

REMEDIAL WORK PLAN SITE 7

NYSDEC BCP SITE #C734135

BROWNFIELD CLEANUP PROGRAM DESTINY USA SYRACUSE, NEW YORK

Prepared for:

New York State Department of Environmental Conservation Region 7

Prepared by:

Spectra Engineering, Architecture and Surveying, P.C.
19 British American Boulevard
Latham, New York 12110
Project #15209

August 2016 Revised November & December 2016 Revised April 2017

REMEDIAL WORK PLAN SITE 7 - NYSDEC BCP SITE #C734135 DESTINY USA – BROWNFIELD CLEANUP PROGRAM SYRACUSE, NEW YORK

TABLE OF CONTENTS

ENG	INEER	'S CER	TIFICATION	1
1.0	INTR	RODUC	TION AND PURPOSE	2
	1.1	Proji	ECT AUTHORIZATION AND PURPOSE	2
	1.2	SITE I	DESCRIPTION	2
	1.3	SITE I	IISTORY	2
		1.3.1	Former Sunoco and Atlantic Oil Properties (Parcels 11602-0111602-08.0)	
		1.3.2	Alaskan 22 Property (Parcel 11602-07.0)	4
	1.4	Curr	ENT USES OF SITE 7	4
	1.5	SUMM	ARY OF ENVIRONMENTAL CONDITIONS	5
		1.5.1	Summary of Remedial Investigation	5
		1.5.2	Soils	5
		1.5.3	Groundwater Conditions	7
		1.5.4	Current Soil Vapor Conditions	8
		1.5.5	Areas of Concern	9
2.0	REM	EDIAL	ALTERNATIVES EVALUATION	12
	2.1	INTRO	DDUCTION	12
	2.2	POTE	NTIAL THREAT TO PUBLIC HEALTH AND THE ENVIRONMENT	12
	2.3	LAND	USE	12
		2.3.1	Current Use/Historical and/or Recent Development Patterns	12
		2.3.2	Applicable Zoning Laws and Maps	13
		2.3.3	Brownfield Opportunity Areas	13
		2.3.4	Applicable Comprehensive Community Master Plans	13
		2.3.5	Proximity to Residential and Other Uses	13
		2.3.6	Public Comment	13
		2.3.7	Environmental Justice	14
		2.3.8	Federal or State Land Use Designations	14

		2.3.9 Population Growth Patterns and Projections14
		2.3.10 Accessibility to Existing Infrastructure14
		2.3.11 Proximity to Important Cultural Resources14
		2.3.12 Natural Resources
		2.3.13 Potential Vulnerability of Groundwater15
		2.3.14 Proximity to Flood Plains
		2.3.15 Geology and Hydrogeology15
	2.4	REMEDY SELECTION FACTORS
	2.5	EVALUATION CRITERIA
		2.5.1 Standards, Criteria, and Guidance (SCG)17
	2.6	REMEDIAL ACTION OBJECTIVES (RAOS)18
		2.6.1 Soils
		2.6.2 Groundwater19
		2.6.3 Vapors
	2.7	CONTEMPLATED END USE AND SELECTION OF CLEANUP TRACK19
3.0	REM	IEDIAL ALTERNATIVES20
	3.1	ALTERNATIVE 1 - EXCAVATION AND OFF-SITE DISPOSAL OF CONTAMINATED SOIL AND TREATMENT OF GROUNDWATER TO UNRESTRICTED USE CONDITIONS 20
	3.2	Cost21
	3.3	ALTERNATIVE 2 - IN-SITU TREATMENT OF THE AREAS OF CONCERN (AOCS), SUB-SLAB VAPOR CONTROL SYSTEM BENEATH THE BUILDING FOOTPRINT AND SITE COVER (BCP RR SCO)
		3.3.1 AOC Remediation22
		3.3.2 Site Cover System23
		3.3.3 Vapor Control System23
		3.3.4 Environmental Easement
	3.4	Cost25
		3.4.1 Vapor Mitigation System25
		3.4.2 In-Situ Chemical Oxidation (ISCO)25
	3.5	ALTERNATIVES ANALYSIS FINDINGS SUMMARY26
4.0	SUM	MARY OF SELECTED REMEDY27
	4.1	Introduction
	4.2	DESCRIPTION OF SELECTED REMEDY

		4.2.1 In-Situ Chemical Oxidation (ISCO) Treatment of the Areas Concern	
		4.2.2 Sub-Slab Vapor Control System	28
5.0	REM	MEDIAL CONSTRUCTION ACTIVITIES/SITE MANAGEMENT PLAN	29
	5.1	CONSTRUCTION HEALTH AND SAFETY PLAN	29
	5.2	COMMUNITY HEALTH AND SAFETY	29
		5.2.1 Community Air Monitoring	29
		5.2.2 Site Access and Traffic Control	29
	5.3	DATA QUALITY OBJECTIVES, QUALITY ASSURANCE/QUALITY CONTROL PI (QA/QC)	
		5.3.1 Data Quality Objectives	29
		5.3.2 Quality Assurance/Quality Control	30
		5.3.2.1 General QA/QC	30
		5.3.2.2 Laboratory QA/QC	
		5.3.2.3 Data Review	
		5.3.2.5 Engineering Oversight	
	5.4	STORMWATER POLLUTION PREVENTION PLAN	
	5.5	PERMITS	31
	5.6	SITE PLANS AND AS-BUILT DRAWINGS	31
	5.7	SITE SECURITY, CONTROL, AND ACCESS	31
	5.8	TRAFFIC CONTROL	31
	5.9	SITE PREPARATION AND TEMPORARY FACILITIES	31
	5.10	EQUIPMENT AND MATERIAL STORAGE AND LAY DOWN AREAS	31
	5.11	PPE, EQUIPMENT AND PERSONNEL DECONTAMINATION PROCEDURES	31
	5.12	EXCAVATION PLAN	32
	5.13	VAPOR, ODOR, AND DUST CONTROLS	32
	5.14	MATERIAL HANDLING PROCEDURES	32
		5.14.1 Debris	32
		5.14.2 Groundwater	32
	5.15	EXCAVATED SOIL STOCKPILING	32
	5.16	CONTINGENCY PLANS	33
		5.16.1 Utility Emergencies	33
		5.16.2 Discovery of Underground Storage Tanks or Vessels	

6.0	IMPLEMENTATION OF ENGINEERING AND INSTITUTIONAL CONTROLS34			
	6.1	ENGINEERING CONTROLS	34	
	6.4	Institutional Controls	34	
7.0	REP	ORTING AND DOCUMENTATION	36	
	7.1	MONTHLY PROGRESS REPORT	36	
	7.2	On-site Record Keeping/Documentation of Activities	36	
	7.3	SITE 7 FINAL ENGINEERING REPORT	36	
	7.4	OPERATION, MAINTENANCE, AND MONITORING (OM&M) PLAN	37	
		7.4.1 OM&M Cost	37	
8.0	PRO	JECT MANAGEMENT	38	
	8.1	KEY PARTICIPANTS AND RESPONSIBILITIES	38	
	8.2	PROJECT COMMUNICATION AND MANAGEMENT	39	

TABLES

TABLE 1A	SOIL RESULTS (VOCS)
	, ,
TABLE 1B	SOIL RESULTS (SVOCS)
TABLE 1C	SOIL RESULTS (METALS)
TABLE 2A	GROUNDWATER RESULTS (VOCS)
TABLE 2B	GROUNDWATER RESULTS (SVOCS)
TABLE 2C	GROUNDWATER RESULTS (METALS)
TABLE 3	HOTEL IN PLACE SOIL SAMPLES

FIGURES

FIGURE 1	AERIAL PHOTOGRAPH
FIGURE 2	SITE LOCATION MAP
FIGURE 3	REMEDIAL SITE PLAN
FIGURE 4A	RIR GENERAL AREA OF CONCERN (AOC)
FIGURE 4B	SOIL AND GROUNDWATER VOC EXCEEDANCES
FIGURE 4C	SOIL AND GROUNDWATER SVOC AND METAL EXCEEDANCES
FIGURE 4D	REVISED AOC
FIGURE 5	GROUNDWATER CONTOURS

APPENDICES

APPENDIX A	SITE SPECIFIC HEALTH AND SAFETY PLAN (CD)
APPENDIX B	QUALITY ASSURANCE, QUALITY CONTROL PLAN (CD)
APPENDIX C	VAPOR CONTROL SYSTEM
APPENDIX D	In-Situ Treatment
APPENDIX E	LABORATORY REPORTS (CD)
APPENDIX F	MONITORING WELL 42R

ENGINEER'S CERTIFICATION

I, Frank R. Peduto (licensed Professional Engineer in New York State), certify under penalty of law that the Site 7 Remedial Work Plan, including Remedial Design, was prepared under my direction, supervision and review.

Frank R. Peduto, P.E. License No. 052728 Date: April 10, 2017

1.0 INTRODUCTION AND PURPOSE

1.1 PROJECT AUTHORIZATION AND PURPOSE

This Site 7 Remedial Work Plan (Site 7 RWP or RWP) has been prepared by Spectra Engineering, Architecture and Surveying, P.C. This RWP applies to the real property shown on Figure 1 (Site 7), in connection with the Destiny project located in Syracuse, New York. The proposed plan for development is a hotel. This RWP evaluates and addresses subsurface soil, water, and vapor contamination present within the Site 7 boundaries.

This RWP is submitted in full compliance with all governing statutory and regulatory provisions, including, but not limited to, those set forth at ECL section 27-1403 et seq. and 6 NYCRR Part 375, and applicable guidance. In addition, this RWP has been prepared consistent with other similar projects approved by the New York State Department of Environmental Conservation (NYSDEC) under the Brownfield Cleanup Program (BCP). The RWP described herein incorporates the findings of the Remedial Investigation Report for Brownfield Cleanup Program Sites 6 & 7 (Sites 6 & 7 RIR), dated August 2013 and resubmitted on December 8, 2015, February 29, 2016, again on May 13, 2016 and approved in July 2016.

1.2 SITE DESCRIPTION

The Destiny property consists of approximately 152 acres at the southeast end of Onondaga Lake (a Class C water body). It is bounded by: Onondaga Lake, Conrail tracks and Harborside Drive, to the northwest; Interstate 81 (I-81) to the north and northeast; Bear Street on the south and southeast; and the New York State Barge Canal to the south and southwest (Figures 1 and 2).

Site 7 (the Site) is located across the southern portion of the Destiny land between West Hiawatha Boulevard and Bear Street. The Site is bordered by Hiawatha Boulevard to the northwest, I-81 to the northeast, Bear Street to the southeast, and Solar St. to the southwest. See Figure 2, "Site Location Map". Land uses surrounding the Site consist of business districts and mixed residential property to the north and east.

1.3 SITE HISTORY

Site 7 is located in a former area of extensive natural shoreline and lowland deposits consisting of marl (a naturally occurring deposit of sand, clay, calcium, carbonate, and shell fragments), and organic vegetation including roots, wood, and peat. Historically, the general area was known for its widespread salt marshes and spring deposits that were mined for their salt content from the 1600s to early 1900s. The salt deposits were created by the natural upward discharge of groundwater laden with dissolved salts derived from the evaporite (salt and gypsum) deposits located in the bedrock underlying the area, namely the Vernon and Syracuse Formations.

During construction of the Erie Canal in 1822, Onondaga Lake was lowered by eleven feet allowing access to more of the salt deposits for mining purposes. During the 1800s and early 1900s, this area was the location of large evaporation lagoons where salt derived from the surficial deposits. The lake level remained at this low level for approximately 75 to 100 years.

In the early 1900s, the Solvay Process Company brought the "Solvay Process" for generating Soda Ash (Sodium Carbonate) to the United States from Germany, and began operation around 1907. The Solvay process generated large quantities of waste materials, including calcium carbonate, calcium oxide, and calcium chloride. These wastes are generally characterized as being white to grey in color, relatively soft, and clayey. Areas of unoccupied land at the Solvay plant and on vacant land located throughout the south end of Onondaga Lake were utilized for the disposal of these wastes. These disposal areas included a large portion of the area between Onondaga Lake and the areas surrounding West Hiawatha Boulevard (currently Destiny USA), including Site 7. Major oil storage facilities were once located throughout Site 7. These facilities were part of a large petroleum storage complex at the south end of Onondaga Lake known as Oil City.

Throughout the first half of the 1900s, additional miscellaneous fill, including Solvay waste and various construction and demolition debris (C&D) waste, was deposited on and near Site 7 as well as other parts of Oil City. Similar activities, excluding the additional deposition of Solvay wastes, continued from the 1930s to the 1980s. Figure 3, the Site 7 Remedial Investigation Plan, identifies the Oil City parcels and the locations of the former oil tanks.

A more complete summary of these properties and their associated environmental activities is provided below.

1.3.1 Former Sunoco and Atlantic Oil Properties (Parcels 116.-02-01.0 and 116.-02-08.0)

Sunoco, Inc., (R&M) and Atlantic Refining & Marketing Corporation (collectively known as "Sunoco", individually as "Sun" and Atlantic") owned and operated two, major oil storage facilities within Oil City. On Site 7, Sunoco and Atlantic's lands were broken up into 2 individual parcels as follows: Sun 1 – parcel 116.-02-01.0, 10.8 acres; Sun 2 (AKA Atlantic 2 - Atlantic 10) – parcel 116.-02-08.0, 6.6 acres (Figure 3).

Several environmental investigations have taken place on these properties that have documented soil and groundwater impacts associated with the historical petroleum storage activities (Figure 4). These investigations included the following:

1. Solar Street Investigation Report Oil City Site, July 1999, by Groundwater & Environmental Services, Inc.;

- 2. September 2001 Remedial Activity Report Sunoco Syracuse Terminal Properties, October 2001, by Groundwater & Environmental Services, Inc.;
- 3. Subsurface Investigation Report Syracuse Terminal Properties: Sun Company, Inc., March 1998, by Groundwater & Environmental Services, Inc.;
- 4. Supplemental Subsurface Investigation Report Syracuse Terminal Properties: Sun Oil Company, Inc., May 1998, by Groundwater & Environmental Services, Inc.;
- 5. Remedial Action Work Plan Sunoco Syracuse Terminal Oil City Site, March 2000, by Groundwater & Environmental Services, Inc.;
- 6. 1999 Supplemental Investigation Report Sunoco Syracuse Terminal Oil City Site, January 2000, by Groundwater & Environmental Services, Inc.;
- 7. Lead Impacted Soils Investigation: Sunoco Syracuse Terminal Oil City Site, November 2001, by Groundwater & Environmental Services, Inc.;
- 8. Pipeline Tract Sampling, February 27, 2001, by Groundwater & Environmental Services, Inc.; and
- 9. Remedial Investigation Report, Sites 6 & 7, August 2013, revised February 2016, revised May 2016, by Spectra Engineering, Architecture and Survey, P.C. and approved by the NYSDEC in July 2016.

Based on a review of these documents, contaminants of concern include metals, and petroleum-related compounds.

1.3.2 Alaskan 22 Property (Parcel 116.-02-07.0)

The Alaskan parcel is a part of BCP Site 7 and formerly contained nine aboveground storage tanks, ancillary equipment, and office buildings (See Figure 3 for former tank locations). Environmental investigations on this property, including the most recent conducted by Spectra in 2013, have documented soil and groundwater impacts associated with historical petroleum storage activities and underground piping. Contaminants of concern include volatile organic compounds (VOCs), and some semi-volatile organic compounds (SVOCs) and metals.

1.4 CURRENT USES OF SITE 7

Site 7 was most recently (circa 1990's) used by oil companies as a major oil storage facility. Currently, Site 7 contains roads, vacant land, Destiny USA auxiliary parking lots, sidewalks, bus routes, and storm water controls. The storm water controls consist of swales and detention basins which discharge into the New York State Barge Canal.

1.5 SUMMARY OF ENVIRONMENTAL CONDITIONS

1.5.1 Summary of Remedial Investigation

The following sections summarize the remedial investigation (s) performed on Site 7 with emphasis on that portion of Site 7 to be affected by the proposed project (aka, project area). In June 2016, a supplemental soil and groundwater sampling event was conducted. Figure 4 shows the original AOC provided in the RIR. Figures 4B and 4C present the original data from 2013, and the supplemental data from June 2016 including contaminant levels identified within the hotel footprint during excavation. The supplemental soil borings were designed to surround previously identified locations that demonstrated elevated levels of contamination. The locations were sampled to surround the "hot spots" and better define how far and wide the contaminated zones may extend. This would allow the treatment design to be focused in the actual contaminated zones.

The future use of the property will be a hotel and parking area and is consistent with the BCP for restricted residential use. Exceedances are defined as contaminant levels above Part 375-6(b) restricted residential use criteria. Contaminants identified within the soils at the Site include VOCs, SVOCs, and metals as described below. A complete description of soil and groundwater conditions are described in the final Remedial Investigation Report for Brownfield Cleanup Program Sites 6 & 7, dated June 9, 2016.

1.5.2 Soils

Volatile Organic Compounds (VOCs)

In the 2013 remedial investigation there were a total of nine (9) VOC exceedances of the Brownfields Cleanup Plan, Restricted Residential, Soil Cleanup Objectives (BCP RR SCOs) in soil on Site 7. The highest concentrations identified were for 1,2,4 Trimethylbenzene at boring S1-19-W (415 mg/kg at 4 - 6 feet below grade surface (bgs) and at boring S1-3-W (204 mg/kg at 8-10 feet bgs).

In 2016 twenty-one new soil samples (identified with the letter "P") were collected across the AOC identified in the RIR (Figures 4B and 4C). The P3 series of samples had several exceedances of 1,2,4-Trimethylbenzene (TMB) around SP-MW 43, SP-MW-41 and 2013 soil sample S1-19 ranging as high as 220 ppm. The hotel footprint samples identified no VOC exceedance of BCP RR SCOs. Those areas with primarily significant VOC exceedances of restricted residential criteria resulted in the final AOCs as shown on Figure 4D.

Semi-volatile Organic Compounds (SVOCs)

In the 2013 investigation there were a total of twenty-eight SVOC exceedances of Part 375 RR SCOs on Site 7. Twenty-six were identified on the Sun 1 parcel. The highest contaminant concentrations identified at that time were located at boring S1-20 (1 - 4 feet bgs) where several PAHs ranged from approximately 20 mg/kg to 40 mg/kg. All other exceedances ranged from 1 to 10 ppm above the BCP RR SCOs.

The 2016 investigation identified several low-level SVOC exceedances in soil ranging from less than 1 ppm to a high of 6.7 ppm (Benzo(b)fluoranthene) in boring P4-1. The hotel footprint had similar results ranging from less than 1 ppm to a high of 10 ppm (Benzo(a)pyene) in Sample 15.

Metals - Target Analyte List (TAL)

In the 2013 investigation, nine borings on Site 7 demonstrated exceedances of metal(s) for the BCP RR SCOs.

There were five exceedances of arsenic (BCP RR SCOs = 16 mg/kg). The highest exceedance (137 mg/kg) was identified on the SUN 1 parcel, boring S1-15, at the 6 - 8 feet bgs interval.

There were five exceedances for copper (BCP RR SCOs = 270 mg/kg). The highest exceedance (1690 mg/kg) was identified at boring S1-15 at the 6 - 8 feet bgs interval.

There were five exceedances for mercury (BCP RR SCOs = 0.81 mg/kg). The highest exceedance (6.28 ppm) was identified at S1-17 at 4-8 feet bgs and three of the five were within 0.1 ppm of the BCP RR SCOs.

The 2016 supplemental investigation identified a number of exceedances of BCP RR SCOs for metals. In addition to the ubiquitous manganese, some examples of metal exceedances included but are not limited to the following:

Arsenic - (BCP RR SCOs = 16 mg/kg) at P4-3(2'-3') = 57 mg/kg;

Cadmium - (BCP RR SCOs = 4.3 mg/kg) at P3-1(0'-4') = 53 mg/kg;

Copper - (BCP RR SCOs = 270 mg/kg) at P4-3(2'-3') = 2200 mg/kg;

Lead - (BCP RR SCOs = 400 mg/kg) at P3-1(0'-4') = 1000 mg/kg;

Zinc - (BCP RR SCOs = 10,000 mg/kg) at P 3-8 = 18,000 mg/kg.

Polychlorinated Biphenyls (PCBs)

There were no detections of PCBs (BCP RR SCO = 1 mg/kg) on Site 7.

1.5.3 Groundwater Conditions

Groundwater flow is generally to the southwest towards the Barge Canal on the SUN-2 and Alaskan 22 parcels, bending more towards the west-northwest on the SUN-1 parcel.

The 2013 Remedial Investigation included collection of groundwater samples from eighteen groundwater monitoring wells on Site 7. The 2016 sampling event repeated this pattern to establish a new and current set of baseline groundwater data. The following summarizes the groundwater conditions at the Site based on the 2016 results. All detailed laboratory sample results for the 2016 data are provided in Appendix E.

Volatile Organic Compounds (VOCs)

Sixteen (16) of the eighteen (18) monitoring wells on Site 7 had some exceedance of VOC compounds. Monitoring wells SP-MW-41 and SP-MW-43 contained the most significant number of exceedances. There were no exceedances of MTBE on Site 7. Detailed results are provided in Appendix E, Table 2A, and displayed in Figure 4B.

Semi-Volatile Organic Compounds (SVOCs)

Site 7 contained a total of four (4) exceedances of semi-volatile compounds in groundwater. Naphthalene was identified in SP-MW-43 at 140 μ g/L. Monitoring wells SP-MW-37, SP-MW-14SR, and SP-MW-39 contained very low level exceedances of several SVOC compounds. All other values were either below the groundwater standard values or were non-detect. Detailed results are provided in Appendix E, Table 2B, and displayed in Figure 4C.

Target Analyte List (TAL) Metals

In the June 2016 baseline analysis, all wells were analyzed for Target Analyte List (TAL) of metals by EPA Method 6010 (modified Part 375 list) and EPA Method 7471B for Mercury. Manganese is ubiquitous across Site 7. Five wells had exceedances for manganese. Six of the 18 wells on Site 7 exceeded the manganese TOGS groundwater guidance value of $600 \,\mu\text{g/L}$.

With the exception of manganese, the only exceedances identified in the June 2016 analysis were for barium (3480 ug/L) and arsenic (31.1 ug/L) in SP-MW-13S, arsenic (70.9 ug/L) in SP-MW-14SR, and lead (60.4 ug/L) in SP-MW-21. All other results were either below standards or non-detect. Detailed results are provided in Appendix E, Table 2C, and displayed in Figure 4C.

Metals exceedances of ambient groundwater standards were identified in several wells. Groundwater data was collected from SP-MW-43 with the intent of determining whether the metals identified in several surrounding soil samples were dissolving into the groundwater. The metal results from this and other wells are provided in the summary boxes in Figure 4C. While

there are metals in the soil around SP-MW-43, those same metals do not appear in the groundwater at levels above Ambient Groundwater Quality standards. SP-MW-21 contained several metals above groundwater quality standards in 2013, however in 2016, with the exception of lead, all metals are within the standards. This indicates that the metals in these soils are not partitioning into the groundwater. Shy of excavation, treatment of these metals would not improve the groundwater quality above its present state. Therefore, due to the immobility of the metals, and the asphalt cap (site cover) which will eliminate exposure, metals treatment is not proposed at this site.

Polychlorinated Biphenyls (PCBs)

No PCBs were identified in any groundwater samples on Site 7.

Groundwater pH Results

Laboratory analytical testing for pH indicates that Site groundwater has a pH ranging from 6.36 to 8.52 pH units. Measurements recorded in the field during groundwater sampling indicate 6.27 and 8.49 pH units.

Based on the above assessment of the state of the subsurface soils and groundwater, remediation will focus on the area surrounding SP-MW-41(AOC-3), SP-MW- 43 (AOC-1) and soil sample S1-19 (AOC-2). It will include in-situ treatment for soils with the benefit of treatment of groundwater within the treatment zone. The objective of the treatment plan is to reduce source contamination in the treatment zone and improve groundwater quality.

1.5.4 Current Soil Vapor Conditions

A subsurface soil vapor investigation was conducted at Site 7 on July 2 and 3, 2013 focusing primarily on the project area. Six, temporary vapor points were installed, sampled, and analyzed for VOCs via EPA Method TO-15. Locations of the vapor points are shown on Figure 3.

None of the compounds identified in the vapor testing have a BCP SS RCO regulatory value. Soil vapor data are semi-quantitative in nature because while they are laboratory analyzed, they may not correlate to soil and or groundwater concentrations directly beneath them. However vapor results should be considered coincident with the proposed land use.

The following vapor readings were collected on Site 7:

Compound	Minimum Detection Value (μg/m³)	Maximum Detection Value (μg/m³)	
Benzene	59.1 (S1-V5)	690 (S1-V1)	
Cyclohexane	146 (S1-V5)	10,800 (S1-V6)	
Propylene	42.7 (S1-V5)	1,210 (S1-V6)	
n-Hexane	261 (S1-V3)	15,100 (S1-V6)	
Heptane	143 (S1-V3)	4,920 (S1-V6)	
Toluene	265 (S1-V5)	889 (S1-V1)	
Carbon disulfide	32.4 (S1-V5)	349 (S1-V1)	
2,2,4-Trimethylpentane	0.934 (S1-V5)	93,900 (S1-V6)	

Many of these compounds are associated with petroleum. The presence of volatile subsurface contaminants with a potential for vapor intrusion has resulted in the implementation of an engineering control in the form of a sub-slab vapor control system beneath the proposed building footprint.

1.5.5 Areas of Concern

Based on the results of the supplemental soil and groundwater sampling event, the original AOC was broken down into three distinct areas; AOC-1, AOC-2, and AOC-3 (Figure 4D – Revised AOCs). Each area consists of a focused "hot spot" of contaminants in soil and/or groundwater.

AOC-1 is the largest area circumventing monitoring well SP-MW-43. VOCs such as 1,2,4 and 1,3,5 Trimethylbenzene and Xylenes are the prime contaminants to depths as low as 12 feet.

AOC-2 is identified as a "hot spot" around soil sample S1-19 to depths of 4-6 feet. Primary contaminants include 1,2,4 and 1,3,5 Trimethylbenzene, BTEX compounds and low level SVOCs.

AOC-3 represents the area in and around SP-MW-41. Primary contaminants include 1,2,4 Trimethylbenzene, benzene, ethylbenzene, and several other components of benzene consistent with petroleum operations.

Soils

AOC-1 and AOC-2 are located in the northeastern corner of Site 7. Constituents exceeding restricted residential (RR) and protection of groundwater (PGW) Soil Cleanup Objectives (SCOs) criteria include: several volatile organic compounds (VOCs); BTEX compounds plus 1,2,4 and 1,3,5-Trimethylbenzenes); and several semi-volatile compounds (SVOCs); benzo(a)pyrene, benzo(a)anthracene, and several other petroleum aromatic compounds (PAHs). These compounds are petroleum-based materials and are consistent with the history of the site.

A number of metals which may have been associated with the former facility operations, or may have been historically placed as fill as well as ubiquitous background metals have been identified at levels above the Brownfields RR SCOs (arsenic, cadmium, copper, lead and manganese). Groundwater analysis has shown that these metals have not partitioned into groundwater. For this reason remediation of metals is not being considered. The depth of these metals and the asphalt-paved surface will prevent exposure to humans.

<u>AOC-3</u> is located in and around monitoring well SP-MW-41. There are exceedances of VOCs (Benzene, ethylbenzene, 1,2,4 Trimethylbenzene and several other VOCs in water and 1,2,4 Trimethylbenzene in soil.

Groundwater

There were two rounds of groundwater sampling and analysis conducted (June 2013, June 2016 and SP-MW-42R in October 2016). SP-MW-42R is a replacement well for decommissioned well SP-MW-42 which was located in the middle of the hotel footprint. See Appendix F for well construction details.

SP-MW-41 and 43 lie within AOCs 1 and 3. Contaminants of concern are primarily VOCs. With the exception of the ubiquitous manganese, no other metals were identified in these monitoring wells. This is further proof that the metals identified in nearby soil samples prefer to adhere to the soil particles rather than dissolve and migrate in water. Based on the above factors, no groundwater remediation of metals is proposed.

Vapors

Five vapor samples were collected on Site 7 (See Section 1.5.3). Sample S1-V1, located within the hotel footprint, identified the presence of several VOCs including 2,2,4 Trimethylpentane (4860 ug/m³). This will be mitigated by a subslab vapor control system beneath the building footprint.

Samples S1-V2, S1-V3, S1-V5 and S1-V6 each identified the presence of VOCs. These locations will be paved and will be used for parking.

Surface Water

The nearest surface water, the NYS Barge Canal, is approximately 0.25 miles west. Groundwater flow is generally to the southwest and remediation of the Site 7 AOCs should preclude any impacts to the Canal. As stated on page 7 and shown in the updated groundwater contour map, there is also a northwesterly component of flow towards Hiawatha Blvd on the SUN-1 within the AOC.

2.0 REMEDIAL ALTERNATIVES EVALUATION

2.1 Introduction

DER-10, Section 4.4(c) requires an Alternatives Analysis (AA). The AA is a report, or portion of a remedial work plan (as provided here), which describes and evaluates remedial alternatives to address contamination within Areas of Concern identified during a Remedial Investigation (RI) performed at the site. The RI results were provided in a revised report dated June 9, 2016. The analysis presented here provides an evaluation of remedial alternatives for Site 7 to demonstrate how the selected remedy best meets the multiple criteria outlined by 6 NYCRR Part 375 and ECL Article 27 Title 14, including protection of public health and the environment.

In accordance with DER 10, Section 4.4(d)(ii), all BCP projects must consider an unrestricted use option. Alternative 1 will address the unrestricted use option when evaluating the remedy selection factors while the other alternative is designed to meet the Brownfield Cleanup Program's Restricted Residential use criteria.

2.2 POTENTIAL THREAT TO PUBLIC HEALTH AND THE ENVIRONMENT

A qualitative exposure assessment was performed and was previously included in Section 9.0 of the Sites 6 & 7 RIR. Soil contamination and contaminants in other media were considered. The assessment evaluated current and foreseeable exposure pathways for Site 7, including human and wildlife exposure potential, i.e. dermal contact with soil, surface water, and groundwater; ingestion of soil, surface water, and groundwater; and inhalation of particulate matter and chemical vapors. These potential exposures were evaluated in the development of remedial alternatives and addressed in the alternatives analysis herein.

2.3 LAND USE

Development on Site 7 will consist of a hotel. Detailed information about the history of Site 7 and its surroundings is provided in the Sites 6 & 7 Remedial Investigation Work Plan (RIWP) and the Site 6 & 7 RIR. In assessing the anticipated land use, the regulatory factors have been evaluated, including but not limited to, the factors set forth in 375-1.8(f)(9) et seq.

2.3.1 Current Use/Historical and/or Recent Development Patterns

As discussed in Sections 1.7 and 1.8 of the Sites 6 & 7 RIR, Site 7 is currently used as auxiliary parking for Destiny USA (See Figure 1). In line with current development patterns, the proposed construction will transform a portion of the northwest parking area on Site 7 into a hotel facility.

2.3.2 Applicable Zoning Laws and Maps

The Destiny project is a permitted use pursuant to the Syracuse zoning rules and regulations. See City of Syracuse Zoning Ordinance, B-IX-6(6).

2.3.3 Brownfield Opportunity Areas

There are currently no established Brownfield Opportunity Areas in or near Site 7.

2.3.4 Applicable Comprehensive Community Master Plans

The Site 7 project, as part of Destiny USA, is consistent with and supports the goals of the existing City of Syracuse Comprehensive Plan 2025. The City of Syracuse Comprehensive Plan 2025 recognizes that this area is a destination for retail, entertainment, recreation, and regional transportation and that there are ongoing plans for more retail, travel, and entertainment opportunities throughout the Destiny USA facility.

2.3.5 Proximity to Residential and Other Uses

The Destiny USA BCP property consists of approximately 152 acres at the southeast end of Onondaga Lake (a Class C water body). It is bound by: Onondaga Lake, Conrail tracks, and Harbor side Drive to the northwest; Interstate 81 (I-81) to the north and northeast; Bear Street to the south and southeast; and the New York State Barge Canal to the south and southwest (See Figures 1 and 2).

Site 7 is located across the southern portion of the Destiny land generally between West Hiawatha Boulevard and Bear Street. The Site is bordered by Hiawatha Boulevard to the northwest, I-81 to the northeast, Site 9 (formerly Mobil/Penny Saver/Upstate) to the southeast, and Solar Street to the southwest. See Figure 2 "Site Location Map" for the location of Site 7. Land uses surrounding the Sites consist of business districts and mixed residential property to the north and east. The nearest urban residences are separated by Interstate 81 and are located approximately 0.5 miles away. The nearest recreational facilities are those associated with the surface water features of Onondaga Lake, located approximately 0.7 miles northwest of Site 7. Destiny USA is a commercial and recreational facility immediately across Hiawatha Boulevard northwest of Site 7.

2.3.6 Public Comment

To date, no public comments have been received associated with the Site 6 & 7 RIWP or the RIR.

2.3.7 Environmental Justice

There are no low-income minority communities on or in immediate proximity to Site 7. The prior and historic use of the Site and its surroundings has been commercial and industrial. The proposed use is not expected to cause or increase a disproportionate burden on the community where the Site 7 is located.

2.3.8 Federal or State Land Use Designations

No Federal Land Use Designations have been identified on Site 7.

2.3.9 Population Growth Patterns and Projections

Syracuse is considered a major metropolitan area according to the 2010 census. Onondaga County exhibited a -0.6% change in population between 2010 and 2014. The Destiny project is anticipated to transform the previously underutilized Site 7 and its surroundings into a hotel. This much needed project will provide the additional stimulus necessary to reverse the decreasing population trend identified in the 2010 census.

2.3.10 Accessibility to Existing Infrastructure

Site 7 currently has full access to the required utilities and transportation network. The electric, natural gas, water, and sewer utilities are currently connected to and service Destiny USA, immediately northwest of Site 7. Specific connections, and necessary environmentally-sensitive and beneficial upgrades, have been made and are continuing in accordance with all required laws and regulations.

An extensive public transportation system is in place to accommodate the additional anticipated traffic to the Site 7 development, including but not limited to I-81 and I-690.

2.3.11 Proximity to Important Cultural Resources

Site 7 is not wholly or partially included within an identified archeologically-sensitive area. The Site does not involve nor is it substantially contiguous to a property listed or recommended for listing on the New York State or National registers of historic places. No known heritage or native-American religious sites are located on or in close proximity to the Site.

2.3.12 Natural Resources

Site 7 is approximately 2000 feet from Onondaga Lake. There are no wetlands, critical habitats of threatened or endangered species, or wildlife refuges at or adjacent to the Site 7 area.

2.3.13 Potential Vulnerability of Groundwater

There are low-level contaminants in the Site 7 groundwater. While groundwater flow is generally southwest across the site, as shown on the groundwater contour map (Figure 5), some components of groundwater flow on the SUN-1 parcel are to the west-northwest towards Hiawatha Blvd. and the New York State Barge Canal. No significant migration of these contaminants is anticipated from Site 7 to the Barge Canal. In addition, there are no wellhead protection areas or groundwater recharge areas for potable sources on or in close proximity to the Site 7 property.

2.3.14 Proximity to Flood Plains

The FEMA Flood Insurance Rate Map indicates that Site 7 is located within a Zone C flood zone; areas with minimal flooding. It should be noted that the effective date of the FEMA map is May 3, 1982. Since that time, grading and construction of the auxiliary Destiny USA parking lots have modified (i.e. increased) the grade elevation at on Site 7.

2.3.15 Geology and Hydrogeology

Surface deposits at Site 7 consist of imported fill materials composed of silt, sand, and clay, some of which is intermixed with that derived from foundry slag.

Underlying the fill materials in Site 7 is the truly "native" soil, or unconsolidated deposits, that were present at and beneath the ground surface prior to development of the area, which consist of the following:

- Salt marsh deposits, including marl, shells, peat, and organic material;
- Deltaic sand and gravel these deposits can exceed 100 feet in thickness;
- Lacustrine (Lake) silt and clay these deposits vary from approximately 40 to almost 200 feet in thickness;
- Glacial outwash these deposits consist primarily of sand and gravel; and
- Glacial till this relatively thin (<30 feet) deposit consists of a heterogeneous mixture of silt, sand, gravel, and cobbles.

See sections 2.1 and 2.2 the Site 6 & 7 RIR for a more detailed discussion of these topics.

2.4 REMEDY SELECTION FACTORS

The alternatives described in Section 2.4 have been evaluated against the following remedy selection factors consistent with the NYSDEC BCP:

a) Conformance to Standards, Criteria, and Guidance (SCGs)

These criteria evaluate the alternatives against the federal and New York State legal and engineering standards identified for the Site. This evaluation also considers the RAOs developed for the Site as identified in this Section.

b) Overall Protectiveness of Public Health and the Environment

Protection of public health and the environment is evaluated on the basis of estimated reductions in the potential for both human and environmental exposure to contaminants for each remedial alternative. The evaluation focuses on whether a specific alternative achieves adequate protection under the conditions of the site's future use and how site risks are eliminated, reduced or controlled through treatment, engineering or institutional controls.

c) Short-term Effectiveness and Impacts

Evaluation of short-term effectiveness and impacts of each alternative examines health and environmental risks likely to exist during the implementation of a particular remedial alternative. Principal factors for consideration include the expediency with which a particular alternative can be completed, potential impacts on the nearby community, onsite workers and environment, and mitigation measures for short-term risks required by a given alternative during the necessary implementation period.

d) Long-Term Effectiveness and Permanence

Examination of long-term impacts and effectiveness for each alternative requires an estimation of the degree of permanence afforded by each alternative. To this end, the anticipated service life of each alternative must be estimated, together with the estimated quantity and characterization of residual contamination remaining on-site at the end of this service life. This evaluation also includes the adequacy and reliability of controls required for the alternative, if required.

e) Reduction in Toxicity, Mobility and/or Volume of Contamination

Reduction in toxicity, mobility, and/or volume of contamination is evaluated on the basis of the estimated quantity of contamination treated or destroyed, together with the estimated quantity of waste materials produced by the treatment process itself.

f) Implementability

Evaluation of implementability examines the difficulty associated with the installation and/or operation of each alternative and the proven or perceived reliability with which an alternative can achieve performance goals.

g) Cost Effectiveness

Cost evaluations presented in this document estimate the capital, operation, monitoring and maintenance (OM&M) costs associated with each remedial alternative.

h) Community Acceptance

Community acceptance evaluates the technical and administrative issues and concerns that the community may have regarding each of the alternatives. Community acceptance will be gauged through the 45 day statutorily required public comment period for the Site 7 Remedial Work Plan (RWP). Public comments will be considered and incorporated into the final approved Site 7 RWP.

i) Land Use

Evaluation of land use examines whether the alternative is suitable for the Site, based on current and future use of the Site and its surrounding factors.

2.5 EVALUATION CRITERIA

2.5.1 Standards, Criteria, and Guidance (SCG)

The remedial alternatives were developed in consideration of the following standards, criteria and guidance (SCG) documents:

Soil:

• New York Codes, Rules and Regulations, Title 6 (6NYCRR), Chapter IV, Subpart 375-6: *Remedial Program Soil Cleanup Objectives*, and DEC *CP-51 I Soil Cleanup Guidance*, Issued October 21, 2010.

Groundwater:

- DEC Technical and Operational Guidance Series (TOGS) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, June 1998.
- 6NYCRR Part 703: Surface Water and Groundwater Quality Standards and Groundwater Effluent Limitations.

Soil Vapor:

- NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006.
- NYSDOH Trichloroethene (TCE) In Indoor and Outdoor Air -August 2015 Fact Sheet.

Waste Characterization Analysis:

• DEC 6NYCRR Part 371, Identification and Listing of Hazardous Wastes.

Alternatives Analysis Guidelines:

- DEC DER-10 Technical Guidance for Site Investigation and Remediation, May 2010.
- DEC DER-31 Green Remediation, January 20, 2011.

2.6 REMEDIAL ACTION OBJECTIVES (RAOS)

Remedial action objectives (RAOs) are goals developed for the protection of human health and the environment. Identifying these objectives requires an assessment of the contaminants and media of concern, potential migration pathways, exposure routes, and potential receptors. Typically, remediation goals are established based on standards, criteria, and guidelines (SCGs) to protect human health and the environment.

2.6.1 Soils

AOC-1, AOC-2, AOC-3 and Hotel Footprint

RAOs for Protection of Public Health

In consideration of the current and reasonably foreseeable future of the Site, the RAOs are based on soil cleanup objectives (SCOs) for Protection of Public Health – Restricted Residential (RR) Site use with respect to the following exposure pathways:

- Dermal contact or ingestion of subsurface soils during Site disturbance activity;
- Inhalation of windblown surface soils.

RAOs for Environmental Protection

- Prevent migration of contaminants that would result in downgradient groundwater contamination.
- Reducing the potential for downward migration of contaminants to groundwater by surface runoff.
- Restriction of groundwater use.

2.6.2 Groundwater

RAOs for Protection of Public Health

• Prevent ingestion of contaminated groundwater.

RAOs for Environmental Protection

- Reduce the levels of soil and groundwater contaminants to the extent practicable.
- Mitigate impacts to public health by incorporating an environmental easement which restricts usage of on-site groundwater.

2.6.3 Vapors

RAOs for Protection of Public Health

 Prevent contact or inhalation of contaminant vapors from subsurface soil or contaminated groundwater.

RAOs for Environmental Protection

- Reduce the levels of soil and groundwater contaminants to the extent practicable.
- Mitigate impacts to public health resulting from existing or potential soil vapor intrusion into buildings at the site by implementing an engineering control consisting of a vapor control system beneath the hotel footprint.

A Restricted Residential use cleanup, utilizing institutional and engineering controls as described herein, meets these RAOs. NYSDEC and NYSDOH regulatory standards and guidelines were used to evaluate the soil, soil vapor, and groundwater quality to assess remedial alternatives.

2.7 CONTEMPLATED END USE AND SELECTION OF CLEANUP TRACK

Site 7 is part of the Destiny USA lands, a project that is anticipated to be operated as a unique development that will include retail, entertainment, dining, hospitality, and tourism facilities. At this time work in the project area of Site 7 will include the construction of an onsite hotel. Development of the hotel will require the advancement of piles to bedrock, soil excavation to a depth of approximately 4 feet bgs to install pile caps, utility lines, grade beam footings, a subslab vapor control system, and a concrete slab floor.

Treatment of three identified areas of concern is also included in the cleanup track. These areas (AOC-1, AOC-2, AOC-3) will be addressed by a process known as in-situ chemical oxidation.

3.0 REMEDIAL ALTERNATIVES

Site 7 contains approximately 27 acres that include the former Oil City parcels (SUN 1, SUN 2, Alaskan 22), a portion of Solar Street (1.25 acres), and a portion of Hiawatha Boulevard. The RIR identified one general primary Area of Concern (AOC) defined by contaminants in soil and/or groundwater (See Figure 4A) and subsequent sampling further refined the AOC into three AOCs (Figure 4D). The summary results of the 2013 and 2016 sampling events are shown in Figures 4B and 4C and in the summary tables. The laboratory data is provided in Appendix E.

3.1 ALTERNATIVE 1 - EXCAVATION AND OFF-SITE DISPOSAL OF CONTAMINATED SOIL AND TREATMENT OF GROUNDWATER TO UNRESTRICTED USE CONDITIONS

Description

Alternative 1 consists of full excavation of the contaminated zone across the 27 acres and in-situ chemical oxidation (ISCO) treatment of groundwater beneath the site. Based on sampling results from the approved Remedial Investigation Report (RIR - June 16, 2016), the soil cleanup standards for unrestricted use were exceeded at multiple locations both spatially and at depths across the site. After an assessment of the location of the exceedances of unrestricted soil levels across Site 7, it would be impractical to isolate and excavate "hot spots" that were spatially at different depths across the site. This would require considerable handling and re-handling of excavated material in an attempt to extract the contaminated material. For this reason, the option of full excavation was determined to be the best approach to achieve a goal of unrestricted use.

With the exception of 3 samples in AOCs 2 and 3, where contamination was identified at or around the 4 foot level, the top 4 feet of soil is considered uncontaminated and reusable. The contaminated zone is 8 feet in depth (4 fbgs - 8 fbgs). To implement this remedy the top 4 feet of soil will be excavated and stockpiled. The remaining soil (4' - 8') would be excavated and disposed of at a regulated facility.

Excavation of the 1,176,120 square feet from 0-12 feet bgs generates approximately 522,720 cubic yards of material. The first 4 feet (174,240 cubic yards) will be set aside and ultimately placed back in the excavation. The remaining 348,480 cubic yards (435,600 tons) of excavated soil will be disposed at a permitted disposal facility and replaced with suitable fill. This alternative will remove the contaminants of concern (COCs) to levels that will support an unrestricted land use designation within the designated areas.

During excavation, soil samples will need to be collected in order to ensure that the full extent of contamination has been removed. Similarly, due to the depth of excavation, groundwater will

need to be pump, stored, analyzed, and either discharged to the County municipal system or disposed at a regulated facility.

This alternative, while all inclusive, is impractical to implement. The construction schedule would last for an entire construction season and disruption of the project area is not consistent with the construction of the hotel. The logistics of moving this quantity of soil are considerable.

Treating groundwater to drinking water standards will take several years with ongoing monitoring. During that time thousands of cubic yards of newly placed clean fill will likely be re-contaminated by the existing groundwater.

There are short term risks (exposure to workers) along with long term risks (excavation and redistribution of contaminated soil to landfills).

Assessment

This alternative is protective of human health and eliminates the mass of contamination at the site by excavating soil and treating groundwater. The alternative is consistent with the proposed land use. Based on current zoning plans, the hotel with adjacent parking is consistent with the surrounding business.

During implementation of this remedy there is an extensive short term risks for workers, the community and the environment. It would provide the most exposure of contaminated soil to workers and windblown dust to the public.

The project would be extended for several months to allow for complete excavation. Trucks carrying contaminated soil over highways to regulated disposal facilities would increase substantially. The construction schedule would be significantly affected (delayed) until the hotel footprint area could be brought back to subgrade level.

3.2 Cost

The capital cost of this alternative is based on estimated unit costs for contractors, materials and disposal facilities.

Description	Quantity	Cost Per Unit	Total
Mobilization/Demobilization	1 CY	\$100,000	\$100,000
Excavation and Handling	536,000 CY	\$25	\$13,400,000
Disposal	435,600 tons	\$50	\$21,780,000

Backfill	348,480 CY	\$25	\$8,712,000	
Sampling	500 samples	\$600	\$300,000	
Groundwater Treatment (Chemical Oxidation Solution Activated Provect-Ox®)	348,480 CY	\$9	\$3,136,320	
Drill Rigs & Crew (Injection)			\$500,000	
Community Air Monitoring Plan (CAMP)			\$110,000	
	Subtotal Construction Costs			
Construction Contingencies ~10%			\$4,803,832	
Management Oversight	110 days	\$1000	\$110,000	
Total Cost of Alternative 1				

3.3 ALTERNATIVE 2 - IN-SITU TREATMENT OF THE AREAS OF CONCERN (AOCS), SUB-SLAB VAPOR CONTROL SYSTEM BENEATH THE BUILDING FOOTPRINT AND SITE COVER (BCP RR SCO)

Description

This alternative consists of a combination of in-situ injection to treat contaminated soil within the defined AOCs, and an engineering control in the form of the subslab vapor control system that will be installed beneath the hotel footprint.

It is important to note that the four (4) foot deep footprint beneath the hotel is not included in the assessment. The reason is because the footprint would have to be excavated for the purposes of construction, the cost for this activity is not included in the remediation alternative.

3.3.1 AOC Remediation

Subsurface contamination within the AOCs will be treated by direct-push injection of a chemical oxidation solution called Provect-OX[®]. The VOC and SVOC compounds in exceedance of BCP Restricted Residential Soil Standards are treatable with Provect-OX®. Provect-OX[®] is a self-activated solution that when injected is designed to degrade VOCs and SVOCs by using oxidants to facilitate conversion of these recalcitrant compounds to CO₂ and H₂O or less toxic and more

biodegradable intermediates. Provect-OX® is mixed with a ferric iron, yielding sulfate (SO4 ²⁻) and ferrate (Fe⁴⁺ to ⁶⁺) radicals upon injection, both of which contribute to chemical oxidation of contaminants. Oxidation of the COCs can continue for up to 4 months.

In-situ treatment, which will take approximately 13 days to implement, is designed to initially remediate the VOC and SVOC contaminants in the immediate area of injection within the AOCs. The injection solution will migrate with groundwater flow, continuing to oxidize the contaminants for approximately four (4) months after which remediation will continue in the form of bioremediation. This process will reduce contaminant concentrations in soil and groundwater to desired levels. Over the following 6 months two sampling events will be conducted (3 months apart). The five (5) observation wells will be sampled to assess the progress of the remediation. A more detailed description of this remedy is provided in Appendix D. Alternative 2 will remediate VOCs/SVOCs in soil by reducing the existing contaminant concentrations with a goal of achieving compliance with BCP RR SCOs. The AOCs are defined by the elevated levels of contaminants (VOCs/SVOCs) in the soil and/or groundwater samples collected during the remedial investigation and more recently as described in Section 1.5.

3.3.2 Site Cover System

With the exception of perimeter grassy areas, parking lot medians, and the remaining fenced-in drainage swale on the SUN-2 parcel, the entire area will be paved. The asphalt pavement serves as a site cover (surface cap), which limits exposure of subsurface contaminants to the aboveground environment as well the intrusion of stormwater into the groundwater across the site. Currently there is clean subbase stone and gravel beneath the asphalt surface. Where the asphalt is cut to accommodate the medians in the hotel parking lot, the existing gravel subbase material and top soil will be used to achieve the two (2) feet of fill. All other perimeter grassy areas within the project site boundary will be covered with two (2) feet of clean fill.

3.3.3 Vapor Control System

The primary objective of the vapor control system (VCS) is to prevent vapors from entering any occupied space within the hotel. The VCS prevents vapor contaminants from entering the building footprint by diffusion where vapor molecules move to areas of lower pressure gradients. The VCS will contain a positive pressure zone sandwiched between an impermeable layer and the concrete floor slab. Positive pressure air will be injected into the zone at a level above atmospheric. The pressure will be monitored and maintained year-round. Potential subsurface contaminant vapors, which migrate by diffusion, cannot penetrate a zone of higher pressure. A detailed description of this remedy is provided in Appendix C.

3.3.4 Environmental Easement

Site 7 will have an environmental easement that will include both an institutional and an engineering control. The institutional control will address a restriction on the use of groundwater on the Site. Destiny does not require access to groundwater beneath the Site as they are connected to an existing municipal water supply system. Under these circumstances, the groundwater presents no threat to human health or the environment. The engineering control will address the operation and maintenance of the Vapor Control System beneath the hotel building footprint.

Assessment

This alternative is protective of human health and reduces the volume of contamination at the site by treating in-situ soil and groundwater in the AOCs. The entire area outside of the building footprint will be paved save for landscaped areas which will have one foot of clean soil placed over the subbase. The chemical oxidation process will take approximately 13 days to complete. Next there will be two groundwater sampling events of the five observation wells. The vapor control system will be completed along with completion of the hotel.

During implementation of the remedies short term risks for workers, the community and the environment would include dermal exposure and some potential for contaminant migration during the excavation of the building footprint. The in-situ treatment technology to be implemented in the AOCs will minimize exposure to workers and the public.

The adjacent properties are occupied by major highways and do not represent sensitive receptor areas. The remedies are effective in the long term because the subslab mitigation system will be a continuous year round operation and the in-situ treatment is designed to work over an extended time-release period.

This alternative meets the definition of "presumptive remedy" as per DER-10 guidelines. It is readily implementable through use of standard equipment such as compressors, drill rigs, injection pumps, etc. An environmental easement which will restrict the use of site groundwater will be included with the remedy.

The alternative is also consistent with the proposed land use. Based on current zoning plans, the hotel with adjacent parking is consistent with the surrounding business.

3.4 Cost

3.4.1 Vapor Mitigation System

A breakdown of costs for the installation of the system is not available. A lump sum cost of installation is provided.

Vapor Mitigation Estimated Cost

Description	Quantity	Units	Cost	Total
Vapor Control System	1	LS	\$250,000	\$250,000

3.4.2 In-Situ Chemical Oxidation (ISCO)

The cost estimate for implementing the ISCO treatment system is approximately \$125,000 as shown in the table below. The cost described below assumes one initial application of the chemical oxidation treatment is sufficient to reduce the concentration of the existing chemicals of concern. Confirmation of the effectiveness of the mitigation will be assessed by sampling the down gradient monitoring wells incorporated in the design. The results of the sampling will determine whether the process is successfully achieving the goal of reducing contamination in the source zone.

In-Situ Treatment Estimated Cost

Description	Quantity	Cost
Drill Rig & Crew	13 days	\$20,000
Chemical Oxidation Solution Provect-OX®	19,500 lbs.	\$39,770
New Observation Wells	3 wells	\$6,849
Environmental Oversight and Project Management	13 days	\$13,000
In-Situ \$79,619		Total
Total for \$329,619	Alternative	2

Operation and Maintenance costs are provided in Section 7.4.

3.5 ALTERNATIVES ANALYSIS FINDINGS SUMMARY

Alternative 2 presents a viable solution to accommodate both site construction and provide protection of human health and the environment. It is preferred because it achieves the BCP RR SCOs and RAOs by being most implementable, eliminates public exposure to contaminants, has a high probability of success, and has the added benefit of being cost effective. For these reasons, Alternative 2 - In-Situ Treatment of the Area of Concern (AOC) and Sub-Slab Vapor Control System beneath the Building Footprint and Site Cover is the selected alternative.

4.0 SUMMARY OF SELECTED REMEDY

4.1 Introduction

Each of the two alternatives meet the RAOs either by direct removal, treatment, mitigation through institutional and engineering controls, or a combination of these consistent with the hierarchy of source removal and control measures set forth in 375-1.8(c). As demonstrated in the previous sections, Alternative 1 does not meet the evaluation criteria for implementability and cost effectiveness.

Alternative 2 presents an implementable and cost effective solution. It is preferred because it achieves the RAOs, is most implementable, eliminates public exposure to contaminants, has a good probability of success, and has the added benefit of being cost effective.

The selected remedy meets the criteria provided by the BCP program, including the protection of public health and the environment. An easement to restrict groundwater use will be in place at the Site, and will be maintained with the selected remedy for the Site as long as necessary.

4.2 DESCRIPTION OF SELECTED REMEDY

Alternative 2 - In-Situ Treatment of the Area of Concern (AOC), Sub-Slab Vapor Control System beneath the Building Footprint, and Site Cover

There are two distinct tasks included in Alternative 2. One is to address the potential for vapor intrusion by installing a vapor control system (VCS) below the proposed building footprint and mitigating the potential exposure from subsurface vapors. The second is to address contamination outside the footprint in the Areas of Concern (AOCs).

4.2.1 In-Situ Chemical Oxidation (ISCO) Treatment of the Areas of Concern

Remedial treatment will be applied to the identified Areas of Concern (AOCs) (See Figure 4D). The AOCs are being treated to address elevated levels of VOCs/SVOCs in the soil. An institutional control in the form of an environmental easement will restrict the use of groundwater and will meet the RAOs by rendering the site protective of public health and the environment.

Figures 4B and 4C present the results of all sampling conducted on Site 7 in 2013 and 2016. A generic AOC was identified in the 2015 RIR (Figure 4A) and the recent results were used to define more specific AOCs with soil and groundwater contamination. These AOCs represent approximately 11,000 square feet of ground surface. Depth of contamination generally ranges from 4-12 feet bgs. For system design purposes, an 8 foot vertical interval is assumed for each AOC. This results in a volume of approximately 3000 cubic yards (3,750 tons) to be treated.

The in-situ treatment will include injections of oxidizing solutions designed to address both VOCs and SVOCs contaminant concentrations present.

Chemical Oxidants (Provect-OX®) will be injected at 2 foot intervals at depths ranging from 4-12 feet bgs. Depth of the injections is dependent on the contaminant levels identified throughout the investigation. A complete description of the chemical oxidation process to be employed at this site including, oxidation chemicals, design plan, cost, and performance effectiveness can be found in Appendix D.

4.2.2 Sub-Slab Vapor Control System

The vapor control system isolates and prevents the migration of subsurface vapor phase contaminants into the enclosed occupied building spaces, and provide protection with two complimentary systems: passive control consisting of a continuous impermeable (primary) membrane and active control consisting of a sub-slab pressurized space. The continuous impermeable membrane provides a physical barrier to migration of vapors originating below the building footprint. A continuous zone of positive pressure (above atmospheric) below the floor slab and above the impermeable membrane, completely inhibits any potential movement of ground source vapor in an upward direction toward the floor slab, thereby providing redundant control and protection of the occupied space inside the building. A complete description of the design and system verification process of the vapor control system is provided in Appendix C.

5.0 REMEDIAL CONSTRUCTION ACTIVITIES/SITE MANAGEMENT PLAN

The Site 7 RWP provides that remedial construction activities include pre-mobilization work such as obtaining any necessary permits, followed by mobilization to Site 7, site preparation, traffic control, security, health and safety planning, air monitoring implementation, off-site transportation and disposal of waste, construction of a storm water detention system. A description of the remedial construction activities are as follows.

5.1 CONSTRUCTION HEALTH AND SAFETY PLAN

A site specific Health and Safety Plan (HASP) has been prepared and is attached as Appendix A. All contractors and subcontractors performing work on Site 7 are required to read and comply with the requirements of the HASP.

5.2 COMMUNITY HEALTH AND SAFETY

5.2.1 Community Air Monitoring

The selected remedy includes a Community Air Monitoring Plan (CAMP) providing real-time and continuous volatile organic compound and particulate monitoring during all ground intrusive activities including grading and excavations.

Section 6.1 of the Site HASP outlines the Community Air monitoring Program required for Site 7 to implement this remedy.

5.2.2 Site Access and Traffic Control

See sections 3.0 and 6.0 of the HASP for information regarding site access and designation of responsibilities.

5.3 DATA QUALITY OBJECTIVES, QUALITY ASSURANCE/QUALITY CONTROL PLAN (QA/QC)

5.3.1 Data Quality Objectives

Analytical results are reviewed with respect to laboratory compliance with EPA methods and reporting, and with the NYSDEC Analytical Services Protocol. All analytical data packages will be provided to NYSDEC in Category A (as defined by ASP) deliverable format as part of the Site 7 Final Engineering Report (Site 7 FER).

Data quality is reviewed to ensure that the analytical results are indicative of the quality of the media that have been sampled and the environmental conditions from the locations at which the samples were obtained.

The data quality review ensures that the evaluation of the data leads to a proper determination of the significance of the results and determination of any additional remedial measures that might be required. Appendix B contains a complete QA/QC Plan for the remedial activities at Site 7.

5.3.2 Quality Assurance/Quality Control

A significant number of sub-surface soil samples were collected during the remedial investigation of Site 7. The soil sampling included 33 soil borings at multiple depths and below the groundwater across all of Site 7. Four samples were collected from 2 soil borings within the project footprint and 10 samples were collected across the bottom of the footprint during excavation. An additional 21 samples were collected during the supplemental sampling event to more accurately define the AOCs. The samples were analyzed for volatile organic compounds by EPA method 8260 Target Compound List (TCL), semi-volatile organic compounds by EPA method 8270 TCL, PCBs by EPA Method 8082, and methods applicable to the Metals Target Analyte List (TAL) to document residual soil contamination beneath Site 7.

5.3.2.1 *General QA/QC*

It is appropriate for the selected laboratory to perform all analyses in accordance with accepted EPA SW-846 methods including appropriate QA/QC samples including but not necessarily limited to blind field duplicates, matrix spike/matrix spike (MS/MSD) duplicates, and trip blanks. Laboratory analysis and procedures are generally performed by NYSDOH certified laboratories approved for performing all analysis and procedures.

5.3.2.2 Laboratory QA/QC

The Site 6 & 7 RIWP required that the laboratory analyzing the collected soil and groundwater samples perform all required internal QA/QC evaluations consistent with the EPA methods performed. Any deviations from standards, discrepancies, and data qualifications must be noted.

5.3.2.3 Data Review

Analytical results are reviewed for quality with respect to practicable quantification limits and method detection limits, including an evaluation of all QA/QC samples and the laboratory QA/QC results. A Data Usability System Report (DUSR) was provided in the Site 6 & 7 RIR.

5.3.2.4 QA/QC Air Monitoring

A professional Environmental Air Monitoring company will be used to perform the quality Assurance and Quality Control for the implemented community air monitoring.

5.3.2.5 Engineering Oversight

All remedial field activities conducted for the selected remedy are subject to supervision by an on-site qualified environmental professional, whether an employee, consultant, or contractor.

5.4 STORMWATER POLLUTION PREVENTION PLAN

The Site 7 RWP includes management of stormwater, soil erosion, and sediment control in accordance with the stormwater pollution prevention plan ("SWPPP"), submitted to the NYSDEC on March10, 2016.

5.5 PERMITS

The construction contractor obtains federal, state, and city permits, as necessary. No permits other than those required in connection with construction have been identified.

5.6 SITE PLANS AND AS-BUILT DRAWINGS

The Site 7 RWP includes a scaled site map showing the limits of the remedial program. As-built drawings will be submitted showing the results of the construction activities as part of the Site 7 FER. The as-built drawings show the final limits and elevations of excavations, vapor control system component locations, and limits of backfill.

5.7 SITE SECURITY, CONTROL, AND ACCESS

Site security, control, and access are governed by the existing HASP, attached as Appendix A.

5.8 TRAFFIC CONTROL

Traffic control is addressed in the existing HASP, attached as Appendix A.

5.9 SITE PREPARATION AND TEMPORARY FACILITIES

Site preparation and temporary facilities are addressed in the existing HASP, attached as Appendix A.

5.10 EQUIPMENT AND MATERIAL STORAGE AND LAY DOWN AREAS

The Site 7 RWP provides for storage of equipment and materials in the contractor lay down areas (to be designated at a future time) within Site 7.

5.11 PPE, EQUIPMENT AND PERSONNEL DECONTAMINATION PROCEDURES

See Appendix A, Section 5.0 "Site Specific Health and Safety Requirements" for PPE levels, and equipment and decontamination procedures.

5.12 EXCAVATION PLAN

The Site 7 RWP includes soil excavation at the Site. It also includes monitoring and screening of excavated soils for visual or olfactory evidence of petroleum contamination, with notification to the NYSDEC in the event that petroleum contaminated soils are detected using the screening protocol. As approved by the DEC, excavated soil demonstrating PID readings greater than 100 ppm must be disposed at a permitted facility. All excavated material with a PID reading less than 100 ppm must be tested and after review and approval by the DEC, may be reused on site.

The primary excavation for the hotel footprint and site grading will exist in the 0-4 foot range with three locations (two elevator shafts and a swimming pool) expected to range from 0-10 feet below grade. The existing northern most stormwater swale is being replaced with a subsurface pipe retention system. The contractor's plan is to reuse as much construction-suitable excavated material as possible as fill in the retention system and elsewhere on site. All unused material or known contaminated material will be disposed of or treated in accordance with applicable requirements.

5.13 VAPOR, ODOR, AND DUST CONTROLS

Vapor, odor, and dust controls are addressed in the existing HASP, attached as Appendix A. As discussed in Section 4.2, the Site 7 RWP includes use of a community air monitoring plan throughout the duration of the excavation work to monitor emissions. Community air monitoring program action levels are presented in Appendix A, Section 6.1.

5.14 MATERIAL HANDLING PROCEDURES

5.14.1 Debris

In the event on-site debris such as brick, wood timbers, concrete, and metal are encountered, the handling of debris shall be consistent with the existing HASP

5.14.2 Groundwater

If groundwater is removed during excavation, it will be collected and disposed of off-site in accordance with existing regulations.

5.15 EXCAVATED SOIL STOCKPILING

Soil exhibiting petroleum contamination with a PID reading of 100 ppm or greater will be stockpiled and managed pursuant to NYSDEC directive. Stockpiled soil will ultimately be reclaimed and reused and/or disposed of in accordance with regulatory requirements.

5.16 CONTINGENCY PLANS

5.16.1 Utility Emergencies

New York State rules and regulations govern utility mark-out completion. The Site 7 RWP includes notifying Dig Safely New York for utility mark out and making utility mark out requests at least 72 hours prior to initiating fieldwork. In addition, this remedy includes review of existing utility maps and consultation of site management prior to any ground disturbance.

5.16.2 Discovery of Underground Storage Tanks or Vessels

The following procedures will be followed if any tanks, vessels, or conduits (e.g., piping containing liquids) are discovered during excavation:

- Removal and disposal of contaminants in accordance with all applicable State and Federal requirements within a schedule approved by the Department;
- Notify the NYSDEC Project Manager, Project Engineer, and environmental consultant by telephone or cellular phone within 24 hours, and e-mail of the environmental conditions;
- Photo-document identified conditions:
- A determination of the type, state, and volume of any contained material;
- If the contents cannot be identified by physical conditions, a sample will be collected for chemical analysis. Based on analytical results the Site Health and Safety Officer will determine the need for a change of PPE;
- Removal and transport for off-site disposal by an appropriate waste hauler when the contents have been identified;
- Retention of manifests for volume of product for inclusion in the Final Engineering Report;
- Appropriate cleaning, treatment, and/or disposal of structure; and
- Spill notification to NYSDEC, if applicable.

6.0 IMPLEMENTATION OF ENGINEERING AND INSTITUTIONAL CONTROLS

6.1 ENGINEERING CONTROLS

The selected remedy includes use of engineering controls (vapor barrier and positive pressure vapor control system) and institutional controls (environmental easement conforming to Article 71 Title 36 of ECL). These controls prevent exposure to any potential contaminants as discussed previously. The engineering control will be maintained pursuant to the Operations, Maintenance and Monitoring Plan (OM&M Plan) developed pursuant to the BCP requirements. A complete description of the vapor control system and verification process is provided in Appendix C.

6.4 INSTITUTIONAL CONTROLS

The Site 7 RWP provides for the implementation of institutional controls for the Site. The institutional controls will provide the necessary non-physical protections and provide notice to properly limit potential human or environmental exposure to contaminants. The institutional controls for Site 7 include establishment of an environmental easement that will:

- ensure that use of the Site is restricted to restricted residential use (as defined in the BCP) and that the engineering controls, as described herein, remain in place;
- ensure appropriate future use and that future property owners are aware of the existing conditions on Site 7;
- include a restriction prohibiting use of groundwater on Site 7;
- include required notifications prior to commencement of any ground-intrusive activities that may encounter contaminated materials. Notification of NYSDEC and any on-site workers may be required prior to excavating soil;
- include notice of and information relating to a soil management plan, identifying requirements in the event of excavation, which will be included as part of the operations and maintenance monitoring plan;
- include notice of and information relating to a health and safety plan and community air monitoring plan for use during future ground-intrusive activities, which will be described in the OM&M Plan;
- providing notice of continued periodic soil vapor intrusion monitoring on Site 7, which will be described in the OM&M Plan;
- include notice of the annual inspection program to ensure appropriate use of the Site and minimize potential for exposures, which will be described in the OM&M Plan; and

• include notice of the annual certification program requiring the owner to certify that the institutional and/or engineering controls are in place, have not been altered, and are still effective, which will be described in the OM&M Plan.

In addition to the above institutional controls, the remedy requires that the vapor barrier, vapor control system, and concrete slab installed as part of building construction serve as the engineering control for the Site.

7.0 REPORTING AND DOCUMENTATION

This Site 7 RWP involves periodic progress reporting and maintenance of project records during remedial construction to enable involved parties (e.g., overseeing engineer and project managers) to track the project with respect to schedule and the requirements of the RWP. Additionally, after completion of remedial construction, an FER, including a comprehensive report of remedial action, will be prepared.

7.1 MONTHLY PROGRESS REPORT

The Brownfield Cleanup Agreement provides that monthly Progress Reports are prepared and submitted after approval of the first work plan.

7.2 On-site Record Keeping/Documentation of Activities

The Site 7 RWP provides that, throughout implementation of the remedial action, records are maintained by the construction contractor and/or engineer performing construction inspections to document activities completed on Site 7.

7.3 SITE 7 FINAL ENGINEERING REPORT

The remedial activities completed pursuant to this Site 7 RWP will be documented in the Site 7 FER in accordance with BCP requirements. This reporting will include the following:

- 1. Description of remedial actions performed;
- 2. Deviations from the RWP, if any;
- 3. Copies of records maintained during the remediation;
- 4. Problems encountered during construction and their resolution;
- 5. A discussion on the quantification and listing of waste/contaminants treated or removed from the site;
- 6. Detailed "as-built" drawings showing the surveyed limits of the excavation, the locations of documentation samples, construction details;
- 7. Copies of all records documenting off-site disposal of waste material;
- 8. Documentation of sampling results;
- 9. A summary of visual soil screening results;
- 10. An estimate of the volume of excavated soil which exceeded the headspace soil screening criteria;
- 11. A summary of laboratory analytical results of soil stockpile sampling and a compilation of laboratory analytical data reports;

- 12. Documentation including photographs that clearly identify the location of the stockpiles and demonstrates the effective containment of the excavated soils; and
- 13. The Site 7 FER will include a certification by a Professional Engineer registered in New York State, stating that the work was implemented and construction activities were completed in substantial conformance with this RWP and that the engineering and institutional controls are implemented according to state and local codes and regulations.

Additionally, the Site 7 FER will document that the remedial objectives of the Site's remedial program have been or will be achieved.

7.4 OPERATION, MAINTENANCE, AND MONITORING (OM&M) PLAN

An OM&M Plan will be developed for Site 7 and included in the Site 7 FER to provide a detailed description of the procedures to be followed in order to properly manage any residual contamination left in place following completion of the remedial action, including operation and maintenance of the implemented engineering controls, institutional controls, monitoring of ongoing environmental conditions (soil vapor and groundwater), and compliance with applicable state regulations.

7.4.1 OM&M Cost

An estimate of the costs (in current dollars) associated with implementation of this OM&M Plan is presented below. The Developer will implement the OM&M plan as part of the maintenance and operation of the project. No financial assurances are warranted.

In-Situ Treatment

Item	Quantity	Units	Est. Unit Cost	Est. Total
Groundwater Monitoring (5 Observation Wells) First Year*	4	Year	\$3,000	\$12,000
Annually thereafter*	1	Year	\$3000	\$3,000

^{*} Quarterly monitoring during first year only. Reduce to once per year after successful treatment with DEC approval.

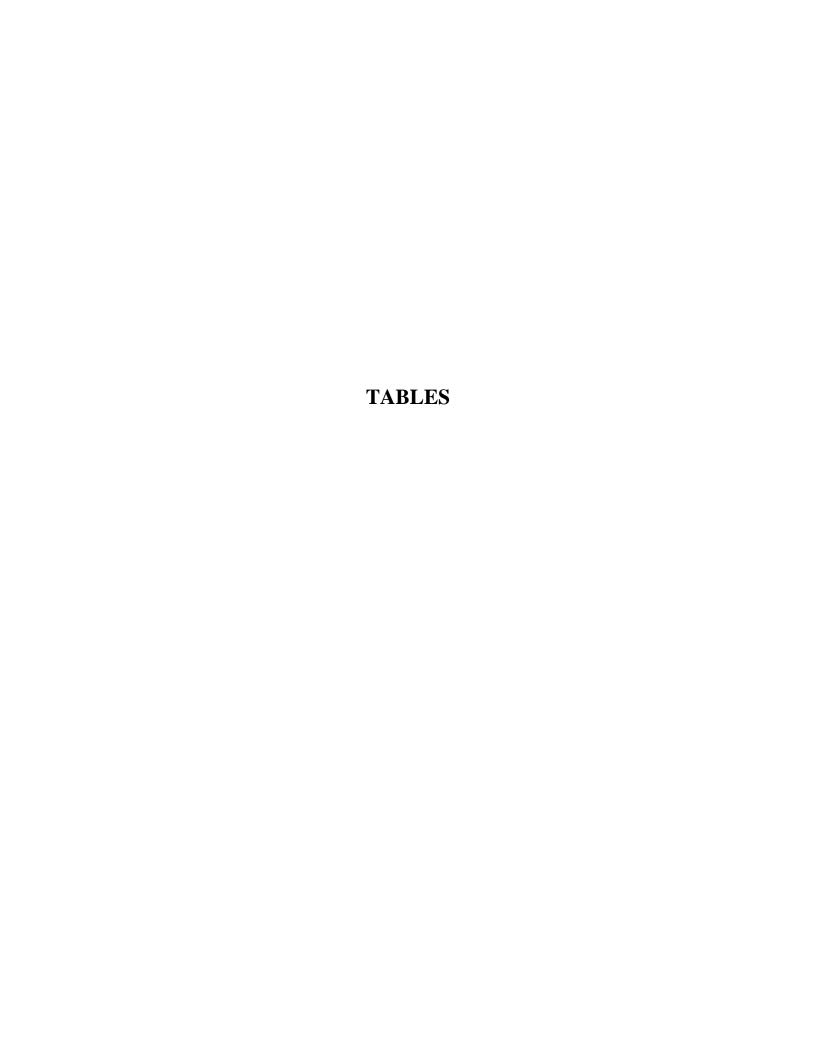
Vapor Control System

Item	Quantity	Units	Est. Unit Cost	Est. Total
Periodic Review Reports	1	Year	\$1,000	\$1,000

Estimated Annual OM&M Cost (First Year)	\$13,000
---	----------

8.0 PROJECT MANAGEMENT

8.1 KEY PARTICIPANTS AND RESPONSIBILITIES


Key participants involved in the remediation and development of Site 7 under the Brownfield Cleanup Program include the following:

Key Participants	Primary Responsibilities
Primary Contractor: Hueber-Breuer	Oversee implementation and reporting for remediation and construction in accordance with development plans. Construction inspection, record keeping,
Developers: Destiny USA Real Estate LLC	Procure and direct contractors and consultants for design, remedial construction and site development in accordance with approved construction documents.
Regulatory Agencies: New York State Department of Environmental Conservation and New York State Department of Health	Regulatory oversight.
Remediation/Construction Contractor: Hueber-Breuer and Spectra (ISCO treatment)	Furnish labor, material, supplies, etc., for remedial construction and site development in accordance with approved plans.
Environmental Consultant: Spectra Engineering, Architecture and Surveying, P.C.	Provide environmental engineering planning and field oversight with respect to mass excavation and associated soil management activities.
	Reporting, construction inspection, and record keeping, related to construction of the vapor barrier and vapor control system, and preparing the Final Engineering Report.

8.2 PROJECT COMMUNICATION AND MANAGEMENT

This RWP provides that project meetings occur throughout the BCP Project to discuss work progress, plan upcoming activities for the work, and discuss any unanticipated site conditions encountered. The construction contractor's superintendent is required to attend project meetings, as well as the construction contractor's Health and Safety Officer and QA/QC Officer, when discussion of issues related to their responsibilities is required.

The RWP provides that, during remedial construction, records are maintained and reports are prepared as described in Section 7.0.

Table 1A Site Investigation Soil Analytica Results (VOCs) Destiny USA Site 7 June 29, 2016

VOCs	Protection of Groundwater	Restricted Residential	P1-1 (6/30/2 L16203	2016	DUP(6/30/20 L162036	016	P1-1 (8- 6/30/20 L162036	016	P1-2 (3 6/29/2/ L162036	016	P1-3 (4 6/29/20 L162036	016	P1-3 (8 6/29/2 L16203	016	P1-4 (4 6/29/20 L162036)16	P1-4 (8-12) 6/29/2016 L1620368-27	P1-5 (4-8) 6/29/2016 L1620368-24	P1-5 (8-10) 6/29/2016 L1620368-25	P2-1 (4-8) 6/30/2016 L1620368-40	DUP03 6/30/2016 L1620368-47	P2-1 (8-10) 6/30/2016 L1620368-41
1,2,4-Trimethylbenzene	3.6	52	140		24		57		4.1		18		73		6.6		13	200	8.1	220	200	5.1
1,3,5-Trimethylbenzene	8.4	52	<7	C	<2	U	<3.9	U	0.42	J	5.8		25		0.13	J	2.1	70	0.18 J	1.1 J	1.4 J	0.025 J
2-Butanone	0.12	100	<14	U	<3.9	U	<7.8	U	<3	U	<1.5	U	<7.4	U	<1.8	U	<0.9 U	<21 U	<0.86 U	<17 U	<23 U	<0.9 U
Acetone	0.05	100	<14	U	<3.9	U	<7.8	U	<3	U	<1.5	U	<7.4	U	<1.8	U	<0.9 U	<21 U	<0.86 U	<17 U	<23 U	<0.9 U
Benzene	0.06	4.8	0.74	J	0.47		0.54	J	2.3		<0.15	U	0.6	J	0.21		0.29	0.88 J	0.055 J	1.3 J	0.85 J	0.07 J
Carbon disulfide	2.7		<14	U	<3.9	U	<7.8	U	<3	U	<1.5	U	<7.4	U	<1.8	U	<0.9 U	<21 U	<0.86 U	<17 U	<23 U	<0.9 U
Chloromethane			<7	U	<2	U	<3.9	U	<1.5	U	<0.74	U	<3.7	U	<0.92	U	<0.45 U	<10 U	<0.43 U	<8.4 U	<11 U	<0.45 U
cis-1,2-Dichloroethene	0.25	100	<1.4	U	< 0.39	U	<0.78	U	< 0.3	U	< 0.15	U	< 0.74	U	<0.18	U	<0.09 U	<2.1 U	<0.086 U	<1.7 U	<2.3 U	<0.09 U
Cyclohexane			36		1.3	J	18		<6.1	U	2.5	J	11	J	1.8	J	8.5	34 J	0.22 J	68	48	1.7 J
Ethylbenzene	1	41	<1.4	C	0.15	J	0.2	J	3.5		2.8		20		0.4		1.7	24	0.14	2.6	2.3	0.086 J
Isopropylbenzene	2.3		6.7		0.97		2.8		0.84		0.49		2.3		0.4		1	6.4	0.23	7.7	6.8	0.44
Methyl Acetate			<28	С	<7.9	U	<16	U	<6.1	U	<3	U	<15	U	<3.7	U	<1.8 U	<41 U	1.4 J	<34 U	<46 U	<1.8 U
Methyl cyclohexane			150		3.7		48		3.8		9.9		30		6.5		23	140	0.68	160	130	4.1
Methyl tert butyl ether	0.93	100	<2.8	С	< 0.79	U	<1.6	U	< 0.61	U	< 0.3	U	<1.5	U	< 0.37	U	<0.18 U	<4.1 U	<0.17 U	<3.4 U	<4.6 U	<0.18 U
Methylene chloride	0.05	100	<14	C	<3.9	U	<7.8	U	0.35	J	<1.5	U	<7.4	U	<1.8	U	<0.9 U	<21 U	<0.86 U	<17 U	<23 U	<0.9 U
n-Butylbenzene	12	100	5.3		0.43		1.6		0.3	U	0.89		2.3		0.38		0.7	7.5	0.13	6.5	6.9	0.2
n-Propylbenzene	3.9	100	13		1.9		5.4		2.1		1.4		6.1		0.68		1.8	16	0.64	20	18	0.45
o-Xylene			<2.8	U	< 0.79	U	<1.6	U	< 0.61	U	0.75		5		0.064	J	0.14 J	2.5 J	0.046 J	2.2 J	1.8 J	0.025 J
p/m-Xylene			18		3.1		1.9		4.2		8.5		60		0.75		4.7	79	0.57	63	56	1.1
Toluene	0.7	100	0.44	J	0.14	J	0.16	J	1.9		0.12	J	1	J	0.092	J	0.31	1.3 J	0.028 J	0.54 J	<3.4 U	<0.14 U
Total Xylenes	1.6	100	18		3.1		1.9		4.2		9.25		65		0.814		4.84	81.5	0.616	65.2	57.8	1.125

VOCs	Protection of Groundwater	Restricted Residential	P2-2 (4-8) 6/30/2016 L1620368-42	P2-2 (8-10) 6/30/2016 L1620368-43	P2-3 (4-8) 6/30/2016 L1620368-48	P2-3 (8-10) 6/30/2016 L1620368-44	P3-1 (0-4) 6/29/2016 L1620368-01	P3-1 (12-16) 6/29/2016 L1620368-04	P3-1 (4-8) 6/29/2016 L1620368-02	P3-1 (8-12) 6/29/2016 L1620368-03	P3-2 (4-8) 6/29/2016 L1620368-20	DUP01 6/29/2016 L1620368-45	P3-2 (8-10) 6/29/2016 L1620368-21	P3-3 (4-8) 6/29/2016 L1620368-17	P3-3 (8-10) 6/29/2016 L1620368-18
1,2,4-Trimethylbenzene	3.6	52	0.0024 J	0.027	0.00071 J	0.074	0.39	42	130	53	25	44	35	120	66
1,3,5-Trimethylbenzene	8.4	52	0.00069 J	0.0074	<0.0073 U	0.00098 J	0.062 J	10	1.9 J	1.5 J	1.7 J	1.8	9	44	16
2-Butanone	0.12	100	0.006 J	<0.014 U	0.02	<0.021 U	<0.58 U	<3.6 U	<14 U	<4.2 U	<3.8 U	<0.9 U	<1.9 U	<16 U	<8.8 U
Acetone	0.05	100	0.024	0.017	0.075	0.036	0.26 J	<3.6 U	<14 U	<4.2 U	<3.8 U	0.18 J	<1.9 U	<16 U	<8.8 U
Benzene	0.06	4.8	0.00048 J	0.0015	0.0011 J	0.12	0.13	0.79	0.31 J	0.11 J	<0.38 U	0.045 J	0.27	<1.6 U	0.46 J
Carbon disulfide	2.7		0.0046 J	0.0024 J	<0.014 U	<0.021 U	<0.58 U	<3.6 U	<14 U	<4.2 U	<3.8 U	<0.9 U	<1.9 U	<16 U	<8.8 U
Chloromethane			<0.0067 U	<0.007 U	<0.0073 U	<0.01 U	0.034 J	0.28 J	1.2 J	0.28 J	<1.9 U	<0.45 U	<0.94 U	<8.1 U	<4.4 U
cis-1,2-Dichloroethene	0.25	100	<0.0013 U	<0.0014 U	<0.0014 U	<0.0021 U	<0.058 U	<0.36 U	<1.4 U	<0.42 U	<0.38 U	<0.09 U	<0.19 U	<1.6 U	<0.88 U
Cyclohexane			0.00043 J	0.0072 J	0.0016 J	0.12	0.4 J	29	63	14	2.8 J	8.6	12	28 J	28
Ethylbenzene	1	41	0.00059 J	0.0027	0.00029 J	0.0012 J	0.36	11	28	9.2	2.1	2.8	8	16	16
Isopropylbenzene	2.3		0.00042 J	0.0032	0.022	0.059	1.1	1.8	5.4	2	0.74	1.6	1.2	3.7	2.8
Methyl Acetate			<0.027 U	<0.028 U	<0.029 U	<0.042 U	0.13 J	<7.1 U	<28 U	<8.3 U	<7.6 U	<1.8 U	<3.8 U	<32 U	<18 U
Methyl cyclohexane			0.0015 J	0.016	0.0034 J	0.035	1.6	60	140	31	12	34	28	83	71
Methyl tert butyl ether	0.93	100	0.00014 J	0.001 J	0.00023 J	0.0033 J	<0.12 U	<0.71 U	<2.8 U	<0.83 U	<0.76 U	<0.18 U	<0.38 U	<3.2 U	<1.8 U
Methylene chloride	0.05	100	<0.013 U	<0.014 U	<0.014 U	<0.021 U	<0.58 U	<3.6 U	<14 U	<4.2 U	<3.8 U	<0.9 U	<1.9 U	<16 U	<8.8 U
n-Butylbenzene	12	100	<0.0013 U	0.0006 J	<0.0014 U	0.00046 J	0.31	1.9	5.2	1.7	0.95	2.3	1.1	3.5	2.2
n-Propylbenzene	3.9	100	0.00044 J	0.0026	0.0013 J	0.012	2	4.7	14	5.5	1.8	4.3	2.9	8.2	5.3
o-Xylene			0.00049 J	0.005	<0.0029 U	0.00079 J	0.038 J	0.53 J	0.7 J	0.32 J	0.14 J	0.22	0.5	30	8.2
p/m-Xylene			0.0016 J	0.011	0.00052 J	0.0079	0.37	20	35	12	5.3	6.7	22	88	48
Toluene	0.7	100	0.00085 J	0.0022	<0.0022 U	0.0011 J	0.25	0.44 J	0.77 J	0.24 J	<0.57 U	<0.14 U	0.3	5.1	6.7
Total Xylenes	1.6	100	0.00209	0.016	0.00052	0.00869	0.408	20.53	35.7	12.32	5.44	6.92	22.5	118	56.2

1 of 2

Table 1A Site Investigation Soil Analytica Results (VOCs) Destiny USA Site 7 June 29, 2016

VOCs	Protection of Groundwater	Restricted Residential	P3-3 (12-14) 6/29/2016 L1620368-19	P3-4 (6-8) 6/29/2016 L1620368-15	P3-4 (10-12) 6/29/2016 L1620368-16	P3-5 (6-8) 6/29/2016 L1620368-14	P3-6 (4-8) 6/29/2016 L1620368-12	P3-6 (8-12) 6/29/2016 L1620368-13	P3-7 (4-8) 6/29/2016 L1620368-10	P3-7 (8-12) 6/29/2016 L1620368-11	P3-8 (4-8) 6/29/2016 L1620368-09	P3-9 (0-4) 6/29/2016 L1620368-05	P3-9 (4-8) 6/29/2016 L1620368-06	P3-9 (12-16) 6/29/2016 L1620368-08	P3-9 (8-12) 6/29/2016 L1620368-07
1,2,4-Trimethylbenzene	3.6	52	2.9	56	50	53	96	150	23	220	<1.6 U	0.0052 J	73	0.027	0.66
1,3,5-Trimethylbenzene	8.4	52	1	18	4	23	6.4	59	<0.77 U	84	<1.6 U	0.0016 J	8.7	0.0098	0.14 J
2-Butanone	0.12	100	<0.7 U	<4 U	<5.8 U	<3.9 U	<7.9 U	<11 U	<1.5 U	<20 U	<3.2 U	<0.011 U	<4.2 U	<0.016 U	<0.78 U
Acetone	0.05	100	<0.7 U	<4 U	<5.8 U	<3.9 U	<7.9 U	<11 U	<1.5 U	<20 U	<3.2 U	0.044	<4.2 U	0.031	<0.78 U
Benzene	0.06	4.8	0.12	<0.4 U	0.15 J	1.6	<0.79 U	<1.1 U	<0.15 U	<2 U	<0.32 U	0.003	0.66	0.00024 J	<0.078 U
Carbon disulfide	2.7		<0.7 U	<4 U	<5.8 U	<3.9 U	<7.9 U	<11 U	<1.5 U	<20 U	<3.2 U	<0.011 U	<4.2 U	<0.016 U	<0.78 U
Chloromethane			<0.35 U	<2 U	<2.9 U	<1.9 U	<4 U	<5.5 U	<0.77 U	<10 U	<1.6 U	<0.006 U	0.32 J	<0.0081 U	<0.39 U
cis-1,2-Dichloroethene	0.25	100	<0.07 U	<0.4 U	<0.58 U	<0.39 U	<0.79 U	<1.1 U	<0.15 U	<2 U	<0.32 U	0.0003 J	<0.42 U	<0.0016 U	<0.078 U
Cyclohexane			1.8	7.6 J	8.3 J	10	34	40	6.2	56	<6.4 U	0.0037 J	26	0.012 J	0.26 J
Ethylbenzene	1	41	0.5	3.1	4.6	9.7	19	41	0.69	70	<0.32 U	0.0023	16	0.0016	0.062 J
Isopropylbenzene	2.3		0.12	1.4	1.6	1.4	3.1	4.8	0.55	6.9	0.36	0.0033	3.1	0.0017	0.058 J
Methyl Acetate			1.4	<8.1 U	<12 U	<7.7 U	<16 U	<22 U	<3.1 U	<40 U	<6.4 U	<0.023 U	<8.5 U	<0.032 U	2.6
Methyl cyclohexane			5.2	34	31	31	110	99	26	130	5.7	0.01	58	0.028	0.8
Methyl tert butyl ether	0.93	100	<0.14 U	<0.81 U	<1.2 U	<0.77 U	<1.6 U	<2.2 U	<0.31 U	<4 U	<0.64 U	<0.002 U	<0.85 U	<0.0032 U	<0.16 U
Methylene chloride	0.05	100	<0.7 U	<4 U	<5.8 U	<3.9 U	<7.9 U	<11 U	<1.5 U	<20 U	<3.2 U	<0.011 U	<4.2 U	<0.016 U	<0.78 U
n-Butylbenzene	12	100	0.16	<0.4 U	1.7	<0.39 U	5.3	5.8	0.25	7.4	<0.32 U	0.0008 J	3.2	0.0015 J	0.05 J
n-Propylbenzene	3.9	100	0.31	3.2	3.4	3.4	8.7	13	0.86	19	0.15 J	0.0015	8	0.0045	0.14
o-Xylene			0.28	0.18 J	0.61 J	26	3.2	8.9	0.19 J	18	<0.64 U	0.0006 J	0.51 J	<0.0032 U	<0.16 U
p/m-Xylene	•		1.9	8	15	67	30	120	1.4	270	0.084 J	0.0038	20	0.002 J	0.056 J
Toluene	0.7	100	0.11	<0.61 U	<0.87 U	8.8	0.41 J	2.2	0.032 J	8.2	<0.48 U	0.0009 J	0.28 J	0.00032 J	0.016 J
Total Xylenes	1.6	100	2.18	8.18	15.61	93	33.2	128.9	1.59	288	0.084	0.0044	20.51	0.002	0.216

VOCs	Protection of Groundwater	Restricted Residential	P3-10 6/29/2 L16203	016	P3-10 (6/29/2 L16203	016	P4-1 (0 6/29/20 L162036	16	P4-1 (6/29/2 L16203	016	P4-2 (2 6/29/20 L162036	16	P4-2 (4 6/29/20 L162036	016	P4-3 (2 6/29/20 L162036	16	P4-3 (4 6/29/20 L162036	016
1,2,4-Trimethylbenzene	3.6	52	140		160		0.00086	J	0.19	J	0.0011	J	0.0064	J	0.0066		6.8	
1,3,5-Trimethylbenzene	8.4	52	18		56		0.00054	J	0.022	J	0.00039	J	0.0011	J	0.0023	J	2.5	
2-Butanone	0.12	100	<18	U	<19	U	<0.011	U	<1.2	U	0.01	J	0.029		0.0094	J	< 0.96	U
Acetone	0.05	100	<18	U	<19	U	0.0078	J	<1.2	U	0.047		0.11		0.05		<0.96	U
Benzene	0.06	4.8	0.29	J	<1.9	U	0.00082	J	0.17		0.0029		0.01		0.01		1.1	
Carbon disulfide	2.7		<18	U	<19	U	0.0012	J	<1.2	U	0.0015	J	0.0044	J	0.003	J	< 0.96	U
Chloromethane			<9	U	<9.4	U	< 0.0055	U	<0.58	U	< 0.0053	U	< 0.012	U	<0.0058	U	<0.48	U
cis-1,2-Dichloroethene	0.25	100	<1.8	U	<1.9	U	< 0.0011	U	<0.12	U	< 0.0011	U	<0.002	U	< 0.0012	U	<0.096	U
Cyclohexane			17	J	35	J	<0.022	U	0.67	J	<0.021	U	<0.048	U	< 0.023	U	0.17	J
Ethylbenzene	1	41	12		38		0.00066	J	0.031	J	0.0013		0.0047		0.0058		1.4	
Isopropylbenzene	2.3		3.7		5.4		< 0.0011	U	0.37		< 0.0011	U	0.0039		0.00047	J	0.32	
Methyl Acetate			<36	U	<37	U	<0.022	U	<2.3	U	<0.021	U	<0.048	U	< 0.023	U	<1.9	U
Methyl cyclohexane			60		92		0.00072	J	0.91		0.0009	J	0.0027	J	0.00047	J	0.68	
Methyl tert butyl ether	0.93	100	<3.6	U	<3.7	U	<0.0022	U	<0.23	U	<0.0021	U	<0.005	U	< 0.0023	U	<0.19	U
Methylene chloride	0.05	100	<18	U	<19	U	0.0015	J	0.16	J	0.0017	J	0.0041	J	0.0014	J	< 0.96	U
n-Butylbenzene	12	100	5.9		5.7		0.00019	J	0.073	J	< 0.0011	U	<0.002	U	< 0.0012	U	0.89	
n-Propylbenzene	3.9	100	9.2		14		0.00028	J	0.38		0.00024	J	0.0053		0.0015		1.3	
o-Xylene			2.1	J	28	,	0.00029	J	<0.23	U	0.00031	J	0.0016	J	0.0019	J	0.46	
p/m-Xylene			17	•	120		0.0008	J	0.078	J	0.0024	•	0.0062	•	0.012	•	4.5	
Toluene	0.7	100	0.67	J	8.7		<0.0016	U	<0.18	U	0.00084	J	0.0012	J	0.0026		0.63	
Total Xylenes	1.6	100	19.1	•	148		0.00109		0.078	•	0.00271	•	0.0078	•	0.0139	•	4.96	

NOTES:

- 1. Samples were collected by Spectra and submitted to Alpha Analytical for analysis.
- 2. All data in ppm.
- 3. <0.457 U: Analyte was not detected. The number following the 'less than' (<) is the associated reporting limit.
- 4. **RED** = Exceedance of Restricted Residential Use Criteria.
- 5. **BLUE** = Exceedance of Protection of Groundwater criteria.

Data Qualifiers

7. J: Indicates an estimated value less than the reporting limit.

2 of 2

Table 1B Site Investigation Soil Analytica Results (SVOCs) Destiny USA Site 7 June 29, 2016

SVOCs	Protection of Groundwater	Restricted Residential	P4-1 (0-4) 6/29/2016 L1620368-3		P4-2 (2-6/29/201 L1620368	6	P4-2 (4- 6/29/201 L1620368	6	P4-3 (2- 6/29/201 L1620368	16	P4-3 (4-6) 6/29/2016 L1620368-36
2-Methylnaphthalene	36.4		0.68		0.23		0.31		2.3		1.4
3-Methylphenol/4-Methylphenol	0.33	100	0.093	J	<0.26	U	0.055	J	<2.8	U	<0.28 U
Acenaphthene	98	100	0.22		0.15		0.15	J	0.26	J	<0.16 U
Acenaphthylene	107	100	1.3		0.86		0.51		4		<0.16 U
Anthracene	1000	100	1.7		0.9		0.78		1.5		0.052 J
Benzo(a)anthracene	1	1	4.5		3.1		2.4		9.1		0.14
Benzo(a)pyrene	22	1	4.9		3.5		2.5		17		0.12 J
Benzo(b)fluoranthene	1.7	1	6.7		4.5		3.2		20		0.14
Benzo(ghi)perylene	1000	100	3.2		2.2		1.5		14		0.068 J
Benzo(k)fluoranthene	1.7	3.9	2		1.5		1.2		7		0.054 J
Biphenyl			0.13	J	< 0.42	U	<0.45	U	<4.4	С	<0.45 U
Caprolactam			<0.19	U	<0.18	U	0.081	J	<2	С	<0.2 U
Carbazole			0.69		0.19		0.22		0.37	٦	0.034 J
Chrysene	1	3.9	4.8		3		2.3		10		0.13
Dibenzo(a,h)anthracene	1000	0.33	0.93		0.56		0.48		3.4		<0.12 U
Dibenzofuran	6.2	59	0.58		0.18		0.23		0.45	٦	<0.2 U
Fluoranthene	1000	100	7.1		5.2		4.3		6.1		0.23
Fluorene	386	100	0.72		0.28		0.25		0.57	٦	0.056 J
Indeno(1,2,3-cd)pyrene	8.2	0.5	3.6		2.5		1.7		14		0.074 J
Naphthalene	12	100	1.6		0.39		0.51		2.8		1.7
Phenanthrene	1000	100	5.1		1.9		2		2.5		0.2
Pyrene	1000	100	7.5		4.5		3.8		6.3		0.26

NOTES:

- 1. Samples were collected by Spectra and submitted to Alpha Analytical for analysis.
- 2. All data in ppm.
- 3. <0.457 U: Analyte was not detected. The number following the 'less than' (<) is the associated reporting limit.
- 4. **RED** = Exceedance of Restricted Residential Use Criteria.
- 5. **BLUE** = Exceedance of Protection of Groundwater criteria.

Data Qualifiers

7. J: Indicates an estimated value less than the reporting limit.

1 of 1 11/2/2016

Table 1C Site Investigation Soil Analytica Results (Metals) Destiny USA Site 7 June 29, 2016

Metals	Protection of Groundwater	Restricted Residential	P1-1 (4-8) 6/30/2016 L1620368-3		DUP02 6/30/2016 L1620368-4		P1-1 (8-10) 6/30/2016 L1620368-3		P1-2 (3-4 6/29/201 L1620368	.6	P1-3 (4-8) 6/29/2016 L1620368-28	P1-3 (8-12) 6/29/2016 L1620368-2		P1-4 (4- 6/29/201 L1620368	6	P1-4 (8-1 6/29/201 L1620368	.6	P1-5 (4-8 6/29/201 L1620368-	6
Antimony			<2.7	U	<3.4	U	<3.5	U	<2.3	U	<2.4 U	<3.6	U	<3.6	U	<3.4	U	<3.2	U
Arsenic	16	16	2.1		2.5		16		0.31	J	4.5	0.49	J	7.2		26		4	
Beryllium	47	72	<0.27	U	< 0.34	U	0.18	J	0.39		0.2 J	< 0.36	U	< 0.36	U	< 0.34	С	0.13	J
Cadmium	7.5	4.3	0.16	J	<0.68	U	2.3		0.3	J	<0.47 U	<0.71	U	<0.72	U	3.1		0.39	J
Chromium			1.5		0.81		9		22		13	2.9		4.1		19		8.5	
Copper	1720	270	21		3.5		110		11		14	7.1		14		940		27	
Lead	450	400	32		0.57	ک	170		5.2		12	2.8	J	22		190		180	
Mercury	0.73	0.81	<0.1	U	<0.11	U	<0.12	U	0.04	J	<0.08 U	<0.13	U	0.05	J	0.06	ک	0.14	
Nickel	130	310	3.8		3.6		11		33		17	5.3		11		12		11	
Selenium	4	180	2.2		2		1.2	J	0.94	С	0.95 U	1.6		1.4		2.2		1.3	
Silver	8.3	180	<0.55	U	<0.68	U	<0.71	U	< 0.47	U	<0.47 U	<0.71	U	<0.72	U	< 0.69	U	<0.65	U
Thallium			<1.1	U	<1.4	U	<1.4	U	< 0.94	U	<0.95 U	<1.4	U	<1.4	U	<1.4	U	<1.3	Ū
Zinc	2480	10000	150		53	•	480		640		34	38		210	•	770		1300	

Metals	Protection of Groundwater	Restricted Residential	P1-5 (8-10 6/29/2016 L1620368-2	5	P2-1 (4-8 6/30/2010 L1620368-	5	DUP03 6/30/2016 L1620368-4		P2-1 (8-1 6/30/201 L1620368-	6	P2-2 (8-10 6/30/2016 L1620368-4		P2-3 (4-8 6/30/201 L1620368	.6	P2-3 (8-1 6/30/201 L1620368	.6	P3-1 (0-4) 6/29/2016 L1620368-01	P3-1 (4-8 6/29/2016 L1620368-	5
Antimony			<3.6	U	<3.3	U	<3.6	U	<3.8	U	<3	U	<3.2	U	<4.5	U	3.8	<3.2	U
Arsenic	16	16	0.56	J	5.9		4.2		4.5		3.1		1.2		5.4		71	8.4	
Beryllium	47	72	< 0.36	U	< 0.33	U	< 0.36	U	<0.38	U	0.16	J	< 0.32	C	<0.45	U	0.85	< 0.32	U
Cadmium	7.5	4.3	<0.71	U	0.9		< 0.72	U	<0.75	U	<0.6	U	2.1		2		53	0.89	
Chromium			0.25	J	5.5		1		0.17	J	7.7		0.3	J	1.8		6.2	1.4	
Copper	1720	270	1.6		26		1.6		0.94		13		2.7		39		1400	38	
Lead	450	400	0.66	J	60		0.53	J	0.2	J	23		25		70		1600	52	
Mercury	0.73	0.81	<0.12	U	0.16		<0.12	U	< 0.13	U	0.11		0.05	ک	<0.15	U	0.62	<0.11	U
Nickel	130	310	2.4		8.3		3.1		3.1		9.1		2.1		3.3		36	41	
Selenium	4	180	2.1		2.4		2.4		1.3	J	0.57	J	0.58	J	0.53	J	0.34 J	1	J
Silver	8.3	180	<0.71	U	<0.66	U	< 0.72	U	<0.75	U	<0.6	U	<0.63	U	<0.89	U	3.8	0.18	J
Thallium		·	<1.4	U	<1.3	U	<1.4	U	<1.5	U	0.21	J	0.22	J	0.28	J	1.2	0.28	J
Zinc	2480	10000	110		2600		450		560		180		840		850		16000	6300	

Metals	Protection of Groundwater	Restricted Residential	P3-1 (8-12) 6/29/2016 L1620368-03	P3-1 (12-16) 6/29/2016 L1620368-04		P3-2 (4-8) 6/29/2016 L1620368-20	DUP01 6/29/2016 L1620368-		P3-2 (8-10) 6/29/2016 L1620368-21	P3-3 (12-14) 6/29/2016 L1620368-19	P3-3 (4-8) 6/29/2016 L1620368-17	P3-3 (8-10) 6/29/2016 L1620368-18	P3-4 (6-8) 6/29/2016 L1620368-15
Antimony			2 J	<3	U	<4.6 U	<4	U	<3.6 U	<2.6 U	<3.6 U	<4 U	<3.8 U
Arsenic	16	16	48	3.3		0.99	<0.8	U	0.629 J	3.7	2.4	1.9	1.1
Beryllium	47	72	0.35 J	0.08	J	<0.46 U	<0.4	U	<0.36 U	<0.26 U	<0.36 U	<0.4 U	<0.38 U
Cadmium	7.5	4.3	27	0.08	J	<0.92 U	<0.8	С	<0.72 U	<0.53 U	<0.72 U	<0.8 U	<0.77 U
Chromium			8.8	3.5		1	0.74	J	4.8	1.1	2.2	1.4	0.59 J
Copper	1720	270	660	20		1.1	0.95		15	0.74	6.7	2.8	1.8
Lead	450	400	1000	17		<4.6 U	<4	С	2.9 J	<26 U	5.6	2.1 J	<3.8 U
Mercury	0.73	0.81	0.56	<0.1	С	<0.15 U	<0.13	С	<0.12 U	<0.09 U	<0.12 U	<0.13 U	<0.13 U
Nickel	130	310	23	6.6		4.6	4.7		8.8	0.86 J	8.7	15	4
Selenium	4	180	1.4 J	0.46	J	2.5	2.8		2	0.49 J	2.1	2.6	2.8
Silver	8.3	180	2.3	<0.61	U	<0.92 U	<0.8	U	<0.72 U	<0.53 U	<0.72 U	<0.8 U	<0.77 U
Thallium			0.77 J	<1.2	U	0.4 J	0.38	J	<1.4 U	0.33 J	0.53 J	3.3	<1.5 U
Zinc	2480	10000	7900	510		12	4.9		15	4.1	190	30	5.9

1 of 2 11/2/2016

Table 1C Site Investigation Soil Analytica Results (Metals) Destiny USA Site 7 June 29, 2016

Metals	Protection of Groundwater	Restricted Residential	P3-4 (10-12) 6/29/2016 L1620368-16		P3-5 (6-8) 6/29/2016 L1620368-1		P3-6 (4-8) 6/29/2016 L1620368-1	2	P3-6 (8-12 6/29/2010 L1620368-	5	P3-7 (4-8) 6/29/2016 L1620368-10	P3-7 (8-1 6/29/201 L1620368	.6	P3-8 (4- 6/29/201 L1620368	l 6	P3-9 (0- 6/29/201 L1620368	l 6	P3-9 (4-8 6/29/2010 L1620368-	6
Antimony			<4.5	U	<3.5	U	<3.1	U	<4.3	U	<3.1 U	<4.5	U	<3.3	U	1.7	J	<4.1	U
Arsenic	16	16	2.1		1.3		6.5		0.86		12	1		12		38		3	
Beryllium	47	72	0.11	J	< 0.35	U	0.15	٦	< 0.43	С	0.21 J	< 0.45	C	< 0.33	U	0.16	J	<0.41	U
Cadmium	7.5	4.3	<0.91	U	0.09	J	5.3		<0.86	С	<0.62 U	< 0.9	C	14		2.1		<0.83	U
Chromium			4.8		2.4		80		0.73	J	7.3	0.7	J	2.4		5.9		1.6	
Copper	1720	270	7.5		3.7		26		1.4		11	1.2		150		210		5	
Lead	450	400	<4.5	U	1.9	J	0.89	٦	<4.3	С	13	<4.5	U	<33	U	490		1.5	J
Mercury	0.73	0.81	<0.15	U	0.03	J	0.08	٦	<0.14	С	0.03 J	<0.15	C	<0.11	U	0.44		<0.14	U
Nickel	130	310	13		3.7		110		10		12	20		27		8.9		11	
Selenium	4	180	2.8		<1.4	U	1.1	J	1.1	J	0.35 J	1.4	J	1.8		0.77	J	1.7	
Silver	8.3	180	<0.91	U	<0.71	U	<0.61	U	<0.86	U	<0.62 U	< 0.9	U	0.13	J	1.4		<0.83	U
Thallium			<1.8	U	<1.4	U	<1.2	U	<1.7	U	<1.2 U	<1.8	U	0.54	J	0.28	J	0.32	J
Zinc	2480	10000	15		29		2000		550		33	1300		18000		1000		2300	

Metals	Protection of Groundwater	Restricted Residential	P3-9 (8-12) 6/29/2016 L1620368-0		P3-9 (12-10 6/29/2016 L1620368-0		P3-10 (4-8) 6/29/2016 L1620368-2	,	P3-10 (8-1 6/29/201 L1620368	6	P4-1 (0-4) 6/29/2016 L1620368-30	P4-1 (4-6/29/201 L1620368	l 6	P4-2 (2-6/29/201 L1620368	6	P4-2 (4-6 6/29/2010 L1620368-	6	P4-3 (2.5- 6/29/2010 L1620368-	6
Antimony			<3.4	U	<3.4	U	<3.3	U	<3.4	U	<2.3 U	<4.5	U	<11	U	<2.3	U	<24	U
Arsenic	16	16	2		1		1.3		0.53	J	12	17		21		7.4		57	
Beryllium	47	72	0.07	J	< 0.34	U	< 0.33	U	< 0.34	Ω	0.13 J	0.2	J	0.29		0.23		0.16	J
Cadmium	7.5	4.3	<0.68	U	<0.68	U	< 0.66	U	<0.68	C	1.9	0.4	۲	4.1		2		25	
Chromium			3.7		2.7		2		0.72		7.9	24		7.7		7		5.7	
Copper	1720	270	5		3.1		3.8		3.8		310	120		480		58		2200	
Lead	450	400	<3.4	U	<3.4	U	3.7		0.95	J	380	37		220		430		440	
Mercury	0.73	0.81	<0.12	U	<0.12	U	<0.11	U	<0.11	Ω	0.35	<0.15	С	0.32		0.15		0.54	
Nickel	130	310	3.9		3.1		28		9.8		10	19		12		11		7.4	
Selenium	4	180	0.45	J	0.35	J	0.69	J	2.5		0.67 J	0.89	٦	0.98		1.2		0.93	J
Silver	8.3	180	<0.68	U	<0.68	U	<0.66	U	<0.68	Ω	1	0.19	J	1.1		0.11	J	8.6	
Thallium			<1.4	U	<1.4	U	<1.3	U	<1.4	U	<0.9 U	<1.8	U	<0.87	U	<0.92	U	0.84	J
Zinc	2480	10000	20		14		3300		480		780	390		2300		740		9800	

Metals	Protection of Groundwater	Restricted Residential	P4-3 (4-6) 6/29/2016 L1620368-3	
Antimony			<2.4	U
Arsenic	16	16	3.9	
Beryllium	47	72	0.12	J
Cadmium	7.5	4.3	<0.48	U
Chromium			8.9	
Copper	1720	270	30	
Lead	450	400	29	
Mercury	0.73	0.81	0.14	
Nickel	130	310	4.8	
Selenium	4	180	0.24	J
Silver	8.3	180	<0.48	U
Thallium			< 0.95	U
Zinc	2480	10000	58	

NOTES:

- 1. Samples were collected by Spectra and submitted to Alpha Analytical for analysis.
- 2. All data in ppm.
- 3. <0.457 U: Analyte was not detected. The number following the 'less than' (<) is the associated reporting limit
- 4. **RED** = Exceedance of Restricted Residential Use Criteria.
- 5. **BLUE** = Exceedance of Protection of Groundwater criteria.

Data Qualifiers

7. J: Indicates an estimated value less than the reporting limit.

2 of 2 11/2/2016

Table 2A Groundwater Analytical Results (VOCs) Destiny USA Site 7

	Ambient Creunducter	SU	N 1	SU	IN 1	SU	N 1	SU	IN 1	SU	N 1	SUN 1	SUN	N 1	SUI	N 2	ALASK	KAN 22
VOCs	Ambient Groundwater Quality Standards	HCMW-1I	HCMW-1I	HCMW-1S	HCMW-1S	HCMW-1SI	HCMW-1SI	SP-MW-13S	SP-MW-13S	SP-MW-14SR	SP-MW-14SR	SP-MW-20 SP-MW-2	SP-MW-21	SP-MW-21	SP-MW-22	SP-MW-22	SP-MW-23	SP-MW-23
	Quality Standards	6/18/2013	9/20/2016	6/18/2013	9/20/2016	6/18/2013	9/20/2016	6/13/2013	9/20/2016	6/13/2013	9/19/2016	6/13/2013 9/19/201	6/13/2013	9/19/2016	6/17/2013	9/19/2016	6/17/2013	9/19/2016
1,2,4-Trimethylbenzene	5	<1.00 U	0.78 J	<1.00 U	<2.5 U	<1.00 U	<2.5 U	<1.00 U	<2.5 U	<1.00 U	<2.5 U	9.93 <6.2 L	2.44	1.4 J	<1.00 U	<2.5 U	<1.00 U	<2.5 U
1,3,5-Trimethylbenzene	5	<1.00 U	<2.5 U	<1.00 U	<2.5 U	<1.00 U <6.2 L	<1.00 U	<2.5 U	<1.00 U	<2.5 U	<1.00 U	<2.5 U						
2-Butanone (MEK)	50	<10.0 U	<5 U	<10.0 U	<5 U	1.82 J <12 L	2.81 J	<5 U	<10.0 U	<5 U	<10.0 U	<5 U						
Acetone	50	<10.0 U	<10 U	<10.0 U,J	5.9	<10.0 U,J	6.8	10.4 J	15	<10.0 U	8.3	8.59 J 13	7.78 J	5.6	<10.0 U	5.6	<10.0 U	8.4
Benzene	1	<1.00 U	<0.5 U	<1.00 U	<0.5 U	<1.00 U	<0.5 U	<1.00 U	0.5	20.7	2.1	0.73 J 0.56 J	1.03	0.64	<1.00 U	<0.5 U	<1.00 U	<0.5 U
Bromomethane	5	<2.5 U	<2.5 U	<2.5 U <6.2 L	<2.5 U													
Di-isopropyl ether	NS	<1.00 U	<2 U	<1.00 U	<2 U	<1.00 U <5 U	<1.00 U	<2 U	<1.00 U	<2 U	<1.00 U	<2 U						
Ethylbenzene	5	<1.00 U	<2.5 U	4.76	<2.5 U	1.12 <6.2 L	<1.00 U	0.84 J	<1.00 U	<2.5 U	<1.00 U	<2.5 U						
Isopropylbenzene	5	<1.00 U	<2.5 U	2.12	0.81 J	14.1 29	1.77	20	<1.00 U	<2.5 U	2.78	<2.5 U						
Methyl tert-butyl ether	10	<1.00 U	<2.5 U	<1.00 U	<2.5 U	0.79 J <6.2 L	<1.00 U	<2.5 U	<1.00 U	<2.5 U	<1.00 U	<2.5 U						
n-Butylbenzene	5	<1.00 U	<2.5 U	<1.00 U	<2.5 U	8.03 <6.2 U	<1.00 U	1.9 J	<1.00 U	<2.5 U	<1.00 U	<2.5 U						
n-Propylbenzene	5	<1.00 U	<2.5 U	2.3	<2.5 U	28.3 16	1.01	15	<1.00 U	<2.5 U	<1.00 U	<2.5 U						
Naphthalene	10	<1.00 U	<2.5 U	<1.00 U	<2.5 U	<1.00 U	<2.5 U	<1.00 U	2 J	<1.00 U	<2.5 U	<1.00 U <6.2 L	<1.00 U	<2.5 U	<1.00 U,J	<2.5 U	<1.00 U,J	<2.5 U
o-Xylene	5	<1.00 U	<2.5 U	<1.00 U	<2.5 U	<1.00 U <6.2 U	<1.00 U	<2.5 U	<1.00 U	<2.5 U	<1.00 U	<2.5 U						
m,p-Xylene	5	<2.00 U	<2.5 U	<2.00 U	<2.5 U	<2.00 U	<2.5 U	<2.00 U	0.79 J	5.71	<2.5 U	<2.00 U <6.2 U	<2.00 U	<2.5 U	<2.00 U	<2.5 U	<2.00 U	<2.5 U
sec-Butylbenzene	5	<1.00 U	<2.5 U	<1.00 U	<2.5 U	7.64 19	<1.00 U	3.9	<1.00 U	<2.5 U	2.09	1.1 J						
Tert-Butanol / butyl alcohol	NS	<10.0 U	<10 U	<10.0 U	<10 U	<10.0 U	<10 U	<10.0 U	140	<10.0 U	1.9	<10.0 U 7.2	<10.0 U,J	3.4	<10.0 U	<10 U	<10.0 U	<10 U
tert-Butylbenzene	5	<1.00 U	<2.5 U	<1.00 U	<2.5 U	1.31 3.6 J	<1.00 U	0.84 J	<1.00 U	<2.5 U	0.93 J	1.4 J						
Toluene	5	<1.00 U	<2.5 U	3.17	<2.5 U	<1.00 U <6.2 L	<1.00 U	<2.5 U	<1.00 U	<2.5 U	<1.00 U	<2.5 U						
Total Xylene	5	ND	0.79	5.71	ND	ND ND	ND	ND	ND	ND	ND	ND						

	Ambient Groundwater	ALASP	KAN 22	ALASI	KAN 22	ALASI	KAN 22		SUN 2		SUN	N 1	SUN 1	SUN 1		IN 1	SU	JN 1		JN 1
VOCs	Quality Standards	SP-MW-37	SP-MW-37	SP-MW-38	SP-MW-38	SP-MW-39	SP-MW-39	SP-MW-40	SP-MW-40	SP-MW-40 DUP	SP-MW-41	SP-MW-41	SP-MW-42	SP-MW-42R	SP-MW-43	SP-MW-43	SP-MW-44	SP-MW-44	SUNMW-60	SUN-MW-60
	Quality Standards	6/17/2013	9/19/2016	6/17/2013	9/19/2016	6/17/2013	9/19/2016	6/17/2013	9/19/2016	9/19/2016	6/12/2013	9/20/2016	6/13/2013	12/1/16	6/12/2013	8/4/2016	6/17/2013	9/20/2016	6/18/2013	9/20/2016
1,2,4-Trimethylbenzene	5	<1.00 U	<6.2 U	<1.00 U	<2.5 U	73.7 D	2.1 J	<1.00 U	<2.5 U	<2.5 U	210 D	190	<1.00 U	<2.5 U	436 D	880	<1.00 U	<2.5 U	<1.00 U	1.1 J
1,3,5-Trimethylbenzene	5	<1.00 U	<6.2 U	<1.00 U	<2.5 U	15.4 D	<2.5 U	<1.00 U	<2.5 U	<2.5 U	<5.00 U	<25 U	<1.00 U	<2.5 U	132 D	170	<1.00 U	<2.5 U	<1.00 U	<2.5 U
2-Butanone (MEK)	50	<10.0 U	<12 U	<10.0 U	<5 U	<100 U	<5 U	<10.0 U	<5 U	<5 U	<50.0 U	<50 U	<10.0 U	5 U	<500 U	<100 U	<10.0 U	<5 U	<10.0 U	<5 U
Acetone	50	<10.0 U	8.7	<10.0 U	8.3	<100 U	18	<10.0 U	6.4	13	<50.0 U	<50 U	<10.0 U	<5 U	<500 U	54 J	<10.0 U	13	<10.0 U	14
Benzene	1	9.24	53	88.7	29	15.6 D	0.7	36.6	0.28 J	0.27 J	29 D	44	1.61	3.3	206 D	310	<1.00 U	<0.5 U	7.5	0.48 J
Bromomethane	5	<6.2 U	<6.2 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<2.5 U	<25 U	<2.5 U	<2.5 U	<2.5 U	45 J	<2.5 U	<2.5 U	<2.5 U	<2.5 U
Di-isopropyl ether	NS	7.78	78	20.8	15	<10.0 U	<2 U	<1.00 U	<2 U	<2 U	<5.00 U	<20 U	<1.00 U	<2 U	<50.0 U	<40 U	<1.00 U	<2 U	<1.00 U	<2 U
Ethylbenzene	5	<1.00 U	<6.2 U	5.91	<2.5 U	205 D	3	<1.00 U	<2.5 U	<2.5 U	5.75 D	<25 U	<1.00 U	<2.5 U	409 D	1100	<1.00 U	<2.5 U	<1.00 U	<2.5 U
Isopropylbenzene	5	2.71	7.8	28.6	17	<10.0 U	<2.5 U	39.3	30	30	56.3 D	59	<1.00 U	<2.5 U	<50.0 U	38 J	<1.00 U	<2.5 U	1.61	<2.5 U
Methyl tert-butyl ether	10	7.48	90	1.86	1.5 J	<10.0 U	<2.5 U	7.08	5.5	5.7	<5.00 U	<25 U	<1.00 U	<2.5 U	<50.0 U	<50 U	<1.00 U	<2.5 U	2.1	<2.5 U
n-Butylbenzene	5	1.62	<6.2 U	6.25	3.4	<10.0 U	<2.5 U	6.73	3.1	1.9 J	5.95 D	<25 U	<1.00 U	<2.5 U	<50.0 U	<50 U	<1.00 U	<2.5 U	<1.00 U	<2.5 U
n-Propylbenzene	5	5.65	<6.2 U	61.6	32	12.2 D	<2.5 U	38.4	16	15	53.2 D	45	<1.00 U	<2.5 U	43.5 J, D	67	<1.00 U	1.6 J	<1.00 U	<2.5 U
Naphthalene	10	0.72 J,J	<6.2 U	4.19 J	<2.5 U	20.1 J	1.1 J	1.14 J	<2.5 U	<2.5 U	<5.00 U	<25 U	<1.00 U	0.74 J	138 D	290	0.99 J,J	1.7 J	<1.00 U	<2.5 U
o-Xylene	5	<1.00 U	<6.2 U	3.84	1.1 J	171 D	3.3	<1.00 U	<2.5 U	<2.5 U	<5.00 U	<25 U	<1.00 U	<2.5 U	50.5 D	140	<1.00 U	<2.5 U	<1.00 U	<2.5 U
m,p-Xylene	5	<2.00 U	1.9 J	9.96	3.8	541 D	6.9	<2.00 U	<2.5 U	<2.5 U	<10.0 U	<25 U	<2.00 U	1	1210 D	1600	<2.00 U	<2.5 U	<2.00 U	<2.5 U
sec-Butylbenzene	5	1.14	2.2 J	5.73	4.3	<10.0 U	<2.5 U	14.2	14	13	7.55 D	<25 U	<1.00 U	<2.5 U	<50.0 U	<50 U	<1.00 U	<2.5 U	<1.00 U	<2.5 U
Tert-Butanol / butyl alcohol	NS	16.1	110	80.8	71	<100 U	<10 U	660	710	570	<50.0 U	100	<10.0 U	3.1	<500 U	<50 U	<10.0 U	5.4 J	<10.0 U	<10 U
tert-Butylbenzene	5	<1.00 U	<6.2 U	<1.00 U	<2.5 U	<10.0 U	<2.5 U	2.75	2.5	2.4 J	3.85 J, D	<25 U	<1.00 U	<2.5 U	<50.0 U	<50 U	<1.00 U	<2.5 U	<1.00 U	<2.5 U
Toluene	5	<1.00 U	<6.2 U	9.84	1.2 J	33.4 D	<2.5 U	0.96 J	<2.5 U	<2.5 U	<5.00 U	<25 U	<1.00 U	0.79 J	54.5 D	170	<1.00 U	<2.5 U	<1.00 U	<2.5 U
Total Xylene	5	ND	1.9	13.8	4.9	712	10.2	ND	ND	ND	ND	ND	ND	1	1261	1740	ND	ND	ND	ND

Notes:

- 1. Samples collected by Spectra and submitted to Alpha Analytical for analysis.
- 2. Bold Red represents an exceedance of Ambient Groundwater Quality Standards.
- 3. **<0.457 U:** Analyte was not detected. The number preceding the 'U' is the associated reported detection limit.
- 4. All results in ppb.

Qualifiers:

J: Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.

1 of 1

Table 2B **Groundwater Analytical Results (SVOCs)** Destiny USA Site 7

	Ambient Groundwater	SUN	1	SUN	1	SU	N 1	SU	N 1	SI	JN 1	SU	JN 1	SU	N 1	SU	N 2	ALASI	KAN 22
SVOCs	Quality Standards	HCMW-1I	HCMW-1-I	HCMW-1S	HCMW-1-S	HCMW-1SI	HCMW-1-SI	SP-MW-13S	SP-MW-13S	SP-MW-14SR	SP-MW-14SR	SP-MW-20	SP-MW-20	SP-MW-21	SP-MW-21	SP-MW-22	SP-MW-22	SP-MW-23	SP-MW-23
	Quality Standards	6/18/2013	9/20/2016	6/18/2013	9/20/2016	6/18/2013	9/20/2016	6/13/2013	9/20/2016	6/13/2013	9/19/2016	6/13/2013	9/19/2016	6/13/2013	9/19/2016	6/17/2013	9/19/2016	6/17/2013	9/19/2016
Bis(2-ethylhexyl)phthalate	5	<5.26 U	<3 U	<5.56 U	<3 U	<5.32 U	<3 U	3.25 J	3	<5.56 U	<3 U	5.88	<3 U	<5.56 U	<3 U	<5.26 U	2.3 J	<5.15 U	<3 U
Carbazole	NS	<5.26 U	<2 U	<5.56 U	<2 U	<5.32 U	<2 U	<5.43 U	<2 U	<5.56 U	<2 U	<5.21 U	<2 U	<5.56 U	0.68 J	<5.26 U	<2 U	<5.15 U	<2 U
Dibenzofuran	NS	<5.26 U	<2 U	<5.56 U	<2 U	<5.32 U	<2 U	<5.43 U	<2 U	<5.56 U	<2 U	<5.21 U	<2 U	3.61 J	2	<5.26 U	<2 U	<5.15 U	<2 U
Diethyl phthalate	50	<5.26 U	<5 U	<5.56 U	<5 U	<5.32 U	<5 U	<5.43 U	2.1 J	<5.56 U	2.2 J	<5.21 U	<5 U	<5.56 U	<5 U	<5.26 U	<5 U	<5.15 U	<5 U
Di-n-octylphthalate	50	<5.26 U	<6 U	<5.56 U	<5 U	<5.32 U	<5 U	<5.43 U	<5 U	<5.56 U	<5 U	<5.21 U	<5 U	<5.56 U	<5 U	<5.26 U	<5 U	<5.15 U	<5 U
2-Methylnaphthalene	NS	<5.26 U	<0.2 U	<5.56 U	<0.2 U	<5.32 U	<0.2 U	<5.43 U	1.2	<5.56 U	<0.2 U	<5.21 U	<0.2 U	<5.56 U	<1 U	<5.26 U	<0.2 U	<5.15 U	<0.2 U
Acenaphthene	20	<5.26 U	<0.1 U	<5.56 U	0.04 J	<5.32 U	<0.1 U	<5.43 U	3.1	<5.56 U	0.25	<5.21 U	0.7	4.09 J	2.6	<5.26 U	0.1	<5.15 U	0.82
Acenaphthylene	NS	<5.26 U	<0.2 U	<5.56 U	<0.2 U	<5.32 U	<0.2 U	<5.43 U	0.28	<5.56 U	0.14 J	<5.21 U	0.19 J	<5.56 U	0.83 J	<5.26 U	<0.2 U	<5.15 U	0.37
Anthracene	50	<5.26 U	<0.2 U	<5.56 U	0.04 J	<5.32 U	<0.2 U	<5.43 U	0.62	<5.56 U	0.19 J	<5.21 U	0.18 J	<5.56 U	<1 U	<5.26 U	0.04 J	<5.15 U	0.08 J
Benzo(a)anthracene	NS	<5.26 U	<0.2 U	<5.56 U	<0.2 U	<5.32 U	<0.2 U	<5.43 U	<0.2 U	<5.56 U	0.05 J	<5.21 U	<0.2 U	<5.56 U	<1 U	<5.26 U	0.02 J	<5.15 U	<0.2 U
Benzo(a)pyrene	0	<5.26 U	<0.2 U	<5.56 U	<0.2 U	<5.32 U	<0.2 U	<5.43 U	<0.2 U	<5.56 U	0.11 J	<5.21 U	<0.2 U	<5.56 U	<1 U	<5.26 U	<0.2 U	<5.15 U	<0.2 U
Benzo(b)fluoranthene	0.002	<5.26 U	<0.2 U	<5.56 U	<0.2 U	<5.32 U	<0.2 U	<5.43 U	<0.2 U	<5.56 U	0.14 J	<5.21 U	<0.2 U	<5.56 U	<1 U	<5.26 U	<0.2 U	<5.15 U	<0.2 U
Benzo(ghi)perylene	NS	<5.26 U	<0.2 U	<5.56 U	<0.2 U	<5.32 U	<0.2 U	<5.43 U	<0.2 U	<5.56 U	0.1 J	<5.21 U	<0.2 U	<5.56 U	<1 U	<5.26 U	<0.2 U	<5.15 U	<0.2 U
Chrysene	0.002	<5.26 U	<0.2 U	<5.56 U	<0.2 U	<5.32 U	<0.2 U	<5.43 U	<0.2 U	<5.56 U	0.1 J	<5.21 U	<0.2 U	<5.56 U	<1 U	<5.26 U	<0.2 U	<5.15 U	<0.2 U
Fluoranthene	50	<5.26 U	<0.2 U	<5.56 U	<0.2 U	<5.32 U	<0.2 U	<5.43 U	0.52	<5.56 U	0.21	<5.21 U	<0.2 U	<5.56 U	<1 U	<5.26 U	0.09 J	<5.15 U	<0.2 U
Fluorene	50	<5.26 U	<0.2 U	<5.56 U	<0.2 U	<5.32 U	<0.2 U	<5.43 U	3	<5.56 U	0.05 J	<5.21 U	0.37	5.32 J	4.3	<5.26 U	<0.2 U	<5.15 U	0.7
Indeno(1,2,3-cd)pyrene	0.002	<5.26 U	<0.2 U	<5.56 U	<0.2 U	<5.32 U	<0.2 U	<5.43 U	<0.2 U	<5.56 U	0.07 J	<5.21 U	<0.2 U	<5.56 U	<1 U	<5.26 U	<0.2 U	<5.15 U	<0.2 U
Naphthalene	10	<5.26 U	<0.2 U	<5.56 U	<0.2 U	<5.32 U	<0.2 U	<5.43 U	0.79	<5.56 U	0.05 J	<5.21 U	<0.2 U	<5.56 U	<1 U	<5.26 U	<0.2 U	<5.15 U	<0.2 U
Phenanthrene	50	<5.26 U	<0.2 U	<5.56 U	<0.2 U	<5.32 U	<0.2 U	<5.43 U	1.2	<5.56 U	0.17 J	<5.21 U	<0.2 U	<5.56 U	0.27 J	<5.26 U	<0.2 U	<5.15 U	<0.2 U
Pyrene	50	<5.26 U	<0.2 U	<5.56 U	<0.2 U	<5.32 U	<0.2 U	<5.43 U	0.31	<5.56 U	0.22	<5.21 U	<0.2 U	<5.56 U	<1 U	<5.26 U	0.07 J	<5.15 U	<0.2 U

	Ambient Groundwater	ALASKA	N 22	ALASK	AN 22	ALASI	KAN 22		SUN 2		SUI	N 1	SUN 1	SUN 1	SUN	N 1	SU	N 1	SU	N 1
SVOCs	Quality Standards	SP-MW-37	SP-MW-37	SP-MW-38	SP-MW-38	SP-MW-39	SP-MW-39	SP-MW-40	SP-MW-40	SP-MW-40 DUP	SP-MW-41	SP-MW-41	SP-MW-42	SP-MW-42R	SP-MW-43	SP-MW-43	SP-MW-44	SP-MW-44	SUN-MW-60	SUN-MW-60
	Quality Standards	6/17/2013	9/19/2016	6/17/2013	9/19/2016	6/17/2013	9/19/2016	6/17/2013	9/19/2016	9/19/2016	6/12/2013	9/20/2016	6/13/2013	12/1/2016	6/12/2013	8/4/2016	6/17/2013	9/20/2016	6/18/2013	9/20/2016
Bis(2-ethylhexyl)phthalate	5	1.14 J,U	2.1 J	2.23 J,l	2.3 J	<5.15 U	2.2 J	<5.15 U	<3 U	<3 U	1.16 J	2.2 J	<5.56 U	<0.98 J	<27.2 U	<3 U	<5.10 U	2.1 J	<5.38 U	<3 U
Carbazole	NS	<5.38 U	<2 U	<5.26 U	<2 U	<5.15 U	<2 U	<5.15 U	1.2 J	1.2 J	<5.62 U	<2 U	<5.56 U	<2 U	<27.2 U	<2 U	<5.10 U	<2 U	<5.38 U	<2 U
Dibenzofuran	NS	<5.38 U	<2 U	<5.26 U	<2 U	<5.15 U	<2 U	2.56 J	2	2	<5.62 U	<2 U	<5.56 U	<2 U	<27.2 U	<2 U	<5.10 U	<2 U	<5.38 U	<2 U
Diethyl phthalate	50	<5.38 U	<5 U	<5.26 U	<5 U	<5.15 U	<5 U	<5.15 U	<5 U	<5 U	<5.62 U	<5 U	<5.56 U	<5 U	<27.2 U	<5 U	<5.10 U	<5 U	<5.38 U	<5 U
Di-n-octylphthalate	50	<5.38 U	<5 U	<5.26 U	<5 U	<5.15 U	<5 U	<5.15 U	<5 U	<5 U	<5.62 U	<5 U	<5.56 U	<5 U	<27.2 U	1.7 J	1.07 J	<5 U	<5.38 U	<5 U
2-Methylnaphthalene	NS	<5.38 U	<0.2 U	1.41 J	0.41	1.87 J	<0.2 U	<5.15 U	0.7	0.8	<5.62 U	<0.2 U	<5.56 U	<2 U	<27.2 U	1.8 J	<5.10 U	0.15 J	<5.38 U	<0.2 U
Acenaphthene	20	1.63 J	6.9	1.72 J	1.5	<5.15 U	<0.1 U	1.36 J	1.6	2.2	<5.62 U	0.48	<5.56 U	<2 U	<27.2 U	0.38 J	<5.10 U	0.94	<5.38 U	<0.1 U
Acenaphthylene	NS	<5.38 U	0.62	<5.26 U	0.14 J	<5.15 U	<0.2 U	<5.15 U	0.65	0.58	<5.62 U	<0.2 U	<5.56 U	<2 U	<27.2 U	<2 U	<5.10 U	0.32	<5.38 U	<0.2 U
Anthracene	50	<5.38 U	0.46	<5.26 U	0.16 J	<5.15 U	<0.2 U	<5.15 U	0.09 J	0.15 J	<5.62 U	0.2	<5.56 U	<2 U	<27.2 U	<2 U	<5.10 U	0.27	<5.38 U	<0.2 U
Benzo(a)anthracene	NS	<5.38 U	0.05 J	<5.26 U	<0.2 U	<5.15 U	0.03 J	<5.15 U	<0.2 U	<0.2 U	<5.62 U	<0.2 U	<5.56 U	<2 U	<27.2 U	<2 U	<5.10 U	0.03 J	<5.38 U	<0.2 U
Benzo(a)pyrene	0	<5.38 U	0.08 J	<5.26 U	<0.2 U	<5.15 U	<0.2 U	<5.15 U	<0.2 U	<0.2 U	<5.62 U	<0.2 U	<5.56 U	<2 U	<27.2 U	<2 U	<5.10 U	<0.2 U	<5.38 U	<0.2 U
Benzo(b)fluoranthene	0.002	<5.38 U	0.08 J	<5.26 U	<0.2 U	<5.15 U	0.07 J	<5.15 U	<0.2 U	<0.2 U	<5.62 U	<0.2 U	<5.56 U	<2 U	<27.2 U	<2 U	<5.10 U	<0.2 U	<5.38 U	<0.2 U
Benzo(ghi)perylene	NS	<5.38 U	0.09 J	<5.26 U	<0.2 U	<5.15 U	<0.2 U	<5.15 U	<0.2 U	<0.2 U	<5.62 U	<0.2 U	<5.56 U	<2 U	<27.2 U	<2 U	<5.10 U	<0.2 U	<5.38 U	<0.2 U
Chrysene	0.002	<5.38 U	0.07 J	<5.26 U	<0.2 U	<5.15 U	0.05 J	<5.15 U	<0.2 U	<0.2 U	<5.62 U	<0.2 U	<5.56 U	<2 U	<27.2 U	<2 U	<5.10 U	<0.2 U	<5.38 U	<0.2 U
Fluoranthene	50	<5.38 U	0.27	<5.26 U	<0.2 U	<5.15 U	0.08 J	<5.15 U	0.04 J	0.04 J	<5.62 U	<0.2 U	<5.56 U	<2 U	<27.2 U	<2 U	<5.10 U	0.38	<5.38 U	0.05 J
Fluorene	50	1.33 J	1	1.10 J	0.97	<5.15 U	<0.2 U	3.15 J	0.15 J	0.22	<5.62 U	0.1 J	<5.56 U	<2 U	<27.2 U	0.47 J	<5.10 U	0.07 J	<5.38 U	<0.2 U
Indeno(1,2,3-cd)pyrene	0.002	<5.38 U	0.07 J	<5.26 U	<0.2 U	<5.15 U	<0.2 U	<5.15 U	<0.2 U	<0.2 U	<5.62 U	<0.2 U	<5.56 U	<2 U	<27.2 U	2 U	<5.10 U	<0.2 U	<5.38 U	<0.2 U
Naphthalene	10	<5.38 U	<0.2 U	3.09 J	<0.2 U	13.6	<0.2 U	<5.15 U	<0.2 U	<0.2 U	<5.62 U	<0.2 U	<5.56 U	<2 U	65.8 D	140	<5.10 U	0.67	<5.38 U	<0.2 U
Phenanthrene	50	<5.38 U	0.1 J	<5.26 U	0.17 J	<5.15 U	<0.2 U	<5.15 U	0.06 J	0.12 J	<5.62 U	0.12 J	<5.56 U	<2 U	<27.2 U	0.28 J	<5.10 U	0.07 J	<5.38 U	0.12 J
Pyrene	50	<5.38 U	0.32	<5.27 U	0.04 J	<5.15 U	0.07 J	<5.15 U	<0.2 U	<0.2 U	<5.62 U	<0.2 U	<5.56 U	<2 U	<27.2 U	<2 U	<5.10 U	0.23	<5.38 U	<0.2 U

Notes:

- Samples collected by Spectra and submitted to Alpha Analytical for analysis.
 Bold Red represents an exceedance of Ambient Groundwater Quality Standards.
- 3. <0.457 U: Analyte was not detected. The number preceding the 'U' is the associated reported detection limit.

Qualifiers:

J: Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.

1 of 1 12/13/2016

Table 2C **Groundwater Analytical Results (Metals) Destiny USA Site 7**

Metals by 6010	Ambient	SU	N 1	SU	IN 1	SUN	N 1	SU	N 1	SU	IN 1	SI	JN 1	SU	IN 1	SU	JN 2	ALASK	AN 22
and 7471	Groundwater	HCMW-1I	HCMW-1I	HCMW-1S	HCMW-1S	HCMW-1SI	HCMW-1SI	SP-MW-13S	SP-MW-13S	SP-MW-14SR	SP-MW-14SR	SP-MW-20	SP-MW-20	SP-MW-21	SP-MW-21	SP-MW-22	SP-MW-22	SP-MW-23	SP-MW-23
and 7471	Quality Standards	6/18/2013	9/20/2016	6/18/2013	9/20/2016	6/18/2013	9/20/2016	6/13/2013	9/20/2016	6/13/2013	9/19/2016	6/13/2013	9/19/2016	6/13/2013	9/19/2016	6/17/2013	9/19/2016	6/17/2013	9/19/2016
Arsenic	25	2.0 J	2.5 J	2.2 J	3.4 J	<4.0 U	<5 U	<4.0 U	31.1	31.5	70.9	<4.0 U	<5 U	<4.0 U	7.8	2.6 J	5.5	3.4 J	3.9 J
Barium	1000	30.9	19.7	29.8	99.7	17.1	16	5.6	3480	193	176	69.4	85.7	57.0	78.1	77.4	49.8	43.4	41.7
Beryllium	3	<2.0 U	<5 U	<2.0 U	<5 U	<2.0 U	<5 U	<2.0 U	<5 U	<2.0 U	<5 U	<2.0 U	<5 U						
Cadmium	5	<2.5 U	<5 U	<2.5 U	<5 U	<2.5 U	<5 U	19.2	3.4 J	<2.5 U	<5 U	<2.5 U	<5 U						
Chromium	50	1.6 J,J	<10 U	1.0 J,J	<10 U	<5.0 U	<10 U	<5.0 U	<10 U	1.3 J,J	<10 U	4.6 J,J	<10 U	1.6 J	2.2 J	<5.0 U	<10 U	1.0 J,J	<10 U
Copper	200	13.2	6.7 J	12.6	3.8 J	10.4	4.3 J	8.4	<10 U	7.3	2.3 J	28.8	2.4 J	144	43.9	7.0	<10 U	7.6	<10 U
Lead	25	5.0 J	4 J	<7.5 U	2.2 J	4.5 J	2.6 J	<7.5 U	3.5 J	12.4	7.4 J	12.4	7.2 J	321	60.4	2.3 J	<10 U	4.9 J	2 J
Manganese	300	139	19.2	6.8	54.6	177	132	9.5	898	146	254	89.7	116	584	240	156	31.8	13.0	16.9
Mercury	0.7	<0.20 U	<0.2 U	<0.20 U	<0.2 U	<0.20 U	<0.2 U	<0.20 U	<0.2 U	<0.20 U	<0.20 U	<0.20 U	<0.2 U						
Nickel	100	<5.0 U	4.7 J	1.5 J	<25 U	<5.0 U	<25 U	1.2 J	<25 U	<5.0 U	<25 U	1.0 J	<25 U	3.7 J	<25 U	<5.0 U	<25 U	1.2 J	<25 U
Selenium	10	<15.0 U	<10 U	3.2 J	<10 U	<15.0 U	<10 U	<15.0 U	<10 U	<15.0 U	<10 U	<15.0 U	<10 U	<15.0 U	<10 U	<15.0 U	<10 U	<15.0 U	<10 U
Silver	50	<5.0 U	<7 U	<5.0 U	<7 U	<5.0 U	<7 U	<5.0 U	<7 U	<5.0 U	<5.0 U	<5.0 U	<7 U						
Zinc	2000	22.8	124	6.1	9.6 J	24.4	<50 U	13.2 J	51.2	11.2 J	26 J	101 J	168	8650 J	897	2.2 J	<50 U	4.4 J	<50 U

Metals by 6010	Ambient	ALASI	KAN 22	ALASI	KAN 22	ALASI	KAN 22		SUN 2		SUI	N 1	SUN 1	SUN 1	SUI	N 1	SU	JN 1	SUI	N 1
and 7471	Groundwater	SP-MW-37	SP-MW-37	SP-MW-38	SP-MW-38	SP-MW-39	SP-MW-39	SP-MW-40	SP-MW-40	SP-MW-40	SP-MW-41	SP-MW-41	SP-MW-42	SP-MW-42R	SP-MW-43	SP-MW-43	SP-MW-44	SP-MW-44	SUNMW-60	SUNMW-60
anu 747 i	Quality Standards	6/17/2013	9/19/2016	6/17/2013	9/19/2016	6/17/2013	9/19/2016	6/17/2013	9/19/2016	DUP	6/12/2013	9/20/2016	6/13/2013	12/1/16	6/12/2013	8/4/2016	6/17/2013	9/20/2016	6/18/2013	9/20/2016
Arsenic	25	3.6 J	15.6	13.2	15.5	2.0 J	5.5	13.4	23.1	17.3	<4.0 U	5 U	<4.0 U	4.8 J	12.9	2.4	11.0	12.1	<4.0 U	3.9 J
Barium	1000	171	759	947	1560	51.8	18.9	120	178	178	118	120	187	116	44.0	57.8	696	380	126	31.4
Beryllium	3	<2.0 U	<5 U	<2.0 U	<5 U	<2.0 U	<5 U	<2.0 U	<5 U	<5 U	<2.0 U	<5 U	<2.0 U	<5 U	<2.0 U	<5 U	<2.0 U	<5 U	<2.0 U	<5 U
Cadmium	5	<2.5 U	0.8 J	<2.5 U	<5 U	<2.5 U	<5 U	<2.5 U	<5 U	<5 U	<2.5 U	<5 U	<2.5 U	<5 U	0.8 J	0.6	<2.5 U	<5 U	<2.5 U	<5 U
Chromium	50	<5.0 U	<10 U	1.7 J,J	<10 U	<5.0 U	<10 U	<5.0 U	<10 U	<10 U	1.2 J	<10 U	1.4 J,J	<10 U	1.2 J	0.8 J	1.4 J,J	<10 U	<5.0 U	2 J
Copper	200	4.4 J	12.8	8.6	2.4 J	6.4	4.1 J	7.0	<10 U	2.3 J	7.2	3.9 J	6.8	5 J	13.9	4.2	7.7	5 J	8.8	<10 U
Lead	25	2.8 J	4.8 J	<7.5 U	<10 U	10.6	2.8 J	2.2 J	<10 U	3.8 J	5.0 J,J	4.9 J	2.7 J	3 J	6.6 J,J	7.5	4.7 J	3.6 J	3.2 J	<10 U
Manganese	300	121	287	371	404	96.8	30.4	44.0	44.5	45.1	347	377	276	602	3250	175.8	2160	872	321	12.1
Mercury	0.7	<0.20 U	<0.2 U	<0.20 U	<0.2 U	<0.20 U	<0.2 U	<0.20 U	<0.2 U	<0.2 U	<0.20 U	<0.20 U	<0.20 U	<0.2 U	<0.20 U	<0.20 U	<0.20 U	<0.2 U	<0.20 U	<0.20 U
Nickel	100	3.3 J	21.7 J	<5.0 U	<25 U	<5.0 U	<25 U	<5.0 U	<25 U	<25 U	1.0 J	<25 U	<5.0 U	<25 U	10.7	1.6	1.7 J	<25 U	<5.0 U	<25 U
Selenium	10	<15.0 U	<10 U	7.4 J	8.9 J	<15.0 U	<10 U	<15.0 U	<10 U	<10 U	<175 U	<10 U	<15.0 U	<10 U	<175 U	<10 U	<15.0 U	<10 U	<15.0 U	<10 U
Silver	50	<5.0 U	<7 U	<5.0 U	<7 U	<5.0 U	<7 U	<5.0 U	<7 U	<7 U	<5.0 U	<7 U	<5.0 U	<7 U	<5.0 U	<7 U	<5.0 U	<7 U	<5.0 U	<7 U
Zinc	2000	5.2	118	3.3 J	<50 U	3.1 J	30.6 J	3.2 J	7.5 J	9 J	38.0	56.6	12.3 J	8 J	858	310.3	15.2	20.7 J	4.8 J	8.8 J

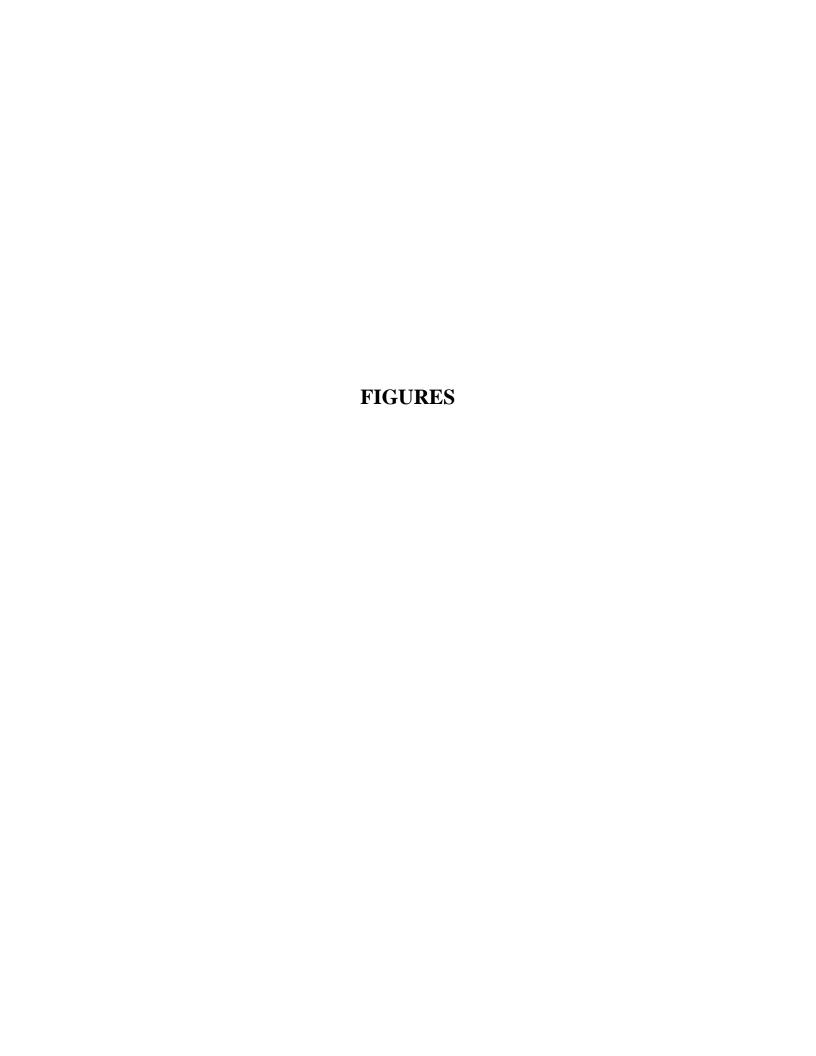
Notes:

- 1. Samples collected by Spectra and submitted to Alpha Analytical for analysis.
- Bold Red represents an exceedance of Ambient Groundwater Quality Standards.
 <0.457 U: Analyte was not detected. The number preceding the 'U' is the associated reported detection limit.
- 4. All results in ppb.

Qualifiers:

J: Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.

1 of 1 12/13/2016


Table 3 Hotel Footprint In Place Soil Samples

SAMPLE LOCATION			Area		Area		Area		Area		Area		Area		Area		Area		Area		Area	
SAMPLING DATE	. . T		7/13/2		7/21/2		8/4/20		8/4/20		8/4/20		8/5/20		8/10/2		8/11/2		8/19/2		8/19/2	
SAMPLE DESIGNATION SAMPLE TYPE	<u>DN</u>		In-Pla Discr		In-Pla Discr		In-Pla Discr		In-Pla Discr		In-Pla Discr		In-Pla Discr		In-Pla Discre		In-Pla		In-Pla Discr		In-Pla Discre	
SPECTRA SAMPLE ID			Discr 2 ^t	ete	10 SA		13		Discr 14		Discre	ete	17		Discre	ete	Discr 20		21		23	
LAB SAMPLE ID			L16219	25-01	L16229		L16244		L16244		L162444	14-03	L162450		L162511	16-01	L162511		L16261		L162610	
COMPOUND	Protection of GW	Restricted Residential	Results	Qual					Results										Results			
Solids, Total	<u> </u>	<u> </u>	80.2	T	76	T	84.6	Genera	al Chemis 87.7	try	82.4	ı	87.8		92.5	ı	80.7	ı	83.6		74.4	
Solius, Total			60.2		70		04.0	Sem	i-Volatile	<u> </u>	02.4		07.0		83.5		60.7		83.0		/4.4	
Acenaphthene	98	100	-	l -	0.87	U	0.53	J	0.14	J	0.28	J	0.24	J	0.098	J	0.33		-	-	-	-
Fluoranthene	1000	100	-	-	1.7		12		6.2		14		7.2		2.4		13		-	-	-	-
Naphthalene	12	100	-	-	1.1	U	1.5		0.13	J	1.1		0.23	J	0.064	J	0.37	J	-	-	-	-
Benzo(a)anthracene	1	1	-	-	0.67		6		3.2		8.9		4		1		7.2		-	-	-	-
Benzo(a)pyrene	22	1	-	-	0.4	J	4.9		3.3		10		3.6		0.81		6.7		-	-	-	-
Benzo(b)fluoranthene	1.7 1.7	3.9	-	-	0.61	J	6.4 2.2		4.3 1.6		14 4.8		4.3 1.7		1.1 0.42		9.6		-	-	-	-
Benzo(k)fluoranthene Chrysene	1.7	3.9	-	-	0.2	J	5.7		3.1		9.6		3.6		0.42		6.6		<u> </u>	-		-
Acenaphthylene	107	100	-	-	0.87	U	1.1		0.27	J	2.2		0.44		0.066	J	1.3		-	-	-	-
Anthracene	1000	100	-	-	0.46	J	2.5		0.89		2.3		1.5		0.46		1.9		-	-	-	-
Benzo(ghi)perylene	1000	100	-	-	0.2	J	3.1		1.9		7.1		2		0.38		3.7		_	-	-	-
Fluorene	386	100	-	-	0.68	J	1.1		0.13	J	0.26		0.47		0.14	J	0.7		-	-	-	<u> </u>
Phenanthrene Dibanzo(a b)anthracana	1000	0.33	-	-	0.65	U	8.5 0.94		1.9 0.53		4.4		3.8 0.68		1.5		5.7		-	-	-	-
Dibenzo(a,h)anthracene Indeno(1,2,3-cd)pyrene	1000 8.2	0.33	-	-	<0.65 0.25	U J	3.4		2.3		1.8 8.5		2		0.12		1.1 4.6		-	-	-	-
Pyrene	1000	100	_	<u> </u>	1.5	,	9.9		5.1		11		5.7		1.9		12		-	-	-	-
Biphenyl	NA	NA	-	-	2.5	U	1.7	U	0.84	U	0.11	J	0.86	U	0.45	U	0.93	U	_	_	_	_
Dibenzofuran	6.2	59	-	-	0.26	J	0.55	J	0.1	J	0.4	U	0.24	J	0.088	J	0.31	J	-	-	-	-
2-Methylnaphthalene	36.4	NA	-	-	1.3	U	0.45	J	0.055	J	1.4	U	0.11	J	0.24	U	0.17	J	-	-	_	-
3-Methylphenol/4-Meth	0.33	100	-	-	<1.6	U	<1.1	U	< 0.53	U	0.1	J	< 0.54	U	0.28	U	< 0.59	U				
Carbazole	NA	NA	-	-	1.1	U	0.94	70. 4	0.37	U	0.34	J	0.23	J	0.14	J	0.57			-	-	
Aluminum, Total	NA	NA	I -	l _	6800	1	6200	101	al Metals 7200	l	8700	l	6000		6600	l	6600	l	Π.		_	I -
Arsenic, Total	16	16	-	-	39		6.4		5.7		30		5.8		21		74		-	-	-	-
Barium, Total	820	400	-	-	140		71		57		92		63		230		69		-	-	-	-
Beryllium, Total	47	72	-	-	0.51	U	0.26	J	0.27	J	0.21	J	0.18	J	0.42	J	0.35	J	-	-	-	-
Cadmium, Total	7.5	4.3	-	-	56		0.1	J	0.75	J	20		0.31	J	0.93	J	3.2		-	-	-	-
Calcium, Total Chromium, Total	NA NA	NA NA	-	-	22000		130000		67000		63000		79000		28000		150000		-	-	-	-
Cobalt, Total	NA NA	NA NA	-	-	1.8		8.6 4.5		12 5.6		14 12		18 5.2		10 12		9.8 6.4		-	-	-	-
Copper, Total	1720	270	_	_	6300		28		100		840		66		32		110		-	-	_	-
Iron, Total	NA	NA	-	-	160000		10000		18000		84000		14000		28000		18000		-	-	-	-
Lead, Total	450	400	-	-	64		75		80		75		79		33		76		-	-	-	-
Magnesium, Total	NA	NA	-	-	390		14000		22000		38000		20000		7800		23000		-	-	-	-
Manganese, Total Mercury, Total	2000 0.73	2000 0.81	-	-	160 0.3		220 0.96		280 0.39		840 0.23		270 0.21		1800 0.31		1300 0.33		-	-	-	-
Nickel, Total	130	310	-	-	5.2		12		14		25		14		15		12		-	-	-	-
Potassium, Total	NA	NA	-	-	160	J	700		720		700		620		560		540		-	-	-	-
Selenium, Total	4	180	-	-	0.4	J	1.8	U	1.8	U	2.7		1.7	U	1.9	U	2	U	-	-	-	-
Silver, Total	8.3	180	-	-	18		0.21	J	0.21	J	2.6		0.87	U	0.95	U	0.98	U	-	-	-	-
Sodium, Total	NA NA	NA NA	-	-	140	J	600	U	410	ΥY	220	U	420	**	160	J U	520	U	-	-	-	-
Thallium, Total Vanadium, Total	NA NA	NA NA	-	-	2.3 5.3	1	1.8	U	1.8	U	1.8 16	U	1.7 12	U	1.9 18	U	12	U	-	-	-	-
Zinc, Total	2480	10000	-	-	17000		120		450		3900		240		46		560		-	-	-	-
.,								V	olatiles										L			
Methylene chloride	0.05	100	2.6	U	< 0.61	U	0.0022	J	0.0026	J	0.0026	J	0.62	U	0.012	U	0.009	U	< 0.62	U	< 0.72	U
Chloroform	0.37	49	0.39	U	0.091	U	0.0018	U	0.0018	U	0.0018	U	0.092	U	0.0015	J	0.0013	U	0.093	U	0.11	U
Trichlorofluoromethane 1,2-Dichloroethane	NA 0.02	NA 3.1	1.3 0.26	U	0.3 <0.061	U	0.0059	U	0.0057	U	0.0061	U	0.31	U	0.006 0.0012	U	0.00039	J U	<0.062	U	0.36 <0.072	U
Benzene	0.02	4.8	0.20	J	<0.061	U	0.0012	U	0.0011	U	0.0012	J	0.002	J	0.0012	U	0.0009	J	<0.062 0.1	U	0.072	J
Toluene	0.7	100	0.39	U	0.091	U	0.0012	U	0.0017	U	0.00038	J	0.021	J	0.0012	U	0.00028	J	0.3		0.084	J
Ethylbenzene	1	41	0.26	U	0.061	U	0.0012	U	0.0011	U	0.00063	J	0.014	J	0.0012	U	0.0009	U	0.085		0.0095	J
p/m-Xylene	NA	NA	0.3	J	0.12	U	0.0024	U	0.0023	U	0.0014	J	0.032	J	0.0024	U	0.0018	U	0.24		0.022	J
o-Xylene	NA	NA	0.52	U	0.12	U	0.0024	U	0.0023	U	0.0024	U	0.12	U	0.0024	U	0.0018	U	0.054	J	0.14	U
Total Xylenes	1.6	100	0.3	ΥY	ND	¥	ND 0.0004	T	ND 0.025		0.0014		0.032	TT	ND 0.016		ND 0.044		0.294	Y	0.022	¥
Acetone 2-Butanone	0.05 0.12	100 100	2.6	U	0.37 <0.61	U	0.0094	J U	0.025	U	0.14 0.025		0.62	U	0.016 0.012	U	0.044		0.33 0.58	J J	0.23	J
Isopropylbenzene	2.3	NA	0.29	U	0.019	J	0.0012	U	0.0011	U	0.00014	J	0.062	U	0.012	U	0.0091	U	0.017	J	0.014	J
Methyl Acetate	NA	NA	5.2	U	1.4	Ť	0.024	U	0.023	U	0.024	U	0.96	J	0.0012	J	0.000	U	0.37	J	0.082	J
Cyclohexane	NA	NA	0.00013	U	1.2	U	0.024	U	0.023	U	0.024	U	1.2		0.024	U	0.00065	J	1.2	U	1.4	U
Methyl Cyclohexane	NA	NA	4.7		0.038	J	0.0047	U	0.0046	U	0.0048	U	0.25	U	0.0048	U	0.0012	J	0.096	J	0.29	U
		Notes:																				

Notes:

- All values reported in mg/kg.
 Yellow shaded cells represent exceedances.
 Sample collected on bottom of excavation.
 Sample collected along the N/NW wall of freight elevator shaft, approximately 6 ft. bgs.
 Concentration exceeds the range of the calibration curve; value represents concentration of analyte from diluted analysis.

1 of 1 11/2/2016

<u>LEGEND</u>

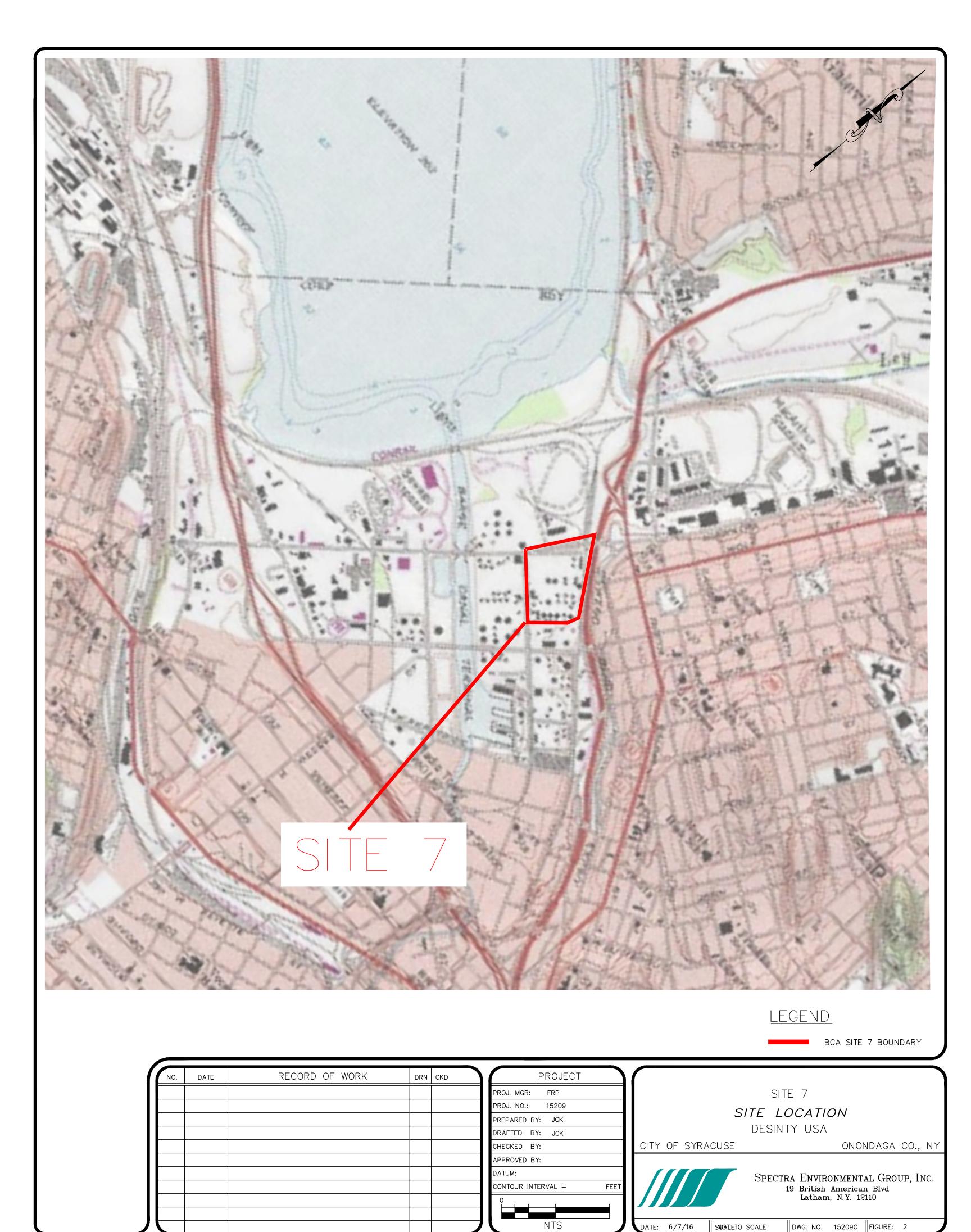
BCA SITE 7 BOUNDARY

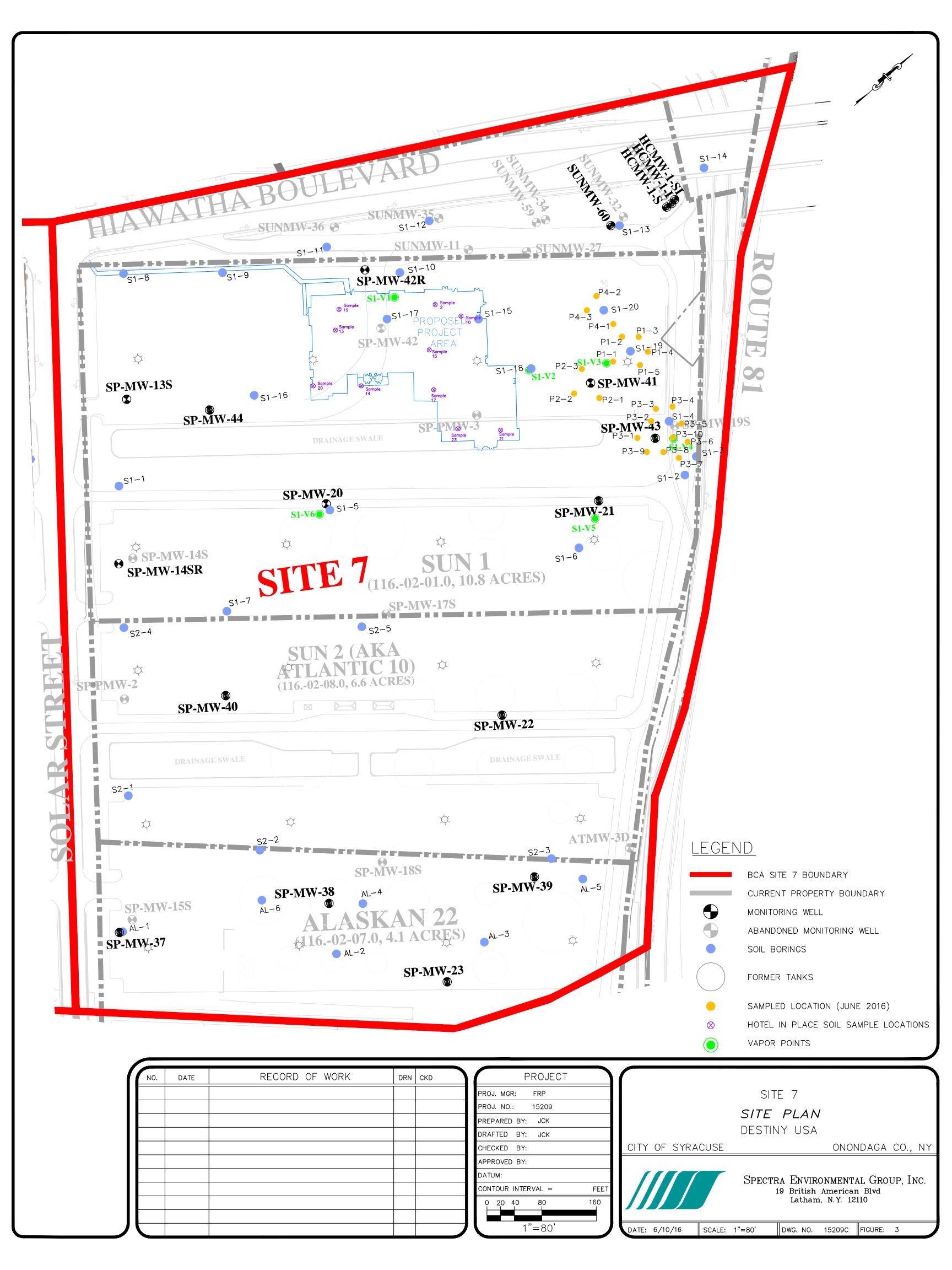
NO.	DATE	RECORD OF WORK	DRN	CKD

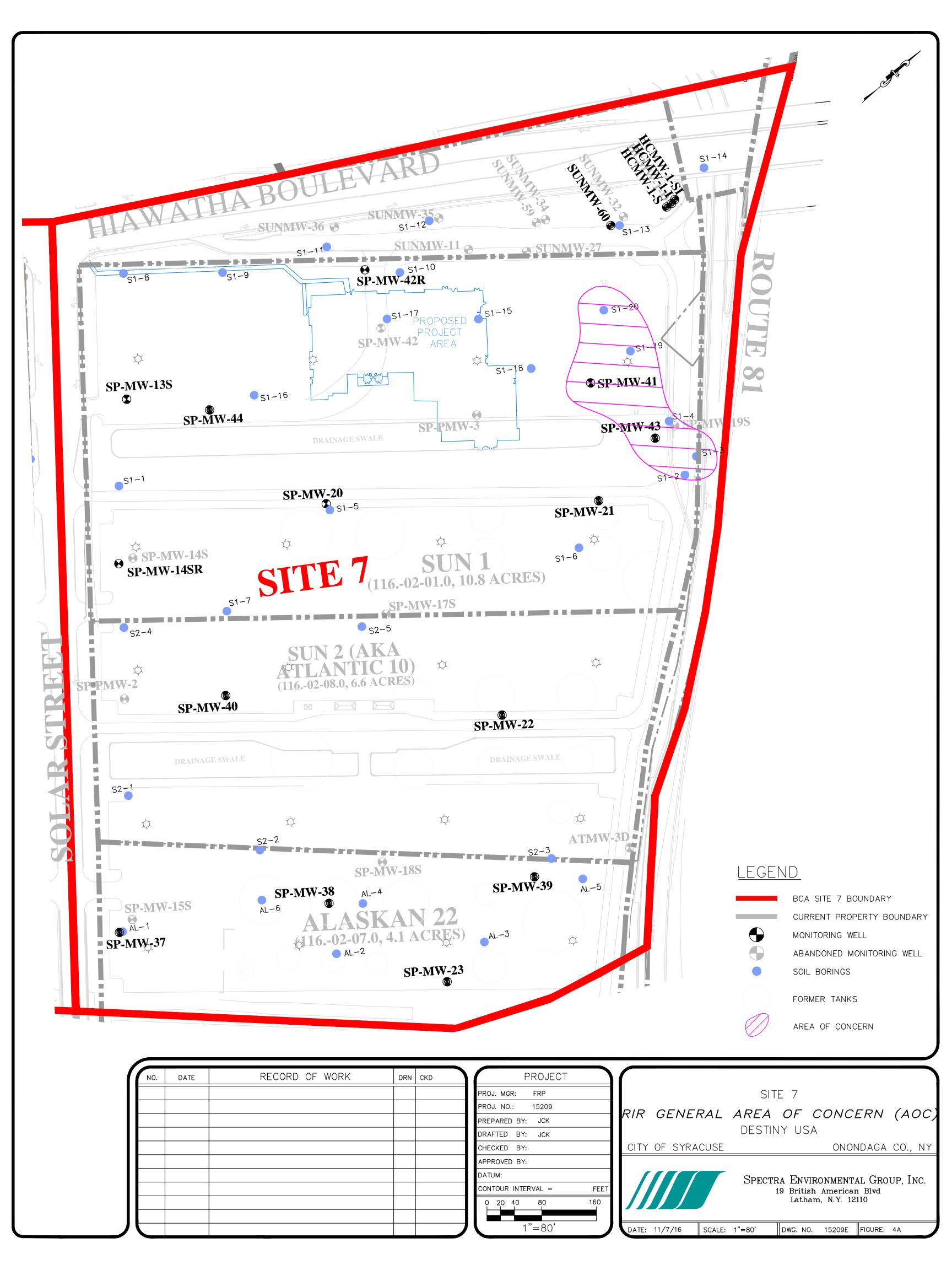
PROJECT	
PROJ. MGR: FRP	
PROJ. NO.: 15209	
PREPARED BY: JCK	
DRAFTED BY: JCK	
CHECKED BY:	
APPROVED BY:	
DATUM:	
CONTOUR INTERVAL =	FEET
0	
NTS	1

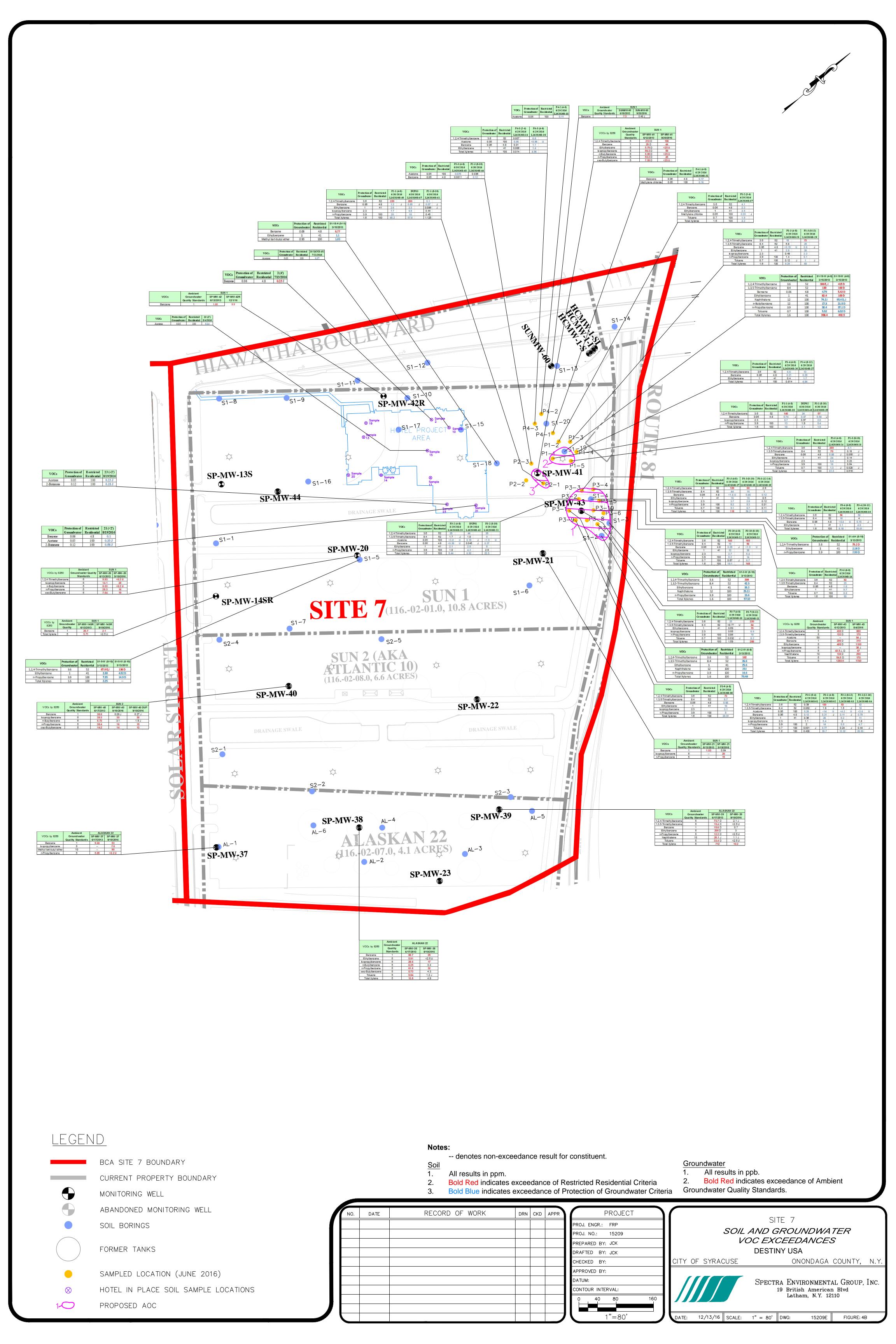
SITE 7 Aerial Photograph DESTINY USA

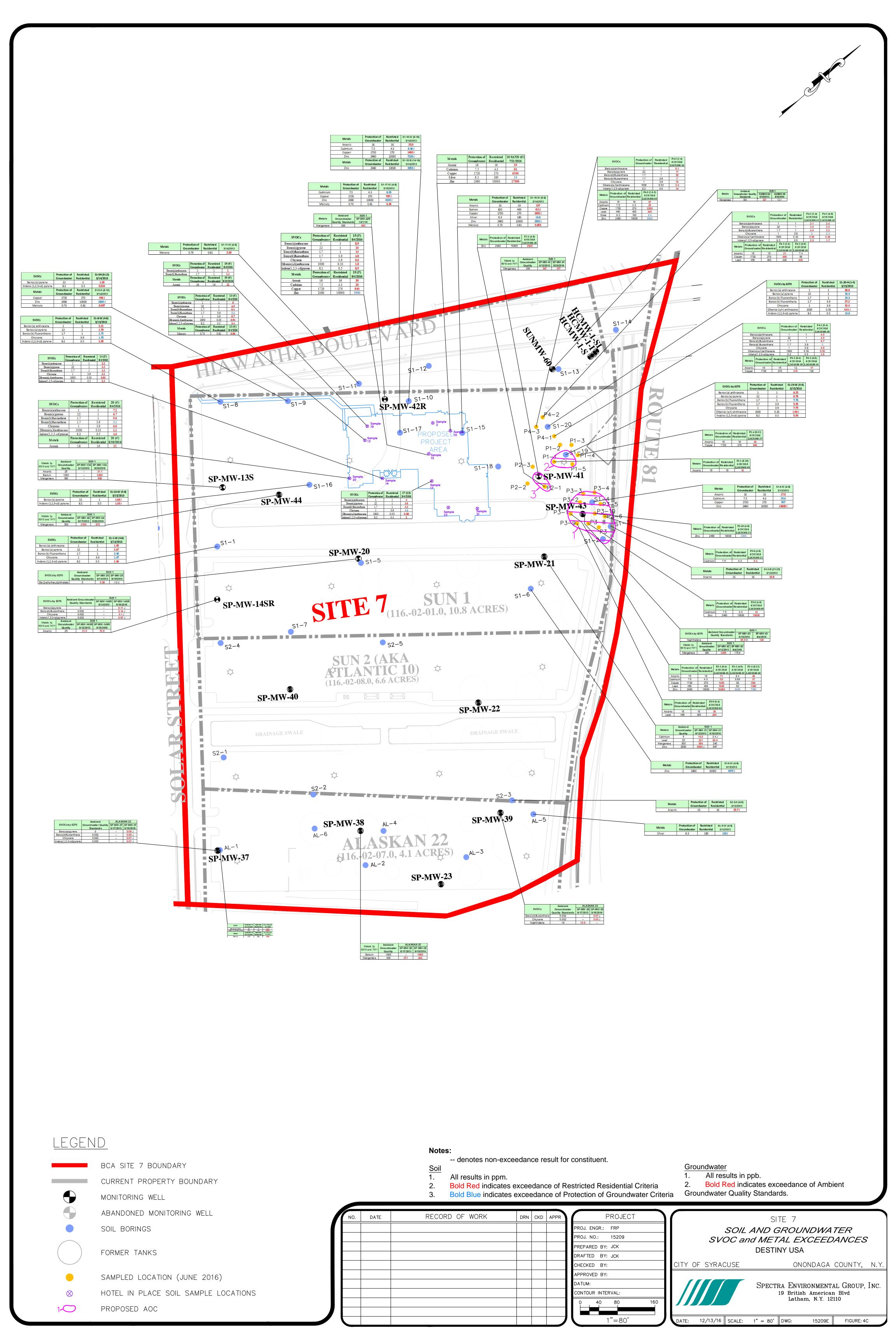
CITY OF SYRACUSE

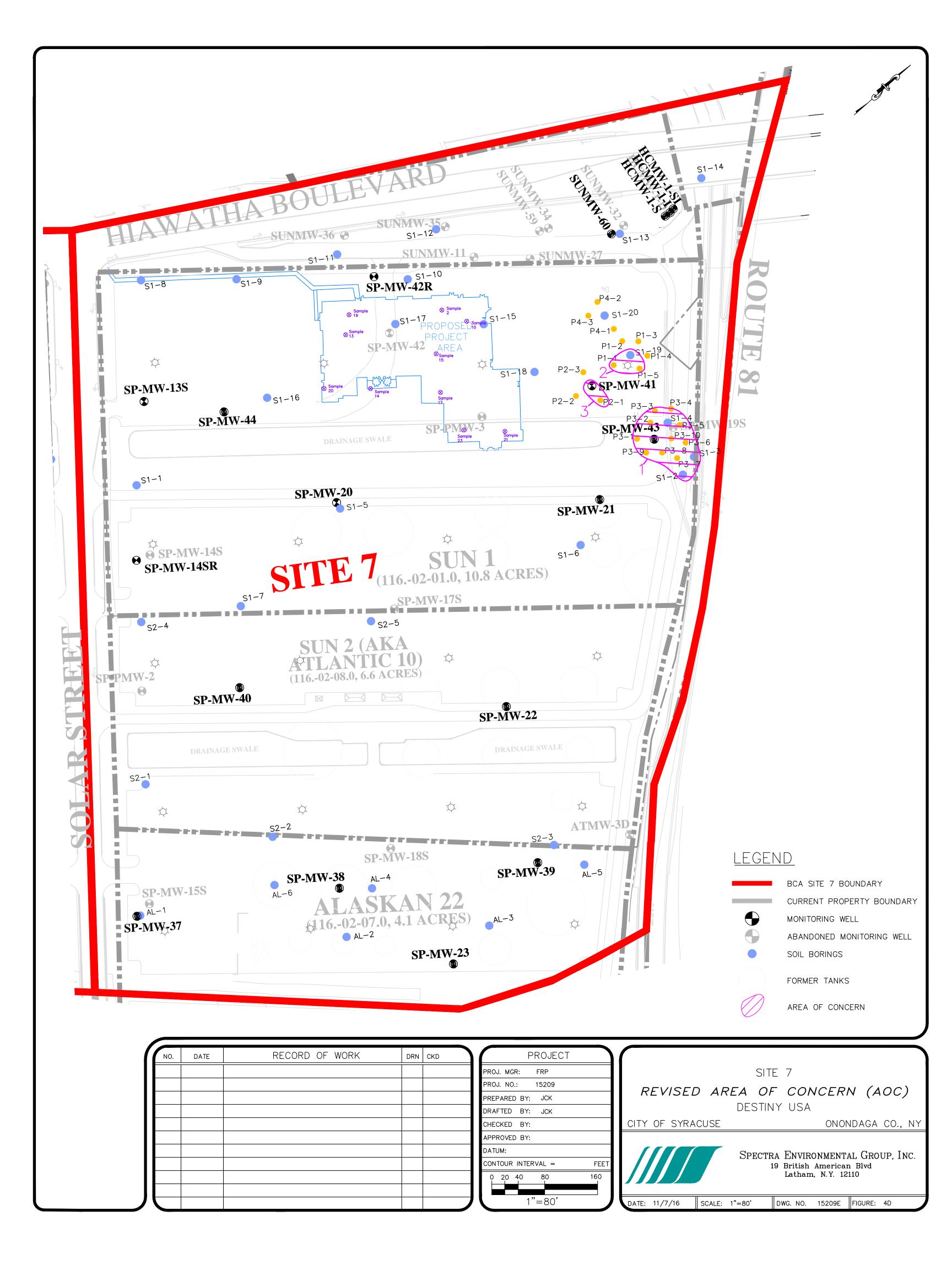

ONONDAGA CO., NY

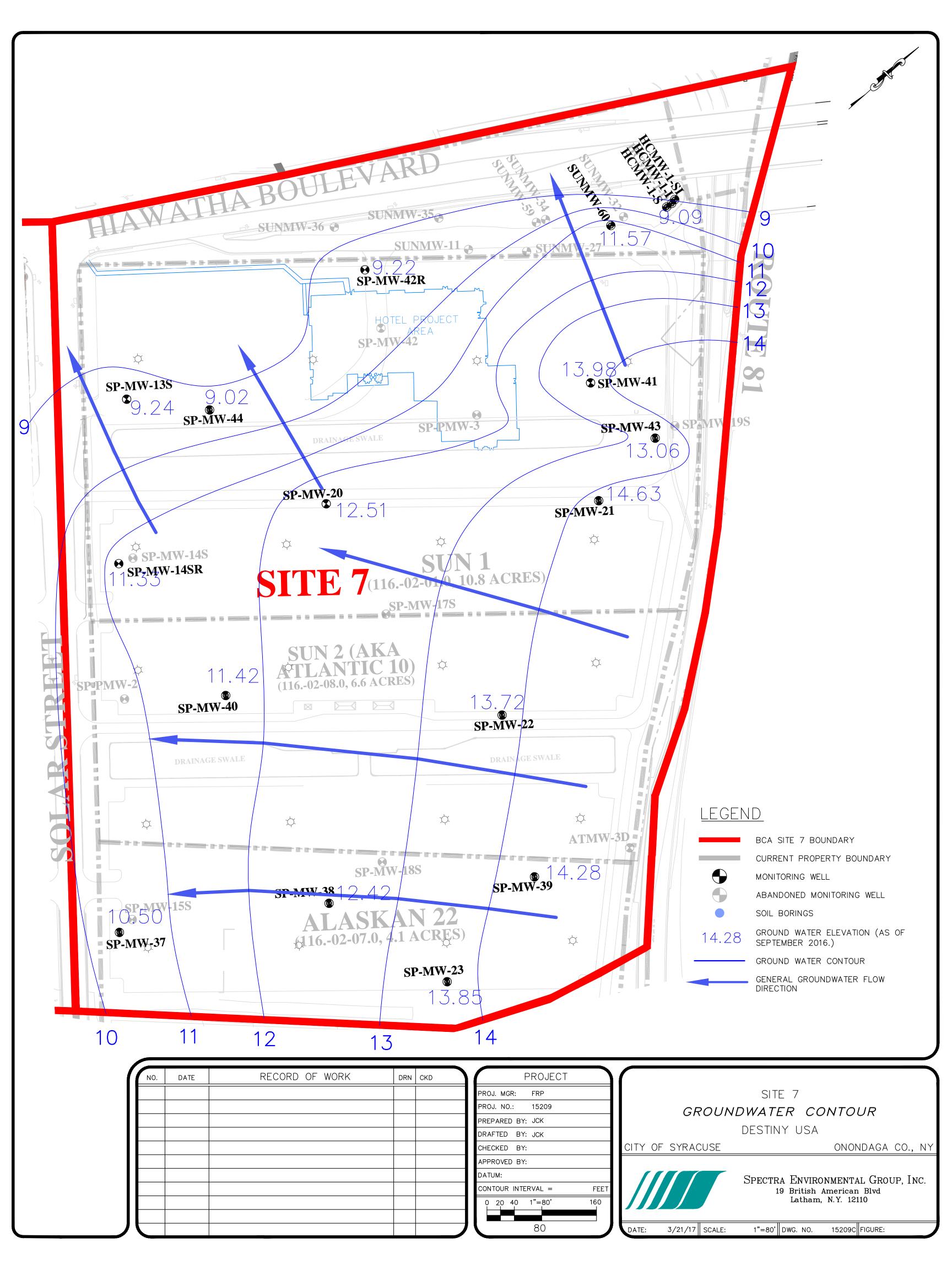



SPECTRA ENVIRONMENTAL GROUP, INC.


19 British American Blvd
Latham, N.Y. 12110


DATE: 6/10/16 | SCALE:NOT TO SCALE DWG. NO. 15209C FIGURE: 1





APPENDIX A SITE SPECIFIC HEALTH AND SAFETY PLAN

SITE SPECIFIC HEALTH & SAFETY PLAN

DESTINY USA BROWNFIELD CLEANUP PROGRAM SITES SOLAR STREET SYRACUSE, NEW YORK

Prepared for:

New York State
Department of Environmental Conservation

Prepared by:

Spectra Environmental Group, Inc. 19 British American Boulevard Latham, New York 12110

December 2016

SITE SPECIFIC HEALTH & SAFETY PLAN

DESTINY BROWNFIELD CLEANUP PROGRAM SITES SYRACUSE, NEW YORK

TABLE OF CONTENTS

E SPEC	CIFIC HEALTH AND SAFETY PLAN	iii
INT	RODUCTION	1
SCO	PE OF WORK	2
SITI	E SPECIFIC HEALTH AND SAFETY CONCERNS	5
4.1	SITE LOCATION	5
4.2	SITE HISTORY AND SETTING	5
4.3	CHEMICAL CONSTITUENTS OF CONCERN	5
SITI	E SPECIFIC HEALTH AND SAFETY REQUIREMENTS	6
5.1	KEY PERSONNEL	6
5.2		
5.3	AIR MONITORING	7
5.4	PERSONAL PROTECTIVE EQUIPMENT	7
5. 5		
5.6		
SITI	E CONTROL	8
6.1	COMMUNITY AIR MONITORING	9
EMI	ERGENCY PLAN	10
7.1	NOTIFICATION	10
7.2	PERSONNEL INJURY	11
7.3	FIRE/EXPLOSION	11
7.4	PERSONAL PROTECTION EQUIPMENT FAILURE	11
7. 5	OTHER EQUIPMENT FAILURE	11
7.6	OFF-SITE EMERGENCY RESPONSE	12
7.7	DIRECTIONS TO NEAREST HOSPITAL	12
7.8	RECORD KEEPING	12
	INTE SCO DES SITI 4.1 4.2 4.3 SITI 5.1 5.2 5.3 5.4 5.5 5.6 SITI 6.1 EMI 7.1 7.2 7.3 7.4 7.5 7.6 7.7	INTRODUCTION

TABLES

Table 1	Personal Protective Equipment for Level C and D Protection
Table 2	Personnel Protective Equipment Associated with Each Project Task

FIGURES

Figure 1 Site Location Map of Site 7
Figure 2 Overview Map of Sites

APPENDICES

Appendix A **General Field Safety Rules Appendix B First Aid Equipment List Protective Clothing** Appendix C Appendix D Donning and Doffing Protective Clothing Level C and D **Appendix E** General Health and Safety Guidelines for Drum Handling **Appendix F Temperature Stresses: Policies and Procedures** Appendix G Soil and Well Sampling Health and Safety Guidelines Appendix H **Hearing Protection** Appendix I **Procedures for Tank Cutting and Excavation, Trench or Test Pit Digging** Appendix J **CAMP**

SITE SPECIFIC HEALTH AND SAFETY PLAN

This Site Specific Health and Safety Plan (SSHSP) is designed to assure compliance with OSHA's regulations covering hazardous waste sites (29 CFR 1910.120).

The purpose of the Site Specific Health and Safety Plan is to assure clear delegation of responsibilities, consistent work practices and proper oversight of health and safety issues during activities at the Destiny Brownfield Cleanup Program Sites as identified in the attached Figures 1 and 2.

This plan is site-specific and has been reviewed and approved by Spectra's Corporate Health and Safety Officer and Project Manager prior to adoption.

A copy of this plan will available at the site. At the completion of planned activities, a copy of this plan shall be retained with other project related documentation including soil boring logs and well installation diagrams, etc.

APPROVED BY:		
Spectra Corporate Health and Safety Officer (CHSO) Paul M. Adel, P.E.	Date	
Spectra Project Manager Frank R Peduto, P.E.	Date	
Spectra On-Site Supervisor (OSS)	Date	

1.0 INTRODUCTION

This Site Specific Health and Safety Plan (SSHSP) has been developed to identify potential hazardous substances and conditions known or suspected to be present on the site and ensure that they do not adversely impact the health or safety of personnel conducting field activities. It is also intended to ensure that the procedures used during these field activities meet reasonable professional standards to protect human health and safety of workers and the surrounding community. This plan incorporates by reference to applicable requirements of the Occupational Safety and Health Administration in 29 CFR Parts 1910 and 1926.

The requirements in this SSHSP are based on review of site-specific information and an evaluation of potential hazards identified during the completion of a Site 7 Remedial Investigation.

All field personnel working on this project must familiarize themselves with this SSHSP and abide by their requirements. Since every potential health and safety hazard encountered at a site cannot be anticipated, it is imperative that personnel are equipped and trained to respond promptly to a variety of possible hazards. Adherence to both plans will minimize the possibility that personnel at the site and the public will be injured or exposed to significant hazards. Information on potential health, safety, and environmental hazards is discussed in conjunction with appropriate protective measures including assignment of responsibility, personal protective equipment requirements, work practices, and emergency response procedures.

In general, subcontractors are responsible for complying with all regulations and client policies applicable to the work they are performing.

Spectra personnel can and must stop work by a Spectra subcontractor who is observed to not be following health and safety procedures required by the plan.

This SSHSP is specifically intended for those personnel who will be conducting activities within the defined scope of work at the site.

2.0 SCOPE OF WORK

Specific tasks covered by this SSHSP may include, but are not limited to:

- Performing inspections to characterize environmental or other hazards;
- Collecting soil samples from a drilling rig, excavation equipment, or hand tools;
- Observing earthen materials, fill, debris, through drilling activities, etc.;
- Investigating areas where hazardous substances are, or may be present;
- Decontaminating personnel and equipment;
- Containerizing of contaminated materials into 55-gallon drums for eventual disposal;
- Contaminated Soil Stockpiling and disposal;
- Collecting samples from drums, drilling activities, or other containers; and
- Groundwater and/or soil sampling.

3.0 DESIGNATION OF RESPONSIBILITIES

The responsibility for implementing this SSHSP is shared by the Project Manager, the Corporate Health and Safety Officer (CHSO) and the On Site Supervisor (OSS). The Project Manager will recommend policy on all safety matters including work practices, training, and response actions, and will provide the necessary resources to conduct the project safely.

The CHSO has overall responsibility for developing safety procedures and training programs, maintaining a high level of safety awareness; ensuring compliance with applicable federal, state, and local health and safety regulations; determining appropriate protection including the selection of protective equipment, maintenance schedules, and monitoring protocols; and maintaining close communication with the OSS and field personnel. The CHSO is the final decision point for determination of health and safety policies and protocols for all projects.

The OSS is responsible for establishing operating standards and coordinating all safety activities occurring at the site, with guidance from the CHSO. Specifically, the OSS is responsible for:

- Assuring that a copy of this SSHSP is at the site prior to the start of field activities and that all workers are familiar with it;
- Conducting training and briefing sessions if appropriate, prior to the start of field activities at the site and repeat sessions as necessary;
- Ensuring the availability, use, and proper maintenance of specified personal protective, decontamination, and other health or safety equipment;
- Maintaining a high level of safety awareness among team members and communicating pertinent matters to them promptly;
- Assuring that all field activities are performed in a manner consistent with Company policy and this SSHSP;
- Monitoring for dangerous conditions during field activities;
- Assuring proper decontamination of personnel and equipment;
- Coordinating with emergency response personnel and medical support facilities, and other Health and Safety representatives of the client and contractors:
- Initiating immediate corrective actions in the event of an emergency or unsafe condition;

- Notifying the Project Manager and CHSO promptly of any emergency, unsafe condition, problem encountered, or significant exceptions to the requirements in the SSHSP; and
- Recommending improved health and safety measures to the Project Manager, or the CHSO.

The OSS has the authority to:

- Suspend field activities or otherwise limit exposures if the health and safety of any person appears to be endangered;
- Direct Company or subcontractor personnel to alter work practices that are deemed not properly protective of human health or the environment; and
- Suspend an individual from field activities for significant infraction of the requirements in this SSHSP.

However, the presence of the OSS shall in no way relieve any person, company, or subcontractor of its obligations to comply with the requirements of this Plan and all applicable federal, state, and local laws and regulations.

The key element in the responsibility for health and safety is the individual field team member. Everyone must be familiar with and conform to the safety protocols prescribed in this SSHSP and communicate any relevant experience or observations to provide valuable inputs to improving overall safety.

4.0 SITE SPECIFIC HEALTH AND SAFETY CONCERNS

4.1 SITE LOCATION

Destiny Brownfield Cleanup Program Sites Site 7, Solar Street Syracuse, New York

4.2 SITE HISTORY AND SETTING

This Health and Safety Plan applies to the real property shown on Figure 1 and is to be used in connection with all phases/Sites of the Destiny USA project located in Syracuse, New York.

A comprehensive BCP Site 7 history and information regarding the physical setting is provided in Section 1.0 of the Site 7 Remedial Work Plan (RWP).

4.3 CHEMICAL CONSTITUENTS OF CONCERN

The primary health concerns and routes for exposure at this site are injection, ingestion, and absorption of soil, vapor, and groundwater through injection, inhalation, ingestion, puncture, and direct skin contact while collecting soil, vapor, and groundwater samples.

Skin and eye contact hazards are also potentially high. The protective equipment specified in Section 5.0 will provide adequate protection. Any symptoms are to be reported to the OSS, Project Manager, and CHSO immediately.

The potential for exposure will be further reduced by prohibiting drinking alcoholic beverages or smoking during all activities within the fieldwork areas.

Unknown or unexpected materials of a hazardous nature may be encountered during site activities. No work will be conducted if field measurements or observations indicate that a potential exposure is greater than the protection afforded by the requirements in this Plan.

• Anticipated contaminants include; VOCs, SVOCs, PCBs, Solvay Wastes, elevated pH and Metals in soil and groundwater.

Table 1 identifies the personal protective equipment for Level C and D protection.

Table 2 identifies personnel protective equipment associated with each potential task.

Note: Tables are at the end of the plan.

No safety hazards were identified other than those normally associated with this type of activity and therefore the potential hazards are generally well known to the personnel involved. Use of the specified personal protective equipment and air monitoring will minimize the risks.

5.0 SITE SPECIFIC HEALTH AND SAFETY REQUIREMENTS

5.1 KEY PERSONNEL

Destiny Site Contact

Name: Mr. David Aitken, Destiny USA Telephone Number: (315) 422-7000

Project Manager

Name: Frank R. Peduto, P.E., Spectra Telephone Number: (518) 782-0882

Spectra Corporate Health and Safety Officer

Name: Paul M. Adel, P.E., Spectra Telephone Number: (518) 782-0882

Site On-Site Supervisor

Name:

Cell Telephone Number:

5.2 TRAINING

The Project Manager, OSS, and all personnel working inside a regulated area must have received training at least meeting the requirements established by the Occupational Safety and Health Administration in 29 CFR 1910.120 prior to the start of field activities.

Before authorized persons enter the active site for the first time, they will be briefed by the Project Manager or OSS as to the potential hazards that may be encountered. Topics will include:

- This SSHSP and the nature of its contents;
- Selection and use of personal protection equipment (PPE) to be worn;
- Decontamination procedures for personal protection and other equipment, as necessary;
- Emergency forms of notification, and evacuation routes to be followed;
- Prohibitions on smoking and carrying of tobacco products, eating, drinking, and open fires (except by permit) in the work area;
- Methods to obtain outside emergency assistance and medical attention;
- Specific health, safety, and emergency response requirements imposed by the facility's owner or operator; and

 The frequency and types of air monitoring, personnel monitoring, and environmental sampling techniques and instrumentation to be used, including methods of maintenance and calibration of monitoring and sampling equipment.

5.3 AIR MONITORING

Site-specific monitoring programs have been designed and are consistent with known or suspected exposure to hazardous materials. The following monitoring is planned as part of this project.

All areas are adequately ventilated and do not present a potential for accumulation of harmful or ignitable quantities of vapors. During ground intrusive activities, a photoionization detector will be used to measure total volatile organic compounds both around the intrusive area and in the Employee's breathing zone.

5.4 Personal Protective Equipment

The following procedures should be followed when donning protective equipment as appropriate: (NOTE: Specific donning and doffing procedures for each protection level are found in the appendices along with minimum requirements for quality of protective clothing).

Table 1 indicates the general levels of personal protective equipment (PPE) that will be used for on-site activities. Site and task specific levels of PPE assigned according to the chemicals of concern are listed in Table 2 at the end of this plan.

Unless the CHSO directs otherwise, when respirators are used, the cartridges should be changed after eight hours of use, or at the end of each shift, or when any indication of breakthrough or excess resistance to breathing is detected.

5.5 OTHER PROTECTIVE EQUIPMENT

A first aid kit, portable eyewash, and vehicle will be kept in close proximity to the site.

5.6 DECONTAMINATION PROCEDURES

Refer to Tables 1 and 2 and Appendix D for decontamination procedures.

Responsibility for treatment and disposal or decontamination waste products is the sole responsibility of the site owner/operator unless specific contractual arrangements have been established for the project. At no time will Spectra or its agents become the owner of wastes.

6.0 SITE CONTROL

If appropriate, the work site will be segregated into work zones based upon monitoring data, the nature of work to be performed, and site topography. The on site coordinator will establish and clearly mark the following areas with consultation of the project health and safety coordinator and project team lead:

- 1. Exclusion Zone This will be the actual work site involved with the site activity. An outer boundary will be established and clearly marked. The area of the exclusion zone will be established based on on-site work conditions, exposure monitoring, etc.
 - a. Access to the exclusion zone will be limited to those employees who have the requisite training, protective equipment, and responsibilities for work in this area.
 - b. The area of exclusion zone will be changed as necessary depending on the site coordinators judgment regarding work conditions, air sampling, etc.;
- 2. Contamination Reduction Zone (CRZ) An area between the actual work site (exclusion zone) and support zone will be established to facilitate employee and equipment decontamination, protective equipment storage, and supply.
 - a. The location of the CRZ will be established in an area offering minimal contamination and will be subject to change based on the site coordinators judgment considering work conditions, air monitoring, etc.;
- 3. Support Zone An area free of contamination will be identified and clearly marked where administrative and other support functions (not requiring entrance to the exclusion or contamination reduction zone) can be performed. The actual siting of the support zone will be established by the project leader and site coordinator considering distance from exclusion zone, visibility, accessibility, freedom of cross contamination from the exclusion zone, air monitoring data, etc.; and
- 4. Security measures will be established by the site coordinator in conjunction with other project team members to control access to the site and prevent unauthorized access during working and non-working hours.

6.1 COMMUNITY AIR MONITORING

This Health and Safety Plan will incorporate the provisions contained in the New York State Department of Health (NYSDOH) Generic Community Air Monitoring Plan.

As specified by NYSDOH, a Community Air Monitoring Plan (CAMP) will be implemented to provide real-time and continuous volatile organic compound (VOC) and particulate monitoring during ground intrusive activities (including test pitting, soil borings/monitoring well installation, and excavation).

Continuous VOC monitoring will be conducted at a monitoring station positioned along the downwind perimeter of the site. A determination of the downwind perimeter location will be based upon a review of the prevailing wind direction from available historic data at the nearest meteorological station. Prior to conducting and during ground intrusive activities, VOCs will also be monitored periodically from an upwind location. Upwind monitoring will be done at the start of each work day and at approximate time intervals of 2 hours, thereafter.

Continuous particulate air monitoring will also be performed at one upwind and one downwind perimeter location. It is anticipated that the particulate monitoring instruments will be located in close proximately to the VOC monitoring instruments. The particulate monitoring instruments will be equipped with an audible alarm to indicate any exceedance of the action level. In addition to automated monitoring, fugitive dust migration will also be visually assessed during all work activities.

All air monitoring equipment will be calibrated and operated in accordance with manufacturing specifications and NYSDOH requirements. Action levels for VOCs and particulate matter will be based on the recommended NYSDOH action levels.

7.0 EMERGENCY PLAN

The following standard emergency procedures will be used by on-site personnel. The OSS will be notified of any on-site emergency and be responsible for ensuring the appropriate procedures are followed and the CHSO and Project Manager are notified. A first aid kit, eye wash unit, and fire extinguisher will be readily available to field personnel. Questions regarding procedures and practices described in this plan should be directed to the CHSO.

7.1 NOTIFICATION

Upon the occurrence of an emergency including an unplanned chemical release, fire or explosion, personnel will be alerted and the area evacuated immediately. Reentry to the site will be limited to that necessary to assist injured personnel and only after appropriate protective equipment is donned.

The following alarm system will be utilized to alert personnel to evacuate the restricted area.

	Audible Alema
	_ Audible Alarm Describe
X	_ Direct Verbal Communication (10 employees or less)
	_ Radio Communication or Equivalent (Remote Sites)
	Other

Describe

The following standard hand signals will also be used as necessary:

Hand gripping throat Can not breath / Out of air

Grip Partner's wrist Leave area immediately (No debate)!

Hands on top of head Need assistance

Thumbs up Yes / Okay

Thumbs down No / A problem

Upon activation of the alarm, employees will proceed to the designated assembly area. The designated assembly area will be determined on a daily basis and updated as necessary depending upon work conditions, weather, air monitoring, etc. The location of the designated assembly area will be clearly marked and communicated to employees daily or upon relocation of the area.

Employees gathered in the designated assembly area will remain there until their presence has been noted. A comparison of employees against the daily restricted area access roster will be necessary to assure all employees have been properly evacuated.

7.2 Personnel Injury

If anyone within a restricted area is injured and cannot leave the restricted area without assistance, all site personnel will assemble in the designated decontamination area. After donning appropriate protective equipment as determined by the OSS, a rescue team will enter the area to assist or remove the injured person. If entry requires the use of PPE, similarly equipped support personnel shall be on hand to lend assistance as necessary. The OSS will evaluate the nature of the injury, and the affected person will be decontaminated to the extent feasible prior to movement. Appropriate first aid will be initiated, and if required, contact will be made for an ambulance and with the designated medical facility. No person will re-enter the work area until the cause of injury or symptoms is determined.

7.3 FIRE/EXPLOSION

Upon the occurrence of a fire beyond the incipient stage or an explosion anywhere on the site, the fire department will be alerted and all personnel will be moved to a safe distance from the effected area.

7.4 Personal Protection Equipment Failure

If any worker in a Level C area experiences a failure or alteration of protective equipment that affects the protection factor (e.g. torn protective suit, odor inside respirator), that person (and his/her buddy, if in a regulated area) will immediately leave the work area. Re-entry will not be permitted until the equipment has been repaired or replaced and the cause of the problem is known.

7.5 OTHER EQUIPMENT FAILURE

If any other equipment at the work site fails to operate properly, the Project Manager and/or OSS will be notified and will then determine the effect of this failure on continuing operations. If the failure affects the safety of personnel (e.g. failure of monitoring equipment) prevents completion of the planned tasks, all personnel will leave the work area until appropriated corrective actions have been taken.

7.6 OFF-SITE EMERGENCY RESPONSE

Emergency response requiring actions beyond evacuation of personnel from the work area will be handled by notification of off-site emergency response agencies. Phone numbers for these agencies and other support services are listed below:

Fire Department: 911 Ambulance: 911

Poison Control Center: (800) 222-1222 Chemical Emergency Advice (CHEMTREC): (800) 424-9300

7.7 DIRECTIONS TO NEAREST HOSPITAL

Crouse Hospital 736 Irving Ave. Syracuse, New York 13210 (315) 470-7111

- 1: Start out going NORTHEAST on BEAR STREET WEST.
- 2: Take the 2nd RIGHT onto GENANT DRIVE.
- 3: Take the RAMP on the LEFT onto I-81 SOUTH.
- 4: Take EXIT 18 toward HARRISON STREET/ADAMS STREET.
- 5: Keep LEFT at the fork, follow signs for ADAMS STREET.
- 6: Turn RIGHT onto ALMOND STREET.
- 7: Turn LEFT onto EAST ADAMS STREET.
- 8: Turn RIGHT onto IRVING AVENUE.
- 9: End at Crouse Hospital

736 Irving Avenue

Syracuse, New York 13210

Estimated Time: 6 minutes Estimated Distance: 2.6 miles

7.8 RECORD KEEPING

Spectra shall maintain records of reports concerning occupational injuries and illnesses in accordance with 29 CFR 1904.

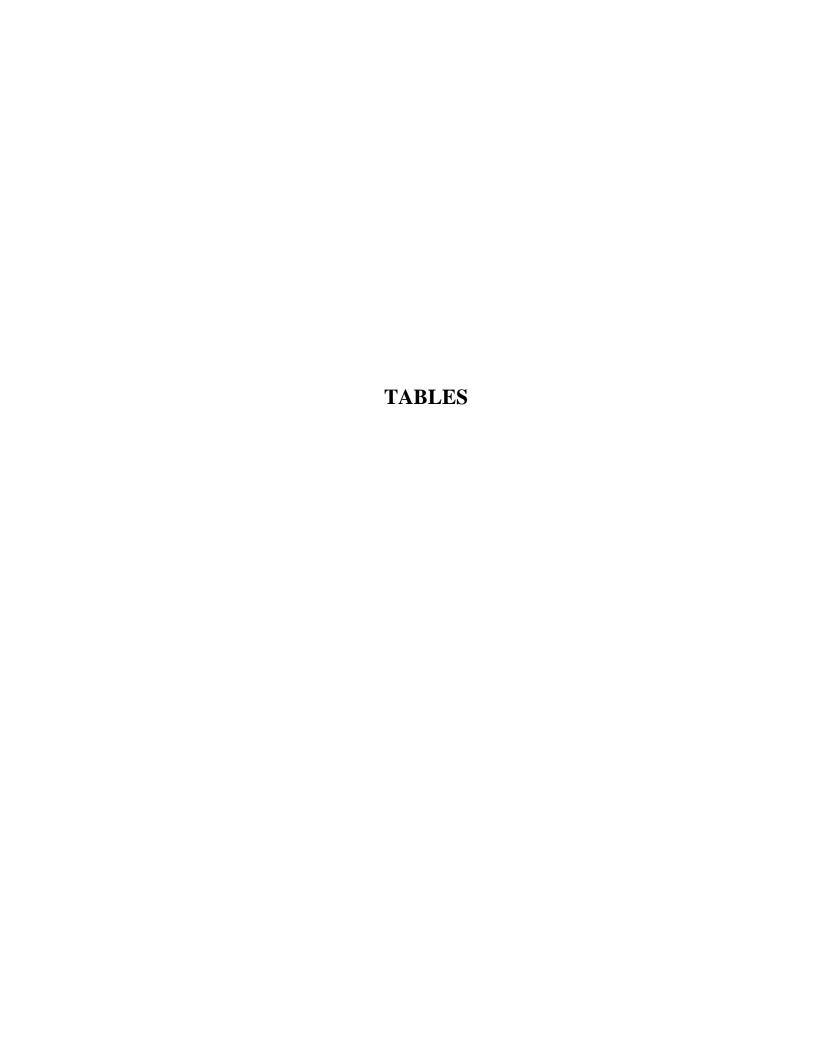
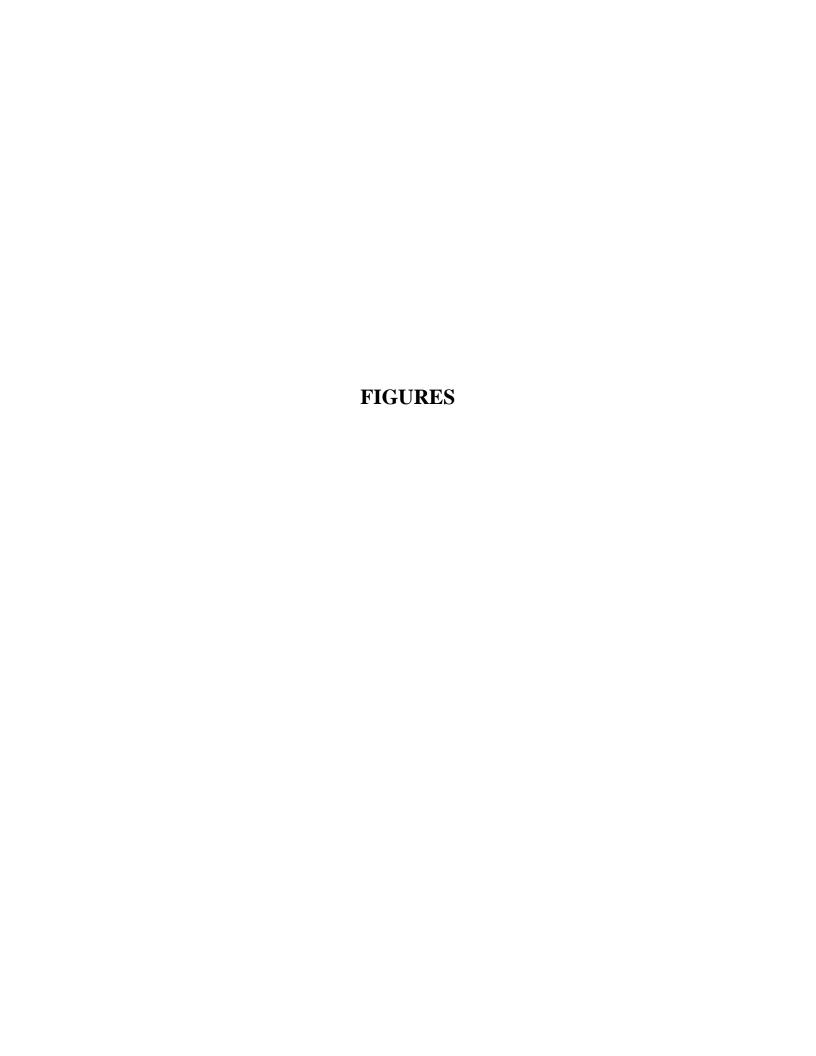


TABLE 1
PERSONAL PROTECTIVE EQUIPMENT FOR LEVEL C AND D PROTECTION

Equipment	Protecti	Protection Level		
Equipment	C	D		
Air-purifying respirator	Yes	No		
Chemical-resistant disposable coveralls	Yes	(1)		
Chemical-resistant outer gloves	Yes	Yes		
Disposable inner gloves	Yes	No		
Over boots (chemically resistant)	Yes	(1)		
Leather shoes/boots or safety shoes	Yes	Yes		
Safety glasses, goggles, or face shield	Yes	(1)		
Hard Hat	Yes	Yes		
Coveralls (Non Chemical Resistant)	(1)	(1)		

(1) Optional at the discretion of the employee and SHSO depending on site-specific hazards.

Level C respiratory protection is to be full-face-piece or half-face-piece NIOSH approved air purifying respirators equipped with organic vapor cartridges and/or high efficiency particulate filters.


TABLE 2
PERSONNEL PROTECTIVE EQUIPMENT ASSOCIATED WITH EACH PROJECT TASK

Task	Chemicals of Concern	PPE Level	Cartridge Type	Protective Eye Wear	Gloves	Hard Hat	Coveralls
General Field Surveys (No direct chemical contact) (2)	Chemicals	D	Not applicable	Optional (1)	Optional (1)	Optional (1)	Optional
Well Sampling, trench pit sampling, Excavation (2)	Chemicals	D*	As needed	Required	Nitrile Latex Leather Gloves	Required	Tyveck, Poly-Coated Tyveck or Sararex-Tyveck Standard Work Coveralls
Heavy equipment	NA	NA	NA	Required	NA	Required	NA

^{*} Level C upgrade may be required depending on breathing zone air monitoring. If upgrade required utilize cartridge type 642-0V, 6412-0A, 642-MPC.

⁽¹⁾ Hard hat required if bump hazards or heavy equipment usage in work area.

⁽²⁾ Footwear always required during all site operations.

APPENDIX A GENERAL FIELD SAFETY RULES

FIELD SAFETY

GENERAL SAFETY RULES

- 1. Field Service personnel should maintain communications with their office counterparts. Periodic phone calls may be warranted to assure no mishaps have occurred.
- 2. The location and phone numbers of the nearest emergency care facility and local fire and police department should be determined and be readily available to field service employees prior to site access.
- 3. During initial site characterization potential hazards arising from unstable topography, presence of water, construction debris, plants, insects or animals should be identified and measures taken to avoid them.
- 4. Access to remote locations warrants careful consideration of protective clothing and/or first aid supplies to prevent and/or address insect or animal bites/stings, etc. Proper first aid supplies and use of a buddy system are especially important for employees who have known allergies. Employees requiring immediate access to special first aid supplies (e.g. prescription drugs for allergies), shall be responsible for obtaining and arranging for administration of these medications as prescribed by their physician.
- 5. Spectra's employees who are at a customer's facility will be expected to adhere to the plant or facility safety and health rules in addition to the health and safety plan for the project. Where there are conflicts between facility rules and Spectra's health and safety plan, the project manager and corporate health and safety officer should be contacted for resolution of inconsistencies. Wherever possible, the two plans should be reviewed prior to site access to identify and resolve any conflicts.

APPENDIX B FIRST AID EQUIPMENT LIST

FIRST AID EQUIPMENT LIST

The first aid kits that will be kept at the site will consist of a weatherproof container with individually sealed packages for each type of item. The kit will include at least the following items:

- Gauze roller bandages, 1-inch and 2-inch
- Gauze compress bandages, 4-inch
- Gauze pads, 2-inch
- Adhesive tape, l-inch
- Band aids, 1-inch
- Butterfly bandages
- Triangular bandages, 4-inch
- Ampules of ammonia inhalants
- Antiseptic applicators or swabs
- Burn dressing and sterilized towels
- Surgical scissors
- Eye dressing
- Emergency eye-wash
- Alcohol
- Hydrogen Peroxide
- Clinical Grade Thermometer

APPENDIX C PROTECTIVE CLOTHING

PROTECTIVE CLOTHING

Protective clothing shall meet the following minimum requirements:

- 1. They shall provide adequate protection against the particular hazards for which they area designed.
- 2. They shall be reasonably comfortable when worn under the designated conditions.
- 3. They shall fit snuggly and shall not unduly interfere with the movements of the water.
- 4. They shall be durable.
- 5. They shall be capable of being disinfected.
- 6. They shall be easily cleanable.
- 7. Protective clothing should be kept clean and in good repair.

APPENDIX D DONNING AND DOFFING PROTECTIVE CLOTHING LEVEL C AND D

DONNING AND DOFFING PROTECTIVE CLOTHING

LEVEL C Donning

- 1. Inspect equipment to ensure it is in good condition.
- 2. Place feet into the legs of chemically resistant protective suit (as specified in task specific health and safety plan and gather suit around waist.
- 3. Put on chemically resistant outer boots (as specified in the task specific health and safety plan) over feet of the suit and tape at boot/suit junction.
- 4. Don inner gloves (if required) placing wrist of glove beneath the chemically resistant suit.
- 5. Close suit and tape closure flaps.
- 6. Don air purifying respirator equipped with appropriate cartridges.
- 7. Perform negative/positive pressure tests.
- 8. Don safety glasses and hard hat (as required).
- 9. Don chemically resistant outer gloves and tape at glove/suit junction.
- 10. Have assistant check all closures and observe wearer to ensure fit and durability of protective gear.

LEVEL C Doffing

- 1. Wash outer boots, gloves, and protective suit.
- 2. Remove tape at seams.
- 3. Remove boot covers and outer gloves.
- 4. Wash safety boots (as necessary).
- 5. Remove safety boots and suit.
- 6. Wash inner gloves.
- 7. Wash and remove face piece (and set aside for final decontamination).
- 8. Remove inner gloves.
- 9. Remove inner clothing (as necessary).
- 10. Field wash (as necessary).
- 11. Redress.

LEVEL D Donning

- 1. Inspect equipment to ensure it is in good condition.
- 2. Place feet into the legs of protective suit and gather suit around waist.
- 3. Put on outer boots over feet of the suit and tape at boot/suit junction.
- 4. Don inner gloves (if required).
- 5. Don suit over top of inner gloves.
- 6. Don safety glasses and hardhat as (required).
- 7. Close suit and tape closure flaps.
- 8. Don outer gloves and tape at glove/suit junction.
- 9. Have assistant check all closures and observe wearer to ensure fit and durability of protective gear.

LEVEL D Doffing

- 1. Wash outer boots and gloves.
- 2. Remove tape at seams.
- 3. Remove boot covers and outer gloves.
- 4. Wash suit/safety boots.
- 5. Remove safety boots and suit.
- 6. Wash inner gloves.
- 7. Remove inner gloves.
- 8. Remove inner clothing (as necessary)
- 9. Field was (as necessary).
- 10. Redress.

APPENDIX E GENERAL HEALTH AND SAFETY GUIDELINES FOR DRUM HANDLING

GENERAL HEALTH AND SAFETY GUIDELINES FOR DRUM HANDLING

Drum handling can pose serious hazards such as detonation, fire, explosion, vapor generation, and physical injury if proper precautions and procedures are not taken. To eliminate such potential hazards, the following precautions should be followed when handling drums:

- 1. Visual Inspection: Prior to handling, the drums should be checked for symbols or labels indicating potential contents, signs of deterioration (i.e. corrosion, rust, leaks), evidence of pressure (i.e. swelling and bulging), drum type, and the configuration of the drum head.
- 2. Assess conditions in the immediate vicinity of the drum: Monitor around the drums using organic vapor monitors and a combustible gas meter to possibly determine drum contents and associated hazards. Radiation Surveys should be performed where drum contents may include Radioactive Materials.
- 3. Based on this preliminary investigation, develop a plan to specify the extent of handling necessary; the personnel selected for the activity and the most appropriate precautions to be taken. Be aware that negative determinations regarding organic vapors and radiation do not rule our hazards such as corrosives, unstable compounds, spontaneous ignition, or reactive materials.
- 4. Select drum handling equipment:
 - a. Drum handling grappler attached to a hydraulic excavator.
 - b. Small front-end loader.
 - c. Rough-terrain fork-lift.
 - d. Roller conveyor equipped with solid rollers.
 - e. Drum cart designed specifically for drum handling.

NOTE: The drum grappler is the preferred method because it allows the operator to be remote from the activity.

- 5. Prior to initiation of drum handling operations:
 - a. Personnel designated to handle drums should be trained in the proper lifting and movement techniques.
 - b. Vehicle selection: vehicles should have a sufficient load capacity to handle the anticipated load to be carried.

- c. Respirator protection: a health and safety professional should recommend the proper respiratory protection to be utilized.
- d. Overpacks: there should be a sufficient number of overpacks available in case of accidental spills or leaks.
- e. Movement: an appropriate sequence of events regarding movement should be determined.

6. Site Specific Conditions

Contents/Condition of Drums

Radioactive Waste:

Special Precautions

- Only personnel specifically trained to work with radioactive waste should handle drums.
- If background levels are in excess of 2.0 mRem/Hr, contact a health professional immediately.

Explosive or Shock Sensitive Waste

- Evacuate non-essential personnel.
- Employ a grappler unit specifically designed for exposure containment.
- Palletize drums securely.
- Use audible siren signal system to identify the commencement and completion of explosive waste handling activities.
- Maintain continuous communication with site safety officer.

Bulging or Swelling Drums

- Same as for explosive drums.
- Carefully overpack as necessary.

Leaking, Open or Deteriorating Drums

- If ruptures are noted, transfer contents to a drum in sound condition, using a pump designed for transporting that liquid.
- Using a drum grappler, immediately place drum in an overpack.

Buried Drums

- Prior to subsurface excavation, use groundpenetrating systems such as electromagnetic wave, electrical sensitivity, ground penetrating radar, magnetometry, or a metal detector to locate and determine the depth of the drum.
- Have a dry chemical fire extinguisher available.

- 7. Drum Opening: The following procedure should be followed when opening drums:
 - a. Have a sufficient supply of air cylinders available for Supplied Air Respirators outside the work area and supply air to operator via airline and escape SCBA's.
 - b. Place explosion resistant shields between operators and drums where drum contents are suspected to include explosives or unstable materials. All controls for drum opening equipment, monitors, and fire suppression equipment should be located behind the shield.
 - c. Monitor continuously during opening. Place sensor as close to the drum opening as possible.
 - d. Utilize remote control devices to open drums. Examples of such devices are:
 - 1. Pneumatically operated impact wrench to remove drum bungs.
 - 2. Hydraulically or pneumatically operated drum piercers.
 - 3. Backhoes equipped with bronze spikes for penetrating drum tops in large scale operations.
 - * Do not use chisels, picks, or firearms to open drums.
 - ** Hang or balance the drum opening equipment to minimize worker exertion.
 - *** If the drum exhibits signs of swelling and/or bulging, relieve excess pressure prior to opening it. When possible, remote control devices should be employed. If manual opening is necessary an explosive resistant plastic shield should be used.
 - e. PVC/polyethylene or exotic metal drums should be opened by removing or drilling the bung. The drum should then re re-sealed as soon as possible. When re-sealing is not possible, overpacks should be used and any holes plugged with 5 psi pressure venting caps.
- 8. Sampling: Since one of the most dangerous tasks associated with drum handling is sample collection, the following precautionary measures should be taken when collecting samples:
 - a. Research background information about the waste.
 - b. Determine, which drums, should be sampled.
 - c. Select an appropriate sampling device and container.

- d. Develop sampling strategy.
- e. Develop standard procedures for opening, sampling, sample packaging, and transportation.
- f. Have a health and safety professional determine the level of protection to be used during sampling, decontamination and packaging.
- g. Obtain samples with glass rods or vacuum pumps.
- 9. Characterization: obtain necessary information to determine how to deal and efficiently package and transport wastes for treatment and disposal.
- 10. Staging: to facilitate characterization, remedial action and to protect from potentially dangerous site conditions, a staging area should be identified. The staging area is site specific and can consist of up to five separate areas (i.e. opening area, sampling area, second staging area, and final staging area). When staging drums, they should be in two rows spaced 7-8 feet apart.
- 11. Bulking: once characterized, wastes can be mixed together and placed in tanks or vacuum trucks for shipment and treatment at a disposal facility (i.e. bulking) wastes:
 - a. Inspect each tank and trailer and remove any residual materials from trailer prior to transporting (e.g. to prevent mixing of incompatible materials).
 - b. Use pumps for removing hazardous liquids. These pumps must be appropriately rated and have a safety relief valve with a splash shield. Hoses, gaskets, valves, and fittings should be compatible with the material being pumped.
 - c. Store flammable wastes in appropriate containers.

12. Shipment:

- a. All shipments must comply with US DOT and EPA regulations pertaining to the shipment of hazardous materials.
- b. The bulking area should be as close to the site exit as possible.
- c. Prepare a circulation plan to minimize the conflict between clean-up teams and waste haulers.
- d. Allow adequate space for vehicles to turn around.
- e. Require drivers to remain in cabs in vehicle staging area.
- f. Provide for the proper protection for vehicle drivers.

- g. Do not double stack drums.
- h. Tightly seal drums.
- I. Make sure the truck and bed walls are clean and smooth.
- j. Keep bulk solids several inches lower than the top of the truck bed.
- i. Make sure the truck and bed walls are clean and smooth.
- j. Keep bulk solids several inches lower than the top of the truck bed.
- k. Cover loads with a clean layer of soil, foam, or a tarp.
- 1. Weigh vehicles to assure safe operation.
- m. Decontaminate vehicle tires.
- n. Check vehicle for visible emissions.
- o. Develop procedures to be followed in the event that the vehicle has a mechanical malfunction or accident.

APPENDIX F TEMPERATURE STRESSES POLICIES AND PROCEDURES

TEMPERATURE STRESSES POLICIES AND PROCEDURES

Cold Stress

Exposure to cold environments can result in reduced mental alertness, confusion, irritability, and loss of consciousness. These effects are due to a lowering of the body's core temperature and can occur even if exposure is to air (or water) above freezing temperature (32°F, 0°C). High wind currents can aggravate exposure to cold temperatures by increased perceived cooling known as wind chill. Bodily extremities are at risk of "frost bite" when temperatures in the work environment are below freezing. The extremities are particularly sensitive to frostbite because of circulatory changes the body makes to maintain body core temperature. Symptoms of excessive exposure to cold include severe shivering and or pain in the extremities.

Fatal exposures are almost always due to an inability to escape from the cold environment (air or water).

Older employees or those with circulatory problems are more susceptible to cold stress.

Controls

The objectives of a cold stress management program are to maintain body core temperatures above 96.8°F (36°C) and prevent injury to the extremities (frost bite). The methods by which this is done include provision of appropriate clothing (including face, hand, and foot coverings), scheduling periodic "warm-up" breaks in heated shelters, and careful monitoring of employees and conditions in which they are working.

Clothing

Insulated clothing may be necessary for sustained work in environments below 40°F. Exposure to air currents at temperature below 40°F requires additional protective insulated clothing including outer windbreak garments.

Light work around water under cold conditions may require the use of impervious outer clothing to prevent wetting of inner insulating layers. Heavy work involving the use of impervious outer clothing is of concern as sweat may wet inner clothing and actually leads to cold stress. Impervious clothing should be equipped with provisions for adequate "breathing" to allow for evaporation of sweat. Wet clothing must be changed immediately when working in air temperatures near freezing.

Breathability of undergarments should also be high to encourage sweat evaporation. Good examples include special weaves of synthetic or wool socks which encourage wicking away of sweat from inner to outer layers.

Working in temperatures below freezing requires special protection of extremities through face and head covers, insulated gloves, and boots.

Warm-up Breaks

Periodic warm-up breaks in heated shelters should be scheduled for work below 20°F. The frequency of breaks should be increased and the duration should be shortened as temperature decreases, wind chill increases (winds > 5-20 mph) or based on careful observation of employees. The onset heavy shivering, occurrence of frost bite, or feelings of excessive fatigue or euphoria should trigger prompt return to the shelter.

Shelter areas should offer protection from the wind. When the employee first enters the shelter, the outer layer of clothing should be removed and remaining clothing loosened to allow for sweat evaporation. Dry clothing should be issued as necessary. Reentry to cold stress environments with wet clothing is to be avoided.

Provision of warm, sweet fluids or hot soups can help control dehydration. Coffee is not recommended due to its diuretic effect.

Monitoring/Work Scheduling

Employees should be closely monitored for development of cold stress symptoms. Constant observation is recommended at temperatures below 10°F.

Ambient air temperature measurements may be of value in establishing prescribed work/warm-up regiments for environments below $60^{\circ}F$. Wind speed measurements are necessary when air temperatures are below freezing. The American Conference of Industrial Hygienists (ACGIH) has published work/warm-up schedules based on air temperature and wind velocity when air temperatures are $-15^{\circ}F$ or colder.

Working intensity should be paced slow enough to avoid heavy sweating (without provisions for changes of dry clothing), but heavy enough to minimize prolonged periods of sitting or standing still.

Heat Stress

The stress of working in a hot environment can cause a variety of strains on the body, including heat exhaustion or heat stroke; the latter can be fatal. Personal protective equipment can significantly increase heat stress. You should learn to recognize the symptoms of heat stress in

yourself and coworkers and take necessary actions when they occur. Your supervisor should provide instructions on ways to reduce or prevent heat stress, including frequent rest cycles to cool down and replace the body fluids and salts lost through perspiration. Some of the symptoms, which indicate heat exhaustion, are:

- Clammy skin
- Light-headedness
- Confusion
- Slurred speech
- Weakness, fatigue
- Fainting
- Rapid pulse
- Nausea (vomiting)

If these conditions are noted, take the following actions in the order given:

- Take victim to a cooler and uncontaminated area
- Remove protective clothing
- Give water to drink, if conscious.
- Allow to rest.

Symptoms that indicate heat stroke include:

- Staggering gait
- Hot skin, temperature rise (yet may feel chilled)
- Incoherent, delirious
- Mental confusion
- Convulsions
- Unconsciousness

If heat stroke conditions are noted, take the following actions in the order given:

- Take victim to a cooler and uncontaminated area
- Remove protective clothing
- Give water to drink, if conscious

- Cool victim with water, cold compresses, and/or rapid fanning
- Transport victim to a medical facility for further cooling and monitoring of body functions. HEAT STROKE IS A MEDICAL EMERGENCY.

Background

Heat stress is one of the most common stresses encountered in work at hazardous waste sites. This is especially true when work tasks require the wearing of impervious personal protective equipment. Heat stress can occur in environments where the ambient temperature is as low as 75°F (24°C) depending on humidity, solar load, work schedules, and use of personal protective equipment.

The goal of heat stress management is to maintain the body temperature of employees below 100.4°F (38°C). The key to a successful program is to recognize when a potential heat stress condition exists. Carefully monitor employees, work conditions, schedules, and control heat build up by work rotation, employee selection, training, provision of fluids, and cooling aids ranging from a shaded rest area to vortex cooled suits depending on the severity of conditions.

Preparation for prompt response to the occurrence of heat stress symptoms is essential. Appropriate levels of response range from observed rest in a cool area to immediate medical attention. The location of and access to necessary support services including emergency medical care should be firmly established prior to work in potential heat stress environments.

Recognition

Individual employees vary greatly in their ability to withstand heat stress. The most important factors related to ability to work in heat stress environments include physical conditioning, general health status, and acclimatization to heat environments, weight, job demands, and age.

Acclimatization is a process in which the body gradually becomes better able to withstand heat stress through more effective sweating without extreme loss of body salts, while maintaining lower heart rates and body temperature. The acclimatization process usually takes from several days to a week to take effect. Acclimatization can be lost within one week's absence from the work environment.

Reactions to heat stress progress from discomfort to inefficiency, physiological risk, collapse, and pain as exposure increases. It is important to be alert to the appearance of heat stress symptoms among exposed employees. Initial symptoms include confusion, altered behavior (including sudden fits of anger), and affected judgments. The onset of these symptoms is often unrecognized by the victims of heat stress.

The classic symptoms of heat stress include:

Heat Rash

Due to blockage of sweat glands, this is often perceived as a tingling or burning sensation on the skin. Recommended treatment is removal to a cool environment. Cool showers and gentle drying may help.

Heat Cramps

The occurrence of intense and painful cramps in the skeletal and abdominal muscles often caused by salt depletion due to heavy sweating. Prevention consists of maintaining adequate salt intake through a balanced diet. Supplemental fluids containing minerals may also help (such as fruit juices, Gatorade, etc.). No caffeinated beverages or alcoholic beverages.

Heat Exhaustion

General feelings of fatigue culminating with circulatory insufficiency due to dehydration. The skin is wet and pale. Nausea and fainting may occur but the body temperature is not unusually elevated. Treatment consists of placing the patient in a cool environment and providing water.

Heat Stroke

The most serious reaction to heat stress as a result of failure of the temperature regulatory system. Medical attention is required <u>immediately</u> to avoid fatalities or possible brain damage. Symptoms of heat stroke include elevated body temperature (>104°F) often accompanied with <u>hot</u>, <u>dry skin with decreased or no</u> sweating.

Treatment consists of immediate reduction of body core temperature and immediate medical attention. If heat stroke symptoms are noted in the field, accompanying personnel should attempt any measures available to reduce body temperature immediately. Such steps may include ice and cold packs, water immersion, fanning, etc.

Monitoring

When heat stress conditions are suspected, it is important to monitor environmental conditions and the employees. There are a number of heat stress indices based upon environmental combinations of ambient temperature, humidity, and solar loading. The most popular indices are the Wet Bulb Globe Temperature Index (W.B.G.T. – ACGIH-TLV's) and Apparent Temperature

(A.T.). Unfortunately none are universally accepted due to limitations of study populations or conditions on which they are based. Most common concerns with heat stress indices relate to variables in physical condition, solar and convective heat loading, and clothing. No heat stress index is appropriate for work in impervious clothing, a frequent requirement for hazardous waste site work. As such, heat stress indices should be viewed as indicators of potential heat stress conditions but control measures are based on keen observation and monitoring of the employees themselves.

With normal work clothing and heavy work loads, one should be alert to potential heat stress at ambient temperatures of 75-80°F and high humidity. With very low humidity and similar work conditions observers should be alert for signs of heat stress at temperatures of 80-90°F.

Impervious work clothing interferes with one's primary cooling mechanism; evaporative cooling of sweat. As the sweat cannot evaporate, heat storage and elevated body temperature could be expected at much lower ambient temperatures, probably better correlated with work level and intensity than ambient temperature. NIOSH has recommended frequent (hourly) monitoring of employees working in impervious clothing in full sunlight at ambient temperatures as low as 70-75°F.

An effective means to monitor employees in addition to observation for signs or symptoms of heat stress is through a heart rate check at the beginning of scheduled cycles. The goal is to establish a work-rest schedule, which maintains heart rates below 110 beats per minute. Heart rate checks above 110 beats per minute should be followed by reducing the subsequent work period duration by 1/3.

The frequency of employee monitoring should be increased up to 4 times per hour in extreme conditions, for employees wearing impervious clothing.

Monitoring of oral temperature (<99.6°F) and/or water loss (<1.5% of body weight) has been suggested by NIOSH. These measures, while useful, may prove difficult under field conditions.

Control Measures

The most common and universally applicable control for management of heat stress involves adjustment of work loads and work-rest scheduling. Work breaks should be scheduled at a frequency of between 1 every 2 hours up to 1 every 15 minutes depending upon work rate, heat load, personal protective equipment used, and workers' physical condition.

As newly exposed employees begin work in hot environments their work schedules should be set at 50% and increased 10% per day to allow for acclimatization. Employees will generally self

limit exposure based on signs or symptoms of heat strain, but the insidious nature of heat stress symptoms warrants caution in relying on oneself to control heat stress.

Work break areas should be shaded or cooler than the work environment, if possible. Cool, portable water should be immediately available to workers and administered in a manner which encourages frequent drinks of small amounts (approximately 4 oz.). Mineral supplemented water (e.g. Gatorade) may be found more acceptable to employees under hot conditions. Once acclimated, employees are generally able to obtain adequate minerals (and salt) from a well balanced diet.

NOTE: Additional salt tablets should not be used in field.

Extreme conditions of temperature, humidity, or impervious protective clothing, warrant provision of additional cooling measures, e.g. fans, field showers, and possibly artificially cooled suits.

The most effective control for management of heat stress is thorough training of employees to enable recognition of potential heat stress conditions and taking of appropriate preventative actions. Any behavior exhibiting signs or symptoms of heat stress should be promptly investigated and appropriate treatment rendered.

Susceptible Populations

Employees who are not physically fit or who suffer cardiovascular insufficiency are more susceptible to heat stress. Employees under the influence of drugs or alcohol may be an increased risk. Employees who have previously suffered sun or heat strokes are also more susceptible to repeat occurrences of heat stress.

APPENDIX G SOIL AND WELL SAMPLING HEALTH AND SAFETY GUIDELINES

SOIL AND WELL SAMPLING

HEALTH AND SAFETY GUIDELINES

Collection of soil, waste, and/or other environmental samples at hazardous waste sites presents a variety of potential health and safety hazards, many of which are due to the use of required equipment decontamination agents to assure appropriate quality control. Health and safety concerns due to potential hazards posed by the particular work site under investigation are addressed by the formal health and safety plan for that site. The following are key health and safety issues and recommend practices for field work involving sample collection at any work site. They address concerns posed by work activities necessary as part of proper sample collection techniques and quality assurance practices.

- 1. Protection from skin contact with soil, water, or waste borne chemicals requires the selection and use of garments and protective coverings that will stop the chemicals in question and will not degrade upon chemical contact. This is especially important for highly concentrated chemicals (e.g., free product, concentrated wastes, and decontamination chemicals).
 - A. Thin, disposable latex or vinyl gloves are not designed to prevent entry of or withstand prolonged contact with many chemicals for which sampling is performed or which are used to decontaminate sampling equipment. These gloves are used primarily for quality control purposes as part of sample collection techniques.
 - B. Where protection is necessary to prevent skin contact with suspect contaminants, the protective coverings should be worn <u>under</u> outer disposable gloves used for quality control purposes. This may require the use of large or extra large disposable gloves to accommodate inner coverings and not rip during donning/doffing.
- 2. Collection of samples containing high solvent concentrations may liberate volatile organics at levels sufficient to warrant respirator use (in addition to skin protection). This is especially true where high concentrations of materials or chemical layers (floating product) are encountered. Potential emissions should be monitored and protective equipment upgraded as specified in the health and safety plan.
- 3. During equipment decontamination activities involving extensive use of acetone, hexane, methanol, or other solvents, Level C protection including organic vapor cartridges or equivalent, may be warranted.

In addition, eye and skin protection may be required during decontamination activities requiring the use of nitric acid. It should be noted that improper preparation by the laboratory of acid preservatives in sampling containers might release irritating fumes unexpectedly upon addition of liquid samples.

4. Transport and storage of chemicals required for decontamination procedures require appropriate safeguards to prevent contact between incompatible and/or combustible materials. Nitric acid is an oxidizer capable of starting a fire upon contact with flammable or combustible materials.

The attached table highlights key precautions for safe work with common sample decontamination materials.

APPENDIX H HEARING PROTECTION

HEARING PROTECTION

- 1. Hearing protection (ear muffs or plugs) is required whenever employees are exposed to noise levels of 85 decibels or greater as an 8-hour time weighted average (TWA). Industrial Hygiene workers exposed to noise levels in excess of 90 dBA will wear hearing protection regardless of the duration.
- 2. Hearing protection is to be inspected before each use for tears and contamination. If deficiencies are noted, the hearing protector should be cleaned, repaired, or replaced before use.

APPENDIX I PROCEDURES FOR TANK CUTTING AND EXCAVATION TRENCH OR TEST PIT DIGGING

PROCEDURES FOR TANK CUTTING AND EXCAVATION

A. TANK CUTTING PROCEDURES

- 1. Prior to the cutting of the tanks, all flammable vapors shall be removed from the tank by displacement using one of the following methods:
 - a. By introducing CO₂ gas directly into the tank, via the fill line, to purge flammable vapors. A minimum of one 75 lb. cylinder of CO₂ gas per 2000 gallons of tank volume should be used. Care must be exercised to prevent buildup of any static charges. The nozzle must be grounded and the gas introduced slowly to reduce static. NOTE: Flammable vapors will flow out of the tank during purging. All sources of ignition must be kept away the area.
 - b. By introducing nitrogen gas into the tank, via the fill line, to purge flammable vapors. The vapors within the tank must be displaced with an amount of nitrogen gas equal or greater than the volume of the tank atmosphere. Grounding of the nozzle or hose to prevent static buildup is recommended.
 - c. By adding dry ice, 1.5 pounds per 100 gallons of tank capacity. The dry ice should be crushed and distributed evenly over the greatest possible area of the tank's interior. As the dry ice vaporizes, flammable vapors will flow out of the tank. Therefore, all safety precautions regarding flammable vapors must be utilized.
- 2. During the removal of these vapors, all ignition sources or open flames shall be eliminated from the immediate area. An explosimeter shall be used to determine if the resultant vapor mixture exceeds ten percent of the Lower Explosive Limit (LEL). If the vapor within the tank exceeds this, the displacement procedure will be repeated followed by a recheck of the LEL. After acceptable LEL levels have been reached, the tank will be cut using appropriate methods. NOTE: After purging, the tank must be entered as if it is oxygen deficient. Proper purging (with fresh air) and confined space entry procedures must be followed prior to entry of the tank for any reason.

TRENCH OR TEST PIT DIGGING

Trench or test pit digging can be expected to present hazards in addition to those encountered during general field work or drilling. Added control measures to be considered include the following:

- 1. Careful positioning of equipment with respect to the presence of known submerged objects.
 - a. Where possible, power to underground electrical lines should be turned off (and locked out) while excavation activities are in process or until the area is secure from entrance of personnel.
 - b. Known gas (or chemical) lines adjacent to the immediate excavation site should also be secured (valves turned off and locked out) while excavation is underway or access by outside personnel possible. Where possible, it is desirable to purge these lines of their contents prior to start of excavation.
- 2. Controlled digging under careful observation of a watch person who has clear communication with the equipment operator. The watch person should be alert to notice the presence of (unknown) buried objects by visual inspection or metal detection surveyance of the immediate excavation area.
- 3. Significant surface area of ground is exposed to the atmosphere as part of the trenching process. This may increase vapor exposures from volatile contaminants. Provisions should be made for air monitoring to trigger appropriate protective actions including temporary work stoppage. Use of vapor emissions controls or suppressants space entry procedures for greater details regarding control measures considerations.
- 4. Trenches or pits greater than 4 feet deep should be considered confined spaces, which may contain concentrated vapors, gases, or oxygen deficient atmospheres. These areas must be checked to assure non-explosive, non-hazardous atmospheres before allowing entry and periodically (or continuously) thereafter. See confined space entry procedures for greater details regarding control measures considerations.
- 5. OSHA provisions regarding shoring and sloping of trench sides may apply.

Subcontractors performing trenching or pit digging as part of sub-surface investigation must be aware that they will be expected to follow provisions under 29 CFR 1926.

- 6. Pits or trenches should be inspected daily for evidence of cracks, slides, or scaling. Inspection should be more frequent if it is raining.
- 7. Heavy equipment should be kept away from the sides of trenches or pits.
- 8. Means of egress (e.g., steps, ladders) should be readily available (within 25 ft.) of employees working in pits or other excavations from which rapid exit is difficult.
- 9. Excavations, mud pits, etc., must be protected with barricades or covers. Temporary pits/trenches should be back filled upon completion of work.

APPENDIX J CAMP

COMMUNITY AIR MONITORING PROGRAM (CAMP)

CAMP requirements are based on guidance from the New York State Department of Health (NYSDOH) Generic Community Air Monitoring Plan and New York State Department of Environmental Conservation (NYSDEC) DER-10 Technical Guidance for Site Investigation and Remediation.

CAMP monitoring is required continuously during intrusive work activities conducted. For this project, the "public" primarily refers to residents, pedestrians, or other persons occupying or visiting off-site areas. Dust monitors and PIDs used for CAMP must be placed on a sturdy platform located 4 to 5 ft above ground level. Contractors must check CAMP dust monitors and PIDs every 30 minutes throughout the workday.

Air monitoring data must be downloaded at the end of each day and reviewed by the contractor for readings above CAMP action levels that may have been missed when the equipment was checked during the day. CAMP results will be retained on-site for review by NYSDEC and NYSDOH. NYSDEC shall be immediately notified of any results above CAMP action levels and any odors that may affect public areas. NYSDEC will coordinate with NYSDOH as appropriate.

CAMP for VOCs and dust will include four (4) monitoring locations located the fence line perimeters and property edges. PIDs may be moved around the fence and property perimeters during the day if necessary to maintain their upwind and downwind positions.

The following table identifies action levels, action, and responses for the CAMP:

CAMP ACTION LEVELS					
Contaminant Frequency		Action Level	SSHC Action/Response		
VOLATILE ORGANIC COMPOUNDS (VOCs) (PID with 10.6 eV lamp)	1.Continuous during intrusive activities2. When odors are detected at the fence and/or property line.	<5ppm	 Work may continue but community monitoring must be conducted continuously 200' downwind or at half the distance between the work area and nearest dwelling unless continuous monitoring has been discontinued with concurrence from the NYSDEC and NYSDOH. All readings shall be recorded and made available for review. 		

		*5ppm	STOP work and continue to monitor.
	1.Continuous during intrusive activities	*<0.1 mg/m ³	2. Continue air monitoring 200' downwind or at half the distance between the work area and nearest dwelling.
			3. Notify the Site Supervisor and Pyramid representative.
			4. Work may continue when concentrations detected by the PID are reduced below 5 ppm AND odors are not detectable at the fence or proprerty line.
			5. If VOC concentrations above 5 ppm are sustained for 30 minutes despite work stoppage and implementation of feasible vapor suppression methods, SSHC shall coordinate with the Pyramid Site Representative and then shall make necessary notifications to local authorities, NYSDOH, and NYSDEC.
DUST SSHC Observations			1. If dust is observed leaving the site perimeter or fence line and into public areas, then dust controls must be implemented.
and Dust Meter (Dust Trak or MiniRam)			2. If dust controls fail to prevent visible dust emissions from leaving the site, then notify the Pyramid representative.
		*0.1 mg/m ³ - 0.15 mg/m ³	Dust suppression and control is mandatory.
			2. If dust controls fail to prevent visible dust emissions from leaving the site, then notify the Pyramid representative.
		*<0.15 mg/m ³	1. STOP Work
			2. Review, evaluate, and implement additional techniques or controls.
			3. Notify the Pyramid representative.
			4. Re-start work when additional dust control measures have been implemented.
*VOC 1 DUCT	1 1 1	1	1.5 '

^{*}VOC and DUST action levels are based on running 15 minute Time-Weighted Averages (TWAs) above background at the Exclusion Zone perimeter. Background readings are taken at upwind locations relative to Work Areas.

APPENDIX B QUALITY ASSURANCE, QUALITY CONTROL PLAN

QUALITY ASSURANCE, QUALITY CONTROL PLAN FOR REMEDIAL ACTIVITIES

DESTINY BROWNFIELD CLEANUP PROGRAM SITES SYRACUSE, NEW YORK

Prepared by:

Spectra Environmental Group, Inc. 19 British American Boulevard Latham, New York 12110 Project #12128

December 2016

QUALITY ASSURANCE, QUALITY CONTROL PLAN FOR REMEDIAL ACTIVITIES

DESTINY BROWNFIELD CLEANUP PROGRAM SITES SYRACUSE, NEW YORK

TABLE OF CONTENTS

1.0		PROJECT ORGANIZATION AND RESPONSIBILITY	l		
2.0		QA OBJECTIVES FOR DATA MEASUREMENT			
	2.1	GOALS	2		
3.0		SAMPLING PROCEDURES	3		
	3.1	SAMPLING PROTOCOL	3		
		3.1.1 Soil Samples from Geoprobe Soil Borings	3		
		3.1.2 Groundwater Samples from Monitoring Wells	3		
	3.2	FIELD QUALITY CONTROL SAMPLES	4		
		3.2.1 Field Duplicates	4		
		3.2.2 Trip Blanks	4		
		3.2.3 Matrix Spike/Matrix Spike Duplicates	5		
		3.2.4 Laboratory Quality Control Checks	5		
	3.3	SAMPLE CONTAINERS			
	3.4	DECONTAMINATION			
	3.5	LEVELS OF PROTECTION/SITE/SAFETY	5		
4.0		SAMPLE CUSTODY	6		
	4.1	CHAIN-OF-CUSTODY	6		
		4.1.1 Sample Labels	6		
		4.1.2 Custody Seals	6		
		4.1.3 Chain-of-Custody Record	7		
		4.1.4 Field Custody Procedures	7		
	4.2	DOCUMENTATION	7		
		4.2.1 Sample Identification	7		
		4.2.2 Daily Logs	3		
	4.3	SAMPLE HANDLING, PACKAGING, AND SHIPPING	3		
5.0		CALIBRATION PROCEDURES AND FREQUENCY 10)		
	5.1	FIELD INSTRUMENTS			
		5.1.1 Portable Total Organic Vapor Monitor10)		

		5.1.2 pH, Specific Conductance, and Turbidity (if applicable)	10
6.0		ANALYTICAL PROCEDURES	12
	6.1	FIELD	12
	6.2	LABORATORY	12
7.0		DATA REDUCTION AND REPORTING	13
8.0		INTERNAL QUALITY CONTROL CHECKS	14
9.0		PREVENTIVE MAINTENANCE	15
	9.1	FIELD	15
10.0		DATA ASSESSMENT PROCEDURES	16
	10.1	Precision	16
	10.2	ACCURACY	16
	10.3	COMPLETENESS	17
	10.4	REPRESENTATIVENESS	17
11.0		QUALITY ASSURANCE SUMMARY	18

1.0 PROJECT ORGANIZATION AND RESPONSIBILITY

This Quality Assurance Project Plan (QAPP) provides for designated qualified personnel to review sampling procedures, laboratory test methods, data results, and data interpretations. This QAPP also outlines the approach to be followed to ensure that the remedial investigating results are of sufficient quality. This plan will provide for direct and constant operational responsibility, clear lines of authority, and the integration of quality assurance (QA) activities. The various QA functions of the project positions are explained in the following subsections.

Project Manager

The project manager will have overall responsibility for ensuring that the project meets the objectives and quality standards as presented in the Work Plan and this QAPP. He/she will be responsible for implementing the project and will have the authority to commit the resources necessary to meet project objectives and requirements. The project manager's primary function is to ensure that technical, financial, and scheduling objectives are achieved successfully. The project manager will provide the major point of contact and control for matters concerning the project. In addition, he/she will be responsible for technical quality control (QC) and project oversight, and will be the primary point-of-contact.

Team Leaders

The project manager will be supported by a team leader or leaders who will be responsible for leading and coordinating the day-to-day activities of the various resource specialists under their supervision. The team leader is a highly experienced environmental professional who will report directly to the project manager.

Technical Staff

The technical staff (team members) for this project will be drawn from corporate resources and appropriately qualified subcontractors. The technical team staff will be used to gather and analyze data, and to prepare various task reports and support materials. The designated technical team members will be experienced professionals who possess the degree of specialization and technical competence required to effectively and efficiently perform the required work.

Project QA Director

The Project QA Director will be responsible for maintaining QA for the project. The position may be filled by the Project Manager, Team Leader, or another designated staff person.

2.0 QA OBJECTIVES FOR DATA MEASUREMENT

Measurements will be made to ensure that analytical results are representative of the media and conditions measured. Unless otherwise specified, data will be calculated and reported in units consistent with other organizations who report similar data to allow comparability of databases among organizations.

The key considerations for the QA assessment of generated data are accuracy, precision, completeness, representativeness, and comparability. These characteristics are defined below:

<u>Accuracy</u>: Accuracy is the degree of agreement of a measurement or average of measurements with an accepted reference or "true" value and is a measure of bias in the system.

<u>Precision:</u> Precision is the degree of mutual agreement among individual measurements of a given parameter.

<u>Completeness</u>: Completeness is a measure of the amount of valid data obtained from a measurement system compared to the amount expected to be obtained under correct normal conditions.

<u>Representativeness</u>: Representativeness expresses the degree to which data accurately and precisely represent a characteristic of a population, parameter variations at a sampling point, a process condition or and environmental condition.

<u>Comparability</u>: Comparability expresses the confidence with which one data set can be compared to another.

2.1 GOALS

The QA/QC goal will focus on controlling measurement error within the limits established and will ultimately provide a database for estimating the actual uncertainty in the measurement data.

Target values for detection limit, percent spike recovery and percent "true" value of known check standards, and relative percent difference of duplicates/replicates are provided in the referenced analytical procedures. It should be noted that target values are not always attainable. Instances may arise where high samples concentrations, non-homogeneity of samples, or matrix interferences preclude achievement of target detection limits or other quality control criteria. In such instances, the laboratory will report reasons for deviations from these detection limits or noncompliance with quality control criteria.

3.0 SAMPLING PROCEDURES

The sampling of various environmental media will be completed as part of the investigation activities. The proposed analytical testing for the site including location, matrix and analytical requirements, is contained within the investigation work plan.

3.1 SAMPLING PROTOCOL

The following sections outline the sampling procedures for the collection of environmental media samples of soils and groundwater. Groundwater monitoring well installation procedures are described in the Work Plan.

3.1.1 Soil Samples from Geoprobe Soil Borings

If sampling is required, continuous soil samples will be collected from Geoprobe soil boring to the target depth. An experienced geologist will observe the work associated with the soil borings.

Collected soil samples will be described according to soil type, color, texture, grain size, moisture content, and will be visually noted for physical indications of contamination, such as staining, oils, fill material, and/or odor.

Each soil sample interval will be screened with a photoionization detector (PID-Minirae Model 2000 or equivalent) with a 10.6 eV lamp for the presence of elevated levels of volatile organic vapors.

During the drilling operations, the most impacted soil, based on field screening and visual observations, will be obtained from each sample sleeve or split spoon. A portion of this apparently contaminated soil will be containerized and the accumulated vapors within the container will then be subjected to headspace analysis for VOCs using the PID.

The VOC data from the headspace analysis, soil type, and depth of sample will be used to select which soil sample is submitted for laboratory analyses.

Soil samples to be submitted for chemical analysis will be extracted from samplers using a stainless steel trowel, knife, or latex glove. Each sample container will be handled, packaged, and shipped in accordance with the procedures as outlined in Section 4.0.

3.1.2 Groundwater Samples from Monitoring Wells

If sampling is required, new and existing groundwater monitoring wells will be developed prior to purging and sampling using disposable polyethylene bailers, dedicated inertial pumps, or dedicated peristaltic pump tubing. Prior to development, wells will be allowed to equilibrate for at least 48-hours following installation. All development water will be collected and stored on site in 55-gallon drums. All drums will be labeled with paint markers according to matrix, location, and date of generation. Turbidity readings and the number of consecutive well volumes removed will be recorded during well development. The wells will be developed to reduce sediment and turbidity to the maximum extent possible (NOTE: The groundwater monitoring wells were initially developed in June 2013).

Following well development, each well will be allowed to equilibrate for at least 24-hours prior to purging and sampling. Purging of each new and existing well will be performed with a low flow peristaltic pump and dedicated polyethylene tubing or disposable polyethylene bailers. Purging of each well for at least three consecutive well volumes or until dry will allow representative formation water to enter the well prior to sample collection. Visual observations or water quality field parameters (turbidity) will be recorded during the purging and sampling.

Immediately following the completion of purging and monitoring well recovery, groundwater samples will be collected using a dedicated disposable polyethylene bailer or low flow peristaltic pump with dedicated tubing. New latex gloves will be used for collection of each sample. Each sample container will be labeled, handled, packaged, and shipped in accordance with the procedures as outlined in Section 4.0.

3.2 FIELD QUALITY CONTROL SAMPLES

The following quality control samples will be used during the investigation activities:

3.2.1 Field Duplicates

Field quality control samples will be collected to verify reproducibility of the sampling and analytical methods. Field duplicates will be obtained as follows:

- one field duplicate soil sample collected from the Geoprobe soil borings; and
- one field duplicate groundwater sample collected from one groundwater monitoring well.

3.2.2 Trip Blanks

Trip blanks will be used to assess whether samples has been exposed to volatile constituents during sample storage and transport. Trip blanks will be submitted at a frequency of once per cooler for samples to be analyzed for volatile organics. The trip blank will consist of a container filled by the laboratory with analyte-free water. The trip blank will remain unopened throughout the sampling event and will only be analyzed for volatile organics.

3.2.3 Matrix Spike/Matrix Spike Duplicates

Matrix Spike/Matrix Spike Duplicates (MS/MSD) will be obtained as follows:

- one MS/MSD soil sample collected from a representative Geoprobe soil boring; and
- one MS/MSD groundwater sample collected from representative groundwater monitoring well.

3.2.4 Laboratory Quality Control Checks

Internal laboratory quality control checks will also be used to monitor data integrity. These checks include method (equipment) blanks, spike blanks, internal standards, surrogate samples, calibration standards, and reference standards.

3.3 SAMPLE CONTAINERS

The volumes and container types required for the sampling activities will be based upon the specific lab procedure and SW-846 methodologies. Pre-washed sample containers will be provided by the laboratory. All bottles are to be prepared in accordance with EPA bottle washing procedures.

3.4 DECONTAMINATION

Dedicated and/or disposable sampling equipment will be used to minimize decontamination requirements and the possibility of cross-contamination.

The water level indicator, stainless steel trowels, split spoons, and Geoprobe are pieces of sampling equipment to be used at more than one location. They will be decontaminated between locations by the following decontamination procedures:

- initial cleaning of any foreign matter with paper towels;
- low phosphate detergent wash;
- de-ionized water rinse; and
- air-dry.

3.5 LEVELS OF PROTECTION/SITE/SAFETY

Field sampling will be conducted under a documented Health and Safety Plan (see Appendix A). On the basis of air monitoring, the level of protection may be downgraded or upgraded at the discretion of the site safety officer. Crew members will stand upwind of open boreholes or wellheads during the collection of samples, when possible.

All work will initially be conducted in Level D (refer to Site Specific Health and Safety Plan). Air purifying respirators (APRs) will be available if monitoring indicates an upgrade to Level C is appropriate.

4.0 SAMPLE CUSTODY

This section describes standard operating procedures for sample identification and chain-of-custody to be used for all field activities. The purpose of these procedures is to ensure that the quality of the samples is maintained during collection, transportation, storage, and analysis. All chain-of-custody requirements comply with standard operating procedures indicated in USEPA and NYSDEC sample-handling protocol.

Sample identification documents will be carefully prepared so that sample identification and chain-of-custody can be maintained and sample disposition controlled. Sample identification documents include:

- Field records,
- Sample label,
- Custody seals, and
- Chain-of-custody records.

4.1 CHAIN-OF-CUSTODY

The primary objective of the chain-of-custody procedures is to provide an accurate written or computerized record that can be used to trace the possession and handling of a sample from collection to completion of all required analyses.

4.1.1 Sample Labels

Sample labels attached to or affixed around the sample container must be used to properly identify all samples collected in the field. The sample labels are to be placed on the bottles so as not to obscure any QA/QC lot numbers on the bottles. Sample information must be printed in a legible manner using waterproof ink. Field identification must be sufficient to enable cross-reference with the field sampling records or sample logbook. For chain-of-custody purposes, all QC samples are subject to exactly the same custodial procedures and documentation as "real" samples.

4.1.2 Custody Seals

Custody seals are preprinted adhesive-backed seals with security slots designed to break if the seals are disturbed. Sample shipping containers (coolers, cardboard boxes, etc., as appropriate) are sealed in as many places as necessary to ensure security. Seals must be signed and dated before use. On receipt at the laboratory, the custodian must check (and certify, by completing logbook entries) that seals on shipping containers are intact. Strapping or other clear packaging

tape should be placed over the seals to ensure that seals on shipping containers are not accidentally broken during shipment.

4.1.3 Chain-of-Custody Record

The chain-of-custody record must be fully completed at least in duplicate by the field technician who has been designated by the project manager as being responsible for sample shipment to the appropriate laboratory for analysis. In addition, if samples are known to require rapid turnaround in the laboratory because of project time constraints or analytical concerns (e.g. extraction time or sample retention period limitations, etc.), the person completing the chain-of-custody record should note these constraints in the "Remarks" section of the custody record.

4.1.4 Field Custody Procedures

- a. As few persons as possible should handle samples.
- b. Sample bottles will be obtained pre-cleaned by the laboratory and shipped to the sampling personnel in charge of the field activities. Coolers or boxes containing cleaned bottles should be sealed with a custody tape seal during transport to the field or while in storage prior to use.
- c. The sample collector is personally responsible for the care and custody of samples collected until they are transferred to another person or dispatched properly under chain-of-custody rules.
- d. The sample collector will record sample data in a controlled field notebook and/or an appropriate field sampling records.
- e. The site team leader will determine whether proper custody procedures were followed during the fieldwork and decide if additional samples are required.

4.2 **DOCUMENTATION**

4.2.1 Sample Identification

All containers of samples collected from the project will be identified using the following format on a label or tag fixed to the sample container:

 YY – These initials identify the sample matrix in accordance with the following abbreviations:

S – Soil

GW - Groundwater

V - Vapor

 ZZ – Sub Sample Type – Field duplicates, rinsate blanks, and trip blanks will be assigned unique sample numbers (if applicable):

DUP – Duplicate Sample

TB – Trip Blank

MS/MSD – Matrix Spike/Matrix Spike Duplicate

Each sample will be labeled, chemically preserved, if required, and sealed immediately after collection. To minimize handling of sample containers, labels will be filled out using waterproof ink and will be firmly affixed to the sample containers. The Sample label will give the following information:

- Name of sampler;
- Date and time of collection:
- Sample number;
- Intended analysis; and
- Preservation required.

4.2.2 Daily Logs

Daily logs and data forms are necessary to provide sufficient data and observations to enable participants to reconstruct events that occurred during the project. All daily logs will be kept in a notebook and consecutively numbered. All entries will be made in waterproof ink, dated, and signed. Sampling data will be recorded in the sampling records. All information will be completed in waterproof ink. Corrections will be made according to the procedures given at the end of this section.

4.3 SAMPLE HANDLING, PACKAGING, AND SHIPPING

The transportation and handling of samples will be accomplished in a manner that not only protects the integrity of the sample, but also prevents any detrimental effects due to the possible hazardous nature of samples. Regulations for packaging, marking, labeling, and shipping hazardous materials are promulgated by the United States Department of Transportation (DOT) in the Code of Federal Regulations, 49 CFR through 177.

All chain-of-custody requirements will comply with standard operating procedures in the NYSDEC and USEPA sample handling protocol. Field personnel will make arrangements for

transportation samples to the laboratory. When custody is relinquished to a shipper, field personnel will telephone the laboratory custodian to inform him of the expected time of arrival of the sample shipment and to advise him of any time constraints on sample analysis. All samples will be delivered to the laboratory no later than 48 hours from the day of collection.

5.0 CALIBRATION PROCEDURES AND FREQUENCY

Instruments and equipment used during sampling and analysis will be operated, calibrated, and maintained according to the manufacturer's guidelines and recommendations as well as criteria set forth in the applicable analytical methodology references.

5.1 FIELD INSTRUMENTS

A calibrations program will be implemented to ensure that routine calibration is performed on all field instruments. Field team members familiar with the field calibration and operations of the equipment will maintain proficiency and perform the prescribed calibration procedures outlines in the Operation and Field Manuals accompanying the respective instruments. Calibration records for each field instrument used on the project will be maintained on-site during the respective field d activities and a copy will be kept in the project files.

5.1.1 Portable Total Organic Vapor Monitor

Any vapor monitor will undergo routine maintenance and calibration prior to shipment to the project site. Daily calibration and instrument checks will be performed by a trained team member at the start of each day. Daily calibrations will be performed according to the manufacturer's specifications and are to include the following:

Battery check: If the equipment fails the battery check, recharge the battery.

- Gas standard: The gauge should display an accurate reading when a standard gas is used.
- Cleaning: If proper calibration cannot be achieved, then the instrument ports must be cleaned.

5.1.2 pH, Specific Conductance, and Turbidity (if applicable)

The following steps should be observed by personnel engaged in groundwater sampling for pH and specific conductance:

- The operations of the instruments should be checked with fresh standard buffer solution (pH 4 and pH 10) prior to each day's sampling.
- The specific conductance meter should be calibrated prior to each day's sampling using a standard solution of known specific conductance.
- The turbidity meter should be calibrated prior to each day's sampling using a standard solution of known turbidity.

calibrations m ords for each f e project files.			

6.0 ANALYTICAL PROCEDURES

6.1 FIELD

On-site procedures for analysis of total organic vapor and other field parameters are addressed in the Work Plan.

6.2 LABORATORY

Analytical methods to be used for the sampling tasks are referenced in the NYSDEC's Analytical Services Protocols (ASP), 1995, or its most current version.

Specific analytical methods for constituents of interest in soil, groundwater, and air are listed in the RWP. The laboratory will maintain and have available for the appropriate operators, standard operating procedures relating to sample preparation, and analysis according to the methods.

7.0 DATA REDUCTION AND REPORTING

QA/QC requirements will be strictly adhered to during sampling and analytical work. Laboratory data generated will be reviewed by comparing and interpreting results from chromatograms (responses, stability of retention times), accuracy (mean percent recovery of spiked samples), and precision (reproducibility of results).

Data storage and documentation will be maintained using logbooks and data sheets that will be kept on file. Analytical QC will be documented and included in the analytical testing report. A central file will be maintained for the sampling and analytical effort after the final laboratory report is issued.

Relevant calculations and data manipulations are included in the appropriate methodology references. Control charts and calibration curves will be used to review the data and identify outlying results. Prior to the submission of the report to the client, all the data will be evaluated for precision, accuracy, and completeness.

Laboratory reports will be reviewed by the laboratory supervisor, the QA officer, laboratory manager and/or director, and the project manager. Analytical reports will contain a data tabulation including results, and supporting QC information will be provided. Raw Data will be available for later inspection, if required, and maintained in the control job file.

8.0 INTERNAL QUALITY CONTROL CHECKS

QC data are necessary to determine precision and accuracy and to demonstrate the absence of interferences and/or contamination of glassware and reagents. The procedures to be followed for internal quality control checks are to be consistent with NYSDEC and NYSDOH Programs.

9.0 PREVENTIVE MAINTENANCE

9.1 FIELD

Field personnel assigned to complete the work will be responsible for preventative maintenance of all field instruments. The field sampling personnel will protect the portable total organize vapor monitors, temperature, conductivity, pH, and turbidity instruments by placing them in portable boxes and/or protective cases.

Field equipment will be subjected to a routine maintenance program, prior to and after each use. The routine maintenance program for each piece of equipment will be in accordance with the manufacturer's operations and maintenance manual. All equipment will be cleaned and checked for integrity after each use. Necessary repairs will be performed immediately after any defects are observed, and before the item of equipment is used again. Equipment parts with a limited life (such as batteries, membranes, and some electronic components) will be periodically checked and replaced or recharged as necessary according to the manufacture's specifications.

10.0 DATA ASSESSMENT PROCEDURES

Laboratory data results will be evaluated for accuracy, precision, and completeness of collected measurement data.

10.1 Precision

Precision of a particular analysis is measured by assessing its performance with duplicate or replicate samples. Duplicate samples are pairs of samples taken in the field transported to the laboratory as distinct samples. Their identity as duplicated is sometimes not known to the laboratory and usually not known to bench analysts, so their usefulness for monitoring analytical precision at bench level is limited. For most purposes, precision is determined by the analysis of replicate pairs (i.e., two samples prepared at the laboratory from one original sample.) Often in replicate analysis, the sample chosen for replication does not contain target analytes so that quantification of precision is impossible. Replicate pairs of spiked samples, known as matrix spike/matrix spike duplicate samples, are used for precision studies. This has the advantage that two, real positive values for a target analyte can be compared.

Precision is calculated in terms of Relative Percent Difference (RPD), which is expressed as follows:

$$RPD = \underbrace{(X_1 - X_2)}_{(X1 + X2)/2} \times 100$$

Where X_1 and X_2 represent the individual values found for the target analyte in the two, replicate analyses or in the matrix spike/matrix duplicate analyses.

RPDs must be compared to the method RPD for the analysis. The analyst or his supervisor must investigate the cause of RPDs outside stated acceptance limits. This may include a visual inspection of the sample for non-homogeneity, analysis of check samples, etc. Follow-up action may include sample re-analysis or flagging of the data as suspect if problems cannot be resolved.

10.2 ACCURACY

Accuracy of a particular analysis is measured by assessing its performance with 'known' samples. These "knowns" can take the form EPA or NBS traceable standards (usually spiked into a pure water matrix), or laboratory prepared solutions of target analytes into a pure water or sample matrix, or (in the case of GC or GC/MS analyses) solutions of surrogate compounds which can be spiked into every sample and are designed to mimic the behavior of target analytes without interfering with their determination. In each case, the recovery of the analyte is measured as a percentage, corrected for analytes known to be present in the original sample if necessary, as in the case of a matrix spike analysis. For EPA or NBS supplied known solutions,

this recovery is compared to the published data that accompany the solution. For prepared solutions, the recovery is compared to EPA-developed data or historical data as available. For surrogate compounds, recoveries are compared to USEPA CLP acceptable recovery tables. If recoveries do not meet required criteria, then the analytical data for the batch (or, in the case of surrogate compounds, for the individual sample) are considered potentially inaccurate.

For highly contaminated samples, recovery of matrix spike may depend on sample homogeneity. As a rule, analyses are not corrected for recovery of matrix spike or surrogate compounds.

10.3 COMPLETENESS

Completeness is a measure of the amount of valid data obtained from a measurement system compared to the total amount expected to be obtained under normal conditions. Completeness for each parameter is calculated as:

 $Completeness = \underbrace{Number\ of\ successful\ analyses\ x\ 100}_{Number\ of\ requested\ analyses}$

Target value for completeness for all parameters is 100%. A completeness value of 95% will be considered acceptable. Incomplete results will be reported to the client project officer.

10.4 REPRESENTATIVENESS

The characteristic of representatives is not quantifiable. Subjective factors to be taken into account are as follows:

- The degree of homogeneity of a site;
- The degree of homogeneity of a sample taken from one point in a site; and
- The available information on which a sampling plan is based.

To maximize representatives of results, sampling techniques, and sample locations will be carefully chosen so that they provide laboratory samples representatives of the site and the specific area.

11.0 QUALITY ASSURANCE SUMMARY

Upon completion of a project sampling effort, analytical and QC data will be included in a comprehensive report that summarizes the work and provides a data evaluation. A discussion of the validity of the results in the context of QA/QC procedures will be made, as well as a summation of all QA/QC activity, and an identification of any analytical problems.

APPENDIX C VAPOR CONTROL SYSTEM

APPENDIX C VAPOR CONTROL SYSTEM

Engineering Controls

The selected remedy includes use of engineering controls (vapor barrier and positive pressure vapor control system) and institutional controls (environmental easement, restricting groundwater use, conforming to Article 71 Title 36 of ECL). These controls prevent exposure to any potential contaminants as discussed previously. The engineering control will be maintained pursuant to the Operations, Maintenance and Monitoring Plan (OM&M Plan) developed pursuant to the BCP requirements. A description of the vapor control system is provided below.

Control Strategy

The vapor control system isolates and prevents the migration of subsurface vapor phase contaminants into the enclosed occupied building spaces. It provides protection with two complimentary systems: passive control consisting of a continuous impermeable (primary) membrane and active control consisting of a sub-slab pressurized space. The continuous impermeable membrane, Barricoat-S[®] (Attachment C6), provides a physical barrier to migration of vapors originating below the building footprint. A continuous zone of positive pressure (above atmospheric) between the floor slab and the impermeable membrane, completely inhibits any potential movement of ground source vapor in an upward direction toward the floor slab, thereby providing redundant control and protection of the occupied space inside the building.

The pressurized space is divided into eleven (11) parallel, air tight zones (see Attachment C1), Grade Beam Layout). The pressurized zone consists of a permeable material, Mirafi G100N (Attachment C4). The permeable material is a dimpled HDPE, 0.4 inches thick, 40 millimeter apparent opening size, sandwiched between the primary spray coat membrane below and plastic sheet above which is sealed at the edges against the grade beams. The control measure will not depend on the floor slab, however, the floor slab will provide a third level of redundancy as well as providing protection for the permeable zone (Attachments C2 and C3).

Continuity of the pressurized zones is provided by ventilation pipes through crossing grade beams. The design provides a means of measuring the pressure at the opposite ends of each zone. A capped pipe extends from each end of each pressurized zone through the exterior grade beam. The end of the pipe is accessible via a ground level valve box. This allows the pressure differential between the pressurized space and atmosphere to be measured at opposite ends of each zone. Each zone has a boundary on opposite ends of the building, except for one short zone that does not extend across the entire footprint. This zone has a monitoring point at one end of

the building and at the opposite end of the zone along the adjacent perpendicular wall. Subgrade installations (elevator shafts and swimming pool) are lined with an impermeable membrane called CCW MiraCLAY[®] (see Attachments C4 and C7).

Each permeable zone is pressurized by introducing compressed air through a pressure distribution network. Compressed air will be provided by compressors or regenerative blowers (air pumps) located inside the building. The air pumps supply conditioned clean air to the permeable zones through floor penetrations. Each zone has a separate direct line to the air pumps that can be independently valve controlled. The pressure equipment will run continuously on electric line power, with local emergency power as backup.

Vapor Control System Installation

Solid pipe for connecting the sub-slab permeable zone network to the compressor equipment will be installed following the construction of the building grade-beam foundation structure.

Surface preparation for the vapor control system will include installation of conduits for sub-slab utilities (plumbing, electrical, etc.), and placement of the permeable zone material. Utilities will be placed below the impermeable membrane layer.

A spray-on impermeable membrane, Barricoat[®]-S (Attachment C6) will be applied on a fabric material over the exposed ground surface and portions of grade beams above the ground surface. The membrane will have ASTM E96 vapor permeability rating of less than 0.10 perms (impermeable). Once completed, the membrane will be smoke-tested to confirm the material is not compromised. Any leaks will be repaired and retested.

A sub-slab permeable zone will be constructed using a one-half inch rigid permeable material called Mirafi[®] G100N (see Attachment C5) which is placed over the top of the impermeable membrane. The rigid material will bring finished grade to the top of the grade beams. Plastic sheet vapor retarder membrane will be placed over the rigid layer prior to pouring the concrete slab-on-grade floor of the building.

The sub-slab permeable zone is divided into parallel air tight zones, separated by un-vented grade beams. Ventilation pipes will be installed through the grade beams to create an air pathway across the zones. Each zone will have a boundary at the exterior grade beams on opposite ends of the building. The permeable zones will be pressurized from a series of 1-inch diameter Pex pipe connected to each zone located at one end of the building. The zones will be pressurized by compressors located inside the building, supplying conditioned, clean air across the permeable zones.

The sub-slab pipe network and impermeable membrane installation will be smoke-tested and inspected prior to the scheduled concrete pour for the building's ground floor.

Vapor Barrier Installation

The remedy includes a vapor barrier that extends the full length and width of the building footprint to establish a vapor barrier beneath the concrete slab floor. Vapor barrier sheet material shall be transported, stored, handled, and installed in a manner that prevents damage to the material.

Utility pipe and conduit extending through the impermeable liquid boot layer will be sprayed for a minimum 6 inches above the penetration to properly seal the barrier. This will be accomplished by using vapor barrier material to create an apron (minimum 24-inch wide) around each utility or conduit riser. The apron will be securely sealed around the risers with two sided adhesive tape, and sealed to the ground sheet with two sided tape in concentric rings around the riser pipe. A minimum 4-inch wide air tight seal shall be created between the apron and ground sheet. Following installation of utilities, the impermeable membrane, and the permeable zone layer, a surface free of sharp debris will be established and covered with a vapor barrier.

Adjacent sheets of vapor barrier material shall be overlapped by a minimum of 18 inches and sealed with a continuous strip of double sided tape, with a minimum 4-inch wide adhesive seal to create an air tight joint. Two, parallel strips of narrower tape may be substituted however; a minimum 4-inch seal width must be maintained. The plan requires that all punctures, tears, and penetrations are patched before pouring concrete.

Where the vapor barrier sheet terminates at building end walls, the material shall extend onto the end wall. The vapor barrier shall be attached to concrete with butyl mastic double sided tape (Stego[®] Mastic by Stego Industries, LLC, see Attachment C7 and C8), to establish an air tight seal.

Where conduit bundles extend through the concrete slab, the vapor barrier shall extends a minimum of 4 inches above top of concrete slab. Gaps between conduits in the bundle shall be sealed with foam or silicon joint compound to create an air tight plug.

The vapor barrier shall be laid loosely to prevent tension. The vapor barrier shall have a minimum 18-inch wide tension relief fold at 40 foot intervals. The longitudinal lap seal between adjacent sheets may not fall within the tension relief fold. Prior to pouring the floor slab, the vapor barrier shall be inspected for the integrity of joints and membrane material, and for proper tension relief construction.

Quality Control

The remedy provides that the following quality control measures are implemented to ensure that the engineering controls are installed according to engineering specifications.

A) Prior to Laying Vapor Barrier

The area must be inspected to verify that all penetration hazards (debris, sharp objects, and angular stone) have been removed, or that a continuous layer of suitable vapor barrier supporting material is in place. Where vapor barrier crosses abrupt ground changes, gaps, or concrete edges, the inspectors must verify that fill is placed to fill gaps and support the vapor barrier to prevent tearing while concrete is poured.

B) Before Concrete Pour

The remedy provides that the vapor barrier is inspected for punctures, tears, burns, and any other damage that would compromise the permeability requirement of the material, for gaps in sealed joints, and that any punctures, tears, and penetrations are patched before pouring concrete. Re-seal any incomplete joints by use of butyl mastic tape. The engineer is required to inspect the liner for tension in the membrane between pile caps. Membrane tension is to be relieved by splicing additional liner material or equivalent.

This RWP provides for inspection of all utility conduits for proper seal around the pipe and at the ground sheet.

C) Vapor Barrier Engineering Certifications

Quality control inspections must be certified by contractor or contractor's representative for each pour. The Site 7 RWP provides that certifications are maintained in a central location upon completion.

Vapor Control System Verification and Testing Procedure

Following enclosure of the building envelope, and installation of vapor control system equipment, testing will be conducted to demonstrate pressure in each permeable zone to be in excess of ambient pressure. Testing will have a two-phased approach. It will include direct measurement of pressure at test ports located at the end of each zone, and indoor air analysis.

Phase I

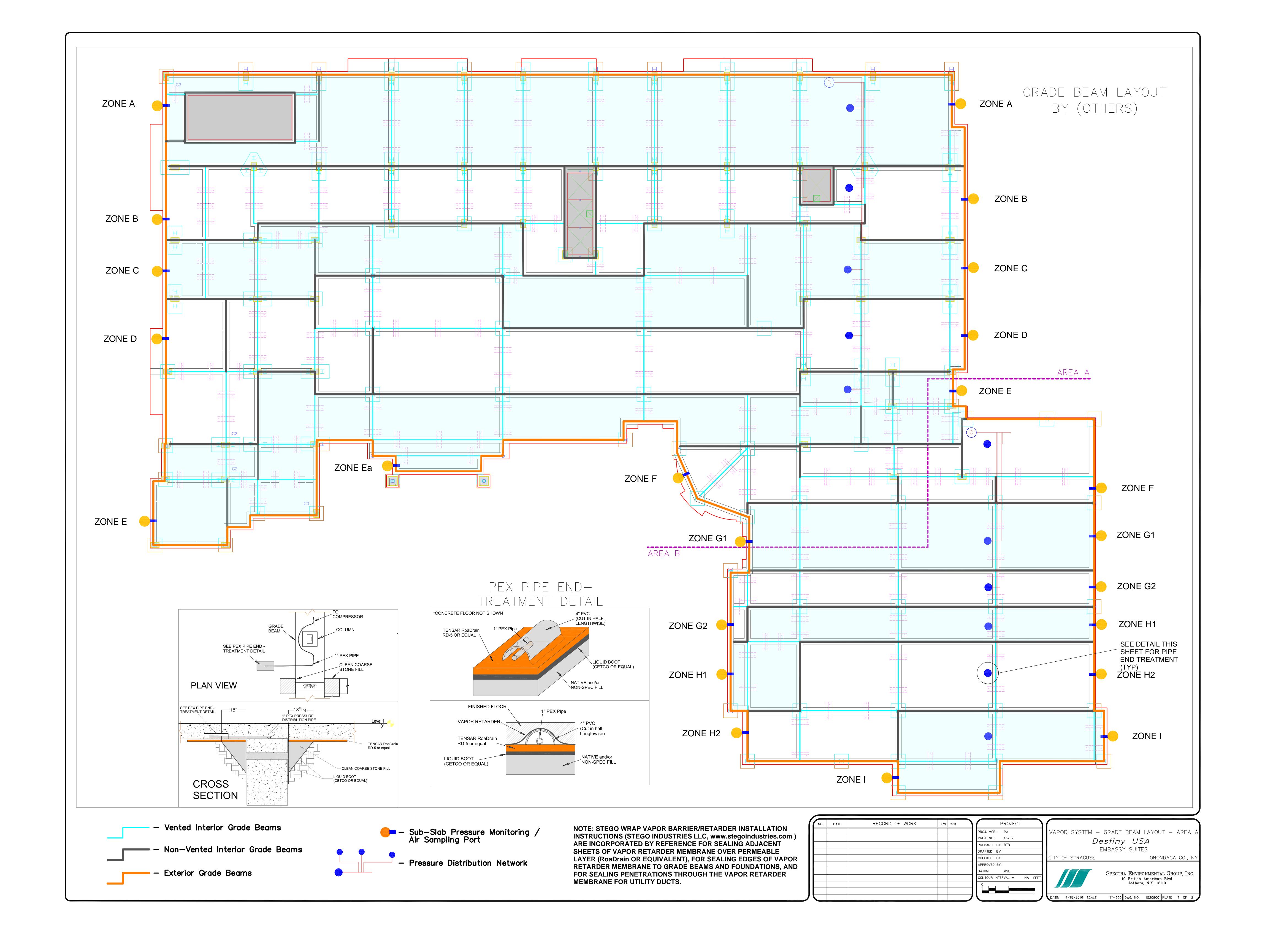
Prior to commissioning the pressure control system, each zone will be tested to measure the rate of air loss at various pressures. Air pumps will be selected to provide an air flow capacity that is greater than the combined rate of air loss, ensuring positive pressure (greater than atmospheric) in all zones.

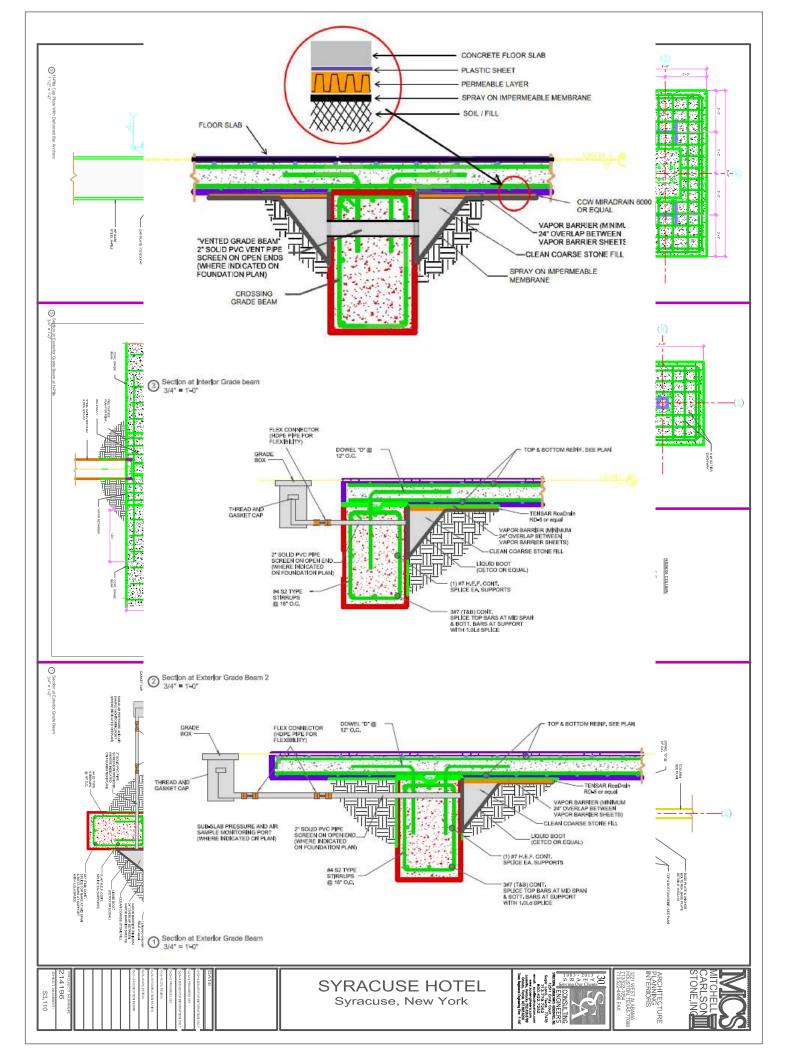
Proper function of the sub-slab pressure system will be demonstrated by measuring a positive (greater than atmospheric) pressure at both ends of each zone while the air pumps are operating.

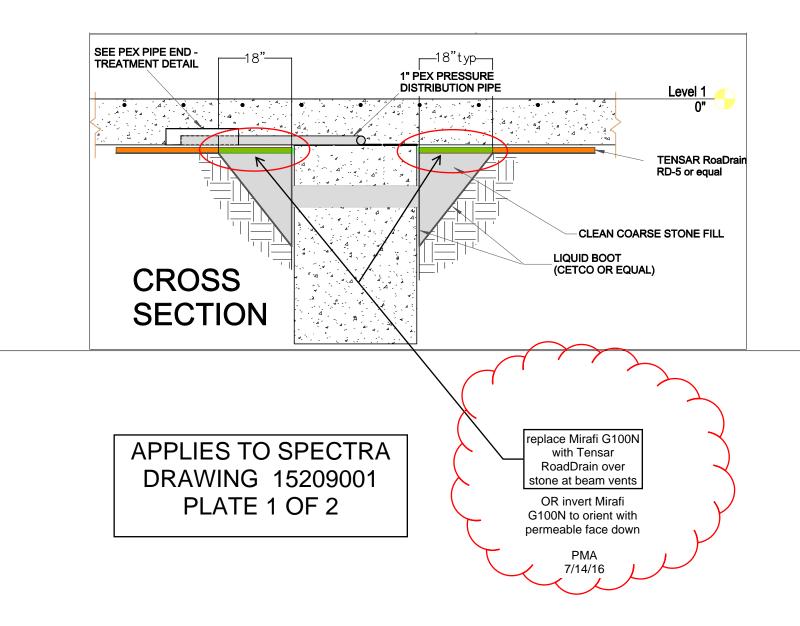
Simultaneous pressure in excess of atmospheric pressure at both ends of each zone while the pump is operating at a nominal level definitively demonstrates that pressure throughout the zone is equal to or greater than the lower of the two measured pressures.

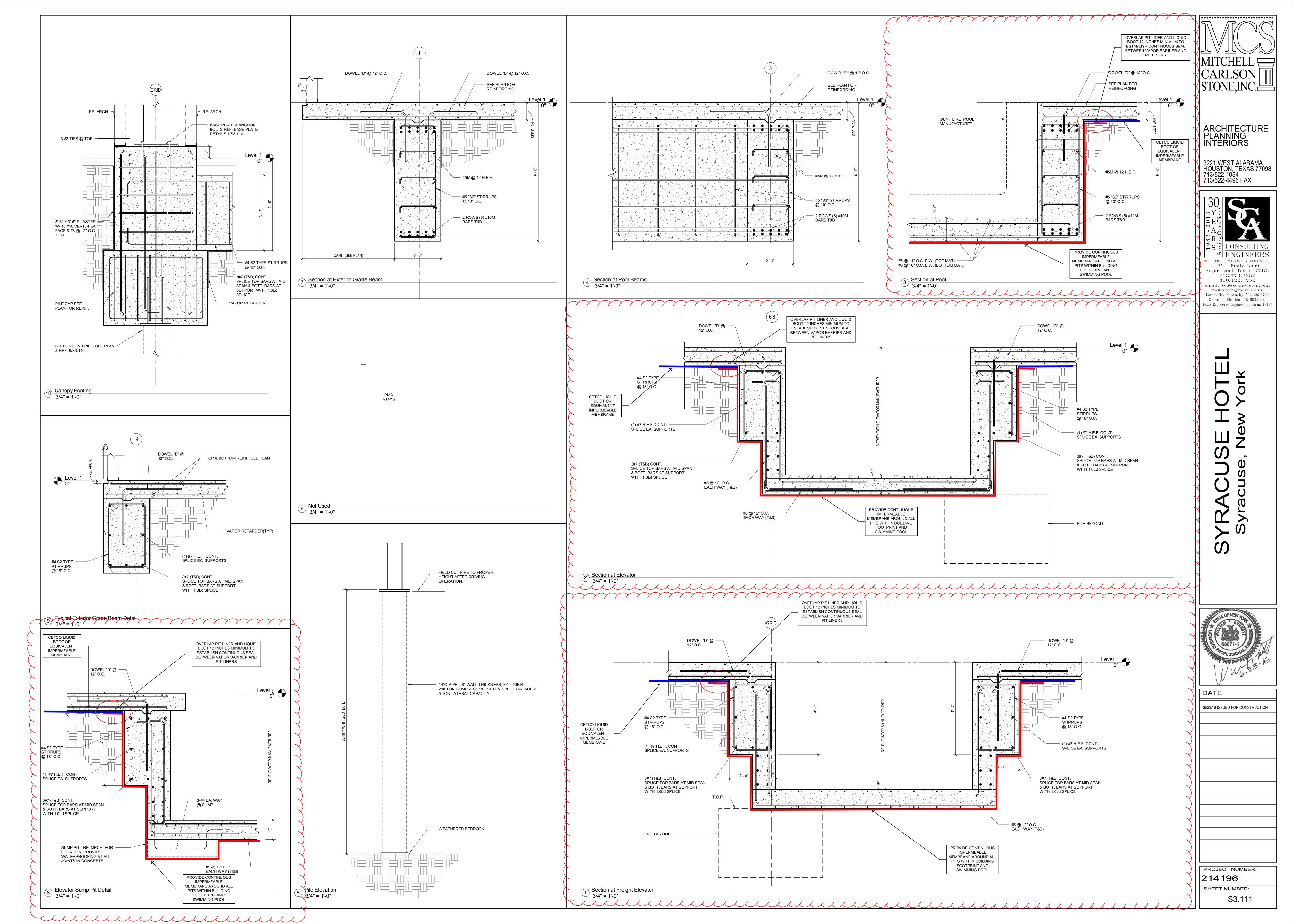
Phase II

The system verification testing described above will be supplemented with indoor air analysis of the ground floor level of the facility. A sampling plan will developed in accordance with the NYSDOH Division of Environmental Health Assessment Center for Environmental Health Indoor Air Sampling & Analysis Guidance dated February 1, 2005 (Attachment C9). The plan will incorporate the background indoor air levels for newly constructed buildings as provided by the NYSDOH.


Vapor Control System Commissioning


The Site 7 RWP provides that upon installation, each permeable zone is commissioned to document that it was installed properly, is achieving the design criteria, and is performing in accordance with the defined performance specifications discussed in this subsection. Results of the commissioning will be recorded in the Site 7 FER. An as-built drawing will be prepared (modification of the design drawing) for each commissioned permeable zone showing locations of risers and laterals on a plan view of the floor slab. The location of pumps and control panels will be shown on architectural as-built drawings.


The Site 7 FER will also include a certification by a professional engineer licensed in New York that the system has been commissioned to effectively address vapor intrusion. The Site 7 RWP provides that each permeable zone is designed and commissioned to achieve a measurable pressure in excess of ambient pressure in each of the zones.


Compliance Monitoring and Reporting

The owner will document continuous operation of the pressurizing equipment through weekly monitoring and recordkeeping by facility operations and maintenance personnel. Annual results will be compiled in the system's annual certification report.

Mirafi® G-Series Drainage Composite

for Retaining Walls, Cut-Off Drains and Landfill Closures

TenCate® develops and produces materials that function to increase performance, reduce costs and deliver measurable results by working with our customers to provide advanced solutions.

The Difference Mirafi® G-Series Drainage Composite Makes:

- Consistent and proven long-term performance due to a multi-directional core configuration providing a uniform flow path for water to escape.
- Relief of hydrostatic pressure buildup against subterranean surfaces.
- High-flow drainage capacity of up to three times the flow capacity of aggregate or sand, assuring effective drainage for virtually any drainage need.
- High compressive strength core that withstands installation and in-situ earth stresses
- Cost savings due to the lightweight, easy to install 1.22m x 15.24m (4' x 50') panels.
 This saves the transportation cost of bringing aggregate to the construction site.

Mirafi® G100N drainage composite is produced from a high compressive strength core with a nonwoven polypropylene geotextile bonded to one side. Mirafi® G100W drainage composite provides the added benefit of a woven monofilament polypropylene geotextile bonded to one side for higher clog resistance and long-term flow capacity. Mirafi® G200N drainage composite, is ideal for two-sided drainage applications. Mirafi® N-Series nonwoven polypropylene geotextile is bonded to both sides of a high compressive strength pierced dimple core.

APPLICATIONS

Mirafi® G100N, G200N and G100W drainage composites are designed for use in high-flow, high compressive strength, vertical applications where single or double-sided subsoil drainage filter layer is needed. The flat side of the core fits directly against wall surfaces making it ideal for retaining walls, bridge abutments and other similar retaining structures. Mirafi® G100N, G200N and G100W drainage composites are capable of collecting large quantities of subgrade water and conducting it to a discharge pipe or collection

Mirafi® G-Series Drainage Composite

system. Ideal applications are placed against the excavation cut of a retaining wall or slope, landfill closure interceptor drainage and in trench drains.

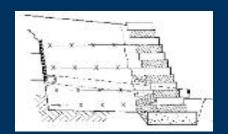
INSTALLATION GUIDELINES*

Detailed installation instructions are available from your TenCate® representative.

* These guidelines serve as a general basis for installation.

Detailed instructions are available from your TenCate® representative.

Mirafi® G-Series Drainage Composite


for Retaining Walls, Cut-Off Drains and Landfill Closures

Property	Test Method	Units	G100N	G100W	G200N
CORE					
Color Thickness Compressive Strength Maximum Flow Rate ¹ Installed Vertically ² Installed Horizontally ³ ¹ In plane flow tested at 173kPa (3 ² Installed flow rate with soil or colors of the soil over the soi	ASTM D1777 ASTM D1621 ASTM D4716 ASTM D4716 ASTM D4716 ASTM D4716 B600psf) with a gradient ve burden at horizontal grad	in (mm) psf (kN/m²) gpm/ft (l/min/m) gpm/ft (l/min/m) gpm/ft (l/min/m) of 1.0. tical gradient of 1.0. dient of 0.05.	black 0.4 (10.2) 18000 (861.3) 21 (260) 12.5 (155) 2.4 (30)	black 0.4 (10.2) 18000 (861.3) 21 (260) 18 (224) 3.8 (47)	black 0.4 (10.2) 18000 (861.3) 21 (260) 12.5 (155) 3.8 (47)
GEOTEXTILE FILTER					
Mirafi® Geotextile			140NC	FW402	140NC
MECHANICAL PROPERTIES					
Grab Tensile Strength (MD) Grab Tensile Strength (CD) Trapezoidal Tear Strength (MD) Trapezoidal Tear Strength (CD) CBR Puncture Strength UV Resistance after 500 hrs	ASTM D4632 ASTM D4632 ASTM D4533 ASTM D4533 ASTM D6241 ASTM D4355	lbs (N) lbs (N) lbs (N) lbs (N) lbs (N) % strength	111 (494) 111 (494) 45 (200) 45 (200) 337 (1500) 70	365 (1624) 200 (890) 115 (512) 75 (334) 675 (3004) 90	111 (494) 111 (494) 45 (200) 45 (200) 337 (1500) 70
HYDRAULIC PROPERTIES					
AOS Permittivity Flow Rate Percent Open Area	ASTM D4751 ASTM D4491 ASTM D4491 COE-02215-86	U.S. Sieve (mm) sec ⁻¹ gpm/ft ² (l/min/m) ² %	70 (0.21) 1.9 140 (5704) na	40 (0.43) 2.1 145 (5907) 6	70 (0.21) 1.9 140 (5704) na
PACKAGING					
Roll Width Roll Length Est. Gross Weight Area	 	ft (m) ft (m) lbs (kg) ft² (m²)	4 (1.2) 50 (15.2) 50 (23) 200 (18.6)	4 (1.2) 50 (15.2) 50 (23) 200 (18.6)	4 (1.2) 50 (15.2) 55 (25) 200 (18.6)

Mirafi® G-Series Drainage Composite

Silvatar of Francis Silvatar of Francis

Retaining Wall

Slope

Retaining Wall Interceptor Drain

TenCate® Geosynthetics North America assumes no liability for the accuracy or completeness of this information or for the ultimate use by the purchaser. TenCate® Geosynthetics North America disclaims any and all express, implied, or statutory standards, warranties or guarantees, including without limitation any implied warranty as to merchantability or fitness for a particular purpose or arising from a course of dealing or usage of trade as to any equipment, materials, or information furnished herewith. This document should not be construed as engineering advice.

Mirafi® is a registered trademark of Nicolon Corporation

© 2011 TenCate Geosynthetics North America

PDS.G0312

Barricoat®-S

Description

Barricoat-S is a water-based asphalt emulsion modified with a blend of synthetic polymers and special additives. Barricoat-S is dispensed in tandem with Barricure, a non-corrosive, chloride-free deliquescent salt solution. Barricoat-S and Barricure are applied through specialized co-spray equipment, which is provided by others and approved by CCW. During spray, Barricoat-S rapidly becomes firm, tack-free and water-resistant. Product air dries to its final cured state, which is a rubber-like, fully adhered membrane.

Barricoat-S is a waterproofing and vapor barrier membrane for use in below-grade foundation wall assemblies. Barricoat-S is for use on primarily-vertical surfaces and can be applied directly to concrete, concrete masonry, polystyrene foam insulation board and many other common building materials. Barricoat-S waterproofing and MiraDRAIN® drainage composite are combined for a complete, warranted foundation waterproofing system by CCW.

Features and Benefits

- Fast, seamless installation
- · Inexpensive, simple equipment
- · Effectively coats rough and porous surfaces
- Safe, non-flammable and low odor
- Seals around fasteners
- · Instant resistance to rain wash-off
- · Can be applied year-round
- Can be applied to green concrete

Installation

Concrete shall be cured in place for 3 days minimum. Verify that surfaces are free of visible surface moisture, loose materials, release oils and other contaminants. These shall be removed prior to application by power washing or other suitable method. Fill form tie holes, honeycomb and voids with non-shrink grout or CCW-703 V Liquiseal™. Barricoat-R may be used to fill voids and irregularities that do not exceed ¼" depth. Grind fins and similar protrusions flush. On concrete masonry unit (CMU) construction, mortar joints shall be free of voids and struck flush and mortar droppings shall be removed from surfaces.

Installing CCW-201 & CCW-703V Liquiseal

Apply according to instructions on product data sheet. Allow sealant to cure fully before covering with Barricoat-R or MiraDRI 860/861 Strips.

Installing Barricoat-R & DCH Reinforcing Fabric

Apply approximately 30 wet mils of Barricoat-R to the substrate with a brush or roller. Immediately set DCH Reinforcing Fabric into Barricoat-R, pressing the fabric into the liquid while smoothing wrinkles with a brush or drywall knife. Lap neighboring pieces of DCH Reinforcing Fabric 2" minimum, and apply Barricoat-R into laps. Immediately cover fabric with a 2nd coat of Barricoat-R, encapsulating it. When the substrate temperature is 32°F or lower, or the ambient temperature is below 50°F, spray the top coat of Barricoat-R with Barricure solution, dispensed either from the co-spray gun with Barricoat-S turned off, or from a garden sprayer. Allow the detail to dry firm before spraying over with Barricoat-S.

Installation of MiraDRI 860/861 Strips

When the ambient or substrate temperature is below 40°F, use MiraDRI 861 Strips and follow the cold weather installation procedure indicated on the product data sheet. Prepare the surface with CCW-702 WB or CCW-702/702 LV, following the instructions on product data sheet. Apply CCW-715 to damp or green concrete surfaces. Apply the contact adhesive over enough area that it extends 1" minimum beyond the edge of the installed self-adhering flashing. Cut manageable-sized pieces of self-adhering flashing from the roll using sharp knife, making square, clean cuts. Lap neighboring pieces 5" minimum and sequence the installation to provide shingled laps. Press the self-adhering flashing firmly to the substrate with a hand roller tool, especially at edges and laps. Seal over laps and cuts and around penetrating hardware with LM-800XL Mastic.

Detailing Cracks and Cold Joint

Fill and cover non-moving cracks less than $\frac{1}{16}$ " with a detail coat of Barricoat-R. Cover cold joints and cracks $\frac{1}{16}$ " wide and greater with minimum 6"-wide DCH Reinforcing Fabric encapsulated in Barricoat-R or with 6"-wide MiraDRI 860/861 Strips. In addition, fill cracks exceeding $\frac{1}{4}$ " width with non-shrink grout or CCW-201 struck flush, and allow the fill to cure before application of the fabric or membrane strips.

WATERPROOFING

Barricoat-S

Detailing Inside & Outside Corners

Cover with minimum 6"-wide DCH Reinforcing Fabric encapsulated in Barricoat-R or 6"-wide MiraDRI 860/861 Strips.

Detailing Foundation-to-Footing Transition

Apply 12"-wide DCH Reinforcing Fabric encapsulated in Barricoat-R. Alternate method: fill the angle with a $\frac{3}{4}$ " tooled bead of CCW-201, then cover with 12" MiraDRI 860/861 Strips.

Detailing Pipe/Conduit Penetrations

Fill the rough gap around the penetration with non-shrink grout or CCW-201. Wrap pipe or conduit with MiraDRI 860/861 Strips, or DCH Reinforcing Fabric encapsulated in Barricoat-R. Reinforcement shall bear 3" minimum onto the wall and 3" minimum onto the pipe or conduit. Consult CCW shop drawings for more detail.

Detailing Expansion Joints, Control Joints and Transitions

Fill expansion joints with a tooled bead of CCW-201 over backer rod. Cover the joint or transition with two, 30-wet-mil coats of Barriseal-R or with MiraDRI 860/861 Strips. Treatment shall bear 4" minimum onto each side of joint. Consult CCW shop drawings for more detail.

Spraying Barricoat-S

Obtain full, safe access to the area and mask adjacent surfaces to protect from overspray. Verify that the product is within shelf life, as indicated on the product label. Inspect freeze indicator on the drum or tote to verify if it has been broken from exposure to freezing temperatures. Open drums or totes bearing broken freeze indicators and inspect material for sludge, particles or separation. Contact CCW Technical Service for more information on product inspection. Load Barricoat-S and Barricure into the spray system and start up according to the instructions given in the CCW Spray Equipment Brochure. Spray the wall surfaces, holding the gun approximately 20" to 24" from the surface. Keep the gun pointed square to the surface while spraying the surfaces from the bottom, upward. Apply a maximum of 90 mils wet thickness per coat. Total membrane thickness after full cure shall measure a minimum of 60 mils. Note that coating thickness measured shortly after spray will only shrink about 10% by volume, since Barricure has already pulled much of the water from the Barricoat-S by the time thickness can be measured.

Therefore, minimum thickness measured shortly after spray should read a minimum of 70 mils with a comb type wet mil gauge, or 66 mils with a pin gauge. Spray full thickness over cold joint details and corner details. Provide complete coverage over surfaces, so that there are no voids, pinholes or similar passages through membrane. Allow the membrane to dry completely before subjecting it to inspection for water leakage and adhesion testing. Drying time varies with substrate, ambient temperature and humidity. Membrane is dry when it appears black and rubber-like, and feels dry when pressed. Install MiraDRAIN drainage composite, Protection Board V or insulation board by others over the Barricoat-S membrane before backfill.

Spraying of Barricoat-S in Cold Weather

If the ambient or substrate temperature is 32°F or lower, incorporate these modifications to the standard procedure: Spray Barricoat-S in two coats at 35–40 wet mils each, allowing drying between coats. Keep drums of Barricoat-S and the spray equipment in an area maintained at or above 50°F, and keep the hose and gun reeled in except during spray.

Spraying of Barricoat-S on Aerated Concrete, Green Concrete, or Concrete Containing Additives that Cause Gassing

If Barricoat-S tends to blister shortly after spray on the concrete substrate, incorporate these modifications to the standard procedure: Spray the surface with approximately 10 mils wet of Barricoat-S, with the Barricure stream shut off. Allow this "primer coat" of Barricoat-S to dry firm, then apply Barricoat-S co-sprayed with Barricure according to the standard procedure or the cold weather procedure.

Repairing Damaged Membrane

Remove damaged and loosely adhered material. Clean weathered or dirty surfaces with a clean rag wet with xylene or toluene. Allow any solvent to dry and cover damaged area with three, 30-wet-mil coats of Barricoat-R or a minimum 70-wet-mil coat of Barricoat-S.

Installing MiraDRAIN over Barricoat-S

Allow Barricoat-S membrane to dry completely. Spray CAV-GRIP™ adhesive over the surface of Barricoat-S, and press MiraDRAIN in place. Install MiraDRAIN, MiraDRAIN HC and HC connectors in accordance with MiraDRAIN Installation Guide.

Installing Protection Board V or Foam Plastic Board Insulation by Others over Barricoat-S

Allow Barricoat-S membrane to dry completely. Attach insulation to surface of membrane with CAV-GRIP or approved insulation adhesive by others. Where CAV-GRIP is used, spray adhesive over surface of Barricoat-S, and press insulation in place.

Installing Insulation Board & MiraDRAIN over Barricoat-S

CCW recommends installation of insulation over the Barricoat-S followed by installation of MiraDRAIN drainage composite over the insulation. Bond the insulation to Barricoat-S according to the aforementioned procedure. Bond MiraDRAIN to the surface of the insulation by spraying CAV-GRIP to back side of MiraDRAIN, and pressing MiraDRAIN to the surface of the insulation.

Dampproofing

Barricoat-S may be used as damproofing on walls and foundations. When used as a dampproofing Barricoat-S is applied at 45 mils wet ensuring that all Barricoat-S limitations, substrate preparation, and application techniques outlined in this document are followed. Total thickness after full cure shall measure a minimum of 30 mils.

Limitations

- Protect from freezing during delivery, storage and handling.
- Not intended for permanent exposure. Cover within 30 days of application.
- Not compatible with silicone, coal tar, polysulfide or plasticized PVC.
- Do not apply solvent-based products over Barricoat-S.
- Do not use in plaza deck, planter, pond liner or other horizontal waterproofing applications.
- Do not use as a negative-side waterproofing membrane.

Storage

Store product and accessories in area protected from direct sunlight and precipitation, and away from open flames, sparks or welding. Store flammable materials in accordance with federal, state and local regulations. Store drums and totes of Barricoat-S in an area maintained between 50°F and 90°F.

Packaging

Barricoat-S and Barricure are purchased separately. Note that Barricure is a REQUIRED system component. Consumption of Barricure is approximately one pail for every 3 drums of Barricoat-S.

Product Name	Description	Available Items
Barricoat-S	Spray-applied waterproofing membrane	P/N 304918 – 55-gallon drum filled with 50 gallons of product
Barricure	Chloride-free curing agent for Barriseal-S	P/N 309736 – 5-gallon pail

Typical Properties

Property	Method	Results
Color	_	Un-cured: Dark brown Cured: Black
Volatile Organic Content	_	<20 g/l
Shelf Life	_	9 months
Percent Solids (weight)	_	63%
Cured Film Thickness	_	60 mils, minimum
Theoretical Coverage	_	16 sq ft/g
Application Temperature	_	Minimum 20°F, ambient and substrate
Service Temperature	_	-20°F to 149°F
UV Exposure	_	30 days maximum
Resilience	ASTM D5329	98% (recovery)
Low-Temp Flexibility	ASTM D1970	No cracking at -20°F, bent over 1" mandrel
Low-Temp Crack Bridging	ASTM C836	Pass
Extensibility over Crack after Heat Aging	ASTM C836	Pass
Peel Adhesion (lb/in)	ASTM D903	HDPE Film 12.2 Concrete 14.1 CMU 14.1 DensGlass® Gold 13.1
Elongation	ASTM D412	1,000%
Water Vapor Permeance	ASTM E96	0.02 Perm

WATERPROOFING

Barricoat-S

Limited Warranty

Carlisle Coatings & Waterproofing Incorporated (Carlisle) warrants this product to be free of defects in workmanship and materials only at the time of shipment from our factory. If any Carlisle materials prove to contain manufacturing defects that substantially affect their performance, Carlisle will, at its option, replace the materials or refund its purchase price. This limited warranty is the only warranty extended by Carlisle with respect to its materials. There are no other warranties, including the implied warranties of merchantability and fitness for a particular purpose. Carlisle specifically disclaims liability for any incidental, consequential, or other damages, including but not limited to, loss of profits or damages to a structure or its contents, arising under any theory of law whatsoever. The dollar value of Carlisle's liability and buyer's remedy under this limited warranty shall not exceed the purchase price of the Carlisle material in question.

CCW MIRACLAY®

Bentonite Clay Waterproofing Membrane

Description

CCW MiraCLAY has a uniform layer of sodium bentonite clay that is sandwiched between a durable puncture-resistant nonwoven polypropylene fabric and a high-tensile strength woven polypropylene fabric and then needle punched together with thousands of high-strength denier yarns. These fibers are then thermally fused to the polypropylene in a proprietary InfrabondTM procedure that locks the sodium bentonite into place.

CCW MiraCLAY is designed for waterproofing below-grade structural slabs as well as construction methods incorporating lagging, concrete caisson or shotcrete retention walls. CCW MiraCLAY is also very effective in rehab waterproofing and zero clearance property line construction.

Features/Benefits

- Self-healing if ripped or punctured.
- In a hydrated state, the bentonite clay has tremendous impermeability and excellent resistance to chemicals (i.e., acids, bases and hydrocarbons).
- Expands and seals cracks in concrete.

Installation

Underslab Applications

CCW MiraCLAY is designed for use under reinforced concrete slabs 4" (100 mm) thick or greater on a compacted earth/gravel substrate. If installed over a mud slab, CCW MiraCLAY requires a minimum 5" (150 mm) thick reinforced concrete slab.

For contaminated site water conditions, as determined by a site water analysis, CCW MiraCLAY EF should be used. When hydrostatic conditions exist, CCW MiraCLAY should be installed under footings and grade beams as shown in CCW MiraCLAY details.

Substrate Preparation: NOTE: Do not begin construction in work areas where there is standing water or in situations which may cause the CCW MiraCLAY to prematurely hydrate.

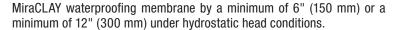
Before installing CCW MiraCLAY, the substrate must be properly prepared. Substrate may be concrete, earth, sand, pea gravel or crushed stone. Earth and sand substrates should be compacted to a minimum 85% Modified Proctor density. Crushed stone should not be larger than ¾" (18 mm) in size. Honeycombing, voids and aggregate pockets exceeding 1" in diameter or have a depth greater than ¾ inch should be filled with a non-shrink cementitious grout. Fill tie-rod holes with a non-shrink cementitious grout. Substrate should be smooth and uniform without sharp projections or pockets. Complete all required elevator pit, sump pit and grade beam and piling work before installing CCW MiraCLAY under main slab area.

Installation: Install CCW MiraCLAY over the properly prepared substrate with the non-woven geotextile side up. Overlap adjoining edges a minimum of 4" (100 mm); stagger sheet ends a minimum of 24" (600 mm); and nail or staple edges together as required to prevent any displacement during

Property	Method	Unit	Typical Value
Bentonite Mass/ Unit Area	ASTM D5993	lbs/ft² (kg/m²)	1.0 (4.88)
Nonwoven	ASTM D5261	oz/yd² MARV¹	6.0 (200)
Woven	ASTIVI DOZDI	(g / m² MARV)	3.1 (105)
Swell Index	ASTM D5890	_	24 ml (2 g) min
Moisture Content	ASTM D4643	% max	12
Fluid Loss	ASTM D5891	ml max	18
Tensile Strength ²	ASTM D6768	lb/in MARV (kN/m MARV)	30 (5)
Peel Strength	ASTM D6496	Ibs/in MARV N/m MARV	3.5 (610)
Permeability ³	ASTM D5887	m/s max	5 x 10 ⁻¹¹
Index Flux ³	ASTM D5887	m³/m²/s max	1 x 10 ⁻⁸
Internal Shear Strength ⁴	ASTM D6243	psf (kPa)	500 (24)
Elongation ⁵	ASTM D4632	%	150
Low Temperature Flexibility	ASTM D1970	@ -25°F (-32°C)	Unaffected
Hydrostatic Head Pressure	ASTM D751	ft (meter)	228 (59.49)
Adhesion to Concrete	ASTM 0903	lb/in (kg/cm)	17.7 (8)

- Minimum Average Roll Value.
- . Tested in machine direction.
- 3. Deaired, deionized water @ 5 psi (24.5 kPa) maximum effective confining stress and 2 psi (13.8 kPa) head pressure.
- 4. Typical peak value for specimen hydrated for 24 hours and sheared under a 200 nsf (9.5 kPa) normal stress
- 200 psf (9.5 kPa) normal stress.

 5. Measure at maximum peak, in the weakest principle direction.


concrete placement. CCW MiraCLAY Granules may also be placed in the seam for additional waterproofing performance.

When the slab is poured in sections, CCW MiraCLAY should extend a minimum 12" (300 mm) beyond the slab edge. When the installation reaches the outer edge of the slab, continue CCW MiraCLAY up and out of the form a minimum of 12" (300 mm). At the corner, CCW MiraCLAY should remain in contact with the substrate and inside the surface of the concrete form. When the form is removed, the CCW MiraCLAY outside the form should be positioned and fastened onto the footing or vertical wall. Overlay the CCW MiraCLAY a minimum of 6" (150 mm) with the succeeding vertical waterproofing membrane.

At property line retaining walls, such as soldier pile or lagging, continue the underslab CCW MiraCLAY application up the retaining wall a minimum 12" (300 mm) above the top edge of the slab or footing and secure. Overlap the vertical CCW

CCW MIRACLAY

Bentonite Clay Waterproofing Membrane

Property Line/Lagging Application

Substrate Preparation: Gaps between the wood lagging greater than 1" (25 mm) must be filled with cementitious grout. In areas with large gaps (1" to 5" / 25 mm to 125 mm) between lagging, install plywood to provide a uniform substrate. Where drainage issues may arise, install CCW MiraDRAIN to provide a uniform substrate as well as to facilitate drainage.

Installation: Install CCW MiraCLAY with the white non-woven side facing the installer. Secure the CCW MiraCLAY into position with fasteners and 1" (25 mm) washers. Use the appropriate fasteners for the type of substrate used to receive the CCW MiraCLAY. Install succeeding courses of CCW MiraCLAY by overlapping the previous course a minimum of 4" (100 mm). Stagger the seams a minimum of 24" (600 mm). Install in shingle fashion so that the upper roll of CCW MiraCLAY overlaps the lower roll. Fasten membrane once every 18" (45 cm) on seams or as required to prevent blousing. Shotcrete installations require a seam fastening pattern not to exceed 12" O.C. or as necessary to prevent seam blousing.

Extend waterproofing membrane to 6" below grade and fasten membrane to the substrate to maintain constant compression using a $\frac{1}{8}$ " x 1" (3 x 25 mm) minimum termination bar. Embed the top edge of CCW MiraCLAY and termination bar with a thick bead of CCW MiraCLAY Sealant 2" (50 mm) wide by $\frac{1}{2}$ " (12 mm) thick.

Standard Foundation Walls

Substrate Preparation: The substrate must be properly prepared to receive the CCW MiraCLAY waterproofing membrane. All honeycombs, form-tie cavities and indentations should be filled with CCW MiraCLAY Sealant or filled with latex Portland Cement. Substrate must be smooth and uniform removing any protrusions over ½" (12 mm) from the surface. Footings must be free of soil, rocks or debris to provide a suitable substrate to receive the CCW MiraCLAY waterproofing membrane.

Installation: The CCW MiraCLAY waterproofing membrane should be installed with the white non-woven side facing the applicator. Create a cant at any vertical to horizontal transition by applying a 11/2" (39 mm) to 2" (50 mm) of CCW MiraCLAY Granules or CCW MiraCLAY Sealant along that junction. At the base of the foundation wall where the vertical wall meets the horizontal footing, install CCW MiraCLAY in a horizontal manner extending out onto the footing a minimum of 12" (300 mm). Fasten the CCW MiraCLAY in place with concrete fasteners and 1" (25 mm) washers. Install succeeding courses of CCW MiraCLAY by overlapping the previous course a minimum of 4" (100 mm). Stagger the seams a minimum of 12" (300 mm). Install in shingle fashion so that the upper roll of CCW MiraCLAY overlaps the lower roll. Fasten membrane once every 18" (45 cm) to 3' (90 cm) on seams or as required to prevent blousing. At grade line, terminate CCW MiraCLAY with a rigid termination bar or fasten 12" (300 mm) on center. Embed the top edge of CCW MiraCLAY and termination bar with a thick bead of CCW MiraCLAY sealant 2" (50 mm) wide by 1/2" (12 mm) thick. Backfill must be compactible soils free of construction debris and must be uniformly compacted to a minimum 85% Modified Protor on each lift.

Detail Requirements

For standard installation details, follow the CCW MiraCLAY details drawings. For non-standard installation instructions contact your local Carlisle Coatings & Waterproofing representative.

Carlisle Coatings & Waterproofing recommends the use of CCW MiraDRAIN, a geocomposite sheet drain, to facilitate the removal of water away from the structure. The CCW MiraCLAY and CCW MiraDRAIN waterproofing and drainage system provides maximum protection against water penetration.

Packaging

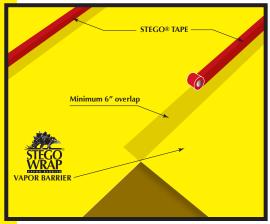
5' x 14' (70 sq ft) rolls

Limitations

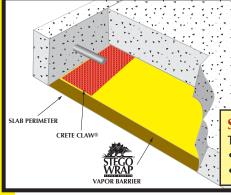
- CCW MiraCLAY membranes should remain dry before and during installation.
- Improper storage could lead to product deterioration.
- Not for use on CMU foundations.

Limited Warranty

Carlisle Coatings & Waterproofing Incorporated (Carlisle) warrants this product to be free of defects in workmanship and materials only at the time of shipment from our factory. If any Carlisle materials prove to contain manufacturing defects that substantially affect their performance, Carlisle will, at its option, replace the materials or refund its purchase price. This limited warranty is the only warranty extended by Carlisle with respect to its materials. There are no other warranties, including the implied warranties of merchantability and fitness for a particular purpose. Carlisle specifically disclaims liability for any incidental, consequential, or other damages, including but not limited to, loss of profits or damages to a structure or its contents, arising under any theory of law whatsoever. The dollar value of Carlisle's liability and buyer's remedy under this limited warranty shall not exceed the purchase price of the Carlisle material in question.


PART 1

STEGO WRAP VAPOR BARRIER/RETARDER INSTALLATION INSTRUCTIONS



IMPORTANT: Please read these installation instructions completely, prior to beginning any Stego Wrap installation. The following installation instructions are based on ASTM E 1643 - Standard Practice for Selection, Design, Installation, and Inspection of Water Vapor Retarders Used in Contact with Earth or Granular Fill Under Concrete Slabs. If project specifications call for compliance with ASTM E 1643, then be sure to review the specific installation sections outlined in the standard along with the techniques referenced in these instructions.

FIGURE 1: UNDER-SLAB INSTALLATION

FIGURE 2a: SEAL TO SLAB AT PERIMETER

UNDER-SLAB INSTRUCTIONS:

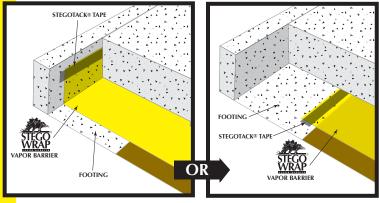
- 1. Stego Wrap can be installed over an aggregate, sand, or tamped earth base. It is not necessary to have a cushion layer or sand base, as Stego Wrap is tough enough to withstand rugged construction environments.
- 2. Unroll Stego Wrap over the area where the slab is to be placed. Stego Wrap should completely cover the concrete placement area. All joints/ seams both lateral and butt should be overlapped a minimum of six inches and taped using Stego Tape.

NOTE: The area of adhesion should be free from dust, dirt, moisture, and frost to allow maximum adhesion of the pressure-sensitive tape.

3. ASTM E 1643 requires sealing the perimeter of the slab. Extend vapor retarder over footings and seal to foundation wall, grade beam, or slab at an elevation consistent with the top of the slab or terminate at impediments such as waterstops or dowels. Consult the structural engineer of record before proceeding.

SEAL TO SLAB AT PERIMETER:*

NOTE: Clean the surface of Stego Wrap to ensure that the area of adhesion is free from dust, dirt, moisture, and frost to allow maximum adhesion of the pressure-sensitive adhesive.

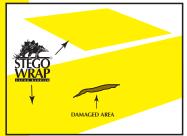

- a. Install Crete Claw® on the entire perimeter edge of Stego Wrap.
- **b.** Prior to the placement of concrete, ensure that the top of Crete Claw is free of dirt, debris, or mud to maximize the bond to the concrete.

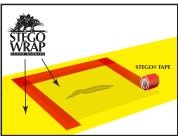
STEGO LABOR SAVER!

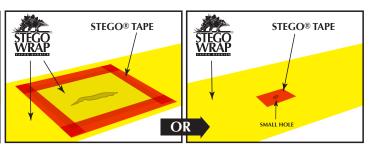
This method not only complies with ASTM E 1643, but it also:

- reduces labor compared to other perimeter sealing techniques.
- can be used even without an existing wall or footing, unlike alternatives.

FIGURE 2b: SEAL TO PERIMETER WALL FIGURE 2c: SEAL TO FOOTING

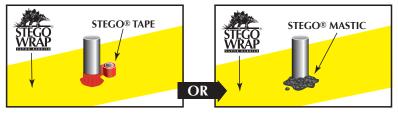

OR SEAL TO PERIMETER WALL OR FOOTING WITH STEGOTACK® TAPE:*


- a. Make sure area of adhesion is free of dust, dirt, debris, moisture, and frost to allow maximum adhesion.
- Remove release liner on one side and stick to desired surface.
- c. When ready to apply Stego Wrap, remove the exposed release liner and press Stego Wrap firmly against StegoTack Tape to secure.
- * If ASTM E 1643 is specified, consult with project architect and structural engineer to determine which perimeter seal technique should be employed for the project.


NOTE: Stego Industries, LLC's ("Stego") installation instructions are based on ASTM E 1643 - Standard Practice for Selection, Design, Installation, and Inspection of Water Vapor Retarders Used in Contact with Earth or Granular Fill Under Concrete Slabs. These instructions are meant to be used as a guide, and do not take into account specific job site situations. Consult local building codes and regulations along with the building owner or owner's representative before proceeding. If you have any questions regarding the above mentioned installation instructions or Stego products, please call us at 877-464-7834 for technical assistance. While Stego employees and representatives may provide technical assistance regarding the utility of a specific installation practice or Stego product, they are not authorized to make final design decisions.

4. In the event that Stego Wrap is damaged during or after installation, repairs must be made. Stego Tape can be used to repair small holes in the material. For larger holes, cut a piece of Stego Wrap to a size and shape that covers any damage by a minimum overlap of six inches in all directions. Clean all adhesion areas of dust, dirt, moisture, and frost. Tape down all edges using Stego Tape (see figure 3, Sealing Damaged Areas).

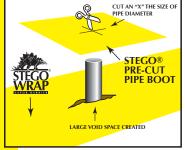
FIGURE 3: SEALING DAMAGED AREAS

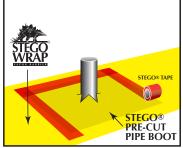


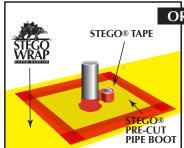
5. **IMPORTANT: ALL PENETRATIONS MUST BE SEALED.** All pipe, ducting, rebar, wire penetrations and block outs should be sealed using Stego Wrap, Stego Tape and/or Stego Mastic (see figure 4a, Pipe Penetration Sealing).

FIGURE 4a: PIPE PENETRATION SEALING

STEGO WRAP PIPE PENETRATION REPAIR DETAIL:


- 1: Install Stego Wrap around pipe penetrations by slitting/cutting material as needed. Try to minimize the void space created.
- 2: If Stego Wrap is close to pipe and void space is minimized then seal around pipe penetration with Stego Tape and/or Stego Mastic.


(See Figure 4a)


- 3: If detail patch is needed to minimize void space around penetration, then cut a detail patch to a size and shape that creates a six inch overlap on all edges around the void space at the base of the pipe. Stego Pre-Cut Pipe Boots are also available to speed up the installation.
- 4: Cut an "X" the size of the pipe diameter in the center of the pipe boot and slide tightly over pipe.
- 5: Tape down all sides of the pipe boot with Stego Tape.
- 6: Seal around the base of the pipe using Stego Tape and/or Stego Mastic.

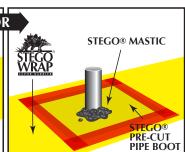

(See Figure 4b)

FIGURE 4b: DETAIL PATCH FOR PIPE PENETRATION SEALING

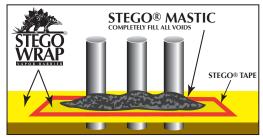


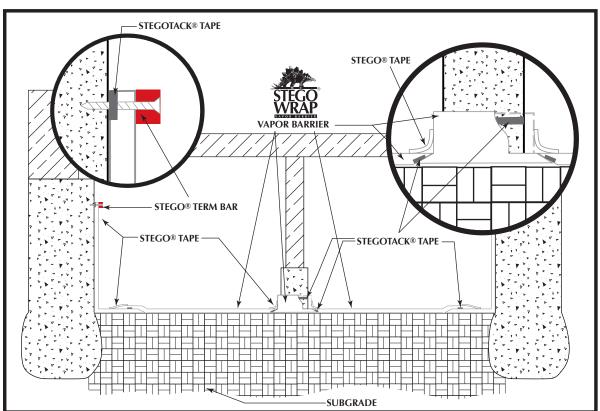
FIGURE 5: MULTIPLE PIPE PENETRATION SEALING

MULTIPLE PIPE PENETRATION SEALING:

Multiple pipe penetrations in close proximity and very small pipes may be sealed using Stego Wrap and Stego Mastic for ease of installation (see figure 5, Multiple Pipe Penetration Sealing).

NOTE: Stego Industries, LLC's ("Stego") installation instructions are based on ASTM E 1643 - Standard Practice for Selection, Design, Installation, and Inspection of Water Vapor Retarders Used in Contact with Earth or Granular Fill Under Concrete Slabs. These instructions are meant to be used as a guide, and do not take into account specific job site situations. Consult local building codes and regulations along with the building owner or owner's representative before proceeding. If you have any questions regarding the above mentioned installation instructions or Stego products, please call us at 877-464-7834 for technical assistance. While Stego employees and representatives may provide technical assistance regarding the utility of a specific installation practice or Stego product, they are not authorized to make final design decisions.

PART 2


STEGO WRAP VAPOR BARRIER/RETARDER INSTALLATION INSTRUCTIONS

CRAWL SPACE INSTALLATION INSTRUCTIONS:

- 1. Turn Stego Wrap up the foundation wall to a minimum height of six inches above the outside/exterior grade or in compliance with local building codes and terminate with Stego Term Bar. To form a complete seal, apply StegoTack Tape or a layer of Stego Mastic to the foundation wall prior to installing Stego Term Bar. Allow one hour for Stego Mastic to cure prior to installing Stego Term Bar.
- 2. Seal Stego Wrap around all penetrations and columns using Stego Tape, StegoTack Tape, and/or Stego Mastic.
- 3. Place Stego Wrap directly over the crawl space floor. If rigid insulation is to be used, install Stego Wrap prior to insulation (under insulation and between the foundation wall and insulation).
- 4. Overlap seams a minimum of six inches and seal with Stego Tape. Some codes require a minimum of a twelve inch overlap. Check appropriate codes prior to installation.

#IGURE 6: CRAWL SPACE INSTALLATION

NOTE: Stego Wrap Vapor Barrier and Stego Tape are both available in white (as shown in illustration above).

INSTALLATION TIP:

 For a cleaner look and to prevent against tenting of Stego Wrap at the foundation wall/foundation floor intersection, consider mechanically fastening Stego Wrap to base of foundation wall in addition to the above mentioned wall termination.

NOTE: Stego Industries, LLC's ("Stego") installation instructions are based on ASTM E 1643 - Standard Practice for Selection, Design, Installation, and Inspection of Water Vapor Retarders Used in Contact with Earth or Granular Fill Under Concrete Slabs. These instructions are meant to be used as a guide, and do not take into account specific job site situations. Consult local building codes and regulations along with the building owner or owner's representative before proceeding. If you have any questions regarding the above mentioned installation instructions or Stego products, please call us at 877-464-7834 for technical assistance. While Stego employees and representatives may provide technical assistance regarding the utility of a specific installation practice or Stego product, they are not authorized to make final design decisions.

NEW YORK STATE DEPARTMENT OF HEALTH DIVISION OF ENVIRONMENTAL HEALTH ASSESSMENT CENTER FOR ENVIRONMENTAL HEALTH

INDOOR AIR SAMPLING & ANALYSIS GUIDANCE February 1, 2005

SCOPE

Air testing for specific chemical compounds is an investigative tool used to characterize the nature and extent of contaminants in air and to determine whether contaminant sources affect indoor air quality. The purpose of this document is to outline the recommended procedure for testing indoor air for volatile chemicals.

This document provides guidance for preparing sampling locations and collecting samples for laboratory analysis to ensure the integrity of the test results and allow for meaningful interpretation of the data. The steps discussed include; pre-sampling inspection and preparation of buildings, product inventories, and the collection and analysis of samples.

Forms (attached)

- Indoor Air Quality Questionnaire and Building Inventory
- Product Inventory Form

GUIDANCE

1. <u>Pre-Sampling Inspection</u>:

A pre-sampling inspection should be performed prior to each sampling event to identify conditions that may affect or interfere with the proposed testing. The inspection should evaluate the type of structure, floor layout, physical conditions, and airflows of the building(s) being studied. The inspection information should be identified on the attached Indoor Air Quality Questionnaire and Building Inventory form. In addition, potential sources of chemicals of concern should be evaluated within the building by conducting a product inventory. The primary objective of the product inventory is to identify potential air sampling interference by characterizing the occurrence and use of chemicals and products throughout the building, keeping in mind the goal of the investigation and site specific contaminants of concern. For example, it is not necessary to provide detailed information for each individual container of like items. However it is necessary to indicate that "20 bottles of perfume" or "12 cans of latex paint" were present with containers in good condition. This information is used to help formulate the indoor environment profile.

Each room on the floor of the building being tested and on lower floors, if possible, should be inspected and an inventory provided. This is important because even products stored in another area of a building can affect the air of the room being tested.

For example, when testing for a petroleum spill, all indoor sources of petroleum hydrocarbons should be scrutinized. These can include household and commercial products containing volatile organic compounds (VOCs), petroleum products including fuel from gasoline-operated equipment, unvented space heaters and heating oil tanks, storage and/or recent use of petroleum-based finishes and paints or products containing petroleum distillates. This information should be detailed on the Product Inventory Form.

The presence and description of odors (e.g. solvent, moldy) and portable vapor monitoring equipment readings (e.g., photoionization detectors [PIDs] for VOCs, Jerome Mercury Vapor Analyzer for mercury) should be used to help evaluate potential sources. This includes taking readings near products stored or used in the building. Products in buildings should be inventoried **every time** air is tested to provide an accurate assessment of the potential contribution of volatile chemicals. If available, chemical ingredients of interest should be recorded for each product. If the ingredients are not listed on the label, record the product's exact and full name, and the manufacturer's name, address and phone number, if available. In some cases, Material Safety Data Sheets may be useful for identifying confounding sources

of volatile chemicals in air. Adequately documented photographs of the products and their labeled ingredients can supplement the inventory and facilitate recording the information.

2. <u>Preparation of Building</u>

Potential interference from products or activities releasing volatile chemicals may need to be controlled. Removing the source from the indoor environment prior to testing is the most effective means of reducing the interference. Ensuring that containers are tightly sealed may be acceptable. When testing for VOCs, containers should be tested with a PID to determine whether VOCs are leaking. The inability to eliminate potential interference may be justification for not testing, especially when testing for similar compounds at low levels. The investigator should consider the possibility that chemicals may adsorb onto porous materials and may take time to dissipate.

In some cases, the goal of the testing is to evaluate the impact from products used or stored in the building (e.g., pesticide misapplications, school renovation projects). If the goal of testing is to determine whether products are an indoor volatile chemical contaminant source, then removing these sources does not apply.

Once interfering conditions are corrected (if applicable), ventilation may be needed prior to testing to eliminate residual contamination in the indoor air. If ventilation is appropriate, it should be completed 24 hours or more prior to the scheduled sampling time. Where applicable, ventilation can be accomplished by operating the building's heating ventilation and air conditioning (HVAC) system to maximize outside air intake. Opening windows and doors and operating exhaust fans may also help or may be needed if the building has no HVAC system.

Air samples are sometimes designed to represent typical exposure in a mechanically ventilated building, and the operation of HVAC systems during sampling should be noted (see HVAC section on the attached indoor air quality questionnaire). In general, the building's HVAC system should be operating under normal conditions. Unnecessary building ventilation should be avoided within the 24 hours prior to and during testing. During colder months, heating systems should be operating under normal occupied conditions (i.e., 65°-75° F) for at least 24 hours prior to and during the scheduled sampling time.

Depending on the goal of the indoor air sampling, some situations may warrant deviation from the above protocol regarding building ventilation. In such instances, building conditions and sampling efforts should be understood and noted within the framework and scope of the investigation.

<u>FOR 24 HOURS PRIOR TO SAMPLING, ALL REASONABLE MEASURES SHOULD BE TAKEN TO AVOID</u>

- Opening any windows, fireplace dampers, openings, or vents
- Operating ventilation fans unless special arrangements are made
- Smoking in the house
- Painting
- Using wood stoves, fireplaces or other auxiliary heating equipment (e.g., kerosene heaters)
- Operating or storing automobiles in an attached garage
- Allowing containers of gasoline or oil to remain within the house, except for fuel oil tanks
- Cleaning, waxing, or polishing furniture or floors with petroleum- or oil-based products
- Using air fresheners or odor eliminators
- Engaging in any hobbies that use materials containing volatile organic chemicals
- Using cosmetics, including hairspray, nail polish, nail polish removers, perfume/cologne, etc.
- Applying pesticides

3. Collection of Samples

Air samples should be collected from an adequate number of locations to understand likely sources of volatile chemicals and to assess potential exposure to occupants in various locations. In private residences, air samples should be collected from the basement, first floor living space, and from outdoors. In settings with diurnal occupancy patterns such as schools and office buildings, samples should be collected during normally occupied periods to be representative of typical exposure. However, in special circumstances it may be necessary to collect air samples at other times in order to minimize disruptions to normal building activities. Sample collection intakes should be located to approximate the breathing zone for building occupants (i.e., three feet above the floor level where occupants are normally seated or sleep). To ensure that an air sample is representative of the conditions being tested sampled and to avoid undue influence from sampling personnel, samples should be collected for at least a one-hour period, and personnel should avoid lingering in the immediate area of the sampling device while samples are being collected. If the goal of the sampling is to represent average concentrations over longer time periods then longer duration sampling periods may be appropriate. The sampling team members should avoid actions (e.g., fueling vehicles, using permanent marking pens) that can cause sample interference in the field.

Sample collection techniques vary depending on the analytical method(s) being used, and sample flow rates must conform to the specifications in the sample collection method. Some methods specify collecting samples in duplicate (e.g., Passive Sampling Devices for tetrachloroethene). Sampling personnel should be completely familiar with the sampling protocol for the particular method being used.

a. Quality Assurance/Quality Control

Extreme care should be taken during all aspects of sample collection to ensure that high-quality data are obtained. Appropriate QA/QC measures must be followed for sample collection and laboratory analysis. Items that should be addressed in sampling protocols include sampling techniques, certified-clean sampling apparatus, appropriate sample holding times, temperatures, and pressures. In addition, laboratory accession procedures must be followed including; field documentation (sample collection information and locations), chain of custody, field blanks, field sample duplicates and laboratory duplicates, as appropriate.

b. <u>Sampling Information</u>

Detailed information must be gathered at the time of sampling to document conditions prior to and during sampling to aid in interpretation of the test results. The information should be recorded on the building inventory form along with the date and the investigator's initials. Floor plan sketches (section 11) should be drawn for each floor and should include the floor layout with sample locations, chemical storage areas, garages, doorways, stairways, location of basement sumps, HVAC systems including air supplies and returns, compass orientation (north) and any other pertinent information. In addition, observations such as odors, PID readings, and airflow patterns should be recorded on the building inventory form. Smoke tubes or other devices are helpful and should be used to confirm pressure relationships and air flow patterns, especially between floor levels and between suspected contaminant sources and other areas. The NYSDOH Wadsworth Laboratories requires that information on odors and PID readings also be recorded on the associated sample accession forms for VOC analyses.

Outdoor plot sketches (section 12) should include the building site, area streets, outdoor sample location, the location of potential interference (e.g., gas stations, factories, lawn mowers), wind direction and compass orientation (north).

c. Sample Analysis

New York State Law requires laboratories analyzing environmental samples from New York State to have current Environmental Laboratory Approval Program (ELAP) certification for the appropriate analyte/matrix combinations. Samples must be analyzed by methods that can achieve minimum reporting limits to allow for comparison to background levels (halogenated VOCs are typically 1 microgram per cubic meter ($\mu g/m^3$) or less). The laboratory should verify that they are capable of detecting the appropriate target compounds (see below) and can report them at the appropriate reporting limit (typically 1 $\mu g/m^3$ or less). Check with an ELAP representative at 518-485-5570 or by e-mail at elap@health.state.ny.us for questions about a laboratory's current certification status.

Indoor air sampling to evaluate potential impacts from chemical contaminant sources (i.e., old spills, soil vapor, groundwater) should generally include the contaminant(s) of concern and potential breakdown products (e.g., 1,1,1-trichloroethane analysis should also include 1,1-dichloroethane, 1,1-dichloroethene, cis-1,2-dichloroethene, trans-1,2-dichloroethene, chloroethane and vinyl chloride).

Petroleum products are often a mixture of many individual compounds. Specific aromatic and aliphatic compounds can be good indicators for individual petroleum products (e.g., gasoline, diesel, fuel oil, and kerosene). The primary aromatic compounds benzene, toluene, ethylbenzene, xylenes (BTEX), and trimethylbenzenes should be included in all analyses. Analytical methods using a mass spectrometer detector allow for the identification and quantitation of aromatic and aliphatic hydrocarbons and for oxygenated compounds such as ethanol and methyl tertiary butyl ether (MTBE). Analyzing for specific indicator compounds as suggested below can aid in differentiating potential petroleum sources.

Indicator compounds for gasoline may include BTEX, trimethylbenzene isomers, the appropriate oxygenate additives (MTBE, ethanol, etc.), and the individual C-4 to C-8 aliphatics (e.g., hexane, cyclohexane, dimethylpentane, and 2,2,4-trimethylpentane [iso-octane]).

Indicator compounds for middle distillate fuels (#2 fuel oil, diesel, and kerosene) may include nnonane, n-decane, n-undecane, n-dodecane, ethylbenzene, xylenes, trimethylbenzene isomers, tetramethylbenzene isomers, naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene.

Indicator compounds for manufactured gas plant (MGP) wastes may include ethylbenzene, xylenes, trimethylbenzene isomers, tetramethylbenzene isomers, thiophenes, indane, indene and naphthalene.

Indicator compounds for natural gas or liquefied petroleum (LP) gas may include propane, propene, butane, iso-butane, iso-pentane and n-pentane. Natural gas and LP gas also contain higher molecular weight aliphatic, olefinic, and some aromatic compounds, but at levels much lower than the listed indicator compounds.

In some cases, a more comprehensive list of compounds may be necessary that includes indicator compounds of different petroleum mixtures to help identify sources and potential interferences. For additional information on sampling and appropriate target compounds, contact the Indoor Health Assessment Section of the Bureau of Toxic Substance Assessment (BTSA) at (518) 402-7810 or the appropriate Bureau of Environmental Exposure (BEEI) project manager (518) 402-7850.

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer's Name		Date/Time Prepared _	
Preparer's Affiliation		Phone No	
Purpose of Investigation_			
1. OCCUPANT:			
Interviewed: Y/N			
Last Name:		First Name:	
Address:			
County:			
Home Phone:	Offic	ce Phone:	
Number of Occupants/per	rsons at this locatio	n Age of Occupants	
2. OWNER OR LANDL	ORD: (Check if s	ame as occupant)	
Interviewed: Y/N			
Last Name:		First Name:	
Address:			
County:			
Home Phone:	Offi	ce Phone:	
3. BUILDING CHARAC	CTERISTICS		
Type of Building: (Circle	e appropriate respo	nse)	
Residential Industrial	School Church	Commercial/Multi-use Other:	

If the property is residential, type? (Circle appropriate response)

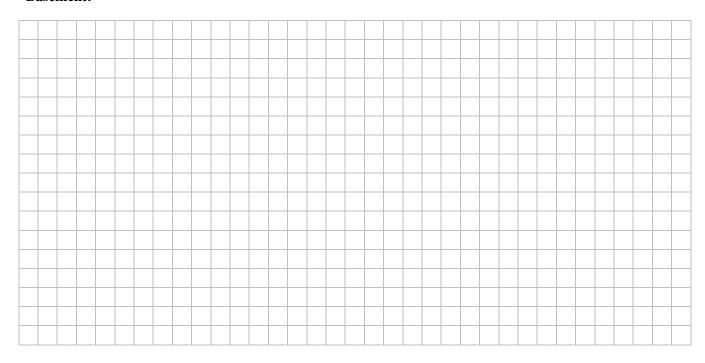
If the property is commercial, type? Business Type(s) Does it include residences (i.e., multi-use)? Y/N If yes, how many? Other characteristics: Number of floors Building age Is the building insulated? Y/N How air tight? Tight / Average / Not Tight 4. AIRFLOW Use air current tubes or tracer smoke to evaluate airflow patterns and qualitatively describe: Airflow between floors Airflow near source	Ranch Raised Ranch Cape Cod Duplex Modular	2-Family Split Level Contemporary Apartment Hous Log Home	3-Fami Coloni Mobile Townh	al
Business Type(s) Does it include residences (i.e., multi-use)? Y/N If yes, how many? Other characteristics: Number of floors Building age Is the building insulated? Y/N How air tight? Tight / Average / Not Tight 4. AIRFLOW Use air current tubes or tracer smoke to evaluate airflow patterns and qualitatively describe: Airflow between floors Airflow near source Outdoor air infiltration		-	omer.	
Does it include residences (i.e., multi-use)? Y/N If yes, how many? Other characteristics: Number of floors Building age Is the building insulated? Y/N How air tight? Tight / Average / Not Tight 4. AIRFLOW Use air current tubes or tracer smoke to evaluate airflow patterns and qualitatively describe: Airflow between floors Airflow near source Outdoor air infiltration				
Number of floors Building age Is the building insulated? Y / N How air tight? Tight / Average / Not Tight 4. AIRFLOW Use air current tubes or tracer smoke to evaluate airflow patterns and qualitatively describe: Airflow between floors Airflow near source Outdoor air infiltration	Business Type(s)			
Number of floors Building age Is the building insulated? Y / N How air tight? Tight / Average / Not Tight 4. AIRFLOW Use air current tubes or tracer smoke to evaluate airflow patterns and qualitatively describe: Airflow between floors Airflow near source Outdoor air infiltration	Does it include reside	ences (i.e., multi-use)?	Y / N	If yes, how many?
Is the building insulated? Y / N How air tight? Tight / Average / Not Tight 4. AIRFLOW Use air current tubes or tracer smoke to evaluate airflow patterns and qualitatively describe: Airflow between floors Airflow near source Outdoor air infiltration	Other characteristics:			
4. AIRFLOW Use air current tubes or tracer smoke to evaluate airflow patterns and qualitatively describe: Airflow between floors Airflow near source Outdoor air infiltration	Number of floors		Building age	
Use air current tubes or tracer smoke to evaluate airflow patterns and qualitatively describe: Airflow between floors Airflow near source Outdoor air infiltration	Is the building insulat	red? Y / N	How air tight?	Tight / Average / Not Tight
Airflow between floors Airflow near source Outdoor air infiltration	4. AIRFLOW			
Airflow between floors Airflow near source Outdoor air infiltration	Use air current tubes or	tracer smoke to evalua	ate airflow pat	tterns and qualitatively describe:
Outdoor air infiltration	Airflow between floors			
	Airflow near source			
Infiltration into air ducts	Outdoor air infiltration			
Infiltration into air ducts				
	Infiltration into air ducts			

5. BASEMENT AND CONSTRUCTION CHARACTERISTICS (Circle all that apply)

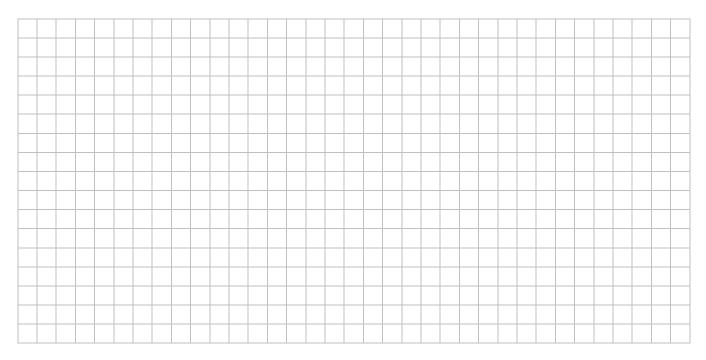
a. Above grade construc	tion: wood	frame concre	te stone	brick
b. Basement type:	full	crawls	pace slab	other
c. Basement floor:	concr	ete dirt	stone	other
d. Basement floor:	uncov	vered covere	d covered	with
e. Concrete floor:	unsea	led sealed	sealed w	ith
f. Foundation walls:	poure	d block	stone	other
g. Foundation walls:	unsea	led sealed	sealed w	ith
h. The basement is:	wet	damp	dry	moldy
i. The basement is:	finish	ed unfinis	shed partially	finished
j. Sump present?	Y / N			
k. Water in sump?	Y / N / not ap	plicable		
Basement/Lowest level dept	h helow grade:	(feet)		
6. HEATING, VENTING		·		
Type of heating system(s) us	ea in this build	ing: (circle all th	at apply – note pr	umary)
Hot air circulation Space Heaters Electric baseboard		pump m radiation l stove	Hot water basebo Radiant floor Outdoor wood be	
The primary type of fuel use	ed is:			
Natural Gas Electric Wood	Fuel (Propa Coal		Kerosene Solar	
Domestic hot water tank fu	led by:			
Boiler/furnace located in:	Basement	Outdoors	Main Floor	Other
Air conditioning:	Central Air	Window units	Open Windows	None

Y/N

Are there air distribution ducts present?

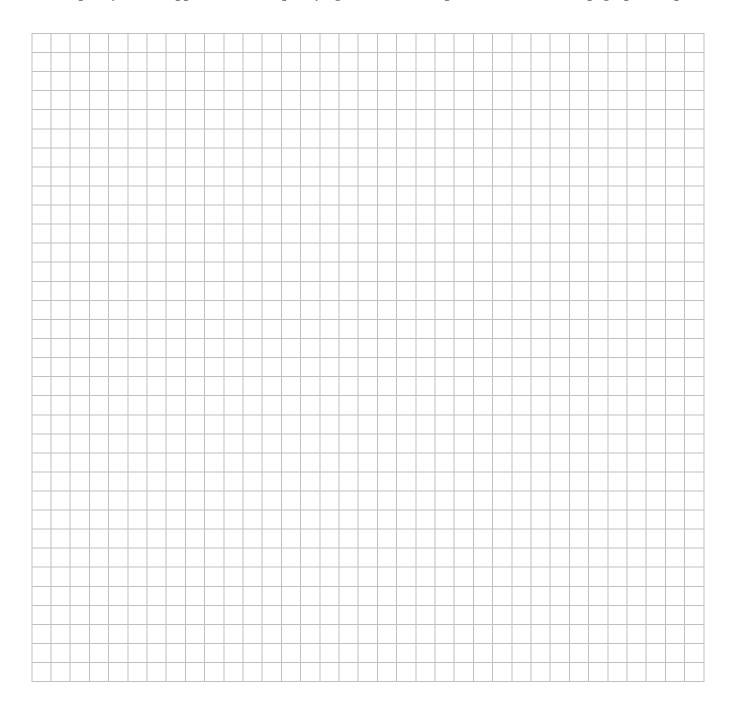

	supply and cold air retu air return and the tigh				
7. OCCUPA	NCY				
Is basement/le	owest level occupied?	Full-time	Occasionally	Seldom	Almost Never
<u>Level</u>	General Use of Each	Floor (e.g., fai	milyroom, bedro	om, laundry, w	orkshop, storage)
Basement					
1 st Floor					-
2 nd Floor					•
3 rd Floor					-
4 th Floor					-
4 11001					-
8. FACTORS	THAT MAY INFLUE	NCE INDOOR	R AIR QUALITY	7	
a. Is there a	n attached garage?			Y/N	
b. Does the	garage have a separate	heating unit?		Y/N/NA	
	oleum-powered machin the garage (e.g., lawnm			Y / N / NA Please specify_	
d. Has the b	ouilding ever had a fire	?		Y/N When?	
e. Is a keros	sene or unvented gas sp	ace heater pres	sent?	Y/N Where	?
f. Is there a	workshop or hobby/cr	aft area?	Y/N	Where & Type	?
g. Is there s	moking in the building	?	Y / N	How frequently	y?
h. Have clea	aning products been us	ed recently?	Y / N	When & Type	?
i. Have cost	netic products been use	ed recently?	Y / N	When & Type's	?

j. Has painting/stai	ining been done	in the last 6 mg	onths? Y/N	where & wr	nen?
k. Is there new car	pet, drapes or o	ther textiles?	Y/N	Where & Wh	nen?
l. Have air freshen	ers been used re	ecently?	Y/N	When & Typ	oe?
m. Is there a kitche	en exhaust fan?		Y/N	If yes, where	vented?
n. Is there a bathr	oom exhaust fai	1 ?	Y / N		vented?
o. Is there a clothes	s dryer?		Y/N	If yes, is it ve	ented outside? Y / N
p. Has there been a	a pesticide appli	cation?	Y / N	When & Typ	pe?
Are there odors in If yes, please descr	_		Y/N		
Do any of the buildin (e.g., chemical manufa boiler mechanic, pestion	acturing or labora	itory, auto mech		shop, painting	g, fuel oil delivery,
If yes, what types of	f solvents are use	d?			
If yes, are their cloth	hes washed at wo	ork?	Y/N		
Do any of the building response)	g occupants reg	ularly use or w	ork at a dry-clea	ning service?	(Circle appropriate
Yes, use dry-c	cleaning regularly cleaning infreque a dry-cleaning ser	ntly (monthly or	· less)	No Unknown	
Is there a radon mitig	•	r the building/s Active/Passive		Date of Insta	llation:
9. WATER AND SEV	WAGE				
Water Supply:	Public Water	Drilled Well	Driven Well	Dug Well	Other:
Sewage Disposal:	Public Sewer	Septic Tank	Leach Field	Dry Well	Other:
10. RELOCATION I	NFORMATION	N (for oil spill r	esidential emerg	ency)	
a. Provide reason	s why relocation	n is recommend	led:		
b. Residents choo	se to: remain in	home reloca	ate to friends/fam	ily reloc	cate to hotel/motel
c. Relocation Doc	cument Checklis	t completed an	d signed? Y/N		


11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:


First Floor:

12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

12	DD(DHCT	INIVEN	JTODV	FODM

Make & Model of field instrument used:	

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (units)	Photo ** Y/N

^{*} Describe the condition of the product containers as **Unopened** (**UO**), **Used** (**U**), or **Deteriorated** (**D**)

^{**} Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

APPENDIX D IN-SITU CHEMICAL OXIDATION TREATMENT

APPENDIX D IN-SITU CHEMICAL OXIDATION TREATMENT

Treatment Description

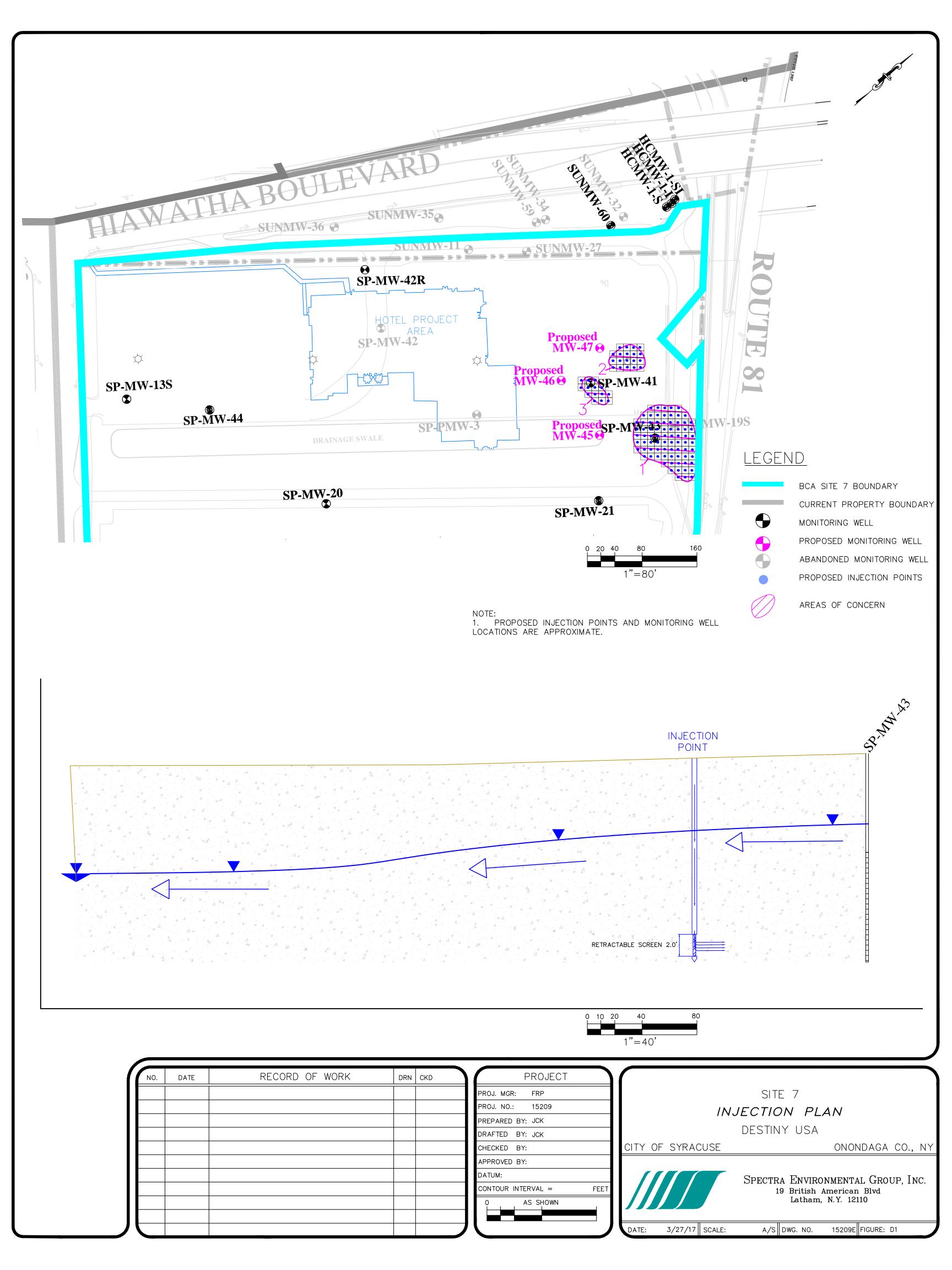
Spectra, working with Provectus, have designed an in-situ treatment program to remediate the AOCs using in-situ chemical oxidation (ISCO) via Provect-OX®. Provect-OX® is a solution that will oxidize petroleum hydrocarbons (VOCs and SVOCs) in both saturated soil and groundwater.

The AOCs represents approximately 11,000 square feet of ground surface. Depth of contamination generally ranges from 4-12 feet bgs. For system design purposes, an 8 foot vertical interval is assumed. The approximate volume of soil within the treatment zone is 3,000 cubic yards (3,750 tons). The recommended dose rate of 6.5 lbs per cubic yard will require the use of approximately 19,500 lbs of Provect-OX®.

The product is combined with ferric iron and water to make an injectable solution that will be applied using direct-push Geoprobe methodology. The solution will be injected at 2 foot intervals at depths ranging from 4-12 feet bgs. Depth of the injections is dependent on the contaminant levels identified in the remedial investigation and recent sampling. A 2-foot retractable screen will be driven to the bottom of the vertical extent of contamination (see Figure D1). Once at its target depth, the screen will be exposed and the solution will be pressure-pumped into the zone. Both ends of the screened rod are solid steel, creating a vertical barrier. This barrier ensures that, even under pressure, the solution is injected into its target zone. The Geoprobe screen ascends 2 feet and begins injection into the next zone. This process is repeated until the solution has been injected over the desired vertical extent of the injection point. Flow meters will be used during injection to determine the volume of solution injected. The Description of Provect-OX® Technology section that is included below discusses the product and the product's corrosion potential. The materials and corrosion compatibility subsection reflects the potential corrosiveness of persulfate solutions in general.

The spacing of each injection point is based on the radius of influence (ROI) capable of being achieved by the injection. Provectus recommends an initial spacing between each injection point of approximately 10 feet as a starting point. It is not uncommon however that the ROI may be shorter or longer depending on the porosity of the soil. To optimize the spacing, the initial series of points will be injected at distance greater than 10 feet from the monitoring well. The visual presence of the oxidant in the well confirms the spacing was adequate (groundwater may exhibit a red tint or color). Decreases in pH and increases in DO and ORP in groundwater will represent influence from the injection chemical. A pH, DO, ORP probe will be used to measure the

presence of Provect-OX in proximal monitoring wells during the first several injection points. If the oxidant does not reach the well, a shorter radius will be used and so on until a successful radius has been determined. The selected ROI will then be used for the remaining points. Complete installation instructions are included in this Appendix.


The VOC and SVOC compounds in exceedance of BCP Restricted Residential Soil Standards are treatable with Provect-OX®. Provect-OX® is mixed with a ferric iron, yielding sulfate (SO₄²) and ferrate (Fe ^{4+ to 6+}) radicals upon injection, both of which contribute to chemical oxidation of contaminants. Oxidation of the COCs can continue for up to 4 months. Additional by-products for the oxidation of the COCs are CO₂, H₂O, and O₂. Any residual contamination will continue to be degraded by a long-lasting bio-remediation component of the product. After the oxidation portion of remediation is complete, the sulfate and ferrate by-products continue to act as electron acceptors for an anaerobic biodegradation process. By-products of these reactions include: bicarbonate, ferrous iron, and hydrogen. In reducing conditions, the ferrous iron and residual sulfides will precipitate, forming pyrite. The remediation process will continue due to the high number of reactive sites associated with pyrite (See the Provectus Technical Data Sheet).

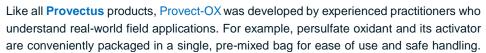
Monitoring Performance and Effectiveness

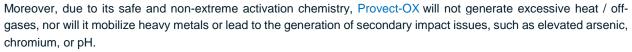
The effectiveness of the Provect-OX® will be assessed and monitored by measuring groundwater concentrations of COCs compared to ambient groundwater quality standards. Monitoring wells SP-MW-41 and 43 along with the three (3) new observation wells (MW-45, MW-46, MW-47; See Figure D1) will be sampled. The first groundwater sampling event will take place approximately 3 months following the initial injection. This will be followed by a second sampling event 3 months later to assess whether COC concentrations are indicating a decreasing trend toward achieving groundwater quality standards. At that time an assessment of the site will be completed in order to determine whether the technology is effective in achieving the desired results. In the event the technology is not effective alternative options include a second injection of the Provect-OX® or other oxidant, and/or excavation of "hot spot" areas.

All wells will be sampled using low-flow sampling procedures. Groundwater samples will be analyzed for VOCs, SVOCs, Metals, Persulfate, and water quality parameters including (pH, temperature, DO, ORP, turbidity and conductivity) in addition to TPH in soil and groundwater. A minimum of 1 L will be purged between readings, and a goal will be to collect samples after stabilization is achieved (three successive readings within: \pm 0.1 for pH, \pm 3% for conductivity, \pm 10 mv for redox, and \pm 10% for turbidity and dissolved oxygen) and/or once three (3) well volumes have been purged. VOC samples will be collected at a flow rate between 100 and 250 ml/min.

FIGURE D1 INJECTION PLAN

DESCRIPTION OF Provect-OX® Technology




Provect-OX® Self-Activating ISCO / Enhanced Bioremediation Reagent

TECHNOLOGY DESCRIPTION

Provect-OX is an *in situ* chemical oxidation (ISCO) / enhanced bioremediation reagent that uses ferric iron (Fe III) as a safe and effective means of activating persulfate (US Patent No. 9,126,245; patents pending). Provect-OX oxidizes a wide variety of organic compounds present in impacted soil, sediment and groundwater, including chlorinated solvents, petroleum hydrocarbons, and pesticides. Rodriquez *et al.*, (2014) recently reported that 2 mM Fe(III) and 6 mM persulfate was very effective in rapidly mineralizing even recalcitrant organic compounds such as the synthetic azo dye Orange G (C₁₆H₁₀N₂Na₂O₇S₂).

Provect-OX is the only ISCO technology designed to actively manage rebound. The advanced activation catalyst is further unique considering its ability to enhance bioremediation processes. This is accomplished via the subsequent utilization of sulfate and iron as terminal electron acceptors for facultative reductive processes. Degradation intermediates generated during pollutant oxidation may act as electron shuttles, allowing the reduction of Fe(III) to Fe(II) in the redox cycling of iron and continued activation of persulfate. This combined remedy provides supplemental treatment mechanisms thereby allowing for more cost-efficient dosing of the product.

TRADITIONAL ACTIVATION CHEMISTRIES

Heretofore, sodium persulfate has been activated via heat, chelated metals, hydrogen peroxide, ZVI/surface catalysis and/or pH extremes in order to generate sulfate radicals, hydroxyl radicals, etc. (Tsitonaki *et al.*, 2010). Not only do these systems require the addition of other products or energy, they tend to disregard the many biologically mediated processes possible as a consequence of the decomposition products of persulfate.

Divalent metal activation: The utilization of ferrous iron, usually as a chelated cation consumes the oxidant (persulfate) in a conversion of the ferrous iron to ferric iron. Additionally, the presence of the chelant inhibits biological utilization of the generated ferric species as a biological terminal electron acceptor and consumes oxidant. Over dosing of the chelated ferrous iron further consumes the oxidant.

Caustic Activation: The utilization of caustic (high pH) activation of persulfate presents inherit health and safety issues while creating an unsuitably high pH environment for biological attenuation. Further, within this activation mechanism is a self-limiting biological attenuation process once the pH returns to suitable levels. The sulfate, when used as a biological terminal electron acceptor, transitions to sulfite and finally sulfide. This final product forms hydrogen sulfide which inhibits further biological activity.

Heat Activation: The utilization of heat as an activation mechanism is generally difficult to implement, and it incurs high implementation costs while not addressing the hydrogen sulfide issue.

Hydrogen Peroxide Activation: The use of peroxide as an activating mechanism again does not address the hydrogen sulfide generation problem while having limited efficacy on many targeted compounds.

MODE OF ACTION

ISCO: Under the **Provectus** approach, persulfate is activated by Fe III (pre-mixed formulation) which requires a lower activation energy than alternative mechanisms while not consuming the persulfate oxidant. The mechanism is believed to elevate the oxidation state of the iron transiently to a supercharged iron ion which in itself may act as an oxidant. As this supercharged iron cation is consumed, the resulting ferric species can act as a terminal electron acceptor for biological attenuation. Coincidentally, the generated sulfate ion from the decomposition of the persulfate provides a terminal electron acceptor for sulfate reducers which may further remediate the targeted compounds in the groundwater and soils. The reactions that occur in the chemical oxidation include persulfate radicals and ferrate, as summarized below (Equation 1):

$$S_2O_8^{-2}+ Fe^{+3}$$
 -----> $Fe^{(+4 \text{ to}+6)} + SO_4^{2-} + SO_4^{2-}$ (Eq. 1)

Provect-OX Oxidation Potentials

Ferrate salts can easily be prepared from iron salts, hypochlorite and a base:

2 Fe⁺³ + 3 OCI⁻ + 4 OH⁻
$$\rightarrow$$
 2 **FeO₄⁻²** + 3 CI⁻ + 2 H₂O S₂O₈⁻² + ACTIVATOR [Fe⁺³] \rightarrow SO₄•⁻ + e⁻ \rightarrow SO₄•⁻²

Oxidation Potentials	Volts
Fluorine (F ₂)	2.87
Hydroxyl radical (OH●)	2.80
Persulfate radical (SO ₄ ●)	2.60
Ferrate (Fe ⁺⁶)	2.20
Ozone (O ₃)	2.08
Persulfate (S ₂ O ₈ ⁻²)	2.01
Hydrogen peroxide (H ₂ O ₂)	1.78
Permanganate (MnO ₄ -)	1.68
Chlorine (Cl ₂)	1.49
https://sites.google.com/site/ecpreparation/ferrate-	-vi

Copyright Provectus

SECONDARY ATTENUATION PROCESS (Biologically Mediated)

1) Sulfate Residual

After dissolved oxygen has been depleted in the treatment area, sulfate (a by-product of the persulfate oxidation) may be used as an electron acceptor for anaerobic biodegradation by indigenous microbes. This process is termed sulfidogenesis and results in the production of sulfide. Stoichiometrically, each 1.0 mg/L of sulfate consumed by microbes results in the destruction of approximately 0.21 mg/L of BTEX compounds. Sulfate can play an important role in bioremediation of petroleum products, acting as an electron acceptor in co-metabolic processes as well. For example, the basic reactions for the mineralization of benzene and toluene under sulfate reducing conditions are presented in equations 2 and 3:

$$C_6H_6 + 3.75 \text{ SO}_4^{2-} + 3 \text{ H}_2\text{O} --> 0.37 \text{ H}^+ + 6 \text{ HCO}_3^- + 1.87 \text{ HS}^- + 1.88 \text{ H}_2\text{S}^-$$
 (Eq. 2)
 $C_7H_8 + 4.5 \text{ SO}_4^{2-} + 3 \text{ H}_2\text{O} --> 0.25 \text{ H}^+ + 7 \text{ HCO}_3^- + 2.25 \text{ HS}^- + 2.25 \text{ H}_2\text{S}^-$ (Eq. 3)

2) Ferric Iron:

Ferric iron is also used as an electron acceptor during anaerobic biodegradation of many contaminants, sometimes in conjunction with sulfate. During this process, ferric iron is reduced to ferrous iron, which is soluble in water. Hence, ferrous iron may be used as an indicator of anaerobic activity. As an example, Stoichiometrically, the degradation of 1 mg/L of BTEX results in the average consumption of approximately 22 mg/L of ferric iron (or "production" of ferrous iron) as shown below (equations 4-6).

$$C_6H_6 + 18 H_2O + 30 Fe^{3+} -----> 6 HCO_3^- + 30 Fe^{2+} + 36 H^+$$
 (Eq. 4)
 $C_7H_8 + 21 H_2O + 36 Fe^{3+} ----> 7 HCO_3^- + 36 Fe^{2+} + 43 H^+$ (Eq. 5)
 $C_8H_{10} + 24 H_2O + 42 Fe^{3+} ----> 8 HCO_3^- + 42 Fe^{2+} + 50 H^+$ (Eq. 6)

3) Pyrite Formation:

While ferrous iron is formed as a result of the use of the ferric species as a terminal electron acceptor, residual sulfate is utilized as a terminal electron acceptor by facultative organisms thereby generating sulfide under these same conditions. Together, the ferrous iron and the sulfide promote the formation of pyrite as a remedial byproduct (equation 7). This reaction combats the toxic effects of sulfide and hydrogen sulfide accumulation on the facultative bacteria, while also providing a means of removing targeted organic and inorganic COIs via precipitation reactions. Moreover, pyrite possesses a high number of reactive sites that are directly proportional to both its reductive capacity and the rate of decay for the target organics.

$$Fe^{2+} + 2S^{2-} ----> FeS_2 + 2e$$
 (Eq. 7)

PRIMARY FEATURES:

This technique maximizes the synergy between persulfate and iron for coupled oxidation and enhanced bioremediation: i) sulfate is generated from persulfate, i) Ferric iron (Fe III) is microbiologically reduced to ferrous iron (Fe II) readily supplying electrons to exchange and react with sulfide. Together, sulfide and iron form pyrite, an iron bearing soil mineral with a favorable reductive capacity.

- <u>Effective</u>: Promotes multiple free radical based *in situ* oxidation of a wide-range of organic contaminants. Also provides a unique microbiological component for multiple accelerated attenuation processes.
- Efficient: Significantly lower costs as a result of sub-stoichiometric dosing requirements.
- Safe: Fewer health and safety concerns as compared with use of traditional activation methods such as heat, chelated metals, hydrogen peroxide or pH extremes. Contains built-in activation which eliminates the need for additional and potentially hazardous chemicals required to achieve traditional persulfate activation.
- <u>Ease of Use</u>: Single component product with integrated activator results in simplified logistics and application. No additional containers or multi-step mixing ratios required prior to application.
 Fewer material compatibility issues.
- Improved Performance: Combined remedy prevents "rebound" which is often seen in other oxidation processes. Maximizes the inherent geochemistry of a "post-oxidation" environment for biologically based attenuation.
- <u>Patented Technology:</u> US Patent No. 9,126,245 (international filings in EU, Australia, Brazil, Canada, China, Colombia, Japan and Mexico) and others pending allow us to freely market this advanced persulfate-based ISCO technology globally, using our choice of suppliers.

LITERATURE CITED:

Rodriguez S, L. Vasquez, D. Costa D, A. Romero and A. Santos. 2014. Oxidation of Orange G by Persulfate activated by Fe(II), Fe(III) and zero valent iron (ZVI). Chemosphere 101:86-92.

Scalzi, M. and A. Karachalios. 2013. Chemical Oxidation and Biological Attenuation Process for the Treatment of Contaminated Media. US PTO 9,126,245.

Tsitonaki, A., B.Petri, M. Crimi, H.Mosbaek, R. Siegrist and P. Berg. 2010. *In Situ* Chemical Oxidation of Contaminated Soil and Groundwater using Persulfate: A Review. Critical Rev. Environ. Sci and Technol. 40: 55-91.

CONTACT US FOR A COMPLIMENTARY SITE EVALUATION

PROVECTUS ENVIRONMENTAL PRODUCTS, INC.

2871 West Forest Road, Suite 2 | Freeport, IL 61032

Tel: (815) 650-2230 | Fax: (815) 650-2232 | Email: info@ProvectusEnv.com

Multiple remedial contracting options available via strategic providers Turn-Key, Risk-Reward, Pay-for Performance, Remedial Guarantees/Warranties

Corrosion and Material Compatibility

Technical Bulletin

Background

Klozur[®] Persulfate solutions are used to treat contaminated soil and groundwater and can remediate a wide range of organic contaminants. However, Klozur[®] Persulfate is a very strong oxidant, and its solutions may be very acidic (pH ≤ 2) under many conditions, resulting in a corrosive environment for many metals and materials. In this bulletin, results from corrosion studies using un-activated and activated persulfate solutions are presented and recommendations regarding materials of compatibility are made. For additional information regarding the safety of Klozur[®] Persulfate, please refer to the Material Safety Data Sheet (MSDS), which is available from FMC.

Corrosion

Laboratory tests were conducted to evaluate the performance of commonly-used engineering materials exposed to Klozur[®] Persulfate solutions (both activated and un-activated). The tests were performed at two different persulfate solution concentrations: 20 wt% representing typical make-up solutions being injected, and 40 g / L representing typical *in situ* ground water concentrations. These tests were conducted per the guidelines outlined in ASTM G31-72. Corrosion rates for metallic coupons were calculated based on changes in weight over the exposure time. Non-metallic coupons were observed for visual changes and changes in physical properties. Structural properties of concrete and non-metallics were not measured.

Results

For un-activated Klozur[®] Persulfate solutions, no observable corrosion on stainless steel (304L and 316L) was observed during the testing. However, for carbon steel, copper and brass, severe corrosion was observed shortly after the testing was initiated, for both the concentrated (20 wt%) and diluted persulfate solutions. The corrosion rates for carbon steel and brass were observed to decrease when evaluated after one and two months as compared to the one week exposure. However, the rates were sufficiently high to indicate that general corrosion was on-going throughout the two month period, indicating that there was no formation of a protective corrosion-product layer. Kynar[®] and FRP demonstrated satisfactory performance over the one month exposure with no noticeable weight gain or softening observed. Concrete, natural rubber and synthetic rubber showed indications of degradation with long-term exposure to the concentrated persulfate solution.

In general, the impact of the Fe-EDTA activated persulfate solution was similar to the unactivated persulfate solution. No significant increases in corrosion were observed due to the presence of the activator system or subsequent formation of sulfate radicals.

For high pH activated persulfate solutions, sodium hydroxide was added to raise the pH to above 10 and to neutralize sulfuric acid formed upon persulfate decomposition. Significant decreases in corrosion rates were observed for high pH activated persulfate in contact with copper, brass and carbon steel. Negligible corrosion was observed for these metals after one month exposure, even at the 20% persulfate concentration. In addition, no noticeable corrosion was observed for stainless steel. Significant reaction with concrete was observed, however. Significant weight gain (5 – 10%) and bleaching were observed for the concrete after one month exposure to the

FMC and Klozur are trademarks of the FMC Corporation. Copyright © 2006 FMC Corporation. All rights reserved. Document 04-02-EIT-DF. For questions, please contact the Environmental Industry Team at 866-860-4760.

high pH activated persulfate solution, and some dissolution of the concrete was noted during the test.

Table 1: Results for Un-Activated Klozur® Persulfate Solutions (20 wt%) at room temperature after 1 week and 1 months exposure time

mpy – milli-inches per year; ✓ - compatible material, **Θ** - non-compatible material

Material	1 week	1 month	Comments
Stainless steels (304L, 316L)	✓	✓	< 1 mpy. No noticeable corrosion over 2 months
Copper Brass	> 100 mpy O	20 – 50 mpy Θ	Severe general corrosion, corrosion rate decreases with time.
Carbon steel	> 200 mpy Θ	50 – 100 mpy Θ	Severe general corrosion, etching at welds, corrosion rate decreases with time.
Kynar [®] (PVDF)	✓	✓	No noticeable changes after 2 months exposure
FRP (fiber-reinforced plastic)	✓	✓	No noticeable changes after 2 months exposure
Concrete	Weight gain, bleached appearance	Weight gain (5 – 10%), bleached appearance	Increasing weight gain over time. Some dissolution observed as residue in test chamber.
Natural Rubber	Slight weight gain	Slight weight gain	Cracks and blisters observed after 1 month exposure.
Synthetic rubber (neoprene)	Slight weight gain	Slight weight gain	Cracks and blisters observed after 1 month exposure

Table 2: Results for Un-Activated Klozur® Persulfate Solution (40 g / L) at room temperature after 1 week and 2 months exposure time

mpy – milli-inches per year; ✓ - compatible material, **Θ** - non-compatible material

Material	1 week	1 month	Comments
Stainless steels (304L, 316L)	✓	✓	< 1 mpy. No noticeable corrosion over 2 months
Copper Brass	> 50 mpy Θ	< 20 mpy ⊖	Severe general corrosion, corrosion rate decreases with time.
Carbon steel	> 50 mpy Θ	< 20 mpy O	Several general corrosion, etching at welds, corrosion rate decreases with time.
Kynar® (PVDF)	✓	✓	No noticeable changes after 1 month exposure
FRP (fiber-reinforced plastic)	✓	✓	No noticeable changes after 1 month exposure
Concrete	Weight gain, bleached appearance	Weight gain (5 – 10%), bleached appearance	Increasing weight gain over time. Some dissolution observed as residue in test chamber.

Natural Rubber	Slight weight gain	Slight weight gain	
Synthetic rubber (neoprene)	Slight weight gain	Slight weight gain	

Table 3: Results for Fe-EDTA Klozur® Persulfate Solutions, 20 wt% and 40 g / L at room temperature after 1 month exposure time

mpy – milli-inches per year; ✓ - compatible material, **Θ** - non-compatible material

Material	20 wt% concentration	40 g / L	Comments
Stainless steels (304L, 316L)	✓	✓	< 1 mpy. No noticeable corrosion over 1 month
Copper Brass	20 – 50 mpy Θ	< 20 mpy ⊖	Severe general corrosion, corrosion rate decreases with time.
Carbon steel	> 50 mpy Θ	20 - 50 mpy Θ	Several general corrosion, etching at welds.
Kynar [®] (PVDF)	✓	✓	No noticeable changes after 1 month exposure
FRP (fiber-reinforced plastic)	✓	✓	No noticeable changes after 1 month exposure
Concrete	Weight gain, bleached appearance	Weight gain (5 – 10%), bleached appearance	Increasing weight gain over time. Some dissolution observed as residue in test chamber.
Natural Rubber	Slight weight gain	Slight weight gain	
Synthetic rubber (neoprene)	Slight weight gain	Slight weight gain	

Table 4: Results for high pH activate Klozur® Persulfate Solutions, 20 wt% and 40 g / L at room temperature after 1 month exposure time

mpy – milli-inches per year; ✓ - compatible material, \varTheta - non-compatible material

Material	20 wt% concentration	40 g / L	Comments
Stainless steels (304L, 316L)	✓	✓	< 1 mpy. No noticeable corrosion over 1 month
Copper Brass	✓	✓	Negligible general corrosion (< 2 mpy). Black film formation observed.
Carbon steel	✓	√	Negligible general corrosion (< 2 mpy). Isolated rust spots observed
Concrete	Weight gain, bleached appearance	Weight gain (5 – 10%), bleached appearance	Bleached appearance, increasing weight gain over time, some dissolution observed as residue in test container.

Material Compatibility

Recommend and Compatible Materials:

- Butyl rubber
- EPDM
- FRP (fiber reinforced plastic)
- Glass
- Neoprene
- Plexiglas[®]
- Polyethylene
- PVC
- Stainless steel (304L and 316L) for all mixing, conveyance and storage equipment
- Teflon[®]
- Viton

Incompatible Materials

- Aluminum
- Carbon steel
- Galvanized pipe
- Monel
- Nitrile rubbers

- Brass
- Copper
- Iron
- Nickel

Well Construction

Use compatible materials, such as PVC or Stainless Steel (304L, 316L)

Pumps

· Check compatibility of all seals, gaskets, tubing and hoses

Geoprobe® Rods

Threaded joints of rods are very susceptible to corrosion. To help reduce corrosion, several
practical measures can be taken, such as applying a barrier layer like Loctite[®] or Teflon[®]
grease to the threads, or utilizing the High pH activation system to reduce acidic corrosion.

Subsurface Utilities

Always check for location and compatibility of subsurface utilities.

Hosing

 Klozur[®] persulfate solutions: 20 – 40%, neutral to mildly acidic conditions, moderate to low pressure

Master-Flex 300 EPDM or Equivalent

<u>Specs</u> (diameter)	Max Allowable Working Pressure (PSI)
1" 2"	80 60
3"	50
4"	45
6"	35

- o 30 F to +140 F
- o EPDM black inner liner of hosing with polyethylene helix
- Reinforced and a Type G (PVC) cover
- Medium oil resistance
- Klozur[®] persulfate solutions: 20 40%, mildly acidic conditions, high pressure

Alfagomma (Italian Company)

- o Model T 505 4-4 SP
- o 6 BAF (240 PSI)
- XLPE chemical S&D

Transporter Ultrachem (brand name)

- 250 PSI water pressure
- Fittings

304 Stainless – Schedule 40 CPVC – Schedule 80 preferred (could lose strength when heated) PVC (may become embrittled with continued use)

OSHA HazCom 2012 Standard 29 CFR 1910.1200. Prepared to GHS Rev03.

Printing date 06/02/2014

Revised on 07/15/2016

1 Identification

- · Product identifier
- · Trade name: Provect-OX® Self Activating ISCO Enhanced Bioremediation Reagent
- · Application of the substance / the mixture

In situ and *ex situ* chemical oxidation of contaminants and compounds of concern for environmental remediation applications.

- · Details of the supplier of the safety data sheet
- · Manufacturer/Supplier:

Provectus Environmental Products

2871 W. Forest Road

Suite 2

Freeport, IL 61032 Phone: 815-650-2230 Fax: 815-650-2232

www.provectusenvironmental.com

· Emergency telephone number: (815) 650-2230

2 Hazard(s) identification

· Classification of the substance or mixture

Flame over circle

May intensify fire; oxidizer.

Health hazard

May cause allergy or asthma symptoms or breathing difficulties if inhaled.

Harmful if swallowed.

Harmful if inhaled.

Causes skin irritation.

Causes serious eye irritation.

May cause an allergic skin reaction.

May cause respiratory irritation.

- · Label elements
- · GHS label elements

The product is classified and labeled according to the Globally Harmonized System (GHS).

· Hazard pictograms

GHS03 GHS07 GHS08

OSHA HazCom 2012 Standard 29 CFR 1910.1200. Prepared to GHS Rev03.

Trade name: Provect-OX® Self Activating ISCO Enhanced Bioremediation Reagent

(Contd. of page 1)

Revised on 07/15/2016

· Signal word Danger

Printing date 06/02/2014

· Hazard-determining components of labeling:

disodium peroxodisulphate; sodium persulfate

· Hazard statements

May intensify fire; oxidizer.

Harmful if swallowed or if inhaled.

Causes skin irritation.

Causes serious eye irritation.

May cause allergy or asthma symptoms or breathing difficulties if inhaled.

May cause an allergic skin reaction.

May cause respiratory irritation.

· Precautionary statements

Take any precaution to avoid mixing with combustibles.

Keep away from heat/sparks/open flames/hot surfaces. - No smoking.

In case of inadequate ventilation wear respiratory protection.

Keep/Store away from clothing/combustible materials.

Avoid breathing dust/fume/gas/mist/vapors/spray.

Use only outdoors or in a well-ventilated area.

Wear protective gloves/protective clothing/eye protection/face protection.

Wash thoroughly after handling.

Do not eat, drink or smoke when using this product.

Contaminated work clothing should not be allowed out of the workplace.

IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.

Specific treatment (see on this label).

Take off contaminated clothing and wash before reuse.

IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing.

Wash contaminated clothing before reuse.

IF INHALED: If breathing is difficult, remove victim to fresh air and keep at rest in a position comfortable for breathing.

If skin irritation occurs: Get medical advice/attention.

If skin irritation or rash occurs: Get medical advice/attention.

If eye irritation persists: Get medical advice/attention.

Rinse mouth.

In case of fire: Use for extinction: CO2, powder or water spray.

IF SWALLOWED: Call a POISON CENTER/doctor if you feel unwell.

IF ON SKIN: Wash with plenty of water.

Call a POISON CENTER/doctor if you feel unwell.

If experiencing respiratory symptoms: Call a POISON CENTER/doctor.

Store locked up.

Store in a well-ventilated place. Keep container tightly closed.

Dispose of contents/container in accordance with local/regional/national/international regulations.

- · Classification system:
- · NFPA ratings (scale 0 4)

Health = 2 Fire = 3 Reactivity = 0

The substance possesses oxidizing properties.

(Contd. on page 3)

OSHA HazCom 2012 Standard 29 CFR 1910.1200. Prepared to GHS Rev03.

Printing date 06/02/2014 Revised on 07/15/2016

Trade name: Provect-OX® Self Activating ISCO Enhanced Bioremediation Reagent

(Contd. of page 2)

· HMIS-ratings (scale 0 - 4)

HEALTH *2	Health = *2
	Fire = 3
REACTIVITY 0	Reactivity = 0

3 Composition/information on ingredients

- · Chemical characterization: Mixtures
- · Description: Mixture of the substances listed below with nonhazardous additions.

· Dangerous o	components:	
	isodium peroxodisulphate; sodium persulfate Ox. Sol. 2, H272; Pasp. Sens. 1, H334; Acute Tox. 4, H302; Acute Tox. 4, 332; Skin Irrit. 2, H315; Eye Irrit. 2A, H319; Skin Sens. 1, H317; STOT SE 3, H335	80-99%
1309-37-1 Fe	erric oxide	1-20%

4 First-aid measures

- · Description of first aid measures
- General information:

Symptoms of poisoning may even occur after several hours; therefore medical observation for at least 48 hours after the accident.

· After inhalation:

Supply fresh air and to be sure call for a doctor.

In case of unconsciousness, place patient securely on side position for transportation.

- · After skin contact: Immediately wash with water and soap and rinse thoroughly.
- · After eye contact: Rinse opened eye for several minutes under running water. Then consult a doctor.
- · After swallowing: Immediately call a doctor.
- · Most important symptoms and effects, both acute and delayed No further relevant information available.
- Indication of any immediate medical attention and special treatment needed

No further relevant information available.

5 Fire-fighting measures

- · Extinguishing media
- Suitable extinguishing agents:

CO2, extinguishing powder or water spray. Fight larger fires with water spray or alcohol resistant foam.

- · Special hazards arising from the substance or mixture No further relevant information available.
- · Advice for firefighters
- · Protective equipment: Mouth respiratory protective device.

6 Accidental release measures

- · Personal precautions, protective equipment and emergency procedures Not required.
- · Environmental precautions: Do not allow to enter sewers/ surface or ground water.
- · Methods and material for containment and cleaning up:

Dispose contaminated material as waste according to section 13.

Ensure adequate ventilation.

· Reference to other sections

See Section 7 for information on safe handling.

See Section 8 for information on personal protection equipment.

See Section 13 for disposal information.

(Contd. on page 4)

OSHA HazCom 2012 Standard 29 CFR 1910.1200. Prepared to GHS Rev03.

Printing date 06/02/2014 Revised on 07/15/2016

Trade name: Provect-OX® Self Activating ISCO Enhanced Bioremediation Reagent

(Contd. of page 3)

7 Handling and storage

· Precautions for safe handling

Thorough dedusting.

Ensure good ventilation/exhaustion at the workplace.

Prevent formation of dust.

- · Information about protection against explosions and fires: Protect from heat.
- · Conditions for safe storage, including any incompatibilities
- · Storage:
- · Requirements to be met by storerooms and receptacles: No special requirements.
- · Information about storage in one common storage facility: Not required.
- · Further information about storage conditions:

Keep receptacle tightly sealed.

Protect from heat and direct sunlight.

· Specific end use(s) No further relevant information available.

8 Exposure controls/personal protection

- · Additional information about design of technical systems: No further data; see section 7.
- · Control parameters
- · Components with occupational exposure limits:

7775-27-1 disodium peroxodisulphate

TLV Long-term value: 0.1 mg/m³ as Persulfates

1309-37-1 Ferric oxide

PEL Long-term value: 10 mg/m³

Fume

REL Long-term value: 5 mg/m³

Dust & fume, as Fe

TLV Long-term value: 5* mg/m³

*as respirable fraction

- · Additional information: The lists that were valid during the creation were used as basis.
- · Exposure controls
- Personal protective equipment:
- · General protective and hygienic measures: Keep

away from foodstuffs, beverages and feed. Immediately remove all soiled and contaminated clothing. Wash hands

before breaks and at the end of work.

- · Breathing equipment: Not required.
- · Protection of hands:

Protective gloves

The glove material has to be impermeable and resistant to the product/ the substance/ the preparation. Due to missing tests no recommendation to the glove material can be given for the product/ the preparation/ the chemical mixture.

Select glove material based on penetration times, rates of diffusion and degradation.

(Contd. on page 5)

OSHA HazCom 2012 Standard 29 CFR 1910.1200. Prepared to GHS Rev03.

Printing date 06/02/2014 Revised on 07/15/2016

Trade name: Provect-OX® Self Activating ISCO Enhanced Bioremediation Reagent

(Contd. of page 4)

· Material of gloves

The selection of the suitable gloves does not only depend on the material, but also on further marks of quality and varies from manufacturer to manufacturer. As the product is a preparation of several substances, the resistance of the glove material cannot be calculated in advance and has therefore to be checked prior to the application.

Penetration time of glove material

The exact break-through time has to be determined and observed by the manufacturer of the protective gloves.

9 Physical and chemical properties

· Information on basic physical and chemical properties

· General Information

· Appearance:

Form:
Color:
Odor:
Odor threshold:
Powder
Red
Odorless
Not determined.

· pH-value @ 20 °C (68 °F): 6

· Change in condition

Melting point/Melting range:
 Boiling point/Boiling range:
 Vide termined.
 Undetermined.
 Not applicable.

• Flammability (solid, gaseous): Contact with combustible material may cause fire.

· Ignition temperature:

Decomposition temperature: Not determined.

· Auto igniting: Product is not self-igniting.

Danger of explosion: Not determined.

· Explosion limits:

Lower: Not determined. Not determined.

Vapor pressure: Not applicable.

Density: Not determined.
Relative density Not determined.
Vapour density Not applicable.
Evaporation rate Not applicable.

· Solubility in / Miscibility with

Water: Soluble.

· Partition coefficient (n-octanol/water): Not determined.

· Viscosity:

Dynamic: Not applicable. **Kinematic:** Not applicable.

· Solvent content:

Organic solvents: 0.0 %
Solids content: 99.5 %

(Contd. on page 6)

OSHA HazCom 2012 Standard 29 CFR 1910.1200. Prepared to GHS Rev03.

Printing date 06/02/2014 Revised on 07/15/2016

Trade name: Provect-OX® Self Activating ISCO Enhanced Bioremediation Reagent

(Contd. of page 5)

· Other information

No further relevant information available.

10 Stability and reactivity

- · Reactivity No further relevant information available.
- · Chemical stability
- Thermal decomposition / conditions to be avoided: No decomposition if used according to specifications.
- · Possibility of hazardous reactions No dangerous reactions known.
- · Conditions to avoid No further relevant information available.
- · Incompatible materials: No further relevant information available.
- · Hazardous decomposition products: No dangerous decomposition products known.

11 Toxicological information

- · Information on toxicological effects
- · Acute toxicity:
- · LD/LC50 values that are relevant for classification:

7775-27-1 disodium peroxodisulphate

Oral LD50 925 mg/kg (rat)

- · Primary irritant effect:
- · on the skin: No irritant effect.
- · on the eye: No irritating effect.
- · Sensitization:

Sensitization possible through inhalation.

Sensitization possible through skin contact.

· Additional toxicological information:

The product shows the following dangers according to internally approved calculation methods for preparations:

Harmful

Irritant

- · Carcinogenic categories
- · IARC (International Agency for Research on Cancer)

1309-37-1 Ferric oxide

3

· NTP (National Toxicology Program)

None of the ingredients is listed.

· OSHA-Ca (Occupational Safety & Health Administration)

None of the ingredients is listed.

12 Ecological information

- Toxicity
- · Aquatic toxicity: No further relevant information available.
- · Persistence and degradability No further relevant information available.
- · Bioaccumulative potential No further relevant information available.
- · Mobility in soil No further relevant information available.
- · Additional ecological information:
- · General notes: Water hazard class 1 (Self-assessment): slightly hazardous for water
- · Results of PBT and vPvB assessment
- · PBT: Not applicable.
- · vPvB: Not applicable.

(Contd. on page 7)

OSHA HazCom 2012 Standard 29 CFR 1910.1200. Prepared to GHS Rev03.

Printing date 06/02/2014 Revised on 07/15/2016

Trade name: Provect-OX® Self Activating ISCO Enhanced Bioremediation Reagent

(Contd. of page 6)

· Other adverse effects No further relevant information available.

13 Disposal considerations

- · Waste treatment methods
- · Recommendation:

Must not be disposed of together with household garbage. Do not allow product to reach sewage system.

- · Uncleaned packaging:
- · Recommendation: Disposal must be made according to official regulations.
- · Recommended cleansing agent: Water, if necessary with cleansing agents.

14 Transport information

· **UN-Number** 1505

UN proper shipping name
 Transport hazard class(es)
 Sodium Persulfate
 5.1 (Oxidizer)

· Packing group III

· Environmental hazards:

· Marine pollutant: No

· Special precautions for user Not applicable.

Transport in bulk according to Annex II of

MARPOL73/78 and the IBC Code Not applicable.

· UN "Model Regulation": UN1505, Sodium persulfate

15 Regulatory information

- · Safety, health and environmental regulations/legislation specific for the substance or mixture
- · Sara
- · Section 355 (extremely hazardous substances):

None of the ingredients is listed.

· Section 313 (Specific toxic chemical listings):

None of the ingredients is listed.

· TSCA (Toxic Substances Control Act):

All ingredients are listed.

- · Proposition 65
- · Chemicals known to cause cancer:

None of the ingredients is listed.

· Chemicals known to cause reproductive toxicity for females:

None of the ingredients is listed.

· Chemicals known to cause reproductive toxicity for males:

None of the ingredients is listed.

· Chemicals known to cause developmental toxicity:

None of the ingredients is listed.

- · Carcinogenic categories
- · EPA (Environmental Protection Agency)

None of the ingredients is listed.

(Contd. on page 8)

OSHA HazCom 2012 Standard 29 CFR 1910.1200. Prepared to GHS Rev03.

Printing date 06/02/2014 Revised on 07/15/2016

Trade name: Provect- OX® Self Activating ISCO Enhanced Bioremediation Reagent

(Contd. of page 7)

· TLV (Threshold Limit Value established by ACGIH)	
1309-37-1 Ferric oxide	A4
NIOSH-Ca (National Institute for Occupational Safety and Health)	
None of the ingredients is listed.	

· GHS label elements

The product is classified and labeled according to the Globally Harmonized System (GHS).

Hazard pictograms

GHS03 GHS07 GHS08

· Signal word Danger

· Hazard-determining components of labeling:

disodium peroxodisulphate

· Hazard statements

May intensify fire; oxidizer.

Harmful if swallowed or if inhaled.

Causes skin irritation.

Causes serious eye irritation.

May cause allergy or asthma symptoms or breathing difficulties if inhaled.

May cause an allergic skin reaction.

May cause respiratory irritation.

· Precautionary statements

Take any precaution to avoid mixing with combustibles.

Keep away from heat/sparks/open flames/hot surfaces. - No smoking.

In case of inadequate ventilation wear respiratory protection.

Keep/Store away from clothing/combustible materials.

Avoid breathing dust/fume/gas/mist/vapors/spray.

Use only outdoors or in a well-ventilated area.

Wear protective gloves/protective clothing/eye protection/face protection.

Wash thoroughly after handling.

Do not eat, drink or smoke when using this product.

Contaminated work clothing should not be allowed out of the workplace.

IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.

Specific treatment (see on this label).

Take off contaminated clothing and wash before reuse.

IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing.

Wash contaminated clothing before reuse.

IF INHALED: If breathing is difficult, remove victim to fresh air and keep at rest in a position comfortable for breathing.

If skin irritation occurs: Get medical advice/attention.

If skin irritation or rash occurs: Get medical advice/attention.

If eye irritation persists: Get medical advice/attention.

Rinse mouth.

In case of fire: Use for extinction: CO2, powder or water spray.

IF SWALLOWED: Call a POISON CENTER/doctor if you feel unwell.

IF ON SKIN: Wash with plenty of water.

Call a POISON CENTER/doctor if you feel unwell.

(Contd. on page 9)

OSHA HazCom 2012 Standard 29 CFR 1910.1200. Prepared to GHS Rev03.

Revised on 07/15/2016 Printing date 06/02/2014

Trade name: Provect- OX® Self Activating ISCO Enhanced Bioremediation Reagent

(Contd. of page 8)

If experiencing respiratory symptoms: Call a POISON CENTER/doctor.

Store locked up.

Store in a well-ventilated place. Keep container tightly closed.

Dispose of contents/container in accordance with local/regional/national/international regulations.

•	· · · · · · · · · · · · · · · · · · ·	
· National re	egulations:	
The produ- substances	ct is subject to be labeled according with the prevailing version of the regulations on I s.	hazardous
· State Righ	nt to Know	
7775-27-1	disodium peroxodisulphate	80-99%
	Ox. Sol. 2, H272; Resp. Sens. 1, H334; Acute Tox. 4, H302; Acute Tox. 4, H332; Skin Irrit. 2, H315; Eye Irrit. 2A, H319; Skin Sens. 1, H317; STOT SE 3, H335	
1309-37-1	Ferric oxide	1-20%
All ingredie	ents are listed.	

Chemical safety assessment: A Chemical Safety Assessment has not been carried out.

6 Other information

This information is based on our present knowledge. However, this shall not constitute a guarantee for any specific product features and shall not establish a legally valid contractual relationship.

· Date of preparation / last revision 06/02/2014 / 3

Abbreviations and acronyms:

ACGIH: American Conference of Governmental Industrial Hygienists
EINECS: European Inventory of Existing Commercial Chemical Substances
ELINCS: European List of Notified Chemical Substances
CAS: Chemical Abstracts Service (division of the American Chemical Society)
NFPA: National Fire Protection Association (USA)
HMIS: Hazardous Materials Identification System (USA)
LCSO: Lethal concentration, 50 percent LC50: Lethal concentration, 50 percent D50: Lethal dose, 50 percent
Ox. Sol. 2: Oxidising Solids, Hazard Category 2
Acute Tox. 4: Acute toxicity, Hazard Category 4
Skin Irrit. 2: Skin corrosion/irritation, Hazard Category 2 Eye Irrit. 2A: Serious eye damage/eye irritation, Hazard Category 2A Resp. Sens. 1: Sensitisation - Respirat., Hazard Category 1 Skin Sens. 1: Sensitisation - Skin, Hazard Category 1

STOT SE 3: Specific target organ toxicity - Single exposure, Hazard Category 3

* Data compared to the previous version altered.

SDS / MSDS Created by MSDS Authoring Services (www.MSDSAuthoring.com)

APPENDIX E LABORATORY REPORTS

ANALYTICAL REPORT

Lab Number: L1621925

Client: Spectra Environmental Group

19 British American Blvd.

Latham, NY 12110

ATTN: Frank Peduto
Phone: (518) 782-0882

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209 Report Date: 08/12/16

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number: L1621925 **Report Date:** 08/12/16

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1621925-01	2	SOIL	SYRACUSE, NY	07/13/16 12:00	07/14/16
L1621925-02	3	SOIL	SYRACUSE, NY	07/13/16 15:40	07/14/16
L1621925-03	3B	SOIL	SYRACUSE, NY	07/13/16 15:40	07/14/16
L1621925-04	4	SOIL	SYRACUSE, NY	07/13/16 08:00	07/14/16
L1621925-05	4B	SOIL	SYRACUSE, NY	07/13/16 08:00	07/14/16
L1621925-06	5	SOIL	SYRACUSE, NY	07/13/16 10:00	07/14/16
L1621925-07	5B	SOIL	SYRACUSE, NY	07/13/16 10:00	07/14/16
L1621925-08	3C	SOIL	SYRACUSE, NY	07/13/16 15:40	07/14/16
L1621925-09	6	SOIL	SYRACUSE, NY	07/14/16 11:30	07/14/16
L1621925-10	8	SOIL	SYRACUSE, NY	07/14/16 13:00	07/14/16

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1621925

Project Number: 15209 Report Date: 08/12/16

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1621925
Project Number: 15209 Report Date: 08/12/16

Case Narrative (continued)

Report Submission

This report replaces the report issued July 18, 2016. L1621925-03, -05, and -07 were re-analyzed for Selenium. The results of the re-analyses are reported.

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

L1621925-01, -08, -09, and -10: The sample has elevated detection limits due to the dilution required by the elevated concentrations of non-target compounds in the sample.

Semivolatile Organics

L1621925-04 and -06: The sample has elevated detection limits due to the dilution required by the sample matrix.

Metals

L1621925-03, -05, and -07: The sample has elevated detection limits for all elements, with the exception of mercury, due to the dilution required by matrix interferences encountered during analysis.

The WG913868-4 MS recoveries for aluminum (0%), cadmium (0%), calcium (8690%), copper (0%), iron (0%), magnesium (45%), and zinc (0%), performed on L1621925-03, do not apply because the sample concentrations are greater than four times the spike amounts added.

The WG913868-4 MS recoveries, performed on L1621925-03, are outside the acceptance criteria for chromium (70%), lead (22%), and thallium (64%). A post digestion spike was performed and yielded an unacceptable recovery for thallium (68%); all other compounds were within acceptance criteria. This has been attributed to sample matrix.

The WG913868-3 Laboratory Duplicate RPDs, performed on L1621925-03, are outside the acceptance criteria for cadmium (31%), calcium (54%), magnesium (22%), nickel (22%), potassium (46%), and zinc (35%). The elevated RPDs have been attributed to the non-homogeneous nature of the native sample.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 08/12/16

600, Sew on Kelly Stenstrom

ORGANICS

VOLATILES

L1621925

08/12/16

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Date Collected: 07/13/16 12:00

Lab Number:

Report Date:

Lab ID: L1621925-01 D

Client ID: 2

Sample Location: SYRACUSE, NY

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 07/16/16 20:30

Analyst: ΒN 80% Percent Solids:

Date Received: 07/14/16

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 -	Westborough Lab					
Methylene chloride	ND		ug/kg	2600	290	4
1,1-Dichloroethane	ND		ug/kg	390	22.	4
Chloroform	ND		ug/kg	390	96.	4
Carbon tetrachloride	ND		ug/kg	260	55.	4
1,2-Dichloropropane	ND		ug/kg	910	59.	4
Dibromochloromethane	ND		ug/kg	260	40.	4
1,1,2-Trichloroethane	ND		ug/kg	390	79.	4
Tetrachloroethene	ND		ug/kg	260	36.	4
Chlorobenzene	ND		ug/kg	260	91.	4
Trichlorofluoromethane	ND		ug/kg	1300	100	4
1,2-Dichloroethane	ND		ug/kg	260	30.	4
1,1,1-Trichloroethane	ND		ug/kg	260	29.	4
Bromodichloromethane	ND		ug/kg	260	45.	4
trans-1,3-Dichloropropene	ND		ug/kg	260	31.	4
cis-1,3-Dichloropropene	ND		ug/kg	260	31.	4
Bromoform	ND		ug/kg	1000	62.	4
1,1,2,2-Tetrachloroethane	ND		ug/kg	260	26.	4
Benzene	230	J	ug/kg	260	31.	4
Toluene	ND		ug/kg	390	51.	4
Ethylbenzene	ND		ug/kg	260	33.	4
Chloromethane	ND		ug/kg	1300	77.	4
Bromomethane	ND		ug/kg	520	88.	4
Vinyl chloride	ND		ug/kg	520	31.	4
Chloroethane	ND		ug/kg	520	82.	4
1,1-Dichloroethene	ND		ug/kg	260	68.	4
trans-1,2-Dichloroethene	ND		ug/kg	390	55.	4
Trichloroethene	ND		ug/kg	260	32.	4
1,2-Dichlorobenzene	ND		ug/kg	1300	40.	4
1,3-Dichlorobenzene	ND		ug/kg	1300	35.	4
1,4-Dichlorobenzene	ND		ug/kg	1300	36.	4

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1621925

Project Number: 15209 Report Date: 08/12/16

SAMPLE RESULTS

Lab ID: L1621925-01 D Date Collected: 07/13/16 12:00

Client ID: 2 Date Received: 07/14/16

Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by 8260/5035 - Wes	stborough Lab						
Methyl tert butyl ether	ND		ug/kg	520	22.	4	
p/m-Xylene	300	J	ug/kg	520	52.	4	
o-Xylene	ND		ug/kg	520	45.	4	
cis-1,2-Dichloroethene	ND		ug/kg	260	37.	4	
Styrene	ND		ug/kg	520	100	4	
Dichlorodifluoromethane	ND		ug/kg	2600	50.	4	
Acetone	ND		ug/kg	2600	270	4	
Carbon disulfide	ND		ug/kg	2600	290	4	
2-Butanone	ND		ug/kg	2600	71.	4	
4-Methyl-2-pentanone	ND		ug/kg	2600	64.	4	
2-Hexanone	ND		ug/kg	2600	170	4	
Bromochloromethane	ND		ug/kg	1300	72.	4	
1,2-Dibromoethane	ND		ug/kg	1000	45.	4	
1,2-Dibromo-3-chloropropane	ND		ug/kg	1300	100	4	
Isopropylbenzene	290		ug/kg	260	27.	4	
1,2,3-Trichlorobenzene	ND		ug/kg	1300	38.	4	
1,2,4-Trichlorobenzene	ND		ug/kg	1300	47.	4	
Methyl Acetate	ND		ug/kg	5200	70.	4	
Cyclohexane	ND		ug/kg	5200	38.	4	
1,4-Dioxane	ND		ug/kg	26000	3800	4	
Freon-113	ND		ug/kg	5200	71.	4	
Methyl cyclohexane	4700		ug/kg	1000	40.	4	

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1621925

Project Number: 15209 Report Date: 08/12/16

SAMPLE RESULTS

Lab ID: L1621925-01 D Date Collected: 07/13/16 12:00

Client ID: 2 Date Received: 07/14/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by 8260/5035 - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	140000	J	ug/kg	4
Unknown Alkane	9000	J	ug/kg	4
Pentane, 2,3,4-trimethyl-	7100	NJ	ug/kg	4
Pentane, 2,3,3-trimethyl-	13000	NJ	ug/kg	4
Deltacyclene	9000	NJ	ug/kg	4
Unknown Benzene	7500	J	ug/kg	4
Unknown	13000	J	ug/kg	4
Unknown Benzene	6200	J	ug/kg	4
2,4-Dimethylstyrene	11000	NJ	ug/kg	4
Unknown	11000	J	ug/kg	4
Unknown	7700	J	ug/kg	4
Unknown	12000	J	ug/kg	4
Unknown Indene	14000	J	ug/kg	4
Unknown	6800	J	ug/kg	4
Unknown	7800	J	ug/kg	4
Unknown	7000	J	ug/kg	4

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	99		70-130	
Toluene-d8	104		70-130	
4-Bromofluorobenzene	101		70-130	
Dibromofluoromethane	102		70-130	

L1621925

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Date Collected: 07/13/16 15:40

Report Date: 08/12/16

Lab Number:

Lab ID: L1621925-08 D

Client ID: 3C

Sample Location: SYRACUSE, NY

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 07/16/16 20:55

Analyst: BN Percent Solids: 91%

Date Received: 07/14/16
Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - W	estborough Lab					
Methylene chloride	ND		ug/kg	3600	400	4
1,1-Dichloroethane	ND		ug/kg	550	31.	4
Chloroform	ND		ug/kg	550	130	4
Carbon tetrachloride	ND		ug/kg	360	76.	4
1,2-Dichloropropane	ND		ug/kg	1300	83.	4
Dibromochloromethane	ND		ug/kg	360	56.	4
1,1,2-Trichloroethane	ND		ug/kg	550	110	4
Tetrachloroethene	ND		ug/kg	360	51.	4
Chlorobenzene	ND		ug/kg	360	130	4
Trichlorofluoromethane	ND		ug/kg	1800	140	4
1,2-Dichloroethane	160	J	ug/kg	360	41.	4
1,1,1-Trichloroethane	ND		ug/kg	360	40.	4
Bromodichloromethane	ND		ug/kg	360	63.	4
trans-1,3-Dichloropropene	ND		ug/kg	360	44.	4
cis-1,3-Dichloropropene	ND		ug/kg	360	43.	4
Bromoform	ND		ug/kg	1400	86.	4
1,1,2,2-Tetrachloroethane	ND		ug/kg	360	37.	4
Benzene	4000		ug/kg	360	43.	4
Toluene	1200		ug/kg	550	71.	4
Ethylbenzene	6200		ug/kg	360	46.	4
Chloromethane	ND		ug/kg	1800	110	4
Bromomethane	ND		ug/kg	730	120	4
Vinyl chloride	ND		ug/kg	730	43.	4
Chloroethane	ND		ug/kg	730	120	4
1,1-Dichloroethene	ND		ug/kg	360	95.	4
trans-1,2-Dichloroethene	ND		ug/kg	550	77.	4
Trichloroethene	ND		ug/kg	360	46.	4
1,2-Dichlorobenzene	ND		ug/kg	1800	56.	4
1,3-Dichlorobenzene	ND		ug/kg	1800	49.	4
1,4-Dichlorobenzene	ND		ug/kg	1800	50.	4

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1621925

Project Number: 15209 Report Date: 08/12/16

SAMPLE RESULTS

Lab ID: L1621925-08 D Date Collected: 07/13/16 15:40

Client ID: 3C Date Received: 07/14/16

Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - W	estborough Lab					
Methyl tert butyl ether	ND		ug/kg	730	31.	4
p/m-Xylene	9800		ug/kg	730	72.	4
o-Xylene	1100		ug/kg	730	63.	4
cis-1,2-Dichloroethene	ND		ug/kg	360	52.	4
Styrene	ND		ug/kg	730	150	4
Dichlorodifluoromethane	ND		ug/kg	3600	70.	4
Acetone	ND		ug/kg	3600	380	4
Carbon disulfide	ND		ug/kg	3600	400	4
2-Butanone	ND		ug/kg	3600	99.	4
4-Methyl-2-pentanone	ND		ug/kg	3600	89.	4
2-Hexanone	ND		ug/kg	3600	240	4
Bromochloromethane	ND		ug/kg	1800	100	4
1,2-Dibromoethane	ND		ug/kg	1400	64.	4
1,2-Dibromo-3-chloropropane	ND		ug/kg	1800	140	4
Isopropylbenzene	1100		ug/kg	360	38.	4
1,2,3-Trichlorobenzene	ND		ug/kg	1800	54.	4
1,2,4-Trichlorobenzene	ND		ug/kg	1800	66.	4
Methyl Acetate	ND		ug/kg	7300	98.	4
Cyclohexane	ND		ug/kg	7300	53.	4
1,4-Dioxane	ND		ug/kg	36000	5200	4
Freon-113	ND		ug/kg	7300	100	4
Methyl cyclohexane	10000		ug/kg	1400	56.	4

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1621925

Project Number: 15209 Report Date: 08/12/16

SAMPLE RESULTS

Lab ID: L1621925-08 D Date Collected: 07/13/16 15:40

Client ID: 3C Date Received: 07/14/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by 8260/5035 - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	390000	J	ug/kg	4
Unknown	23000	J	ug/kg	4
Unknown	36000	J	ug/kg	4
Heptane, 3-methyl-	18000	NJ	ug/kg	4
Unknown	23000	J	ug/kg	4
Octane, 3-methyl-	16000	NJ	ug/kg	4
Unknown	22000	J	ug/kg	4
Unknown Benzene	20000	J	ug/kg	4
Unknown Benzene	24000	J	ug/kg	4
Unknown Benzene	30000	J	ug/kg	4
Unknown	25000	J	ug/kg	4
Unknown Benzene	34000	J	ug/kg	4
Unknown	29000	J	ug/kg	4
Unknown	38000	J	ug/kg	4
Unknown	28000	J	ug/kg	4
Unknown Indene	23000	J	ug/kg	4

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	100		70-130	
Toluene-d8	107		70-130	
4-Bromofluorobenzene	113		70-130	
Dibromofluoromethane	101		70-130	

L1621925

08/12/16

07/14/16

Not Specified

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Date Collected: 07/14/16 11:30

Lab Number:

Report Date:

Date Received:

Field Prep:

Lab ID: L1621925-09 D

Client ID: 6

Sample Location: SYRACUSE, NY

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 07/16/16 21:21

Analyst: BN Percent Solids: 89%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - Westk	orough Lab					
Methylene chloride	ND		ug/kg	3200	350	4
1,1-Dichloroethane	ND		ug/kg	480	27.	4
Chloroform	ND		ug/kg	480	120	4
Carbon tetrachloride	ND		ug/kg	320	67.	4
1,2-Dichloropropane	ND		ug/kg	1100	73.	4
Dibromochloromethane	ND		ug/kg	320	49.	4
1,1,2-Trichloroethane	ND		ug/kg	480	97.	4
Tetrachloroethene	ND		ug/kg	320	45.	4
Chlorobenzene	ND		ug/kg	320	110	4
Trichlorofluoromethane	ND		ug/kg	1600	120	4
1,2-Dichloroethane	ND		ug/kg	320	36.	4
1,1,1-Trichloroethane	ND		ug/kg	320	35.	4
Bromodichloromethane	ND		ug/kg	320	55.	4
trans-1,3-Dichloropropene	ND		ug/kg	320	39.	4
cis-1,3-Dichloropropene	ND		ug/kg	320	38.	4
Bromoform	ND		ug/kg	1300	75.	4
1,1,2,2-Tetrachloroethane	ND		ug/kg	320	32.	4
Benzene	880		ug/kg	320	38.	4
Toluene	260	J	ug/kg	480	62.	4
Ethylbenzene	2600		ug/kg	320	41.	4
Chloromethane	ND		ug/kg	1600	94.	4
Bromomethane	ND		ug/kg	640	110	4
Vinyl chloride	ND		ug/kg	640	38.	4
Chloroethane	ND		ug/kg	640	100	4
1,1-Dichloroethene	ND		ug/kg	320	84.	4
trans-1,2-Dichloroethene	ND		ug/kg	480	68.	4
Trichloroethene	ND		ug/kg	320	40.	4
1,2-Dichlorobenzene	ND		ug/kg	1600	49.	4
1,3-Dichlorobenzene	ND		ug/kg	1600	43.	4
1,4-Dichlorobenzene	ND		ug/kg	1600	44.	4

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1621925

Project Number: 15209 Report Date: 08/12/16

SAMPLE RESULTS

Lab ID: L1621925-09 D Date Collected: 07/14/16 11:30

Client ID: 6 Date Received: 07/14/16

Sample Location: SYRACUSE, NY Field Prep: Not Specified

,					•	I
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - We	stborough Lab					
Methyl tert butyl ether	ND		ug/kg	640	27.	4
p/m-Xylene	5700		ug/kg	640	63.	4
o-Xylene	660		ug/kg	640	55.	4
cis-1,2-Dichloroethene	ND		ug/kg	320	46.	4
Styrene	ND		ug/kg	640	130	4
Dichlorodifluoromethane	ND		ug/kg	3200	61.	4
Acetone	ND		ug/kg	3200	330	4
Carbon disulfide	ND		ug/kg	3200	350	4
2-Butanone	ND		ug/kg	3200	87.	4
4-Methyl-2-pentanone	ND		ug/kg	3200	78.	4
2-Hexanone	ND		ug/kg	3200	210	4
Bromochloromethane	ND		ug/kg	1600	88.	4
1,2-Dibromoethane	ND		ug/kg	1300	56.	4
1,2-Dibromo-3-chloropropane	ND		ug/kg	1600	130	4
Isopropylbenzene	570		ug/kg	320	33.	4
1,2,3-Trichlorobenzene	ND		ug/kg	1600	47.	4
1,2,4-Trichlorobenzene	ND		ug/kg	1600	58.	4
Methyl Acetate	ND		ug/kg	6400	86.	4
Cyclohexane	ND		ug/kg	6400	47.	4
1,4-Dioxane	ND		ug/kg	32000	4600	4
Freon-113	ND		ug/kg	6400	88.	4
Methyl cyclohexane	3800		ug/kg	1300	49.	4

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1621925

Project Number: 15209 Report Date: 08/12/16

SAMPLE RESULTS

Lab ID: L1621925-09 D Date Collected: 07/14/16 11:30

Client ID: 6 Date Received: 07/14/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by 8260/5035 - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	300000	J	ug/kg	4
Unknown	12000	J	ug/kg	4
Unknown Alkane	18000	J	ug/kg	4
Unknown	17000	J	ug/kg	4
Unknown Benzene	14000	J	ug/kg	4
Deltacyclene	16000	NJ	ug/kg	4
Unknown	29000	J	ug/kg	4
Unknown Benzene	15000	J	ug/kg	4
Unknown Benzene	25000	J	ug/kg	4
Unknown Benzene	22000	J	ug/kg	4
Unknown Benzene	26000	J	ug/kg	4
Unknown Benzene	21000	J	ug/kg	4
1-Phenyl-1-butene	32000	NJ	ug/kg	4
Unknown Aromatic	20000	J	ug/kg	4
Unknown	20000	J	ug/kg	4
Unknown Aromatic	14000	J	ug/kg	4

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	100		70-130	
Toluene-d8	104		70-130	
4-Bromofluorobenzene	102		70-130	
Dibromofluoromethane	103		70-130	

L1621925

Project Name: DESTINY-EMBASSY SUITES

L1621925-10

D

Project Number: 15209

Lab ID:

Client ID:

SAMPLE RESULTS

Date Collected: 07/14/16 13:00

Report Date: 08/12/16

Lab Number:

Date Received: 07/14/16
Field Prep: Not Specified

Sample Location: SYRACUSE, NY

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 07/16/16 21:47

Analyst: BN Percent Solids: 87%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035	- Westborough Lab					
Methylene chloride	ND		ug/kg	1800	200	4
1,1-Dichloroethane	ND		ug/kg	280	16.	4
Chloroform	ND		ug/kg	280	68.	4
Carbon tetrachloride	ND		ug/kg	180	38.	4
1,2-Dichloropropane	ND		ug/kg	640	42.	4
Dibromochloromethane	ND		ug/kg	180	28.	4
1,1,2-Trichloroethane	ND		ug/kg	280	56.	4
Tetrachloroethene	ND		ug/kg	180	26.	4
Chlorobenzene	ND		ug/kg	180	64.	4
Trichlorofluoromethane	ND		ug/kg	920	71.	4
1,2-Dichloroethane	ND		ug/kg	180	21.	4
1,1,1-Trichloroethane	ND		ug/kg	180	20.	4
Bromodichloromethane	ND		ug/kg	180	32.	4
trans-1,3-Dichloropropene	ND		ug/kg	180	22.	4
cis-1,3-Dichloropropene	ND		ug/kg	180	22.	4
Bromoform	ND		ug/kg	730	43.	4
1,1,2,2-Tetrachloroethane	ND		ug/kg	180	18.	4
Benzene	340		ug/kg	180	22.	4
Toluene	96	J	ug/kg	280	36.	4
Ethylbenzene	1200		ug/kg	180	23.	4
Chloromethane	ND		ug/kg	920	54.	4
Bromomethane	ND		ug/kg	370	62.	4
Vinyl chloride	ND		ug/kg	370	22.	4
Chloroethane	ND		ug/kg	370	58.	4
1,1-Dichloroethene	ND		ug/kg	180	48.	4
trans-1,2-Dichloroethene	ND		ug/kg	280	39.	4
Trichloroethene	ND		ug/kg	180	23.	4
1,2-Dichlorobenzene	ND		ug/kg	920	28.	4
1,3-Dichlorobenzene	ND		ug/kg	920	25.	4
1,4-Dichlorobenzene	ND		ug/kg	920	25.	4

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1621925

Project Number: 15209 Report Date: 08/12/16

SAMPLE RESULTS

Lab ID: L1621925-10 D

Client ID: 8

Sample Location: SYRACUSE, NY

Date Collected: 07/14/16 13:00

Date Received: 07/14/16

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - Wes	stborough Lab					
Methyl tert butyl ether	ND		ug/kg	370	15.	4
p/m-Xylene	2200		ug/kg	370	36.	4
o-Xylene	650		ug/kg	370	32.	4
cis-1,2-Dichloroethene	ND		ug/kg	180	26.	4
Styrene	ND		ug/kg	370	74.	4
Dichlorodifluoromethane	ND		ug/kg	1800	35.	4
Acetone	ND		ug/kg	1800	190	4
Carbon disulfide	ND		ug/kg	1800	200	4
2-Butanone	ND		ug/kg	1800	50.	4
4-Methyl-2-pentanone	ND		ug/kg	1800	45.	4
2-Hexanone	ND		ug/kg	1800	120	4
Bromochloromethane	ND		ug/kg	920	51.	4
1,2-Dibromoethane	ND		ug/kg	730	32.	4
1,2-Dibromo-3-chloropropane	ND		ug/kg	920	73.	4
Isopropylbenzene	280		ug/kg	180	19.	4
1,2,3-Trichlorobenzene	ND		ug/kg	920	27.	4
1,2,4-Trichlorobenzene	ND		ug/kg	920	33.	4
Methyl Acetate	ND		ug/kg	3700	50.	4
Cyclohexane	ND		ug/kg	3700	27.	4
1,4-Dioxane	ND		ug/kg	18000	2600	4
Freon-113	ND		ug/kg	3700	50.	4
Methyl cyclohexane	620	J	ug/kg	730	28.	4

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1621925

Project Number: 15209 Report Date: 08/12/16

SAMPLE RESULTS

Lab ID: L1621925-10 D Date Collected: 07/14/16 13:00

Client ID: 8 Date Received: 07/14/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by 8260/5035 - Westborough Lab

170000	J	ug/kg	4
7700	J	ug/kg	4
9000	J	ug/kg	4
10000	J	ug/kg	4
9200	J	ug/kg	4
14000	J	ug/kg	4
13000	J	ug/kg	4
18000	J	ug/kg	4
13000	J	ug/kg	4
21000	J	ug/kg	4
7700	J	ug/kg	4
7000	J	ug/kg	4
12000	J	ug/kg	4
14000	J	ug/kg	4
7800	J	ug/kg	4
6900	J	ug/kg	4
	7700 9000 10000 9200 14000 13000 18000 21000 7700 7000 12000 14000 7800	7700 J 9000 J 10000 J 10000 J 9200 J 14000 J 13000 J 13000 J 13000 J 21000 J 7700 J 7000 J 12000 J 14000 J 7800 J	7700 J ug/kg 9000 J ug/kg 10000 J ug/kg 9200 J ug/kg 14000 J ug/kg 13000 J ug/kg 13000 J ug/kg 13000 J ug/kg 21000 J ug/kg 7700 J ug/kg 7700 J ug/kg 12000 J ug/kg 14000 J ug/kg

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	98		70-130	
Toluene-d8	102		70-130	
4-Bromofluorobenzene	98		70-130	
Dibromofluoromethane	105		70-130	

Project Name: DESTINY-EMBASSY SUITES **Lab Number:** L1621925

Project Number: 15209 Report Date: 08/12/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/16/16 13:40

Analyst: BN

Parameter	Result	Qualifier	Units	RL	ı	MDL
Volatile Organics by 8260/5035 -	Westborough	Lab for sa	mple(s):	01,08-10	Batch:	WG914391-3
Methylene chloride	ND		ug/kg	500		55.
1,1-Dichloroethane	ND		ug/kg	75		4.3
Chloroform	ND		ug/kg	75		18.
Carbon tetrachloride	ND		ug/kg	50		10.
1,2-Dichloropropane	ND		ug/kg	180		11.
Dibromochloromethane	ND		ug/kg	50		7.7
1,1,2-Trichloroethane	ND		ug/kg	75		15.
Tetrachloroethene	ND		ug/kg	50		7.0
Chlorobenzene	ND		ug/kg	50		17.
Trichlorofluoromethane	ND		ug/kg	250		19.
1,2-Dichloroethane	ND		ug/kg	50		5.7
1,1,1-Trichloroethane	ND		ug/kg	50		5.5
Bromodichloromethane	ND		ug/kg	50		8.7
trans-1,3-Dichloropropene	ND		ug/kg	50		6.0
cis-1,3-Dichloropropene	ND		ug/kg	50		5.9
Bromoform	ND		ug/kg	200		12.
1,1,2,2-Tetrachloroethane	ND		ug/kg	50		5.0
Benzene	ND		ug/kg	50		5.9
Toluene	ND		ug/kg	75		9.7
Ethylbenzene	ND		ug/kg	50		6.4
Chloromethane	ND		ug/kg	250		15.
Bromomethane	ND		ug/kg	100		17.
Vinyl chloride	ND		ug/kg	100		5.9
Chloroethane	ND		ug/kg	100		16.
1,1-Dichloroethene	ND		ug/kg	50		13.
trans-1,2-Dichloroethene	ND		ug/kg	75		11.
Trichloroethene	ND		ug/kg	50		6.2
1,2-Dichlorobenzene	ND		ug/kg	250		7.7
1,3-Dichlorobenzene	ND		ug/kg	250		6.8

Project Name: DESTINY-EMBASSY SUITES Lab Number:

Project Number: 15209 Report Date: 08/12/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/16/16 13:40

Analyst: BN

arameter	Result	Qualifier	Units	RL	ı	MDL
olatile Organics by 8260/5035	- Westborough	Lab for sa	mple(s):	01,08-10	Batch:	WG914391-3
1,4-Dichlorobenzene	ND		ug/kg	250		6.9
Methyl tert butyl ether	ND		ug/kg	100		4.2
p/m-Xylene	ND		ug/kg	100		9.9
o-Xylene	ND		ug/kg	100		8.6
cis-1,2-Dichloroethene	ND		ug/kg	50		7.1
Styrene	ND		ug/kg	100		20.
Dichlorodifluoromethane	ND		ug/kg	500		9.5
Acetone	ND		ug/kg	500		52.
Carbon disulfide	ND		ug/kg	500		55.
2-Butanone	ND		ug/kg	500		14.
4-Methyl-2-pentanone	ND		ug/kg	500		12.
2-Hexanone	ND		ug/kg	500		33.
Bromochloromethane	ND		ug/kg	250		14.
1,2-Dibromoethane	ND		ug/kg	200		8.7
1,2-Dibromo-3-chloropropane	ND		ug/kg	250		20.
Isopropylbenzene	ND		ug/kg	50		5.2
1,2,3-Trichlorobenzene	ND		ug/kg	250		7.4
1,2,4-Trichlorobenzene	ND		ug/kg	250		9.1
Methyl Acetate	ND		ug/kg	1000		14.
Cyclohexane	ND		ug/kg	1000		7.3
1,4-Dioxane	ND		ug/kg	5000		720
Freon-113	ND		ug/kg	1000		14.
Methyl cyclohexane	ND		ug/kg	200		7.7

Tentatively Identified Compounds

No Tentatively Identified Compounds ND ug/kg

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1621925

Project Number: 15209 Report Date: 08/12/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/16/16 13:40

Analyst: BN

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Organics by 8260/5035 - \	Nestborougl	n Lab for sa	mple(s):	01,08-10	Batch: WG914391-3

			Acceptance				
Surrogate	%Recovery	Qualifier	Criteria				
1,2-Dichloroethane-d4	96		70-130				
Toluene-d8	101		70-130				
4-Bromofluorobenzene	96		70-130				
Dibromofluoromethane	99		70-130				

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number: L1621925

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by 8260/5035 - Westboroug	gh Lab Associa	ted sample(s):	01,08-10 Bate	ch: WG91	4391-1 WG91439	91-2		
Methylene chloride	100		104		70-130	4	30	
1,1-Dichloroethane	93		102		70-130	9	30	
Chloroform	94		102		70-130	8	30	
Carbon tetrachloride	88		104		70-130	17	30	
1,2-Dichloropropane	102		109		70-130	7	30	
Dibromochloromethane	99		105		70-130	6	30	
2-Chloroethylvinyl ether	98		100		70-130	2	30	
1,1,2-Trichloroethane	104		103		70-130	1	30	
Tetrachloroethene	89		101		70-130	13	30	
Chlorobenzene	93		100		70-130	7	30	
Trichlorofluoromethane	86		100		70-139	15	30	
1,2-Dichloroethane	99		104		70-130	5	30	
1,1,1-Trichloroethane	90		103		70-130	13	30	
Bromodichloromethane	95		101		70-130	6	30	
trans-1,3-Dichloropropene	94		97		70-130	3	30	
cis-1,3-Dichloropropene	97		104		70-130	7	30	
1,1-Dichloropropene	89		104		70-130	16	30	
Bromoform	93		97		70-130	4	30	
1,1,2,2-Tetrachloroethane	91		91		70-130	0	30	
Benzene	93		103		70-130	10	30	
Toluene	84		92		70-130	9	30	

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number:

L1621925

Report Date:

08/12/16

Parameter	LCS %Recovery	LCSD Qual %Recover	%Recovery y Qual Limits	RPD	RPD Qual Limits
Volatile Organics by 8260/5035 - Westboro	ugh Lab Associated	sample(s): 01,08-10	Batch: WG914391-1 WG914	391-2	
Ethylbenzene	88	97	70-130	10	30
Chloromethane	87	98	52-130	12	30
Bromomethane	105	108	57-147	3	30
Vinyl chloride	85	103	67-130	19	30
Chloroethane	92	103	50-151	11	30
1,1-Dichloroethene	88	104	65-135	17	30
trans-1,2-Dichloroethene	88	99	70-130	12	30
Trichloroethene	96	109	70-130	13	30
1,2-Dichlorobenzene	94	99	70-130	5	30
1,3-Dichlorobenzene	90	96	70-130	6	30
1,4-Dichlorobenzene	91	94	70-130	3	30
Methyl tert butyl ether	96	97	66-130	1	30
p/m-Xylene	90	100	70-130	11	30
o-Xylene	94	100	70-130	6	30
cis-1,2-Dichloroethene	95	101	70-130	6	30
Dibromomethane	105	108	70-130	3	30
Styrene	93	99	70-130	6	30
Dichlorodifluoromethane	89	109	30-146	20	30
Acetone	83	88	54-140	6	30
Carbon disulfide	103	110	59-130	7	30
2-Butanone	88	97	70-130	10	30

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number: L1621925

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RP Qual Lim	
Volatile Organics by 8260/5035 - Westboroug	gh Lab Associa	ted sample(s):	01,08-10 Bate	ch: WG91	4391-1 WG9143	91-2		
Vinyl acetate	94		98		70-130	4	30	0
4-Methyl-2-pentanone	94		94		70-130	0	30	0
1,2,3-Trichloropropane	93		95		68-130	2	30)
2-Hexanone	92		91		70-130	1	30)
Bromochloromethane	110		115		70-130	4	30)
2,2-Dichloropropane	86		100		70-130	15	30)
1,2-Dibromoethane	99		101		70-130	2	30	0
1,3-Dichloropropane	94		95		69-130	1	30	0
1,1,1,2-Tetrachloroethane	93		97		70-130	4	30	0
Bromobenzene	93		100		70-130	7	30	0
n-Butylbenzene	84		94		70-130	11	30	0
sec-Butylbenzene	82		93		70-130	13	30	0
tert-Butylbenzene	83		93		70-130	11	30	0
o-Chlorotoluene	86		94		70-130	9	30	0
p-Chlorotoluene	84		91		70-130	8	30	0
1,2-Dibromo-3-chloropropane	78		83		68-130	6	30	0
Hexachlorobutadiene	80		92		67-130	14	30	0
Isopropylbenzene	88		97		70-130	10	30	0
p-Isopropyltoluene	82		91		70-130	10	30	0
Naphthalene	93		94		70-130	1	30	0
Acrylonitrile	94		92		70-130	2	30	0

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number: L1621925

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by 8260/5035 - Westboroug	gh Lab Associa	ted sample(s):	01,08-10 Bate	ch: WG9143	91-1 WG91439	1-2	
Isopropyl Ether	90		96		66-130	6	30
tert-Butyl Alcohol	85		85		70-130	0	30
n-Propylbenzene	84		93		70-130	10	30
1,2,3-Trichlorobenzene	90		92		70-130	2	30
1,2,4-Trichlorobenzene	92		98		70-130	6	30
1,3,5-Trimethylbenzene	87		96		70-130	10	30
1,2,4-Trimethylbenzene	87		94		70-130	8	30
Methyl Acetate	92		91		51-146	1	30
Ethyl Acetate	78		85		70-130	9	30
Acrolein	87		89		70-130	2	30
Cyclohexane	83		99		59-142	18	30
1,4-Dioxane	93		95		65-136	2	30
1,1,2-Trichloro-1,2,2-Trifluoroethane	89		104		50-139	16	30
p-Diethylbenzene	93		106		70-130	13	30
p-Ethyltoluene	93		105		70-130	12	30
1,2,4,5-Tetramethylbenzene	96		107		70-130	11	30
Tetrahydrofuran	93		95		66-130	2	30
Ethyl ether	93		96		67-130	3	30
trans-1,4-Dichloro-2-butene	87		84		70-130	4	30
Methyl cyclohexane	88		105		70-130	18	30
Ethyl-Tert-Butyl-Ether	93		96		70-130	3	30

Project Name: DESTINY-EMBASSY SUITES

Lab Number:

L1621925

Project Number: 15209

Report Date:

08/12/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits	
Volatile Organics by 8260/5035 - Westboroug	gh Lab Associate	d sample(s):	01,08-10 Batch	n: WG914391-1 WG9143	91-2		
Tertiary-Amyl Methyl Ether	96		97	70-130	1	30	

	LCS		LCSD		Acceptance	
Surrogate %Recovery		Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	100		100		70-130	
Toluene-d8	103		101		70-130	
4-Bromofluorobenzene	93		94		70-130	
Dibromofluoromethane	101		105		70-130	

SEMIVOLATILES

L1621925

08/12/16

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Date Collected: 07/13/16 15:40

Lab Number:

Report Date:

Date Received: 07/14/16
Field Prep: Not Specified
Extraction Method: EPA 3546

Extraction Date: 07/15/16 05:16

Lab ID: L1621925-02 D

Client ID: 3

Sample Location: SYRACUSE, NY

Matrix: Soil
Analytical Method: 1,8270D
Analytical Date: 07/16/16 22:46

Analyst: RC Percent Solids: 89%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Semivolatile Organics by GC/MS	Semivolatile Organics by GC/MS - Westborough Lab									
Acenaphthene	3700		ug/kg	730	95.	5				
Hexachlorobenzene	ND		ug/kg	550	100	5				
Bis(2-chloroethyl)ether	ND		ug/kg	820	120	5				
2-Chloronaphthalene	ND		ug/kg	920	91.	5				
3,3'-Dichlorobenzidine	ND		ug/kg	920	240	5				
2,4-Dinitrotoluene	ND		ug/kg	920	180	5				
2,6-Dinitrotoluene	ND		ug/kg	920	160	5				
Fluoranthene	30000		ug/kg	550	100	5				
4-Chlorophenyl phenyl ether	ND		ug/kg	920	98.	5				
4-Bromophenyl phenyl ether	ND		ug/kg	920	140	5				
Bis(2-chloroisopropyl)ether	ND		ug/kg	1100	160	5				
Bis(2-chloroethoxy)methane	ND		ug/kg	990	92.	5				
Hexachlorobutadiene	ND		ug/kg	920	130	5				
Hexachlorocyclopentadiene	ND		ug/kg	2600	830	5				
Hexachloroethane	ND		ug/kg	730	150	5				
Isophorone	ND		ug/kg	820	120	5				
Naphthalene	ND		ug/kg	920	110	5				
Nitrobenzene	ND		ug/kg	820	140	5				
NDPA/DPA	ND		ug/kg	730	100	5				
n-Nitrosodi-n-propylamine	ND		ug/kg	920	140	5				
Bis(2-ethylhexyl)phthalate	ND		ug/kg	920	320	5				
Butyl benzyl phthalate	ND		ug/kg	920	230	5				
Di-n-butylphthalate	ND		ug/kg	920	170	5				
Di-n-octylphthalate	ND		ug/kg	920	310	5				
Diethyl phthalate	ND		ug/kg	920	85.	5				
Dimethyl phthalate	ND		ug/kg	920	190	5				
Benzo(a)anthracene	14000		ug/kg	550	100	5				
Benzo(a)pyrene	14000		ug/kg	730	220	5				
Benzo(b)fluoranthene	18000		ug/kg	550	150	5				
Benzo(k)fluoranthene	6900		ug/kg	550	150	5				

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1621925

Project Number: 15209 Report Date: 08/12/16

SAMPLE RESULTS

Lab ID: L1621925-02 D Date Collected: 07/13/16 15:40

Client ID: 3 Date Received: 07/14/16

Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS - Westborough Lab									
Chrysene	14000		ug/kg	550	95.	5			
Acenaphthylene	7200		ug/kg	730	140	5			
Anthracene	9400		ug/kg	550	180	5			
Benzo(ghi)perylene	9000		ug/kg	730	110	5			
Fluorene	7800		ug/kg	920	89.	5			
Phenanthrene	26000		ug/kg	550	110	5			
Dibenzo(a,h)anthracene	2200		ug/kg	550	100	5			
Indeno(1,2,3-cd)pyrene	10000		ug/kg	730	130	5			
Pyrene	27000		ug/kg	550	91.	5			
Biphenyl	1100	J	ug/kg	2100	210	5			
4-Chloroaniline	ND		ug/kg	920	170	5			
2-Nitroaniline	ND		ug/kg	920	180	5			
3-Nitroaniline	ND		ug/kg	920	170	5			
4-Nitroaniline	ND		ug/kg	920	380	5			
Dibenzofuran	ND		ug/kg	920	87.	5			
2-Methylnaphthalene	11000		ug/kg	1100	110	5			
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	920	96.	5			
Acetophenone	ND		ug/kg	920	110	5			
2,4,6-Trichlorophenol	ND		ug/kg	550	170	5			
p-Chloro-m-cresol	ND		ug/kg	920	140	5			
2-Chlorophenol	ND		ug/kg	920	110	5			
2,4-Dichlorophenol	ND		ug/kg	820	150	5			
2,4-Dimethylphenol	ND		ug/kg	920	300	5			
2-Nitrophenol	ND		ug/kg	2000	340	5			
4-Nitrophenol	ND		ug/kg	1300	370	5			
2,4-Dinitrophenol	ND		ug/kg	4400	430	5			
4,6-Dinitro-o-cresol	ND		ug/kg	2400	440	5			
Pentachlorophenol	ND		ug/kg	730	200	5			
Phenol	ND		ug/kg	920	140	5			
2-Methylphenol	ND		ug/kg	920	140	5			
3-Methylphenol/4-Methylphenol	ND		ug/kg	1300	140	5			
2,4,5-Trichlorophenol	ND		ug/kg	920	180	5			
Carbazole	2500		ug/kg	920	89.	5			
Atrazine	ND		ug/kg	730	320	5			
Benzaldehyde	ND		ug/kg	1200	250	5			
Caprolactam	ND		ug/kg	920	280	5			
2,3,4,6-Tetrachlorophenol	ND		ug/kg	920	180	5			

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1621925

Project Number: 15209 Report Date: 08/12/16

SAMPLE RESULTS

Lab ID: L1621925-02 D Date Collected: 07/13/16 15:40

Client ID: 3 Date Received: 07/14/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	90		25-120	
Phenol-d6	103		10-120	
Nitrobenzene-d5	147	Q	23-120	
2-Fluorobiphenyl	91		30-120	
2,4,6-Tribromophenol	97		10-136	
4-Terphenyl-d14	99		18-120	

L1621925

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Report Date: 08/12/16

Lab Number:

Lab ID: L1621925-04 D

Client ID:

Sample Location: SYRACUSE, NY

Matrix: Soil Analytical Method: 1,8270D Analytical Date: 07/16/16 23:13

Analyst: RC

Percent Solids: 89%

Date Collected:	07/13/16 08:00
Date Received:	07/14/16
Field Prep:	Not Specified
Extraction Method	:EPA 3546
Extraction Date:	07/15/16 05:16

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - W	estborough Lab					
Acenaphthene	370	J	ug/kg	740	96.	5
Hexachlorobenzene	ND		ug/kg	550	100	5
Bis(2-chloroethyl)ether	ND		ug/kg	830	120	5
2-Chloronaphthalene	ND		ug/kg	920	91.	5
3,3'-Dichlorobenzidine	ND		ug/kg	920	240	5
2,4-Dinitrotoluene	ND		ug/kg	920	180	5
2,6-Dinitrotoluene	ND		ug/kg	920	160	5
Fluoranthene	9000		ug/kg	550	100	5
4-Chlorophenyl phenyl ether	ND		ug/kg	920	99.	5
4-Bromophenyl phenyl ether	ND		ug/kg	920	140	5
Bis(2-chloroisopropyl)ether	ND		ug/kg	1100	160	5
Bis(2-chloroethoxy)methane	ND		ug/kg	1000	92.	5
Hexachlorobutadiene	ND		ug/kg	920	140	5
Hexachlorocyclopentadiene	ND		ug/kg	2600	840	5
Hexachloroethane	ND		ug/kg	740	150	5
Isophorone	ND		ug/kg	830	120	5
Naphthalene	720	J	ug/kg	920	110	5
Nitrobenzene	ND		ug/kg	830	140	5
NDPA/DPA	ND		ug/kg	740	100	5
n-Nitrosodi-n-propylamine	ND		ug/kg	920	140	5
Bis(2-ethylhexyl)phthalate	ND		ug/kg	920	320	5
Butyl benzyl phthalate	ND		ug/kg	920	230	5
Di-n-butylphthalate	ND		ug/kg	920	170	5
Di-n-octylphthalate	ND		ug/kg	920	310	5
Diethyl phthalate	ND		ug/kg	920	85.	5
Dimethyl phthalate	ND		ug/kg	920	190	5
Benzo(a)anthracene	4400		ug/kg	550	100	5
Benzo(a)pyrene	4200		ug/kg	740	220	5
Benzo(b)fluoranthene	5200		ug/kg	550	160	5
Benzo(k)fluoranthene	1900		ug/kg	550	150	5

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1621925

Project Number: 15209 Report Date: 08/12/16

SAMPLE RESULTS

Lab ID: L1621925-04 D Date Collected: 07/13/16 08:00

Client ID: 4 Date Received: 07/14/16

Sample Location: SYRACUSE, NY Field Prep: Not Specified

					•	I	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - Wes	stborough Lab						
Chrysene	4700		ug/kg	550	96.	5	
Acenaphthylene	1300		ug/kg	740	140	5	
Anthracene	2200		ug/kg	550	180	5	
Benzo(ghi)perylene	2500		ug/kg	740	110	5	
Fluorene	780	J	ug/kg	920	90.	5	
Phenanthrene	5600		ug/kg	550	110	5	
Dibenzo(a,h)anthracene	730		ug/kg	550	110	5	
Indeno(1,2,3-cd)pyrene	2700		ug/kg	740	130	5	
Pyrene	7500		ug/kg	550	92.	5	
Biphenyl	ND		ug/kg	2100	210	5	
4-Chloroaniline	ND		ug/kg	920	170	5	
2-Nitroaniline	ND		ug/kg	920	180	5	
3-Nitroaniline	ND		ug/kg	920	170	5	
4-Nitroaniline	ND		ug/kg	920	380	5	
Dibenzofuran	410	J	ug/kg	920	87.	5	
2-Methylnaphthalene	380	J	ug/kg	1100	110	5	
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	920	96.	5	
Acetophenone	ND		ug/kg	920	110	5	
2,4,6-Trichlorophenol	ND		ug/kg	550	170	5	
p-Chloro-m-cresol	ND		ug/kg	920	140	5	
2-Chlorophenol	ND		ug/kg	920	110	5	
2,4-Dichlorophenol	ND		ug/kg	830	150	5	
2,4-Dimethylphenol	ND		ug/kg	920	300	5	
2-Nitrophenol	ND		ug/kg	2000	350	5	
4-Nitrophenol	ND		ug/kg	1300	380	5	
2,4-Dinitrophenol	ND		ug/kg	4400	430	5	
4,6-Dinitro-o-cresol	ND		ug/kg	2400	440	5	
Pentachlorophenol	ND		ug/kg	740	200	5	
Phenol	ND		ug/kg	920	140	5	
2-Methylphenol	ND		ug/kg	920	140	5	
3-Methylphenol/4-Methylphenol	ND		ug/kg	1300	140	5	
2,4,5-Trichlorophenol	ND		ug/kg	920	180	5	
Carbazole	460	J	ug/kg	920	90.	5	
Atrazine	ND		ug/kg	740	320	5	
Benzaldehyde	ND		ug/kg	1200	250	5	
Caprolactam	ND		ug/kg	920	280	5	
2,3,4,6-Tetrachlorophenol	ND		ug/kg	920	190	5	

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1621925

Project Number: 15209 Report Date: 08/12/16

SAMPLE RESULTS

Lab ID: L1621925-04 D Date Collected: 07/13/16 08:00

Client ID: 4 Date Received: 07/14/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	97		25-120	
Phenol-d6	106		10-120	
Nitrobenzene-d5	109		23-120	
2-Fluorobiphenyl	99		30-120	
2,4,6-Tribromophenol	101		10-136	
4-Terphenyl-d14	105		18-120	

L1621925

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Date Collected:

Report Date: 08/12/16

Lab Number:

Lab ID: L1621925-06 D

Client ID: 5

Sample Location: SYRACUSE, NY

Matrix: Soil Analytical Method: 1,8270D Analytical Date: 07/18/16 11:15

Analyst: PS 87% Percent Solids:

07/13/16 10:00 Date Received: 07/14/16 Field Prep: Not Specified Extraction Method: EPA 3546 07/15/16 05:16 Extraction Date:

			RL	MDL	Dilution Factor
estborough Lab					
1000		ug/kg	760	98.	5
ND			570	110	5
ND			850	130	5
ND		ug/kg	950	94.	5
ND		ug/kg	950	250	5
ND		ug/kg	950	190	5
ND		ug/kg	950	160	5
12000		ug/kg	570	110	5
ND		ug/kg	950	100	5
ND		ug/kg	950	140	5
ND		ug/kg	1100	160	5
ND		ug/kg	1000	95.	5
ND		ug/kg	950	140	5
ND		ug/kg	2700	860	5
ND		ug/kg	760	150	5
ND		ug/kg	850	120	5
2000		ug/kg	950	120	5
ND		ug/kg	850	140	5
ND		ug/kg	760	110	5
ND		ug/kg	950	150	5
ND		ug/kg	950	330	5
ND		ug/kg	950	240	5
ND		ug/kg	950	180	5
ND		ug/kg	950	320	5
ND		ug/kg	950	88.	5
ND		ug/kg	950	200	5
6700		ug/kg	570	110	5
9700		ug/kg	760	230	5
12000		ug/kg	570	160	5
3800		ug/kg	570	150	5
	1000 ND ND ND ND ND ND ND 12000 ND	1000 ND	1000 ug/kg ND ug/kg	1000 ug/kg 760 ND ug/kg 570 ND ug/kg 850 ND ug/kg 950 ND ug/kg 1000 ND ug/kg 1000 ND ug/kg 950 ND ug/kg 950	1000

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1621925

Project Number: 15209 Report Date: 08/12/16

SAMPLE RESULTS

Lab ID: L1621925-06 D Date Collected: 07/13/16 10:00

Client ID: 5 Date Received: 07/14/16

Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS - Westborough Lab									
Chrysene	6800		ug/kg	570	99.	5			
Acenaphthylene	3200		ug/kg	760	150	5			
Anthracene	2800		ug/kg	570	180	5			
Benzo(ghi)perylene	6000		ug/kg	760	110	5			
Fluorene	1900		ug/kg	950	92.	5			
Phenanthrene	7100		ug/kg	570	120	5			
Dibenzo(a,h)anthracene	1600		ug/kg	570	110	5			
Indeno(1,2,3-cd)pyrene	7300		ug/kg	760	130	5			
Pyrene	11000		ug/kg	570	94.	5			
Biphenyl	240	J	ug/kg	2200	220	5			
4-Chloroaniline	ND		ug/kg	950	170	5			
2-Nitroaniline	ND		ug/kg	950	180	5			
3-Nitroaniline	ND		ug/kg	950	180	5			
4-Nitroaniline	ND		ug/kg	950	390	5			
Dibenzofuran	1100		ug/kg	950	90.	5			
2-Methylnaphthalene	2100		ug/kg	1100	110	5			
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	950	99.	5			
Acetophenone	ND		ug/kg	950	120	5			
2,4,6-Trichlorophenol	ND		ug/kg	570	180	5			
p-Chloro-m-cresol	ND		ug/kg	950	140	5			
2-Chlorophenol	ND		ug/kg	950	110	5			
2,4-Dichlorophenol	ND		ug/kg	850	150	5			
2,4-Dimethylphenol	ND		ug/kg	950	310	5			
2-Nitrophenol	ND		ug/kg	2000	360	5			
4-Nitrophenol	ND		ug/kg	1300	390	5			
2,4-Dinitrophenol	ND		ug/kg	4600	440	5			
4,6-Dinitro-o-cresol	ND		ug/kg	2500	460	5			
Pentachlorophenol	ND		ug/kg	760	210	5			
Phenol	ND		ug/kg	950	140	5			
2-Methylphenol	ND		ug/kg	950	150	5			
3-Methylphenol/4-Methylphenol	ND		ug/kg	1400	150	5			
2,4,5-Trichlorophenol	ND		ug/kg	950	180	5			
Carbazole	770	J	ug/kg	950	92.	5			
Atrazine	ND		ug/kg	760	330	5			
Benzaldehyde	ND		ug/kg	1200	260	5			
Caprolactam	ND		ug/kg	950	290	5			
2,3,4,6-Tetrachlorophenol	ND		ug/kg	950	190	5			

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1621925

Project Number: 15209 Report Date: 08/12/16

SAMPLE RESULTS

Lab ID: L1621925-06 D Date Collected: 07/13/16 10:00

Client ID: 5 Date Received: 07/14/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	114		25-120	
Phenol-d6	120		10-120	
Nitrobenzene-d5	124	Q	23-120	
2-Fluorobiphenyl	109		30-120	
2,4,6-Tribromophenol	99		10-136	
4-Terphenyl-d14	110		18-120	

Lab Number:

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209 Report Date: 08/12/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Extraction Method: EPA 3546
Analytical Date: 07/15/16 13:24 Extraction Date: 07/15/16 03:34

Analyst: PS

Parameter	Result	Qualifier	Units	RL	MDL	
Semivolatile Organics by GC/MS	- Westborough	Lab for s	ample(s):	02,04,06	Batch: WG913	3770-1
Acenaphthene	ND		ug/kg	130	17.	
Hexachlorobenzene	ND		ug/kg	98	18.	
Bis(2-chloroethyl)ether	ND		ug/kg	150	22.	
2-Chloronaphthalene	ND		ug/kg	160	16.	
3,3'-Dichlorobenzidine	ND		ug/kg	160	44.	
2,4-Dinitrotoluene	ND		ug/kg	160	33.	
2,6-Dinitrotoluene	ND		ug/kg	160	28.	
Fluoranthene	ND		ug/kg	98	19.	
4-Chlorophenyl phenyl ether	ND		ug/kg	160	18.	
4-Bromophenyl phenyl ether	ND		ug/kg	160	25.	
Bis(2-chloroisopropyl)ether	ND		ug/kg	200	28.	
Bis(2-chloroethoxy)methane	ND		ug/kg	180	16.	
Hexachlorobutadiene	ND		ug/kg	160	24.	
Hexachlorocyclopentadiene	ND		ug/kg	470	150	
Hexachloroethane	ND		ug/kg	130	26.	
Isophorone	ND		ug/kg	150	21.	
Naphthalene	ND		ug/kg	160	20.	
Nitrobenzene	ND		ug/kg	150	24.	
NDPA/DPA	ND		ug/kg	130	19.	
n-Nitrosodi-n-propylamine	ND		ug/kg	160	25.	
Bis(2-ethylhexyl)phthalate	ND		ug/kg	160	57.	
Butyl benzyl phthalate	ND		ug/kg	160	41.	
Di-n-butylphthalate	ND		ug/kg	160	31.	
Di-n-octylphthalate	ND		ug/kg	160	56.	
Diethyl phthalate	ND		ug/kg	160	15.	
Dimethyl phthalate	ND		ug/kg	160	34.	
Benzo(a)anthracene	ND		ug/kg	98	18.	
Benzo(a)pyrene	ND		ug/kg	130	40.	
Benzo(b)fluoranthene	ND		ug/kg	98	28.	

Lab Number:

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209 Report Date: 08/12/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Extraction Method: EPA 3546
Analytical Date: 07/15/16 13:24 Extraction Date: 07/15/16 03:34

Analyst: PS

Parameter	Result	Qualifier	Units	RL	MDL	
Semivolatile Organics by GC/MS -	Westborough	Lab for s	ample(s):	02,04,06	Batch: WG913770-	1
Benzo(k)fluoranthene	ND		ug/kg	98	26.	
Chrysene	ND		ug/kg	98	17.	
Acenaphthylene	ND		ug/kg	130	25.	
Anthracene	ND		ug/kg	98	32.	
Benzo(ghi)perylene	ND		ug/kg	130	19.	
Fluorene	ND		ug/kg	160	16.	
Phenanthrene	ND		ug/kg	98	20.	
Dibenzo(a,h)anthracene	ND		ug/kg	98	19.	
Indeno(1,2,3-cd)pyrene	ND		ug/kg	130	23.	
Pyrene	ND		ug/kg	98	16.	
Biphenyl	ND		ug/kg	370	38.	
4-Chloroaniline	ND		ug/kg	160	30.	
2-Nitroaniline	ND		ug/kg	160	32.	
3-Nitroaniline	ND		ug/kg	160	31.	
4-Nitroaniline	ND		ug/kg	160	68.	
Dibenzofuran	ND		ug/kg	160	15.	
2-Methylnaphthalene	ND		ug/kg	200	20.	
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	160	17.	
Acetophenone	ND		ug/kg	160	20.	
2,4,6-Trichlorophenol	ND		ug/kg	98	31.	
p-Chloro-m-cresol	ND		ug/kg	160	24.	
2-Chlorophenol	ND		ug/kg	160	19.	
2,4-Dichlorophenol	ND		ug/kg	150	26.	
2,4-Dimethylphenol	ND		ug/kg	160	54.	
2-Nitrophenol	ND		ug/kg	350	62.	
4-Nitrophenol	ND		ug/kg	230	67.	
2,4-Dinitrophenol	ND		ug/kg	780	76.	
4,6-Dinitro-o-cresol	ND		ug/kg	420	78.	
Pentachlorophenol	ND		ug/kg	130	36.	

Lab Number:

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209 Report Date: 08/12/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Extraction Method: EPA 3546
Analytical Date: 07/15/16 13:24 Extraction Date: 07/15/16 03:34

Analyst: PS

Parameter	Result	Qualifier	Units	RL	MDL	
Semivolatile Organics by GC/MS - V	Vestborough	Lab for sa	ample(s):	02,04,06	Batch: WG9137	770-1
Phenol	ND		ug/kg	160	25.	
2-Methylphenol	ND		ug/kg	160	25.	
3-Methylphenol/4-Methylphenol	ND		ug/kg	240	26.	
2,4,5-Trichlorophenol	ND		ug/kg	160	31.	
Carbazole	ND		ug/kg	160	16.	
Atrazine	ND		ug/kg	130	57.	
Benzaldehyde	ND		ug/kg	220	44.	
Caprolactam	ND		ug/kg	160	50.	
2,3,4,6-Tetrachlorophenol	ND		ug/kg	160	33.	

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
2-Fluorophenol	102		25-120	
Phenol-d6	113		10-120	
Nitrobenzene-d5	105		23-120	
2-Fluorobiphenyl	104		30-120	
2,4,6-Tribromophenol	103		10-136	
4-Terphenyl-d14	120		18-120	

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number: L1621925

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Westborou	ugh Lab Assoc	ated sample(s)	: 02,04,06 Ba	tch: WG9	13770-2 WG913	770-3	
Acenaphthene	103		106		31-137	3	50
Benzidine	78	Q	80	Q	10-66	3	50
1,2,4-Trichlorobenzene	95		99		38-107	4	50
Hexachlorobenzene	106		110		40-140	4	50
Bis(2-chloroethyl)ether	99		105		40-140	6	50
2-Chloronaphthalene	106		109		40-140	3	50
1,2-Dichlorobenzene	89		94		40-140	5	50
1,3-Dichlorobenzene	87		91		40-140	4	50
1,4-Dichlorobenzene	86		90		28-104	5	50
3,3'-Dichlorobenzidine	92		94		40-140	2	50
2,4-Dinitrotoluene	117	Q	118	Q	28-89	1	50
2,6-Dinitrotoluene	116		118		40-140	2	50
Azobenzene	118		121		40-140	3	50
Fluoranthene	116		116		40-140	0	50
4-Chlorophenyl phenyl ether	105		109		40-140	4	50
4-Bromophenyl phenyl ether	111		115		40-140	4	50
Bis(2-chloroisopropyl)ether	96		103		40-140	7	50
Bis(2-chloroethoxy)methane	110		112		40-117	2	50
Hexachlorobutadiene	90		96		40-140	6	50
Hexachlorocyclopentadiene	105		110		40-140	5	50
Hexachloroethane	90		96		40-140	6	50

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number: L1621925

Parameter	LCS %Recovery	LCSD Qual %Recove	%Recover ry Qual Limits	y RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Westbord	ugh Lab Assoc	ated sample(s): 02,04,06	Batch: WG913770-2 WG	913770-3	
Isophorone	113	116	40-140	3	50
Naphthalene	96	100	40-140	4	50
Nitrobenzene	108	113	40-140	5	50
NitrosoDiPhenylAmine(NDPA)/DPA	114	116	36-157	2	50
n-Nitrosodi-n-propylamine	109	113	32-121	4	50
Bis(2-Ethylhexyl)phthalate	115	117	40-140	2	50
Butyl benzyl phthalate	118	118	40-140	0	50
Di-n-butylphthalate	118	120	40-140	2	50
Di-n-octylphthalate	118	119	40-140	1	50
Diethyl phthalate	112	114	40-140	2	50
Dimethyl phthalate	116	117	40-140	1	50
Benzo(a)anthracene	115	117	40-140	2	50
Benzo(a)pyrene	113	115	40-140	2	50
Benzo(b)fluoranthene	121	122	40-140	1	50
Benzo(k)fluoranthene	114	118	40-140	3	50
Chrysene	104	106	40-140	2	50
Acenaphthylene	116	118	40-140	2	50
Anthracene	113	116	40-140	3	50
Benzo(ghi)perylene	115	118	40-140	3	50
Fluorene	109	112	40-140	3	50
Phenanthrene	104	105	40-140	1	50

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number: L1621925

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Westboro	ugh Lab Assoc	iated sample(s): 02,04,06 Ba	atch: WG9	13770-2 WG913	770-3	
Dibenzo(a,h)anthracene	117		121		40-140	3	50
Indeno(1,2,3-cd)Pyrene	106		107		40-140	1	50
Pyrene	112		113		35-142	1	50
Biphenyl	106	Q	109	Q	54-104	3	50
Aniline	66		69		40-140	4	50
4-Chloroaniline	80		83		40-140	4	50
1-Methylnaphthalene	101		103		26-130	2	50
2-Nitroaniline	115		114		47-134	1	50
3-Nitroaniline	99		99		26-129	0	50
4-Nitroaniline	110		109		41-125	1	50
Dibenzofuran	103		106		40-140	3	50
2-Methylnaphthalene	105		110		40-140	5	50
1,2,4,5-Tetrachlorobenzene	100		104		40-117	4	50
Pentachloronitrobenzene	120		123		42-153	2	50
Acetophenone	108		115		14-144	6	50
n-Nitrosodimethylamine	52		48		22-100	8	50
2,4,6-Trichlorophenol	124		128		30-130	3	50
P-Chloro-M-Cresol	122	Q	125	Q	26-103	2	50
2-Chlorophenol	103	Q	109	Q	25-102	6	50
2,4-Dichlorophenol	119		122		30-130	2	50
2,4-Dimethylphenol	116		120		30-130	3	50

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number: L1621925

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Westbo	orough Lab Associ	ated sample(s): 02,04,06 B	atch: WG9	13770-2 WG913	770-3	
2-Nitrophenol	105		109		30-130	4	50
4-Nitrophenol	115	Q	116	Q	11-114	1	50
2,4-Dinitrophenol	102		98		4-130	4	50
4,6-Dinitro-o-cresol	107		108		10-130	1	50
Pentachlorophenol	108		107		17-109	1	50
Phenol	105	Q	109	Q	26-90	4	50
2-Methylphenol	111		115		30-130.	4	50
3-Methylphenol/4-Methylphenol	117		120		30-130	3	50
2,4,5-Trichlorophenol	124		126		30-130	2	50
Benzoic Acid	66		62		10-110	6	50
Benzyl Alcohol	111		116		40-140	4	50
Carbazole	116		117		54-128	1	50
Pyridine	45		41		10-93	9	50
1,3-Dinitrobenzene	121		122		40-140	1	50
Parathion, ethyl	140		141	Q	40-140	1	50
3,3'-Dimethylbenzidine	102		102		15-115	0	50
Diphenamid	136		136		40-140	0	50
2-Chloroaniline	124		129		30-130	4	50
Atrazine	134		135		40-140	1	50
Benzaldehyde	112		123		40-140	9	50
Caprolactam	132	Q	136	Q	15-130	3	50

Project Name: DESTINY-EMBASSY SUITES

L1621925

Project Number: 15209

Lab Number: Report Date:

08/12/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westboro	ugh Lab Associa	ted sample(s)	: 02,04,06 B	satch: WG9	13770-2 WG91377	70-3		
2,3,4,6-Tetrachlorophenol	120		121		40-140	1		50

Acceptance
Criteria
25-120
10-120
23-120
30-120
10-136
18-120

METALS

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1621925

Project Number: 15209 Report Date: 08/12/16

SAMPLE RESULTS

Lab ID: L1621925-03

Client ID: 3B

Sample Location: SYRACUSE, NY

Matrix: Soil

Percent Solids: 89%

Date Collected: 07/13/16 15:40
Date Received: 07/14/16

Field Prep: Not Specified

Percent Solids:	89%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Mans	sfield Lab										
Aluminum, Total	4600		mg/kg	8.6	1.7	2	07/15/16 10:00	07/18/16 10:16	EPA 3050B	1,6010C	PS
Antimony, Total	ND		mg/kg	4.3	0.68	2	07/15/16 10:00	07/18/16 10:16	EPA 3050B	1,6010C	PS
Arsenic, Total	21		mg/kg	0.86	0.28	2	07/15/16 10:00	07/18/16 10:16	EPA 3050B	1,6010C	PS
Barium, Total	110		mg/kg	0.86	0.23	2	07/15/16 10:00	07/18/16 10:16	EPA 3050B	1,6010C	PS
Beryllium, Total	0.20	J	mg/kg	0.43	0.09	2	07/15/16 10:00	07/18/16 10:16	EPA 3050B	1,6010C	PS
Cadmium, Total	26		mg/kg	0.86	0.06	2	07/15/16 10:00	07/18/16 10:16	EPA 3050B	1,6010C	PS
Calcium, Total	63000		mg/kg	8.6	2.4	2	07/15/16 10:00	07/18/16 10:16	EPA 3050B	1,6010C	PS
Chromium, Total	7.6		mg/kg	0.86	0.14	2	07/15/16 10:00	07/18/16 10:16	EPA 3050B	1,6010C	PS
Cobalt, Total	9.8		mg/kg	1.7	0.42	2	07/15/16 10:00	07/18/16 10:16	EPA 3050B	1,6010C	PS
Copper, Total	1200		mg/kg	0.86	0.15	2	07/15/16 10:00	07/18/16 10:16	EPA 3050B	1,6010C	PS
Iron, Total	100000		mg/kg	21	6.8	10	07/15/16 10:00	07/18/16 11:19	EPA 3050B	1,6010C	PS
Lead, Total	100		mg/kg	4.3	0.19	2	07/15/16 10:00	07/18/16 10:16	EPA 3050B	1,6010C	PS
Magnesium, Total	9600		mg/kg	8.6	1.1	2	07/15/16 10:00	07/18/16 10:16	EPA 3050B	1,6010C	PS
Manganese, Total	240		mg/kg	0.86	0.20	2	07/15/16 10:00	07/18/16 10:16	EPA 3050B	1,6010C	PS
Mercury, Total	0.29		mg/kg	0.07	0.02	1	07/15/16 10:20	07/16/16 12:41	EPA 7471B	1,7471B	BV
Nickel, Total	8.6		mg/kg	2.1	0.34	2	07/15/16 10:00	07/18/16 10:16	EPA 3050B	1,6010C	PS
Potassium, Total	480		mg/kg	210	24.	2	07/15/16 10:00	07/18/16 10:16	EPA 3050B	1,6010C	PS
Selenium, Total	ND		mg/kg	1.7	0.23	2	07/15/16 10:00	08/02/16 20:59	EPA 3050B	1,6010C	PS
Silver, Total	6.0		mg/kg	0.86	0.17	2	07/15/16 10:00	07/18/16 10:16	EPA 3050B	1,6010C	PS
Sodium, Total	210		mg/kg	170	14.	2	07/15/16 10:00	07/18/16 10:16	EPA 3050B	1,6010C	PS
Thallium, Total	ND		mg/kg	1.7	0.27	2	07/15/16 10:00	07/18/16 10:16	EPA 3050B	1,6010C	PS
Vanadium, Total	9.6		mg/kg	0.86	0.08	2	07/15/16 10:00	07/18/16 10:16	EPA 3050B	1,6010C	PS
Zinc, Total	7700		mg/kg	4.3	0.60	2	07/15/16 10:00	07/18/16 10:16	EPA 3050B	1,6010C	PS

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1621925

Project Number: 15209 **Report Date:** 08/12/16

SAMPLE RESULTS

Lab ID: L1621925-05

Client ID: 4B

Sample Location: SYRACUSE, NY

Matrix: Soil

Percent Solids: 83% Date Collected: 07/13/16 08:00

Date Received: 07/14/16

Field Prep: Not Specified

Percent Solids:	83%	0	11-26-	ъ.	MDI	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	A l 1
Parameter	Result	Qualifier	Units	RL	MDL		Теригеи	Analyzea	Metriod		Analyst
Total Metals - Man	sfield Lab										
Aluminum, Total	5900		mg/kg	9.2	1.8	2	07/15/16 10:00	07/18/16 10:39	EPA 3050B	1,6010C	PS
Antimony, Total	ND		mg/kg	4.6	0.73	2	07/15/16 10:00	07/18/16 10:39	EPA 3050B	1,6010C	PS
Arsenic, Total	6.7		mg/kg	0.92	0.30	2	07/15/16 10:00	07/18/16 10:39	EPA 3050B	1,6010C	PS
Barium, Total	63		mg/kg	0.92	0.25	2	07/15/16 10:00	07/18/16 10:39	EPA 3050B	1,6010C	PS
Beryllium, Total	0.25	J	mg/kg	0.46	0.10	2	07/15/16 10:00	07/18/16 10:39	EPA 3050B	1,6010C	PS
Cadmium, Total	0.70	J	mg/kg	0.92	0.06	2	07/15/16 10:00	07/18/16 10:39	EPA 3050B	1,6010C	PS
Calcium, Total	170000		mg/kg	46	12.	10	07/15/16 10:00	07/18/16 11:41	EPA 3050B	1,6010C	PS
Chromium, Total	10		mg/kg	0.92	0.16	2	07/15/16 10:00	07/18/16 10:39	EPA 3050B	1,6010C	PS
Cobalt, Total	4.3		mg/kg	1.8	0.45	2	07/15/16 10:00	07/18/16 10:39	EPA 3050B	1,6010C	PS
Copper, Total	46		mg/kg	0.92	0.16	2	07/15/16 10:00	07/18/16 10:39	EPA 3050B	1,6010C	PS
Iron, Total	12000		mg/kg	4.6	1.4	2	07/15/16 10:00	07/18/16 10:39	EPA 3050B	1,6010C	PS
Lead, Total	56		mg/kg	4.6	0.20	2	07/15/16 10:00	07/18/16 10:39	EPA 3050B	1,6010C	PS
Magnesium, Total	19000		mg/kg	9.2	1.2	2	07/15/16 10:00	07/18/16 10:39	EPA 3050B	1,6010C	PS
Manganese, Total	420		mg/kg	0.92	0.22	2	07/15/16 10:00	07/18/16 10:39	EPA 3050B	1,6010C	PS
Mercury, Total	0.39		mg/kg	0.08	0.02	1	07/15/16 10:20	07/16/16 12:43	EPA 7471B	1,7471B	BV
Nickel, Total	12		mg/kg	2.3	0.37	2	07/15/16 10:00	07/18/16 10:39	EPA 3050B	1,6010C	PS
Potassium, Total	580		mg/kg	230	26.	2	07/15/16 10:00	07/18/16 10:39	EPA 3050B	1,6010C	PS
Selenium, Total	ND		mg/kg	1.8	0.25	2	07/15/16 10:00	08/02/16 21:38	EPA 3050B	1,6010C	PS
Silver, Total	ND		mg/kg	0.92	0.18	2	07/15/16 10:00	07/18/16 10:39	EPA 3050B	1,6010C	PS
Sodium, Total	300		mg/kg	180	15.	2	07/15/16 10:00	07/18/16 10:39	EPA 3050B	1,6010C	PS
Thallium, Total	ND		mg/kg	1.8	0.29	2	07/15/16 10:00	07/18/16 10:39	EPA 3050B	1,6010C	PS
Vanadium, Total	12		mg/kg	0.92	0.08	2	07/15/16 10:00	07/18/16 10:39	EPA 3050B	1,6010C	PS
Zinc, Total	140		mg/kg	4.6	0.64	2	07/15/16 10:00	07/18/16 10:39	EPA 3050B	1,6010C	PS

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1621925

Project Number: 15209 Report Date: 08/12/16

SAMPLE RESULTS

Lab ID: L1621925-07

Client ID: 5B

Sample Location: SYRACUSE, NY

Matrix: Soil

Percent Solids: 87%

Date Collected: 07/13/16 10:00
Date Received: 07/14/16

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Aluminum, Total	6100		mg/kg	8.8	1.7	2	07/15/16 10:00	07/18/16 10:43	EPA 3050B	1,6010C	PS
Antimony, Total	ND		mg/kg	4.4	0.71	2	07/15/16 10:00	07/18/16 10:43	EPA 3050B	1,6010C	PS
Arsenic, Total	15		mg/kg	0.88	0.29	2	07/15/16 10:00	07/18/16 10:43	EPA 3050B	1,6010C	PS
Barium, Total	110		mg/kg	0.88	0.24	2	07/15/16 10:00	07/18/16 10:43	EPA 3050B	1,6010C	PS
Beryllium, Total	0.23	J	mg/kg	0.44	0.10	2	07/15/16 10:00	07/18/16 10:43	EPA 3050B	1,6010C	PS
Cadmium, Total	2.5		mg/kg	0.88	0.06	2	07/15/16 10:00	07/18/16 10:43	EPA 3050B	1,6010C	PS
Calcium, Total	74000		mg/kg	8.8	2.4	2	07/15/16 10:00	07/18/16 10:43	EPA 3050B	1,6010C	PS
Chromium, Total	11		mg/kg	0.88	0.15	2	07/15/16 10:00	07/18/16 10:43	EPA 3050B	1,6010C	PS
Cobalt, Total	6.5		mg/kg	1.8	0.43	2	07/15/16 10:00	07/18/16 10:43	EPA 3050B	1,6010C	PS
Copper, Total	130		mg/kg	0.88	0.16	2	07/15/16 10:00	07/18/16 10:43	EPA 3050B	1,6010C	PS
Iron, Total	28000		mg/kg	4.4	1.4	2	07/15/16 10:00	07/18/16 10:43	EPA 3050B	1,6010C	PS
Lead, Total	95		mg/kg	4.4	0.19	2	07/15/16 10:00	07/18/16 10:43	EPA 3050B	1,6010C	PS
Magnesium, Total	17000		mg/kg	8.8	1.2	2	07/15/16 10:00	07/18/16 10:43	EPA 3050B	1,6010C	PS
Manganese, Total	220		mg/kg	0.88	0.21	2	07/15/16 10:00	07/18/16 10:43	EPA 3050B	1,6010C	PS
Mercury, Total	0.28		mg/kg	0.08	0.02	1	07/15/16 10:20	07/16/16 12:45	EPA 7471B	1,7471B	BV
Nickel, Total	13		mg/kg	2.2	0.35	2	07/15/16 10:00	07/18/16 10:43	EPA 3050B	1,6010C	PS
Potassium, Total	470		mg/kg	220	25.	2	07/15/16 10:00	07/18/16 10:43	EPA 3050B	1,6010C	PS
Selenium, Total	ND		mg/kg	1.8	0.24	2	07/15/16 10:00	08/02/16 21:42	EPA 3050B	1,6010C	PS
Silver, Total	0.80	J	mg/kg	0.88	0.18	2	07/15/16 10:00	07/18/16 10:43	EPA 3050B	1,6010C	PS
Sodium, Total	210		mg/kg	180	15.	2	07/15/16 10:00	07/18/16 10:43	EPA 3050B	1,6010C	PS
Thallium, Total	ND		mg/kg	1.8	0.28	2	07/15/16 10:00	07/18/16 10:43	EPA 3050B	1,6010C	PS
Vanadium, Total	12		mg/kg	0.88	0.08	2	07/15/16 10:00	07/18/16 10:43	EPA 3050B	1,6010C	PS

1,6010C

PS

Zinc, Total

500

mg/kg

4.4

0.62

2

07/15/16 10:00 07/18/16 10:43 EPA 3050B

Lab Number:

Project Name: DESTINY-EMBASSY SUITES

L1621925 Project Number: 15209 **Report Date:** 08/12/16

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	l Analyst
Total Metals - Mansfield	Lab for sample(s):	03,05,07	Batch:	WG913	3846-1				
Mercury, Total	ND	mg/kg	0.08	0.02	1	07/15/16 10:20	07/16/16 12:09	1,7471B	BV

Prep Information

Digestion Method: EPA 7471B

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfield	Lab for sample(s):	03,05,07	Batch:	WG913	8868-1				
Aluminum, Total	ND	mg/kg	4.0	0.79	1	07/15/16 10:00	07/18/16 10:08	1,6010C	PS
Antimony, Total	ND	mg/kg	2.0	0.32	1	07/15/16 10:00	07/18/16 10:08	1,6010C	PS
Arsenic, Total	ND	mg/kg	0.40	0.13	1	07/15/16 10:00	07/18/16 10:08	1,6010C	PS
Barium, Total	ND	mg/kg	0.40	0.11	1	07/15/16 10:00	07/18/16 10:08	1,6010C	PS
Beryllium, Total	ND	mg/kg	0.20	0.04	1	07/15/16 10:00	07/18/16 10:08	1,6010C	PS
Cadmium, Total	ND	mg/kg	0.40	0.03	1	07/15/16 10:00	07/18/16 10:08	1,6010C	PS
Calcium, Total	ND	mg/kg	4.0	1.1	1	07/15/16 10:00	07/18/16 10:08	1,6010C	PS
Chromium, Total	ND	mg/kg	0.40	0.07	1	07/15/16 10:00	07/18/16 10:08	1,6010C	PS
Cobalt, Total	ND	mg/kg	0.80	0.20	1	07/15/16 10:00	07/18/16 10:08	1,6010C	PS
Copper, Total	0.09 J	mg/kg	0.40	0.07	1	07/15/16 10:00	07/18/16 10:08	1,6010C	PS
Iron, Total	ND	mg/kg	2.0	0.63	1	07/15/16 10:00	07/18/16 10:08	1,6010C	PS
Lead, Total	ND	mg/kg	2.0	0.09	1	07/15/16 10:00	07/18/16 10:08	1,6010C	PS
Magnesium, Total	ND	mg/kg	4.0	0.53	1	07/15/16 10:00	07/18/16 10:08	1,6010C	PS
Manganese, Total	ND	mg/kg	0.40	0.10	1	07/15/16 10:00	07/18/16 10:08	1,6010C	PS
Nickel, Total	ND	mg/kg	1.0	0.16	1	07/15/16 10:00	07/18/16 10:08	1,6010C	PS
Potassium, Total	ND	mg/kg	100	11.	1	07/15/16 10:00	07/18/16 10:08	1,6010C	PS
Selenium, Total	ND	mg/kg	0.80	0.11	1	07/15/16 10:00	07/18/16 10:08	1,6010C	PS
Silver, Total	ND	mg/kg	0.40	0.08	1	07/15/16 10:00	07/18/16 10:08	1,6010C	PS
Sodium, Total	ND	mg/kg	80	6.7	1	07/15/16 10:00	07/18/16 10:08	1,6010C	PS
Thallium, Total	ND	mg/kg	0.80	0.13	1	07/15/16 10:00	07/18/16 10:08	1,6010C	PS
Vanadium, Total	ND	mg/kg	0.40	0.04	1	07/15/16 10:00	07/18/16 10:08	1,6010C	PS
Zinc, Total	ND	mg/kg	2.0	0.28	1	07/15/16 10:00	07/18/16 10:08	1,6010C	PS

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1621925

Project Number: 15209 Report Date: 08/12/16

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 3050B

Project Name: DESTINY-EMBASSY SUITES

Lab Number:

L1621925

Project Number: 15209

Report Date:

08/12/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 03,05,07	Batch: WG	913846-2 SRM	Lot Numbe	r: D089-540			
Mercury, Total	101		-		57-143	-		

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number: L1621925

arameter	LCS %Recovery	LCS %Reco		RPD	RPD Limits
otal Metals - Mansfield Lab	Associated sample(s): 03,05,07	Batch: WG913868-2	SRM Lot Number: D089-540		
Aluminum, Total	61		52-147	-	
Antimony, Total	25		1-197	-	
Arsenic, Total	113		80-120	-	
Barium, Total	112		83-117	-	
Beryllium, Total	107		82-117	-	
Cadmium, Total	103		82-117	-	
Calcium, Total	114		81-119	-	
Chromium, Total	102		79-121	-	
Cobalt, Total	106		83-117	-	
Copper, Total	108		80-119	-	
Iron, Total	58		45-155	-	
Lead, Total	109		81-119	-	
Magnesium, Total	94		76-123	-	
Manganese, Total	117		81-119	-	
Nickel, Total	107	-	82-117	-	
Potassium, Total	85	-	71-128	-	
Selenium, Total	117	-	78-121	-	
Silver, Total	91		75-125	-	
Sodium, Total	112	-	71-128	-	
Thallium, Total	112	-	79-120	-	
Vanadium, Total	100		77-122	-	

Lab Control Sample Analysis Batch Quality Control

Project Name: DESTINY-EMBASSY SUITES

ality Control Lab Number:

L1621925

Project Number: 15209

Panort Data

Report Date: 08/12/16

Parameter	LCS %Recovery	LCS %Reco		Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 03,05,07	Batch: WG913868-2	SRM Lot Number: D08	89-540		
Zinc, Total	118			80-119	-	

Matrix Spike Analysis Batch Quality Control

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number:

L1621925

Report Date:

08/12/16

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery Qu	Recovery ual Limits	/ RPD Qual	RPD Limits
Total Metals - Mansfield Lab	Associated san	nple(s): 03,0	5,07 QC I	Batch ID: WG9	13846-4	QC Sa	ample: L1621795-0	1 Client ID:	MS Sample	
Mercury, Total	0.48	0.154	0.59	71	Q	-	-	80-120	-	20

Matrix Spike Analysis Batch Quality Control

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number: L1621925

Report Date: 08/12/16

arameter	Native Sample	MS Added	MS Found	MS %Recovery		MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
otal Metals - Mansfield	Lab Associated sar	nple(s): 03,0	05,07 QC	Batch ID: WG9	13868-4	QC Sa	mple: L1621925-03	Client ID:	3B	
Aluminum, Total	4600	177	3900	0	Q	-	-	75-125	-	20
Antimony, Total	ND	44.3	46	104		-	-	75-125	-	20
Arsenic, Total	21.	10.6	32	104		-	-	75-125	-	20
Barium, Total	110	177	270	90		-	-	75-125	-	20
Beryllium, Total	0.20J	4.43	4.2	95		-	-	75-125	-	20
Cadmium, Total	26.	4.52	18	0	Q	-	-	75-125	-	20
Calcium, Total	63000	886	140000	8690	Q	-	-	75-125	-	20
Chromium, Total	7.6	17.7	20	70	Q	-	-	75-125	-	20
Cobalt, Total	9.8	44.3	44	77		-	-	75-125	-	20
Copper, Total	1200	22.1	870	0	Q	-	-	75-125	-	20
Iron, Total	100000	88.6	79000	0	Q	-	-	75-125	-	20
Lead, Total	100	45.2	110	22	Q	-	-	75-125	-	20
Magnesium, Total	9600	886	10000	45	Q	-	-	75-125	-	20
Manganese, Total	240	44.3	290	113		-	-	75-125	-	20
Nickel, Total	8.6	44.3	42	75		-	-	75-125	-	20
Potassium, Total	480	886	1500	115		-	-	75-125	-	20
Selenium, Total	ND	10.6	8.0	75		-	-	75-125	-	20
Silver, Total	6.0	26.6	34	105		-	-	75-125	-	20
Sodium, Total	210	886	1200	112		-	-	75-125	-	20
Thallium, Total	ND	10.6	6.8	64	Q	-	-	75-125	-	20
Vanadium, Total	9.6	44.3	50	91		-	-	75-125	-	20

Matrix Spike Analysis Batch Quality Control

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number:

L1621925

Report Date:

08/12/16

Parameter	Native Sample	MS Added	MS Found	MS %Recovery		MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield La	ab Associated san	nple(s): 03,0	05,07 QC	Batch ID: WG9 ⁻	13868-4	QC Sa	mple: L1621925-03	Client ID: 3	3B	
Zinc, Total	7700	44.3	4300	0	Q	-	-	75-125	-	20

Lab Duplicate Analysis
Batch Quality Control

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number:

L1621925

Report Date:

08/12/16

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 03,0	5,07 QC Batch ID:	WG913846-3 QC Sample:	L1621795-01	Client ID:	DUP Sample
Mercury, Total	0.48	0.45	mg/kg	6	20

Lab Duplicate Analysis Batch Quality Control

Project Name: DESTINY-EMBASSY SUITES

Lab Number:

L1621925

 Project Number:
 15209

 Report Date:
 08/12/16

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits		
otal Metals - Mansfield Lab Associated sample(s):	03,05,07 QC Batch ID:	WG913868-3 QC Sample:	L1621925-03	Client ID:	. 3B		
Aluminum, Total	4600	4700	mg/kg	2	20		
Antimony, Total	ND	2.0J	mg/kg	NC	20		
Arsenic, Total	21.	22	mg/kg	5	20		
Barium, Total	110	110	mg/kg	0	20		
Beryllium, Total	0.20J	0.25J	mg/kg	NC	20		
Cadmium, Total	26.	19	mg/kg	31	Q 20		
Calcium, Total	63000	110000	mg/kg	54	Q 20		
Chromium, Total	7.6	8.6	mg/kg	12	20		
Cobalt, Total	9.8	9.0	mg/kg	9	20		
Copper, Total	1200	980	mg/kg	20	20		
Lead, Total	100	86	mg/kg	15	20		
Magnesium, Total	9600	12000	mg/kg	22	Q 20		
Manganese, Total	240	200	mg/kg	18	20		
Nickel, Total	8.6	6.9	mg/kg	22	Q 20		
Potassium, Total	480	770	mg/kg	46	Q 20		
Silver, Total	6.0	5.5	mg/kg	9	20		
Sodium, Total	210	250	mg/kg	17	20		
Thallium, Total	ND	ND	mg/kg	NC	20		
Vanadium, Total	9.6	10	mg/kg	4	20		

L1621925

Lab Duplicate Analysis Batch Quality Control

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

lity Control Lab Number:

Report Date: 08/12/16

Parameter		Native Sample	Duplicate Sample	Units RPD		RPD Limits
Total Metals - Mansfield Lab	Associated sample(s): 03,05	,07 QC Batch ID:	WG913868-3 QC Sample:	L1621925-03	Client ID: 3E	3
Zinc, Total		7700	5400	mg/kg	35	20
Total Metals - Mansfield Lab	Associated sample(s): 03,05	,07 QC Batch ID:	WG913868-3 QC Sample:	L1621925-03	Client ID: 3E	3
Iron, Total		100000	99000	mg/kg	1	20
Total Metals - Mansfield Lab	Associated sample(s): 03,05	,07 QC Batch ID:	WG913868-3 QC Sample:	L1621925-03	Client ID: 3E	3
Selenium, Total		ND	ND	mg/kg	NC	20

INORGANICS & MISCELLANEOUS

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1621925

Project Number: 15209 Report Date: 08/12/16

SAMPLE RESULTS

Lab ID: L1621925-01

Client ID: 2

Sample Location: SYRACUSE, NY

Matrix: Soil

Date Collected: 07/13/16 12:00

Date Received: 07/14/16

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Westborough Lab)								
Solids, Total	80.2		%	0.100	NA	1	-	07/15/16 06:20	121,2540G	VB

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1621925

Project Number: 15209 Report Date: 08/12/16

SAMPLE RESULTS

Lab ID: L1621925-02

Client ID: 3

Sample Location: SYRACUSE, NY

Matrix: Soil

Date Collected: 07/13/16 15:40

Date Received: 07/14/16

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	89.4		%	0.100	NA	1	-	07/15/16 06:20	121,2540G	VB

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1621925

Project Number: 15209 Report Date: 08/12/16

SAMPLE RESULTS

Lab ID: L1621925-03

Client ID: 3B

Sample Location: SYRACUSE, NY

Matrix: Soil

Date Collected: 07/13/16 15:40

Date Received: 07/14/16

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	89.4		%	0.100	NA	1	-	07/15/16 06:20	121,2540G	VB

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1621925

Project Number: 15209 Report Date: 08/12/16

SAMPLE RESULTS

Lab ID: L1621925-04

Client ID: 4

Sample Location: SYRACUSE, NY

Matrix: Soil

Date Collected: 07/13/16 08:00

Date Received: 07/14/16
Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab)								
Solids, Total	88.8		%	0.100	NA	1	-	07/15/16 06:20	121,2540G	VB

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1621925

Project Number: 15209 Report Date: 08/12/16

SAMPLE RESULTS

Lab ID: L1621925-05

Client ID: 4B

Sample Location: SYRACUSE, NY

Matrix: Soil

Date Collected: 07/13/16 08:00

Date Received: 07/14/16

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	82.8		%	0.100	NA	1	-	07/15/16 06:20	121,2540G	VB

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1621925

Project Number: 15209 Report Date: 08/12/16

SAMPLE RESULTS

Lab ID: L1621925-06

Client ID: 5

Sample Location: SYRACUSE, NY

Matrix: Soil

Date Collected: 07/13/16 10:00

Date Received: 07/14/16

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	86.7		%	0.100	NA	1	-	07/15/16 06:20	121,2540G	VB

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1621925

Project Number: 15209 Report Date: 08/12/16

SAMPLE RESULTS

Lab ID: L1621925-07

Client ID:

Sample Location: SYRACUSE, NY

Matrix: Soil Date Collected: 07/13/16 10:00

Date Received: 07/14/16

Not Specified Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough Lab)								
Solids, Total	87.3		%	0.100	NA	1	-	07/15/16 06:20	121,2540G	VB

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1621925

Project Number: 15209 Report Date: 08/12/16

SAMPLE RESULTS

Lab ID: L1621925-08

Client ID: 3C

Sample Location: SYRACUSE, NY

Matrix: Soil

Date Collected: 07/13/16 15:40

Date Received: 07/14/16

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab									
Solids, Total	90.8		%	0.100	NA	1	-	07/15/16 06:20	121,2540G	VB

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1621925

Project Number: 15209 Report Date: 08/12/16

SAMPLE RESULTS

Lab ID: L1621925-09

Client ID: 6

Sample Location: SYRACUSE, NY

Matrix: Soil

Date Collected: 07/14/16 11:30

Date Received: 07/14/16

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab)								
Solids, Total	89.1		%	0.100	NA	1	-	07/15/16 06:20	121,2540G	VB

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1621925

Project Number: 15209 Report Date: 08/12/16

SAMPLE RESULTS

Lab ID: L1621925-10

Client ID: 8

Sample Location: SYRACUSE, NY

Matrix: Soil

Date Collected: 07/14/16 13:00

Date Received: 07/14/16

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - '	Westborough Lab)								
Solids, Total	86.9		%	0.100	NA	1	-	07/15/16 06:20	121,2540G	VB

Lab Duplicate Analysis
Batch Quality Control

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number:

Report Date:

L1621925

08/12/16

Parameter	Native Sam	ple Duplicate Sar	nple Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Associated sar	mple(s): 01-10	QC Batch ID: WG913823-	1 QC Sample:	L1621925-03	Client ID:	3B
Solids, Total	89.4	88.8	%	1		20

Project Name: DESTINY-EMBASSY SUITES

Lab Number: L1621925 **Report Date:** 08/12/16 Project Number: 15209

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Reagent H2O Preserved Vials Frozen on: 07/15/2016 05:04

Cooler Information Custody Seal

Cooler

Absent Α

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1621925-01A	Vial MeOH preserved	Α	N/A	4.0	Υ	Absent	NYTCL-8260HLW(14)
L1621925-01B	Vial water preserved	Α	N/A	4.0	Υ	Absent	NYTCL-8260HLW(14)
L1621925-01C	Vial water preserved	Α	N/A	4.0	Υ	Absent	NYTCL-8260HLW(14)
L1621925-01D	Plastic 2oz unpreserved for TS	Α	N/A	4.0	Υ	Absent	TS(7)
L1621925-02A	Glass 120ml/4oz unpreserved	Α	N/A	4.0	Υ	Absent	NYTCL-8270(14),TS(7)
L1621925-03A	Metals Only - Glass 60mL/2oz unp	A	N/A	4.0	Y	Absent	BE-TI(180),AS-TI(180),BA-TI(180),AG-TI(180),AL-TI(180),CR-TI(180),NI-TI(180),TL-TI(180),TS(7),CU-TI(180),PB-TI(180),SB-TI(180),SE-TI(180),CO-TI(180),V-TI(180),FE-TI(180),HG-T(28),MG-TI(180),MN-TI(180),CA-TI(180),CD-TI(180),K-TI(180),K-TI(180),CD-TI(180),K-TI(180),NA-TI(180)
L1621925-04A	Glass 120ml/4oz unpreserved	Α	N/A	4.0	Υ	Absent	NYTCL-8270(14),TS(7)
L1621925-05A	Metals Only - Glass 60mL/2oz unp	A	N/A	4.0	Y	Absent	BE-TI(180),AS-TI(180),BA-TI(180),AG-TI(180),AL-TI(180),CR-TI(180),NI-TI(180),TL-TI(180),TS(7),CU-TI(180),PB-TI(180),SB-TI(180),SE-TI(180),CO-TI(180),V-TI(180),FE-TI(180),HG-T(28),MG-TI(180),MN-TI(180),CA-TI(180),CD-TI(180),K-TI(180),K-TI(180),CA-TI(180),NA-TI(180)
L1621925-06A	Glass 120ml/4oz unpreserved	Α	N/A	4.0	Υ	Absent	NYTCL-8270(14),TS(7)
L1621925-07A	Metals Only - Glass 60mL/2oz unp	A	N/A	4.0	Y	Absent	BE-TI(180),AS-TI(180),BA-TI(180),AG-TI(180),AC-TI(180),AL-TI(180),CR-TI(180),NI-TI(180),TL-TI(180),TS(7),CU-TI(180),PB-TI(180),SB-TI(180),SE-TI(180),CO-TI(180),V-TI(180),FE-TI(180),HG-T(28),MG-TI(180),MN-TI(180),CA-TI(180),CD-TI(180),K-TI(180),NA-TI(180)

Lab Number: L1621925

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209 Report Date: 08/12/16

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1621925-08A	Vial MeOH preserved	Α	N/A	4.0	Υ	Absent	NYTCL-8260HLW(14)
L1621925-08B	Vial water preserved	Α	N/A	4.0	Υ	Absent	NYTCL-8260HLW(14)
L1621925-08C	Vial water preserved	Α	N/A	4.0	Υ	Absent	NYTCL-8260HLW(14)
L1621925-08D	Plastic 2oz unpreserved for TS	Α	N/A	4.0	Υ	Absent	TS(7)
L1621925-09A	Vial MeOH preserved	Α	N/A	4.0	Υ	Absent	NYTCL-8260HLW(14)
L1621925-09B	Vial water preserved	Α	N/A	4.0	Υ	Absent	NYTCL-8260HLW(14)
L1621925-09C	Vial water preserved	Α	N/A	4.0	Υ	Absent	NYTCL-8260HLW(14)
L1621925-09D	Plastic 2oz unpreserved for TS	Α	N/A	4.0	Υ	Absent	TS(7)
L1621925-10A	Vial MeOH preserved	Α	N/A	4.0	Υ	Absent	NYTCL-8260HLW(14)
L1621925-10B	Vial water preserved	Α	N/A	4.0	Υ	Absent	NYTCL-8260HLW(14)
L1621925-10C	Vial water preserved	Α	N/A	4.0	Υ	Absent	NYTCL-8260HLW(14)
L1621925-10D	Plastic 2oz unpreserved for TS	Α	N/A	4.0	Υ	Absent	TS(7)

Project Name:DESTINY-EMBASSY SUITESLab Number:L1621925Project Number:15209Report Date:08/12/16

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: DU Report with 'J' Qualifiers

Project Name:DESTINY-EMBASSY SUITESLab Number:L1621925Project Number:15209Report Date:08/12/16

Data Qualifiers

- reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name:DESTINY-EMBASSY SUITESLab Number:L1621925Project Number:15209Report Date:08/12/16

REFERENCES

1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Published Date: 8/5/2016 11:25:56 AM

ID No.:17873

Revision 7

Alpha Analytical, Inc.
Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Certification Information

Page 1 of 1

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; 4-Ethyltoluene, Azobe

Tetramethylbenzene: 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide **EPA 9050A:** NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

SM 2540D: TSS EPA 3005A NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form Pre-Qualtrax Document ID: 08-113

ДІРНА	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker V Tonawanda, NY 14150: 275 Co	Vay	05	Pag	e of 2			Rec'd Lab	7	115	//6	5		ALPHA Job# (1621975	
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information					Deliv	erable/	s						Billing Information	
TEL: 508-898-9220	TEL: 508-822-9300	Project Name: Dest	m3-cm	bassy	2 who		ТП	ASP-	-A			ASP-	В		Same as Client Info	
FAX: 508-898-9193	FAX: 508-822-3288	Δ.	aldre	DIVIA	Control		1 戸		S (1 Fil	e)		EQul		Eile)	PO#	
CON 11.0				101			$+ \vdash$	20		٥,			O () .		""	
Client Information		Project # 1520 9						Othe			0.00		-			
Client: Sockra 8	Lycomorph	(Use Project name as Pr	oject#)				Regu	ulatory	Requir	emer	nt				Disposal Site Information	
Address: 14 Bot	sh Aroundly	Project Manager: Tro	or Ped	OA.				NY TO	ogs			NY Pa	ırt 375		Please identify below location of	
		ALPHAQuote #:			- a-6-5	Jet garde	1 🗆	AWQ	Standard	ds		NY CF	P-51		applicable disposal facilities.	
Phone: 5 (8-78)	2780-6	Turn-Around Time						NY Re	estricted	Use		Other			Disposal Facility:	
Fax:		Standard	d 🗌	Due Date:			\Box	NY Ur	restricte	d Use	Э				□ NJ □ NY	
Email: France	Sandage Los	-		# of Days:	04.	EDANI I		NYC S	Sewer Di	schar	ae				Other:	
				" o. Dayo.	3 da		ANA	LYSIS			J -	ar office have been	25 to 1000		Sample Filtration	T
These samples have b						0									Sample Filtration	0
Other project specific	requirements/comm	ients:					iff racore		2						Done	t
1							B	2	the Park						Lab to do	a
							4	6	9						Preservation	
Please specify Metals	or TAL.						الإ	83	2						Lab to do	В
							1)	1,	-						(Please Specify below)	0
70 000 1000 1000 1000	T		T 0.11			1	1	13	F						(Flease Specify below)	I +
ALPHA Lab ID	Sa	imple ID	Colle	ection	Sample	Sampler's	0	1	19							1
(Lab Use Only)			Date	Time	Matrix	Initials	7	OJ	1						Sample Specific Comments	е
2/425-01	1 2		7/13	15:00	Soil	KO	X									
Q	17		7//3	3:40 PM		KO		X								
3	13B		7113	3:40PM	80.1	10			$\overline{}$					\vdash		
									$\overline{}$	-	\rightarrow			-	+	_
24	14		7113	08,00	Soil	Ko				\dashv	\rightarrow			├		
05			7/13	08:00	50,1	FO			\times							
06	15		713	MA 60.00	Sil	(0)		\times		- 1						
07	5B		7/13	MAWO	1.02	(1)			\sim					1		
03	30		7/13	3.40PY	Soil	100						6	33-	4		
00	F		7114						-	-			0.00		 	_
- 34	<u>\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ </u>			11.30 HH	Soil	100	\rightarrow		_	-	-	-		_	 	
10	18		17/14	13:00	80:1	KO	X			_						
Preservative Code: A = None	Container Code P = Plastic	Westboro: Certification N	o: MA935		Con	tainer Type	1		1						Please print clearly, legibly	
B = HCl	A = Amber Glass	Mansfield: Certification N	o: MA015		Con	italliel Type	V	A	A			- 1			and completely. Samples ca	
C = HNO ₃	V = Vial							7							not be logged in and	
$D = H_2SO_4$	G = Glass				F	reservative	F	A	X						turnaround time clock will no	
E = NaOH	B = Bacteria Cup				tar.		1	•		-					start until any ambiguities ar	
F = MeOH	C = Cube O = Other	Relinquished I	Ву:	Date/		01	Receiv	ed By:				Date/	Time		resolved. BY EXECUTING	
$G = NaHSO_4$ $H = Na_2S_2O_3$	E = Encore	dista X.R.	Indl	7/14	7:30	Paler	aff	rese	AK	76	7-14	1-11	5 17	7:70	THIS COC, THE CLIENT	
K/E = Zn Ac/NaOH	D = BOD Bottle	RINT GLINE		1	-	ho		42.2	eres	_	1/1	1160	11	20	HAS READ AND AGREES TO BE BOUND BY ALPHA'S	
O = Other		had been			-	1/20	CE	- Carl	L.C.S.	1	(11)	110	2100	10	TERMS & CONDITIONS.	J
						/			-1	r		_			(See reverse side.)	
Form No: 01-25 HC (rev. 3	0-Sept-2013)								0						(======================================	

ANALYTICAL REPORT

Lab Number: L1623981

Client: Spectra Environmental Group

19 British American Blvd.

Latham, NY 12110

ATTN: Frank Peduto
Phone: (518) 782-0882

Project Name: EMBASSY SUITES-DESTINY

Project Number: 15209 Report Date: 08/03/16

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:08031616:07

Project Name: EMBASSY SUITES-DESTINY

Project Number: 15209

Lab Number:

L1623981

Report Date:

08/03/16

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1623981-01	10 SAND	SOIL	SYRACUSE, SITE 7	07/21/16 11:30	07/22/16

Project Name: EMBASSY SUITES-DESTINY Lab Number: L1623981

Project Number: 15209 Report Date: 08/03/16

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any guestions.

Serial_No:08031616:07

Project Name: EMBASSY SUITES-DESTINY Lab Number: L1623981
Project Number: 15209 Report Date: 08/03/16

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 08/03/16

Sma I Iry Lura L Troy

ORGANICS

PCBS

Serial_No:08031616:07

Project Name: EMBASSY SUITES-DESTINY Lab Number: L1623981

Project Number: 15209 Report Date: 08/03/16

SAMPLE RESULTS

Lab ID: L1623981-01 Client ID: 10 SAND

Sample Location: SYRACUSE, SITE 7

Matrix: Soil
Analytical Method: 1,8082A
Analytical Date: 08/03/16 07:58

Analyst: JA Percent Solids: 76% Date Collected: 07/21/16 11:30

Date Received: 07/22/16

Field Prep: Not Specified

Extraction Method: EPA 3546

Extraction Date: 08/02/16 01:54

Cleanup Method: EPA 3665A

Cleanup Date: 08/02/16

Cleanup Method: EPA 3660B

Cleanup Date: 08/03/16

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC	- Westborough Lab						
Aroclor 1016	ND		mg/kg	0.042	0.003	1	Α
Aroclor 1221	ND		mg/kg	0.042	0.004	1	Α
Aroclor 1232	ND		mg/kg	0.042	0.005	1	Α
Aroclor 1242	ND		mg/kg	0.042	0.005	1	Α
Aroclor 1248	ND		mg/kg	0.042	0.004	1	Α
Aroclor 1254	ND		mg/kg	0.042	0.003	1	Α
Aroclor 1260	ND		mg/kg	0.042	0.003	1	Α
Aroclor 1262	ND		mg/kg	0.042	0.002	1	Α
Aroclor 1268	ND		mg/kg	0.042	0.006	1	Α
PCBs, Total	ND		mg/kg	0.0419	0.00208	1	Α

	Acceptance							
Surrogate	% Recovery	Qualifier	Criteria	Column				
2,4,5,6-Tetrachloro-m-xylene	71		30-150	Α				
Decachlorobiphenyl	92		30-150	Α				
2,4,5,6-Tetrachloro-m-xylene	79		30-150	В				
Decachlorobiphenyl	72		30-150	В				

L1623981

Lab Number:

Project Name: EMBASSY SUITES-DESTINY

Project Number: 15209 Report Date: 08/03/16

Method Blank Analysis

Method Blank Analysis

Batch Quality Control

Analytical Method: 1,8082A Analytical Date: 08/02/16 10:35

Analyst: JA

Extraction Method: EPA 3546
Extraction Date: 08/02/16 01:54
Cleanup Method: EPA 3665A
Cleanup Date: 08/02/16
Cleanup Method: EPA 3660B
Cleanup Date: 08/02/16

Parameter	Result	Qualifier	Units		RL	MDL	Column
Polychlorinated Biphenyls by GC -	Westborough	Lab for s	ample(s):	01	Batch:	WG919688-1	
Aroclor 1016	ND		mg/kg	0	.033	0.003	А
Aroclor 1221	ND		mg/kg	0	.033	0.003	Α
Aroclor 1232	ND		mg/kg	0	.033	0.004	Α
Aroclor 1242	ND		mg/kg	0	.033	0.004	Α
Aroclor 1248	ND		mg/kg	0	.033	0.003	Α
Aroclor 1254	ND		mg/kg	0	.033	0.003	Α
Aroclor 1260	ND		mg/kg	0	.033	0.002	Α
Aroclor 1262	ND		mg/kg	0	.033	0.002	Α
Aroclor 1268	ND		mg/kg	0	.033	0.005	Α
PCBs, Total	ND		mg/kg	0.	0325	0.00161	Α

			Acceptance				
Surrogate	%Recovery	Qualifier	Criteria	Column			
2,4,5,6-Tetrachloro-m-xylene	70		30-150	А			
Decachlorobiphenyl	73		30-150	Α			
2,4,5,6-Tetrachloro-m-xylene	70		30-150	В			
Decachlorobiphenyl	68		30-150	В			

Lab Control Sample Analysis Batch Quality Control

Project Name: EMBASSY SUITES-DESTINY

Project Number: 15209

Lab Number:

L1623981

Report Date:

08/03/16

Parameter	LCS %Recoverv	Qual	CSD coverv	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Polychlorinated Biphenyls by GC - Westbo					WG919688-3	THI D	<u> </u>		Column
Aroclor 1016	86		96		40-140	11		50	А
Aroclor 1260	77		81		40-140	5		50	А

	LCS	LCS			Acceptance		
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	Column	
2,4,5,6-Tetrachloro-m-xylene	67		76		30-150	А	
Decachlorobiphenyl	71		77		30-150	Α	
2,4,5,6-Tetrachloro-m-xylene	67		76		30-150	В	
Decachlorobiphenyl	67		73		30-150	В	

INORGANICS & MISCELLANEOUS

Serial_No:08031616:07

Project Name: EMBASSY SUITES-DESTINY Lab Number: L1623981

Project Number: 15209 Report Date: 08/03/16

SAMPLE RESULTS

Lab ID: Date Collected: 07/21/16 11:30 L1623981-01

10 SAND Client ID: Date Received: 07/22/16 Sample Location: SYRACUSE, SITE 7

Not Specified Field Prep: Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	76.0		%	0.100	NA	1	-	07/24/16 09:36	121,2540G	VB

Lab Duplicate Analysis
Batch Quality Control

Project Name: EMBASSY SUITES-DESTINY

Project Number: 15209

Lab Number:

L1623981

Report Date:

08/03/16

Parameter	Native Sample	Duplicate Sa	mple Units	RPD	Qual RPD Limits
General Chemistry - Westborough Lab Associated samp	ole(s): 01 QC Batch ID:	WG916462-1	QC Sample: L162270	00-01 Clie	ent ID: DUP Sample
Solids, Total	92.3	92.2	%	0	20

Serial_No:08031616:07

Project Name: EMBASSY SUITES-DESTINY Lab Number: L1623981

Project Number: 15209 Report Date: 08/03/16

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information Custody Seal

Cooler

A Absent

Container Information				Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1623981-01A	Glass 120ml/4oz unpreserved	Α	N/A	2.7	Υ	Absent	NYTCL-8082(14)

Project Name: EMBASSY SUITES-DESTINY Lab Number: L1623981
Project Number: 15209 Report Date: 08/03/16

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: DU Report with 'J' Qualifiers

Project Name:EMBASSY SUITES-DESTINYLab Number:L1623981Project Number:15209Report Date:08/03/16

Data Qualifiers

- reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Serial_No:08031616:07

Project Name:EMBASSY SUITES-DESTINYLab Number:L1623981Project Number:15209Report Date:08/03/16

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:08031616:07

Published Date: 2/3/2016 10:23:10 AM

ID No.:17873

Revision 6

Page 1 of 1

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

EPA 524.2: 1,2-Dibromo-3-chloropropane, 1,2-Dibromoethane, m/p-xylene, o-xylene

EPA 624: 2-Butanone (MEK), 1,4-Dioxane, tert-Amylmethyl Ether, tert-Butyl Alcohol, m/p-xylene, o-xylene

EPA 625: Aniline, Benzoic Acid, Benzyl Alcohol, 4-Chloroaniline, 3-Methylphenol, 4-Methylphenol.

EPA 1010A: NPW: Ignitability

EPA 6010C: NPW: Strontium; SCM: Strontium

EPA 8151A: NPW: 2,4-DB, Dicamba, Dichloroprop, MCPA, MCPP; SCM: 2,4-DB, Dichloroprop, MCPA, MCPP

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene, Isopropanol; SCM: Iodomethane (methyl iodide), Methyl methacrylate

(soil); 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Pentachloronitrobenzene, 1-Methylnaphthalene, Dimethylnaphthalene, 1,4-Diphenylhydrazine; SCM: Pentachloronitrobenzene, 1-

Methylnaphthalene, Dimethylnaphthalene, 1,4-Diphenylhydrazine.

EPA 9010: NPW: Amenable Cyanide Distillation, Total Cyanide Distillation EPA 9038: NPW: Sulfate

EPA 9050A: NPW: Specific Conductance EPA 9056: NPW: Chloride, Nitrate, Sulfate

EPA 9065: NPW: Phenols EPA 9251: NPW: Chloride SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

EPA 8270D: NPW: Biphenyl; SCM: Biphenyl, Caprolactam EPA 8270D-SIM Isotope Dilution: SCM: 1,4-Dioxane

SM 2540D: TSS

SM2540G: SCM: Percent Solids EPA 1631E: SCM: Mercury EPA 7474: SCM: Mercury

EPA 8081B: NPW and SCM: Mirex, Hexachlorobenzene.

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA 8270-SIM: NPW and SCM: Alkylated PAHs.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene, n-Butylbenzene, n-Propylbenzene, sec-Butylbenzene, tert-Butylbenzene.

Biological Tissue Matrix: 8270D-SIM; 3050B; 3051A; 7471B; 8081B; 8082A; 6020A: Lead; 8270D: bis(2-ethylhexyl)phthalate, Butylbenzylphthalate, Diethyl phthalate, Dimethyl phthalate, Di-n-butyl phthalate, Di-n-octyl phthalate, Fluoranthene, Pentachlorophenol.

The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility:

Drinking Water

EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; EPA 200.7: Ba,Be,Ca,Cd,Cr,Cu,Na; EPA 245.1: Mercury;

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT.

Non-Potable Water

EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn;

EPA 200.7: Al,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,Tl,V,Zn;

EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC, SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F,

EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

L1623981 ER 8/2/16

Дірна	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitn Albany, NY 12205: 14 Walker Tonawanda, NY 14150: 275 C	Way	105		ge of 2			e Red		21.	23 /	116		ALPHA Job#	
Westborough, MA 01581	Mansfield, MA 02048	Project Information					De	iverali	Noe		/,				11622974	
8 Walkup Dr. TEL: 508-898-9220	320 Forbes Blvd TEL: 508-822-9300		a secu co	17-68 7	DECT	-u/V	Tr	AS			Г	ASF	D.R		Billing Information Same as Client Info	
FAX: 508-898-9193	FAX: 508-822-3288	Project Location:	S PECTION	, site	11051 M	<i>/N /</i>	$\dashv \vdash$		ulS (1	Eilo)		_	ulS (4	E1)a\	77	
Client Information		Project # (5209	Lyrocuse	, SITE			ᅱ늗			i ne)	L_	ן בענ	110 (4	riie)	PO#	
Proceedings of the control of the co	Favirannant	(Use Project name as P	Project #1			***************************************	Rea		y Req	dicam	evet	-900	Constitution of the State of th		Disposal Site Information	
Address: 19 But	ish America Blv		rank Pe	1. In			T		rogs	GII CI II] NY P	art 375		7	100
Latha	m NV 17.110	ALPHAQuote #:	ans 19	2410			\exists	_	2 Stand	lards		_	:P-51		Please identify below location of applicable disposal facilities	
Phone: 5/8-78	m, NY 12110 2-0882	Turn-Around Time		100	The state of			_	Restrict			Othe			Disposal Facility:	
Fax:		Standar	d 🔲	Due Date	r:	A SHARE MANAGEMENT	1 -	NY	Jnrestri	cted U	se T	NYT		808	1	
Email: Forduto@	speckreenv. Cal	Rush (only if pre approved	(t) 🔀		2 'DA'	YTAT	IF	-	Sewer			1411	OL-	1	Other:	- 1
These samples have b	peen previously analy:	ced by Alpha					ANA	LYSI	- SECTION AND THE		3			/	Sample Filtration	7:
Other project specific	c requirements/com	nents:	· · · · · · · · · · · · · · · · · · ·					T	Tī	1 3		Т	T		Done	0
23981-01					·			Forth Merries	1	-8240015x35 12	82600/5035				Lab to do	a
							18	l E	2540	13	1 7	1 1	4		Preservation	1
Please specify Metals	s or TAL						87.70	春	1	. 8	1				Lab to do	В
								1		3	20				(Please Specify below)	0
ALPHA Lab ID		ample ID	Coll	ection	Sample	Sampler's	1 3	1 SE	ما	्य	1					1
(Lab Use Only)	J.	imple 10	Date	Time	Matrix	Initials	SADE	1	1	Vacs	Loc		***************************************		Sample Specific Comments	1
22974 -d1		7	17/21/16	16:30	SOIL	Yw	1		11		11					
-02	5)A	7/2/16	16135	50/L	Yw	i		11	1 1	ff	1				\dashv
V -03	10	SAND	7/21/16	11:30	SOIL	Yw	1		11,	2		x				\dashv
			17 7				7	14	 		1		 			\dashv
															****	\dashv
																\dashv
																7
													-			7
																\dashv
																1
Preservative Code: A = None	Container Code P = Plastic	Westboro: Certification No	o: MA935		Con	toinos Tuna									Please print clearly, legibly	\dashv
B = HCI	A = Amber Glass	Mansfield: Certification No	o: MA015		Con	tainer Type	A	A	P	64	AV				and completely. Samples car	n
	V = Vial G = Glass				Б	roconstitu	A	Λ	Δ	^	_				not be logged in and	
E = NaOH	B = Bacteria Cup				r	reservative	A	A	A	0	F		4	ı	turnaround time clock will not start until any ambiguities are	
	C = Cube O = Other	Relinquished B	y:	Date/T	ime	O. F	eceiv	ed By	:			Date/	Time	\neg	resolved. BY EXECUTING	3
H = Na ₂ S ₂ O ₃	E = Encore	March With		7/22/16/	17:15	Palet	He	Luc	An	L	7.2	2-16		1/5	THIS COC, THE CLIENT	
VE - ZII ACINAUN	D = BOD Bottle	Mobilet Flesie	,	1111		Male	PI	M	mg.i.kil Ba			3//6			HAS READ AND AGREES TO BE BOUND BY ALPHA'S	
O=Other H2C		V V - V					project line	1			a	418		+-	TERMS & CONDITIONS.	
Form No: 01-25 HC (rev. 30-	-Sept-2013)													\neg	(See reverse side.)	

NEW YORK Service Centers Mahwah, NJ 07430: 35 Whitney Rd, Suite 5 Date Rec'd	
CHAIN OF Albany, NY 12205: 14 Walker Way CUSTODY CUSTODY CUSTODY CHAIN OF Albany, NY 12205: 14 Walker Way Tonawanda, NY 14150: 275 Cooper Ave, Suite 105 ALPHA Job # Library ALPHA Job # Library ALPHA Job #	24
Westborough, MA 01581 Mansfield, MA 02048 Project Information Deliverables Billing Information	on
o veakup of. Szo i oldes blyd	Client Info
TEL: 508-898-9220	
Client Information Project # (5309	
Client: Spectra Environment (Use Project name as Project #) Regulatory Requirement Disposal Site In	formation
Address: 19 British America Blvd Project Manager: Frank Peduto NY TOGS NY Part 375 Please identify bel	
Latham A/V /2.1/0 ALPHAQuote #: AWQ Standards NY CP-51 applicable dispose	
Latham NY 12110 ALPHAQuote #: AWQ Standards NY CP-51 applicable dispose Phone: 518-782-0882 Turn-Around Time NY Restricted Use Other Disposal Facility:	
Fax: Due Date: NY Unrestricted Use NYTCL-8082	NY
Email: Forduta@ spectraenv.com Rush (only if pre approved) # of Days: 2 Day TAT NYC Sewer Discharge Other:	
These samples have been previously analyzed by Alpha ANALYSIS ANALYSIS Sample Filtration	on T
Other project specific requirements/comments:	0
	t a
23981-01 Please specify Metals or TAI	1
23981-01 Please specify Metals or TAL.	В
(Please Specify	0
(Please Specify	(below)
ALPHA Lab ID (Lab Use Only) Sample ID Collection Date Time Matrix Initials (Please Specify Initials Initial	1
	Comments
22974 -a 9 7/21/16 16:30 501L YW 11	
-02 9A 7/21/16 /6135 501L YW 11	
10 SAND 17/21/16 11:30 SOIL YW 1 1 1 2 1 X	
Preservative Code: Container Code A = None P = Plastic Westboro: Certification No: MA935 Container Type A A C C A A C Please print cl	learly legibly
	y. Samples can
C = HNO ₃ V = Vial not be logged	
D = Destruit Our	ne clock will not ambiguities are
F = MeOH C = Cube Relinquished By: Date/Time Received By: Date/Time resolved, BY E	
G = NarisO ₄ O - United This COC, The Third Coc, The Third Coc, The This COC, The This COC, The Third Coc, The This COC, The Third Coc, Th	
K/E = Zn Ac/NaOH O = Other H20 D = BOD Bottle TO BE BOUNT TERMS & CO	D BY ALPHA'S NDITIONS.
Form No: 01-25 HC (rev. 30-Sept-2013) (See reverse s	

ANALYTICAL REPORT

Lab Number: L1629713

Client: Spectra Environmental Group

15209

19 British American Blvd.

Latham, NY 12110

ATTN: Joe Krikorian
Phone: (518) 782-0882

Project Name: DESTINY

Report Date: 10/13/16

Project Number:

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: DESTINY **Project Number:** 15209

Lab Number: Report Date: L1629713

Report Date: 10/13/16

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1629713-01	SP-MW-37	WATER	SYRACUSE, NY	09/19/16 10:50	09/20/16
L1629713-02	SP-MW-23	WATER	SYRACUSE, NY	09/19/16 10:20	09/20/16
L1629713-03	SP-MW-38	WATER	SYRACUSE, NY	09/19/16 12:20	09/20/16
L1629713-04	SP-MW-39	WATER	SYRACUSE, NY	09/19/16 11:27	09/20/16
L1629713-05	SP-MW-21	WATER	SYRACUSE, NY	09/19/16 12:45	09/20/16
L1629713-06	SP-MW-40	WATER	SYRACUSE, NY	09/19/16 15:05	09/20/16
L1629713-07	SP-MW-22	WATER	SYRACUSE, NY	09/19/16 14:53	09/20/16
L1629713-08	SP-MW-20	WATER	SYRACUSE, NY	09/19/16 16:15	09/20/16
L1629713-09	SP-MW-14SR	WATER	SYRACUSE, NY	09/19/16 16:55	09/20/16
L1629713-10	DUP	WATER	SYRACUSE, NY	09/19/16 12:00	09/20/16
L1629713-11	SP-MW-13S	WATER	SYRACUSE, NY	09/20/16 09:15	09/20/16
L1629713-12	SP-MW-44	WATER	SYRACUSE, NY	09/20/16 09:07	09/20/16
L1629713-13	SP-MW-41	WATER	SYRACUSE, NY	09/20/16 10:20	09/20/16
L1629713-14	HCMW-1-I	WATER	SYRACUSE, NY	09/20/16 11:25	09/20/16
L1629713-15	HCMW-1-SI	WATER	SYRACUSE, NY	09/20/16 11:35	09/20/16
L1629713-16	HCMW-1-S	WATER	SYRACUSE, NY	09/20/16 12:40	09/20/16
L1629713-17	SUN-MW-60	WATER	SYRACUSE, NY	09/20/16 12:30	09/20/16

Project Name:DESTINYLab Number:L1629713Project Number:15209Report Date:10/13/16

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:DESTINYLab Number:L1629713Project Number:15209Report Date:10/13/16

Case Narrative (continued)

Report Submission

This report replaces the report issued September 28, 2016. At the client's request, the Volatile Organics, Semivolatile Organics, and Metals reporting lists have changed.

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

L1629713-08 and -13: The sample has elevated detection limits due to the dilution required by the sample matrix (foam).

Semivolatile Organics by SIM

L1629713-05: The sample has elevated detection limits due to the dilution required by the sample matrix.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 10/13/16

(600, Skulow Kelly Stenstrom

ORGANICS

VOLATILES

L1629713

Project Name: DESTINY

Project Number: 15209

SAMPLE RESULTS

Report Date: 10/13/16

Lab Number:

Lab ID: L1629713-01 D

Client ID: SP-MW-37 Sample Location: SYRACUSE, NY

Matrix: Water Analytical Method: 1,8260C Analytical Date: 09/27/16 18:55

Analyst: PD Date Collected: 09/19/16 10:50

Date Received: 09/20/16 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	6.2	1.8	2.5
1,1-Dichloroethane	ND		ug/l	6.2	1.8	2.5
Chloroform	ND		ug/l	6.2	1.8	2.5
Carbon tetrachloride	ND		ug/l	1.2	0.34	2.5
1,2-Dichloropropane	ND		ug/l	2.5	0.34	2.5
Dibromochloromethane	ND		ug/l	1.2	0.37	2.5
1,1,2-Trichloroethane	ND		ug/l	3.8	1.2	2.5
Tetrachloroethene	ND		ug/l	1.2	0.45	2.5
Chlorobenzene	ND		ug/l	6.2	1.8	2.5
Trichlorofluoromethane	ND		ug/l	6.2	1.8	2.5
1,2-Dichloroethane	ND		ug/l	1.2	0.33	2.5
1,1,1-Trichloroethane	ND		ug/l	6.2	1.8	2.5
Bromodichloromethane	ND		ug/l	1.2	0.48	2.5
trans-1,3-Dichloropropene	ND		ug/l	1.2	0.41	2.5
cis-1,3-Dichloropropene	ND		ug/l	1.2	0.36	2.5
1,3-Dichloropropene, Total	ND		ug/l	1.2	0.36	2.5
1,1-Dichloropropene	ND		ug/l	6.2	1.8	2.5
Bromoform	ND		ug/l	5.0	1.6	2.5
1,1,2,2-Tetrachloroethane	ND		ug/l	1.2	0.42	2.5
Benzene	53		ug/l	1.2	0.40	2.5
Toluene	ND		ug/l	6.2	1.8	2.5
Ethylbenzene	ND		ug/l	6.2	1.8	2.5
Chloromethane	ND		ug/l	6.2	1.8	2.5
Bromomethane	ND		ug/l	6.2	1.8	2.5
Vinyl chloride	ND		ug/l	2.5	0.18	2.5
Chloroethane	ND		ug/l	6.2	1.8	2.5
1,1-Dichloroethene	ND		ug/l	1.2	0.42	2.5
trans-1,2-Dichloroethene	ND		ug/l	6.2	1.8	2.5
Trichloroethene	1.7		ug/l	1.2	0.44	2.5
1,2-Dichlorobenzene	ND		ug/l	6.2	1.8	2.5

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: L1629713-01 D

Client ID: SP-MW-37 Sample Location: SYRACUSE, NY Date Collected: 09/19/16 10:50

Date Received: 09/20/16
Field Prep: Not Specified

oampio 200alioni				1 1014 1 10	٦,	rtot opoomoa	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboroug	ıh Lab						
1,3-Dichlorobenzene	ND		ug/l	6.2	1.8	2.5	
1,4-Dichlorobenzene	ND		ug/l	6.2	1.8	2.5	
Methyl tert butyl ether	90		ug/l	6.2	1.8	2.5	
p/m-Xylene	1.9	J	ug/l	6.2	1.8	2.5	
o-Xylene	ND		ug/l	6.2	1.8	2.5	
cis-1,2-Dichloroethene	ND		ug/l	6.2	1.8	2.5	
1,2-Dichloroethene, Total	ND		ug/l	6.2	1.8	2.5	
Dibromomethane	ND		ug/l	12	2.5	2.5	
1,2,3-Trichloropropane	ND		ug/l	6.2	1.8	2.5	
Acrylonitrile	ND		ug/l	12	3.8	2.5	
Diisopropyl Ether	78		ug/l	5.0	1.6	2.5	
Tert-Butyl Alcohol	110		ug/l	25	3.5	2.5	
Styrene	ND		ug/l	6.2	1.8	2.5	
Dichlorodifluoromethane	ND		ug/l	12	2.5	2.5	
Acetone	8.7	J	ug/l	12	3.6	2.5	
Carbon disulfide	ND		ug/l	12	2.5	2.5	
2-Butanone	ND		ug/l	12	4.8	2.5	
4-Methyl-2-pentanone	ND		ug/l	12	2.5	2.5	
2-Hexanone	ND		ug/l	12	2.5	2.5	
Bromochloromethane	ND		ug/l	6.2	1.8	2.5	
2,2-Dichloropropane	ND		ug/l	6.2	1.8	2.5	
1,2-Dibromoethane	ND		ug/l	5.0	1.6	2.5	
1,3-Dichloropropane	ND		ug/l	6.2	1.8	2.5	
1,1,1,2-Tetrachloroethane	ND		ug/l	6.2	1.8	2.5	
Bromobenzene	ND		ug/l	6.2	1.8	2.5	
n-Butylbenzene	ND		ug/l	6.2	1.8	2.5	
sec-Butylbenzene	2.2	J	ug/l	6.2	1.8	2.5	
tert-Butylbenzene	ND		ug/l	6.2	1.8	2.5	
o-Chlorotoluene	ND		ug/l	6.2	1.8	2.5	
p-Chlorotoluene	ND		ug/l	6.2	1.8	2.5	
1,2-Dibromo-3-chloropropane	ND		ug/l	6.2	1.8	2.5	
Hexachlorobutadiene	ND		ug/l	6.2	1.8	2.5	
Isopropylbenzene	7.8		ug/l	6.2	1.8	2.5	
p-Isopropyltoluene	ND		ug/l	6.2	1.8	2.5	
Naphthalene	ND		ug/l	6.2	1.8	2.5	
n-Propylbenzene	ND		ug/l	6.2	1.8	2.5	
1,2,3-Trichlorobenzene	ND		ug/l	6.2	1.8	2.5	
1,2,4-Trichlorobenzene	ND		ug/l	6.2	1.8	2.5	
1,3,5-Trimethylbenzene	ND		ug/l	6.2	1.8	2.5	

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: L1629713-01 D

Client ID: SP-MW-37 Sample Location: SYRACUSE, NY Date Collected: 09/19/16 10:50

Date Received: 09/20/16 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - We	stborough Lab						
1,2,4-Trimethylbenzene	ND		ug/l	6.2	1.8	2.5	
Ethyl-Tert-Butyl-Ether	ND		ug/l	6.2	1.8	2.5	
Tertiary-Amyl Methyl Ether	0.94	J	ug/l	5.0	0.70	2.5	
1,4-Dioxane	ND		ug/l	620	150	2.5	
Freon-113	ND		ug/l	6.2	1.8	2.5	
Tetrahydrofuran	ND		ug/l	12	3.8	2.5	
Ethyl ether	ND		ug/l	6.2	1.8	2.5	
trans-1,4-Dichloro-2-butene	ND		ug/l	6.2	1.8	2.5	

Tentatively Identified Compounds				
Total TIC Compounds	292	J	ug/l	2.5
Benzene, Propyl-	14.5	NJ	ug/l	2.5
Pentane, 2,3,3-trimethyl-	6.65	NJ	ug/l	2.5
Unknown	10.7	J	ug/l	2.5
Unknown	168	J	ug/l	2.5
Pentane, 2-methyl-	6.02	NJ	ug/l	2.5
Butane, 2-Methyl-	7.22	NJ	ug/l	2.5
Unknown Aromatic	6.82	J	ug/l	2.5
Unknown Benzene	6.25	J	ug/l	2.5
Indane	37.1	NJ	ug/l	2.5
Cyclopentane, Methyl-	11.6	NJ	ug/l	2.5
Unknown Aromatic	17.0	J	ug/l	2.5

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	108		70-130	
Toluene-d8	101		70-130	
4-Bromofluorobenzene	99		70-130	
Dibromofluoromethane	101		70-130	

Project Name: DESTINY

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1629713

Report Date: 10/13/16

Lab ID: L1629713-02

Client ID: SP-MW-23 Sample Location: SYRACUSE, NY

Matrix: Water Analytical Method: 1,8260C Analytical Date: 09/27/16 16:14

Analyst: PD Date Collected: 09/19/16 10:20 Date Received: 09/20/16

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - We	estborough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1	
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Trichloroethene	0.53		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1	

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 09/19/16 10:20

Client ID: SP-MW-23 Date Received: 09/20/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

oampio 200alioni - 0111/10002, 111					٦,	140t Opcomod
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Diisopropyl Ether	ND		ug/l	2.0	0.65	1
Tert-Butyl Alcohol	ND		ug/l	10	1.4	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	8.4		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	1.1	J	ug/l	2.5	0.70	1
tert-Butylbenzene	1.4	J	ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 09/19/16 10:20

Client ID: SP-MW-23 Date Received: 09/20/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westborou	gh Lab						
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.5	0.70	1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0	0.28	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Tetrahydrofuran	ND		ug/l	5.0	1.5	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Tentatively Identified Compounds				
Total TIC Compounds	226	J	ug/l	1
Butane, 2,3-Dimethyl-	33.1	NJ	ug/l	1
Pentane, 2,3-dimethyl-	13.5	NJ	ug/l	1
Pentane, 2,3,3-trimethyl-	6.76	NJ	ug/l	1
Unknown	152	J	ug/l	1
Pentane, 2,4-dimethyl-	5.80	NJ	ug/l	1
Unknown Alkene	6.78	J	ug/l	1
Unknown	7.78	J	ug/l	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	118		70-130	
Toluene-d8	101		70-130	
4-Bromofluorobenzene	100		70-130	
Dibromofluoromethane	104		70-130	

L1629713

10/13/16

Project Name: Lab Number: **DESTINY**

Project Number: 15209

SAMPLE RESULTS

Date Collected: 09/19/16 12:20

Report Date:

Date Received: 09/20/16 Field Prep: Not Specified

Lab ID: L1629713-03 Client ID: SP-MW-38 Sample Location: SYRACUSE, NY

Matrix: Water Analytical Method: 1,8260C Analytical Date: 09/27/16 16:47

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	29		ug/l	0.50	0.16	1
Toluene	1.2	J	ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: L1629713-03 Date Collected: 09/19/16 12:20

Client ID: SP-MW-38 Date Received: 09/20/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

oampio 200alioni				1 1010 1 10	٦,	rtot opoomoa
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	jh Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	1.5	J	ug/l	2.5	0.70	1
p/m-Xylene	3.8		ug/l	2.5	0.70	1
o-Xylene	1.1	J	ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Diisopropyl Ether	15		ug/l	2.0	0.65	1
Tert-Butyl Alcohol	71		ug/l	10	1.4	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	8.3		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	3.4		ug/l	2.5	0.70	1
sec-Butylbenzene	4.3		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	17		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	32		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: L1629713-03 Date Collected: 09/19/16 12:20

Client ID: SP-MW-38 Date Received: 09/20/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.5	0.70	1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0	0.28	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Tetrahydrofuran	ND		ug/l	5.0	1.5	1	
Ethyl ether	2.2	J	ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Tentatively Identified Compounds				
Total TIC Compounds	289	J	ug/l	1
Unknown Benzene	14.8	J	ug/l	1
Unknown Aromatic	28.9	J	ug/l	1
Pentane, 2,3,3-trimethyl-	12.4	NJ	ug/l	1
Unknown Aromatic	17.6	J	ug/l	1
Unknown	15.5	J	ug/l	1
Butane, 2-Methyl-	11.4	NJ	ug/l	1
Cyclopentane, Methyl-	16.3	NJ	ug/l	1
Unknown Benzene	16.2	J	ug/l	1
Unknown	34.6	J	ug/l	1
Unknown Aromatic	16.8	J	ug/l	1
Pentane, 2,3-dimethyl-	9.31	NJ	ug/l	1
Unknown Aromatic	11.2	J	ug/l	1
Unknown Aromatic	8.59	J	ug/l	1
Indane	52.7	NJ	ug/l	1
Unknown	22.7	J	ug/l	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	121		70-130	
Toluene-d8	101		70-130	
4-Bromofluorobenzene	101		70-130	
Dibromofluoromethane	100		70-130	

Project Name: DESTINY

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1629713

Report Date: 10/13/16

Lab ID: L1629713-04

Client ID: SP-MW-39 Sample Location: SYRACUSE, NY

Matrix: Water Analytical Method: 1,8260C Analytical Date: 09/27/16 17:19

Analyst: PD

Date Collected:	09/19/16 11:27
Date Received:	09/20/16
Field Prep:	Not Specified

Result	Qualifier	Units	RL	MDL	Dilution Factor
borough Lab					
ND		ug/l	2.5	0.70	1
ND			2.5	0.70	1
ND			2.5	0.70	1
ND			0.50	0.13	1
ND			1.0	0.14	1
ND		ug/l	0.50	0.15	1
ND		ug/l	1.5	0.50	1
ND		ug/l	0.50	0.18	1
ND		ug/l	2.5	0.70	1
ND		ug/l	2.5	0.70	1
ND		ug/l	0.50	0.13	1
ND		ug/l	2.5	0.70	1
ND		ug/l	0.50	0.19	1
ND		ug/l	0.50	0.16	1
ND		ug/l	0.50	0.14	1
ND		ug/l	0.50	0.14	1
ND		ug/l	2.5	0.70	1
ND		ug/l	2.0	0.65	1
ND		ug/l	0.50	0.17	1
0.70		ug/l	0.50	0.16	1
ND		ug/l	2.5	0.70	1
3.0		ug/l	2.5	0.70	1
ND		ug/l	2.5	0.70	1
ND		ug/l	2.5	0.70	1
ND		ug/l	1.0	0.07	1
ND		ug/l	2.5	0.70	1
ND		ug/l	0.50	0.17	1
ND		ug/l	2.5	0.70	1
0.35	J	ug/l	0.50	0.18	1
ND		ug/l	2.5	0.70	1
	ND N	ND N	ND	ND	ND

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 09/19/16 11:27

Client ID: SP-MW-39 Date Received: 09/20/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

oampio 200alioni					٦,	rtot opoomoa
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	jh Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	6.9		ug/l	2.5	0.70	1
o-Xylene	3.3		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Diisopropyl Ether	ND		ug/l	2.0	0.65	1
Tert-Butyl Alcohol	ND		ug/l	10	1.4	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	18		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	1.1	J	ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 09/19/16 11:27

Client ID: SP-MW-39 Date Received: 09/20/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westbord	ough Lab						
1,2,4-Trimethylbenzene	2.1	J	ug/l	2.5	0.70	1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.5	0.70	1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0	0.28	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Tetrahydrofuran	ND		ug/l	5.0	1.5	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Tentatively Identified Compounds				
Total TIC Compounds	280	J	ug/l	1
Pentane, 2,3,4-trimethyl-	29.3	NJ	ug/l	1
Pentane	4.39	NJ	ug/l	1
Pentane, 2,4-dimethyl-	9.50	NJ	ug/l	1
Unknown	5.26	J	ug/l	1
Butane, 2,3-Dimethyl-	35.5	NJ	ug/l	1
Hexane, 2,4-dimethyl-	2.49	NJ	ug/l	1
Pentane, 2,3,3-trimethyl-	51.5	NJ	ug/l	1
Pentane, 2,3-dimethyl-	18.5	NJ	ug/l	1
Unknown	5.13	J	ug/l	1
Butane, 2-Methyl-	82.6	NJ	ug/l	1
Unknown	15.8	J	ug/l	1
Unknown	4.14	J	ug/l	1
Cyclopentane, Methyl-	15.6	NJ	ug/l	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	113		70-130	
Toluene-d8	100		70-130	
4-Bromofluorobenzene	101		70-130	
Dibromofluoromethane	103		70-130	

Project Name: DESTINY

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1629713

Report Date: 10/13/16

Lab ID: L1629713-05

Client ID: SP-MW-21 Sample Location: SYRACUSE, NY

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 09/27/16 17:51

Analyst: PD

Date Collected: 09/19/16 12:45

Date Received: 09/20/16 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	0.30	J	ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	0.64		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	0.84	J	ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 09/19/16 12:45

Client ID: SP-MW-21 Date Received: 09/20/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

oampio 200aiiom					۰۲.	rtot oposinou	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboroug	h Lab						
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1	
Dibromomethane	ND		ug/l	5.0	1.0	1	
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1	
Acrylonitrile	ND		ug/l	5.0	1.5	1	
Diisopropyl Ether	ND		ug/l	2.0	0.65	1	
Tert-Butyl Alcohol	3.4	J	ug/l	10	1.4	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	5.6		ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
Bromochloromethane	ND		ug/l	2.5	0.70	1	
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1	
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1	
Bromobenzene	ND		ug/l	2.5	0.70	1	
n-Butylbenzene	1.9	J	ug/l	2.5	0.70	1	
sec-Butylbenzene	3.9		ug/l	2.5	0.70	1	
tert-Butylbenzene	0.84	J	ug/l	2.5	0.70	1	
o-Chlorotoluene	ND		ug/l	2.5	0.70	1	
p-Chlorotoluene	ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	20		ug/l	2.5	0.70	1	
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1	
Naphthalene	ND		ug/l	2.5	0.70	1	
n-Propylbenzene	15		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 09/19/16 12:45

Client ID: SP-MW-21 Date Received: 09/20/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westbord	ough Lab						
1,2,4-Trimethylbenzene	1.4	J	ug/l	2.5	0.70	1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.5	0.70	1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0	0.28	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Tetrahydrofuran	ND		ug/l	5.0	1.5	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Tentatively Identified Compounds				
Total TIC Compounds	327	J	ug/l	1
Unknown Aromatic	13.6	J	ug/l	1
Butane, 2,3-Dimethyl-	52.0	NJ	ug/l	1
Unknown	6.68	J	ug/l	1
Butane, 2-Methyl-	51.1	NJ	ug/l	1
Unknown Benzene	18.7	J	ug/l	1
Pentane, 2,3,3-trimethyl-	20.0	NJ	ug/l	1
Unknown Alkane	4.24	J	ug/l	1
Unknown Benzene	18.8	J	ug/l	1
Pentane, 2,3-dimethyl-	11.7	NJ	ug/l	1
Pentane, 3-methyl-	17.4	NJ	ug/l	1
Unknown	4.35	J	ug/l	1
Unknown Benzene	4.19	J	ug/l	1
Unknown	77.8	J	ug/l	1
Pentane, 2,3,4-trimethyl-	17.6	NJ	ug/l	1
Pentane, 2,4-dimethyl-	8.48	NJ	ug/l	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	114		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	99		70-130	
Dibromofluoromethane	98		70-130	

Project Name: DESTINY

Project Number: 15209

SAMPLE RESULTS

L1629713

Lab Number:

Report Date: 10/13/16

Lab ID: L1629713-06

Client ID: SP-MW-40 Sample Location: SYRACUSE, NY

Matrix: Water Analytical Method: 1,8260C Analytical Date: 09/27/16 18:23

Analyst: PD Date Collected: 09/19/16 15:05

Date Received: 09/20/16 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - We	stborough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1	
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	0.28	J	ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Trichloroethene	ND		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1	

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: L1629713-06 Date Collected: 09/19/16 15:05

Client ID: SP-MW-40 Date Received: 09/20/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

oampio 200alioni					۰,	rtot opoomoa	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboroug	ıh Lab						
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	5.5		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1	
Dibromomethane	ND		ug/l	5.0	1.0	1	
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1	
Acrylonitrile	ND		ug/l	5.0	1.5	1	
Diisopropyl Ether	ND		ug/l	2.0	0.65	1	
Tert-Butyl Alcohol	710		ug/l	10	1.4	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	6.4		ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
Bromochloromethane	ND		ug/l	2.5	0.70	1	
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1	
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1	
Bromobenzene	ND		ug/l	2.5	0.70	1	
n-Butylbenzene	3.1		ug/l	2.5	0.70	1	
sec-Butylbenzene	14		ug/l	2.5	0.70	1	
tert-Butylbenzene	2.5		ug/l	2.5	0.70	1	
o-Chlorotoluene	ND		ug/l	2.5	0.70	1	
p-Chlorotoluene	ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	30		ug/l	2.5	0.70	1	
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1	
Naphthalene	ND		ug/l	2.5	0.70	1	
n-Propylbenzene	16		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 09/19/16 15:05

Client ID: SP-MW-40 Date Received: 09/20/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	stborough Lab						
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.5	0.70	1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0	0.28	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Tetrahydrofuran	ND		ug/l	5.0	1.5	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Tentatively Identified Compounds				
Total TIC Compounds	190	J	ug/l	1
Unknown	16.6	J	ug/l	1
Unknown	36.6	J	ug/l	1
Unknown Aromatic	5.66	J	ug/l	1
Unknown Alkene	8.71	J	ug/l	1
Unknown Benzene	9.21	J	ug/l	1
Unknown Naphthalene	5.73	J	ug/l	1
Unknown Benzene	6.97	J	ug/l	1
Unknown Benzene	16.8	J	ug/l	1
Unknown Aromatic	14.9	J	ug/l	1
Butane, 2-Methyl-	14.0	NJ	ug/l	1
Cyclopentane, Methyl-	14.6	NJ	ug/l	1
Unknown Aromatic	6.62	J	ug/l	1
Unknown Benzene	7.84	J	ug/l	1
Unknown Benzene	14.4	J	ug/l	1
Pentane, 2-methyl-	11.4	NJ	ug/l	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	112		70-130	
Toluene-d8	100		70-130	
4-Bromofluorobenzene	101		70-130	
Dibromofluoromethane	98		70-130	

Project Name: DESTINY

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1629713

Report Date: 10/13/16

Qualifier

Result

Units

RL

Lab ID: L1629713-07

Client ID: SP-MW-22 Sample Location: SYRACUSE, NY

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 09/27/16 14:15

Analyst: MS

Parameter

Date Collected: 09/19/16 14:53 Date Received: 09/20/16 Field Prep: Not Specified

MDL

Dilution Factor

Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND	ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND	ug/l	2.5	0.70	1	
Chloroform	ND	ug/l	2.5	0.70	1	
Carbon tetrachloride	ND	ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND	ug/l	1.0	0.14	1	
Dibromochloromethane	ND	ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50	1	
Tetrachloroethene	ND	ug/l	0.50	0.18	1	
Chlorobenzene	ND	ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND	ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND	ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70	1	
Bromodichloromethane	ND	ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14	1	
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14	1	
1,1-Dichloropropene	ND	ug/l	2.5	0.70	1	
Bromoform	ND	ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17	1	
Benzene	ND	ug/l	0.50	0.16	1	
Toluene	ND	ug/l	2.5	0.70	1	
Ethylbenzene	ND	ug/l	2.5	0.70	1	
Chloromethane	ND	ug/l	2.5	0.70	1	
Bromomethane	ND	ug/l	2.5	0.70	1	
Vinyl chloride	ND	ug/l	1.0	0.07	1	
Chloroethane	ND	ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND	ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70	1	
Trichloroethene	ND	ug/l	0.50	0.18	1	
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70	1	

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: L1629713-07 Date Collected: 09/19/16 14:53

Client ID: SP-MW-22 Date Received: 09/20/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

oampio 200alioni - 0111/10002, 111					۰,	riot opcomod
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Diisopropyl Ether	ND		ug/l	2.0	0.65	1
Tert-Butyl Alcohol	ND		ug/l	10	1.4	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	5.6		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 09/19/16 14:53

Client ID: SP-MW-22 Date Received: 09/20/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - We	stborough Lab						
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.5	0.70	1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0	0.28	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Tetrahydrofuran	ND		ug/l	5.0	1.5	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Tentatively Identified Compounds				
Total TIC Compounds	4.36	J	ug/l	1
Unknown Alkane	1.80	J	ug/l	1
Pentane, 2,3,4-trimethyl-	1.03	NJ	ug/l	1
Unknown Alkane	1.53	J	ug/l	1

	Acceptance					
Surrogate	% Recovery	Qualifier	Criteria			
1,2-Dichloroethane-d4	98		70-130			
Toluene-d8	98		70-130			
4-Bromofluorobenzene	100		70-130			
Dibromofluoromethane	96		70-130			

Project Name: DESTINY

Project Number: 15209

Lab ID:

SAMPLE RESULTS

L1629713

Lab Number:

Report Date: 10/13/16

D

L1629713-08

Client ID: **SP-MW-20** Sample Location: SYRACUSE, NY

Matrix: Water Analytical Method: 1,8260C Analytical Date: 09/27/16 19:27

Analyst: PD Date Collected: 09/19/16 16:15

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/l	6.2	1.8	2.5
1,1-Dichloroethane	ND		ug/l	6.2	1.8	2.5
Chloroform	ND		ug/l	6.2	1.8	2.5
Carbon tetrachloride	ND		ug/l	1.2	0.34	2.5
1,2-Dichloropropane	ND		ug/l	2.5	0.34	2.5
Dibromochloromethane	ND		ug/l	1.2	0.37	2.5
1,1,2-Trichloroethane	ND		ug/l	3.8	1.2	2.5
Tetrachloroethene	ND		ug/l	1.2	0.45	2.5
Chlorobenzene	ND		ug/l	6.2	1.8	2.5
Trichlorofluoromethane	ND		ug/l	6.2	1.8	2.5
1,2-Dichloroethane	ND		ug/l	1.2	0.33	2.5
1,1,1-Trichloroethane	ND		ug/l	6.2	1.8	2.5
Bromodichloromethane	ND		ug/l	1.2	0.48	2.5
trans-1,3-Dichloropropene	ND		ug/l	1.2	0.41	2.5
cis-1,3-Dichloropropene	ND		ug/l	1.2	0.36	2.5
1,3-Dichloropropene, Total	ND		ug/l	1.2	0.36	2.5
1,1-Dichloropropene	ND		ug/l	6.2	1.8	2.5
Bromoform	ND		ug/l	5.0	1.6	2.5
1,1,2,2-Tetrachloroethane	ND		ug/l	1.2	0.42	2.5
Benzene	0.56	J	ug/l	1.2	0.40	2.5
Toluene	ND		ug/l	6.2	1.8	2.5
Ethylbenzene	ND		ug/l	6.2	1.8	2.5
Chloromethane	ND		ug/l	6.2	1.8	2.5
Bromomethane	ND		ug/l	6.2	1.8	2.5
Vinyl chloride	ND		ug/l	2.5	0.18	2.5
Chloroethane	ND		ug/l	6.2	1.8	2.5
1,1-Dichloroethene	ND		ug/l	1.2	0.42	2.5
trans-1,2-Dichloroethene	ND		ug/l	6.2	1.8	2.5
Trichloroethene	ND		ug/l	1.2	0.44	2.5
1,2-Dichlorobenzene	ND		ug/l	6.2	1.8	2.5

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: L1629713-08 D

Client ID: SP-MW-20 Sample Location: SYRACUSE, NY Date Collected: 09/19/16 16:15

Sample Location. STRACOS	DE, INT			rieia Pie	rieid Prep. Not a		
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - W	estborough Lab						
1,3-Dichlorobenzene	ND		ug/l	6.2	1.8	2.5	
1,4-Dichlorobenzene	ND		ug/l	6.2	1.8	2.5	
	ND		ug/l	6.2	1.8	2.5	
Methyl tert butyl ether	ND		ug/l				
p/m-Xylene			ug/l	6.2	1.8	2.5	
o-Xylene	ND		ug/l	6.2	1.8	2.5	
cis-1,2-Dichloroethene	ND		ug/l	6.2	1.8	2.5	
1,2-Dichloroethene, Total	ND		ug/l	6.2	1.8	2.5	
Dibromomethane	ND		ug/l	12	2.5	2.5	
1,2,3-Trichloropropane	ND		ug/l	6.2	1.8	2.5	
Acrylonitrile	ND		ug/l	12	3.8	2.5	
Diisopropyl Ether	ND		ug/l	5.0	1.6	2.5	
Tert-Butyl Alcohol	7.2	J	ug/l	25	3.5	2.5	
Styrene	ND		ug/l	6.2	1.8	2.5	
Dichlorodifluoromethane	ND		ug/l	12	2.5	2.5	
Acetone	13		ug/l	12	3.6	2.5	
Carbon disulfide	ND		ug/l	12	2.5	2.5	
2-Butanone	ND		ug/l	12	4.8	2.5	
4-Methyl-2-pentanone	ND		ug/l	12	2.5	2.5	
2-Hexanone	ND		ug/l	12	2.5	2.5	
Bromochloromethane	ND		ug/l	6.2	1.8	2.5	
2,2-Dichloropropane	ND		ug/l	6.2	1.8	2.5	
1,2-Dibromoethane	ND		ug/l	5.0	1.6	2.5	
1,3-Dichloropropane	ND		ug/l	6.2	1.8	2.5	
1,1,1,2-Tetrachloroethane	ND		ug/l	6.2	1.8	2.5	
Bromobenzene	ND		ug/l	6.2	1.8	2.5	
n-Butylbenzene	ND		ug/l	6.2	1.8	2.5	
sec-Butylbenzene	19		ug/l	6.2	1.8	2.5	
tert-Butylbenzene	3.6	J	ug/l	6.2	1.8	2.5	
o-Chlorotoluene	ND		ug/l	6.2	1.8	2.5	
p-Chlorotoluene	ND		ug/l	6.2	1.8	2.5	
1,2-Dibromo-3-chloropropane	ND		ug/l	6.2	1.8	2.5	
Hexachlorobutadiene	ND		ug/l	6.2	1.8	2.5	
Isopropylbenzene	29		ug/l	6.2	1.8	2.5	
p-Isopropyltoluene	ND		ug/l	6.2	1.8	2.5	
Naphthalene	ND		ug/l	6.2	1.8	2.5	
n-Propylbenzene	16		ug/l	6.2	1.8	2.5	
1,2,3-Trichlorobenzene	ND		ug/l	6.2	1.8	2.5	
1,2,4-Trichlorobenzene	ND		ug/l	6.2	1.8	2.5	
1,3,5-Trimethylbenzene	ND			6.2	1.8	2.5	
1,3,3-11IIIIettiyiberizerle	טאו		ug/l	0.2	1.0	∠.5	

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: L1629713-08 D

Client ID: SP-MW-20 Sample Location: SYRACUSE, NY Date Collected: 09/19/16 16:15

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
1.2.4-Trimethylbenzene	ND		ug/l	6.2	1.8	2.5		
Ethyl-Tert-Butyl-Ether	ND		ug/l	6.2	1.8	2.5		
Tertiary-Amyl Methyl Ether	ND		ug/l	5.0	0.70	2.5		
1,4-Dioxane	ND		ug/l	620	150	2.5		
Freon-113	ND		ug/l	6.2	1.8	2.5		
Tetrahydrofuran	ND		ug/l	12	3.8	2.5		
Ethyl ether	ND		ug/l	6.2	1.8	2.5		
trans-1,4-Dichloro-2-butene	ND		ug/l	6.2	1.8	2.5		

Tentatively Identified Compounds				
Total TIC Compounds	649	J	ug/l	2.5
Unknown Benzene	79.0	J	ug/l	2.5
Unknown	155	J	ug/l	2.5
Butane, 2,3-Dimethyl-	62.8	NJ	ug/l	2.5
Pentane, 2,3-dimethyl-	33.1	NJ	ug/l	2.5
Unknown	24.6	J	ug/l	2.5
Unknown Alkene	25.0	J	ug/l	2.5
Unknown Benzene	31.2	J	ug/l	2.5
Unknown Alkane	20.6	J	ug/l	2.5
Unknown Alkane	22.0	J	ug/l	2.5
Unknown Alkene	22.2	J	ug/l	2.5
Unknown Alkene	32.1	J	ug/l	2.5
Unknown Benzene	20.6	J	ug/l	2.5
Pentane, 3-methyl-	60.4	NJ	ug/l	2.5
Unknown Benzene	24.4	J	ug/l	2.5
Unknown Aromatic	35.6	J	ug/l	2.5

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	113		70-130	
Toluene-d8	102		70-130	
4-Bromofluorobenzene	102		70-130	
Dibromofluoromethane	97		70-130	

Project Name: DESTINY

Project Number: 15209

Lab ID:

SAMPLE RESULTS

Lab Number: L1629713

Report Date: 10/13/16

9/till 22 1(2)

L1629713-09

Client ID: SP-MW-14SR Sample Location: SYRACUSE, NY

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 09/27/16 14:43

Analyst: MS

Date Collected: 09/19/16 16:55

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	2.1		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 09/19/16 16:55

Client ID: SP-MW-14SR Date Received: 09/20/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Location. STRACOGE	, IN I					Not Specified
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Diisopropyl Ether	ND		ug/l	2.0	0.65	1
Tert-Butyl Alcohol	1.9	J	ug/l	10	1.4	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	8.3		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	0.81	J	ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
			-			

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 09/19/16 16:55

Client ID: SP-MW-14SR Date Received: 09/20/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - We	stborough Lab						
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.5	0.70	1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0	0.28	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Tetrahydrofuran	3.1	J	ug/l	5.0	1.5	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Tentatively Identified Compounds				
Total TIC Compounds	26.7	J	ug/l	1
Butane, 2,3-Dimethyl-	11.6	NJ	ug/l	1
Unknown	1.25	J	ug/l	1
Unknown	1.52	J	ug/l	1
Butane, 2,2-dimethyl-	2.04	NJ	ug/l	1
Butane, 2-Methyl-	7.53	NJ	ug/l	1
Pentane, 2,3-dimethyl-	1.26	NJ	ug/l	1
Unknown Cycloalkene	1.48	J	ug/l	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	98		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	99		70-130	
Dibromofluoromethane	94		70-130	

L1629713

Project Name: DESTINY

Project Number: 15209

SAMPLE RESULTS

Report Date: 10/13/16

Lab Number:

Lab ID: L1629713-10

Client ID: DUP

Sample Location: SYRACUSE, NY

Matrix: Water Analytical Method: 1,8260C Analytical Date: 09/27/16 15:11

Analyst: MS Date Collected: 09/19/16 12:00 Date Received: 09/20/16

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	0.27	J	ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 09/19/16 12:00

Client ID: DUP Date Received: 09/20/16

Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	5.7		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Diisopropyl Ether	ND		ug/l	2.0	0.65	1
Tert-Butyl Alcohol	570		ug/l	10	1.4	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	13		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	1.9	J	ug/l	2.5	0.70	1
sec-Butylbenzene	13		ug/l	2.5	0.70	1
tert-Butylbenzene	2.4	J	ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	30		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	15		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: **DESTINY** L1629713

Project Number: Report Date: 15209 10/13/16

SAMPLE RESULTS

Lab ID: L1629713-10 Date Collected: 09/19/16 12:00

Client ID: DUP Date Received: 09/20/16 SYRACUSE, NY Sample Location: Field Prep: Not Specified

RL **Dilution Factor** Parameter Result Qualifier Units MDL

Volatile Organics by GC/MS - Westborough Lab								
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70	1			
Ethyl-Tert-Butyl-Ether	ND	ug/l	2.5	0.70	1			
Tertiary-Amyl Methyl Ether	ND	ug/l	2.0	0.28	1			
1,4-Dioxane	ND	ug/l	250	61.	1			
Freon-113	ND	ug/l	2.5	0.70	1			
Tetrahydrofuran	ND	ug/l	5.0	1.5	1			
Ethyl ether	ND	ug/l	2.5	0.70	1			
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70	1			

Tentatively Identified Compounds				
Total TIC Compounds	152	J	ug/l	1
Butane, 2-Methyl-	24.9	NJ	ug/l	1
Unknown Benzene	6.40	J	ug/l	1
Unknown Benzene	11.9	J	ug/l	1
Unknown Aromatic	5.29	J	ug/l	1
Unknown Benzene	13.8	J	ug/l	1
Unknown	5.84	J	ug/l	1
Unknown Benzene	7.42	J	ug/l	1
Unknown Benzene	13.2	J	ug/l	1
Unknown	4.62	J	ug/l	1
Unknown	24.6	J	ug/l	1
Cyclopentane, Methyl-	15.7	NJ	ug/l	1
Pentane, 2,3-dimethyl-	4.33	NJ	ug/l	1
Unknown Aromatic	4.74	J	ug/l	1
Unknown Naphthalene	4.69	J	ug/l	1
Unknown Benzene	4.27	J	ug/l	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	100		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	104		70-130	
Dibromofluoromethane	92		70-130	

Project Name: DESTINY

Lab Number:

L1629713

Project Number: 15209

Report Date:

10/13/16

SAMPLE RESULTS

Lab ID: L1629713-11

Client ID: SP-MW-13S
Sample Location: SYRACUSE NY

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 09/27/16 15:39

Analyst: MS

Date Collected: 09/20/16 09:15

Date Received: 09/20/16

Sample Location: SYRACUSE, NY Field Prep: Not Specified Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboro	ugh Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	0.50		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 09/20/16 09:15

Client ID: SP-MW-13S Date Received: 09/20/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Jampie Location. STRACOSE,	INI			i iciu i i	-p.	Not Specified	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	tborough Lab						
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1	
p/m-Xylene	0.79	J	ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1	
Dibromomethane	ND		ug/l	5.0	1.0	1	
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1	
Acrylonitrile	ND		ug/l	5.0	1.5	1	
Diisopropyl Ether	ND		ug/l	2.0	0.65	1	
Tert-Butyl Alcohol	140		ug/l	10	1.4	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	15		ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
Bromochloromethane	ND		ug/l	2.5	0.70	1	
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1	
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1	
Bromobenzene	ND		ug/l	2.5	0.70	1	
n-Butylbenzene	ND		ug/l	2.5	0.70	1	
sec-Butylbenzene	ND		ug/l	2.5	0.70	1	
tert-Butylbenzene	ND		ug/l	2.5	0.70	1	
o-Chlorotoluene	ND		ug/l	2.5	0.70	1	
o-Chlorotoluene	ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1	
sopropylbenzene	ND		ug/l	2.5	0.70	1	
o-Isopropyltoluene	ND		ug/l	2.5	0.70	1	
Naphthalene	2.0	J	ug/l	2.5	0.70	1	
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
•							

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 09/20/16 09:15

Client ID: SP-MW-13S Date Received: 09/20/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westborou	gh Lab						
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.5	0.70	1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0	0.28	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Tetrahydrofuran	ND		ug/l	5.0	1.5	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Tentatively Identified Compounds				
Total TIC Compounds	73.3	J	ug/l	1
Unknown Cycloalkane	3.21	J	ug/l	1
Butane, 2-Methyl-	6.20	NJ	ug/l	1
Cyclopentane, Methyl-	4.44	NJ	ug/l	1
Pentane, 2,3-dimethyl-	3.35	NJ	ug/l	1
Unknown	5.65	J	ug/l	1
Unknown	6.61	J	ug/l	1
Unknown Alkane	12.2	J	ug/l	1
Unknown Cycloalkane	2.56	J	ug/l	1
Cyclohexane, 1,1-dimethyl-	3.98	NJ	ug/l	1
Unknown Cycloalkane	4.55	J	ug/l	1
Unknown Cycloalkane	2.83	J	ug/l	1
Pentane, 3-methyl-	7.10	NJ	ug/l	1
Unknown	4.15	J	ug/l	1
Unknown	2.99	J	ug/l	1
Unknown Cycloalkane	3.52	J	ug/l	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	102		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	104		70-130	
Dibromofluoromethane	94		70-130	

L1629713

Project Name: DESTINY

Project Number: 15209

SAMPLE RESULTS

Report Date: 10/13/16

Lab Number:

Lab ID: L1629713-12

Client ID: SP-MW-44 SYRACUSE, NY Sample Location:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 09/27/16 16:07

Analyst: MS Date Collected: 09/20/16 09:07

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	stborough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1	
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	0.92	J	ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Trichloroethene	ND		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
						_	

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 09/20/16 09:07

Client ID: SP-MW-44 Date Received: 09/20/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	borough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Diisopropyl Ether	ND		ug/l	2.0	0.65	1
Tert-Butyl Alcohol	5.4	J	ug/l	10	1.4	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	13		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	1.7	J	ug/l	2.5	0.70	1
n-Propylbenzene	1.6	J	ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 09/20/16 09:07

Client ID: SP-MW-44 Date Received: 09/20/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westb	orough Lab						
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.5	0.70	1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0	0.28	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Tetrahydrofuran	ND		ug/l	5.0	1.5	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Tentatively Identified Compounds				
Total TIC Compounds	46.1	J	ug/l	1
Unknown Benzene	2.20	J	ug/l	1
Unknown Aromatic	3.09	J	ug/l	1
Unknown Cyclohexane	2.89	J	ug/l	1
Unknown Aromatic	2.29	J	ug/l	1
Unknown	2.56	J	ug/l	1
Unknown Aromatic	3.04	J	ug/l	1
Unknown Cycloalkane	2.24	J	ug/l	1
Cyclohexane, 1,1-dimethyl-	4.43	NJ	ug/l	1
Unknown Cycloalkane	2.61	J	ug/l	1
Unknown	2.14	J	ug/l	1
Unknown	4.48	J	ug/l	1
Unknown Cyclohexane	3.32	J	ug/l	1
Unknown Aromatic	3.68	J	ug/l	1
Unknown	3.04	J	ug/l	1
Unknown Alkane	4.11	J	ug/l	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	100		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	104		70-130	
Dibromofluoromethane	94		70-130	

L1629713

Project Name: Lab Number: DESTINY

Project Number: Report Date: 15209 10/13/16

SAMPLE RESULTS

Lab ID: L1629713-13 D Date Collected: 09/20/16 10:20

Client ID: SP-MW-41 Sample Location: SYRACUSE, NY

Matrix: Water Analytical Method: 1,8260C Analytical Date: 09/27/16 19:59

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/l	25	7.0	10
1,1-Dichloroethane	ND		ug/l	25	7.0	10
Chloroform	ND		ug/l	25	7.0	10
Carbon tetrachloride	ND		ug/l	5.0	1.3	10
1,2-Dichloropropane	ND		ug/l	10	1.4	10
Dibromochloromethane	ND		ug/l	5.0	1.5	10
1,1,2-Trichloroethane	ND		ug/l	15	5.0	10
Tetrachloroethene	ND		ug/l	5.0	1.8	10
Chlorobenzene	ND		ug/l	25	7.0	10
Trichlorofluoromethane	ND		ug/l	25	7.0	10
1,2-Dichloroethane	ND		ug/l	5.0	1.3	10
1,1,1-Trichloroethane	ND		ug/l	25	7.0	10
Bromodichloromethane	ND		ug/l	5.0	1.9	10
trans-1,3-Dichloropropene	ND		ug/l	5.0	1.6	10
cis-1,3-Dichloropropene	ND		ug/l	5.0	1.4	10
1,3-Dichloropropene, Total	ND		ug/l	5.0	1.4	10
1,1-Dichloropropene	ND		ug/l	25	7.0	10
Bromoform	ND		ug/l	20	6.5	10
1,1,2,2-Tetrachloroethane	ND		ug/l	5.0	1.7	10
Benzene	44		ug/l	5.0	1.6	10
Toluene	ND		ug/l	25	7.0	10
Ethylbenzene	ND		ug/l	25	7.0	10
Chloromethane	ND		ug/l	25	7.0	10
Bromomethane	ND		ug/l	25	7.0	10
Vinyl chloride	ND		ug/l	10	0.71	10
Chloroethane	ND		ug/l	25	7.0	10
1,1-Dichloroethene	ND		ug/l	5.0	1.7	10
trans-1,2-Dichloroethene	ND		ug/l	25	7.0	10
Trichloroethene	ND		ug/l	5.0	1.8	10
1,2-Dichlorobenzene	ND		ug/l	25	7.0	10

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: L1629713-13 D

Client ID: SP-MW-41 Sample Location: SYRACUSE, NY Date Collected: 09/20/16 10:20

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	borough Lab					
1,3-Dichlorobenzene	ND		ug/l	25	7.0	10
1,4-Dichlorobenzene	ND		ug/l	25	7.0	10
Methyl tert butyl ether	ND		ug/l	25	7.0	10
p/m-Xylene	ND		ug/l	25	7.0	10
o-Xylene	ND		ug/l	25	7.0	10
cis-1,2-Dichloroethene	ND		ug/l	25	7.0	10
1,2-Dichloroethene, Total	ND		ug/l	25	7.0	10
Dibromomethane	ND		ug/l	50	10.	10
1,2,3-Trichloropropane	ND		ug/l	25	7.0	10
Acrylonitrile	ND		ug/l	50	15.	10
Diisopropyl Ether	ND		ug/l	20	6.5	10
Tert-Butyl Alcohol	ND		ug/l	100	14.	10
Styrene	ND		ug/l	25	7.0	10
Dichlorodifluoromethane	ND		ug/l	50	10.	10
Acetone	ND		ug/l	50	15.	10
Carbon disulfide	ND		ug/l	50	10.	10
2-Butanone	ND		ug/l	50	19.	10
4-Methyl-2-pentanone	ND		ug/l	50	10.	10
2-Hexanone	ND		ug/l	50	10.	10
Bromochloromethane	ND		ug/l	25	7.0	10
2,2-Dichloropropane	ND		ug/l	25	7.0	10
1,2-Dibromoethane	ND		ug/l	20	6.5	10
1,3-Dichloropropane	ND		ug/l	25	7.0	10
1,1,1,2-Tetrachloroethane	ND		ug/l	25	7.0	10
Bromobenzene	ND		ug/l	25	7.0	10
n-Butylbenzene	ND		ug/l	25	7.0	10
sec-Butylbenzene	ND		ug/l	25	7.0	10
tert-Butylbenzene	ND		ug/l	25	7.0	10
o-Chlorotoluene	ND		ug/l	25	7.0	10
p-Chlorotoluene	ND		ug/l	25	7.0	10
1,2-Dibromo-3-chloropropane	ND		ug/l	25	7.0	10
Hexachlorobutadiene	ND		ug/l	25	7.0	10
Isopropylbenzene	59		ug/l	25	7.0	10
p-Isopropyltoluene	ND		ug/l	25	7.0	10
Naphthalene	ND		ug/l	25	7.0	10
n-Propylbenzene	45		ug/l	25	7.0	10
1,2,3-Trichlorobenzene	ND		ug/l	25	7.0	10
1,2,4-Trichlorobenzene	ND		ug/l	25	7.0	10
1,3,5-Trimethylbenzene	ND		ug/l	25	7.0	10

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: L1629713-13 D

Client ID: SP-MW-41 Sample Location: SYRACUSE, NY Date Collected: 09/20/16 10:20

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Volatile Organics by GC/MS - Westborough Lab										
4.0.4 Trimethodheanna	400		,,	05	7.0	40				
1,2,4-Trimethylbenzene	190		ug/l	25	7.0	10				
Ethyl-Tert-Butyl-Ether	ND		ug/l	25	7.0	10				
Tertiary-Amyl Methyl Ether	ND		ug/l	20	2.8	10				
1,4-Dioxane	ND		ug/l	2500	610	10				
Freon-113	ND		ug/l	25	7.0	10				
Tetrahydrofuran	ND		ug/l	50	15.	10				
Ethyl ether	ND		ug/l	25	7.0	10				
trans-1,4-Dichloro-2-butene	ND		ug/l	25	7.0	10				

1880	J	ug/l	10
26.8	J	ug/l	10
34.1	J	ug/l	10
761	J	ug/l	10
104	J	ug/l	10
103	J	ug/l	10
22.9	J	ug/l	10
55.1	J	ug/l	10
401	NJ	ug/l	10
28.9	J	ug/l	10
119	J	ug/l	10
68.7	J	ug/l	10
154	NJ	ug/l	10
	26.8 34.1 761 104 103 22.9 55.1 401 28.9 119 68.7	26.8 J 34.1 J 761 J 104 J 103 J 22.9 J 55.1 J 401 NJ 28.9 J 119 J 68.7 J	26.8 J ug/l 34.1 J ug/l 761 J ug/l 104 J ug/l 103 J ug/l 22.9 J ug/l 55.1 J ug/l 401 NJ ug/l 28.9 J ug/l 119 J ug/l 68.7 J ug/l

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	109		70-130	
Toluene-d8	101		70-130	
4-Bromofluorobenzene	102		70-130	
Dibromofluoromethane	99		70-130	

Project Name: DESTINY

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1629713

Report Date: 10/13/16

Lab ID: L1629713-14

Client ID: HCMW-1-I Sample Location: SYRACUSE, NY

Matrix: Water Analytical Method: 1,8260C Analytical Date: 09/27/16 16:36

Analyst: MS Date Collected: 09/20/16 11:25 Date Received: 09/20/16 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 09/20/16 11:25

Client ID: HCMW-1-I Date Received: 09/20/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

oampio 200alioni - 0111/10002, 111				0.0	۳,	riot opcomod
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Diisopropyl Ether	ND		ug/l	2.0	0.65	1
Tert-Butyl Alcohol	ND		ug/l	10	1.4	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	10		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 09/20/16 11:25

Client ID: HCMW-1-I Date Received: 09/20/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westb	orough Lab						
1,2,4-Trimethylbenzene	0.78	J	ug/l	2.5	0.70	1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.5	0.70	1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0	0.28	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Tetrahydrofuran	ND		ug/l	5.0	1.5	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Tentatively Identified Compounds				
Total TIC Compounds	2.98	J	ug/l	1
Butane, 2-Methyl-	2.98	NJ	ug/l	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria
1,2-Dichloroethane-d4	98		70-130
Toluene-d8	99		70-130
4-Bromofluorobenzene	102		70-130
Dibromofluoromethane	95		70-130

Project Name: DESTINY

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1629713

Report Date: 10/13/16

Lab ID: L1629713-15

Client ID: HCMW-1-SI Sample Location: SYRACUSE, NY

Matrix: Water Analytical Method: 1,8260C Analytical Date: 09/27/16 17:04

Analyst: MS Date Collected: 09/20/16 11:35 Date Received: 09/20/16

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	0.36	J	ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 09/20/16 11:35

Client ID: Date Received: 09/20/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Location. S	TRACUSE, INT			rieid Pie	: ρ.	Not Specified	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC	/MS - Westborough Lab						
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	 1	
Methyl tert butyl ether	ND		ug/l	2.5	0.70	 1	
p/m-Xylene	ND		ug/l	2.5	0.70	 1	
o-Xylene	ND		ug/l	2.5	0.70	 1	
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	 1	
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1	
Dibromomethane	ND		ug/l	5.0	1.0	1	
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1	
Acrylonitrile	ND		ug/l	5.0	1.5	1	
Diisopropyl Ether	ND		ug/l	2.0	0.65	1	
Tert-Butyl Alcohol	ND		ug/l	10	1.4	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	6.8		ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
Bromochloromethane	ND		ug/l	2.5	0.70	1	
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1	
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1	
Bromobenzene	ND		ug/l	2.5	0.70	1	
n-Butylbenzene	ND		ug/l	2.5	0.70	1	
sec-Butylbenzene	ND		ug/l	2.5	0.70	1	
tert-Butylbenzene	ND		ug/l	2.5	0.70	1	
o-Chlorotoluene	ND		ug/l	2.5	0.70	1	
p-Chlorotoluene	ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1	
Naphthalene	ND		ug/l	2.5	0.70	1	
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 09/20/16 11:35

Client ID: HCMW-1-SI Date Received: 09/20/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - We	stborough Lab						
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.5	0.70	1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0	0.28	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Tetrahydrofuran	ND		ug/l	5.0	1.5	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Tentatively Identified Compounds				
Total TIC Compounds	6.63	J	ug/l	1
Unknown	6.63	J	ug/l	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria
1,2-Dichloroethane-d4	100		70-130
Toluene-d8	98		70-130
4-Bromofluorobenzene	99		70-130
Dibromofluoromethane	95		70-130

Project Name: DESTINY

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1629713

Report Date: 10/13/16

Lab ID: L1629713-16

Client ID: HCMW-1-S Sample Location: SYRACUSE, NY

Matrix: Water Analytical Method: 1,8260C Analytical Date: 09/27/16 17:32

Analyst: MS Date Collected: 09/20/16 12:40

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 09/20/16 12:40

Client ID: HCMW-1-S Date Received: 09/20/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Location. St	RACUSE, INT			rieid Pie	∌p.	Not Specified	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/	MS - Westborough Lab						
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1	
Dibromomethane	ND		ug/l	5.0	1.0	1	
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1	
Acrylonitrile	ND		ug/l	5.0	1.5	1	
Diisopropyl Ether	ND		ug/l	2.0	0.65	1	
Tert-Butyl Alcohol	ND		ug/l	10	1.4	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	5.9		ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
Bromochloromethane	ND		ug/l	2.5	0.70	1	
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1	
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1	
Bromobenzene	ND		ug/l	2.5	0.70	1	
n-Butylbenzene	ND		ug/l	2.5	0.70	1	
sec-Butylbenzene	ND		ug/l	2.5	0.70	1	
tert-Butylbenzene	ND		ug/l	2.5	0.70	1	
o-Chlorotoluene	ND		ug/l	2.5	0.70	1	
p-Chlorotoluene	ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1	
Naphthalene	ND		ug/l	2.5	0.70	1	
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 09/20/16 12:40

Client ID: HCMW-1-S Date Received: 09/20/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - We	stborough Lab						
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.5	0.70	1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0	0.28	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Tetrahydrofuran	ND		ug/l	5.0	1.5	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Tentatively Identified Compounds				
Total TIC Compounds	6.52	J	ug/l	1
Unknown	6.52	J	ug/l	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	97		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	99		70-130	
Dibromofluoromethane	94		70-130	

Project Name: DESTINY

Project Number: 15209

SAMPLE RESULTS

L1629713

Report Date: 10/13/16

Lab Number:

Lab ID: L1629713-17 Client ID: SUN-MW-60

Sample Location: SYRACUSE, NY

Matrix: Water Analytical Method: 1,8260C Analytical Date: 09/27/16 18:00

Analyst: MS Date Collected: 09/20/16 12:30

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbord	ough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	0.48	J	ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 09/20/16 12:30

Client ID: SUN-MW-60 Date Received: 09/20/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Location. STRACUS	SE, INT			rieia Pie	∍ p.	Not Specified	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - W	/estborough Lab						
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	 1	
Methyl tert butyl ether	ND		ug/l	2.5	0.70	 1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	 1	
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	 1	
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	 1	
Dibromomethane	ND		ug/l	5.0	1.0	1	
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	 1	
Acrylonitrile	ND		ug/l	5.0	1.5	1	
Diisopropyl Ether	ND		ug/l	2.0	0.65	 1	
Tert-Butyl Alcohol	ND		ug/l	10	1.4	 1	
Styrene	ND		ug/l	2.5	0.70	 1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	 1	
Acetone	14		ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	5.0	1.0	 1	
2-Butanone	ND		ug/l	5.0	1.9	 1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	 1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
Bromochloromethane	ND		ug/l	2.5	0.70	 1	
2,2-Dichloropropane	ND		ug/l	2.5	0.70	 1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	 1	
1,3-Dichloropropane	ND		ug/l	2.5	0.70	 1	
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	 1	
Bromobenzene	ND		ug/l	2.5	0.70	 1	
n-Butylbenzene	ND		ug/l	2.5	0.70	 1	
sec-Butylbenzene	ND		ug/l	2.5	0.70	 1	
tert-Butylbenzene	ND		ug/l	2.5	0.70	1	
o-Chlorotoluene	ND		ug/l	2.5	0.70	 1	
p-Chlorotoluene	ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	 1	
p-Isopropyltoluene	ND		ug/l	2.5	0.70	 1	
Naphthalene	ND		ug/l	2.5	0.70	1	
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
	ND			2.5	0.70	1	
1,3,5-Trimethylbenzene	ואט		ug/l	2.5	0.70	T	

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 09/20/16 12:30

Client ID: SUN-MW-60 Date Received: 09/20/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	oorough Lab						
1,2,4-Trimethylbenzene	1.1	J	ug/l	2.5	0.70	1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.5	0.70	1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0	0.28	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Tetrahydrofuran	ND		ug/l	5.0	1.5	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Tentatively Identified Compounds				
Total TIC Compounds	8.13	J	ug/l	1
Butane, 2-Methyl-	2.14	NJ	ug/l	1
Unknown	5.99	J	ug/l	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	100		70-130	
Toluene-d8	97		70-130	
4-Bromofluorobenzene	100		70-130	
Dibromofluoromethane	97		70-130	

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/27/16 12:22

Analyst: PD

Parameter	Result	Qualifier Units	RL	MDL	
Volatile Organics by GC/MS -	- Westborough Lab	for sample(s):	07,09-12,14-17	Batch: WG936284-5	
Methylene chloride	ND	ug/l	2.5	0.70	
1,1-Dichloroethane	ND	ug/l	2.5	0.70	
Chloroform	ND	ug/l	2.5	0.70	
Carbon tetrachloride	ND	ug/l	0.50	0.13	
1,2-Dichloropropane	ND	ug/l	1.0	0.14	
Dibromochloromethane	ND	ug/l	0.50	0.15	
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50	
Tetrachloroethene	ND	ug/l	0.50	0.18	
Chlorobenzene	ND	ug/l	2.5	0.70	
Trichlorofluoromethane	ND	ug/l	2.5	0.70	
1,2-Dichloroethane	ND	ug/l	0.50	0.13	
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70	
Bromodichloromethane	ND	ug/l	0.50	0.19	
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16	
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14	
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14	
1,1-Dichloropropene	ND	ug/l	2.5	0.70	
Bromoform	ND	ug/l	2.0	0.65	
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17	
Benzene	ND	ug/l	0.50	0.16	
Toluene	ND	ug/l	2.5	0.70	
Ethylbenzene	ND	ug/l	2.5	0.70	
Chloromethane	ND	ug/l	2.5	0.70	
Bromomethane	ND	ug/l	2.5	0.70	
Vinyl chloride	ND	ug/l	1.0	0.07	
Chloroethane	ND	ug/l	2.5	0.70	
1,1-Dichloroethene	ND	ug/l	0.50	0.17	
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70	
Trichloroethene	ND	ug/l	0.50	0.18	

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/27/16 12:22

Analyst: PD

arameter	Result	Qualifier Unit	s RL	MDL
olatile Organics by GC/MS -	Westborough La	b for sample(s):	07,09-12,14-17	Batch: WG936284-5
1,2-Dichlorobenzene	ND	ug/	2.5	0.70
1,3-Dichlorobenzene	ND	ug/	2.5	0.70
1,4-Dichlorobenzene	ND	ug/	2.5	0.70
Methyl tert butyl ether	ND	ug/	2.5	0.70
p/m-Xylene	ND	ug/	2.5	0.70
o-Xylene	ND	ug/	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/	2.5	0.70
1,2-Dichloroethene, Total	ND	ug/	2.5	0.70
Dibromomethane	ND	ug/	5.0	1.0
1,2,3-Trichloropropane	ND	ug/	2.5	0.70
Acrylonitrile	ND	ug/	5.0	1.5
Diisopropyl Ether	ND	ug/	2.0	0.65
Tert-Butyl Alcohol	ND	ug/	I 10	1.4
Styrene	ND	ug/	l 2.5	0.70
Dichlorodifluoromethane	ND	ug/	5.0	1.0
Acetone	ND	ug/	5.0	1.5
Carbon disulfide	ND	ug/	5.0	1.0
2-Butanone	ND	ug/	5.0	1.9
4-Methyl-2-pentanone	ND	ug/	5.0	1.0
2-Hexanone	ND	ug/	5.0	1.0
Bromochloromethane	ND	ug/	2.5	0.70
2,2-Dichloropropane	ND	ug/	2.5	0.70
1,2-Dibromoethane	ND	ug/	1 2.0	0.65
1,3-Dichloropropane	ND	ug/	2.5	0.70
1,1,1,2-Tetrachloroethane	ND	ug/	2.5	0.70
Bromobenzene	ND	ug/	2.5	0.70
n-Butylbenzene	ND	ug/	2.5	0.70
sec-Butylbenzene	ND	ug/	2.5	0.70
tert-Butylbenzene	ND	ug/	2.5	0.70

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/27/16 12:22

Analyst: PD

Parameter	Result	Qualifier Units	s RL	MDL
olatile Organics by GC/MS	- Westborough Lab	o for sample(s):	07,09-12,14-17	Batch: WG936284-5
o-Chlorotoluene	ND	ug/l	2.5	0.70
p-Chlorotoluene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Hexachlorobutadiene	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70
Ethyl-Tert-Butyl-Ether	ND	ug/l	2.5	0.70
Tertiary-Amyl Methyl Ether	ND	ug/l	2.0	0.28
1,4-Dioxane	ND	ug/l	250	61.
Freon-113	ND	ug/l	2.5	0.70
Tetrahydrofuran	ND	ug/l	5.0	1.5
Ethyl ether	ND	ug/l	2.5	0.70
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70

Tentatively Identified Compounds

No Tentatively Identified Compounds ND ug/l

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/27/16 12:22

Analyst: PD

ParameterResultQualifierUnitsRLMDLVolatile Organics by GC/MS - Westborough Lab for sample(s): 07,09-12,14-17Batch: WG936284-5

		Acceptance				
Surrogate	%Recovery	Qualifier	Criteria			
1,2-Dichloroethane-d4	98		70-130			
Toluene-d8	98		70-130			
4-Bromofluorobenzene	99		70-130			
Dibromofluoromethane	95		70-130			

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/27/16 10:21

Analyst: PD

Parameter	Result	Qualifier Uni	ts RI		MDL
/olatile Organics by GC/MS	- Westborough La	b for sample(s):	01-06,08,1	3 Batch:	WG936421-5
Methylene chloride	ND	uç	y /Ι 2.5	5	0.70
1,1-Dichloroethane	ND	uç	ı/l 2.5	5	0.70
Chloroform	ND	uç	y/l 2.5	5	0.70
Carbon tetrachloride	ND	uç	ı/l 0.5	0	0.13
1,2-Dichloropropane	ND	uç	y/l 1.0)	0.14
Dibromochloromethane	ND	uç	ı/l 0.5	0	0.15
1,1,2-Trichloroethane	ND	uç	y/l 1.5	5	0.50
Tetrachloroethene	ND	uç	ı/l 0.5	0	0.18
Chlorobenzene	ND	uç	y/l 2.5	5	0.70
Trichlorofluoromethane	ND	uç	ı/l 2.5	5	0.70
1,2-Dichloroethane	ND	uç	ı/l 0.5	0	0.13
1,1,1-Trichloroethane	ND	uç	y/l 2.5	5	0.70
Bromodichloromethane	ND	uç	y/l 0.5	0	0.19
trans-1,3-Dichloropropene	ND	uç	y/l 0.5	0	0.16
cis-1,3-Dichloropropene	ND	uç	ı/l 0.5	0	0.14
1,3-Dichloropropene, Total	ND	uç	ı/l 0.5	0	0.14
1,1-Dichloropropene	ND	uç	y/l 2.5	5	0.70
Bromoform	ND	uç	y/l 2.0)	0.65
1,1,2,2-Tetrachloroethane	ND	uç	ı/l 0.5	0	0.17
Benzene	ND	uç	ı/l 0.5	0	0.16
Toluene	ND	uç	y /l 2.5	5	0.70
Ethylbenzene	ND	uç	ı/l 2.5	5	0.70
Chloromethane	ND	uç	ı/l 2.5	5	0.70
Bromomethane	ND	uç	ı/l 2.5	5	0.70
Vinyl chloride	ND	uç	y/l 1.0)	0.07
Chloroethane	ND	uç	y/l 2.5	5	0.70
1,1-Dichloroethene	ND	uç	ı/l 0.5	0	0.17
trans-1,2-Dichloroethene	ND	uç	y/l 2.5	5	0.70
Trichloroethene	ND	uç	ı/l 0.5	0	0.18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/27/16 10:21

Analyst: PD

Parameter	Result	Qualifier Units	RL.	MDL	
Volatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-06,08,13	Batch: WG936421-5	
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70	
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70	
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70	
Methyl tert butyl ether	ND	ug/l	2.5	0.70	
p/m-Xylene	ND	ug/l	2.5	0.70	
o-Xylene	ND	ug/l	2.5	0.70	
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70	
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70	
Dibromomethane	ND	ug/l	5.0	1.0	
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70	
Acrylonitrile	ND	ug/l	5.0	1.5	
Diisopropyl Ether	ND	ug/l	2.0	0.65	
Tert-Butyl Alcohol	ND	ug/l	10	1.4	
Styrene	ND	ug/l	2.5	0.70	
Dichlorodifluoromethane	ND	ug/l	5.0	1.0	
Acetone	ND	ug/l	5.0	1.5	
Carbon disulfide	ND	ug/l	5.0	1.0	
2-Butanone	ND	ug/l	5.0	1.9	
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0	
2-Hexanone	ND	ug/l	5.0	1.0	
Bromochloromethane	ND	ug/l	2.5	0.70	
2,2-Dichloropropane	ND	ug/l	2.5	0.70	
1,2-Dibromoethane	ND	ug/l	2.0	0.65	
1,3-Dichloropropane	ND	ug/l	2.5	0.70	
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70	
Bromobenzene	ND	ug/l	2.5	0.70	
n-Butylbenzene	ND	ug/l	2.5	0.70	
sec-Butylbenzene	ND	ug/l	2.5	0.70	
tert-Butylbenzene	ND	ug/l	2.5	0.70	

Project Name:DESTINYLab Number:L1629713Project Number:15209Report Date:10/13/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/27/16 10:21

Analyst: PD

Parameter	Result	Qualifier Units	RL RL	MDL	
Volatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-06,08,13	Batch: WG936421-5	
o-Chlorotoluene	ND	ug/l	2.5	0.70	
p-Chlorotoluene	ND	ug/l	2.5	0.70	
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70	
Hexachlorobutadiene	ND	ug/l	2.5	0.70	
Isopropylbenzene	ND	ug/l	2.5	0.70	
p-Isopropyltoluene	ND	ug/l	2.5	0.70	
Naphthalene	ND	ug/l	2.5	0.70	
n-Propylbenzene	ND	ug/l	2.5	0.70	
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70	
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70	
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70	
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70	
Ethyl-Tert-Butyl-Ether	ND	ug/l	2.5	0.70	
Tertiary-Amyl Methyl Ether	ND	ug/l	2.0	0.28	
1,4-Dioxane	ND	ug/l	250	61.	
Freon-113	ND	ug/l	2.5	0.70	
Tetrahydrofuran	ND	ug/l	5.0	1.5	
Ethyl ether	ND	ug/l	2.5	0.70	
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70	

Tentatively Identified Compounds

No Tentatively Identified Compounds ND ug/l

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/27/16 10:21

Analyst: PD

ParameterResultQualifierUnitsRLMDLVolatile Organics by GC/MS - Westborough Lab for sample(s):01-06,08,13Batch:WG936421-5

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	113		70-130	
Toluene-d8	102		70-130	
4-Bromofluorobenzene	102		70-130	
Dibromofluoromethane	100		70-130	

10/13/16

Lab Control Sample Analysis Batch Quality Control

Project Name: DESTINY

15209

Project Number:

Lab Number: L1629713

Report Date:

Parameter	LCS %Recovery Q	LCSD ual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westboro	ugh Lab Associated samp	ole(s): 07,09-12,14-17	Batch: WG936284-3 WG93	36284-4	
Methylene chloride	98	95	70-130	3	20
1,1-Dichloroethane	93	92	70-130	1	20
Chloroform	91	90	70-130	1	20
2-Chloroethylvinyl ether	85	81	70-130	5	20
Carbon tetrachloride	83	81	63-132	2	20
1,2-Dichloropropane	93	92	70-130	1	20
Dibromochloromethane	87	87	63-130	0	20
1,1,2-Trichloroethane	89	89	70-130	0	20
Tetrachloroethene	86	85	70-130	1	20
Chlorobenzene	89	88	75-130	1	20
Trichlorofluoromethane	83	82	62-150	1	20
1,2-Dichloroethane	89	89	70-130	0	20
1,1,1-Trichloroethane	88	87	67-130	1	20
Bromodichloromethane	93	88	67-130	6	20
trans-1,3-Dichloropropene	90	88	70-130	2	20
cis-1,3-Dichloropropene	93	92	70-130	1	20
1,1-Dichloropropene	88	88	70-130	0	20
Bromoform	87	86	54-136	1	20
1,1,2,2-Tetrachloroethane	91	90	67-130	1	20
Benzene	90	88	70-130	2	20
Toluene	89	88	70-130	1	20

Project Name: DESTINY

Project Number: 15209

Lab Number: L1629713

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recov	•	RPD	Qual	RPD Limits	
olatile Organics by GC/MS - Westborough I	_ab Associated	sample(s):	07,09-12,14-17	Batch:	WG936284-3	WG93628	4-4			
Ethylbenzene	88		86		70-130		2		20	
Chloromethane	91		90		64-130		1		20	
Bromomethane	82		77		39-139		6		20	
Vinyl chloride	89		87		55-140		2		20	
Chloroethane	94		91		55-138		3		20	
1,1-Dichloroethene	87		87		61-145		0		20	
trans-1,2-Dichloroethene	94		92		70-130		2		20	
Trichloroethene	85		86		70-130		1		20	
1,2-Dichlorobenzene	90		89		70-130		1		20	
1,3-Dichlorobenzene	92		90		70-130		2		20	
1,4-Dichlorobenzene	90		89		70-130		1		20	
Methyl tert butyl ether	94		92		63-130		2		20	
p/m-Xylene	85		85		70-130		0		20	
o-Xylene	85		85		70-130		0		20	
cis-1,2-Dichloroethene	92		89		70-130		3		20	
Dibromomethane	91		88		70-130		3		20	
1,2,3-Trichloropropane	88		92		64-130		4		20	
Acrylonitrile	81		80		70-130		1		20	
Isopropyl Ether	95		92		70-130		3		20	
tert-Butyl Alcohol	116		92		70-130		23	Q	20	
Styrene	85		80		70-130		6		20	

Project Name: DESTINY

Project Number: 15209

Lab Number: L1629713

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qua	%Recov I Limits)	Qual	RPD Limits	
olatile Organics by GC/MS - Westbor	rough Lab Associated	sample(s):	07,09-12,14-17	Batch:	WG936284-3	WG936284-4				
Dichlorodifluoromethane	72		69		36-147	4			20	
Acetone	81		76		58-148	6			20	
Carbon disulfide	85		82		51-130	4			20	
2-Butanone	92		88		63-138	4			20	
Vinyl acetate	94		88		70-130	7			20	
4-Methyl-2-pentanone	85		80		59-130	6			20	
2-Hexanone	85		83		57-130	2			20	
Acrolein	85		86		40-160	1			20	
Bromochloromethane	93		91		70-130	2			20	
2,2-Dichloropropane	93		90		63-133	3			20	
1,2-Dibromoethane	94		93		70-130	1			20	
1,3-Dichloropropane	92		90		70-130	2			20	
1,1,1,2-Tetrachloroethane	87		88		64-130	1			20	
Bromobenzene	91		89		70-130	2			20	
n-Butylbenzene	93		93		53-136	0			20	
sec-Butylbenzene	89		87		70-130	2			20	
tert-Butylbenzene	89		89		70-130	0			20	
o-Chlorotoluene	100		92		70-130	8			20	
p-Chlorotoluene	91		91		70-130	0			20	
1,2-Dibromo-3-chloropropane	84		89		41-144	6			20	
Hexachlorobutadiene	120		110		63-130	9			20	

Project Name: DESTINY

Project Number:

15209

Lab Number: L1629713

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qua	%Recover I Limits		Qual	RPD Limits	
olatile Organics by GC/MS - Westbo	orough Lab Associated	sample(s):	07,09-12,14-17	Batch:	WG936284-3	WG936284-4			
Isopropylbenzene	90		89		70-130	1		20	
p-Isopropyltoluene	90		89		70-130	1		20	
Naphthalene	120		110		70-130	9		20	
n-Propylbenzene	90		89		69-130	1		20	
1,2,3-Trichlorobenzene	130		120		70-130	8		20	
1,2,4-Trichlorobenzene	110		100		70-130	10		20	
1,3,5-Trimethylbenzene	88		87		64-130	1		20	
1,2,4-Trimethylbenzene	91		90		70-130	1		20	
Methyl Acetate	87		88		70-130	1		20	
Ethyl Acetate	89		82		70-130	8		20	
Cyclohexane	81		78		70-130	4		20	
Ethyl-Tert-Butyl-Ether	92		90		70-130	2		20	
Tertiary-Amyl Methyl Ether	88		85		66-130	3		20	
1,4-Dioxane	104		104		56-162	0		20	
Freon-113	82		80		70-130	2		20	
1,4-Diethylbenzene	94		91		70-130	3		20	
4-Ethyltoluene	91		89		70-130	2		20	
1,2,4,5-Tetramethylbenzene	97		94		70-130	3		20	
Tetrahydrofuran	98		91		58-130	7		20	
Ethyl ether	92		90		59-134	2		20	
trans-1,4-Dichloro-2-butene	84		77		70-130	9		20	

Project Name: DESTINY

Project Number: 15209

Lab Number:

L1629713

Report Date:

10/13/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	5
Volatile Organics by GC/MS - Westborough I	_ab Associated	sample(s):	07,09-12,14-17	Batch: WO	936284-3 WG93	6284-4		
lodomethane	63	Q	61	Q	70-130	3	20	
Methyl cyclohexane	79		76		70-130	4	20	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	94		99		70-130	
Toluene-d8	98		99		70-130	
4-Bromofluorobenzene	100		102		70-130	
Dibromofluoromethane	97		96		70-130	

Project Name: DESTINY

Project Number: 15209

Lab Number: L1629713

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-06,08,13 Bat	ch: WG9364	421-3 WG93642	21-4	
Methylene chloride	98		92		70-130	6	20
1,1-Dichloroethane	100		97		70-130	3	20
Chloroform	110		98		70-130	12	20
2-Chloroethylvinyl ether	85		87		70-130	2	20
Carbon tetrachloride	94		87		63-132	8	20
1,2-Dichloropropane	98		94		70-130	4	20
Dibromochloromethane	93		90		63-130	3	20
1,1,2-Trichloroethane	100		93		70-130	7	20
Tetrachloroethene	100		97		70-130	3	20
Chlorobenzene	100		96		75-130	4	20
Trichlorofluoromethane	110		97		62-150	13	20
1,2-Dichloroethane	110		100		70-130	10	20
1,1,1-Trichloroethane	100		94		67-130	6	20
Bromodichloromethane	100		97		67-130	3	20
trans-1,3-Dichloropropene	92		86		70-130	7	20
cis-1,3-Dichloropropene	91		86		70-130	6	20
1,1-Dichloropropene	100		92		70-130	8	20
Bromoform	84		78		54-136	7	20
1,1,2,2-Tetrachloroethane	98		91		67-130	7	20
Benzene	99		94		70-130	5	20
Toluene	100		95		70-130	5	20

Project Name: DESTINY

Project Number: 15209

Lab Number: L1629713

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-06,08,13 Batc	h: WG936421-3 WG93642	1-4	
Ethylbenzene	110		100	70-130	10	20
Chloromethane	70		68	64-130	3	20
Bromomethane	72		68	39-139	6	20
Vinyl chloride	97		88	55-140	10	20
Chloroethane	97		92	55-138	5	20
1,1-Dichloroethene	95		89	61-145	7	20
trans-1,2-Dichloroethene	100		91	70-130	9	20
Trichloroethene	100		94	70-130	6	20
1,2-Dichlorobenzene	100		97	70-130	3	20
1,3-Dichlorobenzene	100		99	70-130	1	20
1,4-Dichlorobenzene	100		95	70-130	5	20
Methyl tert butyl ether	94		89	63-130	5	20
p/m-Xylene	110		100	70-130	10	20
o-Xylene	110		100	70-130	10	20
cis-1,2-Dichloroethene	100		96	70-130	4	20
Dibromomethane	97		94	70-130	3	20
1,2,3-Trichloropropane	96		91	64-130	5	20
Acrylonitrile	90		88	70-130	2	20
Isopropyl Ether	100		97	70-130	3	20
tert-Butyl Alcohol	80		80	70-130	0	20
Styrene	110		105	70-130	5	20

Project Name: DESTINY

Project Number:

15209

Lab Number: L1629713

ameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
tile Organics by GC/MS - Westbo	rough Lab Associated sa	ample(s): 01-06,08,13 Bate	ch: WG936421-3 WG93642	21-4	
Dichlorodifluoromethane	95	84	36-147	12	20
Acetone	120	100	58-148	18	20
Carbon disulfide	92	84	51-130	9	20
2-Butanone	92	89	63-138	3	20
Vinyl acetate	95	87	70-130	9	20
4-Methyl-2-pentanone	95	91	59-130	4	20
2-Hexanone	100	94	57-130	6	20
Acrolein	82	81	40-160	1	20
Bromochloromethane	100	100	70-130	0	20
2,2-Dichloropropane	89	81	63-133	9	20
1,2-Dibromoethane	98	93	70-130	5	20
1,3-Dichloropropane	100	95	70-130	5	20
1,1,1,2-Tetrachloroethane	100	97	64-130	3	20
Bromobenzene	100	96	70-130	4	20
n-Butylbenzene	120	100	53-136	18	20
sec-Butylbenzene	110	98	70-130	12	20
tert-Butylbenzene	110	97	70-130	13	20
o-Chlorotoluene	100	98	70-130	2	20
p-Chlorotoluene	110	99	70-130	11	20
1,2-Dibromo-3-chloropropane	77	71	41-144	8	20
Hexachlorobutadiene	100	90	63-130	11	20

Project Name: DESTINY

Project Number: 15209

Lab Number: L1629713

rameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
platile Organics by GC/MS - Westborough	Lab Associated	sample(s): (01-06,08,13 Bate	ch: WG936	6421-3 WG9364	21-4	
Isopropylbenzene	110		97		70-130	13	20
p-Isopropyltoluene	110		98		70-130	12	20
Naphthalene	95		98		70-130	3	20
n-Propylbenzene	110		98		69-130	12	20
1,2,3-Trichlorobenzene	94		93		70-130	1	20
1,2,4-Trichlorobenzene	98		96		70-130	2	20
1,3,5-Trimethylbenzene	110		98		64-130	12	20
1,2,4-Trimethylbenzene	110		100		70-130	10	20
Methyl Acetate	94		89		70-130	5	20
Ethyl Acetate	100		94		70-130	6	20
Cyclohexane	97		88		70-130	10	20
Ethyl-Tert-Butyl-Ether	95		90		70-130	5	20
Tertiary-Amyl Methyl Ether	91		86		66-130	6	20
1,4-Dioxane	94		84		56-162	11	20
Freon-113	94		86		70-130	9	20
1,4-Diethylbenzene	110		100		70-130	10	20
4-Ethyltoluene	110		100		70-130	10	20
1,2,4,5-Tetramethylbenzene	110		100		70-130	10	20
Tetrahydrofuran	95		91		58-130	4	20
Ethyl ether	95		88		59-134	8	20
trans-1,4-Dichloro-2-butene	97		90		70-130	7	20

Project Name: DESTINY

Project Number: 15209

Lab Number:

L1629713

Report Date:

10/13/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough I	Lab Associated	sample(s):	01-06,08,13 Bato	h: WG93	6421-3 WG93642	1-4		
lodomethane	50	Q	53	Q	70-130	6	20	
Methyl cyclohexane	98		88		70-130	11	20	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	114		111		70-130	
Toluene-d8	102		100		70-130	
4-Bromofluorobenzene	101		98		70-130	
Dibromofluoromethane	105		103		70-130	

SEMIVOLATILES

09/19/16 10:50

09/20/16

Project Name: Lab Number: **DESTINY** L1629713

Project Number: Report Date: 15209 10/13/16

SAMPLE RESULTS

Lab ID: L1629713-01 Date Collected: Client ID: Date Received: SP-MW-37

Field Prep: Sample Location: SYRACUSE, NY Not Specified Matrix: Extraction Method: EPA 3510C Water Analytical Method: 1,8270D Extraction Date: 09/24/16 14:22

Analytical Date: 09/25/16 21:53 HL

Analyst:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - West	borough Lab					
1,2,4-Trichlorobenzene	ND		ug/l	5.0	0.66	1
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.67	1
1,2-Dichlorobenzene	ND		ug/l	2.0	0.73	1
1,3-Dichlorobenzene	ND		ug/l	2.0	0.73	1
1,4-Dichlorobenzene	ND		ug/l	2.0	0.71	1
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.4	1
2,4-Dinitrotoluene	ND		ug/l	5.0	0.84	1
2,6-Dinitrotoluene	ND		ug/l	5.0	1.1	1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.62	1
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.73	1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.70	1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.63	1
Hexachlorocyclopentadiene	ND		ug/l	20	7.8	1
Isophorone	ND		ug/l	5.0	0.60	1
Nitrobenzene	ND		ug/l	2.0	0.75	1
NDPA/DPA	ND		ug/l	2.0	0.64	1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.70	1
Bis(2-ethylhexyl)phthalate	2.1	J	ug/l	3.0	0.91	1
Butyl benzyl phthalate	ND		ug/l	5.0	1.3	1
Di-n-butylphthalate	ND		ug/l	5.0	0.69	1
Di-n-octylphthalate	ND		ug/l	5.0	1.1	1
Diethyl phthalate	ND		ug/l	5.0	0.63	1
Dimethyl phthalate	ND		ug/l	5.0	0.65	1
Biphenyl	ND		ug/l	2.0	0.76	1
4-Chloroaniline	ND		ug/l	5.0	0.63	1
2-Nitroaniline	ND		ug/l	5.0	1.1	1
3-Nitroaniline	ND		ug/l	5.0	1.1	1
4-Nitroaniline	ND		ug/l	5.0	1.3	1
Dibenzofuran	ND		ug/l	2.0	0.66	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.67	1

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 09/19/16 10:50

Client ID: SP-MW-37 Date Received: 09/20/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

•					•	•	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - 1	Westborough Lab						
Acetophenone	ND		ug/l	5.0	0.85	1	
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.68	1	
p-Chloro-m-cresol	ND		ug/l	2.0	0.62	1	
2-Chlorophenol	ND		ug/l	2.0	0.63	1	
2,4-Dichlorophenol	ND		ug/l	5.0	0.77	1	
2,4-Dimethylphenol	ND		ug/l	5.0	1.6	1	
2-Nitrophenol	ND		ug/l	10	1.5	1	
4-Nitrophenol	ND		ug/l	10	1.8	1	
2,4-Dinitrophenol	ND		ug/l	20	5.5	1	
4,6-Dinitro-o-cresol	ND		ug/l	10	2.1	1	
Phenol	ND		ug/l	5.0	1.9	1	
2-Methylphenol	ND		ug/l	5.0	1.0	1	
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	1.1	1	
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.72	1	
Benzoic Acid	ND		ug/l	50	13.	1	
Benzyl Alcohol	ND		ug/l	2.0	0.72	1	
Carbazole	ND		ug/l	2.0	0.63	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	39		21-120	
Phenol-d6	30		10-120	
Nitrobenzene-d5	81		23-120	
2-Fluorobiphenyl	70		15-120	
2,4,6-Tribromophenol	84		10-120	
4-Terphenyl-d14	71		41-149	

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 09/19/16 10:50
Client ID: SP-MW-37 Date Received: 09/20/16

Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 09/24/16 14:32
Analytical Date: 09/27/16 04:58

MDL **Parameter** Result Qualifier Units RL**Dilution Factor** Semivolatile Organics by GC/MS-SIM - Westborough Lab 1 Acenaphthene 6.9 ug/l 0.10 0.04 ND 2-Chloronaphthalene 0.20 0.04 1 ug/l Fluoranthene 0.27 0.20 0.04 1 ug/l Hexachlorobutadiene ND 0.50 0.04 1 ug/l ND 1 Naphthalene ug/l 0.20 0.04 J 0.05 0.20 0.02 1 Benzo(a)anthracene ug/l Benzo(a)pyrene 0.08 J ug/l 0.20 0.04 1 Benzo(b)fluoranthene 0.08 J ug/l 0.20 0.02 1 ND Benzo(k)fluoranthene 0.20 0.04 1 ug/l Chrysene 0.07 J 0.20 0.04 1 ug/l 0.62 ug/l 1 Acenaphthylene 0.20 0.04 0.46 0.20 0.04 1 Anthracene ug/l 0.09 J 0.20 0.04 1 Benzo(ghi)perylene ug/l Fluorene 1.0 ug/l 0.20 0.04 1 Phenanthrene 0.10 J 0.20 0.02 1 ug/l Dibenzo(a,h)anthracene ND 0.20 0.04 1 ug/l Indeno(1,2,3-cd)pyrene 0.07 J 0.20 0.04 1 ug/l 0.32 0.20 0.04 1 Pyrene ug/l 2-Methylnaphthalene ND 0.20 0.05 1 ug/l Pentachlorophenol ND ug/l 0.80 0.22 1 Hexachlorobenzene ND ug/l 0.80 0.03 1 Hexachloroethane ND ug/l 0.80 0.03 1

Analyst:

KL

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 09/19/16 10:50

Client ID: SP-MW-37 Date Received: 09/20/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Accepta Qualifier Crite	
2-Fluorophenol	50	21-	120
Phenol-d6	36	10-	120
Nitrobenzene-d5	85	23-	120
2-Fluorobiphenyl	96	15-	120
2,4,6-Tribromophenol	64	10-	120
4-Terphenyl-d14	93	41-	149

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

 Lab ID:
 L1629713-02
 Date Collected:
 09/19/16 10:20

 Client ID:
 SP-MW-23
 Date Received:
 09/20/16

Sample Location: SYRACUSE, NY Field Prep: Not Specified Matrix: Water Extraction Method:EPA 3510C

Analytical Method: 1,8270D Extraction Date: 09/24/16 14:22
Analytical Date: 09/25/16 22:18

Analyst: HL

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - V	Vestborough Lab					
1,2,4-Trichlorobenzene	ND		ug/l	5.0	0.66	1
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.67	1
1,2-Dichlorobenzene	ND		ug/l	2.0	0.73	1
1,3-Dichlorobenzene	ND		ug/l	2.0	0.73	1
1,4-Dichlorobenzene	ND		ug/l	2.0	0.71	1
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.4	1
2,4-Dinitrotoluene	ND		ug/l	5.0	0.84	1
2,6-Dinitrotoluene	ND		ug/l	5.0	1.1	1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.62	1
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.73	1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.70	1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.63	1
Hexachlorocyclopentadiene	ND		ug/l	20	7.8	1
Isophorone	ND		ug/l	5.0	0.60	1
Nitrobenzene	ND		ug/l	2.0	0.75	1
NDPA/DPA	ND		ug/l	2.0	0.64	1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.70	1
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	0.91	1
Butyl benzyl phthalate	ND		ug/l	5.0	1.3	1
Di-n-butylphthalate	ND		ug/l	5.0	0.69	1
Di-n-octylphthalate	ND		ug/l	5.0	1.1	1
Diethyl phthalate	ND		ug/l	5.0	0.63	1
Dimethyl phthalate	ND		ug/l	5.0	0.65	1
Biphenyl	ND		ug/l	2.0	0.76	1
4-Chloroaniline	ND		ug/l	5.0	0.63	1
2-Nitroaniline	ND		ug/l	5.0	1.1	1
3-Nitroaniline	ND		ug/l	5.0	1.1	1
4-Nitroaniline	ND		ug/l	5.0	1.3	1
Dibenzofuran	ND		ug/l	2.0	0.66	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.67	1

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 09/19/16 10:20

Client ID: SP-MW-23 Date Received: 09/20/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

_						
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - \	Westborough Lab					
Acetophenone	ND		ug/l	5.0	0.85	1
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.68	1
p-Chloro-m-cresol	ND		ug/l	2.0	0.62	1
2-Chlorophenol	ND		ug/l	2.0	0.63	1
2,4-Dichlorophenol	ND		ug/l	5.0	0.77	1
2,4-Dimethylphenol	ND		ug/l	5.0	1.6	1
2-Nitrophenol	ND		ug/l	10	1.5	1
4-Nitrophenol	ND		ug/l	10	1.8	1
2,4-Dinitrophenol	ND		ug/l	20	5.5	1
4,6-Dinitro-o-cresol	ND		ug/l	10	2.1	1
Phenol	ND		ug/l	5.0	1.9	1
2-Methylphenol	ND		ug/l	5.0	1.0	1
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	1.1	1
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.72	1
Benzoic Acid	ND		ug/l	50	13.	1
Benzyl Alcohol	ND		ug/l	2.0	0.72	1
Carbazole	ND		ug/l	2.0	0.63	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	48	21-120	
Phenol-d6	35	10-120	
Nitrobenzene-d5	100	23-120	
2-Fluorobiphenyl	82	15-120	
2,4,6-Tribromophenol	96	10-120	
4-Terphenyl-d14	80	41-149	

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

 Lab ID:
 L1629713-02
 Date Collected:
 09/19/16 10:20

 Client ID:
 SP-MW-23
 Date Received:
 09/20/16

Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1,8270D-SIM Extraction Date: 09/24/16 14:32

Analytical Date: 09/27/16 05:30

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS-SIM	- Westborough La	ıb					
Acenaphthene	0.82		ug/l	0.10	0.04	1	
2-Chloronaphthalene	ND		ug/l	0.20	0.04	1	
Fluoranthene	ND		ug/l	0.20	0.04	1	
Hexachlorobutadiene	ND		ug/l	0.50	0.04	1	
Naphthalene	ND		ug/l	0.20	0.04	1	
Benzo(a)anthracene	ND		ug/l	0.20	0.02	1	
Benzo(a)pyrene	ND		ug/l	0.20	0.04	1	
Benzo(b)fluoranthene	ND		ug/l	0.20	0.02	1	
Benzo(k)fluoranthene	ND		ug/l	0.20	0.04	1	
Chrysene	ND		ug/l	0.20	0.04	1	
Acenaphthylene	0.37		ug/l	0.20	0.04	1	
Anthracene	0.08	J	ug/l	0.20	0.04	1	
Benzo(ghi)perylene	ND		ug/l	0.20	0.04	1	
Fluorene	0.70		ug/l	0.20	0.04	1	
Phenanthrene	ND		ug/l	0.20	0.02	1	
Dibenzo(a,h)anthracene	ND		ug/l	0.20	0.04	1	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.20	0.04	1	
Pyrene	ND		ug/l	0.20	0.04	1	
2-Methylnaphthalene	ND		ug/l	0.20	0.05	1	
Pentachlorophenol	ND		ug/l	0.80	0.22	1	
Hexachlorobenzene	ND		ug/l	0.80	0.03	1	
Hexachloroethane	ND		ug/l	0.80	0.03	1	

Analyst:

KL

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 09/19/16 10:20

Client ID: SP-MW-23 Date Received: 09/20/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	A Qualifier	cceptance Criteria	
2-Fluorophenol	56		21-120	
Phenol-d6	40		10-120	
Nitrobenzene-d5	96		23-120	
2-Fluorobiphenyl	103		15-120	
2,4,6-Tribromophenol	94		10-120	
4-Terphenyl-d14	99		41-149	

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

 Lab ID:
 L1629713-03
 Date Collected:
 09/19/16 12:20

 Client ID:
 SP-MW-38
 Date Received:
 09/20/16

Sample Location: SYRACUSE, NY Field Prep: Not Specified Matrix: Water Extraction Method:EPA 3510C

Analytical Method: 1,8270D Extraction Date: 09/24/16 14:22
Analytical Date: 09/25/16 22:43

Analyst: HL

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - V	Vestborough Lab					
1,2,4-Trichlorobenzene	ND		ug/l	5.0	0.66	1
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.67	1
1,2-Dichlorobenzene	ND		ug/l	2.0	0.73	1
1,3-Dichlorobenzene	ND		ug/l	2.0	0.73	1
1,4-Dichlorobenzene	ND		ug/l	2.0	0.71	1
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.4	1
2,4-Dinitrotoluene	ND		ug/l	5.0	0.84	1
2,6-Dinitrotoluene	ND		ug/l	5.0	1.1	1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.62	1
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.73	1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.70	1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.63	1
Hexachlorocyclopentadiene	ND		ug/l	20	7.8	1
Isophorone	ND		ug/l	5.0	0.60	1
Nitrobenzene	ND		ug/l	2.0	0.75	1
NDPA/DPA	ND		ug/l	2.0	0.64	1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.70	1
Bis(2-ethylhexyl)phthalate	2.3	J	ug/l	3.0	0.91	1
Butyl benzyl phthalate	ND		ug/l	5.0	1.3	1
Di-n-butylphthalate	ND		ug/l	5.0	0.69	1
Di-n-octylphthalate	ND		ug/l	5.0	1.1	1
Diethyl phthalate	ND		ug/l	5.0	0.63	1
Dimethyl phthalate	ND		ug/l	5.0	0.65	1
Biphenyl	ND		ug/l	2.0	0.76	1
4-Chloroaniline	ND		ug/l	5.0	0.63	1
2-Nitroaniline	ND		ug/l	5.0	1.1	1
3-Nitroaniline	ND		ug/l	5.0	1.1	1
4-Nitroaniline	ND		ug/l	5.0	1.3	1
Dibenzofuran	ND		ug/l	2.0	0.66	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.67	1

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: L1629713-03 Date Collected: 09/19/16 12:20

Client ID: SP-MW-38 Date Received: 09/20/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - V	Vestborough Lab						
Acetophenone	ND		ug/l	5.0	0.85	1	
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.68	1	
p-Chloro-m-cresol	ND		ug/l	2.0	0.62	1	
2-Chlorophenol	ND		ug/l	2.0	0.63	1	
2,4-Dichlorophenol	ND		ug/l	5.0	0.77	1	
2,4-Dimethylphenol	ND		ug/l	5.0	1.6	1	
2-Nitrophenol	ND		ug/l	10	1.5	1	
4-Nitrophenol	ND		ug/l	10	1.8	1	
2,4-Dinitrophenol	ND		ug/l	20	5.5	1	
4,6-Dinitro-o-cresol	ND		ug/l	10	2.1	1	
Phenol	ND		ug/l	5.0	1.9	1	
2-Methylphenol	ND		ug/l	5.0	1.0	1	
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	1.1	1	
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.72	1	
Benzoic Acid	ND		ug/l	50	13.	1	
Benzyl Alcohol	ND		ug/l	2.0	0.72	1	
Carbazole	ND		ug/l	2.0	0.63	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	46		21-120	
Phenol-d6	36		10-120	
Nitrobenzene-d5	85		23-120	
2-Fluorobiphenyl	67		15-120	
2,4,6-Tribromophenol	79		10-120	
4-Terphenyl-d14	68		41-149	

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

 Lab ID:
 L1629713-03
 Date Collected:
 09/19/16 12:20

 Client ID:
 SP-MW-38
 Date Received:
 09/20/16

Client ID: SP-MW-38 Date Received: 09/20/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Water Extraction Method:EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 09/24/16 14:32
Analytical Date: 09/27/16 06:02

Analyst: KL

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM	- Westborough La	ıb				
Acenaphthene	1.5		ug/l	0.10	0.04	1
2-Chloronaphthalene	ND		ug/l	0.20	0.04	1
Fluoranthene	ND		ug/l	0.20	0.04	1
Hexachlorobutadiene	ND		ug/l	0.50	0.04	1
Naphthalene	ND		ug/l	0.20	0.04	1
Benzo(a)anthracene	ND		ug/l	0.20	0.02	1
Benzo(a)pyrene	ND		ug/l	0.20	0.04	1
Benzo(b)fluoranthene	ND		ug/l	0.20	0.02	1
Benzo(k)fluoranthene	ND		ug/l	0.20	0.04	1
Chrysene	ND		ug/l	0.20	0.04	1
Acenaphthylene	0.14	J	ug/l	0.20	0.04	1
Anthracene	0.16	J	ug/l	0.20	0.04	1
Benzo(ghi)perylene	ND		ug/l	0.20	0.04	1
Fluorene	0.97		ug/l	0.20	0.04	1
Phenanthrene	0.17	J	ug/l	0.20	0.02	1
Dibenzo(a,h)anthracene	ND		ug/l	0.20	0.04	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.20	0.04	1
Pyrene	0.04	J	ug/l	0.20	0.04	1
2-Methylnaphthalene	0.41		ug/l	0.20	0.05	1
Pentachlorophenol	ND		ug/l	0.80	0.22	1
Hexachlorobenzene	ND		ug/l	0.80	0.03	1
Hexachloroethane	ND		ug/l	0.80	0.03	1

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: L1629713-03 Date Collected: 09/19/16 12:20

Client ID: SP-MW-38 Date Received: 09/20/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	54	21-120	
Phenol-d6	40	10-120	
Nitrobenzene-d5	85	23-120	
2-Fluorobiphenyl	82	15-120	
2,4,6-Tribromophenol	76	10-120	
4-Terphenyl-d14	85	41-149	

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

 Lab ID:
 L1629713-04
 Date Collected:
 09/19/16 11:27

 Client ID:
 SP-MW-39
 Date Received:
 09/20/16

Sample Location: SYRACUSE, NY Field Prep: Not Specified Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D Extraction Date: 09/24/16 14:22
Analytical Date: 09/25/16 23:08

Analyst: HL

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - West	borough Lab					
1,2,4-Trichlorobenzene	ND		ug/l	5.0	0.66	1
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.67	1
1,2-Dichlorobenzene	ND		ug/l	2.0	0.73	1
1,3-Dichlorobenzene	ND		ug/l	2.0	0.73	1
1,4-Dichlorobenzene	ND		ug/l	2.0	0.71	1
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.4	1
2,4-Dinitrotoluene	ND		ug/l	5.0	0.84	1
2,6-Dinitrotoluene	ND		ug/l	5.0	1.1	1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.62	1
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.73	1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.70	1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.63	1
Hexachlorocyclopentadiene	ND		ug/l	20	7.8	1
Isophorone	ND		ug/l	5.0	0.60	1
Nitrobenzene	ND		ug/l	2.0	0.75	1
NDPA/DPA	ND		ug/l	2.0	0.64	1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.70	1
Bis(2-ethylhexyl)phthalate	2.2	J	ug/l	3.0	0.91	1
Butyl benzyl phthalate	ND		ug/l	5.0	1.3	1
Di-n-butylphthalate	ND		ug/l	5.0	0.69	1
Di-n-octylphthalate	ND		ug/l	5.0	1.1	1
Diethyl phthalate	ND		ug/l	5.0	0.63	1
Dimethyl phthalate	ND		ug/l	5.0	0.65	1
Biphenyl	ND		ug/l	2.0	0.76	1
4-Chloroaniline	ND		ug/l	5.0	0.63	1
2-Nitroaniline	ND		ug/l	5.0	1.1	1
3-Nitroaniline	ND		ug/l	5.0	1.1	1
4-Nitroaniline	ND		ug/l	5.0	1.3	1
Dibenzofuran	ND		ug/l	2.0	0.66	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.67	1

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 09/19/16 11:27

Client ID: SP-MW-39 Date Received: 09/20/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

_						
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - \	Westborough Lab					
Acetophenone	ND		ug/l	5.0	0.85	1
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.68	1
p-Chloro-m-cresol	ND		ug/l	2.0	0.62	1
2-Chlorophenol	ND		ug/l	2.0	0.63	1
2,4-Dichlorophenol	ND		ug/l	5.0	0.77	1
2,4-Dimethylphenol	ND		ug/l	5.0	1.6	1
2-Nitrophenol	ND		ug/l	10	1.5	1
4-Nitrophenol	ND		ug/l	10	1.8	1
2,4-Dinitrophenol	ND		ug/l	20	5.5	1
4,6-Dinitro-o-cresol	ND		ug/l	10	2.1	1
Phenol	ND		ug/l	5.0	1.9	1
2-Methylphenol	ND		ug/l	5.0	1.0	1
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	1.1	1
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.72	1
Benzoic Acid	ND		ug/l	50	13.	1
Benzyl Alcohol	ND		ug/l	2.0	0.72	1
Carbazole	ND		ug/l	2.0	0.63	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	42	21-120
Phenol-d6	30	10-120
Nitrobenzene-d5	91	23-120
2-Fluorobiphenyl	75	15-120
2,4,6-Tribromophenol	85	10-120
4-Terphenyl-d14	75	41-149

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

 Lab ID:
 L1629713-04
 Date Collected:
 09/19/16 11:27

 Client ID:
 SP-MW-39
 Date Received:
 09/20/16

Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Water Extraction Method:EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 09/24/16 14:32
Analytical Date: 09/27/16 06:34

Analyst: KL

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM -	Westborough La	ab				
Acenaphthene	ND		ua/l	0.10	0.04	1
<u> </u>			ug/l			
2-Chloronaphthalene	ND		ug/l	0.20	0.04	1
Fluoranthene	0.08	J	ug/l	0.20	0.04	1
Hexachlorobutadiene	ND		ug/l	0.50	0.04	1
Naphthalene	ND		ug/l	0.20	0.04	1
Benzo(a)anthracene	0.03	J	ug/l	0.20	0.02	1
Benzo(a)pyrene	ND		ug/l	0.20	0.04	1
Benzo(b)fluoranthene	0.07	J	ug/l	0.20	0.02	1
Benzo(k)fluoranthene	ND		ug/l	0.20	0.04	1
Chrysene	0.05	J	ug/l	0.20	0.04	1
Acenaphthylene	ND		ug/l	0.20	0.04	1
Anthracene	ND		ug/l	0.20	0.04	1
Benzo(ghi)perylene	ND		ug/l	0.20	0.04	1
Fluorene	ND		ug/l	0.20	0.04	1
Phenanthrene	ND		ug/l	0.20	0.02	1
Dibenzo(a,h)anthracene	ND		ug/l	0.20	0.04	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.20	0.04	1
Pyrene	0.07	J	ug/l	0.20	0.04	1
2-Methylnaphthalene	ND		ug/l	0.20	0.05	1
Pentachlorophenol	ND		ug/l	0.80	0.22	1
Hexachlorobenzene	ND		ug/l	0.80	0.03	1
Hexachloroethane	ND		ug/l	0.80	0.03	1

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 09/19/16 11:27

Client ID: SP-MW-39 Date Received: 09/20/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	53		21-120	
Phenol-d6	36		10-120	
Nitrobenzene-d5	90		23-120	
2-Fluorobiphenyl	92		15-120	
2,4,6-Tribromophenol	89		10-120	
4-Terphenyl-d14	92		41-149	

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 09/19/16 12:45

Client ID: SP-MW-21 Date Received: 09/20/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified
Matrix: Water Extraction Method:EPA 3510C

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1,8270D Extraction Date: 09/24/16 14:22
Analytical Date: 09/25/16 23:33

Analyst: HL

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - West	borough Lab					
1,2,4-Trichlorobenzene	ND		ug/l	5.0	0.66	1
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.67	1
1,2-Dichlorobenzene	ND		ug/l	2.0	0.73	1
1,3-Dichlorobenzene	ND		ug/l	2.0	0.73	1
1,4-Dichlorobenzene	ND		ug/l	2.0	0.71	1
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.4	1
2,4-Dinitrotoluene	ND		ug/l	5.0	0.84	1
2,6-Dinitrotoluene	ND		ug/l	5.0	1.1	1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.62	1
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.73	1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.70	1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.63	1
Hexachlorocyclopentadiene	ND		ug/l	20	7.8	1
Isophorone	ND		ug/l	5.0	0.60	1
Nitrobenzene	ND		ug/l	2.0	0.75	1
NDPA/DPA	ND		ug/l	2.0	0.64	1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.70	1
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	0.91	1
Butyl benzyl phthalate	ND		ug/l	5.0	1.3	1
Di-n-butylphthalate	ND		ug/l	5.0	0.69	1
Di-n-octylphthalate	ND		ug/l	5.0	1.1	1
Diethyl phthalate	ND		ug/l	5.0	0.63	1
Dimethyl phthalate	ND		ug/l	5.0	0.65	1
Biphenyl	ND		ug/l	2.0	0.76	1
4-Chloroaniline	ND		ug/l	5.0	0.63	1
2-Nitroaniline	ND		ug/l	5.0	1.1	1
3-Nitroaniline	ND		ug/l	5.0	1.1	1
4-Nitroaniline	ND		ug/l	5.0	1.3	1
Dibenzofuran	2.0		ug/l	2.0	0.66	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.67	1

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 09/19/16 12:45

Client ID: SP-MW-21 Date Received: 09/20/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

•					•	•	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - 1	Westborough Lab						
Acetophenone	ND		ug/l	5.0	0.85	1	
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.68	1	
p-Chloro-m-cresol	ND		ug/l	2.0	0.62	1	
2-Chlorophenol	ND		ug/l	2.0	0.63	1	
2,4-Dichlorophenol	ND		ug/l	5.0	0.77	1	
2,4-Dimethylphenol	ND		ug/l	5.0	1.6	1	
2-Nitrophenol	ND		ug/l	10	1.5	1	
4-Nitrophenol	ND		ug/l	10	1.8	1	
2,4-Dinitrophenol	ND		ug/l	20	5.5	1	
4,6-Dinitro-o-cresol	ND		ug/l	10	2.1	1	
Phenol	ND		ug/l	5.0	1.9	1	
2-Methylphenol	ND		ug/l	5.0	1.0	1	
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	1.1	1	
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.72	1	
Benzoic Acid	ND		ug/l	50	13.	1	
Benzyl Alcohol	ND		ug/l	2.0	0.72	1	
Carbazole	0.68	J	ug/l	2.0	0.63	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	47	21-120	
Phenol-d6	45	10-120	
Nitrobenzene-d5	92	23-120	
2-Fluorobiphenyl	77	15-120	
2,4,6-Tribromophenol	92	10-120	
4-Terphenyl-d14	74	41-149	

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: L1629713-05 D

Client ID: SP-MW-21 Sample Location: SYRACUSE, NY

Matrix: Water

Analytical Method: 1,8270D-SIM Analytical Date: 09/27/16 13:17

Analyst: KL

Date Collected: 09/19/16 12:45
Date Received: 09/20/16
Field Prep: Not Specified
Extraction Method: EPA 3510C
Extraction Date: 09/24/16 14:32

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM - Westborough Lab						
Acenaphthene	2.6		//	0.50	0.18	5
·			ug/l			
2-Chloronaphthalene	ND		ug/l	1.0	0.18	5
Fluoranthene	ND		ug/l	1.0	0.19	5
Hexachlorobutadiene	ND		ug/l	2.5	0.18	5
Naphthalene	ND		ug/l	1.0	0.22	5
Benzo(a)anthracene	ND		ug/l	1.0	0.08	5
Benzo(a)pyrene	ND		ug/l	1.0	0.20	5
Benzo(b)fluoranthene	ND		ug/l	1.0	0.08	5
Benzo(k)fluoranthene	ND		ug/l	1.0	0.21	5
Chrysene	ND		ug/l	1.0	0.19	5
Acenaphthylene	0.83	J	ug/l	1.0	0.18	5
Anthracene	ND		ug/l	1.0	0.18	5
Benzo(ghi)perylene	ND		ug/l	1.0	0.21	5
Fluorene	4.3		ug/l	1.0	0.18	5
Phenanthrene	0.27	J	ug/l	1.0	0.08	5
Dibenzo(a,h)anthracene	ND		ug/l	1.0	0.20	5
Indeno(1,2,3-cd)pyrene	ND		ug/l	1.0	0.20	5
Pyrene	ND		ug/l	1.0	0.20	5
2-Methylnaphthalene	ND		ug/l	1.0	0.22	5
Pentachlorophenol	ND		ug/l	4.0	1.1	5
Hexachlorobenzene	ND		ug/l	4.0	0.16	5
Hexachloroethane	ND		ug/l	4.0	0.15	5

MDL

Dilution Factor

RL

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: L1629713-05 D Date Collected: 09/19/16 12:45

Client ID: SP-MW-21 Date Received: 09/20/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Qualifier

Units

Result

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Parameter

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	60		21-120	
Phenol-d6	55		10-120	
Nitrobenzene-d5	93		23-120	
2-Fluorobiphenyl	100		15-120	
2,4,6-Tribromophenol	102		10-120	
4-Terphenyl-d14	90		41-149	

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: L1629713-06
Client ID: SP-MW-40
Sample Location: SYRACUSE, NY

Matrix: Water Analytical Method: 1,8270D

Analytical Date: 09/25/16 23:58

Analyst: HL

Date Collected: 09/19/16 15:05
Date Received: 09/20/16
Field Prep: Not Specified
Extraction Method: EPA 3510C
Extraction Date: 09/24/16 14:22

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westborough Lab						
1,2,4-Trichlorobenzene	ND		ug/l	5.0	0.66	1
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.67	1
1,2-Dichlorobenzene	ND		ug/l	2.0	0.73	1
1,3-Dichlorobenzene	ND		ug/l	2.0	0.73	1
1,4-Dichlorobenzene	ND		ug/l	2.0	0.71	1
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.4	1
2,4-Dinitrotoluene	ND		ug/l	5.0	0.84	1
2,6-Dinitrotoluene	ND		ug/l	5.0	1.1	1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.62	1
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.73	1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.70	1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.63	1
Hexachlorocyclopentadiene	ND		ug/l	20	7.8	1
Isophorone	ND		ug/l	5.0	0.60	1
Nitrobenzene	ND		ug/l	2.0	0.75	1
NDPA/DPA	ND		ug/l	2.0	0.64	1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.70	1
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	0.91	1
Butyl benzyl phthalate	ND		ug/l	5.0	1.3	1
Di-n-butylphthalate	ND		ug/l	5.0	0.69	1
Di-n-octylphthalate	ND		ug/l	5.0	1.1	1
Diethyl phthalate	ND		ug/l	5.0	0.63	1
Dimethyl phthalate	ND		ug/l	5.0	0.65	1
Biphenyl	ND		ug/l	2.0	0.76	1
4-Chloroaniline	ND		ug/l	5.0	0.63	1
2-Nitroaniline	ND		ug/l	5.0	1.1	1
3-Nitroaniline	ND		ug/l	5.0	1.1	1
4-Nitroaniline	ND		ug/l	5.0	1.3	1
Dibenzofuran	2.0		ug/l	2.0	0.66	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.67	1

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 09/19/16 15:05

Client ID: SP-MW-40 Date Received: 09/20/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - W	estborough Lab						
Acetophenone	ND		ug/l	5.0	0.85	1	
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.68	1	
p-Chloro-m-cresol	ND		ug/l	2.0	0.62	1	
2-Chlorophenol	ND		ug/l	2.0	0.63	1	
2,4-Dichlorophenol	ND		ug/l	5.0	0.77	1	
2,4-Dimethylphenol	ND		ug/l	5.0	1.6	1	
2-Nitrophenol	ND		ug/l	10	1.5	1	
4-Nitrophenol	ND		ug/l	10	1.8	1	
2,4-Dinitrophenol	ND		ug/l	20	5.5	1	
4,6-Dinitro-o-cresol	ND		ug/l	10	2.1	1	
Phenol	ND		ug/l	5.0	1.9	1	
2-Methylphenol	ND		ug/l	5.0	1.0	1	
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	1.1	1	
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.72	1	
Benzoic Acid	ND		ug/l	50	13.	1	
Benzyl Alcohol	ND		ug/l	2.0	0.72	1	
Carbazole	1.2	J	ug/l	2.0	0.63	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	42	21-120	
Phenol-d6	32	10-120	
Nitrobenzene-d5	84	23-120	
2-Fluorobiphenyl	70	15-120	
2,4,6-Tribromophenol	81	10-120	
4-Terphenyl-d14	69	41-149	

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

 Lab ID:
 L1629713-06
 Date Collected:
 09/19/16 15:05

 Client ID:
 SP-MW-40
 Date Received:
 09/20/16

Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1,8270D-SIM Extraction Date: 09/24/16 14:3.

Analytical Method: 1,8270D-SIM Extraction Date: 09/24/16 14:32
Analytical Date: 09/27/16 08:08

Analyst: KL

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM - Westborough Lab						
Assaulthans	1.6		//	0.10	0.04	1
Acenaphthene			ug/l			
2-Chloronaphthalene	ND		ug/l	0.20	0.04	1
Fluoranthene	0.04	J	ug/l	0.20	0.04	1
Hexachlorobutadiene	ND		ug/l	0.50	0.04	1
Naphthalene	ND		ug/l	0.20	0.04	1
Benzo(a)anthracene	ND		ug/l	0.20	0.02	1
Benzo(a)pyrene	ND		ug/l	0.20	0.04	1
Benzo(b)fluoranthene	ND		ug/l	0.20	0.02	1
Benzo(k)fluoranthene	ND		ug/l	0.20	0.04	1
Chrysene	ND		ug/l	0.20	0.04	1
Acenaphthylene	0.65		ug/l	0.20	0.04	1
Anthracene	0.09	J	ug/l	0.20	0.04	1
Benzo(ghi)perylene	ND		ug/l	0.20	0.04	1
Fluorene	0.15	J	ug/l	0.20	0.04	1
Phenanthrene	0.06	J	ug/l	0.20	0.02	1
Dibenzo(a,h)anthracene	ND		ug/l	0.20	0.04	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.20	0.04	1
Pyrene	ND		ug/l	0.20	0.04	1
2-Methylnaphthalene	0.70		ug/l	0.20	0.05	1
Pentachlorophenol	ND		ug/l	0.80	0.22	1
Hexachlorobenzene	ND		ug/l	0.80	0.03	1
Hexachloroethane	ND		ug/l	0.80	0.03	1

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 09/19/16 15:05

Client ID: SP-MW-40 Date Received: 09/20/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	52	21-120	
Phenol-d6	38	10-120	
Nitrobenzene-d5	87	23-120	
2-Fluorobiphenyl	90	15-120	
2,4,6-Tribromophenol	82	10-120	
4-Terphenyl-d14	83	41-149	

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: L1629713-07
Client ID: SP-MW-22
Sample Location: SYRACUSE, NY

Matrix: Water
Analytical Method: 1,8270D
Analytical Date: 09/26/16 00:24

Analyst: HL

Date Collected: 09/19/16 14:53
Date Received: 09/20/16
Field Prep: Not Specified
Extraction Method: EPA 3510C
Extraction Date: 09/24/16 14:22

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Westborough Lab					
1,2,4-Trichlorobenzene	ND		ug/l	5.0	0.66	1
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.67	1
1,2-Dichlorobenzene	ND		ug/l	2.0	0.73	1
1,3-Dichlorobenzene	ND		ug/l	2.0	0.73	1
1,4-Dichlorobenzene	ND		ug/l	2.0	0.71	1
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.4	1
2,4-Dinitrotoluene	ND		ug/l	5.0	0.84	1
2,6-Dinitrotoluene	ND		ug/l	5.0	1.1	1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.62	1
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.73	1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.70	1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.63	1
Hexachlorocyclopentadiene	ND		ug/l	20	7.8	1
Isophorone	ND		ug/l	5.0	0.60	1
Nitrobenzene	ND		ug/l	2.0	0.75	1
NDPA/DPA	ND		ug/l	2.0	0.64	1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.70	1
Bis(2-ethylhexyl)phthalate	2.3	J	ug/l	3.0	0.91	1
Butyl benzyl phthalate	ND		ug/l	5.0	1.3	1
Di-n-butylphthalate	ND		ug/l	5.0	0.69	1
Di-n-octylphthalate	ND		ug/l	5.0	1.1	1
Diethyl phthalate	ND		ug/l	5.0	0.63	1
Dimethyl phthalate	ND		ug/l	5.0	0.65	1
Biphenyl	ND		ug/l	2.0	0.76	1
4-Chloroaniline	ND		ug/l	5.0	0.63	1
2-Nitroaniline	ND		ug/l	5.0	1.1	1
3-Nitroaniline	ND		ug/l	5.0	1.1	1
4-Nitroaniline	ND		ug/l	5.0	1.3	1
Dibenzofuran	ND		ug/l	2.0	0.66	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.67	1

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 09/19/16 14:53

Client ID: SP-MW-22 Date Received: 09/20/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - We	estborough Lab						
Acetophenone	ND		ug/l	5.0	0.85	1	
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.68	1	
p-Chloro-m-cresol	ND		ug/l	2.0	0.62	1	
2-Chlorophenol	ND		ug/l	2.0	0.63	1	
2,4-Dichlorophenol	ND		ug/l	5.0	0.77	1	
2,4-Dimethylphenol	ND		ug/l	5.0	1.6	1	
2-Nitrophenol	ND		ug/l	10	1.5	1	
4-Nitrophenol	ND		ug/l	10	1.8	1	
2,4-Dinitrophenol	ND		ug/l	20	5.5	1	
4,6-Dinitro-o-cresol	ND		ug/l	10	2.1	1	
Phenol	ND		ug/l	5.0	1.9	1	
2-Methylphenol	ND		ug/l	5.0	1.0	1	
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	1.1	1	
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.72	1	
Benzoic Acid	ND		ug/l	50	13.	1	
Benzyl Alcohol	ND		ug/l	2.0	0.72	1	
Carbazole	ND		ug/l	2.0	0.63	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	45		21-120	
Phenol-d6	31		10-120	
Nitrobenzene-d5	96		23-120	
2-Fluorobiphenyl	80		15-120	
2,4,6-Tribromophenol	54		10-120	
4-Terphenyl-d14	76		41-149	

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: L1629713-07
Client ID: SP-MW-22
Sample Location: SYRACUSE, NY

Matrix: Water

Analytical Method: 1,8270D-SIM Analytical Date: 09/27/16 09:12

Analyst: KL

Date Collected: 09/19/16 14:53
Date Received: 09/20/16
Field Prep: Not Specified
Extraction Method: EPA 3510C
Extraction Date: 09/24/16 14:32

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-S	IM - Westborough Lal	b				
Acenaphthene	0.10		ug/l	0.10	0.04	1
· · · · · · · · · · · · · · · · · · ·						
2-Chloronaphthalene	ND		ug/l	0.20	0.04	1
Fluoranthene	0.09	J	ug/l	0.20	0.04	1
Hexachlorobutadiene	ND		ug/l	0.50	0.04	1
Naphthalene	ND		ug/l	0.20	0.04	1
Benzo(a)anthracene	0.02	J	ug/l	0.20	0.02	1
Benzo(a)pyrene	ND		ug/l	0.20	0.04	1
Benzo(b)fluoranthene	ND		ug/l	0.20	0.02	1
Benzo(k)fluoranthene	ND		ug/l	0.20	0.04	1
Chrysene	ND		ug/l	0.20	0.04	1
Acenaphthylene	ND		ug/l	0.20	0.04	1
Anthracene	0.04	J	ug/l	0.20	0.04	1
Benzo(ghi)perylene	ND		ug/l	0.20	0.04	1
Fluorene	ND		ug/l	0.20	0.04	1
Phenanthrene	ND		ug/l	0.20	0.02	1
Dibenzo(a,h)anthracene	ND		ug/l	0.20	0.04	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.20	0.04	1
Pyrene	0.07	J	ug/l	0.20	0.04	1
2-Methylnaphthalene	ND		ug/l	0.20	0.05	1
Pentachlorophenol	ND		ug/l	0.80	0.22	1
Hexachlorobenzene	ND		ug/l	0.80	0.03	1
Hexachloroethane	ND		ug/l	0.80	0.03	1

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 09/19/16 14:53

Client ID: SP-MW-22 Date Received: 09/20/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Surrogate	% Recovery	Ao Qualifier	cceptance Criteria	
2-Fluorophenol	57		21-120	
Phenol-d6	38		10-120	
Nitrobenzene-d5	98		23-120	
2-Fluorobiphenyl	103		15-120	
2,4,6-Tribromophenol	97		10-120	
4-Terphenyl-d14	104		41-149	

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: L1629713-08
Client ID: SP-MW-20
Sample Location: SYRACUSE, NY

Matrix: Water
Analytical Method: 1,8270D

Analytical Date: 09/26/16 00:49

Analyst: HL

Date Collected: 09/19/16 16:15
Date Received: 09/20/16
Field Prep: Not Specified
Extraction Method: EPA 3510C
Extraction Date: 09/24/16 14:22

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - 1	Westborough Lab					
1,2,4-Trichlorobenzene	ND		ug/l	5.0	0.66	1
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.67	1
1,2-Dichlorobenzene	ND		ug/l	2.0	0.73	1
1,3-Dichlorobenzene	ND		ug/l	2.0	0.73	1
1,4-Dichlorobenzene	ND		ug/l	2.0	0.71	1
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.4	1
2,4-Dinitrotoluene	ND		ug/l	5.0	0.84	1
2,6-Dinitrotoluene	ND		ug/l	5.0	1.1	1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.62	1
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.73	1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.70	1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.63	1
Hexachlorocyclopentadiene	ND		ug/l	20	7.8	1
Isophorone	ND		ug/l	5.0	0.60	1
Nitrobenzene	ND		ug/l	2.0	0.75	1
NDPA/DPA	ND		ug/l	2.0	0.64	1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.70	1
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	0.91	1
Butyl benzyl phthalate	ND		ug/l	5.0	1.3	1
Di-n-butylphthalate	ND		ug/l	5.0	0.69	1
Di-n-octylphthalate	ND		ug/l	5.0	1.1	1
Diethyl phthalate	ND		ug/l	5.0	0.63	1
Dimethyl phthalate	ND		ug/l	5.0	0.65	1
Biphenyl	ND		ug/l	2.0	0.76	1
4-Chloroaniline	ND		ug/l	5.0	0.63	1
2-Nitroaniline	ND		ug/l	5.0	1.1	1
3-Nitroaniline	ND		ug/l	5.0	1.1	1
4-Nitroaniline	ND		ug/l	5.0	1.3	1
Dibenzofuran	ND		ug/l	2.0	0.66	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.67	1

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 09/19/16 16:15

Client ID: SP-MW-20 Date Received: 09/20/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - \	Westborough Lab					
Acetophenone	ND		ug/l	5.0	0.85	1
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.68	1
p-Chloro-m-cresol	ND		ug/l	2.0	0.62	1
2-Chlorophenol	ND		ug/l	2.0	0.63	1
2,4-Dichlorophenol	ND		ug/l	5.0	0.77	1
2,4-Dimethylphenol	ND		ug/l	5.0	1.6	1
2-Nitrophenol	ND		ug/l	10	1.5	1
4-Nitrophenol	ND		ug/l	10	1.8	1
2,4-Dinitrophenol	ND		ug/l	20	5.5	1
4,6-Dinitro-o-cresol	ND		ug/l	10	2.1	1
Phenol	ND		ug/l	5.0	1.9	1
2-Methylphenol	ND		ug/l	5.0	1.0	1
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	1.1	1
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.72	1
Benzoic Acid	ND		ug/l	50	13.	1
Benzyl Alcohol	ND		ug/l	2.0	0.72	1
Carbazole	ND		ug/l	2.0	0.63	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	39	21-120	
Phenol-d6	29	10-120	
Nitrobenzene-d5	86	23-120	
2-Fluorobiphenyl	72	15-120	
2,4,6-Tribromophenol	83	10-120	
4-Terphenyl-d14	70	41-149	

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

 Lab ID:
 L1629713-08
 Date Collected:
 09/19/16 16:15

 Client ID:
 SP-MW-20
 Date Received:
 09/20/16

Client ID: SP-MW-20 Date Received: 09/20/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Water Extraction Method:EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 09/24/16 14:32

Analytical Date: 09/27/16 09:54
Analyst: KL

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS-SIM	l - Westborough La	ıb					
Acenaphthene	0.70		ug/l	0.10	0.04	1	
2-Chloronaphthalene	ND		ug/l	0.20	0.04	1	_
Fluoranthene	ND		ug/l	0.20	0.04	1	
Hexachlorobutadiene	ND		ug/l	0.50	0.04	1	
Naphthalene	ND		ug/l	0.20	0.04	1	
Benzo(a)anthracene	ND		ug/l	0.20	0.02	1	
Benzo(a)pyrene	ND		ug/l	0.20	0.04	1	
Benzo(b)fluoranthene	ND		ug/l	0.20	0.02	1	
Benzo(k)fluoranthene	ND		ug/l	0.20	0.04	1	
Chrysene	ND		ug/l	0.20	0.04	1	
Acenaphthylene	0.19	J	ug/l	0.20	0.04	1	
Anthracene	0.18	J	ug/l	0.20	0.04	1	
Benzo(ghi)perylene	ND		ug/l	0.20	0.04	1	
Fluorene	0.37		ug/l	0.20	0.04	1	
Phenanthrene	ND		ug/l	0.20	0.02	1	
Dibenzo(a,h)anthracene	ND		ug/l	0.20	0.04	1	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.20	0.04	1	
Pyrene	ND		ug/l	0.20	0.04	1	
2-Methylnaphthalene	ND		ug/l	0.20	0.05	1	
Pentachlorophenol	ND		ug/l	0.80	0.22	1	
Hexachlorobenzene	ND		ug/l	0.80	0.03	1	
Hexachloroethane	ND		ug/l	0.80	0.03	1	

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 09/19/16 16:15

Client ID: SP-MW-20 Date Received: 09/20/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	46	21-120
Phenol-d6	33	10-120
Nitrobenzene-d5	83	23-120
2-Fluorobiphenyl	79	15-120
2,4,6-Tribromophenol	87	10-120
4-Terphenyl-d14	63	41-149

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: L1629713-09
Client ID: SP-MW-14SR

SYRACUSE, NY

Matrix: Water
Analytical Method: 1,8270D
Analytical Date: 09/26/16 01:14

Analyst: HL

Sample Location:

Date Collected: 09/19/16 16:55
Date Received: 09/20/16
Field Prep: Not Specified
Extraction Method: EPA 3510C
Extraction Date: 09/24/16 14:22

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS	- Westborough Lab					
1,2,4-Trichlorobenzene	ND		ug/l	5.0	0.66	1
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.67	1
1,2-Dichlorobenzene	ND		ug/l	2.0	0.73	1
1,3-Dichlorobenzene	ND		ug/l	2.0	0.73	1
1,4-Dichlorobenzene	ND		ug/l	2.0	0.71	1
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.4	1
2,4-Dinitrotoluene	ND		ug/l	5.0	0.84	1
2,6-Dinitrotoluene	ND		ug/l	5.0	1.1	1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.62	1
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.73	1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.70	1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.63	1
Hexachlorocyclopentadiene	ND		ug/l	20	7.8	1
Isophorone	ND		ug/l	5.0	0.60	1
Nitrobenzene	ND		ug/l	2.0	0.75	1
NDPA/DPA	ND		ug/l	2.0	0.64	1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.70	1
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	0.91	1
Butyl benzyl phthalate	ND		ug/l	5.0	1.3	1
Di-n-butylphthalate	ND		ug/l	5.0	0.69	1
Di-n-octylphthalate	ND		ug/l	5.0	1.1	1
Diethyl phthalate	2.2	J	ug/l	5.0	0.63	1
Dimethyl phthalate	ND		ug/l	5.0	0.65	1
Biphenyl	ND		ug/l	2.0	0.76	1
4-Chloroaniline	ND		ug/l	5.0	0.63	1
2-Nitroaniline	ND		ug/l	5.0	1.1	1
3-Nitroaniline	ND		ug/l	5.0	1.1	1
4-Nitroaniline	ND		ug/l	5.0	1.3	1
Dibenzofuran	ND		ug/l	2.0	0.66	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.67	1

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 09/19/16 16:55

Client ID: SP-MW-14SR Date Received: 09/20/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

-					-	•
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Westborough Lab					
Acetophenone	ND		ug/l	5.0	0.85	1
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.68	1
p-Chloro-m-cresol	ND		ug/l	2.0	0.62	1
2-Chlorophenol	ND		ug/l	2.0	0.63	1
2,4-Dichlorophenol	ND		ug/l	5.0	0.77	1
2,4-Dimethylphenol	ND		ug/l	5.0	1.6	1
2-Nitrophenol	ND		ug/l	10	1.5	1
4-Nitrophenol	ND		ug/l	10	1.8	1
2,4-Dinitrophenol	ND		ug/l	20	5.5	1
4,6-Dinitro-o-cresol	ND		ug/l	10	2.1	1
Phenol	ND		ug/l	5.0	1.9	1
2-Methylphenol	ND		ug/l	5.0	1.0	1
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	1.1	1
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.72	1
Benzoic Acid	ND		ug/l	50	13.	1
Benzyl Alcohol	ND		ug/l	2.0	0.72	1
Carbazole	ND		ug/l	2.0	0.63	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	44		21-120	
Phenol-d6	32		10-120	
Nitrobenzene-d5	91		23-120	
2-Fluorobiphenyl	75		15-120	
2,4,6-Tribromophenol	78		10-120	
4-Terphenyl-d14	72		41-149	

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 09/19/16 16:55
Client ID: SP-MW-14SR Date Received: 09/20/16

Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1,8270D-SIM Extraction Date: 09/24/16 14:32

Analytical Date: 09/27/16 07:42

MDL **Parameter** Result Qualifier Units RL**Dilution Factor** Semivolatile Organics by GC/MS-SIM - Westborough Lab 1 Acenaphthene 0.25 ug/l 0.10 0.04 ND 2-Chloronaphthalene 0.20 0.04 1 ug/l 0.21 Fluoranthene 0.20 0.04 1 ug/l Hexachlorobutadiene ND 0.50 0.04 1 ug/l 0.05 1 Naphthalene J ug/l 0.20 0.04 J 0.05 0.20 1 Benzo(a)anthracene 0.02 ug/l Benzo(a)pyrene J 0.11 ug/l 0.20 0.04 1 Benzo(b)fluoranthene 0.14 J ug/l 0.20 0.02 1 ND Benzo(k)fluoranthene 0.20 0.04 1 ug/l Chrysene 0.10 J 0.20 0.04 1 ug/l J 0.14 1 Acenaphthylene ug/l 0.20 0.04 0.19 J 0.20 1 Anthracene 0.04 ug/l 0.10 J 0.20 0.04 1 Benzo(ghi)perylene ug/l Fluorene 0.05 J ug/l 0.20 0.04 1 Phenanthrene 0.17 J 0.20 0.02 1 ug/l Dibenzo(a,h)anthracene ND 0.20 0.04 1 ug/l Indeno(1,2,3-cd)pyrene 0.07 J 0.20 0.04 1 ug/l 0.22 0.20 0.04 1 Pyrene ug/l 2-Methylnaphthalene ND 0.20 0.05 1 ug/l Pentachlorophenol ND 0.80 0.22 1 ug/l Hexachlorobenzene ND ug/l 0.80 0.03 1 Hexachloroethane ND ug/l 0.80 0.03 1

Analyst:

KL

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 09/19/16 16:55

Client ID: SP-MW-14SR Date Received: 09/20/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	57		21-120	
Phenol-d6	41		10-120	
Nitrobenzene-d5	101		23-120	
2-Fluorobiphenyl	97		15-120	
2,4,6-Tribromophenol	105		10-120	
4-Terphenyl-d14	91		41-149	

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 09/19/16 12:00

Client ID: DUP

Sample Location: SYRACUSE, NY

Matrix: Water
Analytical Method: 1,8270D
Analytical Date: 09/26/16 01:39

Analyst: HL

Date Collected: 09/19/16 12:00
Date Received: 09/20/16
Field Prep: Not Specified
Extraction Method: EPA 3510C
Extraction Date: 09/24/16 14:22

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - V	Vestborough Lab					
1,2,4-Trichlorobenzene	ND		ug/l	5.0	0.66	1
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.67	1
1,2-Dichlorobenzene	ND		ug/l	2.0	0.73	1
1,3-Dichlorobenzene	ND		ug/l	2.0	0.73	1
1,4-Dichlorobenzene	ND		ug/l	2.0	0.71	1
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.4	1
2,4-Dinitrotoluene	ND		ug/l	5.0	0.84	1
2,6-Dinitrotoluene	ND		ug/l	5.0	1.1	1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.62	1
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.73	1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.70	1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.63	1
Hexachlorocyclopentadiene	ND		ug/l	20	7.8	1
Isophorone	ND		ug/l	5.0	0.60	1
Nitrobenzene	ND		ug/l	2.0	0.75	1
NDPA/DPA	ND		ug/l	2.0	0.64	1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.70	1
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	0.91	1
Butyl benzyl phthalate	ND		ug/l	5.0	1.3	1
Di-n-butylphthalate	ND		ug/l	5.0	0.69	1
Di-n-octylphthalate	ND		ug/l	5.0	1.1	1
Diethyl phthalate	ND		ug/l	5.0	0.63	1
Dimethyl phthalate	ND		ug/l	5.0	0.65	1
Biphenyl	ND		ug/l	2.0	0.76	1
4-Chloroaniline	ND		ug/l	5.0	0.63	1
2-Nitroaniline	ND		ug/l	5.0	1.1	1
3-Nitroaniline	ND		ug/l	5.0	1.1	1
4-Nitroaniline	ND		ug/l	5.0	1.3	1
Dibenzofuran	2.0		ug/l	2.0	0.66	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.67	1

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: L1629713-10

Client ID: DUP

Sample Location: SYRACUSE, NY

Date Collected: 09/19/16 12:00

Date Received: 09/20/16
Field Prep: Not Specified

					-	•
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Westborough Lab					
Acetophenone	ND		ug/l	5.0	0.85	1
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.68	1
p-Chloro-m-cresol	ND		ug/l	2.0	0.62	1
2-Chlorophenol	ND		ug/l	2.0	0.63	1
2,4-Dichlorophenol	ND		ug/l	5.0	0.77	1
2,4-Dimethylphenol	ND		ug/l	5.0	1.6	1
2-Nitrophenol	ND		ug/l	10	1.5	1
4-Nitrophenol	ND		ug/l	10	1.8	1
2,4-Dinitrophenol	ND		ug/l	20	5.5	1
4,6-Dinitro-o-cresol	ND		ug/l	10	2.1	1
Phenol	ND		ug/l	5.0	1.9	1
2-Methylphenol	ND		ug/l	5.0	1.0	1
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	1.1	1
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.72	1
Benzoic Acid	ND		ug/l	50	13.	1
Benzyl Alcohol	ND		ug/l	2.0	0.72	1
Carbazole	1.2	J	ug/l	2.0	0.63	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	38		21-120	
Phenol-d6	29		10-120	
Nitrobenzene-d5	75		23-120	
2-Fluorobiphenyl	64		15-120	
2,4,6-Tribromophenol	76		10-120	
4-Terphenyl-d14	64		41-149	

09/20/16

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 09/19/16 12:00

Client ID: DUP Date Received:

Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 09/24/16 14:32
Analytical Date: 09/27/16 03:44

Analyst: KL

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM	ฟ - Westborough La	b				
Acenaphthene	2.2		ug/l	0.10	0.04	1
2-Chloronaphthalene	ND		ug/l	0.20	0.04	1
Fluoranthene	0.04	J	ug/l	0.20	0.04	1
Hexachlorobutadiene	ND		ug/l	0.50	0.04	1
Naphthalene	ND		ug/l	0.20	0.04	1
Benzo(a)anthracene	ND		ug/l	0.20	0.02	1
Benzo(a)pyrene	ND		ug/l	0.20	0.04	1
Benzo(b)fluoranthene	ND		ug/l	0.20	0.02	1
Benzo(k)fluoranthene	ND		ug/l	0.20	0.04	1
Chrysene	ND		ug/l	0.20	0.04	1
Acenaphthylene	0.58		ug/l	0.20	0.04	1
Anthracene	0.15	J	ug/l	0.20	0.04	1
Benzo(ghi)perylene	ND		ug/l	0.20	0.04	1
Fluorene	0.22		ug/l	0.20	0.04	1
Phenanthrene	0.12	J	ug/l	0.20	0.02	1
Dibenzo(a,h)anthracene	ND		ug/l	0.20	0.04	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.20	0.04	1
Pyrene	ND		ug/l	0.20	0.04	1
2-Methylnaphthalene	0.80		ug/l	0.20	0.05	1
Pentachlorophenol	ND		ug/l	0.80	0.22	1
Hexachlorobenzene	ND		ug/l	0.80	0.03	1
Hexachloroethane	ND		ug/l	0.80	0.03	1

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: L1629713-10 Date Collected: 09/19/16 12:00

Client ID: DUP Date Received: 09/20/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	51	21-120
Phenol-d6	37	10-120
Nitrobenzene-d5	79	23-120
2-Fluorobiphenyl	84	15-120
2,4,6-Tribromophenol	119	10-120
4-Terphenyl-d14	92	41-149

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

 Lab ID:
 L1629713-11
 Date Collected:
 09/20/16 09:15

 Client ID:
 SP-MW-13S
 Date Received:
 09/20/16

Sample Location: SYRACUSE, NY Field Prep: Not Specified Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D Extraction Date: 09/24/16 14:22
Analytical Date: 09/26/16 02:05

Analyst: HL

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - V	Vestborough Lab					
1,2,4-Trichlorobenzene	ND		ug/l	5.0	0.66	1
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.67	1
1,2-Dichlorobenzene	ND		ug/l	2.0	0.73	1
1,3-Dichlorobenzene	ND		ug/l	2.0	0.73	1
1,4-Dichlorobenzene	ND		ug/l	2.0	0.71	1
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.4	1
2,4-Dinitrotoluene	ND		ug/l	5.0	0.84	1
2,6-Dinitrotoluene	ND		ug/l	5.0	1.1	1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.62	1
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.73	1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.70	1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.63	1
Hexachlorocyclopentadiene	ND		ug/l	20	7.8	1
Isophorone	ND		ug/l	5.0	0.60	1
Nitrobenzene	ND		ug/l	2.0	0.75	1
NDPA/DPA	ND		ug/l	2.0	0.64	1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.70	1
Bis(2-ethylhexyl)phthalate	3.0		ug/l	3.0	0.91	1
Butyl benzyl phthalate	ND		ug/l	5.0	1.3	1
Di-n-butylphthalate	ND		ug/l	5.0	0.69	1
Di-n-octylphthalate	ND		ug/l	5.0	1.1	1
Diethyl phthalate	2.1	J	ug/l	5.0	0.63	1
Dimethyl phthalate	ND		ug/l	5.0	0.65	1
Biphenyl	ND		ug/l	2.0	0.76	1
4-Chloroaniline	ND		ug/l	5.0	0.63	1
2-Nitroaniline	ND		ug/l	5.0	1.1	1
3-Nitroaniline	ND		ug/l	5.0	1.1	1
4-Nitroaniline	ND		ug/l	5.0	1.3	1
Dibenzofuran	ND		ug/l	2.0	0.66	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.67	1

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 09/20/16 09:15

Client ID: SP-MW-13S Date Received: 09/20/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - V	Vestborough Lab						
Acetophenone	ND		ug/l	5.0	0.85	1	
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.68	1	
p-Chloro-m-cresol	ND		ug/l	2.0	0.62	1	
2-Chlorophenol	ND		ug/l	2.0	0.63	1	
2,4-Dichlorophenol	ND		ug/l	5.0	0.77	1	
2,4-Dimethylphenol	ND		ug/l	5.0	1.6	1	
2-Nitrophenol	ND		ug/l	10	1.5	1	
4-Nitrophenol	ND		ug/l	10	1.8	1	
2,4-Dinitrophenol	ND		ug/l	20	5.5	1	
4,6-Dinitro-o-cresol	ND		ug/l	10	2.1	1	
Phenol	ND		ug/l	5.0	1.9	1	
2-Methylphenol	ND		ug/l	5.0	1.0	1	
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	1.1	1	
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.72	1	
Benzoic Acid	ND		ug/l	50	13.	1	
Benzyl Alcohol	ND		ug/l	2.0	0.72	1	
Carbazole	ND		ug/l	2.0	0.63	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	37		21-120	
Phenol-d6	28		10-120	
Nitrobenzene-d5	84		23-120	
2-Fluorobiphenyl	69		15-120	
2,4,6-Tribromophenol	65		10-120	
4-Terphenyl-d14	65		41-149	

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 09/20/16 09:15

Client ID: SP-MW-13S Date Received: 09/20/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Water Extraction Method:EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 09/24/16 14:32
Analytical Date: 09/27/16 04:13

Analyst: KL

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM	- Westborough La	ıb				
	0.4		//	0.40	0.04	,
Acenaphthene	3.1		ug/l	0.10	0.04	1
2-Chloronaphthalene	ND		ug/l	0.20	0.04	1
Fluoranthene	0.52		ug/l	0.20	0.04	1
Hexachlorobutadiene	ND		ug/l	0.50	0.04	1
Naphthalene	0.79		ug/l	0.20	0.04	1
Benzo(a)anthracene	ND		ug/l	0.20	0.02	1
Benzo(a)pyrene	ND		ug/l	0.20	0.04	1
Benzo(b)fluoranthene	ND		ug/l	0.20	0.02	1
Benzo(k)fluoranthene	ND		ug/l	0.20	0.04	1
Chrysene	ND		ug/l	0.20	0.04	1
Acenaphthylene	0.28		ug/l	0.20	0.04	1
Anthracene	0.62		ug/l	0.20	0.04	1
Benzo(ghi)perylene	ND		ug/l	0.20	0.04	1
Fluorene	3.0		ug/l	0.20	0.04	1
Phenanthrene	1.2		ug/l	0.20	0.02	1
Dibenzo(a,h)anthracene	ND		ug/l	0.20	0.04	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.20	0.04	1
Pyrene	0.31		ug/l	0.20	0.04	1
2-Methylnaphthalene	1.2		ug/l	0.20	0.05	1
Pentachlorophenol	ND		ug/l	0.80	0.22	1
Hexachlorobenzene	ND		ug/l	0.80	0.03	1
Hexachloroethane	ND		ug/l	0.80	0.03	1

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 09/20/16 09:15

Client ID: SP-MW-13S Date Received: 09/20/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	48		21-120	
Phenol-d6	35		10-120	
Nitrobenzene-d5	95		23-120	
2-Fluorobiphenyl	87		15-120	
2,4,6-Tribromophenol	85		10-120	
4-Terphenyl-d14	80		41-149	

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: L1629713-12
Client ID: SP-MW-44
Sample Location: SYRACUSE, NY

Matrix: Water Analytical Method: 1,8270D

Analytical Date: 09/26/16 02:30

Analyst: HL

Date Collected: 09/20/16 09:07
Date Received: 09/20/16
Field Prep: Not Specified
Extraction Method: EPA 3510C
Extraction Date: 09/24/16 14:22

tborough Lab					
		ug/l	5.0	0.66	1
ND		ug/l	2.0	0.67	1
ND		ug/l	2.0	0.73	1
ND		ug/l	2.0	0.73	1
ND		ug/l	2.0	0.71	1
ND		ug/l	5.0	1.4	1
ND		ug/l	5.0	0.84	1
ND		ug/l	5.0	1.1	1
ND		ug/l	2.0	0.62	1
ND		ug/l	2.0	0.73	1
ND		ug/l	2.0	0.70	1
ND		ug/l	5.0	0.63	1
ND		ug/l	20	7.8	1
ND		ug/l	5.0	0.60	1
ND		ug/l	2.0	0.75	1
ND		ug/l	2.0	0.64	1
ND		ug/l	5.0	0.70	1
2.1	J	ug/l	3.0	0.91	1
ND		ug/l	5.0	1.3	1
ND		ug/l	5.0	0.69	1
ND		ug/l	5.0	1.1	1
ND		ug/l	5.0	0.63	1
ND		ug/l	5.0	0.65	1
ND		ug/l	2.0	0.76	1
ND		ug/l	5.0	0.63	1
ND		ug/l	5.0	1.1	1
ND		ug/l	5.0	1.1	1
ND		ug/l	5.0	1.3	1
ND		ug/l	2.0	0.66	1
ND		ug/l	10	0.67	1
	ND N	ND N	ND	ND	ND

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 09/20/16 09:07

Client ID: SP-MW-44 Date Received: 09/20/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - \	Westborough Lab					
Acetophenone	ND		ug/l	5.0	0.85	1
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.68	1
p-Chloro-m-cresol	ND		ug/l	2.0	0.62	1
2-Chlorophenol	ND		ug/l	2.0	0.63	1
2,4-Dichlorophenol	ND		ug/l	5.0	0.77	1
2,4-Dimethylphenol	ND		ug/l	5.0	1.6	1
2-Nitrophenol	ND		ug/l	10	1.5	1
4-Nitrophenol	ND		ug/l	10	1.8	1
2,4-Dinitrophenol	ND		ug/l	20	5.5	1
4,6-Dinitro-o-cresol	ND		ug/l	10	2.1	1
Phenol	ND		ug/l	5.0	1.9	1
2-Methylphenol	ND		ug/l	5.0	1.0	1
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	1.1	1
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.72	1
Benzoic Acid	ND		ug/l	50	13.	1
Benzyl Alcohol	ND		ug/l	2.0	0.72	1
Carbazole	ND		ug/l	2.0	0.63	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	42		21-120	
Phenol-d6	31		10-120	
Nitrobenzene-d5	92		23-120	
2-Fluorobiphenyl	75		15-120	
2,4,6-Tribromophenol	71		10-120	
4-Terphenyl-d14	72		41-149	

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: L1629713-12
Client ID: SP-MW-44
Sample Location: SYRACUSE, NY

Matrix: Water

Analytical Method: 1,8270D-SIM Analytical Date: 09/27/16 04:43

Analyst: KL

Date Collected: 09/20/16 09:07
Date Received: 09/20/16
Field Prep: Not Specified
Extraction Method: EPA 3510C
Extraction Date: 09/24/16 14:32

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM	- Westborough La	ab				
Assasshibs	0.04			0.40	0.04	
Acenaphthene	0.94		ug/l	0.10	0.04	1
2-Chloronaphthalene	ND		ug/l	0.20	0.04	1
Fluoranthene	0.38		ug/l	0.20	0.04	1
Hexachlorobutadiene	ND		ug/l	0.50	0.04	1
Naphthalene	0.67		ug/l	0.20	0.04	1
Benzo(a)anthracene	0.03	J	ug/l	0.20	0.02	1
Benzo(a)pyrene	ND		ug/l	0.20	0.04	1
Benzo(b)fluoranthene	ND		ug/l	0.20	0.02	1
Benzo(k)fluoranthene	ND		ug/l	0.20	0.04	1
Chrysene	ND		ug/l	0.20	0.04	1
Acenaphthylene	0.32		ug/l	0.20	0.04	1
Anthracene	0.27		ug/l	0.20	0.04	1
Benzo(ghi)perylene	ND		ug/l	0.20	0.04	1
Fluorene	0.07	J	ug/l	0.20	0.04	1
Phenanthrene	0.07	J	ug/l	0.20	0.02	1
Dibenzo(a,h)anthracene	ND		ug/l	0.20	0.04	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.20	0.04	1
Pyrene	0.23		ug/l	0.20	0.04	1
2-Methylnaphthalene	0.15	J	ug/l	0.20	0.05	1
Pentachlorophenol	ND		ug/l	0.80	0.22	1
Hexachlorobenzene	ND		ug/l	0.80	0.03	1
Hexachloroethane	ND		ug/l	0.80	0.03	1

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 09/20/16 09:07

Client ID: SP-MW-44 Date Received: 09/20/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	50		21-120	
Phenol-d6	37		10-120	
Nitrobenzene-d5	93		23-120	
2-Fluorobiphenyl	91		15-120	
2,4,6-Tribromophenol	91		10-120	
4-Terphenyl-d14	84		41-149	

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

 Lab ID:
 L1629713-13
 Date Collected:
 09/20/16 10:20

 Client ID:
 SP-MW-41
 Date Received:
 09/20/16

Client ID: SP-MW-41 Date Received: 09/20/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified
Matrix: Water Extraction Method:EPA 3510C

Analytical Method: 1,8270D Extraction Date: 09/24/16 14:22

Analytical Date: 09/26/16 02:55
Analyst: HL

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - V	Vestborough Lab					
1,2,4-Trichlorobenzene	ND		ug/l	5.0	0.66	1
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.67	1
1,2-Dichlorobenzene	ND		ug/l	2.0	0.73	1
1,3-Dichlorobenzene	ND		ug/l	2.0	0.73	1
1,4-Dichlorobenzene	ND		ug/l	2.0	0.71	1
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.4	1
2,4-Dinitrotoluene	ND		ug/l	5.0	0.84	1
2,6-Dinitrotoluene	ND		ug/l	5.0	1.1	1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.62	1
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.73	1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.70	1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.63	1
Hexachlorocyclopentadiene	ND		ug/l	20	7.8	1
Isophorone	ND		ug/l	5.0	0.60	1
Nitrobenzene	ND		ug/l	2.0	0.75	1
NDPA/DPA	ND		ug/l	2.0	0.64	1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.70	1
Bis(2-ethylhexyl)phthalate	2.2	J	ug/l	3.0	0.91	1
Butyl benzyl phthalate	ND		ug/l	5.0	1.3	1
Di-n-butylphthalate	ND		ug/l	5.0	0.69	1
Di-n-octylphthalate	ND		ug/l	5.0	1.1	1
Diethyl phthalate	ND		ug/l	5.0	0.63	1
Dimethyl phthalate	ND		ug/l	5.0	0.65	1
Biphenyl	ND		ug/l	2.0	0.76	1
4-Chloroaniline	ND		ug/l	5.0	0.63	1
2-Nitroaniline	ND		ug/l	5.0	1.1	1
3-Nitroaniline	ND		ug/l	5.0	1.1	1
4-Nitroaniline	ND		ug/l	5.0	1.3	1
Dibenzofuran	ND		ug/l	2.0	0.66	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.67	1

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 09/20/16 10:20

Client ID: SP-MW-41 Date Received: 09/20/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Wes	tborough Lab					
Acetophenone	ND		ug/l	5.0	0.85	1
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.68	1
p-Chloro-m-cresol	ND		ug/l	2.0	0.62	1
2-Chlorophenol	ND		ug/l	2.0	0.63	1
2,4-Dichlorophenol	ND		ug/l	5.0	0.77	1
2,4-Dimethylphenol	ND		ug/l	5.0	1.6	1
2-Nitrophenol	ND		ug/l	10	1.5	1
4-Nitrophenol	ND		ug/l	10	1.8	1
2,4-Dinitrophenol	ND		ug/l	20	5.5	1
4,6-Dinitro-o-cresol	ND		ug/l	10	2.1	1
Phenol	ND		ug/l	5.0	1.9	1
2-Methylphenol	ND		ug/l	5.0	1.0	1
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	1.1	1
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.72	1
Benzoic Acid	ND		ug/l	50	13.	1
Benzyl Alcohol	ND		ug/l	2.0	0.72	1
Carbazole	ND		ug/l	2.0	0.63	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	39		21-120	
Phenol-d6	28		10-120	
Nitrobenzene-d5	81		23-120	
2-Fluorobiphenyl	65		15-120	
2,4,6-Tribromophenol	72		10-120	
4-Terphenyl-d14	60		41-149	

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 09/20/16 10:20
Client ID: SP-MW-41 Date Received: 09/20/16

Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1,8270D-SIM Extraction Date: 09/24/16 14:32

Analytical Method: 1,8270D-SIM Extraction Date: 09/24/16 14:32

Analytical Date: 09/27/16 05:13

MDL **Parameter** Result Qualifier Units RL**Dilution Factor** Semivolatile Organics by GC/MS-SIM - Westborough Lab 1 Acenaphthene 0.48 ug/l 0.10 0.04 2-Chloronaphthalene ND 0.20 0.04 1 ug/l ND Fluoranthene 0.20 0.04 1 ug/l Hexachlorobutadiene ND 0.50 0.04 1 ug/l 1 Naphthalene ND ug/l 0.20 0.04 ND 0.20 0.02 1 Benzo(a)anthracene ug/l Benzo(a)pyrene ND ug/l 0.20 0.04 1 Benzo(b)fluoranthene ND ug/l 0.20 0.02 1 ND Benzo(k)fluoranthene 0.20 0.04 1 ug/l Chrysene ND 0.20 0.04 1 ug/l ND 1 Acenaphthylene ug/l 0.20 0.04 0.20 0.20 0.04 1 Anthracene ug/l ND 0.20 0.04 1 Benzo(ghi)perylene ug/l Fluorene 0.10 J ug/l 0.20 0.04 1 Phenanthrene 0.12 J 0.20 0.02 1 ug/l Dibenzo(a,h)anthracene ND 0.20 0.04 1 ug/l Indeno(1,2,3-cd)pyrene ND 0.20 0.04 1 ug/l ND 0.20 0.04 1 Pyrene ug/l 2-Methylnaphthalene ND 0.20 0.05 1 ug/l Pentachlorophenol ND ug/l 0.80 0.22 1 Hexachlorobenzene ND ug/l 0.80 0.03 1 Hexachloroethane ND ug/l 0.80 0.03 1

Analyst:

KL

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: L1629713-13 Date Collected: 09/20/16 10:20

Client ID: SP-MW-41 Date Received: 09/20/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	45	21-120	
Phenol-d6	34	10-120	
Nitrobenzene-d5	86	23-120	
2-Fluorobiphenyl	82	15-120	
2,4,6-Tribromophenol	109	10-120	
4-Terphenyl-d14	82	41-149	

09/20/16 11:25

Not Specified

09/20/16

Project Name: Lab Number: **DESTINY** L1629713

Project Number: Report Date: 15209 10/13/16

SAMPLE RESULTS

Lab ID: L1629713-14 Date Collected: Client ID: Date Received: HCMW-1-I

Field Prep: Sample Location: SYRACUSE, NY Matrix: Extraction Method: EPA 3510C Water 09/24/16 14:22 Analytical Method: 1,8270D Extraction Date: Analytical Date: 09/26/16 03:20

Analyst: HL

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - We	estborough Lab						
1,2,4-Trichlorobenzene	ND		ug/l	5.0	0.66	1	
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.67	1	
1,2-Dichlorobenzene	ND		ug/l	2.0	0.73	1	
1,3-Dichlorobenzene	ND		ug/l	2.0	0.73	1	
1,4-Dichlorobenzene	ND		ug/l	2.0	0.71	1	
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.4	1	
2,4-Dinitrotoluene	ND		ug/l	5.0	0.84	1	
2,6-Dinitrotoluene	ND		ug/l	5.0	1.1	1	
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.62	1	
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.73	1	
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.70	1	
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.63	1	
Hexachlorocyclopentadiene	ND		ug/l	20	7.8	1	
Isophorone	ND		ug/l	5.0	0.60	1	
Nitrobenzene	ND		ug/l	2.0	0.75	1	
NDPA/DPA	ND		ug/l	2.0	0.64	1	
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.70	1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	0.91	1	
Butyl benzyl phthalate	ND		ug/l	5.0	1.3	1	
Di-n-butylphthalate	ND		ug/l	5.0	0.69	1	
Di-n-octylphthalate	ND		ug/l	5.0	1.1	1	
Diethyl phthalate	ND		ug/l	5.0	0.63	1	
Dimethyl phthalate	ND		ug/l	5.0	0.65	1	
Biphenyl	ND		ug/l	2.0	0.76	1	
4-Chloroaniline	ND		ug/l	5.0	0.63	1	
2-Nitroaniline	ND		ug/l	5.0	1.1	1	
3-Nitroaniline	ND		ug/l	5.0	1.1	1	
4-Nitroaniline	ND		ug/l	5.0	1.3	1	
Dibenzofuran	ND		ug/l	2.0	0.66	1	
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.67	1	

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 09/20/16 11:25

Client ID: HCMW-1-I Date Received: 09/20/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westb	orough Lab					
Acetophenone	ND		ug/l	5.0	0.85	1
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.68	1
p-Chloro-m-cresol	ND		ug/l	2.0	0.62	1
2-Chlorophenol	ND		ug/l	2.0	0.63	1
2,4-Dichlorophenol	ND		ug/l	5.0	0.77	1
2,4-Dimethylphenol	ND		ug/l	5.0	1.6	1
2-Nitrophenol	ND		ug/l	10	1.5	1
4-Nitrophenol	ND		ug/l	10	1.8	1
2,4-Dinitrophenol	ND		ug/l	20	5.5	1
4,6-Dinitro-o-cresol	ND		ug/l	10	2.1	1
Phenol	ND		ug/l	5.0	1.9	1
2-Methylphenol	ND		ug/l	5.0	1.0	1
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	1.1	1
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.72	1
Benzoic Acid	ND		ug/l	50	13.	1
Benzyl Alcohol	ND		ug/l	2.0	0.72	1
Carbazole	ND		ug/l	2.0	0.63	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	38	21-120
Phenol-d6	27	10-120
Nitrobenzene-d5	81	23-120
2-Fluorobiphenyl	65	15-120
2,4,6-Tribromophenol	24	10-120
4-Terphenyl-d14	61	41-149

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

 Lab ID:
 L1629713-14
 Date Collected:
 09/20/16 11:25

 Client ID:
 HCMW-1-I
 Date Received:
 09/20/16

Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Water Extraction Method:EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 09/24/16 14:32
Analytical Date: 09/27/16 05:43

Analyst: KL

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS-SIM - Westborough Lab							
Acenaphthene	ND		ug/l	0.10	0.04	1	
2-Chloronaphthalene	ND		ug/l	0.20	0.04	 1	
Fluoranthene	ND		ug/l	0.20	0.04	1	
Hexachlorobutadiene	ND			0.50	0.04	1	
			ug/l				
Naphthalene	ND		ug/l	0.20	0.04	1	
Benzo(a)anthracene	ND		ug/l	0.20	0.02	1	
Benzo(a)pyrene	ND		ug/l	0.20	0.04	1	
Benzo(b)fluoranthene	ND		ug/l	0.20	0.02	1	
Benzo(k)fluoranthene	ND		ug/l	0.20	0.04	1	
Chrysene	ND		ug/l	0.20	0.04	1	
Acenaphthylene	ND		ug/l	0.20	0.04	1	
Anthracene	ND		ug/l	0.20	0.04	1	
Benzo(ghi)perylene	ND		ug/l	0.20	0.04	1	
Fluorene	ND		ug/l	0.20	0.04	1	
Phenanthrene	ND		ug/l	0.20	0.02	1	
Dibenzo(a,h)anthracene	ND		ug/l	0.20	0.04	1	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.20	0.04	1	
Pyrene	ND		ug/l	0.20	0.04	1	
2-Methylnaphthalene	ND		ug/l	0.20	0.05	1	
Pentachlorophenol	ND		ug/l	0.80	0.22	1	
Hexachlorobenzene	ND		ug/l	0.80	0.03	1	
Hexachloroethane	ND		ug/l	0.80	0.03	1	

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 09/20/16 11:25

Client ID: Date Received: 09/20/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	50	21-120	
Phenol-d6	36	10-120	
Nitrobenzene-d5	90	23-120	
2-Fluorobiphenyl	81	15-120	
2,4,6-Tribromophenol	82	10-120	
4-Terphenyl-d14	77	41-149	

09/20/16 11:35

09/20/16

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: L1629713-15 Date Collected: Client ID: HCMW-1-SI Date Received:

Sample Location: SYRACUSE, NY Field Prep: Not Specified Matrix: Water Extraction Method: EPA 3510C Analytical Method: 1,8270D Extraction Date: 09/24/16 14:22 Analytical Date: 09/26/16 03:46

Analyst: HL

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westborough Lab						
1,2,4-Trichlorobenzene	ND		ug/l	5.0	0.66	1
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.67	1
1,2-Dichlorobenzene	ND		ug/l	2.0	0.73	1
1,3-Dichlorobenzene	ND		ug/l	2.0	0.73	1
1,4-Dichlorobenzene	ND		ug/l	2.0	0.71	1
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.4	1
2,4-Dinitrotoluene	ND		ug/l	5.0	0.84	1
2,6-Dinitrotoluene	ND		ug/l	5.0	1.1	1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.62	1
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.73	1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.70	1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.63	1
Hexachlorocyclopentadiene	ND		ug/l	20	7.8	1
Isophorone	ND		ug/l	5.0	0.60	1
Nitrobenzene	ND		ug/l	2.0	0.75	1
NDPA/DPA	ND		ug/l	2.0	0.64	1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.70	1
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	0.91	1
Butyl benzyl phthalate	ND		ug/l	5.0	1.3	1
Di-n-butylphthalate	ND		ug/l	5.0	0.69	1
Di-n-octylphthalate	ND		ug/l	5.0	1.1	1
Diethyl phthalate	ND		ug/l	5.0	0.63	1
Dimethyl phthalate	ND		ug/l	5.0	0.65	1
Biphenyl	ND		ug/l	2.0	0.76	1
4-Chloroaniline	ND		ug/l	5.0	0.63	1
2-Nitroaniline	ND		ug/l	5.0	1.1	1
3-Nitroaniline	ND		ug/l	5.0	1.1	1
4-Nitroaniline	ND		ug/l	5.0	1.3	1
Dibenzofuran	ND		ug/l	2.0	0.66	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.67	1

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 09/20/16 11:35

Client ID: HCMW-1-SI Date Received: 09/20/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS - Westborough Lab								
Acetophenone	ND		ug/l	5.0	0.85	1		
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.68	1		
p-Chloro-m-cresol	ND		ug/l	2.0	0.62	1		
2-Chlorophenol	ND		ug/l	2.0	0.63	1		
2,4-Dichlorophenol	ND		ug/l	5.0	0.77	1		
2,4-Dimethylphenol	ND		ug/l	5.0	1.6	1		
2-Nitrophenol	ND		ug/l	10	1.5	1		
4-Nitrophenol	ND		ug/l	10	1.8	1		
2,4-Dinitrophenol	ND		ug/l	20	5.5	1		
4,6-Dinitro-o-cresol	ND		ug/l	10	2.1	1		
Phenol	ND		ug/l	5.0	1.9	1		
2-Methylphenol	ND		ug/l	5.0	1.0	1		
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	1.1	1		
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.72	1		
Benzoic Acid	ND		ug/l	50	13.	1		
Benzyl Alcohol	ND		ug/l	2.0	0.72	1		
Carbazole	ND		ug/l	2.0	0.63	1		
			-					

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	42		21-120	
Phenol-d6	30		10-120	
Nitrobenzene-d5	83		23-120	
2-Fluorobiphenyl	66		15-120	
2,4,6-Tribromophenol	21		10-120	
4-Terphenyl-d14	66		41-149	

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

 Lab ID:
 L1629713-15
 Date Collected:
 09/20/16 11:35

 Client ID:
 HCMW-1-SI
 Date Received:
 09/20/16

Client ID: HCMW-1-SI Date Received: 09/20/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Water Extraction Method:EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 09/24/16 14:32

Analytical Date: 09/27/16 06:12
Analyst: KL

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM - Westborough Lab						
Acenaphthene	ND		ug/l	0.10	0.04	1
2-Chloronaphthalene	ND		ug/l	0.20	0.04	1
Fluoranthene	ND		ug/l	0.20	0.04	1
Hexachlorobutadiene	ND		ug/l	0.50	0.04	1
Naphthalene	ND		ug/l	0.20	0.04	1
Benzo(a)anthracene	ND		ug/l	0.20	0.02	1
Benzo(a)pyrene	ND		ug/l	0.20	0.04	1
Benzo(b)fluoranthene	ND		ug/l	0.20	0.02	1
Benzo(k)fluoranthene	ND		ug/l	0.20	0.04	1
Chrysene	ND		ug/l	0.20	0.04	1
Acenaphthylene	ND		ug/l	0.20	0.04	1
Anthracene	ND		ug/l	0.20	0.04	1
Benzo(ghi)perylene	ND		ug/l	0.20	0.04	1
Fluorene	ND		ug/l	0.20	0.04	1
Phenanthrene	ND		ug/l	0.20	0.02	1
Dibenzo(a,h)anthracene	ND		ug/l	0.20	0.04	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.20	0.04	1
Pyrene	ND		ug/l	0.20	0.04	1
2-Methylnaphthalene	ND		ug/l	0.20	0.05	1
Pentachlorophenol	ND		ug/l	0.80	0.22	1
Hexachlorobenzene	ND		ug/l	0.80	0.03	1
Hexachloroethane	ND		ug/l	0.80	0.03	1

Dilution Factor

MDL

RL

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 09/20/16 11:35

Client ID: Date Received: 09/20/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Qualifier

Units

Result

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Parameter

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	55	21-120	
Phenol-d6	39	10-120	
Nitrobenzene-d5	92	23-120	
2-Fluorobiphenyl	82	15-120	
2,4,6-Tribromophenol	89	10-120	
4-Terphenyl-d14	83	41-149	

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

 Lab ID:
 L1629713-16
 Date Collected:
 09/20/16 12:40

 Client ID:
 HCMW-1-S
 Date Received:
 09/20/16

Sample Location: SYRACUSE, NY Field Prep: Not Specified Matrix: Water Extraction Method: EPA 3510C

Matrix:WaterExtraction Method: EPA 3510CAnalytical Method:1,8270DExtraction Date: 09/24/16 14:22

Qualifier

Units

RL

MDL

Dilution Factor

Analytical Date: 09/26/16 04:11
Analyst: HL

Result

Parameter	Result	Qualifier U	nits KL	MIDL	Dilution Factor	
Semivolatile Organics by GC/MS - V	Westborough Lab					
1,2,4-Trichlorobenzene	ND	u	g/l 5.0	0.66	1	
Bis(2-chloroethyl)ether	ND	u	g/l 2.0	0.67	1	
1,2-Dichlorobenzene	ND	u	g/l 2.0	0.73	1	
1,3-Dichlorobenzene	ND	u	g/l 2.0	0.73	1	
1,4-Dichlorobenzene	ND	u	g/l 2.0	0.71	1	
3,3'-Dichlorobenzidine	ND	u	g/l 5.0	1.4	1	
2,4-Dinitrotoluene	ND	u	g/l 5.0	0.84	1	
2,6-Dinitrotoluene	ND	u	g/l 5.0	1.1	1	
4-Chlorophenyl phenyl ether	ND	u	g/l 2.0	0.62	1	
4-Bromophenyl phenyl ether	ND	u	g/l 2.0	0.73	1	
Bis(2-chloroisopropyl)ether	ND	u	g/l 2.0	0.70	1	
Bis(2-chloroethoxy)methane	ND	u	g/I 5.0	0.63	1	
Hexachlorocyclopentadiene	ND	u	g/l 20	7.8	1	
Isophorone	ND	u	g/l 5.0	0.60	1	
Nitrobenzene	ND	u	g/l 2.0	0.75	1	
NDPA/DPA	ND	u	g/l 2.0	0.64	1	
n-Nitrosodi-n-propylamine	ND	u	g/l 5.0	0.70	1	
Bis(2-ethylhexyl)phthalate	ND	u	g/l 3.0	0.91	1	
Butyl benzyl phthalate	ND	u	g/l 5.0	1.3	1	
Di-n-butylphthalate	ND	u	g/I 5.0	0.69	1	
Di-n-octylphthalate	ND	u	g/I 5.0	1.1	1	
Diethyl phthalate	ND	u	g/l 5.0	0.63	1	
Dimethyl phthalate	ND	u	g/I 5.0	0.65	1	
Biphenyl	ND	u	g/l 2.0	0.76	1	
4-Chloroaniline	ND	u	g/I 5.0	0.63	1	
2-Nitroaniline	ND	u	g/I 5.0	1.1	1	
3-Nitroaniline	ND	u	g/I 5.0	1.1	1	
4-Nitroaniline	ND	u	g/I 5.0	1.3	1	
Dibenzofuran	ND	u	g/l 2.0	0.66	1	
1,2,4,5-Tetrachlorobenzene	ND	u	g/l 10	0.67	1	

Parameter

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 09/20/16 12:40

Client ID: HCMW-1-S Date Received: 09/20/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - \	Westborough Lab					
Acetophenone	ND		ug/l	5.0	0.85	1
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.68	1
p-Chloro-m-cresol	ND		ug/l	2.0	0.62	1
2-Chlorophenol	ND		ug/l	2.0	0.63	1
2,4-Dichlorophenol	ND		ug/l	5.0	0.77	1
2,4-Dimethylphenol	ND		ug/l	5.0	1.6	1
2-Nitrophenol	ND		ug/l	10	1.5	1
4-Nitrophenol	ND		ug/l	10	1.8	1
2,4-Dinitrophenol	ND		ug/l	20	5.5	1
4,6-Dinitro-o-cresol	ND		ug/l	10	2.1	1
Phenol	ND		ug/l	5.0	1.9	1
2-Methylphenol	ND		ug/l	5.0	1.0	1
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	1.1	1
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.72	1
Benzoic Acid	ND		ug/l	50	13.	1
Benzyl Alcohol	ND		ug/l	2.0	0.72	1
Carbazole	ND		ug/l	2.0	0.63	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	36	21-120	
Phenol-d6	27	10-120	
Nitrobenzene-d5	74	23-120	
2-Fluorobiphenyl	66	15-120	
2,4,6-Tribromophenol	31	10-120	
4-Terphenyl-d14	72	41-149	

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

 Lab ID:
 L1629713-16
 Date Collected:
 09/20/16 12:40

 Client ID:
 HCMW-1-S
 Date Received:
 09/20/16

Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix:WaterExtraction Method: EPA 3510CAnalytical Method:1,8270D-SIMExtraction Date: 09/24/16 14:32

Analytical Date: 09/27/16 06:42
Analyst: KL

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM -	Westborough La	ab				
Acenaphthene	0.04	J	ug/l	0.10	0.04	1
2-Chloronaphthalene	ND		ug/l	0.20	0.04	1
Fluoranthene	ND		ug/l	0.20	0.04	1
Hexachlorobutadiene	ND		ug/l	0.50	0.04	1
Naphthalene	ND		ug/l	0.20	0.04	1
Benzo(a)anthracene	ND		ug/l	0.20	0.02	1
Benzo(a)pyrene	ND		ug/l	0.20	0.04	1
Benzo(b)fluoranthene	ND		ug/l	0.20	0.02	1
Benzo(k)fluoranthene	ND		ug/l	0.20	0.04	1
Chrysene	ND		ug/l	0.20	0.04	1
Acenaphthylene	ND		ug/l	0.20	0.04	1
Anthracene	0.04	J	ug/l	0.20	0.04	1
Benzo(ghi)perylene	ND		ug/l	0.20	0.04	1
Fluorene	ND		ug/l	0.20	0.04	1
Phenanthrene	ND		ug/l	0.20	0.02	1
Dibenzo(a,h)anthracene	ND		ug/l	0.20	0.04	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.20	0.04	1
Pyrene	ND		ug/l	0.20	0.04	1
2-Methylnaphthalene	ND		ug/l	0.20	0.05	1
Pentachlorophenol	ND		ug/l	0.80	0.22	1
Hexachlorobenzene	ND		ug/l	0.80	0.03	1
Hexachloroethane	ND		ug/l	0.80	0.03	1

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 09/20/16 12:40

Client ID: Date Received: 09/20/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	48	21-120	
Phenol-d6	34	10-120	
Nitrobenzene-d5	83	23-120	
2-Fluorobiphenyl	80	15-120	
2,4,6-Tribromophenol	97	10-120	
4-Terphenyl-d14	85	41-149	

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

 Lab ID:
 L1629713-17
 Date Collected:
 09/20/16 12:30

 Client ID:
 SUN-MW-60
 Date Received:
 09/20/16

Sample Location: SYRACUSE, NY Field Prep: Not Specified Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D Extraction Date: 09/24/16 14:22

Analytical Date: 09/27/16 05:24
Analyst: AS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - V	Vestborough Lab					
1,2,4-Trichlorobenzene	ND		ug/l	5.0	0.66	1
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.67	1
1,2-Dichlorobenzene	ND		ug/l	2.0	0.73	1
1,3-Dichlorobenzene	ND		ug/l	2.0	0.73	1
1,4-Dichlorobenzene	ND		ug/l	2.0	0.71	1
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.4	1
2,4-Dinitrotoluene	ND		ug/l	5.0	0.84	1
2,6-Dinitrotoluene	ND		ug/l	5.0	1.1	1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.62	1
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.73	1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.70	1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.63	1
Hexachlorocyclopentadiene	ND		ug/l	20	7.8	1
Isophorone	ND		ug/l	5.0	0.60	1
Nitrobenzene	ND		ug/l	2.0	0.75	1
NDPA/DPA	ND		ug/l	2.0	0.64	1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.70	1
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	0.91	1
Butyl benzyl phthalate	ND		ug/l	5.0	1.3	1
Di-n-butylphthalate	ND		ug/l	5.0	0.69	1
Di-n-octylphthalate	ND		ug/l	5.0	1.1	1
Diethyl phthalate	ND		ug/l	5.0	0.63	1
Dimethyl phthalate	ND		ug/l	5.0	0.65	1
Biphenyl	ND		ug/l	2.0	0.76	1
4-Chloroaniline	ND		ug/l	5.0	0.63	1
2-Nitroaniline	ND		ug/l	5.0	1.1	1
3-Nitroaniline	ND		ug/l	5.0	1.1	1
4-Nitroaniline	ND		ug/l	5.0	1.3	1
Dibenzofuran	ND		ug/l	2.0	0.66	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.67	1

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 09/20/16 12:30

Client ID: SUN-MW-60 Date Received: 09/20/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - We	stborough Lab					
Acetophenone	ND		ug/l	5.0	0.85	1
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.68	1
p-Chloro-m-cresol	ND		ug/l	2.0	0.62	1
2-Chlorophenol	ND		ug/l	2.0	0.63	1
2,4-Dichlorophenol	ND		ug/l	5.0	0.77	1
2,4-Dimethylphenol	ND		ug/l	5.0	1.6	1
2-Nitrophenol	ND		ug/l	10	1.5	1
4-Nitrophenol	ND		ug/l	10	1.8	1
2,4-Dinitrophenol	ND		ug/l	20	5.5	1
4,6-Dinitro-o-cresol	ND		ug/l	10	2.1	1
Phenol	ND		ug/l	5.0	1.9	1
2-Methylphenol	ND		ug/l	5.0	1.0	1
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	1.1	1
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.72	1
Benzoic Acid	ND		ug/l	50	13.	1
Benzyl Alcohol	ND		ug/l	2.0	0.72	1
Carbazole	ND		ug/l	2.0	0.63	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	35	21-120	
Phenol-d6	26	10-120	
Nitrobenzene-d5	57	23-120	
2-Fluorobiphenyl	54	15-120	
2,4,6-Tribromophenol	56	10-120	
4-Terphenyl-d14	59	41-149	

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 09/20/16 12:30
Client ID: SUN-MW-60 Date Received: 09/20/16

Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 09/24/16 14:32

Analytical Method: 1,8270D-SIM Extraction Date: 09/24/16 14:32
Analytical Date: 09/27/16 07:12

MDL **Parameter** Result Qualifier Units RL**Dilution Factor** Semivolatile Organics by GC/MS-SIM - Westborough Lab 1 Acenaphthene ND ug/l 0.10 0.04 ND 2-Chloronaphthalene 0.20 0.04 1 ug/l J Fluoranthene 0.05 0.20 0.04 1 ug/l Hexachlorobutadiene ND 0.50 0.04 1 ug/l ND 1 Naphthalene ug/l 0.20 0.04 ND 0.20 0.02 1 Benzo(a)anthracene ug/l Benzo(a)pyrene ND ug/l 0.20 0.04 1 Benzo(b)fluoranthene ND ug/l 0.20 0.02 1 ND Benzo(k)fluoranthene 0.20 0.04 1 ug/l Chrysene ND 0.20 0.04 1 ug/l 1 Acenaphthylene ND ug/l 0.20 0.04 ND 0.20 0.04 1 Anthracene ug/l ND 0.20 0.04 1 Benzo(ghi)perylene ug/l Fluorene ND ug/l 0.20 0.04 1 Phenanthrene 0.12 J 0.20 0.02 1 ug/l Dibenzo(a,h)anthracene ND 0.20 0.04 1 ug/l Indeno(1,2,3-cd)pyrene ND 0.20 0.04 1 ug/l ND 0.20 0.04 1 Pyrene ug/l 2-Methylnaphthalene ND 0.20 0.05 1 ug/l Pentachlorophenol ND ug/l 0.80 0.22 1 Hexachlorobenzene ND ug/l 0.80 0.03 1

ug/l

0.80

0.03

ND

1

Hexachloroethane

Analyst:

KL

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 09/20/16 12:30

Client ID: SUN-MW-60 Date Received: 09/20/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	52	21-120	
Phenol-d6	38	10-120	
Nitrobenzene-d5	88	23-120	
2-Fluorobiphenyl	82	15-120	
2,4,6-Tribromophenol	92	10-120	
4-Terphenyl-d14	82	41-149	

Project Name:DESTINYLab Number:L1629713Project Number:15209Report Date:10/13/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 09/25/16 20:12

Analyst: HL

Extraction Method: EPA 3510C Extraction Date: 09/24/16 14:21

Parameter	Result	Qualifier	Units	RL		MDL
Semivolatile Organics by GC/MS -	Westborough	Lab for s	sample(s):	01-17	Batch:	WG935467-1
Acenaphthene	ND		ug/l	2.0		0.59
1,2,4-Trichlorobenzene	ND		ug/l	5.0		0.66
Hexachlorobenzene	ND		ug/l	2.0		0.58
Bis(2-chloroethyl)ether	ND		ug/l	2.0		0.67
2-Chloronaphthalene	ND		ug/l	2.0		0.64
1,2-Dichlorobenzene	ND		ug/l	2.0		0.73
1,3-Dichlorobenzene	ND		ug/l	2.0		0.73
1,4-Dichlorobenzene	ND		ug/l	2.0		0.71
3,3'-Dichlorobenzidine	ND		ug/l	5.0		1.4
2,4-Dinitrotoluene	ND		ug/l	5.0		0.84
2,6-Dinitrotoluene	ND		ug/l	5.0		1.1
Fluoranthene	ND		ug/l	2.0		0.57
4-Chlorophenyl phenyl ether	ND		ug/l	2.0		0.62
4-Bromophenyl phenyl ether	ND		ug/l	2.0		0.73
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		0.70
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		0.63
Hexachlorobutadiene	ND		ug/l	2.0		0.66
Hexachlorocyclopentadiene	ND		ug/l	20		7.8
Hexachloroethane	ND		ug/l	2.0		0.68
Isophorone	ND		ug/l	5.0		0.60
Naphthalene	ND		ug/l	2.0		0.68
Nitrobenzene	ND		ug/l	2.0		0.75
NDPA/DPA	ND		ug/l	2.0		0.64
n-Nitrosodi-n-propylamine	ND		ug/l	5.0		0.70
Bis(2-ethylhexyl)phthalate	2.1	J	ug/l	3.0		0.91
Butyl benzyl phthalate	ND		ug/l	5.0		1.3
Di-n-butylphthalate	ND		ug/l	5.0		0.69
Di-n-octylphthalate	ND		ug/l	5.0		1.1
Diethyl phthalate	ND		ug/l	5.0		0.63

Project Name:DESTINYLab Number:L1629713Project Number:15209Report Date:10/13/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 09/25/16 20:12

Analyst: HL

Extraction Method: EPA 3510C Extraction Date: 09/24/16 14:21

Parameter	Result	Qualifier	Units	RL		MDL
Semivolatile Organics by GC/MS	- Westborough	Lab for s	ample(s):	01-17	Batch:	WG935467-1
Dimethyl phthalate	ND		ug/l	5.0		0.65
Benzo(a)anthracene	ND		ug/l	2.0		0.61
Benzo(a)pyrene	ND		ug/l	2.0		0.54
Benzo(b)fluoranthene	ND		ug/l	2.0		0.64
Benzo(k)fluoranthene	ND		ug/l	2.0		0.60
Chrysene	ND		ug/l	2.0		0.54
Acenaphthylene	ND		ug/l	2.0		0.66
Anthracene	ND		ug/l	2.0		0.64
Benzo(ghi)perylene	ND		ug/l	2.0		0.61
Fluorene	ND		ug/l	2.0		0.62
Phenanthrene	ND		ug/l	2.0		0.61
Dibenzo(a,h)anthracene	ND		ug/l	2.0		0.55
Indeno(1,2,3-cd)pyrene	ND		ug/l	2.0		0.71
Pyrene	ND		ug/l	2.0		0.57
Biphenyl	ND		ug/l	2.0		0.76
4-Chloroaniline	ND		ug/l	5.0		0.63
2-Nitroaniline	ND		ug/l	5.0		1.1
3-Nitroaniline	ND		ug/l	5.0		1.1
4-Nitroaniline	ND		ug/l	5.0		1.3
Dibenzofuran	ND		ug/l	2.0		0.66
2-Methylnaphthalene	ND		ug/l	2.0		0.72
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10		0.67
Acetophenone	ND		ug/l	5.0		0.85
2,4,6-Trichlorophenol	ND		ug/l	5.0		0.68
p-Chloro-m-cresol	ND		ug/l	2.0		0.62
2-Chlorophenol	ND		ug/l	2.0		0.63
2,4-Dichlorophenol	ND		ug/l	5.0		0.77
2,4-Dimethylphenol	ND		ug/l	5.0		1.6
2-Nitrophenol	ND		ug/l	10		1.5

Project Name:DESTINYLab Number:L1629713Project Number:15209Report Date:10/13/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 09/25/16 20:12

Analyst: HL

Extraction Method: EPA 3510C Extraction Date: 09/24/16 14:21

Result	Qualifier	Units	RL		MDL	
Westborough	Lab for sa	ample(s):	01-17	Batch:	WG935467-1	
ND		ug/l	10		1.8	
ND		ug/l	20		5.5	
ND		ug/l	10		2.1	
ND		ug/l	10		3.4	
ND		ug/l	5.0		1.9	
ND		ug/l	5.0		1.0	
ND		ug/l	5.0		1.1	
ND		ug/l	5.0		0.72	
ND		ug/l	50		13.	
ND		ug/l	2.0		0.72	
ND		ug/l	2.0		0.63	
	Westborough ND ND ND ND ND ND ND ND ND N	Westborough Lab for sa ND ND ND ND ND ND ND ND ND N	ND ug/l	ND ug/l 10 ND ug/l 20 ND ug/l 10 ND ug/l 10 ND ug/l 10 ND ug/l 5.0 ND ug/l 50 ND ug/l 50 ND ug/l 2.0	ND ug/l 10 ND ug/l 20 ND ug/l 10 ND ug/l 10 ND ug/l 10 ND ug/l 5.0 ND ug/l 50 ND ug/l 2.0	ND ug/l 10 1.8 ND ug/l 20 5.5 ND ug/l 10 2.1 ND ug/l 10 3.4 ND ug/l 10 3.4 ND ug/l 5.0 1.9 ND ug/l 5.0 1.0 ND ug/l 5.0 1.1 ND ug/l 5.0 0.72 ND ug/l 50 13. ND ug/l 2.0 0.72

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
2-Fluorophenol	48	21-120
Phenol-d6	36	10-120
Nitrobenzene-d5	88	23-120
2-Fluorobiphenyl	70	15-120
2,4,6-Tribromophenol	77	10-120
4-Terphenyl-d14	76	41-149

Extraction Method: EPA 3510C

Extraction Date:

09/24/16 14:32

Project Name:DESTINYLab Number:L1629713Project Number:15209Report Date:10/13/16

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270D-SIM Analytical Date: 09/26/16 23:10

2-Methylnaphthalene

Pentachlorophenol

Hexachlorobenzene

Hexachloroethane

Analyst: KL

Parameter	Result	Qualifier	Units	RL	MDL	
Semivolatile Organics by GC/M	S-SIM - Westbo	rough Lab	for sample(s)	: 01-17	Batch: WG93	5472-1
Acenaphthene	ND		ug/l	0.10	0.04	
2-Chloronaphthalene	ND		ug/l	0.20	0.04	
Fluoranthene	ND		ug/l	0.20	0.04	
Hexachlorobutadiene	ND		ug/l	0.50	0.04	
Naphthalene	ND		ug/l	0.20	0.04	
Benzo(a)anthracene	ND		ug/l	0.20	0.02	
Benzo(a)pyrene	ND		ug/l	0.20	0.04	
Benzo(b)fluoranthene	ND		ug/l	0.20	0.02	
Benzo(k)fluoranthene	ND		ug/l	0.20	0.04	
Chrysene	ND		ug/l	0.20	0.04	
Acenaphthylene	ND		ug/l	0.20	0.04	
Anthracene	ND		ug/l	0.20	0.04	
Benzo(ghi)perylene	ND		ug/l	0.20	0.04	
Fluorene	ND		ug/l	0.20	0.04	
Phenanthrene	ND		ug/l	0.20	0.02	
Dibenzo(a,h)anthracene	ND		ug/l	0.20	0.04	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.20	0.04	
Pyrene	ND		ug/l	0.20	0.04	

0.20

0.80

0.80

0.80

ug/l

ug/l

ug/l

ug/l

0.05

0.22

0.03

0.03

ND

ND

ND

ND

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270D-SIM Extraction Method: EPA 3510C
Analytical Date: 09/26/16 23:10 Extraction Date: 09/24/16 14:32

Analyst: KL

ParameterResultQualifierUnitsRLMDLSemivolatile Organics by GC/MS-SIM - Westborough Lab for sample(s):01-17Batch: WG935472-1

		Acceptance							
Surrogate	%Recovery	Qualifier	Criteria						
2 Elyaranhanal	F0		24 420						
2-Fluorophenol	58		21-120						
Phenol-d6	42		10-120						
Nitrobenzene-d5	87		23-120						
2-Fluorobiphenyl	88		15-120						
2,4,6-Tribromophenol	91		10-120						
4-Terphenyl-d14	98		41-149						

Project Name: DESTINY

Project Number: 15209

Lab Number: L1629713

Report Date: 10/13/16

ameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
nivolatile Organics by GC/MS - Westbo	rough Lab Associa	ated sample(s):	01-17 Ba	tch: WG9354	67-2 WG935467	7-3			
Acenaphthene	50		48		37-111	4		30	
Benzidine	10		4	Q	10-75	92	Q	30	
1,2,4-Trichlorobenzene	45		45		39-98	0		30	
Hexachlorobenzene	71		68		40-140	4		30	
Bis(2-chloroethyl)ether	61		58		40-140	5		30	
2-Chloronaphthalene	52		49		40-140	6		30	
1,2-Dichlorobenzene	46		45		40-140	2		30	
1,3-Dichlorobenzene	43		42		40-140	2		30	
1,4-Dichlorobenzene	44		43		36-97	2		30	
3,3'-Dichlorobenzidine	52		50		40-140	4		30	
2,4-Dinitrotoluene	78		74		24-96	5		30	
2,6-Dinitrotoluene	79		74		40-140	7		30	
Azobenzene	60		57		40-140	5		30	
Fluoranthene	68		64		40-140	6		30	
4-Chlorophenyl phenyl ether	59		56		40-140	5		30	
4-Bromophenyl phenyl ether	66		63		40-140	5		30	
Bis(2-chloroisopropyl)ether	61		58		40-140	5		30	
Bis(2-chloroethoxy)methane	68		64		40-140	6		30	
Hexachlorobutadiene	43		42		40-140	2		30	
Hexachlorocyclopentadiene	40		40		40-140	0		30	
Hexachloroethane	40		40		40-140	0		30	

Project Name: DESTINY

Project Number:

15209

Lab Number: L1629713

Report Date: 10/13/16

arameter	LCS %Recovery	Qual	LCSD %Recove		Qual	%Recovery Limits	RPD	Qual	RPD Limits
emivolatile Organics by GC/MS - Westbo	orough Lab Associa	ated sample(s):	01-17	Batch:	WG935467	-2 WG93546	7-3		
Isophorone	70		67			40-140	4		30
Naphthalene	47		45			40-140	4		30
Nitrobenzene	75		72			40-140	4		30
NitrosoDiPhenylAmine(NDPA)/DPA	63		60			40-140	5		30
n-Nitrosodi-n-propylamine	69		66			29-132	4		30
Bis(2-Ethylhexyl)phthalate	58		55			40-140	5		30
Butyl benzyl phthalate	69		66			40-140	4		30
Di-n-butylphthalate	63		60			40-140	5		30
Di-n-octylphthalate	60		58			40-140	3		30
Diethyl phthalate	65		62			40-140	5		30
Dimethyl phthalate	74		69			40-140	7		30
Benzo(a)anthracene	66		61			40-140	8		30
Benzo(a)pyrene	68		64			40-140	6		30
Benzo(b)fluoranthene	69		66			40-140	4		30
Benzo(k)fluoranthene	66		61			40-140	8		30
Chrysene	58		55			40-140	5		30
Acenaphthylene	62		58			45-123	7		30
Anthracene	61		58			40-140	5		30
Benzo(ghi)perylene	68		65			40-140	5		30
Fluorene	60		56			40-140	7		30
Phenanthrene	58		55			40-140	5		30

Project Name: DESTINY

15209

Project Number:

Lab Number: L1629713

Report Date: 10/13/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Westborou	ıgh Lab Assoc	iated sample(s):	01-17 Batch	: WG935	467-2 WG935467-3		
Dibenzo(a,h)anthracene	70		67		40-140	4	30
Indeno(1,2,3-cd)Pyrene	63		59		40-140	7	30
Pyrene	65		61		26-127	6	30
Biphenyl	56		53		40-140	6	30
Aniline	30	Q	34	Q	40-140	13	30
4-Chloroaniline	47		49		40-140	4	30
1-Methylnaphthalene	48		46		41-103	4	30
2-Nitroaniline	83		78		52-143	6	30
3-Nitroaniline	60		59		25-145	2	30
4-Nitroaniline	71		67		51-143	6	30
Dibenzofuran	56		52		40-140	7	30
2-Methylnaphthalene	48		45		40-140	6	30
1,2,4,5-Tetrachlorobenzene	52		50		2-134	4	30
Acetophenone	73		70		39-129	4	30
n-Nitrosodimethylamine	38		37		22-74	3	30
2,4,6-Trichlorophenol	80		75		30-130	6	30
P-Chloro-M-Cresol	73		69		23-97	6	30
2-Chlorophenol	64		60		27-123	6	30
2,4-Dichlorophenol	78		73		30-130	7	30
2,4-Dimethylphenol	73		69		30-130	6	30
2-Nitrophenol	81		78		30-130	4	30

Project Name: DESTINY

15209

Project Number:

Lab Number:

L1629713

Report Date:

10/13/16

arameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
emivolatile Organics by GC/MS - Westborou	ıgh Lab Associ	ated sample(s):	01-17 Batch:	WG935467-2 WG935467-3		
4-Nitrophenol	48		39	10-80	21	30
2,4-Dinitrophenol	92		92	20-130	0	30
4,6-Dinitro-o-cresol	94		90	20-164	4	30
Pentachlorophenol	74		70	9-103	6	30
Phenol	37		31	12-110	18	30
2-Methylphenol	64		58	30-130	10	30
3-Methylphenol/4-Methylphenol	63		55	30-130	14	30
2,4,5-Trichlorophenol	82		77	30-130	6	30
Benzoic Acid	32		32	10-164	0	30
Benzyl Alcohol	62		59	26-116	5	30
Carbazole	63		60	55-144	5	30
Pyridine	13		12	10-66	8	30
Parathion, ethyl	112		106	40-140	6	30
Atrazine	75		70	40-140	7	30
Benzaldehyde	60		58	40-140	3	30
Caprolactam	23		22	10-130	4	30
2,3,4,6-Tetrachlorophenol	74		71	40-140	4	30

L1629713

Lab Control Sample Analysis

Project Name: DESTINY Batch Quality Control

Lab Number:

Report Date: 10/13/16

Project Number: 15209

LCSD LCS %Recovery RPD %Recovery %Recovery Limits Parameter Qual Qual Limits RPD Qual

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-17 Batch: WG935467-2 WG935467-3

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qua	al %Recovery Qual	Criteria
2-Fluorophenol	49	40	21-120
Phenol-d6	39	30	10-120
Nitrobenzene-d5	86	80	23-120
2-Fluorobiphenyl	68	61	15-120
2,4,6-Tribromophenol	77	70	10-120
4-Terphenyl-d14	70	62	41-149

Project Name: DESTINY

Project Number: 15209

Lab Number: L1629713

Report Date: 10/13/16

rameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	r RPD	RPD Qual Limits	
emivolatile Organics by GC/MS-SIM -	Westborough Lab A	ssociated sam	ple(s): 01-17	Batch: W	/G935472-2 W	G935472-3		
Acenaphthene	89		83		37-111	7	40	
2-Chloronaphthalene	96		88		40-140	9	40	
Fluoranthene	98		95		40-140	3	40	
Hexachlorobutadiene	78		71		40-140	9	40	
Naphthalene	92		85		40-140	8	40	
Benzo(a)anthracene	85		83		40-140	2	40	
Benzo(a)pyrene	83		80		40-140	4	40	
Benzo(b)fluoranthene	89		86		40-140	3	40	
Benzo(k)fluoranthene	87		82		40-140	6	40	
Chrysene	82		80		40-140	2	40	
Acenaphthylene	98		91		40-140	7	40	
Anthracene	94		90		40-140	4	40	
Benzo(ghi)perylene	82		79		40-140	4	40	
Fluorene	96		91		40-140	5	40	
Phenanthrene	91		88		40-140	3	40	
Dibenzo(a,h)anthracene	85		80		40-140	6	40	
Indeno(1,2,3-cd)pyrene	82		78		40-140	5	40	
Pyrene	91		88		26-127	3	40	
1-Methylnaphthalene	97		89		40-140	9	40	
2-Methylnaphthalene	97		90		40-140	7	40	
Pentachlorophenol	84		83		9-103	1	40	

Project Name: DESTINY

Project Number: 15209

Lab Number:

L1629713

Report Date:

10/13/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS-SIM - We	stborough Lab As	sociated sample	e(s): 01-17	Batch: WO	G935472-2 WG935	472-3		
Hexachlorobenzene	88		84		40-140	5		40
Hexachloroethane	89		80		40-140	11		40

	LCS	LCSD	Acceptance
Surrogate	%Recovery	Qual %Recovery	Qual Criteria
2-Fluorophenol	56	68	21-120
Phenol-d6	40	56	10-120
Nitrobenzene-d5	90	85	23-120
2-Fluorobiphenyl	91	82	15-120
2,4,6-Tribromophenol	93	90	10-120
4-Terphenyl-d14	95	92	41-149

METALS

Project Name:DESTINYLab Number:L1629713Project Number:15209Report Date:10/13/16

SAMPLE RESULTS

Lab ID: L1629713-01
Client ID: SP-MW-37
Sample Location: SYRACUSE, NY

Matrix: Water

Date Collected: 09/19/16 10:50
Date Received: 09/20/16

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Arsenic, Total	0.0156		mg/l	0.0050	0.0020	1	09/22/16 09:35	5 09/23/16 03:36	EPA 3005A	1,6010C	FB
Barium, Total	0.759		mg/l	0.0100	0.0030	1	09/22/16 09:35	5 09/23/16 03:36	EPA 3005A	1,6010C	FB
Beryllium, Total	ND		mg/l	0.0050	0.0010	1	09/22/16 09:3	5 09/23/16 03:36	EPA 3005A	1,6010C	FB
Cadmium, Total	0.0008	J	mg/l	0.0050	0.0007	1	09/22/16 09:35	5 09/23/16 03:36	EPA 3005A	1,6010C	FB
Chromium, Total	ND		mg/l	0.010	0.0020	1	09/22/16 09:35	5 09/23/16 03:36	EPA 3005A	1,6010C	FB
Copper, Total	0.0128		mg/l	0.0100	0.0020	1	09/22/16 09:35	5 09/23/16 03:36	EPA 3005A	1,6010C	FB
Lead, Total	0.0048	J	mg/l	0.0100	0.0020	1	09/22/16 09:35	5 09/23/16 03:36	EPA 3005A	1,6010C	FB
Manganese, Total	0.287		mg/l	0.0100	0.0020	1	09/22/16 09:35	5 09/23/16 03:36	EPA 3005A	1,6010C	FB
Mercury, Total	ND		mg/l	0.00020	0.00006	1	09/22/16 10:42	2 09/22/16 19:49	EPA 7470A	1,7470A	EA
Nickel, Total	0.0217	J	mg/l	0.0250	0.0040	1	09/22/16 09:35	5 09/23/16 03:36	EPA 3005A	1,6010C	FB
Selenium, Total	ND		mg/l	0.0100	0.0030	1	09/22/16 09:35	5 09/23/16 03:36	EPA 3005A	1,6010C	FB
Silver, Total	ND		mg/l	0.0070	0.0020	1	09/22/16 09:35	5 09/23/16 03:36	EPA 3005A	1,6010C	FB
Zinc, Total	0.118		mg/l	0.0500	0.0070	1	09/22/16 09:35	5 09/23/16 03:36	EPA 3005A	1,6010C	FB

Project Name:DESTINYLab Number:L1629713Project Number:15209Report Date:10/13/16

SAMPLE RESULTS

Lab ID: L1629713-02
Client ID: SP-MW-23
Sample Location: SYRACUSE, NY

Matrix: Water

Date Collected: 09/19/16 10:20 Date Received: 09/20/16

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Arsenic, Total	0.0039	J	mg/l	0.0050	0.0020	1	09/22/16 09:3	5 09/23/16 03:40	EPA 3005A	1,6010C	FB
Barium, Total	0.0417		mg/l	0.0100	0.0030	1	09/22/16 09:3	5 09/23/16 03:40	EPA 3005A	1,6010C	FB
Beryllium, Total	ND		mg/l	0.0050	0.0010	1	09/22/16 09:3	5 09/23/16 03:40	EPA 3005A	1,6010C	FB
Cadmium, Total	ND		mg/l	0.0050	0.0007	1	09/22/16 09:3	5 09/23/16 03:40	EPA 3005A	1,6010C	FB
Chromium, Total	ND		mg/l	0.010	0.0020	1	09/22/16 09:3	5 09/23/16 03:40	EPA 3005A	1,6010C	FB
Copper, Total	ND		mg/l	0.0100	0.0020	1	09/22/16 09:3	5 09/23/16 03:40	EPA 3005A	1,6010C	FB
Lead, Total	0.0020	J	mg/l	0.0100	0.0020	1	09/22/16 09:3	5 09/23/16 03:40	EPA 3005A	1,6010C	FB
Manganese, Total	0.0169		mg/l	0.0100	0.0020	1	09/22/16 09:3	5 09/23/16 03:40	EPA 3005A	1,6010C	FB
Mercury, Total	ND		mg/l	0.00020	0.00006	1	09/22/16 10:42	2 09/22/16 19:57	EPA 7470A	1,7470A	EA
Nickel, Total	ND		mg/l	0.0250	0.0040	1	09/22/16 09:3	5 09/23/16 03:40	EPA 3005A	1,6010C	FB
Selenium, Total	ND		mg/l	0.0100	0.0030	1	09/22/16 09:3	5 09/23/16 03:40	EPA 3005A	1,6010C	FB
Silver, Total	ND		mg/l	0.0070	0.0020	1	09/22/16 09:3	5 09/23/16 03:40	EPA 3005A	1,6010C	FB
Zinc, Total	ND		mg/l	0.0500	0.0070	1	09/22/16 09:3	5 09/23/16 03:40	EPA 3005A	1,6010C	FB

Project Name:DESTINYLab Number:L1629713Project Number:15209Report Date:10/13/16

SAMPLE RESULTS

Lab ID: L1629713-03
Client ID: SP-MW-38
Sample Location: SYRACUSE, NY

Matrix: Water

Date Collected: 09/19/16 12:20 Date Received: 09/20/16

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Arsenic, Total	0.0155		mg/l	0.0050	0.0020	1	09/22/16 09:35	5 09/23/16 03:44	EPA 3005A	1,6010C	FB
Barium, Total	1.56		mg/l	0.0100	0.0030	1	09/22/16 09:35	5 09/23/16 03:44	EPA 3005A	1,6010C	FB
Beryllium, Total	ND		mg/l	0.0050	0.0010	1	09/22/16 09:35	5 09/23/16 03:44	EPA 3005A	1,6010C	FB
Cadmium, Total	ND		mg/l	0.0050	0.0007	1	09/22/16 09:35	5 09/23/16 03:44	EPA 3005A	1,6010C	FB
Chromium, Total	ND		mg/l	0.010	0.0020	1	09/22/16 09:35	5 09/23/16 03:44	EPA 3005A	1,6010C	FB
Copper, Total	0.0024	J	mg/l	0.0100	0.0020	1	09/22/16 09:35	5 09/23/16 03:44	EPA 3005A	1,6010C	FB
Lead, Total	ND		mg/l	0.0100	0.0020	1	09/22/16 09:35	5 09/23/16 03:44	EPA 3005A	1,6010C	FB
Manganese, Total	0.404		mg/l	0.0100	0.0020	1	09/22/16 09:35	5 09/23/16 03:44	EPA 3005A	1,6010C	FB
Mercury, Total	ND		mg/l	0.00020	0.00006	1	09/22/16 10:42	2 09/22/16 20:03	EPA 7470A	1,7470A	EA
Nickel, Total	ND		mg/l	0.0250	0.0040	1	09/22/16 09:35	5 09/23/16 03:44	EPA 3005A	1,6010C	FB
Selenium, Total	0.0089	J	mg/l	0.0100	0.0030	1	09/22/16 09:35	5 09/23/16 03:44	EPA 3005A	1,6010C	FB
Silver, Total	ND		mg/l	0.0070	0.0020	1		5 09/23/16 03:44		1,6010C	FB
Zinc, Total	ND		mg/l	0.0500	0.0070	1		5 09/23/16 03:44		1,6010C	FB
•											

Project Name:DESTINYLab Number:L1629713Project Number:15209Report Date:10/13/16

SAMPLE RESULTS

Lab ID: L1629713-04
Client ID: SP-MW-39
Sample Location: SYRACUSE, NY

Matrix: Water

Date Collected: 09/19/16 11:27 Date Received: 09/20/16

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Arsenic, Total	0.0055		mg/l	0.0050	0.0020	1	09/22/16 09:3	5 09/23/16 04:16	EPA 3005A	1,6010C	FB
Barium, Total	0.0189		mg/l	0.0100	0.0030	1	09/22/16 09:3	5 09/23/16 04:16	EPA 3005A	1,6010C	FB
Beryllium, Total	ND		mg/l	0.0050	0.0010	1	09/22/16 09:3	5 09/23/16 04:16	EPA 3005A	1,6010C	FB
Cadmium, Total	ND		mg/l	0.0050	0.0007	1	09/22/16 09:3	5 09/23/16 04:16	EPA 3005A	1,6010C	FB
Chromium, Total	ND		mg/l	0.010	0.0020	1	09/22/16 09:3	5 09/23/16 04:16	EPA 3005A	1,6010C	FB
Copper, Total	0.0041	J	mg/l	0.0100	0.0020	1	09/22/16 09:3	5 09/23/16 04:16	EPA 3005A	1,6010C	FB
Lead, Total	0.0028	J	mg/l	0.0100	0.0020	1	09/22/16 09:3	5 09/23/16 04:16	EPA 3005A	1,6010C	FB
Manganese, Total	0.0304		mg/l	0.0100	0.0020	1	09/22/16 09:3	5 09/23/16 04:16	EPA 3005A	1,6010C	FB
Mercury, Total	ND		mg/l	0.00020	0.00006	1	09/22/16 10:4	2 09/22/16 20:04	EPA 7470A	1,7470A	EA
Nickel, Total	ND		mg/l	0.0250	0.0040	1	09/22/16 09:3	5 09/23/16 04:16	EPA 3005A	1,6010C	FB
Selenium, Total	ND		mg/l	0.0100	0.0030	1	09/22/16 09:3	5 09/23/16 04:16	EPA 3005A	1,6010C	FB
Silver, Total	ND		mg/l	0.0070	0.0020	1	09/22/16 09:3	5 09/23/16 04:16	EPA 3005A	1,6010C	FB
Zinc, Total	0.0306	J	mg/l	0.0500	0.0070	1	09/22/16 09:3	5 09/23/16 04:16	EPA 3005A	1,6010C	FB

Project Name:DESTINYLab Number:L1629713Project Number:15209Report Date:10/13/16

SAMPLE RESULTS

Lab ID: L1629713-05
Client ID: SP-MW-21
Sample Location: SYRACUSE, NY

Matrix: Water

Date Collected: 09/19/16 12:45
Date Received: 09/20/16

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Arsenic, Total	0.0078		mg/l	0.0050	0.0020	1	09/22/16 09:3	5 09/23/16 04:20	EPA 3005A	1,6010C	FB
Barium, Total	0.0781		mg/l	0.0100	0.0030	1	09/22/16 09:3	5 09/23/16 04:20	EPA 3005A	1,6010C	FB
Beryllium, Total	ND		mg/l	0.0050	0.0010	1	09/22/16 09:3	5 09/23/16 04:20	EPA 3005A	1,6010C	FB
Cadmium, Total	0.0034	J	mg/l	0.0050	0.0007	1	09/22/16 09:3	5 09/23/16 04:20	EPA 3005A	1,6010C	FB
Chromium, Total	0.0022	J	mg/l	0.010	0.0020	1	09/22/16 09:3	5 09/23/16 04:20	EPA 3005A	1,6010C	FB
Copper, Total	0.0439		mg/l	0.0100	0.0020	1	09/22/16 09:3	5 09/23/16 04:20	EPA 3005A	1,6010C	FB
Lead, Total	0.0604		mg/l	0.0100	0.0020	1	09/22/16 09:3	5 09/23/16 04:20	EPA 3005A	1,6010C	FB
Manganese, Total	0.240		mg/l	0.0100	0.0020	1	09/22/16 09:3	5 09/23/16 04:20	EPA 3005A	1,6010C	FB
Mercury, Total	ND		mg/l	0.00020	0.00006	1	09/22/16 10:42	2 09/22/16 20:06	EPA 7470A	1,7470A	EA
Nickel, Total	ND		mg/l	0.0250	0.0040	1	09/22/16 09:3	5 09/23/16 04:20	EPA 3005A	1,6010C	FB
Selenium, Total	ND		mg/l	0.0100	0.0030	1	09/22/16 09:3	5 09/23/16 04:20	EPA 3005A	1,6010C	FB
Silver, Total	ND		mg/l	0.0070	0.0020	1	09/22/16 09:3	5 09/23/16 04:20	EPA 3005A	1,6010C	FB
Zinc, Total	0.897		mg/l	0.0500	0.0070	1	09/22/16 09:3	5 09/23/16 04:20	EPA 3005A	1,6010C	FB
			-								

Project Name:DESTINYLab Number:L1629713Project Number:15209Report Date:10/13/16

SAMPLE RESULTS

Lab ID: L1629713-06
Client ID: SP-MW-40
Sample Location: SYRACUSE, NY

Matrix: Water

Date Collected: 09/19/16 15:05

Date Received: 09/20/16
Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Arsenic, Total	0.0231		mg/l	0.0050	0.0020	1	09/22/16 09:35	5 09/23/16 04:24	EPA 3005A	1,6010C	FB
Barium, Total	0.178		mg/l	0.0100	0.0030	1	09/22/16 09:35	5 09/23/16 04:24	EPA 3005A	1,6010C	FB
Beryllium, Total	ND		mg/l	0.0050	0.0010	1	09/22/16 09:35	5 09/23/16 04:24	EPA 3005A	1,6010C	FB
Cadmium, Total	ND		mg/l	0.0050	0.0007	1	09/22/16 09:35	5 09/23/16 04:24	EPA 3005A	1,6010C	FB
Chromium, Total	ND		mg/l	0.010	0.0020	1	09/22/16 09:35	5 09/23/16 04:24	EPA 3005A	1,6010C	FB
Copper, Total	ND		mg/l	0.0100	0.0020	1	09/22/16 09:35	5 09/23/16 04:24	EPA 3005A	1,6010C	FB
Lead, Total	ND		mg/l	0.0100	0.0020	1	09/22/16 09:35	5 09/23/16 04:24	EPA 3005A	1,6010C	FB
Manganese, Total	0.0445		mg/l	0.0100	0.0020	1	09/22/16 09:35	09/23/16 04:24	EPA 3005A	1,6010C	FB
Mercury, Total	ND		mg/l	0.00020	0.00006	1	09/22/16 10:42	2 09/22/16 20:08	EPA 7470A	1,7470A	EA
Nickel, Total	ND		mg/l	0.0250	0.0040	1	09/22/16 09:35	5 09/23/16 04:24	EPA 3005A	1,6010C	FB
Selenium, Total	ND		mg/l	0.0100	0.0030	1	09/22/16 09:35	5 09/23/16 04:24	EPA 3005A	1,6010C	FB
Silver, Total	ND		mg/l	0.0070	0.0020	1	09/22/16 09:35	5 09/23/16 04:24	EPA 3005A	1,6010C	FB
Zinc, Total	0.0075	J	mg/l	0.0500	0.0070	1	09/22/16 09:35	5 09/23/16 04:24	EPA 3005A	1,6010C	FB

Project Name:DESTINYLab Number:L1629713Project Number:15209Report Date:10/13/16

SAMPLE RESULTS

Lab ID: L1629713-07
Client ID: SP-MW-22
Sample Location: SYRACUSE, NY

Matrix: Water

Date Collected: 09/19/16 14:53
Date Received: 09/20/16

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Arsenic, Total	0.0055		mg/l	0.0050	0.0020	1	09/23/16 08:00	09/23/16 13:54	EPA 3005A	1,6010C	JH
Barium, Total	0.0498		mg/l	0.0100	0.0030	1	09/23/16 08:00	09/23/16 13:54	EPA 3005A	1,6010C	JH
Beryllium, Total	ND		mg/l	0.0050	0.0010	1	09/23/16 08:00	09/23/16 13:54	EPA 3005A	1,6010C	JH
Cadmium, Total	ND		mg/l	0.0050	0.0007	1	09/23/16 08:00	09/23/16 13:54	EPA 3005A	1,6010C	JH
Chromium, Total	ND		mg/l	0.010	0.0020	1	09/23/16 08:00	09/23/16 13:54	EPA 3005A	1,6010C	JH
Copper, Total	ND		mg/l	0.0100	0.0020	1	09/23/16 08:00	09/23/16 13:54	EPA 3005A	1,6010C	JH
Lead, Total	ND		mg/l	0.0100	0.0020	1	09/23/16 08:00	09/23/16 13:54	EPA 3005A	1,6010C	JH
Manganese, Total	0.0318		mg/l	0.0100	0.0020	1	09/23/16 08:00	09/23/16 13:54	EPA 3005A	1,6010C	JH
Mercury, Total	ND		mg/l	0.00020	0.00006	1	09/22/16 10:42	09/22/16 20:10	EPA 7470A	1,7470A	EA
Nickel, Total	ND		mg/l	0.0250	0.0040	1	09/23/16 08:00	09/23/16 13:54	EPA 3005A	1,6010C	JH
Selenium, Total	ND		mg/l	0.0100	0.0030	1	09/23/16 08:00	09/23/16 13:54	EPA 3005A	1,6010C	JH
Silver, Total	ND		mg/l	0.0070	0.0020	 1		09/23/16 13:54		1,6010C	JH
Zinc, Total	ND		mg/l	0.0500	0.0070	<u>.</u> 1		09/23/16 13:54		1,6010C	JH
	110		9/1	0.0000	0.0070		00,20,10 00.00	00,20,10 10.04	, , 5000/1	.,	VIII

Project Name:DESTINYLab Number:L1629713Project Number:15209Report Date:10/13/16

SAMPLE RESULTS

Lab ID: L1629713-08
Client ID: SP-MW-20
Sample Location: SYRACUSE, NY

Matrix: Water

Date Collected: 09/19/16 16:15 Date Received: 09/20/16

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Arsenic, Total	ND		mg/l	0.0050	0.0020	1	09/23/16 08:00	09/23/16 13:58	EPA 3005A	1,6010C	JH
Barium, Total	0.0857		mg/l	0.0100	0.0030	1	09/23/16 08:00	09/23/16 13:58	EPA 3005A	1,6010C	JH
Beryllium, Total	ND		mg/l	0.0050	0.0010	1	09/23/16 08:00	09/23/16 13:58	EPA 3005A	1,6010C	JH
Cadmium, Total	ND		mg/l	0.0050	0.0007	1	09/23/16 08:00	09/23/16 13:58	EPA 3005A	1,6010C	JH
Chromium, Total	ND		mg/l	0.010	0.0020	1		09/23/16 13:58		1,6010C	JH
Copper, Total	0.0024	J	mg/l	0.0100	0.0020	1	09/23/16 08:00	09/23/16 13:58	EPA 3005A	1,6010C	JH
Lead, Total	0.0072	J	mg/l	0.0100	0.0020	1	09/23/16 08:00	09/23/16 13:58	EPA 3005A	1,6010C	JH
Manganese, Total	0.116		mg/l	0.0100	0.0020	1	09/23/16 08:00	09/23/16 13:58	EPA 3005A	1,6010C	JH
Mercury, Total	ND		mg/l	0.00020	0.00006	1	09/22/16 10:42	2 09/22/16 20:12	EPA 7470A	1,7470A	EA
Nickel, Total	ND		mg/l	0.0250	0.0040	1	09/23/16 08:00	09/23/16 13:58	EPA 3005A	1,6010C	JH
Selenium, Total	ND		mg/l	0.0100	0.0030	1	09/23/16 08:00	09/23/16 13:58	EPA 3005A	1,6010C	JH
Silver, Total	ND		mg/l	0.0070	0.0020	1		0 09/23/16 13:58		1,6010C	JH
Zinc, Total	0.168		mg/l	0.0500	0.0070	1		09/23/16 13:58		1.6010C	JH
o, 10tai	0.100		1119/1	0.0000	5.0070		03/23/10 00.00	, 00, 20, 10 10.00	LI A 3003A	1,00100	011

Project Name:DESTINYLab Number:L1629713Project Number:15209Report Date:10/13/16

SAMPLE RESULTS

Lab ID: L1629713-09
Client ID: SP-MW-14SR
Sample Location: SYRACUSE, NY

Matrix: Water

Date Collected: 09/19/16 16:55
Date Received: 09/20/16

_						Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	
Parameter	Result	Qualifier	Units	RL	MDL	i actor	Перагец	Allalyzeu	Wethou	Wictifod	Analyst
Total Metals - Mans	field Lab										
Arsenic, Total	0.0709		mg/l	0.0050	0.0020	1	09/23/16 08:00	0 09/23/16 14:03	EPA 3005A	1,6010C	JH
Barium, Total	0.176		mg/l	0.0100	0.0030	1	09/23/16 08:00	0 09/23/16 14:03	EPA 3005A	1,6010C	JH
Beryllium, Total	ND		mg/l	0.0050	0.0010	1	09/23/16 08:00	0 09/23/16 14:03	EPA 3005A	1,6010C	JH
Cadmium, Total	ND		mg/l	0.0050	0.0007	1	09/23/16 08:00	0 09/23/16 14:03	EPA 3005A	1,6010C	JH
Chromium, Total	ND		mg/l	0.010	0.0020	1	09/23/16 08:00	0 09/23/16 14:03	EPA 3005A	1,6010C	JH
Copper, Total	0.0023	J	mg/l	0.0100	0.0020	1	09/23/16 08:00	0 09/23/16 14:03	EPA 3005A	1,6010C	JH
Lead, Total	0.0074	J	mg/l	0.0100	0.0020	1	09/23/16 08:00	0 09/23/16 14:03	EPA 3005A	1,6010C	JH
Manganese, Total	0.254		mg/l	0.0100	0.0020	1	09/23/16 08:00	09/23/16 14:03	EPA 3005A	1,6010C	JH
Mercury, Total	ND		mg/l	0.00020	0.00006	1	09/22/16 10:42	2 09/22/16 20:14	EPA 7470A	1,7470A	EA
Nickel, Total	ND		mg/l	0.0250	0.0040	1	09/23/16 08:00	0 09/23/16 14:03	EPA 3005A	1,6010C	JH
Selenium, Total	ND		mg/l	0.0100	0.0030	1	09/23/16 08:00	0 09/23/16 14:03	EPA 3005A	1,6010C	JH
Silver, Total	ND		mg/l	0.0070	0.0020	1	09/23/16 08:00	0 09/23/16 14:03	EPA 3005A	1,6010C	JH
Zinc, Total	0.0260	J	mg/l	0.0500	0.0070	1	09/23/16 08:00	0 09/23/16 14:03	EPA 3005A	1,6010C	JH

Project Name: Lab Number: **DESTINY** L1629713 **Project Number:** 15209 **Report Date:** 10/13/16

SAMPLE RESULTS

Lab ID: L1629713-10

Client ID: DUP

Sample Location: SYRACUSE, NY

Matrix: Water Date Collected: 09/19/16 12:00

Date Received: 09/20/16

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Arsenic, Total	0.0173		mg/l	0.0050	0.0020	1	09/23/16 08:00	09/23/16 14:07	EPA 3005A	1,6010C	JH
Barium, Total	0.178		mg/l	0.0100	0.0030	1	09/23/16 08:00	09/23/16 14:07	EPA 3005A	1,6010C	JH
Beryllium, Total	ND		mg/l	0.0050	0.0010	1	09/23/16 08:00	09/23/16 14:07	EPA 3005A	1,6010C	JH
Cadmium, Total	ND		mg/l	0.0050	0.0007	1	09/23/16 08:00	09/23/16 14:07	EPA 3005A	1,6010C	JH
Chromium, Total	ND		mg/l	0.010	0.0020	1	09/23/16 08:00	09/23/16 14:07	EPA 3005A	1,6010C	JH
Copper, Total	0.0023	J	mg/l	0.0100	0.0020	1	09/23/16 08:00	09/23/16 14:07	EPA 3005A	1,6010C	JH
Lead, Total	0.0038	J	mg/l	0.0100	0.0020	1	09/23/16 08:00	09/23/16 14:07	EPA 3005A	1,6010C	JH
Manganese, Total	0.0451		mg/l	0.0100	0.0020	1	09/23/16 08:00	09/23/16 14:07	EPA 3005A	1,6010C	JH
Mercury, Total	ND		mg/l	0.00020	0.00006	1	09/22/16 10:42	09/22/16 20:16	EPA 7470A	1,7470A	EA
Nickel, Total	ND		mg/l	0.0250	0.0040	1	09/23/16 08:00	09/23/16 14:07	EPA 3005A	1,6010C	JH
Selenium, Total	ND		mg/l	0.0100	0.0030	1	09/23/16 08:00	09/23/16 14:07	EPA 3005A	1,6010C	JH
Silver, Total	ND		mg/l	0.0070	0.0020	1	09/23/16 08:00	09/23/16 14:07	EPA 3005A	1,6010C	JH
Zinc, Total	0.0090	J	mg/l	0.0500	0.0070	1		09/23/16 14:07	EPA 3005A	1,6010C	JH

Project Name:DESTINYLab Number:L1629713Project Number:15209Report Date:10/13/16

SAMPLE RESULTS

Lab ID: L1629713-11
Client ID: SP-MW-13S
Sample Location: SYRACUSE, NY

Matrix: Water

Date Collected: 09/20/16 09:15
Date Received: 09/20/16

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Farameter	Nesuit	Qualifier	Ullits	NL .	MIDE						Allalyst
Total Metals - Mans	field Lab										
Arsenic, Total	0.0311		mg/l	0.0050	0.0020	1	09/23/16 08:00	0 09/23/16 14:11	EPA 3005A	1,6010C	JH
Barium, Total	3.48		mg/l	0.0100	0.0030	1	09/23/16 08:00	0 09/23/16 14:11	EPA 3005A	1,6010C	JH
Beryllium, Total	ND		mg/l	0.0050	0.0010	1	09/23/16 08:00	0 09/23/16 14:11	EPA 3005A	1,6010C	JH
Cadmium, Total	ND		mg/l	0.0050	0.0007	1	09/23/16 08:00	0 09/23/16 14:11	EPA 3005A	1,6010C	JH
Chromium, Total	ND		mg/l	0.010	0.0020	1	09/23/16 08:00	0 09/23/16 14:11	EPA 3005A	1,6010C	JH
Copper, Total	ND		mg/l	0.0100	0.0020	1	09/23/16 08:00	0 09/23/16 14:11	EPA 3005A	1,6010C	JH
Lead, Total	0.0035	J	mg/l	0.0100	0.0020	1	09/23/16 08:00	0 09/23/16 14:11	EPA 3005A	1,6010C	JH
Manganese, Total	0.898		mg/l	0.0100	0.0020	1	09/23/16 08:00	09/23/16 14:11	EPA 3005A	1,6010C	JH
Mercury, Total	ND		mg/l	0.00020	0.00006	1	09/22/16 10:42	2 09/22/16 20:18	EPA 7470A	1,7470A	EA
Nickel, Total	ND		mg/l	0.0250	0.0040	1	09/23/16 08:00	0 09/23/16 14:11	EPA 3005A	1,6010C	JH
Selenium, Total	ND		mg/l	0.0100	0.0030	1	09/23/16 08:00	0 09/23/16 14:11	EPA 3005A	1,6010C	JH
Silver, Total	ND		mg/l	0.0070	0.0020	1	09/23/16 08:00	0 09/23/16 14:11	EPA 3005A	1,6010C	JH
Zinc, Total	0.0512		mg/l	0.0500	0.0070	1	09/23/16 08:00	0 09/23/16 14:11	EPA 3005A	1,6010C	JH

Project Name:DESTINYLab Number:L1629713Project Number:15209Report Date:10/13/16

SAMPLE RESULTS

Lab ID: L1629713-12
Client ID: SP-MW-44
Sample Location: SYRACUSE, NY

Matrix: Water

Date Collected: 09/20/16 09:07 Date Received: 09/20/16

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Arsenic, Total	0.0121		mg/l	0.0050	0.0020	1	09/23/16 08:00	0 09/23/16 14:16	EPA 3005A	1,6010C	JH
Barium, Total	0.380		mg/l	0.0100	0.0030	1	09/23/16 08:00	0 09/23/16 14:16	EPA 3005A	1,6010C	JH
Beryllium, Total	ND		mg/l	0.0050	0.0010	1	09/23/16 08:00	0 09/23/16 14:16	EPA 3005A	1,6010C	JH
Cadmium, Total	ND		mg/l	0.0050	0.0007	1	09/23/16 08:00	0 09/23/16 14:16	EPA 3005A	1,6010C	JH
Chromium, Total	ND		mg/l	0.010	0.0020	1	09/23/16 08:00	0 09/23/16 14:16	EPA 3005A	1,6010C	JH
Copper, Total	0.0050	J	mg/l	0.0100	0.0020	1	09/23/16 08:00	0 09/23/16 14:16	EPA 3005A	1,6010C	JH
Lead, Total	0.0036	J	mg/l	0.0100	0.0020	1	09/23/16 08:00	0 09/23/16 14:16	EPA 3005A	1,6010C	JH
Manganese, Total	0.872		mg/l	0.0100	0.0020	1	09/23/16 08:00	09/23/16 14:16	EPA 3005A	1,6010C	JH
Mercury, Total	ND		mg/l	0.00020	0.00006	1	09/22/16 10:42	2 09/22/16 20:19	EPA 7470A	1,7470A	EA
Nickel, Total	ND		mg/l	0.0250	0.0040	1	09/23/16 08:00	0 09/23/16 14:16	EPA 3005A	1,6010C	JH
Selenium, Total	ND		mg/l	0.0100	0.0030	1	09/23/16 08:00	0 09/23/16 14:16	EPA 3005A	1,6010C	JH
Silver, Total	ND		mg/l	0.0070	0.0020	1	09/23/16 08:00	0 09/23/16 14:16	EPA 3005A	1,6010C	JH
Zinc, Total	0.0207	J	mg/l	0.0500	0.0070	1	09/23/16 08:00	0 09/23/16 14:16	EPA 3005A	1,6010C	JH

Project Name:DESTINYLab Number:L1629713Project Number:15209Report Date:10/13/16

SAMPLE RESULTS

Lab ID: L1629713-13
Client ID: SP-MW-41
Sample Location: SYRACUSE, NY

Matrix: Water

Date Collected: 09/20/16 10:20
Date Received: 09/20/16

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mansfield Lab											
Arsenic, Total	ND		mg/l	0.0050	0.0020	1	09/23/16 08:00	0 09/23/16 14:20	EPA 3005A	1,6010C	JH
Barium, Total	0.120		mg/l	0.0100	0.0030	1	09/23/16 08:00	0 09/23/16 14:20	EPA 3005A	1,6010C	JH
Beryllium, Total	ND		mg/l	0.0050	0.0010	1	09/23/16 08:00	0 09/23/16 14:20	EPA 3005A	1,6010C	JH
Cadmium, Total	ND		mg/l	0.0050	0.0007	1	09/23/16 08:00	0 09/23/16 14:20	EPA 3005A	1,6010C	JH
Chromium, Total	ND		mg/l	0.010	0.0020	1	09/23/16 08:00	0 09/23/16 14:20	EPA 3005A	1,6010C	JH
Copper, Total	0.0039	J	mg/l	0.0100	0.0020	1	09/23/16 08:00	0 09/23/16 14:20	EPA 3005A	1,6010C	JH
Lead, Total	0.0049	J	mg/l	0.0100	0.0020	1	09/23/16 08:00	0 09/23/16 14:20	EPA 3005A	1,6010C	JH
Manganese, Total	0.377		mg/l	0.0100	0.0020	1	09/23/16 08:00	0 09/23/16 14:20	EPA 3005A	1,6010C	JH
Mercury, Total	ND		mg/l	0.00020	0.00006	1	09/22/16 10:42	2 09/22/16 20:25	EPA 7470A	1,7470A	EA
Nickel, Total	ND		mg/l	0.0250	0.0040	1	09/23/16 08:00	0 09/23/16 14:20	EPA 3005A	1,6010C	JH
Selenium, Total	ND		mg/l	0.0100	0.0030	1	09/23/16 08:00	0 09/23/16 14:20	EPA 3005A	1,6010C	JH
Silver, Total	ND		mg/l	0.0070	0.0020	1		0 09/23/16 14:20		1,6010C	JH
Zinc, Total	0.0566		mg/l	0.0500	0.0070	1		0 09/23/16 14:20		1,6010C	JH

Project Name:DESTINYLab Number:L1629713Project Number:15209Report Date:10/13/16

SAMPLE RESULTS

Lab ID: L1629713-14
Client ID: HCMW-1-I
Sample Location: SYRACUSE, NY

Matrix: Water

Date Collected: 09/20/16 11:25
Date Received: 09/20/16

Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst		
Total Metals - Mansfield Lab												
0.0025	J	mg/l	0.0050	0.0020	1	09/23/16 08:00	09/23/16 14:25	EPA 3005A	1,6010C	JH		
0.0197		mg/l	0.0100	0.0030	1	09/23/16 08:00	09/23/16 14:25	EPA 3005A	1,6010C	JH		
ND		mg/l	0.0050	0.0010	1	09/23/16 08:00	09/23/16 14:25	EPA 3005A	1,6010C	JH		
ND		mg/l	0.0050	0.0007	1	09/23/16 08:00	09/23/16 14:25	EPA 3005A	1,6010C	JH		
ND		mg/l	0.010	0.0020	1	09/23/16 08:00	09/23/16 14:25	EPA 3005A	1,6010C	JH		
0.0067	J	mg/l	0.0100	0.0020	1	09/23/16 08:00	09/23/16 14:25	EPA 3005A	1,6010C	JH		
0.0040	J	mg/l	0.0100	0.0020	1	09/23/16 08:00	09/23/16 14:25	EPA 3005A	1,6010C	JH		
0.0192		mg/l	0.0100	0.0020	1	09/23/16 08:00	09/23/16 14:25	EPA 3005A	1,6010C	JH		
ND		mg/l	0.00020	0.00006	1	09/22/16 10:42	09/22/16 20:27	EPA 7470A	1,7470A	EA		
0.0047	J	mg/l	0.0250	0.0040	1	09/23/16 08:00	09/23/16 14:25	EPA 3005A	1,6010C	JH		
ND		mg/l	0.0100	0.0030	1	09/23/16 08:00	09/23/16 14:25	EPA 3005A	1,6010C	JH		
ND		mg/l	0.0070	0.0020	1	09/23/16 08:00	09/23/16 14:25	EPA 3005A	1,6010C	JH		
0.124		mg/l	0.0500	0.0070	1	09/23/16 08:00	09/23/16 14:25	EPA 3005A	1,6010C	JH		
	eld Lab 0.0025 0.0197 ND ND 0.0067 0.0040 0.0192 ND 0.0047 ND ND ND	eld Lab 0.0025 J 0.0197 ND ND ND 0.0067 J 0.0040 J 0.0192 ND 0.0047 J ND	eld Lab 0.0025 J mg/l 0.0197 mg/l ND mg/l ND mg/l ND mg/l 0.0067 J mg/l 0.0040 J mg/l 0.0192 mg/l ND mg/l	eld Lab 0.0025 J mg/l 0.0050 0.0197 mg/l 0.0100 ND mg/l 0.0050 ND mg/l 0.0050 ND mg/l 0.0100 0.0067 J mg/l 0.0100 0.0040 J mg/l 0.0100 0.0192 mg/l 0.0100 ND mg/l 0.0100 ND mg/l 0.0100 ND mg/l 0.0100 ND mg/l 0.0020 ND mg/l 0.0250 ND mg/l 0.0100 ND mg/l 0.0250 ND mg/l 0.0100	eld Lab 0.0025	Result Qualifier Units RL MDL Factor eld Lab 0.0025 J mg/l 0.0050 0.0020 1 0.0197 mg/l 0.0100 0.0030 1 ND mg/l 0.0050 0.0010 1 ND mg/l 0.0050 0.0007 1 ND mg/l 0.0100 0.0020 1 0.0040 J mg/l 0.0100 0.0020 1 0.0192 mg/l 0.0100 0.0020 1 ND mg/l 0.00020 0.00006 1 0.0047 J mg/l 0.0250 0.0040 1 ND mg/l 0.0100 0.0030 1 ND mg/l 0.0100 0.0030 1 ND mg/l 0.0100 0.0030 1 ND mg/l 0.0070 0.0020 1	Result Qualifier Units RL MDL Factor Prepared eld Lab 0.0025 J mg/l 0.0050 0.0020 1 09/23/16 08:00 0.0197 mg/l 0.0100 0.0030 1 09/23/16 08:00 ND mg/l 0.0050 0.0010 1 09/23/16 08:00 ND mg/l 0.010 0.0020 1 09/23/16 08:00 ND mg/l 0.0100 0.0020 1 09/23/16 08:00 0.0067 J mg/l 0.0100 0.0020 1 09/23/16 08:00 0.0040 J mg/l 0.0100 0.0020 1 09/23/16 08:00 ND mg/l 0.00020 0.00006 1 09/22/16 10:42 0.0047 J mg/l 0.0020 0.0040 1 09/23/16 08:00 ND mg/l 0.0100 0.0030 1 09/23/16 08:00 ND mg/l 0.0100 0.0030 1	Result Qualifier Units RL MDL Factor Prepared Analyzed eld Lab 0.0025 J mg/l 0.0050 0.0020 1 09/23/16 08:00 09/23/16 14:25 0.0197 mg/l 0.0100 0.0030 1 09/23/16 08:00 09/23/16 14:25 ND mg/l 0.0050 0.0010 1 09/23/16 08:00 09/23/16 14:25 ND mg/l 0.0050 0.0007 1 09/23/16 08:00 09/23/16 14:25 ND mg/l 0.010 0.0020 1 09/23/16 08:00 09/23/16 14:25 0.0067 J mg/l 0.0100 0.0020 1 09/23/16 08:00 09/23/16 14:25 0.0040 J mg/l 0.0100 0.0020 1 09/23/16 08:00 09/23/16 14:25 ND mg/l 0.0100 0.0020 1 09/23/16 08:00 09/23/16 14:25 ND mg/l 0.0020 0.0040 1 09/23/16 08:00 09/23/16 14:25 ND mg/l 0.0020 0.0040 1 09/23/16 08:0	Result Qualifier Units RL MDL Factor Prepared Analyzed Method eld Lab 0.0025 J mg/l 0.0050 0.0020 1 09/23/16 08:00 09/23/16 14:25 EPA 3005A 0.0197 mg/l 0.0100 0.0030 1 09/23/16 08:00 09/23/16 14:25 EPA 3005A ND mg/l 0.0050 0.0010 1 09/23/16 08:00 09/23/16 14:25 EPA 3005A ND mg/l 0.0050 0.0007 1 09/23/16 08:00 09/23/16 14:25 EPA 3005A ND mg/l 0.010 0.0020 1 09/23/16 08:00 09/23/16 14:25 EPA 3005A ND mg/l 0.0100 0.0020 1 09/23/16 08:00 09/23/16 14:25 EPA 3005A 0.0040 J mg/l 0.0100 0.0020 1 09/23/16 08:00 09/23/16 14:25 EPA 3005A ND mg/l 0.0100 0.0020 1 09/23/16 08:00 09/23/16 14:25 EPA 3005A ND mg/l 0.0020 0.00006	Result Qualifier Units RL MDL Factor Prepared Analyzed Method Method eld Lab 0.0025 J mg/l 0.0050 0.0020 1 09/23/16 08:00 09/23/16 14:25 EPA 3005A 1,6010C 0.0197 mg/l 0.0100 0.0030 1 09/23/16 08:00 09/23/16 14:25 EPA 3005A 1,6010C ND mg/l 0.0050 0.0010 1 09/23/16 08:00 09/23/16 14:25 EPA 3005A 1,6010C ND mg/l 0.0050 0.0007 1 09/23/16 08:00 09/23/16 14:25 EPA 3005A 1,6010C ND mg/l 0.010 0.0020 1 09/23/16 08:00 09/23/16 14:25 EPA 3005A 1,6010C 0.0067 J mg/l 0.0100 0.0020 1 09/23/16 08:00 09/23/16 14:25 EPA 3005A 1,6010C 0.0040 J mg/l 0.0100 0.0020 1 09/23/16 08:00 09/23/16 14:25 EPA 3005A 1,6010C ND mg/l 0.00020		

Project Name:DESTINYLab Number:L1629713Project Number:15209Report Date:10/13/16

SAMPLE RESULTS

Lab ID: L1629713-15
Client ID: HCMW-1-SI
Sample Location: SYRACUSE, NY

Matrix: Water

Date Collected: 09/20/16 11:35
Date Received: 09/20/16

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Arsenic, Total	ND		mg/l	0.0050	0.0020	1	09/23/16 08:00	09/23/16 14:29	EPA 3005A	1,6010C	JH
Barium, Total	0.0160		mg/l	0.0100	0.0030	1	09/23/16 08:00	09/23/16 14:29	EPA 3005A	1,6010C	JH
Beryllium, Total	ND		mg/l	0.0050	0.0010	1	09/23/16 08:00	09/23/16 14:29	EPA 3005A	1,6010C	JH
Cadmium, Total	ND		mg/l	0.0050	0.0007	1	09/23/16 08:00	09/23/16 14:29	EPA 3005A	1,6010C	JH
Chromium, Total	ND		mg/l	0.010	0.0020	1		09/23/16 14:29		1,6010C	JH
Copper, Total	0.0043	J	mg/l	0.0100	0.0020	1	09/23/16 08:00	09/23/16 14:29	EPA 3005A	1,6010C	JH
Lead, Total	0.0026	J	mg/l	0.0100	0.0020	1	09/23/16 08:00	09/23/16 14:29	EPA 3005A	1,6010C	JH
Manganese, Total	0.132		mg/l	0.0100	0.0020	1		09/23/16 14:29		1,6010C	JH
Mercury, Total	ND		mg/l	0.00020	0.00006	1		2 09/22/16 20:29		1,7470A	EA
Nickel, Total	ND		mg/l	0.0250	0.0040	1		09/23/16 14:29		1.6010C	JH
Selenium, Total	ND		mg/l	0.0100	0.0030	1		09/23/16 14:29		1,6010C	JH
										1,6010C	
Silver, Total	ND		mg/l	0.0070	0.0020	1		09/23/16 14:29		,	JH
Zinc, Total	ND		mg/l	0.0500	0.0070	1	09/23/16 08:00	09/23/16 14:29	EPA 3005A	1,6010C	JH

Project Name:DESTINYLab Number:L1629713Project Number:15209Report Date:10/13/16

SAMPLE RESULTS

Lab ID: L1629713-16
Client ID: HCMW-1-S
Sample Location: SYRACUSE, NY

Matrix: Water

Date Collected: 09/20/16 12:40
Date Received: 09/20/16

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Arsenic, Total	0.0034	J	mg/l	0.0050	0.0020	1	09/23/16 08:00	0 09/23/16 14:34	EPA 3005A	1,6010C	JH
Barium, Total	0.0997		mg/l	0.0100	0.0030	1	09/23/16 08:00	0 09/23/16 14:34	EPA 3005A	1,6010C	JH
Beryllium, Total	ND		mg/l	0.0050	0.0010	1	09/23/16 08:00	0 09/23/16 14:34	EPA 3005A	1,6010C	JH
Cadmium, Total	ND		mg/l	0.0050	0.0007	1	09/23/16 08:00	0 09/23/16 14:34	EPA 3005A	1,6010C	JH
Chromium, Total	ND		mg/l	0.010	0.0020	1	09/23/16 08:00	0 09/23/16 14:34	EPA 3005A	1,6010C	JH
Copper, Total	0.0038	J	mg/l	0.0100	0.0020	1	09/23/16 08:00	0 09/23/16 14:34	EPA 3005A	1,6010C	JH
Lead, Total	0.0022	J	mg/l	0.0100	0.0020	1	09/23/16 08:00	0 09/23/16 14:34	EPA 3005A	1,6010C	JH
Manganese, Total	0.0546		mg/l	0.0100	0.0020	1	09/23/16 08:00	0 09/23/16 14:34	EPA 3005A	1,6010C	JH
Mercury, Total	ND		mg/l	0.00020	0.00006	1	09/22/16 10:42	2 09/22/16 20:31	EPA 7470A	1,7470A	EA
Nickel, Total	ND		mg/l	0.0250	0.0040	1	09/23/16 08:00	0 09/23/16 14:34	EPA 3005A	1,6010C	JH
Selenium, Total	ND		mg/l	0.0100	0.0030	1	09/23/16 08:00	0 09/23/16 14:34	EPA 3005A	1,6010C	JH
Silver, Total	ND		mg/l	0.0070	0.0020	1	09/23/16 08:00	0 09/23/16 14:34	EPA 3005A	1,6010C	JH
Zinc, Total	0.0096	J	mg/l	0.0500	0.0070	1	09/23/16 08:00	0 09/23/16 14:34	EPA 3005A	1,6010C	JH

Project Name:DESTINYLab Number:L1629713Project Number:15209Report Date:10/13/16

SAMPLE RESULTS

Lab ID: L1629713-17
Client ID: SUN-MW-60
Sample Location: SYRACUSE, NY

Matrix: Water

Date Collected: 09/20/16 12:30
Date Received: 09/20/16

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Arsenic, Total	0.0039	J	mg/l	0.0050	0.0020	1	09/23/16 08:00	09/23/16 15:01	EPA 3005A	1,6010C	JH
Barium, Total	0.0314		mg/l	0.0100	0.0030	1	09/23/16 08:00	09/23/16 15:01	EPA 3005A	1,6010C	JH
Beryllium, Total	ND		mg/l	0.0050	0.0010	1	09/23/16 08:00	09/23/16 15:01	EPA 3005A	1,6010C	JH
Cadmium, Total	ND		mg/l	0.0050	0.0007	1	09/23/16 08:00	09/23/16 15:01	EPA 3005A	1,6010C	JH
Chromium, Total	0.0020	J	mg/l	0.010	0.0020	1	09/23/16 08:00	09/23/16 15:01	EPA 3005A	1,6010C	JH
Copper, Total	ND		mg/l	0.0100	0.0020	1	09/23/16 08:00	09/23/16 15:01	EPA 3005A	1,6010C	JH
Lead, Total	ND		mg/l	0.0100	0.0020	1	09/23/16 08:00	09/23/16 15:01	EPA 3005A	1,6010C	JH
Manganese, Total	0.0121		mg/l	0.0100	0.0020	1	09/23/16 08:00	09/23/16 15:01	EPA 3005A	1,6010C	JH
Mercury, Total	ND		mg/l	0.00020	0.00006	1	09/22/16 10:42	2 09/22/16 20:32	EPA 7470A	1,7470A	EA
Nickel, Total	ND		mg/l	0.0250	0.0040	1	09/23/16 08:00	09/23/16 15:01	EPA 3005A	1,6010C	JH
Selenium, Total	ND		mg/l	0.0100	0.0030	1	09/23/16 08:00	0 09/23/16 15:01	EPA 3005A	1,6010C	JH
Silver, Total	ND		mg/l	0.0070	0.0020	1	09/23/16 08:00	09/23/16 15:01	EPA 3005A	1,6010C	JH
Zinc, Total	0.0088	J	mg/l	0.0500	0.0070	1	09/23/16 08:00	09/23/16 15:01	EPA 3005A	1,6010C	JH

Project Name: Lab Number: **DESTINY** Project Number: 15209

L1629713 **Report Date:** 10/13/16

Method Blank Analysis Batch Quality Control

.	5		ъ.	MDI	Dilution	Date	Date	Analytical	
Parameter	Result Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Analyst
Total Metals - Mansfie	eld Lab for sample(s):	01-06 E	Batch: Wo	G934642	2-1				
Arsenic, Total	ND	mg/l	0.0050	0.0020	1	09/22/16 09:35	09/23/16 01:34	1,6010C	FB
Barium, Total	ND	mg/l	0.0100	0.0030	1	09/22/16 09:35	09/23/16 01:34	1,6010C	FB
Beryllium, Total	ND	mg/l	0.0050	0.0010	1	09/22/16 09:35	09/23/16 01:34	1,6010C	FB
Cadmium, Total	ND	mg/l	0.0050	0.0007	1	09/22/16 09:35	09/23/16 01:34	1,6010C	FB
Chromium, Total	ND	mg/l	0.010	0.0020	1	09/22/16 09:35	09/23/16 01:34	1,6010C	FB
Copper, Total	ND	mg/l	0.0100	0.0020	1	09/22/16 09:35	09/23/16 01:34	1,6010C	FB
Lead, Total	ND	mg/l	0.0100	0.0020	1	09/22/16 09:35	09/23/16 01:34	1,6010C	FB
Manganese, Total	ND	mg/l	0.0100	0.0020	1	09/22/16 09:35	09/23/16 01:34	1,6010C	FB
Nickel, Total	ND	mg/l	0.0250	0.0040	1	09/22/16 09:35	09/23/16 01:34	1,6010C	FB
Selenium, Total	ND	mg/l	0.0100	0.0030	1	09/22/16 09:35	09/23/16 01:34	1,6010C	FB
Silver, Total	ND	mg/l	0.0070	0.0020	1	09/22/16 09:35	09/23/16 01:34	1,6010C	FB
Zinc, Total	ND	mg/l	0.0500	0.0070	1	09/22/16 09:35	09/23/16 01:34	1,6010C	FB

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfi	ield Lab for sample(s):	01-17 E	Batch: WC	G934667	·-1				
Mercury, Total	ND	mg/l	0.00020	0.00006	1	09/22/16 10:42	09/22/16 19:46	1,7470A	EA

Prep Information

Digestion Method: EPA 7470A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mans	field Lab for sample(s):	07-17 E	atch: WO	393503	1-1				
Arsenic, Total	ND	mg/l	0.0050	0.0020	1	09/23/16 08:00	09/23/16 13:16	1,6010C	JH
Barium, Total	ND	mg/l	0.0100	0.0030	1	09/23/16 08:00	09/23/16 13:16	1,6010C	JH
Beryllium, Total	ND	mg/l	0.0050	0.0010	1	09/23/16 08:00	09/23/16 13:16	1,6010C	JH
Cadmium, Total	ND	mg/l	0.0050	0.0007	1	09/23/16 08:00	09/23/16 13:16	1,6010C	JH
Chromium, Total	ND	mg/l	0.010	0.0020	1	09/23/16 08:00	09/23/16 13:16	1,6010C	JH

Project Name:DESTINYLab Number:L1629713Project Number:15209Report Date:10/13/16

Method Blank Analysis Batch Quality Control

Copper, Total	ND	mg/l	0.0100	0.0020	1	09/23/16 08:00	09/23/16 13:16	1,6010C	JH
Lead, Total	ND	mg/l	0.0100	0.0020	1	09/23/16 08:00	09/23/16 13:16	1,6010C	JH
Manganese, Total	ND	mg/l	0.0100	0.0020	1	09/23/16 08:00	09/23/16 13:16	1,6010C	JH
Nickel, Total	ND	mg/l	0.0250	0.0040	1	09/23/16 08:00	09/23/16 13:16	1,6010C	JH
Selenium, Total	ND	mg/l	0.0100	0.0030	1	09/23/16 08:00	09/23/16 13:16	1,6010C	JH
Silver, Total	ND	mg/l	0.0070	0.0020	1	09/23/16 08:00	09/23/16 13:16	1,6010C	JH
Zinc, Total	ND	mg/l	0.0500	0.0070	1	09/23/16 08:00	09/23/16 13:16	1,6010C	JH

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name: DESTINY

15209

Project Number:

Lab Number:

L1629713

Report Date:

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
otal Metals - Mansfield Lab Associated samp	ole(s): 01-06 Bate	ch: WG93	4642-2					
Arsenic, Total	112		-		80-120	-		
Barium, Total	102		-		80-120	-		
Beryllium, Total	102		-		80-120	-		
Cadmium, Total	114		-		80-120	-		
Chromium, Total	100		-		80-120	-		
Copper, Total	99		-		80-120	-		
Lead, Total	102		-		80-120	-		
Manganese, Total	98		-		80-120	-		
Nickel, Total	103		-		80-120	-		
Selenium, Total	115		-		80-120	-		
Silver, Total	102		-		80-120	-		
Zinc, Total	101		-		80-120	-		
tal Metals - Mansfield Lab Associated samp	ole(s): 01-17 Bat	ch: WG93	4667-2					
Mercury, Total	85		-		80-120	-		

Lab Control Sample Analysis Batch Quality Control

Project Name: DESTINY

Project Number:

15209

Lab Number: L1629713

Report Date:

arameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
otal Metals - Mansfield Lab Associated samp	ole(s): 07-17 Batch: W	G935031-2			
Arsenic, Total	103	-	80-120	-	
Barium, Total	94	-	80-120	-	
Beryllium, Total	96	-	80-120	-	
Cadmium, Total	107	-	80-120	-	
Chromium, Total	90	-	80-120	-	
Copper, Total	92	-	80-120	-	
Lead, Total	97	-	80-120	-	
Manganese, Total	92	-	80-120	-	
Nickel, Total	96	-	80-120	-	
Selenium, Total	108	-	80-120	-	
Silver, Total	97	-	80-120	-	
Zinc, Total	95	-	80-120	-	

Matrix Spike Analysis Batch Quality Control

Project Name: DESTINY
Project Number: 15209

Lab Number:

L1629713

Report Date:

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits		RPD Qual Limits
otal Metals - Mansfield	Lab Associated sam	ple(s): 01-06	QC Bato	ch ID: WG934	642-3 W	G934642-4	QC Sample	e: L1629722-03	Client ID	: MS Sample
Arsenic, Total	0.003J	0.12	0.126	105		0.130	108	75-125	3	20
Barium, Total	0.030	2	1.88	92		1.90	94	75-125	1	20
Beryllium, Total	ND	0.05	0.0473	95		0.0479	96	75-125	1	20
Cadmium, Total	ND	0.051	0.0528	104		0.0545	107	75-125	3	20
Chromium, Total	ND	0.2	0.19	95		0.19	95	75-125	0	20
Copper, Total	ND	0.25	0.239	96		0.240	96	75-125	0	20
Lead, Total	ND	0.51	0.480	94		0.488	96	75-125	2	20
Manganese, Total	0.050	0.5	0.490	88		0.494	89	75-125	1	20
Nickel, Total	ND	0.5	0.467	93		0.483	97	75-125	3	20
Selenium, Total	ND	0.12	0.125	104		0.130	108	75-125	4	20
Silver, Total	ND	0.05	0.0488	98		0.0490	98	75-125	0	20
Zinc, Total	ND	0.5	0.458	92		0.472	94	75-125	3	20
otal Metals - Mansfield	Lab Associated sam	ple(s): 01-17	QC Bato	ch ID: WG934	667-4	QC Sample	e: L1629713-0	1 Client ID: SF	P-MW-37	
Mercury, Total	ND	0.005	0.00456	91		-	-	75-125	-	20

Matrix Spike Analysis Batch Quality Control

Project Name: DESTINY
Project Number: 15209

Lab Number: L1629713

Report Date: 10/13/16

arameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
otal Metals - Mansfield L	_ab Associated san	nple(s): 07-17	QC Bat	ch ID: WG935031-4	QC Samp	ole: L1629802-01	Client ID: MS	Sample	
Arsenic, Total	0.0063	0.12	0.132	105	-	-	75-125	-	20
Barium, Total	0.598	2	2.47	94	-	-	75-125	-	20
Beryllium, Total	ND	0.05	0.0486	97	-	-	75-125	-	20
Cadmium, Total	ND	0.051	0.0546	107	-	-	75-125	-	20
Chromium, Total	0.0026J	0.2	0.19	95	-	-	75-125	-	20
Copper, Total	0.016	0.25	0.249	93	-	-	75-125	-	20
Lead, Total	0.0327	0.51	0.519	95	-	-	75-125	-	20
Manganese, Total	0.716	0.5	1.13	83	-	-	75-125	-	20
Nickel, Total	0.004J	0.5	0.479	96	-	-	75-125	-	20
Selenium, Total	ND	0.12	0.130	108	-	-	75-125	-	20
Silver, Total	ND	0.05	0.0482	96	-	-	75-125	-	20
Zinc, Total	0.094	0.5	0.566	94	-	-	75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: DESTINY **Project Number:** 15209

Lab Number:

L1629713

Report Date:

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01-1	7 QC Batch ID:	WG934667-3 QC Sample:	L1629713-01	Client ID:	SP-MW-37	
Mercury, Total	ND	ND	mg/l	NC		20
Total Metals - Mansfield Lab Associated sample(s): 07-1	7 QC Batch ID:	WG935031-3 QC Sample:	L1629802-01	Client ID:	DUP Sample	е
Arsenic, Total	0.0063	0.0046J	mg/l	NC		20
Barium, Total	0.598	0.586	mg/l	2		20
Cadmium, Total	ND	ND	mg/l	NC		20
Chromium, Total	0.0026J	0.0026J	mg/l	NC		20
Lead, Total	0.0327	0.0336	mg/l	3		20
Selenium, Total	ND	ND	mg/l	NC		20
Silver, Total	ND	ND	mg/l	NC		20

Project Name:DESTINYLab Number: L1629713Project Number:15209Report Date: 10/13/16

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information Custody Seal Cooler

A Absent
D Absent
B Absent
C Absent

Container Info	rmation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1629713-01A	Vial HCI preserved	Α	N/A	5.7	Υ	Absent	NYTCL-8260-R2(14)
L1629713-01B	Vial HCl preserved	Α	N/A	5.7	Υ	Absent	NYTCL-8260-R2(14)
L1629713-01C	Vial HCl preserved	Α	N/A	5.7	Υ	Absent	NYTCL-8260-R2(14)
L1629713-01D	Amber 1000ml unpreserved	Α	7	5.7	Υ	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)
L1629713-01F	Plastic 250ml HNO3 preserved	Α	<2	5.7	Y	Absent	BE-TI(180),AS-TI(180),BA- TI(180),AG-TI(180),CR- TI(180),NI-TI(180),CU- TI(180),PB-TI(180),SE- TI(180),ZN-TI(180),HG- T(28),MN-TI(180),CD-TI(180)
L1629713-02A	Vial HCl preserved	Α	N/A	5.7	Υ	Absent	NYTCL-8260-R2(14)
L1629713-02B	Vial HCl preserved	Α	N/A	5.7	Υ	Absent	NYTCL-8260-R2(14)
L1629713-02C	Vial HCI preserved	Α	N/A	5.7	Υ	Absent	NYTCL-8260-R2(14)
L1629713-02D	Amber 1000ml unpreserved	Α	7	5.7	Υ	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)
L1629713-02E	Amber 1000ml unpreserved	Α	7	5.7	Υ	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)
L1629713-02F	Plastic 250ml HNO3 preserved	А	<2	5.7	Y	Absent	BE-TI(180),AS-TI(180),BA- TI(180),AG-TI(180),CR- TI(180),NI-TI(180),CU- TI(180),PB-TI(180),SE- TI(180),ZN-TI(180),HG- T(28),MN-TI(180),CD-TI(180)
L1629713-03A	Vial HCl preserved	Α	N/A	5.7	Υ	Absent	NYTCL-8260-R2(14)
L1629713-03B	Vial HCl preserved	Α	N/A	5.7	Υ	Absent	NYTCL-8260-R2(14)
L1629713-03C	Vial HCl preserved	Α	N/A	5.7	Υ	Absent	NYTCL-8260-R2(14)
L1629713-03D	Amber 1000ml unpreserved	Α	7	5.7	Υ	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)
L1629713-03F	Plastic 250ml HNO3 preserved	Α	<2	5.7	Y	Absent	BE-TI(180),AS-TI(180),BA- TI(180),AG-TI(180),CR- TI(180),NI-TI(180),CU- TI(180),PB-TI(180),SE- TI(180),ZN-TI(180),HG- T(28),MN-TI(180),CD-TI(180)

Project Name: DESTINY
Project Number: 15209

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1629713-04A	Vial HCl preserved	Α	N/A	5.7	Υ	Absent	NYTCL-8260-R2(14)
L1629713-04B	Vial HCI preserved	Α	N/A	5.7	Υ	Absent	NYTCL-8260-R2(14)
L1629713-04C	Vial HCI preserved	Α	N/A	5.7	Υ	Absent	NYTCL-8260-R2(14)
L1629713-04D	Amber 1000ml unpreserved	Α	7	5.7	Υ	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)
L1629713-04E	Amber 1000ml unpreserved	Α	7	5.7	Υ	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)
L1629713-04F	Plastic 250ml HNO3 preserved	A	<2	5.7	Y	Absent	BE-TI(180),AS-TI(180),BA- TI(180),AG-TI(180),CR- TI(180),NI-TI(180),CU- TI(180),PB-TI(180),SE- TI(180),ZN-TI(180),HG- T(28),MN-TI(180),CD-TI(180)
L1629713-05A	Vial HCl preserved	Α	N/A	5.7	Υ	Absent	NYTCL-8260-R2(14)
L1629713-05B	Vial HCl preserved	Α	N/A	5.7	Υ	Absent	NYTCL-8260-R2(14)
L1629713-05C	Vial HCl preserved	Α	N/A	5.7	Υ	Absent	NYTCL-8260-R2(14)
L1629713-05D	Amber 1000ml unpreserved	Α	7	5.7	Υ	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)
L1629713-05E	Amber 1000ml unpreserved	Α	7	5.7	Υ	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)
L1629713-05F	Plastic 250ml HNO3 preserved	A	<2	5.7	Y	Absent	BE-TI(180),AS-TI(180),BA- TI(180),AG-TI(180),CR- TI(180),NI-TI(180),CU- TI(180),PB-TI(180),SE- TI(180),ZN-TI(180),HG- T(28),MN-TI(180),CD-TI(180)
L1629713-06A	Vial HCI preserved	Α	N/A	5.7	Υ	Absent	NYTCL-8260-R2(14)
L1629713-06B	Vial HCI preserved	Α	N/A	5.7	Υ	Absent	NYTCL-8260-R2(14)
L1629713-06C	Vial HCI preserved	Α	N/A	5.7	Υ	Absent	NYTCL-8260-R2(14)
L1629713-06D	Amber 1000ml unpreserved	Α	7	5.7	Υ	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)
L1629713-06E	Amber 1000ml unpreserved	Α	7	5.7	Υ	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)
L1629713-06F	Plastic 250ml HNO3 preserved	A	<2	5.7	Y	Absent	BE-TI(180),AS-TI(180),BA- TI(180),AG-TI(180),CR- TI(180),NI-TI(180),CU- TI(180),PB-TI(180),SE- TI(180),ZN-TI(180),HG- T(28),MN-TI(180),CD-TI(180)
L1629713-07A	Vial HCI preserved	Α	N/A	5.7	Υ	Absent	NYTCL-8260-R2(14)
L1629713-07B	Vial HCl preserved	Α	N/A	5.7	Υ	Absent	NYTCL-8260-R2(14)
L1629713-07C	Vial HCl preserved	Α	N/A	5.7	Υ	Absent	NYTCL-8260-R2(14)
L1629713-07D	Amber 1000ml unpreserved	Α	7	5.7	Υ	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)
L1629713-07E	Amber 1000ml unpreserved	Α	7	5.7	Υ	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)

Project Name: DESTINY **Project Number:** 15209

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рΗ	•	Pres	Seal	Analysis(*)
L1629713-07F	Plastic 250ml HNO3 preserved	A	<2	5.7	Y	Absent	BE-TI(180),AS-TI(180),BA- TI(180),AG-TI(180),CR- TI(180),NI-TI(180),CU- TI(180),PB-TI(180),SE- TI(180),ZN-TI(180),HG- T(28),MN-TI(180),CD-TI(180)
L1629713-08A	Vial HCl preserved	Α	N/A	5.7	Υ	Absent	NYTCL-8260-R2(14)
L1629713-08B	Vial HCl preserved	Α	N/A	5.7	Υ	Absent	NYTCL-8260-R2(14)
L1629713-08C	Vial HCl preserved	Α	N/A	5.7	Υ	Absent	NYTCL-8260-R2(14)
L1629713-08D	Amber 1000ml unpreserved	Α	7	5.7	Υ	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)
L1629713-08E	Amber 1000ml unpreserved	Α	7	5.7	Υ	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)
L1629713-08F	Plastic 250ml HNO3 preserved	A	<2	5.7	Y	Absent	BE-TI(180),AS-TI(180),BA- TI(180),AG-TI(180),CR- TI(180),NI-TI(180),CU- TI(180),PB-TI(180),SE- TI(180),ZN-TI(180),HG- T(28),MN-TI(180),CD-TI(180)
L1629713-09A	Vial HCl preserved	Α	N/A	5.7	Υ	Absent	NYTCL-8260-R2(14)
L1629713-09B	Vial HCl preserved	Α	N/A	5.7	Υ	Absent	NYTCL-8260-R2(14)
L1629713-09C	Vial HCl preserved	Α	N/A	5.7	Υ	Absent	NYTCL-8260-R2(14)
L1629713-09D	Amber 1000ml unpreserved	Α	7	5.7	Υ	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)
L1629713-09E	Amber 1000ml unpreserved	Α	7	5.7	Υ	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)
L1629713-09F	Plastic 250ml HNO3 preserved	A	<2	5.7	Y	Absent	BE-TI(180),AS-TI(180),BA- TI(180),AG-TI(180),CR- TI(180),NI-TI(180),CU- TI(180),PB-TI(180),SE- TI(180),ZN-TI(180),HG- T(28),MN-TI(180),CD-TI(180)
L1629713-10A	Vial HCl preserved	Α	N/A	5.7	Υ	Absent	NYTCL-8260-R2(14)
L1629713-10B	Vial HCl preserved	Α	N/A	5.7	Υ	Absent	NYTCL-8260-R2(14)
L1629713-10C	Vial HCl preserved	Α	N/A	5.7	Υ	Absent	NYTCL-8260-R2(14)
L1629713-10D	Amber 1000ml unpreserved	Α	7	5.7	Υ	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)
L1629713-10E	Amber 1000ml unpreserved	Α	7	5.7	Υ	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)
L1629713-10F	Plastic 250ml HNO3 preserved	A	<2	5.7	Y	Absent	BE-TI(180),AS-TI(180),BA- TI(180),AG-TI(180),CR- TI(180),NI-TI(180),CU- TI(180),PB-TI(180),SE- TI(180),ZN-TI(180),HG- T(28),MN-TI(180),CD-TI(180)
L1629713-11A	Vial HCl preserved	Α	N/A	5.7	Υ	Absent	NYTCL-8260-R2(14)
L1629713-11B	Vial HCl preserved	Α	N/A	5.7	Υ	Absent	NYTCL-8260-R2(14)
L1629713-11C	Vial HCI preserved	Α	N/A	5.7	Υ	Absent	NYTCL-8260-R2(14)

Project Name: DESTINY **Project Number:** 15209

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1629713-11D	Amber 1000ml unpreserved	Α	7	5.7	Υ	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)
L1629713-11E	Amber 1000ml unpreserved	Α	7	5.7	Υ	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)
L1629713-11F	Plastic 250ml HNO3 preserved	Α	<2	5.7	Y	Absent	BE-TI(180),AS-TI(180),BA- TI(180),AG-TI(180),CR- TI(180),NI-TI(180),CU- TI(180),PB-TI(180),SE- TI(180),ZN-TI(180),HG- T(28),MN-TI(180),CD-TI(180)
L1629713-12A	Vial HCl preserved	Α	N/A	5.7	Υ	Absent	NYTCL-8260-R2(14)
L1629713-12B	Vial HCI preserved	Α	N/A	5.7	Υ	Absent	NYTCL-8260-R2(14)
L1629713-12C	Vial HCI preserved	Α	N/A	5.7	Υ	Absent	NYTCL-8260-R2(14)
L1629713-12D	Amber 1000ml unpreserved	Α	7	5.7	Υ	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)
L1629713-12E	Amber 1000ml unpreserved	Α	7	5.7	Υ	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)
L1629713-12F	Plastic 250ml HNO3 preserved	A	<2	5.7	Y	Absent	BE-TI(180),AS-TI(180),BA- TI(180),AG-TI(180),CR- TI(180),NI-TI(180),CU- TI(180),PB-TI(180),SE- TI(180),ZN-TI(180),HG- T(28),MN-TI(180),CD-TI(180)
L1629713-13A	Vial HCl preserved	Α	N/A	5.7	Υ	Absent	NYTCL-8260-R2(14)
L1629713-13B	Vial HCl preserved	Α	N/A	5.7	Υ	Absent	NYTCL-8260-R2(14)
L1629713-13C	Vial HCl preserved	Α	N/A	5.7	Υ	Absent	NYTCL-8260-R2(14)
L1629713-13D	Amber 1000ml unpreserved	Α	7	5.7	Υ	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)
L1629713-13E	Amber 1000ml unpreserved	Α	7	5.7	Υ	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)
L1629713-13F	Plastic 250ml HNO3 preserved	А	<2	5.7	Y	Absent	BE-TI(180),AS-TI(180),BA- TI(180),AG-TI(180),CR- TI(180),NI-TI(180),CU- TI(180),PB-TI(180),SE- TI(180),ZN-TI(180),HG- T(28),MN-TI(180),CD-TI(180)
L1629713-14A	Vial HCl preserved	Α	N/A	5.7	Υ	Absent	NYTCL-8260-R2(14)
L1629713-14B	Vial HCl preserved	Α	N/A	5.7	Υ	Absent	NYTCL-8260-R2(14)
L1629713-14C	Vial HCl preserved	Α	N/A	5.7	Υ	Absent	NYTCL-8260-R2(14)
L1629713-14D	Amber 1000ml unpreserved	Α	7	5.7	Υ	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)
L1629713-14E	Amber 1000ml unpreserved	Α	7	5.7	Υ	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)
L1629713-14F	Plastic 250ml HNO3 preserved	А	<2	5.7	Y	Absent	BE-TI(180),AS-TI(180),BA- TI(180),AG-TI(180),CR- TI(180),NI-TI(180),CU- TI(180),PB-TI(180),SE- TI(180),ZN-TI(180),HG- T(28),MN-TI(180),CD-TI(180)
L1629713-15A	Vial HCl preserved	Α	N/A	5.7	Υ	Absent	NYTCL-8260-R2(14)

Project Name: DESTINY **Project Number:** 15209

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1629713-15B	Vial HCl preserved	Α	N/A	5.7	Υ	Absent	NYTCL-8260-R2(14)
L1629713-15C	Vial HCl preserved	Α	N/A	5.7	Υ	Absent	NYTCL-8260-R2(14)
L1629713-15D	Amber 1000ml unpreserved	Α	7	5.7	Υ	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)
L1629713-15E	Amber 1000ml unpreserved	Α	7	5.7	Υ	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)
L1629713-15F	Plastic 250ml HNO3 preserved	Α	<2	5.7	Y	Absent	BE-TI(180),AS-TI(180),BA- TI(180),AG-TI(180),CR- TI(180),NI-TI(180),CU- TI(180),PB-TI(180),SE- TI(180),ZN-TI(180),HG- T(28),MN-TI(180),CD-TI(180)
L1629713-16A	Vial HCI preserved	Α	N/A	5.7	Υ	Absent	NYTCL-8260-R2(14)
L1629713-16B	Vial HCI preserved	Α	N/A	5.7	Υ	Absent	NYTCL-8260-R2(14)
L1629713-16C	Vial HCI preserved	Α	N/A	5.7	Υ	Absent	NYTCL-8260-R2(14)
L1629713-16D	Amber 1000ml unpreserved	Α	7	5.7	Υ	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)
L1629713-16E	Amber 1000ml unpreserved	Α	7	5.7	Υ	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)
L1629713-16F	Plastic 250ml HNO3 preserved	Α	<2	5.7	Y	Absent	BE-TI(180),AS-TI(180),BA- TI(180),AG-TI(180),CR- TI(180),NI-TI(180),CU- TI(180),PB-TI(180),SE- TI(180),ZN-TI(180),HG- T(28),MN-TI(180),CD-TI(180)
L1629713-17A	Vial HCI preserved	Α	N/A	5.7	Υ	Absent	NYTCL-8260-R2(14)
L1629713-17B	Vial HCI preserved	Α	N/A	5.7	Υ	Absent	NYTCL-8260-R2(14)
L1629713-17C	Vial HCI preserved	Α	N/A	5.7	Υ	Absent	NYTCL-8260-R2(14)
L1629713-17D	Amber 1000ml unpreserved	Α	7	5.7	Υ	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)
L1629713-17E	Amber 1000ml unpreserved	Α	7	5.7	Υ	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)
L1629713-17F	Plastic 250ml HNO3 preserved	Α	<2	5.7	Y	Absent	BE-TI(180),AS-TI(180),BA- TI(180),AG-TI(180),CR- TI(180),NI-TI(180),CU- TI(180),PB-TI(180),SE- TI(180),ZN-TI(180),HG- T(28),MN-TI(180),CD-TI(180)

Project Name:DESTINYLab Number:L1629713Project Number:15209Report Date:10/13/16

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: DU Report with 'J' Qualifiers

Project Name:DESTINYLab Number:L1629713Project Number:15209Report Date:10/13/16

Data Qualifiers

- reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name: DESTINY Lab Number: L1629713

Project Number: 15209 Report Date: 10/13/16

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 7

Published Date: 8/5/2016 11:25:56 AM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-

Tetramethylbenzene: 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide EPA 9050A: NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

SM 2540D: TSS EPA 3005A NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Агрна	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitne Albany, NY 12205: 14 Walker V Tonawanda, NY 14150: 275 Co	Nay	105	Pag	e of			Rec'd Lab	9	1/2	0 16	ALPHA Job# 	
Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220	Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300	Project Information Project Name:					Deliv	/erable					Billing Information	
FAX: 508-898-9193 Client Information	FAX: 508-822-3288	Project Location:	stiky	se /v	Υ		1 5	EQu	S (1 File) [ASP EQu	IS (4 File)	Same as Client Info	
Client: Spectra		(Use Project name as Project #	roject #)				Pegi	Othe	r Require	mont			Disposal Site Information	
Address: 19 Bc	itish Am. Blud	Project Manager:	cank	Pedir	to			NY TO			NYP	art 375	Please identify below location of	
Phone: 518 79) 12/10 32 0882	ALPHAQuote #:							Standards	_	NYC		applicable disposal facilities.	
Fax:	52 0864	Turn-Around Time Standard		Due Date:					estricted U restricted	_	Other		Disposal Facility:	
	1@spectraen	Rush (only if pre approved		# of Days:			\parallel		Sewer Disc				Other:	
These samples have b	een previously analyze	ed by Alpha						LYSIS			Committee of the Commit		Sample Filtration	T
Other project specific		ents:					STAZSTA	1	gals TAL				□ Done □ Lab to do Preservation □ Lab to do (Please Specify below)	o t a l B o t
ALPHA Lab ID (Lab Use Only)	Sar	mple ID	Colle	ection Time	Sample Matrix	Sampler's Initials	Billi	8	Me				Sample Specific Comments	t l e
29713 - 61	SP-MW	3-37	9/19/16	1050	Cow	SCK	3	1	ì				TKS FOR VOCE	·
02,		0-23	1 1/1	1020	И	YW	3	2	1				STARS FOR VOC	S
03 04	80	3-38	V	1127	И	SCX		1	+					
مر مر	50-MU	2-2-1	n	1245	N	YW	H	2	++-	-	┼			_
06	SP-MW	-40	ч	505	n	JCK		\forall	+					_
07	SP-MU	5-22	N	1453	n	YW		\top						
0%	SP-MU	1-ZO	n	1615	n	yw								
10	SY-MW	- 14SR	CHOLL	1655	N	/JUC	1,		1					
	Container Code	Westboro: Certification No	9/19/16	1200	GW	Jak	V	-	V	-				
B = HCI	A = Amber Glass	Mansfield: Certification No			Cont	tainer Type	V	A	P				Please print clearly, legibly and completely. Samples ca	an
$D = H_2SO_4$	V = Vial G = Glass B = Bacteria Cup		40		Pı	reservative	B	A	d				not be logged in and turnaround time clock will no	2222
$F = MeOH$ $G = NaHSO_4$ $H = Na_2S_2O_3$	C = Cube O = Other E = Encore D = BOD Bottle	Refinquisped B	orai	Date/T	ime 1345	M.C.	Receive	7 7	nav.	≥ 7/2 9/2,	1 1 100	Time /345	start until any ambiguities au resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA	
Form No: 01-25 HC (rev. 30	i-Sept-2013)									-			TERMS & CONDITIONS. (See reverse side.)	

ALPHA	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Coo	/ay	05	Page		- 1		Rec'd Lab	e	1/2	0/16	ALPHA Job# 41629713
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information					Delive	erable	s				Billing Information
TEL: 508-898-9220	TEL: 508-822-9300	Project Name:	2051/n	U			ТП	ASP-	A		ASP-	-B	Same as Client Info
FAX: 508-898-9193	FAX: 508-822-3288	Project Location:	Mach	LO A)V		1 1	EQui	S (1 File)	П	EQu	IS (4 File)	PO#
Client Information		Project # 1520	Tan				1 🗖	Other		4.5	-		
Client: Source	FALL	(Use Project name as Project name)	oject#)				Regul	atory	Requirem	ent			Disposal Site Information
Address: 19 Bo		/ .	rank	Pol	Liston		П	NY TO	GS		NY Pa	art 375	Please identify below location of
Tolhan 1	14 1210	ALPHAQuote #:			20-10		1 🗖	AWQ :	Standards		NY C	P-51	applicable disposal facilities.
Phone: 5/8 78	22 0882	Turn-Around Time						NY Re	stricted Us	e	Other		Disposal Facility:
Fax:		Standard		Due Date:				NY Un	restricted L	Jse			□ NJ □ NY
	n@spectaen	Rush (only if pre approved)		# of Days:				NYC S	Sewer Disch	arge			Other:
These samples have be							ANAL	YSIS	, — , — , — , — , — , — , — , — , — , —				Sample Filtration
Other project specific										T	Π		Done o
Please specify Metals	or TAL.						STATE OF	270	estals TA		,		Lab to do Preservation Lab to do (Please Specify below)
ALPHA Lab ID	Sar	mple ID	Colle	ection	Sample	Sampler's	36	0					t
(Lab Use Only)			Date	Time	Matrix	Initials	(A)		\$				Sample Specific Comments e
29713 - 11	Sp-Mu		9/20/16	0915	GW	JCK	3	2	İ				TICS for VCs
12		- 44	'11'	0907	1	YW		1	Α				STARS POPUCE
13	SP-MW	-41	N	1020		yw	Ш	\perp					
(4	HCMW-1	一工	И	1125		/yw		\perp					
15	ACMW-	1-81	n	1135		JEK							
18	ACMW-	-1-5	n	1240									
11	Sun-Mi	N-60	N	1230									
		7/											
					1/		1	de	V				
					V		V		•				
A = None B = HCI	P = Plastic	Westboro: Certification No Mansfield: Certification No			Con	tainer Type	V	A	P				Please print clearly, legibly and completely. Samples can not be logged in and
- ' ' - '	G = Glass				Р	reservative	B	A	$C \mid$				turnaround time clock will not
	B = Bacteria Cup C = Cube	Refinquished B	avil .	Date/T	Timo		2000-	d Du	0		Dat è /	Time	start until any ambiguities are resolved. BY EXECUTING
0 11411004	O = Other E = Encore	Treiniquistied L	94.	cal li			Receive	(X)		0/-	Date	111118	
11-14020203	D = BOD Bottle	W. DO	KOZON	9/20/16	1345	111/10/16	and s	1	yeur	2 4/0	1/6	1520	HAS READ AND AGREES
O = Other		Till to Variable	wen	, ,	-	/ Lh	na	<u></u>		7/20	me		TO BE BOUND BY ALPHA'S TERMS & CONDITIONS.
Form No: 01-25 HC (rev. 30	-Sept-2013)	,								+			(See reverse side.)

ANALYTICAL REPORT

Lab Number: L1620368

Client: Spectra Environmental Group

19 British American Blvd.

Latham, NY 12110

ATTN: Joe Krikorian
Phone: (518) 782-0882

Project Name: EMBASSY SUITES

Project Number: 15209 Report Date: 10/25/16

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: EMBASSY SUITES

Project Number: 15209

 Lab Number:
 L1620368

 Report Date:
 10/25/16

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1620368-01	P3-1 (0-4)	SOIL	SYRACUSE, NY	06/29/16 08:40	06/30/16
L1620368-02	P3-1 (4-8)	SOIL	SYRACUSE, NY	06/29/16 08:40	06/30/16
L1620368-03	P3-1 (8-12)	SOIL	SYRACUSE, NY	06/29/16 08:40	06/30/16
L1620368-04	P3-1 (12-16)	SOIL	SYRACUSE, NY	06/29/16 08:40	06/30/16
L1620368-05	P3-9 (0-4)	SOIL	SYRACUSE, NY	06/29/16 08:55	06/30/16
L1620368-06	P3-9 (4-8)	SOIL	SYRACUSE, NY	06/29/16 08:55	06/30/16
L1620368-07	P3-9 (8-12)	SOIL	SYRACUSE, NY	06/29/16 08:55	06/30/16
L1620368-08	P3-9 (12-16)	SOIL	SYRACUSE, NY	06/29/16 08:55	06/30/16
L1620368-09	P3-8 (4-8)	SOIL	SYRACUSE, NY	06/29/16 09:05	06/30/16
L1620368-10	P3-7 (4-8)	SOIL	SYRACUSE, NY	06/29/16 09:15	06/30/16
L1620368-11	P3-7 (8-12)	SOIL	SYRACUSE, NY	06/29/16 09:15	06/30/16
L1620368-12	P3-6 (4-8)	SOIL	SYRACUSE, NY	06/29/16 09:20	06/30/16
L1620368-13	P3-6 (8-12)	SOIL	SYRACUSE, NY	06/29/16 09:20	06/30/16
L1620368-14	P3-5 (6-8)	SOIL	SYRACUSE, NY	06/29/16 09:35	06/30/16
L1620368-15	P3-4 (6-8)	SOIL	SYRACUSE, NY	06/29/16 10:45	06/30/16
L1620368-16	P3-4 (10-12)	SOIL	SYRACUSE, NY	06/29/16 10:45	06/30/16
L1620368-17	P3-3 (4-8)	SOIL	SYRACUSE, NY	06/29/16 11:30	06/30/16
L1620368-18	P3-3 (8-10)	SOIL	SYRACUSE, NY	06/29/16 11:30	06/30/16
L1620368-19	P3-3 (12-14)	SOIL	SYRACUSE, NY	06/29/16 11:30	06/30/16
L1620368-20	P3-2 (4-8)	SOIL	SYRACUSE, NY	06/29/16 12:00	06/30/16
L1620368-21	P3-2 (8-10)	SOIL	SYRACUSE, NY	06/29/16 12:00	06/30/16
L1620368-22	P3-10 (4-8)	SOIL	SYRACUSE, NY	06/29/16 12:10	06/30/16
L1620368-23	P3-10 (8-10)	SOIL	SYRACUSE, NY	06/29/16 12:10	06/30/16
Page 6386324	P1-5 (4-8)	SOIL	SYRACUSE, NY	06/29/16 13:00	06/30/16

Alpha			Sample	Serial_No Collection	:10251618:48
Sample ID	Client ID	Matrix	Location	Date/Time	Receive Date
L1620368-25	P1-5 (8-10)	SOIL	SYRACUSE, NY	06/29/16 13:00	06/30/16
L1620368-26	P1-4 (4-8)	SOIL	SYRACUSE, NY	06/29/16 12:35	06/30/16
L1620368-27	P1-4 (8-12)	SOIL	SYRACUSE, NY	06/29/16 12:35	06/30/16
L1620368-28	P1-3 (4-8)	SOIL	SYRACUSE, NY	06/29/16 12:45	06/30/16
L1620368-29	P1-3 (8-12)	SOIL	SYRACUSE, NY	06/29/16 12:45	06/30/16
L1620368-30	P4-1 (0-4)	SOIL	SYRACUSE, NY	06/29/16 13:05	06/30/16
L1620368-31	P4-1 (4-8)	SOIL	SYRACUSE, NY	06/29/16 13:05	06/30/16
L1620368-32	P4-2 (2-4)	SOIL	SYRACUSE, NY	06/29/16 13:15	06/30/16
L1620368-33	P4-2 (4-6)	SOIL	SYRACUSE, NY	06/29/16 13:15	06/30/16
L1620368-34	P4-3 (2-4)	SOIL	SYRACUSE, NY	06/29/16 13:30	06/30/16
L1620368-35	P4-3 (2.5-3)	SOIL	SYRACUSE, NY	06/29/16 13:30	06/30/16
L1620368-36	P4-3 (4-6)	SOIL	SYRACUSE, NY	06/29/16 13:30	06/30/16
L1620368-37	P1-2 (3-4)	SOIL	SYRACUSE, NY	06/29/16 14:20	06/30/16
L1620368-38	P1-1 (4-8)	SOIL	SYRACUSE, NY	06/30/16 08:30	06/30/16
L1620368-39	P1-1 (8-10)	SOIL	SYRACUSE, NY	06/30/16 08:30	06/30/16
L1620368-40	P2-1 (4-8)	SOIL	SYRACUSE, NY	06/30/16 08:40	06/30/16
L1620368-41	P2-1 (8-10)	SOIL	SYRACUSE, NY	06/30/16 08:40	06/30/16
L1620368-42	P2-2 (4-8)	SOIL	SYRACUSE, NY	06/30/16 09:05	06/30/16
L1620368-43	P2-2 (8-10)	SOIL	SYRACUSE, NY	06/30/16 09:05	06/30/16
L1620368-44	P2-3 (8-10)	SOIL	SYRACUSE, NY	06/30/16 09:25	06/30/16
L1620368-45	DUP01	SOIL	SYRACUSE, NY	06/29/16 12:00	06/30/16
L1620368-46	DUP02	SOIL	SYRACUSE, NY	06/30/16 12:00	06/30/16
L1620368-47	DUP03	SOIL	SYRACUSE, NY	06/30/16 13:00	06/30/16
L1620368-48	P2-3 (4-8)	SOIL	SYRACUSE, NY	06/30/16 09:15	06/30/16

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.	

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

Case Narrative (continued)

Report Submission

This report replaces the report issued July 13, 2016. The Volatile Organics compound list has been amended to include n-butylbenzene, n-propylbenzene, 1,3,5-trimethylbenzene, and 1,2,4-trimethylbenzene.

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

The samples were received at the laboratory on June 30, 2016; however, the chain of custody was not relinquished. The requested analyses were performed.

Volatile Organics

Any reported concentrations that are below 200 ug/kg may be biased low due to the sample not being collected according to 5035-L/5035A-L low-level specifications.

L1620368-01, -07, -09, -10, -16, -17, -20, -22, -25, -26, -31, -33, -36, -37, -46, and -47: The sample has elevated detection limits due to the dilution required by the elevated concentrations of non-target compounds in the sample.

L1620368-37: The surrogate recoveries are outside the acceptance criteria for toluene-d8 (131%) and 4-bromofluorobenzene (208%); however, the sample was not re-analyzed due to coelution with obvious interferences. A copy of the chromatogram is included as an attachment to this report. The results are not considered to be biased.

The WG912970-4/-5 MS/MSD recoveries, performed on L1620368-44, are below the acceptance criteria for 1,2,4-trimethylbenzene (0%/2%) due to the concentration of this compound falling below the reported detection limit.

Semivolatile Organics

L1620368-34: The sample has elevated detection limits due to the dilution required by the sample matrix.

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

Case Narrative (continued)

Metals

L1620368-09 and -19: The sample has an elevated detection limit for lead due to the dilution required by matrix interferences encountered during analysis.

L1620368-32 and -35: The sample has an elevated detection limit for antimony due to the dilution required by matrix interferences encountered during analysis.

The WG910523-4 MS recoveries for arsenic (47%), cadmium (0%), copper (0%), lead (0%), and zinc (0%), performed on L1620368-01, do not apply because the sample concentrations are greater than four times the spike amounts added.

The WG910523-4 MS recoveries, performed on L1620368-01, are outside the acceptance criteria for antimony (52%), beryllium (54%), chromium (51%), nickel (25%), selenium (55%), silver (60%) and thallium (42%). A post digestion spike was performed and yielded unacceptable recoveries for silver (17%) and thallium (12%); all other compounds were within acceptance criteria. This has been attributed to sample matrix. The WG910524-4 MS recoveries, performed on L1620368-21, are outside the acceptance criteria for beryllium (74%), nickel (71%), thallium (66%), and zinc (69%). A post digestion spike was performed and yielded unacceptable recoveries for beryllium (138%), nickel (140%), thallium (132%) and zinc (131%). This has been attributed to sample matrix.

The WG910525-3/-4 MS/MSD recoveries, performed on L1620368-44, are outside the acceptance criteria for copper (46%/61%), lead (43%/55%), selenium (MS 74%), silver (MS 63%), and thallium (74%/66%). A post digestion spike was performed and yielded unacceptable recoveries for copper (136%), lead (132%), selenium (172%), silver (26%) and thallium (126%). This has been attributed to sample matrix. In addition, the MS/MSD RPD is above the acceptance criteria for silver (40%).

The WG910525-3/-4 MS/MSD recoveries for zinc (166%/56%), performed on L1620368-44, do not apply because the sample concentration is greater than four times the spike amount added.

The WG910525-4 MS recovery for zinc (56%), performed on L1620368-44, does not apply because the sample concentration is greater than four times the spike amount added.

The WG910528-4 MS recovery, performed on L1620368-01, is outside the acceptance criteria for mercury (213%). A post digestion spike was performed and was within acceptance criteria.

The WG910529-4 MS recovery, performed on L1620368-21, is outside the acceptance criteria for mercury

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

Case Narrative (continued)

(142%). A post digestion spike was performed and was within acceptance criteria.

The WG910536-3/-4 MS/MSD recoveries, performed on L1620368-44, are outside the acceptance criteria for mercury (175%/167%). A post digestion spike was performed and yielded an unacceptable recovery of 129%. This has been attributed to sample matrix.

The WG910523-3 Laboratory Duplicate RPDs, performed on L1620368-01, are outside the acceptance criteria for cadmium (99%), chromium (32%), copper (46%), nickel (94%), and zinc (79%). The elevated RPD has been attributed to the non-homogeneous nature of the native sample.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 10/25/16

600, Shawow Kelly Stenstrom

ORGANICS

VOLATILES

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 10/25/16

Lab ID: L1620368-01 D

Client ID: P3-1 (0-4)
Sample Location: SYRACUSE, NY

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 07/12/16 11:08

Analyst: MV Percent Solids: 73% Date Collected: 06/29/16 08:40

Date Received: 06/30/16 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	rough Lab					
Methylene chloride	ND		ug/kg	580	64.	50
1,1-Dichloroethane	ND		ug/kg	87	5.0	50
Chloroform	ND		ug/kg	87	21.	50
Carbon tetrachloride	ND		ug/kg	58	12.	50
1,2-Dichloropropane	ND		ug/kg	200	13.	50
Dibromochloromethane	ND		ug/kg	58	8.9	50
1,1,2-Trichloroethane	ND		ug/kg	87	18.	50
Tetrachloroethene	ND		ug/kg	58	8.1	50
Chlorobenzene	ND		ug/kg	58	20.	50
Trichlorofluoromethane	ND		ug/kg	290	22.	50
1,2-Dichloroethane	ND		ug/kg	58	6.6	50
1,1,1-Trichloroethane	ND		ug/kg	58	6.4	50
Bromodichloromethane	ND		ug/kg	58	10.	50
trans-1,3-Dichloropropene	ND		ug/kg	58	7.0	50
cis-1,3-Dichloropropene	ND		ug/kg	58	6.8	50
Bromoform	ND		ug/kg	230	14.	50
1,1,2,2-Tetrachloroethane	ND		ug/kg	58	5.8	50
Benzene	130		ug/kg	58	6.8	50
Toluene	250		ug/kg	87	11.	50
Ethylbenzene	360		ug/kg	58	7.4	50
Chloromethane	34	J	ug/kg	290	17.	50
Bromomethane	ND		ug/kg	120	20.	50
Vinyl chloride	ND		ug/kg	120	6.8	50
Chloroethane	ND		ug/kg	120	18.	50
1,1-Dichloroethene	ND		ug/kg	58	15.	50
trans-1,2-Dichloroethene	ND		ug/kg	87	12.	50
Trichloroethene	ND		ug/kg	58	7.2	50
1,2-Dichlorobenzene	ND		ug/kg	290	8.9	50
1,3-Dichlorobenzene	ND		ug/kg	290	7.8	50
1,4-Dichlorobenzene	ND		ug/kg	290	8.0	50

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-01 D Date Collected: 06/29/16 08:40

Client ID: P3-1 (0-4) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboro	ugh Lab					
Methyl tert butyl ether	ND		ug/kg	120	4.9	50
p/m-Xylene	370		ug/kg	120	11.	50
o-Xylene	38	J	ug/kg	120	10.	50
cis-1,2-Dichloroethene	ND		ug/kg	58	8.3	50
Styrene	ND		ug/kg	120	23.	50
Dichlorodifluoromethane	ND		ug/kg	580	11.	50
Acetone	260	J	ug/kg	580	60.	50
Carbon disulfide	ND		ug/kg	580	64.	50
2-Butanone	ND		ug/kg	580	16.	50
4-Methyl-2-pentanone	ND		ug/kg	580	14.	50
2-Hexanone	ND		ug/kg	580	39.	50
Bromochloromethane	ND		ug/kg	290	16.	50
1,2-Dibromoethane	ND		ug/kg	230	10.	50
n-Butylbenzene	310		ug/kg	58	6.7	50
1,2-Dibromo-3-chloropropane	ND		ug/kg	290	23.	50
Isopropylbenzene	1100		ug/kg	58	6.0	50
n-Propylbenzene	2000		ug/kg	58	6.3	50
1,2,3-Trichlorobenzene	ND		ug/kg	290	8.6	50
1,2,4-Trichlorobenzene	ND		ug/kg	290	10.	50
1,3,5-Trimethylbenzene	62	J	ug/kg	290	8.3	50
1,2,4-Trimethylbenzene	390		ug/kg	290	8.2	50
Methyl Acetate	130	J	ug/kg	1200	16.	50
Cyclohexane	400	J	ug/kg	1200	8.5	50
1,4-Dioxane	ND		ug/kg	5800	840	50
Freon-113	ND		ug/kg	1200	16.	50
Methyl cyclohexane	1600		ug/kg	230	9.0	50

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-01 D Date Collected: 06/29/16 08:40

Client ID: P3-1 (0-4) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	63000	J	ug/kg	50
Unknown Alkane	11000	J	ug/kg	50
Pentane, 2,3,4-trimethyl-	7400	NJ	ug/kg	50
Unknown	9600	J	ug/kg	50
Unknown	12000	J	ug/kg	50
Heptane, 2,5-dimethyl-	1900	NJ	ug/kg	50
Unknown Cyclohexane	2100	J	ug/kg	50
Unknown	3200	J	ug/kg	50
Unknown Aromatic	5800	J	ug/kg	50
Unknown Benzene	4800	J	ug/kg	50
Unknown	5100	J	ug/kg	50

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	95		70-130	
Toluene-d8	116		70-130	
4-Bromofluorobenzene	125		70-130	
Dibromofluoromethane	90		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 10/25/16

Lab ID: L1620368-02 D

Client ID: P3-1 (4-8) SYRACUSE, NY Sample Location:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 07/12/16 04:22

Analyst: PΚ 61% Percent Solids:

Date Collected: 06/29/16 08:40

Date Received: 06/30/16 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/kg	14000	1500	1000
1,1-Dichloroethane	ND		ug/kg	2100	120	1000
Chloroform	ND		ug/kg	2100	510	1000
Carbon tetrachloride	ND		ug/kg	1400	290	1000
1,2-Dichloropropane	ND		ug/kg	4800	320	1000
Dibromochloromethane	ND		ug/kg	1400	210	1000
1,1,2-Trichloroethane	ND		ug/kg	2100	420	1000
Tetrachloroethene	ND		ug/kg	1400	190	1000
Chlorobenzene	ND		ug/kg	1400	480	1000
Trichlorofluoromethane	ND		ug/kg	6900	540	1000
1,2-Dichloroethane	ND		ug/kg	1400	160	1000
1,1,1-Trichloroethane	ND		ug/kg	1400	150	1000
Bromodichloromethane	ND		ug/kg	1400	240	1000
trans-1,3-Dichloropropene	ND		ug/kg	1400	170	1000
cis-1,3-Dichloropropene	ND		ug/kg	1400	160	1000
Bromoform	ND		ug/kg	5500	330	1000
1,1,2,2-Tetrachloroethane	ND		ug/kg	1400	140	1000
Benzene	310	J	ug/kg	1400	160	1000
Toluene	770	J	ug/kg	2100	270	1000
Ethylbenzene	28000		ug/kg	1400	180	1000
Chloromethane	1200	J	ug/kg	6900	410	1000
Bromomethane	ND		ug/kg	2800	470	1000
Vinyl chloride	ND		ug/kg	2800	160	1000
Chloroethane	ND		ug/kg	2800	440	1000
1,1-Dichloroethene	ND		ug/kg	1400	360	1000
trans-1,2-Dichloroethene	ND		ug/kg	2100	290	1000
Trichloroethene	ND		ug/kg	1400	170	1000
1,2-Dichlorobenzene	ND		ug/kg	6900	210	1000
1,3-Dichlorobenzene	ND		ug/kg	6900	190	1000
1,4-Dichlorobenzene	ND		ug/kg	6900	190	1000

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-02 D

Client ID: P3-1 (4-8)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 08:40

Date Received: 06/30/16 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - W	estborough Lab					
Methyl tert butyl ether	ND		ug/kg	2800	120	1000
p/m-Xylene	35000		ug/kg	2800	270	1000
o-Xylene	700	J	ug/kg	2800	240	1000
cis-1,2-Dichloroethene	ND		ug/kg	1400	200	1000
Styrene	ND		ug/kg	2800	560	1000
Dichlorodifluoromethane	ND		ug/kg	14000	260	1000
Acetone	ND		ug/kg	14000	1400	1000
Carbon disulfide	ND		ug/kg	14000	1500	1000
2-Butanone	ND		ug/kg	14000	380	1000
4-Methyl-2-pentanone	ND		ug/kg	14000	340	1000
2-Hexanone	ND		ug/kg	14000	920	1000
Bromochloromethane	ND		ug/kg	6900	380	1000
1,2-Dibromoethane	ND		ug/kg	5500	240	1000
n-Butylbenzene	5200		ug/kg	1400	160	1000
1,2-Dibromo-3-chloropropane	ND		ug/kg	6900	550	1000
Isopropylbenzene	5400		ug/kg	1400	140	1000
n-Propylbenzene	14000		ug/kg	1400	150	1000
1,2,3-Trichlorobenzene	ND		ug/kg	6900	200	1000
1,2,4-Trichlorobenzene	ND		ug/kg	6900	250	1000
1,3,5-Trimethylbenzene	1900	J	ug/kg	6900	200	1000
1,2,4-Trimethylbenzene	130000		ug/kg	6900	200	1000
Methyl Acetate	ND		ug/kg	28000	370	1000
Cyclohexane	63000		ug/kg	28000	200	1000
1,4-Dioxane	ND		ug/kg	140000	20000	1000
Freon-113	ND		ug/kg	28000	380	1000
Methyl cyclohexane	140000		ug/kg	5500	210	1000

06/29/16 08:40

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-02 D Date Collected:

Client ID: P3-1 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	450000	J	ug/kg	1000
Pentane, 2-methyl-	52000	NJ	ug/kg	1000
Cyclopentane, Methyl-	49000	NJ	ug/kg	1000
Unknown	59000	J	ug/kg	1000
Unknown Alkane	36000	J	ug/kg	1000
Unknown Cyclohexane	43000	J	ug/kg	1000
Unknown	49000	J	ug/kg	1000
Unknown Benzene	41000	J	ug/kg	1000
Unknown Benzene	34000	J	ug/kg	1000
Unknown Benzene	42000	J	ug/kg	1000
Unknown Aromatic	46000	J	ug/kg	1000

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	72		70-130	
Toluene-d8	95		70-130	
4-Bromofluorobenzene	99		70-130	
Dibromofluoromethane	82		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 10/25/16

Lab ID: L1620368-03 D

Client ID: P3-1 (8-12) SYRACUSE, NY Sample Location:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 07/12/16 04:47

Analyst: PΚ 48% Percent Solids:

Date Collected: 06/29/16 08:40

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/kg	4200	460	250
1,1-Dichloroethane	ND		ug/kg	620	36.	250
Chloroform	ND		ug/kg	620	150	250
Carbon tetrachloride	ND		ug/kg	420	88.	250
1,2-Dichloropropane	ND		ug/kg	1400	95.	250
Dibromochloromethane	ND		ug/kg	420	64.	250
1,1,2-Trichloroethane	ND		ug/kg	620	130	250
Tetrachloroethene	ND		ug/kg	420	58.	250
Chlorobenzene	ND		ug/kg	420	140	250
Trichlorofluoromethane	ND		ug/kg	2100	160	250
1,2-Dichloroethane	ND		ug/kg	420	47.	250
1,1,1-Trichloroethane	ND		ug/kg	420	46.	250
Bromodichloromethane	ND		ug/kg	420	72.	250
trans-1,3-Dichloropropene	ND		ug/kg	420	50.	250
cis-1,3-Dichloropropene	ND		ug/kg	420	49.	250
Bromoform	ND		ug/kg	1700	98.	250
1,1,2,2-Tetrachloroethane	ND		ug/kg	420	42.	250
Benzene	110	J	ug/kg	420	49.	250
Toluene	240	J	ug/kg	620	81.	250
Ethylbenzene	9200		ug/kg	420	53.	250
Chloromethane	280	J	ug/kg	2100	120	250
Bromomethane	ND		ug/kg	830	140	250
Vinyl chloride	ND		ug/kg	830	49.	250
Chloroethane	ND		ug/kg	830	130	250
1,1-Dichloroethene	ND		ug/kg	420	110	250
trans-1,2-Dichloroethene	ND		ug/kg	620	88.	250
Trichloroethene	ND		ug/kg	420	52.	250
1,2-Dichlorobenzene	ND		ug/kg	2100	64.	250
1,3-Dichlorobenzene	ND		ug/kg	2100	56.	250
1,4-Dichlorobenzene	ND		ug/kg	2100	58.	250

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-03 D

Client ID: P3-1 (8-12)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 08:40

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - W	estborough Lab					
Methyl tert butyl ether	ND		ug/kg	830	35.	250
p/m-Xylene	12000		ug/kg	830	82.	250
o-Xylene	320	J	ug/kg	830	72.	250
cis-1,2-Dichloroethene	ND		ug/kg	420	60.	250
Styrene	ND		ug/kg	830	170	250
Dichlorodifluoromethane	ND		ug/kg	4200	80.	250
Acetone	ND		ug/kg	4200	430	250
Carbon disulfide	ND		ug/kg	4200	460	250
2-Butanone	ND		ug/kg	4200	110	250
4-Methyl-2-pentanone	ND		ug/kg	4200	100	250
2-Hexanone	ND		ug/kg	4200	280	250
Bromochloromethane	ND		ug/kg	2100	120	250
1,2-Dibromoethane	ND		ug/kg	1700	73.	250
n-Butylbenzene	1700		ug/kg	420	48.	250
1,2-Dibromo-3-chloropropane	ND		ug/kg	2100	160	250
Isopropylbenzene	2000		ug/kg	420	43.	250
n-Propylbenzene	5500		ug/kg	420	46.	250
1,2,3-Trichlorobenzene	ND		ug/kg	2100	62.	250
1,2,4-Trichlorobenzene	ND		ug/kg	2100	76.	250
1,3,5-Trimethylbenzene	1500	J	ug/kg	2100	60.	250
1,2,4-Trimethylbenzene	53000		ug/kg	2100	59.	250
Methyl Acetate	ND		ug/kg	8300	110	250
Cyclohexane	14000		ug/kg	8300	61.	250
1,4-Dioxane	ND		ug/kg	42000	6000	250
Freon-113	ND		ug/kg	8300	110	250
Methyl cyclohexane	31000		ug/kg	1700	64.	250

Project Name: Lab Number: **EMBASSY SUITES** L1620368

Project Number: Report Date: 15209 10/25/16

Result

SAMPLE RESULTS

Qualifier

Units

Lab ID: L1620368-03 D

Client ID: P3-1 (8-12) Sample Location: SYRACUSE, NY

Parameter

Date Collected:

06/29/16 08:40 Date Received: 06/30/16

Dilution Factor

Field Prep: Not Specified RL MDL

Tentatively Identified Compounds				
Total TIC Compounds	130000	J	ug/kg	250
Pentane, 2-methyl-	11000	NJ	ug/kg	250
Cyclopentane, Methyl-	12000	NJ	ug/kg	250
Unknown	11000	J	ug/kg	250
Unknown Benzene	11000	J	ug/kg	250
Unknown	17000	J	ug/kg	250
Unknown Benzene	15000	J	ug/kg	250
Unknown Benzene	13000	J	ug/kg	250
Unknown Benzene	15000	J	ug/kg	250
Unknown Aromatic	10000	J	ug/kg	250
Unknown Aromatic	16000	J	ug/kg	250

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	70		70-130	
Toluene-d8	94		70-130	
4-Bromofluorobenzene	97		70-130	
Dibromofluoromethane	80		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 10/25/16

Lab ID: L1620368-04 D

Client ID: P3-1 (12-16)
Sample Location: SYRACUSE, NY

Matrix: Soil Analytical Method: 1,8260C

Analytical Date: 07/12/16 05:13

Analyst: PK Percent Solids: 65% Date Collected: 06/29/16 08:40

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/kg	3600	390	250
1,1-Dichloroethane	ND		ug/kg	540	30.	250
Chloroform	ND		ug/kg	540	130	250
Carbon tetrachloride	ND		ug/kg	360	75.	250
1,2-Dichloropropane	ND		ug/kg	1200	81.	250
Dibromochloromethane	ND		ug/kg	360	55.	250
1,1,2-Trichloroethane	ND		ug/kg	540	110	250
Tetrachloroethene	ND		ug/kg	360	50.	250
Chlorobenzene	ND		ug/kg	360	120	250
Trichlorofluoromethane	ND		ug/kg	1800	140	250
1,2-Dichloroethane	ND		ug/kg	360	40.	250
1,1,1-Trichloroethane	ND		ug/kg	360	40.	250
Bromodichloromethane	ND		ug/kg	360	62.	250
trans-1,3-Dichloropropene	ND		ug/kg	360	43.	250
cis-1,3-Dichloropropene	ND		ug/kg	360	42.	250
Bromoform	ND		ug/kg	1400	84.	250
1,1,2,2-Tetrachloroethane	ND		ug/kg	360	36.	250
Benzene	790		ug/kg	360	42.	250
Toluene	440	J	ug/kg	540	69.	250
Ethylbenzene	11000		ug/kg	360	45.	250
Chloromethane	280	J	ug/kg	1800	100	250
Bromomethane	ND		ug/kg	710	120	250
Vinyl chloride	ND		ug/kg	710	42.	250
Chloroethane	ND		ug/kg	710	110	250
1,1-Dichloroethene	ND		ug/kg	360	93.	250
trans-1,2-Dichloroethene	ND		ug/kg	540	76.	250
Trichloroethene	ND		ug/kg	360	44.	250
1,2-Dichlorobenzene	ND		ug/kg	1800	55.	250
1,3-Dichlorobenzene	ND		ug/kg	1800	48.	250
1,4-Dichlorobenzene	ND		ug/kg	1800	49.	250

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-04 D

Client ID: P3-1 (12-16)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 08:40

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methyl tert butyl ether	ND		ug/kg	710	30.	250
p/m-Xylene	20000		ug/kg	710	70.	250
o-Xylene	530	J	ug/kg	710	61.	250
cis-1,2-Dichloroethene	ND		ug/kg	360	51.	250
Styrene	ND		ug/kg	710	140	250
Dichlorodifluoromethane	ND		ug/kg	3600	68.	250
Acetone	ND		ug/kg	3600	370	250
Carbon disulfide	ND		ug/kg	3600	390	250
2-Butanone	ND		ug/kg	3600	97.	250
4-Methyl-2-pentanone	ND		ug/kg	3600	87.	250
2-Hexanone	ND		ug/kg	3600	240	250
Bromochloromethane	ND		ug/kg	1800	98.	250
1,2-Dibromoethane	ND		ug/kg	1400	62.	250
n-Butylbenzene	1900		ug/kg	360	41.	250
1,2-Dibromo-3-chloropropane	ND		ug/kg	1800	140	250
Isopropylbenzene	1800		ug/kg	360	37.	250
n-Propylbenzene	4700		ug/kg	360	39.	250
1,2,3-Trichlorobenzene	ND		ug/kg	1800	53.	250
1,2,4-Trichlorobenzene	ND		ug/kg	1800	65.	250
1,3,5-Trimethylbenzene	10000		ug/kg	1800	51.	250
1,2,4-Trimethylbenzene	42000		ug/kg	1800	50.	250
Methyl Acetate	ND		ug/kg	7100	96.	250
Cyclohexane	29000		ug/kg	7100	52.	250
1,4-Dioxane	ND		ug/kg	36000	5100	250
Freon-113	ND		ug/kg	7100	98.	250
Methyl cyclohexane	60000		ug/kg	1400	55.	250

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-04 D

Client ID: P3-1 (12-16)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 08:40
Date Received: 06/30/16

Date Received: 06/30/16
Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Tentatively Identified Compounds				
Total TIC Compounds	200000	J	ug/kg	250
Pentane, 2-methyl-	25000	NJ	ug/kg	250
Cyclopentane, Methyl-	21000	NJ	ug/kg	250
Unknown Alkane	30000	J	ug/kg	250
Heptane, 2-methyl-	19000	NJ	ug/kg	250
Unknown	19000	J	ug/kg	250
Unknown	19000	J	ug/kg	250
Unknown Benzene	14000	J	ug/kg	250
Unknown Aromatic	16000	J	ug/kg	250
Unknown Aromatic	19000	J	ug/kg	250
Unknown	15000	J	ug/kg	250

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	71		70-130	
Toluene-d8	95		70-130	
4-Bromofluorobenzene	104		70-130	
Dibromofluoromethane	80		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 10/25/16

Lab ID: L1620368-05

Client ID: P3-9 (0-4) SYRACUSE, NY Sample Location:

Matrix: Soil Analytical Method: 1,8260C

Analytical Date: 07/12/16 05:39

Analyst: PΚ 79% Percent Solids:

Date Collected: 06/29/16 08:55

Date Received: 06/30/16

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/kg	11	1.2	1
1,1-Dichloroethane	ND		ug/kg	1.7	0.10	1
Chloroform	ND		ug/kg	1.7	0.42	1
Carbon tetrachloride	ND		ug/kg	1.1	0.24	1
1,2-Dichloropropane	ND		ug/kg	4.0	0.26	1
Dibromochloromethane	ND		ug/kg	1.1	0.17	1
1,1,2-Trichloroethane	ND		ug/kg	1.7	0.34	1
Tetrachloroethene	ND		ug/kg	1.1	0.16	1
Chlorobenzene	ND		ug/kg	1.1	0.39	1
Trichlorofluoromethane	ND		ug/kg	5.6	0.44	1
1,2-Dichloroethane	ND		ug/kg	1.1	0.13	1
1,1,1-Trichloroethane	ND		ug/kg	1.1	0.12	1
Bromodichloromethane	ND		ug/kg	1.1	0.20	1
trans-1,3-Dichloropropene	ND		ug/kg	1.1	0.14	1
cis-1,3-Dichloropropene	ND		ug/kg	1.1	0.13	1
Bromoform	ND		ug/kg	4.5	0.27	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	1.1	0.11	1
Benzene	3.0		ug/kg	1.1	0.13	1
Toluene	0.87	J	ug/kg	1.7	0.22	1
Ethylbenzene	2.3		ug/kg	1.1	0.14	1
Chloromethane	ND		ug/kg	5.6	0.33	1
Bromomethane	ND		ug/kg	2.3	0.38	1
Vinyl chloride	ND		ug/kg	2.3	0.13	1
Chloroethane	ND		ug/kg	2.3	0.36	1
1,1-Dichloroethene	ND		ug/kg	1.1	0.30	1
trans-1,2-Dichloroethene	ND		ug/kg	1.7	0.24	1
Trichloroethene	ND		ug/kg	1.1	0.14	1
1,2-Dichlorobenzene	ND		ug/kg	5.6	0.17	1
1,3-Dichlorobenzene	ND		ug/kg	5.6	0.15	1
1,4-Dichlorobenzene	ND		ug/kg	5.6	0.16	1

L1620368

Project Name: EMBASSY SUITES Lab Number:

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: Date Collected: 06/29/16 08:55

Client ID: P3-9 (0-4) Date Received: 06/30/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
Methyl tert butyl ether	ND		ug/kg	2.3	0.10	1	
p/m-Xylene	3.8		ug/kg	2.3	0.22	1	
o-Xylene	0.64	J	ug/kg	2.3	0.19	1	
cis-1,2-Dichloroethene	0.30	J	ug/kg	1.1	0.16	1	
Styrene	ND		ug/kg	2.3	0.45	1	
Dichlorodifluoromethane	ND		ug/kg	11	0.22	1	
Acetone	44		ug/kg	11	1.2	1	
Carbon disulfide	ND		ug/kg	11	1.2	1	
2-Butanone	ND		ug/kg	11	0.31	1	
4-Methyl-2-pentanone	ND		ug/kg	11	0.28	1	
2-Hexanone	ND		ug/kg	11	0.75	1	
Bromochloromethane	ND		ug/kg	5.6	0.31	1	
1,2-Dibromoethane	ND		ug/kg	4.5	0.20	1	
n-Butylbenzene	0.77	J	ug/kg	1.1	0.13	1	
1,2-Dibromo-3-chloropropane	ND		ug/kg	5.6	0.45	1	
Isopropylbenzene	3.3		ug/kg	1.1	0.12	1	
n-Propylbenzene	1.5		ug/kg	1.1	0.12	1	
1,2,3-Trichlorobenzene	ND		ug/kg	5.6	0.17	1	
1,2,4-Trichlorobenzene	ND		ug/kg	5.6	0.20	1	
1,3,5-Trimethylbenzene	1.6	J	ug/kg	5.6	0.16	1	
1,2,4-Trimethylbenzene	5.2	J	ug/kg	5.6	0.16	1	
Methyl Acetate	ND		ug/kg	23	0.30	1	
Cyclohexane	3.7	J	ug/kg	23	0.16	1	
1,4-Dioxane	ND		ug/kg	110	16.	1	
Freon-113	ND		ug/kg	23	0.31	1	
Methyl cyclohexane	10		ug/kg	4.5	0.17	1	

Dilution Factor

MDL

RL

Project Name: Lab Number: **EMBASSY SUITES** L1620368

Project Number: Report Date: 15209 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-05 Date Collected: 06/29/16 08:55

Date Received: Client ID: P3-9 (0-4) 06/30/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Qualifier

Units

Result

Volatile Organics by GC/MS - Westborough Lab

Parameter

Tentatively Identified Compounds				
Total TIC Compounds	440	J	ug/kg	1
Unknown Benzene	38	J	ug/kg	1
Unknown	42	J	ug/kg	1
Unknown Benzene	21	J	ug/kg	1
Unknown	25	J	ug/kg	1
Unknown	30	J	ug/kg	1
Unknown	35	J	ug/kg	1
Tetradecane	73	NJ	ug/kg	1
Unknown Alkane	34	J	ug/kg	1
Unknown	44	J	ug/kg	1
Unknown	100	J	ug/kg	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	71		70-130	
Toluene-d8	95		70-130	
4-Bromofluorobenzene	113		70-130	
Dibromofluoromethane	84		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

Lab ID:

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 10/25/16

D

L1620368-06

Client ID: P3-9 (4-8) SYRACUSE, NY Sample Location:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 07/12/16 06:04

Analyst: PΚ 48% Percent Solids:

Date Collected: 06/29/16 08:55

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/kg	4200	470	250
1,1-Dichloroethane	ND		ug/kg	640	36.	250
Chloroform	ND		ug/kg	640	160	250
Carbon tetrachloride	ND		ug/kg	420	89.	250
1,2-Dichloropropane	ND		ug/kg	1500	97.	250
Dibromochloromethane	ND		ug/kg	420	65.	250
1,1,2-Trichloroethane	ND		ug/kg	640	130	250
Tetrachloroethene	ND		ug/kg	420	60.	250
Chlorobenzene	ND		ug/kg	420	150	250
Trichlorofluoromethane	ND		ug/kg	2100	160	250
1,2-Dichloroethane	ND		ug/kg	420	48.	250
1,1,1-Trichloroethane	ND		ug/kg	420	47.	250
Bromodichloromethane	ND		ug/kg	420	74.	250
trans-1,3-Dichloropropene	ND		ug/kg	420	51.	250
cis-1,3-Dichloropropene	ND		ug/kg	420	50.	250
Bromoform	ND		ug/kg	1700	100	250
1,1,2,2-Tetrachloroethane	ND		ug/kg	420	43.	250
Benzene	660		ug/kg	420	50.	250
Toluene	280	J	ug/kg	640	83.	250
Ethylbenzene	16000		ug/kg	420	54.	250
Chloromethane	320	J	ug/kg	2100	120	250
Bromomethane	ND		ug/kg	850	140	250
Vinyl chloride	ND		ug/kg	850	50.	250
Chloroethane	ND		ug/kg	850	130	250
1,1-Dichloroethene	ND		ug/kg	420	110	250
trans-1,2-Dichloroethene	ND		ug/kg	640	90.	250
Trichloroethene	ND		ug/kg	420	53.	250
1,2-Dichlorobenzene	ND		ug/kg	2100	65.	250
1,3-Dichlorobenzene	ND		ug/kg	2100	57.	250
1,4-Dichlorobenzene	ND		ug/kg	2100	59.	250

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-06 D

Client ID: P3-9 (4-8)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 08:55

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - W	estborough Lab					
Methyl tert butyl ether	ND		ug/kg	850	36.	250
p/m-Xylene	20000		ug/kg	850	84.	250
o-Xylene	510	J	ug/kg	850	73.	250
cis-1,2-Dichloroethene	ND		ug/kg	420	61.	250
Styrene	ND		ug/kg	850	170	250
Dichlorodifluoromethane	ND		ug/kg	4200	81.	250
Acetone	ND		ug/kg	4200	440	250
Carbon disulfide	ND		ug/kg	4200	470	250
2-Butanone	ND		ug/kg	4200	120	250
4-Methyl-2-pentanone	ND		ug/kg	4200	100	250
2-Hexanone	ND		ug/kg	4200	280	250
Bromochloromethane	ND		ug/kg	2100	120	250
1,2-Dibromoethane	ND		ug/kg	1700	74.	250
n-Butylbenzene	3200		ug/kg	420	49.	250
1,2-Dibromo-3-chloropropane	ND		ug/kg	2100	170	250
Isopropylbenzene	3100		ug/kg	420	44.	250
n-Propylbenzene	8000		ug/kg	420	46.	250
1,2,3-Trichlorobenzene	ND		ug/kg	2100	63.	250
1,2,4-Trichlorobenzene	ND		ug/kg	2100	77.	250
1,3,5-Trimethylbenzene	8700		ug/kg	2100	61.	250
1,2,4-Trimethylbenzene	73000		ug/kg	2100	60.	250
Methyl Acetate	ND		ug/kg	8500	110	250
Cyclohexane	26000		ug/kg	8500	62.	250
1,4-Dioxane	ND		ug/kg	42000	6100	250
Freon-113	ND		ug/kg	8500	120	250
Methyl cyclohexane	58000		ug/kg	1700	66.	250

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

Result

SAMPLE RESULTS

Qualifier

Units

Lab ID: L1620368-06 D

Client ID: P3-9 (4-8)
Sample Location: SYRACUSE, NY

Parameter

Date Collected: 06
Date Received: 06

06/29/16 08:55

Date Received: 06/30/16

Field Prep: Not Specified

RL MDL Dilution Factor

Tentatively Identified Compounds				
Total TIC Compounds	210000	J	ug/kg	250
Pentane, 2-methyl-	17000	NJ	ug/kg	250
Cyclopentane, Methyl-	19000	NJ	ug/kg	250
Unknown Alkane	24000	J	ug/kg	250
Heptane, 2-methyl-	16000	NJ	ug/kg	250
Unknown Cyclohexane	18000	J	ug/kg	250
Unknown	27000	J	ug/kg	250
Unknown Benzene	22000	J	ug/kg	250
Unknown Benzene	18000	J	ug/kg	250
Unknown Benzene	22000	J	ug/kg	250
Unknown Aromatic	27000	J	ug/kg	250

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	70		70-130	
Toluene-d8	96		70-130	
4-Bromofluorobenzene	101		70-130	
Dibromofluoromethane	80		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 10/25/16

Lab ID: L1620368-07 D

Client ID: P3-9 (8-12) SYRACUSE, NY Sample Location:

Matrix: Soil Analytical Method: 1,8260C

Analytical Date: 07/13/16 12:05

Analyst: MV57% Percent Solids:

Date Collected: 06/29/16 08:55

No	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,1-Dichloroethane ND ug/kg 120 6.7 50 Chloroform ND ug/kg 120 29. 50 Carbon tetrachloride ND ug/kg 78 16. 50 1,2-Dichloropropane ND ug/kg 280 18. 50 Dibromochloromethane ND ug/kg 78 12. 50 1,1,2-Trichloroethane ND ug/kg 78 12. 50 1,1,2-Trichloroethane ND ug/kg 78 11. 50 Chlorobenzene ND ug/kg 78 11. 50 Chlorobenzene ND ug/kg 78 11. 50 Trichlorofluoroethane ND ug/kg 390 30. 50 1,1,1-Trichloroethane ND ug/kg 78 8.9 50 Bromodorm ND ug/kg 78 9.5 50 Erroribloroethane ND ug/kg 78 7.9 50	Volatile Organics by GC/MS - Wes	stborough Lab					
Chloroform ND ug/kg 120 29. 50 Carbon tetrachloride ND ug/kg 78 16. 50 1,2-Dichloropropane ND ug/kg 280 18. 50 Dibromochloromethane ND ug/kg 78 12. 50 1,1,2-Trichloroethane ND ug/kg 78 12. 50 Tetrachloroethane ND ug/kg 78 11. 50 Tetrachloroethane ND ug/kg 78 11. 50 Tichlorofluoromethane ND ug/kg 78 27. 50 Tichlorofluoromethane ND ug/kg 390 30. 50 1,1,1-Trichloroethane ND ug/kg 78 8.7 50 Bromodichloromethane ND ug/kg 78 9.2 50 Bromodichloropropene ND ug/kg 78 9.5 50 cis-1,3-Dichloropropene ND ug/kg 78 <	Methylene chloride	ND		ug/kg	780	87.	50
Carbon tetrachloride ND ug/kg 78 16. 50 1,2-Dichloropropane ND ug/kg 280 18. 50 Dibromochloromethane ND ug/kg 78 12. 50 1,1,2-Trichloroethane ND ug/kg 120 24. 50 Tetrachloroethane ND ug/kg 78 11. 50 Chloroethane ND ug/kg 78 11. 50 Chloroethane ND ug/kg 78 27. 50 Trichlorofuluromethane ND ug/kg 390 30. 50 1,2-Dichloroethane ND ug/kg 78 8.9 50 1,1,1-Trichloroethane ND ug/kg 78 14. 50 Bromodichloromethane ND ug/kg 78 9.5 50 cis-1,3-Dichloropropene ND ug/kg 78 9.5 50 gis-1,3-Dichloropropene ND ug/kg 78 <td< td=""><td>1,1-Dichloroethane</td><td>ND</td><td></td><td>ug/kg</td><td>120</td><td>6.7</td><td>50</td></td<>	1,1-Dichloroethane	ND		ug/kg	120	6.7	50
1,2-Dichloropropane ND	Chloroform	ND		ug/kg	120	29.	50
Dibromochloromethane ND ug/kg 78 12. 50 1,1,2-Trichloroethane ND ug/kg 120 24. 50 Tetrachloroethene ND ug/kg 78 11. 50 Chlorobenzene ND ug/kg 78 27. 50 Trichlorofluoromethane ND ug/kg 390 30. 50 1,2-Dichloroethane ND ug/kg 78 8.9 50 1,1,1-Trichloroethane ND ug/kg 78 8.7 50 Bromodichloromethane ND ug/kg 78 8.7 50 Bromofichloropropene ND ug/kg 78 9.5 50 cis-1,3-Dichloropropene ND ug/kg 78 9.2 50 Bromoform ND ug/kg 78 9.2 50 Bromoform ND ug/kg 78 9.3 50 Toluene 16 J ug/kg 78 9.3	Carbon tetrachloride	ND		ug/kg	78	16.	50
1,1,2-Trichloroethane ND ug/kg 120 24. 50 Tetrachloroethene ND ug/kg 78 11. 50 Chlorobenzene ND ug/kg 78 27. 50 Trichlorofluoromethane ND ug/kg 390 30. 50 1,2-Dichloroethane ND ug/kg 78 8.9 50 1,1,1-Trichloroethane ND ug/kg 78 8.7 50 Bromodichloromethane ND ug/kg 78 8.7 50 Bromoflororopropene ND ug/kg 78 9.5 50 cis-1,3-Dichloropropene ND ug/kg 78 9.5 50 Bromoform ND ug/kg 78 9.2 50 Bromoform ND ug/kg 78 7.9 50 Benzene ND ug/kg 78 7.9 50 Toluene 16 J ug/kg 78 10. 50	1,2-Dichloropropane	ND		ug/kg	280	18.	50
Tetrachloroethene ND ug/kg 78 11. 50 Chlorobenzene ND ug/kg 78 27. 50 Trichlorofluoromethane ND ug/kg 390 30. 50 1,2-Dichloroethane ND ug/kg 78 8.9 50 1,1,1-Trichloroethane ND ug/kg 78 8.7 50 Bromodichloromethane ND ug/kg 78 8.7 50 Bromodichloropropene ND ug/kg 78 9.5 50 cis-1,3-Dichloropropene ND ug/kg 78 9.5 50 bromoform ND ug/kg 78 9.2 50 Bromoform ND ug/kg 78 9.2 50 Int,2,2-Tetrachloroethane ND ug/kg 78 9.2 50 Benzene ND ug/kg 78 9.3 50 Toluene 16 J ug/kg 78 9.3 <t< td=""><td>Dibromochloromethane</td><td>ND</td><td></td><td>ug/kg</td><td>78</td><td>12.</td><td>50</td></t<>	Dibromochloromethane	ND		ug/kg	78	12.	50
Chlorobenzene ND ug/kg 78 27. 50 Trichlorofluoromethane ND ug/kg 390 30. 50 1,2-Dichloroethane ND ug/kg 78 8.9 50 1,1,1-Trichloroethane ND ug/kg 78 8.7 50 Bromodichloromethane ND ug/kg 78 9.5 50 Eromodichloropropene ND ug/kg 78 9.5 50 cis-1,3-Dichloropropene ND ug/kg 78 9.5 50 Eromoform ND ug/kg 78 9.2 50 Bromoform ND ug/kg 310 18. 50 I,1,2,2-Tetrachloroethane ND ug/kg 78 7.9 50 Benzene ND ug/kg 78 9.3 50 Ethylbenzene 62 J ug/kg 78 10. 50 Chloromethane ND ug/kg 390 23.	1,1,2-Trichloroethane	ND		ug/kg	120	24.	50
Trichlorofluoromethane ND ug/kg 390 30. 50 1,2-Dichloroethane ND ug/kg 78 8.9 50 1,1,1-Trichloroethane ND ug/kg 78 8.7 50 Bromodichloromethane ND ug/kg 78 14. 50 Bromodichloropropene ND ug/kg 78 9.5 50 cis-1,3-Dichloropropene ND ug/kg 78 9.2 50 Bromoform ND ug/kg 310 18. 50 Bromoform ND ug/kg 310 18. 50 1,1,2,2-Tetrachloroethane ND ug/kg 78 7.9 50 Benzene ND ug/kg 78 9.3 50 Toluene 16 J ug/kg 78 10. 50 Ethylbenzene 62 J ug/kg 78 10. 50 Chloromethane ND ug/kg 160 26	Tetrachloroethene	ND		ug/kg	78	11.	50
1,2-Dichloroethane ND ug/kg 78 8.9 50 1,1,1-Trichloroethane ND ug/kg 78 8.7 50 Bromodichloromethane ND ug/kg 78 14. 50 trans-1,3-Dichloropropene ND ug/kg 78 9.5 50 cis-1,3-Dichloropropene ND ug/kg 78 9.2 50 Bromoform ND ug/kg 310 18. 50 1,1,2,2-Tetrachloroethane ND ug/kg 78 9.3 50 Benzene ND ug/kg 78 9.3 50 Toluene 16 J ug/kg 78 9.3 50 Ethylbenzene 62 J ug/kg 78 10. 50 Chloromethane ND ug/kg 390 23. 50 Bromomethane ND ug/kg 160 25. 50 Vinyl chloride ND ug/kg 160 25	Chlorobenzene	ND		ug/kg	78	27.	50
1,1,1-Trichloroethane ND ug/kg 78 8.7 50 Bromodichloromethane ND ug/kg 78 14. 50 trans-1,3-Dichloropropene ND ug/kg 78 9.5 50 cis-1,3-Dichloropropene ND ug/kg 78 9.2 50 Bromoform ND ug/kg 310 18. 50 1,1,2,2-Tetrachloroethane ND ug/kg 78 7.9 50 Benzene ND ug/kg 78 9.3 50 Toluene 16 J ug/kg 78 9.3 50 Ethylbenzene 62 J ug/kg 78 10. 50 Chloromethane ND ug/kg 390 23. 50 Bromomethane ND ug/kg 160 26. 50 Vinyl chloride ND ug/kg 160 25. 50 Chloroethane ND ug/kg 78 20.	Trichlorofluoromethane	ND		ug/kg	390	30.	50
Bromodichloromethane ND ug/kg 78 14. 50 trans-1,3-Dichloropropene ND ug/kg 78 9.5 50 cis-1,3-Dichloropropene ND ug/kg 78 9.2 50 Bromoform ND ug/kg 310 18. 50 1,1,2,2-Tetrachloroethane ND ug/kg 78 7.9 50 Benzene ND ug/kg 78 9.3 50 Toluene 16 J ug/kg 78 9.3 50 Ethylbenzene 62 J ug/kg 78 10. 50 Chloromethane ND ug/kg 78 10. 50 Ethylbenzene 62 J ug/kg 78 10. 50 Chloromethane ND ug/kg 390 23. 50 Vinyl chloride ND ug/kg 160 9.2 50 Chloroethane ND ug/kg 78 <t< td=""><td>1,2-Dichloroethane</td><td>ND</td><td></td><td>ug/kg</td><td>78</td><td>8.9</td><td>50</td></t<>	1,2-Dichloroethane	ND		ug/kg	78	8.9	50
trans-1,3-Dichloropropene ND ug/kg 78 9.5 50 cis-1,3-Dichloropropene ND ug/kg 78 9.2 50 Bromoform ND ug/kg 310 18. 50 1,1,2,2-Tetrachloroethane ND ug/kg 78 79 50 Benzene ND ug/kg 78 9.3 50 Toluene 16 Jug/kg 78 9.3 50 Toluene 16 Jug/kg 78 10. 50 Ethylbenzene 62 Jug/kg 78 10. 50 Chloromethane ND ug/kg 78 10. 50 Chloromethane ND ug/kg 390 23. 50 Winyl chloride ND ug/kg 390 23. 50 Chloroethane ND ug/kg 160 26. 50 Vinyl chloride ND ug/kg 160 9.2 50 Chloroethane ND ug/kg 160 25. 50 1,1-Dichloroethene ND ug/kg 78 20. 50 Trichloroethene ND ug/kg 78 9.8 50 1,2-Dichloroethene ND ug/kg 78 9.8 50	1,1,1-Trichloroethane	ND		ug/kg	78	8.7	50
cis-1,3-Dichloropropene ND ug/kg 78 9.2 50 Bromoform ND ug/kg 310 18. 50 1,1,2,2-Tetrachloroethane ND ug/kg 78 7.9 50 Benzene ND ug/kg 78 9.3 50 Toluene 16 J ug/kg 120 15. 50 Ethylbenzene 62 J ug/kg 78 10. 50 Chloromethane ND ug/kg 390 23. 50 Bromomethane ND ug/kg 160 26. 50 Vinyl chloride ND ug/kg 160 9.2 50 Chloroethane ND ug/kg 160 25. 50 1,1-Dichloroethene ND ug/kg 78 20. 50 trans-1,2-Dichloroethene ND ug/kg 78 9.8 50 Trichloroethene ND ug/kg 78 9.8	Bromodichloromethane	ND		ug/kg	78	14.	50
Bromoform ND ug/kg 310 18. 50 1,1,2,2-Tetrachloroethane ND ug/kg 78 7.9 50 Benzene ND ug/kg 78 9.3 50 Toluene 16 J ug/kg 120 15. 50 Ethylbenzene 62 J ug/kg 78 10. 50 Chloromethane ND ug/kg 390 23. 50 Bromomethane ND ug/kg 160 26. 50 Vinyl chloride ND ug/kg 160 9.2 50 Chloroethane ND ug/kg 160 25. 50 1,1-Dichloroethene ND ug/kg 78 20. 50 trans-1,2-Dichloroethene ND ug/kg 120 17. 50 Trichloroethene ND ug/kg 78 9.8 50 1,2-Dichlorobenzene ND ug/kg 390 12.	trans-1,3-Dichloropropene	ND		ug/kg	78	9.5	50
1,1,2,2-Tetrachloroethane ND ug/kg 78 7.9 50 Benzene ND ug/kg 78 9.3 50 Toluene 16 J ug/kg 120 15. 50 Ethylbenzene 62 J ug/kg 78 10. 50 Chloromethane ND ug/kg 390 23. 50 Bromomethane ND ug/kg 160 26. 50 Vinyl chloride ND ug/kg 160 9.2 50 Chloroethane ND ug/kg 160 25. 50 1,1-Dichloroethene ND ug/kg 78 20. 50 trans-1,2-Dichloroethene ND ug/kg 120 17. 50 Trichloroethene ND ug/kg 78 9.8 50 1,2-Dichlorobenzene ND ug/kg 390 12. 50	cis-1,3-Dichloropropene	ND		ug/kg	78	9.2	50
Benzene ND ug/kg 78 9.3 50 Toluene 16 J ug/kg 120 15. 50 Ethylbenzene 62 J ug/kg 78 10. 50 Chloromethane ND ug/kg 390 23. 50 Bromomethane ND ug/kg 160 26. 50 Vinyl chloride ND ug/kg 160 9.2 50 Chloroethane ND ug/kg 160 25. 50 1,1-Dichloroethene ND ug/kg 78 20. 50 trans-1,2-Dichloroethene ND ug/kg 78 20. 50 Trichloroethene ND ug/kg 78 9.8 50 1,2-Dichlorobenzene ND ug/kg 78 9.8 50 1,2-Dichlorobenzene ND ug/kg 390 12. 50	Bromoform	ND		ug/kg	310	18.	50
Toluene 16 J ug/kg 120 15. 50 Ethylbenzene 62 J ug/kg 78 10. 50 Chloromethane ND ug/kg 390 23. 50 Bromomethane ND ug/kg 160 26. 50 Vinyl chloride ND ug/kg 160 9.2 50 Chloroethane ND ug/kg 160 25. 50 1,1-Dichloroethene ND ug/kg 78 20. 50 trans-1,2-Dichloroethene ND ug/kg 120 17. 50 Trichloroethene ND ug/kg 78 9.8 50 1,2-Dichlorobenzene ND ug/kg 390 12. 50	1,1,2,2-Tetrachloroethane	ND		ug/kg	78	7.9	50
Ethylbenzene 62 J ug/kg 78 10. 50 Chloromethane ND ug/kg 390 23. 50 Bromomethane ND ug/kg 160 26. 50 Vinyl chloride ND ug/kg 160 9.2 50 Chloroethane ND ug/kg 160 25. 50 1,1-Dichloroethene ND ug/kg 78 20. 50 trans-1,2-Dichloroethene ND ug/kg 120 17. 50 Trichloroethene ND ug/kg 78 9.8 50 1,2-Dichlorobenzene ND ug/kg 390 12. 50	Benzene	ND		ug/kg	78	9.3	50
Chloromethane ND ug/kg 390 23. 50 Bromomethane ND ug/kg 160 26. 50 Vinyl chloride ND ug/kg 160 9.2 50 Chloroethane ND ug/kg 160 25. 50 1,1-Dichloroethene ND ug/kg 78 20. 50 trans-1,2-Dichloroethene ND ug/kg 120 17. 50 Trichloroethene ND ug/kg 78 9.8 50 1,2-Dichlorobenzene ND ug/kg 390 12. 50	Toluene	16	J	ug/kg	120	15.	50
Bromomethane ND ug/kg 160 26. 50 Vinyl chloride ND ug/kg 160 9.2 50 Chloroethane ND ug/kg 160 25. 50 1,1-Dichloroethene ND ug/kg 78 20. 50 trans-1,2-Dichloroethene ND ug/kg 120 17. 50 Trichloroethene ND ug/kg 78 9.8 50 1,2-Dichlorobenzene ND ug/kg 390 12. 50	Ethylbenzene	62	J	ug/kg	78	10.	50
Vinyl chloride ND ug/kg 160 9.2 50 Chloroethane ND ug/kg 160 25. 50 1,1-Dichloroethene ND ug/kg 78 20. 50 trans-1,2-Dichloroethene ND ug/kg 120 17. 50 Trichloroethene ND ug/kg 78 9.8 50 1,2-Dichlorobenzene ND ug/kg 390 12. 50	Chloromethane	ND		ug/kg	390	23.	50
Chloroethane ND ug/kg 160 25. 50 1,1-Dichloroethene ND ug/kg 78 20. 50 trans-1,2-Dichloroethene ND ug/kg 120 17. 50 Trichloroethene ND ug/kg 78 9.8 50 1,2-Dichlorobenzene ND ug/kg 390 12. 50	Bromomethane	ND		ug/kg	160	26.	50
1,1-Dichloroethene ND ug/kg 78 20. 50 trans-1,2-Dichloroethene ND ug/kg 120 17. 50 Trichloroethene ND ug/kg 78 9.8 50 1,2-Dichlorobenzene ND ug/kg 390 12. 50	Vinyl chloride	ND		ug/kg	160	9.2	50
trans-1,2-Dichloroethene ND ug/kg 120 17. 50 Trichloroethene ND ug/kg 78 9.8 50 1,2-Dichlorobenzene ND ug/kg 390 12. 50	Chloroethane	ND		ug/kg	160	25.	50
Trichloroethene ND ug/kg 78 9.8 50 1,2-Dichlorobenzene ND ug/kg 390 12. 50	1,1-Dichloroethene	ND		ug/kg	78	20.	50
1,2-Dichlorobenzene ND ug/kg 390 12. 50	trans-1,2-Dichloroethene	ND		ug/kg	120	17.	50
	Trichloroethene	ND		ug/kg	78	9.8	50
1,3-Dichlorobenzene ND ug/kg 390 11. 50	1,2-Dichlorobenzene	ND		ug/kg	390	12.	50
· · · · · · · · · · · · · · · · · · ·	1,3-Dichlorobenzene	ND		ug/kg	390	11.	50
1,4-Dichlorobenzene ND ug/kg 390 11. 50	1,4-Dichlorobenzene	ND		ug/kg	390	11.	50

06/29/16 08:55

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-07 D Date Collected:

Client ID: P3-9 (8-12) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL **Dilution Factor** Volatile Organics by GC/MS - Westborough Lab Methyl tert butyl ether ND 160 6.6 50 ug/kg p/m-Xylene 56 J ug/kg 160 16. 50 ND 160 14. 50 o-Xylene ug/kg ND cis-1,2-Dichloroethene 78 11. 50 ug/kg Styrene ND 160 32. 50 ug/kg Dichlorodifluoromethane ND 780 50 15. ug/kg Acetone ND 780 81. 50 ug/kg Carbon disulfide ND ug/kg 780 87. 50 ND 2-Butanone ug/kg 780 21. 50 ND 780 19. 50 4-Methyl-2-pentanone ug/kg 2-Hexanone ND ug/kg 780 52. 50 Bromochloromethane ND 390 22. 50 ug/kg 1,2-Dibromoethane ND 310 14. 50 ug/kg J 50 78 9.0 50 n-Butylbenzene ug/kg 1,2-Dibromo-3-chloropropane ND 390 31. 50 ug/kg Isopropylbenzene 58 J 78 8.2 50 ug/kg n-Propylbenzene 140 78 8.6 50 ug/kg 1,2,3-Trichlorobenzene ND 390 12. 50 ug/kg 1,2,4-Trichlorobenzene ND 390 14. 50 ug/kg 140 J 50 1,3,5-Trimethylbenzene 390 11. ug/kg 1,2,4-Trimethylbenzene 660 390 11. 50 ug/kg Methyl Acetate 2600 ug/kg 1600 21. 50 Cyclohexane 260 J 1600 11. 50 ug/kg 1,4-Dioxane ND 7800 1100 50 ug/kg Freon-113 ND ug/kg 1600 22. 50 Methyl cyclohexane 800 ug/kg 310 12. 50

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

Result

SAMPLE RESULTS

Qualifier

Lab ID: L1620368-07 D

Client ID: P3-9 (8-12)
Sample Location: SYRACUSE, NY

Parameter

Date Collected: 06/29/16 08:55

Date Received: 06/30/16

Field Prep: Not Specified
Units RL MDL Dilution Factor

Tentatively Identified Compounds				
Total TIC Compounds	6900	J	ug/kg	50
Unknown	480	J	ug/kg	50
Unknown	840	J	ug/kg	50
Unknown	1100	J	ug/kg	50
Unknown	450	J	ug/kg	50
Unknown Cyclohexane	640	J	ug/kg	50
Unknown	590	J	ug/kg	50
Unknown Benzene	650	J	ug/kg	50
Unknown	560	J	ug/kg	50
Unknown Benzene	1100	J	ug/kg	50
Unknown Aromatic	460	J	ug/kg	50

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	91		70-130	
Toluene-d8	92		70-130	
4-Bromofluorobenzene	92		70-130	
Dibromofluoromethane	95		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 10/25/16

Lab ID: L1620368-08 Date Collected: 06/29/16 08:55

Client ID: Date Received: P3-9 (12-16) 06/30/16 Field Prep: Sample Location: SYRACUSE, NY Not Specified

Matrix: Soil

Analytical Method: 1,8260C

Analytical Date: 07/12/16 06:56

Analyst: PΚ 58% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/kg	16	1.8	1
1,1-Dichloroethane	ND		ug/kg	2.4	0.14	1
Chloroform	ND		ug/kg	2.4	0.60	1
Carbon tetrachloride	ND		ug/kg	1.6	0.34	1
1,2-Dichloropropane	ND		ug/kg	5.7	0.37	1
Dibromochloromethane	ND		ug/kg	1.6	0.25	1
1,1,2-Trichloroethane	ND		ug/kg	2.4	0.49	1
Tetrachloroethene	ND		ug/kg	1.6	0.23	1
Chlorobenzene	ND		ug/kg	1.6	0.57	1
Trichlorofluoromethane	ND		ug/kg	8.1	0.63	1
1,2-Dichloroethane	ND		ug/kg	1.6	0.18	1
1,1,1-Trichloroethane	ND		ug/kg	1.6	0.18	1
Bromodichloromethane	ND		ug/kg	1.6	0.28	1
trans-1,3-Dichloropropene	ND		ug/kg	1.6	0.20	1
cis-1,3-Dichloropropene	ND		ug/kg	1.6	0.19	1
Bromoform	ND		ug/kg	6.5	0.38	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	1.6	0.16	1
Benzene	0.24	J	ug/kg	1.6	0.19	1
Toluene	0.32	J	ug/kg	2.4	0.32	1
Ethylbenzene	1.6		ug/kg	1.6	0.21	1
Chloromethane	ND		ug/kg	8.1	0.48	1
Bromomethane	ND		ug/kg	3.2	0.55	1
Vinyl chloride	ND		ug/kg	3.2	0.19	1
Chloroethane	ND		ug/kg	3.2	0.51	1
1,1-Dichloroethene	ND		ug/kg	1.6	0.43	1
trans-1,2-Dichloroethene	ND		ug/kg	2.4	0.34	1
Trichloroethene	ND		ug/kg	1.6	0.20	1
1,2-Dichlorobenzene	ND		ug/kg	8.1	0.25	1
1,3-Dichlorobenzene	ND		ug/kg	8.1	0.22	1
1,4-Dichlorobenzene	ND		ug/kg	8.1	0.22	1

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: Date Collected: 06/29/16 08:55

Client ID: P3-9 (12-16) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westbo	orough Lab						
Methyl tert butyl ether	ND		ug/kg	3.2	0.14	1	
p/m-Xylene	2.0	J	ug/kg	3.2	0.32	1	
o-Xylene	ND		ug/kg	3.2	0.28	1	
cis-1,2-Dichloroethene	ND		ug/kg	1.6	0.23	1	
Styrene	ND		ug/kg	3.2	0.65	1	
Dichlorodifluoromethane	ND		ug/kg	16	0.31	1	
Acetone	31		ug/kg	16	1.7	1	
Carbon disulfide	ND		ug/kg	16	1.8	1	
2-Butanone	ND		ug/kg	16	0.44	1	
4-Methyl-2-pentanone	ND		ug/kg	16	0.40	1	
2-Hexanone	ND		ug/kg	16	1.1	1	
Bromochloromethane	ND		ug/kg	8.1	0.45	1	
1,2-Dibromoethane	ND		ug/kg	6.5	0.28	1	
n-Butylbenzene	1.5	J	ug/kg	1.6	0.19	1	
1,2-Dibromo-3-chloropropane	ND		ug/kg	8.1	0.64	1	
Isopropylbenzene	1.7		ug/kg	1.6	0.17	1	
n-Propylbenzene	4.5		ug/kg	1.6	0.18	1	
1,2,3-Trichlorobenzene	ND		ug/kg	8.1	0.24	1	
1,2,4-Trichlorobenzene	ND		ug/kg	8.1	0.30	1	
1,3,5-Trimethylbenzene	9.8		ug/kg	8.1	0.23	1	
1,2,4-Trimethylbenzene	27		ug/kg	8.1	0.23	1	
Methyl Acetate	ND		ug/kg	32	0.44	1	
Cyclohexane	12	J	ug/kg	32	0.24	1	
1,4-Dioxane	ND		ug/kg	160	23.	1	
Freon-113	ND		ug/kg	32	0.44	1	
Methyl cyclohexane	28		ug/kg	6.5	0.25	1	

Dilution Factor

MDL

RL

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-08 Date Collected: 06/29/16 08:55

Client ID: P3-9 (12-16) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Qualifier

Units

Result

Volatile Organics by GC/MS - Westborough Lab

Parameter

Tentatively Identified Compounds				
Total TIC Compounds	280	J	ug/kg	1
Butane, 2,3-Dimethyl-	77	NJ	ug/kg	1
Pentane, 3-methyl-	18	NJ	ug/kg	1
Unknown	19	J	ug/kg	1
Hexane, 3-methyl-	16	NJ	ug/kg	1
Unknown Alkane	52	J	ug/kg	1
Unknown	21	J	ug/kg	1
Unknown Cyclohexane	29	J	ug/kg	1
Unknown	16	J	ug/kg	1
Unknown Benzene	21	J	ug/kg	1
Unknown Benzene	15	J	ug/kg	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	70		70-130	
Toluene-d8	95		70-130	
4-Bromofluorobenzene	98		70-130	
Dibromofluoromethane	84		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 10/25/16

Lab ID: L1620368-09 D

Client ID: P3-8 (4-8) SYRACUSE, NY Sample Location:

Matrix: Soil Analytical Method: 1,8260C

Analytical Date: 07/11/16 16:57

Analyst: MV 61% Percent Solids:

Date Collected: 06/29/16 09:05 Date Received: 06/30/16 Field Prep:

Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westb	oorough Lab						
Methylene chloride	ND		ug/kg	3200	350	200	
1,1-Dichloroethane	ND		ug/kg	480	27.	200	
Chloroform	ND		ug/kg	480	120	200	
Carbon tetrachloride	ND		ug/kg	320	67.	200	
1,2-Dichloropropane	ND		ug/kg	1100	73.	200	
Dibromochloromethane	ND		ug/kg	320	49.	200	
1,1,2-Trichloroethane	ND		ug/kg	480	97.	200	
Tetrachloroethene	ND		ug/kg	320	45.	200	
Chlorobenzene	ND		ug/kg	320	110	200	
Trichlorofluoromethane	ND		ug/kg	1600	120	200	
1,2-Dichloroethane	ND		ug/kg	320	36.	200	
1,1,1-Trichloroethane	ND		ug/kg	320	35.	200	
Bromodichloromethane	ND		ug/kg	320	55.	200	
trans-1,3-Dichloropropene	ND		ug/kg	320	39.	200	
cis-1,3-Dichloropropene	ND		ug/kg	320	38.	200	
Bromoform	ND		ug/kg	1300	76.	200	
1,1,2,2-Tetrachloroethane	ND		ug/kg	320	32.	200	
Benzene	ND		ug/kg	320	38.	200	
Toluene	ND		ug/kg	480	62.	200	
Ethylbenzene	ND		ug/kg	320	41.	200	
Chloromethane	ND		ug/kg	1600	94.	200	
Bromomethane	ND		ug/kg	640	110	200	
Vinyl chloride	ND		ug/kg	640	38.	200	
Chloroethane	ND		ug/kg	640	100	200	
1,1-Dichloroethene	ND		ug/kg	320	84.	200	
trans-1,2-Dichloroethene	ND		ug/kg	480	68.	200	
Trichloroethene	ND		ug/kg	320	40.	200	
1,2-Dichlorobenzene	ND		ug/kg	1600	49.	200	
1,3-Dichlorobenzene	ND		ug/kg	1600	43.	200	
1,4-Dichlorobenzene	ND		ug/kg	1600	44.	200	

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-09 D

Client ID: P3-8 (4-8)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 09:05

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methyl tert butyl ether	ND		ug/kg	640	27.	200
p/m-Xylene	84	J	ug/kg	640	63.	200
o-Xylene	ND		ug/kg	640	55.	200
cis-1,2-Dichloroethene	ND		ug/kg	320	46.	200
Styrene	ND		ug/kg	640	130	200
Dichlorodifluoromethane	ND		ug/kg	3200	61.	200
Acetone	ND		ug/kg	3200	330	200
Carbon disulfide	ND		ug/kg	3200	350	200
2-Butanone	ND		ug/kg	3200	87.	200
4-Methyl-2-pentanone	ND		ug/kg	3200	78.	200
2-Hexanone	ND		ug/kg	3200	210	200
Bromochloromethane	ND		ug/kg	1600	88.	200
1,2-Dibromoethane	ND		ug/kg	1300	56.	200
n-Butylbenzene	ND		ug/kg	320	37.	200
1,2-Dibromo-3-chloropropane	ND		ug/kg	1600	130	200
Isopropylbenzene	360		ug/kg	320	33.	200
n-Propylbenzene	150	J	ug/kg	320	35.	200
1,2,3-Trichlorobenzene	ND		ug/kg	1600	47.	200
1,2,4-Trichlorobenzene	ND		ug/kg	1600	58.	200
1,3,5-Trimethylbenzene	ND		ug/kg	1600	46.	200
1,2,4-Trimethylbenzene	ND		ug/kg	1600	45.	200
Methyl Acetate	ND		ug/kg	6400	86.	200
Cyclohexane	ND		ug/kg	6400	47.	200
1,4-Dioxane	ND		ug/kg	32000	4600	200
Freon-113	ND		ug/kg	6400	88.	200
Methyl cyclohexane	5700		ug/kg	1300	50.	200

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-09 D

Client ID: P3-8 (4-8)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 09:05 Date Received: 06/30/16

Date Received: 06/30/16 Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Tentatively Identified Compounds				
Total TIC Compounds	150000	J	ug/kg	200
Unknown	43000	J	ug/kg	200
Unknown	14000	J	ug/kg	200
Pentane, 2,3,4-trimethyl-	20000	NJ	ug/kg	200
Unknown Alkane	20000	J	ug/kg	200
Unknown	17000	J	ug/kg	200
Unknown Cyclohexane	7000	J	ug/kg	200
Unknown	7600	J	ug/kg	200
Unknown	6600	J	ug/kg	200
Unknown	8200	J	ug/kg	200
Unknown	6400	J	ug/kg	200

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	106		70-130	
Toluene-d8	119		70-130	
4-Bromofluorobenzene	99		70-130	
Dibromofluoromethane	101		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 10/25/16

Lab ID: L1620368-10 D

Client ID: P3-7 (4-8) ${\sf SYRACUSE}, {\sf NY}$ Sample Location:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 07/11/16 17:23

Analyst: MV 62% Percent Solids:

Date Collected: 06/29/16 09:15

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/kg	1500	170	100
1,1-Dichloroethane	ND		ug/kg	230	13.	100
Chloroform	ND		ug/kg	230	57.	100
Carbon tetrachloride	ND		ug/kg	150	32.	100
1,2-Dichloropropane	ND		ug/kg	540	35.	100
Dibromochloromethane	ND		ug/kg	150	24.	100
1,1,2-Trichloroethane	ND		ug/kg	230	47.	100
Tetrachloroethene	ND		ug/kg	150	22.	100
Chlorobenzene	ND		ug/kg	150	54.	100
Trichlorofluoromethane	ND		ug/kg	770	60.	100
1,2-Dichloroethane	ND		ug/kg	150	18.	100
1,1,1-Trichloroethane	ND		ug/kg	150	17.	100
Bromodichloromethane	ND		ug/kg	150	27.	100
trans-1,3-Dichloropropene	ND		ug/kg	150	19.	100
cis-1,3-Dichloropropene	ND		ug/kg	150	18.	100
Bromoform	ND		ug/kg	620	36.	100
1,1,2,2-Tetrachloroethane	ND		ug/kg	150	16.	100
Benzene	ND		ug/kg	150	18.	100
Toluene	32	J	ug/kg	230	30.	100
Ethylbenzene	690		ug/kg	150	20.	100
Chloromethane	ND		ug/kg	770	45.	100
Bromomethane	ND		ug/kg	310	52.	100
Vinyl chloride	ND		ug/kg	310	18.	100
Chloroethane	ND		ug/kg	310	49.	100
1,1-Dichloroethene	ND		ug/kg	150	40.	100
trans-1,2-Dichloroethene	ND		ug/kg	230	33.	100
Trichloroethene	ND		ug/kg	150	19.	100
1,2-Dichlorobenzene	ND		ug/kg	770	24.	100
1,3-Dichlorobenzene	ND		ug/kg	770	21.	100
1,4-Dichlorobenzene	ND		ug/kg	770	21.	100

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-10 D

Client ID: P3-7 (4-8)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 09:15

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methyl tert butyl ether	ND		ug/kg	310	13.	100
p/m-Xylene	1400		ug/kg	310	30.	100
o-Xylene	190	J	ug/kg	310	26.	100
cis-1,2-Dichloroethene	ND		ug/kg	150	22.	100
Styrene	ND		ug/kg	310	62.	100
Dichlorodifluoromethane	ND		ug/kg	1500	29.	100
Acetone	ND		ug/kg	1500	160	100
Carbon disulfide	ND		ug/kg	1500	170	100
2-Butanone	ND		ug/kg	1500	42.	100
4-Methyl-2-pentanone	ND		ug/kg	1500	38.	100
2-Hexanone	ND		ug/kg	1500	100	100
Bromochloromethane	ND		ug/kg	770	42.	100
1,2-Dibromoethane	ND		ug/kg	620	27.	100
n-Butylbenzene	250		ug/kg	150	18.	100
1,2-Dibromo-3-chloropropane	ND		ug/kg	770	61.	100
Isopropylbenzene	550		ug/kg	150	16.	100
n-Propylbenzene	860		ug/kg	150	17.	100
1,2,3-Trichlorobenzene	ND		ug/kg	770	23.	100
1,2,4-Trichlorobenzene	ND		ug/kg	770	28.	100
1,3,5-Trimethylbenzene	ND		ug/kg	770	22.	100
1,2,4-Trimethylbenzene	23000		ug/kg	770	22.	100
Methyl Acetate	ND		ug/kg	3100	42.	100
Cyclohexane	6200		ug/kg	3100	22.	100
1,4-Dioxane	ND		ug/kg	15000	2200	100
Freon-113	ND		ug/kg	3100	42.	100
Methyl cyclohexane	26000		ug/kg	620	24.	100

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

Result

SAMPLE RESULTS

Qualifier

Units

Lab ID: L1620368-10 D

Client ID: P3-7 (4-8)
Sample Location: SYRACUSE, NY

Parameter

Date Collected: 06/29

06/29/16 09:15

Date Received: 06/30/16 Field Prep: Not Specif

Field Prep: Not Specified

RL MDL Dilution Factor

Tentatively Identified Compounds				
Total TIC Compounds	270000	J	ug/kg	100
Unknown Alkane	22000	J	ug/kg	100
Unknown	18000	J	ug/kg	100
Unknown	19000	J	ug/kg	100
Unknown Benzene	22000	J	ug/kg	100
Unknown Benzene	32000	J	ug/kg	100
Unknown Aromatic	29000	J	ug/kg	100
Unknown Benzene	53000	J	ug/kg	100
Unknown	24000	J	ug/kg	100
Unknown Aromatic	21000	J	ug/kg	100
Unknown	25000	J	ug/kg	100

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	106		70-130	
Toluene-d8	113		70-130	
4-Bromofluorobenzene	113		70-130	
Dibromofluoromethane	98		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 10/25/16

Lab ID: L1620368-11 D

Client ID: P3-7 (8-12) SYRACUSE, NY Sample Location:

Matrix: Soil Analytical Method: 1,8260C

Analytical Date: 07/11/16 17:48

Analyst: MV45% Percent Solids:

Date Collected:	06/29/16 09:15
Data Bassiyadı	06/20/16

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/kg	20000	2200	1000
1,1-Dichloroethane	ND		ug/kg	3000	170	1000
Chloroform	ND		ug/kg	3000	740	1000
Carbon tetrachloride	ND		ug/kg	2000	420	1000
1,2-Dichloropropane	ND		ug/kg	7000	460	1000
Dibromochloromethane	ND		ug/kg	2000	310	1000
1,1,2-Trichloroethane	ND		ug/kg	3000	610	1000
Tetrachloroethene	ND		ug/kg	2000	280	1000
Chlorobenzene	ND		ug/kg	2000	700	1000
Trichlorofluoromethane	ND		ug/kg	10000	780	1000
1,2-Dichloroethane	ND		ug/kg	2000	230	1000
1,1,1-Trichloroethane	ND		ug/kg	2000	220	1000
Bromodichloromethane	ND		ug/kg	2000	350	1000
trans-1,3-Dichloropropene	ND		ug/kg	2000	240	1000
cis-1,3-Dichloropropene	ND		ug/kg	2000	240	1000
Bromoform	ND		ug/kg	8000	470	1000
1,1,2,2-Tetrachloroethane	ND		ug/kg	2000	200	1000
Benzene	ND		ug/kg	2000	240	1000
Toluene	8200		ug/kg	3000	390	1000
Ethylbenzene	70000		ug/kg	2000	260	1000
Chloromethane	ND		ug/kg	10000	590	1000
Bromomethane	ND		ug/kg	4000	680	1000
Vinyl chloride	ND		ug/kg	4000	240	1000
Chloroethane	ND		ug/kg	4000	630	1000
1,1-Dichloroethene	ND		ug/kg	2000	520	1000
trans-1,2-Dichloroethene	ND		ug/kg	3000	420	1000
Trichloroethene	ND		ug/kg	2000	250	1000
1,2-Dichlorobenzene	ND		ug/kg	10000	310	1000
1,3-Dichlorobenzene	ND		ug/kg	10000	270	1000
1,4-Dichlorobenzene	ND		ug/kg	10000	280	1000

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-11 D

Client ID: P3-7 (8-12)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 09:15

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - W	estborough Lab					
Methyl tert butyl ether	ND		ug/kg	4000	170	1000
p/m-Xylene	270000		ug/kg	4000	400	1000
o-Xylene	18000		ug/kg	4000	340	1000
cis-1,2-Dichloroethene	ND		ug/kg	2000	280	1000
Styrene	ND		ug/kg	4000	800	1000
Dichlorodifluoromethane	ND		ug/kg	20000	380	1000
Acetone	ND		ug/kg	20000	2100	1000
Carbon disulfide	ND		ug/kg	20000	2200	1000
2-Butanone	ND		ug/kg	20000	540	1000
4-Methyl-2-pentanone	ND		ug/kg	20000	490	1000
2-Hexanone	ND		ug/kg	20000	1300	1000
Bromochloromethane	ND		ug/kg	10000	550	1000
1,2-Dibromoethane	ND		ug/kg	8000	350	1000
n-Butylbenzene	7400		ug/kg	2000	230	1000
1,2-Dibromo-3-chloropropane	ND		ug/kg	10000	790	1000
Isopropylbenzene	6900		ug/kg	2000	210	1000
n-Propylbenzene	19000		ug/kg	2000	220	1000
1,2,3-Trichlorobenzene	ND		ug/kg	10000	300	1000
1,2,4-Trichlorobenzene	ND		ug/kg	10000	360	1000
1,3,5-Trimethylbenzene	84000		ug/kg	10000	290	1000
1,2,4-Trimethylbenzene	220000		ug/kg	10000	280	1000
Methyl Acetate	ND		ug/kg	40000	540	1000
Cyclohexane	56000		ug/kg	40000	290	1000
1,4-Dioxane	ND		ug/kg	200000	29000	1000
Freon-113	ND		ug/kg	40000	550	1000
Methyl cyclohexane	130000		ug/kg	8000	310	1000

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-11 D

Client ID: P3-7 (8-12)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 09:15

Date Received: 06/30/16 Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Tentatively Identified Compounds				
Total TIC Compounds	520000	J	ug/kg	1000
Unknown	55000	J	ug/kg	1000
Unknown Cycloalkane	56000	J	ug/kg	1000
Unknown	42000	J	ug/kg	1000
Unknown	40000	J	ug/kg	1000
Unknown Benzene	66000	J	ug/kg	1000
Unknown Benzene	54000	J	ug/kg	1000
Unknown Benzene	47000	J	ug/kg	1000
Unknown Benzene	51000	J	ug/kg	1000
Unknown Aromatic	47000	J	ug/kg	1000
Benzene, 2-butenyl-	62000	NJ	ug/kg	1000

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	107		70-130	
Toluene-d8	106		70-130	
4-Bromofluorobenzene	104		70-130	
Dibromofluoromethane	102		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 10/25/16

Lab ID: L1620368-12 D

Client ID: P3-6 (4-8) Sample Location: SYRACUSE, NY

Matrix: Soil Analytical Method: 1,8260C

Analytical Date: 07/11/16 18:13

Analyst: MV 63% Percent Solids:

Date Collected:	06/29/16 09:20
Date Received:	06/30/16
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
Methylene chloride	ND		ug/kg	7900	870	500		
1,1-Dichloroethane	ND		ug/kg	1200	68.	500		
Chloroform	ND		ug/kg	1200	290	500		
Carbon tetrachloride	ND		ug/kg	790	170	500		
1,2-Dichloropropane	ND		ug/kg	2800	180	500		
Dibromochloromethane	ND		ug/kg	790	120	500		
1,1,2-Trichloroethane	ND		ug/kg	1200	240	500		
Tetrachloroethene	ND		ug/kg	790	110	500		
Chlorobenzene	ND		ug/kg	790	280	500		
Trichlorofluoromethane	ND		ug/kg	4000	310	500		
1,2-Dichloroethane	ND		ug/kg	790	90.	500		
1,1,1-Trichloroethane	ND		ug/kg	790	88.	500		
Bromodichloromethane	ND		ug/kg	790	140	500		
trans-1,3-Dichloropropene	ND		ug/kg	790	96.	500		
cis-1,3-Dichloropropene	ND		ug/kg	790	93.	500		
Bromoform	ND		ug/kg	3200	190	500		
1,1,2,2-Tetrachloroethane	ND		ug/kg	790	80.	500		
Benzene	ND		ug/kg	790	93.	500		
Toluene	410	J	ug/kg	1200	150	500		
Ethylbenzene	19000		ug/kg	790	100	500		
Chloromethane	ND		ug/kg	4000	230	500		
Bromomethane	ND		ug/kg	1600	270	500		
Vinyl chloride	ND		ug/kg	1600	93.	500		
Chloroethane	ND		ug/kg	1600	250	500		
1,1-Dichloroethene	ND		ug/kg	790	210	500		
trans-1,2-Dichloroethene	ND		ug/kg	1200	170	500		
Trichloroethene	ND		ug/kg	790	99.	500		
1,2-Dichlorobenzene	ND		ug/kg	4000	120	500		
1,3-Dichlorobenzene	ND		ug/kg	4000	110	500		
1,4-Dichlorobenzene	ND		ug/kg	4000	110	500		

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-12 D

Client ID: P3-6 (4-8)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 09:20

Date Received: 06/30/16
Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL **Dilution Factor** Volatile Organics by GC/MS - Westborough Lab Methyl tert butyl ether ND 1600 67. 500 ug/kg p/m-Xylene 30000 ug/kg 1600 160 500 3200 1600 140 500 o-Xylene ug/kg ND 500 cis-1,2-Dichloroethene 790 110 ug/kg Styrene ND 1600 320 500 ug/kg Dichlorodifluoromethane ND 7900 500 150 ug/kg Acetone ND 7900 820 500 ug/kg Carbon disulfide ND ug/kg 7900 870 500 2-Butanone ND ug/kg 7900 220 500 ND 7900 190 500 4-Methyl-2-pentanone ug/kg 2-Hexanone ND ug/kg 7900 530 500 Bromochloromethane ND 4000 220 500 ug/kg 1,2-Dibromoethane ND 3200 140 500 ug/kg 5300 790 500 n-Butylbenzene ug/kg 91. 1,2-Dibromo-3-chloropropane ND 4000 310 500 ug/kg Isopropylbenzene 3100 790 82. 500 ug/kg 8700 n-Propylbenzene 790 86. 500 ug/kg 1,2,3-Trichlorobenzene ND 4000 120 500 ug/kg 1,2,4-Trichlorobenzene ND 4000 140 500 ug/kg 6400 4000 500 1,3,5-Trimethylbenzene 110 ug/kg 1,2,4-Trimethylbenzene 96000 4000 110 500 ug/kg Methyl Acetate ND ug/kg 16000 210 500 Cyclohexane 34000 16000 120 500 ug/kg 1,4-Dioxane ND 79000 11000 500 ug/kg Freon-113 ND ug/kg 16000 220 500 Methyl cyclohexane 110000 ug/kg 3200 120 500

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-12 D

Client ID: P3-6 (4-8)
Sample Location: SYRACUSE, NY

Date Collected: 06/2

06/29/16 09:20

Date Received: 06/30/16 Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Tentatively Identified Compounds				
Total TIC Compounds	650000	J	ug/kg	500
Unknown Alkane	66000	J	ug/kg	500
Unknown	54000	J	ug/kg	500
Unknown	50000	J	ug/kg	500
Unknown Benzene	51000	J	ug/kg	500
Unknown Benzene	58000	J	ug/kg	500
Unknown Aromatic	57000	J	ug/kg	500
Unknown Benzene	110000	J	ug/kg	500
Unknown Benzene	58000	J	ug/kg	500
Unknown Aromatic	78000	J	ug/kg	500
Unknown Aromatic	64000	J	ug/kg	500

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	106		70-130	
Toluene-d8	108		70-130	
4-Bromofluorobenzene	102		70-130	
Dibromofluoromethane	100		70-130	

L1620368

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Report Date: 10/25/16

Lab Number:

Lab ID: L1620368-13 D

Client ID: P3-6 (8-12) SYRACUSE, NY Sample Location:

Matrix: Soil Analytical Method: 1,8260C

Analytical Date: 07/11/16 18:39

Analyst: MV46% Percent Solids:

Date Collected: 06/29/16 09:20

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/kg	11000	1200	500
1,1-Dichloroethane	ND		ug/kg	1600	94.	500
Chloroform	ND		ug/kg	1600	400	500
Carbon tetrachloride	ND		ug/kg	1100	230	500
1,2-Dichloropropane	ND		ug/kg	3800	250	500
Dibromochloromethane	ND		ug/kg	1100	170	500
1,1,2-Trichloroethane	ND		ug/kg	1600	330	500
Tetrachloroethene	ND		ug/kg	1100	150	500
Chlorobenzene	ND		ug/kg	1100	380	500
Trichlorofluoromethane	ND		ug/kg	5500	420	500
1,2-Dichloroethane	ND		ug/kg	1100	120	500
1,1,1-Trichloroethane	ND		ug/kg	1100	120	500
Bromodichloromethane	ND		ug/kg	1100	190	500
trans-1,3-Dichloropropene	ND		ug/kg	1100	130	500
cis-1,3-Dichloropropene	ND		ug/kg	1100	130	500
Bromoform	ND		ug/kg	4400	260	500
1,1,2,2-Tetrachloroethane	ND		ug/kg	1100	110	500
Benzene	ND		ug/kg	1100	130	500
Toluene	2200		ug/kg	1600	210	500
Ethylbenzene	41000		ug/kg	1100	140	500
Chloromethane	ND		ug/kg	5500	320	500
Bromomethane	ND		ug/kg	2200	370	500
Vinyl chloride	ND		ug/kg	2200	130	500
Chloroethane	ND		ug/kg	2200	350	500
1,1-Dichloroethene	ND		ug/kg	1100	290	500
trans-1,2-Dichloroethene	ND		ug/kg	1600	230	500
Trichloroethene	ND		ug/kg	1100	140	500
1,2-Dichlorobenzene	ND		ug/kg	5500	170	500
1,3-Dichlorobenzene	ND		ug/kg	5500	150	500
1,4-Dichlorobenzene	ND		ug/kg	5500	150	500

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-13 D

Client ID: P3-6 (8-12)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 09:20

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - W	Volatile Organics by GC/MS - Westborough Lab								
Methyl tert butyl ether	ND		ug/kg	2200	92.	500			
p/m-Xylene	120000		ug/kg	2200	220	500			
o-Xylene	8900		ug/kg	2200	190	500			
cis-1,2-Dichloroethene	ND		ug/kg	1100	160	500			
Styrene	ND		ug/kg	2200	440	500			
Dichlorodifluoromethane	ND		ug/kg	11000	210	500			
Acetone	ND		ug/kg	11000	1100	500			
Carbon disulfide	ND		ug/kg	11000	1200	500			
2-Butanone	ND		ug/kg	11000	300	500			
4-Methyl-2-pentanone	ND		ug/kg	11000	270	500			
2-Hexanone	ND		ug/kg	11000	730	500			
Bromochloromethane	ND		ug/kg	5500	300	500			
1,2-Dibromoethane	ND		ug/kg	4400	190	500			
n-Butylbenzene	5800		ug/kg	1100	120	500			
1,2-Dibromo-3-chloropropane	ND		ug/kg	5500	430	500			
Isopropylbenzene	4800		ug/kg	1100	110	500			
n-Propylbenzene	13000		ug/kg	1100	120	500			
1,2,3-Trichlorobenzene	ND		ug/kg	5500	160	500			
1,2,4-Trichlorobenzene	ND		ug/kg	5500	200	500			
1,3,5-Trimethylbenzene	59000		ug/kg	5500	160	500			
1,2,4-Trimethylbenzene	150000		ug/kg	5500	160	500			
Methyl Acetate	ND		ug/kg	22000	300	500			
Cyclohexane	40000		ug/kg	22000	160	500			
1,4-Dioxane	ND		ug/kg	110000	16000	500			
Freon-113	ND		ug/kg	22000	300	500			
Methyl cyclohexane	99000		ug/kg	4400	170	500			

06/29/16 09:20

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-13 D

Client ID: P3-6 (8-12)
Sample Location: SYRACUSE, NY

Date Received: 06/30/16
Field Prep: Not Specified

Date Collected:

Parameter Result Qualifier Units RL MDL Dilution Factor

Tentatively Identified Compounds				
Total TIC Compounds	410000	J	ug/kg	500
Pentane, 2-methyl-	39000	NJ	ug/kg	500
Unknown Cycloalkane	40000	J	ug/kg	500
Unknown Alkane	34000	J	ug/kg	500
Unknown Cyclohexane	32000	J	ug/kg	500
Unknown Benzene	48000	J	ug/kg	500
Unknown Benzene	42000	J	ug/kg	500
Unknown Benzene	42000	J	ug/kg	500
Unknown Benzene	42000	J	ug/kg	500
Unknown Benzene	39000	J	ug/kg	500
Unknown Aromatic	50000	J	ug/kg	500

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	107		70-130	
Toluene-d8	105		70-130	
4-Bromofluorobenzene	106		70-130	
Dibromofluoromethane	99		70-130	

Not Specified

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 10/25/16

Lab ID: L1620368-14 D

Client ID: P3-5 (6-8) SYRACUSE, NY Sample Location:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 07/11/16 19:04

Analyst: MV 56% Percent Solids:

Date Collected:	06/29/16 09:35
Date Received:	06/30/16

Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
Methylene chloride	ND		ug/kg	3900	430	250		
1,1-Dichloroethane	ND		ug/kg	580	33.	250		
Chloroform	ND		ug/kg	580	140	250		
Carbon tetrachloride	ND		ug/kg	390	81.	250		
1,2-Dichloropropane	ND		ug/kg	1400	88.	250		
Dibromochloromethane	ND		ug/kg	390	59.	250		
1,1,2-Trichloroethane	ND		ug/kg	580	120	250		
Tetrachloroethene	ND		ug/kg	390	54.	250		
Chlorobenzene	ND		ug/kg	390	130	250		
Trichlorofluoromethane	ND		ug/kg	1900	150	250		
1,2-Dichloroethane	ND		ug/kg	390	44.	250		
1,1,1-Trichloroethane	ND		ug/kg	390	43.	250		
Bromodichloromethane	ND		ug/kg	390	67.	250		
trans-1,3-Dichloropropene	ND		ug/kg	390	47.	250		
cis-1,3-Dichloropropene	ND		ug/kg	390	45.	250		
Bromoform	ND		ug/kg	1500	91.	250		
1,1,2,2-Tetrachloroethane	ND		ug/kg	390	39.	250		
Benzene	1600		ug/kg	390	46.	250		
Toluene	8800		ug/kg	580	75.	250		
Ethylbenzene	9700		ug/kg	390	49.	250		
Chloromethane	ND		ug/kg	1900	110	250		
Bromomethane	ND		ug/kg	770	130	250		
Vinyl chloride	ND		ug/kg	770	45.	250		
Chloroethane	ND		ug/kg	770	120	250		
1,1-Dichloroethene	ND		ug/kg	390	100	250		
trans-1,2-Dichloroethene	ND		ug/kg	580	82.	250		
Trichloroethene	ND		ug/kg	390	48.	250		
1,2-Dichlorobenzene	ND		ug/kg	1900	59.	250		
1,3-Dichlorobenzene	ND		ug/kg	1900	52.	250		
1,4-Dichlorobenzene	ND		ug/kg	1900	53.	250		

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-14 D

Client ID: P3-5 (6-8)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 09:35

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
Methyl tert butyl ether	ND		ug/kg	770	32.	250		
p/m-Xylene	67000		ug/kg	770	76.	250		
o-Xylene	26000		ug/kg	770	66.	250		
cis-1,2-Dichloroethene	ND		ug/kg	390	55.	250		
Styrene	ND		ug/kg	770	160	250		
Dichlorodifluoromethane	ND		ug/kg	3900	74.	250		
Acetone	ND		ug/kg	3900	400	250		
Carbon disulfide	ND		ug/kg	3900	420	250		
2-Butanone	ND		ug/kg	3900	100	250		
4-Methyl-2-pentanone	ND		ug/kg	3900	94.	250		
2-Hexanone	ND		ug/kg	3900	260	250		
Bromochloromethane	ND		ug/kg	1900	110	250		
1,2-Dibromoethane	ND		ug/kg	1500	67.	250		
n-Butylbenzene	ND		ug/kg	390	44.	250		
1,2-Dibromo-3-chloropropane	ND		ug/kg	1900	150	250		
Isopropylbenzene	1400		ug/kg	390	40.	250		
n-Propylbenzene	3400		ug/kg	390	42.	250		
1,2,3-Trichlorobenzene	ND		ug/kg	1900	57.	250		
1,2,4-Trichlorobenzene	ND		ug/kg	1900	70.	250		
1,3,5-Trimethylbenzene	23000		ug/kg	1900	55.	250		
1,2,4-Trimethylbenzene	53000		ug/kg	1900	55.	250		
Methyl Acetate	ND		ug/kg	7700	100	250		
Cyclohexane	10000		ug/kg	7700	56.	250		
1,4-Dioxane	ND		ug/kg	39000	5600	250		
Freon-113	ND		ug/kg	7700	100	250		
Methyl cyclohexane	31000		ug/kg	1500	60.	250		

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-14 D

Client ID: P3-5 (6-8)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 09:35

Date Received: 06/30/16 Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Tentatively Identified Compounds				
Total TIC Compounds	170000	J	ug/kg	250
Unknown	12000	J	ug/kg	250
Unknown	14000	J	ug/kg	250
Unknown Benzene	16000	J	ug/kg	250
Unknown Benzene	22000	J	ug/kg	250
Unknown	18000	J	ug/kg	250
Unknown Benzene	17000	J	ug/kg	250
Unknown Benzene	15000	J	ug/kg	250
Unknown Benzene	18000	J	ug/kg	250
Unknown Benzene	16000	J	ug/kg	250
Unknown Benzene	22000	J	ug/kg	250

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	104		70-130	
Toluene-d8	106		70-130	
4-Bromofluorobenzene	109		70-130	
Dibromofluoromethane	100		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 10/25/16

Lab ID: L1620368-15 D

Client ID: P3-4 (6-8) SYRACUSE, NY Sample Location:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 07/11/16 19:30

Analyst: MV49% Percent Solids:

Date Collected: 06/29/16 10:45

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/kg	4000	450	200
1,1-Dichloroethane	ND		ug/kg	610	35.	200
Chloroform	ND		ug/kg	610	150	200
Carbon tetrachloride	ND		ug/kg	400	85.	200
1,2-Dichloropropane	ND		ug/kg	1400	92.	200
Dibromochloromethane	ND		ug/kg	400	62.	200
1,1,2-Trichloroethane	ND		ug/kg	610	120	200
Tetrachloroethene	ND		ug/kg	400	57.	200
Chlorobenzene	ND		ug/kg	400	140	200
Trichlorofluoromethane	ND		ug/kg	2000	160	200
1,2-Dichloroethane	ND		ug/kg	400	46.	200
1,1,1-Trichloroethane	ND		ug/kg	400	45.	200
Bromodichloromethane	ND		ug/kg	400	70.	200
trans-1,3-Dichloropropene	ND		ug/kg	400	49.	200
cis-1,3-Dichloropropene	ND		ug/kg	400	48.	200
Bromoform	ND		ug/kg	1600	96.	200
1,1,2,2-Tetrachloroethane	ND		ug/kg	400	41.	200
Benzene	ND		ug/kg	400	48.	200
Toluene	ND		ug/kg	610	79.	200
Ethylbenzene	3100		ug/kg	400	52.	200
Chloromethane	ND		ug/kg	2000	120	200
Bromomethane	ND		ug/kg	810	140	200
Vinyl chloride	ND		ug/kg	810	48.	200
Chloroethane	ND		ug/kg	810	130	200
1,1-Dichloroethene	ND		ug/kg	400	110	200
trans-1,2-Dichloroethene	ND		ug/kg	610	86.	200
Trichloroethene	ND		ug/kg	400	51.	200
1,2-Dichlorobenzene	ND		ug/kg	2000	62.	200
1,3-Dichlorobenzene	ND		ug/kg	2000	55.	200
1,4-Dichlorobenzene	ND		ug/kg	2000	56.	200

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-15 D

Client ID: P3-4 (6-8)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 10:45

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methyl tert butyl ether	ND		ug/kg	810	34.	200
p/m-Xylene	8000		ug/kg	810	80.	200
o-Xylene	180	J	ug/kg	810	70.	200
cis-1,2-Dichloroethene	ND		ug/kg	400	58.	200
Styrene	ND		ug/kg	810	160	200
Dichlorodifluoromethane	ND		ug/kg	4000	77.	200
Acetone	ND		ug/kg	4000	420	200
Carbon disulfide	ND		ug/kg	4000	450	200
2-Butanone	ND		ug/kg	4000	110	200
4-Methyl-2-pentanone	ND		ug/kg	4000	99.	200
2-Hexanone	ND		ug/kg	4000	270	200
Bromochloromethane	ND		ug/kg	2000	110	200
1,2-Dibromoethane	ND		ug/kg	1600	71.	200
n-Butylbenzene	ND		ug/kg	400	46.	200
1,2-Dibromo-3-chloropropane	ND		ug/kg	2000	160	200
Isopropylbenzene	1400		ug/kg	400	42.	200
n-Propylbenzene	3200		ug/kg	400	44.	200
1,2,3-Trichlorobenzene	ND		ug/kg	2000	60.	200
1,2,4-Trichlorobenzene	ND		ug/kg	2000	74.	200
1,3,5-Trimethylbenzene	18000		ug/kg	2000	58.	200
1,2,4-Trimethylbenzene	56000		ug/kg	2000	57.	200
Methyl Acetate	ND		ug/kg	8100	110	200
Cyclohexane	7600	J	ug/kg	8100	59.	200
1,4-Dioxane	ND		ug/kg	40000	5800	200
Freon-113	ND		ug/kg	8100	110	200
Methyl cyclohexane	34000		ug/kg	1600	62.	200

Project Name: Lab Number: **EMBASSY SUITES** L1620368

Project Number: Report Date: 15209 10/25/16

Result

SAMPLE RESULTS

Qualifier

Units

Lab ID: L1620368-15 D

Client ID: P3-4 (6-8) Sample Location: SYRACUSE, NY

Parameter

Date Collected:

06/29/16 10:45 Date Received: 06/30/16

Field Prep: Not Specified RL MDL **Dilution Factor**

Tentatively Identified Compounds				
Total TIC Compounds	290000	J	ug/kg	200
Unknown Cyclohexane	20000	J	ug/kg	200
Unknown Benzene	24000	J	ug/kg	200
Unknown Benzene	33000	J	ug/kg	200
Unknown Benzene	31000	J	ug/kg	200
3-Phenylbut-1-ene	27000	NJ	ug/kg	200
Unknown Benzene	39000	J	ug/kg	200
Unknown Benzene	28000	J	ug/kg	200
Indan, 1-methyl-	49000	NJ	ug/kg	200
Unknown Aromatic	22000	J	ug/kg	200
Benzene, (2-methyl-1-butenyl)-	20000	NJ	ug/kg	200

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	104		70-130	
Toluene-d8	110		70-130	
4-Bromofluorobenzene	123		70-130	
Dibromofluoromethane	102		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 10/25/16

OAIIII EE REO

Lab ID: L1620368-16 D

Client ID: P3-4 (10-12)
Sample Location: SYRACUSE, NY

Matrix: Soil Analytical Method: 1,8260C

Analytical Date: 07/11/16 19:56

Analyst: MV Percent Solids: 43% Date Collected: 06/29/16 10:45

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/kg	5800	640	250
1,1-Dichloroethane	ND		ug/kg	870	50.	250
Chloroform	ND		ug/kg	870	210	250
Carbon tetrachloride	ND		ug/kg	580	120	250
1,2-Dichloropropane	ND		ug/kg	2000	130	250
Dibromochloromethane	ND		ug/kg	580	89.	250
1,1,2-Trichloroethane	ND		ug/kg	870	180	250
Tetrachloroethene	ND		ug/kg	580	81.	250
Chlorobenzene	ND		ug/kg	580	200	250
Trichlorofluoromethane	ND		ug/kg	2900	220	250
1,2-Dichloroethane	ND		ug/kg	580	66.	250
1,1,1-Trichloroethane	ND		ug/kg	580	64.	250
Bromodichloromethane	ND		ug/kg	580	100	250
trans-1,3-Dichloropropene	ND		ug/kg	580	70.	250
cis-1,3-Dichloropropene	ND		ug/kg	580	68.	250
Bromoform	ND		ug/kg	2300	140	250
1,1,2,2-Tetrachloroethane	ND		ug/kg	580	58.	250
Benzene	150	J	ug/kg	580	68.	250
Toluene	ND		ug/kg	870	110	250
Ethylbenzene	4600		ug/kg	580	74.	250
Chloromethane	ND		ug/kg	2900	170	250
Bromomethane	ND		ug/kg	1200	200	250
Vinyl chloride	ND		ug/kg	1200	68.	250
Chloroethane	ND		ug/kg	1200	180	250
1,1-Dichloroethene	ND		ug/kg	580	150	250
trans-1,2-Dichloroethene	ND		ug/kg	870	120	250
Trichloroethene	ND		ug/kg	580	72.	250
1,2-Dichlorobenzene	ND		ug/kg	2900	89.	250
1,3-Dichlorobenzene	ND		ug/kg	2900	78.	250
1,4-Dichlorobenzene	ND		ug/kg	2900	80.	250

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-16 D

Client ID: P3-4 (10-12)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 10:45

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methyl tert butyl ether	ND		ug/kg	1200	49.	250
p/m-Xylene	15000		ug/kg	1200	110	250
o-Xylene	610	J	ug/kg	1200	99.	250
cis-1,2-Dichloroethene	ND		ug/kg	580	83.	250
Styrene	ND		ug/kg	1200	230	250
Dichlorodifluoromethane	ND		ug/kg	5800	110	250
Acetone	ND		ug/kg	5800	600	250
Carbon disulfide	ND		ug/kg	5800	640	250
2-Butanone	ND		ug/kg	5800	160	250
4-Methyl-2-pentanone	ND		ug/kg	5800	140	250
2-Hexanone	ND		ug/kg	5800	380	250
Bromochloromethane	ND		ug/kg	2900	160	250
1,2-Dibromoethane	ND		ug/kg	2300	100	250
n-Butylbenzene	1700		ug/kg	580	66.	250
1,2-Dibromo-3-chloropropane	ND		ug/kg	2900	230	250
Isopropylbenzene	1600		ug/kg	580	60.	250
n-Propylbenzene	3400		ug/kg	580	63.	250
1,2,3-Trichlorobenzene	ND		ug/kg	2900	85.	250
1,2,4-Trichlorobenzene	ND		ug/kg	2900	100	250
1,3,5-Trimethylbenzene	4000		ug/kg	2900	83.	250
1,2,4-Trimethylbenzene	50000		ug/kg	2900	82.	250
Methyl Acetate	ND		ug/kg	12000	160	250
Cyclohexane	8300	J	ug/kg	12000	84.	250
1,4-Dioxane	ND		ug/kg	58000	8300	250
Freon-113	ND		ug/kg	12000	160	250
Methyl cyclohexane	31000		ug/kg	2300	89.	250

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-16 D

Client ID: P3-4 (10-12)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 10:45
Date Received: 06/30/16

Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Tentatively Identified Compounds				
Total TIC Compounds	120000	J	ug/kg	250
Unknown Cyclohexane	11000	J	ug/kg	250
Unknown Benzene	14000	J	ug/kg	250
Unknown	9900	J	ug/kg	250
Unknown Benzene	16000	J	ug/kg	250
Unknown Benzene	14000	J	ug/kg	250
Unknown Aromatic	11000	J	ug/kg	250
Unknown	12000	J	ug/kg	250
Unknown Benzene	10000	J	ug/kg	250
Unknown Aromatic	13000	J	ug/kg	250
Benzene, (2-methyl-1-butenyl)-	8400	NJ	ug/kg	250

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	102		70-130	
Toluene-d8	105		70-130	
4-Bromofluorobenzene	104		70-130	
Dibromofluoromethane	102		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 10/25/16

Lab ID: L1620368-17 D

Client ID: P3-3 (4-8) Sample Location: SYRACUSE, NY

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 07/11/16 20:21

Analyst: MVPercent Solids: 53%

Date Collected:	06/29/16 11:30
Data Danaharah	00/00/40

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/kg	16000	1800	1000
1,1-Dichloroethane	ND		ug/kg	2400	140	1000
Chloroform	ND		ug/kg	2400	600	1000
Carbon tetrachloride	ND		ug/kg	1600	340	1000
1,2-Dichloropropane	ND		ug/kg	5600	370	1000
Dibromochloromethane	ND		ug/kg	1600	250	1000
1,1,2-Trichloroethane	ND		ug/kg	2400	490	1000
Tetrachloroethene	ND		ug/kg	1600	230	1000
Chlorobenzene	ND		ug/kg	1600	560	1000
Trichlorofluoromethane	ND		ug/kg	8100	630	1000
1,2-Dichloroethane	ND		ug/kg	1600	180	1000
1,1,1-Trichloroethane	ND		ug/kg	1600	180	1000
Bromodichloromethane	ND		ug/kg	1600	280	1000
trans-1,3-Dichloropropene	ND		ug/kg	1600	200	1000
cis-1,3-Dichloropropene	ND		ug/kg	1600	190	1000
Bromoform	ND		ug/kg	6400	380	1000
1,1,2,2-Tetrachloroethane	ND		ug/kg	1600	160	1000
Benzene	ND		ug/kg	1600	190	1000
Toluene	5100		ug/kg	2400	310	1000
Ethylbenzene	16000		ug/kg	1600	200	1000
Chloromethane	ND		ug/kg	8100	470	1000
Bromomethane	ND		ug/kg	3200	540	1000
Vinyl chloride	ND		ug/kg	3200	190	1000
Chloroethane	ND		ug/kg	3200	510	1000
1,1-Dichloroethene	ND		ug/kg	1600	420	1000
trans-1,2-Dichloroethene	ND		ug/kg	2400	340	1000
Trichloroethene	ND		ug/kg	1600	200	1000
1,2-Dichlorobenzene	ND		ug/kg	8100	250	1000
1,3-Dichlorobenzene	ND		ug/kg	8100	220	1000
1,4-Dichlorobenzene	ND		ug/kg	8100	220	1000

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-17 D

Client ID: P3-3 (4-8)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 11:30

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methyl tert butyl ether	ND		ug/kg	3200	140	1000
p/m-Xylene	88000		ug/kg	3200	320	1000
o-Xylene	30000		ug/kg	3200	280	1000
cis-1,2-Dichloroethene	ND		ug/kg	1600	230	1000
Styrene	ND		ug/kg	3200	650	1000
Dichlorodifluoromethane	ND		ug/kg	16000	310	1000
Acetone	ND		ug/kg	16000	1700	1000
Carbon disulfide	ND		ug/kg	16000	1800	1000
2-Butanone	ND		ug/kg	16000	440	1000
4-Methyl-2-pentanone	ND		ug/kg	16000	390	1000
2-Hexanone	ND		ug/kg	16000	1100	1000
Bromochloromethane	ND		ug/kg	8100	440	1000
1,2-Dibromoethane	ND		ug/kg	6400	280	1000
n-Butylbenzene	3500		ug/kg	1600	180	1000
1,2-Dibromo-3-chloropropane	ND		ug/kg	8100	640	1000
Isopropylbenzene	3700		ug/kg	1600	170	1000
n-Propylbenzene	8200		ug/kg	1600	180	1000
1,2,3-Trichlorobenzene	ND		ug/kg	8100	240	1000
1,2,4-Trichlorobenzene	ND		ug/kg	8100	290	1000
1,3,5-Trimethylbenzene	44000		ug/kg	8100	230	1000
1,2,4-Trimethylbenzene	120000		ug/kg	8100	230	1000
Methyl Acetate	ND		ug/kg	32000	440	1000
Cyclohexane	28000	J	ug/kg	32000	240	1000
1,4-Dioxane	ND		ug/kg	160000	23000	1000
Freon-113	ND		ug/kg	32000	440	1000
Methyl cyclohexane	83000		ug/kg	6400	250	1000

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-17 D

Client ID: P3-3 (4-8)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 11:30

Date Received: 06/30/16 Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Tentatively Identified Compounds				
Total TIC Compounds	280000	J	ug/kg	1000
Unknown Alkane	23000	J	ug/kg	1000
1-Hexene, 4-methyl-	20000	NJ	ug/kg	1000
Unknown Cyclohexane	28000	J	ug/kg	1000
Octane	23000	NJ	ug/kg	1000
Unknown Benzene	30000	J	ug/kg	1000
Unknown Benzene	41000	J	ug/kg	1000
Unknown Benzene	30000	J	ug/kg	1000
Unknown Benzene	25000	J	ug/kg	1000
Unknown Benzene	27000	J	ug/kg	1000
1-Phenyl-1-butene	32000	NJ	ug/kg	1000

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	103		70-130	
Toluene-d8	105		70-130	
4-Bromofluorobenzene	102		70-130	
Dibromofluoromethane	100		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 10/25/16

Lab ID: L1620368-18 D

Client ID: P3-3 (8-10) SYRACUSE, NY Sample Location:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 07/11/16 20:47

Analyst: MV 49% Percent Solids:

Date Collected: 06/29/16 11:30

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/kg	8800	980	500
1,1-Dichloroethane	ND		ug/kg	1300	76.	500
Chloroform	ND		ug/kg	1300	330	500
Carbon tetrachloride	ND		ug/kg	880	180	500
1,2-Dichloropropane	ND		ug/kg	3100	200	500
Dibromochloromethane	ND		ug/kg	880	140	500
1,1,2-Trichloroethane	ND		ug/kg	1300	270	500
Tetrachloroethene	ND		ug/kg	880	120	500
Chlorobenzene	ND		ug/kg	880	310	500
Trichlorofluoromethane	ND		ug/kg	4400	340	500
1,2-Dichloroethane	ND		ug/kg	880	100	500
1,1,1-Trichloroethane	ND		ug/kg	880	98.	500
Bromodichloromethane	ND		ug/kg	880	150	500
trans-1,3-Dichloropropene	ND		ug/kg	880	110	500
cis-1,3-Dichloropropene	ND		ug/kg	880	100	500
Bromoform	ND		ug/kg	3500	210	500
1,1,2,2-Tetrachloroethane	ND		ug/kg	880	89.	500
Benzene	460	J	ug/kg	880	100	500
Toluene	6700		ug/kg	1300	170	500
Ethylbenzene	16000		ug/kg	880	110	500
Chloromethane	ND		ug/kg	4400	260	500
Bromomethane	ND		ug/kg	1800	300	500
Vinyl chloride	ND		ug/kg	1800	100	500
Chloroethane	ND		ug/kg	1800	280	500
1,1-Dichloroethene	ND		ug/kg	880	230	500
trans-1,2-Dichloroethene	ND		ug/kg	1300	190	500
Trichloroethene	ND		ug/kg	880	110	500
1,2-Dichlorobenzene	ND		ug/kg	4400	140	500
1,3-Dichlorobenzene	ND		ug/kg	4400	120	500
1,4-Dichlorobenzene	ND		ug/kg	4400	120	500

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-18 D

Client ID: P3-3 (8-10)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 11:30

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methyl tert butyl ether	ND		ug/kg	1800	74.	500
p/m-Xylene	48000		ug/kg	1800	170	500
o-Xylene	8200		ug/kg	1800	150	500
cis-1,2-Dichloroethene	ND		ug/kg	880	130	500
Styrene	ND		ug/kg	1800	360	500
Dichlorodifluoromethane	ND		ug/kg	8800	170	500
Acetone	ND		ug/kg	8800	920	500
Carbon disulfide	ND		ug/kg	8800	970	500
2-Butanone	ND		ug/kg	8800	240	500
4-Methyl-2-pentanone	ND		ug/kg	8800	220	500
2-Hexanone	ND		ug/kg	8800	590	500
Bromochloromethane	ND		ug/kg	4400	240	500
1,2-Dibromoethane	ND		ug/kg	3500	150	500
n-Butylbenzene	2200		ug/kg	880	100	500
1,2-Dibromo-3-chloropropane	ND		ug/kg	4400	350	500
Isopropylbenzene	2800		ug/kg	880	92.	500
n-Propylbenzene	5300		ug/kg	880	96.	500
1,2,3-Trichlorobenzene	ND		ug/kg	4400	130	500
1,2,4-Trichlorobenzene	ND		ug/kg	4400	160	500
1,3,5-Trimethylbenzene	16000		ug/kg	4400	130	500
1,2,4-Trimethylbenzene	66000		ug/kg	4400	120	500
Methyl Acetate	ND		ug/kg	18000	240	500
Cyclohexane	28000		ug/kg	18000	130	500
1,4-Dioxane	ND		ug/kg	88000	13000	500
Freon-113	ND		ug/kg	18000	240	500
Methyl cyclohexane	71000		ug/kg	3500	140	500

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-18 D

Client ID: P3-3 (8-10)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 11:30

Date Received: 06/30/16
Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Tentatively Identified Compounds				
Total TIC Compounds	220000	J	ug/kg	500
Pentane, 2-methyl-	22000	NJ	ug/kg	500
Unknown Cycloalkane	24000	J	ug/kg	500
Unknown	21000	J	ug/kg	500
Heptane	17000	NJ	ug/kg	500
Unknown Cyclohexane	26000	J	ug/kg	500
Octane	22000	NJ	ug/kg	500
Unknown Benzene	20000	J	ug/kg	500
Unknown Benzene	21000	J	ug/kg	500
Unknown Benzene	21000	J	ug/kg	500
1-Phenyl-1-butene	22000	NJ	ug/kg	500

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	104		70-130	
Toluene-d8	107		70-130	
4-Bromofluorobenzene	108		70-130	
Dibromofluoromethane	100		70-130	

L1620368

Project Name: EMBASSY SUITES

Project Number: 15209

Report Date: 10/25/16

Lab Number:

SAMPLE RESULTS

Lab ID: L1620368-19 D

Client ID: P3-3 (12-14)
Sample Location: SYRACUSE, NY

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 07/11/16 21:12

Analyst: MV Percent Solids: 72%

Date Collected: 06/29/16 11:30

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/kg	700	77.	50
1,1-Dichloroethane	ND		ug/kg	100	6.0	50
Chloroform	ND		ug/kg	100	26.	50
Carbon tetrachloride	ND		ug/kg	70	15.	50
1,2-Dichloropropane	ND		ug/kg	240	16.	50
Dibromochloromethane	ND		ug/kg	70	11.	50
1,1,2-Trichloroethane	ND		ug/kg	100	21.	50
Tetrachloroethene	ND		ug/kg	70	9.8	50
Chlorobenzene	ND		ug/kg	70	24.	50
Trichlorofluoromethane	ND		ug/kg	350	27.	50
1,2-Dichloroethane	ND		ug/kg	70	7.9	50
1,1,1-Trichloroethane	ND		ug/kg	70	7.7	50
Bromodichloromethane	ND		ug/kg	70	12.	50
trans-1,3-Dichloropropene	ND		ug/kg	70	8.4	50
cis-1,3-Dichloropropene	ND		ug/kg	70	8.2	50
Bromoform	ND		ug/kg	280	16.	50
1,1,2,2-Tetrachloroethane	ND		ug/kg	70	7.0	50
Benzene	120		ug/kg	70	8.2	50
Toluene	110		ug/kg	100	14.	50
Ethylbenzene	500		ug/kg	70	8.9	50
Chloromethane	ND		ug/kg	350	20.	50
Bromomethane	ND		ug/kg	140	24.	50
Vinyl chloride	ND		ug/kg	140	8.2	50
Chloroethane	ND		ug/kg	140	22.	50
1,1-Dichloroethene	ND		ug/kg	70	18.	50
trans-1,2-Dichloroethene	ND		ug/kg	100	15.	50
Trichloroethene	ND		ug/kg	70	8.7	50
1,2-Dichlorobenzene	ND		ug/kg	350	11.	50
1,3-Dichlorobenzene	ND		ug/kg	350	9.4	50
1,4-Dichlorobenzene	ND		ug/kg	350	9.6	50

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-19 D

Client ID: P3-3 (12-14)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 11:30

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methyl tert butyl ether	ND		ug/kg	140	5.9	50
p/m-Xylene	1900		ug/kg	140	14.	50
o-Xylene	280		ug/kg	140	12.	50
cis-1,2-Dichloroethene	ND		ug/kg	70	10.	50
Styrene	ND		ug/kg	140	28.	50
Dichlorodifluoromethane	ND		ug/kg	700	13.	50
Acetone	ND		ug/kg	700	72.	50
Carbon disulfide	ND		ug/kg	700	77.	50
2-Butanone	ND		ug/kg	700	19.	50
4-Methyl-2-pentanone	ND		ug/kg	700	17.	50
2-Hexanone	ND		ug/kg	700	46.	50
Bromochloromethane	ND		ug/kg	350	19.	50
1,2-Dibromoethane	ND		ug/kg	280	12.	50
n-Butylbenzene	160		ug/kg	70	8.0	50
1,2-Dibromo-3-chloropropane	ND		ug/kg	350	28.	50
Isopropylbenzene	120		ug/kg	70	7.2	50
n-Propylbenzene	310		ug/kg	70	7.6	50
1,2,3-Trichlorobenzene	ND		ug/kg	350	10.	50
1,2,4-Trichlorobenzene	ND		ug/kg	350	13.	50
1,3,5-Trimethylbenzene	1000		ug/kg	350	10.	50
1,2,4-Trimethylbenzene	2900		ug/kg	350	9.9	50
Methyl Acetate	1400		ug/kg	1400	19.	50
Cyclohexane	1800		ug/kg	1400	10.	50
1,4-Dioxane	ND		ug/kg	7000	1000	50
Freon-113	ND		ug/kg	1400	19.	50
Methyl cyclohexane	5200		ug/kg	280	11.	50

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

Result

SAMPLE RESULTS

Qualifier

Lab ID: L1620368-19 D

Client ID: P3-3 (12-14)
Sample Location: SYRACUSE, NY

Parameter

Date Collected: 06/29/16 11:30

Date Received: 06/30/16

Field Prep: Not Specified
Units RL MDL Dilution Factor

Tentatively Identified Compounds				
Total TIC Compounds	23000	J	ug/kg	50
Pentane, 2-methyl-	2600	NJ	ug/kg	50
Unknown Cycloalkane	1800	J	ug/kg	50
Unknown Alkane	3700	J	ug/kg	50
Heptane	1700	NJ	ug/kg	50
Heptane, 2-methyl-	1800	NJ	ug/kg	50
Unknown	1300	J	ug/kg	50
Unknown Cyclohexane	2400	J	ug/kg	50
Octane	2100	NJ	ug/kg	50
Octane, 2-methyl-	1400	NJ	ug/kg	50
Unknown	3800	J	ug/kg	50

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	106		70-130	
Toluene-d8	105		70-130	
4-Bromofluorobenzene	109		70-130	
Dibromofluoromethane	102		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 10/25/16

Lab ID: L1620368-20 D

Client ID: P3-2 (4-8)
Sample Location: SYRACUSE, NY

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 07/11/16 21:37

Analyst: MV Percent Solids: 43% Date Collected: 06/29/16 12:00

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/kg	3800	420	200
1,1-Dichloroethane	ND		ug/kg	570	32.	200
Chloroform	ND		ug/kg	570	140	200
Carbon tetrachloride	ND		ug/kg	380	79.	200
1,2-Dichloropropane	ND		ug/kg	1300	86.	200
Dibromochloromethane	ND		ug/kg	380	58.	200
1,1,2-Trichloroethane	ND		ug/kg	570	110	200
Tetrachloroethene	ND		ug/kg	380	53.	200
Chlorobenzene	ND		ug/kg	380	130	200
Trichlorofluoromethane	ND		ug/kg	1900	150	200
1,2-Dichloroethane	ND		ug/kg	380	43.	200
1,1,1-Trichloroethane	ND		ug/kg	380	42.	200
Bromodichloromethane	ND		ug/kg	380	65.	200
trans-1,3-Dichloropropene	ND		ug/kg	380	46.	200
cis-1,3-Dichloropropene	ND		ug/kg	380	44.	200
Bromoform	ND		ug/kg	1500	89.	200
1,1,2,2-Tetrachloroethane	ND		ug/kg	380	38.	200
Benzene	ND		ug/kg	380	44.	200
Toluene	ND		ug/kg	570	74.	200
Ethylbenzene	2100		ug/kg	380	48.	200
Chloromethane	ND		ug/kg	1900	110	200
Bromomethane	ND		ug/kg	760	130	200
Vinyl chloride	ND		ug/kg	760	44.	200
Chloroethane	ND		ug/kg	760	120	200
1,1-Dichloroethene	ND		ug/kg	380	99.	200
trans-1,2-Dichloroethene	ND		ug/kg	570	80.	200
Trichloroethene	ND		ug/kg	380	47.	200
1,2-Dichlorobenzene	ND		ug/kg	1900	58.	200
1,3-Dichlorobenzene	ND		ug/kg	1900	51.	200
1,4-Dichlorobenzene	ND		ug/kg	1900	52.	200

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-20 D

Client ID: P3-2 (4-8)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 12:00

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methyl tert butyl ether	ND		ug/kg	760	32.	200
p/m-Xylene	5300		ug/kg	760	75.	200
o-Xylene	140	J	ug/kg	760	65.	200
cis-1,2-Dichloroethene	ND		ug/kg	380	54.	200
Styrene	ND		ug/kg	760	150	200
Dichlorodifluoromethane	ND		ug/kg	3800	72.	200
Acetone	ND		ug/kg	3800	390	200
Carbon disulfide	ND		ug/kg	3800	420	200
2-Butanone	ND		ug/kg	3800	100	200
4-Methyl-2-pentanone	ND		ug/kg	3800	92.	200
2-Hexanone	ND		ug/kg	3800	250	200
Bromochloromethane	ND		ug/kg	1900	100	200
1,2-Dibromoethane	ND		ug/kg	1500	66.	200
n-Butylbenzene	950		ug/kg	380	43.	200
1,2-Dibromo-3-chloropropane	ND		ug/kg	1900	150	200
Isopropylbenzene	740		ug/kg	380	39.	200
n-Propylbenzene	1800		ug/kg	380	41.	200
1,2,3-Trichlorobenzene	ND		ug/kg	1900	56.	200
1,2,4-Trichlorobenzene	ND		ug/kg	1900	69.	200
1,3,5-Trimethylbenzene	1700	J	ug/kg	1900	54.	200
1,2,4-Trimethylbenzene	25000		ug/kg	1900	53.	200
Methyl Acetate	ND		ug/kg	7600	100	200
Cyclohexane	2800	J	ug/kg	7600	55.	200
1,4-Dioxane	ND		ug/kg	38000	5400	200
Freon-113	ND		ug/kg	7600	100	200
Methyl cyclohexane	12000		ug/kg	1500	58.	200

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-20 D

Client ID: P3-2 (4-8)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 12:00

Date Received: 06/30/16
Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Tentatively Identified Compounds				
Total TIC Compounds	66000	J	ug/kg	200
Unknown	4100	J	ug/kg	200
Unknown Cyclohexane	5700	J	ug/kg	200
Unknown Benzene	6000	J	ug/kg	200
Benzene, cyclopropyl-	5400	NJ	ug/kg	200
Unknown Benzene	8400	J	ug/kg	200
Unknown Benzene	7500	J	ug/kg	200
Unknown	6400	J	ug/kg	200
Unknown Benzene	9200	J	ug/kg	200
Unknown Benzene	5500	J	ug/kg	200
Unknown Aromatic	7600	J	ug/kg	200

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	102		70-130	
Toluene-d8	104		70-130	
4-Bromofluorobenzene	103		70-130	
Dibromofluoromethane	102		70-130	

L1620368

Project Name: EMBASSY SUITES

Project Number: 15209

Lab ID:

SAMPLE RESULTS

Lab Number:

Report Date: 10/25/16

D

L1620368-21

Client ID: P3-2 (8-10) SYRACUSE, NY Sample Location:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 07/11/16 22:03

Analyst: MV 53% Percent Solids:

Date Collected: 06/29/16 12:00

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - W	estborough Lab						
Methylene chloride	ND		ug/kg	1900	210	100	
1,1-Dichloroethane	ND		ug/kg	280	16.	100	
Chloroform	ND		ug/kg	280	70.	100	
Carbon tetrachloride	ND		ug/kg	190	40.	100	
1,2-Dichloropropane	ND		ug/kg	660	43.	100	
Dibromochloromethane	ND		ug/kg	190	29.	100	
1,1,2-Trichloroethane	ND		ug/kg	280	57.	100	
Tetrachloroethene	ND		ug/kg	190	26.	100	
Chlorobenzene	ND		ug/kg	190	66.	100	
Trichlorofluoromethane	ND		ug/kg	940	73.	100	
1,2-Dichloroethane	ND		ug/kg	190	21.	100	
1,1,1-Trichloroethane	ND		ug/kg	190	21.	100	
Bromodichloromethane	ND		ug/kg	190	33.	100	
trans-1,3-Dichloropropene	ND		ug/kg	190	23.	100	
cis-1,3-Dichloropropene	ND		ug/kg	190	22.	100	
Bromoform	ND		ug/kg	750	44.	100	
1,1,2,2-Tetrachloroethane	ND		ug/kg	190	19.	100	
Benzene	270		ug/kg	190	22.	100	
Toluene	300		ug/kg	280	37.	100	
Ethylbenzene	8000		ug/kg	190	24.	100	
Chloromethane	ND		ug/kg	940	55.	100	
Bromomethane	ND		ug/kg	380	64.	100	
Vinyl chloride	ND		ug/kg	380	22.	100	
Chloroethane	ND		ug/kg	380	60.	100	
1,1-Dichloroethene	ND		ug/kg	190	49.	100	
trans-1,2-Dichloroethene	ND		ug/kg	280	40.	100	
Trichloroethene	ND		ug/kg	190	24.	100	
1,2-Dichlorobenzene	ND		ug/kg	940	29.	100	
1,3-Dichlorobenzene	ND		ug/kg	940	25.	100	
1,4-Dichlorobenzene	ND		ug/kg	940	26.	100	

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-21 D

Client ID: P3-2 (8-10)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 12:00

p/m-Xylene 22000 ug/kg 380 37. 100 o-Xylene 500 ug/kg 380 32. 100 cis-1,2-Dichloroethene ND ug/kg 190 27. 100 Styrene ND ug/kg 190 27. 100 Dichlorodifluoromethane ND ug/kg 1900 36. 100 Acetone ND ug/kg 1900 200 100 Carbon disulfide ND ug/kg 1900 210 100 Carbon disulfide ND ug/kg 1900 210 100 2-Butanone ND ug/kg 1900 21 100 2-Butanone ND ug/kg 1900 46. 100 2-Hexanone ND ug/kg 1900 51. 100 2-Hexanone ND ug/kg 940 52. 100 Bromochloromethane ND ug/kg 940 52. 100	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Prin-Xylene 22000 ug/kg 380 37. 100 o-Xylene 500 ug/kg 380 32. 100 o-Xylene 500 ug/kg 380 32. 100 o-Xylene 500 ug/kg 190 27. 100 o-Xylene ND ug/kg 190 27. 100 o-Xylene ND ug/kg 1900 36. 100 o-Xylene ND ug/kg 1900 36. 100 o-Xylene ND ug/kg 1900 200 100 o-Xylene ND ug/kg 1900 210 100 o-Xylene ND ug/kg 1900 210 100 o-Xylene ND ug/kg 1900 51. 100 o-Xylene ND ug/kg 1900 46. 100 o-Xylene ND ug/kg 1900 46. 100 o-Xylene ND ug/kg 1900 46. 100 o-Xylene ND ug/kg 1900 120 100 o-Xylene 120 ug/kg 190 22. 100 o-Xylene 120 ug/kg 190 22. 100 o-Xylene 1200 ug/kg 190 22. 100 o-Xylene 1200 ug/kg 190 20. 100 o-Xylene 1200 ug/kg 190 20. 100 o-Xylene 1200 ug/kg 190 21. 100 o-Xylene 1200 ug/kg 190 27. 100 o-Xylene 1200 ug/kg 190 27. 100 o-Xylene 1200 ug/kg 1900 28. 100 o-Xylene 1200 ug/kg 1900 28. 100 o-Xylene 1200 ug/kg 1900 28. 100 o-Xylene 1200 ug/kg 1900 27. 100 o-Xylene 1200 ug/kg 1900 28. 100 o-Xylene 1200 ug/kg 1900 27. 100 o-Xylene 1200 ug/kg 1900 28. 100 o-Xylene 1200 ug/kg 1900 27. 100 o-Xylene 1200 ug/kg 1200 27. 100 o-Xylene 1200 ug/kg	Volatile Organics by GC/MS - We	stborough Lab					
o-Xylene 500 ug/kg 380 32. 100 cis-1,2-Dichloroethene ND ug/kg 190 27. 100 Styrene ND ug/kg 380 76. 100 Dichlorodifluoromethane ND ug/kg 1900 36. 100 Acetone ND ug/kg 1900 20 100 Carbon disulfide ND ug/kg 1900 210 100 Carbon disulfide ND ug/kg 1900 21 100 2-Butanone ND ug/kg 1900 51. 100 2-Butanone ND ug/kg 1900 51. 100 4-Methtyl-2-pentanone ND ug/kg 1900 120 100 2-Hexanone ND ug/kg 1900 120 100 Bromochloromethane ND ug/kg 940 52. 100 1,2-Dibromo-3-chloropropane ND ug/kg 940 75. 10	Methyl tert butyl ether	ND		ug/kg	380	16.	100
cis-1,2-Dichloroethene ND ug/kg 190 27. 100 Styrene ND ug/kg 380 76. 100 Dichlorodifluoromethane ND ug/kg 1900 36. 100 Acetone ND ug/kg 1900 200 100 Carbon disulfide ND ug/kg 1900 210 100 2-Butanone ND ug/kg 1900 51. 100 4-Methyl-2-pentanone ND ug/kg 1900 48. 100 2-Hexanone ND ug/kg 1900 48. 100 2-Hexanone ND ug/kg 1900 48. 100 2-Hexanone ND ug/kg 1900 120 100 Bromochloromethane ND ug/kg 940 52. 100 1,2-Dibromoethane ND ug/kg 190 22. 100 1,2-Dibromoethane ND ug/kg 190 22. 100	p/m-Xylene	22000		ug/kg	380	37.	100
Styrene ND ug/kg 380 76. 100 Dichlorodifluoromethane ND ug/kg 1900 36. 100 Acetone ND ug/kg 1900 200 100 Carbon disulfide ND ug/kg 1900 210 100 2-Butanone ND ug/kg 1900 46. 100 2-Hexanone ND ug/kg 1900 46. 100 2-Hexanone ND ug/kg 1900 46. 100 Bromochloromethane ND ug/kg 940 52. 100 1,2-Dibromoethane ND ug/kg 750 33. 100 1-Butylbenzene 1100 ug/kg 190 22. 100 1,2-Dibromoethane ND ug/kg 190 22. 100 1,2-Dibromoethane ND ug/kg 190 22. 100 1,2-Dibromoethane ND ug/kg 190 22. 100	o-Xylene	500		ug/kg	380	32.	100
Dichlorodiffluoromethane ND	cis-1,2-Dichloroethene	ND		ug/kg	190	27.	100
Acetone ND ug/kg 1900 200 100 Carbon disulfide ND ug/kg 1900 210 100 2-Butanone ND ug/kg 1900 51. 100 4-Methyl-2-pentanone ND ug/kg 1900 46. 100 2-Hexanone ND ug/kg 1900 120 100 Bromochloromethane ND ug/kg 940 52. 100 1,2-Dibromoethane ND ug/kg 750 33. 100 n-Butylbenzene 1100 ug/kg 190 22. 100 1,2-Dibromo-3-chloropropane ND ug/kg 940 75. 100 Isopropylbenzene 1200 ug/kg 190 20. 100 n-Propylbenzene 2900 ug/kg 190 21. 100 1,2,4-Trichlorobenzene ND ug/kg 940 28. 100 1,2,4-Trimethylbenzene 35000 ug/kg 940 <	Styrene	ND		ug/kg	380	76.	100
Carbon disulfide ND ug/kg 1900 210 100 2-Butanone ND ug/kg 1900 51. 100 4-Methyl-2-pentanone ND ug/kg 1900 46. 100 2-Hexanone ND ug/kg 1900 120 100 Bromochloromethane ND ug/kg 940 52. 100 1,2-Dibromoethane ND ug/kg 750 33. 100 n-Butylbenzene 1100 ug/kg 190 22. 100 1,2-Dibromo-3-chloropropane ND ug/kg 940 75. 100 Isopropylbenzene 1200 ug/kg 190 20. 100 n-Propylbenzene 2900 ug/kg 190 21. 100 1,2,3-Trichlorobenzene ND ug/kg 940 28. 100 1,3,5-Trimethylbenzene 9000 ug/kg 940 27. 100 1,2,4-Trimethylbenzene 35000 ug/kg 38	Dichlorodifluoromethane	ND		ug/kg	1900	36.	100
2-Butanone ND ug/kg 1900 51. 100 4-Methyl-2-pentanone ND ug/kg 1900 46. 100 2-Hexanone ND ug/kg 1900 120 100 Bromochloromethane ND ug/kg 940 52. 100 1,2-Dibromoethane ND ug/kg 190 22. 100 1,2-Dibromoethane ND ug/kg 190 22. 100 1,2-Dibromoethane ND ug/kg 190 22. 100 1,2-Dibromo-3-chloropropane ND ug/kg 190 22. 100 1,2-Dibromo-3-chloropropane ND ug/kg 190 20. 100 1,2-Dibromo-3-chloropropane ND ug/kg 190 20. 100 1,2-Dibromo-3-chloropropane ND ug/kg 190 20. 100 1,2-Trichlorobenzene 1200 ug/kg 190 21. 100 1,2,3-Trichlorobenzene ND ug/kg 940 28. 100 1,2,4-Trichlorobenzene ND ug/kg 940 27. 100 1,3,5-Trimethylbenzene 9000 ug/kg 940 27. 100 1,3,5-Trimethylbenzene 35000 ug/kg 940 27. 100 1,2,4-Trimethylbenzene ND ug/kg 3800 51. 100 1,2-Trimethylbenzene ND ug/kg 3800 51. 100 1,2-Trimethylbenzene ND ug/kg 3800 28. 100 1,4-Dioxane ND ug/kg 19000 2700 100 1,4-Dioxane ND ug/kg 19000 2700 100	Acetone	ND		ug/kg	1900	200	100
4-Methyl-2-pentanone ND ug/kg 1900 46. 100 2-Hexanone ND ug/kg 1900 120 100 Bromochloromethane ND ug/kg 940 52. 100 1,2-Dibromoethane ND ug/kg 190 22. 100 1,2-Dibromoethane ND ug/kg 190 22. 100 1,2-Dibromo-3-chloropropane ND ug/kg 940 75. 100 Isopropylbenzene 1200 ug/kg 190 20. 100 n-Propylbenzene 1200 ug/kg 190 20. 100 1,2,3-Trichlorobenzene ND ug/kg 940 21. 100 1,2,3-Trichlorobenzene ND ug/kg 940 28. 100 1,2,4-Trichlorobenzene ND ug/kg 940 34. 100 1,2,4-Trimethylbenzene 9000 ug/kg 940 27. 100 1,3,5-Trimethylbenzene 9000 ug/kg 940 27. 100 1,2,4-Trimethylbenzene ND ug/kg 940 27. 100 1,4-Dioxane ND ug/kg 3800 51. 100 Freon-113 ND ug/kg 1900 2700 100 Freon-113	Carbon disulfide	ND		ug/kg	1900	210	100
2-Hexanone ND ug/kg 1900 120 100 Bromochloromethane ND ug/kg 940 52. 100 1,2-Dibromoethane ND ug/kg 750 33. 100 n-Butylbenzene 1100 ug/kg 190 22. 100 1,2-Dibromo-3-chloropropane ND ug/kg 940 75. 100 Isopropylbenzene 1200 ug/kg 190 20. 100 n-Propylbenzene 2900 ug/kg 190 21. 100 1,2,3-Trichlorobenzene ND ug/kg 940 28. 100 1,2,3-Trichlorobenzene ND ug/kg 940 28. 100 1,2,4-Trichlorobenzene ND ug/kg 940 34. 100 1,2,4-Trimethylbenzene 9000 ug/kg 940 27. 100 1,2,4-Trimethylbenzene 9000 ug/kg 940 27. 100 1,2,4-Trimethylbenzene ND ug/kg 940 27. 100 1,4-Dioxane ND ug/kg 3800 51. 100 Freon-113 ND ug/kg 1900 2700 100 Freon-113	2-Butanone	ND		ug/kg	1900	51.	100
Bromochloromethane ND	4-Methyl-2-pentanone	ND		ug/kg	1900	46.	100
1,2-Dibromoethane ND ug/kg 750 33. 100 n-Butylbenzene 1100 ug/kg 190 22. 100 1,2-Dibromo-3-chloropropane ND ug/kg 940 75. 100 Isopropylbenzene 1200 ug/kg 190 20. 100 n-Propylbenzene 2900 ug/kg 190 21. 100 1,2,3-Trichlorobenzene ND ug/kg 940 28. 100 1,2,4-Trichlorobenzene ND ug/kg 940 34. 100 1,3,5-Trimethylbenzene 9000 ug/kg 940 27. 100 1,2,4-Trimethylbenzene 35000 ug/kg 940 27. 100 Methyl Acetate ND ug/kg 3800 51. 100 Cyclohexane 12000 ug/kg 3800 28. 100 1,4-Dioxane ND ug/kg 19000 2700 100 Freon-113 ND ug/kg 3800<	2-Hexanone	ND		ug/kg	1900	120	100
n-Butylbenzene 1100 ug/kg 190 22. 100 1,2-Dibromo-3-chloropropane ND ug/kg 940 75. 100 Isopropylbenzene 1200 ug/kg 190 20. 100 n-Propylbenzene 2900 ug/kg 190 21. 100 1,2,3-Trichlorobenzene ND ug/kg 940 28. 100 1,2,4-Trichlorobenzene ND ug/kg 940 34. 100 1,3,5-Trimethylbenzene 9000 ug/kg 940 27. 100 1,2,4-Trimethylbenzene 35000 ug/kg 940 27. 100 1,2,4-Trimethylbenzene 100 ug/kg 100 27. 100 Methyl Acetate ND ug/kg 3800 51. 100 Cyclohexane 12000 ug/kg 3800 28. 100 1,4-Dioxane ND ug/kg 19000 2700 100 Freon-113	Bromochloromethane	ND		ug/kg	940	52.	100
1,2-Dibromo-3-chloropropane ND ug/kg 940 75. 100 Isopropylbenzene 1200 ug/kg 190 20. 100 n-Propylbenzene 2900 ug/kg 190 21. 100 1,2,3-Trichlorobenzene ND ug/kg 940 28. 100 1,2,4-Trichlorobenzene ND ug/kg 940 34. 100 1,3,5-Trimethylbenzene 9000 ug/kg 940 27. 100 1,2,4-Trimethylbenzene 35000 ug/kg 940 27. 100 Methyl Acetate ND ug/kg 3800 51. 100 Cyclohexane 12000 ug/kg 3800 28. 100 1,4-Dioxane ND ug/kg 19000 2700 100 Freon-113 ND ug/kg 3800 52. 100	1,2-Dibromoethane	ND		ug/kg	750	33.	100
Isopropylbenzene	n-Butylbenzene	1100		ug/kg	190	22.	100
n-Propylbenzene 2900 ug/kg 190 21. 100 1,2,3-Trichlorobenzene ND ug/kg 940 28. 100 1,2,4-Trichlorobenzene ND ug/kg 940 34. 100 1,3,5-Trimethylbenzene 9000 ug/kg 940 27. 100 1,2,4-Trimethylbenzene 35000 ug/kg 940 27. 100 1,2,4-Trimethylbenzene ND ug/kg 3800 51. 100 Methyl Acetate ND ug/kg 3800 51. 100 Cyclohexane 12000 ug/kg 3800 28. 100 1,4-Dioxane ND ug/kg 19000 2700 100 Freon-113 ND ug/kg 3800 52. 100	1,2-Dibromo-3-chloropropane	ND		ug/kg	940	75.	100
1,2,3-Trichlorobenzene ND ug/kg 940 28. 100 1,2,4-Trichlorobenzene ND ug/kg 940 34. 100 1,3,5-Trimethylbenzene 9000 ug/kg 940 27. 100 1,2,4-Trimethylbenzene 35000 ug/kg 940 27. 100 Methyl Acetate ND ug/kg 3800 51. 100 Cyclohexane 12000 ug/kg 3800 28. 100 1,4-Dioxane ND ug/kg 19000 2700 100 Freon-113 ND ug/kg 3800 52. 100	Isopropylbenzene	1200		ug/kg	190	20.	100
1,2,4-Trichlorobenzene ND ug/kg 940 34. 100 1,3,5-Trimethylbenzene 9000 ug/kg 940 27. 100 1,2,4-Trimethylbenzene 35000 ug/kg 940 27. 100 Methyl Acetate ND ug/kg 3800 51. 100 Cyclohexane 12000 ug/kg 3800 28. 100 1,4-Dioxane ND ug/kg 19000 2700 100 Freon-113 ND ug/kg 3800 52. 100	n-Propylbenzene	2900		ug/kg	190	21.	100
1,3,5-Trimethylbenzene 9000 ug/kg 940 27. 100 1,2,4-Trimethylbenzene 35000 ug/kg 940 27. 100 Methyl Acetate ND ug/kg 3800 51. 100 Cyclohexane 12000 ug/kg 3800 28. 100 1,4-Dioxane ND ug/kg 19000 2700 100 Freon-113 ND ug/kg 3800 52. 100	1,2,3-Trichlorobenzene	ND		ug/kg	940	28.	100
1,2,4-Trimethylbenzene 35000 ug/kg 940 27. 100 Methyl Acetate ND ug/kg 3800 51. 100 Cyclohexane 12000 ug/kg 3800 28. 100 1,4-Dioxane ND ug/kg 19000 2700 100 Freon-113 ND ug/kg 3800 52. 100	1,2,4-Trichlorobenzene	ND		ug/kg	940	34.	100
Methyl Acetate ND ug/kg 3800 51. 100 Cyclohexane 12000 ug/kg 3800 28. 100 1,4-Dioxane ND ug/kg 19000 2700 100 Freon-113 ND ug/kg 3800 52. 100	1,3,5-Trimethylbenzene	9000		ug/kg	940	27.	100
Cyclohexane 12000 ug/kg 3800 28. 100 1,4-Dioxane ND ug/kg 19000 2700 100 Freon-113 ND ug/kg 3800 52. 100	1,2,4-Trimethylbenzene	35000		ug/kg	940	27.	100
1,4-Dioxane ND ug/kg 19000 2700 100 Freon-113 ND ug/kg 3800 52. 100	Methyl Acetate	ND		ug/kg	3800	51.	100
Freon-113 ND ug/kg 3800 52. 100	Cyclohexane	12000		ug/kg	3800	28.	100
-55	1,4-Dioxane	ND		ug/kg	19000	2700	100
Methyl cyclohexane 28000 ug/kg 750 29. 100	Freon-113	ND		ug/kg	3800	52.	100
	Methyl cyclohexane	28000		ug/kg	750	29.	100

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

Result

SAMPLE RESULTS

Qualifier

Units

Lab ID: L1620368-21 D

Client ID: P3-2 (8-10)
Sample Location: SYRACUSE, NY

Parameter

Date Collected: 06/2

06/29/16 12:00

Date Received: 06/30/16
Field Prep: Not Specifie

Field Prep: Not Specified

RL MDL Dilution Factor

Tentatively Identified Compounds				
Total TIC Compounds	94000	J	ug/kg	100
Pentane, 2-methyl-	8600	NJ	ug/kg	100
Unknown Cycloalkane	9600	J	ug/kg	100
Unknown Alkane	11000	J	ug/kg	100
Unknown Cyclohexane	9200	J	ug/kg	100
Octane	6400	NJ	ug/kg	100
Unknown	11000	J	ug/kg	100
Unknown Benzene	9000	J	ug/kg	100
Unknown Benzene	9200	J	ug/kg	100
Unknown Benzene	8800	J	ug/kg	100
Unknown Aromatic	11000	J	ug/kg	100

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	108		70-130	
Toluene-d8	107		70-130	
4-Bromofluorobenzene	115		70-130	
Dibromofluoromethane	100		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 10/25/16

SAIVIPLE RESUI

Lab ID: L1620368-22 D

Client ID: P3-10 (4-8)
Sample Location: SYRACUSE, NY

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 07/11/16 22:28

Analyst: MV Percent Solids: 60%

Date Collected:	06/29/16 12:10

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - We	stborough Lab						
Methylene chloride	ND		ug/kg	18000	2000	1250	
1,1-Dichloroethane	ND		ug/kg	2700	150	1250	
Chloroform	ND		ug/kg	2700	670	1250	
Carbon tetrachloride	ND		ug/kg	1800	380	1250	
1,2-Dichloropropane	ND		ug/kg	6300	410	1250	
Dibromochloromethane	ND		ug/kg	1800	280	1250	
1,1,2-Trichloroethane	ND		ug/kg	2700	550	1250	
Tetrachloroethene	ND		ug/kg	1800	250	1250	
Chlorobenzene	ND		ug/kg	1800	630	1250	
Trichlorofluoromethane	ND		ug/kg	9000	700	1250	
1,2-Dichloroethane	ND		ug/kg	1800	200	1250	
1,1,1-Trichloroethane	ND		ug/kg	1800	200	1250	
Bromodichloromethane	ND		ug/kg	1800	310	1250	
trans-1,3-Dichloropropene	ND		ug/kg	1800	220	1250	
cis-1,3-Dichloropropene	ND		ug/kg	1800	210	1250	
Bromoform	ND		ug/kg	7200	420	1250	
1,1,2,2-Tetrachloroethane	ND		ug/kg	1800	180	1250	
Benzene	290	J	ug/kg	1800	210	1250	
Toluene	670	J	ug/kg	2700	350	1250	
Ethylbenzene	12000		ug/kg	1800	230	1250	
Chloromethane	ND		ug/kg	9000	530	1250	
Bromomethane	ND		ug/kg	3600	610	1250	
Vinyl chloride	ND		ug/kg	3600	210	1250	
Chloroethane	ND		ug/kg	3600	570	1250	
1,1-Dichloroethene	ND		ug/kg	1800	470	1250	
trans-1,2-Dichloroethene	ND		ug/kg	2700	380	1250	
Trichloroethene	ND		ug/kg	1800	220	1250	
1,2-Dichlorobenzene	ND		ug/kg	9000	280	1250	
1,3-Dichlorobenzene	ND		ug/kg	9000	240	1250	
1,4-Dichlorobenzene	ND		ug/kg	9000	250	1250	

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-22 D

Client ID: P3-10 (4-8)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 12:10

Description	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
	Volatile Organics by GC/MS - We	stborough Lab					
2100 J	Methyl tert butyl ether	ND		ug/kg	3600	150	1250
ND	p/m-Xylene	17000		ug/kg	3600	360	1250
ND	o-Xylene	2100	J	ug/kg	3600	310	1250
Dichlorodiffluoromethane ND	cis-1,2-Dichloroethene	ND		ug/kg	1800	260	1250
Actone ND ug/kg 18000 1900 1250 Carbon disulfide ND ug/kg 18000 2000 1250 2-Butanone ND ug/kg 18000 490 1250 4-Methyl-2-pentanone ND ug/kg 18000 440 1250 2-Hexanone ND ug/kg 18000 440 1250 2-Hexanone ND ug/kg 18000 1200 1250 Bromochloromethane ND ug/kg 9000 500 1250 In.2-Dibromoethane ND ug/kg 7200 310 1250 In.2-Dibromoethane ND ug/kg 7200 310 1250 In.2-Dibromo-3-chloropropane ND ug/kg 9000 710 1250 Isopropylbenzene 3700 ug/kg 1800 190 1250 Isopropylbenzene 9200 ug/kg 1800 190 1250 In.2-Trichlorobenzene ND ug/kg 9000 710 1250 In.2-Trichlorobenzene ND ug/kg 9000 710 1250 In.2-Trichlorobenzene ND ug/kg 9000 270 1250 In.2-Trichlorobenzene ND ug/kg 9000 330 1250 In.2-Trimethylbenzene 18000 ug/kg 9000 330 1250 In.3-Trimethylbenzene 18000 ug/kg 9000 260 1250 In.2-Trichlorobenzene ND ug/kg 9000 260 1250 In.2-Trimethylbenzene 18000 ug/kg 9000 260 1250 In.2-Trimethylbenzene 140000 ug/kg 36000 480 1250 Cyclohexane ND ug/kg 36000 260 1250 In.4-Dioxane ND ug/kg 18000 2600 1250	Styrene	ND		ug/kg	3600	720	1250
Carbon disulfide ND ug/kg 18000 2000 1250 2-Butanone ND ug/kg 18000 490 1250 4-Methyl-2-pentanone ND ug/kg 18000 440 1250 2-Hexanone ND ug/kg 18000 1200 1250 Bromochloromethane ND ug/kg 9000 500 1250 1,2-Dibromochane ND ug/kg 7200 310 1250 n-Butylbenzene 5900 ug/kg 1800 210 1250 1,2-Dibromo-3-chloropropane ND ug/kg 9000 710 1250 Isopropylbenzene 3700 ug/kg 1800 190 1250 n-Propylbenzene 9200 ug/kg 1800 200 1250 1,2,3-Trichlorobenzene ND ug/kg 9000 270 1250 1,3,5-Trimethylbenzene 18000 ug/kg 9000 260 1250 1,2,4-Trimethylbenzene 140000 <t< td=""><td>Dichlorodifluoromethane</td><td>ND</td><td></td><td>ug/kg</td><td>18000</td><td>340</td><td>1250</td></t<>	Dichlorodifluoromethane	ND		ug/kg	18000	340	1250
2-Butanone ND ug/kg 18000 490 1250 4-Methyl-2-pentanone ND ug/kg 18000 440 1250 2-Hexanone ND ug/kg 18000 1200 1250 Bromochloromethane ND ug/kg 9000 500 1250 1,2-Dibromoethane ND ug/kg 7200 310 1250 n-Butylbenzene 5900 ug/kg 1800 210 1250 1,2-Dibromo-3-chloropropane ND ug/kg 9000 710 1250 Isopropylbenzene 3700 ug/kg 1800 190 1250 I-Propylbenzene 9200 ug/kg 1800 200 1250 1,2,3-Trichlorobenzene ND ug/kg 9000 270 1250 1,2,4-Trinethylbenzene 18000 ug/kg 9000 260 1250 1,2,4-Trimethylbenzene 140000 ug/kg 9000 260 1250 Methyl Acetate ND u	Acetone	ND		ug/kg	18000	1900	1250
A-Methyl-2-pentanone ND ug/kg 18000 440 1250 2-Hexanone ND ug/kg 18000 1200 1250 Bromochloromethane ND ug/kg 9000 500 1250 1,2-Dibromoethane ND ug/kg 7200 310 1250 1,2-Dibromoethane ND ug/kg 1800 210 1250 1,2-Dibromo-3-chloropropane ND ug/kg 9000 710 1250 1,2-Dibromo-3-chloropropane ND ug/kg 1800 190 1250 1,2-Trichlorobenzene ND ug/kg 1800 200 1250 1,2,3-Trichlorobenzene ND ug/kg 9000 270 1250 1,2,3-Trichlorobenzene ND ug/kg 9000 330 1250 1,2,4-Trimethylbenzene 18000 ug/kg 9000 260 1250 1,3,5-Trimethylbenzene 18000 ug/kg 9000 260 1250 1,2,4-Trimethylbenzene 140000 ug/kg 9000 260 1250 1,2,4-Trimethylbenzene 140000 ug/kg 36000 490 1250 Cyclohexane 17000 J ug/kg 36000 260 1250 1,4-Dioxane ND ug/kg 18000 2600 1250 1,4-Dioxane ND ug/kg 18000 2600 1250 1,5-Teon-113	Carbon disulfide	ND		ug/kg	18000	2000	1250
ND	2-Butanone	ND		ug/kg	18000	490	1250
ND	4-Methyl-2-pentanone	ND		ug/kg	18000	440	1250
1,2-Dibromoethane ND	2-Hexanone	ND		ug/kg	18000	1200	1250
n-Butylbenzene 5900 ug/kg 1800 210 1250 1,2-Dibromo-3-chloropropane ND ug/kg 9000 710 1250 Isopropylbenzene 3700 ug/kg 1800 190 1250 n-Propylbenzene 9200 ug/kg 1800 200 1250 1,2,3-Trichlorobenzene ND ug/kg 9000 270 1250 1,2,4-Trichlorobenzene ND ug/kg 9000 330 1250 1,3,5-Trimethylbenzene 18000 ug/kg 9000 260 1250 1,2,4-Trimethylbenzene 140000 ug/kg 9000 260 1250 1,2,4-Trimethylbenzene 140000 ug/kg 9000 260 1250 Cyclohexane 17000 J ug/kg 36000 490 1250 1,4-Dioxane ND ug/kg 18000 2600 1250 1,4-Dioxane ND ug/kg 18000 2600 1250	Bromochloromethane	ND		ug/kg	9000	500	1250
1,2-Dibromo-3-chloropropane ND ug/kg 9000 710 1250 Isopropylbenzene 3700 ug/kg 1800 190 1250 n-Propylbenzene 9200 ug/kg 1800 200 1250 1,2,3-Trichlorobenzene ND ug/kg 9000 270 1250 1,2,4-Trichlorobenzene ND ug/kg 9000 330 1250 1,3,5-Trimethylbenzene 18000 ug/kg 9000 260 1250 1,2,4-Trimethylbenzene 140000 ug/kg 9000 260 1250 Methyl Acetate ND ug/kg 36000 490 1250 Cyclohexane 17000 J ug/kg 36000 260 1250 1,4-Dioxane ND ug/kg 18000 26000 1250 Freon-113 ND ug/kg 36000 490 1250	1,2-Dibromoethane	ND		ug/kg	7200	310	1250
Sopropy benzene 3700 ug/kg 1800 190 1250 n-Propy benzene 9200 ug/kg 1800 200 1250 1,2,3-Trichlorobenzene ND ug/kg 9000 270 1250 1,2,4-Trichlorobenzene ND ug/kg 9000 330 1250 1,3,5-Trimethy benzene 18000 ug/kg 9000 260 1250 1,2,4-Trimethy benzene 140000 ug/kg 9000 260 1250 1,2,4-Trimethy benzene 140000 ug/kg 9000 260 1250 1,2,4-Trimethy benzene 140000 ug/kg 36000 490 1250 1,2,4-Trimethy benzene 140000 ug/kg 36000 260 1250 1,4-Dioxane ND ug/kg 36000 2600 1250 1,4-Dioxane ND ug/kg 180000 26000 1250 1,4-Dioxane ND ug/kg 36000 490 1250	n-Butylbenzene	5900		ug/kg	1800	210	1250
n-Propylbenzene 9200 ug/kg 1800 200 1250 1,2,3-Trichlorobenzene ND ug/kg 9000 270 1250 1,2,4-Trichlorobenzene ND ug/kg 9000 330 1250 1,3,5-Trimethylbenzene 18000 ug/kg 9000 260 1250 1,2,4-Trimethylbenzene 140000 ug/kg 9000 260 1250 1,2,4-Trimethylbenzene ND ug/kg 36000 490 1250 Methyl Acetate ND ug/kg 36000 490 1250 Cyclohexane 17000 J ug/kg 36000 260 1250 1,4-Dioxane ND ug/kg 180000 2600 1250 Freon-113 ND ug/kg 36000 490 1250	1,2-Dibromo-3-chloropropane	ND		ug/kg	9000	710	1250
1,2,3-Trichlorobenzene ND ug/kg 9000 270 1250 1,2,4-Trichlorobenzene ND ug/kg 9000 330 1250 1,3,5-Trimethylbenzene 18000 ug/kg 9000 260 1250 1,2,4-Trimethylbenzene 140000 ug/kg 9000 260 1250 Methyl Acetate ND ug/kg 36000 490 1250 Cyclohexane 17000 J ug/kg 36000 260 1250 1,4-Dioxane ND ug/kg 180000 26000 1250 Freon-113 ND ug/kg 36000 490 1250	Isopropylbenzene	3700		ug/kg	1800	190	1250
1,2,4-Trichlorobenzene ND ug/kg 9000 330 1250 1,3,5-Trimethylbenzene 18000 ug/kg 9000 260 1250 1,2,4-Trimethylbenzene 140000 ug/kg 9000 260 1250 Methyl Acetate ND ug/kg 36000 490 1250 Cyclohexane 17000 J ug/kg 36000 260 1250 1,4-Dioxane ND ug/kg 180000 26000 1250 Freon-113 ND ug/kg 36000 490 1250	n-Propylbenzene	9200		ug/kg	1800	200	1250
1,3,5-Trimethylbenzene 18000 ug/kg 9000 260 1250 1,2,4-Trimethylbenzene 140000 ug/kg 9000 260 1250 Methyl Acetate ND ug/kg 36000 490 1250 Cyclohexane 17000 J ug/kg 36000 260 1250 1,4-Dioxane ND ug/kg 180000 26000 1250 Freon-113 ND ug/kg 36000 490 1250	1,2,3-Trichlorobenzene	ND		ug/kg	9000	270	1250
1,2,4-Trimethylbenzene 140000 ug/kg 9000 260 1250 Methyl Acetate ND ug/kg 36000 490 1250 Cyclohexane 17000 J ug/kg 36000 260 1250 1,4-Dioxane ND ug/kg 180000 26000 1250 Freon-113 ND ug/kg 36000 490 1250	1,2,4-Trichlorobenzene	ND		ug/kg	9000	330	1250
Methyl Acetate ND ug/kg 36000 490 1250 Cyclohexane 17000 J ug/kg 36000 260 1250 1,4-Dioxane ND ug/kg 180000 26000 1250 Freon-113 ND ug/kg 36000 490 1250	1,3,5-Trimethylbenzene	18000		ug/kg	9000	260	1250
Cyclohexane 17000 J ug/kg 36000 260 1250 1,4-Dioxane ND ug/kg 180000 26000 1250 Freon-113 ND ug/kg 36000 490 1250	1,2,4-Trimethylbenzene	140000		ug/kg	9000	260	1250
1,4-Dioxane ND ug/kg 180000 26000 1250 Freon-113 ND ug/kg 36000 490 1250	Methyl Acetate	ND		ug/kg	36000	490	1250
Freon-113 ND ug/kg 36000 490 1250	Cyclohexane	17000	J	ug/kg	36000	260	1250
	1,4-Dioxane	ND		ug/kg	180000	26000	1250
Methyl cyclohexane 60000 ug/kg 7200 280 1250	Freon-113	ND		ug/kg	36000	490	1250
	Methyl cyclohexane	60000		ug/kg	7200	280	1250

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-22 D

Client ID: P3-10 (4-8)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 12:10

Date Received: 06/30/16
Field Prep: Not Specific

Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Tentatively Identified Compounds				
Total TIC Compounds	410000	J	ug/kg	1250
Unknown Alkane	31000	J	ug/kg	1250
Unknown Cyclohexane	38000	J	ug/kg	1250
Unknown Benzene	42000	J	ug/kg	1250
Unknown Benzene	33000	J	ug/kg	1250
Unknown Benzene	50000	J	ug/kg	1250
Unknown Benzene	43000	J	ug/kg	1250
Unknown Benzene	34000	J	ug/kg	1250
Unknown Benzene	50000	J	ug/kg	1250
Unknown Aromatic	39000	J	ug/kg	1250
Unknown Aromatic	46000	J	ug/kg	1250

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	102		70-130	
Toluene-d8	106		70-130	
4-Bromofluorobenzene	106		70-130	
Dibromofluoromethane	101		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 10/25/16

Lab ID: L1620368-23 D

Client ID: P3-10 (8-10)
Sample Location: SYRACUSE, NY

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 07/11/16 22:53

Analyst: MV Percent Solids: 58%

Date Collected: 06/29/16 12:10

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/kg	19000	2100	1250
1,1-Dichloroethane	ND		ug/kg	2800	160	1250
Chloroform	ND		ug/kg	2800	690	1250
Carbon tetrachloride	ND		ug/kg	1900	390	1250
1,2-Dichloropropane	ND		ug/kg	6500	430	1250
Dibromochloromethane	ND		ug/kg	1900	290	1250
1,1,2-Trichloroethane	ND		ug/kg	2800	570	1250
Tetrachloroethene	ND		ug/kg	1900	260	1250
Chlorobenzene	ND		ug/kg	1900	650	1250
Trichlorofluoromethane	ND		ug/kg	9400	720	1250
1,2-Dichloroethane	ND		ug/kg	1900	210	1250
1,1,1-Trichloroethane	ND		ug/kg	1900	210	1250
Bromodichloromethane	ND		ug/kg	1900	320	1250
trans-1,3-Dichloropropene	ND		ug/kg	1900	220	1250
cis-1,3-Dichloropropene	ND		ug/kg	1900	220	1250
Bromoform	ND		ug/kg	7500	440	1250
1,1,2,2-Tetrachloroethane	ND		ug/kg	1900	190	1250
Benzene	ND		ug/kg	1900	220	1250
Toluene	8700		ug/kg	2800	360	1250
Ethylbenzene	38000		ug/kg	1900	240	1250
Chloromethane	ND		ug/kg	9400	550	1250
Bromomethane	ND		ug/kg	3700	630	1250
Vinyl chloride	ND		ug/kg	3700	220	1250
Chloroethane	ND		ug/kg	3700	590	1250
1,1-Dichloroethene	ND		ug/kg	1900	490	1250
trans-1,2-Dichloroethene	ND		ug/kg	2800	400	1250
Trichloroethene	ND		ug/kg	1900	230	1250
1,2-Dichlorobenzene	ND		ug/kg	9400	290	1250
1,3-Dichlorobenzene	ND		ug/kg	9400	250	1250
1,4-Dichlorobenzene	ND		ug/kg	9400	260	1250

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-23 D

Client ID: P3-10 (8-10)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 12:10

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbor	ough Lab					
Methyl tert butyl ether	ND		ug/kg	3700	160	1250
p/m-Xylene	120000		ug/kg	3700	370	1250
o-Xylene	28000		ug/kg	3700	320	1250
cis-1,2-Dichloroethene	ND		ug/kg	1900	270	1250
Styrene	ND		ug/kg	3700	750	1250
Dichlorodifluoromethane	ND		ug/kg	19000	360	1250
Acetone	ND		ug/kg	19000	1900	1250
Carbon disulfide	ND		ug/kg	19000	2100	1250
2-Butanone	ND		ug/kg	19000	510	1250
4-Methyl-2-pentanone	ND		ug/kg	19000	460	1250
2-Hexanone	ND		ug/kg	19000	1200	1250
Bromochloromethane	ND		ug/kg	9400	520	1250
1,2-Dibromoethane	ND		ug/kg	7500	330	1250
n-Butylbenzene	5700		ug/kg	1900	210	1250
1,2-Dibromo-3-chloropropane	ND		ug/kg	9400	740	1250
Isopropylbenzene	5400		ug/kg	1900	190	1250
n-Propylbenzene	14000		ug/kg	1900	200	1250
1,2,3-Trichlorobenzene	ND		ug/kg	9400	280	1250
1,2,4-Trichlorobenzene	ND		ug/kg	9400	340	1250
1,3,5-Trimethylbenzene	56000		ug/kg	9400	270	1250
1,2,4-Trimethylbenzene	160000		ug/kg	9400	260	1250
Methyl Acetate	ND		ug/kg	37000	500	1250
Cyclohexane	35000	J	ug/kg	37000	270	1250
1,4-Dioxane	ND		ug/kg	190000	27000	1250
Freon-113	ND		ug/kg	37000	510	1250
Methyl cyclohexane	92000		ug/kg	7500	290	1250

06/29/16 12:10

06/30/16

Date Collected:

Date Received:

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-23 D

Client ID: P3-10 (8-10)
Sample Location: SYRACUSE, NY

SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Tentatively Identified Compounds				
Total TIC Compounds	440000	J	ug/kg	1250
Pentane, 2-methyl-	37000	NJ	ug/kg	1250
Unknown Cycloalkane	36000	J	ug/kg	1250
Unknown	39000	J	ug/kg	1250
Unknown	38000	J	ug/kg	1250
Unknown Benzene	50000	J	ug/kg	1250
Unknown Benzene	48000	J	ug/kg	1250
Unknown Benzene	46000	J	ug/kg	1250
Unknown Benzene	44000	J	ug/kg	1250
Unknown Aromatic	47000	J	ug/kg	1250
Unknown Aromatic	52000	J	ug/kg	1250

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	103		70-130	
Toluene-d8	104		70-130	
4-Bromofluorobenzene	106		70-130	
Dibromofluoromethane	103		70-130	

Not Specified

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 10/25/16

Lab ID: L1620368-24 D

Client ID: P1-5 (4-8) Sample Location: SYRACUSE, NY

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 07/11/16 23:19

Analyst: MV 60% Percent Solids:

Date Collected:	06/29/16 13:00
Date Received:	06/30/16

Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/kg	21000	2300	1250
1,1-Dichloroethane	ND		ug/kg	3100	180	1250
Chloroform	ND		ug/kg	3100	760	1250
Carbon tetrachloride	ND		ug/kg	2100	430	1250
1,2-Dichloropropane	ND		ug/kg	7200	470	1250
Dibromochloromethane	ND		ug/kg	2100	320	1250
1,1,2-Trichloroethane	ND		ug/kg	3100	630	1250
Tetrachloroethene	ND		ug/kg	2100	290	1250
Chlorobenzene	ND		ug/kg	2100	720	1250
Trichlorofluoromethane	ND		ug/kg	10000	800	1250
1,2-Dichloroethane	ND		ug/kg	2100	230	1250
1,1,1-Trichloroethane	ND		ug/kg	2100	230	1250
Bromodichloromethane	ND		ug/kg	2100	360	1250
trans-1,3-Dichloropropene	ND		ug/kg	2100	250	1250
cis-1,3-Dichloropropene	ND		ug/kg	2100	240	1250
Bromoform	ND		ug/kg	8300	490	1250
1,1,2,2-Tetrachloroethane	ND		ug/kg	2100	210	1250
Benzene	880	J	ug/kg	2100	240	1250
Toluene	1300	J	ug/kg	3100	400	1250
Ethylbenzene	24000		ug/kg	2100	260	1250
Chloromethane	ND		ug/kg	10000	610	1250
Bromomethane	ND		ug/kg	4100	700	1250
Vinyl chloride	ND		ug/kg	4100	240	1250
Chloroethane	ND		ug/kg	4100	650	1250
1,1-Dichloroethene	ND		ug/kg	2100	540	1250
trans-1,2-Dichloroethene	ND		ug/kg	3100	440	1250
Trichloroethene	ND		ug/kg	2100	260	1250
1,2-Dichlorobenzene	ND		ug/kg	10000	320	1250
1,3-Dichlorobenzene	ND		ug/kg	10000	280	1250
1,4-Dichlorobenzene	ND		ug/kg	10000	290	1250

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-24 D Date Collected: 06/29/16 13:00

Client ID: P1-5 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methyl tert butyl ether	ND		ug/kg	4100	170	1250
p/m-Xylene	79000		ug/kg	4100	410	1250
o-Xylene	2500	J	ug/kg	4100	360	1250
cis-1,2-Dichloroethene	ND		ug/kg	2100	300	1250
Styrene	ND		ug/kg	4100	830	1250
Dichlorodifluoromethane	ND		ug/kg	21000	390	1250
Acetone	ND		ug/kg	21000	2100	1250
Carbon disulfide	ND		ug/kg	21000	2300	1250
2-Butanone	ND		ug/kg	21000	560	1250
4-Methyl-2-pentanone	ND		ug/kg	21000	500	1250
2-Hexanone	ND		ug/kg	21000	1400	1250
Bromochloromethane	ND		ug/kg	10000	570	1250
1,2-Dibromoethane	ND		ug/kg	8300	360	1250
n-Butylbenzene	7500		ug/kg	2100	240	1250
1,2-Dibromo-3-chloropropane	ND		ug/kg	10000	820	1250
Isopropylbenzene	6400		ug/kg	2100	210	1250
n-Propylbenzene	16000		ug/kg	2100	220	1250
1,2,3-Trichlorobenzene	ND		ug/kg	10000	300	1250
1,2,4-Trichlorobenzene	ND		ug/kg	10000	380	1250
1,3,5-Trimethylbenzene	70000		ug/kg	10000	300	1250
1,2,4-Trimethylbenzene	200000		ug/kg	10000	290	1250
Methyl Acetate	ND		ug/kg	41000	560	1250
Cyclohexane	34000	J	ug/kg	41000	300	1250
1,4-Dioxane	ND		ug/kg	210000	30000	1250
Freon-113	ND		ug/kg	41000	570	1250
Methyl cyclohexane	140000		ug/kg	8300	320	1250

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-24 D

Client ID: P1-5 (4-8)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 13:00 Date Received: 06/30/16

Date Received: 06/30/16
Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Tentatively Identified Compounds				
Total TIC Compounds	560000	J	ug/kg	1250
Unknown Alkane	59000	J	ug/kg	1250
Unknown Cyclohexane	57000	J	ug/kg	1250
Unknown Benzene	51000	J	ug/kg	1250
Unknown Benzene	61000	J	ug/kg	1250
Unknown Benzene	61000	J	ug/kg	1250
Unknown Benzene	51000	J	ug/kg	1250
Unknown	43000	J	ug/kg	1250
Unknown Benzene	62000	J	ug/kg	1250
Unknown Benzene	44000	J	ug/kg	1250
Unknown Aromatic	70000	J	ug/kg	1250

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	101		70-130	
Toluene-d8	104		70-130	
4-Bromofluorobenzene	103		70-130	
Dibromofluoromethane	99		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

Lab ID:

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 10/25/16

D

L1620368-25

Client ID: P1-5 (8-10)
Sample Location: SYRACUSE, NY

Matrix: Soil Analytical Method: 1,8260C

Analytical Date: 07/12/16 23:46

Analyst: PP Percent Solids: 54%

Date Collected:	06/29/16 13:00
Date Received:	06/30/16
Field Pren:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - W	estborough Lab						
Methylene chloride	ND		ug/kg	860	95.	50	
1,1-Dichloroethane	ND		ug/kg	130	7.4	50	
Chloroform	ND		ug/kg	130	32.	50	
Carbon tetrachloride	ND		ug/kg	86	18.	50	
1,2-Dichloropropane	ND		ug/kg	300	20.	50	
Dibromochloromethane	ND		ug/kg	86	13.	50	
1,1,2-Trichloroethane	ND		ug/kg	130	26.	50	
Tetrachloroethene	ND		ug/kg	86	12.	50	
Chlorobenzene	ND		ug/kg	86	30.	50	
Trichlorofluoromethane	ND		ug/kg	430	34.	50	
1,2-Dichloroethane	ND		ug/kg	86	9.8	50	
1,1,1-Trichloroethane	ND		ug/kg	86	9.6	50	
Bromodichloromethane	ND		ug/kg	86	15.	50	
trans-1,3-Dichloropropene	ND		ug/kg	86	10.	50	
cis-1,3-Dichloropropene	ND		ug/kg	86	10.	50	
Bromoform	ND		ug/kg	340	20.	50	
1,1,2,2-Tetrachloroethane	ND		ug/kg	86	8.7	50	
Benzene	55	J	ug/kg	86	10.	50	
Toluene	28	J	ug/kg	130	17.	50	
Ethylbenzene	140		ug/kg	86	11.	50	
Chloromethane	ND		ug/kg	430	25.	50	
Bromomethane	ND		ug/kg	170	29.	50	
Vinyl chloride	ND		ug/kg	170	10.	50	
Chloroethane	ND		ug/kg	170	27.	50	
1,1-Dichloroethene	ND		ug/kg	86	23.	50	
trans-1,2-Dichloroethene	ND		ug/kg	130	18.	50	
Trichloroethene	ND		ug/kg	86	11.	50	
1,2-Dichlorobenzene	ND		ug/kg	430	13.	50	
1,3-Dichlorobenzene	ND		ug/kg	430	12.	50	
1,4-Dichlorobenzene	ND		ug/kg	430	12.	50	

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-25 D

Client ID: P1-5 (8-10)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 13:00

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westl	oorough Lab					
Methyl tert butyl ether	ND		ug/kg	170	7.3	50
p/m-Xylene	570		ug/kg	170	17.	50
o-Xylene	46	J	ug/kg	170	15.	50
cis-1,2-Dichloroethene	ND		ug/kg	86	12.	50
Styrene	ND		ug/kg	170	35.	50
Dichlorodifluoromethane	ND		ug/kg	860	16.	50
Acetone	ND		ug/kg	860	89.	50
Carbon disulfide	ND		ug/kg	860	95.	50
2-Butanone	ND		ug/kg	860	23.	50
4-Methyl-2-pentanone	ND		ug/kg	860	21.	50
2-Hexanone	ND		ug/kg	860	58.	50
Bromochloromethane	ND		ug/kg	430	24.	50
1,2-Dibromoethane	ND		ug/kg	340	15.	50
n-Butylbenzene	130		ug/kg	86	9.9	50
1,2-Dibromo-3-chloropropane	ND		ug/kg	430	34.	50
Isopropylbenzene	230		ug/kg	86	9.0	50
n-Propylbenzene	640		ug/kg	86	9.4	50
1,2,3-Trichlorobenzene	ND		ug/kg	430	13.	50
1,2,4-Trichlorobenzene	ND		ug/kg	430	16.	50
1,3,5-Trimethylbenzene	180	J	ug/kg	430	12.	50
1,2,4-Trimethylbenzene	8100		ug/kg	430	12.	50
Methyl Acetate	1400	J	ug/kg	1700	23.	50
Cyclohexane	220	J	ug/kg	1700	13.	50
1,4-Dioxane	ND		ug/kg	8600	1200	50
Freon-113	ND		ug/kg	1700	24.	50
Methyl cyclohexane	680		ug/kg	340	13.	50

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-25 D

Client ID: P1-5 (8-10)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 13:00

Date Received: 06/30/16 Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

9000	.I	ua/ka	50
350	J	ug/kg	50
640	J	ug/kg	50
250	J	ug/kg	50
1700	J	ug/kg	50
1600	J	ug/kg	50
1400	J	ug/kg	50
1800	J	ug/kg	50
350	J	ug/kg	50
570	J	ug/kg	50
360	J	ug/kg	50
	250 1700 1600 1400 1800 350 570	350 J 640 J 250 J 1700 J 1600 J 1400 J 1800 J 350 J	350 J ug/kg 640 J ug/kg 250 J ug/kg 1700 J ug/kg 1600 J ug/kg 1400 J ug/kg 1800 J ug/kg 350 J ug/kg 350 J ug/kg

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	80		70-130	
Toluene-d8	93		70-130	
4-Bromofluorobenzene	91		70-130	
Dibromofluoromethane	87		70-130	

L1620368

Project Name: EMBASSY SUITES

Project Number: 15209

Lab ID:

SAMPLE RESULTS

Report Date: 10/25/16

Lab Number:

D

L1620368-26

Client ID: P1-4 (4-8) SYRACUSE, NY Sample Location:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 07/12/16 00:10

Analyst: MV 55% Percent Solids:

Date Collected: 06/29/16 12:35

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - W	estborough Lab						
Methylene chloride	ND		ug/kg	1800	200	100	
1,1-Dichloroethane	ND		ug/kg	270	16.	100	
Chloroform	ND		ug/kg	270	68.	100	
Carbon tetrachloride	ND		ug/kg	180	38.	100	
1,2-Dichloropropane	ND		ug/kg	640	42.	100	
Dibromochloromethane	ND		ug/kg	180	28.	100	
1,1,2-Trichloroethane	ND		ug/kg	270	56.	100	
Tetrachloroethene	ND		ug/kg	180	26.	100	
Chlorobenzene	ND		ug/kg	180	64.	100	
Trichlorofluoromethane	ND		ug/kg	920	71.	100	
1,2-Dichloroethane	ND		ug/kg	180	21.	100	
1,1,1-Trichloroethane	ND		ug/kg	180	20.	100	
Bromodichloromethane	ND		ug/kg	180	32.	100	
trans-1,3-Dichloropropene	ND		ug/kg	180	22.	100	
cis-1,3-Dichloropropene	ND		ug/kg	180	22.	100	
Bromoform	ND		ug/kg	730	43.	100	
1,1,2,2-Tetrachloroethane	ND		ug/kg	180	18.	100	
Benzene	210		ug/kg	180	22.	100	
Toluene	92	J	ug/kg	270	36.	100	
Ethylbenzene	400		ug/kg	180	23.	100	
Chloromethane	ND		ug/kg	920	54.	100	
Bromomethane	ND		ug/kg	370	62.	100	
Vinyl chloride	ND		ug/kg	370	22.	100	
Chloroethane	ND		ug/kg	370	58.	100	
1,1-Dichloroethene	ND		ug/kg	180	48.	100	
trans-1,2-Dichloroethene	ND		ug/kg	270	39.	100	
Trichloroethene	ND		ug/kg	180	23.	100	
1,2-Dichlorobenzene	ND		ug/kg	920	28.	100	
1,3-Dichlorobenzene	ND		ug/kg	920	25.	100	
1,4-Dichlorobenzene	ND		ug/kg	920	25.	100	

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-26 D

Client ID: P1-4 (4-8)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 12:35

p/m-Xylene 750 ug/kg 370 36. 100 o-Xylene 64 J ug/kg 370 31. 100 cis-1,2-Dichloroethene ND ug/kg 180 26. 100 Styrene ND ug/kg 370 74. 100 Dichlorodifluoromethane ND ug/kg 1800 35. 100 Acetone ND ug/kg 1800 35. 100 Carbon disulfide ND ug/kg 1800 200 100 2-Butanone ND ug/kg 1800 50. 100 4-Methyl-2-pentanone ND ug/kg 1800 45. 100 2-Hexanone ND ug/kg 1800 45. 100 Bromochloromethane ND ug/kg 920 50. 100 1,2-Dibromoethane ND ug/kg 180 21. 100 1,2-Dibromoethane ND ug/kg 180 21.	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Princ Prin	Volatile Organics by GC/MS - Westk	oorough Lab					
O-Xylene	Methyl tert butyl ether	ND		ug/kg	370	15.	100
ND	p/m-Xylene	750		ug/kg	370	36.	100
ND	o-Xylene	64	J	ug/kg	370	31.	100
Dichlorodiffuoromethane ND	cis-1,2-Dichloroethene	ND		ug/kg	180	26.	100
Actione ND ug/kg 1800 190 100 Carbon disulfide ND ug/kg 1800 200 100 2-Butanone ND ug/kg 1800 50. 100 4-Methyl-2-pentanone ND ug/kg 1800 45. 100 2-Hexanone ND ug/kg 1800 45. 100 Eromochloromethane ND ug/kg 1800 120 100 Eromochloromethane ND ug/kg 920 50. 100 1,2-Dibromoethane ND ug/kg 730 32. 100 1,2-Dibromo-3-chloropropane ND ug/kg 920 72. 100 Isopropylbenzene 400 ug/kg 920 72. 100 Isopropylbenzene 680 ug/kg 180 19. 100 In-Propylbenzene ND ug/kg 920 72. 100 Isopropylbenzene ND ug/kg	Styrene	ND		ug/kg	370	74.	100
Carbon disulfide ND ug/kg 1800 200 100 2-Butanone ND ug/kg 1800 50. 100 4-Methyl-2-pentanone ND ug/kg 1800 45. 100 2-Hexanone ND ug/kg 1800 120 100 Bromochloromethane ND ug/kg 920 50. 100 1,2-Dibromoethane ND ug/kg 730 32. 100 n-Butylbenzene 380 ug/kg 180 21. 100 1,2-Dibromo-3-chloropropane ND ug/kg 920 72. 100 Isopropylbenzene 400 ug/kg 180 19. 100 n-Propylbenzene 680 ug/kg 180 20. 100 1,2,3-Trichlorobenzene ND ug/kg 920 27. 100 1,3,5-Trimethylbenzene 130 J ug/kg 920 26. 100 1,2,4-Trimethylbenzene 6600 ug/kg	Dichlorodifluoromethane	ND		ug/kg	1800	35.	100
2-Butanone ND ug/kg 1800 50. 100 4-Methyl-2-pentanone ND ug/kg 1800 45. 100 2-Hexanone ND ug/kg 1800 120 100 Bromochloromethane ND ug/kg 920 50. 100 1,2-Dibromoethane ND ug/kg 730 32. 100 n-Butylbenzene 380 ug/kg 180 21. 100 n-Butylbenzene ND ug/kg 920 72. 100 Isopropylbenzene 400 ug/kg 180 19. 100 Isopropylbenzene 680 ug/kg 180 20. 100 1,2,3-Trichlorobenzene ND ug/kg 920 27. 100 1,2,4-Trimethylbenzene 130 J ug/kg 920 26. 100 1,2,4-Trimethylbenzene 6600 ug/kg 3700 49. 100 Methyl Acetate ND ug/kg 37	Acetone	ND		ug/kg	1800	190	100
4-Methyl-2-pentanone ND ug/kg 1800 45. 100 2-Hexanone ND ug/kg 1800 120 100 Bromochloromethane ND ug/kg 920 50. 100 1,2-Dibromoethane ND ug/kg 730 32. 100 1,2-Dibromoethane ND ug/kg 180 21. 100 1,2-Dibromo-3-chloropropane ND ug/kg 920 72. 100 1,2-Dibromo-3-chloropropane ND ug/kg 180 21. 100 1,2-Dibromo-3-chloropropane ND ug/kg 920 72. 100 1,2-Dibromo-3-chloropropane ND ug/kg 180 19. 100 1,2-Dibromo-1-chloropropane ND ug/kg 180 19. 100 1,2-3-Trichlorobenzene ND ug/kg 920 27. 100 1,2,3-Trichlorobenzene ND ug/kg 920 27. 100 1,2,4-Trichlorobenzene ND ug/kg 920 33. 100 1,3,5-Trimethylbenzene 130 J ug/kg 920 26. 100 1,2,4-Trimethylbenzene 130 J ug/kg 920 26. 100 1,2,4-Trimethylbenzene 130 J ug/kg 920 26. 100 1,2,4-Trimethylbenzene 1800 J ug/kg 3700 49. 100 Cyclohexane 1800 J ug/kg 3700 27. 100 1,4-Dioxane ND ug/kg 18000 2600 100 Freon-113 ND ug/kg 18000 2600 100	Carbon disulfide	ND		ug/kg	1800	200	100
ND	2-Butanone	ND		ug/kg	1800	50.	100
Bromochloromethane ND	4-Methyl-2-pentanone	ND		ug/kg	1800	45.	100
1,2-Dibromoethane	2-Hexanone	ND		ug/kg	1800	120	100
n-Butylbenzene 380 ug/kg 180 21. 100 1,2-Dibromo-3-chloropropane ND ug/kg 920 72. 100 Isopropylbenzene 400 ug/kg 180 19. 100 n-Propylbenzene 680 ug/kg 180 20. 100 1,2,3-Trichlorobenzene ND ug/kg 920 27. 100 1,2,3-Trichlorobenzene ND ug/kg 920 27. 100 1,2,4-Trichlorobenzene ND ug/kg 920 33. 100 1,3,5-Trimethylbenzene 130 J ug/kg 920 26. 100 1,2,4-Trimethylbenzene 6600 ug/kg 920 26. 100 1,2,4-Trimethylbenzene 180 J ug/kg 920 26. 100 Cyclohexane 1800 J ug/kg 3700 49. 100 Cyclohexane 1800 J ug/kg 3700 27. 100 1,4-Dioxane ND ug/kg 18000 2600 100 Freon-113 ND ug/kg 3700 50. 100	Bromochloromethane	ND		ug/kg	920	50.	100
1,2-Dibromo-3-chloropropane ND ug/kg 920 72. 100 Isopropylbenzene 400 ug/kg 180 19. 100 n-Propylbenzene 680 ug/kg 180 20. 100 1,2,3-Trichlorobenzene ND ug/kg 920 27. 100 1,2,4-Trichlorobenzene ND ug/kg 920 33. 100 1,3,5-Trimethylbenzene 130 J ug/kg 920 26. 100 1,2,4-Trimethylbenzene 6600 ug/kg 920 26. 100 Methyl Acetate ND ug/kg 3700 49. 100 Cyclohexane 1800 J ug/kg 3700 27. 100 1,4-Dioxane ND ug/kg 18000 2600 100 Freon-113 ND ug/kg 3700 50. 100	1,2-Dibromoethane	ND		ug/kg	730	32.	100
Stopropylbenzene 400 ug/kg 180 19. 100 100 1,2,3-Trichlorobenzene ND ug/kg 920 27. 100 1,2,4-Trichlorobenzene ND ug/kg 920 33. 100 1,3,5-Trimethylbenzene 130 J ug/kg 920 26. 100 1,2,4-Trimethylbenzene 130 J ug/kg 920 26. 100 1,2,4-Trimethylbenzene 6600 ug/kg 920 26. 100 1,2,4-Trimethylbenzene 6600 ug/kg 920 26. 100 1,2,4-Trimethylbenzene 1800 J ug/kg 3700 49. 100 1,4-Dioxane 1800 J ug/kg 3700 27. 100 1,4-Dioxane ND ug/kg 18000 2600 100 1,4-Dioxane ND ug/kg 3700 50. 100 100 1,4-Dioxane ND ug/kg 3700 50. 100 100 1,4-Dioxane ND ug/kg 3700 50. 100 100 100 1,4-Dioxane ND ug/kg 3700 50. 100	n-Butylbenzene	380		ug/kg	180	21.	100
n-Propylbenzene 680 ug/kg 180 20. 100 1,2,3-Trichlorobenzene ND ug/kg 920 27. 100 1,2,4-Trichlorobenzene ND ug/kg 920 33. 100 1,3,5-Trimethylbenzene 130 J ug/kg 920 26. 100 1,2,4-Trimethylbenzene 6600 ug/kg 920 26. 100 Methyl Acetate ND ug/kg 3700 49. 100 Cyclohexane 1800 J ug/kg 3700 49. 100 1,4-Dioxane ND ug/kg 18000 2600 100 Freon-113 ND ug/kg 3700 50. 100	1,2-Dibromo-3-chloropropane	ND		ug/kg	920	72.	100
1,2,3-Trichlorobenzene ND ug/kg 920 27. 100 1,2,4-Trichlorobenzene ND ug/kg 920 33. 100 1,3,5-Trimethylbenzene 130 J ug/kg 920 26. 100 1,2,4-Trimethylbenzene 6600 ug/kg 920 26. 100 Methyl Acetate ND ug/kg 3700 49. 100 Cyclohexane 1800 J ug/kg 3700 27. 100 1,4-Dioxane ND ug/kg 18000 2600 100 Freon-113 ND ug/kg 3700 50. 100	Isopropylbenzene	400		ug/kg	180	19.	100
1,2,4-Trichlorobenzene ND ug/kg 920 33. 100 1,3,5-Trimethylbenzene 130 J ug/kg 920 26. 100 1,2,4-Trimethylbenzene 6600 ug/kg 920 26. 100 Methyl Acetate ND ug/kg 3700 49. 100 Cyclohexane 1800 J ug/kg 3700 27. 100 1,4-Dioxane ND ug/kg 18000 2600 100 Freon-113 ND ug/kg 3700 50. 100	n-Propylbenzene	680		ug/kg	180	20.	100
1,3,5-Trimethylbenzene 130 J ug/kg 920 26. 100 1,2,4-Trimethylbenzene 6600 ug/kg 920 26. 100 Methyl Acetate ND ug/kg 3700 49. 100 Cyclohexane 1800 J ug/kg 3700 27. 100 1,4-Dioxane ND ug/kg 18000 2600 100 Freon-113 ND ug/kg 3700 50. 100	1,2,3-Trichlorobenzene	ND		ug/kg	920	27.	100
1,2,4-Trimethylbenzene 6600 ug/kg 920 26. 100 Methyl Acetate ND ug/kg 3700 49. 100 Cyclohexane 1800 J ug/kg 3700 27. 100 1,4-Dioxane ND ug/kg 18000 2600 100 Freon-113 ND ug/kg 3700 50. 100	1,2,4-Trichlorobenzene	ND		ug/kg	920	33.	100
Methyl Acetate ND ug/kg 3700 49. 100 Cyclohexane 1800 J ug/kg 3700 27. 100 1,4-Dioxane ND ug/kg 18000 2600 100 Freon-113 ND ug/kg 3700 50. 100	1,3,5-Trimethylbenzene	130	J	ug/kg	920	26.	100
Cyclohexane 1800 J ug/kg 3700 27. 100 1,4-Dioxane ND ug/kg 18000 2600 100 Freon-113 ND ug/kg 3700 50. 100	1,2,4-Trimethylbenzene	6600		ug/kg	920	26.	100
1,4-Dioxane ND ug/kg 18000 2600 100 Freon-113 ND ug/kg 3700 50. 100	Methyl Acetate	ND		ug/kg	3700	49.	100
Freon-113 ND ug/kg 3700 50. 100	Cyclohexane	1800	J	ug/kg	3700	27.	100
-56	1,4-Dioxane	ND		ug/kg	18000	2600	100
Methyl cyclohexane 6500 ug/kg 730 28. 100	Freon-113	ND		ug/kg	3700	50.	100
	Methyl cyclohexane	6500		ug/kg	730	28.	100

06/29/16 12:35

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-26 D

Client ID: P1-4 (4-8)
Sample Location: SYRACUSE, NY

Date Received: 06/30/16
Field Prep: Not Specified

Date Collected:

Parameter Result Qualifier Units RL MDL Dilution Factor

Tentatively Identified Compounds				
Total TIC Compounds	100000	J	ug/kg	100
Unknown Cyclohexane	6800	J	ug/kg	100
Cyclohexane, 1,1,3-trimethyl-	8000	NJ	ug/kg	100
Unknown	10000	J	ug/kg	100
Unknown Naphthalene	8800	J	ug/kg	100
Unknown Benzene	8900	J	ug/kg	100
Unknown	16000	J	ug/kg	100
Unknown Naphthalene	8100	J	ug/kg	100
Unknown	8700	J	ug/kg	100
Unknown	16000	J	ug/kg	100
Unknown	10000	J	ug/kg	100

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	105		70-130	
Toluene-d8	108		70-130	
4-Bromofluorobenzene	103		70-130	
Dibromofluoromethane	100		70-130	

L1620368

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number:

Report Date: 10/25/16

Lab ID: L1620368-27 D

Client ID: P1-4 (8-12) SYRACUSE, NY Sample Location:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 07/12/16 00:36

Analyst: MV55% Percent Solids:

Date Collected: 06/29/16 12:35

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westbo	orough Lab						
Methylene chloride	ND		ug/kg	900	100	50	
1,1-Dichloroethane	ND		ug/kg	140	7.8	50	
Chloroform	ND		ug/kg	140	34.	50	
Carbon tetrachloride	ND		ug/kg	90	19.	50	
1,2-Dichloropropane	ND		ug/kg	320	21.	50	
Dibromochloromethane	ND		ug/kg	90	14.	50	
1,1,2-Trichloroethane	ND		ug/kg	140	28.	50	
Tetrachloroethene	ND		ug/kg	90	13.	50	
Chlorobenzene	ND		ug/kg	90	32.	50	
Trichlorofluoromethane	ND		ug/kg	450	35.	50	
1,2-Dichloroethane	ND		ug/kg	90	10.	50	
1,1,1-Trichloroethane	ND		ug/kg	90	10.	50	
Bromodichloromethane	ND		ug/kg	90	16.	50	
trans-1,3-Dichloropropene	ND		ug/kg	90	11.	50	
cis-1,3-Dichloropropene	ND		ug/kg	90	11.	50	
Bromoform	ND		ug/kg	360	21.	50	
1,1,2,2-Tetrachloroethane	ND		ug/kg	90	9.1	50	
Benzene	290		ug/kg	90	11.	50	
Toluene	310		ug/kg	140	18.	50	
Ethylbenzene	1700		ug/kg	90	12.	50	
Chloromethane	ND		ug/kg	450	27.	50	
Bromomethane	ND		ug/kg	180	31.	50	
Vinyl chloride	ND		ug/kg	180	11.	50	
Chloroethane	ND		ug/kg	180	29.	50	
1,1-Dichloroethene	ND		ug/kg	90	24.	50	
trans-1,2-Dichloroethene	ND		ug/kg	140	19.	50	
Trichloroethene	ND		ug/kg	90	11.	50	
1,2-Dichlorobenzene	ND		ug/kg	450	14.	50	
1,3-Dichlorobenzene	ND		ug/kg	450	12.	50	
1,4-Dichlorobenzene	ND		ug/kg	450	12.	50	

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-27 D

Client ID: P1-4 (8-12)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 12:35

p/m-Xylene 4700 ug/kg 180 18. 50 o-Xylene 140 J ug/kg 180 16. 50 cis-1,2-Dichloroethene ND ug/kg 90 13. 50 Styrene ND ug/kg 180 36. 50 Dichlorodifluoromethane ND ug/kg 900 17. 50 Acetone ND ug/kg 900 17. 50 Carbon disulfide ND ug/kg 900 100 50 2-Butanone ND ug/kg 900 25. 50 4-Methyl-2-pentanone ND ug/kg 900 22. 50 4-Hexanone ND ug/kg 900 60. 50 Bromochloromethane ND ug/kg 450 25. 50 1,2-Dibromo-sheloropropane ND ug/kg 90 10. 50 1,2-Dibromo-sheloropropane ND ug/kg 90 9,4	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
ATOO	Volatile Organics by GC/MS - Wes	tborough Lab					
o-Xylene 140 J ug/kg 180 16. 50 cis-1,2-Dichloroethene ND ug/kg 90 13. 50 Styrene ND ug/kg 180 36. 50 Dichlorodifluoromethane ND ug/kg 900 17. 50 Acetone ND ug/kg 900 94. 50 Carbon disulfide ND ug/kg 900 100 50 Carbon disulfide ND ug/kg 900 25. 50 Carbon disulfide ND ug/kg 900 25. 50 2-Butanone ND ug/kg 900 25. 50 4-Methyl-2-pentanone ND ug/kg 900 26. 50 2-Hexanone ND ug/kg 900 60. 50 Bromochloromethane ND ug/kg 900 10. 50 1,2-Dibromo-3-chloropropane ND ug/kg 90 94. <t< td=""><td>Methyl tert butyl ether</td><td>ND</td><td></td><td>ug/kg</td><td>180</td><td>7.6</td><td>50</td></t<>	Methyl tert butyl ether	ND		ug/kg	180	7.6	50
cis-1,2-Dichloroethene ND ug/kg 90 13. 50 Styrene ND ug/kg 180 36. 50 Dichlorodiffluoromethane ND ug/kg 900 17. 50 Acetone ND ug/kg 900 17. 50 Carbon disulfide ND ug/kg 900 100 50 2-Butanone ND ug/kg 900 25. 50 4-Methyl-2-pentanone ND ug/kg 900 22. 50 2-Hexanone ND ug/kg 900 60. 50 Bromochloromethane ND ug/kg 450 25. 50 1,2-Dibromoethane ND ug/kg 360 16. 50 1,2-Dibromoethane ND ug/kg 90 10. 50 1,2-Dibromoethane ND ug/kg 90 10. 50 1,2-Dibromoethane ND ug/kg 90 9. 50	p/m-Xylene	4700		ug/kg	180	18.	50
Styrene ND ug/kg 180 36. 50 Dichlorodifluoromethane ND ug/kg 900 17. 50 Acetone ND ug/kg 900 94. 50 Carbon disulfide ND ug/kg 900 100 50 2-Butanone ND ug/kg 900 25. 50 4-Methyl-2-pentanone ND ug/kg 900 60. 50 2-Hexanone ND ug/kg 900 60. 50 Bromochloromethane ND ug/kg 360 16. 50 1,2-Dibromoethane ND ug/kg 360 16. 50 n-Butylbenzene 700 ug/kg 450 36. 50 1,2-Dibromo-3-chloropropane ND ug/kg 90 9.4 50 1,2-brighenzene 1000 ug/kg 90 9.4 50 1,2,3-Trichlorobenzene ND ug/kg 450 13. 50	o-Xylene	140	J	ug/kg	180	16.	50
Dichlorodifluoromethane ND	cis-1,2-Dichloroethene	ND		ug/kg	90	13.	50
Acetone ND ug/kg 900 94. 50 Carbon disulfide ND ug/kg 900 100 50 2-Butanone ND ug/kg 900 25. 50 4-Methyl-2-pentanone ND ug/kg 900 22. 50 2-Hexanone ND ug/kg 900 60. 50 Bromochloromethane ND ug/kg 450 25. 50 1,2-Dibromoethane ND ug/kg 360 16. 50 n-Butylbenzene 700 ug/kg 90 10. 50 1,2-Dibromo-3-chloropropane ND ug/kg 450 36. 50 Isopropylbenzene 1000 ug/kg 90 9.4 50 n-Propylbenzene 1800 ug/kg 90 9.9 50 1,2,3-Trichlorobenzene ND ug/kg 450 13. 50 1,2,4-Trichlorobenzene ND ug/kg 450 13.	Styrene	ND		ug/kg	180	36.	50
Carbon disulfide ND ug/kg 900 100 50 2-Butanone ND ug/kg 900 25. 50 4-Methyl-2-pentanone ND ug/kg 900 22. 50 2-Hexanone ND ug/kg 900 60. 50 Bromochloromethane ND ug/kg 450 25. 50 1,2-Dibromothane ND ug/kg 360 16. 50 n-Butylbenzene 700 ug/kg 90 10. 50 1,2-Dibromo-3-chloropropane ND ug/kg 450 36. 50 Isopropylbenzene 1000 ug/kg 90 9.4 50 n-Propylbenzene 1800 ug/kg 90 9.4 50 1,2,3-Trichlorobenzene ND ug/kg 450 13. 50 1,3,5-Trimethylbenzene 2100 ug/kg 450 13. 50 1,2,4-Trimethylbenzene 13000 ug/kg 450 13	Dichlorodifluoromethane	ND		ug/kg	900	17.	50
2-Butanone ND ug/kg 900 25. 50 4-Methyl-2-pentanone ND ug/kg 900 22. 50 2-Hexanone ND ug/kg 900 60. 50 Bromochloromethane ND ug/kg 450 25. 50 1,2-Dibromoethane ND ug/kg 360 16. 50 n-Butylbenzene 700 ug/kg 90 10. 50 1,2-Dibromo-3-chloropropane ND ug/kg 450 36. 50 Isopropylbenzene 1000 ug/kg 90 9.4 50 n-Propylbenzene 1800 ug/kg 90 9.4 50 n-Propylbenzene ND ug/kg 450 13. 50 1,2,3-Trichlorobenzene ND ug/kg 450 13. 50 1,2,4-Trimethylbenzene 13000 ug/kg 450 13. 50 1,3,5-Trimethylbenzene 13000 ug/kg 450 13. 50 1,4,4-Trimethylbenzene 13000 ug/kg 450 13. 50 1,2,4-Trimethylbenzene 13000 ug/kg 450 13. 50 1,4-Dioxane ND ug/kg 1800 24. 50 1,4-Dioxane ND ug/kg 9000 1300 50 1,4-Dioxane ND ug/kg 9000 1300 50	Acetone	ND		ug/kg	900	94.	50
4-Methyl-2-pentanone ND ug/kg 900 22. 50 2-Hexanone ND ug/kg 900 60. 50 Bromochloromethane ND ug/kg 450 25. 50 1,2-Dibromoethane ND ug/kg 360 16. 50 1,2-Dibromoethane ND ug/kg 90 10. 50 1,2-Dibromo-3-chloropropane ND ug/kg 450 36. 50 Isopropylbenzene 1000 ug/kg 90 9.4 50 1-Propylbenzene 1800 ug/kg 90 9.4 50 1,2-3-Trichlorobenzene ND ug/kg 450 13. 50 1,2-4-Trichlorobenzene ND ug/kg 450 13. 50 1,2-4-Trimethylbenzene 13000 ug/kg 450 13. 50 1,2-4-Trimethylbenzene ND ug/kg 1800 24. 50 1,3-5-Trimethylbenzene ND ug/kg 1800 25. 50	Carbon disulfide	ND		ug/kg	900	100	50
2-Hexanone ND ug/kg 900 60. 50 Bromochloromethane ND ug/kg 450 25. 50 1,2-Dibromoethane ND ug/kg 360 16. 50 n-Butylbenzene 700 ug/kg 90 10. 50 1,2-Dibromo-3-chloropropane ND ug/kg 450 36. 50 Isopropylbenzene 1000 ug/kg 90 9.4 50 n-Propylbenzene 1800 ug/kg 90 9.9 50 1,2,3-Trichlorobenzene ND ug/kg 450 13. 50 1,2,4-Trichlorobenzene ND ug/kg 450 13. 50 1,2,4-Trimethylbenzene 13000 ug/kg 450 13. 50 1,2,4-Trimethylbenzene ND ug/kg 1800 24. 50 Cyclohexane 8500 ug/kg 1800 13. 50 1,4-Dioxane ND ug/kg 9000 1300 50 Freon-113	2-Butanone	ND		ug/kg	900	25.	50
Bromochloromethane ND	4-Methyl-2-pentanone	ND		ug/kg	900	22.	50
1,2-Dibromoethane ND ug/kg 360 16. 50 n-Butylbenzene 700 ug/kg 90 10. 50 1,2-Dibromo-3-chloropropane ND ug/kg 450 36. 50 Isopropylbenzene 1000 ug/kg 90 9.4 50 n-Propylbenzene 1800 ug/kg 90 9.9 50 1,2,3-Trichlorobenzene ND ug/kg 450 13. 50 1,2,4-Trichlorobenzene ND ug/kg 450 16. 50 1,3,5-Trimethylbenzene 2100 ug/kg 450 13. 50 1,2,4-Trimethylbenzene 13000 ug/kg 450 13. 50 Methyl Acetate ND ug/kg 1800 24. 50 Cyclohexane 8500 ug/kg 1800 13. 50 1,4-Dioxane ND ug/kg 9000 1300 50 Freon-113 ND ug/kg 1800 25. 50	2-Hexanone	ND		ug/kg	900	60.	50
n-Butylbenzene 700 ug/kg 90 10. 50 1,2-Dibromo-3-chloropropane ND ug/kg 450 36. 50 Isopropylbenzene 1000 ug/kg 90 9.4 50 n-Propylbenzene 1800 ug/kg 90 9.9 50 1,2,3-Trichlorobenzene ND ug/kg 450 13. 50 1,2,4-Trichlorobenzene ND ug/kg 450 16. 50 1,3,5-Trimethylbenzene 2100 ug/kg 450 13. 50 1,2,4-Trimethylbenzene 13000 ug/kg 450 13. 50 1,2,4-Trimethylbenzene 13000 ug/kg 450 13. 50 1,2,4-Trimethylbenzene 13000 ug/kg 450 13. 50 Cyclohexane ND ug/kg 1800 24. 50 Cyclohexane 8500 ug/kg 1800 13. 50 1,4-Dioxane ND ug/kg 9000 1300 50 Freon-113 ND ug/kg 1800 25. 50	Bromochloromethane	ND		ug/kg	450	25.	50
1,2-Dibromo-3-chloropropane ND ug/kg 450 36. 50 Isopropylbenzene 1000 ug/kg 90 9.4 50 n-Propylbenzene 1800 ug/kg 90 9.9 50 1,2,3-Trichlorobenzene ND ug/kg 450 13. 50 1,2,4-Trichlorobenzene ND ug/kg 450 16. 50 1,3,5-Trimethylbenzene 2100 ug/kg 450 13. 50 1,2,4-Trimethylbenzene 13000 ug/kg 450 13. 50 Methyl Acetate ND ug/kg 1800 24. 50 Cyclohexane 8500 ug/kg 1800 13. 50 1,4-Dioxane ND ug/kg 9000 1300 50 Freon-113 ND ug/kg 1800 25. 50	1,2-Dibromoethane	ND		ug/kg	360	16.	50
Sopropylbenzene 1000 ug/kg 90 9.4 50 n-Propylbenzene 1800 ug/kg 90 9.9 50 1,2,3-Trichlorobenzene ND ug/kg 450 13. 50 1,2,4-Trichlorobenzene ND ug/kg 450 16. 50 1,3,5-Trimethylbenzene 2100 ug/kg 450 13. 50 1,2,4-Trimethylbenzene 13000 ug/kg 450 13. 50 1,2,4-Trimethylbenzene 13000 ug/kg 450 13. 50 1,2,4-Trimethylbenzene ND ug/kg 1800 24. 50 Cyclohexane 8500 ug/kg 1800 13. 50 1,4-Dioxane ND ug/kg 9000 1300 50 Freon-113 ND ug/kg 1800 25. 50	n-Butylbenzene	700		ug/kg	90	10.	50
n-Propylbenzene 1800 ug/kg 90 9.9 50 1,2,3-Trichlorobenzene ND ug/kg 450 13. 50 1,2,4-Trichlorobenzene ND ug/kg 450 16. 50 1,3,5-Trimethylbenzene 2100 ug/kg 450 13. 50 1,2,4-Trimethylbenzene 13000 ug/kg 450 13. 50 1,2,4-Trimethylbenzene 13000 ug/kg 450 13. 50 Methyl Acetate ND ug/kg 1800 24. 50 Cyclohexane 8500 ug/kg 1800 13. 50 1,4-Dioxane ND ug/kg 9000 1300 50 Freon-113 ND ug/kg 1800 25. 50	1,2-Dibromo-3-chloropropane	ND		ug/kg	450	36.	50
1,2,3-Trichlorobenzene ND ug/kg 450 13. 50 1,2,4-Trichlorobenzene ND ug/kg 450 16. 50 1,3,5-Trimethylbenzene 2100 ug/kg 450 13. 50 1,2,4-Trimethylbenzene 13000 ug/kg 450 13. 50 Methyl Acetate ND ug/kg 1800 24. 50 Cyclohexane 8500 ug/kg 1800 13. 50 1,4-Dioxane ND ug/kg 9000 1300 50 Freon-113 ND ug/kg 1800 25. 50	Isopropylbenzene	1000		ug/kg	90	9.4	50
1,2,4-Trichlorobenzene ND ug/kg 450 16. 50 1,3,5-Trimethylbenzene 2100 ug/kg 450 13. 50 1,2,4-Trimethylbenzene 13000 ug/kg 450 13. 50 Methyl Acetate ND ug/kg 1800 24. 50 Cyclohexane 8500 ug/kg 1800 13. 50 1,4-Dioxane ND ug/kg 9000 1300 50 Freon-113 ND ug/kg 1800 25. 50	n-Propylbenzene	1800		ug/kg	90	9.9	50
1,3,5-Trimethylbenzene 2100 ug/kg 450 13. 50 1,2,4-Trimethylbenzene 13000 ug/kg 450 13. 50 Methyl Acetate ND ug/kg 1800 24. 50 Cyclohexane 8500 ug/kg 1800 13. 50 1,4-Dioxane ND ug/kg 9000 1300 50 Freon-113 ND ug/kg 1800 25. 50	1,2,3-Trichlorobenzene	ND		ug/kg	450	13.	50
1,2,4-Trimethylbenzene 13000 ug/kg 450 13. 50 Methyl Acetate ND ug/kg 1800 24. 50 Cyclohexane 8500 ug/kg 1800 13. 50 1,4-Dioxane ND ug/kg 9000 1300 50 Freon-113 ND ug/kg 1800 25. 50	1,2,4-Trichlorobenzene	ND		ug/kg	450	16.	50
Methyl Acetate ND ug/kg 1800 24. 50 Cyclohexane 8500 ug/kg 1800 13. 50 1,4-Dioxane ND ug/kg 9000 1300 50 Freon-113 ND ug/kg 1800 25. 50	1,3,5-Trimethylbenzene	2100		ug/kg	450	13.	50
Cyclohexane 8500 ug/kg 1800 13. 50 1,4-Dioxane ND ug/kg 9000 1300 50 Freon-113 ND ug/kg 1800 25. 50	1,2,4-Trimethylbenzene	13000		ug/kg	450	13.	50
1,4-Dioxane ND ug/kg 9000 1300 50 Freon-113 ND ug/kg 1800 25. 50	Methyl Acetate	ND		ug/kg	1800	24.	50
Freon-113 ND ug/kg 1800 25. 50	Cyclohexane	8500		ug/kg	1800	13.	50
-5115	1,4-Dioxane	ND		ug/kg	9000	1300	50
Methyl cyclohexane 23000 ug/kg 360 14. 50	Freon-113	ND		ug/kg	1800	25.	50
	Methyl cyclohexane	23000		ug/kg	360	14.	50

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-27 D

Client ID: P1-4 (8-12)
Sample Location: SYRACUSE, NY

Date Collected: 06/2

06/29/16 12:35

Date Received: 06/30/16 Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Tentatively Identified Compounds				
Total TIC Compounds	60000	J	ug/kg	50
Pentane, 2-methyl-	5200	NJ	ug/kg	50
Unknown Cycloalkane	6000	J	ug/kg	50
Unknown	6100	J	ug/kg	50
Unknown Cyclohexane	9200	J	ug/kg	50
Unknown Cyclohexane	4800	J	ug/kg	50
Unknown	4600	J	ug/kg	50
Cyclohexane, ethyl-	5100	NJ	ug/kg	50
Cyclohexane, 1,1,3-trimethyl-	5200	NJ	ug/kg	50
Unknown	6800	J	ug/kg	50
Unknown Aromatic	6800	J	ug/kg	50

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	109		70-130	
Toluene-d8	115		70-130	
4-Bromofluorobenzene	119		70-130	
Dibromofluoromethane	96		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 10/25/16

Lab ID: L1620368-28 D

Client ID: P1-3 (4-8) SYRACUSE, NY Sample Location:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 07/12/16 01:01

Analyst: MV 84% Percent Solids:

Date Collected: 06/29/16 12:45

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - W	estborough Lab						
Methylene chloride	ND		ug/kg	1500	160	125	
1,1-Dichloroethane	ND		ug/kg	220	13.	125	
Chloroform	ND		ug/kg	220	55.	125	
Carbon tetrachloride	ND		ug/kg	150	31.	125	
1,2-Dichloropropane	ND		ug/kg	520	34.	125	
Dibromochloromethane	ND		ug/kg	150	23.	125	
1,1,2-Trichloroethane	ND		ug/kg	220	45.	125	
Tetrachloroethene	ND		ug/kg	150	21.	125	
Chlorobenzene	ND		ug/kg	150	52.	125	
Trichlorofluoromethane	ND		ug/kg	740	58.	125	
1,2-Dichloroethane	ND		ug/kg	150	17.	125	
1,1,1-Trichloroethane	ND		ug/kg	150	16.	125	
Bromodichloromethane	ND		ug/kg	150	26.	125	
trans-1,3-Dichloropropene	ND		ug/kg	150	18.	125	
cis-1,3-Dichloropropene	ND		ug/kg	150	18.	125	
Bromoform	ND		ug/kg	600	35.	125	
1,1,2,2-Tetrachloroethane	ND		ug/kg	150	15.	125	
Benzene	ND		ug/kg	150	18.	125	
Toluene	120	J	ug/kg	220	29.	125	
Ethylbenzene	2800		ug/kg	150	19.	125	
Chloromethane	ND		ug/kg	740	44.	125	
Bromomethane	ND		ug/kg	300	50.	125	
Vinyl chloride	ND		ug/kg	300	18.	125	
Chloroethane	ND		ug/kg	300	47.	125	
1,1-Dichloroethene	ND		ug/kg	150	39.	125	
trans-1,2-Dichloroethene	ND		ug/kg	220	32.	125	
Trichloroethene	ND		ug/kg	150	19.	125	
1,2-Dichlorobenzene	ND		ug/kg	740	23.	125	
1,3-Dichlorobenzene	ND		ug/kg	740	20.	125	
1,4-Dichlorobenzene	ND		ug/kg	740	21.	125	

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-28 D

Client ID: P1-3 (4-8)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 12:45

p/m-Xylene 8500 ug/kg 300 30. 125 o-Xylene 750 ug/kg 300 26. 125 cis-1,2-Dichloroethene ND ug/kg 150 21. 125 Styrene ND ug/kg 300 60. 125 Dichlorodifluoromethane ND ug/kg 1500 28. 125 Acetone ND ug/kg 1500 160 125 Carbon disulfide ND ug/kg 1500 160 125 2-Butanone ND ug/kg 1500 40. 125 2-Hexanone ND ug/kg 1500 40. 125 2-Hexanone ND ug/kg 1500 36. 125 2-Hexanone ND ug/kg 1500 39. 125 Bromochloromethane ND ug/kg 740 41. 125 1,2-Dibromo-s-chloropropane ND ug/kg 150 17. 125 <th>Parameter</th> <th>Result</th> <th>Qualifier</th> <th>Units</th> <th>RL</th> <th>MDL</th> <th>Dilution Factor</th>	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
	Volatile Organics by GC/MS - West	borough Lab					
o-Xylene 750 ug/kg 300 26. 125 cis-1,2-Dichloroethene ND ug/kg 150 21. 125 Styrene ND ug/kg 300 60. 125 Dichlorodifluoromethane ND ug/kg 1500 28. 125 Acetone ND ug/kg 1500 150 125 Carbon disulfide ND ug/kg 1500 160 125 Carbon disulfide ND ug/kg 1500 40. 125 2-Butanone ND ug/kg 1500 40. 125 2-Butanone ND ug/kg 1500 40. 125 2-Butanone ND ug/kg 1500 40. 125 2-Haxanone ND ug/kg 1500 99. 125 Bromochloromethane ND ug/kg 600 26. 125 1,2-Dibromoe-3-chloropropane ND ug/kg 740 59. 125	Methyl tert butyl ether	ND		ug/kg	300	12.	125
ND	p/m-Xylene	8500		ug/kg	300	30.	125
Styrene ND ug/kg 300 60. 125 Dichlorodifluoromethane ND ug/kg 1500 28. 125 Acetone ND ug/kg 1500 150 125 Carbon disulfide ND ug/kg 1500 160 125 2-Butanone ND ug/kg 1500 40. 125 2-Hexanone ND ug/kg 1500 36. 125 2-Hexanone ND ug/kg 1500 99. 125 Bromochloromethane ND ug/kg 740 41. 125 1,2-Dibromoethane ND ug/kg 600 26. 125 1,2-Dibromoed-achloropropane ND ug/kg 150 17. 125 1,2-Dibromoe-3-chloropropane ND ug/kg 740 59. 125 Isopropylbenzene 190 ug/kg 150 15. 125 Isopropylbenzene 1400 ug/kg 740 22.	o-Xylene	750		ug/kg	300	26.	125
Dichlorodiffluoromethane ND	cis-1,2-Dichloroethene	ND		ug/kg	150	21.	125
Actione ND ug/kg 1500 150 125 Carbon disulfide ND ug/kg 1500 160 125 2-Butanone ND ug/kg 1500 40. 125 4-Methyl-2-pentanone ND ug/kg 1500 36. 125 2-Hexanone ND ug/kg 1500 99. 125 Bromochloromethane ND ug/kg 740 41. 125 1,2-Dibromoethane ND ug/kg 600 26. 125 1,2-Dibromo-3-chloropropane ND ug/kg 740 59. 125 Isopropylbenzene 490 ug/kg 740 59. 125 Isopropylbenzene 1400 ug/kg 150 16. 125 1,2,3-Trichlorobenzene ND ug/kg 740 22. 125 1,2,4-Trichlorobenzene ND ug/kg 740 27. 125 1,3,5-Trimethylbenzene 1800 ug/kg 740	Styrene	ND		ug/kg	300	60.	125
Carbon disulfide ND ug/kg 1500 160 125 2-Butanone ND ug/kg 1500 40. 125 4-Methyl-2-pentanone ND ug/kg 1500 36. 125 2-Hexanone ND ug/kg 1500 99. 125 Bromochloromethane ND ug/kg 740 41. 125 1,2-Dibromothane ND ug/kg 600 26. 125 n-Butylbenzene 890 ug/kg 150 17. 125 Isporpotylbenzene ND ug/kg 740 59. 125 Isporpotylbenzene 490 ug/kg 150 15. 125 Isporpotylbenzene 1400 ug/kg 150 16. 125 1,2,3-Trichlorobenzene ND ug/kg 740 22. 125 1,3,5-Trimethylbenzene 5800 ug/kg 740 21. 125 1,2,4-Trinethylbenzene 18000 ug/kg 740	Dichlorodifluoromethane	ND		ug/kg	1500	28.	125
2-Butanone ND ug/kg 1500 40. 125 4-Methyl-2-pentanone ND ug/kg 1500 36. 125 2-Hexanone ND ug/kg 1500 99. 125 Bromochloromethane ND ug/kg 740 41. 125 1,2-Dibromoethane ND ug/kg 600 26. 125 n-Butylbenzene 890 ug/kg 150 17. 125 1,2-Dibromo-3-chloropropane ND ug/kg 740 59. 125 Isopropylbenzene 490 ug/kg 150 15. 125 Isopropylbenzene 1400 ug/kg 150 16. 125 n-Propylbenzene ND ug/kg 740 22. 125 1,2,3-Trichlorobenzene ND ug/kg 740 27. 125 1,3,5-Trimethylbenzene 5800 ug/kg 740 21. 125 Methyl Acetate ND ug/kg 3000	Acetone	ND		ug/kg	1500	150	125
4-Methyl-2-pentanone ND ug/kg 1500 36. 125 2-Hexanone ND ug/kg 1500 99. 125 Bromochloromethane ND ug/kg 740 41. 125 1,2-Dibromoethane ND ug/kg 600 26. 125 n-Butylbenzene 890 ug/kg 150 17. 125 1,2-Dibromo-3-chloropropane ND ug/kg 740 59. 125 Isopropylbenzene 490 ug/kg 150 15. 125 n-Propylbenzene 1400 ug/kg 150 15. 125 1,2,3-Trichlorobenzene ND ug/kg 740 22. 125 1,2,3-Trichlorobenzene ND ug/kg 740 22. 125 1,2,4-Trichlorobenzene ND ug/kg 740 21. 125 1,2,4-Trimethylbenzene 1800 ug/kg 740 21. 125 1,2,4-Trimethylbenzene 18000 ug/kg 740 21. 125 1,2,4-Trimethylbenzene 18000 ug/kg 740 21. 125 1,2,4-Trimethylbenzene ND ug/kg 740 21. 125 1,2,4-Trimethylbenzene ND ug/kg 740 21. 125 1,2,4-Trimethylbenzene 18000 ug/kg 740 21. 125 1,2,4-Trimethylbenzene ND ug/kg 3000 40. 125 Cyclohexane 2500 J ug/kg 3000 22. 125 1,4-Dioxane ND ug/kg 1500 2200 125 Freon-113	Carbon disulfide	ND		ug/kg	1500	160	125
ND	2-Butanone	ND		ug/kg	1500	40.	125
Bromochloromethane ND	4-Methyl-2-pentanone	ND		ug/kg	1500	36.	125
1,2-Dibromoethane ND ug/kg 600 26. 125 n-Butylbenzene 890 ug/kg 150 17. 125 1,2-Dibromo-3-chloropropane ND ug/kg 740 59. 125 Isopropylbenzene 490 ug/kg 150 15. 125 n-Propylbenzene 1400 ug/kg 150 16. 125 1,2,3-Trichlorobenzene ND ug/kg 740 22. 125 1,2,4-Trichlorobenzene ND ug/kg 740 27. 125 1,3,5-Trimethylbenzene 5800 ug/kg 740 21. 125 1,2,4-Trimethylbenzene 18000 ug/kg 740 21. 125 Methyl Acetate ND ug/kg 3000 40. 125 Cyclohexane 2500 J ug/kg 3000 22. 125 1,4-Dioxane ND ug/kg 15000 2200 125 Freon-113 ND ug/kg 3000 41. 125	2-Hexanone	ND		ug/kg	1500	99.	125
n-Butylbenzene 890 ug/kg 150 17. 125 1,2-Dibromo-3-chloropropane ND ug/kg 740 59. 125 Isopropylbenzene 490 ug/kg 150 15. 125 n-Propylbenzene 1400 ug/kg 150 16. 125 1,2,3-Trichlorobenzene ND ug/kg 740 22. 125 1,2,4-Trichlorobenzene ND ug/kg 740 27. 125 1,3,5-Trimethylbenzene 18000 ug/kg 740 21. 125 1,2,4-Trimethylbenzene ND ug/kg 740 21. 125 1,4-Dioxane ND ug/kg 3000 40. 125 1,4-Dioxane ND ug/kg 3000 22. 125 1,4-Dioxane ND ug/kg 3000 41. 125 Freon-113	Bromochloromethane	ND		ug/kg	740	41.	125
1,2-Dibromo-3-chloropropane ND ug/kg 740 59. 125 Isopropylbenzene 490 ug/kg 150 15. 125 n-Propylbenzene 1400 ug/kg 150 16. 125 1,2,3-Trichlorobenzene ND ug/kg 740 22. 125 1,2,4-Trichlorobenzene ND ug/kg 740 27. 125 1,3,5-Trimethylbenzene 5800 ug/kg 740 21. 125 1,2,4-Trimethylbenzene 18000 ug/kg 740 21. 125 Methyl Acetate ND ug/kg 3000 40. 125 Cyclohexane 2500 J ug/kg 3000 22. 125 1,4-Dioxane ND ug/kg 15000 2200 125 Freon-113 ND ug/kg 3000 41. 125	1,2-Dibromoethane	ND		ug/kg	600	26.	125
Sopropylbenzene 490 ug/kg 150 15. 125 n-Propylbenzene 1400 ug/kg 150 16. 125 1,2,3-Trichlorobenzene ND ug/kg 740 22. 125 1,2,4-Trichlorobenzene ND ug/kg 740 27. 125 1,3,5-Trimethylbenzene 5800 ug/kg 740 21. 125 1,2,4-Trimethylbenzene 18000 ug/kg 740 21. 125 1,2,4-Trimethylbenzene 18000 ug/kg 740 21. 125 1,2,4-Trimethylbenzene 18000 ug/kg 3000 40. 125 1,4-Trimethylbenzene 2500 J ug/kg 3000 22. 125 1,4-Dioxane ND ug/kg 15000 2200 125 Freon-113 ND ug/kg 3000 41. 125	n-Butylbenzene	890		ug/kg	150	17.	125
n-Propylbenzene 1400 ug/kg 150 16. 125 1,2,3-Trichlorobenzene ND ug/kg 740 22. 125 1,2,4-Trichlorobenzene ND ug/kg 740 27. 125 1,3,5-Trimethylbenzene 5800 ug/kg 740 21. 125 1,2,4-Trimethylbenzene 18000 ug/kg 740 21. 125 1,2,4-Trimethylbenzene 18000 ug/kg 740 21. 125 Cyclohexane DND ug/kg 3000 40. 125 Cyclohexane 2500 J ug/kg 3000 22. 125 1,4-Dioxane ND ug/kg 15000 2200 125 Freon-113 ND ug/kg 3000 41. 125	1,2-Dibromo-3-chloropropane	ND		ug/kg	740	59.	125
1,2,3-Trichlorobenzene ND ug/kg 740 22. 125 1,2,4-Trichlorobenzene ND ug/kg 740 27. 125 1,3,5-Trimethylbenzene 5800 ug/kg 740 21. 125 1,2,4-Trimethylbenzene 18000 ug/kg 740 21. 125 Methyl Acetate ND ug/kg 3000 40. 125 Cyclohexane 2500 J ug/kg 3000 22. 125 1,4-Dioxane ND ug/kg 15000 2200 125 Freon-113 ND ug/kg 3000 41. 125	Isopropylbenzene	490		ug/kg	150	15.	125
1,2,4-Trichlorobenzene ND ug/kg 740 27. 125 1,3,5-Trimethylbenzene 5800 ug/kg 740 21. 125 1,2,4-Trimethylbenzene 18000 ug/kg 740 21. 125 Methyl Acetate ND ug/kg 3000 40. 125 Cyclohexane 2500 J ug/kg 3000 22. 125 1,4-Dioxane ND ug/kg 15000 2200 125 Freon-113 ND ug/kg 3000 41. 125	n-Propylbenzene	1400		ug/kg	150	16.	125
1,3,5-Trimethylbenzene 5800 ug/kg 740 21. 125 1,2,4-Trimethylbenzene 18000 ug/kg 740 21. 125 Methyl Acetate ND ug/kg 3000 40. 125 Cyclohexane 2500 J ug/kg 3000 22. 125 1,4-Dioxane ND ug/kg 15000 2200 125 Freon-113 ND ug/kg 3000 41. 125	1,2,3-Trichlorobenzene	ND		ug/kg	740	22.	125
1,2,4-Trimethylbenzene 18000 ug/kg 740 21. 125 Methyl Acetate ND ug/kg 3000 40. 125 Cyclohexane 2500 J ug/kg 3000 22. 125 1,4-Dioxane ND ug/kg 15000 2200 125 Freon-113 ND ug/kg 3000 41. 125	1,2,4-Trichlorobenzene	ND		ug/kg	740	27.	125
Methyl Acetate ND ug/kg 3000 40. 125 Cyclohexane 2500 J ug/kg 3000 22. 125 1,4-Dioxane ND ug/kg 15000 2200 125 Freon-113 ND ug/kg 3000 41. 125	1,3,5-Trimethylbenzene	5800		ug/kg	740	21.	125
Cyclohexane 2500 J ug/kg 3000 22. 125 1,4-Dioxane ND ug/kg 15000 2200 125 Freon-113 ND ug/kg 3000 41. 125	1,2,4-Trimethylbenzene	18000		ug/kg	740	21.	125
1,4-Dioxane ND ug/kg 15000 2200 125 Freon-113 ND ug/kg 3000 41. 125	Methyl Acetate	ND		ug/kg	3000	40.	125
Freon-113 ND ug/kg 3000 41. 125	Cyclohexane	2500	J	ug/kg	3000	22.	125
-5.0	1,4-Dioxane	ND		ug/kg	15000	2200	125
Methyl cyclohexane 9900 ug/kg 600 23. 125	Freon-113	ND		ug/kg	3000	41.	125
	Methyl cyclohexane	9900		ug/kg	600	23.	125

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-28 D

Client ID: P1-3 (4-8)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 12:45

Date Received: 06/30/16 Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Tentatively Identified Compounds				
Total TIC Compounds	72000	J	ug/kg	125
Unknown Alkane	7700	J	ug/kg	125
Unknown	6200	J	ug/kg	125
Octane	5000	NJ	ug/kg	125
Unknown	9600	J	ug/kg	125
Unknown Benzene	6300	J	ug/kg	125
Unknown Benzene	6900	J	ug/kg	125
Unknown Benzene	5800	J	ug/kg	125
Unknown Benzene	7500	J	ug/kg	125
Unknown Aromatic	8000	J	ug/kg	125
1-Phenyl-1-butene	9200	NJ	ug/kg	125

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	102		70-130	
Toluene-d8	105		70-130	
4-Bromofluorobenzene	111		70-130	
Dibromofluoromethane	101		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 10/25/16

Lab ID: L1620368-29 D

Client ID: P1-3 (8-12) SYRACUSE, NY Sample Location:

Matrix: Soil Analytical Method: 1,8260C

Analytical Date: 07/12/16 16:32

Analyst: MV55% Percent Solids:

Date Collected: 06/29/16 12:45

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/kg	7400	820	500
1,1-Dichloroethane	ND		ug/kg	1100	63.	500
Chloroform	ND		ug/kg	1100	270	500
Carbon tetrachloride	ND		ug/kg	740	160	500
1,2-Dichloropropane	ND		ug/kg	2600	170	500
Dibromochloromethane	ND		ug/kg	740	110	500
1,1,2-Trichloroethane	ND		ug/kg	1100	220	500
Tetrachloroethene	ND		ug/kg	740	100	500
Chlorobenzene	ND		ug/kg	740	260	500
Trichlorofluoromethane	ND		ug/kg	3700	290	500
1,2-Dichloroethane	ND		ug/kg	740	84.	500
1,1,1-Trichloroethane	ND		ug/kg	740	82.	500
Bromodichloromethane	ND		ug/kg	740	130	500
trans-1,3-Dichloropropene	ND		ug/kg	740	89.	500
cis-1,3-Dichloropropene	ND		ug/kg	740	87.	500
Bromoform	ND		ug/kg	3000	170	500
1,1,2,2-Tetrachloroethane	ND		ug/kg	740	74.	500
Benzene	600	J	ug/kg	740	87.	500
Toluene	1000	J	ug/kg	1100	140	500
Ethylbenzene	20000		ug/kg	740	94.	500
Chloromethane	ND		ug/kg	3700	220	500
Bromomethane	ND		ug/kg	1500	250	500
Vinyl chloride	ND		ug/kg	1500	87.	500
Chloroethane	ND		ug/kg	1500	230	500
1,1-Dichloroethene	ND		ug/kg	740	190	500
trans-1,2-Dichloroethene	ND		ug/kg	1100	160	500
Trichloroethene	ND		ug/kg	740	92.	500
1,2-Dichlorobenzene	ND		ug/kg	3700	110	500
1,3-Dichlorobenzene	ND		ug/kg	3700	100	500
1,4-Dichlorobenzene	ND		ug/kg	3700	100	500

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-29 D

Client ID: P1-3 (8-12)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 12:45

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methyl tert butyl ether	ND		ug/kg	1500	62.	500
p/m-Xylene	60000		ug/kg	1500	150	500
o-Xylene	5000		ug/kg	1500	130	500
cis-1,2-Dichloroethene	ND		ug/kg	740	100	500
Styrene	ND		ug/kg	1500	300	500
Dichlorodifluoromethane	ND		ug/kg	7400	140	500
Acetone	ND		ug/kg	7400	760	500
Carbon disulfide	ND		ug/kg	7400	810	500
2-Butanone	ND		ug/kg	7400	200	500
4-Methyl-2-pentanone	ND		ug/kg	7400	180	500
2-Hexanone	ND		ug/kg	7400	490	500
Bromochloromethane	ND		ug/kg	3700	200	500
1,2-Dibromoethane	ND		ug/kg	3000	130	500
n-Butylbenzene	2300		ug/kg	740	85.	500
1,2-Dibromo-3-chloropropane	ND		ug/kg	3700	290	500
Isopropylbenzene	2300		ug/kg	740	77.	500
n-Propylbenzene	6100		ug/kg	740	81.	500
1,2,3-Trichlorobenzene	ND		ug/kg	3700	110	500
1,2,4-Trichlorobenzene	ND		ug/kg	3700	130	500
1,3,5-Trimethylbenzene	25000		ug/kg	3700	100	500
1,2,4-Trimethylbenzene	73000		ug/kg	3700	100	500
Methyl Acetate	ND		ug/kg	15000	200	500
Cyclohexane	11000	J	ug/kg	15000	110	500
1,4-Dioxane	ND		ug/kg	74000	11000	500
Freon-113	ND		ug/kg	15000	200	500
Methyl cyclohexane	30000		ug/kg	3000	110	500

06/29/16 12:45

06/30/16

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-29 D

Client ID: P1-3 (8-12)
Sample Location: SYRACUSE, NY

Field Prep: Not Specified

Date Collected:

Date Received:

Parameter Result Qualifier Units RL MDL Dilution Factor

Tentatively Identified Compounds				
Total TIC Compounds	140000	J	ug/kg	500
Cyclopentane, Methyl-	11000	NJ	ug/kg	500
Unknown Cyclohexane	10000	J	ug/kg	500
Unknown Benzene	16000	J	ug/kg	500
Unknown Benzene	18000	J	ug/kg	500
Indane	14000	NJ	ug/kg	500
Unknown Benzene	17000	J	ug/kg	500
Unknown Benzene	14000	J	ug/kg	500
Unknown	12000	J	ug/kg	500
Unknown Aromatic	13000	J	ug/kg	500
Unknown Aromatic	17000	J	ug/kg	500

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	103		70-130	
Toluene-d8	102		70-130	
4-Bromofluorobenzene	103		70-130	
Dibromofluoromethane	101		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 10/25/16

Lab ID: L1620368-30

Client ID: P4-1 (0-4) SYRACUSE, NY Sample Location:

Matrix: Soil

Analytical Method: 1,8260C

Analytical Date: 07/12/16 16:58

Analyst: MV 87% Percent Solids:

Date Collected: 06/29/16 13:05

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	1.5	J	ug/kg	11	1.2	1
1,1-Dichloroethane	ND		ug/kg	1.6	0.09	1
Chloroform	ND		ug/kg	1.6	0.41	1
Carbon tetrachloride	ND		ug/kg	1.1	0.23	1
1,2-Dichloropropane	ND		ug/kg	3.9	0.25	1
Dibromochloromethane	ND		ug/kg	1.1	0.17	1
1,1,2-Trichloroethane	ND		ug/kg	1.6	0.34	1
Tetrachloroethene	ND		ug/kg	1.1	0.15	1
Chlorobenzene	ND		ug/kg	1.1	0.38	1
Trichlorofluoromethane	ND		ug/kg	5.5	0.43	1
1,2-Dichloroethane	ND		ug/kg	1.1	0.12	1
1,1,1-Trichloroethane	ND		ug/kg	1.1	0.12	1
Bromodichloromethane	ND		ug/kg	1.1	0.19	1
trans-1,3-Dichloropropene	ND		ug/kg	1.1	0.13	1
cis-1,3-Dichloropropene	ND		ug/kg	1.1	0.13	1
Bromoform	ND		ug/kg	4.4	0.26	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	1.1	0.11	1
Benzene	0.82	J	ug/kg	1.1	0.13	1
Toluene	ND		ug/kg	1.6	0.22	1
Ethylbenzene	0.66	J	ug/kg	1.1	0.14	1
Chloromethane	ND		ug/kg	5.5	0.32	1
Bromomethane	ND		ug/kg	2.2	0.37	1
Vinyl chloride	ND		ug/kg	2.2	0.13	1
Chloroethane	ND		ug/kg	2.2	0.35	1
1,1-Dichloroethene	ND		ug/kg	1.1	0.29	1
trans-1,2-Dichloroethene	ND		ug/kg	1.6	0.23	1
Trichloroethene	ND		ug/kg	1.1	0.14	1
1,2-Dichlorobenzene	ND		ug/kg	5.5	0.17	1
1,3-Dichlorobenzene	ND		ug/kg	5.5	0.15	1
1,4-Dichlorobenzene	ND		ug/kg	5.5	0.15	1

L1620368

Project Name: Lab Number: **EMBASSY SUITES**

Project Number: Report Date: 15209 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-30 Date Collected: 06/29/16 13:05

P4-1 (0-4) Client ID: Date Received: 06/30/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westb	oorough Lab						
Methyl tert butyl ether	ND		ug/kg	2.2	0.09	1	
p/m-Xylene	0.80	J	ug/kg	2.2	0.22	1	
o-Xylene	0.29	J	ug/kg	2.2	0.19	1	
cis-1,2-Dichloroethene	ND		ug/kg	1.1	0.16	1	
Styrene	ND		ug/kg	2.2	0.44	1	
Dichlorodifluoromethane	ND		ug/kg	11	0.21	1	
Acetone	7.8	J	ug/kg	11	1.1	1	
Carbon disulfide	1.2	J	ug/kg	11	1.2	1	
2-Butanone	ND		ug/kg	11	0.30	1	
4-Methyl-2-pentanone	ND		ug/kg	11	0.27	1	
2-Hexanone	ND		ug/kg	11	0.74	1	
Bromochloromethane	ND		ug/kg	5.5	0.30	1	
1,2-Dibromoethane	ND		ug/kg	4.4	0.19	1	
n-Butylbenzene	0.19	J	ug/kg	1.1	0.13	1	
1,2-Dibromo-3-chloropropane	ND		ug/kg	5.5	0.44	1	
Isopropylbenzene	ND		ug/kg	1.1	0.11	1	
n-Propylbenzene	0.28	J	ug/kg	1.1	0.12	1	
1,2,3-Trichlorobenzene	ND		ug/kg	5.5	0.16	1	
1,2,4-Trichlorobenzene	ND		ug/kg	5.5	0.20	1	
1,3,5-Trimethylbenzene	0.54	J	ug/kg	5.5	0.16	1	
1,2,4-Trimethylbenzene	0.86	J	ug/kg	5.5	0.16	1	
Methyl Acetate	ND		ug/kg	22	0.30	1	
Cyclohexane	ND		ug/kg	22	0.16	1	
1,4-Dioxane	ND		ug/kg	110	16.	1	
Freon-113	ND		ug/kg	22	0.30	1	
Methyl cyclohexane	0.72	J	ug/kg	4.4	0.17	1	

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: Date Collected: 06/29/16 13:05

Client ID: P4-1 (0-4) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Tentatively Identified Compounds				
Total TIC Compounds	53	J	ug/kg	1
Unknown	3.3	J	ug/kg	1
Unknown	8.0	J	ug/kg	1
Unknown	4.4	J	ug/kg	1
Unknown	3.8	J	ug/kg	1
Unknown Benzene	6.0	J	ug/kg	1
Unknown	5.9	J	ug/kg	1
Unknown	5.4	J	ug/kg	1
Unknown	6.8	J	ug/kg	1
Unknown	5.2	J	ug/kg	1
Unknown Benzene	3.8	J	ug/kg	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	98		70-130	
Toluene-d8	103		70-130	
4-Bromofluorobenzene	103		70-130	
Dibromofluoromethane	102		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 10/25/16

Lab ID: L1620368-31 D

Client ID: P4-1 (4-8) SYRACUSE, NY Sample Location:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 07/12/16 17:23

Analyst: MV43% Percent Solids:

Date Collected: 06/29/16 13:05

J	ug/kg	1200 180 180 120 410 120 180 120 120 580 120 120 120 120	130 10. 43. 24. 27. 18. 36. 16. 41. 45. 13. 20.	50 50 50 50 50 50 50 50 50 50
J	ug/kg	180 180 120 410 120 180 120 120 580 120 120 120	10. 43. 24. 27. 18. 36. 16. 41. 45. 13. 20.	50 50 50 50 50 50 50 50 50 50
	ug/kg	180 120 410 120 180 120 120 580 120 120 120	43. 24. 27. 18. 36. 16. 41. 45. 13. 20.	50 50 50 50 50 50 50 50 50 50
	ug/kg	120 410 120 180 120 120 580 120 120	24. 27. 18. 36. 16. 41. 45. 13. 13.	50 50 50 50 50 50 50 50 50 50
	ug/kg	410 120 180 120 120 580 120 120	27. 18. 36. 16. 41. 45. 13. 20.	50 50 50 50 50 50 50 50 50
	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	120 180 120 120 580 120 120	18. 36. 16. 41. 45. 13. 20.	50 50 50 50 50 50 50 50
	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	180 120 120 580 120 120	36. 16. 41. 45. 13. 20.	50 50 50 50 50 50 50
	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	120 120 580 120 120 120	16. 41. 45. 13. 13.	50 50 50 50 50 50
	ug/kg ug/kg ug/kg ug/kg ug/kg	120 580 120 120 120	41. 45. 13. 13. 20.	50 50 50 50 50
	ug/kg ug/kg ug/kg ug/kg	580 120 120 120	45. 13. 13. 20.	50 50 50 50
	ug/kg ug/kg ug/kg	120 120 120	13. 13. 20.	50 50 50
	ug/kg ug/kg	120 120	13. 20.	50 50
	ug/kg	120	20.	50
	ug/kg	120	1.1	
			14.	50
	ug/kg	120	14.	50
	ug/kg	470	28.	50
	ug/kg	120	12.	50
	ug/kg	120	14.	50
	ug/kg	180	23.	50
J	ug/kg	120	15.	50
	ug/kg	580	34.	50
	ug/kg	230	40.	50
	ug/kg	230	14.	50
	ug/kg	230	37.	50
	ug/kg	120	31.	50
	ug/kg	180	25.	50
	ug/kg	120	15.	50
	ug/kg	580	18.	50
	ug/kg	580	16.	50
		ug/kg ug/kg ug/kg	ug/kg 120 ug/kg 180 ug/kg 120 ug/kg 580	ug/kg 120 31. ug/kg 180 25. ug/kg 120 15. ug/kg 580 18.

06/29/16 13:05

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-31 D Date Collected:

Client ID: P4-1 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL **Dilution Factor** Volatile Organics by GC/MS - Westborough Lab Methyl tert butyl ether ND 230 9.9 50 ug/kg p/m-Xylene 78 J ug/kg 230 23. 50 ND 230 20. 50 o-Xylene ug/kg ND cis-1,2-Dichloroethene 120 17. 50 ug/kg Styrene ND 230 47. 50 ug/kg Dichlorodifluoromethane ND 1200 50 22. ug/kg Acetone ND 1200 120 50 ug/kg Carbon disulfide ND ug/kg 1200 130 50 2-Butanone ND ug/kg 1200 32. 50 ND 1200 28. 50 4-Methyl-2-pentanone ug/kg 2-Hexanone ND ug/kg 1200 78. 50 Bromochloromethane ND 580 32. 50 ug/kg 1,2-Dibromoethane ND 470 20. 50 ug/kg J 73 50 n-Butylbenzene ug/kg 120 13. 1,2-Dibromo-3-chloropropane ND 580 46. 50 ug/kg Isopropylbenzene 370 120 12. 50 ug/kg n-Propylbenzene 380 120 50 ug/kg 13. 1,2,3-Trichlorobenzene ND 580 17. 50 ug/kg 1,2,4-Trichlorobenzene ND 580 21. 50 ug/kg 22 J 17. 50 1,3,5-Trimethylbenzene 580 ug/kg 1,2,4-Trimethylbenzene 190 J 580 16. 50 ug/kg Methyl Acetate ND ug/kg 2300 32. 50 Cyclohexane 670 J 2300 17. 50 ug/kg 1,4-Dioxane ND 12000 1700 50 ug/kg Freon-113 ND ug/kg 2300 32. 50 Methyl cyclohexane 910 ug/kg 470 18. 50

06/29/16 13:05

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-31 D

Client ID: P4-1 (4-8)
Sample Location: SYRACUSE, NY

Date Received: 06/30/16

Date Collected:

Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Tentatively Identified Compounds				
Total TIC Compounds	8200	J	ug/kg	50
Total Tie Compounds	0200	J	ug/kg	30
Unknown	690	J	ug/kg	50
Unknown Cycloalkane	740	J	ug/kg	50
Unknown	1300	J	ug/kg	50
Unknown	600	J	ug/kg	50
Unknown Cyclohexane	990	J	ug/kg	50
Unknown	680	J	ug/kg	50
Unknown	700	J	ug/kg	50
Unknown Benzene	660	J	ug/kg	50
Unknown Aromatic	1000	J	ug/kg	50
Unknown Benzene	820	J	ug/kg	50

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	100		70-130	
Toluene-d8	103		70-130	
4-Bromofluorobenzene	100		70-130	
Dibromofluoromethane	100		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 10/25/16

Lab ID: L1620368-32

Client ID: P4-2 (2-4)
Sample Location: SYRACUSE, NY

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 07/12/16 17:49

Analyst: MV Percent Solids: 89%

Date Collected: 06/29/16 13:15

Result	Qualifier	Units	RL	MDL	Dilution Factor
orough Lab					
1.7	J	ug/kg	11	1.2	1
ND			1.6	0.09	1
ND			1.6	0.39	1
ND			1.1	0.22	1
ND		ug/kg	3.7	0.24	1
ND		ug/kg	1.1	0.16	1
ND		ug/kg	1.6	0.32	1
ND		ug/kg	1.1	0.15	1
ND		ug/kg	1.1	0.37	1
ND		ug/kg	5.3	0.41	1
ND		ug/kg	1.1	0.12	1
ND		ug/kg	1.1	0.12	1
ND		ug/kg	1.1	0.18	1
ND		ug/kg	1.1	0.13	1
ND		ug/kg	1.1	0.12	1
ND		ug/kg	4.2	0.25	1
ND		ug/kg	1.1	0.11	1
2.9		ug/kg	1.1	0.12	1
0.84	J	ug/kg	1.6	0.21	1
1.3		ug/kg	1.1	0.14	1
ND		ug/kg	5.3	0.31	1
ND		ug/kg	2.1	0.36	1
ND		ug/kg	2.1	0.12	1
ND		ug/kg	2.1	0.34	1
ND		ug/kg	1.1	0.28	1
ND		ug/kg	1.6	0.22	1
ND		ug/kg	1.1	0.13	1
ND		ug/kg	5.3	0.16	1
ND		ug/kg	5.3	0.14	1
ND		ug/kg	5.3	0.15	1
	1.7 ND	1.7 J ND	1.7 J ug/kg ND ug/kg	1.7 J ug/kg 11 ND ug/kg 1.6 ND ug/kg 1.6 ND ug/kg 1.1 ND ug/kg 2.1 ND ug/kg 2.1 ND ug/kg 2.1 ND ug/kg 1.1 1.7 J ug/kg 11 1.2 ND ug/kg 1.6 0.09 ND ug/kg 1.6 0.39 ND ug/kg 1.1 0.22 ND ug/kg 3.7 0.24 ND ug/kg 1.1 0.16 ND ug/kg 1.1 0.16 ND ug/kg 1.1 0.16 ND ug/kg 1.1 0.15 ND ug/kg 1.1 0.15 ND ug/kg 1.1 0.37 ND ug/kg 1.1 0.37 ND ug/kg 1.1 0.37 ND ug/kg 1.1 0.12 ND ug/kg 1.1 0.12 ND ug/kg 1.1 0.12 ND ug/kg 1.1 0.12 ND ug/kg 1.1 0.13 ND ug/kg 1.1 0.14 ND ug/kg 1.1 0.15 ND ug/kg 1.1 0.15 ND ug/kg 1.1 0.16 ND ug/kg 1.1 0.11 ND ug/kg 1.1 0.12 ND ug/kg 1.1 0.13 ND ug/kg 1.1 0.14 ND ug/kg 1.1 0.11 2.9 ug/kg 1.1 0.11 2.9 ug/kg 1.1 0.11 2.9 ug/kg 1.1 0.11 2.9 ug/kg 1.1 0.11 ND ug/kg 1.1 0.11 2.9 ug/kg 1.1 0.11 ND ug/kg 1.1 0.12 ND ug/kg 1.1 0.11 ND ug/kg 1.1 0.14 ND ug/kg 1.1 0.14 ND ug/kg 1.1 0.14 ND ug/kg 1.1 0.14 ND ug/kg 1.1 0.36 ND ug/kg 1.1 0.36 ND ug/kg 1.1 0.38 ND ug/kg 1.1 0.39	

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-32 Date Collected: 06/29/16 13:15

Client ID: P4-2 (2-4) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
Methyl tert butyl ether	ND		ug/kg	2.1	0.09	1	
p/m-Xylene	2.4		ug/kg	2.1	0.21	1	
o-Xylene	0.31	J	ug/kg	2.1	0.18	1	
cis-1,2-Dichloroethene	ND		ug/kg	1.1	0.15	1	
Styrene	ND		ug/kg	2.1	0.43	1	
Dichlorodifluoromethane	ND		ug/kg	11	0.20	1	
Acetone	47		ug/kg	11	1.1	1	
Carbon disulfide	1.5	J	ug/kg	11	1.2	1	
2-Butanone	10	J	ug/kg	11	0.29	1	
4-Methyl-2-pentanone	ND		ug/kg	11	0.26	1	
2-Hexanone	ND		ug/kg	11	0.71	1	
Bromochloromethane	ND		ug/kg	5.3	0.29	1	
1,2-Dibromoethane	ND		ug/kg	4.2	0.18	1	
n-Butylbenzene	ND		ug/kg	1.1	0.12	1	
1,2-Dibromo-3-chloropropane	ND		ug/kg	5.3	0.42	1	
Isopropylbenzene	ND		ug/kg	1.1	0.11	1	
n-Propylbenzene	0.24	J	ug/kg	1.1	0.12	1	
1,2,3-Trichlorobenzene	ND		ug/kg	5.3	0.16	1	
1,2,4-Trichlorobenzene	ND		ug/kg	5.3	0.19	1	
1,3,5-Trimethylbenzene	0.39	J	ug/kg	5.3	0.15	1	
1,2,4-Trimethylbenzene	1.1	J	ug/kg	5.3	0.15	1	
Methyl Acetate	ND		ug/kg	21	0.29	1	
Cyclohexane	ND		ug/kg	21	0.16	1	
1,4-Dioxane	ND		ug/kg	110	15.	1	
Freon-113	ND		ug/kg	21	0.29	1	
Methyl cyclohexane	0.90	J	ug/kg	4.2	0.16	1	

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-32 Date Collected: 06/29/16 13:15

Client ID: P4-2 (2-4) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Tentatively Identified Compounds				
Total TIC Compounds	110	J	ug/kg	1
Unknown	10	J	ug/kg	1
Pentane, 2,3,4-trimethyl-	11	NJ	ug/kg	1
Unknown	12	J	ug/kg	1
Unknown	7.7	J	ug/kg	1
Unknown Cyclohexane	8.4	J	ug/kg	1
Unknown Cyclohexane	9.0	J	ug/kg	1
Unknown	6.8	J	ug/kg	1
Unknown	12	J	ug/kg	1
Unknown	16	J	ug/kg	1
Unknown	15	J	ug/kg	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	101		70-130	
Toluene-d8	106		70-130	
4-Bromofluorobenzene	105		70-130	
Dibromofluoromethane	103		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 10/25/16

Lab ID: L1620368-33 D

Client ID: P4-2 (4-6) Sample Location: SYRACUSE, NY

Matrix: Soil Analytical Method: 1,8260C

Analytical Date: 07/12/16 18:14

Analyst: MV 83% Percent Solids:

Date Collected:	06/29/16 13:15
Date Received:	06/30/16
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	4.1	J	ug/kg	24	2.7	2
1,1-Dichloroethane	ND		ug/kg	3.6	0.21	2
Chloroform	ND		ug/kg	3.6	0.89	2
Carbon tetrachloride	ND		ug/kg	2.4	0.51	2
1,2-Dichloropropane	ND		ug/kg	8.4	0.55	2
Dibromochloromethane	ND		ug/kg	2.4	0.37	2
1,1,2-Trichloroethane	ND		ug/kg	3.6	0.73	2
Tetrachloroethene	ND		ug/kg	2.4	0.34	2
Chlorobenzene	ND		ug/kg	2.4	0.84	2
Trichlorofluoromethane	ND		ug/kg	12	0.93	2
1,2-Dichloroethane	ND		ug/kg	2.4	0.27	2
1,1,1-Trichloroethane	ND		ug/kg	2.4	0.27	2
Bromodichloromethane	ND		ug/kg	2.4	0.42	2
trans-1,3-Dichloropropene	ND		ug/kg	2.4	0.29	2
cis-1,3-Dichloropropene	ND		ug/kg	2.4	0.28	2
Bromoform	ND		ug/kg	9.6	0.57	2
1,1,2,2-Tetrachloroethane	ND		ug/kg	2.4	0.24	2
Benzene	10		ug/kg	2.4	0.28	2
Toluene	1.2	J	ug/kg	3.6	0.47	2
Ethylbenzene	4.7		ug/kg	2.4	0.31	2
Chloromethane	ND		ug/kg	12	0.71	2
Bromomethane	ND		ug/kg	4.8	0.81	2
Vinyl chloride	ND		ug/kg	4.8	0.28	2
Chloroethane	ND		ug/kg	4.8	0.76	2
1,1-Dichloroethene	ND		ug/kg	2.4	0.63	2
trans-1,2-Dichloroethene	ND		ug/kg	3.6	0.51	2
Trichloroethene	ND		ug/kg	2.4	0.30	2
1,2-Dichlorobenzene	ND		ug/kg	12	0.37	2
1,3-Dichlorobenzene	ND		ug/kg	12	0.32	2
1,4-Dichlorobenzene	ND		ug/kg	12	0.33	2

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-33 D

Client ID: P4-2 (4-6)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 13:15

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	gh Lab					
Methyl tert butyl ether	ND		ug/kg	4.8	0.20	2
p/m-Xylene	6.2		ug/kg	4.8	0.48	2
o-Xylene	1.6	J	ug/kg	4.8	0.41	2
cis-1,2-Dichloroethene	ND		ug/kg	2.4	0.34	2
Styrene	ND		ug/kg	4.8	0.97	2
Dichlorodifluoromethane	ND		ug/kg	24	0.46	2
Acetone	110		ug/kg	24	2.5	2
Carbon disulfide	4.4	J	ug/kg	24	2.6	2
2-Butanone	29		ug/kg	24	0.66	2
4-Methyl-2-pentanone	ND		ug/kg	24	0.59	2
2-Hexanone	ND		ug/kg	24	1.6	2
Bromochloromethane	ND		ug/kg	12	0.66	2
1,2-Dibromoethane	ND		ug/kg	9.6	0.42	2
n-Butylbenzene	ND		ug/kg	2.4	0.28	2
1,2-Dibromo-3-chloropropane	ND		ug/kg	12	0.95	2
Isopropylbenzene	3.9		ug/kg	2.4	0.25	2
n-Propylbenzene	5.3		ug/kg	2.4	0.26	2
1,2,3-Trichlorobenzene	ND		ug/kg	12	0.36	2
1,2,4-Trichlorobenzene	ND		ug/kg	12	0.44	2
1,3,5-Trimethylbenzene	1.1	J	ug/kg	12	0.34	2
1,2,4-Trimethylbenzene	6.4	J	ug/kg	12	0.34	2
Methyl Acetate	ND		ug/kg	48	0.65	2
Cyclohexane	ND		ug/kg	48	0.35	2
1,4-Dioxane	ND		ug/kg	240	35.	2
Freon-113	ND		ug/kg	48	0.66	2
Methyl cyclohexane	2.7	J	ug/kg	9.6	0.37	2

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-33 D

Client ID: P4-2 (4-6)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 13:15

Date Received: 06/30/16 Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Tentatively Identified Compounds				
Total TIC Compounds	700	J	ug/kg	2
Benzene, 1,4-diethyl-	51	NJ	ug/kg	2
Unknown Benzene	74	J	ug/kg	2
Unknown Aromatic	100	J	ug/kg	2
Unknown	46	J	ug/kg	2
Unknown Benzene	46	J	ug/kg	2
Unknown	130	J	ug/kg	2
Unknown	55	J	ug/kg	2
Unknown	93	J	ug/kg	2
Unknown	44	J	ug/kg	2
Unknown Aromatic	60	J	ug/kg	2

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	98		70-130	
Toluene-d8	104		70-130	
4-Bromofluorobenzene	105		70-130	
Dibromofluoromethane	101		70-130	

L1620368

Project Name: EMBASSY SUITES

Project Number: 15209

Report Date: 10/25/16

Lab Number:

SAMPLE RESULTS

Lab ID: L1620368-34

Client ID: P4-3 (2-4) SYRACUSE, NY Sample Location:

Matrix: Soil

Analytical Method: 1,8260C

Analytical Date: 07/12/16 18:40

Analyst: MV 85% Percent Solids:

Date Collected:	06/29/16 13:30
Date Received:	06/30/16
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	1.4	J	ug/kg	12	1.3	1
1,1-Dichloroethane	ND		ug/kg	1.7	0.10	1
Chloroform	ND		ug/kg	1.7	0.43	1
Carbon tetrachloride	ND		ug/kg	1.2	0.24	1
1,2-Dichloropropane	ND		ug/kg	4.0	0.26	1
Dibromochloromethane	ND		ug/kg	1.2	0.18	1
1,1,2-Trichloroethane	ND		ug/kg	1.7	0.35	1
Tetrachloroethene	ND		ug/kg	1.2	0.16	1
Chlorobenzene	ND		ug/kg	1.2	0.40	1
Trichlorofluoromethane	ND		ug/kg	5.8	0.45	1
1,2-Dichloroethane	ND		ug/kg	1.2	0.13	1
1,1,1-Trichloroethane	ND		ug/kg	1.2	0.13	1
Bromodichloromethane	ND		ug/kg	1.2	0.20	1
trans-1,3-Dichloropropene	ND		ug/kg	1.2	0.14	1
cis-1,3-Dichloropropene	ND		ug/kg	1.2	0.14	1
Bromoform	ND		ug/kg	4.6	0.27	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	1.2	0.12	1
Benzene	10		ug/kg	1.2	0.14	1
Toluene	2.6		ug/kg	1.7	0.22	1
Ethylbenzene	5.8		ug/kg	1.2	0.15	1
Chloromethane	ND		ug/kg	5.8	0.34	1
Bromomethane	ND		ug/kg	2.3	0.39	1
Vinyl chloride	ND		ug/kg	2.3	0.14	1
Chloroethane	ND		ug/kg	2.3	0.36	1
1,1-Dichloroethene	ND		ug/kg	1.2	0.30	1
trans-1,2-Dichloroethene	ND		ug/kg	1.7	0.24	1
Trichloroethene	ND		ug/kg	1.2	0.14	1
1,2-Dichlorobenzene	ND		ug/kg	5.8	0.18	1
1,3-Dichlorobenzene	ND		ug/kg	5.8	0.16	1
1,4-Dichlorobenzene	ND		ug/kg	5.8	0.16	1

L1620368

Project Name: EMBASSY SUITES Lab Number:

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-34 Date Collected: 06/29/16 13:30

Client ID: P4-3 (2-4) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westbo	orough Lab						
Methyl tert butyl ether	ND		ug/kg	2.3	0.10	1	
p/m-Xylene	12		ug/kg	2.3	0.23	1	
o-Xylene	1.9	J	ug/kg	2.3	0.20	1	
cis-1,2-Dichloroethene	ND		ug/kg	1.2	0.16	1	
Styrene	ND		ug/kg	2.3	0.46	1	
Dichlorodifluoromethane	ND		ug/kg	12	0.22	1	
Acetone	50		ug/kg	12	1.2	1	
Carbon disulfide	3.0	J	ug/kg	12	1.3	1	
2-Butanone	9.4	J	ug/kg	12	0.31	1	
4-Methyl-2-pentanone	ND		ug/kg	12	0.28	1	
2-Hexanone	ND		ug/kg	12	0.77	1	
Bromochloromethane	ND		ug/kg	5.8	0.32	1	
1,2-Dibromoethane	ND		ug/kg	4.6	0.20	1	
n-Butylbenzene	ND		ug/kg	1.2	0.13	1	
1,2-Dibromo-3-chloropropane	ND		ug/kg	5.8	0.46	1	
Isopropylbenzene	0.47	J	ug/kg	1.2	0.12	1	
n-Propylbenzene	1.5		ug/kg	1.2	0.13	1	
1,2,3-Trichlorobenzene	ND		ug/kg	5.8	0.17	1	
1,2,4-Trichlorobenzene	ND		ug/kg	5.8	0.21	1	
1,3,5-Trimethylbenzene	2.3	J	ug/kg	5.8	0.16	1	
1,2,4-Trimethylbenzene	6.6		ug/kg	5.8	0.16	1	
Methyl Acetate	ND		ug/kg	23	0.31	1	
Cyclohexane	ND		ug/kg	23	0.17	1	
1,4-Dioxane	ND		ug/kg	120	17.	1	
Freon-113	ND		ug/kg	23	0.32	1	
Methyl cyclohexane	0.47	J	ug/kg	4.6	0.18	1	

Dilution Factor

MDL

RL

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-34 Date Collected: 06/29/16 13:30

Client ID: P4-3 (2-4) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Qualifier

Units

Result

Volatile Organics by GC/MS - Westborough Lab

Parameter

Tentatively Identified Compounds				
Total TIC Compounds	400	J	ug/kg	1
Unknown	38	J	ug/kg	1
Unknown Alkane	46	J	ug/kg	1
Unknown	48	J	ug/kg	1
Unknown Naphthalene	30	J	ug/kg	1
Unknown Benzene	33	J	ug/kg	1
Unknown	27	J	ug/kg	1
Unknown	44	J	ug/kg	1
Dodecane, 6-methyl-	60	NJ	ug/kg	1
Unknown	45	J	ug/kg	1
Unknown	28	J	ug/kg	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	99		70-130	
Toluene-d8	104		70-130	
4-Bromofluorobenzene	112		70-130	
Dibromofluoromethane	105		70-130	

L1620368

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number:

Report Date: 10/25/16

Lab ID: L1620368-36 D

Client ID: P4-3 (4-6) SYRACUSE, NY Sample Location:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 07/12/16 19:05

Analyst: MV84% Percent Solids:

Date Collected: 06/29/16 13:30

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/kg	960	110	100
1,1-Dichloroethane	ND		ug/kg	140	8.3	100
Chloroform	ND		ug/kg	140	36.	100
Carbon tetrachloride	ND		ug/kg	96	20.	100
1,2-Dichloropropane	ND		ug/kg	340	22.	100
Dibromochloromethane	ND		ug/kg	96	15.	100
1,1,2-Trichloroethane	ND		ug/kg	140	29.	100
Tetrachloroethene	ND		ug/kg	96	14.	100
Chlorobenzene	ND		ug/kg	96	34.	100
Trichlorofluoromethane	ND		ug/kg	480	37.	100
1,2-Dichloroethane	ND		ug/kg	96	11.	100
1,1,1-Trichloroethane	ND		ug/kg	96	11.	100
Bromodichloromethane	ND		ug/kg	96	17.	100
trans-1,3-Dichloropropene	ND		ug/kg	96	12.	100
cis-1,3-Dichloropropene	ND		ug/kg	96	11.	100
Bromoform	ND		ug/kg	390	23.	100
1,1,2,2-Tetrachloroethane	ND		ug/kg	96	9.7	100
Benzene	1100		ug/kg	96	11.	100
Toluene	630		ug/kg	140	19.	100
Ethylbenzene	1400		ug/kg	96	12.	100
Chloromethane	ND		ug/kg	480	28.	100
Bromomethane	ND		ug/kg	190	33.	100
Vinyl chloride	ND		ug/kg	190	11.	100
Chloroethane	ND		ug/kg	190	30.	100
1,1-Dichloroethene	ND		ug/kg	96	25.	100
trans-1,2-Dichloroethene	ND		ug/kg	140	20.	100
Trichloroethene	ND		ug/kg	96	12.	100
1,2-Dichlorobenzene	ND		ug/kg	480	15.	100
1,3-Dichlorobenzene	ND		ug/kg	480	13.	100
1,4-Dichlorobenzene	ND		ug/kg	480	13.	100

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-36 D

Client ID: P4-3 (4-6)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 13:30

p/m-Xylene 4500 ug/kg 190 19. 100 o-Xylene 460 ug/kg 190 16. 100 cis-1,2-Dichloroethene ND ug/kg 96 14. 100 Styrene ND ug/kg 190 39. 100 Dichlorodifluoromethane ND ug/kg 960 18. 100 Acetone ND ug/kg 960 100 100 Carbon disulfide ND ug/kg 960 110 100 2-Butanone ND ug/kg 960 26. 100 4-Methyl-2-pentanone ND ug/kg 960 24. 100 2-Hexanone ND ug/kg 960 24. 100 Bromochloromethane ND ug/kg 380 17. 100 1,2-Dibromoethane ND ug/kg 380 17. 100 1,2-Dibromo-3-chloropropane ND ug/kg 96 11. 100	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
	Volatile Organics by GC/MS - Wes	tborough Lab					
o-Xylene 460 ug/kg 190 16. 100 cis-1,2-Dichloroethene ND ug/kg 96 14. 100 Styrene ND ug/kg 190 39. 100 Dichlorodifluoromethane ND ug/kg 960 18. 100 Acetone ND ug/kg 960 100 100 Carbon disulfide ND ug/kg 960 110 100 Carbon disulfide ND ug/kg 960 26. 100 2-Butanone ND ug/kg 960 24. 100 2-Hexanone ND ug/kg 960 24. 100 2-Hexanone ND ug/kg 960 64. 100 Bromochloromethane ND ug/kg 960 64. 100 1,2-Dibromoethane ND ug/kg 390 17. 100 n-Butylbenzene 890 ug/kg 96 11. 100 <tr< td=""><td>Methyl tert butyl ether</td><td>ND</td><td></td><td>ug/kg</td><td>190</td><td>8.2</td><td>100</td></tr<>	Methyl tert butyl ether	ND		ug/kg	190	8.2	100
ND	p/m-Xylene	4500		ug/kg	190	19.	100
ND	o-Xylene	460		ug/kg	190	16.	100
Dichlorodiffluoromethane ND	cis-1,2-Dichloroethene	ND		ug/kg	96	14.	100
Actione ND ug/kg 960 100 100 Carbon disulfide ND ug/kg 960 110 100 2-Butanone ND ug/kg 960 26. 100 4-Methyl-2-pentanone ND ug/kg 960 24. 100 2-Hexanone ND ug/kg 960 64. 100 Bromochloromethane ND ug/kg 480 27. 100 1,2-Dibromoethane ND ug/kg 390 17. 100 1,2-Dibromo-3-chloropropane ND ug/kg 96 11. 100 1,2-Dibromo-3-chloropropane ND ug/kg 96 10. 100 Isopropylbenzene 320 ug/kg 96 10. 100 1,2-3-Trichlorobenzene ND ug/kg 480 14. 100 1,2-4-Trichlorobenzene ND ug/kg 480 14. 100 1,3-5-Trimethylbenzene 2500 ug/kg 480	Styrene	ND		ug/kg	190	39.	100
Carbon disulfide ND ug/kg 960 110 100 2-Butanone ND ug/kg 960 26. 100 4-Methyl-2-pentanone ND ug/kg 960 24. 100 2-Hexanone ND ug/kg 960 64. 100 Bromochloromethane ND ug/kg 480 27. 100 1,2-Dibromothane ND ug/kg 390 17. 100 n-Butylbenzene 890 ug/kg 96 11. 100 1,2-Dibromo-3-chloropropane ND ug/kg 480 38. 100 Isopropylbenzene 320 ug/kg 96 10. 100 n-Propylbenzene 1300 ug/kg 96 10. 100 1,2,3-Trichlorobenzene ND ug/kg 480 14. 100 1,3,5-Trimethylbenzene 2500 ug/kg 480 14. 100 1,2,4-Trimethylbenzene 6800 ug/kg 480	Dichlorodifluoromethane	ND		ug/kg	960	18.	100
2-Butanone ND ug/kg 960 26. 100 4-Methyl-2-pentanone ND ug/kg 960 24. 100 2-Hexanone ND ug/kg 960 64. 100 Bromochloromethane ND ug/kg 480 27. 100 1,2-Dibromoethane ND ug/kg 390 17. 100 n-Butylbenzene 890 ug/kg 96 11. 100 n-Butylbenzene ND ug/kg 480 38. 100 Isopropylbenzene 320 ug/kg 96 10. 100 n-Propylbenzene 1300 ug/kg 96 10. 100 1,2,3-Trichlorobenzene ND ug/kg 480 14. 100 1,2,4-Trimethylbenzene 2500 ug/kg 480 14. 100 1,2,4-Trimethylbenzene 6800 ug/kg 480 14. 100 Methyl Acetate ND ug/kg 1900 26. </td <td>Acetone</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>960</td> <td>100</td> <td>100</td>	Acetone	ND		ug/kg	960	100	100
4-Methyl-2-pentanone ND ug/kg 960 24. 100 2-Hexanone ND ug/kg 960 64. 100 Bromochloromethane ND ug/kg 480 27. 100 1,2-Dibromoethane ND ug/kg 390 17. 100 1,2-Dibromoethane ND ug/kg 96 11. 100 1,2-Dibromo-3-chloropropane ND ug/kg 480 38. 100 Isopropylbenzene 320 ug/kg 96 10. 100 1,2-Dibromoethane ND ug/kg 480 10. 100 1,2-3-Trichlorobenzene ND ug/kg 480 14. 100 1,2,3-Trichlorobenzene ND ug/kg 480 14. 100 1,2,3-Trimethylbenzene 2500 ug/kg 480 18. 100 1,2,4-Trimethylbenzene 2500 ug/kg 480 14. 100 1,2,4-Trimethylbenzene 100 ug/kg 1900 26. 100 1,2,4-Trimethylbenzene 100 ug/kg 1900 26. 100 1,4-Dioxane 100 ug/kg 1900 26. 100	Carbon disulfide	ND		ug/kg	960	110	100
2-Hexanone ND ug/kg 960 64. 100 Bromochloromethane ND ug/kg 480 27. 100 1,2-Dibromoethane ND ug/kg 390 17. 100 n-Butylbenzene 890 ug/kg 96 11. 100 1,2-Dibromo-3-chloropropane ND ug/kg 480 38. 100 Isopropylbenzene 320 ug/kg 96 10. 100 n-Propylbenzene 1300 ug/kg 96 10. 100 1,2,3-Trichlorobenzene ND ug/kg 480 14. 100 1,2,3-Trichlorobenzene ND ug/kg 480 14. 100 1,2,4-Trichlorobenzene ND ug/kg 480 18. 100 1,2,4-Trimethylbenzene 2500 ug/kg 480 14. 100 1,2,4-Trimethylbenzene 6800 ug/kg 480 14. 100 1,2,4-Trimethylbenzene 6800 ug/kg 480 14. 100 Methyl Acetate ND ug/kg 1900 26. 100 Cyclohexane 170 J ug/kg 1900 14. 100 1,4-Dioxane ND ug/kg 9600 1400 100 Freon-113	2-Butanone	ND		ug/kg	960	26.	100
Bromochloromethane ND	4-Methyl-2-pentanone	ND		ug/kg	960	24.	100
1,2-Dibromoethane ND ug/kg 390 17. 100 n-Butylbenzene 890 ug/kg 96 11. 100 1,2-Dibromo-3-chloropropane ND ug/kg 480 38. 100 Isopropylbenzene 320 ug/kg 96 10. 100 n-Propylbenzene 1300 ug/kg 96 10. 100 1,2,3-Trichlorobenzene ND ug/kg 480 14. 100 1,2,4-Trichlorobenzene ND ug/kg 480 18. 100 1,3,5-Trimethylbenzene 2500 ug/kg 480 14. 100 1,2,4-Trimethylbenzene 6800 ug/kg 480 14. 100 Methyl Acetate ND ug/kg 1900 26. 100 Cyclohexane 170 J ug/kg 1900 14. 100 1,4-Dioxane ND ug/kg 9600 1400 100 Freon-113 ND ug/kg 1900 26. 100	2-Hexanone	ND		ug/kg	960	64.	100
n-Butylbenzene 890 ug/kg 96 11. 100 1,2-Dibromo-3-chloropropane ND ug/kg 480 38. 100 Isopropylbenzene 320 ug/kg 96 10. 100 n-Propylbenzene 1300 ug/kg 96 10. 100 1,2,3-Trichlorobenzene ND ug/kg 480 14. 100 1,2,3-Trichlorobenzene ND ug/kg 480 14. 100 1,2,4-Trichlorobenzene ND ug/kg 480 14. 100 1,3,5-Trimethylbenzene 2500 ug/kg 480 14. 100 1,2,4-Trimethylbenzene 6800 ug/kg 480 14. 100 1,2,4-Trimethylbenzene 100 Ug/kg 100 14. 100 Cyclohexane 170 J ug/kg 1900 26. 100 Cyclohexane ND ug/kg 9600 1400 100 Freon-113 ND ug/kg 1900 26. 100	Bromochloromethane	ND		ug/kg	480	27.	100
1,2-Dibromo-3-chloropropane ND ug/kg 480 38. 100 Isopropylbenzene 320 ug/kg 96 10. 100 n-Propylbenzene 1300 ug/kg 96 10. 100 1,2,3-Trichlorobenzene ND ug/kg 480 14. 100 1,2,4-Trichlorobenzene ND ug/kg 480 18. 100 1,3,5-Trimethylbenzene 2500 ug/kg 480 14. 100 1,2,4-Trimethylbenzene 6800 ug/kg 480 14. 100 Methyl Acetate ND ug/kg 1900 26. 100 Cyclohexane 170 J ug/kg 1900 14. 100 1,4-Dioxane ND ug/kg 9600 1400 100 Freon-113 ND ug/kg 1900 26. 100	1,2-Dibromoethane	ND		ug/kg	390	17.	100
Sopropylbenzene 320	n-Butylbenzene	890		ug/kg	96	11.	100
n-Propylbenzene 1300 ug/kg 96 10. 100 1,2,3-Trichlorobenzene ND ug/kg 480 14. 100 1,2,4-Trichlorobenzene ND ug/kg 480 18. 100 1,3,5-Trimethylbenzene 2500 ug/kg 480 14. 100 1,2,4-Trimethylbenzene 6800 ug/kg 480 14. 100 1,2,4-Trimethylbenzene ND ug/kg 1900 26. 100 Methyl Acetate ND ug/kg 1900 26. 100 Cyclohexane 170 J ug/kg 1900 14. 100 1,4-Dioxane ND ug/kg 9600 1400 100 Freon-113 ND ug/kg 1900 26. 100	1,2-Dibromo-3-chloropropane	ND		ug/kg	480	38.	100
1,2,3-Trichlorobenzene ND ug/kg 480 14. 100 1,2,4-Trichlorobenzene ND ug/kg 480 18. 100 1,3,5-Trimethylbenzene 2500 ug/kg 480 14. 100 1,2,4-Trimethylbenzene 6800 ug/kg 480 14. 100 Methyl Acetate ND ug/kg 1900 26. 100 Cyclohexane 170 J ug/kg 1900 14. 100 1,4-Dioxane ND ug/kg 9600 1400 100 Freon-113 ND ug/kg 1900 26. 100	Isopropylbenzene	320		ug/kg	96	10.	100
1,2,4-Trichlorobenzene ND ug/kg 480 18. 100 1,3,5-Trimethylbenzene 2500 ug/kg 480 14. 100 1,2,4-Trimethylbenzene 6800 ug/kg 480 14. 100 Methyl Acetate ND ug/kg 1900 26. 100 Cyclohexane 170 J ug/kg 1900 14. 100 1,4-Dioxane ND ug/kg 9600 1400 100 Freon-113 ND ug/kg 1900 26. 100	n-Propylbenzene	1300		ug/kg	96	10.	100
1,3,5-Trimethylbenzene 2500 ug/kg 480 14. 100 1,2,4-Trimethylbenzene 6800 ug/kg 480 14. 100 Methyl Acetate ND ug/kg 1900 26. 100 Cyclohexane 170 J ug/kg 1900 14. 100 1,4-Dioxane ND ug/kg 9600 1400 100 Freon-113 ND ug/kg 1900 26. 100	1,2,3-Trichlorobenzene	ND		ug/kg	480	14.	100
1,2,4-Trimethylbenzene 6800 ug/kg 480 14. 100 Methyl Acetate ND ug/kg 1900 26. 100 Cyclohexane 170 J ug/kg 1900 14. 100 1,4-Dioxane ND ug/kg 9600 1400 100 Freon-113 ND ug/kg 1900 26. 100	1,2,4-Trichlorobenzene	ND		ug/kg	480	18.	100
Methyl Acetate ND ug/kg 1900 26. 100 Cyclohexane 170 J ug/kg 1900 14. 100 1,4-Dioxane ND ug/kg 9600 1400 100 Freon-113 ND ug/kg 1900 26. 100	1,3,5-Trimethylbenzene	2500		ug/kg	480	14.	100
Cyclohexane 170 J ug/kg 1900 14. 100 1,4-Dioxane ND ug/kg 9600 1400 100 Freon-113 ND ug/kg 1900 26. 100	1,2,4-Trimethylbenzene	6800		ug/kg	480	14.	100
1,4-Dioxane ND ug/kg 9600 1400 100 Freon-113 ND ug/kg 1900 26. 100	Methyl Acetate	ND		ug/kg	1900	26.	100
Freon-113 ND ug/kg 1900 26. 100	Cyclohexane	170	J	ug/kg	1900	14.	100
-5-76	1,4-Dioxane	ND		ug/kg	9600	1400	100
Methyl cyclohexane 680 ug/kg 390 15. 100	Freon-113	ND		ug/kg	1900	26.	100
	Methyl cyclohexane	680		ug/kg	390	15.	100

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-36 D

Client ID: P4-3 (4-6)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 13:30

Date Received: 06/30/16 Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Tentatively Identified Compounds				
Total TIC Compounds	70000	J	ug/kg	100
Pentane, 2,3,4-trimethyl-	5200	NJ	ug/kg	100
Unknown Alkane	8000	J	ug/kg	100
Unknown Alkane	4600	J	ug/kg	100
Unknown	3400	J	ug/kg	100
Unknown Benzene	8400	J	ug/kg	100
Unknown	7600	J	ug/kg	100
Unknown Benzene	5900	J	ug/kg	100
Unknown Benzene	5600	J	ug/kg	100
Indan, 1-methyl-	14000	NJ	ug/kg	100
Unknown Aromatic	7600	J	ug/kg	100

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	102		70-130	
Toluene-d8	106		70-130	
4-Bromofluorobenzene	118		70-130	
Dibromofluoromethane	101		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 10/25/16

Lab ID: L1620368-37 D

Client ID: P1-2 (3-4)
Sample Location: SYRACUSE, NY

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 07/12/16 19:30

Analyst: MV Percent Solids: 82%

Date Collected: 06/29/16 14:20

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	350	J	ug/kg	3000	340	250
1,1-Dichloroethane	ND		ug/kg	460	26.	250
Chloroform	ND		ug/kg	460	110	250
Carbon tetrachloride	ND		ug/kg	300	64.	250
1,2-Dichloropropane	ND		ug/kg	1100	69.	250
Dibromochloromethane	ND		ug/kg	300	47.	250
1,1,2-Trichloroethane	ND		ug/kg	460	92.	250
Tetrachloroethene	ND		ug/kg	300	43.	250
Chlorobenzene	ND		ug/kg	300	100	250
Trichlorofluoromethane	ND		ug/kg	1500	120	250
1,2-Dichloroethane	ND		ug/kg	300	34.	250
1,1,1-Trichloroethane	ND		ug/kg	300	34.	250
Bromodichloromethane	ND		ug/kg	300	53.	250
trans-1,3-Dichloropropene	ND		ug/kg	300	37.	250
cis-1,3-Dichloropropene	ND		ug/kg	300	36.	250
Bromoform	ND		ug/kg	1200	72.	250
1,1,2,2-Tetrachloroethane	ND		ug/kg	300	31.	250
Benzene	2300		ug/kg	300	36.	250
Toluene	1900		ug/kg	460	59.	250
Ethylbenzene	3500		ug/kg	300	39.	250
Chloromethane	ND		ug/kg	1500	90.	250
Bromomethane	ND		ug/kg	610	100	250
Vinyl chloride	ND		ug/kg	610	36.	250
Chloroethane	ND		ug/kg	610	96.	250
1,1-Dichloroethene	ND		ug/kg	300	80.	250
trans-1,2-Dichloroethene	ND		ug/kg	460	64.	250
Trichloroethene	ND		ug/kg	300	38.	250
1,2-Dichlorobenzene	ND		ug/kg	1500	47.	250
1,3-Dichlorobenzene	ND		ug/kg	1500	41.	250
1,4-Dichlorobenzene	ND		ug/kg	1500	42.	250

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-37 D

Client ID: P1-2 (3-4)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 14:20

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methyl tert butyl ether	ND		ug/kg	610	26.	250
p/m-Xylene	4200		ug/kg	610	60.	250
o-Xylene	ND		ug/kg	610	52.	250
cis-1,2-Dichloroethene	ND		ug/kg	300	43.	250
Styrene	ND		ug/kg	610	120	250
Dichlorodifluoromethane	ND		ug/kg	3000	58.	250
Acetone	ND		ug/kg	3000	320	250
Carbon disulfide	ND		ug/kg	3000	340	250
2-Butanone	ND		ug/kg	3000	83.	250
4-Methyl-2-pentanone	ND		ug/kg	3000	74.	250
2-Hexanone	ND		ug/kg	3000	200	250
Bromochloromethane	ND		ug/kg	1500	84.	250
1,2-Dibromoethane	ND		ug/kg	1200	53.	250
n-Butylbenzene	ND		ug/kg	300	35.	250
1,2-Dibromo-3-chloropropane	ND		ug/kg	1500	120	250
Isopropylbenzene	840		ug/kg	300	32.	250
n-Propylbenzene	2100		ug/kg	300	33.	250
1,2,3-Trichlorobenzene	ND		ug/kg	1500	45.	250
1,2,4-Trichlorobenzene	ND		ug/kg	1500	55.	250
1,3,5-Trimethylbenzene	420	J	ug/kg	1500	44.	250
1,2,4-Trimethylbenzene	4100		ug/kg	1500	43.	250
Methyl Acetate	ND		ug/kg	6100	82.	250
Cyclohexane	ND		ug/kg	6100	44.	250
1,4-Dioxane	ND		ug/kg	30000	4400	250
Freon-113	ND		ug/kg	6100	83.	250
Methyl cyclohexane	3800		ug/kg	1200	47.	250

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-37 D

Client ID: P1-2 (3-4)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 14:20

Date Received: 06/30/16 Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Tentatively Identified Compounds				
Total TIC Compounds	440000	J	ug/kg	250
Pentane, 2,3,4-trimethyl-	30000	NJ	ug/kg	250
Unknown Alkane	36000	J	ug/kg	250
Unknown Cyclohexane	49000	J	ug/kg	250
Unknown	36000	J	ug/kg	250
Unknown Cyclohexane	50000	J	ug/kg	250
Unknown	74000	J	ug/kg	250
Unknown	52000	J	ug/kg	250
Unknown	43000	J	ug/kg	250
Unknown Naphthalene	38000	J	ug/kg	250
Unknown	35000	J	ug/kg	250

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	100		70-130	
Toluene-d8	131	Q	70-130	
4-Bromofluorobenzene	208	Q	70-130	
Dibromofluoromethane	103		70-130	

L1620368

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number:

Report Date: 10/25/16

Lab ID: L1620368-38 D

Client ID: P1-1 (4-8) SYRACUSE, NY Sample Location:

Matrix: Soil Analytical Method: 1,8260C

Analytical Date: 07/12/16 19:56

Analyst: MV72% Percent Solids:

Date Collected:	06/30/16 08:30
Date Received:	06/30/16
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/kg	14000	1600	1250
1,1-Dichloroethane	ND		ug/kg	2100	120	1250
Chloroform	ND		ug/kg	2100	520	1250
Carbon tetrachloride	ND		ug/kg	1400	300	1250
1,2-Dichloropropane	ND		ug/kg	4900	320	1250
Dibromochloromethane	ND		ug/kg	1400	220	1250
1,1,2-Trichloroethane	ND		ug/kg	2100	430	1250
Tetrachloroethene	ND		ug/kg	1400	200	1250
Chlorobenzene	ND		ug/kg	1400	490	1250
Trichlorofluoromethane	ND		ug/kg	7000	550	1250
1,2-Dichloroethane	ND		ug/kg	1400	160	1250
1,1,1-Trichloroethane	ND		ug/kg	1400	160	1250
Bromodichloromethane	ND		ug/kg	1400	240	1250
trans-1,3-Dichloropropene	ND		ug/kg	1400	170	1250
cis-1,3-Dichloropropene	ND		ug/kg	1400	160	1250
Bromoform	ND		ug/kg	5600	330	1250
1,1,2,2-Tetrachloroethane	ND		ug/kg	1400	140	1250
Benzene	740	J	ug/kg	1400	170	1250
Toluene	440	J	ug/kg	2100	270	1250
Ethylbenzene	ND		ug/kg	1400	180	1250
Chloromethane	ND		ug/kg	7000	410	1250
Bromomethane	ND		ug/kg	2800	480	1250
Vinyl chloride	ND		ug/kg	2800	160	1250
Chloroethane	ND		ug/kg	2800	440	1250
1,1-Dichloroethene	ND		ug/kg	1400	370	1250
trans-1,2-Dichloroethene	ND		ug/kg	2100	300	1250
Trichloroethene	ND		ug/kg	1400	180	1250
1,2-Dichlorobenzene	ND		ug/kg	7000	220	1250
1,3-Dichlorobenzene	ND		ug/kg	7000	190	1250
1,4-Dichlorobenzene	ND		ug/kg	7000	190	1250
			<u> </u>			

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-38 D

Client ID: P1-1 (4-8)
Sample Location: SYRACUSE, NY

Date Collected: 06/30/16 08:30

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	rough Lab					
Methyl tert butyl ether	ND		ug/kg	2800	120	1250
p/m-Xylene	18000		ug/kg	2800	280	1250
o-Xylene	ND		ug/kg	2800	240	1250
cis-1,2-Dichloroethene	ND		ug/kg	1400	200	1250
Styrene	ND		ug/kg	2800	560	1250
Dichlorodifluoromethane	ND		ug/kg	14000	270	1250
Acetone	ND		ug/kg	14000	1400	1250
Carbon disulfide	ND		ug/kg	14000	1600	1250
2-Butanone	ND		ug/kg	14000	380	1250
4-Methyl-2-pentanone	ND		ug/kg	14000	340	1250
2-Hexanone	ND		ug/kg	14000	940	1250
Bromochloromethane	ND		ug/kg	7000	390	1250
1,2-Dibromoethane	ND		ug/kg	5600	240	1250
n-Butylbenzene	5300		ug/kg	1400	160	1250
1,2-Dibromo-3-chloropropane	ND		ug/kg	7000	560	1250
Isopropylbenzene	6700		ug/kg	1400	150	1250
n-Propylbenzene	13000		ug/kg	1400	150	1250
1,2,3-Trichlorobenzene	ND		ug/kg	7000	210	1250
1,2,4-Trichlorobenzene	ND		ug/kg	7000	260	1250
1,3,5-Trimethylbenzene	ND		ug/kg	7000	200	1250
1,2,4-Trimethylbenzene	140000		ug/kg	7000	200	1250
Methyl Acetate	ND		ug/kg	28000	380	1250
Cyclohexane	36000		ug/kg	28000	200	1250
1,4-Dioxane	ND		ug/kg	140000	20000	1250
Freon-113	ND		ug/kg	28000	380	1250
Methyl cyclohexane	150000		ug/kg	5600	220	1250

06/30/16 08:30

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-38 D

Client ID: P1-1 (4-8)
Sample Location: SYRACUSE, NY

Date Received: 06/30/16
Field Prep: Not Specified

Date Collected:

Parameter Result Qualifier Units RL MDL Dilution Factor

Tentatively Identified Compounds				
Total TIC Compounds	410000	J	ug/kg	1250
Unknown Cycloalkane	28000	J	ug/kg	1250
Unknown Alkane	92000	J	ug/kg	1250
Heptane, 3-methyl-	32000	NJ	ug/kg	1250
Unknown Cyclohexane	68000	J	ug/kg	1250
Cyclohexane, ethyl-	17000	NJ	ug/kg	1250
Unknown	16000	J	ug/kg	1250
Unknown Benzene	37000	J	ug/kg	1250
Unknown Benzene	44000	J	ug/kg	1250
Unknown Benzene	37000	J	ug/kg	1250
Unknown Benzene	40000	J	ug/kg	1250

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	101		70-130	
Toluene-d8	106		70-130	
4-Bromofluorobenzene	108		70-130	
Dibromofluoromethane	101		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 10/25/16

Result

Lab ID: L1620368-39 D

Client ID: P1-1 (8-10) Sample Location: SYRACUSE, NY

Matrix: Soil Analytical Method: 1,8260C

Analytical Date: 07/12/16 22:55

Analyst: CBN 54% Percent Solids:

Parameter

Date Collected:	06/30/16 08:30
Date Received:	06/30/16
Field Prep:	Not Specified

MDL

Dilution Factor

raiailielei	Nesun	Qualifier	Units	INL.	MIDL	Dilution Lactor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/kg	7800	860	500
1,1-Dichloroethane	ND		ug/kg	1200	67.	500
Chloroform	ND		ug/kg	1200	290	500
Carbon tetrachloride	ND		ug/kg	780	160	500
1,2-Dichloropropane	ND		ug/kg	2700	180	500
Dibromochloromethane	ND		ug/kg	780	120	500
1,1,2-Trichloroethane	ND		ug/kg	1200	240	500
Tetrachloroethene	ND		ug/kg	780	110	500
Chlorobenzene	ND		ug/kg	780	270	500
Trichlorofluoromethane	ND		ug/kg	3900	300	500
1,2-Dichloroethane	ND		ug/kg	780	88.	500
1,1,1-Trichloroethane	ND		ug/kg	780	86.	500
Bromodichloromethane	ND		ug/kg	780	140	500
trans-1,3-Dichloropropene	ND		ug/kg	780	94.	500
cis-1,3-Dichloropropene	ND		ug/kg	780	92.	500
Bromoform	ND		ug/kg	3100	180	500
1,1,2,2-Tetrachloroethane	ND		ug/kg	780	79.	500
Benzene	540	J	ug/kg	780	92.	500
Toluene	160	J	ug/kg	1200	150	500
Ethylbenzene	200	J	ug/kg	780	99.	500
Chloromethane	ND		ug/kg	3900	230	500
Bromomethane	ND		ug/kg	1600	260	500
Vinyl chloride	ND		ug/kg	1600	92.	500
Chloroethane	ND		ug/kg	1600	250	500
1,1-Dichloroethene	ND		ug/kg	780	200	500
trans-1,2-Dichloroethene	ND		ug/kg	1200	160	500
Trichloroethene	ND		ug/kg	780	98.	500
1,2-Dichlorobenzene	ND		ug/kg	3900	120	500
1,3-Dichlorobenzene	ND		ug/kg	3900	100	500
1,4-Dichlorobenzene	ND		ug/kg	3900	110	500

Qualifier

Units

RL

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-39 D

Client ID: P1-1 (8-10)
Sample Location: SYRACUSE, NY

Date Collected: 06/30/16 08:30

Methyl tert butyl ether ND ug/kg 1600 66. 500 pr/m-Xylene 1900 ug/kg 1600 150 500 co-Xylene ND ug/kg 1600 150 500 co-Xylene ND ug/kg 1600 130 500 cis-1,2-Dichloroethene ND ug/kg 1600 310 500 cis-1,2-Dichloroethene ND ug/kg 780 110 500 cis-1,2-Dichloroethene ND ug/kg 1600 310 500 cis-1,2-Dichloroethene ND ug/kg 7800 150 500 cis-1,2-Dichloroethene ND ug/kg 7800 190 500 cis-1,2-Dichloroethene ND ug/kg 7800 190 500 cis-1,2-Dichloroethene ND ug/kg 3900 220 500 cis-1,2-Dichloroethene ND ug/kg 3900 140 500 cis-1,2-Dichloroethene ND ug/kg 3900 10 500 cis-1,2-Dichloroethene ND ug/kg 3900 110 500 cis-1,2-Dich	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Prin-Xylene 1900	Volatile Organics by GC/MS - Westborough Lab									
o-Xylene ND ug/kg 1600 130 500 cis-1,2-Dichloroethene ND ug/kg 780 110 500 Styrene ND ug/kg 1600 310 500 Dichlorodifluoromethane ND ug/kg 7800 150 500 Acetone ND ug/kg 7800 810 500 Carbon disulfide ND ug/kg 7800 860 500 Carbon disulfide ND ug/kg 7800 860 500 2-Butanone ND ug/kg 7800 210 500 2-Butanone ND ug/kg 7800 210 500 2-Butanone ND ug/kg 7800 520 500 2-Hexanone ND ug/kg 7800 520 500 Bromochloromethane ND ug/kg 3900 520 500 1,2-Dibromo-3-chloropropane ND ug/kg 780 81 500	Methyl tert butyl ether	ND		ug/kg	1600	66.	500			
cis-1,2-Dichloroethene ND ug/kg 780 110 500 Styrene ND ug/kg 1600 310 500 Dichlorodifluoromethane ND ug/kg 7800 150 500 Acetone ND ug/kg 7800 810 500 Carbon disulfide ND ug/kg 7800 860 500 2-Butanone ND ug/kg 7800 210 500 4-Methyl-2-pentanone ND ug/kg 7800 190 500 2-Hexanone ND ug/kg 7800 190 500 2-Hexanone ND ug/kg 3900 220 500 Bromochloromethane ND ug/kg 3900 220 500 1,2-Dibromoethane ND ug/kg 3100 140 500 n-Butylbenzene 1600 ug/kg 780 90 500 1,2-Dibromoethane ND ug/kg 3900 310 5	p/m-Xylene	1900		ug/kg	1600	150	500			
Styrene ND ug/kg 1600 310 500 Dichlorodiffluoromethane ND ug/kg 7800 150 500 Acetone ND ug/kg 7800 810 500 Carbon disulfide ND ug/kg 7800 860 500 2-Butanone ND ug/kg 7800 210 500 4-Methyl-2-pentanone ND ug/kg 7800 190 500 2-Hexanone ND ug/kg 7800 520 500 Bromochloromethane ND ug/kg 3900 220 500 1,2-Dibromoethane ND ug/kg 3100 140 500 1,2-Dibromoethane ND ug/kg 780 90 500 1,2-Dibromoethane ND ug/kg 3900 310 500 1,2-Dibromoethane ND ug/kg 3900 310 500 1,2-Dibromoethane ND ug/kg 3900 310	o-Xylene	ND		ug/kg	1600	130	500			
Dichlorodiffluoromethane ND	cis-1,2-Dichloroethene	ND		ug/kg	780	110	500			
Acetone ND ug/kg 7800 810 500 Carbon disulfide ND ug/kg 7800 860 500 2-Butanone ND ug/kg 7800 210 500 4-Methyl-2-pentanone ND ug/kg 7800 190 500 2-Hexanone ND ug/kg 7800 520 500 Bromochloromethane ND ug/kg 3900 220 500 1,2-Dibromoethane ND ug/kg 3100 140 500 n-Butylbenzene 1600 ug/kg 780 90 500 1,2-Dibromo-3-chloropropane ND ug/kg 3900 310 500 Isopropylbenzene 2800 ug/kg 780 81 500 Isopropylbenzene 5400 ug/kg 780 85 500 1,2,3-Trichlorobenzene ND ug/kg 3900 120 500 1,2,4-Trichlorobenzene ND ug/kg 3900 <	Styrene	ND		ug/kg	1600	310	500			
Carbon disulfide ND ug/kg 7800 860 500 2-Butanone ND ug/kg 7800 210 500 4-Methyl-2-pentanone ND ug/kg 7800 190 500 2-Hexanone ND ug/kg 7800 520 500 Bromochloromethane ND ug/kg 3900 220 500 1,2-Dibromothane ND ug/kg 3100 140 500 n-Butylbenzene 1600 ug/kg 780 90. 500 1,2-Dibromo-3-chloropropane ND ug/kg 3900 310 500 Isopropylbenzene 2800 ug/kg 780 81. 500 1,2-Trichlorobenzene ND ug/kg 780 85. 500 1,2,3-Trichlorobenzene ND ug/kg 3900 120 500 1,3,5-Trimethylbenzene ND ug/kg 3900 110 500 Methyl Acetate ND ug/kg 16000 <td>Dichlorodifluoromethane</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>7800</td> <td>150</td> <td>500</td>	Dichlorodifluoromethane	ND		ug/kg	7800	150	500			
2-Butanone ND ug/kg 7800 210 500 4-Methyl-2-pentanone ND ug/kg 7800 190 500 2-Hexanone ND ug/kg 7800 520 500 Bromochloromethane ND ug/kg 3900 220 500 1,2-Dibromoethane ND ug/kg 3100 140 500 n-Butylbenzene 1600 ug/kg 780 90. 500 1,2-Dibromo-3-chloropropane ND ug/kg 3900 310 500 Isopropylbenzene 2800 ug/kg 780 81. 500 n-Propylbenzene 5400 ug/kg 780 85. 500 1,2,3-Trichlorobenzene ND ug/kg 3900 120 500 1,2,4-Trimethylbenzene ND ug/kg 3900 110 500 1,3,5-Trimethylbenzene ND ug/kg 3900 110 500 1,2,4-Trimethylbenzene ND ug/kg 3900 110 500 1,4-Dioxane ND ug/kg 7800 1100 500 1,4-Dioxane ND ug/kg 78000 1100 500	Acetone	ND		ug/kg	7800	810	500			
4-Methyl-2-pentanone ND ug/kg 7800 190 500 2-Hexanone ND ug/kg 7800 520 500 Bromochloromethane ND ug/kg 3900 220 500 1,2-Dibromoethane ND ug/kg 3100 140 500 1,2-Dibromoethane ND ug/kg 780 90. 500 1,2-Dibromo-3-chloropropane ND ug/kg 3900 310 500 Isopropylbenzene 2800 ug/kg 780 81. 500 1,2-Dibromo-3-chloropropane ND ug/kg 780 85. 500 1,2,3-Trichlorobenzene ND ug/kg 3900 120 500 1,2,3-Trichlorobenzene ND ug/kg 3900 120 500 1,2,3-Trichlorobenzene ND ug/kg 3900 120 500 1,2,4-Trichlorobenzene ND ug/kg 3900 140 500 1,2,4-Trimethylbenzene ND ug/kg 3900 110 500 1,4-Dioxane ND ug/kg 78000 1100 500 Freon-113 ND ug/kg 78000 1100 500	Carbon disulfide	ND		ug/kg	7800	860	500			
2-Hexanone ND ug/kg 7800 520 500 Bromochloromethane ND ug/kg 3900 220 500 1,2-Dibromoethane ND ug/kg 3100 140 500 n-Butylbenzene 1600 ug/kg 780 90. 500 1,2-Dibromo-3-chloropropane ND ug/kg 3900 310 500 Isopropylbenzene 2800 ug/kg 780 81. 500 n-Propylbenzene 5400 ug/kg 780 85. 500 1,2,3-Trichlorobenzene ND ug/kg 3900 120 500 1,2,3-Trichlorobenzene ND ug/kg 3900 120 500 1,2,4-Trichlorobenzene ND ug/kg 3900 140 500 1,2,4-Trimethylbenzene ND ug/kg 3900 110 500 1,2,4-Trimethylbenzene ND ug/kg 16000 210 500 Methyl Acetate ND ug/kg 16000 110 500 Cyclohexane ND ug/kg 78000 11000 500 Freon-113 ND ug/kg 78000 11000 500	2-Butanone	ND		ug/kg	7800	210	500			
Bromochloromethane ND	4-Methyl-2-pentanone	ND		ug/kg	7800	190	500			
1,2-Dibromoethane ND ug/kg 3100 140 500 n-Butylbenzene 1600 ug/kg 780 90. 500 1,2-Dibromo-3-chloropropane ND ug/kg 3900 310 500 Isopropylbenzene 2800 ug/kg 780 81. 500 n-Propylbenzene 5400 ug/kg 780 85. 500 1,2,3-Trichlorobenzene ND ug/kg 3900 120 500 1,2,4-Trichlorobenzene ND ug/kg 3900 140 500 1,3,5-Trimethylbenzene ND ug/kg 3900 110 500 1,2,4-Trimethylbenzene 57000 ug/kg 3900 110 500 Methyl Acetate ND ug/kg 16000 210 500 Cyclohexane 18000 ug/kg 78000 11000 500 Freon-113 ND ug/kg 16000 210 500	2-Hexanone	ND		ug/kg	7800	520	500			
n-Butylbenzene 1600 ug/kg 780 90. 500 1,2-Dibromo-3-chloropropane ND ug/kg 3900 310 500 Isopropylbenzene 2800 ug/kg 780 81. 500 n-Propylbenzene 5400 ug/kg 780 85. 500 1,2,3-Trichlorobenzene ND ug/kg 3900 120 500 1,2,4-Trichlorobenzene ND ug/kg 3900 140 500 1,3,5-Trimethylbenzene ND ug/kg 3900 110 500 1,3,5-Trimethylbenzene ND ug/kg 3900 110 500 1,2,4-Trimethylbenzene ND ug/kg 3900 110 500 Cyclohexane ND ug/kg 16000 210 500 Cyclohexane ND ug/kg 16000 110 500 1,4-Dioxane ND ug/kg 7800 1100 500 Freon-113 ND ug/kg 16000 210 500	Bromochloromethane	ND		ug/kg	3900	220	500			
1,2-Dibromo-3-chloropropane ND ug/kg 3900 310 500 Isopropylbenzene 2800 ug/kg 780 81. 500 n-Propylbenzene 5400 ug/kg 780 85. 500 1,2,3-Trichlorobenzene ND ug/kg 3900 120 500 1,2,4-Trichlorobenzene ND ug/kg 3900 140 500 1,3,5-Trimethylbenzene ND ug/kg 3900 110 500 1,2,4-Trimethylbenzene 57000 ug/kg 3900 110 500 Methyl Acetate ND ug/kg 16000 210 500 Cyclohexane 18000 ug/kg 16000 110 500 1,4-Dioxane ND ug/kg 78000 11000 500 Freon-113 ND ug/kg 16000 210 500	1,2-Dibromoethane	ND		ug/kg	3100	140	500			
Sopropylbenzene 2800 ug/kg 780 81. 500 N-Propylbenzene 5400 ug/kg 780 85. 500 1,2,3-Trichlorobenzene ND ug/kg 3900 120 500 1,2,4-Trichlorobenzene ND ug/kg 3900 140 500 1,3,5-Trimethylbenzene ND ug/kg 3900 110 500 1,2,4-Trimethylbenzene ND ug/kg 3900 110 500 1,2,4-Trimethylbenzene 57000 ug/kg 3900 110 500 Methyl Acetate ND ug/kg 16000 210 500 Cyclohexane 18000 ug/kg 16000 110 500 1,4-Dioxane ND ug/kg 78000 11000 500 Freon-113 ND ug/kg 16000 210 500	n-Butylbenzene	1600		ug/kg	780	90.	500			
n-Propylbenzene 5400 ug/kg 780 85. 500 1,2,3-Trichlorobenzene ND ug/kg 3900 120 500 1,2,4-Trichlorobenzene ND ug/kg 3900 140 500 1,3,5-Trimethylbenzene ND ug/kg 3900 110 500 1,2,4-Trimethylbenzene ND ug/kg 3900 110 500 1,2,4-Trimethylbenzene 57000 ug/kg 3900 110 500 Methyl Acetate ND ug/kg 16000 210 500 Cyclohexane 18000 ug/kg 16000 110 500 1,4-Dioxane ND ug/kg 78000 11000 500 Freon-113 ND ug/kg 16000 210 500	1,2-Dibromo-3-chloropropane	ND		ug/kg	3900	310	500			
1,2,3-Trichlorobenzene ND ug/kg 3900 120 500 1,2,4-Trichlorobenzene ND ug/kg 3900 140 500 1,3,5-Trimethylbenzene ND ug/kg 3900 110 500 1,2,4-Trimethylbenzene 57000 ug/kg 3900 110 500 Methyl Acetate ND ug/kg 16000 210 500 Cyclohexane 18000 ug/kg 16000 110 500 1,4-Dioxane ND ug/kg 78000 11000 500 Freon-113 ND ug/kg 16000 210 500	Isopropylbenzene	2800		ug/kg	780	81.	500			
1,2,4-Trichlorobenzene ND ug/kg 3900 140 500 1,3,5-Trimethylbenzene ND ug/kg 3900 110 500 1,2,4-Trimethylbenzene 57000 ug/kg 3900 110 500 Methyl Acetate ND ug/kg 16000 210 500 Cyclohexane 18000 ug/kg 16000 110 500 1,4-Dioxane ND ug/kg 78000 11000 500 Freon-113 ND ug/kg 16000 210 500	n-Propylbenzene	5400		ug/kg	780	85.	500			
1,3,5-Trimethylbenzene ND ug/kg 3900 110 500 1,2,4-Trimethylbenzene 57000 ug/kg 3900 110 500 Methyl Acetate ND ug/kg 16000 210 500 Cyclohexane 18000 ug/kg 16000 110 500 1,4-Dioxane ND ug/kg 78000 11000 500 Freon-113 ND ug/kg 16000 210 500	1,2,3-Trichlorobenzene	ND		ug/kg	3900	120	500			
1,2,4-Trimethylbenzene 57000 ug/kg 3900 110 500 Methyl Acetate ND ug/kg 16000 210 500 Cyclohexane 18000 ug/kg 16000 110 500 1,4-Dioxane ND ug/kg 78000 11000 500 Freon-113 ND ug/kg 16000 210 500	1,2,4-Trichlorobenzene	ND		ug/kg	3900	140	500			
Methyl Acetate ND ug/kg 16000 210 500 Cyclohexane 18000 ug/kg 16000 110 500 1,4-Dioxane ND ug/kg 78000 11000 500 Freon-113 ND ug/kg 16000 210 500	1,3,5-Trimethylbenzene	ND		ug/kg	3900	110	500			
Cyclohexane 18000 ug/kg 16000 110 500 1,4-Dioxane ND ug/kg 78000 11000 500 Freon-113 ND ug/kg 16000 210 500	1,2,4-Trimethylbenzene	57000		ug/kg	3900	110	500			
1,4-Dioxane ND ug/kg 78000 11000 500 Freon-113 ND ug/kg 16000 210 500	Methyl Acetate	ND		ug/kg	16000	210	500			
Freon-113 ND ug/kg 16000 210 500	Cyclohexane	18000		ug/kg	16000	110	500			
-5115	1,4-Dioxane	ND		ug/kg	78000	11000	500			
Methyl cyclohexane 48000 ug/kg 3100 120 500	Freon-113	ND		ug/kg	16000	210	500			
	Methyl cyclohexane	48000		ug/kg	3100	120	500			

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-39 D

Client ID: P1-1 (8-10)
Sample Location: SYRACUSE, NY

Date Collected: 06/30/16 08:30

Date Received: 06/30/16 Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Tentatively Identified Compounds				
Total TIC Compounds	120000	J	ug/kg	500
Unknown	22000	J	ug/kg	500
Unknown	10000	J	ug/kg	500
Cyclohexane, ethyl-	6400	NJ	ug/kg	500
Unknown Benzene	10000	J	ug/kg	500
Unknown Benzene	14000	J	ug/kg	500
Unknown Benzene	12000	J	ug/kg	500
Unknown Aromatic	10000	J	ug/kg	500
Unknown Benzene	15000	J	ug/kg	500
Unknown Benzene	8000	J	ug/kg	500
Unknown Aromatic	8700	J	ug/kg	500

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	82		70-130	
Toluene-d8	92		70-130	
4-Bromofluorobenzene	96		70-130	
Dibromofluoromethane	87		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 10/25/16

Lab ID: L1620368-40 D

Client ID: P2-1 (4-8) SYRACUSE, NY Sample Location:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 07/12/16 12:30

Analyst: MV60% Percent Solids:

Date Collected: 06/30/16 08:40

Date Received: 06/30/16 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/kg	17000	1800	1000
1,1-Dichloroethane	ND		ug/kg	2500	140	1000
Chloroform	ND		ug/kg	2500	620	1000
Carbon tetrachloride	ND		ug/kg	1700	350	1000
1,2-Dichloropropane	ND		ug/kg	5900	380	1000
Dibromochloromethane	ND		ug/kg	1700	260	1000
1,1,2-Trichloroethane	ND		ug/kg	2500	510	1000
Tetrachloroethene	ND		ug/kg	1700	240	1000
Chlorobenzene	ND		ug/kg	1700	580	1000
Trichlorofluoromethane	ND		ug/kg	8400	650	1000
1,2-Dichloroethane	ND		ug/kg	1700	190	1000
1,1,1-Trichloroethane	ND		ug/kg	1700	180	1000
Bromodichloromethane	ND		ug/kg	1700	290	1000
trans-1,3-Dichloropropene	ND		ug/kg	1700	200	1000
cis-1,3-Dichloropropene	ND		ug/kg	1700	200	1000
Bromoform	ND		ug/kg	6700	400	1000
1,1,2,2-Tetrachloroethane	ND		ug/kg	1700	170	1000
Benzene	1300	J	ug/kg	1700	200	1000
Toluene	540	J	ug/kg	2500	330	1000
Ethylbenzene	2600		ug/kg	1700	210	1000
Chloromethane	ND		ug/kg	8400	490	1000
Bromomethane	ND		ug/kg	3400	570	1000
Vinyl chloride	ND		ug/kg	3400	200	1000
Chloroethane	ND		ug/kg	3400	530	1000
1,1-Dichloroethene	ND		ug/kg	1700	440	1000
trans-1,2-Dichloroethene	ND		ug/kg	2500	360	1000
Trichloroethene	ND		ug/kg	1700	210	1000
1,2-Dichlorobenzene	ND		ug/kg	8400	260	1000
1,3-Dichlorobenzene	ND		ug/kg	8400	230	1000
1,4-Dichlorobenzene	ND		ug/kg	8400	230	1000
1,4-Dichlorobenzene	ND		ug/kg	8400	230	10

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-40 D Date Collected: 06/30/16 08:40

Client ID: P2-1 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Prince Sacon Sac	Volatile Organics by GC/MS - We	estborough Lab					
December September Septe	Methyl tert butyl ether	ND		ug/kg	3400	140	1000
ND	p/m-Xylene	63000		ug/kg	3400	330	1000
ND	o-Xylene	2200	J	ug/kg	3400	290	1000
Dichlorodiffluoromethane ND	cis-1,2-Dichloroethene	ND		ug/kg	1700	240	1000
Actone ND ug/kg 1700 1700 1000 Carbon disulfide ND ug/kg 1700 1800 1000 2-Butanone ND ug/kg 17000 460 1000 4-Methyl-2-pentanone ND ug/kg 17000 410 1000 2-Hexanone ND ug/kg 1700 1100 1000 Bromochloromethane ND ug/kg 8400 460 1000 1,2-Dibromoethane ND ug/kg 6700 290 1000 n-Butylbenzene 6500 ug/kg 1700 190 1000 1,2-Dibromo-3-chloropropane ND ug/kg 8400 660 1000 Isopropylbenzene 7700 ug/kg 1700 170 1000 n-Propylbenzene ND ug/kg 8400 250 1000 1,2,4-Trichlorobenzene ND ug/kg 8400 250 1000 1,3,5-Trimethylbenzene 1100 ug/kg <t< td=""><td>Styrene</td><td>ND</td><td></td><td>ug/kg</td><td>3400</td><td>670</td><td>1000</td></t<>	Styrene	ND		ug/kg	3400	670	1000
Carbon disulfide ND ug/kg 1700 1800 1000 2-Butanone ND ug/kg 17000 460 1000 4-Methyl-2-pentanone ND ug/kg 17000 410 1000 2-Hexanone ND ug/kg 17000 1100 1000 Bromochloromethane ND ug/kg 8400 460 1000 1,2-Dibromoethane ND ug/kg 6700 290 1000 n-Butylbenzene 6500 ug/kg 1700 190 1000 1,2-Dibromo-3-chloropropane ND ug/kg 8400 660 1000 Isopropylbenzene 7700 ug/kg 1700 170 1000 n-Propylbenzene 20000 ug/kg 8400 250 1000 1,2,3-Trichlorobenzene ND ug/kg 8400 240 1000 1,3,5-Trimethylbenzene 1100 J ug/kg 8400 240 1000 1,2,4-Trimethylbenzene 200	Dichlorodifluoromethane	ND		ug/kg	17000	320	1000
2-Butanone ND ug/kg 17000 460 1000 4-Methyl-2-pentanone ND ug/kg 17000 410 1000 2-Hexanone ND ug/kg 17000 1100 1000 Bromochloromethane ND ug/kg 8400 460 1000 1,2-Dibromoethane ND ug/kg 6700 290 1000 n-Butylbenzene 6500 ug/kg 1700 190 1000 1,2-Dibromo-3-chloropropane ND ug/kg 8400 660 1000 Isopropylbenzene 7700 ug/kg 1700 170 1000 n-Propylbenzene 20000 ug/kg 1700 180 1000 1,2,3-Trichlorobenzene ND ug/kg 8400 250 1000 1,2,4-Trimethylbenzene 1100 J ug/kg 8400 240 1000 1,2,4-Trimethylbenzene 220000 ug/kg 3400 240 1000 Methyl Acetate ND	Acetone	ND		ug/kg	17000	1700	1000
4-Methyl-2-pentanone ND ug/kg 17000 410 1000 2-Hexanone ND ug/kg 17000 1100 1000 Bromochloromethane ND ug/kg 8400 460 1000 1,2-Dibromoethane ND ug/kg 6700 290 1000 1,2-Dibromoethane ND ug/kg 1700 190 1000 1,2-Dibromo-3-chloropropane ND ug/kg 8400 660 1000 1,2-Dibromo-3-chloropropane ND ug/kg 1700 190 1000 1,2-Dibromo-3-chloropropane ND ug/kg 1700 170 1000 1sopropylbenzene 7700 ug/kg 1700 170 1000 1n-Propylbenzene 20000 ug/kg 1700 180 1000 1,2,3-Trichlorobenzene ND ug/kg 8400 250 1000 1,2,3-Trichlorobenzene ND ug/kg 8400 300 1000 1,2,4-Trimethylbenzene 1100 J ug/kg 8400 240 1000 1,3,5-Trimethylbenzene 1100 J ug/kg 8400 240 1000 1,2,4-Trimethylbenzene 220000 ug/kg 8400 240 1000 1,2,4-Trimethylbenzene 1000 ug/kg 8400 240 1000 1,2,4-Trimethylbenzene 1000 ug/kg 8400 240 1000 1,2,4-Trimethylbenzene 1000 ug/kg 8400 240 1000 1,3,5-Trimethylbenzene 1000 ug/kg 8400 240 1000 1,4-Dioxane ND ug/kg 34000 450 1000 Methyl Acetate ND ug/kg 17000 24000 1000 Freon-113 ND ug/kg 34000 460 1000	Carbon disulfide	ND		ug/kg	17000	1800	1000
ND	2-Butanone	ND		ug/kg	17000	460	1000
Bromochloromethane ND	4-Methyl-2-pentanone	ND		ug/kg	17000	410	1000
1,2-Dibromoethane ND ug/kg 6700 290 1000 n-Butylbenzene 6500 ug/kg 1700 190 1000 1,2-Dibromo-3-chloropropane ND ug/kg 8400 660 1000 Isopropylbenzene 7700 ug/kg 1700 170 1000 n-Propylbenzene 20000 ug/kg 1700 180 1000 1,2,3-Trichlorobenzene ND ug/kg 8400 250 1000 1,2,4-Trichlorobenzene ND ug/kg 8400 300 1000 1,3,5-Trimethylbenzene 1100 J ug/kg 8400 240 1000 1,2,4-Trimethylbenzene 220000 ug/kg 8400 240 1000 Methyl Acetate ND ug/kg 34000 450 1000 Cyclohexane 68000 ug/kg 34000 240 1000 1,4-Dioxane ND ug/kg 170000 24000 1000 Freon-113 ND	2-Hexanone	ND		ug/kg	17000	1100	1000
n-Butylbenzene 6500 ug/kg 1700 190 1000 1,2-Dibromo-3-chloropropane ND ug/kg 8400 660 1000 Isopropylbenzene 7700 ug/kg 1700 170 1000 n-Propylbenzene 20000 ug/kg 1700 180 1000 1,2,3-Trichlorobenzene ND ug/kg 8400 250 1000 1,2,3-Trichlorobenzene ND ug/kg 8400 300 1000 1,3,5-Trimethylbenzene 1100 J ug/kg 8400 240 1000 1,3,5-Trimethylbenzene 220000 ug/kg 8400 240 1000 1,2,4-Trimethylbenzene 1100 J ug/kg 8400 240 1000 1,2,4-Trimethylbenzene 220000 ug/kg 8400 240 1000 Cyclohexane 68000 ug/kg 34000 450 1000 Cyclohexane 68000 ug/kg 34000 240 1000 1,4-Dioxane ND ug/kg 17000 24000 1000 Freon-113 ND ug/kg 34000 460 1000	Bromochloromethane	ND		ug/kg	8400	460	1000
1,2-Dibromo-3-chloropropane ND ug/kg 8400 660 1000 Isopropylbenzene 7700 ug/kg 1700 170 1000 n-Propylbenzene 20000 ug/kg 1700 180 1000 1,2,3-Trichlorobenzene ND ug/kg 8400 250 1000 1,2,4-Trichlorobenzene ND ug/kg 8400 300 1000 1,3,5-Trimethylbenzene 1100 J ug/kg 8400 240 1000 1,2,4-Trimethylbenzene 220000 ug/kg 8400 240 1000 Methyl Acetate ND ug/kg 34000 450 1000 Cyclohexane 68000 ug/kg 34000 240 1000 1,4-Dioxane ND ug/kg 170000 24000 1000 Freon-113 ND ug/kg 34000 460 1000	1,2-Dibromoethane	ND		ug/kg	6700	290	1000
Sopropylbenzene 7700 ug/kg 1700 170 1000 170 1000 1700	n-Butylbenzene	6500		ug/kg	1700	190	1000
n-Propylbenzene 20000 ug/kg 1700 180 1000 1,2,3-Trichlorobenzene ND ug/kg 8400 250 1000 1,2,4-Trichlorobenzene ND ug/kg 8400 300 1000 1,3,5-Trimethylbenzene 1100 J ug/kg 8400 240 1000 1,2,4-Trimethylbenzene 220000 ug/kg 8400 240 1000 1,2,4-Trimethylbenzene ND ug/kg 34000 450 1000 Methyl Acetate ND ug/kg 34000 450 1000 Cyclohexane 68000 ug/kg 34000 240 1000 1,4-Dioxane ND ug/kg 170000 24000 1000 Freon-113 ND ug/kg 34000 460 1000	1,2-Dibromo-3-chloropropane	ND		ug/kg	8400	660	1000
1,2,3-Trichlorobenzene ND ug/kg 8400 250 1000 1,2,4-Trichlorobenzene ND ug/kg 8400 300 1000 1,3,5-Trimethylbenzene 1100 J ug/kg 8400 240 1000 1,2,4-Trimethylbenzene 220000 ug/kg 8400 240 1000 Methyl Acetate ND ug/kg 34000 450 1000 Cyclohexane 68000 ug/kg 34000 240 1000 1,4-Dioxane ND ug/kg 170000 24000 1000 Freon-113 ND ug/kg 34000 460 1000	Isopropylbenzene	7700		ug/kg	1700	170	1000
1,2,4-Trichlorobenzene ND ug/kg 8400 300 1000 1,3,5-Trimethylbenzene 1100 J ug/kg 8400 240 1000 1,2,4-Trimethylbenzene 220000 ug/kg 8400 240 1000 Methyl Acetate ND ug/kg 34000 450 1000 Cyclohexane 68000 ug/kg 34000 240 1000 1,4-Dioxane ND ug/kg 170000 24000 1000 Freon-113 ND ug/kg 34000 460 1000	n-Propylbenzene	20000		ug/kg	1700	180	1000
1,3,5-Trimethylbenzene 1100 J ug/kg 8400 240 1000 1,2,4-Trimethylbenzene 220000 ug/kg 8400 240 1000 Methyl Acetate ND ug/kg 34000 450 1000 Cyclohexane 68000 ug/kg 34000 240 1000 1,4-Dioxane ND ug/kg 170000 24000 1000 Freon-113 ND ug/kg 34000 460 1000	1,2,3-Trichlorobenzene	ND		ug/kg	8400	250	1000
1,2,4-Trimethylbenzene 220000 ug/kg 8400 240 1000 Methyl Acetate ND ug/kg 34000 450 1000 Cyclohexane 68000 ug/kg 34000 240 1000 1,4-Dioxane ND ug/kg 170000 24000 1000 Freon-113 ND ug/kg 34000 460 1000	1,2,4-Trichlorobenzene	ND		ug/kg	8400	300	1000
Methyl Acetate ND ug/kg 34000 450 1000 Cyclohexane 68000 ug/kg 34000 240 1000 1,4-Dioxane ND ug/kg 170000 24000 1000 Freon-113 ND ug/kg 34000 460 1000	1,3,5-Trimethylbenzene	1100	J	ug/kg	8400	240	1000
Cyclohexane 68000 ug/kg 34000 240 1000 1,4-Dioxane ND ug/kg 170000 24000 1000 Freon-113 ND ug/kg 34000 460 1000	1,2,4-Trimethylbenzene	220000		ug/kg	8400	240	1000
1,4-Dioxane ND ug/kg 170000 24000 1000 Freon-113 ND ug/kg 34000 460 1000	Methyl Acetate	ND		ug/kg	34000	450	1000
Freon-113 ND ug/kg 34000 460 1000	Cyclohexane	68000		ug/kg	34000	240	1000
-56	1,4-Dioxane	ND		ug/kg	170000	24000	1000
Methyl cyclohexane 160000 ug/kg 6700 260 1000	Freon-113	ND		ug/kg	34000	460	1000
	Methyl cyclohexane	160000		ug/kg	6700	260	1000

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

Result

SAMPLE RESULTS

Qualifier

Units

Lab ID: L1620368-40 D

Client ID: P2-1 (4-8)
Sample Location: SYRACUSE, NY

Parameter

Date Collected: 06/30/16 08:40

Date Received: 06/30/16

Field Prep: Not Specified

RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	560000	J	ug/kg	1000
Pentane, 2-methyl-	50000	NJ	ug/kg	1000
Cyclopentane, Methyl-	59000	NJ	ug/kg	1000
Unknown Alkane	100000	J	ug/kg	1000
Unknown	50000	J	ug/kg	1000
Unknown Cyclohexane	58000	J	ug/kg	1000
Unknown Benzene	46000	J	ug/kg	1000
Unknown Benzene	55000	J	ug/kg	1000
Unknown Benzene	44000	J	ug/kg	1000
Unknown Benzene	52000	J	ug/kg	1000
Unknown Aromatic	45000	J	ug/kg	1000

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	96		70-130	
Toluene-d8	96		70-130	
4-Bromofluorobenzene	112		70-130	
Dibromofluoromethane	89		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 10/25/16

SAMPLE RESUL

Lab ID: L1620368-41 D

Client ID: P2-1 (8-10)
Sample Location: SYRACUSE, NY

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 07/12/16 23:20

Analyst: PP Percent Solids: 52% Date Collected: 06/30/16 08:40

Date Received: 06/30/16
Field Prep: Not Specified

Volatile Organics by GC/MS - Westborough Lab Methylene chloride 1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane 1,1-Trichloroethane Bromodichloromethane	ND N		ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	900 140 140 90 320 90	100 7.7 33. 19. 20.	50 50 50 50 50
1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane 1,1-Trichloroethane	ND		ug/kg ug/kg ug/kg ug/kg ug/kg	140 140 90 320 90	7.7 33. 19. 20.	50 50 50
Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane 1,1,1-Trichloroethane	ND ND ND ND ND ND ND ND ND		ug/kg ug/kg ug/kg ug/kg	140 90 320 90	33. 19. 20.	50 50
Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane 1,1,1-Trichloroethane	ND ND ND ND ND ND ND ND		ug/kg ug/kg ug/kg	90 320 90	19. 20.	50
1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane 1,1,1-Trichloroethane	ND ND ND ND ND		ug/kg ug/kg	320 90	20.	
Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane 1,1,1-Trichloroethane	ND ND ND		ug/kg	90		50
1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane 1,1,1-Trichloroethane	ND ND ND				14.	
Tetrachloroethene Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane 1,1,1-Trichloroethane	ND ND		ug/kg			50
Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane 1,1,1-Trichloroethane	ND			140	27.	50
Trichlorofluoromethane 1,2-Dichloroethane 1,1,1-Trichloroethane			ug/kg	90	13.	50
1,2-Dichloroethane 1,1,1-Trichloroethane	ND		ug/kg	90	31.	50
1,1,1-Trichloroethane			ug/kg	450	35.	50
	ND		ug/kg	90	10.	50
Bromodichloromethane	ND		ug/kg	90	10.	50
	ND		ug/kg	90	16.	50
trans-1,3-Dichloropropene	ND		ug/kg	90	11.	50
cis-1,3-Dichloropropene	ND		ug/kg	90	11.	50
Bromoform	ND		ug/kg	360	21.	50
1,1,2,2-Tetrachloroethane	ND		ug/kg	90	9.1	50
Benzene	70	J	ug/kg	90	11.	50
Toluene	ND		ug/kg	140	18.	50
Ethylbenzene	86	J	ug/kg	90	11.	50
Chloromethane	ND		ug/kg	450	26.	50
Bromomethane	ND		ug/kg	180	30.	50
Vinyl chloride	ND		ug/kg	180	10.	50
Chloroethane	ND		ug/kg	180	28.	50
1,1-Dichloroethene	ND		ug/kg	90	24.	50
trans-1,2-Dichloroethene	ND		ug/kg	140	19.	50
Trichloroethene	ND		ug/kg	90	11.	50
1,2-Dichlorobenzene	ND		ug/kg	450	14.	50
1,3-Dichlorobenzene	ND		ug/kg	450	12.	50
1,4-Dichlorobenzene	ND					

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-41 D

Client ID: P2-1 (8-10)
Sample Location: SYRACUSE, NY

Date Collected: 06/30/16 08:40

Date Received: 06/30/16 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westl	oorough Lab					
Methyl tert butyl ether	ND		ug/kg	180	7.6	50
p/m-Xylene	1100		ug/kg	180	18.	50
o-Xylene	25	J	ug/kg	180	15.	50
cis-1,2-Dichloroethene	ND		ug/kg	90	13.	50
Styrene	ND		ug/kg	180	36.	50
Dichlorodifluoromethane	ND		ug/kg	900	17.	50
Acetone	ND		ug/kg	900	93.	50
Carbon disulfide	ND		ug/kg	900	99.	50
2-Butanone	ND		ug/kg	900	24.	50
4-Methyl-2-pentanone	ND		ug/kg	900	22.	50
2-Hexanone	ND		ug/kg	900	60.	50
Bromochloromethane	ND		ug/kg	450	25.	50
1,2-Dibromoethane	ND		ug/kg	360	16.	50
n-Butylbenzene	200		ug/kg	90	10.	50
1,2-Dibromo-3-chloropropane	ND		ug/kg	450	36.	50
Isopropylbenzene	440		ug/kg	90	9.4	50
n-Propylbenzene	450		ug/kg	90	9.8	50
1,2,3-Trichlorobenzene	ND		ug/kg	450	13.	50
1,2,4-Trichlorobenzene	ND		ug/kg	450	16.	50
1,3,5-Trimethylbenzene	25	J	ug/kg	450	13.	50
1,2,4-Trimethylbenzene	5100		ug/kg	450	13.	50
Methyl Acetate	ND		ug/kg	1800	24.	50
Cyclohexane	1700	J	ug/kg	1800	13.	50
1,4-Dioxane	ND		ug/kg	9000	1300	50
Freon-113	ND		ug/kg	1800	25.	50
Methyl cyclohexane	4100		ug/kg	360	14.	50

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-41 D

Client ID: P2-1 (8-10)
Sample Location: SYRACUSE, NY

Date Collected: 06/30/16 08:40

Date Received: 06/30/16 Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	15000	J	ug/kg	50
Unknown	1900	J	ug/kg	50
Unknown	1300	J	ug/kg	50
Unknown Cyclohexane	1600	J	ug/kg	50
Unknown Benzene	2500	J	ug/kg	50
Unknown Benzene	1400	J	ug/kg	50
Unknown Benzene	1200	J	ug/kg	50
Unknown Benzene	1600	J	ug/kg	50
Unknown	1100	J	ug/kg	50
Unknown Benzene	1400	J	ug/kg	50
Unknown	1200	J	ug/kg	50

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	78		70-130	
Toluene-d8	92		70-130	
4-Bromofluorobenzene	95		70-130	
Dibromofluoromethane	85		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 10/25/16

Lab ID: L1620368-42

Client ID: P2-2 (4-8) SYRACUSE, NY Sample Location:

Matrix: Soil

Analytical Method: 1,8260C

Analytical Date: 07/12/16 13:25

Analyst: MV 75% Percent Solids:

Date Collected: 06/30/16 09:05

Date Received: 06/30/16 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/kg	13	1.5	1
1,1-Dichloroethane	ND		ug/kg	2.0	0.11	1
Chloroform	ND		ug/kg	2.0	0.50	1
Carbon tetrachloride	ND		ug/kg	1.3	0.28	1
1,2-Dichloropropane	ND		ug/kg	4.7	0.30	1
Dibromochloromethane	ND		ug/kg	1.3	0.20	1
1,1,2-Trichloroethane	ND		ug/kg	2.0	0.41	1
Tetrachloroethene	ND		ug/kg	1.3	0.19	1
Chlorobenzene	ND		ug/kg	1.3	0.47	1
Trichlorofluoromethane	ND		ug/kg	6.7	0.52	1
1,2-Dichloroethane	ND		ug/kg	1.3	0.15	1
1,1,1-Trichloroethane	ND		ug/kg	1.3	0.15	1
Bromodichloromethane	ND		ug/kg	1.3	0.23	1
trans-1,3-Dichloropropene	ND		ug/kg	1.3	0.16	1
cis-1,3-Dichloropropene	ND		ug/kg	1.3	0.16	1
Bromoform	ND		ug/kg	5.4	0.32	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	1.3	0.14	1
Benzene	0.48	J	ug/kg	1.3	0.16	1
Toluene	0.85	J	ug/kg	2.0	0.26	1
Ethylbenzene	0.59	J	ug/kg	1.3	0.17	1
Chloromethane	ND		ug/kg	6.7	0.39	1
Bromomethane	ND		ug/kg	2.7	0.45	1
Vinyl chloride	ND		ug/kg	2.7	0.16	1
Chloroethane	ND		ug/kg	2.7	0.42	1
1,1-Dichloroethene	ND		ug/kg	1.3	0.35	1
trans-1,2-Dichloroethene	ND		ug/kg	2.0	0.28	1
Trichloroethene	ND		ug/kg	1.3	0.17	1
1,2-Dichlorobenzene	ND		ug/kg	6.7	0.20	1
1,3-Dichlorobenzene	ND		ug/kg	6.7	0.18	1
1,4-Dichlorobenzene	ND		ug/kg	6.7	0.18	1

L1620368

10/25/16

Project Name: EMBASSY SUITES

Project Number: 15209

L1620368-42

SYRACUSE, NY

P2-2 (4-8)

Lab ID:

Client ID:

Sample Location:

SAMPLE RESULTS

Date Collected: 06/30/16 09:05

Date Received: 06/30/16

Lab Number:

Report Date:

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westbe	orough Lab						
Methyl tert butyl ether	0.14	J	ug/kg	2.7	0.11	1	
p/m-Xylene	1.6	J	ug/kg	2.7	0.26	1	
o-Xylene	0.49	J	ug/kg	2.7	0.23	1	
cis-1,2-Dichloroethene	ND		ug/kg	1.3	0.19	1	
Styrene	ND		ug/kg	2.7	0.54	1	
Dichlorodifluoromethane	ND		ug/kg	13	0.26	1	
Acetone	24		ug/kg	13	1.4	1	
Carbon disulfide	4.6	J	ug/kg	13	1.5	1	
2-Butanone	6.0	J	ug/kg	13	0.36	1	
4-Methyl-2-pentanone	ND		ug/kg	13	0.33	1	
2-Hexanone	ND		ug/kg	13	0.89	1	
Bromochloromethane	ND		ug/kg	6.7	0.37	1	
1,2-Dibromoethane	ND		ug/kg	5.4	0.23	1	
n-Butylbenzene	ND		ug/kg	1.3	0.15	1	
1,2-Dibromo-3-chloropropane	ND		ug/kg	6.7	0.53	1	
Isopropylbenzene	0.42	J	ug/kg	1.3	0.14	1	
n-Propylbenzene	0.44	J	ug/kg	1.3	0.15	1	
1,2,3-Trichlorobenzene	ND		ug/kg	6.7	0.20	1	
1,2,4-Trichlorobenzene	ND		ug/kg	6.7	0.24	1	
1,3,5-Trimethylbenzene	0.69	J	ug/kg	6.7	0.19	1	
1,2,4-Trimethylbenzene	2.4	J	ug/kg	6.7	0.19	1	
Methyl Acetate	ND		ug/kg	27	0.36	1	
Cyclohexane	0.43	J	ug/kg	27	0.20	1	
1,4-Dioxane	ND		ug/kg	130	19.	1	
Freon-113	ND		ug/kg	27	0.37	1	
Methyl cyclohexane	1.5	J	ug/kg	5.4	0.21	1	

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: Date Collected: 06/30/16 09:05

Client ID: P2-2 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

390	J	ug/kg	1
22	J	ug/kg	1
41	J	ug/kg	1
23	J	ug/kg	1
27	J	ug/kg	1
24	J	ug/kg	1
33	J	ug/kg	1
95	J	ug/kg	1
43	J	ug/kg	1
39	J	ug/kg	1
46	J	ug/kg	1
	22 41 23 27 24 33 95 43	22 J 41 J 23 J 27 J 24 J 33 J 95 J 43 J 39 J	22 J ug/kg 41 J ug/kg 23 J ug/kg 27 J ug/kg 24 J ug/kg 33 J ug/kg 95 J ug/kg 43 J ug/kg 39 J ug/kg

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	98		70-130	
Toluene-d8	92		70-130	
4-Bromofluorobenzene	123		70-130	
Dibromofluoromethane	86		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 10/25/16

Lab ID: L1620368-43 Client ID: P2-2 (8-10)

SYRACUSE, NY Sample Location:

Matrix: Soil

Analytical Method: 1,8260C

Analytical Date: 07/12/16 13:53 Analyst: MV

65% Percent Solids:

Date Collected:	06/30/16 09:05
Date Received:	06/30/16
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/kg	14	1.5	1
1,1-Dichloroethane	ND		ug/kg	2.1	0.12	1
Chloroform	ND		ug/kg	2.1	0.52	1
Carbon tetrachloride	ND		ug/kg	1.4	0.29	1
1,2-Dichloropropane	ND		ug/kg	4.9	0.32	1
Dibromochloromethane	ND		ug/kg	1.4	0.21	1
1,1,2-Trichloroethane	ND		ug/kg	2.1	0.42	1
Tetrachloroethene	ND		ug/kg	1.4	0.20	1
Chlorobenzene	ND		ug/kg	1.4	0.49	1
Trichlorofluoromethane	ND		ug/kg	7.0	0.54	1
1,2-Dichloroethane	ND		ug/kg	1.4	0.16	1
1,1,1-Trichloroethane	ND		ug/kg	1.4	0.15	1
Bromodichloromethane	ND		ug/kg	1.4	0.24	1
trans-1,3-Dichloropropene	ND		ug/kg	1.4	0.17	1
cis-1,3-Dichloropropene	ND		ug/kg	1.4	0.16	1
Bromoform	ND		ug/kg	5.6	0.33	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	1.4	0.14	1
Benzene	1.5		ug/kg	1.4	0.16	1
Toluene	2.2		ug/kg	2.1	0.27	1
Ethylbenzene	2.7		ug/kg	1.4	0.18	1
Chloromethane	ND		ug/kg	7.0	0.41	1
Bromomethane	ND		ug/kg	2.8	0.47	1
Vinyl chloride	ND		ug/kg	2.8	0.16	1
Chloroethane	ND		ug/kg	2.8	0.44	1
1,1-Dichloroethene	ND		ug/kg	1.4	0.37	1
trans-1,2-Dichloroethene	ND		ug/kg	2.1	0.30	1
Trichloroethene	ND		ug/kg	1.4	0.17	1
1,2-Dichlorobenzene	ND		ug/kg	7.0	0.21	1
1,3-Dichlorobenzene	ND		ug/kg	7.0	0.19	1
1,4-Dichlorobenzene	ND		ug/kg	7.0	0.19	1

L1620368

Project Name: EMBASSY SUITES Lab Number:

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-43 Date Collected: 06/30/16 09:05

Client ID: P2-2 (8-10) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methyl tert butyl ether	1.0	J	ug/kg	2.8	0.12	1
p/m-Xylene	11		ug/kg	2.8	0.28	1
o-Xylene	5.0		ug/kg	2.8	0.24	1
cis-1,2-Dichloroethene	ND		ug/kg	1.4	0.20	1
Styrene	ND		ug/kg	2.8	0.56	1
Dichlorodifluoromethane	ND		ug/kg	14	0.27	1
Acetone	17		ug/kg	14	1.4	1
Carbon disulfide	2.4	J	ug/kg	14	1.5	1
2-Butanone	ND		ug/kg	14	0.38	1
4-Methyl-2-pentanone	ND		ug/kg	14	0.34	1
2-Hexanone	ND		ug/kg	14	0.93	1
Bromochloromethane	ND		ug/kg	7.0	0.39	1
1,2-Dibromoethane	ND		ug/kg	5.6	0.24	1
n-Butylbenzene	0.60	J	ug/kg	1.4	0.16	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	7.0	0.55	1
Isopropylbenzene	3.2		ug/kg	1.4	0.14	1
n-Propylbenzene	2.6		ug/kg	1.4	0.15	1
1,2,3-Trichlorobenzene	ND		ug/kg	7.0	0.21	1
1,2,4-Trichlorobenzene	ND		ug/kg	7.0	0.25	1
1,3,5-Trimethylbenzene	7.4		ug/kg	7.0	0.20	1
1,2,4-Trimethylbenzene	27		ug/kg	7.0	0.20	1
Methyl Acetate	ND		ug/kg	28	0.38	1
Cyclohexane	7.2	J	ug/kg	28	0.20	1
1,4-Dioxane	ND		ug/kg	140	20.	1
Freon-113	ND		ug/kg	28	0.38	1
Methyl cyclohexane	16		ug/kg	5.6	0.22	1

Dilution Factor

MDL

RL

Project Name: Lab Number: **EMBASSY SUITES** L1620368

Project Number: Report Date: 15209 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-43 Date Collected: 06/30/16 09:05

Date Received: Client ID: P2-2 (8-10) 06/30/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Qualifier

Units

Result

Volatile Organics by GC/MS - Westborough Lab

Parameter

Tentatively Identified Compounds				
Total TIC Compounds	770	J	ug/kg	1
Unknown Aromatic	50	J	ug/kg	1
Unknown Benzene	27	J	ug/kg	1
Tridecane, 7-methyl-	46	NJ	ug/kg	1
Unknown	36	J	ug/kg	1
Unknown Aromatic	250	J	ug/kg	1
Pentadecane, 7-methyl-	51	NJ	ug/kg	1
Unknown Aromatic	63	J	ug/kg	1
Unknown	100	J	ug/kg	1
Unknown Naphthalene	39	J	ug/kg	1
Unknown Naphthalene	110	J	ug/kg	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	96		70-130	
Toluene-d8	96		70-130	
4-Bromofluorobenzene	114		70-130	
Dibromofluoromethane	78		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 10/25/16

Lab ID: L1620368-44

Client ID: P2-3 (8-10)
Sample Location: SYRACUSE, NY

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 07/12/16 14:21

Analyst: MV Percent Solids: 44% Date Collected: 06/30/16 09:25

Date Received: 06/30/16
Field Prep: Not Specified

Result	Qualifier	Units	RL	MDL	Dilution Factor
borough Lab					
ND		ug/kg	21	2.3	1
ND			3.2	0.18	1
ND		ug/kg	3.2	0.78	1
ND		ug/kg	2.1	0.44	1
ND		ug/kg	7.4	0.48	1
ND		ug/kg	2.1	0.32	1
ND		ug/kg	3.2	0.64	1
ND		ug/kg	2.1	0.30	1
ND		ug/kg	2.1	0.74	1
ND		ug/kg	10	0.82	1
ND		ug/kg	2.1	0.24	1
ND		ug/kg	2.1	0.23	1
ND		ug/kg	2.1	0.37	1
ND		ug/kg	2.1	0.26	1
ND		ug/kg	2.1	0.25	1
ND		ug/kg	8.4	0.50	1
ND		ug/kg	2.1	0.21	1
120		ug/kg	2.1	0.25	1
1.1	J	ug/kg	3.2	0.41	1
1.2	J	ug/kg	2.1	0.27	1
ND		ug/kg	10	0.62	1
ND		ug/kg	4.2	0.71	1
ND		ug/kg	4.2	0.25	1
ND		ug/kg	4.2	0.67	1
ND		ug/kg	2.1	0.55	1
ND		ug/kg	3.2	0.45	1
ND		ug/kg	2.1	0.26	1
ND		ug/kg	10	0.32	1
ND		ug/kg	10	0.28	1
ND		ug/kg	10	0.29	1
	ND N	ND N	borough Lab ND ug/kg ND ug/kg	ND ug/kg 21 ND ug/kg 3.2 ND ug/kg 3.2 ND ug/kg 2.1 120 ug/kg 2.1 1.1 J ug/kg 2.1 ND ug/kg 2.1 ND ug/kg 2.1 ND ug/kg 4.2 ND ug/kg 4.2 ND ug/kg 2.1 ND	ND ug/kg 21 2.3 ND ug/kg 3.2 0.18 ND ug/kg 3.2 0.78 ND ug/kg 2.1 0.44 ND ug/kg 7.4 0.48 ND ug/kg 2.1 0.32 ND ug/kg 3.2 0.64 ND ug/kg 2.1 0.32 ND ug/kg 3.2 0.64 ND ug/kg 3.2 0.64 ND ug/kg 2.1 0.30 ND ug/kg 2.1 0.30 ND ug/kg 2.1 0.30 ND ug/kg 2.1 0.74 ND ug/kg 2.1 0.74 ND ug/kg 2.1 0.74 ND ug/kg 2.1 0.24 ND ug/kg 2.1 0.23 ND ug/kg 2.1 0.23 ND ug/kg 2.1 0.23 ND ug/kg 2.1 0.25 ND ug/kg 2.1 0.25 ND ug/kg 2.1 0.25 ND ug/kg 2.1 0.25 ND ug/kg 3.2 0.41 1.2 Jug/kg 3.2 0.41 ND ug/kg 4.2 0.71 ND ug/kg 4.2 0.71 ND ug/kg 4.2 0.71 ND ug/kg 4.2 0.75 ND ug/kg 4.2 0.67 ND ug/kg 4.2 0.67 ND ug/kg 3.2 0.45

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: Date Collected: 06/30/16 09:25

Client ID: P2-3 (8-10) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	borough Lab					
Methyl tert butyl ether	3.3	J	ug/kg	4.2	0.18	1
p/m-Xylene	7.9		ug/kg	4.2	0.42	1
o-Xylene	0.79	J	ug/kg	4.2	0.36	1
cis-1,2-Dichloroethene	ND		ug/kg	2.1	0.30	1
Styrene	ND		ug/kg	4.2	0.85	1
Dichlorodifluoromethane	ND		ug/kg	21	0.40	1
Acetone	36		ug/kg	21	2.2	1
Carbon disulfide	ND		ug/kg	21	2.3	1
2-Butanone	ND		ug/kg	21	0.58	1
4-Methyl-2-pentanone	ND		ug/kg	21	0.52	1
2-Hexanone	ND		ug/kg	21	1.4	1
Bromochloromethane	ND		ug/kg	10	0.58	1
1,2-Dibromoethane	ND		ug/kg	8.4	0.37	1
n-Butylbenzene	0.46	J	ug/kg	2.1	0.24	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	10	0.84	1
Isopropylbenzene	59		ug/kg	2.1	0.22	1
n-Propylbenzene	12		ug/kg	2.1	0.23	1
1,2,3-Trichlorobenzene	ND		ug/kg	10	0.31	1
1,2,4-Trichlorobenzene	ND		ug/kg	10	0.38	1
1,3,5-Trimethylbenzene	0.98	J	ug/kg	10	0.30	1
1,2,4-Trimethylbenzene	74		ug/kg	10	0.30	1
Methyl Acetate	ND		ug/kg	42	0.57	1
Cyclohexane	120		ug/kg	42	0.31	1
1,4-Dioxane	ND		ug/kg	210	30.	1
Freon-113	ND		ug/kg	42	0.58	1
Methyl cyclohexane	35		ug/kg	8.4	0.33	1

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: Date Collected: 06/30/16 09:25

Client ID: P2-3 (8-10) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	320	J	ug/kg	1
Butane, 2-Methyl-	56	NJ	ug/kg	1
Pentane, 2-methyl-	38	NJ	ug/kg	1
Pentane, 3-methyl-	25	NJ	ug/kg	1
Cyclopentane, Methyl-	48	NJ	ug/kg	1
Unknown Cycloalkane	38	J	ug/kg	1
Unknown Benzene	36	J	ug/kg	1
Unknown Benzene	18	J	ug/kg	1
Unknown Benzene	22	J	ug/kg	1
Unknown Aromatic	22	J	ug/kg	1
Unknown Benzene	21	J	ug/kg	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	95		70-130	
Toluene-d8	97		70-130	
4-Bromofluorobenzene	112		70-130	
Dibromofluoromethane	91		70-130	

06/30/16

Not Specified

100

Date Received:

Field Prep:

720

28.

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-45 D2 Date Collected: 06/29/16 12:00

Client ID: DUP01

Sample Location: SYRACUSE, NY

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 07/13/16 00:12

Analyst: PP Percent Solids: 49%

Methyl cyclohexane

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - We	estborough Lab						
1,2,4-Trimethylbenzene	52000		ug/kg	900	26.	100	

ug/kg

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	78	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	110	70-130	
Dibromofluoromethane	81	70-130	

42000

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 10/25/16

Lab ID: D L1620368-45

Client ID: DUP01

Sample Location: SYRACUSE, NY

Matrix: Soil Analytical Method: 1,8260C

Analytical Date: 07/12/16 16:38

Analyst: MV 49% Percent Solids:

Date Collected: 06/29/16 12:00 Date Received: 06/30/16 Field Prep: Not Specified

Volatile Organics by GC/MS - Westborough Methylene chloride 1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane	ND ND ND ND		ug/kg ug/kg ug/kg	900	100 7.8	50 50
1,1-Dichloroethane Chloroform Carbon tetrachloride	ND ND ND		ug/kg	140		
Chloroform Carbon tetrachloride	ND ND ND		ug/kg		7.8	50
Carbon tetrachloride	ND ND			1.40		
	ND			140	34.	50
1,2-Dichloropropane			ug/kg	90	19.	50
			ug/kg	320	21.	50
Dibromochloromethane	ND		ug/kg	90	14.	50
1,1,2-Trichloroethane	ND		ug/kg	140	28.	50
Tetrachloroethene	ND		ug/kg	90	13.	50
Chlorobenzene	ND		ug/kg	90	32.	50
Trichlorofluoromethane	ND		ug/kg	450	35.	50
1,2-Dichloroethane	ND		ug/kg	90	10.	50
1,1,1-Trichloroethane	ND		ug/kg	90	10.	50
Bromodichloromethane	ND		ug/kg	90	16.	50
trans-1,3-Dichloropropene	ND		ug/kg	90	11.	50
cis-1,3-Dichloropropene	ND		ug/kg	90	11.	50
Bromoform	ND		ug/kg	360	21.	50
1,1,2,2-Tetrachloroethane	ND		ug/kg	90	9.1	50
Benzene	45	J	ug/kg	90	11.	50
Toluene	ND		ug/kg	140	18.	50
Ethylbenzene	2800		ug/kg	90	12.	50
Chloromethane	ND		ug/kg	450	27.	50
Bromomethane	ND		ug/kg	180	31.	50
Vinyl chloride	ND		ug/kg	180	11.	50
Chloroethane	ND		ug/kg	180	29.	50
1,1-Dichloroethene	ND		ug/kg	90	24.	50
trans-1,2-Dichloroethene	ND		ug/kg	140	19.	50
Trichloroethene	ND		ug/kg	90	11.	50
1,2-Dichlorobenzene	ND		ug/kg	450	14.	50
1,3-Dichlorobenzene	ND		ug/kg	450	12.	50
1,4-Dichlorobenzene	ND		ug/kg	450	12.	50

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: Report Date: 15209 10/25/16

SAMPLE RESULTS

Lab ID: D L1620368-45

Client ID: DUP01

Sample Location: SYRACUSE, NY Date Collected: 06/29/16 12:00

Date Received: 06/30/16 Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL **Dilution Factor** Volatile Organics by GC/MS - Westborough Lab Methyl tert butyl ether ND 180 7.6 50 ug/kg p/m-Xylene 6700 ug/kg 180 18. 50 220 180 16. 50 o-Xylene ug/kg ND cis-1,2-Dichloroethene 90 13. 50 ug/kg Styrene ND 180 36. 50 ug/kg Dichlorodifluoromethane ND 900 50 17. ug/kg J Acetone 180 900 94. 50 ug/kg Carbon disulfide ND ug/kg 900 100 50 ND 2-Butanone ug/kg 900 25. 50 ND 900 22. 50 4-Methyl-2-pentanone ug/kg 2-Hexanone ND ug/kg 900 60. 50 Bromochloromethane ND 450 25. 50 ug/kg 1,2-Dibromoethane ND 360 16. 50 ug/kg 2300 10. 50 n-Butylbenzene ug/kg 90 1,2-Dibromo-3-chloropropane ND 450 36. 50 ug/kg Isopropylbenzene 1600 90 9.4 50 ug/kg 4300 n-Propylbenzene 90 9.9 50 ug/kg 1,2,3-Trichlorobenzene ND 450 13. 50 ug/kg 1,2,4-Trichlorobenzene ND 450 16. 50 ug/kg 1800 50 1,3,5-Trimethylbenzene 450 13. ug/kg 1,2,4-Trimethylbenzene 44000 Е 450 13. 50 ug/kg Methyl Acetate ND ug/kg 1800 24. 50 Cyclohexane 8600 1800 13. 50 ug/kg 1,4-Dioxane ND 9000 1300 50 ug/kg Freon-113 ND ug/kg 1800 25. 50 Methyl cyclohexane 34000 Е ug/kg 360 14. 50

06/29/16 12:00

06/30/16

Date Collected:

Date Received:

Project Name: Lab Number: **EMBASSY SUITES** L1620368

Project Number: Report Date: 15209 10/25/16

SAMPLE RESULTS

Lab ID: D L1620368-45

DUP01 Client ID:

Sample Location: SYRACUSE, NY Field Prep: Not Specified

RL Parameter Result Qualifier Units MDL **Dilution Factor**

Volatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	130000	J	ug/kg	50
Unknown Alkane	15000	J	ug/kg	50
Unknown Cyclohexane	13000	J	ug/kg	50
Cyclohexane, propyl-	3500	NJ	ug/kg	50
Unknown	12000	J	ug/kg	50
Unknown Benzene	17000	J	ug/kg	50
Unknown Benzene	14000	J	ug/kg	50
Unknown Aromatic	11000	J	ug/kg	50
Unknown Benzene	18000	J	ug/kg	50
Unknown	17000	J	ug/kg	50
Unknown	13000	J	ug/kg	50

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	98		70-130	
Toluene-d8	107		70-130	
4-Bromofluorobenzene	120		70-130	
Dibromofluoromethane	83		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 10/25/16

Lab ID: D L1620368-46

Client ID: DUP02

Sample Location: SYRACUSE, NY

Matrix: Soil Analytical Method: 1,8260C

Analytical Date: 07/12/16 17:06

Analyst: MV59% Percent Solids:

Date Collected: 06/30/16 12:00

Date Received: 06/30/16 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/kg	3900	430	250
1,1-Dichloroethane	ND		ug/kg	590	34.	250
Chloroform	ND		ug/kg	590	140	250
Carbon tetrachloride	ND		ug/kg	390	82.	250
1,2-Dichloropropane	ND		ug/kg	1400	90.	250
Dibromochloromethane	ND		ug/kg	390	60.	250
1,1,2-Trichloroethane	ND		ug/kg	590	120	250
Tetrachloroethene	ND		ug/kg	390	55.	250
Chlorobenzene	ND		ug/kg	390	140	250
Trichlorofluoromethane	ND		ug/kg	2000	150	250
1,2-Dichloroethane	ND		ug/kg	390	44.	250
1,1,1-Trichloroethane	ND		ug/kg	390	44.	250
Bromodichloromethane	ND		ug/kg	390	68.	250
trans-1,3-Dichloropropene	ND		ug/kg	390	47.	250
cis-1,3-Dichloropropene	ND		ug/kg	390	46.	250
Bromoform	ND		ug/kg	1600	93.	250
1,1,2,2-Tetrachloroethane	ND		ug/kg	390	40.	250
Benzene	470		ug/kg	390	46.	250
Toluene	140	J	ug/kg	590	76.	250
Ethylbenzene	150	J	ug/kg	390	50.	250
Chloromethane	ND		ug/kg	2000	120	250
Bromomethane	ND		ug/kg	790	130	250
Vinyl chloride	ND		ug/kg	790	46.	250
Chloroethane	ND		ug/kg	790	120	250
1,1-Dichloroethene	ND		ug/kg	390	100	250
trans-1,2-Dichloroethene	ND		ug/kg	590	83.	250
Trichloroethene	ND		ug/kg	390	49.	250
1,2-Dichlorobenzene	ND		ug/kg	2000	60.	250
1,3-Dichlorobenzene	ND		ug/kg	2000	53.	250
1,4-Dichlorobenzene	ND		ug/kg	2000	54.	250

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-46 D

Client ID: DUP02

Sample Location: SYRACUSE, NY

Date Collected: 06/30/16 12:00

Date Received: 06/30/16
Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL **Dilution Factor** Volatile Organics by GC/MS - Westborough Lab Methyl tert butyl ether ND 790 33. 250 ug/kg p/m-Xylene 3100 ug/kg 790 78. 250 ND 790 68. 250 o-Xylene ug/kg ND 250 cis-1,2-Dichloroethene 390 56. ug/kg Styrene ND 790 160 250 ug/kg Dichlorodifluoromethane ND 3900 75. 250 ug/kg Acetone ND 3900 410 250 ug/kg Carbon disulfide ND ug/kg 3900 430 250 2-Butanone ND ug/kg 3900 110 250 ND 3900 96. 250 4-Methyl-2-pentanone ug/kg 2-Hexanone ND ug/kg 3900 260 250 Bromochloromethane ND 2000 110 250 ug/kg 1,2-Dibromoethane ND 1600 68. 250 ug/kg 430 45. 250 n-Butylbenzene ug/kg 390 1,2-Dibromo-3-chloropropane ND 2000 160 250 ug/kg Isopropylbenzene 970 390 41. 250 ug/kg n-Propylbenzene 1900 390 43. 250 ug/kg 1,2,3-Trichlorobenzene ND 2000 58. 250 ug/kg 1,2,4-Trichlorobenzene ND 2000 71. 250 ug/kg ND 2000 250 1,3,5-Trimethylbenzene 56. ug/kg 1,2,4-Trimethylbenzene 24000 2000 56. 250 ug/kg Methyl Acetate ND ug/kg 7900 110 250 Cyclohexane 1300 J 7900 57. 250 ug/kg 1,4-Dioxane ND 39000 5700 250 ug/kg Freon-113 ND ug/kg 7900 110 250 Methyl cyclohexane 3700 ug/kg 1600 61. 250

06/30/16 12:00

06/30/16

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-46 D

Client ID: DUP02

Sample Location: SYRACUSE, NY Field Prep:

Field Prep: Not Specified

Date Collected:

Date Received:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	32000	J	ug/kg	250
Unknown Benzene	5000	J	ug/kg	250
Unknown Benzene	2300	J	ug/kg	250
Unknown Benzene	4400	J	ug/kg	250
Unknown Benzene	4100	J	ug/kg	250
Unknown Aromatic	3100	J	ug/kg	250
Unknown Benzene	4600	J	ug/kg	250
Unknown	2100	J	ug/kg	250
Unknown	2600	J	ug/kg	250
Unknown	2000	J	ug/kg	250
Unknown	2200	J	ug/kg	250
Unknown	2200	J	ug/kg	250

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	93		70-130	
Toluene-d8	95		70-130	
4-Bromofluorobenzene	108		70-130	
Dibromofluoromethane	91		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 10/25/16

Lab ID: L1620368-47 D

Client ID: DUP03

Sample Location: SYRACUSE, NY

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 07/12/16 17:33

Analyst: MV Percent Solids: 55%

Date Collected: 06/30/16 13:00

Date Received: 06/30/16 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/kg	23000	2500	1250
1,1-Dichloroethane	ND		ug/kg	3400	200	1250
Chloroform	ND		ug/kg	3400	840	1250
Carbon tetrachloride	ND		ug/kg	2300	480	1250
1,2-Dichloropropane	ND		ug/kg	8000	520	1250
Dibromochloromethane	ND		ug/kg	2300	350	1250
1,1,2-Trichloroethane	ND		ug/kg	3400	690	1250
Tetrachloroethene	ND		ug/kg	2300	320	1250
Chlorobenzene	ND		ug/kg	2300	800	1250
Trichlorofluoromethane	ND		ug/kg	11000	890	1250
1,2-Dichloroethane	ND		ug/kg	2300	260	1250
1,1,1-Trichloroethane	ND		ug/kg	2300	250	1250
Bromodichloromethane	ND		ug/kg	2300	400	1250
trans-1,3-Dichloropropene	ND		ug/kg	2300	280	1250
cis-1,3-Dichloropropene	ND		ug/kg	2300	270	1250
Bromoform	ND		ug/kg	9100	540	1250
1,1,2,2-Tetrachloroethane	ND		ug/kg	2300	230	1250
Benzene	850	J	ug/kg	2300	270	1250
Toluene	ND		ug/kg	3400	440	1250
Ethylbenzene	2300		ug/kg	2300	290	1250
Chloromethane	ND		ug/kg	11000	670	1250
Bromomethane	ND		ug/kg	4600	770	1250
Vinyl chloride	ND		ug/kg	4600	270	1250
Chloroethane	ND		ug/kg	4600	720	1250
1,1-Dichloroethene	ND		ug/kg	2300	600	1250
trans-1,2-Dichloroethene	ND		ug/kg	3400	480	1250
Trichloroethene	ND		ug/kg	2300	280	1250
1,2-Dichlorobenzene	ND		ug/kg	11000	350	1250
1,3-Dichlorobenzene	ND		ug/kg	11000	310	1250
1,4-Dichlorobenzene	ND		ug/kg	11000	320	1250

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-47 D

Client ID: DUP03

Sample Location: SYRACUSE, NY

Date Collected: 06/30/16 13:00

Date Received: 06/30/16
Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL **Dilution Factor** Volatile Organics by GC/MS - Westborough Lab Methyl tert butyl ether ND 4600 190 1250 ug/kg p/m-Xylene 56000 ug/kg 4600 450 1250 1800 J 4600 390 1250 o-Xylene ug/kg ND cis-1,2-Dichloroethene 2300 330 1250 ug/kg Styrene ND 4600 920 1250 ug/kg Dichlorodifluoromethane ND 23000 440 1250 ug/kg 23000 Acetone ND 2400 1250 ug/kg Carbon disulfide ND ug/kg 23000 2500 1250 2-Butanone ND 23000 620 1250 ug/kg ND 23000 560 1250 4-Methyl-2-pentanone ug/kg 2-Hexanone ND ug/kg 23000 1500 1250 Bromochloromethane ND 11000 630 1250 ug/kg 1,2-Dibromoethane ND 9100 400 1250 ug/kg 6900 n-Butylbenzene ug/kg 2300 260 1250 1,2-Dibromo-3-chloropropane ND 11000 900 1250 ug/kg Isopropylbenzene 6800 2300 240 1250 ug/kg n-Propylbenzene 18000 2300 250 1250 ug/kg 1,2,3-Trichlorobenzene ND 11000 340 1250 ug/kg 1,2,4-Trichlorobenzene ND 11000 420 1250 ug/kg 1400 J 1250 1,3,5-Trimethylbenzene 11000 330 ug/kg 1,2,4-Trimethylbenzene 200000 11000 320 1250 ug/kg Methyl Acetate ND ug/kg 46000 620 1250 Cyclohexane 48000 46000 330 1250 ug/kg 1,4-Dioxane ND 230000 33000 1250 ug/kg Freon-113 ND ug/kg 46000 630 1250 Methyl cyclohexane 130000 ug/kg 9100 350 1250

06/30/16 13:00

06/30/16

Date Collected:

Date Received:

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-47 D

Client ID: DUP03
Sample Location: SYRACUSE, N

Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	550000	J	ug/kg	1250
Unknown Alkane	81000	J	ug/kg	1250
Unknown Alkane	53000	J	ug/kg	1250
Unknown Cyclohexane	59000	J	ug/kg	1250
Unknown Benzene	49000	J	ug/kg	1250
Unknown	47000	J	ug/kg	1250
Unknown Benzene	61000	J	ug/kg	1250
Unknown Benzene	48000	J	ug/kg	1250
Unknown Benzene	58000	J	ug/kg	1250
Unknown Aromatic	55000	J	ug/kg	1250
Unknown Benzene	42000	J	ug/kg	1250

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	91		70-130	
Toluene-d8	93		70-130	
4-Bromofluorobenzene	113		70-130	
Dibromofluoromethane	88		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 10/25/16

OAIIII EE REOC

 Lab ID:
 L1620368-48
 Date Collect

 Client ID:
 P2-3 (4-8)
 Date Received

Sample Location: SYRACUSE, NY

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 07/12/16 18:01

Analyst: MV Percent Solids: 63%

Date Collected:	06/30/16 09:15
Date Received:	06/30/16
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/kg	14	1.6	1
1,1-Dichloroethane	ND		ug/kg	2.2	0.12	1
Chloroform	ND		ug/kg	2.2	0.54	1
Carbon tetrachloride	ND		ug/kg	1.4	0.30	1
1,2-Dichloropropane	ND		ug/kg	5.1	0.33	1
Dibromochloromethane	ND		ug/kg	1.4	0.22	1
1,1,2-Trichloroethane	ND		ug/kg	2.2	0.44	1
Tetrachloroethene	ND		ug/kg	1.4	0.20	1
Chlorobenzene	ND		ug/kg	1.4	0.50	1
Trichlorofluoromethane	ND		ug/kg	7.3	0.56	1
1,2-Dichloroethane	ND		ug/kg	1.4	0.16	1
1,1,1-Trichloroethane	ND		ug/kg	1.4	0.16	1
Bromodichloromethane	ND		ug/kg	1.4	0.25	1
trans-1,3-Dichloropropene	ND		ug/kg	1.4	0.18	1
cis-1,3-Dichloropropene	ND		ug/kg	1.4	0.17	1
Bromoform	ND		ug/kg	5.8	0.34	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	1.4	0.15	1
Benzene	1.1	J	ug/kg	1.4	0.17	1
Toluene	ND		ug/kg	2.2	0.28	1
Ethylbenzene	0.29	J	ug/kg	1.4	0.18	1
Chloromethane	ND		ug/kg	7.3	0.43	1
Bromomethane	ND		ug/kg	2.9	0.49	1
Vinyl chloride	ND		ug/kg	2.9	0.17	1
Chloroethane	ND		ug/kg	2.9	0.46	1
1,1-Dichloroethene	ND		ug/kg	1.4	0.38	1
trans-1,2-Dichloroethene	ND		ug/kg	2.2	0.31	1
Trichloroethene	ND		ug/kg	1.4	0.18	1
1,2-Dichlorobenzene	ND		ug/kg	7.3	0.22	1
1,3-Dichlorobenzene	ND		ug/kg	7.3	0.20	1
1,4-Dichlorobenzene	ND		ug/kg	7.3	0.20	1

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-48 Date Collected: 06/30/16 09:15

Client ID: P2-3 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
Methyl tert butyl ether	0.23	J	ug/kg	2.9	0.12	1		
p/m-Xylene	0.52	J	ug/kg	2.9	0.29	1		
o-Xylene	ND		ug/kg	2.9	0.25	1		
cis-1,2-Dichloroethene	ND		ug/kg	1.4	0.21	1		
Styrene	ND		ug/kg	2.9	0.58	1		
Dichlorodifluoromethane	ND		ug/kg	14	0.28	1		
Acetone	75		ug/kg	14	1.5	1		
Carbon disulfide	ND		ug/kg	14	1.6	1		
2-Butanone	20		ug/kg	14	0.40	1		
4-Methyl-2-pentanone	ND		ug/kg	14	0.35	1		
2-Hexanone	ND		ug/kg	14	0.97	1		
Bromochloromethane	ND		ug/kg	7.3	0.40	1		
1,2-Dibromoethane	ND		ug/kg	5.8	0.25	1		
n-Butylbenzene	ND		ug/kg	1.4	0.17	1		
1,2-Dibromo-3-chloropropane	ND		ug/kg	7.3	0.58	1		
Isopropylbenzene	22		ug/kg	1.4	0.15	1		
n-Propylbenzene	1.3	J	ug/kg	1.4	0.16	1		
1,2,3-Trichlorobenzene	ND		ug/kg	7.3	0.21	1		
1,2,4-Trichlorobenzene	ND		ug/kg	7.3	0.26	1		
1,3,5-Trimethylbenzene	ND		ug/kg	7.3	0.21	1		
1,2,4-Trimethylbenzene	0.71	J	ug/kg	7.3	0.20	1		
Methyl Acetate	ND		ug/kg	29	0.39	1		
Cyclohexane	1.6	J	ug/kg	29	0.21	1		
1,4-Dioxane	ND		ug/kg	140	21.	1		
Freon-113	ND		ug/kg	29	0.40	1		
Methyl cyclohexane	3.4	J	ug/kg	5.8	0.22	1		

Dilution Factor

MDL

RL

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-48 Date Collected: 06/30/16 09:15

Client ID: P2-3 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Qualifier

Units

Result

Volatile Organics by GC/MS - Westborough Lab

Parameter

800	J	ug/kg	1
19	J	ug/kg	1
29	NJ	ug/kg	1
28	J	ug/kg	1
35	J	ug/kg	1
41	J	ug/kg	1
23	J	ug/kg	1
120	J	ug/kg	1
280	NJ	ug/kg	1
83	J	ug/kg	1
140	J	ug/kg	1
	19 29 28 35 41 23 120 280 83	19 J 29 NJ 28 J 35 J 41 J 23 J 120 J 280 NJ 83 J	19 J ug/kg 29 NJ ug/kg 28 J ug/kg 35 J ug/kg 41 J ug/kg 23 J ug/kg 120 J ug/kg 280 NJ ug/kg 83 J ug/kg

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	95		70-130	
Toluene-d8	97		70-130	
4-Bromofluorobenzene	116		70-130	
Dibromofluoromethane	90		70-130	

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/11/16 22:22

Analyst: PK

Parameter	Result	Qualifier Units	RL	. МС	DL
Volatile Organics by GC/MS	- Westborough Lab	for sample(s):	02-06,08	Batch: WG	912617-3
Methylene chloride	ND	ug/k	g 10	1	.1
1,1-Dichloroethane	ND	ug/k		5 0.	09
Chloroform	ND	ug/k	g 1.5	5 0.	37
Carbon tetrachloride	ND	ug/k		0.	21
1,2-Dichloropropane	ND	ug/k	g 3.5	5 0.	23
Dibromochloromethane	ND	ug/k	g 1.0	0.	15
1,1,2-Trichloroethane	ND	ug/k	g 1.5	5 0.	30
Tetrachloroethene	ND	ug/k	j 1.0	0.	14
Chlorobenzene	ND	ug/k	g 1.0	0.	35
Trichlorofluoromethane	ND	ug/k	5.0	0.	39
1,2-Dichloroethane	ND	ug/k	j 1.0	0.	11
1,1,1-Trichloroethane	ND	ug/k	j 1.0	0.	11
Bromodichloromethane	ND	ug/k	g 1.0	0.	17
trans-1,3-Dichloropropene	ND	ug/k	g 1.0	0.	12
cis-1,3-Dichloropropene	ND	ug/k	j 1.0	0.	12
Bromoform	ND	ug/k	9 4.0	0.	24
1,1,2,2-Tetrachloroethane	ND	ug/k	g 1.0	0.	10
Benzene	ND	ug/k	g 1.0	0.	12
Toluene	ND	ug/k	g 1.5	5 0.	19
Ethylbenzene	ND	ug/k	g 1.0	0.	13
Chloromethane	ND	ug/kṛ	g 5.0	0.	29
Bromomethane	ND	ug/kṛ	g 2.0	0.	34
Vinyl chloride	ND	ug/kṣ	g 2.0	0.	12
Chloroethane	ND	ug/kṣ	g 2.0	0.	32
1,1-Dichloroethene	ND	ug/kṣ	g 1.0	0.	26
trans-1,2-Dichloroethene	ND	ug/kṣ	g 1.5	0.	21
Trichloroethene	ND	ug/k	g 1.0	0.	12
1,2-Dichlorobenzene	ND	ug/k	g 5.0	0.	15
1,3-Dichlorobenzene	ND	ug/k	g 5.0	0.	14

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/11/16 22:22

Analyst: PK

Parameter	Result	Qualifier	Units	RI		MDL	
Volatile Organics by GC/MS	- Westborough Lab	o for samp	le(s):	02-06,08	Batch:	WG912617-3	
1,4-Dichlorobenzene	ND		ug/kg	g 5.0)	0.14	
Methyl tert butyl ether	ND		ug/kg	g 2.0)	0.08	
p/m-Xylene	ND		ug/kg	g 2.0)	0.20	
o-Xylene	ND		ug/kg	g 2.0)	0.17	
cis-1,2-Dichloroethene	ND		ug/kg	g 1.0)	0.14	
Styrene	ND		ug/kg	g 2.0)	0.40	
Dichlorodifluoromethane	ND		ug/kg	j 10)	0.19	
Acetone	ND		ug/kg	j 10)	1.0	
Carbon disulfide	ND		ug/kg	g 10)	1.1	
2-Butanone	ND		ug/kg	g 10)	0.27	
4-Methyl-2-pentanone	ND		ug/kg	g 10)	0.24	
2-Hexanone	ND		ug/kg	g 10)	0.67	
Bromochloromethane	ND		ug/kg	g 5.0)	0.28	
1,2-Dibromoethane	ND		ug/kg	g 4.0)	0.17	
n-Butylbenzene	ND		ug/kg	j 1.0)	0.11	
1,2-Dibromo-3-chloropropane	ND		ug/kg	5.0)	0.40	
Isopropylbenzene	ND		ug/kg	g 1.0)	0.10	
n-Propylbenzene	ND		ug/kg	g 1.0)	0.11	
1,2,3-Trichlorobenzene	ND		ug/kg	g 5.0)	0.15	
1,2,4-Trichlorobenzene	ND		ug/kg	g 5.0)	0.18	
1,3,5-Trimethylbenzene	ND		ug/kg	g 5.0)	0.14	
1,2,4-Trimethylbenzene	ND		ug/kg	j 5.0)	0.14	
Methyl Acetate	ND		ug/kg	g 20)	0.27	
Cyclohexane	ND		ug/kg	g 20)	0.15	
1,4-Dioxane	ND		ug/kg	g 10	0	14.	
Freon-113	ND		ug/kg	g 20)	0.27	
Methyl cyclohexane	ND		ug/kg	g 4.0)	0.15	

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/11/16 22:22

Analyst: PK

Parameter	Result	Qualifier	Units	s R	L	MDL	
Volatile Organics by GC/MS - Wes	stborough La	b for sample	e(s):	02-06,08	Batch:	WG912617-3	

Tentatively Identified Compounds

No Tentatively Identified Compounds ND ug/kg

Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	94		70-130	
Toluene-d8	94		70-130	
4-Bromofluorobenzene	88		70-130	
Dibromofluoromethane	96		70-130	

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/11/16 15:07

Analyst: MV

Parameter	Result	Qualifier	Units	RL	ı	MDL
Volatile Organics by GC/MS -	Westborough La	ab for sample	e(s):	09-24,26-28	Batch:	WG912784-3
Methylene chloride	ND		ug/kg	10		1.1
1,1-Dichloroethane	ND		ug/kg	1.5		0.09
Chloroform	ND		ug/kg	1.5		0.37
Carbon tetrachloride	ND		ug/kg	1.0		0.21
1,2-Dichloropropane	ND		ug/kg	3.5		0.23
Dibromochloromethane	ND		ug/kg	1.0		0.15
1,1,2-Trichloroethane	ND		ug/kg	1.5		0.30
Tetrachloroethene	ND		ug/kg	1.0		0.14
Chlorobenzene	ND		ug/kg	1.0		0.35
Trichlorofluoromethane	ND		ug/kg	5.0		0.39
1,2-Dichloroethane	ND		ug/kg	1.0		0.11
1,1,1-Trichloroethane	ND		ug/kg	1.0		0.11
Bromodichloromethane	ND		ug/kg	1.0		0.17
trans-1,3-Dichloropropene	ND		ug/kg	1.0		0.12
cis-1,3-Dichloropropene	ND		ug/kg	1.0		0.12
Bromoform	ND		ug/kg	4.0		0.24
1,1,2,2-Tetrachloroethane	ND		ug/kg	1.0		0.10
Benzene	ND		ug/kg	1.0		0.12
Toluene	ND		ug/kg	1.5		0.19
Ethylbenzene	ND		ug/kg	1.0		0.13
Chloromethane	ND		ug/kg	5.0		0.29
Bromomethane	ND		ug/kg	2.0		0.34
Vinyl chloride	ND		ug/kg	2.0		0.12
Chloroethane	ND		ug/kg	2.0		0.32
1,1-Dichloroethene	ND		ug/kg	1.0		0.26
trans-1,2-Dichloroethene	ND		ug/kg	1.5		0.21
Trichloroethene	ND		ug/kg	1.0		0.12
1,2-Dichlorobenzene	ND		ug/kg	5.0		0.15
1,3-Dichlorobenzene	ND		ug/kg	5.0		0.14

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/11/16 15:07

Analyst: MV

Parameter	Result	Qualifier	Units	RL	ı	MDL
Volatile Organics by GC/MS	- Westborough Lab	o for sampl	le(s):	09-24,26-28	Batch:	WG912784-3
1,4-Dichlorobenzene	ND		ug/kg	g 5.0		0.14
Methyl tert butyl ether	ND		ug/kg	2.0		0.08
p/m-Xylene	ND		ug/kg	2.0		0.20
o-Xylene	ND		ug/kg	2.0		0.17
cis-1,2-Dichloroethene	ND		ug/kg	g 1.0		0.14
Styrene	ND		ug/kg	g 2.0		0.40
Dichlorodifluoromethane	ND		ug/kg	g 10		0.19
Acetone	ND		ug/kg	g 10		1.0
Carbon disulfide	ND		ug/kg	g 10		1.1
2-Butanone	ND		ug/kg	g 10		0.27
4-Methyl-2-pentanone	ND		ug/kg	g 10		0.24
2-Hexanone	ND		ug/kg	g 10		0.67
Bromochloromethane	ND		ug/kg	g 5.0		0.28
1,2-Dibromoethane	ND		ug/kg	9 4.0		0.17
n-Butylbenzene	ND		ug/kg	g 1.0		0.11
1,2-Dibromo-3-chloropropane	ND		ug/kg	5.0		0.40
Isopropylbenzene	ND		ug/kg	g 1.0		0.10
n-Propylbenzene	ND		ug/kg	g 1.0		0.11
1,2,3-Trichlorobenzene	ND		ug/kg	g 5.0		0.15
1,2,4-Trichlorobenzene	ND		ug/kg	g 5.0		0.18
1,3,5-Trimethylbenzene	ND		ug/kg	g 5.0		0.14
1,2,4-Trimethylbenzene	ND		ug/kg	g 5.0		0.14
Methyl Acetate	ND		ug/kg	g 20		0.27
Cyclohexane	ND		ug/kg	g 20		0.15
1,4-Dioxane	ND		ug/kg	g 100		14.
Freon-113	ND		ug/kg	g 20		0.27
Methyl cyclohexane	ND		ug/kg	g 4.0		0.15

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/11/16 15:07

Analyst: MV

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Organics by GC/MS - We	stborough La	ab for sample	e(s):	09-24.26-28	Batch: WG912784-3

Tentatively Identified Compounds

No Tentatively Identified Compounds ND ug/kg

		Acceptance		
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	103		70-130	
Toluene-d8	104		70-130	
4-Bromofluorobenzene	105		70-130	
Dibromofluoromethane	99		70-130	

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/12/16 10:41

Analyst: MV

Parameter	Result	Qualifier Unit	s RL	MDL	
Volatile Organics by GC/MS	- Westborough Lab	for sample(s):	01,40,42-48	Batch: WG9129	70-3
Methylene chloride	ND	ug/ł	kg 10	1.1	
1,1-Dichloroethane	ND	ug/l	kg 1.5	0.09	
Chloroform	ND	ug/l	kg 1.5	0.37	
Carbon tetrachloride	ND	ug/l	kg 1.0	0.21	
1,2-Dichloropropane	ND	ug/l	kg 3.5	0.23	
Dibromochloromethane	ND	ug/l	kg 1.0	0.15	
1,1,2-Trichloroethane	ND	ug/l	kg 1.5	0.30	
Tetrachloroethene	ND	ug/l	kg 1.0	0.14	
Chlorobenzene	ND	ug/l	kg 1.0	0.35	
Trichlorofluoromethane	ND	ug/l	kg 5.0	0.39	
1,2-Dichloroethane	ND	ug/l	kg 1.0	0.11	
1,1,1-Trichloroethane	ND	ug/l	kg 1.0	0.11	
Bromodichloromethane	ND	ug/l	kg 1.0	0.17	
trans-1,3-Dichloropropene	ND	ug/l	kg 1.0	0.12	
cis-1,3-Dichloropropene	ND	ug/l	kg 1.0	0.12	
Bromoform	ND	ug/l	kg 4.0	0.24	
1,1,2,2-Tetrachloroethane	ND	ug/l	kg 1.0	0.10	
Benzene	ND	ug/l	kg 1.0	0.12	
Toluene	ND	ug/l	kg 1.5	0.19	
Ethylbenzene	ND	ug/l	kg 1.0	0.13	
Chloromethane	ND	ug/l	kg 5.0	0.29	
Bromomethane	ND	ug/l	kg 2.0	0.34	
Vinyl chloride	ND	ug/l	kg 2.0	0.12	
Chloroethane	ND	ug/l	kg 2.0	0.32	
1,1-Dichloroethene	ND	ug/l	kg 1.0	0.26	
trans-1,2-Dichloroethene	ND	ug/l	kg 1.5	0.21	
Trichloroethene	ND	ug/l	kg 1.0	0.12	
1,2-Dichlorobenzene	ND	ug/l	kg 5.0	0.15	
1,3-Dichlorobenzene	ND	ug/l	kg 5.0	0.14	

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/12/16 10:41

Analyst: MV

Parameter	Result	Qualifier	Units	RL RL		MDL
Volatile Organics by GC/MS -	- Westborough Lab	o for samp	le(s):	01,40,42-48	Batch:	WG912970-3
1,4-Dichlorobenzene	ND		ug/k	g 5.0		0.14
Methyl tert butyl ether	ND		ug/k	g 2.0		0.08
p/m-Xylene	ND		ug/k	g 2.0		0.20
o-Xylene	ND		ug/k	g 2.0		0.17
cis-1,2-Dichloroethene	ND		ug/k	g 1.0		0.14
Styrene	ND		ug/k	g 2.0		0.40
Dichlorodifluoromethane	ND		ug/k	g 10		0.19
Acetone	ND		ug/k	g 10		1.0
Carbon disulfide	ND		ug/k	g 10		1.1
2-Butanone	ND		ug/k	g 10		0.27
4-Methyl-2-pentanone	ND		ug/k	g 10		0.24
2-Hexanone	ND		ug/k	g 10		0.67
Bromochloromethane	ND		ug/k	g 5.0		0.28
1,2-Dibromoethane	ND		ug/k	g 4.0		0.17
n-Butylbenzene	ND		ug/k	g 1.0		0.11
1,2-Dibromo-3-chloropropane	ND		ug/k	g 5.0		0.40
Isopropylbenzene	ND		ug/k	g 1.0		0.10
n-Propylbenzene	ND		ug/k	g 1.0		0.11
1,2,3-Trichlorobenzene	ND		ug/k	g 5.0		0.15
1,2,4-Trichlorobenzene	ND		ug/k	g 5.0		0.18
1,3,5-Trimethylbenzene	ND		ug/k	g 5.0		0.14
1,2,4-Trimethylbenzene	ND		ug/k	g 5.0		0.14
Methyl Acetate	ND		ug/k	g 20		0.27
Cyclohexane	ND		ug/k	g 20		0.15
1,4-Dioxane	ND		ug/k	g 100		14.
Freon-113	ND		ug/k	g 20		0.27
Methyl cyclohexane	ND		ug/k	g 4.0		0.15

Serial_No:10251618:48

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/12/16 10:41

Analyst: MV

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Organics by GC/MS - West	horough La	h for sampl	a(s)· 01	10 12-18	Batch: WG012070-3

Tentatively Identified Compounds

No Tentatively Identified Compounds ND ug/kg

			Acceptance		
Surrogate	%Recovery	Qualifier	Criteria		
1,2-Dichloroethane-d4	95		70-130		
Toluene-d8	96		70-130		
4-Bromofluorobenzene	104		70-130		
Dibromofluoromethane	90		70-130		

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/12/16 22:29

Analyst: PP

Parameter	Result	Qualifier Unit	s RL	MDL
/olatile Organics by GC/MS	- Westborough La	b for sample(s):	25,39,41,45	Batch: WG912970-8
Methylene chloride	ND	ug/	kg 10	1.1
1,1-Dichloroethane	ND	ug/	kg 1.5	0.09
Chloroform	ND	ug/	kg 1.5	0.37
Carbon tetrachloride	ND	ug/	kg 1.0	0.21
1,2-Dichloropropane	ND	ug/	kg 3.5	0.23
Dibromochloromethane	ND	ug/	kg 1.0	0.15
1,1,2-Trichloroethane	ND	ug/	kg 1.5	0.30
Tetrachloroethene	ND	ug/	kg 1.0	0.14
Chlorobenzene	ND	ug/	kg 1.0	0.35
Trichlorofluoromethane	ND	ug/	kg 5.0	0.39
1,2-Dichloroethane	ND	ug/	kg 1.0	0.11
1,1,1-Trichloroethane	ND	ug/	kg 1.0	0.11
Bromodichloromethane	ND	ug/	kg 1.0	0.17
trans-1,3-Dichloropropene	ND	ug/	kg 1.0	0.12
cis-1,3-Dichloropropene	ND	ug/	kg 1.0	0.12
Bromoform	ND	ug/	kg 4.0	0.24
1,1,2,2-Tetrachloroethane	ND	ug/	kg 1.0	0.10
Benzene	ND	ug/	kg 1.0	0.12
Toluene	ND	ug/	kg 1.5	0.19
Ethylbenzene	ND	ug/	kg 1.0	0.13
Chloromethane	ND	ug/	kg 5.0	0.29
Bromomethane	ND	ug/	kg 2.0	0.34
Vinyl chloride	ND	ug/	kg 2.0	0.12
Chloroethane	ND	ug/	kg 2.0	0.32
1,1-Dichloroethene	ND	ug/	kg 1.0	0.26
trans-1,2-Dichloroethene	ND	ug/	kg 1.5	0.21
Trichloroethene	ND	ug/	kg 1.0	0.12
1,2-Dichlorobenzene	ND	ug/	kg 5.0	0.15
1,3-Dichlorobenzene	ND	ug/	kg 5.0	0.14

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/12/16 22:29

Analyst: PP

Parameter	Result	Qualifier Units	s RL	MDL	
olatile Organics by GC/MS -	Westborough Lab	for sample(s):	25,39,41,45	Batch: WG912970-8	
1,4-Dichlorobenzene	ND	ug/k	g 5.0	0.14	
Methyl tert butyl ether	ND	ug/k	g 2.0	0.08	
p/m-Xylene	ND	ug/k	g 2.0	0.20	
o-Xylene	ND	ug/k	g 2.0	0.17	
cis-1,2-Dichloroethene	ND	ug/k	g 1.0	0.14	
Styrene	ND	ug/k	g 2.0	0.40	
Dichlorodifluoromethane	ND	ug/k	g 10	0.19	
Acetone	ND	ug/k	g 10	1.0	
Carbon disulfide	ND	ug/k	g 10	1.1	
2-Butanone	ND	ug/k	g 10	0.27	
4-Methyl-2-pentanone	ND	ug/k	g 10	0.24	
2-Hexanone	ND	ug/k	g 10	0.67	
Bromochloromethane	ND	ug/k	g 5.0	0.28	
1,2-Dibromoethane	ND	ug/k	g 4.0	0.17	
n-Butylbenzene	ND	ug/k	g 1.0	0.11	
1,2-Dibromo-3-chloropropane	ND	ug/k	g 5.0	0.40	
Isopropylbenzene	ND	ug/k	g 1.0	0.10	
n-Propylbenzene	ND	ug/k	g 1.0	0.11	
1,2,3-Trichlorobenzene	ND	ug/k	g 5.0	0.15	
1,2,4-Trichlorobenzene	ND	ug/k	g 5.0	0.18	
1,3,5-Trimethylbenzene	ND	ug/k	g 5.0	0.14	
1,2,4-Trimethylbenzene	ND	ug/k	g 5.0	0.14	
Methyl Acetate	ND	ug/k	g 20	0.27	
Cyclohexane	ND	ug/k	g 20	0.15	
1,4-Dioxane	ND	ug/k	g 100	14.	
Freon-113	ND	ug/k	g 20	0.27	
Methyl cyclohexane	ND	ug/k	g 4.0	0.15	

Serial_No:10251618:48

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/12/16 22:29

Analyst: PP

Parameter	Result	Qualifier	Units	RL	MD	
Volatile Organics by GC/MS - Wes	stborough La	b for sample	e(s): :	25.39.41.45	Batch: V	VG912970-8

Tentatively Identified Compounds

No Tentatively Identified Compounds ND ug/kg

		Acceptance		
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	80		70-130	
Toluene-d8	92		70-130	
4-Bromofluorobenzene	93		70-130	
Dibromofluoromethane	88		70-130	

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/12/16 14:50

Analyst: MV

Parameter	Result	Qualifier	Units	RL	N	IDL
olatile Organics by GC/MS -	Westborough La	b for samp	e(s): 2	29-34,36-38	Batch:	WG913002-3
Methylene chloride	ND		ug/kg	10		1.1
1,1-Dichloroethane	ND		ug/kg	1.5		0.09
Chloroform	ND		ug/kg	1.5		0.37
Carbon tetrachloride	ND		ug/kg	1.0		0.21
1,2-Dichloropropane	ND		ug/kg	3.5		0.23
Dibromochloromethane	ND		ug/kg	1.0		0.15
1,1,2-Trichloroethane	ND		ug/kg	1.5		0.30
Tetrachloroethene	ND		ug/kg	1.0		0.14
Chlorobenzene	ND		ug/kg	1.0		0.35
Trichlorofluoromethane	ND		ug/kg	5.0		0.39
1,2-Dichloroethane	ND		ug/kg	1.0		0.11
1,1,1-Trichloroethane	ND		ug/kg	1.0		0.11
Bromodichloromethane	ND		ug/kg	1.0		0.17
trans-1,3-Dichloropropene	ND		ug/kg	1.0		0.12
cis-1,3-Dichloropropene	ND		ug/kg	1.0		0.12
Bromoform	ND		ug/kg	4.0		0.24
1,1,2,2-Tetrachloroethane	ND		ug/kg	1.0		0.10
Benzene	ND		ug/kg	1.0		0.12
Toluene	ND		ug/kg	1.5		0.19
Ethylbenzene	ND		ug/kg	1.0		0.13
Chloromethane	ND		ug/kg	5.0		0.29
Bromomethane	0.55	J	ug/kg	2.0		0.34
Vinyl chloride	ND		ug/kg	2.0		0.12
Chloroethane	ND		ug/kg	2.0		0.32
1,1-Dichloroethene	ND		ug/kg	1.0		0.26
trans-1,2-Dichloroethene	ND		ug/kg	1.5		0.21
Trichloroethene	ND		ug/kg	1.0		0.12
1,2-Dichlorobenzene	ND		ug/kg	5.0		0.15
1,3-Dichlorobenzene	ND		ug/kg	5.0		0.14

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/12/16 14:50

Analyst: MV

Parameter	Result	Qualifier Units	RL.	MDL	
olatile Organics by GC/MS -	Westborough Lab	for sample(s):	29-34,36-38	Batch: WG913002-3	3
1,4-Dichlorobenzene	ND	ug/k	g 5.0	0.14	
Methyl tert butyl ether	ND	ug/k	g 2.0	0.08	
p/m-Xylene	ND	ug/k	g 2.0	0.20	
o-Xylene	ND	ug/k	g 2.0	0.17	
cis-1,2-Dichloroethene	ND	ug/k	g 1.0	0.14	
Styrene	ND	ug/k	g 2.0	0.40	
Dichlorodifluoromethane	ND	ug/k	g 10	0.19	
Acetone	ND	ug/k	g 10	1.0	
Carbon disulfide	ND	ug/k	g 10	1.1	
2-Butanone	ND	ug/k	g 10	0.27	
4-Methyl-2-pentanone	ND	ug/k	g 10	0.24	
2-Hexanone	ND	ug/k	g 10	0.67	
Bromochloromethane	ND	ug/k	g 5.0	0.28	
1,2-Dibromoethane	ND	ug/k	g 4.0	0.17	
n-Butylbenzene	ND	ug/k	g 1.0	0.11	
1,2-Dibromo-3-chloropropane	ND	ug/k	g 5.0	0.40	
Isopropylbenzene	ND	ug/k	g 1.0	0.10	
n-Propylbenzene	ND	ug/k	g 1.0	0.11	
1,2,3-Trichlorobenzene	ND	ug/k	g 5.0	0.15	
1,2,4-Trichlorobenzene	ND	ug/k	g 5.0	0.18	
1,3,5-Trimethylbenzene	ND	ug/k	g 5.0	0.14	
1,2,4-Trimethylbenzene	ND	ug/k	g 5.0	0.14	
Methyl Acetate	ND	ug/k	g 20	0.27	
Cyclohexane	ND	ug/k	g 20	0.15	
1,4-Dioxane	ND	ug/k	g 100	14.	
Freon-113	ND	ug/k	g 20	0.27	
Methyl cyclohexane	ND	ug/k	g 4.0	0.15	

Serial_No:10251618:48

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/12/16 14:50

Analyst: MV

ParameterResultQualifierUnitsRLMDLVolatile Organics by GC/MS - Westborough Lab for sample(s):29-34,36-38Batch: WG913002-3

Tentatively Identified Compounds

No Tentatively Identified Compounds ND ug/kg

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	100		70-130	
Toluene-d8	102		70-130	
4-Bromofluorobenzene	99		70-130	
Dibromofluoromethane	102		70-130	

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/13/16 10:45

Analyst: MV

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Organics by GC/MS	- Westborough Lab	for sampl	e(s): 07	Batch:	WG913105-3
Methylene chloride	ND		ug/kg	10	1.1
1,1-Dichloroethane	ND		ug/kg	1.5	0.09
Chloroform	ND		ug/kg	1.5	0.37
Carbon tetrachloride	ND		ug/kg	1.0	0.21
1,2-Dichloropropane	ND		ug/kg	3.5	0.23
Dibromochloromethane	ND		ug/kg	1.0	0.15
1,1,2-Trichloroethane	ND		ug/kg	1.5	0.30
Tetrachloroethene	ND		ug/kg	1.0	0.14
Chlorobenzene	ND		ug/kg	1.0	0.35
Trichlorofluoromethane	ND		ug/kg	5.0	0.39
1,2-Dichloroethane	ND		ug/kg	1.0	0.11
1,1,1-Trichloroethane	ND		ug/kg	1.0	0.11
Bromodichloromethane	ND		ug/kg	1.0	0.17
trans-1,3-Dichloropropene	ND		ug/kg	1.0	0.12
cis-1,3-Dichloropropene	ND		ug/kg	1.0	0.12
Bromoform	ND		ug/kg	4.0	0.24
1,1,2,2-Tetrachloroethane	ND		ug/kg	1.0	0.10
Benzene	ND		ug/kg	1.0	0.12
Toluene	ND		ug/kg	1.5	0.19
Ethylbenzene	ND		ug/kg	1.0	0.13
Chloromethane	ND		ug/kg	5.0	0.29
Bromomethane	0.40	J	ug/kg	2.0	0.34
Vinyl chloride	ND		ug/kg	2.0	0.12
Chloroethane	ND		ug/kg	2.0	0.32
1,1-Dichloroethene	ND		ug/kg	1.0	0.26
trans-1,2-Dichloroethene	ND		ug/kg	1.5	0.21
Trichloroethene	ND		ug/kg	1.0	0.12
1,2-Dichlorobenzene	ND		ug/kg	5.0	0.15
1,3-Dichlorobenzene	ND		ug/kg	5.0	0.14

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/13/16 10:45

Analyst: MV

Parameter	Result	Qualifier	Units		RL	MDL	
Volatile Organics by GC/MS -	· Westborough Lab	for sample	e(s):	07	Batch:	WG913105-3	
1,4-Dichlorobenzene	ND		ug/kg)	5.0	0.14	
Methyl tert butyl ether	ND		ug/kg)	2.0	0.08	
p/m-Xylene	ND		ug/kg	3	2.0	0.20	
o-Xylene	ND		ug/kg	3	2.0	0.17	
cis-1,2-Dichloroethene	ND		ug/kg	3	1.0	0.14	
Styrene	ND		ug/kg	3	2.0	0.40	
Dichlorodifluoromethane	ND		ug/kg	J	10	0.19	
Acetone	ND		ug/kg	3	10	1.0	
Carbon disulfide	ND		ug/kg	3	10	1.1	
2-Butanone	ND		ug/kg	3	10	0.27	
4-Methyl-2-pentanone	ND		ug/kg	3	10	0.24	
2-Hexanone	ND		ug/kg	3	10	0.67	
Bromochloromethane	ND		ug/kg	3	5.0	0.28	
1,2-Dibromoethane	ND		ug/kg	3	4.0	0.17	
n-Butylbenzene	ND		ug/kg	3	1.0	0.11	
1,2-Dibromo-3-chloropropane	ND		ug/kg	3	5.0	0.40	
Isopropylbenzene	ND		ug/kg	3	1.0	0.10	
n-Propylbenzene	ND		ug/kg	3	1.0	0.11	
1,2,3-Trichlorobenzene	ND		ug/kg	3	5.0	0.15	
1,2,4-Trichlorobenzene	ND		ug/kg	3	5.0	0.18	
1,3,5-Trimethylbenzene	ND		ug/kg	3	5.0	0.14	
1,2,4-Trimethylbenzene	ND		ug/kg	3	5.0	0.14	
Methyl Acetate	ND		ug/kg	3	20	0.27	
Cyclohexane	ND		ug/kg	3	20	0.15	
1,4-Dioxane	ND		ug/kg]	100	14.	
Freon-113	ND		ug/kg	3	20	0.27	
Methyl cyclohexane	ND		ug/kg)	4.0	0.15	

Serial_No:10251618:48

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/13/16 10:45

Analyst: MV

 Parameter
 Result
 Qualifier
 Units
 RL
 MDL

 Volatile Organics by GC/MS - Westborough Lab for sample(s):
 07
 Batch:
 WG913105-3

Tentatively Identified Compounds

No Tentatively Identified Compounds ND ug/kg

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	87		70-130	
Toluene-d8	93		70-130	
4-Bromofluorobenzene	89		70-130	
Dibromofluoromethane	92		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L1620368

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
olatile Organics by GC/MS - Wes	stborough Lab Associated	sample(s):	02-06,08 Batch:	WG912617-	1 WG912617-2			
Methylene chloride	104		104		70-130	0	30	
1,1-Dichloroethane	106		107		70-130	1	30	
Chloroform	99		99		70-130	0	30	
Carbon tetrachloride	110		109		70-130	1	30	
1,2-Dichloropropane	102		107		70-130	5	30	
Dibromochloromethane	94		95		70-130	1	30	
2-Chloroethylvinyl ether	88		88		70-130	0	30	
1,1,2-Trichloroethane	98		98		70-130	0	30	
Tetrachloroethene	110		113		70-130	3	30	
Chlorobenzene	99		99		70-130	0	30	
Trichlorofluoromethane	103		100		70-139	3	30	
1,2-Dichloroethane	98		98		70-130	0	30	
1,1,1-Trichloroethane	107		105		70-130	2	30	
Bromodichloromethane	96		96		70-130	0	30	
trans-1,3-Dichloropropene	91		90		70-130	1	30	
cis-1,3-Dichloropropene	97		98		70-130	1	30	
1,1-Dichloropropene	104		104		70-130	0	30	
Bromoform	91		90		70-130	1	30	
1,1,2,2-Tetrachloroethane	84		84		70-130	0	30	
Benzene	102		105		70-130	3	30	
Toluene	90		90		70-130	0	30	

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L1620368

Parameter	LCS %Recovery	Qual	LCS %Reco		Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	02-06,08	Batch:	WG912617-	1 WG912617-2			
Ethylbenzene	101		10	0		70-130	1		30
Chloromethane	104		10	8		52-130	4		30
Bromomethane	94		87	7		57-147	8		30
Vinyl chloride	115		11	8		67-130	3		30
Chloroethane	101		97	•		50-151	4		30
1,1-Dichloroethene	112		11	6		65-135	4		30
trans-1,2-Dichloroethene	107		10	8		70-130	1		30
Trichloroethene	108		10	7		70-130	1		30
1,2-Dichlorobenzene	98		99)		70-130	1		30
1,3-Dichlorobenzene	101		10	1		70-130	0		30
1,4-Dichlorobenzene	98		98	3		70-130	0		30
Methyl tert butyl ether	93		90	3		66-130	0		30
p/m-Xylene	107		10	7		70-130	0		30
o-Xylene	104		10	5		70-130	1		30
cis-1,2-Dichloroethene	105		10	5		70-130	0		30
Dibromomethane	99		98	3		70-130	1		30
Styrene	105		10	6		70-130	1		30
Dichlorodifluoromethane	88		87	,		30-146	1		30
Acetone	101		94			54-140	7		30
Carbon disulfide	66		67	,		59-130	2		30
2-Butanone	109		10	4		70-130	5		30

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L1620368

Parameter	LCS %Recovery	Qual	LCSD %Recovery	% Qual	Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough I	_ab Associated	sample(s):	02-06,08 Batch:	WG912617-1	WG912617-2		
Vinyl acetate	101		105		70-130	4	30
4-Methyl-2-pentanone	93		93		70-130	0	30
1,2,3-Trichloropropane	86		84		68-130	2	30
2-Hexanone	79		76		70-130	4	30
Bromochloromethane	114		111		70-130	3	30
2,2-Dichloropropane	106		105		70-130	1	30
1,2-Dibromoethane	97		94		70-130	3	30
1,3-Dichloropropane	93		92		69-130	1	30
1,1,1,2-Tetrachloroethane	98		97		70-130	1	30
Bromobenzene	99		97		70-130	2	30
n-Butylbenzene	102		102		70-130	0	30
sec-Butylbenzene	103		105		70-130	2	30
tert-Butylbenzene	99		101		70-130	2	30
o-Chlorotoluene	103		102		70-130	1	30
p-Chlorotoluene	95		94		70-130	1	30
1,2-Dibromo-3-chloropropane	82		84		68-130	2	30
Hexachlorobutadiene	99		101		67-130	2	30
Isopropylbenzene	98		100		70-130	2	30
p-Isopropyltoluene	94		94		70-130	0	30
Naphthalene	78		79		70-130	1	30
Acrylonitrile	109		104		70-130	5	30

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L1620368

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westboroo	ugh Lab Associated	sample(s):	02-06,08 Batch	: WG912617-	1 WG912617-2		
Isopropyl Ether	115		116		66-130	1	30
tert-Butyl Alcohol	103		100		70-130	3	30
n-Propylbenzene	100		100		70-130	0	30
1,2,3-Trichlorobenzene	96		95		70-130	1	30
1,2,4-Trichlorobenzene	93		92		70-130	1	30
1,3,5-Trimethylbenzene	99		98		70-130	1	30
1,2,4-Trimethylbenzene	100		99		70-130	1	30
Methyl Acetate	114		113		51-146	1	30
Ethyl Acetate	33	Q	37	Q	70-130	11	30
Acrolein	93		96		70-130	3	30
Cyclohexane	130		132		59-142	2	30
1,4-Dioxane	82		84		65-136	2	30
1,1,2-Trichloro-1,2,2-Trifluoroethane	114		115		50-139	1	30
p-Diethylbenzene	100		100		70-130	0	30
p-Ethyltoluene	101		101		70-130	0	30
1,2,4,5-Tetramethylbenzene	81		81		70-130	0	30
Tetrahydrofuran	88		93		66-130	6	30
Ethyl ether	100		100		67-130	0	30
trans-1,4-Dichloro-2-butene	96		92		70-130	4	30
Methyl cyclohexane	107		109		70-130	2	30
Ethyl-Tert-Butyl-Ether	110		111		70-130	1	30

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number:

L1620368

Report Date:

10/25/16

Parameter	LCS %Recovery	Qual	LCSD %Recover		%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated s	ample(s):	02-06,08 Bat	ch: WG912617-	1 WG912617-2			
Tertiary-Amyl Methyl Ether	93		94		70-130	1		30

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
•						
1,2-Dichloroethane-d4	92		90		70-130	
Toluene-d8	94		95		70-130	
4-Bromofluorobenzene	90		90		70-130	
Dibromofluoromethane	99		100		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L1620368

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	09-24,26-28 Batch	n: WG912784-1 WG91278	4-2	
Methylene chloride	100		97	70-130	3	30
1,1-Dichloroethane	110		104	70-130	6	30
Chloroform	108		100	70-130	8	30
Carbon tetrachloride	110		101	70-130	9	30
1,2-Dichloropropane	117		109	70-130	7	30
Dibromochloromethane	108		104	70-130	4	30
2-Chloroethylvinyl ether	106		101	70-130	5	30
1,1,2-Trichloroethane	113		111	70-130	2	30
Tetrachloroethene	105		99	70-130	6	30
Chlorobenzene	106		102	70-130	4	30
Trichlorofluoromethane	111		104	70-139	7	30
1,2-Dichloroethane	114		109	70-130	4	30
1,1,1-Trichloroethane	110		104	70-130	6	30
Bromodichloromethane	107		102	70-130	5	30
trans-1,3-Dichloropropene	111		106	70-130	5	30
cis-1,3-Dichloropropene	107		103	70-130	4	30
1,1-Dichloropropene	110		102	70-130	8	30
Bromoform	106		108	70-130	2	30
1,1,2,2-Tetrachloroethane	106		107	70-130	1	30
Benzene	107		101	70-130	6	30
Toluene	104		99	70-130	5	30

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number:

L1620368

Report Date:

10/25/16

ameter	LCS %Recovery Qua	LCSD al %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
atile Organics by GC/MS - Westboro	ough Lab Associated sample	e(s): 09-24,26-28 Batcl	h: WG912784-1 WG91278	4-2	
Ethylbenzene	108	103	70-130	5	30
Chloromethane	123	111	52-130	10	30
Bromomethane	101	102	57-147	1	30
Vinyl chloride	104	97	67-130	7	30
Chloroethane	104	94	50-151	10	30
1,1-Dichloroethene	105	96	65-135	9	30
trans-1,2-Dichloroethene	103	96	70-130	7	30
Trichloroethene	113	108	70-130	5	30
1,2-Dichlorobenzene	107	106	70-130	1	30
1,3-Dichlorobenzene	102	104	70-130	2	30
1,4-Dichlorobenzene	101	104	70-130	3	30
Methyl tert butyl ether	101	99	66-130	2	30
p/m-Xylene	109	104	70-130	5	30
o-Xylene	109	105	70-130	4	30
cis-1,2-Dichloroethene	102	97	70-130	5	30
Dibromomethane	106	105	70-130	1	30
Styrene	107	104	70-130	3	30
Dichlorodifluoromethane	118	106	30-146	11	30
Acetone	117	100	54-140	16	30
Carbon disulfide	111	104	59-130	7	30
2-Butanone	117	108	70-130	8	30

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L1620368

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	09-24,26-28 Bat	ch: WG9127	84-1 WG91278	4-2	
Vinyl acetate	122		113		70-130	8	30
4-Methyl-2-pentanone	105		99		70-130	6	30
1,2,3-Trichloropropane	108		108		68-130	0	30
2-Hexanone	119		116		70-130	3	30
Bromochloromethane	110		104		70-130	6	30
2,2-Dichloropropane	112		104		70-130	7	30
1,2-Dibromoethane	105		104		70-130	1	30
1,3-Dichloropropane	101		100		69-130	1	30
1,1,1,2-Tetrachloroethane	104		103		70-130	1	30
Bromobenzene	107		108		70-130	1	30
n-Butylbenzene	110		106		70-130	4	30
sec-Butylbenzene	107		103		70-130	4	30
tert-Butylbenzene	103		104		70-130	1	30
o-Chlorotoluene	109		107		70-130	2	30
p-Chlorotoluene	111		108		70-130	3	30
1,2-Dibromo-3-chloropropane	96		89		68-130	8	30
Hexachlorobutadiene	92		91		67-130	1	30
Isopropylbenzene	108		103		70-130	5	30
p-Isopropyltoluene	103		101		70-130	2	30
Naphthalene	99		96		70-130	3	30
Acrylonitrile	105		108		70-130	3	30

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L1620368

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	09-24,26-28 Batc	h: WG912	2784-1 WG91278	34-2	
Isopropyl Ether	118		112		66-130	5	30
tert-Butyl Alcohol	93		92		70-130	1	30
n-Propylbenzene	109		106		70-130	3	30
1,2,3-Trichlorobenzene	92		91		70-130	1	30
1,2,4-Trichlorobenzene	96		97		70-130	1	30
1,3,5-Trimethylbenzene	110		108		70-130	2	30
1,2,4-Trimethylbenzene	109		107		70-130	2	30
Methyl Acetate	107		108		51-146	1	30
Ethyl Acetate	218	Q	188	Q	70-130	15	30
Acrolein	126		108		70-130	15	30
Cyclohexane	117		103		59-142	13	30
1,4-Dioxane	90		86		65-136	5	30
1,1,2-Trichloro-1,2,2-Trifluoroethane	107		99		50-139	8	30
p-Diethylbenzene	107		101		70-130	6	30
p-Ethyltoluene	112		104		70-130	7	30
1,2,4,5-Tetramethylbenzene	105		100		70-130	5	30
Tetrahydrofuran	108		131	Q	66-130	19	30
Ethyl ether	98		89		67-130	10	30
trans-1,4-Dichloro-2-butene	118		116		70-130	2	30
Methyl cyclohexane	111		101		70-130	9	30
Ethyl-Tert-Butyl-Ether	108		104		70-130	4	30

Project Name: EMBASSY SUITES

Lab Number:

L1620368

Project Number: 15209

Report Date:

10/25/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough I	_ab Associated :	sample(s):	09-24,26-28 Batch	n: WG912784-1 WG9127	84-2		
Tertiary-Amyl Methyl Ether	105		100	70-130	5	30	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	106		102		70-130	
Toluene-d8	104		103		70-130	
4-Bromofluorobenzene	104		105		70-130	
Dibromofluoromethane	102		100		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L1620368

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough I	_ab Associated	sample(s): 0	01,40,42-48 Bate	ch: WG912970-1 WG91297	0-2	
Methylene chloride	100		103	70-130	3	30
1,1-Dichloroethane	99		101	70-130	2	30
Chloroform	93		95	70-130	2	30
Carbon tetrachloride	90		91	70-130	1	30
1,2-Dichloropropane	99		104	70-130	5	30
Dibromochloromethane	87		89	70-130	2	30
2-Chloroethylvinyl ether	114		119	70-130	4	30
1,1,2-Trichloroethane	96		100	70-130	4	30
Tetrachloroethene	84		86	70-130	2	30
Chlorobenzene	87		90	70-130	3	30
Trichlorofluoromethane	67	Q	75	70-139	11	30
1,2-Dichloroethane	95		96	70-130	1	30
1,1,1-Trichloroethane	92		93	70-130	1	30
Bromodichloromethane	93		97	70-130	4	30
trans-1,3-Dichloropropene	92		95	70-130	3	30
cis-1,3-Dichloropropene	94		96	70-130	2	30
1,1-Dichloropropene	92		94	70-130	2	30
Bromoform	90		95	70-130	5	30
1,1,2,2-Tetrachloroethane	99		103	70-130	4	30
Benzene	97		98	70-130	1	30
Toluene	88		90	70-130	2	30

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L1620368

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough I	_ab Associated	sample(s):	01,40,42-48 Bate	ch: WG91	2970-1 WG91297	70-2		
Ethylbenzene	88		91		70-130	3	30	
Chloromethane	107		112		52-130	5	30	
Bromomethane	92		89		57-147	3	30	
Vinyl chloride	100		105		67-130	5	30	
Chloroethane	83		88		50-151	6	30	
1,1-Dichloroethene	94		99		65-135	5	30	
trans-1,2-Dichloroethene	90		94		70-130	4	30	
Trichloroethene	95		96		70-130	1	30	
1,2-Dichlorobenzene	84		88		70-130	5	30	
1,3-Dichlorobenzene	86		89		70-130	3	30	
1,4-Dichlorobenzene	86		89		70-130	3	30	
Methyl tert butyl ether	92		97		66-130	5	30	
p/m-Xylene	89		90		70-130	1	30	
o-Xylene	88		89		70-130	1	30	
cis-1,2-Dichloroethene	90		94		70-130	4	30	
Dibromomethane	91		95		70-130	4	30	
Styrene	86		89		70-130	3	30	
Dichlorodifluoromethane	77		80		30-146	4	30	
Acetone	97		100		54-140	3	30	
Carbon disulfide	98		101		59-130	3	30	
2-Butanone	107		110		70-130	3	30	

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L1620368

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01,40,42-48 Batc	h: WG912970-1 WG91297	0-2	
Vinyl acetate	110		112	70-130	2	30
4-Methyl-2-pentanone	96		101	70-130	5	30
1,2,3-Trichloropropane	101		103	68-130	2	30
2-Hexanone	90		95	70-130	5	30
Bromochloromethane	90		92	70-130	2	30
2,2-Dichloropropane	97		97	70-130	0	30
1,2-Dibromoethane	88		93	70-130	6	30
1,3-Dichloropropane	94		97	69-130	3	30
1,1,1,2-Tetrachloroethane	86		88	70-130	2	30
Bromobenzene	83		86	70-130	4	30
n-Butylbenzene	91		96	70-130	5	30
sec-Butylbenzene	91		95	70-130	4	30
tert-Butylbenzene	88		91	70-130	3	30
o-Chlorotoluene	81		84	70-130	4	30
p-Chlorotoluene	95		96	70-130	1	30
1,2-Dibromo-3-chloropropane	84		95	68-130	12	30
Hexachlorobutadiene	82		88	67-130	7	30
Isopropylbenzene	88		92	70-130	4	30
p-Isopropyltoluene	87		92	70-130	6	30
Naphthalene	79		88	70-130	11	30
Acrylonitrile	121		127	70-130	5	30

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L1620368

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01,40,42-48 Batc	h: WG912970-1 WG91297	0-2	
Isopropyl Ether	107		110	66-130	3	30
tert-Butyl Alcohol	102		108	70-130	6	30
n-Propylbenzene	93		96	70-130	3	30
1,2,3-Trichlorobenzene	79		86	70-130	8	30
1,2,4-Trichlorobenzene	77		84	70-130	9	30
1,3,5-Trimethylbenzene	94		95	70-130	1	30
1,2,4-Trimethylbenzene	92		95	70-130	3	30
Methyl Acetate	114		118	51-146	3	30
Ethyl Acetate	107		110	70-130	3	30
Acrolein	91		100	70-130	9	30
Cyclohexane	108		111	59-142	3	30
1,4-Dioxane	93		102	65-136	9	30
1,1,2-Trichloro-1,2,2-Trifluoroethane	88		94	50-139	7	30
p-Diethylbenzene	88		93	70-130	6	30
p-Ethyltoluene	94		97	70-130	3	30
1,2,4,5-Tetramethylbenzene	82		90	70-130	9	30
Tetrahydrofuran	113		117	66-130	3	30
Ethyl ether	86		91	67-130	6	30
trans-1,4-Dichloro-2-butene	109		108	70-130	1	30
Methyl cyclohexane	89		92	70-130	3	30
Ethyl-Tert-Butyl-Ether	101		103	70-130	2	30

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number:

L1620368

Report Date:

10/25/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPL Qual Limi	
Volatile Organics by GC/MS - Westborough I	_ab Associated	sample(s):	01,40,42-48 Batch	n: WG912970-1 WG912970	0-2		
Tertiary-Amyl Methyl Ether	92		95	70-130	3	30	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	101		97		70-130	
Toluene-d8	96		96		70-130	
4-Bromofluorobenzene	103		105		70-130	
Dibromofluoromethane	97		96		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L1620368

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	25,39,41,45 Batch	n: WG912970-6 WG9129	70-7	
Methylene chloride	97		94	70-130	3	30
1,1-Dichloroethane	100		96	70-130	4	30
Chloroform	86		84	70-130	2	30
Carbon tetrachloride	91		89	70-130	2	30
1,2-Dichloropropane	102		101	70-130	1	30
Dibromochloromethane	83		81	70-130	2	30
2-Chloroethylvinyl ether	89		89	70-130	0	30
1,1,2-Trichloroethane	90		90	70-130	0	30
Tetrachloroethene	105		102	70-130	3	30
Chlorobenzene	94		93	70-130	1	30
Trichlorofluoromethane	81		75	70-139	8	30
1,2-Dichloroethane	80		79	70-130	1	30
1,1,1-Trichloroethane	90		87	70-130	3	30
Bromodichloromethane	84		82	70-130	2	30
trans-1,3-Dichloropropene	84		83	70-130	1	30
cis-1,3-Dichloropropene	93		93	70-130	0	30
1,1-Dichloropropene	97		95	70-130	2	30
Bromoform	83		82	70-130	1	30
1,1,2,2-Tetrachloroethane	80		79	70-130	1	30
Benzene	100		98	70-130	2	30
Toluene	87		85	70-130	2	30

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L1620368

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	25,39,41,45 Batch	n: WG912	970-6 WG91297	0-7	
Ethylbenzene	94		92		70-130	2	30
Chloromethane	102		99		52-130	3	30
Bromomethane	78		78		57-147	0	30
Vinyl chloride	108		103		67-130	5	30
Chloroethane	85		81		50-151	5	30
1,1-Dichloroethene	108		106		65-135	2	30
trans-1,2-Dichloroethene	104		101		70-130	3	30
Trichloroethene	98		95		70-130	3	30
1,2-Dichlorobenzene	94		94		70-130	0	30
1,3-Dichlorobenzene	97		97		70-130	0	30
1,4-Dichlorobenzene	95		94		70-130	1	30
Methyl tert butyl ether	86		85		66-130	1	30
p/m-Xylene	102		99		70-130	3	30
o-Xylene	100		98		70-130	2	30
cis-1,2-Dichloroethene	101		99		70-130	2	30
Dibromomethane	86		87		70-130	1	30
Styrene	98		97		70-130	1	30
Dichlorodifluoromethane	75		71		30-146	5	30
Acetone	89		86		54-140	3	30
Carbon disulfide	60		57	Q	59-130	5	30
2-Butanone	85		91		70-130	7	30

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L1620368

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	25,39,41,45 Batch	n: WG912970-6 WG912970	0-7	
Vinyl acetate	98		97	70-130	1	30
4-Methyl-2-pentanone	91		92	70-130	1	30
1,2,3-Trichloropropane	80		81	68-130	1	30
2-Hexanone	81		81	70-130	0	30
Bromochloromethane	104		101	70-130	3	30
2,2-Dichloropropane	96		92	70-130	4	30
1,2-Dibromoethane	88		86	70-130	2	30
1,3-Dichloropropane	86		86	69-130	0	30
1,1,1,2-Tetrachloroethane	88		87	70-130	1	30
Bromobenzene	96		93	70-130	3	30
n-Butylbenzene	100		97	70-130	3	30
sec-Butylbenzene	101		100	70-130	1	30
tert-Butylbenzene	96		96	70-130	0	30
o-Chlorotoluene	88		96	70-130	9	30
p-Chlorotoluene	91		89	70-130	2	30
1,2-Dibromo-3-chloropropane	77		78	68-130	1	30
Hexachlorobutadiene	96		94	67-130	2	30
Isopropylbenzene	98		97	70-130	1	30
p-Isopropyltoluene	91		89	70-130	2	30
Naphthalene	77		78	70-130	1	30
Acrylonitrile	109		100	70-130	9	30

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L1620368

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	25,39,41,45 Bat	ch: WG912	2970-6 WG91297	70-7	
Isopropyl Ether	116		112		66-130	4	30
tert-Butyl Alcohol	96		94		70-130	2	30
n-Propylbenzene	98		95		70-130	3	30
1,2,3-Trichlorobenzene	91		93		70-130	2	30
1,2,4-Trichlorobenzene	93		92		70-130	1	30
1,3,5-Trimethylbenzene	96		94		70-130	2	30
1,2,4-Trimethylbenzene	95		94		70-130	1	30
Methyl Acetate	107		103		51-146	4	30
Ethyl Acetate	30	Q	25	Q	70-130	18	30
Acrolein	98		94		70-130	4	30
Cyclohexane	127		121		59-142	5	30
1,4-Dioxane	91		82		65-136	10	30
1,1,2-Trichloro-1,2,2-Trifluoroethane	104		99		50-139	5	30
p-Diethylbenzene	98		96		70-130	2	30
p-Ethyltoluene	100		98		70-130	2	30
1,2,4,5-Tetramethylbenzene	80		79		70-130	1	30
Tetrahydrofuran	98		97		66-130	1	30
Ethyl ether	100		94		67-130	6	30
trans-1,4-Dichloro-2-butene	88		85		70-130	3	30
Methyl cyclohexane	104		102		70-130	2	30
Ethyl-Tert-Butyl-Ether	105		103		70-130	2	30

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number:

L1620368

Report Date:

10/25/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	25,39,41,45 Batc	h: WG912	970-6 WG912970	1-7			
Tertiary-Amyl Methyl Ether	89		89		70-130	0		30	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	80		78		70-130	
Toluene-d8	94		93		70-130	
4-Bromofluorobenzene	92		92		70-130	
Dibromofluoromethane	91		91		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L1620368

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	29-34,36-38 Batcl	h: WG913002-1 WG91300	2-2	
Methylene chloride	103		101	70-130	2	30
1,1-Dichloroethane	104		101	70-130	3	30
Chloroform	104		104	70-130	0	30
Carbon tetrachloride	112		109	70-130	3	30
1,2-Dichloropropane	107		108	70-130	1	30
Dibromochloromethane	108		104	70-130	4	30
2-Chloroethylvinyl ether	97		102	70-130	5	30
1,1,2-Trichloroethane	109		109	70-130	0	30
Tetrachloroethene	113		108	70-130	5	30
Chlorobenzene	106		104	70-130	2	30
Trichlorofluoromethane	117		112	70-139	4	30
1,2-Dichloroethane	102		102	70-130	0	30
1,1,1-Trichloroethane	112		109	70-130	3	30
Bromodichloromethane	102		102	70-130	0	30
trans-1,3-Dichloropropene	102		100	70-130	2	30
cis-1,3-Dichloropropene	102		104	70-130	2	30
1,1-Dichloropropene	108		105	70-130	3	30
Bromoform	106		103	70-130	3	30
1,1,2,2-Tetrachloroethane	98		97	70-130	1	30
Benzene	104		102	70-130	2	30
Toluene	103		97	70-130	6	30

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L1620368

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	29-34,36-38 Batcl	h: WG913002-1 WG91300	2-2	
Ethylbenzene	108		105	70-130	3	30
Chloromethane	104		97	52-130	7	30
Bromomethane	113		113	57-147	0	30
Vinyl chloride	107		103	67-130	4	30
Chloroethane	110		108	50-151	2	30
1,1-Dichloroethene	110		105	65-135	5	30
trans-1,2-Dichloroethene	105		102	70-130	3	30
Trichloroethene	114		114	70-130	0	30
1,2-Dichlorobenzene	106		104	70-130	2	30
1,3-Dichlorobenzene	102		101	70-130	1	30
1,4-Dichlorobenzene	100		98	70-130	2	30
Methyl tert butyl ether	98		100	66-130	2	30
p/m-Xylene	110		106	70-130	4	30
o-Xylene	108		106	70-130	2	30
cis-1,2-Dichloroethene	104		99	70-130	5	30
Dibromomethane	105		108	70-130	3	30
Styrene	105		104	70-130	1	30
Dichlorodifluoromethane	123		117	30-146	5	30
Acetone	72		71	54-140	1	30
Carbon disulfide	108		104	59-130	4	30
2-Butanone	103		98	70-130	5	30

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L1620368

arameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	29-34,36-38 Bate	ch: WG913002-1 WG91300)2-2	
Vinyl acetate	96		96	70-130	0	30
4-Methyl-2-pentanone	92		96	70-130	4	30
1,2,3-Trichloropropane	99		97	68-130	2	30
2-Hexanone	97		98	70-130	1	30
Bromochloromethane	111		107	70-130	4	30
2,2-Dichloropropane	110		107	70-130	3	30
1,2-Dibromoethane	103		103	70-130	0	30
1,3-Dichloropropane	98		96	69-130	2	30
1,1,1,2-Tetrachloroethane	105		103	70-130	2	30
Bromobenzene	105		102	70-130	3	30
n-Butylbenzene	108		105	70-130	3	30
sec-Butylbenzene	108		102	70-130	6	30
tert-Butylbenzene	106		102	70-130	4	30
o-Chlorotoluene	108		101	70-130	7	30
p-Chlorotoluene	105		101	70-130	4	30
1,2-Dibromo-3-chloropropane	93		93	68-130	0	30
Hexachlorobutadiene	102		104	67-130	2	30
Isopropylbenzene	111		106	70-130	5	30
p-Isopropyltoluene	105		101	70-130	4	30
Naphthalene	96		96	70-130	0	30
Acrylonitrile	92		90	70-130	2	30

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L1620368

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	29-34,36-38 Batc	h: WG913002-1 WG91300	2-2	
Isopropyl Ether	96		94	66-130	2	30
tert-Butyl Alcohol	87		88	70-130	1	30
n-Propylbenzene	106		103	70-130	3	30
1,2,3-Trichlorobenzene	95		97	70-130	2	30
1,2,4-Trichlorobenzene	102		103	70-130	1	30
1,3,5-Trimethylbenzene	108		105	70-130	3	30
1,2,4-Trimethylbenzene	106		103	70-130	3	30
Methyl Acetate	90		92	51-146	2	30
Ethyl Acetate	81		85	70-130	5	30
Acrolein	97		93	70-130	4	30
Cyclohexane	110		106	59-142	4	30
1,4-Dioxane	87		93	65-136	7	30
1,1,2-Trichloro-1,2,2-Trifluoroethane	115		111	50-139	4	30
p-Diethylbenzene	110		114	70-130	4	30
p-Ethyltoluene	109		111	70-130	2	30
1,2,4,5-Tetramethylbenzene	108		111	70-130	3	30
Tetrahydrofuran	93		85	66-130	9	30
Ethyl ether	92		92	67-130	0	30
trans-1,4-Dichloro-2-butene	94		91	70-130	3	30
Methyl cyclohexane	113		110	70-130	3	30
Ethyl-Tert-Butyl-Ether	97		98	70-130	1	30

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number:

L1620368

Report Date:

10/25/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough	_ab Associated	sample(s):	29-34,36-38 Bato	ch: WG913002-1 WG91300)2-2		
Tertiary-Amyl Methyl Ether	99		99	70-130	0	30	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	98		100		70-130	
Toluene-d8	104		101		70-130	
4-Bromofluorobenzene	100		99		70-130	
Dibromofluoromethane	102		102		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L1620368

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0	7 Batch: WG	913105-1	WG913105-2			
Methylene chloride	95		94		70-130	1	30	
1,1-Dichloroethane	101		97		70-130	4	30	
Chloroform	88		86		70-130	2	30	
Carbon tetrachloride	98		91		70-130	7	30	
1,2-Dichloropropane	102		100		70-130	2	30	
Dibromochloromethane	84		84		70-130	0	30	
2-Chloroethylvinyl ether	87		88		70-130	1	30	
1,1,2-Trichloroethane	91		90		70-130	1	30	
Tetrachloroethene	107		102		70-130	5	30	
Chlorobenzene	95		91		70-130	4	30	
Trichlorofluoromethane	87		81		70-139	7	30	
1,2-Dichloroethane	85		85		70-130	0	30	
1,1,1-Trichloroethane	96		89		70-130	8	30	
Bromodichloromethane	86		85		70-130	1	30	
trans-1,3-Dichloropropene	86		83		70-130	4	30	
cis-1,3-Dichloropropene	92		94		70-130	2	30	
1,1-Dichloropropene	101		95		70-130	6	30	
Bromoform	84		82		70-130	2	30	
1,1,2,2-Tetrachloroethane	80		80		70-130	0	30	
Benzene	100		97		70-130	3	30	
Toluene	87		83		70-130	5	30	

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L1620368

rameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
latile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0	7 Batch: WG	913105-1	WG913105-2			
Ethylbenzene	95		91		70-130	4		30
Chloromethane	103		100		52-130	3		30
Bromomethane	78		74		57-147	5		30
Vinyl chloride	110		102		67-130	8		30
Chloroethane	88		79		50-151	11		30
1,1-Dichloroethene	111		105		65-135	6		30
trans-1,2-Dichloroethene	105		98		70-130	7		30
Trichloroethene	100		96		70-130	4		30
1,2-Dichlorobenzene	94		92		70-130	2		30
1,3-Dichlorobenzene	97		94		70-130	3		30
1,4-Dichlorobenzene	93		90		70-130	3		30
Methyl tert butyl ether	86		87		66-130	1		30
p/m-Xylene	103		98		70-130	5		30
o-Xylene	100		96		70-130	4		30
cis-1,2-Dichloroethene	102		99		70-130	3		30
Dibromomethane	90		90		70-130	0		30
Styrene	98		96		70-130	2		30
Dichlorodifluoromethane	79		74		30-146	7		30
Acetone	87		88		54-140	1		30
Carbon disulfide	63		57	Q	59-130	10		30
2-Butanone	89		86		70-130	3		30

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L1620368

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0	7 Batch: WG9	13105-1 \	WG913105-2		
Vinyl acetate	97		100		70-130	3	30
4-Methyl-2-pentanone	90		91		70-130	1	30
1,2,3-Trichloropropane	81		81		68-130	0	30
2-Hexanone	76		77		70-130	1	30
Bromochloromethane	104		100		70-130	4	30
2,2-Dichloropropane	97		92		70-130	5	30
1,2-Dibromoethane	89		90		70-130	1	30
1,3-Dichloropropane	86		86		69-130	0	30
1,1,1,2-Tetrachloroethane	89		87		70-130	2	30
Bromobenzene	96		92		70-130	4	30
n-Butylbenzene	102		95		70-130	7	30
sec-Butylbenzene	103		95		70-130	8	30
tert-Butylbenzene	97		91		70-130	6	30
o-Chlorotoluene	86		89		70-130	3	30
p-Chlorotoluene	91		87		70-130	4	30
1,2-Dibromo-3-chloropropane	76		76		68-130	0	30
Hexachlorobutadiene	98		91		67-130	7	30
Isopropylbenzene	98		91		70-130	7	30
p-Isopropyltoluene	92		86		70-130	7	30
Naphthalene	76		77		70-130	1	30
Acrylonitrile	95		105		70-130	10	30

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L1620368

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough I	_ab Associated	sample(s): (07 Batch: WG9	13105-1	WG913105-2			
Isopropyl Ether	114		113		66-130	1	30	
tert-Butyl Alcohol	89		98		70-130	10	30	
n-Propylbenzene	98		91		70-130	7	30	
1,2,3-Trichlorobenzene	93		90		70-130	3	30	
1,2,4-Trichlorobenzene	93		89		70-130	4	30	
1,3,5-Trimethylbenzene	95		89		70-130	7	30	
1,2,4-Trimethylbenzene	95		90		70-130	5	30	
Methyl Acetate	106		106		51-146	0	30	
Ethyl Acetate	30	Q	31	Q	70-130	3	30	
Acrolein	95		94		70-130	1	30	
Cyclohexane	132		122		59-142	8	30	
1,4-Dioxane	77		99		65-136	25	30	
1,1,2-Trichloro-1,2,2-Trifluoroethane	108		103		50-139	5	30	
p-Diethylbenzene	97		90		70-130	7	30	
p-Ethyltoluene	98		92		70-130	6	30	
1,2,4,5-Tetramethylbenzene	79		76		70-130	4	30	
Tetrahydrofuran	86		103		66-130	18	30	
Ethyl ether	97		96		67-130	1	30	
trans-1,4-Dichloro-2-butene	89		85		70-130	5	30	
Methyl cyclohexane	109		101		70-130	8	30	
Ethyl-Tert-Butyl-Ether	103		103		70-130	0	30	

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number:

L1620368

Report Date:

Parameter	LCS %Recovery	Qual	%	LCSD 6Recov		%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	07	Batch:	WG913105-	1 WG913105-2				
Tertiary-Amyl Methyl Ether	88			89		70-130	1		30	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	82		82		70-130	
Toluene-d8	93		92		70-130	
4-Bromofluorobenzene	90		89		70-130	
Dibromofluoromethane	94		94		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number:

L1620368

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD		RPD Limits
Volatile Organics by GC/M P2-3 (8-10)	S - Westborough	Lab Asso	ciated sample	(s): 01,25,39-48	QC Ba	tch ID: WG	912970-4 WC	912970)-5 QC Sar	mple: L'	1620368-4	14 Client ID:
Methylene chloride	ND	39.4	32	82		28	69	Q	70-130	14		30
1,1-Dichloroethane	ND	39.4	30	77		29	72		70-130	4		30
Chloroform	ND	39.4	30	76		28	67	Q	70-130	9		30
Carbon tetrachloride	ND	39.4	26	66	Q	24	58	Q	70-130	8		30
1,2-Dichloropropane	ND	39.4	32	81		30	74		70-130	6		30
Dibromochloromethane	ND	39.4	25	64	Q	23	56	Q	70-130	10		30
2-Chloroethylvinyl ether	ND	39.4	34J	85		29.J	70		70-130	16		30
1,1,2-Trichloroethane	ND	39.4	45	113		39	97		70-130	12		30
Tetrachloroethene	ND	39.4	23	58	Q	20	49	Q	70-130	13		30
Chlorobenzene	ND	39.4	25	62	Q	22	53	Q	70-130	13		30
Trichlorofluoromethane	ND	39.4	22	55	Q	20	49	Q	70-139	9		30
1,2-Dichloroethane	ND	39.4	28	72		26	64	Q	70-130	8		30
1,1,1-Trichloroethane	ND	39.4	28	71		26	64	Q	70-130	8		30
Bromodichloromethane	ND	39.4	28	70		25	62	Q	70-130	9		30
trans-1,3-Dichloropropene	ND	39.4	20	52	Q	20	49	Q	70-130	2		30
cis-1,3-Dichloropropene	ND	39.4	19	48	Q	19	47	Q	70-130	1		30
1,1-Dichloropropene	ND	39.4	28	72		26	64	Q	70-130	8		30
Bromoform	ND	39.4	25	63	Q	22	53	Q	70-130	14		30
1,1,2,2-Tetrachloroethane	ND	39.4	27	68	Q	23	57	Q	70-130	14		30
Benzene	120	39.4	130	33	Q	140	49	Q	70-130	5		30
Toluene	1.1J	39.4	28	70		25	62	Q	70-130	9		30

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number:

L1620368

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - P2-3 (8-10)	- Westborough	Lab Assoc	ciated sample	(s): 01,25,39-48	QC Ba	tch ID: WG	912970-4 WC	G91297	0-5 QC Sai	mple: L	1620368	-44 Client ID:
Ethylbenzene	1.2J	39.4	26	65	Q	23	55	Q	70-130	13		30
Chloromethane	ND	39.4	33	84		32	78		52-130	4		30
Bromomethane	ND	39.4	22	56	Q	20	49	Q	57-147	10		30
Vinyl chloride	ND	39.4	33	83		31	76		67-130	5		30
Chloroethane	ND	39.4	26	66		25	61		50-151	6		30
1,1-Dichloroethene	ND	39.4	30	75		28	68		65-135	7		30
trans-1,2-Dichloroethene	ND	39.4	29	74		28	68	Q	70-130	5		30
Trichloroethene	ND	39.4	32	80		28	70		70-130	10		30
1,2-Dichlorobenzene	ND	39.4	18	46	Q	15	36	Q	70-130	21		30
1,3-Dichlorobenzene	ND	39.4	19	47	Q	15	38	Q	70-130	19		30
1,4-Dichlorobenzene	ND	39.4	19	48	Q	16	38	Q	70-130	19		30
Methyl tert butyl ether	3.3J	39.4	32	80		30	74		66-130	5		30
p/m-Xylene	7.9	78.7	55	60	Q	50	51	Q	70-130	10		30
o-Xylene	0.79J	78.7	49	62	Q	43	53	Q	70-130	12		30
cis-1,2-Dichloroethene	ND	39.4	29	74		28	68	Q	70-130	5		30
Dibromomethane	ND	39.4	28	71		26	64	Q	70-130	8		30
Styrene	ND	78.7	33	41	Q	29	35	Q	70-130	12		30
Dichlorodifluoromethane	ND	39.4	24	61		23	56		30-146	5		30
Acetone	36	39.4	69	84		70	84		54-140	2		30
Carbon disulfide	ND	39.4	31	80		28	67		59-130	13		30
2-Butanone	ND	39.4	81	205	Q	68	167	Q	70-130	17		30

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number:

L1620368

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS P2-3 (8-10)	S - Westborough	Lab Assoc	ciated sample	(s): 01,25,39-48	QC Ba	itch ID: WG	912970-4 WC	G912970)-5 QC Sa	mple: L	1620368-44 Client ID
Vinyl acetate	ND	39.4	16J	42	Q	15.J	36	Q	70-130	11	30
4-Methyl-2-pentanone	ND	39.4	29	74		27	67	Q	70-130	7	30
1,2,3-Trichloropropane	ND	39.4	28	70		24	60	Q	68-130	13	30
2-Hexanone	ND	39.4	28	71		25	62	Q	70-130	10	30
Bromochloromethane	ND	39.4	28	71		25	61	Q	70-130	12	30
2,2-Dichloropropane	ND	39.4	29	74		27	67	Q	70-130	7	30
1,2-Dibromoethane	ND	39.4	26	67	Q	24	58	Q	70-130	10	30
1,3-Dichloropropane	ND	39.4	28	71		26	63	Q	69-130	9	30
1,1,1,2-Tetrachloroethane	ND	39.4	24	62	Q	22	53	Q	70-130	11	30
Bromobenzene	ND	39.4	22	55	Q	19	46	Q	70-130	15	30
n-Butylbenzene	0.46J	39.4	15	39	Q	13	31	Q	70-130	18	30
sec-Butylbenzene	6.9	39.4	25	47	Q	22	38	Q	70-130	13	30
tert-Butylbenzene	3.0J	39.4	23	58	Q	20	48	Q	70-130	14	30
o-Chlorotoluene	ND	39.4	20	50	Q	21	51	Q	70-130	6	30
o-Chlorotoluene	ND	39.4	22	57	Q	19	46	Q	70-130	17	30
1,2-Dibromo-3-chloropropane	ND	39.4	22	56	Q	19	46	Q	68-130	16	30
Hexachlorobutadiene	ND	39.4	8.6J	22	Q	7.4J	18	Q	67-130	16	30
sopropylbenzene	59	39.4	80	53	Q	78	48	Q	70-130	2	30
o-Isopropyltoluene	3.7	39.4	18	37	Q	15	28	Q	70-130	17	30
Naphthalene	0.42J	39.4	16	39	Q	12	28	Q	70-130	29	30
Acrylonitrile	ND	39.4	66	167	Q	53	130		70-130	21	30

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number:

L1620368

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - P2-3 (8-10)	Westborough	Lab Assoc	ciated sample	(s): 01,25,39-48	QC Ba	tch ID: WG	912970-4 WC	G91297	0-5 QC Sar	mple: L'	1620368	-44 Client ID:
Isopropyl Ether	ND	39.4	33	83		31	76		66-130	6		30
tert-Butyl Alcohol	15.J	197	160	82		150	72		70-130	10		30
n-Propylbenzene	12	39.4	32	50	Q	29	41	Q	70-130	10		30
1,2,3-Trichlorobenzene	ND	39.4	11	27	Q	7.9J	19	Q	70-130	28		30
1,2,4-Trichlorobenzene	ND	39.4	12	30	Q	9.0J	22	Q	70-130	26		30
1,3,5-Trimethylbenzene	0.98J	39.4	22	56	Q	19	46	Q	70-130	15		30
1,2,4-Trimethylbenzene	74	39.4	74	0	Q	75	2	Q	70-130	1		30
Methyl Acetate	ND	39.4	37J	95		36.J	89		51-146	3		30
Ethyl Acetate	ND	39.4	21J	53	Q	29.J	70		70-130	31	Q	30
Acrolein	ND	39.4	51	129		37.J	91		70-130	31	Q	30
Cyclohexane	120	39.4	280	404	Q	200	196	Q	59-142	33	Q	30
1,4-Dioxane	ND	1970	1800	89		1300	65		65-136	28		30
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	39.4	25J	64		23.J	55		50-139	10		30
p-Diethylbenzene	12	39.4	29	44	Q	26	35	Q	70-130	11		30
p-Ethyltoluene	1.7J	39.4	24	60	Q	20	49	Q	70-130	16		30
1,2,4,5-Tetramethylbenzene	20	39.4	36	41	Q	34	34	Q	70-130	7		30
Tetrahydrofuran	ND	39.4	49	123		43	105		66-130	13		30
Ethyl ether	ND	39.4	27	68		25	60	Q	67-130	9		30
trans-1,4-Dichloro-2-butene	ND	39.4	16	40	Q	14	35	Q	70-130	10		30
Methyl cyclohexane	35	39.4	71	92		57	53	Q	70-130	23		30
Ethyl-Tert-Butyl-Ether	ND	39.4	32	80		30	73		70-130	7		30

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number:

L1620368

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - P2-3 (8-10)	Westborough	Lab Associ	ated sample(s	s): 01,25,39-48	QC Bato	h ID: WG	912970-4 WO	912970	0-5 QC San	nple: L1	1620368-4	14 Client ID:
Tertiary-Amyl Methyl Ether	ND	39.4	30	77		27	67	Q	70-130	10		30

	MS	MSD	Acceptance	
Surrogate	% Recovery Qualifie	er % Recovery Qualifier	Criteria	
1,2-Dichloroethane-d4	94	93	70-130	
4-Bromofluorobenzene	110	110	70-130	
Dibromofluoromethane	91	92	70-130	
Toluene-d8	100	98	70-130	

SEMIVOLATILES

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

L1620368

Lab Number:

Report Date: 10/25/16

Lab ID: L1620368-30 Client ID: P4-1 (0-4) SYRACUSE, NY Sample Location:

Matrix: Soil Analytical Method: 1,8270D

Analytical Date: 07/11/16 18:49

Analyst: PS 87% Percent Solids:

Date Collected: 06/29/16 13:05 Date Received: 06/30/16 Field Prep: Not Specified Extraction Method: EPA 3546 Extraction Date: 07/09/16 13:20

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - W	estborough Lab						
Acenaphthene	220		ug/kg	150	20.	1	
Hexachlorobenzene	ND		ug/kg	110	21.	1	
Bis(2-chloroethyl)ether	ND		ug/kg	170	26.	1	
2-Chloronaphthalene	ND		ug/kg	190	19.	1	
3,3'-Dichlorobenzidine	ND		ug/kg	190	50.	1	
2,4-Dinitrotoluene	ND		ug/kg	190	38.	1	
2,6-Dinitrotoluene	ND		ug/kg	190	33.	1	
Fluoranthene	8700	Е	ug/kg	110	22.	1	
4-Chlorophenyl phenyl ether	ND		ug/kg	190	20.	1	
4-Bromophenyl phenyl ether	ND		ug/kg	190	29.	1	
Bis(2-chloroisopropyl)ether	ND		ug/kg	230	32.	1	
Bis(2-chloroethoxy)methane	ND		ug/kg	200	19.	1	
Hexachlorobutadiene	ND		ug/kg	190	28.	1	
Hexachlorocyclopentadiene	ND		ug/kg	540	170	1	
Hexachloroethane	ND		ug/kg	150	31.	1	
Isophorone	ND		ug/kg	170	25.	1	
Naphthalene	1600		ug/kg	190	23.	1	
Nitrobenzene	ND		ug/kg	170	28.	1	
NDPA/DPA	ND		ug/kg	150	22.	1	
n-Nitrosodi-n-propylamine	ND		ug/kg	190	29.	1	
Bis(2-ethylhexyl)phthalate	ND		ug/kg	190	66.	1	
Butyl benzyl phthalate	ND		ug/kg	190	48.	1	
Di-n-butylphthalate	ND		ug/kg	190	36.	1	
Di-n-octylphthalate	ND		ug/kg	190	65.	1	
Diethyl phthalate	ND		ug/kg	190	18.	1	
Dimethyl phthalate	ND		ug/kg	190	40.	1	
Benzo(a)anthracene	4500		ug/kg	110	21.	1	
Benzo(a)pyrene	4900		ug/kg	150	46.	1	
Benzo(b)fluoranthene	6700		ug/kg	110	32.	1	
Benzo(k)fluoranthene	2000		ug/kg	110	30.	1	

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: Date Collected: 06/29/16 13:05

Client ID: P4-1 (0-4) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Westborough Lab					
Chrysene	4800		ug/kg	110	20.	1
Acenaphthylene	1300		ug/kg	150	29.	1
Anthracene	1700		ug/kg	110	37.	1
Benzo(ghi)perylene	3200		ug/kg	150	22.	1
Fluorene	720		ug/kg	190	18.	1
Phenanthrene	5100		ug/kg		23.	
	930		ug/kg	110	23.	1
Dibenzo(a,h)anthracene	3600		ug/kg	110	26.	1
Indeno(1,2,3-cd)pyrene			ug/kg			
Pyrene	7500		ug/kg	110	19.	1
Biphenyl	130	J	ug/kg	430	44.	1
4-Chloroaniline	ND		ug/kg	190	35.	1
2-Nitroaniline	ND		ug/kg	190	37.	1
3-Nitroaniline	ND		ug/kg	190	36.	1
4-Nitroaniline	ND		ug/kg	190	79.	1
Dibenzofuran	580		ug/kg	190	18.	1
2-Methylnaphthalene	680		ug/kg	230	23.	1
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	190	20.	1
Acetophenone	ND		ug/kg	190	24.	1
2,4,6-Trichlorophenol	ND		ug/kg	110	36.	1
p-Chloro-m-cresol	ND		ug/kg	190	28.	1
2-Chlorophenol	ND		ug/kg	190	22.	1
2,4-Dichlorophenol	ND		ug/kg	170	30.	1
2,4-Dimethylphenol	ND		ug/kg	190	63.	1
2-Nitrophenol	ND		ug/kg	410	72.	1
4-Nitrophenol	ND		ug/kg	270	78.	1
2,4-Dinitrophenol	ND		ug/kg	910	89.	1
4,6-Dinitro-o-cresol	ND		ug/kg	490	91.	1
Pentachlorophenol	ND		ug/kg	150	42.	1
Phenol	ND		ug/kg	190	29.	1
2-Methylphenol	ND		ug/kg	190	29.	1
3-Methylphenol/4-Methylphenol	93	J	ug/kg	270	30.	1
2,4,5-Trichlorophenol	ND		ug/kg	190	36.	1
Carbazole	690		ug/kg	190	18.	1
Atrazine	ND		ug/kg	150	66.	1
Benzaldehyde	ND		ug/kg	250	51.	1
Caprolactam	ND		ug/kg	190	58.	1
2,3,4,6-Tetrachlorophenol	ND		ug/kg	190	38.	1

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-30 Date Collected: 06/29/16 13:05

Client ID: P4-1 (0-4) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	77		25-120	
Phenol-d6	82		10-120	
Nitrobenzene-d5	80		23-120	
2-Fluorobiphenyl	68		30-120	
2,4,6-Tribromophenol	81		10-136	
4-Terphenyl-d14	58		18-120	

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-30 D

Client ID: P4-1 (0-4)
Sample Location: SYRACUSE, NY

Matrix: Soil
Analytical Method: 1,8270D
Analytical Date: 07/12/16 12:50

Analyst: HL Percent Solids: 87% Date Collected: 06/29/16 13:05
Date Received: 06/30/16
Field Prep: Not Specified
Extraction Method: EPA 3546

07/09/16 13:20

Extraction Date:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westb	orough Lab					
Fluoranthene	7100		ug/kg	230	44.	2

L1620368

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Report Date: 10/25/16

Lab Number:

Lab ID: L1620368-31

Client ID: P4-1 (4-8) SYRACUSE, NY Sample Location:

Matrix: Soil Analytical Method: 1,8270D

Analytical Date: 07/11/16 16:19

Analyst: PS 43% Percent Solids:

Date Collected: 06/29/16 13:05 Date Received: 06/30/16 Field Prep: Not Specified Extraction Method: EPA 3546 Extraction Date: 07/09/16 13:20

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - V	Westborough Lab						
Acenaphthene	ND		ug/kg	310	40.	1	
Hexachlorobenzene	ND		ug/kg	230	43.	1	
Bis(2-chloroethyl)ether	ND		ug/kg	350	52.	1	
2-Chloronaphthalene	ND		ug/kg	390	38.	1	
3,3'-Dichlorobenzidine	ND		ug/kg	390	100	1	
2,4-Dinitrotoluene	ND		ug/kg	390	77.	1	
2,6-Dinitrotoluene	ND		ug/kg	390	66.	1	
Fluoranthene	ND		ug/kg	230	44.	1	
4-Chlorophenyl phenyl ether	ND		ug/kg	390	41.	1	
4-Bromophenyl phenyl ether	ND		ug/kg	390	59.	1	
Bis(2-chloroisopropyl)ether	ND		ug/kg	460	66.	1	
Bis(2-chloroethoxy)methane	ND		ug/kg	420	39.	1	
Hexachlorobutadiene	ND		ug/kg	390	57.	1	
Hexachlorocyclopentadiene	ND		ug/kg	1100	350	1	
Hexachloroethane	ND		ug/kg	310	63.	1	
Isophorone	ND		ug/kg	350	50.	1	
Naphthalene	ND		ug/kg	390	47.	1	
Nitrobenzene	ND		ug/kg	350	57.	1	
NDPA/DPA	ND		ug/kg	310	44.	1	
n-Nitrosodi-n-propylamine	ND		ug/kg	390	60.	1	
Bis(2-ethylhexyl)phthalate	ND		ug/kg	390	130	1	
Butyl benzyl phthalate	ND		ug/kg	390	98.	1	
Di-n-butylphthalate	ND		ug/kg	390	73.	1	
Di-n-octylphthalate	ND		ug/kg	390	130	1	
Diethyl phthalate	ND		ug/kg	390	36.	1	
Dimethyl phthalate	ND		ug/kg	390	81.	1	
Benzo(a)anthracene	ND		ug/kg	230	44.	1	
Benzo(a)pyrene	ND		ug/kg	310	94.	1	
Benzo(b)fluoranthene	ND		ug/kg	230	65.	1	
Benzo(k)fluoranthene	ND		ug/kg	230	62.	1	

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: Date Collected: 06/29/16 13:05

Client ID: P4-1 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - \	Westborough Lab					
Chrysene	ND		ug/kg	230	40.	1
Acenaphthylene	ND		ug/kg	310	60.	1
Anthracene	ND		ug/kg	230	76.	1
Benzo(ghi)perylene	ND		ug/kg	310	46.	1
Fluorene	ND		ug/kg	390	38.	1
Phenanthrene	ND		ug/kg	230	47.	1
Dibenzo(a,h)anthracene	ND		ug/kg	230	45.	1
Indeno(1,2,3-cd)pyrene	ND		ug/kg	310	54.	1
Pyrene	ND		ug/kg	230	38.	1
Biphenyl	ND		ug/kg	880	90.	1
4-Chloroaniline	ND		ug/kg	390	70.	1
2-Nitroaniline	ND		ug/kg	390	75.	1
3-Nitroaniline	ND		ug/kg	390	73.	1
4-Nitroaniline	ND		ug/kg	390	160	1
Dibenzofuran	ND		ug/kg	390	37.	1
2-Methylnaphthalene	ND		ug/kg	460	47.	1
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	390	40.	1
Acetophenone	ND		ug/kg	390	48.	1
2,4,6-Trichlorophenol	ND		ug/kg	230	73.	1
p-Chloro-m-cresol	ND		ug/kg	390	58.	1
2-Chlorophenol	ND		ug/kg	390	46.	1
2,4-Dichlorophenol	ND		ug/kg	350	62.	1
2,4-Dimethylphenol	ND		ug/kg	390	130	1
2-Nitrophenol	ND		ug/kg	840	140	1
4-Nitrophenol	ND		ug/kg	540	160	1
2,4-Dinitrophenol	ND		ug/kg	1800	180	1
4,6-Dinitro-o-cresol	ND		ug/kg	1000	180	1
Pentachlorophenol	ND		ug/kg	310	85.	1
Phenol	ND		ug/kg	390	58.	1
2-Methylphenol	ND		ug/kg	390	60.	1
3-Methylphenol/4-Methylphenol	ND		ug/kg	560	61.	1
2,4,5-Trichlorophenol	ND		ug/kg	390	74.	1
Carbazole	ND		ug/kg	390	38.	1
Atrazine	ND		ug/kg	310	140	1
Benzaldehyde	ND		ug/kg	510	100	1
Caprolactam	ND		ug/kg	390	120	1
2,3,4,6-Tetrachlorophenol	ND		ug/kg	390	78.	1

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-31 Date Collected: 06/29/16 13:05

Client ID: P4-1 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	69	25-120
Phenol-d6	71	10-120
Nitrobenzene-d5	73	23-120
2-Fluorobiphenyl	55	30-120
2,4,6-Tribromophenol	78	10-136
4-Terphenyl-d14	36	18-120

L1620368

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number:

Report Date: 10/25/16

Lab ID: L1620368-32 Client ID: P4-2 (2-4)

SYRACUSE, NY Sample Location:

Matrix: Soil Analytical Method: 1,8270D

Analytical Date: 07/11/16 19:14 Analyst: PS

89% Percent Solids:

Date Collected: 06/29/16 13:15 Date Received: 06/30/16 Field Prep: Not Specified Extraction Method: EPA 3546 Extraction Date: 07/09/16 13:20

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	· Westborough Lab					
Acenaphthene	150		ug/kg	150	19.	1
Hexachlorobenzene	ND		ug/kg	110	20.	1
Bis(2-chloroethyl)ether	ND		ug/kg	160	25.	1
2-Chloronaphthalene	ND		ug/kg	180	18.	1
3,3'-Dichlorobenzidine	ND		ug/kg	180	49.	1
2,4-Dinitrotoluene	ND		ug/kg	180	37.	1
2,6-Dinitrotoluene	ND		ug/kg	180	32.	1
Fluoranthene	5200		ug/kg	110	21.	1
4-Chlorophenyl phenyl ether	ND		ug/kg	180	20.	1
4-Bromophenyl phenyl ether	ND		ug/kg	180	28.	1
Bis(2-chloroisopropyl)ether	ND		ug/kg	220	31.	1
Bis(2-chloroethoxy)methane	ND		ug/kg	200	18.	1
Hexachlorobutadiene	ND		ug/kg	180	27.	1
Hexachlorocyclopentadiene	ND		ug/kg	520	170	1
Hexachloroethane	ND		ug/kg	150	30.	1
Isophorone	ND		ug/kg	160	24.	1
Naphthalene	390		ug/kg	180	22.	1
Nitrobenzene	ND		ug/kg	160	27.	1
NDPA/DPA	ND		ug/kg	150	21.	1
n-Nitrosodi-n-propylamine	ND		ug/kg	180	28.	1
Bis(2-ethylhexyl)phthalate	ND		ug/kg	180	64.	1
Butyl benzyl phthalate	ND		ug/kg	180	46.	1
Di-n-butylphthalate	ND		ug/kg	180	35.	1
Di-n-octylphthalate	ND		ug/kg	180	62.	1
Diethyl phthalate	ND		ug/kg	180	17.	1
Dimethyl phthalate	ND		ug/kg	180	38.	1
Benzo(a)anthracene	3100		ug/kg	110	21.	1
Benzo(a)pyrene	3500		ug/kg	150	45.	1
Benzo(b)fluoranthene	4500		ug/kg	110	31.	1
Benzo(k)fluoranthene	1500		ug/kg	110	29.	1

10/25/16

Project Name: EMBASSY SUITES

L1620368-32

Lab Number: L1620368

Project Number: 15209

Lab ID:

Client ID:

SAMPLE RESULTS

Date Collected: 06/29/16 13:15

P4-2 (2-4) Date Received:

Date Received: 06/30/16

Report Date:

Sample Location: SYRACUSE, NY Field Prep: Not Specified **Parameter** Result Qualifier Units RL MDL **Dilution Factor** Semivolatile Organics by GC/MS - Westborough Lab 3000 19. Chrysene 110 ug/kg 1 Acenaphthylene 860 ug/kg 150 28. 900 36. Anthracene ug/kg 110 1 2200 Benzo(ghi)perylene 150 22. 1 ug/kg Fluorene 280 180 18. 1 ug/kg 1900 Phenanthrene 110 22. 1 ug/kg Dibenzo(a,h)anthracene 560 110 21. 1 ug/kg Indeno(1,2,3-cd)pyrene 2500 150 26. 1 ug/kg Pyrene 4500 110 18. 1 ug/kg ND Biphenyl 420 43. 1 ug/kg 4-Chloroaniline ND ug/kg 180 33. 1 2-Nitroaniline ND 180 35. 1 ug/kg 3-Nitroaniline ND 180 35. 1 ug/kg ND 76. 4-Nitroaniline ug/kg 180 1 Dibenzofuran 180 180 17. 1 ug/kg 2-Methylnaphthalene 230 220 22. 1 ug/kg 1,2,4,5-Tetrachlorobenzene ND 180 ug/kg 19. 1 ND 180 23. Acetophenone 1 ug/kg 2,4,6-Trichlorophenol ND 110 35. 1 ug/kg p-Chloro-m-cresol ND 180 27. 1 ug/kg ND 180 22. 1 2-Chlorophenol ug/kg 2,4-Dichlorophenol ND 160 30. 1 ug/kg 2,4-Dimethylphenol ND 180 61. 1 ug/kg 2-Nitrophenol ND 400 69. 1 ug/kg 4-Nitrophenol ND 260 75. 1 ug/kg 2,4-Dinitrophenol ND ug/kg 880 86. 1 4,6-Dinitro-o-cresol ND 480 88. 1 ug/kg Pentachlorophenol ND ug/kg 150 40. 1 Phenol ND 180 28. 1 ug/kg 2-Methylphenol ND ug/kg 180 28. 1 3-Methylphenol/4-Methylphenol ND ug/kg 260 29. 1 2,4,5-Trichlorophenol ND 180 35. 1 ug/kg Carbazole 190 ug/kg 180 18. 1 ND Atrazine ug/kg 150 64. 1 Benzaldehyde ND 240 50. 1 ug/kg Caprolactam ND 180 56. 1 ug/kg

ND

1

180

ug/kg

37.

2,3,4,6-Tetrachlorophenol

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-32 Date Collected: 06/29/16 13:15

Client ID: P4-2 (2-4) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	75		25-120	
Phenol-d6	82		10-120	
Nitrobenzene-d5	78		23-120	
2-Fluorobiphenyl	72		30-120	
2,4,6-Tribromophenol	78		10-136	
4-Terphenyl-d14	71		18-120	

L1620368

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number:

Report Date: 10/25/16

Lab ID: L1620368-33 Client ID: P4-2 (4-6) SYRACUSE, NY Sample Location:

Matrix: Soil Analytical Method: 1,8270D

Analytical Date: 07/11/16 19:39

Analyst: PS 83% Percent Solids:

Date Collected: 06/29/16 13:15 Date Received: 06/30/16 Field Prep: Not Specified Extraction Method: EPA 3546 Extraction Date: 07/09/16 13:20

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS - Westborough Lab									
Acenaphthene	150	J	ug/kg	160	21.	1			
Hexachlorobenzene	ND		ug/kg	120	22.	1			
Bis(2-chloroethyl)ether	ND		ug/kg	180	27.	1			
2-Chloronaphthalene	ND		ug/kg	200	20.	1			
3,3'-Dichlorobenzidine	ND		ug/kg	200	53.	1			
2,4-Dinitrotoluene	ND		ug/kg	200	40.	1			
2,6-Dinitrotoluene	ND		ug/kg	200	34.	1			
Fluoranthene	4300		ug/kg	120	23.	1			
4-Chlorophenyl phenyl ether	ND		ug/kg	200	21.	1			
4-Bromophenyl phenyl ether	ND		ug/kg	200	30.	1			
Bis(2-chloroisopropyl)ether	ND		ug/kg	240	34.	1			
Bis(2-chloroethoxy)methane	ND		ug/kg	210	20.	1			
Hexachlorobutadiene	ND		ug/kg	200	29.	1			
Hexachlorocyclopentadiene	ND		ug/kg	570	180	1			
Hexachloroethane	ND		ug/kg	160	32.	1			
Isophorone	ND		ug/kg	180	26.	1			
Naphthalene	510		ug/kg	200	24.	1			
Nitrobenzene	ND		ug/kg	180	29.	1			
NDPA/DPA	ND		ug/kg	160	23.	1			
n-Nitrosodi-n-propylamine	ND		ug/kg	200	31.	1			
Bis(2-ethylhexyl)phthalate	ND		ug/kg	200	69.	1			
Butyl benzyl phthalate	ND		ug/kg	200	50.	1			
Di-n-butylphthalate	ND		ug/kg	200	38.	1			
Di-n-octylphthalate	ND		ug/kg	200	68.	1			
Diethyl phthalate	ND		ug/kg	200	18.	1			
Dimethyl phthalate	ND		ug/kg	200	42.	1			
Benzo(a)anthracene	2400		ug/kg	120	22.	1			
Benzo(a)pyrene	2500		ug/kg	160	48.	1			
Benzo(b)fluoranthene	3200		ug/kg	120	34.	1			
Benzo(k)fluoranthene	1200		ug/kg	120	32.	1			

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-33 Date Collected: 06/29/16 13:15

Client ID: P4-2 (4-6) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Westborough Lab					
Chrysene	2300		ug/kg	120	21.	1
Acenaphthylene	510		ug/kg	160	31.	1
Anthracene	780		ug/kg	120	39.	1
Benzo(ghi)perylene	1500		ug/kg	160	23.	1
Fluorene	250		ug/kg	200	19.	1
Phenanthrene	2000		ug/kg	120	24.	1
Dibenzo(a,h)anthracene	480		ug/kg	120	23.	1
Indeno(1,2,3-cd)pyrene	1700		ug/kg	160	28.	1
Pyrene	3800		ug/kg	120	20.	1
Biphenyl	ND		ug/kg	450	46.	1
4-Chloroaniline	ND		ug/kg	200	36.	1
2-Nitroaniline	ND		ug/kg	200	38.	1
3-Nitroaniline	ND		ug/kg	200	38.	1
4-Nitroaniline	ND		ug/kg	200	82.	1
Dibenzofuran	230		ug/kg	200	19.	1
2-Methylnaphthalene	310		ug/kg	240	24.	1
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	200	21.	1
Acetophenone	ND		ug/kg	200	25.	1
2,4,6-Trichlorophenol	ND		ug/kg	120	38.	1
p-Chloro-m-cresol	ND		ug/kg	200	30.	1
2-Chlorophenol	ND		ug/kg	200	24.	1
2,4-Dichlorophenol	ND		ug/kg	180	32.	1
2,4-Dimethylphenol	ND		ug/kg	200	66.	1
2-Nitrophenol	ND		ug/kg	430	75.	1
4-Nitrophenol	ND		ug/kg	280	81.	1
2,4-Dinitrophenol	ND		ug/kg	960	93.	1
4,6-Dinitro-o-cresol	ND		ug/kg	520	96.	1
Pentachlorophenol	ND		ug/kg	160	44.	1
Phenol	ND		ug/kg	200	30.	1
2-Methylphenol	ND		ug/kg	200	31.	1
3-Methylphenol/4-Methylphenol	55	J	ug/kg	290	31.	1
2,4,5-Trichlorophenol	ND		ug/kg	200	38.	1
Carbazole	220		ug/kg	200	19.	1
Atrazine	ND		ug/kg	160	70.	1
Benzaldehyde	ND		ug/kg	260	54.	1
Caprolactam	81	J	ug/kg	200	60.	1
2,3,4,6-Tetrachlorophenol	ND		ug/kg	200	40.	1

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-33 Date Collected: 06/29/16 13:15

Client ID: P4-2 (4-6) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	77	25-120
Phenol-d6	81	10-120
Nitrobenzene-d5	81	23-120
2-Fluorobiphenyl	60	30-120
2,4,6-Tribromophenol	80	10-136
4-Terphenyl-d14	45	18-120

L1620368

10/25/16

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number:

Report Date:

Lab ID: L1620368-34 D

Client ID: P4-3 (2-4)
Sample Location: SYRACUSE, NY

Matrix: Soil
Analytical Method: 1,8270D
Analytical Date: 07/11/16 20:29

Analyst: PS Percent Solids: 85% Date Collected: 06/29/16 13:30
Date Received: 06/30/16
Field Prep: Not Specified
Extraction Method: EPA 3546
Extraction Date: 07/09/16 13:20

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	· Westborough Lab					
Acenaphthene	260	J	ug/kg	1600	200	10
Hexachlorobenzene	ND		ug/kg	1200	220	10
Bis(2-chloroethyl)ether	ND		ug/kg	1800	260	10
2-Chloronaphthalene	ND		ug/kg	2000	190	10
3,3'-Dichlorobenzidine	ND		ug/kg	2000	520	10
2,4-Dinitrotoluene	ND		ug/kg	2000	390	10
2,6-Dinitrotoluene	ND		ug/kg	2000	330	10
Fluoranthene	6100		ug/kg	1200	220	10
4-Chlorophenyl phenyl ether	ND		ug/kg	2000	210	10
4-Bromophenyl phenyl ether	ND		ug/kg	2000	300	10
Bis(2-chloroisopropyl)ether	ND		ug/kg	2300	330	10
Bis(2-chloroethoxy)methane	ND		ug/kg	2100	200	10
Hexachlorobutadiene	ND		ug/kg	2000	280	10
Hexachlorocyclopentadiene	ND		ug/kg	5600	1800	10
Hexachloroethane	ND		ug/kg	1600	320	10
Isophorone	ND		ug/kg	1800	250	10
Naphthalene	2800		ug/kg	2000	240	10
Nitrobenzene	ND		ug/kg	1800	290	10
NDPA/DPA	ND		ug/kg	1600	220	10
n-Nitrosodi-n-propylamine	ND		ug/kg	2000	300	10
Bis(2-ethylhexyl)phthalate	ND		ug/kg	2000	670	10
Butyl benzyl phthalate	ND		ug/kg	2000	490	10
Di-n-butylphthalate	ND		ug/kg	2000	370	10
Di-n-octylphthalate	ND		ug/kg	2000	660	10
Diethyl phthalate	ND		ug/kg	2000	180	10
Dimethyl phthalate	ND		ug/kg	2000	410	10
Benzo(a)anthracene	9100		ug/kg	1200	220	10
Benzo(a)pyrene	17000		ug/kg	1600	480	10
Benzo(b)fluoranthene	20000		ug/kg	1200	330	10
Benzo(k)fluoranthene	7000		ug/kg	1200	310	10
						_

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-34 D

Client ID: P4-3 (2-4)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 13:30

Date Received: 06/30/16
Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - V	Westborough Lab					
Chrysene	10000		ug/kg	1200	200	10
Acenaphthylene	4000		ug/kg	1600	300	10
Anthracene	1500		ug/kg	1200	380	10
Benzo(ghi)perylene	14000		ug/kg ug/kg	1600	230	10
Fluorene	570	J	ug/kg	2000	190	10
Phenanthrene	2500	J	ug/kg	1200	240	10
Dibenzo(a,h)anthracene	3400		ug/kg	1200	220	10
Indeno(1,2,3-cd)pyrene	14000		ug/kg	1600	270	10
Pyrene	6300		ug/kg	1200	190	10
Biphenyl	ND		ug/kg	4400	450	10
4-Chloroaniline	ND		ug/kg	2000	350	10
2-Nitroaniline	ND		ug/kg	2000	380	10
3-Nitroaniline	ND		ug/kg	2000	370	10
4-Nitroaniline	ND		ug/kg	2000	810	10
Dibenzofuran	450	J	ug/kg	2000	180	10
2-Methylnaphthalene	2300		ug/kg	2300	240	10
1,2,4,5-Tetrachlorobenzene	ND ND		ug/kg	2000	200	10
Acetophenone	ND		ug/kg	2000	240	10
2,4,6-Trichlorophenol	ND		ug/kg	1200	370	10
p-Chloro-m-cresol	ND		ug/kg	2000	290	10
2-Chlorophenol	ND		ug/kg	2000	230	10
2,4-Dichlorophenol	ND		ug/kg	1800	310	10
2,4-Dimethylphenol	ND		ug/kg	2000	640	10
2-Nitrophenol	ND		ug/kg	4200	730	10
4-Nitrophenol	ND		ug/kg	2700	800	10
2,4-Dinitrophenol	ND		ug/kg	9400	910	10
4,6-Dinitro-o-cresol	ND		ug/kg	5100	940	10
Pentachlorophenol	ND		ug/kg	1600	430	10
Phenol	ND		ug/kg	2000	290	10
2-Methylphenol	ND		ug/kg	2000	300	10
3-Methylphenol/4-Methylphenol	ND		ug/kg	2800	300	10
2,4,5-Trichlorophenol	ND		ug/kg	2000	370	10
Carbazole	370	J	ug/kg	2000	190	10
Atrazine	ND		ug/kg	1600	680	10
Benzaldehyde	ND		ug/kg	2600	530	10
Caprolactam	ND		ug/kg	2000	590	10
2,3,4,6-Tetrachlorophenol	ND		ug/kg	2000	390	10

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-34 D Date Collected: 06/29/16 13:30

Client ID: P4-3 (2-4) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	63		25-120	
Phenol-d6	62		10-120	
Nitrobenzene-d5	59		23-120	
2-Fluorobiphenyl	59		30-120	
2,4,6-Tribromophenol	59		10-136	
4-Terphenyl-d14	48		18-120	

L1620368

10/25/16

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Date Collected: 06/29/16 13:30

Lab Number:

Report Date:

 Lab ID:
 L1620368-36
 Date Coll

 Client ID:
 P4-3 (4-6)
 Date Rec

 Sample Location:
 SYRACUSE, NY
 Field Pre

Date Received: 06/30/16
Field Prep: Not Specified
Extraction Method: EPA 3546

Analytical Method: 1,8270D Analytical Date: 07/11/16 18:24

Soil

Extraction Date: 07/09/16 13:20

Analyst: PS Percent Solids: 84%

Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Westborough Lab					
Acenaphthene	ND		ug/kg	160	20.	1
Hexachlorobenzene	ND		ug/kg	120	22.	1
Bis(2-chloroethyl)ether	ND		ug/kg	180	27.	1
2-Chloronaphthalene	ND		ug/kg	200	20.	1
3,3'-Dichlorobenzidine	ND		ug/kg	200	53.	1
2,4-Dinitrotoluene	ND		ug/kg	200	40.	1
2,6-Dinitrotoluene	ND		ug/kg	200	34.	1
Fluoranthene	230		ug/kg	120	23.	1
4-Chlorophenyl phenyl ether	ND		ug/kg	200	21.	1
4-Bromophenyl phenyl ether	ND		ug/kg	200	30.	1
Bis(2-chloroisopropyl)ether	ND		ug/kg	240	34.	1
Bis(2-chloroethoxy)methane	ND		ug/kg	210	20.	1
Hexachlorobutadiene	ND		ug/kg	200	29.	1
Hexachlorocyclopentadiene	ND		ug/kg	570	180	1
Hexachloroethane	ND		ug/kg	160	32.	1
Isophorone	ND		ug/kg	180	26.	1
Naphthalene	1700		ug/kg	200	24.	1
Nitrobenzene	ND		ug/kg	180	29.	1
NDPA/DPA	ND		ug/kg	160	22.	1
n-Nitrosodi-n-propylamine	ND		ug/kg	200	31.	1
Bis(2-ethylhexyl)phthalate	ND		ug/kg	200	69.	1
Butyl benzyl phthalate	ND		ug/kg	200	50.	1
Di-n-butylphthalate	ND		ug/kg	200	38.	1
Di-n-octylphthalate	ND		ug/kg	200	67.	1
Diethyl phthalate	ND		ug/kg	200	18.	1
Dimethyl phthalate	ND		ug/kg	200	42.	1
Benzo(a)anthracene	140		ug/kg	120	22.	1
Benzo(a)pyrene	120	J	ug/kg	160	48.	1
Benzo(b)fluoranthene	140		ug/kg	120	33.	1
Benzo(k)fluoranthene	54	J	ug/kg	120	32.	1

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-36 Date Collected: 06/29/16 13:30

Client ID: P4-3 (4-6) Date Received: 06/30/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - V	Vestborough Lab					
Chrysene	130		ug/kg	120	21.	1
Acenaphthylene	ND		ug/kg	160	31.	1
Anthracene	52	J	ug/kg	120	39.	1
Benzo(ghi)perylene	68	J	ug/kg	160	23.	1
Fluorene	56	J	ug/kg	200	19.	1
Phenanthrene	200		ug/kg	120	24.	1
Dibenzo(a,h)anthracene	ND		ug/kg	120	23.	1
Indeno(1,2,3-cd)pyrene	74	J	ug/kg	160	28.	1
Pyrene	260		ug/kg	120	20.	1
Biphenyl	ND		ug/kg	450	46.	1
4-Chloroaniline	ND		ug/kg	200	36.	1
2-Nitroaniline	ND		ug/kg	200	38.	1
3-Nitroaniline	ND		ug/kg	200	37.	1
4-Nitroaniline	ND		ug/kg	200	82.	1
Dibenzofuran	ND		ug/kg	200	19.	1
2-Methylnaphthalene	1400		ug/kg	240	24.	1
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	200	21.	1
Acetophenone	ND		ug/kg	200	24.	1
2,4,6-Trichlorophenol	ND		ug/kg	120	38.	1
p-Chloro-m-cresol	ND		ug/kg	200	30.	1
2-Chlorophenol	ND		ug/kg	200	23.	1
2,4-Dichlorophenol	ND		ug/kg	180	32.	1
2,4-Dimethylphenol	ND		ug/kg	200	65.	1
2-Nitrophenol	ND		ug/kg	430	74.	1
4-Nitrophenol	ND		ug/kg	280	81.	1
2,4-Dinitrophenol	ND		ug/kg	950	92.	1
4,6-Dinitro-o-cresol	ND		ug/kg	520	95.	1
Pentachlorophenol	ND		ug/kg	160	44.	1
Phenol	ND		ug/kg	200	30.	1
2-Methylphenol	ND		ug/kg	200	31.	1
3-Methylphenol/4-Methylphenol	ND		ug/kg	280	31.	1
2,4,5-Trichlorophenol	ND		ug/kg	200	38.	1
Carbazole	34	J	ug/kg	200	19.	1
Atrazine	ND		ug/kg	160	69.	1
Benzaldehyde	ND		ug/kg	260	54.	1
Caprolactam	ND		ug/kg	200	60.	1
2,3,4,6-Tetrachlorophenol	ND		ug/kg	200	40.	1

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-36 Date Collected: 06/29/16 13:30

Client ID: P4-3 (4-6) Date Received: 06/30/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	74	25-120	
Phenol-d6	78	10-120	
Nitrobenzene-d5	74	23-120	
2-Fluorobiphenyl	56	30-120	
2,4,6-Tribromophenol	76	10-136	
4-Terphenyl-d14	48	18-120	

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L1620368

Report Date: 10/25/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 07/11/16 10:54

Analyst: PS

Extraction Method: EPA 3546
Extraction Date: 07/09/16 13:20

Parameter	Result	Qualifier	Units	RL	M	DL
Semivolatile Organics by GC/MS	- Westborough	Lab for s	sample(s):	30-34,36	Batch:	WG911876-1
Acenaphthene	ND		ug/kg	130	1	7.
Hexachlorobenzene	ND		ug/kg	99	1	8.
Bis(2-chloroethyl)ether	ND		ug/kg	150	2	22.
2-Chloronaphthalene	ND		ug/kg	160	1	6.
3,3'-Dichlorobenzidine	ND		ug/kg	160	4	4.
2,4-Dinitrotoluene	ND		ug/kg	160	3	3.
2,6-Dinitrotoluene	ND		ug/kg	160	2	28.
Fluoranthene	ND		ug/kg	99	1	9.
4-Chlorophenyl phenyl ether	ND		ug/kg	160	1	8.
4-Bromophenyl phenyl ether	ND		ug/kg	160	2	25.
Bis(2-chloroisopropyl)ether	ND		ug/kg	200	2	28.
Bis(2-chloroethoxy)methane	ND		ug/kg	180	1	6.
Hexachlorobutadiene	ND		ug/kg	160	2	24.
Hexachlorocyclopentadiene	ND		ug/kg	470	1	50
Hexachloroethane	ND		ug/kg	130	2	27.
Isophorone	ND		ug/kg	150	2	1.
Naphthalene	ND		ug/kg	160	2	20.
Nitrobenzene	ND		ug/kg	150	2	24.
NDPA/DPA	ND		ug/kg	130	1	9.
n-Nitrosodi-n-propylamine	ND		ug/kg	160	2	25.
Bis(2-ethylhexyl)phthalate	ND		ug/kg	160	5	57.
Butyl benzyl phthalate	ND		ug/kg	160	4	2.
Di-n-butylphthalate	ND		ug/kg	160	3	1.
Di-n-octylphthalate	ND		ug/kg	160	5	66.
Diethyl phthalate	ND		ug/kg	160	1	5.
Dimethyl phthalate	ND		ug/kg	160	3	55.
Benzo(a)anthracene	ND		ug/kg	99	1	8.
Benzo(a)pyrene	ND		ug/kg	130	4	0.
Benzo(b)fluoranthene	ND		ug/kg	99	2	18.

L1620368

Lab Number:

Project Name: EMBASSY SUITES

Project Number: 15209 Report Date: 10/25/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 07/11/16 10:54

Analyst: PS

Extraction Method: EPA 3546
Extraction Date: 07/09/16 13:20

Parameter	Result	Qualifier	Units	RL	М	DL
Semivolatile Organics by GC/MS	- Westborough	Lab for s	ample(s):	30-34,36	Batch:	WG911876-1
Benzo(k)fluoranthene	ND		ug/kg	99	2	6.
Chrysene	ND		ug/kg	99	1	7.
Acenaphthylene	ND		ug/kg	130	2	5.
Anthracene	ND		ug/kg	99	3	2.
Benzo(ghi)perylene	ND		ug/kg	130	1	9.
Fluorene	ND		ug/kg	160	1	6.
Phenanthrene	ND		ug/kg	99	2	0.
Dibenzo(a,h)anthracene	ND		ug/kg	99	1	9.
Indeno(1,2,3-cd)pyrene	ND		ug/kg	130	2	3.
Pyrene	ND		ug/kg	99	1	6.
Biphenyl	ND		ug/kg	380	3	8.
4-Chloroaniline	ND		ug/kg	160	3	0.
2-Nitroaniline	ND		ug/kg	160	3	2.
3-Nitroaniline	ND		ug/kg	160	3	1.
4-Nitroaniline	ND		ug/kg	160	6	8.
Dibenzofuran	ND		ug/kg	160	1	6.
2-Methylnaphthalene	ND		ug/kg	200	2	0.
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	160	1	7.
Acetophenone	ND		ug/kg	160	2	0.
2,4,6-Trichlorophenol	ND		ug/kg	99	3	1.
p-Chloro-m-cresol	ND		ug/kg	160	2	4.
2-Chlorophenol	ND		ug/kg	160	1	9.
2,4-Dichlorophenol	ND		ug/kg	150	2	6.
2,4-Dimethylphenol	ND		ug/kg	160	5	4.
2-Nitrophenol	ND		ug/kg	360	6	2.
4-Nitrophenol	ND		ug/kg	230	6	7.
2,4-Dinitrophenol	ND		ug/kg	790	7	7.
4,6-Dinitro-o-cresol	ND		ug/kg	430	7	9.
Pentachlorophenol	ND		ug/kg	130	3	6.

L1620368

Lab Number:

Project Name: EMBASSY SUITES

Project Number: 15209 Report Date: 10/25/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Extraction Method: EPA 3546
Analytical Date: 07/11/16 10:54 Extraction Date: 07/09/16 13:20

Analyst: PS

Parameter	Result	Qualifier	Units	RL	MDL	
Semivolatile Organics by GC/MS - V	Vestborough	Lab for s	ample(s):	30-34,36	Batch: WG911876-	1
Phenol	ND		ug/kg	160	25.	
2-Methylphenol	ND		ug/kg	160	26.	
3-Methylphenol/4-Methylphenol	ND		ug/kg	240	26.	
2,4,5-Trichlorophenol	ND		ug/kg	160	32.	
Carbazole	ND		ug/kg	160	16.	
Atrazine	ND		ug/kg	130	58.	
Benzaldehyde	ND		ug/kg	220	44.	
Caprolactam	ND		ug/kg	160	50.	
2,3,4,6-Tetrachlorophenol	ND		ug/kg	160	33.	

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
2-Fluorophenol	70	25-120
Phenol-d6	74	10-120
Nitrobenzene-d5	66	23-120
2-Fluorobiphenyl	72	30-120
2,4,6-Tribromophenol	69	10-136
4-Terphenyl-d14	77	18-120

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L1620368

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Westborou	ugh Lab Associ	ated sample(s)	: 30-34,36 Bat	tch: WG9	11876-2 WG911	876-3	
Acenaphthene	86		82		31-137	5	50
Benzidine	34		39		10-66	14	50
1,2,4-Trichlorobenzene	77		75		38-107	3	50
Hexachlorobenzene	90		85		40-140	6	50
Bis(2-chloroethyl)ether	78		77		40-140	1	50
2-Chloronaphthalene	88		85		40-140	3	50
3,3'-Dichlorobenzidine	68		69		40-140	1	50
2,4-Dinitrotoluene	94	Q	94	Q	28-89	0	50
2,6-Dinitrotoluene	93		93		40-140	0	50
Azobenzene	97		95		40-140	2	50
Fluoranthene	94		91		40-140	3	50
4-Chlorophenyl phenyl ether	89		86		40-140	3	50
4-Bromophenyl phenyl ether	94		91		40-140	3	50
Bis(2-chloroisopropyl)ether	80		78		40-140	3	50
Bis(2-chloroethoxy)methane	88		86		40-117	2	50
Hexachlorobutadiene	76		72		40-140	5	50
Hexachlorocyclopentadiene	78		78		40-140	0	50
Hexachloroethane	72		73		40-140	1	50
Isophorone	87		86		40-140	1	50
Naphthalene	79		76		40-140	4	50
Nitrobenzene	83		81		40-140	2	50

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L1620368

Parameter	LCS %Recovery	Qual %	LCSD Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Westb	orough Lab Associa	ated sample(s): 3	0-34,36 B	atch: WG9	11876-2 WG9118	376-3	
NitrosoDiPhenylAmine(NDPA)/DPA	93		90		36-157	3	50
n-Nitrosodi-n-propylamine	88		88		32-121	0	50
Bis(2-Ethylhexyl)phthalate	107		103		40-140	4	50
Butyl benzyl phthalate	95		98		40-140	3	50
Di-n-butylphthalate	101		99		40-140	2	50
Di-n-octylphthalate	108		106		40-140	2	50
Diethyl phthalate	96		92		40-140	4	50
Dimethyl phthalate	89		88		40-140	1	50
Benzo(a)anthracene	92		87		40-140	6	50
Benzo(a)pyrene	90		90		40-140	0	50
Benzo(b)fluoranthene	88		91		40-140	3	50
Benzo(k)fluoranthene	90		85		40-140	6	50
Chrysene	90		86		40-140	5	50
Acenaphthylene	87		86		40-140	1	50
Anthracene	94		90		40-140	4	50
Benzo(ghi)perylene	95		92		40-140	3	50
Fluorene	93		89		40-140	4	50
Phenanthrene	89		85		40-140	5	50
Dibenzo(a,h)anthracene	95		95		40-140	0	50
Indeno(1,2,3-cd)Pyrene	94		94		40-140	0	50
Pyrene	91		89		35-142	2	50

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L1620368

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Semivolatile Organics by GC/MS - Westborou	ugh Lab Assoc	iated sample(s):	30-34,36 Ba	atch: WG9	11876-2 WG911	376-3		
Biphenyl	89		86		54-104	3	50	
Aniline	50		47		40-140	6	50	
4-Chloroaniline	58		60		40-140	3	50	
2-Nitroaniline	94		95		47-134	1	50	
3-Nitroaniline	81		72		26-129	12	50	
4-Nitroaniline	78		77		41-125	1	50	
Dibenzofuran	92		86		40-140	7	50	
2-Methylnaphthalene	86		80		40-140	7	50	
1,2,4,5-Tetrachlorobenzene	82		80		40-117	2	50	
Acetophenone	85		82		14-144	4	50	
n-Nitrosodimethylamine	61		62		22-100	2	50	
2,4,6-Trichlorophenol	94		91		30-130	3	50	
P-Chloro-M-Cresol	95		91		26-103	4	50	
2-Chlorophenol	87		85		25-102	2	50	
2,4-Dichlorophenol	91		91		30-130	0	50	
2,4-Dimethylphenol	90		92		30-130	2	50	
2-Nitrophenol	89		90		30-130	1	50	
4-Nitrophenol	91		90		11-114	1	50	
2,4-Dinitrophenol	67		68		4-130	1	50	
4,6-Dinitro-o-cresol	80		82		10-130	2	50	
Pentachlorophenol	90		88		17-109	2	50	

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L162

L1620368

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits		
Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 30-34,36 Batch: WG911876-2 WG911876-3									
Phenol	83		82		26-90	1	50		
2-Methylphenol	86		84		30-130.	2	50		
3-Methylphenol/4-Methylphenol	91		86		30-130	6	50		
2,4,5-Trichlorophenol	91		90		30-130	1	50		
Benzoic Acid	71		72		10-110	1	50		
Benzyl Alcohol	87		83		40-140	5	50		
Carbazole	94		90		54-128	4	50		
Pyridine	50		50		10-93	0	50		
Parathion, ethyl	114		115		40-140	1	50		
Atrazine	104		102		40-140	2	50		
Benzaldehyde	80		78		40-140	3	50		
Caprolactam	105		104		15-130	1	50		
2,3,4,6-Tetrachlorophenol	94		89		40-140	5	50		

LCS %Recovery	LCSD Qual %Recovery	Acceptance Qual Criteria
80	78	25-120
85	85	10-120
81	77	23-120
84	85	30-120
90	91	10-136
89	88	18-120
	%Recovery 80 85 81 84 90	%Recovery Qual %Recovery 80 78 85 85 81 77 84 85 90 91

METALS

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 **Report Date:** 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-01 Date Collected: 06/29/16 08:40

Date Received: Client ID: P3-1 (0-4) 06/30/16 SYRACUSE, NY Field Prep: Sample Location: Not Specified

Matrix: Soil 73% Percent Solids:

Dilution Date Date Prep Analytical Method Method Factor Prepared Analyzed Regult Qualifier

Parameter	Result	Qualifier	Units	RL	MDL	racioi	Frepareu	Allalyzeu	Wethou	Metriou	Analyst
Total Metals - Mar	nsfield Lab										
Antimony, Total	3.8		mg/kg	2.7	0.44	1	07/06/16 05:5	0 07/07/16 22:35	EPA 3050B	1,6010C	JH
Arsenic, Total	71		mg/kg	0.55	0.18	1	07/06/16 05:5	0 07/07/16 22:35	EPA 3050B	1,6010C	JH
Beryllium, Total	0.85		mg/kg	0.27	0.06	1	07/06/16 05:5	0 07/07/16 22:35	EPA 3050B	1,6010C	JH
Cadmium, Total	53		mg/kg	0.55	0.04	1	07/06/16 05:5	0 07/07/16 22:35	EPA 3050B	1,6010C	JH
Chromium, Total	6.2		mg/kg	0.55	0.09	1	07/06/16 05:5	0 07/07/16 22:35	EPA 3050B	1,6010C	JH
Copper, Total	1400		mg/kg	0.55	0.10	1	07/06/16 05:5	0 07/07/16 22:35	EPA 3050B	1,6010C	JH
Lead, Total	1600		mg/kg	2.7	0.12	1	07/06/16 05:5	0 07/07/16 22:35	EPA 3050B	1,6010C	JH
Mercury, Total	0.62		mg/kg	0.09	0.02	1	07/06/16 10:4	0 07/11/16 17:49	EPA 7471B	1,7471B	EA
Nickel, Total	36		mg/kg	1.4	0.22	1	07/06/16 05:5	0 07/07/16 22:35	EPA 3050B	1,6010C	JH
Selenium, Total	0.34	J	mg/kg	1.1	0.15	1	07/06/16 05:5	0 07/07/16 22:35	EPA 3050B	1,6010C	JH
Silver, Total	3.8		mg/kg	0.55	0.11	1	07/06/16 05:5	0 07/07/16 22:35	EPA 3050B	1,6010C	JH
Thallium, Total	1.2		mg/kg	1.1	0.17	1	07/06/16 05:5	0 07/07/16 22:35	EPA 3050B	1,6010C	JH
Zinc, Total	16000		mg/kg	27	3.8	10	07/06/16 05:5	0 07/08/16 02:16	EPA 3050B	1,6010C	JH

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

 Lab ID:
 L1620368-02
 Date Collected:
 06/29/16 08:40

 Client ID:
 P3-1 (4-8)
 Date Received:
 06/30/16

Client ID: P3-1 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil
Percent Solids: 61%

Dilution Date Date Prep **Analytical** Method Factor **Prepared Analyzed** Method Result Qualifier RL MDL **Parameter Units Analyst** Total Metals - Mansfield Lab Antimony, Total ND mg/kg 3.2 0.52 1 07/06/16 05:50 07/07/16 23:13 EPA 3050B 1,6010C JΗ 8.4 0.65 0.21 1 07/06/16 05:50 07/07/16 23:13 EPA 3050B 1,6010C JΗ Arsenic, Total mg/kg 1 1,6010C Beryllium, Total ND 0.32 0.07 07/06/16 05:50 07/07/16 23:13 EPA 3050B mg/kg JΗ Cadmium, Total 0.89 mg/kg 0.65 0.05 1 07/06/16 05:50 07/07/16 23:13 EPA 3050B 1,6010C JΗ 0.65 0.11 1 07/06/16 05:50 07/07/16 23:13 EPA 3050B 1,6010C Chromium, Total 1.4 mg/kg JΗ 38 0.65 0.12 1 07/06/16 05:50 07/07/16 23:13 EPA 3050B 1,6010C JΗ Copper, Total mg/kg Lead, Total 52 3.2 0.14 1 07/06/16 05:50 07/07/16 23:13 EPA 3050B 1,6010C JΗ mg/kg Mercury, Total ND mg/kg 0.11 0.02 1 07/06/16 10:40 07/11/16 18:00 EPA 7471B 1,7471B EΑ 1 07/06/16 05:50 07/07/16 23:13 EPA 3050B 1,6010C Nickel, Total 41 mg/kg 1.6 0.26 JΗ Selenium, Total 1.0 J mg/kg 1.3 0.18 1 07/06/16 05:50 07/07/16 23:13 EPA 3050B 1,6010C JΗ Silver, Total 0.18 J 0.65 0.13 1 07/06/16 05:50 07/07/16 23:13 EPA 3050B 1,6010C JH mg/kg 0.21 Thallium, Total 0.28 J 1.3 1 07/06/16 05:50 07/07/16 23:13 EPA 3050B 1,6010C JΗ mg/kg

1,6010C

JΗ

Zinc, Total

6300

mg/kg

32

4.6

10

07/06/16 05:50 07/08/16 02:21 EPA 3050B

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

 Lab ID:
 L1620368-03
 Date Collected:
 06/29/16 08:40

 Client ID:
 P3-1 (8-12)
 Date Received:
 06/30/16

Client ID: P3-1 (8-12) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil

Percent Solids: 48%

Dilution Date Date Prep Analytical

Percent Solids: 48%

Dilution Date Date Prep Analytical Method Analytical

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Mans	sfield Lab										
Antimony, Total	2.0	J	mg/kg	4.2	0.67	1	07/06/16 05:50	07/07/16 23:17	EPA 3050B	1,6010C	JH
Arsenic, Total	48		mg/kg	0.84	0.28	1	07/06/16 05:50	07/07/16 23:17	EPA 3050B	1,6010C	JH
Beryllium, Total	0.35	J	mg/kg	0.42	0.09	1	07/06/16 05:50	07/07/16 23:17	EPA 3050B	1,6010C	JH
Cadmium, Total	27		mg/kg	0.84	0.06	1	07/06/16 05:50	07/07/16 23:17	EPA 3050B	1,6010C	JH
Chromium, Total	8.8		mg/kg	0.84	0.14	1	07/06/16 05:50	07/07/16 23:17	EPA 3050B	1,6010C	JH
Copper, Total	660		mg/kg	0.84	0.15	1	07/06/16 05:50	07/07/16 23:17	EPA 3050B	1,6010C	JH
Lead, Total	1000		mg/kg	4.2	0.18	1	07/06/16 05:50	07/07/16 23:17	EPA 3050B	1,6010C	JH
Mercury, Total	0.56		mg/kg	0.14	0.03	1	07/06/16 10:40	07/11/16 18:02	EPA 7471B	1,7471B	EA
Nickel, Total	23		mg/kg	2.1	0.33	1	07/06/16 05:50	07/07/16 23:17	EPA 3050B	1,6010C	JH
Selenium, Total	1.4	J	mg/kg	1.7	0.22	1	07/06/16 05:50	07/07/16 23:17	EPA 3050B	1,6010C	JH
Silver, Total	2.3		mg/kg	0.84	0.17	1	07/06/16 05:50	07/07/16 23:17	EPA 3050B	1,6010C	JH
Thallium, Total	0.77	J	mg/kg	1.7	0.27	1		07/07/16 23:17		1,6010C	JH
Zinc, Total	7900		mg/kg	42	5.8	10		07/08/16 02:25		1,6010C	JH
-,			5.1.5	·			21, 22, 10 00,00		,,,,,		

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-04 Date Collected: 06/29/16 08:40

Client ID: P3-1 (12-16) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil
Percent Solids: 65%

Dilution Date Date Prep **Analytical** Method Factor **Prepared Analyzed** Method Result Qualifier RL MDL **Parameter Units Analyst** Total Metals - Mansfield Lab Antimony, Total ND mg/kg 3.0 0.49 1 07/06/16 05:50 07/07/16 23:22 EPA 3050B 1,6010C JΗ 3.3 0.20 1 07/06/16 05:50 07/07/16 23:22 EPA 3050B 1,6010C JΗ Arsenic, Total mg/kg 0.61 0.08 J 1 1,6010C Beryllium, Total 0.30 0.07 07/06/16 05:50 07/07/16 23:22 EPA 3050B mg/kg JΗ J Cadmium, Total 0.08 mg/kg 0.61 0.04 1 07/06/16 05:50 07/07/16 23:22 EPA 3050B 1,6010C JΗ 0.61 0.10 1 07/06/16 05:50 07/07/16 23:22 EPA 3050B 1,6010C Chromium, Total 3.5 mg/kg JΗ 20 0.61 0.11 1 07/06/16 05:50 07/07/16 23:22 EPA 3050B 1,6010C JΗ Copper, Total mg/kg Lead, Total 17 3.0 0.13 1 07/06/16 05:50 07/07/16 23:22 EPA 3050B 1,6010C JΗ mg/kg Mercury, Total ND mg/kg 0.10 0.02 1 07/06/16 10:40 07/11/16 18:04 EPA 7471B 1,7471B EΑ 1 07/06/16 05:50 07/07/16 23:22 EPA 3050B 1,6010C Nickel, Total 6.6 mg/kg 1.5 0.24 JΗ Selenium, Total 0.46 J mg/kg 1.2 0.16 1 07/06/16 05:50 07/07/16 23:22 EPA 3050B 1,6010C JΗ Silver, Total ND 0.61 0.12 1 07/06/16 05:50 07/07/16 23:22 EPA 3050B 1,6010C JH mg/kg 1.2 Thallium, Total ND 0.20 1 07/06/16 05:50 07/07/16 23:22 EPA 3050B 1,6010C JΗ mg/kg

1,6010C

JΗ

Zinc, Total

510

mg/kg

3.0

0.43

1

07/06/16 05:50 07/07/16 23:22 EPA 3050B

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: Date Collected: 06/29/16 08:55

Client ID: P3-9 (0-4) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil

Percent Solids: 79%

Dilution Date Date Prep Analytical

Parameter Result Qualifier Units RL MDL Factor Prepared Analyzed Method Method Analyst

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst	
Total Metals - Mansfield Lab												
Antimony, Total	1.7	J	mg/kg	2.4	0.39	1	07/06/16 05:50	07/07/16 23:27	EPA 3050B	1,6010C	JH	
Arsenic, Total	38		mg/kg	0.48	0.16	1	07/06/16 05:50	07/07/16 23:27	EPA 3050B	1,6010C	JH	
Beryllium, Total	0.16	J	mg/kg	0.24	0.05	1	07/06/16 05:50	07/07/16 23:27	EPA 3050B	1,6010C	JH	
Cadmium, Total	2.1		mg/kg	0.48	0.03	1	07/06/16 05:50	07/07/16 23:27	EPA 3050B	1,6010C	JH	
Chromium, Total	5.9		mg/kg	0.48	0.08	1	07/06/16 05:50	07/07/16 23:27	EPA 3050B	1,6010C	JH	
Copper, Total	210		mg/kg	0.48	0.09	1	07/06/16 05:50	07/07/16 23:27	EPA 3050B	1,6010C	JH	
Lead, Total	490		mg/kg	2.4	0.11	1	07/06/16 05:50	07/07/16 23:27	EPA 3050B	1,6010C	JH	
Mercury, Total	0.44		mg/kg	0.08	0.02	1	07/06/16 10:40	07/11/16 18:06	EPA 7471B	1,7471B	EA	
Nickel, Total	8.9		mg/kg	1.2	0.19	1	07/06/16 05:50	07/07/16 23:27	EPA 3050B	1,6010C	JH	
Selenium, Total	0.77	J	mg/kg	0.96	0.13	1	07/06/16 05:50	07/07/16 23:27	EPA 3050B	1,6010C	JH	
Silver, Total	1.4		mg/kg	0.48	0.10	1	07/06/16 05:50	07/07/16 23:27	EPA 3050B	1,6010C	JH	
Thallium, Total	0.28	J	mg/kg	0.96	0.15	1	07/06/16 05:50	07/07/16 23:27	EPA 3050B	1,6010C	JH	
Zinc, Total	1000		mg/kg	2.4	0.34	1	07/06/16 05:50	07/07/16 23:27	EPA 3050B	1,6010C	JH	

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: Date Collected: 06/29/16 08:55

Client ID: P3-9 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil

Percent Solids: 48%

Dilution Date Date Prep Analytical

Parameter Pesult Qualifier Units BL MDI Factor Prepared Analyzed Method Method Analyset

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Man	sfield I ah										
Total Motals Mail	Silcia Lab										
Antimony, Total	ND		mg/kg	4.1	0.66	1	07/06/16 05:5	0 07/07/16 23:31	EPA 3050B	1,6010C	JH
Arsenic, Total	3.0		mg/kg	0.83	0.27	1	07/06/16 05:5	0 07/07/16 23:31	EPA 3050B	1,6010C	JH
Beryllium, Total	ND		mg/kg	0.41	0.09	1	07/06/16 05:5	0 07/07/16 23:31	EPA 3050B	1,6010C	JH
Cadmium, Total	ND		mg/kg	0.83	0.06	1	07/06/16 05:5	0 07/07/16 23:31	EPA 3050B	1,6010C	JH
Chromium, Total	1.6		mg/kg	0.83	0.14	1	07/06/16 05:5	0 07/07/16 23:31	EPA 3050B	1,6010C	JH
Copper, Total	5.0		mg/kg	0.83	0.15	1	07/06/16 05:5	0 07/07/16 23:31	EPA 3050B	1,6010C	JH
Lead, Total	1.5	J	mg/kg	4.1	0.18	1	07/06/16 05:5	0 07/07/16 23:31	EPA 3050B	1,6010C	JH
Mercury, Total	ND		mg/kg	0.14	0.03	1	07/06/16 10:4	0 07/11/16 18:08	EPA 7471B	1,7471B	EA
Nickel, Total	11		mg/kg	2.1	0.33	1	07/06/16 05:5	0 07/07/16 23:31	EPA 3050B	1,6010C	JH
Selenium, Total	1.7		mg/kg	1.6	0.22	1	07/06/16 05:5	0 07/07/16 23:31	EPA 3050B	1,6010C	JH
Silver, Total	ND		mg/kg	0.83	0.16	1	07/06/16 05:5	0 07/07/16 23:31	EPA 3050B	1,6010C	JH
Thallium, Total	0.32	J	mg/kg	1.6	0.26	1	07/06/16 05:5	0 07/07/16 23:31	EPA 3050B	1,6010C	JH
Zinc, Total	2300		mg/kg	4.1	0.58	1	07/06/16 05:5	0 07/07/16 23:31	EPA 3050B	1,6010C	JH

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-07 Date Collected: 06/29/16 08:55

Client ID: P3-9 (8-12) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil
Percent Solids: 57%

Percent Solids: Dilution Date Date Prep **Analytical** Method Factor **Prepared Analyzed** Method Result Qualifier RL MDL **Parameter Units Analyst** Total Metals - Mansfield Lab Antimony, Total ND mg/kg 3.4 0.54 1 07/06/16 05:50 07/07/16 23:36 EPA 3050B 1,6010C JΗ 2.0 0.68 0.22 1 07/06/16 05:50 07/07/16 23:36 EPA 3050B 1,6010C JΗ Arsenic, Total mg/kg J 1 1,6010C Beryllium, Total 0.07 0.34 0.07 07/06/16 05:50 07/07/16 23:36 EPA 3050B mg/kg JΗ Cadmium, Total ND mg/kg 0.68 0.05 1 07/06/16 05:50 07/07/16 23:36 EPA 3050B 1,6010C JΗ 0.68 0.12 1 07/06/16 05:50 07/07/16 23:36 EPA 3050B 1,6010C Chromium, Total 3.7 mg/kg JΗ 5.0 0.68 0.12 1 07/06/16 05:50 07/07/16 23:36 EPA 3050B 1,6010C JΗ Copper, Total mg/kg Lead, Total ND 3.4 0.15 1 07/06/16 05:50 07/07/16 23:36 EPA 3050B 1,6010C JΗ mg/kg Mercury, Total ND mg/kg 0.12 0.02 1 07/06/16 10:40 07/11/16 18:10 EPA 7471B 1,7471B EΑ 1.7 0.27 1 07/06/16 05:50 07/07/16 23:36 EPA 3050B 1,6010C Nickel, Total 3.9 mg/kg JΗ Selenium, Total 0.45 J mg/kg 1.4 0.18 1 07/06/16 05:50 07/07/16 23:36 EPA 3050B 1,6010C JΗ Silver, Total ND 0.68 0.14 1 07/06/16 05:50 07/07/16 23:36 EPA 3050B 1,6010C JH mg/kg Thallium, Total ND 1.4 0.22 1 07/06/16 05:50 07/07/16 23:36 EPA 3050B 1,6010C JΗ mg/kg

1,6010C

JΗ

Zinc, Total

20

mg/kg

3.4

0.47

1

07/06/16 05:50 07/07/16 23:36 EPA 3050B

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: Date Collected: 06/29/16 08:55

Client ID: P3-9 (12-16) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil

Percent Solids: 58%

Dilution Date Date Prep Analytical

Property Solids: 58%

Dilution Date Date Prep Analytical Method
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Mans	field Lab										
Antimony, Total	ND		mg/kg	3.4	0.54	1	07/06/16 05:50	07/07/16 23:40	EPA 3050B	1,6010C	JH
Arsenic, Total	1.0		mg/kg	0.68	0.22	1	07/06/16 05:50	07/07/16 23:40	EPA 3050B	1,6010C	JH
Beryllium, Total	ND		mg/kg	0.34	0.08	1	07/06/16 05:50	07/07/16 23:40	EPA 3050B	1,6010C	JH
Cadmium, Total	ND		mg/kg	0.68	0.05	1	07/06/16 05:50	07/07/16 23:40	EPA 3050B	1,6010C	JH
Chromium, Total	2.7		mg/kg	0.68	0.12	1	07/06/16 05:50	07/07/16 23:40	EPA 3050B	1,6010C	JH
Copper, Total	3.1		mg/kg	0.68	0.12	1	07/06/16 05:50	07/07/16 23:40	EPA 3050B	1,6010C	JH
Lead, Total	ND		mg/kg	3.4	0.15	1	07/06/16 05:50	07/07/16 23:40	EPA 3050B	1,6010C	JH
Mercury, Total	ND		mg/kg	0.12	0.03	1	07/06/16 10:40	07/11/16 18:11	EPA 7471B	1,7471B	EA
Nickel, Total	3.1		mg/kg	1.7	0.27	1	07/06/16 05:50	07/07/16 23:40	EPA 3050B	1,6010C	JH
Selenium, Total	0.35	J	mg/kg	1.4	0.18	1	07/06/16 05:50	07/07/16 23:40	EPA 3050B	1,6010C	JH
Silver, Total	ND		mg/kg	0.68	0.14	1	07/06/16 05:50	07/07/16 23:40	EPA 3050B	1,6010C	JH
Thallium, Total	ND		mg/kg	1.4	0.22	1	07/06/16 05:50	07/07/16 23:40	EPA 3050B	1,6010C	JH
Zinc, Total	14		mg/kg	3.4	0.48	1	07/06/16 05:50	07/07/16 23:40	EPA 3050B	1,6010C	JH

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-09 Date Collected: 06/29/16 09:05

Client ID: P3-8 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil
Percent Solids: 61%

i ordorit dollad.	0170					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Man	sfield Lab										
Total Motalo Man	0.1.0.1d L dD										
Antimony, Total	ND		mg/kg	3.3	0.52	1	07/06/16 05:50	0 07/08/16 00:06	EPA 3050B	1,6010C	JH
Arsenic, Total	12		mg/kg	0.65	0.22	1	07/06/16 05:50	0 07/08/16 00:06	EPA 3050B	1,6010C	JH
Beryllium, Total	ND		mg/kg	0.33	0.07	1	07/06/16 05:50	0 07/08/16 00:06	EPA 3050B	1,6010C	JH
Cadmium, Total	14		mg/kg	0.65	0.05	1	07/06/16 05:50	0 07/08/16 00:06	EPA 3050B	1,6010C	JH
Chromium, Total	2.4		mg/kg	0.65	0.11	1	07/06/16 05:50	0 07/08/16 00:06	EPA 3050B	1,6010C	JH
Copper, Total	150		mg/kg	0.65	0.12	1	07/06/16 05:50	0 07/08/16 00:06	EPA 3050B	1,6010C	JH
Lead, Total	ND		mg/kg	33	1.4	10	07/06/16 05:50	0 07/08/16 02:29	EPA 3050B	1,6010C	JH
Mercury, Total	ND		mg/kg	0.11	0.02	1	07/06/16 10:40	0 07/11/16 18:17	EPA 7471B	1,7471B	EA
Nickel, Total	27		mg/kg	1.6	0.26	1	07/06/16 05:50	0 07/08/16 00:06	EPA 3050B	1,6010C	JH
Selenium, Total	1.8		mg/kg	1.3	0.18	1	07/06/16 05:50	0 07/08/16 00:06	EPA 3050B	1,6010C	JH
Silver, Total	0.13	J	mg/kg	0.65	0.13	1	07/06/16 05:50	0 07/08/16 00:06	EPA 3050B	1,6010C	JH
Thallium, Total	0.54	J	mg/kg	1.3	0.21	1	07/06/16 05:50	0 07/08/16 00:06	EPA 3050B	1,6010C	JH
Zinc, Total	18000		mg/kg	33	4.6	10	07/06/16 05:50	0 07/08/16 02:29	EPA 3050B	1,6010C	JH

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-10 Date Collected: 06/29/16 09:15

Client ID: P3-7 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil

Percent Solids: 62%

Dilution Date Date Prep Analytical

Parameter Result Qualifier Units RL MDL Factor Prepared Analyzed Method Method Analyst

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Mans	sfield Lab										
Antimony, Total	ND		mg/kg	3.1	0.50	1	07/06/16 05:50	07/08/16 00:11	EPA 3050B	1,6010C	JH
Arsenic, Total	12		mg/kg	0.62	0.20	1	07/06/16 05:50	07/08/16 00:11	EPA 3050B	1,6010C	JH
Beryllium, Total	0.21	J	mg/kg	0.31	0.07	1	07/06/16 05:50	07/08/16 00:11	EPA 3050B	1,6010C	JH
Cadmium, Total	ND		mg/kg	0.62	0.04	1	07/06/16 05:50	07/08/16 00:11	EPA 3050B	1,6010C	JH
Chromium, Total	7.3		mg/kg	0.62	0.10	1	07/06/16 05:50	07/08/16 00:11	EPA 3050B	1,6010C	JH
Copper, Total	11		mg/kg	0.62	0.11	1	07/06/16 05:50	07/08/16 00:11	EPA 3050B	1,6010C	JH
Lead, Total	13		mg/kg	3.1	0.14	1	07/06/16 05:50	07/08/16 00:11	EPA 3050B	1,6010C	JH
Mercury, Total	0.03	J	mg/kg	0.10	0.02	1	07/06/16 10:40	07/11/16 18:19	EPA 7471B	1,7471B	EA
Nickel, Total	12		mg/kg	1.6	0.25	1	07/06/16 05:50	07/08/16 00:11	EPA 3050B	1,6010C	JH
Selenium, Total	0.35	J	mg/kg	1.2	0.17	1	07/06/16 05:50	07/08/16 00:11	EPA 3050B	1,6010C	JH
Silver, Total	ND		mg/kg	0.62	0.12	1	07/06/16 05:50	07/08/16 00:11	EPA 3050B	1,6010C	JH
Thallium, Total	ND		mg/kg	1.2	0.20	1	07/06/16 05:50	07/08/16 00:11	EPA 3050B	1,6010C	JH
Zinc, Total	33		mg/kg	3.1	0.43	1	07/06/16 05:50	07/08/16 00:11	EPA 3050B	1,6010C	JH
-,			3.1.9			•	21, 22, 10 00,00		,,,,,		

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-11 Date Collected: 06/29/16 09:15

Client ID: P3-7 (8-12) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil
Percent Solids: 45%

Percent Solids:	45%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Mans	sfield Lab										
Antimony, Total	ND		mg/kg	4.5	0.72	1	07/06/16 05:50	07/08/16 00:15	EPA 3050B	1,6010C	JH
Arsenic, Total	1.0		mg/kg	0.90	0.30	1	07/06/16 05:50	07/08/16 00:15	EPA 3050B	1,6010C	JH
Beryllium, Total	ND		mg/kg	0.45	0.10	1	07/06/16 05:50	0 07/08/16 00:15	EPA 3050B	1,6010C	JH
Cadmium, Total	ND		mg/kg	0.90	0.06	1	07/06/16 05:50	07/08/16 00:15	EPA 3050B	1,6010C	JH
Chromium, Total	0.70	J	mg/kg	0.90	0.15	1	07/06/16 05:50	07/08/16 00:15	EPA 3050B	1,6010C	JH
Copper, Total	1.2		mg/kg	0.90	0.16	1	07/06/16 05:50	07/08/16 00:15	EPA 3050B	1,6010C	JH
Lead, Total	ND		mg/kg	4.5	0.20	1	07/06/16 05:50	07/08/16 00:15	EPA 3050B	1,6010C	JH
Mercury, Total	ND		mg/kg	0.15	0.03	1	07/06/16 10:40	07/11/16 18:21	EPA 7471B	1,7471B	EA
Nickel, Total	20		mg/kg	2.2	0.36	1	07/06/16 05:50	07/08/16 00:15	EPA 3050B	1,6010C	JH
Selenium, Total	1.4	J	mg/kg	1.8	0.24	1	07/06/16 05:50	0 07/08/16 00:15	EPA 3050B	1,6010C	JH
Silver, Total	ND		mg/kg	0.90	0.18	1	07/06/16 05:50	0 07/08/16 00:15	EPA 3050B	1,6010C	JH
Thallium, Total	ND		mg/kg	1.8	0.29	1	07/06/16 05:50	07/08/16 00:15	EPA 3050B	1,6010C	JH
Zinc, Total	1300		mg/kg	4.5	0.63	1	07/06/16 05:50	0 07/08/16 00:15	EPA 3050B	1,6010C	JH

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 **Report Date:** 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-12 Date Collected: 06/29/16 09:20

Date Received: Client ID: P3-6 (4-8) 06/30/16 SYRACUSE, NY Field Prep: Sample Location: Not Specified

Matrix: Soil 63% Percent Solids:

Analytical Method Dilution Date Date Prep **Factor Prepared** Analyzed Method **Parameter** Result Qualifier Units RLMDL Analyst

i arameter	itesuit	Qualifici	Oilles	11/1	MIDE		•	Allalyst
Total Metals - Ma	nsfield Lab							
Antimony, Total	ND		mg/kg	3.1	0.49	1	07/06/16 05:50 07/08/16 00:19 EPA 3050B 1,6010	С ЈН
Arsenic, Total	6.5		mg/kg	0.61	0.20	1	07/06/16 05:50 07/08/16 00:19 EPA 3050B 1,6010	С ЈН
Beryllium, Total	0.15	J	mg/kg	0.31	0.07	1	07/06/16 05:50 07/08/16 00:19 EPA 3050B 1,6010	С ЈН
Cadmium, Total	5.3		mg/kg	0.61	0.04	1	07/06/16 05:50 07/08/16 00:19 EPA 3050B 1,6010	С ЈН
Chromium, Total	80		mg/kg	0.61	0.10	1	07/06/16 05:50 07/08/16 00:19 EPA 3050B 1,6010	С ЈН
Copper, Total	26		mg/kg	0.61	0.11	1	07/06/16 05:50 07/08/16 00:19 EPA 3050B 1,6010	С ЈН
Lead, Total	0.89	J	mg/kg	3.1	0.13	1	07/06/16 05:50 07/08/16 00:19 EPA 3050B 1,6010	С ЈН
Mercury, Total	0.08	J	mg/kg	0.10	0.02	1	07/06/16 10:40 07/11/16 18:23 EPA 7471B 1,7471	B EA
Nickel, Total	110		mg/kg	1.5	0.24	1	07/06/16 05:50 07/08/16 00:19 EPA 3050B 1,6010	С ЈН
Selenium, Total	1.1	J	mg/kg	1.2	0.16	1	07/06/16 05:50 07/08/16 00:19 EPA 3050B 1,6010	С ЈН
Silver, Total	ND		mg/kg	0.61	0.12	1	07/06/16 05:50 07/08/16 00:19 EPA 3050B 1,6010	С ЈН
Thallium, Total	ND		mg/kg	1.2	0.20	1	07/06/16 05:50 07/08/16 00:19 EPA 3050B 1,6010	С ЈН
Zinc, Total	2000		mg/kg	3.1	0.43	1	07/06/16 05:50 07/08/16 00:19 EPA 3050B 1,6010	С ЈН

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-13 Date Collected: 06/29/16 09:20

Client ID: P3-6 (8-12) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil

Percent Solids: 46%

Dilution Date Date Prep Analytical

Percent Solids: 46%

Dilution Date Date Prep Analytical Method Method Analyzed Method Method Analyzed

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Mans	efiold Lab										
Total Metals - Mails	sileiu Lab										
Antimony, Total	ND		mg/kg	4.3	0.68	1	07/06/16 05:50	07/08/16 00:24	EPA 3050B	1,6010C	JH
Arsenic, Total	0.86		mg/kg	0.86	0.28	1	07/06/16 05:50	07/08/16 00:24	EPA 3050B	1,6010C	JH
Beryllium, Total	ND		mg/kg	0.43	0.09	1	07/06/16 05:50	07/08/16 00:24	EPA 3050B	1,6010C	JH
Cadmium, Total	ND		mg/kg	0.86	0.06	1	07/06/16 05:50	07/08/16 00:24	EPA 3050B	1,6010C	JH
Chromium, Total	0.73	J	mg/kg	0.86	0.14	1	07/06/16 05:50	07/08/16 00:24	EPA 3050B	1,6010C	JH
Copper, Total	1.4		mg/kg	0.86	0.15	1	07/06/16 05:50	07/08/16 00:24	EPA 3050B	1,6010C	JH
Lead, Total	ND		mg/kg	4.3	0.19	1	07/06/16 05:50	07/08/16 00:24	EPA 3050B	1,6010C	JH
Mercury, Total	ND		mg/kg	0.14	0.03	1	07/06/16 10:40	07/11/16 18:25	EPA 7471B	1,7471B	EA
Nickel, Total	10		mg/kg	2.1	0.34	1	07/06/16 05:50	07/08/16 00:24	EPA 3050B	1,6010C	JH
Selenium, Total	1.1	J	mg/kg	1.7	0.23	1	07/06/16 05:50	07/08/16 00:24	EPA 3050B	1,6010C	JH
Silver, Total	ND		mg/kg	0.86	0.17	1	07/06/16 05:50	07/08/16 00:24	EPA 3050B	1,6010C	JH
Thallium, Total	ND		mg/kg	1.7	0.27	1	07/06/16 05:50	07/08/16 00:24	EPA 3050B	1,6010C	JH
Zinc, Total	550		mg/kg	4.3	0.60	1	07/06/16 05:50	07/08/16 00:24	EPA 3050B	1,6010C	JH

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: Date Collected: 06/29/16 09:35

Client ID: P3-5 (6-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil

Percent Solids: 56%

Dilution Date Date Prep Analytical

Parameter Result Qualifier Units RI MDI Factor Prepared Analyzed Method Method Analyst

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Man	sfield Lab										
Antimony, Total	ND		mg/kg	3.5	0.56	1	07/06/16 05:50	07/08/16 00:28	EPA 3050B	1,6010C	JH
Arsenic, Total	1.3		mg/kg	0.71	0.23	1	07/06/16 05:50	07/08/16 00:28	EPA 3050B	1,6010C	JH
Beryllium, Total	ND		mg/kg	0.35	0.08	1	07/06/16 05:50	07/08/16 00:28	EPA 3050B	1,6010C	JH
Cadmium, Total	0.09	J	mg/kg	0.71	0.05	1	07/06/16 05:50	07/08/16 00:28	EPA 3050B	1,6010C	JH
Chromium, Total	2.4		mg/kg	0.71	0.12	1	07/06/16 05:50	07/08/16 00:28	EPA 3050B	1,6010C	JH
Copper, Total	3.7		mg/kg	0.71	0.13	1	07/06/16 05:50	07/08/16 00:28	EPA 3050B	1,6010C	JH
Lead, Total	1.9	J	mg/kg	3.5	0.16	1	07/06/16 05:50	07/08/16 00:28	EPA 3050B	1,6010C	JH
Mercury, Total	0.03	J	mg/kg	0.12	0.03	1	07/06/16 10:40	07/11/16 18:27	EPA 7471B	1,7471B	EA
Nickel, Total	3.7		mg/kg	1.8	0.28	1	07/06/16 05:50	07/08/16 00:28	EPA 3050B	1,6010C	JH
Selenium, Total	ND		mg/kg	1.4	0.19	1	07/06/16 05:50	07/08/16 00:28	EPA 3050B	1,6010C	JH
Silver, Total	ND		mg/kg	0.71	0.14	1	07/06/16 05:50	07/08/16 00:28	EPA 3050B	1,6010C	JH
Thallium, Total	ND		mg/kg	1.4	0.23	1	07/06/16 05:50	07/08/16 00:28	EPA 3050B	1,6010C	JH
Zinc, Total	29		mg/kg	3.5	0.50	1	07/06/16 05:50	07/08/16 00:28	EPA 3050B	1,6010C	JH

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-15 Date Collected: 06/29/16 10:45

Client ID: P3-4 (6-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil

Percent Solids: 49%

Dilution Date Date Prep Analytical

Parameter Result Qualifier Units RL MDL Factor Prepared Analyzed Method Method Analyst

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Man	sfield Lab										
Antimony, Total	ND		mg/kg	3.8	0.62	1	07/06/16 05:50	07/08/16 00:33	EPA 3050B	1,6010C	JH
Arsenic, Total	1.1		mg/kg	0.77	0.25	1	07/06/16 05:50	07/08/16 00:33	EPA 3050B	1,6010C	JH
Beryllium, Total	ND		mg/kg	0.38	0.09	1	07/06/16 05:50	07/08/16 00:33	EPA 3050B	1,6010C	JH
Cadmium, Total	ND		mg/kg	0.77	0.05	1	07/06/16 05:50	07/08/16 00:33	EPA 3050B	1,6010C	JH
Chromium, Total	0.59	J	mg/kg	0.77	0.13	1	07/06/16 05:50	07/08/16 00:33	EPA 3050B	1,6010C	JH
Copper, Total	1.8		mg/kg	0.77	0.14	1	07/06/16 05:50	07/08/16 00:33	EPA 3050B	1,6010C	JH
Lead, Total	ND		mg/kg	3.8	0.17	1	07/06/16 05:50	07/08/16 00:33	EPA 3050B	1,6010C	JH
Mercury, Total	ND		mg/kg	0.13	0.03	1	07/06/16 10:40	07/11/16 18:28	EPA 7471B	1,7471B	EA
Nickel, Total	4.0		mg/kg	1.9	0.31	1	07/06/16 05:50	07/08/16 00:33	EPA 3050B	1,6010C	JH
Selenium, Total	2.8		mg/kg	1.5	0.21	1	07/06/16 05:50	07/08/16 00:33	EPA 3050B	1,6010C	JH
Silver, Total	ND		mg/kg	0.77	0.15	1	07/06/16 05:50	07/08/16 00:33	EPA 3050B	1,6010C	JH
Thallium, Total	ND		mg/kg	1.5	0.25	1	07/06/16 05:50	07/08/16 00:33	EPA 3050B	1,6010C	JH
Zinc, Total	5.9		mg/kg	3.8	0.54	1	07/06/16 05:50	07/08/16 00:33	EPA 3050B	1,6010C	JH

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-16 Date Collected: 06/29/16 10:45

Client ID: P3-4 (10-12) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil

Percent Solids: 43%

Dilution Date Date Prep Analytical

Percent Solids: 43%

Dilution Date Prep Analytical Method
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Ma	nsfield Lab										
Antimony, Total	ND		mg/kg	4.5	0.73	1	07/06/16 05:50	07/08/16 01:21	EPA 3050B	1,6010C	JH
Arsenic, Total	2.1		mg/kg	0.91	0.30	1	07/06/16 05:50	07/08/16 01:21	EPA 3050B	1,6010C	JH
Beryllium, Total	0.11	J	mg/kg	0.45	0.10	1	07/06/16 05:50	07/08/16 01:21	EPA 3050B	1,6010C	JH
Cadmium, Total	ND		mg/kg	0.91	0.06	1	07/06/16 05:50	07/08/16 01:21	EPA 3050B	1,6010C	JH
Chromium, Total	4.8		mg/kg	0.91	0.15	1	07/06/16 05:50	07/08/16 01:21	EPA 3050B	1,6010C	JH
Copper, Total	7.5		mg/kg	0.91	0.16	1	07/06/16 05:50	07/08/16 01:21	EPA 3050B	1,6010C	JH
Lead, Total	ND		mg/kg	4.5	0.20	1	07/06/16 05:50	07/08/16 01:21	EPA 3050B	1,6010C	JH
Mercury, Total	ND		mg/kg	0.15	0.03	1	07/06/16 10:40	07/11/16 18:30	EPA 7471B	1,7471B	EA
Nickel, Total	13		mg/kg	2.3	0.36	1	07/06/16 05:50	07/08/16 01:21	EPA 3050B	1,6010C	JH
Selenium, Total	2.8		mg/kg	1.8	0.24	1	07/06/16 05:50	07/08/16 01:21	EPA 3050B	1,6010C	JH
Silver, Total	ND		mg/kg	0.91	0.18	1	07/06/16 05:50	07/08/16 01:21	EPA 3050B	1,6010C	JH
Thallium, Total	ND		mg/kg	1.8	0.29	1	07/06/16 05:50	07/08/16 01:21	EPA 3050B	1,6010C	JH
Zinc, Total	15		mg/kg	4.5	0.64	1	07/06/16 05:50	07/08/16 01:21	EPA 3050B	1,6010C	JH

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-17 Date Collected: 06/29/16 11:30

Client ID: P3-3 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil
Percent Solids: 53%

J

mg/kg

mg/kg

0.53

190

Dilution Date Date Prep **Analytical** Method Factor **Prepared Analyzed** Method Result Qualifier RL MDL **Parameter Units Analyst** Total Metals - Mansfield Lab Antimony, Total ND mg/kg 3.6 0.58 1 07/06/16 05:50 07/08/16 01:25 EPA 3050B 1,6010C JΗ 2.4 0.24 1 07/06/16 05:50 07/08/16 01:25 EPA 3050B 1,6010C JΗ Arsenic, Total mg/kg 0.72 1 1,6010C Beryllium, Total ND 0.36 0.08 07/06/16 05:50 07/08/16 01:25 EPA 3050B mg/kg JΗ Cadmium, Total ND mg/kg 0.72 0.05 1 07/06/16 05:50 07/08/16 01:25 EPA 3050B 1,6010C JΗ 2.2 0.72 0.12 1 07/06/16 05:50 07/08/16 01:25 EPA 3050B 1,6010C Chromium, Total mg/kg JΗ 6.7 0.72 0.13 1 07/06/16 05:50 07/08/16 01:25 EPA 3050B 1,6010C JΗ Copper, Total mg/kg Lead, Total 5.6 3.6 0.16 1 07/06/16 05:50 07/08/16 01:25 EPA 3050B 1,6010C JΗ mg/kg Mercury, Total ND mg/kg 0.12 0.03 1 07/06/16 10:40 07/11/16 18:32 EPA 7471B 1,7471B EΑ 8.7 1 07/06/16 05:50 07/08/16 01:25 EPA 3050B 1,6010C Nickel, Total mg/kg 1.8 0.29 JΗ Selenium, Total 2.1 mg/kg 1.4 0.19 1 07/06/16 05:50 07/08/16 01:25 EPA 3050B 1,6010C JΗ Silver, Total ND 0.72 0.14 1 07/06/16 05:50 07/08/16 01:25 EPA 3050B 1,6010C JH mg/kg

1.4

3.6

0.23

0.50

1

1

07/06/16 05:50 07/08/16 01:25 EPA 3050B

07/06/16 05:50 07/08/16 01:25 EPA 3050B

1,6010C

1,6010C

JΗ

JΗ

Thallium, Total

Zinc, Total

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-18 Date Collected: 06/29/16 11:30

Client ID: P3-3 (8-10) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil

Percent Solids: 49%

Dilution Date Date Prep Analytical

Percent Solids: 49%

Dilution Date Prep Analytical Method
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Mar	nsfield I ah										
Total Motalo Mai	ionoia Lab										
Antimony, Total	ND		mg/kg	4.0	0.64	1	07/06/16 05:50	0 07/08/16 01:30	EPA 3050B	1,6010C	JH
Arsenic, Total	1.9		mg/kg	0.80	0.26	1	07/06/16 05:50	0 07/08/16 01:30	EPA 3050B	1,6010C	JH
Beryllium, Total	ND		mg/kg	0.40	0.09	1	07/06/16 05:50	0 07/08/16 01:30	EPA 3050B	1,6010C	JH
Cadmium, Total	ND		mg/kg	0.80	0.06	1	07/06/16 05:50	0 07/08/16 01:30	EPA 3050B	1,6010C	JH
Chromium, Total	1.4		mg/kg	0.80	0.14	1	07/06/16 05:50	0 07/08/16 01:30	EPA 3050B	1,6010C	JH
Copper, Total	2.8		mg/kg	0.80	0.14	1	07/06/16 05:50	0 07/08/16 01:30	EPA 3050B	1,6010C	JH
Lead, Total	2.1	J	mg/kg	4.0	0.18	1	07/06/16 05:50	0 07/08/16 01:30	EPA 3050B	1,6010C	JH
Mercury, Total	ND		mg/kg	0.13	0.03	1	07/06/16 10:4	0 07/11/16 18:34	EPA 7471B	1,7471B	EA
Nickel, Total	15		mg/kg	2.0	0.32	1	07/06/16 05:50	0 07/08/16 01:30	EPA 3050B	1,6010C	JH
Selenium, Total	2.6		mg/kg	1.6	0.22	1	07/06/16 05:50	0 07/08/16 01:30	EPA 3050B	1,6010C	JH
Silver, Total	ND		mg/kg	0.80	0.16	1	07/06/16 05:50	0 07/08/16 01:30	EPA 3050B	1,6010C	JH
Thallium, Total	3.3		mg/kg	1.6	0.26	1	07/06/16 05:50	0 07/08/16 01:30	EPA 3050B	1,6010C	JH
Zinc, Total	30		mg/kg	4.0	0.56	1	07/06/16 05:50	0 07/08/16 01:30	EPA 3050B	1,6010C	JH

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: Date Collected: 06/29/16 11:30

Client ID: P3-3 (12-14) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil

Percent Solids: 72%

Dilution Date Date Prep Analytical

Discrepance Analyzed Method M

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Man	sfield I ab										
										_	
Antimony, Total	ND		mg/kg	2.6	0.42	1	07/06/16 05:50	07/08/16 01:34	EPA 3050B	1,6010C	JH
Arsenic, Total	3.7		mg/kg	0.53	0.18	1	07/06/16 05:50	07/08/16 01:34	EPA 3050B	1,6010C	JH
Beryllium, Total	ND		mg/kg	0.26	0.06	1	07/06/16 05:50	07/08/16 01:34	EPA 3050B	1,6010C	JH
Cadmium, Total	ND		mg/kg	0.53	0.04	1	07/06/16 05:50	07/08/16 01:34	EPA 3050B	1,6010C	JH
Chromium, Total	1.1		mg/kg	0.53	0.09	1	07/06/16 05:50	07/08/16 01:34	EPA 3050B	1,6010C	JH
Copper, Total	0.74		mg/kg	0.53	0.10	1	07/06/16 05:50	07/08/16 01:34	EPA 3050B	1,6010C	JH
Lead, Total	ND		mg/kg	26	1.2	10	07/06/16 05:50	07/08/16 02:33	EPA 3050B	1,6010C	JH
Mercury, Total	ND		mg/kg	0.09	0.02	1	07/06/16 10:40	07/11/16 18:40	EPA 7471B	1,7471B	EA
Nickel, Total	0.86	J	mg/kg	1.3	0.21	1	07/06/16 05:50	07/08/16 01:34	EPA 3050B	1,6010C	JH
Selenium, Total	0.49	J	mg/kg	1.1	0.14	1	07/06/16 05:50	07/08/16 01:34	EPA 3050B	1,6010C	JH
Silver, Total	ND		mg/kg	0.53	0.11	1	07/06/16 05:50	07/08/16 01:34	EPA 3050B	1,6010C	JH
Thallium, Total	0.33	J	mg/kg	1.1	0.17	1	07/06/16 05:50	07/08/16 01:34	EPA 3050B	1,6010C	JH
Zinc, Total	4.1		mg/kg	2.6	0.37	1	07/06/16 05:50	07/08/16 01:34	EPA 3050B	1,6010C	JH

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: Date Collected: 06/29/16 12:00

Client ID: P3-2 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil

Percent Solids: 43%

Dilution Date Date Prep Analytical

Discrepance Analyzed Method Method Analytical

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Ma	ınsfield Lab										
Antimony, Total	ND		mg/kg	4.6	0.74	1	07/06/16 05:50	07/08/16 01:39	EPA 3050B	1,6010C	JH
Arsenic, Total	0.99		mg/kg	0.92	0.30	1	07/06/16 05:50	07/08/16 01:39	EPA 3050B	1,6010C	JH
Beryllium, Total	ND		mg/kg	0.46	0.10	1	07/06/16 05:50	07/08/16 01:39	EPA 3050B	1,6010C	JH
Cadmium, Total	ND		mg/kg	0.92	0.07	1	07/06/16 05:50	07/08/16 01:39	EPA 3050B	1,6010C	JH
Chromium, Total	1.0		mg/kg	0.92	0.16	1	07/06/16 05:50	07/08/16 01:39	EPA 3050B	1,6010C	JH
Copper, Total	1.1		mg/kg	0.92	0.17	1	07/06/16 05:50	07/08/16 01:39	EPA 3050B	1,6010C	JH
Lead, Total	ND		mg/kg	4.6	0.20	1	07/06/16 05:50	07/08/16 01:39	EPA 3050B	1,6010C	JH
Mercury, Total	ND		mg/kg	0.15	0.03	1	07/06/16 10:40	07/11/16 18:41	EPA 7471B	1,7471B	EA
Nickel, Total	4.6		mg/kg	2.3	0.37	1	07/06/16 05:50	07/08/16 01:39	EPA 3050B	1,6010C	JH
Selenium, Total	2.5		mg/kg	1.8	0.25	1	07/06/16 05:50	07/08/16 01:39	EPA 3050B	1,6010C	JH
Silver, Total	ND		mg/kg	0.92	0.18	1	07/06/16 05:50	07/08/16 01:39	EPA 3050B	1,6010C	JH
Thallium, Total	0.40	J	mg/kg	1.8	0.30	1	07/06/16 05:50	07/08/16 01:39	EPA 3050B	1,6010C	JH
Zinc, Total	12		mg/kg	4.6	0.65	1	07/06/16 05:50	07/08/16 01:39	EPA 3050B	1,6010C	JH

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

 Lab ID:
 L1620368-21
 Date Collected:
 06/29/16 12:00

 Client ID:
 P3-2 (8-10)
 Date Received:
 06/30/16

Client ID: P3-2 (8-10) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil
Percent Solids: 53%

Nickel, Total

Silver, Total

Zinc, Total

Thallium, Total

Selenium, Total

8.8

2.0

ND

ND

15

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

1.8

1.4

0.72

1.4

3.6

Dilution Date Date Prep **Analytical** Method Factor **Prepared Analyzed** Method Result Qualifier RL MDL **Parameter Units Analyst** Total Metals - Mansfield Lab Antimony, Total ND mg/kg 3.6 0.58 1 07/06/16 06:39 07/08/16 16:33 EPA 3050B 1,6010C JΗ 0.629 J 0.238 1 1,6010C JΗ Arsenic, Total mg/kg 0.723 07/06/16 06:39 07/08/16 16:33 EPA 3050B 1 1,6010C Beryllium, Total ND 0.36 0.08 07/06/16 06:39 07/08/16 16:33 EPA 3050B mg/kg JΗ Cadmium, Total ND mg/kg 0.72 0.05 1 07/06/16 06:39 07/08/16 16:33 EPA 3050B 1,6010C JΗ 0.72 0.12 1 07/06/16 06:39 07/08/16 16:33 EPA 3050B 1,6010C Chromium, Total 4.8 mg/kg JΗ 15 0.72 0.13 1 07/06/16 06:39 07/08/16 16:33 EPA 3050B 1,6010C JΗ Copper, Total mg/kg Lead, Total 2.9 J 3.6 0.16 1 07/06/16 06:39 07/08/16 16:33 EPA 3050B 1,6010C JΗ mg/kg Mercury, Total ND mg/kg 0.12 0.03 1 07/06/16 10:40 07/11/16 18:47 EPA 7471B 1,7471B EΑ

0.29

0.20

0.14

0.23

0.51

1

1

1

1

1

07/06/16 06:39 07/08/16 16:33 EPA 3050B

1,6010C

1,6010C

1,6010C

1,6010C

1,6010C

JΗ

JΗ

JH

JΗ

JΗ

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: Date Collected: 06/29/16 12:10

Client ID: P3-10 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil

Percent Solids: 60%

Dilution Date Date Prep Analytical

Percent Solids: 60%

Dilution Date Date Prep Analytical Method Analyzed Method Method Analyzed

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Mans	sfield Lab										
Antimony, Total	ND		mg/kg	3.3	0.53	1	07/06/16 06:39	07/08/16 17:01	EPA 3050B	1,6010C	JH
Arsenic, Total	1.3		mg/kg	0.66	0.22	1	07/06/16 06:39	07/08/16 17:01	EPA 3050B	1,6010C	JH
Beryllium, Total	ND		mg/kg	0.33	0.07	1	07/06/16 06:39	07/08/16 17:01	EPA 3050B	1,6010C	JH
Cadmium, Total	ND		mg/kg	0.66	0.05	1	07/06/16 06:39	07/08/16 17:01	EPA 3050B	1,6010C	JH
Chromium, Total	2.0		mg/kg	0.66	0.11	1	07/06/16 06:39	07/08/16 17:01	EPA 3050B	1,6010C	JH
Copper, Total	3.8		mg/kg	0.66	0.12	1	07/06/16 06:39	07/08/16 17:01	EPA 3050B	1,6010C	JH
Lead, Total	3.7		mg/kg	3.3	0.14	1	07/06/16 06:39	07/08/16 17:01	EPA 3050B	1,6010C	JH
Mercury, Total	ND		mg/kg	0.11	0.02	1	07/06/16 10:40	07/11/16 18:55	EPA 7471B	1,7471B	EA
Nickel, Total	28		mg/kg	1.6	0.26	1	07/06/16 06:39	07/08/16 17:01	EPA 3050B	1,6010C	JH
Selenium, Total	0.69	J	mg/kg	1.3	0.18	1	07/06/16 06:39	07/08/16 17:01	EPA 3050B	1,6010C	JH
Silver, Total	ND		mg/kg	0.66	0.13	1	07/06/16 06:39	07/08/16 17:01	EPA 3050B	1,6010C	JH
Thallium, Total	ND		mg/kg	1.3	0.21	1	07/06/16 06:39	07/08/16 17:01	EPA 3050B	1,6010C	JH
Zinc, Total	3300		mg/kg	16	2.3	5	07/06/16 06:39	07/11/16 17:44	EPA 3050B	1,6010C	PS

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

 Lab ID:
 L1620368-23
 Date Collected:
 06/29/16 12:10

 Client ID:
 P3-10 (8-10)
 Date Received:
 06/30/16

Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil

58% Percent Solids: Dilution Date Date Prep **Analytical** Method Factor **Prepared Analyzed** Method Result Qualifier RL MDL **Parameter Units Analyst** Total Metals - Mansfield Lab Antimony, Total ND mg/kg 3.4 0.54 1 07/06/16 06:39 07/08/16 17:05 EPA 3050B 1,6010C JΗ 0.53 J 0.68 0.22 1 1,6010C JΗ Arsenic, Total mg/kg 07/06/16 06:39 07/08/16 17:05 EPA 3050B 1 1,6010C Beryllium, Total ND 0.34 0.07 07/06/16 06:39 07/08/16 17:05 EPA 3050B mg/kg JΗ Cadmium, Total ND mg/kg 0.68 0.05 1 07/06/16 06:39 07/08/16 17:05 EPA 3050B 1,6010C JΗ 0.68 0.12 1 07/06/16 06:39 07/08/16 17:05 EPA 3050B 1,6010C Chromium, Total 0.72 mg/kg JΗ 3.8 0.68 0.12 1 07/06/16 06:39 07/08/16 17:05 EPA 3050B 1,6010C JΗ Copper, Total mg/kg Lead, Total 0.95 J 3.4 0.15 1 07/06/16 06:39 07/08/16 17:05 EPA 3050B 1,6010C JΗ mg/kg Mercury, Total ND mg/kg 0.11 0.02 1 07/06/16 10:40 07/11/16 18:57 EPA 7471B 1,7471B EΑ 9.8 0.27 1 1,6010C Nickel, Total mg/kg 1.7 07/06/16 06:39 07/08/16 17:05 EPA 3050B JΗ Selenium, Total 2.5 mg/kg 1.4 0.18 1 07/06/16 06:39 07/08/16 17:05 EPA 3050B 1,6010C JΗ Silver, Total ND 0.68 0.14 1 07/06/16 06:39 07/08/16 17:05 EPA 3050B 1,6010C JH mg/kg Thallium, Total ND 1.4 0.22 1 07/06/16 06:39 07/08/16 17:05 EPA 3050B 1,6010C JΗ mg/kg

1,6010C

JΗ

Zinc, Total

480

mg/kg

3.4

0.47

1

07/06/16 06:39 07/08/16 17:05 EPA 3050B

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: Date Collected: 06/29/16 13:00

Client ID: P1-5 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil Percent Solids: 60%

Dilution Date Date Prep Analytical
Parameter Result Qualifier Units RI MDI Factor Prepared Analyzed Method Method Analyse

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Mar	nsfield Lab										
Antimony, Total	ND		mg/kg	3.2	0.52	1	07/06/16 06:39	9 07/08/16 17:10	EPA 3050B	1,6010C	JH
Arsenic, Total	4.0		mg/kg	0.65	0.21	1	07/06/16 06:39	9 07/08/16 17:10	EPA 3050B	1,6010C	JH
Beryllium, Total	0.13	J	mg/kg	0.32	0.07	1	07/06/16 06:39	9 07/08/16 17:10	EPA 3050B	1,6010C	JH
Cadmium, Total	0.39	J	mg/kg	0.65	0.05	1	07/06/16 06:39	9 07/08/16 17:10	EPA 3050B	1,6010C	JH
Chromium, Total	8.5		mg/kg	0.65	0.11	1	07/06/16 06:39	9 07/08/16 17:10	EPA 3050B	1,6010C	JH
Copper, Total	27		mg/kg	0.65	0.12	1	07/06/16 06:39	9 07/08/16 17:10	EPA 3050B	1,6010C	JH
Lead, Total	180		mg/kg	3.2	0.14	1	07/06/16 06:39	9 07/08/16 17:10	EPA 3050B	1,6010C	JH
Mercury, Total	0.14		mg/kg	0.11	0.02	1	07/06/16 10:40	07/11/16 19:02	P EPA 7471B	1,7471B	EA
Nickel, Total	11		mg/kg	1.6	0.26	1	07/06/16 06:39	9 07/08/16 17:10	EPA 3050B	1,6010C	JH
Selenium, Total	1.3		mg/kg	1.3	0.17	1	07/06/16 06:39	9 07/08/16 17:10	EPA 3050B	1,6010C	JH
Silver, Total	ND		mg/kg	0.65	0.13	1	07/06/16 06:39	9 07/08/16 17:10	EPA 3050B	1,6010C	JH
Thallium, Total	ND		mg/kg	1.3	0.21	1	07/06/16 06:39	9 07/08/16 17:10	EPA 3050B	1,6010C	JH
Zinc, Total	1300		mg/kg	3.2	0.45	1	07/06/16 06:39	9 07/08/16 17:10	EPA 3050B	1,6010C	JH

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-25 Date Collected: 06/29/16 13:00

Client ID: P1-5 (8-10) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil
Percent Solids: 54%

Percent Solids: Dilution Date Date Prep **Analytical** Method **Prepared** Method Factor **Analyzed** Result Qualifier Units RL MDL **Parameter Analyst** Total Metals - Mansfield Lab Antimony, Total ND mg/kg 3.6 0.57 1 07/06/16 06:39 07/08/16 17:14 EPA 3050B 1,6010C JΗ 0.56 J 0.71 0.24 1 07/06/16 06:39 07/08/16 17:14 EPA 3050B 1,6010C JΗ Arsenic, Total mg/kg 1 1,6010C JΗ Beryllium, Total ND 0.36 0.08 07/06/16 06:39 07/08/16 17:14 EPA 3050B mg/kg Cadmium, Total ND mg/kg 0.71 0.05 1 07/06/16 06:39 07/08/16 17:14 EPA 3050B 1,6010C JΗ 0.25 J 0.71 0.12 1 07/06/16 06:39 07/08/16 17:14 EPA 3050B 1,6010C Chromium, Total mg/kg JΗ 1.6 0.71 0.13 1 07/06/16 06:39 07/08/16 17:14 EPA 3050B 1,6010C JΗ Copper, Total mg/kg Lead, Total 0.66 J mg/kg 3.6 0.16 1 07/06/16 06:39 07/08/16 17:14 EPA 3050B 1,6010C JΗ Mercury, Total ND mg/kg 0.12 0.03 1 07/06/16 10:40 07/11/16 19:04 EPA 7471B 1,7471B EΑ 2.4 1 1,6010C Nickel, Total mg/kg 1.8 0.28 07/06/16 06:39 07/08/16 17:14 EPA 3050B JΗ Selenium, Total 2.1 mg/kg 1.4 0.19 1 07/06/16 06:39 07/08/16 17:14 EPA 3050B 1,6010C JΗ Silver, Total ND 0.71 0.14 1 07/06/16 06:39 07/08/16 17:14 EPA 3050B 1,6010C JH mg/kg Thallium, Total ND 1.4 0.23 1 07/06/16 06:39 07/08/16 17:14 EPA 3050B 1,6010C JΗ mg/kg

1,6010C

JΗ

Zinc, Total

110

mg/kg

3.6

0.50

1

07/06/16 06:39 07/08/16 17:14 EPA 3050B

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 **Report Date:** 10/25/16

SAMPLE RESULTS

Date Collected: Lab ID: L1620368-26 06/29/16 12:35

Client ID: Date Received: P1-4 (4-8) 06/30/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil Percent Solids: 55%

Dilution Date Date Prep Analytical

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Man	sfield Lab										
Antimony, Total	ND		mg/kg	3.6	0.58	1	07/06/16 06:39	07/08/16 17:18	EPA 3050B	1,6010C	JH
Arsenic, Total	7.2		mg/kg	0.72	0.24	1	07/06/16 06:39	07/08/16 17:18	EPA 3050B	1,6010C	JH
Beryllium, Total	ND		mg/kg	0.36	0.08	1	07/06/16 06:39	07/08/16 17:18	EPA 3050B	1,6010C	JH
Cadmium, Total	ND		mg/kg	0.72	0.05	1	07/06/16 06:39	07/08/16 17:18	EPA 3050B	1,6010C	JH
Chromium, Total	4.1		mg/kg	0.72	0.12	1	07/06/16 06:39	07/08/16 17:18	EPA 3050B	1,6010C	JH
Copper, Total	14		mg/kg	0.72	0.13	1	07/06/16 06:39	07/08/16 17:18	EPA 3050B	1,6010C	JH
Lead, Total	22		mg/kg	3.6	0.16	1	07/06/16 06:39	07/08/16 17:18	EPA 3050B	1,6010C	JH
Mercury, Total	0.05	J	mg/kg	0.12	0.03	1	07/06/16 10:40	07/11/16 19:06	EPA 7471B	1,7471B	EA
Nickel, Total	11		mg/kg	1.8	0.29	1	07/06/16 06:39	07/08/16 17:18	EPA 3050B	1,6010C	JH
Selenium, Total	1.4		mg/kg	1.4	0.19	1	07/06/16 06:39	07/08/16 17:18	EPA 3050B	1,6010C	JH
Silver, Total	ND		mg/kg	0.72	0.14	1	07/06/16 06:39	07/08/16 17:18	EPA 3050B	1,6010C	JH
Thallium, Total	ND		mg/kg	1.4	0.23	1	07/06/16 06:39	07/08/16 17:18	EPA 3050B	1,6010C	JH
Zinc, Total	210		mg/kg	3.6	0.50	1	07/06/16 06:39	07/08/16 17:18	EPA 3050B	1,6010C	JH

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: Date Collected: 06/29/16 12:35

Client ID: P1-4 (8-12) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil Percent Solids: 55%

Dilution Date Date Prep Analytical
Parameter Result Qualifier Units RL MDL Factor Prepared Analyzed Method Method Analyst

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Mar	nsfield Lab										
Antimony, Total	ND		mg/kg	3.4	0.55	1	07/06/16 06:39	07/08/16 17:22	EPA 3050B	1,6010C	JH
Arsenic, Total	26		mg/kg	0.69	0.23	1	07/06/16 06:39	07/08/16 17:22	EPA 3050B	1,6010C	JH
Beryllium, Total	ND		mg/kg	0.34	0.08	1	07/06/16 06:39	07/08/16 17:22	EPA 3050B	1,6010C	JH
Cadmium, Total	3.1		mg/kg	0.69	0.05	1	07/06/16 06:39	07/08/16 17:22	EPA 3050B	1,6010C	JH
Chromium, Total	19		mg/kg	0.69	0.12	1	07/06/16 06:39	07/08/16 17:22	EPA 3050B	1,6010C	JH
Copper, Total	940		mg/kg	0.69	0.12	1	07/06/16 06:39	07/08/16 17:22	EPA 3050B	1,6010C	JH
Lead, Total	190		mg/kg	3.4	0.15	1	07/06/16 06:39	07/08/16 17:22	EPA 3050B	1,6010C	JH
Mercury, Total	0.06	J	mg/kg	0.11	0.02	1	07/06/16 10:40	07/11/16 19:08	EPA 7471B	1,7471B	EA
Nickel, Total	12		mg/kg	1.7	0.28	1	07/06/16 06:39	07/08/16 17:22	EPA 3050B	1,6010C	JH
Selenium, Total	2.2		mg/kg	1.4	0.19	1	07/06/16 06:39	07/08/16 17:22	EPA 3050B	1,6010C	JH
Silver, Total	ND		mg/kg	0.69	0.14	1	07/06/16 06:39	07/08/16 17:22	EPA 3050B	1,6010C	JH
Thallium, Total	ND		mg/kg	1.4	0.22	1	07/06/16 06:39	07/08/16 17:22	EPA 3050B	1,6010C	JH
Zinc, Total	770		mg/kg	3.4	0.48	1	07/06/16 06:39	07/08/16 17:22	EPA 3050B	1,6010C	JH

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: Date Collected: 06/29/16 12:45

Client ID: P1-3 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil

Percent Solids: 84%

Dilution Date Date Prep Analytical

Percenter Result Qualifier Units BL MDI Factor Prepared Analyzed Method Method Analyses

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Mans	sfield Lab										
Antimony, Total	ND		mg/kg	2.4	0.38	1	07/06/16 06:39	07/08/16 17:26	EPA 3050B	1,6010C	JH
Arsenic, Total	4.5		mg/kg	0.47	0.16	1	07/06/16 06:39	07/08/16 17:26	EPA 3050B	1,6010C	JH
Beryllium, Total	0.20	J	mg/kg	0.24	0.05	1	07/06/16 06:39	07/08/16 17:26	EPA 3050B	1,6010C	JH
Cadmium, Total	ND		mg/kg	0.47	0.03	1	07/06/16 06:39	07/08/16 17:26	EPA 3050B	1,6010C	JH
Chromium, Total	13		mg/kg	0.47	0.08	1	07/06/16 06:39	07/08/16 17:26	EPA 3050B	1,6010C	JH
Copper, Total	14		mg/kg	0.47	0.09	1	07/06/16 06:39	07/08/16 17:26	EPA 3050B	1,6010C	JH
Lead, Total	12		mg/kg	2.4	0.10	1	07/06/16 06:39	07/08/16 17:26	EPA 3050B	1,6010C	JH
Mercury, Total	ND		mg/kg	0.08	0.02	1	07/06/16 10:40	07/11/16 19:10	EPA 7471B	1,7471B	EA
Nickel, Total	17		mg/kg	1.2	0.19	1	07/06/16 06:39	07/08/16 17:26	EPA 3050B	1,6010C	JH
Selenium, Total	ND		mg/kg	0.95	0.13	1	07/06/16 06:39	07/08/16 17:26	EPA 3050B	1,6010C	JH
Silver, Total	ND		mg/kg	0.47	0.10	1	07/06/16 06:39	07/08/16 17:26	EPA 3050B	1,6010C	JH
Thallium, Total	ND		mg/kg	0.95	0.15	1	07/06/16 06:39	07/08/16 17:26	EPA 3050B	1,6010C	JH
Zinc, Total	34		mg/kg	2.4	0.33	1	07/06/16 06:39	07/08/16 17:26	EPA 3050B	1,6010C	JH

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-29 Date Collected: 06/29/16 12:45

Client ID: P1-3 (8-12) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil
Percent Solids: 55%

Dilution Date Date Prep **Analytical** Method Factor **Prepared Analyzed** Method Result Qualifier RL MDL **Parameter Units Analyst** Total Metals - Mansfield Lab Antimony, Total ND mg/kg 3.6 0.57 1 07/06/16 06:39 07/08/16 17:30 EPA 3050B 1,6010C JΗ 0.49 J 0.71 0.24 1 1,6010C JΗ Arsenic, Total mg/kg 07/06/16 06:39 07/08/16 17:30 EPA 3050B 1 1,6010C Beryllium, Total ND 0.36 0.08 07/06/16 06:39 07/08/16 17:30 EPA 3050B mg/kg JΗ Cadmium, Total ND mg/kg 0.71 0.05 1 07/06/16 06:39 07/08/16 17:30 EPA 3050B 1,6010C JΗ 0.71 0.12 1 07/06/16 06:39 07/08/16 17:30 EPA 3050B 1,6010C Chromium, Total 2.9 mg/kg JΗ 7.1 0.71 0.13 1 07/06/16 06:39 07/08/16 17:30 EPA 3050B 1,6010C JΗ Copper, Total mg/kg Lead, Total 2.8 J 3.6 0.16 1 07/06/16 06:39 07/08/16 17:30 EPA 3050B 1,6010C JΗ mg/kg Mercury, Total ND mg/kg 0.13 0.03 1 07/06/16 10:40 07/11/16 19:12 EPA 7471B 1,7471B EΑ 5.3 1 1,6010C Nickel, Total mg/kg 1.8 0.28 07/06/16 06:39 07/08/16 17:30 EPA 3050B JΗ Selenium, Total 1.6 mg/kg 1.4 0.19 1 07/06/16 06:39 07/08/16 17:30 EPA 3050B 1,6010C JΗ Silver, Total ND 0.71 0.14 1 07/06/16 06:39 07/08/16 17:30 EPA 3050B 1,6010C JH mg/kg Thallium, Total ND 1.4 0.23 1 07/06/16 06:39 07/08/16 17:30 EPA 3050B 1,6010C JΗ mg/kg Zinc, Total 38 mg/kg 3.6 0.50 1 07/06/16 06:39 07/08/16 17:30 EPA 3050B 1,6010C JΗ

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-30 Date Collected: 06/29/16 13:05

Client ID: P4-1 (0-4) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil
Percent Solids: 87%

Dilution Date Date Prep **Analytical** Method Factor **Prepared Analyzed** Method Result Qualifier RL MDL **Parameter Units Analyst** Total Metals - Mansfield Lab Antimony, Total ND mg/kg 2.3 0.36 1 07/06/16 06:39 07/08/16 17:34 EPA 3050B 1,6010C JΗ 12 1 1,6010C JΗ Arsenic, Total mg/kg 0.45 0.15 07/06/16 06:39 07/08/16 17:34 EPA 3050B J 1 1,6010C Beryllium, Total 0.13 0.23 0.05 07/06/16 06:39 07/08/16 17:34 EPA 3050B mg/kg JΗ Cadmium, Total 1.9 mg/kg 0.45 0.03 1 07/06/16 06:39 07/08/16 17:34 EPA 3050B 1,6010C JΗ 7.9 0.45 0.08 1 07/06/16 06:39 07/08/16 17:34 EPA 3050B 1,6010C Chromium, Total mg/kg JΗ 310 0.45 0.08 1 07/06/16 06:39 07/08/16 17:34 EPA 3050B 1,6010C JΗ Copper, Total mg/kg Lead, Total 380 2.3 0.10 1 07/06/16 06:39 07/08/16 17:34 EPA 3050B 1,6010C JΗ mg/kg Mercury, Total 0.35 mg/kg 0.07 0.02 1 07/06/16 10:40 07/11/16 19:14 EPA 7471B 1,7471B EΑ 10 1 1,6010C Nickel, Total mg/kg 1.1 0.18 07/06/16 06:39 07/08/16 17:34 EPA 3050B JΗ Selenium, Total 0.67 J mg/kg 0.90 0.12 1 07/06/16 06:39 07/08/16 17:34 EPA 3050B 1,6010C JΗ Silver, Total 1.0 0.45 0.09 1 07/06/16 06:39 07/08/16 17:34 EPA 3050B 1,6010C JH mg/kg Thallium, Total ND 0.90 0.14 1 07/06/16 06:39 07/08/16 17:34 EPA 3050B 1,6010C JΗ mg/kg

1,6010C

JΗ

Zinc, Total

780

mg/kg

2.3

0.32

1

07/06/16 06:39 07/08/16 17:34 EPA 3050B

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-31 Date Collected: 06/29/16 13:05

Client ID: P4-1 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil
Percent Solids: 43%

Dilution Date Date Prep **Analytical** Method Factor **Prepared Analyzed** Method Result Qualifier RL MDL **Parameter Units Analyst** Total Metals - Mansfield Lab Antimony, Total ND mg/kg 4.5 0.72 1 07/06/16 06:39 07/08/16 17:38 EPA 3050B 1,6010C JΗ 17 0.30 1 1,6010C JΗ Arsenic, Total mg/kg 0.90 07/06/16 06:39 07/08/16 17:38 EPA 3050B J 1 1,6010C Beryllium, Total 0.20 0.45 0.10 07/06/16 06:39 07/08/16 17:38 EPA 3050B mg/kg JΗ J Cadmium, Total 0.40 mg/kg 0.90 0.06 1 07/06/16 06:39 07/08/16 17:38 EPA 3050B 1,6010C JΗ 0.90 0.15 1 07/06/16 06:39 07/08/16 17:38 EPA 3050B 1,6010C Chromium, Total 24 mg/kg JΗ 120 0.90 0.16 1 07/06/16 06:39 07/08/16 17:38 EPA 3050B 1,6010C JΗ Copper, Total mg/kg Lead, Total 37 4.5 0.20 1 07/06/16 06:39 07/08/16 17:38 EPA 3050B 1,6010C JΗ mg/kg Mercury, Total ND mg/kg 0.15 0.03 1 07/06/16 10:40 07/11/16 19:15 EPA 7471B 1,7471B EΑ 1 2.2 1,6010C Nickel, Total 19 mg/kg 0.36 07/06/16 06:39 07/08/16 17:38 EPA 3050B JΗ Selenium, Total 0.89 J mg/kg 1.8 0.24 1 07/06/16 06:39 07/08/16 17:38 EPA 3050B 1,6010C JΗ Silver, Total 0.19 J 0.90 0.18 1 07/06/16 06:39 07/08/16 17:38 EPA 3050B 1,6010C JH mg/kg Thallium, Total ND 1.8 0.29 1 07/06/16 06:39 07/08/16 17:38 EPA 3050B 1,6010C JΗ mg/kg

1,6010C

JΗ

Zinc, Total

390

mg/kg

4.5

0.63

1

07/06/16 06:39 07/08/16 17:38 EPA 3050B

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-32 Date Collected: 06/29/16 13:15

Client ID: P4-2 (2-4) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil
Percent Solids: 89%

Selenium, Total

Silver, Total

Zinc, Total

Thallium, Total

0.98

1.1

ND

2300

mg/kg

mg/kg

mg/kg

mg/kg

0.87

0.44

0.87

11

Dilution Date Date Prep **Analytical** Method **Prepared** Method Factor **Analyzed** Result Qualifier RL MDL **Parameter Units Analyst** Total Metals - Mansfield Lab Antimony, Total ND mg/kg 11 1.7 5 07/06/16 06:39 07/11/16 17:49 EPA 3050B 1,6010C PS 21 0.44 0.14 1 07/06/16 06:39 07/08/16 18:10 EPA 3050B 1,6010C JΗ Arsenic, Total mg/kg 0.29 1 1,6010C Beryllium, Total 0.22 0.05 07/06/16 06:39 07/08/16 18:10 EPA 3050B mg/kg JΗ Cadmium, Total 4.1 mg/kg 0.44 0.03 1 07/06/16 06:39 07/08/16 18:10 EPA 3050B 1,6010C JΗ 7.7 0.07 1 07/06/16 06:39 07/08/16 18:10 EPA 3050B 1,6010C Chromium, Total mg/kg 0.44 JΗ 480 0.44 0.08 1 07/06/16 06:39 07/08/16 18:10 EPA 3050B 1,6010C JΗ Copper, Total mg/kg Lead, Total 220 2.2 0.10 1 07/06/16 06:39 07/08/16 18:10 EPA 3050B 1,6010C JΗ mg/kg Mercury, Total 0.32 mg/kg 0.07 0.02 1 07/06/16 10:40 07/11/16 19:17 EPA 7471B 1,7471B EΑ 12 1 1,6010C Nickel, Total mg/kg 1.1 0.17 07/06/16 06:39 07/08/16 18:10 EPA 3050B JΗ

0.12

0.09

0.14

1.5

1

1

1

5

07/06/16 06:39 07/08/16 18:10 EPA 3050B

07/06/16 06:39 07/08/16 18:10 EPA 3050B

07/06/16 06:39 07/08/16 18:10 EPA 3050B

07/06/16 06:39 07/11/16 17:49 EPA 3050B

1,6010C

1,6010C

1,6010C

1,6010C

JΗ

JH

JΗ

PS

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-33 Date Collected: 06/29/16 13:15

Client ID: P4-2 (4-6) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil

83% Percent Solids: Dilution Date Date Prep **Analytical** Method Factor **Prepared Analyzed** Method Result Qualifier RL MDL **Parameter Units Analyst** Total Metals - Mansfield Lab Antimony, Total ND mg/kg 2.3 0.37 1 07/06/16 06:39 07/08/16 18:14 EPA 3050B 1,6010C JΗ 7.4 1 07/06/16 06:39 07/08/16 18:14 EPA 3050B 1,6010C JΗ Arsenic, Total mg/kg 0.46 0.15 0.23 1 1,6010C Beryllium, Total 0.23 0.05 07/06/16 06:39 07/08/16 18:14 EPA 3050B mg/kg JΗ Cadmium, Total 2.0 mg/kg 0.46 0.03 1 07/06/16 06:39 07/08/16 18:14 EPA 3050B 1,6010C JΗ 7.0 0.46 0.08 1 07/06/16 06:39 07/08/16 18:14 EPA 3050B 1,6010C Chromium, Total mg/kg JΗ 58 0.46 0.08 1 07/06/16 06:39 07/08/16 18:14 EPA 3050B 1,6010C JΗ Copper, Total mg/kg Lead, Total 430 2.3 0.10 1 07/06/16 06:39 07/08/16 18:14 EPA 3050B 1,6010C JΗ mg/kg Mercury, Total 0.15 mg/kg 0.08 0.02 1 07/06/16 10:40 07/11/16 19:19 EPA 7471B 1,7471B EΑ 1 1,6010C Nickel, Total 11 mg/kg 1.1 0.18 07/06/16 06:39 07/08/16 18:14 EPA 3050B JΗ Selenium, Total 1.2 mg/kg 0.92 0.12 1 07/06/16 06:39 07/08/16 18:14 EPA 3050B 1,6010C JΗ Silver, Total 0.11 J 0.46 0.09 1 07/06/16 06:39 07/08/16 18:14 EPA 3050B 1,6010C JH mg/kg Thallium, Total ND 0.92 0.15 1 07/06/16 06:39 07/08/16 18:14 EPA 3050B 1,6010C JΗ mg/kg

1,6010C

JΗ

Zinc, Total

740

mg/kg

2.3

0.32

1

07/06/16 06:39 07/08/16 18:14 EPA 3050B

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 **Report Date:** 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-35 Date Collected: 06/29/16 13:30

Client ID: Date Received: P4-3 (2.5-3) 06/30/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil Percent Solids: 83%

Dilution Date Date Prep Analytical

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Mans	sfield Lab										
Antimony, Total	ND		mg/kg	24	3.8	10	07/06/16 06:39	07/11/16 17:53	EPA 3050B	1,6010C	PS
Arsenic, Total	57		mg/kg	0.47	0.16	1	07/06/16 06:39	07/08/16 18:18	EPA 3050B	1,6010C	JH
Beryllium, Total	0.16	J	mg/kg	0.24	0.05	1	07/06/16 06:39	07/08/16 18:18	EPA 3050B	1,6010C	JH
Cadmium, Total	25		mg/kg	0.47	0.03	1	07/06/16 06:39	07/08/16 18:18	EPA 3050B	1,6010C	JH
Chromium, Total	5.7		mg/kg	0.47	0.08	1	07/06/16 06:39	07/08/16 18:18	EPA 3050B	1,6010C	JH
Copper, Total	2200		mg/kg	0.47	0.09	1	07/06/16 06:39	07/08/16 18:18	EPA 3050B	1,6010C	JH
Lead, Total	440		mg/kg	2.4	0.10	1	07/06/16 06:39	07/08/16 18:18	EPA 3050B	1,6010C	JH
Mercury, Total	0.54		mg/kg	0.08	0.02	1	07/06/16 10:40	07/11/16 19:25	EPA 7471B	1,7471B	EA
Nickel, Total	7.4		mg/kg	1.2	0.19	1	07/06/16 06:39	07/08/16 18:18	EPA 3050B	1,6010C	JH
Selenium, Total	0.93	J	mg/kg	0.94	0.13	1	07/06/16 06:39	07/08/16 18:18	EPA 3050B	1,6010C	JH
Silver, Total	8.6		mg/kg	0.47	0.09	1	07/06/16 06:39	07/08/16 18:18	EPA 3050B	1,6010C	JH
Thallium, Total	0.84	J	mg/kg	0.94	0.15	1	07/06/16 06:39	07/08/16 18:18	EPA 3050B	1,6010C	JH
Zinc, Total	9800		mg/kg	24	3.3	10	07/06/16 06:39	07/11/16 17:53	EPA 3050B	1,6010C	PS

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 **Report Date:** 10/25/16

SAMPLE RESULTS

Date Collected: Lab ID: L1620368-36 06/29/16 13:30

Client ID: Date Received: P4-3 (4-6) 06/30/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil Percent Solids: 84%

Analytical Dilution Date Date Prep

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Man	sfield Lab										
Antimony, Total	ND		mg/kg	2.4	0.38	1	07/06/16 06:39	9 07/08/16 18:22	EPA 3050B	1,6010C	JH
Arsenic, Total	3.9		mg/kg	0.48	0.16	1	07/06/16 06:39	9 07/08/16 18:22	EPA 3050B	1,6010C	JH
Beryllium, Total	0.12	J	mg/kg	0.24	0.05	1	07/06/16 06:39	9 07/08/16 18:22	EPA 3050B	1,6010C	JH
Cadmium, Total	ND		mg/kg	0.48	0.03	1	07/06/16 06:39	9 07/08/16 18:22	EPA 3050B	1,6010C	JH
Chromium, Total	8.9		mg/kg	0.48	0.08	1	07/06/16 06:39	9 07/08/16 18:22	EPA 3050B	1,6010C	JH
Copper, Total	30		mg/kg	0.48	0.09	1	07/06/16 06:39	9 07/08/16 18:22	EPA 3050B	1,6010C	JH
Lead, Total	29		mg/kg	2.4	0.10	1	07/06/16 06:39	9 07/08/16 18:22	EPA 3050B	1,6010C	JH
Mercury, Total	0.14		mg/kg	0.08	0.02	1	07/06/16 10:40	07/11/16 19:27	EPA 7471B	1,7471B	EA
Nickel, Total	4.8		mg/kg	1.2	0.19	1	07/06/16 06:39	9 07/08/16 18:22	EPA 3050B	1,6010C	JH
Selenium, Total	0.24	J	mg/kg	0.95	0.13	1	07/06/16 06:39	9 07/08/16 18:22	EPA 3050B	1,6010C	JH
Silver, Total	ND		mg/kg	0.48	0.10	1	07/06/16 06:39	9 07/08/16 18:22	EPA 3050B	1,6010C	JH
Thallium, Total	ND		mg/kg	0.95	0.15	1	07/06/16 06:39	9 07/08/16 18:22	EPA 3050B	1,6010C	JH
Zinc, Total	58		mg/kg	2.4	0.33	1	07/06/16 06:39	9 07/08/16 18:22	EPA 3050B	1,6010C	JH

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 **Report Date:** 10/25/16

SAMPLE RESULTS

Date Collected: Lab ID: L1620368-37 06/29/16 14:20

Client ID: Date Received: P1-2 (3-4) 06/30/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil Percent Solids: 82%

Analytical Dilution Date Date Prep

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Man	sfield Lab										
Antimony, Total	ND		mg/kg	2.3	0.38	1	07/06/16 06:39	9 07/08/16 18:26	EPA 3050B	1,6010C	JH
Arsenic, Total	0.31	J	mg/kg	0.47	0.16	1	07/06/16 06:39	9 07/08/16 18:26	EPA 3050B	1,6010C	JH
Beryllium, Total	0.39		mg/kg	0.23	0.05	1	07/06/16 06:39	9 07/08/16 18:26	EPA 3050B	1,6010C	JH
Cadmium, Total	0.30	J	mg/kg	0.47	0.03	1	07/06/16 06:39	9 07/08/16 18:26	EPA 3050B	1,6010C	JH
Chromium, Total	22		mg/kg	0.47	0.08	1	07/06/16 06:39	9 07/08/16 18:26	EPA 3050B	1,6010C	JH
Copper, Total	11		mg/kg	0.47	0.08	1	07/06/16 06:39	9 07/08/16 18:26	EPA 3050B	1,6010C	JH
Lead, Total	5.2		mg/kg	2.3	0.10	1	07/06/16 06:39	07/08/16 18:26	EPA 3050B	1,6010C	JH
Mercury, Total	0.04	J	mg/kg	0.08	0.02	1	07/06/16 10:40	07/11/16 19:28	EPA 7471B	1,7471B	EA
Nickel, Total	33		mg/kg	1.2	0.19	1	07/06/16 06:39	9 07/08/16 18:26	EPA 3050B	1,6010C	JH
Selenium, Total	ND		mg/kg	0.94	0.13	1	07/06/16 06:39	9 07/08/16 18:26	EPA 3050B	1,6010C	JH
Silver, Total	ND		mg/kg	0.47	0.09	1	07/06/16 06:39	9 07/08/16 18:26	EPA 3050B	1,6010C	JH
Thallium, Total	ND		mg/kg	0.94	0.15	1	07/06/16 06:39	9 07/08/16 18:26	EPA 3050B	1,6010C	JH
Zinc, Total	640		mg/kg	2.3	0.33	1	07/06/16 06:39	9 07/08/16 18:26	EPA 3050B	1,6010C	JH

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-38 Date Collected: 06/30/16 08:30

Client ID: P1-1 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil
Percent Solids: 72%

Dilution Date Date Prep **Analytical** Method Factor **Prepared Analyzed** Method Result Qualifier RL MDL **Parameter Units Analyst** Total Metals - Mansfield Lab Antimony, Total ND mg/kg 2.7 0.44 1 07/06/16 06:39 07/08/16 18:30 EPA 3050B 1,6010C JΗ 1 1,6010C JΗ Arsenic, Total 2.1 mg/kg 0.55 0.18 07/06/16 06:39 07/08/16 18:30 EPA 3050B 1 1,6010C Beryllium, Total ND 0.27 0.06 07/06/16 06:39 07/08/16 18:30 EPA 3050B mg/kg JΗ J Cadmium, Total 0.16 mg/kg 0.55 0.04 1 07/06/16 06:39 07/08/16 18:30 EPA 3050B 1,6010C JΗ 1.5 0.55 0.09 1 07/06/16 06:39 07/08/16 18:30 EPA 3050B 1,6010C Chromium, Total mg/kg JΗ 21 0.55 0.10 1 07/06/16 06:39 07/08/16 18:30 EPA 3050B 1,6010C JΗ Copper, Total mg/kg Lead, Total 32 2.7 0.12 1 07/06/16 06:39 07/08/16 18:30 EPA 3050B 1,6010C JΗ mg/kg Mercury, Total ND mg/kg 0.10 0.02 1 07/06/16 10:40 07/11/16 19:30 EPA 7471B 1,7471B EΑ 1 1,6010C Nickel, Total 3.8 mg/kg 1.4 0.22 07/06/16 06:39 07/08/16 18:30 EPA 3050B JΗ Selenium, Total 2.2 mg/kg 1.1 0.15 1 07/06/16 06:39 07/08/16 18:30 EPA 3050B 1,6010C JΗ Silver, Total ND 0.55 1 07/06/16 06:39 07/08/16 18:30 EPA 3050B 1,6010C JH mg/kg 0.11 Thallium, Total ND 1.1 0.17 1 07/06/16 06:39 07/08/16 18:30 EPA 3050B 1,6010C JΗ mg/kg

1,6010C

JΗ

Zinc, Total

150

mg/kg

2.7

0.38

1

07/06/16 06:39 07/08/16 18:30 EPA 3050B

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 **Report Date:** 10/25/16

SAMPLE RESULTS

Date Collected: Lab ID: L1620368-39 06/30/16 08:30

Client ID: Date Received: P1-1 (8-10) 06/30/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil Percent Solids: 54%

Dilution Date Date Prep Analytical

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Mans	sfield Lab										
Antimony, Total	ND		mg/kg	3.5	0.57	1	07/06/16 06:39	07/08/16 18:34	EPA 3050B	1,6010C	JH
Arsenic, Total	16		mg/kg	0.71	0.23	1	07/06/16 06:39	07/08/16 18:34	EPA 3050B	1,6010C	JH
Beryllium, Total	0.18	J	mg/kg	0.35	0.08	1	07/06/16 06:39	07/08/16 18:34	EPA 3050B	1,6010C	JH
Cadmium, Total	2.3		mg/kg	0.71	0.05	1	07/06/16 06:39	07/08/16 18:34	EPA 3050B	1,6010C	JH
Chromium, Total	9.0		mg/kg	0.71	0.12	1	07/06/16 06:39	07/08/16 18:34	EPA 3050B	1,6010C	JH
Copper, Total	110		mg/kg	0.71	0.13	1	07/06/16 06:39	07/08/16 18:34	EPA 3050B	1,6010C	JH
Lead, Total	170		mg/kg	3.5	0.16	1	07/06/16 06:39	07/08/16 18:34	EPA 3050B	1,6010C	JH
Mercury, Total	ND		mg/kg	0.12	0.03	1	07/06/16 10:40	07/11/16 19:32	EPA 7471B	1,7471B	EA
Nickel, Total	11		mg/kg	1.8	0.28	1	07/06/16 06:39	07/08/16 18:34	EPA 3050B	1,6010C	JH
Selenium, Total	1.2	J	mg/kg	1.4	0.19	1	07/06/16 06:39	07/08/16 18:34	EPA 3050B	1,6010C	JH
Silver, Total	ND		mg/kg	0.71	0.14	1	07/06/16 06:39	07/08/16 18:34	EPA 3050B	1,6010C	JH
Thallium, Total	ND		mg/kg	1.4	0.23	1	07/06/16 06:39	07/08/16 18:34	EPA 3050B	1,6010C	JH
Zinc, Total	480		mg/kg	3.5	0.50	1	07/06/16 06:39	07/08/16 18:34	EPA 3050B	1,6010C	JH

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-40 Date Collected: 06/30/16 08:40

Client ID: P2-1 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil
Percent Solids: 60%

Dilution Date Date Prep **Analytical** Method Factor **Prepared Analyzed** Method Result Qualifier RL MDL **Parameter Units Analyst** Total Metals - Mansfield Lab Antimony, Total ND mg/kg 3.3 0.53 1 07/06/16 06:39 07/08/16 18:38 EPA 3050B 1,6010C JΗ 5.9 0.22 1 1,6010C JΗ Arsenic, Total mg/kg 0.66 07/06/16 06:39 07/08/16 18:38 EPA 3050B 1 1,6010C JΗ Beryllium, Total ND 0.33 0.07 07/06/16 06:39 07/08/16 18:38 EPA 3050B mg/kg Cadmium, Total 0.90 mg/kg 0.66 0.05 1 07/06/16 06:39 07/08/16 18:38 EPA 3050B 1,6010C JΗ 0.66 0.11 1 07/06/16 06:39 07/08/16 18:38 EPA 3050B 1,6010C Chromium, Total 5.5 mg/kg JΗ 26 0.66 0.12 1 07/06/16 06:39 07/08/16 18:38 EPA 3050B 1,6010C JΗ Copper, Total mg/kg Lead, Total 60 3.3 0.14 1 07/06/16 06:39 07/08/16 18:38 EPA 3050B 1,6010C JΗ mg/kg Mercury, Total 0.16 mg/kg 0.11 0.02 1 07/06/16 10:40 07/11/16 19:34 EPA 7471B 1,7471B EΑ 8.3 1 1,6010C Nickel, Total mg/kg 1.6 0.26 07/06/16 06:39 07/08/16 18:38 EPA 3050B JΗ Selenium, Total 2.4 mg/kg 1.3 0.18 1 07/06/16 06:39 07/08/16 18:38 EPA 3050B 1,6010C JΗ Silver, Total ND 0.66 0.13 1 07/06/16 06:39 07/08/16 18:38 EPA 3050B 1,6010C JH mg/kg 0.21 Thallium, Total ND 1.3 1 07/06/16 06:39 07/08/16 18:38 EPA 3050B 1,6010C JΗ mg/kg

1,6010C

PS

Zinc, Total

2600

mg/kg

16

2.3

5

07/06/16 06:39 07/11/16 18:33 EPA 3050B

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-41 Date Collected: 06/30/16 08:40

Client ID: P2-1 (8-10) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil
Percent Solids: 52%

reiteilt Solius.	JZ /0					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Mans	sfield Lab										
Antimony, Total	ND		mg/kg	3.8	0.60	1	07/06/16 06:39	9 07/08/16 18:42	EPA 3050B	1,6010C	JH
Arsenic, Total	4.5		mg/kg	0.75	0.25	1	07/06/16 06:39	9 07/08/16 18:42	EPA 3050B	1,6010C	JH
Beryllium, Total	ND		mg/kg	0.38	0.08	1	07/06/16 06:39	07/08/16 18:42	EPA 3050B	1,6010C	JH
Cadmium, Total	ND		mg/kg	0.75	0.05	1	07/06/16 06:39	9 07/08/16 18:42	EPA 3050B	1,6010C	JH
Chromium, Total	0.17	J	mg/kg	0.75	0.13	1	07/06/16 06:39	07/08/16 18:42	EPA 3050B	1,6010C	JH
Copper, Total	0.94		mg/kg	0.75	0.14	1	07/06/16 06:39	9 07/08/16 18:42	EPA 3050B	1,6010C	JH
Lead, Total	0.20	J	mg/kg	3.8	0.16	1	07/06/16 06:39	9 07/08/16 18:42	EPA 3050B	1,6010C	JH
Mercury, Total	ND		mg/kg	0.13	0.03	1	07/06/16 10:40	07/11/16 19:36	EPA 7471B	1,7471B	EA
Nickel, Total	3.1		mg/kg	1.9	0.30	1	07/06/16 06:39	9 07/08/16 18:42	EPA 3050B	1,6010C	JH
Selenium, Total	1.3	J	mg/kg	1.5	0.20	1	07/06/16 06:39	9 07/08/16 18:42	EPA 3050B	1,6010C	JH
Silver, Total	ND		mg/kg	0.75	0.15	1		9 07/08/16 18:42		1,6010C	JH
Thallium, Total	ND		mg/kg	1.5	0.24	. 1		07/08/16 18:42		1,6010C	JH
Zinc, Total	560		mg/kg	3.8	0.53	1	07/06/16 06:39	9 07/08/16 18:42	EPA 3050B	1,6010C	JH

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-43 Date Collected: 06/30/16 09:05

Client ID: P2-2 (8-10) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil
Percent Solids: 65%

Dilution Date Date Prep **Analytical** Method Factor **Prepared Analyzed** Method Result Qualifier Units RL MDL **Parameter Analyst** Total Metals - Mansfield Lab Antimony, Total ND mg/kg 3.0 0.48 1 07/06/16 06:39 07/08/16 17:06 EPA 3050B 1,6010C JΗ 0.20 1 1,6010C JΗ Arsenic, Total 3.1 mg/kg 0.60 07/06/16 06:39 07/08/16 17:06 EPA 3050B J 1 1,6010C Beryllium, Total 0.16 0.30 0.07 07/06/16 06:39 07/08/16 17:06 EPA 3050B mg/kg JΗ Cadmium, Total ND mg/kg 0.60 0.04 1 07/06/16 06:39 07/08/16 17:06 EPA 3050B 1,6010C JΗ 7.7 0.60 0.10 1 07/06/16 06:39 07/08/16 17:06 EPA 3050B 1,6010C Chromium, Total mg/kg JΗ 13 0.60 0.11 1 07/06/16 06:39 07/08/16 17:06 EPA 3050B 1,6010C JΗ Copper, Total mg/kg Lead, Total 23 3.0 0.13 1 07/06/16 06:39 07/08/16 17:06 EPA 3050B 1,6010C JΗ mg/kg Mercury, Total 0.11 mg/kg 0.10 0.02 1 07/06/16 10:40 07/07/16 10:50 EPA 7471B 1,7471B ΒV 1 1,6010C Nickel, Total 9.1 mg/kg 1.5 0.24 07/06/16 06:39 07/08/16 17:06 EPA 3050B JΗ Selenium, Total 0.57 J mg/kg 1.2 0.16 1 07/06/16 06:39 07/08/16 17:06 EPA 3050B 1,6010C JΗ Silver, Total ND 0.60 0.12 1 07/06/16 06:39 07/08/16 17:06 EPA 3050B 1,6010C JH mg/kg J Thallium, Total 0.21 1.2 0.19 1 07/06/16 06:39 07/08/16 17:06 EPA 3050B 1,6010C JΗ mg/kg

1,6010C

JΗ

Zinc, Total

180

mg/kg

3.0

0.42

1

07/06/16 06:39 07/08/16 17:06 EPA 3050B

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-44 Date Collected: 06/30/16 09:25

Client ID: P2-3 (8-10) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil

Percent Solids: 44%

Dilution Date Date Prep Analytical

Parameter Result Qualifier Units BI MDI Factor Prepared Analyzed Method Method Analyses

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Ma	nsfield Lab										
Antimony, Total	ND		mg/kg	4.5	0.71	1	07/06/16 06:39	07/08/16 15:52	2 EPA 3050B	1,6010C	JH
Arsenic, Total	5.4		mg/kg	0.89	0.29	1	07/06/16 06:39	07/08/16 15:52	2 EPA 3050B	1,6010C	JH
Beryllium, Total	ND		mg/kg	0.45	0.10	1	07/06/16 06:39	07/08/16 15:52	2 EPA 3050B	1,6010C	JH
Cadmium, Total	2.0		mg/kg	0.89	0.06	1	07/06/16 06:39	07/08/16 15:52	2 EPA 3050B	1,6010C	JH
Chromium, Total	1.8		mg/kg	0.89	0.15	1	07/06/16 06:39	07/08/16 15:52	2 EPA 3050B	1,6010C	JH
Copper, Total	39		mg/kg	0.89	0.16	1	07/06/16 06:39	07/08/16 15:52	2 EPA 3050B	1,6010C	JH
Lead, Total	70		mg/kg	4.5	0.20	1	07/06/16 06:39	07/08/16 15:52	2 EPA 3050B	1,6010C	JH
Mercury, Total	ND		mg/kg	0.15	0.03	1	07/06/16 10:40	07/07/16 10:25	5 EPA 7471B	1,7471B	BV
Nickel, Total	3.3		mg/kg	2.2	0.36	1	07/06/16 06:39	07/08/16 15:52	2 EPA 3050B	1,6010C	JH
Selenium, Total	0.53	J	mg/kg	1.8	0.24	1	07/06/16 06:39	07/08/16 15:52	2 EPA 3050B	1,6010C	JH
Silver, Total	ND		mg/kg	0.89	0.18	1	07/06/16 06:39	07/08/16 15:52	2 EPA 3050B	1,6010C	JH
Thallium, Total	0.28	J	mg/kg	1.8	0.28	1	07/06/16 06:39	07/08/16 15:52	2 EPA 3050B	1,6010C	JH
Zinc, Total	850		mg/kg	4.5	0.62	1	07/06/16 06:39	07/08/16 15:52	2 EPA 3050B	1,6010C	JH

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-45

Client ID: DUP01

Sample Location: SYRACUSE, NY

Matrix: Soil

Percent Solids: 49%

 Date Collected:
 06/29/16 12:00

 Date Received:
 06/30/16

Field Prep: Not Specified

-	- 1070					Dilution Factor	Date Propered	Date	Prep Method	Analytical Method	
Parameter	Result	Qualifier	Units	RL	MDL	гасіоі	Prepared	Analyzed	Wiethou	Wiethou	Analyst
Total Metals - Man	sfield Lab										
Antimony, Total	ND		mg/kg	4.0	0.64	1	07/06/16 06:3	9 07/08/16 17:10	EPA 3050B	1,6010C	JH
Arsenic, Total	ND		mg/kg	0.80	0.26	1	07/06/16 06:3	9 07/08/16 17:10	EPA 3050B	1,6010C	JH
Beryllium, Total	ND		mg/kg	0.40	0.09	1	07/06/16 06:3	9 07/08/16 17:10	EPA 3050B	1,6010C	JH
Cadmium, Total	ND		mg/kg	0.80	0.06	1	07/06/16 06:3	9 07/08/16 17:10	EPA 3050B	1,6010C	JH
Chromium, Total	0.74	J	mg/kg	0.80	0.14	1	07/06/16 06:3	9 07/08/16 17:10	EPA 3050B	1,6010C	JH
Copper, Total	0.95		mg/kg	0.80	0.14	1	07/06/16 06:3	9 07/08/16 17:10	EPA 3050B	1,6010C	JH
Lead, Total	ND		mg/kg	4.0	0.18	1	07/06/16 06:3	9 07/08/16 17:10	EPA 3050B	1,6010C	JH
Mercury, Total	ND		mg/kg	0.13	0.03	1	07/06/16 10:4	0 07/07/16 10:52	EPA 7471B	1,7471B	BV
Nickel, Total	4.7		mg/kg	2.0	0.32	1	07/06/16 06:3	9 07/08/16 17:10	EPA 3050B	1,6010C	JH
Selenium, Total	2.8		mg/kg	1.6	0.22	1	07/06/16 06:3	9 07/08/16 17:10	EPA 3050B	1,6010C	JH
Silver, Total	ND		mg/kg	0.80	0.16	1	07/06/16 06:3	9 07/08/16 17:10	EPA 3050B	1,6010C	JH
Thallium, Total	0.38	J	mg/kg	1.6	0.26	1	07/06/16 06:3	9 07/08/16 17:10	EPA 3050B	1,6010C	JH
Zinc, Total	4.9		mg/kg	4.0	0.56	1	07/06/16 06:3	9 07/08/16 17:10	EPA 3050B	1,6010C	JH

06/30/16 12:00

Not Specified

06/30/16

Date Collected:

Date Received:

Field Prep:

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-46

Client ID: DUP02

Sample Location: SYRACUSE, NY

Matrix: Soil

Percent Solids: 59% Dilution Date Date Prep Analytical

Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
field Lab										
ND		mg/kg	3.4	0.54	1	07/06/16 06:39	07/08/16 17:15	EPA 3050B	1,6010C	JH
2.5		mg/kg	0.68	0.22	1	07/06/16 06:39	07/08/16 17:15	EPA 3050B	1,6010C	JH
ND		mg/kg	0.34	0.07	1	07/06/16 06:39	07/08/16 17:15	EPA 3050B	1,6010C	JH
ND		mg/kg	0.68	0.05	1	07/06/16 06:39	07/08/16 17:15	EPA 3050B	1,6010C	JH
0.81		mg/kg	0.68	0.11	1	07/06/16 06:39	07/08/16 17:15	EPA 3050B	1,6010C	JH
3.5		mg/kg	0.68	0.12	1	07/06/16 06:39	07/08/16 17:15	EPA 3050B	1,6010C	JH
0.57	J	mg/kg	3.4	0.15	1	07/06/16 06:39	07/08/16 17:15	EPA 3050B	1,6010C	JH
ND		mg/kg	0.11	0.02	1	07/06/16 10:40	07/07/16 10:53	EPA 7471B	1,7471B	BV
3.6		mg/kg	1.7	0.27	1	07/06/16 06:39	07/08/16 17:15	EPA 3050B	1,6010C	JH
2.0		mg/kg	1.4	0.18	1	07/06/16 06:39	07/08/16 17:15	EPA 3050B	1,6010C	JH
ND		mg/kg	0.68	0.14	1	07/06/16 06:39	07/08/16 17:15	EPA 3050B	1,6010C	JH
ND		mg/kg	1.4	0.22	1	07/06/16 06:39	07/08/16 17:15	EPA 3050B	1,6010C	JH
53		mg/kg	3.4	0.47	1	07/06/16 06:39	07/08/16 17:15	EPA 3050B	1,6010C	JH
	nd Lab ND 2.5 ND ND 0.81 3.5 0.57 ND 3.6 2.0 ND ND	nfield Lab ND 2.5 ND ND 0.81 3.5 0.57 ND ND 3.6 2.0 ND ND	rfield Lab ND mg/kg 2.5 mg/kg ND mg/kg ND mg/kg 0.81 mg/kg 3.5 mg/kg ND mg/kg ND mg/kg 2.0 mg/kg ND mg/kg	ND mg/kg 3.4 2.5 mg/kg 0.68 ND mg/kg 0.34 ND mg/kg 0.68 0.81 mg/kg 0.68 3.5 mg/kg 0.68 0.57 J mg/kg 3.4 ND mg/kg 0.11 3.6 mg/kg 1.7 2.0 mg/kg 1.4 ND mg/kg 0.68 ND mg/kg 1.4 ND mg/kg 1.4 ND mg/kg 1.4	rfield Lab ND mg/kg 3.4 0.54 2.5 mg/kg 0.68 0.22 ND mg/kg 0.34 0.07 ND mg/kg 0.68 0.05 0.81 mg/kg 0.68 0.11 3.5 mg/kg 0.68 0.12 0.57 J mg/kg 3.4 0.15 ND mg/kg 0.11 0.02 3.6 mg/kg 1.7 0.27 2.0 mg/kg 1.4 0.18 ND mg/kg 0.68 0.14 ND mg/kg 1.4 0.22	Result Qualifier Units RL MDL Factor Ifield Lab ND mg/kg 3.4 0.54 1 2.5 mg/kg 0.68 0.22 1 ND mg/kg 0.68 0.07 1 ND mg/kg 0.68 0.05 1 0.81 mg/kg 0.68 0.11 1 3.5 mg/kg 0.68 0.12 1 ND mg/kg 0.11 0.02 1 ND mg/kg 1.7 0.27 1 ND mg/kg 1.4 0.18 1 ND mg/kg 0.68 0.14 1 ND mg/kg 1.4 0.18 1 ND mg/kg 1.4 0.18 1 ND mg/kg 1.4 0.22 1	Result Qualifier Units RL MDL Factor Prepared field Lab ND mg/kg 3.4 0.54 1 07/06/16 06:39 2.5 mg/kg 0.68 0.22 1 07/06/16 06:39 ND mg/kg 0.68 0.05 1 07/06/16 06:39 0.81 mg/kg 0.68 0.11 1 07/06/16 06:39 3.5 mg/kg 0.68 0.12 1 07/06/16 06:39 0.57 J mg/kg 3.4 0.15 1 07/06/16 06:39 ND mg/kg 0.11 0.02 1 07/06/16 06:39 2.0 mg/kg 1.7 0.27 1 07/06/16 06:39 ND mg/kg 0.68 0.14 1 07/06/16 06:39 ND mg/kg 1.4 0.18 1 07/06/16 06:39 ND mg/kg 0.68 0.14 1 07/06/16 06:39 ND mg/kg 0	Result Qualifier Units RL MDL Factor Prepared Analyzed field Lab ND mg/kg 3.4 0.54 1 07/06/16 06:39 07/08/16 17:15 2.5 mg/kg 0.68 0.22 1 07/06/16 06:39 07/08/16 17:15 ND mg/kg 0.68 0.07 1 07/06/16 06:39 07/08/16 17:15 ND mg/kg 0.68 0.05 1 07/06/16 06:39 07/08/16 17:15 0.81 mg/kg 0.68 0.11 1 07/06/16 06:39 07/08/16 17:15 3.5 mg/kg 0.68 0.12 1 07/06/16 06:39 07/08/16 17:15 0.57 J mg/kg 3.4 0.15 1 07/06/16 06:39 07/08/16 17:15 ND mg/kg 0.11 0.02 1 07/06/16 06:39 07/08/16 17:15 2.0 mg/kg 1.7 0.27 1 07/06/16 06:39 07/08/16 17:15 ND mg/kg 0.68 0.14 1 07/06/16 06:39 07/08/16 17:15 ND mg/k	Result Qualifier Units RL MDL Factor Prepared Analyzed Method Affield Lab ND mg/kg 3.4 0.54 1 07/06/16 06:39 07/08/16 17:15 EPA 3050B 2.5 mg/kg 0.68 0.22 1 07/06/16 06:39 07/08/16 17:15 EPA 3050B ND mg/kg 0.68 0.05 1 07/06/16 06:39 07/08/16 17:15 EPA 3050B ND mg/kg 0.68 0.05 1 07/06/16 06:39 07/08/16 17:15 EPA 3050B 0.81 mg/kg 0.68 0.11 1 07/06/16 06:39 07/08/16 17:15 EPA 3050B 3.5 mg/kg 0.68 0.12 1 07/06/16 06:39 07/08/16 17:15 EPA 3050B 0.57 J mg/kg 3.4 0.15 1 07/06/16 06:39 07/08/16 17:15 EPA 3050B ND mg/kg 0.11 0.02 1 07/06/16 06:39 07/08/16 17:15 EPA 3050B ND mg/kg 1.4 0.18 1 07/06/16 06:39 07/08/	Result Qualifier Units RL MDL Factor Prepared Analyzed Method Method Method Method Method Method Method Method Model Method Method Method Model Method Method MD mg/kg 3.4 0.54 1 07/06/16 06:39 07/08/16 17:15 EPA 3050B 1,6010C ND mg/kg 0.68 0.05 1 07/06/16 06:39 07/08/16 17:15 EPA 3050B 1,6010C 0.81 mg/kg 0.68 0.11 1 07/06/16 06:39 07/08/16 17:15 EPA 3050B 1,6010C 3.5 mg/kg 0.68 0.12 1 07/06/16 06:39 07/08/16 17:15 EPA 3050B 1,6010C ND mg/kg 3.4 0.15 1 07/06/16 06:39 07/08/16 17:15 EPA 3050B 1,6010C ND mg/kg 0.11 0.02 1 07/06/16 06:39 07/08/16 17:15 EPA 7471B 1,7471B 3.6 m

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-47

Client ID: DUP03

Sample Location: SYRACUSE, NY

Matrix: Soil

Percent Solids: 55%

Date Collected: 06/30/16 13:00

Date Received: 06/30/16
Field Prep: Not Specified

Date Date Pren Analytical

						Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Mans	field Lab										
Antimony, Total	ND		mg/kg	3.6	0.58	1	07/06/16 06:3	9 07/08/16 17:19	EPA 3050B	1,6010C	JH
Arsenic, Total	4.2		mg/kg	0.72	0.24	1	07/06/16 06:3	9 07/08/16 17:19	EPA 3050B	1,6010C	JH
Beryllium, Total	ND		mg/kg	0.36	0.08	1	07/06/16 06:3	9 07/08/16 17:19	EPA 3050B	1,6010C	JH
Cadmium, Total	ND		mg/kg	0.72	0.05	1	07/06/16 06:3	9 07/08/16 17:19	EPA 3050B	1,6010C	JH
Chromium, Total	1.0		mg/kg	0.72	0.12	1	07/06/16 06:3	9 07/08/16 17:19	EPA 3050B	1,6010C	JH
Copper, Total	1.6		mg/kg	0.72	0.13	1	07/06/16 06:3	9 07/08/16 17:19	EPA 3050B	1,6010C	JH
Lead, Total	0.53	J	mg/kg	3.6	0.16	1	07/06/16 06:3	9 07/08/16 17:19	EPA 3050B	1,6010C	JH
Mercury, Total	ND		mg/kg	0.12	0.03	1	07/06/16 10:4	0 07/07/16 10:55	EPA 7471B	1,7471B	BV
Nickel, Total	3.1		mg/kg	1.8	0.29	1	07/06/16 06:3	9 07/08/16 17:19	EPA 3050B	1,6010C	JH
Selenium, Total	2.4		mg/kg	1.4	0.19	1	07/06/16 06:3	9 07/08/16 17:19	EPA 3050B	1,6010C	JH
Silver, Total	ND		mg/kg	0.72	0.14	1		9 07/08/16 17:19		1,6010C	JH
Thallium, Total	ND		mg/kg	1.4	0.23	1		9 07/08/16 17:19		1,6010C	JH
Zinc, Total	450		mg/kg	3.6	0.50	1	07/06/16 06:3	9 07/08/16 17:19	EPA 3050B	1,6010C	JH

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-48 Date Collected: 06/30/16 09:15

Client ID: P2-3 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil

Percent Solids: 63%

Dilution Date Date Prep Analytical

Parameter Result Qualifier Units RL MDL Factor Prepared Analyzed Method Method Analyst

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Mans	sfield Lab										
Antimony, Total	ND		mg/kg	3.2	0.51	1	07/06/16 06:39	07/08/16 18:02	EPA 3050B	1,6010C	JH
Arsenic, Total	1.2		mg/kg	0.63	0.21	1	07/06/16 06:39	07/08/16 18:02	EPA 3050B	1,6010C	JH
Beryllium, Total	ND		mg/kg	0.32	0.07	1	07/06/16 06:39	07/08/16 18:02	EPA 3050B	1,6010C	JH
Cadmium, Total	2.1		mg/kg	0.63	0.04	1	07/06/16 06:39	07/08/16 18:02	EPA 3050B	1,6010C	JH
Chromium, Total	0.30	J	mg/kg	0.63	0.11	1	07/06/16 06:39	07/08/16 18:02	EPA 3050B	1,6010C	JH
Copper, Total	2.7		mg/kg	0.63	0.11	1	07/06/16 06:39	07/08/16 18:02	EPA 3050B	1,6010C	JH
Lead, Total	25		mg/kg	3.2	0.14	1	07/06/16 06:39	07/08/16 18:02	EPA 3050B	1,6010C	JH
Mercury, Total	0.05	J	mg/kg	0.10	0.02	1	07/06/16 10:40	07/07/16 10:57	EPA 7471B	1,7471B	BV
Nickel, Total	2.1		mg/kg	1.6	0.25	1	07/06/16 06:39	07/08/16 18:02	EPA 3050B	1,6010C	JH
Selenium, Total	0.58	J	mg/kg	1.3	0.17	1	07/06/16 06:39	07/08/16 18:02	EPA 3050B	1,6010C	JH
Silver, Total	ND		mg/kg	0.63	0.13	1	07/06/16 06:39	07/08/16 18:02	EPA 3050B	1,6010C	JH
Thallium, Total	0.22	J	mg/kg	1.3	0.20	1	07/06/16 06:39	07/08/16 18:02	EPA 3050B	1,6010C	JH
Zinc, Total	840		mg/kg	3.2	0.44	1	07/06/16 06:39	07/08/16 18:02	EPA 3050B	1,6010C	JH
-,			59			-	21, 22, 10 00,00		7		

07/07/16 22:10

07/07/16 22:10

07/07/16 22:10

07/07/16 22:10

1,6010C

1,6010C

1,6010C

1,6010C

1,6010C

JΗ

JΗ

JΗ

JΗ

JΗ

Lab Number:

Project Name: EMBASSY SUITES

ND

ND

ND

ND

ND

L1620368 **Project Number:** 15209 **Report Date:** 10/25/16

> **Method Blank Analysis Batch Quality Control**

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	d Lab for sample(s):	01-20 Ba	atch: W	G91052	3-1				
Antimony, Total	ND	mg/kg	2.0	0.32	1	07/06/16 05:50	07/07/16 22:10	1,6010C	JH
Arsenic, Total	ND	mg/kg	0.40	0.13	1	07/06/16 05:50	07/07/16 22:10	1,6010C	JH
Beryllium, Total	ND	mg/kg	0.20	0.04	1	07/06/16 05:50	07/07/16 22:10	1,6010C	JH
Cadmium, Total	ND	mg/kg	0.40	0.03	1	07/06/16 05:50	07/07/16 22:10	1,6010C	JH
Chromium, Total	ND	mg/kg	0.40	0.07	1	07/06/16 05:50	07/07/16 22:10	1,6010C	JH
Copper, Total	ND	mg/kg	0.40	0.07	1	07/06/16 05:50	07/07/16 22:10	1,6010C	JH
Lead, Total	ND	mg/kg	2.0	0.09	1	07/06/16 05:50	07/07/16 22:10	1,6010C	JH

0.16

0.11

80.0

0.13

0.28

1

1

1

1

1

07/06/16 05:50

07/06/16 05:50

07/06/16 05:50

07/06/16 05:50

07/06/16 05:50 07/07/16 22:10

Prep Information

Digestion Method: EPA 3050B

1.0

0.80

0.40

0.80

2.0

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfie	eld Lab for sample(s):	21-33,35-	41 Bat	ch: WG	910524-1				
Antimony, Total	ND	mg/kg	2.0	0.32	1	07/06/16 06:39	07/08/16 16:13	1,6010C	JH
Arsenic, Total	ND	mg/kg	0.40	0.13	1	07/06/16 06:39	07/08/16 16:13	1,6010C	JH
Beryllium, Total	ND	mg/kg	0.20	0.04	1	07/06/16 06:39	07/08/16 16:13	1,6010C	JH
Cadmium, Total	ND	mg/kg	0.40	0.03	1	07/06/16 06:39	07/08/16 16:13	1,6010C	JH
Chromium, Total	ND	mg/kg	0.40	0.07	1	07/06/16 06:39	07/08/16 16:13	1,6010C	JH
Copper, Total	ND	mg/kg	0.40	0.07	1	07/06/16 06:39	07/08/16 16:13	1,6010C	JH
Lead, Total	ND	mg/kg	2.0	0.09	1	07/06/16 06:39	07/08/16 16:13	1,6010C	JH
Nickel, Total	ND	mg/kg	1.0	0.16	1	07/06/16 06:39	07/08/16 16:13	1,6010C	JH
Selenium, Total	ND	mg/kg	0.80	0.11	1	07/06/16 06:39	07/08/16 16:13	1,6010C	JH
Silver, Total	ND	mg/kg	0.40	0.08	1	07/06/16 06:39	07/08/16 16:13	3 1,6010C	JH
Thallium, Total	ND	mg/kg	0.80	0.13	1	07/06/16 06:39	07/08/16 16:13	1,6010C	JH
Zinc, Total	ND	mg/kg	2.0	0.28	1	07/06/16 06:39	07/08/16 16:13	1,6010C	JH

Nickel, Total

Silver, Total

Zinc, Total

Selenium, Total

Thallium, Total

L1620368

10/25/16

Lab Number:

Report Date:

Project Name: EMBASSY SUITES

Project Number: 15209

Method Blank Analysis

Batch Quality Control

Prep Information

Digestion Method: EPA 3050B

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfi	eld Lab for sample(s):	43-48 E	atch: W	G91052	5-1				
Antimony, Total	ND	mg/kg	2.0	0.32	1	07/06/16 06:39	07/08/16 15:44	1,6010C	JH
Arsenic, Total	ND	mg/kg	0.40	0.13	1	07/06/16 06:39	07/08/16 15:44	1,6010C	JH
Beryllium, Total	ND	mg/kg	0.20	0.04	1	07/06/16 06:39	07/08/16 15:44	1,6010C	JH
Cadmium, Total	ND	mg/kg	0.40	0.03	1	07/06/16 06:39	07/08/16 15:44	1,6010C	JH
Chromium, Total	ND	mg/kg	0.40	0.07	1	07/06/16 06:39	07/08/16 15:44	1,6010C	JH
Copper, Total	ND	mg/kg	0.40	0.07	1	07/06/16 06:39	07/08/16 15:44	1,6010C	JH
Lead, Total	ND	mg/kg	2.0	0.09	1	07/06/16 06:39	07/08/16 15:44	1,6010C	JH
Nickel, Total	ND	mg/kg	1.0	0.16	1	07/06/16 06:39	07/08/16 15:44	1,6010C	JH
Selenium, Total	ND	mg/kg	0.80	0.11	1	07/06/16 06:39	07/08/16 15:44	1,6010C	JH
Silver, Total	ND	mg/kg	0.40	0.08	1	07/06/16 06:39	07/08/16 15:44	1,6010C	JH
Thallium, Total	ND	mg/kg	0.80	0.13	1	07/06/16 06:39	07/08/16 15:44	1,6010C	JH
Zinc, Total	ND	mg/kg	2.0	0.28	1	07/06/16 06:39	07/08/16 15:44	1,6010C	JH

Prep Information

Digestion Method: EPA 3050B

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
Total Metals - Mansf	field Lab for sample(s):	01-20 B	atch: W	G91052	8-1				
Mercury, Total	ND	mg/kg	0.08	0.02	1	07/06/16 10:40	07/11/16 17:45	1,7471B	EA

Prep Information

Digestion Method: EPA 7471B

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	Analyst
Total Metals - Mansfield	Lab for sample(s):	21-33,35-	41 Bat	ch: WG	910529-1				
Mercury, Total	ND	mg/kg	0.08	0.02	1	07/06/16 10:40	07/11/16 18:43	3 1,7471B	EA

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number:

L1620368

Report Date:

10/25/16

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 7471B

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for sample(s):	43-48 B	atch: Wo	G91053	6-1				
Mercury, Total	ND	mg/kg	0.08	0.02	1	07/06/16 10:40	07/07/16 10:18	3 1,7471B	BV

Prep Information

Digestion Method: EPA 7471B

Lab Control Sample Analysis Batch Quality Control

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L1620368

Report Date: 10/25/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Fotal Metals - Mansfield Lab Associate	d sample(s): 01-20 B	atch: WG9105	523-2 SRM Lot	Number: D	0089-540			
Antimony, Total	152		-		1-197	-		
Arsenic, Total	108		-		80-120	-		
Beryllium, Total	98		-		82-117	-		
Cadmium, Total	103		-		82-117	-		
Chromium, Total	112		-		79-121	-		
Copper, Total	102		-		80-119	-		
Lead, Total	94		-		81-119	-		
Nickel, Total	101		-		82-117	-		
Selenium, Total	99		-		78-121	-		
Silver, Total	106		-		75-125	-		
Thallium, Total	99		-		79-120	-		
Zinc, Total	104		-		80-119	-		

Lab Control Sample Analysis Batch Quality Control

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L1620368

Report Date: 10/25/16

Parameter	LCS %Recovery	LCSD %Recover	%Recovery y Limits	RPD	RPD Limits
otal Metals - Mansfield Lab Associated sal	mple(s): 21-33,35-41	Batch: WG910524-2	SRM Lot Number: D089-540		
Antimony, Total	133	-	1-197	-	
Arsenic, Total	100	-	80-120	-	
Beryllium, Total	98	-	82-117	-	
Cadmium, Total	95	-	82-117	-	
Chromium, Total	98	-	79-121	-	
Copper, Total	98	-	80-119	-	
Lead, Total	100	-	81-119	-	
Nickel, Total	101	-	82-117	-	
Selenium, Total	99	-	78-121	-	
Silver, Total	94	-	75-125	-	
Thallium, Total	93	-	79-120	-	
Zinc, Total	98	-	80-119	-	

Lab Control Sample Analysis Batch Quality Control

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number:

L1620368

Report Date:

10/25/16

Parameter	LCS %Recov		CSD covery	%Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab Associated sample	(s): 43-48	Batch: WG910525-2	SRM Lot Nu	mber: D089-540		
Antimony, Total	143		-	1-197	-	
Arsenic, Total	95		-	80-120	-	
Beryllium, Total	89		-	82-117	-	
Cadmium, Total	87		-	82-117	-	
Chromium, Total	100		-	79-121	-	
Copper, Total	92		-	80-119	-	
Lead, Total	82		-	81-119	-	
Nickel, Total	90		-	82-117	-	
Selenium, Total	89		-	78-121	-	
Silver, Total	92		-	75-125	-	
Thallium, Total	86		-	79-120	-	
Zinc, Total	89		-	80-119	-	
otal Metals - Mansfield Lab Associated sample	(s): 01-20	Batch: WG910528-2	SRM Lot Nu	mber: D089-540		
Mercury, Total	123		-	57-143	-	
otal Metals - Mansfield Lab Associated sample	(s): 21-33,	35-41 Batch: WG9105	529-2 SRM	Lot Number: D089-540		
Mercury, Total	123		-	57-143	-	
otal Metals - Mansfield Lab Associated sample	(s): 43-48	Batch: WG910536-2	SRM Lot Nu	mber: D089-540		
Mercury, Total	109		-	57-143	-	

Matrix Spike Analysis Batch Quality Control

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L1620368

Report Date: 10/25/16

rameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery Q	Recovery ual Limits	RPD Qu	RPD al Limits
otal Metals - Mansfield Lab	Associated san	nple(s): 01-20	QC Bat	ch ID: WG910	523-4	QC Samp	ole: L1620368-01	Client ID: P3-1	(0-4)	
Antimony, Total	3.8	52.8	31	52	Q	-	-	75-125	-	20
Arsenic, Total	71.	12.7	77	47	Q	-	-	75-125	-	20
Beryllium, Total	0.85	5.28	3.7	54	Q	-	-	75-125	-	20
Cadmium, Total	53.	5.39	50	0	Q	-	-	75-125	-	20
Chromium, Total	6.2	21.1	17	51	Q	-	-	75-125	-	20
Copper, Total	1400	26.4	1400	0	Q	-	-	75-125	-	20
Lead, Total	1600	53.9	1400	0	Q	-	-	75-125	-	20
Nickel, Total	36.	52.8	49	25	Q	-	-	75-125	-	20
Selenium, Total	0.34J	12.7	7.0	55	Q	-	-	75-125	-	20
Silver, Total	3.8	31.7	23	60	Q	-	-	75-125	-	20
Thallium, Total	1.2	12.7	6.5	42	Q	-	-	75-125	-	20
Zinc, Total	16000	52.8	14000	0	Q	-	-	75-125	-	20

Matrix Spike Analysis Batch Quality Control

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L1620368

Report Date: 10/25/16

arameter	Native Sample	MS Added	MS Found	MS %Recovery		SD und	MSD %Recovery	Recovery Limits	RPD	RPD Limits
otal Metals - Mansfield Lal	b Associated san	nple(s): 21-3	33,35-41	QC Batch ID: W	/G910524-4	Q(C Sample: L1620368-21	Client ID	: P3-2 (8-10)	
Antimony, Total	ND	75.3	64	85		-	-	75-125	-	20
Arsenic, Total	0.629J	18.1	18	100		-	-	75-125	-	20
Beryllium, Total	ND	7.53	5.6	74	Q	-	-	75-125	-	20
Cadmium, Total	ND	7.68	5.9	77		-	-	75-125	-	20
Chromium, Total	4.8	30.1	28	77		-	-	75-125	-	20
Copper, Total	15.	37.6	46	82		-	-	75-125	-	20
Lead, Total	2.9J	76.8	59	77		-	-	75-125	-	20
Nickel, Total	8.8	75.3	62	71	Q	-	-	75-125	-	20
Selenium, Total	2.0	18.1	19	94		-	-	75-125	-	20
Silver, Total	ND	45.2	42	93		-	-	75-125	-	20
Thallium, Total	ND	18.1	12	66	Q	-	-	75-125	-	20
Zinc, Total	15.	75.3	67	69	Q	-	-	75-125	-	20

Matrix Spike Analysis Batch Quality Control

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number:

L1620368

Report Date:

10/25/16

arameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Гotal Metals - Mansfield Lab	o Associated san	nple(s): 43-48	QC Bat	ch ID: WG91052	25-3 WG91052	5-4 QC Sample	: L1620368-44	Client ID:	P2-3 (8-10)
Antimony, Total	ND	90.2	75	83	78	88	75-125	4	20
Arsenic, Total	5.4	21.6	25	90	25	92	75-125	0	20
Beryllium, Total	ND	9.02	7.9	88	7.4	83	75-125	7	20
Cadmium, Total	2.0	9.2	9.9	86	8.9	76	75-125	11	20
Chromium, Total	1.8	36.1	31	81	30	80	75-125	3	20
Copper, Total	39.	45.1	60	46	Q 66	61	Q 75-125	10	20
Lead, Total	70.	92	110	43	Q 120	55	Q 75-125	9	20
Nickel, Total	3.3	90.2	74	78	71	76	75-125	4	20
Selenium, Total	0.53J	21.6	16	74	Q 17	80	75-125	6	20
Silver, Total	ND	54.1	34	63	Q 51	96	75-125	40	Q 20
Thallium, Total	0.28J	21.6	16	74	Q 14	66	Q 75-125	13	20
Zinc, Total	850	90.2	1000	166	Q 900	56	Q 75-125	11	20
otal Metals - Mansfield Lab	o Associated san	nple(s): 01-20	QC Bat	ch ID: WG91052	28-4 QC Sam	ple: L1620368-0	1 Client ID: P3	-1 (0-4)	
Mercury, Total	0.62	0.174	0.99	213	Q -	-	80-120	-	20
otal Metals - Mansfield Lab	o Associated san	nple(s): 21-33,	35-41 (QC Batch ID: WG	910529-4 Q	C Sample: L1620	0368-21 Client I	D: P3-2 ((8-10)
Mercury, Total	ND	0.254	0.36	142	Q -	-	80-120	-	20
otal Metals - Mansfield Lab	o Associated san	nple(s): 43-48	QC Bat	ch ID: WG91053	36-3 WG91053	6-4 QC Sample	: L1620368-44	Client ID:	P2-3 (8-10)
Mercury, Total	ND	0.308	0.54	175	Q 0.52	167	Q 80-120	4	20

Lab Duplicate Analysis Batch Quality Control

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L1620368 10/25/16

Report Date:

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01-	20 QC Batch ID: WG910	523-3 QC Sample:	L1620368-01	Client ID:	P3-1 (0-4)	
Antimony, Total	3.8	3.7	mg/kg	3		20
Arsenic, Total	71.	60	mg/kg	17		20
Beryllium, Total	0.85	0.23J	mg/kg	NC		20
Cadmium, Total	53.	18	mg/kg	99	Q	20
Chromium, Total	6.2	8.6	mg/kg	32	Q	20
Copper, Total	1400	880	mg/kg	46	Q	20
Lead, Total	1600	1500	mg/kg	6		20
Nickel, Total	36.	13	mg/kg	94	Q	20
Selenium, Total	0.34J	0.71J	mg/kg	NC		20
Silver, Total	3.8	3.7	mg/kg	3		20
Thallium, Total	1.2	0.57J	mg/kg	NC		20
otal Metals - Mansfield Lab Associated sample(s): 01-	20 QC Batch ID: WG910	523-3 QC Sample:	L1620368-01	Client ID:	P3-1 (0-4)	
Zinc, Total	16000	6900	mg/kg	79	Q	20

Lab Duplicate Analysis Batch Quality Control

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L1620368 10/25/16

Report Date:

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
otal Metals - Mansfield Lab Associated sample(s): 2	21-33,35-41 QC Batch ID:	WG910524-3 QC S	ample: L16203	68-21 Clie	ent ID: P3-2 (8-10)
Antimony, Total	ND	ND	mg/kg	NC	20
Arsenic, Total	0.629J	0.83	mg/kg	NC	20
Beryllium, Total	ND	ND	mg/kg	NC	20
Cadmium, Total	ND	ND	mg/kg	NC	20
Chromium, Total	4.8	4.7	mg/kg	2	20
Copper, Total	15.	13	mg/kg	14	20
Lead, Total	2.9J	3.5J	mg/kg	NC	20
Nickel, Total	8.8	8.4	mg/kg	5	20
Selenium, Total	2.0	2.0	mg/kg	0	20
Silver, Total	ND	ND	mg/kg	NC	20
Thallium, Total	ND	ND	mg/kg	NC	20
Zinc, Total	15.	18	mg/kg	18	20
otal Metals - Mansfield Lab Associated sample(s):	01-20 QC Batch ID: WG91	0528-3 QC Sample	: L1620368-01	Client ID:	P3-1 (0-4)
Mercury, Total	0.62	0.60	mg/kg	3	20
otal Metals - Mansfield Lab Associated sample(s): 2	21-33,35-41 QC Batch ID:	WG910529-3 QC S	ample: L16203	68-21 Clie	ent ID: P3-2 (8-10)
Mercury, Total	ND	ND	mg/kg	NC	20

INORGANICS & MISCELLANEOUS

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-01 Date Collected: 06/29/16 08:40

Client ID: P3-1 (0-4) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab)								
Solids, Total	73.0		%	0.100	NA	1	-	07/07/16 05:58	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-02 Date Collected: 06/29/16 08:40

Client ID: P3-1 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab)								
Solids, Total	61.2		%	0.100	NA	1	-	07/07/16 05:58	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-03 Date Collected: 06/29/16 08:40

Client ID: P3-1 (8-12) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result (Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	47.6		%	0.100	NA	1	-	07/07/16 05:58	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-04 Date Collected: 06/29/16 08:40

Client ID: P3-1 (12-16) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	64.9		%	0.100	NA	1	-	07/07/16 05:58	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-05 Date Collected: 06/29/16 08:55

Client ID: P3-9 (0-4) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	79.0		%	0.100	NA	1	-	07/07/16 05:58	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-06 Date Collected: 06/29/16 08:55

Client ID: P3-9 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab)								
Solids, Total	48.2		%	0.100	NA	1	-	07/07/16 05:58	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

 Lab ID:
 L1620368-07
 Date Collected:
 06/29/16 08:55

 Client ID:
 P3-9 (8-12)
 Date Received:
 06/30/16

Client ID: P3-9 (8-12) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	56.8		%	0.100	NA	1	-	07/07/16 05:58	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-08 Date Collected: 06/29/16 08:55

Client ID: P3-9 (12-16) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	58.0		%	0.100	NA	1	-	07/07/16 05:58	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-09 Date Collected: 06/29/16 09:05

Client ID: P3-8 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	61.2		%	0.100	NA	1	-	07/07/16 05:58	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-10 Date Collected: 06/29/16 09:15

Client ID: P3-7 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab)								
Solids, Total	62.3		%	0.100	NA	1	-	07/07/16 05:58	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-11 Date Collected: 06/29/16 09:15

Client ID: P3-7 (8-12) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	44.6		%	0.100	NA	1	-	07/07/16 05:58	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

 Lab ID:
 L1620368-12
 Date Collected:
 06/29/16 09:20

 Client ID:
 P3-6 (4-8)
 Date Received:
 06/30/16

Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	63.2		%	0.100	NA	1	-	07/07/16 05:58	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-13 Date Collected: 06/29/16 09:20

Client ID: P3-6 (8-12) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab)								
Solids, Total	45.6		%	0.100	NA	1	-	07/07/16 05:58	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-14 Date Collected: 06/29/16 09:35

Client ID: P3-5 (6-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	55.8		%	0.100	NA	1	-	07/07/16 05:58	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-15 Date Collected: 06/29/16 10:45

Client ID: P3-4 (6-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab)								
Solids, Total	49.4		%	0.100	NA	1	-	07/07/16 05:58	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-16 Date Collected: 06/29/16 10:45

Client ID: P3-4 (10-12) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	- Westborough Lab									
Solids, Total	43.2		%	0.100	NA	1	-	07/07/16 05:58	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-17 Date Collected: 06/29/16 11:30

Client ID: P3-3 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab)								
Solids, Total	53.4		%	0.100	NA	1	-	07/07/16 05:58	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-18 Date Collected: 06/29/16 11:30

Client ID: P3-3 (8-10) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	48.8		%	0.100	NA	1	-	07/07/16 05:58	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-19 Date Collected: 06/29/16 11:30

Client ID: P3-3 (12-14) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	- Westborough Lab)								
Solids, Total	71.7		%	0.100	NA	1	-	07/07/16 05:58	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-20 Date Collected: 06/29/16 12:00

Client ID: P3-2 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab)								
Solids, Total	42.7		%	0.100	NA	1	-	07/07/16 05:58	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-21 Date Collected: 06/29/16 12:00

Client ID: P3-2 (8-10) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab)								
Solids, Total	53.0		%	0.100	NA	1	-	07/07/16 06:07	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-22 Date Collected: 06/29/16 12:10

Client ID: P3-10 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab)								
Solids, Total	59.7		%	0.100	NA	1	-	07/07/16 06:07	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-23 Date Collected: 06/29/16 12:10

Client ID: P3-10 (8-10) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	57.6		%	0.100	NA	1	-	07/07/16 06:07	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-24 Date Collected: 06/29/16 13:00

Client ID: P1-5 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	- Westborough Lab									
Solids, Total	60.4		%	0.100	NA	1	-	07/07/16 06:07	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-25 Date Collected: 06/29/16 13:00

Client ID: P1-5 (8-10) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	53.6		%	0.100	NA	1	-	07/07/16 06:07	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-26 Date Collected: 06/29/16 12:35

Client ID: P1-4 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	54.6		%	0.100	NA	1	-	07/07/16 06:07	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

 Lab ID:
 L1620368-27
 Date Collected:
 06/29/16 12:35

 Client ID:
 P1-4 (8-12)
 Date Received:
 06/30/16

Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	55.2		%	0.100	NA	1	-	07/12/16 09:49	121,2540G	RI

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-28 Date Collected: 06/29/16 12:45

Client ID: P1-3 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	83.8		%	0.100	NA	1	-	07/07/16 06:07	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

 Lab ID:
 L1620368-29
 Date Collected:
 06/29/16 12:45

 Client ID:
 P1-3 (8-12)
 Date Received:
 06/30/16

Client ID: P1-3 (8-12) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab)								
Solids, Total	54.6		%	0.100	NA	1	-	07/07/16 06:07	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-30 Date Collected: 06/29/16 13:05

Client ID: P4-1 (0-4) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab)								
Solids, Total	87.1		%	0.100	NA	1	-	07/07/16 06:07	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-31 Date Collected: 06/29/16 13:05

Client ID: P4-1 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab)								
Solids, Total	42.7		%	0.100	NA	1	-	07/07/16 06:07	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-32 Date Collected: 06/29/16 13:15

Client ID: P4-2 (2-4) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab)								
Solids, Total	88.8		%	0.100	NA	1	-	07/07/16 06:07	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

 Lab ID:
 L1620368-33
 Date Collected:
 06/29/16 13:15

 Client ID:
 P4-2 (4-6)
 Date Received:
 06/30/16

Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	83.0		%	0.100	NA	1	-	07/07/16 06:07	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-34 Date Collected: 06/29/16 13:30

Client ID: P4-3 (2-4) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	84.8		%	0.100	NA	1	-	07/07/16 06:07	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-35 Date Collected: 06/29/16 13:30

Client ID: P4-3 (2.5-3) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Mansfield Lab									
Solids, Total	82.5		%	0.100	0.100	1	-	07/11/16 16:01	121,2540G	SP

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-36 Date Collected: 06/29/16 13:30

Client ID: P4-3 (4-6) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab)								
Solids, Total	83.5		%	0.100	NA	1	-	07/07/16 06:07	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-37 Date Collected: 06/29/16 14:20

Client ID: P1-2 (3-4) Date Received: 06/30/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	82.1		%	0.100	NA	1	-	07/07/16 06:07	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-38 Date Collected: 06/30/16 08:30

Client ID: P1-1 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	71.6		%	0.100	NA	1	-	07/07/16 06:07	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-39 Date Collected: 06/30/16 08:30

Client ID: P1-1 (8-10) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab)								
Solids, Total	54.3		%	0.100	NA	1	-	07/07/16 06:07	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-40 Date Collected: 06/30/16 08:40

Client ID: P2-1 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab)								
Solids, Total	59.6		%	0.100	NA	1	-	07/07/16 06:07	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-41 Date Collected: 06/30/16 08:40

Client ID: P2-1 (8-10) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab)								
Solids, Total	52.3		%	0.100	NA	1	-	07/07/16 05:52	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-42 Date Collected: 06/30/16 09:05

Client ID: P2-2 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	74.6		%	0.100	NA	1	-	07/07/16 05:52	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-43 Date Collected: 06/30/16 09:05

Client ID: P2-2 (8-10) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	65.0		%	0.100	NA	1	-	07/07/16 05:52	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-44 Date Collected: 06/30/16 09:25

Client ID: P2-3 (8-10) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	43.8		%	0.100	NA	1	-	07/07/16 05:52	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-45

Client ID: DUP01

Sample Location: SYRACUSE, NY

Matrix: Soil

Date Collected: 06/29/16 12:00

Date Received: 06/30/16

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab									
Solids, Total	49.3		%	0.100	NA	1	-	07/07/16 05:52	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-46

Client ID: DUP02 Sample Location: SYRACUSE, NY

Matrix: Soil

Date Collected: 06/30/16 12:00

Date Received: 06/30/16 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab)								
Solids, Total	58.9		%	0.100	NA	1	-	07/07/16 05:52	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-47

Client ID: DUP03
Sample Location: SYRACUSE, NY

Matrix: Soil

Date Collected: 06/30/16 13:00

Date Received: 06/30/16
Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	54.7		%	0.100	NA	1	-	07/07/16 05:52	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

SAMPLE RESULTS

Lab ID: L1620368-48 Date Collected: 06/30/16 09:15

Client ID: P2-3 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab)								
Solids, Total	62.6		%	0.100	NA	1	-	07/07/16 05:52	121,2540G	VB

Lab Duplicate Analysis Batch Quality Control

Project Name: EMBASSY SUITES

Project Number: 15209

 Lab Number:
 L1620368

 Report Date:
 10/25/16

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual RPD Limits
General Chemistry - Westborough Lab Associated sam	ple(s): 41-48 QC Batch	ID: WG910888-1	QC Sample: L1	1620628-46	Client ID: DUP Sample
Solids, Total	94.4	94.6	%	0	20
General Chemistry - Westborough Lab Associated sam	ple(s): 01-20 QC Batch	ID: WG910890-1	QC Sample: L1	1620368-01	Client ID: P3-1 (0-4)
Solids, Total	73.0	72.0	%	1	20
General Chemistry - Westborough Lab Associated sam (8-10)	ple(s): 21-26,28-34,36-40	QC Batch ID: WG	910891-1 QC	Sample: L	1620368-21 Client ID: P3-2
Solids, Total	53.0	49.6	%	7	20
General Chemistry - Mansfield Lab Associated sample(s): 35 QC Batch ID: Wo	G912318-1 QC San	mple: L162098	9-02 Client	ID: DUP Sample
Solids, Total	53.6	52.2	%	3	10
General Chemistry - Westborough Lab Associated sam	ple(s): 27 QC Batch ID:	WG912577-1 QC	Sample: L162	0368-27 Cli	ent ID: P1-4 (8-12)
Solids, Total	55.2	53.4	%	3	20

Project Name: **EMBASSY SUITES**

Lab Number: L1620368 **Report Date:** 10/25/16 Project Number: 15209

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Cooler Information Custody Seal

Cooler

Α Absent В Absent

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1620368-01A	Vial Large Septa unpreserved (4o	Α	N/A	4.2	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-01A9	Vial MeOH preserved split	Α	N/A	4.2	Υ	Absent	NYTCL-8260(14)
L1620368-01B	Metals Only - Glass 60mL/2oz unp	A	N/A	4.2	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-02A	Vial Large Septa unpreserved (4o	Α	N/A	4.2	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-02A9	Vial MeOH preserved split	Α	N/A	4.2	Υ	Absent	NYTCL-8260(14)
L1620368-02B	Metals Only - Glass 60mL/2oz unp	A	N/A	4.2	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-03A	Vial Large Septa unpreserved (4o	Α	N/A	4.2	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-03A9	Vial MeOH preserved split	Α	N/A	4.2	Υ	Absent	NYTCL-8260(14)
L1620368-03B	Metals Only - Glass 60mL/2oz unp	Α	N/A	4.2	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-04A	Vial Large Septa unpreserved (4o	Α	N/A	4.2	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-04A9	Vial MeOH preserved split	Α	N/A	4.2	Υ	Absent	NYTCL-8260(14)
L1620368-04B	Metals Only - Glass 60mL/2oz unp	A	N/A	4.2	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-05A	Vial Large Septa unpreserved (4o	Α	N/A	4.2	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-05A9	Vial MeOH preserved split	Α	N/A	4.2	Υ	Absent	NYTCL-8260(14)
L1620368-05B	Metals Only - Glass 60mL/2oz unp	A	N/A	4.2	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)

Project Name: EMBASSY SUITES

Project Number: 15209

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1620368-06A	Vial Large Septa unpreserved (4o	Α	N/A	4.2	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-06A9	Vial MeOH preserved split	Α	N/A	4.2	Υ	Absent	NYTCL-8260(14)
L1620368-06B	Metals Only - Glass 60mL/2oz unp	A	N/A	4.2	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-07A	Vial Large Septa unpreserved (4o	Α	N/A	4.2	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-07A9	Vial MeOH preserved split	Α	N/A	4.2	Υ	Absent	NYTCL-8260(14)
L1620368-07B	Metals Only - Glass 60mL/2oz unp	Α	N/A	4.2	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-08A	Vial Large Septa unpreserved (4o	Α	N/A	4.2	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-08A9	Vial MeOH preserved split	Α	N/A	4.2	Υ	Absent	NYTCL-8260(14)
L1620368-08B	Metals Only - Glass 60mL/2oz unp	Α	N/A	4.2	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-09A	Vial Large Septa unpreserved (4o	Α	N/A	4.2	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-09A9	Vial MeOH preserved split	Α	N/A	4.2	Υ	Absent	NYTCL-8260(14)
L1620368-09B	Metals Only - Glass 60mL/2oz unp	Α	N/A	4.2	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-10A	Vial Large Septa unpreserved (4o	Α	N/A	4.2	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-10A9	Vial MeOH preserved split	Α	N/A	4.2	Υ	Absent	NYTCL-8260(14)
L1620368-10B	Metals Only - Glass 60mL/2oz unp	Α	N/A	4.2	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-11A	Vial Large Septa unpreserved (4o	Α	N/A	4.2	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-11A9	Vial MeOH preserved split	Α	N/A	4.2	Υ	Absent	NYTCL-8260(14)
L1620368-11B	Metals Only - Glass 60mL/2oz unp	Α	N/A	4.2	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-12A	Vial Large Septa unpreserved (4o	Α	N/A	4.2	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-12A9	Vial MeOH preserved split	Α	N/A	4.2	Υ	Absent	NYTCL-8260(14)

Project Name: EMBASSY SUITES

Project Number: 15209

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1620368-12B	Metals Only - Glass 60mL/2oz unp	A	N/A	4.2	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-13A	Vial Large Septa unpreserved (4o	Α	N/A	4.2	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-13A9	Vial MeOH preserved split	Α	N/A	4.2	Υ	Absent	NYTCL-8260(14)
L1620368-13B	Metals Only - Glass 60mL/2oz unp	Α	N/A	4.2	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-14A	Vial Large Septa unpreserved (4o	Α	N/A	4.2	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-14A9	Vial MeOH preserved split	Α	N/A	4.2	Υ	Absent	NYTCL-8260(14)
L1620368-14B	Metals Only - Glass 60mL/2oz unp	A	N/A	4.2	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-15A	Vial Large Septa unpreserved (4o	Α	N/A	4.2	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-15A9	Vial MeOH preserved split	Α	N/A	4.2	Υ	Absent	NYTCL-8260(14)
L1620368-15B	Metals Only - Glass 60mL/2oz unp	A	N/A	4.2	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-16A	Vial Large Septa unpreserved (4o	Α	N/A	4.2	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-16A9	Vial MeOH preserved split	Α	N/A	4.2	Υ	Absent	NYTCL-8260(14)
L1620368-16B	Metals Only - Glass 60mL/2oz unp	Α	N/A	4.2	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-17A	Vial Large Septa unpreserved (4o	Α	N/A	4.2	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-17A9	Vial MeOH preserved split	Α	N/A	4.2	Υ	Absent	NYTCL-8260(14)
L1620368-17B	Metals Only - Glass 60mL/2oz unp	A	N/A	4.2	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-18A	Vial Large Septa unpreserved (4o	Α	N/A	4.2	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-18A9	Vial MeOH preserved split	Α	N/A	4.2	Υ	Absent	NYTCL-8260(14)

Project Name: EMBASSY SUITES

Project Number: 15209

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1620368-18B	Metals Only - Glass 60mL/2oz unp	A	N/A	4.2	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-19A	Vial Large Septa unpreserved (4o	Α	N/A	4.2	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-19A9	Vial MeOH preserved split	Α	N/A	4.2	Υ	Absent	NYTCL-8260(14)
L1620368-19B	Metals Only - Glass 60mL/2oz unp	Α	N/A	4.2	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-20A	Vial Large Septa unpreserved (4o	Α	N/A	4.2	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-20A9	Vial MeOH preserved split	Α	N/A	4.2	Υ	Absent	NYTCL-8260(14)
L1620368-20B	Metals Only - Glass 60mL/2oz unp	A	N/A	4.2	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-21A	Vial Large Septa unpreserved (4o	Α	N/A	4.2	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-21A9	Vial MeOH preserved split	Α	N/A	4.2	Υ	Absent	NYTCL-8260(14)
L1620368-21B	Metals Only - Glass 60mL/2oz unp	A	N/A	4.2	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-22A	Vial Large Septa unpreserved (4o	Α	N/A	4.2	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-22A9	Vial MeOH preserved split	Α	N/A	4.2	Υ	Absent	NYTCL-8260(14)
L1620368-22B	Metals Only - Glass 60mL/2oz unp	Α	N/A	4.2	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-23A	Vial Large Septa unpreserved (4o	Α	N/A	4.2	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-23A9	Vial MeOH preserved split	Α	N/A	4.2	Υ	Absent	NYTCL-8260(14)
L1620368-23B	Metals Only - Glass 60mL/2oz unp	A	N/A	4.2	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-24A	Vial Large Septa unpreserved (4o	Α	N/A	4.2	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-24A9	Vial MeOH preserved split	Α	N/A	4.2	Υ	Absent	NYTCL-8260(14)

Project Name: EMBASSY SUITES

Project Number: 15209

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1620368-24B	Metals Only - Glass 60mL/2oz unp	A	N/A	4.2	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-25A	Vial Large Septa unpreserved (4o	Α	N/A	4.2	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-25A9	Vial MeOH preserved split	Α	N/A	4.2	Υ	Absent	NYTCL-8260(14)
L1620368-25B	Metals Only - Glass 60mL/2oz unp	Α	N/A	4.2	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-26A	Vial Large Septa unpreserved (4o	Α	N/A	4.2	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-26A9	Vial MeOH preserved split	Α	N/A	4.2	Υ	Absent	NYTCL-8260(14)
L1620368-26B	Metals Only - Glass 60mL/2oz unp	A	N/A	4.2	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-27A	Vial Large Septa unpreserved (4o	Α	N/A	4.2	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-27A9	Vial MeOH preserved split	Α	N/A	4.2	Υ	Absent	NYTCL-8260(14)
L1620368-27B	Metals Only - Glass 60mL/2oz unp	A	N/A	4.2	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-28A	Vial Large Septa unpreserved (4o	Α	N/A	4.2	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-28A9	Vial MeOH preserved split	Α	N/A	4.2	Υ	Absent	NYTCL-8260(14)
L1620368-28B	Metals Only - Glass 60mL/2oz unp	Α	N/A	4.2	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-29A	Vial Large Septa unpreserved (4o	Α	N/A	4.2	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-29A9	Vial MeOH preserved split	Α	N/A	4.2	Υ	Absent	NYTCL-8260(14)
L1620368-29B	Metals Only - Glass 60mL/2oz unp	A	N/A	4.2	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-30A	Vial Large Septa unpreserved (4o	Α	N/A	4.2	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-30A9	Vial MeOH preserved split	Α	N/A	4.2	Υ	Absent	NYTCL-8260(14)

Project Name: EMBASSY SUITES

Project Number: 15209

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1620368-30B	Metals Only - Glass 60mL/2oz unp	A	N/A	4.2	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-30C	Glass 120ml/4oz unpreserved	Α	N/A	4.2	Υ	Absent	NYTCL-8270(14)
L1620368-31A	Vial Large Septa unpreserved (4o	Α	N/A	4.2	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-31A9	Vial MeOH preserved split	Α	N/A	4.2	Υ	Absent	NYTCL-8260(14)
L1620368-31B	Metals Only - Glass 60mL/2oz unp	A	N/A	4.2	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-31C	Glass 120ml/4oz unpreserved	Α	N/A	4.2	Υ	Absent	NYTCL-8270(14)
L1620368-32A	Vial Large Septa unpreserved (4o	Α	N/A	4.2	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-32A9	Vial MeOH preserved split	Α	N/A	4.2	Υ	Absent	NYTCL-8260(14)
L1620368-32B	Metals Only - Glass 60mL/2oz unp	Α	N/A	4.2	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-32C	Glass 120ml/4oz unpreserved	Α	N/A	4.2	Υ	Absent	NYTCL-8270(14)
L1620368-33A	Vial Large Septa unpreserved (4o	В	N/A	3.7	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-33A9	Vial MeOH preserved split	В	N/A	3.7	Υ	Absent	NYTCL-8260(14)
L1620368-33B	Metals Only - Glass 60mL/2oz unp	В	N/A	3.7	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-33C	Glass 120ml/4oz unpreserved	В	N/A	3.7	Υ	Absent	NYTCL-8270(14)
L1620368-34A	Vial Large Septa unpreserved (4o	В	N/A	3.7	Υ	Absent	NYTCL-8260(14)
L1620368-34A9	Vial MeOH preserved split	В	N/A	3.7	Υ	Absent	NYTCL-8260(14)
L1620368-34B	Glass 120ml/4oz unpreserved	В	N/A	3.7	Υ	Absent	NYTCL-8270(14),TS(7)
L1620368-35A	Metals Only - Glass 60mL/2oz unp	В	N/A	3.7	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),A2-TS(7),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-36A	Vial Large Septa unpreserved (4o	В	N/A	3.7	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-36A9	Vial MeOH preserved split	В	N/A	3.7	Υ	Absent	NYTCL-8260(14)

Project Name: EMBASSY SUITES

Project Number: 15209

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1620368-36B	Metals Only - Glass 60mL/2oz unp	В	N/A	3.7	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-36C	Glass 120ml/4oz unpreserved	В	N/A	3.7	Υ	Absent	NYTCL-8270(14)
L1620368-37A	Vial Large Septa unpreserved (4o	В	N/A	3.7	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-37A9	Vial MeOH preserved split	В	N/A	3.7	Υ	Absent	NYTCL-8260(14)
L1620368-37B	Metals Only - Glass 60mL/2oz unp	В	N/A	3.7	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-38A	Vial Large Septa unpreserved (4o	В	N/A	3.7	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-38A9	Vial MeOH preserved split	В	N/A	3.7	Υ	Absent	NYTCL-8260(14)
L1620368-38B	Metals Only - Glass 60mL/2oz unp	В	N/A	3.7	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-39A	Vial Large Septa unpreserved (4o	В	N/A	3.7	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-39A9	Vial MeOH preserved split	В	N/A	3.7	Υ	Absent	NYTCL-8260(14)
L1620368-39B	Metals Only - Glass 60mL/2oz unp	В	N/A	3.7	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-40A	Vial Large Septa unpreserved (4o	В	N/A	3.7	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-40A9	Vial MeOH preserved split	В	N/A	3.7	Υ	Absent	NYTCL-8260(14)
L1620368-40B	Metals Only - Glass 60mL/2oz unp	В	N/A	3.7	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-41A	Vial Large Septa unpreserved (4o	В	N/A	3.7	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-41A9	Vial MeOH preserved split	В	N/A	3.7	Υ	Absent	NYTCL-8260(14)
L1620368-41B	Metals Only - Glass 60mL/2oz unp	В	N/A	3.7	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-42A	Vial Large Septa unpreserved (4o	В	N/A	3.7	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-42A9	Vial MeOH preserved split	В	N/A	3.7	Υ	Absent	NYTCL-8260(14)
L1620368-43A	Vial Large Septa unpreserved (4o	В	N/A	3.7	Υ	Absent	TS(7),NYTCL-8260(14)

Project Name: EMBASSY SUITES

Project Number: 15209

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1620368-43A9	Vial MeOH preserved split	В	N/A	3.7	Υ	Absent	NYTCL-8260(14)
L1620368-43B	Metals Only - Glass 60mL/2oz unp	В	N/A	3.7	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-44A	Vial Large Septa unpreserved (4o	В	N/A	3.7	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-44A1	Vial Large Septa unpreserved (4o	В	N/A	3.7	Υ	Absent	NYTCL-8260(14)
L1620368-44A2	Vial Large Septa unpreserved (4o	В	N/A	3.7	Υ	Absent	NYTCL-8260(14)
L1620368-44B	Metals Only - Glass 60mL/2oz unp	В	N/A	3.7	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-44B1	Metals Only - Glass 60mL/2oz unp	В	N/A	3.7	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-44B2	Metals Only - Glass 60mL/2oz unp	В	N/A	3.7	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-45A	Vial Large Septa unpreserved (4o	В	N/A	3.7	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-45A9	Vial MeOH preserved split	В	N/A	3.7	Υ	Absent	NYTCL-8260(14)
L1620368-45B	Metals Only - Glass 60mL/2oz unp	В	N/A	3.7	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-46A	Vial Large Septa unpreserved (4o	В	N/A	3.7	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-46A9	Vial MeOH preserved split	В	N/A	3.7	Υ	Absent	NYTCL-8260(14)
L1620368-46B	Metals Only - Glass 60mL/2oz unp	В	N/A	3.7	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-47A	Vial Large Septa unpreserved (4o	В	N/A	3.7	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-47A9	Vial MeOH preserved split	В	N/A	3.7	Υ	Absent	NYTCL-8260(14)
L1620368-47B	Metals Only - Glass 60mL/2oz unp	В	N/A	3.7	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)

Project Name: EMBASSY SUITES

Project Number: 15209

Container Info	rmation			Temp			
Container ID Container Type		Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1620368-48A	Vial Large Septa unpreserved (4o	В	N/A	3.7	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-48A9	Vial MeOH preserved split	В	N/A	3.7	Υ	Absent	NYTCL-8260(14)
L1620368-48B	Metals Only - Glass 60mL/2oz unp	В	N/A	3.7	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-49A	Vial Large Septa unpreserved (4o	В	N/A	3.7	Υ	Absent	-
L1620368-49A1	Vial Large Septa unpreserved (4o	В	N/A	3.7	Υ	Absent	-
L1620368-49B	Metals Only - Glass 60mL/2oz unp	В	N/A	3.7	Υ	Absent	-
L1620368-49B1	Metals Only - Glass 60mL/2oz unp	В	N/A	3.7	Υ	Absent	-

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 10/25/16

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: DU Report with 'J' Qualifiers

Project Name:EMBASSY SUITESLab Number:L1620368Project Number:15209Report Date:10/25/16

Data Qualifiers

- reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name:EMBASSY SUITESLab Number:L1620368Project Number:15209Report Date:10/25/16

REFERENCES

1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc.
Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 7

Published Date: 8/5/2016 11:25:56 AM Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; Azobenzen

Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide **EPA 9050A:** NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

SM 2540D: TSS EPA 3005A NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

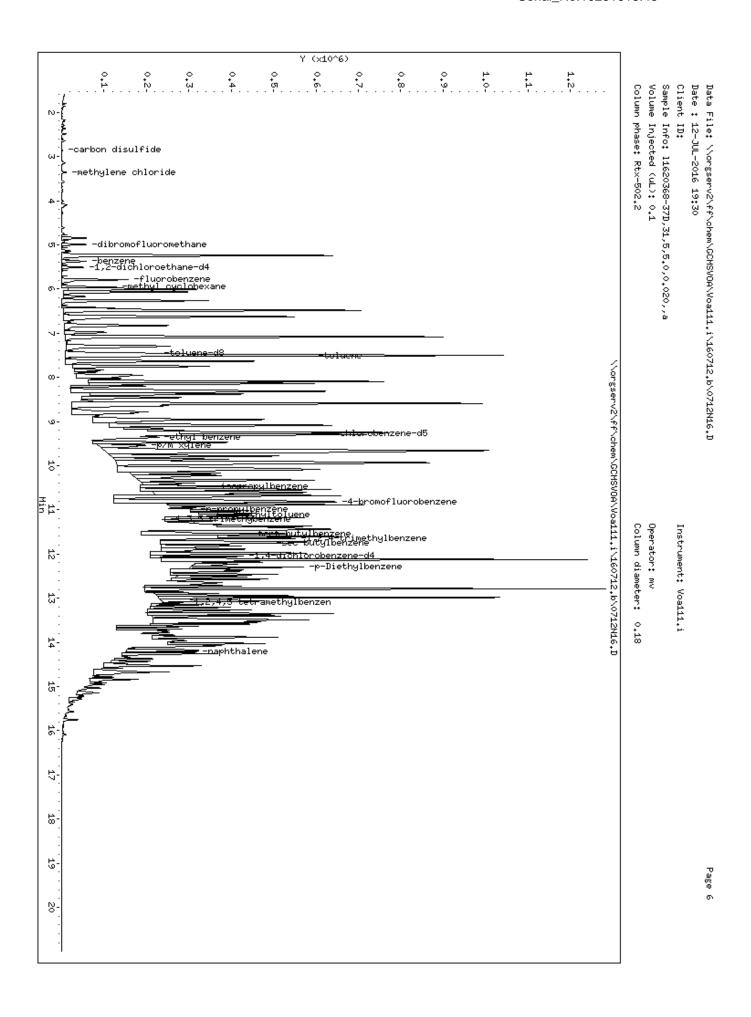
SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form Pre-Qualtrax Document ID: 08-113

Westborough, MA 01581	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Cod	Vay	05	Page / o	e of #5		Date Rec	'd 7	11/16		ALPHA Job# (62036	58
8 Walkup Dr.	320 Forbes Blvd	Project Information					Deliv	erables				Billing Information	
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288			sy Sc	utes	3	\bot	ASP-A			P-B	Same as Client Ir	ıfo
		Project Location: So	race	ste	NY			EQuIS (1	File)	EQ	ulS (4 File)	PO#	
Client Information	-₫	Project # 1520	19		_ (Other					
Client: Spect	ta Ens	(Use Project name as Pr	oject #)				Regu	ılatory Req	uirement			Disposal Site Informat	ion
Address: 19 B	Lish AM blid	Project Manager:						NY TOGS	-	NY	Part 375	Please identify below loca	ition of
1 othan	NY	ALPHAQuote #:					7 🗆	AWQ Stand	lards	NY NY	CP-51	applicable disposal facilitie	es.
Phone: 618 78	320882	Turn-Around Time						NY Restrict	ed Use	Othe	er	Disposal Facility:	
Fax:		Standard	X	Due Date:				NY Unrestri	cted Use			NJ N	Υ
Email:		Rush (only if pre approved)		# of Days:				NYC Sewer	Discharge			Other:	
These samples have be	een previously analyze	d by Alpha					ANAI	LYSIS				Sample Filtration	T
Other project specific									ŤΤ	T			0
Please specify Metals	or TAL.						60+716	Metal				☐ Done ☐ Lab to do Preservation ☐ Lab to do (Please Specify below	a I B o t
ALPHA Lab ID	Sar	nple ID	Colle	ection	Sample	Sampler's	12						t
(Lab Use Only)	-	ipio ib	Date	Time	Matrix	Initials	$ \omega \rangle$	1				Sample Specific Comme	nts e
20368 - 01	P3-1/0	-4)	6-29-16	0840	50	JCK	1 .						
02	P3-184	-8)	11	и		1							
c3	23-178	-12)	1)	ч				1				•	
OY		-16)	N	n				1					
05	23-9/0-	45	N	0865			1	1					
06	83-9 TUA	85	И	U			\Box	,	+				
07	72-0 10-	12)	И	N			H			_	+ +		rbs.
og	March 10	1 4	u			+	+		-	-	+		-
09	13006	16)		и 905		1			+	_	+		
	20 17 11	0	TT		V	W-	H					-	
Preservative Code:	Container Code	8)	N	0915			1		-	+	-		
	P = Plastic	Westboro: Certification No	o: MA935		Con	tainer Type	1/1	\wedge				Please print clearly, I	egibly
		Mansfield: Certification No	o: MA015				H	H				and completely. Sam	ples can
The second secon	V = Vial G = Glass			- 1	D	reservative	A	2				not be logged in and	k will not
EI= NaOH	B = Bacteria Cup					reservative		H		1 69		turnaround time clock start until any ambigu	
	C = Cube	Relinquished B	By:	Date/T	Γime	2	Receive	ed Bv:		Date	e/Time	resolved. BY EXECU	
0 11411004	O = Other E = Encore	Challe la le			6 10HO	Klut	Sht.	Tue 14 v	01/	20.1	16 1717	THIS COC, THE CLI	
11 - 11420203	D = BOD Bottle	RHIAL	a second	2600	e reno	1100	1900	11	7013	11/11	C/(Z)	HAS READ AND AG	
O = Other	1	1 Villani				un	_0		- 71	400	000	TO BE BOUND BY A	
Form No: 01-25 HC (rev. 30)-Sept-2013)											(See reverse side.)	

Дірна	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker V Tonawanda, NY 14150: 275 Co	Vay	05	Page 2 o	10		Date Rec'd	d	7/11	16	0	ALPHA Job#	
Westborough, MA 01581	Mansfield, MA 02048	Project Information		To the last			Delive	erables					Billing Information	
8 Walkup Dr. TEL: 508-898-9220	320 Forbes Blvd TEL: 508-822-9300		1.1		1 5			ASP-A	1000		SP-B		Same as Client Info	
FAX: 508-898-9193	FAX: 508-822-3288		MOCES	1 . 11	460	>	1 =							
		Project Location: Sy	acus	5¢ / U /				EQuIS (1 F	ile)	☐ E	Quis (4 F	-ile)	PO#	
Client Information	d	Project # 152	09					Other						
Client: Special	a FAIV	(Use Project name as Pr	roject#)				Regu	latory Requi	iremen	t			Disposal Site Information	
	11 / 10011	Project Manager:	-,,			.0	In	NY TOGS			/ Part 375		Places identify below location of	
Address.	tish HIM Blu						\perp						Please identify below location of applicable disposal facilities.	Ü
Lastran	/\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ALPHAQuote #:		Name and Address of the Owner, where				AWQ Standa			/ CP-51			
Phone: 6/8	7820882	Turn-Around Time	1					NY Restricted	d Use	Ot	her		Disposal Facility:	
Fax:	=	Standard	H 🔽	Due Date:				NY Unrestrict	ted Use				NJ NY	
Email:		Rush (only if pre approved) [# of Days:			ΙП	NYC Sewer [Discharg	je			Other:	
These samples have be	on proviously analyze						ANAL	YSIS					Sample Filtration	T
Other project specific						_			П			\vdash		0
Other project specific	requirements/comm	ents.					18	V)					Done	t
								2					Lab to do	1
							+	الإ					Preservation	
Please specify Metals	or TAL.		4					3					Lab to do	В
	9						1.81	2					(Please Specify below)	0
			T 0-11	t:		T	99	Ž					(1 lease openly below)	t t
ALPHA Lab ID	Sa	mple ID	Colle	ection	Sample	Sampler's	00	1_2						- i
(Lab Use Only)			Date	Time	Matrix	Initials	$\lfloor \omega \rfloor$	\					Sample Specific Comments	е
20368 - 11	P3-7/8	3-12)	6-29-16	0915	SO	SIK	1	i						П
12	03-61	4-85	10	0920	-		(1						\top
.0	2000	0 112	 	-		\vdash	\ \			-		\vdash		+
13	73-6	8-16)		0970			1		\vdash	_	-	\vdash	6	\vdash
14	13-5/6	5-8)	u	0935				1				\sqcup	-	\perp
15	V3-476	-85	u	1045			1						-	
1L	22-4	0-12	N	1045			1							
11	3 9	4-8)	u	1130										
16	13		N					,			-	\vdash		\vdash
18	P3-3 (8-10)	+	И			l		-	_		\vdash		-
19	23-3	12-14)	N	и	V	1/	1							\perp
20	P3-2 4	4-8)	N	1200		V	1	1				10		
Preservative Code:	Container Code	Westboro: Certification N	lo: MA935								T		Please print clearly, legibly	.,
	P = Plastic	Mansfield: Certification N			Con	tainer Type							and completely. Samples	•
	A = Amber Glass V = Vial	Mansileid. Certification N	10. IVIAU 13				\vdash	_	\rightarrow	_	-	-	not be logged in and	oan
	G = Glass				Р	reservative		-					turnaround time clock will	not
E = NaOH	B = Bacteria Cup												start until any ambiguities	
F = MeOH	C = Cube	Relinquished	By. 1	Date/	Time	- 1	Receive	ed By:		Da	ate/Time		resolved. BY EXECUTING	
Trunco ₄	O = Other E = Encore	Valil	10.	6-30-16		Palul	6/0	ruie A	11	1-20	- 17	10	THIS COC, THE CLIENT	
11 - 14020203	D = BOD Bottle	19 This	yearn	A 20-10	1740	100	170	7.1	174	27/	11.	10	HAS READ AND AGREES	
K/E = Zn Ac/NaOH O = Other		/ Shit Plus	ai			Ouer	16		\rightarrow	FILL	100	w	TO BE BOUND BY ALPHA	A'S
										4			TERMS & CONDITIONS. (See reverse side.)	
Form No: 01-25 HC (rev. 30)-Sept-2013)												(See reverse side.)	


ALPHA	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Cod	ay	05	Page		7		Rec'	ď.	2/1	116		ALPHA JOB# C 16 20 36%
Westborough, MA 0158 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information	100000				Deli	verabl	es		(Billing Information
TEL: 508-898-9220	TEL: 508-822-9300	Project Name:	1605	5y Sw	1-1000	*	T	ASF	P-A			ASP-B		Same as Client Info
FAX: 508-898-9193	FAX: 508-822-3288	Project Location: 5/5			V		1 7	EQu	ılS (1 F	File)		EQuIS	(4 File)	PO #
Client Information		Project # 1575	9	, , , ,	.(1 7	Othe	er ·					
Client: Spectra	Environmental Group	(Use Project name as Pr	oject #)				Reg	ulator	y Requ	iiremen				Disposal Site Information
Address: 19 Brittis	h American Blvd	Project Manager:	Joe Krikoria	n			TE	TYN	ogs			Y Part	375	Please identify below location of *
Latham, NY 12110		ALPHAQuote #:					7 🗆	AWC	Standa	ards		Y CP-5	1	applicable disposal facilities.
Phone: 518-782-	0882	Turn-Around Time						NYF	estricte	d Use		Other		Disposal Facility:
Fax:		Standard	V	Due Date:			7 г	NYU	Inrestric	ted Use				□ NJ □ NY
Email: jkrikorian	@spectraenv.com	Rush (only if pre approved)		# of Days:				NYC	Sewer	Discharg	е			Other:
These samples have	been previously analy	zed by Alpha			1		ANA	LYSIS	3				***************************************	Sample Filtration
Other project speci	ic requirements/com	ments:	***************************************				1	T	7	T			T	Done
							1826 X X X	NYTCL-8270	Total Metals					Lab to do Preservation Lab to do B
Please specify Meta	IS OF TAL.]입 ⁷	ij	Z Z				1	0
			-] ≥ ₺	1	Tota					(Please Specify below)
ALPHA Lab ID	1 s	sample ID	Colle	ection	Sample	Sampler's							l	
(Lab Use Only)			Date	Time	Matrix	Initials								Sample Specific Comments
20368 - 2	1143-2/	8-10)	6-29-16	1200	20	JCK	- 1			1				
2:		4-87		17.10	1				1					
2	3 P3-101	8-10		N			1 1							
2	1101-5/	4-87		1300			11		1					
25	1 21-5 7	(2-10)		1200			11		Ti					
26	101-44	4-87		1235			\Box		Ti					
2:		10-17		1235			1		1				_	
28	P1-3	CU-85		1245			1		1		_	_		
20		0-173		1245	ti	1	+-				+	+	_	
30		-u)		1305		1	1	 , 	+		+	+	-	
Preservative Code:	Container Code	Westboro: Certification N	o: MA035	4300				H-	1		_			
A = None B = HCl	P = Plastic				Con	tainer Type	١.					-		Please print clearly, legibly
C = HNO ₃	A = Amber Glass V = Vial	Mansfield: Certification No	D: IVIAU15	- 1			A	Α	Α			-	_	and completely. Samples can
D = H ₂ SO ₄	G = Glass				P	reservative								not be logged in and
E = NaOH	B = Bacteria Cup C = Cube						Α	Α	Α					turnaround time clock will not start until any ambiguities are
F = MeOH G = NaHSO₄	O = Other	Relinquished F		Date/T		.0 1	Recei					ate/Tir	ne ,	resolved. BY EXECUTING
$H = Na_2S_2O_3$	E = Encore	12 chi	ha Bu	6-30-16	0 (740	Police	190	taer	uA	AL	-39	-16	17:10	THIS COC, THE CLIENT
K/E = Zn Ac/NaOH	D = BOD Bottle	18 My Nother), -1 200	150	Uller	1	N			7/1/	40	100	HAS READ AND AGREES
O = Other	3	,									17			TO BE BOUND BY ALPHA'S TERMS & CONDITIONS.
Form No: 01-25 (rev. 30-	Sept-2013)	The state of the s		Anna Ka								11		

ALPHA MACES	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W. Tonawanda, NY 14150: 275 Coc	ay	05	Page	-		in	Rec'd	1	7/11	16		ALPHA Job# LIG20368
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information					Deliv	/erabl					E	Billing Information
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project Name:	Mbo-59	EV Sui	600			ASF	P-A		AS	P-B		Same as Client Info
FAX. 300-030-3133	FAX. 300-022-3200	Project Location: 80	racus	sle N	4			EQu	IS (1 F	ile)	E0	uIS (4 File) P	PO#
Client Information		Project # 1526						Othe	er					
Client: Spectra E	nvironmental Group	(Use Project name as Pro					Regu	ulator	/ Requi	rement			Ū	Disposal Site Information
	American Blvd	Project Manager:	Joe Krikoriar	1				NYT	ogs		NY	Part 375	F	Please identify below location of
Latham, NY 12110		ALPHAQuote #:			250 000		7 🗆	AWC	Standa	rds	NY	CP-51		applicable disposal facilities.
Phone: 518-782-0	882	Turn-Around Time	1 2 2 1					NYF	estricted	Use	Oth	er	[Disposal Facility:
Fax:		Standard		Due Date:			7	NYL	nrestrict	ed Use			ĺΓ	П П П П П П П П П П П П П П П П П П П
	spectraenv.com	Rush (only if pre approved)		# of Days:				NYC	Sewer E	Discharge)		Ī	Other:
These samples have b	peen previously analyze	ed by Alpha		•			ANA	LYSIS	3				5	Sample Filtration
Other project specific			-				1	1	1			T	1	Done
Please specify Metals	s or TAL.						NYTCL-826	NYTCL-8270	Total Metals				1	Lab to do Preservation Lab to do Please Specify below)
ALPHA Lab ID	Sa	mple ID	Colle	ection	Sample	Sampler's		-					L	j
(Lab Use Only)		di di	Date	Time	Matrix	Initials							s	Sample Specific Comments
20368 -31	1 94-11	4-8)	6-29-16	1305	50	KK	1	1	1					
32	P4-27	2-47	N	1315	1		1	1	1					
33	DU-27	4-6	И	1315				1	1					
34	24-2/	2-4	N	1330				1						
35	104-3 7	2.5-3)	h	V			1		1				\neg	
36	P4-3/L	1-67	N	, N			1	1	1					
37	P1-1-12	1-47	n	1410			1		1					
38	Di-i Tu	-8)	6-20/16	830			1							
39	01-170	~10)	(2-30-16	950			1		ì					
40	102-1 FU	-84	W	840	Y	7	1		ti		\neg		\neg	
Preservative Code:	Container Code	Westboro: Certification No		0-10	, , , , , , , , , , , , , , , , , , ,			†			_	1	\neg	
A = None B = HCl	P = Plastic A = Amber Glass	Mansfield: Certification No			Con	tainer Type		Α	A					Please print clearly, legibly
C = HNO ₃	V = Vial	Wallsheld. Certification 140	b. W/A013				+	_		-+	-+		\dashv	and completely. Samples can
$D = H_2SO_4$	G = Glass				Р	reservative								not be logged in and turnaround time clock will not
E = NaOH	B = Bacteria Cup				- 1	744 W.S.	Α	Α	Α				_	start until any ambiguities are
F = MeOH G = NaHSO₄	C = Cube O = Other	Relinquished B	By:/	Date/		2,	Receiv	ved B				te/Time		resolved. BY EXECUTING
H = Na2S2O3	E = Encore	Joseph Vais	1/1900	6-30-11	6 1740	12441	The	Tel	AA	L 16	-30-	16171	0	THIS COC, THE CLIENT
K/E = Zn Ac/NaOH	D = BOD Bottle	Blut offa	1		- 1	11.1	1		1	-		le oin		HAS READ AND AGREES
O = Other	6	1							-		111		\neg	TO BE BOUND BY ALPHA'S TERMS & CONDITIONS.
Form No: 01-25 (rev. 30-S	ept-2013)							7						TEINIO O CONDITIONS.

-revised 7/13/16 ks

ALPHA	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W. Tonawanda, NY 14150: 275 Coo	ay	05	Page	# \$ 5 f \$ 6			Rec'd Lab	71	111	6	ALPHA Job# C1620368
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information				¥	Deliv	erable/	es				Billing Information
TEL: 508-898-9220	TEL: 508-822-9300	Project Name:	1000	SU SI	u tie	3	$T\Box$	ASP	-A		ASP	-B	Same as Client Info
FAX: 508-898-9193	FAX: 508-822-3288	Project Location: S	rali	150				EQu	IS (1 File)] EQui	IS (4 File)	PO #
Client Information		Project # /52	09		•1			Othe	ır ·				
Client: Spectra Er	vironmental Group	(Use Project name as Pro	oject #)				Regi	ulatory	Require	ment			Disposal Site Information
Address: 19 Brittish	American Blvd	Project Manager:	Joe Krikorian	1				NYT	ogs		NYP	art 375	Please identify below location of
Latham, NY 12110		ALPHAQuote #:						AWQ	Standard	s	NYC	P-51	applicable disposal facilities.
Phone: 518-782-08	382	Turn-Around Time						NYR	estricted L	Jse	Other		Disposal Facility:
Fax:		Standard	\square	Due Date:			7 [ן אץ ט	nrestricted	d Use			П ил Пи
Email: jkrikorian@	spectraenv.com	Rush (only if pre approved)		# of Days:				NYC	Sewer Dis	charge			Other:
These samples have b	een previously analyze	ed by Alpha			3		ANA	LYSIS					Sample Filtration
Other project specific		nents:					NYTCL-826	NYTCL-8270	Total Metals				Done Lab to do Preservation Lab to do (Please Specify below)
ALPHA Lab ID (Lab Use Only)	Sa	ample ID	Date Colle	Time	Sample Matrix	Sampler's Initials	'						Sample Specific Comments
	01.10	12.		840	50	JUK		\vdash	0	_	+		campic operate comments
36368- 41	300	1-8	6-30-16		50	Jule	1	 	W		-		
42 43	1000	3-107	11	100	 	+	+ ;	 	У	_	 		
UY	3000	2 .	N.	925			41	-			\vdash		
49	1765 (8	5-10)	и	1000		+	1	+			1		
	WSD WSD		N	1000			ΗŤ	 	1		 		
45	D. P 01		10-2946	1200			10		11				
46	01106)	0-30-16	11		1	10		H +				
40	TO CO	3 -	10-30-16		11		1		11	_			
40	107-2/1	1-8	N	915	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		1	\vdash	1/4				
Preservative Code: A = None B = HCl C = HNO ₃	Container Code P = Plastic A = Amber Glass V = Vial	Westboro: Certification N Mansfield: Certification N				ntainer Type	Α	A	A				Please print clearly, legibly and completely. Samples can not be logged in and
$D = H_2SO_4$	G = Glass B = Bacteria Cup				F	Preservative	A	А	A				turnaround time clock will not
E = NaOH F = MeOH	C = Cube	Relinquished E	By /	Date/	Time		Reçei				Date	/Time	start until any ambiguities are
G = NaHSO ₄	O = Other E = Encore	The mind is just to	1/120	10-30-16		1777	04		77 7	1 63	Oitke		resolved. BY EXECUTING THIS COC, THE CLIENT
H = Na2S2O3 $K/E = Zn Ac/NaOH$ $O = Other$	D = BOD Bottle	Blant Hale	4 5	10-00-16	1,40	Nu		1		7		6000	HAS READ AND AGREES TO BE BOUND BY ALPHA'S TERMS & CONDITIONS.
Form No: 01-25 (rev. 30-S	ept-2013)												

ALPHA	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker Wa Tonawanda, NY 14150: 275 Coo	ay	95	Page of	11		in l	Rec'd Lab	71	111	6	ALPHA Job# C1620368
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information				*	Deliv	erable					Billing Information
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288		1003	By Sc	u ties	<u> </u>	$\downarrow \sqsubseteq$	ASP-			ASP-		Same as Client Info
		Project Location:	rali	150			ᅵ닏		S (1 File)	L	EQui	S (4 File)	PO #
Client Information		Project # 152	09_		•			Other					
Client: Spectra En	vironmental Group	(Use Project name as Pro	oject #)				Regu	2//2	Requiren	nent			Disposal Site Information
Address: 19 Brittish A	American Blvd	Project Manager:	Joe Krikorian)			닐	NYTO				art 375	Please identify below location of applicable disposal facilities.
Latham, NY 12110		ALPHAQuote #:							Standards		NY CI	P-51	
Phone: 518-782-08	82	Turn-Around Time							stricted Us		Other		Disposal Facility:
Fax:		Standard	7	Due Date:					restricted				□ NJ □ NY
Email: jkrikorian@	spectraenv.com	Rush (only if pre approved)	Ш	# of Days:					Sewer Disc	harge			Other:
These samples have be	een previously analyze	ed by Alpha					ANAI	LYSIS				r	Sample Filtration o
Other project specific Please specify Metals		ents:					NYTCL-826	NYTCL-8270	Total Metals		100000000000000000000000000000000000000		Done Lab to do Preservation Lab to do (Please Specify below)
ALPHA Lab ID (Lab Use Only)	Sa	mple ID	Colle Date	ection Time	Sample Matrix	Sampler's Initials	'						Sample Specific Comments
30368- 41	82-1/8	-101	6-30-16	940	50	JUK	1		0.				
42	21-7-71	-0	12-30-16		,	1	1			-			
43	01/1 /6	2-127	11	In .			1		Y				
üų	21-2 /0	2-10	Ŋ	925			V		1				
	MS C		И	1000			1		Ý	1			
	W60		N	1000			ΙĖ		Y				
45	D. P 01		10-29-16	1200			6		1				
46	04067		10-30-16	11			6						
47	DUDO	3	10-30-16		1/ 1		1		1				
49	P2-3/4	(8)	N	915	\	- W	A		1/				
Preservative Code: A = None	Container Code P = Plastic A = Amber Glass V = Vial G = Glass	Westboro: Certification No.				tainer Type	А	А	A				Please print clearly, legibly and completely. Samples can not be logged in and
E = NaOH	B = Bacteria Cup	, , ,					Α	Α	A				turnaround time clock will not
F = MeOH	C = Cube O = Other	Relinquished E	Зу: /	Date/	Гime			ed By				Time	start until any ambiguities are resolved. BY EXECUTING
$G = NaHSO_4$ $H = Na_2S_2O_3$	E = Encore	XDella Gin	locar	10-30-16	(740)	Polut	040	ela	AAL	63	Oitle	1710	THIS COC, THE CLIENT
K/E = Zn Ac/NaOH O = Other	D = BOD Bottle	Blant Hale	حلا			Mur		1		17,	/1//	000	HAS READ AND AGREES TO BE BOUND BY ALPHA'S TERMS & CONDITIONS.
Form No: 01-25 (rev. 30-Se	ent-2013)												

ANALYTICAL REPORT

Lab Number: L1620368

Client: Spectra Environmental Group

19 British American Blvd.

Latham, NY 12110

ATTN: Joe Krikorian
Phone: (518) 782-0882

Project Name: EMBASSY SUITES

Project Number: 15209 Report Date: 07/13/16

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: EMBASSY SUITES

Project Number: 15209

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1620368-01	P3-1 (0-4)	SOIL	SYRACUSE, NY	06/29/16 08:40	06/30/16
L1620368-02	P3-1 (4-8)	SOIL	SYRACUSE, NY	06/29/16 08:40	06/30/16
L1620368-03	P3-1 (8-12)	SOIL	SYRACUSE, NY	06/29/16 08:40	06/30/16
L1620368-04	P3-1 (12-16)	SOIL	SYRACUSE, NY	06/29/16 08:40	06/30/16
L1620368-05	P3-9 (0-4)	SOIL	SYRACUSE, NY	06/29/16 08:55	06/30/16
L1620368-06	P3-9 (4-8)	SOIL	SYRACUSE, NY	06/29/16 08:55	06/30/16
L1620368-07	P3-9 (8-12)	SOIL	SYRACUSE, NY	06/29/16 08:55	06/30/16
L1620368-08	P3-9 (12-16)	SOIL	SYRACUSE, NY	06/29/16 08:55	06/30/16
L1620368-09	P3-8 (4-8)	SOIL	SYRACUSE, NY	06/29/16 09:05	06/30/16
L1620368-10	P3-7 (4-8)	SOIL	SYRACUSE, NY	06/29/16 09:15	06/30/16
L1620368-11	P3-7 (8-12)	SOIL	SYRACUSE, NY	06/29/16 09:15	06/30/16
L1620368-12	P3-6 (4-8)	SOIL	SYRACUSE, NY	06/29/16 09:20	06/30/16
L1620368-13	P3-6 (8-12)	SOIL	SYRACUSE, NY	06/29/16 09:20	06/30/16
L1620368-14	P3-5 (6-8)	SOIL	SYRACUSE, NY	06/29/16 09:35	06/30/16
L1620368-15	P3-4 (6-8)	SOIL	SYRACUSE, NY	06/29/16 10:45	06/30/16
L1620368-16	P3-4 (10-12)	SOIL	SYRACUSE, NY	06/29/16 10:45	06/30/16
L1620368-17	P3-3 (4-8)	SOIL	SYRACUSE, NY	06/29/16 11:30	06/30/16
L1620368-18	P3-3 (8-10)	SOIL	SYRACUSE, NY	06/29/16 11:30	06/30/16
L1620368-19	P3-3 (12-14)	SOIL	SYRACUSE, NY	06/29/16 11:30	06/30/16
L1620368-20	P3-2 (4-8)	SOIL	SYRACUSE, NY	06/29/16 12:00	06/30/16
L1620368-21	P3-2 (8-10)	SOIL	SYRACUSE, NY	06/29/16 12:00	06/30/16
L1620368-22	P3-10 (4-8)	SOIL	SYRACUSE, NY	06/29/16 12:10	06/30/16
L1620368-23	P3-10 (8-10)	SOIL	SYRACUSE, NY	06/29/16 12:10	06/30/16
29826386324	P1-5 (4-8)	SOIL	SYRACUSE, NY	06/29/16 13:00	06/30/16

Alpha			Sample	Serial_No Collection	0:07131616:49
Sample ID	Client ID	Matrix	Location	Date/Time	Receive Date
L1620368-25	P1-5 (8-10)	SOIL	SYRACUSE, NY	06/29/16 13:00	06/30/16
L1620368-26	P1-4 (4-8)	SOIL	SYRACUSE, NY	06/29/16 12:35	06/30/16
L1620368-27	P1-4 (8-12)	SOIL	SYRACUSE, NY	06/29/16 12:35	06/30/16
L1620368-28	P1-3 (4-8)	SOIL	SYRACUSE, NY	06/29/16 12:45	06/30/16
L1620368-29	P1-3 (8-12)	SOIL	SYRACUSE, NY	06/29/16 12:45	06/30/16
L1620368-30	P4-1 (0-4)	SOIL	SYRACUSE, NY	06/29/16 13:05	06/30/16
L1620368-31	P4-1 (4-8)	SOIL	SYRACUSE, NY	06/29/16 13:05	06/30/16
L1620368-32	P4-2 (2-4)	SOIL	SYRACUSE, NY	06/29/16 13:15	06/30/16
L1620368-33	P4-2 (4-6)	SOIL	SYRACUSE, NY	06/29/16 13:15	06/30/16
L1620368-34	P4-3 (2-4)	SOIL	SYRACUSE, NY	06/29/16 13:30	06/30/16
L1620368-35	P4-3 (2.5-3)	SOIL	SYRACUSE, NY	06/29/16 13:30	06/30/16
L1620368-36	P4-3 (4-6)	SOIL	SYRACUSE, NY	06/29/16 13:30	06/30/16
L1620368-37	P1-2 (3-4)	SOIL	SYRACUSE, NY	06/29/16 14:20	06/30/16
L1620368-38	P1-1 (4-8)	SOIL	SYRACUSE, NY	06/30/16 08:30	06/30/16
L1620368-39	P1-1 (8-10)	SOIL	SYRACUSE, NY	06/30/16 08:30	06/30/16
L1620368-40	P2-1 (4-8)	SOIL	SYRACUSE, NY	06/30/16 08:40	06/30/16
L1620368-41	P2-1 (8-10)	SOIL	SYRACUSE, NY	06/30/16 08:40	06/30/16
L1620368-42	P2-2 (4-8)	SOIL	SYRACUSE, NY	06/30/16 09:05	06/30/16
L1620368-43	P2-2 (8-10)	SOIL	SYRACUSE, NY	06/30/16 09:05	06/30/16
L1620368-44	P2-3 (8-10)	SOIL	SYRACUSE, NY	06/30/16 09:25	06/30/16
L1620368-45	DUP01	SOIL	SYRACUSE, NY	06/29/16 12:00	06/30/16
L1620368-46	DUP02	SOIL	SYRACUSE, NY	06/30/16 12:00	06/30/16
L1620368-47	DUP03	SOIL	SYRACUSE, NY	06/30/16 13:00	06/30/16
L1620368-48	P2-3 (4-8)	SOIL	SYRACUSE, NY	06/30/16 09:15	06/30/16

L1620368

Lab Number:

Project Name: EMBASSY SUITES

Project Number: 15209 Report Date: 07/13/16

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.	

Project Name:EMBASSY SUITESLab Number:L1620368Project Number:15209Report Date:07/13/16

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

The samples were received at the laboratory on June 30, 2016; however, the chain of custody was not relinquished. The requested analyses were performed.

Volatile Organics

Any reported concentrations that are below 200 ug/kg may be biased low due to the sample not being collected according to 5035-L/5035A-L low-level specifications.

L1620368-01, -07, -09, -10, -16, -17, -20, -22, -25, -26, -31, -33, -36, -37, -46, and -47: The sample has elevated detection limits due to the dilution required by the elevated concentrations of non-target compounds in the sample.

L1620368-37: The surrogate recoveries are outside the acceptance criteria for toluene-d8 (131%) and 4-bromofluorobenzene (208%); however, the sample was not re-analyzed due to coelution with obvious interferences. A copy of the chromatogram is included as an attachment to this report. The results are not considered to be biased.

Semivolatile Organics

L1620368-34: The sample has elevated detection limits due to the dilution required by the sample matrix.

Metals

L1620368-09 and -19: The sample has an elevated detection limit for lead due to the dilution required by matrix interferences encountered during analysis.

L1620368-32 and -35: The sample has an elevated detection limit for antimony due to the dilution required by matrix interferences encountered during analysis.

The WG910523-4 MS recoveries for arsenic (47%), cadmium (0%), copper (0%), lead (0%), and zinc (0%),

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

Case Narrative (continued)

performed on L1620368-01, do not apply because the sample concentrations are greater than four times the spike amounts added.

The WG910523-4 MS recoveries, performed on L1620368-01, are outside the acceptance criteria for antimony (52%), beryllium (54%), chromium (51%), nickel (25%), selenium (55%), silver (60%) and thallium (42%). A post digestion spike was performed and yielded unacceptable recoveries for silver (17%) and thallium (12%); all other compounds were within acceptance criteria. This has been attributed to sample matrix. The WG910524-4 MS recoveries, performed on L1620368-21, are outside the acceptance criteria for beryllium (74%), nickel (71%), thallium (66%), and zinc (69%). A post digestion spike was performed and yielded unacceptable recoveries for beryllium (138%), nickel (140%), thallium (132%) and zinc (131%). This has been attributed to sample matrix.

The WG910525-3/-4 MS/MSD recoveries, performed on L1620368-44, are outside the acceptance criteria for copper (46%/61%), lead (43%/55%), selenium (MS 74%), silver (MS 63%), and thallium (74%/66%). A post digestion spike was performed and yielded unacceptable recoveries for copper (136%), lead (132%), selenium (172%), silver (26%) and thallium (126%). This has been attributed to sample matrix. In addition, the MS/MSD RPD is above the acceptance criteria for silver (40%).

The WG910525-3/-4 MS/MSD recoveries for zinc (166%/56%), performed on L1620368-44, do not apply because the sample concentration is greater than four times the spike amount added.

The WG910525-4 MS recovery for zinc (56%), performed on L1620368-44, does not apply because the sample concentration is greater than four times the spike amount added.

The WG910528-4 MS recovery, performed on L1620368-01, is outside the acceptance criteria for mercury (213%). A post digestion spike was performed and was within acceptance criteria.

The WG910529-4 MS recovery, performed on L1620368-21, is outside the acceptance criteria for mercury (142%). A post digestion spike was performed and was within acceptance criteria.

The WG910536-3/-4 MS/MSD recoveries, performed on L1620368-44, are outside the acceptance criteria for mercury (175%/167%). A post digestion spike was performed and yielded an unacceptable recovery of 129%. This has been attributed to sample matrix.

The WG910523-3 Laboratory Duplicate RPDs, performed on L1620368-01, are outside the acceptance criteria for cadmium (99%), chromium (32%), copper (46%), nickel (94%), and zinc (79%). The elevated RPD

L1620368

Project Name: EMBASSY SUITES

Project Number: 15209 **Report Date:** 07/13/16

Lab Number:

Case Narrative (continued)

has been attributed to the non-homogeneous nature of the native sample.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 07/13/16

(600, Skulow Kelly Stenstrom

ORGANICS

VOLATILES

L1620368

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number:

Report Date: 07/13/16

Lab ID: L1620368-01 D

Client ID: P3-1 (0-4) SYRACUSE, NY Sample Location:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 07/12/16 11:08

Analyst: MV73% Percent Solids:

Date Collected: 06/29/16 08:40

Date Received: 06/30/16 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westb	orough Lab						
Methylene chloride	ND		ug/kg	580	64.	50	
1,1-Dichloroethane	ND		ug/kg	87	5.0	50	
Chloroform	ND		ug/kg	87	21.	50	
Carbon tetrachloride	ND		ug/kg	58	12.	50	
1,2-Dichloropropane	ND		ug/kg	200	13.	50	
Dibromochloromethane	ND		ug/kg	58	8.9	50	
1,1,2-Trichloroethane	ND		ug/kg	87	18.	50	
Tetrachloroethene	ND		ug/kg	58	8.1	50	
Chlorobenzene	ND		ug/kg	58	20.	50	
Trichlorofluoromethane	ND		ug/kg	290	22.	50	
1,2-Dichloroethane	ND		ug/kg	58	6.6	50	
1,1,1-Trichloroethane	ND		ug/kg	58	6.4	50	
Bromodichloromethane	ND		ug/kg	58	10.	50	
trans-1,3-Dichloropropene	ND		ug/kg	58	7.0	50	
cis-1,3-Dichloropropene	ND		ug/kg	58	6.8	50	
Bromoform	ND		ug/kg	230	14.	50	
1,1,2,2-Tetrachloroethane	ND		ug/kg	58	5.8	50	
Benzene	130		ug/kg	58	6.8	50	
Toluene	250		ug/kg	87	11.	50	
Ethylbenzene	360		ug/kg	58	7.4	50	
Chloromethane	34	J	ug/kg	290	17.	50	
Bromomethane	ND		ug/kg	120	20.	50	
Vinyl chloride	ND		ug/kg	120	6.8	50	
Chloroethane	ND		ug/kg	120	18.	50	
1,1-Dichloroethene	ND		ug/kg	58	15.	50	
trans-1,2-Dichloroethene	ND		ug/kg	87	12.	50	
Trichloroethene	ND		ug/kg	58	7.2	50	
1,2-Dichlorobenzene	ND		ug/kg	290	8.9	50	
1,3-Dichlorobenzene	ND		ug/kg	290	7.8	50	
1,4-Dichlorobenzene	ND		ug/kg	290	8.0	50	

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-01 D

Client ID: P3-1 (0-4)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 08:40

Date Received: 06/30/16 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	oorough Lab					
Methyl tert butyl ether	ND		ug/kg	120	4.9	50
p/m-Xylene	370		ug/kg	120	11.	50
o-Xylene	38	J	ug/kg	120	10.	50
cis-1,2-Dichloroethene	ND		ug/kg	58	8.3	50
Styrene	ND		ug/kg	120	23.	50
Dichlorodifluoromethane	ND		ug/kg	580	11.	50
Acetone	260	J	ug/kg	580	60.	50
Carbon disulfide	ND		ug/kg	580	64.	50
2-Butanone	ND		ug/kg	580	16.	50
4-Methyl-2-pentanone	ND		ug/kg	580	14.	50
2-Hexanone	ND		ug/kg	580	39.	50
Bromochloromethane	ND		ug/kg	290	16.	50
1,2-Dibromoethane	ND		ug/kg	230	10.	50
1,2-Dibromo-3-chloropropane	ND		ug/kg	290	23.	50
Isopropylbenzene	1100		ug/kg	58	6.0	50
1,2,3-Trichlorobenzene	ND		ug/kg	290	8.6	50
1,2,4-Trichlorobenzene	ND		ug/kg	290	10.	50
Methyl Acetate	130	J	ug/kg	1200	16.	50
Cyclohexane	400	J	ug/kg	1200	8.5	50
1,4-Dioxane	ND		ug/kg	5800	840	50
Freon-113	ND		ug/kg	1200	16.	50
Methyl cyclohexane	1600		ug/kg	230	9.0	50

06/29/16 08:40

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-01 D

Client ID: P3-1 (0-4)
Sample Location: SYRACUSE, NY

Date Received: 06/30/16
Field Prep: Not Specified

Date Collected:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	63000	J	ug/kg	50
Unknown Alkane	11000	J	ug/kg	50
Pentane, 2,3,4-trimethyl-	7400	NJ	ug/kg	50
Unknown	9600	J	ug/kg	50
Unknown	12000	J	ug/kg	50
Heptane, 2,5-dimethyl-	1900	NJ	ug/kg	50
Unknown Cyclohexane	2100	J	ug/kg	50
Unknown	3200	J	ug/kg	50
Unknown Aromatic	5800	J	ug/kg	50
Unknown Benzene	4800	J	ug/kg	50
Unknown	5100	J	ug/kg	50

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	95		70-130	
Toluene-d8	116		70-130	
4-Bromofluorobenzene	125		70-130	
Dibromofluoromethane	90		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

L1620368

Lab Number:

Report Date: 07/13/16

Lab ID: L1620368-02 D

Client ID: P3-1 (4-8) SYRACUSE, NY Sample Location:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 07/12/16 04:22

Analyst: PΚ 61% Percent Solids:

Date Collected: 06/29/16 08:40

Date Received: 06/30/16 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - We	estborough Lab						
Methylene chloride	ND		ug/kg	14000	1500	1000	
1,1-Dichloroethane	ND		ug/kg	2100	120	1000	
Chloroform	ND		ug/kg	2100	510	1000	
Carbon tetrachloride	ND		ug/kg	1400	290	1000	
1,2-Dichloropropane	ND		ug/kg	4800	320	1000	
Dibromochloromethane	ND		ug/kg	1400	210	1000	
1,1,2-Trichloroethane	ND		ug/kg	2100	420	1000	
Tetrachloroethene	ND		ug/kg	1400	190	1000	
Chlorobenzene	ND		ug/kg	1400	480	1000	
Trichlorofluoromethane	ND		ug/kg	6900	540	1000	
1,2-Dichloroethane	ND		ug/kg	1400	160	1000	
1,1,1-Trichloroethane	ND		ug/kg	1400	150	1000	
Bromodichloromethane	ND		ug/kg	1400	240	1000	
trans-1,3-Dichloropropene	ND		ug/kg	1400	170	1000	
cis-1,3-Dichloropropene	ND		ug/kg	1400	160	1000	
Bromoform	ND		ug/kg	5500	330	1000	
1,1,2,2-Tetrachloroethane	ND		ug/kg	1400	140	1000	
Benzene	310	J	ug/kg	1400	160	1000	
Toluene	770	J	ug/kg	2100	270	1000	
Ethylbenzene	28000		ug/kg	1400	180	1000	
Chloromethane	1200	J	ug/kg	6900	410	1000	
Bromomethane	ND		ug/kg	2800	470	1000	
Vinyl chloride	ND		ug/kg	2800	160	1000	
Chloroethane	ND		ug/kg	2800	440	1000	
1,1-Dichloroethene	ND		ug/kg	1400	360	1000	
trans-1,2-Dichloroethene	ND		ug/kg	2100	290	1000	
Trichloroethene	ND		ug/kg	1400	170	1000	
1,2-Dichlorobenzene	ND		ug/kg	6900	210	1000	
1,3-Dichlorobenzene	ND		ug/kg	6900	190	1000	
1,4-Dichlorobenzene	ND		ug/kg	6900	190	1000	

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-02 D

Client ID: P3-1 (4-8)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 08:40

Date Received: 06/30/16
Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	rough Lab					
Methyl tert butyl ether	ND		ug/kg	2800	120	1000
p/m-Xylene	35000		ug/kg	2800	270	1000
o-Xylene	700	J	ug/kg	2800	240	1000
cis-1,2-Dichloroethene	ND		ug/kg	1400	200	1000
Styrene	ND		ug/kg	2800	560	1000
Dichlorodifluoromethane	ND		ug/kg	14000	260	1000
Acetone	ND		ug/kg	14000	1400	1000
Carbon disulfide	ND		ug/kg	14000	1500	1000
2-Butanone	ND		ug/kg	14000	380	1000
4-Methyl-2-pentanone	ND		ug/kg	14000	340	1000
2-Hexanone	ND		ug/kg	14000	920	1000
Bromochloromethane	ND		ug/kg	6900	380	1000
1,2-Dibromoethane	ND		ug/kg	5500	240	1000
1,2-Dibromo-3-chloropropane	ND		ug/kg	6900	550	1000
Isopropylbenzene	5400		ug/kg	1400	140	1000
1,2,3-Trichlorobenzene	ND		ug/kg	6900	200	1000
1,2,4-Trichlorobenzene	ND		ug/kg	6900	250	1000
Methyl Acetate	ND		ug/kg	28000	370	1000
Cyclohexane	63000		ug/kg	28000	200	1000
1,4-Dioxane	ND		ug/kg	140000	20000	1000
Freon-113	ND		ug/kg	28000	380	1000
Methyl cyclohexane	140000		ug/kg	5500	210	1000

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-02 D

Client ID: P3-1 (4-8)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 08:40

Date Received: 06/30/16 Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	450000	J	ug/kg	1000
Pentane, 2-methyl-	52000	NJ	ug/kg	1000
Cyclopentane, Methyl-	49000	NJ	ug/kg	1000
Unknown	59000	J	ug/kg	1000
Unknown Alkane	36000	J	ug/kg	1000
Unknown Cyclohexane	43000	J	ug/kg	1000
Unknown	49000	J	ug/kg	1000
Unknown Benzene	41000	J	ug/kg	1000
Unknown Benzene	34000	J	ug/kg	1000
Unknown Benzene	42000	J	ug/kg	1000
Unknown Aromatic	46000	J	ug/kg	1000

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	72		70-130	
Toluene-d8	95		70-130	
4-Bromofluorobenzene	99		70-130	
Dibromofluoromethane	82		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 07/13/16

Lab ID: L1620368-03 D

Client ID: P3-1 (8-12) SYRACUSE, NY Sample Location:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 07/12/16 04:47

Analyst: PΚ 48% Percent Solids:

Date Collected: 06/29/16 08:40

Date Received: 06/30/16 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab									
Methylene chloride	ND		ug/kg	4200	460	250			
1,1-Dichloroethane	ND		ug/kg	620	36.	250			
Chloroform	ND		ug/kg	620	150	250			
Carbon tetrachloride	ND		ug/kg	420	88.	250			
1,2-Dichloropropane	ND		ug/kg	1400	95.	250			
Dibromochloromethane	ND		ug/kg	420	64.	250			
1,1,2-Trichloroethane	ND		ug/kg	620	130	250			
Tetrachloroethene	ND		ug/kg	420	58.	250			
Chlorobenzene	ND		ug/kg	420	140	250			
Trichlorofluoromethane	ND		ug/kg	2100	160	250			
1,2-Dichloroethane	ND		ug/kg	420	47.	250			
1,1,1-Trichloroethane	ND		ug/kg	420	46.	250			
Bromodichloromethane	ND		ug/kg	420	72.	250			
trans-1,3-Dichloropropene	ND		ug/kg	420	50.	250			
cis-1,3-Dichloropropene	ND		ug/kg	420	49.	250			
Bromoform	ND		ug/kg	1700	98.	250			
1,1,2,2-Tetrachloroethane	ND		ug/kg	420	42.	250			
Benzene	110	J	ug/kg	420	49.	250			
Toluene	240	J	ug/kg	620	81.	250			
Ethylbenzene	9200		ug/kg	420	53.	250			
Chloromethane	280	J	ug/kg	2100	120	250			
Bromomethane	ND		ug/kg	830	140	250			
Vinyl chloride	ND		ug/kg	830	49.	250			
Chloroethane	ND		ug/kg	830	130	250			
1,1-Dichloroethene	ND		ug/kg	420	110	250			
trans-1,2-Dichloroethene	ND		ug/kg	620	88.	250			
Trichloroethene	ND		ug/kg	420	52.	250			
1,2-Dichlorobenzene	ND		ug/kg	2100	64.	250			
1,3-Dichlorobenzene	ND		ug/kg	2100	56.	250			
1,4-Dichlorobenzene	ND		ug/kg	2100	58.	250			

L1620368

06/29/16 08:40

Project Name: EMBASSY SUITES Lab Number:

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-03 D Date Collected:

Client ID: P3-1 (8-12) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RLMDL **Dilution Factor** Volatile Organics by GC/MS - Westborough Lab Methyl tert butyl ether ND 830 35. 250 ug/kg p/m-Xylene 12000 ug/kg 830 82. 250 J o-Xylene 320 830 72. 250 ug/kg ND 250 cis-1,2-Dichloroethene 420 60. ug/kg Styrene ND 830 170 250 ug/kg Dichlorodifluoromethane ND 4200 80. 250 ug/kg Acetone ND 4200 430 250 ug/kg Carbon disulfide ND ug/kg 4200 460 250 ND 2-Butanone ug/kg 4200 110 250 ND 4200 100 250 4-Methyl-2-pentanone ug/kg ND 250 2-Hexanone ug/kg 4200 280 Bromochloromethane ND 2100 120 250 ug/kg 1,2-Dibromoethane ND 1700 73. 250 ug/kg ND 2100 160 250 1,2-Dibromo-3-chloropropane ug/kg Isopropylbenzene 2000 420 43. 250 ug/kg 1,2,3-Trichlorobenzene ND 2100 62. 250 ug/kg ND 1,2,4-Trichlorobenzene 2100 76. 250 ug/kg Methyl Acetate ND 8300 110 250 ug/kg Cyclohexane 14000 8300 61. 250 ug/kg ND 42000 6000 250 1,4-Dioxane ug/kg Freon-113 ND 8300 110 250 ug/kg Methyl cyclohexane 31000 ug/kg 1700 64. 250

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-03 D Date Collected: 06/29/16 08:40

Client ID: P3-1 (8-12) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Tentatively Identified Compounds				
Total TIC Compounds	130000	J	ug/kg	250
Pentane, 2-methyl-	11000	NJ	ug/kg	250
Cyclopentane, Methyl-	12000	NJ	ug/kg	250
Unknown	11000	J	ug/kg	250
Unknown Benzene	11000	J	ug/kg	250
Unknown	17000	J	ug/kg	250
Unknown Benzene	15000	J	ug/kg	250
Unknown Benzene	13000	J	ug/kg	250
Unknown Benzene	15000	J	ug/kg	250
Unknown Aromatic	10000	J	ug/kg	250
Unknown Aromatic	16000	J	ug/kg	250

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	70		70-130	
Toluene-d8	94		70-130	
4-Bromofluorobenzene	97		70-130	
Dibromofluoromethane	80		70-130	

Not Specified

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 07/13/16

Lab ID: L1620368-04 D

Client ID: P3-1 (12-16) Sample Location: SYRACUSE, NY

Matrix: Soil Analytical Method: 1,8260C

Analytical Date: 07/12/16 05:13 PΚ

Analyst: 65% Percent Solids:

Date Collected:	06/29/16 08:40
Date Received:	06/30/16

Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
Methylene chloride	ND		ug/kg	3600	390	250	
1,1-Dichloroethane	ND		ug/kg	540	30.	250	
Chloroform	ND		ug/kg	540	130	250	
Carbon tetrachloride	ND		ug/kg	360	75.	250	
1,2-Dichloropropane	ND		ug/kg	1200	81.	250	
Dibromochloromethane	ND		ug/kg	360	55.	250	
1,1,2-Trichloroethane	ND		ug/kg	540	110	250	
Tetrachloroethene	ND		ug/kg	360	50.	250	
Chlorobenzene	ND		ug/kg	360	120	250	
Trichlorofluoromethane	ND		ug/kg	1800	140	250	
1,2-Dichloroethane	ND		ug/kg	360	40.	250	
1,1,1-Trichloroethane	ND		ug/kg	360	40.	250	
Bromodichloromethane	ND		ug/kg	360	62.	250	
trans-1,3-Dichloropropene	ND		ug/kg	360	43.	250	
cis-1,3-Dichloropropene	ND		ug/kg	360	42.	250	
Bromoform	ND		ug/kg	1400	84.	250	
1,1,2,2-Tetrachloroethane	ND		ug/kg	360	36.	250	
Benzene	790		ug/kg	360	42.	250	
Toluene	440	J	ug/kg	540	69.	250	
Ethylbenzene	11000		ug/kg	360	45.	250	
Chloromethane	280	J	ug/kg	1800	100	250	
Bromomethane	ND		ug/kg	710	120	250	
Vinyl chloride	ND		ug/kg	710	42.	250	
Chloroethane	ND		ug/kg	710	110	250	
1,1-Dichloroethene	ND		ug/kg	360	93.	250	
trans-1,2-Dichloroethene	ND		ug/kg	540	76.	250	
Trichloroethene	ND		ug/kg	360	44.	250	
1,2-Dichlorobenzene	ND		ug/kg	1800	55.	250	
1,3-Dichlorobenzene	ND		ug/kg	1800	48.	250	
1,4-Dichlorobenzene	ND		ug/kg	1800	49.	250	

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-04 D Date Collected: 06/29/16 08:40

Client ID: P3-1 (12-16) Date Received: 06/30/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	tborough Lab					
Methyl tert butyl ether	ND		ug/kg	710	30.	250
p/m-Xylene	20000		ug/kg	710	70.	250
o-Xylene	530	J	ug/kg	710	61.	250
cis-1,2-Dichloroethene	ND		ug/kg	360	51.	250
Styrene	ND		ug/kg	710	140	250
Dichlorodifluoromethane	ND		ug/kg	3600	68.	250
Acetone	ND		ug/kg	3600	370	250
Carbon disulfide	ND		ug/kg	3600	390	250
2-Butanone	ND		ug/kg	3600	97.	250
4-Methyl-2-pentanone	ND		ug/kg	3600	87.	250
2-Hexanone	ND		ug/kg	3600	240	250
Bromochloromethane	ND		ug/kg	1800	98.	250
1,2-Dibromoethane	ND		ug/kg	1400	62.	250
1,2-Dibromo-3-chloropropane	ND		ug/kg	1800	140	250
Isopropylbenzene	1800		ug/kg	360	37.	250
1,2,3-Trichlorobenzene	ND		ug/kg	1800	53.	250
1,2,4-Trichlorobenzene	ND		ug/kg	1800	65.	250
Methyl Acetate	ND		ug/kg	7100	96.	250
Cyclohexane	29000		ug/kg	7100	52.	250
1,4-Dioxane	ND		ug/kg	36000	5100	250
Freon-113	ND		ug/kg	7100	98.	250
Methyl cyclohexane	60000		ug/kg	1400	55.	250

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-04 D

Client ID: P3-1 (12-16)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 08:40

Date Received: 06/30/16 Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Tentatively Identified Compounds				
Total TIC Compounds	200000	J	ug/kg	250
Pentane, 2-methyl-	25000	NJ	ug/kg	250
Cyclopentane, Methyl-	21000	NJ	ug/kg	250
Unknown Alkane	30000	J	ug/kg	250
Heptane, 2-methyl-	19000	NJ	ug/kg	250
Unknown	19000	J	ug/kg	250
Unknown	19000	J	ug/kg	250
Unknown Benzene	14000	J	ug/kg	250
Unknown Aromatic	16000	J	ug/kg	250
Unknown Aromatic	19000	J	ug/kg	250
Unknown	15000	J	ug/kg	250

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	71		70-130	
Toluene-d8	95		70-130	
4-Bromofluorobenzene	104		70-130	
Dibromofluoromethane	80		70-130	

Project Name: EMBASSY SUITES

L1620368-05

P3-9 (0-4)

Project Number: 15209

Lab ID:

Client ID:

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 07/13/16

Date Collected: 06/29/16 08:55

Date Received: 06/30/16
Field Prep: Not Specified

Sample Location: SYRACUSE, NY Matrix: Soil Analytical Method: 1,8260C

Analytical Date: 07/12/16 05:39

Analyst: PK Percent Solids: 79%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - W	estborough Lab						
Methylene chloride	ND		ug/kg	11	1.2	1	
1,1-Dichloroethane	ND		ug/kg	1.7	0.10	1	
Chloroform	ND		ug/kg	1.7	0.42	1	
Carbon tetrachloride	ND		ug/kg	1.1	0.24	1	
1,2-Dichloropropane	ND		ug/kg	4.0	0.26	1	
Dibromochloromethane	ND		ug/kg	1.1	0.17	1	
1,1,2-Trichloroethane	ND		ug/kg	1.7	0.34	1	
Tetrachloroethene	ND		ug/kg	1.1	0.16	1	
Chlorobenzene	ND		ug/kg	1.1	0.39	1	
Trichlorofluoromethane	ND		ug/kg	5.6	0.44	1	
1,2-Dichloroethane	ND		ug/kg	1.1	0.13	1	
1,1,1-Trichloroethane	ND		ug/kg	1.1	0.12	1	
Bromodichloromethane	ND		ug/kg	1.1	0.20	1	
trans-1,3-Dichloropropene	ND		ug/kg	1.1	0.14	1	
cis-1,3-Dichloropropene	ND		ug/kg	1.1	0.13	1	
Bromoform	ND		ug/kg	4.5	0.27	1	
1,1,2,2-Tetrachloroethane	ND		ug/kg	1.1	0.11	1	
Benzene	3.0		ug/kg	1.1	0.13	1	
Toluene	0.87	J	ug/kg	1.7	0.22	1	
Ethylbenzene	2.3		ug/kg	1.1	0.14	1	
Chloromethane	ND		ug/kg	5.6	0.33	1	
Bromomethane	ND		ug/kg	2.3	0.38	1	
Vinyl chloride	ND		ug/kg	2.3	0.13	1	
Chloroethane	ND		ug/kg	2.3	0.36	1	
1,1-Dichloroethene	ND		ug/kg	1.1	0.30	1	
trans-1,2-Dichloroethene	ND		ug/kg	1.7	0.24	1	
Trichloroethene	ND		ug/kg	1.1	0.14	1	
1,2-Dichlorobenzene	ND		ug/kg	5.6	0.17	1	
1,3-Dichlorobenzene	ND		ug/kg	5.6	0.15	1	
1,4-Dichlorobenzene	ND		ug/kg	5.6	0.16	1	

L1620368

Lab Number:

Project Name: EMBASSY SUITES

Project Number: Report Date: 15209 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-05 Date Collected: 06/29/16 08:55

P3-9 (0-4) Client ID: Date Received: 06/30/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	oorough Lab						
Methyl tert butyl ether	ND		ug/kg	2.3	0.10	1	
p/m-Xylene	3.8		ug/kg	2.3	0.22	1	
o-Xylene	0.64	J	ug/kg	2.3	0.19	1	
cis-1,2-Dichloroethene	0.30	J	ug/kg	1.1	0.16	1	
Styrene	ND		ug/kg	2.3	0.45	1	
Dichlorodifluoromethane	ND		ug/kg	11	0.22	1	
Acetone	44		ug/kg	11	1.2	1	
Carbon disulfide	ND		ug/kg	11	1.2	1	
2-Butanone	ND		ug/kg	11	0.31	1	
4-Methyl-2-pentanone	ND		ug/kg	11	0.28	1	
2-Hexanone	ND		ug/kg	11	0.75	1	
Bromochloromethane	ND		ug/kg	5.6	0.31	1	
1,2-Dibromoethane	ND		ug/kg	4.5	0.20	1	
1,2-Dibromo-3-chloropropane	ND		ug/kg	5.6	0.45	1	
Isopropylbenzene	3.3		ug/kg	1.1	0.12	1	
1,2,3-Trichlorobenzene	ND		ug/kg	5.6	0.17	1	
1,2,4-Trichlorobenzene	ND		ug/kg	5.6	0.20	1	
Methyl Acetate	ND		ug/kg	23	0.30	1	
Cyclohexane	3.7	J	ug/kg	23	0.16	1	
1,4-Dioxane	ND		ug/kg	110	16.	1	
Freon-113	ND		ug/kg	23	0.31	1	
Methyl cyclohexane	10		ug/kg	4.5	0.17	1	

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 06/29/16 08:55

Client ID: P3-9 (0-4) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Tentatively Identified Compounds				
Total TIC Compounds	440	J	ug/kg	1
Unknown Benzene	38	J	ug/kg	1
Unknown	42	J	ug/kg	1
Unknown Benzene	21	J	ug/kg	1
Unknown	25	J	ug/kg	1
Unknown	30	J	ug/kg	1
Unknown	35	J	ug/kg	1
Tetradecane	73	NJ	ug/kg	1
Unknown Alkane	34	J	ug/kg	1
Unknown	44	J	ug/kg	1
Unknown	100	J	ug/kg	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	71		70-130	
Toluene-d8	95		70-130	
4-Bromofluorobenzene	113		70-130	
Dibromofluoromethane	84		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 07/13/16

Lab ID: L1620368-06 D

Client ID: P3-9 (4-8) SYRACUSE, NY Sample Location:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 07/12/16 06:04

Analyst: PΚ 48% Percent Solids:

Date Collected: 06/29/16 08:55 Date Received: 06/30/16

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/kg	4200	470	250
1,1-Dichloroethane	ND		ug/kg	640	36.	250
Chloroform	ND		ug/kg	640	160	250
Carbon tetrachloride	ND		ug/kg	420	89.	250
1,2-Dichloropropane	ND		ug/kg	1500	97.	250
Dibromochloromethane	ND		ug/kg	420	65.	250
1,1,2-Trichloroethane	ND		ug/kg	640	130	250
Tetrachloroethene	ND		ug/kg	420	60.	250
Chlorobenzene	ND		ug/kg	420	150	250
Trichlorofluoromethane	ND		ug/kg	2100	160	250
1,2-Dichloroethane	ND		ug/kg	420	48.	250
1,1,1-Trichloroethane	ND		ug/kg	420	47.	250
Bromodichloromethane	ND		ug/kg	420	74.	250
trans-1,3-Dichloropropene	ND		ug/kg	420	51.	250
cis-1,3-Dichloropropene	ND		ug/kg	420	50.	250
Bromoform	ND		ug/kg	1700	100	250
1,1,2,2-Tetrachloroethane	ND		ug/kg	420	43.	250
Benzene	660		ug/kg	420	50.	250
Toluene	280	J	ug/kg	640	83.	250
Ethylbenzene	16000		ug/kg	420	54.	250
Chloromethane	320	J	ug/kg	2100	120	250
Bromomethane	ND		ug/kg	850	140	250
Vinyl chloride	ND		ug/kg	850	50.	250
Chloroethane	ND		ug/kg	850	130	250
1,1-Dichloroethene	ND		ug/kg	420	110	250
trans-1,2-Dichloroethene	ND		ug/kg	640	90.	250
Trichloroethene	ND		ug/kg	420	53.	250
1,2-Dichlorobenzene	ND		ug/kg	2100	65.	250
1,3-Dichlorobenzene	ND		ug/kg	2100	57.	250
1,4-Dichlorobenzene	ND		ug/kg	2100	59.	250

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-06 D

Client ID: P3-9 (4-8)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 08:55

Date Received: 06/30/16 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab									
Methyl tert butyl ether	ND		ug/kg	850	36.	250			
p/m-Xylene	20000		ug/kg	850	84.	250			
o-Xylene	510	J	ug/kg	850	73.	250			
cis-1,2-Dichloroethene	ND		ug/kg	420	61.	250			
Styrene	ND		ug/kg	850	170	250			
Dichlorodifluoromethane	ND		ug/kg	4200	81.	250			
Acetone	ND		ug/kg	4200	440	250			
Carbon disulfide	ND		ug/kg	4200	470	250			
2-Butanone	ND		ug/kg	4200	120	250			
4-Methyl-2-pentanone	ND		ug/kg	4200	100	250			
2-Hexanone	ND		ug/kg	4200	280	250			
Bromochloromethane	ND		ug/kg	2100	120	250			
1,2-Dibromoethane	ND		ug/kg	1700	74.	250			
1,2-Dibromo-3-chloropropane	ND		ug/kg	2100	170	250			
Isopropylbenzene	3100		ug/kg	420	44.	250			
1,2,3-Trichlorobenzene	ND		ug/kg	2100	63.	250			
1,2,4-Trichlorobenzene	ND		ug/kg	2100	77.	250			
Methyl Acetate	ND		ug/kg	8500	110	250			
Cyclohexane	26000		ug/kg	8500	62.	250			
1,4-Dioxane	ND		ug/kg	42000	6100	250			
Freon-113	ND		ug/kg	8500	120	250			
Methyl cyclohexane	58000		ug/kg	1700	66.	250			

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-06 D

Client ID: P3-9 (4-8)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 08:55

Date Received: 06/30/16 Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Tentatively Identified Compounds				
Total TIC Compounds	210000	J	ug/kg	250
Pentane, 2-methyl-	17000	NJ	ug/kg	250
Cyclopentane, Methyl-	19000	NJ	ug/kg	250
Unknown Alkane	24000	J	ug/kg	250
Heptane, 2-methyl-	16000	NJ	ug/kg	250
Unknown Cyclohexane	18000	J	ug/kg	250
Unknown	27000	J	ug/kg	250
Unknown Benzene	22000	J	ug/kg	250
Unknown Benzene	18000	J	ug/kg	250
Unknown Benzene	22000	J	ug/kg	250
Unknown Aromatic	27000	J	ug/kg	250

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	70		70-130	
Toluene-d8	96		70-130	
4-Bromofluorobenzene	101		70-130	
Dibromofluoromethane	80		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 07/13/16

SAMPLE RESU

Lab ID: L1620368-07 D

Client ID: P3-9 (8-12)
Sample Location: SYRACUSE, NY

Matrix: Soil

Analytical Method: 1,8260C

Analytical Date: 07/13/16 12:05

Analyst: MV Percent Solids: 57% Date Collected: 06/29/16 08:55

Date Received: 06/30/16
Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/kg	780	87.	50
1,1-Dichloroethane	ND		ug/kg	120	6.7	50
Chloroform	ND		ug/kg	120	29.	50
Carbon tetrachloride	ND		ug/kg	78	16.	50
1,2-Dichloropropane	ND		ug/kg	280	18.	50
Dibromochloromethane	ND		ug/kg	78	12.	50
1,1,2-Trichloroethane	ND		ug/kg	120	24.	50
Tetrachloroethene	ND		ug/kg	78	11.	50
Chlorobenzene	ND		ug/kg	78	27.	50
Trichlorofluoromethane	ND		ug/kg	390	30.	50
1,2-Dichloroethane	ND		ug/kg	78	8.9	50
1,1,1-Trichloroethane	ND		ug/kg	78	8.7	50
Bromodichloromethane	ND		ug/kg	78	14.	50
trans-1,3-Dichloropropene	ND		ug/kg	78	9.5	50
cis-1,3-Dichloropropene	ND		ug/kg	78	9.2	50
Bromoform	ND		ug/kg	310	18.	50
1,1,2,2-Tetrachloroethane	ND		ug/kg	78	7.9	50
Benzene	ND		ug/kg	78	9.3	50
Toluene	16	J	ug/kg	120	15.	50
Ethylbenzene	62	J	ug/kg	78	10.	50
Chloromethane	ND		ug/kg	390	23.	50
Bromomethane	ND		ug/kg	160	26.	50
Vinyl chloride	ND		ug/kg	160	9.2	50
Chloroethane	ND		ug/kg	160	25.	50
1,1-Dichloroethene	ND		ug/kg	78	20.	50
trans-1,2-Dichloroethene	ND		ug/kg	120	17.	50
Trichloroethene	ND		ug/kg	78	9.8	50
1,2-Dichlorobenzene	ND		ug/kg	390	12.	50
1,3-Dichlorobenzene	ND		ug/kg	390	11.	50
1,4-Dichlorobenzene	ND		ug/kg	390	11.	50

06/29/16 08:55

Date Collected:

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-07 D

Client ID: P3-9 (8-12) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RLMDL **Dilution Factor** Volatile Organics by GC/MS - Westborough Lab Methyl tert butyl ether ND 160 6.6 50 ug/kg p/m-Xylene 56 J ug/kg 160 16. 50 o-Xylene ND 160 14. 50 ug/kg cis-1,2-Dichloroethene ND 50 78 11. ug/kg Styrene ND 160 32. 50 ug/kg Dichlorodifluoromethane ND 780 50 15. ug/kg ND Acetone 780 81. 50 ug/kg Carbon disulfide ND 87. 50 ug/kg 780 ND 2-Butanone ug/kg 780 21. 50 4-Methyl-2-pentanone ND 780 19. 50 ug/kg ND 780 50 2-Hexanone ug/kg 52. Bromochloromethane ND 390 22. 50 ug/kg 1,2-Dibromoethane ND 310 14. 50 ug/kg ND 390 31. 50 1,2-Dibromo-3-chloropropane ug/kg Isopropylbenzene 58 J 78 8.2 50 ug/kg 1,2,3-Trichlorobenzene ND 390 12. 50 ug/kg ND 1,2,4-Trichlorobenzene 390 14. 50 ug/kg Methyl Acetate 2600 1600 21. 50 ug/kg Cyclohexane 260 J 1600 11. 50 ug/kg 1,4-Dioxane ND 7800 1100 50 ug/kg Freon-113 ND 1600 22. 50 ug/kg Methyl cyclohexane 800 ug/kg 310 12. 50

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-07 D Date Collected: 06/29/16 08:55

Client ID: P3-9 (8-12) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Tentatively Identified Compounds				
Total TIC Compounds	6900	J	ug/kg	50
Unknown	480	J	ug/kg	50
Unknown	840	J	ug/kg	50
Unknown	1100	J	ug/kg	50
Unknown	450	J	ug/kg	50
Unknown Cyclohexane	640	J	ug/kg	50
Unknown	590	J	ug/kg	50
Unknown Benzene	650	J	ug/kg	50
Unknown	560	J	ug/kg	50
Unknown Benzene	1100	J	ug/kg	50
Unknown Aromatic	460	J	ug/kg	50

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	91		70-130	
Toluene-d8	92		70-130	
4-Bromofluorobenzene	92		70-130	
Dibromofluoromethane	95		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 07/13/16

Lab ID: L1620368-08

Client ID: P3-9 (12-16) Sample Location: SYRACUSE, NY

Matrix: Soil

Analytical Method: 1,8260C

Analytical Date: 07/12/16 06:56

Analyst: PΚ 58% Percent Solids:

Parameter

Date Collected:	06/29/16 08:55
Date Received:	06/30/16
Field Prep:	Not Specified

MDL

Dilution Factor

Volatile Organics by GC/MS - We	stborough Lab						
Methylene chloride	ND		ug/kg	16	1.8	1	
1,1-Dichloroethane	ND		ug/kg	2.4	0.14	1	
Chloroform	ND		ug/kg	2.4	0.60	1	
Carbon tetrachloride	ND		ug/kg	1.6	0.34	1	
1,2-Dichloropropane	ND		ug/kg	5.7	0.37	1	
Dibromochloromethane	ND		ug/kg	1.6	0.25	1	
1,1,2-Trichloroethane	ND		ug/kg	2.4	0.49	1	
Tetrachloroethene	ND		ug/kg	1.6	0.23	1	
Chlorobenzene	ND		ug/kg	1.6	0.57	1	
Trichlorofluoromethane	ND		ug/kg	8.1	0.63	1	
1,2-Dichloroethane	ND		ug/kg	1.6	0.18	1	
1,1,1-Trichloroethane	ND		ug/kg	1.6	0.18	1	
Bromodichloromethane	ND		ug/kg	1.6	0.28	1	
trans-1,3-Dichloropropene	ND		ug/kg	1.6	0.20	1	
cis-1,3-Dichloropropene	ND		ug/kg	1.6	0.19	1	
Bromoform	ND		ug/kg	6.5	0.38	1	
1,1,2,2-Tetrachloroethane	ND		ug/kg	1.6	0.16	1	
Benzene	0.24	J	ug/kg	1.6	0.19	1	
Toluene	0.32	J	ug/kg	2.4	0.32	1	
Ethylbenzene	1.6		ug/kg	1.6	0.21	1	
Chloromethane	ND		ug/kg	8.1	0.48	1	
Bromomethane	ND		ug/kg	3.2	0.55	1	
Vinyl chloride	ND		ug/kg	3.2	0.19	1	
Chloroethane	ND		ug/kg	3.2	0.51	1	
1,1-Dichloroethene	ND		ug/kg	1.6	0.43	1	
trans-1,2-Dichloroethene	ND		ug/kg	2.4	0.34	1	
Trichloroethene	ND		ug/kg	1.6	0.20	1	
1,2-Dichlorobenzene	ND		ug/kg	8.1	0.25	1	
1,3-Dichlorobenzene	ND		ug/kg	8.1	0.22	1	
1,4-Dichlorobenzene	ND		ug/kg	8.1	0.22	1	

Qualifier

Result

Units

RL

L1620368

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Report Date: 07/13/16

Lab Number:

Lab ID: L1620368-08

Client ID: P3-9 (12-16) Sample Location: SYRACUSE, NY Date Collected: 06/29/16 08:55

Date Received: 06/30/16 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab									
Methyl tert butyl ether	ND		ug/kg	3.2	0.14	1			
p/m-Xylene	2.0	J	ug/kg	3.2	0.32	1			
o-Xylene	ND		ug/kg	3.2	0.28	1			
cis-1,2-Dichloroethene	ND		ug/kg	1.6	0.23	1			
Styrene	ND		ug/kg	3.2	0.65	1			
Dichlorodifluoromethane	ND		ug/kg	16	0.31	1			
Acetone	31		ug/kg	16	1.7	1			
Carbon disulfide	ND		ug/kg	16	1.8	1			
2-Butanone	ND		ug/kg	16	0.44	1			
4-Methyl-2-pentanone	ND		ug/kg	16	0.40	1			
2-Hexanone	ND		ug/kg	16	1.1	1			
Bromochloromethane	ND		ug/kg	8.1	0.45	1			
1,2-Dibromoethane	ND		ug/kg	6.5	0.28	1			
1,2-Dibromo-3-chloropropane	ND		ug/kg	8.1	0.64	1			
Isopropylbenzene	1.7		ug/kg	1.6	0.17	1			
1,2,3-Trichlorobenzene	ND		ug/kg	8.1	0.24	1			
1,2,4-Trichlorobenzene	ND		ug/kg	8.1	0.30	1			
Methyl Acetate	ND		ug/kg	32	0.44	1			
Cyclohexane	12	J	ug/kg	32	0.24	1			
1,4-Dioxane	ND		ug/kg	160	23.	1			
Freon-113	ND		ug/kg	32	0.44	1			
Methyl cyclohexane	28		ug/kg	6.5	0.25	1			

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 06/29/16 08:55

Client ID: P3-9 (12-16) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Tentatively Identified Compounds				
Total TIC Compounds	280	J	ug/kg	1
Butane, 2,3-Dimethyl-	77	NJ	ug/kg	1
Pentane, 3-methyl-	18	NJ	ug/kg	1
Unknown	19	J	ug/kg	1
Hexane, 3-methyl-	16	NJ	ug/kg	1
Unknown Alkane	52	J	ug/kg	1
Unknown	21	J	ug/kg	1
Unknown Cyclohexane	29	J	ug/kg	1
Unknown	16	J	ug/kg	1
Unknown Benzene	21	J	ug/kg	1
Unknown Benzene	15	J	ug/kg	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	70		70-130	
Toluene-d8	95		70-130	
4-Bromofluorobenzene	98		70-130	
Dibromofluoromethane	84		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 07/13/16

Lab ID: L1620368-09 D

Client ID: P3-8 (4-8)
Sample Location: SYRACUSE, NY

Matrix: Soil Analytical Method: 1,8260C

Analytical Date: 07/11/16 16:57

Analyst: MV Percent Solids: 61% Date Collected: 06/29/16 09:05

Date Received: 06/30/16 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/kg	3200	350	200
1,1-Dichloroethane	ND		ug/kg	480	27.	200
Chloroform	ND		ug/kg	480	120	200
Carbon tetrachloride	ND		ug/kg	320	67.	200
1,2-Dichloropropane	ND		ug/kg	1100	73.	200
Dibromochloromethane	ND		ug/kg	320	49.	200
1,1,2-Trichloroethane	ND		ug/kg	480	97.	200
Tetrachloroethene	ND		ug/kg	320	45.	200
Chlorobenzene	ND		ug/kg	320	110	200
Trichlorofluoromethane	ND		ug/kg	1600	120	200
1,2-Dichloroethane	ND		ug/kg	320	36.	200
1,1,1-Trichloroethane	ND		ug/kg	320	35.	200
Bromodichloromethane	ND		ug/kg	320	55.	200
trans-1,3-Dichloropropene	ND		ug/kg	320	39.	200
cis-1,3-Dichloropropene	ND		ug/kg	320	38.	200
Bromoform	ND		ug/kg	1300	76.	200
1,1,2,2-Tetrachloroethane	ND		ug/kg	320	32.	200
Benzene	ND		ug/kg	320	38.	200
Toluene	ND		ug/kg	480	62.	200
Ethylbenzene	ND		ug/kg	320	41.	200
Chloromethane	ND		ug/kg	1600	94.	200
Bromomethane	ND		ug/kg	640	110	200
Vinyl chloride	ND		ug/kg	640	38.	200
Chloroethane	ND		ug/kg	640	100	200
1,1-Dichloroethene	ND		ug/kg	320	84.	200
trans-1,2-Dichloroethene	ND		ug/kg	480	68.	200
Trichloroethene	ND		ug/kg	320	40.	200
1,2-Dichlorobenzene	ND		ug/kg	1600	49.	200
1,3-Dichlorobenzene	ND		ug/kg	1600	43.	200
1,4-Dichlorobenzene	ND		ug/kg	1600	44.	200

L1620368

Lab Number:

Project Name: EMBASSY SUITES

Project Number: Report Date: 15209 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-09 D Date Collected: 06/29/16 09:05

Client ID: Date Received: 06/30/16 P3-8 (4-8) Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westl	oorough Lab					
Methyl tert butyl ether	ND		ug/kg	640	27.	200
p/m-Xylene	84	J	ug/kg	640	63.	200
o-Xylene	ND		ug/kg	640	55.	200
cis-1,2-Dichloroethene	ND		ug/kg	320	46.	200
Styrene	ND		ug/kg	640	130	200
Dichlorodifluoromethane	ND		ug/kg	3200	61.	200
Acetone	ND		ug/kg	3200	330	200
Carbon disulfide	ND		ug/kg	3200	350	200
2-Butanone	ND		ug/kg	3200	87.	200
4-Methyl-2-pentanone	ND		ug/kg	3200	78.	200
2-Hexanone	ND		ug/kg	3200	210	200
Bromochloromethane	ND		ug/kg	1600	88.	200
1,2-Dibromoethane	ND		ug/kg	1300	56.	200
1,2-Dibromo-3-chloropropane	ND		ug/kg	1600	130	200
Isopropylbenzene	360		ug/kg	320	33.	200
1,2,3-Trichlorobenzene	ND		ug/kg	1600	47.	200
1,2,4-Trichlorobenzene	ND		ug/kg	1600	58.	200
Methyl Acetate	ND		ug/kg	6400	86.	200
Cyclohexane	ND		ug/kg	6400	47.	200
1,4-Dioxane	ND		ug/kg	32000	4600	200
Freon-113	ND		ug/kg	6400	88.	200
Methyl cyclohexane	5700		ug/kg	1300	50.	200

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-09 D

Client ID: P3-8 (4-8)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 09:05

Date Received: 06/30/16 Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Tentatively Identified Compounds				
Total TIC Compounds	150000	J	ug/kg	200
Unknown	43000	J	ug/kg	200
Unknown	14000	J	ug/kg	200
Pentane, 2,3,4-trimethyl-	20000	NJ	ug/kg	200
Unknown Alkane	20000	J	ug/kg	200
Unknown	17000	J	ug/kg	200
Unknown Cyclohexane	7000	J	ug/kg	200
Unknown	7600	J	ug/kg	200
Unknown	6600	J	ug/kg	200
Unknown	8200	J	ug/kg	200
Unknown	6400	J	ug/kg	200

% Recovery	Qualifier	Acceptance Criteria	
106		70-130	
119		70-130	
99		70-130	
101		70-130	
	106 119 99	106 119 99	% Recovery Qualifier Criteria 106 70-130 119 70-130 99 70-130

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 07/13/16

Lab ID: L1620368-10 D

Client ID: P3-7 (4-8) SYRACUSE, NY Sample Location:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 07/11/16 17:23

Analyst: MV 62% Percent Solids:

Date Collected: 06/29/16 09:15

Date Received: 06/30/16 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/kg	1500	170	100
1,1-Dichloroethane	ND		ug/kg	230	13.	100
Chloroform	ND		ug/kg	230	57.	100
Carbon tetrachloride	ND		ug/kg	150	32.	100
1,2-Dichloropropane	ND		ug/kg	540	35.	100
Dibromochloromethane	ND		ug/kg	150	24.	100
1,1,2-Trichloroethane	ND		ug/kg	230	47.	100
Tetrachloroethene	ND		ug/kg	150	22.	100
Chlorobenzene	ND		ug/kg	150	54.	100
Trichlorofluoromethane	ND		ug/kg	770	60.	100
1,2-Dichloroethane	ND		ug/kg	150	18.	100
1,1,1-Trichloroethane	ND		ug/kg	150	17.	100
Bromodichloromethane	ND		ug/kg	150	27.	100
trans-1,3-Dichloropropene	ND		ug/kg	150	19.	100
cis-1,3-Dichloropropene	ND		ug/kg	150	18.	100
Bromoform	ND		ug/kg	620	36.	100
1,1,2,2-Tetrachloroethane	ND		ug/kg	150	16.	100
Benzene	ND		ug/kg	150	18.	100
Toluene	32	J	ug/kg	230	30.	100
Ethylbenzene	690		ug/kg	150	20.	100
Chloromethane	ND		ug/kg	770	45.	100
Bromomethane	ND		ug/kg	310	52.	100
Vinyl chloride	ND		ug/kg	310	18.	100
Chloroethane	ND		ug/kg	310	49.	100
1,1-Dichloroethene	ND		ug/kg	150	40.	100
trans-1,2-Dichloroethene	ND		ug/kg	230	33.	100
Trichloroethene	ND		ug/kg	150	19.	100
1,2-Dichlorobenzene	ND		ug/kg	770	24.	100
1,3-Dichlorobenzene	ND		ug/kg	770	21.	100
1,4-Dichlorobenzene	ND		ug/kg	770	21.	100

06/29/16 09:15

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-10 D

Client ID: P3-7 (4-8)
Sample Location: SYRACUSE, NY

Date Received: 06/30/16 Field Prep: Not Specified

Date Collected:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	orough Lab					
Methyl tert butyl ether	ND		ug/kg	310	13.	100
p/m-Xylene	1400		ug/kg	310	30.	100
o-Xylene	190	J	ug/kg	310	26.	100
cis-1,2-Dichloroethene	ND		ug/kg	150	22.	100
Styrene	ND		ug/kg	310	62.	100
Dichlorodifluoromethane	ND		ug/kg	1500	29.	100
Acetone	ND		ug/kg	1500	160	100
Carbon disulfide	ND		ug/kg	1500	170	100
2-Butanone	ND		ug/kg	1500	42.	100
4-Methyl-2-pentanone	ND		ug/kg	1500	38.	100
2-Hexanone	ND		ug/kg	1500	100	100
Bromochloromethane	ND		ug/kg	770	42.	100
1,2-Dibromoethane	ND		ug/kg	620	27.	100
1,2-Dibromo-3-chloropropane	ND		ug/kg	770	61.	100
Isopropylbenzene	550		ug/kg	150	16.	100
1,2,3-Trichlorobenzene	ND		ug/kg	770	23.	100
1,2,4-Trichlorobenzene	ND		ug/kg	770	28.	100
Methyl Acetate	ND		ug/kg	3100	42.	100
Cyclohexane	6200		ug/kg	3100	22.	100
1,4-Dioxane	ND		ug/kg	15000	2200	100
Freon-113	ND		ug/kg	3100	42.	100
Methyl cyclohexane	26000		ug/kg	620	24.	100

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-10 D

Client ID: P3-7 (4-8)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/1

06/29/16 09:15

Date Received: 06/30/16 Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Tentatively Identified Compounds				
Total TIC Compounds	270000	J	ug/kg	100
Unknown Alkane	22000	J	ug/kg	100
Unknown	18000	J	ug/kg	100
Unknown	19000	J	ug/kg	100
Unknown Benzene	22000	J	ug/kg	100
Unknown Benzene	32000	J	ug/kg	100
Unknown Aromatic	29000	J	ug/kg	100
Unknown Benzene	53000	J	ug/kg	100
Unknown	24000	J	ug/kg	100
Unknown Aromatic	21000	J	ug/kg	100
Unknown	25000	J	ug/kg	100

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	106		70-130	
Toluene-d8	113		70-130	
4-Bromofluorobenzene	113		70-130	
Dibromofluoromethane	98		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 07/13/16

Lab ID: L1620368-11 D

Client ID: P3-7 (8-12)
Sample Location: SYRACUSE, NY

Matrix: Soil Analytical Method: 1,8260C

Analytical Date: 07/11/16 17:48

Analyst: MV Percent Solids: 45% Date Collected: 06/29/16 09:15

Date Received: 06/30/16 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/kg	20000	2200	1000
1,1-Dichloroethane	ND		ug/kg	3000	170	1000
Chloroform	ND		ug/kg	3000	740	1000
Carbon tetrachloride	ND		ug/kg	2000	420	1000
1,2-Dichloropropane	ND		ug/kg	7000	460	1000
Dibromochloromethane	ND		ug/kg	2000	310	1000
1,1,2-Trichloroethane	ND		ug/kg	3000	610	1000
Tetrachloroethene	ND		ug/kg	2000	280	1000
Chlorobenzene	ND		ug/kg	2000	700	1000
Trichlorofluoromethane	ND		ug/kg	10000	780	1000
1,2-Dichloroethane	ND		ug/kg	2000	230	1000
1,1,1-Trichloroethane	ND		ug/kg	2000	220	1000
Bromodichloromethane	ND		ug/kg	2000	350	1000
trans-1,3-Dichloropropene	ND		ug/kg	2000	240	1000
cis-1,3-Dichloropropene	ND		ug/kg	2000	240	1000
Bromoform	ND		ug/kg	8000	470	1000
1,1,2,2-Tetrachloroethane	ND		ug/kg	2000	200	1000
Benzene	ND		ug/kg	2000	240	1000
Toluene	8200		ug/kg	3000	390	1000
Ethylbenzene	70000		ug/kg	2000	260	1000
Chloromethane	ND		ug/kg	10000	590	1000
Bromomethane	ND		ug/kg	4000	680	1000
Vinyl chloride	ND		ug/kg	4000	240	1000
Chloroethane	ND		ug/kg	4000	630	1000
1,1-Dichloroethene	ND		ug/kg	2000	520	1000
trans-1,2-Dichloroethene	ND		ug/kg	3000	420	1000
Trichloroethene	ND		ug/kg	2000	250	1000
1,2-Dichlorobenzene	ND		ug/kg	10000	310	1000
1,3-Dichlorobenzene	ND		ug/kg	10000	270	1000
1,4-Dichlorobenzene	ND		ug/kg	10000	280	1000

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-11 D Date Collected: 06/29/16 09:15

Client ID: P3-7 (8-12) Date Received: 06/30/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methyl tert butyl ether	ND		ug/kg	4000	170	1000
p/m-Xylene	270000		ug/kg	4000	400	1000
o-Xylene	18000		ug/kg	4000	340	1000
cis-1,2-Dichloroethene	ND		ug/kg	2000	280	1000
Styrene	ND		ug/kg	4000	800	1000
Dichlorodifluoromethane	ND		ug/kg	20000	380	1000
Acetone	ND		ug/kg	20000	2100	1000
Carbon disulfide	ND		ug/kg	20000	2200	1000
2-Butanone	ND		ug/kg	20000	540	1000
4-Methyl-2-pentanone	ND		ug/kg	20000	490	1000
2-Hexanone	ND		ug/kg	20000	1300	1000
Bromochloromethane	ND		ug/kg	10000	550	1000
1,2-Dibromoethane	ND		ug/kg	8000	350	1000
1,2-Dibromo-3-chloropropane	ND		ug/kg	10000	790	1000
Isopropylbenzene	6900		ug/kg	2000	210	1000
1,2,3-Trichlorobenzene	ND		ug/kg	10000	300	1000
1,2,4-Trichlorobenzene	ND		ug/kg	10000	360	1000
Methyl Acetate	ND		ug/kg	40000	540	1000
Cyclohexane	56000		ug/kg	40000	290	1000
1,4-Dioxane	ND		ug/kg	200000	29000	1000
Freon-113	ND		ug/kg	40000	550	1000
Methyl cyclohexane	130000		ug/kg	8000	310	1000

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-11 D

Client ID: P3-7 (8-12)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 09:15

Date Received: 06/30/16
Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Tentatively Identified Compounds				
Total TIC Compounds	520000	J	ug/kg	1000
Unknown	55000	J	ug/kg	1000
Unknown Cycloalkane	56000	J	ug/kg	1000
Unknown	42000	J	ug/kg	1000
Unknown	40000	J	ug/kg	1000
Unknown Benzene	66000	J	ug/kg	1000
Unknown Benzene	54000	J	ug/kg	1000
Unknown Benzene	47000	J	ug/kg	1000
Unknown Benzene	51000	J	ug/kg	1000
Unknown Aromatic	47000	J	ug/kg	1000
Benzene, 2-butenyl-	62000	NJ	ug/kg	1000

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	107		70-130	
Toluene-d8	106		70-130	
4-Bromofluorobenzene	104		70-130	
Dibromofluoromethane	102		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 07/13/16

Lab ID: L1620368-12 D

Client ID: P3-6 (4-8) SYRACUSE, NY Sample Location:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 07/11/16 18:13

Analyst: MV 63% Percent Solids:

Date Collected: 06/29/16 09:20

Date Received: 06/30/16 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - We	estborough Lab						
Methylene chloride	ND		ug/kg	7900	870	500	
1,1-Dichloroethane	ND		ug/kg	1200	68.	500	
Chloroform	ND		ug/kg	1200	290	500	
Carbon tetrachloride	ND		ug/kg	790	170	500	
1,2-Dichloropropane	ND		ug/kg	2800	180	500	
Dibromochloromethane	ND		ug/kg	790	120	500	
1,1,2-Trichloroethane	ND		ug/kg	1200	240	500	
Tetrachloroethene	ND		ug/kg	790	110	500	
Chlorobenzene	ND		ug/kg	790	280	500	
Trichlorofluoromethane	ND		ug/kg	4000	310	500	
1,2-Dichloroethane	ND		ug/kg	790	90.	500	
1,1,1-Trichloroethane	ND		ug/kg	790	88.	500	
Bromodichloromethane	ND		ug/kg	790	140	500	
trans-1,3-Dichloropropene	ND		ug/kg	790	96.	500	
cis-1,3-Dichloropropene	ND		ug/kg	790	93.	500	
Bromoform	ND		ug/kg	3200	190	500	
1,1,2,2-Tetrachloroethane	ND		ug/kg	790	80.	500	
Benzene	ND		ug/kg	790	93.	500	
Toluene	410	J	ug/kg	1200	150	500	
Ethylbenzene	19000		ug/kg	790	100	500	
Chloromethane	ND		ug/kg	4000	230	500	
Bromomethane	ND		ug/kg	1600	270	500	
Vinyl chloride	ND		ug/kg	1600	93.	500	
Chloroethane	ND		ug/kg	1600	250	500	
1,1-Dichloroethene	ND		ug/kg	790	210	500	
trans-1,2-Dichloroethene	ND		ug/kg	1200	170	500	
Trichloroethene	ND		ug/kg	790	99.	500	
1,2-Dichlorobenzene	ND		ug/kg	4000	120	500	
1,3-Dichlorobenzene	ND		ug/kg	4000	110	500	
1,4-Dichlorobenzene	ND		ug/kg	4000	110	500	

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-12 D

Client ID: P3-6 (4-8)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 09:20

Date Received: 06/30/16 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab									
Methyl tert butyl ether	ND		ug/kg	1600	67.	500			
p/m-Xylene	30000		ug/kg	1600	160	500			
o-Xylene	3200		ug/kg	1600	140	500			
cis-1,2-Dichloroethene	ND		ug/kg	790	110	500			
Styrene	ND		ug/kg	1600	320	500			
Dichlorodifluoromethane	ND		ug/kg	7900	150	500			
Acetone	ND		ug/kg	7900	820	500			
Carbon disulfide	ND		ug/kg	7900	870	500			
2-Butanone	ND		ug/kg	7900	220	500			
4-Methyl-2-pentanone	ND		ug/kg	7900	190	500			
2-Hexanone	ND		ug/kg	7900	530	500			
Bromochloromethane	ND		ug/kg	4000	220	500			
1,2-Dibromoethane	ND		ug/kg	3200	140	500			
1,2-Dibromo-3-chloropropane	ND		ug/kg	4000	310	500			
Isopropylbenzene	3100		ug/kg	790	82.	500			
1,2,3-Trichlorobenzene	ND		ug/kg	4000	120	500			
1,2,4-Trichlorobenzene	ND		ug/kg	4000	140	500			
Methyl Acetate	ND		ug/kg	16000	210	500			
Cyclohexane	34000		ug/kg	16000	120	500			
1,4-Dioxane	ND		ug/kg	79000	11000	500			
Freon-113	ND		ug/kg	16000	220	500			
Methyl cyclohexane	110000		ug/kg	3200	120	500			

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-12 D

Client ID: P3-6 (4-8)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 09:20

Date Received: 06/30/16 Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Tentatively Identified Compounds				
Total TIC Compounds	650000	J	ug/kg	500
Unknown Alkane	66000	J	ug/kg	500
Unknown	54000	J	ug/kg	500
Unknown	50000	J	ug/kg	500
Unknown Benzene	51000	J	ug/kg	500
Unknown Benzene	58000	J	ug/kg	500
Unknown Aromatic	57000	J	ug/kg	500
Unknown Benzene	110000	J	ug/kg	500
Unknown Benzene	58000	J	ug/kg	500
Unknown Aromatic	78000	J	ug/kg	500
Unknown Aromatic	64000	J	ug/kg	500

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	106		70-130	
Toluene-d8	108		70-130	
4-Bromofluorobenzene	102		70-130	
Dibromofluoromethane	100		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 07/13/16

Lab ID: L1620368-13 D

Client ID: P3-6 (8-12) SYRACUSE, NY Sample Location:

Matrix: Soil Analytical Method: 1,8260C

Analytical Date: 07/11/16 18:39

Analyst: MV 46% Percent Solids:

Date Collected: 06/29/16 09:20 Date Received: 06/30/16

Not Specified

Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	borough Lab					
Methylene chloride	ND		ug/kg	11000	1200	500
1,1-Dichloroethane	ND		ug/kg	1600	94.	500
Chloroform	ND		ug/kg	1600	400	500
Carbon tetrachloride	ND		ug/kg	1100	230	500
1,2-Dichloropropane	ND		ug/kg	3800	250	500
Dibromochloromethane	ND		ug/kg	1100	170	500
1,1,2-Trichloroethane	ND		ug/kg	1600	330	500
Tetrachloroethene	ND		ug/kg	1100	150	500
Chlorobenzene	ND		ug/kg	1100	380	500
Trichlorofluoromethane	ND		ug/kg	5500	420	500
1,2-Dichloroethane	ND		ug/kg	1100	120	500
1,1,1-Trichloroethane	ND		ug/kg	1100	120	500
Bromodichloromethane	ND		ug/kg	1100	190	500
trans-1,3-Dichloropropene	ND		ug/kg	1100	130	500
cis-1,3-Dichloropropene	ND		ug/kg	1100	130	500
Bromoform	ND		ug/kg	4400	260	500
1,1,2,2-Tetrachloroethane	ND		ug/kg	1100	110	500
Benzene	ND		ug/kg	1100	130	500
Toluene	2200		ug/kg	1600	210	500
Ethylbenzene	41000		ug/kg	1100	140	500
Chloromethane	ND		ug/kg	5500	320	500
Bromomethane	ND		ug/kg	2200	370	500
Vinyl chloride	ND		ug/kg	2200	130	500
Chloroethane	ND		ug/kg	2200	350	500
1,1-Dichloroethene	ND		ug/kg	1100	290	500
trans-1,2-Dichloroethene	ND		ug/kg	1600	230	500
Trichloroethene	ND		ug/kg	1100	140	500
1,2-Dichlorobenzene	ND		ug/kg	5500	170	500
1,3-Dichlorobenzene	ND		ug/kg	5500	150	500
1,4-Dichlorobenzene	ND		ug/kg	5500	150	500

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-13 D

Client ID: P3-6 (8-12)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 09:20

Date Received: 06/30/16
Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab									
Methyl tert butyl ether	ND		ug/kg	2200	92.	500			
p/m-Xylene	120000		ug/kg	2200	220	500			
o-Xylene	8900		ug/kg	2200	190	500			
cis-1,2-Dichloroethene	ND		ug/kg	1100	160	500			
Styrene	ND		ug/kg	2200	440	500			
Dichlorodifluoromethane	ND		ug/kg	11000	210	500			
Acetone	ND		ug/kg	11000	1100	500			
Carbon disulfide	ND		ug/kg	11000	1200	500			
2-Butanone	ND		ug/kg	11000	300	500			
4-Methyl-2-pentanone	ND		ug/kg	11000	270	500			
2-Hexanone	ND		ug/kg	11000	730	500			
Bromochloromethane	ND		ug/kg	5500	300	500			
1,2-Dibromoethane	ND		ug/kg	4400	190	500			
1,2-Dibromo-3-chloropropane	ND		ug/kg	5500	430	500			
Isopropylbenzene	4800		ug/kg	1100	110	500			
1,2,3-Trichlorobenzene	ND		ug/kg	5500	160	500			
1,2,4-Trichlorobenzene	ND		ug/kg	5500	200	500			
Methyl Acetate	ND		ug/kg	22000	300	500			
Cyclohexane	40000		ug/kg	22000	160	500			
1,4-Dioxane	ND		ug/kg	110000	16000	500			
Freon-113	ND		ug/kg	22000	300	500			
Methyl cyclohexane	99000		ug/kg	4400	170	500			

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-13 D

Client ID: P3-6 (8-12)
Sample Location: SYRACUSE, NY

Parameter

Date Collected: 06/2
Date Received: 06/3

06/29/16 09:20

Date Received: 06/30/16 Field Prep: Not Specified

Result Qualifier Units RL MDL Dilution Factor

Tentatively Identified Compounds				
Total TIC Compounds	410000	J	ug/kg	500
Pentane, 2-methyl-	39000	NJ	ug/kg	500
Unknown Cycloalkane	40000	J	ug/kg	500
Unknown Alkane	34000	J	ug/kg	500
Unknown Cyclohexane	32000	J	ug/kg	500
Unknown Benzene	48000	J	ug/kg	500
Unknown Benzene	42000	J	ug/kg	500
Unknown Benzene	42000	J	ug/kg	500
Unknown Benzene	42000	J	ug/kg	500
Unknown Benzene	39000	J	ug/kg	500
Unknown Aromatic	50000	J	ug/kg	500

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	107		70-130	
Toluene-d8	105		70-130	
4-Bromofluorobenzene	106		70-130	
Dibromofluoromethane	99		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 07/13/16

Lab ID: L1620368-14 D

Client ID: P3-5 (6-8)
Sample Location: SYRACUSE, NY

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 07/11/16 19:04

Analyst: MV Percent Solids: 56%

Date Collected: 06/29/16 09:35

Date Received: 06/30/16
Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
Methylene chloride	ND		ug/kg	3900	430	250		
1,1-Dichloroethane	ND		ug/kg	580	33.	250		
Chloroform	ND		ug/kg	580	140	250		
Carbon tetrachloride	ND		ug/kg	390	81.	250		
1,2-Dichloropropane	ND		ug/kg	1400	88.	250		
Dibromochloromethane	ND		ug/kg	390	59.	250		
1,1,2-Trichloroethane	ND		ug/kg	580	120	250		
Tetrachloroethene	ND		ug/kg	390	54.	250		
Chlorobenzene	ND		ug/kg	390	130	250		
Trichlorofluoromethane	ND		ug/kg	1900	150	250		
1,2-Dichloroethane	ND		ug/kg	390	44.	250		
1,1,1-Trichloroethane	ND		ug/kg	390	43.	250		
Bromodichloromethane	ND		ug/kg	390	67.	250		
trans-1,3-Dichloropropene	ND		ug/kg	390	47.	250		
cis-1,3-Dichloropropene	ND		ug/kg	390	45.	250		
Bromoform	ND		ug/kg	1500	91.	250		
1,1,2,2-Tetrachloroethane	ND		ug/kg	390	39.	250		
Benzene	1600		ug/kg	390	46.	250		
Toluene	8800		ug/kg	580	75.	250		
Ethylbenzene	9700		ug/kg	390	49.	250		
Chloromethane	ND		ug/kg	1900	110	250		
Bromomethane	ND		ug/kg	770	130	250		
Vinyl chloride	ND		ug/kg	770	45.	250		
Chloroethane	ND		ug/kg	770	120	250		
1,1-Dichloroethene	ND		ug/kg	390	100	250		
trans-1,2-Dichloroethene	ND		ug/kg	580	82.	250		
Trichloroethene	ND		ug/kg	390	48.	250		
1,2-Dichlorobenzene	ND		ug/kg	1900	59.	250		
1,3-Dichlorobenzene	ND		ug/kg	1900	52.	250		
1,4-Dichlorobenzene	ND		ug/kg	1900	53.	250		

06/29/16 09:35

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-14 D

Client ID: P3-5 (6-8)
Sample Location: SYRACUSE, NY

Date Received: 06/30/16
Field Prep: Not Specified

Date Collected:

Parameter Result Qualifier Units RLMDL **Dilution Factor** Volatile Organics by GC/MS - Westborough Lab Methyl tert butyl ether ND 770 32. 250 ug/kg p/m-Xylene 67000 ug/kg 770 76. 250 o-Xylene 26000 770 66. 250 ug/kg ND 250 cis-1,2-Dichloroethene 390 55. ug/kg Styrene ND 770 160 250 ug/kg Dichlorodifluoromethane ND 3900 74. 250 ug/kg 400 Acetone ND 3900 250 ug/kg Carbon disulfide 3900 420 ND ug/kg 250 ND 2-Butanone ug/kg 3900 100 250 ND 3900 94. 250 4-Methyl-2-pentanone ug/kg 250 2-Hexanone ND ug/kg 3900 260 Bromochloromethane ND 1900 110 250 ug/kg 1,2-Dibromoethane ND ug/kg 1500 67. 250 ND 1900 150 250 1,2-Dibromo-3-chloropropane ug/kg Isopropylbenzene 1400 390 40. 250 ug/kg 1,2,3-Trichlorobenzene ND 1900 57. 250 ug/kg 1,2,4-Trichlorobenzene ND 1900 70. 250 ug/kg Methyl Acetate ND 7700 100 250 ug/kg Cyclohexane 10000 7700 56. 250 ug/kg ND 5600 250 1,4-Dioxane 39000 ug/kg Freon-113 ND 7700 100 250 ug/kg

ug/kg

1500

60.

31000

250

Methyl cyclohexane

Project Name: Lab Number: **EMBASSY SUITES** L1620368

Project Number: Report Date: 15209 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-14 D

Client ID: P3-5 (6-8) Sample Location: SYRACUSE, NY Date Collected: Date Received: 06/30/16

06/29/16 09:35

Field Prep: Not Specified

RL Parameter Result Qualifier Units MDL **Dilution Factor**

Tentatively Identified Compounds				
Total TIC Compounds	170000	J	ug/kg	250
Unknown	12000	J	ug/kg	250
Unknown	14000	J	ug/kg	250
Unknown Benzene	16000	J	ug/kg	250
Unknown Benzene	22000	J	ug/kg	250
Unknown	18000	J	ug/kg	250
Unknown Benzene	17000	J	ug/kg	250
Unknown Benzene	15000	J	ug/kg	250
Unknown Benzene	18000	J	ug/kg	250
Unknown Benzene	16000	J	ug/kg	250
Unknown Benzene	22000	J	ug/kg	250

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	104		70-130	
Toluene-d8	106		70-130	
4-Bromofluorobenzene	109		70-130	
Dibromofluoromethane	100		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 07/13/16

Lab ID: L1620368-15 D

Client ID: P3-4 (6-8) SYRACUSE, NY Sample Location:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 07/11/16 19:30

Analyst: MV49% Percent Solids:

Date Collected: 06/29/16 10:45

Date Received: 06/30/16 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/kg	4000	450	200
1,1-Dichloroethane	ND		ug/kg	610	35.	200
Chloroform	ND		ug/kg	610	150	200
Carbon tetrachloride	ND		ug/kg	400	85.	200
1,2-Dichloropropane	ND		ug/kg	1400	92.	200
Dibromochloromethane	ND		ug/kg	400	62.	200
1,1,2-Trichloroethane	ND		ug/kg	610	120	200
Tetrachloroethene	ND		ug/kg	400	57.	200
Chlorobenzene	ND		ug/kg	400	140	200
Trichlorofluoromethane	ND		ug/kg	2000	160	200
1,2-Dichloroethane	ND		ug/kg	400	46.	200
1,1,1-Trichloroethane	ND		ug/kg	400	45.	200
Bromodichloromethane	ND		ug/kg	400	70.	200
trans-1,3-Dichloropropene	ND		ug/kg	400	49.	200
cis-1,3-Dichloropropene	ND		ug/kg	400	48.	200
Bromoform	ND		ug/kg	1600	96.	200
1,1,2,2-Tetrachloroethane	ND		ug/kg	400	41.	200
Benzene	ND		ug/kg	400	48.	200
Toluene	ND		ug/kg	610	79.	200
Ethylbenzene	3100		ug/kg	400	52.	200
Chloromethane	ND		ug/kg	2000	120	200
Bromomethane	ND		ug/kg	810	140	200
Vinyl chloride	ND		ug/kg	810	48.	200
Chloroethane	ND		ug/kg	810	130	200
1,1-Dichloroethene	ND		ug/kg	400	110	200
trans-1,2-Dichloroethene	ND		ug/kg	610	86.	200
Trichloroethene	ND		ug/kg	400	51.	200
1,2-Dichlorobenzene	ND		ug/kg	2000	62.	200
1,3-Dichlorobenzene	ND		ug/kg	2000	55.	200
1,4-Dichlorobenzene	ND		ug/kg	2000	56.	200

Project Name: EMBASSY SUITES I

Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-15 D

Client ID: P3-4 (6-8)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 10:45

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	orough Lab					
Methyl tert butyl ether	ND		ug/kg	810	34.	200
p/m-Xylene	8000			810	80.	200
			ug/kg			
o-Xylene	180	J	ug/kg	810	70.	200
cis-1,2-Dichloroethene	ND		ug/kg	400	58.	200
Styrene	ND		ug/kg	810	160	200
Dichlorodifluoromethane	ND		ug/kg	4000	77.	200
Acetone	ND		ug/kg	4000	420	200
Carbon disulfide	ND		ug/kg	4000	450	200
2-Butanone	ND		ug/kg	4000	110	200
4-Methyl-2-pentanone	ND		ug/kg	4000	99.	200
2-Hexanone	ND		ug/kg	4000	270	200
Bromochloromethane	ND		ug/kg	2000	110	200
1,2-Dibromoethane	ND		ug/kg	1600	71.	200
1,2-Dibromo-3-chloropropane	ND		ug/kg	2000	160	200
Isopropylbenzene	1400		ug/kg	400	42.	200
1,2,3-Trichlorobenzene	ND		ug/kg	2000	60.	200
1,2,4-Trichlorobenzene	ND		ug/kg	2000	74.	200
Methyl Acetate	ND		ug/kg	8100	110	200
Cyclohexane	7600	J	ug/kg	8100	59.	200
1,4-Dioxane	ND		ug/kg	40000	5800	200
Freon-113	ND		ug/kg	8100	110	200
Methyl cyclohexane	34000		ug/kg	1600	62.	200

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-15 D

Client ID: P3-4 (6-8)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 10:45

Date Received: 06/30/16 Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Tentatively Identified Compounds				
Total TIC Compounds	290000	J	ug/kg	200
Unknown Cyclohexane	20000	J	ug/kg	200
Unknown Benzene	24000	J	ug/kg	200
Unknown Benzene	33000	J	ug/kg	200
Unknown Benzene	31000	J	ug/kg	200
3-Phenylbut-1-ene	27000	NJ	ug/kg	200
Unknown Benzene	39000	J	ug/kg	200
Unknown Benzene	28000	J	ug/kg	200
Indan, 1-methyl-	49000	NJ	ug/kg	200
Unknown Aromatic	22000	J	ug/kg	200
Benzene, (2-methyl-1-butenyl)-	20000	NJ	ug/kg	200

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	104		70-130	
Toluene-d8	110		70-130	
4-Bromofluorobenzene	123		70-130	
Dibromofluoromethane	102		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 07/13/16

Lab ID: L1620368-16 D

Client ID: P3-4 (10-12) Sample Location: SYRACUSE, NY

Matrix: Soil Analytical Method: 1,8260C

Analytical Date: 07/11/16 19:56

Analyst: MV43% Percent Solids:

Date Collected:	06/29/16 10:45
Date Received:	06/30/16
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - W	estborough Lab					
Methylene chloride	ND		ug/kg	5800	640	250
1,1-Dichloroethane	ND		ug/kg	870	50.	250
Chloroform	ND		ug/kg	870	210	250
Carbon tetrachloride	ND		ug/kg	580	120	250
1,2-Dichloropropane	ND		ug/kg	2000	130	250
Dibromochloromethane	ND		ug/kg	580	89.	250
1,1,2-Trichloroethane	ND		ug/kg	870	180	250
Tetrachloroethene	ND		ug/kg	580	81.	250
Chlorobenzene	ND		ug/kg	580	200	250
Trichlorofluoromethane	ND		ug/kg	2900	220	250
1,2-Dichloroethane	ND		ug/kg	580	66.	250
1,1,1-Trichloroethane	ND		ug/kg	580	64.	250
Bromodichloromethane	ND		ug/kg	580	100	250
trans-1,3-Dichloropropene	ND		ug/kg	580	70.	250
cis-1,3-Dichloropropene	ND		ug/kg	580	68.	250
Bromoform	ND		ug/kg	2300	140	250
1,1,2,2-Tetrachloroethane	ND		ug/kg	580	58.	250
Benzene	150	J	ug/kg	580	68.	250
Toluene	ND		ug/kg	870	110	250
Ethylbenzene	4600		ug/kg	580	74.	250
Chloromethane	ND		ug/kg	2900	170	250
Bromomethane	ND		ug/kg	1200	200	250
Vinyl chloride	ND		ug/kg	1200	68.	250
Chloroethane	ND		ug/kg	1200	180	250
1,1-Dichloroethene	ND		ug/kg	580	150	250
trans-1,2-Dichloroethene	ND		ug/kg	870	120	250
Trichloroethene	ND		ug/kg	580	72.	250
1,2-Dichlorobenzene	ND		ug/kg	2900	89.	250
1,3-Dichlorobenzene	ND		ug/kg	2900	78.	250
1,4-Dichlorobenzene	ND		ug/kg	2900	80.	250

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-16 D

Client ID: P3-4 (10-12)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 10:45

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methyl tert butyl ether	ND		ug/kg	1200	49.	250
p/m-Xylene	15000		ug/kg	1200	110	250
o-Xylene	610	J	ug/kg	1200	99.	250
cis-1,2-Dichloroethene	ND		ug/kg	580	83.	250
Styrene	ND		ug/kg	1200	230	250
Dichlorodifluoromethane	ND		ug/kg	5800	110	250
Acetone	ND		ug/kg	5800	600	250
Carbon disulfide	ND		ug/kg	5800	640	250
2-Butanone	ND		ug/kg	5800	160	250
4-Methyl-2-pentanone	ND		ug/kg	5800	140	250
2-Hexanone	ND		ug/kg	5800	380	250
Bromochloromethane	ND		ug/kg	2900	160	250
1,2-Dibromoethane	ND		ug/kg	2300	100	250
1,2-Dibromo-3-chloropropane	ND		ug/kg	2900	230	250
Isopropylbenzene	1600		ug/kg	580	60.	250
1,2,3-Trichlorobenzene	ND		ug/kg	2900	85.	250
1,2,4-Trichlorobenzene	ND		ug/kg	2900	100	250
Methyl Acetate	ND		ug/kg	12000	160	250
Cyclohexane	8300	J	ug/kg	12000	84.	250
1,4-Dioxane	ND		ug/kg	58000	8300	250
Freon-113	ND		ug/kg	12000	160	250
Methyl cyclohexane	31000		ug/kg	2300	89.	250

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-16 D

Client ID: P3-4 (10-12)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 10:45

Date Received: 06/30/16 Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Tentatively Identified Compounds				
Total TIC Compounds	120000	J	ug/kg	250
Unknown Cyclohexane	11000	J	ug/kg	250
Unknown Benzene	14000	J	ug/kg	250
Unknown	9900	J	ug/kg	250
Unknown Benzene	16000	J	ug/kg	250
Unknown Benzene	14000	J	ug/kg	250
Unknown Aromatic	11000	J	ug/kg	250
Unknown	12000	J	ug/kg	250
Unknown Benzene	10000	J	ug/kg	250
Unknown Aromatic	13000	J	ug/kg	250
Benzene, (2-methyl-1-butenyl)-	8400	NJ	ug/kg	250

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	102		70-130	
Toluene-d8	105		70-130	
4-Bromofluorobenzene	104		70-130	
Dibromofluoromethane	102		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 07/13/16

Lab ID: L1620368-17 D

Client ID: P3-3 (4-8) SYRACUSE, NY Sample Location:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 07/11/16 20:21

Analyst: MV 53% Percent Solids:

Date Collected: 06/29/16 11:30

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/kg	16000	1800	1000
1,1-Dichloroethane	ND		ug/kg	2400	140	1000
Chloroform	ND		ug/kg	2400	600	1000
Carbon tetrachloride	ND		ug/kg	1600	340	1000
1,2-Dichloropropane	ND		ug/kg	5600	370	1000
Dibromochloromethane	ND		ug/kg	1600	250	1000
1,1,2-Trichloroethane	ND		ug/kg	2400	490	1000
Tetrachloroethene	ND		ug/kg	1600	230	1000
Chlorobenzene	ND		ug/kg	1600	560	1000
Trichlorofluoromethane	ND		ug/kg	8100	630	1000
1,2-Dichloroethane	ND		ug/kg	1600	180	1000
1,1,1-Trichloroethane	ND		ug/kg	1600	180	1000
Bromodichloromethane	ND		ug/kg	1600	280	1000
trans-1,3-Dichloropropene	ND		ug/kg	1600	200	1000
cis-1,3-Dichloropropene	ND		ug/kg	1600	190	1000
Bromoform	ND		ug/kg	6400	380	1000
1,1,2,2-Tetrachloroethane	ND		ug/kg	1600	160	1000
Benzene	ND		ug/kg	1600	190	1000
Toluene	5100		ug/kg	2400	310	1000
Ethylbenzene	16000		ug/kg	1600	200	1000
Chloromethane	ND		ug/kg	8100	470	1000
Bromomethane	ND		ug/kg	3200	540	1000
Vinyl chloride	ND		ug/kg	3200	190	1000
Chloroethane	ND		ug/kg	3200	510	1000
1,1-Dichloroethene	ND		ug/kg	1600	420	1000
trans-1,2-Dichloroethene	ND		ug/kg	2400	340	1000
Trichloroethene	ND		ug/kg	1600	200	1000
1,2-Dichlorobenzene	ND		ug/kg	8100	250	1000
1,3-Dichlorobenzene	ND		ug/kg	8100	220	1000
1,4-Dichlorobenzene	ND		ug/kg	8100	220	1000

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-17 D

Client ID: P3-3 (4-8)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 11:30

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methyl tert butyl ether	ND		ug/kg	3200	140	1000
p/m-Xylene	88000		ug/kg	3200	320	1000
o-Xylene	30000		ug/kg	3200	280	1000
cis-1,2-Dichloroethene	ND		ug/kg	1600	230	1000
Styrene	ND		ug/kg	3200	650	1000
Dichlorodifluoromethane	ND		ug/kg	16000	310	1000
Acetone	ND		ug/kg	16000	1700	1000
Carbon disulfide	ND		ug/kg	16000	1800	1000
2-Butanone	ND		ug/kg	16000	440	1000
4-Methyl-2-pentanone	ND		ug/kg	16000	390	1000
2-Hexanone	ND		ug/kg	16000	1100	1000
Bromochloromethane	ND		ug/kg	8100	440	1000
1,2-Dibromoethane	ND		ug/kg	6400	280	1000
1,2-Dibromo-3-chloropropane	ND		ug/kg	8100	640	1000
Isopropylbenzene	3700		ug/kg	1600	170	1000
1,2,3-Trichlorobenzene	ND		ug/kg	8100	240	1000
1,2,4-Trichlorobenzene	ND		ug/kg	8100	290	1000
Methyl Acetate	ND		ug/kg	32000	440	1000
Cyclohexane	28000	J	ug/kg	32000	240	1000
1,4-Dioxane	ND		ug/kg	160000	23000	1000
Freon-113	ND		ug/kg	32000	440	1000
Methyl cyclohexane	83000		ug/kg	6400	250	1000

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-17 D

Client ID: P3-3 (4-8)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/ Date Received: 06/30/

06/29/16 11:30

Date Received: 06/30/16
Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Tentatively Identified Compounds				
Total TIC Compounds	280000	J	ug/kg	1000
Unknown Alkane	23000	J	ug/kg	1000
1-Hexene, 4-methyl-	20000	NJ	ug/kg	1000
Unknown Cyclohexane	28000	J	ug/kg	1000
Octane	23000	NJ	ug/kg	1000
Unknown Benzene	30000	J	ug/kg	1000
Unknown Benzene	41000	J	ug/kg	1000
Unknown Benzene	30000	J	ug/kg	1000
Unknown Benzene	25000	J	ug/kg	1000
Unknown Benzene	27000	J	ug/kg	1000
1-Phenyl-1-butene	32000	NJ	ug/kg	1000

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	103		70-130	
Toluene-d8	105		70-130	
4-Bromofluorobenzene	102		70-130	
Dibromofluoromethane	100		70-130	

Not Specified

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 07/13/16

Lab ID: L1620368-18 D

Client ID: P3-3 (8-10) SYRACUSE, NY Sample Location:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 07/11/16 20:47

Analyst: MV 49% Percent Solids:

Date Collected:	06/29/16 11:30
Date Received:	06/30/16

Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
Methylene chloride	ND		ug/kg	8800	980	500	
1,1-Dichloroethane	ND		ug/kg	1300	76.	500	
Chloroform	ND		ug/kg	1300	330	500	
Carbon tetrachloride	ND		ug/kg	880	180	500	
1,2-Dichloropropane	ND		ug/kg	3100	200	500	
Dibromochloromethane	ND		ug/kg	880	140	500	
1,1,2-Trichloroethane	ND		ug/kg	1300	270	500	
Tetrachloroethene	ND		ug/kg	880	120	500	
Chlorobenzene	ND		ug/kg	880	310	500	
Trichlorofluoromethane	ND		ug/kg	4400	340	500	
1,2-Dichloroethane	ND		ug/kg	880	100	500	
1,1,1-Trichloroethane	ND		ug/kg	880	98.	500	
Bromodichloromethane	ND		ug/kg	880	150	500	
trans-1,3-Dichloropropene	ND		ug/kg	880	110	500	
cis-1,3-Dichloropropene	ND		ug/kg	880	100	500	
Bromoform	ND		ug/kg	3500	210	500	
1,1,2,2-Tetrachloroethane	ND		ug/kg	880	89.	500	
Benzene	460	J	ug/kg	880	100	500	
Toluene	6700		ug/kg	1300	170	500	
Ethylbenzene	16000		ug/kg	880	110	500	
Chloromethane	ND		ug/kg	4400	260	500	
Bromomethane	ND		ug/kg	1800	300	500	
Vinyl chloride	ND		ug/kg	1800	100	500	
Chloroethane	ND		ug/kg	1800	280	500	
1,1-Dichloroethene	ND		ug/kg	880	230	500	
trans-1,2-Dichloroethene	ND		ug/kg	1300	190	500	
Trichloroethene	ND		ug/kg	880	110	500	
1,2-Dichlorobenzene	ND		ug/kg	4400	140	500	
1,3-Dichlorobenzene	ND		ug/kg	4400	120	500	
1,4-Dichlorobenzene	ND		ug/kg	4400	120	500	

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-18 D

Client ID: P3-3 (8-10)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 11:30

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methyl tert butyl ether	ND		ug/kg	1800	74.	500
p/m-Xylene	48000		ug/kg	1800	170	500
o-Xylene	8200		ug/kg	1800	150	500
cis-1,2-Dichloroethene	ND		ug/kg	880	130	500
Styrene	ND		ug/kg	1800	360	500
Dichlorodifluoromethane	ND		ug/kg	8800	170	500
Acetone	ND		ug/kg	8800	920	500
Carbon disulfide	ND		ug/kg	8800	970	500
2-Butanone	ND		ug/kg	8800	240	500
4-Methyl-2-pentanone	ND		ug/kg	8800	220	500
2-Hexanone	ND		ug/kg	8800	590	500
Bromochloromethane	ND		ug/kg	4400	240	500
1,2-Dibromoethane	ND		ug/kg	3500	150	500
1,2-Dibromo-3-chloropropane	ND		ug/kg	4400	350	500
Isopropylbenzene	2800		ug/kg	880	92.	500
1,2,3-Trichlorobenzene	ND		ug/kg	4400	130	500
1,2,4-Trichlorobenzene	ND		ug/kg	4400	160	500
Methyl Acetate	ND		ug/kg	18000	240	500
Cyclohexane	28000		ug/kg	18000	130	500
1,4-Dioxane	ND		ug/kg	88000	13000	500
Freon-113	ND		ug/kg	18000	240	500
Methyl cyclohexane	71000		ug/kg	3500	140	500

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-18 D

Client ID: P3-3 (8-10)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 11:30

Date Received: 06/30/16 Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Tentatively Identified Compounds				
Total TIC Compounds	220000	J	ug/kg	500
Pentane, 2-methyl-	22000	NJ	ug/kg	500
Unknown Cycloalkane	24000	J	ug/kg	500
Unknown	21000	J	ug/kg	500
Heptane	17000	NJ	ug/kg	500
Unknown Cyclohexane	26000	J	ug/kg	500
Octane	22000	NJ	ug/kg	500
Unknown Benzene	20000	J	ug/kg	500
Unknown Benzene	21000	J	ug/kg	500
Unknown Benzene	21000	J	ug/kg	500
1-Phenyl-1-butene	22000	NJ	ug/kg	500

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	104		70-130	
Toluene-d8	107		70-130	
4-Bromofluorobenzene	108		70-130	
Dibromofluoromethane	100		70-130	

L1620368

07/13/16

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number:

Report Date:

Lab ID: L1620368-19 D

Client ID: P3-3 (12-14) Sample Location: SYRACUSE, NY

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 07/11/16 21:12

Analyst: MV 72% Percent Solids:

Date Collected: 06/29/16 11:30

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboro	ugh Lab					
Methylene chloride	ND		ug/kg	700	77.	50
1,1-Dichloroethane	ND		ug/kg	100	6.0	50
Chloroform	ND		ug/kg	100	26.	50
Carbon tetrachloride	ND		ug/kg	70	15.	50
1,2-Dichloropropane	ND		ug/kg	240	16.	50
Dibromochloromethane	ND		ug/kg	70	11.	50
1,1,2-Trichloroethane	ND		ug/kg	100	21.	50
Tetrachloroethene	ND		ug/kg	70	9.8	50
Chlorobenzene	ND		ug/kg	70	24.	50
Trichlorofluoromethane	ND		ug/kg	350	27.	50
1,2-Dichloroethane	ND		ug/kg	70	7.9	50
1,1,1-Trichloroethane	ND		ug/kg	70	7.7	50
Bromodichloromethane	ND		ug/kg	70	12.	50
trans-1,3-Dichloropropene	ND		ug/kg	70	8.4	50
cis-1,3-Dichloropropene	ND		ug/kg	70	8.2	50
Bromoform	ND		ug/kg	280	16.	50
1,1,2,2-Tetrachloroethane	ND		ug/kg	70	7.0	50
Benzene	120		ug/kg	70	8.2	50
Toluene	110		ug/kg	100	14.	50
Ethylbenzene	500		ug/kg	70	8.9	50
Chloromethane	ND		ug/kg	350	20.	50
Bromomethane	ND		ug/kg	140	24.	50
Vinyl chloride	ND		ug/kg	140	8.2	50
Chloroethane	ND		ug/kg	140	22.	50
1,1-Dichloroethene	ND		ug/kg	70	18.	50
trans-1,2-Dichloroethene	ND		ug/kg	100	15.	50
Trichloroethene	ND		ug/kg	70	8.7	50
1,2-Dichlorobenzene	ND		ug/kg	350	11.	50
1,3-Dichlorobenzene	ND		ug/kg	350	9.4	50
1,4-Dichlorobenzene	ND		ug/kg	350	9.6	50

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-19 D

Client ID: P3-3 (12-14)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 11:30

Parameter	Result	Qualifier U	Inits	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	borough Lab					
Methyl tert butyl ether	ND	ug	g/kg	140	5.9	50
p/m-Xylene	1900		g/kg	140	14.	50
o-Xylene	280	u	g/kg	140	12.	50
cis-1,2-Dichloroethene	ND	u	g/kg	70	10.	50
Styrene	ND	u	g/kg	140	28.	50
Dichlorodifluoromethane	ND	uį	g/kg	700	13.	50
Acetone	ND	u	g/kg	700	72.	50
Carbon disulfide	ND	uį	g/kg	700	77.	50
2-Butanone	ND	uį	g/kg	700	19.	50
4-Methyl-2-pentanone	ND	uį	g/kg	700	17.	50
2-Hexanone	ND	u	g/kg	700	46.	50
Bromochloromethane	ND	u	g/kg	350	19.	50
1,2-Dibromoethane	ND	uį	g/kg	280	12.	50
1,2-Dibromo-3-chloropropane	ND	uį	g/kg	350	28.	50
Isopropylbenzene	120	u	g/kg	70	7.2	50
1,2,3-Trichlorobenzene	ND	u	g/kg	350	10.	50
1,2,4-Trichlorobenzene	ND	uį	g/kg	350	13.	50
Methyl Acetate	1400	uį	g/kg	1400	19.	50
Cyclohexane	1800	u	g/kg	1400	10.	50
1,4-Dioxane	ND	uį	g/kg	7000	1000	50
Freon-113	ND	u	g/kg	1400	19.	50
Methyl cyclohexane	5200	u	g/kg	280	11.	50

06/29/16 11:30

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-19 D

Client ID: P3-3 (12-14)
Sample Location: SYRACUSE, NY

Date Received: 06/30/16
Field Prep: Not Specified

Date Collected:

Parameter Result Qualifier Units RL MDL Dilution Factor

Tentatively Identified Compounds				
Total TIC Compounds	23000	J	ug/kg	50
Pentane, 2-methyl-	2600	NJ	ug/kg	50
Unknown Cycloalkane	1800	J	ug/kg	50
Unknown Alkane	3700	J	ug/kg	50
Heptane	1700	NJ	ug/kg	50
Heptane, 2-methyl-	1800	NJ	ug/kg	50
Unknown	1300	J	ug/kg	50
Unknown Cyclohexane	2400	J	ug/kg	50
Octane	2100	NJ	ug/kg	50
Octane, 2-methyl-	1400	NJ	ug/kg	50
Unknown	3800	J	ug/kg	50

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	106		70-130	
Toluene-d8	105		70-130	
4-Bromofluorobenzene	109		70-130	
Dibromofluoromethane	102		70-130	

Not Specified

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L1620368

Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-20 D

Client ID: P3-2 (4-8) Sample Location: SYRACUSE, NY

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 07/11/16 21:37

Analyst: MV43% Percent Solids:

Date Collected:	06/29/16 12:00
Date Received:	06/30/16

Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND		ug/kg	3800	420	200
1,1-Dichloroethane	ND		ug/kg	570	32.	200
Chloroform	ND		ug/kg	570	140	200
Carbon tetrachloride	ND		ug/kg	380	79.	200
1,2-Dichloropropane	ND		ug/kg	1300	86.	200
Dibromochloromethane	ND		ug/kg	380	58.	200
1,1,2-Trichloroethane	ND		ug/kg	570	110	200
Tetrachloroethene	ND		ug/kg	380	53.	200
Chlorobenzene	ND		ug/kg	380	130	200
Trichlorofluoromethane	ND		ug/kg	1900	150	200
1,2-Dichloroethane	ND		ug/kg	380	43.	200
1,1,1-Trichloroethane	ND		ug/kg	380	42.	200
Bromodichloromethane	ND		ug/kg	380	65.	200
trans-1,3-Dichloropropene	ND		ug/kg	380	46.	200
cis-1,3-Dichloropropene	ND		ug/kg	380	44.	200
Bromoform	ND		ug/kg	1500	89.	200
1,1,2,2-Tetrachloroethane	ND		ug/kg	380	38.	200
Benzene	ND		ug/kg	380	44.	200
Toluene	ND		ug/kg	570	74.	200
Ethylbenzene	2100		ug/kg	380	48.	200
Chloromethane	ND		ug/kg	1900	110	200
Bromomethane	ND		ug/kg	760	130	200
Vinyl chloride	ND		ug/kg	760	44.	200
Chloroethane	ND		ug/kg	760	120	200
1,1-Dichloroethene	ND		ug/kg	380	99.	200
trans-1,2-Dichloroethene	ND		ug/kg	570	80.	200
Trichloroethene	ND		ug/kg	380	47.	200
1,2-Dichlorobenzene	ND		ug/kg	1900	58.	200
1,3-Dichlorobenzene	ND		ug/kg	1900	51.	200
1,4-Dichlorobenzene	ND		ug/kg	1900	52.	200

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-20 D Date Collected: 06/29/16 12:00

Client ID: P3-2 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	tborough Lab						
Methyl tert butyl ether	ND		ug/kg	760	32.	200	
p/m-Xylene	5300		ug/kg	760	75.	200	
o-Xylene	140	J	ug/kg	760	65.	200	
cis-1,2-Dichloroethene	ND		ug/kg	380	54.	200	
Styrene	ND		ug/kg	760	150	200	
Dichlorodifluoromethane	ND		ug/kg	3800	72.	200	
Acetone	ND		ug/kg	3800	390	200	
Carbon disulfide	ND		ug/kg	3800	420	200	
2-Butanone	ND		ug/kg	3800	100	200	
4-Methyl-2-pentanone	ND		ug/kg	3800	92.	200	
2-Hexanone	ND		ug/kg	3800	250	200	
Bromochloromethane	ND		ug/kg	1900	100	200	
1,2-Dibromoethane	ND		ug/kg	1500	66.	200	
1,2-Dibromo-3-chloropropane	ND		ug/kg	1900	150	200	
Isopropylbenzene	740		ug/kg	380	39.	200	
1,2,3-Trichlorobenzene	ND		ug/kg	1900	56.	200	
1,2,4-Trichlorobenzene	ND		ug/kg	1900	69.	200	
Methyl Acetate	ND		ug/kg	7600	100	200	
Cyclohexane	2800	J	ug/kg	7600	55.	200	
1,4-Dioxane	ND		ug/kg	38000	5400	200	
Freon-113	ND		ug/kg	7600	100	200	
Methyl cyclohexane	12000		ug/kg	1500	58.	200	

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

Result

SAMPLE RESULTS

Qualifier

Units

Lab ID: L1620368-20 D

Client ID: P3-2 (4-8)
Sample Location: SYRACUSE, NY

Parameter

Date Collected: 06/29/1

06/29/16 12:00

Date Received: 06/30/16 Field Prep: Not Specific

Field Prep: Not Specified

RL MDL Dilution Factor

66000	J	ug/kg	200
4100	J	ug/kg	200
5700	J	ug/kg	200
6000	J	ug/kg	200
5400	NJ	ug/kg	200
8400	J	ug/kg	200
7500	J	ug/kg	200
6400	J	ug/kg	200
9200	J	ug/kg	200
5500	J	ug/kg	200
7600	J	ug/kg	200
	4100 5700 6000 5400 8400 7500 6400 9200 5500	4100 J 5700 J 6000 J 5400 NJ 8400 J 7500 J 6400 J 9200 J 5500 J	4100 J ug/kg 5700 J ug/kg 6000 J ug/kg 5400 NJ ug/kg 8400 J ug/kg 7500 J ug/kg 6400 J ug/kg 9200 J ug/kg 5500 J ug/kg

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	102		70-130	
Toluene-d8	104		70-130	
4-Bromofluorobenzene	103		70-130	
Dibromofluoromethane	102		70-130	

L1620368

07/13/16

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number:

Report Date:

OAMII EE

Lab ID: L1620368-21 D

Client ID: P3-2 (8-10)
Sample Location: SYRACUSE, NY

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 07/11/16 22:03

Analyst: MV Percent Solids: 53%

Date Collected: 06/29/16 12:00

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/kg	1900	210	100
1,1-Dichloroethane	ND		ug/kg	280	16.	100
Chloroform	ND		ug/kg	280	70.	100
Carbon tetrachloride	ND		ug/kg	190	40.	100
1,2-Dichloropropane	ND		ug/kg	660	43.	100
Dibromochloromethane	ND		ug/kg	190	29.	100
1,1,2-Trichloroethane	ND		ug/kg	280	57.	100
Tetrachloroethene	ND		ug/kg	190	26.	100
Chlorobenzene	ND		ug/kg	190	66.	100
Trichlorofluoromethane	ND		ug/kg	940	73.	100
1,2-Dichloroethane	ND		ug/kg	190	21.	100
1,1,1-Trichloroethane	ND		ug/kg	190	21.	100
Bromodichloromethane	ND		ug/kg	190	33.	100
trans-1,3-Dichloropropene	ND		ug/kg	190	23.	100
cis-1,3-Dichloropropene	ND		ug/kg	190	22.	100
Bromoform	ND		ug/kg	750	44.	100
1,1,2,2-Tetrachloroethane	ND		ug/kg	190	19.	100
Benzene	270		ug/kg	190	22.	100
Toluene	300		ug/kg	280	37.	100
Ethylbenzene	8000		ug/kg	190	24.	100
Chloromethane	ND		ug/kg	940	55.	100
Bromomethane	ND		ug/kg	380	64.	100
Vinyl chloride	ND		ug/kg	380	22.	100
Chloroethane	ND		ug/kg	380	60.	100
1,1-Dichloroethene	ND		ug/kg	190	49.	100
trans-1,2-Dichloroethene	ND		ug/kg	280	40.	100
Trichloroethene	ND		ug/kg	190	24.	100
1,2-Dichlorobenzene	ND		ug/kg	940	29.	100
1,3-Dichlorobenzene	ND		ug/kg	940	25.	100
1,4-Dichlorobenzene	ND		ug/kg	940	26.	100

06/29/16 12:00

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-21 D Date Collected:

Client ID: P3-2 (8-10) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RLMDL **Dilution Factor** Volatile Organics by GC/MS - Westborough Lab Methyl tert butyl ether ND 380 16. 100 ug/kg p/m-Xylene 22000 ug/kg 380 37. 100 o-Xylene 500 380 32. 100 ug/kg ND 100 cis-1,2-Dichloroethene 190 27. ug/kg Styrene ND 380 76. 100 ug/kg Dichlorodifluoromethane ND 1900 100 36. ug/kg Acetone ND 1900 200 100 ug/kg Carbon disulfide 210 ND ug/kg 1900 100 ND 2-Butanone ug/kg 1900 51. 100 ND 1900 46. 100 4-Methyl-2-pentanone ug/kg 100 2-Hexanone ND ug/kg 1900 120 Bromochloromethane ND 940 52. 100 ug/kg 1,2-Dibromoethane ND ug/kg 750 33. 100 ND 940 75. 100 1,2-Dibromo-3-chloropropane ug/kg Isopropylbenzene 1200 190 20. 100 ug/kg 1,2,3-Trichlorobenzene ND 940 28. 100 ug/kg ND 1,2,4-Trichlorobenzene 940 34. 100 ug/kg Methyl Acetate ND 3800 51. 100 ug/kg Cyclohexane 12000 3800 28. 100 ug/kg 1,4-Dioxane ND 19000 2700 100 ug/kg Freon-113 ND 3800 52. 100 ug/kg Methyl cyclohexane 28000 ug/kg 750 29. 100

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-21 D

Client ID: P3-2 (8-10)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 12:00

Date Received: 06/30/16
Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Tentatively Identified Compounds				
Total TIC Compounds	94000	J	ug/kg	100
Pentane, 2-methyl-	8600	NJ	ug/kg	100
Unknown Cycloalkane	9600	J	ug/kg	100
Unknown Alkane	11000	J	ug/kg	100
Unknown Cyclohexane	9200	J	ug/kg	100
Octane	6400	NJ	ug/kg	100
Unknown	11000	J	ug/kg	100
Unknown Benzene	9000	J	ug/kg	100
Unknown Benzene	9200	J	ug/kg	100
Unknown Benzene	8800	J	ug/kg	100
Unknown Aromatic	11000	J	ug/kg	100

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	108		70-130	
Toluene-d8	107		70-130	
4-Bromofluorobenzene	115		70-130	
Dibromofluoromethane	100		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 07/13/16

Lab ID: L1620368-22 D

Client ID: P3-10 (4-8) SYRACUSE, NY Sample Location:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 07/11/16 22:28

Analyst: MV60% Percent Solids:

Date Collected: 06/29/16 12:10

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/kg	18000	2000	1250
1,1-Dichloroethane	ND		ug/kg	2700	150	1250
Chloroform	ND		ug/kg	2700	670	1250
Carbon tetrachloride	ND		ug/kg	1800	380	1250
1,2-Dichloropropane	ND		ug/kg	6300	410	1250
Dibromochloromethane	ND		ug/kg	1800	280	1250
1,1,2-Trichloroethane	ND		ug/kg	2700	550	1250
Tetrachloroethene	ND		ug/kg	1800	250	1250
Chlorobenzene	ND		ug/kg	1800	630	1250
Trichlorofluoromethane	ND		ug/kg	9000	700	1250
1,2-Dichloroethane	ND		ug/kg	1800	200	1250
1,1,1-Trichloroethane	ND		ug/kg	1800	200	1250
Bromodichloromethane	ND		ug/kg	1800	310	1250
trans-1,3-Dichloropropene	ND		ug/kg	1800	220	1250
cis-1,3-Dichloropropene	ND		ug/kg	1800	210	1250
Bromoform	ND		ug/kg	7200	420	1250
1,1,2,2-Tetrachloroethane	ND		ug/kg	1800	180	1250
Benzene	290	J	ug/kg	1800	210	1250
Toluene	670	J	ug/kg	2700	350	1250
Ethylbenzene	12000		ug/kg	1800	230	1250
Chloromethane	ND		ug/kg	9000	530	1250
Bromomethane	ND		ug/kg	3600	610	1250
Vinyl chloride	ND		ug/kg	3600	210	1250
Chloroethane	ND		ug/kg	3600	570	1250
1,1-Dichloroethene	ND		ug/kg	1800	470	1250
trans-1,2-Dichloroethene	ND		ug/kg	2700	380	1250
Trichloroethene	ND		ug/kg	1800	220	1250
1,2-Dichlorobenzene	ND		ug/kg	9000	280	1250
1,3-Dichlorobenzene	ND		ug/kg	9000	240	1250
1,4-Dichlorobenzene	ND		ug/kg	9000	250	1250

L1620368

Project Name: Lab Number: **EMBASSY SUITES**

Project Number: Report Date:

15209 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-22 D Date Collected: 06/29/16 12:10

Client ID: P3-10 (4-8) Date Received: 06/30/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	tborough Lab						
Methyl tert butyl ether	ND		ug/kg	3600	150	1250	
p/m-Xylene	17000		ug/kg	3600	360	1250	
o-Xylene	2100	J	ug/kg	3600	310	1250	
cis-1,2-Dichloroethene	ND		ug/kg	1800	260	1250	
Styrene	ND		ug/kg	3600	720	1250	
Dichlorodifluoromethane	ND		ug/kg	18000	340	1250	
Acetone	ND		ug/kg	18000	1900	1250	
Carbon disulfide	ND		ug/kg	18000	2000	1250	
2-Butanone	ND		ug/kg	18000	490	1250	
4-Methyl-2-pentanone	ND		ug/kg	18000	440	1250	
2-Hexanone	ND		ug/kg	18000	1200	1250	
Bromochloromethane	ND		ug/kg	9000	500	1250	
1,2-Dibromoethane	ND		ug/kg	7200	310	1250	
1,2-Dibromo-3-chloropropane	ND		ug/kg	9000	710	1250	
Isopropylbenzene	3700		ug/kg	1800	190	1250	
1,2,3-Trichlorobenzene	ND		ug/kg	9000	270	1250	
1,2,4-Trichlorobenzene	ND		ug/kg	9000	330	1250	
Methyl Acetate	ND		ug/kg	36000	490	1250	
Cyclohexane	17000	J	ug/kg	36000	260	1250	
1,4-Dioxane	ND		ug/kg	180000	26000	1250	
Freon-113	ND		ug/kg	36000	490	1250	
Methyl cyclohexane	60000		ug/kg	7200	280	1250	

06/29/16 12:10

06/30/16

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-22 D

Client ID: P3-10 (4-8)
Sample Location: SYRACUSE, NY

Field Prep: Not Specified

Date Collected:

Date Received:

Parameter Result Qualifier Units RL MDL Dilution Factor

Tentatively Identified Compounds				
Total TIC Compounds	410000	J	ug/kg	1250
Unknown Alkane	31000	J	ug/kg	1250
Unknown Cyclohexane	38000	J	ug/kg	1250
Unknown Benzene	42000	J	ug/kg	1250
Unknown Benzene	33000	J	ug/kg	1250
Unknown Benzene	50000	J	ug/kg	1250
Unknown Benzene	43000	J	ug/kg	1250
Unknown Benzene	34000	J	ug/kg	1250
Unknown Benzene	50000	J	ug/kg	1250
Unknown Aromatic	39000	J	ug/kg	1250
Unknown Aromatic	46000	J	ug/kg	1250

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	102		70-130	
Toluene-d8	106		70-130	
4-Bromofluorobenzene	106		70-130	
Dibromofluoromethane	101		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 07/13/16

Lab ID: L1620368-23 D

Client ID: P3-10 (8-10) SYRACUSE, NY Sample Location:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 07/11/16 22:53

Analyst: MV 58% Percent Solids:

Date Collected: 06/29/16 12:10

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/kg	19000	2100	1250
1,1-Dichloroethane	ND		ug/kg	2800	160	1250
Chloroform	ND		ug/kg	2800	690	1250
Carbon tetrachloride	ND		ug/kg	1900	390	1250
1,2-Dichloropropane	ND		ug/kg	6500	430	1250
Dibromochloromethane	ND		ug/kg	1900	290	1250
1,1,2-Trichloroethane	ND		ug/kg	2800	570	1250
Tetrachloroethene	ND		ug/kg	1900	260	1250
Chlorobenzene	ND		ug/kg	1900	650	1250
Trichlorofluoromethane	ND		ug/kg	9400	720	1250
1,2-Dichloroethane	ND		ug/kg	1900	210	1250
1,1,1-Trichloroethane	ND		ug/kg	1900	210	1250
Bromodichloromethane	ND		ug/kg	1900	320	1250
trans-1,3-Dichloropropene	ND		ug/kg	1900	220	1250
cis-1,3-Dichloropropene	ND		ug/kg	1900	220	1250
Bromoform	ND		ug/kg	7500	440	1250
1,1,2,2-Tetrachloroethane	ND		ug/kg	1900	190	1250
Benzene	ND		ug/kg	1900	220	1250
Toluene	8700		ug/kg	2800	360	1250
Ethylbenzene	38000		ug/kg	1900	240	1250
Chloromethane	ND		ug/kg	9400	550	1250
Bromomethane	ND		ug/kg	3700	630	1250
Vinyl chloride	ND		ug/kg	3700	220	1250
Chloroethane	ND		ug/kg	3700	590	1250
1,1-Dichloroethene	ND		ug/kg	1900	490	1250
trans-1,2-Dichloroethene	ND		ug/kg	2800	400	1250
Trichloroethene	ND		ug/kg	1900	230	1250
1,2-Dichlorobenzene	ND		ug/kg	9400	290	1250
1,3-Dichlorobenzene	ND		ug/kg	9400	250	1250
1,4-Dichlorobenzene	ND		ug/kg	9400	260	1250

06/29/16 12:10

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-23 D Date Collected:

Client ID: P3-10 (8-10) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methyl tert butyl ether	ND		ug/kg	3700	160	1250
p/m-Xylene	120000		ug/kg	3700	370	1250
o-Xylene	28000		ug/kg	3700	320	1250
cis-1,2-Dichloroethene	ND		ug/kg	1900	270	1250
Styrene	ND		ug/kg	3700	750	1250
Dichlorodifluoromethane	ND		ug/kg	19000	360	1250
Acetone	ND		ug/kg	19000	1900	1250
Carbon disulfide	ND		ug/kg	19000	2100	1250
2-Butanone	ND		ug/kg	19000	510	1250
4-Methyl-2-pentanone	ND		ug/kg	19000	460	1250
2-Hexanone	ND		ug/kg	19000	1200	1250
Bromochloromethane	ND		ug/kg	9400	520	1250
1,2-Dibromoethane	ND		ug/kg	7500	330	1250
1,2-Dibromo-3-chloropropane	ND		ug/kg	9400	740	1250
Isopropylbenzene	5400		ug/kg	1900	190	1250
1,2,3-Trichlorobenzene	ND		ug/kg	9400	280	1250
1,2,4-Trichlorobenzene	ND		ug/kg	9400	340	1250
Methyl Acetate	ND		ug/kg	37000	500	1250
Cyclohexane	35000	J	ug/kg	37000	270	1250
1,4-Dioxane	ND		ug/kg	190000	27000	1250
Freon-113	ND		ug/kg	37000	510	1250
Methyl cyclohexane	92000		ug/kg	7500	290	1250

06/29/16 12:10

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

Result

SAMPLE RESULTS

Qualifier

Units

Lab ID: L1620368-23 D

Client ID: P3-10 (8-10)
Sample Location: SYRACUSE, NY

Parameter

Date Received: 06/30/16

Date Collected:

Field Prep: Not Specified

RL MDL Dilution Factor

Tentatively Identified Compounds				
Total TIC Compounds	440000	J	ug/kg	1250
Pentane, 2-methyl-	37000	NJ	ug/kg	1250
Unknown Cycloalkane	36000	J	ug/kg	1250
Unknown	39000	J	ug/kg	1250
Unknown	38000	J	ug/kg	1250
Unknown Benzene	50000	J	ug/kg	1250
Unknown Benzene	48000	J	ug/kg	1250
Unknown Benzene	46000	J	ug/kg	1250
Unknown Benzene	44000	J	ug/kg	1250
Unknown Aromatic	47000	J	ug/kg	1250
Unknown Aromatic	52000	J	ug/kg	1250

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	103		70-130	
Toluene-d8	104		70-130	
4-Bromofluorobenzene	106		70-130	
Dibromofluoromethane	103		70-130	

L1620368

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number:

Report Date: 07/13/16

Lab ID: L1620368-24 D

Client ID: P1-5 (4-8) SYRACUSE, NY Sample Location:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 07/11/16 23:19

Analyst: MV 60% Percent Solids:

Date Collected: 06/29/16 13:00

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/kg	21000	2300	1250
1,1-Dichloroethane	ND		ug/kg	3100	180	1250
Chloroform	ND		ug/kg	3100	760	1250
Carbon tetrachloride	ND		ug/kg	2100	430	1250
1,2-Dichloropropane	ND		ug/kg	7200	470	1250
Dibromochloromethane	ND		ug/kg	2100	320	1250
1,1,2-Trichloroethane	ND		ug/kg	3100	630	1250
Tetrachloroethene	ND		ug/kg	2100	290	1250
Chlorobenzene	ND		ug/kg	2100	720	1250
Trichlorofluoromethane	ND		ug/kg	10000	800	1250
1,2-Dichloroethane	ND		ug/kg	2100	230	1250
1,1,1-Trichloroethane	ND		ug/kg	2100	230	1250
Bromodichloromethane	ND		ug/kg	2100	360	1250
trans-1,3-Dichloropropene	ND		ug/kg	2100	250	1250
cis-1,3-Dichloropropene	ND		ug/kg	2100	240	1250
Bromoform	ND		ug/kg	8300	490	1250
1,1,2,2-Tetrachloroethane	ND		ug/kg	2100	210	1250
Benzene	880	J	ug/kg	2100	240	1250
Toluene	1300	J	ug/kg	3100	400	1250
Ethylbenzene	24000		ug/kg	2100	260	1250
Chloromethane	ND		ug/kg	10000	610	1250
Bromomethane	ND		ug/kg	4100	700	1250
Vinyl chloride	ND		ug/kg	4100	240	1250
Chloroethane	ND		ug/kg	4100	650	1250
1,1-Dichloroethene	ND		ug/kg	2100	540	1250
trans-1,2-Dichloroethene	ND		ug/kg	3100	440	1250
Trichloroethene	ND		ug/kg	2100	260	1250
1,2-Dichlorobenzene	ND		ug/kg	10000	320	1250
1,3-Dichlorobenzene	ND		ug/kg	10000	280	1250
1,4-Dichlorobenzene	ND		ug/kg	10000	290	1250

L1620368

Project Name: EMBASSY SUITES Lab Number:

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-24 D

Client ID: P1-5 (4-8)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 13:00

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab									
Methyl tert butyl ether	ND		ug/kg	4100	170	1250			
p/m-Xylene	79000		ug/kg	4100	410	1250			
o-Xylene	2500	J	ug/kg	4100	360	1250			
cis-1,2-Dichloroethene	ND		ug/kg	2100	300	1250			
Styrene	ND		ug/kg	4100	830	1250			
Dichlorodifluoromethane	ND		ug/kg	21000	390	1250			
Acetone	ND		ug/kg	21000	2100	1250			
Carbon disulfide	ND		ug/kg	21000	2300	1250			
2-Butanone	ND		ug/kg	21000	560	1250			
4-Methyl-2-pentanone	ND		ug/kg	21000	500	1250			
2-Hexanone	ND		ug/kg	21000	1400	1250			
Bromochloromethane	ND		ug/kg	10000	570	1250			
1,2-Dibromoethane	ND		ug/kg	8300	360	1250			
1,2-Dibromo-3-chloropropane	ND		ug/kg	10000	820	1250			
Isopropylbenzene	6400		ug/kg	2100	210	1250			
1,2,3-Trichlorobenzene	ND		ug/kg	10000	300	1250			
1,2,4-Trichlorobenzene	ND		ug/kg	10000	380	1250			
Methyl Acetate	ND		ug/kg	41000	560	1250			
Cyclohexane	34000	J	ug/kg	41000	300	1250			
1,4-Dioxane	ND		ug/kg	210000	30000	1250			
Freon-113	ND		ug/kg	41000	570	1250			
Methyl cyclohexane	140000		ug/kg	8300	320	1250			

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-24 D

Client ID: P1-5 (4-8)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 13:00

Date Received: 06/30/16 Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Tentatively Identified Compounds				
Total TIC Compounds	560000	J	ug/kg	1250
Unknown Alkane	59000	J	ug/kg	1250
Unknown Cyclohexane	57000	J	ug/kg	1250
Unknown Benzene	51000	J	ug/kg	1250
Unknown Benzene	61000	J	ug/kg	1250
Unknown Benzene	61000	J	ug/kg	1250
Unknown Benzene	51000	J	ug/kg	1250
Unknown	43000	J	ug/kg	1250
Unknown Benzene	62000	J	ug/kg	1250
Unknown Benzene	44000	J	ug/kg	1250
Unknown Aromatic	70000	J	ug/kg	1250

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	101		70-130	
Toluene-d8	104		70-130	
4-Bromofluorobenzene	103		70-130	
Dibromofluoromethane	99		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 07/13/16

Lab ID: L1620368-25 D

Client ID: P1-5 (8-10) SYRACUSE, NY Sample Location:

Matrix: Soil Analytical Method: 1,8260C

Analytical Date: 07/12/16 23:46

PΡ Analyst: 54% Percent Solids:

Date Collected: 06/29/16 13:00

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/kg	860	95.	50
1,1-Dichloroethane	ND		ug/kg	130	7.4	50
Chloroform	ND		ug/kg	130	32.	50
Carbon tetrachloride	ND		ug/kg	86	18.	50
1,2-Dichloropropane	ND		ug/kg	300	20.	50
Dibromochloromethane	ND		ug/kg	86	13.	50
1,1,2-Trichloroethane	ND		ug/kg	130	26.	50
Tetrachloroethene	ND		ug/kg	86	12.	50
Chlorobenzene	ND		ug/kg	86	30.	50
Trichlorofluoromethane	ND		ug/kg	430	34.	50
1,2-Dichloroethane	ND		ug/kg	86	9.8	50
1,1,1-Trichloroethane	ND		ug/kg	86	9.6	50
Bromodichloromethane	ND		ug/kg	86	15.	50
trans-1,3-Dichloropropene	ND		ug/kg	86	10.	50
cis-1,3-Dichloropropene	ND		ug/kg	86	10.	50
Bromoform	ND		ug/kg	340	20.	50
1,1,2,2-Tetrachloroethane	ND		ug/kg	86	8.7	50
Benzene	55	J	ug/kg	86	10.	50
Toluene	28	J	ug/kg	130	17.	50
Ethylbenzene	140		ug/kg	86	11.	50
Chloromethane	ND		ug/kg	430	25.	50
Bromomethane	ND		ug/kg	170	29.	50
Vinyl chloride	ND		ug/kg	170	10.	50
Chloroethane	ND		ug/kg	170	27.	50
1,1-Dichloroethene	ND		ug/kg	86	23.	50
trans-1,2-Dichloroethene	ND		ug/kg	130	18.	50
Trichloroethene	ND		ug/kg	86	11.	50
1,2-Dichlorobenzene	ND		ug/kg	430	13.	50
1,3-Dichlorobenzene	ND		ug/kg	430	12.	50
1,4-Dichlorobenzene	ND		ug/kg	430	12.	50

06/29/16 13:00

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: Report Date: 15209 07/13/16

SAMPLE RESULTS

Lab ID: D Date Collected: L1620368-25

Client ID: P1-5 (8-10) Date Received: 06/30/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RLMDL **Dilution Factor** Volatile Organics by GC/MS - Westborough Lab Methyl tert butyl ether ND 170 7.3 50 ug/kg p/m-Xylene 570 ug/kg 170 17. 50 J o-Xylene 46 170 15. 50 ug/kg ND 50 cis-1,2-Dichloroethene 86 12. ug/kg Styrene ND 170 35. 50 ug/kg Dichlorodifluoromethane ND 860 50 16. ug/kg ND Acetone 860 89. 50 ug/kg Carbon disulfide ND 860 95. 50 ug/kg ND 2-Butanone ug/kg 860 23. 50 ND 860 21. 50 4-Methyl-2-pentanone ug/kg ND 50 2-Hexanone ug/kg 860 58. Bromochloromethane ND 430 24. 50 ug/kg 1,2-Dibromoethane ND ug/kg 340 15. 50 ND 34. 50 1,2-Dibromo-3-chloropropane ug/kg 430 Isopropylbenzene 230 86 9.0 50 ug/kg 1,2,3-Trichlorobenzene ND 430 13. 50 ug/kg ND 1,2,4-Trichlorobenzene 430 16. 50 ug/kg Methyl Acetate 1400 J 1700 23. 50 ug/kg Cyclohexane 220 J 1700 13. 50 ug/kg 1,4-Dioxane ND 8600 1200 50 ug/kg Freon-113 ND 1700 24. 50 ug/kg Methyl cyclohexane 680 340 13. 50

ug/kg

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-25 D

Client ID: P1-5 (8-10)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 13:00

Date Received: 06/30/16 Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Tentatively Identified Compounds				
Total TIC Compounds	9000	J	ug/kg	50
Unknown	350	J	ug/kg	50
Unknown Benzene	640	J	ug/kg	50
Unknown Benzene	250	J	ug/kg	50
Unknown Benzene	1700	J	ug/kg	50
Unknown Benzene	1600	J	ug/kg	50
Unknown Aromatic	1400	J	ug/kg	50
Unknown Benzene	1800	J	ug/kg	50
Unknown	350	J	ug/kg	50
Unknown Benzene	570	J	ug/kg	50
Unknown Aromatic	360	J	ug/kg	50

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	80		70-130	
Toluene-d8	93		70-130	
4-Bromofluorobenzene	91		70-130	
Dibromofluoromethane	87		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 07/13/16

Lab ID: L1620368-26 D

Client ID: P1-4 (4-8) SYRACUSE, NY Sample Location:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 07/12/16 00:10

Analyst: MV55% Percent Solids:

9/16 12:35

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/kg	1800	200	100
1,1-Dichloroethane	ND		ug/kg	270	16.	100
Chloroform	ND		ug/kg	270	68.	100
Carbon tetrachloride	ND		ug/kg	180	38.	100
1,2-Dichloropropane	ND		ug/kg	640	42.	100
Dibromochloromethane	ND		ug/kg	180	28.	100
1,1,2-Trichloroethane	ND		ug/kg	270	56.	100
Tetrachloroethene	ND		ug/kg	180	26.	100
Chlorobenzene	ND		ug/kg	180	64.	100
Trichlorofluoromethane	ND		ug/kg	920	71.	100
1,2-Dichloroethane	ND		ug/kg	180	21.	100
1,1,1-Trichloroethane	ND		ug/kg	180	20.	100
Bromodichloromethane	ND		ug/kg	180	32.	100
trans-1,3-Dichloropropene	ND		ug/kg	180	22.	100
cis-1,3-Dichloropropene	ND		ug/kg	180	22.	100
Bromoform	ND		ug/kg	730	43.	100
1,1,2,2-Tetrachloroethane	ND		ug/kg	180	18.	100
Benzene	210		ug/kg	180	22.	100
Toluene	92	J	ug/kg	270	36.	100
Ethylbenzene	400		ug/kg	180	23.	100
Chloromethane	ND		ug/kg	920	54.	100
Bromomethane	ND		ug/kg	370	62.	100
Vinyl chloride	ND		ug/kg	370	22.	100
Chloroethane	ND		ug/kg	370	58.	100
1,1-Dichloroethene	ND		ug/kg	180	48.	100
trans-1,2-Dichloroethene	ND		ug/kg	270	39.	100
Trichloroethene	ND		ug/kg	180	23.	100
1,2-Dichlorobenzene	ND		ug/kg	920	28.	100
1,3-Dichlorobenzene	ND		ug/kg	920	25.	100
1,4-Dichlorobenzene	ND		ug/kg	920	25.	100

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-26 D

Client ID: P1-4 (4-8)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 12:35

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab									
Methyl tert butyl ether	ND		ug/kg	370	15.	100			
p/m-Xylene	750		ug/kg	370	36.	100			
o-Xylene	64	J	ug/kg	370	31.	100			
cis-1,2-Dichloroethene	ND		ug/kg	180	26.	100			
Styrene	ND		ug/kg	370	74.	100			
Dichlorodifluoromethane	ND		ug/kg	1800	35.	100			
Acetone	ND		ug/kg	1800	190	100			
Carbon disulfide	ND		ug/kg	1800	200	100			
2-Butanone	ND		ug/kg	1800	50.	100			
4-Methyl-2-pentanone	ND		ug/kg	1800	45.	100			
2-Hexanone	ND		ug/kg	1800	120	100			
Bromochloromethane	ND		ug/kg	920	50.	100			
1,2-Dibromoethane	ND		ug/kg	730	32.	100			
1,2-Dibromo-3-chloropropane	ND		ug/kg	920	72.	100			
Isopropylbenzene	400		ug/kg	180	19.	100			
1,2,3-Trichlorobenzene	ND		ug/kg	920	27.	100			
1,2,4-Trichlorobenzene	ND		ug/kg	920	33.	100			
Methyl Acetate	ND		ug/kg	3700	49.	100			
Cyclohexane	1800	J	ug/kg	3700	27.	100			
1,4-Dioxane	ND		ug/kg	18000	2600	100			
Freon-113	ND		ug/kg	3700	50.	100			
Methyl cyclohexane	6500		ug/kg	730	28.	100			

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-26 D

Client ID: P1-4 (4-8)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 12:35

Date Received: 06/30/16
Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Tentatively Identified Compounds				
Total TIC Compounds	100000	J	ug/kg	100
Unknown Cyclohexane	6800	J	ug/kg	100
Cyclohexane, 1,1,3-trimethyl-	8000	NJ	ug/kg	100
Unknown	10000	J	ug/kg	100
Unknown Naphthalene	8800	J	ug/kg	100
Unknown Benzene	8900	J	ug/kg	100
Unknown	16000	J	ug/kg	100
Unknown Naphthalene	8100	J	ug/kg	100
Unknown	8700	J	ug/kg	100
Unknown	16000	J	ug/kg	100
Unknown	10000	J	ug/kg	100

Surrogate	% Recovery	Qualifier	Acceptance Qualifier Criteria			
1,2-Dichloroethane-d4	105		70-130			
Toluene-d8	108		70-130			
4-Bromofluorobenzene	103		70-130			
Dibromofluoromethane	100		70-130			

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 07/13/16

Lab ID: L1620368-27 D

Client ID: P1-4 (8-12)
Sample Location: SYRACUSE, NY

Matrix: Soil Analytical Method: 1,8260C

Analytical Date: 07/12/16 00:36

Analyst: MV Percent Solids: 55% Date Collected: 06/29/16 12:35

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/kg	900	100	50
1,1-Dichloroethane	ND		ug/kg	140	7.8	50
Chloroform	ND		ug/kg	140	34.	50
Carbon tetrachloride	ND		ug/kg	90	19.	50
1,2-Dichloropropane	ND		ug/kg	320	21.	50
Dibromochloromethane	ND		ug/kg	90	14.	50
1,1,2-Trichloroethane	ND		ug/kg	140	28.	50
Tetrachloroethene	ND		ug/kg	90	13.	50
Chlorobenzene	ND		ug/kg	90	32.	50
Trichlorofluoromethane	ND		ug/kg	450	35.	50
1,2-Dichloroethane	ND		ug/kg	90	10.	50
1,1,1-Trichloroethane	ND		ug/kg	90	10.	50
Bromodichloromethane	ND		ug/kg	90	16.	50
trans-1,3-Dichloropropene	ND		ug/kg	90	11.	50
cis-1,3-Dichloropropene	ND		ug/kg	90	11.	50
Bromoform	ND		ug/kg	360	21.	50
1,1,2,2-Tetrachloroethane	ND		ug/kg	90	9.1	50
Benzene	290		ug/kg	90	11.	50
Toluene	310		ug/kg	140	18.	50
Ethylbenzene	1700		ug/kg	90	12.	50
Chloromethane	ND		ug/kg	450	27.	50
Bromomethane	ND		ug/kg	180	31.	50
Vinyl chloride	ND		ug/kg	180	11.	50
Chloroethane	ND		ug/kg	180	29.	50
1,1-Dichloroethene	ND		ug/kg	90	24.	50
trans-1,2-Dichloroethene	ND		ug/kg	140	19.	50
Trichloroethene	ND		ug/kg	90	11.	50
1,2-Dichlorobenzene	ND		ug/kg	450	14.	50
1,3-Dichlorobenzene	ND		ug/kg	450	12.	50
1,4-Dichlorobenzene	ND		ug/kg	450	12.	50

06/29/16 12:35

Date Collected:

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-27 D

Client ID: P1-4 (8-12) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RLMDL **Dilution Factor** Volatile Organics by GC/MS - Westborough Lab Methyl tert butyl ether ND 180 7.6 50 ug/kg p/m-Xylene 4700 ug/kg 180 18. 50 J o-Xylene 140 180 16. 50 ug/kg ND 50 cis-1,2-Dichloroethene 90 13. ug/kg Styrene ND 180 36. 50 ug/kg Dichlorodifluoromethane ND 900 50 17. ug/kg ND 900 Acetone 94. 50 ug/kg Carbon disulfide ND 50 ug/kg 900 100 ND 2-Butanone ug/kg 900 25. 50 ND 900 22. 50 4-Methyl-2-pentanone ug/kg ND 50 2-Hexanone ug/kg 900 60. Bromochloromethane ND 450 25. 50 ug/kg 1,2-Dibromoethane ND ug/kg 360 16. 50 ND 36. 50 1,2-Dibromo-3-chloropropane ug/kg 450 Isopropylbenzene 1000 90 9.4 50 ug/kg 1,2,3-Trichlorobenzene ND 450 13. 50 ug/kg ND 1,2,4-Trichlorobenzene 450 16. 50 ug/kg Methyl Acetate ND 1800 24. 50 ug/kg Cyclohexane 8500 1800 13. 50 ug/kg 1,4-Dioxane ND 9000 1300 50 ug/kg Freon-113 ND 1800 25. 50 ug/kg Methyl cyclohexane 23000 ug/kg 360 14. 50

06/29/16 12:35

Date Collected:

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-27 D

Client ID: P1-4 (8-12) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Tentatively Identified Compounds				
Total TIC Compounds	60000	J	ug/kg	50
Pentane, 2-methyl-	5200	NJ	ug/kg	50
Unknown Cycloalkane	6000	J	ug/kg	50
Unknown	6100	J	ug/kg	50
Unknown Cyclohexane	9200	J	ug/kg	50
Unknown Cyclohexane	4800	J	ug/kg	50
Unknown	4600	J	ug/kg	50
Cyclohexane, ethyl-	5100	NJ	ug/kg	50
Cyclohexane, 1,1,3-trimethyl-	5200	NJ	ug/kg	50
Unknown	6800	J	ug/kg	50
Unknown Aromatic	6800	J	ug/kg	50

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	109		70-130	
Toluene-d8	115		70-130	
4-Bromofluorobenzene	119		70-130	
Dibromofluoromethane	96		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 07/13/16

Lab ID: L1620368-28 D

Client ID: P1-3 (4-8)
Sample Location: SYRACUSE, NY

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 07/12/16 01:01

Analyst: MV Percent Solids: 84%

Date Collected: 06/29/16 12:45

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/kg	1500	160	125
1,1-Dichloroethane	ND		ug/kg	220	13.	125
Chloroform	ND		ug/kg	220	55.	125
Carbon tetrachloride	ND		ug/kg	150	31.	125
1,2-Dichloropropane	ND		ug/kg	520	34.	125
Dibromochloromethane	ND		ug/kg	150	23.	125
1,1,2-Trichloroethane	ND		ug/kg	220	45.	125
Tetrachloroethene	ND		ug/kg	150	21.	125
Chlorobenzene	ND		ug/kg	150	52.	125
Trichlorofluoromethane	ND		ug/kg	740	58.	125
1,2-Dichloroethane	ND		ug/kg	150	17.	125
1,1,1-Trichloroethane	ND		ug/kg	150	16.	125
Bromodichloromethane	ND		ug/kg	150	26.	125
trans-1,3-Dichloropropene	ND		ug/kg	150	18.	125
cis-1,3-Dichloropropene	ND		ug/kg	150	18.	125
Bromoform	ND		ug/kg	600	35.	125
1,1,2,2-Tetrachloroethane	ND		ug/kg	150	15.	125
Benzene	ND		ug/kg	150	18.	125
Toluene	120	J	ug/kg	220	29.	125
Ethylbenzene	2800		ug/kg	150	19.	125
Chloromethane	ND		ug/kg	740	44.	125
Bromomethane	ND		ug/kg	300	50.	125
Vinyl chloride	ND		ug/kg	300	18.	125
Chloroethane	ND		ug/kg	300	47.	125
1,1-Dichloroethene	ND		ug/kg	150	39.	125
trans-1,2-Dichloroethene	ND		ug/kg	220	32.	125
Trichloroethene	ND		ug/kg	150	19.	125
1,2-Dichlorobenzene	ND		ug/kg	740	23.	125
1,3-Dichlorobenzene	ND		ug/kg	740	20.	125
1,4-Dichlorobenzene	ND		ug/kg	740	21.	125

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-28 D

Client ID: P1-3 (4-8)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 12:45

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab									
Methyl tert butyl ether	ND		ug/kg	300	12.	125			
p/m-Xylene	8500		ug/kg	300	30.	125			
o-Xylene	750		ug/kg	300	26.	125			
cis-1,2-Dichloroethene	ND		ug/kg	150	21.	125			
Styrene	ND		ug/kg	300	60.	125			
Dichlorodifluoromethane	ND		ug/kg	1500	28.	125			
Acetone	ND		ug/kg	1500	150	125			
Carbon disulfide	ND		ug/kg	1500	160	125			
2-Butanone	ND		ug/kg	1500	40.	125			
4-Methyl-2-pentanone	ND		ug/kg	1500	36.	125			
2-Hexanone	ND		ug/kg	1500	99.	125			
Bromochloromethane	ND		ug/kg	740	41.	125			
1,2-Dibromoethane	ND		ug/kg	600	26.	125			
1,2-Dibromo-3-chloropropane	ND		ug/kg	740	59.	125			
Isopropylbenzene	490		ug/kg	150	15.	125			
1,2,3-Trichlorobenzene	ND		ug/kg	740	22.	125			
1,2,4-Trichlorobenzene	ND		ug/kg	740	27.	125			
Methyl Acetate	ND		ug/kg	3000	40.	125			
Cyclohexane	2500	J	ug/kg	3000	22.	125			
1,4-Dioxane	ND		ug/kg	15000	2200	125			
Freon-113	ND		ug/kg	3000	41.	125			
Methyl cyclohexane	9900		ug/kg	600	23.	125			

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-28 D

Client ID: P1-3 (4-8)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 12:45

Date Received: 06/30/16 Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Tentatively Identified Compounds				
Total TIC Compounds	72000	J	ug/kg	125
Unknown Alkane	7700	J	ug/kg	125
Unknown	6200	J	ug/kg	125
Octane	5000	NJ	ug/kg	125
Unknown	9600	J	ug/kg	125
Unknown Benzene	6300	J	ug/kg	125
Unknown Benzene	6900	J	ug/kg	125
Unknown Benzene	5800	J	ug/kg	125
Unknown Benzene	7500	J	ug/kg	125
Unknown Aromatic	8000	J	ug/kg	125
1-Phenyl-1-butene	9200	NJ	ug/kg	125

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	102		70-130	
Toluene-d8	105		70-130	
4-Bromofluorobenzene	111		70-130	
Dibromofluoromethane	101		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 07/13/16

Lab ID: L1620368-29 D

Client ID: P1-3 (8-12)
Sample Location: SYRACUSE, NY

Matrix: Soil Analytical Method: 1,8260C

Analytical Date: 07/12/16 16:32

Analyst: MV Percent Solids: 55%

Date Collected:	06/29/16 12:45

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - W	estborough Lab						
Methylene chloride	ND		ug/kg	7400	820	500	
1,1-Dichloroethane	ND		ug/kg	1100	63.	500	
Chloroform	ND		ug/kg	1100	270	500	
Carbon tetrachloride	ND		ug/kg	740	160	500	
1,2-Dichloropropane	ND		ug/kg	2600	170	500	
Dibromochloromethane	ND		ug/kg	740	110	500	
1,1,2-Trichloroethane	ND		ug/kg	1100	220	500	
Tetrachloroethene	ND		ug/kg	740	100	500	
Chlorobenzene	ND		ug/kg	740	260	500	
Trichlorofluoromethane	ND		ug/kg	3700	290	500	
1,2-Dichloroethane	ND		ug/kg	740	84.	500	
1,1,1-Trichloroethane	ND		ug/kg	740	82.	500	
Bromodichloromethane	ND		ug/kg	740	130	500	
trans-1,3-Dichloropropene	ND		ug/kg	740	89.	500	
cis-1,3-Dichloropropene	ND		ug/kg	740	87.	500	
Bromoform	ND		ug/kg	3000	170	500	
1,1,2,2-Tetrachloroethane	ND		ug/kg	740	74.	500	
Benzene	600	J	ug/kg	740	87.	500	
Toluene	1000	J	ug/kg	1100	140	500	
Ethylbenzene	20000		ug/kg	740	94.	500	
Chloromethane	ND		ug/kg	3700	220	500	
Bromomethane	ND		ug/kg	1500	250	500	
Vinyl chloride	ND		ug/kg	1500	87.	500	
Chloroethane	ND		ug/kg	1500	230	500	
1,1-Dichloroethene	ND		ug/kg	740	190	500	
trans-1,2-Dichloroethene	ND		ug/kg	1100	160	500	
Trichloroethene	ND		ug/kg	740	92.	500	
1,2-Dichlorobenzene	ND		ug/kg	3700	110	500	
1,3-Dichlorobenzene	ND		ug/kg	3700	100	500	
1,4-Dichlorobenzene	ND		ug/kg	3700	100	500	

06/29/16 12:45

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-29 D Date Collected:

Client ID: P1-3 (8-12) Date Received: 06/30/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab									
Methyl tert butyl ether	ND		ug/kg	1500	62.	500			
p/m-Xylene	60000		ug/kg	1500	150	500			
o-Xylene	5000		ug/kg	1500	130	500			
cis-1,2-Dichloroethene	ND		ug/kg	740	100	500			
Styrene	ND		ug/kg	1500	300	500			
Dichlorodifluoromethane	ND		ug/kg	7400	140	500			
Acetone	ND		ug/kg	7400	760	500			
Carbon disulfide	ND		ug/kg	7400	810	500			
2-Butanone	ND		ug/kg	7400	200	500			
4-Methyl-2-pentanone	ND		ug/kg	7400	180	500			
2-Hexanone	ND		ug/kg	7400	490	500			
Bromochloromethane	ND		ug/kg	3700	200	500			
1,2-Dibromoethane	ND		ug/kg	3000	130	500			
1,2-Dibromo-3-chloropropane	ND		ug/kg	3700	290	500			
Isopropylbenzene	2300		ug/kg	740	77.	500			
1,2,3-Trichlorobenzene	ND		ug/kg	3700	110	500			
1,2,4-Trichlorobenzene	ND		ug/kg	3700	130	500			
Methyl Acetate	ND		ug/kg	15000	200	500			
Cyclohexane	11000	J	ug/kg	15000	110	500			
1,4-Dioxane	ND		ug/kg	74000	11000	500			
Freon-113	ND		ug/kg	15000	200	500			
Methyl cyclohexane	30000		ug/kg	3000	110	500			

06/29/16 12:45

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-29 D Date Collected:

Client ID: P1-3 (8-12) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

140000	J	ug/kg	500
11000	NJ	ug/kg	500
10000	J	ug/kg	500
16000	J	ug/kg	500
18000	J	ug/kg	500
14000	NJ	ug/kg	500
17000	J	ug/kg	500
14000	J	ug/kg	500
12000	J	ug/kg	500
13000	J	ug/kg	500
17000	J	ug/kg	500
	11000 10000 16000 18000 14000 17000 14000 12000	11000 NJ 10000 J 16000 J 18000 J 14000 NJ 17000 J 14000 J 12000 J	11000 NJ ug/kg 10000 J ug/kg 16000 J ug/kg 18000 J ug/kg 14000 NJ ug/kg 17000 J ug/kg 14000 J ug/kg 17000 J ug/kg 14000 J ug/kg 14000 J ug/kg

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	103		70-130	
Toluene-d8	102		70-130	
4-Bromofluorobenzene	103		70-130	
Dibromofluoromethane	101		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 07/13/16

Lab ID: L1620368-30

Client ID: P4-1 (0-4) SYRACUSE, NY Sample Location:

Matrix: Soil

Analytical Method: 1,8260C

Analytical Date: 07/12/16 16:58

Analyst: MVPercent Solids: 87% Date Collected: 06/29/16 13:05

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	1.5	J	ug/kg	11	1.2	1
1,1-Dichloroethane	ND		ug/kg	1.6	0.09	1
Chloroform	ND		ug/kg	1.6	0.41	1
Carbon tetrachloride	ND		ug/kg	1.1	0.23	1
1,2-Dichloropropane	ND		ug/kg	3.9	0.25	1
Dibromochloromethane	ND		ug/kg	1.1	0.17	1
1,1,2-Trichloroethane	ND		ug/kg	1.6	0.34	1
Tetrachloroethene	ND		ug/kg	1.1	0.15	1
Chlorobenzene	ND		ug/kg	1.1	0.38	1
Trichlorofluoromethane	ND		ug/kg	5.5	0.43	1
1,2-Dichloroethane	ND		ug/kg	1.1	0.12	1
1,1,1-Trichloroethane	ND		ug/kg	1.1	0.12	1
Bromodichloromethane	ND		ug/kg	1.1	0.19	1
trans-1,3-Dichloropropene	ND		ug/kg	1.1	0.13	1
cis-1,3-Dichloropropene	ND		ug/kg	1.1	0.13	1
Bromoform	ND		ug/kg	4.4	0.26	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	1.1	0.11	1
Benzene	0.82	J	ug/kg	1.1	0.13	1
Toluene	ND		ug/kg	1.6	0.22	1
Ethylbenzene	0.66	J	ug/kg	1.1	0.14	1
Chloromethane	ND		ug/kg	5.5	0.32	1
Bromomethane	ND		ug/kg	2.2	0.37	1
Vinyl chloride	ND		ug/kg	2.2	0.13	1
Chloroethane	ND		ug/kg	2.2	0.35	1
1,1-Dichloroethene	ND		ug/kg	1.1	0.29	1
trans-1,2-Dichloroethene	ND		ug/kg	1.6	0.23	1
Trichloroethene	ND		ug/kg	1.1	0.14	1
1,2-Dichlorobenzene	ND		ug/kg	5.5	0.17	1
1,3-Dichlorobenzene	ND		ug/kg	5.5	0.15	1
1,4-Dichlorobenzene	ND		ug/kg	5.5	0.15	1

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-30 Date Collected: 06/29/16 13:05

Client ID: P4-1 (0-4) Date Received: 06/30/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	tborough Lab						
Methyl tert butyl ether	ND		ug/kg	2.2	0.09	1	
p/m-Xylene	0.80	J	ug/kg	2.2	0.22	1	
o-Xylene	0.29	J	ug/kg	2.2	0.19	1	
cis-1,2-Dichloroethene	ND		ug/kg	1.1	0.16	1	
Styrene	ND		ug/kg	2.2	0.44	1	
Dichlorodifluoromethane	ND		ug/kg	11	0.21	1	
Acetone	7.8	J	ug/kg	11	1.1	1	
Carbon disulfide	1.2	J	ug/kg	11	1.2	1	
2-Butanone	ND		ug/kg	11	0.30	1	
4-Methyl-2-pentanone	ND		ug/kg	11	0.27	1	
2-Hexanone	ND		ug/kg	11	0.74	1	
Bromochloromethane	ND		ug/kg	5.5	0.30	1	
1,2-Dibromoethane	ND		ug/kg	4.4	0.19	1	
1,2-Dibromo-3-chloropropane	ND		ug/kg	5.5	0.44	1	
Isopropylbenzene	ND		ug/kg	1.1	0.11	1	
1,2,3-Trichlorobenzene	ND		ug/kg	5.5	0.16	1	
1,2,4-Trichlorobenzene	ND		ug/kg	5.5	0.20	1	
Methyl Acetate	ND		ug/kg	22	0.30	1	
Cyclohexane	ND		ug/kg	22	0.16	1	
1,4-Dioxane	ND		ug/kg	110	16.	1	
Freon-113	ND		ug/kg	22	0.30	1	
Methyl cyclohexane	0.72	J	ug/kg	4.4	0.17	1	

Dilution Factor

MDL

RL

Project Name: Lab Number: **EMBASSY SUITES** L1620368

Project Number: Report Date: 15209 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-30 Date Collected: 06/29/16 13:05

Date Received: Client ID: P4-1 (0-4) 06/30/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Qualifier

Units

Result

Tentatively Identified Compounds				
Total TIC Compounds	53	J	ug/kg	1
Unknown	3.3	J	ug/kg	1
Unknown	8.0	J	ug/kg	1
Unknown	4.4	J	ug/kg	1
Unknown	3.8	J	ug/kg	1
Unknown Benzene	6.0	J	ug/kg	1
Unknown	5.9	J	ug/kg	1
Unknown	5.4	J	ug/kg	1
Unknown	6.8	J	ug/kg	1
Unknown	5.2	J	ug/kg	1
Unknown Benzene	3.8	J	ug/kg	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	98		70-130	
Toluene-d8	103		70-130	
4-Bromofluorobenzene	103		70-130	
Dibromofluoromethane	102		70-130	

L1620368

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number:

Report Date: 07/13/16

Lab ID: L1620368-31 D

Client ID: P4-1 (4-8) SYRACUSE, NY Sample Location:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 07/12/16 17:23

Analyst: MV43% Percent Solids:

Date Collected: 06/29/16 13:05

Volatile Organics by GC/MS - Westboroug	gh Lab					
Methylene chloride	160	J	ug/kg	1200	130	50
1,1-Dichloroethane	ND		ug/kg	180	10.	50
Chloroform	ND		ug/kg	180	43.	50
Carbon tetrachloride	ND		ug/kg	120	24.	50
1,2-Dichloropropane	ND		ug/kg	410	27.	50
Dibromochloromethane	ND		ug/kg	120	18.	50
1,1,2-Trichloroethane	ND		ug/kg	180	36.	50
Tetrachloroethene	ND		ug/kg	120	16.	50
Chlorobenzene	ND		ug/kg	120	41.	50
Trichlorofluoromethane	ND		ug/kg	580	45.	50
1,2-Dichloroethane	ND		ug/kg	120	13.	50
1,1,1-Trichloroethane	ND		ug/kg	120	13.	50
Bromodichloromethane	ND		ug/kg	120	20.	50
trans-1,3-Dichloropropene	ND		ug/kg	120	14.	50
cis-1,3-Dichloropropene	ND		ug/kg	120	14.	50
Bromoform	ND		ug/kg	470	28.	50
1,1,2,2-Tetrachloroethane	ND		ug/kg	120	12.	50
Benzene	170		ug/kg	120	14.	50
Toluene	ND		ug/kg	180	23.	50
Ethylbenzene	31	J	ug/kg	120	15.	50
Chloromethane	ND		ug/kg	580	34.	50
Bromomethane	ND		ug/kg	230	40.	50
Vinyl chloride	ND		ug/kg	230	14.	50
Chloroethane	ND		ug/kg	230	37.	50
1,1-Dichloroethene	ND		ug/kg	120	31.	50
trans-1,2-Dichloroethene	ND		ug/kg	180	25.	50
Trichloroethene	ND		ug/kg	120	15.	50
1,2-Dichlorobenzene	ND		ug/kg	580	18.	50
1,3-Dichlorobenzene	ND		ug/kg	580	16.	50
1,4-Dichlorobenzene	ND		ug/kg	580	16.	50

L1620368

Lab Number:

Project Name: EMBASSY SUITES

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-31 D Date Collected: 06/29/16 13:05

Client ID: P4-1 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	rough Lab					
Methyl tert butyl ether	ND		ug/kg	230	9.9	50
p/m-Xylene	78	J	ug/kg	230	23.	50
o-Xylene	ND		ug/kg	230	20.	50
cis-1,2-Dichloroethene	ND		ug/kg	120	17.	50
Styrene	ND		ug/kg	230	47.	50
Dichlorodifluoromethane	ND		ug/kg	1200	22.	50
Acetone	ND		ug/kg	1200	120	50
Carbon disulfide	ND		ug/kg	1200	130	50
2-Butanone	ND		ug/kg	1200	32.	50
4-Methyl-2-pentanone	ND		ug/kg	1200	28.	50
2-Hexanone	ND		ug/kg	1200	78.	50
Bromochloromethane	ND		ug/kg	580	32.	50
1,2-Dibromoethane	ND		ug/kg	470	20.	50
1,2-Dibromo-3-chloropropane	ND		ug/kg	580	46.	50
Isopropylbenzene	370		ug/kg	120	12.	50
1,2,3-Trichlorobenzene	ND		ug/kg	580	17.	50
1,2,4-Trichlorobenzene	ND		ug/kg	580	21.	50
Methyl Acetate	ND		ug/kg	2300	32.	50
Cyclohexane	670	J	ug/kg	2300	17.	50
1,4-Dioxane	ND		ug/kg	12000	1700	50
Freon-113	ND		ug/kg	2300	32.	50
Methyl cyclohexane	910		ug/kg	470	18.	50

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-31 D

Client ID: P4-1 (4-8)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 13:05

Date Received: 06/30/16
Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Tentatively Identified Compounds				
Total TIC Compounds	8200	J	ug/kg	50
Unknown	690	J	ug/kg	50
Unknown Cycloalkane	740	J	ug/kg	50
Unknown	1300	J	ug/kg	50
Unknown	600	J	ug/kg	50
Unknown Cyclohexane	990	J	ug/kg	50
Unknown	680	J	ug/kg	50
Unknown	700	J	ug/kg	50
Unknown Benzene	660	J	ug/kg	50
Unknown Aromatic	1000	J	ug/kg	50
Unknown Benzene	820	J	ug/kg	50

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	100		70-130	
Toluene-d8	103		70-130	
4-Bromofluorobenzene	100		70-130	
Dibromofluoromethane	100		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 07/13/16

Lab ID: L1620368-32

Client ID: P4-2 (2-4)

SYRACUSE, NY Sample Location:

Matrix: Soil

Analytical Method: 1,8260C

Analytical Date: 07/12/16 17:49

Analyst: MV89% Percent Solids:

Date Collected:	06/29/16 13:15

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	1.7	J	ug/kg	11	1.2	1
1,1-Dichloroethane	ND		ug/kg	1.6	0.09	1
Chloroform	ND		ug/kg	1.6	0.39	1
Carbon tetrachloride	ND		ug/kg	1.1	0.22	1
1,2-Dichloropropane	ND		ug/kg	3.7	0.24	1
Dibromochloromethane	ND		ug/kg	1.1	0.16	1
1,1,2-Trichloroethane	ND		ug/kg	1.6	0.32	1
Tetrachloroethene	ND		ug/kg	1.1	0.15	1
Chlorobenzene	ND		ug/kg	1.1	0.37	1
Trichlorofluoromethane	ND		ug/kg	5.3	0.41	1
1,2-Dichloroethane	ND		ug/kg	1.1	0.12	1
1,1,1-Trichloroethane	ND		ug/kg	1.1	0.12	1
Bromodichloromethane	ND		ug/kg	1.1	0.18	1
trans-1,3-Dichloropropene	ND		ug/kg	1.1	0.13	1
cis-1,3-Dichloropropene	ND		ug/kg	1.1	0.12	1
Bromoform	ND		ug/kg	4.2	0.25	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	1.1	0.11	1
Benzene	2.9		ug/kg	1.1	0.12	1
Toluene	0.84	J	ug/kg	1.6	0.21	1
Ethylbenzene	1.3		ug/kg	1.1	0.14	1
Chloromethane	ND		ug/kg	5.3	0.31	1
Bromomethane	ND		ug/kg	2.1	0.36	1
Vinyl chloride	ND		ug/kg	2.1	0.12	1
Chloroethane	ND		ug/kg	2.1	0.34	1
1,1-Dichloroethene	ND		ug/kg	1.1	0.28	1
trans-1,2-Dichloroethene	ND		ug/kg	1.6	0.22	1
Trichloroethene	ND		ug/kg	1.1	0.13	1
1,2-Dichlorobenzene	ND		ug/kg	5.3	0.16	1
1,3-Dichlorobenzene	ND		ug/kg	5.3	0.14	1
1,4-Dichlorobenzene	ND		ug/kg	5.3	0.15	1

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-32 Date Collected: 06/29/16 13:15

Client ID: P4-2 (2-4) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
Methyl tert butyl ether	ND		ug/kg	2.1	0.09	1	
p/m-Xylene	2.4		ug/kg	2.1	0.21	1	
o-Xylene	0.31	J	ug/kg	2.1	0.18	1	
cis-1,2-Dichloroethene	ND		ug/kg	1.1	0.15	1	
Styrene	ND		ug/kg	2.1	0.43	1	
Dichlorodifluoromethane	ND		ug/kg	11	0.20	1	
Acetone	47		ug/kg	11	1.1	1	
Carbon disulfide	1.5	J	ug/kg	11	1.2	1	
2-Butanone	10	J	ug/kg	11	0.29	1	
4-Methyl-2-pentanone	ND		ug/kg	11	0.26	1	
2-Hexanone	ND		ug/kg	11	0.71	1	
Bromochloromethane	ND		ug/kg	5.3	0.29	1	
1,2-Dibromoethane	ND		ug/kg	4.2	0.18	1	
1,2-Dibromo-3-chloropropane	ND		ug/kg	5.3	0.42	1	
Isopropylbenzene	ND		ug/kg	1.1	0.11	1	
1,2,3-Trichlorobenzene	ND		ug/kg	5.3	0.16	1	
1,2,4-Trichlorobenzene	ND		ug/kg	5.3	0.19	1	
Methyl Acetate	ND		ug/kg	21	0.29	1	
Cyclohexane	ND		ug/kg	21	0.16	1	
1,4-Dioxane	ND		ug/kg	110	15.	1	
Freon-113	ND		ug/kg	21	0.29	1	
Methyl cyclohexane	0.90	J	ug/kg	4.2	0.16	1	

Dilution Factor

MDL

RL

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-32 Date Collected: 06/29/16 13:15

Client ID: P4-2 (2-4) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Qualifier

Units

Result

Volatile Organics by GC/MS - Westborough Lab

Parameter

110	J	ug/kg	1
10	J	ug/kg	1
11	NJ	ug/kg	1
12	J	ug/kg	1
7.7	J	ug/kg	1
8.4	J	ug/kg	1
9.0	J	ug/kg	1
6.8	J	ug/kg	1
12	J	ug/kg	1
16	J	ug/kg	1
15	J	ug/kg	1
	10 11 12 7.7 8.4 9.0 6.8 12	10 J 11 NJ 12 J 7.7 J 8.4 J 9.0 J 6.8 J 12 J 16 J	10 J ug/kg 11 NJ ug/kg 12 J ug/kg 7.7 J ug/kg 8.4 J ug/kg 9.0 J ug/kg 6.8 J ug/kg 12 J ug/kg 14 J ug/kg

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	101		70-130	
Toluene-d8	106		70-130	
4-Bromofluorobenzene	105		70-130	
Dibromofluoromethane	103		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 07/13/16

Lab ID: D L1620368-33

Client ID: P4-2 (4-6) Sample Location: SYRACUSE, NY

Matrix: Soil 1,8260C Analytical Method:

Analytical Date: 07/12/16 18:14

Analyst: MV83% Percent Solids:

Parameter

Date Collected:	06/29/16 13:15
Date Received:	06/30/16
Field Prep:	Not Specified

MDL

Dilution Factor

RL

Volatile Organics by GC/MS - Westbo	rough Lab						
Methylene chloride	4.1	J	ug/kg	24	2.7	2	
1,1-Dichloroethane	ND		ug/kg	3.6	0.21	2	
Chloroform	ND		ug/kg	3.6	0.89	2	
Carbon tetrachloride	ND		ug/kg	2.4	0.51	2	
1,2-Dichloropropane	ND		ug/kg	8.4	0.55	2	
Dibromochloromethane	ND		ug/kg	2.4	0.37	2	
1,1,2-Trichloroethane	ND		ug/kg	3.6	0.73	2	
Tetrachloroethene	ND		ug/kg	2.4	0.34	2	
Chlorobenzene	ND		ug/kg	2.4	0.84	2	
Trichlorofluoromethane	ND		ug/kg	12	0.93	2	
1,2-Dichloroethane	ND		ug/kg	2.4	0.27	2	
1,1,1-Trichloroethane	ND		ug/kg	2.4	0.27	2	
Bromodichloromethane	ND		ug/kg	2.4	0.42	2	
trans-1,3-Dichloropropene	ND		ug/kg	2.4	0.29	2	
cis-1,3-Dichloropropene	ND		ug/kg	2.4	0.28	2	
Bromoform	ND		ug/kg	9.6	0.57	2	
1,1,2,2-Tetrachloroethane	ND		ug/kg	2.4	0.24	2	
Benzene	10		ug/kg	2.4	0.28	2	
Toluene	1.2	J	ug/kg	3.6	0.47	2	
Ethylbenzene	4.7		ug/kg	2.4	0.31	2	
Chloromethane	ND		ug/kg	12	0.71	2	
Bromomethane	ND		ug/kg	4.8	0.81	2	
Vinyl chloride	ND		ug/kg	4.8	0.28	2	
Chloroethane	ND		ug/kg	4.8	0.76	2	
1,1-Dichloroethene	ND		ug/kg	2.4	0.63	2	
trans-1,2-Dichloroethene	ND		ug/kg	3.6	0.51	2	
Trichloroethene	ND		ug/kg	2.4	0.30	2	
1,2-Dichlorobenzene	ND		ug/kg	12	0.37	2	
1,3-Dichlorobenzene	ND		ug/kg	12	0.32	2	
1,4-Dichlorobenzene	ND		ug/kg	12	0.33	2	

Qualifier

Units

Result

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-33 D

Client ID: P4-2 (4-6)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 13:15

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westl	oorough Lab						
Methyl tert butyl ether	ND		ug/kg	4.8	0.20	2	
p/m-Xylene	6.2		ug/kg	4.8	0.48	2	
o-Xylene	1.6	J	ug/kg	4.8	0.41	2	
cis-1,2-Dichloroethene	ND		ug/kg	2.4	0.34	2	
Styrene	ND		ug/kg	4.8	0.97	2	
Dichlorodifluoromethane	ND		ug/kg	24	0.46	2	
Acetone	110		ug/kg	24	2.5	2	
Carbon disulfide	4.4	J	ug/kg	24	2.6	2	
2-Butanone	29		ug/kg	24	0.66	2	
4-Methyl-2-pentanone	ND		ug/kg	24	0.59	2	
2-Hexanone	ND		ug/kg	24	1.6	2	
Bromochloromethane	ND		ug/kg	12	0.66	2	
1,2-Dibromoethane	ND		ug/kg	9.6	0.42	2	
1,2-Dibromo-3-chloropropane	ND		ug/kg	12	0.95	2	
Isopropylbenzene	3.9		ug/kg	2.4	0.25	2	
1,2,3-Trichlorobenzene	ND		ug/kg	12	0.36	2	
1,2,4-Trichlorobenzene	ND		ug/kg	12	0.44	2	
Methyl Acetate	ND		ug/kg	48	0.65	2	
Cyclohexane	ND		ug/kg	48	0.35	2	
1,4-Dioxane	ND		ug/kg	240	35.	2	
Freon-113	ND		ug/kg	48	0.66	2	
Methyl cyclohexane	2.7	J	ug/kg	9.6	0.37	2	

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-33 D

Client ID: P4-2 (4-6)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 13:15

Date Received: 06/30/16 Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Tentatively Identified Compounds				
Total TIC Compounds	700	J	ug/kg	2
Benzene, 1,4-diethyl-	51	NJ	ug/kg	2
Unknown Benzene	74	J	ug/kg	2
Unknown Aromatic	100	J	ug/kg	2
Unknown	46	J	ug/kg	2
Unknown Benzene	46	J	ug/kg	2
Unknown	130	J	ug/kg	2
Unknown	55	J	ug/kg	2
Unknown	93	J	ug/kg	2
Unknown	44	J	ug/kg	2
Unknown Aromatic	60	J	ug/kg	2

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	98		70-130	
Toluene-d8	104		70-130	
4-Bromofluorobenzene	105		70-130	
Dibromofluoromethane	101		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 07/13/16

Lab ID: L1620368-34

Client ID: P4-3 (2-4) ${\sf SYRACUSE}, \, {\sf NY}$ Sample Location:

Matrix: Soil

Analytical Method: 1,8260C

Analytical Date: 07/12/16 18:40

Analyst: MV 85% Percent Solids:

Date Collected: 06/29/16 13:30

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	1.4	J	ug/kg	12	1.3	1
1,1-Dichloroethane	ND		ug/kg	1.7	0.10	1
Chloroform	ND		ug/kg	1.7	0.43	1
Carbon tetrachloride	ND		ug/kg	1.2	0.24	1
1,2-Dichloropropane	ND		ug/kg	4.0	0.26	1
Dibromochloromethane	ND		ug/kg	1.2	0.18	1
1,1,2-Trichloroethane	ND		ug/kg	1.7	0.35	1
Tetrachloroethene	ND		ug/kg	1.2	0.16	1
Chlorobenzene	ND		ug/kg	1.2	0.40	1
Trichlorofluoromethane	ND		ug/kg	5.8	0.45	1
1,2-Dichloroethane	ND		ug/kg	1.2	0.13	1
1,1,1-Trichloroethane	ND		ug/kg	1.2	0.13	1
Bromodichloromethane	ND		ug/kg	1.2	0.20	1
trans-1,3-Dichloropropene	ND		ug/kg	1.2	0.14	1
cis-1,3-Dichloropropene	ND		ug/kg	1.2	0.14	1
Bromoform	ND		ug/kg	4.6	0.27	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	1.2	0.12	1
Benzene	10		ug/kg	1.2	0.14	1
Toluene	2.6		ug/kg	1.7	0.22	1
Ethylbenzene	5.8		ug/kg	1.2	0.15	1
Chloromethane	ND		ug/kg	5.8	0.34	1
Bromomethane	ND		ug/kg	2.3	0.39	1
Vinyl chloride	ND		ug/kg	2.3	0.14	1
Chloroethane	ND		ug/kg	2.3	0.36	1
1,1-Dichloroethene	ND		ug/kg	1.2	0.30	1
trans-1,2-Dichloroethene	ND		ug/kg	1.7	0.24	1
Trichloroethene	ND		ug/kg	1.2	0.14	1
1,2-Dichlorobenzene	ND		ug/kg	5.8	0.18	1
1,3-Dichlorobenzene	ND		ug/kg	5.8	0.16	1
1,4-Dichlorobenzene	ND		ug/kg	5.8	0.16	1

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

L1620368

Lab Number:

Report Date: 07/13/16

Lab ID: L1620368-34

Client ID: P4-3 (2-4) Sample Location: SYRACUSE, NY Date Collected: 06/29/16 13:30

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbor	ough Lab					
Methyl tert butyl ether	ND		ug/kg	2.3	0.10	1
p/m-Xylene	12		ug/kg	2.3	0.23	1
o-Xylene	1.9	J	ug/kg	2.3	0.20	1
cis-1,2-Dichloroethene	ND		ug/kg	1.2	0.16	1
Styrene	ND		ug/kg	2.3	0.46	1
Dichlorodifluoromethane	ND		ug/kg	12	0.22	1
Acetone	50		ug/kg	12	1.2	1
Carbon disulfide	3.0	J	ug/kg	12	1.3	1
2-Butanone	9.4	J	ug/kg	12	0.31	1
4-Methyl-2-pentanone	ND		ug/kg	12	0.28	1
2-Hexanone	ND		ug/kg	12	0.77	1
Bromochloromethane	ND		ug/kg	5.8	0.32	1
1,2-Dibromoethane	ND		ug/kg	4.6	0.20	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	5.8	0.46	1
Isopropylbenzene	0.47	J	ug/kg	1.2	0.12	1
1,2,3-Trichlorobenzene	ND		ug/kg	5.8	0.17	1
1,2,4-Trichlorobenzene	ND		ug/kg	5.8	0.21	1
Methyl Acetate	ND		ug/kg	23	0.31	1
Cyclohexane	ND		ug/kg	23	0.17	1
1,4-Dioxane	ND		ug/kg	120	17.	1
Freon-113	ND		ug/kg	23	0.32	1
Methyl cyclohexane	0.47	J	ug/kg	4.6	0.18	1

L1620368

Project Name: Lab Number: **EMBASSY SUITES**

Project Number: Report Date: 15209 07/13/16

SAMPLE RESULTS

Date Collected: 06/29/16 13:30

Lab ID: L1620368-34 Date Received: Client ID: P4-3 (2-4) 06/30/16

Sample Location: SYRACUSE, NY Field Prep: Not Specified RL Parameter Result Qualifier Units MDL **Dilution Factor**

Tentatively Identified Compounds				
Total TIC Compounds	400	J	ug/kg	1
Unknown	38	J	ug/kg	1
Unknown Alkane	46	J	ug/kg	1
Unknown	48	J	ug/kg	1
Unknown Naphthalene	30	J	ug/kg	1
Unknown Benzene	33	J	ug/kg	1
Unknown	27	J	ug/kg	1
Unknown	44	J	ug/kg	1
Dodecane, 6-methyl-	60	NJ	ug/kg	1
Unknown	45	J	ug/kg	1
Unknown	28	J	ug/kg	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	99		70-130	
Toluene-d8	104		70-130	
4-Bromofluorobenzene	112		70-130	
Dibromofluoromethane	105		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 07/13/16

Lab ID: L1620368-36 D

Client ID: P4-3 (4-6) SYRACUSE, NY Sample Location:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 07/12/16 19:05

Analyst: MV84% Percent Solids:

Date Collected: 06/29/16 13:30

		Units	RL	MDL	Dilution Factor
orough Lab					
ND		ug/kg	960	110	100
ND			140	8.3	100
ND		ug/kg	140	36.	100
ND		ug/kg	96	20.	100
ND		ug/kg	340	22.	100
ND		ug/kg	96	15.	100
ND		ug/kg	140	29.	100
ND		ug/kg	96	14.	100
ND		ug/kg	96	34.	100
ND		ug/kg	480	37.	100
ND		ug/kg	96	11.	100
ND		ug/kg	96	11.	100
ND		ug/kg	96	17.	100
ND		ug/kg	96	12.	100
ND		ug/kg	96	11.	100
ND		ug/kg	390	23.	100
ND		ug/kg	96	9.7	100
1100		ug/kg	96	11.	100
630		ug/kg	140	19.	100
1400		ug/kg	96	12.	100
ND		ug/kg	480	28.	100
ND		ug/kg	190	33.	100
ND		ug/kg	190	11.	100
ND		ug/kg	190	30.	100
ND		ug/kg	96	25.	100
ND		ug/kg	140	20.	100
ND		ug/kg	96	12.	100
ND		ug/kg	480	15.	100
ND		ug/kg	480	13.	100
ND		ug/kg	480	13.	100
	ND N	ND N	ND ug/kg 1100 ug/kg 630 ug/kg 1400 ug/kg ND ug/kg	ND ug/kg 960 ND ug/kg 140 ND ug/kg 140 ND ug/kg 96 ND ug/kg 140 ND ug/kg 190 ND ug/kg 140 ND ug/kg 190 ND ug/kg 960 110 ND ug/kg 140 8.3 ND ug/kg 140 36. ND ug/kg 96 20. ND ug/kg 340 22. ND ug/kg 96 15. ND ug/kg 96 15. ND ug/kg 96 14. ND ug/kg 96 11. ND ug/kg 96 12. ND ug/kg 96 11. ND ug/kg 96 12. ND ug/kg 96 11. ND ug/kg 96 11. ND ug/kg 96 12. ND ug/kg 96 11. OG 90 12. OG 90 12. OG 90 140 190 33. OG 90 12. OG 90 140 20. OG 90 140	

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-36 D

Client ID: P4-3 (4-6)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 13:30

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab									
Methyl tert butyl ether	ND		ug/kg	190	8.2	100			
p/m-Xylene	4500		ug/kg	190	19.	100			
o-Xylene	460		ug/kg	190	16.	100			
cis-1,2-Dichloroethene	ND		ug/kg	96	14.	100			
Styrene	ND		ug/kg	190	39.	100			
Dichlorodifluoromethane	ND		ug/kg	960	18.	100			
Acetone	ND		ug/kg	960	100	100			
Carbon disulfide	ND		ug/kg	960	110	100			
2-Butanone	ND		ug/kg	960	26.	100			
4-Methyl-2-pentanone	ND		ug/kg	960	24.	100			
2-Hexanone	ND		ug/kg	960	64.	100			
Bromochloromethane	ND		ug/kg	480	27.	100			
1,2-Dibromoethane	ND		ug/kg	390	17.	100			
1,2-Dibromo-3-chloropropane	ND		ug/kg	480	38.	100			
Isopropylbenzene	320		ug/kg	96	10.	100			
1,2,3-Trichlorobenzene	ND		ug/kg	480	14.	100			
1,2,4-Trichlorobenzene	ND		ug/kg	480	18.	100			
Methyl Acetate	ND		ug/kg	1900	26.	100			
Cyclohexane	170	J	ug/kg	1900	14.	100			
1,4-Dioxane	ND		ug/kg	9600	1400	100			
Freon-113	ND		ug/kg	1900	26.	100			
Methyl cyclohexane	680		ug/kg	390	15.	100			

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-36 D

Client ID: P4-3 (4-6)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 13:30

Date Received: 06/30/16 Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Tentatively Identified Compounds				
Total TIC Compounds	70000	J	ug/kg	100
Pentane, 2,3,4-trimethyl-	5200	NJ	ug/kg	100
Unknown Alkane	8000	J	ug/kg	100
Unknown Alkane	4600	J	ug/kg	100
Unknown	3400	J	ug/kg	100
Unknown Benzene	8400	J	ug/kg	100
Unknown	7600	J	ug/kg	100
Unknown Benzene	5900	J	ug/kg	100
Unknown Benzene	5600	J	ug/kg	100
Indan, 1-methyl-	14000	NJ	ug/kg	100
Unknown Aromatic	7600	J	ug/kg	100

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	102		70-130	
Toluene-d8	106		70-130	
4-Bromofluorobenzene	118		70-130	
Dibromofluoromethane	101		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 07/13/16

Lab ID: L1620368-37 D

Client ID: P1-2 (3-4)
Sample Location: SYRACUSE, NY

Matrix: Soil
Analytical Method: 1,8260C

Analytical Date: 07/12/16 19:30

Analyst: MV Percent Solids: 82%

Date Collected: 06/29/16 14:20

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	350	J	ug/kg	3000	340	250
1,1-Dichloroethane	ND		ug/kg	460	26.	250
Chloroform	ND		ug/kg	460	110	250
Carbon tetrachloride	ND		ug/kg	300	64.	250
1,2-Dichloropropane	ND		ug/kg	1100	69.	250
Dibromochloromethane	ND		ug/kg	300	47.	250
1,1,2-Trichloroethane	ND		ug/kg	460	92.	250
Tetrachloroethene	ND		ug/kg	300	43.	250
Chlorobenzene	ND		ug/kg	300	100	250
Trichlorofluoromethane	ND		ug/kg	1500	120	250
1,2-Dichloroethane	ND		ug/kg	300	34.	250
1,1,1-Trichloroethane	ND		ug/kg	300	34.	250
Bromodichloromethane	ND		ug/kg	300	53.	250
trans-1,3-Dichloropropene	ND		ug/kg	300	37.	250
cis-1,3-Dichloropropene	ND		ug/kg	300	36.	250
Bromoform	ND		ug/kg	1200	72.	250
1,1,2,2-Tetrachloroethane	ND		ug/kg	300	31.	250
Benzene	2300		ug/kg	300	36.	250
Toluene	1900		ug/kg	460	59.	250
Ethylbenzene	3500		ug/kg	300	39.	250
Chloromethane	ND		ug/kg	1500	90.	250
Bromomethane	ND		ug/kg	610	100	250
Vinyl chloride	ND		ug/kg	610	36.	250
Chloroethane	ND		ug/kg	610	96.	250
1,1-Dichloroethene	ND		ug/kg	300	80.	250
trans-1,2-Dichloroethene	ND		ug/kg	460	64.	250
Trichloroethene	ND		ug/kg	300	38.	250
1,2-Dichlorobenzene	ND		ug/kg	1500	47.	250
1,3-Dichlorobenzene	ND		ug/kg	1500	41.	250
1,4-Dichlorobenzene	ND		ug/kg	1500	42.	250

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-37 D

Client ID: P1-2 (3-4)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 14:20

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
Methyl tert butyl ether	ND		ug/kg	610	26.	250		
p/m-Xylene	4200		ug/kg	610	60.	250		
o-Xylene	ND		ug/kg	610	52.	250		
cis-1,2-Dichloroethene	ND		ug/kg	300	43.	250		
Styrene	ND		ug/kg	610	120	250		
Dichlorodifluoromethane	ND		ug/kg	3000	58.	250		
Acetone	ND		ug/kg	3000	320	250		
Carbon disulfide	ND		ug/kg	3000	340	250		
2-Butanone	ND		ug/kg	3000	83.	250		
4-Methyl-2-pentanone	ND		ug/kg	3000	74.	250		
2-Hexanone	ND		ug/kg	3000	200	250		
Bromochloromethane	ND		ug/kg	1500	84.	250		
1,2-Dibromoethane	ND		ug/kg	1200	53.	250		
1,2-Dibromo-3-chloropropane	ND		ug/kg	1500	120	250		
Isopropylbenzene	840		ug/kg	300	32.	250		
1,2,3-Trichlorobenzene	ND		ug/kg	1500	45.	250		
1,2,4-Trichlorobenzene	ND		ug/kg	1500	55.	250		
Methyl Acetate	ND		ug/kg	6100	82.	250		
Cyclohexane	ND		ug/kg	6100	44.	250		
1,4-Dioxane	ND		ug/kg	30000	4400	250		
Freon-113	ND		ug/kg	6100	83.	250		
Methyl cyclohexane	3800		ug/kg	1200	47.	250		

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-37 D

Client ID: P1-2 (3-4)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 14:20

Date Received: 06/30/16 Field Prep: Not Specified

Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Tentatively Identified Compounds				
Total TIC Compounds	440000	J	ug/kg	250
Pentane, 2,3,4-trimethyl-	30000	NJ	ug/kg	250
Unknown Alkane	36000	J	ug/kg	250
Unknown Cyclohexane	49000	J	ug/kg	250
Unknown	36000	J	ug/kg	250
Unknown Cyclohexane	50000	J	ug/kg	250
Unknown	74000	J	ug/kg	250
Unknown	52000	J	ug/kg	250
Unknown	43000	J	ug/kg	250
Unknown Naphthalene	38000	J	ug/kg	250
Unknown	35000	J	ug/kg	250

Surrogate	% Recovery	Qualifier	Acceptance Criteria
1,2-Dichloroethane-d4	100		70-130
Toluene-d8	131	Q	70-130
4-Bromofluorobenzene	208	Q	70-130
Dibromofluoromethane	103		70-130

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 07/13/16

SAMPLE RESU

Lab ID: L1620368-38 D

Client ID: P1-1 (4-8)
Sample Location: SYRACUSE, NY

Matrix: Soil Analytical Method: 1,8260C

Analytical Date: 07/12/16 19:56

Analyst: MV Percent Solids: 72%

Date Collected:	06/30/16 08:30
Date Received:	06/30/16
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/kg	14000	1600	1250
1,1-Dichloroethane	ND		ug/kg	2100	120	1250
Chloroform	ND		ug/kg	2100	520	1250
Carbon tetrachloride	ND		ug/kg	1400	300	1250
1,2-Dichloropropane	ND		ug/kg	4900	320	1250
Dibromochloromethane	ND		ug/kg	1400	220	1250
1,1,2-Trichloroethane	ND		ug/kg	2100	430	1250
Tetrachloroethene	ND		ug/kg	1400	200	1250
Chlorobenzene	ND		ug/kg	1400	490	1250
Trichlorofluoromethane	ND		ug/kg	7000	550	1250
1,2-Dichloroethane	ND		ug/kg	1400	160	1250
1,1,1-Trichloroethane	ND		ug/kg	1400	160	1250
Bromodichloromethane	ND		ug/kg	1400	240	1250
trans-1,3-Dichloropropene	ND		ug/kg	1400	170	1250
cis-1,3-Dichloropropene	ND		ug/kg	1400	160	1250
Bromoform	ND		ug/kg	5600	330	1250
1,1,2,2-Tetrachloroethane	ND		ug/kg	1400	140	1250
Benzene	740	J	ug/kg	1400	170	1250
Toluene	440	J	ug/kg	2100	270	1250
Ethylbenzene	ND		ug/kg	1400	180	1250
Chloromethane	ND		ug/kg	7000	410	1250
Bromomethane	ND		ug/kg	2800	480	1250
Vinyl chloride	ND		ug/kg	2800	160	1250
Chloroethane	ND		ug/kg	2800	440	1250
1,1-Dichloroethene	ND		ug/kg	1400	370	1250
trans-1,2-Dichloroethene	ND		ug/kg	2100	300	1250
Trichloroethene	ND		ug/kg	1400	180	1250
1,2-Dichlorobenzene	ND		ug/kg	7000	220	1250
1,3-Dichlorobenzene	ND		ug/kg	7000	190	1250
1,4-Dichlorobenzene	ND		ug/kg	7000	190	1250
			<u> </u>			

06/30/16 08:30

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-38 D Date Collected:

Client ID: P1-1 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab									
Methyl tert butyl ether	ND		ug/kg	2800	120	1250			
p/m-Xylene	18000		ug/kg	2800	280	1250			
o-Xylene	ND		ug/kg	2800	240	1250			
cis-1,2-Dichloroethene	ND		ug/kg	1400	200	1250			
Styrene	ND		ug/kg	2800	560	1250			
Dichlorodifluoromethane	ND		ug/kg	14000	270	1250			
Acetone	ND		ug/kg	14000	1400	1250			
Carbon disulfide	ND		ug/kg	14000	1600	1250			
2-Butanone	ND		ug/kg	14000	380	1250			
4-Methyl-2-pentanone	ND		ug/kg	14000	340	1250			
2-Hexanone	ND		ug/kg	14000	940	1250			
Bromochloromethane	ND		ug/kg	7000	390	1250			
1,2-Dibromoethane	ND		ug/kg	5600	240	1250			
1,2-Dibromo-3-chloropropane	ND		ug/kg	7000	560	1250			
Isopropylbenzene	6700		ug/kg	1400	150	1250			
1,2,3-Trichlorobenzene	ND		ug/kg	7000	210	1250			
1,2,4-Trichlorobenzene	ND		ug/kg	7000	260	1250			
Methyl Acetate	ND		ug/kg	28000	380	1250			
Cyclohexane	36000		ug/kg	28000	200	1250			
1,4-Dioxane	ND		ug/kg	140000	20000	1250			
Freon-113	ND		ug/kg	28000	380	1250			
Methyl cyclohexane	150000		ug/kg	5600	220	1250			

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-38 D

Client ID: P1-1 (4-8)
Sample Location: SYRACUSE, NY

Date Collected: 06/30/16 08:30

Date Received: 06/30/16 Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Tentatively Identified Compounds				
Total TIC Compounds	410000	J	ug/kg	1250
Unknown Cycloalkane	28000	J	ug/kg	1250
Unknown Alkane	92000	J	ug/kg	1250
Heptane, 3-methyl-	32000	NJ	ug/kg	1250
Unknown Cyclohexane	68000	J	ug/kg	1250
Cyclohexane, ethyl-	17000	NJ	ug/kg	1250
Unknown	16000	J	ug/kg	1250
Unknown Benzene	37000	J	ug/kg	1250
Unknown Benzene	44000	J	ug/kg	1250
Unknown Benzene	37000	J	ug/kg	1250
Unknown Benzene	40000	J	ug/kg	1250

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	101		70-130	
Toluene-d8	106		70-130	
4-Bromofluorobenzene	108		70-130	
Dibromofluoromethane	101		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 07/13/16

Lab ID: L1620368-39 D

Client ID: P1-1 (8-10) SYRACUSE, NY Sample Location:

Matrix: Soil Analytical Method: 1,8260C

Analytical Date: 07/12/16 22:55

Analyst: CBN 54% Percent Solids:

Date Collected: 06/30/16 08:30

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/kg	7800	860	500
1,1-Dichloroethane	ND		ug/kg	1200	67.	500
Chloroform	ND		ug/kg	1200	290	500
Carbon tetrachloride	ND		ug/kg	780	160	500
1,2-Dichloropropane	ND		ug/kg	2700	180	500
Dibromochloromethane	ND		ug/kg	780	120	500
1,1,2-Trichloroethane	ND		ug/kg	1200	240	500
Tetrachloroethene	ND		ug/kg	780	110	500
Chlorobenzene	ND		ug/kg	780	270	500
Trichlorofluoromethane	ND		ug/kg	3900	300	500
1,2-Dichloroethane	ND		ug/kg	780	88.	500
1,1,1-Trichloroethane	ND		ug/kg	780	86.	500
Bromodichloromethane	ND		ug/kg	780	140	500
trans-1,3-Dichloropropene	ND		ug/kg	780	94.	500
cis-1,3-Dichloropropene	ND		ug/kg	780	92.	500
Bromoform	ND		ug/kg	3100	180	500
1,1,2,2-Tetrachloroethane	ND		ug/kg	780	79.	500
Benzene	540	J	ug/kg	780	92.	500
Toluene	160	J	ug/kg	1200	150	500
Ethylbenzene	200	J	ug/kg	780	99.	500
Chloromethane	ND		ug/kg	3900	230	500
Bromomethane	ND		ug/kg	1600	260	500
Vinyl chloride	ND		ug/kg	1600	92.	500
Chloroethane	ND		ug/kg	1600	250	500
1,1-Dichloroethene	ND		ug/kg	780	200	500
trans-1,2-Dichloroethene	ND		ug/kg	1200	160	500
Trichloroethene	ND		ug/kg	780	98.	500
1,2-Dichlorobenzene	ND		ug/kg	3900	120	500
1,3-Dichlorobenzene	ND		ug/kg	3900	100	500
1,4-Dichlorobenzene	ND		ug/kg	3900	110	500

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-39 D Date Collected: 06/30/16 08:30

Client ID: P1-1 (8-10) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab									
Methyl tert butyl ether	ND		ug/kg	1600	66.	500			
p/m-Xylene	1900		ug/kg	1600	150	500			
o-Xylene	ND		ug/kg	1600	130	500			
cis-1,2-Dichloroethene	ND		ug/kg	780	110	500			
Styrene	ND		ug/kg	1600	310	500			
Dichlorodifluoromethane	ND		ug/kg	7800	150	500			
Acetone	ND		ug/kg	7800	810	500			
Carbon disulfide	ND		ug/kg	7800	860	500			
2-Butanone	ND		ug/kg	7800	210	500			
4-Methyl-2-pentanone	ND		ug/kg	7800	190	500			
2-Hexanone	ND		ug/kg	7800	520	500			
Bromochloromethane	ND		ug/kg	3900	220	500			
1,2-Dibromoethane	ND		ug/kg	3100	140	500			
1,2-Dibromo-3-chloropropane	ND		ug/kg	3900	310	500			
Isopropylbenzene	2800		ug/kg	780	81.	500			
1,2,3-Trichlorobenzene	ND		ug/kg	3900	120	500			
1,2,4-Trichlorobenzene	ND		ug/kg	3900	140	500			
Methyl Acetate	ND		ug/kg	16000	210	500			
Cyclohexane	18000		ug/kg	16000	110	500			
1,4-Dioxane	ND		ug/kg	78000	11000	500			
Freon-113	ND		ug/kg	16000	210	500			
Methyl cyclohexane	48000		ug/kg	3100	120	500			

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-39 D

Client ID: P1-1 (8-10)
Sample Location: SYRACUSE, NY

Parameter

Date Collected: 06/30

06/30/16 08:30

Date Received: 06/30/16 Field Prep: Not Specified

Result Qualifier Units RL MDL Dilution Factor

Tentatively Identified Compounds				
Total TIC Compounds	120000	J	ug/kg	500
Unknown	22000	J	ug/kg	500
Unknown	10000	J	ug/kg	500
Cyclohexane, ethyl-	6400	NJ	ug/kg	500
Unknown Benzene	10000	J	ug/kg	500
Unknown Benzene	14000	J	ug/kg	500
Unknown Benzene	12000	J	ug/kg	500
Unknown Aromatic	10000	J	ug/kg	500
Unknown Benzene	15000	J	ug/kg	500
Unknown Benzene	8000	J	ug/kg	500
Unknown Aromatic	8700	J	ug/kg	500

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	82		70-130	
Toluene-d8	92		70-130	
4-Bromofluorobenzene	96		70-130	
Dibromofluoromethane	87		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 07/13/16

Lab ID: L1620368-40 D

Client ID: P2-1 (4-8) SYRACUSE, NY Sample Location:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 07/12/16 12:30

Analyst: MV60% Percent Solids:

Date Collected: 06/30/16 08:40

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/kg	17000	1800	1000
1,1-Dichloroethane	ND		ug/kg	2500	140	1000
Chloroform	ND		ug/kg	2500	620	1000
Carbon tetrachloride	ND		ug/kg	1700	350	1000
1,2-Dichloropropane	ND		ug/kg	5900	380	1000
Dibromochloromethane	ND		ug/kg	1700	260	1000
1,1,2-Trichloroethane	ND		ug/kg	2500	510	1000
Tetrachloroethene	ND		ug/kg	1700	240	1000
Chlorobenzene	ND		ug/kg	1700	580	1000
Trichlorofluoromethane	ND		ug/kg	8400	650	1000
1,2-Dichloroethane	ND		ug/kg	1700	190	1000
1,1,1-Trichloroethane	ND		ug/kg	1700	180	1000
Bromodichloromethane	ND		ug/kg	1700	290	1000
trans-1,3-Dichloropropene	ND		ug/kg	1700	200	1000
cis-1,3-Dichloropropene	ND		ug/kg	1700	200	1000
Bromoform	ND		ug/kg	6700	400	1000
1,1,2,2-Tetrachloroethane	ND		ug/kg	1700	170	1000
Benzene	1300	J	ug/kg	1700	200	1000
Toluene	540	J	ug/kg	2500	330	1000
Ethylbenzene	2600		ug/kg	1700	210	1000
Chloromethane	ND		ug/kg	8400	490	1000
Bromomethane	ND		ug/kg	3400	570	1000
Vinyl chloride	ND		ug/kg	3400	200	1000
Chloroethane	ND		ug/kg	3400	530	1000
1,1-Dichloroethene	ND		ug/kg	1700	440	1000
trans-1,2-Dichloroethene	ND		ug/kg	2500	360	1000
Trichloroethene	ND		ug/kg	1700	210	1000
1,2-Dichlorobenzene	ND		ug/kg	8400	260	1000
1,3-Dichlorobenzene	ND		ug/kg	8400	230	1000
1,4-Dichlorobenzene	ND		ug/kg	8400	230	1000

L1620368

Project Name: EMBASSY SUITES Lab Number:

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-40 D

Client ID: P2-1 (4-8)
Sample Location: SYRACUSE, NY

Date Collected: 06/30/16 08:40

Date Received: 06/30/16 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methyl tert butyl ether	ND		ug/kg	3400	140	1000
p/m-Xylene	63000		ug/kg	3400	330	1000
o-Xylene	2200	J	ug/kg	3400	290	1000
cis-1,2-Dichloroethene	ND		ug/kg	1700	240	1000
Styrene	ND		ug/kg	3400	670	1000
Dichlorodifluoromethane	ND		ug/kg	17000	320	1000
Acetone	ND		ug/kg	17000	1700	1000
Carbon disulfide	ND		ug/kg	17000	1800	1000
2-Butanone	ND		ug/kg	17000	460	1000
4-Methyl-2-pentanone	ND		ug/kg	17000	410	1000
2-Hexanone	ND		ug/kg	17000	1100	1000
Bromochloromethane	ND		ug/kg	8400	460	1000
1,2-Dibromoethane	ND		ug/kg	6700	290	1000
1,2-Dibromo-3-chloropropane	ND		ug/kg	8400	660	1000
Isopropylbenzene	7700		ug/kg	1700	170	1000
1,2,3-Trichlorobenzene	ND		ug/kg	8400	250	1000
1,2,4-Trichlorobenzene	ND		ug/kg	8400	300	1000
Methyl Acetate	ND		ug/kg	34000	450	1000
Cyclohexane	68000		ug/kg	34000	240	1000
1,4-Dioxane	ND		ug/kg	170000	24000	1000
Freon-113	ND		ug/kg	34000	460	1000
Methyl cyclohexane	160000		ug/kg	6700	260	1000

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-40 D

Client ID: P2-1 (4-8)
Sample Location: SYRACUSE, NY

Date Collected: 06/30/16 08:40

Date Received: 06/30/16 Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	560000	J	ug/kg	1000
Pentane, 2-methyl-	50000	NJ	ug/kg	1000
Cyclopentane, Methyl-	59000	NJ	ug/kg	1000
Unknown Alkane	100000	J	ug/kg	1000
Unknown	50000	J	ug/kg	1000
Unknown Cyclohexane	58000	J	ug/kg	1000
Unknown Benzene	46000	J	ug/kg	1000
Unknown Benzene	55000	J	ug/kg	1000
Unknown Benzene	44000	J	ug/kg	1000
Unknown Benzene	52000	J	ug/kg	1000
Unknown Aromatic	45000	J	ug/kg	1000

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	96		70-130	
Toluene-d8	96		70-130	
4-Bromofluorobenzene	112		70-130	
Dibromofluoromethane	89		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 07/13/16

Lab ID: L1620368-41 D

Client ID: P2-1 (8-10) SYRACUSE, NY Sample Location:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 07/12/16 23:20

PΡ Analyst: 52% Percent Solids:

Date Collected: 06/30/16 08:40

Date Received: 06/30/16 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/kg	900	100	50
1,1-Dichloroethane	ND		ug/kg	140	7.7	50
Chloroform	ND		ug/kg	140	33.	50
Carbon tetrachloride	ND		ug/kg	90	19.	50
1,2-Dichloropropane	ND		ug/kg	320	20.	50
Dibromochloromethane	ND		ug/kg	90	14.	50
1,1,2-Trichloroethane	ND		ug/kg	140	27.	50
Tetrachloroethene	ND		ug/kg	90	13.	50
Chlorobenzene	ND		ug/kg	90	31.	50
Trichlorofluoromethane	ND		ug/kg	450	35.	50
1,2-Dichloroethane	ND		ug/kg	90	10.	50
1,1,1-Trichloroethane	ND		ug/kg	90	10.	50
Bromodichloromethane	ND		ug/kg	90	16.	50
trans-1,3-Dichloropropene	ND		ug/kg	90	11.	50
cis-1,3-Dichloropropene	ND		ug/kg	90	11.	50
Bromoform	ND		ug/kg	360	21.	50
1,1,2,2-Tetrachloroethane	ND		ug/kg	90	9.1	50
Benzene	70	J	ug/kg	90	11.	50
Toluene	ND		ug/kg	140	18.	50
Ethylbenzene	86	J	ug/kg	90	11.	50
Chloromethane	ND		ug/kg	450	26.	50
Bromomethane	ND		ug/kg	180	30.	50
Vinyl chloride	ND		ug/kg	180	10.	50
Chloroethane	ND		ug/kg	180	28.	50
1,1-Dichloroethene	ND		ug/kg	90	24.	50
trans-1,2-Dichloroethene	ND		ug/kg	140	19.	50
Trichloroethene	ND		ug/kg	90	11.	50
1,2-Dichlorobenzene	ND		ug/kg	450	14.	50
1,3-Dichlorobenzene	ND		ug/kg	450	12.	50
1,4-Dichlorobenzene	ND		ug/kg	450	12.	50

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-41 D

Client ID: P2-1 (8-10)
Sample Location: SYRACUSE, NY

Date Collected: 06/30/16 08:40

Date Received: 06/30/16 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methyl tert butyl ether	ND		ug/kg	180	7.6	50
p/m-Xylene	1100		ug/kg	180	18.	50
o-Xylene	25	J	ug/kg	180	15.	50
cis-1,2-Dichloroethene	ND		ug/kg	90	13.	50
Styrene	ND		ug/kg	180	36.	50
Dichlorodifluoromethane	ND		ug/kg	900	17.	50
Acetone	ND		ug/kg	900	93.	50
Carbon disulfide	ND		ug/kg	900	99.	50
2-Butanone	ND		ug/kg	900	24.	50
4-Methyl-2-pentanone	ND		ug/kg	900	22.	50
2-Hexanone	ND		ug/kg	900	60.	50
Bromochloromethane	ND		ug/kg	450	25.	50
1,2-Dibromoethane	ND		ug/kg	360	16.	50
1,2-Dibromo-3-chloropropane	ND		ug/kg	450	36.	50
Isopropylbenzene	440		ug/kg	90	9.4	50
1,2,3-Trichlorobenzene	ND		ug/kg	450	13.	50
1,2,4-Trichlorobenzene	ND		ug/kg	450	16.	50
Methyl Acetate	ND		ug/kg	1800	24.	50
Cyclohexane	1700	J	ug/kg	1800	13.	50
1,4-Dioxane	ND		ug/kg	9000	1300	50
Freon-113	ND		ug/kg	1800	25.	50
Methyl cyclohexane	4100		ug/kg	360	14.	50

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-41 D Date Collected: 06/30/16 08:40

Client ID: P2-1 (8-10) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	15000	J	ug/kg	50
Unknown	1900	J	ug/kg	50
Unknown	1300	J	ug/kg	50
Unknown Cyclohexane	1600	J	ug/kg	50
Unknown Benzene	2500	J	ug/kg	50
Unknown Benzene	1400	J	ug/kg	50
Unknown Benzene	1200	J	ug/kg	50
Unknown Benzene	1600	J	ug/kg	50
Unknown	1100	J	ug/kg	50
Unknown Benzene	1400	J	ug/kg	50
Unknown	1200	J	ug/kg	50

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	78		70-130	
Toluene-d8	92		70-130	
4-Bromofluorobenzene	95		70-130	
Dibromofluoromethane	85		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 07/13/16

Lab ID: L1620368-42 Client ID: P2-2 (4-8)

Sample Location: SYRACUSE, NY

Matrix: Soil

Analytical Method: 1,8260C

Analytical Date: 07/12/16 13:25

Analyst: MV Percent Solids: 75%

0/16 09:05

Date Received: 06/30/16 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/kg	13	1.5	1
1,1-Dichloroethane	ND		ug/kg	2.0	0.11	1
Chloroform	ND		ug/kg	2.0	0.50	1
Carbon tetrachloride	ND		ug/kg	1.3	0.28	1
1,2-Dichloropropane	ND		ug/kg	4.7	0.30	1
Dibromochloromethane	ND		ug/kg	1.3	0.20	1
1,1,2-Trichloroethane	ND		ug/kg	2.0	0.41	1
Tetrachloroethene	ND		ug/kg	1.3	0.19	1
Chlorobenzene	ND		ug/kg	1.3	0.47	1
Trichlorofluoromethane	ND		ug/kg	6.7	0.52	1
1,2-Dichloroethane	ND		ug/kg	1.3	0.15	1
1,1,1-Trichloroethane	ND		ug/kg	1.3	0.15	1
Bromodichloromethane	ND		ug/kg	1.3	0.23	1
trans-1,3-Dichloropropene	ND		ug/kg	1.3	0.16	1
cis-1,3-Dichloropropene	ND		ug/kg	1.3	0.16	1
Bromoform	ND		ug/kg	5.4	0.32	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	1.3	0.14	1
Benzene	0.48	J	ug/kg	1.3	0.16	1
Toluene	0.85	J	ug/kg	2.0	0.26	1
Ethylbenzene	0.59	J	ug/kg	1.3	0.17	1
Chloromethane	ND		ug/kg	6.7	0.39	1
Bromomethane	ND		ug/kg	2.7	0.45	1
Vinyl chloride	ND		ug/kg	2.7	0.16	1
Chloroethane	ND		ug/kg	2.7	0.42	1
1,1-Dichloroethene	ND		ug/kg	1.3	0.35	1
trans-1,2-Dichloroethene	ND		ug/kg	2.0	0.28	1
Trichloroethene	ND		ug/kg	1.3	0.17	1
1,2-Dichlorobenzene	ND		ug/kg	6.7	0.20	1
1,3-Dichlorobenzene	ND		ug/kg	6.7	0.18	1
1,4-Dichlorobenzene	ND		ug/kg	6.7	0.18	1

L1620368

07/13/16

Project Name: EMBASSY SUITES

L1620368-42

SYRACUSE, NY

P2-2 (4-8)

Project Number: 15209

Lab ID:

Client ID:

Sample Location:

SAMPLE RESULTS

Date Collected: 06/30/16 09:05

Date Collected: 06/30/2
Date Received: 06/30/2

Lab Number:

Report Date:

Date Received: 06/30/16 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	rough Lab					
Methyl tert butyl ether	0.14	J	ug/kg	2.7	0.11	1
p/m-Xylene	1.6	J	ug/kg	2.7	0.26	1
o-Xylene	0.49	J	ug/kg	2.7	0.23	1
cis-1,2-Dichloroethene	ND		ug/kg	1.3	0.19	1
Styrene	ND		ug/kg	2.7	0.54	1
Dichlorodifluoromethane	ND		ug/kg	13	0.26	1
Acetone	24		ug/kg	13	1.4	1
Carbon disulfide	4.6	J	ug/kg	13	1.5	1
2-Butanone	6.0	J	ug/kg	13	0.36	1
4-Methyl-2-pentanone	ND		ug/kg	13	0.33	1
2-Hexanone	ND		ug/kg	13	0.89	1
Bromochloromethane	ND		ug/kg	6.7	0.37	1
1,2-Dibromoethane	ND		ug/kg	5.4	0.23	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	6.7	0.53	1
Isopropylbenzene	0.42	J	ug/kg	1.3	0.14	1
1,2,3-Trichlorobenzene	ND		ug/kg	6.7	0.20	1
1,2,4-Trichlorobenzene	ND		ug/kg	6.7	0.24	1
Methyl Acetate	ND		ug/kg	27	0.36	1
Cyclohexane	0.43	J	ug/kg	27	0.20	1
1,4-Dioxane	ND		ug/kg	130	19.	1
Freon-113	ND		ug/kg	27	0.37	1
Methyl cyclohexane	1.5	J	ug/kg	5.4	0.21	1

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 06/30/16 09:05

Client ID: P2-2 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	390	J	ug/kg	1
Unknown	22	J	ug/kg	1
Unknown	41	J	ug/kg	1
Unknown	23	J	ug/kg	1
Unknown	27	J	ug/kg	1
Unknown	24	J	ug/kg	1
Unknown	33	J	ug/kg	1
Unknown	95	J	ug/kg	1
Unknown Alkane	43	J	ug/kg	1
Unknown	39	J	ug/kg	1
Unknown	46	J	ug/kg	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	98		70-130	
Toluene-d8	92		70-130	
4-Bromofluorobenzene	123		70-130	
Dibromofluoromethane	86		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Result

Lab Number: L1620368

Report Date: 07/13/16

Lab ID: L1620368-43

Client ID: P2-2 (8-10)
Sample Location: SYRACUSE, NY

Matrix: Soil

Analytical Method: 1,8260C

Analytical Date: 07/12/16 13:53

Analyst: MV Percent Solids: 65%

Parameter

Date Collected:	06/30/16 09:05
Date Received:	06/30/16
Field Prep:	Not Specified

MDL

Dilution Factor

Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND	ug/kg	14	1.5	1	
1,1-Dichloroethane	ND	ug/kg	2.1	0.12	1	
Chloroform	ND	ug/kg	2.1	0.52	1	
Carbon tetrachloride	ND	ug/kg	1.4	0.29	1	
1,2-Dichloropropane	ND	ug/kg	4.9	0.32	1	
Dibromochloromethane	ND	ug/kg	1.4	0.21	1	
1,1,2-Trichloroethane	ND	ug/kg	2.1	0.42	1	
Tetrachloroethene	ND	ug/kg	1.4	0.20	1	
Chlorobenzene	ND	ug/kg	1.4	0.49	1	
Trichlorofluoromethane	ND	ug/kg	7.0	0.54	1	
1,2-Dichloroethane	ND	ug/kg	1.4	0.16	1	
1,1,1-Trichloroethane	ND	ug/kg	1.4	0.15	1	
Bromodichloromethane	ND	ug/kg	1.4	0.24	1	
trans-1,3-Dichloropropene	ND	ug/kg	1.4	0.17	1	
cis-1,3-Dichloropropene	ND	ug/kg	1.4	0.16	1	
Bromoform	ND	ug/kg	5.6	0.33	1	
1,1,2,2-Tetrachloroethane	ND	ug/kg	1.4	0.14	1	
Benzene	1.5	ug/kg	1.4	0.16	1	
Toluene	2.2	ug/kg	2.1	0.27	1	
Ethylbenzene	2.7	ug/kg	1.4	0.18	1	
Chloromethane	ND	ug/kg	7.0	0.41	1	
Bromomethane	ND	ug/kg	2.8	0.47	1	
Vinyl chloride	ND	ug/kg	2.8	0.16	1	
Chloroethane	ND	ug/kg	2.8	0.44	1	
1,1-Dichloroethene	ND	ug/kg	1.4	0.37	1	
trans-1,2-Dichloroethene	ND	ug/kg	2.1	0.30	1	
Trichloroethene	ND	ug/kg	1.4	0.17	1	
1,2-Dichlorobenzene	ND	ug/kg	7.0	0.21	1	
1,3-Dichlorobenzene	ND	ug/kg	7.0	0.19	1	
1,4-Dichlorobenzene	ND	ug/kg	7.0	0.19	1	

Qualifier

Units

RL

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-43 Date Collected: 06/30/16 09:05

Client ID: P2-2 (8-10) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methyl tert butyl ether	1.0	J	ug/kg	2.8	0.12	1
p/m-Xylene	11		ug/kg	2.8	0.28	1
o-Xylene	5.0		ug/kg	2.8	0.24	1
cis-1,2-Dichloroethene	ND		ug/kg	1.4	0.20	1
Styrene	ND		ug/kg	2.8	0.56	1
Dichlorodifluoromethane	ND		ug/kg	14	0.27	1
Acetone	17		ug/kg	14	1.4	1
Carbon disulfide	2.4	J	ug/kg	14	1.5	1
2-Butanone	ND		ug/kg	14	0.38	1
4-Methyl-2-pentanone	ND		ug/kg	14	0.34	1
2-Hexanone	ND		ug/kg	14	0.93	1
Bromochloromethane	ND		ug/kg	7.0	0.39	1
1,2-Dibromoethane	ND		ug/kg	5.6	0.24	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	7.0	0.55	1
Isopropylbenzene	3.2		ug/kg	1.4	0.14	1
1,2,3-Trichlorobenzene	ND		ug/kg	7.0	0.21	1
1,2,4-Trichlorobenzene	ND		ug/kg	7.0	0.25	1
Methyl Acetate	ND		ug/kg	28	0.38	1
Cyclohexane	7.2	J	ug/kg	28	0.20	1
1,4-Dioxane	ND		ug/kg	140	20.	1
Freon-113	ND		ug/kg	28	0.38	1
Methyl cyclohexane	16		ug/kg	5.6	0.22	1

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-43 Date Collected: 06/30/16 09:05

Client ID: P2-2 (8-10) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	770	J	ug/kg	1
Unknown Aromatic	50	J	ug/kg	1
Unknown Benzene	27	J	ug/kg	1
Tridecane, 7-methyl-	46	NJ	ug/kg	1
Unknown	36	J	ug/kg	1
Unknown Aromatic	250	J	ug/kg	1
Pentadecane, 7-methyl-	51	NJ	ug/kg	1
Unknown Aromatic	63	J	ug/kg	1
Unknown	100	J	ug/kg	1
Unknown Naphthalene	39	J	ug/kg	1
Unknown Naphthalene	110	J	ug/kg	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	96		70-130	
Toluene-d8	96		70-130	
4-Bromofluorobenzene	114		70-130	
Dibromofluoromethane	78		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 07/13/16

SAMPLE RESUL

Lab ID: L1620368-44

Client ID: P2-3 (8-10)
Sample Location: SYRACUSE, NY

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 07/12/16 14:21

Analyst: MV Percent Solids: 44% Date Collected: 06/30/16 09:25

Date Received: 06/30/16 Field Prep: Not Specified

		Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboro	ugh Lab					
Methylene chloride	ND		ug/kg	21	2.3	1
1,1-Dichloroethane	ND		ug/kg	3.2	0.18	1
Chloroform	ND		ug/kg	3.2	0.78	1
Carbon tetrachloride	ND		ug/kg	2.1	0.44	1
1,2-Dichloropropane	ND		ug/kg	7.4	0.48	1
Dibromochloromethane	ND		ug/kg	2.1	0.32	1
1,1,2-Trichloroethane	ND		ug/kg	3.2	0.64	1
Tetrachloroethene	ND		ug/kg	2.1	0.30	1
Chlorobenzene	ND		ug/kg	2.1	0.74	1
Trichlorofluoromethane	ND		ug/kg	10	0.82	1
1,2-Dichloroethane	ND		ug/kg	2.1	0.24	1
1,1,1-Trichloroethane	ND		ug/kg	2.1	0.23	1
Bromodichloromethane	ND		ug/kg	2.1	0.37	1
trans-1,3-Dichloropropene	ND		ug/kg	2.1	0.26	1
cis-1,3-Dichloropropene	ND		ug/kg	2.1	0.25	1
Bromoform	ND		ug/kg	8.4	0.50	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	2.1	0.21	1
Benzene	120		ug/kg	2.1	0.25	1
Toluene	1.1	J	ug/kg	3.2	0.41	1
Ethylbenzene	1.2	J	ug/kg	2.1	0.27	1
Chloromethane	ND		ug/kg	10	0.62	1
Bromomethane	ND		ug/kg	4.2	0.71	1
Vinyl chloride	ND		ug/kg	4.2	0.25	1
Chloroethane	ND		ug/kg	4.2	0.67	1
1,1-Dichloroethene	ND		ug/kg	2.1	0.55	1
trans-1,2-Dichloroethene	ND		ug/kg	3.2	0.45	1
Trichloroethene	ND		ug/kg	2.1	0.26	1
1,2-Dichlorobenzene	ND		ug/kg	10	0.32	1
1,3-Dichlorobenzene	ND		ug/kg	10	0.28	1
1,4-Dichlorobenzene	ND		ug/kg	10	0.29	1

L1620368

07/13/16

Project Name: EMBASSY SUITES

L1620368-44

SYRACUSE, NY

P2-3 (8-10)

Project Number: 15209

Lab ID:

Client ID:

Sample Location:

SAMPLE RESULTS

Date Collected: 06/30/16 09:25

Date Received: 06/30/16

Lab Number:

Report Date:

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	ıgh Lab					
Methyl tert butyl ether	3.3	J	ug/kg	4.2	0.18	1
p/m-Xylene	7.9		ug/kg	4.2	0.42	1
o-Xylene	0.79	J	ug/kg	4.2	0.36	1
cis-1,2-Dichloroethene	ND		ug/kg	2.1	0.30	1
Styrene	ND		ug/kg	4.2	0.85	1
Dichlorodifluoromethane	ND		ug/kg	21	0.40	1
Acetone	36		ug/kg	21	2.2	1
Carbon disulfide	ND		ug/kg	21	2.3	1
2-Butanone	ND		ug/kg	21	0.58	1
4-Methyl-2-pentanone	ND		ug/kg	21	0.52	1
2-Hexanone	ND		ug/kg	21	1.4	1
Bromochloromethane	ND		ug/kg	10	0.58	1
1,2-Dibromoethane	ND		ug/kg	8.4	0.37	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	10	0.84	1
Isopropylbenzene	59		ug/kg	2.1	0.22	1
1,2,3-Trichlorobenzene	ND		ug/kg	10	0.31	1
1,2,4-Trichlorobenzene	ND		ug/kg	10	0.38	1
Methyl Acetate	ND		ug/kg	42	0.57	1
Cyclohexane	120		ug/kg	42	0.31	1
1,4-Dioxane	ND		ug/kg	210	30.	1
Freon-113	ND		ug/kg	42	0.58	1
Methyl cyclohexane	35		ug/kg	8.4	0.33	1

Dilution Factor

MDL

RL

Project Name: Lab Number: **EMBASSY SUITES** L1620368

Project Number: Report Date: 15209 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-44 Date Collected: 06/30/16 09:25

Date Received: Client ID: P2-3 (8-10) 06/30/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Qualifier

Units

Result

Volatile Organics by GC/MS - Westborough Lab

Parameter

voiatile C	rigariics by	GC/IVIS -	· westbolough	Lab

Tentatively Identified Compounds				
Total TIC Compounds	320	J	ug/kg	1
Butane, 2-Methyl-	56	NJ	ug/kg	1
Pentane, 2-methyl-	38	NJ	ug/kg	1
Pentane, 3-methyl-	25	NJ	ug/kg	1
Cyclopentane, Methyl-	48	NJ	ug/kg	1
Unknown Cycloalkane	38	J	ug/kg	1
Unknown Benzene	36	J	ug/kg	1
Unknown Benzene	18	J	ug/kg	1
Unknown Benzene	22	J	ug/kg	1
Unknown Aromatic	22	J	ug/kg	1
Unknown Benzene	21	J	ug/kg	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	95		70-130	
Toluene-d8	97		70-130	
4-Bromofluorobenzene	112		70-130	
Dibromofluoromethane	91		70-130	

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-45 D2 Date Collected: 06/29/16 12:00

Client ID: DUP01

Sample Location: SYRACUSE, NY

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 07/13/16 00:12

Analyst: PP Percent Solids: 49% Date Collected: 06/29/16 12:00

Date Received: 06/30/16

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methyl cyclohexane	42000		ug/kg	720	28.	100

Surrogate	% Recovery	Qualifier	Acceptance Criteria
1,2-Dichloroethane-d4	78		70-130
Toluene-d8	98		70-130
4-Bromofluorobenzene	110		70-130
Dibromofluoromethane	81		70-130

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 07/13/16

Qualifier

Units

RL

Result

Lab ID: D L1620368-45

Client ID: DUP01

Sample Location: SYRACUSE, NY

Matrix: Soil Analytical Method: 1,8260C

Analytical Date: 07/12/16 16:38

Analyst: MV49% Percent Solids:

Parameter

Date Collected:	06/29/16 12:00
Date Received:	06/30/16
Field Prep:	Not Specified

MDL

Dilution Factor

Volatile Organics by GC/MS - West	borough Lab						
Methylene chloride	ND		ug/kg	900	100	50	
1,1-Dichloroethane	ND		ug/kg	140	7.8	50	
Chloroform	ND		ug/kg	140	34.	50	
Carbon tetrachloride	ND		ug/kg	90	19.	50	
1,2-Dichloropropane	ND		ug/kg	320	21.	50	
Dibromochloromethane	ND		ug/kg	90	14.	50	
1,1,2-Trichloroethane	ND		ug/kg	140	28.	50	
Tetrachloroethene	ND		ug/kg	90	13.	50	
Chlorobenzene	ND		ug/kg	90	32.	50	
Trichlorofluoromethane	ND		ug/kg	450	35.	50	
1,2-Dichloroethane	ND		ug/kg	90	10.	50	
1,1,1-Trichloroethane	ND		ug/kg	90	10.	50	
Bromodichloromethane	ND		ug/kg	90	16.	50	
trans-1,3-Dichloropropene	ND		ug/kg	90	11.	50	
cis-1,3-Dichloropropene	ND		ug/kg	90	11.	50	
Bromoform	ND		ug/kg	360	21.	50	
1,1,2,2-Tetrachloroethane	ND		ug/kg	90	9.1	50	
Benzene	45	J	ug/kg	90	11.	50	
Toluene	ND		ug/kg	140	18.	50	
Ethylbenzene	2800		ug/kg	90	12.	50	
Chloromethane	ND		ug/kg	450	27.	50	
Bromomethane	ND		ug/kg	180	31.	50	
Vinyl chloride	ND		ug/kg	180	11.	50	
Chloroethane	ND		ug/kg	180	29.	50	
1,1-Dichloroethene	ND		ug/kg	90	24.	50	
trans-1,2-Dichloroethene	ND		ug/kg	140	19.	50	
Trichloroethene	ND		ug/kg	90	11.	50	
1,2-Dichlorobenzene	ND		ug/kg	450	14.	50	
1,3-Dichlorobenzene	ND		ug/kg	450	12.	50	
1,4-Dichlorobenzene	ND		ug/kg	450	12.	50	
			<u> </u>				

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-45 D Date Collected: 06/29/16 12:00

Client ID: DUP01 Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RLMDL **Dilution Factor** Volatile Organics by GC/MS - Westborough Lab Methyl tert butyl ether ND 180 7.6 50 ug/kg p/m-Xylene 6700 ug/kg 180 18. 50 o-Xylene 220 180 16. 50 ug/kg ND 50 cis-1,2-Dichloroethene 90 13. ug/kg Styrene ND 180 36. 50 ug/kg Dichlorodifluoromethane ND 900 50 17. ug/kg J Acetone 180 900 94. 50 ug/kg Carbon disulfide ND 50 ug/kg 900 100 ND 2-Butanone ug/kg 900 25. 50 ND 900 22. 50 4-Methyl-2-pentanone ug/kg ND 50 2-Hexanone ug/kg 900 60. Bromochloromethane ND 450 25. 50 ug/kg 1,2-Dibromoethane ND ug/kg 360 16. 50 ND 36. 50 1,2-Dibromo-3-chloropropane ug/kg 450 Isopropylbenzene 1600 90 9.4 50 ug/kg 1,2,3-Trichlorobenzene ND 450 13. 50 ug/kg ND 1,2,4-Trichlorobenzene 450 16. 50 ug/kg Methyl Acetate ND 1800 24. 50 ug/kg Cyclohexane 8600 1800 13. 50 ug/kg 1,4-Dioxane ND 9000 1300 50 ug/kg Freon-113 ND 1800 25. 50 ug/kg Methyl cyclohexane 34000 Е ug/kg 360 14. 50

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-45 D

Client ID: DUP01

Sample Location: SYRACUSE, NY

Date Collected: 06/

d: 06/29/16 12:00

Date Received: 06/30/16 Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	130000	J	ug/kg	50
Unknown Alkane	15000	J	ug/kg	50
Unknown Cyclohexane	13000	J	ug/kg	50
Cyclohexane, propyl-	3500	NJ	ug/kg	50
Unknown	12000	J	ug/kg	50
Unknown Benzene	17000	J	ug/kg	50
Unknown Benzene	14000	J	ug/kg	50
Unknown Aromatic	11000	J	ug/kg	50
Unknown Benzene	18000	J	ug/kg	50
Unknown	17000	J	ug/kg	50
Unknown	13000	J	ug/kg	50
Unknown Benzene Unknown Aromatic Unknown Benzene Unknown	14000 11000 18000 17000	J J	ug/kg ug/kg ug/kg ug/kg	50 50 50 50

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	98		70-130	
Toluene-d8	107		70-130	
4-Bromofluorobenzene	120		70-130	
Dibromofluoromethane	83		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 07/13/16

Lab ID: D L1620368-46

Client ID: DUP02

Sample Location: SYRACUSE, NY

Matrix: Soil Analytical Method: 1,8260C

Analytical Date: 07/12/16 17:06

Analyst: MV 59% Percent Solids:

Date Collected:	06/30/16 12:00
Date Received:	06/30/16

Not Specified

Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
Methylene chloride	ND		ug/kg	3900	430	250		
1,1-Dichloroethane	ND		ug/kg	590	34.	250		
Chloroform	ND		ug/kg	590	140	250		
Carbon tetrachloride	ND		ug/kg	390	82.	250		
1,2-Dichloropropane	ND		ug/kg	1400	90.	250		
Dibromochloromethane	ND		ug/kg	390	60.	250		
1,1,2-Trichloroethane	ND		ug/kg	590	120	250		
Tetrachloroethene	ND		ug/kg	390	55.	250		
Chlorobenzene	ND		ug/kg	390	140	250		
Trichlorofluoromethane	ND		ug/kg	2000	150	250		
1,2-Dichloroethane	ND		ug/kg	390	44.	250		
1,1,1-Trichloroethane	ND		ug/kg	390	44.	250		
Bromodichloromethane	ND		ug/kg	390	68.	250		
trans-1,3-Dichloropropene	ND		ug/kg	390	47.	250		
cis-1,3-Dichloropropene	ND		ug/kg	390	46.	250		
Bromoform	ND		ug/kg	1600	93.	250		
1,1,2,2-Tetrachloroethane	ND		ug/kg	390	40.	250		
Benzene	470		ug/kg	390	46.	250		
Toluene	140	J	ug/kg	590	76.	250		
Ethylbenzene	150	J	ug/kg	390	50.	250		
Chloromethane	ND		ug/kg	2000	120	250		
Bromomethane	ND		ug/kg	790	130	250		
Vinyl chloride	ND		ug/kg	790	46.	250		
Chloroethane	ND		ug/kg	790	120	250		
1,1-Dichloroethene	ND		ug/kg	390	100	250		
trans-1,2-Dichloroethene	ND		ug/kg	590	83.	250		
Trichloroethene	ND		ug/kg	390	49.	250		
1,2-Dichlorobenzene	ND		ug/kg	2000	60.	250		
1,3-Dichlorobenzene	ND		ug/kg	2000	53.	250		
1,4-Dichlorobenzene	ND		ug/kg	2000	54.	250		

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-46 D

Client ID: DUP02

Sample Location: SYRACUSE, NY

Date Collected: 06/30/16 12:00

Date Received: 06/30/16 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
Methyl tert butyl ether	ND		ua/ka	790	33.	250		
			ug/kg					
p/m-Xylene	3100		ug/kg	790	78.	250		
o-Xylene	ND		ug/kg	790	68.	250		
cis-1,2-Dichloroethene	ND		ug/kg	390	56.	250		
Styrene	ND		ug/kg	790	160	250		
Dichlorodifluoromethane	ND		ug/kg	3900	75.	250		
Acetone	ND		ug/kg	3900	410	250		
Carbon disulfide	ND		ug/kg	3900	430	250		
2-Butanone	ND		ug/kg	3900	110	250		
4-Methyl-2-pentanone	ND		ug/kg	3900	96.	250		
2-Hexanone	ND		ug/kg	3900	260	250		
Bromochloromethane	ND		ug/kg	2000	110	250		
1,2-Dibromoethane	ND		ug/kg	1600	68.	250		
1,2-Dibromo-3-chloropropane	ND		ug/kg	2000	160	250		
Isopropylbenzene	970		ug/kg	390	41.	250		
1,2,3-Trichlorobenzene	ND		ug/kg	2000	58.	250		
1,2,4-Trichlorobenzene	ND		ug/kg	2000	71.	250		
Methyl Acetate	ND		ug/kg	7900	110	250		
Cyclohexane	1300	J	ug/kg	7900	57.	250		
1,4-Dioxane	ND		ug/kg	39000	5700	250		
Freon-113	ND		ug/kg	7900	110	250		
Methyl cyclohexane	3700		ug/kg	1600	61.	250		

06/30/16 12:00

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-46 D

Client ID: DUP02

Sample Location: SYRACUSE, NY

Date Received: 06/30/16
Field Prep: Not Specified

Date Collected:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	32000	J	ug/kg	250
Unknown Benzene	5000	J	ug/kg	250
Unknown Benzene	2300	J	ug/kg	250
Unknown Benzene	4400	J	ug/kg	250
Unknown Benzene	4100	J	ug/kg	250
Unknown Aromatic	3100	J	ug/kg	250
Unknown Benzene	4600	J	ug/kg	250
Unknown	2100	J	ug/kg	250
Unknown	2600	J	ug/kg	250
Unknown	2000	J	ug/kg	250
Unknown	2200	J	ug/kg	250
Unknown	2200	J	ug/kg	250

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	93		70-130	
Toluene-d8	95		70-130	
4-Bromofluorobenzene	108		70-130	
Dibromofluoromethane	91		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

L1620368

Lab Number:

Report Date: 07/13/16

Lab ID: D L1620368-47

Client ID: DUP03

Sample Location: SYRACUSE, NY

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 07/12/16 17:33

Analyst: MV55% Percent Solids:

Date Collected: 06/30/16 13:00

Date Received: 06/30/16 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - We	Volatile Organics by GC/MS - Westborough Lab								
Methylene chloride	ND		ug/kg	23000	2500	1250			
1,1-Dichloroethane	ND		ug/kg	3400	200	1250			
Chloroform	ND		ug/kg	3400	840	1250			
Carbon tetrachloride	ND		ug/kg	2300	480	1250			
1,2-Dichloropropane	ND		ug/kg	8000	520	1250			
Dibromochloromethane	ND		ug/kg	2300	350	1250			
1,1,2-Trichloroethane	ND		ug/kg	3400	690	1250			
Tetrachloroethene	ND		ug/kg	2300	320	1250			
Chlorobenzene	ND		ug/kg	2300	800	1250			
Trichlorofluoromethane	ND		ug/kg	11000	890	1250			
1,2-Dichloroethane	ND		ug/kg	2300	260	1250			
1,1,1-Trichloroethane	ND		ug/kg	2300	250	1250			
Bromodichloromethane	ND		ug/kg	2300	400	1250			
trans-1,3-Dichloropropene	ND		ug/kg	2300	280	1250			
cis-1,3-Dichloropropene	ND		ug/kg	2300	270	1250			
Bromoform	ND		ug/kg	9100	540	1250			
1,1,2,2-Tetrachloroethane	ND		ug/kg	2300	230	1250			
Benzene	850	J	ug/kg	2300	270	1250			
Toluene	ND		ug/kg	3400	440	1250			
Ethylbenzene	2300		ug/kg	2300	290	1250			
Chloromethane	ND		ug/kg	11000	670	1250			
Bromomethane	ND		ug/kg	4600	770	1250			
Vinyl chloride	ND		ug/kg	4600	270	1250			
Chloroethane	ND		ug/kg	4600	720	1250			
1,1-Dichloroethene	ND		ug/kg	2300	600	1250			
trans-1,2-Dichloroethene	ND		ug/kg	3400	480	1250			
Trichloroethene	ND		ug/kg	2300	280	1250			
1,2-Dichlorobenzene	ND		ug/kg	11000	350	1250			
1,3-Dichlorobenzene	ND		ug/kg	11000	310	1250			
1,4-Dichlorobenzene	ND		ug/kg	11000	320	1250			

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-47 D Date Collected: 06/30/16 13:00

Client ID: DUP03 Date Received: 06/30/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
Methyl tert butyl ether	ND		ug/kg	4600	190	1250		
p/m-Xylene	56000		ug/kg	4600	450	1250		
o-Xylene	1800	J	ug/kg	4600	390	1250		
cis-1,2-Dichloroethene	ND		ug/kg	2300	330	1250		
Styrene	ND		ug/kg	4600	920	1250		
Dichlorodifluoromethane	ND		ug/kg	23000	440	1250		
Acetone	ND		ug/kg	23000	2400	1250		
Carbon disulfide	ND		ug/kg	23000	2500	1250		
2-Butanone	ND		ug/kg	23000	620	1250		
4-Methyl-2-pentanone	ND		ug/kg	23000	560	1250		
2-Hexanone	ND		ug/kg	23000	1500	1250		
Bromochloromethane	ND		ug/kg	11000	630	1250		
1,2-Dibromoethane	ND		ug/kg	9100	400	1250		
1,2-Dibromo-3-chloropropane	ND		ug/kg	11000	900	1250		
Isopropylbenzene	6800		ug/kg	2300	240	1250		
1,2,3-Trichlorobenzene	ND		ug/kg	11000	340	1250		
1,2,4-Trichlorobenzene	ND		ug/kg	11000	420	1250		
Methyl Acetate	ND		ug/kg	46000	620	1250		
Cyclohexane	48000		ug/kg	46000	330	1250		
1,4-Dioxane	ND		ug/kg	230000	33000	1250		
Freon-113	ND		ug/kg	46000	630	1250		
Methyl cyclohexane	130000		ug/kg	9100	350	1250		

06/30/16 13:00

06/30/16

Date Collected:

Date Received:

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-47 D

Client ID: DUP03 Sample Location: SYRACUSE, N

Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	550000	J	ug/kg	1250
Unknown Alkane	81000	J	ug/kg	1250
Unknown Alkane	53000	J	ug/kg	1250
Unknown Cyclohexane	59000	J	ug/kg	1250
Unknown Benzene	49000	J	ug/kg	1250
Unknown	47000	J	ug/kg	1250
Unknown Benzene	61000	J	ug/kg	1250
Unknown Benzene	48000	J	ug/kg	1250
Unknown Benzene	58000	J	ug/kg	1250
Unknown Aromatic	55000	J	ug/kg	1250
Unknown Benzene	42000	J	ug/kg	1250

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	91		70-130	
Toluene-d8	93		70-130	
4-Bromofluorobenzene	113		70-130	
Dibromofluoromethane	88		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 07/13/16

Result

Lab ID: L1620368-48

Client ID: P2-3 (4-8) Sample Location: SYRACUSE, NY

Matrix: Soil Analytical Method: 1,8260C

Analytical Date: 07/12/16 18:01

Analyst: MV 63% Percent Solids:

Parameter

Date Collected: 06/30/16 09:15 Date Received: 06/30/16 Field Prep: Not Specified

MDL

Dilution Factor

Parameter	Result	Qualifier	Units	KL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	stborough Lab						
Methylene chloride	ND		ug/kg	14	1.6	1	
1,1-Dichloroethane	ND		ug/kg	2.2	0.12	1	
Chloroform	ND		ug/kg	2.2	0.54	1	
Carbon tetrachloride	ND		ug/kg	1.4	0.30	1	
1,2-Dichloropropane	ND		ug/kg	5.1	0.33	1	
Dibromochloromethane	ND		ug/kg	1.4	0.22	1	
1,1,2-Trichloroethane	ND		ug/kg	2.2	0.44	1	
Tetrachloroethene	ND		ug/kg	1.4	0.20	1	
Chlorobenzene	ND		ug/kg	1.4	0.50	1	
Trichlorofluoromethane	ND		ug/kg	7.3	0.56	1	
1,2-Dichloroethane	ND		ug/kg	1.4	0.16	1	
1,1,1-Trichloroethane	ND		ug/kg	1.4	0.16	1	
Bromodichloromethane	ND		ug/kg	1.4	0.25	1	
trans-1,3-Dichloropropene	ND		ug/kg	1.4	0.18	1	
cis-1,3-Dichloropropene	ND		ug/kg	1.4	0.17	1	
Bromoform	ND		ug/kg	5.8	0.34	1	
1,1,2,2-Tetrachloroethane	ND		ug/kg	1.4	0.15	1	
Benzene	1.1	J	ug/kg	1.4	0.17	1	
Toluene	ND		ug/kg	2.2	0.28	1	
Ethylbenzene	0.29	J	ug/kg	1.4	0.18	1	
Chloromethane	ND		ug/kg	7.3	0.43	1	
Bromomethane	ND		ug/kg	2.9	0.49	1	
Vinyl chloride	ND		ug/kg	2.9	0.17	1	
Chloroethane	ND		ug/kg	2.9	0.46	1	
1,1-Dichloroethene	ND		ug/kg	1.4	0.38	1	
trans-1,2-Dichloroethene	ND		ug/kg	2.2	0.31	1	
Trichloroethene	ND		ug/kg	1.4	0.18	1	
1,2-Dichlorobenzene	ND		ug/kg	7.3	0.22	1	
1,3-Dichlorobenzene	ND		ug/kg	7.3	0.20	1	
1,4-Dichlorobenzene	ND		ug/kg	7.3	0.20	1	

Qualifier

Units

RL

L1620368

07/13/16

Project Name: EMBASSY SUITES

L1620368-48

Project Number: 15209

Lab ID:

SAMPLE RESULTS

Date Collected: 06/30/16 09:15

Lab Number:

Report Date:

Date Received: 06/30/16

Client ID: P2-3 (4-8) Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westh	oorough Lab					
Methyl tert butyl ether	0.23	J	ug/kg	2.9	0.12	1
p/m-Xylene	0.52	J	ug/kg	2.9	0.29	1
o-Xylene	ND		ug/kg	2.9	0.25	1
cis-1,2-Dichloroethene	ND		ug/kg	1.4	0.21	1
Styrene	ND		ug/kg	2.9	0.58	1
Dichlorodifluoromethane	ND		ug/kg	14	0.28	1
Acetone	75		ug/kg	14	1.5	1
Carbon disulfide	ND		ug/kg	14	1.6	1
2-Butanone	20		ug/kg	14	0.40	1
4-Methyl-2-pentanone	ND		ug/kg	14	0.35	1
2-Hexanone	ND		ug/kg	14	0.97	1
Bromochloromethane	ND		ug/kg	7.3	0.40	1
1,2-Dibromoethane	ND		ug/kg	5.8	0.25	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	7.3	0.58	1
Isopropylbenzene	22		ug/kg	1.4	0.15	1
1,2,3-Trichlorobenzene	ND		ug/kg	7.3	0.21	1
1,2,4-Trichlorobenzene	ND		ug/kg	7.3	0.26	1
Methyl Acetate	ND		ug/kg	29	0.39	1
Cyclohexane	1.6	J	ug/kg	29	0.21	1
1,4-Dioxane	ND		ug/kg	140	21.	1
Freon-113	ND		ug/kg	29	0.40	1
Methyl cyclohexane	3.4	J	ug/kg	5.8	0.22	1

Dilution Factor

MDL

RL

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 06/30/16 09:15

Client ID: P2-3 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Qualifier

Units

Result

Volatile Organics by GC/MS - Westborough Lab

Parameter

800	J	ug/kg	1
19	J	ug/kg	1
29	NJ	ug/kg	1
28	J	ug/kg	1
35	J	ug/kg	1
41	J	ug/kg	1
23	J	ug/kg	1
120	J	ug/kg	1
280	NJ	ug/kg	1
83	J	ug/kg	1
140	J	ug/kg	1
	19 29 28 35 41 23 120 280 83	19 J 29 NJ 28 J 35 J 41 J 23 J 120 J 280 NJ 83 J	19 J ug/kg 29 NJ ug/kg 28 J ug/kg 35 J ug/kg 41 J ug/kg 23 J ug/kg 120 J ug/kg 280 NJ ug/kg 83 J ug/kg

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	95		70-130	
Toluene-d8	97		70-130	
4-Bromofluorobenzene	116		70-130	
Dibromofluoromethane	90		70-130	

L1620368

Project Name: EMBASSY SUITES Lab Number:

Project Number: 15209 Report Date: 07/13/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/11/16 22:22

Analyst: PK

Parameter	Result	Qualifier	Units	RI	-	MDL
Volatile Organics by GC/MS	- Westborough Lab	for sample	e(s):	02-06,08	Batch:	WG912617-3
Methylene chloride	ND		ug/kg	10)	1.1
1,1-Dichloroethane	ND		ug/kg	1.5	5	0.09
Chloroform	ND		ug/kg	1.5	5	0.37
Carbon tetrachloride	ND		ug/kg	1.0)	0.21
1,2-Dichloropropane	ND		ug/kg	3.5	5	0.23
Dibromochloromethane	ND		ug/kg	1.0)	0.15
1,1,2-Trichloroethane	ND		ug/kg	1.5	5	0.30
Tetrachloroethene	ND		ug/kg	1.0)	0.14
Chlorobenzene	ND		ug/kg	1.0)	0.35
Trichlorofluoromethane	ND		ug/kg	5.0)	0.39
1,2-Dichloroethane	ND		ug/kg	1.0)	0.11
1,1,1-Trichloroethane	ND		ug/kg	1.0)	0.11
Bromodichloromethane	ND		ug/kg	1.0)	0.17
trans-1,3-Dichloropropene	ND		ug/kg	1.0)	0.12
cis-1,3-Dichloropropene	ND		ug/kg	1.0)	0.12
Bromoform	ND		ug/kg	4.0)	0.24
1,1,2,2-Tetrachloroethane	ND		ug/kg	1.0)	0.10
Benzene	ND		ug/kg	1.0)	0.12
Toluene	ND		ug/kg	1.5	5	0.19
Ethylbenzene	ND		ug/kg	1.0)	0.13
Chloromethane	ND		ug/kg	5.0)	0.29
Bromomethane	ND		ug/kg	2.0)	0.34
Vinyl chloride	ND		ug/kg	2.0)	0.12
Chloroethane	ND		ug/kg	2.0)	0.32
1,1-Dichloroethene	ND		ug/kg	1.0)	0.26
trans-1,2-Dichloroethene	ND		ug/kg	1.5	5	0.21
Trichloroethene	ND		ug/kg	1.0)	0.12
1,2-Dichlorobenzene	ND		ug/kg	5.0)	0.15
1,3-Dichlorobenzene	ND		ug/kg	5.0)	0.14

L1620368

Project Name: Lab Number: **EMBASSY SUITES**

Project Number: 15209 Report Date: 07/13/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/11/16 22:22

Analyst: PΚ

Parameter	Result	Qualifier Units	RL	MDL	
Volatile Organics by GC/MS -	Westborough La	b for sample(s):	02-06,08 Batch:	WG912617-3	
1,4-Dichlorobenzene	ND	ug/kg	5.0	0.14	
Methyl tert butyl ether	ND	ug/kg	2.0	0.08	
p/m-Xylene	ND	ug/kg	2.0	0.20	
o-Xylene	ND	ug/kg	2.0	0.17	
cis-1,2-Dichloroethene	ND	ug/kg	1.0	0.14	
Styrene	ND	ug/kg	2.0	0.40	
Dichlorodifluoromethane	ND	ug/kg	10	0.19	
Acetone	ND	ug/kg	10	1.0	
Carbon disulfide	ND	ug/kg	10	1.1	
2-Butanone	ND	ug/kg	10	0.27	
4-Methyl-2-pentanone	ND	ug/kg	10	0.24	
2-Hexanone	ND	ug/kg	10	0.67	
Bromochloromethane	ND	ug/kg	5.0	0.28	
1,2-Dibromoethane	ND	ug/kg	4.0	0.17	
1,2-Dibromo-3-chloropropane	ND	ug/kg	5.0	0.40	
Isopropylbenzene	ND	ug/kg	1.0	0.10	
1,2,3-Trichlorobenzene	ND	ug/kg	5.0	0.15	
1,2,4-Trichlorobenzene	ND	ug/kg	5.0	0.18	
Methyl Acetate	ND	ug/kg	20	0.27	
Cyclohexane	ND	ug/kg	20	0.15	
1,4-Dioxane	ND	ug/kg	100	14.	
Freon-113	ND	ug/kg	20	0.27	
Methyl cyclohexane	ND	ug/kg	4.0	0.15	

ug/kg

Tentatively Identified Compounds

No Tentatively Identified Compounds ND

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/11/16 22:22

Analyst: PK

Parameter	Result	Qualifier	Units	s R	L	MDL	
Volatile Organics by GC/MS - West	borough La	b for sample	e(s):	02-06,08	Batch:	WG912617-3	

			Acceptance		
Surrogate	%Recovery	Qualifier	Criteria		
1,2-Dichloroethane-d4	94		70-130		
Toluene-d8	94		70-130		
4-Bromofluorobenzene	88		70-130		
Dibromofluoromethane	96		70-130		

L1620368

Project Name: EMBASSY SUITES Lab Number:

Project Number: 15209 Report Date: 07/13/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/11/16 15:07

Analyst: MV

Parameter	Result	Qualifier U	nits	RL	1	MDL
olatile Organics by GC/MS	- Westborough Lal	b for sample(s):	09-24,26-28	Batch:	WG912784-3
Methylene chloride	ND	u	g/kg	10		1.1
1,1-Dichloroethane	ND	u	g/kg	1.5		0.09
Chloroform	ND	u	g/kg	1.5		0.37
Carbon tetrachloride	ND	u	g/kg	1.0		0.21
1,2-Dichloropropane	ND	uį	g/kg	3.5		0.23
Dibromochloromethane	ND	uį	g/kg	1.0		0.15
1,1,2-Trichloroethane	ND	uį	g/kg	1.5		0.30
Tetrachloroethene	ND	u	g/kg	1.0		0.14
Chlorobenzene	ND	u	g/kg	1.0		0.35
Trichlorofluoromethane	ND	uį	g/kg	5.0		0.39
1,2-Dichloroethane	ND	uį	g/kg	1.0		0.11
1,1,1-Trichloroethane	ND	uį	g/kg	1.0		0.11
Bromodichloromethane	ND	uį	g/kg	1.0		0.17
trans-1,3-Dichloropropene	ND	u	g/kg	1.0		0.12
cis-1,3-Dichloropropene	ND	u	g/kg	1.0		0.12
Bromoform	ND	u	g/kg	4.0		0.24
1,1,2,2-Tetrachloroethane	ND	u	g/kg	1.0		0.10
Benzene	ND	u	g/kg	1.0		0.12
Toluene	ND	u	g/kg	1.5		0.19
Ethylbenzene	ND	u	g/kg	1.0		0.13
Chloromethane	ND	u	g/kg	5.0		0.29
Bromomethane	ND	u	g/kg	2.0		0.34
Vinyl chloride	ND	u	g/kg	2.0		0.12
Chloroethane	ND	u	g/kg	2.0		0.32
1,1-Dichloroethene	ND	u	g/kg	1.0		0.26
trans-1,2-Dichloroethene	ND	u	g/kg	1.5		0.21
Trichloroethene	ND	u	g/kg	1.0		0.12
1,2-Dichlorobenzene	ND	u	g/kg	5.0		0.15
1,3-Dichlorobenzene	ND	uį	g/kg	5.0		0.14

L1620368

Project Name: Lab Number: **EMBASSY SUITES**

Project Number: 15209 Report Date: 07/13/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/11/16 15:07

Analyst: MV

arameter	Result	Qualifier Un	its	RL	N	IDL
platile Organics by GC/MS -	Westborough La	b for sample(s)	: 09-	-24,26-28	Batch:	WG912784-3
1,4-Dichlorobenzene	ND	ug	/kg	5.0		0.14
Methyl tert butyl ether	ND	ug	/kg	2.0		0.08
p/m-Xylene	ND	ug	/kg	2.0		0.20
o-Xylene	ND	ug	/kg	2.0		0.17
cis-1,2-Dichloroethene	ND	ug	/kg	1.0		0.14
Styrene	ND	ug	/kg	2.0		0.40
Dichlorodifluoromethane	ND	ug	/kg	10		0.19
Acetone	ND	ug	/kg	10		1.0
Carbon disulfide	ND	ug	/kg	10		1.1
2-Butanone	ND	ug	/kg	10		0.27
4-Methyl-2-pentanone	ND	ug	/kg	10		0.24
2-Hexanone	ND	ug	/kg	10		0.67
Bromochloromethane	ND	ug	/kg	5.0		0.28
1,2-Dibromoethane	ND	ug	/kg	4.0		0.17
1,2-Dibromo-3-chloropropane	ND	ug	/kg	5.0		0.40
Isopropylbenzene	ND	ug	/kg	1.0		0.10
1,2,3-Trichlorobenzene	ND	ug	/kg	5.0		0.15
1,2,4-Trichlorobenzene	ND	ug	/kg	5.0		0.18
Methyl Acetate	ND	ug	/kg	20		0.27
Cyclohexane	ND	ug	/kg	20		0.15
1,4-Dioxane	ND	ug	/kg	100		14.
Freon-113	ND	ug	/kg	20		0.27
Methyl cyclohexane	ND	ug	/kg	4.0		0.15

Tentatively Identified Compounds

No Tentatively Identified Compounds ND ug/kg

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/11/16 15:07

Analyst: MV

Parameter	Result	Qualifier	Units	RL RL	MDL
Volatile Organics by GC/MS -	Westborough La	b for sampl	e(s):	09-24.26-28	Batch: WG912784-3

	Acceptance				
Surrogate	%Recovery	Qualifier	Criteria		
•					
1,2-Dichloroethane-d4	103		70-130		
Toluene-d8	104		70-130		
4-Bromofluorobenzene	105		70-130		
Dibromofluoromethane	99		70-130		

L1620368

Project Name: Lab Number: **EMBASSY SUITES**

Project Number: 15209 Report Date: 07/13/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/12/16 10:41

Analyst: MV

Parameter	Result	Qualifier Unit	s RL	MDL	
Volatile Organics by GC/MS	- Westborough Lab	for sample(s):	01,40,42-48	Batch: WG9129	70-3
Methylene chloride	ND	ug/ł	kg 10	1.1	
1,1-Dichloroethane	ND	ug/l	kg 1.5	0.09	
Chloroform	ND	ug/l	kg 1.5	0.37	
Carbon tetrachloride	ND	ug/l	kg 1.0	0.21	
1,2-Dichloropropane	ND	ug/l	kg 3.5	0.23	
Dibromochloromethane	ND	ug/l	kg 1.0	0.15	
1,1,2-Trichloroethane	ND	ug/l	kg 1.5	0.30	
Tetrachloroethene	ND	ug/l	kg 1.0	0.14	
Chlorobenzene	ND	ug/l	kg 1.0	0.35	
Trichlorofluoromethane	ND	ug/l	kg 5.0	0.39	
1,2-Dichloroethane	ND	ug/l	kg 1.0	0.11	
1,1,1-Trichloroethane	ND	ug/l	kg 1.0	0.11	
Bromodichloromethane	ND	ug/l	kg 1.0	0.17	
trans-1,3-Dichloropropene	ND	ug/l	kg 1.0	0.12	
cis-1,3-Dichloropropene	ND	ug/l	kg 1.0	0.12	
Bromoform	ND	ug/l	kg 4.0	0.24	
1,1,2,2-Tetrachloroethane	ND	ug/l	kg 1.0	0.10	
Benzene	ND	ug/l	kg 1.0	0.12	
Toluene	ND	ug/l	kg 1.5	0.19	
Ethylbenzene	ND	ug/l	kg 1.0	0.13	
Chloromethane	ND	ug/l	kg 5.0	0.29	
Bromomethane	ND	ug/l	kg 2.0	0.34	
Vinyl chloride	ND	ug/l	kg 2.0	0.12	
Chloroethane	ND	ug/l	kg 2.0	0.32	
1,1-Dichloroethene	ND	ug/l	kg 1.0	0.26	
trans-1,2-Dichloroethene	ND	ug/l	kg 1.5	0.21	
Trichloroethene	ND	ug/l	kg 1.0	0.12	
1,2-Dichlorobenzene	ND	ug/l	kg 5.0	0.15	
1,3-Dichlorobenzene	ND	ug/l	kg 5.0	0.14	

L1620368

Project Name: EMBASSY SUITES

Project Number: 15209 Report Date: 07/13/16

Lab Number:

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/12/16 10:41

Analyst: MV

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough La	b for sample(s):	01,40,42-48	Batch: WG912970-3
1,4-Dichlorobenzene	ND	ug/kç	g 5.0	0.14
Methyl tert butyl ether	ND	ug/kg	g 2.0	0.08
p/m-Xylene	ND	ug/ko	g 2.0	0.20
o-Xylene	ND	ug/k	g 2.0	0.17
cis-1,2-Dichloroethene	ND	ug/kç	g 1.0	0.14
Styrene	ND	ug/kç	g 2.0	0.40
Dichlorodifluoromethane	ND	ug/kç	g 10	0.19
Acetone	ND	ug/kç	g 10	1.0
Carbon disulfide	ND	ug/kç	g 10	1.1
2-Butanone	ND	ug/kç	g 10	0.27
4-Methyl-2-pentanone	ND	ug/kç	g 10	0.24
2-Hexanone	ND	ug/ko	g 10	0.67
Bromochloromethane	ND	ug/ko	g 5.0	0.28
1,2-Dibromoethane	ND	ug/ko	g 4.0	0.17
1,2-Dibromo-3-chloropropane	ND	ug/ko	5.0	0.40
Isopropylbenzene	ND	ug/ko	1.0	0.10
1,2,3-Trichlorobenzene	ND	ug/kç	5.0	0.15
1,2,4-Trichlorobenzene	ND	ug/kç	5.0	0.18
Methyl Acetate	ND	ug/kç	g 20	0.27
Cyclohexane	ND	ug/kç	g 20	0.15
1,4-Dioxane	ND	ug/kç	g 100	14.
Freon-113	ND	ug/ko	g 20	0.27
Methyl cyclohexane	ND	ug/kç	9 4.0	0.15

Tentatively Identified Compounds

No Tentatively Identified Compounds

ND

ug/kg

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/12/16 10:41

Analyst: MV

Parameter	Result	Qualifier	Units	RL	M	DL
Volatile Organics by GC/MS - Wes	tborough La	ab for sample	e(s):	01,40,42-48	Batch: \	NG912970-3

Surrogate		Acceptance		
	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	95		70-130	
Toluene-d8	96		70-130	
4-Bromofluorobenzene	104		70-130	
Dibromofluoromethane	90		70-130	

Project Name: EMBASSY SUITES Lab Number:

Project Number: 15209 Report Date: 07/13/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/12/16 22:29

Analyst: PP

Parameter	Result	Qualifier	Units	RL		MDL
Volatile Organics by GC/MS -	Westborough La	ab for sample	e(s):	25,39,41,45	Batch:	WG912970-8
Methylene chloride	ND		ug/kg	10		1.1
1,1-Dichloroethane	ND		ug/kg	1.5		0.09
Chloroform	ND		ug/kg	1.5		0.37
Carbon tetrachloride	ND		ug/kg	1.0		0.21
1,2-Dichloropropane	ND		ug/kg	3.5		0.23
Dibromochloromethane	ND		ug/kg	1.0		0.15
1,1,2-Trichloroethane	ND		ug/kg	1.5		0.30
Tetrachloroethene	ND		ug/kg	1.0		0.14
Chlorobenzene	ND		ug/kg	1.0		0.35
Trichlorofluoromethane	ND		ug/kg	5.0		0.39
1,2-Dichloroethane	ND		ug/kg	1.0		0.11
1,1,1-Trichloroethane	ND		ug/kg	1.0		0.11
Bromodichloromethane	ND		ug/kg	1.0		0.17
trans-1,3-Dichloropropene	ND		ug/kg	1.0		0.12
cis-1,3-Dichloropropene	ND		ug/kg	1.0		0.12
Bromoform	ND		ug/kg	4.0		0.24
1,1,2,2-Tetrachloroethane	ND		ug/kg	1.0		0.10
Benzene	ND		ug/kg	1.0		0.12
Toluene	ND		ug/kg	1.5		0.19
Ethylbenzene	ND		ug/kg	1.0		0.13
Chloromethane	ND		ug/kg	5.0		0.29
Bromomethane	ND		ug/kg	2.0		0.34
Vinyl chloride	ND		ug/kg	2.0		0.12
Chloroethane	ND		ug/kg	2.0		0.32
1,1-Dichloroethene	ND		ug/kg	1.0		0.26
trans-1,2-Dichloroethene	ND		ug/kg	1.5		0.21
Trichloroethene	ND		ug/kg	1.0		0.12
1,2-Dichlorobenzene	ND		ug/kg	5.0		0.15
1,3-Dichlorobenzene	ND		ug/kg	5.0		0.14

Project Name: EMBASSY SUITES Lab Number:

Project Number: 15209 Report Date: 07/13/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/12/16 22:29

Analyst: PP

Parameter	Result	Qualifier Unit	s RL	MDL
olatile Organics by GC/MS - '	Westborough La	b for sample(s):	25,39,41,45	Batch: WG912970-8
1,4-Dichlorobenzene	ND	ug/k	ig 5.0	0.14
Methyl tert butyl ether	ND	ug/l	g 2.0	0.08
p/m-Xylene	ND	ug/l	g 2.0	0.20
o-Xylene	ND	ug/l	g 2.0	0.17
cis-1,2-Dichloroethene	ND	ug/l	g 1.0	0.14
Styrene	ND	ug/l	g 2.0	0.40
Dichlorodifluoromethane	ND	ug/l	g 10	0.19
Acetone	ND	ug/l	g 10	1.0
Carbon disulfide	ND	ug/l	.g 10	1.1
2-Butanone	ND	ug/l	g 10	0.27
4-Methyl-2-pentanone	ND	ug/l	g 10	0.24
2-Hexanone	ND	ug/l	g 10	0.67
Bromochloromethane	ND	ug/l	g 5.0	0.28
1,2-Dibromoethane	ND	ug/l	g 4.0	0.17
1,2-Dibromo-3-chloropropane	ND	ug/l	g 5.0	0.40
Isopropylbenzene	ND	ug/l	g 1.0	0.10
1,2,3-Trichlorobenzene	ND	ug/l	g 5.0	0.15
1,2,4-Trichlorobenzene	ND	ug/l	g 5.0	0.18
Methyl Acetate	ND	ug/l	.g 20	0.27
Cyclohexane	ND	ug/l	.g 20	0.15
1,4-Dioxane	ND	ug/l	g 100	14.
Freon-113	ND	ug/l	g 20	0.27
Methyl cyclohexane	ND	ug/l	g 4.0	0.15

ug/kg

Tentatively Identified Compounds

No Tentatively Identified Compounds ND

Project Name: EMBASSY SUITES Lab Number:

Project Number: 15209 Report Date: 07/13/16

Report Date. 07/13/1

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/12/16 22:29

Analyst: PP

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS - West	borough La	ab for sample	e(s):	25,39,41,45	Batch: WG912970-8	

		Acceptance				
Surrogate	%Recovery	Qualifier	Criteria			
1,2-Dichloroethane-d4	80		70-130			
Toluene-d8	92		70-130			
4-Bromofluorobenzene	93		70-130			
Dibromofluoromethane	88		70-130			

Project Name: EMBASSY SUITES

Project Number: 15209 Report Date: 07/13/16

Report Date. 07/13/18

Lab Number:

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/12/16 14:50

Analyst: MV

Parameter	Result	Qualifier	Units	RL RL	ı	MDL
Volatile Organics by GC/MS	- Westborough Lab	for sampl	e(s):	29-34,36-38	Batch:	WG913002-3
Methylene chloride	ND		ug/k	g 10		1.1
1,1-Dichloroethane	ND		ug/k	g 1.5		0.09
Chloroform	ND		ug/k	g 1.5		0.37
Carbon tetrachloride	ND		ug/k	g 1.0		0.21
1,2-Dichloropropane	ND		ug/k	g 3.5		0.23
Dibromochloromethane	ND		ug/k	g 1.0		0.15
1,1,2-Trichloroethane	ND		ug/k	g 1.5		0.30
Tetrachloroethene	ND		ug/k	g 1.0		0.14
Chlorobenzene	ND		ug/k	g 1.0		0.35
Trichlorofluoromethane	ND		ug/k	g 5.0		0.39
1,2-Dichloroethane	ND		ug/k	g 1.0		0.11
1,1,1-Trichloroethane	ND		ug/k	g 1.0		0.11
Bromodichloromethane	ND		ug/k	g 1.0		0.17
trans-1,3-Dichloropropene	ND		ug/k	g 1.0		0.12
cis-1,3-Dichloropropene	ND		ug/k	g 1.0		0.12
Bromoform	ND		ug/k	g 4.0		0.24
1,1,2,2-Tetrachloroethane	ND		ug/k	g 1.0		0.10
Benzene	ND		ug/k	g 1.0		0.12
Toluene	ND		ug/k	g 1.5		0.19
Ethylbenzene	ND		ug/k	g 1.0		0.13
Chloromethane	ND		ug/k	g 5.0		0.29
Bromomethane	0.55	J	ug/k	g 2.0		0.34
Vinyl chloride	ND		ug/k	g 2.0		0.12
Chloroethane	ND		ug/k	g 2.0		0.32
1,1-Dichloroethene	ND		ug/k	g 1.0		0.26
trans-1,2-Dichloroethene	ND		ug/k	g 1.5		0.21
Trichloroethene	ND		ug/k	g 1.0		0.12
1,2-Dichlorobenzene	ND		ug/k	g 5.0		0.15
1,3-Dichlorobenzene	ND		ug/k	g 5.0		0.14

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/12/16 14:50

Analyst: MV

Parameter	Result	Qualifier Units	s RL	MDL	
Volatile Organics by GC/MS - V	Westborough Lab	for sample(s):	29-34,36-38	Batch: WG913002-3	3
1,4-Dichlorobenzene	ND	ug/k	g 5.0	0.14	
Methyl tert butyl ether	ND	ug/k	g 2.0	0.08	
p/m-Xylene	ND	ug/k	g 2.0	0.20	
o-Xylene	ND	ug/k	g 2.0	0.17	
cis-1,2-Dichloroethene	ND	ug/k	g 1.0	0.14	
Styrene	ND	ug/k	g 2.0	0.40	
Dichlorodifluoromethane	ND	ug/k	g 10	0.19	
Acetone	ND	ug/k	g 10	1.0	
Carbon disulfide	ND	ug/k	g 10	1.1	
2-Butanone	ND	ug/k	g 10	0.27	
4-Methyl-2-pentanone	ND	ug/k	g 10	0.24	
2-Hexanone	ND	ug/k	g 10	0.67	
Bromochloromethane	ND	ug/k	g 5.0	0.28	
1,2-Dibromoethane	ND	ug/k	g 4.0	0.17	
1,2-Dibromo-3-chloropropane	ND	ug/k	g 5.0	0.40	
Isopropylbenzene	ND	ug/k	g 1.0	0.10	
1,2,3-Trichlorobenzene	ND	ug/k	g 5.0	0.15	
1,2,4-Trichlorobenzene	ND	ug/k	g 5.0	0.18	
Methyl Acetate	ND	ug/k	g 20	0.27	
Cyclohexane	ND	ug/k	g 20	0.15	
1,4-Dioxane	ND	ug/k	g 100	14.	
Freon-113	ND	ug/k	g 20	0.27	
Methyl cyclohexane	ND	ug/k	g 4.0	0.15	

ug/kg

Tentatively Identified Compounds

No Tentatively Identified Compounds ND

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/12/16 14:50

Analyst: MV

Parameter	Result	Qualifier	Units	RL RL	N	IDL
Volatile Organics by GC/MS - \	Nestborough La	b for sampl	e(s):	29-34.36-38	Batch:	WG913002-3

		Acceptance				
Surrogate	%Recovery	%Recovery Qualifier				
1,2-Dichloroethane-d4	100		70-130			
Toluene-d8	102		70-130			
4-Bromofluorobenzene	99		70-130			
Dibromofluoromethane	102		70-130			

Lab Number:

Project Name: EMBASSY SUITES

Project Number: 15209 Report Date: 07/13/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/13/16 10:45

Analyst: MV

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Organics by GC/MS	- Westborough Lab	for sampl	e(s): 07	Batch:	WG913105-3
Methylene chloride	ND		ug/kg	10	1.1
1,1-Dichloroethane	ND		ug/kg	1.5	0.09
Chloroform	ND		ug/kg	1.5	0.37
Carbon tetrachloride	ND		ug/kg	1.0	0.21
1,2-Dichloropropane	ND		ug/kg	3.5	0.23
Dibromochloromethane	ND		ug/kg	1.0	0.15
1,1,2-Trichloroethane	ND		ug/kg	1.5	0.30
Tetrachloroethene	ND		ug/kg	1.0	0.14
Chlorobenzene	ND		ug/kg	1.0	0.35
Trichlorofluoromethane	ND		ug/kg	5.0	0.39
1,2-Dichloroethane	ND		ug/kg	1.0	0.11
1,1,1-Trichloroethane	ND		ug/kg	1.0	0.11
Bromodichloromethane	ND		ug/kg	1.0	0.17
trans-1,3-Dichloropropene	ND		ug/kg	1.0	0.12
cis-1,3-Dichloropropene	ND		ug/kg	1.0	0.12
Bromoform	ND		ug/kg	4.0	0.24
1,1,2,2-Tetrachloroethane	ND		ug/kg	1.0	0.10
Benzene	ND		ug/kg	1.0	0.12
Toluene	ND		ug/kg	1.5	0.19
Ethylbenzene	ND		ug/kg	1.0	0.13
Chloromethane	ND		ug/kg	5.0	0.29
Bromomethane	0.40	J	ug/kg	2.0	0.34
Vinyl chloride	ND		ug/kg	2.0	0.12
Chloroethane	ND		ug/kg	2.0	0.32
1,1-Dichloroethene	ND		ug/kg	1.0	0.26
trans-1,2-Dichloroethene	ND		ug/kg	1.5	0.21
Trichloroethene	ND		ug/kg	1.0	0.12
1,2-Dichlorobenzene	ND		ug/kg	5.0	0.15
1,3-Dichlorobenzene	ND		ug/kg	5.0	0.14

Lab Number:

Project Name: EMBASSY SUITES

Project Number: 15209 **Report Date:**

07/13/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/13/16 10:45

Analyst: MV

arameter	Result	Qualifier	Units	RL	MDL
olatile Organics by GC/MS - V	estborough La	b for sample	(s): 0	7 Batch:	WG913105-3
1,4-Dichlorobenzene	ND		ug/kg	5.0	0.14
Methyl tert butyl ether	ND		ug/kg	2.0	0.08
p/m-Xylene	ND		ug/kg	2.0	0.20
o-Xylene	ND		ug/kg	2.0	0.17
cis-1,2-Dichloroethene	ND		ug/kg	1.0	0.14
Styrene	ND		ug/kg	2.0	0.40
Dichlorodifluoromethane	ND		ug/kg	10	0.19
Acetone	ND		ug/kg	10	1.0
Carbon disulfide	ND		ug/kg	10	1.1
2-Butanone	ND		ug/kg	10	0.27
4-Methyl-2-pentanone	ND		ug/kg	10	0.24
2-Hexanone	ND		ug/kg	10	0.67
Bromochloromethane	ND		ug/kg	5.0	0.28
1,2-Dibromoethane	ND		ug/kg	4.0	0.17
1,2-Dibromo-3-chloropropane	ND		ug/kg	5.0	0.40
Isopropylbenzene	ND		ug/kg	1.0	0.10
1,2,3-Trichlorobenzene	ND		ug/kg	5.0	0.15
1,2,4-Trichlorobenzene	ND		ug/kg	5.0	0.18
Methyl Acetate	ND		ug/kg	20	0.27
Cyclohexane	ND		ug/kg	20	0.15
1,4-Dioxane	ND		ug/kg	100	14.
Freon-113	ND		ug/kg	20	0.27
Methyl cyclohexane	ND		ug/kg	4.0	0.15

Tentatively Identified Compounds

No Tentatively Identified Compounds

ND

ug/kg

Project Name: EMBASSY SUITES Lab Number:

Project Number: 15209 Report Date: 07/13/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/13/16 10:45

Analyst: MV

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS - West	borough La	ab for sampl	e(s): 07	Batch:	WG913105-3	

Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	87		70-130	
Toluene-d8	93		70-130	
4-Bromofluorobenzene	89		70-130	
Dibromofluoromethane	92		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L1620368

Parameter	LCS %Recovery	Qual	LCS %Reco		Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	02-06,08	Batch:	WG912617-1	WG912617-2			
Methylene chloride	104		104	4		70-130	0		30
1,1-Dichloroethane	106		10	7		70-130	1		30
Chloroform	99		99			70-130	0		30
Carbon tetrachloride	110		109	9		70-130	1		30
1,2-Dichloropropane	102		10	7		70-130	5		30
Dibromochloromethane	94		95			70-130	1		30
2-Chloroethylvinyl ether	88		88			70-130	0		30
1,1,2-Trichloroethane	98		98			70-130	0		30
Tetrachloroethene	110		11:	3		70-130	3		30
Chlorobenzene	99		99			70-130	0		30
Trichlorofluoromethane	103		100	0		70-139	3		30
1,2-Dichloroethane	98		98			70-130	0		30
1,1,1-Trichloroethane	107		10	5		70-130	2		30
Bromodichloromethane	96		96			70-130	0		30
trans-1,3-Dichloropropene	91		90			70-130	1		30
cis-1,3-Dichloropropene	97		98			70-130	1		30
1,1-Dichloropropene	104		104	4		70-130	0		30
Bromoform	91		90			70-130	1		30
1,1,2,2-Tetrachloroethane	84		84			70-130	0		30
Benzene	102		10	5		70-130	3		30
Toluene	90		90			70-130	0		30

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L1620368

Parameter	LCS %Recovery	Qual	LCSD %Recovery		Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westboroug	gh Lab Associated	sample(s):	02-06,08 Bato	ch: WG912617-1	WG912617-2			
Ethylbenzene	101		100		70-130	1	30	
Chloromethane	104		108		52-130	4	30	
Bromomethane	94		87		57-147	8	30	
Vinyl chloride	115		118		67-130	3	30	
Chloroethane	101		97		50-151	4	30	
1,1-Dichloroethene	112		116		65-135	4	30	
trans-1,2-Dichloroethene	107		108		70-130	1	30	
Trichloroethene	108		107		70-130	1	30	
1,2-Dichlorobenzene	98		99		70-130	1	30	
1,3-Dichlorobenzene	101		101		70-130	0	30	
1,4-Dichlorobenzene	98		98		70-130	0	30	
Methyl tert butyl ether	93		93		66-130	0	30	
p/m-Xylene	107		107		70-130	0	30	
o-Xylene	104		105		70-130	1	30	
cis-1,2-Dichloroethene	105		105		70-130	0	30	
Dibromomethane	99		98		70-130	1	30	
Styrene	105		106		70-130	1	30	
Dichlorodifluoromethane	88		87		30-146	1	30	
Acetone	101		94		54-140	7	30	
Carbon disulfide	66		67		59-130	2	30	
2-Butanone	109		104		70-130	5	30	

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L1620368

Parameter	LCS %Recovery	Qual	LCSI %Reco		%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	02-06,08	Batch: WG91	2617-1 WG912617-2	2		
Vinyl acetate	101		105	i	70-130	4		30
4-Methyl-2-pentanone	93		93		70-130	0		30
1,2,3-Trichloropropane	86		84		68-130	2		30
2-Hexanone	79		76		70-130	4		30
Bromochloromethane	114		111		70-130	3		30
2,2-Dichloropropane	106		105	j	70-130	1		30
1,2-Dibromoethane	97		94		70-130	3		30
1,3-Dichloropropane	93		92		69-130	1		30
1,1,1,2-Tetrachloroethane	98		97		70-130	1		30
Bromobenzene	99		97		70-130	2		30
n-Butylbenzene	102		102		70-130	0		30
sec-Butylbenzene	103		105	j	70-130	2		30
tert-Butylbenzene	99		101		70-130	2		30
o-Chlorotoluene	103		102	2	70-130	1		30
p-Chlorotoluene	95		94		70-130	1		30
1,2-Dibromo-3-chloropropane	82		84		68-130	2		30
Hexachlorobutadiene	99		101		67-130	2		30
Isopropylbenzene	98		100)	70-130	2		30
p-Isopropyltoluene	94		94		70-130	0		30
Naphthalene	78		79		70-130	1		30
Acrylonitrile	109		104		70-130	5		30

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L1620368

Parameter	LCS %Recovery	Qual	LCSD %Recove		%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	02-06,08 B	atch: WG912617	-1 WG912617-2			
Isopropyl Ether	115		116		66-130	1		30
tert-Butyl Alcohol	103		100		70-130	3		30
n-Propylbenzene	100		100		70-130	0		30
1,2,3-Trichlorobenzene	96		95		70-130	1		30
1,2,4-Trichlorobenzene	93		92		70-130	1		30
1,3,5-Trimethylbenzene	99		98		70-130	1		30
1,2,4-Trimethylbenzene	100		99		70-130	1		30
Methyl Acetate	114		113		51-146	1		30
Ethyl Acetate	33	Q	37	Q	70-130	11		30
Acrolein	93		96		70-130	3		30
Cyclohexane	130		132		59-142	2		30
1,4-Dioxane	82		84		65-136	2		30
1,1,2-Trichloro-1,2,2-Trifluoroethane	114		115		50-139	1		30
p-Diethylbenzene	100		100		70-130	0		30
p-Ethyltoluene	101		101		70-130	0		30
1,2,4,5-Tetramethylbenzene	81		81		70-130	0		30
Tetrahydrofuran	88		93		66-130	6		30
Ethyl ether	100		100	-	67-130	0		30
trans-1,4-Dichloro-2-butene	96		92	-	70-130	4		30
Methyl cyclohexane	107		109	-	70-130	2		30
Ethyl-Tert-Butyl-Ether	110		111	-	70-130	1		30

Project Name: EMBASSY SUITES

Project Number:

15209

Lab Number:

L1620368

Report Date:

07/13/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	02-06,08 Batch	: WG912617-	1 WG912617-2				
Tertiary-Amyl Methyl Ether	93		94		70-130	1		30	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
_						
1,2-Dichloroethane-d4	92		90		70-130	
Toluene-d8	94		95		70-130	
4-Bromofluorobenzene	90		90		70-130	
Dibromofluoromethane	99		100		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L1620368

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	09-24,26-28 Batch	n: WG912784-1 WG91278	4-2	
Methylene chloride	100		97	70-130	3	30
1,1-Dichloroethane	110		104	70-130	6	30
Chloroform	108		100	70-130	8	30
Carbon tetrachloride	110		101	70-130	9	30
1,2-Dichloropropane	117		109	70-130	7	30
Dibromochloromethane	108		104	70-130	4	30
2-Chloroethylvinyl ether	106		101	70-130	5	30
1,1,2-Trichloroethane	113		111	70-130	2	30
Tetrachloroethene	105		99	70-130	6	30
Chlorobenzene	106		102	70-130	4	30
Trichlorofluoromethane	111		104	70-139	7	30
1,2-Dichloroethane	114		109	70-130	4	30
1,1,1-Trichloroethane	110		104	70-130	6	30
Bromodichloromethane	107		102	70-130	5	30
trans-1,3-Dichloropropene	111		106	70-130	5	30
cis-1,3-Dichloropropene	107		103	70-130	4	30
1,1-Dichloropropene	110		102	70-130	8	30
Bromoform	106		108	70-130	2	30
1,1,2,2-Tetrachloroethane	106		107	70-130	1	30
Benzene	107		101	70-130	6	30
Toluene	104		99	70-130	5	30

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L1620368

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	09-24,26-28 Batcl	n: WG912784-1 WG91278	4-2	
Ethylbenzene	108		103	70-130	5	30
Chloromethane	123		111	52-130	10	30
Bromomethane	101		102	57-147	1	30
Vinyl chloride	104		97	67-130	7	30
Chloroethane	104		94	50-151	10	30
1,1-Dichloroethene	105		96	65-135	9	30
trans-1,2-Dichloroethene	103		96	70-130	7	30
Trichloroethene	113		108	70-130	5	30
1,2-Dichlorobenzene	107		106	70-130	1	30
1,3-Dichlorobenzene	102		104	70-130	2	30
1,4-Dichlorobenzene	101		104	70-130	3	30
Methyl tert butyl ether	101		99	66-130	2	30
p/m-Xylene	109		104	70-130	5	30
o-Xylene	109		105	70-130	4	30
cis-1,2-Dichloroethene	102		97	70-130	5	30
Dibromomethane	106		105	70-130	1	30
Styrene	107		104	70-130	3	30
Dichlorodifluoromethane	118		106	30-146	11	30
Acetone	117		100	54-140	16	30
Carbon disulfide	111		104	59-130	7	30
2-Butanone	117		108	70-130	8	30

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L1620368

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	09-24,26-28 Bato	h: WG912784-1 WG91278	34-2	
Vinyl acetate	122		113	70-130	8	30
4-Methyl-2-pentanone	105		99	70-130	6	30
1,2,3-Trichloropropane	108		108	68-130	0	30
2-Hexanone	119		116	70-130	3	30
Bromochloromethane	110		104	70-130	6	30
2,2-Dichloropropane	112		104	70-130	7	30
1,2-Dibromoethane	105		104	70-130	1	30
1,3-Dichloropropane	101		100	69-130	1	30
1,1,1,2-Tetrachloroethane	104		103	70-130	1	30
Bromobenzene	107		108	70-130	1	30
n-Butylbenzene	110		106	70-130	4	30
sec-Butylbenzene	107		103	70-130	4	30
tert-Butylbenzene	103		104	70-130	1	30
o-Chlorotoluene	109		107	70-130	2	30
p-Chlorotoluene	111		108	70-130	3	30
1,2-Dibromo-3-chloropropane	96		89	68-130	8	30
Hexachlorobutadiene	92		91	67-130	1	30
Isopropylbenzene	108		103	70-130	5	30
p-Isopropyltoluene	103		101	70-130	2	30
Naphthalene	99		96	70-130	3	30
Acrylonitrile	105		108	70-130	3	30

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L1620368

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	09-24,26-28 Batc	h: WG912	2784-1 WG91278	34-2	
Isopropyl Ether	118		112		66-130	5	30
tert-Butyl Alcohol	93		92		70-130	1	30
n-Propylbenzene	109		106		70-130	3	30
1,2,3-Trichlorobenzene	92		91		70-130	1	30
1,2,4-Trichlorobenzene	96		97		70-130	1	30
1,3,5-Trimethylbenzene	110		108		70-130	2	30
1,2,4-Trimethylbenzene	109		107		70-130	2	30
Methyl Acetate	107		108		51-146	1	30
Ethyl Acetate	218	Q	188	Q	70-130	15	30
Acrolein	126		108		70-130	15	30
Cyclohexane	117		103		59-142	13	30
1,4-Dioxane	90		86		65-136	5	30
1,1,2-Trichloro-1,2,2-Trifluoroethane	107		99		50-139	8	30
p-Diethylbenzene	107		101		70-130	6	30
p-Ethyltoluene	112		104		70-130	7	30
1,2,4,5-Tetramethylbenzene	105		100		70-130	5	30
Tetrahydrofuran	108		131	Q	66-130	19	30
Ethyl ether	98		89		67-130	10	30
trans-1,4-Dichloro-2-butene	118		116		70-130	2	30
Methyl cyclohexane	111		101		70-130	9	30
Ethyl-Tert-Butyl-Ether	108		104		70-130	4	30

Project Name: EMBASSY SUITES

Project Number: 15209 Lab Number:

L1620368

Report Date:

07/13/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	09-24,26-28 Bato	h: WG912	784-1 WG912784	l-2			
Tertiary-Amyl Methyl Ether	105		100		70-130	5		30	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	106		102		70-130	
Toluene-d8	104		103		70-130	
4-Bromofluorobenzene	104		105		70-130	
Dibromofluoromethane	102		100		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L1620368

arameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01,40,42-48 Bat	ch: WG912970-1 WG91297	0-2	
Methylene chloride	100		103	70-130	3	30
1,1-Dichloroethane	99		101	70-130	2	30
Chloroform	93		95	70-130	2	30
Carbon tetrachloride	90		91	70-130	1	30
1,2-Dichloropropane	99		104	70-130	5	30
Dibromochloromethane	87		89	70-130	2	30
2-Chloroethylvinyl ether	114		119	70-130	4	30
1,1,2-Trichloroethane	96		100	70-130	4	30
Tetrachloroethene	84		86	70-130	2	30
Chlorobenzene	87		90	70-130	3	30
Trichlorofluoromethane	67	Q	75	70-139	11	30
1,2-Dichloroethane	95		96	70-130	1	30
1,1,1-Trichloroethane	92		93	70-130	1	30
Bromodichloromethane	93		97	70-130	4	30
trans-1,3-Dichloropropene	92		95	70-130	3	30
cis-1,3-Dichloropropene	94		96	70-130	2	30
1,1-Dichloropropene	92		94	70-130	2	30
Bromoform	90		95	70-130	5	30
1,1,2,2-Tetrachloroethane	99		103	70-130	4	30
Benzene	97		98	70-130	1	30
Toluene	88		90	70-130	2	30

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L1620368

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01,40,42-48 Batcl	n: WG912970-1 WG91297	0-2	
Ethylbenzene	88		91	70-130	3	30
Chloromethane	107		112	52-130	5	30
Bromomethane	92		89	57-147	3	30
Vinyl chloride	100		105	67-130	5	30
Chloroethane	83		88	50-151	6	30
1,1-Dichloroethene	94		99	65-135	5	30
trans-1,2-Dichloroethene	90		94	70-130	4	30
Trichloroethene	95		96	70-130	1	30
1,2-Dichlorobenzene	84		88	70-130	5	30
1,3-Dichlorobenzene	86		89	70-130	3	30
1,4-Dichlorobenzene	86		89	70-130	3	30
Methyl tert butyl ether	92		97	66-130	5	30
p/m-Xylene	89		90	70-130	1	30
o-Xylene	88		89	70-130	1	30
cis-1,2-Dichloroethene	90		94	70-130	4	30
Dibromomethane	91		95	70-130	4	30
Styrene	86		89	70-130	3	30
Dichlorodifluoromethane	77		80	30-146	4	30
Acetone	97		100	54-140	3	30
Carbon disulfide	98		101	59-130	3	30
2-Butanone	107		110	70-130	3	30

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L1620368

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01,40,42-48 Bato	ch: WG912970-1 WG91297	0-2	
Vinyl acetate	110		112	70-130	2	30
4-Methyl-2-pentanone	96		101	70-130	5	30
1,2,3-Trichloropropane	101		103	68-130	2	30
2-Hexanone	90		95	70-130	5	30
Bromochloromethane	90		92	70-130	2	30
2,2-Dichloropropane	97		97	70-130	0	30
1,2-Dibromoethane	88		93	70-130	6	30
1,3-Dichloropropane	94		97	69-130	3	30
1,1,1,2-Tetrachloroethane	86		88	70-130	2	30
Bromobenzene	83		86	70-130	4	30
n-Butylbenzene	91		96	70-130	5	30
sec-Butylbenzene	91		95	70-130	4	30
tert-Butylbenzene	88		91	70-130	3	30
o-Chlorotoluene	81		84	70-130	4	30
p-Chlorotoluene	95		96	70-130	1	30
1,2-Dibromo-3-chloropropane	84		95	68-130	12	30
Hexachlorobutadiene	82		88	67-130	7	30
Isopropylbenzene	88		92	70-130	4	30
p-Isopropyltoluene	87		92	70-130	6	30
Naphthalene	79		88	70-130	11	30
Acrylonitrile	121		127	70-130	5	30

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L1620368

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01,40,42-48 Bato	h: WG912970-1 WG91297	0-2	
Isopropyl Ether	107		110	66-130	3	30
tert-Butyl Alcohol	102		108	70-130	6	30
n-Propylbenzene	93		96	70-130	3	30
1,2,3-Trichlorobenzene	79		86	70-130	8	30
1,2,4-Trichlorobenzene	77		84	70-130	9	30
1,3,5-Trimethylbenzene	94		95	70-130	1	30
1,2,4-Trimethylbenzene	92		95	70-130	3	30
Methyl Acetate	114		118	51-146	3	30
Ethyl Acetate	107		110	70-130	3	30
Acrolein	91		100	70-130	9	30
Cyclohexane	108		111	59-142	3	30
1,4-Dioxane	93		102	65-136	9	30
1,1,2-Trichloro-1,2,2-Trifluoroethane	88		94	50-139	7	30
p-Diethylbenzene	88		93	70-130	6	30
p-Ethyltoluene	94		97	70-130	3	30
1,2,4,5-Tetramethylbenzene	82		90	70-130	9	30
Tetrahydrofuran	113		117	66-130	3	30
Ethyl ether	86		91	67-130	6	30
trans-1,4-Dichloro-2-butene	109		108	70-130	1	30
Methyl cyclohexane	89		92	70-130	3	30
Ethyl-Tert-Butyl-Ether	101		103	70-130	2	30

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number:

L1620368

Report Date:

07/13/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD		PD nits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01,40,42-48 Batc	h: WG9129	970-1 WG912970)-2		
Tertiary-Amyl Methyl Ether	92		95		70-130	3		30

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	101		97		70-130	
Toluene-d8	96		96		70-130	
4-Bromofluorobenzene	103		105		70-130	
Dibromofluoromethane	97		96		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L1620368

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	25,39,41,45 Batch	n: WG912970-6 WG912970)-7	
Methylene chloride	97		94	70-130	3	30
1,1-Dichloroethane	100		96	70-130	4	30
Chloroform	86		84	70-130	2	30
Carbon tetrachloride	91		89	70-130	2	30
1,2-Dichloropropane	102		101	70-130	1	30
Dibromochloromethane	83		81	70-130	2	30
2-Chloroethylvinyl ether	89		89	70-130	0	30
1,1,2-Trichloroethane	90		90	70-130	0	30
Tetrachloroethene	105		102	70-130	3	30
Chlorobenzene	94		93	70-130	1	30
Trichlorofluoromethane	81		75	70-139	8	30
1,2-Dichloroethane	80		79	70-130	1	30
1,1,1-Trichloroethane	90		87	70-130	3	30
Bromodichloromethane	84		82	70-130	2	30
trans-1,3-Dichloropropene	84		83	70-130	1	30
cis-1,3-Dichloropropene	93		93	70-130	0	30
1,1-Dichloropropene	97		95	70-130	2	30
Bromoform	83		82	70-130	1	30
1,1,2,2-Tetrachloroethane	80		79	70-130	1	30
Benzene	100		98	70-130	2	30
Toluene	87		85	70-130	2	30

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L1620368

Volatile Organics by GC/MS - Westborough La Ethylbenzene Chloromethane Bromomethane Vinyl chloride Chloroethane 1,1-Dichloroethene trans-1,2-Dichloroethene Trichloroethene 1,2-Dichlorobenzene 1,3-Dichlorobenzene	ab Associated						
Chloromethane Bromomethane Vinyl chloride Chloroethane 1,1-Dichloroethene trans-1,2-Dichloroethene Trichloroethene 1,2-Dichlorobenzene		sample(s):	25,39,41,45 Bate	ch: WG9129	70-6 WG91297	0-7	
Bromomethane Vinyl chloride Chloroethane 1,1-Dichloroethene trans-1,2-Dichloroethene Trichloroethene 1,2-Dichlorobenzene	94		92		70-130	2	30
Vinyl chloride Chloroethane 1,1-Dichloroethene trans-1,2-Dichloroethene Trichloroethene 1,2-Dichlorobenzene	102		99		52-130	3	30
Chloroethane 1,1-Dichloroethene trans-1,2-Dichloroethene Trichloroethene 1,2-Dichlorobenzene	78		78		57-147	0	30
1,1-Dichloroethene trans-1,2-Dichloroethene Trichloroethene 1,2-Dichlorobenzene	108		103		67-130	5	30
trans-1,2-Dichloroethene Trichloroethene 1,2-Dichlorobenzene	85		81		50-151	5	30
Trichloroethene 1,2-Dichlorobenzene	108		106		65-135	2	30
1,2-Dichlorobenzene	104		101		70-130	3	30
<u>'</u>	98		95		70-130	3	30
1,3-Dichlorobenzene	94		94		70-130	0	30
	97		97		70-130	0	30
1,4-Dichlorobenzene	95		94		70-130	1	30
Methyl tert butyl ether	86		85		66-130	1	30
p/m-Xylene	102		99		70-130	3	30
o-Xylene	100		98		70-130	2	30
cis-1,2-Dichloroethene	101		99		70-130	2	30
Dibromomethane	86		87		70-130	1	30
Styrene	98		97		70-130	1	30
Dichlorodifluoromethane	75		71		30-146	5	30
Acetone	89		86		54-140	3	30
Carbon disulfide	60		57	Q	59-130	5	30
2-Butanone							

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L1620368

arameter	LCS %Recovery	Qual	LCSD %Recovery	%Recove Qual Limits	ry RPD	RPD Qual Limits
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	25,39,41,45 Bat	ch: WG912970-6 WG	912970-7	
Vinyl acetate	98		97	70-130	1	30
4-Methyl-2-pentanone	91		92	70-130	1	30
1,2,3-Trichloropropane	80		81	68-130	1	30
2-Hexanone	81		81	70-130	0	30
Bromochloromethane	104		101	70-130	3	30
2,2-Dichloropropane	96		92	70-130	4	30
1,2-Dibromoethane	88		86	70-130	2	30
1,3-Dichloropropane	86		86	69-130	0	30
1,1,1,2-Tetrachloroethane	88		87	70-130	1	30
Bromobenzene	96		93	70-130	3	30
n-Butylbenzene	100		97	70-130	3	30
sec-Butylbenzene	101		100	70-130	1	30
tert-Butylbenzene	96		96	70-130	0	30
o-Chlorotoluene	88		96	70-130	9	30
p-Chlorotoluene	91		89	70-130	2	30
1,2-Dibromo-3-chloropropane	77		78	68-130	1	30
Hexachlorobutadiene	96		94	67-130	2	30
Isopropylbenzene	98		97	70-130	1	30
p-Isopropyltoluene	91		89	70-130	2	30
Naphthalene	77		78	70-130	1	30
Acrylonitrile	109		100	70-130	9	30

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L1620368

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	25,39,41,45 Batc	h: WG912	2970-6 WG91297	0-7	
Isopropyl Ether	116		112		66-130	4	30
tert-Butyl Alcohol	96		94		70-130	2	30
n-Propylbenzene	98		95		70-130	3	30
1,2,3-Trichlorobenzene	91		93		70-130	2	30
1,2,4-Trichlorobenzene	93		92		70-130	1	30
1,3,5-Trimethylbenzene	96		94		70-130	2	30
1,2,4-Trimethylbenzene	95		94		70-130	1	30
Methyl Acetate	107		103		51-146	4	30
Ethyl Acetate	30	Q	25	Q	70-130	18	30
Acrolein	98		94		70-130	4	30
Cyclohexane	127		121		59-142	5	30
1,4-Dioxane	91		82		65-136	10	30
1,1,2-Trichloro-1,2,2-Trifluoroethane	104		99		50-139	5	30
p-Diethylbenzene	98		96		70-130	2	30
p-Ethyltoluene	100		98		70-130	2	30
1,2,4,5-Tetramethylbenzene	80		79		70-130	1	30
Tetrahydrofuran	98		97		66-130	1	30
Ethyl ether	100		94		67-130	6	30
trans-1,4-Dichloro-2-butene	88		85		70-130	3	30
Methyl cyclohexane	104		102		70-130	2	30
Ethyl-Tert-Butyl-Ether	105		103		70-130	2	30

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number:

L1620368

07/13/16

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recover Qual Limits	y RPD	RPD Qual Limits	<u>;</u>
Volatile Organics by GC/MS - Westborough I	_ab Associated s	sample(s):	25,39,41,45 Batch	: WG912970-6 WG9	12970-7		
Tertiary-Amyl Methyl Ether	89		89	70-130	0	30	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	80		78		70-130	
Toluene-d8	94		93		70-130	
4-Bromofluorobenzene	92		92		70-130	
Dibromofluoromethane	91		91		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L1620368

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	29-34,36-38 Bat	ch: WG9130	02-1 WG91300	2-2	
Methylene chloride	103		101		70-130	2	30
1,1-Dichloroethane	104		101		70-130	3	30
Chloroform	104		104		70-130	0	30
Carbon tetrachloride	112		109		70-130	3	30
1,2-Dichloropropane	107		108		70-130	1	30
Dibromochloromethane	108		104		70-130	4	30
2-Chloroethylvinyl ether	97		102		70-130	5	30
1,1,2-Trichloroethane	109		109		70-130	0	30
Tetrachloroethene	113		108		70-130	5	30
Chlorobenzene	106		104		70-130	2	30
Trichlorofluoromethane	117		112		70-139	4	30
1,2-Dichloroethane	102		102		70-130	0	30
1,1,1-Trichloroethane	112		109		70-130	3	30
Bromodichloromethane	102		102		70-130	0	30
trans-1,3-Dichloropropene	102		100		70-130	2	30
cis-1,3-Dichloropropene	102		104		70-130	2	30
1,1-Dichloropropene	108		105		70-130	3	30
Bromoform	106		103		70-130	3	30
1,1,2,2-Tetrachloroethane	98		97		70-130	1	30
Benzene	104		102		70-130	2	30
Toluene	103		97		70-130	6	30

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L1620368

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough I	_ab Associated	sample(s):	29-34,36-38 Bato	ch: WG913002-1 WG91300	12-2	
Ethylbenzene	108		105	70-130	3	30
Chloromethane	104		97	52-130	7	30
Bromomethane	113		113	57-147	0	30
Vinyl chloride	107		103	67-130	4	30
Chloroethane	110		108	50-151	2	30
1,1-Dichloroethene	110		105	65-135	5	30
trans-1,2-Dichloroethene	105		102	70-130	3	30
Trichloroethene	114		114	70-130	0	30
1,2-Dichlorobenzene	106		104	70-130	2	30
1,3-Dichlorobenzene	102		101	70-130	1	30
1,4-Dichlorobenzene	100		98	70-130	2	30
Methyl tert butyl ether	98		100	66-130	2	30
p/m-Xylene	110		106	70-130	4	30
o-Xylene	108		106	70-130	2	30
cis-1,2-Dichloroethene	104		99	70-130	5	30
Dibromomethane	105		108	70-130	3	30
Styrene	105		104	70-130	1	30
Dichlorodifluoromethane	123		117	30-146	5	30
Acetone	72		71	54-140	1	30
Carbon disulfide	108		104	59-130	4	30
2-Butanone	103		98	70-130	5	30

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L1620368

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	29-34,36-38 Batch	n: WG913002-1 WG91300	2-2	
Vinyl acetate	96		96	70-130	0	30
4-Methyl-2-pentanone	92		96	70-130	4	30
1,2,3-Trichloropropane	99		97	68-130	2	30
2-Hexanone	97		98	70-130	1	30
Bromochloromethane	111		107	70-130	4	30
2,2-Dichloropropane	110		107	70-130	3	30
1,2-Dibromoethane	103		103	70-130	0	30
1,3-Dichloropropane	98		96	69-130	2	30
1,1,1,2-Tetrachloroethane	105		103	70-130	2	30
Bromobenzene	105		102	70-130	3	30
n-Butylbenzene	108		105	70-130	3	30
sec-Butylbenzene	108		102	70-130	6	30
tert-Butylbenzene	106		102	70-130	4	30
o-Chlorotoluene	108		101	70-130	7	30
p-Chlorotoluene	105		101	70-130	4	30
1,2-Dibromo-3-chloropropane	93		93	68-130	0	30
Hexachlorobutadiene	102		104	67-130	2	30
Isopropylbenzene	111		106	70-130	5	30
p-Isopropyltoluene	105		101	70-130	4	30
Naphthalene	96		96	70-130	0	30
Acrylonitrile	92		90	70-130	2	30

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L1620368

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	29-34,36-38 Batcl	n: WG913002-1 WG91300	2-2	
Isopropyl Ether	96		94	66-130	2	30
tert-Butyl Alcohol	87		88	70-130	1	30
n-Propylbenzene	106		103	70-130	3	30
1,2,3-Trichlorobenzene	95		97	70-130	2	30
1,2,4-Trichlorobenzene	102		103	70-130	1	30
1,3,5-Trimethylbenzene	108		105	70-130	3	30
1,2,4-Trimethylbenzene	106		103	70-130	3	30
Methyl Acetate	90		92	51-146	2	30
Ethyl Acetate	81		85	70-130	5	30
Acrolein	97		93	70-130	4	30
Cyclohexane	110		106	59-142	4	30
1,4-Dioxane	87		93	65-136	7	30
1,1,2-Trichloro-1,2,2-Trifluoroethane	115		111	50-139	4	30
p-Diethylbenzene	110		114	70-130	4	30
p-Ethyltoluene	109		111	70-130	2	30
1,2,4,5-Tetramethylbenzene	108		111	70-130	3	30
Tetrahydrofuran	93		85	66-130	9	30
Ethyl ether	92		92	67-130	0	30
trans-1,4-Dichloro-2-butene	94		91	70-130	3	30
Methyl cyclohexane	113		110	70-130	3	30
Ethyl-Tert-Butyl-Ether	97		98	70-130	1	30

Lab Control Sample Analysis Batch Quality Control

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough I	_ab Associated	sample(s):	29-34,36-38 Batch	: WG913002-1 WG91300)2-2		
Tertiary-Amyl Methyl Ether	99		99	70-130	0	30	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	98		100		70-130	
Toluene-d8	104		101		70-130	
4-Bromofluorobenzene	100		99		70-130	
Dibromofluoromethane	102		102		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L1620368

arameter	LCS %Recovery	Qual	LCSD %Recovery	/ Qual	%Recovery Limits	RPD	RPD Qual Limits	
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 07	Batch: W	/G913105-1	WG913105-2			
Methylene chloride	95		94		70-130	1	30	
1,1-Dichloroethane	101		97		70-130	4	30	
Chloroform	88		86		70-130	2	30	
Carbon tetrachloride	98		91		70-130	7	30	
1,2-Dichloropropane	102		100		70-130	2	30	
Dibromochloromethane	84		84		70-130	0	30	
2-Chloroethylvinyl ether	87		88		70-130	1	30	
1,1,2-Trichloroethane	91		90		70-130	1	30	
Tetrachloroethene	107		102		70-130	5	30	
Chlorobenzene	95		91		70-130	4	30	
Trichlorofluoromethane	87		81		70-139	7	30	
1,2-Dichloroethane	85		85		70-130	0	30	
1,1,1-Trichloroethane	96		89		70-130	8	30	
Bromodichloromethane	86		85		70-130	1	30	
trans-1,3-Dichloropropene	86		83		70-130	4	30	
cis-1,3-Dichloropropene	92		94		70-130	2	30	
1,1-Dichloropropene	101		95		70-130	6	30	
Bromoform	84		82		70-130	2	30	
1,1,2,2-Tetrachloroethane	80		80		70-130	0	30	
Benzene	100		97		70-130	3	30	
Toluene	87		83		70-130	5	30	

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L1620368

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s): 07	Batch: WG9	13105-1	WG913105-2			
Ethylbenzene	95		91		70-130	4		30
Chloromethane	103		100		52-130	3		30
Bromomethane	78		74		57-147	5		30
Vinyl chloride	110		102		67-130	8		30
Chloroethane	88		79		50-151	11		30
1,1-Dichloroethene	111		105		65-135	6		30
trans-1,2-Dichloroethene	105		98		70-130	7		30
Trichloroethene	100		96		70-130	4		30
1,2-Dichlorobenzene	94		92		70-130	2		30
1,3-Dichlorobenzene	97		94		70-130	3		30
1,4-Dichlorobenzene	93		90		70-130	3		30
Methyl tert butyl ether	86		87		66-130	1		30
p/m-Xylene	103		98		70-130	5		30
o-Xylene	100		96		70-130	4		30
cis-1,2-Dichloroethene	102		99		70-130	3		30
Dibromomethane	90		90		70-130	0		30
Styrene	98		96		70-130	2		30
Dichlorodifluoromethane	79		74		30-146	7		30
Acetone	87		88		54-140	1		30
Carbon disulfide	63		57	Q	59-130	10		30
2-Butanone	89		86		70-130	3		30

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L1620368

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0	7 Batch: WG9	13105-1 \	WG913105-2		
Vinyl acetate	97		100		70-130	3	30
4-Methyl-2-pentanone	90		91		70-130	1	30
1,2,3-Trichloropropane	81		81		68-130	0	30
2-Hexanone	76		77		70-130	1	30
Bromochloromethane	104		100		70-130	4	30
2,2-Dichloropropane	97		92		70-130	5	30
1,2-Dibromoethane	89		90		70-130	1	30
1,3-Dichloropropane	86		86		69-130	0	30
1,1,1,2-Tetrachloroethane	89		87		70-130	2	30
Bromobenzene	96		92		70-130	4	30
n-Butylbenzene	102		95		70-130	7	30
sec-Butylbenzene	103		95		70-130	8	30
tert-Butylbenzene	97		91		70-130	6	30
o-Chlorotoluene	86		89		70-130	3	30
p-Chlorotoluene	91		87		70-130	4	30
1,2-Dibromo-3-chloropropane	76		76		68-130	0	30
Hexachlorobutadiene	98		91		67-130	7	30
Isopropylbenzene	98		91		70-130	7	30
p-Isopropyltoluene	92		86		70-130	7	30
Naphthalene	76		77		70-130	1	30
Acrylonitrile	95		105		70-130	10	30

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L1620368

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westboroug	h Lab Associated	sample(s): 0	7 Batch: WG9	913105-1	WG913105-2		
Isopropyl Ether	114		113		66-130	1	30
tert-Butyl Alcohol	89		98		70-130	10	30
n-Propylbenzene	98		91		70-130	7	30
1,2,3-Trichlorobenzene	93		90		70-130	3	30
1,2,4-Trichlorobenzene	93		89		70-130	4	30
1,3,5-Trimethylbenzene	95		89		70-130	7	30
1,2,4-Trimethylbenzene	95		90		70-130	5	30
Methyl Acetate	106		106		51-146	0	30
Ethyl Acetate	30	Q	31	Q	70-130	3	30
Acrolein	95		94		70-130	1	30
Cyclohexane	132		122		59-142	8	30
1,4-Dioxane	77		99		65-136	25	30
1,1,2-Trichloro-1,2,2-Trifluoroethane	108		103		50-139	5	30
p-Diethylbenzene	97		90		70-130	7	30
p-Ethyltoluene	98		92		70-130	6	30
1,2,4,5-Tetramethylbenzene	79		76		70-130	4	30
Tetrahydrofuran	86		103		66-130	18	30
Ethyl ether	97		96		67-130	1	30
trans-1,4-Dichloro-2-butene	89		85		70-130	5	30
Methyl cyclohexane	109		101		70-130	8	30
Ethyl-Tert-Butyl-Ether	103		103		70-130	0	30

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number:

L1620368

Report Date:

Parameter	LCS %Recovery	Qual	LC %Rec	_	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	07 Batc	n: WG91	13105-1	WG913105-2				
Tertiary-Amyl Methyl Ether	88		3	39		70-130	1		30	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	82		82		70-130	
Toluene-d8	93		92		70-130	
4-Bromofluorobenzene	90		89		70-130	
Dibromofluoromethane	94		94		70-130	

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number:

L1620368

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD		RPD Limits
Volatile Organics by GC/MS - P2-3 (8-10)	Westborough	Lab Assoc	ciated sample((s): 01,25,39-48	QC Ba	tch ID: WG	912970-4 WC	91297	0-5 QC Sar	mple: L1	1620368-4	14 Client ID:
Methylene chloride	ND	39.4	32	82		28	69	Q	70-130	14		30
1,1-Dichloroethane	ND	39.4	30	77		29	72		70-130	4		30
Chloroform	ND	39.4	30	76		28	67	Q	70-130	9		30
Carbon tetrachloride	ND	39.4	26	66	Q	24	58	Q	70-130	8		30
1,2-Dichloropropane	ND	39.4	32	81		30	74		70-130	6		30
Dibromochloromethane	ND	39.4	25	64	Q	23	56	Q	70-130	10		30
2-Chloroethylvinyl ether	ND	39.4	34J	85		29.J	70		70-130	16		30
1,1,2-Trichloroethane	ND	39.4	45	113		39	97		70-130	12		30
Tetrachloroethene	ND	39.4	23	58	Q	20	49	Q	70-130	13		30
Chlorobenzene	ND	39.4	25	62	Q	22	53	Q	70-130	13		30
Trichlorofluoromethane	ND	39.4	22	55	Q	20	49	Q	70-139	9		30
1,2-Dichloroethane	ND	39.4	28	72		26	64	Q	70-130	8		30
1,1,1-Trichloroethane	ND	39.4	28	71		26	64	Q	70-130	8		30
Bromodichloromethane	ND	39.4	28	70		25	62	Q	70-130	9		30
trans-1,3-Dichloropropene	ND	39.4	20	52	Q	20	49	Q	70-130	2		30
cis-1,3-Dichloropropene	ND	39.4	19	48	Q	19	47	Q	70-130	1		30
1,1-Dichloropropene	ND	39.4	28	72		26	64	Q	70-130	8		30
Bromoform	ND	39.4	25	63	Q	22	53	Q	70-130	14		30
1,1,2,2-Tetrachloroethane	ND	39.4	27	68	Q	23	57	Q	70-130	14		30
Benzene	120	39.4	130	33	Q	140	49	Q	70-130	5		30
Toluene	1.1J	39.4	28	70		25	62	Q	70-130	9		30

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number:

L1620368

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD		RPD imits
Volatile Organics by GC/MS P2-3 (8-10)	- Westborough	Lab Assoc	ciated sample(s): 01,25,39-48	QC Ba	tch ID: WG	912970-4 WC	91297	0-5 QC Sar	mple: L'	1620368-44	1 Client ID:
Ethylbenzene	1.2J	39.4	26	65	Q	23	55	Q	70-130	13		30
Chloromethane	ND	39.4	33	84		32	78		52-130	4		30
Bromomethane	ND	39.4	22	56	Q	20	49	Q	57-147	10		30
Vinyl chloride	ND	39.4	33	83		31	76		67-130	5		30
Chloroethane	ND	39.4	26	66		25	61		50-151	6		30
1,1-Dichloroethene	ND	39.4	30	75		28	68		65-135	7		30
trans-1,2-Dichloroethene	ND	39.4	29	74		28	68	Q	70-130	5		30
Trichloroethene	ND	39.4	32	80		28	70		70-130	10		30
1,2-Dichlorobenzene	ND	39.4	18	46	Q	15	36	Q	70-130	21		30
1,3-Dichlorobenzene	ND	39.4	19	47	Q	15	38	Q	70-130	19		30
1,4-Dichlorobenzene	ND	39.4	19	48	Q	16	38	Q	70-130	19		30
Methyl tert butyl ether	3.3J	39.4	32	80		30	74		66-130	5		30
p/m-Xylene	7.9	78.7	55	60	Q	50	51	Q	70-130	10		30
o-Xylene	0.79J	78.7	49	62	Q	43	53	Q	70-130	12		30
cis-1,2-Dichloroethene	ND	39.4	29	74		28	68	Q	70-130	5		30
Dibromomethane	ND	39.4	28	71		26	64	Q	70-130	8		30
Styrene	ND	78.7	33	41	Q	29	35	Q	70-130	12		30
Dichlorodifluoromethane	ND	39.4	24	61		23	56		30-146	5		30
Acetone	36	39.4	69	84		70	84		54-140	2		30
Carbon disulfide	ND	39.4	31	80		28	67		59-130	13		30
2-Butanone	ND	39.4	81	205	Q	68	167	Q	70-130	17		30

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number:

L1620368

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD		RPD .imits
Volatile Organics by GC/MS - P2-3 (8-10)	- Westborough	Lab Assoc	ciated sample((s): 01,25,39-48	QC Ba	tch ID: WG	912970-4 WC	91297	0-5 QC Sar	nple: L'	1620368-4	4 Client ID:
Vinyl acetate	ND	39.4	16J	42	Q	15.J	36	Q	70-130	11		30
4-Methyl-2-pentanone	ND	39.4	29	74		27	67	Q	70-130	7		30
1,2,3-Trichloropropane	ND	39.4	28	70		24	60	Q	68-130	13		30
2-Hexanone	ND	39.4	28	71		25	62	Q	70-130	10		30
Bromochloromethane	ND	39.4	28	71		25	61	Q	70-130	12		30
2,2-Dichloropropane	ND	39.4	29	74		27	67	Q	70-130	7		30
1,2-Dibromoethane	ND	39.4	26	67	Q	24	58	Q	70-130	10		30
1,3-Dichloropropane	ND	39.4	28	71		26	63	Q	69-130	9		30
1,1,1,2-Tetrachloroethane	ND	39.4	24	62	Q	22	53	Q	70-130	11		30
Bromobenzene	ND	39.4	22	55	Q	19	46	Q	70-130	15		30
n-Butylbenzene	0.46J	39.4	15	39	Q	13	31	Q	70-130	18		30
sec-Butylbenzene	6.9	39.4	25	47	Q	22	38	Q	70-130	13		30
tert-Butylbenzene	3.0J	39.4	23	58	Q	20	48	Q	70-130	14		30
o-Chlorotoluene	ND	39.4	20	50	Q	21	51	Q	70-130	6		30
p-Chlorotoluene	ND	39.4	22	57	Q	19	46	Q	70-130	17		30
1,2-Dibromo-3-chloropropane	ND	39.4	22	56	Q	19	46	Q	68-130	16		30
Hexachlorobutadiene	ND	39.4	8.6J	22	Q	7.4J	18	Q	67-130	16		30
Isopropylbenzene	59	39.4	80	53	Q	78	48	Q	70-130	2		30
p-Isopropyltoluene	3.7	39.4	18	37	Q	15	28	Q	70-130	17		30
Naphthalene	0.42J	39.4	16	39	Q	12	28	Q	70-130	29		30
Acrylonitrile	ND	39.4	66	167	Q	53	130		70-130	21		30

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number:

L1620368

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - P2-3 (8-10)	Westborough	Lab Assoc	ciated sample	(s): 01,25,39-48	QC Ba	tch ID: WG	912970-4 WC	91297	0-5 QC Sar	mple: L1	620368	-44 Client ID:
Isopropyl Ether	ND	39.4	33	83		31	76		66-130	6		30
tert-Butyl Alcohol	15.J	197	160	82		150	72		70-130	10		30
n-Propylbenzene	12	39.4	32	50	Q	29	41	Q	70-130	10		30
1,2,3-Trichlorobenzene	ND	39.4	11	27	Q	7.9J	19	Q	70-130	28		30
1,2,4-Trichlorobenzene	ND	39.4	12	30	Q	9.0J	22	Q	70-130	26		30
1,3,5-Trimethylbenzene	0.98J	39.4	22	56	Q	19	46	Q	70-130	15		30
1,2,4-Trimethylbenzene	74	39.4	74	0	Q	75	2	Q	70-130	1		30
Methyl Acetate	ND	39.4	37J	95		36.J	89		51-146	3		30
Ethyl Acetate	ND	39.4	21J	53	Q	29.J	70		70-130	31	Q	30
Acrolein	ND	39.4	51	129		37.J	91		70-130	31	Q	30
Cyclohexane	120	39.4	280	404	Q	200	196	Q	59-142	33	Q	30
1,4-Dioxane	ND	1970	1800	89		1300	65		65-136	28		30
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	39.4	25J	64		23.J	55		50-139	10		30
p-Diethylbenzene	12	39.4	29	44	Q	26	35	Q	70-130	11		30
p-Ethyltoluene	1.7J	39.4	24	60	Q	20	49	Q	70-130	16		30
1,2,4,5-Tetramethylbenzene	20	39.4	36	41	Q	34	34	Q	70-130	7		30
Tetrahydrofuran	ND	39.4	49	123		43	105		66-130	13		30
Ethyl ether	ND	39.4	27	68		25	60	Q	67-130	9		30
trans-1,4-Dichloro-2-butene	ND	39.4	16	40	Q	14	35	Q	70-130	10		30
Methyl cyclohexane	35	39.4	71	92		57	53	Q	70-130	23		30
Ethyl-Tert-Butyl-Ether	ND	39.4	32	80		30	73		70-130	7		30

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number:

L1620368

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - P2-3 (8-10)	Westborough	Lab Associ	ated sample(s	s): 01,25,39-48	QC Bato	h ID: WG	912970-4 WO	912970	0-5 QC San	nple: L1	1620368-4	14 Client ID:
Tertiary-Amyl Methyl Ether	ND	39.4	30	77		27	67	Q	70-130	10		30

	MS	6	MS	SD	Acceptance	
Surrogate	% Recovery	Qualifier	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	94		93		70-130	
4-Bromofluorobenzene	110		110		70-130	
Dibromofluoromethane	91		92		70-130	
Toluene-d8	100		98		70-130	

SEMIVOLATILES

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 07/13/16

Lab ID: L1620368-30 Client ID: P4-1 (0-4) SYRACUSE, NY Sample Location:

Matrix: Soil Analytical Method: 1,8270D

Analytical Date: 07/11/16 18:49

Analyst: PS 87% Percent Solids:

Date Collected: 06/29/16 13:05 Date Received: 06/30/16 Field Prep: Not Specified Extraction Method: EPA 3546 Extraction Date: 07/09/16 13:20

			RL	MDL	Dilution Factor
stborough Lab					
220		ug/kg	150	20.	1
ND		ug/kg	110	21.	1
ND			170	26.	1
ND			190	19.	1
ND		ug/kg	190	50.	1
ND		ug/kg	190	38.	1
ND		ug/kg	190	33.	1
8700	Е	ug/kg	110	22.	1
ND		ug/kg	190	20.	1
ND		ug/kg	190	29.	1
ND		ug/kg	230	32.	1
ND		ug/kg	200	19.	1
ND		ug/kg	190	28.	1
ND		ug/kg	540	170	1
ND		ug/kg	150	31.	1
ND		ug/kg	170	25.	1
1600		ug/kg	190	23.	1
ND		ug/kg	170	28.	1
ND		ug/kg	150	22.	1
ND		ug/kg	190	29.	1
ND		ug/kg	190	66.	1
ND		ug/kg	190	48.	1
ND		ug/kg	190	36.	1
ND		ug/kg	190	65.	1
ND		ug/kg	190	18.	1
ND		ug/kg	190	40.	1
4500		ug/kg	110	21.	1
4900		ug/kg	150	46.	1
6700		ug/kg	110	32.	1
2000		ug/kg	110	30.	1
	220 ND ND ND ND ND 8700 ND	220 ND ND ND ND ND ND 8700 E ND ND ND ND ND ND ND ND ND	220 ug/kg ND ug/kg	220	220 ug/kg 150 20. ND ug/kg 110 21. ND ug/kg 170 26. ND ug/kg 190 19. ND ug/kg 190 50. ND ug/kg 190 38. ND ug/kg 190 33. 8700 E ug/kg 110 22. ND ug/kg 190 20. ND ug/kg 190 29. ND ug/kg 230 32. ND ug/kg 200 19. ND ug/kg 200 19. ND ug/kg 190 28. ND ug/kg 150 31. ND ug/kg 150 31. ND ug/kg 170 25. 1600 ug/kg 170 28. ND ug/kg 170 28. ND ug/kg 190 29. ND ug/kg 190 46. </td

L1620368

07/13/16

Project Name: EMBASSY SUITES

L1620368-30

P4-1 (0-4)

Project Number: 15209

Lab ID:

Client ID:

SAMPLE RESULTS

Date Collected: 06/29/16 13:05

Date Received: 06/30/16

Lab Number:

Report Date:

	YRACUSE, NY				Field Pre		Not Specified	
·	TRACUSE, NT	5	0 ""	11. %		•	Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics b	by GC/MS - Westbor	rough Lab						
Chrysene		4800		ug/kg	110	20.	1	
Acenaphthylene		1300		ug/kg	150	29.	1	
Anthracene		1700		ug/kg	110	37.	1	
Benzo(ghi)perylene		3200		ug/kg	150	22.	1	
Fluorene		720		ug/kg	190	18.	1	
Phenanthrene		5100		ug/kg	110	23.	1	
Dibenzo(a,h)anthracene		930		ug/kg	110	22.	1	
Indeno(1,2,3-cd)pyrene		3600		ug/kg	150	26.	1	
Pyrene		7500		ug/kg	110	19.	1	
Biphenyl		130	J	ug/kg	430	44.	1	
4-Chloroaniline		ND		ug/kg	190	35.	1	
2-Nitroaniline		ND		ug/kg	190	37.	1	
3-Nitroaniline		ND		ug/kg	190	36.	1	
4-Nitroaniline		ND		ug/kg	190	79.	1	
Dibenzofuran		580		ug/kg	190	18.	1	
2-Methylnaphthalene		680		ug/kg	230	23.	1	
1,2,4,5-Tetrachlorobenzene		ND		ug/kg	190	20.	1	
Acetophenone		ND		ug/kg	190	24.	1	
2,4,6-Trichlorophenol		ND		ug/kg	110	36.	1	
p-Chloro-m-cresol		ND		ug/kg	190	28.	1	
2-Chlorophenol		ND		ug/kg	190	22.	1	
2,4-Dichlorophenol		ND		ug/kg	170	30.	1	
2,4-Dimethylphenol		ND		ug/kg	190	63.	1	
2-Nitrophenol		ND		ug/kg	410	72.	1	
4-Nitrophenol		ND		ug/kg	270	78.	1	
2,4-Dinitrophenol		ND		ug/kg	910	89.	1	
4,6-Dinitro-o-cresol		ND		ug/kg	490	91.	1	
Pentachlorophenol		ND		ug/kg	150	42.	1	
Phenol		ND		ug/kg	190	29.	1	
2-Methylphenol		ND		ug/kg	190	29.	1	
3-Methylphenol/4-Methylpheno		93	J	ug/kg	270	30.	1	
2,4,5-Trichlorophenol		ND		ug/kg	190	36.	1	
Carbazole		690		ug/kg	190	18.	1	
Atrazine		ND		ug/kg	150	66.	1	
Benzaldehyde		ND		ug/kg	250	51.	1	
Caprolactam		ND		ug/kg	190	58.	1	
2,3,4,6-Tetrachlorophenol		ND		ug/kg	190	38.	1	

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 06/29/16 13:05

Client ID: P4-1 (0-4) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	77		25-120	
Phenol-d6	82		10-120	
Nitrobenzene-d5	80		23-120	
2-Fluorobiphenyl	68		30-120	
2,4,6-Tribromophenol	81		10-136	
4-Terphenyl-d14	58		18-120	

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-30 D

Client ID: P4-1 (0-4)
Sample Location: SYRACUSE, NY

Matrix: Soil
Analytical Method: 1,8270D
Analytical Date: 07/12/16 12:50

Analyst: HL Percent Solids: 87% Date Collected: 06/29/16 13:05
Date Received: 06/30/16
Field Prep: Not Specified
Extraction Method: EPA 3546
Extraction Date: 07/09/16 13:20

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - We	stborough Lab						
Fluoranthene	7100		ug/kg	230	44.	2	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number: L1620368

Report Date: 07/13/16

Lab ID: L1620368-31

Client ID: P4-1 (4-8)
Sample Location: SYRACUSE, NY

Matrix: Soil
Analytical Method: 1,8270D
Analytical Date: 07/11/16 16:19

Analyst: PS Percent Solids: 43% Date Collected: 06/29/16 13:05
Date Received: 06/30/16
Field Prep: Not Specified
Extraction Method: EPA 3546
Extraction Date: 07/09/16 13:20

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - W	estborough Lab					
Acenaphthene	ND		ug/kg	310	40.	1
Hexachlorobenzene	ND		ug/kg	230	43.	1
Bis(2-chloroethyl)ether	ND		ug/kg	350	52.	1
2-Chloronaphthalene	ND		ug/kg	390	38.	1
3,3'-Dichlorobenzidine	ND		ug/kg	390	100	1
2,4-Dinitrotoluene	ND		ug/kg	390	77.	1
2,6-Dinitrotoluene	ND		ug/kg	390	66.	1
Fluoranthene	ND		ug/kg	230	44.	1
4-Chlorophenyl phenyl ether	ND		ug/kg	390	41.	1
4-Bromophenyl phenyl ether	ND		ug/kg	390	59.	1
Bis(2-chloroisopropyl)ether	ND		ug/kg	460	66.	1
Bis(2-chloroethoxy)methane	ND		ug/kg	420	39.	1
Hexachlorobutadiene	ND		ug/kg	390	57.	1
Hexachlorocyclopentadiene	ND		ug/kg	1100	350	1
Hexachloroethane	ND		ug/kg	310	63.	1
Isophorone	ND		ug/kg	350	50.	1
Naphthalene	ND		ug/kg	390	47.	1
Nitrobenzene	ND		ug/kg	350	57.	1
NDPA/DPA	ND		ug/kg	310	44.	1
n-Nitrosodi-n-propylamine	ND		ug/kg	390	60.	1
Bis(2-ethylhexyl)phthalate	ND		ug/kg	390	130	1
Butyl benzyl phthalate	ND		ug/kg	390	98.	1
Di-n-butylphthalate	ND		ug/kg	390	73.	1
Di-n-octylphthalate	ND		ug/kg	390	130	1
Diethyl phthalate	ND		ug/kg	390	36.	1
Dimethyl phthalate	ND		ug/kg	390	81.	1
Benzo(a)anthracene	ND		ug/kg	230	44.	1
Benzo(a)pyrene	ND		ug/kg	310	94.	1
Benzo(b)fluoranthene	ND		ug/kg	230	65.	1
Benzo(k)fluoranthene	ND		ug/kg	230	62.	1

L1620368

Project Name: Lab Number: **EMBASSY SUITES**

Project Number: Report Date: 15209 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-31 Date Collected: 06/29/16 13:05

Client ID: Date Received: 06/30/16 P4-1 (4-8) Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - \	Westborough Lab					
Chrysene	ND		ug/kg	230	40.	1
Acenaphthylene	ND		ug/kg	310	60.	1
Anthracene	ND		ug/kg	230	76.	1
Benzo(ghi)perylene	ND		ug/kg	310	46.	1
Fluorene	ND		ug/kg	390	38.	1
Phenanthrene	ND		ug/kg	230	47.	1
Dibenzo(a,h)anthracene	ND		ug/kg	230	45.	1
Indeno(1,2,3-cd)pyrene	ND		ug/kg	310	54.	1
Pyrene	ND		ug/kg	230	38.	1
Biphenyl	ND		ug/kg	880	90.	1
4-Chloroaniline	ND		ug/kg	390	70.	1
2-Nitroaniline	ND		ug/kg	390	75.	1
3-Nitroaniline	ND		ug/kg	390	73.	1
4-Nitroaniline	ND		ug/kg	390	160	1
Dibenzofuran	ND		ug/kg	390	37.	1
2-Methylnaphthalene	ND		ug/kg	460	47.	1
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	390	40.	1
Acetophenone	ND		ug/kg	390	48.	1
2,4,6-Trichlorophenol	ND		ug/kg	230	73.	1
p-Chloro-m-cresol	ND		ug/kg	390	58.	1
2-Chlorophenol	ND		ug/kg	390	46.	1
2,4-Dichlorophenol	ND		ug/kg	350	62.	1
2,4-Dimethylphenol	ND		ug/kg	390	130	1
2-Nitrophenol	ND		ug/kg	840	140	1
4-Nitrophenol	ND		ug/kg	540	160	1
2,4-Dinitrophenol	ND		ug/kg	1800	180	1
4,6-Dinitro-o-cresol	ND		ug/kg	1000	180	1
Pentachlorophenol	ND		ug/kg	310	85.	1
Phenol	ND		ug/kg	390	58.	1
2-Methylphenol	ND		ug/kg	390	60.	1
3-Methylphenol/4-Methylphenol	ND		ug/kg	560	61.	1
2,4,5-Trichlorophenol	ND		ug/kg	390	74.	1
Carbazole	ND		ug/kg	390	38.	1
Atrazine	ND		ug/kg	310	140	1
Benzaldehyde	ND		ug/kg	510	100	1
Caprolactam	ND		ug/kg	390	120	1
2,3,4,6-Tetrachlorophenol	ND		ug/kg	390	78.	1

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-31 Date Collected: 06/29/16 13:05

Client ID: P4-1 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	69		25-120	
Phenol-d6	71		10-120	
Nitrobenzene-d5	73		23-120	
2-Fluorobiphenyl	55		30-120	
2,4,6-Tribromophenol	78		10-136	
4-Terphenyl-d14	36		18-120	

L1620368

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Report Date: 07/13/16

Lab Number:

Lab ID: L1620368-32 Client ID: P4-2 (2-4)

SYRACUSE, NY Sample Location:

Matrix: Soil Analytical Method: 1,8270D

Analytical Date: 07/11/16 19:14

Analyst: PS 89% Percent Solids:

Date Collected: 06/29/16 13:15 Date Received: 06/30/16 Field Prep: Not Specified Extraction Method: EPA 3546 Extraction Date: 07/09/16 13:20

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Westborough Lab					
Acenaphthene	150		ug/kg	150	19.	1
Hexachlorobenzene	ND		ug/kg	110	20.	1
Bis(2-chloroethyl)ether	ND		ug/kg	160	25.	1
2-Chloronaphthalene	ND		ug/kg	180	18.	1
3,3'-Dichlorobenzidine	ND		ug/kg	180	49.	1
2,4-Dinitrotoluene	ND		ug/kg	180	37.	1
2,6-Dinitrotoluene	ND		ug/kg	180	32.	1
Fluoranthene	5200		ug/kg	110	21.	1
4-Chlorophenyl phenyl ether	ND		ug/kg	180	20.	1
4-Bromophenyl phenyl ether	ND		ug/kg	180	28.	1
Bis(2-chloroisopropyl)ether	ND		ug/kg	220	31.	1
Bis(2-chloroethoxy)methane	ND		ug/kg	200	18.	1
Hexachlorobutadiene	ND		ug/kg	180	27.	1
Hexachlorocyclopentadiene	ND		ug/kg	520	170	1
Hexachloroethane	ND		ug/kg	150	30.	1
Isophorone	ND		ug/kg	160	24.	1
Naphthalene	390		ug/kg	180	22.	1
Nitrobenzene	ND		ug/kg	160	27.	1
NDPA/DPA	ND		ug/kg	150	21.	1
n-Nitrosodi-n-propylamine	ND		ug/kg	180	28.	1
Bis(2-ethylhexyl)phthalate	ND		ug/kg	180	64.	1
Butyl benzyl phthalate	ND		ug/kg	180	46.	1
Di-n-butylphthalate	ND		ug/kg	180	35.	1
Di-n-octylphthalate	ND		ug/kg	180	62.	1
Diethyl phthalate	ND		ug/kg	180	17.	1
Dimethyl phthalate	ND		ug/kg	180	38.	1
Benzo(a)anthracene	3100		ug/kg	110	21.	1
Benzo(a)pyrene	3500		ug/kg	150	45.	1
Benzo(b)fluoranthene	4500		ug/kg	110	31.	1
Benzo(k)fluoranthene	1500		ug/kg	110	29.	1

L1620368

07/13/16

Project Name: EMBASSY SUITES

L1620368-32

SYRACUSE, NY

P4-2 (2-4)

Project Number: 15209

Lab ID:

Client ID:

Sample Location:

SAMPLE RESULTS

Lab Number:

Report Date:

Date Collected: 06/29/16 13:15

Date Received: 06/30/16 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Westborough Lab					
Chrysene	3000		ug/kg	110	19.	1
Acenaphthylene	860		ug/kg	150	28.	1
Anthracene	900		ug/kg	110	36.	1
Benzo(ghi)perylene	2200		ug/kg	150	22.	1
Fluorene	280		ug/kg	180	18.	1
Phenanthrene	1900		ug/kg	110	22.	1
Dibenzo(a,h)anthracene	560		ug/kg	110	21.	1
Indeno(1,2,3-cd)pyrene	2500		ug/kg	150	26.	1
Pyrene	4500		ug/kg	110	18.	1
Biphenyl	ND		ug/kg	420	43.	1
4-Chloroaniline	ND		ug/kg	180	33.	1
2-Nitroaniline	ND		ug/kg	180	35.	1
3-Nitroaniline	ND		ug/kg	180	35.	1
4-Nitroaniline	ND		ug/kg	180	76.	1
Dibenzofuran	180		ug/kg	180	17.	1
2-Methylnaphthalene	230		ug/kg	220	22.	1
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	180	19.	1
Acetophenone	ND		ug/kg	180	23.	1
2,4,6-Trichlorophenol	ND		ug/kg	110	35.	1
p-Chloro-m-cresol	ND		ug/kg	180	27.	1
2-Chlorophenol	ND		ug/kg	180	22.	1
2,4-Dichlorophenol	ND		ug/kg	160	30.	1
2,4-Dimethylphenol	ND		ug/kg	180	61.	1
2-Nitrophenol	ND		ug/kg	400	69.	1
4-Nitrophenol	ND		ug/kg	260	75.	1
2,4-Dinitrophenol	ND		ug/kg	880	86.	1
4,6-Dinitro-o-cresol	ND		ug/kg	480	88.	1
Pentachlorophenol	ND		ug/kg	150	40.	1
Phenol	ND		ug/kg	180	28.	1
2-Methylphenol	ND		ug/kg	180	28.	1
3-Methylphenol/4-Methylphenol	ND		ug/kg	260	29.	1
2,4,5-Trichlorophenol	ND		ug/kg	180	35.	1
Carbazole	190		ug/kg	180	18.	1
Atrazine	ND		ug/kg	150	64.	1
Benzaldehyde	ND		ug/kg	240	50.	1
Caprolactam	ND		ug/kg	180	56.	1
2,3,4,6-Tetrachlorophenol	ND		ug/kg	180	37.	1

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-32 Date Collected: 06/29/16 13:15

Client ID: P4-2 (2-4) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	75		25-120	
Phenol-d6	82		10-120	
Nitrobenzene-d5	78		23-120	
2-Fluorobiphenyl	72		30-120	
2,4,6-Tribromophenol	78		10-136	
4-Terphenyl-d14	71		18-120	

L1620368

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number:

Report Date: 07/13/16

Lab ID: L1620368-33 Client ID: P4-2 (4-6)

 ${\sf SYRACUSE}, {\sf NY}$ Sample Location:

Matrix: Soil Analytical Method: 1,8270D Analytical Date: 07/11/16 19:39

Analyst: PS 83% Percent Solids:

Date Collected: 06/29/16 13:15 Date Received: 06/30/16 Field Prep: Not Specified

Extraction Method: EPA 3546 Extraction Date: 07/09/16 13:20

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - V	Vestborough Lab					
Acenaphthene	150	J	ug/kg	160	21.	1
Hexachlorobenzene	ND		ug/kg	120	22.	1
Bis(2-chloroethyl)ether	ND		ug/kg	180	27.	1
2-Chloronaphthalene	ND		ug/kg	200	20.	1
3,3'-Dichlorobenzidine	ND		ug/kg	200	53.	1
2,4-Dinitrotoluene	ND		ug/kg	200	40.	1
2,6-Dinitrotoluene	ND		ug/kg	200	34.	1
Fluoranthene	4300		ug/kg	120	23.	1
4-Chlorophenyl phenyl ether	ND		ug/kg	200	21.	1
4-Bromophenyl phenyl ether	ND		ug/kg	200	30.	1
Bis(2-chloroisopropyl)ether	ND		ug/kg	240	34.	1
Bis(2-chloroethoxy)methane	ND		ug/kg	210	20.	1
Hexachlorobutadiene	ND		ug/kg	200	29.	1
Hexachlorocyclopentadiene	ND		ug/kg	570	180	1
Hexachloroethane	ND		ug/kg	160	32.	1
Isophorone	ND		ug/kg	180	26.	1
Naphthalene	510		ug/kg	200	24.	1
Nitrobenzene	ND		ug/kg	180	29.	1
NDPA/DPA	ND		ug/kg	160	23.	1
n-Nitrosodi-n-propylamine	ND		ug/kg	200	31.	1
Bis(2-ethylhexyl)phthalate	ND		ug/kg	200	69.	1
Butyl benzyl phthalate	ND		ug/kg	200	50.	1
Di-n-butylphthalate	ND		ug/kg	200	38.	1
Di-n-octylphthalate	ND		ug/kg	200	68.	1
Diethyl phthalate	ND		ug/kg	200	18.	1
Dimethyl phthalate	ND		ug/kg	200	42.	1
Benzo(a)anthracene	2400		ug/kg	120	22.	1
Benzo(a)pyrene	2500		ug/kg	160	48.	1
Benzo(b)fluoranthene	3200		ug/kg	120	34.	1
Benzo(k)fluoranthene	1200		ug/kg	120	32.	1

L1620368

Project Name: EMBASSY SUITES Lab Number:

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-33 Date Collected: 06/29/16 13:15

Client ID: P4-2 (4-6) Date Received: 06/30/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

• • • • • • • • • • • • • • • • • • •					•	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Wes	stborough Lab					
Chrysene	2300		ug/kg	120	21.	1
Acenaphthylene	510		ug/kg	160	31.	1
Anthracene	780		ug/kg	120	39.	1
Benzo(ghi)perylene	1500		ug/kg	160	23.	1
Fluorene	250		ug/kg	200	19.	1
Phenanthrene	2000		ug/kg	120	24.	1
Dibenzo(a,h)anthracene	480		ug/kg	120	23.	1
Indeno(1,2,3-cd)pyrene	1700		ug/kg	160	28.	1
Pyrene	3800		ug/kg	120	20.	1
Biphenyl	ND		ug/kg	450	46.	1
4-Chloroaniline	ND		ug/kg	200	36.	1
2-Nitroaniline	ND		ug/kg	200	38.	1
3-Nitroaniline	ND		ug/kg	200	38.	1
4-Nitroaniline	ND		ug/kg	200	82.	1
Dibenzofuran	230		ug/kg	200	19.	1
2-Methylnaphthalene	310		ug/kg	240	24.	1
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	200	21.	1
Acetophenone	ND		ug/kg	200	25.	1
2,4,6-Trichlorophenol	ND		ug/kg	120	38.	1
p-Chloro-m-cresol	ND		ug/kg	200	30.	1
2-Chlorophenol	ND		ug/kg	200	24.	1
2,4-Dichlorophenol	ND		ug/kg	180	32.	1
2,4-Dimethylphenol	ND		ug/kg	200	66.	1
2-Nitrophenol	ND		ug/kg	430	75.	1
4-Nitrophenol	ND		ug/kg	280	81.	1
2,4-Dinitrophenol	ND		ug/kg	960	93.	1
4,6-Dinitro-o-cresol	ND		ug/kg	520	96.	1
Pentachlorophenol	ND		ug/kg	160	44.	1
Phenol	ND		ug/kg	200	30.	1
2-Methylphenol	ND		ug/kg	200	31.	1
3-Methylphenol/4-Methylphenol	55	J	ug/kg	290	31.	1
2,4,5-Trichlorophenol	ND		ug/kg	200	38.	1
Carbazole	220		ug/kg	200	19.	1
Atrazine	ND		ug/kg	160	70.	1
Benzaldehyde	ND		ug/kg	260	54.	1
Caprolactam	81	J	ug/kg	200	60.	1
2,3,4,6-Tetrachlorophenol	ND		ug/kg	200	40.	1

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-33 Date Collected: 06/29/16 13:15

Client ID: P4-2 (4-6) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	77	25-120	
Phenol-d6	81	10-120	
Nitrobenzene-d5	81	23-120	
2-Fluorobiphenyl	60	30-120	
2,4,6-Tribromophenol	80	10-136	
4-Terphenyl-d14	45	18-120	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

L1620368

Lab Number:

Report Date: 07/13/16

Lab ID: L1620368-34 D

Client ID: P4-3 (2-4) Sample Location: ${\sf SYRACUSE}, \, {\sf NY}$

Matrix: Soil Analytical Method: 1,8270D Analytical Date: 07/11/16 20:29

Analyst: PS 85% Percent Solids:

Date Collected: 06/29/16 13:30 Date Received: 06/30/16 Field Prep: Not Specified Extraction Method: EPA 3546 Extraction Date: 07/09/16 13:20

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Westborough Lab					
Acenaphthene	260	J	ug/kg	1600	200	10
Hexachlorobenzene	ND		ug/kg	1200	220	10
Bis(2-chloroethyl)ether	ND		ug/kg	1800	260	10
2-Chloronaphthalene	ND		ug/kg	2000	190	10
3,3'-Dichlorobenzidine	ND		ug/kg	2000	520	10
2,4-Dinitrotoluene	ND		ug/kg	2000	390	10
2,6-Dinitrotoluene	ND		ug/kg	2000	330	10
Fluoranthene	6100		ug/kg	1200	220	10
4-Chlorophenyl phenyl ether	ND		ug/kg	2000	210	10
4-Bromophenyl phenyl ether	ND		ug/kg	2000	300	10
Bis(2-chloroisopropyl)ether	ND		ug/kg	2300	330	10
Bis(2-chloroethoxy)methane	ND		ug/kg	2100	200	10
Hexachlorobutadiene	ND		ug/kg	2000	280	10
Hexachlorocyclopentadiene	ND		ug/kg	5600	1800	10
Hexachloroethane	ND		ug/kg	1600	320	10
Isophorone	ND		ug/kg	1800	250	10
Naphthalene	2800		ug/kg	2000	240	10
Nitrobenzene	ND		ug/kg	1800	290	10
NDPA/DPA	ND		ug/kg	1600	220	10
n-Nitrosodi-n-propylamine	ND		ug/kg	2000	300	10
Bis(2-ethylhexyl)phthalate	ND		ug/kg	2000	670	10
Butyl benzyl phthalate	ND		ug/kg	2000	490	10
Di-n-butylphthalate	ND		ug/kg	2000	370	10
Di-n-octylphthalate	ND		ug/kg	2000	660	10
Diethyl phthalate	ND		ug/kg	2000	180	10
Dimethyl phthalate	ND		ug/kg	2000	410	10
Benzo(a)anthracene	9100		ug/kg	1200	220	10
Benzo(a)pyrene	17000		ug/kg	1600	480	10
Benzo(b)fluoranthene	20000		ug/kg	1200	330	10
Benzo(k)fluoranthene	7000		ug/kg	1200	310	10

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-34 D

Client ID: P4-3 (2-4)
Sample Location: SYRACUSE, NY

Date Collected: 06/29/16 13:30

Date Received: 06/30/16
Field Prep: Not Specified

					•	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Wes	stborough Lab					
Chrysene	10000		ug/kg	1200	200	10
Acenaphthylene	4000		ug/kg	1600	300	10
Anthracene	1500		ug/kg	1200	380	10
Benzo(ghi)perylene	14000		ug/kg	1600	230	10
Fluorene	570	J	ug/kg	2000	190	10
Phenanthrene	2500		ug/kg	1200	240	10
Dibenzo(a,h)anthracene	3400		ug/kg	1200	220	10
Indeno(1,2,3-cd)pyrene	14000		ug/kg	1600	270	10
Pyrene	6300		ug/kg	1200	190	10
Biphenyl	ND		ug/kg	4400	450	10
4-Chloroaniline	ND		ug/kg	2000	350	10
2-Nitroaniline	ND		ug/kg	2000	380	10
3-Nitroaniline	ND		ug/kg	2000	370	10
4-Nitroaniline	ND		ug/kg	2000	810	10
Dibenzofuran	450	J	ug/kg	2000	180	10
2-Methylnaphthalene	2300		ug/kg	2300	240	10
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	2000	200	10
Acetophenone	ND		ug/kg	2000	240	10
2,4,6-Trichlorophenol	ND		ug/kg	1200	370	10
p-Chloro-m-cresol	ND		ug/kg	2000	290	10
2-Chlorophenol	ND		ug/kg	2000	230	10
2,4-Dichlorophenol	ND		ug/kg	1800	310	10
2,4-Dimethylphenol	ND		ug/kg	2000	640	10
2-Nitrophenol	ND		ug/kg	4200	730	10
4-Nitrophenol	ND		ug/kg	2700	800	10
2,4-Dinitrophenol	ND		ug/kg	9400	910	10
4,6-Dinitro-o-cresol	ND		ug/kg	5100	940	10
Pentachlorophenol	ND		ug/kg	1600	430	10
Phenol	ND		ug/kg	2000	290	10
2-Methylphenol	ND		ug/kg	2000	300	10
3-Methylphenol/4-Methylphenol	ND		ug/kg	2800	300	10
2,4,5-Trichlorophenol	ND		ug/kg	2000	370	10
Carbazole	370	J	ug/kg	2000	190	10
Atrazine	ND		ug/kg	1600	680	10
Benzaldehyde	ND		ug/kg	2600	530	10
Caprolactam	ND		ug/kg	2000	590	10
2,3,4,6-Tetrachlorophenol	ND		ug/kg	2000	390	10

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-34 D Date Collected: 06/29/16 13:30

Client ID: P4-3 (2-4) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	63		25-120	
Phenol-d6	62		10-120	
Nitrobenzene-d5	59		23-120	
2-Fluorobiphenyl	59		30-120	
2,4,6-Tribromophenol	59		10-136	
4-Terphenyl-d14	48		18-120	

Project Name: EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

L1620368

Lab Number:

Report Date: 07/13/16

Lab ID: L1620368-36 Client ID: P4-3 (4-6) SYRACUSE, NY Sample Location:

Matrix: Soil Analytical Method: 1,8270D

Analytical Date: 07/11/16 18:24

Analyst: PS 84% Percent Solids:

Date Collected: 06/29/16 13:30 Date Received: 06/30/16 Field Prep: Not Specified Extraction Method: EPA 3546 Extraction Date: 07/09/16 13:20

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Westborough Lab					
Acenaphthene	ND		ug/kg	160	20.	1
Hexachlorobenzene	ND		ug/kg	120	22.	1
Bis(2-chloroethyl)ether	ND		ug/kg	180	27.	1
2-Chloronaphthalene	ND		ug/kg	200	20.	1
3,3'-Dichlorobenzidine	ND		ug/kg	200	53.	1
2,4-Dinitrotoluene	ND		ug/kg	200	40.	1
2,6-Dinitrotoluene	ND		ug/kg	200	34.	1
Fluoranthene	230		ug/kg	120	23.	1
4-Chlorophenyl phenyl ether	ND		ug/kg	200	21.	1
4-Bromophenyl phenyl ether	ND		ug/kg	200	30.	1
Bis(2-chloroisopropyl)ether	ND		ug/kg	240	34.	1
Bis(2-chloroethoxy)methane	ND		ug/kg	210	20.	1
Hexachlorobutadiene	ND		ug/kg	200	29.	1
Hexachlorocyclopentadiene	ND		ug/kg	570	180	1
Hexachloroethane	ND		ug/kg	160	32.	1
Isophorone	ND		ug/kg	180	26.	1
Naphthalene	1700		ug/kg	200	24.	1
Nitrobenzene	ND		ug/kg	180	29.	1
NDPA/DPA	ND		ug/kg	160	22.	1
n-Nitrosodi-n-propylamine	ND		ug/kg	200	31.	1
Bis(2-ethylhexyl)phthalate	ND		ug/kg	200	69.	1
Butyl benzyl phthalate	ND		ug/kg	200	50.	1
Di-n-butylphthalate	ND		ug/kg	200	38.	1
Di-n-octylphthalate	ND		ug/kg	200	67.	1
Diethyl phthalate	ND		ug/kg	200	18.	1
Dimethyl phthalate	ND		ug/kg	200	42.	1
Benzo(a)anthracene	140		ug/kg	120	22.	1
Benzo(a)pyrene	120	J	ug/kg	160	48.	1
Benzo(b)fluoranthene	140		ug/kg	120	33.	1
Benzo(k)fluoranthene	54	J	ug/kg	120	32.	1

L1620368

07/13/16

Project Name: EMBASSY SUITES

L1620368-36

SYRACUSE, NY

P4-3 (4-6)

Project Number: 15209

Lab ID:

Client ID:

Sample Location:

SAMPLE RESULTS

Date Collected: 06/29/16 13:30

Date Collected: 06/29/16 13: Date Received: 06/30/16

Lab Number:

Report Date:

Field Prep: Not Specified

Campic Location. CTTACCCL,	111			i icia i ic	γ.	Not opecified	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - \	Westborough Lab						
Chrysene	130		ug/kg	120	21.	1	
Acenaphthylene	ND		ug/kg	160	31.	1	
Anthracene	52	J	ug/kg	120	39.	1	
Benzo(ghi)perylene	68	J	ug/kg	160	23.	1	
Fluorene	56	J	ug/kg	200	19.	1	
Phenanthrene	200		ug/kg	120	24.	1	
Dibenzo(a,h)anthracene	ND		ug/kg	120	23.	1	
Indeno(1,2,3-cd)pyrene	74	J	ug/kg	160	28.	1	
Pyrene	260		ug/kg	120	20.	1	
Biphenyl	ND		ug/kg	450	46.	1	
4-Chloroaniline	ND		ug/kg	200	36.	1	
2-Nitroaniline	ND		ug/kg	200	38.	1	
3-Nitroaniline	ND		ug/kg	200	37.	1	
4-Nitroaniline	ND		ug/kg	200	82.	1	
Dibenzofuran	ND		ug/kg	200	19.	1	
2-Methylnaphthalene	1400		ug/kg	240	24.	1	
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	200	21.	1	
Acetophenone	ND		ug/kg	200	24.	1	
2,4,6-Trichlorophenol	ND		ug/kg	120	38.	1	
p-Chloro-m-cresol	ND		ug/kg	200	30.	1	
2-Chlorophenol	ND		ug/kg	200	23.	1	
2,4-Dichlorophenol	ND		ug/kg	180	32.	1	
2,4-Dimethylphenol	ND		ug/kg	200	65.	1	
2-Nitrophenol	ND		ug/kg	430	74.	1	
4-Nitrophenol	ND		ug/kg	280	81.	1	
2,4-Dinitrophenol	ND		ug/kg	950	92.	1	
4,6-Dinitro-o-cresol	ND		ug/kg	520	95.	1	
Pentachlorophenol	ND		ug/kg	160	44.	1	
Phenol	ND		ug/kg	200	30.	1	
2-Methylphenol	ND		ug/kg	200	31.	1	
3-Methylphenol/4-Methylphenol	ND		ug/kg	280	31.	1	
2,4,5-Trichlorophenol	ND		ug/kg	200	38.	1	
Carbazole	34	J	ug/kg	200	19.	1	
Atrazine	ND		ug/kg	160	69.	1	
Benzaldehyde	ND		ug/kg	260	54.	1	
Caprolactam	ND		ug/kg	200	60.	1	
2,3,4,6-Tetrachlorophenol	ND		ug/kg	200	40.	1	

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-36 Date Collected: 06/29/16 13:30

Client ID: P4-3 (4-6) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	74	25-120	
Phenol-d6	78	10-120	
Nitrobenzene-d5	74	23-120	
2-Fluorobiphenyl	56	30-120	
2,4,6-Tribromophenol	76	10-136	
4-Terphenyl-d14	48	18-120	

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number:

L1620368

Report Date: 07/13/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 07/11/16 10:54

Analyst: PS

Extraction Method: EPA 3546 Extraction Date: 07/09/16 13:20

Parameter	Result	Qualifier	Units	RL	MDL
Semivolatile Organics by GC/MS	- Westborough	Lab for s	ample(s):	30-34,36	Batch: WG911876-
Acenaphthene	ND		ua/ka	130	17.
Hexachlorobenzene	ND		ug/kg	99	18.
	ND ND		ug/kg		22.
Bis(2-chloroethyl)ether			ug/kg	150	
2-Chloronaphthalene	ND		ug/kg	160	16.
3,3'-Dichlorobenzidine	ND		ug/kg	160	44.
2,4-Dinitrotoluene	ND		ug/kg	160	33.
2,6-Dinitrotoluene	ND		ug/kg	160	28.
Fluoranthene	ND		ug/kg	99	19.
4-Chlorophenyl phenyl ether	ND		ug/kg	160	18.
4-Bromophenyl phenyl ether	ND		ug/kg	160	25.
Bis(2-chloroisopropyl)ether	ND		ug/kg	200	28.
Bis(2-chloroethoxy)methane	ND		ug/kg	180	16.
Hexachlorobutadiene	ND		ug/kg	160	24.
Hexachlorocyclopentadiene	ND		ug/kg	470	150
Hexachloroethane	ND		ug/kg	130	27.
Isophorone	ND		ug/kg	150	21.
Naphthalene	ND		ug/kg	160	20.
Nitrobenzene	ND		ug/kg	150	24.
NDPA/DPA	ND		ug/kg	130	19.
n-Nitrosodi-n-propylamine	ND		ug/kg	160	25.
Bis(2-ethylhexyl)phthalate	ND		ug/kg	160	57.
Butyl benzyl phthalate	ND		ug/kg	160	42.
Di-n-butylphthalate	ND		ug/kg	160	31.
Di-n-octylphthalate	ND		ug/kg	160	56.
Diethyl phthalate	ND		ug/kg	160	15.
Dimethyl phthalate	ND		ug/kg	160	35.
E			⊍⊍	. • •	

ug/kg

ug/kg

ug/kg

99

130

99

ND

ND

ND

18.

40.

28.

Benzo(a)anthracene

Benzo(a)pyrene
Benzo(b)fluoranthene

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number:

L1620368

Report Date: 07/13/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1, Analytical Date: 07

1,8270D

Analyst:

07/11/16 10:54

PS

Extraction Method: EPA 3546
Extraction Date: 07/09/16 13:20

arameter	Result	Qualifier	Units	RL	MDL
emivolatile Organics by GC/M	1S - Westboroug	gh Lab for s	ample(s):	30-34,36	Batch: WG911876-1
Benzo(k)fluoranthene	ND		ug/kg	99	26.
Chrysene	ND		ug/kg	99	17.
Acenaphthylene	ND		ug/kg	130	25.
Anthracene	ND		ug/kg	99	32.
Benzo(ghi)perylene	ND		ug/kg	130	19.
Fluorene	ND		ug/kg	160	16.
Phenanthrene	ND		ug/kg	99	20.
Dibenzo(a,h)anthracene	ND		ug/kg	99	19.
Indeno(1,2,3-cd)pyrene	ND		ug/kg	130	23.
Pyrene	ND		ug/kg	99	16.
Biphenyl	ND		ug/kg	380	38.
4-Chloroaniline	ND		ug/kg	160	30.
2-Nitroaniline	ND		ug/kg	160	32.
3-Nitroaniline	ND		ug/kg	160	31.
4-Nitroaniline	ND		ug/kg	160	68.
Dibenzofuran	ND		ug/kg	160	16.
2-Methylnaphthalene	ND		ug/kg	200	20.
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	160	17.
Acetophenone	ND		ug/kg	160	20.
2,4,6-Trichlorophenol	ND		ug/kg	99	31.
p-Chloro-m-cresol	ND		ug/kg	160	24.
2-Chlorophenol	ND		ug/kg	160	19.
2,4-Dichlorophenol	ND		ug/kg	150	26.
2,4-Dimethylphenol	ND		ug/kg	160	54.
2-Nitrophenol	ND		ug/kg	360	62.
4-Nitrophenol	ND		ug/kg	230	67.
2,4-Dinitrophenol	ND		ug/kg	790	77.
4,6-Dinitro-o-cresol	ND		ug/kg	430	79.
Pentachlorophenol	ND		ug/kg	130	36.

Extraction Method: EPA 3546

L1620368

07/09/16 13:20

Lab Number:

Extraction Date:

Project Name: EMBASSY SUITES

Project Number: 15209 Report Date: 07/13/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D
Analytical Date: 07/11/16 10:54

Analyst: PS

Parameter	Result	Qualifier	Units	RL	MDL	
Semivolatile Organics by GC/MS -	Westborough	n Lab for sa	ample(s):	30-34,36	Batch: WG911876-1	
Phenol	ND		ug/kg	160	25.	
2-Methylphenol	ND		ug/kg	160	26.	
3-Methylphenol/4-Methylphenol	ND		ug/kg	240	26.	
2,4,5-Trichlorophenol	ND		ug/kg	160	32.	
Carbazole	ND		ug/kg	160	16.	
Atrazine	ND		ug/kg	130	58.	
Benzaldehyde	ND		ug/kg	220	44.	
Caprolactam	ND		ug/kg	160	50.	
2,3,4,6-Tetrachlorophenol	ND		ug/kg	160	33.	

		Acceptance	
Surrogate	%Recovery	Qualifier Criteria	
2-Fluorophenol	70	25-120	
Phenol-d6	74	10-120	
Nitrobenzene-d5	66	23-120	
2-Fluorobiphenyl	72	30-120	
2,4,6-Tribromophenol	69	10-136	
4-Terphenyl-d14	77	18-120	

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L1620368

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Westbord	ough Lab Associ	ated sample(s)	: 30-34,36 Ba	atch: WG	911876-2 WG9118	376-3	
Acenaphthene	86		82		31-137	5	50
Benzidine	34		39		10-66	14	50
1,2,4-Trichlorobenzene	77		75		38-107	3	50
Hexachlorobenzene	90		85		40-140	6	50
Bis(2-chloroethyl)ether	78		77		40-140	1	50
2-Chloronaphthalene	88		85		40-140	3	50
3,3'-Dichlorobenzidine	68		69		40-140	1	50
2,4-Dinitrotoluene	94	Q	94	Q	28-89	0	50
2,6-Dinitrotoluene	93		93		40-140	0	50
Azobenzene	97		95		40-140	2	50
Fluoranthene	94		91		40-140	3	50
4-Chlorophenyl phenyl ether	89		86		40-140	3	50
4-Bromophenyl phenyl ether	94		91		40-140	3	50
Bis(2-chloroisopropyl)ether	80		78		40-140	3	50
Bis(2-chloroethoxy)methane	88		86		40-117	2	50
Hexachlorobutadiene	76		72		40-140	5	50
Hexachlorocyclopentadiene	78		78		40-140	0	50
Hexachloroethane	72		73		40-140	1	50
Isophorone	87		86		40-140	1	50
Naphthalene	79		76		40-140	4	50
Nitrobenzene	83		81		40-140	2	50

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L1620368

Parameter	LCS %Recovery	Qual %	LCSD Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Westb	orough Lab Associa	ated sample(s): 3	0-34,36 B	atch: WG9	11876-2 WG9118	376-3	
NitrosoDiPhenylAmine(NDPA)/DPA	93		90		36-157	3	50
n-Nitrosodi-n-propylamine	88		88		32-121	0	50
Bis(2-Ethylhexyl)phthalate	107		103		40-140	4	50
Butyl benzyl phthalate	95		98		40-140	3	50
Di-n-butylphthalate	101		99		40-140	2	50
Di-n-octylphthalate	108		106		40-140	2	50
Diethyl phthalate	96		92		40-140	4	50
Dimethyl phthalate	89		88		40-140	1	50
Benzo(a)anthracene	92		87		40-140	6	50
Benzo(a)pyrene	90		90		40-140	0	50
Benzo(b)fluoranthene	88		91		40-140	3	50
Benzo(k)fluoranthene	90		85		40-140	6	50
Chrysene	90		86		40-140	5	50
Acenaphthylene	87		86		40-140	1	50
Anthracene	94		90		40-140	4	50
Benzo(ghi)perylene	95		92		40-140	3	50
Fluorene	93		89		40-140	4	50
Phenanthrene	89		85		40-140	5	50
Dibenzo(a,h)anthracene	95		95		40-140	0	50
Indeno(1,2,3-cd)Pyrene	94		94		40-140	0	50
Pyrene	91		89		35-142	2	50

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L1620368

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Westboro	ough Lab Assoc	iated sample(s)	: 30-34,36 B	Batch: WG91	11876-2 WG9118	376-3	
Biphenyl	89		86		54-104	3	50
Aniline	50		47		40-140	6	50
4-Chloroaniline	58		60		40-140	3	50
2-Nitroaniline	94		95		47-134	1	50
3-Nitroaniline	81		72		26-129	12	50
4-Nitroaniline	78		77		41-125	1	50
Dibenzofuran	92		86		40-140	7	50
2-Methylnaphthalene	86		80		40-140	7	50
1,2,4,5-Tetrachlorobenzene	82		80		40-117	2	50
Acetophenone	85		82		14-144	4	50
n-Nitrosodimethylamine	61		62		22-100	2	50
2,4,6-Trichlorophenol	94		91		30-130	3	50
P-Chloro-M-Cresol	95		91		26-103	4	50
2-Chlorophenol	87		85		25-102	2	50
2,4-Dichlorophenol	91		91		30-130	0	50
2,4-Dimethylphenol	90		92		30-130	2	50
2-Nitrophenol	89		90		30-130	1	50
4-Nitrophenol	91		90		11-114	1	50
2,4-Dinitrophenol	67		68		4-130	1	50
4,6-Dinitro-o-cresol	80		82		10-130	2	50
Pentachlorophenol	90		88		17-109	2	50

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L1620368

Parameter	LCS %Recovery (LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Westbo	orough Lab Associated	d sample(s): 30-34,36 E	Batch: WG911876-2 WG9118	376-3	
Phenol	83	82	26-90	1	50
2-Methylphenol	86	84	30-130.	2	50
3-Methylphenol/4-Methylphenol	91	86	30-130	6	50
2,4,5-Trichlorophenol	91	90	30-130	1	50
Benzoic Acid	71	72	10-110	1	50
Benzyl Alcohol	87	83	40-140	5	50
Carbazole	94	90	54-128	4	50
Pyridine	50	50	10-93	0	50
Parathion, ethyl	114	115	40-140	1	50
Atrazine	104	102	40-140	2	50
Benzaldehyde	80	78	40-140	3	50
Caprolactam	105	104	15-130	1	50
2,3,4,6-Tetrachlorophenol	94	89	40-140	5	50

LCS %Recovery	LCSD Qual %Recovery	Acceptance Qual Criteria
80	78	25-120
85	85	10-120
81	77	23-120
84	85	30-120
90	91	10-136
89	88	18-120
	%Recovery 80 85 81 84 90	%Recovery Qual %Recovery 80 78 85 85 81 77 84 85 90 91

METALS

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

 Lab ID:
 L1620368-01
 Date Collected:
 06/29/16 08:40

 Client ID:
 P3-1 (0-4)
 Date Received:
 06/30/16

Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil Percent Solids: 73%

i ordorit condo.	7070					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Man	sfield Lab										
Antimony, Total	3.8		mg/kg	2.7	0.44	1	07/06/16 05:50	0 07/07/16 22:35	EPA 3050B	1,6010C	JH
Arsenic, Total	71		mg/kg	0.55	0.18	1	07/06/16 05:50	0 07/07/16 22:35	EPA 3050B	1,6010C	JH
Beryllium, Total	0.85		mg/kg	0.27	0.06	1	07/06/16 05:50	0 07/07/16 22:35	EPA 3050B	1,6010C	JH
Cadmium, Total	53		mg/kg	0.55	0.04	1	07/06/16 05:50	0 07/07/16 22:35	EPA 3050B	1,6010C	JH
Chromium, Total	6.2		mg/kg	0.55	0.09	1	07/06/16 05:50	0 07/07/16 22:35	EPA 3050B	1,6010C	JH
Copper, Total	1400		mg/kg	0.55	0.10	1	07/06/16 05:50	0 07/07/16 22:35	EPA 3050B	1,6010C	JH
Lead, Total	1600		mg/kg	2.7	0.12	1	07/06/16 05:50	0 07/07/16 22:35	EPA 3050B	1,6010C	JH
Mercury, Total	0.62		mg/kg	0.09	0.02	1	07/06/16 10:4	0 07/11/16 17:49	EPA 7471B	1,7471B	EA
Nickel, Total	36		mg/kg	1.4	0.22	1	07/06/16 05:50	0 07/07/16 22:35	EPA 3050B	1,6010C	JH
Selenium, Total	0.34	J	mg/kg	1.1	0.15	1	07/06/16 05:50	0 07/07/16 22:35	EPA 3050B	1,6010C	JH
Silver, Total	3.8		mg/kg	0.55	0.11	1	07/06/16 05:50	0 07/07/16 22:35	EPA 3050B	1,6010C	JH
Thallium, Total	1.2		mg/kg	1.1	0.17	1	07/06/16 05:50	0 07/07/16 22:35	EPA 3050B	1,6010C	JH
Zinc, Total	16000		mg/kg	27	3.8	10	07/06/16 05:50	0 07/08/16 02:16	EPA 3050B	1,6010C	JH

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-02 Date Collected: 06/29/16 08:40

Client ID: P3-1 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil
Percent Solids: 61%

Percent Solids: Dilution Date Date Prep **Analytical** Method Factor **Prepared Analyzed** Method Qualifier RL MDL **Parameter** Result Units **Analyst** Total Metals - Mansfield Lab Antimony, Total ND mg/kg 3.2 0.52 1 07/06/16 05:50 07/07/16 23:13 EPA 3050B 1,6010C JΗ 8.4 0.65 0.21 1 07/06/16 05:50 07/07/16 23:13 EPA 3050B 1,6010C JΗ Arsenic, Total mg/kg 1 1,6010C Beryllium, Total ND 0.32 0.07 07/06/16 05:50 07/07/16 23:13 EPA 3050B mg/kg JΗ Cadmium, Total 0.89 mg/kg 0.65 0.05 1 07/06/16 05:50 07/07/16 23:13 EPA 3050B 1,6010C JΗ 0.65 0.11 1 07/06/16 05:50 07/07/16 23:13 EPA 3050B 1,6010C Chromium, Total 1.4 mg/kg JΗ 38 0.65 0.12 1 07/06/16 05:50 07/07/16 23:13 EPA 3050B 1,6010C JΗ Copper, Total mg/kg Lead, Total 52 3.2 0.14 1 07/06/16 05:50 07/07/16 23:13 EPA 3050B 1,6010C JΗ mg/kg Mercury, Total ND mg/kg 0.11 0.02 1 07/06/16 10:40 07/11/16 18:00 EPA 7471B 1,7471B EΑ 1 07/06/16 05:50 07/07/16 23:13 EPA 3050B 1,6010C Nickel, Total 41 mg/kg 1.6 0.26 JΗ Selenium, Total 1.0 J mg/kg 1.3 0.18 1 07/06/16 05:50 07/07/16 23:13 EPA 3050B 1,6010C JΗ Silver, Total 0.18 J 0.65 0.13 1 07/06/16 05:50 07/07/16 23:13 EPA 3050B 1,6010C JH mg/kg 0.21 Thallium, Total 0.28 J 1.3 1 07/06/16 05:50 07/07/16 23:13 EPA 3050B 1,6010C JΗ mg/kg

1,6010C

JΗ

Zinc, Total

6300

mg/kg

32

4.6

10

07/06/16 05:50 07/08/16 02:21 EPA 3050B

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-03 Date Collected: 06/29/16 08:40

Client ID: P3-1 (8-12) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil

48% Percent Solids: Dilution Date Date Prep **Analytical** Method Factor **Prepared Analyzed** Method Result Qualifier RL MDL **Parameter** Units **Analyst** Total Metals - Mansfield Lab J Antimony, Total 2.0 mg/kg 4.2 0.67 1 07/06/16 05:50 07/07/16 23:17 EPA 3050B 1,6010C JΗ 48 0.28 1 07/06/16 05:50 07/07/16 23:17 EPA 3050B 1,6010C JΗ Arsenic, Total mg/kg 0.84 J 1 1,6010C Beryllium, Total 0.35 0.42 0.09 07/06/16 05:50 07/07/16 23:17 EPA 3050B mg/kg JΗ Cadmium, Total 27 mg/kg 0.84 0.06 1 07/06/16 05:50 07/07/16 23:17 EPA 3050B 1,6010C JΗ 8.8 0.84 0.14 1 07/06/16 05:50 07/07/16 23:17 EPA 3050B 1,6010C Chromium, Total mg/kg JΗ 660 0.84 0.15 1 07/06/16 05:50 07/07/16 23:17 EPA 3050B 1,6010C JΗ Copper, Total mg/kg Lead, Total 1000 4.2 0.18 1 07/06/16 05:50 07/07/16 23:17 EPA 3050B 1,6010C JΗ mg/kg Mercury, Total 0.56 mg/kg 0.14 0.03 1 07/06/16 10:40 07/11/16 18:02 EPA 7471B 1,7471B EΑ 1 23 07/06/16 05:50 07/07/16 23:17 EPA 3050B 1,6010C Nickel, Total mg/kg 2.1 0.33 JΗ Selenium, Total 1.4 J mg/kg 1.7 0.22 1 07/06/16 05:50 07/07/16 23:17 EPA 3050B 1,6010C JΗ Silver, Total 2.3 0.84 0.17 1 07/06/16 05:50 07/07/16 23:17 EPA 3050B 1,6010C JH mg/kg 1.7 0.27 Thallium, Total 0.77 J 1 07/06/16 05:50 07/07/16 23:17 EPA 3050B 1,6010C JΗ mg/kg

1,6010C

JΗ

Zinc, Total

7900

mg/kg

42

5.8

10

07/06/16 05:50 07/08/16 02:25 EPA 3050B

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-04 Date Collected: 06/29/16 08:40

Client ID: P3-1 (12-16) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil
Percent Solids: 65%

Silver, Total

Zinc, Total

Thallium, Total

ND

ND

510

Dilution Date Date Prep **Analytical** Method Factor **Prepared Analyzed** Method Result Qualifier RL MDL **Parameter** Units **Analyst** Total Metals - Mansfield Lab Antimony, Total ND mg/kg 3.0 0.49 1 07/06/16 05:50 07/07/16 23:22 EPA 3050B 1,6010C JΗ 3.3 0.20 1 07/06/16 05:50 07/07/16 23:22 EPA 3050B 1,6010C JΗ Arsenic, Total mg/kg 0.61 J 1 1,6010C Beryllium, Total 0.08 0.30 0.07 07/06/16 05:50 07/07/16 23:22 EPA 3050B mg/kg JΗ J Cadmium, Total 0.08 mg/kg 0.61 0.04 1 07/06/16 05:50 07/07/16 23:22 EPA 3050B 1,6010C JΗ 0.61 0.10 1 07/06/16 05:50 07/07/16 23:22 EPA 3050B 1,6010C Chromium, Total 3.5 mg/kg JΗ 20 0.61 0.11 1 07/06/16 05:50 07/07/16 23:22 EPA 3050B 1,6010C JΗ Copper, Total mg/kg Lead, Total 17 3.0 0.13 1 07/06/16 05:50 07/07/16 23:22 EPA 3050B 1,6010C JΗ mg/kg Mercury, Total ND mg/kg 0.10 0.02 1 07/06/16 10:40 07/11/16 18:04 EPA 7471B 1,7471B EΑ 1 07/06/16 05:50 07/07/16 23:22 EPA 3050B 1,6010C Nickel, Total 6.6 mg/kg 1.5 0.24 JΗ Selenium, Total 0.46 J mg/kg 1.2 0.16 1 07/06/16 05:50 07/07/16 23:22 EPA 3050B 1,6010C JΗ

0.61

1.2

3.0

mg/kg

mg/kg

mg/kg

0.12

0.20

0.43

1

1

1

07/06/16 05:50 07/07/16 23:22 EPA 3050B

07/06/16 05:50 07/07/16 23:22 EPA 3050B

07/06/16 05:50 07/07/16 23:22 EPA 3050B

1,6010C

1,6010C

1,6010C

JH

JΗ

JΗ

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-05 Date Collected: 06/29/16 08:55

Client ID: P3-9 (0-4) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil Percent Solids: 79%

i ordorit dollad.	1070					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Man	sfield I ah										
Total Motals Mail	oncia Lab										
Antimony, Total	1.7	J	mg/kg	2.4	0.39	1	07/06/16 05:50	0 07/07/16 23:27	EPA 3050B	1,6010C	JH
Arsenic, Total	38		mg/kg	0.48	0.16	1	07/06/16 05:50	0 07/07/16 23:27	EPA 3050B	1,6010C	JH
Beryllium, Total	0.16	J	mg/kg	0.24	0.05	1	07/06/16 05:50	0 07/07/16 23:27	EPA 3050B	1,6010C	JH
Cadmium, Total	2.1		mg/kg	0.48	0.03	1	07/06/16 05:50	0 07/07/16 23:27	EPA 3050B	1,6010C	JH
Chromium, Total	5.9		mg/kg	0.48	0.08	1	07/06/16 05:50	0 07/07/16 23:27	EPA 3050B	1,6010C	JH
Copper, Total	210		mg/kg	0.48	0.09	1	07/06/16 05:50	0 07/07/16 23:27	EPA 3050B	1,6010C	JH
Lead, Total	490		mg/kg	2.4	0.11	1	07/06/16 05:50	0 07/07/16 23:27	EPA 3050B	1,6010C	JH
Mercury, Total	0.44		mg/kg	0.08	0.02	1	07/06/16 10:4	0 07/11/16 18:06	EPA 7471B	1,7471B	EA
Nickel, Total	8.9		mg/kg	1.2	0.19	1	07/06/16 05:50	0 07/07/16 23:27	EPA 3050B	1,6010C	JH
Selenium, Total	0.77	J	mg/kg	0.96	0.13	1	07/06/16 05:50	0 07/07/16 23:27	EPA 3050B	1,6010C	JH
Silver, Total	1.4		mg/kg	0.48	0.10	1	07/06/16 05:50	0 07/07/16 23:27	EPA 3050B	1,6010C	JH
Thallium, Total	0.28	J	mg/kg	0.96	0.15	1	07/06/16 05:50	0 07/07/16 23:27	EPA 3050B	1,6010C	JH
Zinc, Total	1000		mg/kg	2.4	0.34	1	07/06/16 05:50	0 07/07/16 23:27	EPA 3050B	1,6010C	JH

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

 Lab ID:
 L1620368-06
 Date Collected:
 06/29/16 08:55

 Client ID:
 P3-9 (4-8)
 Date Received:
 06/30/16

Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil
Percent Solids: 48%

Dilution Date Date Prep **Analytical** Method Factor **Prepared Analyzed** Method Result Qualifier RL MDL **Parameter** Units **Analyst** Total Metals - Mansfield Lab Antimony, Total ND mg/kg 4.1 0.66 1 07/06/16 05:50 07/07/16 23:31 EPA 3050B 1,6010C JΗ 3.0 0.83 0.27 1 07/06/16 05:50 07/07/16 23:31 EPA 3050B 1,6010C JΗ Arsenic, Total mg/kg 1 1,6010C Beryllium, Total ND 0.41 0.09 07/06/16 05:50 07/07/16 23:31 EPA 3050B mg/kg JΗ Cadmium, Total ND mg/kg 0.83 0.06 1 07/06/16 05:50 07/07/16 23:31 EPA 3050B 1,6010C JΗ 0.83 0.14 1 07/06/16 05:50 07/07/16 23:31 EPA 3050B 1,6010C Chromium, Total 1.6 mg/kg JΗ 5.0 0.83 0.15 1 07/06/16 05:50 07/07/16 23:31 EPA 3050B 1,6010C JΗ Copper, Total mg/kg J Lead, Total 1.5 mg/kg 4.1 0.18 1 07/06/16 05:50 07/07/16 23:31 EPA 3050B 1,6010C JΗ Mercury, Total ND mg/kg 0.14 0.03 1 07/06/16 10:40 07/11/16 18:08 EPA 7471B 1,7471B EΑ 1 07/06/16 05:50 07/07/16 23:31 EPA 3050B 1,6010C Nickel, Total 11 mg/kg 2.1 0.33 JΗ Selenium, Total 1.7 mg/kg 1.6 0.22 1 07/06/16 05:50 07/07/16 23:31 EPA 3050B 1,6010C JΗ Silver, Total ND 0.83 0.16 1 07/06/16 05:50 07/07/16 23:31 EPA 3050B 1,6010C JH mg/kg J Thallium, Total 0.32 1.6 0.26 1 07/06/16 05:50 07/07/16 23:31 EPA 3050B 1,6010C JΗ mg/kg Zinc, Total 2300 mg/kg 4.1 0.58 1 07/06/16 05:50 07/07/16 23:31 EPA 3050B 1,6010C JΗ

Project Number: 15209 **Report Date:** 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-07 Date Collected: 06/29/16 08:55

Client ID: Date Received: 06/30/16 P3-9 (8-12) Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil 57% Percent Solids:

Dilution Date Date Prep **Analytical** Method Factor **Prepared Analyzed** Method Qualifier RL MDL **Parameter** Result Units **Analyst** Total Metals - Mansfield Lab Antimony, Total ND mg/kg 3.4 0.54 1 07/06/16 05:50 07/07/16 23:36 EPA 3050B 1,6010C JΗ 2.0 0.68 0.22 1 07/06/16 05:50 07/07/16 23:36 EPA 3050B 1,6010C JΗ Arsenic, Total mg/kg J 1 1,6010C Beryllium, Total 0.07 0.34 0.07 07/06/16 05:50 07/07/16 23:36 EPA 3050B mg/kg JΗ Cadmium, Total ND mg/kg 0.68 0.05 1 07/06/16 05:50 07/07/16 23:36 EPA 3050B 1,6010C JΗ 0.68 0.12 1 07/06/16 05:50 07/07/16 23:36 EPA 3050B 1,6010C Chromium, Total 3.7 mg/kg JΗ 5.0 0.68 0.12 1 07/06/16 05:50 07/07/16 23:36 EPA 3050B 1,6010C JΗ Copper, Total mg/kg Lead, Total ND 3.4 0.15 1 07/06/16 05:50 07/07/16 23:36 EPA 3050B 1,6010C JΗ mg/kg Mercury, Total ND mg/kg 0.12 0.02 1 07/06/16 10:40 07/11/16 18:10 EPA 7471B 1,7471B EΑ 3.9 1.7 0.27 1 07/06/16 05:50 07/07/16 23:36 EPA 3050B 1,6010C Nickel, Total mg/kg JΗ Selenium, Total 0.45 J mg/kg 1.4 0.18 1 07/06/16 05:50 07/07/16 23:36 EPA 3050B 1,6010C JΗ Silver, Total ND 0.68 0.14 1 07/06/16 05:50 07/07/16 23:36 EPA 3050B 1,6010C JH

mg/kg

mg/kg

mg/kg

1.4

3.4

0.22

0.47

1

1

07/06/16 05:50 07/07/16 23:36 EPA 3050B

07/06/16 05:50 07/07/16 23:36 EPA 3050B

1,6010C

1,6010C

JΗ

JΗ

Thallium, Total

Zinc, Total

ND

20

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-08 Date Collected: 06/29/16 08:55

Client ID: P3-9 (12-16) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil
Percent Solids: 58%

Dilution Date Date Prep **Analytical** Method Factor **Prepared Analyzed** Method Result Qualifier RL MDL **Parameter** Units **Analyst** Total Metals - Mansfield Lab Antimony, Total ND mg/kg 3.4 0.54 1 07/06/16 05:50 07/07/16 23:40 EPA 3050B 1,6010C JΗ 1.0 0.68 0.22 1 07/06/16 05:50 07/07/16 23:40 EPA 3050B 1,6010C JΗ Arsenic, Total mg/kg 1 1,6010C Beryllium, Total ND 0.34 0.08 07/06/16 05:50 07/07/16 23:40 EPA 3050B mg/kg JΗ Cadmium, Total ND mg/kg 0.68 0.05 1 07/06/16 05:50 07/07/16 23:40 EPA 3050B 1,6010C JΗ 0.68 0.12 1 07/06/16 05:50 07/07/16 23:40 EPA 3050B 1,6010C Chromium, Total 2.7 mg/kg JΗ 0.68 0.12 1 07/06/16 05:50 07/07/16 23:40 EPA 3050B 1,6010C JΗ Copper, Total 3.1 mg/kg Lead, Total ND 3.4 0.15 1 07/06/16 05:50 07/07/16 23:40 EPA 3050B 1,6010C JΗ mg/kg Mercury, Total ND mg/kg 0.12 0.03 1 07/06/16 10:40 07/11/16 18:11 EPA 7471B 1,7471B EΑ 1.7 0.27 1 1,6010C Nickel, Total 3.1 mg/kg 07/06/16 05:50 07/07/16 23:40 EPA 3050B JΗ Selenium, Total 0.35 J mg/kg 1.4 0.18 1 07/06/16 05:50 07/07/16 23:40 EPA 3050B 1,6010C JΗ Silver, Total ND 0.68 0.14 1 07/06/16 05:50 07/07/16 23:40 EPA 3050B 1,6010C JH mg/kg Thallium, Total ND 1.4 0.22 1 07/06/16 05:50 07/07/16 23:40 EPA 3050B 1,6010C JΗ mg/kg

1,6010C

JΗ

Zinc, Total

14

mg/kg

3.4

0.48

1

07/06/16 05:50 07/07/16 23:40 EPA 3050B

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 06/29/16 09:05

Client ID: P3-8 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil
Percent Solids: 61%

Dilution Date Date Prep **Analytical** Method Factor **Prepared Analyzed** Method Qualifier RL MDL **Parameter** Result Units **Analyst** Total Metals - Mansfield Lab Antimony, Total ND mg/kg 3.3 0.52 1 07/06/16 05:50 07/08/16 00:06 EPA 3050B 1,6010C JΗ 12 0.22 1 1,6010C JΗ Arsenic, Total mg/kg 0.65 07/06/16 05:50 07/08/16 00:06 EPA 3050B 1 1,6010C Beryllium, Total ND 0.33 0.07 07/06/16 05:50 07/08/16 00:06 EPA 3050B mg/kg JΗ Cadmium, Total 14 mg/kg 0.65 0.05 1 07/06/16 05:50 07/08/16 00:06 EPA 3050B 1,6010C JΗ 2.4 0.65 0.11 1 07/06/16 05:50 07/08/16 00:06 EPA 3050B 1,6010C Chromium, Total mg/kg JΗ 150 0.65 0.12 1 07/06/16 05:50 07/08/16 00:06 EPA 3050B 1,6010C JΗ Copper, Total mg/kg Lead, Total ND 33 1.4 10 07/06/16 05:50 07/08/16 02:29 EPA 3050B 1,6010C JΗ mg/kg Mercury, Total ND mg/kg 0.11 0.02 1 07/06/16 10:40 07/11/16 18:17 EPA 7471B 1,7471B EΑ 27 1 1,6010C Nickel, Total mg/kg 1.6 0.26 07/06/16 05:50 07/08/16 00:06 EPA 3050B JΗ Selenium, Total 1.8 mg/kg 1.3 0.18 1 07/06/16 05:50 07/08/16 00:06 EPA 3050B 1,6010C JΗ Silver, Total 0.13 J 0.65 1 07/06/16 05:50 07/08/16 00:06 EPA 3050B 1,6010C JH mg/kg 0.13 0.21 Thallium, Total 0.54 J 1.3 1 07/06/16 05:50 07/08/16 00:06 EPA 3050B 1,6010C JΗ mg/kg Zinc, Total 18000 mg/kg 33 4.6 10 07/06/16 05:50 07/08/16 02:29 EPA 3050B 1,6010C JΗ

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 06/29/16 09:15

Client ID: P3-7 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil
Percent Solids: 62%

Percent Solids: Dilution Date Date Prep **Analytical** Method **Prepared** Method Factor **Analyzed** Result Qualifier Units RL MDL **Parameter Analyst** Total Metals - Mansfield Lab Antimony, Total ND mg/kg 3.1 0.50 1 07/06/16 05:50 07/08/16 00:11 EPA 3050B 1,6010C JΗ 12 0.20 1 07/06/16 05:50 07/08/16 00:11 EPA 3050B 1,6010C JΗ Arsenic, Total mg/kg 0.62 J 1 1,6010C JΗ Beryllium, Total 0.21 0.31 0.07 07/06/16 05:50 07/08/16 00:11 EPA 3050B mg/kg Cadmium, Total ND mg/kg 0.62 0.04 1 07/06/16 05:50 07/08/16 00:11 EPA 3050B 1,6010C JΗ 7.3 0.62 0.10 1 07/06/16 05:50 07/08/16 00:11 EPA 3050B 1,6010C Chromium, Total mg/kg JΗ 0.62 0.11 1 07/06/16 05:50 07/08/16 00:11 EPA 3050B 1,6010C JΗ Copper, Total 11 mg/kg Lead, Total 13 3.1 0.14 1 07/06/16 05:50 07/08/16 00:11 EPA 3050B 1,6010C JΗ mg/kg Mercury, Total 0.03 J mg/kg 0.10 0.02 1 07/06/16 10:40 07/11/16 18:19 EPA 7471B 1,7471B EΑ 1 12 0.25 1,6010C Nickel, Total mg/kg 1.6 07/06/16 05:50 07/08/16 00:11 EPA 3050B JΗ Selenium, Total 0.35 J mg/kg 1.2 0.17 1 07/06/16 05:50 07/08/16 00:11 EPA 3050B 1,6010C JΗ Silver, Total ND 0.62 0.12 1 07/06/16 05:50 07/08/16 00:11 EPA 3050B 1,6010C JH mg/kg Thallium, Total ND 1.2 0.20 1 07/06/16 05:50 07/08/16 00:11 EPA 3050B 1,6010C JΗ mg/kg Zinc, Total 33 mg/kg 3.1 0.43 1 07/06/16 05:50 07/08/16 00:11 EPA 3050B 1,6010C JΗ

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-11 Date Collected: 06/29/16 09:15

Client ID: P3-7 (8-12) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil
Percent Solids: 45%

Dilution Date Date Prep **Analytical** Method Factor **Prepared Analyzed** Method Result Qualifier RL MDL **Parameter** Units **Analyst** Total Metals - Mansfield Lab Antimony, Total ND mg/kg 4.5 0.72 1 07/06/16 05:50 07/08/16 00:15 EPA 3050B 1,6010C JΗ 1.0 0.30 1 07/06/16 05:50 07/08/16 00:15 EPA 3050B 1,6010C JΗ Arsenic, Total mg/kg 0.90 1 1,6010C Beryllium, Total ND 0.45 0.10 07/06/16 05:50 07/08/16 00:15 EPA 3050B mg/kg JΗ Cadmium, Total ND mg/kg 0.90 0.06 1 07/06/16 05:50 07/08/16 00:15 EPA 3050B 1,6010C JΗ 0.70 J 0.90 0.15 1 07/06/16 05:50 07/08/16 00:15 EPA 3050B 1,6010C Chromium, Total mg/kg JΗ 1.2 0.90 0.16 1 07/06/16 05:50 07/08/16 00:15 EPA 3050B 1,6010C JΗ Copper, Total mg/kg Lead, Total ND 4.5 0.20 1 07/06/16 05:50 07/08/16 00:15 EPA 3050B 1,6010C JΗ mg/kg Mercury, Total ND mg/kg 0.15 0.03 1 07/06/16 10:40 07/11/16 18:21 EPA 7471B 1,7471B EΑ 1 2.2 07/06/16 05:50 07/08/16 00:15 EPA 3050B 1,6010C Nickel, Total 20 mg/kg 0.36 JΗ Selenium, Total 1.4 J mg/kg 1.8 0.24 1 07/06/16 05:50 07/08/16 00:15 EPA 3050B 1,6010C JΗ Silver, Total ND 0.90 0.18 1 07/06/16 05:50 07/08/16 00:15 EPA 3050B 1,6010C JH mg/kg Thallium, Total ND 1.8 0.29 1 07/06/16 05:50 07/08/16 00:15 EPA 3050B 1,6010C JΗ mg/kg Zinc, Total 1300 mg/kg 4.5 0.63 1 07/06/16 05:50 07/08/16 00:15 EPA 3050B 1,6010C JΗ

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-12 Date Collected: 06/29/16 09:20

Client ID: P3-6 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil Percent Solids: 63%

Parameter Result Qualifier Units RI MDI Factor Prepared Analyzed Method Method Δnalyst

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Mans	sfield Lab										
Antimony, Total	ND		mg/kg	3.1	0.49	1	07/06/16 05:50	07/08/16 00:19	EPA 3050B	1,6010C	JH
Arsenic, Total	6.5		mg/kg	0.61	0.20	1	07/06/16 05:50	07/08/16 00:19	EPA 3050B	1,6010C	JH
Beryllium, Total	0.15	J	mg/kg	0.31	0.07	1	07/06/16 05:50	0 07/08/16 00:19	EPA 3050B	1,6010C	JH
Cadmium, Total	5.3		mg/kg	0.61	0.04	1	07/06/16 05:50	0 07/08/16 00:19	EPA 3050B	1,6010C	JH
Chromium, Total	80		mg/kg	0.61	0.10	1	07/06/16 05:50	0 07/08/16 00:19	EPA 3050B	1,6010C	JH
Copper, Total	26		mg/kg	0.61	0.11	1	07/06/16 05:50	07/08/16 00:19	EPA 3050B	1,6010C	JH
Lead, Total	0.89	J	mg/kg	3.1	0.13	1	07/06/16 05:50	0 07/08/16 00:19	EPA 3050B	1,6010C	JH
Mercury, Total	0.08	J	mg/kg	0.10	0.02	1	07/06/16 10:40	07/11/16 18:23	EPA 7471B	1,7471B	EA
Nickel, Total	110		mg/kg	1.5	0.24	1	07/06/16 05:50	0 07/08/16 00:19	EPA 3050B	1,6010C	JH
Selenium, Total	1.1	J	mg/kg	1.2	0.16	1	07/06/16 05:50	0 07/08/16 00:19	EPA 3050B	1,6010C	JH
Silver, Total	ND		mg/kg	0.61	0.12	1	07/06/16 05:50	0 07/08/16 00:19	EPA 3050B	1,6010C	JH
Thallium, Total	ND		mg/kg	1.2	0.20	1	07/06/16 05:50	0 07/08/16 00:19	EPA 3050B	1,6010C	JH
Zinc, Total	2000		mg/kg	3.1	0.43	1	07/06/16 05:50	0 07/08/16 00:19	EPA 3050B	1,6010C	JH

Project Number: 15209 **Report Date:** 07/13/16

SAMPLE RESULTS

Date Collected: Lab ID: L1620368-13 06/29/16 09:20

Client ID: Date Received: P3-6 (8-12) 06/30/16 Field Prep: Sample Location: SYRACUSE, NY Not Specified

Matrix: Soil Percent Solids: 46%

Analytical Dilution Date Date Prep

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Mans	sfield Lab										
Antimony, Total	ND		mg/kg	4.3	0.68	1	07/06/16 05:50	07/08/16 00:24	EPA 3050B	1,6010C	JH
Arsenic, Total	0.86		mg/kg	0.86	0.28	1	07/06/16 05:50	07/08/16 00:24	EPA 3050B	1,6010C	JH
Beryllium, Total	ND		mg/kg	0.43	0.09	1	07/06/16 05:50	07/08/16 00:24	EPA 3050B	1,6010C	JH
Cadmium, Total	ND		mg/kg	0.86	0.06	1	07/06/16 05:50	07/08/16 00:24	EPA 3050B	1,6010C	JH
Chromium, Total	0.73	J	mg/kg	0.86	0.14	1	07/06/16 05:50	07/08/16 00:24	EPA 3050B	1,6010C	JH
Copper, Total	1.4		mg/kg	0.86	0.15	1	07/06/16 05:50	07/08/16 00:24	EPA 3050B	1,6010C	JH
Lead, Total	ND		mg/kg	4.3	0.19	1	07/06/16 05:50	07/08/16 00:24	EPA 3050B	1,6010C	JH
Mercury, Total	ND		mg/kg	0.14	0.03	1	07/06/16 10:40	07/11/16 18:25	EPA 7471B	1,7471B	EA
Nickel, Total	10		mg/kg	2.1	0.34	1	07/06/16 05:50	07/08/16 00:24	EPA 3050B	1,6010C	JH
Selenium, Total	1.1	J	mg/kg	1.7	0.23	1	07/06/16 05:50	07/08/16 00:24	EPA 3050B	1,6010C	JH
Silver, Total	ND		mg/kg	0.86	0.17	1	07/06/16 05:50	07/08/16 00:24	EPA 3050B	1,6010C	JH
Thallium, Total	ND		mg/kg	1.7	0.27	1	07/06/16 05:50	07/08/16 00:24	EPA 3050B	1,6010C	JH
Zinc, Total	550		mg/kg	4.3	0.60	1	07/06/16 05:50	07/08/16 00:24	EPA 3050B	1,6010C	JH

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-14 Date Collected: 06/29/16 09:35

Client ID: P3-5 (6-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil
Percent Solids: 56%

Dilution Date Date Prep **Analytical** Method Factor **Prepared Analyzed** Method Result Qualifier RL MDL **Parameter** Units **Analyst** Total Metals - Mansfield Lab Antimony, Total ND mg/kg 3.5 0.56 1 07/06/16 05:50 07/08/16 00:28 EPA 3050B 1,6010C JΗ 1.3 0.23 1 1,6010C JΗ Arsenic, Total mg/kg 0.71 07/06/16 05:50 07/08/16 00:28 EPA 3050B 1 1,6010C Beryllium, Total ND 0.35 0.08 07/06/16 05:50 07/08/16 00:28 EPA 3050B mg/kg JΗ J Cadmium, Total 0.09 mg/kg 0.71 0.05 1 07/06/16 05:50 07/08/16 00:28 EPA 3050B 1,6010C JΗ 0.71 0.12 1 07/06/16 05:50 07/08/16 00:28 EPA 3050B 1,6010C Chromium, Total 2.4 mg/kg JΗ 3.7 0.71 0.13 1 07/06/16 05:50 07/08/16 00:28 EPA 3050B 1,6010C JΗ Copper, Total mg/kg Lead, Total 1.9 J 3.5 0.16 1 07/06/16 05:50 07/08/16 00:28 EPA 3050B 1,6010C JΗ mg/kg Mercury, Total 0.03 J mg/kg 0.12 0.03 1 07/06/16 10:40 07/11/16 18:27 EPA 7471B 1,7471B EΑ 3.7 1 1,6010C Nickel, Total mg/kg 1.8 0.28 07/06/16 05:50 07/08/16 00:28 EPA 3050B JΗ Selenium, Total ND mg/kg 1.4 0.19 1 07/06/16 05:50 07/08/16 00:28 EPA 3050B 1,6010C JΗ Silver, Total ND 0.71 0.14 1 07/06/16 05:50 07/08/16 00:28 EPA 3050B 1,6010C JH mg/kg Thallium, Total ND 1.4 0.23 1 07/06/16 05:50 07/08/16 00:28 EPA 3050B 1,6010C JΗ mg/kg Zinc, Total 29 mg/kg 3.5 0.50 1 07/06/16 05:50 07/08/16 00:28 EPA 3050B 1,6010C JΗ

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-15 Date Collected: 06/29/16 10:45

Client ID: P3-4 (6-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil
Percent Solids: 49%

Dilution Date Date Prep **Analytical** Method **Prepared** Method Factor **Analyzed** Result Qualifier Units RL MDL **Parameter Analyst** Total Metals - Mansfield Lab Antimony, Total ND mg/kg 3.8 0.62 1 07/06/16 05:50 07/08/16 00:33 EPA 3050B 1,6010C JΗ 0.77 0.25 1 07/06/16 05:50 07/08/16 00:33 EPA 3050B 1,6010C JΗ Arsenic, Total 1.1 mg/kg 1 1,6010C Beryllium, Total ND 0.38 0.09 07/06/16 05:50 07/08/16 00:33 EPA 3050B JΗ mg/kg Cadmium, Total ND mg/kg 0.77 0.05 1 07/06/16 05:50 07/08/16 00:33 EPA 3050B 1,6010C JΗ 0.59 J 0.77 0.13 1 07/06/16 05:50 07/08/16 00:33 EPA 3050B 1,6010C Chromium, Total mg/kg JΗ 0.77 0.14 1 07/06/16 05:50 07/08/16 00:33 EPA 3050B 1,6010C JΗ Copper, Total 1.8 mg/kg Lead, Total ND 3.8 0.17 1 07/06/16 05:50 07/08/16 00:33 EPA 3050B 1,6010C JΗ mg/kg Mercury, Total ND mg/kg 0.13 0.03 1 07/06/16 10:40 07/11/16 18:28 EPA 7471B 1,7471B EΑ 1 1,6010C Nickel, Total 4.0 mg/kg 1.9 0.31 07/06/16 05:50 07/08/16 00:33 EPA 3050B JΗ Selenium, Total 2.8 mg/kg 1.5 0.21 1 07/06/16 05:50 07/08/16 00:33 EPA 3050B 1,6010C JΗ Silver, Total ND 0.77 0.15 1 07/06/16 05:50 07/08/16 00:33 EPA 3050B 1,6010C JH mg/kg Thallium, Total ND 1.5 0.25 1 07/06/16 05:50 07/08/16 00:33 EPA 3050B 1,6010C JΗ mg/kg

1,6010C

JΗ

Zinc, Total

5.9

mg/kg

3.8

0.54

1

07/06/16 05:50 07/08/16 00:33 EPA 3050B

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-16 Date Collected: 06/29/16 10:45

Client ID: P3-4 (10-12) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil

Percent Solids: 43%

Dilution Date Date Prep Analytical

Propertor Recult Qualifier Units BI MDI Factor Prepared Analyzed Method Method Analyses

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Man	sfield Lab										
Antimony, Total	ND		mg/kg	4.5	0.73	1	07/06/16 05:50	07/08/16 01:21	EPA 3050B	1,6010C	JH
Arsenic, Total	2.1		mg/kg	0.91	0.30	1	07/06/16 05:50	07/08/16 01:21	EPA 3050B	1,6010C	JH
Beryllium, Total	0.11	J	mg/kg	0.45	0.10	1	07/06/16 05:50	07/08/16 01:21	EPA 3050B	1,6010C	JH
Cadmium, Total	ND		mg/kg	0.91	0.06	1	07/06/16 05:50	07/08/16 01:21	EPA 3050B	1,6010C	JH
Chromium, Total	4.8		mg/kg	0.91	0.15	1	07/06/16 05:50	07/08/16 01:21	EPA 3050B	1,6010C	JH
Copper, Total	7.5		mg/kg	0.91	0.16	1	07/06/16 05:50	07/08/16 01:21	EPA 3050B	1,6010C	JH
Lead, Total	ND		mg/kg	4.5	0.20	1	07/06/16 05:50	07/08/16 01:21	EPA 3050B	1,6010C	JH
Mercury, Total	ND		mg/kg	0.15	0.03	1	07/06/16 10:40	07/11/16 18:30	EPA 7471B	1,7471B	EA
Nickel, Total	13		mg/kg	2.3	0.36	1	07/06/16 05:50	07/08/16 01:21	EPA 3050B	1,6010C	JH
Selenium, Total	2.8		mg/kg	1.8	0.24	1	07/06/16 05:50	07/08/16 01:21	EPA 3050B	1,6010C	JH
Silver, Total	ND		mg/kg	0.91	0.18	1	07/06/16 05:50	07/08/16 01:21	EPA 3050B	1,6010C	JH
Thallium, Total	ND		mg/kg	1.8	0.29	1	07/06/16 05:50	07/08/16 01:21	EPA 3050B	1,6010C	JH
Zinc, Total	15		mg/kg	4.5	0.64	1	07/06/16 05:50	07/08/16 01:21	EPA 3050B	1,6010C	JH

Project Number: 15209 **Report Date:** 07/13/16

SAMPLE RESULTS

Date Collected: Lab ID: L1620368-17 06/29/16 11:30

Client ID: Date Received: P3-3 (4-8) 06/30/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil Percent Solids:

53% Dilution Date Date Prep Analytical

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Man	sfield Lab										
Antimony, Total	ND		mg/kg	3.6	0.58	1	07/06/16 05:50	07/08/16 01:25	EPA 3050B	1,6010C	JH
Arsenic, Total	2.4		mg/kg	0.72	0.24	1	07/06/16 05:50	07/08/16 01:25	EPA 3050B	1,6010C	JH
Beryllium, Total	ND		mg/kg	0.36	0.08	1	07/06/16 05:50	07/08/16 01:25	EPA 3050B	1,6010C	JH
Cadmium, Total	ND		mg/kg	0.72	0.05	1	07/06/16 05:50	07/08/16 01:25	EPA 3050B	1,6010C	JH
Chromium, Total	2.2		mg/kg	0.72	0.12	1	07/06/16 05:50	07/08/16 01:25	EPA 3050B	1,6010C	JH
Copper, Total	6.7		mg/kg	0.72	0.13	1	07/06/16 05:50	07/08/16 01:25	EPA 3050B	1,6010C	JH
Lead, Total	5.6		mg/kg	3.6	0.16	1	07/06/16 05:50	07/08/16 01:25	EPA 3050B	1,6010C	JH
Mercury, Total	ND		mg/kg	0.12	0.03	1	07/06/16 10:40	07/11/16 18:32	P. EPA 7471B	1,7471B	EA
Nickel, Total	8.7		mg/kg	1.8	0.29	1	07/06/16 05:50	07/08/16 01:25	EPA 3050B	1,6010C	JH
Selenium, Total	2.1		mg/kg	1.4	0.19	1	07/06/16 05:50	07/08/16 01:25	EPA 3050B	1,6010C	JH
Silver, Total	ND		mg/kg	0.72	0.14	1	07/06/16 05:50	07/08/16 01:25	EPA 3050B	1,6010C	JH
Thallium, Total	0.53	J	mg/kg	1.4	0.23	1	07/06/16 05:50	07/08/16 01:25	EPA 3050B	1,6010C	JH
Zinc, Total	190		mg/kg	3.6	0.50	1	07/06/16 05:50	07/08/16 01:25	EPA 3050B	1,6010C	JH
·											

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-18 Date Collected: 06/29/16 11:30

Client ID: P3-3 (8-10) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil Percent Solids: 49%

Dilution Date Date Prep Analytical

Parameter Result Qualifier Units RL MDL Factor Prepared Analyzed Method Method Analyst

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Mar	nsfield Lab										
Antimony, Total	ND		mg/kg	4.0	0.64	1	07/06/16 05:50	07/08/16 01:30	EPA 3050B	1,6010C	JH
Arsenic, Total	1.9		mg/kg	0.80	0.26	1	07/06/16 05:50	07/08/16 01:30	EPA 3050B	1,6010C	JH
Beryllium, Total	ND		mg/kg	0.40	0.09	1	07/06/16 05:50	07/08/16 01:30	EPA 3050B	1,6010C	JH
Cadmium, Total	ND		mg/kg	0.80	0.06	1	07/06/16 05:50	07/08/16 01:30	EPA 3050B	1,6010C	JH
Chromium, Total	1.4		mg/kg	0.80	0.14	1	07/06/16 05:50	07/08/16 01:30	EPA 3050B	1,6010C	JH
Copper, Total	2.8		mg/kg	0.80	0.14	1	07/06/16 05:50	07/08/16 01:30	EPA 3050B	1,6010C	JH
Lead, Total	2.1	J	mg/kg	4.0	0.18	1	07/06/16 05:50	07/08/16 01:30	EPA 3050B	1,6010C	JH
Mercury, Total	ND		mg/kg	0.13	0.03	1	07/06/16 10:40	07/11/16 18:34	EPA 7471B	1,7471B	EA
Nickel, Total	15		mg/kg	2.0	0.32	1	07/06/16 05:50	07/08/16 01:30	EPA 3050B	1,6010C	JH
Selenium, Total	2.6		mg/kg	1.6	0.22	1	07/06/16 05:50	07/08/16 01:30	EPA 3050B	1,6010C	JH
Silver, Total	ND		mg/kg	0.80	0.16	1	07/06/16 05:50	07/08/16 01:30	EPA 3050B	1,6010C	JH
Thallium, Total	3.3		mg/kg	1.6	0.26	1	07/06/16 05:50	07/08/16 01:30	EPA 3050B	1,6010C	JH
Zinc, Total	30		mg/kg	4.0	0.56	1	07/06/16 05:50	07/08/16 01:30	EPA 3050B	1,6010C	JH
•											

Project Number: 15209 **Report Date:** 07/13/16

SAMPLE RESULTS

Date Collected: Lab ID: L1620368-19 06/29/16 11:30

Client ID: Date Received: P3-3 (12-14) 06/30/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil Percent Solids: 72%

Analytical Dilution Date Date Prep

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Man	sfield Lab										
Antimony, Total	ND		mg/kg	2.6	0.42	1	07/06/16 05:50	07/08/16 01:34	EPA 3050B	1,6010C	JH
Arsenic, Total	3.7		mg/kg	0.53	0.18	1	07/06/16 05:50	07/08/16 01:34	EPA 3050B	1,6010C	JH
Beryllium, Total	ND		mg/kg	0.26	0.06	1	07/06/16 05:50	07/08/16 01:34	EPA 3050B	1,6010C	JH
Cadmium, Total	ND		mg/kg	0.53	0.04	1	07/06/16 05:50	07/08/16 01:34	EPA 3050B	1,6010C	JH
Chromium, Total	1.1		mg/kg	0.53	0.09	1	07/06/16 05:50	07/08/16 01:34	EPA 3050B	1,6010C	JH
Copper, Total	0.74		mg/kg	0.53	0.10	1	07/06/16 05:50	07/08/16 01:34	EPA 3050B	1,6010C	JH
Lead, Total	ND		mg/kg	26	1.2	10	07/06/16 05:50	07/08/16 02:33	EPA 3050B	1,6010C	JH
Mercury, Total	ND		mg/kg	0.09	0.02	1	07/06/16 10:40	07/11/16 18:40	EPA 7471B	1,7471B	EA
Nickel, Total	0.86	J	mg/kg	1.3	0.21	1	07/06/16 05:50	07/08/16 01:34	EPA 3050B	1,6010C	JH
Selenium, Total	0.49	J	mg/kg	1.1	0.14	1	07/06/16 05:50	07/08/16 01:34	EPA 3050B	1,6010C	JH
Silver, Total	ND		mg/kg	0.53	0.11	1	07/06/16 05:50	07/08/16 01:34	EPA 3050B	1,6010C	JH
Thallium, Total	0.33	J	mg/kg	1.1	0.17	1	07/06/16 05:50	07/08/16 01:34	EPA 3050B	1,6010C	JH
Zinc, Total	4.1		mg/kg	2.6	0.37	1	07/06/16 05:50	07/08/16 01:34	EPA 3050B	1,6010C	JH

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 06/29/16 12:00

Client ID: P3-2 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil

Percent Solids: 43%

Dilution Date Date Prep Analytical

Percent Solids: 43%

Dilution Date Date Prep Analytical Preparety Analyzed Method Analytical

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Mar	nsfield Lab										
Antimony, Total	ND		mg/kg	4.6	0.74	1	07/06/16 05:50	07/08/16 01:39	EPA 3050B	1,6010C	JH
Arsenic, Total	0.99		mg/kg	0.92	0.30	1	07/06/16 05:50	07/08/16 01:39	EPA 3050B	1,6010C	JH
Beryllium, Total	ND		mg/kg	0.46	0.10	1	07/06/16 05:50	07/08/16 01:39	EPA 3050B	1,6010C	JH
Cadmium, Total	ND		mg/kg	0.92	0.07	1	07/06/16 05:50	07/08/16 01:39	EPA 3050B	1,6010C	JH
Chromium, Total	1.0		mg/kg	0.92	0.16	1	07/06/16 05:50	07/08/16 01:39	EPA 3050B	1,6010C	JH
Copper, Total	1.1		mg/kg	0.92	0.17	1	07/06/16 05:50	07/08/16 01:39	EPA 3050B	1,6010C	JH
Lead, Total	ND		mg/kg	4.6	0.20	1	07/06/16 05:50	07/08/16 01:39	EPA 3050B	1,6010C	JH
Mercury, Total	ND		mg/kg	0.15	0.03	1	07/06/16 10:40) 07/11/16 18:41	EPA 7471B	1,7471B	EA
Nickel, Total	4.6		mg/kg	2.3	0.37	1	07/06/16 05:50	07/08/16 01:39	EPA 3050B	1,6010C	JH
Selenium, Total	2.5		mg/kg	1.8	0.25	1	07/06/16 05:50	07/08/16 01:39	EPA 3050B	1,6010C	JH
Silver, Total	ND		mg/kg	0.92	0.18	1	07/06/16 05:50	07/08/16 01:39	EPA 3050B	1,6010C	JH
Thallium, Total	0.40	J	mg/kg	1.8	0.30	1	07/06/16 05:50	07/08/16 01:39	EPA 3050B	1,6010C	JH
Zinc, Total	12		mg/kg	4.6	0.65	1	07/06/16 05:50	07/08/16 01:39	EPA 3050B	1,6010C	JH

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-21 Date Collected: 06/29/16 12:00

Client ID: P3-2 (8-10) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil
Percent Solids: 53%

i cicciii collas.	3370					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Man	sfield Lab										
Antimony, Total	ND		mg/kg	3.6	0.58	1	07/06/16 06:3	9 07/08/16 16:33	EPA 3050B	1,6010C	JH
Arsenic, Total	0.629	J	mg/kg	0.723	0.238	1	07/06/16 06:3	9 07/08/16 16:33	EPA 3050B	1,6010C	JH
Beryllium, Total	ND		mg/kg	0.36	0.08	1	07/06/16 06:3	9 07/08/16 16:33	EPA 3050B	1,6010C	JH
Cadmium, Total	ND		mg/kg	0.72	0.05	1	07/06/16 06:3	9 07/08/16 16:33	EPA 3050B	1,6010C	JH
Chromium, Total	4.8		mg/kg	0.72	0.12	1	07/06/16 06:3	9 07/08/16 16:33	EPA 3050B	1,6010C	JH
Copper, Total	15		mg/kg	0.72	0.13	1	07/06/16 06:3	9 07/08/16 16:33	EPA 3050B	1,6010C	JH
Lead, Total	2.9	J	mg/kg	3.6	0.16	1	07/06/16 06:3	9 07/08/16 16:33	EPA 3050B	1,6010C	JH
Mercury, Total	ND		mg/kg	0.12	0.03	1	07/06/16 10:4	0 07/11/16 18:47	EPA 7471B	1,7471B	EA
Nickel, Total	8.8		mg/kg	1.8	0.29	1	07/06/16 06:3	9 07/08/16 16:33	EPA 3050B	1,6010C	JH
Selenium, Total	2.0		mg/kg	1.4	0.20	1	07/06/16 06:3	9 07/08/16 16:33	EPA 3050B	1,6010C	JH
Silver, Total	ND		mg/kg	0.72	0.14	1	07/06/16 06:3	9 07/08/16 16:33	EPA 3050B	1,6010C	JH
Thallium, Total	ND		mg/kg	1.4	0.23	1	07/06/16 06:3	9 07/08/16 16:33	EPA 3050B	1,6010C	JH
Zinc, Total	15		mg/kg	3.6	0.51	1	07/06/16 06:3	9 07/08/16 16:33	EPA 3050B	1,6010C	JH
,											

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-22 Date Collected: 06/29/16 12:10

Client ID: P3-10 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil

Percent Solids: 60%

Dilution Date Date Prep Analytical
Parameter Result Qualifier Units RL MDL Factor Prepared Analyzed Method Method Analyst

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Mar	nsfield Lab										
Antimony, Total	ND		mg/kg	3.3	0.53	1	07/06/16 06:39	07/08/16 17:01	EPA 3050B	1,6010C	JH
Arsenic, Total	1.3		mg/kg	0.66	0.22	1	07/06/16 06:39	07/08/16 17:01	EPA 3050B	1,6010C	JH
Beryllium, Total	ND		mg/kg	0.33	0.07	1	07/06/16 06:39	07/08/16 17:01	EPA 3050B	1,6010C	JH
Cadmium, Total	ND		mg/kg	0.66	0.05	1	07/06/16 06:39	07/08/16 17:01	EPA 3050B	1,6010C	JH
Chromium, Total	2.0		mg/kg	0.66	0.11	1	07/06/16 06:39	07/08/16 17:01	EPA 3050B	1,6010C	JH
Copper, Total	3.8		mg/kg	0.66	0.12	1	07/06/16 06:39	07/08/16 17:01	EPA 3050B	1,6010C	JH
Lead, Total	3.7		mg/kg	3.3	0.14	1	07/06/16 06:39	07/08/16 17:01	EPA 3050B	1,6010C	JH
Mercury, Total	ND		mg/kg	0.11	0.02	1	07/06/16 10:40	07/11/16 18:55	EPA 7471B	1,7471B	EA
Nickel, Total	28		mg/kg	1.6	0.26	1	07/06/16 06:39	07/08/16 17:01	EPA 3050B	1,6010C	JH
Selenium, Total	0.69	J	mg/kg	1.3	0.18	1	07/06/16 06:39	07/08/16 17:01	EPA 3050B	1,6010C	JH
Silver, Total	ND		mg/kg	0.66	0.13	1	07/06/16 06:39	07/08/16 17:01	EPA 3050B	1,6010C	JH
Thallium, Total	ND		mg/kg	1.3	0.21	1	07/06/16 06:39	07/08/16 17:01	EPA 3050B	1,6010C	JH
Zinc, Total	3300		mg/kg	16	2.3	5	07/06/16 06:39	07/11/16 17:44	EPA 3050B	1,6010C	PS

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: Date Collected: 06/29/16 12:10

Client ID: P3-10 (8-10) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil Percent Solids: 58%

Dilution Date Date Prep Analytical

Parameter Result Qualifier Units RL MDL Factor Prepared Analyzed Method Method Analyst

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Mar	nsfield Lab										
Antimony, Total	ND		mg/kg	3.4	0.54	1	07/06/16 06:39	07/08/16 17:05	5 EPA 3050B	1,6010C	JH
Arsenic, Total	0.53	J	mg/kg	0.68	0.22	1	07/06/16 06:39	07/08/16 17:05	5 EPA 3050B	1,6010C	JH
Beryllium, Total	ND		mg/kg	0.34	0.07	1	07/06/16 06:39	07/08/16 17:05	5 EPA 3050B	1,6010C	JH
Cadmium, Total	ND		mg/kg	0.68	0.05	1	07/06/16 06:39	07/08/16 17:05	5 EPA 3050B	1,6010C	JH
Chromium, Total	0.72		mg/kg	0.68	0.12	1	07/06/16 06:39	07/08/16 17:05	5 EPA 3050B	1,6010C	JH
Copper, Total	3.8		mg/kg	0.68	0.12	1	07/06/16 06:39	07/08/16 17:05	5 EPA 3050B	1,6010C	JH
Lead, Total	0.95	J	mg/kg	3.4	0.15	1	07/06/16 06:39	07/08/16 17:05	5 EPA 3050B	1,6010C	JH
Mercury, Total	ND		mg/kg	0.11	0.02	1	07/06/16 10:40	07/11/16 18:57	7 EPA 7471B	1,7471B	EA
Nickel, Total	9.8		mg/kg	1.7	0.27	1	07/06/16 06:39	07/08/16 17:05	5 EPA 3050B	1,6010C	JH
Selenium, Total	2.5		mg/kg	1.4	0.18	1	07/06/16 06:39	07/08/16 17:05	5 EPA 3050B	1,6010C	JH
Silver, Total	ND		mg/kg	0.68	0.14	1	07/06/16 06:39	07/08/16 17:05	5 EPA 3050B	1,6010C	JH
Thallium, Total	ND		mg/kg	1.4	0.22	1	07/06/16 06:39	07/08/16 17:05	5 EPA 3050B	1,6010C	JH
Zinc, Total	480		mg/kg	3.4	0.47	1	07/06/16 06:39	07/08/16 17:05	5 EPA 3050B	1,6010C	JH

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-24 Date Collected: 06/29/16 13:00

Client ID: P1-5 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil
Percent Solids: 60%

Percent Solids: Dilution Date Date Prep **Analytical** Method Factor **Prepared Analyzed** Method Result Qualifier RL MDL **Parameter** Units **Analyst** Total Metals - Mansfield Lab Antimony, Total ND mg/kg 3.2 0.52 1 07/06/16 06:39 07/08/16 17:10 EPA 3050B 1,6010C JΗ 4.0 0.65 0.21 1 1,6010C JΗ Arsenic, Total mg/kg 07/06/16 06:39 07/08/16 17:10 EPA 3050B J 1 1,6010C Beryllium, Total 0.13 0.32 0.07 07/06/16 06:39 07/08/16 17:10 EPA 3050B mg/kg JΗ J Cadmium, Total 0.39 mg/kg 0.65 0.05 1 07/06/16 06:39 07/08/16 17:10 EPA 3050B 1,6010C JΗ 8.5 0.65 0.11 1 07/06/16 06:39 07/08/16 17:10 EPA 3050B 1,6010C Chromium, Total mg/kg JΗ 27 0.65 0.12 1 07/06/16 06:39 07/08/16 17:10 EPA 3050B 1,6010C JΗ Copper, Total mg/kg Lead, Total 180 3.2 0.14 1 07/06/16 06:39 07/08/16 17:10 EPA 3050B 1,6010C JΗ mg/kg Mercury, Total 0.14 mg/kg 0.11 0.02 1 07/06/16 10:40 07/11/16 19:02 EPA 7471B 1,7471B EΑ 1 1,6010C Nickel, Total 11 mg/kg 1.6 0.26 07/06/16 06:39 07/08/16 17:10 EPA 3050B JΗ Selenium, Total 1.3 mg/kg 1.3 0.17 1 07/06/16 06:39 07/08/16 17:10 EPA 3050B 1,6010C JΗ Silver, Total ND 0.65 0.13 1 07/06/16 06:39 07/08/16 17:10 EPA 3050B 1,6010C JH mg/kg Thallium, Total ND 1.3 0.21 1 07/06/16 06:39 07/08/16 17:10 EPA 3050B 1,6010C JΗ mg/kg

1,6010C

JΗ

Zinc, Total

1300

mg/kg

3.2

0.45

1

07/06/16 06:39 07/08/16 17:10 EPA 3050B

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-25 Date Collected: 06/29/16 13:00

Client ID: P1-5 (8-10) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil

Percent Solids: 54%

Dilution Date Date Prep Analytical

Perameter Result Qualifier Units RI MDI Factor Prepared Analyzed Method Method Analyse

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Mar	nsfield Lab										
Antimony, Total	ND		mg/kg	3.6	0.57	1	07/06/16 06:39	07/08/16 17:14	FPA 3050B	1,6010C	JH
Arsenic, Total	0.56	J	mg/kg	0.71	0.24	1		07/08/16 17:14		1,6010C	JH
Beryllium, Total	ND		mg/kg	0.36	0.08	1	07/06/16 06:39	07/08/16 17:14	EPA 3050B	1,6010C	JH
Cadmium, Total	ND		mg/kg	0.71	0.05	1	07/06/16 06:39	07/08/16 17:14	EPA 3050B	1,6010C	JH
Chromium, Total	0.25	J	mg/kg	0.71	0.12	1	07/06/16 06:39	07/08/16 17:14	EPA 3050B	1,6010C	JH
Copper, Total	1.6		mg/kg	0.71	0.13	1	07/06/16 06:39	07/08/16 17:14	EPA 3050B	1,6010C	JH
Lead, Total	0.66	J	mg/kg	3.6	0.16	1	07/06/16 06:39	07/08/16 17:14	EPA 3050B	1,6010C	JH
Mercury, Total	ND		mg/kg	0.12	0.03	1	07/06/16 10:40	07/11/16 19:04	EPA 7471B	1,7471B	EA
Nickel, Total	2.4		mg/kg	1.8	0.28	1	07/06/16 06:39	07/08/16 17:14	EPA 3050B	1,6010C	JH
Selenium, Total	2.1		mg/kg	1.4	0.19	1	07/06/16 06:39	07/08/16 17:14	EPA 3050B	1,6010C	JH
Silver, Total	ND		mg/kg	0.71	0.14	1	07/06/16 06:39	07/08/16 17:14	EPA 3050B	1,6010C	JH
Thallium, Total	ND		mg/kg	1.4	0.23	1	07/06/16 06:39	07/08/16 17:14	EPA 3050B	1,6010C	JH
Zinc, Total	110		mg/kg	3.6	0.50	1	07/06/16 06:39	07/08/16 17:14	EPA 3050B	1,6010C	JH

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-26 Date Collected: 06/29/16 12:35

Client ID: P1-4 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil
Percent Solids: 55%

Dilution Date Date Prep **Analytical** Method Factor **Prepared Analyzed** Method Result Qualifier RL MDL **Parameter** Units **Analyst** Total Metals - Mansfield Lab Antimony, Total ND mg/kg 3.6 0.58 1 07/06/16 06:39 07/08/16 17:18 EPA 3050B 1,6010C JΗ 7.2 0.24 1 1,6010C JΗ Arsenic, Total mg/kg 0.72 07/06/16 06:39 07/08/16 17:18 EPA 3050B 1 1,6010C Beryllium, Total ND 0.36 0.08 07/06/16 06:39 07/08/16 17:18 EPA 3050B mg/kg JΗ Cadmium, Total ND mg/kg 0.72 0.05 1 07/06/16 06:39 07/08/16 17:18 EPA 3050B 1,6010C JΗ 0.72 0.12 1 07/06/16 06:39 07/08/16 17:18 EPA 3050B 1,6010C Chromium, Total 4.1 mg/kg JΗ 14 0.72 0.13 1 07/06/16 06:39 07/08/16 17:18 EPA 3050B 1,6010C JΗ Copper, Total mg/kg Lead, Total 22 3.6 0.16 1 07/06/16 06:39 07/08/16 17:18 EPA 3050B 1,6010C JΗ mg/kg Mercury, Total 0.05 J mg/kg 0.12 0.03 1 07/06/16 10:40 07/11/16 19:06 EPA 7471B 1,7471B EΑ 1 1,6010C Nickel, Total 11 mg/kg 1.8 0.29 07/06/16 06:39 07/08/16 17:18 EPA 3050B JΗ Selenium, Total 1.4 mg/kg 1.4 0.19 1 07/06/16 06:39 07/08/16 17:18 EPA 3050B 1,6010C JΗ Silver, Total ND 0.72 0.14 1 07/06/16 06:39 07/08/16 17:18 EPA 3050B 1,6010C JH mg/kg

1.4

3.6

mg/kg

mg/kg

0.23

0.50

1

1

07/06/16 06:39 07/08/16 17:18 EPA 3050B

07/06/16 06:39 07/08/16 17:18 EPA 3050B

1,6010C

1,6010C

JΗ

JΗ

Thallium, Total

Zinc, Total

ND

210

Prep

Analytical

1,6010C

1,7471B

1,6010C

1,6010C

1,6010C

1,6010C

1,6010C

JΗ

EΑ

JΗ

JΗ

JH

JΗ

JΗ

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-27 Date Collected: 06/29/16 12:35

Client ID: P1-4 (8-12) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil
Percent Solids: 55%

190

0.06

12

2.2

ND

ND

770

Lead, Total

Mercury, Total

Selenium, Total

Nickel, Total

Silver, Total

Zinc, Total

Thallium, Total

Method Factor **Prepared Analyzed** Method Result Qualifier RL MDL **Parameter** Units **Analyst** Total Metals - Mansfield Lab Antimony, Total ND mg/kg 3.4 0.55 1 07/06/16 06:39 07/08/16 17:22 EPA 3050B 1,6010C JΗ 26 0.69 0.23 1 1,6010C JΗ Arsenic, Total mg/kg 07/06/16 06:39 07/08/16 17:22 EPA 3050B 1 1,6010C Beryllium, Total ND 0.34 0.08 07/06/16 06:39 07/08/16 17:22 EPA 3050B mg/kg JΗ Cadmium, Total 3.1 mg/kg 0.69 0.05 1 07/06/16 06:39 07/08/16 17:22 EPA 3050B 1,6010C JΗ 19 0.69 0.12 1 07/06/16 06:39 07/08/16 17:22 EPA 3050B 1,6010C Chromium, Total mg/kg JΗ 940 0.69 0.12 1 07/06/16 06:39 07/08/16 17:22 EPA 3050B 1,6010C JΗ Copper, Total mg/kg

0.15

0.02

0.28

0.19

0.14

0.22

0.48

3.4

0.11

1.7

1.4

0.69

1.4

3.4

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

J

Dilution

1

1

1

1

1

1

1

Date

Date

07/06/16 06:39 07/08/16 17:22 EPA 3050B

07/06/16 10:40 07/11/16 19:08 EPA 7471B

07/06/16 06:39 07/08/16 17:22 EPA 3050B

Prep

Analytical

1,7471B

1,6010C

1,6010C

1,6010C

1,6010C

1,6010C

EΑ

JΗ

JΗ

JH

JΗ

JΗ

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-28 Date Collected: 06/29/16 12:45

Client ID: P1-3 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil
Percent Solids: 84%

Mercury, Total

Selenium, Total

Nickel, Total

Silver, Total

Zinc, Total

Thallium, Total

ND

17

ND

ND

ND

34

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

0.08

1.2

0.95

0.47

0.95

2.4

Method Factor **Prepared Analyzed** Method Result Qualifier RL MDL **Parameter** Units **Analyst** Total Metals - Mansfield Lab Antimony, Total ND mg/kg 2.4 0.38 1 07/06/16 06:39 07/08/16 17:26 EPA 3050B 1,6010C JΗ 4.5 1 1,6010C JΗ Arsenic, Total mg/kg 0.47 0.16 07/06/16 06:39 07/08/16 17:26 EPA 3050B J 1 1,6010C Beryllium, Total 0.20 0.24 0.05 07/06/16 06:39 07/08/16 17:26 EPA 3050B mg/kg JΗ Cadmium, Total ND mg/kg 0.47 0.03 1 07/06/16 06:39 07/08/16 17:26 EPA 3050B 1,6010C JΗ 0.08 1 07/06/16 06:39 07/08/16 17:26 EPA 3050B 1,6010C Chromium, Total 13 mg/kg 0.47 JΗ 14 0.47 0.09 1 07/06/16 06:39 07/08/16 17:26 EPA 3050B 1,6010C JΗ Copper, Total mg/kg Lead, Total 12 2.4 0.10 1 07/06/16 06:39 07/08/16 17:26 EPA 3050B 1,6010C JΗ mg/kg

0.02

0.19

0.13

0.10

0.15

0.33

1

1

1

1

1

1

Dilution

Date

Date

07/06/16 10:40 07/11/16 19:10 EPA 7471B

07/06/16 06:39 07/08/16 17:26 EPA 3050B

07/06/16 06:39 07/08/16 17:30 EPA 3050B

07/06/16 06:39 07/08/16 17:30 EPA 3050B

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 **Report Date:** 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-29 Date Collected: 06/29/16 12:45

Client ID: Date Received: 06/30/16 P1-3 (8-12) Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil

55% Percent Solids: **Dilution** Date Date Prep **Analytical** Method Factor **Prepared Analyzed** Method Result Qualifier RL MDL **Parameter** Units **Analyst** Total Metals - Mansfield Lab Antimony, Total ND mg/kg 3.6 0.57 1 07/06/16 06:39 07/08/16 17:30 EPA 3050B 1,6010C JΗ 0.49 J 0.71 0.24 1 1,6010C JΗ Arsenic, Total mg/kg 07/06/16 06:39 07/08/16 17:30 EPA 3050B 1 1,6010C Beryllium, Total ND 0.36 0.08 07/06/16 06:39 07/08/16 17:30 EPA 3050B mg/kg JΗ Cadmium, Total ND mg/kg 0.71 0.05 1 07/06/16 06:39 07/08/16 17:30 EPA 3050B 1,6010C JΗ 0.71 0.12 1 07/06/16 06:39 07/08/16 17:30 EPA 3050B 1,6010C Chromium, Total 2.9 mg/kg JΗ 7.1 0.71 0.13 1 07/06/16 06:39 07/08/16 17:30 EPA 3050B 1,6010C JΗ Copper, Total mg/kg Lead, Total 2.8 J 3.6 0.16 1 07/06/16 06:39 07/08/16 17:30 EPA 3050B 1,6010C JΗ mg/kg Mercury, Total ND mg/kg 0.13 0.03 1 07/06/16 10:40 07/11/16 19:12 EPA 7471B 1,7471B EΑ 5.3 1 1,6010C Nickel, Total mg/kg 1.8 0.28 07/06/16 06:39 07/08/16 17:30 EPA 3050B JΗ Selenium, Total 1.6 mg/kg 1.4 0.19 1 07/06/16 06:39 07/08/16 17:30 EPA 3050B 1,6010C JΗ Silver, Total ND 0.71 0.14 1 07/06/16 06:39 07/08/16 17:30 EPA 3050B 1,6010C JH mg/kg ND 0.23 1 1,6010C JΗ

1.4

3.6

0.50

1

mg/kg

mg/kg

1,6010C

JΗ

Thallium, Total

38

Zinc, Total

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

 Lab ID:
 L1620368-30
 Date Collected:
 06/29/16 13:05

 Client ID:
 P4-1 (0-4)
 Date Received:
 06/30/16

Client ID: P4-1 (0-4) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil
Percent Solids: 87%

Dilution Date Date Prep **Analytical** Method Factor **Prepared Analyzed** Method Result Qualifier RL MDL **Parameter** Units **Analyst** Total Metals - Mansfield Lab Antimony, Total ND mg/kg 2.3 0.36 1 07/06/16 06:39 07/08/16 17:34 EPA 3050B 1,6010C JΗ 12 1 1,6010C JΗ Arsenic, Total mg/kg 0.45 0.15 07/06/16 06:39 07/08/16 17:34 EPA 3050B J 1 1,6010C Beryllium, Total 0.13 0.23 0.05 07/06/16 06:39 07/08/16 17:34 EPA 3050B mg/kg JΗ Cadmium, Total 1.9 mg/kg 0.45 0.03 1 07/06/16 06:39 07/08/16 17:34 EPA 3050B 1,6010C JΗ 7.9 0.45 0.08 1 07/06/16 06:39 07/08/16 17:34 EPA 3050B 1,6010C Chromium, Total mg/kg JΗ 310 0.45 0.08 1 07/06/16 06:39 07/08/16 17:34 EPA 3050B 1,6010C JΗ Copper, Total mg/kg Lead, Total 380 2.3 0.10 1 07/06/16 06:39 07/08/16 17:34 EPA 3050B 1,6010C JΗ mg/kg Mercury, Total 0.35 mg/kg 0.07 0.02 1 07/06/16 10:40 07/11/16 19:14 EPA 7471B 1,7471B EΑ 10 1 1,6010C Nickel, Total mg/kg 1.1 0.18 07/06/16 06:39 07/08/16 17:34 EPA 3050B JΗ Selenium, Total 0.67 J mg/kg 0.90 0.12 1 07/06/16 06:39 07/08/16 17:34 EPA 3050B 1,6010C JΗ Silver, Total 1.0 0.45 0.09 1 07/06/16 06:39 07/08/16 17:34 EPA 3050B 1,6010C JH mg/kg

0.90

2.3

mg/kg

mg/kg

0.14

0.32

1

1

07/06/16 06:39 07/08/16 17:34 EPA 3050B

07/06/16 06:39 07/08/16 17:34 EPA 3050B

1,6010C

1,6010C

JΗ

JΗ

Thallium, Total

Zinc, Total

ND

780

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-31 Date Collected: 06/29/16 13:05

Client ID: P4-1 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil

Percent Solids: 43%

Dilution Date Date Prep Analytical

Percent Solids: 43%

Dilution Date Date Prep Analytical Method Method Analyses

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Mar	nsfield Lab										
Antimony, Total	ND		mg/kg	4.5	0.72	1	07/06/16 06:39	07/08/16 17:38	B EPA 3050B	1,6010C	JH
Arsenic, Total	17		mg/kg	0.90	0.30	1	07/06/16 06:39	07/08/16 17:38	B EPA 3050B	1,6010C	JH
Beryllium, Total	0.20	J	mg/kg	0.45	0.10	1	07/06/16 06:39	07/08/16 17:38	B EPA 3050B	1,6010C	JH
Cadmium, Total	0.40	J	mg/kg	0.90	0.06	1	07/06/16 06:39	07/08/16 17:38	B EPA 3050B	1,6010C	JH
Chromium, Total	24		mg/kg	0.90	0.15	1	07/06/16 06:39	07/08/16 17:38	B EPA 3050B	1,6010C	JH
Copper, Total	120		mg/kg	0.90	0.16	1	07/06/16 06:39	07/08/16 17:38	B EPA 3050B	1,6010C	JH
Lead, Total	37		mg/kg	4.5	0.20	1	07/06/16 06:39	07/08/16 17:38	B EPA 3050B	1,6010C	JH
Mercury, Total	ND		mg/kg	0.15	0.03	1	07/06/16 10:40	07/11/16 19:15	EPA 7471B	1,7471B	EA
Nickel, Total	19		mg/kg	2.2	0.36	1	07/06/16 06:39	07/08/16 17:38	B EPA 3050B	1,6010C	JH
Selenium, Total	0.89	J	mg/kg	1.8	0.24	1	07/06/16 06:39	07/08/16 17:38	B EPA 3050B	1,6010C	JH
Silver, Total	0.19	J	mg/kg	0.90	0.18	1	07/06/16 06:39	07/08/16 17:38	B EPA 3050B	1,6010C	JH
Thallium, Total	ND		mg/kg	1.8	0.29	1		07/08/16 17:38		1,6010C	JH
Zinc, Total	390		mg/kg	4.5	0.63	1	07/06/16 06:39	07/08/16 17:38	B EPA 3050B	1,6010C	JH

Project Number: 15209 **Report Date:** 07/13/16

SAMPLE RESULTS

Date Collected: Lab ID: L1620368-32 06/29/16 13:15

Client ID: Date Received: P4-2 (2-4) 06/30/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil Percent Solids: 89%

Dilution Date Date Prep Analytical

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Mansfield Lab											
Antimony, Total	ND		mg/kg	11	1.7	5	07/06/16 06:39	07/11/16 17:49	EPA 3050B	1,6010C	PS
Arsenic, Total	21		mg/kg	0.44	0.14	1	07/06/16 06:39	07/08/16 18:10	EPA 3050B	1,6010C	JH
Beryllium, Total	0.29		mg/kg	0.22	0.05	1	07/06/16 06:39	07/08/16 18:10	EPA 3050B	1,6010C	JH
Cadmium, Total	4.1		mg/kg	0.44	0.03	1	07/06/16 06:39	07/08/16 18:10	EPA 3050B	1,6010C	JH
Chromium, Total	7.7		mg/kg	0.44	0.07	1	07/06/16 06:39	07/08/16 18:10	EPA 3050B	1,6010C	JH
Copper, Total	480		mg/kg	0.44	0.08	1	07/06/16 06:39	07/08/16 18:10	EPA 3050B	1,6010C	JH
Lead, Total	220		mg/kg	2.2	0.10	1	07/06/16 06:39	07/08/16 18:10	EPA 3050B	1,6010C	JH
Mercury, Total	0.32		mg/kg	0.07	0.02	1	07/06/16 10:40	07/11/16 19:17	EPA 7471B	1,7471B	EA
Nickel, Total	12		mg/kg	1.1	0.17	1	07/06/16 06:39	07/08/16 18:10	EPA 3050B	1,6010C	JH
Selenium, Total	0.98		mg/kg	0.87	0.12	1	07/06/16 06:39	07/08/16 18:10	EPA 3050B	1,6010C	JH
Silver, Total	1.1		mg/kg	0.44	0.09	1	07/06/16 06:39	07/08/16 18:10	EPA 3050B	1,6010C	JH
Thallium, Total	ND		mg/kg	0.87	0.14	1	07/06/16 06:39	07/08/16 18:10	EPA 3050B	1,6010C	JH
Zinc, Total	2300		mg/kg	11	1.5	5	07/06/16 06:39	07/11/16 17:49	EPA 3050B	1,6010C	PS

Project Number: 15209 **Report Date:** 07/13/16

SAMPLE RESULTS

Date Collected: Lab ID: L1620368-33 06/29/16 13:15

Client ID: Date Received: P4-2 (4-6) 06/30/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil Percent Solids: 83%

Analytical Dilution Date Date Prep

Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
ield Lab										
ND		mg/kg	2.3	0.37	1	07/06/16 06:39	07/08/16 18:14	EPA 3050B	1,6010C	JH
7.4		mg/kg	0.46	0.15	1	07/06/16 06:39	07/08/16 18:14	EPA 3050B	1,6010C	JH
0.23		mg/kg	0.23	0.05	1	07/06/16 06:39	07/08/16 18:14	EPA 3050B	1,6010C	JH
2.0		mg/kg	0.46	0.03	1	07/06/16 06:39	07/08/16 18:14	EPA 3050B	1,6010C	JH
7.0		mg/kg	0.46	0.08	1	07/06/16 06:39	07/08/16 18:14	EPA 3050B	1,6010C	JH
58		mg/kg	0.46	0.08	1	07/06/16 06:39	07/08/16 18:14	EPA 3050B	1,6010C	JH
430		mg/kg	2.3	0.10	1	07/06/16 06:39	07/08/16 18:14	EPA 3050B	1,6010C	JH
0.15		mg/kg	0.08	0.02	1	07/06/16 10:40	07/11/16 19:19	EPA 7471B	1,7471B	EA
11		mg/kg	1.1	0.18	1	07/06/16 06:39	07/08/16 18:14	EPA 3050B	1,6010C	JH
1.2		mg/kg	0.92	0.12	1	07/06/16 06:39	07/08/16 18:14	EPA 3050B	1,6010C	JH
0.11	J	mg/kg	0.46	0.09	1	07/06/16 06:39	07/08/16 18:14	EPA 3050B	1,6010C	JH
ND		mg/kg	0.92	0.15	1	07/06/16 06:39	07/08/16 18:14	EPA 3050B	1,6010C	JH
740		mg/kg	2.3	0.32	1	07/06/16 06:39	07/08/16 18:14	EPA 3050B	1,6010C	JH
	ield Lab ND 7.4 0.23 2.0 7.0 58 430 0.15 11 1.2 0.11 ND	ield Lab ND 7.4 0.23 2.0 7.0 58 430 0.15 11 1.2 0.11 J ND	ield Lab ND mg/kg 7.4 mg/kg 0.23 mg/kg 2.0 mg/kg 7.0 mg/kg 58 mg/kg 430 mg/kg 0.15 mg/kg 11 mg/kg 1.2 mg/kg 0.11 J mg/kg ND mg/kg	ield Lab ND mg/kg 2.3 7.4 mg/kg 0.46 0.23 mg/kg 0.23 2.0 mg/kg 0.46 7.0 mg/kg 0.46 58 mg/kg 0.46 430 mg/kg 2.3 0.15 mg/kg 0.08 11 mg/kg 1.1 1.2 mg/kg 0.92 0.11 J mg/kg 0.92	ield Lab ND mg/kg 2.3 0.37 7.4 mg/kg 0.46 0.15 0.23 mg/kg 0.23 0.05 2.0 mg/kg 0.46 0.03 7.0 mg/kg 0.46 0.08 58 mg/kg 0.46 0.08 430 mg/kg 2.3 0.10 0.15 mg/kg 0.08 0.02 11 mg/kg 1.1 0.18 1.2 mg/kg 0.92 0.12 0.11 J mg/kg 0.92 0.15	ield Lab ND mg/kg 2.3 0.37 1 7.4 mg/kg 0.46 0.15 1 0.23 mg/kg 0.23 0.05 1 2.0 mg/kg 0.46 0.03 1 7.0 mg/kg 0.46 0.08 1 58 mg/kg 0.46 0.08 1 430 mg/kg 2.3 0.10 1 0.15 mg/kg 0.08 0.02 1 11 mg/kg 1.1 0.18 1 1.2 mg/kg 0.92 0.12 1 0.11 J mg/kg 0.92 0.15 1	ield Lab ND mg/kg 2.3 0.37 1 07/06/16 06:39 7.4 mg/kg 0.46 0.15 1 07/06/16 06:39 0.23 mg/kg 0.23 0.05 1 07/06/16 06:39 2.0 mg/kg 0.46 0.03 1 07/06/16 06:39 7.0 mg/kg 0.46 0.08 1 07/06/16 06:39 58 mg/kg 0.46 0.08 1 07/06/16 06:39 430 mg/kg 2.3 0.10 1 07/06/16 06:39 0.15 mg/kg 0.08 0.02 1 07/06/16 06:39 1.1 mg/kg 1.1 0.18 1 07/06/16 06:39 1.2 mg/kg 0.92 0.12 1 07/06/16 06:39 0.11 J mg/kg 0.92 0.15 1 07/06/16 06:39 ND mg/kg 0.92 0.15 1 07/06/16 06:39	ield Lab ND mg/kg 2.3 0.37 1 07/06/16 06:39 07/08/16 18:14 7.4 mg/kg 0.46 0.15 1 07/06/16 06:39 07/08/16 18:14 0.23 mg/kg 0.23 0.05 1 07/06/16 06:39 07/08/16 18:14 2.0 mg/kg 0.46 0.03 1 07/06/16 06:39 07/08/16 18:14 7.0 mg/kg 0.46 0.08 1 07/06/16 06:39 07/08/16 18:14 58 mg/kg 0.46 0.08 1 07/06/16 06:39 07/08/16 18:14 430 mg/kg 2.3 0.10 1 07/06/16 06:39 07/08/16 18:14 0.15 mg/kg 0.08 0.02 1 07/06/16 10:40 07/11/16 19:19 11 mg/kg 1.1 0.18 1 07/06/16 06:39 07/08/16 18:14 1.2 mg/kg 0.92 0.12 1 07/06/16 06:39 07/08/16 18:14 0.11 J mg/kg 0.92 0.15 1 07/06/16 06:39 07/08/16 18:14 ND mg/kg 0.92 0.15 1 07/06/16 06:39 07/08/16 18:14	ield Lab ND mg/kg 2.3 0.37 1 07/06/16 06:39 07/08/16 18:14 EPA 3050B 7.4 mg/kg 0.46 0.15 1 07/06/16 06:39 07/08/16 18:14 EPA 3050B 0.23 mg/kg 0.23 0.05 1 07/06/16 06:39 07/08/16 18:14 EPA 3050B 2.0 mg/kg 0.46 0.03 1 07/06/16 06:39 07/08/16 18:14 EPA 3050B 7.0 mg/kg 0.46 0.08 1 07/06/16 06:39 07/08/16 18:14 EPA 3050B 58 mg/kg 0.46 0.08 1 07/06/16 06:39 07/08/16 18:14 EPA 3050B 430 mg/kg 2.3 0.10 1 07/06/16 06:39 07/08/16 18:14 EPA 3050B 0.15 mg/kg 0.08 0.02 1 07/06/16 06:39 07/08/16 18:14 EPA 3050B 1.1 mg/kg 1.1 0.18 1 07/06/16 06:39 07/08/16 18:14 EPA 3050B 1.2 mg/kg 0.92 0.12 1 07/06/16 06:39 07/08/16 18:14 EPA 3050B ND mg/kg 0.92 0.15 1 07/06/16 06:39 07/08/16 18:14 EPA 3050B	ield Lab ND mg/kg 2.3 0.37 1 07/06/16 06:39 07/08/16 18:14 EPA 3050B 1,6010C 7.4 mg/kg 0.46 0.15 1 07/06/16 06:39 07/08/16 18:14 EPA 3050B 1,6010C 2.0 mg/kg 0.46 0.03 1 07/06/16 06:39 07/08/16 18:14 EPA 3050B 1,6010C 7.0 mg/kg 0.46 0.08 1 07/06/16 06:39 07/08/16 18:14 EPA 3050B 1,6010C 58 mg/kg 0.46 0.08 1 07/06/16 06:39 07/08/16 18:14 EPA 3050B 1,6010C 430 mg/kg 0.46 0.08 1 07/06/16 06:39 07/08/16 18:14 EPA 3050B 1,6010C 0.15 mg/kg 0.08 0.02 1 07/06/16 06:39 07/08/16 18:14 EPA 3050B 1,6010C 1.1 mg/kg 1.1 0.18 1 07/06/16 06:39 07/08/16 18:14 EPA 3050B 1,6010C 1.2 mg/kg 0.92 0.12 1 07/06/16 06:39 07/08/16 18:14 EPA 3050B 1,6010C 0.11 J mg/kg 0.46 0.09 1 07/06/16 06:39 07/08/16 18:14 EPA 3050B 1,6010C 0.11 J mg/kg 0.46 0.09 1 07/06/16 06:39 07/08/16 18:14 EPA 3050B 1,6010C ND mg/kg 0.92 0.15 1 07/06/16 06:39 07/08/16 18:14 EPA 3050B 1,6010C

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-35 Date Collected: 06/29/16 13:30

Client ID: P4-3 (2.5-3) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil Percent Solids: 83%

Percent Solids: 83%

Dilution Date Date Prep Analytical

Percent Solids: 83%

Dilution Date Date Prep Analytical Method Analyses

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Mans	sfield Lab										
Antimony, Total	ND		mg/kg	24	3.8	10	07/06/16 06:39	07/11/16 17:53	B EPA 3050B	1,6010C	PS
Arsenic, Total	57		mg/kg	0.47	0.16	1	07/06/16 06:39	07/08/16 18:18	EPA 3050B	1,6010C	JH
Beryllium, Total	0.16	J	mg/kg	0.24	0.05	1	07/06/16 06:39	07/08/16 18:18	B EPA 3050B	1,6010C	JH
Cadmium, Total	25		mg/kg	0.47	0.03	1	07/06/16 06:39	07/08/16 18:18	B EPA 3050B	1,6010C	JH
Chromium, Total	5.7		mg/kg	0.47	0.08	1	07/06/16 06:39	07/08/16 18:18	B EPA 3050B	1,6010C	JH
Copper, Total	2200		mg/kg	0.47	0.09	1	07/06/16 06:39	07/08/16 18:18	B EPA 3050B	1,6010C	JH
Lead, Total	440		mg/kg	2.4	0.10	1	07/06/16 06:39	07/08/16 18:18	B EPA 3050B	1,6010C	JH
Mercury, Total	0.54		mg/kg	0.08	0.02	1	07/06/16 10:40	07/11/16 19:25	EPA 7471B	1,7471B	EA
Nickel, Total	7.4		mg/kg	1.2	0.19	1	07/06/16 06:39	07/08/16 18:18	B EPA 3050B	1,6010C	JH
Selenium, Total	0.93	J	mg/kg	0.94	0.13	1	07/06/16 06:39	07/08/16 18:18	B EPA 3050B	1,6010C	JH
Silver, Total	8.6		mg/kg	0.47	0.09	1	07/06/16 06:39	07/08/16 18:18	EPA 3050B	1,6010C	JH
Thallium, Total	0.84	J	mg/kg	0.94	0.15	1	07/06/16 06:39	07/08/16 18:18	B EPA 3050B	1,6010C	JH
Zinc, Total	9800		mg/kg	24	3.3	10	07/06/16 06:39	07/11/16 17:53	B EPA 3050B	1,6010C	PS

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-36 Date Collected: 06/29/16 13:30

Client ID: P4-3 (4-6) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil Percent Solids: 84%

Percent Solids: 84%

Dilution Date Date Prep Analytical

Percented Analyzed Method Method Analyzed Method Method Analyzed

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Mans	field Lab										
Antimony, Total	ND		mg/kg	2.4	0.38	1	07/06/16 06:39	07/08/16 18:22	EPA 3050B	1,6010C	JH
Arsenic, Total	3.9		mg/kg	0.48	0.16	1	07/06/16 06:39	07/08/16 18:22	EPA 3050B	1,6010C	JH
Beryllium, Total	0.12	J	mg/kg	0.24	0.05	1	07/06/16 06:39	07/08/16 18:22	EPA 3050B	1,6010C	JH
Cadmium, Total	ND		mg/kg	0.48	0.03	1	07/06/16 06:39	07/08/16 18:22	EPA 3050B	1,6010C	JH
Chromium, Total	8.9		mg/kg	0.48	0.08	1	07/06/16 06:39	07/08/16 18:22	EPA 3050B	1,6010C	JH
Copper, Total	30		mg/kg	0.48	0.09	1	07/06/16 06:39	07/08/16 18:22	EPA 3050B	1,6010C	JH
Lead, Total	29		mg/kg	2.4	0.10	1	07/06/16 06:39	07/08/16 18:22	EPA 3050B	1,6010C	JH
Mercury, Total	0.14		mg/kg	0.08	0.02	1	07/06/16 10:40	07/11/16 19:27	EPA 7471B	1,7471B	EA
Nickel, Total	4.8		mg/kg	1.2	0.19	1	07/06/16 06:39	07/08/16 18:22	EPA 3050B	1,6010C	JH
Selenium, Total	0.24	J	mg/kg	0.95	0.13	1	07/06/16 06:39	07/08/16 18:22	EPA 3050B	1,6010C	JH
Silver, Total	ND		mg/kg	0.48	0.10	1	07/06/16 06:39	07/08/16 18:22	EPA 3050B	1,6010C	JH
Thallium, Total	ND		mg/kg	0.95	0.15	1	07/06/16 06:39	07/08/16 18:22	EPA 3050B	1,6010C	JH
Zinc, Total	58		mg/kg	2.4	0.33	1	07/06/16 06:39	07/08/16 18:22	EPA 3050B	1,6010C	JH

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-37 Date Collected: 06/29/16 14:20

Client ID: P1-2 (3-4) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil
Percent Solids: 82%

Dilution Date Date Prep **Analytical** Method Factor **Prepared Analyzed** Method Result Qualifier RL MDL **Parameter** Units **Analyst** Total Metals - Mansfield Lab Antimony, Total ND mg/kg 2.3 0.38 1 07/06/16 06:39 07/08/16 18:26 EPA 3050B 1,6010C JΗ 0.31 J 1 1,6010C JΗ Arsenic, Total mg/kg 0.47 0.16 07/06/16 06:39 07/08/16 18:26 EPA 3050B 1 1,6010C Beryllium, Total 0.39 0.23 0.05 07/06/16 06:39 07/08/16 18:26 EPA 3050B mg/kg JΗ J Cadmium, Total 0.30 mg/kg 0.47 0.03 1 07/06/16 06:39 07/08/16 18:26 EPA 3050B 1,6010C JΗ 22 0.08 1 07/06/16 06:39 07/08/16 18:26 EPA 3050B 1,6010C Chromium, Total mg/kg 0.47 JΗ 0.47 0.08 1 07/06/16 06:39 07/08/16 18:26 EPA 3050B 1,6010C JΗ Copper, Total 11 mg/kg Lead, Total 5.2 2.3 0.10 1 07/06/16 06:39 07/08/16 18:26 EPA 3050B 1,6010C JΗ mg/kg Mercury, Total 0.04 J mg/kg 0.08 0.02 1 07/06/16 10:40 07/11/16 19:28 EPA 7471B 1,7471B EΑ 1 1,6010C Nickel, Total 33 mg/kg 1.2 0.19 07/06/16 06:39 07/08/16 18:26 EPA 3050B JΗ Selenium, Total ND mg/kg 0.94 0.13 1 07/06/16 06:39 07/08/16 18:26 EPA 3050B 1,6010C JΗ Silver, Total ND 0.47 0.09 1 07/06/16 06:39 07/08/16 18:26 EPA 3050B 1,6010C JH mg/kg Thallium, Total ND 0.94 0.15 1 07/06/16 06:39 07/08/16 18:26 EPA 3050B 1,6010C JΗ mg/kg

1,6010C

JΗ

Zinc, Total

640

mg/kg

2.3

0.33

1

07/06/16 06:39 07/08/16 18:26 EPA 3050B

Project Number: 15209 **Report Date:** 07/13/16

SAMPLE RESULTS

Date Collected: Lab ID: L1620368-38 06/30/16 08:30

Client ID: Date Received: P1-1 (4-8) 06/30/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil Percent Solids: 72%

Analytical Dilution Date Date Prep

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Man	sfield Lab										
Antimony, Total	ND		mg/kg	2.7	0.44	1	07/06/16 06:39	07/08/16 18:30	EPA 3050B	1,6010C	JH
Arsenic, Total	2.1		mg/kg	0.55	0.18	1	07/06/16 06:39	07/08/16 18:30	EPA 3050B	1,6010C	JH
Beryllium, Total	ND		mg/kg	0.27	0.06	1	07/06/16 06:39	07/08/16 18:30	EPA 3050B	1,6010C	JH
Cadmium, Total	0.16	J	mg/kg	0.55	0.04	1	07/06/16 06:39	07/08/16 18:30	EPA 3050B	1,6010C	JH
Chromium, Total	1.5		mg/kg	0.55	0.09	1	07/06/16 06:39	07/08/16 18:30	EPA 3050B	1,6010C	JH
Copper, Total	21		mg/kg	0.55	0.10	1	07/06/16 06:39	07/08/16 18:30	EPA 3050B	1,6010C	JH
Lead, Total	32		mg/kg	2.7	0.12	1	07/06/16 06:39	07/08/16 18:30	EPA 3050B	1,6010C	JH
Mercury, Total	ND		mg/kg	0.10	0.02	1	07/06/16 10:40	07/11/16 19:30	EPA 7471B	1,7471B	EA
Nickel, Total	3.8		mg/kg	1.4	0.22	1	07/06/16 06:39	07/08/16 18:30	EPA 3050B	1,6010C	JH
Selenium, Total	2.2		mg/kg	1.1	0.15	1	07/06/16 06:39	07/08/16 18:30	EPA 3050B	1,6010C	JH
Silver, Total	ND		mg/kg	0.55	0.11	1	07/06/16 06:39	07/08/16 18:30	EPA 3050B	1,6010C	JH
Thallium, Total	ND		mg/kg	1.1	0.17	1	07/06/16 06:39	07/08/16 18:30	EPA 3050B	1,6010C	JH
Zinc, Total	150		mg/kg	2.7	0.38	1	07/06/16 06:39	07/08/16 18:30	EPA 3050B	1,6010C	JH

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-39 Date Collected: 06/30/16 08:30

Client ID: P1-1 (8-10) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil
Percent Solids: 54%

Dilution Date Date Prep **Analytical** Method Factor **Prepared Analyzed** Method Result Qualifier RL MDL **Parameter** Units **Analyst** Total Metals - Mansfield Lab Antimony, Total ND mg/kg 3.5 0.57 1 07/06/16 06:39 07/08/16 18:34 EPA 3050B 1,6010C JΗ 16 0.71 0.23 1 1,6010C JΗ Arsenic, Total mg/kg 07/06/16 06:39 07/08/16 18:34 EPA 3050B J 1 1,6010C Beryllium, Total 0.18 0.35 0.08 07/06/16 06:39 07/08/16 18:34 EPA 3050B mg/kg JΗ Cadmium, Total 2.3 mg/kg 0.71 0.05 1 07/06/16 06:39 07/08/16 18:34 EPA 3050B 1,6010C JΗ 9.0 0.71 0.12 1 07/06/16 06:39 07/08/16 18:34 EPA 3050B 1,6010C Chromium, Total mg/kg JΗ 110 0.71 0.13 1 07/06/16 06:39 07/08/16 18:34 EPA 3050B 1,6010C JΗ Copper, Total mg/kg Lead, Total 170 3.5 0.16 1 07/06/16 06:39 07/08/16 18:34 EPA 3050B 1,6010C JΗ mg/kg Mercury, Total ND mg/kg 0.12 0.03 1 07/06/16 10:40 07/11/16 19:32 EPA 7471B 1,7471B EΑ 1 1,6010C Nickel, Total 11 mg/kg 1.8 0.28 07/06/16 06:39 07/08/16 18:34 EPA 3050B JΗ Selenium, Total 1.2 J mg/kg 1.4 0.19 1 07/06/16 06:39 07/08/16 18:34 EPA 3050B 1,6010C JΗ Silver, Total ND 0.71 0.14 1 07/06/16 06:39 07/08/16 18:34 EPA 3050B 1,6010C JH mg/kg Thallium, Total ND 1.4 0.23 1 07/06/16 06:39 07/08/16 18:34 EPA 3050B 1,6010C JΗ mg/kg

1,6010C

JΗ

Zinc, Total

480

mg/kg

3.5

0.50

1

07/06/16 06:39 07/08/16 18:34 EPA 3050B

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-40 Date Collected: 06/30/16 08:40

Client ID: P2-1 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil
Percent Solids: 60%

Percent Solids: **Dilution** Date Date Prep **Analytical** Method Method Factor **Prepared Analyzed** Result Qualifier RL MDL **Parameter** Units **Analyst** Total Metals - Mansfield Lab Antimony, Total ND mg/kg 3.3 0.53 1 07/06/16 06:39 07/08/16 18:38 EPA 3050B 1,6010C JΗ 5.9 0.22 1 1,6010C JΗ Arsenic, Total mg/kg 0.66 07/06/16 06:39 07/08/16 18:38 EPA 3050B 1 1,6010C Beryllium, Total ND 0.33 0.07 07/06/16 06:39 07/08/16 18:38 EPA 3050B mg/kg JΗ Cadmium, Total 0.90 mg/kg 0.66 0.05 1 07/06/16 06:39 07/08/16 18:38 EPA 3050B 1,6010C JΗ 0.66 0.11 1 07/06/16 06:39 07/08/16 18:38 EPA 3050B 1,6010C Chromium, Total 5.5 mg/kg JΗ 26 0.66 0.12 1 07/06/16 06:39 07/08/16 18:38 EPA 3050B 1,6010C JΗ Copper, Total mg/kg Lead, Total 60 3.3 0.14 1 07/06/16 06:39 07/08/16 18:38 EPA 3050B 1,6010C JΗ mg/kg Mercury, Total 0.16 mg/kg 0.11 0.02 1 07/06/16 10:40 07/11/16 19:34 EPA 7471B 1,7471B EΑ 8.3 1 1,6010C Nickel, Total mg/kg 1.6 0.26 07/06/16 06:39 07/08/16 18:38 EPA 3050B JΗ Selenium, Total 2.4 mg/kg 1.3 0.18 1 07/06/16 06:39 07/08/16 18:38 EPA 3050B 1,6010C JΗ Silver, Total ND 0.66 1 07/06/16 06:39 07/08/16 18:38 EPA 3050B 1,6010C JH mg/kg 0.13 0.21 Thallium, Total ND 1.3 1 07/06/16 06:39 07/08/16 18:38 EPA 3050B 1,6010C JΗ mg/kg

1,6010C

PS

Zinc, Total

2600

mg/kg

16

2.3

5

07/06/16 06:39 07/11/16 18:33 EPA 3050B

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-41 Date Collected: 06/30/16 08:40

Client ID: P2-1 (8-10) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil
Percent Solids: 52%

Dilution Date Date Prep **Analytical** Method **Prepared** Method Factor **Analyzed** Result Qualifier RL MDL **Parameter** Units **Analyst** Total Metals - Mansfield Lab Antimony, Total ND mg/kg 3.8 0.60 1 07/06/16 06:39 07/08/16 18:42 EPA 3050B 1,6010C JΗ 4.5 0.75 0.25 1 07/06/16 06:39 07/08/16 18:42 EPA 3050B 1,6010C JΗ Arsenic, Total mg/kg 1 1,6010C Beryllium, Total ND 0.38 0.08 07/06/16 06:39 07/08/16 18:42 EPA 3050B mg/kg JΗ Cadmium, Total ND mg/kg 0.75 0.05 1 07/06/16 06:39 07/08/16 18:42 EPA 3050B 1,6010C JΗ 0.17 J 0.75 0.13 1 07/06/16 06:39 07/08/16 18:42 EPA 3050B 1,6010C Chromium, Total mg/kg JΗ 0.94 0.75 0.14 1 07/06/16 06:39 07/08/16 18:42 EPA 3050B 1,6010C JΗ Copper, Total mg/kg J Lead, Total 0.20 mg/kg 3.8 0.16 1 07/06/16 06:39 07/08/16 18:42 EPA 3050B 1,6010C JΗ Mercury, Total ND mg/kg 0.13 0.03 1 07/06/16 10:40 07/11/16 19:36 EPA 7471B 1,7471B EΑ 1 1,6010C Nickel, Total 3.1 mg/kg 1.9 0.30 07/06/16 06:39 07/08/16 18:42 EPA 3050B JΗ Selenium, Total 1.3 J mg/kg 1.5 0.20 1 07/06/16 06:39 07/08/16 18:42 EPA 3050B 1,6010C JΗ Silver, Total ND 0.75 0.15 1 07/06/16 06:39 07/08/16 18:42 EPA 3050B 1,6010C JH mg/kg Thallium, Total ND 1.5 0.24 1 07/06/16 06:39 07/08/16 18:42 EPA 3050B 1,6010C JΗ mg/kg Zinc, Total 560 mg/kg 3.8 0.53 1 07/06/16 06:39 07/08/16 18:42 EPA 3050B 1,6010C JΗ

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-43 Date Collected: 06/30/16 09:05

Client ID: P2-2 (8-10) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil
Percent Solids: 65%

Dilution Date Date Prep **Analytical** Method Factor **Prepared Analyzed** Method Result Qualifier RL MDL **Parameter** Units **Analyst** Total Metals - Mansfield Lab Antimony, Total ND mg/kg 3.0 0.48 1 07/06/16 06:39 07/08/16 17:06 EPA 3050B 1,6010C JΗ 0.20 1 1,6010C JΗ Arsenic, Total 3.1 mg/kg 0.60 07/06/16 06:39 07/08/16 17:06 EPA 3050B J 1 1,6010C Beryllium, Total 0.16 0.30 0.07 07/06/16 06:39 07/08/16 17:06 EPA 3050B mg/kg JΗ Cadmium, Total ND mg/kg 0.60 0.04 1 07/06/16 06:39 07/08/16 17:06 EPA 3050B 1,6010C JΗ 7.7 0.60 0.10 1 07/06/16 06:39 07/08/16 17:06 EPA 3050B 1,6010C Chromium, Total mg/kg JΗ 13 0.60 0.11 1 07/06/16 06:39 07/08/16 17:06 EPA 3050B 1,6010C JΗ Copper, Total mg/kg Lead, Total 23 3.0 0.13 1 07/06/16 06:39 07/08/16 17:06 EPA 3050B 1,6010C JΗ mg/kg Mercury, Total 0.11 mg/kg 0.10 0.02 1 07/06/16 10:40 07/07/16 10:50 EPA 7471B 1,7471B ΒV 1 1,6010C Nickel, Total 9.1 mg/kg 1.5 0.24 07/06/16 06:39 07/08/16 17:06 EPA 3050B JΗ Selenium, Total 0.57 J mg/kg 1.2 0.16 1 07/06/16 06:39 07/08/16 17:06 EPA 3050B 1,6010C JΗ Silver, Total ND 0.60 0.12 1 07/06/16 06:39 07/08/16 17:06 EPA 3050B 1,6010C JH mg/kg J Thallium, Total 0.21 1.2 0.19 1 07/06/16 06:39 07/08/16 17:06 EPA 3050B 1,6010C JΗ mg/kg Zinc, Total 180 mg/kg 3.0 0.42 1 07/06/16 06:39 07/08/16 17:06 EPA 3050B 1,6010C JΗ

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-44 Date Collected: 06/30/16 09:25

Client ID: P2-3 (8-10) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil
Percent Solids: 44%

Dilution Date Date Prep **Analytical** Method **Prepared** Method Factor **Analyzed** Result Qualifier RL MDL **Parameter** Units **Analyst** Total Metals - Mansfield Lab Antimony, Total ND mg/kg 4.5 0.71 1 07/06/16 06:39 07/08/16 15:52 EPA 3050B 1,6010C JΗ 5.4 0.29 1 1,6010C JΗ Arsenic, Total mg/kg 0.89 07/06/16 06:39 07/08/16 15:52 EPA 3050B 1 1,6010C Beryllium, Total ND 0.45 0.10 07/06/16 06:39 07/08/16 15:52 EPA 3050B mg/kg JΗ Cadmium, Total 2.0 mg/kg 0.89 0.06 1 07/06/16 06:39 07/08/16 15:52 EPA 3050B 1,6010C JΗ 0.89 0.15 1 07/06/16 06:39 07/08/16 15:52 EPA 3050B 1,6010C Chromium, Total 1.8 mg/kg JΗ 39 0.89 0.16 1 07/06/16 06:39 07/08/16 15:52 EPA 3050B 1,6010C JΗ Copper, Total mg/kg Lead, Total 70 4.5 0.20 1 07/06/16 06:39 07/08/16 15:52 EPA 3050B 1,6010C JΗ mg/kg Mercury, Total ND mg/kg 0.15 0.03 1 07/06/16 10:40 07/07/16 10:25 EPA 7471B 1,7471B ΒV 1 3.3 2.2 1,6010C Nickel, Total mg/kg 0.36 07/06/16 06:39 07/08/16 15:52 EPA 3050B JΗ Selenium, Total 0.53 J mg/kg 1.8 0.24 1 07/06/16 06:39 07/08/16 15:52 EPA 3050B 1,6010C JΗ Silver, Total ND 0.89 0.18 1 07/06/16 06:39 07/08/16 15:52 EPA 3050B 1,6010C JH mg/kg J Thallium, Total 0.28 1.8 0.28 1 07/06/16 06:39 07/08/16 15:52 EPA 3050B 1,6010C JΗ mg/kg

1,6010C

JΗ

Zinc, Total

850

mg/kg

4.5

0.62

1

07/06/16 06:39 07/08/16 15:52 EPA 3050B

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-45

Client ID: DUP01

Sample Location: SYRACUSE, NY

ND

0.38

4.9

Matrix: Soil

Percent Solids: 49%

Silver, Total

Zinc, Total

Thallium, Total

Date Collected: 06/29/16 12:00 Date Received: 06/30/16

Field Prep: Not Specified

07/06/16 06:39 07/08/16 17:10 EPA 3050B

07/06/16 06:39 07/08/16 17:10 EPA 3050B

07/06/16 06:39 07/08/16 17:10 EPA 3050B

Dilution Date Date Prep **Analytical** Method **Prepared** Method Factor **Analyzed** Qualifier RL MDL **Parameter** Result Units **Analyst** Total Metals - Mansfield Lab Antimony, Total ND mg/kg 4.0 0.64 1 07/06/16 06:39 07/08/16 17:10 EPA 3050B 1,6010C JΗ ND 0.80 0.26 1 07/06/16 06:39 07/08/16 17:10 EPA 3050B 1,6010C JΗ Arsenic, Total mg/kg 1 1,6010C Beryllium, Total ND 0.40 0.09 07/06/16 06:39 07/08/16 17:10 EPA 3050B mg/kg JΗ Cadmium, Total ND mg/kg 0.80 0.06 1 07/06/16 06:39 07/08/16 17:10 EPA 3050B 1,6010C JΗ 0.74 J 0.80 0.14 1 07/06/16 06:39 07/08/16 17:10 EPA 3050B 1,6010C Chromium, Total mg/kg JΗ 0.95 0.80 0.14 1 07/06/16 06:39 07/08/16 17:10 EPA 3050B 1,6010C JΗ Copper, Total mg/kg Lead, Total ND 4.0 0.18 1 07/06/16 06:39 07/08/16 17:10 EPA 3050B 1,6010C JΗ mg/kg Mercury, Total ND mg/kg 0.13 0.03 1 07/06/16 10:40 07/07/16 10:52 EPA 7471B 1,7471B ΒV 4.7 1 1,6010C Nickel, Total mg/kg 2.0 0.32 07/06/16 06:39 07/08/16 17:10 EPA 3050B JΗ Selenium, Total 2.8 mg/kg 1.6 0.22 1 07/06/16 06:39 07/08/16 17:10 EPA 3050B 1,6010C JΗ

0.80

1.6

4.0

mg/kg

mg/kg

mg/kg

J

0.16

0.26

0.56

1

1

1

1,6010C

1,6010C

1,6010C

JH

JΗ

JΗ

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-46

Client ID: DUP02

Sample Location: SYRACUSE, NY

Matrix: Soil

Percent Solids: 59%

Date Collected: 06/30/16 12:00

Date Received: 06/30/16

Field Prep: Not Specified

i ordorit condo.	0070					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Man	sfield Lab										
Antimony, Total	ND		mg/kg	3.4	0.54	1	07/06/16 06:3	9 07/08/16 17:15	EPA 3050B	1,6010C	JH
Arsenic, Total	2.5		mg/kg	0.68	0.22	1	07/06/16 06:3	9 07/08/16 17:15	EPA 3050B	1,6010C	JH
Beryllium, Total	ND		mg/kg	0.34	0.07	1	07/06/16 06:3	9 07/08/16 17:15	EPA 3050B	1,6010C	JH
Cadmium, Total	ND		mg/kg	0.68	0.05	1	07/06/16 06:3	9 07/08/16 17:15	EPA 3050B	1,6010C	JH
Chromium, Total	0.81		mg/kg	0.68	0.11	1	07/06/16 06:3	9 07/08/16 17:15	EPA 3050B	1,6010C	JH
Copper, Total	3.5		mg/kg	0.68	0.12	1	07/06/16 06:3	9 07/08/16 17:15	EPA 3050B	1,6010C	JH
Lead, Total	0.57	J	mg/kg	3.4	0.15	1	07/06/16 06:3	9 07/08/16 17:15	EPA 3050B	1,6010C	JH
Mercury, Total	ND		mg/kg	0.11	0.02	1	07/06/16 10:4	0 07/07/16 10:53	EPA 7471B	1,7471B	BV
Nickel, Total	3.6		mg/kg	1.7	0.27	1	07/06/16 06:3	9 07/08/16 17:15	EPA 3050B	1,6010C	JH
Selenium, Total	2.0		mg/kg	1.4	0.18	1	07/06/16 06:3	9 07/08/16 17:15	EPA 3050B	1,6010C	JH
Silver, Total	ND		mg/kg	0.68	0.14	1	07/06/16 06:3	9 07/08/16 17:15	EPA 3050B	1,6010C	JH
Thallium, Total	ND		mg/kg	1.4	0.22	1	07/06/16 06:3	9 07/08/16 17:15	EPA 3050B	1,6010C	JH
Zinc, Total	53		mg/kg	3.4	0.47	1	07/06/16 06:3	9 07/08/16 17:15	EPA 3050B	1,6010C	JH

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-47 Date Collected: 06/30/16 13:00

Client ID: DUP03 Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil Percent Solids: 55%

Dilution Date Date Prep **Analytical** Method **Prepared** Method Factor **Analyzed** Result Qualifier RL MDL **Parameter** Units **Analyst** Total Metals - Mansfield Lab Antimony, Total ND mg/kg 3.6 0.58 1 07/06/16 06:39 07/08/16 17:19 EPA 3050B 1,6010C JΗ 4.2 0.24 1 07/06/16 06:39 07/08/16 17:19 EPA 3050B 1,6010C JΗ Arsenic, Total mg/kg 0.72 1 1,6010C Beryllium, Total ND 0.36 0.08 07/06/16 06:39 07/08/16 17:19 EPA 3050B JΗ mg/kg Cadmium, Total ND mg/kg 0.72 0.05 1 07/06/16 06:39 07/08/16 17:19 EPA 3050B 1,6010C JΗ 1.0 0.72 0.12 1 07/06/16 06:39 07/08/16 17:19 EPA 3050B 1,6010C Chromium, Total mg/kg JΗ 1.6 0.72 0.13 1 07/06/16 06:39 07/08/16 17:19 EPA 3050B 1,6010C JΗ Copper, Total mg/kg J Lead, Total 0.53 mg/kg 3.6 0.16 1 07/06/16 06:39 07/08/16 17:19 EPA 3050B 1,6010C JΗ Mercury, Total ND mg/kg 0.12 0.03 1 07/06/16 10:40 07/07/16 10:55 EPA 7471B 1,7471B ΒV 1 1,6010C Nickel, Total 3.1 mg/kg 1.8 0.29 07/06/16 06:39 07/08/16 17:19 EPA 3050B JΗ Selenium, Total 2.4 mg/kg 1.4 0.19 1 07/06/16 06:39 07/08/16 17:19 EPA 3050B 1,6010C JΗ Silver, Total ND 0.72 0.14 1 07/06/16 06:39 07/08/16 17:19 EPA 3050B 1,6010C JH mg/kg Thallium, Total ND 1.4 0.23 1 07/06/16 06:39 07/08/16 17:19 EPA 3050B 1,6010C JΗ mg/kg

1,6010C

JΗ

Zinc, Total

450

mg/kg

3.6

0.50

1

07/06/16 06:39 07/08/16 17:19 EPA 3050B

Project Number: 15209 **Report Date:** 07/13/16

SAMPLE RESULTS

Date Collected: Lab ID: L1620368-48 06/30/16 09:15

Client ID: Date Received: P2-3 (4-8) 06/30/16 Field Prep: Sample Location: SYRACUSE, NY Not Specified

Matrix: Soil Percent Solids: 63%

Analytical Dilution Date Date Prep

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Mar	nsfield Lab										
Antimony, Total	ND		mg/kg	3.2	0.51	1	07/06/16 06:39	07/08/16 18:02	EPA 3050B	1,6010C	JH
Arsenic, Total	1.2		mg/kg	0.63	0.21	1	07/06/16 06:39	07/08/16 18:02	EPA 3050B	1,6010C	JH
Beryllium, Total	ND		mg/kg	0.32	0.07	1	07/06/16 06:39	07/08/16 18:02	EPA 3050B	1,6010C	JH
Cadmium, Total	2.1		mg/kg	0.63	0.04	1	07/06/16 06:39	07/08/16 18:02	EPA 3050B	1,6010C	JH
Chromium, Total	0.30	J	mg/kg	0.63	0.11	1	07/06/16 06:39	07/08/16 18:02	EPA 3050B	1,6010C	JH
Copper, Total	2.7		mg/kg	0.63	0.11	1	07/06/16 06:39	07/08/16 18:02	EPA 3050B	1,6010C	JH
Lead, Total	25		mg/kg	3.2	0.14	1	07/06/16 06:39	07/08/16 18:02	EPA 3050B	1,6010C	JH
Mercury, Total	0.05	J	mg/kg	0.10	0.02	1	07/06/16 10:40	07/07/16 10:57	EPA 7471B	1,7471B	BV
Nickel, Total	2.1		mg/kg	1.6	0.25	1	07/06/16 06:39	07/08/16 18:02	EPA 3050B	1,6010C	JH
Selenium, Total	0.58	J	mg/kg	1.3	0.17	1	07/06/16 06:39	07/08/16 18:02	EPA 3050B	1,6010C	JH
Silver, Total	ND		mg/kg	0.63	0.13	1	07/06/16 06:39	07/08/16 18:02	EPA 3050B	1,6010C	JH
Thallium, Total	0.22	J	mg/kg	1.3	0.20	1	07/06/16 06:39	07/08/16 18:02	EPA 3050B	1,6010C	JH
Zinc, Total	840		mg/kg	3.2	0.44	1	07/06/16 06:39	07/08/16 18:02	EPA 3050B	1,6010C	JH

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number:

L1620368

Report Date: 07/13/16

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Manst	field Lab for sample(s):	01-20 E	Batch: W	G91052	3-1				
Antimony, Total	ND	mg/kg	2.0	0.32	1	07/06/16 05:50	07/07/16 22:10	1,6010C	JH
Arsenic, Total	ND	mg/kg	0.40	0.13	1	07/06/16 05:50	07/07/16 22:10	1,6010C	JH
Beryllium, Total	ND	mg/kg	0.20	0.04	1	07/06/16 05:50	07/07/16 22:10	1,6010C	JH
Cadmium, Total	ND	mg/kg	0.40	0.03	1	07/06/16 05:50	07/07/16 22:10	1,6010C	JH
Chromium, Total	ND	mg/kg	0.40	0.07	1	07/06/16 05:50	07/07/16 22:10	1,6010C	JH
Copper, Total	ND	mg/kg	0.40	0.07	1	07/06/16 05:50	07/07/16 22:10	1,6010C	JH
Lead, Total	ND	mg/kg	2.0	0.09	1	07/06/16 05:50	07/07/16 22:10	1,6010C	JH
Nickel, Total	ND	mg/kg	1.0	0.16	1	07/06/16 05:50	07/07/16 22:10	1,6010C	JH
Selenium, Total	ND	mg/kg	0.80	0.11	1	07/06/16 05:50	07/07/16 22:10	1,6010C	JH
Silver, Total	ND	mg/kg	0.40	0.08	1	07/06/16 05:50	07/07/16 22:10	1,6010C	JH
Thallium, Total	ND	mg/kg	0.80	0.13	1	07/06/16 05:50	07/07/16 22:10	1,6010C	JH
Zinc, Total	ND	mg/kg	2.0	0.28	1	07/06/16 05:50	07/07/16 22:10	1,6010C	JH

Prep Information

Digestion Method: EPA 3050B

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfie	eld Lab for sample(s):	21-33,35-	41 Bat	ch: WG	910524-1				
Antimony, Total	ND	mg/kg	2.0	0.32	1	07/06/16 06:39	07/08/16 16:13	1,6010C	JH
Arsenic, Total	ND	mg/kg	0.40	0.13	1	07/06/16 06:39	07/08/16 16:13	1,6010C	JH
Beryllium, Total	ND	mg/kg	0.20	0.04	1	07/06/16 06:39	07/08/16 16:13	1,6010C	JH
Cadmium, Total	ND	mg/kg	0.40	0.03	1	07/06/16 06:39	07/08/16 16:13	1,6010C	JH
Chromium, Total	ND	mg/kg	0.40	0.07	1	07/06/16 06:39	07/08/16 16:13	1,6010C	JH
Copper, Total	ND	mg/kg	0.40	0.07	1	07/06/16 06:39	07/08/16 16:13	1,6010C	JH
Lead, Total	ND	mg/kg	2.0	0.09	1	07/06/16 06:39	07/08/16 16:13	1,6010C	JH
Nickel, Total	ND	mg/kg	1.0	0.16	1	07/06/16 06:39	07/08/16 16:13	1,6010C	JH
Selenium, Total	ND	mg/kg	0.80	0.11	1	07/06/16 06:39	07/08/16 16:13	1,6010C	JH
Silver, Total	ND	mg/kg	0.40	0.08	1	07/06/16 06:39	07/08/16 16:13	1,6010C	JH
Thallium, Total	ND	mg/kg	0.80	0.13	1	07/06/16 06:39	07/08/16 16:13	1,6010C	JH
Zinc, Total	ND	mg/kg	2.0	0.28	1	07/06/16 06:39	07/08/16 16:13	1,6010C	JH

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number:

L1620368

Report Date: 07/13/16

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 3050B

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for sample(s):	43-48 E	Batch: W	G91052	5-1				
Antimony, Total	ND	mg/kg	2.0	0.32	1	07/06/16 06:39	07/08/16 15:44	1,6010C	JH
Arsenic, Total	ND	mg/kg	0.40	0.13	1	07/06/16 06:39	07/08/16 15:44	1,6010C	JH
Beryllium, Total	ND	mg/kg	0.20	0.04	1	07/06/16 06:39	07/08/16 15:44	1,6010C	JH
Cadmium, Total	ND	mg/kg	0.40	0.03	1	07/06/16 06:39	07/08/16 15:44	1,6010C	JH
Chromium, Total	ND	mg/kg	0.40	0.07	1	07/06/16 06:39	07/08/16 15:44	1,6010C	JH
Copper, Total	ND	mg/kg	0.40	0.07	1	07/06/16 06:39	07/08/16 15:44	1,6010C	JH
Lead, Total	ND	mg/kg	2.0	0.09	1	07/06/16 06:39	07/08/16 15:44	1,6010C	JH
Nickel, Total	ND	mg/kg	1.0	0.16	1	07/06/16 06:39	07/08/16 15:44	1,6010C	JH
Selenium, Total	ND	mg/kg	0.80	0.11	1	07/06/16 06:39	07/08/16 15:44	1,6010C	JH
Silver, Total	ND	mg/kg	0.40	0.08	1	07/06/16 06:39	07/08/16 15:44	1,6010C	JH
Thallium, Total	ND	mg/kg	0.80	0.13	1	07/06/16 06:39	07/08/16 15:44	1,6010C	JH
Zinc, Total	ND	mg/kg	2.0	0.28	1	07/06/16 06:39	07/08/16 15:44	1,6010C	JH

Prep Information

Digestion Method: EPA 3050B

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mans	sfield Lab for sample(s):	01-20 B	atch: W	G91052	8-1				
Mercury, Total	ND	mg/kg	0.08	0.02	1	07/06/16 10:40	07/11/16 17:45	1,7471B	EA

Prep Information

Digestion Method: EPA 7471B

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	Analyst
Total Metals - Mansfield	Lab for sample(s):	21-33,35-	41 Bat	ch: WG	910529-1				
Mercury, Total	ND	mg/kg	0.08	0.02	1	07/06/16 10:40	07/11/16 18:43	3 1,7471B	EA

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number:

L1620368

Report Date: 07/13/16

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 7471B

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	d Lab for sample(s):	43-48 B	atch: Wo	G91053	6-1				
Mercury, Total	ND	mg/kg	0.08	0.02	1	07/06/16 10:40	07/07/16 10:18	1,7471B	BV

Prep Information

Digestion Method: EPA 7471B

Lab Control Sample Analysis Batch Quality Control

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L1620368

Report Date: 07/13/16

Parameter	LCS %Recovery	Qual %	LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
otal Metals - Mansfield Lab Associated sampl	e(s): 01-20 Ba	tch: WG910523-	2 SRM Lot	t Number: D	0089-540			
Antimony, Total	152		-		1-197	-		
Arsenic, Total	108		-		80-120	-		
Beryllium, Total	98		-		82-117	-		
Cadmium, Total	103		-		82-117	-		
Chromium, Total	112		-		79-121	-		
Copper, Total	102		-		80-119	-		
Lead, Total	94		-		81-119	-		
Nickel, Total	101		-		82-117	-		
Selenium, Total	99		-		78-121	-		
Silver, Total	106		-		75-125	-		
Thallium, Total	99		-		79-120	-		
Zinc, Total	104		-		80-119	-		

Lab Control Sample Analysis Batch Quality Control

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L1620368

Report Date: 07/13/16

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab Associated s	sample(s): 21-33,35-41	Batch: WG910524-2	SRM Lot Number: D089-540		
Antimony, Total	133	-	1-197	-	
Arsenic, Total	100	-	80-120	-	
Beryllium, Total	98	-	82-117	-	
Cadmium, Total	95	-	82-117	-	
Chromium, Total	98	-	79-121	-	
Copper, Total	98	-	80-119	-	
Lead, Total	100	-	81-119	-	
Nickel, Total	101	-	82-117	-	
Selenium, Total	99	-	78-121	-	
Silver, Total	94	-	75-125	-	
Thallium, Total	93	-	79-120	-	
Zinc, Total	98	-	80-119	-	

Lab Control Sample Analysis Batch Quality Control

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number:

L1620368

Report Date:

07/13/16

Parameter	LCS %Recove		CSD covery	%Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 43-48	Batch: WG910525-2	SRM Lot Number: D0	89-540		
Antimony, Total	143		-	1-197	-	
Arsenic, Total	95		-	80-120	-	
Beryllium, Total	89		-	82-117	-	
Cadmium, Total	87		-	82-117	-	
Chromium, Total	100		-	79-121	-	
Copper, Total	92		-	80-119	-	
Lead, Total	82		-	81-119	-	
Nickel, Total	90		-	82-117	-	
Selenium, Total	89		-	78-121	-	
Silver, Total	92		-	75-125	-	
Thallium, Total	86		-	79-120	-	
Zinc, Total	89		-	80-119	-	
Total Metals - Mansfield Lab Associated sample	e(s): 01-20	Batch: WG910528-2	SRM Lot Number: D08	89-540		
Mercury, Total	123		-	57-143	-	
Total Metals - Mansfield Lab Associated sample	e(s): 21-33,3	35-41 Batch: WG9105	529-2 SRM Lot Numb	er: D089-540		
Mercury, Total	123		-	57-143	-	
Total Metals - Mansfield Lab Associated sample	e(s): 43-48	Batch: WG910536-2	SRM Lot Number: D08	89-540		
Mercury, Total	109		-	57-143	-	

Matrix Spike Analysis Batch Quality Control

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number:

L1620368

Report Date:

07/13/16

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery Q	Recovery ual Limits	RPD Qual	RPD Limits
Total Metals - Mansfield Lab A	Associated san	nple(s): 01-20	QC Ba	tch ID: WG910	523-4	QC Samp	ole: L1620368-01	Client ID: P3-1	(0-4)	
Antimony, Total	3.8	52.8	31	52	Q	-	-	75-125	-	20
Arsenic, Total	71.	12.7	77	47	Q	-	-	75-125	-	20
Beryllium, Total	0.85	5.28	3.7	54	Q	-	-	75-125	-	20
Cadmium, Total	53.	5.39	50	0	Q	-	-	75-125	-	20
Chromium, Total	6.2	21.1	17	51	Q	-	-	75-125	-	20
Copper, Total	1400	26.4	1400	0	Q	-	-	75-125	-	20
Lead, Total	1600	53.9	1400	0	Q	-	-	75-125	-	20
Nickel, Total	36.	52.8	49	25	Q	-	-	75-125	-	20
Selenium, Total	0.34J	12.7	7.0	55	Q	-	-	75-125	-	20
Silver, Total	3.8	31.7	23	60	Q	-	-	75-125	-	20
Thallium, Total	1.2	12.7	6.5	42	Q	-	-	75-125	-	20
Zinc, Total	16000	52.8	14000	0	Q	-	-	75-125	-	20

Matrix Spike Analysis Batch Quality Control

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L1620368

Report Date: 07/13/16

arameter	Native Sample	MS Added	MS Found	MS %Recovery		MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
otal Metals - Mansfield La	b Associated san	nple(s): 21-3	33,35-41	QC Batch ID: W	VG91052	4-4 QC	Sample: L1620368-2	1 Client ID	: P3-2 (8-10)	
Antimony, Total	ND	75.3	64	85		-	-	75-125	-	20
Arsenic, Total	0.629J	18.1	18	100		-	-	75-125	-	20
Beryllium, Total	ND	7.53	5.6	74	Q	-	-	75-125	-	20
Cadmium, Total	ND	7.68	5.9	77		-	-	75-125	-	20
Chromium, Total	4.8	30.1	28	77		-	-	75-125	-	20
Copper, Total	15.	37.6	46	82		-	-	75-125	-	20
Lead, Total	2.9J	76.8	59	77		-	-	75-125	-	20
Nickel, Total	8.8	75.3	62	71	Q	-	-	75-125	-	20
Selenium, Total	2.0	18.1	19	94		-	-	75-125	-	20
Silver, Total	ND	45.2	42	93		-	-	75-125	-	20
Thallium, Total	ND	18.1	12	66	Q	-	-	75-125	-	20
Zinc, Total	15.	75.3	67	69	Q	-	-	75-125	-	20

Matrix Spike Analysis Batch Quality Control

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number:

L1620368

Report Date:

07/13/16

arameter	Native Sample	MS Added	MS Found	MS %Recovery		MSD Found	MSD %Recovery	R	Recovery Limits	, RPD	RPD Limits
Total Metals - Mansfield Lab	Associated sam	nple(s): 43-48	QC Ba	tch ID: WG910	525-3	WG910525-4	QC Sample	: L16203	868-44	Client ID:	P2-3 (8-10)
Antimony, Total	ND	90.2	75	83		78	88		75-125	4	20
Arsenic, Total	5.4	21.6	25	90		25	92		75-125	0	20
Beryllium, Total	ND	9.02	7.9	88		7.4	83		75-125	7	20
Cadmium, Total	2.0	9.2	9.9	86		8.9	76		75-125	11	20
Chromium, Total	1.8	36.1	31	81		30	80		75-125	3	20
Copper, Total	39.	45.1	60	46	Q	66	61	Q	75-125	10	20
Lead, Total	70.	92	110	43	Q	120	55	Q	75-125	9	20
Nickel, Total	3.3	90.2	74	78		71	76		75-125	4	20
Selenium, Total	0.53J	21.6	16	74	Q	17	80		75-125	6	20
Silver, Total	ND	54.1	34	63	Q	51	96		75-125	40	Q 20
Thallium, Total	0.28J	21.6	16	74	Q	14	66	Q	75-125	13	20
Zinc, Total	850	90.2	1000	166	Q	900	56	Q	75-125	11	20
Fotal Metals - Mansfield Lab	Associated sam	nple(s): 01-20	QC Ba	tch ID: WG910	528-4	QC Sample	: L1620368-0	1 Clier	nt ID: P3	-1 (0-4)	
Mercury, Total	0.62	0.174	0.99	213	Q	-	-		80-120	-	20
Total Metals - Mansfield Lab	Associated sam	nple(s): 21-33,	35-41 (QC Batch ID: W	/G910	529-4 QC S	ample: L1620	368-21	Client I	D: P3-2 (8-10)
Mercury, Total	ND	0.254	0.36	142	Q	-	-		80-120	-	20
Гotal Metals - Mansfield Lab	Associated sam	nple(s): 43-48	QC Ba	tch ID: WG910	536-3	WG910536-4	QC Sample	: L16203	868-44	Client ID:	P2-3 (8-10)
Mercury, Total	ND	0.308	0.54	175	Q	0.52	167	Q	80-120	4	20

Lab Duplicate Analysis Batch Quality Control

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number: L1620368 **Report Date:** 07/13/16

Parameter	Native Sample D	uplicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01-2	QC Batch ID: WG91052	23-3 QC Sample:	L1620368-01	Client ID:	P3-1 (0-4)	
Antimony, Total	3.8	3.7	mg/kg	3		20
Arsenic, Total	71.	60	mg/kg	17		20
Beryllium, Total	0.85	0.23J	mg/kg	NC		20
Cadmium, Total	53.	18	mg/kg	99	Q	20
Chromium, Total	6.2	8.6	mg/kg	32	Q	20
Copper, Total	1400	880	mg/kg	46	Q	20
Lead, Total	1600	1500	mg/kg	6		20
Nickel, Total	36.	13	mg/kg	94	Q	20
Selenium, Total	0.34J	0.71J	mg/kg	NC		20
Silver, Total	3.8	3.7	mg/kg	3		20
Thallium, Total	1.2	0.57J	mg/kg	NC		20
otal Metals - Mansfield Lab Associated sample(s): 01-2	QC Batch ID: WG91052	23-3 QC Sample:	L1620368-01	Client ID:	P3-1 (0-4)	
Zinc, Total	16000	6900	mg/kg	79	Q	20

Lab Duplicate Analysis Batch Quality Control

Project Name: EMBASSY SUITES

Project Number: 15209

Lab Number:

L1620368

Report Date:

07/13/16

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
otal Metals - Mansfield Lab Associated sample(s): 2	11-33,35-41 QC Batch ID:	WG910524-3 QC S	sample: L16203	68-21 Clie	nt ID: P3-2 (8-10)
Antimony, Total	ND	ND	mg/kg	NC	20
Arsenic, Total	0.629J	0.83	mg/kg	NC	20
Beryllium, Total	ND	ND	mg/kg	NC	20
Cadmium, Total	ND	ND	mg/kg	NC	20
Chromium, Total	4.8	4.7	mg/kg	2	20
Copper, Total	15.	13	mg/kg	14	20
Lead, Total	2.9J	3.5J	mg/kg	NC	20
Nickel, Total	8.8	8.4	mg/kg	5	20
Selenium, Total	2.0	2.0	mg/kg	0	20
Silver, Total	ND	ND	mg/kg	NC	20
Thallium, Total	ND	ND	mg/kg	NC	20
Zinc, Total	15.	18	mg/kg	18	20
otal Metals - Mansfield Lab Associated sample(s): 0	11-20 QC Batch ID: WG91	0528-3 QC Sample	: L1620368-01	Client ID:	P3-1 (0-4)
Mercury, Total	0.62	0.60	mg/kg	3	20
otal Metals - Mansfield Lab Associated sample(s): 2	1-33,35-41 QC Batch ID:	WG910529-3 QC S	sample: L16203	68-21 Clie	nt ID: P3-2 (8-10)
Mercury, Total	ND	ND	mg/kg	NC	20

INORGANICS & MISCELLANEOUS

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-01 Date Collected: 06/29/16 08:40

Client ID: P3-1 (0-4) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab)								
Solids, Total	73.0		%	0.100	NA	1	-	07/07/16 05:58	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-02 Date Collected: 06/29/16 08:40

Client ID: P3-1 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab)								
Solids, Total	61.2		%	0.100	NA	1	-	07/07/16 05:58	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-03 Date Collected: 06/29/16 08:40

Client ID: P3-1 (8-12) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	47.6		%	0.100	NA	1	-	07/07/16 05:58	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-04 Date Collected: 06/29/16 08:40

Client ID: P3-1 (12-16) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	64.9		%	0.100	NA	1	-	07/07/16 05:58	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-05 Date Collected: 06/29/16 08:55

Client ID: P3-9 (0-4) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab)								
Solids, Total	79.0		%	0.100	NA	1	-	07/07/16 05:58	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-06 Date Collected: 06/29/16 08:55
Client ID: P3-9 (4-8) Date Received: 06/30/16

Client ID: P3-9 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab)								
Solids, Total	48.2		%	0.100	NA	1	-	07/07/16 05:58	121,2540G	VB

L1620368

Project Name: EMBASSY SUITES Lab Number:

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-07 Date Collected: 06/29/16 08:55

Client ID: P3-9 (8-12) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab)								
Solids, Total	56.8		%	0.100	NA	1	-	07/07/16 05:58	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-08 Date Collected: 06/29/16 08:55

Client ID: P3-9 (12-16) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab)								
Solids, Total	58.0		%	0.100	NA	1	-	07/07/16 05:58	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-09 Date Collected: 06/29/16 09:05

Client ID: P3-8 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab)								
Solids, Total	61.2		%	0.100	NA	1	-	07/07/16 05:58	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-10 Date Collected: 06/29/16 09:15

Client ID: P3-7 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab)								
Solids, Total	62.3		%	0.100	NA	1	-	07/07/16 05:58	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-11 Date Collected: 06/29/16 09:15

Client ID: P3-7 (8-12) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	44.6		%	0.100	NA	1	-	07/07/16 05:58	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-12 Date Collected: 06/29/16 09:20

Client ID: P3-6 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab)								
Solids, Total	63.2		%	0.100	NA	1	-	07/07/16 05:58	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-13 Date Collected: 06/29/16 09:20

Client ID: P3-6 (8-12) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	45.6		%	0.100	NA	1	_	07/07/16 05:58	121.2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-14 Date Collected: 06/29/16 09:35

Client ID: P3-5 (6-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	55.8		%	0.100	NA	1	-	07/07/16 05:58	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

 Lab ID:
 L1620368-15
 Date Collected:
 06/29/16 10:45

 Client ID:
 P3-4 (6-8)
 Date Received:
 06/30/16

Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab)								
Solids, Total	49.4		%	0.100	NA	1	-	07/07/16 05:58	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-16 Date Collected: 06/29/16 10:45

Client ID: P3-4 (10-12) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab)								
Solids, Total	43.2		%	0.100	NA	1	-	07/07/16 05:58	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-17 Date Collected: 06/29/16 11:30

Client ID: P3-3 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab)								
Solids, Total	53.4		%	0.100	NA	1	-	07/07/16 05:58	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-18 Date Collected: 06/29/16 11:30

Client ID: P3-3 (8-10) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	- Westborough Lab)								
Solids, Total	48.8		%	0.100	NA	1	-	07/07/16 05:58	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-19 Date Collected: 06/29/16 11:30

Client ID: P3-3 (12-14) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	- Westborough Lab)								
Solids, Total	71.7		%	0.100	NA	1	-	07/07/16 05:58	121,2540G	VB

L1620368

Project Name: EMBASSY SUITES Lab Number:

Project Number: 15209 Report Date: 07/13/16

·

SAMPLE RESULTS

Lab ID: L1620368-20 Date Collected: 06/29/16 12:00

Client ID: P3-2 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab)								
Solids, Total	42.7		%	0.100	NA	1	-	07/07/16 05:58	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-21 Date Collected: 06/29/16 12:00

Client ID: P3-2 (8-10) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab)								
Solids, Total	53.0		%	0.100	NA	1	-	07/07/16 06:07	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-22 Date Collected: 06/29/16 12:10
Client ID: P3-10 (4-8) Date Received: 06/30/16

Client ID: P3-10 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab)								
Solids, Total	59.7		%	0.100	NA	1	-	07/07/16 06:07	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-23 Date Collected: 06/29/16 12:10

Client ID: P3-10 (8-10) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	57.6		%	0.100	NA	1	-	07/07/16 06:07	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-24 Date Collected: 06/29/16 13:00

Client ID: P1-5 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab)								
Solids, Total	60.4		%	0.100	NA	1	-	07/07/16 06:07	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-25 Date Collected: 06/29/16 13:00

Client ID: P1-5 (8-10) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	- Westborough Lab)								
Solids, Total	53.6		%	0.100	NA	1	-	07/07/16 06:07	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-26 Date Collected: 06/29/16 12:35

Client ID: P1-4 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	- Westborough Lab)								
Solids, Total	54.6		%	0.100	NA	1	-	07/07/16 06:07	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-27 Date Collected: 06/29/16 12:35

Client ID: P1-4 (8-12) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	55.2		%	0.100	NA	1	-	07/12/16 09:49	121,2540G	RI

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-28 Date Collected: 06/29/16 12:45

Client ID: P1-3 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	83.8		%	0.100	NA	1	-	07/07/16 06:07	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-29 Date Collected: 06/29/16 12:45

Client ID: P1-3 (8-12) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab)								
Solids, Total	54.6		%	0.100	NA	1	-	07/07/16 06:07	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-30 Date Collected: 06/29/16 13:05

Client ID: P4-1 (0-4) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	- Westborough Lab									
Solids, Total	87.1		%	0.100	NA	1	-	07/07/16 06:07	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-31 Date Collected: 06/29/16 13:05

Client ID: P4-1 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab)								
Solids, Total	42.7		%	0.100	NA	1	-	07/07/16 06:07	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-32 Date Collected: 06/29/16 13:15

Client ID: P4-2 (2-4) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	88.8		%	0.100	NA	1	-	07/07/16 06:07	121,2540G	VB

06/29/16 13:15

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-33 Date Collected:

Client ID: P4-2 (4-6) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab)								
Solids, Total	83.0		%	0.100	NA	1	-	07/07/16 06:07	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-34 Date Collected: 06/29/16 13:30

Client ID: P4-3 (2-4) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	84.8		%	0.100	NA	1	-	07/07/16 06:07	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-35 Date Collected: 06/29/16 13:30

Client ID: P4-3 (2.5-3) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Mansfield Lab									
Solids, Total	82.5		%	0.100	0.100	1	_	07/11/16 16:01	121,2540G	SP

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-36 Date Collected: 06/29/16 13:30

Client ID: P4-3 (4-6) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	83.5		%	0.100	NA	1	-	07/07/16 06:07	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-37 Date Collected: 06/29/16 14:20

Client ID: P1-2 (3-4) Date Received: 06/30/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab)								
Solids, Total	82.1		%	0.100	NA	1	-	07/07/16 06:07	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-38 Date Collected: 06/30/16 08:30

Client ID: P1-1 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab)								
Solids, Total	71.6		%	0.100	NA	1	-	07/07/16 06:07	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-39 Date Collected: 06/30/16 08:30

Client ID: P1-1 (8-10) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	54.3		%	0.100	NA	1	-	07/07/16 06:07	121,2540G	VB

L1620368

Project Name: EMBASSY SUITES Lab Number:

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-40 Date Collected: 06/30/16 08:40

Client ID: P2-1 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab)								
Solids, Total	59.6		%	0.100	NA	1	-	07/07/16 06:07	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-41 Date Collected: 06/30/16 08:40

Client ID: P2-1 (8-10) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab)								
Solids, Total	52.3		%	0.100	NA	1	-	07/07/16 05:52	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-42 Date Collected: 06/30/16 09:05

Client ID: P2-2 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	74.6		%	0.100	NA	1	-	07/07/16 05:52	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-43 Date Collected: 06/30/16 09:05

Client ID: P2-2 (8-10) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab)								
Solids, Total	65.0		%	0.100	NA	1	-	07/07/16 05:52	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-44 Date Collected: 06/30/16 09:25

Client ID: P2-3 (8-10) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	43.8		%	0.100	NA	1	-	07/07/16 05:52	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-45

Client ID: DUP01

Sample Location: SYRACUSE, NY

Matrix: Soil

Date Collected: 06/29/16 12:00

Date Received: 06/30/16

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	49.3		%	0.100	NA	1	-	07/07/16 05:52	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-46

Client ID: DUP02 Sample Location: SYRACUSE, NY

Matrix: Soil

Date Collected: 06/30/16 12:00

Date Received: 06/30/16

Field Prep: Not Specified

Parameter	Result (Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	58.9		%	0.100	NA	1	-	07/07/16 05:52	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-47

Client ID: DUP03
Sample Location: SYRACUSE, NY

Matrix: Soil

Date Collected: 06/30/16 13:00

Date Received: 06/30/16
Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	54.7		%	0.100	NA	1	-	07/07/16 05:52	121,2540G	VB

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

SAMPLE RESULTS

Lab ID: L1620368-48 Date Collected: 06/30/16 09:15

Client ID: P2-3 (4-8) Date Received: 06/30/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	- Westborough Lab)								
Solids, Total	62.6		%	0.100	NA	1	-	07/07/16 05:52	121,2540G	VB

Lab Duplicate Analysis Batch Quality Control

Project Name: EMBASSY SUITES

Project Number: 15209

L1620368 Report Date: 07/13/16

Lab Number:

Parameter	Nati	ve Sam	ple	Duplicate Sam	ple Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s):	41-48	QC Batch ID	D: WG910888-1	QC Sample:	L1620628-46	Client ID:	DUP Sample
Solids, Total		94.4		94.6	%	0		20
General Chemistry - Westborough Lab	Associated sample(s):	01-20	QC Batch ID	D: WG910890-1	QC Sample:	L1620368-01	Client ID:	P3-1 (0-4)
Solids, Total		73.0		72.0	%	1		20
General Chemistry - Westborough Lab (8-10)	Associated sample(s):	21-26,2	28-34,36-40	QC Batch ID:	WG910891-1	QC Sample: L	_1620368-2	21 Client ID: P3-2
Solids, Total		53.0		49.6	%	7		20
General Chemistry - Mansfield Lab Ass	ociated sample(s): 35	QC Ba	atch ID: WG9	912318-1 QC	Sample: L1620	989-02 Client	ID: DUP S	Sample
Solids, Total		53.6		52.2	%	3		10
General Chemistry - Westborough Lab	Associated sample(s):	27 Q0	C Batch ID: \	NG912577-1	QC Sample: L1	620368-27 CI	ient ID: P1	-4 (8-12)
Solids, Total		55.2		53.4	%	3		20

Project Name: **EMBASSY SUITES**

Lab Number: L1620368 **Report Date:** 07/13/16 Project Number: 15209

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Cooler Information Custody Seal

Cooler

Α Absent В Absent

Container Info	ormation	Temp					
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1620368-01A	Vial Large Septa unpreserved (4o	Α	N/A	4.2	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-01A9	Vial MeOH preserved split	Α	N/A	4.2	Υ	Absent	NYTCL-8260(14)
L1620368-01B	Metals Only - Glass 60mL/2oz unp	A	N/A	4.2	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-02A	Vial Large Septa unpreserved (4o	Α	N/A	4.2	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-02A9	Vial MeOH preserved split	Α	N/A	4.2	Υ	Absent	NYTCL-8260(14)
L1620368-02B	Metals Only - Glass 60mL/2oz unp	A	N/A	4.2	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-03A	Vial Large Septa unpreserved (4o	Α	N/A	4.2	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-03A9	Vial MeOH preserved split	Α	N/A	4.2	Υ	Absent	NYTCL-8260(14)
L1620368-03B	Metals Only - Glass 60mL/2oz unp	Α	N/A	4.2	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-04A	Vial Large Septa unpreserved (4o	Α	N/A	4.2	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-04A9	Vial MeOH preserved split	Α	N/A	4.2	Υ	Absent	NYTCL-8260(14)
L1620368-04B	Metals Only - Glass 60mL/2oz unp	A	N/A	4.2	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-05A	Vial Large Septa unpreserved (4o	Α	N/A	4.2	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-05A9	Vial MeOH preserved split	Α	N/A	4.2	Υ	Absent	NYTCL-8260(14)
L1620368-05B	Metals Only - Glass 60mL/2oz unp	А	N/A	4.2	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)

Project Name: EMBASSY SUITES

Project Number: 15209

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1620368-06A	Vial Large Septa unpreserved (4o	Α	N/A	4.2	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-06A9	Vial MeOH preserved split	Α	N/A	4.2	Υ	Absent	NYTCL-8260(14)
L1620368-06B	Metals Only - Glass 60mL/2oz unp	A	N/A	4.2	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-07A	Vial Large Septa unpreserved (4o	Α	N/A	4.2	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-07A9	Vial MeOH preserved split	Α	N/A	4.2	Υ	Absent	NYTCL-8260(14)
L1620368-07B	Metals Only - Glass 60mL/2oz unp	A	N/A	4.2	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-08A	Vial Large Septa unpreserved (4o	Α	N/A	4.2	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-08A9	Vial MeOH preserved split	Α	N/A	4.2	Υ	Absent	NYTCL-8260(14)
L1620368-08B	Metals Only - Glass 60mL/2oz unp	Α	N/A	4.2	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-09A	Vial Large Septa unpreserved (4o	Α	N/A	4.2	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-09A9	Vial MeOH preserved split	Α	N/A	4.2	Υ	Absent	NYTCL-8260(14)
L1620368-09B	Metals Only - Glass 60mL/2oz unp	A	N/A	4.2	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-10A	Vial Large Septa unpreserved (4o	Α	N/A	4.2	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-10A9	Vial MeOH preserved split	Α	N/A	4.2	Υ	Absent	NYTCL-8260(14)
L1620368-10B	Metals Only - Glass 60mL/2oz unp	Α	N/A	4.2	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-11A	Vial Large Septa unpreserved (4o	Α	N/A	4.2	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-11A9	Vial MeOH preserved split	Α	N/A	4.2	Υ	Absent	NYTCL-8260(14)
L1620368-11B	Metals Only - Glass 60mL/2oz unp	A	N/A	4.2	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-12A	Vial Large Septa unpreserved (4o	Α	N/A	4.2	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-12A9	Vial MeOH preserved split	Α	N/A	4.2	Υ	Absent	NYTCL-8260(14)

Project Name: EMBASSY SUITES

Project Number: 15209

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1620368-12B	Metals Only - Glass 60mL/2oz unp	A	N/A	4.2	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-13A	Vial Large Septa unpreserved (4o	Α	N/A	4.2	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-13A9	Vial MeOH preserved split	Α	N/A	4.2	Υ	Absent	NYTCL-8260(14)
L1620368-13B	Metals Only - Glass 60mL/2oz unp	A	N/A	4.2	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-14A	Vial Large Septa unpreserved (4o	Α	N/A	4.2	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-14A9	Vial MeOH preserved split	Α	N/A	4.2	Υ	Absent	NYTCL-8260(14)
L1620368-14B	Metals Only - Glass 60mL/2oz unp	A	N/A	4.2	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-15A	Vial Large Septa unpreserved (4o	Α	N/A	4.2	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-15A9	Vial MeOH preserved split	Α	N/A	4.2	Υ	Absent	NYTCL-8260(14)
L1620368-15B	Metals Only - Glass 60mL/2oz unp	A	N/A	4.2	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-16A	Vial Large Septa unpreserved (4o	Α	N/A	4.2	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-16A9	Vial MeOH preserved split	Α	N/A	4.2	Υ	Absent	NYTCL-8260(14)
L1620368-16B	Metals Only - Glass 60mL/2oz unp	A	N/A	4.2	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-17A	Vial Large Septa unpreserved (4o	Α	N/A	4.2	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-17A9	Vial MeOH preserved split	Α	N/A	4.2	Υ	Absent	NYTCL-8260(14)
L1620368-17B	Metals Only - Glass 60mL/2oz unp	A	N/A	4.2	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-18A	Vial Large Septa unpreserved (4o	Α	N/A	4.2	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-18A9	Vial MeOH preserved split	Α	N/A	4.2	Υ	Absent	NYTCL-8260(14)

Project Name: EMBASSY SUITES

Project Number: 15209

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1620368-18B	Metals Only - Glass 60mL/2oz unp	A	N/A	4.2	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-19A	Vial Large Septa unpreserved (4o	Α	N/A	4.2	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-19A9	Vial MeOH preserved split	Α	N/A	4.2	Υ	Absent	NYTCL-8260(14)
L1620368-19B	Metals Only - Glass 60mL/2oz unp	A	N/A	4.2	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-20A	Vial Large Septa unpreserved (4o	Α	N/A	4.2	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-20A9	Vial MeOH preserved split	Α	N/A	4.2	Υ	Absent	NYTCL-8260(14)
L1620368-20B	Metals Only - Glass 60mL/2oz unp	A	N/A	4.2	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-21A	Vial Large Septa unpreserved (4o	Α	N/A	4.2	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-21A9	Vial MeOH preserved split	Α	N/A	4.2	Υ	Absent	NYTCL-8260(14)
L1620368-21B	Metals Only - Glass 60mL/2oz unp	A	N/A	4.2	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-22A	Vial Large Septa unpreserved (4o	Α	N/A	4.2	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-22A9	Vial MeOH preserved split	Α	N/A	4.2	Υ	Absent	NYTCL-8260(14)
L1620368-22B	Metals Only - Glass 60mL/2oz unp	A	N/A	4.2	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-23A	Vial Large Septa unpreserved (4o	Α	N/A	4.2	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-23A9	Vial MeOH preserved split	Α	N/A	4.2	Υ	Absent	NYTCL-8260(14)
L1620368-23B	Metals Only - Glass 60mL/2oz unp	A	N/A	4.2	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-24A	Vial Large Septa unpreserved (4o	Α	N/A	4.2	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-24A9	Vial MeOH preserved split	Α	N/A	4.2	Υ	Absent	NYTCL-8260(14)

Project Name: EMBASSY SUITES

Project Number: 15209

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1620368-24B	Metals Only - Glass 60mL/2oz unp	A	N/A	4.2	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-25A	Vial Large Septa unpreserved (4o	Α	N/A	4.2	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-25A9	Vial MeOH preserved split	Α	N/A	4.2	Υ	Absent	NYTCL-8260(14)
L1620368-25B	Metals Only - Glass 60mL/2oz unp	A	N/A	4.2	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-26A	Vial Large Septa unpreserved (4o	Α	N/A	4.2	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-26A9	Vial MeOH preserved split	Α	N/A	4.2	Υ	Absent	NYTCL-8260(14)
L1620368-26B	Metals Only - Glass 60mL/2oz unp	A	N/A	4.2	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-27A	Vial Large Septa unpreserved (4o	Α	N/A	4.2	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-27A9	Vial MeOH preserved split	Α	N/A	4.2	Υ	Absent	NYTCL-8260(14)
L1620368-27B	Metals Only - Glass 60mL/2oz unp	А	N/A	4.2	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-28A	Vial Large Septa unpreserved (4o	Α	N/A	4.2	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-28A9	Vial MeOH preserved split	Α	N/A	4.2	Υ	Absent	NYTCL-8260(14)
L1620368-28B	Metals Only - Glass 60mL/2oz unp	A	N/A	4.2	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-29A	Vial Large Septa unpreserved (4o	Α	N/A	4.2	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-29A9	Vial MeOH preserved split	Α	N/A	4.2	Υ	Absent	NYTCL-8260(14)
L1620368-29B	Metals Only - Glass 60mL/2oz unp	Α	N/A	4.2	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-30A	Vial Large Septa unpreserved (4o	Α	N/A	4.2	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-30A9	Vial MeOH preserved split	Α	N/A	4.2	Υ	Absent	NYTCL-8260(14)

Project Name: EMBASSY SUITES

Project Number: 15209

Container Information Temp											
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)				
L1620368-30B	Metals Only - Glass 60mL/2oz unp	A	N/A	4.2	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)				
L1620368-30C	Glass 120ml/4oz unpreserved	Α	N/A	4.2	Υ	Absent	NYTCL-8270(14)				
L1620368-31A	Vial Large Septa unpreserved (4o	Α	N/A	4.2	Υ	Absent	TS(7),NYTCL-8260(14)				
L1620368-31A9	Vial MeOH preserved split	Α	N/A	4.2	Υ	Absent	NYTCL-8260(14)				
L1620368-31B	Metals Only - Glass 60mL/2oz unp	A	N/A	4.2	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)				
L1620368-31C	Glass 120ml/4oz unpreserved	Α	N/A	4.2	Υ	Absent	NYTCL-8270(14)				
L1620368-32A	Vial Large Septa unpreserved (4o	Α	N/A	4.2	Υ	Absent	TS(7),NYTCL-8260(14)				
L1620368-32A9	Vial MeOH preserved split	Α	N/A	4.2	Υ	Absent	NYTCL-8260(14)				
L1620368-32B	Metals Only - Glass 60mL/2oz unp	Α	N/A	4.2	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)				
L1620368-32C	Glass 120ml/4oz unpreserved	Α	N/A	4.2	Υ	Absent	NYTCL-8270(14)				
L1620368-33A	Vial Large Septa unpreserved (4o	В	N/A	3.7	Υ	Absent	TS(7),NYTCL-8260(14)				
L1620368-33A9	Vial MeOH preserved split	В	N/A	3.7	Υ	Absent	NYTCL-8260(14)				
L1620368-33B	Metals Only - Glass 60mL/2oz unp	В	N/A	3.7	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)				
L1620368-33C	Glass 120ml/4oz unpreserved	В	N/A	3.7	Υ	Absent	NYTCL-8270(14)				
L1620368-34A	Vial Large Septa unpreserved (4o	В	N/A	3.7	Υ	Absent	NYTCL-8260(14)				
L1620368-34A9	Vial MeOH preserved split	В	N/A	3.7	Υ	Absent	NYTCL-8260(14)				
L1620368-34B	Glass 120ml/4oz unpreserved	В	N/A	3.7	Υ	Absent	NYTCL-8270(14),TS(7)				
L1620368-35A	Metals Only - Glass 60mL/2oz unp	В	N/A	3.7	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),A2-TS(7),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)				
L1620368-36A	Vial Large Septa unpreserved (4o	В	N/A	3.7	Υ	Absent	TS(7),NYTCL-8260(14)				
L1620368-36A9	Vial MeOH preserved split	В	N/A	3.7	Υ	Absent	NYTCL-8260(14)				

Project Name: EMBASSY SUITES

Project Number: 15209

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1620368-36B	Metals Only - Glass 60mL/2oz unp	В	N/A	3.7	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-36C	Glass 120ml/4oz unpreserved	В	N/A	3.7	Υ	Absent	NYTCL-8270(14)
L1620368-37A	Vial Large Septa unpreserved (4o	В	N/A	3.7	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-37A9	Vial MeOH preserved split	В	N/A	3.7	Υ	Absent	NYTCL-8260(14)
L1620368-37B	Metals Only - Glass 60mL/2oz unp	В	N/A	3.7	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-38A	Vial Large Septa unpreserved (4o	В	N/A	3.7	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-38A9	Vial MeOH preserved split	В	N/A	3.7	Υ	Absent	NYTCL-8260(14)
L1620368-38B	Metals Only - Glass 60mL/2oz unp	В	N/A	3.7	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-39A	Vial Large Septa unpreserved (4o	В	N/A	3.7	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-39A9	Vial MeOH preserved split	В	N/A	3.7	Υ	Absent	NYTCL-8260(14)
L1620368-39B	Metals Only - Glass 60mL/2oz unp	В	N/A	3.7	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-40A	Vial Large Septa unpreserved (4o	В	N/A	3.7	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-40A9	Vial MeOH preserved split	В	N/A	3.7	Υ	Absent	NYTCL-8260(14)
L1620368-40B	Metals Only - Glass 60mL/2oz unp	В	N/A	3.7	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-41A	Vial Large Septa unpreserved (4o	В	N/A	3.7	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-41A9	Vial MeOH preserved split	В	N/A	3.7	Υ	Absent	NYTCL-8260(14)
L1620368-41B	Metals Only - Glass 60mL/2oz unp	В	N/A	3.7	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-42A	Vial Large Septa unpreserved (4o	В	N/A	3.7	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-42A9	Vial MeOH preserved split	В	N/A	3.7	Υ	Absent	NYTCL-8260(14)
L1620368-43A	Vial Large Septa unpreserved (4o	В	N/A	3.7	Υ	Absent	TS(7),NYTCL-8260(14)

Project Name: EMBASSY SUITES

Project Number: 15209

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1620368-43A9	Vial MeOH preserved split	В	N/A	3.7	Υ	Absent	NYTCL-8260(14)
L1620368-43B	Metals Only - Glass 60mL/2oz unp	В	N/A	3.7	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-44A	Vial Large Septa unpreserved (4o	В	N/A	3.7	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-44A1	Vial Large Septa unpreserved (4o	В	N/A	3.7	Υ	Absent	NYTCL-8260(14)
L1620368-44A2	Vial Large Septa unpreserved (4o	В	N/A	3.7	Υ	Absent	NYTCL-8260(14)
L1620368-44B	Metals Only - Glass 60mL/2oz unp	В	N/A	3.7	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-44B1	Metals Only - Glass 60mL/2oz unp	В	N/A	3.7	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-44B2	Metals Only - Glass 60mL/2oz unp	В	N/A	3.7	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-45A	Vial Large Septa unpreserved (4o	В	N/A	3.7	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-45A9	Vial MeOH preserved split	В	N/A	3.7	Υ	Absent	NYTCL-8260(14)
L1620368-45B	Metals Only - Glass 60mL/2oz unp	В	N/A	3.7	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-46A	Vial Large Septa unpreserved (4o	В	N/A	3.7	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-46A9	Vial MeOH preserved split	В	N/A	3.7	Υ	Absent	NYTCL-8260(14)
L1620368-46B	Metals Only - Glass 60mL/2oz unp	В	N/A	3.7	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-47A	Vial Large Septa unpreserved (4o	В	N/A	3.7	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-47A9	Vial MeOH preserved split	В	N/A	3.7	Υ	Absent	NYTCL-8260(14)
L1620368-47B	Metals Only - Glass 60mL/2oz unp	В	N/A	3.7	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)

Project Name: EMBASSY SUITES

Project Number: 15209

Container Info	rmation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1620368-48A	Vial Large Septa unpreserved (4o	В	N/A	3.7	Υ	Absent	TS(7),NYTCL-8260(14)
L1620368-48A9	Vial MeOH preserved split	В	N/A	3.7	Υ	Absent	NYTCL-8260(14)
L1620368-48B	Metals Only - Glass 60mL/2oz unp	В	N/A	3.7	Y	Absent	BE-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),HG-T(28),CD-TI(180)
L1620368-49A	Vial Large Septa unpreserved (4o	В	N/A	3.7	Υ	Absent	-
L1620368-49A1	Vial Large Septa unpreserved (4o	В	N/A	3.7	Υ	Absent	-
L1620368-49B	Metals Only - Glass 60mL/2oz unp	В	N/A	3.7	Υ	Absent	-
L1620368-49B1	Metals Only - Glass 60mL/2oz unp	В	N/A	3.7	Υ	Absent	-

Project Name: EMBASSY SUITES Lab Number: L1620368

Project Number: 15209 Report Date: 07/13/16

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: DU Report with 'J' Qualifiers

Project Name:EMBASSY SUITESLab Number:L1620368Project Number:15209Report Date:07/13/16

Data Qualifiers

- reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name:EMBASSY SUITESLab Number:L1620368Project Number:15209Report Date:07/13/16

REFERENCES

1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Revision 6

ID No.:17873

Page 1 of 1

Published Date: 2/3/2016 10:23:10 AM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

EPA 524.2: 1,2-Dibromo-3-chloropropane, 1,2-Dibromoethane, m/p-xylene, o-xylene

EPA 624: 2-Butanone (MEK), 1,4-Dioxane, tert-Amylmethyl Ether, tert-Butyl Alcohol, m/p-xylene, o-xylene

EPA 625: Aniline, Benzoic Acid, Benzyl Alcohol, 4-Chloroaniline, 3-Methylphenol, 4-Methylphenol.

EPA 1010A: NPW: Ignitability

EPA 6010C: NPW: Strontium; SCM: Strontium

EPA 8151A: NPW: 2,4-DB, Dicamba, Dichloroprop, MCPA, MCPP; SCM: 2,4-DB, Dichloroprop, MCPA, MCPP

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene, Isopropanol; SCM: Iodomethane (methyl iodide), Methyl methacrylate

(soil); 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Pentachloronitrobenzene, 1-Methylnaphthalene, Dimethylnaphthalene, 1,4-Diphenylhydrazine; SCM: Pentachloronitrobenzene, 1-

Methylnaphthalene, Dimethylnaphthalene, 1,4-Diphenylhydrazine.

EPA 9010: NPW: Amenable Cyanide Distillation, Total Cyanide Distillation EPA 9038: NPW: Sulfate

EPA 9050A: NPW: Specific Conductance EPA 9056: NPW: Chloride, Nitrate, Sulfate

EPA 9065: NPW: Phenols EPA 9251: NPW: Chloride SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

EPA 8270D: NPW: Biphenyl; SCM: Biphenyl, Caprolactam EPA 8270D-SIM Isotope Dilution: SCM: 1,4-Dioxane

SM 2540D: TSS

SM2540G: SCM: Percent Solids EPA 1631E: SCM: Mercury EPA 7474: SCM: Mercury

EPA 8081B: NPW and SCM: Mirex, Hexachlorobenzene.

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA 8270-SIM: NPW and SCM: Alkylated PAHs.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene, n-Butylbenzene, n-Propylbenzene, sec-Butylbenzene, tert-Butylbenzene.

Biological Tissue Matrix: 8270D-SIM; 3050B; 3051A; 7471B; 8081B; 8082A; 6020A: Lead; 8270D: bis(2-ethylhexyl)phthalate, Butylbenzylphthalate, Diethyl phthalate, Dimethyl phthalate, Di-n-butyl phthalate, Di-n-octyl phthalate, Fluoranthene, Pentachlorophenol.

The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility:

Drinking Water

EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; EPA 200.7: Ba,Be,Ca,Cd,Cr,Cu,Na; EPA 245.1: Mercury;

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT.

Non-Potable Water

EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn;

EPA 200.7: Al,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,Tl,V,Zn;

EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC, SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F,

EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

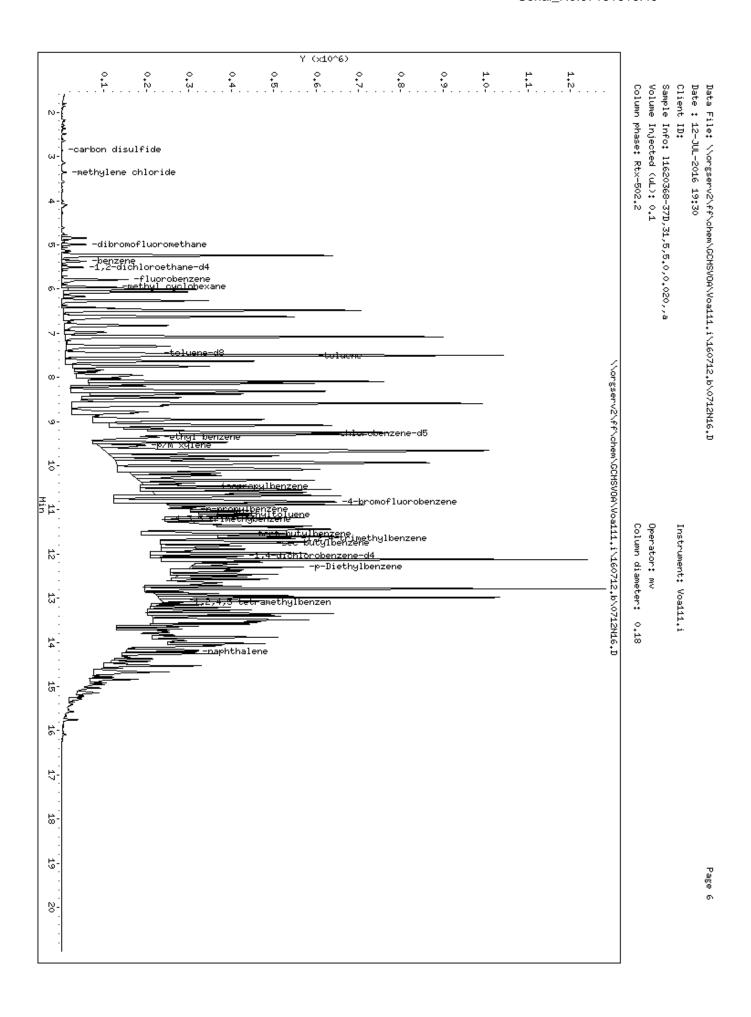
EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

	MEMANORIA	Service Centers			т		1	3 11					
	NEW YORK	Mahwah, NJ 07430: 35 Whitney	Rd, Suite 5		Pag			Date Rec'	d .				
ΔLPHA	CHAIN OF	Albany, NY 12205: 14 Walker W			/ 0	of \$15		in Lab	71	1/16		ALPHA Job#	
A STATE OF THE STA	CUSTODY	Tonawanda, NY 14150: 275 Cod	oper Ave, Suite 10	05	- 3-4			111		1110		L(620368	
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information					Deliv	erables				Billing Information	
TEL: 508-898-9220	TEL: 508-822-9300	Project Name:	mbas	SV SV	rites	2	ТП	ASP-A		ASP	-В	Same as Client Info	
FAX: 508-898-9193	FAX: 508-822-3288		race		m 1 V		$\exists \exists$	EQuIS (1 F	ile) [IS (4 File)	PO#	
Client Information	- g		Jace	5	Y		ᅱ片	Other			.0 (11.10)		
Client: Spect		Project # 1520					Boom					D: 10" 14 "	52 Victoria
	111	(Use Project name as Pr	oject #) L	90 21 1				llatory Requi	rement		the training to the same	Disposal Site Information	
Address: 9 B	Lish AM blid	Project Manager:					\bot	NY TOGS		NY P	art 375	Please identify below location o	f
athan		ALPHAQuote #:			F 434		╛□	AWQ Standa	rds	NY C	P-51	applicable disposal facilities.	
Phone: 618 78	320882	Turn-Around Time						NY Restricted	d Use	Other		Disposal Facility:	
Fax:		Standard		Due Date:			70	NY Unrestrict	ted Use			NJ NY	
Email:		Rush (only if pre approved)		# of Days:	5-7			NYC Sewer I	Discharge			Other:	
These samples have b	een previously analyze	ed by Alpha						LYSIS				Sample Filtration	T
Other project specific										_	Т		0
- mer project opcome							13	(()				Done	t
							10	\d				Lab to do Preservation	1
	DECEMBER 1						15	 				Lab to do	
Please specify Metals	s or TAL.						7	9					В
							7 Q	2				(Please Specify below)	t
ALPHA Lab ID			Colle	ection	Sample	Sampler's	\ \Q	8					t
(Lab Use Only)	Sa	mple ID	Date	Time	Matrix	Initials	100	1				Sample Specific Comments	- 0
20368 - 01	122-1/0	71			40	JCK	1,00			+		oumpio opodino dominonto	е
	50-1 (0)	9	6-29-16		50	JOCK	1	+		+			+-
02	3-14	-8)	11	И		1-1	+			+			_
03	P3-1 (8	-12)	1)	ч									
04	P3-1 C12	-16)	M	И									
8	173-9/0-	4)	N	0865			1	i					T
06	P3-9 74-	ర్స	N	U				,					
07	72-9 10-	12)	И	N				-					100
og	12-0 10	161	u	N			+			+			+
09	100					1	1			-			+
	13-8/4	(8)		905	-V	W-	+	1		-			\vdash
Preservative Code:	93-14	8)	N	0915	-		١			+			
A = None	Container Code P = Plastic	Westboro: Certification No	o: MA935		Con	tainer Type	101					Please print clearly, legibl	У
B = HCI	A = Amber Glass	Mansfield: Certification No	o: MA015		0011	tamor Typo	H	H				. and completely. Samples	
$C = HNO_3$	V = Vial			- 1			1					not be logged in and	
$D = H_2SO_4$ E = NaOH	G = Glass B = Bacteria Cup			- 1	Р	reservative	1,	All		1 8-1		turnaround time clock will	
F = MeOH	C = Cube	Dannighad E). <i>u</i>	Data/I	-124		D	- 1 D: ::		1	(T)	start until any ambiguities resolved. BY EXECUTING	
G = NaHSO ₄	O = Other	Relinquished B	7	Date/T			Receive	ed By:		Date	/Time	THIS COC, THE CLIENT	
$H = Na_2S_2O_3$	E = Encore D = BOD Bottle	Stagen by	oson	16-30	6 1040	Mely	7400	eur 14 A	6	50-1	0 1710	HAS READ AND AGREES	
K/E = Zn Ac/NaOH O = Other	D - BOD BOILIE	19mm Hain	,			Will	0	n	- 7/1	/16	000	TO BE BOUND BY ALPH.	
O - Other									1.00			TERMS & CONDITIONS.	
Form No: 01-25 HC (rev. 30	0-Sept-2013)											(See reverse side.)	


Дірна	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Cod	/ay	05	Page 2 o	Lest .		Date Rec'	d	7/11	16		ALPHA Job# 61620368	
Westborough, MA 01581	Mansfield, MA 02048	Project Information					Deliv	erables		A			Billing Information	
8 Walkup Dr. TEL: 508-898-9220	320 Forbes Blvd TEL: 508-822-9300		MOCES	71 5	1100		ΤП	ASP-A		ПА	SP-B		Same as Client Info	
FAX: 508-898-9193	FAX: 508-822-3288			1 . 11	ybes	>	H		ilo)		Quis (4 Eilo)	PO#	
		Project Location: Sys	acus	50 /UX			\perp	EQuIS (1 F	ne)		.Quio (4 (116)	PO#	
Client Information	-0	Project # 152	04_					Other				W. 100 Co. 100		
Client: Spect	Ta FAV	(Use Project name as Pr	oject#)				Regu	latory Requ	iremen				Disposal Site Information	
Address: 14 R	itish Amblu	Project Manager:				.0		NY TOGS	,	N	Y Part 3	375	Please identify below location of	
1	A 1/	ALPHAQuote #:		700			1 🗖	AWQ Standa	ards	Пи	Y CP-5	1	applicable disposal facilities.	
Lastran		IN IN SHEET WATER STREET						NY Restricte			ther		Disposal Facility:	••••
Phone: 6/8	7820882	Turn-Around Time								ш	uioi			
Fax:		Standard		Due Date:				NY Unrestric					NJ NY	
Email:		Rush (only if pre approved) 📗	# of Days:				NYC Sewer I	Discharg	е			Other:	
These samples have be	een previously analyze	ed by Alpha					ANAL	YSIS				1100000		T
Other project specific							3							o t
	•						8	2						a
							IF	R					Preservation	1
							1+	3					□ Lab to do	0
Please specify Metals	or TAL.							9						В
							99	X					(Please Specify below)	t
ALPHA Lab ID			Colle	ection	Sample	Sampler's		>						t
(Lab Use Only)	Sa	mple ID	Date	Time	Matrix	Initials	00	\ <u>-</u>					Sample Specific Comments	1
	00 7 18	5 157				-	-			-		-	cample opeome comments	е
20368 - 11	P3-7/8	3-14)	6-27-16		SO	SUK	1		-					_
12	P3-67	1-8)	11	0920		1	(1						
13	13-61	8-12-5	1)	0920)	1						
\U	123-5 F	-27	n	0935			1						- 0	
15	12211 4	.03	U	0100			1			-	-			_
10	504 (1045		+-				\rightarrow	+		 	-
16	75-4 41	0-12)	N	1045		\vdash	Ш		-	\rightarrow	+		, is,	_
17	03-3 9	4-87	u	1130			1				-			
18	P3-3 7	8-10)	N	ľи			ı	1						
19	02-2 7	12-14)	N	и	V	11/2	1							
20	02-0 4	11-05	N	1200	1	W		1				- 3		
Preservative Code:	Container Code	70)	100,000	11200			\vdash	-		-	+			_
A = None	P = Plastic	Westboro: Certification N	o: MA935		Con	tainer Type						-	Please print clearly, legibly	
B = HCI	A = Amber Glass	Mansfield: Certification N	o: MA015										and completely. Samples ca	an
C = HNO ₃	V = Vial												not be logged in and	
D = H ₂ SO ₄	G = Glass B = Bacteria Cup					reservative						.	turnaround time clock will no start until any ambiguities ar	
E = NaOH F = MeOH	C = Cube	- Delinewicked		Data	Time		Janaii I	ad Dva			oto/Tin	20	resolved. BY EXECUTING	E
G = NaHSO ₄	O = Other	Relinquished	38.	Date/		21	Receive		11	1 2	ate/Tin	ne O	THIS COC, THE CLIENT	
$H = Na_2S_2O_3$	E = Encore	19 July	flow	6-30-16	1740	MAN	14	ruce A	44	650	<u>- 1</u>	110	HAS READ AND AGREES	
K/E = Zn Ac/NaOH	D = BOD Bottle	/ Shut Per	ai			Oll	20	11	4	HI	1160	36c	TO BE BOUND BY ALPHA'S	S
O = Other													TERMS & CONDITIONS.	
Form No: 01-25 HC (rev. 30	0-Sept-2013)			- 5									(See reverse side.)	

ALPHA	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Cod	ay	05	Page	3	7		Rec'	ď	2/1	116		ALPHA JOB# C 16 20 368
Westborough, MA 01581	Mansfield, MA 02048	Project Information	100000				Deliv	verabl	es		1			Billing Information
8 Walkup Dr. TEL: 508-898-9220	320 Forbes Blvd TEL: 508-822-9300		100 5	by Su	1002		Tr	ASF				SP-B		Same as Client Info
FAX: 508-898-9193	FAX: 508-822-3288	Project Location: 5/5			V		$\dashv \vdash$		ılS (1 F	-ile)		QuIS (4	File)	PO#
Client Information		Project # 157	9	170	.(┨╠	Othe		110)	ш.	-Quio (+	i iic)	10 #
-	avisana antal Osave	1000					Door	110X W TI		0	1			D'
	nvironmental Group	(Use Project name as Pro		202-10			_		Maria Carlo	iiremen				Disposal Site Information
	American Blvd	Project Manager:	Joe Krikoriai	<u>n</u>			┥╘] NY T				Y Part 375	j	Please identify below location of *
Latham, NY 12110		ALPHAQuote #:						AWC) Standa	ards	\square	Y CP-51		applicable disposal facilities.
Phone: 518-782-0	0882	Turn-Around Time						NYR	estricte	d Use		ther		Disposal Facility:
Fax:		Standard		Due Date:				NYU	Inrestric	ted Use				П ил Пил
Email: jkrikorian@	@spectraenv.com	Rush (only if pre approved)		# of Days:				NYC	Sewer I	Discharg	е			Other:
These samples have h	been previously analyz	ed by Alpha			1		ANA	LYSIS	3					Sample Filtration
	c requirements/comn				· · · · · · · · · · · · · · · · · · ·			ΤĖ	T	ПТ			T	
Please specify Metal	s or TAL.						NYTCL-826	NYTCL-8270	Total Metals					Done Lab to do Preservation Lab to do B O(Please Specify below)
ALPHA Lab ID		I- ID	Colle	ection	Sample	Sampler's	_	2						t
(Lab Use Only)	58	ample ID	Date	Time	Matrix	Initials	1							Sample Specific Comments e
20368- 21	193-7/	9-10)	6-29-16	17.00	80	JCK	1	_	1		\dashv			
22	103-101	4-87	0 61-10	17.16	,	1000	+	1	+		-	-+-	+-	
23				12.10	_	 	1		++	1	-+		+	
24	153-101	8-10)		V C			1	-	+-	-	\dashv	_	-	
	191-36	4-87		1300		-	1	-						
25	X1-5 (6-12)		1300			11		1					
26	121-47	4-8)		1235										
21	P1-4 4	8-12)		1235)							
28	1P1-3 X	14-85		1245			i		1					
29	101-3 F	8-127		1245	111		,		1					
30	124-1/0	-4)		1305		T-\\\	Ti	1			\neg			
Preservative Code:	Container Code	Westboro: Certification No	o: MA935	1,000				-	+		_	_		
A = None B = HCl	P = Plastic				Con	tainer Type		١.	١. ا					Please print clearly, legibly
C = HNO ₃	A = Amber Glass V = Vial	Mansfield: Certification No	J. IVIAU15	- 1			Α	Α	Α		+		+	and completely. Samples can
$D = H_2SO_4$	G = Glass				Р	reservative								not be logged in and
E = NaOH	B = Bacteria Cup					Y	Α	Α	Α					turnaround time clock will not
F = MeOH G = NaHSO₄	C = Cube O = Other	Relinquished F		Date/T	ime		Receiv				D	ate/Time		start until any ambiguities are resolved. BY EXECUTING
$H = Na_2S_2O_3$	E = Encore	(achi	Bu	6-30-16	1740	Probal	90	taei	uA	ALL	-39	-161	7:10	THIS COC, THE CLIENT
K/E = Zn Ac/NaOH	D = BOD Bottle	Phy Hoteli	1			User	1	11				401	(6)	HAS READ AND AGREES
O = Other		,				1					11	4	<u> </u>	TO BE BOUND BY ALPHA'S
Form No: 01-25 (rev. 30-S	ept-2013)									$\neg \uparrow$				TERMS & CONDITIONS.

ДІРНА	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Coo	Page			in	Rec'd	1	1111	b	ALPHA Job# C1620368		
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information					Deli	verable	es				Billing Information
TEL: 508-898-9220	TEL: 508-822-9300	Project Name:	uboss	EV Sui	(<u>us</u>] ASP	-A	[ASP	-B	Same as Client Info
FAX: 508-898-9193	FAX: 508-822-3288	Project Location: 80			1	***] EQu	IS (1 F	ile)] EQu	IS (4 File)	PO#
Client Information		Project # 1520					1 [Othe	er				
	nvironmental Group	(Use Project name as Pro					Rea			rement	N PAGE	BA DO NA	Disposal Site Information
	American Blvd	Project Manager:	Joe Krikoriar	n	7.45.5			NYT		ſ	NYP	art 375	Please identify below location of
Latham, NY 12110	7 thoroan Diva	ALPHAQuote #:	OC KIROTIAI	•	37.70		1 -		Standa	rds [NYC		applicable disposal facilities.
Phone: 518-782-0	882	Turn-Around Time						NYR	estricted	d Use	Other		Disposal Facility:
Fax:		Standard	V	Due Date:			7 [NYU	nrestrict	ed Use			□ NJ □ NY
	Dspectraenv.com	Rush (only if pre approved)		# of Days:			1	NYC	Sewer E	Discharge			Other:
	peen previously analyze	ed by Alpha					ANA	LYSIS		~			Sample Filtration
	c requirements/comm					-	1	1			Т		
Please specify Metal							NYTCL-826	NYTCL-8270	Total Metals				Done Lab to do Preservation Lab to do (Please Specify below)
ALPHA Lab ID	Sa	mple ID	Colle	ection	Sample	Sampler's	'	-					i
(Lab Use Only)		imple 15	Date	Time	Matrix	Initials							Sample Specific Comments
20368 -31	1 94-11	4-8)	6-29-16	1305	50	KK	1	Ti	1				
32	P4-2-7	2-47	N	1315	i		1	1	1				
33	D11-7-6	4-6	и	1315				1	1				
34	104-27	1-4	N	1330				1					
35	104-3 9	2.5-3)	h	10/0			1	11/1	1				
36	194-31	1-67	N	, N			1	1	1		+		
37	121-7 70	3-47	N	1410		+	1	 ' -	1		+		
38	DI-1 74	-8)	6-20/16	830			1		1		+		
	1 40	-01	(2-30-16				1	+	1		+		
39	1 21-1	, 0		95D	1	1	+		1		+-		
Preservative Code:	Container Code	-8)	ν	840	<i>(</i>)		1	-	\vdash		+-		1
A = None	P = Plastic	Westboro: Certification No			Con	tainer Type							Please print clearly, legibly
B = HCI	A = Amber Glass	Mansfield: Certification No	o: MA015			_	Α	Α	Α				and completely. Samples can
$C = HNO_3$ $D = H_2SO_4$	V = Vial G = Glass			- 1	F	reservative							not be logged in and
E = NaOH	B = Bacteria Cup	1 1			è		Α	Α	Α				turnaround time clock will not
F = MeOH	C = Cube	Relinquished B	By:/	Date/1	Γime	0	Recei	ved By	<i>/</i> :		Date	/Time	start until any ambiguities are resolved. BY EXECUTING
G = NaHSO ₄	O = Other E = Encore	Dean Vin	Min	6-30-10	1740	Mul	Ly		AA	1 %		61710	THIS COC, THE CLIENT
$H = Na_2S_2O_3$ K/E = Zn Ac/NaOH	D = BOD Bottle	But the	E.	(V	11-10	11	1	- <i>U</i>	1	-		e ow	HAS READ AND AGREES
O = Other	6	por / 1a)	-0			Nu				_ 1	11/10		TO BE BOUND BY ALPHA'S
orm No: 01-25 (rev. 30-Sept-2013)													TERMS & CONDITIONS.

ALPHA	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Coo	ay	95	Page of	11			Rec'd Lab	71	111	 ь	ALPHA Job# C1620366
Westborough, MA 01581	Mansfield, MA 02048 320 Forbes Blvd	Project Information				1	Deliv	erable	s				Billing Information
8 Walkup Dr. TEL: 508-898-9220	TEL: 508-822-9300	Project Name:	1003	DV SI	Lite:	3		ASP-	·A		ASP-	В	Same as Client Info
FAX: 508-898-9193	FAX: 508-822-3288	Project Location: S	rasi	150				EQul	S (1 File)		EQul	S (4 File)	PO #
Client Information	Cis.	Project # /5	09				1 🗆	Othe	r				
Client: Spectra Er	nvironmental Group	(Use Project name as Pro	oject #)				Regu	ulatory	Requirer	nent			Disposal Site Information
Address: 19 Brittish	American Blvd	Project Manager:	Joe Krikorian	1				NY TO	ogs		NY Pa	art 375	Please identify below location of
Latham, NY 12110		ALPHAQuote #:					$] \square$	AWQ	Standards		NY CF	P-51	applicable disposal facilities.
Phone: 518-782-0	882	Turn-Around Time						NY Re	estricted U	se 🔲	Other		Disposal Facility:
Fax:		Standard		Due Date:				NY Ur	restricted	Use			□ NJ □ NY
	spectraenv.com	Rush (only if pre approved)		# of Days:				NYC S	Sewer Disc	harge			Other:
These samples have b	amples have been previously analyzed by Alpha opject specific requirements/comments:				1		ANA	LYSIS					Sample Filtration
Other project specific	requirements/comm	nents:											Done
Please specify Metals	s or TAL.						NYTCL-826	NYTCL-8270	Total Metals				Lab to do Preservation Lab to do B (Please Specify below)
ALPHA Lab ID		. 15	Colle	ection	Sample	Sampler's	1-7	2					
(Lab Use Only)	Sa	ample ID	Date	Time	Matrix	Initials							Sample Specific Comments
30368- 41	P2-1/8	(01-2	6-30-16	940	50	JUK			Q.				
42	121-7-76	1-81	6-30-16		1	1	1						
43	101/1 /6	2-157	i1	n			1		γ				
üy	101-2 /6	3-10)	Ŋ	925			V						
	I'MS		И	1000			ì		Ý				
	MSO		N	1000			Ιī		Ý				
46	D. P 01		(n-291)	1200			0		1				
46	0406)	10-30-16	11			6						
47	1000	3	10-30-16	1300	11		1		1				
40	27-2/1	F-8)	N	915		- W	1		10				
Preservative Code:	Container Code	Westboro: Certification N	O: MAQ35			,	1						1
A = None	P = Plastic	Mansfield: Certification N			Con	tainer Type	Δ	Δ	_	- 1			Please print clearly, legibly
B = HCl C = HNO ₃	A = Amber Glass V = Vial	Mansheld. Certification N	U. IVIAUTS				Α	Α	A				and completely. Samples can
$D = H_2SO_4$	G = Glass				Р	reservative		,	.	-			not be logged in and turnaround time clock will not
E = NaOH F = MeOH	B = Bacteria Cup C = Cube	-A -/-							Α	_			start until any ambiguities are
G = NaHSO ₄	O = Other	Relinquished E	77	Date/		77 /	1011	ed By		1.0	Date/		resolved. BY EXECUTING
$H = Na_2S_2O_3$	E = Encore D = BOD Bottle	A State Soul	Corar	6-30-16	1740	roun	140	rly	AAL	67	0,16		THIS COC, THE CLIENT HAS READ AND AGREES
K/E = Zn Ac/NaOH of O = Other	D - DOD DOME	Paller Hale	حلا			aur	_ (1	/1//	000	TO BE BOUND BY ALPHA'S
Form No: 01-25 (rev. 30-S	ent 2013)									-	-		TERMS & CONDITIONS.

ДІРНА	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney I Albany, NY 12205: 14 Walker Wa Tonawanda, NY 14150: 275 Coo	ay	05	Page	11			Rec'd Lab	71	111	6	ALPHA Job# C1620368
Westborough, MA 01581	Mansfield, MA 02048	Project Information					Deliv	erable	s		d early		Billing Information
8 Walkup Dr. TEL: 508-898-9220	320 Forbes Blvd TEL: 508-822-9300	Project Name:	1003	SU SI	1 ties	3		ASP-	A		ASP	-B	Same as Client Info
FAX: 508-898-9193	FAX: 508-822-3288	-	10011	10	A ()		1 🗆	EQul	S (1 File) [EQui	IS (4 File)	PO#
Client Information	Alexander Stille of	Project #	09	~~			1 🗖	Other		-			
	vironmental Group	(Use Project name as Pro	piect #)				Regu	latory	Require	ment	4/1/		Disposal Site Information
	merican Blvd	Project Manager:	Joe Krikorian	1				NY TO	ogs		NYP	art 375	Please identify below location of
Latham, NY 12110		ALPHAQuote #:						AWQ	Standards	; <u> </u>	NY C	P-51	applicable disposal facilities.
Phone: 518-782-088	32	Turn-Around Time						NY Re	stricted U	se	Other		Disposal Facility:
Fax:		Standard	₩.	Due Date:				NY Un	restricted	Use			□ NJ □ NY
	spectraenv.com	Rush (only if pre approved)		# of Days:				NYC S	Sewer Dis	charge			Other:
				Sample Filtration 0									
											Π		Done
Please specify Metals		,					TCL-826 777	NYTCL-8270	otal Metals				Lab to do Preservation Lab to do B
							NY TYNA) Y	Fota				(Please Specify below)
ALPHA Lab ID			Colle	ection	Sample	Sampler's	1-7	Z					
(Lab Use Only)	29	ample ID	Date	Time	Matrix	Initials							Sample Specific Comments
3.0368- 41	P2-1/8	3-10	6-30-16	840	50	ICK			Q.				
42	21-7-70	1-91	12-30-16		1	1	1						
43	21-2 18	2-12	il	N			1		ĭ				
üy	21-3 /8	2-10	Ŋ	925			V		1				
	MS		И	1000			1		Ý				
	MSD		N	1000					Ÿ				
us us	D. P 01		(n-291)	, 1200			Ó		il				
46	Dup 67)	10-30-16	11			6			1			
47		3_	10-30-16	1	11		1		1				
48	\$2-3/L	1-8)	N	915	\vee	1			7				
Preservative Code:	Container Code	Westboro: Certification No	o: MA935	1 - 3					•				
	P = Plastic A = Amber Glass	Mansfield: Certification No		1	Con	tainer Type	A	A	A				Please print clearly, legibly
	V = Vial												and completely. Samples can not be logged in and
1.20	$O = H_2SO_4$ $G = Glass$				Р	reservative	А	A	A				turnaround time clock will not
_ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	B = Bacteria Cup C = Cube	Relinquished B	ave /	Date/	Time		Receiv				Date	/Time	start until any ambiguities are
G = NaHSO ₄	O = Other	The initial state of the	lain	10-30-16					AAL	63		1710	resolved. BY EXECUTING THIS COC, THE CLIENT
[11 - 14020203	E = Encore D = BOD Bottle	Pala Hale	0	6-00-16	, 1740	Mus		1	/ / / / 5	2	7.1.	, ,	HAS READ AND AGREES
O = Other		from Have	セン			M				7,	/1//	6000	TO BE BOUND BY ALPHA'S
Form No: 01-25 /rev. 30 Sec	nt 2012)									-			TERMS & CONDITIONS.

ANALYTICAL REPORT

Lab Number: L1624444

Client: Spectra Environmental Group

19 British American Blvd.

Latham, NY 12110

ATTN: Frank Peduto
Phone: (518) 782-0882

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209 Report Date: 08/15/16

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number: L1624444 **Report Date:** 08/15/16

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1624444-01	13	SOIL	SYRACUSE, NY	08/04/16 07:15	08/04/16
L1624444-02	14	SOIL	SYRACUSE, NY	08/04/16 09:45	08/04/16
L1624444-03	15	SOIL	SYRACUSE, NY	08/04/16 13:15	08/04/16

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1624444 **Project Number:** 15209 08/15/16

Report Date:

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:DESTINY-EMBASSY SUITESLab Number:L1624444Project Number:15209Report Date:08/15/16

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

L1624444-01, -02, and -03: All of the sample vials submitted for the Volatile Organics analyses were overfilled. At the client's request, sample volume was taken from unpreserved containers and preserved appropriately.

Volatile Organics

L1624444-01, -02, and -03: The analysis was performed utilizing a compromised vial, with the client's authorization.

Semivolatile Organics

L1624444-01 and -02: The sample has elevated detection limits due to the dilution required by the sample matrix.

Metals

L1624444-01, -02, and -03: The sample has elevated detection limits for all elements, with the exception of mercury, due to the dilution required by matrix interferences encountered during analysis.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 08/15/16

(600, Sensor Kelly Stenstrom

ORGANICS

VOLATILES

L1624444

08/15/16

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab ID:

SAMPLE RESULTS

Lab Number:

Report Date:

L1624444-01 Date Collected: 08/04/16 07:15

Client ID: 13 Date Received: 08/04/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 08/12/16 15:01

Analyst: MV Percent Solids: 85%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 -	- Westborough Lab					
Methylene chloride	0.0022	J	mg/kg	0.012	0.0013	1
1,1-Dichloroethane	ND		mg/kg	0.0018	0.00010	1
Chloroform	ND		mg/kg	0.0018	0.00044	1
Carbon tetrachloride	ND		mg/kg	0.0012	0.00025	1
1,2-Dichloropropane	ND		mg/kg	0.0041	0.00027	1
Dibromochloromethane	ND		mg/kg	0.0012	0.00018	1
1,1,2-Trichloroethane	ND		mg/kg	0.0018	0.00036	1
Tetrachloroethene	ND		mg/kg	0.0012	0.00016	1
Chlorobenzene	ND		mg/kg	0.0012	0.00041	1
Trichlorofluoromethane	ND		mg/kg	0.0059	0.00046	1
1,2-Dichloroethane	ND		mg/kg	0.0012	0.00013	1
1,1,1-Trichloroethane	ND		mg/kg	0.0012	0.00013	1
Bromodichloromethane	ND		mg/kg	0.0012	0.00020	1
trans-1,3-Dichloropropene	ND		mg/kg	0.0012	0.00014	1
cis-1,3-Dichloropropene	ND		mg/kg	0.0012	0.00014	1
Bromoform	ND		mg/kg	0.0047	0.00028	1
1,1,2,2-Tetrachloroethane	ND		mg/kg	0.0012	0.00012	1
Benzene	ND		mg/kg	0.0012	0.00014	1
Toluene	ND		mg/kg	0.0018	0.00023	1
Ethylbenzene	ND		mg/kg	0.0012	0.00015	1
Chloromethane	ND		mg/kg	0.0059	0.00035	1
Bromomethane	ND		mg/kg	0.0024	0.00040	1
Vinyl chloride	ND		mg/kg	0.0024	0.00014	1
Chloroethane	ND		mg/kg	0.0024	0.00037	1
1,1-Dichloroethene	ND		mg/kg	0.0012	0.00031	1
trans-1,2-Dichloroethene	ND		mg/kg	0.0018	0.00025	1
Trichloroethene	ND		mg/kg	0.0012	0.00015	1
1,2-Dichlorobenzene	ND		mg/kg	0.0059	0.00018	1
1,3-Dichlorobenzene	ND		mg/kg	0.0059	0.00016	1
1,4-Dichlorobenzene	ND		mg/kg	0.0059	0.00016	1

08/04/16 07:15

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1624444

Project Number: 15209 Report Date: 08/15/16

SAMPLE RESULTS

Lab ID: L1624444-01 Date Collected:

Client ID: Date Received: 08/04/16

Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - We	estborough Lab					
Methyl tert butyl ether	ND		mg/kg	0.0024	0.00010	1
p/m-Xylene	ND		mg/kg	0.0024	0.00023	1
o-Xylene	ND		mg/kg	0.0024	0.00020	1
cis-1,2-Dichloroethene	ND		mg/kg	0.0012	0.00017	1
Styrene	ND		mg/kg	0.0024	0.00048	1
Dichlorodifluoromethane	ND		mg/kg	0.012	0.00022	1
Acetone	0.0094	J	mg/kg	0.012	0.0012	1
Carbon disulfide	ND		mg/kg	0.012	0.0013	1
2-Butanone	ND		mg/kg	0.012	0.00032	1
4-Methyl-2-pentanone	ND		mg/kg	0.012	0.00029	1
2-Hexanone	ND		mg/kg	0.012	0.00079	1
Bromochloromethane	ND		mg/kg	0.0059	0.00033	1
1,2-Dibromoethane	ND		mg/kg	0.0047	0.00021	1
1,2-Dibromo-3-chloropropane	ND		mg/kg	0.0059	0.00047	1
Isopropylbenzene	ND		mg/kg	0.0012	0.00012	1
1,2,3-Trichlorobenzene	ND		mg/kg	0.0059	0.00017	1
1,2,4-Trichlorobenzene	ND		mg/kg	0.0059	0.00021	1
Methyl Acetate	ND		mg/kg	0.024	0.00032	1
Cyclohexane	ND		mg/kg	0.024	0.00017	1
1,4-Dioxane	ND		mg/kg	0.12	0.017	1
Freon-113	ND		mg/kg	0.024	0.00032	1
Methyl cyclohexane	ND		mg/kg	0.0047	0.00018	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	118		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	98		70-130	
Dibromofluoromethane	105		70-130	

L1624444

08/15/16

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Date Collected: 08/04/16 09:45

Lab Number:

Report Date:

Date Received: 08/04/16
Field Prep: Not Specified

Lab ID: L1624444-02

Client ID: 14

Sample Location: SYRACUSE, NY

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 08/12/16 15:27

Analyst: MV Percent Solids: 88%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 -	Westborough Lab					
Methylene chloride	0.0026	J	mg/kg	0.011	0.0012	1
1,1-Dichloroethane	ND		mg/kg	0.0017	0.00009	1
Chloroform	ND		mg/kg	0.0017	0.00042	1
Carbon tetrachloride	ND		mg/kg	0.0011	0.00024	1
1,2-Dichloropropane	ND		mg/kg	0.0040	0.00026	1
Dibromochloromethane	ND		mg/kg	0.0011	0.00018	1
1,1,2-Trichloroethane	ND		mg/kg	0.0017	0.00035	1
Tetrachloroethene	ND		mg/kg	0.0011	0.00016	1
Chlorobenzene	ND		mg/kg	0.0011	0.00040	1
Trichlorofluoromethane	ND		mg/kg	0.0057	0.00044	1
1,2-Dichloroethane	ND		mg/kg	0.0011	0.00013	1
1,1,1-Trichloroethane	ND		mg/kg	0.0011	0.00013	1
Bromodichloromethane	ND		mg/kg	0.0011	0.00020	1
trans-1,3-Dichloropropene	ND		mg/kg	0.0011	0.00014	1
cis-1,3-Dichloropropene	ND		mg/kg	0.0011	0.00013	1
Bromoform	ND		mg/kg	0.0046	0.00027	1
1,1,2,2-Tetrachloroethane	ND		mg/kg	0.0011	0.00011	1
Benzene	ND		mg/kg	0.0011	0.00013	1
Toluene	ND		mg/kg	0.0017	0.00022	1
Ethylbenzene	ND		mg/kg	0.0011	0.00014	1
Chloromethane	ND		mg/kg	0.0057	0.00034	1
Bromomethane	ND		mg/kg	0.0023	0.00038	1
Vinyl chloride	ND		mg/kg	0.0023	0.00013	1
Chloroethane	ND		mg/kg	0.0023	0.00036	1
1,1-Dichloroethene	ND		mg/kg	0.0011	0.00030	1
trans-1,2-Dichloroethene	ND		mg/kg	0.0017	0.00024	1
Trichloroethene	ND		mg/kg	0.0011	0.00014	1
1,2-Dichlorobenzene	ND		mg/kg	0.0057	0.00017	1
1,3-Dichlorobenzene	ND		mg/kg	0.0057	0.00015	1
1,4-Dichlorobenzene	ND		mg/kg	0.0057	0.00016	1

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1624444

Project Number: 15209 Report Date: 08/15/16

SAMPLE RESULTS

Lab ID: L1624444-02 Date Collected: 08/04/16 09:45

Client ID: 14 Date Received: 08/04/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RLMDL **Dilution Factor** Volatile Organics by 8260/5035 - Westborough Lab Methyl tert butyl ether ND 0.0023 0.00009 mg/kg 1 p/m-Xylene ND mg/kg 0.0023 0.00022 o-Xylene ND 0.0023 0.00020 1 mg/kg ND 0.00016 cis-1,2-Dichloroethene 0.0011 1 mg/kg Styrene ND 0.0023 0.00046 1 mg/kg Dichlorodifluoromethane ND 0.011 0.00022 1 mg/kg 0.011 0.0012 Acetone 0.025 1 mg/kg Carbon disulfide ND 1 mg/kg 0.011 0.0012 ND 2-Butanone mg/kg 0.011 0.00031 1 ND 0.011 0.00028 4-Methyl-2-pentanone 1 mg/kg 0.011 2-Hexanone ND mg/kg 0.00076 1 Bromochloromethane ND 0.0057 0.00031 1 mg/kg 1,2-Dibromoethane ND 0.0046 0.00020 1 mg/kg ND 0.0057 0.00045 1 1,2-Dibromo-3-chloropropane mg/kg ND 0.0011 0.00012 1 Isopropylbenzene mg/kg 1,2,3-Trichlorobenzene ND 0.0057 0.00017 1 mg/kg 1,2,4-Trichlorobenzene ND 0.0057 0.00021 mg/kg 1 Methyl Acetate ND 0.023 0.00031 1 mg/kg Cyclohexane ND 0.023 0.00017 1 mg/kg ND 1 1,4-Dioxane 0.11 0.016 mg/kg Freon-113 ND 0.023 0.00031 1 mg/kg Methyl cyclohexane ND mg/kg 0.0046 0.00018 1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	120		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	97		70-130	
Dibromofluoromethane	105		70-130	

L1624444

08/15/16

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number:

Report Date:

Lab ID: L1624444-03

Client ID: 15

Sample Location: SYRACUSE, NY

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 08/12/16 15:53

Analyst: MV Percent Solids: 82%

Date Collected:	08/04/16 13:15
Date Received:	08/04/16
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 -	Westborough Lab					
Methylene chloride	0.0026	J	mg/kg	0.012	0.0013	1
1,1-Dichloroethane	ND		mg/kg	0.0018	0.00010	1
Chloroform	ND		mg/kg	0.0018	0.00045	1
Carbon tetrachloride	ND		mg/kg	0.0012	0.00025	1
1,2-Dichloropropane	ND		mg/kg	0.0042	0.00028	1
Dibromochloromethane	ND		mg/kg	0.0012	0.00019	1
1,1,2-Trichloroethane	ND		mg/kg	0.0018	0.00037	1
Tetrachloroethene	ND		mg/kg	0.0012	0.00017	1
Chlorobenzene	ND		mg/kg	0.0012	0.00042	1
Trichlorofluoromethane	ND		mg/kg	0.0061	0.00047	1
1,2-Dichloroethane	ND		mg/kg	0.0012	0.00014	1
1,1,1-Trichloroethane	ND		mg/kg	0.0012	0.00013	1
Bromodichloromethane	ND		mg/kg	0.0012	0.00021	1
trans-1,3-Dichloropropene	ND		mg/kg	0.0012	0.00015	1
cis-1,3-Dichloropropene	ND		mg/kg	0.0012	0.00014	1
Bromoform	ND		mg/kg	0.0048	0.00029	1
1,1,2,2-Tetrachloroethane	ND		mg/kg	0.0012	0.00012	1
Benzene	0.00049	J	mg/kg	0.0012	0.00014	1
Toluene	0.00038	J	mg/kg	0.0018	0.00024	1
Ethylbenzene	0.00063	J	mg/kg	0.0012	0.00015	1
Chloromethane	ND		mg/kg	0.0061	0.00036	1
Bromomethane	ND		mg/kg	0.0024	0.00041	1
Vinyl chloride	ND		mg/kg	0.0024	0.00014	1
Chloroethane	ND		mg/kg	0.0024	0.00038	1
1,1-Dichloroethene	ND		mg/kg	0.0012	0.00032	1
trans-1,2-Dichloroethene	ND		mg/kg	0.0018	0.00026	1
Trichloroethene	ND		mg/kg	0.0012	0.00015	1
1,2-Dichlorobenzene	ND		mg/kg	0.0061	0.00018	1
1,3-Dichlorobenzene	ND		mg/kg	0.0061	0.00016	1
1,4-Dichlorobenzene	ND		mg/kg	0.0061	0.00017	1

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1624444

Project Number: 15209 Report Date: 08/15/16

SAMPLE RESULTS

Lab ID: L1624444-03 Date Collected: 08/04/16 13:15

Client ID: 15 Date Received: 08/04/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

•					•		
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by 8260/5035 - W	estborough Lab						
Methyl tert butyl ether	ND		mg/kg	0.0024	0.00010	1	
p/m-Xylene	0.0014	J	mg/kg	0.0024	0.00024	1	
o-Xylene	ND		mg/kg	0.0024	0.00021	1	
cis-1,2-Dichloroethene	ND		mg/kg	0.0012	0.00017	1	
Styrene	ND		mg/kg	0.0024	0.00049	1	
Dichlorodifluoromethane	ND		mg/kg	0.012	0.00023	1	
Acetone	0.14		mg/kg	0.012	0.0012	1	
Carbon disulfide	ND		mg/kg	0.012	0.0013	1	
2-Butanone	0.025		mg/kg	0.012	0.00033	1	
4-Methyl-2-pentanone	ND		mg/kg	0.012	0.00030	1	
2-Hexanone	ND		mg/kg	0.012	0.00081	1	
Bromochloromethane	ND		mg/kg	0.0061	0.00033	1	
1,2-Dibromoethane	ND		mg/kg	0.0048	0.00021	1	
1,2-Dibromo-3-chloropropane	ND		mg/kg	0.0061	0.00048	1	
Isopropylbenzene	0.00014	J	mg/kg	0.0012	0.00012	1	
1,2,3-Trichlorobenzene	ND		mg/kg	0.0061	0.00018	1	
1,2,4-Trichlorobenzene	ND		mg/kg	0.0061	0.00022	1	
Methyl Acetate	ND		mg/kg	0.024	0.00033	1	
Cyclohexane	ND		mg/kg	0.024	0.00018	1	
1,4-Dioxane	ND		mg/kg	0.12	0.018	1	
Freon-113	ND		mg/kg	0.024	0.00033	1	
Methyl cyclohexane	ND		mg/kg	0.0048	0.00019	1	

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1624444

Project Number: 15209 Report Date: 08/15/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/12/16 09:26

Analyst: MV

Parameter	Result	Qualifier	Units	RI	L	MDL	
Volatile Organics by 8260/5035 -	Westborough	Lab for sa	mple(s):	01-03	Batch:	WG922382-5	
Methylene chloride	ND		mg/kg	0.0	10	0.0011	
1,1-Dichloroethane	ND		mg/kg	0.00	15	0.00008	
Chloroform	ND		mg/kg	0.00	15	0.00037	
Carbon tetrachloride	ND		mg/kg	0.00	10	0.00021	
1,2-Dichloropropane	ND		mg/kg	0.00	35	0.00023	
Dibromochloromethane	ND		mg/kg	0.00	10	0.00015	
1,1,2-Trichloroethane	ND		mg/kg	0.00	15	0.00030	
Tetrachloroethene	ND		mg/kg	0.00	10	0.00014	
Chlorobenzene	ND		mg/kg	0.00	10	0.00035	
Trichlorofluoromethane	ND		mg/kg	0.00	50	0.00039	
1,2-Dichloroethane	ND		mg/kg	0.00	10	0.00011	
1,1,1-Trichloroethane	ND		mg/kg	0.00	10	0.00011	
Bromodichloromethane	ND		mg/kg	0.00	10	0.00017	
trans-1,3-Dichloropropene	ND		mg/kg	0.00	10	0.00012	
cis-1,3-Dichloropropene	ND		mg/kg	0.00	10	0.00012	
Bromoform	ND		mg/kg	0.00	40	0.00024	
1,1,2,2-Tetrachloroethane	ND		mg/kg	0.00	10	0.00010	
Benzene	ND		mg/kg	0.00	10	0.00012	
Toluene	ND		mg/kg	0.00	15	0.00019	
Ethylbenzene	ND		mg/kg	0.00	10	0.00013	
Chloromethane	ND		mg/kg	0.00	50	0.00029	
Bromomethane	ND		mg/kg	0.00	20	0.00034	
Vinyl chloride	ND		mg/kg	0.00	20	0.00012	
Chloroethane	ND		mg/kg	0.00	20	0.00032	
1,1-Dichloroethene	ND		mg/kg	0.00	10	0.00026	
trans-1,2-Dichloroethene	ND		mg/kg	0.00	15	0.00021	
Trichloroethene	ND		mg/kg	0.00	10	0.00012	
1,2-Dichlorobenzene	ND		mg/kg	0.00	50	0.00015	
1,3-Dichlorobenzene	ND		mg/kg	0.00	50	0.00014	

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1624444

Project Number: 15209 Report Date: 08/15/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/12/16 09:26

Analyst: MV

Parameter	Result	Qualifier	Units	RI	L	MDL
olatile Organics by 8260/5035	5 - Westborough	Lab for sa	mple(s):	01-03	Batch:	WG922382-5
1,4-Dichlorobenzene	ND		mg/kg	0.00	50	0.00014
Methyl tert butyl ether	ND		mg/kg	0.00	20	0.00008
p/m-Xylene	ND		mg/kg	0.00	20	0.00020
o-Xylene	ND		mg/kg	0.00	20	0.00017
cis-1,2-Dichloroethene	ND		mg/kg	0.00	10	0.00014
Styrene	ND		mg/kg	0.00	20	0.00040
Dichlorodifluoromethane	ND		mg/kg	0.0	10	0.00019
Acetone	ND		mg/kg	0.0	10	0.0010
Carbon disulfide	ND		mg/kg	0.0	10	0.0011
2-Butanone	ND		mg/kg	0.0	10	0.00027
4-Methyl-2-pentanone	ND		mg/kg	0.0	10	0.00024
2-Hexanone	ND		mg/kg	0.0	10	0.00067
Bromochloromethane	ND		mg/kg	0.00	50	0.00028
1,2-Dibromoethane	ND		mg/kg	0.00	40	0.00017
1,2-Dibromo-3-chloropropane	ND		mg/kg	0.00	50	0.00040
Isopropylbenzene	ND		mg/kg	0.00	10	0.00010
1,2,3-Trichlorobenzene	ND		mg/kg	0.00	50	0.00015
1,2,4-Trichlorobenzene	ND		mg/kg	0.00	50	0.00018
Methyl Acetate	ND		mg/kg	0.0	20	0.00027
Cyclohexane	ND		mg/kg	0.0	20	0.00015
1,4-Dioxane	ND		mg/kg	0.1	0	0.014
Freon-113	ND		mg/kg	0.0	20	0.00027
Methyl cyclohexane	ND		mg/kg	0.00	140	0.00015

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1624444

Project Number: 15209 Report Date: 08/15/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/12/16 09:26

Analyst: MV

Parameter	Result	Qualifier	Units	RL	-	MDL	
Volatile Organics by 8260/5035 - V	/estborough	Lab for sai	mple(s):	01-03	Batch:	WG922382-5	

Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	107		70-130	
Toluene-d8	97		70-130	
4-Bromofluorobenzene	100		70-130	
Dibromofluoromethane	101		70-130	

Lab Control Sample Analysis Batch Quality Control

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number: L1624444

Report Date: 08

08/15/16

arameter	LCS %Recovery Q	LCSD ual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
olatile Organics by 8260/5035 - We	estborough Lab Associated sa	ample(s): 01-03 Batch	: WG922382-3 WG922382-4		
Methylene chloride	105	105	70-130	0	30
1,1-Dichloroethane	116	117	70-130	1	30
Chloroform	115	116	70-130	1	30
Carbon tetrachloride	130	129	70-130	1	30
1,2-Dichloropropane	108	112	70-130	4	30
Dibromochloromethane	100	104	70-130	4	30
2-Chloroethylvinyl ether	103	112	70-130	8	30
1,1,2-Trichloroethane	100	101	70-130	1	30
Tetrachloroethene	116	114	70-130	2	30
Chlorobenzene	107	104	70-130	3	30
Trichlorofluoromethane	130	128	70-139	2	30
1,2-Dichloroethane	114	123	70-130	8	30
1,1,1-Trichloroethane	125	123	70-130	2	30
Bromodichloromethane	108	112	70-130	4	30
trans-1,3-Dichloropropene	101	104	70-130	3	30
cis-1,3-Dichloropropene	104	110	70-130	6	30
1,1-Dichloropropene	122	118	70-130	3	30
Bromoform	94	99	70-130	5	30
1,1,2,2-Tetrachloroethane	93	98	70-130	5	30
Benzene	110	110	70-130	0	30
Toluene	107	104	70-130	3	30

Lab Control Sample Analysis Batch Quality Control

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number: L1624444

Report Date: 08/15/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by 8260/5035 - Westbord	ough Lab Associat	ted sample(s):	01-03 Batch:	WG922382-3	3 WG922382-4			
Ethylbenzene	109		107		70-130	2	30	
Chloromethane	113		114		52-130	1	30	
Bromomethane	110		109		57-147	1	30	
Vinyl chloride	114		113		67-130	1	30	
Chloroethane	126		120		50-151	5	30	
1,1-Dichloroethene	114		111		65-135	3	30	
trans-1,2-Dichloroethene	112		112		70-130	0	30	
Trichloroethene	112		116		70-130	4	30	
1,2-Dichlorobenzene	102		106		70-130	4	30	
1,3-Dichlorobenzene	104		105		70-130	1	30	
1,4-Dichlorobenzene	104		104		70-130	0	30	
Methyl tert butyl ether	105		111		66-130	6	30	
p/m-Xylene	107		109		70-130	2	30	
o-Xylene	107		108		70-130	1	30	
cis-1,2-Dichloroethene	108		110		70-130	2	30	
Dibromomethane	108		110		70-130	2	30	
Styrene	109		108		70-130	1	30	
Dichlorodifluoromethane	116		108		30-146	7	30	
Acetone	102		116		54-140	13	30	
Carbon disulfide	105		104		59-130	1	30	
2-Butanone	112		124		70-130	10	30	

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number: L1624444

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	<u>; </u>
Volatile Organics by 8260/5035 - Westborou	gh Lab Associa	ted sample(s):	01-03 Batch:	WG922382-	3 WG922382-4			
Vinyl acetate	109		116		70-130	6	30	
4-Methyl-2-pentanone	105		109		70-130	4	30	
1,2,3-Trichloropropane	97		103		68-130	6	30	
2-Hexanone	105		111		70-130	6	30	
Bromochloromethane	111		110		70-130	1	30	
2,2-Dichloropropane	126		122		70-130	3	30	
1,2-Dibromoethane	99		103		70-130	4	30	
1,3-Dichloropropane	101		102		69-130	1	30	
1,1,1,2-Tetrachloroethane	107		108		70-130	1	30	
Bromobenzene	101		98		70-130	3	30	
n-Butylbenzene	111		111		70-130	0	30	
sec-Butylbenzene	111		108		70-130	3	30	
tert-Butylbenzene	109		107		70-130	2	30	
o-Chlorotoluene	107		105		70-130	2	30	
p-Chlorotoluene	108		108		70-130	0	30	
1,2-Dibromo-3-chloropropane	89		90		68-130	1	30	
Hexachlorobutadiene	115		113		67-130	2	30	
Isopropylbenzene	109		105		70-130	4	30	
p-isopropyltoluene	113		108		70-130	5	30	
Naphthalene	94		101		70-130	7	30	
Acrylonitrile	106		114		70-130	7	30	

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number: L1624444

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by 8260/5035 - Westboro	ugh Lab Associa	ted sample(s):	01-03 Batch:	WG922382-3	3 WG922382-4			
Isopropyl Ether	111		116		66-130	4		30
tert-Butyl Alcohol	102		112		70-130	9		30
n-Propylbenzene	107		106		70-130	1		30
1,2,3-Trichlorobenzene	103		101		70-130	2		30
1,2,4-Trichlorobenzene	109		111		70-130	2		30
1,3,5-Trimethylbenzene	111		108		70-130	3		30
1,2,4-Trimethylbenzene	108		108		70-130	0		30
Methyl Acetate	108		116		51-146	7		30
Ethyl Acetate	112		119		70-130	6		30
Acrolein	96		105		70-130	9		30
Cyclohexane	128		125		59-142	2		30
1,4-Dioxane	114		113		65-136	1		30
1,1,2-Trichloro-1,2,2-Trifluoroethane	130		122		50-139	6		30
p-Diethylbenzene	111		109		70-130	2		30
p-Ethyltoluene	108		108		70-130	0		30
1,2,4,5-Tetramethylbenzene	106		107		70-130	1		30
Tetrahydrofuran	111		118		66-130	6		30
Ethyl ether	100		103		67-130	3		30
trans-1,4-Dichloro-2-butene	100		95		70-130	5		30
Methyl cyclohexane	124		118		70-130	5		30
Ethyl-Tert-Butyl-Ether	110		115		70-130	4		30

Project Name: DESTINY-EMBASSY SUITES

Lab Number: L1624444

Project Number: 15209 Report Date:

08/15/16

Parameter	LCS %Recovery	Qual	LCS %Reco		9/ Qual	6Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by 8260/5035 - Westboroug	h Lab Associated	d sample(s):	01-03	Batch:	WG922382-3	3 WG922382-4				
Tertiary-Amyl Methyl Ether	105		11	3		70-130	7		30	

	LCS	LCS			Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	107		112		70-130	
Toluene-d8	97		98		70-130	
4-Bromofluorobenzene	95		97		70-130	
Dibromofluoromethane	100		105		70-130	

SEMIVOLATILES

L1624444

08/15/16

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Date Collected:

Lab Number:

Report Date:

Lab ID: L1624444-01 D

Client ID: 13

Sample Location: SYRACUSE, NY

Matrix: Soil Analytical Method: 1,8270D Analytical Date: 08/12/16 13:41

Analyst: MW 85% Percent Solids:

08/04/16 07:15 Date Received: 08/04/16 Field Prep: Not Specified Extraction Method: EPA 3546 08/09/16 02:13 Extraction Date:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Semivolatile Organics by GC/MS - 1	Semivolatile Organics by GC/MS - Westborough Lab									
Acenaphthene	0.53	J	mg/kg	0.61	0.079	4				
Hexachlorobenzene	ND		mg/kg	0.46	0.085	4				
Bis(2-chloroethyl)ether	ND		mg/kg	0.69	0.10	4				
2-Chloronaphthalene	ND		mg/kg	0.76	0.076	4				
3,3'-Dichlorobenzidine	ND		mg/kg	0.76	0.20	4				
2,4-Dinitrotoluene	ND		mg/kg	0.76	0.15	4				
2,6-Dinitrotoluene	ND		mg/kg	0.76	0.13	4				
Fluoranthene	12.		mg/kg	0.46	0.088	4				
4-Chlorophenyl phenyl ether	ND		mg/kg	0.76	0.082	4				
4-Bromophenyl phenyl ether	ND		mg/kg	0.76	0.12	4				
Bis(2-chloroisopropyl)ether	ND		mg/kg	0.92	0.13	4				
Bis(2-chloroethoxy)methane	ND		mg/kg	0.82	0.076	4				
Hexachlorobutadiene	ND		mg/kg	0.76	0.11	4				
Hexachlorocyclopentadiene	ND		mg/kg	2.2	0.69	4				
Hexachloroethane	ND		mg/kg	0.61	0.12	4				
Isophorone	ND		mg/kg	0.69	0.099	4				
Naphthalene	1.5		mg/kg	0.76	0.093	4				
Nitrobenzene	ND		mg/kg	0.69	0.11	4				
NDPA/DPA	ND		mg/kg	0.61	0.087	4				
n-Nitrosodi-n-propylamine	ND		mg/kg	0.76	0.12	4				
Bis(2-ethylhexyl)phthalate	ND		mg/kg	0.76	0.26	4				
Butyl benzyl phthalate	ND		mg/kg	0.76	0.19	4				
Di-n-butylphthalate	ND		mg/kg	0.76	0.14	4				
Di-n-octylphthalate	ND		mg/kg	0.76	0.26	4				
Diethyl phthalate	ND		mg/kg	0.76	0.071	4				
Dimethyl phthalate	ND		mg/kg	0.76	0.16	4				
Benzo(a)anthracene	6.0		mg/kg	0.46	0.086	4				
Benzo(a)pyrene	4.9		mg/kg	0.61	0.19	4				
Benzo(b)fluoranthene	6.4		mg/kg	0.46	0.13	4				
Benzo(k)fluoranthene	2.2		mg/kg	0.46	0.12	4				

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1624444

Project Number: Report Date: 15209 08/15/16

SAMPLE RESULTS

Lab ID: L1624444-01 D Date Collected: 08/04/16 07:15

Client ID: 13 Date Received: 08/04/16 SYRACUSE, NY Sample Location: Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL **Dilution Factor** Semivolatile Organics by GC/MS - Westborough Lab 5.7 0.46 0.079 4 Chrysene mg/kg Acenaphthylene 1.1 mg/kg 0.61 0.12 4 Anthracene 2.5 mg/kg 0.46 0.15 4 Benzo(ghi)perylene 3.1 0.61 0.090 4 mg/kg Fluorene 1.1 0.76 0.074 4 mg/kg Phenanthrene 8.5 0.46 0.093 4 mg/kg Dibenzo(a,h)anthracene 0.94 0.46 0.088 4 mg/kg Indeno(1,2,3-cd)pyrene 3.4 0.61 0.11 4 mg/kg Pyrene 9.9 0.46 0.076 4 mg/kg ND Biphenyl 1.7 0.18 4 mg/kg 4-Chloroaniline ND mg/kg 0.76 0.14 4 2-Nitroaniline ND 0.76 0.15 4 mg/kg 3-Nitroaniline ND 0.76 0.14 4 mg/kg ND 4 4-Nitroaniline mg/kg 0.76 0.32 Dibenzofuran 0.55 J 0.76 0.072 4 mg/kg 2-Methylnaphthalene 0.45 J 0.92 0.092 4 mg/kg 1,2,4,5-Tetrachlorobenzene ND 0.76 0.080 mg/kg 4 ND 0.76 0.094 4 Acetophenone mg/kg 2,4,6-Trichlorophenol ND 0.46 0.14 4 mg/kg ND p-Chloro-m-cresol 0.76 0.11 4 mg/kg ND 0.76 0.090 4 2-Chlorophenol mg/kg 2,4-Dichlorophenol ND mg/kg 0.69 0.12 4 2,4-Dimethylphenol ND 0.76 0.25 4 mg/kg 2-Nitrophenol ND 1.6 0.29 4 mg/kg 4-Nitrophenol ND 1.1 0.31 4 mg/kg 2,4-Dinitrophenol ND mg/kg 3.7 0.36 4 4,6-Dinitro-o-cresol ND 2.0 0.37 4 mg/kg Pentachlorophenol ND mg/kg 0.61 0.17 4 Phenol ND 4 0.76 0.12 mg/kg 2-Methylphenol ND mg/kg 0.76 0.12 4 3-Methylphenol/4-Methylphenol ND mg/kg 1.1 0.12 4 2,4,5-Trichlorophenol ND 0.76 4 mg/kg 0.15 Carbazole 0.94 mg/kg 0.76 0.074 4 ND Atrazine mg/kg 0.61 0.27 4 4 Benzaldehyde ND 1.0 0.20 mg/kg Caprolactam ND 0.76 0.23 4 mg/kg ND 2,3,4,6-Tetrachlorophenol 0.76 0.15 4

mg/kg

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1624444

Project Number: 15209 Report Date: 08/15/16

SAMPLE RESULTS

Lab ID: L1624444-01 D Date Collected: 08/04/16 07:15

Client ID: 13 Date Received: 08/04/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	81	25-120	
Phenol-d6	88	10-120	
Nitrobenzene-d5	80	23-120	
2-Fluorobiphenyl	88	30-120	
2,4,6-Tribromophenol	90	10-136	
4-Terphenyl-d14	83	18-120	

L1624444

08/15/16

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number:

Report Date:

Date Collected: 08/04/16 09:45

Date Received: 08/04/16 Field Prep: Not Specified Extraction Method: EPA 3546

08/09/16 02:13 Extraction Date:

Lab ID: L1624444-02 D

Client ID: 14

Sample Location: SYRACUSE, NY

Matrix: Soil Analytical Method: 1,8270D Analytical Date: 08/12/16 14:22

Analyst: RC 88% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS -	Westborough Lab						
Acenaphthene	0.14	J	mg/kg	0.30	0.038	2	
1,2,4-Trichlorobenzene	ND		mg/kg	0.37	0.042	2	
Hexachlorobenzene	ND		mg/kg	0.22	0.041	2	
Bis(2-chloroethyl)ether	ND		mg/kg	0.33	0.050	2	
2-Chloronaphthalene	ND		mg/kg	0.37	0.037	2	
1,2-Dichlorobenzene	ND		mg/kg	0.37	0.066	2	
1,3-Dichlorobenzene	ND		mg/kg	0.37	0.064	2	
1,4-Dichlorobenzene	ND		mg/kg	0.37	0.064	2	
3,3'-Dichlorobenzidine	ND		mg/kg	0.37	0.098	2	
2,4-Dinitrotoluene	ND		mg/kg	0.37	0.074	2	
2,6-Dinitrotoluene	ND		mg/kg	0.37	0.063	2	
Fluoranthene	6.2		mg/kg	0.22	0.042	2	
4-Chlorophenyl phenyl ether	ND		mg/kg	0.37	0.040	2	
4-Bromophenyl phenyl ether	ND		mg/kg	0.37	0.056	2	
Bis(2-chloroisopropyl)ether	ND		mg/kg	0.44	0.063	2	
Bis(2-chloroethoxy)methane	ND		mg/kg	0.40	0.037	2	
Hexachlorobutadiene	ND		mg/kg	0.37	0.054	2	
Hexachlorocyclopentadiene	ND		mg/kg	1.0	0.33	2	
Hexachloroethane	ND		mg/kg	0.30	0.060	2	
Isophorone	ND		mg/kg	0.33	0.048	2	
Naphthalene	0.13	J	mg/kg	0.37	0.045	2	
Nitrobenzene	ND		mg/kg	0.33	0.055	2	
NDPA/DPA	ND		mg/kg	0.30	0.042	2	
n-Nitrosodi-n-propylamine	ND		mg/kg	0.37	0.057	2	
Bis(2-ethylhexyl)phthalate	ND		mg/kg	0.37	0.13	2	
Butyl benzyl phthalate	ND		mg/kg	0.37	0.093	2	
Di-n-butylphthalate	ND		mg/kg	0.37	0.070	2	
Di-n-octylphthalate	ND		mg/kg	0.37	0.12	2	
Diethyl phthalate	ND		mg/kg	0.37	0.034	2	
Dimethyl phthalate	ND		mg/kg	0.37	0.078	2	

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1624444

Project Number: 15209 Report Date: 08/15/16

SAMPLE RESULTS

Lab ID: L1624444-02 D Date Collected: 08/04/16 09:45

Client ID: 14 Date Received: 08/04/16

Sample Location: SYRACUSE, NY Field Prep: Not Specified

Campio Locationi Ciriti (CCC), iti				1 1014 1 10	۲.	rtot opoomoa
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westbo	orough Lab					
Benzo(a)anthracene	3.2		mg/kg	0.22	0.042	2
Benzo(a)pyrene	3.3		mg/kg	0.30	0.090	2
Benzo(b)fluoranthene	4.3		mg/kg	0.22	0.062	2
Benzo(k)fluoranthene	1.6		mg/kg	0.22	0.059	2
Chrysene	3.1		mg/kg	0.22	0.038	2
Acenaphthylene	0.27	J	mg/kg	0.30	0.057	2
Anthracene	0.89		mg/kg	0.22	0.072	2
Benzo(ghi)perylene	1.9		mg/kg	0.30	0.043	2
Fluorene	0.13	J	mg/kg	0.37	0.036	2
Phenanthrene	1.9		mg/kg	0.22	0.045	2
Dibenzo(a,h)anthracene	0.53		mg/kg	0.22	0.043	2
Indeno(1,2,3-cd)pyrene	2.3		mg/kg	0.30	0.052	2
Pyrene	5.1		mg/kg	0.22	0.037	2
Biphenyl	ND		mg/kg	0.84	0.086	2
4-Chloroaniline	ND		mg/kg	0.37	0.067	2
2-Nitroaniline	ND		mg/kg	0.37	0.071	2
3-Nitroaniline	ND		mg/kg	0.37	0.070	2
4-Nitroaniline	ND		mg/kg	0.37	0.15	2
Dibenzofuran	0.10	J	mg/kg	0.37	0.035	2
2-Methylnaphthalene	0.055	J	mg/kg	0.44	0.045	2
1,2,4,5-Tetrachlorobenzene	ND		mg/kg	0.37	0.038	2
Acetophenone	ND		mg/kg	0.37	0.046	2
2,4,6-Trichlorophenol	ND		mg/kg	0.22	0.070	2
p-Chloro-m-cresol	ND		mg/kg	0.37	0.055	2
2-Chlorophenol	ND		mg/kg	0.37	0.044	2
2,4-Dichlorophenol	ND		mg/kg	0.33	0.059	2
2,4-Dimethylphenol	ND		mg/kg	0.37	0.12	2
2-Nitrophenol	ND		mg/kg	0.80	0.14	2
4-Nitrophenol	ND		mg/kg	0.52	0.15	2
2,4-Dinitrophenol	ND		mg/kg	1.8	0.17	2
4,6-Dinitro-o-cresol	ND		mg/kg	0.96	0.18	2
Pentachlorophenol	ND		mg/kg	0.30	0.081	2
Phenol	ND		mg/kg	0.37	0.056	2
2-Methylphenol	ND		mg/kg	0.37	0.057	2
3-Methylphenol/4-Methylphenol	ND		mg/kg	0.53	0.058	2
2,4,5-Trichlorophenol	ND		mg/kg	0.37	0.071	2
Benzoic Acid	ND		mg/kg	1.2	0.37	2
Benzyl Alcohol	ND		mg/kg	0.37	0.11	2
Carbazole	ND		mg/kg	0.37	0.036	2

Project Name: Lab Number: **DESTINY-EMBASSY SUITES** L1624444

Project Number: Report Date: 15209 08/15/16

SAMPLE RESULTS

Lab ID: D Date Collected: 08/04/16 09:45 L1624444-02

Date Received: Client ID: 14 08/04/16 Field Prep: Sample Location: SYRACUSE, NY Not Specified

RL **Dilution Factor** Parameter Result Qualifier Units MDL

Semivolatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	96		25-120	
Phenol-d6	89		10-120	
Nitrobenzene-d5	86		23-120	
2-Fluorobiphenyl	88		30-120	
2,4,6-Tribromophenol	99		10-136	
4-Terphenyl-d14	95		18-120	

L1624444

08/15/16

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Date Collected: 08/04/16 13:15

Lab Number:

Report Date:

Date Received: 08/04/16 Field Prep: Not Specified Extraction Method: EPA 3546

08/09/16 02:13 Extraction Date:

Lab ID: L1624444-03 D

Client ID: 15

Sample Location: SYRACUSE, NY

Matrix: Soil Analytical Method: 1,8270D

Analytical Date: 08/12/16 13:56

Analyst: RC 82% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS - Westborough Lab									
Acenaphthene	0.28	J	mg/kg	0.32	0.041	2			
1,2,4-Trichlorobenzene	ND		mg/kg	0.40	0.046	2			
Hexachlorobenzene	ND		mg/kg	0.24	0.045	2			
Bis(2-chloroethyl)ether	ND		mg/kg	0.36	0.054	2			
2-Chloronaphthalene	ND		mg/kg	0.40	0.040	2			
1,2-Dichlorobenzene	ND		mg/kg	0.40	0.072	2			
1,3-Dichlorobenzene	ND		mg/kg	0.40	0.069	2			
1,4-Dichlorobenzene	ND		mg/kg	0.40	0.070	2			
3,3'-Dichlorobenzidine	ND		mg/kg	0.40	0.11	2			
2,4-Dinitrotoluene	ND		mg/kg	0.40	0.080	2			
2,6-Dinitrotoluene	ND		mg/kg	0.40	0.068	2			
Fluoranthene	14.		mg/kg	0.24	0.046	2			
4-Chlorophenyl phenyl ether	ND		mg/kg	0.40	0.043	2			
4-Bromophenyl phenyl ether	ND		mg/kg	0.40	0.061	2			
Bis(2-chloroisopropyl)ether	ND		mg/kg	0.48	0.068	2			
Bis(2-chloroethoxy)methane	ND		mg/kg	0.43	0.040	2			
Hexachlorobutadiene	ND		mg/kg	0.40	0.058	2			
Hexachlorocyclopentadiene	ND		mg/kg	1.1	0.36	2			
Hexachloroethane	ND		mg/kg	0.32	0.064	2			
Isophorone	ND		mg/kg	0.36	0.052	2			
Naphthalene	1.1		mg/kg	0.40	0.048	2			
Nitrobenzene	ND		mg/kg	0.36	0.059	2			
NDPA/DPA	ND		mg/kg	0.32	0.045	2			
n-Nitrosodi-n-propylamine	ND		mg/kg	0.40	0.062	2			
Bis(2-ethylhexyl)phthalate	ND		mg/kg	0.40	0.14	2			
Butyl benzyl phthalate	ND		mg/kg	0.40	0.10	2			
Di-n-butylphthalate	ND		mg/kg	0.40	0.076	2			
Di-n-octylphthalate	ND		mg/kg	0.40	0.14	2			
Diethyl phthalate	ND		mg/kg	0.40	0.037	2			
Dimethyl phthalate	ND		mg/kg	0.40	0.084	2			

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1624444

Project Number: 15209 Report Date: 08/15/16

SAMPLE RESULTS

Lab ID: L1624444-03 D Date Collected: 08/04/16 13:15

Client ID: Date Received: 08/04/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL **Dilution Factor** Semivolatile Organics by GC/MS - Westborough Lab 8.9 0.24 0.045 2 Benzo(a)anthracene mg/kg Benzo(a)pyrene 10. mg/kg 0.32 0.097 2 2 Benzo(b)fluoranthene 14. mg/kg 0.24 0.067 Benzo(k)fluoranthene 4.8 0.24 0.064 2 mg/kg Chrysene 9.6 0.24 0.041 2 mg/kg 2 Acenaphthylene 2.2 0.32 0.062 mg/kg Anthracene 2.3 0.24 0.078 2 mg/kg 2 Benzo(ghi)perylene 7.1 0.32 0.047 mg/kg J Fluorene 0.26 0.40 0.039 2 mg/kg 2 Phenanthrene 4.4 0.24 0.048 mg/kg Dibenzo(a,h)anthracene 1.8 mg/kg 0.24 0.046 2 Indeno(1,2,3-cd)pyrene 8.5 0.32 0.056 2 mg/kg 11. 0.24 0.040 2 Pyrene mg/kg J 2 Biphenyl 0.11 0.91 0.092 mg/kg 4-Chloroaniline ND 0.40 0.073 2 mg/kg 2-Nitroaniline ND 0.40 0.077 2 mg/kg 3-Nitroaniline ND 0.40 0.075 2 mg/kg 4-Nitroaniline ND 0.40 2 0.16 mg/kg Dibenzofuran ND 0.40 0.038 2 mg/kg 2 2-Methylnaphthalene 1.4 0.48 0.048 mg/kg 1,2,4,5-Tetrachlorobenzene ND 0.40 0.042 2 mg/kg Acetophenone ND 0.40 0.049 2 mg/kg 2,4,6-Trichlorophenol ND 0.24 0.076 2 mg/kg p-Chloro-m-cresol ND 0.40 0.059 2 mg/kg 2-Chlorophenol ND 0.40 0.047 2 mg/kg 2,4-Dichlorophenol ND mg/kg 0.36 0.064 2 2,4-Dimethylphenol ND 0.40 0.13 2 mg/kg 2-Nitrophenol ND 0.86 0.15 2 mg/kg ND 2 4-Nitrophenol 0.56 0.16 mg/kg 2,4-Dinitrophenol ND mg/kg 1.9 0.18 2

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

J

J

1.0

0.32

0.40

0.40

0.57

0.40

1.3

0.40

0.40

0.19

0.088

0.060

0.062

0.062

0.076

0.40

0.12

0.039

ND

ND

ND

ND

0.10

ND

ND

ND

0.34

2

2

2

2

2

2

2

2

2

4,6-Dinitro-o-cresol

Pentachlorophenol

2-Methylphenol

Benzoic Acid

Benzyl Alcohol

Carbazole

2,4,5-Trichlorophenol

3-Methylphenol/4-Methylphenol

Phenol

Project Name: Lab Number: **DESTINY-EMBASSY SUITES** L1624444

Project Number: Report Date: 15209 08/15/16

SAMPLE RESULTS

Lab ID: D Date Collected: 08/04/16 13:15 L1624444-03

Date Received: Client ID: 08/04/16 15 Sample Location: SYRACUSE, NY Field Prep: Not Specified

RL **Dilution Factor** Parameter Result Qualifier Units MDL

Semivolatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	95	25-120	
Phenol-d6	87	10-120	
Nitrobenzene-d5	87	23-120	
2-Fluorobiphenyl	85	30-120	
2,4,6-Tribromophenol	100	10-136	
4-Terphenyl-d14	87	18-120	

Project Name: DESTINY-EMBASSY SUITES Lab Number:

Project Number: 15209 Report Date: 08/15/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Extraction Method: EPA 3546
Analytical Date: 08/11/16 01:45 Extraction Date: 08/09/16 02:13

Analyst: KV

Parameter	Result	Qualifier	Units	RL		MDL
Semivolatile Organics by GC/MS -	Westborough	Lab for s	ample(s):	01-03	Batch:	WG922872-1
Acenaphthene	ND		mg/kg	0.13		0.017
1,2,4-Trichlorobenzene	ND		mg/kg	0.16		0.018
Hexachlorobenzene	ND		mg/kg	0.097		0.018
Bis(2-chloroethyl)ether	ND		mg/kg	0.14		0.022
2-Chloronaphthalene	ND		mg/kg	0.16		0.016
1,2-Dichlorobenzene	ND		mg/kg	0.16		0.029
1,3-Dichlorobenzene	ND		mg/kg	0.16		0.028
1,4-Dichlorobenzene	ND		mg/kg	0.16		0.028
3,3'-Dichlorobenzidine	ND		mg/kg	0.16		0.043
2,4-Dinitrotoluene	ND		mg/kg	0.16		0.032
2,6-Dinitrotoluene	ND		mg/kg	0.16		0.028
Fluoranthene	ND		mg/kg	0.097		0.018
4-Chlorophenyl phenyl ether	ND		mg/kg	0.16		0.017
4-Bromophenyl phenyl ether	ND		mg/kg	0.16		0.025
Bis(2-chloroisopropyl)ether	ND		mg/kg	0.19		0.028
Bis(2-chloroethoxy)methane	ND		mg/kg	0.17		0.016
Hexachlorobutadiene	ND		mg/kg	0.16		0.024
Hexachlorocyclopentadiene	ND		mg/kg	0.46		0.15
Hexachloroethane	ND		mg/kg	0.13		0.026
Isophorone	ND		mg/kg	0.14		0.021
Naphthalene	ND		mg/kg	0.16		0.020
Nitrobenzene	ND		mg/kg	0.14		0.024
NDPA/DPA	ND		mg/kg	0.13		0.018
n-Nitrosodi-n-propylamine	ND		mg/kg	0.16		0.025
Bis(2-ethylhexyl)phthalate	ND		mg/kg	0.16		0.056
Butyl benzyl phthalate	ND		mg/kg	0.16		0.041
Di-n-butylphthalate	ND		mg/kg	0.16		0.031
Di-n-octylphthalate	ND		mg/kg	0.16		0.055
Diethyl phthalate	ND		mg/kg	0.16		0.015

Project Name: DESTINY-EMBASSY SUITES Lab Number:

Project Number: 15209 Report Date: 08/15/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Extraction Method: EPA 3546
Analytical Date: 08/11/16 01:45 Extraction Date: 08/09/16 02:13

Analyst: KV

Parameter	Result	Qualifier	Units	RL		MDL
Semivolatile Organics by GC/MS -	Westborough	Lab for s	ample(s):	01-03	Batch:	WG922872-1
Dimethyl phthalate	ND		mg/kg	0.16		0.034
Benzo(a)anthracene	ND		mg/kg	0.097		0.018
Benzo(a)pyrene	ND		mg/kg	0.13		0.039
Benzo(b)fluoranthene	ND		mg/kg	0.097		0.027
Benzo(k)fluoranthene	ND		mg/kg	0.097		0.026
Chrysene	ND		mg/kg	0.097		0.017
Acenaphthylene	ND		mg/kg	0.13		0.025
Anthracene	ND		mg/kg	0.097		0.032
Benzo(ghi)perylene	ND		mg/kg	0.13		0.019
Fluorene	ND		mg/kg	0.16		0.016
Phenanthrene	ND		mg/kg	0.097		0.020
Dibenzo(a,h)anthracene	ND		mg/kg	0.097		0.019
Indeno(1,2,3-cd)pyrene	ND		mg/kg	0.13		0.022
Pyrene	ND		mg/kg	0.097		0.016
Biphenyl	ND		mg/kg	0.37		0.038
4-Chloroaniline	ND		mg/kg	0.16		0.029
2-Nitroaniline	ND		mg/kg	0.16		0.031
3-Nitroaniline	ND		mg/kg	0.16		0.030
4-Nitroaniline	ND		mg/kg	0.16		0.067
Dibenzofuran	ND		mg/kg	0.16		0.015
2-Methylnaphthalene	ND		mg/kg	0.19		0.020
1,2,4,5-Tetrachlorobenzene	ND		mg/kg	0.16		0.017
Acetophenone	ND		mg/kg	0.16		0.020
2,4,6-Trichlorophenol	ND		mg/kg	0.097		0.031
p-Chloro-m-cresol	ND		mg/kg	0.16		0.024
2-Chlorophenol	ND		mg/kg	0.16		0.019
2,4-Dichlorophenol	ND		mg/kg	0.14		0.026
2,4-Dimethylphenol	ND		mg/kg	0.16		0.053
2-Nitrophenol	ND		mg/kg	0.35		0.061

Project Name: DESTINY-EMBASSY SUITES Lab Number:

Project Number: 15209 Report Date: 08/15/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Extraction Method: EPA 3546
Analytical Date: 08/11/16 01:45 Extraction Date: 08/09/16 02:13

Analyst: KV

Parameter	Result	Qualifier	Units	RL		MDL
Semivolatile Organics by GC/MS - V	Vestborough	Lab for sa	ample(s):	01-03	Batch:	WG922872-1
4-Nitrophenol	ND		mg/kg	0.23		0.066
2,4-Dinitrophenol	ND		mg/kg	0.78		0.075
4,6-Dinitro-o-cresol	ND		mg/kg	0.42		0.078
Pentachlorophenol	ND		mg/kg	0.13		0.036
Phenol	ND		mg/kg	0.16		0.024
2-Methylphenol	ND		mg/kg	0.16		0.025
3-Methylphenol/4-Methylphenol	ND		mg/kg	0.23		0.025
2,4,5-Trichlorophenol	ND		mg/kg	0.16		0.031
Benzoic Acid	ND		mg/kg	0.52		0.16
Benzyl Alcohol	ND		mg/kg	0.16		0.049
Carbazole	ND		mg/kg	0.16		0.016
Atrazine	ND		mg/kg	0.13		0.056
Benzaldehyde	ND		mg/kg	0.21		0.044
Caprolactam	ND		mg/kg	0.16		0.049
2,3,4,6-Tetrachlorophenol	ND		mg/kg	0.16		0.033

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
0.51	00	05.400
2-Fluorophenol	90	25-120
Phenol-d6	93	10-120
Nitrobenzene-d5	94	23-120
2-Fluorobiphenyl	92	30-120
2,4,6-Tribromophenol	85	10-136
4-Terphenyl-d14	103	18-120

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number: L1624444

Parameter	LCS %Recovery	Qual	LCSI %Recov		Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westboro	ough Lab Assoc	iated sample(s):	01-03	Batch:	WG922872	2-2 WG922872	-3		
Acenaphthene	92		85			31-137	8		50
Benzidine	64		57			10-66	12		50
1,2,4-Trichlorobenzene	87		80			38-107	8		50
Hexachlorobenzene	84		78			40-140	7		50
Bis(2-chloroethyl)ether	84		77			40-140	9		50
2-Chloronaphthalene	89		82			40-140	8		50
1,2-Dichlorobenzene	83		77			40-140	8		50
1,3-Dichlorobenzene	80		74			40-140	8		50
1,4-Dichlorobenzene	80		75			28-104	6		50
3,3'-Dichlorobenzidine	96		84			40-140	13		50
2,4-Dinitrotoluene	105	Q	98		Q	28-89	7		50
2,6-Dinitrotoluene	101		92			40-140	9		50
Azobenzene	89		83			40-140	7		50
Fluoranthene	97		89			40-140	9		50
4-Chlorophenyl phenyl ether	89		81			40-140	9		50
4-Bromophenyl phenyl ether	88		82			40-140	7		50
Bis(2-chloroisopropyl)ether	76		70			40-140	8		50
Bis(2-chloroethoxy)methane	90		82			40-117	9		50
Hexachlorobutadiene	84		78			40-140	7		50
Hexachlorocyclopentadiene	104		94			40-140	10		50
Hexachloroethane	86		78			40-140	10		50

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number: L1624444

Parameter	LCS %Recovery	Qual	LCSD %Recove	ery	Qual 9	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westboro	ugh Lab Assoc	ated sample(s):	01-03	Batch:	WG922872	-2 WG922872-3			
Isophorone	96		87			40-140	10		50
Naphthalene	82		76			40-140	8		50
Nitrobenzene	91		84			40-140	8		50
NitrosoDiPhenylAmine(NDPA)/DPA	95		88			36-157	8		50
n-Nitrosodi-n-propylamine	95		86			32-121	10		50
Bis(2-Ethylhexyl)phthalate	109		101			40-140	8		50
Butyl benzyl phthalate	114		106			40-140	7		50
Di-n-butylphthalate	113		104			40-140	8		50
Di-n-octylphthalate	114		106			40-140	7		50
Diethyl phthalate	98		90			40-140	9		50
Dimethyl phthalate	95		88			40-140	8		50
Benzo(a)anthracene	95		88			40-140	8		50
Benzo(a)pyrene	102		94			40-140	8		50
Benzo(b)fluoranthene	103		96			40-140	7		50
Benzo(k)fluoranthene	95		84			40-140	12		50
Chrysene	88		81			40-140	8		50
Acenaphthylene	96		89			40-140	8		50
Anthracene	94		87			40-140	8		50
Benzo(ghi)perylene	98		88			40-140	11		50
Fluorene	93		86			40-140	8		50
Phenanthrene	87		80			40-140	8		50

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number: L1624444

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Wes	stborough Lab Associa	ated sample(s):	01-03 Batch:	WG922872-2 WG922872-	3	
Dibenzo(a,h)anthracene	101		90	40-140	12	50
Indeno(1,2,3-cd)Pyrene	107		97	40-140	10	50
Pyrene	90		83	35-142	8	50
Biphenyl	92		85	54-104	8	50
4-Chloroaniline	78		71	40-140	9	50
1-Methylnaphthalene	89		82	26-130	8	50
2-Nitroaniline	107		99	47-134	8	50
3-Nitroaniline	91		83	26-129	9	50
4-Nitroaniline	102		94	41-125	8	50
Dibenzofuran	88		81	40-140	8	50
2-Methylnaphthalene	93		85	40-140	9	50
1,2,4,5-Tetrachlorobenzene	89		82	40-117	8	50
Acetophenone	98		90	14-144	9	50
n-Nitrosodimethylamine	75		69	22-100	8	50
2,4,6-Trichlorophenol	106		98	30-130	8	50
P-Chloro-M-Cresol	103		95	26-103	8	50
2-Chlorophenol	93		85	25-102	9	50
2,4-Dichlorophenol	106		96	30-130	10	50
2,4-Dimethylphenol	101		92	30-130	9	50
2-Nitrophenol	108		100	30-130	8	50
4-Nitrophenol	103		95	11-114	8	50

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number: L1624444

arameter	LCS %Recovery	Qual	LCSD %Recov		% Qual	Recovery Limits	RPD	Qual	RPD Limits	
semivolatile Organics by GC/MS - Westborou	ıgh Lab Assoc	iated sample(s):	01-03	Batch:	WG922872-	2 WG922872-3				
2,4-Dinitrophenol	98		91			4-130	7		50	
4,6-Dinitro-o-cresol	98		91			10-130	7		50	
Pentachlorophenol	94		84			17-109	11		50	
Phenol	92	Q	85			26-90	8		50	
2-Methylphenol	96		88			30-130.	9		50	
3-Methylphenol/4-Methylphenol	99		89			30-130	11		50	
2,4,5-Trichlorophenol	105		97			30-130	8		50	
Benzoic Acid	73		68			10-110	7		50	
Benzyl Alcohol	100		91			40-140	9		50	
Carbazole	94		86			54-128	9		50	
Parathion, ethyl	162	Q	150		Q	40-140	8		50	
Atrazine	117		109			40-140	7		50	
Benzaldehyde	68		61			40-140	11		50	
Caprolactam	110		101			15-130	9		50	
2,3,4,6-Tetrachlorophenol	100		92			40-140	8		50	

Project Name: DESTINY-EMBASSY SUITES Lab Number:

L1624444

Project Number: 15209

Report Date:

08/15/16

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-03 Batch: WG922872-2 WG922872-3

LCS		LCSD		Acceptance Criteria 25-120 10-120 23-120	
%Recovery	Qual	%Recovery	Qual	Criteria	
91		84		25-120	
95		87		10-120	
95		87		23-120	
88		82		30-120	
83		75		10-136	
91		84		18-120	
	%Recovery 91 95 95 88 83	%Recovery Qual 91 95 95 88 83	%Recovery Qual %Recovery 91 84 95 87 95 87 88 82 83 75	%Recovery Qual %Recovery Qual 91 84 95 87 95 87 88 82 83 75	%Recovery Qual %Recovery Qual Criteria 91 84 25-120 95 87 10-120 95 87 23-120 88 82 30-120 83 75 10-136

METALS

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1624444

Project Number: 15209 **Report Date:** 08/15/16

SAMPLE RESULTS

Lab ID: L1624444-01

Client ID: 13

Sample Location: SYRACUSE, NY

Matrix: Soil

Percent Solids: 85% Date Collected: 08/04/16 07:15

Date Received: 08/04/16

Field Prep: Not Specified

Percent Solids: Parameter	85% Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
	Nesuit	Qualifier	Ollits	NL	WIDL						Allalyst
Total Metals - Man	sfield Lab										
Aluminum, Total	6200		mg/kg	9.2	1.8	2	08/06/16 09:15	08/06/16 17:37	EPA 3050B	1,6010C	AM
Antimony, Total	ND		mg/kg	4.6	0.74	2	08/06/16 09:15	08/06/16 17:37	EPA 3050B	1,6010C	AM
Arsenic, Total	6.4		mg/kg	0.92	0.30	2	08/06/16 09:15	08/06/16 17:37	EPA 3050B	1,6010C	AM
Barium, Total	71		mg/kg	0.92	0.25	2	08/06/16 09:15	08/06/16 17:37	EPA 3050B	1,6010C	AM
Beryllium, Total	0.26	J	mg/kg	0.46	0.10	2	08/06/16 09:15	08/06/16 17:37	EPA 3050B	1,6010C	AM
Cadmium, Total	0.10	J	mg/kg	0.92	0.06	2	08/06/16 09:15	08/06/16 17:37	EPA 3050B	1,6010C	AM
Calcium, Total	130000		mg/kg	46	13.	10	08/06/16 09:15	08/08/16 11:24	EPA 3050B	1,6010C	PS
Chromium, Total	8.6		mg/kg	0.92	0.16	2	08/06/16 09:15	08/06/16 17:37	EPA 3050B	1,6010C	AM
Cobalt, Total	4.5		mg/kg	1.8	0.45	2	08/06/16 09:15	08/06/16 17:37	EPA 3050B	1,6010C	AM
Copper, Total	28		mg/kg	0.92	0.16	2	08/06/16 09:15	08/06/16 17:37	EPA 3050B	1,6010C	AM
Iron, Total	10000		mg/kg	4.6	1.4	2	08/06/16 09:15	08/06/16 17:37	EPA 3050B	1,6010C	AM
Lead, Total	75		mg/kg	4.6	0.20	2	08/06/16 09:15	08/06/16 17:37	EPA 3050B	1,6010C	AM
Magnesium, Total	14000		mg/kg	9.2	1.2	2	08/06/16 09:15	08/06/16 17:37	EPA 3050B	1,6010C	AM
Manganese, Total	220		mg/kg	0.92	0.22	2	08/06/16 09:15	08/06/16 17:37	EPA 3050B	1,6010C	AM
Mercury, Total	0.96		mg/kg	0.08	0.02	1	08/09/16 07:50	08/09/16 10:37	EPA 7471B	1,7471B	BV
Nickel, Total	12		mg/kg	2.3	0.37	2	08/06/16 09:15	08/06/16 17:37	EPA 3050B	1,6010C	AM
Potassium, Total	700		mg/kg	230	26.	2	08/06/16 09:15	08/06/16 17:37	EPA 3050B	1,6010C	AM
Selenium, Total	ND		mg/kg	1.8	0.25	2	08/06/16 09:15	08/06/16 17:37	EPA 3050B	1,6010C	AM
Silver, Total	0.21	J	mg/kg	0.92	0.18	2	08/06/16 09:15	08/06/16 17:37	EPA 3050B	1,6010C	AM
Sodium, Total	600		mg/kg	180	15.	2	08/06/16 09:15	08/06/16 17:37	EPA 3050B	1,6010C	AM
Thallium, Total	ND		mg/kg	1.8	0.29	2	08/06/16 09:15	08/06/16 17:37	EPA 3050B	1,6010C	AM
Vanadium, Total	13		mg/kg	0.92	0.08	2	08/06/16 09:15	08/06/16 17:37	EPA 3050B	1,6010C	AM
Zinc, Total	120		mg/kg	4.6	0.64	2	08/06/16 09:15	08/06/16 17:37	EPA 3050B	1,6010C	AM

08/04/16 09:45

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1624444

Project Number: 15209 Report Date: 08/15/16

SAMPLE RESULTS

Lab ID: L1624444-02

Client ID: 14

Sample Location: SYRACUSE, NY

Matrix: Soil

Percent Solids: 88%

Date Received: 08/04/16
Field Prep: Not Specified

Date Collected:

Percent Solids:	88%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Man	sfield Lab										
Aluminum, Total	7200		mg/kg	9.0	1.8	2	08/06/16 09:15	5 08/06/16 17:41	EPA 3050B	1,6010C	AM
Antimony, Total	ND		mg/kg	4.5	0.72	2		5 08/06/16 17:41		1,6010C	AM
Arsenic, Total	5.7		mg/kg	0.90	0.30	2	08/06/16 09:15	5 08/06/16 17:41	EPA 3050B	1,6010C	AM
Barium, Total	57		mg/kg	0.90	0.24	2	08/06/16 09:15	5 08/06/16 17:41	EPA 3050B	1,6010C	AM
Beryllium, Total	0.27	J	mg/kg	0.45	0.10	2		5 08/06/16 17:41		1,6010C	AM
Cadmium, Total	0.75	J	mg/kg	0.90	0.06	2	08/06/16 09:15	5 08/06/16 17:41	EPA 3050B	1,6010C	AM
Calcium, Total	67000		mg/kg	9.0	2.5	2	08/06/16 09:15	5 08/06/16 17:41	EPA 3050B	1,6010C	AM
Chromium, Total	12		mg/kg	0.90	0.15	2	08/06/16 09:15	08/06/16 17:41	EPA 3050B	1,6010C	AM
Cobalt, Total	5.6		mg/kg	1.8	0.44	2	08/06/16 09:15	08/06/16 17:41	EPA 3050B	1,6010C	AM
Copper, Total	100		mg/kg	0.90	0.16	2	08/06/16 09:15	08/06/16 17:41	EPA 3050B	1,6010C	AM
Iron, Total	18000		mg/kg	4.5	1.4	2	08/06/16 09:15	5 08/06/16 17:41	EPA 3050B	1,6010C	AM
Lead, Total	80		mg/kg	4.5	0.20	2	08/06/16 09:15	08/06/16 17:41	EPA 3050B	1,6010C	AM
Magnesium, Total	22000		mg/kg	9.0	1.2	2	08/06/16 09:15	08/06/16 17:41	EPA 3050B	1,6010C	AM
Manganese, Total	280		mg/kg	0.90	0.22	2	08/06/16 09:15	08/06/16 17:41	EPA 3050B	1,6010C	AM
Mercury, Total	0.39		mg/kg	0.07	0.02	1	08/09/16 07:50	08/09/16 10:39	EPA 7471B	1,7471B	BV
Nickel, Total	14		mg/kg	2.2	0.36	2	08/06/16 09:15	5 08/06/16 17:41	EPA 3050B	1,6010C	AM
Potassium, Total	720		mg/kg	220	25.	2	08/06/16 09:15	5 08/06/16 17:41	EPA 3050B	1,6010C	AM
Selenium, Total	ND		mg/kg	1.8	0.24	2	08/06/16 09:15	5 08/06/16 17:41	EPA 3050B	1,6010C	AM
Silver, Total	0.21	J	mg/kg	0.90	0.18	2	08/06/16 09:15	5 08/06/16 17:41	EPA 3050B	1,6010C	AM
Sodium, Total	410		mg/kg	180	15.	2	08/06/16 09:15	08/06/16 17:41	EPA 3050B	1,6010C	AM
Thallium, Total	ND		mg/kg	1.8	0.29	2	08/06/16 09:15	08/06/16 17:41	EPA 3050B	1,6010C	AM
Vanadium, Total	13		mg/kg	0.90	0.08	2	08/06/16 09:15	5 08/06/16 17:41	EPA 3050B	1,6010C	AM
Zinc, Total	450		mg/kg	4.5	0.63	2		08/06/16 17:41		1,6010C	AM

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1624444

Project Number: 15209 **Report Date:** 08/15/16

SAMPLE RESULTS

Lab ID: L1624444-03

Client ID: 15

Sample Location: SYRACUSE, NY

Matrix: Soil

Percent Solids: 82% Date Collected: 08/04/16 13:15

Date Received: 08/04/16

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Aluminum, Total	8700		mg/kg	9.2	1.8	2	08/06/16 09:15	08/06/16 17:45	EPA 3050B	1,6010C	AM
Antimony, Total	ND		mg/kg	4.6	0.74	2	08/06/16 09:15	08/06/16 17:45	EPA 3050B	1,6010C	AM
Arsenic, Total	30		mg/kg	0.92	0.30	2	08/06/16 09:15	08/06/16 17:45	EPA 3050B	1,6010C	AM
Barium, Total	92		mg/kg	0.92	0.25	2	08/06/16 09:15	08/06/16 17:45	EPA 3050B	1,6010C	AM
Beryllium, Total	0.21	J	mg/kg	0.46	0.10	2	08/06/16 09:15	08/06/16 17:45	EPA 3050B	1,6010C	AM
Cadmium, Total	20		mg/kg	0.92	0.07	2	08/06/16 09:15	08/06/16 17:45	EPA 3050B	1,6010C	AM
Calcium, Total	63000		mg/kg	9.2	2.5	2	08/06/16 09:15	08/06/16 17:45	EPA 3050B	1,6010C	AM
Chromium, Total	14		mg/kg	0.92	0.16	2	08/06/16 09:15	08/06/16 17:45	EPA 3050B	1,6010C	AM
Cobalt, Total	12		mg/kg	1.8	0.45	2	08/06/16 09:15	08/06/16 17:45	EPA 3050B	1,6010C	AM
Copper, Total	840		mg/kg	0.92	0.17	2	08/06/16 09:15	08/06/16 17:45	EPA 3050B	1,6010C	AM
Iron, Total	84000		mg/kg	23	7.3	10	08/06/16 09:15	08/08/16 11:28	EPA 3050B	1,6010C	PS
Lead, Total	75		mg/kg	4.6	0.20	2	08/06/16 09:15	08/06/16 17:45	EPA 3050B	1,6010C	AM
Magnesium, Total	38000		mg/kg	9.2	1.2	2	08/06/16 09:15	08/06/16 17:45	EPA 3050B	1,6010C	AM
Manganese, Total	840		mg/kg	0.92	0.22	2	08/06/16 09:15	08/06/16 17:45	EPA 3050B	1,6010C	AM
Mercury, Total	0.23		mg/kg	0.08	0.02	1	08/09/16 07:50	08/09/16 10:41	EPA 7471B	1,7471B	BV
Nickel, Total	25		mg/kg	2.3	0.37	2	08/06/16 09:15	08/06/16 17:45	EPA 3050B	1,6010C	AM
Potassium, Total	700		mg/kg	230	26.	2	08/06/16 09:15	08/06/16 17:45	EPA 3050B	1,6010C	AM
Selenium, Total	2.7		mg/kg	1.8	0.25	2	08/06/16 09:15	08/06/16 17:45	EPA 3050B	1,6010C	AM
Silver, Total	2.6		mg/kg	0.92	0.18	2	08/06/16 09:15	08/06/16 17:45	EPA 3050B	1,6010C	AM
Sodium, Total	220		mg/kg	180	15.	2	08/06/16 09:15	08/06/16 17:45	EPA 3050B	1,6010C	AM
Thallium, Total	ND		mg/kg	1.8	0.30	2	08/06/16 09:15	08/06/16 17:45	EPA 3050B	1,6010C	AM
Vanadium, Total	16		mg/kg	0.92	0.08	2	08/06/16 09:15	08/06/16 17:45	EPA 3050B	1,6010C	AM
						_				4 00400	

1,6010C

ΑM

Zinc, Total

3900

mg/kg

4.6

0.65

2

08/06/16 09:15 08/06/16 17:45 EPA 3050B

Lab Number:

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209 **Report Date:** 08/15/16

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for sample(s):	01-03 B	atch: W	'G92055	4-1				
Aluminum, Total	ND	mg/kg	4.0	0.79	1	08/06/16 09:15	08/06/16 14:22	1,6010C	AM
Antimony, Total	ND	mg/kg	2.0	0.32	1	08/06/16 09:15	08/06/16 14:22	1,6010C	AM
Arsenic, Total	ND	mg/kg	0.40	0.13	1	08/06/16 09:15	08/06/16 14:22	1,6010C	AM
Barium, Total	ND	mg/kg	0.40	0.11	1	08/06/16 09:15	08/06/16 14:22	1,6010C	AM
Beryllium, Total	ND	mg/kg	0.20	0.04	1	08/06/16 09:15	08/06/16 14:22	1,6010C	AM
Cadmium, Total	ND	mg/kg	0.40	0.03	1	08/06/16 09:15	08/06/16 14:22	1,6010C	AM
Calcium, Total	ND	mg/kg	4.0	1.1	1	08/06/16 09:15	08/06/16 14:22	1,6010C	AM
Chromium, Total	ND	mg/kg	0.40	0.07	1	08/06/16 09:15	08/06/16 14:22	1,6010C	AM
Cobalt, Total	ND	mg/kg	0.80	0.20	1	08/06/16 09:15	08/06/16 14:22	1,6010C	AM
Copper, Total	ND	mg/kg	0.40	0.07	1	08/06/16 09:15	08/06/16 14:22	1,6010C	AM
Iron, Total	ND	mg/kg	2.0	0.63	1	08/06/16 09:15	08/06/16 14:22	1,6010C	AM
Lead, Total	ND	mg/kg	2.0	0.09	1	08/06/16 09:15	08/06/16 14:22	1,6010C	AM
Magnesium, Total	ND	mg/kg	4.0	0.53	1	08/06/16 09:15	08/06/16 14:22	1,6010C	AM
Manganese, Total	ND	mg/kg	0.40	0.10	1	08/06/16 09:15	08/06/16 14:22	1,6010C	AM
Nickel, Total	ND	mg/kg	1.0	0.16	1	08/06/16 09:15	08/06/16 14:22	1,6010C	AM
Potassium, Total	ND	mg/kg	100	11.	1	08/06/16 09:15	08/06/16 14:22	1,6010C	AM
Selenium, Total	ND	mg/kg	0.80	0.11	1	08/06/16 09:15	08/06/16 14:22	1,6010C	AM
Silver, Total	ND	mg/kg	0.40	0.08	1	08/06/16 09:15	08/06/16 14:22	1,6010C	AM
Sodium, Total	11 J	mg/kg	80	6.7	1	08/06/16 09:15	08/06/16 14:22	1,6010C	AM
Thallium, Total	ND	mg/kg	0.80	0.13	1	08/06/16 09:15	08/06/16 14:22	1,6010C	AM
Vanadium, Total	ND	mg/kg	0.40	0.04	1	08/06/16 09:15	08/06/16 14:22	1,6010C	AM
Zinc, Total	ND	mg/kg	2.0	0.28	1	08/06/16 09:15	08/06/16 14:22	1,6010C	AM

Prep Information

Digestion Method: EPA 3050B

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mai	nsfield Lab for sample(s):	01-03 B	Batch: W	G92103	7-1				
Mercury, Total	ND	mg/kg	0.08	0.02	1	08/09/16 07:50	08/09/16 10:27	1,7471B	BV

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1624444

Project Number: 15209 Report Date: 08/15/16

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 7471B

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number: L1624444

arameter	LCS %Recovery Q		CSD covery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
otal Metals - Mansfield Lab Associated sa	ample(s): 01-03 Batch: V	VG920554-2	SRM Lot	Number: D	0089-540			
Aluminum, Total	77		-		52-147	-		
Antimony, Total	152		-		1-197	-		
Arsenic, Total	108		-		80-120	-		
Barium, Total	98		-		83-117	-		
Beryllium, Total	98		-		82-117	-		
Cadmium, Total	95		-		82-117	-		
Calcium, Total	94		-		81-119	-		
Chromium, Total	103		-		79-121	-		
Cobalt, Total	101		-		83-117	-		
Copper, Total	101		-		80-119	-		
Iron, Total	103		-		45-155	-		
Lead, Total	105		-		81-119	-		
Magnesium, Total	91		-		76-123	-		
Manganese, Total	97		-		81-119	-		
Nickel, Total	101		-		82-117	-		
Potassium, Total	89		-		71-128	-		
Selenium, Total	99		-		78-121	-		
Silver, Total	99		-		75-125	-		
Sodium, Total	95		-		71-128	-		
Thallium, Total	99		-		79-120	-		
Vanadium, Total	100		-		77-122	-		

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number:

L1624444

Report Date:

08/15/16

Parameter	LCS %Recove		CSD covery	%Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab Asso	ociated sample(s): 01-03	Batch: WG920554-2	SRM Lot Number: D	089-540		
Zinc, Total	100		-	80-119	-	
Total Metals - Mansfield Lab Asso	ociated sample(s): 01-03	Batch: WG921037-2	SRM Lot Number: D	089-540		
Mercury, Total	116		-	57-143	-	

Matrix Spike Analysis Batch Quality Control

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number: L1624444

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery Q	Recovery ual Limits	RPD Qua	RPD al Limits
Total Metals - Mansfield La	b Associated san	nple(s): 01-03	QC Ba	tch ID: WG920	554-4	QC Samp	ole: L1624445-02	Client ID: MS	Sample	
Aluminum, Total	5700	171	4800	0	Q	-	-	75-125	-	20
Antimony, Total	ND	42.8	38	89		-	-	75-125	-	20
Arsenic, Total	6.7	10.3	16	90		-	-	75-125	-	20
Barium, Total	81.	171	220	81		-	-	75-125	-	20
Beryllium, Total	0.31J	4.28	3.6	84		-	-	75-125	-	20
Cadmium, Total	0.30J	4.36	4.0	92		-	-	75-125	-	20
Calcium, Total	110000	856	170000	7010	Q	-	-	75-125	-	20
Chromium, Total	9.7	17.1	22	72	Q	-	-	75-125	-	20
Cobalt, Total	5.7	42.8	36	71	Q	-	-	75-125	-	20
Copper, Total	64.	21.4	82	84		-	-	75-125	-	20
Iron, Total	15000	85.6	12000	0	Q	-	-	75-125	-	20
Lead, Total	86.	43.6	110	55	Q	-	-	75-125	-	20
Magnesium, Total	22000	856	18000	0	Q	-	-	75-125	-	20
Manganese, Total	270	42.8	290	47	Q	-	-	75-125	-	20
Nickel, Total	16.	42.8	44	65	Q	-	-	75-125	-	20
Potassium, Total	610	856	1600	116		-	-	75-125	-	20
Selenium, Total	0.26J	10.3	10	97		-	-	75-125	-	20
Silver, Total	ND	25.7	26	101		-	-	75-125	-	20
Sodium, Total	320	856	1200	103		-	-	75-125	-	20
Thallium, Total	ND	10.3	7.3	71	Q	-	-	75-125	-	20
Vanadium, Total	12.	42.8	49	86		-	-	75-125	-	20

Matrix Spike Analysis Batch Quality Control

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number:

L1624444

Report Date:

08/15/16

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits R	RPD Limits
Total Metals - Mansfield	Lab Associated sam	nple(s): 01-03	QC Ba	tch ID: WG920554-4	QC Samp	ole: L1624445-02	Client ID: MS Sa	mple
Zinc, Total	200	42.8	230	70 Q	-	-	75-125	- 20
Total Metals - Mansfield	Lab Associated sam	nple(s): 01-03	QC Ba	tch ID: WG921037-4	QC Samp	ole: L1623303-05	Client ID: MS Sa	mple
Mercury, Total	ND	0.149	0.16	108	-	-	80-120	- 20

Lab Duplicate Analysis Batch Quality Control

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

L1624444 Report Date: 08/15/16

Lab Number:

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s):	01-03 QC Batch ID:	WG920554-3 QC Sample:	L1624445-02	Client ID:	DUP Sampl	le
Aluminum, Total	5700	4400	mg/kg	26	Q	20
Antimony, Total	ND	ND	mg/kg	NC		20
Arsenic, Total	6.7	5.4	mg/kg	21	Q	20
Barium, Total	81.	64	mg/kg	23	Q	20
Beryllium, Total	0.31J	0.12J	mg/kg	NC		20
Cadmium, Total	0.30J	0.25J	mg/kg	NC		20
Chromium, Total	9.7	8.9	mg/kg	9		20
Cobalt, Total	5.7	4.8	mg/kg	17		20
Copper, Total	64.	62	mg/kg	3		20
Iron, Total	15000	12000	mg/kg	22	Q	20
Lead, Total	86.	70	mg/kg	21	Q	20
Magnesium, Total	22000	25000	mg/kg	13		20
Manganese, Total	270	220	mg/kg	20		20
Nickel, Total	16.	12	mg/kg	29	Q	20
Potassium, Total	610	600	mg/kg	2		20
Selenium, Total	0.26J	ND	mg/kg	NC		20
Silver, Total	ND	ND	mg/kg	NC		20
Sodium, Total	320	320	mg/kg	0		20
Thallium, Total	ND	ND	mg/kg	NC		20

Lab Duplicate Analysis Batch Quality Control

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number:

L1624444

Report Date:

08/15/16

Parameter	Native Sample	Duplicate Sample	cate Sample Units		R	RPD Limits	
Total Metals - Mansfield Lab Associated sample(s): 01-0	3 QC Batch ID: W	G920554-3 QC Sample:	L1624445-02	Client ID:	DUP Sample		
Vanadium, Total	12.	11	mg/kg	9		20	
Zinc, Total	200	190	mg/kg	5		20	
Total Metals - Mansfield Lab Associated sample(s): 01-0	3 QC Batch ID: W	G920554-3 QC Sample:	L1624445-02	Client ID:	DUP Sample		
Calcium, Total	110000	160000	mg/kg	37	Q	20	
Total Metals - Mansfield Lab Associated sample(s): 01-0	3 QC Batch ID: W	G921037-3 QC Sample:	L1623303-05	Client ID:	DUP Sample		
Mercury, Total	ND	ND	mg/kg	NC		20	

INORGANICS & MISCELLANEOUS

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1624444

Project Number: 15209 Report Date: 08/15/16

SAMPLE RESULTS

Lab ID: L1624444-01

Client ID: 13

Sample Location: SYRACUSE, NY

Matrix: Soil

Date Collected: 08/04/16 07:15

Date Received: 08/04/16

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	84.6		%	0.100	NA	1	-	08/05/16 16:30	121,2540G	RI

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1624444

Project Number: 15209 Report Date: 08/15/16

SAMPLE RESULTS

Lab ID: L1624444-02

Client ID: 14

Sample Location: SYRACUSE, NY

Matrix: Soil

Date Collected: 08/04/16 09:45

Date Received: 08/04/16

Field Prep: Not Specified

Parameter	Result Qua	alifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab								
Solids, Total	87.7	%	0.100	NA	1	-	08/05/16 16:30	121,2540G	RI

Serial_No:08151616:08

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1624444

Project Number: 15209 Report Date: 08/15/16

SAMPLE RESULTS

Lab ID: L1624444-03

Client ID: 15

Sample Location: SYRACUSE, NY

Matrix: Soil

Date Collected: 08/04/16 13:15

Date Received: 08/04/16

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	· Westborough Lab)								
Solids, Total	82.4		%	0.100	NA	1	-	08/05/16 16:30	121,2540G	RI

Lab Duplicate Analysis
Batch Quality Control

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number:

L1624444

Report Date:

08/15/16

Parameter	Native Sam	ple Dupl	icate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-03	QC Batch ID: WC	G920392-1 C	QC Sample: L1	624392-01	Client ID:	DUP Sample
Solids, Total	62.9		66.2	%	5		20

Serial_No:08151616:08

Project Name: DESTINY-EMBASSY SUITES

Lab Number: L1624444 **Report Date:** 08/15/16 Project Number: 15209

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Reagent H2O Preserved Vials Frozen on: 08/05/2016 06:29

Cooler Information Custody Seal

Cooler

Α Absent

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1624444-01A	Vial MeOH preserved	Α	N/A	4.8	Υ	Absent	NYTCL-8260HLW(14)
L1624444-01B	Vial water preserved	Α	N/A	4.8	Υ	Absent	NYTCL-8260HLW(14)
L1624444-01C	Vial water preserved	Α	N/A	4.8	Υ	Absent	NYTCL-8260HLW(14)
L1624444-01D	Plastic 2oz unpreserved for TS	Α	N/A	4.8	Υ	Absent	TS(7)
L1624444-01E	Metals Only - Glass 60mL/2oz unp	A	N/A	4.8	Y	Absent	BE-TI(180),AS-TI(180),BA-TI(180),AG-TI(180),AL-TI(180),CR-TI(180),NI-TI(180),TL-TI(180),CU-TI(180),SB-TI(180),SE-TI(180),CV-TI(180),CO-TI(180),V-TI(180),FE-TI(180),MN-TI(180),CA-TI(180),CD-TI(180),CD-TI(180),CD-TI(180),CD-TI(180),K-TI(180),CD-TI(180),K-TI(180),NA-TI(180)
L1624444-01F	Glass 120ml/4oz unpreserved	Α	N/A	4.8	Υ	Absent	NYTCL-8270(14)
L1624444-02A	Vial MeOH preserved	Α	N/A	4.8	Υ	Absent	NYTCL-8260HLW(14)
L1624444-02B	Vial water preserved	Α	N/A	4.8	Υ	Absent	NYTCL-8260HLW(14)
L1624444-02C	Vial water preserved	Α	N/A	4.8	Υ	Absent	NYTCL-8260HLW(14)
L1624444-02D	Plastic 2oz unpreserved for TS	Α	N/A	4.8	Υ	Absent	TS(7)
L1624444-02E	Metals Only - Glass 60mL/2oz unp	A	N/A	4.8	Y	Absent	BE-TI(180),AS-TI(180),BA-TI(180),AG-TI(180),AG-TI(180),AL-TI(180),CR-TI(180),CU-TI(180),FB-TI(180),SB-TI(180),SE-TI(180),CO-TI(180),CO-TI(180),CO-TI(180),FE-TI(180),MG-TI(180),CA-TI(180),CD-TI(180),CD-TI(180),CD-TI(180),CD-TI(180),K-TI(180),CD-TI(180),K-TI(180),NA-TI(180)
L1624444-02F	Glass 120ml/4oz unpreserved	Α	N/A	4.8	Υ	Absent	NYTCL-8270(14)
L1624444-03A	Vial MeOH preserved	Α	N/A	4.8	Υ	Absent	NYTCL-8260HLW(14)
L1624444-03B	Vial water preserved	Α	N/A	4.8	Υ	Absent	NYTCL-8260HLW(14)
L1624444-03C	Vial water preserved	Α	N/A	4.8	Υ	Absent	NYTCL-8260HLW(14)
L1624444-03D	Plastic 2oz unpreserved for TS	Α	N/A	4.8	Υ	Absent	TS(7)

Serial_No:08151616:08

Project Name: DESTINY-EMBASSY SUITES

Glass 120ml/4oz unpreserved

Project Number: 15209

L1624444-03F

Lab Number: L1624444 **Report Date:** 08/15/16

TI(180),NA-TI(180)

NYTCL-8270(14)

Container Information Temp deg C Pres Seal **Container ID Container Type** Cooler pН Analysis(*) BE-TI(180),AS-TI(180),BA-TI(180),AG-TI(180),AL-L1624444-03E Metals Only - Glass 60mL/2oz unp N/A 4.8 Υ Absent TI(180), CR-TI(180), NI-TI(180), CU-TI(180), PB-TI(180),SB-TI(180),SE-TI(180),CO-TI(180),FE-TI(180),HG-T(28),MG-TI(180),MN-TI(180),CA-TI(180), CD-TI(180), K-

N/A

4.8

Absent

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1624444

Project Number: 15209 Report Date: 08/15/16

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: DU Report with 'J' Qualifiers

Project Name:DESTINY-EMBASSY SUITESLab Number:L1624444Project Number:15209Report Date:08/15/16

Data Qualifiers

- reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Serial_No:08151616:08

Project Name:DESTINY-EMBASSY SUITESLab Number:L1624444Project Number:15209Report Date:08/15/16

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:08151616:08

Alpha Analytical, Inc.
Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:**17873** Revision 7

Published Date: 8/5/2016 11:25:56 AM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene: 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide EPA 9050A: NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility SM 2540D: TSS

SM 2540D: TSS **EPA 3005A** NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

	NEW YORK	Service Centers			Pag	10							-			
ALPHA	CHAIN OF	Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker V			-	of 2	-	Date	Rec						ALDUA Joh #	
ARACYCERAL	CUSTODY	Tonawanda, NY 14150: 275 Co		05	17	<u></u>		in	Lab	4	11=	116	2		LIG24444	
Westborough, MA 01581	Mansfield, MA 02048	Project Information					Deli	verabl	08	1	110	116	2			
8 Walkup Dr. TEL: 508-898-9220	320 Forbes Blvd TEL: 508-822-9300		- 1	- 1 ex	C. +		T [ASP				1 400	D		Billing Information	
FAX: 508-898-9193	FAX: 508-822-3288	Project Leastien	sting - E	-inbussy	-> lieling	<u>i</u>	┨╎			-11=X		ASP-			Same as Client Info	
Client Information		Project Location:	yracuse	NY			- 닏		ılS (1 I	File)		j EQui	IS (4 Fi	ile)	PO#	
Client Information		Project # 1524						Othe		-80						
	Environmental	(Use Project name as Pr	- 4				Regu	ulator	y Requ	uireme	nt				Disposal Site Information	
	Fish Aryrican		ank Pe	duto				NYT	OGS			NY Pa	art 375		Please identify below location of	f
Latha	Latham, NY12110 ALPHAQuote #:				1 22 17 1		AWO	Standa	ards		NY CF	² -51		applicable disposal facilities.		
Phone: 5/3-73	PJ-0882	Turn-Around Time						NYR	Restricte	ed Use		Other			Disposal Facility:	
Fax:		Standard	1 🗙	Due Date:	:		1 🗆	NY U	Inrestric	ted Us	.e				□ NJ □ NY	
Email: Foeduto	@ Spechaen.	Rush (only if pre approved)) <u> </u>	# of Days:	:			NYC	Sewer	Discha	rae				Other:	
These samples have b	peen previously analyz	red by Alpha					ΔΝΔ	LYSIS			3-			- Sole	Sample Filtration	T
Other project specifi							_		$\dot{\top}$	_			ГТ		Sample Fintration	0
The state of the s							8270	12		2	3			1	Done	t
		STANDARD	TAT				100	1/2	.	#Ch	HIM	2.5			Lab to do	a
Please specify Metals or TAL.							1	23		F					Preservation ☐ Lab to do	
Please specify wetar	3 OF IAL.						13	0	1	0	0				Lab to do	В
							IF	3	N	8360	3260				(Please Specify below)	o t
ALPHA Lab ID	· c	ample ID	Colle	ection	Sample	Sampler's	NYTCL	1/2	1	150	i					t
(Lab Use Only)	30	ітріе і	Date	Time	Matrix	Initials	1	1/2	-					-	Sample Specific Comments	0
24444-01	13	3	8/04/11	07:15	SOIL	460	X	×	\vdash	CK				_	Dampie openie commente	е
03	14	7	Shill	09:45	SOIL	44	X	-	_	त्र	_	\vdash	\rightarrow			-
03)5		2/09/16				-	X	-			\vdash	-			-
	12	F	0/04/16	13:15	5010	yw	X	X	_	68	~		-			
		3.3					\vdash				\square	$\overline{}$	\dashv			
					4-											
Preservative Code:	Container Code	Westboro: Certification No	o: MA935		1							$\neg \uparrow$				_
A = None B = HCI	P = Plastic A = Amber Glass	Mansfield: Certification No	o: MA015	- 1	Conf	tainer Type	A	A	P	GV	AU				Please print clearly, legibly and completely. Samples c	
C = HNO ₃	V = Vial	mananara saranganari 140). IVII (O TO	ŀ			•	1	1		\rightarrow	\rightarrow	-+	-	not be logged in and	an
$D = H_2SO_4$	G = Glass			-	Р	reservative	A	A	A	0	F			ı	turnaround time clock will n	not
E = NaOH	B = Bacteria Cup C = Cube								1,		1				start until any ambiguities a	
F = MeOH G = NaHSO₄	O = Other	Relinquished B	y:	Date/T	ime		Receive	ed By	0			Date/T	Гime		resolved. BY EXECUTING	
$H = Na_2S_2O_3$	E = Encore	Uniel Law	3	8/4/16/	1335	(26)	10	IV			01	41/16	133	0	THIS COC, THE CLIENT	
K/E = Zn Ac/NaOH	D = BOD Bottle	160K /16 X		ellalle!	1650	1/1/1	7	MAN	111	11	0/4	11/	16		AS READ AND AGREES	
O = Other		42/12/12		4/1/2	1600	DIV	TAY	no.	PH	75	4//	10)_J	TO BE BOUND BY ALPHA TERMS & CONDITIONS.	'S
Form No: 01-25 HC (rev. 30) Cont 2012)	10 July	- 6/1	7/16		1 mile	PA	eg.		\rightarrow	875/	160	146	-	(See reverse side.)	
1 0111 140. 01-25 HC (16V. 30	7-Sept-2013)														(20010101000100.)	- 1

ANALYTICAL REPORT

Lab Number: L1624504

Client: Spectra Environmental Group

19 British American Blvd.

Latham, NY 12110

ATTN: Frank Peduto
Phone: (518) 782-0882

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209
Report Date: 08/10/16

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: NY (11627), CT (PH-0141), NH (2206), NJ NELAP (MA015), RI (LAO00299), ME (MA00030), PA (68-02089), VA (460194), LA NELAP (03090), FL (E87814), TX (T104704419), WA (C954), USFWS (Permit #LE2069641), USDA (Permit #P330-11-00109), US Army Corps of Engineers.

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number: L1624504 **Report Date:** 08/10/16

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1624504-01	16	SOIL	SYRACUSE, NY	08/04/16 14:00	08/05/16
L1624504-02	17	SOIL	SYRACUSE, NY	08/05/16 08:15	08/05/16

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1624504

Project Number: 15200 Penert Date: 08/10/16

Project Number: 15209 Report Date: 08/10/16

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:DESTINY-EMBASSY SUITESLab Number:L1624504Project Number:15209Report Date:08/10/16

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Semivolatile Organics

L1624504-01 and -02: The sample has elevated detection limits due to the dilution required by the sample matrix.

Metals

L1624504-01 and -02: The sample has elevated detection limits for all elements, with the exception of mercury, due to the dilution required by matrix interferences encountered during analysis.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 08/10/16

Sma I Iry Lura L Troy

ORGANICS

VOLATILES

L1624504

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Report Date: 08/10/16

Lab Number:

Lab ID: L1624504-02

Client ID: 17

Sample Location: SYRACUSE, NY

Matrix: Soil Analytical Method: 1,8260C

Analytical Date: 08/08/16 16:35

Analyst: ΒN 88% Percent Solids:

Date Collected:	08/05/16 08:15
Date Received:	08/05/16
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 -	Westborough Lab					
Methylene chloride	ND		mg/kg	0.62	0.068	1
1,1-Dichloroethane	ND		mg/kg	0.092	0.0053	1
Chloroform	ND		mg/kg	0.092	0.023	1
Carbon tetrachloride	ND		mg/kg	0.062	0.013	1
1,2-Dichloropropane	ND		mg/kg	0.22	0.014	1
Dibromochloromethane	ND		mg/kg	0.062	0.0095	1
1,1,2-Trichloroethane	ND		mg/kg	0.092	0.019	1
Tetrachloroethene	ND		mg/kg	0.062	0.0086	1
Chlorobenzene	ND		mg/kg	0.062	0.021	1
Trichlorofluoromethane	ND		mg/kg	0.31	0.024	1
1,2-Dichloroethane	ND		mg/kg	0.062	0.0070	1
1,1,1-Trichloroethane	ND		mg/kg	0.062	0.0068	1
Bromodichloromethane	ND		mg/kg	0.062	0.011	1
trans-1,3-Dichloropropene	ND		mg/kg	0.062	0.0074	1
cis-1,3-Dichloropropene	ND		mg/kg	0.062	0.0072	1
Bromoform	ND		mg/kg	0.25	0.014	1
1,1,2,2-Tetrachloroethane	ND		mg/kg	0.062	0.0062	1
Benzene	0.020	J	mg/kg	0.062	0.0073	1
Toluene	0.021	J	mg/kg	0.092	0.012	1
Ethylbenzene	0.014	J	mg/kg	0.062	0.0079	1
Chloromethane	ND		mg/kg	0.31	0.018	1
Bromomethane	ND		mg/kg	0.12	0.021	1
Vinyl chloride	ND		mg/kg	0.12	0.0072	1
Chloroethane	ND		mg/kg	0.12	0.019	1
1,1-Dichloroethene	ND		mg/kg	0.062	0.016	1
trans-1,2-Dichloroethene	ND		mg/kg	0.092	0.013	1
Trichloroethene	ND		mg/kg	0.062	0.0077	1
1,2-Dichlorobenzene	ND		mg/kg	0.31	0.0094	1
1,3-Dichlorobenzene	ND		mg/kg	0.31	0.0083	1
1,4-Dichlorobenzene	ND		mg/kg	0.31	0.0085	1

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1624504

Project Number: 15209 Report Date: 08/10/16

SAMPLE RESULTS

Lab ID: L1624504-02 Date Collected: 08/05/16 08:15

Client ID: 17 Date Received: 08/05/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RLMDL **Dilution Factor** Volatile Organics by 8260/5035 - Westborough Lab Methyl tert butyl ether ND 0.12 0.0052 mg/kg 1 p/m-Xylene 0.032 J mg/kg 0.12 0.012 1 o-Xylene ND 0.12 0.011 1 mg/kg ND 0.0088 cis-1,2-Dichloroethene 0.062 1 mg/kg Styrene ND 0.12 0.025 1 mg/kg Dichlorodifluoromethane ND 0.62 0.012 1 mg/kg ND Acetone 0.62 0.064 1 mg/kg Carbon disulfide ND 0.62 1 mg/kg 0.068 ND 2-Butanone mg/kg 0.62 0.017 1 4-Methyl-2-pentanone ND 0.62 0.015 1 mg/kg ND 0.62 0.041 2-Hexanone mg/kg 1 Bromochloromethane ND 0.31 0.017 1 mg/kg 1,2-Dibromoethane ND 0.25 0.011 1 mg/kg ND 0.31 0.024 1 1,2-Dibromo-3-chloropropane mg/kg Isopropylbenzene ND 0.062 0.0064 1 mg/kg 1,2,3-Trichlorobenzene ND 0.31 0.0091 1 mg/kg ND 1,2,4-Trichlorobenzene 0.31 0.011 mg/kg 1 Methyl Acetate 0.96 J 1.2 0.017 1 mg/kg Cyclohexane ND 1.2 0.0090 1 mg/kg 1,4-Dioxane ND 6.2 0.89 1 mg/kg Freon-113 ND 1.2 0.017 1 mg/kg Methyl cyclohexane ND mg/kg 0.25 0.0095 1

% Recovery	Acceptance Qualifier Criteria	
128	70-130	
91	70-130	
83	70-130	
104	70-130	
	128 91 83	% Recovery Qualifier Criteria 128 70-130 91 70-130 83 70-130

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1624504

Project Number: 15209 Report Date: 08/10/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/08/16 08:08

Analyst: BN

Parameter	Result	Qualifier	Units		RL	MDL
Volatile Organics by 8260/5035 -	Westborough	Lab for sa	mple(s):	02	Batch:	WG921179-5
Methylene chloride	ND		mg/kg		0.50	0.055
1,1-Dichloroethane	ND		mg/kg		0.075	0.0043
Chloroform	ND		mg/kg		0.075	0.018
Carbon tetrachloride	ND		mg/kg		0.050	0.010
1,2-Dichloropropane	ND		mg/kg		0.18	0.011
Dibromochloromethane	ND		mg/kg		0.050	0.0077
1,1,2-Trichloroethane	ND		mg/kg		0.075	0.015
Tetrachloroethene	ND		mg/kg		0.050	0.0070
Chlorobenzene	ND		mg/kg		0.050	0.017
Trichlorofluoromethane	ND		mg/kg		0.25	0.019
1,2-Dichloroethane	ND		mg/kg		0.050	0.0057
1,1,1-Trichloroethane	ND		mg/kg		0.050	0.0055
Bromodichloromethane	ND		mg/kg		0.050	0.0087
trans-1,3-Dichloropropene	ND		mg/kg		0.050	0.0060
cis-1,3-Dichloropropene	ND		mg/kg		0.050	0.0059
Bromoform	ND		mg/kg		0.20	0.012
1,1,2,2-Tetrachloroethane	ND		mg/kg		0.050	0.0050
Benzene	0.0073	J	mg/kg		0.050	0.0059
Toluene	ND		mg/kg		0.075	0.0097
Ethylbenzene	ND		mg/kg		0.050	0.0064
Chloromethane	ND		mg/kg		0.25	0.015
Bromomethane	0.047	J	mg/kg		0.10	0.017
Vinyl chloride	ND		mg/kg		0.10	0.0059
Chloroethane	ND		mg/kg		0.10	0.016
1,1-Dichloroethene	ND		mg/kg		0.050	0.013
trans-1,2-Dichloroethene	ND		mg/kg		0.075	0.011
Trichloroethene	ND		mg/kg		0.050	0.0062
1,2-Dichlorobenzene	ND		mg/kg		0.25	0.0077
1,3-Dichlorobenzene	ND		mg/kg		0.25	0.0068

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1624504

Project Number: 15209 Report Date: 08/10/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/08/16 08:08

Analyst: BN

Parameter	Result	Qualifier	Units	RL	MDL	
olatile Organics by 8260/5035	- Westborough	Lab for sa	mple(s):	02 Batch:	WG921179-5	
1,4-Dichlorobenzene	ND		mg/kg	0.25	0.0069	
Methyl tert butyl ether	ND		mg/kg	0.10	0.0042	
p/m-Xylene	ND		mg/kg	0.10	0.0099	
o-Xylene	ND		mg/kg	0.10	0.0086	
cis-1,2-Dichloroethene	ND		mg/kg	0.050	0.0071	
Styrene	ND		mg/kg	0.10	0.020	
Dichlorodifluoromethane	ND		mg/kg	0.50	0.0095	
Acetone	ND		mg/kg	0.50	0.052	
Carbon disulfide	ND		mg/kg	0.50	0.055	
2-Butanone	ND		mg/kg	0.50	0.014	
4-Methyl-2-pentanone	ND		mg/kg	0.50	0.012	
2-Hexanone	ND		mg/kg	0.50	0.033	
Bromochloromethane	ND		mg/kg	0.25	0.014	
1,2-Dibromoethane	ND		mg/kg	0.20	0.0087	
1,2-Dibromo-3-chloropropane	ND		mg/kg	0.25	0.020	
Isopropylbenzene	ND		mg/kg	0.050	0.0052	
1,2,3-Trichlorobenzene	ND		mg/kg	0.25	0.0074	
1,2,4-Trichlorobenzene	ND		mg/kg	0.25	0.0091	
Methyl Acetate	ND		mg/kg	1.0	0.014	
Cyclohexane	ND		mg/kg	1.0	0.0073	
1,4-Dioxane	ND		mg/kg	5.0	0.72	
Freon-113	ND		mg/kg	1.0	0.014	
Methyl cyclohexane	ND		mg/kg	0.20	0.0077	

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1624504

Project Number: 15209 Report Date: 08/10/16

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/08/16 08:08

Analyst: BN

ParameterResultQualifierUnitsRLMDLVolatile Organics by 8260/5035 - Westborough Lab for sample(s):02Batch:WG921179-5

			Acceptance				
Surrogate	%Recovery	Qualifier	Criteria				
1,2-Dichloroethane-d4	125		70-130				
Toluene-d8	92		70-130				
4-Bromofluorobenzene	85		70-130				
Dibromofluoromethane	102		70-130				

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number: L1624504

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by 8260/5035 - Westboroug	gh Lab Associa	ted sample(s):	02 Batch:	WG921179-3	WG921179-4		
Methylene chloride	81		77		70-130	5	30
1,1-Dichloroethane	92		85		70-130	8	30
Chloroform	100		95		70-130	5	30
Carbon tetrachloride	129		112		70-130	14	30
1,2-Dichloropropane	81		78		70-130	4	30
Dibromochloromethane	106		103		70-130	3	30
2-Chloroethylvinyl ether	73		73		70-130	0	30
1,1,2-Trichloroethane	85		81		70-130	5	30
Tetrachloroethene	111		99		70-130	11	30
Chlorobenzene	96		91		70-130	5	30
Trichlorofluoromethane	149	Q	129		70-139	14	30
1,2-Dichloroethane	117		113		70-130	3	30
1,1,1-Trichloroethane	118		105		70-130	12	30
Bromodichloromethane	104		102		70-130	2	30
trans-1,3-Dichloropropene	95		93		70-130	2	30
cis-1,3-Dichloropropene	91		86		70-130	6	30
1,1-Dichloropropene	96		84		70-130	13	30
Bromoform	110		106		70-130	4	30
1,1,2,2-Tetrachloroethane	82		80		70-130	2	30
Benzene	75		69	Q	70-130	8	30
Toluene	87		81		70-130	7	30

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number: L1624504

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by 8260/5035 - Westborou	gh Lab Associa	ted sample(s):	02 Batch:	WG921179-3	WG921179-4			
Ethylbenzene	97		88		70-130	10	30	
Chloromethane	99		90		52-130	10	30	
Bromomethane	100		92		57-147	8	30	
Vinyl chloride	97		87		67-130	11	30	
Chloroethane	110		101		50-151	9	30	
1,1-Dichloroethene	100		90		65-135	11	30	
trans-1,2-Dichloroethene	96		87		70-130	10	30	
Trichloroethene	94		87		70-130	8	30	
1,2-Dichlorobenzene	101		96		70-130	5	30	
1,3-Dichlorobenzene	104		98		70-130	6	30	
1,4-Dichlorobenzene	104		98		70-130	6	30	
Methyl tert butyl ether	93		90		66-130	3	30	
p/m-Xylene	97		90		70-130	7	30	
o-Xylene	98		91		70-130	7	30	
cis-1,2-Dichloroethene	85		79		70-130	7	30	
Dibromomethane	93		90		70-130	3	30	
Styrene	99		94		70-130	5	30	
Dichlorodifluoromethane	101		86		30-146	16	30	
Acetone	138		128		54-140	8	30	
Carbon disulfide	73		63		59-130	15	30	
2-Butanone	98		95		70-130	3	30	

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number: L1624504

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Limits
Volatile Organics by 8260/5035 - Westboroug	h Lab Associa	ted sample(s):	02 Batch: V	VG921179-3	WG921179-4		
Vinyl acetate	92		90		70-130	2	30
4-Methyl-2-pentanone	76		75		70-130	1	30
1,2,3-Trichloropropane	87		85		68-130	2	30
2-Hexanone	86		85		70-130	1	30
Bromochloromethane	97		92		70-130	5	30
2,2-Dichloropropane	114		100		70-130	13	30
1,2-Dibromoethane	91		88		70-130	3	30
1,3-Dichloropropane	86		83		69-130	4	30
1,1,1,2-Tetrachloroethane	110		103		70-130	7	30
Bromobenzene	100		94		70-130	6	30
n-Butylbenzene	107		95		70-130	12	30
sec-Butylbenzene	102		91		70-130	11	30
tert-Butylbenzene	100		90		70-130	11	30
o-Chlorotoluene	96		90		70-130	6	30
p-Chlorotoluene	99		92		70-130	7	30
1,2-Dibromo-3-chloropropane	94		92		68-130	2	30
Hexachlorobutadiene	118		102		67-130	15	30
Isopropylbenzene	97		87		70-130	11	30
p-Isopropyltoluene	104		93		70-130	11	30
Naphthalene	90		88		70-130	2	30
Acrylonitrile	82		81		70-130	1	30

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number: L1624504

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by 8260/5035 - Westboroug	h Lab Associa	ted sample(s):	02 Batch: V	VG921179-3	WG921179-4			
Isopropyl Ether	93		90		66-130	3		30
tert-Butyl Alcohol	83		80		70-130	4		30
n-Propylbenzene	98		89		70-130	10		30
1,2,3-Trichlorobenzene	105		101		70-130	4		30
1,2,4-Trichlorobenzene	106		102		70-130	4		30
1,3,5-Trimethylbenzene	101		92		70-130	9		30
1,2,4-Trimethylbenzene	99		92		70-130	7		30
Methyl Acetate	97		98		51-146	1		30
Ethyl Acetate	95		93		70-130	2		30
Acrolein	76		77		70-130	1		30
Cyclohexane	101		84		59-142	18		30
1,4-Dioxane	82		81		65-136	1		30
1,1,2-Trichloro-1,2,2-Trifluoroethane	127		106		50-139	18		30
p-Diethylbenzene	110		100		70-130	10		30
p-Ethyltoluene	105		96		70-130	9		30
1,2,4,5-Tetramethylbenzene	106		99		70-130	7		30
Tetrahydrofuran	76		78		66-130	3		30
Ethyl ether	86		85		67-130	1		30
trans-1,4-Dichloro-2-butene	114		108		70-130	5		30
Methyl cyclohexane	95		81		70-130	16		30
Ethyl-Tert-Butyl-Ether	94		92		70-130	2		30

Project Name: DESTINY-EMBASSY SUITES

Lab Number:

L1624504

Project Number: 15209

Report Date:

08/10/16

Parameter	LCS %Recovery	Qual		CSD ecovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by 8260/5035 - Westboroug	h Lab Associate	d sample(s):	02	Batch:	WG921179-3	WG921179-4			
Tertiary-Amyl Methyl Ether	88			85		70-130	3		30

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	129		125		70-130	
Toluene-d8	92		91		70-130	
4-Bromofluorobenzene	86		84		70-130	
Dibromofluoromethane	101		104		70-130	

SEMIVOLATILES

L1624504

08/10/16

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Date Collected: 08/04/16 14:00

Lab Number:

Report Date:

Date Received: 08/05/16

Field Prep: Not Specified Extraction Method: EPA 3546

08/06/16 03:36 Extraction Date:

Lab ID: L1624504-01 D Client ID: 16

Sample Location: SYRACUSE, NY

Matrix: Soil Analytical Method: 1,8270D Analytical Date: 08/09/16 16:31

Analyst: HL 87% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - W	estborough Lab						
Acenaphthene	1.3	J	mg/kg	1.5	0.19	10	
Hexachlorobenzene	ND		mg/kg	1.1	0.21	10	
Bis(2-chloroethyl)ether	ND		mg/kg	1.7	0.25	10	
2-Chloronaphthalene	ND		mg/kg	1.9	0.19	10	
3,3'-Dichlorobenzidine	ND		mg/kg	1.9	0.50	10	
2,4-Dinitrotoluene	ND		mg/kg	1.9	0.38	10	
2,6-Dinitrotoluene	ND		mg/kg	1.9	0.32	10	
Fluoranthene	30.		mg/kg	1.1	0.22	10	
4-Chlorophenyl phenyl ether	ND		mg/kg	1.9	0.20	10	
4-Bromophenyl phenyl ether	ND		mg/kg	1.9	0.29	10	
Bis(2-chloroisopropyl)ether	ND		mg/kg	2.2	0.32	10	
Bis(2-chloroethoxy)methane	ND		mg/kg	2.0	0.19	10	
Hexachlorobutadiene	ND		mg/kg	1.9	0.27	10	
Hexachlorocyclopentadiene	ND		mg/kg	5.4	1.7	10	
Hexachloroethane	ND		mg/kg	1.5	0.30	10	
Isophorone	ND		mg/kg	1.7	0.24	10	
Naphthalene	2.3		mg/kg	1.9	0.23	10	
Nitrobenzene	ND		mg/kg	1.7	0.28	10	
NDPA/DPA	ND		mg/kg	1.5	0.21	10	
n-Nitrosodi-n-propylamine	ND		mg/kg	1.9	0.29	10	
Bis(2-ethylhexyl)phthalate	ND		mg/kg	1.9	0.65	10	
Butyl benzyl phthalate	ND		mg/kg	1.9	0.47	10	
Di-n-butylphthalate	ND		mg/kg	1.9	0.36	10	
Di-n-octylphthalate	ND		mg/kg	1.9	0.64	10	
Diethyl phthalate	ND		mg/kg	1.9	0.17	10	
Dimethyl phthalate	ND		mg/kg	1.9	0.39	10	
Benzo(a)anthracene	16.		mg/kg	1.1	0.21	10	
Benzo(a)pyrene	16.		mg/kg	1.5	0.46	10	
Benzo(b)fluoranthene	19.		mg/kg	1.1	0.32	10	
Benzo(k)fluoranthene	8.3		mg/kg	1.1	0.30	10	

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1624504

Project Number: 15209 Report Date: 08/10/16

SAMPLE RESULTS

Lab ID: L1624504-01 D

Client ID: 16

Sample Location: SYRACUSE, NY

Date Collected: 08/04/16 14:00

Date Received: 08/05/16
Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - We	estborough Lab					
Chrysene	15.		mg/kg	1.1	0.20	10
Acenaphthylene	6.6		mg/kg	1.5	0.29	10
Anthracene	6.3		mg/kg	1.1	0.36	10
Benzo(ghi)perylene	9.6		mg/kg	1.5	0.22	10
Fluorene	4.2		mg/kg	1.9	0.18	10
Phenanthrene	16.		mg/kg	1.1	0.23	10
Dibenzo(a,h)anthracene	2.8		mg/kg	1.1	0.22	10
Indeno(1,2,3-cd)pyrene	9.4		mg/kg	1.5	0.26	10
Pyrene	25.		mg/kg	1.1	0.19	10
Biphenyl	ND		mg/kg	4.3	0.44	10
4-Chloroaniline	ND		mg/kg	1.9	0.34	10
2-Nitroaniline	ND		mg/kg	1.9	0.36	10
3-Nitroaniline	ND		mg/kg	1.9	0.35	10
4-Nitroaniline	ND		mg/kg	1.9	0.78	10
Dibenzofuran	2.1		mg/kg	1.9	0.18	10
2-Methylnaphthalene	1.4	J	mg/kg	2.2	0.23	10
1,2,4,5-Tetrachlorobenzene	ND		mg/kg	1.9	0.20	10
Acetophenone	ND		mg/kg	1.9	0.23	10
2,4,6-Trichlorophenol	ND		mg/kg	1.1	0.36	10
p-Chloro-m-cresol	ND		mg/kg	1.9	0.28	10
2-Chlorophenol	ND		mg/kg	1.9	0.22	10
2,4-Dichlorophenol	ND		mg/kg	1.7	0.30	10
2,4-Dimethylphenol	ND		mg/kg	1.9	0.62	10
2-Nitrophenol	ND		mg/kg	4.0	0.70	10
4-Nitrophenol	ND		mg/kg	2.6	0.76	10
2,4-Dinitrophenol	ND		mg/kg	9.0	0.87	10
4,6-Dinitro-o-cresol	ND		mg/kg	4.9	0.90	10
Pentachlorophenol	ND		mg/kg	1.5	0.41	10
Phenol	ND		mg/kg	1.9	0.28	10
2-Methylphenol	ND		mg/kg	1.9	0.29	10
3-Methylphenol/4-Methylphenol	ND		mg/kg	2.7	0.29	10
2,4,5-Trichlorophenol	ND		mg/kg	1.9	0.36	10
Carbazole	1.4	J	mg/kg	1.9	0.18	10
Atrazine	ND		mg/kg	1.5	0.66	10
Benzaldehyde	ND		mg/kg	2.5	0.51	10
Caprolactam	ND		mg/kg	1.9	0.57	10
2,3,4,6-Tetrachlorophenol	ND		mg/kg	1.9	0.38	10

Date Collected:

Project Name: Lab Number: **DESTINY-EMBASSY SUITES** L1624504

Project Number: Report Date: 15209 08/10/16

SAMPLE RESULTS

Lab ID: L1624504-01 D

08/04/16 14:00 Date Received: Client ID: 16 08/05/16 Sample Location: SYRACUSE, NY Field Prep:

Not Specified RL **Dilution Factor** Parameter Result Qualifier Units MDL

Semivolatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	79	25-120
Phenol-d6	87	10-120
Nitrobenzene-d5	82	23-120
2-Fluorobiphenyl	86	30-120
2,4,6-Tribromophenol	96	10-136
4-Terphenyl-d14	90	18-120

L1624504

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Report Date: 08/10/16

Lab Number:

Lab ID: L1624504-02 D

Client ID: 17

Sample Location: SYRACUSE, NY

Matrix: Soil Analytical Method: 1,8270D Analytical Date: 08/09/16 16:57

Analyst: HL 88% Percent Solids:

Date Collected: 08/05/16 08:15 Date Received: 08/05/16 Field Prep: Not Specified Extraction Method: EPA 3546 08/06/16 14:39 Extraction Date:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - \	Westborough Lab					
Acenaphthene	0.24	J	mg/kg	0.30	0.039	2
Hexachlorobenzene	ND		mg/kg	0.22	0.042	2
Bis(2-chloroethyl)ether	ND		mg/kg	0.34	0.051	2
2-Chloronaphthalene	ND		mg/kg	0.38	0.037	2
3,3'-Dichlorobenzidine	ND		mg/kg	0.38	0.10	2
2,4-Dinitrotoluene	ND		mg/kg	0.38	0.075	2
2,6-Dinitrotoluene	ND		mg/kg	0.38	0.064	2
Fluoranthene	7.2		mg/kg	0.22	0.043	2
4-Chlorophenyl phenyl ether	ND		mg/kg	0.38	0.040	2
4-Bromophenyl phenyl ether	ND		mg/kg	0.38	0.057	2
Bis(2-chloroisopropyl)ether	ND		mg/kg	0.45	0.064	2
Bis(2-chloroethoxy)methane	ND		mg/kg	0.40	0.038	2
Hexachlorobutadiene	ND		mg/kg	0.38	0.055	2
Hexachlorocyclopentadiene	ND		mg/kg	1.1	0.34	2
Hexachloroethane	ND		mg/kg	0.30	0.061	2
Isophorone	ND		mg/kg	0.34	0.049	2
Naphthalene	0.23	J	mg/kg	0.38	0.046	2
Nitrobenzene	ND		mg/kg	0.34	0.056	2
NDPA/DPA	ND		mg/kg	0.30	0.043	2
n-Nitrosodi-n-propylamine	ND		mg/kg	0.38	0.058	2
Bis(2-ethylhexyl)phthalate	ND		mg/kg	0.38	0.13	2
Butyl benzyl phthalate	ND		mg/kg	0.38	0.095	2
Di-n-butylphthalate	ND		mg/kg	0.38	0.071	2
Di-n-octylphthalate	ND		mg/kg	0.38	0.13	2
Diethyl phthalate	ND		mg/kg	0.38	0.035	2
Dimethyl phthalate	ND		mg/kg	0.38	0.079	2
Benzo(a)anthracene	4.0		mg/kg	0.22	0.042	2
Benzo(a)pyrene	3.6		mg/kg	0.30	0.092	2
Benzo(b)fluoranthene	4.3		mg/kg	0.22	0.063	2
Benzo(k)fluoranthene	1.7		mg/kg	0.22	0.060	2

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1624504

Project Number: 15209 Report Date: 08/10/16

SAMPLE RESULTS

Lab ID: L1624504-02 D Date Collected: 08/05/16 08:15

Client ID: 17 Date Received: 08/05/16

Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - West	borough Lab					
Chrysene	3.6		mg/kg	0.22	0.039	2
Acenaphthylene	0.44		mg/kg	0.30	0.058	2
Anthracene	1.5		mg/kg	0.22	0.073	2
Benzo(ghi)perylene	2.0		mg/kg	0.30	0.044	2
Fluorene	0.47		mg/kg	0.38	0.036	2
Phenanthrene	3.8		mg/kg	0.22	0.046	2
Dibenzo(a,h)anthracene	0.68		mg/kg	0.22	0.043	2
Indeno(1,2,3-cd)pyrene	2.0		mg/kg	0.30	0.052	2
Pyrene	5.7		mg/kg	0.22	0.037	2
Biphenyl	ND		mg/kg	0.86	0.087	2
4-Chloroaniline	ND		mg/kg	0.38	0.068	2
2-Nitroaniline	ND		mg/kg	0.38	0.072	2
3-Nitroaniline	ND		mg/kg	0.38	0.071	2
4-Nitroaniline	ND		mg/kg	0.38	0.16	2
Dibenzofuran	0.24	J	mg/kg	0.38	0.036	2
2-Methylnaphthalene	0.11	J	mg/kg	0.45	0.045	2
1,2,4,5-Tetrachlorobenzene	ND		mg/kg	0.38	0.039	2
Acetophenone	ND		mg/kg	0.38	0.046	2
2,4,6-Trichlorophenol	ND		mg/kg	0.22	0.071	2
p-Chloro-m-cresol	ND		mg/kg	0.38	0.056	2
2-Chlorophenol	ND		mg/kg	0.38	0.044	2
2,4-Dichlorophenol	ND		mg/kg	0.34	0.060	2
2,4-Dimethylphenol	ND		mg/kg	0.38	0.12	2
2-Nitrophenol	ND		mg/kg	0.81	0.14	2
4-Nitrophenol	ND		mg/kg	0.52	0.15	2
2,4-Dinitrophenol	ND		mg/kg	1.8	0.18	2
4,6-Dinitro-o-cresol	ND		mg/kg	0.98	0.18	2
Pentachlorophenol	ND		mg/kg	0.30	0.083	2
Phenol	ND		mg/kg	0.38	0.057	2
2-Methylphenol	ND		mg/kg	0.38	0.058	2
3-Methylphenol/4-Methylphenol	ND		mg/kg	0.54	0.059	2
2,4,5-Trichlorophenol	ND		mg/kg	0.38	0.072	2
Carbazole	0.23	J	mg/kg	0.38	0.036	2
Atrazine	ND		mg/kg	0.30	0.13	2
Benzaldehyde	ND		mg/kg	0.50	0.10	2
Caprolactam	ND		mg/kg	0.38	0.11	2
2,3,4,6-Tetrachlorophenol	ND		mg/kg	0.38	0.076	2

08/05/16 08:15

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1624504

Project Number: 15209 Report Date: 08/10/16

SAMPLE RESULTS

Lab ID: L1624504-02 D Date Collected:

Client ID: 17 Date Received: 08/05/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	84		25-120	
Phenol-d6	86		10-120	
Nitrobenzene-d5	91		23-120	
2-Fluorobiphenyl	67		30-120	
2,4,6-Tribromophenol	84		10-136	
4-Terphenyl-d14	47		18-120	

L1624504

Project Name: DESTINY-EMBASSY SUITES Lab Number:

Project Number: 15209 Report Date: 08/10/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Extraction Method: EPA 3546
Analytical Date: 08/09/16 01:33 Extraction Date: 08/06/16 03:36

Analyst: HL

Parameter	Result	Qualifier	Units	RL		MDL
Semivolatile Organics by GC/MS -	Westborough	Lab for s	ample(s):	01-02	Batch:	WG921282-1
Acenaphthene	ND		mg/kg	0.13		0.017
Hexachlorobenzene	ND		mg/kg	0.098		0.018
Bis(2-chloroethyl)ether	ND		mg/kg	0.15		0.022
2-Chloronaphthalene	ND		mg/kg	0.16		0.016
3,3'-Dichlorobenzidine	ND		mg/kg	0.16		0.043
2,4-Dinitrotoluene	ND		mg/kg	0.16		0.033
2,6-Dinitrotoluene	ND		mg/kg	0.16		0.028
Fluoranthene	ND		mg/kg	0.098		0.019
4-Chlorophenyl phenyl ether	ND		mg/kg	0.16		0.017
4-Bromophenyl phenyl ether	ND		mg/kg	0.16		0.025
Bis(2-chloroisopropyl)ether	ND		mg/kg	0.20		0.028
Bis(2-chloroethoxy)methane	ND		mg/kg	0.18		0.016
Hexachlorobutadiene	ND		mg/kg	0.16		0.024
Hexachlorocyclopentadiene	ND		mg/kg	0.47		0.15
Hexachloroethane	ND		mg/kg	0.13		0.026
Isophorone	ND		mg/kg	0.15		0.021
Naphthalene	ND		mg/kg	0.16		0.020
Nitrobenzene	ND		mg/kg	0.15		0.024
NDPA/DPA	ND		mg/kg	0.13		0.018
n-Nitrosodi-n-propylamine	ND		mg/kg	0.16		0.025
Bis(2-ethylhexyl)phthalate	ND		mg/kg	0.16		0.056
Butyl benzyl phthalate	ND		mg/kg	0.16		0.041
Di-n-butylphthalate	ND		mg/kg	0.16		0.031
Di-n-octylphthalate	ND		mg/kg	0.16		0.056
Diethyl phthalate	ND		mg/kg	0.16		0.015
Dimethyl phthalate	ND		mg/kg	0.16		0.034
Benzo(a)anthracene	ND		mg/kg	0.098		0.018
Benzo(a)pyrene	ND		mg/kg	0.13		0.040
Benzo(b)fluoranthene	ND		mg/kg	0.098		0.028

L1624504

Project Name: DESTINY-EMBASSY SUITES Lab Number:

Project Number: 15209 Report Date: 08/10/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Extraction Method: EPA 3546
Analytical Date: 08/09/16 01:33 Extraction Date: 08/06/16 03:36

Analyst: HL

Parameter	Result	Qualifier	Units	RL		MDL
Semivolatile Organics by GC/MS -	Westborough	Lab for s	ample(s):	01-02	Batch:	WG921282-1
Benzo(k)fluoranthene	ND		mg/kg	0.098		0.026
Chrysene	ND		mg/kg	0.098		0.017
Acenaphthylene	ND		mg/kg	0.13		0.025
Anthracene	ND		mg/kg	0.098		0.032
Benzo(ghi)perylene	ND		mg/kg	0.13		0.019
Fluorene	ND		mg/kg	0.16		0.016
Phenanthrene	ND		mg/kg	0.098		0.020
Dibenzo(a,h)anthracene	ND		mg/kg	0.098		0.019
Indeno(1,2,3-cd)pyrene	ND		mg/kg	0.13		0.023
Pyrene	ND		mg/kg	0.098		0.016
Biphenyl	ND		mg/kg	0.37		0.038
4-Chloroaniline	ND		mg/kg	0.16		0.030
2-Nitroaniline	ND		mg/kg	0.16		0.032
3-Nitroaniline	ND		mg/kg	0.16		0.031
4-Nitroaniline	ND		mg/kg	0.16		0.068
Dibenzofuran	ND		mg/kg	0.16		0.015
2-Methylnaphthalene	ND		mg/kg	0.20		0.020
1,2,4,5-Tetrachlorobenzene	ND		mg/kg	0.16		0.017
Acetophenone	ND		mg/kg	0.16		0.020
2,4,6-Trichlorophenol	ND		mg/kg	0.098		0.031
p-Chloro-m-cresol	ND		mg/kg	0.16		0.024
2-Chlorophenol	ND		mg/kg	0.16		0.019
2,4-Dichlorophenol	ND		mg/kg	0.15		0.026
2,4-Dimethylphenol	ND		mg/kg	0.16		0.054
2-Nitrophenol	ND		mg/kg	0.35		0.061
4-Nitrophenol	ND		mg/kg	0.23		0.067
2,4-Dinitrophenol	ND		mg/kg	0.78		0.076
4,6-Dinitro-o-cresol	ND		mg/kg	0.42		0.078
Pentachlorophenol	ND		mg/kg	0.13		0.036

Extraction Method: EPA 3546

L1624504

08/06/16 03:36

Lab Number:

Extraction Date:

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209 Report Date: 08/10/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 08/09/16 01:33

Analyst: HL

Parameter	Result	Qualifier	Units	RL		MDL	
Semivolatile Organics by GC/MS - V	Westboroug	h Lab for s	ample(s):	01-02	Batch:	WG921282-1	
Phenol	ND		mg/kg	0.16		0.025	
2-Methylphenol	ND		mg/kg	0.16		0.025	
3-Methylphenol/4-Methylphenol	ND		mg/kg	0.24		0.026	
2,4,5-Trichlorophenol	ND		mg/kg	0.16		0.031	
Carbazole	ND		mg/kg	0.16		0.016	
Atrazine	ND		mg/kg	0.13		0.057	
Benzaldehyde	ND		mg/kg	0.22		0.044	
Caprolactam	ND		mg/kg	0.16		0.050	
2,3,4,6-Tetrachlorophenol	ND		mg/kg	0.16		0.033	

	Acceptance							
Surrogate	%Recovery	Qualifier Criteria						
2-Fluorophenol	79	25-120						
Phenol-d6	81	10-120						
Nitrobenzene-d5	77	23-120						
2-Fluorobiphenyl	94	30-120						
2,4,6-Tribromophenol	91	10-136						
4-Terphenyl-d14	97	18-120						

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number: L1624504

Parameter	LCS %Recovery	Qual	LCSD %Recov		Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westboro	ugh Lab Associ	iated sample(s):	01-02	Batch:	WG921282	2-2 WG921282	2-3		
Acenaphthene	69		88			31-137	24		50
Benzidine	50		58			10-66	15		50
1,2,4-Trichlorobenzene	73		100			38-107	31		50
Hexachlorobenzene	76		105			40-140	32		50
Bis(2-chloroethyl)ether	60		82			40-140	31		50
2-Chloronaphthalene	75		96			40-140	25		50
1,2-Dichlorobenzene	66		86			40-140	26		50
1,3-Dichlorobenzene	63		83			40-140	27		50
1,4-Dichlorobenzene	65		85			28-104	27		50
3,3'-Dichlorobenzidine	55		80			40-140	37		50
2,4-Dinitrotoluene	69		92		Q	28-89	29		50
2,6-Dinitrotoluene	82		109			40-140	28		50
Azobenzene	64		86			40-140	29		50
Fluoranthene	76		102			40-140	29		50
4-Chlorophenyl phenyl ether	79		105			40-140	28		50
4-Bromophenyl phenyl ether	80		109			40-140	31		50
Bis(2-chloroisopropyl)ether	56		76			40-140	30		50
Bis(2-chloroethoxy)methane	65		87			40-117	29		50
Hexachlorobutadiene	81		109			40-140	29		50
Hexachlorocyclopentadiene	96		123			40-140	25		50
Hexachloroethane	65		82			40-140	23		50

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number: L1624504

arameter	LCS %Recovery	Qual	LCSD %Recove		Qual	%Recovery Limits	RPD	Qual	RPD Limits	
semivolatile Organics by GC/MS - Westboro	ugh Lab Assoc	iated sample(s):	01-02	Batch:	WG921282	2-2 WG92128	2-3			
Isophorone	65		89			40-140	31		50	
Naphthalene	65		87			40-140	29		50	
Nitrobenzene	65		87			40-140	29		50	
NitrosoDiPhenylAmine(NDPA)/DPA	75		100			36-157	29		50	
n-Nitrosodi-n-propylamine	62		84			32-121	30		50	
Bis(2-Ethylhexyl)phthalate	73		97			40-140	28		50	
Butyl benzyl phthalate	67		91			40-140	30		50	
Di-n-butylphthalate	73		96			40-140	27		50	
Di-n-octylphthalate	74		100			40-140	30		50	
Diethyl phthalate	73		97			40-140	28		50	
Dimethyl phthalate	78		99			40-140	24		50	
Benzo(a)anthracene	75		100			40-140	29		50	
Benzo(a)pyrene	79		108			40-140	31		50	
Benzo(b)fluoranthene	75		101			40-140	30		50	
Benzo(k)fluoranthene	72		98			40-140	31		50	
Chrysene	72		96			40-140	29		50	
Acenaphthylene	76		98			40-140	25		50	
Anthracene	74		98			40-140	28		50	
Benzo(ghi)perylene	77		103			40-140	29		50	
Fluorene	72		96			40-140	29		50	
Phenanthrene	69		91			40-140	28		50	

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number: L1624504

Parameter	LCS %Recovery	Qual	LCSD %Recover	y	% Qual	Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westborou	ugh Lab Assoc	iated sample(s):	01-02 B	atch:	WG921282-	2 WG921282-3			
Dibenzo(a,h)anthracene	70		94			40-140	29		50
Indeno(1,2,3-cd)Pyrene	71		98			40-140	32		50
Pyrene	73		100			35-142	31		50
Biphenyl	74		98			54-104	28		50
4-Chloroaniline	42		46			40-140	9		50
1-Methylnaphthalene	69		89			26-130	25		50
2-Nitroaniline	73		96			47-134	27		50
3-Nitroaniline	58		70			26-129	19		50
4-Nitroaniline	65		88			41-125	30		50
Dibenzofuran	71		96			40-140	30		50
2-Methylnaphthalene	70		91			40-140	26		50
1,2,4,5-Tetrachlorobenzene	86		114			40-117	28		50
Acetophenone	67		95			14-144	35		50
n-Nitrosodimethylamine	54		73			22-100	30		50
2,4,6-Trichlorophenol	86		115			30-130	29		50
P-Chloro-M-Cresol	73		97			26-103	28		50
2-Chlorophenol	69		94			25-102	31		50
2,4-Dichlorophenol	79		106			30-130	29		50
2,4-Dimethylphenol	68		91			30-130	29		50
2-Nitrophenol	71		99			30-130	33		50
4-Nitrophenol	64		89			11-114	33		50

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number: L1624504

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD _imits
Semivolatile Organics by GC/MS - Westborou	ıgh Lab Associ	ated sample(s):	01-02 Batch:	WG921282-2 WG921282-3		
2,4-Dinitrophenol	76		103	4-130	30	50
4,6-Dinitro-o-cresol	78		104	10-130	29	50
Pentachlorophenol	63		89	17-109	34	50
Phenol	63		88	26-90	33	50
2-Methylphenol	69		94	30-130.	31	50
3-Methylphenol/4-Methylphenol	68		91	30-130	29	50
2,4,5-Trichlorophenol	86		109	30-130	24	50
Benzoic Acid	49		60	10-110	20	50
Benzyl Alcohol	65		89	40-140	31	50
Carbazole	69		91	54-128	28	50
Parathion, ethyl	86		128	40-140	39	50
Atrazine	81		127	40-140	44	50
Benzaldehyde	48		62	40-140	25	50
Caprolactam	70		97	15-130	32	50
2,3,4,6-Tetrachlorophenol	81		110	40-140	30	50

Project Name: DESTINY-EMBASSY SUITES Lab Number:

L1624504

Project Number: 15209

Report Date:

08/10/16

	LCS	LCSD			%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-02 Batch: WG921282-2 WG921282-3

	LCS	LCSD	Acceptance
Surrogate	%Recovery (Qual %Recovery Qual	Criteria
2-Fluorophenol	62	93	25-120
Phenol-d6	63	96	10-120
Nitrobenzene-d5	61	91	23-120
2-Fluorobiphenyl	68	99	30-120
2,4,6-Tribromophenol	73	114	10-136
4-Terphenyl-d14	67	104	18-120

METALS

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1624504

Project Number: 15209 Report Date: 08/10/16

SAMPLE RESULTS

Lab ID: L1624504-01

Client ID: 16

Sample Location: SYRACUSE, NY

Matrix: Soil

Percent Solids: 87%

Date Collected: 08/04/16 14:00

Date Received: 08/05/16

Field Prep: Not Specified

Percent Solids:	87%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Mans	field Lab										
Aluminum, Total	7400		mg/kg	8.9	1.8	2	08/06/16 09:15	08/06/16 17:49	EPA 3050B	1,6010C	AM
Antimony, Total	ND		mg/kg	4.4	0.71	2	08/06/16 09:15	08/06/16 17:49	EPA 3050B	1,6010C	AM
Arsenic, Total	6.2		mg/kg	0.89	0.29	2	08/06/16 09:15	08/06/16 17:49	EPA 3050B	1,6010C	AM
Barium, Total	80		mg/kg	0.89	0.24	2	08/06/16 09:15	08/06/16 17:49	EPA 3050B	1,6010C	AM
Beryllium, Total	0.20	J	mg/kg	0.44	0.10	2	08/06/16 09:15	08/06/16 17:49	EPA 3050B	1,6010C	AM
Cadmium, Total	0.89		mg/kg	0.89	0.06	2	08/06/16 09:15	08/06/16 17:49	EPA 3050B	1,6010C	AM
Calcium, Total	57000		mg/kg	8.9	2.4	2	08/06/16 09:15	08/06/16 17:49	EPA 3050B	1,6010C	AM
Chromium, Total	12		mg/kg	0.89	0.15	2	08/06/16 09:15	08/06/16 17:49	EPA 3050B	1,6010C	AM
Cobalt, Total	6.4		mg/kg	1.8	0.44	2	08/06/16 09:15	08/06/16 17:49	EPA 3050B	1,6010C	AM
Copper, Total	65		mg/kg	0.89	0.16	2	08/06/16 09:15	08/06/16 17:49	EPA 3050B	1,6010C	AM
Iron, Total	16000		mg/kg	4.4	1.4	2	08/06/16 09:15	08/06/16 17:49	EPA 3050B	1,6010C	AM
Lead, Total	93		mg/kg	4.4	0.20	2	08/06/16 09:15	08/06/16 17:49	EPA 3050B	1,6010C	AM
Magnesium, Total	23000		mg/kg	8.9	1.2	2	08/06/16 09:15	08/06/16 17:49	EPA 3050B	1,6010C	AM
Manganese, Total	300		mg/kg	0.89	0.21	2	08/06/16 09:15	08/06/16 17:49	EPA 3050B	1,6010C	AM
Mercury, Total	0.24		mg/kg	0.07	0.02	1	08/06/16 12:20	08/06/16 15:03	EPA 7471B	1,7471B	BV
Nickel, Total	15		mg/kg	2.2	0.36	2	08/06/16 09:15	08/06/16 17:49	EPA 3050B	1,6010C	AM
Potassium, Total	760		mg/kg	220	25.	2	08/06/16 09:15	08/06/16 17:49	EPA 3050B	1,6010C	AM
Selenium, Total	ND		mg/kg	1.8	0.24	2	08/06/16 09:15	08/06/16 17:49	EPA 3050B	1,6010C	AM
Silver, Total	ND		mg/kg	0.89	0.18	2	08/06/16 09:15	08/06/16 17:49	EPA 3050B	1,6010C	AM
Sodium, Total	160	J	mg/kg	180	15.	2	08/06/16 09:15	08/06/16 17:49	EPA 3050B	1,6010C	AM
Thallium, Total	ND		mg/kg	1.8	0.28	2	08/06/16 09:15	08/06/16 17:49	EPA 3050B	1,6010C	AM
Vanadium, Total	15		mg/kg	0.89	0.08	2	08/06/16 09:15	08/06/16 17:49	EPA 3050B	1,6010C	AM
Zinc, Total	200		mg/kg	4.4	0.62	2	08/06/16 09:15	08/06/16 17:49	EPA 3050B	1,6010C	AM

Analytical

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1624504

Project Number: 15209 **Report Date:** 08/10/16

SAMPLE RESULTS

Dilution

Date

Lab ID: L1624504-02

Client ID: 17

Sample Location: SYRACUSE, NY

Matrix: Soil

Percent Solids: 88% Date Collected: 08/05/16 08:15

Date

Date Received: 08/05/16

Not Specified Field Prep:

Prep

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Mans	sfield Lab										
Aluminum, Total	6000		mg/kg	8.7	1.7	2	08/06/16 09:15	5 08/06/16 17:53	EPA 3050B	1,6010C	AM
Antimony, Total	ND		mg/kg	4.3	0.69	2	08/06/16 09:15	5 08/06/16 17:53	EPA 3050B	1,6010C	AM
Arsenic, Total	5.8		mg/kg	0.87	0.29	2	08/06/16 09:15	5 08/06/16 17:53	EPA 3050B	1,6010C	AM
Barium, Total	63		mg/kg	0.87	0.23	2	08/06/16 09:15	5 08/06/16 17:53	EPA 3050B	1,6010C	AM
Beryllium, Total	0.18	J	mg/kg	0.43	0.10	2	08/06/16 09:15	5 08/06/16 17:53	EPA 3050B	1,6010C	AM
Cadmium, Total	0.31	J	mg/kg	0.87	0.06	2	08/06/16 09:15	5 08/06/16 17:53	EPA 3050B	1,6010C	AM
Calcium, Total	79000		mg/kg	8.7	2.4	2	08/06/16 09:15	5 08/06/16 17:53	EPA 3050B	1,6010C	AM
Chromium, Total	18		mg/kg	0.87	0.15	2	08/06/16 09:15	5 08/06/16 17:53	EPA 3050B	1,6010C	AM
Cobalt, Total	5.2		mg/kg	1.7	0.42	2	08/06/16 09:15	5 08/06/16 17:53	EPA 3050B	1,6010C	AM
Copper, Total	66		mg/kg	0.87	0.16	2	08/06/16 09:15	5 08/06/16 17:53	EPA 3050B	1,6010C	AM
Iron, Total	14000		mg/kg	4.3	1.4	2	08/06/16 09:15	5 08/06/16 17:53	EPA 3050B	1,6010C	AM
Lead, Total	79		mg/kg	4.3	0.19	2	08/06/16 09:15	5 08/06/16 17:53	EPA 3050B	1,6010C	AM
Magnesium, Total	20000		mg/kg	8.7	1.2	2	08/06/16 09:15	5 08/06/16 17:53	EPA 3050B	1,6010C	AM
Manganese, Total	270		mg/kg	0.87	0.21	2	08/06/16 09:15	5 08/06/16 17:53	EPA 3050B	1,6010C	AM
Mercury, Total	0.21		mg/kg	0.08	0.02	1	08/06/16 12:20	0 08/06/16 15:08	EPA 7471B	1,7471B	BV
Nickel, Total	14		mg/kg	2.2	0.35	2	08/06/16 09:15	5 08/06/16 17:53	EPA 3050B	1,6010C	AM
Potassium, Total	620		mg/kg	220	24.	2	08/06/16 09:15	5 08/06/16 17:53	EPA 3050B	1,6010C	AM
Selenium, Total	ND		mg/kg	1.7	0.23	2	08/06/16 09:15	5 08/06/16 17:53	EPA 3050B	1,6010C	AM
Silver, Total	ND		mg/kg	0.87	0.17	2	08/06/16 09:15	5 08/06/16 17:53	EPA 3050B	1,6010C	AM
Sodium, Total	420		mg/kg	170	14.	2	08/06/16 09:15	5 08/06/16 17:53	EPA 3050B	1,6010C	AM
Thallium, Total	ND		mg/kg	1.7	0.28	2	08/06/16 09:15	5 08/06/16 17:53	EPA 3050B	1,6010C	AM
Vanadium, Total	12		mg/kg	0.87	0.08	2	08/06/16 09:15	5 08/06/16 17:53	EPA 3050B	1,6010C	AM
Zinc, Total	240		mg/kg	4.3	0.61	2	08/06/16 09:15	5 08/06/16 17:53	EPA 3050B	1,6010C	AM

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number:

L1624504

Report Date:

08/10/16

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
Total Metals - Mansfield	Lab for sample(s):	01-02 B	atch: W	G92053	5-1				
Mercury, Total	ND	mg/kg	0.08	0.02	1	08/06/16 12:20	08/06/16 14:10	1,7471B	BV

Prep Information

Digestion Method: EPA 7471B

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfield	Lab for sample(s):	01-02 B	atch: W	G92055	4-1				
Aluminum, Total	ND	mg/kg	4.0	0.79	1	08/06/16 09:15	08/06/16 14:22	1,6010C	AM
Antimony, Total	ND	mg/kg	2.0	0.32	1	08/06/16 09:15	08/06/16 14:22	1,6010C	AM
Arsenic, Total	ND	mg/kg	0.40	0.13	1	08/06/16 09:15	08/06/16 14:22	1,6010C	AM
Barium, Total	ND	mg/kg	0.40	0.11	1	08/06/16 09:15	08/06/16 14:22	1,6010C	AM
Beryllium, Total	ND	mg/kg	0.20	0.04	1	08/06/16 09:15	08/06/16 14:22	1,6010C	AM
Cadmium, Total	ND	mg/kg	0.40	0.03	1	08/06/16 09:15	08/06/16 14:22	1,6010C	AM
Calcium, Total	ND	mg/kg	4.0	1.1	1	08/06/16 09:15	08/06/16 14:22	1,6010C	AM
Chromium, Total	ND	mg/kg	0.40	0.07	1	08/06/16 09:15	08/06/16 14:22	1,6010C	AM
Cobalt, Total	ND	mg/kg	0.80	0.20	1	08/06/16 09:15	08/06/16 14:22	1,6010C	AM
Copper, Total	ND	mg/kg	0.40	0.07	1	08/06/16 09:15	08/06/16 14:22	1,6010C	AM
Iron, Total	ND	mg/kg	2.0	0.63	1	08/06/16 09:15	08/06/16 14:22	1,6010C	AM
Lead, Total	ND	mg/kg	2.0	0.09	1	08/06/16 09:15	08/06/16 14:22	1,6010C	AM
Magnesium, Total	ND	mg/kg	4.0	0.53	1	08/06/16 09:15	08/06/16 14:22	1,6010C	AM
Manganese, Total	ND	mg/kg	0.40	0.10	1	08/06/16 09:15	08/06/16 14:22	1,6010C	AM
Nickel, Total	ND	mg/kg	1.0	0.16	1	08/06/16 09:15	08/06/16 14:22	1,6010C	AM
Potassium, Total	ND	mg/kg	100	11.	1	08/06/16 09:15	08/06/16 14:22	1,6010C	AM
Selenium, Total	ND	mg/kg	0.80	0.11	1	08/06/16 09:15	08/06/16 14:22	1,6010C	AM
Silver, Total	ND	mg/kg	0.40	0.08	1	08/06/16 09:15	08/06/16 14:22	1,6010C	AM
Sodium, Total	11 J	mg/kg	80	6.7	1	08/06/16 09:15	08/06/16 14:22	1,6010C	AM
Thallium, Total	ND	mg/kg	0.80	0.13	1	08/06/16 09:15	08/06/16 14:22	1,6010C	AM
Vanadium, Total	ND	mg/kg	0.40	0.04	1	08/06/16 09:15	08/06/16 14:22	1,6010C	AM
Zinc, Total	ND	mg/kg	2.0	0.28	1	08/06/16 09:15	08/06/16 14:22	1,6010C	AM

Serial_No:08101610:37

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1624504

Project Number: 15209 Report Date: 08/10/16

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 3050B

08/10/16

Lab Control Sample Analysis Batch Quality Control

DESTINY-EMBASSY SUITES

Batch Quality C

Lab Number: L1624504

Project Number: 15209 Report Date:

Parameter	LCS %Recovery	_	-CSD ecovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01-02 Bate	ch: WG920535-2	SRM Lot No	umber: D08	89-540			
Mercury, Total	101		-		57-143	-		

Project Name:

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number: L1624504

Parameter	LCS %Recove		CSD covery	%Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab Associate	ed sample(s): 01-02	Batch: WG920554-2	SRM Lot Nun	nber: D089-540		
Aluminum, Total	77		-	52-147	-	
Antimony, Total	152		-	1-197	-	
Arsenic, Total	108		-	80-120	-	
Barium, Total	98		-	83-117	-	
Beryllium, Total	98		-	82-117	-	
Cadmium, Total	95		-	82-117	-	
Calcium, Total	94		-	81-119	-	
Chromium, Total	103		-	79-121	-	
Cobalt, Total	101		-	83-117	-	
Copper, Total	101		-	80-119	-	
Iron, Total	103		-	45-155	-	
Lead, Total	105		-	81-119	-	
Magnesium, Total	91		-	76-123	-	
Manganese, Total	97		-	81-119	-	
Nickel, Total	101		-	82-117	-	
Potassium, Total	89		-	71-128	-	
Selenium, Total	99		-	78-121	-	
Silver, Total	99		-	75-125	-	
Sodium, Total	95		-	71-128	-	
Thallium, Total	99		-	79-120	-	
Vanadium, Total	100		-	77-122	-	

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1624504

Project Number: 15209 Report Date:

08/10/16

Parameter	LCS %Recov		CSD covery	%Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab Associated samp	le(s): 01-02	Batch: WG920554-2	SRM Lot Number:	D089-540		
Zinc, Total	100		-	80-119	-	

Matrix Spike Analysis Batch Quality Control

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number:

L1624504

Report Date:

08/10/16

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD Q	RPD Lual Limits
Total Metals - Mansfield Lab	Associated sam	nple(s): 01-02	QC Bat	tch ID: WG9205	535-4	QC Samp	ole: L1624445-0	2 Client ID: MS	Sample	
Mercury, Total	0.25	0.149	0.42	114		-	-	80-120	-	20

Matrix Spike Analysis Batch Quality Control

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number: L1624504

arameter	Native Sample	MS Added	MS Found	MS %Recovery		MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield La	ab Associated sar	nple(s): 01-02	QC Ba	tch ID: WG920	554-4	QC Samp	ole: L1624445-02	Client ID: MS	Sample	
Aluminum, Total	5700	171	4800	0	Q	-	-	75-125	-	20
Antimony, Total	ND	42.8	38	89		-	-	75-125	-	20
Arsenic, Total	6.7	10.3	16	90		-	-	75-125	-	20
Barium, Total	81.	171	220	81		-	-	75-125	-	20
Beryllium, Total	0.31J	4.28	3.6	84		-	-	75-125	-	20
Cadmium, Total	0.30J	4.36	4.0	92		-	-	75-125	-	20
Calcium, Total	110000	856	170000	7010	Q	-	-	75-125	-	20
Chromium, Total	9.7	17.1	22	72	Q	-	-	75-125	-	20
Cobalt, Total	5.7	42.8	36	71	Q	-	-	75-125	-	20
Copper, Total	64.	21.4	82	84		-	-	75-125	-	20
Iron, Total	15000	85.6	12000	0	Q	-	-	75-125	-	20
Lead, Total	86.	43.6	110	55	Q	-	-	75-125	-	20
Magnesium, Total	22000	856	18000	0	Q	-	-	75-125	-	20
Manganese, Total	270	42.8	290	47	Q	-	-	75-125	-	20
Nickel, Total	16.	42.8	44	65	Q	-	-	75-125	-	20
Potassium, Total	610	856	1600	116		-	-	75-125	-	20
Selenium, Total	0.26J	10.3	10	97		-	-	75-125	-	20
Silver, Total	ND	25.7	26	101		-	-	75-125	-	20
Sodium, Total	320	856	1200	103		-	-	75-125	-	20
Thallium, Total	ND	10.3	7.3	71	Q	-	-	75-125	-	20
Vanadium, Total	12.	42.8	49	86		-	-	75-125	-	20

Matrix Spike Analysis Batch Quality Control

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number:

L1624504

Report Date:

08/10/16

Parameter	Native Sample	MS Added	MS Found	MS %Recovery		MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield La	b Associated san	nple(s): 01-02	2 QC Bat	ch ID: WG9205	54-4	QC Samp	le: L1624445-02	Client ID: MS	Sample	
Zinc, Total	200	42.8	230	70	Q	-	-	75-125	-	20

L1624504

Lab Number:

Lab Duplicate Analysis
Batch Quality Control

DESTINY-EMBASSY SUITES Batch Quality Con

Project Number: 15209 Report Date: 08/10/16

Parameter	Native Sample	Duplio	ate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01-	02 QC Batch ID:	WG920535-3	QC Sample:	L1624445-02	Client ID:	DUP Sample	€
Mercury, Total	0.25		0.24	mg/kg	4		20

Project Name:

Lab Duplicate Analysis Batch Quality Control

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number: L1624504 **Report Date:** 08/10/16

arameter	Native Sample	Duplicate Sample		RPD	RPD Limits
otal Metals - Mansfield Lab Associated sample(s): 01-	02 QC Batch ID: WG920	554-3 QC Sample:	L1624445-02	Client ID:	DUP Sample
Aluminum, Total	5700	4400	mg/kg	26	Q 20
Antimony, Total	ND	ND	mg/kg	NC	20
Arsenic, Total	6.7	5.4	mg/kg	21	Q 20
Barium, Total	81.	64	mg/kg	23	Q 20
Beryllium, Total	0.31J	0.12J	mg/kg	NC	20
Cadmium, Total	0.30J	0.25J	mg/kg	NC	20
Chromium, Total	9.7	8.9	mg/kg	9	20
Cobalt, Total	5.7	4.8	mg/kg	17	20
Copper, Total	64.	62	mg/kg	3	20
Iron, Total	15000	12000	mg/kg	22	Q 20
Lead, Total	86.	70	mg/kg	21	Q 20
Magnesium, Total	22000	25000	mg/kg	13	20
Manganese, Total	270	220	mg/kg	20	20
Nickel, Total	16.	12	mg/kg	29	Q 20
Potassium, Total	610	600	mg/kg	2	20
Selenium, Total	0.26J	ND	mg/kg	NC	20
Silver, Total	ND	ND	mg/kg	NC	20
Sodium, Total	320	320	mg/kg	0	20
Thallium, Total	ND	ND	mg/kg	NC	20

Lab Duplicate Analysis Batch Quality Control

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number:

L1624504

Report Date:

08/10/16

Parameter		Native Sample	Dupli	cate Sample	Units	RPD	F	PD Limits
Total Metals - Mansfield Lab	Associated sample(s): 01-0	2 QC Batch ID:	WG920554-3	QC Sample:	L1624445-02	Client ID:	DUP Sample	
Vanadium, Total		12.		11	mg/kg	9		20
Zinc, Total		200		190	mg/kg	5		20
Total Metals - Mansfield Lab	Associated sample(s): 01-0	2 QC Batch ID:	WG920554-3	QC Sample:	L1624445-02	Client ID:	DUP Sample	
Calcium, Total		110000		160000	mg/kg	37	Q	20

INORGANICS & MISCELLANEOUS

Serial_No:08101610:37

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1624504

Project Number: 15209 Report Date: 08/10/16

SAMPLE RESULTS

Lab ID: L1624504-01

Client ID: 16

Sample Location: SYRACUSE, NY

Matrix: Soil

Date Collected: 08/04/16 14:00

Date Received: 08/05/16

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	87.2		%	0.100	NA	1	-	08/06/16 05:54	121,2540G	VB

Serial_No:08101610:37

08/05/16 08:15

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1624504

Project Number: 15209 Report Date: 08/10/16

SAMPLE RESULTS

Lab ID: Date Collected: L1624504-02

17 Client ID:

Date Received: 08/05/16 Sample Location: SYRACUSE, NY Not Specified Field Prep:

Soil Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab)								
Solids, Total	87.8		%	0.100	NA	1	-	08/06/16 05:54	121,2540G	VB

Lab Duplicate Analysis
Batch Quality Control

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number:

L1624504

Report Date:

08/10/16

Parameter	Native Sam	ple Du	uplicate Sampl	e Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-02	QC Batch ID:	WG920531-1	QC Sample: L	1624605-01	Client ID:	DUP Sample
Solids, Total	69.7		70.6	%	1		20

Serial_No:08101610:37

Project Name: DESTINY-EMBASSY SUITES

Lab Number: L1624504 **Report Date:** 08/10/16 Project Number: 15209

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Cooler Information Custody Seal

Cooler

Α Absent

Container Info	rmation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1624504-01A	Metals Only - Glass 60mL/2oz unp	A	N/A	5.4	Y	Absent	BE-TI(180),AS-TI(180),BA-TI(180),AG-TI(180),AL-TI(180),CR-TI(180),NI-TI(180),TL-TI(180),CU-TI(180),PB-TI(180),SB-TI(180),SE-TI(180),CO-TI(180),CO-TI(180),HG-T(28),MG-TI(180),MN-TI(180),CA-TI(180),CD-TI(180),K-TI(180),K-TI(180),CD-TI(180),K-TI(180),K-TI(180),NA-TI(180)
L1624504-01B	Glass 120ml/4oz unpreserved	Α	N/A	5.4	Υ	Absent	NYTCL-8270(14),TS(7)
L1624504-02A	Metals Only - Glass 60mL/2oz unp	A	N/A	5.4	Y	Absent	BE-TI(180),AS-TI(180),BA-TI(180),AG-TI(180),AG-TI(180),AL-TI(180),CR-TI(180),CU-TI(180),FB-TI(180),SB-TI(180),SE-TI(180),CO-TI(180),CO-TI(180),CO-TI(180),CO-TI(180),FE-TI(180),MN-TI(180),CA-TI(180),CD-TI(180),K-TI(180),CD-TI(180),K-TI(180),NA-TI(180)
L1624504-02B	Glass 120ml/4oz unpreserved	Α	N/A	5.4	Υ	Absent	NYTCL-8260HLW(2),NYTCL- 8270(14),HOLD-8260(14)
L1624504-02B9	Vial MeOH preserved split	Α	N/A	5.4	Υ	Absent	NYTCL-8260HLW(14)
L1624504-02C	Vial MeOH preserved	Α	N/A	5.4	Υ	Absent	NYTCL-8260HLW(14)
L1624504-02D	Vial water preserved	Α	N/A	5.4	Υ	Absent	NYTCL-8260HLW(14)
L1624504-02E	Vial water preserved	Α	N/A	5.4	Υ	Absent	NYTCL-8260HLW(14)
L1624504-02F	Plastic 2oz unpreserved for TS	Α	N/A	5.4	Υ	Absent	TS(7)

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1624504
Project Number: 15209 Report Date: 08/10/16

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: DU Report with 'J' Qualifiers

Project Name:DESTINY-EMBASSY SUITESLab Number:L1624504Project Number:15209Report Date:08/10/16

Data Qualifiers

- reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Serial_No:08101610:37

Project Name:DESTINY-EMBASSY SUITESLab Number:L1624504Project Number:15209Report Date:08/10/16

REFERENCES

1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:08101610:37

Alpha Analytical, Inc.
Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Published Date: 8/5/2016 11:25:56 AM

Page 1 of 1

Revision 7

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; Azobenzene; A

Tetramethylbenzene: 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide **EPA 9050A:** NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

SM 2540D: TSS **EPA 3005A** NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

Westborough, MA 01581	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Cod Project Information	05	Page	1	Date Rec'd in Lab Deliverables				8/6/16				ALPHA Job #			
8 Walkup Dr. TEL: 508-898-9220	320 Forbes Blvd TEL: 508-822-9300			1	8.1.			ASP		10 100		ASP-E	3		Same as Client Info		
FAX: 508-898-9193	FAX: 508-822-3288			mbassy	Jaites		$H \vdash$		IS (1 Fil	(۵)			6 (4 File	۱۵	PO#		
Client Information		Project Location:	Sy racus	e,107			┨	Othe	1000	C)	Ш,	_QuiC	(+1110	")	FO#		
	F .	Project# 1520					Post		CONTRACTOR OF STREET	omont			945		Disposal Site Information	300	
Client: Spectra		(Use Project name as Pr	oject#)	11	100		Regu		Require	emem		DV D	1 075		T		
Address: 19 Bri			rank Po	eduto			┨	NY TO				NY Par			Please identify below location of applicable disposal facilities.		
	m, NY 12110				-				Standard			NY CP-	51				
518	82-0,885	Turn-Around Time			100				estricted			Other			Disposal Facility:		
Fax:		Standard		Due Date:		see			nrestricte						NJ NY		
	@spectment con		X	# of Days:	2	10MM			Sewer Di	scharg	е				Other:	7 -	
These samples have b							ANA	LYSIS							Sample Filtration	T 0	
Other project specific	¢"	ents:					7065	al Metals	racore						☐ Done ☐ Lab to do Preservation ☐ Lab to do (Please Specify below)	t a l B o	
ALPHA Lab ID	1		Colle	ection	Cample	Camplada	13	10	6						(i rease opecity below)	t	
(Lab Use Only)	Sa	mple ID	Date	Time	Sample Matrix	Sampler's Initials	S	1							Sample Specific Comments	1	
75500 -1		17	8/24/16	14:00			V	X		\dashv				\dashv		е	
9.D01-01		6	04116		901L	yω			X	\dashv		\dashv		\dashv	2 DAY TAT	┢	
	- /	-	8/5/16	08:15	SOIL	yω	X	X		+	-	-+	-+	-	STANDARD TAT	-	
		The state of the s							\vdash	\rightarrow	+	\rightarrow	-	\dashv	-	\vdash	
										\rightarrow	-	\dashv		-		\vdash	
	-	words of the second of the sec							-	-	+	\rightarrow	+	\dashv		\vdash	
										-	_	-+		\dashv		\vdash	
									-		-			\dashv		-	
							\vdash			_	-	-	-	\dashv		_	
					-					_	+	_	\rightarrow	-		_	
Preservative Code:	Container Code										_	_	_	_			
A = None B = HCI C = HNO ₃	P = Plastic	Westboro: Certification No Mansfield: Certification No			Conf	tainer Type	A	A				\perp			Please print clearly, legibly and completely. Samples on not be logged in and		
$D = H_2SO_4$	G = Glass				Р	reservative	A	A							turnaround time clock will r	not	
	B = Bacteria Cup				-		/\	/ \		_				_	start until any ambiguities a		
F = MeOH G = NaHSO₄	C = Cube O = Other	Relinquished B	By:	Date/T			Receiv			\perp	-	ate/T			resolved. BY EXECUTING THIS COC, THE CLIENT	J	
$H = Na_2S_2O_3$	E = Encore	yanh Wit	4	\$5/16	/1100	Flur	da	in 1	4176	4	3-5-1		11/0		HAS READ AND AGREES	3	
K/E = Zn Ac/NaOH O = Other	D = BOD Bottle	/ Robert Hoh	WAAL	/ / /		peth	nu	K)	New		0/6/	12 0	1830	7	TO BE BOUND BY ALPHA TERMS & CONDITIONS.		
Form No: 01-25 HC (rev. 30	0-Sept-2013)														(See reverse side.)		

ANALYTICAL REPORT

Lab Number: L1625116

Client: Spectra Environmental Group

19 British American Blvd.

Latham, NY 12110

ATTN: Frank Peduto
Phone: (518) 782-0882

Project Name: DESTINY - EMBASSY SUITES

Project Number: 15209 Report Date: 08/18/16

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: DESTINY - EMBASSY SUITES

Project Number: 15209

Lab Number: L1625116 **Report Date:** 08/18/16

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1625116-01	19	SOIL	SYRACUSE, NY	08/10/16 12:00	08/11/16
I 1625116-02	20	SOII	SYRACUSE. NY	08/11/16 08:30	08/11/16

Serial_No:08181621:10

Project Name: DESTINY - EMBASSY SUITES Lab Number: L1625116

Project Number: 15209 **Report Date:** 08/18/16

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Serial_No:08181621:10

Project Name:DESTINY - EMBASSY SUITESLab Number:L1625116Project Number:15209Report Date:08/18/16

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Metals

L1625116-01 and -02: The sample has elevated detection limits for all elements, with the exception of mercury, due to the dilution required by matrix interferences encountered during analysis.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 08/18/16

Custen Walker Cristin Walker

ORGANICS

VOLATILES

Serial_No:08181621:10

L1625116

08/10/16 12:00

Not Specified

08/11/16

Project Name: DESTINY - EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Report Date: 08/18/16

Lab Number:

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID: L1625116-01

Client ID: 19

Sample Location: SYRACUSE, NY

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 08/17/16 23:37

Analyst: JC Percent Solids: 84%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - Westborough Lab						
Methylene chloride	ND		mg/kg	0.012	0.0013	1
1,1-Dichloroethane	ND		mg/kg	0.0018	0.00010	1
Chloroform	0.0015	J	mg/kg	0.0018	0.00044	1
Carbon tetrachloride	ND		mg/kg	0.0012	0.00025	1
1,2-Dichloropropane	ND		mg/kg	0.0042	0.00027	1
Dibromochloromethane	ND		mg/kg	0.0012	0.00018	1
1,1,2-Trichloroethane	ND		mg/kg	0.0018	0.00036	1
Tetrachloroethene	ND		mg/kg	0.0012	0.00017	1
Chlorobenzene	ND		mg/kg	0.0012	0.00042	1
Trichlorofluoromethane	ND		mg/kg	0.0060	0.00046	1
1,2-Dichloroethane	ND		mg/kg	0.0012	0.00014	1
1,1,1-Trichloroethane	ND		mg/kg	0.0012	0.00013	1
Bromodichloromethane	ND		mg/kg	0.0012	0.00021	1
trans-1,3-Dichloropropene	ND		mg/kg	0.0012	0.00014	1
cis-1,3-Dichloropropene	ND		mg/kg	0.0012	0.00014	1
Bromoform	ND		mg/kg	0.0048	0.00028	1
1,1,2,2-Tetrachloroethane	ND		mg/kg	0.0012	0.00012	1
Benzene	ND		mg/kg	0.0012	0.00014	1
Toluene	ND		mg/kg	0.0018	0.00023	1
Ethylbenzene	ND		mg/kg	0.0012	0.00015	1
Chloromethane	ND		mg/kg	0.0060	0.00035	1
Bromomethane	ND		mg/kg	0.0024	0.00040	1
Vinyl chloride	ND		mg/kg	0.0024	0.00014	1
Chloroethane	ND		mg/kg	0.0024	0.00038	1
1,1-Dichloroethene	ND		mg/kg	0.0012	0.00031	1
trans-1,2-Dichloroethene	ND		mg/kg	0.0018	0.00025	1
Trichloroethene	ND		mg/kg	0.0012	0.00015	1
1,2-Dichlorobenzene	ND		mg/kg	0.0060	0.00018	1
1,3-Dichlorobenzene	ND		mg/kg	0.0060	0.00016	1
1,4-Dichlorobenzene	ND		mg/kg	0.0060	0.00016	1

Serial_No:08181621:10

Project Name: DESTINY - EMBASSY SUITES Lab Number: L1625116

Project Number: 15209 Report Date: 08/18/16

SAMPLE RESULTS

Lab ID: L1625116-01 Date Collected: 08/10/16 12:00

Client ID: 19 Date Received: 08/11/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - W	estborough Lab					
Methyl tert butyl ether	ND		mg/kg	0.0024	0.00010	1
p/m-Xylene	ND		mg/kg	0.0024	0.00024	1
o-Xylene	ND		mg/kg	0.0024	0.00020	1
cis-1,2-Dichloroethene	ND		mg/kg	0.0012	0.00017	1
Styrene	ND		mg/kg	0.0024	0.00048	1
Dichlorodifluoromethane	ND		mg/kg	0.012	0.00023	1
Acetone	0.016		mg/kg	0.012	0.0012	1
Carbon disulfide	ND		mg/kg	0.012	0.0013	1
2-Butanone	ND		mg/kg	0.012	0.00032	1
4-Methyl-2-pentanone	ND		mg/kg	0.012	0.00029	1
2-Hexanone	ND		mg/kg	0.012	0.00080	1
Bromochloromethane	ND		mg/kg	0.0060	0.00033	1
1,2-Dibromoethane	ND		mg/kg	0.0048	0.00021	1
1,2-Dibromo-3-chloropropane	ND		mg/kg	0.0060	0.00047	1
Isopropylbenzene	ND		mg/kg	0.0012	0.00012	1
1,2,3-Trichlorobenzene	ND		mg/kg	0.0060	0.00018	1
1,2,4-Trichlorobenzene	ND		mg/kg	0.0060	0.00022	1
Methyl Acetate	0.022	J	mg/kg	0.024	0.00032	1
Cyclohexane	ND		mg/kg	0.024	0.00017	1
1,4-Dioxane	ND		mg/kg	0.12	0.017	1
Freon-113	ND		mg/kg	0.024	0.00033	1
Methyl cyclohexane	ND		mg/kg	0.0048	0.00018	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	98		70-130	
Toluene-d8	102		70-130	
4-Bromofluorobenzene	107		70-130	
Dibromofluoromethane	100		70-130	

L1625116

08/11/16 08:30

Project Name: DESTINY - EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Report Date: 08/18/16

Lab Number:

Date Collected:

Date Received: 08/11/16
Field Prep: Not Specified

Lab ID: L1625116-02

Client ID: 20

Sample Location: SYRACUSE, NY

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 08/18/16 00:04

Analyst: JC Percent Solids: 81%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - We	estborough Lab					
Methylene chloride	ND		mg/kg	0.0090	0.00099	1
1,1-Dichloroethane	ND		mg/kg	0.0013	0.00007	1
Chloroform	ND		mg/kg	0.0013	0.00033	1
Carbon tetrachloride	ND		mg/kg	0.00090	0.00019	1
1,2-Dichloropropane	ND		mg/kg	0.0031	0.00020	1
Dibromochloromethane	ND		mg/kg	0.00090	0.00014	1
1,1,2-Trichloroethane	ND		mg/kg	0.0013	0.00027	1
Tetrachloroethene	ND		mg/kg	0.00090	0.00012	1
Chlorobenzene	ND		mg/kg	0.00090	0.00031	1
Trichlorofluoromethane	0.00039	J	mg/kg	0.0045	0.00035	1
1,2-Dichloroethane	ND		mg/kg	0.00090	0.00010	1
1,1,1-Trichloroethane	ND		mg/kg	0.00090	0.00009	1
Bromodichloromethane	ND		mg/kg	0.00090	0.00016	1
trans-1,3-Dichloropropene	ND		mg/kg	0.00090	0.00011	1
cis-1,3-Dichloropropene	ND		mg/kg	0.00090	0.00010	1
Bromoform	ND		mg/kg	0.0036	0.00021	1
1,1,2,2-Tetrachloroethane	ND		mg/kg	0.00090	0.00009	1
Benzene	0.00044	J	mg/kg	0.00090	0.00010	1
Toluene	0.00028	J	mg/kg	0.0013	0.00017	1
Ethylbenzene	ND		mg/kg	0.00090	0.00011	1
Chloromethane	ND		mg/kg	0.0045	0.00026	1
Bromomethane	ND		mg/kg	0.0018	0.00030	1
Vinyl chloride	ND		mg/kg	0.0018	0.00010	1
Chloroethane	ND		mg/kg	0.0018	0.00028	1
1,1-Dichloroethene	ND		mg/kg	0.00090	0.00024	1
trans-1,2-Dichloroethene	ND		mg/kg	0.0013	0.00019	1
Trichloroethene	ND		mg/kg	0.00090	0.00011	1
1,2-Dichlorobenzene	ND		mg/kg	0.0045	0.00014	1
1,3-Dichlorobenzene	ND		mg/kg	0.0045	0.00012	1
1,4-Dichlorobenzene	ND		mg/kg	0.0045	0.00012	1

Project Name: DESTINY - EMBASSY SUITES Lab Number: L1625116

Project Number: 15209 Report Date: 08/18/16

SAMPLE RESULTS

Lab ID: L1625116-02 Date Collected: 08/11/16 08:30

Client ID: 20 Date Received: 08/11/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RLMDL **Dilution Factor** Volatile Organics by 8260/5035 - Westborough Lab Methyl tert butyl ether ND 0.0018 0.00007 mg/kg 1 p/m-Xylene ND mg/kg 0.0018 0.00018 1 o-Xylene ND 0.0018 0.00015 1 mg/kg ND cis-1,2-Dichloroethene 0.00090 0.00013 1 mg/kg Styrene ND 0.0018 0.00036 1 mg/kg Dichlorodifluoromethane ND 0.00017 0.0090 1 mg/kg 0.044 0.00093 Acetone 0.0090 1 mg/kg Carbon disulfide ND 1 mg/kg 0.0090 0.00099 2-Butanone 0.0091 mg/kg 0.0090 0.00024 1 ND 0.0090 0.00022 4-Methyl-2-pentanone 1 mg/kg ND 2-Hexanone mg/kg 0.0090 0.00060 1 Bromochloromethane ND 0.0045 0.00025 1 mg/kg 1,2-Dibromoethane ND 0.0036 0.00016 1 mg/kg 0.00036 ND 0.0045 1 1,2-Dibromo-3-chloropropane mg/kg ND 0.00090 0.00009 1 Isopropylbenzene mg/kg 1,2,3-Trichlorobenzene ND 0.0045 0.00013 1 mg/kg 1,2,4-Trichlorobenzene ND 0.0045 0.00016 mg/kg 1 Methyl Acetate ND 0.018 0.00024 1 mg/kg Cyclohexane 0.00065 J 0.018 0.00013 1 mg/kg 0.090 0.013 1 1,4-Dioxane ND mg/kg Freon-113 ND 0.018 0.00025 1 mg/kg Methyl cyclohexane 0.0012 J mg/kg 0.0036 0.00014 1

% Recovery	Qualifier	Acceptance Criteria	
99		70-130	
102		70-130	
107		70-130	
100		70-130	
	99 102 107	99 102 107	% Recovery Qualifier Criteria 99 70-130 102 70-130 107 70-130

Project Number: 15209 Report Date: 08/18/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/17/16 15:36

Analyst: CBN

Parameter	Result	Qualifier	Units	RI	L	MDL	
Volatile Organics by 8260/5035 -	Westborough	Lab for sar	nple(s):	01-02	Batch:	WG923849-5	
Methylene chloride	ND		mg/kg	0.0	10	0.0011	
1,1-Dichloroethane	ND		mg/kg	0.00	15	0.00008	
Chloroform	ND		mg/kg	0.00	15	0.00037	
Carbon tetrachloride	ND		mg/kg	0.00	10	0.00021	
1,2-Dichloropropane	ND		mg/kg	0.00	35	0.00023	
Dibromochloromethane	ND		mg/kg	0.00	10	0.00015	
1,1,2-Trichloroethane	ND		mg/kg	0.00	15	0.00030	
Tetrachloroethene	ND		mg/kg	0.00	10	0.00014	
Chlorobenzene	ND		mg/kg	0.00	10	0.00035	
Trichlorofluoromethane	ND		mg/kg	0.00	50	0.00039	
1,2-Dichloroethane	ND		mg/kg	0.00	10	0.00011	
1,1,1-Trichloroethane	ND		mg/kg	0.00	10	0.00011	
Bromodichloromethane	ND		mg/kg	0.00	10	0.00017	
trans-1,3-Dichloropropene	ND		mg/kg	0.00	10	0.00012	
cis-1,3-Dichloropropene	ND		mg/kg	0.00	10	0.00012	
Bromoform	ND		mg/kg	0.00	40	0.00024	
1,1,2,2-Tetrachloroethane	ND		mg/kg	0.00	10	0.00010	
Benzene	ND		mg/kg	0.00	10	0.00012	
Toluene	ND		mg/kg	0.00	15	0.00019	
Ethylbenzene	ND		mg/kg	0.00	10	0.00013	
Chloromethane	ND		mg/kg	0.00	50	0.00029	
Bromomethane	ND		mg/kg	0.00	20	0.00034	
Vinyl chloride	ND		mg/kg	0.00	20	0.00012	
Chloroethane	ND		mg/kg	0.00	20	0.00032	
1,1-Dichloroethene	ND		mg/kg	0.00	10	0.00026	
trans-1,2-Dichloroethene	ND		mg/kg	0.00	15	0.00021	
Trichloroethene	ND		mg/kg	0.00	10	0.00012	
1,2-Dichlorobenzene	ND		mg/kg	0.00	50	0.00015	
1,3-Dichlorobenzene	ND		mg/kg	0.00	50	0.00014	

Project Number: 15209 Report Date: 08/18/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/17/16 15:36

Analyst: CBN

arameter	Result	Qualifier	Units	RI	L	MDL
olatile Organics by 8260/5035	- Westborough	Lab for sa	mple(s):	01-02	Batch:	WG923849-5
1,4-Dichlorobenzene	ND		mg/kg	0.00	50	0.00014
Methyl tert butyl ether	ND		mg/kg	0.00	20	0.00008
p/m-Xylene	ND		mg/kg	0.00	20	0.00020
o-Xylene	ND		mg/kg	0.00	20	0.00017
cis-1,2-Dichloroethene	ND		mg/kg	0.00	10	0.00014
Styrene	ND		mg/kg	0.00	20	0.00040
Dichlorodifluoromethane	ND		mg/kg	0.0	10	0.00019
Acetone	ND		mg/kg	0.0	10	0.0010
Carbon disulfide	ND		mg/kg	0.0	10	0.0011
2-Butanone	ND		mg/kg	0.0	10	0.00027
4-Methyl-2-pentanone	ND		mg/kg	0.0	10	0.00024
2-Hexanone	ND		mg/kg	0.0	10	0.00067
Bromochloromethane	ND		mg/kg	0.00	50	0.00028
1,2-Dibromoethane	ND		mg/kg	0.00	40	0.00017
1,2-Dibromo-3-chloropropane	ND		mg/kg	0.00	50	0.00040
Isopropylbenzene	ND		mg/kg	0.00	10	0.00010
1,2,3-Trichlorobenzene	ND		mg/kg	0.00	50	0.00015
1,2,4-Trichlorobenzene	ND		mg/kg	0.00	50	0.00018
Methyl Acetate	ND		mg/kg	0.02	20	0.00027
Cyclohexane	ND		mg/kg	0.02	20	0.00015
1,4-Dioxane	ND		mg/kg	0.1	0	0.014
Freon-113	ND		mg/kg	0.02	20	0.00027
Methyl cyclohexane	ND		mg/kg	0.00)40	0.00015

Project Number: 15209 Report Date: 08/18/16

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/17/16 15:36

Analyst: CBN

ParameterResultQualifierUnitsRLMDLVolatile Organics by 8260/5035 - Westborough Lab for sample(s):01-02Batch:WG923849-5

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	95		70-130	
Toluene-d8	101		70-130	
4-Bromofluorobenzene	104		70-130	
Dibromofluoromethane	95		70-130	

Project Name: DESTINY - EMBASSY SUITES

Project Number: 15209

Lab Number: L1625116

Parameter	LCS %Recovery	Qual	LCSI %Recov		y ual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by 8260/5035 - Westboroug	gh Lab Associa	ted sample(s):	01-02	Batch: WG	923849-3	3 WG923849-4			
Methylene chloride	102		96			70-130	6		30
1,1-Dichloroethane	105		99			70-130	6		30
Chloroform	104		98			70-130	6		30
Carbon tetrachloride	112		103			70-130	8		30
1,2-Dichloropropane	103		96			70-130	7		30
Dibromochloromethane	98		93			70-130	5		30
2-Chloroethylvinyl ether	179	Q	170		Q	70-130	5		30
1,1,2-Trichloroethane	98		92			70-130	6		30
Tetrachloroethene	107		97			70-130	10		30
Chlorobenzene	102		94			70-130	8		30
Trichlorofluoromethane	110		102			70-139	8		30
1,2-Dichloroethane	99		94			70-130	5		30
1,1,1-Trichloroethane	107		99			70-130	8		30
Bromodichloromethane	102		96			70-130	6		30
trans-1,3-Dichloropropene	101		97			70-130	4		30
cis-1,3-Dichloropropene	104		98			70-130	6		30
1,1-Dichloropropene	110		100			70-130	10		30
Bromoform	96		94			70-130	2		30
1,1,2,2-Tetrachloroethane	90		90			70-130	0		30
Benzene	103		97			70-130	6		30
Toluene	102		95			70-130	7		30

Project Name: DESTINY - EMBASSY SUITES

Project Number: 15209

Lab Number: L1625116

rameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
latile Organics by 8260/5035 - V	Vestborough Lab Associate	ed sample(s):	01-02 Batch:	WG923849-3	3 WG923849-4			
Ethylbenzene	101		94		70-130	7		30
Chloromethane	102		94		52-130	8		30
Bromomethane	112		98		57-147	13		30
Vinyl chloride	117		102		67-130	14		30
Chloroethane	106		97		50-151	9		30
1,1-Dichloroethene	112		103		65-135	8		30
trans-1,2-Dichloroethene	106		99		70-130	7		30
Trichloroethene	104		96		70-130	8		30
1,2-Dichlorobenzene	99		97		70-130	2		30
1,3-Dichlorobenzene	102		97		70-130	5		30
1,4-Dichlorobenzene	100		96		70-130	4		30
Methyl tert butyl ether	99		94		66-130	5		30
p/m-Xylene	102		94		70-130	8		30
o-Xylene	101		93		70-130	8		30
cis-1,2-Dichloroethene	104		99		70-130	5		30
Dibromomethane	102		97		70-130	5		30
Styrene	99		92		70-130	7		30
Dichlorodifluoromethane	120		108		30-146	11		30
Acetone	113		109		54-140	4		30
Carbon disulfide	107		96		59-130	11		30
2-Butanone	103		103		70-130	0		30

Project Name: DESTINY - EMBASSY SUITES

Project Number: 15209

Lab Number: L1625116

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by 8260/5035 - Westborou	gh Lab Associa	ted sample(s):	01-02 Batch:	WG923849-	3 WG923849-4			
Vinyl acetate	100		95		70-130	5	30	
4-Methyl-2-pentanone	94		90		70-130	4	30	
1,2,3-Trichloropropane	93		92		68-130	1	30	
2-Hexanone	93		90		70-130	3	30	
Bromochloromethane	106		100		70-130	6	30	
2,2-Dichloropropane	112		104		70-130	7	30	
1,2-Dibromoethane	101		95		70-130	6	30	
1,3-Dichloropropane	99		93		69-130	6	30	
1,1,1,2-Tetrachloroethane	102		95		70-130	7	30	
Bromobenzene	99		96		70-130	3	30	
n-Butylbenzene	103		96		70-130	7	30	
sec-Butylbenzene	104		97		70-130	7	30	
tert-Butylbenzene	102		96		70-130	6	30	
o-Chlorotoluene	102		96		70-130	6	30	
p-Chlorotoluene	100		95		70-130	5	30	
1,2-Dibromo-3-chloropropane	88		88		68-130	0	30	
Hexachlorobutadiene	106		102		67-130	4	30	
Isopropylbenzene	101		96		70-130	5	30	
p-isopropyltoluene	103		97		70-130	6	30	
Naphthalene	92		91		70-130	1	30	
Acrylonitrile	99		97		70-130	2	30	

Project Name: DESTINY - EMBASSY SUITES

Project Number: 15209

Lab Number: L1625116

ameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
atile Organics by 8260/5035 - Westboro	ugh Lab Associa	ted sample(s):	01-02 Batch:	WG923849-	3 WG923849-4			
Isopropyl Ether	99		94		66-130	5	30	
tert-Butyl Alcohol	76		74		70-130	3	30	
n-Propylbenzene	101		96		70-130	5	30	
1,2,3-Trichlorobenzene	97		96		70-130	1	30	
1,2,4-Trichlorobenzene	102		99		70-130	3	30	
1,3,5-Trimethylbenzene	101		95		70-130	6	30	
1,2,4-Trimethylbenzene	100		96		70-130	4	30	
Methyl Acetate	92		90		51-146	2	30	
Ethyl Acetate	145	Q	158	Q	70-130	9	30	
Acrolein	91		89		70-130	2	30	
Cyclohexane	110		101		59-142	9	30	
1,4-Dioxane	94		92		65-136	2	30	
Freon-113	116		104		50-139	11	30	
1,4-Diethylbenzene	103		97		70-130	6	30	
4-Ethyltoluene	102		96		70-130	6	30	
1,2,4,5-Tetramethylbenzene	99		94		70-130	5	30	
Tetrahydrofuran	90		90		66-130	0	30	
Ethyl ether	98		93		67-130	5	30	
trans-1,4-Dichloro-2-butene	100		96		70-130	4	30	
Methyl cyclohexane	112		102		70-130	9	30	
Ethyl-Tert-Butyl-Ether	99		94		70-130	5	30	

L1625116

08/18/16

Lab Number:

Lab Control Sample Analysis Batch Quality Control

Project Name: DESTINY - EMBASSY SUITES

15209

Project Number:

IBASSY SHITES

Report Date:

Parameter	LCS %Recovery	Qual	LCS %Reco		9 Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by 8260/5035 - Westboroug	h Lab Associated	d sample(s):	01-02	Batch:	WG923849-3	3 WG923849-4				
Tertiary-Amyl Methyl Ether	97		93	3		70-130	4		30	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	95		97		70-130	
Toluene-d8	99		98		70-130	
4-Bromofluorobenzene	98		100		70-130	
Dibromofluoromethane	100		101		70-130	

SEMIVOLATILES

L1625116

08/18/16

Project Name: DESTINY - EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Date Collected: 08/10/16 12:00

Lab Number:

Report Date:

Date Received: 08/11/16
Field Prep: Not Specified
Extraction Method: EPA 3546

Extraction Date: 08/15/16 21:45

Lab ID: L1625116-01

Client ID: 19

Sample Location: SYRACUSE, NY

Matrix: Soil
Analytical Method: 1,8270D
Analytical Date: 08/18/16 15:13

Analyst: KR Percent Solids: 84%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Wes	tborough Lab					
Acenaphthene	0.098	J	mg/kg	0.16	0.020	1
Hexachlorobenzene	ND		mg/kg	0.12	0.022	1
Bis(2-chloroethyl)ether	ND		mg/kg	0.18	0.027	1
2-Chloronaphthalene	ND		mg/kg	0.20	0.020	1
3,3'-Dichlorobenzidine	ND		mg/kg	0.20	0.053	1
2,4-Dinitrotoluene	ND		mg/kg	0.20	0.040	1
2,6-Dinitrotoluene	ND		mg/kg	0.20	0.034	1
Fluoranthene	2.4		mg/kg	0.12	0.023	1
4-Chlorophenyl phenyl ether	ND		mg/kg	0.20	0.021	1
4-Bromophenyl phenyl ether	ND		mg/kg	0.20	0.030	1
Bis(2-chloroisopropyl)ether	ND		mg/kg	0.24	0.034	1
Bis(2-chloroethoxy)methane	ND		mg/kg	0.21	0.020	1
Hexachlorobutadiene	ND		mg/kg	0.20	0.029	1
Hexachlorocyclopentadiene	ND		mg/kg	0.57	0.18	1
Hexachloroethane	ND		mg/kg	0.16	0.032	1
Isophorone	ND		mg/kg	0.18	0.026	1
Naphthalene	0.064	J	mg/kg	0.20	0.024	1
Nitrobenzene	ND		mg/kg	0.18	0.029	1
NDPA/DPA	ND		mg/kg	0.16	0.022	1
n-Nitrosodi-n-propylamine	ND		mg/kg	0.20	0.030	1
Bis(2-ethylhexyl)phthalate	ND		mg/kg	0.20	0.068	1
Butyl benzyl phthalate	ND		mg/kg	0.20	0.050	1
Di-n-butylphthalate	ND		mg/kg	0.20	0.038	1
Di-n-octylphthalate	ND		mg/kg	0.20	0.067	1
Diethyl phthalate	ND		mg/kg	0.20	0.018	1
Dimethyl phthalate	ND		mg/kg	0.20	0.042	1
Benzo(a)anthracene	1.0		mg/kg	0.12	0.022	1
Benzo(a)pyrene	0.81		mg/kg	0.16	0.048	1
Benzo(b)fluoranthene	1.1		mg/kg	0.12	0.033	1
Benzo(k)fluoranthene	0.42		mg/kg	0.12	0.032	1

Project Name: DESTINY - EMBASSY SUITES Lab Number: L1625116

Project Number: 15209 Report Date: 08/18/16

SAMPLE RESULTS

Lab ID: L1625116-01 Date Collected: 08/10/16 12:00

Client ID: 19 Date Received: 08/11/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL **Dilution Factor** Semivolatile Organics by GC/MS - Westborough Lab 0.88 0.12 0.021 Chrysene mg/kg 1 Acenaphthylene 0.066 J mg/kg 0.16 0.030 0.46 0.039 Anthracene mg/kg 0.12 1 Benzo(ghi)perylene 0.38 0.16 0.023 1 mg/kg Fluorene 0.14 J 0.20 0.019 1 mg/kg Phenanthrene 1.5 0.12 0.024 1 mg/kg Dibenzo(a,h)anthracene 0.12 0.12 0.023 1 mg/kg Indeno(1,2,3-cd)pyrene 0.49 0.16 0.028 1 mg/kg Pyrene 1.9 0.12 0.020 1 mg/kg ND Biphenyl 0.45 0.046 1 mg/kg 4-Chloroaniline ND mg/kg 0.20 0.036 1 2-Nitroaniline ND 0.20 0.038 1 mg/kg 3-Nitroaniline ND 0.20 0.037 1 mg/kg ND 4-Nitroaniline mg/kg 0.20 0.082 1 Dibenzofuran 0.088 J 0.20 0.019 1 mg/kg 2-Methylnaphthalene ND 0.24 0.024 1 mg/kg 1,2,4,5-Tetrachlorobenzene ND 0.20 0.021 mg/kg 1 ND 0.20 0.024 Acetophenone 1 mg/kg 2,4,6-Trichlorophenol ND 0.12 0.038 1 mg/kg 0.030 p-Chloro-m-cresol ND 0.20 1 mg/kg ND 0.20 0.023 1 2-Chlorophenol mg/kg 2,4-Dichlorophenol ND mg/kg 0.18 0.032 1 2,4-Dimethylphenol ND 0.20 0.065 1 mg/kg 2-Nitrophenol ND 0.43 0.074 1 mg/kg 4-Nitrophenol ND 0.28 0.081 1 mg/kg 2,4-Dinitrophenol ND mg/kg 0.95 0.092 1 4,6-Dinitro-o-cresol ND 0.52 0.095 1 mg/kg Pentachlorophenol ND mg/kg 0.16 0.044 1 Phenol ND 0.20 0.030 1 mg/kg 2-Methylphenol ND mg/kg 0.20 0.031 1 3-Methylphenol/4-Methylphenol ND mg/kg 0.28 0.031 1 2,4,5-Trichlorophenol ND 0.20 0.038 1 mg/kg Carbazole 0.14 J mg/kg 0.20 0.019 1 ND Atrazine mg/kg 0.16 0.069 1 Benzaldehyde ND 0.26 0.053 1 mg/kg Caprolactam ND 0.20 0.060 1 mg/kg ND 2,3,4,6-Tetrachlorophenol 0.20 0.040 1 mg/kg

Project Name: DESTINY - EMBASSY SUITES Lab Number: L1625116

Project Number: 15209 Report Date: 08/18/16

SAMPLE RESULTS

Lab ID: Date Collected: 08/10/16 12:00

Client ID: 19 Date Received: 08/11/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	93		25-120	
Phenol-d6	95		10-120	
Nitrobenzene-d5	93		23-120	
2-Fluorobiphenyl	77		30-120	
2,4,6-Tribromophenol	75		10-136	
4-Terphenyl-d14	71		18-120	

L1625116

08/18/16

Project Name: DESTINY - EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number:

Report Date:

Lab ID: L1625116-02 D Date Collected: 08/11/16 08:30

Client ID: 20

Sample Location: SYRACUSE, NY

Matrix: Soil Analytical Method: 1,8270D Analytical Date: 08/18/16 15:40

Analyst: KR 81% Percent Solids:

Date Received: 08/11/16 Field Prep: Not Specified Extraction Method: EPA 3546 Extraction Date: 08/15/16 21:45

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Westborough Lab					
Acenaphthene	0.33		mg/kg	0.33	0.042	2
Hexachlorobenzene	ND		mg/kg	0.24	0.046	2
Bis(2-chloroethyl)ether	ND		mg/kg	0.37	0.055	2
2-Chloronaphthalene	ND		mg/kg	0.41	0.040	2
3,3'-Dichlorobenzidine	ND		mg/kg	0.41	0.11	2
2,4-Dinitrotoluene	ND		mg/kg	0.41	0.082	2
2,6-Dinitrotoluene	ND		mg/kg	0.41	0.070	2
Fluoranthene	13.		mg/kg	0.24	0.047	2
4-Chlorophenyl phenyl ether	ND		mg/kg	0.41	0.044	2
4-Bromophenyl phenyl ether	ND		mg/kg	0.41	0.062	2
Bis(2-chloroisopropyl)ether	ND		mg/kg	0.49	0.070	2
Bis(2-chloroethoxy)methane	ND		mg/kg	0.44	0.041	2
Hexachlorobutadiene	ND		mg/kg	0.41	0.060	2
Hexachlorocyclopentadiene	ND		mg/kg	1.2	0.37	2
Hexachloroethane	ND		mg/kg	0.33	0.066	2
Isophorone	ND		mg/kg	0.37	0.053	2
Naphthalene	0.37	J	mg/kg	0.41	0.050	2
Nitrobenzene	ND		mg/kg	0.37	0.060	2
NDPA/DPA	ND		mg/kg	0.33	0.046	2
n-Nitrosodi-n-propylamine	ND		mg/kg	0.41	0.063	2
Bis(2-ethylhexyl)phthalate	ND		mg/kg	0.41	0.14	2
Butyl benzyl phthalate	ND		mg/kg	0.41	0.10	2
Di-n-butylphthalate	ND		mg/kg	0.41	0.077	2
Di-n-octylphthalate	ND		mg/kg	0.41	0.14	2
Diethyl phthalate	ND		mg/kg	0.41	0.038	2
Dimethyl phthalate	ND		mg/kg	0.41	0.086	2
Benzo(a)anthracene	7.2		mg/kg	0.24	0.046	2
Benzo(a)pyrene	6.7		mg/kg	0.33	0.10	2
Benzo(b)fluoranthene	9.6		mg/kg	0.24	0.069	2
Benzo(k)fluoranthene	3.1		mg/kg	0.24	0.065	2

Project Name: DESTINY - EMBASSY SUITES Lab Number: L1625116

Project Number: Report Date: 15209 08/18/16

SAMPLE RESULTS

Lab ID: L1625116-02 D Date Collected: 08/11/16 08:30

Client ID: 20 Date Received: 08/11/16 SYRACUSE, NY Sample Location: Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL **Dilution Factor** Semivolatile Organics by GC/MS - Westborough Lab 6.6 0.24 0.042 2 Chrysene mg/kg Acenaphthylene 1.3 mg/kg 0.33 0.063 2 0.080 2 Anthracene 1.9 mg/kg 0.24 Benzo(ghi)perylene 3.7 0.33 0.048 2 mg/kg Fluorene 0.70 0.41 0.040 2 mg/kg 2 Phenanthrene 5.7 0.24 0.050 mg/kg Dibenzo(a,h)anthracene 0.24 0.047 2 1.1 mg/kg 2 Indeno(1,2,3-cd)pyrene 4.6 0.33 0.057 mg/kg Pyrene 12. 0.24 0.041 2 mg/kg ND 2 Biphenyl 0.93 0.095 mg/kg 4-Chloroaniline ND mg/kg 0.41 0.074 2 0.41 2-Nitroaniline ND 0.079 2 mg/kg 3-Nitroaniline ND 0.41 0.077 2 mg/kg ND 2 4-Nitroaniline mg/kg 0.41 0.17 Dibenzofuran 0.31 J 0.41 0.039 2 mg/kg 2-Methylnaphthalene 0.17 J 0.49 0.049 2 mg/kg 1,2,4,5-Tetrachlorobenzene ND 0.41 0.043 2 mg/kg ND 0.41 0.050 2 Acetophenone mg/kg 2,4,6-Trichlorophenol ND 0.24 0.077 2 mg/kg ND 2 p-Chloro-m-cresol 0.41 0.061 mg/kg ND 0.41 0.048 2 2-Chlorophenol mg/kg 2,4-Dichlorophenol ND mg/kg 0.37 0.066 2 2,4-Dimethylphenol ND 0.41 0.13 2 mg/kg 2-Nitrophenol ND 0.88 0.15 2 mg/kg 4-Nitrophenol ND 0.57 0.17 2 mg/kg 2,4-Dinitrophenol ND mg/kg 2.0 0.19 2 4,6-Dinitro-o-cresol ND 1.1 0.20 2 mg/kg Pentachlorophenol ND mg/kg 0.33 0.090 2 Phenol ND 0.062 2 0.41 mg/kg 2-Methylphenol ND mg/kg 0.41 0.063 2 2 3-Methylphenol/4-Methylphenol ND mg/kg 0.59 0.064 2,4,5-Trichlorophenol ND 0.41 0.078 2 mg/kg Carbazole 0.57 mg/kg 0.41 0.040 2 ND 2 Atrazine mg/kg 0.33 0.14 2 Benzaldehyde ND 0.54 0.11 mg/kg Caprolactam ND 0.41 0.12 2 mg/kg ND 2 2,3,4,6-Tetrachlorophenol 0.41 0.082

mg/kg

Project Name: DESTINY - EMBASSY SUITES Lab Number: L1625116

Project Number: 15209 Report Date: 08/18/16

SAMPLE RESULTS

Lab ID: L1625116-02 D Date Collected: 08/11/16 08:30

Client ID: 20 Date Received: 08/11/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	77		25-120	
Phenol-d6	80		10-120	
Nitrobenzene-d5	80		23-120	
2-Fluorobiphenyl	60		30-120	
2,4,6-Tribromophenol	77		10-136	
4-Terphenyl-d14	55		18-120	

Project Number: 15209 Report Date: 08/18/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Extraction Method: EPA 3546
Analytical Date: 08/16/16 12:41 Extraction Date: 08/15/16 21:45

Analyst: KR

Parameter	Result	Qualifier	Units	RL		MDL
Semivolatile Organics by GC/MS -	Westborough	Lab for s	ample(s):	01-02	Batch:	WG923596-1
Acenaphthene	ND		mg/kg	0.13		0.017
Hexachlorobenzene	ND		mg/kg	0.098		0.018
Bis(2-chloroethyl)ether	ND		mg/kg	0.15		0.022
2-Chloronaphthalene	ND		mg/kg	0.16		0.016
3,3'-Dichlorobenzidine	ND		mg/kg	0.16		0.044
2,4-Dinitrotoluene	ND		mg/kg	0.16		0.033
2,6-Dinitrotoluene	ND		mg/kg	0.16		0.028
Fluoranthene	ND		mg/kg	0.098		0.019
4-Chlorophenyl phenyl ether	ND		mg/kg	0.16		0.018
4-Bromophenyl phenyl ether	ND		mg/kg	0.16		0.025
Bis(2-chloroisopropyl)ether	ND		mg/kg	0.20		0.028
Bis(2-chloroethoxy)methane	ND		mg/kg	0.18		0.016
Hexachlorobutadiene	ND		mg/kg	0.16		0.024
Hexachlorocyclopentadiene	ND		mg/kg	0.47		0.15
Hexachloroethane	ND		mg/kg	0.13		0.026
Isophorone	ND		mg/kg	0.15		0.021
Naphthalene	ND		mg/kg	0.16		0.020
Nitrobenzene	ND		mg/kg	0.15		0.024
NDPA/DPA	ND		mg/kg	0.13		0.019
n-Nitrosodi-n-propylamine	ND		mg/kg	0.16		0.025
Bis(2-ethylhexyl)phthalate	ND		mg/kg	0.16		0.057
Butyl benzyl phthalate	ND		mg/kg	0.16		0.041
Di-n-butylphthalate	ND		mg/kg	0.16		0.031
Di-n-octylphthalate	ND		mg/kg	0.16		0.056
Diethyl phthalate	ND		mg/kg	0.16		0.015
Dimethyl phthalate	ND		mg/kg	0.16		0.034
Benzo(a)anthracene	ND		mg/kg	0.098		0.018
Benzo(a)pyrene	ND		mg/kg	0.13		0.040
Benzo(b)fluoranthene	ND		mg/kg	0.098		0.028

Project Number: 15209 Report Date: 08/18/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Extraction Method: EPA 3546
Analytical Date: 08/16/16 12:41 Extraction Date: 08/15/16 21:45

Analyst: KR

Parameter	Result	Qualifier	Units	RL		MDL
Semivolatile Organics by GC/MS -	Westborough	Lab for s	ample(s):	01-02	Batch:	WG923596-1
Benzo(k)fluoranthene	ND		mg/kg	0.098		0.026
Chrysene	ND		mg/kg	0.098		0.017
Acenaphthylene	ND		mg/kg	0.13		0.025
Anthracene	ND		mg/kg	0.098		0.032
Benzo(ghi)perylene	ND		mg/kg	0.13		0.019
Fluorene	ND		mg/kg	0.16		0.016
Phenanthrene	ND		mg/kg	0.098		0.020
Dibenzo(a,h)anthracene	ND		mg/kg	0.098		0.019
Indeno(1,2,3-cd)pyrene	ND		mg/kg	0.13		0.023
Pyrene	ND		mg/kg	0.098		0.016
Biphenyl	ND		mg/kg	0.37		0.038
4-Chloroaniline	ND		mg/kg	0.16		0.030
2-Nitroaniline	ND		mg/kg	0.16		0.032
3-Nitroaniline	ND		mg/kg	0.16		0.031
4-Nitroaniline	ND		mg/kg	0.16		0.068
Dibenzofuran	ND		mg/kg	0.16		0.016
2-Methylnaphthalene	ND		mg/kg	0.20		0.020
1,2,4,5-Tetrachlorobenzene	ND		mg/kg	0.16		0.017
Acetophenone	ND		mg/kg	0.16		0.020
2,4,6-Trichlorophenol	ND		mg/kg	0.098		0.031
p-Chloro-m-cresol	ND		mg/kg	0.16		0.024
2-Chlorophenol	ND		mg/kg	0.16		0.019
2,4-Dichlorophenol	ND		mg/kg	0.15		0.026
2,4-Dimethylphenol	ND		mg/kg	0.16		0.054
2-Nitrophenol	ND		mg/kg	0.35		0.062
4-Nitrophenol	ND		mg/kg	0.23		0.067
2,4-Dinitrophenol	ND		mg/kg	0.79		0.076
4,6-Dinitro-o-cresol	ND		mg/kg	0.43		0.079
Pentachlorophenol	ND		mg/kg	0.13		0.036

Project Number: 15209 Report Date: 08/18/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Extraction Method: EPA 3546
Analytical Date: 08/16/16 12:41 Extraction Date: 08/15/16 21:45

Analyst: KR

Result	Qualifier	Units	RL		MDL
Westborough	Lab for s	ample(s):	01-02	Batch:	WG923596-1
ND		mg/kg	0.16		0.025
ND		mg/kg	0.16		0.025
ND		mg/kg	0.24		0.026
ND		mg/kg	0.16		0.031
ND		mg/kg	0.16		0.016
ND		mg/kg	0.13		0.057
ND		mg/kg	0.22		0.044
ND		mg/kg	0.16		0.050
ND		mg/kg	0.16		0.033
	Westborough ND ND ND ND ND ND ND ND ND N	Westborough Lab for s ND	ND mg/kg	ND mg/kg 0.16 ND mg/kg 0.16 ND mg/kg 0.24 ND mg/kg 0.16 ND mg/kg 0.16 ND mg/kg 0.16 ND mg/kg 0.13 ND mg/kg 0.22 ND mg/kg 0.16	Westborough Lab for sample(s): 01-02 Batch: ND mg/kg 0.16 ND mg/kg 0.24 ND mg/kg 0.16 ND mg/kg 0.16 ND mg/kg 0.16 ND mg/kg 0.13 ND mg/kg 0.22 ND mg/kg 0.16

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
2-Fluorophenol	92	25-120
Phenol-d6	101	10-120
Nitrobenzene-d5	81	23-120
2-Fluorobiphenyl	100	30-120
2,4,6-Tribromophenol	100	10-136
4-Terphenyl-d14	119	18-120

Project Name: DESTINY - EMBASSY SUITES

Project Number: 15209

Lab Number: L1625116

Parameter	LCS %Recovery	Qual	LCSI %Recov		Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westboro	ough Lab Associ	iated sample(s):	01-02	Batch:	WG923596	6-2 WG923596	-3		
Acenaphthene	74		74			31-137	0		50
Benzidine	64		54			10-66	17		50
1,2,4-Trichlorobenzene	68		66			38-107	3		50
Hexachlorobenzene	74		72			40-140	3		50
Bis(2-chloroethyl)ether	59		61			40-140	3		50
2-Chloronaphthalene	72		71			40-140	1		50
1,2-Dichlorobenzene	63		64			40-140	2		50
1,3-Dichlorobenzene	63		64			40-140	2		50
1,4-Dichlorobenzene	62		63			28-104	2		50
3,3'-Dichlorobenzidine	73		69			40-140	6		50
2,4-Dinitrotoluene	75		80			28-89	6		50
2,6-Dinitrotoluene	71		76			40-140	7		50
Azobenzene	71		73			40-140	3		50
Fluoranthene	79		78			40-140	1		50
4-Chlorophenyl phenyl ether	74		73			40-140	1		50
4-Bromophenyl phenyl ether	80		79			40-140	1		50
Bis(2-chloroisopropyl)ether	54		57			40-140	5		50
Bis(2-chloroethoxy)methane	69		69			40-117	0		50
Hexachlorobutadiene	75		75			40-140	0		50
Hexachlorocyclopentadiene	35	Q	38		Q	40-140	8		50
Hexachloroethane	62		63			40-140	2		50

Project Name: DESTINY - EMBASSY SUITES

Project Number: 15209

Lab Number: L1625116

rameter	LCS %Recovery	Qual	LCSD %Recover	y (% Qual	Recovery Limits	RPD	Qual	RPD Limits
mivolatile Organics by GC/MS - Westh	borough Lab Associa	ated sample(s):	01-02 B	atch:	WG923596	-2 WG923596	i-3		
Isophorone	64		64			40-140	0		50
Naphthalene	68		68			40-140	0		50
Nitrobenzene	63		65			40-140	3		50
NitrosoDiPhenylAmine(NDPA)/DPA	77		77			36-157	0		50
n-Nitrosodi-n-propylamine	65		65			32-121	0		50
Bis(2-Ethylhexyl)phthalate	94		95			40-140	1		50
Butyl benzyl phthalate	95		94			40-140	1		50
Di-n-butylphthalate	79		77			40-140	3		50
Di-n-octylphthalate	93		93			40-140	0		50
Diethyl phthalate	76		78			40-140	3		50
Dimethyl phthalate	85		84			40-140	1		50
Benzo(a)anthracene	79		79			40-140	0		50
Benzo(a)pyrene	73		74			40-140	1		50
Benzo(b)fluoranthene	74		75			40-140	1		50
Benzo(k)fluoranthene	82		82			40-140	0		50
Chrysene	70		71			40-140	1		50
Acenaphthylene	81		81			40-140	0		50
Anthracene	77		76			40-140	1		50
Benzo(ghi)perylene	80		81			40-140	1		50
Fluorene	76		75			40-140	1		50
Phenanthrene	71		71			40-140	0		50

Project Name: DESTINY - EMBASSY SUITES

Project Number: 15209

Lab Number: L1625116

Parameter	LCS %Recovery	Qual	LCSE %Recov		Qual 9	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westbore	ough Lab Assoc	iated sample(s):	01-02	Batch:	WG923596	-2 WG923596	-3		
Dibenzo(a,h)anthracene	73		73			40-140	0		50
Indeno(1,2,3-cd)Pyrene	77		78			40-140	1		50
Pyrene	74		74			35-142	0		50
Biphenyl	72		71			54-104	1		50
Aniline	51		49			40-140	4		50
4-Chloroaniline	60		60			40-140	0		50
1-Methylnaphthalene	70		70			26-130	0		50
2-Nitroaniline	82		82			47-134	0		50
3-Nitroaniline	76		75			26-129	1		50
4-Nitroaniline	76		75			41-125	1		50
Dibenzofuran	74		74			40-140	0		50
2-Methylnaphthalene	74		75			40-140	1		50
1,2,4,5-Tetrachlorobenzene	73		73			40-117	0		50
Acetophenone	69		70			14-144	1		50
n-Nitrosodimethylamine	55		57			22-100	4		50
2,4,6-Trichlorophenol	79		79			30-130	0		50
P-Chloro-M-Cresol	76		76			26-103	0		50
2-Chlorophenol	67		69			25-102	3		50
2,4-Dichlorophenol	74		73			30-130	1		50
2,4-Dimethylphenol	72		73			30-130	1		50
2-Nitrophenol	61		71			30-130	15		50

Project Name: DESTINY - EMBASSY SUITES

Project Number: 15209

Lab Number: L1625116

arameter	LCS %Recovery	Qual	LCSD %Recove	ery	% Qual	Recovery Limits	RPD	Qual	RPD Limits	
emivolatile Organics by GC/MS - Westborou	ıgh Lab Associ	ated sample(s):	01-02 l	Batch:	WG923596-	2 WG923596-3				
4-Nitrophenol	57		60			11-114	5		50	
2,4-Dinitrophenol	19		20			4-130	5		50	
4,6-Dinitro-o-cresol	22		26			10-130	17		50	
Pentachlorophenol	72		71			17-109	1		50	
Phenol	66		67			26-90	2		50	
2-Methylphenol	72		73			30-130.	1		50	
3-Methylphenol/4-Methylphenol	70		70			30-130	0		50	
2,4,5-Trichlorophenol	84		84			30-130	0		50	
Benzoic Acid	46		49			10-110	6		50	
Benzyl Alcohol	76		78			40-140	3		50	
Carbazole	76		77			54-128	1		50	
Pyridine	45		47			10-93	4		50	
Parathion, ethyl	118		120			40-140	2		50	
Atrazine	84		84			40-140	0		50	
Benzaldehyde	43		43			40-140	0		50	
Caprolactam	66		68			15-130	3		50	
2,3,4,6-Tetrachlorophenol	84		82			40-140	2		50	

Project Name: DESTINY - EMBASSY SUITES

Project Number: 15209 Lab Number:

L1625116

Report Date:

08/18/16

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-02 Batch: WG923596-2 WG923596-3

LCS	LCSD	Acceptance
%Recovery	Qual %Recovery	Qual Criteria
70	72	25-120
76	77	10-120
69	71	23-120
75	74	30-120
80	80	10-136
79	79	18-120
	%Recovery 70 76 69 75 80	%Recovery Qual %Recovery 70 72 76 77 69 71 75 74 80 80

METALS

08/10/16 12:00

Project Name: DESTINY - EMBASSY SUITES Lab Number: L1625116

Project Number: 15209 **Report Date:** 08/18/16

SAMPLE RESULTS

Lab ID: L1625116-01

Client ID: 19

Sample Location: SYRACUSE, NY

Matrix: Soil

Percent Solids: 84% Date Received: 08/11/16

Field Prep: Not Specified

Date Collected:

Percent Solids:	84%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Man	sfield Lab										
Aluminum, Total	6600		mg/kg	9.5	1.9	2	08/12/16 06:40	08/12/16 14:13	EPA 3050B	1,6010C	PS
Antimony, Total	0.97	J	mg/kg	4.8	0.76	2	08/12/16 06:40	08/12/16 14:13	EPA 3050B	1,6010C	PS
Arsenic, Total	21		mg/kg	0.95	0.31	2	08/12/16 06:40	08/12/16 14:13	EPA 3050B	1,6010C	PS
Barium, Total	230		mg/kg	0.95	0.26	2	08/12/16 06:40	08/12/16 14:13	EPA 3050B	1,6010C	PS
Beryllium, Total	0.42	J	mg/kg	0.48	0.10	2	08/12/16 06:40	08/12/16 14:13	EPA 3050B	1,6010C	PS
Cadmium, Total	0.93	J	mg/kg	0.95	0.07	2	08/12/16 06:40	08/12/16 14:13	EPA 3050B	1,6010C	PS
Calcium, Total	28000		mg/kg	9.5	2.6	2	08/12/16 06:40	08/12/16 14:13	EPA 3050B	1,6010C	PS
Chromium, Total	10		mg/kg	0.95	0.16	2	08/12/16 06:40	08/12/16 14:13	EPA 3050B	1,6010C	PS
Cobalt, Total	12		mg/kg	1.9	0.46	2	08/12/16 06:40	08/12/16 14:13	EPA 3050B	1,6010C	PS
Copper, Total	32		mg/kg	0.95	0.17	2	08/12/16 06:40	08/12/16 14:13	EPA 3050B	1,6010C	PS
Iron, Total	28000		mg/kg	4.8	1.5	2	08/12/16 06:40	08/12/16 14:13	EPA 3050B	1,6010C	PS
Lead, Total	33		mg/kg	4.8	0.21	2	08/12/16 06:40	08/12/16 14:13	EPA 3050B	1,6010C	PS
Magnesium, Total	7800		mg/kg	9.5	1.3	2	08/12/16 06:40	08/12/16 14:13	EPA 3050B	1,6010C	PS
Manganese, Total	1800		mg/kg	0.95	0.23	2	08/12/16 06:40	08/12/16 14:13	EPA 3050B	1,6010C	PS
Mercury, Total	0.31		mg/kg	0.08	0.02	1	08/12/16 07:20	08/12/16 11:10	EPA 7471B	1,7471B	BV
Nickel, Total	15		mg/kg	2.4	0.38	2	08/12/16 06:40	08/12/16 14:13	EPA 3050B	1,6010C	PS
Potassium, Total	560		mg/kg	240	27.	2	08/12/16 06:40	08/12/16 14:13	EPA 3050B	1,6010C	PS
Selenium, Total	ND		mg/kg	1.9	0.26	2	08/12/16 06:40	08/12/16 14:13	EPA 3050B	1,6010C	PS
Silver, Total	ND		mg/kg	0.95	0.19	2	08/12/16 06:40	08/12/16 14:13	EPA 3050B	1,6010C	PS
Sodium, Total	160	J	mg/kg	190	16.	2	08/12/16 06:40	08/12/16 14:13	EPA 3050B	1,6010C	PS
Thallium, Total	ND		mg/kg	1.9	0.30	2	08/12/16 06:40	08/12/16 14:13	EPA 3050B	1,6010C	PS
Vanadium, Total	18		mg/kg	0.95	0.09	2	08/12/16 06:40	08/12/16 14:13	EPA 3050B	1,6010C	PS
Zinc, Total	46		mg/kg	4.8	0.66	2	08/12/16 06:40	08/12/16 14:13	EPA 3050B	1,6010C	PS

08/11/16 08:30

08/11/16

Project Name: DESTINY - EMBASSY SUITES Lab Number: L1625116

Project Number: 15209 Report Date: 08/18/16

SAMPLE RESULTS

Lab ID: L1625116-02

Client ID: 20

Sample Location: SYRACUSE, NY

Matrix: Soil

Percent Solids: 81%

Field Prep: Not Specified

Date Collected:

Date Received:

		Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Man	sfield Lab										
Aluminum, Total	6600		mg/kg	9.8	1.9	2	08/12/16 06:40	08/12/16 14:18	EPA 3050B	1,6010C	PS
Antimony, Total	1.3	J	mg/kg	4.9	0.78	2	08/12/16 06:40	08/12/16 14:18	EPA 3050B	1,6010C	PS
Arsenic, Total	74		mg/kg	0.98	0.32	2	08/12/16 06:40	08/12/16 14:18	EPA 3050B	1,6010C	PS
Barium, Total	69		mg/kg	0.98	0.26	2	08/12/16 06:40	08/12/16 14:18	EPA 3050B	1,6010C	PS
Beryllium, Total	0.35	J	mg/kg	0.49	0.11	2	08/12/16 06:40	08/12/16 14:18	EPA 3050B	1,6010C	PS
Cadmium, Total	3.2		mg/kg	0.98	0.07	2	08/12/16 06:40	08/12/16 14:18	EPA 3050B	1,6010C	PS
Calcium, Total	150000		mg/kg	49	13.	10	08/12/16 06:40	08/12/16 22:20	EPA 3050B	1,6010C	MC
Chromium, Total	9.8		mg/kg	0.98	0.17	2	08/12/16 06:40	08/12/16 14:18	EPA 3050B	1,6010C	PS
Cobalt, Total	6.4		mg/kg	2.0	0.48	2	08/12/16 06:40	08/12/16 14:18	EPA 3050B	1,6010C	PS
Copper, Total	110		mg/kg	0.98	0.18	2	08/12/16 06:40	08/12/16 14:18	EPA 3050B	1,6010C	PS
Iron, Total	18000		mg/kg	4.9	1.5	2	08/12/16 06:40	08/12/16 14:18	EPA 3050B	1,6010C	PS
Lead, Total	76		mg/kg	4.9	0.21	2	08/12/16 06:40	08/12/16 14:18	EPA 3050B	1,6010C	PS
Magnesium, Total	23000		mg/kg	9.8	1.3	2	08/12/16 06:40	08/12/16 14:18	EPA 3050B	1,6010C	PS
Manganese, Total	1300		mg/kg	0.98	0.23	2	08/12/16 06:40	08/12/16 14:18	EPA 3050B	1,6010C	PS
Mercury, Total	0.33		mg/kg	0.08	0.02	1	08/12/16 07:20	08/12/16 11:12	EPA 7471B	1,7471B	BV
Nickel, Total	12		mg/kg	2.4	0.39	2	08/12/16 06:40	08/12/16 14:18	EPA 3050B	1,6010C	PS
Potassium, Total	540		mg/kg	240	27.	2	08/12/16 06:40	08/12/16 14:18	EPA 3050B	1,6010C	PS
Selenium, Total	ND		mg/kg	2.0	0.26	2	08/12/16 06:40	08/12/16 14:18	EPA 3050B	1,6010C	PS
Silver, Total	ND		mg/kg	0.98	0.20	2	08/12/16 06:40	08/12/16 14:18	EPA 3050B	1,6010C	PS
Sodium, Total	520		mg/kg	200	16.	2	08/12/16 06:40	08/12/16 14:18	EPA 3050B	1,6010C	PS
Thallium, Total	ND		mg/kg	2.0	0.31	2	08/12/16 06:40	08/12/16 14:18	EPA 3050B	1,6010C	PS
Vanadium, Total	12		mg/kg	0.98	0.09	2	08/12/16 06:40	08/12/16 14:18	EPA 3050B	1,6010C	PS
Zinc, Total	560		mg/kg	4.9	0.68	2	08/12/16 06:40	08/12/16 14:18	EPA 3050B	1,6010C	PS

L1625116

Lab Number:

Project Name: DESTINY - EMBASSY SUITES

Project Number: 15209 **Report Date:** 08/18/16

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
Total Metals - Mansf	ield Lab for sample(s):	01-02 B	atch: W	G92214	6-1				
Mercury, Total	ND	mg/kg	0.08	0.02	1	08/12/16 07:20	08/12/16 10:48	1,7471B	BV

Prep Information

Digestion Method: EPA 7471B

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfield	Lab for sample(s):	01-02	Batch: W	G92214	9-1				
Aluminum, Total	ND	mg/kg	4.0	0.79	1	08/12/16 06:40	08/12/16 11:13	1,6010C	PS
Antimony, Total	ND	mg/kg	2.0	0.32	1	08/12/16 06:40	08/12/16 11:13	1,6010C	PS
Arsenic, Total	ND	mg/kg	0.40	0.13	1	08/12/16 06:40	08/12/16 11:13	1,6010C	PS
Barium, Total	ND	mg/kg	0.40	0.11	1	08/12/16 06:40	08/12/16 11:13	1,6010C	PS
Beryllium, Total	ND	mg/kg	0.20	0.04	1	08/12/16 06:40	08/12/16 11:13	1,6010C	PS
Cadmium, Total	ND	mg/kg	0.40	0.03	1	08/12/16 06:40	08/12/16 11:13	1,6010C	PS
Calcium, Total	ND	mg/kg	4.0	1.1	1	08/12/16 06:40	08/12/16 11:13	1,6010C	PS
Chromium, Total	ND	mg/kg	0.40	0.07	1	08/12/16 06:40	08/12/16 11:13	1,6010C	PS
Cobalt, Total	ND	mg/kg	0.80	0.20	1	08/12/16 06:40	08/12/16 11:13	1,6010C	PS
Copper, Total	ND	mg/kg	0.40	0.07	1	08/12/16 06:40	08/12/16 11:13	1,6010C	PS
Iron, Total	0.80 J	mg/kg	2.0	0.63	1	08/12/16 06:40	08/12/16 11:13	1,6010C	PS
Lead, Total	ND	mg/kg	2.0	0.09	1	08/12/16 06:40	08/12/16 11:13	1,6010C	PS
Magnesium, Total	ND	mg/kg	4.0	0.53	1	08/12/16 06:40	08/12/16 11:13	1,6010C	PS
Manganese, Total	ND	mg/kg	0.40	0.10	1	08/12/16 06:40	08/12/16 11:13	1,6010C	PS
Nickel, Total	ND	mg/kg	1.0	0.16	1	08/12/16 06:40	08/12/16 11:13	1,6010C	PS
Potassium, Total	ND	mg/kg	100	11.	1	08/12/16 06:40	08/12/16 11:13	1,6010C	PS
Selenium, Total	ND	mg/kg	0.80	0.11	1	08/12/16 06:40	08/12/16 11:13	1,6010C	PS
Silver, Total	ND	mg/kg	0.40	0.08	1	08/12/16 06:40	08/12/16 11:13	1,6010C	PS
Sodium, Total	ND	mg/kg	80	6.7	1	08/12/16 06:40	08/12/16 11:13	1,6010C	PS
Thallium, Total	ND	mg/kg	0.80	0.13	1	08/12/16 06:40	08/12/16 11:13	1,6010C	PS
Vanadium, Total	ND	mg/kg	0.40	0.04	1	08/12/16 06:40	08/12/16 11:13	1,6010C	PS
Zinc, Total	ND	mg/kg	2.0	0.28	1	08/12/16 06:40	08/12/16 11:13	1,6010C	PS

Project Name: DESTINY - EMBASSY SUITES Lab Number: L1625116

Project Number: 15209 Report Date: 08/18/16

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 3050B

DESTINY - EMBASSY SUITES

Lab Number: L1625116

Project Number: 15209

Project Name:

Report Date:

08/18/16

Parameter	LCS %Recovery		LCSD ecovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01-02 Bato	ch: WG922146-2	SRM Lot	Number: D	089-540			
Mercury, Total	101		-		57-143	-		

Project Name: DESTINY - EMBASSY SUITES

Project Number: 15209

Lab Number: L1625116

Total Metals - Mansfield Lab Associated sample(s): 01-02 Batch: WG922149-2 SRM Lot Number: D089-540	² arameter	LCS %Recov		CSD covery	%Recovery Limits	RPD	RPD Limits
Antimony, Total 181 - 1-197 - Arsenic, Total 108 - 80-120 - Barium, Total 98 - 83-117 - Beryllium, Total 98 - 82-117 - Cadmium, Total 111 - 82-117 - Cadmium, Total 104 - 81-119 - Chromium, Total 96 - 79-121 - Cobalt, Total 106 - 83-117 - Cobalt, Total 103 - 80-119 - Iron, Total 89 - 45-155 - Lead, Total 101 - 81-119 - Manganesium, Total 88 - 76-123 - Nickel, Total 107 - 82-117 - Potassium, Total 85 - 71-128 - Selenium, Total 99 - 75-125 - Silver, Total	otal Metals - Mansfield Lab Associate	ed sample(s): 01-02	Batch: WG922149-2	SRM Lot Nur	nber: D089-540		
Arsenic, Total 108 - 80-120 - Barlum, Total 98 - 83-117 - Beryllium, Total 98 - 82-117 - Cadmium, Total 111 - 82-117 - Calcium, Total 104 - 81-119 - Chromium, Total 96 - 79-121 - Cobalt, Total 106 - 83-117 - Copper, Total 103 - 80-119 - Iron, Total 89 - 45-155 - Lead, Total 101 - 81-119 - Magnesium, Total 88 - 76-123 - Manganese, Total 102 - 81-119 - Nickel, Total 107 - 82-117 - Potassium, Total 85 - 71-128 - Selenium, Total 99 - 75-125 - Silver, Total 99 - 75-125 - Sodium, Total 104	Aluminum, Total	68		-	52-147	-	
Barium, Total 98 - 83-117 - Beryllium, Total 98 - 82-117 - Cadmium, Total 111 - 82-117 - Calcium, Total 104 - 81-119 - Chromium, Total 96 - 79-121 - Cobalt, Total 106 - 83-117 - Copper, Total 103 - 80-119 - Iron, Total 89 - 45-155 - Lead, Total 101 - 81-119 - Magnesium, Total 88 - 76-123 - Manganese, Total 102 - 81-119 - Nickel, Total 107 - 82-117 - Potassium, Total 85 - 71-128 - Selenium, Total 99 - 75-125 - Silver, Total 99 - 75-125 - Sodium, Total 104 - 71-128 - Total 104 -	Antimony, Total	181		-	1-197	-	
Beryllium, Total 98 - 82-117 - Cadmium, Total 1111 - 82-117 - Calcium, Total 104 - 81-119 - Chromium, Total 96 - 79-121 - Cobalt, Total 106 - 83-117 - Copper, Total 103 - 80-119 - Iron, Total 89 - 45-155 - Lead, Total 101 - 81-119 - Magnesium, Total 88 - 76-123 - Manganese, Total 102 - 81-119 - Nickel, Total 107 - 82-117 - Potassium, Total 85 - 71-128 - Selenium, Total 99 - 78-121 - Silver, Total 99 - 75-125 - Sodium, Total 104 - 71-128 - Thallium, Total	Arsenic, Total	108		-	80-120	-	
Cadmium, Total 111 - 82-117 - Calcium, Total 104 - 81-119 - Chromium, Total 96 - 79-121 - Cobalt, Total 106 - 83-117 - Copper, Total 103 - 80-119 - Iron, Total 89 - 45-155 - Lead, Total 101 - 81-119 - Magnesium, Total 88 - 76-123 - Manganese, Total 102 - 81-119 - Nickel, Total 107 - 82-117 - Potassium, Total 85 - 71-128 - Selenium, Total 99 - 75-125 - Sodium, Total 104 - 71-128 - Thallium, Total 119 - 79-120 -	Barium, Total	98		-	83-117	-	
Calcium, Total 104 - 81-119 - Chromium, Total 96 - 79-121 - Cobalt, Total 106 - 83-117 - Copper, Total 103 - 80-119 - Iron, Total 89 - 45-155 - Lead, Total 101 - 81-119 - Magnesium, Total 88 - 76-123 - Manganese, Total 102 - 81-119 - Nickel, Total 107 - 82-117 - Potassium, Total 85 - 71-128 - Selenium, Total 99 - 75-125 - Sodium, Total 104 - 71-128 - Thallium, Total 119 - 79-120 -	Beryllium, Total	98		-	82-117	-	
Chromium, Total 96 - 79-121 - Cobalt, Total 106 - 83-117 - Copper, Total 103 - 80-119 - Iron, Total 89 - 45-155 - Lead, Total 101 - 81-119 - Magnesium, Total 88 - 76-123 - Manganese, Total 102 - 81-119 - Nickel, Total 107 - 82-117 - Potassium, Total 85 - 71-128 - Selenium, Total 99 - 78-121 - Sodium, Total 104 - 71-128 - Thallium, Total 119 - 79-120 -	Cadmium, Total	111		-	82-117	-	
Cobalt, Total 106 - 83-117 - Copper, Total 103 - 80-119 - Iron, Total 89 - 45-155 - Lead, Total 101 - 81-119 - Magnesium, Total 88 - 76-123 - Manganese, Total 102 - 81-119 - Nickel, Total 107 - 82-117 - Potassium, Total 85 - 71-128 - Selenium, Total 99 - 78-121 - Silver, Total 99 - 75-125 - Sodium, Total 104 - 71-128 - Thallium, Total 119 - 79-120 -	Calcium, Total	104		-	81-119	-	
Copper, Total 103 - 80-119 - Iron, Total 89 - 45-155 - Lead, Total 101 - 81-119 - Magnesium, Total 88 - 76-123 - Manganese, Total 102 - 81-119 - Nickel, Total 107 - 82-117 - Potassium, Total 85 - 71-128 - Selenium, Total 99 - 78-121 - Silver, Total 99 - 75-125 - Sodium, Total 104 - 71-128 - Thallium, Total 119 - 79-120 -	Chromium, Total	96		-	79-121	-	
Iron, Total 89 - 45-155 - Lead, Total 101 - 81-119 - Magnesium, Total 88 - 76-123 - Manganese, Total 102 - 81-119 - Nickel, Total 107 - 82-117 - Potassium, Total 85 - 71-128 - Selenium, Total 99 - 78-121 - Silver, Total 99 - 75-125 - Sodium, Total 104 - 71-128 - Thallium, Total 119 - 79-120 -	Cobalt, Total	106		-	83-117	-	
Lead, Total 101 - 81-119 - Magnesium, Total 88 - 76-123 - Manganese, Total 102 - 81-119 - Nickel, Total 107 - 82-117 - Potassium, Total 85 - 71-128 - Selenium, Total 99 - 78-121 - Silver, Total 99 - 75-125 - Sodium, Total 104 - 71-128 - Thallium, Total 119 - 79-120 -	Copper, Total	103		-	80-119	-	
Magnesium, Total 88 - 76-123 - Manganese, Total 102 - 81-119 - Nickel, Total 107 - 82-117 - Potassium, Total 85 - 71-128 - Selenium, Total 99 - 78-121 - Silver, Total 99 - 75-125 - Sodium, Total 104 - 71-128 - Thallium, Total 119 - 79-120 -	Iron, Total	89		-	45-155	-	
Manganese, Total 102 - 81-119 - Nickel, Total 107 - 82-117 - Potassium, Total 85 - 71-128 - Selenium, Total 99 - 78-121 - Silver, Total 99 - 75-125 - Sodium, Total 104 - 71-128 - Thallium, Total 119 - 79-120 -	Lead, Total	101		-	81-119	-	
Nickel, Total 107 - 82-117 - Potassium, Total 85 - 71-128 - Selenium, Total 99 - 78-121 - Silver, Total 99 - 75-125 - Sodium, Total 104 - 71-128 - Thallium, Total 119 - 79-120 -	Magnesium, Total	88		-	76-123	-	
Potassium, Total 85 - 71-128 - Selenium, Total 99 - 78-121 - Silver, Total 99 - 75-125 - Sodium, Total 104 - 71-128 - Thallium, Total 119 - 79-120 -	Manganese, Total	102		-	81-119	-	
Selenium, Total 99 - 78-121 - Silver, Total 99 - 75-125 - Sodium, Total 104 - 71-128 - Thallium, Total 119 - 79-120 -	Nickel, Total	107		-	82-117	-	
Silver, Total 99 - 75-125 - Sodium, Total 104 - 71-128 - Thallium, Total 119 - 79-120 -	Potassium, Total	85		-	71-128	-	
Sodium, Total 104 - 71-128 - Thallium, Total 119 - 79-120 -	Selenium, Total	99		-	78-121	-	
Thallium, Total - 79-120 -	Silver, Total	99		-	75-125	-	
	Sodium, Total	104		-	71-128	-	
Vanadium, Total - 77-122 -	Thallium, Total	119		-	79-120	-	
	Vanadium, Total	100		-	77-122	-	

Project Name: DESTINY - EMBASSY SUITES

Lab Number: L1625116

Project Number: 15209

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01-02 Batch: WG	922149-2 SRM Lot Numbe	r: D089-540		
Zinc, Total	109	-	80-119	-	

Matrix Spike Analysis Batch Quality Control

Project Name: DESTINY - EMBASSY SUITES

Project Number: 15209

Lab Number:

L1625116

Report Date:

08/18/16

Parameter Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD Q	RPD _{ual} Limits
Total Metals - Mansfield Lab	Associated sam	nple(s): 01-02	QC Bat	tch ID: WG922	146-4	QC Samp	ole: L1625111-0	1 Client ID: MS	Sample	
Mercury, Total	0.47	0.162	0.90	266	Q	-	-	80-120	-	20

Matrix Spike Analysis Batch Quality Control

Project Name: DESTINY - EMBASSY SUITES

Project Number: 15209

Lab Number: L1625116

arameter	Native Sample	MS Added	MS Found	MS %Recovery		MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield La	b Associated sar	mple(s): 01-02	QC Ba	tch ID: WG922	149-4	QC Samp	ole: L1625111-01	Client ID: MS	Sample	
Aluminum, Total	3500	195	4500	512	Q	-	-	75-125	-	20
Antimony, Total	0.99J	48.8	46	94		-	-	75-125	-	20
Arsenic, Total	6.1	11.7	20	118		-	-	75-125	-	20
Barium, Total	110	195	240	66	Q	-	-	75-125	-	20
Beryllium, Total	0.21J	4.88	5.0	102		-	-	75-125	-	20
Cadmium, Total	0.34J	4.98	5.0	100		-	-	75-125	-	20
Calcium, Total	280000	977	250000	0	Q	-	-	75-125	-	20
Chromium, Total	6.4	19.5	23	85		-	-	75-125	-	20
Cobalt, Total	3.4	48.8	44	83		-	-	75-125	-	20
Copper, Total	21.	24.4	48	110		-	-	75-125	-	20
Iron, Total	7800	97.7	9400	1640	Q	-	-	75-125	-	20
Lead, Total	31.	49.8	78	94		-	-	75-125	-	20
Magnesium, Total	23000	977	19000	0	Q	-	-	75-125	-	20
Manganese, Total	220	48.8	300	164	Q	-	-	75-125	-	20
Nickel, Total	9.9	48.8	50	82		-	-	75-125	-	20
Potassium, Total	560	977	1700	117		-	-	75-125	-	20
Selenium, Total	ND	11.7	12	102		-	-	75-125	-	20
Silver, Total	ND	29.3	33	112		-	-	75-125	-	20
Sodium, Total	420	977	1600	121		-	-	75-125	-	20
Thallium, Total	ND	11.7	6.6	56	Q	-	-	75-125	-	20
Vanadium, Total	13.	48.8	56	88		-	-	75-125	-	20

Matrix Spike Analysis Batch Quality Control

Project Name: DESTINY - EMBASSY SUITES

Project Number: 15209

Lab Number:

L1625116

Report Date:

08/18/16

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield La	b Associated san	nple(s): 01-02	2 QC Ba	tch ID: WG922149-4	QC Samp	ole: L1625111-01	Client ID: MS	Sample	
Zinc, Total	65.	48.8	120	112	-	-	75-125	-	20

Project Name: DESTINY - EMBASSY SUITES

Project Number: 15209

Lab Number:

L1625116

Report Date:

08/18/16

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 07	1-02 QC Batch ID:	WG922146-3 QC Sample:	L1625111-01	Client ID:	DUP Sample	
Mercury, Total	0.47	1.5	mg/kg	105	Q	20
Total Metals - Mansfield Lab Associated sample(s): 0	1-02 QC Batch ID:	WG922149-3 QC Sample:	L1625111-01	Client ID:	DUP Sample	.
Calcium, Total	280000	230000	mg/kg	20		20

Project Name: DESTINY - EMBASSY SUITES

Project Number: 15209

Lab Number: L1625116 **Report Date:** 08/18/16

arameter	Native Sample	Duplicate Sample	Units	RPD		RPD Limits
otal Metals - Mansfield Lab Associated sample(s): 01-02	QC Batch ID: WG9	22149-3 QC Sample:	L1625111-01	Client ID:	DUP Sample	
Aluminum, Total	3500	5400	mg/kg	43	Q	20
Antimony, Total	0.99J	0.86J	mg/kg	NC		20
Arsenic, Total	6.1	7.6	mg/kg	22	Q	20
Barium, Total	110	60	mg/kg	59	Q	20
Beryllium, Total	0.21J	0.30J	mg/kg	NC		20
Cadmium, Total	0.34J	0.42J	mg/kg	NC		20
Chromium, Total	6.4	8.1	mg/kg	23	Q	20
Cobalt, Total	3.4	4.1	mg/kg	19		20
Copper, Total	21.	27	mg/kg	25	Q	20
Iron, Total	7800	10000	mg/kg	25	Q	20
Lead, Total	31.	45	mg/kg	37	Q	20
Magnesium, Total	23000	18000	mg/kg	24	Q	20
Manganese, Total	220	260	mg/kg	17		20
Nickel, Total	9.9	11	mg/kg	11		20
Potassium, Total	560	670	mg/kg	18		20
Selenium, Total	ND	ND	mg/kg	NC		20
Silver, Total	ND	ND	mg/kg	NC		20
Sodium, Total	420	450	mg/kg	7		20
Thallium, Total	ND	ND	mg/kg	NC		20

Project Name: DESTINY - EMBASSY SUITES

Project Number: 15209

Lab Number:

L1625116

Report Date:

08/18/16

Parameter	Native Sample D	uplicate Sample	Units	RPD	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01-0	2 QC Batch ID: WG92214	9-3 QC Sample:	L1625111-01	Client ID:	DUP Sample
Vanadium, Total	13.	15	mg/kg	14	20
Zinc, Total	65.	79	mg/kg	19	20

INORGANICS & MISCELLANEOUS

Serial_No:08181621:10

Project Name: DESTINY - EMBASSY SUITES Lab Number: L1625116

Project Number: 15209 Report Date: 08/18/16

SAMPLE RESULTS

Lab ID: L1625116-01

Client ID: 19

Sample Location: SYRACUSE, NY

Matrix: Soil

Date Collected: 08/10/16 12:00

Date Received: 08/11/16

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab)								
Solids, Total	83.5		%	0.100	NA	1	-	08/12/16 14:55	121,2540G	RI

Serial_No:08181621:10

Project Name: DESTINY - EMBASSY SUITES Lab Number: L1625116

Project Number: 15209 Report Date: 08/18/16

SAMPLE RESULTS

Lab ID: L1625116-02

Client ID: 20

Sample Location: SYRACUSE, NY

Matrix: Soil

Date Collected: 08/11/16 08:30

Date Received: 08/11/16

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab)								
Solids, Total	80.7		%	0.100	NA	1	-	08/12/16 14:55	121,2540G	RI

Lab Number: **Project Name: DESTINY - EMBASSY SUITES** L1625116 **Project Number:** Report Date: 08/18/16 15209

Native Sample **Parameter Duplicate Sample** Units **RPD** Qual **RPD Limits**

General Chemistry - Westborough Lab Associated sample(s): 01-02 QC Batch ID: WG922337-2 QC Sample: L1625115-01 Client ID: DUP Sample Solids, Total 43.9 20 41.1 % 7

Serial_No:08181621:10

Lab Number: L1625116

Project Name: DESTINY - EMBASSY SUITES

Project Number: 15209 Report Date: 08/18/16

Sample Receipt and Container Information

Were project specific reporting limits specified?

Reagent H2O Preserved Vials Frozen on: 08/12/2016 02:43

Cooler Information Custody Seal

Cooler

A Absent

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1625116-01A	Vial MeOH preserved	Α	N/A	4.1	Υ	Absent	NYTCL-8260HLW-R2(14)
L1625116-01B	Vial water preserved	Α	N/A	4.1	Υ	Absent	NYTCL-8260HLW-R2(14)
L1625116-01C	Vial water preserved	Α	N/A	4.1	Υ	Absent	NYTCL-8260HLW-R2(14)
L1625116-01D	Glass 120ml/4oz unpreserved	Α	N/A	4.1	Υ	Absent	NYTCL-8270(14)
L1625116-01E	Metals Only - Glass 60mL/2oz unp	A	N/A	4.1	Y	Absent	BE-TI(180),AS-TI(180),BA-TI(180),AG-TI(180),AL-TI(180),CR-TI(180),NI-TI(180),TL-TI(180),CU-TI(180),PB-TI(180),SB-TI(180),SE-TI(180),CO-TI(180),V-TI(180),FE-TI(180),HG-T(28),MG-TI(180),MN-TI(180),CA-TI(180),CD-TI(180),K-TI(180),K-TI(180),NA-TI(180),K-TI(180),NA-TI(180)
L1625116-01F	Plastic 2oz unpreserved for TS	Α	N/A	4.1	Υ	Absent	TS(7)
L1625116-02A	Vial MeOH preserved	Α	N/A	4.1	Υ	Absent	NYTCL-8260HLW-R2(14)
L1625116-02B	Vial water preserved	Α	N/A	4.1	Υ	Absent	NYTCL-8260HLW-R2(14)
L1625116-02C	Vial water preserved	Α	N/A	4.1	Υ	Absent	NYTCL-8260HLW-R2(14)
L1625116-02D	Glass 120ml/4oz unpreserved	Α	N/A	4.1	Υ	Absent	NYTCL-8270(14)
L1625116-02E	Metals Only - Glass 60mL/2oz unp	A	N/A	4.1	Y	Absent	BE-TI(180),AS-TI(180),BA-TI(180),AG-TI(180),AL-TI(180),CR-TI(180),NI-TI(180),TL-TI(180),CU-TI(180),PB-TI(180),SB-TI(180),SE-TI(180),CO-TI(180),CO-TI(180),CO-TI(180),HG-T(28),MG-TI(180),MN-TI(180),CA-TI(180),CD-TI(180),K-TI(180),K-TI(180),CD-TI(180),K-TI(180),K-TI(180),NA-TI(180)
L1625116-02F	Plastic 2oz unpreserved for TS	Α	N/A	4.1	Υ	Absent	TS(7)

Project Name:DESTINY - EMBASSY SUITESLab Number:L1625116Project Number:15209Report Date:08/18/16

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

-The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: DU Report with 'J' Qualifiers

Project Name:DESTINY - EMBASSY SUITESLab Number:L1625116Project Number:15209Report Date:08/18/16

Data Qualifiers

- reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Serial_No:08181621:10

Project Name:DESTINY - EMBASSY SUITESLab Number:L1625116Project Number:15209Report Date:08/18/16

REFERENCES

1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:08181621:10

Alpha Analytical, Inc.
Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 7

Page 1 of 1

Published Date: 8/5/2016 11:25:56 AM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; Azobenzene; A

Tetramethylbenzene: 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide **EPA 9050A:** NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

SM 2540D: TSS **EPA 3005A** NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form Pre-Qualtrax Document ID: 08-113

Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Cod Project Information Project Name:	/ay		Page						7/1:	2/1			ALPHA Job # LIG25116 Billing Information Same as Client Info	
FAX: 508-898-9193 Client Information	FAX: 508-822-3288	1 /2	racuse	NY				Othe				EQu	IS (4 F	ile)	PO#	
Address: 19 Britis Latham Phone: 518-78 Fax:	Environmental LAMERICAN Blod NY 12110 2-0887 Despectaens Com	Project Manager: Fr ALPHAQuote #: Turn-Around Time Standard	e Project name as Project #) ject Manager: Frank Peduto PHAQuote #: urn-Around Time Standard A Due Date: Sh (only if pre approved) A Days: 7 DAY					Regulatory Requirement NY TOGS NY Part 375 AWQ Standards NY CP-51 NY Restricted Use Other NY Unrestricted Use NYC Sewer Discharge						Disposal Site Information Please identify below location of applicable disposal facilities. Disposal Facility: NJ NY Other:		
These samples have b	een previously analyz	ed by Alpha						YSIS							Sample Filtration	T
Other project specific		nents:					rracore	2201	Otul Metals						☐ Done ☐ Lab to do Preservation ☐ Lab to do (Please Specify below)	t a l B o t
ALPHA Lab ID (Lab Use Only)	Sa	mple ID	Colle Date	ection Time	Sample Matrix	Sampler's Initials	1/6	S	101						Sample Specific Comments	t l e
25116-01		8 8A 19 20	8/10/16	11:00 11:10 12:00 08:30	SOIL SOIL SOIL	γω γω γω γω	×	XXX	×××						2-DAY TAT 2-DAY TAT STANDARD TAT STANDARD TAT	
							•								V 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Preservative Code: A = None B = HCl C = HNO ₃ D = H ₂ SO ₄	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup	Westboro: Certification No Mansfield: Certification No				tainer Type		A A	A						Please print clearly, legibly and completely. Samples c not be logged in and turnaround time clock will n start until any ambiguities a	an ot
$E = NaOH$ $F = MeOH$ $G = NaHSO_4$ $H = Na_2S_2O_3$ $K/E = Zn Ac/NaOH$ $O = Other$	C = Cube O = Other E = Encore D = BOD Bottle	Relinquished E	By:	Date/		Rling	Receiv	ed By	Λ.	H	-	Date I-IE		2,40	resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA TERMS & CONDITIONS.	
Form No: 01-25 HC (rev. 3	0-Sept-2013)	, if it.										-85			(See reverse side.)	

ANALYTICAL REPORT

Lab Number: L1626169

Client: Spectra Environmental Group

19 British American Blvd.

Latham, NY 12110

ATTN: Frank Peduto
Phone: (518) 782-0882

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209 Report Date: 08/26/16

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209 Lab Number: L1626169

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1626169-01	23	SOIL	SYRACUSE, NY	08/19/16 13:45	08/19/16
L1626169-02	21	SOIL	SYRACUSE, NY	08/19/16 09:30	08/19/16
L1626169-03	24	SOIL	SYRACUSE, NY	08/19/16 14:00	08/19/16

Project Name:DESTINY-EMBASSY SUITESLab Number:L1626169Project Number:15209Report Date:08/26/16

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any guestions.

Project Name:DESTINY-EMBASSY SUITESLab Number:L1626169Project Number:15209Report Date:08/26/16

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

L1626169-01 and -02: The analysis of Volatile Organics by EPA Method 5035/8260 Low Level could not be performed due to the elevated concentrations of non-target compounds in the sample.

L1626169-03: Any reported concentrations that are below 200 ug/kg may be biased low due to the sample not being collected according to 5035-L/5035A-L low-level specifications.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 08/26/16

Melissa Cripps Melissa Cripps

ALPHA

ORGANICS

VOLATILES

L1626169

08/26/16

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Date Collected: 08/19/16 13:45

Lab Number:

Report Date:

Date Received: 08/19/16
Field Prep: Not Specified

Lab ID: L1626169-01

Client ID: 23

Sample Location: SYRACUSE, NY

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 08/26/16 13:39

Analyst: BD Percent Solids: 74%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - We	stborough Lab					
Methylene chloride	ND		mg/kg	0.72	0.080	1
1,1-Dichloroethane	ND		mg/kg	0.11	0.0062	1
Chloroform	ND		mg/kg	0.11	0.027	1
Carbon tetrachloride	ND		mg/kg	0.072	0.015	1
1,2-Dichloropropane	ND		mg/kg	0.25	0.016	1
Dibromochloromethane	ND		mg/kg	0.072	0.011	1
1,1,2-Trichloroethane	ND		mg/kg	0.11	0.022	1
Tetrachloroethene	ND		mg/kg	0.072	0.010	1
Chlorobenzene	ND		mg/kg	0.072	0.025	1
Trichlorofluoromethane	ND		mg/kg	0.36	0.028	1
1,2-Dichloroethane	ND		mg/kg	0.072	0.0082	1
1,1,1-Trichloroethane	ND		mg/kg	0.072	0.0080	1
Bromodichloromethane	ND		mg/kg	0.072	0.012	1
trans-1,3-Dichloropropene	ND		mg/kg	0.072	0.0087	1
cis-1,3-Dichloropropene	ND		mg/kg	0.072	0.0085	1
Bromoform	ND		mg/kg	0.29	0.017	1
1,1,2,2-Tetrachloroethane	ND		mg/kg	0.072	0.0073	1
Benzene	0.011	J	mg/kg	0.072	0.0085	1
Toluene	0.084	J	mg/kg	0.11	0.014	1
Ethylbenzene	0.0095	J	mg/kg	0.072	0.0092	1
Chloromethane	ND		mg/kg	0.36	0.021	1
Bromomethane	ND		mg/kg	0.14	0.024	1
Vinyl chloride	ND		mg/kg	0.14	0.0085	1
Chloroethane	ND		mg/kg	0.14	0.023	1
1,1-Dichloroethene	ND		mg/kg	0.072	0.019	1
trans-1,2-Dichloroethene	ND		mg/kg	0.11	0.015	1
Trichloroethene	ND		mg/kg	0.072	0.0090	1
1,2-Dichlorobenzene	ND		mg/kg	0.36	0.011	1
1,3-Dichlorobenzene	ND		mg/kg	0.36	0.0098	1
1,4-Dichlorobenzene	ND		mg/kg	0.36	0.010	1

08/19/16 13:45

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1626169

Project Number: 15209 Report Date: 08/26/16

SAMPLE RESULTS

Lab ID: L1626169-01 Date Collected:

Client ID: 23 Date Received: 08/19/16

Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - West	borough Lab					
Methyl tert butyl ether	ND		mg/kg	0.14	0.0061	1
p/m-Xylene	0.022	J	mg/kg	0.14	0.014	 1
· · ·	ND	J		0.14	0.014	1
o-Xylene			mg/kg			
cis-1,2-Dichloroethene	ND		mg/kg	0.072	0.010	1
Styrene	ND		mg/kg	0.14	0.029	1
Dichlorodifluoromethane	ND		mg/kg	0.72	0.014	1
Acetone	0.23	J	mg/kg	0.72	0.075	1
Carbon disulfide	ND		mg/kg	0.72	0.080	1
2-Butanone	0.18	J	mg/kg	0.72	0.020	1
4-Methyl-2-pentanone	ND		mg/kg	0.72	0.018	1
2-Hexanone	ND		mg/kg	0.72	0.048	1
Bromochloromethane	ND		mg/kg	0.36	0.020	1
1,2-Dibromoethane	ND		mg/kg	0.29	0.013	1
1,2-Dibromo-3-chloropropane	ND		mg/kg	0.36	0.029	1
Isopropylbenzene	0.014	J	mg/kg	0.072	0.0075	1
1,2,3-Trichlorobenzene	ND		mg/kg	0.36	0.011	1
1,2,4-Trichlorobenzene	ND		mg/kg	0.36	0.013	1
Methyl Acetate	0.082	J	mg/kg	1.4	0.020	1
Cyclohexane	ND		mg/kg	1.4	0.010	1
1,4-Dioxane	ND		mg/kg	7.2	1.0	1
Freon-113	ND		mg/kg	1.4	0.020	1
Methyl cyclohexane	ND		mg/kg	0.29	0.011	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	85		70-130	
Toluene-d8	106		70-130	
4-Bromofluorobenzene	111		70-130	
Dibromofluoromethane	96		70-130	

L1626169

08/19/16

Not Specified

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Report Date: 08/26/16

Lab Number:

Date Received:

Field Prep:

Lab ID: L1626169-02 Date Collected: 08/19/16 09:30

Client ID: 21

Sample Location: SYRACUSE, NY

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 08/26/16 14:07

Analyst: BD84% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - West	borough Lab					
Methylene chloride	ND		mg/kg	0.62	0.069	1
1,1-Dichloroethane	ND		mg/kg	0.093	0.0053	1
Chloroform	ND		mg/kg	0.093	0.023	1
Carbon tetrachloride	ND		mg/kg	0.062	0.013	1
1,2-Dichloropropane	ND		mg/kg	0.22	0.014	1
Dibromochloromethane	ND		mg/kg	0.062	0.0096	1
1,1,2-Trichloroethane	ND		mg/kg	0.093	0.019	1
Tetrachloroethene	ND		mg/kg	0.062	0.0087	1
Chlorobenzene	ND		mg/kg	0.062	0.022	1
Trichlorofluoromethane	ND		mg/kg	0.31	0.024	1
1,2-Dichloroethane	ND		mg/kg	0.062	0.0071	1
1,1,1-Trichloroethane	ND		mg/kg	0.062	0.0069	1
Bromodichloromethane	ND		mg/kg	0.062	0.011	1
trans-1,3-Dichloropropene	ND		mg/kg	0.062	0.0075	1
cis-1,3-Dichloropropene	ND		mg/kg	0.062	0.0073	1
Bromoform	ND		mg/kg	0.25	0.015	1
1,1,2,2-Tetrachloroethane	ND		mg/kg	0.062	0.0063	1
Benzene	0.10		mg/kg	0.062	0.0073	1
Toluene	0.30		mg/kg	0.093	0.012	1
Ethylbenzene	0.085		mg/kg	0.062	0.0079	1
Chloromethane	ND		mg/kg	0.31	0.018	1
Bromomethane	ND		mg/kg	0.12	0.021	1
Vinyl chloride	ND		mg/kg	0.12	0.0073	1
Chloroethane	ND		mg/kg	0.12	0.020	1
1,1-Dichloroethene	ND		mg/kg	0.062	0.016	1
trans-1,2-Dichloroethene	ND		mg/kg	0.093	0.013	1
Trichloroethene	ND		mg/kg	0.062	0.0078	1
1,2-Dichlorobenzene	ND		mg/kg	0.31	0.0095	1
1,3-Dichlorobenzene	ND		mg/kg	0.31	0.0084	1
1,4-Dichlorobenzene	ND		mg/kg	0.31	0.0086	1

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1626169

Project Number: 15209 Report Date: 08/26/16

SAMPLE RESULTS

Lab ID: L1626169-02

Client ID: 21

Sample Location: SYRACUSE, NY

Date Collected: 08/19/16 09:30

Date Received: 08/19/16
Field Prep: Not Specified

Parameter Result Qualifier Units RLMDL **Dilution Factor** Volatile Organics by 8260/5035 - Westborough Lab Methyl tert butyl ether ND 0.12 0.0052 mg/kg 1 p/m-Xylene 0.24 mg/kg 0.12 0.012 1 J o-Xylene 0.054 0.12 0.011 1 mg/kg ND 0.0089 cis-1,2-Dichloroethene 0.062 1 mg/kg Styrene ND 0.12 0.025 1 mg/kg Dichlorodifluoromethane ND 0.62 0.012 1 mg/kg J Acetone 0.33 0.62 0.064 1 mg/kg Carbon disulfide ND 0.62 1 mg/kg 0.069 J 2-Butanone 0.58 mg/kg 0.62 0.017 1 4-Methyl-2-pentanone ND 0.62 0.015 1 mg/kg ND 0.62 2-Hexanone mg/kg 0.041 1 Bromochloromethane ND 0.31 0.017 1 mg/kg 1,2-Dibromoethane ND 0.25 0.011 1 mg/kg ND 0.31 0.025 1 1,2-Dibromo-3-chloropropane mg/kg Isopropylbenzene 0.017 J 0.062 0.0065 1 mg/kg 1,2,3-Trichlorobenzene ND 0.31 0.0092 1 mg/kg ND 1,2,4-Trichlorobenzene 0.31 0.011 mg/kg 1 Methyl Acetate 0.37 J 1.2 0.017 1 mg/kg Cyclohexane ND 1.2 0.0091 1 mg/kg 1,4-Dioxane ND 6.2 1 0.90 mg/kg Freon-113 ND 1.2 0.017 1 mg/kg Methyl cyclohexane 0.096 J mg/kg 0.25 0.0096 1

L1626169

Project Name: DESTINY-EMBASSY SUITES

L1626169-03

Project Number: 15209

Lab ID:

SAMPLE RESULTS

Report Date: 08/26/16

Lab Number:

Date Collected: 08/19/16 14:00

Client ID: 24 Date Received: 08/19/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified
Matrix: Soil

Analytical Method: 1,8260C Analytical Date: 08/25/16 17:43

Analyst: MV Percent Solids: 89%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	orough Lab					
Methylene chloride	ND		mg/kg	0.011	0.0012	1
1,1-Dichloroethane	ND		mg/kg	0.0016	0.00009	1
Chloroform	ND		mg/kg	0.0016	0.00040	1
Carbon tetrachloride	ND		mg/kg	0.0011	0.00023	1
1,2-Dichloropropane	ND		mg/kg	0.0038	0.00024	1
Dibromochloromethane	ND		mg/kg	0.0011	0.00016	1
1,1,2-Trichloroethane	ND		mg/kg	0.0016	0.00033	1
Tetrachloroethene	ND		mg/kg	0.0011	0.00015	1
Chlorobenzene	ND		mg/kg	0.0011	0.00037	1
Trichlorofluoromethane	ND		mg/kg	0.0054	0.00042	1
1,2-Dichloroethane	ND		mg/kg	0.0011	0.00012	1
1,1,1-Trichloroethane	ND		mg/kg	0.0011	0.00012	1
Bromodichloromethane	ND		mg/kg	0.0011	0.00019	1
trans-1,3-Dichloropropene	ND		mg/kg	0.0011	0.00013	1
cis-1,3-Dichloropropene	ND		mg/kg	0.0011	0.00013	1
Bromoform	ND		mg/kg	0.0043	0.00025	1
1,1,2,2-Tetrachloroethane	ND		mg/kg	0.0011	0.00011	1
Benzene	ND		mg/kg	0.0011	0.00013	1
Toluene	ND		mg/kg	0.0016	0.00021	1
Ethylbenzene	ND		mg/kg	0.0011	0.00014	1
Chloromethane	ND		mg/kg	0.0054	0.00032	1
Bromomethane	ND		mg/kg	0.0022	0.00036	1
Vinyl chloride	ND		mg/kg	0.0022	0.00013	1
Chloroethane	ND		mg/kg	0.0022	0.00034	1
1,1-Dichloroethene	ND		mg/kg	0.0011	0.00028	1
trans-1,2-Dichloroethene	ND		mg/kg	0.0016	0.00023	1
Trichloroethene	ND		mg/kg	0.0011	0.00013	1
1,2-Dichlorobenzene	ND		mg/kg	0.0054	0.00016	1
1,3-Dichlorobenzene	ND		mg/kg	0.0054	0.00014	1
1,4-Dichlorobenzene	ND		mg/kg	0.0054	0.00015	1

Project Name: Lab Number: **DESTINY-EMBASSY SUITES** L1626169

Project Number: Report Date: 15209 08/26/16

SAMPLE RESULTS

Lab ID: L1626169-03

Date Collected: 08/19/16 14:00 Client ID: 24 Date Received: 08/19/16

Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboro	ugh Lab					
Methyl tert butyl ether	ND		mg/kg	0.0022	0.00009	1
p/m-Xylene	ND		mg/kg	0.0022	0.00021	1
o-Xylene	ND		mg/kg	0.0022	0.00018	1
cis-1,2-Dichloroethene	ND		mg/kg	0.0011	0.00015	1
Styrene	ND		mg/kg	0.0022	0.00043	1
Dichlorodifluoromethane	ND		mg/kg	0.011	0.00020	1
Acetone	ND		mg/kg	0.011	0.0011	1
Carbon disulfide	ND		mg/kg	0.011	0.0012	1
2-Butanone	ND		mg/kg	0.011	0.00029	1
4-Methyl-2-pentanone	ND		mg/kg	0.011	0.00026	1
2-Hexanone	ND		mg/kg	0.011	0.00072	1
Bromochloromethane	ND		mg/kg	0.0054	0.00030	1
1,2-Dibromoethane	ND		mg/kg	0.0043	0.00019	1
1,2-Dibromo-3-chloropropane	ND		mg/kg	0.0054	0.00043	1
Isopropylbenzene	ND		mg/kg	0.0011	0.00011	1
1,2,3-Trichlorobenzene	ND		mg/kg	0.0054	0.00016	1
1,2,4-Trichlorobenzene	ND		mg/kg	0.0054	0.00020	1
Methyl Acetate	ND		mg/kg	0.022	0.00029	1
Cyclohexane	ND		mg/kg	0.022	0.00016	1
1,4-Dioxane	ND		mg/kg	0.11	0.016	1
Freon-113	ND		mg/kg	0.022	0.00030	1
Methyl cyclohexane	ND		mg/kg	0.0043	0.00017	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	94		70-130	
Toluene-d8	105		70-130	
4-Bromofluorobenzene	107		70-130	
Dibromofluoromethane	101		70-130	

Project Number: 15209 Report Date: 08/26/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/25/16 09:41

Analyst: BN

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS	- Westborough Lab	for sampl	e(s): 03	Batch:	WG926280-5	
Methylene chloride	ND		mg/kg	0.010	0.0011	
1,1-Dichloroethane	ND		mg/kg	0.0015	0.00008	
Chloroform	ND		mg/kg	0.0015	0.00037	
Carbon tetrachloride	ND		mg/kg	0.0010	0.00021	
1,2-Dichloropropane	ND		mg/kg	0.0035	0.00023	
Dibromochloromethane	ND		mg/kg	0.0010	0.00015	
1,1,2-Trichloroethane	ND		mg/kg	0.0015	0.00030	
Tetrachloroethene	ND		mg/kg	0.0010	0.00014	
Chlorobenzene	ND		mg/kg	0.0010	0.00035	
Trichlorofluoromethane	ND		mg/kg	0.0050	0.00039	
1,2-Dichloroethane	ND		mg/kg	0.0010	0.00011	
1,1,1-Trichloroethane	ND		mg/kg	0.0010	0.00011	
Bromodichloromethane	ND		mg/kg	0.0010	0.00017	
trans-1,3-Dichloropropene	ND		mg/kg	0.0010	0.00012	
cis-1,3-Dichloropropene	ND		mg/kg	0.0010	0.00012	
Bromoform	ND		mg/kg	0.0040	0.00024	
1,1,2,2-Tetrachloroethane	ND		mg/kg	0.0010	0.00010	
Benzene	ND		mg/kg	0.0010	0.00012	
Toluene	0.00036	J	mg/kg	0.0015	0.00019	
Ethylbenzene	ND		mg/kg	0.0010	0.00013	
Chloromethane	0.00082	J	mg/kg	0.0050	0.00029	
Bromomethane	0.00079	J	mg/kg	0.0020	0.00034	
Vinyl chloride	ND		mg/kg	0.0020	0.00012	
Chloroethane	ND		mg/kg	0.0020	0.00032	
1,1-Dichloroethene	ND		mg/kg	0.0010	0.00026	
trans-1,2-Dichloroethene	ND		mg/kg	0.0015	0.00021	
Trichloroethene	ND		mg/kg	0.0010	0.00012	
1,2-Dichlorobenzene	ND		mg/kg	0.0050	0.00015	
1,3-Dichlorobenzene	ND		mg/kg	0.0050	0.00014	

L1626169

Project Name: DESTINY-EMBASSY SUITES Lab Number:

Project Number: 15209 Report Date: 08/26/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/25/16 09:41

Analyst: BN

Parameter	Result	Qualifier	Units		RL	MDL
olatile Organics by GC/MS -	Westborough Lab	o for samp	le(s): C	03	Batch:	WG926280-5
1,4-Dichlorobenzene	ND		mg/kg		0.0050	0.00014
Methyl tert butyl ether	ND		mg/kg		0.0020	0.00008
p/m-Xylene	ND		mg/kg		0.0020	0.00020
o-Xylene	ND		mg/kg		0.0020	0.00017
cis-1,2-Dichloroethene	ND		mg/kg		0.0010	0.00014
Styrene	ND		mg/kg		0.0020	0.00040
Dichlorodifluoromethane	ND		mg/kg		0.010	0.00019
Acetone	0.0028	J	mg/kg		0.010	0.0010
Carbon disulfide	ND		mg/kg		0.010	0.0011
2-Butanone	ND		mg/kg		0.010	0.00027
4-Methyl-2-pentanone	ND		mg/kg		0.010	0.00024
2-Hexanone	ND		mg/kg		0.010	0.00067
Bromochloromethane	ND		mg/kg		0.0050	0.00028
1,2-Dibromoethane	ND		mg/kg		0.0040	0.00017
1,2-Dibromo-3-chloropropane	ND		mg/kg		0.0050	0.00040
Isopropylbenzene	ND		mg/kg		0.0010	0.00010
1,2,3-Trichlorobenzene	ND		mg/kg		0.0050	0.00015
1,2,4-Trichlorobenzene	ND		mg/kg		0.0050	0.00018
Methyl Acetate	ND		mg/kg		0.020	0.00027
Cyclohexane	ND		mg/kg		0.020	0.00015
1,4-Dioxane	ND		mg/kg		0.10	0.014
Freon-113	ND		mg/kg		0.020	0.00027
Methyl cyclohexane	ND		mg/kg		0.0040	0.00015

Project Number: 15209 Report Date: 08/26/16

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/25/16 09:41

Analyst: BN

ParameterResultQualifierUnitsRLMDLVolatile Organics by GC/MS - Westborough Lab for sample(s):03Batch:WG926280-5

		Accepta					
Surrogate	%Recovery	Qualifier	Criteria				
1,2-Dichloroethane-d4	88		70-130				
Toluene-d8	105		70-130				
4-Bromofluorobenzene	106		70-130				
Dibromofluoromethane	99		70-130				

Project Number: 15209 Report Date: 08/26/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/26/16 08:35

Analyst: MV

Parameter	Result	Qualifier	Units	RL	_	MDL	
Volatile Organics by 8260/5035 -	Westborough	Lab for sa	mple(s):	01-02	Batch:	WG926425-5	
Methylene chloride	ND		mg/kg	0.5	0	0.055	
1,1-Dichloroethane	ND		mg/kg	0.07	75	0.0043	
Chloroform	ND		mg/kg	0.07	75	0.018	
Carbon tetrachloride	ND		mg/kg	0.05	50	0.010	
1,2-Dichloropropane	ND		mg/kg	0.1	8	0.011	
Dibromochloromethane	ND		mg/kg	0.05	50	0.0077	
1,1,2-Trichloroethane	ND		mg/kg	0.07	75	0.015	
Tetrachloroethene	ND		mg/kg	0.05	50	0.0070	
Chlorobenzene	ND		mg/kg	0.05	50	0.017	
Trichlorofluoromethane	ND		mg/kg	0.2	5	0.019	
1,2-Dichloroethane	ND		mg/kg	0.05	50	0.0057	
1,1,1-Trichloroethane	ND		mg/kg	0.05	50	0.0055	
Bromodichloromethane	ND		mg/kg	0.05	50	0.0087	
trans-1,3-Dichloropropene	ND		mg/kg	0.05	50	0.0060	
cis-1,3-Dichloropropene	ND		mg/kg	0.05	50	0.0059	
Bromoform	ND		mg/kg	0.2	0	0.012	
1,1,2,2-Tetrachloroethane	ND		mg/kg	0.05	50	0.0050	
Benzene	ND		mg/kg	0.05	50	0.0059	
Toluene	ND		mg/kg	0.07	75	0.0097	
Ethylbenzene	ND		mg/kg	0.05	50	0.0064	
Chloromethane	ND		mg/kg	0.2	5	0.015	
Bromomethane	0.038	J	mg/kg	0.1	0	0.017	
Vinyl chloride	ND		mg/kg	0.1	0	0.0059	
Chloroethane	ND		mg/kg	0.1	0	0.016	
1,1-Dichloroethene	ND		mg/kg	0.05	50	0.013	
trans-1,2-Dichloroethene	ND		mg/kg	0.07	75	0.011	
Trichloroethene	ND		mg/kg	0.05	50	0.0062	
1,2-Dichlorobenzene	ND		mg/kg	0.2	5	0.0077	
1,3-Dichlorobenzene	ND		mg/kg	0.2	5	0.0068	

Project Number: 15209 Report Date: 08/26/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/26/16 08:35

Analyst: MV

arameter	Result	Qualifier	Units	RL	-	MDL	
olatile Organics by 8260/5035	- Westborough	Lab for sa	mple(s):	01-02	Batch:	WG926425-5	
1,4-Dichlorobenzene	ND		mg/kg	0.2	5	0.0069	
Methyl tert butyl ether	ND		mg/kg	0.1	0	0.0042	
p/m-Xylene	ND		mg/kg	0.1	0	0.0099	
o-Xylene	ND		mg/kg	0.1	0	0.0086	
cis-1,2-Dichloroethene	ND		mg/kg	0.05	50	0.0071	
Styrene	ND		mg/kg	0.1	0	0.020	
Dichlorodifluoromethane	ND		mg/kg	0.5	0	0.0095	
Acetone	ND		mg/kg	0.5	0	0.052	
Carbon disulfide	ND		mg/kg	0.5	0	0.055	
2-Butanone	ND		mg/kg	0.5	0	0.014	
4-Methyl-2-pentanone	ND		mg/kg	0.5	0	0.012	
2-Hexanone	ND		mg/kg	0.5	0	0.033	
Bromochloromethane	ND		mg/kg	0.2	5	0.014	
1,2-Dibromoethane	ND		mg/kg	0.2	0	0.0087	
1,2-Dibromo-3-chloropropane	ND		mg/kg	0.2	5	0.020	
Isopropylbenzene	ND		mg/kg	0.05	50	0.0052	
1,2,3-Trichlorobenzene	ND		mg/kg	0.2	5	0.0074	
1,2,4-Trichlorobenzene	ND		mg/kg	0.2	5	0.0091	
Methyl Acetate	ND		mg/kg	1.0)	0.014	
Cyclohexane	ND		mg/kg	1.0)	0.0073	
1,4-Dioxane	ND		mg/kg	5.0)	0.72	
Freon-113	ND		mg/kg	1.0)	0.014	
Methyl cyclohexane	ND		mg/kg	0.2	0	0.0077	

Project Number: 15209 Report Date: 08/26/16

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/26/16 08:35

Analyst: MV

ParameterResultQualifierUnitsRLMDLVolatile Organics by 8260/5035 - Westborough Lab for sample(s):01-02Batch:WG926425-5

			Acceptance			
Surrogate	%Recovery	Qualifier	Criteria			
1,2-Dichloroethane-d4	98		70-130			
Toluene-d8	103		70-130			
4-Bromofluorobenzene	104		70-130			
Dibromofluoromethane	102		70-130			

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number: L1626169

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): (03 Batch: WG9	926280-3	WG926280-4		
Methylene chloride	111		116		70-130	4	30
1,1-Dichloroethane	100		106		70-130	6	30
Chloroform	96		100		70-130	4	30
Carbon tetrachloride	82		90		70-130	9	30
1,2-Dichloropropane	102		106		70-130	4	30
Dibromochloromethane	93		96		70-130	3	30
2-Chloroethylvinyl ether	102		103		70-130	1	30
1,1,2-Trichloroethane	105		106		70-130	1	30
Tetrachloroethene	96		103		70-130	7	30
Chlorobenzene	101		103		70-130	2	30
Trichlorofluoromethane	78		88		70-139	12	30
1,2-Dichloroethane	84		88		70-130	5	30
1,1,1-Trichloroethane	85		93		70-130	9	30
Bromodichloromethane	90		94		70-130	4	30
trans-1,3-Dichloropropene	99		102		70-130	3	30
cis-1,3-Dichloropropene	98		102		70-130	4	30
1,1-Dichloropropene	93		102		70-130	9	30
Bromoform	96		97		70-130	1	30
1,1,2,2-Tetrachloroethane	112		113		70-130	1	30
Benzene	98		104		70-130	6	30
Toluene	101		105		70-130	4	30

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number: L1626169

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0	3 Batch: WG9	926280-3	WG926280-4			
Ethylbenzene	98		103		70-130	5	30	
Chloromethane	78		86		52-130	10	30	
Bromomethane	88		99		57-147	12	30	
Vinyl chloride	80		93		67-130	15	30	
Chloroethane	102		114		50-151	11	30	
1,1-Dichloroethene	100		110		65-135	10	30	
trans-1,2-Dichloroethene	103		112		70-130	8	30	
Trichloroethene	94		102		70-130	8	30	
1,2-Dichlorobenzene	99		101		70-130	2	30	
1,3-Dichlorobenzene	101		103		70-130	2	30	
1,4-Dichlorobenzene	100		103		70-130	3	30	
Methyl tert butyl ether	107		105		66-130	2	30	
p/m-Xylene	99		104		70-130	5	30	
o-Xylene	101		105		70-130	4	30	
cis-1,2-Dichloroethene	104		110		70-130	6	30	
Dibromomethane	95		99		70-130	4	30	
Styrene	100		104		70-130	4	30	
Dichlorodifluoromethane	71		80		30-146	12	30	
Acetone	82		86		54-140	5	30	
Carbon disulfide	93		103		59-130	10	30	
2-Butanone	89		92		70-130	3	30	

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number: L1626169

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): (3 Batch: WG9	26280-3 WC	926280-4			
Vinyl acetate	92		94		70-130	2	30	
4-Methyl-2-pentanone	96		96		70-130	0	30	
1,2,3-Trichloropropane	105		106		68-130	1	30	
2-Hexanone	88		90		70-130	2	30	
Bromochloromethane	105		107		70-130	2	30	
2,2-Dichloropropane	89		95		70-130	7	30	
1,2-Dibromoethane	100		103		70-130	3	30	
1,3-Dichloropropane	103		105		69-130	2	30	
1,1,1,2-Tetrachloroethane	95		98		70-130	3	30	
Bromobenzene	103		106		70-130	3	30	
n-Butylbenzene	99		104		70-130	5	30	
sec-Butylbenzene	100		106		70-130	6	30	
tert-Butylbenzene	100		105		70-130	5	30	
o-Chlorotoluene	104		105		70-130	1	30	
p-Chlorotoluene	102		106		70-130	4	30	
1,2-Dibromo-3-chloropropane	94		93		68-130	1	30	
Hexachlorobutadiene	95		103		67-130	8	30	
Isopropylbenzene	103		108		70-130	5	30	
p-Isopropyltoluene	100		106		70-130	6	30	
Naphthalene	100		100		70-130	0	30	
Acrylonitrile	97		98		70-130	1	30	

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number: L1626169

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough I	_ab Associated	sample(s):	03 Batch: WG9	26280-3	WG926280-4			
Isopropyl Ether	100		102		66-130	2	30	
tert-Butyl Alcohol	94		93		70-130	1	30	
n-Propylbenzene	102		107		70-130	5	30	
1,2,3-Trichlorobenzene	100		100		70-130	0	30	
1,2,4-Trichlorobenzene	101		102		70-130	1	30	
1,3,5-Trimethylbenzene	101		107		70-130	6	30	
1,2,4-Trimethylbenzene	101		106		70-130	5	30	
Methyl Acetate	98		100		51-146	2	30	
Ethyl Acetate	95		109		70-130	14	30	
Acrolein	103		103		70-130	0	30	
Cyclohexane	92		102		59-142	10	30	
1,4-Dioxane	89		90		65-136	1	30	
1,1,2-Trichloro-1,2,2-Trifluoroethane	90		102		50-139	13	30	
p-Diethylbenzene	101		106		70-130	5	30	
p-Ethyltoluene	101		107		70-130	6	30	
1,2,4,5-Tetramethylbenzene	102		103		70-130	1	30	
Tetrahydrofuran	94		97		66-130	3	30	
Ethyl ether	110		113		67-130	3	30	
trans-1,4-Dichloro-2-butene	88		88		70-130	0	30	
Methyl cyclohexane	95		106		70-130	11	30	
Ethyl-Tert-Butyl-Ether	100		102		70-130	2	30	

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209 Lab Number:

L1626169

Report Date:

08/26/16

Parameter	LCS %Recovery	Qual		LCSD %Recov		Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	03	Batch:	WG926	280-3	WG926280-4				
Tertiary-Amyl Methyl Ether	101			103			70-130	2		30	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	Qual %Recovery		Criteria	
1,2-Dichloroethane-d4	83		84		70-130	
Toluene-d8	106		106		70-130	
4-Bromofluorobenzene	105		107		70-130	
Dibromofluoromethane	96		98		70-130	

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number: L1626169

Parameter	LCS %Recovery	Qual	LCS %Reco		Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by 8260/5035 - Westboroug	h Lab Associa	ted sample(s):	01-02	Batch:	WG926425-	3 WG926425-4			
Methylene chloride	107		10	8		70-130	1		30
1,1-Dichloroethane	108		10	3		70-130	5		30
Chloroform	107		10	4		70-130	3		30
Carbon tetrachloride	107		99)		70-130	8		30
1,2-Dichloropropane	108		10	6		70-130	2		30
Dibromochloromethane	101		10	4		70-130	3		30
2-Chloroethylvinyl ether	106		10	6		70-130	0		30
1,1,2-Trichloroethane	106		10	8		70-130	2		30
Tetrachloroethene	112		10	3		70-130	8		30
Chlorobenzene	107		10	4		70-130	3		30
Trichlorofluoromethane	107		96	3		70-139	11		30
1,2-Dichloroethane	98		10	1		70-130	3		30
1,1,1-Trichloroethane	107		10	0		70-130	7		30
Bromodichloromethane	102		10	2		70-130	0		30
trans-1,3-Dichloropropene	104		10	5		70-130	1		30
cis-1,3-Dichloropropene	105		10	4		70-130	1		30
1,1-Dichloropropene	111		10	1		70-130	9		30
Bromoform	100		10	3		70-130	3		30
1,1,2,2-Tetrachloroethane	111		11	4		70-130	3		30
Benzene	106		10	1		70-130	5		30
Toluene	108		10	3		70-130	5		30

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number: L1626169

Parameter	LCS %Recovery	Qual	LCS %Reco		Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by 8260/5035 - Westborou	gh Lab Associa	ted sample(s):	01-02	Batch:	WG926425-	3 WG926425-4			
Ethylbenzene	108		104	1		70-130	4		30
Chloromethane	100		94			52-130	6		30
Bromomethane	95		100)		57-147	5		30
Vinyl chloride	101		91			67-130	10		30
Chloroethane	119		110)		50-151	8		30
1,1-Dichloroethene	108		100)		65-135	8		30
trans-1,2-Dichloroethene	108		103	3		70-130	5		30
Trichloroethene	108		103	3		70-130	5		30
1,2-Dichlorobenzene	103		102	2		70-130	1		30
1,3-Dichlorobenzene	105		108	5		70-130	0		30
1,4-Dichlorobenzene	105		105	5		70-130	0		30
Methyl tert butyl ether	104		108	5		66-130	1		30
p/m-Xylene	109		105	5		70-130	4		30
o-Xylene	107		106	6		70-130	1		30
cis-1,2-Dichloroethene	109		106	3		70-130	3		30
Dibromomethane	103		106	3		70-130	3		30
Styrene	106		106	3		70-130	0		30
Dichlorodifluoromethane	97		84			30-146	14		30
Acetone	110		102	2		54-140	8		30
Carbon disulfide	100		92			59-130	8		30
2-Butanone	105		106	6		70-130	1		30

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number: L1626169

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by 8260/5035 - Westboroug	gh Lab Associa	ted sample(s):	01-02 Batch:	WG926425-3 WG926425-4	1	
Vinyl acetate	101		102	70-130	1	30
4-Methyl-2-pentanone	99		103	70-130	4	30
1,2,3-Trichloropropane	104		109	68-130	5	30
2-Hexanone	98		100	70-130	2	30
Bromochloromethane	110		108	70-130	2	30
2,2-Dichloropropane	110		101	70-130	9	30
1,2-Dibromoethane	103		107	70-130	4	30
1,3-Dichloropropane	105		108	69-130	3	30
1,1,1,2-Tetrachloroethane	104		102	70-130	2	30
Bromobenzene	105		105	70-130	0	30
n-Butylbenzene	111		103	70-130	7	30
sec-Butylbenzene	111		104	70-130	7	30
tert-Butylbenzene	109		103	70-130	6	30
o-Chlorotoluene	108		104	70-130	4	30
p-Chlorotoluene	107		105	70-130	2	30
1,2-Dibromo-3-chloropropane	95		104	68-130	9	30
Hexachlorobutadiene	108		104	67-130	4	30
Isopropylbenzene	112		106	70-130	6	30
p-Isopropyltoluene	110		105	70-130	5	30
Naphthalene	99		102	70-130	3	30
Acrylonitrile	100		103	70-130	3	30

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number: L1626169

arameter	LCS %Recovery Qual	LCSD %Recovery G	%Recovery Qual Limits	RPD	RPD Qual Limits
olatile Organics by 8260/5035 - Wes	tborough Lab Associated samp	le(s): 01-02 Batch: Wo	G926425-3 WG926425-4		
Isopropyl Ether	103	100	66-130	3	30
tert-Butyl Alcohol	97	102	70-130	5	30
n-Propylbenzene	111	104	70-130	7	30
1,2,3-Trichlorobenzene	104	103	70-130	1	30
1,2,4-Trichlorobenzene	106	106	70-130	0	30
1,3,5-Trimethylbenzene	109	105	70-130	4	30
1,2,4-Trimethylbenzene	108	105	70-130	3	30
Methyl Acetate	104	106	51-146	2	30
Ethyl Acetate	86	88	70-130	2	30
Acrolein	106	106	70-130	0	30
Cyclohexane	111	97	59-142	13	30
1,4-Dioxane	92	96	65-136	4	30
1,1,2-Trichloro-1,2,2-Trifluoroethane	108	95	50-139	13	30
p-Diethylbenzene	110	105	70-130	5	30
p-Ethyltoluene	110	105	70-130	5	30
1,2,4,5-Tetramethylbenzene	107	104	70-130	3	30
Tetrahydrofuran	106	99	66-130	7	30
Ethyl ether	107	104	67-130	3	30
trans-1,4-Dichloro-2-butene	100	101	70-130	1	30
Methyl cyclohexane	113	98	70-130	14	30
Ethyl-Tert-Butyl-Ether	105	104	70-130	1	30

Project Name: DESTINY-EMBASSY SUITES Lab Number:

L1626169

Project Number: 15209

Report Date:

08/26/16

Parameter	LCS %Recovery	Qual	LCS %Reco		% Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by 8260/5035 - Westboroug	jh Lab Associate	ed sample(s):	01-02	Batch:	WG926425-3	WG926425-4				
Tertiary-Amyl Methyl Ether	105		10	06		70-130	1		30	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	96		97		70-130	
Toluene-d8	104		105		70-130	
4-Bromofluorobenzene	104		103		70-130	
Dibromofluoromethane	100		101		70-130	

SEMIVOLATILES

L1626169

08/26/16

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

SAMPLE RESULTS

Lab Number:

Report Date:

Date Collected: 08/19/16 14:00

Date Received: 08/19/16 Field Prep: Not Specified Extraction Method: EPA 3546

08/23/16 10:58 Extraction Date:

Lab ID: L1626169-03

Client ID: 24

Sample Location: SYRACUSE, NY

Matrix: Soil Analytical Method: 1,8270D Analytical Date: 08/26/16 05:17

Analyst: AS 89% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - V	Vestborough Lab					
Acenaphthene	0.061	J	mg/kg	0.15	0.019	1
Hexachlorobenzene	ND		mg/kg	0.11	0.021	1
Bis(2-chloroethyl)ether	ND		mg/kg	0.17	0.025	1
2-Chloronaphthalene	ND		mg/kg	0.18	0.018	1
3,3'-Dichlorobenzidine	ND		mg/kg	0.18	0.049	1
2,4-Dinitrotoluene	ND		mg/kg	0.18	0.037	1
2,6-Dinitrotoluene	ND		mg/kg	0.18	0.032	1
Fluoranthene	4.7		mg/kg	0.11	0.021	1
4-Chlorophenyl phenyl ether	ND		mg/kg	0.18	0.020	1
4-Bromophenyl phenyl ether	ND		mg/kg	0.18	0.028	1
Bis(2-chloroisopropyl)ether	ND		mg/kg	0.22	0.032	1
Bis(2-chloroethoxy)methane	ND		mg/kg	0.20	0.018	1
Hexachlorobutadiene	ND		mg/kg	0.18	0.027	1
Hexachlorocyclopentadiene	ND		mg/kg	0.53	0.17	1
Hexachloroethane	ND		mg/kg	0.15	0.030	1
Isophorone	ND		mg/kg	0.17	0.024	1
Naphthalene	0.11	J	mg/kg	0.18	0.022	1
Nitrobenzene	ND		mg/kg	0.17	0.027	1
NDPA/DPA	ND		mg/kg	0.15	0.021	1
n-Nitrosodi-n-propylamine	ND		mg/kg	0.18	0.028	1
Bis(2-ethylhexyl)phthalate	ND		mg/kg	0.18	0.064	1
Butyl benzyl phthalate	ND		mg/kg	0.18	0.046	1
Di-n-butylphthalate	ND		mg/kg	0.18	0.035	1
Di-n-octylphthalate	ND		mg/kg	0.18	0.063	1
Diethyl phthalate	ND		mg/kg	0.18	0.017	1
Dimethyl phthalate	ND		mg/kg	0.18	0.039	1
Benzo(a)anthracene	2.6		mg/kg	0.11	0.021	1
Benzo(a)pyrene	2.7		mg/kg	0.15	0.045	1
Benzo(b)fluoranthene	3.5		mg/kg	0.11	0.031	1
Benzo(k)fluoranthene	1.2		mg/kg	0.11	0.030	1

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1626169

Project Number: 15209 Report Date: 08/26/16

SAMPLE RESULTS

Lab ID: L1626169-03 Date Collected: 08/19/16 14:00

Client ID: 24 Date Received: 08/19/16

Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	- Westborough Lab					
Chrysene	2.4		mg/kg	0.11	0.019	1
Acenaphthylene	0.21		mg/kg	0.15	0.028	1
Anthracene	0.52		mg/kg	0.11	0.036	1
Benzo(ghi)perylene	1.5		mg/kg	0.15	0.022	1
Fluorene	0.13	J	mg/kg	0.18	0.018	1
Phenanthrene	1.8		mg/kg	0.11	0.022	1
Dibenzo(a,h)anthracene	0.40		mg/kg	0.11	0.021	1
Indeno(1,2,3-cd)pyrene	1.7		mg/kg	0.15	0.026	1
Pyrene	3.9		mg/kg	0.11	0.018	1
Biphenyl	ND		mg/kg	0.42	0.043	1
4-Chloroaniline	ND		mg/kg	0.18	0.034	1
2-Nitroaniline	ND		mg/kg	0.18	0.036	1
3-Nitroaniline	ND		mg/kg	0.18	0.035	1
4-Nitroaniline	ND		mg/kg	0.18	0.076	1
Dibenzofuran	0.069	J	mg/kg	0.18	0.017	1
2-Methylnaphthalene	0.059	J	mg/kg	0.22	0.022	1
1,2,4,5-Tetrachlorobenzene	ND		mg/kg	0.18	0.019	1
Acetophenone	ND		mg/kg	0.18	0.023	1
2,4,6-Trichlorophenol	ND		mg/kg	0.11	0.035	1
p-Chloro-m-cresol	ND		mg/kg	0.18	0.027	1
2-Chlorophenol	ND		mg/kg	0.18	0.022	1
2,4-Dichlorophenol	ND		mg/kg	0.17	0.030	1
2,4-Dimethylphenol	ND		mg/kg	0.18	0.061	1
2-Nitrophenol	ND		mg/kg	0.40	0.069	1
4-Nitrophenol	ND		mg/kg	0.26	0.075	1
2,4-Dinitrophenol	ND		mg/kg	0.88	0.086	1
4,6-Dinitro-o-cresol	ND		mg/kg	0.48	0.088	1
Pentachlorophenol	ND		mg/kg	0.15	0.040	1
Phenol	ND		mg/kg	0.18	0.028	1
2-Methylphenol	ND		mg/kg	0.18	0.028	1
3-Methylphenol/4-Methylphenol	ND		mg/kg	0.26	0.029	1
2,4,5-Trichlorophenol	ND		mg/kg	0.18	0.035	1
Carbazole	0.12	J	mg/kg	0.18	0.018	1
Atrazine	ND		mg/kg	0.15	0.064	1
Benzaldehyde	ND		mg/kg	0.24	0.050	1
Caprolactam	ND		mg/kg	0.18	0.056	1
2,3,4,6-Tetrachlorophenol	ND		mg/kg	0.18	0.037	1
			-			

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1626169

Project Number: 15209 Report Date: 08/26/16

SAMPLE RESULTS

Lab ID: L1626169-03 Date Collected: 08/19/16 14:00

Client ID: 24 Date Received: 08/19/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	63		25-120	
Phenol-d6	68		10-120	
Nitrobenzene-d5	78		23-120	
2-Fluorobiphenyl	61		30-120	
2,4,6-Tribromophenol	80		10-136	
4-Terphenyl-d14	59		18-120	

Extraction Method: EPA 3546

L1626169

08/26/16

08/23/16 10:58

Lab Number:

Report Date:

Extraction Date:

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 08/26/16 00:13

Analyst: AS

Parameter	Result	Qualifier	Units	RL	MDL
Semivolatile Organics by GC/MS	- Westborough	Lab for s	ample(s):	03 Batch:	WG926337-1
Acenaphthene	ND		mg/kg	0.13	0.017
Hexachlorobenzene	ND		mg/kg	0.098	0.018
Bis(2-chloroethyl)ether	ND		mg/kg	0.15	0.022
2-Chloronaphthalene	ND		mg/kg	0.16	0.016
3,3'-Dichlorobenzidine	ND		mg/kg	0.16	0.044
2,4-Dinitrotoluene	ND		mg/kg	0.16	0.033
2,6-Dinitrotoluene	ND		mg/kg	0.16	0.028
Fluoranthene	ND		mg/kg	0.098	0.019
4-Chlorophenyl phenyl ether	ND		mg/kg	0.16	0.018
4-Bromophenyl phenyl ether	ND		mg/kg	0.16	0.025
Bis(2-chloroisopropyl)ether	ND		mg/kg	0.20	0.028
Bis(2-chloroethoxy)methane	ND		mg/kg	0.18	0.016
Hexachlorobutadiene	ND		mg/kg	0.16	0.024
Hexachlorocyclopentadiene	ND		mg/kg	0.47	0.15
Hexachloroethane	ND		mg/kg	0.13	0.026
Isophorone	ND		mg/kg	0.15	0.021
Naphthalene	ND		mg/kg	0.16	0.020
Nitrobenzene	ND		mg/kg	0.15	0.024
NDPA/DPA	ND		mg/kg	0.13	0.019
n-Nitrosodi-n-propylamine	ND		mg/kg	0.16	0.025
Bis(2-ethylhexyl)phthalate	ND		mg/kg	0.16	0.057
Butyl benzyl phthalate	ND		mg/kg	0.16	0.041
Di-n-butylphthalate	ND		mg/kg	0.16	0.031
Di-n-octylphthalate	ND		mg/kg	0.16	0.056
Diethyl phthalate	ND		mg/kg	0.16	0.015
Dimethyl phthalate	ND		mg/kg	0.16	0.034
Benzo(a)anthracene	ND		mg/kg	0.098	0.018
Benzo(a)pyrene	ND		mg/kg	0.13	0.040
Benzo(b)fluoranthene	ND		mg/kg	0.098	0.028

L1626169

Lab Number:

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209 Report Date: 08/26/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 08/26/16 00:13

Analyst: AS Extraction Method: EPA 3546 08/23/16 10:58 Extraction Date:

arameter	Result	Qualifier	Units		RL	MDL	
Semivolatile Organics by GC/MS	- Westborough	Lab for s	ample(s):	03	Batch:	WG926337	-1
Benzo(k)fluoranthene	ND		mg/kg	0	.098	0.026	
Chrysene	ND		mg/kg	0	.098	0.017	
Acenaphthylene	ND		mg/kg	().13	0.025	
Anthracene	ND		mg/kg	0	.098	0.032	
Benzo(ghi)perylene	ND		mg/kg	().13	0.019	
Fluorene	ND		mg/kg	().16	0.016	
Phenanthrene	ND		mg/kg	0	.098	0.020	
Dibenzo(a,h)anthracene	ND		mg/kg	0	.098	0.019	
Indeno(1,2,3-cd)pyrene	ND		mg/kg	().13	0.023	
Pyrene	ND		mg/kg	0	.098	0.016	
Biphenyl	ND		mg/kg	().37	0.038	
4-Chloroaniline	ND		mg/kg	().16	0.030	
2-Nitroaniline	ND		mg/kg	().16	0.032	
3-Nitroaniline	ND		mg/kg	().16	0.031	
4-Nitroaniline	ND		mg/kg	().16	0.068	
Dibenzofuran	ND		mg/kg	().16	0.015	
2-Methylnaphthalene	ND		mg/kg	(0.20	0.020	
1,2,4,5-Tetrachlorobenzene	ND		mg/kg	().16	0.017	
Acetophenone	ND		mg/kg	().16	0.020	
2,4,6-Trichlorophenol	ND		mg/kg	0	.098	0.031	
p-Chloro-m-cresol	ND		mg/kg	().16	0.024	
2-Chlorophenol	ND		mg/kg	().16	0.019	
2,4-Dichlorophenol	ND		mg/kg	().15	0.026	
2,4-Dimethylphenol	ND		mg/kg	().16	0.054	
2-Nitrophenol	ND		mg/kg	().35	0.062	
4-Nitrophenol	ND		mg/kg	C).23	0.067	
2,4-Dinitrophenol	ND		mg/kg	C).78	0.076	
4,6-Dinitro-o-cresol	ND		mg/kg	().42	0.078	
Pentachlorophenol	ND		mg/kg	().13	0.036	

L1626169

08/23/16 10:58

Lab Number:

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209 Report Date: 08/26/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Extraction Method: EPA 3546 Analytical Date: 08/26/16 00:13 Extraction Date:

Analyst: AS

Semivolatile Organics by GC/MS - Westborough	Lab for sample(s):	03 Batch:	14/0000007.4	
		oo Baton.	WG926337-1	
Phenol ND	mg/kg	0.16	0.025	
2-Methylphenol ND	mg/kg	0.16	0.025	
3-Methylphenol/4-Methylphenol ND	mg/kg	0.24	0.026	
2,4,5-Trichlorophenol ND	mg/kg	0.16	0.031	
Carbazole ND	mg/kg	0.16	0.016	
Atrazine ND	mg/kg	0.13	0.057	
Benzaldehyde ND	mg/kg	0.22	0.044	
Caprolactam ND	mg/kg	0.16	0.050	
2,3,4,6-Tetrachlorophenol ND	mg/kg	0.16	0.033	

		Acc	eptance
Surrogate	%Recovery	Qualifier C	Criteria
2-Fluorophenol	56	2	25-120
Phenol-d6	61	1	0-120
Nitrobenzene-d5	67	2	23-120
2-Fluorobiphenyl	65	3	80-120
2,4,6-Tribromophenol	81	1	0-136
4-Terphenyl-d14	81	1	8-120

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number: L1626169

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
emivolatile Organics by GC/MS - Westborou	ugh Lab Assoc	iated sample(s):	: 03 Batch:	WG926337-2	WG926337-3			
Acenaphthene	63		71		31-137	12	50	
Benzidine	39		30		10-66	26	50	
1,2,4-Trichlorobenzene	60		74		38-107	21	50	
Hexachlorobenzene	71		76		40-140	7	50	
Bis(2-chloroethyl)ether	58		72		40-140	22	50	
2-Chloronaphthalene	65		74		40-140	13	50	
1,2-Dichlorobenzene	55		68		40-140	21	50	
1,3-Dichlorobenzene	53		66		40-140	22	50	
1,4-Dichlorobenzene	54		66		28-104	20	50	
3,3'-Dichlorobenzidine	63		64		40-140	2	50	
2,4-Dinitrotoluene	83		92	Q	28-89	10	50	
2,6-Dinitrotoluene	87		96		40-140	10	50	
Azobenzene	67		71		40-140	6	50	
Fluoranthene	70		74		40-140	6	50	
4-Chlorophenyl phenyl ether	66		73		40-140	10	50	
4-Bromophenyl phenyl ether	71		76		40-140	7	50	
Bis(2-chloroisopropyl)ether	56		68		40-140	19	50	
Bis(2-chloroethoxy)methane	62		77		40-117	22	50	
Hexachlorobutadiene	60		72		40-140	18	50	
Hexachlorocyclopentadiene	80		91		40-140	13	50	
Hexachloroethane	58		73		40-140	23	50	

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number: L1626169

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
emivolatile Organics by GC/MS - We	estborough Lab Associa	ated sample(s):	03 Batch:	WG926337-2	WG926337-3		
Isophorone	62		74		40-140	18	50
Naphthalene	58		69		40-140	17	50
Nitrobenzene	69		86		40-140	22	50
NitrosoDiPhenylAmine(NDPA)/DPA	69		75		36-157	8	50
n-Nitrosodi-n-propylamine	60		76		32-121	24	50
Bis(2-Ethylhexyl)phthalate	81		88		40-140	8	50
Butyl benzyl phthalate	80		85		40-140	6	50
Di-n-butylphthalate	74		79		40-140	7	50
Di-n-octylphthalate	81		86		40-140	6	50
Diethyl phthalate	71		76		40-140	7	50
Dimethyl phthalate	73		79		40-140	8	50
Benzo(a)anthracene	71		76		40-140	7	50
Benzo(a)pyrene	74		76		40-140	3	50
Benzo(b)fluoranthene	73		77		40-140	5	50
Benzo(k)fluoranthene	71		75		40-140	5	50
Chrysene	71		75		40-140	5	50
Acenaphthylene	67		74		40-140	10	50
Anthracene	70		76		40-140	8	50
Benzo(ghi)perylene	69		73		40-140	6	50
Fluorene	65		72		40-140	10	50
Phenanthrene	67		71		40-140	6	50

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number: L1626169

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Westbor	ough Lab Associ	ated sample(s):	03 Batch:	WG926337-2	WG926337-3		
Dibenzo(a,h)anthracene	71		74		40-140	4	50
Indeno(1,2,3-cd)Pyrene	69		73		40-140	6	50
Pyrene	68		72		35-142	6	50
Biphenyl	65		74		54-104	13	50
Aniline	45		52		40-140	14	50
4-Chloroaniline	59		63		40-140	7	50
1-Methylnaphthalene	59		70		26-130	17	50
2-Nitroaniline	83		91		47-134	9	50
3-Nitroaniline	72		74		26-129	3	50
4-Nitroaniline	71		76		41-125	7	50
Dibenzofuran	65		71		40-140	9	50
2-Methylnaphthalene	61		72		40-140	17	50
1,2,4,5-Tetrachlorobenzene	60		70		40-117	15	50
Acetophenone	61		76		14-144	22	50
n-Nitrosodimethylamine	54		68		22-100	23	50
2,4,6-Trichlorophenol	73		81		30-130	10	50
P-Chloro-M-Cresol	74		82		26-103	10	50
2-Chlorophenol	63		77		25-102	20	50
2,4-Dichlorophenol	71		84		30-130	17	50
2,4-Dimethylphenol	74		89		30-130	18	50
2-Nitrophenol	86		105		30-130	20	50

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number: L1626169

arameter	LCS %Recovery	Qual	LCSD %Recovery	%Recover Qual Limits	y RPD	RPD Qual Limits	
Semivolatile Organics by GC/MS - Westbo	rough Lab Associ	ated sample(s):	03 Batch:	WG926337-2 WG9263	37-3		
4-Nitrophenol	70		78	11-114	11	50	
2,4-Dinitrophenol	89		100	4-130	12	50	
4,6-Dinitro-o-cresol	94		100	10-130	6	50	
Pentachlorophenol	65		68	17-109	5	50	
Phenol	58		72	26-90	22	50	
2-Methylphenol	60		74	30-130.	21	50	
3-Methylphenol/4-Methylphenol	59		73	30-130	21	50	
2,4,5-Trichlorophenol	79		88	30-130	11	50	
Benzoic Acid	60		72	10-110	18	50	
Benzyl Alcohol	58		73	40-140	23	50	
Carbazole	68		72	54-128	6	50	
Pyridine	40		54	10-93	30	50	
Parathion, ethyl	128		136	40-140	6	50	
Atrazine	90		96	40-140	6	50	
Benzaldehyde	33	Q	40	40-140	19	50	
Caprolactam	75		80	15-130	6	50	
2,3,4,6-Tetrachlorophenol	77		84	40-140	9	50	

Project Name: DESTINY-EMBASSY SUITES Lab Number:

L1626169

Project Number: 15209

Report Date:

08/26/16

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 03 Batch: WG926337-2 WG926337-3

		LCSD		Acceptance	
%Recovery	Qual	%Recovery	Qual	Criteria	
62		75		25-120	
66		83		10-120	
77		97		23-120	
69		79		30-120	
89		94		10-136	
76		79		18-120	
	62 66 77 69 89	62 66 77 69 89	62 75 66 83 77 97 69 79 89 94	62 75 66 83 77 97 69 79 89 94	62 75 25-120 66 83 10-120 77 97 23-120 69 79 30-120 89 94 10-136

METALS

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1626169

Project Number: 15209 **Report Date:** 08/26/16

SAMPLE RESULTS

Lab ID: L1626169-03

Client ID: 24

Sample Location: SYRACUSE, NY

Matrix: Soil

Percent Solids: 89% Date Collected: 08/19/16 14:00

Date Received: 08/19/16

Field Prep: Not Specified

Percent Solids:	89%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Mans	ofiold Lob										
Total Metals - Maris	sileiu Lab										
Aluminum, Total	4600		mg/kg	8.6	1.7	2	08/25/16 05:50	08/25/16 18:46	EPA 3050B	1,6010C	PS
Antimony, Total	1.0	J	mg/kg	4.3	0.69	2	08/25/16 05:50	08/25/16 18:46	EPA 3050B	1,6010C	PS
Arsenic, Total	6.3		mg/kg	0.86	0.28	2	08/25/16 05:50	08/25/16 18:46	EPA 3050B	1,6010C	PS
Barium, Total	67		mg/kg	0.86	0.23	2	08/25/16 05:50	08/25/16 18:46	EPA 3050B	1,6010C	PS
Beryllium, Total	0.25	J	mg/kg	0.43	0.10	2	08/25/16 05:50	08/25/16 18:46	EPA 3050B	1,6010C	PS
Cadmium, Total	0.68	J	mg/kg	0.86	0.06	2	08/25/16 05:50	08/25/16 18:46	EPA 3050B	1,6010C	PS
Calcium, Total	95000		mg/kg	43	12.	10	08/25/16 05:50	08/25/16 23:29	EPA 3050B	1,6010C	PS
Chromium, Total	6.7		mg/kg	0.86	0.15	2	08/25/16 05:50	08/25/16 18:46	EPA 3050B	1,6010C	PS
Cobalt, Total	3.2		mg/kg	1.7	0.42	2	08/25/16 05:50	08/25/16 18:46	EPA 3050B	1,6010C	PS
Copper, Total	54		mg/kg	0.86	0.16	2	08/25/16 05:50	08/25/16 18:46	EPA 3050B	1,6010C	PS
Iron, Total	9800		mg/kg	4.3	1.4	2	08/25/16 05:50	08/25/16 18:46	EPA 3050B	1,6010C	PS
Lead, Total	46		mg/kg	4.3	0.19	2	08/25/16 05:50	08/25/16 18:46	EPA 3050B	1,6010C	PS
Magnesium, Total	14000		mg/kg	8.6	1.1	2	08/25/16 05:50	08/25/16 18:46	EPA 3050B	1,6010C	PS
Manganese, Total	260		mg/kg	0.86	0.21	2	08/25/16 05:50	08/25/16 18:46	EPA 3050B	1,6010C	PS
Mercury, Total	0.22		mg/kg	0.08	0.02	1	08/23/16 10:45	08/24/16 12:04	EPA 7471B	1,7471B	BV
Nickel, Total	8.9		mg/kg	2.2	0.34	2	08/25/16 05:50	08/25/16 18:46	EPA 3050B	1,6010C	PS
Potassium, Total	330		mg/kg	220	24.	2	08/25/16 05:50	08/25/16 18:46	EPA 3050B	1,6010C	PS
Selenium, Total	ND		mg/kg	1.7	0.23	2	08/25/16 05:50	08/25/16 18:46	EPA 3050B	1,6010C	PS
Silver, Total	ND		mg/kg	0.86	0.17	2	08/25/16 05:50	08/25/16 18:46	EPA 3050B	1,6010C	PS
Sodium, Total	140	J	mg/kg	170	14.	2	08/25/16 05:50	08/25/16 18:46	EPA 3050B	1,6010C	PS
Thallium, Total	ND		mg/kg	1.7	0.28	2	08/25/16 05:50	08/25/16 18:46	EPA 3050B	1,6010C	PS
Vanadium, Total	9.5		mg/kg	0.86	0.08	2	08/25/16 05:50	08/25/16 18:46	EPA 3050B	1,6010C	PS
Zinc, Total	300		mg/kg	4.3	0.60	2	08/25/16 05:50	08/25/16 18:46	EPA 3050B	1,6010C	PS

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number:

L1626169

Report Date:

08/26/16

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfield	Lab for sample(s):	03 Batch	: WG9	24980-1					
Mercury, Total	ND	mg/kg	0.08	0.02	1	08/23/16 10:45	08/24/16 11:18	3 1,7471B	BV

Prep Information

Digestion Method: EPA 7471B

Parameter	Result (Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfield	Lab for s	ample(s):	03 Batch	: WG9:	25761-1					
Aluminum, Total	ND		mg/kg	4.0	0.79	1	08/25/16 05:50	08/25/16 16:34	1,6010C	PS
Antimony, Total	ND		mg/kg	2.0	0.32	1	08/25/16 05:50	08/25/16 16:34	1,6010C	PS
Arsenic, Total	0.18	J	mg/kg	0.40	0.13	1	08/25/16 05:50	08/25/16 16:34	1,6010C	PS
Barium, Total	ND		mg/kg	0.40	0.11	1	08/25/16 05:50	08/25/16 16:34	1,6010C	PS
Beryllium, Total	ND		mg/kg	0.20	0.04	1	08/25/16 05:50	08/25/16 16:34	1,6010C	PS
Cadmium, Total	ND		mg/kg	0.40	0.03	1	08/25/16 05:50	08/25/16 16:34	1,6010C	PS
Calcium, Total	ND		mg/kg	4.0	1.1	1	08/25/16 05:50	08/25/16 16:34	1,6010C	PS
Chromium, Total	ND		mg/kg	0.40	0.07	1	08/25/16 05:50	08/25/16 16:34	1,6010C	PS
Cobalt, Total	ND		mg/kg	0.80	0.20	1	08/25/16 05:50	08/25/16 16:34	1,6010C	PS
Copper, Total	ND		mg/kg	0.40	0.07	1	08/25/16 05:50	08/25/16 16:34	1,6010C	PS
Iron, Total	ND		mg/kg	2.0	0.63	1	08/25/16 05:50	08/25/16 16:34	1,6010C	PS
Lead, Total	ND		mg/kg	2.0	0.09	1	08/25/16 05:50	08/25/16 16:34	1,6010C	PS
Magnesium, Total	ND		mg/kg	4.0	0.53	1	08/25/16 05:50	08/25/16 16:34	1,6010C	PS
Manganese, Total	ND		mg/kg	0.40	0.10	1	08/25/16 05:50	08/25/16 16:34	1,6010C	PS
Nickel, Total	ND		mg/kg	1.0	0.16	1	08/25/16 05:50	08/25/16 16:34	1,6010C	PS
Potassium, Total	ND		mg/kg	100	11.	1	08/25/16 05:50	08/25/16 16:34	1,6010C	PS
Selenium, Total	ND		mg/kg	0.80	0.11	1	08/25/16 05:50	08/25/16 16:34	1,6010C	PS
Silver, Total	ND		mg/kg	0.40	0.08	1	08/25/16 05:50	08/25/16 16:34	1,6010C	PS
Sodium, Total	ND		mg/kg	80	6.7	1	08/25/16 05:50	08/25/16 16:34	1,6010C	PS
Thallium, Total	ND		mg/kg	0.80	0.13	1	08/25/16 05:50	08/25/16 16:34	1,6010C	PS
Vanadium, Total	ND		mg/kg	0.40	0.04	1	08/25/16 05:50	08/25/16 16:34	1,6010C	PS
Zinc, Total	ND		mg/kg	2.0	0.28	1	08/25/16 05:50	08/25/16 16:34	1,6010C	PS

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1626169

Project Number: 15209 Report Date: 08/26/16

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 3050B

Lab Number: L1626169

Project Number: 15209 Report Date: 08/26/16

Parameter	LCS %Recovery (LCSD Qual %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 03 Batch: Wo	G924980-2 SRM Lot No	umber: D089-540			
Mercury, Total	101	-	57-143	-		

Project Name:

DESTINY-EMBASSY SUITES

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number: L1626169

Parameter	LCS %Recovery		LCSD Recovery	%Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab Associated sample	(s): 03 Batch: W	/G925761-2	SRM Lot Numl	per: D089-540		
Aluminum, Total	76		-	52-147	-	
Antimony, Total	171		-	1-197	-	
Arsenic, Total	108		-	80-120	-	
Barium, Total	103		-	83-117	-	
Beryllium, Total	107		-	82-117	-	
Cadmium, Total	103		-	82-117	-	
Calcium, Total	99		-	81-119	-	
Chromium, Total	102		-	79-121	-	
Cobalt, Total	96		-	83-117	-	
Copper, Total	104		-	80-119	-	
Iron, Total	110		-	45-155	-	
Lead, Total	105		-	81-119	-	
Magnesium, Total	91		-	76-123	-	
Manganese, Total	102		-	81-119	-	
Nickel, Total	101		-	82-117	-	
Potassium, Total	92		-	71-128	-	
Selenium, Total	99		-	78-121	-	
Silver, Total	106		-	75-125	-	
Sodium, Total	96		-	71-128	-	
Thallium, Total	99		-	79-120	-	
Vanadium, Total	100		-	77-122	-	

Project Name: DESTINY-EMBASSY SUITES Lab Number:

L1626169

Project Number: 15209

Report Date:

08/26/16

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab Associated	sample(s): 03 Batch: WG925	5761-2 SRM Lot Number: I	D089-540		
Zinc, Total	100	-	80-119	-	

Matrix Spike Analysis Batch Quality Control

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number:

L1626169

Report Date:

08/26/16

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		covery imits RI	PD Qual	RPD Limits
Total Metals - Mansfield Lal	b Associated san	nple(s): 03	QC Batch	ID: WG924980	-4 Q	C Sample:	L1626071-01	Client ID:	MS Sample	Э	
Mercury, Total	0.55	0.141	0.84	205	Q	-	-	80	0-120	-	20

Matrix Spike Analysis Batch Quality Control

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number: L1626169

arameter	Native Sample	MS Added	MS Found	MS %Recovery		/ISD ound	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield La	b Associated sar	mple(s): 03	QC Batch	ID: WG925761-4	QC S	Sample:	L1626098-01	Client ID: MS Sar	mple	
Aluminum, Total	5600	170	6100	294	Q	-	-	75-125	-	20
Antimony, Total	3.5J	42.5	44	103		-	-	75-125	-	20
Arsenic, Total	4.1	10.2	15	107		-	-	75-125	-	20
Barium, Total	73.	170	240	98		-	-	75-125	-	20
Beryllium, Total	0.20J	4.25	4.5	106		-	-	75-125	-	20
Cadmium, Total	0.85J	4.34	5.4	124		-	-	75-125	-	20
Calcium, Total	17000	850	20000	353	Q	-	-	75-125	-	20
Chromium, Total	18.	17	32	82		-	-	75-125	-	20
Cobalt, Total	5.3	42.5	44	91		-	-	75-125	-	20
Copper, Total	47.	21.3	72	118		-	-	75-125	-	20
Iron, Total	16000	85	15000	0	Q	-	-	75-125	-	20
Lead, Total	130	43.4	170	92		-	-	75-125	-	20
Magnesium, Total	4000	850	4800	94		-	-	75-125	-	20
Manganese, Total	210	42.5	270	141	Q	-	-	75-125	-	20
Nickel, Total	13.	42.5	53	94		-	-	75-125	-	20
Potassium, Total	510	850	1400	105		-	-	75-125	-	20
Selenium, Total	ND	10.2	9.8	96		-	-	75-125	-	20
Silver, Total	ND	25.5	28	110		-	-	75-125	-	20
Sodium, Total	270	850	1200	109		-	-	75-125	-	20
Thallium, Total	ND	10.2	8.6	84		-	-	75-125	-	20
Vanadium, Total	27.	42.5	72	106		-	-	75-125	-	20

Matrix Spike Analysis Batch Quality Control

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number:

L1626169

Report Date:

08/26/16

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD MSD %Recovery	Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lal	b Associated sam	nple(s): 03	QC Batch	ID: WG925761-4	QC Samp	le: L1626098-01	Client ID: MS Sar	mple	
Zinc, Total	390	42.5	420	70	Q -	-	75-125	-	20

Lab Duplicate Analysis
Batch Quality Control

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number:

L1626169

Report Date:

08/26/16

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 03	QC Batch ID: WG92498	30-3 QC Sample: L1	626071-01	Client ID: DUF	² Sample	
Mercury, Total	0.55	0.60	mg/kg	9		20

Lab Duplicate Analysis Batch Quality Control

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number: L1626169 **Report Date:** 08/26/16

arameter	Native Sample Du	plicate Sample	e Units	RPD	RPD Limits
otal Metals - Mansfield Lab Associated sample(s): 03	QC Batch ID: WG925761-3	QC Sample:	L1626098-01	Client ID: DU	P Sample
Aluminum, Total	5600	4400	mg/kg	24	Q 20
Antimony, Total	3.5J	3.1J	mg/kg	NC	20
Arsenic, Total	4.1	3.1	mg/kg	28	Q 20
Barium, Total	73.	57	mg/kg	25	Q 20
Beryllium, Total	0.20J	0.16J	mg/kg	NC	20
Cadmium, Total	0.85J	0.62J	mg/kg	NC	20
Calcium, Total	17000	12000	mg/kg	34	Q 20
Chromium, Total	18.	14	mg/kg	25	Q 20
Cobalt, Total	5.3	5.8	mg/kg	9	20
Copper, Total	47.	38	mg/kg	21	Q 20
Iron, Total	16000	12000	mg/kg	29	Q 20
Lead, Total	130	100	mg/kg	26	Q 20
Magnesium, Total	4000	3300	mg/kg	19	20
Manganese, Total	210	250	mg/kg	17	20
Nickel, Total	13.	13	mg/kg	0	20
Potassium, Total	510	390	mg/kg	27	Q 20
Selenium, Total	ND	ND	mg/kg	NC	20
Silver, Total	ND	ND	mg/kg	NC	20
Sodium, Total	270	220	mg/kg	20	20

Lab Duplicate Analysis Batch Quality Control

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Lab Number:

L1626169

Report Date:

08/26/16

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 03	QC Batch ID: WG92576	61-3 QC Sample: L16	626098-01	Client ID: DUP Sample	
Thallium, Total	ND	ND	mg/kg	NC	20
Vanadium, Total	27.	22	mg/kg	20	20
Zinc, Total	390	300	mg/kg	26 Q	20

INORGANICS & MISCELLANEOUS

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1626169

Project Number: 15209 Report Date: 08/26/16

SAMPLE RESULTS

Lab ID: L1626169-01

Client ID: 23

Sample Location: SYRACUSE, NY

Matrix: Soil

Date Collected: 08/19/16 13:45

Date Received: 08/19/16

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	- Westborough Lab									
Solids, Total	74.4		%	0.100	NA	1	-	08/22/16 12:42	121,2540G	RI

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1626169

Project Number: 15209 Report Date: 08/26/16

SAMPLE RESULTS

Lab ID: L1626169-02

Client ID: 21

Sample Location: SYRACUSE, NY

Matrix: Soil

Date Collected: 08/19/16 09:30

Date Received: 08/19/16

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab)								
Solids, Total	83.6		%	0.100	NA	1	-	08/22/16 12:42	121,2540G	RI

Project Name: DESTINY-EMBASSY SUITES Lab Number: L1626169

Project Number: 15209 Report Date: 08/26/16

SAMPLE RESULTS

Lab ID: L1626169-03

Client ID: 24

Sample Location: SYRACUSE, NY

Matrix: Soil

Date Collected: 08/19/16 14:00

Date Received: 08/19/16

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	89.3		%	0.100	NA	1	-	08/22/16 12:42	121,2540G	RI

L1626169

Lab Duplicate Analysis
Batch Quality Control

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209

Quality Control Lab Number:

Parameter	Native Sam	ple D	uplicate Sampl	le Units	RPD	Qual	RPD Limits	
General Chemistry - Westborough Lab	Associated sample(s): 01-03	QC Batch ID:	WG924789-1	QC Sample: L16	26163-01	Client ID:	DUP Sample	
Solids, Total	90.8		88.0	%	3		20	

Lab Number: L1626169

Project Name: DESTINY-EMBASSY SUITES

Project Number: 15209 Report Date: 08/26/16

Sample Receipt and Container Information

Were project specific reporting limits specified?

Reagent H2O Preserved Vials Frozen on: 08/20/2016 02:18

Cooler Information Custody Seal

Cooler

A Absent

Container Info	Container Information Temp									
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)			
L1626169-01A	Vial MeOH preserved	Α	N/A	5.5	Υ	Absent	NYTCL-8260HLW(14)			
L1626169-01B	Vial water preserved	Α	N/A	5.5	Υ	Absent	NYTCL-8260HLW(14)			
L1626169-01C	Vial water preserved	Α	N/A	5.5	Υ	Absent	NYTCL-8260HLW(14)			
L1626169-01D	Plastic 2oz unpreserved for TS	Α	N/A	5.5	Υ	Absent	TS(7)			
L1626169-02A	Vial MeOH preserved	Α	N/A	5.5	Υ	Absent	NYTCL-8260HLW(14)			
L1626169-02B	Vial water preserved	Α	N/A	5.5	Υ	Absent	NYTCL-8260HLW(14)			
L1626169-02C	Vial water preserved	Α	N/A	5.5	Υ	Absent	NYTCL-8260HLW(14)			
L1626169-02D	Plastic 2oz unpreserved for TS	Α	N/A	5.5	Υ	Absent	TS(7)			
L1626169-03A	Glass 120ml/4oz unpreserved	Α	N/A	5.5	Υ	Absent	NYTCL-8260(14)			
L1626169-03A9	Vial MeOH preserved split	Α	N/A	5.5	Υ	Absent	NYTCL-8260(14)			
L1626169-03B	Metals Only - Glass 60mL/2oz unp	A	N/A	5.5	Y	Absent	BE-TI(180),AS-TI(180),BA-TI(180),AG-TI(180),AL-TI(180),CR-TI(180),NI-TI(180),CU-TI(180),PB-TI(180),SB-TI(180),SE-TI(180),CV-TI(180),CO-TI(180),CO-TI(180),CO-TI(180),HG-T(28),MG-TI(180),CD-TI(180),CD-TI(180),CD-TI(180),K-TI(180),NA-TI(180),CD-TI(180),K-TI(180),NA-TI(180)			
L1626169-03C	Glass 120ml/4oz unpreserved	Α	N/A	5.5	Υ	Absent	NYTCL-8270(14),TS(7)			

Project Name: Lab Number: **DESTINY-EMBASSY SUITES** L1626169 **Project Number: Report Date:** 15209 08/26/16

GLOSSARY

Acronyms

EDL

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of LFB

analytes or a material containing known and verified amounts of analytes.

MDI. - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound TIC

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

В - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: DU Report with 'J' Qualifiers

Project Name:DESTINY-EMBASSY SUITESLab Number:L1626169Project Number:15209Report Date:08/26/16

Data Qualifiers

- reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Serial_No:08261616:43

Project Name:DESTINY-EMBASSY SUITESLab Number:L1626169Project Number:15209Report Date:08/26/16

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:08261616:43

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Certification Information

ID No.:17873

Published Date: 8/5/2016 11:25:56 AM

Page 1 of 1

Revision 7

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-

Tetramethylbenzene: 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide EPA 9050A: NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

SM 2540D: TSS EPA 3005A NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193 Client Information Client: Social Address: W.B. M.B.	Sutmord VIW	Project Location: Project # Wood Office Control of Cont	oject #)	S pend	Pag 2 0			verable ASP EQu Othe NY TO	-A IS (1 F r Requi OGS Standa	8/ iile) irement	E	SP-E QuIS Y Par Y CP-	3 6 (4 File) t 375	Billing Information Same as Client Info Po # Disposal Site Information Please identify below location of applicable disposal facilities.	of
Phone: 515 782 Fax: Email: Foedbook		Turn-Around Time Standard Rush (only if pre approved)		Due Date # of Days				NY U	estricted nrestrict Sewer D			ther		Disposal Facility: NJ NY Other:	
These samples have be Other project specific								LYSIS		П	Т	Т	0	Sample Filtration Done	T o t
Please specify Metals	or TAL.						260 HLL	100			\ I	107 00	al Meleb	Lab to do Preservation Lab to do (Please Specify below)	a I B o t
ALPHA Lab ID (Lab Use Only)	Sar	mple ID	Coll Date	ection Time	Sample Matrix	Sampler's Initials	25	831		d	5	8360	10 T	Sample Specific Comments	t I e
26169-01	33 23		8/19/16	13:45	Soil	Ko	4	د			\Box	\dashv			\Box
-02 -03	24		1	14:00	Soil	Ko	Co	-	-		< >	< 7	\times		+
	T _a										_	+	_		\vdash
					-					_	+	+			\vdash
										\dashv		+			+
A = None B = HCl	Container Code P = Plastic A = Amber Glass V = Vial	Westboro: Certification No Mansfield: Certification No			Con	tainer Type	٧	1	8	18	8)	5 1	7	Please print clearly, legibly and completely. Samples not be logged in and	
$D = H_2SO_4$ $E = NaOH$	G = Glass B = Bacteria Cup				P	reservative	9	F	X	t	3 8	5 }	X	turnaround time clock will start until any ambiguities	
G = NaHSO ₄	C = Cube O = Other	Relinquished B		Date/		13	Receiv				-	ate/T		resolved. BY EXECUTING THIS COC, THE CLIENT	
11 - 14420203	E = Encore D = BOD Bottle	RETENCEN	l	8 19 16	7:15 pm	The	Ple	1/2			38 [[8/vol	_	915	HAS READ AND AGREES TO BE BOUND BY ALPHA TERMS & CONDITIONS.	S A'S
Form No: 01-25 HC (rev. 30	J-Sept-2013)							-						(See reverse side.)	

ANALYTICAL REPORT

Lab Number: L1639044

Client: Spectra Environmental Group

19 British American Blvd.

Latham, NY 12110

ATTN: Joe Krikorian
Phone: (518) 782-0882

Project Name: DESTINY
Project Number: 15209

Report Date: 12/07/16

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: DESTINY **Project Number:** 15209

Lab Number:

L1639044

Report Date:

12/07/16

Alpha Sample ID Sample Location Collection Date/Time **Receive Date Client ID** Matrix MW42R WATER SYRACUSE, NY 12/01/16 13:30 12/01/16 L1639044-01

Project Name:DESTINYLab Number:L1639044Project Number:15209Report Date:12/07/16

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:DESTINYLab Number:L1639044Project Number:15209Report Date:12/07/16

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

L1639044-01 and the associated method blank were evaluated for the presence of the following project specific TIC(s) and were determined to be non-detect: ethanol.

Semivolatile Organics

The WG957057-2/-3 LCS/LCSD recoveries, associated with L1639044-01, are below the acceptance criteria for benzidine (0%/0%) and pyridine (LCS at 5%); however, it has been identified as a "difficult" analyte. The results of the associated samples are reported.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Custen Walker Cristin Walker

Authorized Signature:

Title: Technical Director/Representative

ANALYTICA

Date: 12/07/16

ORGANICS

VOLATILES

Project Name: DESTINY Lab Number: L1639044

Project Number: 15209 Report Date: 12/07/16

SAMPLE RESULTS

Lab ID: Date Collected: 12/01/16 13:30

Client ID: MW42R Date Received: 12/01/16

Sample Location: SYRACUSE, NY Field Prep: Not Specified Matrix: Water

Analytical Method: 1,8260C

Analyst: PD

12/05/16 13:17

Analytical Date:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	ugh Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	0.26	J	ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	3.3		ug/l	0.50	0.16	1
Toluene	0.79	J	ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: DESTINY Lab Number: L1639044

Project Number: 15209 Report Date: 12/07/16

SAMPLE RESULTS

Lab ID: Date Collected: 12/01/16 13:30

Client ID: MW42R Date Received: 12/01/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Oumpio 2000aiom				1 1014 1 10	۰,	riot opcomed
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	h Lab					
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	1.0	J	ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Diisopropyl Ether	ND		ug/l	2.0	0.65	1
Tert-Butyl Alcohol	3.1	J	ug/l	10	1.4	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	0.74	J	ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.5	0.70	1

Project Name: DESTINY Lab Number: L1639044

Project Number: 15209 Report Date: 12/07/16

SAMPLE RESULTS

Lab ID: Date Collected: 12/01/16 13:30

Client ID: MW42R Date Received: 12/01/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Parameter	Result	Qualifier	Units	KL	MDL	Dilution Factor	
Volatile Organics by GC/MS - We	stborough Lab						
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0	0.28	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Tetrahydrofuran	ND		ug/l	5.0	1.5	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

	Acceptance							
Surrogate	% Recovery	Qualifier	Criteria					
1,2-Dichloroethane-d4	94		70-130					
Toluene-d8	100		70-130					
4-Bromofluorobenzene	103		70-130					
Dibromofluoromethane	99		70-130					

Project Name:DESTINYLab Number:L1639044Project Number:15209Report Date:12/07/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 1,8260C 12/05/16 12:45

Analyst: PD

Parameter	Result	Qualifier Un	its	RL	MDL
Volatile Organics by GC/MS	- Westborough Lab	for sample(s)	: 01	Batch:	WG958359-5
Methylene chloride	ND	u	g/l	2.5	0.70
1,1-Dichloroethane	ND	u	g/l	2.5	0.70
Chloroform	ND	u	g/l	2.5	0.70
Carbon tetrachloride	ND	u	g/l	0.50	0.13
1,2-Dichloropropane	ND	u	g/l	1.0	0.14
Dibromochloromethane	ND	u	g/l	0.50	0.15
1,1,2-Trichloroethane	ND	u	g/l	1.5	0.50
Tetrachloroethene	ND	u	g/l	0.50	0.18
Chlorobenzene	ND	u	g/l	2.5	0.70
Trichlorofluoromethane	ND	u	g/l	2.5	0.70
1,2-Dichloroethane	ND	u	g/l	0.50	0.13
1,1,1-Trichloroethane	ND	u	g/l	2.5	0.70
Bromodichloromethane	ND	u	g/l	0.50	0.19
trans-1,3-Dichloropropene	ND	u	g/l	0.50	0.16
cis-1,3-Dichloropropene	ND	u	g/l	0.50	0.14
1,1-Dichloropropene	ND	u	g/l	2.5	0.70
Bromoform	ND	u	g/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	u	g/l	0.50	0.17
Benzene	ND	u	g/l	0.50	0.16
Toluene	ND	u	g/l	2.5	0.70
Ethylbenzene	ND	u	g/l	2.5	0.70
Chloromethane	ND	u	g/l	2.5	0.70
Bromomethane	ND	u	g/l	2.5	0.70
Vinyl chloride	ND	u	g/l	1.0	0.07
Chloroethane	ND	u	g/l	2.5	0.70
1,1-Dichloroethene	ND	u	g/l	0.50	0.17
trans-1,2-Dichloroethene	ND	u	g/l	2.5	0.70
Trichloroethene	ND	u	g/l	0.50	0.18
1,2-Dichlorobenzene	ND	u	g/l	2.5	0.70

Project Name:DESTINYLab Number:L1639044Project Number:15209Report Date:12/07/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 1,8260C 12/05/16 12:45

Analyst: PD

arameter	Result	Qualifier Unit	s	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01	Batch:	WG958359-5
1,3-Dichlorobenzene	ND	ug.	/ I	2.5	0.70
1,4-Dichlorobenzene	ND	ug	/I	2.5	0.70
Methyl tert butyl ether	ND	ug	/I	2.5	0.70
p/m-Xylene	ND	ug	/I	2.5	0.70
o-Xylene	ND	ug	/I	2.5	0.70
cis-1,2-Dichloroethene	ND	ug	/ I	2.5	0.70
Dibromomethane	ND	ug	/ I	5.0	1.0
1,2,3-Trichloropropane	ND	ug	/I	2.5	0.70
Acrylonitrile	ND	ug	/I	5.0	1.5
Diisopropyl Ether	ND	ug	/I	2.0	0.65
Tert-Butyl Alcohol	ND	ug.	/I	10	1.4
Styrene	ND	ug	/ I	2.5	0.70
Dichlorodifluoromethane	ND	ug	/I	5.0	1.0
Acetone	ND	ug	/ I	5.0	1.5
Carbon disulfide	ND	ug	/I	5.0	1.0
2-Butanone	ND	ug	/I	5.0	1.9
4-Methyl-2-pentanone	ND	ug	/I	5.0	1.0
2-Hexanone	ND	ug	/I	5.0	1.0
Bromochloromethane	ND	ug	/I	2.5	0.70
2,2-Dichloropropane	ND	ug	/I	2.5	0.70
1,2-Dibromoethane	ND	ug	/I	2.0	0.65
1,3-Dichloropropane	ND	ug	/I	2.5	0.70
1,1,1,2-Tetrachloroethane	ND	ug	/I	2.5	0.70
Bromobenzene	ND	ug	/I	2.5	0.70
n-Butylbenzene	ND	ug	/I	2.5	0.70
sec-Butylbenzene	ND	ug	/1	2.5	0.70
tert-Butylbenzene	ND	ug	/1	2.5	0.70
o-Chlorotoluene	ND	ug	/1	2.5	0.70
p-Chlorotoluene	ND	ug	/I	2.5	0.70

Project Name:DESTINYLab Number:L1639044Project Number:15209Report Date:12/07/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 1,8260C 12/05/16 12:45

Analyst: PD

Parameter	Result	Qualifier Units	RL	MDL	
Volatile Organics by GC/MS	- Westborough Lab	for sample(s): ()1 Batch:	WG958359-5	
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70	
Hexachlorobutadiene	ND	ug/l	2.5	0.70	
Isopropylbenzene	ND	ug/l	2.5	0.70	
p-Isopropyltoluene	ND	ug/l	2.5	0.70	
Naphthalene	ND	ug/l	2.5	0.70	
n-Propylbenzene	ND	ug/l	2.5	0.70	
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70	
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70	
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70	
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70	
Ethyl-Tert-Butyl-Ether	ND	ug/l	2.5	0.70	
Tertiary-Amyl Methyl Ether	ND	ug/l	2.0	0.28	
1,4-Dioxane	ND	ug/l	250	61.	
Freon-113	ND	ug/l	2.5	0.70	
Tetrahydrofuran	ND	ug/l	5.0	1.5	
Ethyl ether	ND	ug/l	2.5	0.70	
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70	

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	94		70-130	
Toluene-d8	102		70-130	
4-Bromofluorobenzene	101		70-130	
Dibromofluoromethane	99		70-130	

Project Name: DESTINY

Project Number: 15209

Lab Number: L1639044

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0	1 Batch: WG	958359-3	WG958359-4			
Methylene chloride	100		100		70-130	0		20
1,1-Dichloroethane	100		100		70-130	0		20
Chloroform	100		100		70-130	0		20
2-Chloroethylvinyl ether	50	Q	72		70-130	36	Q	20
Carbon tetrachloride	110		100		63-132	10		20
1,2-Dichloropropane	100		100		70-130	0		20
Dibromochloromethane	110		110		63-130	0		20
1,1,2-Trichloroethane	110		110		70-130	0		20
Tetrachloroethene	110		110		70-130	0		20
Chlorobenzene	110		110		75-130	0		20
Trichlorofluoromethane	100		98		62-150	2		20
1,2-Dichloroethane	96		96		70-130	0		20
1,1,1-Trichloroethane	98		95		67-130	3		20
Bromodichloromethane	100		100		67-130	0		20
trans-1,3-Dichloropropene	100		100		70-130	0		20
cis-1,3-Dichloropropene	100		100		70-130	0		20
1,1-Dichloropropene	100		100		70-130	0		20
Bromoform	120		120		54-136	0		20
1,1,2,2-Tetrachloroethane	110		110		67-130	0		20
Benzene	100		100		70-130	0		20
Toluene	110		110		70-130	0		20

Project Name: DESTINY

Project Number: 15209

Lab Number: L1639044

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	.ab Associated	sample(s): 01	Batch: WG9	58359-3	WG958359-4			
Ethylbenzene	110		110		70-130	0		20
Chloromethane	81		74		64-130	9		20
Bromomethane	130		120		39-139	8		20
Vinyl chloride	87		85		55-140	2		20
Chloroethane	110		100		55-138	10		20
1,1-Dichloroethene	100		100		61-145	0		20
trans-1,2-Dichloroethene	110		100		70-130	10		20
Trichloroethene	100		100		70-130	0		20
1,2-Dichlorobenzene	120		120		70-130	0		20
1,3-Dichlorobenzene	110		110		70-130	0		20
1,4-Dichlorobenzene	110		120		70-130	9		20
Methyl tert butyl ether	86		90		63-130	5		20
p/m-Xylene	110		110		70-130	0		20
o-Xylene	110		110		70-130	0		20
cis-1,2-Dichloroethene	110		110		70-130	0		20
Dibromomethane	110		100		70-130	10		20
1,2,3-Trichloropropane	100		100		64-130	0		20
Acrylonitrile	100		100		70-130	0		20
Isopropyl Ether	100		100		70-130	0		20
tert-Butyl Alcohol	102		110		70-130	8		20
Styrene	110		110		70-130	0		20

Project Name: DESTINY

Project Number:

15209

Lab Number: L1639044

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0	1 Batch: WG9	958359-3	WG958359-4			
Dichlorodifluoromethane	39		38		36-147	3	20	
Acetone	99		100		58-148	1	20	
Carbon disulfide	88		86		51-130	2	20	
2-Butanone	99		100		63-138	1	20	
Vinyl acetate	92		92		70-130	0	20	
4-Methyl-2-pentanone	92		95		59-130	3	20	
2-Hexanone	90		89		57-130	1	20	
Acrolein	98		100		40-160	2	20	
Bromochloromethane	120		120		70-130	0	20	
2,2-Dichloropropane	94		91		63-133	3	20	
1,2-Dibromoethane	100		100		70-130	0	20	
1,3-Dichloropropane	100		100		70-130	0	20	
1,1,1,2-Tetrachloroethane	110		110		64-130	0	20	
Bromobenzene	110		120		70-130	9	20	
n-Butylbenzene	110		110		53-136	0	20	
sec-Butylbenzene	110		110		70-130	0	20	
tert-Butylbenzene	110		110		70-130	0	20	
o-Chlorotoluene	110		110		70-130	0	20	
p-Chlorotoluene	110		110		70-130	0	20	
1,2-Dibromo-3-chloropropane	97		98		41-144	1	20	
Hexachlorobutadiene	110		110		63-130	0	20	

Project Name: DESTINY

Project Number: 15209

Lab Number: L1639044

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0)1 Batch: WG	958359-3	WG958359-4		
Isopropylbenzene	110		110		70-130	0	20
p-Isopropyltoluene	110		110		70-130	0	20
Naphthalene	99		100		70-130	1	20
n-Propylbenzene	110		110		69-130	0	20
1,2,3-Trichlorobenzene	100		100		70-130	0	20
1,2,4-Trichlorobenzene	100		100		70-130	0	20
1,3,5-Trimethylbenzene	110		110		64-130	0	20
1,2,4-Trimethylbenzene	110		110		70-130	0	20
Methyl Acetate	110		120		70-130	9	20
Ethyl Acetate	99		100		70-130	1	20
Cyclohexane	100		100		70-130	0	20
Ethyl-Tert-Butyl-Ether	89		90		70-130	1	20
Tertiary-Amyl Methyl Ether	86		88		66-130	2	20
1,4-Dioxane	110		116		56-162	5	20
1,1,2-Trichloro-1,2,2-Trifluoroethane	110		110		70-130	0	20
p-Diethylbenzene	110		110		70-130	0	20
p-Ethyltoluene	120		110		70-130	9	20
1,2,4,5-Tetramethylbenzene	120		120		70-130	0	20
Tetrahydrofuran	93		93		58-130	0	20
Ethyl ether	110		110		59-134	0	20
trans-1,4-Dichloro-2-butene	100		100		70-130	0	20

Project Name: DESTINY

Project Number: 15209

Lab Number:

L1639044

Report Date:

12/07/16

Parameter	LCS %Recovery	Qual		CSD covery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough	_ab Associated	sample(s):	01 Bat	ch: WG	958359-3	WG958359-4				
lodomethane	82			100		70-130	20		20	
Methyl cyclohexane	110			110		70-130	0		20	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	92		90		70-130	
Toluene-d8	102		101		70-130	
4-Bromofluorobenzene	98		96		70-130	
Dibromofluoromethane	101		98		70-130	

SEMIVOLATILES

Project Name: DESTINY Lab Number: L1639044

Project Number: 15209 Report Date: 12/07/16

SAMPLE RESULTS

Lab ID: Date Collected: 12/01/16 13:30

Client ID: MW42R Date Received: 12/01/16

Sample Location: SYRACUSE, NY Field Prep: Not Specified Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D Extraction Date: 12/02/16 07:28

Analytical Date: 12/07/16 10:59
Analyst: PS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - Westl	oorough Lab						
Acenaphthene	ND		ug/l	2.0	0.59	1	
Benzidine	ND		ug/l	20	8.1	1	
1,2,4-Trichlorobenzene	ND		ug/l	5.0	0.66	1	
Hexachlorobenzene	ND		ug/l	2.0	0.58	1	
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.67	1	
2-Chloronaphthalene	ND		ug/l	2.0	0.64	1	
1,2-Dichlorobenzene	ND		ug/l	2.0	0.73	1	
1,3-Dichlorobenzene	ND		ug/l	2.0	0.69	1	
1,4-Dichlorobenzene	ND		ug/l	2.0	0.71	1	
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.4	1	
2,4-Dinitrotoluene	ND		ug/l	5.0	0.84	1	
2,6-Dinitrotoluene	ND		ug/l	5.0	1.1	1	
Azobenzene	ND		ug/l	2.0	0.75	1	
Fluoranthene	ND		ug/l	2.0	0.57	1	
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.62	1	
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.73	1	
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.70	1	
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.63	1	
Hexachlorobutadiene	ND		ug/l	2.0	0.72	1	
Hexachlorocyclopentadiene	ND		ug/l	20	7.8	1	
Hexachloroethane	ND		ug/l	2.0	0.68	1	
Isophorone	ND		ug/l	5.0	0.60	1	
Naphthalene	ND		ug/l	2.0	0.68	1	
Nitrobenzene	ND		ug/l	2.0	0.75	1	
NDPA/DPA	ND		ug/l	2.0	0.64	1	
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.70	1	
Bis(2-ethylhexyl)phthalate	0.98	J	ug/l	3.0	0.91	1	
Butyl benzyl phthalate	ND		ug/l	5.0	1.3	1	
Di-n-butylphthalate	ND		ug/l	5.0	0.69	1	
Di-n-octylphthalate	ND		ug/l	5.0	1.1	1	

Project Name: DESTINY Lab Number: L1639044

Project Number: 15209 Report Date: 12/07/16

SAMPLE RESULTS

Lab ID: Date Collected: 12/01/16 13:30

Client ID: MW42R Date Received: 12/01/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RLMDL **Dilution Factor** Semivolatile Organics by GC/MS - Westborough Lab Diethyl phthalate ND 5.0 0.63 1 ug/l Dimethyl phthalate ND ug/l 5.0 0.65 1 Benzo(a)anthracene ND 2.0 0.61 1 ug/l ND Benzo(a)pyrene 2.0 0.54 1 ug/l Benzo(b)fluoranthene ND ug/l 2.0 0.64 1 Benzo(k)fluoranthene ND 1 2.0 0.60 ug/l Chrysene ND 2.0 0.54 1 ug/l ND 1 Acenaphthylene ug/l 2.0 0.66 ND Anthracene ug/l 2.0 0.64 1 ND Benzo(ghi)perylene ug/l 2.0 0.61 1 ND Fluorene ug/l 2.0 0.62 1 Phenanthrene ND 2.0 0.61 1 ug/l Dibenzo(a,h)anthracene ND 2.0 0.55 1 ug/l Indeno(1,2,3-cd)pyrene ND 2.0 0.71 1 ug/l ND 2.0 0.57 1 Pyrene ug/l Aniline ND 2.0 0.65 1 ug/l 4-Chloroaniline ND 5.0 0.63 1 ug/l 2-Nitroaniline ND 5.0 1.1 1 ug/l 3-Nitroaniline ND 5.0 1.2 1 ug/l 4-Nitroaniline ND 1 5.0 1.3 ug/l Dibenzofuran ND 2.0 0.66 1 ug/l 2-Methylnaphthalene ND ug/l 2.0 0.72 1 1,2,4,5-Tetrachlorobenzene ND 10 0.67 1 ug/l n-Nitrosodimethylamine ND ug/l 2.0 0.67 1 Benzoic Acid ND ug/l 50 13. 1 Benzyl Alcohol ND ug/l 2.0 0.72 1 Carbazole ND ug/l 2.0 0.63 1 ND Pyridine ug/l 3.5 1.9 1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	46		21-120	
Phenol-d6	29		10-120	
Nitrobenzene-d5	65		23-120	
2-Fluorobiphenyl	60		15-120	
2,4,6-Tribromophenol	60		10-120	
4-Terphenyl-d14	54		41-149	

Project Name:DESTINYLab Number:L1639044Project Number:15209Report Date:12/07/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 12/02/16 19:10

Analyst: RC

Extraction Method: EPA 3510C Extraction Date: 12/01/16 08:14

Parameter	Result	Qualifier Unit	s	RL	MDL	
Semivolatile Organics by GC/MS -	Westborough	Lab for sample	e(s): 01	Batch:	WG957057-1	
Acenaphthene	ND	ug/	1	2.0	0.59	
Benzidine	ND	ug/	1	20	8.1	
1,2,4-Trichlorobenzene	ND	ug/	1	5.0	0.66	
Hexachlorobenzene	ND	ug/		2.0	0.58	
Bis(2-chloroethyl)ether	ND	ug/	T	2.0	0.67	
2-Chloronaphthalene	ND	ug/	Ί	2.0	0.64	
1,2-Dichlorobenzene	ND	ug/	Ί	2.0	0.73	
1,3-Dichlorobenzene	ND	ug/	Ί	2.0	0.69	
1,4-Dichlorobenzene	ND	ug/	Ί	2.0	0.71	
3,3'-Dichlorobenzidine	ND	ug/	Ί	5.0	1.4	
2,4-Dinitrotoluene	ND	ug/	Ί	5.0	0.84	
2,6-Dinitrotoluene	ND	ug/	Ί	5.0	1.1	
Azobenzene	ND	ug/	Ί	2.0	0.75	
Fluoranthene	ND	ug/	1	2.0	0.57	
4-Chlorophenyl phenyl ether	ND	ug/	Ί	2.0	0.62	
4-Bromophenyl phenyl ether	ND	ug/	1	2.0	0.73	
Bis(2-chloroisopropyl)ether	ND	ug/	Ί	2.0	0.70	
Bis(2-chloroethoxy)methane	ND	ug/	1	5.0	0.63	
Hexachlorobutadiene	ND	ug/	1	2.0	0.72	
Hexachlorocyclopentadiene	ND	ug/	Ί	20	7.8	
Hexachloroethane	ND	ug/	1	2.0	0.68	
Isophorone	ND	ug/	1	5.0	0.60	
Naphthalene	ND	ug/	1	2.0	0.68	
Nitrobenzene	ND	ug/	1	2.0	0.75	
NDPA/DPA	ND	ug/	1	2.0	0.64	
n-Nitrosodi-n-propylamine	ND	ug/	1	5.0	0.70	
Bis(2-ethylhexyl)phthalate	ND	ug/	1	3.0	0.91	
Butyl benzyl phthalate	ND	ug/	1	5.0	1.3	
Di-n-butylphthalate	ND	ug/	Ί	5.0	0.69	

Project Name:DESTINYLab Number:L1639044Project Number:15209Report Date:12/07/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 12/02/16 19:10

Analyst: RC

Extraction Method: EPA 3510C Extraction Date: 12/01/16 08:14

Parameter	Result	Qualifier	Units		RL	MDL	
Semivolatile Organics by GC/MS	- Westborough	Lab for sa	ample(s):	01	Batch:	WG957057-1	
Di-n-octylphthalate	ND		ug/l		5.0	1.1	
Diethyl phthalate	ND		ug/l		5.0	0.63	
Dimethyl phthalate	ND		ug/l		5.0	0.65	
Benzo(a)anthracene	ND		ug/l		2.0	0.61	
Benzo(a)pyrene	ND		ug/l		2.0	0.54	
Benzo(b)fluoranthene	ND		ug/l		2.0	0.64	
Benzo(k)fluoranthene	ND		ug/l		2.0	0.60	
Chrysene	ND		ug/l		2.0	0.54	
Acenaphthylene	ND		ug/l		2.0	0.66	
Anthracene	ND		ug/l		2.0	0.64	
Benzo(ghi)perylene	ND		ug/l		2.0	0.61	
Fluorene	ND		ug/l		2.0	0.62	
Phenanthrene	ND		ug/l		2.0	0.61	
Dibenzo(a,h)anthracene	ND		ug/l		2.0	0.55	
Indeno(1,2,3-cd)pyrene	ND		ug/l		2.0	0.71	
Pyrene	ND		ug/l		2.0	0.57	
Aniline	ND		ug/l		2.0	0.65	
4-Chloroaniline	ND		ug/l		5.0	0.63	
2-Nitroaniline	ND		ug/l		5.0	1.1	
3-Nitroaniline	ND		ug/l		5.0	1.2	
4-Nitroaniline	ND		ug/l		5.0	1.3	
Dibenzofuran	ND		ug/l		2.0	0.66	
2-Methylnaphthalene	ND		ug/l		2.0	0.72	
1,2,4,5-Tetrachlorobenzene	ND		ug/l		10	0.67	
n-Nitrosodimethylamine	ND		ug/l		2.0	0.67	
Benzoic Acid	ND		ug/l		50	13.	
Benzyl Alcohol	ND		ug/l		2.0	0.72	
Carbazole	ND		ug/l		2.0	0.63	
Pyridine	ND		ug/l		3.5	1.9	
-							

Project Name: DESTINY Lab Number: L1639044

Project Number: 15209 Report Date: 12/07/16

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270D Extraction Method: EPA 3510C
Analytical Date: 12/02/16 19:10 Extraction Date: 12/01/16 08:14

Analyst: RC

ParameterResultQualifierUnitsRLMDLSemivolatile Organics by GC/MS - Westborough Lab for sample(s): 01Batch: WG957057-1

		Acceptance	
Surrogate	%Recovery	Qualifier Criteria	
O. Elwaranhanal	24	04.400	
2-Fluorophenol	34	21-120	
Phenol-d6	25	10-120	
Nitrobenzene-d5	54	23-120	
2-Fluorobiphenyl	56	15-120	
2,4,6-Tribromophenol	69	10-120	
4-Terphenyl-d14	67	41-149	

Project Name: DESTINY

Project Number: 15209

Lab Number: L1639044

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Westbord	ough Lab Assoc	iated sample(s):	01 Batch:	WG957057-2	2 WG957057-3		
Acenaphthene	66		65		37-111	2	30
Benzidine	0	Q	1	Q	10-75	NC	30
1,2,4-Trichlorobenzene	64		63		39-98	2	30
Hexachlorobenzene	77		68		40-140	12	30
Bis(2-chloroethyl)ether	70		64		40-140	9	30
2-Chloronaphthalene	73		59		40-140	21	30
1,2-Dichlorobenzene	60		56		40-140	7	30
1,3-Dichlorobenzene	55		55		40-140	0	30
1,4-Dichlorobenzene	56		56		36-97	0	30
3,3'-Dichlorobenzidine	78		83		40-140	6	30
2,4-Dinitrotoluene	90		92		48-143	2	30
2,6-Dinitrotoluene	89		73		40-140	20	30
Azobenzene	82		72		40-140	13	30
Fluoranthene	62		84		40-140	30	30
4-Chlorophenyl phenyl ether	72		62		40-140	15	30
4-Bromophenyl phenyl ether	74		72		40-140	3	30
Bis(2-chloroisopropyl)ether	88		85		40-140	3	30
Bis(2-chloroethoxy)methane	79		75		40-140	5	30
Hexachlorobutadiene	59		57		40-140	3	30
Hexachlorocyclopentadiene	49		46		40-140	6	30
Hexachloroethane	58		56		40-140	4	30

Project Name: DESTINY

15209

Project Number:

Lab Number:

L1639044

Report Date:

12/07/16

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
emivolatile Organics by GC/MS - Wes	tborough Lab Associa	ated sample(s)	: 01 Batch:	WG957057-2	WG957057-3			
Isophorone	84		80		40-140	5		30
Naphthalene	64		63		40-140	2		30
Nitrobenzene	74		71		40-140	4		30
NitrosoDiPhenylAmine(NDPA)/DPA	76		68		40-140	11		30
n-Nitrosodi-n-propylamine	80		78		29-132	3		30
Bis(2-Ethylhexyl)phthalate	100		99		40-140	1		30
Butyl benzyl phthalate	90		86		40-140	5		30
Di-n-butylphthalate	93		85		40-140	9		30
Di-n-octylphthalate	118		124		40-140	5		30
Diethyl phthalate	85		71		40-140	18		30
Dimethyl phthalate	83		70		40-140	17		30
Benzo(a)anthracene	86		80		40-140	7		30
Benzo(a)pyrene	87		87		40-140	0		30
Benzo(b)fluoranthene	99		108		40-140	9		30
Benzo(k)fluoranthene	100		103		40-140	3		30
Chrysene	75		96		40-140	25		30
Acenaphthylene	77		76		45-123	1		30
Anthracene	81		85		40-140	5		30
Benzo(ghi)perylene	61		80		40-140	27		30
Fluorene	74		67		40-140	10		30
Phenanthrene	78		84		40-140	7		30

Project Name: DESTINY

Project Number:

15209

Lab Number: L1639044

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westbord	ough Lab Associ	iated sample(s):	01 Batch:	WG957057-2	2 WG957057-3			
Dibenzo(a,h)anthracene	65		97		40-140	40	Q	30
Indeno(1,2,3-cd)Pyrene	65		102		40-140	44	Q	30
Pyrene	60		82		26-127	31	Q	30
Biphenyl	82		65		40-140	23		30
Aniline	17	Q	29	Q	40-140	52	Q	30
4-Chloroaniline	45		49		40-140	9		30
1-Methylnaphthalene	72		60		41-103	18		30
2-Nitroaniline	96		77		52-143	22		30
3-Nitroaniline	74		80		25-145	8		30
4-Nitroaniline	80		68		51-143	16		30
Dibenzofuran	74		73		40-140	1		30
2-Methylnaphthalene	71		56		40-140	24		30
1,2,4,5-Tetrachlorobenzene	73		68		2-134	7		30
Pentachloronitrobenzene	102		103		4-189	1		30
Acetophenone	86		84		39-129	2		30
n-Nitrosodimethylamine	40		33		22-74	19		30
2,4,6-Trichlorophenol	77		61		30-130	23		30
P-Chloro-M-Cresol	85		78		23-97	9		30
2-Chlorophenol	74		67		27-123	10		30
2,4-Dichlorophenol	85		80		30-130	6		30
2,4-Dimethylphenol	51		55		30-130	8		30

Project Name: DESTINY

Project Number: 15209

Lab Number: L1639044

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westborou	igh Lab Assoc	ated sample(s)	: 01 Batch:	WG957057-2	WG957057-3			
2-Nitrophenol	86		81		30-130	6		30
4-Nitrophenol	49		49		10-80	0		30
2,4-Dinitrophenol	63		64		20-130	2		30
4,6-Dinitro-o-cresol	71		68		20-164	4		30
Pentachlorophenol	77		75		9-103	3		30
Phenol	36		34		12-110	6		30
2-Methylphenol	67		64		30-130	5		30
3-Methylphenol/4-Methylphenol	64		62		30-130	3		30
2,4,5-Trichlorophenol	82		66		30-130	22		30
Benzoic Acid	46		28		10-164	49	Q	30
Benzyl Alcohol	73		67		26-116	9		30
Carbazole	79		85		55-144	7		30
Pyridine	5	Q	10		10-66	76	Q	30
Parathion, ethyl	98		128		40-140	27		30
Atrazine	106		111		40-140	5		30
Benzaldehyde	74		68		40-140	8		30
Caprolactam	40		38		10-130	5		30
2,3,4,6-Tetrachlorophenol	79		76		40-140	4		30

Project Name: DESTINY

Lab Number:

L1639044

Project Number: 15209 Report Date:

12/07/16

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG957057-2 WG957057-3

LCS		LCSD		Acceptance	
%Recovery	Qual	%Recovery	Qual	Criteria	
49		44		21-120	
34		32		10-120	
73		66		23-120	
76		61		15-120	
75		78		10-120	
70		73		41-149	
	%Recovery 49 34 73 76 75	%Recovery Qual 49 34 73 76 75	%Recovery Qual %Recovery 49 44 34 32 73 66 76 61 75 78	%Recovery Qual %Recovery Qual 49 44 34 32 73 66 76 61 75 78	%Recovery Qual %Recovery Qual Criteria 49 44 21-120 34 32 10-120 73 66 23-120 76 61 15-120 75 78 10-120

METALS

Project Name:DESTINYLab Number:L1639044Project Number:15209Report Date:12/07/16

SAMPLE RESULTS

Lab ID: L1639044-01 Client ID: MW42R

Sample Location: SYRACUSE, NY

Matrix: Water

Date Collected: 12/01/16 13:30
Date Received: 12/01/16

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Arsenic, Total	0.0048	J	mg/l	0.0050	0.0019	1	12/07/16 06:30	12/07/16 11:54	EPA 3005A	1,6010C	PS
Barium, Total	0.116		mg/l	0.010	0.002	1	12/07/16 06:30	12/07/16 11:54	EPA 3005A	1,6010C	PS
Beryllium, Total	ND		mg/l	0.005	0.001	1	12/07/16 06:30	12/07/16 11:54	EPA 3005A	1,6010C	PS
Cadmium, Total	ND		mg/l	0.005	0.001	1	12/07/16 06:30	12/07/16 11:54	EPA 3005A	1,6010C	PS
Chromium, Total	ND		mg/l	0.01	0.002	1	12/07/16 06:30	12/07/16 11:54	EPA 3005A	1,6010C	PS
Copper, Total	0.005	J	mg/l	0.010	0.002	1	12/07/16 06:30	12/07/16 11:54	EPA 3005A	1,6010C	PS
Lead, Total	0.003	J	mg/l	0.010	0.003	1	12/07/16 06:30	12/07/16 11:54	EPA 3005A	1,6010C	PS
Manganese, Total	0.602		mg/l	0.010	0.002	1	12/07/16 06:30	12/07/16 11:54	EPA 3005A	1,6010C	PS
Mercury, Total	ND		mg/l	0.00020	0.00006	1	12/06/16 11:51	12/07/16 12:44	EPA 7470A	1,7470A	BV
Nickel, Total	ND		mg/l	0.025	0.002	1	12/07/16 06:30	12/07/16 11:54	EPA 3005A	1,6010C	PS
Selenium, Total	ND		mg/l	0.010	0.004	1	12/07/16 06:30	12/07/16 11:54	EPA 3005A	1,6010C	PS
Silver, Total	ND		mg/l	0.007	0.003	1	12/07/16 06:30	12/07/16 11:54	EPA 3005A	1,6010C	PS
Zinc, Total	0.008	J	mg/l	0.050	0.002	1	12/07/16 06:30	12/07/16 11:54	EPA 3005A	1,6010C	PS

Project Name: DESTINY Project Number: 15209

Lab Number: L1639044 **Report Date:** 12/07/16

12/06/16 11:51

Method Blank Analysis Batch Quality Control

Dilution Date Date Analytical Method Analyst **Parameter Result Qualifier** Units RL**Factor Prepared** Analyzed **MDL** Batch: WG958471-1 Total Metals - Mansfield Lab for sample(s): 01 Mercury, Total ND mg/l 0.00020 0.00006 1 12/07/16 12:41 1,7470A ΒV

Prep Information

Digestion Method: EPA 7470A

Parameter	Result (Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfi	ield Lab for sa	ample(s):	01 Batcl	h: WG9	58744-1					
Arsenic, Total	ND		mg/l	0.005	0.002	1	12/07/16 06:30	12/07/16 11:22	1,6010C	PS
Barium, Total	ND		mg/l	0.010	0.002	1	12/07/16 06:30	12/07/16 11:22	1,6010C	PS
Beryllium, Total	ND		mg/l	0.005	0.001	1	12/07/16 06:30	12/07/16 11:22	1,6010C	PS
Cadmium, Total	ND		mg/l	0.005	0.001	1	12/07/16 06:30	12/07/16 11:22	1,6010C	PS
Chromium, Total	ND		mg/l	0.01	0.002	1	12/07/16 06:30	12/07/16 11:22	1,6010C	PS
Copper, Total	0.003	J	mg/l	0.010	0.002	1	12/07/16 06:30	12/07/16 11:22	1,6010C	PS
Lead, Total	ND		mg/l	0.010	0.003	1	12/07/16 06:30	12/07/16 11:22	1,6010C	PS
Manganese, Total	ND		mg/l	0.010	0.002	1	12/07/16 06:30	12/07/16 11:22	1,6010C	PS
Nickel, Total	ND		mg/l	0.025	0.002	1	12/07/16 06:30	12/07/16 11:22	1,6010C	PS
Selenium, Total	ND		mg/l	0.010	0.004	1	12/07/16 06:30	12/07/16 11:22	1,6010C	PS
Silver, Total	ND		mg/l	0.007	0.003	1	12/07/16 06:30	12/07/16 11:22	1,6010C	PS
Zinc, Total	ND		mg/l	0.050	0.002	1	12/07/16 06:30	12/07/16 11:22	1,6010C	PS

Prep Information

Digestion Method: EPA 3005A

Project Name: DESTINY

Project Number:

15209

Lab Number: L1639044

Report Date: 12/07/16

arameter	LCS %Recovery	LCSD Qual %Recovery		ecovery .imits RP	D Qual	RPD Limits
otal Metals - Mansfield Lab Associated samp	le(s): 01 Batch:	WG958471-2				
Mercury, Total	99	-	8	60-120 -		
otal Metals - Mansfield Lab Associated samp	le(s): 01 Batch:	WG958744-2				
Arsenic, Total	107	-	8	- 30-120		
Barium, Total	94	-	8	- 30-120		
Beryllium, Total	91	-	8	- 0-120		
Cadmium, Total	102	-	8	- 0-120		
Chromium, Total	100	-	8	- 30-120		
Copper, Total	106	-	8	- 30-120		
Lead, Total	105	-	8	- 30-120		
Manganese, Total	89	-	8	- 30-120		
Nickel, Total	103	-	8	- 30-120		
Selenium, Total	110	-	8	- 30-120		
Silver, Total	102	-	8	- 30-120		
Zinc, Total	99	-	8	- 30-120		

Matrix Spike Analysis Batch Quality Control

Project Name: DESTINY
Project Number: 15209

Lab Number: L1639044

Report Date: 12/07/16

arameter	Native Sample	MS Added	MS Found '	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits		RPD Qual Limits
Total Metals - Mansfield I	Lab Associated sam	nple(s): 01	QC Batch II	D: WG958471-	-3 QC Sample	L1639044-01	Client ID: MW42	?R	
Mercury, Total	ND	0.005	0.00491	98	-	-	75-125	-	20
Total Metals - Mansfield	Lab Associated sam	ple(s): 01	QC Batch II	D: WG958744-	-3 WG958744-4	QC Sample: L	.1638835-09 Clie	ent ID: I	MS Sample
Arsenic, Total	0.0048J	0.12	0.134	112	0.132	110	75-125	2	20
Barium, Total	0.058	2	1.97	96	1.95	95	75-125	1	20
Beryllium, Total	ND	0.05	0.046	91	0.045	91	75-125	1	20
Cadmium, Total	ND	0.051	0.052	102	0.051	101	75-125	2	20
Chromium, Total	ND	0.2	0.20	100	0.20	100	75-125	0	20
Copper, Total	0.006J	0.25	0.279	112	0.276	110	75-125	1	20
Lead, Total	ND	0.51	0.545	107	0.541	106	75-125	1	20
Manganese, Total	0.022	0.5	0.468	89	0.466	89	75-125	0	20
Nickel, Total	ND	0.5	0.520	104	0.514	103	75-125	1	20
Selenium, Total	ND	0.12	0.134	112	0.137	114	75-125	2	20
Silver, Total	ND	0.05	0.052	103	0.051	103	75-125	1	20
Zinc, Total	0.003J	0.5	0.494	99	0.487	97	75-125	1	20

Lab Duplicate Analysis
Batch Quality Control

Lab Number:

L1639044

Report Date:

12/07/16

Parameter	Native Sample	Duplicate Sample	Units	RPD Qua	al RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG95847	1-4 QC Sample: L16	39044-01	Client ID: MW42R	
Mercury, Total	ND	ND	mg/l	NC	20

Project Name:

Project Number: 15209

DESTINY

Project Name:DESTINYLab Number:L1639044Project Number:15209Report Date:12/07/16

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information Custody Seal

Cooler

A Absent

Container Information							
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1639044-01A	Vial HCl preserved	Α	N/A	3.9	Υ	Absent	NYTCL-8260(14)
L1639044-01B	Vial HCI preserved	Α	N/A	3.9	Υ	Absent	NYTCL-8260(14)
L1639044-01C	Vial HCI preserved	Α	N/A	3.9	Υ	Absent	NYTCL-8260(14)
L1639044-01D	Amber 1000ml unpreserved	Α	7	3.9	Υ	Absent	NYTCL-8270(7)
L1639044-01E	Plastic 250ml HNO3 preserved	A	<2	3.9	Y	Absent	BE-TI(180),AS-TI(180),BA- TI(180),AG-TI(180),CR- TI(180),NI-TI(180),CU- TI(180),PB-TI(180),SE- TI(180),ZN-TI(180),HG- T(28),MN-TI(180),CD-TI(180)
L1639044-01F	Amber 1000ml unpreserved	Α	7	3.9	Υ	Absent	NYTCL-8270(7)

Project Name:DESTINYLab Number:L1639044Project Number:15209Report Date:12/07/16

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: DU Report with 'J' Qualifiers

Project Name:DESTINYLab Number:L1639044Project Number:15209Report Date:12/07/16

Data Qualifiers

- reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name: DESTINY Lab Number: L1639044
Project Number: 15209 Report Date: 12/07/16

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 7

Published Date: 8/5/2016 11:25:56 AM Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-

Tetramethylbenzene: 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide EPA 9050A: NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

SM 2540D: TSS EPA 3005A NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288		DSI-Groundw	vater Samplin	Page of			in verable ASP	THE COUNTY OF THE		ASP-		ALPHA Job # L / G 340 4 4 Billing Information Same as Client Info Po #
Client Information		Project # 1520	9					Othe	r				
Client: Spectra Env	rironmental Group	(Use Project name as Pro	oject #)						Require	ment			Disposal Site Information
Address: 19 Brittish A	merican Blvd	Project Manager:	Joe Krikorian				×	NYTO	OGS		NY Pa	irt 375	Please identify below location of
Latham, NY 12110	recession of the second	ALPHAQuote #:						AWQ	Standard	S	NYCF	2-51	applicable disposal facilities.
Phone: 518-782-088	32 EXT 25	Turn-Around Time						NY R	estricted (lse	Other		Disposal Facility:
Fax:		Standard		Due Date:	32			NY U	restricted	Use			□ NJ □ NY
Email: jkrikorian@s	spectraenv.com	Rush (only if pre approved)		# of Days:	SV	43		NYC :	Sewer Dis	charge			Other:
These samples have be	en previously analyze	ed by Alpha					ANA	LYSIS					Sample Filtration o
Other project specific Spectra For Me Please specify Metals	nas se	t up specie	ou 115	ts of	consti	tuents	1YTCL 8260	NYTCL 8270	Tal Metals				Done Lab to do Preservation Lab to do B (Please Specify below)
ALPHA Lab ID (Lab Use Only)	Sa	imple ID	Colle Date	ection Time	Sample Matrix	Sampler's Initials	2	2					Sample Specific Comments
39044-01	MW 42	. Z	12/1/16	1330	(5-W)	اللام	3	2	İ				Special list of Constituent
								T					Toquester
													and these
													Samples.
Establication as	3												
$B = HCI$ $C = HNO_3$ $D = H_2SO_4$	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup	Westboro: Certification N Mansfield: Certification N				tainer Type	V B		P C				Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not
E = NaOH F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃ K/E = Zn Ac/NaOH O = Other	C = Cube O = Other E = Encore D = BOD Bottle	Relinquished	ву: 7,025Q	Date/ /2_/o/// /3_//	Time 6 14:40		Recei	ved By	THE RESERVE OF THE PERSON NAMED IN	-	2/1/	Jime 10	start until any ambiguities are 3 resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA'S TERMS & CONDITIONS.

Acctnum:

SPECTRAENV

Bottle Order Request

Bottle Order # 233119

NOV-30-16 12:54:30 Page 1 of 1

Contact Name: Joe Krikonian

Projectnum:

Date Completed: Completed by:

Matrix:

Analytes : Water Frequency:

Order taken by : Bobby Haines

Request date: 11/30/16

Status: NEED

Projectname : Destiny

Company: Spectra Environmental Group

Sample delivery date :

Linked Call:

Delivery method:

Courier

TCL Volatiles - EPA 8260C # Samples :

0 Trip Blanks

Client IDs:

1

NYTCL Semivolatiles - EPA 8270D

Target Analyte List Metals - Total 6010C

Quantity

NYTCL-8270 **Analyte Label**

Container

Amber 1000ml unpreserved

Plastic 250ml HNO3 preserved Vial HCI preserved S NYTCL-8260 Total Hg Total Metals

Bottle Quantity Summary: Amber 1000ml unpreserved

Plastic 250ml HNO3 preserved Vial HCl preserved

1 N

Trip Blanks:

Dangerous

Cooler

×

Certified

Special Shipping Requirements

NJ Courier

Pending Shipping Date(s) 11/30/16

EXCEPT PLEASE PUT CANISTER SAMPLES OR BAG ON ICE SAMPLES

ANALYTICAL REPORT

Lab Number: L1624443

Client: Spectra Environmental Group

19 British American Blvd.

Latham, NY 12110

ATTN: Frank Peduto
Phone: (518) 782-0882

Project Name: DESTINY

Project Number: 15209 Report Date: 08/10/16

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: DESTINY
Project Number: 15209

Lab Number: L1624443 **Report Date:** 08/10/16

Alpha Sample ID Client ID Matrix SYRACUSE, NY Collection Date/Time Receive Date

Sample L1624443-01 SP MW-43 WATER SYRACUSE, NY 08/04/16 13:00 08/04/16

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:DESTINYLab Number:L1624443Project Number:15209Report Date:08/10/16

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Semivolatile Organics by SIM

L1624443-01: The sample has elevated detection limits due to the dilution required by the sample matrix.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 08/10/16

Sma I Iry Lura L Troy

ORGANICS

VOLATILES

Project Name: DESTINY Lab Number: L1624443

Project Number: 15209 Report Date: 08/10/16

SAMPLE RESULTS

Lab ID: L1624443-01 D Date Collected: 08/04/16 13:00

Client ID: SP MW-43 Sample Location: SYRACUSE, NY

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 08/09/16 00:04

Analyst: PD

Date Collecte	u. 06/04/16 13.00
Date Receive	d: 08/04/16
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	50	14.	20
1,1-Dichloroethane	ND		ug/l	50	14.	20
Chloroform	ND		ug/l	50	14.	20
Carbon tetrachloride	ND		ug/l	10	2.7	20
1,2-Dichloropropane	ND		ug/l	20	2.7	20
Dibromochloromethane	ND		ug/l	10	3.0	20
1,1,2-Trichloroethane	ND		ug/l	30	10.	20
Tetrachloroethene	ND		ug/l	10	3.6	20
Chlorobenzene	ND		ug/l	50	14.	20
Trichlorofluoromethane	ND		ug/l	50	14.	20
1,2-Dichloroethane	ND		ug/l	10	2.6	20
1,1,1-Trichloroethane	ND		ug/l	50	14.	20
Bromodichloromethane	ND		ug/l	10	3.8	20
trans-1,3-Dichloropropene	ND		ug/l	10	3.3	20
cis-1,3-Dichloropropene	ND		ug/l	10	2.9	20
Bromoform	ND		ug/l	40	13.	20
1,1,2,2-Tetrachloroethane	ND		ug/l	10	2.9	20
Benzene	310		ug/l	10	3.2	20
Toluene	170		ug/l	50	14.	20
Ethylbenzene	1100		ug/l	50	14.	20
Chloromethane	ND		ug/l	50	14.	20
Bromomethane	45	J	ug/l	50	14.	20
Vinyl chloride	ND		ug/l	20	1.4	20
Chloroethane	ND		ug/l	50	14.	20
1,1-Dichloroethene	ND		ug/l	10	2.8	20
trans-1,2-Dichloroethene	ND		ug/l	50	14.	20
Trichloroethene	ND		ug/l	10	3.5	20
1,2-Dichlorobenzene	ND		ug/l	50	14.	20
1,3-Dichlorobenzene	ND		ug/l	50	14.	20
1,4-Dichlorobenzene	ND		ug/l	50	14.	20

Project Name: DESTINY Lab Number: L1624443

Project Number: 15209 Report Date: 08/10/16

SAMPLE RESULTS

Lab ID: L1624443-01 D

Client ID: SP MW-43 Sample Location: SYRACUSE, NY Date Collected: 08/04/16 13:00

Date Received: 08/04/16
Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
Methyl tert butyl ether	ND		ug/l	50	14.	20		
p/m-Xylene	1600		ug/l	50	14.	20		
o-Xylene	140		ug/l	50	14.	20		
cis-1,2-Dichloroethene	ND		ug/l	50	14.	20		
Styrene	ND		ug/l	50	14.	20		
Dichlorodifluoromethane	ND		ug/l	100	20.	20		
Acetone	54	J	ug/l	100	29.	20		
Carbon disulfide	24	J	ug/l	100	20.	20		
2-Butanone	ND		ug/l	100	39.	20		
4-Methyl-2-pentanone	ND		ug/l	100	20.	20		
2-Hexanone	ND		ug/l	100	20.	20		
Bromochloromethane	ND		ug/l	50	14.	20		
1,2-Dibromoethane	ND		ug/l	40	13.	20		
1,2-Dibromo-3-chloropropane	ND		ug/l	50	14.	20		
Isopropylbenzene	38	J	ug/l	50	14.	20		
1,2,3-Trichlorobenzene	ND		ug/l	50	14.	20		
1,2,4-Trichlorobenzene	ND		ug/l	50	14.	20		
Methyl Acetate	ND		ug/l	40	4.7	20		
Cyclohexane	540		ug/l	200	5.4	20		
1,4-Dioxane	2700	J	ug/l	5000	820	20		
Freon-113	ND		ug/l	50	14.	20		
Methyl cyclohexane	220		ug/l	200	7.9	20		

Surrogate	% Recovery	Acceptar Qualifier Criteri	
1,2-Dichloroethane-d4	98	70-1	30
Toluene-d8	100	70-1	30
4-Bromofluorobenzene	99	70-1	30
Dibromofluoromethane	95	70-1	30

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/08/16 14:16

Analyst: PD

Parameter	Result	Qualifier U	nits	RL	MDL
Volatile Organics by GC/MS	- Westborough Lab	for sample(s): 01	Batch:	WG921109-5
Methylene chloride	ND	l	ug/l	2.5	0.70
1,1-Dichloroethane	ND	l	ug/l	2.5	0.70
Chloroform	ND	l	ug/l	2.5	0.70
Carbon tetrachloride	ND	l	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ı	ug/l	1.0	0.13
Dibromochloromethane	ND	ı	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ı	ug/l	1.5	0.50
Tetrachloroethene	ND	ı	ug/l	0.50	0.18
Chlorobenzene	ND	ı	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ı	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ı	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ı	ug/l	2.5	0.70
Bromodichloromethane	ND	ı	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ı	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ı	ug/l	0.50	0.14
Bromoform	ND	ı	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ı	ug/l	0.50	0.14
Benzene	ND	ı	ug/l	0.50	0.16
Toluene	ND	ı	ug/l	2.5	0.70
Ethylbenzene	ND	ı	ug/l	2.5	0.70
Chloromethane	ND	ι	ug/l	2.5	0.70
Bromomethane	ND	ι	ug/l	2.5	0.70
Vinyl chloride	ND	ı	ug/l	1.0	0.07
Chloroethane	ND	ı	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ı	ug/l	0.50	0.14
trans-1,2-Dichloroethene	ND	l	ug/l	2.5	0.70
Trichloroethene	ND	l	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	l	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	l	ug/l	2.5	0.70

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/08/16 14:16

Analyst: PD

Parameter	Result	Qualifier Units	RL	MDL
Volatile Organics by GC/MS - W	estborough Lab	for sample(s): 01	Batch:	WG921109-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
1,4-Dioxane	ND	ug/l	250	41.
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

Project Name: DESTINY Lab Number: L1624443

Project Number: 15209 Report Date: 08/10/16

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/08/16 14:16

Analyst: PD

 Parameter
 Result
 Qualifier
 Units
 RL
 MDL

 Volatile Organics by GC/MS - Westborough Lab for sample(s):
 01
 Batch:
 WG921109-5

			Acceptance			
Surrogate	%Recovery	Qualifier	Criteria			
1,2-Dichloroethane-d4	102		70-130			
Toluene-d8	98		70-130			
4-Bromofluorobenzene	98		70-130			
Dibromofluoromethane	101		70-130			

Project Name: DESTINY

Project Number:

15209

Lab Number: L1624443

Parameter	LCS %Recovery	Qual	LCSD %Recove	ry Qual	%Recovery Limits	RPD	RPD Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0	1 Batch: \	WG921109-3	WG921109-4		
Methylene chloride	100		110		70-130	10	20
1,1-Dichloroethane	100		110		70-130	10	20
Chloroform	100		110		70-130	10	20
2-Chloroethylvinyl ether	95		94		70-130	1	20
Carbon tetrachloride	86		88		63-132	2	20
1,2-Dichloropropane	100		100		70-130	0	20
Dibromochloromethane	90		92		63-130	2	20
1,1,2-Trichloroethane	100		100		70-130	0	20
Tetrachloroethene	110		110		70-130	0	20
Chlorobenzene	100		110		75-130	10	20
Trichlorofluoromethane	96		100		62-150	4	20
1,2-Dichloroethane	100		100		70-130	0	20
1,1,1-Trichloroethane	100		100		67-130	0	20
Bromodichloromethane	100		100		67-130	0	20
trans-1,3-Dichloropropene	84		84		70-130	0	20
cis-1,3-Dichloropropene	99		100		70-130	1	20
1,1-Dichloropropene	100		110		70-130	10	20
Bromoform	84		83		54-136	1	20
1,1,2,2-Tetrachloroethane	99		100		67-130	1	20
Benzene	110		110		70-130	0	20
Toluene	110		110		70-130	0	20

Project Name: DESTINY

Project Number:

15209

Lab Number: L1624443

rameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
latile Organics by GC/MS - Westborougl	n Lab Associated	sample(s): 0	1 Batch: Wo	G921109-3	WG921109-4				
Ethylbenzene	110		110		70-130	0		20	
Chloromethane	100		100		64-130	0		20	
Bromomethane	100		110		39-139	10		20	
Vinyl chloride	110		120		55-140	9		20	
Chloroethane	110		110		55-138	0		20	
1,1-Dichloroethene	97		100		61-145	3		20	
trans-1,2-Dichloroethene	110		110		70-130	0		20	
Trichloroethene	100		110		70-130	10		20	
1,2-Dichlorobenzene	110		110		70-130	0		20	
1,3-Dichlorobenzene	110		110		70-130	0		20	
1,4-Dichlorobenzene	110		100		70-130	10		20	
Methyl tert butyl ether	100		100		63-130	0		20	
p/m-Xylene	110		115		70-130	4		20	
o-Xylene	110		115		70-130	4		20	
cis-1,2-Dichloroethene	100		110		70-130	10		20	
Dibromomethane	100		100		70-130	0		20	
1,2,3-Trichloropropane	98		96		64-130	2		20	
Acrylonitrile	99		100		70-130	1		20	
Isopropyl Ether	110		110		70-130	0		20	
tert-Butyl Alcohol	86		106		70-130	21	Q	20	
Styrene	115		120		70-130	4		20	

Project Name: DESTINY

Project Number: 15209

Lab Number: L1624443

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0	1 Batch: WG9	921109-3	WG921109-4			
Dichlorodifluoromethane	100		110		36-147	10	20	
Acetone	100		92		58-148	8	20	
Carbon disulfide	100		110		51-130	10	20	
2-Butanone	100		100		63-138	0	20	
Vinyl acetate	94		99		70-130	5	20	
4-Methyl-2-pentanone	91		93		59-130	2	20	
2-Hexanone	100		100		57-130	0	20	
Acrolein	100		110		40-160	10	20	
Bromochloromethane	100		110		70-130	10	20	
2,2-Dichloropropane	100		110		63-133	10	20	
1,2-Dibromoethane	100		100		70-130	0	20	
1,3-Dichloropropane	100		100		70-130	0	20	
1,1,1,2-Tetrachloroethane	100		100		64-130	0	20	
Bromobenzene	100		100		70-130	0	20	
n-Butylbenzene	110		110		53-136	0	20	
sec-Butylbenzene	110		110		70-130	0	20	
tert-Butylbenzene	110		110		70-130	0	20	
o-Chlorotoluene	110		110		70-130	0	20	
p-Chlorotoluene	110		110		70-130	0	20	
1,2-Dibromo-3-chloropropane	95		94		41-144	1	20	
Hexachlorobutadiene	110		110		63-130	0	20	

Project Name: DESTINY

Project Number: 15209

Lab Number: L1624443

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0	01 Batch: WG	921109-3	WG921109-4		
Isopropylbenzene	110		110		70-130	0	20
p-Isopropyltoluene	110		110		70-130	0	20
Naphthalene	100		100		70-130	0	20
n-Propylbenzene	110		110		69-130	0	20
1,2,3-Trichlorobenzene	100		110		70-130	10	20
1,2,4-Trichlorobenzene	110		110		70-130	0	20
1,3,5-Trimethylbenzene	110		110		64-130	0	20
1,2,4-Trimethylbenzene	110		110		70-130	0	20
Methyl Acetate	93		100		70-130	7	20
Ethyl Acetate	100		100		70-130	0	20
Cyclohexane	110		110		70-130	0	20
Ethyl-Tert-Butyl-Ether	95		100		70-130	5	20
Tertiary-Amyl Methyl Ether	90		97		66-130	7	20
1,4-Dioxane	126		128		56-162	2	20
1,1,2-Trichloro-1,2,2-Trifluoroethane	110		110		70-130	0	20
p-Diethylbenzene	120		110		70-130	9	20
p-Ethyltoluene	110		110		70-130	0	20
1,2,4,5-Tetramethylbenzene	120		110		70-130	9	20
Tetrahydrofuran	97		98		58-130	1	20
Ethyl ether	100		100		59-134	0	20
trans-1,4-Dichloro-2-butene	100		98		70-130	2	20

Project Name: DESTINY

Project Number:

15209

Lab Number:

L1624443

Report Date:

08/10/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s): 0	1 Batch: W	G921109-3	WG921109-4				
lodomethane	86		89		70-130	3		20	
Methyl cyclohexane	110		110		70-130	0		20	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	98		99		70-130	
Toluene-d8	99		99		70-130	
4-Bromofluorobenzene	101		98		70-130	
Dibromofluoromethane	99		100		70-130	

SEMIVOLATILES

L1624443

Project Name: DESTINY Lab Number:

Project Number: 15209 Report Date: 08/10/16

SAMPLE RESULTS

Lab ID: L1624443-01
Client ID: SP MW-43
Sample Location: SYRACUSE, NY

Matrix: Water
Analytical Method: 1,8270D
Analytical Date: 08/09/16 18:31

Analyst: ALS

Date Collected: 08/04/16 13:00
Date Received: 08/04/16
Field Prep: Not Specified
Extraction Method: EPA 3510C
Extraction Date: 08/07/16 15:20

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS	- Westborough Lab					
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.67	1
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.4	1
2,4-Dinitrotoluene	ND		ug/l	5.0	0.84	1
2,6-Dinitrotoluene	ND		ug/l	5.0	1.1	1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.62	1
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.73	1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.70	1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.63	1
Hexachlorocyclopentadiene	ND		ug/l	20	7.8	1
Isophorone	ND		ug/l	5.0	0.60	1
Nitrobenzene	ND		ug/l	2.0	0.75	1
NDPA/DPA	ND		ug/l	2.0	0.64	1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.70	1
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	0.91	1
Butyl benzyl phthalate	ND		ug/l	5.0	1.3	1
Di-n-butylphthalate	ND		ug/l	5.0	0.69	1
Di-n-octylphthalate	1.7	J	ug/l	5.0	1.1	1
Diethyl phthalate	ND		ug/l	5.0	0.63	1
Dimethyl phthalate	ND		ug/l	5.0	0.65	1
Biphenyl	ND		ug/l	2.0	0.76	1
4-Chloroaniline	ND		ug/l	5.0	0.63	1
2-Nitroaniline	ND		ug/l	5.0	1.1	1
3-Nitroaniline	ND		ug/l	5.0	1.1	1
4-Nitroaniline	ND		ug/l	5.0	1.3	1
Dibenzofuran	ND		ug/l	2.0	0.66	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.67	1
Acetophenone	ND		ug/l	5.0	0.85	1
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.68	1
p-Chloro-m-cresol	ND		ug/l	2.0	0.62	1
2-Chlorophenol	ND		ug/l	2.0	0.63	1

Project Name: DESTINY Lab Number: L1624443

Project Number: 15209 Report Date: 08/10/16

SAMPLE RESULTS

Lab ID: Date Collected: 08/04/16 13:00

Client ID: SP MW-43 Date Received: 08/04/16 Sample Location: SYRACUSE, NY Field Prep: Not Specified

•					•	•	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS -	Westborough Lab						
2,4-Dichlorophenol	ND		ug/l	5.0	0.77	1	
2,4-Dimethylphenol	5.3		ug/l	5.0	1.6	1	
2-Nitrophenol	ND		ug/l	10	1.5	1	
4-Nitrophenol	ND		ug/l	10	1.8	1	
2,4-Dinitrophenol	ND		ug/l	20	5.5	1	
4,6-Dinitro-o-cresol	ND		ug/l	10	2.1	1	
Phenol	ND		ug/l	5.0	1.9	1	
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	1.1	1	
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.72	1	
Carbazole	ND		ug/l	2.0	0.63	1	
Atrazine	ND		ug/l	10	1.8	1	
Benzaldehyde	ND		ug/l	5.0	1.1	1	
Caprolactam	ND		ug/l	10	3.6	1	
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	0.93	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria
2-Fluorophenol	42		21-120
Phenol-d6	28		10-120
Nitrobenzene-d5	65		23-120
2-Fluorobiphenyl	75		15-120
2,4,6-Tribromophenol	95		10-120
4-Terphenyl-d14	76		41-149

Project Name: DESTINY Lab Number: L1624443

Project Number: 15209 Report Date: 08/10/16

SAMPLE RESULTS

Lab ID: L1624443-01 D

Client ID: SP MW-43 Sample Location: SYRACUSE, NY

Matrix: Water

Analytical Method: 1,8270D-SIM Analytical Date: 08/09/16 10:16

Analyst: KL

Date Collected: 08/04/16 13:00
Date Received: 08/04/16
Field Prep: Not Specified
Extraction Method: EPA 3510C
Extraction Date: 08/07/16 13:38

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM - V	Vestborough La	ab				
Acenaphthene	0.38	J	ug/l	1.0	0.35	10
2-Chloronaphthalene	ND		ug/l	2.0	0.35	10
Fluoranthene	ND		ug/l	2.0	0.38	10
Hexachlorobutadiene	ND		ug/l	5.0	0.36	10
Naphthalene	140		ug/l	2.0	0.43	10
Benzo(a)anthracene	ND		ug/l	2.0	0.16	10
Benzo(a)pyrene	ND		ug/l	2.0	0.39	10
Benzo(b)fluoranthene	ND		ug/l	2.0	0.16	10
Benzo(k)fluoranthene	ND		ug/l	2.0	0.42	10
Chrysene	ND		ug/l	2.0	0.38	10
Acenaphthylene	ND		ug/l	2.0	0.35	10
Anthracene	ND		ug/l	2.0	0.35	10
Benzo(ghi)perylene	ND		ug/l	2.0	0.42	10
Fluorene	0.47	J	ug/l	2.0	0.37	10
Phenanthrene	0.28	J	ug/l	2.0	0.15	10
Dibenzo(a,h)anthracene	ND		ug/l	2.0	0.39	10
Indeno(1,2,3-cd)pyrene	ND		ug/l	2.0	0.40	10
Pyrene	ND		ug/l	2.0	0.40	10
2-Methylnaphthalene	1.8	J	ug/l	2.0	0.45	10
Pentachlorophenol	ND		ug/l	8.0	2.2	10
Hexachlorobenzene	ND		ug/l	8.0	0.32	10
Hexachloroethane	ND		ug/l	8.0	0.30	10

Project Name: DESTINY Lab Number: L1624443

Project Number: 15209 Report Date: 08/10/16

SAMPLE RESULTS

Lab ID: L1624443-01 D Date Collected: 08/04/16 13:00

Client ID: SP MW-43 Date Received: 08/04/16
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	41	21-120
Phenol-d6	29	10-120
Nitrobenzene-d5	64	23-120
2-Fluorobiphenyl	67	15-120
2,4,6-Tribromophenol	65	10-120
4-Terphenyl-d14	65	41-149

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 08/09/16 15:25

Analyst: ALS

Extraction Method: EPA 3510C Extraction Date: 08/07/16 13:31

Parameter	Result	Qualifier	Units		RL	MDL	
Semivolatile Organics by GC/MS	- Westborough	Lab for sa	ample(s):	01	Batch:	WG920691-	1
Bis(2-chloroethyl)ether	ND		ug/l		2.0	0.67	
3,3'-Dichlorobenzidine	ND		ug/l		5.0	1.4	
2,4-Dinitrotoluene	ND		ug/l		5.0	0.84	
2,6-Dinitrotoluene	ND		ug/l		5.0	1.1	
4-Chlorophenyl phenyl ether	ND		ug/l		2.0	0.62	
4-Bromophenyl phenyl ether	ND		ug/l		2.0	0.73	
Bis(2-chloroisopropyl)ether	ND		ug/l		2.0	0.70	
Bis(2-chloroethoxy)methane	ND		ug/l		5.0	0.63	
Hexachlorocyclopentadiene	ND		ug/l		20	7.8	
Isophorone	ND		ug/l		5.0	0.60	
Nitrobenzene	ND		ug/l		2.0	0.75	
NDPA/DPA	ND		ug/l		2.0	0.64	
n-Nitrosodi-n-propylamine	ND		ug/l		5.0	0.70	
Bis(2-ethylhexyl)phthalate	ND		ug/l		3.0	0.91	
Butyl benzyl phthalate	ND		ug/l		5.0	1.3	
Di-n-butylphthalate	ND		ug/l		5.0	0.69	
Di-n-octylphthalate	ND		ug/l		5.0	1.1	
Diethyl phthalate	ND		ug/l		5.0	0.63	
Dimethyl phthalate	ND		ug/l		5.0	0.65	
Biphenyl	ND		ug/l		2.0	0.76	
4-Chloroaniline	ND		ug/l		5.0	0.63	
2-Nitroaniline	ND		ug/l		5.0	1.1	
3-Nitroaniline	ND		ug/l		5.0	1.1	
4-Nitroaniline	ND		ug/l		5.0	1.3	
Dibenzofuran	ND		ug/l		2.0	0.66	
1,2,4,5-Tetrachlorobenzene	ND		ug/l		10	0.67	
Acetophenone	ND		ug/l		5.0	0.85	
2,4,6-Trichlorophenol	ND		ug/l		5.0	0.68	
p-Chloro-m-cresol	ND		ug/l		2.0	0.62	

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 08/09/16 15:25

Analyst: ALS

Extraction Method: EPA 3510C Extraction Date: 08/07/16 13:31

Parameter	Result	Qualifier	Units		RL	MDL	
Semivolatile Organics by GC/MS -	Westborough	n Lab for s	ample(s):	01	Batch:	WG920691-1	
2-Chlorophenol	ND		ug/l		2.0	0.63	
2,4-Dichlorophenol	ND		ug/l		5.0	0.77	
2,4-Dimethylphenol	ND		ug/l		5.0	1.6	
2-Nitrophenol	ND		ug/l		10	1.5	
4-Nitrophenol	ND		ug/l		10	1.8	
2,4-Dinitrophenol	ND		ug/l		20	5.5	
4,6-Dinitro-o-cresol	ND		ug/l		10	2.1	
Phenol	ND		ug/l		5.0	1.9	
3-Methylphenol/4-Methylphenol	ND		ug/l		5.0	1.1	
2,4,5-Trichlorophenol	ND		ug/l		5.0	0.72	
Carbazole	ND		ug/l		2.0	0.63	
Atrazine	ND		ug/l		10	1.8	
Benzaldehyde	ND		ug/l		5.0	1.1	
Caprolactam	ND		ug/l		10	3.6	
2,3,4,6-Tetrachlorophenol	ND		ug/l		5.0	0.93	

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
2 Elyaranhanal	20	24 420
2-Fluorophenol	30	21-120
Phenol-d6	19	10-120
Nitrobenzene-d5	49	23-120
2-Fluorobiphenyl	60	15-120
2,4,6-Tribromophenol	65	10-120
4-Terphenyl-d14	63	41-149

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D-SIM Analytical Date: 08/08/16 12:30

Analyst: YW

Extraction Method: EPA 3510C Extraction Date: 08/07/16 13:38

arameter	Result	Qualifier	Units	RL	MDL
emivolatile Organics by GC/M	S-SIM - Westbo	rough Lab	for sample(s): 01	Batch: WG920693-1
Acenaphthene	ND		ug/l	0.10	0.04
2-Chloronaphthalene	ND		ug/l	0.20	0.04
Fluoranthene	ND		ug/l	0.20	0.04
Hexachlorobutadiene	ND		ug/l	0.50	0.04
Naphthalene	ND		ug/l	0.20	0.04
Benzo(a)anthracene	ND		ug/l	0.20	0.02
Benzo(a)pyrene	ND		ug/l	0.20	0.04
Benzo(b)fluoranthene	ND		ug/l	0.20	0.02
Benzo(k)fluoranthene	ND		ug/l	0.20	0.04
Chrysene	ND		ug/l	0.20	0.04
Acenaphthylene	ND		ug/l	0.20	0.04
Anthracene	ND		ug/l	0.20	0.04
Benzo(ghi)perylene	ND		ug/l	0.20	0.04
Fluorene	ND		ug/l	0.20	0.04
Phenanthrene	ND		ug/l	0.20	0.02
Dibenzo(a,h)anthracene	ND		ug/l	0.20	0.04
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.20	0.04
Pyrene	ND		ug/l	0.20	0.04
2-Methylnaphthalene	ND		ug/l	0.20	0.05
Pentachlorophenol	ND		ug/l	0.80	0.22
Hexachlorobenzene	ND		ug/l	0.80	0.03
Hexachloroethane	ND		ug/l	0.80	0.03

Project Name: DESTINY Lab Number: L1624443

Project Number: 15209 Report Date: 08/10/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D-SIM Extraction Method: EPA 3510C
Analytical Date: 08/08/16 12:30 Extraction Date: 08/07/16 13:38

Analyst: YW

Parameter	Result	Qualifier	Units	RL	MDL
Semivolatile Organics by GC/MS-S	IM - Westbo	rough Lab	for sample(s)	: 01	Batch: WG920693-1

		Acceptance	
Surrogate	%Recovery	Qualifier Criteria	
2-Fluorophenol	42	21-120	
Phenol-d6	31	10-120	
Nitrobenzene-d5	70	23-120	
2-Fluorobiphenyl	68	15-120	
2,4,6-Tribromophenol	81	10-120	
4-Terphenyl-d14	83	41-149	

Project Name: DESTINY

Project Number: 15209

Lab Number: L1624443

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westboro	ough Lab Associ	iated sample(s):	01 Batch:	WG920691-2 WG920691-3			
Acenaphthene	53		61	37-111	18		30
Benzidine	25		24	10-75	23		30
1,2,4-Trichlorobenzene	59		70	39-98	1		30
Hexachlorobenzene	64		72	40-140	28		30
Bis(2-chloroethyl)ether	49		60	40-140	6		30
2-Chloronaphthalene	63		70	40-140	16		30
1,2-Dichlorobenzene	50		57	40-140	5		30
1,3-Dichlorobenzene	48		55	40-140	4		30
1,4-Dichlorobenzene	49		56	36-97	4		30
3,3'-Dichlorobenzidine	49		48	40-140	43	Q	30
2,4-Dinitrotoluene	56		63	24-96	26		30
2,6-Dinitrotoluene	75		81	40-140	24		30
Azobenzene	48		54	40-140	27		30
Fluoranthene	61		69	40-140	26		30
4-Chlorophenyl phenyl ether	62		71	40-140	24		30
4-Bromophenyl phenyl ether	65		74	40-140	26		30
Bis(2-chloroisopropyl)ether	45		53	40-140	11		30
Bis(2-chloroethoxy)methane	55		62	40-140	14		30
Hexachlorobutadiene	63		72	40-140	7		30
Hexachlorocyclopentadiene	78		80	40-140	12		30
Hexachloroethane	46		54	40-140	4		30

Project Name: DESTINY

Project Number: 15209 Lab Number: L1624443

rameter	LCS %Recovery G	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
emivolatile Organics by GC/MS - Westbo	orough Lab Associated	sample(s): 01 Batch:	WG920691-2 WG920691-3			
Isophorone	58	65	40-140	13		30
Naphthalene	51	60	40-140	8		30
Nitrobenzene	54	66	40-140	7		30
NitrosoDiPhenylAmine(NDPA)/DPA	59	66	40-140	26		30
n-Nitrosodi-n-propylamine	54	61	29-132	14		30
Bis(2-Ethylhexyl)phthalate	56	71	40-140	16		30
Butyl benzyl phthalate	54	58	40-140	32	Q	30
Di-n-butylphthalate	56	63	40-140	29		30
Di-n-octylphthalate	58	67	40-140	23		30
Diethyl phthalate	57	65	40-140	26		30
Dimethyl phthalate	70	74	40-140	22		30
Benzo(a)anthracene	60	69	40-140	22		30
Benzo(a)pyrene	63	68	40-140	30		30
Benzo(b)fluoranthene	60	67	40-140	24		30
Benzo(k)fluoranthene	57	63	40-140	30		30
Chrysene	56	65	40-140	24		30
Acenaphthylene	64	70	45-123	21		30
Anthracene	56	66	40-140	24		30
Benzo(ghi)perylene	60	66	40-140	27		30
Fluorene	56	66	40-140	22		30
Phenanthrene	53	61	40-140	24		30

Project Name: DESTINY

Project Number:

15209

Lab Number: L1624443

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
emivolatile Organics by GC/MS - Westbord	ough Lab Assoc	iated sample(s):	: 01 Batch:	WG920691-2	2 WG920691-3			
Dibenzo(a,h)anthracene	56		62		40-140	27		30
Indeno(1,2,3-cd)Pyrene	57		63		40-140	26		30
Pyrene	59		67		26-127	25		30
Biphenyl	62		69		40-140	17		30
Aniline	37	Q	30	Q	40-140	10		30
4-Chloroaniline	43		54		40-140	0		30
1-Methylnaphthalene	56		63		41-103	11		30
2-Nitroaniline	63		70		52-143	22		30
3-Nitroaniline	48		57		25-145	18		30
4-Nitroaniline	51		50	Q	51-143	41	Q	30
Dibenzofuran	55		64		40-140	21		30
2-Methylnaphthalene	57		65		40-140	13		30
1,2,4,5-Tetrachlorobenzene	72		81		2-134	15		30
Acetophenone	58		66		39-129	13		30
n-Nitrosodimethylamine	30		34		22-74	19		30
2,4,6-Trichlorophenol	75		87		30-130	21		30
P-Chloro-M-Cresol	63		66		23-97	26		30
2-Chlorophenol	54		62		27-123	16		30
2,4-Dichlorophenol	70		76		30-130	16		30
2,4-Dimethylphenol	57		65		30-130	16		30
2-Nitrophenol	63		75		30-130	10		30

L1624443

Lab Control Sample Analysis Batch Quality Control

Project Name: DESTINY

15209

Project Number:

Report Date:

Lab Number:

08/10/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westborou	igh Lab Assoc	iated sample(s):	: 01 Batch:	WG920691-2	WG920691-3			
4-Nitrophenol	30		33		10-80	35	Q	30
2,4-Dinitrophenol	71		95		20-130	7		30
4,6-Dinitro-o-cresol	69		82		20-164	17		30
Pentachlorophenol	48		77		9-103	5		30
Phenol	27		27		12-110	26		30
2-Methylphenol	50		56		30-130	22		30
3-Methylphenol/4-Methylphenol	49		52		30-130	21		30
2,4,5-Trichlorophenol	77		84		30-130	17		30
Benzoic Acid	28		48		10-164	0		30
Benzyl Alcohol	49		53		26-116	23		30
Carbazole	53	Q	60		55-144	27		30
Pyridine	23		17		10-66	52	Q	30
Parathion, ethyl	72		82		40-140	22		30
Atrazine	68		76		40-140	30		30
Benzaldehyde	40		47		40-140	6		30
Caprolactam	19		17		10-130	49	Q	30
2,3,4,6-Tetrachlorophenol	65		81		40-140	21		30

Project Name: DESTINY

Lab Number:

L1624443

Project Number: 15209

Report Date:

08/10/16

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG920691-2 WG920691-3

		LCSD		Acceptance	
%Recovery	Qual	%Recovery	Qual	Criteria	
36		39		21-120	
27		28		10-120	
56		66		23-120	
65		71		15-120	
68		81		10-120	
61		69		41-149	
	36 27 56 65 68	%Recovery Qual 36 27 56 65 68	%Recovery Qual %Recovery 36 39 27 28 56 66 65 71 68 81	%Recovery Qual %Recovery Qual 36 39 27 28 56 66 65 71 68 81	%Recovery Qual %Recovery Qual Criteria 36 39 21-120 27 28 10-120 56 66 23-120 65 71 15-120 68 81 10-120

Project Name: DESTINY

Project Number: 15209

Lab Number: L1624443

rameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
mivolatile Organics by GC/MS-SIM - Wes	tborough Lab Asso	ociated sample	e(s): 01 Bat	ch: WG920693-2 WG920693	3-3	
Acenaphthene	75		78	37-111	4	40
2-Chloronaphthalene	65		68	40-140	5	40
Fluoranthene	77		76	40-140	1	40
Hexachlorobutadiene	55		60	40-140	9	40
Naphthalene	64		66	40-140	3	40
Benzo(a)anthracene	82		86	40-140	5	40
Benzo(a)pyrene	86		89	40-140	3	40
Benzo(b)fluoranthene	88		91	40-140	3	40
Benzo(k)fluoranthene	82		86	40-140	5	40
Chrysene	76		79	40-140	4	40
Acenaphthylene	76		79	40-140	4	40
Anthracene	79		81	40-140	3	40
Benzo(ghi)perylene	82		87	40-140	6	40
Fluorene	79		80	40-140	1	40
Phenanthrene	73		73	40-140	0	40
Dibenzo(a,h)anthracene	84		89	40-140	6	40
Indeno(1,2,3-cd)pyrene	83		87	40-140	5	40
Pyrene	72		73	26-127	1	40
1-Methylnaphthalene	67		70	40-140	4	40
2-Methylnaphthalene	65		68	40-140	5	40
Pentachlorophenol	74		76	9-103	3	40

Project Name: DESTINY

Project Number: 15209

Lab Number: L1624443

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Semivolatile Organics by GC/MS-SIM - Wes	stborough Lab As	sociated samp	ole(s): 01 Batc	h: WG920	693-2 WG920693	3-3		
Hexachlorobenzene	69		73		40-140	6	40	
Hexachloroethane	66		69		40-140	4	40	

Surrogate	LCS %Recovery	LCSD Qual %Recovery	Qual	Acceptance Criteria	
2-Fluorophenol	42	41		21-120	
Phenol-d6	28	31		10-120	
Nitrobenzene-d5	65	66		23-120	
2-Fluorobiphenyl	67	69		15-120	
2,4,6-Tribromophenol	75	78		10-120	
4-Terphenyl-d14	73	75		41-149	

METALS

Project Name:DESTINYLab Number:L1624443Project Number:15209Report Date:08/10/16

SAMPLE RESULTS

Lab ID: L1624443-01
Client ID: SP MW-43
Sample Location: SYRACUSE, NY

Matrix: Water

Date Collected: 08/04/16 13:00
Date Received: 08/04/16

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	nsfield Lab										
Aluminum, Total	0.107		mg/l	0.010	0.002	1	08/05/16 10:20	08/05/16 16:30	EPA 3005A	1,6020A	AM
Antimony, Total	0.0006	J	mg/l	0.0020	0.0001	1	08/05/16 10:20	08/05/16 16:30	EPA 3005A	1,6020A	AM
Arsenic, Total	0.0024		mg/l	0.0005	0.0001	1	08/05/16 10:20	08/05/16 16:30	EPA 3005A	1,6020A	AM
Barium, Total	0.0578		mg/l	0.0005	0.0001	1	08/05/16 10:20	08/05/16 16:30	EPA 3005A	1,6020A	AM
Beryllium, Total	ND		mg/l	0.0005	0.0002	1	08/05/16 10:20	08/05/16 16:30	EPA 3005A	1,6020A	AM
Cadmium, Total	0.0006		mg/l	0.0002	0.0001	1	08/05/16 10:20	08/05/16 16:30	EPA 3005A	1,6020A	AM
Calcium, Total	488		mg/l	2.00	0.640	20	08/05/16 10:20	08/05/16 16:33	EPA 3005A	1,6020A	AM
Chromium, Total	0.0008	J	mg/l	0.0010	0.0003	1	08/05/16 10:20	08/05/16 16:30	EPA 3005A	1,6020A	AM
Cobalt, Total	0.0006		mg/l	0.0002	0.0001	1	08/05/16 10:20	08/05/16 16:30	EPA 3005A	1,6020A	AM
Copper, Total	0.0042		mg/l	0.0010	0.0003	1	08/05/16 10:20	08/05/16 16:30	EPA 3005A	1,6020A	AM
Iron, Total	1.10		mg/l	0.050	0.012	1	08/05/16 10:20	08/05/16 16:30	EPA 3005A	1,6020A	AM
Lead, Total	0.0075		mg/l	0.0010	0.0001	1	08/05/16 10:20	08/05/16 16:30	EPA 3005A	1,6020A	AM
Magnesium, Total	50.8		mg/l	1.40	0.446	20	08/05/16 10:20	08/05/16 16:33	EPA 3005A	1,6020A	AM
Manganese, Total	0.1758		mg/l	0.0010	0.0003	1	08/05/16 10:20	08/05/16 16:30	EPA 3005A	1,6020A	AM
Mercury, Total	ND		mg/l	0.00020	0.00006	1	08/05/16 11:08	08/05/16 18:16	EPA 7470A	1,7470A	EA
Nickel, Total	0.0016		mg/l	0.0010	0.0001	1	08/05/16 10:20	08/05/16 16:30	EPA 3005A	1,6020A	AM
Potassium, Total	10.8		mg/l	0.100	0.019	1	08/05/16 10:20	08/05/16 16:30	EPA 3005A	1,6020A	AM
Selenium, Total	ND		mg/l	0.005	0.001	1	08/05/16 10:20	08/06/16 12:51	EPA 3005A	1,6020A	BDV
Silver, Total	ND		mg/l	0.0004	0.0001	1	08/05/16 10:20	08/05/16 16:30	EPA 3005A	1,6020A	AM
Sodium, Total	711		mg/l	2.00	0.322	20	08/05/16 10:20	08/05/16 16:33	EPA 3005A	1,6020A	AM
Thallium, Total	ND		mg/l	0.0005	0.0001	1	08/05/16 10:20	08/05/16 16:30	EPA 3005A	1,6020A	AM
Vanadium, Total	0.0007	J	mg/l	0.0050	0.0006	1	08/05/16 10:20	08/05/16 16:30	EPA 3005A	1,6020A	AM
Zinc, Total	0.3103		mg/l	0.0100	0.0026	1	08/05/16 10:20	08/05/16 16:30	EPA 3005A	1,6020A	AM

L1624443

Project Name: Lab Number: **DESTINY** Project Number: 15209

Report Date: 08/10/16

Method Blank Analysis Batch Quality Control

Parameter	Result C	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for sa	mple(s):	01 Batc	h: WG92	20334-1					
Aluminum, Total	ND		mg/l	0.010	0.002	1	08/05/16 10:20	08/05/16 15:50	1,6020A	AM
Antimony, Total	0.0006	J	mg/l	0.0020	0.0001	1	08/05/16 10:20	08/05/16 15:50	1,6020A	AM
Arsenic, Total	ND		mg/l	0.0005	0.0001	1	08/05/16 10:20	08/05/16 15:50	1,6020A	AM
Barium, Total	ND		mg/l	0.0005	0.0001	1	08/05/16 10:20	08/05/16 15:50	1,6020A	AM
Beryllium, Total	ND		mg/l	0.0005	0.0002	1	08/05/16 10:20	08/05/16 15:50	1,6020A	AM
Cadmium, Total	ND		mg/l	0.0002	0.0001	1	08/05/16 10:20	08/05/16 15:50	1,6020A	AM
Calcium, Total	ND		mg/l	0.100	0.032	1	08/05/16 10:20	08/05/16 15:50	1,6020A	AM
Chromium, Total	ND		mg/l	0.0010	0.0003	1	08/05/16 10:20	08/05/16 15:50	1,6020A	AM
Cobalt, Total	ND		mg/l	0.0002	0.0001	1	08/05/16 10:20	08/05/16 15:50	1,6020A	AM
Copper, Total	ND		mg/l	0.0010	0.0003	1	08/05/16 10:20	08/05/16 15:50	1,6020A	AM
Iron, Total	ND		mg/l	0.050	0.012	1	08/05/16 10:20	08/05/16 15:50	1,6020A	AM
Lead, Total	ND		mg/l	0.0010	0.0001	1	08/05/16 10:20	08/05/16 15:50	1,6020A	AM
Magnesium, Total	ND		mg/l	0.070	0.022	1	08/05/16 10:20	08/05/16 15:50	1,6020A	AM
Manganese, Total	ND		mg/l	0.0010	0.0003	1	08/05/16 10:20	08/05/16 15:50	1,6020A	AM
Nickel, Total	0.0008	J	mg/l	0.0010	0.0001	1	08/05/16 10:20	08/05/16 15:50	1,6020A	AM
Potassium, Total	ND		mg/l	0.100	0.019	1	08/05/16 10:20	08/05/16 15:50	1,6020A	AM
Selenium, Total	ND		mg/l	0.005	0.001	1	08/05/16 10:20	08/05/16 15:50	1,6020A	AM
Silver, Total	ND		mg/l	0.0004	0.0001	1	08/05/16 10:20	08/05/16 15:50	1,6020A	AM
Sodium, Total	ND		mg/l	0.100	0.016	1	08/05/16 10:20	08/05/16 15:50	1,6020A	AM
Thallium, Total	ND		mg/l	0.0005	0.0001	1	08/05/16 10:20	08/05/16 15:50	1,6020A	AM
Vanadium, Total	ND		mg/l	0.0050	0.0006	1	08/05/16 10:20	08/05/16 15:50	1,6020A	AM
Zinc, Total	ND		mg/l	0.0100	0.0026	1	08/05/16 10:20	08/05/16 15:50	1,6020A	AM

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfi	ield Lab for sample(s):	01 Batc	h: WG92	0342-1					
Mercury, Total	ND	mg/l	0.00020	0.00006	1	08/05/16 11:08	08/05/16 18:03	3 1,7470A	EA

Serial_No:08101615:18

Project Name:DESTINYLab Number:L1624443Project Number:15209Report Date:08/10/16

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 7470A

Project Name: DESTINY
Project Number: 15209

15209

Lab Number: L1624443

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	(s): 01 Batch:	WG920334-2				
Aluminum, Total	93	-	80-120	-		
Antimony, Total	81	-	80-120	-		
Arsenic, Total	104	-	80-120	-		
Barium, Total	96	-	80-120	-		
Beryllium, Total	89	-	80-120	-		
Cadmium, Total	105	-	80-120	-		
Calcium, Total	94	-	80-120	-		
Chromium, Total	93	-	80-120	-		
Cobalt, Total	95	-	80-120	-		
Copper, Total	94	-	80-120	-		
Iron, Total	98	-	80-120	-		
Lead, Total	108	-	80-120	-		
Magnesium, Total	95	-	80-120	-		
Manganese, Total	98	-	80-120	-		
Nickel, Total	94	-	80-120	-		
Potassium, Total	91	-	80-120	-		
Selenium, Total	88	-	80-120	-		
Silver, Total	94	-	80-120	-		
Sodium, Total	91	-	80-120	-		
Thallium, Total	102	-	80-120	-		
Vanadium, Total	97	-	80-120	-		

Project Name: DESTINY Lab Number:

L1624443

Project Number: 15209

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab Associated sa	ample(s): 01 Batch: WG92	0334-2			
Zinc, Total	94	-	80-120	-	
Total Metals - Mansfield Lab Associated sa	ample(s): 01 Batch: WG92	0342-2			
Mercury, Total	107	-	80-120	-	

Matrix Spike Analysis Batch Quality Control

Project Name: DESTINY
Project Number: 15209

Lab Number: L1624443

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits		RPD Qual Limits
Total Metals - Mansfield Lab	Associated san	nple(s): 01	QC Batch	ID: WG920334	-3 WG920334-4	QC Sample: L	.1624356-01 Clie	ent ID:	MS Sample
Aluminum, Total	ND	2	1.94	97	1.89	94	75-125	3	20
Antimony, Total	ND	0.5	0.4948	99	0.4980	100	75-125	1	20
Arsenic, Total	ND	0.12	0.1138	94	0.1269	105	75-125	11	20
Barium, Total	ND	2	2.072	99	2.053	98	75-125	1	20
Beryllium, Total	ND	0.05	0.0448	90	0.0449	90	75-125	0	20
Cadmium, Total	0.0001J	0.051	0.0546	107	0.0534	105	75-125	2	20
Calcium, Total	ND	10	66.6	93	67.4	101	75-125	1	20
Chromium, Total	ND	0.2	0.1807	90	0.1998	99	75-125	10	20
Cobalt, Total	ND	0.5	0.4717	93	0.4904	97	75-125	4	20
Copper, Total	ND	0.25	0.2380	95	0.2530	101	75-125	6	20
Iron, Total	0.319	1	1.37	105	1.32	100	75-125	4	20
Lead, Total	ND	0.51	0.5685	111	0.5586	110	75-125	2	20
Magnesium, Total	ND	10	37.3	108	37.5	110	75-125	1	20
Manganese, Total	7.744	0.5	8.033	58	Q 8.156	82	75-125	2	20
Nickel, Total	ND	0.5	0.4713	92	0.4995	97	75-125	6	20
Potassium, Total	20.3	10	30.0	97	29.7	94	75-125	1	20
Selenium, Total	ND	0.12	0.094J	78	0.123	102	75-125	27	Q 20
Silver, Total	ND	0.05	0.0524	105	0.0473	95	75-125	10	20
Sodium, Total	81.4	10	92.1	107	89.2	78	75-125	3	20
Thallium, Total	ND	0.12	0.1217	101	0.1249	104	75-125	3	20
Vanadium, Total	ND	0.5	0.4734	95	0.5138	103	75-125	8	20

Matrix Spike Analysis Batch Quality Control

Project Name: DESTINY
Project Number: 15209

Lab Number:

L1624443

Report Date:

08/10/16

<u>Parameter</u>	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits RPD	RPD Limits
Total Metals - Mansfield Lab	Associated sam	ple(s): 01	QC Batch	ID: WG920334-3	WG920334-4	QC Sample: L	1624356-01 Client ID:	MS Sample
Zinc, Total	ND	0.5	0.4671	91	0.4806	94	75-125 3	20
Total Metals - Mansfield Lab	Associated sam	ple(s): 01	QC Batch	ID: WG920342-4	QC Sample:	L1624318-11	Client ID: MS Sample	
Mercury, Total	ND	0.005	0.00478	96	-	-	75-125 -	20

Lab Duplicate Analysis
Batch Quality Control

Lab Number:

L1624443

Report Date:

08/10/16

Parameter	Native Sample	Duplicate Sample	Units	RPD Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG92034	2-3 QC Sample: L16	624318-11	Client ID: DUP Sample	
Mercury, Total	ND	ND	mg/l	NC	20

Project Name:

Project Number: 15209

DESTINY

Serial_No:08101615:18

Project Name:DESTINYLab Number: L1624443Project Number:15209Report Date: 08/10/16

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information Custody Seal

Cooler

A Absent

Container Info	rmation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1624443-01A	Vial HCI preserved	Α	N/A	4.8	Υ	Absent	NYTCL-8260(14)
L1624443-01B	Vial HCl preserved	Α	N/A	4.8	Υ	Absent	NYTCL-8260(14)
L1624443-01C	Vial HCl preserved	Α	N/A	4.8	Υ	Absent	NYTCL-8260(14)
L1624443-01D	Amber 1000ml unpreserved	Α	7	4.8	Υ	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)
L1624443-01E	Amber 1000ml unpreserved	Α	7	4.8	Υ	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)
L1624443-01F	Plastic 250ml HNO3 preserved	A	<2	4.8	Y	Absent	BA-6020T(180),FE-6020T(180),TL-6020T(180),CA-6020T(180),CR-6020T(180),NI-6020T(180),CR-6020T(180),NI-6020T(180),ZN-6020T(180),NA-6020T(180),ZN-6020T(180),MN-6020T(180),BE-6020T(180),MN-6020T(180),AS-6020T(180),AS-6020T(180),AG-6020T(180),AL-6020T(180),AC-6020T(180),AL-6020T(180),CD-6020T(180),HG-T(28),MG-6020T(180),CO-6020T(180),CO-6020T(180),CO-6020T(180),CO-6020T(180),CO-6020T(180),CO-6020T(180),CO-6020T(180),CO-6020T(180)

Project Name:DESTINYLab Number:L1624443Project Number:15209Report Date:08/10/16

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: DU Report with 'J' Qualifiers

Project Name:DESTINYLab Number:L1624443Project Number:15209Report Date:08/10/16

Data Qualifiers

- reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Serial_No:08101615:18

Project Name: DESTINY Lab Number: L1624443

Project Number: 15209 Report Date: 08/10/16

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:08101615:18

Published Date: 8/5/2016 11:25:56 AM

ID No.:17873

Revision 7

Page 1 of 1

Alpha Analytical, Inc.
Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; Azobenzen

Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide **EPA 9050A:** NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility SM 2540D: TSS

EPA 3005A NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

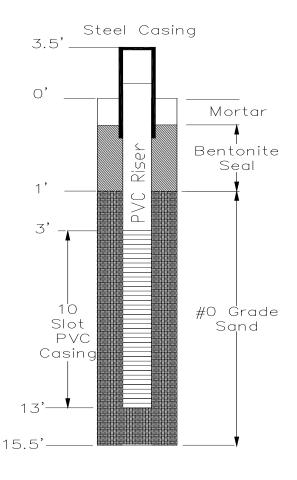
SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form Pre-Qualtrax Document ID: 08-113

Дірна	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitner Albany, NY 12205: 14 Walker V Tonawanda, NY 14150: 275 Co	Vay	05	Pag	ge of			Rec Lab		15	110		ALPHA Job		
Westborough, MA 01581	Mansfield, MA 02048	Project Information			25 0 12 7 2 17 0 10 1		Dol	iverab	loc	0	10	116			1443	RESIDE .
8 Walkup Dr. TEL: 508-898-9220	320 Forbes Blvd TEL: 508-822-9300						Jei	ASI				A CD I		Billing Informa		
FAX: 508-898-9193	FAX: 508-822-3288		esting				- -	_		T:1-1		ASP-I			Client Info	
Client Information			yracks	e N J			- 누	- V2	ılS (1	riie)	Ш	EQuit	6 (4 File)	PO #		
Client: Speet								Oth	_							
	i A	(Use Project name as Pr					Reg	_		uiremen		100		Disposal Site I	nformation	
	rish American Bird		. Pedut	T			┨╞	_	OGS			VY Par		Please identify be		of
Lothan MY		ALPHAQuote #:]] AWC) Stand	ards	ן ∟	VY CP	-51	applicable dispos		
and the second s	2 0882	Turn-Around Time					<u> </u>	_	Restricte			Other		Disposal Facility:		
Fax:		Standard		Due Date				NYL	Inrestri	cted Use				☐ NJ	■ NY	
		Rush (only if pre approved) 📙	# of Days	:				-	Discharg	ge			Other:		
These samples have be							ANA	LYSI	S					Sample Filtrat	tion	T
Other project specific	requirements/comm	ents:												Done		t
									2					Lab to do		a
				4 4			1		1					Preservation		
Please specify Metals	or TAL.				0.00		16	9 6	3					Lab to do		В
ALPHA Lab ID			Colle	ection		Ja	87.60	87.73	L M					(Please Specif	fy below)	t
(Lab Use Only)	Sar	mple ID	Date	Time	Sample Matrix	Sampler's Initials	100	S	F							- 1
24443-01	SPMW-4	19	The same of the sa					8.5	-	\vdash	+	\rightarrow		Sample Specific	Comments	е
217.3.01	31 1110		814/16	1300	GNU	Bris	_~	×	X	\vdash	-	-				\perp
							-		-			_				_
	_					-	-	-	-							\perp
			-				_	_								
			R	lit												
			Save	17/16												
		one	1	811.												
		~	77													
The state of the s	Container Code P = Plastic	Westboro: Certification No	o: MA935		Com	tainas Tura	.,	_						Please print of	aloorly logibl	
B = HCI A		Mansfield: Certification No	: MA015		Con	tainer Type	V	4	P					and complete		
1	/ = Vial						179		.2			\neg		not be logged		00.11
	B = Glass B = Bacteria Cup				P	reservative	B	A	C					turnaround tin		
F = MeOH C	= Cube	Relinquished B	av.	Data/7	rime.		3	10		-		165		start until any		
	O = Other	To Kariquistieu b	y.	Date/1		1	Kegen	ed By	11/	m	Ch	ate/T	me / / r	resolved. BY		
11 11020203	= Encore = BOD Bottle	MANY	7	819116	1650	100	1	AN	W	118	VIII	6	16-	HAS READ A		
O = Other		Sken	17	4,16		12-11	let	4			8/51	160	Kelo	TO BE BOUN	ID BY ALPHA	A'S
		/	~											TERMS & CO		
Form No: 01-25 HC (rev. 30-	Sept-2013)													(See reverse	side.)	
Page 47 of 47															· ·	

APPENDIX F MONITORING WELL 42R



MONITORING WELL COMPLETION LOG

Well I.D.: SP-MW-42R

Project Name:	Destiny Site 7	Project No:	15209
Client Name:	Destiny USA	Date:	10/25/2016
Location:	Syracuse, NY	Logged By:	Y. Winters
Weather/Temp.	45° F, overcast, windy	Checked By:	

WELL CONSTRUCTION DETAILS

INSPECTION NOTES

Inspector: Y. Winters

Contractor: NYEG Drilling/Paragon Environmental Construction, Inc.

Drilling Method:

Type: Hollow Stem Auger

Equipment: CME - 55 Drill Rig

Type of Well: Monitoring Well

Static Water Level: 4.2 feet below TOC (Measured on 10/27/2016)

Measuring Point:

Total Depth of Well: 15.5 feet

Sampling Method:

Type: 2-foot Split Spoon

Weight: 140#

Interval: 15.5 feet bgs

Riser Pipe Left in Place:

Material: Schedule 40 PVC

Length: 4 feet

Diameter: 2-inch

Screen:

Material: Prefabricated well screen 0.010-inch slot

Slot Size: 10-slot

Stratigraphic Unit Screened: <u>3</u>-13 feet bgs

Filter Pack:

Sand: 1-15 feet bgs

Grade: No. 0

Amount: 15.5 feet

Seals:

Type: Bentonite seal 0 - 1 feet bgs

Not To Scale

Well No. 42R

Well Development/Purging Log

PROJECT NAME: DESTINY				
PROJECT NUMBER: 15209				
DATE: 11/23/16				
SAMPLERS: Joe Krikorian				
			Well I.D	Vol. Gal. /Ft.
① Total Casing and Screen Length (ft.)	18.9		1" 2"	0.04 0.17
② Casing internal Diameter (in.)	2		3"	0.38
③ Water Level Below Top Of Casing (ft.)	8.38		4" 5"	0.66 1.04
4 Volume of water in casing (gal.)	1.7		6"	1.50
v=0.0408 (②) ²x (①-③) =④			8"	2.60
v=0.0408 () ² x (-) =	g	al.

PARAMETER			ACCUM	IULATED	VOLUM	E PURGED)	
Gallons	0	5	8	10	12	15	18	20
Time	0	15	20	30	35	40	50	60
Conductivity (monm/cm)	1.6	1.7	1.69	1.67	1.66	1.68	1.67	1.66
Dissolved Oxygen (ppm)	82.6	1.5	10.1	64	42	10.3	11.2	10.5
Eh (mV)	-113.6	-145.7	-137.2	-110.3	-108.6	-104.9	-111.3	-109.4
pH	7.11	7.12	7.14	7.18	7.15	7.11	7.11	7.10
Temp (°C)	10.5	12.6	9.9	11.3	11.2	11.4	11.5	12.8
Turbidity (NTUs)				2847	943	32.33	655	255
DEPTH TO WATER (BELOW TOC)	8.38	8.48	8.48	8.48	8.48	8.48	8.48	8.48

	_	
ıge	of	

60 (1 hour) ~20 7.03 11.7 2.08 -162.7 7.70 1.63 VOCs, SV 65	15209
Septembry Sep	Thursday, December 01, 2016
WELL INFORMATION 2 Inches Field Well Depth: Sand/Silt Accumulation: Cereon Diameter (LD.) 2 R Sand/Silt Accumulation: Cereon Diameter (LD.) 2 R Sand/Silt Accumulation: Cereon Diameter (LD.) 2 R Sand/Silt Accumulation: Cereon Diameter (LD.) Cereon Diameter (L	Y. Winters
See Diameter (LD) 2 Inches See	/:
Reen Diameter (I.D.)	NTS
Remote Series S	18.9 ft
Time Volume Removed pH Temp (C) Cond (mS/cm) ORP (mV) DTW (ft) Turbidity (NTU)	0
Time	<u>7.37</u> ft
Time Volume Removed pH Temp (C) Cond (mS/cm) ORP (mV) DTW (ft) Turbidity (NTU) Sample I	1.7 gallons
ble Range 0-1 units 3% 3% 10 mV 1 ft total 10% or 1 NTU 0 - 6.83 11.3 1.93 -115.1 7.57 2.99 minutes 6.98 11.4 1.95 -135.7 7.69 2.62 10 6.99 11.4 1.97 -141.3 7.69 1.94 15 -5 7.00 11.5 1.99 -145.7 7.70 1.37 20 7.01 11.6 2.01 -148.9 7.71 1.39 End Tim 25 7.01 11.6 2.02 -153.9 7.69 1.72 30 -10 7.02 11.6 2.02 -153.9 7.69 1.72 40 7.02 11.6 2.02 -155.6 7.72 1.43 Purging! 35 7.02 11.6 2.04 -158.1 7.73 1.65 Peristatic 40 7.03 11.7 2.04 -159.3 7.70 <	20 gallons
Display Disp	
O	e Thursday, December 01, 2016
Minutes 6.98	
10	
15	12:30
20	
25	13:30
30	13.30
35	inment Used
40	
45	шр
Total Starter Total Starte	
55 7.03 11.7 2.07 -162.5 7.71 2.08 Analytics (1 hour) ~20 7.03 11.7 2.08 -162.7 7.70 1.63 VOCs, SV 65 —	
Color Colo	Tests Conducted
65	
70 1 Laborato 75 2 Laborato 80 Alpha An 85 3 Alpha An 90 3 Samples 100 4 Hand-deli 105 4 Total Sta 110 4 Total Sta 115 4 Total Sta 125 Sample T	
80	
85 Samples Sample S	Completing Tests
90 Samples 100 Hand-deli 105 Total Sta 115 (2 hours) 125 Sample T	rtical
95 Samples 100 Hand-deli 105 Total Sta 115 Sample T 125 Sample T	
100	
105	livered Via:
110	red to Syracuse Service Center
115	
(2 hours)	Water Level Drawdown
125 Sample T	0.13 ft
	ne: (24 hour Format) 13::
O minutes	
TES	