with NYSDEC guidance, analytical data generated as part of the site investigations was reviewed by DataVal, Inc. The results of the internal laboratory review, validation, and usability assessment are included within each delivery group of analytical data. The project Data Usability Summary Reports are provided electronically on compact disk in Attachment C. Additional copies of the project Analytical Data Reports and Data Usability Summary Reports are available upon request.

A vast majority of the data produced during the Remedial Investigation activities is considered technically defensible and completely usable in its present form. The rejected data was limited to:

• The 4-nitrophenol, pentachlorophenol, pyrene, 2,4-dinitrophenol, 3,3'-dichlorobenzidine, 4,6-dinitro-2-methylphenol, benzo (a) anthracene, benzo (a) pyrene, benzo (b) fluoranthene, benzo (g,h,i)-perylene, chrysene, flouranthene, hexachlorocyclopentadiene, indeno (1,2,3-cd)pyrene, and phenanthrene results from TP-1 (9-10) and TP-1 (9-10) FD have been rejected due to poor matrix spike recoveries.

BDA#:08921

October 14, 2013

Page 17

The methylcyclohexane result from sample SB-3 (8-12) has been rejected due to low matrix spike recoveries.

Data qualification information is included within the analytical data tables contained within Tables 1 through 14 of this report. The following sections contain a detailed summary of the qualified data results prepared by DataVal, Inc.

Sample Delivery Group K1108291 and K1108314 3.1

Soil samples collected from on-site test pits including the following and analyzed for VOCs, SVOCs, and inorganics:

•	TP-2 (12-13) TP-4 (8-9) FD TP-6 (4-5) TP-7 (11-12) TP-9 (10-12) TP-11 (6-8)
•	TP-13 (11-13)

•	TP-3 (8-10)
•	TP-5 (2-4)
•	TP-6 (12-13)
•	TP-8 (10-12)
_	TD 10 (2.4)

TP-12 (11-13) TP-14 (11-13)

VOCs

The positive acetone, methylene chloride, tert-butyl alcohol, and carbon disulfide results from this project are assumed to represent laboratory artifacts and should be considered undetected in this group of samples. Naphthalene concentrations below 8 ug/kg have been similarly qualified. It is noted that the acetone results from TP-10 (2-4) and TP-14 (2-3) have been qualified as estimations because they exceeded the range requiring qualifications.

Tetrachloroethene, tert-butyl alcohol, bromoform, trichloroethene, chloromethane, and vinyl chloride demonstrated unacceptable calibration performance. These analytes have been qualified as estimations in the associated samples.

The positive results reported from every sample except TP-3 (8-10), TP-5 (10-12), TP-10 (11-13.5) and TP-13 (11-13) have been qualified as estimations due to high surrogate standard recoveries.

The isopropylbenzene, n-propylbenzene, 1,1,2,2-tetrachloroethane, 1,3,5-trimethylbenzene, tert-butylbenzene, 1,2,4-trimethylbenzene, sec-butylbenzene, p-isopropyltoluene, 1,3dichlorobenzene, 1,4-dichlorobenzene, n-butylbenzene, 1,2-dichlorobenzene, 1,2-dibromo-3chloropropane, 1,2,4-trichlorobenzene and naphthalene results from TP-5 (2-4), TP-6 (4-5), TP-9 (2-4) and TP-10 (2-4); and the tetrachloroethene, dibromochloromethane, 1,2dibromoethane, chlorobenzene, ethylbenzene, total xylenes, styrene and bromoform results from TP-10 (2-4) have been qualified as estimations due to poor internal standard performance.

The 1,2-dibromo-3-chloropropane,1,3-dichlorobenzene, n-butylbenzene, bromoform, pisopropyltoluene, sec-butylbenzene and tertbutyl alcohol results from this sample group have

BDA#:08921

October 14, 2013

Page 18

been qualified as estimations due to low matrix spike recoveries. Positive 1,1,2-trichloroethane, 2-butanone, 2-hexanone, 4-methyl-2-pentanone, cyclohexane, ethylbenzene, isopropylbenzene, methyl acetate, methylcyclohexane, trichloroethene, and total xylenes results have been similarly qualified.

The identifications of toluene in TP-2 (12-13) and TP-4 (8-9) FD; n-butylbenzene in TP-11 (10-12), TP-12 (11-13), and TP-14 (11-13); and cyclohexane in TP-14 (2-3) were not conclusive based on the mass spectra references included in the raw data. These analytes should be interpreted as undetected in the affected samples.

The tentatively identified compounds (TIC) reported from this group of samples have been edited to provide more appropriate identifications.

SVOCs

Bis(2-ethylhexyl)phthalate and an Aldol Condensation Product were found in the method blanks associated with this group of samples. When present in samples, both should be interpreted as laboratory artifacts.

Pentachlorophenol and 2,4-dinitrophenol demonstrated poor calibration performance. These analytes have been flagged as estimations in the affected samples.

The positive acenaphtyhene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, carbazole, chrysene, phenanthrene and pyrene results, and all 4,6-dinitro-2- methyl phenol and fluoranthene results from this group of samples have been qualified as estimations due to unacceptable matrix spike recoveries. 2,4-Dinitrophenol and hexachlorocyclopentadiene results have been rejected.

The identifications of dibenz(a,h)anthracene in TP-4 (8-9), TP-9 (2-4) and TP-6 (4-5) were not conclusive based on the mass spectra references included in the raw data. Dibenz(a,h)anthracene should be considered undetected in these samples.

Several TIC identifications from this sample group were not conclusive, based on the mass spectra references included in the raw data. Where necessary, TIC reports have been edited to reflect more appropriate identifications.

Inorganics

The selenium results reported from TP-2 (12-13), TP-3 (8-10), TP-4 (8-9), TP-4 (8-9) FD, TP-5 (2-4), TP-5 (10-12), TP-6 (4-5), TP-6 (12-13), TP-7 (8-9), TP-7 (11-12), TP-8 (10-12), TP-9 (2-4), TP-10 (10-12), TP-10 (2-4), TP-10 (11-13.5), TP-11 (6-8), and TP-11 (10-12) have been qualified as estimations due to a low CRDL recovery.

The antimony, lead, and sodium results from this sample delivery group have been qualified as estimations due to poor matrix spike performance.

BDA#:08921 October 14, 2013

Page 19

3.2 Sample Delivery Group K1108318

Soil samples collected from on-site test pits including the following and analyzed for VOCs, SVOCs, and inorganics:

T-1 (6-8)TP-15 (11-13)

TP-1 (9-10TP-16 (6-8)

TP-1 (9-10) FDTP-16 (11-13)

• TP-16 (11-13),

• TP-17 (6-8)

• TP-17 (11-13)

VOCs

The positive acetone, methylene chloride, tert-butyl alcohol, and carbon disulfide results are assumed to represent laboratory artifacts and should be considered undetected in this group of samples.

Chloromethane, vinyl chloride, and trichloroethene demonstrated unacceptable calibration performance. These analytes have been qualified as estimations.

The positive results reported from TP-1 (9-10) and TP-1 (9-10) FD have been qualified as estimations due to high surrogate standard recoveries.

The methylene chloride results from this project and the n-propylbenzene concentration from TP-1 (9-10) FD have been qualified as estimations due to poor spiked sample recoveries.

The tentatively identified compounds reported from TP-1 (9-10) and TP-1 (9-10) FD have been edited to provide more appropriate identifications.

SVOCs

Bis (2-ethylhexyl) phthalate and an Adol Concentration Product were found in the method blank associated with this sample group. When present in the samples, both should be interpreted as laboratory artifacts.

Pentachlorophenol and 2,4-dinitrophenol demonstrated poor calibration performance. These analytes have been noted at estimations in the affected samples.

The 4-nitrophenol, pentachlorophenol, pyrene, 2,4-dinitrophenol, 3,3'-dichlorobenzidine, 4,6-dinitro-2-methylphenol, benzo (a) anthracene, benzo (a) pyrene, benzo (b) fluoranthene, benzo (g,h,i)-perylene, chrysene, flouranthene, hexachlorocyclopentadiene, indeno (1,2,3-cd)pyrene, and phenanthrene results from TP-1 (9-10) and TP-1 (9-10) FD have been rejected due to poor matrix spike recoveries. These analytes have been qualified as estimations in the remaining samples.

The identification of dibenz (a,h) anthracene in TP-15 (11-13) and TP-1 (9-10) FD; and benzo (a) anthracene in TP-17 (11-13) were not conclusive based on mass spectra references included in the raw data. Dibenz (a,h) anthracene and benzo (a) anthracene should be considered undetected in the affected samples.

BDA#:08921

October 14, 2013

Page 20

Several TIC identifications from this sample group were not conclusive, based on the mass spectra references included in the raw data. Where necessary, TIC reports have been edited to reflect more appropriate identifications.

Inorganics

The selenium results reported from this project have been qualified as estimations due to low CRDL recovery.

The antimony, barium, lead, and zinc results for this delivery group have been qualified as estimations due to poor matrix spike performance.

Calcium and sodium results have been qualified as estimations due to large differences in the results obtained from field split duplicate samples.

3.3 Sample Delivery Group K1201113 and K1201142

Subsurface soil samples collected from subsurface borings at the Property and along the property boundary including the following which were analyzed for VOCs, SVOCs, and inorganics.

_	MW-4	(O 1 O)
•	1\/1\\\/\	18-171

- MW-5 (8-12)
- MW-5 (8-12) FD

- MW-6 (8-12)
- MW-7 (8-12)
- MW-8 (8-12)

- MW-9 (12-14.5)
- SB-4 (8-12)
- SB-5 (12-14.7)

- SB-6 (8-12)
- SB-7 (8-12)

VOCs

The tert-butyl alcohol results from MW-9 (12-14.5), MW-8 (8-12), MW-4(8-12), SB-7 (8-12), SB-6 (8-12), SB-5 (12-14.7) and SB-4 (8-12); the methyl acetate and 1,1,2,2-tetrachloroethane results from MW-8 (8-12) and SB-5 (12-14.7); and the trichloroethene results from this group of samples have been qualified as estimations due to poor calibration performance.

The positive results reported from MW-6 (8-12), MW-5 (8-12), MW5 (8-12) FD, MW-4 (8-12) and SB-4 (8-12) have been qualified as estimations due to high surrogate standard recoveries.

The 1,2,4-trimethybenzene, methylcyclohexane and tert-butyl alcohol results from this group of samples have been qualified as estimations due to unacceptable spiked sample and spiked blank recoveries.

The n-butylbenzene results from MW-6 (8-12) and SB-6 (8-12); the ethylbenzene results from MW-5 (8-12) FD and MW-8 (8-12); the xylene result from SB-4 (8-12); and the 1,2,4-trimethylbenzene, naphthalene, methylcyclohexane and p-isopropyltoluene results from MW-4 (8-12) should be interpreted as undetected. These identifications could not be confirmed using the mass spectra references included in the raw data.

BEARDSLEY DESIGN ASSOCIATES

BDA#:08921

October 14, 2013

Page 21

The tentatively identified compounds reported from every sample except MW-7 (8-12) have been edited to provide identifications that were more appropriate.

The cyclohexane and methylcyclohexane concentrations reported from SB-4 (8-12) have been qualified as estimations because the measurements exceeded the range of calibration.

The n-butylbenzene, n-propylbenzene and naphthalene results from SB-5 (12-14.7), and the p-isopropyltoluene, sec-butylbenzene and tert-butylbenzene results from MW-8 (8-12) and SB-5 (12-14.7) have been qualified as estimations because similar artifacts were found in the associated blanks.

SVOCs

When present in samples, bis(2-ethylhexyl)phthalate and di-nbutylphthalate are assumed to represent laboratory artifacts. Both phthalates should be considered undetected in this delivery group.

An Aldol Condensation Product and 1,1,2,2-tetrachloroethane have been removed from each TIC report because similar artifacts were found in the method blank. When present, an unidentified organic acid has also been removed.

The identifications of benzo(a)anthracene in MW-9 (12-14.5) and naphthalene in MW-4 (8-12) were not conclusive based on the mass spectra references included in the raw data. Both should be considered undetected.

Several TIC identifications from this group of samples were not conclusive, based on mass spectra references included in the raw data. Where necessary, TIC reports have been edited to reflect more appropriate identifications.

Inorganics

No significant findings were noted.

Petroleum Scan

Subsurface soil samples collected from property boundary including samples MW-4 (8-12) and MW-5 (8-12).

In addition to the mineral spirits concentrations noted in both samples, MW-5 (8-12) may also contain a measurable concentration of mineral oil, or another product with a similar boiling point range.

BDA#:08921 October 14, 2013

Page 22

3.4 Sample Delivery Group K1201165

Groundwater samples collected from monitoring wells at the Property and along the property boundaries including the following and analyzed for VOCs, SVOCs, and Inorganics.

• MW-4

• MW-4 FD

• MW-5

• MW-6

• MW-7

• MW-8

• MW-9

VOCs

The bromomethane, 1,1,2,2-tetrachloroethane, trichloroethene, and tert-butyl alcohol results from this sample delivery group have been qualified as estimations due to poor calibration performance.

The 2-butanone concentration from MW-7 has been qualified as an estimation based on a high surrogate standard recovery.

The methylcyclohexane concentrations from MW-8, MW-5, and MW-9, and the 2-butanone concentration from MW-7 have been qualified as estimations due to high spiked sample recoveries.

The ethylbenzene results from MW-4 and MW-4FD, and the toluene result from MW-9 should be interpreted as undetected. These identifications could not be confirmed using the mass spectra references included in the raw data.

The TICs reported from every sample except MW-6 and MW-7 have been edited to provide identifications that were more appropriate.

SVOCs

When present in samples, bis(2-ethylhexyl)phthalate and butyl benzyl phthalate are assumed to represent laboratory artifacts. Both phthalates should be considered undetected in this group of samples.

When present, an Aldol Condensation Product and an unidentified acid have been removed from TIC reports because similar artifacts were found in the method blank.

The identifications of 2,4-dimethylphenol in MW-8, and 4- nitrophenol and acenapthene in MW-4 FD were not conclusive based on the mass spectra references included in the raw data. Each should be considered undetected.

Several TIC identifications from this sample group were not conclusive, based on mass spectra references included in the raw data. Where necessary, TIC reports have been edited to reflect more appropriate identifications.

Several targeted VOC analytes were reported as tentatively identified compounds in this

BDA#:08921

October 14, 2013

Page 23

group of samples. When present they have been removed.

Inorganics

The aluminum, chromium, cobalt, lead, potassium, and thallium results from this project have been qualified as estimations due to poor serial dilution recoveries.

3.5 Sample Delivery Group 0903011

Soil samples collected from subsurface borings along East Water Street including the following and analyzed for VOCs, SVOCs, and inorganics:

• CMW-1 (12-16)

• CMW-2 (12-14.5)

CSB/CMW-3 (4-8)

• CSB-4 (12-13.8)

VOCs

The positive carbon disulfide result from CSB/CMW-3 (4-8) is assumed to represent a laboratory artifact and should be considered undetected.

The trichloroethene results from this sample group have been qualified as estimations due to poor calibration performance.

The positive analyte results reported from CSB/CMW-3 (4-8) have been qualified as estimations due to high surrogate recoveries.

The tentatively identified compounds reported from this group of samples have been edited, where necessary, to provide more appropriate identifications.

SVOCs

An Aldol Condensation Product was found in the method blank associated with this project. When present in samples, this analyte should be interpreted as a laboratory artifact.

The bis(2-ethylhexyl)phthalate concentration reported from CSB/CMW-3 (4-8) is assumed to represent a laboratory artifact. This phthalate should be considered undetected in the affected sample.

Several TIC identifications from CSB/CMW-3 (4-8) were not conclusive, based on the mass spectra references included in the raw data. Where necessary, the TIC report has been edited to reflect more appropriate identifications.

Inorganics

No significant findings were noted.

BDA#:08921 October 14, 2013

Page 24

Petroleum Scan

Subsurface soil sample collected along East Water Street at boring CMW-1 (12-16).

The #6 fuel oil result from CMW-1 (12-16) has been qualified as an estimation due to poor calibration performance.

3.6 Sample Delivery Group 0902127 and 0902135

Groundwater and soil samples collected from temporary monitoring wells and subsurface borings along East Water Street including the following and analyzed for VOCs, SVOCs, and inorganics:

• MW-1

• MW-2

• MW-3

• MW-1 (16-20)

• MW-2 (8-12)

• MW-3 (8-12)

• SB-1 (12-14)

• SB-2 (8-12)

• SB-3 (8-12)

VOCs

The positive carbon disulfide results from this project are assumed to represent laboratory artifacts and should be considered undetected in this group of samples. The trichloroethene (TCE) results from this project have been qualified as estimations due to poor calibration performance.

The positive results from SB-1 (12-14) have been qualified as estimations due to a high surrogate standard recovery.

The methylcyclohexane result from SB-3 has been rejected due to low matrix spike recoveries.

The Tentatively Identified Compounds (TIC) reported from this group of samples have been edited, where necessary, to provide more appropriate identifications.

SVOCs

Bis(2-ethylhexyl)phthalate, di-n-butylphthalate, and an Aldol Condensation Product were found in the method blanks associated with this project. When present in samples, these analytes should be interpreted as laboratory artifacts.

Hexachlorocyclopentadiene and 2,4-dinitrophenol demonstrated poor calibration performance. These analytes have been flagged as estimations in MW-2 and MW-3.

The 3,3'-dichlorobenzidine results from MW-2 and MW-3 have been qualified as estimations due to a poor spiked blank recovery.

The identifications of benzo[a]anthracene in SB-1 (12-14) and nitrobenzene in MW-2 were not conclusive based on the mass spectra references included in the raw data. Benzo[a]anthracene and nitrobenzene should be considered undetected in these

BDA#:08921

October 14, 2013

Page 25

samples.

Several TIC identifications from MW-2 were not conclusive, based on the mass spectra references included in the raw data. Where necessary, the TIC report has been edited to reflect more appropriate identifications.

Inorganics

The antimony results from this project have been qualified as estimations due to the poor matrix spike performance.

The iron results from this group of samples have been qualified as estimations due to poor serial dilution performance.

3.7 Sample Delivery Group 0903019

Groundwater samples collected from temporary monitoring wells located along East Water Street including the following and analyzed for VOCs, SVOCs, and inorganics:

• CMW-1 • CMW-1 FD • CMW-2

VOCs

The carbon disulfide concentrations present in this group of samples are assumed to represent laboratory artifacts and should be considered undetected.

The trichloroethene results from this project have been qualified as estimations due to poor calibration performance.

The TICs reported from this group of samples have been edited, where necessary, to provide more appropriate identifications.

SVOCs

Bis(2-ethylhexyl)phthalate, di-n-butylphthalate and an TIC eluting at 8.18 minutes were found in the method blank associated with this project. When present in samples, these analytes should be interpreted as laboratory artifacts.

The identification of benzo[a]anthracene in each program sample, and bis(2-ethylhexyl)phthalate in CMW-1 were not conclusive based on the mass spectra references included in the raw data. Benzo[a]anthracene and bis(2-ethylhexyl)phthalate should be considered undetected in the affected samples.

Several TIC identifications from CMW-1 and CMW-1FD were not conclusive, based on the mass spectra references included in the raw data. Where necessary, the TIC reports have been edited to reflect more appropriate identifications.

BDA#:08921

October 14, 2013

Page 26

Inorganics

The potassium results from this project have been qualified as estimations due to poor matrix spike and serial dilution performance.

The aluminum, chromium, copper, iron, lead and zinc results from this project have been qualified as estimations due to poor precision in the analysis of field split duplicate samples.

4.0 SITE INVESTIGATION RESULTS

The results of the Remedial Investigations are described in the following Report sections. Laboratory analytical reports are provided electronically on compact disk in Attachment D.

4.1 Subsurface Soil Investigation Results

Soil analytical results were compared to the NYSDEC Environmental Remediation Programs 6 NYCRR Part 375-6 Unrestricted Use and Commercial Use soil cleanup objectives (SCOs).

4.1.1 On-site Subsurface Soil Sample Results

During the completion of the Remedial Investigation, seventeen test pit excavations and two subsurface borings were completed on the Property. Petroleum staining and/or olfactory evidence of contamination was observed in all on-site test pits and borings, except: TP-15, TP-16, and TP-17. Headspace organic volatile readings ranged from 0.0 to 2,789 ppm. The results of the headspace analysis for every sample are provided in the test pit/boring logs (see Attachment A).

A total of 27 soil samples were collected from on-site test pits and two soil samples were collected from the on-site subsurface borings. No VOCs were detected in on-site soils in excess of the Commercial Use SCOs. The VOCs detected in excess of the Unrestricted Use SCOs within site soils include:

- 1,2,4-Trimethylbenzene (1 sample)
- Acetone (3 samples)
- Xylene (total) (5 samples)

SVOCs detected in excess of the Unrestricted Use SCOs within site soils include:

- Acenaphthene (1 sample)
- Benzo (a) anthracene (8 samples)
- Benzo (b) fluoranthene (7 samples)
- Benzo (k) fluoranthene (8 samples)
- Benzo (a) pyrene (7 Samples)
- Benzo(g,h,i)perylene (1 sample)
- Chrysene (7 samples)

- Dibenz (a,h) anthracene (3 samples)
- Fluoranthene (1 sample)
- Fluorene (1 sample)
- Indo (1,2,3 cd) pyrene (6 samples)
- Naphthalene (1 sample)
- Phenanthrene (1 sample)
- Pyrene (1 sample)

BDA#:08921 October 14, 2013

Page 27

SVOCs detected in excess of the Commercial Use SCOs within site soils include:

- Benzo (a) anthracene (2 samples)
- Benzo (a) pyrene (7 Samples)
- Benzo (b) fluoranthene (4 samples)
- Benzo (k) fluoranthene (1 samples)
- Chrysene (1 sample)
- Dibenz (a,h) anthracene (2 samples)
- Indo (1,2,3 cd) pyrene (2 samples)

VOCs and SVOCs compounds detected in excess of the Unrestricted and Commercial Use SCOs within on-site subsurface soils (see Tables 1 and 2) include:

ON-SITE SOIL SAMPLE ANALYTICAL DATA SUMMARY OF VOC AND SVOC DETECTED IN EXCESS OF SOIL CLEANUP OBJECTIVES						
Sample ID	Parameter	Unrestricted SCO (ug/kg)	Commercial SCO (ug/kg)	Detected* Concentration (ug/kg)		
Test Pit Invest	Test Pit Investigation					
TP-1 (9-10)	Benzo(k)fluoranthene	800	56,000	2,400		
TP-1 (9-10) FD	Benzo(k)fluoranthene	800	56,000	2,600		
TP-2 (12-13)	Xylene (total)	260	500,000	430		
	Benzo(a)anthracene	1,000	5,600	1,000		
TP-4 (8-9)	Xylene (total)	260	500,000	540		
TP-4 (8-9) FD	Xylene (total)	260	500,000	460		
TP-5 (2-4)	Benzo(a)anthracene	1,000	5,600	1,600		
	Benzo(a)pyrene	1,000	1,000	1,300		
	Benzo(b)fluoranthene	1,000	5,600	1,700		
	Chrysene	1,000	56,000	1,500		
	Dibenz(a,h)anthracene	330	560	460		
TP-6 (4-5)	Acenaphthene	20,000	500,000	30,000		
	Benzo(a)anthracene	1,000	5,600	210,000		
	Benzo(a)pyrene	1,000	1,000	180,00		
	Benzo(b)fluoranthene	1,000	5,600	250,000		
	Benzo(g,h,i)perylene	100,000	500,000	110,000		
	Benzo(k)fluoranthene	800	56,000	76,000		
	Chrysene	1,000	56,000	210,000		
	Fluoranthene	100,000	500,000	430,000		
	Fluorene	30,000	500,000	34,000		
	Indeno(1,2,3-cd)pyrene	500	5,600	70,000		
	Naphthalene	12,000	500,000	16,000		
	Phenanthrene	100,000	500,000	430,000		
	Pyrene	100,000	500,000	440,000		
TP-7 (11-12)	Xylene (total)	260	500,000	280		
TP-9 (2-4)	Benzo(a)anthracene	1,000	5,600	2,900		
	Benzo(a)pyrene	1,000	1,000	4,000		
	Benzo(b)fluoranthene	1,000	5,600	5,200		
	Benzo(k)fluoranthene	800	56,000	1,700		

BEARDSLEY DESIGN ASSOCIATES

October 14, 2013

Page 28

ON-SITE SOIL SAMPLE ANALYTICAL DATA SUMMARY OF VOC AND SVOC DETECTED IN EXCESS OF SOIL CLEANUP OBJECTIVES								
Sample ID	Parameter Parameter	Unrestricted SCO (ug/kg)	Commercial SCO (ug/kg)	Detected* Concentration (ug/kg)				
	Chrysene	1,000	56,000	2,900				
	Indeno(1,2,3-cd)pyrene	500	5,600	1,500				
TP-10 (2-4)	Acetone	50	500,000	160				
,	Benzo(a)anthracene	1,000	5,600	31,000				
	Benzo(a)pyrene	1,000	1,000	26,000				
	Benzo(b)fluoranthene	1,000	5,600	31,000				
	Benzo(k)fluoranthene	800	56,000	12,000				
	Chrysene	1,000	56,000	28,000				
	Dibenz(a,h)anthracene	330	560	2,800				
	Indeno(1,2,3-cd)pyrene	500	5,600	8,400				
TP-12 (11-13)	Benzo(a)anthracene	1,000	5,600	2,400				
,	Benzo(a)pyrene	1,000	1,000	2,500				
	Benzo(b)fluoranthene	1,000	5,600	3,100				
	Benzo(k)fluoranthene	800	56,000	1,300				
	Chrysene	1,000	56,000	2,200				
	Dibenz(a,h)anthracene	330	560	800				
	Indeno(1,2,3-cd)pyrene	500	5,600	740				
TP-14 (2-3)	Acetone	50	500,000	330				
, ,	Benzo(a)anthracene	1,000	5,600	4,700				
	Benzo(a)pyrene	1,000	1,000	5,600				
	Benzo(b)fluoranthene	1,000	5,600	7,900				
	Benzo(k)fluoranthene	800	56,000	1,800				
	Chrysene	1,000	56,000	4,200				
	Indeno(1,2,3-cd)pyrene	500	5,600	1,400				
TP-14 (11-13)	Benzo(a)anthracene	1,000	5,600	3,700				
, ,	Benzo(a)pyrene	1,000	1,000	4,700				
	Benzo(b)fluoranthene	1,000	5,600	6,700				
	Benzo(k)fluoranthene	800	56,000	1,600				
	Chrysene	1,000	56,000	3,400				
	Indeno(1,2,3-cd)pyrene	500	5,600	1,300				
Subsurface Gro	oundwater Investigation							
MW-8 (8-12)	1,2,4-Trimethylbenzene	3,600	190,000	12,000				
· · ·	Xylene (total)	260	500,000	2,500				
MW-9 (8-12)	Acetone	50	500,000	73				
Shading indicates	detection in excess of Commercial	Use SCO						

BDA#:08921

October 14, 2013

Page 29

Elevated metal concentrations were also identified site wide in the subsurface soils (see Table 3). The metals detected in excess of the Unrestricted and Commercial SCOs within site subsurface soils include:

ANALYTICAL DATA SUMMARY OF METALS DETECTED IN EXCESS OF SOIL CLEANUP OBJECTIVES									
Parameter	Number of samples exceeding Unrestricted SCO	Number of samples exceeding Commercial SCO	Unrestricted SCO (ppm)	Commercial SCO (ppm)	Detected Range (ppm)				
Arsenic	2	2	13	16	1.1-38				
Barium	1	1	350	400	12-660				
Copper	6	0	50	270	14-190				
Lead	8	0	63	1,000	2.9-950				
Nickel	1	0	30	310	5.1–31				
Mercury	7	0	0.18	2.8	0.010-1.4				
Zinc	6	0	109	10,000	11-620				

Two soil samples were collected for analysis of polychlorinated biphenyls at test pit TP-4 and TP-15. No polychlorinated biphenyls were detected within the subsurface soil samples. Three additional soil samples were collected from test pits TP-1, TP-7, and TP-10 for analysis of Total Petroleum Hydrocarbons. A biologically degraded and/or environmentally weathered form of kerosene was detected within samples TP-7 (11-12) and TP-10 (11-13.5). Diesel range organics were identified within samples TP-1 (9-10) and TP-7 (11-12). No other parameters were detected within the samples. The on-site polychlorinated biphenyls and Total Petroleum Hydrocarbons sample analytical results are included within Tables 4 and 14, respectively.

4.1.2 Off-site and Property Boundary Subsurface Soil Sample Results

During the completion of the Remedial Investigation eighteen off-site and property boundary subsurface borings were completed. Olfactory evidence of petroleum contamination was detected in all off-site and property boundary borings, except: SB-4, SB-6, SB-7, and MW-7. Headspace organic volatile analysis was performed utilizing a PID for every boring. Headspace organic volatile readings ranged from 0.0 to 2,444 ppm.

A total of eighteen soil samples were collected from off-site and property boundary subsurface borings. No VOCs or SVOCs were detected in excess of the Commercial Use SCOs.

The VOC and SVOCs detected in excess of the Unrestricted Use SCO within off-site and property boundary subsurface soils (see Tables 5 and 6) include:

October 14, 2013

Page 30

OFF-SITE SUBSURFACE BORING SOIL SAMPLE ANALYTICAL DATA SUMMARY OF VOC and SVOC COMPOUNDS DETECTED IN EXCESS OF SOIL CLEANUP OBJECTIVES									
Sample ID	Parameter	Unrestricted SCO (ug/kg)	Commercial SCO (ug/kg)	Detected Concentration (ug/kg)					
East Water Street Investigation									
SB-1 (12-14)	Xylenes(total)	260	500,000	290					
CSB/CMW-3	Xylenes(total)	260	500,000	420					
(4-8)									
Property Boundary Investigation									
MW-4 (4-8)	Acetone	50	500,000	120					
MW-5 (8-12)	Acetone	50	500,000	55					
FD									
MW-6 (8-12)	Benzo(b)fluoranthene	1,000	5,600	1,000					

Off-site soil samples were analyzed for lead (only) with the exception of MW-1 (16-20), SB-1 (12-14), MW-2 (8-12), SB-2 (8-12), and MW-3 (8-12). These samples were analyzed for TAL metals due to a reporting error. No metals were detected in excess of Unrestricted or Commercial Use SCOs, except for sample MW-2 (8-12) which exceeded the Unrestricted Use SCO for arsenic (see Table 7).

A total of eleven samples were collected for analysis of Total Petroleum Hydrocarbons from off-site and property boundary subsurface borings. Five additional samples were collected from trench excavations along East Water Street associated with utility work for the neighboring Center of Excellence. The following parameters were identified:

- A degraded pattern was present in sample SB-1 (8-12) which may have started as kerosene or JP8 jet fuel.
- Mineral spirits were detected in sample MW-4 (8-12) at a concentration of 110 ppm.
- Mineral spirits were detected in sample MW-5 (8-12) at a concentration of 10 ppm.
- Lubricating oil was present in sample WSU3-1 as well as a pattern resembling mineral spirits with a concentration of 200 ppm.

A complete summary of all samples and parameters analyzed for Total Petroleum Hydrocarbons is provided in Table 14.

4.2 Groundwater Investigation Results

Groundwater analytical results were compared with the NYSDEC groundwater standards published in the Division of Water Technical and Operations Guidance Series Memorandum (TOGS) 1.1.1.

4.2.1 Results of On-site Groundwater Quality Sampling and Analysis

Groundwater samples were collected from monitoring wells MW-8 and MW-9 on January 19, 2012. During the sampling event a petroleum odor was noted during sample collection at monitoring well MW-9.

October 14, 2013

Page 31

The on-site groundwater sample analytical results are included within Table 8, 9 and 10. As shown in the following summary table, several parameters (primarily VOCs) were detected within the groundwater collected from the two monitoring wells in excess of the TOGS 1.1.1 Groundwater Quality Standards:

ON-SITE GROUNDWATER SAMPLE ANALYTICAL DATA SUMMARY FOR VOCS AND SVOCS								
	TOGS 1.1.1 Groundwater	Detected Concentration (ug/l)						
Parameter	Quality Standards (ug/l)	MW-8	MW-9					
VOCs		1	1					
1,2,4-Trimethylbenzene	5	628	3.18					
1,3,5-Trimethylbenzene	5	176	3.12					
Benzene	1	49.4	3.62					
Cyclohexane	N/L	345	111					
Ethylbenzene	5	404	21.7					
Isopropylbenzene	5	54	25.6					
Methylcyclohexane	N/L	308	137					
n-Butylbenzene	5	11.6	10.6					
n-Propylbenzene	5	99.4	49.7					
Naphthalene	10	111	29.5					
p-isopropyltoluene	5	5.6	7.54					
sec-Butylbenzene	5	8	7.38					
tert-Butylbenzene	5	<10	1.56					
Toluene	5	109	<1					
Xylene	15	689	25.1					
SVOCs								
Acenaphthene	20	0.43	<10					
Dibenzofuran	N/L	0.69	<10					
Fluorene	50	0.58	<10					
Naphthalene	77	23						
N/L = Parameter not listed in TOO	S 1.1.1, shading indicates detection in	excess of groundwater	quality standard					

Metals detected in excess of the TOGS 1.1.1 Groundwater Quality Standards include:

ON-SITE GROUNDWATER SAMPLE ANALYTICAL DATA SUMMARY FOR METALS DETECTED IN EXCESS OF TOGS 1.1.1 GROUNDWATER QUALITY STANDARDS								
	TOGS 1.1.1 Groundwater Detected Concentration (ug/1							
Parameter	Quality Standards (ug/l) MW-8 MW-9							
Barium	1.0	1.5	0.86					
Cobalt	0.005	0.0086	0.0068					
Iron	0.3	0.45	3.6					
Manganese	0.3	0.38	0.25					
Sodium	20	420	690					

BDA#:08921

October 14, 2013

Page 32

4.2.2 Results of Off-site and Property Boundary Groundwater Quality Sampling and Analysis

On February 27 and March 4, 2009, groundwater samples were collected from the temporary monitoring wells installed along East Water Street. Groundwater samples collected from each property boundary monitoring well were sampled on January 19, 2012.

Temporary monitoring well MW-1 produced enough groundwater during sample collection to only analyze for VOCs. This is not considered a significant concern since SVOCs were not detected in excess of TOGS 1.1.1 Groundwater Quality Standards along East Water Street, and since metals analysis was conducted on all other samples. Temporary monitoring well CSB/CMW-3 was installed to obtain groundwater elevation data; therefore, no groundwater samples were collected from this location.

During the sampling event at East Water Street a slight petroleum odor was noted during sample collection from monitoring well CMW-1.

The off-site groundwater sample analytical results are included within Table 11, 12, and 13. As shown in the following summary table (see next page), several parameters (primarily VOCs) were detected within the groundwater collected from the monitoring wells in excess of the TOGS 1.1.1 Groundwater Quality Standards.

BDA#:08921

October 14, 2013

Page 33

OFF-SITE & PROPERTY BOUNDARY GROUNDWATER SAMPLE ANALYTICAL DATA SUMMARY FOR VOCS AND SVOCS												
	TOGS 1.1.1	GS 1.1.1 Detected Concentration (ug/kg)										
Parameter	Groundwater Quality Standards (ppb)	MW-1	CMW-1	CMW-1 FD	MW-2	CMW-2	MW-3	MW-4	MW-4 FD	MW-5	MW-6	MW-7
VOCs	, <u>, , , , , , , , , , , , , , , , , , </u>											
1,2,4-Trimethylbenzene	5	N/A	N/A	N/A	N/A	N/A	N/A	0.79	0.63	0.95	< 0.5	< 0.5
1,3,5-Trimethylbenzene	5	N/A	N/A	N/A	N/A	N/A	N/A	0.3	0.30	0.39	< 0.5	< 0.5
2-Butanone	50	2.24	<10	<10	<100	<10	<10	<10	<10	<10	<10	4.57
Acetone	50	6.49	<10	<10	<100	2.38	1.68	N/A	N/A	N/A	N/A	N/A
Benzene	1	0.17	15.2	14.3	214	0.12	0.18	0.57	0.57	< 0.5	< 0.5	< 0.5
Cyclohexane	N/A	0.35	32.8	24.2	315	0.24	< 0.5	4.52	4.59	< 0.5	< 0.5	< 0.5
Ethylbenzene	5	< 0.5	0.17	0.14	69.2	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Isopropylbenzene	5	<0.5	1.96	1.45	75.8	0.28	< 0.5	12.3	12.5	< 0.5	< 0.5	< 0.5
Methylcyclohexane	N/L	< 0.5	2.68	2.01	203	203	< 0.5	<0.5	< 0.5	12.4	< 0.5	< 0.5
n-Butylbenzene	5	N/A	N/A	N/A	N/A	N/A	N/A	1.26	1.40	0.75	< 0.5	< 0.5
n-Propylbenzene	5	N/A	N/A	N/A	N/A	N/A	N/A	11.4	11.4	0.36	< 0.5	< 0.5
Naphthalene	10	N/A	N/A	N/A	N/A	N/A	N/A	0.62	0.33	0.34	<1	<1
p-Isopropyltoluene	5	N/A	N/A	N/A	N/A	N/A	N/A	0.22	0.22	0.34	< 0.5	< 0.5
Sec-Butylbenzene	5	N/A	N/A	N/A	N/A	N/A	N/A	1.03	1.02	0.33	< 0.5	< 0.5
Tert- Butylbenzene	5	N/A	N/A	N/A	N/A	N/A	N/A	0.42	0.41	< 0.5	< 0.5	< 0.5
Toluene	5	0.48	0.68	0.53	35.9	0.26	0.32	<0.5	< 0.5	< 0.5	< 0.5	< 0.5
trans-1,2-Dichlorethene	5	< 0.5	0.9	0.93	<5	<5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5
Trichloroethene	5	< 0.5	0.17	0.14	<5	<0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5
Xylene	15	<1	0.54	0.43	287	<1	<1	1.04	0.99	<1	<1	<1
SVOCs												
2-Methylnaphthalene	N/L	N/A	<11	<11	1.5	<11	<10	<10	<10	<10	<10	<10
Acenaphthene	20	N/A	<11	<11	<10	<11	<10	0.94	0.93	<10	<10	<10
Carbazole	N/L	N/A	<11	<11	<10	<11	<10	5	4.4	<10	<10	<10
Dibenzofuran	N/A	N/A	<11	<11	<10	<11	<10	0.62	0.68	<10	<10	<10
Flouranthene	50	N/A	3.3	3.5	<10	2.8	<10	0.96	0.88	0.45	<10	<10
Fluorene	50	N/A	<11	<11	<10	<11	<10	0.89	0.91	<10	<10	<10
Naphthalene	N/L	N/A	<11	<11	1.2	<11	<10	<10	<10	<10	<10	<10
Phenanthrene	50	N/A	2.9	2.9	<10	2.9	<10	<10	<10	0.67	<10	<10
Pyrene	50	N/A	2.4	2.5	<10	2	<10	0.71	0.6	<10	<10	<10
	TOGS 1.1.1, N/A = Parameter				-	_					\10	

BEARDSLEY DESIGN ASSOCIATES

October 14, 2013

Page 34

Metals detected in excess of the TOGS 1.1.1 Groundwater Quality Standards include:

	RY OF OFF-SITE META 1.1.1 GROUNDWATER	LS DETECTED IN EXCESS OF QUALITY
Parameter (number of samples exceeding standards)	Detected Range (ppm)	TOGS 1.1.1 Groundwater Quality Standards (ppm)
Antimony (3 samples)	<0.001 - 0.006	0.003
Arsenic (2 samples)	<0.0053 - 0.033	0.025
Barium (4 samples)	0.1-5.7	1.0
Chromium (2 samples)	0.0041095	0.05
Cobalt (6 samples)	0.0046-0.03	0.005
Iron (9 samples)	0.67-97	0.3
Lead (3 samples)	0.0044-0.064	0.025
Magnesium (6 samples)	12 - 230	35
Manganese (5 samples)	0.0082- 1.5	0.3
Nickel (1 sample)	0.0021-0.1	0.1
Sodium (10 samples)	59-1600	20
Thallium (1 sample)	<0.02-0.01	.0005
Zinc (2 samples)	0.01 - 0.24	0.20

Metal concentrations detected in groundwater samples collected along East Water Street could be elevated due to the use of temporary monitoring wells and elevated turbidity levels. This is supported by the lower concentration of these compounds in on-site groundwater.

5.0 QUALITATIVE HUMAN AND ENVIRONMENTAL HEALTH EXPOSURE ASSESSMENT

A qualitative human health risk evaluation was completed as part of the Remedial Investigation. The procedure for performing the risk assessment was consistent with Environmental Protection Agency methodologies, and the NYSDOH Qualitative Human Health Exposure Assessment guidance provided in the May 2010 NYSDEC DER-10 Technical Guidance for Site Investigation and Remediation. The sequencing of steps was modified to streamline the process consistent with the goals of Brownfield Cleanup Program site investigations. This qualitative exposure assessment was completed using a three-step process, that includes 1) contaminant identification and selection of contaminants of concern, 2) exposure assessment to identify actual or potential human exposure pathways, and 3) environmental exposure assessment to identify actual or potential impacts to fish and wildlife resources.

5.1 Contaminant Identification

Contamination at the site is related to former USTs and the presence of fill material. Data from the Remedial Investigation was used as the basis for the exposure assessment. Sampling was conducted from subsurface soil and groundwater. There was no surface water, surface soil, or air sampling performed as part of the Remedial Investigation. There has been no evaluation of soil vapor intrusion at the site to date. Soil vapor intrusion will be evaluated during the Remedial Alternative Analysis and/or Site Management phase of the project.

Tables 1 through 14 present the results of the Remedial Investigation sampling and analysis

October 14, 2013

Page 35

program conducted at the Property. As shown in the following summary table, a number of VOCs, SVOCs, and metals were identified at concentrations above Unrestricted and Commercial Use SCOs or TOGS 1.1.1 Groundwater Quality Standards within the media collected as part of the Remedial Investigation.

СО	NTAMINAN	T IDENTIFICA	TION SUN	IMARY	
	Sampl	led Media	NYS	SDEC Standard I	Exceeded
Contaminant	Ground-	Subsurface	TOGs	Unrestricted	Commercial
	water	Soil	1.1.1	Use SCO	Use SCO
VOCs					
1,2,4-Trimethylbenzene	X	X	X	X	
1,3,5-Trimethylbenzene	X		X		
Acetone		X		X	
Benzene	X		X		
Ethylbenzene	X		X		
Isopropylbenzene	X		X		
n-Butylbenzene	X		X		
n-Propylbenzene	X		X		
p-isopropyltoluene	X		X		
sec-Butylbenzene	X		X		
Toluene	X		X		
Xylene	X	X	X	X	
SVOCs					
Acenaphthene		X		X	
Benzo (a) anthracene	X	X	X	X	X
Benzo (b) fluoranthene		X		X	X
Benzo (k) fluoranthene		X		X	X
Benzo (a) pyrene		X		X	X
Benzo(g,h,i)perylene		X		X	
Bis(2Ethylhexyl)(phthalate	X		X		
Chrysene		X		X	X
Dibenz (a,h) anthracene		X		X	X
Fluoranthene		X		X	
Fluorene		X		X	
Indo (1,2,3 cd) pyrene		X		X	X
Naphthalene	X	X	X	X	
Phenanthrene		X		X	
Pyrene		X		X	
Metals	•			1	
Antimony	X		X		
Arsenic	X X	X	X X	X	X
Barium	X	X	X	X	X
Chromium	X		X		
Cobalt	X		X		
Copper		X		X	
Iron	X		X		

BEARDSLEY DESIGN ASSOCIATES

October 14, 2013

Page 36

	CONTAMINAN	T IDENTIFICA	TION SUM	IMARY	
	Sampl	ed Media	NYS	DEC Standard E	Exceeded
Contaminant	Ground-	Subsurface	TOGs	Unrestricted	Commercial
	water	Soil	1.1.1	Use SCO	Use SCO
Lead		X		X	
Magnesium	X		X		
Manganese	X		X		
Nickel	X	X	X	X	
Mercury		X		X	
Sodium	X		X		
Thallium	X		X		
Zinc	X	X	X	X	

5.2 Exposure Assessment

The qualitative exposure assessment consisted of the following two steps:

- 1. Exposure Setting Characterization Description of the physical characteristics of the site and populations near the site. This includes information such as soil types, geologic setting, and groundwater flow.
- 2. Exposure Pathway Identification Identification of potentially exposed populations and the associated exposure pathway. The exposure pathway consists of four elements:
 - The contaminant source (e.g. previous release)
 - The transport medium (e.g. groundwater)
 - The exposure point (e.g. potable water supply well)
 - The exposure route (e.g. ingestion)

Exposure Setting Characterization

The 700 Outparcel site is located in a primarily commercial/industrial area of the City of Syracuse. Groundwater flow at the site trends in a southeasterly direction. Hydraulically down gradient from the site, the land usage is primarily commercial. The Syracuse University Center of Excellence is located on an adjoining property to the south and is an educational facility. Access to the Property is restricted with a chain link fence except, for gated entrances that controls vehicular and pedestrian access to the site. Given the location within the City, and the fact that drinking water in the area is provided by a public water supply, groundwater use for potable water is unlikely. Current populations that could potentially be impacted by contaminants at the site are limited due to the location and restricted access to the site.

Contamination leaving the site via the municipal sewer system, if any, would enter the Onondaga County sewer system. If the local sewer authority workers are working on the sewer system at the time that precipitation or runoff from the site was entering the sewers, exposure would be possible, although unlikely. Based on this information, human populations potentially affected would include the following:

- Trespassers unauthorized visitors to the site
- Area workers persons working on neighboring properties

October 14, 2013

Page 37

- County sewer workers exposed to contaminated runoff entering the sewers
- General public pedestrians or vehicle passengers on the adjacent roadways
- Future on-site construction workers workers involved in site development at the Property (note that this assessment excludes workers performing remedial activities as part of the project)
- Future off-site construction workers workers involved in site development on neighboring properties
- Future site tenants and customers

Human Exposure Pathway Identification

As described above, the exposure pathway identification consists of the following four steps:

- 1. Contaminant source Data from the sampling and analysis program identified levels of contamination in the subsurface soils and shallow groundwater.
- 2. Transport medium The transport media for each contaminant source is identified in the table below.
- 3. Exposure points The exposure point is the point of potential human contact with the contaminated medium under reasonable current and future land uses. Surface soil was not considered an exposure point since the site is predominately covered with gravel/asphalt. The planned future use of the project site following remedial activities is for commercial purposes. The exposure points for the site are shown in the table below.

E	SITE CONCEPT XPOSURE PATHW	TUAL MODEL VAY EVALUATION
Contaminant Source	Transport Medium	Exposure Point
Groundwater	Groundwater	Area workers
		Future on-site construction workers
		Future off-site construction workers
	Soil Vapor	Future on-site construction workers
		Future off-site construction workers
		Future site tenants and
		customers
		Site trespassers
Subsurface soil	Soil	Future on-site and off-site construction workers
		DPW Employees

4. Human Exposure Route – The routes of exposure for each potential exposure point identified above are discussed below:

October 14, 2013

Page 38

- Exposure of future on-site workers to site contaminants On-site workers participating in future site development activities could be directly exposed to several contaminant sources. Future on-site workers could be exposed to site contaminants through groundwater and subsurface soils during general excavation activities, utility installation, foundation construction; contaminated stormwater runoff; and windblown dispersion of volatile vapors. Exposure could occur via ingestion, inhalation, and/or dermal contact.
- Exposure of potential off-site construction workers to site contaminants Workers participating in future off-site development activities could be exposed to site contaminants through groundwater and subsurface soils during general excavation activities, utility installation, foundation construction; contaminated stormwater runoff; and windblown dispersion of volatile vapors. Exposure could occur via ingestion, inhalation, and/or dermal contact.
- Exposure of site trespassers to site contaminants Trespassers could be exposed to contaminated stormwater runoff and volatile vapors through windblown dispersion. Exposure could occur via ingestion, inhalation, and/or dermal contact.
- Exposure of area workers to site contaminants Employees of off-site neighboring businesses could be exposed to site contaminants through groundwater leaching into basements; contaminated stormwater runoff; and windblown dispersion of volatile vapors. Exposure could occur via ingestion, inhalation, and/or dermal contact.
- Exposure of future site tenants and customers to site contaminants Future site tenants working on the Property could be exposed to site contaminants from contaminated stormwater runoff and windblown dispersion of soil vapor. Possible future construction of buildings on the Property could expose future site tenants and customers to volatile subsurface vapors via soil vapor intrusion.

Under current conditions, human and environmental receptors could be exposed to on-site contaminants via inhalation of particles or vapors, or incidental ingestion of, or dermal contact, with contaminated media. During remedial activities, receptors at and near the Property could be exposed to on-site contaminants. However, the use of appropriate personal protective equipment and dust suppression techniques would minimize the risk of exposure during remedial activities.

No complete exposure pathways to contaminants at the Property have been identified in connection of post remediation activities, assuming that on-site contaminants will be properly removed, treated, and/or engineering controls instituted.

5.3 Environmental Exposure Assessment

The purpose of the environmental exposure assessment is to identify actual or potential impacts to fish and wildlife resources from site contaminants of ecological concern. According to the NYSDEC Environmental Mapper the site is located in an area of concern related to rare plants and animals. However, the areas of concern shown for rare plants and animals are not precise locations. Rather, they show those generalized areas where the New York Natural Heritage Program has information in its databases regarding rare animals and/or plants. These generalized areas show the vicinity of actual, confirmed observations and collections of rare animals and plants. Since the current site is predominately covered with asphalt pavement/gravel and the known source of contaminants is a subsurface release of petroleum it is unlikely the

DRAFT REMEDIAL INVESTIGATION REPORT 700 Outparcel; Syracuse, New York Brownfield Site No. C734111

BDA#:08921

October 14, 2013

Page 39

contaminants could migrate and affect on-site or off-site habitat of endangered, threatened or special concern species or any other fish and wildlife resources.

6.0 CONTAMINANT FATE AND TRANSPORT

The probable fate and transport of contaminants detected on the Property is a function of the individual contaminants and available pathways for the contaminants to migrate. The route contaminants migrate is also dependent on the physical characteristics of the Property and the type and distribution of contaminants.

As noted previously in the report, the presence of contaminants at the Property is the result of former automobile filling station operations and the presence of fill material. USTs associated with the former automobile filling operations and a large amount of impacted soil have been removed from the Property and are considered the source of petroleum related contaminants. The following report sections describe the probable fate and transport of contaminants in the impacted medias at the Property.

6.1 Contaminant Persistence

The analytical results indicate that the primary contaminants of concern detected within subsurface soil consisted of SVOCs and metals. While the primary contaminants of concern in groundwater are VOCs.

The contaminants are a result of fill material of unknown origin placed on the Property and automobile filling station operations which occurred at the site from 1940 to 1964. It is unknown when the exact date of a release occurred at the site and is possible that the release may have occurred over a number of years. Given that automobile station operations were discontinued at the site approximately fifty years ago and USTs were removed in 2006 it's inferred that the contaminants are persistent in the environment. The reduction of contaminants has likely been limited since a majority of the surrounding area is covered by asphalt.

6.2 Contaminant Migration

Contaminants associated with impacted subsurface soil and groundwater have the potential to migrate through groundwater flow and air by volatilization of contaminated soils and/or groundwater contaminants. Migration of contaminants is influenced by groundwater flow, contaminate volatilization, and diffusion. Contaminant migration at the site is not expected to be influenced by a source of contamination emanating from the Property since the USTs were removed in 2006.

Contaminants in subsurface soil include metals and SVOCs (polycyclic aromatic hydrocarbons) which are characterized by low solubility's and have a tendency to adsorb onto soil particles. Due to the low solubility, metals and SVOCs are not expected to greatly impact groundwater. This is supported by the lack of or low concentration of these compounds in on-site groundwater.

Although VOCs were not identified as significant contaminants of concern in on-site soil, VOCs were identified in shallow groundwater in excess of groundwater standards. The VOCs detected include aromatic hydrocarbons which have moderate solubility's. The migration of VOCs in

October 14, 2013

Page 40

groundwater is limited by biodegradation and the lack of a source of contamination.

7.0 SITE INVESTIGATION FINDINGS AND CONCLUSIONS

The nature and extent of contamination at the Property is outlined below:

7.1 Subsurface Soil Investigation Findings

On-site Subsurface Soil Investigation:

- No VOCs were detected in on-site subsurface soil at concentrations above Commercial Use SCO's.
- VOCs including 1,2,4-trimethylbenzene, acetone, and xylenes were detected in on-site subsurface soil at concentrations above Unrestricted Use SCOs.
 - VOCs were detected in two sample locations (TP-10 (2-4) and TP-14 (2-3)) at a depth ranging from 2-4 feet bgs.
 - VOCs were detected in five sample locations (TP-2 (12-13), TP-4 (8-9), TP-7 (11-12), MW-8 (8-12), and MW-9 (12-14.5)) at a depth ranging from 8-14.5 feet bgs.
- SVOCs which included Polycyclic Aromatic Hydrocarbons were detected in on-site subsurface soils at concentrations above Unrestricted and Commercial Use SCOs.
 - Polycyclic Aromatic Hydrocarbons were detected in five sample locations (TP-5 (2-4), TP-6 (4-5), TP-9 (2-4), TP-10 (2-4), and TP-14 (2-3)) at a depth ranging from 2-5 feet bgs at concentrations in excess of Commercial Use SCOs.
 - Polycyclic Aromatic Hydrocarbons were detected in two sample locations (TP-12 (11-13) and TP-14 (11-13)) at a depth ranging from 11-13 feet bgs at concentrations in excess of Commercial Use SCOs.
 - Polycyclic Aromatic Hydrocarbons were detected in two sample locations (TP-1 (9-10) and TP-2 (12-13)) at a depth ranging from 9-13 feet bgs at concentration in excess of Unrestricted Use SCOs.
- Metals were detected in on-site subsurface soils at concentrations above Unrestricted and Commercial Use SCOs.
 - Arsenic and barium were detected in two sample locations (TP-6 (4-5) and TP-9 (2-4)) at a depth of 2-5 feet bgs at concentrations above Commercial Use SCOs.
 - Five metals were detected in ten sample locations at concentrations above Unrestricted Use SCOs at varying depths.
- No polychlorinated biphenyls were detected in the two on-site subsurface soil samples that were collected.
- Total petroleum hydrocarbon analysis identified the following parameters in on-site subsurface soil:
 - A biologically degraded and/or environmentally weathered form of kerosene was detected within two samples (TP-7 (11-12) and TP-10 (11-13.5)) at a depth ranging from 11-13.5 bgs.
 - Diesel range organics were detected within two samples (TP-1 (9-10) and TP-7 (11-12)) at depths ranging from 9-12 feet bgs.

Property Boundary and Off-site Subsurface Soil Investigation:

October 14, 2013

Page 41

- VOCs including acetone and xylenes were detected in subsurface soils at concentrations slightly above the Unrestricted Use SCOs.
 - Acetone was detected at two samples locations, one of which was along the north property boundary (MW-5 (8-12)FD) while the other was located along the west property boundary (MW-4 (8-12)) at depths ranging from 8-12 feet bgs.
 - Xylene was detected in two sample locations (CSB/CMW-3 (4-8) and SB-1 (12-14) along East Water Street at depths from 4-8 feet bgs and 12-14 feet bgs.
- Benzo(b)fluoranthene a semi-volatile organic compound was detected in subsurface soil at concentrations equal to the Unrestricted Use SCOs at a depth of 8-12 feet bgs along the north property boundary (MW-6 (8-12)).
- Arsenic was detected in one subsurface soil sample (MW-2 (8-12)) at a concentration above the Unrestricted Use SCOs at a depth of 8-12 feet bgs along East Water Street.
- Total petroleum hydrocarbon analysis identified the following parameters in subsurface soil samples collected from the property boundary and off-site subsurface soil samples:
 - Mineral spirits were detected within two samples (MW-4 (8-12) and MW-5 (8-12)) at a depth of 8-12 feet bgs along the north and west property boundary.
 - Lubricating oil and a pattern resembling mineral spirits was identified in a soil sample (WSU3-2) collected from a utility excavation associated with the Syracuse University Center of Excellence.
 - A degraded pattern was identified in a soil sample (SB-1 (12-14)) collected along East Water Street which may have started as kerosene of JP8 jet fuel.

7.2 Subsurface Soil Investigation Conclusions

- Olfactory evidence of petroleum contamination was detected in most test pits, soil borings, and monitoring wells. The presence of nuisance soil contamination appears to be present over a majority of the Property except for the eastern extents.
- Soil contamination primarily related to VOCs is present at varying depths from 8.0 feet bgs to 13.0 feet bgs in two areas at the site based on the results of analytical testing and field screening.
 - Portions of the former underground storage tank excavation boundary.
 - Southeast of the former pump island and UST excavation.
- Soil contamination primarily related to Polycyclic Aromatic Hydrocarbons and metals associated with the presence of fill material is present at varying depths primarily from 0.5 feet bgs to 8.0 feet bgs across a large portion of the Property based on the results of analytical testing and field screening.
- Subsurface soils along East Water Street and the north, east, and west property boundary are not impacted by petroleum related contaminants that significantly exceed SCOs.
- The results of the total petroleum hydrocarbon analysis indicate that there may be multiple types of contamination in the vicinity of the Property some of which are not related to automobile filling operations.

7.3 Groundwater Investigation Findings

On-site Groundwater Investigation:

October 14, 2013

Page 42

- Petroleum related VOCs (primarily BTEX) were detected in groundwater samples collected from on-site monitoring wells (MW-8 and MW-9) above TOGS 1.1.1 Groundwater Quality Standards.
- No SVOCs were detected in groundwater samples collected from on-site monitoring wells above TOGS 1.1.1 Groundwater Quality Standards.
- Concentrations of five metals were detected in groundwater collected from on-site monitoring well MW-8 above TOGS 1.1.1 Groundwater Quality Standards.
- Concentrations of three metals were detected in groundwater collected from on-site monitoring well MW-9 above TOGS 1.1.1 Groundwater Quality Standards.

Property Boundary and Off-site Groundwater Investigation:

- Petroleum related VOCs (primarily BTEX) were detected in two groundwater samples (CMW-1 and MW-2) collected from off-site temporary groundwater monitoring wells along East Water Street above NYSDEC Class GA Groundwater Quality Standards.
- Groundwater sample (MW-4) collected from the monitoring well along the west property boundary contained concentrations of VOCs (isopropylbenzene and n-propylbenzene) slightly above TOGS 1.1.1 Groundwater Quality Standards.
- No SVOCs were detected above TOGS 1.1.1 Groundwater Quality Standards in groundwater samples collected from the property boundaries and off-site temporary monitoring wells along East Water Street.
- Concentrations of thirteen metals were detected in groundwater samples collected from temporary monitoring wells along East Water Street and monitoring wells located along the property boundaries above TOGS 1.1.1 Groundwater Quality Standards.

7.4 Groundwater Investigation Conclusions

- Depth-to-groundwater measurements indicate that groundwater in the vicinity of the site flows in a south/southeast direction.
- An area of petroleum related VOC groundwater contamination (primarily BTEX) is present over the central portion of the Property and extends off-site to the south.
- The greatest concentration of groundwater contamination is present east of the former UST excavation and improves further to the east and south.

7.5 Remedial Alternatives Analysis

Based on the results of the Remedial Investigation, a remedial alternatives analysis is recommended to screen appropriate remedial technologies which can coincide with future development of the Property.

Table 1 Summary of On-Site Soil Sample Analysis Data TCL-VOCs 700 Outparcel, LLC Syracuse, NY

			TP-1	TP-1	TD4FD	T 70.0	TDO	TD 4	TP-4 FD	TD C	TP-5	TP-6	TP-6	TP-7	TD 7	TD 0	TDA	TP-9	TP-10	TD 40	TP-11	TP-11	TD 40	TD 40	TP-14	TP-14	TP-15	TP-16	TP-16	TP-17	TP-17	MW-8	MW-9
Parameter	Unrestricted SCO	Commercial SCO	(6-8)	(9-10)	TP-1 FD (9-10)	TP-2 (12-13)	TP-3 (8-10)	TP-4 (8-9)	(8-9)	TP-5 (2-4)	(10-12)	(4-5)	(12-13)	(8-9)	TP-7 (11-12)	TP-8 (10-12)	TP-9 (2-4)	(10-12)	(2-4)	TP-10 (11-13.5)	(6-8)	(10-12)	TP-12 (11-13)	TP-13 (11-13)	(2-3)	(11-13)	(11-13)	(6-8)	(11-13)	(6-8)	(11-13)	(8-12)	(12-14.5)
PA 8260B			8/24/201	11 8/24/2011	8/24/2011	1 8/22/201	(,	8/22/2011	8/22/2011	8/22/2011	8/22/2011	8/22/2011	8/22/2011	8/23/2011	8/23/2011	8/23/2011	8/23/2011	8/23/2011	8/23/2011	8/23/2011	8/23/2011	8/23/2011	8/23/2011	8/23/2011	8/23/2011	8/23/2011	8/24/2011	8/24/2011	8/24/2011	8/24/2011	8/24/2011	1/17/2012	1/13/2012
,1,1-Trichloroethane	680	500000	< 2.9	< 2.7	< 2.6	< 7.1	< 2.9	< 6.6	< 6.6	< 3.4	< 5.5	< 3.2	< 8.7	< 3	< 2.9	< 3	< 3	< 2.6	< 3.5	< 2.9	< 3.1	< 3.5	< 3.1	< 2.8	< 3.5	< 2.9	< 2.8	< 2.9	< 2.8	< 2.9	< 2.7	< 320	< 2.8
,1,2,2-Tetrachloroethane	N/L	N/L	< 2.9	< 2.7	< 2.6	< 7.1	< 2.9	< 6.6	< 6.6	< 3.4 UJ	< 5.5	< 3.2 UJ	< 8.7	< 3	< 2.9	< 3	< 3 UJ	< 2.6	< 3.5 UJ	< 2.9	< 3.1	< 3.5	< 3.1	< 2.8	< 3.5	< 2.9	< 2.8	< 2.9	< 2.8	< 2.9	< 2.7	< 320 UJ	< 2.8
,1,2-Trichloro-1,2,2- trifluoroethane	N/L	N/L	< 2.9	< 2.7	< 2.6	< 7.1	< 2.9	< 6.6	< 6.6	< 3.4	< 5.5	< 3.2	< 8.7	< 3	< 2.9	< 3	< 3	< 2.6	< 3.5	< 2.9	< 3.1	< 3.5	< 3.1	< 2.8	< 3.5	< 2.9	< 2.8	< 2.9	< 2.8	< 2.9	< 2.7	< 320	< 2.8
,1,2-Trichloroethane	N/L	N/L	< 2.9	< 2.7	< 2.6	< 7.1	< 2.9	< 6.6	< 6.6	< 3.4	< 5.5	< 3.2	< 8.7	< 3	< 2.9	< 3	< 3	< 2.6	< 3.5	< 2.9	< 3.1	< 3.5	< 3.1	< 2.8	< 3.5	< 2.9	< 2.8	< 2.9	< 2.8	< 2.9	< 2.7	< 320	< 2.8
,1-Dichloroethane	270	240000	< 2.9	< 2.7	< 2.6	< 7.1	< 2.9	< 6.6	< 6.6	< 3.4	< 5.5	< 3.2	< 8.7	< 3	< 2.9	< 3	< 3	< 2.6	< 3.5	< 2.9	< 3.1	< 3.5	< 3.1	< 2.8	< 3.5	< 2.9	< 2.8	< 2.9	< 2.8	< 2.9	< 2.7	< 320	< 2.8
,1-Dichloroethene	330	500000	< 2.9	< 2.7	< 2.6	< 7.1	< 2.9	< 6.6	< 6.6	< 3.4	< 5.5	< 3.2	< 17	< 3	< 2.9	< 3	< 3	< 2.6	< 3.5	< 2.9	< 3.1	< 3.5	< 3.1	< 2.8	< 3.5	< 2.9	< 2.8	< 2.9	< 2.8	< 2.9	< 2.7	< 320	< 2.8
,2,4-Trichlorobenzene	N/L	N/L	< 5.8	< 5.5	< 5.2	< 14	< 5.9	< 13	< 13	< 6.8 UJ	< 11	< 6.5 UJ	< 17	< 6	< 5.8	< 6	< 6 UJ	< 5.3	< 7 UJ	< 5.7	< 6.2	< 6.9	< 6.2	< 5.6	< 7	< 5.8	< 5.7	< 5.9	< 5.5	< 5.8	< 5.4	< 630	< 5.7
,2,4-Trimethylbenzene	3600 N/L	190000 N/L	< 2.9	< 2.7	< 2.6	1000 .	J < 2.9	740	830 J	1.9 J	440	1.5 J	1000 J	< 3	590 D < 1.7 UJ	15 J	0.87 J	30 J	1.7 J	1.5 J < 5.7 UJ	5.5 J	550 J	680 DJ	< 2.8	2.0 J	69 J	< 2.8 < 5.7	< 2.9	< 2.8	< 2.9	< 2.7	12000 J	2.8 J
,2-Dibromo-3-chloropropane ,2-Dibromoethane	N/L	N/L	< 5.8 < 2.9	< 5.5 < 2.7	< 5.2 < 2.6	< 7.1	< 5.9 U.	< 13 UJ < 6.6	< 13 UJ < 6.6	< 6.8 UJ < 3.4	< 11 U.	< 1.9 UJ < 3.2	< 8.7 UJ < 8.7	< 6 UJ	< 0.58	< 6 UJ	< 6 UJ	< 5.3 UJ < 2.6	< 3.5 UJ	< 5.7 UJ	< 6.2 UJ < 3.1	< 6.9 UJ < 3.5	< 6.2 UJ < 3.1	< 5.6 UJ < 2.8	< 3.5	< 5.8 UJ < 2.9	< 2.8	< 5.9 < 2.9	< 5.5 < 2.8	< 5.8 < 2.9	< 5.4 < 2.7	< 630 < 320	< 5.7 < 2.8
,2-Dichlorobenzene	1100	500000	< 2.9	< 2.7	< 2.6	< 7.1	< 2.9	< 6.6	< 6.6	< 3.4 UJ	< 5.5	< 3.2 UJ	< 8.7	< 3	< 0.58	< 3	< 3 UJ	< 2.6	< 3.5 UJ	< 2.9	< 3.1	< 3.5	< 3.1	< 2.8	< 3.5	< 2.9	< 2.8	< 2.9	< 2.8	< 2.9	< 2.7	< 320	< 2.8
.2-Dichloroethane	20	30000	< 2.9	< 2.7	< 2.6	< 7.1	< 2.9	< 6.6	< 6.6	< 3.4	< 5.5	< 1.3	< 8.7	< 3	< 1.2	< 3	< 3	< 2.6	< 3.5	< 2.9	< 3.1	< 3.5	< 3.1	< 2.8	< 3.5	< 2.9	< 2.8	< 2.9	< 2.8	< 2.9	< 2.7	< 320	< 2.8
,2-Dichloropropane	N/L	N/L	< 2.9	< 2.7	< 2.6	< 7.1	< 2.9	< 6.6	< 6.6	< 3.4	< 5.5	< 1.3	< 8.7	< 3	< 1.2	< 3	< 3	< 2.6	< 3.5	< 2.9	< 3.1	< 3.5	< 3.1	< 2.8	< 3.5	< 2.9	< 2.8	< 2.9	< 2.8	< 2.9	< 2.7	< 320	< 2.8
,3,5-Trimethylbenzene	8400	190000	< 2.9	< 2.7	< 2.6	57 .	J < 2.9	470 J	500 J	< 3.4 UJ	130	0.65 J	69 J	< 3	150	2.1 J	< 3 UJ	17 J	0.73 J	1.4 J	2.1 J	270 J	300 J	< 2.8	0.92 J	35 J	< 2.8	< 2.9	< 2.8	< 2.9	< 2.7	4000	3.7
,3-Dichlorobenzene	2400	280000	< 2.9	< 2.7	< 2.6	< 7.1	UJ < 2.9 U.	< 6.6 UJ	< 6.6 UJ	< 3.4 UJ	< 5.5 U.	< 3.2 UJ	< 8.7 UJ	< 3 U.	< 2.9 UJ	< 3 UJ	< 3 UJ	< 2.6 UJ	< 3.5 UJ	< 2.9 UJ	< 3.1 UJ	< 3.5 UJ	< 3.1 UJ	< 2.8 UJ	< 3.5 UJ	< 2.9 UJ	< 2.8	< 2.9	< 2.8	< 2.9	< 2.7	< 320	< 2.8
,4-Dichlorobenzene	1800	130000	< 2.9	< 2.7	< 2.6	< 7.1	< 2.9	< 6.6	< 6.6	< 3.4 UJ	< 5.5	< 3.2 UJ	< 8.7	< 3	< 2.9	< 3	< 3 UJ	< 2.6	< 3.5 UJ	< 2.9	< 3.1	< 3.5	< 3.1	< 2.8	< 3.5	< 2.9	< 2.8	< 2.9	< 2.8	< 2.9	< 2.7	< 320	< 2.8
-Butanone	N/L	N/L	< 46	< 44	< 42	< 110	< 47	< 110	< 110	< 54	< 89	< 52	< 140	< 48	< 46	< 48	< 48	< 42	< 56	< 46	< 50	< 55	< 50	< 45	37 J	< 47	< 45	< 47	< 44	< 46	< 43	< 5100	< 45
-Hexanone	N/L	N/L	< 5.8	< 5.5	< 2.6	< 14	< 5.9	< 13	< 13	< 6.8	< 11	< 6.5	< 17	< 6	< 5.8	< 6	< 6	< 5.3	< 7	< 5.7	< 6.2	< 6.9	< 6.2	< 5.6	< 7	< 5.8	< 5.7	< 5.9	< 5.5	< 5.8	< 5.4	< 630	< 5.7
-Methyl-2-pentanone	N/L	N/L	< 5.8	< 5.5	< 2.6	< 14	< 5.9	< 13	< 13	< 6.8	< 11	< 6.5	< 17	< 6	< 5.8	< 6	< 6	< 5.3	< 7	< 5.7	< 6.2	< 6.9	< 6.2	< 5.6	< 7	< 5.8	< 5.7	< 5.9	< 5.5	< 5.8	< 5.4	< 630	< 5.7
Acetone	50	500000	< 46	U < 44 U	J < 42 L	U < 110	< 25 U.	< 110 U	< 110 U	< 54	< 89	< 52	< 140	< 48	46	< 48 U	< 90 U	< 66 U	160 J	< 56 U	< 86 U	< 61 U	< 50 U	< 45 U	330 J	< 47 U	< 50 U	< 47 U	< 70 U	< 46 U	< 43 U	< 5100	73
Benzene	60	44000	< 2.9	< 2.7	< 2.6	2.3	J < 2.9	< 6.6	< 6.6	< 3.4	< 5.5	< 3.2	< 8.7	< 3	0.81 J	< 3	< 3	< 2.6	< 3.5	< 2.9	< 3.1	< 3.5	< 3.1	< 2.8	< 3.5	< 2.9	< 2.8	< 2.9	< 2.8	< 2.9	< 2.7	< 320	< 2.8
Bromodichloromethane	N/L	N/L	< 2.9	< 2.7	< 2.6	< 7.1	< 2.9	< 6.6	< 6.6	< 3.4	< 5.5	< 3.2	< 8.7	< 3	< 1.2	< 3	< 3	< 2.6	< 3.5	< 2.9	< 3.1	< 3.5	< 3.1	< 2.8	< 3.5	< 2.9	< 2.8	< 2.9	< 2.8	< 2.9	< 2.7	< 320	< 2.8
Bromoform	N/L N/L	N/L N/L	< 2.9	< 2.7	< 2.6	< 7.1	UJ < 2.9 U.	< 6.6 UJ	< 6.6 UJ	< 3.4 UJ	< 5.5 U.	< 3.2 UJ	< 8.7 UJ	< 3 UJ	< 2.9 UJ	< 3 UJ	< UJ	< 2.6 UJ	< 3.5 UJ	< 2.9 UJ	< 3.1 UJ	< 3.5 UJ	< 3.1 UJ	< 2.8 UJ	< 3.5 UJ	< 2.9 UJ	< 2.8	< 2.9	< 2.8	< 2.9	< 2.7	< 320	< 2.8
Bromomethane Carbon disulfide	N/L	N/L	< 5.8 < 2.9	< 5.5 < 2.7	< 5.2 < 2.6	< 14 < 7.1	< 5.9 < 2.9 U	< 13 < 6.6 UJ	< 13 < 6.6 UJ	< 6.8 < 3.4	< 11 < 5.5	< 6.5 < 3.2 U	< 17 < 8.7 U	< 6	< 5.8 < 2.9 U	< 6	< 6	< 5.3 < 2.6 U	< 7 < 3.5 U	< 5.7 < 2.9 U	< 6.2 < 3.1 U	< 6.9 < 3.5 U	< 6.2 < 3.1	< 5.6 < 2.8	< 7 < 3.5 UJ	< 5.8 < 2.9	< 5.7 < 2.8	< 5.9 < 2.9 U	< 5.5 < 2.8 U	< 5.8 < 2.9	< 5.4 < 2.7	< 630 < 320	< 5.7 0.9 J
Carbon tetrachloride	760	22000	< 2.9	< 2.7	< 2.6	< 7.1	< 2.9	< 6.6	< 6.6	< 3.4	< 5.5	< 3.2	< 8.7	< 3	< 2.9	< 3	< 3	< 2.6	< 3.5	< 2.9	< 3.1	< 3.5	< 3.1	< 2.8	< 3.5	< 2.9	< 2.8	< 2.9	< 2.8	< 2.9	< 2.7	< 320	< 2.8
Chlorobenzene	1100	500000	< 2.9	< 2.7	< 2.6	< 7.1	< 2.9	< 6.6	< 6.6	< 3.4	< 5.5	< 3.2	< 8.7	< 3	< 2.9	< 3	< 3	< 2.6	< 3.5 UJ	< 2.9	< 3.1	< 3.5	< 3.1	< 2.8	< 3.5	< 2.9	< 2.8	< 2.9	< 2.8	< 2.9	< 2.7	< 320	< 2.8
Chloroethane	N/L	N/L	< 5.8	< 5.5	< 5.2	< 14	< 5.9	< 13	< 13	< 6.8	< 11	< 6.5	< 17	< 6	< 5.9	< 6	< 6	< 5.3	< 7	< 5.7	< 6.2	< 6.9	< 6.2	< 5.6	< 7	< 5.8	< 5.7	< 5.9	< 5.5	< 5.8	< 5.4	< 630	< 5.7
Chloroform	370	350000	< 2.9	< 2.7	0.57 J	J < 7.1	0.71 J	< 6.6	< 6.6	1.0 J	< 5.5	0.79 J	< 8.7	0.74 J	< 2.9	< 3	0.75 J	0.78 J	0.99 J	0.88 J	0.87 J	< 3.5	0.84 J	< 2.8	< 3.5	< 2.9	< 2.8	< 2.9	< 2.8	< 2.9	< 2.7	< 320	< 2.8
Chloromethane	N/L	N/L	< 5.8	UJ < 5.5 U	JJ < 5.2 L	UJ < 14	< 5.9	< 13 UJ	< 13	< 6.8 UJ	< 11	< 6.5 UJ	< 17	< 6	< 5.8 UJ	< UJ	< 6 UJ	< 5.3 UJ	< 7 UJ	< 5.7 UJ	< 6.2 UJ	< 6.9 UJ	< 3.1 UJ	< 5.6 UJ	< 7 UJ	< 5.8 UJ	< 5.7 UJ	< 5.9 UJ	< 5.5 UJ	< 5.8 UJ	J < 5.4 UJ	J < 630	< 5.7
is-1,2-Dichloroethene	250	500000	< 2.9	< 2.7	< 2.6	< 7.1	< 2.9	< 6.6	< 6.6	< 3.4	< 5.5	< 3.2	< 8.7	< 3	< 2.9	< 3	< 3	< 2.6	< 3.5	< 2.9	< 3.1	< 3.5	< 6.2	< 2.8	< 3.5	< 2.9	< 2.8	< 2.9	< 2.8	< 2.9	< 2.7	< 320	< 2.8
is-1,3-Dichloropropene	N/L	N/L	< 2.9	< 2.7	< 2.6	< 7.1	< 2.9	< 6.6	< 6.6	< 3.4	< 5.5	< 3.2	< 8.7	< 3	< 2.9	< 3	< 3	< 2.6	< 3.5	< 2.9	< 3.1	< 3.5	15	< 2.8	< 3.5	< 2.9	< 2.8	< 2.9	< 2.8	< 2.9	< 2.7	< 320	< 2.8
Cyclohexane	N/L	N/L	< 2.9	< 2.7	< 2.6	< 7.1	UJ < 2.9 U.	< 6.6 UJ	< 6.6 UJ	< 3.4 UJ	< 5.5 U.	< 3.2 UJ	< 8.7 UJ	< 3 UJ	170 J	< 3 UJ	< 3 UJ	6.7 J	< 3.5 UJ	< 2.9 UJ	8.4 J	< 3.5 UJ	< 3.1 UJ	< 2.8 UJ	< 3.5 UJ	< 2.9 UJ	< 2.8	< 2.9	< 2.8	< 2.9	< 2.7	540	< 2.8
Dibromochloromethane	N/L	N/L	< 2.9	< 2.7	< 2.6	< 7.1	< 2.9	< 6.6	< 6.6	< 3.4	< 5.5	< 3.2	< 8.7	< 3	< 2.9	< 3	< 3	< 2.6	< 3.5 UJ	< 2.9	< 3.1	< 3.5	< 25	< 2.8	< 3.5	< 2.9	< 2.8	< 2.9	< 2.8	< 2.9	< 2.7	< 320	< 2.8
Dichlorodifluoromethane	N/L	N/L	< 5.8	< 5.5	< 5.2	< 14	< 5.9	< 13	< 13	< 6.8	< 11	< 6.5	< 17	< 6	< 5.8	< 6	< 6	< 5.3	< 7	< 5.7	< 6.2	< 6.9	< 3.1	< 5.6	< 7	< 5.8	< 5.7	< 5.9	< 5.5	< 5.8	< 5.4	< 630	< 5.7
thylbenzene	1000	390000	< 2.9	< 2.7	< 2.6	370	< 2.9 U.	120 J	230 J	< 3.4 UJ	43 J	< 3.2 UJ	29 J	< 3 U.	87 J	< 3 UJ	< 3 UJ	5.0 J	< 3.5 UJ	1.5 J	< 3.1 UJ	18 J	18 J	< 2.8 UJ	< 3.5 UJ	0.78 J	< 2.8	< 2.9	< 2.8	< 2.9	< 2.7	< 320 U	2.9
sopropylbenzene	N/L	N/L	< 2.9	< 2.7	< 2.6	140	< 2.9	94 J	150 J	< 3.4 UJ	12	< 3.2 UJ	60 J	< 3	37 J	1.9 J	< 3 UJ	5.2 J	< 3.5 UJ	2.1 J	< 3.1	26 J	20 J	< 2.8	< 3.5	2.9 J	< 2.8	< 2.9	< 2.8	< 2.9	< 2.7	470	3.5
Methyl acetate	000	500000	< 23	< 22	< 21	< 57	< 24	< 53	< 53	< 27	< 44	< 26	< 69	< 24	< 23	< 24	< 24	< 21	< 28	< 23	< 25	< 28	< 25	< 23	< 28	< 23	< 23	< 24	< 22	< 23	< 22	< 2500 UJ	< 23
Methyl tert-butyl ether	930	500000 N/L	< 2.9	< 2.7	< 2.6	< 7.1 3700	< 2.9 DJ < 2.9 Us	< 6.6	< 6.6 870 J	< 3.4 < 3.4 UJ	< 5.5 84 J	< 3.2 < 3.2 UJ	< 8.7	< 3	< 2.9 350 J	< 3 30	< 3	< 2.6	< 3.5 < 3.5 UJ	< 2.9 5.0 J	< 3.1	< 3.5	< 3.1	< 2.8	1.1 J 1.9 J	< 2.9	< 2.8	< 2.9	< 2.8	< 2.9	< 2.7	< 320 5800 J	< 2.8 22 J
Methylogophexane	N/L 50	500000	< 2.9		< 2.6 JJ < 41 l		U < 5.9 U	560 J		< 3.4 UJ < 6.8	< 14 U	< 3.2 UJ < 6.5	290 J	< 3 U.		< 6	< 3 UJ	9.8 J < 5.3 U	< 3.5 UJ	5.0 J < 5.7 U	8.5 J		110 J < 6.2 U		1.9 J < 7.8 U	0					< 2.7 J < 37 UJ		
Methylene chloride I-Butylbenzene	12000	500000	< 2.9	UJ < 35 U < 2.7 U	J < 2.6 L	UJ < 25 U 470 .	J < 2.9 U	630 J	< 15 U 600 J	1.2 J	< 14 U	0.74 J	33 J 160 J	< 5 U	< 5.8	32 J	< 3 11.1	< 5.3 U	1.2 J	5.5 J	< 6.2 U 0.92 J	< 6.9 U < 3.5 UJ	< 3.1 UJ	< 13 U < 2.8 UJ	< 3.5 UJ	< 8.5 U < 2.9 UJ	< 36 UJ < 2.8	< 29 UJ < 2.9	< 35 UJ < 2.8	< 39 UJ < 2.9	< 2.7	1300	< 5.7 40
-Propylbenzene	3900	500000	< 2.9	< 2.7	0.58 J	J 390 .	J < 2.9	270 J	410 J	< 3.4 UJ	42	< 3.2 UJ	240 J	< 3	82 J	14 J	< 3 UJ	6.5 J	< 3.5 UJ	6.2	1.1 J	87 J	76 J	< 2.8	< 3.5	6.8 J	< 2.8	< 2.9	< 2.8	< 2.9	< 2.7	1700	18
Naphthalene	N/L	N/L	< 5.8	1.3 J	< 5.2	300	J < 5.9 U	380 J	340 J	< 6.8 UJ	150	< 6.5 UJ	< 23 U	< 6	48 J	< 6 U	< 7.9 UJ	9.1 U	< 7 UJ	14	< 6.2 U	54 J	83 J	< 5.6 U	< 7	< 5.8 U	< 5.7	< 5.9	< 5.5	< 5.8	< 5.4	1400	52
-Isopropyltoluene	N/L	N/L	< 2.9	< 2.7	< 2.6	130	J < 2.9 U.	170 J	79 J	< 3.4 UJ	8.2 J	< 3.2 UJ	58 J	< 3 UJ	10 J	8.4 J	< 3 UJ	3.5 J	< 3.5 UJ	1.6 J	< 3.1 UJ	42 J	54 J	< 2.8 UJ	< 3.5 UJ	7.2 J	< 2.8	< 2.9	< 2.8	< 2.9	< 2.7	380 J	11
ec-Butylbenzene	11000	500000	< 2.9	0.72 J	1 2 J	J 110	J < 2.9	130 J	130 J	< 3.4 UJ	6.6 J	< 3.2 UJ	54 J	< 3	10 J	8.4 J	< 3 UJ	2.2 J	< 3.5 UJ	1.3 J	< 3.1 UJ	22 J	27 J	< 2.8 UJ	< 3.5 UJ	3.3 J	< 2.8	< 2.9	< 2.8	< 2.9	< 2.7	350 J	7.7
Styrene	N/L	N/L	< 2.9	< 2.7	< 2.6	< 7.1	< 2.9	< 6.6	< 6.6	< 3.4	< 5.5	< 3.2	< 8.7	< 3	< 2.9	< 3	< 3	< 2.6	< 3.5 UJ	< 2.9	< 3.1	< 3.5	< 3.1	< 2.8	< 3.5	< 2.9	< 2.8	< 2.9	< 2.8	< 2.9	< 2.7	< 320	< 2.8
ert-Butyl alcohol	N/L	N/L	< 47	U < 26 U	J < 50 L	U < 57	UJ < 24 U.	< 53 UJ	< 53 UJ	< 27 UJ	< 44 U.	< 26 UJ	< 69 UJ	< 24 UJ	< 2.9 UJ	< 24 UJ	< 24 UJ	29 UJ	< 71 UJ	< 38 UJ	< 48 UJ	< 40 UJ	< 48 UJ	< 29 UJ	< 55 UJ	< 39 UJ	< 30 U	< 24	< 25 U	< 36 U	< 40 U	< 2500 UJ	< 250 U
ert-Butylbenzene	5900	500000	< 2.9	< 2.7	< 2.6	< 7.1	< 2.9 U.	< 6.6	< 6.6	< 3.4 UJ	< 5.5	< 3.2 UJ	< 8.7	< 3	< 23	0.64 J	< 3 UJ	< 2.6	< 3.5 UJ	< 2.9	< 3.1	< 3.5	< 3.1	< 2.8	< 3.5	0.65 J	< 2.8	< 2.9	< 2.8	< 2.9	< 2.7	< 320	< 2.8
etrachloroethene	1300	150000	< 2.9	< 2.7	< 2.6	< 7.1	UJ < 2.9 U.	< 6.6	< 6.6 UJ	< 3.4	< 5.5 U.	< 3.2	< 8.7 UJ	< 3 UJ	< 2.9 UJ	< 3	< 3	< 2.6	< 3.5 UJ	< 2.9	< 3.1	< 3.5	< 3.1	< 2.8	< 3.5	< 2.9	< 2.8	< 2.9	< 2.8	< 2.9	< 2.7	< 320	< 2.8
oluene	700	500000	< 2.9	< 2.7	< 2.6	< 7.1	U < 2.9	< 6.6	< 6.6 U	< 3.4	3.5 J	< 3.2	< 8.7	< 3	5.1 J	< 3	< 3	< 2.6	< 3.5 UJ	< 2.9	< 3.1	< 3.5	< 3.1	< 2.8	< 3.5	< 2.9	< 2.8	< 2.9	< 2.8	< 2.9	< 2.7	< 320	< 2.8
rans-12-Dichloroethene	190	500000	< 2.9	< 2.7	< 2.6	< 7.1	< 2.9	< 6.6	< 6.6	< 3.4	< 5.5	< 3.2	< 8.7	< 3	< 2.9	< 3	< 3	< 2.6	< 3.5	< 2.9	< 3.1	< 3.5	< 3.1	< 2.8	< 3.5	< 2.9	< 2.8	< 2.9	< 2.8	< 2.9	< 2.7	< 320	< 2.8
rans-13-Dichloropropene	N/L	N/L	< 2.9	< 2.7	< 2.6	< 7.1	< 2.9	< 6.6	< 6.6	< 3.4	< 5.5	< 3.2	< 8.7	< 3	< 2.9	< 3	< 3	< 2.6	< 3.5	< 2.9	< 3.1	< 3.5	< 3.1	< 2.8	< 3.5	< 2.9	< 2.8	< 2.9	< 2.8	< 2.9	< 2.7	< 320	< 2.8
richloroethene	470	200000	< 2.9	UJ < 2.7 U	JJ < 2.6 L	UJ < 7.1	UJ < 2.9 U.	< 6.6 UJ	< 6.6 UJ	< 3.4 UJ	< 5.5 U	< 3.2 UJ	< 8.7 UJ	< 3 UJ	< 2.9 UJ	< 3 UJ	< 3 UJ	< 2.6 UJ	< 3.5 UJ	< 2.9 UJ	< 3.1 UJ	< 3.5 UJ	< 3.1 UJ	< 2.8 UJ	< 3.5 UJ	< 2.9 UJ	< 2.8 UJ	< 2.9 UJ	< 2.8 UJ	< 2.9 UJ	J < 2.7 UJ	J < 320 UJ	< 5.7 U
richlorofluoromethane	N/L	N/L	< 5.8	< 5.5	< 5.2	< 14	< 5.9	< 13	< 13	< 6.8	< 11	< 6.5	< 17	< 6	< 5.8	< 6	< 6	< 5.3	< 7	< 5.7	< 6.2	< 6.9	< 6.2	< 5.6	< 7	< 5.8	< 5.7	< 5.9	< 5.5	< 5.8	< 5.4	< 630	< 5.7
	20	13000	< 5.8	UJ < 5.5 U	JJ < 5.2	< 14	< 5.9	< 13 UJ	< 13	< 6.8 UJ	< 11	< 6.5 UJ	< 17	< 6	< 5.8 UJ	< 6 UJ	< 6 UJ	< 5.3 UJ	< 7 UJ	< 5.7 UJ	< 6.2 UJ	< 6.6 UJ	< 6.2 UJ	< 5.6 UJ	< 7 UJ	< 5.8 UJ	< 5.7 UJ	< 5.9 UJ	< 5.5 UJ	< 5.8 UJ	J < 5.4 UJ	< 630	< 5.7
/inyl chloride	000			< 5.5	< 5.2 L	UJ 430 .	J < 5.9 U.	540 J	460 J	< 6.8 UJ	210 J	< 6.5 UJ	24 J	< 6 UJ	280 J	< 6 UJ	< 6 UJ	8.6 UJ	< 7 UJ	3.8 J	5.0 J	97 J	36 J	< 5.6 UJ	< 7 UJ	3.2 J	< 5.7	< 5.9	< 5.5	< 5.8	< 5.4	2500	21 J
(ylenes (total)	260	500000	< 5.8				0.0 0.			4.4	44000	0.00	00.7	0 = -	40000	00 **	4.00	440.00	40100	44 70	00.10	4000 00	440.0.	^	070.00	400.00	^	^		_	_	20442	
(ylenes (total) Total Detected			0	2.02	3.15	7099	0.71	4104	3729	4.1	1169.3	3.68	2017	0.74	1908.91	98.44	1.62	140.28	164.62	44.78	29.19	1232.26	1404.84	0	372.92	128.83	0	0	0	0	0	30440	258.5
(ylenes (total)			0			7099 3320	0.71			4.1 0 4.1	1169.3 1240 2409.3	3.68 0 3.68	2017 2900 4917	0.74 0 0.74	1908.91 890.37 2798.91	98.44 906 1004.44	1.62 0 1.62	140.28 197.98 338.28	164.62 0 164.62	44.78 288 332.78	29.19 9.2 38.39	1232.26 1659 2891.26	1404.84 1690 3094.84	0 0	372.92 36.9 409.82	128.83 284 412.83	0	0 0	0 0	0 0	0 0	30440 36600 67040	258.5 656 914.5

Notes:

Results expressed in micrograms per kilogram (ug/kg) = parts per billion (ppb).

SCO = Soil Cleanup Objective; Source: NYSDEC Environmental Remediation Programs 6 NYCRR Part 375.

Results in BOLD type indicate detected concentrations of parameter analyzed.

SHADING indicates results above the SCO.

Table 2 Summary of On-Site Soil Sample Analysis Data TCL-SVOCs 700 Outparcel, LLC Syracuse, NY

Parameter	Unrestricted SCO	Commercial SCO	TP-1 (6-8)	TP-1 (9-10)	TP-1 FD (9-10)	TP-2 (12-13)	TP-3 (8-10)	TP-4 (8-9)	TP-4 FD (8-9)	TP-5 (2-4)	TP-5 (10-12)	TP-6 (4-5)	TP-6 (12-13)	TP-7 (8-9)	TP-7 (11-12)	TP-8 (10-12)	TP-9 (2-4)	TP-9 (10-12)	TP-10 (2-4)	TP-10 (11-13.5)	TP-11 (6-8)	TP-11 (10-12)	TP-12 (11-13)	TP-13 (11-13)	TP-14 (2-3)	TP-14 (11-13)	TP-15 (11-13)	TP-16 (6-8)	TP-16 (11-13)	TP-17 (6-8)	TP-17 (11-13)	MW-8 (8-12)	MW-9 (12-14-5)
EPA 8270 C			8/24/2011	8/24/2011	8/24/2011	8/22/2011	8/22/2011	8/22/2011	8/22/2011	8/22/2011	8/22/2011	8/22/2011	8/22/2011	8/23/2011	8/23/2011	8/23/2011	8/23/2011	8/23/2011	8/23/2011	8/23/2011	8/23/2011	8/23/2011	8/23/2011	8/23/2011	8/23/2011	8/23/2011	8/24/2011	8/24/2011	8/24/2011	8/24/2011	8/24/2011	1/17/2012	1/13/2012
1,1'-Biphenyl	N/L	N/L	< 390	< 3800	< 3600	< 750	< 400	18 J	< 380	27 J	< 370	< 89000	< 360	< 410	< 380	< 390	< 2100	< 370	< 9400	< 360	< 400	< 410	38 J	< 380	< 4600	< 3800	< 380	< 400	< 370	< 390	< 360	< 400	< 380
2,4,5-Trichlorophenol 2.4,6-Trichlorophenol	N/L N/I	N/L N/I	< 2000	< 19000 < 3800	< 18000	< 3800 < 750	< 2000	< 1900 < 380	< 1900 < 1900	< 2400 < 470	< 1900 < 370	< 450000 < 89000	< 1800 < 360	< 2100 < 410	< 1900 < 380	< 2000	< 10000 < 2100	< 1800 < 370	< 48000 < 9400	< 1800 < 360	< 2000 < 400	< 2100 < 410	< 4000 < 780	< 1900	< 23000 < 4600	< 19000 < 3800	< 1900 < 380	< 2000 < 400	< 1900	< 2000	< 1800 < 360	< 2000 < 400	< 1900 < 380
2,4,6-Trichlorophenol	N/L	N/L	< 390	< 3800	< 3600	< 750 < 750	< 400	< 380	< 1900	< 470	< 370	< 89000 < 89000	< 360	< 410	< 380	< 390	< 2100	< 370	< 9400	< 360	< 400	< 410	< 780 < 780	< 380	< 4600 < 4600	< 3800	< 380	< 400	< 370	< 390	< 360	< 400	< 380
2,4-Dimethylphenol	N/L	N/L	< 390	< 3800	< 3600	< 750	< 400	< 380	< 380	< 470	< 370	< 89000	< 360	< 410	< 380	< 390	< 2100	< 370	< 9400	< 360	< 400	< 410	< 780	< 380	< 4600	< 3800	< 380	< 400	< 370	< 390	< 360	< 400	< 380
2,4-Dinitrophenol	N/L	N/L	< 2000 UJ	J R	R	R	R	R	< R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	< 2000 UJ	< 1900 UJ	< 2000 UJ	< 1800 UJ	< 2000	< 1900
2,4-Dinitrotoluene	N/L	N/L	< 390	< 3800	< 3600	< 750	< 400	< 380	< 380	< 470	< 370	< 89000	< 360	< 410	< 380	< 390	< 2100	< 370	< 9400	< 360	< 400	< 410	< 780	< 380	< 4600	< 3800	< 380	< 400	< 370	< 390	< 360	< 400	< 380
2,6-Dinitrotoluene 2-Chloronaphthalene	N/L N/L	N/L N/L	< 390	< 3800 < 3800	< 3600 < 3600	< 750 < 750	< 400 < 400	< 380 < 380	< 380 < 380	< 470 < 470	< 370 < 370	< 89000 < 89000	< 360 < 360	< 410 < 410	< 380 < 380	< 390 < 390	< 2100 < 2100	< 370 < 370	< 9400 < 9400	< 360 < 360	< 400 < 400	< 410 < 410	< 780 < 780	< 380	< 4600 < 4600	< 3800 < 3800	< 380 < 380	< 400 < 400	< 370 < 370	< 390	< 360 < 360	< 400 < 400	< 380 < 380
2-Chlorophenol	N/L	N/L	< 390	< 3800	< 3600	< 750	< 400	< 380	< 380	< 470	< 370	< 89000	< 360	< 410	< 380	< 390	< 2100	< 370	< 9400	< 360	< 400	< 410	< 780	< 380	< 4600	< 3800	< 380	< 400	< 370	< 390	< 360	< 400	< 380
2-Methylnaphthalene	N/L	N/L	< 390	160 J	250 J	53 J	< 400	97 J	49 J	77 J	280 J	8000 J	120 J	< 410	130 J	31 J	160 J	340 J	810 J	90 J	< 400	41 J	470 J	< 380	410 J	270 J	25 J	18 J	< 370	< 390	27 J	160 J	140 J
2-Methylphenol	N/L	N/L	< 390	< 3800	< 3600	< 750	< 400	< 380	< 380	< 470	< 370	< 89000	< 360	< 410	< 380	< 390	< 2100	< 370	< 9400	< 360	< 400	< 410	< 780	< 380	< 4600	< 3800	< 380	< 400	< 370	< 390	< 360	< 400	< 380
2-Nitroaniline 2-Nitrophenol	N/L N/I	N/L N/L	< 2000	< 19000 < 3800	< 18000 < 3600	< 3800 < 750	< 2000 < 400	< 1900 < 380	< 1900 < 380	< 2400 < 470	< 1900 < 370	< 450000 < 89000	< 1800 < 360	< 2100 < 410	< 1900 < 380	< 2000 < 390	< 10000 < 2100	< 1800 < 370	< 48000 < 9400	< 1800 < 360	< 2000 < 400	< 2100 < 410	< 4000 < 780	< 1900 < 380	< 23000 < 4600	< 19000 < 3800	< 1900 < 380	< 2000 < 400	< 1900 < 370	< 2000	< 1800 < 360	< 400 < 2000	< 1900 < 380
3,3'-Dichlorobenzidine	N/L	N/L	< 780 UJ	J R	R	< 1500	< 800	< 760	< 760	< 950	< 730	< 180000	< 720	< 820	< 760	< 790	< 4100	< 730	< 19000	< 710	< 800	< 820	< 1600	< 770	< 9200	< 7600	< 760 UJ	< 810 UJ	< 740 UJ	< 780 UJ	< 720 UJ	< 400	< 770
3-Nitroaniline	N/L	N/L	< 2000	< 19000	< 18000	< 3800	< 2000	< 1900	< 1900	< 2400	< 1900	< 450000	< 1800	< 2100	< 1900	< 200	< 10000	< 1800	< 48000	< 1800	< 2000	< 2100	< 4000	< 1900	< 23000	< 19000	< 1900	< 2000	< 1900	< 2000	< 1800	< 800	< 1900
4,6-Dinitro-2-methylphenol	N/L	N/L	< 2000 UJ	J R	R	< 3800 UJ	J < 2000 UJ	< 1900 U	J < 1900 UJ	< 2400 UJ	< 1900 UJ	< 450000 UJ	< 1800 UJ	< 2100 U.	< 1900 U.	< 2000 UJ	< 10000 UJ	< 1800 UJ	< 48000 U	J < 1800 UJ	< 2000 UJ	< 2100 U.	J < 4000 UJ	< 1900 UJ	< 23000 UJ	< 19000 UJ	< 1900 UJ	< 2000 UJ	< 1900 UJ	< 2000 UJ	< 1800 UJ	< 2000	< 1900
4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol	N/L N/L	N/L N/L	< 390 < 390	< 3800 < 3800	< 3600 < 3600	< 750 < 750	< 400 < 400	< 380 < 380	< 380 < 380	< 470 < 470	< 370 < 370	< 89000 < 89000	< 360 < 360	< 410 < 410	< 380 < 380	< 390 < 390	< 2100 < 2100	< 370 < 370	< 9400 < 9400	< 360 < 360	< 400 < 400	< 410 < 410	< 780 < 780	< 380 < 380	< 4600 < 4600	< 3800 < 3800	< 380 < 380	< 400 < 400	< 370 < 370	< 390 < 390	< 360 < 360	< 2000 < 400	< 380 < 380
4-Chloroaniline	N/L	N/L	< 390	< 3800	< 3600	< 750	< 400	< 380	< 380	< 470	< 370	< 89000	< 360	< 410	< 380	< 390	< 2100	< 370	< 9400	< 360	< 400	< 410	< 780	< 380	< 4600	< 3800	< 380	< 400	< 370	< 390	< 360	< 400	< 380
4-Chlorophenyl phenyl ether	N/L	N/L	< 390	< 3800	< 3600	< 750	< 400	< 380	< 380	< 470	< 370	< 89000	< 360	< 410	< 380	< 390	< 2100	< 370	< 9400	< 360	< 400	< 410	< 780	< 380	< 4600	< 3800	< 380	< 400	< 370	< 390	< 360	< 400	< 380
4-Methylphenol	N/L	N/L	< 390	< 3800	< 3600	< 750	< 400	< 380	< 380	< 470	< 370	< 89000	< 360	< 410	< 380	< 390	< 2100	< 370	< 9400	< 360	< 400	< 410	< 780	< 380	< 4600	< 3800	< 380	< 400	< 370	< 390	< 360	< 400	< 380
4-Nitroaniline 4-Nitrophenol	N/L N/L	N/L N/L	< 2000 < 2000 UJ	< 19000	< 18000	< 3800 < 3800	< 2000 < 2000	< 1900 < 1900	< 1900 < 1900	< 2400 < 2400	< 1900 < 1900	< 450000 < 450000	< 1800 < 1800	< 2100 < 2100	< 1900 < 1900	< 2000 < 2000	< 10000 < 10000	< 1800 < 1800	< 48000 < 48000	< 1800 < 1800	< 2000 < 2000	< 2100 < 2100	< 4000 < 4000	< 1900 < 1900	< 23000 < 23000	< 19000 < 19000	< 1900 < 1900 UJ	< 2000 < 2000 UJ	< 1900 < 1900 UJ	< 2000 < 2000 UJ	< 1800 < 1800 UJ	< 2000 < 2000	< 1900 < 1900
4-Nitropnenoi Acenaphthene	20000	500000	< 2000 UJ < 390	J R 490 J	940 J	< 3800 190 J	< 2000 < 400	< 1900 94 J	< 1900 44 J	< 2400 290 J	< 1900 < 370	< 450000 30000 J	< 1800 < 360	< 2100 < 410	< 1900 < 380	< 2000 < 390	< 10000 470 J	< 1800 59 J	< 48000 3600 J	< 1800 170 J	< 2000 < 400	< 2100 < 410	< 4000 400 J	< 1900	< 23000 1200 J	< 19000 790 J	< 1900 UJ < 380	< 2000 UJ 30 J	< 1900 UJ < 370	< 2000 UJ < 390	< 1800 UJ < 360	< 400 < 400	< 380
Acenaphthylene	100000	500000	< 390	< 3800	240 J	32 J	< 400	23 J	< 380	89 J	< 370	< 89000	< 360	< 410	< 380	< 390	350 J	< 370	1600 J	< 360	< 400	< 410	230 J	< 380	290 J	470 J	34 J	< 400	< 370	< 390	< 360	< 400	< 380
Acetophenone	N/L	N/L	< 390	< 3800	< 3600	< 750	< 400	< 380	< 380	< 470	< 370	< 89000	< 360	< 410	< 380	< 390	< 2100	< 370	< 9400	< 360	< 400	< 410	< 780	< 380	< 4600	< 3800	< 380	< 400	< 370	< 390	< 360	< 400	< 380
Anthracene Atrazine	100000 N/I	500000 N/I	< 390	1600 J < 3800	3100 J < 3600	380 J < 750	< 400	220 J < 380	86 J < 380	800 < 470	< 370	78000 J < 89000	< 360	< 410 < 410	< 380	< 390	1200 J < 2100	140 J < 370	15000 < 9400	370 < 360	< 400 < 400	< 410 < 410	1200 < 780	< 380	2800 J < 4600	2600 J < 3800	50 J < 380	68 J < 400	< 370	< 390	< 360	< 400 < 400	< 380 < 380
Benzaldehyde	N/L	N/L	< 390	< 3800	< 3600 500 J	< 750	< 400	< 380	< 380	< 470 25 J	< 370	< 89000 < 89000	< 360	< 410	< 380	< 390	< 2100	< 370	< 9400	< 360	< 400	< 410	< 780	< 380	< 4600	< 3800	< 380	< 400	< 200	< 390	< 360	< 400	< 380
Benzo[a]anthracene	1000	5600	< 390 UJ	J R	R	1000 J	< 400	690 J	310 J	1600 J	32 J	210000 J	< 360	< 410	< 380	< 390	2900 J	240 J	31000 J	720 J	< 400	< 410	2400 J	53 J	4700 J	3700 J	300 J	220 J	< 370 UJ	< 390 UJ	< 360 UJ	< 400	< 380 U
Benzo[a]pyrene	1000	1000	< 390 UJ	J R	R	780 J	< 400	580 J	450 J	1300 J	19 J	180000 J	< 360	< 410	< 380	< 390	4000 J	360 J	26000 J	650 J	< 400	< 410	2500 J	280 J	5600 J	4700 J	440 J	390 J	< 370 UJ	< 390 UJ	< 360 UJ	< 400	16 J
Benzo[b]fluoranthene	1000	5600 500000	< 390 UJ	J R	R	960 J	< 400 < 400	730 J 250 J	600 J	1700 J 570	23 J	250000 J 110000	< 360	< 410 < 410	< 380 < 380	< 390 < 390	5200 J	510	31000 J	850 J 420	< 400 < 400	< 410 < 410	3100 J 1100	420 J 250 J	7900 J	6700 J	610 J	580 J 400 UJ	< 370 UJ	< 390 UJ	< 360 UJ	< 400 < 400	19 J < 380
Benzo[g,h,i]perylene Benzo[k]fluoranthene	800	56000	< 390 UJ < 390	2400 J	2600 J	410 J	< 400 < 400	250 J 300 J	330 J 150 J	570 630 J	< 370 < 370	76000 J	< 360 < 360	< 410 < 410	< 380	< 390	2400 1700 J	280 J 71 J	12000 12000 J	420 240 J	< 400 < 400	< 410 < 410	1100 1300 J	250 J 27 J	3300 J 1800 J	2900 J 1600 J	290 J 150 J	400 UJ < 110 J	< 370 UJ	< 390 UJ	< 360 UJ < 360	< 400 < 400	< 380
bis(2-Chloroethoxy)methane	N/L	N/L	< 390	< 3800	< 3600	< 750	< 400	< 380	< 380	< 470	< 370	< 89000	< 360	< 410	< 380	< 390	< 2100	< 370	< 9400	< 360	< 400	< 410	< 780	< 380	< 4600	< 3800	< 380	< 400	< 370	< 390	< 360	< 400	< 380
bis(2-chloroethyl)ether	N/L	N/L	< 390	< 3800	< 3600	< 750	< 400	< 380	< 380	< 470	< 370	< 89000	< 360	< 410	< 380	< 390	< 2100	< 370	< 9400	< 360	< 400	< 410	< 780	< 380	< 4600	< 3800	< 380	< 400	< 370	< 390	< 360	< 400	< 380
bis(2-chloroisopropyl)ether bis(2-Ethylhexyl)phthalate	N/L	N/L N/L	< 390	< 3800	< 3600	< 750	< 400 U	< 380	< 380	< 470	< 370	< 89000	< 360	< 410	< 380	< 390	< 2100	< 370	< 9400	< 360	< 400	< 410	< 780	< 380	< 4600	< 3800	< 380	< 400	< 370	390	< 360	< 400 < 400	< 380 < 380 U
Butyl benzyl phthalate	N/L N/L	N/L N/L	< 390	< 3800 < 3800	< 3600 < 3600	< 750 U < 750	< 400 < 400	< 380 U	< 380	< 470 U	< 370 U	< 89000 < 89000	< 360 U < 360	< 410 U	< 380 U < 380	< 390 U < 390	< 2100 U < 2100	< 370 U < 370	< 9400 < 9400	< 360 U < 360	< 400 U < 400	< 410 U	< 780 U < 780	< 380 U < 380	< 4600 < 4600	< 3800 < 3800	< 380 U < 380	< 400 U < 400	< 370 U	< 390 U < 390	< 360 U < 360	< 400 < 400	< 380 U
Caprolactam	N/L	N/L	< 390	< 3800	< 3600	< 750	< 400	< 380	< 380	< 470	< 370	< 89000	< 360	< 410	< 380	< 390	< 2100	< 370	< 9400	< 360	< 400	< 410	< 780	< 380	< 4600	< 3800	< 380	< 400	< 370	< 390	< 360	< 400	< 380
Carbazole	N/L	N/L	< 390	390 J	1100 J	180 J	< 400	62 J	32 J	360 J	< 370	57000 J	< 360	< 410	< 380	< 390	500 J	62 J	5100 J	380 J	< 400	< 410	470 J	< 380	1200 J	670 J	20 J	43 J	< 370	< 390	< 360	< 400	< 380
Chrysene	1000	56000	< 390 UJ	J R	R	880	< 400	570 J	280 J	1500 J	20 J	210000 J	< 360	< 410	< 380	< 390	2900	220 J	28000 J	740 J	< 400	< 410	2200 J	51 J	4200 J	3400 J	270 J	220 J	< 370 UJ	< 390 UJ	17 J	< 400	16 J
Di-n-butyl phthalate Di-n-octyl phthalate	N/L N/L	N/L N/L	< 390	< 3800 < 3800	< 3600 < 3600	< 750 < 750	< 400 < 400	< 380 < 380	< 380 < 380	< 470 < 470	< 370 < 370	< 89000 < 89000	< 360 < 360	< 410 < 410	< 380 < 380	< 390 < 390	< 2100 < 2100	< 370 < 370	< 9400 9200 J	21 J < 360	< 400 < 400	< 410 < 410	< 780 < 780	< 380 < 380	< 4600 < 4600	< 3800 < 3800	< 380 < 380	< 400 < 400	< 370 < 370	< 390 < 390	< 360 < 360	< 400 < 400	< 380 U < 380
Dibenz[a,h]anthracene	330	560	< 390	< 3800	< 3600 U	< 750	< 400	< 380 U	320 J	460 J	< 370	< 89000 U	< 360	< 410	< 380	< 390	< 2100 U	300 J	2800 J	320 J	< 400	< 410	800	300 J	< 4600	< 3800	< 380 U	< 400	< 370	< 390	< 360	< 400	< 380
Dibenzofuran	N/L	N/L	< 390	440 J	740 J	110 J	< 400	67 J	31 J	160 J	< 370	25000 J	< 360	< 410	< 380	< 390	270 J	35 J	< 9400	160 J	< 400	< 410	230 J	< 380	870 J	670 J	18 J	23 J	< 370	< 390	< 360	< 400	< 380
Diethyl phthalate	N/L	N/L	< 390	< 3800	< 3600	< 750	< 400	< 380	< 380	< 470	< 370	< 89000	< 360	< 410	< 380	< 390	< 2100	< 370	< 9400	< 360	< 400	< 410	< 780	< 380	< 4600	< 3800	< 380	< 400	< 370	< 390	< 360	< 400	< 380
Dimethyl phthalate Fluoranthene	N/L 100000	N/L 500000	< 390 < 390 UJ	< 3800 R	< 3600 R	< 750 2400 J	< 400 < 400	< 380 1200 J	< 380 500 J	< 470 3300 J	< 370 45 J	< 89000 430000 J	< 360 < 360 UJ	< 410 < 410 U.	< 380 1 16 J	< 390 < 390 UJ	< 2100 5700 J	< 370 510 J	57000 5300 J	< 360 1800 J	< 400 < 400 UJ	< 410 < 410 U	< 780 J 4800 J	< 380 48 J	< 4600 9600 J	< 3800 7800 J	< 380 460 J	< 400 460 J	< 370 < 370 UJ	< 390 < 390 UJ	< 360 32 J	< 400 < 400	< 380 24 J
Fluorene	30000	500000	< 390	670 J	1200 J	160 J	< 400 UJ	120 J	46 J	290 J	< 370	34000 J	< 360	< 410	< 380	< 390	480 J	63 J	< 9400	190 J	< 400	< 410	420 J	< 380	1300 J	1300 J	19 J	29 J	< 370	< 390	< 360	< 400	< 380
Hexachlorobenzene	N/L	N/L	< 390	< 3800	< 3600	< 750	< 400	< 380	< 380	< 470	< 370	< 89000	< 360	< 410	< 380	< 390	< 2100	< 370	< 9400	< 360	< 400	< 410	< 780	< 380	< 4600	< 3800	< 380	< 400	< 370	< 390	< 360	< 400	< 380
Hexachlorobutadiene	N/L	N/L	< 390	< 3800	< 3600	< 750	< 400	< 380	< 380	< 470	< 370	< 89000	< 360	< 410	< 380	< 390	< 2100	< 370	< 9400	< 360	< 400	< 410	< 780	< 380	< 4600	< 3800	< 380 UJ	< 400	< 370	< 390	< 360 UJ	< 400 < 400	< 380
Hexachlorocyclopentadiene Hexachloroethane	N/L N/L	N/L N/L	< 390 UJ	J R < 3800	< 3600	< 750	< 400	< 380	< R < 380	< 470	< 370	< 89000	< 360	< 410	< 380	< 390	< 2100	< 370	< 9400	< 360	< 400	< 410	< 780	< 380	< 4600	< 3800 < 3800	< 380 < 380	< 400 UJ < 400	< 370 UJ < 370	< 390 UJ < 390	< 360 < 360	< 400 < 400	< 380 < 380
Indeno[1,2,3-cd]pyrene	500	5600	< 390 UJ	< 3800 J R	< 3600 R	< 750 320 J	< 400	220 J	190 J	360 J	< 370	70000 J	< 360	< 410	80 J	< 390	1500 J	140 J	< 9400 8400 J	290 J	< 400	< 410	740 J	100 J	1400 J	1300 J	140 J	110 J	< 370 UJ	< 390 UJ	< 360 69 J	< 400	< 380
Isophorone	N/L	N/L	< 390	< 3800	< 3600	< 750	< 400	< 380	< 380	< 470	< 370	< 89000	< 360	< 410	< 380	< 390	< 2100	< 370	< 9400	< 360	< 400	< 410	< 780	< 380	< 4600	< 3800	< 380	< 400	< 370	< 390	< 360	< 400	< 380
N-Nitroso-di-n-propylamine	N/L	N/L	< 390	< 3800	< 3600	< 750	< 400	< 380	< 380	< 470	< 370	< 89000	< 360	< 410	< 380	< 390	< 2100	< 370	< 9400	< 360	< 400	< 410	< 780	< 380	< 4600	< 3800	< 380	< 400	< 370	< 390	< 360	< 400	< 380
N-Nitrosodiphenylamine Naphthalene	N/L 12000	N/L 500000	< 390 < 390	< 3800 200 J	< 3600 340 J	< 750 89 J	< 400 < 400	< 380 44 J	< 380 37 J	< 470 90 J	< 370 200 J	< 89000 16000 J	< 360 < 360	< 410 < 410	< 380 56 J	< 390 < 390	< 2100 200 J	< 370 140 J	< 9400 1000 J	< 360 69 J	< 400 < 400	< 410 < 410	< 780 420 J	< 380 < 380	< 4600 600 J	< 3800 250 J	380 40 J	< 400 20 J	< 370 < 370	< 390	< 360 25 J	< 400 93 J	< 380 49 J
Nitrobenzene	N/L	N/L	< 390	< 3800	< 3600	< 750	< 400	< 380	< 380	90 J < 470	< 370	< 89000	< 360	< 410	< 380	< 390	< 2100 J	40 J < 370	< 9400	< 360	< 400	< 410	420 J < 780	< 380	< 4600 J	< 3800	< 380	< 400	< 370	< 390	< 360	< 400	< 380
Pentachlorophenol	800	6700	< 2000 UJ	J R	R	< 3800	< 2000	< 1900	< 1900 UJ	< 2400 UJ	< 1900	< 450000 UJ	< 1800	< 2100	< 1900 U.	< 2000	< 10000 UJ	< 1800 UJ	< 48000 U	J < 1800 UJ	< 2000	< 2100	< 4000 UJ	< 1900 UJ	< 23000 UJ	< 19000 UJ	1 < 1900 UJ	< 2000 UJ	< 1900 UJ	< 2000 UJ	< 1800 UJ	< 2000	< 1900
Phenanthrene	100000	500000	< 390 UJ	J R	R	1900 J	< 400	730 J	260 J	2800 J	32 J	430000 J	< 360	< 410	17 J	< 390	4400 J	490 J	52000 J	2000 J	< 400	< 410	4000 J	19 J	11000 J	8800 J	180 J	380 J	< 370 UJ	< 390 UJ	22 J	17 J	25 J
Phenol Pyrene	330 100000	500000 500000	< 390 < 390 U.	< 3800	< 3600	< 750	< 400	< 380	< 380 590 J	< 470 3100 J	< 370 45 J	< 89000 440000 J	< 360	< 410 < 410	< 380	< 390	< 2100 6300 J	< 370 500 J	< 9400 59000 J	< 360 1700 .l	< 400 < 400	< 410 < 410	< 780 4600 .I	< 380	< 4600	< 3800 8400 J	< 380 570 J	< 400	< 370 < 370 LLI	< 390 < 390 IJJ	< 360	< 400 < 400	< 380
Pyrene Total Detected		500000	< 390 UJ	J R 6190	11010	12421	< 400	7215	590 J 4305	3100 J 19501	45 J 696	440000 J 2665000	< 360 120	< 41U	17 J 186	< 390 31	6300 J 40630	500 J 4389	360810	1700 J 11180	< 400 0	< 410 41	4600 J 29208	67 J 1315	11000 J 69170	8400 J 56050	570 J 3566	520 J 3511	< 3/U UJ	< 390 UJ	31 J 223	< 400 270	23 J 312
Total Detected TICS			250	15900	32400	2260	370	2300	350	6680	350	523000	2200	400	890	790	7570	360	133700	2190	370	349	13800	980	11900	8700	1020	2240	340	0	890	5200	605
Total			250	22090	43410	14681	370	9515	4655	26181	1046	3188000	2320	400	1076	821	48200	4749	494510	13370	370	390	43008	2295	81070	64750	4586	5751	340	0	1113	5470	917
Notes:																																	

- Notes:

 1. Results expressed in micrograms per kilogram (ug/kg) = parts per billion (ppb).

 2. SCO = Soil Cleanup Objective; Source: NYSDEC Environmental Remediation Programs 6 NYCRR Part 375.

 3. Results in BOLD type indicate detected concentrations of parameter analyzed.

 4. SHADNO indicates results above the SCO.

 5. N/L = Not Listed.

Table 3 Summary of On-Site Soil Sample Analysis Data Metals 700 Outparcel, LLC Syracuse, NY

		0	TD_1	TD-1	TP-1 FD	TP-2	TP-3	TD-4	TP-4 FD	TD.5	TP-5	TP-6	TP-6	TD-7	TD.7	TP-8	TP-9	TP-9	TP-10	TP-10	TD-11	TD-11	TP-12	TP-13	TD-1/	TP-1/	TD-15	TP-16	TP-16	TP-17	TD-17	MW-8	MW-Q
Parameter	SCO	SCO	(6-8)	(9-10)	(9-10)	(12-13)	(8-10)	(8-9)	(8-9)	(2-4)	(10-12)	(4-5)	(12-13)	(8-9)	(11-12)	(10-12)	(2-4)	(10-12)	(2-4)	(11-13.5)	(6-8)	(10-12)	(11-13)	(11-13)	(2-3)	(11-13)	(11-13)	(6-8)	(11-13)	(6-8)	(11-13)	(8-12)	(12-14.5)
EPA 6010B			8/24/2011	8/24/2011	8/24/2011	8/22/2011	8/22/2011	8/22/2011	8/22/2011	8/22/2011	8/22/2011	8/22/2011	8/22/2011	8/23/2011	8/23/2011	8/23/2011	8/23/2011	8/23/2011	8/23/2011	8/23/2011	8/23/2011	8/23/2011	8/23/2011	8/23/2011	8/23/2011	8/23/2011	8/24/2011	8/24/2011	8/24/2011	8/24/2011	8/24/2011	1/17/2012	1/13/2012
Aluminum	N/L	N/L	5400	4700	4900	11000	6300	3000	1800	7500	4300	17000	4400	4200	4600	3700	8200	3100	4700	4200	16000	7400	5900	5300	9900	4000	4700	6400	4300	10000	3700	5000	6200
Antimony	N/L	N/L	0.39 J	0.36 J	0.65 J	1.1 J	1.2 J	1.2 J	1.1 J	2.1 J	< 1.1 UJ	1.3 J	< 1.1 UJ	< 1.2 UJ	1.2 UJ	< 1.2 UJ	3.5 J	< 1.1 UJ	14 J	< 1.1 UJ	< 1.2 U.	J < 1.2 U.	J 5 J	< 1.2 UJ	1.5 J	0.4 J	< 1.2 UJ	< 1.2 UJ	< 1.1 UJ	< 1.2 UJ	< 1.1 UJ	< 1.2	< 1.2
Arsenic	13	16	5.7	3.9	4	3.9	4.2	2.5	1.1 J	6.8	2.1	38	1.8	2.5	2.7	2	21	1.3	8.5	3.8	4	6.2	5.2	5.4	5.8	6.5	9.1	4.4	8.7	2.1	3.6	2.9	11
Barium	350	400	77 J	55 J	59 J	110	75	34	12	130	36	320	15	64	50	39	660	29	110	50	100	97	83	53	120	50	59 J	64 J	38 J	72 J	49 J	56	110
Beryllium	7.2	590	0.24 J	0.32 J	0.30 J	0.54 J	0.39 J	0.21 J	0.084 J	0.71 J	0.18 J	1.8	0.19 J	0.18 J	0.24 J	0.18 J	1.4	0.14 J	0.48	0.23 J	0.65 J	0.41 J	0.32 J	0.24 J	0.61 J	0.26 J	0.26 J	0.34 J	0.24 J	0.55 J	0.17 J	0.23 J	0.41 J
Cadmium	2.5	9.3	< 1.2	< 1.1	< 1.1	< 1.1	< 1.2	< 1.2	< 1.1	< 1.4	< 1.1	2.1	< 1.1	< 1.2	< 1.2	< 1.2	0.2 J	< 1.1	< 1.4	< 1.1	< 1.2	< 1.2	< 1.2	< 1.2	< 1.4	0.12 J	< 1.2	< 1.2	< 1.1	< 1.2	< 1.1	< 1.2	< 1.2
Calcium	N/L	N/L	45000 J	150000 DJ	87000 J	51000	89000	140000 D	52000	28000	72000	99000	87000	60000	86000	67000	32000	66000	27000	95000	18000	65000	73000	74000	100000	85000	49000 J	93000 J	41000 J	2500 J	49000 J	66000	110000
Chromium	31	1900	9.5	9.9	9.1	17	13	5.8	3.4	13	7.1	17	7.6	7.8	7.7	6.8	11	5.3	12	7.4	24	12	10	8.2	15	8.2	7.9	12	7.2	17	6.6	8.6	12
Cobalt	N/L	N/L	5.9	6.1	4.9	8	6.8	5	2.4	7.4	4	7.1	4.4	4.3	4.7	3.8	5.9	3.7	5.6	6.5	13	9.1	6	6.1	10	5.6	5.8	7.1	5.5	9	3.9	6.7	9
Copper	50	270	19	29	42	17	41	21	18	160	20	120	21	14	24	15	98	21	190	16	15	23	52	22	59	34	28	25	19	15	21	18	21
Iron	N/L	N/L	16000	10000	1000	20000	16000	8500	5500	16000	11000	19000	9200	7600	12000	8600	29000	6900	11000	13000	28000	19000	15000	14000	19000	13000	20000	14000	18000	18000	12000	9900	23000
Lead	63	1000	4.5 J	91 J	81 J	28 J	56 J	9.5 J	2.9 J	300 J	4.7 J	950 J	4.2 J	4.2 J	17 J	4 J	260 J	11 J	710 J	11 J	9.6 J	7.5 J	200 J	8.1 J	140 J	61 J	12 J	52 J	3.4 J	8.7 J	7 J	5.6	11.0
Magnesium	N/L	N/L	18000	34000	25000	12000	22000	22000	14000	8900	25000	19000	29000	27000	29000	26000	5500	20000	4800	22000	13000	25000	17000	23000	17000	19000	17000	29000	12000	4700	18000	30000	3900 DL
Manganese	1600	10000	200	210	210	210	260	280	270	250	290	450	300	190	350	270	350	320	230	240	350	350	360	250	380	250	210	340	170	110	170	280	340
Nickel	30	310	13	13	11	19	16	7.9	5.1	16	9.4	20	9.5	10	11	8.9	18	10	13	12	31	19	14	13	23	14	13	15	11	26	8.8	14	17
Potassium	N/L	N/L	1200	2000	1300	1600	1400	990	540	1500	1100	2600	1200	1000	1200	780	2000	1000	750	1300	2000	1500	1400	1300	1900	990	1000	1700	930	1500	870	1500	2100
Selenium	3.9	1500	< 1.2 UJ	< 1.1 UJ	< 1.1 UJ	1.1 J	1.2 J	1.2 U.	1.1 UJ	J 1.4 UJ	1.1 UJ	2.9 J	1.1 UJ	1.2 UJ	1.2 UJ	< 1.2 UJ	1.3 J	< 1.1 UJ	1.3 J	< 1.1 UJ	< 1.2 U.	J < 1.2	< 1.2	< 1.2	1.2 J	0.59 J	< 1.2 UJ	< 1.2 UJ	< 1.1 UJ	< 1.2 UJ	< 1.1 UJ	< 1.2	0.6 J
Silver	2.0	1500	< 1.2	< 1.1	< 1.1	< 1.1	< 1.2	< 1.2	< 1.1	0.35 J	< 1.1	< 1.3	< 1.1	< 1.2	< 1.2	< 1.2	< 1.2	< 1.1	1 J	< 1.1	< 1.2	< 1.2	< 1.2	< 1.2	< 1.4	< 1.2	< 1.2	< 1.2	< 1.1	< 1.2	< 1.1	< 1.2	< 1.2
Sodium	N/L	N/L	100 J	160 J	580 J	320 J	120	130 J	70 J	350 J	110 J	730 J	330 J	120 J	130 J	230 J	1100 J	190 J	210	120 J	100 J	270 J	190 J	140 J	240 J	160 J	120 J	210 J	90 J	200 J	100 J	140	210
Thallium	N/L	N/L	< 2.4	< 2.3	< 2.2	< 2.3	< 2.4	< 2.3	< 2.3	< 2.9	< 2.2	1.4 J	< 2.2	< 2.5	< 2.3	< 2.4	< 2.5	< 2.2	< 2.8	< 2.2	< 2.4	< 2.5	< 2.4	< 2.3	< 2.8	< 2.3	< 2.3	< 2.5	< 2.3	< 2.4	< 2.2	< 2.4	< 2.4
Vanadium	N/L	N/L	12	12	12	22	16	8	4.6	24	10	22	7.4	9.2	10	9	26	6.6	13	9.2	26	18	13	11	18	13	13	14	11	19	9.6	11	15
Zinc EPA 7471A	109	10000	24 J	57 J	36 J	73	110	25	11	200	24	620	20	20	44	18	180	19	180	25	66	38	270	30	92	48	28 J	55 J	20 J	45 J	20 J	25	40
EPA 7471A	0.10	2.0	0.040	0.440	0.00	0.000	0.400			0.570	0.040	0.700	0.440		0.000		0.400		4 400	0.000		0.040	0.400	0.004	0.000		0.000	0.000	0.047		H		0.050
Mercury	0.18	2.8	0.018 J	0.110 J	0.20	0.062 J	< 0.120	0.010 J	< 0.11	0.570	0.013 J	0.700	< 0.110	0.012 J	0.028 J	0.016 J	0.480	0.016 J	1.400	0.028 J	0.035 J	0.016 J	0.130	0.024 J	0.220	0.130	0.260	0.032 J	0.017 J	0.031 J	0.079 J	0.028 J	0.052 J
EPA 9012A		07	0.50	0.57	0.55	0.50	0.04	0.50	0.50	0.70	0.50	0.00	0.55	0.00	0.50	0.50	0.00	0.55	0.70	0.55	0.04	0.00	0.50	0.50	0.7	0.50	0.50	0.04	0.50	0.50	0.55		0.50
Cyanide (total)	27	27	< 0.59	< 0.57	< 0.55	< 0.56	< 0.61	< 0.58	< 0.58	< 0.72	< 0.56	< 0.68	< 0.55	< 0.62	< 0.58	< 0.59	< 0.62	< 0.55	< 0.72	< 0.55	< 0.61	< 0.62	< 0.59	< 0.58	< 0.7	< 0.58	< 0.59	< 0.61	< 0.56	< 0.59	< 0.55	< 0.6	< 0.58

Cyanide (total) 27 27 < 0.59 < 0.57 < 0.55 Notes:

1. Results expressed in milligrams per kilogram (mg/kg) = parts per million (ppm).

2. SCO = Soil Clearup Objective; Source: NYSDEC Environmental Remediation Programs 6 NYCRR Part 375.

3. Results in BOLD type indicate detected concentrations of parameter analyzed.

4. SHADING indicates results above the SCO.

5. N/L = Not Listed.

Table 4 Summary of On-Site Soil Sample Analysis Data PCBs 700 Outparcel, LLC Syracuse, NY

Parameter	Unrestricted SCO	Commercial SCO	TP-4 (8-9)	TP-15 (11-13)
EPA 8082			8/22/2011	8/24/2012
Aroclor-1016			<0.02	<0.02
Aroclor-1221			< 0.02	< 0.02
Aroclor-1232			< 0.02	< 0.02
Aroclor-1242			< 0.02	< 0.02
Aroclor-1248			< 0.02	< 0.02
Aroclor-1254			< 0.02	< 0.02
Arcolor-1260			<0.02	<0.02
Total:	0.1	1.0 surface or 10 subsurface	0	0

- $1. \quad \text{Results expressed in milligrams per kilogram (mg/kg) = parts per million (ppm)}.$
- 2. SCO = Soil Cleanup Objective; Source: NYSDEC Environmental Remediation Programs 6 NYCRR Part 375.
- 3. Results in BOLD type indicate detected concentrations of parameter analyzed.
- 4. SHADING indicates results above the SCO.

Table 5 Summary of Off-Siteand Property Boundary Soil Sample Analysis Data TCL-VOCs 700 Outparcel, LLC Syracuse, NY

								. 00 0 0.19	arcei, LLC S	, acuce,											
Parameter	Unrestricted SCO	Commercial SCO	MW-1	SB-1	CMW-1	MW-2	SB-2	CMW-2	MW-3	SB-3	CSB/CMW-3	CSB-4	MW-4	SB-4	MW-5	MW-5 FD	SB-5	MW-6	SB-6	MW-7	SB-7
EPA 8260B			(16-20) 2/26/2009	(12-14) 2/26/2009	(12-16) 3/2/2009	(8-12) 2/26/2009	(8-12) 2/26/2009	(12-14.5) 3/2/2009	(8-12) 2/26/2009	(8-12) 2/27/2009	(4-8) 3/2/2009	(12-13.8) 3/2/2009	(8-12) 1/17/2012	(8-12) 1/17/2012	(8-12) 1/13/2012	(8-12) 1/13/2012	(12-14.7) 1/17/2012	(8-12) 1/12/2012	(8-12) 1/17/2012	(8-12) 1/12/2012	(8-12) 1/17/2012
1,1,1-Trichloroethane	680	500000	< 2.6	< 12	< 2.7	< 3	< 3	< 2.9	< 2.9	< 2.9	< 7.3	< 3	< 14	< 2.9	< 2.8	< 2.8	< 310	< 3	< 2.9	< 3	< 2.7
1,1,2,2-Tetrachloroethane	N/L	N/L	< 2.6	< 12	< 2.7	< 3	< 3	< 2.9	< 2.9	< 2.9	< 7.3	< 3	< 14	< 2.9	< 2.8	< 2.8	< 310 UJ	< 3	< 2.9	< 3	< 2.7
1,1,2-Trichloro-1,2,2- trifluoroethane	N/L	N/L	< 2.6	< 12	< 2.7	< 3	< 3	< 2.9	< 2.9	< 2.9	< 7.3	< 3	< 14	< 2.9	< 2.8	< 2.8	< 310	< 3	< 2.9	< 3	< 2.7
1,1,2-Trichloroethane	N/L	N/L	< 2.6	< 12	< 2.7	< 3	< 3	< 2.9	< 2.9	< 2.9	< 7.3	< 3	< 14	< 2.9	< 2.8	< 2.8	< 310	< 3	< 2.9	< 3	< 2.7
1,1-Dichloroethane	270	240000	< 2.6	< 12	< 5.5	< 3	< 3	< 2.9	< 2.9	< 2.9	< 7.3	< 3	< 14	< 2.9	< 2.8	< 2.8	< 310	< 3	< 2.9	< 3	< 2.7
1,1-Dichloroethene	330	500000	< 2.6	< 12	< 2.7	< 3	< 3	< 2.9	< 2.9	< 2.9	< 7.3	< 3	< 14	< 2.9	< 2.8	< 2.8	< 310	< 3	< 2.9	< 3	< 2.7
1,2,4-Trichlorobenzene	N/L	N/L	< 5.2	< 25	< 5.5	< 6	< 5.9	< 5.9	< 5.8	< 5.8	< 7.3	< 5.9	< 28	< 5.8	< 5.5	< 5.6	< 620	< 6.1	< 5.8	< 6.1	< 5.4 U.
1,2,4-Trimethylbenzene	3600	190000	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	< 14 U	340 J	57 J	8.0 J	250 J	1.1 J	2.1 J	< 3 UJ	J < 2.7
1,2-Dibromo-3-chloropropane	N/L	N/L	< 5.2	< 25	< 5.5	< 6	< 5.9	< 5.9	< 5.8	< 5.8	< 7.3	< 5.9	< 28	< 5.8	< 5.5	< 5.6	< 620	< 6.1	< 5.8	< 6.1	< 5.4
1,2-Dibromoethane	N/L	N/L	< 2.6	< 12	< 2.7	< 3	< 3	< 2.9	< 2.9	< 2.9	< 7.3	< 3	< 14	< 2.9	< 2.8	< 2.8	< 310	< 3	< 2.9	< 3	< 2.7
1,2-Dichlorobenzene	1100	500000	< 2.6	< 12	< 2.7	< 3	< 3	< 2.9	< 2.9	< 2.9	< 7.3	< 3	< 14	< 2.9	< 2.8	< 2.8	< 310	< 3	< 2.9	< 3	< 2.7
1,2-Dichloroethane	20	30000	< 2.6	< 12	< 2.7	< 3	< 3	< 2.9	< 2.9	< 2.9	< 7.3	< 3	< 14	< 2.9	< 2.8	< 2.8	< 310	< 3	< 2.9	< 3	< 2.7
1,2-Dichloropropane	N/L	N/L	< 2.6	< 12	< 2.7	< 3	< 3	< 2.9	< 2.9	< 2.9	< 7.3	< 3	< 14	< 2.9	< 2.8	< 2.8	< 310	< 3	< 2.9	< 3	< 2.7
1,3,5-Trimethylbenzene	8400	190000	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	< 14	130 J	8.7 J	0.86 J	< 310	< 3	< 2.9	< 3	< 2.7
1,3-Dichlorobenzene	2400	280000	< 2.6	< 12	< 2.7	< 3	< 3	< 2.9	< 2.9	< 2.9	< 7.3	< 3	< 14	< 2.9	< 2.8	< 2.8	< 310	< 3	< 2.9	< 3	< 2.7
1,4-Dichlorobenzene	1800 N/L	130000 N/L	< 2.6	< 12	< 2.7	< 3	< 3	< 2.9	< 2.9	< 2.9	< 7.3	< 3	< 14	< 2.9 < 46	< 2.8	< 2.8	< 310	< 3	< 2.9	< 3	< 2.7 < 44
2-Butanone 2-Hexanone	N/L N/L	N/L N/L	< 42 < 5.2	< 200 < 25	< 43 < 5.5	< 48 < 6	< 47 < 5.9	< 47 < 5.9	< 47 < 5.8	< 46 < 5.8	< 120 < 15	< 47 < 5.9	< 230 < 28	< 46	< 44 < 5.5	< 45 < 5.6	< 5000 < 620	< 49 < 6.1	< 46 < 5.8	< 49 < 6.1	< 44
4-Methyl-2-pentanone	N/L	N/L	< 5.2	< 25	< 5.5	< 6	< 5.9	< 5.9	< 5.8	< 5.8	< 15	< 5.9 < 5.9	< 28	< 5.8	< 5.5	< 5.6	< 620	< 6.1	< 5.8	< 6.1	< 5.4
Acetone	50	500000	< 42	< 200	< 43	< 48	< 47	< 47	< 47	< 46	< 120	< 47	120 J	< 46	< 5.5 34 J	< 5.6 55 J	< 5000	< 6.1 29 J	< 5.8 30 J	27 J	38 J
Benzene	60	44000	< 2.6	< 12	4.4	2.1 J	1.8 J	< 2.9	< 2.9	< 2.9	< 7.3	9.2	< 14	< 2.9	< 2.8	< 2.8	< 310	< 3	< 2.9	< 3	< 2.7
Bromodichloromethane	N/L	N/L	< 2.6	< 12	< 2.7	< 3	< 3	< 2.9	< 2.9	< 2.9	< 7.3	< 3	< 14	< 2.9	< 2.8	< 2.8	< 310	< 3	< 2.9	< 3	< 2.7
Bromoform	N/L	N/L	< 2.6	< 12	< 2.7	< 3	< 3	< 2.9	< 2.9	< 2.9	< 7.3	< 3	< 14	< 2.9	< 2.8	< 2.8	< 310	< 3	< 2.9	< 3	< 2.7
Bromomethane	N/L	N/L	< 5.2	< 25	< 5.5	< 6	< 5.9	< 5.9	< 5.8	< 5.8	< 15	< 5.9	< 28	< 5.8	< 5.5	< 5.6	< 620	< 6.1	< 5.8	< 6.1	< 5.4
Carbon disulfide	N/L	N/L	< 2.6	< 12	< 2.7	< 3 U	< 3	< 2.9	< 2.9	< 2.9 U	< 7.3 U	< 3	< 14	1.2 J	< 2.8	< 2.8	< 310	< 3	0.94 J	< 3	1.1 J
Carbon tetrachloride	760	22000	< 2.6	< 12	< 2.7	< 3	< 3	< 2.9	< 2.9	< 2.9	< 7.3	< 3	< 14	< 2.9	< 2.8	< 2.8	< 310	< 3	< 2.9	< 3	< 2.7
Chlorobenzene	1100	500000	< 2.6	< 12	< 2.7	< 3	< 3	< 2.9	< 2.9	< 2.9	< 7.3	< 3	< 14	< 2.9	< 2.8	< 2.8	< 310	< 3	< 2.9	< 3	< 2.7
Chloroethane	N/L	N/L	< 5.2	< 25	< 5.5	< 6	< 5.9	< 5.9	< 5.8	< 5.8	< 15	< 5.9	< 28	< 5.8	< 5.5	< 5.6	< 620	< 6.1	< 5.8	< 6.1	< 5.4
Chloroform	370	350000	< 2.6	< 12	< 2.7	< 3	< 3	< 2.9	< 2.9	< 2.9	< 7.3	< 3	< 14	< 2.9	0.97 J	2.50 J	< 310	1.6 J	< 2.9	1.2 J	< 2.7
Chloromethane	N/L	N/L	< 5.2	< 25	< 5.5	< 6	< 5.9	< 5.9	< 5.8	< 5.8	< 15	< 5.9	< 28	< 5.8	< 5.5	< 5.6	< 620	< 6.1	< 5.8	< 6.1	< 5.4
cis-1,2-Dichloroethene	250	500000	< 2.6	< 12	< 2.7	< 3	< 3	< 2.9	< 2.9	< 2.9	< 7.3	< 3	< 14	< 2.9	< 2.8	< 2.8	< 310	< 3	< 2.9	< 3	< 2.7
cis-1,3-Dichloropropene	N/L	N/L	< 2.6	< 12	< 2.7	< 3	< 3	< 2.9	< 2.9	< 2.9	< 7.3	< 3	< 14	< 2.9	< 2.8	< 2.8	< 310	< 3	< 2.9	< 3	< 2.7
Cyclohexane	N/L	N/L	< 2.6	230 J	< 2.7	11	1.3 J	< 2.9	< 2.9	< 2.9	59 J	6.2	< 14	600 EJ	< 2.8	< 2.8	< 310	< 3	< 2.9	< 3	< 2.7
Dibromochloromethane	N/L	N/L	< 2.6	< 12	< 2.7	< 3	< 3	< 2.9	< 2.9	< 2.9	< 7.3	< 3	< 14	< 2.9	< 2.8	< 2.8	< 310	< 3	< 2.9	< 3	< 2.7
Dichlorodifluoromethane	N/L	N/L	< 5.2	< 25	< 5.5	< 6	< 5.9	< 5.9	< 5.8	< 5.8	< 15	< 5.9	< 28	< 5.8	< 5.5	< 5.6	< 620	< 6.1	< 5.8	< 6.1	< 5.4
Ethylbenzene	1000 N/L	390000 N/L	< 2.6	280 J	< 2.7	23	5.1	< 2.9 5	< 2.9	< 2.9	28 J	< 3	< 14	< 2.9	1.5 J	< 2.80 U	< 310	< 3	< 2.9	< 3	< 2.7
Isopropylbenzene Methyl acetate	N/L	N/L	< 2.6 < 21	580 J < 100	< 2.7 < 21	15 < 24	3.2	< 23	< 2.9 < 23	< 2.9 < 23	610 D < 58	13	22 J < 110	37 J < 23	2.3 J	0.57 J	< 310	< 3 < 24	< 2.9 < 23	< 3 < 24	< 22 < 2.7
Methyl tert-butyl ether	930	500000	< 2.6	< 12	< 2.7	< 3	< 24	< 2.9	< 2.9	< 2.9	< 7.3	< 24	< 14	< 2.9	< 2.8	< 22 < 2.8	< 2500 UJ < 310	< 3	< 2.9	< 3	< 2.7
Methylcyclohexane	N/L	N/L	< 2.6	1100 D	< 2.7	32	5.4	1.4 J	< 2.9	< 2.9 R	700 DJ	1.4 J	< 14 UJ	940 EJ	69 J	5.0 J	3300 J	< 3 UJ	< 2.9 UJ	< 3 UJ	< 2.7 J < 2.7 U.
Methylene chloride	50	500000	< 5.2	< 25 U	< 5.5	< 6	< 5.9	< 5.9	< 5.8	< 5.8	< 15	< 5.9	< 28	< 5.8	< 5.5	< 5.6	< 620	< 6.1	< 5.8	< 6.1	< 5.4
n-Butylbenzene	12000	500000	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	60 J	340 J	13	5.8	300 J	< 3 UJ	< 2.9 UJ	< 3	< 2.7
n-Propylbenzene	3900	500000	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	23 J	150 J	10	2.40 J	170 J	1.2 J	1.0 J	< 3	< 2.7
Naphthalene	N/L	N/L	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	< 28 U	< 5.8	15	11.0	93 U	< 6.1	2.9 J	< 6.1	< 5.4
p-Isopropyltoluene	N/L	N/L	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	< 14 U	130 J	2.3 J	1.2 J	140 J	< 3	< 2.9	< 3	< 2.7
sec-Butylbenzene	11000	500000	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	15 J	98 J	2.8 J	2.1 J	110 J	1.0 J	2.4 J	< 3	< 2.7
Styrene	N/L	N/L	< 2.6	< 12	< 2.7	< 3	< 3	< 2.9	< 2.9	< 2.9	< 7.3	< 3	< 14	< 2.9	< 2.8	< 2.8	< 310	< 3	< 2.9	< 3	< 2.7
tert-Butyl alcohol	N/L	N/L	< 21	< 100	< 21	< 24	< 24	< 23	< 23	< 23	< 58	< 24	< 1200 UJ	< 250 UJ	< 240 UJ	< 240 UJ	< 2500 UJ	< 270 UJ	< 250 UJ	< 270 UJ	J < 240 U.
tert-Butylbenzene	5900	500000	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	<	< 2.9	< 2.8	< 2.8	< 310	< 3	< 2.9	< 3	< 2.7
Tetrachloroethene	1300	150000	< 2.6	< 12	< 2.7	< 3	< 3	< 2.9	< 2.9	< 2.9	< 7.3	< 3	< 14	< 2.9	< 2.8	< 2.8	< 310	< 3	< 2.9	< 3	< 2.7
Toluene	700	500000	< 2.6	< 12	< 2.7	1.3 J	0.91 J	< 2.9	< 2.9	< 2.9	< 7.3	1.1 J	< 14	< 2.9	0.63 J	1.0 J	< 310	< 33	< 2.9	< 33	< 2.7
trans-1,2-Dichloroethene	190	500000	< 2.6	< 12	< 2.7	< 3	< 3	< 2.9	< 2.9	< 2.9	< 7.3	< 3	< 14	< 2.9	< 2.8	< 2.8	< 310	< 3	< 2.9	< 3	< 2.7
trans-1,3-Dichloropropene	N/L	N/L	< 2.6	< 12	< 2.7	< 3	< 3	< 2.9	< 2.9	< 2.9	< 7.3	< 3	< 14	< 2.9	< 2.8	< 2.8	< 310	< 3	< 2.9	< 3	< 2.7
Trichloroethene	470	200000	< 2.6 UJ	< 12 UJ	< 2.7 UJ	< 3 UJ	< 3 UJ	< 2.9 UJ	< 2.9 UJ	< 2.9 UJ	< 7.3 UJ	< 3 UJ	< 14 UJ	< 2.9 UJ	< 2.8 UJ	< 2.8 UJ	< 310 UJ	< 3 UJ	< 2.9 UJ	< 3 UJ	J < 2.7 U
Trichlorofluoromethane	N/L 20	N/L 13000	< 5.2	< 25	< 5.5	< 6	< 5.9	< 5.9	< 5.8	< 5.8	< 15	< 5.9	< 28	< 5.8	< 5.5	< 5.6	< 620	< 6.1	< 5.8	< 6.1	< 5.4
Vinyl chloride Yylenes (total)	260	13000 500000	< 5.2	< 25	< 5.5	< 6	< 5.9 8	< 5.9	< 5.8	< 5.8	< 15	< 5.9	< 28	< 5.8	< 5.5	< 5.6	< 620	< 6.1	< 5.8	< 6.1	< 5.4
Xylenes (total)	260	500000	< 5.2 0	290 J 2480	< 5.5	116.4		< 5.9	< 5.8	< 5.8	420 J 1817	< 5.9	< 28	< 5.8 U	4.8 J	< 5.6	< 620	< 6.1	< 5.8	< 6.1	< 5.4
Total Detected Total Detected TICS			0	10520	4.4 34.6	116.4 446	25.71 89.9	6.4 18.9	130.6	0 2110	1817 4400	30.9 173.8	240 11021.1	2766.2 2041	222 354	95.43 377	4363 12100	34 148.4	39.3 160.6	28.2	39.1 56.9
Total			0	13000	39.0	562.4	115.6	25.3	130.6	2110	6217.0	204.7	11021.1	4807.6	576.0	472.2	16463	182.4	199.9	28.2	96
Notes:		-	U	13000	55.0	302.4	113.0	20.0	150.0	2110	0217.0	204.1	11201.1	7007.0	5, 0.0	712.2	10403	102.4	133.3	20.2	- 30

- 1. Results expressed in micrograms per kilogram (ug/kg) = parts per billion (ppb).
- 2. SCO = Soil Cleanup Objective; Source: NYSDEC Environmental Remediation Programs 6 NYCRR Part 375.
- 3. Results in BOLD type indicate detected concentrations of parameter analyzed.
- 4. SHADING indicates results above the SCO.
- N/L = Not Listed
- 6. N/A = Not Available.

Table 6 Off-Site and Property Boundary Sample Analysis Data TCL-SVOCs 700 Outparcel, LLC Syracuse, NY

Parameter	Unrestricted SCO	Commercial	MW-1	SB-1	CMW-1	MW-2	SB-2	CMW-2	MW-3	SB-3	CSB/CMW-3	CSB-4	MW-4	SB-4	MW-5	MW-5 FD	SB-5	MW-6	SB-6	MW-7	SB-7
EDA 0070 O	SCO	SCO	(16-20)	(12-14)	(12-16)	(8-12)	(8-12)	(12-14.5)	(8-12)	(8-12)	(4-8)	(12-13.8)	(8-12)	(8-12)	(8-12)	(8-12)	(12-14.7)	(8-12)	(8-12)	(8-12)	(8-12)
EPA 8270 C	N. 10		2/26/2009	2/26/2009	3/2/2009	2/26/2009	2/26/2009	3/2/2009	2/26/2009	2/27/2009	3/2/2009	3/2/2009	1/17/2012	1/17/2012	1/13/2012	1/13/2012	1/17/2012	1/12/2012	1/17/2012	1/12/2012	1/17/2012
1,1'-Biphenyl 2,4,5-Trichlorophenol	N/L N/L	N/L N/L	< 360 < 1800	< 380 < 1900	< 380 < 1900	< 410 < 2100	< 400 < 2000	< 430 < 2200	< 390 < 2000	< 390 < 2000	< 400 < 2000	< 390 < 2000	< 400 < 2000	< 370 < 1900	< 360 < 1800	< 370 < 1900	< 770 < 3900	< 790 < 4000	< 380 < 1900	< 410 < 2100	< 370 < 1900
2,4,6-Trichlorophenol	N/L	N/L	< 360	< 380	< 380	< 410	< 400	< 430	< 390	< 390	< 400	< 390	< 400	< 370	< 360	< 370	< 770	< 790	< 380	< 410	< 370
2,4-Dichlorophenol	N/L	N/L	< 360	< 380	< 380	< 410	< 400	< 430	< 390	< 390	< 400	< 390	< 400	< 370	< 360	< 370	< 770	< 790	< 380	< 410	< 370
2,4-Dimethylphenol	N/L	N/L	< 360	< 380	< 380	< 410	< 400	< 430	< 390	< 390	< 400	< 390	< 400	< 370	< 360	< 370	< 770	< 790	< 380	< 410	< 370
2,4-Dinitrophenol	N/L	N/L	< 1800	< 1900	< 1900	< 2100	< 2000	< 2200	< 2000	< 2000	< 2000	< 2000	< 2000	< 1900	< 1800	< 1900	< 3900	< 4000	< 1900	< 2100	< 1900
2,4-Dinitrotoluene	N/L	N/L	< 360	< 380	< 380	< 410	< 400	< 430	< 390	< 390	< 400	< 390	< 400	< 370	< 360	< 370	< 770	< 790	< 380	< 410	< 370
2,6-Dinitrotoluene	N/L	N/L	< 360	< 380	< 380	< 410	< 400	< 430	< 390	< 390	< 400	< 390	< 400	< 370	< 360	< 370	< 770	< 790	< 380	< 410	< 370
2-Chloronaphthalene	N/L	N/L	< 360	< 380	< 380	< 410	< 400	< 430	< 390	< 390	< 400	< 390	< 400	< 370	< 360	< 370	< 770	< 790	< 380	< 410	< 370
2-Chlorophenol	N/L	N/L	< 360	< 380	< 380	< 410	< 400	< 430	< 390	< 390	< 400	< 390	< 400	< 370	< 360	< 370	< 770	< 790	< 380	< 410	< 370
2-Methylnaphthalene	N/L	N/L	< 360	170 J	< 380	57 J	530	< 430	< 390	< 390	91 J	< 390	27 J	86 J	380	170 J	< 770	78 J	< 380	< 410	< 370
2-Methylphenol	N/L	N/L	< 360	< 380	< 380	< 410	< 400	< 430	< 390	< 390	< 400	< 390	< 400	< 370	< 360	< 370	< 770	< 790	< 380	< 410	< 370
2-Nitroaniline	N/L	N/L	< 1800	< 1900	< 1900	< 2100	< 2000	< 2200	< 2000	< 2000	< 2000	< 2000	< 400	< 1900	< 1800	< 1900	< 770	< 4000 < 790	< 1900	< 2100	< 1900
2-Nitrophenol 3,3'-Dichlorobenzidine	N/L N/L	N/L N/L	< 360 < 730	< 380 < 770	< 380 < 760	< 410 < 810	< 400 < 790	< 430 < 850	< 390 < 790	< 390 < 780	< 400 < 800	< 390 < 780	< 2000 < 400	< 370 < 740	< 360 < 710	< 370 < 740	< 770 < 770	< 1600	< 380 < 770	< 410 < 830	< 370 < 740
3-Nitroaniline	N/L	N/L	< 1800	< 1900	< 1900	< 2100	< 2000	< 2200	< 2000	< 2000	< 2000	< 2000	< 800	< 1900	< 1800	< 1900	< 770	< 4000	< 1900	< 2100	< 1900
4,6-Dinitro-2-methylphenol	N/L	N/L	< 1800	< 1900	< 1900	< 2100	< 2000	< 2200	< 2000	< 2000	< 2000	< 2000	< 2000	< 1900	< 1800	< 1900	< 770	< 4000	< 1900	< 2100	< 1900
4-Bromophenyl phenyl ether	N/L	N/L	< 360	< 380	< 380	< 410	< 400	< 430	< 390	< 390	< 400	< 390	< 2000	< 370	< 360	< 370	< 770	< 790	< 380	< 410	< 370
4-Chloro-3-methylphenol	N/L	N/L	< 360	< 380	< 380	< 410	< 400	< 430	< 390	< 390	< 400	< 390	< 400	< 370	< 360	< 370	< 770	< 790	< 380	< 410	< 370
4-Chloroaniline	N/L	N/L	< 360	< 380	< 380	< 410	< 400	< 430	< 390	< 390	< 400	< 390	< 400	< 370	< 360	< 370	< 770	< 790	< 380	< 410	< 370
4-Chlorophenyl phenyl ether	N/L	N/L	< 360	< 380	< 380	< 410	< 400	< 430	< 390	< 390	< 400	< 390	< 400	< 370	< 360	< 370	< 770	< 790	< 380	< 410	< 370
4-Methylphenol	N/L	N/L	< 360	< 380	< 380	< 410	< 400	< 430	< 390	< 390	< 400	< 390	< 400	< 370	< 360	< 370	< 770	< 790	< 380	< 410	< 370
4-Nitroaniline	N/L	N/L	< 1800	< 1900	< 1900	< 2100	< 2000	< 2200	< 2000	< 2000	< 2000	< 2000	< 2000	< 1900	< 1800	< 1900	< 770	< 4000	< 1900	< 2100	< 1900
4-Nitrophenol	N/L	N/L	< 1800	< 1900	< 1900	< 2100	< 2000	< 2200	< 2000	< 2000	< 2000	< 2000	46 J	< 1900	< 1800	< 1900	< 770	< 4000	< 1900	< 2100	< 1900
Acenaphthene	20000	500000	< 360	< 380	< 380	< 410	< 400	< 430	59 J	260 J	< 400	< 390	< 400	< 370	38 J	16 J	< 770	160 J	< 380	< 410	< 370
Acenaphthylene	100000	500000	< 360	< 380	< 380	< 410	< 400	< 430	< 390	< 390	< 400	< 390	< 400	< 370	< 360	< 370	43 J	55 J	< 380	< 410	< 370
Acetophenone	N/L	N/L	< 360	< 380	< 380	< 410	< 400	< 430	< 390	< 390	< 400	< 390	< 400	< 370	< 360	< 370	< 770	< 790	< 380	< 410	< 370
Anthracene	100000	500000 N/L	< 360	< 380	< 380	< 410 < 410	< 400	< 430	< 390	43 J < 390	< 400 < 400	< 390	< 400 < 400	< 370 < 370	< 360	< 370	< 770	220 J < 790	< 380	< 410 < 410	< 370
Atrazine Benzaldehyde	N/L N/L	N/L	< 360 < 360	< 380 < 380	< 380 < 380	< 410	< 400 < 400	< 430 < 430	< 390 < 390	< 390	< 400	< 390 < 390	< 400	< 370	< 360 < 360	< 370 < 370	< 770 < 770	< 790	< 380 < 380	< 410	< 370 < 370
Benzo[a]anthracene	1000	5600	< 360	< 380 U	< 380	< 410	< 400	< 430	< 390	< 390	< 400	< 390	340 J	< 370	160 J	120 J	300 J	890	< 380	< 410	< 370
Benzo[a]pyrene	1000	1000	< 360	46 J	< 380	< 410	< 400	< 430	< 390	< 390	< 400	< 390	350 J	< 370	140 J	99 J	230 J	720 J	< 380	< 410	< 370
Benzo[b]fluoranthene	1000	5600	< 360	62 J	< 380	< 410	< 400	< 430	< 390	< 390	< 400	< 390	430	< 370	200 J	140 J	360 J	1000	< 380	< 410	< 370
Benzo[g,h,i]perylene	100000	500000	< 360	< 380	< 380	< 410	< 400	< 430	< 390	< 390	< 400	< 390	170 J	< 370	74 J	55 J	< 770	260 J	< 380	< 410	< 370
Benzo[k]fluoranthene	800	56000	< 360	< 380	< 380	< 410	< 400	< 430	< 390	< 390	< 400	< 390	210 J	< 370	72 J	58 J	130 J	420 J	< 380	< 410	< 370
bis(2-Chloroethoxy)methane	N/L	N/L	< 360	< 380	< 380	< 410	< 400	< 430	< 390	< 390	< 400	< 390	< 400	< 370	< 360	< 370	< 770	< 790	< 380	< 410	< 370
bis(2-chloroethyl)ether	N/L	N/L	< 360	< 380	< 380	< 410	< 400	< 430	< 390	< 390	< 400	< 390	< 400	< 370	< 360	< 370	< 770	< 790	< 380	< 410	< 370
bis(2-chloroisopropyl)ether	N/L	N/L	< 360	< 380	< 380	< 410	< 400	< 430	< 390	< 390	< 400	< 390	< 400	< 370	< 360	< 370	< 770	< 790	< 380	< 410	< 370
bis(2-Ethylhexyl)phthalate	N/L	N/L	< 360	< 380 U	< 380	< 410 U	< 400	< 430	< 390	< 390	< 400 U	< 390	< 400 U	< 370 U	< 360	< 370 U	< 770	< 790 U	< 380	< 410 U	< 370 U
Butyl benzyl phthalate	N/L	N/L	< 360	< 380	< 380	< 410	< 400	< 430	< 390	< 390	< 400	< 390	< 400	< 370	< 360	< 370	< 770	< 790	< 380	< 410	< 370
Caprolactam Carbazole	N/L N/L	N/L N/L	< 360 < 360	< 380 < 380	< 380 < 380	< 410 < 410	< 400 < 400	< 430 < 430	< 390 < 390	< 390 < 390	< 400 < 400	< 390 < 390	< 400 26 J	< 370 < 370	< 360 21 J	< 370 < 370	< 770 < 770	< 790 220 J	< 380 < 380	< 410 < 410	< 370 < 370
Chrysene	1000	56000	< 360	62 J	< 380	< 410	< 400	< 430	< 390	< 390	< 400	< 390	310 J	< 370	150 J	< 370 U	280 J	840	< 380	< 410	< 370
Di-n-butyl phthalate	N/L	N/L	< 360	< 380	< 380	< 410	< 400	< 430	< 390	< 390	< 400	< 390	< 400	< 370 U	< 360 U	< 370	< 770 U	< 790 U	< 380 U	< 410 U	< 370 U
Di-n-octyl phthalate	N/L	N/L	< 360	< 380	< 380	< 410	< 400	< 430	< 390	120 J	< 400	< 390	< 400	< 370	< 360	< 370	< 770	< 790	< 380	< 410	< 370
Dibenz[a,h]anthracene	330	560	< 360	< 380	< 380	< 410	< 400	< 430	< 390	< 390	< 400	< 390	< 400	< 370	< 360	< 370	< 770	< 790	< 380	< 410	< 370
Dibenzofuran	N/L	N/L	< 360	< 380	< 380	< 410	< 400	< 430	< 390	< 390	< 400	< 390	30 J	< 370	22 J	< 370	< 770	160 J	< 380	< 410	< 370
Diethyl phthalate	N/L	N/L	< 360	< 380	< 380	< 410	< 400	< 430	< 390	< 390	< 400	< 390	< 400	< 370	< 360	< 370	< 770	< 790	< 380	< 410	< 370
Dimethyl phthalate	N/L	N/L	< 360	< 380	< 380	< 410	< 400	< 430	< 390	< 390	< 400	< 390	< 400	< 370	< 360	< 370	< 770	< 790	< 380	< 410	< 370
Fluoranthene	100000	500000	< 360	90 J	< 380	< 410	46 J	< 430	< 390	< 390	46 J	< 390	600	< 370	350 J	240 J	580 J	1800	< 380	20 J	< 370
Fluorene	30000	500000	< 360	< 380	< 380	< 410	< 400	< 430	< 390	96 J	< 400	< 390	50 J	< 370	37 J	18 J	< 770	210 J	< 380	< 410	< 370
Hexachlorobenzene	N/L	N/L	< 360	< 380	< 380	< 410	< 400	< 430	< 390	< 390	< 400	< 390	< 400	< 370	< 360	< 370	< 770	< 790	< 380	< 410	< 370
Hexachlorobutadiene	N/L	N/L	< 360	< 380	< 380	< 410	< 400	< 430	< 390	< 390	< 400	< 390	< 400	< 370	< 360	< 370	< 770	< 790	< 380	< 410	< 370
Hexachlorocyclopentadiene Hexachloroethane	N/L N/L	N/L N/L	< 360 < 360	< 380 < 380	< 380 < 380	< 410 < 410	< 400 < 400	< 430 < 430	< 390 < 390	< 390 < 390	< 400 < 400	< 390 < 390	< 400 < 400	< 370 < 370	< 360 < 360	< 370 < 370	< 770 < 770	< 790 < 790	< 380 < 380	< 410 < 410	< 370 < 370
Indeno[1,2,3-cd]pyrene	500	5600	< 360	< 380	< 380	< 410	< 400	< 430	< 390	< 390	< 400	< 390	140 J	< 370	66 J	47 J	< 770	200 J	< 380	< 410	< 370
Isophorone	N/L	N/L	< 360	< 380	< 380	< 410	< 400	< 430	< 390	< 390	< 400	< 390	< 400	< 370	< 360	< 370	< 770	< 790	< 380	< 410	< 370
Naphthalene	12000	500000	< 360	150 J	< 380	< 410	210 J	550	< 390	< 390	270 J	< 390	< 400 U	< 370	< 100 J	61 J	< 770	170 J	< 380	< 410	< 370
Nitrobenzene	N/L	N/L	< 360	< 380	< 380	< 410	< 400	< 430	< 390	< 390	< 400	< 390	< 400	< 370	< 360	< 370	< 770	< 790	< 380	< 410	< 370
N-Nitroso-di-n-propylamine	N/L	N/L	< 360	< 380	< 380	< 410	< 400	< 430	< 390	< 390	< 400	< 390	< 400	< 370	< 360	< 370	< 770	< 790	< 380	< 410	< 370
N-Nitrosodiphenylamine	N/L	N/L	< 360	< 380	< 380	< 410	< 400	< 430	< 390	< 390	< 400	< 390	< 400	< 370	< 360	< 370	< 770	< 790	< 380	< 410	< 370
Pentachlorophenol	800	6700	< 1800	< 1900	< 1900	< 2100	< 2000	< 2200	< 2000	< 2000	< 2000	< 2000	< 2000	< 1900	< 1800	< 1900	< 3900	< 4000	< 1900	< 2100	< 370
Phenanthrene	100000	500000	< 360	74 J	< 380	< 410	41 J	< 430	< 390	230 J	120 J	< 390	240 J	< 370	220 J	130 J	300 J	1700	< 380	19 J	< 370
Phenol	330	500000	< 360	< 380	< 380	< 410	< 400	< 430	< 390	< 390	< 400	< 390	< 400	< 370	< 360	< 370	< 770	< 790	< 380	< 410	< 370
Pyrene	100000	500000	< 360	89 J	< 380	< 410	41 J	< 430	< 390	< 390	58 J	< 390	520	< 370	290 J	200 J	500 J	1600	< 380	18 J	< 370
Total Detected			0	743	0	57	868	550	59	749	585	0	3489	86	2320	1354	2723	10543	0	57	0
Total Detected TICS			120000	0	0	0	0	0	0	0	43890	1830	18200	9599	13889	1852	1343	1220	830	790	730
Total			120000	743	0	57	868	550	59	749	44475	1830	21689	9685	16209	3206	4066	11763	830	847	730

- Results expressed in micrograms per kilogram (ug/kg) = parts per billion (ppb).
- SCO = Soil Cleanup Objective; Source: NYSDEC Environmental Remediation Programs 6 NYCRR Part 375.
- 3. Results in BOLD type indicate detected concentrations of parameter analyzed.
- 4. SHADING indicates results above the SCO.
- 5. N/L = Not Listed.

Table 7 Summary of Off-Site and Property Boundary Soil Sample Analysis Data Metals 700 Outparcel, LLC Syracuse, NY

700 (Outpar	cel. L	LC	Svracuse	. NY

	Unrestricted	Commercial	MW-1	SB-1	CMW-1	MW-2	SB-2	CMW-2	MW-3	SB-3	CSB/CMW-3	CSB-4	MW-4	SB-4	MW-5	MW-5 FD	SB-5	MW-6	SB-6	MW-7	SB-7
Parameter	SCO	SCO	(16-20)	(12-14)	(12-16)	(8-12)	(8-12)	(12-14.5)	(8-12)	(8-12)	(4-8)	(12-13.8)	(8-12)	(8-12)	(8-12)	(8-12)	(12-14.7)	(8-12)	(8-12)	(8-12)	(8-12)
EPA 6010B			2/26/2009	2/26/2009	3/2/2009	2/26/2009	2/26/2009	3/2/2009	2/26/2009	2/27/2009	3/2/2009	3/2/2009	1/17/2012	1/17/2012	1/13/2012	1/13/2012	1/17/2012	1/12/2012	1/17/2012	1/12/2012	1/17/2012
Aluminum	N/L	N/L	6400	6000	N/A	8500	5200	N/A	5700	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Antimony	N/L	N/L	< 6.6 UJ	< 7 UJ	N/A	< 7.4 UJ	< 7.2 UJ	N/A	< 7.2 UJ	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Arsenic	13	16	2.9	4	N/A	14	2.4	N/A	2.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Barium	350	400	61	71	N/A	87	47	N/A	39	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Beryllium	7.2	590	0.25 J	0.33 J	N/A	0.45 J	0.2 J	N/A	0.23 J	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Cadmium	2.5	9.3	0.13 J	0.16 J	N/A	0.22 J	< 1.2 U	N/A	< 1.2 U	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Calcium	N/L	N/L	88000	200000	N/A	97000	72000	N/A	76000	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Chromium	31	1900	10	12	N/A	12	8.3	N/A	9.9	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Cobalt	N/L	N/L	5.6	4.7 J	N/A	7.1	3.8 J	N/A	4.6 J	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Copper	50	270	14	20	N/A	20	15	N/A	13	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Iron	N/L	N/L	13000 J	12000 J	N/A	24000 J	12000 J	N/A	13000 UJ	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lead	63	1000	5.5	12	4.7	7.6	4.9	4.8	5.2	7	8.6	3	37	6.3	7.3	5.8	53	44	2.1	6.4	3.4
Magnesium	N/L	N/L	41000	32000	N/A	24000	24000	N/A	29000	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Manganese	1600	10000	330	290	N/A	530	490	N/A	470	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Nickel	30	310	14	15	N/A	19	10	N/A	11	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Potassium	N/L	N/L	1500	1300	N/A	1400	1000	N/A	1200	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Selenium	3.9	1500	< 1.1 U	< 1.2 U	N/A	< 1.2 U	< 1.2 U	N/A	< 1.2 U	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Silver	2.0	1500	< 1.1 U	< 1.2 U	N/A	< 1.2 U	< 1.2 U	N/A	< 1.2 U	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Sodium	N/L	N/L	160	660	N/A	480	190	N/A	340	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Thallium	N/L	N/L	< 2.2 U	< 2.3 U	N/A	< 2.5 U	< 2.4 U	N/A	< 2.4 U	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Vanadium 	N/L	N/L	12	13	N/A	17	11	N/A	14	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Zinc EPA 7471A	109	10000	24	29	N/A	40	24	N/A	27	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	0.18	2.8	0.013 J	0.005	NI/A	0.034 J	0.014 J	NI/A	0.01	0.013 J	NI/A	NI/A	NI/A	NI/A	N/A	N/A	NI/A	NI/A	NI/A	N/A	NI/A
Mercury	0.18	2.0	0.013 J	0.085 J	N/A	U.U34 J	U.U14 J	N/A	0.01 J	0.013 J	N/A										
EPA 9012A	27	27	NI/A	N/A	NI/A	NI/A	NI/A	NI/A		NI/A	NI/A	NI/A	NI/A	N/A	NI/A	NI/A	NI/A	NI/A	NI/A	N/A	N/A
Cyanide (total)	27	27	N/A	IN/A	N/A	N/A	N/A	N/A		N/A	N/A	N/A	N/A	IN/A	N/A	N/A	N/A	N/A	N/A	IN/A	N/A

- Results expressed in milligrams per kilogram (mg/kg) = parts per million (ppm).
- 2. SCO = Soil Cleanup Objective; Source: NYSDEC Environmental Remediation Programs 6 NYCRR Part 375.
- 3. Results in BOLD type indicate detected concentrations of parameter analyzed.
- 4. SHADING indicates results above the SCO.
- 5. N/L = Not Listed.
- 6. N/A = Not Available.

Table 8 Summary of On-Site Groundwater Sample Analysis TCL-VOCs Analysis 700 Outparcel,LLC Syracuse, NY

Parameter	Groundwater Standard	MW-8	MW-9
EPA 8260B		1/19/2012	1/19/2012
1,1,1-Trichloroethane	5	< 10	< 1
1,1,2,2-Tetrachloroethane	5	< 10 UJ	< 1 UJ
1,1,2-Trichloro-1,2,2-trifluoroethane	5	< 10	< 1
1,1,2-Trichloroethane	5	< 10	< 1
1,1-Dichloroethane	5	< 10	< 1
1,1-Dichloroethene	5	< 10	< 1
1,2,4-Trichlorobenzene	5	< 20	< 2
1,2,4-Trimethylbenzene	5 0.04	628	3.18
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane	0.04	< 100 < 10	< 10 < 1
1,2-Dichlorobenzene	5	< 10	< 1
1,2-Dichloroethane	0.6	< 10	< 1
1,2-Dichloropropane	1	< 10	< 1
1,3,5-Trimethylbenzene	5	176	3.12
1,3-Dichlorobenzene	3	< 10	< 1
1,4-Dichlorobenzene	3	< 10	< 1
2-Butanone	50	< 200	< 20
2-Hexanone	50	< 100	< 10
4-Methyl-2-pentanone	N/L	< 100	< 10
Acrylonitrile		< 100	< 10
Benzene	1	49.4	3.62
Bromodichloromethane	50	< 10	< 1
Bromoform	50	< 20	< 2
Bromomethane	5	< 20 UJ	< 2 UJ
Carbon disulfide	60	< 10	< 1
Carbon tetrachloride	5	< 10	< 1
Chlorobenzene	5	< 10	< 1
Chloroethane	5	< 20	< 2
Chloroform	7	< 10	< 1
Chloromethane	N/L	< 20	< 2
cis-1,2-Dichloroethene	5	< 10	< 1
cis-1,3-Dichloropropene	N/L	< 10	< 1
Cyclohexane	N/L	345	111
Dibromochloromethane	50	< 10	< 1
Dichlorodifluoromethane	5	< 20	< 2
Ethylbenzene	5	404	21.7
Isopropylbenzene	5	54	25.6
Methyl acetate	N/L	< 100 UJ	< 10 UJ
Methyl tert-butyl ether	10	< 20	< 2
Methylcyclohexane	N/L	308 J	137 DLJ
Methylene chloride	5	< 40	< 4
n-Butylbenzene	5	11.6 99.4	10.6
n-Propylbenzene	5		49.7
Naphthalene	10 5	111 5.6 J	29.5 7.54
p-isopropyltoluene sec-Butylbenzene	5	5.6 J 8 J	7.38
	5	< 10	< 1
Styrene tert-Butyl alcohol	N/L	< 400 UJ	< 40 UJ
tert-Butylbenzene			1.56
Tetrachloroethene	5 5	< 10 < 10	< 1
Toluene	5	109	<1 U
trans-1,2-Dichloroethene	5	< 10	< 1
trans-1,3-Dichloropropene	N/L	< 10	< 1
Trichloroethene	5	< 10 UJ	< 1 UJ
Trichlorofluoromethane	5	< 20	< 2
Vinyl chloride	2	< 20	< 2
Xylenes (total)	15	689	25.1
Total Detected		2998.0	437.60
Total Detected TICS		1863.60	549.92
Total		4861.60	987.52

- 1. Results expressed in micrograms per liter (μ g/L) = parts per billion (ppb).
- 2. Groundwater Standard Source: NYSDEC "Technical and Operational Guidance Series" (TOGS) 1.1.1
- 3. N/L = Parameter Not Listed in NYSDEC TOGS 1.1.1
- 4. Results in BOLD type indicate detected concentrations of parameter analyzed.
- 5. SHADING indicates results above the Groundwater Standard.

Table 9 Summary of On-Site Groundwater Sample Analysis TCL-SVOCs 700 Outparcel, LLC Syracuse, NY

Parameter	Groundwater Standard	MW-8	MW-9
EPA 8270 C		1/19/2012	1/19/2012
1,1'-Biphenyl	5	< 10	< 10
2,4,5-Trichlorophenol	N/L	< 51	< 51
2,4,6-Trichlorophenol	N/L	< 10	< 10
2,4-Dichlorophenol	0.30	< 10	< 10
2,4-Dimethylphenol	50	< 10	< 10
2,4-Dinitrophenol 2,4-Dinitrotoluene	10 5	< 51 < 10 U	< 51 < 10
2,6-Dinitrotoluene	5	< 10 0	< 10
2-Chloronaphthalene	10	< 10	< 10
2-Chlorophenol	N/L	< 10	< 10
2-Methylnaphthalene	N/L	27	< 10
2-Methylphenol	N/L	< 10	< 10
2-Nitroaniline	5	< 51	< 51
2-Nitrophenol	N/L	< 10	< 10
3,3'-Dichlorobenzidine	5	< 20	< 20
3-Nitroaniline	5	< 51	< 51
4,6-Dinitro-2-methylphenol	N/L	< 10	< 10
4-Bromophenyl phenyl ether	N/L	< 10	< 10
4-Chloro-3-methylphenol	N/L	< 10	< 10
4-Chloroaniline	5	< 10	< 10
4-Chlorophenyl phenyl ether	N/L	< 10	< 10
4-Methylphenol	N/L	< 10	< 10
4-Nitroaniline	5	< 51	< 51
4-Nitrophenol	N/L	< 51	< 51
Acenaphthene Acenaphthylene	20 N/L	0.43 J < 10	< 10 < 10
Acetophenone	N/L N/L	< 10	< 10
Anthracene	50	< 10	< 10
Atrazine	7.5	< 10	< 10
Benzaldehyde	N/L	< 10	< 10
Benzo[a]anthracene	0.002	< 10	< 10
Benzo[a]pyrene	MDL	< 10	< 10
Benzo[b]fluoranthene	0.002	< 10	< 10
Benzo[g,h,i]perylene	N/L	< 10	< 10
Benzo[k]fluoranthene	0.002	< 10	< 10
bis(2-Chloroethoxy)methane	5.000	< 10	< 10
bis(2-chloroethyl)ether	1	< 10	< 10
bis(2-chloroisopropyl)ether	N/L	< 10	< 10
bis(2-Ethylhexyl)phthalate	5	< 10 U	< 10 U
Butyl benzyl phthalate	50	< 10	< 10
Caprolactam	N/L	< 10	< 10
Carbazole	N/L	< 10	< 10
Chrysene	0.002	< 10	< 10
Di-n-butyl phthalate	50	< 10	< 10
Di-n-octyl phthalate	50 N/I	< 10 < 10	< 10
Dibenz[a,h]anthracene	N/L N/L		< 10 < 10
Dibenzofuran Diethyl phthalate	N/L 50	0.69 J < 10	< 10
Dimethyl phthalate	50	< 10	< 10
Fluoranthene	50	< 10	< 10
Fluorene	50	0.58 J	< 10
Hexachlorobenzene	0.04	< 10	< 10
Hexachlorobutadiene	0.5	< 10	< 10
Hexachlorocyclopentadiene	5	< 51	< 51
Hexachloroethane	5	< 10	< 10
Indeno[1,2,3-cd]pyrene	0.002	< 10	< 10
Isophorone	50	< 10	< 10
N-Nitroso-di-n-propylamine	N/L	< 10	< 10
N-Nitrosodiphenylamine	50	< 10	< 10
Naphthalene	10	77	23
Nitrobenzene	0.4	< 10	< 10
Pentachlorophenol	1	< 51	< 51
Phenanthrene	50	0.57 J	< 10
Phenol	1	< 10	< 10
Pyrene	50	< 10	< 10
Total Detected		125.84	33
Total Detected TICS Total		961.61 1087.45	480 513

- 1. Results expressed in micrograms per liter (µg/L) = parts per billion (ppb).
 2. Groundwater Standard Source: NYSDEC 'Technical and Operational Guidance Series * (TOGS) 1.1.1
 3. N/L = Parameter Not Listed in NYSDEC TOGS 1.1.1.
- Results in BOLD type indicate detected concentrations of parameter analyzed.
- 5. SHADING indicates results above the Groundwater Standard.

Table 10 Summary of On-Site Groundwater Sample Analysis Metals

700 Outparcel, LLC Syracuse, NY

	Groundwater	1414.0	1414.0
Parameter	Standard	MW-8	MW-9
EPA 6010B		1/19/2012	1/19/2012
Aluminum	N/L	0.17 J	1.8 J
Antimony	0.003	< 0.01	< 0.01
Arsenic	0.025	< 0.01	< 0.01
Barium	1.0	1.5	0.86
Beryllium	0.003	< 0.01	< 0.01
Cadmium	0.0050	< 0.01	< 0.01
Calcium	N/L	190	140
Chromium	0.05	0.0069 J	0.0078 J
Cobalt	0.005	0.0086 J	0.0068 J
Copper	0.2	< 0.01	0.0054 J
Iron	0.3	0.45	3.6
Lead	0.025	0.0069 J	0.0068 J
Magnesium	35	30	24
Manganese	0.3	0.38	0.25
Nickel	0.1	0.0024 J	0.0046 J
Potassium	N/L	19 J	29 J
Selenium	0.01	< 0.01	< 0.01
Silver	0.05	< 0.01	< 0.01
Sodium	20	420	690
Thallium	0.0005	0.013 J	< 0.02 UJ
Vanadium	N/L	< 0.01	0.0054 J
Zinc	0.20	< 0.02	0.019 J
EPA 7470A			
Mercury	0.0007	< 0.0002	< 0.0002
E335.4			
Total Cyanide	0.200	< 0.01	< 0.01

- 1. Results expressed in micrograms per liter (mg/L).
- 2. Groundwater Standard Source: NYSDEC "Technical and Operational Guidance Series " (TOGS) 1.1.1
- 3. N/L = Parameter Not Listed in NYSDEC TOGS 1.1.1..
- 4. Results in BOLD type indicate detected concentrations of parameter analyzed.
- 5. SHADING indicates results above the Groundwater Standard.

Table 11 Summary of Off-Site and Property Boundary Groundwater Sample Analysis Data TCL-VOCs Analysis 700 Outparcel,LLC Syracuse, NY

Parameter	Groundwater Standard	MW-1	CMW-1	CMW-1FD	MW-2	CMW-2	MW-3	MW-4	MW-4 FD	MW-5	MW-6	MW-7
EPA 8260B		2/27/2009	3/4/2009	3/4/2009	2/27/2009	3/4/2009	2/27/2009	1/19/2012	1/19/2012	1/19/2012	1/19/2012	1/19/2012
1,1,1-Trichloroethane	5	< 0.5	< 0.5	< 0.5 U	< 5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,2,2-Tetrachloroethane	5	< 0.5	< 0.5	< 0.5	< 5	< 0.5	< 0.5	< 0.5 UJ	< 0.5 UJ	< 0.5 UJ	< 0.5 UJ	< 0.5 UJ
1,1,2-Trichloro-1,2,2-trifluoroethane	5	< 0.5	< 0.5	< 0.5	< 5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,2-Trichloroethane	5	< 0.5	< 0.5	< 0.5	< 5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-Dichloroethane	5	< 0.5	< 0.5	< 0.5	< 5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-Dichloroethene	5	< 0.5	< 0.5	< 0.5	< 5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,4-Trichlorobenzene	5	< 1	< 1	< 1	< 10	< 1	< 1	< 1	< 1	< 1	< 1	< 1
1,2,4-Trimethylbenzene	5	N/A	N/A	N/A	N/A	N/A	N/A	0.79	0.63	0.95	< 0.5	< 0.5
1,2-Dibromo-3-chloropropane	0.04	< 5	< 5	< 5	< 50	< 5	< 5	< 5	< 5	< 5	< 5	< 5
1,2-Dibromoethane	0.6	< 0.5	< 0.5	< 0.5	< 5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-Dichlorobenzene	5	< 0.5	< 0.5	< 0.5	< 5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-Dichloroethane	0.6	< 0.5	< 0.5	< 0.5	< 5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-Dichloropropane	1	< 0.5	< 0.5	< 0.5	< 5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3,5-Trimethylbenzene	5	N/A	N/A	N/A	N/A	N/A	N/A	0.3 J	0.3 J	0.39 J	< 0.5	< 0.5
1,3-Dichlorobenzene	3	< 0.5	< 0.5	< 0.5	< 5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,4-Dichlorobenzene	3	< 0.5	< 0.5	< 0.5	< 5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
2-Butanone	50	2.24 J	< 10	< 10	< 100	< 10	< 10	< 10	< 10	< 10	< 10	4.57 J
2-Hexanone	50	< 5	< 5	< 5	< 50	< 5	< 5	< 5	< 5	< 5	< 5	< 5
4-Methyl-2-pentanone	N/L	< 5	< 5	< 5	< 50	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Acetone	50	6.49 J	< 10	< 10	< 100	2.38 J	1.68 J	N/A	N/A	N/A	N/A	N/A
Acrylonitrile		N/A	N/A	N/A	N/A	N/A	N/A	< 5	< 5	< 5	< 5	< 5
Benzene	1	0.17 J	15.2	14.3	214	0.12 J	0.18 J	0.57	0.57	< 0.5	< 0.5	< 0.5
Bromodichloromethane	50	< 0.5	< 0.5	< 0.5	< 5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Bromoform	50	< 1	< 1	< 1	< 10	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Bromomethane	5	< 1	< 1	< 1	< 10	< 1	< 1	< 1 UJ	< 1 UJ	< 1 UJ	< 1 UJ	< 1 UJ
Carbon disulfide	60	< 0.5 U	< 0.5 U	< 0.5 U	< 5 U	< 0.5 U	< 0.5 UJ	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Carbon tetrachloride	5	< 0.5	< 0.5	< 0.5	< 5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Chlorobenzene	5	< 0.5	< 0.5	< 0.5	< 5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Chloroethane	5	< 1	< 1	< 1	< 10	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Chloroform	7	< 0.5	< 0.5	< 0.5	< 5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Chloromethane	N/L	< 1	< 1	< 1	< 10	< 1	< 1	< 1	< 1	< 1	< 1	< 1
cis-1,2-Dichloroethene	5	< 0.5	< 0.5	< 0.5	< 5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
cis-1,3-Dichloropropene	N/L	< 0.5	< 0.5	< 0.5	< 5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Cyclohexane	N/L	0.35 J	32.8	24.2	315 D	0.24 J	< 0.5	4.52	4.59	< 0.5	< 0.50	< 0.5
Dibromochloromethane	50	< 0.5	< 0.5	< 0.5	< 5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.50	< 0.5
Dichlorodifluoromethane	5	< 1	< 1	< 1	< 10	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Ethylbenzene	5	< 0.5	0.17 J	0.14 J	69.2	< 0.5	< 0.5	< 0.5 U	< 0.5 U	< 0.5	< 0.5	< 0.5
-	5	< 0.5	1.96	1.45	75.8	0.28 J	< 0.5	12.3	12.5	< 0.5	< 0.5	< 0.5
Isopropylbenzene	N/L	< 5	< 5	< 5	< 50	< 5	< 5			< 5 UJ	< 5 UJ	< 5 UJ
Methyl acetate Methyl tert-butyl ether	10	< 1	< 1	< 1	< 10	< 1	< 1	< 5 UJ	< 5 UJ	< 1	< 1	< 1
	N/L	< 0.5	2.68	2.01	203	0.15 J	< 0.5	< 0.5	< 0.5	12.4 J	< 0.5	< 0.5
Methylcyclohexane	5 5	< 2			< 20					< 2		
Methylene chloride			< 2	< 2		< 2	< 2	< 2	< 2		< 2	< 2
n-Butylbenzene	5 5	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	1.26	1.40	0.75 0.36 J	< 0.5	< 0.5
n-Propylbenzene			N/A N/A									
Naphthalene	10	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	0.62 J 0.22 J	0.33 J 0.22 J	0.34 J 0.34 J	< 1	< 1
p-isopropyltoluene	5		N/A N/A									
sec-Butylbenzene	5	N/A		N/A	N/A	N/A	N/A	1.03	1.02	0.33 J	< 0.5	< 0.5
Styrene	5	< 0.5	< 0.5	< 0.5	< 5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
tert-Butyl alcohol	N/L	< 20	< 20	< 20	< 200	< 20	< 20	< 20 UJ	< 20 UJ	< 20 UJ	< 20 UJ	< 20 UJ
tert-Butylbenzene	5	N/A	N/A	N/A	N/A	N/A	N/A	0.42 J	0.41 J	< 0.5	< 0.5	< 0.5
Tetrachloroethene	5	< 0.5	< 0.5	< 0.5	< 5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Toluene	5	0.48 J	0.68	0.53	35.9	0.26 J	0.32 J	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
trans-1,2-Dichloroethene	5	< 0.5	0.9	0.93	< 5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
trans-1,3-Dichloropropene	N/L	< 0.5	< 0.5	< 0.5	< 5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Trichloroethene	5	< 0.5 UJ	0.17 J	0.14 J	< 5 UJ	< 0.5 UJ	< 0.5 UJ	< 0.5 UJ	< 0.5 UJ	< 0.5 UJ	< 0.5 UJ	< 0.5 UJ
Trichlorofluoromethane	5	< 1	< 1	< 1	< 10	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Vinyl chloride	2	< 1	< 1	< 1	< 10	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Xylenes (total)	15	< 1	0.54 J	0.43 J	287	< 1	< 1	1.04	0.99 J	< 1	< 1	< 1
Total Detected		9.73	55.26	44.3	1199.40	3.57	2.18	34.97	34.86	15.86	0.00	4.57
Total Detected TICS		2.89	100.25	66.32	88.5	1.6	14.51	127.28	128.69	64.31	0	0
Total		12.62	155.51	110.62	1287.9	5.17	16.69	162.25	163.55	80.17	0	4.57
Notes:												

- 1. Results expressed in micrograms per liter (μ g/L) = parts per billion (ppb).
- 2. Groundwater Standard Source: NYSDEC "Technical and Operational Guidance Series " (TOGS) 1.1.1
- 3. N/L = Parameter Not Listed in NYSDEC TOGS 1.1.1
- Results in BOLD type indicate detected concentrations of parameter analyzed.
- 5. SHADING indicates results above the Groundwater Standard.
- 6. N/A = Not Available.

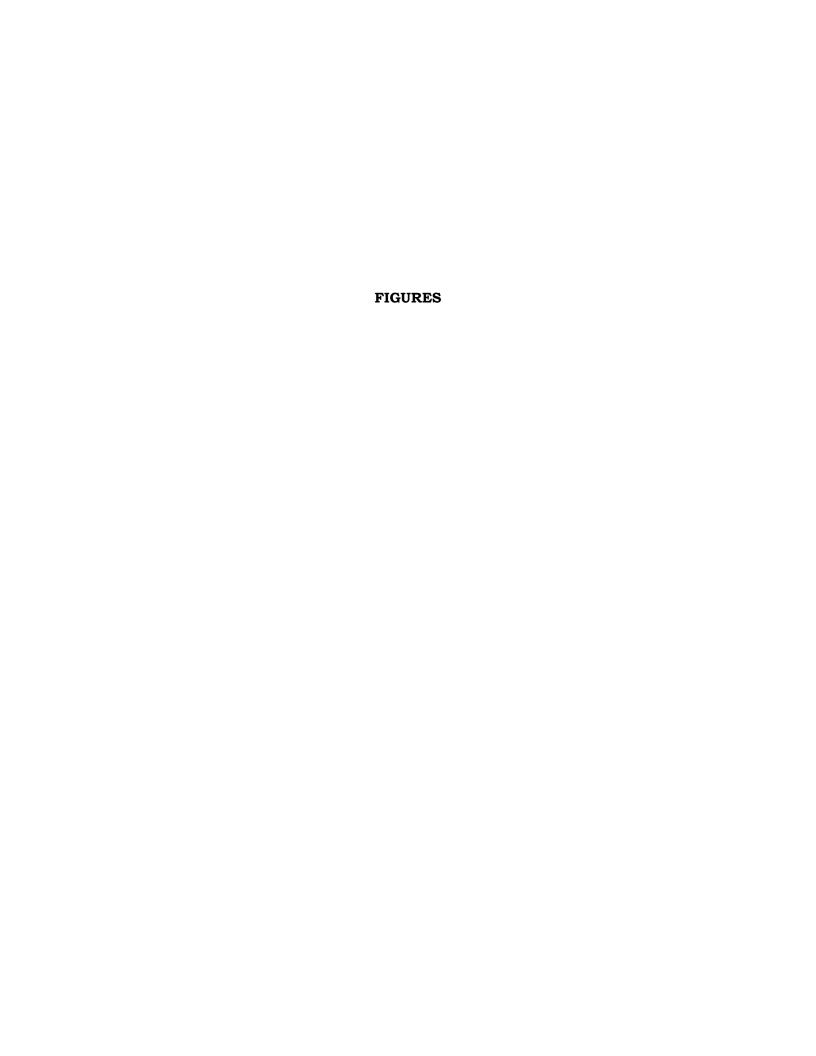
Table 12 Summary of Off-Site and Property Boundary Groundwater Sample Analysis TCL-SVOCs 700 Outparcel, LLC Syracuse, NY

Parameter	Groundwater Standard	CMW-1	CMW-1FD	MW-2	CMW-2	MW-3	MW-4	MW-4 FD	MW-5	MW-6	MW-7
EPA 8270 C		3/4/2009	3/4/2009	2/27/2009	3/4/2009	2/27/2009	1/19/2012	1/19/2012	1/19/2012	1/19/2012	1/19/2012
1,1'-Biphenyl	5	< 11	< 11	< 10	< 11	< 10	< 10	< 10	< 10	< 10	< 10
2,4,5-Trichlorophenol	2*	< 53	< 53	< 51	< 53	< 50	< 51	< 50	< 51	< 51	< 51
2,4,6-Trichlorophenol	N/L	< 11	< 11	< 10	< 11	< 10	< 10	< 10	< 10	< 10	< 10
2,4-Dichlorophenol	0.30	< 11	< 11	< 10	< 11	< 10	< 10	< 10	< 10	< 10	< 10
2,4-Dimethylphenol	50	< 11	< 11	< 10	< 11	< 10	< 10	< 10	< 10	< 10	< 10
2,4-Dinitrophenol	10	< 53	< 53	< 51 U	< 53	< 50 U	< 51	< 50	< 51	< 51	< 51
2,4-Dinitrotoluene	5	< 11	< 11	< 10	< 11	< 10	< 10	< 10	< 10	< 10	< 10
2,6-Dinitrotoluene 2-Chloronaphthalene	5 10	< 11 < 11	< 11 < 11	< 10 < 10	< 11 < 11	< 10 < 10	< 10 < 10	< 10 < 10	< 10 < 10	< 10 < 10	< 10 < 10
2-Chlorophenol	N/L	< 11	< 11	< 10	< 11	< 10	< 10	< 10	< 10	< 10	< 10
2-Methylnaphthalene	N/L	< 11	< 11	1.5 J	< 11	< 10	< 10	< 10	< 10	< 10	< 10
2-Methylphenol	N/L	< 11	< 11	< 10	< 11	< 10	< 10	< 10	< 10	< 10	< 10
2-Nitroaniline	5	< 53	< 53	< 51	< 53	< 50	< 51	< 50	< 51	< 51	< 51
2-Nitrophenol	N/L	< 11	< 11	< 10	< 11	< 10	< 10	< 10	< 10	< 10	< 10
3,3'-Dichlorobenzidine	5	< 21	< 21	< 20 UJ	< 21	< 20 UJ	< 20	< 20	< 20	< 20	< 20
3-Nitroaniline	5	< 53	< 53	< 51	< 53	< 50	< 51	< 50	< 51	< 51	< 51
4,6-Dinitro-2-methylphenol	N/L	< 11	< 11	< 10	< 11	< 10	< 10	< 10	< 10	< 10	< 10
4-Bromophenyl phenyl ether	N/L	< 11	< 11	< 10	< 11	< 10	< 10	< 10	< 10	< 10	< 10
4-Chloro-3-methylphenol	N/L	< 11	< 11	< 10	< 11	< 10	< 10	< 10	< 10	< 10	< 10
4-Chloroaniline	5	< 11	< 11	< 10	< 11	< 10	< 10	< 10	< 10	< 10	< 10
4-Chlorophenyl phenyl ether	N/L	< 11	< 11	< 10	< 11	< 10	< 10	< 10	< 10	< 10	< 10
4-Methylphenol	N/L	< 11	< 11	< 10	< 11	< 10	< 10	< 10	< 10	< 10	< 10
4-Nitroaniline	5	< 53	< 53	< 51	< 53	< 50	< 51	< 50	< 51	< 51	< 51
4-Nitrophenol	N/L	< 53	< 53	< 51	< 53	< 50	< 51	< 50 U	< 51	< 51	< 51
Acenaphthene	20	< 11	< 11	< 10	< 11	< 10	0.94 J	0.93 J	< 10	< 10	< 10
Acenaphthylene	N/L	< 11	< 11	< 10	< 11	< 10	< 10	< 10	< 10	< 10	< 10
Acetophenone	N/L	< 11	< 11	< 10	< 11	< 10	< 10	< 10 U	< 10	< 10	< 10
Anthracene	50	< 11	< 11	< 10	< 11	< 10	< 10	< 10	< 10	< 10	< 10
Atrazine	7.5	< 11	< 11	< 10	< 11	< 10	< 10	< 10	< 10	< 10	< 10
Benzaldehyde	N/L	< 11	< 11	< 10	< 11	< 10	< 10	< 10	< 10	< 10	< 10
Benzo[a]anthracene	0.002	< 11 U	< 11 U	< 10	< 11	< 10	< 10	< 10	< 10	< 10	< 10
Benzo[a]pyrene	MDL	< 11	< 11	< 10	< 11	< 10	< 10	< 10	< 10	< 10	< 10
Benzo[b]fluoranthene	0.002	< 11	< 11	< 10	< 11	< 10	< 10	< 10	< 10	< 10	< 10
Benzo[g,h,i]perylene	N/L	< 11	< 11	< 10	< 11	< 10	< 10	< 10	< 10	< 10	< 10
Benzo[k]fluoranthene	0.002	< 11	< 11	< 10	< 11	< 10	< 10	< 10	< 10	< 10	< 10
bis(2-Chloroethoxy)methane	5.000	< 11	< 11	< 10	< 11	< 10	< 10	< 10	< 10	< 10	< 10
bis(2-chloroethyl)ether	1	< 11	< 11	< 10	< 11	< 10	< 10	< 10	< 10	< 10	< 10
bis(2-chloroisopropyl)ether	N/L	< 11	< 11	< 10	< 11	< 10	< 10	< 10	< 10	< 10	< 10
bis(2-Ethylhexyl)phthalate	5	< 11 U	< 17 U	< 10	< 11	< 10	< 10 U	< 10	< 10 U	< 10	< 10 U
Butyl benzyl phthalate	50	< 11	< 11	< 10	< 11	< 10	< 10	< 10	< 10 U	< 10	< 10
Caprolactam	N/L	< 11	< 11	< 10	< 11	< 10	< 10	< 10	< 10	< 10	< 10
Carbazole	N/L	< 11	< 11	< 10	< 11	< 10	5 J	4.4 J	< 10	< 10	< 10
Chrysene	0.002	< 11	< 11	< 10	< 11	< 10	< 10	< 10	< 10	< 10	< 10
Di-n-butyl phthalate	50	< 11 U	< 11 U	< 10	< 11	< 10	< 10	< 10	< 10	< 10	< 10
Di-n-octyl phthalate	50	< 11	< 11	< 10	< 11	< 10	< 10	< 10	< 10	< 10	< 10
Dibenz[a,h]anthracene	N/L	< 11	< 11	< 10	< 11	< 10	< 10	< 10	< 10	< 10	< 10
Dibenzofuran	N/L	< 11	< 11	< 10	< 11	< 10	0.62 J	0.68 J	< 10	< 10	< 10
Diethyl phthalate	50	< 11	< 11	< 10 U	< 11	< 10	< 10	< 10	< 10	< 10	< 10
Dimethyl phthalate Fluoranthene	50 50	< 11 3.3 J	< 11 3.5 J	< 10 < 10	< 11 2.8 J	< 10 < 10	< 10 0.96 J	< 10 0.88 J	< 10 0.45 J	< 10 < 10	< 10 < 10
Fluoranmene	50	< 11	< 11	< 10	< 11	< 10	0.96 J	0.88 J 0.91 J	< 10	< 10	< 10
Hexachlorobenzene	0.04	< 11	< 11	< 10	< 11	< 10	< 10	< 10	< 10	< 10	< 10
Hexachlorobutadiene	0.5	< 11	< 11	< 10	< 11	< 10	< 10	< 10	< 10	< 10	< 10
Hexachlorocyclopentadiene	5	< 11	< 11	< 10 U	< 11	< 10 U	< 51	< 50	< 51	< 51	< 51
Hexachloroethane	5	< 11	< 11	< 10	< 11	< 10	< 10	< 10	< 10	< 10	< 10
Indeno[1,2,3-cd]pyrene	0.002	< 11	< 11	< 10	< 11	< 10	< 10	< 10	< 10	< 10	< 10
Isophorone	50	< 11	< 11	< 10	< 11	< 10	< 10	< 10	< 10	< 10	< 10
N-Nitroso-di-n-propylamine	N/L	< 11	< 11	< 10	< 11	< 10	< 10	< 10	< 10	< 10	< 10
N-Nitrosodiphenylamine	50	< 11	< 11	< 10	< 11	< 10	< 10	< 10	< 10	< 10	< 10
Naphthalene	10	< 11	< 11	1.2 J	< 11	< 10	< 10	< 10	< 10	< 10	< 10
Nitrobenzene	0.4	< 11	< 11	< 10 U	< 11	< 10	< 10	< 10	< 10	< 10	< 10
Pentachlorophenol	1	< 53	< 53	< 51	< 53	< 50	< 51	< 50	< 51	< 51	< 51
Phenanthrene	50	2.9 J	2.9 J	< 10	2.9	< 10	< 10	< 10	0.67 J	< 10	< 10
Phenol	1	< 11	< 11	< 10	< 11	< 10	< 10	< 10	< 10	< 10	< 10
Pyrene	50	2.4 J	2.5 J	< 10	2 J	< 10	0.71 J	0.6 J	< 10	< 10	< 10
Total Detected		8.6	8.9	2.7	7.7	0	19.12	68.4	21.12	0	0
Total Detected TICS		64.5	50.2	1005	0	0	72.6	19	31.8	0	4.2
Total		73.1	59.1	1007.7	7.7	0	91.72	87.4	52.92	0	4.2
Notes:		. 5.1	55.1	.001.1		·	V12	57.7	UL.UL	·	

- Results expressed in micrograms per liter (μg/L) = parts per billion (ppb).
- Results expressed in find optains per liter (pg/c) = parts per billion (ppb).
 Groundwater Standard Source: NYSDEC "Technical and Operational Guidance Series " (TOGS) 1.1.1
- N/L = Parameter Not Listed in NYSDEC TOGS 1.1.1.
- Results in BOLD type indicate detected concentrations of parameter analyzed.
- 5. SHADING indicates results above the Groundwater Standard.

Table 13 Summary of Off-Site and Property Boundary Groundwater Sample Analysis Metals

700 Outparcel, LLC Syracuse, NY


Parameter	Groundwater Standard	CMW-1	CMW-1FD	MW-2	CMW-2	MW-3	MW-4	MW-4 FD	MW-5	MW-6	MW-7
EPA 6010B		3/4/2009	3/4/2009	2/27/2009	3/4/2009	2/27/2009	1/19/2012	1/19/2012	1/19/2012	1/19/2012	1/19/2012
Aluminum	N/L	46 J	22 J	45	10 J	8.9	0.2 J	0.32 J	1.5 J	0.4 J	< 0.01 UJ
Antimony	0.003	0.0039 J	< 0.06	0.0033 J	< 0.06	< 0.06 UJ	< 0.01	< 0.01	< 0.01	0.006 J	< 0.01
Arsenic	0.025	0.029	0.02	0.033	0.0053 J	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Barium	1.0	5.7	4.9	2.5	0.41	2.1	0.53	0.56	0.19	0.1	0.41
Beryllium	0.003	0.0017 J	0.0008 J	0.0028 J	0.0004 J	0.0003 J	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Cadmium	0.0050	< 0.01	< 0.01	0.0011 J	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Calcium	N/L	610	460	430	160	500	120	130	140	91	240
Chromium	0.05	0.077 J	0.041 J	0.095	0.022 J	0.017	0.0053 J	0.0041 J	0.0069 J	0.0062 J	0.0046 J
Cobalt	0.005	0.03 J	0.013 J	0.026 J	< 0.05	< 0.05	0.0062 J	0.0046 J	0.0051 J	0.0049 J	0.0053 J
Copper	0.2	0.16 J	0.066 J	0.14	0.027 J	0.027	< 0.01	< 0.01	0.0046 J	0.0053 J	< 0.01
Iron	0.3	84 J	45 J	97 J	18 J	16 J	0.67	0.77	1.9	0.46	0.072
Lead	0.025	0.056 J	0.032 J	0.064	0.016 J	0.011	0.0044 J	0.0053 J	0.0048 J	< 0.01 UJ	< 0.01 UJ
Magnesium	35	230	150	150	57	100	18	19	18	12	82
Manganese	0.3	2	1.2	1.5	0.46	0.83	0.19	0.2	0.11	0.0082 J	0.11
Nickel	0.1	0.1	0.055	0.086	0.022 J	0.013 J	< 0.01	< 0.01	0.0041 J	0.0021 J	0.0035 J
Potassium	N/L	24 J	19 J	29	14 J	13	6.2 J	6.8 J	9.5 J	8.3 J	51 J
Selenium	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Silver	0.05	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Sodium	20	1500	1600	1200	1100	980	59	72	620	480	1000
Thallium	0.0005	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.01 J	< 0.02 UJ	< 0.02 UJ	< 0.02 UJ	< 0.02 UJ
Vanadium	N/L	0.081	0.041 J	0.079	0.021 J	0.017 J	< 0.01	< 0.01	0.0043 J	< 0.01	< 0.01
Zinc	0.20	0.22 J	0.1 J	0.24	0.048 J	0.029	< 0.02	< 0.02	0.01 J	0.016 J	< 0.02
EPA 7470A					, in the second second		, in the second second				
Mercury	0.0007	0.00016 J	0.000091 J	0.00018 J	0.000056 J	<0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
E335.4			-								
Total Cyanide	0.200	< 0.01	< 0.01	N/A	< 0.01	N/A	< 0.01	< 0.01	0.0053 J	0.0058 J	< 0.01

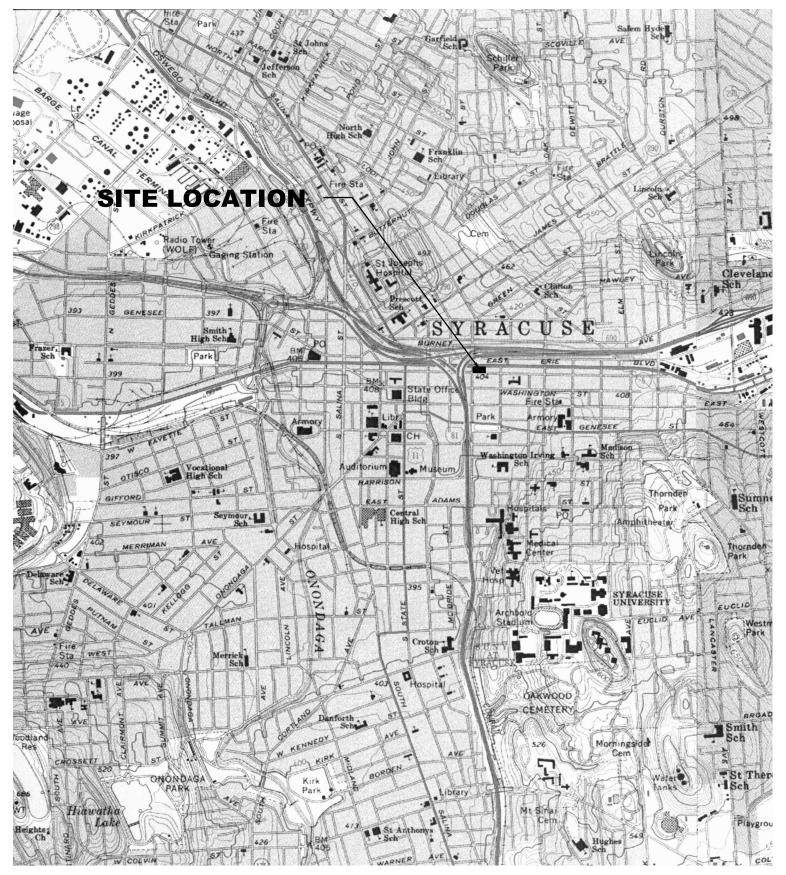

- 1. Results expressed in micrograms per liter (mg/L).
- 2. Groundwater Standard Source: NYSDEC "Technical and Operational Guidance Series " (TOGS) 1.1.1
- 3. N/L = Parameter Not Listed in NYSDEC TOGS 1.1.1..
- 4. N/S = Parameter Listed in NYSDEC TOGS 1.1.1., but Groundwater Standard Not Specified.
- 5. Results in BOLD type indicate detected concentrations of parameter analyzed.
- 6. SHADING indicates results above the Groundwater Standard.

Table 14 Summary of TPH Sample Analysis Data 700 Outparcel, LLC Syracuse, NY

Parameter	WSV-1 (4)	WSV-2 (8)	WSU2-2 (10)	WSU3-1	WSU3-2	SB-1 (12-14)	SB-2 (8-12)	SB-3 (8-12)	MW-1 (16-20)	MW-2 (8-12)	MW-3 (8-12)	CMW-1 (12-16)	CMW-2 Composite	CSB-4 Composite	TP-1 (9-10)	TP-1 FD (9-10)	TP-7 (11-12)	TP-10 (11-13.5)	MW-4 (8-12)	MW-5 (8-12)
NYSDOH 310.13	9/4/2008	9/4/2008	9/18/2008	9/26/2008	9/29/2008	2/26/2009	2/26/2009	2/27/2009	2/26/2009	2/26/2009	2/26/2009	3/2/2009	3/2/2009	3/2/2009	8/24/2011	8/24/2011	8/23/2011	8/23/2011	1/17/2012	1/13/2012
Fuel oil #2	<20.0	<10.0	<10.0	<10.0	<20.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	N/A	<10.0	<10.0	<5.0	<5.0	<5.0	<5.0	<4.0	<4.0
Gasoline	Not Present	Not Present	Not Present	Not Present	Not Present	Not Present	<18.0	Not Present	Not Present	Not Present	Not Present	Not Present	Not Present	Not Present	t Not Present					
Kerosene	<20.0	<10.0	<10.0	<10.0	<20.0	(1)	<10.0	<10.0	<10.0	<10.0	<10.0	<18.0	<10.0	<10.0	<5.0	<5.0	5.6*	3.3* J	<4.0	<4.0
Lubricating oil	Not Present	Not Present	Not Present	Not Present	PRESENT	Not Present	Not Present	Not Present	Not Present	Not Present	Not Present	<90.0	Not Present	Not Present	Not Present	Not Present	Not Present	Not Present	Not Present	t Not Present
Mineral sprits	N/A	N/A	N/A	N/A	(2)	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<3.6	<10.0	<10.0	<5.0	<5.0	<5.0	<5.0	110	10 J
Naphtha	N/A	N/A	N/A	N/A	Not Present	Not Present	Not Present	Not Present	Not Present	Not Present	Not Present	N/A	Not Present	Not Present	Not Present	Not Present	Not Present	Not Present	<21.0	<19.0
Diesel fuel	N/A	N/A	N/A	N/A	<20.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<18.0	<10.0	<10.0	<5.0	<5.0	<5.0	<5.0	<21.0	<19.0
JP8 jet fuel	N/A	N/A	N/A	N/A	Not Present	(1)	<10.0	<10.0	<10.0	<10.0	<10.0	N/A	<10.0	<10.0	Not Present	Not Present	Not Present	Not Present	<21.0	<19.0
Turpentine	N/A	N/A	N/A	N/A	Not Present	Not Present	Not Present	Not Present	Not Present	Not Present	Not Present	N/A	Not Present	Not Present	Not Present	Not Present	Not Present	Not Present	<21.0	<19.0
Transformer oil	N/A	N/A	N/A	N/A	Not Present	Not Present	Not Present	Not Present	Not Present	Not Present	Not Present	N/A	Not Present	Not Present	Not Present	Not Present	Not Present	Not Present	Not Present	t Not Present
Mineral oil	N/A	N/A	N/A	N/A	Not Present	Not Present	Not Present	Not Present	Not Present	Not Present	Not Present	N/A	Not Present	Not Present	Not Present	Not Present	Not Present	Not Present	Not Present	t Not Present
Hydraulic oil	N/A	N/A	N/A	N/A	Not Present	Not Present	Not Present	Not Present	Not Present	Not Present	Not Present	N/A	Not Present	Not Present	Not Present	Not Present	Not Present	Not Present	Not Present	t Not Present
Fuel oil #4	N/A	N/A	N/A	N/A	<20.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	N/A	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<21.0	<19.0
Fuel oil #6	N/A	N/A	N/A	N/A	<20.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<18.0 UJ	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<21.0	<19.0
DRO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	21	25	7.1	N/A	N/A	N/A

- 1. Results expressed in milligrams per kilogram (mg/kg) = parts per million (ppm).
- 2. Results in BOLD type indicate detected concentrations of parameter analyzed.
- (1) = A degraded pattern is present that may have started as Kerosene or JP8 Jet fuel
 (2) = A pattern resembling Mineral Spirits is present at an estimated amount of 200 ppm
- (*) = Analyte appears to be biologically degrated and/or environmentally weathered.

FIGURE 1 - LOCATION PLAN

700 Out Parcel, LLC 701-709 East Water Street Syracuse, New York

Remedial Investigation Report

Scale: 1" = 2,000'

700 Out Parcel, 701-709 East V

700 Out Parcel, LLC 701-709 East Water Street Syracuse, New York

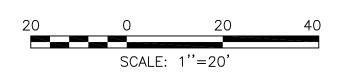
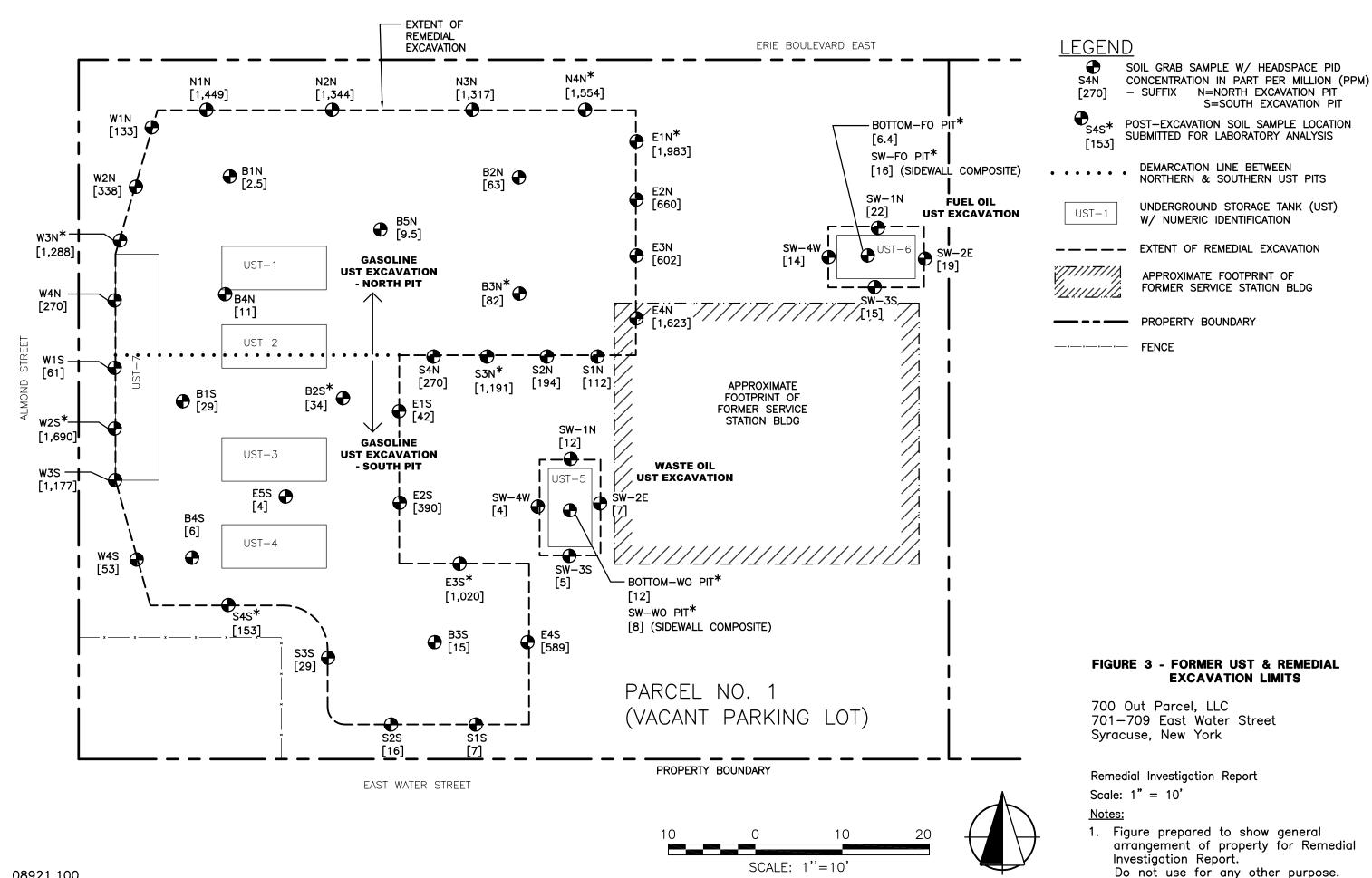
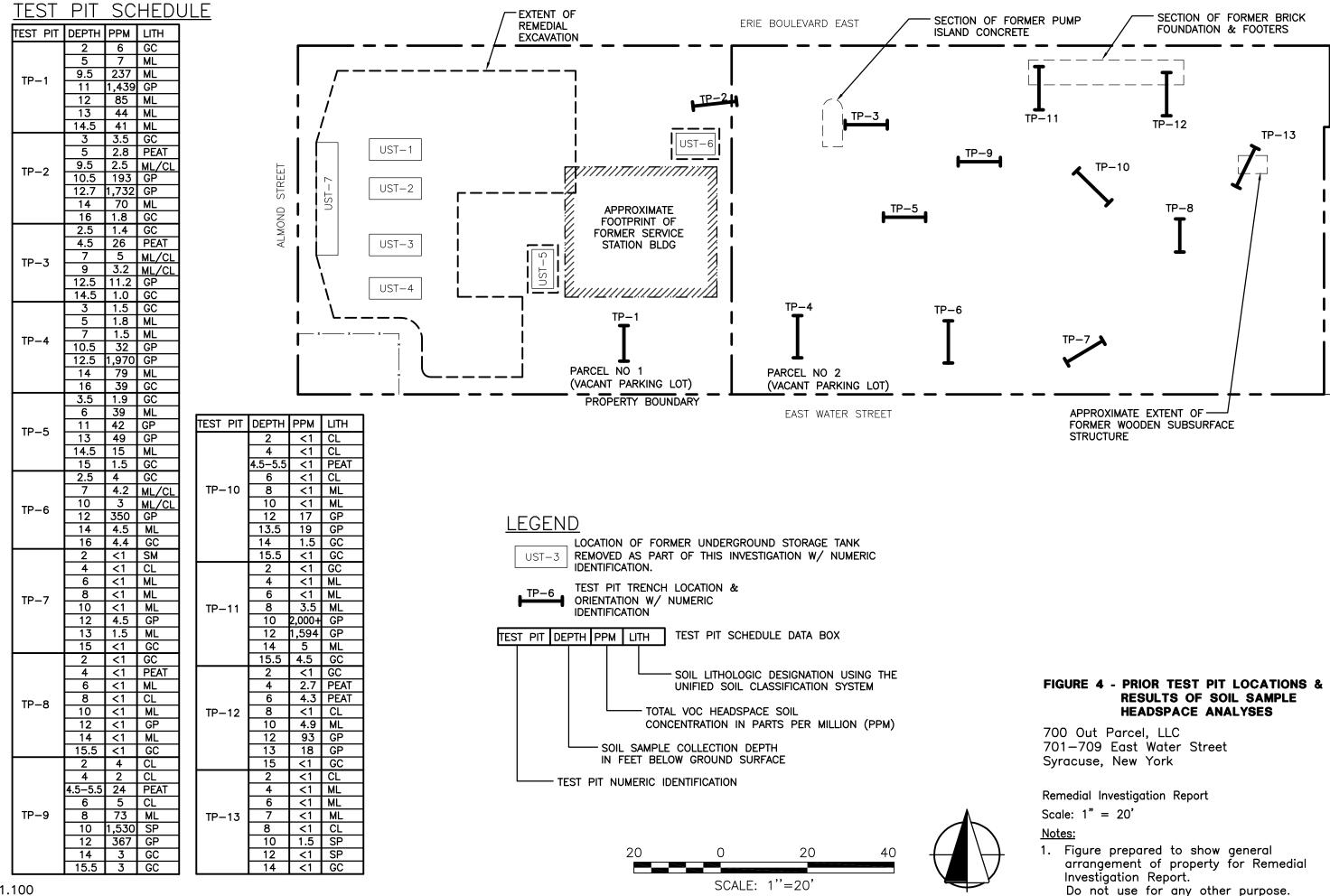
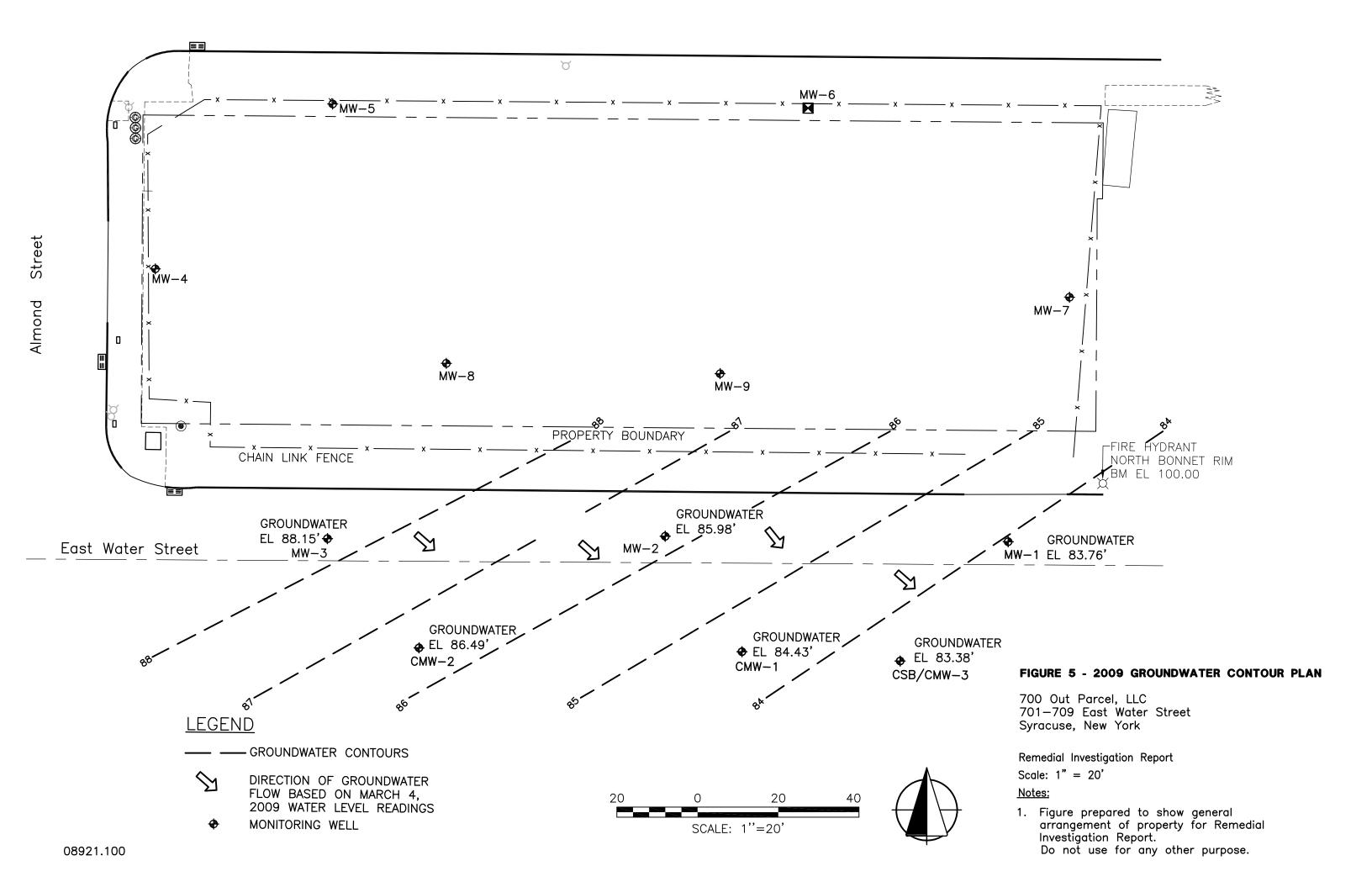
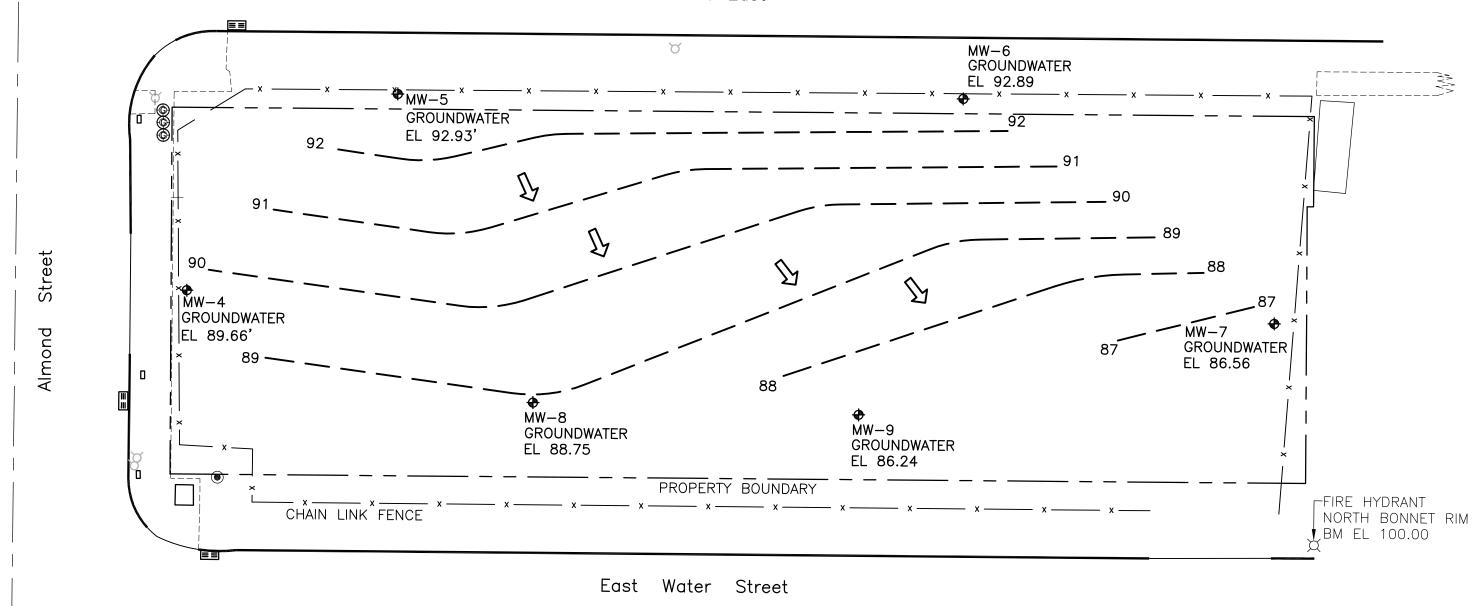

Remedial Investigation Report

FIGURE-2 - SITE PLAN

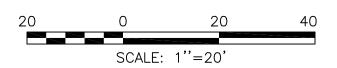

Scale: 1" = 20'


Notes:


 Figure prepared to show general arrangement of property for remedial investigation report.
 Do not use for any other purpose.


Almond

Erie Boulevard East

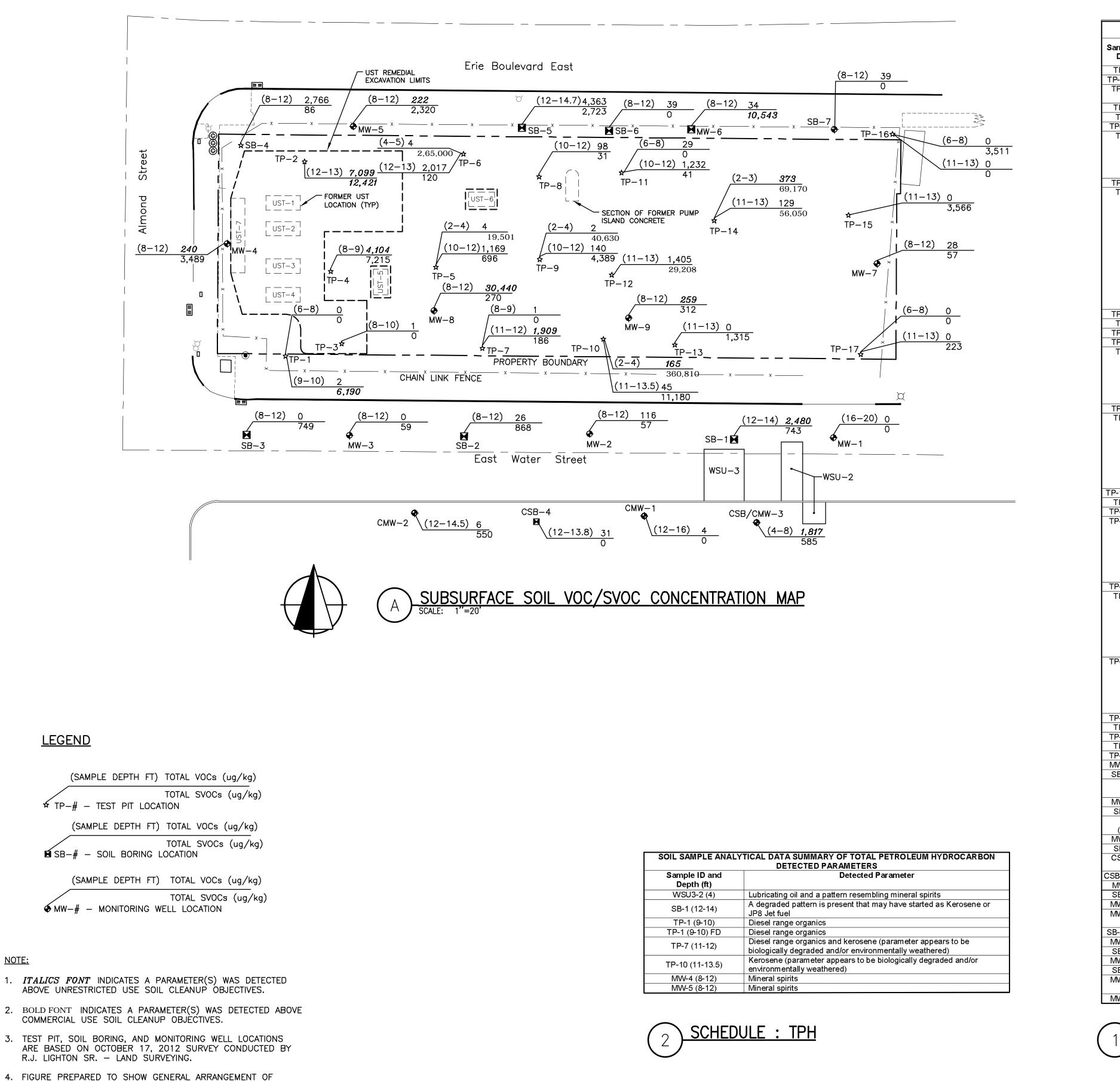

LEGEND

— GROUNDWATER CONTOURS

DIRECTION OF GROUNDWATER FLOW BASED ON JANUARY 19, 2012 WATER LEVEL READINGS

♠ MONITORING WELL

FIGURE 6 - 2012 GROUNDWATER CONTOUR PLAN


700 Out Parcel, LLC 701-709 East Water Street Syracuse, New York

Remedial Investigation Report

Scale: 1" = 20'

<u>Notes:</u>

 Figure prepared to show general arrangement of property for Remedial Investigation Report. Do not use for any other purpose.

Detected Sample ID and | PID Headspace Analysis Commercial Concentration Depth (ft) Parameter SCO (ug/kg) SCO (ug/kg) (ppm) TP-1 (9-10) 56,000 Benzo(k)fluoranthene TP-1 (9-10) FD 2,600 0.0 Benzo(k)fluoranthene 56,000 TP-2 (12-13) Xylene (total) 500,000 430 341 Benzo(a)anthracene 1,000 5,600 1,000 TP-3 (8-10) No Exceedances TP-4 (8-9) 2420 500,000 Xylene (total) TP-4 (8-9) FD 2420 500,000 460 Xylene (total) TP-5 (2-4) 1,600 1,000 5,600 Benzo(a)anthracene 1,000 1,000 1,300 Benzo(a)pyrene 0.0 1.700 1,000 5.600 Benzo(b)fluoranthene 1.000 56,000 1,500 Chrysene 330 560 460 Dibenz(a,h)anthracene TP-5 (10-12) TP-6 (4-5) 1111 No Exceedances 500,000 30,000 Acenaphthene 1,000 5,600 210,000 Benzo(a)anthracene 1,000 1,000 180,000 Benzo(a)pyrene 5,600 Benzo(b)fluoranthene 250,000 100,000 500,000 110,000 Benzo(g,h,i)perylene 76,000 56,000 Benzo(k)fluoranthene 0.0 1,000 56,000 210,000 100,000 500,000 430,000 Fluoranthene 30,000 500,000 34,000 5.600 70,000 Indeno(1,2,3-cd)pyrene 12.000 500,000 16.000 Naphthalene Phenanthrene 100.000 500,000 430.000 100,000 500,000 440,000 TP-6 (12-13) TP-7 (8-9) No Exceedances No Exceedances TP-7 (11-12) Xylene (total) 500,000 280 TP-8 (10-12) No Exceedances TP-9 (2-4) 5,600 Benzo(a)anthracene 1,000 4,000 1,000 Benzo(a)pyrene 1,000 5,600 5,200 Benzo(b)fluoranthene 0.0 800 56,000 1,700 Benzo(k)fluoranthene 1,000 2,900 56,000 Indeno(1,2,3-cd)pyrene 5,600 1,500 TP-9 (10-12) No Exceedances TP-10 (2-4) 500,000 Acetone 1,000 5,600 31,000 Benzo(a)anthracene 1,000 1,000 26,000 Benzo(a)pyrene 1,000 5.600 31.000 Benzo(b)fluoranthene 0.0 56,000 12,000 Benzo(k)fluoranthene 1,000 56,000 28,000 Chrysene Dibenz(a,h)anthracene 2,800 Indeno(1,2,3-cd)pyrene 500 5,600 8,400 TP-10 (11-13.5) No Exceedances TP-11 (6-8) No Exceedances TP-11 (10-12) No Exceedances TP-12 (11-13) ,000 5,600 Benzo(a)anthracene 1,000 1.000 2.500 Benzo(a)pyrene 1,000 5.600 3.100 Benzo(b)fluoranthene 983 1,300 Benzo(k)fluoranthene 800 56,000 1,000 56,000 2,200 Chrysene 800 Dibenz(a,h)anthracene 5,600 740 Indeno(1,2,3-cd)pyrene 500 TP-13 (11-13) No Exceedances TP-14 (2-3) 500,000 Acetone Benzo(a)anthracene 000, 5,600 1,000 5,600 Benzo(a)pyrene 10.2 1,000 5,600 7,900 Benzo(b)fluoranthene 56,000 1,800 Benzo(k)fluoranthene 56,000 4,200 5,600 1,400 Indeno(1,2,3-cd)pyrene 1,000 1,000 4,700 Benzo(a)pyrene 1,000 5,600 6,700 Benzo(b)fluoranthene Benzo(k)fluoranthene 56.000 ,000, 56,000 3,400 5,600 1,300 Indeno(1,2,3-cd)pyrene 500 TP-15 (11-13) No Exceedances TP-16 (6-8) No Exceedances TP-16 (11-13) No Exceedances TP-17 (6-8) No Exceedances TP-17 (11-13) No Exceedances MW-1 (16-20) No Exceedances SB-1 (12-14) CMW-1 290 2444 500,000 Xylenes (total) No Exceedances 1798 1098 MW-2 (8-12) No Exceedances 429 SB-2 (8-12) No Exceedances CMW-2 No Exceedances 0.1 (12-14.5)MW-3 (8-12) 58.1 SB-3 (8-12) 59.4 No Exceedances CSB/CMW-3 500,000 420 Xylenes (total) 480 (4-8) CSB-4 (12-13.8) No Exceedances MW-4 (4-8) 500,000 120 SB-4 (8-12) No Exceedances MW-5 (8-12) No Exceedances MW-5 (8-12) 500,000 Acetone 1360 SB-5 (12-14.7) 5,600 1,000 5,600 MW-6 (8-12) Benzo(b)fluoranthene SB-6 (8-12) No Exceedances MW-7 (8-12) No Exceedances SB-7 (8-12) No Exceedances MW-8 (8-12) 3,600 190,000 12,000 1,2,4-Trimethylbenzene 1298 500,000 2,500 Xylene (total) MW-9 (8-12) 500,000 1.4 Acetone

SOIL SAMPLE ANALYTICAL DATA SUMMARY OF ORGANIC COMPOUNDS

DETECTED IN EXCESS OF CNYCRR 375-6 SOIL CLEANUP OBJECTIVES

SCHEDULE : VOC/SVOC

ANY ALTERATIONS TO THIS DOCUMENT NOT CONFORMING TO SECTION 7307, NEW YORK STATE EDUCATION LAW ARE STRICTLY PROHIBITED

ARDSLEY DESIGN ASSOCIATES

BE

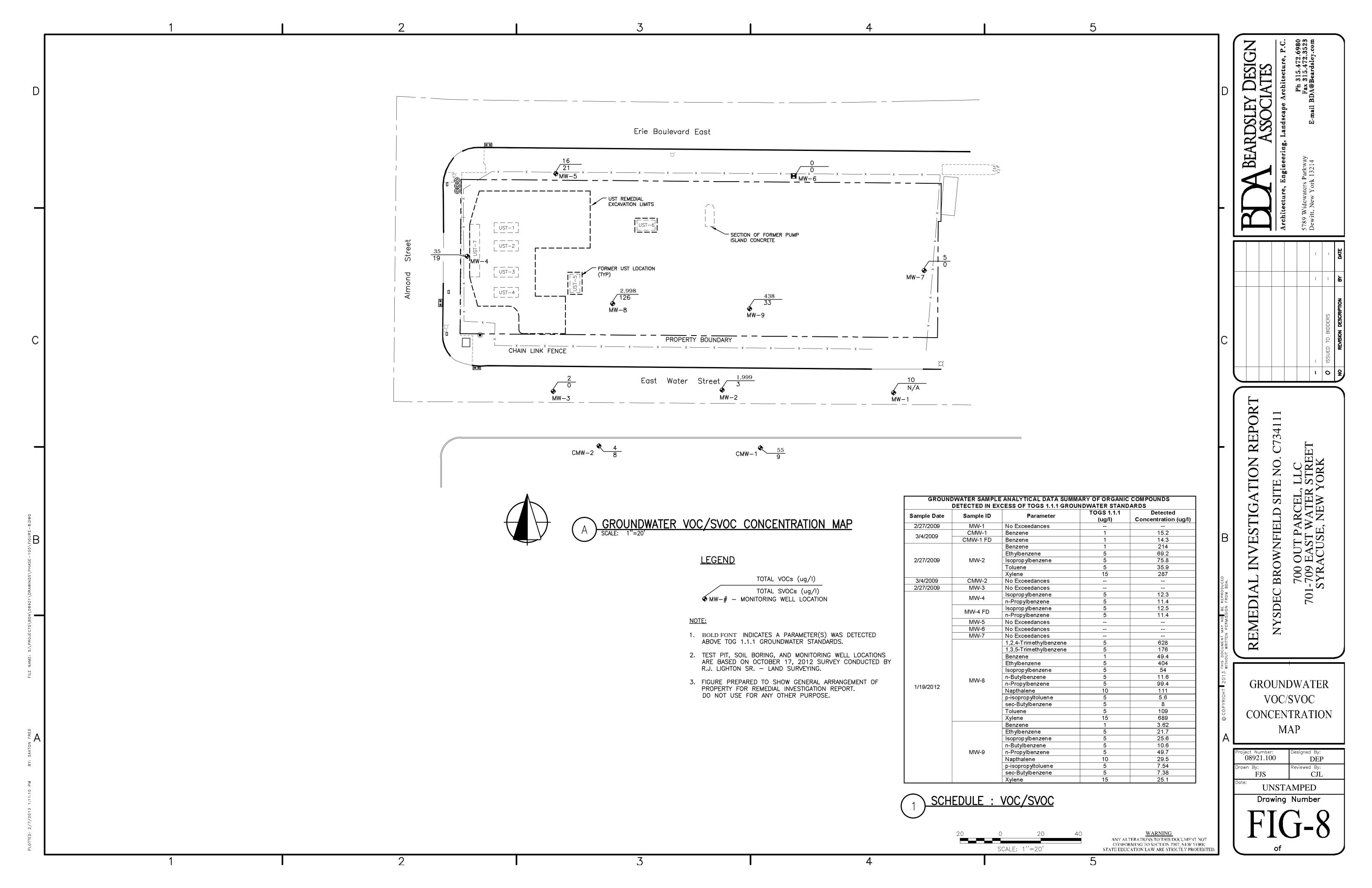
Ph 315.472.(Fax 315.472.)

NO SITE BROWNFIELD SDEC

REPORT

ATION

SUBSURFACE SOIL VOC/SVOC CONCENTRATION MAP


08921.100 DEP UNSTAMPED Drawing Number

SCALE: 1"=20"

LEGEND

PROPERTY FOR REMEDIAL INVESTIGATION REPORT.

DO NOT USE FOR ANY OTHER PURPOSE.

ATTCHMENT A

Test Pit and Boring Logs

TEST PIT LOG

								BDA PROJECT NO. 08921					
Client:	700	Out Parcel,	LLC		Loca	ation of Tes	st Pit <u>Sou</u>	utheast corne	r of site (see	e Figure 7 and 8)			
Projection	t: <u>Bro</u>	Outparcel – wnfield Site # gust 24, 2011	E: C734111	vestigation	 Grou	und Elevation		30 AM	Finish	12:15 PM			
Test P		TP-1			 of 1								
103(1			Da 8/24	Gro	ound Wa	d Water Observations Time Depth Not Observed							
			PTH)F	Щ		PID	С	LASSIFICAT	ON OF MA	TERIAL			
DEPTH (FEET)	SAMPLE ID:		E (FEET)	DEPTH OF CHANGE (FEET)	IN- SITU	PPM) HEAD- SPACE	m	– FINE n – MEDIUM – COARSE	some - :	35-50% 20-35% 10-20% 1-10%			
0.0							Gravel ba	ckfill.					
					0.0								
2.0													
					0.0								
4.0													
					0.0								
6.0	TP-1	6.0	8.0	6.0		0.0	Light brov	vn mf sand ar	nd gravel ba	ckfill.			
					0.0								
8.0													
	TP-1	9.0	10.0		43.5	0.0	Petroleum	odor and slig	ght staining.				
10.0													
							Bottom of	test pit at 10.	0 feet bgs.	\			
Notes	: Exca	 /ation of test	l pit was stopp	oed at 10 fe	l et bgs d	l ue to backf	l ill material f	falling into exc	cavation.				

TEST PIT LOG

								BDA PROJECT NO. 08921				
Client:	700	Out Parcel, I	LLC		Loca	ation of Tes	st Pit	Northeast corne	er of site (see	e Figure 7 and 8)		
Proiec	700 t: Brov	Outparcel – wnfield Site #	Remedial Inv	estigation	— Gro	und Elevation	on	N/A				
Date:		ust 22, 2011						9:00 AM	Finish	10:15 PM		
Toot D												
Test P	it ino.	17-2	Sheet 1					esentative <u>DEP</u>				
			Date		ound Wa	ater Observa Time	ations	Depth				
			8/22		N/A			Approx. 12' bgs	<u> </u>			
		DEI	PTH					CLASSIFICA	TION OF MA	TERIAI		
ΙC	щ	C)F	DEPTH OF CHANGE (FEET)		PID PPM)						
DEPTH (FEET)	SAMPLE ID:	SAMPL FROM	TO	EPT H	IN-	HEAD-		f – FINE m – MEDIUM		35-50% 20-35%		
□ <u>P</u>	S			0 FC	SITU	SPACE		c – COARSE		10-20% 1-10%		
0.0							Grav	el backfill and bro				
0.0												
					0.0							
2.0												
					0.0							
4.0												
					0.0							
6.0							Ligh	t brown mf sand a	ind gravel ba	ackfill.		
0.0					0.0							
					0.0							
8.0							Dotr	oloum oder and a	ight staining			
					0.0		Peli	oleum odor and s	igni staining			
10.0												
					0.0							
12.0	TP-2	12.0	13.0	12.0	146	341	Petro	oleum odor and s	ight staining	J		
13.0							Gray pit a	/ clay with some s t 13 feet bgs.	ilt and grave	el. Bottom of test		
								V				
Notes	<u>:</u>	1	1	I	I		<u> </u>					

								BDA PROJ	ECT NO.	08921
Client:	700	Out Parcel, L	_LC		Loca	ition of Tes	t Pit	Southeast corne UST excavation		
Projec	700 t: Brov	Outparcel – I wnfield Site #	Remedial Inv : C734111	estigation	Grou	und Elevation	on	N/A		
Date:	Aug	ust 22, 2011				Sta	art	10:30 AM	Finish	11:15 PM
Test P	it No.	TP-3	Sheet 1		of <u>1</u>		Repre	esentative DEP		
			.		ound Wa	ter Observa	ations	5		
			Date 8/22	e 		Time		Depth Not Observed	_	
									<u> </u>	
			PTH)F	Щ		PID		CLASSIFICAT	TION OF MA	TERIAL
DEPTH (FEET)	MPLE ID:	SAMPLE	(FEET)	DEPTH CHANG (FEET)	(F IN-	PPM)		f – FINE		35-50%
	SAM	90				HEAD- SPACE		m – MEDIUM c – COARSE		20-35% 10-20%
				Ö	SITU				trace -	1-10%
0.0				0.5			Tops	soil/Gravel and da l	rk brown cm	sand.
					0.0					
2.0				2.0			Grav	el and dark brow	n cm sand wi	th some silt.
					43.7					
4.0										
					6.3		Petro	oleum staining an	d odor.	
6.0										
					373		Petro	oleum staining an	d odor.	
8.0	TP-3	8.0	10.0			50.8				
					813		Petro	oleum staining an	d odor.	
10.0										
11.0					112		Petro	oleum staining an	d odor.	<u> </u>
							Botto	om of test pit at 1	feet bgs.	•
Notes	: Excav	ation of test p	oit was stoppe	ed at 10 fe	et bgs d	ue to backf	ill mat	erial falling into ex	cavation.	

								BDA	PROJE	ECT NO	08921
Client:	700	Out Parcel, L	_LC		Loca	ition of Tes	t Pit	East of fo	ormer L	JST #5 (see	Figure 7 and 8)
Projec	700 t: Brov	Outparcel – wnfield Site #	Remedial Ir : C734111	nvestigation	 Grou	ınd Elevatio	on	N/A			
Date:	Aug	ust 22, 2011				Sta	art	11:30 AM	1	Finish	12:00 PM
Test P	it No.	TP-4	Sheet	<u> </u>	of <u>1</u>		Repre	esentative	DEP		
				Gro	ound Wa	ter Observa	ations				
			8/22	nte		Time		Dept Not Obser		_	
		DEF	PTH	111		PID		CLASS	IFICAT	TON OF MA	TERIAL
DEPTH (FEET)	SAMPLE ID:	SAMPLE	F (FEET)	DEPTH CHANGE (FEET)	(F	PPM)	-	f – FIN			35-50%
DEI (FE	SAN II	FROM	ТО	DEPTH OF CHANGE (FEET)	IN- SITU	HEAD- SPACE		m – ME c – CO		little -	20-35% 10-20% 1-10%
0.0							Grav	el and darl	k browr	n cm sand.	
					0.0						
2.0											
					0.0						
4.0				4.0				k mf sand v s and debr		me silt mixed	d and peat with
					29.9					V	
6.0				6.0			Dark clay.		sand w	rith some silt	and little gray
					269					\downarrow	
8.0	TP-4	8.0	9.0	8.0		2420		vn mf sand strong odoi		ome silt. Pet	roleum staining
					2088						
10.0											
					491						
12.0											
					1752				—		
13.5										3.5 feet bgs.	
Notes	: Unco	vered concre	te foundatio	n at 2 feet b	ogs and r	noved test	pit 8 f	eet to the v	vest.		

10.0

12.0

13.5

TP-5

10.0

TEST PIT LOG

				• - \				•			
								BDA	PROJE	CT NO.	08921
Client:		Out Parcel, L			Loca	ation of Tes	st Pit			orint of for ee Figure	mer service 7 and 8)
Project		Outparcel – I wnfield Site #		estigation	Grou	und Elevati	on	N/A			
Date:	Aug	ust 22, 2011				Sta	art	2:00 PM		Finish	3:15 PM
Test Pi	t No.	TP-5	Sheet 1		of <u>1</u>		Repre	esentative	DEP		
				Gro	und Wa	ter Observ	ations				
			Dat 8/22			Time		Dep Not Obse			
							<u> </u>				
		DEF		ш	1	PID		CLASS	SIFICATION	ON OF MA	ATERIAL
∓ <u>(</u>	当	O SAMPLE		H L		PPM)		f – FIN	ΙE	and -	35-50%
DEPTH (FEET)	SAMPLE ID:	FROM	TO	DEPTH OF CHANGE (FEET)	IN- SITU	HEAD- SPACE		m - M	EDIUM DARSE	some - little -	20-35% 10-20% 1-10%
0.0				0.5				gravel. So			some silt and and slight petro
					0.0						
2.0											
	TP-5	2.0	4.0		5.0	0.0		,			
4.0				4.0			Dark	brown cm	of sand w	ith some s	ilt and little clay.
					0.0		Petro	oleum stai	ning.		
6.0											
					3.2						
8.0				8.0			Dark	brown cm	of sand w	▼ ith some s	ilt.
					34.4						
40.0				40.0			Dark	brown mf	sand wit	h some sil	t. Petroleum

Notes: Uncovered one inch metal conduit at 2 feet bgs. A foundation was also present along the west test pit wall.

2715

1377

1111

odor.

Bottom of test pit at 13.5 feet bgs.

10.0

12.0

								BDA PROJE	CT NO.	08921
Client:		Out Parcel, L			Loca	ition of Tes	t Pit	Central portion o boundary (see F		
Projec		Outparcel – I wnfield Site #	Remedial Inv :: C734111	estigation	Grou	und Elevation	on	N/A		
Date:	Aug	ust 22, 2011				Sta	art	3:15 PM	Finish	4:15 PM
Test P	it No.		Sheet 1		of 1		Repre	esentative DEP		
	_	<u> </u>	<u> </u>							
			Date 8/22			ter Observa Time		Depth Not Observed	- -	
		DEI	PTH				1	CLASSIFICAT	ION OF MA	ΔΤΕΡΙΔΙ
IC	щ	0	F	Н В С		PID PPM)				
DEPTH (FEET)	SAMPLE ID:	FROM	E (FEET) TO	DEPTH OF CHANGE (FEET)	IN- SITU	HEAD- SPACE		f – FINE m – MEDIUM c – COARSE	some - little -	35-50% 20-35% 10-20%
							Aspl	nalt pavement and		- 1-10% Dark brown cmf
0.0				0.5				with some silt.		
					0.0					
2.0										
					0.0					
4.0				4.0				k peat with some soleum odor.	silt and little	clay. Slight
	TP-6	4.0	5.0	5.5	3.5	0.0		brown cmf sand v	vith some s	silt and little clay.
6.0										
				0.0						
8.0										
				9.5	107		Petro	oleum odor.		
10.0										
					142			•		
12.0	TP-6	12.0-13.0		12.0	184	2789	Brov	vn cmf sand with lit	ttle gravel.	Petroleum odor.
13.0										
							Botto	om of test pit at 13	.5 feet bgs.	
Notes	: Uncov	ered concrete	e at 4 feet bg	s on north	test pit s	sidewall.	1			

								BDA	A PROJE	CT NO.	08921
Client:	700	Out Parcel,	LLC		Loca	ation of Tes	st Pit			f property gure 7 and	along south d 8)
Projec		Outparcel – wnfield Site #	Remedial Inv :: C734111	estigation	— Grou	und Elevati	on	N/A			
Date:	Aug	ust 23, 2011				Sta	art	7:55 AM	1	Finish	8:50 PM
Test P	it No.	TP-7	Sheet 1		of <u>1</u>		Repre	esentative	DEP		
				Gro	ound Wa	ter Observ	ations				
			Date 8/23		N/A	Time		Dep Approx. 1		_	
				_						_	
			PTH	щ		PID		CLAS	SIFICATI	ON OF M	ATERIAL
HT (TE	PLE);	SAMPLI)F E (FEET)	ANG ET)		PPM)		f – FII			- 35-50%
DEPTH (FEET)	SAMPLE ID:	FROM	ТО	DEPTH OF CHANGE (FEET)	IN- SITU	HEAD- SPACE			MEDIUM OARSE	little -	- 20-35% - 10-20% - 1-10%
0.0				0.5			Tops	soil/Brown	cmf san	d with som	ne silt.
					0.0						
2.0											
					0.0				,		
4.0				4.5			Ligh		It with sor	me mf san	d and little gray
					0.0						
6.0											
					0.0						
8.0				8.5				t brown si d. Petrolet		ne gray cl	ay and little mf
	TP-7	8.0	9.0		365	0.0				,	
10.0				10.0			Brov	wn mf san	d and silt.	Petroleur	n odor.
	TP-7	11.0	12.0	11.0	1216	779				rith some (nor stainin	
12.0											
					2410					—	
13.5							Botto	om of test	pit at 13.	5 feet bgs	
Notes	<u>:</u>										
1											

								BDA PRO	OJECT NO.	08921	
Client:		Out Parcel, I			Loca	ation of Tes	st Pit	Central portion		ty near former p 8)	oump
Projec	700 t: <u>Bro</u>	Outparcel – wnfield Site #	Remedial Inv :: C734111	estigation	Grou	ınd Elevati	on	N/A			
Date:	Aug	just 23, 2011				Sta	art	9:05 AM	Fini	sh <u>9:45 PM</u>	
Test P	it No.	TP-8	Sheet 1		of <u>1</u>		Repre	esentative DE	:P		
			Date 8/23	Э		ter Observ Time		Depth Not Observed			
		DEI	PTH	111		PID		CLASSIFIC	ATION OF	MATERIAL	
DEPTH (FEET)	SAMPLE ID:		OF E (FEET) TO	DEPTH OF CHANGE (FEET)		PPM) HEAD- SPACE	-	f – FINE m – MEDIU c – COARS			
0.0				0.5			Gra	vel fill/Brown mf	f sand with	silt.	
					0.0						
2.0									7		
				3.5	15.1		Darl	k brown/black p	eat.		
4.0				4.0			Gra	y silt and f sand	some clay.		
					5.1						
6.0											
									\		
8.0				8.0			Brov	wn mf sand with	some silt.	Petroleum odor	•
					408						
10.0											
	TP-8	10.0	12.0		1608	185			1	,	
12.0				12.0			Darl	k brown cmf sar	nd with little	gravel.	
13.0					380						
							Bott	om of test pit at	13.0 feet b	gs.	
Notes	<u>:</u>										

								BDA	PROJE	CT NO.	08921
Client:	700	Out Parcel, I	_LC		Loca	ation of Tes	t Pit	Central p 8)	ortion o	f property (s	see Figure 7 and
Projec		Outparcel – wnfield Site #			— Grou	und Elevation	on	N/A			
Date:		ust 23, 2011				Sta	art	10:00 AM	1	Finish	10:40 AM
Test P	it No.	TP-9	Sheet 1		of 1		Repre	esentative	DEP		
			Dat 8/23			ter Observa Time		Dept Not Obser		.	
			PTH	Щ		PID		CLASS	IFICAT	ION OF MA	TERIAL
DEPTH (FEET)	SAMPLE ID:		OF (FEET) TO	DEPTH OF CHANGE (FEET)	IN- SITU	PPM) HEAD- SPACE		f – FIN m – ME c – CO	EDIUM	some - 2 little - 2	35-50% 20-35% 10-20% 1-10%
0.0				0.5						sub-base/B , bricks, and	lack stained
					0.0		01111			, strong, arre	
2.0											
	TP-9	2.0	4.0		0.0	0.0					
4.0				4.0			Gray	y silt and fin	e sand	with some o	clay.
					0.0						
6.0											
					0.0						
8.0				8.0			Brov	vn mf sand	with littl	e silt. Petrol	eum odor.
					6.5						
10.0					1919						
	TP-9	10.0	12.0		2160	284					
12.0				12.0				c brown cm		vith some gr	avel.
					672						
13.5							Botte	om of test p	oit at 13.	.5 feet bgs.	
Notes	<u>;</u>	•	•	•		•	•				

								BDA P	ROJE	CT NO.	08921
Client:	700 Outparcel – Remedial Investigation				Loca —	ition of Tes	st Pit -	Southern control (see Figure			site
Project	: Brow	Outparcel – Infield Site #	Remedial Inv : C734111	estigation	— Grou	ınd Elevatio	_	N/A 10:55 AM		Finish	11:30 AM
							_			1 1111311	11.007111
Test P	it No.	ΓP-10	Sheet 1		of <u>1</u>		Repres	sentative <u></u>	DEP		
			8/23		und Wa	ter Observa Time		Depth Not Observe	ed		
		DE	PTH					CLASSIE	ICATIO	ON OF MA	TERIAL
ΞF	J.	C)F E (FEET)	TH NGE T)		PID PPM)		f – FINE	IOATI		35-50%
DEPTH (FEET)	SAMPLE ID:	FROM	TO	DEPTH OF CHANGE (FEET)	IN- SITU	HEAD- SPACE	-	m – MED c – COAI		some - little -	
0.0				0.5			Grave	el fill/Black s	tained	cmf sand	with trace silt.
					0.0						
2.0								1			
	TP-10	2.0	4.0	3.0	0.0	0.0	Gray	ash.			
4.0				3.5			Brown	n peat with	trace s	silt.	
				5.0	0.0		Light	gray silt with	n some	f sand an	d trace silt.
6.0											
					0.0				,		
8.0				8.0			Brown	n mf sand w	ith son	ne silt.	
					0.0						
10.0											
					78.8						
12.0	TP-10	11.0	13.5	12		248	Dark I	brown mf sa	nd wit	h some gra	avel. Petroleum
										<u> </u>	
13.5							Bottor	m of test pit	at 13.5	teet bgs.	
Notes	<u>:</u>										

								ВІ	DA PROJ	ECT NO.	08921
Client:	ent: 700 Out Parcel, LLC 700 Outparcel – Remedial Investigation					ition of Tes	st Pit		central po Figure 7 a	ortion of site	е
Projec	t: Brow	nfield Site #		estigation/		und Elevation		N/A			
Date:	Augu	ust 23, 2011				Sta	art _	12:50	PM	Finish	1:25 PM
Test P	it No.	TP-11	Sheet 1		of <u>1</u>		Repres	sentativ	ve <u>DEP</u>		
			Date 8/23			ter Observa Time		D Not Ob	epth served	 	
		DE	PTH					CI A	SSIFICA	TION OF M	1ΔΤΕΡΙΔΙ
H.E.	J		DF E (FEET)	TH VNGE		PID PPM)			FINE		- 35-50%
DEPTH (FEET)	SAMPLE ID:	FROM	то	DEPTH OF CHANGE (FEET)	IN- SITU	HEAD- SPACE		m –	MEDIUM COARSE	1 some	- 20-35% - 10-20% - 1-10%
0.0				0.5			Grave	el fill/Br	own silt v	vith little fine	e sand.
					0.0						
2.0											
					0.0						
4.0				4.0			Black	organi	ic/peat.		
				4.5	30.3		Brow	n silt w	ith little f	sand and tra	ace clay.
6.0											
	TP-11	6.0	8.0		23.8	27.8					
8.0											
10.0				10.0			Dark odor.		silt with s	ome mf sar	nd. Petroleum
	TP-11	10.0	12.0	11.0	2197	805	Dark	brown	mf sand v ım odor.	with some g	gravel and little
12.0											
					1330				•		
13.5							Botto	m of te	st pit at 1	3.5 feet bgs	S.
Notes	: <u>:</u>	1	I	1	<u>I</u>	I	L				

								BD/	A PROJE	CT NO.	08921
Client:	700	Out Parcel, L	LC		Loca	ation of Tes	st Pit	Central	portion of	site (see	Figure 7 and 8)
Projec	700 t: Brow	Outparcel – vnfield Site #	Remedial Ir : C734111	nvestigation	 Grou	und Elevatio	on _	N/A			
Date:	Aug	ust 23, 2011				Sta	art _	1:30 PM	1	Finish	1:50 PM
Test P	it No	TP-12	Sheet	1	of <u>1</u>		Repres	sentative	DEP		
			8/23	Gro ate		ter Observa Time		Der Not Obse			
			PTH	Щ	ı	PID		CLAS	SIFICATI	ON OF MA	ATERIAL
DEPTH (FEET)	SAMPLE ID:		OF E (FEET) TO	DEPTH OF CHANGE (FEET)	IN- SITU	PPM) HEAD- SPACE	-		NE MEDIUM DARSE	some - little -	35-50% 20-35% 10-20% 1-10%
0.0				0.5				alt paven with som		sub-base/[Dark brown cmf
					0.0		 	•			
2.0				2.0			Black	peat witl	h little silt	, ash, and	brick fragments.
					7.0						
4.0									7		
				4.5			Dark	brown m	f sand wit I	h some sil	t.
6.0											
					35.5						
8.0											
10.0				10.0							
	TP-12	11.0	13.0		1786	983	odor.				r. Petroleum
12.0				12.0			Dark silt. P	brown cn etroleum	nf sand w odor.	ith some g	ravel and little
13.0					1284					<u> </u>	
							Botto	m of test	pit at 13.	0 feet bgs.	
Notes	<u>:</u>										

								BDA PROJ	IECT NO.	08921
Client:		Out Parcel, I			Loca	ation of Tes		Along southern portion of the s		on the western ure 7 and 8)
Projec			Remedial Inv : C734111		— Grou	und Elevation	on N	√A		
Date:		st 23, 2011				Sta	art <u>2</u>	2:15 PM	Finish	2:35 PM
Test P	it No.	TP-13	Sheet 1		of <u>1</u>		Represe	ntative <u>DEP</u>		
			Date 8/23			ter Observa		Depth ot Observed	_ _	
			PTH	ш		PID		CLASSIFICA	TION OF M	ATERIAL
ΞE	٦LE		OF E (FEET)	FÅE		PPM)		f – FINE	and -	- 35-50%
DEPTH (FEET)	SAMPLE ID:	FROM	TO	DEPTH OF CHANGE (FEET)	IN- SITU	HEAD- SPACE		m – MEDIUN c – COARSE	some little trace	- 20-35% - 10-20% - 1-10%
0.0				0.5			Asphal with litt		h sub-base/	Black cmf sand
					0.0					
2.0										
					0.0					
4.0								<u> </u>		
				5.0	0.0		Gray si	It with little mf	sand.	
6.0										
					0.0					
8.0										
					0.0			V		
10.0				10.0				own cmf sand um odor.	with little si	t. Slight
					16.9			V		
12.0	TP-13	11.0	13.0	12.0	44.8	8.3		own cmf sand the petroleum		gravel and little
13.0										
							Bottom	of test pit at 1	3.0 feet bgs	
Notes	<u>:</u>									

							BDA PROJECT NO. 08921
Client:	700 (Out Parcel, I	LC		Loca	ation of Tes	st Pit
Projec	t: Brow	nfield Site #	Remedial Inv : C734111	vestigation	 Grou	und Elevation	
Date.	Augu	st 23, 2011			_	Sid	art <u>2:45 PM</u> Finish <u>3:45 PM</u>
Test P	it No.	TP-14	Sheet 1		of <u>1</u>		Representative DEP
			Dat 8/23		ound Wa	ter Observa Time	ations Depth Not Observed
			PTH)F	Щ		PID	CLASSIFICATION OF MATERIAL
DEPTH (FEET)	SAMPLE ID:		E (FEET) TO	DEPTH OF CHANGE (FEET)	IN- SITU	PPM) HEAD- SPACE	f – FINE and - 35-50% m – MEDIUM some - 20-35% c – COARSE little - 10-20% trace - 1-10%
0.0				0.5			Gravel fill/Dark brown cmf sand with some silt.
					0.0		
2.0				2.0			Black stained peat with some silt.
	TP-14	2.0	3.0		0.0	10.2	
4.0				4.0			Brown mf sand with some silt and trace clay.
				5.5	0.0		Black stained mf sand with some silt and trace clay.
6.0				6.0			Brown mf sand with some silt and trace clay.
					0.0		
8.0							
					3.4		—
10.0				10.0			Brown mf sand with some silt. Petroleum odor.
	TP-13	11.0	13.0		593	107	
12.0				12.0			Dark brown mf sand and gravel with some silt. Petroleum odor.
13.0							
							Bottom of test pit at 13.0 feet bgs.
Notes	<u>.</u>	1	1	1		ı	,

								BDA F	PROJEC	T NO.	08921
Client:	700 (Out Parcel, I	LC		Loca	ation of Tes	st Pit	Central western portion of site (see Figure 7 and 8)			
	700 (Outparcel –	Remedial Inv	estigation							
Projec	t: Brow	nfield Site #	: C734111		Grou	und Elevation	on	N/A			
Date:	Augu	st 24, 2011				Sta	art	9:55 AM		Finish	10:15 AM
Test P	it No.	TP-15	Sheet 1		of <u>1</u>		Repre	esentative _	DEP		
			Date 8/24		ound Wa	ter Observa Time	ations	Depth Not Observ			
			PTH	111		PID		CLASSI	FICATIO	N OF MA	TERIAL
ΞF	当		OF E (FEET)	F N C		PPM)		f – FINE		and -	35-50%
DEPTH (FEET)	SAMPLE ID:	FROM	TO	DEPTH OF CHANGE (FEET)	IN- SITU	HEAD- SPACE	-	m – ME c – COA	DIUM ARSE	some - little -	20-35% 10-20% 1-10%
0.0				0.5				vel fill/Dark b little silt.	rown mf	sand wit	h some gravel
					0.0		anu	iittie siit.			
2.0											
					0.0						
4.0					0.0						
4.0							Dark	hrown/gray	mf sand	l and silt	with trace clay.
				5.0	0.0		Dan	C DIOWINGIAY		a and one	with trace day.
6.0											
					0.0						
8.0											
					0.0						
10.0											
	TP-15	11.0	13.0	11.0	0.0	0.0	Light	t brown mf s	and with	trace silt	
12.0											
					0.0						
13.5							Botto	om of test pi	t at 13.5	▼ feet bgs.	
	L :: Uncove	l ered wood st	l tructure at 4 f	eet bgs.							

								BDA PROJE	CT NO. <u>08921</u>		
Client:	700 0	Out Parcel, I	LC		Loca	ation of Tes	t Pit	Northwest corner of property (see Figure 7 and 8)			
Projec	700 C	Outparcel – nfield Site #	Remedial Inv : C734111	estigation	 Grou	und Elevatio	on	N/A			
Date:	Augu	st 24, 2011				Sta	art	8:30 AM	Finish 9:20 AM		
Test P	it No.	TP-16	Sheet 1		of <u>1</u>		Repre	esentative DEP			
			Date 8/24		ound Wa	ter Observa Time		Depth Not Observed	- -		
			PTH	Ш		PID		CLASSIFICAT	ION OF MATERIAL		
ΕF	Ä		OF E (FEET)	E S C		PPM)		f – FINE	and - 35-50%		
DEPTH (FEET)	SAMPLE ID:	FROM	TO	DEPTH OF CHANGE (FEET)	IN- SITU	HEAD- SPACE	-	m – MEDIUM c – COARSE			
0.0				0.5				nalt pavement and I with some gravel	sub-base/Dark brown cm and litlle silt.		
					0.0			Ţ			
2.0				2.0			Dark	brown mf sand wi	th some silt and trace clay.		
					0.0						
4.0											
					0.0						
6.0									,		
	TP-13	6.0	8.0	6.5	0.0	0.0	Brow	n/gray silt with sor	me clay and little f sand.		
8.0											
					0.0						
10.0											
				10.5	0.0		Dark	brown mf sand wi	th some silt.		
12.0	TP-16	11.0	13.0	12.0	0.0	0.0	Dark	brown mf sand wi	th trace silt.		
13.0											
							Botto	om of test pit at 13.	.0 feet bgs.		
Notes	: Uncove	red stone a	nd concrete f	oundation	at 3 feet	bgs.	1				
1											

								BDA PROJE	CT NO.	08921
Client:	700	Out Parcel,	LLC		Loca	ation of Tes	st Pit <u>S</u>	outhwest corne	er of site (se	ee Figure 7 and 8
Projec	t: Brov	Outparcel – wnfield Site # ust 24, 2011	Remedial Inv	vestigation	 Grou	und Elevation		/A 0:25 AM	Finish	11:05 AM
			Shoot 1							
restr	it ino.	TP-17	Sileet I					ntative <u>DEP</u>		
			8/24		ound Wa 	ter Observ Time		Depth t Observed	- -	
		DE	PTH	T	Ι .	DID		CLASSIFICAT	ION OF MA	ATERIAL
ΞĒ	J.		OF .E (FEET)	TH NNGE		PID PPM)		f – FINE		35-50%
DEPTH (FEET)	SAMPLE ID:	FROM	TO	DEPTH OF CHANGE (FEET)	IN- SITU	HEAD- SPACE		m – MEDIUM c – COARSE	some - little -	20-35% 10-20% · 1-10%
0.0				0.5				pavement and vel with little sil		Brown cmf sand
					0.0					
2.0										
					0.0					
4.0				4.5			Gray/br	own silt with so	me fine sar	nd and little clay.
					0.0					
6.0				6.5			Gray sil	t with little clay.		
	TP-17	6.0	8.0		0.0	0.0				
8.0										
					0.0					
10.0				10.0			Light br	own mf sand w	ith little gra	vel.
	TP-17	11.0	13.0		0.0	0.0				
12.0										
13.0					0.0					
							Bottom	of test pit at 13	▼ .0 feet bgs.	
Notes	<u>:</u>			<u> </u>	<u> </u>		<u> </u>			

								BDA PRO	JECT NO. <u>08921</u>
Client:	700	Out Parcel, L	LC		Loca	ation of Bor	ing	See Figure 7 a	and 8
Projec	t: Bro	Outparcel – l wnfield Site # uary 17, 2012	: C734111	nvestigation	 Grou	und Elevation		N/A 11:00 AM	Finish 2:00 PM
Boring	No.	MW-4	Sheet	1	of <u>2</u>		Repre	esentative <u>DEP</u>)
					und Wa	ter Observa	ations	Depth	
		DEL	OTU .					CL ASSITION	ATION OF MATERIAL
DEPTH (FEET)	SAMPLE NO.	DEF O SAMPLE FROM	F	DEPTH OF CHANGE (FEET)		PID PPM) HEAD- SPACE		f – FINE m – MEDIUN c – COARSE	
0							Brov	wn cmf sand and	gravel
2.0	1	0	4.0		2.9	110.8			
4.0									
6.0	2	4.0	8.0		2.1	13.2			
									↓
8.0				8.0				st Black cmf sand oleum odor	d and gravel trace silt
10.0	3	8.0	12.0		157	1012			
12.0									
				13.0			Red	brown silt	,
Notes Collec		sample MW-	-4 (8-12) at	12:30 PM.					

								BDA PROJ	ECT NO.	08921
Client:	700	Out Parcel, L	LC		Loca	ation of Bor	ing	See Figure 7 a	nd 8	
Project	:: Brov	Outparcel – wnfield Site #	: C734111	estigation/	 Grou	und Elevation		N/A 11:00 AM	Finish	2:00 PM
Boring		-			of 2		Repre	sentative DEP		
Domig			Grou Date			ter Observa Time		Depth	_	
			PTH IE	Э.		PID		CLASSIFICA	TION OF MA	ATERIAL
DEPTH (FEET)	SAMPLE NO.	SAMPLE FROM		DEPTH OF CHANGE (FEET)	IN- SITU	PPM) HEAD- SPACE		f – FINE m – MEDIUM c – COARSE	1 some - little -	35-50% 20-35% 10-20% - 1-10%
14.0	4	12.0	14.9		4.6	611.3	Red	brown silt		
16.0	5	16.0	16.7		16.5	15.7		•		
							Spoo	n refusal at 16.7	feet bgs.	
18.0							Set n	nonitoring well at	approximat	ely 18 feet bgs
<u>Notes</u>	<u>:</u>									

							BDA PROJECT NO. 08921	
Client:	700	700 Out Parcel, LLC			Loca	ation of Bor	oring See Figure 7 and 8	
Projection	t: Bro	Outparcel – l wnfield Site # uary 13, 2012	: C734111	vestigation	 Grou	und Elevation	tion N/A tart 12:45 PM Finish 3:00 PM	
Boring		-			 of 2		Representative DEP	
Domig	NO.	WWV-5	Da 1/13/2012	Gro	ound Wa	ter Observ	vations Depth	
			PTH	111		PID	CLASSIFICATION OF MATERIAL	
DEPTH (FEET)	SAMPLE NO.	SAMPLE FROM		DEPTH OF CHANGE (FEET)		PPM) HEAD- SPACE	f – FINE and - 35-50% m – MEDIUM some - 20-35% c – COARSE little - 10-20% trace - 1-10%	
0.0				0.7			Top soil and gravel/Brown mf sand with little silt trace gravel	
2.0	1	0.0	4.0		0.0	1.2		
4.0								
				5.8			Black brown cm sand little gravel with ash and bricks	
6.0	2	4.0	8.0		2.8	1.9		
							↓	
8.0				8.0			Brown cmf sand some gravel trace silt Petroleum odor	
10	3	8.0	12.0		259	1360		
12							•	
				13.8			Tan silt little clay	
Notes Collec		sample MW-	-5 (8-12) at	2:15 PM.				

								BDA PROJE	CT NO.	08921
Client:	700	Out Parcel, I	LC		Loca	ation of Bor	ing <u>Se</u>	ee Figure 7 and	8 t	
Projec Date:	t: Brov	Outparcel – wnfield Site # uary 13, 2012	: C734111	estigation	— Grou	und Elevation	-	A :45 PM	Finish	a _ 3:00 PM
Boring	No.	MW-5	Sheet 2		of 2		Represen	tative DEP		
209	_	0	Date 1/13/2012	ound Wa	ter Observa Time	ations	Depth feet bgs	- - -		
			PTH			PID		CLASSIFICATI	ION OF M	IATERIAL
DEPTH (FEET)	SAMPLE NO.		PF E (FEET) TO	DEPTH OF CHANGE (FEET)		PPM) HEAD- SPACE	1	f – FINE m – MEDIUM c – COARSE	and some	- 35-50% - 20-35% - 10-20% - 1-10%
14.0	4	12.0	16.0	14.5	93.8	844	Red brov	vn silt		
16.0							,			
	5	16.0	18.0	16.5	0.0	19.2	Brown gr	ravel		
18.0				16.9			Red brov	vn silt		
							Set moni	itoring well at a	approxima	tely 18 feet bgs
										2
Notes	<u>:</u>									

							В	BDA PRC	JECT NO.	08921		
Client:	nt: 700 Out Parcel, LLC				Loca	ation of Bor	ring <u>See F</u>	See Figure 7 and 8				
Projec	t: Brov	Outparcel – l wnfield Site # uary 12, 2012	: C734111	vestigation	— Grou	und Elevation		N/A 12:00 PM Finish 3:00 PM				
Boring	No.	MW-6	Sheet 1		of <u>2</u>		Representati	ive <u>DEI</u>	Ρ			
			Dat 1/12/2012	e	1:15	ter Observa Time PM		Depth et bgs				
		DEF	DTH				CL	ASSIFIC	ATION OF M	ΙΔΤΕΡΙΔΙ		
DEPTH (FEET)	SAMPLE NO.	O SAMPLE	F (FEET)	DEPTH OF CHANGE (FEET)	(F	PID PPM)	f –	FINE	and	- 35-50%		
DEI (FE	SAN	FROM	ТО	OF CF (FE)	IN- SITU	HEAD- SPACE		- MEDIU · COARS		- 20-35% - 10-20% - 1-10%		
0.0				0.5			Topsoil/Bro	wn f san	d and silt			
2.0	1	0.0	4.0		0.0	0.0						
4.0												
6.0	2	4.0	8.0	6.0	0.0	0.0	Moist brown		d and silt trac	ce gravel with		
8.0												
10.0	3	8.0	12.0	10.0	0.0	12.5	Light brown	cm san	d little gravel			
12.0												
				13.0			Gray f sand Slight petro		or	-		
Notes Collec		sample MW-	-6 (8-12) at 2	2:15 PM.								

							BDA PROJECT NO. 08921
Client:	700	Out Parcel, L	LC.		Loca	ation of Bori	ing See Figure 7 and 8
Projec	700 t: Brov	Outparcel – I wnfield Site #	Remedial Ir : C734111	nvestigation	 Grou	und Elevatio	on N/A
Date:	Jan	uary 12, 2012)			Sta	art <u>12:00 PM</u> Finish <u>3:00 PM</u>
Boring	No.	MW-6	Sheet 2	2	of <u>2</u>		Representative DEP
			Da 1/12/2012	ate		ter Observa Time PM	Depth
		DEF		ш		PID	CLASSIFICATION OF MATERIAL
ΞF	LE	O SAMPLE		F S C		PPM)	f – FINE and - 35-50%
DEPTH (FEET)	SAMPLE NO.	FROM	TO	DEPTH OF CHANGE (FEET)	IN- SITU	HEAD- SPACE	m – MEDIUM some - 20-35% c – COARSE little - 10-20% trace - 1-10%
14.0	4	12.0	16.0		3.5	5.2	Gray f sand and silt
16.0				16.0			Dark brown silt trace gravel
	5	16.0	17.2		0.0	0.0	•
18.0							Spoon refusal at 17.2 feet bgs
							Set monitoring well at approximately 18 feet bgs
Notes	:						
	_						

								BDA	PROJE	CINO	08921
Client:	t: _700 Out Parcel, LLC		Loca	ation of Bor	ing <u>S</u>	See Figure 7 and 8					
	t: Brov	Outparcel – wnfield Site #	: C734111	estigation	 Grou	und Elevation					
Date:	Jan	uary 12, 2012	2			Sta	art <u>9</u>	:00 AM		Finish	11:30 AM
Boring	No.	MW-7	Sheet 1		of <u>2</u>		Represe	ntative	DEP		
			Date 1/12/2012			ater Observa Time O AM		Dept reading		- - -	
		DEF	PTH					CLASS	IFICATI	ON OF MA	TERIAL
DEPTH (FEET)	SAMPLE NO.	SAMPLE FROM	F	DEPTH OF CHANGE (FEET)		PID PPM) HEAD-	-	f – FIN		and -3	35-50%
DE (F	SA			OF C	SITU	SPACE		c – CO		little - '	10-20% 1-10%
0.0				0.5			Asphalt gravel	and gra	avel fill/E	Brown cm sa	and little silt and
2.0	1	0.0	4.0		0.0	0.0					
4.0											
								\downarrow			
6.0	2	4.0	8.0	6.0	0.0	0.0	Light gr	ay mf sa	and and	silt	
8.0											
10.0	3	8.0	12.0	10.0	0.0	0.0	Light gr	ay cmf	sand littl	e silt	
										,	
12.0				12.0			Light br	own cm	f sand ti	race gravel	
										<u> </u>	
Notes Collec		sample MW-	-7 (8-12) at 1	0:15 AM.							

							BD	A PROJE	CT NO	08921	
Client:	700	700 Out Parcel, LLC		Loca	ition of Bori	ing See Fig	See Figure 7 and 8				
Projec Date:	t: Brov	Outparcel – wnfield Site # uary 12, 2012	: C734111	nvestigation	— Grou	ınd Elevatio Sta		Л	Finish	11:30 AM	
Boring	No.	MW-7	Sheet 2	2	of <u>2</u>		Representative	DEP			
			Da 1/12/2012	10:20	ter Observa Time) AM	ations De No readi		- - -			
			PTH)F	Щ		PID	CLAS	SIFICAT	ION OF MA	TERIAL	
DEPTH (FEET)	SAMPLE NO.		(FEET) TO	DEPTH OF CHANGE (FEET)	IN- SITU	PPM) HEAD- SPACE		NE MEDIUM OARSE	some - little -	35-50% 20-35% 10-20% 1-10%	
14.0	4	12.0	16.0	14.0	0.0	0.0	Gray silt trace	clay			
16.0				16.0			Gray silt trace	fine sand	d		
18.0	5	16.0	20.0		0.0	0.0					
20.0								—			
							Set well at app	proximate	ely 20 feet b	gs	
Notes	<u>:</u>	1	<u> </u>	ı			ı				

Notes: Collected soil sample MW-8 (8-12) at 9:15 AM.

								BDA PROJECT	NO. 08921
Client:	700	Out Parcel, I	_LC		Loca	ation of Bor	ing	See Figure 7 and 8	
Projec	t: Brov	Outparcel – wnfield Site # uary 17, 2012	: C734111	restigation	— Grou	und Elevatio Sta		N/A 8:20 AM	Finish 10:50 AM
Boring	No.	MW-8	Sheet 1		of <u>2</u>		Repr	esentative <u>DEP</u>	
			Date 1/17/2012			ter Observ		Depth 8.5 feet bgs	
		DE	PTH			DID		CLASSIFICATION	OF MATERIAL
DEPTH (FEET)	SAMPLE NO.	SAMPLE FROM)F	DEPTH OF CHANGE (FEET)		PID PPM) HEAD- SPACE	_	f – FINE ar m – MEDIUM so c – COARSE lit	nd - 35-50% ome - 20-35% tle - 10-20%
0.0							Gra	tra vel/Brown black cm sa	ace - 1-10% nd with bricks and ash
0.0				0.5					
2.0	1	0.0	4.0		3.8	2.8			
2.0									
4.0									
				5.5			Gra	y f sand and silt trace o	slay
6.0	2	4.0	8.0		3.3	4.7			
				7.5			Moi	st brown cmf sand and	silt
8.0									
				9.0			Moi betv	st cm sand some grave veen 9.0'-9.4' bgs/Petro	el/Stained black oleum odor
10.0	3	8.0	12.0		517	1298			
12.0								•	
				13.2			Sati	urated red brown silt	

								BDA PROJE	CT NO.	08921
Client:	700	Out Parcel, I	LC		_ Loca	ation of Bori	ing <u>S</u>	See Figure 7 and	18	
Projec Date: Boring	t: Brov				_	und Elevation Sta	art <u>8</u>	I/A ::20 AM ntative <u>DEP</u>	Finish	10:50 AM
						ter Observa Time		Depth 5 feet bgs	- - -	
			PTH	ш	-	PID		CLASSIFICATI	ON OF M	ATERIAL
DEPTH (FEET)	SAMPLE NO.		PF E (FEET) TO	DEPTH OF CHANGE (FEET)		HEAD- SPACE		f – FINE m – MEDIUM c – COARSE	some - little -	· 35-50% · 20-35% · 10-20% - 1-10%
14.0	4	12.0	16.0		4.3	396	Red bro	own silt 		
16.0							,	_		
	5	16.0	18.0	17.2	0.0	17.6	Moist re	ed brown silt with	h stone fra	gments
18.0								—		
							Set mo	nitoring well at a	pproximat	ely 18 feet bgs
Notes	<u>::</u>									

				ВС	MII	NG L	UG					
								BDA PR	OJECT	NO.	08921	
Client:	700	Out Parcel, L	LC		Loca	ation of Bori	ng <u>Se</u>	Figure 7	and 8			
Projec		Outparcel – l wnfield Site #		restigation	 Grou	und Elevatio	n <u>N</u> /A	<u>. </u>			1/13 12:0	10
Date:	Janu	uary 12 and 1	3, 2012			Sta	rt <u>1/1</u> 2	2 4:00 PN	1	Finish		
Boring	No.	MW-9	Sheet 1		of <u>2</u>		Representa	ative <u>DE</u>	ΕP			
			Date 1/17/2012			ter Observa Time		Depth eet bgs				
DEPTH (FEET)	SAMPLE NO.	DEF O SAMPLE FROM	F	DEPTH OF CHANGE (FEET)	(F	PID PPM) HEAD-	f m	– FINE n – MEDII	aı JM so	nd ·	- 35-50% - 20-35%	
	S			0 0	SITU	SPACE	С	– COAR			- 10-20% - 1-10%	
0.0				0.5			Asphalt and gr		sub ba	se/Brov	wn cmf sand	little
2.0	1	0.0	4.0		0.0	0.0						
				3.0			Black cm debris	sand and	silt trad	ce clay	with ash/woo	od
4.0												
								,	 			
6.0	2	4.0	8.0	6.0	0.0	0.0	Brown mf	sand and	d silt			
							12-1-(1		<u> </u>			
8.0				8.5			Light brov Slight pet					
									<u> </u>			
10.0	3	8.0	12.0	10.0	3.5	1.4	Light brov	vn cm sar	nd little	gravel 		

Brown f sand and silt trace gravel

Notes: Collected soil sample MW-9 (8-12) at 10:30 AM.

13.0

12.0

								BDA PROJE	CT NO. <u>08921</u>
Client:	700	Out Parcel, I	LLC		Loca	ition of Bori	ing	See Figure 7 and	8
Project	t: Brov	Outparcel – wnfield Site #	:: C734111	vestigation	 Grou	und Elevatio		N/A	1/13 12:00
Date:	Jan	uary 12 and 1	13, 2012			Sta	art	1/12 4:00 PM	Finish <u>AM</u>
Boring	No.	MW-9	Sheet 2		of <u>2</u>		Repre	esentative DEP	
			Dat		und Wa	ter Observa Time	ations	Depth	
		l 55	DTU					OL A COLFICATI	ON OF MATERIAL
Ŧ£	ole).	C	PTH)F E (FEET)	TH ANGE ET)		PID PPM)		f – FINE	ON OF MATERIAL and - 35-50%
DEPTH (FEET)	SAMPLE NO.	FROM	TÓ	DEPTH OF CHANGE (FEET)	IN- SITU	HEAD- SPACE		m – MEDIUM c – COARSE	some - 20-35% little - 10-20% trace - 1-10%
14.0	4	12.0	14.5		0.0	447	Spoo	on refusal at 14.5 fe	eet bgs
							Set	monitoring well at a	pproximately 15.8 feet bgs
16.0									
Nati									
Notes Could		ance boring	deeper due t	to boulder.					

								BDA PRO	DJECT NO.	08921
Client:	700	Out Parcel, I	LC		Loca	ation of Bor	ing	See Figure 7	and 8	
Projec	t: Brov	Outparcel – wnfield Site # uary 17, 2012	: C734111	estigation/	— Gro	und Elevation		N/A 5:05 PM	Finish	5:40 PM
Boring		SB-4			of 2		Repre	esentative DE		
Domig	<u>.</u>	054	Dat	Gro	<u> </u>	ater Observa	·			
			PTH	Щ		PID		CLASSIFIC	ATION OF MA	ATERIAL
DEPTH (FEET)	SAMPLE NO.	SAMPLE FROM	OF E (FEET) TO	DEPTH OF CHANGE (FEET)	IN- SITU	PPM) HEAD- SPACE		f – FINE m – MEDIU c – COARS	JM some - SE little -	- 35-50% - 20-35% - 10-20% - 1-10%
0.0				0.6			Asp	halt/Brown mf sa	and and silt tra	ace gravel
2.0	1	0.0	4.0		0.0	6.3				
				3.7			Brov	wn mf sand and	silt with ash/b	oricks
4.0										
6.0	2	4.0	8.0		0.0	0.0				
				7.4			Ligh	nt brown mf sand	d little silt	
8.0										
10.0	3	8.0	12.0	10.5	46.2	839.1	Mois	st light brown mi	f sand little gra	avel
12.0				12.6			Satu	urated red brown	n silt trace cla	у
Notes	: Collec	ted soil samp	ole SB-4 (8-1	2) at 5:15 F	PM.				*	

								BDA PROJECT NO. 08921	
Client:	700	Out Parcel, I	LLC		_ Loca	ation of Bori	ing	See Figure 7 and 8	
Date:	t: Brow	wnfield Site # uary 17, 2012	Sheet 2	Grou	 of <u>2</u>	ter Observa	art Repre		_
			Date	e 		Time		Depth	
			PTH	ш		PID		CLASSIFICATION OF MATERIAL	_
DEPTH (FEET)	SAMPLE NO.		OF E (FEET) TO	DEPTH OF CHANGE (FEET)		HEAD- SPACE		f – FINE and - 35-50% m – MEDIUM some - 20-35% c – COARSE little - 10-20% trace - 1-10%	
14.0	4	12.0	16.0		13.2	161.7	Red	brown silt trace clay	_
16.0									_
16.7							Borir	ng refusal at 16.7 feet bgs	
									_
Notes	<u>:</u>								

								BDA I	PROJE	CT NO.	08921	
Client:	700	Out Parcel, L	LC		Loca	ation of Bor	ing	See Figur	e 7 and	18		
Projec	t: Brov	Outparcel – wnfield Site #	: C734111	restigation	 Grou	und Elevation		N/A 4:35 PM		Finish	5:00 PN	1
		SB-5	Sheet 1		 of 2							<u> </u>
Domig	<u> </u>	05 3	Date	Gro		ter Observa Time		Depth				
			PTH F	Щ	ſ	PID		CLASSI	FICATI	ON OF M	ATERIAL	
DEPTH (FEET)	SAMPLE NO.	SAMPLE FROM		DEPTH OF CHANGE (FEET)	IN- SITU	PPM) HEAD- SPACE		f – FINE m – ME c – CO	DIUM	some little	- 35-50% - 20-35% - 10-20% - 1-10%	
0.0				0.6			Asph brick		sand a	nd silt trad	ce gravel wi	th
2.0	1	0.0	4.0		0.0	0.0						
4.0												
6.0	2	4.0	8.0		0.0	0.0						
				7.4			Gray	cm sand s	ome gra	avel		
8.0				8.5			Satu	rated gray o	cm sand	d and silt l	ittle gravel	
				9.8				rated light boleum odor	rown c	mf sand li	ttle gravel	
10.0	3	8.0	12.0		5.6	191.6	1 Circ	olcum odor				
12.0									\downarrow			
				13.2			Mois	t red brown	silt			
Notes	: Collec	ted soil samp	le SB-5 (12-	14.7) at 4:5	60 PM.	I.	1					

								BDA PROJECT NO. 08921
Client:	700	Out Parcel, I	LLC		Loca	ition of Bori	ing	See Figure 7 and 8
Projec	t: Bro	Outparcel – wnfield Site # uary 17, 2012	: C734111	estigation	 Grou	ınd Elevatio Sta		N/A 5:05 PM Finish 5:40 PM
Boring	No.	SB-5	Sheet 2		of 2		Repre	esentative DEP
J	l l		Dat	Gro		ter Observa Time		
			PTH			PID		CLASSIFICATION OF MATERIAL
DEPTH (FEET)	SAMPLE NO.	SAMPLE	OF E (FEET) TO	DEPTH OF CHANGE (FEET)		PPM) HEAD- SPACE		f – FINE and - 35-50% m – MEDIUM some - 20-35% c – COARSE little - 10-20% trace - 1-10%
14.0	4	12.0	14.7		17.6	1300	Red	brown silt
14.7							Borir	ng refusal at 14.7 feet bgs
						_		
Notes	<u>:</u>	•	•	•			•	

Notes: Collected soil sample SB-6 (8-12) at 4:15 PM.

						10 L						
								BDA	PROJE	CT NO	08921	
Client:	700	Out Parcel, L	.LC		Loca	ation of Bori	ing	See Figu	ıre 7 and	8		
	700	Outropol	Dama dial las									
Projec		Outparcel – F vnfield Site #			Grou	und Elevation	on	N/A				
Date:	Janu	uary 17, 2012	2			Sta	art	4:00 PM		Finish	4:30 PM	_
Boring	No.	SB-6	Sheet 1		of <u>2</u>		Repre	esentative	DEP			
			Date		und Wa	ter Observa Time	ations	Dep	th			
Τ.	ш	DEF O		H GE		PID		CLASS	SIFICATI	ON OF MA	TERIAL	_
DEPTH (FEET)	SAMPLE NO.	SAMPLE FROM	TO	DEPTH OF CHANGE (FEET)	IN- SITU	PPM) HEAD- SPACE			IE EDIUM DARSE	some - :	35-50% 20-35% 10-20% 1-10%	
0.0				0.6			Tops	soil/Dark bi	rown cm	sand and s	ilt	
2.0	1	0.0	4.0		0.0	0.0						
				3.7			Red	f sand trac	e gravel			
4.0				4.5			Brov	vn f sand a	nd silt tra	ace clay		
6.0	2	4.0	8.0		0.0	0.0			+			
				7.6			Satu	ırated brow	n cm sa	nd and silt s	some gravel	
8.0				8.5			Satu	ırated red b	orown f s	ad and silt		
10.0	3	8.0	12.0	10.5	0.0	52.4	Brov	vn cmf san	d little gr	avel I		
										,		
12.0				12.7			Red	brown silt	trace gra	ivel		
						. —	. —					_

								BDA PROJE	CT NO.	08921
Client:	700	Out Parcel, L	LC		Loca	ition of Bori	ing	See Figure 7 and	18	
Projec	t: Bro	Outparcel – I wnfield Site # uary 17, 2012	: C734111	vestigation	 Grou	ınd Elevatio Sta		N/A 4:00 PM	Finish	4:30 PM
Boring		SB-6			 of 2		Repre	esentative DEP		
			Date	Gro		ter Observa Time				
			PTH	ш		 PID		CLASSIFICATI	ON OF MA	ATERIAL
DEPTH (FEET)	SAMPLE NO.	SAMPLE FROM	PF E (FEET) TO	DEPTH OF CHANGE (FEET)		HEAD- SPACE		f – FINE m – MEDIUM c – COARSE	some - little -	35-50% 20-35% 10-20% · 1-10%
14.0	4	12.0	14.5		0.0	6.0	Red	brown silt trace gra	avel	
14.5							Borii	ng refusal at 14.5 fe	eet bgs	
Notes	<u>:</u>	1	1	<u>. </u>			1			

								BDA	PROJE	CT NO.	08921
Client:	700	Out Parcel, I	LLC		Loca	ation of Bor	ing	See Figu	re 7 and	18	
	t: Brov	Outparcel – wnfield Site #	: C734111	restigation	 Grou	ınd Elevatio		N/A		E. C.	0.50 PM
Date:	Jan	uary 17, 2012	2			Sta	art	3:00 PM		Finish	3:50 PM
Boring	No.	SB-7	Sheet 1		of <u>2</u>		Repre	esentative _	DEP		
			Date		ound Wa	ter Observa Time	ations	Dept	h	-	
		l DEI	PTH				 	CLASS	IFICATI	ON OF M	ATERIAL
IC	щ	C)F	БУ (- В (-		PID PPM)					
DEPTH (FEET)	SAMPLE NO.	SAMPLE FROM	TO	DEPTH OF CHANGE (FEET)	IN- SITU	HEAD- SPACE		f – FINI m – ME c – CO	DIUM	some -	- 35-50% - 20-35% - 10-20% - 1-10%
0.0				0.5			Top	soil/Brown r	nf sand	and silt	
2.0	1	0.0	4.0		0.0	0.0					
				3.0			Brov	wn mf sand	and silt	with ash,	bricks, and wood
4.0				0.0							
6.0	2	4.0	8.0		0.0	0.0					
8.0				8.0			Red	brown f sai	nd and	silt	
				9.6			Ligh	t brown cm	f sand		
10.0	3	8.0	12.0		0.0	5.5					
				11.4			Satu	rated red b	rown sil	t	
12.0											
Notes	: Collec	ted soil samp	ole SB-7 (8-1	ı 2) at 3:15 F	PM.	1	1			<u> </u>	

							BDA PROJECT NO. 08921	
Client:	700	Out Parcel, L	LC		_ Loca	ition of Bori	oring See Figure 7 and 8	
Projec Date: Boring	t: Brov	Outparcel – wnfield Site # uary 17, 2012 SB-7	: C734111 2		_		tion N/A tart 3:00 PM Finish 3:50 PM Representative DEP	_
			Date		ınd Wa	ter Observa Time	vations Depth	
DEPTH (FEET)	SAMPLE NO.		PTH OF (FEET) TO	DEPTH OF CHANGE (FEET)		PID PPM) HEAD- SPACE	f – FINE and - 35-50% m – MEDIUM some - 20-35% c – COARSE little - 10-20% trace - 1-10%	_
14.0	4	12.0	14.6		0.0	4.2	Red brown silt	
14.6							Boring refusal at 14.6 feet bgs	
								_
Notes								_
INOIGO	<u></u>							

								BDA PROJ	ECT NO	08921
Client:	700	Out Parcel, I	LC		Loca	ation of Bor	ing <u>Se</u>	e Figure 7 ar	nd 8	
Project	t: Brov	Outparcel – wnfield Site # ruary 26, 200	: C734111	vestigation	 Grou	und Elevation		<u>A</u> 20 AM	Finish	4:10 AM
Boring		-			 of 1			tative RDM		
Doming	110.	IVIVV-I	Officer 1		·			tative KDIVI		
			Dat		und Wa	ter Observa Time	ations 	Depth	_	
		DEI	OTU.				— —			ATERIAL
IC	щ	C	PTH)F	T GE		PID PPM)		CLASSIFICA		
DEPTH (FEET)	SAMPLE NO.	SAMPLE FROM	F(FEET)	DEPTH OF CHANGE (FEET)	IN- SITU	HEAD- SPACE		f – FINE m – MEDIUW c – COARSE	l some - little -	35-50% 20-35% 10-20% 1-10%
0.0				1.0			Asphalt p	pavement and	d sub-base/E	Brown sand
	1	1.0	4.0	3.0		5.3	Tan san	d and silt		
4.0								<u> </u>		
	2	4.0	8.0	7.0		0.2	Reddish	sand and silt		
8.0				8.0			Reddish	sand		
	3	8.0	12.0			0.0		\downarrow		
12.0				12.0			Tan san	d and silt		
	4	12.0	16.0	14.0		0.4	Black sa	nd		
16.0				16.0			Reddish	sand and silt	with pebble	S
	5	16.0	20.0			0.6				
20.0								+		
							Stopped	boring at 20-	feet bgs	
Notes	: Collec	ted sample N	/W-1 (16-20)) at 4:00 pn	n.	1	1			

								BDA PROJE	CT NO.	08921
Client:	700	Out Parcel, L	_LC		Loca	ation of Bor	ing <u>See</u>	Figure 7 and	d 8	
Projection	t: Brov	Outparcel – I wnfield Site # ruary 26, 200	: C734111	estigation	— Grou	und Elevation		PM	Finish	3:10 PM
Boring	No.	SB-1	Sheet 1		of 1		Representa	tive RDM		
J	-		Date	Gro		ter Observa	ations	Depth	- -	
		DEF	PTH			DID	CL	ASSIFICAT	ION OF MA	ATERIAL
DEPTH (FEET)	SAMPLE NO.		OF E (FEET) TO	DEPTH OF CHANGE (FEET)		PID PPM) HEAD- SPACE	f -	- FINE - MEDIUM - COARSE	and - some - little -	35-50% 20-35% 10-20%
							Asphalt na	vement and		1-10% Brown and black
0.0				1.0			sand with		Sub basc/L	Stown and black
	1	1.0	4.0	3.0		0.1	Tan sand			
4.0				4.0			Tan sand a	and silt		
	2	4.0	8.0			0.0		+		
8.0				8.0			Reddish/ta	ın c sand		
	3	8.0	12.0	11.0		0.0	Reddish/ta	n sand and	silt	
12.0							Black/tan s	sand with str	ong petrole	um odor
	4	12.0	15.0	14.0		2444	Reddish sa	and and silt		
15.0								1		
							Stopped be	oring at 15.0	feet bgs	
Notes	: Collec	cted sample S	SB-1 (12-14)	at 3:00 pm	1.		•			

							BDA PROJECT NO. 08921	
Client:	700	Out Parcel, I	LC		Loca	ation of Bor	ring See Figure 7 and 8	
Project Date:	: Brov	Outparcel – wnfield Site # ruary 26, 200	: C734111	vestigation	— Grou	und Elevation	-	
Date.	100	•						_
	_	MW-2	Sheet 1		of <u>1</u>		Representative RDM	_
			Dat		ound Wa	ter Observa Time	/ations Depth	
			PTH	ш		PID	CLASSIFICATION OF MATERIAL	_
DEPTH (FEET)	SAMPLE NO.		F F (FEET) TO	DEPTH OF CHANGE (FEET)		PPM) HEAD- SPACE	f – FINE and - 35-50% m – MEDIUM some - 20-35% c – COARSE little - 10-20% trace - 1-10%	
0.0				1.3			Asphalt pavement and sub-base/Dark brown sand and gravel	_
	1	1.3	4.0	2.0		0.2	Brown clay	
4.0				4.0			Dark brown sand and pebbles	
	2	4.0	8.0	6.0		0.1	Brown/gray silt	
8.0								
	3	8.0	12.0	9.0		1098	Brown and black sand with strong petroleum odor	
12.0				12.0			Tan/gray sandy silt	
	4	12.0	15.0	15.0		4.6	Red silt and f sand with pebbles	
15.0							•	
							Geoprobe refusal at 15.0 feet bgs	
Notes:	Collec	ted sample N	/W-2 (8-12)	at 9:30 am.	· · · · · · · · · · · · · · · · · · ·			

								BDA PRO	DJECT NO. <u>08921</u>	
Client:	700	Out Parcel, I	LC		Loca	ation of Bor	ing	See Figure 7	and 8	
Projec Date:	t: Brov	Outparcel – wnfield Site # ruary 26, 201	: C734111	estigation	— Grou	und Elevation		N/A 10:20 AM	Finish 11:45 AM	
Boring	No.	SB-2	Sheet 1		of 1		Repre	esentative RD	 M	
9	_		Date	Gro		ter Observa	-			
			PTH	111		PID		CLASSIFIC	ATION OF MATERIAL	
DEPTH (FEET)	SAMPLE NO.		OF E (FEET) TO	DEPTH OF CHANGE (FEET)		PPM) HEAD- SPACE	-	f – FINE m – MEDIU c – COARS	and - 35-50% IM some - 20-35%	
0.0				1.0				halt pavement, s k brown/tan san	sub-base, and metal shards d and gravel	3/
	1	1.0	4.0			2.4				
4.0								T		
	2	4.0	8.0	5.0		46.5	Gra	y/tan sandy silt		
8.0				8.0			Red	ldish brown sand	d with pebbles	
	3	8.0	12.0	9.5		429	Tan	/black sandy silt	with petroleum odor	
12.0				12.0			Red	ldish sandy silt		
	4	12.0	16.0	15.5		12.9	Red	silt with fine sai	nd and pebbles	
16.0										
17.0									,	
							Geo	probe refusal at	17.0 feet bgs	
Notes	: Collec	ted sample S	B-2 (8-12) at	t 11:00 am.	i	ı				

							BDA PROJECT NO. 08921	
Client:	700	Out Parcel, I	LC		Loca	ation of Bor	ring See Figure 7 and 8	
Projection	t: Brov	Outparcel – wnfield Site # ruary 26, 200		estigation	— Grou	und Elevation	ion <u>N/A</u> tart _11:55 AM Finish _2:00 PM	
Boring	No.	MW-3	Sheet 1		of 1		Representative RDM	
	_			Cra		ter Observa		_
			2/26			Time	Depth Approx: 10' bgs	
		DEF	PTH				CLASSIFICATION OF MATERIAL	
는 는	ш.	С)F E (FEET)	T) NGE		PID PPM)	f – FINE and - 35-50%	_
DEPTH (FEET)	SAMPLE NO.	FROM	TO	DEPTH OF CHANGE (FEET)	IN- SITU	HEAD- SPACE	m – MEDIUM some - 20-35% c – COARSE little - 10-20% trace - 1-10%	
0.0				1.0			Asphalt pavement and sub-base/Tan sand	
	1	1.0	4.0	3.0		0.7	Tan sand and silt	
4.0								
	2	4.0	8.0	6.0		0.1	Gray sand and silt	
8.0				8.0			Gray/brown sand	
	3	8.0	12.0	11.0		58.1	Tan sandy silt	
12.0								
	4	12.0	15.0	14.0		4.4	Tan/gray sandy silt and pebbles	
15.0								
							Stopped boring at 15.0 feet bgs	
								_
Notes	: Collec	ted sample N	/W-3 (8-12) a	at 12:30 pn	n.	l		

							BDA PROJECT NO. 08921
Client:	700	Out Parcel, I	LC		Loca	ation of Bor	ring See Figure 7 and 8
Projec Date: Boring	t: Brov	Outparcel – wnfield Site # ruary 27, 200 SB-3	: C734111 09	Gro	of <u>1</u>		tart 8:30 AM Finish 9:20 AM Representative RDM
			PTH	ш		PID	CLASSIFICATION OF MATERIAL
H.	PLE).)F E (FEET)	TH ANGI		PPM)	f – FINE and - 35-50%
DEPTH (FEET)	SAMPLE NO.	FROM	ТО	DEPTH OF CHANGE (FEET)	IN- SITU	HEAD- SPACE	m – MEDIUM some - 20-35% c – COARSE little - 10-20% trace - 1-10%
0.0				1.0			Asphalt pavement and sub-base/Gray/brown sand
	1	1.0	4.0	3.0		0.0	Brown sandy silt
4.0							
	2	4.0	8.0	5.0		0.0	Tan/brown sandy silt
8.0				8.0			Tan/brown c sand
	3	8.0	12.0	11.0		59.4	Reddish silt with black sand and pebbles/petroleum odor
12.0							•
	4	12.0	16.0	13.0		7.4	Reddish silt with fine sand and pebbles
16.0							
							Stopped boring at 16.0 feet bgs
N 1 :	0 "		ND 0 (0 10)	10.05			
Notes	: Collec	ted sample S	sB-3 (8-12) a	t 9:25 am.			

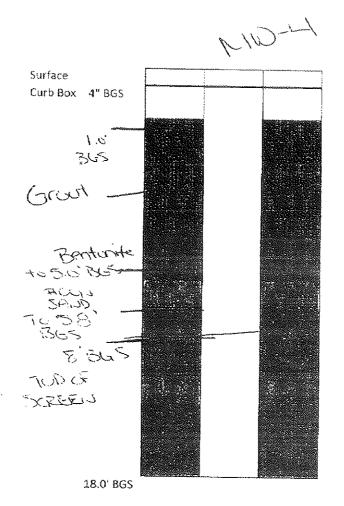
								BDA	PROJE	CT NO.	08921
Client:	700	Out Parcel, I	LC		Loca	ation of Bor	ing	See Figu	re 7 and	18	
Projec Date:	t: Brov	Outparcel – wnfield Site # ch 2, 2009	Remedial Inv : C734111	vestigation	— Grou	und Elevation		N/A 9:00 AM		Finish	10:40 AM
Boring	No.	CMW-1	Sheet 1		of <u>1</u>		Repr	esentative _	RDM		
			Dat		ound Wa	iter Observ	ations	Deptl	h		
		DEF	PTH	111		PID		CLASS	IFICATI	ON OF MA	ATERIAL
DEPTH (FEET)	SAMPLE NO.		F E (FEET) TO	DEPTH OF CHANGE (FEET)		PPM) HEAD-	-	f – FINI m – ME			35-50% 20-35%
D A	SA			OF C	SITU	SPACE		c – CO	ARSE		10-20% 1-10%
0.0				1.0			Con	crete sidew	alk and	sub-base/	Black sand
	1	1.0	4.0	5.0		0.0	Tan	sand and s	ilt		
4.0				7.0			Tan	/rust c sand			
	2	4.0	8.0			0.0					
8.0								7			
	3	8.0	12.0	11.0		0.0	Tan	silt			
12.0								↓			
	4	12.0	16.0	13.0		2.5	Tan	/brown sand	dy silt		
16.0											
17.5	5	16.0	17.5			1798					
							Geo	probe refus	al at 17	.5 feet bgs	
Notes	: Collec	ted sample C	CMW-1 (12-1	6) at 10:30	am.						

								BDA PROJECT NO. 08921
Client:	700	Out Parcel, I	LC		Loca	ation of Bor	ing	See Figure 7 and 8
Projec Date:	t: Brov	Outparcel – wnfield Site # ch 2, 2009	Remedial Inv :: C734111	vestigation	 Grou	und Elevatio Sta		N/A 3:45 PM Finish 4:25 PM
Boring	No.	CMW-2	Sheet 1		of <u>1</u>		Repre	esentative RDM
			Dat		ound Wa	ter Observa	ations	Depth
			PTH	111		PID		CLASSIFICATION OF MATERIAL
ΞŒ	Н)F - (CCCT)	H G		PPM)		6 FINE and 25 F00/
DEPTH (FEET)	SAMPLE NO.	FROM	FEET)	DEPTH OF CHANGE (FEET)	IN- SITU	HEAD- SPACE	_	f – FINE and - 35-50% m – MEDIUM some - 20-35% c – COARSE little - 10-20% trace - 1-10%
0.0				1.0			Fill n	material/Tan silty sand
	1	0.0	4.0			0.0		
4.0								•
	2	4.0	8.0	7.0		0.0	Yello	ow sand
8.0				8.0			Tan	c sand
	3	8.0	12.0	11.0		0.2	Brov	vn silty sand
12.0								•
14.0	4	12.0	14.0			0.1	Sligh	nt petroleum odor
							Stop	pped boring at 14.5 feet bgs
Notes	: Collec	ted sample C	MW-2 (12-1	4.5) at 4:15	pm.			

								BDA PROJECT NO. 08921	
Client:	700	Out Parcel, L	LC		Loca	ation of Bori	ing	See Figure 7 and 8	
Project Date: Boring	t: Brov	Outparcel – F wnfield Site #: ch 2, 2009 CSB/CMW-3	: C734111	Gro	of <u>1</u>	und Elevation Sta	art Repre	N/A 12:00 PM Finish 12:40 PM resentative RDM Depth	
		DEF		щ	ı	PID		CLASSIFICATION OF MATERIAL	
Ŧ £.).	O SAMPLE		TH SNG (T:	(F	PPM)		f – FINE and - 35-50%	
DEPTH (FEET)	SAMPLE NO.	FROM	ТО	DEPTH OF CHANGE (FEET)	IN- SITU	HEAD- SPACE		m – MEDIUM some - 20-35% c – COARSE little - 10-20% trace - 1-10%	
0.0							Conc	crete/fill	
4.0									
	1	4.0	8.0	5.0		480	Tan	silty sand with petroleum odor	
8.0				8.0			Black	ck/brown stained c sand	
	2	8.0	12.0	11.0		0.0	Tan/	/yellow silty sand	
12.0				12.0			Black	ck c sand with petroleum staining and odor	
	3	12.0	16.0			187			
16.0								<u> </u>	
							Stop	oped boring at 16.0 feet bgs	
Notes	: Collec	ted sample C	SB/CMW-3	(4-8) at 12:	30 pm.	l			

								BDA	PROJE	CT NO	08921
Client:	700	Out Parcel, I	LLC		Loca	ation of Bor	ing	See Figu	re 7 and	8	
Projection	t: Brov	Outparcel – wnfield Site # ch 2, 2009	Remedial In	vestigation	Gro	und Elevati		N/A 2:50 PM		Finish	3:20 PM
Boring	No.	CSB-4	Sheet 1		of 1		Repr	esentative	RDM		
	_			Gro	ound Wa	ater Observ	ations	3			
			Dat			Time		Dept	h		
							<u> </u>				
			PTH	111		PID		CLASS	IFICATI	ON OF MA	TERIAL
H.E.))F E (FEET)	TH VNGI		PPM)		f – FIN	E	and -	35-50%
DEPTH (FEET)	SAMPLE NO.	FROM	ТО	DEPTH OF CHANGE (FEET)	IN- SITU	HEAD- SPACE		m – ME c – CO	EDIUM	some -	20-35% 10-20%
	O)			OF	3110	SPACE		0-00	ANGL		1-10%
0.0				1.0			Fill/[Dark brown I	silty c sa	and	
	1	0.0	4.0			0.0					
4.0				4.0			Tan	sandy silt			
	2	4.0	8.0			0.0					
8.0					9.0		Darl	k brown sar	nd		
	3	8.0	12.0		10.0	0.0	Brov	wn/tan c sar	nd		
12.0	4	12.0	13.8		12.0	0.0	Brov	wn/black sa	ndy grav	/el	
13.8								,			
							Geo	probe refus	al at 13.	.8 feet bgs	
Notes	: Collec	ted sample C	SB-4 (12-13	3.8) at 3:20	pm.	1	ı				

ATTACHMENT B


Monitoring Well Installation and Sampling Records

7426 Shackham Road Tully, N.Y. 13159 Phone (607) 842-6580 Fax (607) 842-6465

Lyon Dailing Co.

TO R	ch Nickenn	(From:	Soft	
Faxs		Pages	MEWLE:	Cair
Pisones	- TOO COMMAND ON A SHARE WAS A	. Destac		
Res		cc:		
U Vigent	[] For Review	☐ Please Comment	O Piezoe Popły	☐ Please Recycle

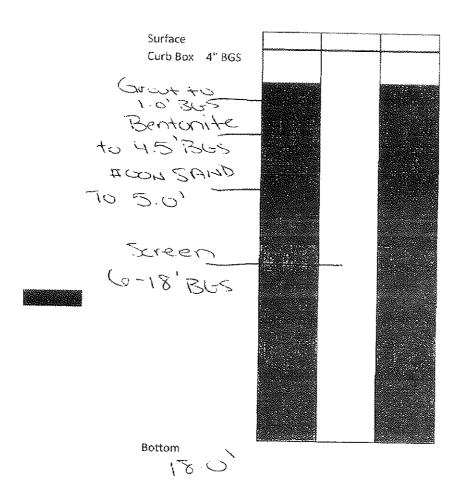
NOT TO SCALE

Surface
Curb Box 4"BGS

Growt to
10'365

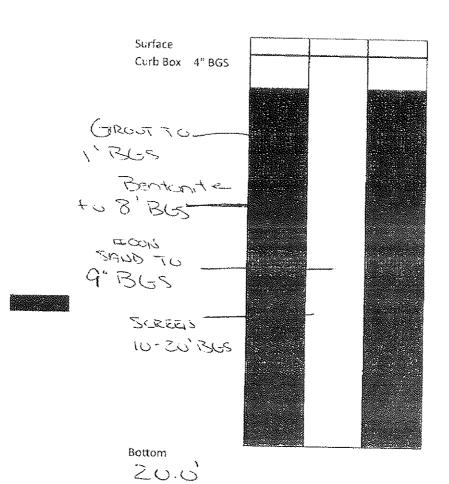
Bentante to
3.8'365

* con Sant
to 48'365


Sureen

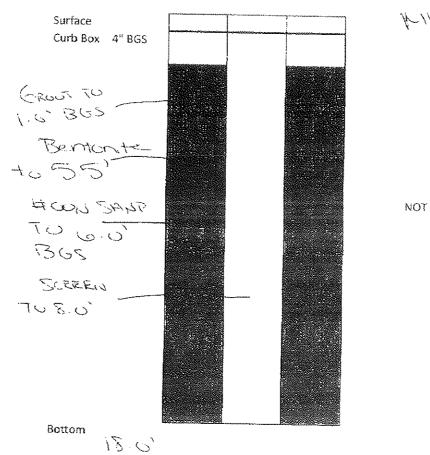
G-18'365

Battom


18.0

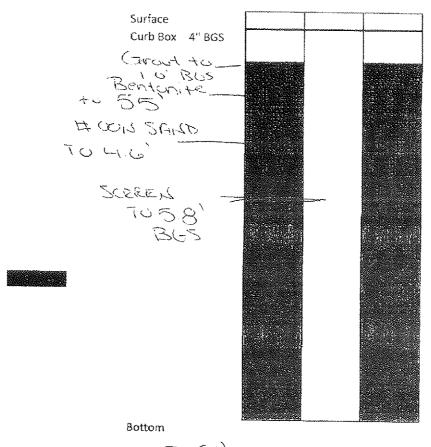
NW-6

NOT TO SCALE


ě.

1-cold

NOT TO SCALE


. 4.

8-wy

NOT TO SCALE

.

Nw.9

NOT TO SCALE

15.3

MONITORING WELL SAMPLING LOG

BLA BEARDSHEY DESIGN ASSOCIATES Addresses Relations FO

Project: 700 Outparcel SUBJECT: Groundwater Sampling

NO. 08921

DATE: 1/19/2012 BY: DEP

	MW-4	MW-5	9-MM	MW-7	MW-8	WW-9
PVC Elevation	98.52	99.95	99.94	99.95	99.86	99.54
Initial Depth to Water (ft)	8.86	7.02	7.05	13.39	1.1	13.3
Depth to Bottom	17.53	17.21	17.02	19.54	17.31	15.54
Water Column Height (ft)	8.67	10.19	6.97	6.15	6.20	2.24
3-5 Water Volume (gal)	4.24-7.0	4.90-8.35	4.90-8.10	3.0-5.0	3.03-5.05	1.10-1.185
Volume Purged (gal)	-7.0	~8.5	8.25	~5.5	~5.0	~1.25
emarks (secured/I	emarks (secured/locked, odor, sheen, color, etc.	olor, etc.)				
Observe Well	Secure	Secure	Secure	Secure	Secure	Secure/Slight Petroleum odor
Begin Purge	*** 555	12:40	1.50	2:40	10:25	9:40
End Purge	12:10	1:15	2:30	3:30	11:00	3:50
Sample Well	12:15	1:20	2:35	3:35	11:05	4:10
	Field Analyses (if applicable)	licable)				
	pre purge post purge	post purge purge post purge prige	post p	pre purge	post purge pre purge post purge pre purge post purge	pre purge post purge
Temp	13.16 12.87	10.65 10.54		·	12.25	11.93
Ha	6.84 6.71	6.78	7.02	6.59 6.62	6.80	6.59
(DO (mg/l)	4.00 2.38		8.04		2.74	1.87
Turb. (NTU)	10	130 38	84.30 25	21.	122.50 39.8	800+ 28
ORP(mV)	-7 -56	25 100		134 37	12 6	26 -40

Volume Factors: 1" weli: 0.041 gal/ft 2" weli: 0.163 gal/ft 4" weli: 0.653 gal/ft

MONITORING WELL SAMPLING LOG

BDA BEARDSIDY DESIGN ASSOCIATES Additional Engineers of London Additional Population Population (1997)

DATE: 2/27 and 3/4 2009

NO. 08921 700 Outparcel Groundwater Sampling Project: 70 SUBJECT: BY: RDM/DEP

•						
	MW-1	MW-2	E-MM	CMW-1	CMW-2	CSB/MMW-3
Surface Elevation (ft)	97.32	97.33	97.25	97.4	97.22	97.38
Initial Depth to Water (ft)	13.56	11.35	9.10	12.97	10.73	14.00
Depth to Bottom (ft)	19.79	14.84	14.61	17.51	14.88	14.75
Water Column Height (ft)	6.23	3.49	5.51	4.54	4.15	0.75
3-5 Water Volume (gal)	0.77-1.28	0.43-0.72	0.68-1.13	0.56-0.93	0.51-0.85	A/N
Volume Purged (gal)	~1.5	~1.0	~1.25	~1.0	~1.0	N/A
lemarks (secured/li	ocked, odor, sheen, co	olor, etc.)				
Observe Well	Observe Well	Magazana				-
Begin Purge	- Anno Anno Anno Anno Anno Anno Anno Ann					
End Purge						
Sample Well	3:08 PM	2:30 PM	1:40 PM	12:40 PM	12:10 PM	A/A
	2/27/2009	2/27/2009	2/27/2009	3/4/2009	3/4/2009	
	Field Analyses (if applicable)	licable)				
	pre purge post purge pre purg	pre purge post purge pre purge	pre purge post purge pre purge	pre purge post purge	pre purge post purge pre purge	pre purge post purge
Temp						
Hd		-				
DO (mg/l)						
Turb. (NTU)				WARAN MISSISTER OF THE PARTY OF		
ORP(mV)						

ATTACHMENT C

Data Usability Summary Reports

(Provided on Compact Disk)

ATTACHMENT D

Laboratory Analytical Reports
(Provided on Compact Disk)