

Bristol-Myers Squibb Company

BUILDING 3 VAPOR INTRUSION (VI) ASSESSMENT REPORT

Site #C734138 BMS Syracuse North Campus Restoration Area East Syracuse, New York

June 2019

Aristoplus D. Engles

Christopher Engler New York State P.E. License No. 069748

I, Christopher Engler, certify that I am currently a New York State registered Professional Engineer and that this Building 3 Vapor Intrusion (VI) Assessment Report was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10).

BUILDING 3 VAPOR INTRUSION (VI) ASSESSMENT REPORT

Site #C734138 BMS Syracuse North Campus Restoration Area East Syracuse, New York

Prepared for:

Bristol-Myers Squibb Company 6000 Thompson Road East Syracuse, New York 13057

Prepared by:

Arcadis of New York Inc. One Lincoln Center, Suite 300 Syracuse NY 13202 Tel (315) 446-9120 Fax (315) 449-0017

Our Ref.: B0087363.0031

Date:

June 2019

CONTENTS

Acr	onyms	s and Abbreviationsii	i
1	Introc	duction1	I
	1.1	Remedial Investigation Overview 1	
	1.2	Soil Vapor Intrusion Evaluation Work Plans1	
	1.3	Report Organization	3
2	Buildi	ing Mitigation4	ŀ
	2.1	Building 3 Mitigation4	ŀ
	2.2	Post Mitigation Building Assessment4	ŀ
3	Samp	bling and Analysis	5
	3.1	Sample Types and Locations5	5
	3.2	Building Materials and Products Inventory	5
	3.3	Indoor and Ambient Air Sampling	5
	3.4	Sampling Procedures and Analysis	5
	3.5	Data Usability6	3
4	Resu	llts	7
	4.1	Post Mitigation Indoor and Ambient Air Results7	7
	4.2	Comparison to Groundwater Upgradient of Building 3	3
	4.3	Comparison to Building 3 Chemical Inventory	3
5	Findir	ngs and Future Mitigation)
6	Sche	dule10)
7	Refer	rences11	

TABLES

1 Building 3 Indoor Air and Ambient Air Analytical Resul
--

2 Upgradient Groundwater Results

FIGURES

- 1 Site Location Map
- 2 Building 3 Location Map

BUILDING 3 VI ASSESSMENT REPORT

- 3 Building 3 VI Mitigation Locations 2018
- 4 Building 3 VI Mitigation Details
- 5 Building 3 VI Post Mitigation Measurements January 2019
- 6 Building 3 VI Sampling Locations January 2019

APPENDICES

- A Structure Sampling Questionnaire and Building Inventory Forms
- B Laboratory Report and Data Usability Summary Report

ACRONYMS AND ABBREVIATIONS

µg/m³	Micrograms per Cubic Meter
Arcadis	Arcadis of New York, Inc.
BASE	Building Assessment Survey and Evaluation
BCA	Brownfield Cleanup Agreement
BDA	Brownfield Development Area
bgs	Below Ground Surface
BMS	Bristol-Myers Squibb Company
COC	Contaminant(s) of Concern
DER-10	NYSDEC Technical Guidance for Site Investigation and Remediation
DUSR	Data Usability Summary Report(s)
eV	Electron Volt
FSAP	Field Sampling and Analysis Plan
HVAC	Heating, Ventilation, and Air Conditioning
NYSDEC	New York State Department of Environmental Conservation
NYSDOH	New York State Department of Health
OBG	O'Brien & Gere Engineers, Inc.
PID	Photoionization Detector
QA/QC	Quality Assurance/Quality Control
QAPP	Quality Assurance Project Plan
RI	Remedial Investigation
RIWP	Work Plan: Remedial Investigation, BMS Syracuse North Campus Restoration Area, Site No. C734138
RSL	Regional Screening Level
SVI	Soil Vapor Intrusion
SVOC	Semi-Volatile Organic Compound(s)
TIC	Tentatively Identified Compound(s)
USEPA	United States Environmental Protection Agency
VI	Vapor Intrusion
VOC	Volatile Organic Compound(s)

1 INTRODUCTION

1.1 Remedial Investigation Overview

This *Building 3 Vapor Intrusion (VI) Assessment Report* has been developed for the Bristol-Myers Squibb Company (BMS) Syracuse North Campus Restoration Area, which is also referred to as the Brownfield Development Area (BDA). The BDA is part of the BMS Facility located at 6000 Thompson Road in East Syracuse, New York. A site transformation project was implemented in the BDA, resulting in demolition of numerous buildings and conversion of much of the BDA to green space. The location of the BDA and BMS Facility are shown on **Figure 1**.

The BDA is identified by the New York State Department of Environmental Conservation (NYSDEC) as Site No. C734138 and is subject to a Brownfield Cleanup Agreement (BCA; October 2011) between BMS and the NYSDEC. As proposed in the *Work Plan: Remedial Investigation, BMS Syracuse North Campus Restoration Area, Site No. C734138* (O'Brien & Gere Engineers [OBG] 2013a) (RIWP) for the BDA, the remedial investigation (RI) has been conducted in phases.

Phase 1 included a comprehensive evaluation of BDA soil and groundwater for potential contaminants of concern (COC) associated with historical use of the BDA, with sampling locations biased toward areas of known releases and primary chemical use and storage. Phase 1A was conducted in modules and included evaluation of surface soil, the potential VI pathway, and outfall sediment; additional evaluation of groundwater based on the Phase 1 results; and decommissioning of temporary groundwater monitoring wells. The results of the Phase 1 and Phase 1A activities are documented in the *Phase 1/1A Remedial Investigation Data Summary Report* (Arcadis of New York, Inc. [Arcadis] 2016) (Phase 1/1A Report). The results of the Phase 2 investigation of overburden and bedrock groundwater are documented along with the Phase 1/1A results in the Remedial Investigation Report submitted to NYSDEC in September 2018 (Arcadis 2018), and which is currently being modified in response to NYSDEC comments.

1.2 Soil Vapor Intrusion Evaluation Work Plans

Based on the presence of dissolved-phase VOC concentrations in groundwater in the BDA, an evaluation of the potential soil vapor intrusion (SVI) migration pathway was conducted for downgradient or proximal buildings occupied at the time of the Phase 1A investigation. This evaluation included Buildings 3, 7, 22/22A, 23B, and 32A/32D. Building 31 was initially proposed for evaluation but was demolished in early 2016. Buildings 25/25N, 48, 61, 70, and 82 are within the BDA but are not occupied and will not be occupied in the future. As of June 2019, Buildings 7, 25/25N and 22/22A have been demolished and Building 32A/32D has been reoccupied.

The work plans detailing the initial SVI investigation were documented in the following submittals:

- C734138 Phase 1A RIWP: Soil Vapor Sampling Module (Arcadis 2015a) (SV Work Plan) as modified by letters from the NYSDEC dated April 7 and 21, 2015; and
- C734138 Phase 1A Remedial Investigation Work Plan: Soil Vapor Sampling Module Addendum (SV Addendum) (Arcadis 2015b).

The 2015 SV Addendum was prepared based on comments from the NYSDEC and New York State Department of Health (NYSDOH) on the SV Work Plan. The NYSDEC and NYSDOH approved the SV

Work Plan and SV Addendum by letter dated December 23, 2015, with conditions. BMS provided responses to the NYSDEC/NYSDOH conditions by letter dated February 12, 2016.

The initial SVI investigation consisted of two (2) rounds of sampling. The first round was conducted in January and March 2016. The results of that sampling were documented in the Phase 1/1A Report. By letter dated October 24, 2016, BMS informed NYSDEC and NYSDOH that it would conduct a second, confirmatory round of SVI sampling during the upcoming heating season. As a result, the second round of VI sampling was conducted in December 2016 with additional groundwater samples from upgradient monitoring wells BDA-1F and BDA-1WT to be collected in the Spring and Fall of 2017.

The 2016-2017 SVI evaluation activities included:

- Initial sampling of soil vapor (where accessible), indoor air (where applicable), and ambient air;
- · Confirmatory sampling of soil vapor, indoor air, and ambient air;
- Sampling of groundwater upgradient of Building 3; and
- Supplemental sampling of indoor air in Building 3 (including ambient air).

An indoor air sample (with associated outdoor ambient air sample) was collected in the Building 3 basement (i.e., boiler control room). An elevated water table in proximity to the Building 3 slab elevation precluded collection of sub-slab samples or near building soil vapor samples. Therefore, BMS proposed to use the analytical results from monitoring wells upgradient of Building 3 (BDA-1WT & BDA-1F, shown on **Figure 2**) and compare compounds detected in the groundwater samples results to the compounds identified in the indoor air sample.

A summary of the findings from the 2016 sampling program was submitted to NYSDEC and NYSDOH on March 8, 2017 in a report titled *Soil Vapor Intrusion (SVI) Module Data Summary Report.* The Report concluded that based on the 2016 sampling results no additional sampling would be needed. In May 2017, NYSDOH updated the screening values listed on the Matrix Tables A, B and C. The result of this change was discussed in an October 4, 2017 e-mail to BMS, and during an October 10, 2017 meeting between BMS, NYSDEC and NYSDOH. The agencies expressed concern that indoor air concentrations of trichloroethene (TCE) measured in Building 3 were greater than the NYSDOH revised guidance values (i.e., measured sample concentrations of 0.93 and 1.6 micrograms per cubic meter [μ g/m³] compared to a guidance value for monitoring of 0.2 μ g/m³ and a guidance value for mitigation of 1.0 μ g/m³). During the October 10, 2017 meeting, BMS indicated that additional sampling of indoor air in Building 3 would be conducted following completion of on-going building renovations in Building 3 and adjoining Building 2, and the onset of the heating season.

The third round of Building 3 indoor and ambient air sampling (one sample each) was conducted on January 17, 2018 after completing the renovation activities but prior to startup of a new HVAC system. The results identified a slight decrease in the TCE concentration versus the previous rounds with a concentration of $0.77 \ \mu g/m^3$ and $0.82 \ \mu g/m^3$ from the parent and duplicate indoor air sample, respectively. However, the result remained above the screening criteria of $0.2 \ \mu g/m^3$ for TCE. As such, in the March 2018 monthly progress report BMS provided to the NYSDEC and NYSDOH an additional work scope and schedule, referenced below:

 C734138 Phase 1A Remedial Investigation Work Plan: Building 3 VI Mitigation Module (VI Mitigation Plan) (submitted with the March 2018 BCA Monthly Progress Report) and as modified by letter from NYSDEC/NYSDOH dated May 2, 2018. In the March 2018 monthly progress report BMS proposed the following activities:

- Sealing of floor and wall apertures:
 - Floor drains and clean-outs in the lower level of Building 3 were to be sealed using permanent or removable drain plugs or covers. Multiple 1- to 2-inch diameter conduits penetrating Building 3 basement outer walls were to be permanently sealed with non- or low-VOC sealant materials (e.g., caulk, clay, spray foam).
- Sampling:
 - Sampling and analysis of Building 3 indoor and ambient outdoor air was to be repeated in accordance with the methods and procedures previously used, after completion of the sealing activities and startup of the new HVAC system. This sampling was to be conducted while the HVAC system was operational.
 - At least one week prior to sampling, updated building reconnaissance was to be conducted to document current air movement patterns with the new HVAC system operational. Activities associated with this task included evaluation of air movement between rooms within the building to identify HVAC air mixing and potential system influence on VI pathways. Data collection activities were performed through physical measurements using a hand-held or stationary differential pressure monitor, as well as air movement assessments using hand-held anemometers and visual smoke/puff testing.

This report summarizes the mitigation tasks completed in 2018 in accordance with the March 2018 work scope and the results from the January 2019 sampling event.

1.3 Report Organization

The remainder of this report is organized as follows:

- Section 2 Building Mitigation and Assessment;
- Section 3 Sampling and Analysis;
- Section 4 Results; and
- Section 5 Findings and Future Actions.

The text is supported by figures and tables summarizing the sampling and analysis results, as well as appendices providing a structure sampling questionnaire and building inventory, laboratory analytical data reports, and data usability summary reports (DUSR).

2 BUILDING MITIGATION

2.1 Building 3 Mitigation

As noted in Section 1.2, several apertures in the floor and exterior walls were identified as potential VI pathways. From August 23, 2018 through August 27, 2018, the floor drains and clean-outs noted as locations A, B and D on **Figure 3** in the basement level of Building 3 were closed off using permanent one way drain valves or removable sealed drain plugs (details shown on Figure 4). The condensate floor sump located outside of the eastern doorway in Building 2 identified as location H on **Figure 3**, was cleaned out and filled with flowable cement (details shown on Figure 4). The wall conduits identified as locations E, F and G on **Figure 3** that penetrated the Building 3 basement exterior walls were permanently sealed with non-VOC hydraulic cement. Lastly, in a vertical drain identified as location C on **Figure 3**, a replacement flexible elbow was installed to replace a broken Y-fitting to mitigate potential venting into the workspace. In June 2018 the building HVAC system was placed in service allowing for air circulation between the ground floor and basement areas. Granulated activated carbon filters were installed in the HVAC system to help assist with indoor air treatment.

2.2 Post Mitigation Building Assessment

Following the installation of the passive mitigation measures noted in Section 2.1 and with the HVAC system in full operation, Arcadis conducted a building airflow assessment on January 11, 2019. This assessment consisted of measuring air movement between rooms and floors within Building 3 to identify HVAC air mixing and potential system influence on VI pathways. Data collection activities were completed using multiple air flow and pressure instruments. Arcadis utilized a Dwyer[®] anemometer to assess localized air flow readings around doorways, as well as a hand-held Infiltec DM1[®] digital micromanometer and stationary OmniGuard 4[®] differential pressure monitor to assess pressure differences between the slab, indoor and ambient air pressures, as well as the differential pressure variation between air ducts and the control room. Lastly, talc powder puff testers were used to confirm air flow direction around doorways. Results from that assessment are presented on **Figure 5** and summarized below:

- As presented on Figure 5 using air flow arrows, the air flow via an anemometer and puff tester confirmed air flow from the second floor into the basement control room through the stairwell door. Air flow at a less pronounced velocity was migrating out of the room through the basement control room swinging door into Building 2. This data supports the conclusion that the basement at the time of the assessment had a net positive air flow, which indicates a pressurized condition inside the basement (suitable for mitigating vapor intrusion).
- In general, all of the floor drain apertures noted a negative differential pressure relative to the basement control room, indicating air would be forced down into the drain (in the absence of a drain seal), rather than vapors entering (VI) from the drains.

Overall, based on the assessment data collected, VI is less likely to occur in the basement control room due to favorable building air movement and positive air pressure associated with HVAC settings on the preferential pathways, e.g., floor drains.

3 SAMPLING AND ANALYSIS

3.1 Sample Types and Locations

For Building 3, ambient air samples were collected outside buildings when indoor air samples were collected. The sampling locations were replicated to be the same vicinity where indoor and ambient air samples were collected historically and had been approved in the field with NYSDEC staff. The sampling locations are shown on **Figure 6**.

3.2 Building Materials and Products Inventory

On January 22, 2019, prior to indoor air sample collection, a detailed building review and reconnaissance was conducted to: (1) confirm and document specific sample locations (i.e., measured from outside walls); (2) obtain additional information on building layout, uses, and HVAC system configuration and operation; and (3) identify and remove chemical products from the building, if feasible. Chemical products that could not be removed from buildings 48 hours in advance of the sampling were documented. A photoionization detector (PID) equipped with an 11.7 electron volt (eV) lamp was used to screen for the presence of detectable vapor-phase chemicals during the reconnaissance. The documented reconnaissance and chemical inventories are provided in **Appendix A**.

3.3 Indoor and Ambient Air Sampling

Indoor and ambient air samples were collected concurrently during the January 24, 2019 sampling event. All air samples were collected in individually certified clean 6-L Summa[®] canisters placed approximately three to five feet above the ground surface (i.e., at approximate breathing zone height) and collected over an 8-hour period, consistent with previous sampling events. No potential quality control issues were identified during indoor or ambient air sampling.

3.4 Sampling Procedures and Analysis

Field samples and associated quality assurance/quality control (QA/QC) samples were collected in accordance with the NYSDEC-approved *Field Sampling and Analysis Plan* (FSAP; OBG 2013b) and *Quality Assurance Project Plan* (QAPP; OBG 2013c) and the NYSDEC Division of Environmental Remediation *DER-10 Technical Guidance for Site Investigation and Remediation* (DER-10; NYSDEC 2010). All work was performed under the responsible charge of a qualified environmental professional as defined in DER-10.

The indoor air and ambient air sample canisters were provided by Eurofins Air Toxics Laboratories Environmental, LLC, of Folsom, California. After sampling, the canisters were returned to the laboratory by overnight courier, under chain-of-custody, for analysis of VOC in accordance with United States Environmental Protection Agency (USEPA) Method TO-15. Additionally, as feasible, site-specific VOC not included in the laboratory's standard TO-15 compound list were reported by the laboratory as tentatively identified compounds (TIC).

3.5 Data Usability

Upon completion of analysis, the laboratory data packages were validated by Arcadis. Laboratory analytical reports and corresponding DUSR for indoor air and ambient air samples are presented in **Appendix B** for the January sampling event. No sample analytical results were rejected.

4 RESULTS

To evaluate the potential need for additional evaluation or remedial action, indoor and ambient air analytical data was compared to commercial screening values. In accordance with DER-10 (Section 3.14(c)(4)), the analytical data are also compared to residential screening values. The current and reasonably anticipated future use of BMS buildings is commercial/industrial.

- For COC included in the NYSDOH May 2017 Soil Vapor / Indoor Air Matrices, the indoor air and soil
 vapor guidance values provided in the Matrices are used to identify whether no further action,
 additional monitoring, or mitigation is needed, regardless of commercial or residential building
 occupancy.
- The Commercial Indoor Air Screening Level is the USEPA BASE Study 90th percentile value, except for COC included in the NYSDOH Matrices. If a BASE value is not available, the USEPA Industrial Air Regional Screening Level (RSL) using the lower of a target cancer risk of 1x10⁻⁶ or a target hazard quotient of 1 is used, when available.
- The Residential Indoor Air Screening Level is the NYSDOH Fuel Oil Study Upper Fence value, except for COC included in the NYSDOH Matrices. If a Fuel Oil Study Upper Fence value is not available, the USEPA Residential Air RSL value using the lower of a target cancer risk of 1x10⁻⁶ or a target hazard quotient of 1 is used, when available. If a USEPA Residential Air RSL value is not available, the USEPA Industrial Air RSL is used, when available.

4.1 Post Mitigation Indoor and Ambient Air Results

Although 35 VOC were detected in either the parent or duplicate air samples from the January 24, 2019 event, only four exceeded either the commercial or residential screening values.

- Trichloroethylene (TCE) was detected at a concentration of 0.59 µg/m³ from the IA-3 parent sample and 0.61 µg/m³ from the duplicate sample. These are the lowest indoor air concentrations for TCE from all 4 rounds collected in Building 3. As presented on **Table 1**, TCE has been detected in indoor air at concentrations ranging from 0.59 µg/m³ to 1.6 µg/m³. The NYSDOH matrix action levels, in the absence of companion soil vapor concentrations, are 0.2 µg/m³ for monitoring and 1.0 µg/m³ for mitigation.
- 1,2,4-Trimethylbenzene was detected in indoor air for the first time at Building 3. The detections of 10 µg/m³ from both the parent and duplicate samples from IA-3 were slightly above referenced background level of 9.5 µg/m³ in commercial settings. Since 1,2,4-Trimethylbenzene was not previously identified in indoor air and not identified in groundwater directly upgradient from Building 3, it was concluded that this one-time detection was likely the result of a transient source such as paint or solvent-based cleaners for which this compound is known to be an ingredient.
- Carbon tetrachloride has been detected in all 4 sampling rounds with almost identical concentrations between the ambient air sample and the indoor air sample. As such the detection in indoor air is considered directly related to background influence from ambient air infiltration.
- Naphthalene was detected at 4.6 µg/m³ from the IA-3 parent sample and at 4.2 µg/m³ in the duplicate sample which is above the Residential Indoor Air Screening level of 0.083 µg/m³ but below the

Commercial Indoor Air Screening level of 5.1 μ g/m³. Lower concentrations of naphthalene were detected in two of the previous sampling events. Since naphthalene was not identified in groundwater directly upgradient from Building 3, it was concluded that the detection identified in the indoor air sample was the result of a transient source. Naphthalene is a known ingredient in many paints, oils and fuels and can off gas from clothing or impacted materials long after contact.

4.2 Comparison to Groundwater Upgradient of Building 3

Due to the saturated soil below Building 3 and high-water table next to the building and based on discussion with the NYSDEC and NYSDOH on February 10, 2016, a groundwater sample was collected upgradient of Building 3 in lieu of sub-slab samples and soil vapor sampling. Two wells were installed as shown on **Figure 2**, one screened entirely in the till layer (BDA-1WT) and one screened in the overlying fill (BDA-1F). The wells have been sampled four times since their installation on March 1, 2016. As shown on **Table 2**, TCE (7 µg/L versus 5 µg/L) was the only VOC to exceed the TOGS1.1.1. groundwater screening criteria (September 2019 sampling event from well BDA-1F). The other three compounds (1,2,4-Trimethylbenzene, Carbon tetrachloride and Naphthalene) identified as exceeding indoor air screening levels within Building 3 were not detected in groundwater. As a result, these three compounds detected in indoor air are likely attributed to ingredients within products used in the facility.

4.3 Comparison to Building 3 Chemical Inventory

Based on the January 22, 2019 chemical inventory, no product was directly labelled as containing TCE or 1,2,4-trimethylbenzene. Several products located in the building were labelled as containing oil, petroleum distillates, or mineral spirits, that could include 1,2,4-trimethylbenzene below 1% concentration. Naphthalene (naptha) was confirmed to be an ingredient in at least one product (i.e., Chesterton 730 spragrip[®]) identified in Building 2 (which is adjacent to Building 3).

5 FINDINGS AND FUTURE MITIGATION

Based on the ongoing use of Building 3 as a boiler control room and for storage, the area usage is classified as commercial/industrial. Additionally, usage of the upgradient land will be managed by a land use deed restriction. Therefore, TCE remains the only compound of concern for which continual monitoring is warranted.

BMS proposes the following additional mitigation measures to reduce TCE exposure to workers:

- Re-calibration of the HVAC system within the Building 3 basement to provide a more positive
 pressure environment, thereby decreasing the preferential migration of vapors into the work areas.
- Installation of automatic doors closers with weather stripping to aid in maintaining a positive pressure environment in the Building 3 basement.

If additional sampling indicates TCE still exceeds the Commercial/Industrial Indoor Air Screening levels in Building 3, BMS will investigate additional air treatment within the work area.

6 SCHEDULE

BMS will initiate the identified mitigation measures in Section 5 within 30 days of receiving NYSDEC/ NYSDOH approval of this report. Upon completion of the proposed mitigation methods, BMS will conduct a post mitigation sampling event and provide the results to NYSDEC/NYSDOH during the subsequent heating season, tentatively identified in November 2019.

7 REFERENCES

- Arcadis. 2015a. C734138 Phase 1A Remedial Investigation Work Plan: Soil Vapor Sampling Module. January 2015.
- Arcadis. 2015b. C734138 Phase 1A Remedial Investigation Work Plan: Soil Vapor Sampling Module Addendum. November 2015.
- Arcadis. 2016. Phase 1/1A Remedial Investigation Data Summary Report. August 2016.
- Arcadis. 2018. Remedial Investigation Report. September 2018.
- BMS. 2018. C734138 Phase 1A Remedial Investigation Work Plan: Building 3 VI Mitigation Module (VI Mitigation Plan) (submitted with the March 2018 BCA Monthly Progress Report).
- NYSDEC. 2010. DER-10 Technical Guidance for Site Investigation and Remediation. May 3. Available online at: http://www.dec.ny.gov/regulations/67386.html.
- O'Brien & Gere Engineers (OBG). 2013a. Work Plan: Remedial Investigation BMS Syracuse North Campus Restoration Area, Site No. C734138. March 2013.
- OBG. 2013b. Field Sampling and Analysis Plan: BMS Syracuse North Campus Restoration Area, Site No. C734138. March 2013.
- OBG. 2013c. Quality Assurance Project Plan: BMS Syracuse North Campus Restoration Area, Site No. C734138. March 2013.

TABLES

Table 1Building 3 Indoor Air and Ambient Air Analytical Results

Building 3 VI Assessment Report

Site #C734138: BMS Syracuse North Campus Restoration Area

		Indoor Air Sci	reening Value*	Buildin	ig 3 - Mar. 2016	Building 3	- Dec. 2016	Building	g 3 - Jan. 2018	Buildin	g 3 - Jan. 2019
		Commercial	Residential	Ambient	Indoor	Ambient	Indoor	Ambient	Indoor	Ambient	Indoor
	CAS	(Exceedances	(Exceedances	AA-3	IA-3	AA-3	IA-3	AA-3	IA-3	AMB-3	IA-3/DUP
Date Collected:	Number	Gray Shaded)	Orange Bold)	03/02/16	03/02/16	12/08/16	12/08/16	01/17/18	01/17/18	01/24/19	01/24/19
Volatile Organics - TO-15 (ug/m ³)											
1,1,1-Trichloroethane*	71-55-6	;	3	0.017 J	0.045 J [0.049 J]	0.019 J	0.13 J	0.13 U	0.054 J [0.051 J]	0.14 U	0.039 J [0.039 J]
1,1,2,2-Tetrachloroethane	79-34-5	0.21	0.4	0.18 U	0.20 U [0.20 U]	0.17 U	0.19 U	0.16 U	0.19 U [0.19 U]	0.18 U	0.18 U [0.19 U]
1,1,2-Trichloro-1,2,2-trifluoroethane(Freon 113)	76-13-1	3.5	2.5	0.40 J	0.48 J [0.47 J]	0.56 J	0.60 J	0.52 J	0.57 J [0.55 J]	0.75 J	0.74 J [0.66 J]
1,1,2-Trichloroethane	79-00-5	1.5	0.4	0.14 U	0.16 U [0.16 U]	0.14 U	0.15 U	0.13 U	0.15 U [0.15 U]	0.14 U	0.15 U [0.15 U]
1,1-Dichloroethane	75-34-3	0.7	0.4	0.10 U	0.022 J [0.022 J]	0.10 U	0.052 J	0.097 U	0.035 J [0.036 J]	0.11 U	0.11 U [0.11 U]
1,1-Dichloroethene*	75-35-4	0	.2	0.051 U	0.059 U [0.058 U]	0.050 U	0.063	0.048 U	0.066 [0.064]	0.053 U	0.053 U [0.054 U]
1,2,4-Trichlorobenzene	120-82-1	6.8	0.5	4.7 U	5.5 U [5.4 U]	4.7 U	5.2 U	4.4 UJ	5.2 UJ [5.1 UJ]	4.9 U	5.0 U [5.1 U]
1,2,4-Trimethylbenzene	95-63-6	9.5	9.8	0.14 J	0.16 J [0.17 J]	0.62 U	0.18 J	0.20 J	0.34 J [0.37 J]	0.65 U	10 [10]
1,2-Dibromoethane (EDB)	106-93-4	1.5	0.4	0.20 U	0.23 UB [0.22 UB]	0.19 UB	0.22 UB	0.18 U	0.21 U [0.21 U]	0.20 U	0.20 U [0.024 J]
1,2-Dichloro-1,1,2,2-tetrafluoroethane	76-14-2	6.8	0.4	0.10 J	0.10 J [0.11 J]	0.11 J	0.11 J	0.097 J	0.11 J [0.10 J]	0.12 J	0.11 J [0.15 J]
1,2-Dichlorobenzene	95-50-1	1.2	0.5	0.77 U	0.89 U [0.88 U]	0.76 U	0.85 U	0.72 U	0.84 U [0.82 U]	0.80 U	0.80 U [0.82 U]
1,2-Dichloroethane	107-06-2	0.9	0.4	0.10 UB	0.12 UB [0.12 UB]	0.10 UB	0.11 UB	0.056 J	0.054 J [0.058 J]	0.088 J	0.086 J [0.092 J]
1,2-Dichloropropane	78-87-5	1.6	0.4	0.59 U	0.68 U [0.68 U]	0.58 U	0.65 U	0.55 U	0.64 U [0.63 U]	0.61 U	0.62 U [0.63 U]
1,3,5-Trimethylbenzene	108-67-8	3.7	3.9	0.63 U	0.73 U [0.72 U]	0.62 U	0.69 U	0.59 U	0.68 U [0.67 U]	0.65 U	1.9 [2.0]
1,3-Butadiene	106-99-0	3	0.094	0.28 U	0.33 U [0.099 J]	0.28 U	0.31 U	0.26 U	0.31 U [0.30 U]	0.29 U	0.30 U [0.30 U]
1,3-Dichlorobenzene	541-73-1	2.4	0.5	0.77 U	0.89 U [0.88 U]	0.76 U	0.85 U	0.72 U	0.84 U [0.82 U]	0.80 U	0.80 U [0.82 U]
1,4-Dichlorobenzene	106-46-7	5.5	1.2	0.15 UB	0.18 UB [0.18 UB]	0.15 UB	0.17 UB	0.14 U	0.17 UB [0.16 U]	0.16 UJ	0.16 UJ [0.16 UJ]
1,4-Dioxane	123-91-1	2.5	0.56	0.46 U	0.53 U [0.53 U]	0.45 U	0.51 U	0.43 U	0.50 U [0.49 U]	0.48 U	0.48 U [0.49 U]
2,2,4-Trimethylpentane	540-84-1		5	3.0 U	3.4 U [3.4 U]	2.9 U	3.3 U	2.8 U	3.2 U [3.2 U]	3.1 U	3.1 U [3.2 U]
2-Hexanone	591-78-6	130	31	2.6 U	3.0 U [3.0 U]	0.42 J	0.83 J	2.4 U	2.8 U [2.8 U]	2.7 U	2.7 U [0.95 J]
3-Chloropropene	107-05-1	2	0.47	2.0 UJ	2.3 UJ [2.3 UJ]	2.0 U	2.2 U	1.9 U	2.2 U [2.1 U]	2.1 U	2.1 U [2.1 U]
4-Ethyltoluene	622-96-8	3.6		0.63 UB	0.73 UB [0.72 UB]	0.62 U	0.69 U	0.18 J	0.40 J [0.38 J]	0.65 U	2.3 [2.5]
Acetone	67-64-1	98.9	115	3.6 UB	9.9 [5.4]	6.8	16	4.5	6.4 [6.0]	7.9 J	7.3 J [9.7 J]
Benzene	71-43-2	9.4	13	0.44	0.60 [0.59]	0.36	0.46	0.58	0.66 [0.66]	0.56	0.64 [0.64]
Benzyl chloride (a-chlorotoluene)	100-44-7	6.8	0.057	0.66 U	0.77 U [0.76 U]	0.65 U	0.73 U	0.62 U	0.72 U [0.71 U]	0.69 U	0.69 U [0.71 U]
Bromodichloromethane	75-27-4	0.33	0.076	0.86 U	0.41 J [0.38 J]	0.84 U	0.19 J	0.80 U	0.93 U [0.92 U]	0.89 U	0.90 U [0.92 U]
Bromoform	75-25-2	11	2.6	1.3 U	1.5 U [1.5 U]	1.3 U	1.4 U	1.2 U	1.4 U [1.4 U]	1.4 U	1.4 U [1.4 U]
Bromomethane	74-83-9	1.7	0.5	2.5 U	2.9 U [2.8 U]	2.4 U	2.7 U	2.3 U	2.7 U [2.7 U]	2.6 U	2.6 U [2.7 U]
Carbon disulfide	75-15-0	4.2	730	2.0 UJ	2.3 UJ [2.3 UJ]	2.0 U	2.2 U	1.9 U	2.2 U [2.1 U]	2.1 U	2.0 J [2.1 U]
Carbon tetrachloride*	56-23-5	0	.2	0.42	0.42 [0.41]	0.46	0.45	0.38	0.39 [0.39]	0.47	0.47 [0.48]
Chlorobenzene	108-90-7	0.9	0.4	0.59 U	0.68 U [0.68 U]	0.58 U	0.65 U	0.55 U	0.64 U [0.63 U]	0.61 U	0.62 U [0.63 U]
Chloroethane	75-00-3	1.1	0.4	0.17 UJ	0.20 UJ [0.19 UJ]	0.17 U	0.19 U	0.16 U	0.18 U [0.18 U]	0.041 J	0.18 U [0.059 J]
Chloroform	67-66-3	1.1	1.2	0.080 J	1.4 [1.4]	0.086 J	1.4	0.089 J	0.74 [0.74]	0.077 J	0.34 [0.33]
Chloromethane	74-87-3	3.7	4.2	0.91	0.91 [0.90]	0.78	0.79	0.80 J	0.85 J [0.83 J]	0.90 J	0.84 J [0.97 J]
cis-1,2-Dichloroethene*	156-59-2	0.	2	0.10 U	0.14 [0.12]	0.10 U	0.29	0.095 U	0.28 [0.30]	0.10 U	0.12 [0.11]
cis-1,3-Dichloropropene	10061-01-5	2.3	0.4	0.58 U	0.67 U [0.67 U]	0.57 U	0.64 U	0.54 U	0.63 U [0.62 U]	0.60 U	0.61 U [0.62 U]
Cyclohexane	110-82-7	26,000	6.3	0.44 U	0.51 U [0.50 U]	0.43 U	0.098 J	0.15 J	0.29 J [0.26 J]	0.46 U	0.46 U [0.47 U]
Dibromochloromethane	124-48-1			1.1 U	1.3 U [1.2 U]	1.1 U	1.2 U	1.0 U	1.2 U [1.2 U]	1.1 U	1.1 U [1.2 U]
Dichlorodifluoromethane (Freon 12)	75-71-8	16.5	10	2.0	2.2 [2.2]	2.1	2.1	1.9	2.0 [2.0]	2.3 J	2.2 J [2.4 J]
Ethanol	64-17-5	210	1,300	2.5	20 [19]	2.7	66	3.4	72 [68]	5.3 J	51 J [57 J]

See Notes on Page 2 & 3.

Table 1 Building 3 Indoor Air and Ambient Air Analytical Results

Building 3 VI Assessment Report

Site #C734138: BMS Syracuse North Campus Restoration Area

		Indoor Air Sci	eening Value*	Buildin	g 3 - Mar. 2016	Building 3	- Dec. 2016	Building	g 3 - Jan. 2018	Building 3 - Jan. 2019	
		Commercial	Residential	Ambient	Indoor	Ambient	Indoor	Ambient	Indoor	Ambient	Indoor
	CAS	(Exceedances	(Exceedances	AA-3	IA-3	AA-3	IA-3	AA-3	IA-3	AMB-3	IA-3/DUP
Date Collected:	Number	Gray Shaded)	Orange Bold)	03/02/16	03/02/16	12/08/16	12/08/16	01/17/18	01/17/18	01/24/19	01/24/19
Volatile Organics - TO-15 (ug/m3) (cont'd)											
Ethylbenzene	100-41-4	5.7	6.4	0.21	0.19 [0.30]	0.074 J	0.13	0.16	0.20 [0.21]	0.21	2.1 [1.8]
Hexachlorobutadiene	87-68-3	6.8	0.5	6.8 U	7.9 U [7.8 U]	6.7 U	7.5 U	6.4 UJ	7.4 UJ [7.3 UJ]	7.1 U	7.1 U [7.3 U]
Isopropyl alcohol (2-propanol)	67-63-0	250	210	0.42 J	8.9 J [1.5 J]	0.36 J	4.5	1.5 U	3.2 [2.9]	1.3 J	4.6 J [5.3 J]
Isopropylbenzene (cumene)	98-82-8	1,800	0.8	0.63 U	0.73 U [0.72 U]	0.62 U	0.69 U	0.59 U	0.32 J [0.28 J]	0.65 U	0.40 J [0.67 U]
m,p-Xylene	108-38-3	22.2	11	0.35	0.56 [0.58]	0.22 UB	0.30	0.51	0.57 [0.55]	0.65	10 [9.1]
Methyl ethyl ketone (MEK, 2-Butanone)	78-93-3	12	16	0.66 J	1.1 J [0.46 J]	1.8 U	4.3	0.71 J	0.62 J [0.71 J]	1.9 J	1.2 J [2.3]
4-methyl-2-pentanone (MIBK)	108-10-1	6	1.9	0.52 U	0.61 U [0.60 U]	0.19 J	0.30 J	0.49 U	0.57 U [0.56 U]	0.22 J	0.23 J [0.56 U]
Methyl tert-butyl ether	1634-04-4	11.5	14	0.46 U	0.53 U [0.53 U]	0.45 U	0.51 U	0.013 J	0.011 J [0.013 J]	0.48 U	0.48 U [0.49 U]
Methylene chloride*	75-09-2	:	3	0.30 J	1.0 U [0.29 J]	0.88 UB	0.98 UB	0.33 J	0.64 J [0.42 J]	0.82 J	0.64 J [0.58 J]
Naphthalene	91-20-3	5.1	0.083	0.34 U	0.39 U [0.38 U]	0.33 UB	0.23 J	0.31 UB	0.24 J [0.36 UB]	0.35 UB	4.6 J [4.2 J]
n-Heptane	142-82-5	1,800	18	0.52 U	0.61 U [0.60 U]	0.52 UB	0.58 UB	0.21 J	0.36 J [0.70]	0.54 U	0.82 [0.99]
n-Hexane	110-54-3	10.2	14	0.45 U	0.52 U [0.52 U]	0.44 UB	0.50 UB	0.46	0.66 [1.0]	0.76	0.61 [0.71]
n-Propylbenzene	103-65-1	4,400	1.5	0.63 U	0.73 U [0.72 U]	0.62 U	0.69 U	0.59 U	0.68 U [0.12 J]	0.65 U	1.2 [1.2]
o-Xylene	95-47-6	7.9	7.1	0.13	0.21 [0.22]	0.084 J	0.12	0.22	0.24 [0.23]	0.32	4.1 [3.8]
Styrene	100-42-5	1.9	1.4	0.54 U	0.63 U [0.63 U]	0.072 J	0.13 J	0.51 U	0.59 U [0.58 U]	0.57 U	0.57 U [0.58 U]
Tetrachloroethene (PCE)*	127-18-4	;	3	0.039 J	0.077 J [0.081 J]	0.044 J	0.11 J	0.075 J	0.14 J [0.18 U]	0.067 J	0.18 J [0.17 J]
Tetrahydrofuran	109-99-9	8,800	0.8	1.9 U	2.2 U [0.57 J]	1.8 U	0.52 J	1.8 U	2.0 U [2.0 U]	2.0 U	2.0 U [2.0 U]
Toluene	108-88-3	43	57	0.87	1.5 [1.6]	0.41	0.77	0.82	1.0 [0.90]	0.81	5.0 [4.5]
trans-1,2-Dichloroethene	156-60-5			0.51 UJ	0.024 J [0.027 J]	0.50 U	0.56 UB	0.48 U	0.23 J [0.22 J]	0.53 U	0.53 U [0.54 U]
trans-1,3-Dichloropropene	10061-02-6	1.3	0.25	0.58 U	0.67 U [0.67 U]	0.57 U	0.64 U	0.54 U	0.63 U [0.62 U]	0.60 U	0.61 U [0.62 U]
Trichloroethene (TCE)*	79-01-6	0.	2	0.043 J	0.93 [0.93]	0.14 UB	1.6	0.036 J	0.77 [0.82]	0.033 J	0.59 [0.61]
Trichlorofluoromethane (Freon 11)	75-69-4	18.1	12	1.0	1.2 [1.1]	1.2	1.2	1.0	1.2 [1.0]	1.4	1.2 [1.2]
Vinyl chloride*	75-01-4	0	.2	0.033 U	0.038 U [0.038 U]	0.032 U	0.018 J	0.031 U	0.036 U [0.035 U]	0.034 U	0.034 U [0.035 U]
Volatile Organics-TIC (ppbv)											
1,2,3-Trimethylbenzene	526-73-8	260	2.5	NR	NR	NR	NR	NR	NR	NR	0.89 JN [1.2 JN]
Pentane	109-66-0	4,400	1,000	NR	1.8 JN [2 JN]	NR	NR	0.79 JN	1.6 JN [1.9 JN]	NR	0.93 JN [1.6 JN]

Notes:

1. Samples were collected by Arcadis and analyzed by Eurofins Air Toxics Laboratories Environmental, LLC of Folsom, CA.

2. * = constituent included in the NYSDOH May 2017 Soil Vapor / Indoor Air Matrices - indoor air guidance values listed

guidance maybe used to identify whether to conduct additional monitoring or mitigation.

 The Commercial Indoor Air Screening Level is the USEPA BASE Study 90th percentile value, when available (except for * constituents included in the NYSDOH Matrices). If a BASE value is not available, the USEPA Industrial Air Regional Screening Level (RSL) using the lower of a target cancer risk of 1x10⁻⁶ or a target hazard quotient of 1 is used, when available.

4. The Residential Indoor Air Screening Level is the NYSDOH Fuel Oil Study Upper Fence value (except for * constituents included in the NYSDOH Matrices). If a Fuel Oil Study Upper Fence value is not available, the USEPA Residential Air RSL value using the lower of a target cancer risk of 1x10⁻⁶ or a target hazard quotient of 1 is used, when available. If a USEPA Residential Air RSL value is not available, the USEPA Industrial Air RSL is used, when available.

5. Non-numerical values in the "CAS Number" column are a surrogate identification because no actual CAS number is available.

6. Analytes detected in sample are shown in black font and analytes that are not detected are shown in gray font.

7. Field duplicate sample results are presented in brackets, [].

8. The data has been validated.

Table 1 Building 3 Indoor Air and Ambient Air Analytical Results

Building 3 VI Assessment Report Site #C734138: BMS Syracuse North Campus Restoration Area

Notes (cont'd):

- 9. Designations:
 - a) Italic font = Sample MDL exceeds the constituent's lower indoor air screening value.
 - b) Black bold font = Result detected above constituent's lower indoor air screening value.
 - c) Gray shading = Result detected above constituent's higher indoor air screening value.
- 10. Abbreviations:
 - - = Screening Value not available based on inquiry described in Notes 3 and 4.
 - $\mu g/m^3$ = Micrograms per cubic meter.
 - CAS = Chemical Abstracts Service.
 - MDL = Method detection limit.
 - NR = Not reported as a TIC.
- 11. Qualifier Definitions:
 - B = Analyte was detected in the blank and sample.
 - J = Estimated value. Result is greater than the MDL but less than the RL.
 - N = The analysis indicates the presence of a compound which there is presumptive evidence to make a tentative identification.
 - U = Analyte not detected at listed reporting detection limit.

- RL = Reporting limit. RSL = Regional screening level.
- TIC = Tentatively identified compound.
- ppbv = Parts per billion by volume.

ARCADIS Design & Consultancy for natural and built assets

Table 2 Upgradient Groundwater Results

Building 3 VI Assessment Report

Site #C734138: BMS Syracuse North Campus Restoration Area

Location ID:		TOGS 1.1.1		BD.	A-1F			BDA	-1WT	
Date Collected:		Groundwater	04/12/16	07/17/17	12/08/17	09/28/18	04/12/16	07/17/17	12/08/17	09/27/18
	CAS	Standard/Guidance	BDA-1F	BDA-1F	BDA-1F	BDA-1F	BDA-1WT	BDA-1WT	BDA-1WT	BDA-1WT
Sample Name:	Number	Value	04122016	07172017	12082017	09282018	04122016	07172017	12082017	09272018
Volatile Organics - USEPA SW-846 Method 8260C (µg/L)										
1,1,1-Trichloroethane	71-55-6	5	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U
1,1,2,2-Tetrachloroethane	79-34-5	5	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	5	10 U [10 U]	10 U	10 U	10 U [10 U]	10 U	10 U	10 U	10 U
1,1,2-Trichloroethane	79-00-5	1	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U
1,1-Dichloroethane	75-34-3	5	2.0 [2.0]	1.0 U	1.0 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U
1,1-Dichloroethene	75-35-4	5	2.0 [1.0]	1.0 U	1.0 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U
1,2,3-Trichlorobenzene	87-61-6	5	5.0 U [5.0 U]	5.0 U	5.0 U	5.0 U [5.0 U]	5.0 U	5.0 U	5.0 U	5.0 U
1,2,4-Trichlorobenzene	120-82-1	5	5.0 U [5.0 U]	5.0 U	5.0 U	5.0 U [5.0 U]	5.0 U	5.0 U	5.0 U	5.0 U
1,2,4-Trimethylbenzene	95-63-6	5	5.0 U [5.0 U]	5.0 U	5.0 U	5.0 U [5.0 U]	5.0 U	5.0 U	5.0 U	5.0 U
1,2-Dibromo-3-chloropropane	96-12-8	0.04	5.0 U [5.0 U]	5.0 U	5.0 U	5.0 U [5.0 U]	5.0 U	5.0 U	5.0 U	5.0 U
1,2-Dibromoethane	106-93-4	0.0006	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichlorobenzene	95-50-1	3	5.0 U [5.0 U]	5.0 U	5.0 U	5.0 U [5.0 U]	5.0 U	5.0 U	5.0 U	5.0 U
1,2-Dichloroethane	107-06-2	0.6	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloropropane	78-87-5	1	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U
1,3,5-Trimethylbenzene	108-67-8	5	5.0 U [5.0 U]	5.0 U	5.0 U	5.0 U [5.0 U]	5.0 U	5.0 U	5.0 U	5.0 U
1,3-Dichlorobenzene	541-73-1	3	5.0 U [5.0 U]	5.0 U	5.0 U	5.0 U [5.0 U]	5.0 U	5.0 U	5.0 U	5.0 U
1,4-Dichlorobenzene	106-46-7	3	5.0 U [5.0 U]	5.0 U	5.0 U	5.0 U [5.0 U]	5.0 U	5.0 U	5.0 U	5.0 U
1,4-Dioxane	123-91-1		250 U [250 U]	250 U	250 U	250 U [250 U]	250 U	250 U	250 U	250 U
2-Hexanone	591-78-6	50	10 U [10 U]	10 U	10 U	10 U [10 U]	10 U	10 U	10 U	10 U
2-Nitropropane	79-46-9		10 U [10 U]	10 U	10 U	10 U [10 U]	10 U	10 U	10 U	10 U
Acetone	67-64-1	50	20 U [20 U]	20 U	20 U	2.0 J [2.0 J]	20 U	20 U	20 U	0.90 J
Acetonitrile	75-05-8		100 U [100 U]	100 U	100 U	100 U [100 U]	100 U	100 U	100 U	100 U
Benzene	71-43-2	1	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U
Bromochloromethane	74-97-5	5	5.0 U [5.0 U]	5.0 U	5.0 U	5.0 U [5.0 U]	5.0 U	5.0 U	5.0 U	5.0 U
Bromodichloromethane	75-27-4	50	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U
Bromoform	75-25-2	50	4.0 U [4.0 U]	4.0 U	4.0 U	4.0 U [4.0 U]	4.0 U	4.0 U	4.0 U	4.0 U
Bromomethane	74-83-9	5	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U
Carbon disulfide	75-15-0	60	5.0 U [5.0 U]	5.0 U	5.0 U	5.0 U [5.0 U]	5.0 U	5.0 U	5.0 U	5.0 U
Carbon tetrachloride	56-23-5	5	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U
Chlorobenzene	108-90-7	5	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U
Chlorodifluoromethane	75-45-6	5	5.0 U [5.0 U]	5.0 U	5.0 UJ	5.0 U [5.0 U]	5.0 U	5.0 U	5.0 UJ	5.0 U
Chloroethane	75-00-3	5	0.90 J [0.90 J]	1.0 U	1.0 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U
Chloroform	67-66-3	7	1.0 U [1.0 U]	1.0 U	1.0 U	0.70 J [0.60 J]	1.0 U	1.0 U	1.0 U	1.0 U
Chloromethane	74-87-3	5	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U
cis-1,2-Dichloroethene	156-59-2	5	2.0 [2.0]	1.0	0.70 J	0.70 J [0.70 J]	1.0 U	1.0 U	1.0 U	1.0 U
cis-1,3-Dichloropropene	10061-01-5	0.4	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U
Cyclohexane	110-82-7		5.0 U [5.0 U]	5.0 U	5.0 U	5.0 U [5.0 U]	5.0 U	5.0 U	5.0 U	5.0 U
Cyclonexanone	108-94-1		100 U [100 U]	100 U	100 UJ	100 U [100 U]	100 U	100 U	100 UJ	100 U
Dibromochloromethane	124-48-1	50	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U
Dichlorodifluoromethane	75-71-8	5	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U
Ethyl acetate	141-78-6		5.0 U [5.0 U]	5.0 U	5.0 U	5.0 U [5.0 U]	5.0 U	5.0 U	5.0 U	5.0 U
Ethyl ether	60-29-7		5.0 U [5.0 U]	5.0 U	5.0 U	5.0 U [5.0 U]	5.0 U	5.0 U	5.0 U	5.0 U
Ethylbenzene	100-41-4	5	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U

See Notes on Page 2 & 3.

Table 2 Upgradient Groundwater Results

Building 3 VI Assessment Report

Site #C734138: BMS Syracuse North Campus Restoration Area

Location ID:		TOGS 1.1.1		BD	A-1F			BDA-1WT			
Date Collected:		Groundwater	04/12/16	07/17/17	12/08/17	09/28/18	04/12/16	07/17/17	12/08/17	09/27/18	
	CAS	Standard/Guidance	BDA-1F	BDA-1F	BDA-1F	BDA-1F	BDA-1WT	BDA-1WT	BDA-1WT	BDA-1WT	
Sample Name:	Number	Value	04122016	07172017	12082017	09282018	04122016	07172017	12082017	09272018	
Volatile Organics - USEPA SW-846 Method 8260C (µg/L)	(cont'd)										
Isobutanol	78-83-1		250 U [250 U]	250 U	250 U	250 U [250 U]	250 U	250 U	250 U	250 U	
Isopropylbenzene	98-82-8	5	5.0 U [5.0 U]	5.0 U	5.0 U	5.0 U [5.0 U]	5.0 U	5.0 U	5.0 U	5.0 U	
m,p-Xylene	179601-23-1	5	1.0 U [1.0 U]	1.0 U	1.0 U	5.0 U [5.0 U]	1.0 U	1.0 U	1.0 U	5.0 U	
Methyl acetate	79-20-9		5.0 U [5.0 U]	5.0 U	5.0 U	5.0 U [5.0 U]	5.0 U	5.0 U	5.0 U	5.0 U	
Methyl ethyl ketone (MEK, 2-butanone)	78-93-3	50	10 U [10 U]	10 U	10 U	10 U [10 U]	10 U	10 U	10 U	10 U	
Methyl isobutyl ketone (MIBK, 4-methyl-2-pentanone)	108-10-1	† (50)	10 U [10 U]	10 U	10 U	10 U [10 U]	10 U	10 U	10 U	10 U	
Methyl tert-butyl ether	1634-04-4	10	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U	
Methylcyclohexane	108-87-2	†	5.0 U [5.0 U]	5.0 U	5.0 U	5.0 U [5.0 U]	5.0 U	5.0 U	5.0 U	5.0 U	
Methylene chloride	75-09-2	5	4.0 U [4.0 U]	4.0 U	1.0	0.90 J [0.90 J]	4.0 U	4.0 U	1.0 U	1.0 U	
Naphthalene	91-20-3	10	5.0 U [5.0 U]	5.0 U	5.0 U	5.0 U [5.0 U]	5.0 U	5.0 U	5.0 U	5.0 U	
n-Butanol	71-36-3	50	250 U [250 U]	250 U	250 U	250 U [250 U]	250 U	250 U	250 U	250 U	
n-Butylbenzene	104-51-8	5	5.0 U [5.0 U]	5.0 U	5.0 U	5.0 U [5.0 U]	5.0 U	5.0 U	5.0 U	5.0 U	
n-Heptane	142-82-5		5.0 U [5.0 U]	5.0 U	5.0 U	5.0 U [5.0 U]	5.0 U	5.0 U	5.0 U	5.0 UJ	
n-Hexane	110-54-3		5.0 U [5.0 U]	5.0 U	5.0 U	5.0 U [5.0 U]	5.0 U	5.0 U	5.0 U	5.0 U	
o-Xylene	95-47-6	5	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U	
p-Isopropyltoluene	99-87-6	5	5.0 U [5.0 U]	5.0 U	5.0 U	5.0 U [5.0 U]	5.0 U	5.0 U	5.0 U	5.0 U	
sec-Butylbenzene	135-98-8	5	5.0 U [5.0 U]	5.0 U	5.0 U	5.0 U [5.0 U]	5.0 U	5.0 U	5.0 U	5.0 U	
Styrene	100-42-5	5	5.0 U [5.0 U]	5.0 U	5.0 U	5.0 U [5.0 U]	5.0 U	5.0 U	5.0 U	5.0 U	
tert-Butylbenzene	98-06-6	5	5.0 U [5.0 U]	5.0 U	5.0 U	5.0 U [5.0 U]	5.0 U	5.0 U	5.0 U	5.0 U	
Tertiary butyl alcohol	75-65-0		20 U [20 U]	20 U	20 U	50 U [50 U]	20 U	20 U	20 U	50 U	
Tetrachloroethene	127-18-4	5	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U	
Tetrahydrofuran	109-99-9	50	10 U [10 U]	10 U	10 U	10 U [10 U]	10 U	10 U	10 U	10 U	
Toluene	108-88-3	5	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U	
trans-1,2-Dichloroethene	156-60-5	5	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U	
trans-1,3-Dichloropropene	10061-02-6	0.4	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U	
Trichloroethene	79-01-6	5	14 [13]	11	5.0	7.0 [6.0]	1.0 U	1.0 U	1.0 U	1.0 U	
Trichlorofluoromethane	75-69-4	5	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U	
Vinyl chloride	75-01-4	2	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U	
Xylenes (total)	1330-20-7	5	1.0 U [1.0 U]	1.0 U	1.0 U	5.0 U [5.0 U]	1.0 U	1.0 U	1.0 U	5.0 U	

Notes:

1. Results compared to NYSDEC Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1, Ambient Water Quality Standards and Guidance Values.

2. Samples were collected by Arcadis.

3. Samples were analyzed by TestAmerica Laboratories of Buffalo/Amherst, New York or Eurofins Lancaster Laboratories Environmental, LLC, Lancaster, PA.

4. Analytes detected in sample are shown in black font and analytes that are not detected are shown in gray font.

5. Field duplicate sample results are presented in brackets, [].

6. The compounds 3-methylphenol and 4-methylphenol cannot be chromatographically separated, and therefore are reported as 3&4-methylphenol.

7. Data have been validated.

8. Designations:

a) Bold font with gray shading = Result detected at or above NYSDEC TOGS 1.1.1. or a default screening value for purposes of this report.

b) Italic font = Sample MDL exceeds NYSDEC TOGS 1.1.1 value. Note that, for some analytes the MDL was at or below the TOGS 1.1.1 value, while the RL was above the TOGS 1.1.1 value.

c) † = Not determined to be a POC at this time based on review of TOGS Part 1(B)(2) Steps 1 through 3.

d) () = Value in parenthesis and gray font indicate a default screening value being used for purposes of this report.

Table 2Upgradient Groundwater Results

Building 3 VI Assessment Report Site #C734138: BMS Syracuse North Campus Restoration Area

Notes (cont'd):

9. Abbreviations:

- - = Substance not regulated by the POC Groundwater Standard (TOGS 1.1.1, Table 3).
 μg/L = Micrograms per liter.
 CAS = Chemical Abstracts Service.
 NYSDEC = New York State Department of Environmental Conservation.
 VOC = Volatile organic compound.

10. Qualifier Definitions:

- J = Estimated value. Result is greater than the MDL but less than the RL.
- U = Analyte not detected at listed reporting limit.

FIGURES

XREFS BMS-X-BASE 2D LEGEND: APPROXIMATE BROWNFIELD TTTTTT AREA BOUNDARY 2E 2A EXISTING BUILDING □ DEMOLISHED BUILDING 2B WATER TABLE MONITORING • 2C WELL INDOOR AIR SAMPLING AMB-3 Α LOCATION 3 🔺 AMBIENT AIR SAMPLING LOCATION DRIVEWAY NOTE: BASEMAP BASED ON A MAP TITLED "BRISTOL-MYERS SQUIBB PART OF LOT 41 - TOWN OF DEWITT AND PART OF THE VILLAGE OF EAST SYRACUSE ONONDAGA COUNTY NEW YORK", DATED MARCH 25, 2010 PREPARED BY COTTRELL LAND SURVEYORS, P.C. BDA-1WT 🕀 🕀 1. BDA-1F 36 GRAPHIC SCALE SITE #C734138: BMS SYRACUSE 21A NORTH CAMPUS RESTORATION AREA EAST SYRACUSE, NY **BUILDING 3 VI ASSESSMENT REPORT - 2019** BUILDING 3 LOCATION MAP FIGURE ARCADIS 2

C/BIM/OneDrive - ARCADIS/BIM 360 Docs/ANA - BRISTOL-MYERS COMPANY/SOIL VAPOR INTRUSION MITIGATION/2019/B0087363.0031.00006/01-DWG/BMS BLDG3-VIAR FIG02-BLDG 3 LOC MAP.dwg LAYOUT: 2 SAVED: 4/30/2019 2:49 PM ACADVER: 23.05 (LMS TECH) PAGESETUP: C-LA-PDF

CITY: SYRACUSE, NY DIV/GROUP: EBC-IM/DV DB/LD: L.POSENAUER PM/TM: LYR: ON=*;OFF=REF, (FRZ)

PLOTSTYLETABLE: PLTFULL.CTB PLOTTED: 4/30/2019 2:52 PM BY: POSENAUER, LISA

CITY: SYRACUSE, NY DIV/GROUP: EBC-IM/DV DB/LD: L.POSENAUER PM/TM: LYR: ON=*;0FF=REF, (FR2) C/BIM/OneDrive - ARCADIS/BIM 360 Docs/ANA - BRISTOL-MYERS COMPANY/SOIL VAPOR INTRUSION MITIGATION/2019/B0087363.0031.00006/01-DWG\BMS_BLDG3-VIAR_FIG01-VI MITIGATION LOCATIONS-2018.dwg LAYOUT: 1 SAVED: 4/12/2019 2:56 PM ACADVER: 23.0S (LMS TECH) PAGESETUP: C-PA-ADDBEPDF PLOTSTUETABLE: PLITULL.CTB PLOTTED: 4/12/2019 2:56 PM BY: POSENAUER, LISA

NOT TO SCALE

FIGURE 4

BUILDING 3 VI MITIGATION DETAILS

SITE #C734138: BRISTOL-MYERS SQUIBB SYRACUSE NORTH CAMPUS RESTORATION AREA EAST SYRACUSE, NY **BUILDING 3 VI ASSESSMENT REPORT - 2019**

CONCRETE MASONRY UNIT WALL

SAKRETE® HYDRAULIC CEMENT OR NON-SHRINK GROUT

CITY: SYRACUSE, NY DIV/GROUP: EBC-IM/DV DB/LD: L.POSENAUER PM/TM: LYR: ON=*;OFF=REF, (FRZ) C/IBIM/OneDrive - ARCADIS/BIM 360 Docs/ANA - BRISTOL-MYERS COMPANY/SOIL VAPOR INTRUSION MITIGATION/2019/B0087363.0031.00006/01-DWG/BMS_BLDG3-VIAR_FIG05-BLDG 3 POST-MM-JAN2019.dwg LAYOUT: 5 SAVED: 4/30/2019 2:51 PM ACADVER: 23.0S (LMS TECH) PAGESETUP:

PAGESETUP: C-LA-PDF PLOTSTYLETABLE: PLTFULL.CTB PLOTTED: 4/30/2019 2:54 PM BY: POSENAUER, LISA

CITY: SYRACUSE, NY DIV/GROUP: EBC-IM/DV DB/LD: L.POSENAUER PM/TM: LYR: ON=*;OFF=REF, (FRZ) C/IBIM/OneDrive - ARCADIS/IBIM 360 Docs/ANA - BRISTOL-MYERS COMPANY/SOIL VAPOR INTRUSION MITIGATION/2019/B0087363.0031.00006/01-DWG/BMS_BLDG3-VIAR_FIG06-BLDG 3 VI SAMPLING LOC-JAN2019.dwg LAYOUT: 6 SAVED: 4/30/2019 2:48 PM ACADVER: 23.0S (LMS TECH)

APPENDIX A

Structure Sampling Questionnaire and Building Inventory Forms

Structure Sampling Questionnaire

Structure Sampling Questionnaire and Building Inventory New York State Department of Environmental Conservation

Site Name: Bristol-My	yers Squibb		Site Code:	Operable Unit:					
Building Code: Industr	rial	Building Nam	e: Building 3	}					
Address: 6000 Thomps	on Rd			Apt/Suite No:					
City: East Syracuse		State: NY	Zip:13057	County: Onondaga					
Contact Information									
Preparer's Name: Danie	l Zuck			Phone No: 516-369-2741					
Preparer's Affiliation: Arc	cadis of NY Inc.		(Company Code:					
Purpose of Investigation:	Soil Vapor Investiga	tion		Date of Inspection: 1/22/2019					
Contact Name: Anne Lo	ocke		Affiliation: MANAGER						
Phone No: 315-432-26		Email: anne.locke@bms.com							
Number of Occupants (total):5_10 Number o	f Children: 0							
X Occupant Interviewed?		Owner Oc	cupied?	Owner Interviewed?					
Owner Name (if different):	Bristol-Myers Squib	b		Owner Phone: NA					
Owner Mailing Address:	6000 Thompson Rd								
Building Details									
Bldg Type (Res/Com/Ind/Mi	Bldg Type (Res/Com/Ind/Mixed): COMMERCIAL/MIXED Bldg Size (S/M/L): MEDIUM								
If Commercial or Industrial F	acility, Select Operations:		If Residential Sele	ct Structure Type:					
Number of Floors: 2	Approx. Year Construction	on: 1910	📃 🖂 Building	g Insulated?					
Describe Overall Building 'Ti	ightness' and Airflows(e.g., res	sults of smoke te	ests):						
Building has mult infiltration can	iple air handlers an be detected at build	d has older ing access	windows and o locations.	doors. Ambient air					
Foundation Description	on								
Foundation Type: BAS	EMENT-PARTIAL		Foundation Depth	(bgs): 8 Unit: FEET					
Foundation Floor Material:	POURED CONCRETE		Foundation Floor 7	Thickness: 7					
Foundation Wall Material:	CONCRETE BLOCK		Foundation Wall T	hickness:					
$\overline{\times}$ Floor penetrations?	Describe Floor Penetrations:	Floor drai	ns but have d	rain plugs					
Wall penetrations?	Describe Wall Penetrations:	None visibl	e						
Basement is: PARTIALLY	FINISHED Basement is:	DRY	Sumps.	/Drains? Water In Sump?: N/A					
Describe Foundation Condition	tion (cracks, seepage, etc.):	Appears so	lid but coved	by tile.					
Radon Mitigation System	m Installed?	VOC Mitiga	ation System Installe	ed? Mitigation System On?					
Heating/Cooling/Ven	Heating/Cooling/Ventilation Systems								
Heating System: FORC	ED AIR	Heat Fuel Type:	GAS	Central A/C Present?					
Vented Appliances									
Water Heater Fuel Type:	ELECTRIC		Clothes Dryer Fuel 1	Type: NO CLOTHES DRYER					
Water Htr Vent Location:	OUTSIDE		Dryer Vent Locatior	NONE					

Structure Sampling Questionnaire and Building Inventory

New York State Department of Environmental Conservation

	PRODUCT INVENTORY											
Building Nam	e: Building 3		Bldg C	ode:	Industrial	Date:	1/22/2019	9				
Bldg Address:	6000 Thompson Rd			Apt/Suite No:								
Bldg City/Stat	Bldg City/State/Zip: East Syracuse NY, 13057											
Make and Mo	del of PID: ppbRAE 2000			Date of	Calibration:	1/22/201	9					
		<u> </u>					<u> </u>	<u> </u>				
Location	Product Name/Description	Size (oz)	Condition *		Chemical Ingred	ients	PID	COC Y/N?				

Location	Product Name/Description	Size (oz)	Condition *	Chemical ingredients	Reading	COC Y/N?
	See attached inventory forms			See attached inventory forms		

* Describe the condition of the product containers as **Unopened (UO)**, **Used (U)**, or **Deteriorated (D)**

** Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

Product Inventory Complete? Yes

Were there any elevated PID readings taken on site? Yes

Structure Sampling Questionnaire and Building Inventory New York State Department of Environmental Conservation

Site Name: Bristol-Myers Squibb	Site Code:	Operable Unit:						
Building Code: Industrial Building Name:	Building 3							
Address: 6000 Thompson Rd	·	Apt/Suite No:						
City: East Syracuse State: NY	Zip: 13057	County: Onondaga						
Factors Affecting Indoor Air Quailty								
Frequency Basement/Lowest Level is Occupied?: ALMOST NEVER	Floor Material:	CEMENT						
☐ Inhabited?	room Exhaust Fan?	🔀 Kitchen Exhaust Fan?						
Alternate Heat Source: NONE Is there smoking in the building?								
X Air Fresheners? Description/Location of Air Freshener: Bathrooms								
⊠ Cleaning Products Used Recently?: Description of Cleaning Products:	Lysol and oth	er disinfectants						
Cosmetic Products Used Recently?: Description of Cosmetic Products								
New Carpet or Furniture? Location of New Carpet/Furniture:								
Recent Dry Cleaning? Location of Recently Dry Cleaned Fabrics: Various staff use dry cleaned clothing								
Recent Painting/Staining? Location of New Painting:								
Solvent or Chemical Odors? Describe Odors (if any):								
X Do Any Occupants Use Solvents At Work? If So, List Solvents Used:	Various for pip	e fittings						
Recent Pesticide/Rodenticide? Description of Last Use:								
Describe Any Household Activities (chemical use,/storage, unvented applian The building is the boiler and maintenance area for has an exhaust fan, as well as a bathroom with cle stock room have been identified, marked out, and l	nces, hobbies, etc.) Tha r the facility. aners. The clea isted on the in	at May Affect Indoor Air Quality: The water testing area ning products in the ventory forms.						
Any Prior Testing For Radon? If So, When?: Any Prior Testing For VOCs? If So, When?:								
Sampling Conditions								
Weather Conditions: RAINY Out	door Temperature:	32 °F						
Current Building Use: MULTI-USE BUILDING Bar	ometric Pressure:	29.1 and rising in(hg)						
Product Inventory Complete? Yes 🛛 🕅 Building Questionnaire	Completed?							

Structure Sampling Questionnaire and Building Inventory New York State Department of Environmental Conservation

Building Code: Industrial Address: 6000 Thompson Rd East Syracuse, NY 13057											
Sampling Information											
Sampler Name(s):	Daniel Zuck		Sampler Com	pany Code:							
Sample Collection Date	e: 1/24/2019		Date Samples	Sent To Lab:1/2	4/2019						
Sample Chain of Custo	dy Number:190151	0	Outdoor Air S	ample Location ID:	AA-3						
SUMMA Canister I	nformation										
Sample ID:	AA-3	IA-3	DUP-011718								
Location Code:	See Attached Map	See Attache	See Attache								
Location Type:	OUTDOOR	BASEMENT	BASEMENT								
Canister ID:	N1902	00333	00346								
Regulator ID:	23272	23334	23650								
Matrix:	Ambient Outdoor 2	Indoor Air	Indoor Air								
Sampling Method:	SUMMA AIR SAMPLII	SUMMA AIR SA	SUMMA AIR SA								
Sampling Area Inf	0										
Slab Thickness (inches):											
Sub-Slab Material:											
Sub-Slab Moisture:											
Seal Type:											
Seal Adequate?:											
Sample Times and	Vacuum Readings										
Sample Start Date/Time:	01/24/2019 8:40	01/24/2019 🛱	01/24/2019 🔒								
Vacuum Gauge Start:	-30	-31	-30								
Sample End Date/Time:	01/24/2019 16:	01/24/2019 📫	01/24/2019 📫								
Vacuum Gauge End:	-5	-5	-5								
Sample Duration (hrs):	8	8	8								
Vacuum Gauge Unit:	in(hg)	in(hg)	in(hg)								
Sample QA/QC Rea	adings										
Vapor Port Purge:											
Purge PID Reading:											
Purge PID Unit:											
Tracer Test Pass:											
Sample start	Sample start and end times should be entered using the following format: MM/DD/YYYY HH:MM										

	LOW	/EST BUILD	ING LEVEL LAYOUT	SKETCH	
Please The sk	click the box with the b etch should be in a stan	lue border be dard image fc	ow to upload a sketch o rmat (.jpg, .png, .tiff)	f the lowest building level .	Clear Image
		See Attac	hed Building Figure	e	
			Design Sketch		
	Design	Sketch Guide	ines and Recommended	Symbology	
Identity a		sup-siab, indoor	air, and outdoor air samples	s on the layout sketch.	
 Identify ro 		om den kitche	entinable realures, and inclu	de on the layout sketch.	
 Identify the 	e locations of the following	features on the	lavout sketch, using the app	ropriate symbols.	
Bor F	Boiler or Eurnace	0	Other floor or wall penetrat	ions (label appropriately)	
HW	Hot Water Heater	xxxxxxx	Perimeter Drains (draw ins	ide or outside outer walls as approp	riate)
FP WS	Fireplaces Wood Stoves	###### ● <<_1	Areas of broken-up concret	te o samples	
W/D	Washer / Dryer	• IA-1	Location & label of indoor a	air samples	
S	Sumps	• OA-1	Location & label of outdoor	air samples	
@	Floor Drains	• PFET-1	Location and label of any p	ressure field test holes.	

 	FIF	RST FLOOR I	BUILDING LAYOUT SKETCH
Please o	lick the box with the b	lue border bel	low to upload a sketch of the first floor of the building.
The ske	tch should be in a stan	dard image for	rmat (.jpg, .png, .tiff)
		See Attac	ched Building Figure
		+	
			Dorign Skotch
	Design	h Sketch Guide	elines and Recommended Symbology
 Identify an 	nd label the locations of al	l sub-slab, indooi	or air, and outdoor air samples on the layout sketch.
 Measure 	the distance of all sample	locations from id	dentifiable features, and include on the layout sketch.
Identify ro	oom use (bedroom, living r	oom, den, kitche	en, etc.) on the layout sket
 Identify th 	e locations of the following	g features on the	ayout sketch, using the appropriate symbols:
B or F	Boiler or Furnace	0	Other floor or wall penetrations (label appropriately)
HW	Hot Water Heater	XXXXXXXX	Perimeter Drains (draw inside or outside outer walls as appropriate)
WS	Wood Stoves	####### ● SS-1	Location & label of sub-slab samples
W/D	Washer / Dryer	● IA-1	Location & label of indoor air samples
S	Sumps	• OA-1	Location & label of outdoor air samples
@	Floor Drains	• PFET-1	Location and label of any pressure field test holes.

	OUTDOOR PLOT LAYOUT SKETCH
Please clic	k the box with the blue border below to upload a sketch of the outdoor plot of the building
as well as	The surrounding area. The sketch should be in a standard image format (.jpg, .phg, .th)
	See Attached Building Figure
	Design Skatch
	Design Sketch Guidelines and Recommended Symbology
 Identify ar 	nd label the locations of all sub-slab, indoor air, and outdoor air samples on the layout sketch.
	the distance of all sample locations from identifiable features, and include on the layout sketch
OUTDOOR PLOT LAYOUT SKETCH Please click the box with the blue border below to upload a sketch of the outdoor plot of the building as well as the surrounding area. The sketch should be in a standard image format (,pg,, png,, tiff) Clear Image See Attached Building Figure See Attached Building Figure Design Sketch Design Sketch Design Sketch Design Sketch Understand Design Sketch Design Sketch Design Sketch Understand Index or a range on outpace or at any ple on the layout sketch. I dentify and label the tocations of mol dentifiable features, and include on the layout sketch. Index or wall pareprint the layout sketch. I dentify and label the tocations of mol dentifiable features, and include on the layout sketch. Index or wall pareprint the layout sketch. I dentify norm use (bachronn, living room, den, kithen, etc.) on the layout sketch. Index or wall pareprint the layout sketch. I dentify the locations of the following features on the layout sketch. Index or wall pareprint the layout sketch. I dentify the locations of the following features on the layout sketch. Index or wall pareprint the layout sketch. I dentify the locations of the induction of the layout sketch. Index or wall pareprint the layout sketch. I dentify the locations of the induction of the layout sketch. Index or wall pareprint the layout sket	
Identify th	e locations of the following features on the layout sketch, using the appropriate symbols:
B or F	Boiler or Furnace o Other floor or wall penetrations (label appropriately)
HW	Hot Water Heater xxxxxxx Perimeter Drains (draw inside or outside outer walls as appropriate)
FP	Fireplaces ###### Areas of broken-up concrete
WS	vvood Stoves • ss-1 Location & label of sub-slab samples
W/D	Washer / Dryer • IA-1 Location & label of indoor air samples
S	Sumps • OA-1 Location & label of outdoor air samples
@	Floor Drains • PFET-1 Location and label of any pressure field test holes.

Building Inventory Forms

Structure Sampling Questionnaire and Building Inventory New York State Department of Environmental Conservation

1/22/19

Building Na	me: Ryildian 2 (F)	. 1)		Code				
Bldo Addres	s:	us f	RIQ	g Code:	Date:	2/24/2	cie	
Rido Citures	ato/Zip.				Apt/Suite M	No:		
biog city/sta	ale/zip:							
Make and M	odel of PID: 117 eV	1700	RAE 300	Date	of Calibration:			
			1			(ppm)		2
	Product Name/Description	Size (oz)	Condition *	Chemical Ingr	edients	PID Reading	COC Y/N?	
162-BR1	Eterer, disa tecting	11	4	a methy beaut H.	101-7873 101-7874	0.00		-
	- Dawa doising	375 ml	4		.7875	000		S
7	Pine sel	28	i4		-7876	an	1	(
	Pledie	1707		Neptha, pituleum.	-787?	0.00		
¥	oil based, stanless steel cleaner	1500.	4	white minist cit Esuparatine hydrae ba	7571	0.00		
BZCW	Medial Waste	6 X 35 gal.			-7881	0.00		2
B2- CP	Full Silve Owny: 45	2 x 1 &t.	- 4	- Urange tespenes alienels, ethylesate	-7833			
BZ-BRI	Emmel - Multi Surta (144-	tqt	9	117 pt	Fit (20101202_			-
·B2-BR1	Schubs - 5's Chamer Huntis	300+	4	117-	12237			7
	Jawa, J. Hso.p	907-	- J				r. (
							T	
							<u> </u>	
							Г	
							5	
							Г	

** Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

Product Inventory Complete?

Were there any elevated PID readings taken on site?

F Products with COC?

1

Structure Sampling Questionnaire and Building Inventory New York State Department of Environmental Conservation .

		PR			Date: 7	25/2016	
Building Name	Building 2A (Flui	1)	Bldg C	ode:	Uale/	- 11 - 01 -	
Bldg Address:	.,				Apt/Suite No		
Bidg City/State	z/Zip:						
Make and Mod	del of PID: 11.7 eV pe	" RAE	3000	Date o	f Calibration:		
						(ppm)	T
Location	Product Name/Description	Size (oz)	Condition *	Chemical Ingre	edients	Reading	COC Y/N
	> K. D./	24			101-7885	-0.00-	
BZA-AL	Downer of conintrate	Signt.			-7357		
Repu-42	Sadiam Boutfite	Segue	· 4		. /) 3 3	0.00	Г
A. a - A3-	Articlest	30 30	ч		-7884 -7390 7391	0.00	Г
Ben	10.3(418.0	-gar			-7812	0.00	
BZA - AY	Oily Rags	35 50.			2000		+
B2A - 00	Interceol R-1+31	55 9.11.	и	(Side (Dom)	-7844	0.00	Г
PP	Toticial R-4441	55341.	ч	(SIDEFOUM)	7346	0.00	
				7.54	-78-93	600	
BLAESP	Resa Cleaner	3 211.	4		-7899		1-1-
\vdash	ATHER CT 70	2	u		740	0.00	F
	Stasiex 517	3711.			7100		
	D to to Solo	×2-	40		-7403	0.00	
1-1-	Jespheric Sele	5 911.			- 7904	1	-
	Rouler 261T	X6 Cual	40		-7905	0.00	Г
	Alle Com Viry Ha	Lunt	U	117.	ZUITIZUS - 163404		Г
BZA SK	Nu-Lulson Cul-Blue L	T 32:2	110	MA	4 14		Г
Para and a second	4133-24						
7)	CF-20 (c.) flugh	i yal	иD	MA	0.11		
1	Shuman Williams Pro	1.1	1.	PHHYIDinzee	- 16432	2	Г
Y-	I-ulaskel England, 574Wi	51 5 901	И				
F.)	Shorman William Prior	Sad Syst	4	Nit	-16433	1	Г
		the second second second	the second se	The last two particular in t	and the second data		

* Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D) ** Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

Product Inventory Complete?

V

Were there any elevated PID readings taken on site?

F Products with COC?

J) 1/22/19

1/22 = 1/22/19= presen

1/22

1/22

1/22

1/22

Structure Sampling Questionnaire and Building Inventory New York State Department of Environmental Conservation

			PRODUCT I	NVENTORY			
Build	ng Name: Building 28 (Flar 2)	Bld	g Code:	Date:	2/26/2	oid
Bldg	Address:				t/Suite /		
Bldg (ity/State/Zip:			Ар	iv suite l	VD:	
Make	and Model of PID: 11,7 cu' pre	RHE 301	5	Data of C. 12			
Γ				Date of Calibra	ation:	(02-)	
Loci	ation Product Name/Description	on Size (oz)	Condition *	Chemical Ingredients		PID	COC Y/N?
22 1928-0	- Fild C-Y Refraction oil	1 %.1.	ч	101 - 74	37	0.00	
22	1. de liquet sinte Mar Calge	n 122 01 1941.	И	-79 74	38	0.01	- (
122	Ind I Nu- Clear thread with	m 1 gal.	И	-74 -74	40	0.00	
122 F	Hon tree Cil ISCON	1 4.1.	ч	12 142he) -79 -79	42 43	0,00	F (
12 11	d1 Methanol (Spar beitie) 0.56	4	-74 Y -74 Y	Y 5	0.00	- C
XI	Ultru Pripici Statictic	14 cl.	uo	-744 744	6 7	0.00	- L
	Synthetic polyol ester refrigoration intribut	XB igal.	u il	Enkirute 4318-16 -794	9	0.00	-CV
11 11	2 32 Pulyet Estr refrigeration lubicit	19:1.	ИС	-7450			- C
2 Are	12 degracing schent	Inditte	Ma /	Acether, totrachkrostlypon -7952 -7453	0	00	- (V
In Min	d Pilmin frost, synthetic	1911	И	-7851	5 0	00	
V K her	Full solu orange 45	1 440	и	-7458 7454	U.	.00	F
· Platk	By Synthetic Tubivent Edmire BK	Sgal,	4	-7960 •7461	0	.Ue	-10
F.H.	on 0.1 Refrigention - 22	2.5 51.	ч	-7962	C.,	PC-	- V
i bet	Industrial Enumer HS	5 351,	4 BS	4 VZ 401 -7964 01-15000 -7963	0.0	00	
S Bill	1 1501-75417	1921.	4	-7966	-		
M VEd	har 168 (.: () ? (a. 1 a) (a)	lyel. U	4	.7468	0.0	c	

* Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

** Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

Product Inventory Complete?

Were there any elevated PID readings taken on site?

F Products with COC?

3

1/22/19 1

Structure Sampling Questionnaire and Building Inventory New York State Department of Environmental Conservation

				P	RODUCT IN	/ENTORY			
	Buildi	ng Nam	e: Building 2B (Fleer	1)	Bldg	Code:	Date:	2/24/2016	
	Blda	Address:					Apt/Suite	No:	
	Riday	City/Stat	017in			1.00			
	ыра	City/Stat			15 2	Date	of Calibration		
	Make	and Mo	del of PID: 11. TeV	005 KI	AE DECL		or Calibration.	(25-)	
	Lo	cation	Product Name/Description	Size (oz)	Condition *	Chemical Ingr	edients	PID Reading	COC Y/N?
EB	83 F	+-6	Indicator Liquid	2# Soch	4			-7792	Г
EB	62A	<u>F</u>	Biospan 2617	5900		have the high have high and	407-7404 - 746-5	0.00-	Г
n	025	·ć1	C5-A. Iubricant	2 × ×3	И		-7406 -7407	0,00	F
\sim	I	i	Ant -> Rizing Inbarrat	TIC:			-7908	0.00	
			51'44	1. 2 25	-1		7401		
· · · .	-		Polywethere Form	1000			-7414	0.00	
4	DI		Surfue PEP, degrass	16	И	× .	-7415	0.00	г
	DI	/	Lostile 517 thread	250 -1	4	Chimene hydrops- ethylene giged	-3,-7917 -7918	0.00	Г
2 (826	. w?	waste oil	55 gel.	ч		-7119 -7920	000	г(
2(1	126	· C 2	AB 150 Alty luted Beatene	1 2al.	ч		-7921 -7922	0,00	r(
TO	B	1 TOP	CF-20, Coil Fluin Cleaner	1 gal.	ч		-7923	0,00	Г
122	D	10p	Industried Enancel 113 Rephimm	1× 19:11.	ч		-7924 -7925	0.00	Æ
7	V	top	weld 711 Pric	iar.	-4->		7427	0.10	
22 (B		Weld on A12 purple primer	0.5 Qt,	И		-7425	0,00	
\mathcal{U}	P,		weld in pe-64 pener clearly	1 61.	ч		-7430	٥.C¢	г(
22(1	B	V	Swuggee sneep. ienk detectos	1.4 0.25 ct,	Ц		-7433	0.00	<u>г(</u>
22 C	Ð	Vilid.	1 Mobil Synthetic Great	75 1402.	ЦO		-7439	0.00	Г(

* Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

** Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

Product Inventory Complete?

Were there any elevated PID readings taken on site?

☐ Products with COC?

U

Building Nume: Building 28 (Floor 1)

Date: 2/29/2016

1/22/19 V

Niake and Model of PiD " 11 7 et por RAE 3000

$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $		1	destrict in	photo	5.20	londiti	. 1	(ppm) PED 0
$ 122 \ (122 \ $		V BOR . 17	inde The Park and	101-7970		14	i i	
122 122		1 020 00	12 LITEL IT	-747 -7177	2 22	1		0,00
122 122 124 124 124 124 126		y		-7+7-	1 12	4		0.00
$V = h_{1}c^{2} 2 - ly_{1}x^{-1}l_{1}k_{1} absence = -\frac{1}{2}(17) 3c^{2} - U_{1} + b^{2}(0)(17) 3c^{2} + \frac{1}{15}(17) 3c^{2} + \frac{1}$			15+100 abricant	-747	5-13-02-1			e.02
122 122		V Mil	2 Lynx Tuck attester	-7177 -7178	15 02	Ц	+- 0/m329	0,00
122 122			Rust Tough, Kryton (1	(20371) -7979	ISOR	4		6.00
122 122			Enemel, Diewh, Ruel	stenn	15 02	Ч		0. 20
$ h2 = \left(\begin{array}{c} (uf \ clean, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$			fly by Inicit Icile, dry	-7483	1802	Ч		0-00
$ h 2 \qquad $		V	cust cleum, 7204 clear	-7184	T3c2.	4		0.00
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		XII	Pant Marking, precion, 4	7781 1ki -7787	1701.	ii .		0.00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1/22(1 M	1 723 Spesselve, renetrating	-7938	1002.	14		0.0
122 121 121 122		V mid	2 Tr. flav, lubricant	-7190	1202.	И		0.00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		101	2 T.F.E lubicat	-7492	10.5 02.	14	Arriane, Rylow Cyclothave	0.00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		VH	Pinand Chain brushing lube	-7994	12 02.	4		0.00
$\frac{1}{122} = \frac{1}{122} = \frac{1}$		V	Ran-Tark, adhesive spay	-7996	1202	N	B-Bulue, Actione	0.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		\vee	Locking Primer N	-7498	602.	4	11.1 -iri-silorseiltune	0.00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		VV	Bemolymot: spray oit	3 -8000	1602	In	and the second s	0.00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1/22	R Izithu	n isc heet, Feul cleaner	-8002	1202.	[u]		00
122 V Mid Valuum Fimp C.1 122 $P_2B - SH$ Jodium Hydride Sorre - Boog 122 $P_2B - SH$ Jodium Hydride Sorre - Boog 123 $P_2B - SH$ Jodium Hydride Sorre - Boog 124 $P_2B - SH$ Jodig Hydride Sorre	177	D) top	Transmitten Fluidityou-F	-8004	164	4	10 3 1 3 4 1019	Don
$ \begin{array}{c cccccccccccccccccccccccccccccccccc$	122	ON MIC	1 Valuer Emo Ci	· Becci	107	1 u	n na sa sa sa	e po
1/22 B2B-09 Oxygen ste av enger, thALIC - Boild Scill - SS yal. U B2B-P Clear Phi Phi - Boild - SS yal. U B2B-P Clear Phi Phi - Boild - SCH 32 - X2 	122(TROB-SH	Jodium Hydraxide Sotte	· 3003	55 ml.	141	I	0.00
BZB P Uteur PUC P	1/24	ZR28.09	Chygen it av inger, MALIC	- Boil	55 wel	Inl		0 6
Hill weither medium -80 +832 + 602 4 illegr produced -80 +835 + 2 tory price terrent -80 +835 + 2 bidy pristing conent -80 +835 + 2 BCB-12 Receives and (5) Price there scription + 164+ 4/0 -127 - Bitt: 50 -1642		BrB-P	LIEW- PUC Primer	-3612	x2			Cop .
BCB-12 Rector sould Scripted scripted scripted to 164 4/0 227 Bett: 152557		i	Atl weather medium	- 8 CR3 5 2	++	al		07.00
B2B-12 Rectorsed (3) Fire thed southert 164+ 40 117 Rett: 50/16/202		-	ben Ple, beaut	-80 \$35	x 2	-14		032
- 1 Aul-		TRIR-	17 RECKISHER (5) P.14 Thered sin	int scelse	fut.	is/o	177 DHH. Suitele	
(TH BIG THE AND THE AND SAVE AND SCARE IS IN THE		GH B.	12 AND AND SALL A	1: 50 22 /34 -1	602-	40	15 INDT. 152557	
The second for the second seco		1 020-0	1 Lourie Landing	Circo (loco)	+ • C			-
For the chief of the line line)		THOT	thete gestrond his					

5

			- C
Buil	ding	#	LB

Date: 12/2/16

Inventory Technician: D. Zuck

rage ____ oi

· 1/22/19 ~

PRODUCT INVENTORY FORM

		Location	Product Description	Size (units)	Condition*	Chemical Ingredients	PID Instrument Reading (units)	Photo #
	-	1325 61	Pula Fibrations hours the	Bice	<i>U</i> 6	# 420		2014-1212
1/22	Î		Little 55 - file Sauling	145 Metriz	И	147-		1. 1.
1/22	$\left(\right)$	ASI21QiAAAV	FPI-And Cluster Reimpound	1602	u/D	.4 4		" » V
		526-F	1 clon - lapor Anti-serie	1602	UC	1.17		16141
		BLB-P	Lata - Grisket Ehmant	- 10.15	40	MA		// N
	A				Nakanan dalam kanya panada da kana sana afat			
		152A - 945	\$					
-	• 6	1						
				`				
			-					
		r						
	ſ							

Structure Sampling Questionnaire and Building Inventory New York State Department of Environmental Conservation

1/22/19 V

		A	F	PRODUCT IN	VENTORY		
	Building N	ame: Building 2 (Floor	1) Bldg	Code: Date:	11/29/1	7
	Bldg Addre	255:			Apt/Suite	No:	
	Bldg City/S	tate/Zip:					
	Make and M	Nodel of PID: 11, 7 eV	ppb 1	RAE 3000) Date of Calibration:		
			1			(ppm)	iMG
	Location	Product Name/Description	Size (oz)	Condition *	Chemical Ingredients	PID Reading	COCYAN?
1/22	B2-C2	Weld on - PC-64 PRIME Cleaner	3202	U	144 <u>-</u> 3988 - 3989	0.15	
1/22		Herendes - Plast pri	3207	\cup	Actor, Cyclohuxanord, putty the herean + etranyprofer.	0.02	-39%0 V
1/22		Herenles Prime Purple	32.2	U		0.02	- 3992 - 31992
1/22	V	Herentes Prima clear	32-2 32-2	U	i) V	0.03	- 3794 - 3995
Her	B2-01	Leah lock good spect	3 402			00	4008
122		Faul let + Malve stem	402	U		0.0	4010
1/22		Loct te RC680 retaining umport	1.7 = 2	\vee		C.J	4012 4013 (
122		Lockite 2621 Third locker	1.702	U		6.0	4012 4013
1/22		Tech Spling (tube) Heat Slur Compound	402	U		0.0	4014 40.5
1122		Surfay prep 77	1600	U	pycopiospink, butoxyethand	0.0	4016
		Triflow Trobuting Land	1202	0		0.01	FOIL C
1/22	82-BR	Alpha HP- Clean	2402	U	SDS #MS0800296	0.0	4018
		Porell w.pcs	270 iunt	U	Benzalkonin Chlade	0,0	1020
1/22		Dawn Ultra Sap	902	U		0.0 4	022 023
	BZA-A3	Doutherm SR-1	55g.1	U		0.0	1024
	BEA-AI	Antiscatent Contament					
,	* Describe the c	andition of the seal of the					

* Describe the condition of the product containers as **Unopened (UO)**, **Used (U)**, or **Deteriorated (D)** ** Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

Were there any elevated PID readings taken on site?

Products with COC?

1/22/19

Structure Sampling Questionnaire and Building Inventory New York State Department of Environmental Conservation

Γ			PI	RODUCT INV	ENTORY		
	Building Nam	e: Building 2	Flur	Bldg	Code:	Date: 12/29/17	7
	Bldg Address	U U			Ар	t/Suite No:	
	Bldg City/Stat	e/Zip:		1			
	Make and Mo	del of PID: 11.7 20	PPB R	AT= 3000	Date of Calibr	ation:	
	Location	Product Name/Description	Size (oz)	Condition *	Chemical Ingredients	PID Reading	COC Y/N?
	B2-A1	CWTAF 200 Form Control Agent	4gal	U		0.0	4025
		ST-2707	4941	U		0.0	4026
		Starbiex - STTO	454	V	Sodium hypochilor.	te 00	4027
		Permutreat pC-1917	4427	U		0.0	4029
	62-A1	30 Traser 307 465	4507	U		010	4031
-	1	Nales 7347(107.)	5 9.11	U		00	4052 (
2	B2-C3	Flex Seal spring can	×48 1402	1×U/7×U0	Toluene	0.0	4033
	B2 C3 TOP	Stop Gapt while tighten of	1202	00		<i>0,</i> 0	40 36
2		Sprayon Lubrich #711	lloz	U	2-Butox yethenol	0.0	4038
2		Sprayon Brash y lube # 202	luz	U		00	The NY
7		Cal-spray: Pan spray	160z	U	-	0.0	4047-40 4042-404
22		CRC Contact cleaner 2000	1302	U		03	4045 404
r		TFE Indicant 6078	10.502	U	Kylere, Acetore, Cyclohrine Pinethyl ethr, hydriarbo	n provid 0.0	4043
122		Crown: Spring adjusive	1402	U	Actors, heptone, cyclohexa	M (0.0	4047
122		CRC electrical grade lube	110Z	U		0.0	4050 40
122	No.	Industrial chuld Rustolen Peccision live	1702	U	Xylen, Föllnere, Acetore	0.0	4052

* Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

** Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

Product Inventory Complete? 1.00

Were there any elevated PID readings taken on site?

Products with COC?

24

Structure Sampling Questionnaire and Building Inventory

New York State Department of Environmental Conservation

1/22/1g

				PRODUCT	INVENTORY			
	Building	Name: Building 2 Flo	0-)	BI	dg Code: Da	ite: 11/29/1	7	
	Bldg Add	ress: ()			Apt/	Suite No:		
	Bldg City,	/State/Zip:	0					
	Make and	Model of PID: 11.7 ev	10 RA	E 3000	Date of Calibrati	on:		
	Locatio	n Product Name/Description	n Size (oz	condition	* Chemical Ingredients	PID	COC Y/N?	
1/22	B2= 63	Rustoleur enamel	15.02	x4	Yglaus + Acetone	0 0	4054	
1/27	B2- 63	KRylon - Rut Tough	1502	×9		0.0	4056	
	\$52- 63	N ORTHO Flying lokit killer	1802	V	Tetranethrin, xylenes	6.0	455	
		PUTE N	602	- D/U	1,1,1-Trichoroethine	0.012	4.40	
1/22		Chesterton 723 sprasulus pentiting o	12.2 12.2	U		0.00	4057 4052 4063	
1/27		Tr: flow Industrial Industriant	12.2	U		0,0	4064	
1/22		Splay on Anti Siere Inbrien	+ 1102	U	heptane	0.0	4045	
1/22		Steel it, anti rust Spray	1402	\cup	Xylul	0.0	4065	
1/22		Lynx- Tack Splan gonesive	100z	\cup	Isiontane, Acetone	0.0	Fi070	
1/22		Rustoleur (lear sele	130z	U	Tutal Toluol and Xylol	0.0	10 7 5	
1/22		Benul: Molispany #3	1202	0	Bitane	0.0 4	F ()	
1/22		Rum Track sprang autosive	1202	\cup	Methylene chlor 24.	00 40	TR	
1/22		Vorginia Vacunding 0:1		U	Parostine petrolem 01	0.0 4	50	
1/22		Chaterton 730 Springip	1202	U	hyptane + Napotha	00 40	-8Z	
1(22	\checkmark	Sprayon red insulating Finish	1502	U	Sylene, Toluene, Acetore, proprince	1 C. D 40	234 234	
1-122 1	32 C3 MIJ2	E-Z WELD 914 P.R. (leanir	802	U	Acetone	0.0 42	1	

Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D) ** Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the

photographs must be of good quality and ingredient labels must be legible.

Product Inventory Complete?

Were there any elevated PID readings taken on site?

34

Structure Sampling Questionnaire and Building Inventory

New York State Department of Environmental Conservation

		PF	PRODUCT INVENTORY						
Building Nam	ne: BZ FI		Bldg (Ode: Date:	Date: 11/2 4/1 /				
Bldg Address	:			Apt/Suite N	0:				
Bldg City/Sta	te/Zip:								
Make and Mo	odel of PID: 11.7 ev Pru	RAE	3000						
	1				PID	1			
Location	Product Name/Description	Size (oz)	Condition *	Chemical Ingredients	Reading	COC Y/N?			
B2-03 Midz	E-ZWON 908 Mailtipurpose Cement	802	\mathcal{O}	Aceture, Cyclohexore, Telicityor	otunn 0.0	4090			
	Hercules put prover clear	1602	V	Tetrahyoro furan, cyclubos anone	0.0	4093			
	E-Z weld	1602	U	tetrahydroturus, Cycholanna	0.0	4094			
	Cantex Low Use	1602	U	11 2	5.1	4096			
	Wet-Weld	11	()	Tetrahydroturan,	0.0	4098			
	Carlon Clarpine	32.2	U	Cyclo hes anone stetra kydrofuran	101	4/01 4/02			
	NAPA 10W-30 MUTURU	3202	U	Table	0.0	4103			
	Sherwin Williams Libite Pogenel	×5 12402	U	Eth,) benzene	0.0	4105 c.			
B2-C3 Button	Flex Seal Liguid	12402 *	2 ()	Tolwere	0.0	4109 4110			
	Skerwin Williams extense A crysic later	11802	υ		6.0	4112			
	Premium ENTPac hyprovice 0:1 HF-101	1901	U		0.0	4114			
	Sinny Side low cour Minucal spirits	1991	U		0.0	4116			
V	Shrwin Willins A-100 A crylic lutex	59002	U	19	0.0	411 5			
62-5R	Diversey Stide cleaner	1 × 2,	U		6.0	4129			
B2.SR	Gojo handwash	1.25 L	VO		6.0	4121			
B1-QP	Nalio Trac 107	5591	U		00	4123			

* Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

** Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

Product Inventory Complete?

Were there any elevated PID readings taken on site?

1/22/19/

1

M

Structure Sampling Questionnaire and Building Inventory

New York State Department of Environmental Conservation

			P	RODUCT IN	VENTORY		
Build	ding Nam	ne: Building 2 (F)	our 1)	Bldg	Code:	Date: 1/16/	18
Bldg	Address	:(Ar	ot/Suite No:	
Bldg	City/Stat	te/Zip:					
Make	e and Mo	del of PID: 11. 7 eV	nb 1	RAE 30C	ation:		
Lo	cation	Product Name/Description	Size (oz)	Condition *	Chemical Ingredients	(ppm) PID Beading	Img COCY/N
B2-C	2-Тор	Kyrlon- Iron Guard Antirust Acrylic	×2 1g-1	U		(), ()	- 4425
B2-0	21	Marine Grade Anti Stere LOCTITE	1602 ×2	\mathcal{O}	Calcium Oxide	0.0	- 4427
B2-	C1	LA-CO, Slic-Tite	802	U		0.0	- 4427
62	-SR	Virginia Alki-form	Igal	U	Sodium Hydroxide	0.0	
							Г
							<u>г</u>
							Г
							Г
						-	

* Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

** Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

V 1/22/19

Structure Sampling Questionnaire and Building Inventory New York State Department of Environmental Conservation

. .

Structure Sampling Questionnaire and Building Inventory

New York State Department of Environmental Conservation

			PRODUCT IN	VENTORY		
Building Nar	me: <u>Building 3</u> Bu	:10ins	2 Bldg	Code: Industrial Date:	1/22/201	19
Bldg Addres	s: 6000 Thompson Rd		0	Apt/Suit	te No:	
Bldg City/Sta	ate/Zip:East Syracuse N	Y, 1305	57			
Make and Mo	odel of PID: ppbRAE 2000	ŀ		Date of Calibration:	1/22/20:	19
		1			(PPM)	
Location	Product Name/Description	Size (oz)	Condition *	Chemical Ingredients	PID Reading	COC Y/N?
B2-C2	NAPA - 5W-30 MOTOROIL	1.0 QT	×2 ()		0.3	7187 7188
B2-C1	LA-CO EPOXY STIK Epoxy Putty (TUBE)	N/A (~202)	00		0.0	7196 7197
B2-(3	Stop Gap- White lightony	1202	UO		0.0	7198
B2(3	Sprayon - Redinshlat Vacnisa	ng x 12 J 15.250	200	Xylens, accton, Tolucne	1.0	7200
B2(3	lemper High Nent VUL Coating	1 gal	U		0.0	7202
82- SR	Virginin Alki-foum	l gal	U	Sudisam hydroxide	0.0	7204
B2-AI	Down therm SR-1	55gal X2	U		0.0	7206
						Г
					1	

* Describe the condition of the product containers as **Unopened (UO)**, **Used (U)**, or **Deteriorated (D)**

** Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

IC

Building 3

1/22/19 Pose#3/4

Structure Sampling Questionnaire and Building Inventory New York State Department of Environmental Conservation

	PRODUCT INVENTORY											
	Building N	ame: Building 3 (Flu	- 1)	Bld	g Code:	Date:	2/29/20	16				
	Bldg Addre	255:				Apt/Suite	No:		August 1			
	Bldg City/S	tate/Zip:										
	Make and M	Model of PID: 11.7 EV	226 1	RAE Jour	Date of Cal	bration:	on:					
1					1		(21-1)					
	Location	Product Name/Description	Size (c	oz) Condition *	Chemical Ingredien	ts.	PID Reading	COCYN	17			
1/22	RSF1-A	Total Alkalinty Inductor	50%	,1 i1		101-185	2 0.00	Г	0			
1/22	21	Prend phalein Ind autor	20 m	XHu		-7833 7834	0.00	Г	$\left(\right) $			
1/22	2	Toint Allelanty Inductor	- St - L	x4 17	-	7835	C' CY	Г	Ø			
Y	2	fill Indianter (unclear (coshe))	75 .2	4	-	7836	0.00	Г				
1/22		TOS-1, Indieto- lynd	Scal	×2y	-	7837	0.00	г (\bigcirc			
Û	2	Bleach - Rite, disinfection	101.	- 4	Scalan hjørshlæste	5858	0,00		-			
	A-	TONON GUY OF AMICE	=		preasing by could Tull				0			
F	7	lenor, nora sta p/Cleane	1961			.7834	0.00		V			
1 K	× · · ·	Beter water samples	24	9		-7840	0.00					
1122	0	Et'lo Sulfuric Acid	XIL	ч		-7841	0.00	Г	Y			
1/22 V		Hydro chomicel Hydro chloric Acid A 1445 - 212	2.56	×2y		-7842 -7843	000	Г	0			
1/224		Fisher chemical N.ir. Ac.d A200=4×-212	2.52	ч		-7844 -7845	0.00	Г	9			
-16	357.0	limmetted yrde	Lant			-7846	0.11-					
/		ATST The frank Lite	/		c.i. i o	7847						
Heffe B	3FI-C	Solution # 442-30	3202	il	2014: 5 160	09 3027	0.					
1/22		NALLO 960-50 120 SOLD Botom Tragar 2 CAL SOL	0 Enx	2 110	M4 1	0161202-	0.		\mathcal{G}			
1/22	\mathbb{N}	NALLO Tolel Alkolinity Indicator 960-50871.74	500 -L	и	MA		7.	Г	D			
1/22	y	MALLO ORP Standard 200nv 460-50932A.75	ILX	2 4	M	V	7.	r (V			

* Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

** Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

Product Inventory Complete?

Were there any elevated PID readings taken on site?

☐ Products with COC?

18 X

1/22/19 Pose#1/4

ll

Structure Sampling Questionnaire and Building Inventory New York State Department of Environmental Conservation

		Р	RODUCT IN	VENTORY			
Building Na	me: Building 3, (Flur	1)	Bldg	Code:	Date:	2/24/2	cit
Bida Addres					Apt/Suite N	0:	
bidgitadica					-		
Bldg City/St	ate/2ip:		165 2		to the stress		
Make and M	lodel of PID: 11. / cV fp	NO K	AE SOCC	Date	e of Calibration:	()	
			1	T		(PPM)	1
Location	Product Name/Description	Size (oz)	Condition *	Chemical Ing	gredients	Reading	COCY
Colored i	Indicator Liquid	ZX	1.5	460-50234	102-7781	0.00	
1195F1-C	SCLN TOS-1	SUGAL	~		-1132		Г
Di	Total Hurdness Buffer H-	4 (2)11	ч		-7783	0.00	-
	460-50275	(AIL					
D	Reagant Standard	2%	ч		-7785	000	
5-	SOLN 3000 460-30217	24		460-50406	-7786		<u> </u>
\mathcal{O}	Butter, John ph	21	4	- 30409	7787	5.00	Г
					-7739	D.D.C.	
10-1-	JOIN F InWILL	16	4		-7790		T
7	Reagint, SULN ST. 2A	2×	и	460-3614A	-7741	0.00	
2	Drugende Sulfite	11					
	Reagant Stundard, TRASAR	2×	in	50960	-7792	0,00	
\mathbb{Z}	3 Lat sou 16 Nexturil	14.					
V	Reinjest total hardness	2	4		7.743_	0.00	
b-1	buffer, H-2	11.4		460-50274			
\mathcal{N}	Titrating Solution, Sul H.	2441	4		-7797	0.00	
5-1	High Runge Fitrant,			1611-8226			
Alt	Litering sciution, the th	2 741	4		- 1745	0.00	Г
151-	Lebury the started	V. Fry	12 小問	Ashland # 84122	-7796	0.00	
Γ	(Soco .us/cm)	Sco al	e ne ne				1-
A	menipithalen		6	Ash142 A # 50639	7747	0.00	
1	Indicator Saution	DC4 -1 C					
	Ross, Reference Electroice	bunt	2 4	01:00 81000 1	-7795	0.00	
\square	Filling Selation			Theres Scort lic	-7744		
XV	Protecsol 6446	65ml	5		- 30000	0.00	
7750	PUBA PA				7000		1
1931-2-6	Crew, buthing a cleaner	1 Qt	4		-1805	0.127	Г
PZE1.L		1	. 1		-7805	0	
part o	Alpha - rep i glass cleanes	164	N			0,00	Г

* Describe the condition of the product containers as **Unopened (UO)**, **Used (U)**, or **Deteriorated (D)** ** Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

Product Inventory Complete?

Were there any elevated PID readings taken on site?

Products with COC?

23 Z

Structure Sampling Questionnaire and Building Inventory New York State Department of Environmental Conservation

				PRODUCT INVENTORY						
В	luilding Nar	ne: Building 3, 1Floor	2)	Bld	g Code:	Date:	2124/20	16		
BI	ldg Addres	5:				Apt/Suite	pt/Suite No:			
BI	ldg City/Sta	ate/Zip:								
M	lake and Mo	odel of PID: (1.7 eV Pro	RAE Bas		Date	of Calibration				
					0010		(
	Location	Product Name/Description	Size (oz)	Condition *	Chemical Ing	redients	PID	COC Y/N?		
122 (16)	F2.臨	Paint siting, executive bega annel (PA100161)	12:	1	propone , buture	14y16:02:00(1 100-78:18 -78:44 -78:50	- 0.00			
Y	/	- 10.1 0.1 - 000 = 011-00912-000	5 541,	40		-7851	0.50			
122		Alke Form concentrate	YX Sal.	340	sodium hydroxide. Surfactunts	-7853 -7853 -7854 -7855	0.00	- C		
22		Dil YOCA	5 5 11	и	binnene, altyr	-7856 derive tuij 7357	0.00	F Ø		
		(Irms) cil	2.5 5.1.	4		-7858 7854	0,00.	- (V		
		L-3, retrigeration in 1	3x 1411	10	ethone, proprine, isobations, refragment	-7860	0 00	r Ø		
11		Intericci VFE-C	ignt.	ч		-786: -7865 -7864	000	- W		
)	Bright Dyes, Flunreint Red	BX 1 gal	8 40		-7865 -7866	0.06	- Ø		
MA		Neptune, bromile fecker	5 gal	?		-7867	-11-00	-R		
1.17-		Assiciant	5-7-1.		dehydrating regent -	-7869	0.00			
83F2	2-10	-V->i-0#	2 02.	-i4		121-7450	0.00			
								-		

* Describe the condition of the product containers as **Unopened (UO)**, **Used (U)**, or **Deteriorated (D)** ** Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

Product Inventory Complete?

Were there any elevated PID readings taken on site?

F Products with COC?

ý,

1/22/19

Page 4_ of 4_

Building #_____

Date: 12/2/16

Inventory Technician: D. Zuch

PRODUCT INVENTORY FORM

	Location	Product Description	Size (units)	Condition*	Chemical Ingredients	PID Instrument Reading (units)	Photo #
Q	B3F1.1	NALCO 50940-30	16	U	MA-	0.0	20161202
1/2 1/V		TRASAR NALLO 460-50900 SOLN	16	U	MA.	0.0	103619
101/15	B3FI-B	Down uttro Dish Ligad	266+1	- 4	M	0.0	105952
		STOKO Hand Grean / Degressor	11-	u	NM	0.0	110022
		Febrece Linen + sky	9.702	и	MA	0.0	105952
		(00)0 foam soop S161	1.25L	И	MA	0.0	11007
(V-	83F1-10	DOW Corning @ High Vacuum	6.313	И	MA	-110034	2016/202-
Ċ	BJFI-D	Anti Form (un-lottol)	500-L		NA		11253
					-		
1 -							
N)							
			-				
			1				

ļ

Structure Sampling Questionnaire and Building Inventory New York State Department of Environmental Conservation

Building Na	me: RZ Elast	, FL	2 RODUCT INVER	NTORY		
Blda Addres	Stranger D. Prover 1	7+1001	L Bldg Cod	le:	Date: 11/2 0	1/17
Rido Citu/Sta					Apt/Suite No:	+
biog city/sta	ate/Zip:					
Make and Mo	odel of PID: <u>11.7</u> ev Fr.	o RAI	E 3000	Date of Ca	alibration:	
Location	Product Name/Description	Size (oz)	Condition *	Chemical Ingredier	nts PID Beadin	COC Y/N
BS-PI Bathrum	repute Air Ellet	9.702	U		0.0	4124 (
	Light Spilin	19.2	U		0.0	412.4
17-F1,	Oci progh 248	4202	U		0.0	4127
33-F2	Piversen Clina Span	2447	0		0.0	4129
	Fullsolve Organie 95	2402			6.0	4131
V	2RC Custert Cleane	1307	0		0.0	4134
					0.0	4/36
						Г
				and a second sec		
						1

** Photographs of the **front and back** of product containers as **Unopened (UO)**, **Used (U)**, or **Deteriorated (D)** photographs must be of good quality and ingredient labels must be legible.

Product Inventory Complete?

Were there any elevated PID readings taken on site?

Products with COC?

Structure Sampling Questionnaire and Building Inventory

New York State Department of Environmental Conservation

	PRODUCT INVENTORY										
Building Na	me: Building 3		Bld	g Code:	Industrial	Date:	1/22/201	9			
Bldg Addres	55: 6000 Thompson Rd					Apt/Suite	No:				
Bldg City/St	ate/Zip: East Syracuse M	NY, 130	57								
Make and M	odel of PID: ppbRAE 2000			Date of Calibration: 1/22/2019							
Location	Product Name/Description	Size (oz) Condition	×	Chemical Ingredie	ents	PID Reading	COC Y/N?			
B3-F2E	Sunny Sive paint thinmr	Igal	U				0.1	7215			
								Г			
								Г			

* Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

** Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

Product Inventory Complete? Yes

15

APPENDIX B

Laboratory Report and Data Usability Summary Report

Laboratory Report

Air Toxics

2/8/2019 Mr. David Wright Arcadis U.S., Inc. One Lincoln Center 110 West Fayette St., Suite 300 Syracuse NY 13202

Project Name: BMS SVI Project #: B0087363.0031 Workorder #: 1901510

Dear Mr. David Wright

The following report includes the data for the above referenced project for sample(s) received on 1/28/2019 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Eurofins Air Toxics Inc. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Rachel Selenis at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Nomles

Rachel Selenis Project Manager

A Eurofins Lancaster Laboratories Company

180 Blue Ravine Road, Suite B Folsom, CA 95630

Air Toxics

WORK ORDER #: 1901510

Work Order Summary

CLIENT: Mr. David Wright Arcadis U.S., Inc. One Lincoln Center 110 West Fayette St., Suite 300		BILL TO:	Accounts Payable Arcadis U.S., Inc. 630 Plaza Drive Suite 600
	Syracuse, NY 13202		Highlands Ranch, CO 80129
PHONE:	315-446-9120	P.O. #	B0087363.0028
FAX:		PROJECT #	B0087363.0031 BMS SVI
DATE RECEIVED:	01/28/2019	CONTACT:	Rachel Selenis
DATE COMPLETED:	02/08/2019	001111011	Ruener Selenis

			KECEH I	LUAL
FRACTION #	NAME	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	IA-3	Modified TO-15	4.7 "Hg	1.9 psi
01B	IA-3	Modified TO-15	4.7 "Hg	1.9 psi
01C	IA-3	Modified TO-15	4.7 "Hg	1.9 psi
02A	DUP-012419	Modified TO-15	5.1 "Hg	2 psi
02B	DUP-012419	Modified TO-15	5.1 "Hg	2 psi
02C	DUP-012419	Modified TO-15	5.1 "Hg	2 psi
03A	AMB-3	Modified TO-15	4.3 "Hg	2.1 psi
03B	AMB-3	Modified TO-15	4.3 "Hg	2.1 psi
04A	Lab Blank	Modified TO-15	NA	NA
04B	Lab Blank	Modified TO-15	NA	NA
04C	Lab Blank	Modified TO-15	NA	NA
05A	CCV	Modified TO-15	NA	NA
05B	CCV	Modified TO-15	NA	NA
05C	CCV	Modified TO-15	NA	NA
06A	LCS	Modified TO-15	NA	NA
06AA	LCSD	Modified TO-15	NA	NA
06B	LCS	Modified TO-15	NA	NA
06BB	LCSD	Modified TO-15	NA	NA
06C	LCS	Modified TO-15	NA	NA
06CC	LCSD	Modified TO-15	NA	NA

CERTIFIED BY:

Lai

DATE: <u>02/08/19</u>

FINAT

DECEIDT

Technical Director

Certification numbers: AZ Licensure AZ0775, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-15-9, UT NELAP CA0093332015-6, VA NELAP - 8113, WA NELAP - C935 Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005, Effective date: 10/18/2015, Expiration date: 10/17/2016. Eurofins Air Toxics Inc.. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, Inc.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020 **Air Toxics**

🛟 eurofins

LABORATORY NARRATIVE Modified TO-15 Full Scan/SIM Arcadis U.S., Inc. Workorder# 1901510

Three 6 Liter Summa Canister (SIM Certified) samples were received on January 28, 2019. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the Full Scan and SIM acquisition modes. The method involves concentrating up to 1.0 liters of air. The concentrated aliquot is then flash vaporized and swept through a water management system to remove water vapor. Following dehumidification, the sample passes directly into the GC/MS for analysis.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Requirement	<i>TO-15</i>	ATL Modifications
ICAL %RSD acceptance criteria	=30% RSD with 2<br compounds allowed out to < 40% RSD	For Full Scan: 30% RSD with 4 compounds allowed out to < 40% RSD For SIM: Project specific; default criteria is =30% RSD with 10%<br of compounds allowed out to < 40% RSD
Daily Calibration	+- 30% Difference	For Full Scan: = 30% Difference with four allowed out up to </=40%.;<br flag and narrate outliers For SIM: Project specific; default criteria is = 30% Difference<br with 10% of compounds allowed out up to =40%.; flag<br and narrate outliers
Blank and standards	Zero air	Nitrogen
Method Detection Limit	Follow 40CFR Pt.136 App. B	The MDL met all relevant requirements in Method TO-15 (statistical MDL less than the LOQ). The concentration of the spiked replicate may have exceeded 10X the calculated MDL in some cases

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Receiving Notes

According to the Chain of Custody (COC), sample AMB-3 was collected on 01/24/19. However, the date on the sample tag reflects a collection date of 01/22/19. Therefore the date on the COC was used to calculate the sample holding time.

Analytical Notes

The results for sample fractions "A" and "B" in this report were acquired from two separate data files originating from the same analytical run. The two data files have the same base file name and are differentiated with a "sim" extension on the SIM data file.

🛟 eurofins |

Air Toxics

As per project specific client request the laboratory has reported estimated values for target compound hits that are below the Reporting Limit but greater than the Method Detection Limit. All The canisters used for this project have been certified to the Reporting Limit for the target analytes included in this workorder. Concentrations that are below the level at which the canister was certified may be false positives.

Due to poor sensitivity at the time of the Method Detection Limit (MDL) study, the reporting limit for Ethanol was raised from 0.50 ppbv to 1.0 ppbv.

Specific analytes that are requested by the client to be reported as tentatively identified compounds (TICs) are determined by searching for each compound's characteristic spectra. If no chromatographic peak displaying the compound specific spectra exists, then the TIC is reported as not detected. Please note that the laboratory has not evaluated the stability of any heretofore tentatively identified compound in the vapor phase or for efficiency of recovery through the analytical system.

All Quality Control Limit exceedances and affected sample results are noted by flags. Each flag is defined at the bottom of this Case Narrative and on each Sample Result Summary page.

Definition of Data Qualifying Flags

Nine qualifiers may have been used on the data analysis sheets and indicates as follows:

B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit.
- UJ- Non-detected compound associated with low bias in the CCV
- N The identification is based on presumptive evidence.

CN - See case narrative explanation

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN BMS SVI

 Client ID:
 IA-3

 Lab ID:
 1901510-01A
 Date/Time Analyzed:
 2/6/19 01:21 PM

 Date/Time Collected:
 1/24/19 04:37 PM
 Dilution Factor:
 1.34

 Media:
 Instrument/Filename:
 msdv.i / v020608

		MDL	LOD	Rpt. Limit	Amount
Compound	CAS#	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)
1,2,4-Trichlorobenzene	120-82-1	1.4	4.0	5.0	Not Detected
1,2,4-Trimethylbenzene	95-63-6	0.46	0.59	0.66	10
1,2-Dichlorobenzene	95-50-1	0.33	0.72	0.80	Not Detected
1,2-Dichloropropane	78-87-5	0.57	0.57	0.62	Not Detected
1,3,5-Trimethylbenzene	108-67-8	0.52	0.59	0.66	1.9
1,3-Butadiene	106-99-0	0.17	0.27	0.30	Not Detected
1,3-Dichlorobenzene	541-73-1	0.32	0.72	0.80	Not Detected
1,4-Dioxane	123-91-1	0.28	0.43	0.48	Not Detected
2,2,4-Trimethylpentane	540-84-1	0.92	2.5	3.1	Not Detected
2-Butanone (Methyl Ethyl Ketone)	78-93-3	0.60	1.6	2.0	1.2 J
2-Hexanone	591-78-6	0.64	2.2	2.7	Not Detected
2-Propanol	67-63-0	0.54	1.3	1.6	4.6
3-Chloropropene	107-05-1	1.0	1.7	2.1	Not Detected
4-Ethyltoluene	622-96-8	0.44	0.59	0.66	2.3
4-Methyl-2-pentanone	108-10-1	0.19	0.49	0.55	0.23 J
Acetone	67-64-1	1.0	1.3	1.6	7.3
alpha-Chlorotoluene	100-44-7	0.39	0.62	0.69	Not Detected
Bromodichloromethane	75-27-4	0.42	0.81	0.90	Not Detected
Bromoform	75-25-2	0.45	1.2	1.4	Not Detected
Bromomethane	74-83-9	1.2	2.1	2.6	Not Detected
Carbon Disulfide	75-15-0	0.46	1.7	2.1	2.0 J
Chlorobenzene	108-90-7	0.33	0.56	0.62	Not Detected
cis-1,3-Dichloropropene	10061-01-5	0.44	0.55	0.61	Not Detected
Cumene	98-82-8	0.35	0.59	0.66	0.40 J

Air Toxics

Air Toxics

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN BMS SVI

 Client ID:
 IA-3

 Lab ID:
 1901510-01A
 Date/Time Analyzed:
 2/6/19 01:21 PM

 Date/Time Collected:
 1/24/19 04:37 PM
 Dilution Factor:
 1.34

 Media:
 Instrument/Filename:
 msdv.i / v020608

		MDL	LOD	Rpt. Limit	Amount
Compound	CAS#	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)
Cyclohexane	110-82-7	0.29	0.42	0.46	Not Detected
Dibromochloromethane	124-48-1	0.59	1.0	1.1	Not Detected
Ethanol	64-17-5	1.2	1.2	2.5	51
Freon 11	75-69-4	0.35	0.68	0.75	1.2
Freon 113	76-13-1	0.46	0.92	1.0	0.74 J
Heptane	142-82-5	0.46	0.49	0.55	0.82
Hexachlorobutadiene	87-68-3	2.0	5.7	7.1	Not Detected
Hexane	110-54-3	0.35	0.42	0.47	0.61
Methylene Chloride	75-09-2	0.32	0.42	0.93	0.64 J
Propylbenzene	103-65-1	0.30	0.59	0.66	1.2
Styrene	100-42-5	0.36	0.51	0.57	Not Detected
Tetrahydrofuran	109-99-9	1.0	1.6	2.0	Not Detected
trans-1,3-Dichloropropene	10061-02-6	0.36	0.55	0.61	Not Detected

D: Analyte not within the DoD scope of accreditation.

TENTATIVELY IDENTIFIED COMPOUNDS

		Match	LOD	Amount	
Compound	CAS#			ppbv	
2-Nitropropane	79-46-9	NA		Not Detected	
4-Chlorotoluene	106-43-4	NA		Not Detected	
Acetonitrile	75-05-8	NA		Not Detected	
Benzaldehyde	100-52-7	NA		Not Detected	
Benzene, 1,2,3-trimethyl-	526-73-8	81%		0.89 NJ	
bis(2-Chloroethyl) Ether	111-44-4	NA		Not Detected	

Air Toxics

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN BMS SVI

Client ID:	IA-3		
Lab ID:	1901510-01A	Date/Time Analyzed:	2/6/19 01:21 PM
Date/Time Collected:	1/24/19 04:37 PM	Dilution Factor:	1.34
Media:	6 Liter Summa Canister (SIM Certified)	Instrument/Filename:	msdv.i / v020608

TENTATIVELY IDENTIFIED COMPOUNDS

		Match	LOD	Amount	
Compound	CAS#			ppbv	
Cyclohexene	110-83-8	NA		Not Detected	
Epichlorohydrin	106-89-8	NA		Not Detected	
Ethyl Acetate	141-78-6	NA		Not Detected	
Isobutanol	78-83-1	NA		Not Detected	
Isopropyl ether	108-20-3	NA		Not Detected	
Methacrylonitrile	126-98-7	NA		Not Detected	
Methyl Acetate	79-20-9	NA		Not Detected	
N,N-Dimethyl Aniline	121-69-7	NA		Not Detected	
n-Butanol	71-36-3	NA		Not Detected	
Nitrobenzene	98-95-3	NA		Not Detected	
Pentane	109-66-0	80%		0.93 NJ	
Propylene	115-07-1	NA		Not Detected	
Pyridine	110-86-1	NA		Not Detected	

J = Estimated value.

ſ

NJ =The identification is based on presumptive evidence; estimated value. D: Analyte not within the DoD scope of accreditation.

Surrogates	CAS#	Limits	%Recovery
1,2-Dichloroethane-d4	17060-07-0	70-130	96
4-Bromofluorobenzene	460-00-4	70-130	86
Toluene-d8	2037-26-5	70-130	98

Air Toxics

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN BMS SVI

Client ID: Lab ID: Date/Time Collected: Media:	IA-3 1901510-01B 1/24/19 04:37 I 6 Liter Summa	s 1510-01B 4/19 04:37 PM ter Summa Canister (SIM Certified)		nalyzed: tor: ïllename:	2/6/19 01:21 PM 1.34 msdv.i / v020608sim		
			MDL	LOD	Rpt. Limit	Amount	
Compound		CAS#	(ug/m3)	(ug/m3)) (ug/m3)	(ug/m3)	
1,1,1-Trichloroethane	9	71-55-6	0.032	0.044	0.15	0.039 J	
1,1,2,2-Tetrachloroet	hane	79-34-5	0.047	0.055	0.18	Not Detected	
1,1,2-Trichloroethane	Э	79-00-5	0.040	0.044	0.15	Not Detected	
1,1-Dichloroethane		75-34-3	0.030	0.032	0.11	Not Detected	
1,1-Dichloroethene		75-35-4	0.022	0.032	0.053	Not Detected	
1,2-Dibromoethane (EDB)	106-93-4	0.023	0.062	0.20	Not Detected	
1,2-Dichloroethane		107-06-2	0.024	0.032	0.11	0.086 J	
1,4-Dichlorobenzene		106-46-7	0.059	0.059	0.16	Not Detected	
Benzene		71-43-2	0.023	0.026	0.21	0.64	
Carbon Tetrachloride	9	56-23-5	0.079	0.079	0.17	0.47	
Chloroethane		75-00-3	0.032	0.088	0.18	Not Detected	
Chloroform		67-66-3	0.016	0.039	0.13	0.34	
Chloromethane		74-87-3	0.027	0.069	1.4	0.84 J	
cis-1,2-Dichloroether	ne	156-59-2	0.025	0.032	0.11	0.12	
Ethyl Benzene		100-41-4	0.022	0.035	0.12	2.1	
Freon 114		76-14-2	0.062	0.062	0.19	0.11 J	
Freon 12		75-71-8	0.036	0.040	3.3	2.2 J	
m,p-Xylene		108-38-3	0.033	0.035	0.23	10	
Methyl tert-butyl ethe	er	1634-04-4	0.024	0.029	0.48	Not Detected	
o-Xylene		95-47-6	0.039	0.039	0.12	4.1	
Tetrachloroethene		127-18-4	0.016	0.054	0.18	0.18 J	
Toluene		108-88-3	0.021	0.030	0.10	5.0	
trans-1,2-Dichloroeth	iene	156-60-5	0.034	0.034	0.53	Not Detected	
Trichloroethene		79-01-6	0.019	0.043	0.14	0.59	

Air Toxics

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN BMS SVI

Client ID: Lab ID: Date/Time Collected: Media:	IA-3 1901510-01B 1/24/19 04:37 PM 6 Liter Summa Canister (SIM Certified)	Date/Time A Dilution Fac Instrument/F	nalyzed: tor: ïlename:	2/6/19 01:21 PM 1.34 msdv.i / v020608sim	
		MDL	LOD	Rpt. Limit	Amount
Compound	CAS#	(ug/m3)	(ug/m3) (ug/m3)	(ug/m3)
Vinyl Chloride	75-01-4	0.026	0.026	0.034	Not Detected
J = Estimated value. D: Analyte not within	the DoD scope of accreditation.				
Surrogates	CAS#			Limits	%Recovery
1,2-Dichloroethane-d4	17060-07-0			70-130	100
4-Bromofluorobenzen	e 460-00-4			70-130	94
Toluene-d8	2037-26-5			70-130	96
Air Toxics

Client ID: Lab ID: Date/Time Collected: Media:	IA-3 1901510-01C 1/24/19 04:37 PM 6 Liter Summa Canister (SIM Certified)	Date/Time A Dilution Fac Instrument/F	nalyzed: tor: filename:	2/6/19 06:13 PM 1.34 msd20.i / 20020612sim	
O man and	0.10%	MDL	LOD	Rpt. Limit	Amount
Compound	CAS#	(ug/ms)	(ug/ms)) (ug/iiis)	(ug/iii3)
Naphthalene	91-20-3	0.065	0.14	0.35	4.6
D: Analyte not within	the DoD scope of accreditation.				
Surrogates	CAS#			Limits	%Recovery
1,2-Dichloroethane-d	4 17060-07-0			70-130	104
4-Bromofluorobenzer	e 460-00-4			70-130	97
Toluene-d8	2037-26-5			70-130	98

Air Toxics

Client ID: DUP-012419 Lab ID: 1901510-02A Date/Time Collected: 1/24/19 12:00 AM Media: Collected:		Date/Time Analyzed: Dilution Factor: Instrument/Filename:		2/6/19 01:59 PM 1.37 msdv.i / v020609		
		MDL	LOD	Rpt. Limit	Amount	
Compound	CAS#	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)	
1,2,4-Trichlorobenzene	120-82-1	1.4	4.1	5.1	Not Detected	
1,2,4-Trimethylbenzene	95-63-6	0.47	0.61	0.67	10	
1,2-Dichlorobenzene	95-50-1	0.34	0.74	0.82	Not Detected	
1,2-Dichloropropane	78-87-5	0.59	0.59	0.63	Not Detected	
1,3,5-Trimethylbenzene	108-67-8	0.54	0.61	0.67	2.0	
1,3-Butadiene	106-99-0	0.18	0.27	0.30	Not Detected	
1,3-Dichlorobenzene	541-73-1	0.32	0.74	0.82	Not Detected	
1,4-Dioxane	123-91-1	0.29	0.44	0.49	Not Detected	
2,2,4-Trimethylpentane	540-84-1	0.94	2.6	3.2	Not Detected	
2-Butanone (Methyl Ethyl Ketone)	78-93-3	0.61	1.6	2.0	2.3	
2-Hexanone	591-78-6	0.66	2.2	2.8	0.95 J	
2-Propanol	67-63-0	0.55	1.3	1.7	5.3	
3-Chloropropene	107-05-1	1.1	1.7	2.1	Not Detected	
4-Ethyltoluene	622-96-8	0.45	0.61	0.67	2.5	
4-Methyl-2-pentanone	108-10-1	0.19	0.50	0.56	Not Detected	
Acetone	67-64-1	1.1	1.3	1.6	9.7	
alpha-Chlorotoluene	100-44-7	0.40	0.64	0.71	Not Detected	
Bromodichloromethane	75-27-4	0.43	0.83	0.92	Not Detected	
Bromoform	75-25-2	0.46	1.3	1.4	Not Detected	
Bromomethane	74-83-9	1.2	2.1	2.7	Not Detected	
Carbon Disulfide	75-15-0	0.47	1.7	2.1	Not Detected	
Chlorobenzene	108-90-7	0.34	0.57	0.63	Not Detected	
cis-1,3-Dichloropropene	10061-01-5	0.45	0.56	0.62	Not Detected	
Cumene	98-82-8	0.36	0.61	0.67	Not Detected	

Air Toxics

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN BMS SVI

Media:	1/24/19 12.00 AWI	Instrument/Fi	ename:	1.37 msdv.i / v020609	
Client ID: Lab ID:	DUP-012419 1901510-02A	Date/Time An	alyzed:	2/6/19 01:59 PM	

		MDL	LOD	Kpt. Linnt	Amount
Compound	CAS#	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)
Cyclohexane	110-82-7	0.30	0.42	0.47	Not Detected
Dibromochloromethane	124-48-1	0.60	1.0	1.2	Not Detected
Ethanol	64-17-5	1.2	1.2	2.6	57
Freon 11	75-69-4	0.36	0.69	0.77	1.2
Freon 113	76-13-1	0.47	0.94	1.0	0.66 J
Heptane	142-82-5	0.47	0.50	0.56	0.99
Hexachlorobutadiene	87-68-3	2.0	5.8	7.3	Not Detected
Hexane	110-54-3	0.35	0.43	0.48	0.71
Methylene Chloride	75-09-2	0.32	0.43	0.95	0.58 J
Propylbenzene	103-65-1	0.31	0.61	0.67	1.2
Styrene	100-42-5	0.36	0.52	0.58	Not Detected
Tetrahydrofuran	109-99-9	1.0	1.6	2.0	Not Detected
trans-1,3-Dichloropropene	10061-02-6	0.37	0.56	0.62	Not Detected

D: Analyte not within the DoD scope of accreditation.

TENTATIVELY IDENTIFIED COMPOUNDS

		Match	LOD	Amount	
Compound	CAS#			ppbv	
2-Nitropropane	79-46-9	NA		Not Detected	
4-Chlorotoluene	106-43-4	NA		Not Detected	
Acetonitrile	75-05-8	NA		Not Detected	
Benzaldehyde	100-52-7	NA		Not Detected	
Benzene, 1,2,3-trimethyl-	526-73-8	95%		1.2 NJ	
bis(2-Chloroethyl) Ether	111-44-4	NA		Not Detected	

Air Toxics

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN BMS SVI

Client ID:	DUP-012419		
Lab ID:	1901510-02A	Date/Time Analyzed:	2/6/19 01:59 PM
Date/Time Collected:	1/24/19 12:00 AM	Dilution Factor:	1.37
Media:	6 Liter Summa Canister (SIM Certified)	Instrument/Filename:	msdv.i / v020609

TENTATIVELY IDENTIFIED COMPOUNDS

		Match	LOD	Amount	
Compound	CAS#			ppbv	
Cyclohexene	110-83-8	NA		Not Detected	
Epichlorohydrin	106-89-8	NA		Not Detected	
Ethyl Acetate	141-78-6	NA		Not Detected	
Isobutanol	78-83-1	NA		Not Detected	
Isopropyl ether	108-20-3	NA		Not Detected	
Methacrylonitrile	126-98-7	NA		Not Detected	
Methyl Acetate	79-20-9	NA		Not Detected	
N,N-Dimethyl Aniline	121-69-7	NA		Not Detected	
n-Butanol	71-36-3	NA		Not Detected	
Nitrobenzene	98-95-3	NA		Not Detected	
Pentane	109-66-0	80%		1.6 NJ	
Propylene	115-07-1	NA		Not Detected	
Pyridine	110-86-1	NA		Not Detected	

J = Estimated value.

ſ

NJ =The identification is based on presumptive evidence; estimated value. D: Analyte not within the DoD scope of accreditation.

Surrogates	CAS#	Limits	%Recovery
1,2-Dichloroethane-d4	17060-07-0	70-130	94
4-Bromofluorobenzene	460-00-4	70-130	102
Toluene-d8	2037-26-5	70-130	100

Air Toxics

Client ID: DUP-012419 Lab ID: 1901510-02B Date/Time Collected: 1/24/19 12:00 AM Media: 6 Liter Summa Canister		1 anister (SIM Certified)	Date/Time Analyzed: Dilution Factor: Instrument/Filename:		2/6/19 01:59 PM 1.37 msdv.i / v020609sim	
			MDL	LOD	Rpt. Limit	Amount
Compound		CAS#	(ug/m3)	(ug/m3	3) (ug/m3)	(ug/m3)
1,1,1-Trichloroethane	•	71-55-6	0.032	0.045	0.15	0.039 J
1,1,2,2-Tetrachloroet	hane	79-34-5	0.048	0.056	6 0.19 -	Not Detected
1,1,2-Trichloroethane	9	79-00-5	0.040	0.045	0.15	Not Detected
1,1-Dichloroethane		75-34-3	0.031	0.033	0.11	Not Detected
1,1-Dichloroethene		75-35-4	0.023	0.032	0.054	Not Detected
1,2-Dibromoethane (I	EDB)	106-93-4	0.023	0.063	3 0.21	0.024 J
1,2-Dichloroethane		107-06-2	0.024	0.033	3 0.11	0.092 J
1,4-Dichlorobenzene		106-46-7	0.060	0.060	0.16	Not Detected
Benzene		71-43-2	0.024	0.026	0.22	0.64
Carbon Tetrachloride	•	56-23-5	0.081	0.081	0.17	0.48
Chloroethane		75-00-3	0.032	0.090	0.18	0.059 J
Chloroform		67-66-3	0.016	0.040	0.13	0.33
Chloromethane		74-87-3	0.027	0.071	1.4	0.97 J
cis-1,2-Dichloroethen	ie	156-59-2	0.026	0.032	0.11	0.11
Ethyl Benzene		100-41-4	0.023	0.036	6 0.12	1.8
Freon 114		76-14-2	0.064	0.064	ŧ 0.19	0.15 J
Freon 12		75-71-8	0.036	0.041	3.4	2.4 J
m,p-Xylene		108-38-3	0.034	0.036	6 0.24	9.1
Methyl tert-butyl ethe	r	1634-04-4	0.025	0.030	0.49	Not Detected
o-Xylene		95-47-6	0.040	0.040	0.12	3.8
Tetrachloroethene		127-18-4	0.016	0.056	6 0.18	0.17 J
Toluene		108-88-3	0.022	0.031	0.10	4.5
trans-1,2-Dichloroeth	ene	156-60-5	0.034	0.034	4 0.54	Not Detected
Trichloroethene		79-01-6	0.019	0.044	0.15	0.61

Air Toxics

Client ID: Lab ID: Date/Time Collected: Media:	DUP-012419 1901510-02B 1/24/19 12:00 AM 6 Liter Summa Canister (SIM Certified)	Date/Time A Dilution Fact Instrument/F	nalyzed: 2/0 tor: 1.3 illename: ma	6/19 01:59 PM 37 sdv.i / v020609sim	
		MDL	LOD	Rpt. Limit	Amount
Compound	CAS#	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)
Vinyl Chloride	75-01-4	0.026	0.026	0.035	Not Detected
J = Estimated value.					
D: Analyte not within	the DoD scope of accreditation.				
Surrogates	CAS#			Limits	%Recovery
1,2-Dichloroethane-d4	17060-07-0			70-130	99
4-Bromofluorobenzen	e 460-00-4			70-130	102
Toluene-d8	2037-26-5			70-130	99

Air Toxics

Client ID: Lab ID: Date/Time Collected: Media:	DUP-012419 1901510-02C 1/24/19 12:00 AM 6 Liter Summa Canister (SIM Certified)	Date/Time A Dilution Fac Instrument/F	nalyzed: tor: 'ilename:	2/6/19 06:58 PM 1.37 msd20.i / 20020613sim	
		MDL	LOD	Rpt. Limit	Amount
Compound	CAS#	(ug/m3)	(ug/m3	3) (ug/m3)	(ug/m3)
Naphthalene	91-20-3	0.067	0.14	0.36	4.2
D: Analyte not within	the DoD scope of accreditation.				
Surrogates	CAS#			Limits	%Recovery
1,2-Dichloroethane-d	4 17060-07-0			70-130	102
4-Bromofluorobenzer	ne 460-00-4			70-130	97
Toluene-d8	2037-26-5			70-130	98

Air Toxics

Client ID: AMB-3 Lab ID: 1901510-03A Date/Time Collected: 1/24/19 04:40 PM Media:		Date/Time A Dilution Fact Instrument/F	nalyzed: 2/6/19 tor: 1.33 ilename: msdv.i	2/6/19 02:36 PM 1.33 msdv.i / v020610		
Compound	CAS#	MDL (ug/m3)	LOD (ug/m3)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
1,2,4-Trichlorobenzene	120-82-1	1.3	3.9	4.9	Not Detected	
1,2,4-Trimethylbenzene	95-63-6	0.46	0.59	0.65	Not Detected	
1,2-Dichlorobenzene	95-50-1	0.33	0.72	0.80	Not Detected	
1,2-Dichloropropane	78-87-5	0.57	0.57	0.61	Not Detected	
1,3,5-Trimethylbenzene	108-67-8	0.52	0.59	0.65	Not Detected	
1,3-Butadiene	106-99-0	0.17	0.26	0.29	Not Detected	
1,3-Dichlorobenzene	541-73-1	0.31	0.72	0.80	Not Detected	
1,4-Dioxane	123-91-1	0.28	0.43	0.48	Not Detected	
2,2,4-Trimethylpentane	540-84-1	0.92	2.5	3.1	Not Detected	
2-Butanone (Methyl Ethyl Ketone)	78-93-3	0.59	1.6	2.0	1.9 J	
2-Hexanone	591-78-6	0.64	2.2	2.7	Not Detected	
2-Propanol	67-63-0	0.53	1.3	1.6	1.3 J	
3-Chloropropene	107-05-1	1.0	1.7	2.1	Not Detected	
4-Ethyltoluene	622-96-8	0.44	0.59	0.65	Not Detected	
4-Methyl-2-pentanone	108-10-1	0.19	0.49	0.54	0.22 J	
Acetone	67-64-1	1.0	1.3	1.6	7.9	
alpha-Chlorotoluene	100-44-7	0.39	0.62	0.69	Not Detected	
Bromodichloromethane	75-27-4	0.42	0.80	0.89	Not Detected	
Bromoform	75-25-2	0.44	1.2	1.4	Not Detected	
Bromomethane	74-83-9	1.2	2.1	2.6	Not Detected	
Carbon Disulfide	75-15-0	0.46	1.6	2.1	Not Detected	
Chlorobenzene	108-90-7	0.32	0.55	0.61	Not Detected	
cis-1,3-Dichloropropene	10061-01-5	0.44	0.54	0.60	Not Detected	
Cumene	98-82-8	0.34	0.59	0.65	Not Detected	

Air Toxics

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN BMS SVI

Client ID: AMB-3 Lab ID: 1901510-03/ Date/Time Collected: 1/24/19 04:4 Media: Collected: Collected:	O-03A Date/Time Analyzed: O 04:40 PM Dilution Factor: Instrument/Filename:		nalyzed: 2/6/19 tor: 1.33 filename: msdv	2/6/19 02:36 PM 1.33 msdv.i / v020610		
		MDL	LOD	Rpt. Limit	Amount	
Compound	CAS#	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)	
Cyclohexane	110-82-7	0.29	0.41	0.46	Not Detected	
Dibromochloromethane	124-48-1	0.59	1.0	1.1	Not Detected	
Ethanol	64-17-5	1.2	1.2	2.5	5.3	
Freon 11	75-69-4	0.35	0.67	0.75	1.4	
Freon 113	76-13-1	0.46	0.92	1.0	0.75 J	
Heptane	142-82-5	0.46	0.49	0.54	Not Detected	
Hexachlorobutadiene	87-68-3	2.0	5.7	7.1	Not Detected	
Hexane	110-54-3	0.34	0.42	0.47	0.76	
Methylene Chloride	75-09-2	0.32	0.42	0.92	0.82 J	
Propylbenzene	103-65-1	0.30	0.59	0.65	Not Detected	
Styrene	100-42-5	0.35	0.51	0.57	Not Detected	
Tetrahydrofuran	109-99-9	1.0	1.6	2.0	Not Detected	
trans-1,3-Dichloropropene	10061-02-6	0.36	0.54	0.60	Not Detected	

D: Analyte not within the DoD scope of accreditation.

TENTATIVELY IDENTIFIED COMPOUNDS

		Match	LOD	Amount	
Compound	CAS#			ppbv	
1,2,3-Trimethylbenzene	526-73-8	NA		Not Detected	
2-Nitropropane	79-46-9	NA		Not Detected	
4-Chlorotoluene	106-43-4	NA		Not Detected	
Acetonitrile	75-05-8	NA		Not Detected	
Benzaldehyde	100-52-7	NA		Not Detected	
bis(2-Chloroethyl) Ether	111-44-4	NA		Not Detected	

Air Toxics

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN BMS SVI

Client ID:	AMB-3		
Lab ID:	1901510-03A	Date/Time Analyzed:	2/6/19 02:36 PM
Date/Time Collected:	1/24/19 04:40 PM	Dilution Factor:	1.33
Media:	6 Liter Summa Canister (SIM Certified)	Instrument/Filename:	msdv.i / v020610

TENTATIVELY IDENTIFIED COMPOUNDS

		Match	LOD	Amount	
Compound	CAS#			ppbv	
Cyclohexene	110-83-8	NA		Not Detected	
Epichlorohydrin	106-89-8	NA		Not Detected	
Ethyl Acetate	141-78-6	NA		Not Detected	
Isobutanol	78-83-1	NA		Not Detected	
Isopropyl ether	108-20-3	NA		Not Detected	
Methacrylonitrile	126-98-7	NA		Not Detected	
Methyl Acetate	79-20-9	NA		Not Detected	
N,N-Dimethyl Aniline	121-69-7	NA		Not Detected	
n-Butanol	71-36-3	NA		Not Detected	
Nitrobenzene	98-95-3	NA		Not Detected	
Pentane	109-66-0	NA		Not Detected	
Propylene	115-07-1	NA		Not Detected	
Pyridine	110-86-1	NA		Not Detected	

J = Estimated value.

D: Analyte not within the DoD scope of accreditation.

Surrogates	CAS#	Limits	%Recovery
1,2-Dichloroethane-d4	17060-07-0	70-130	102
4-Bromofluorobenzene	460-00-4	70-130	99
Toluene-d8	2037-26-5	70-130	98

Air Toxics

Client ID: Lab ID: Date/Time Collected: Media:	AMB-3 1901510-03B 1/24/19 04:40 PM 6 Liter Summa Cani	ster (SIM Certified)	Date/Time A Dilution Fac Instrument/F	nalyzed: tor: ⁻ ilename:	2/6/19 02:36 PM 1.33 msdv.i / v020610sim	
			MDL	LOD	Rpt. Limit	Amount
Compound		CAS#	(ug/m3)	(ug/m3	3) (ug/m3)	(ug/m3)
1,1,1-Trichloroethane	9	71-55-6	0.031	0.044	4 0.14	Not Detected
1,1,2,2-Tetrachloroet	hane	79-34-5	0.047	0.055	0.18	Not Detected
1,1,2-Trichloroethane)	79-00-5	0.039	0.044	0.14	Not Detected
1,1-Dichloroethane		75-34-3	0.030	0.032	<u>2</u> 0.11	Not Detected
1,1-Dichloroethene		75-35-4	0.022	0.032	2 0.053	Not Detected
1,2-Dibromoethane (EDB)	106-93-4	0.022	0.061	0.20	Not Detected
1,2-Dichloroethane		107-06-2	0.024	0.032	2 0.11	0.088 J
1,4-Dichlorobenzene		106-46-7	0.058	0.058	3 0.16	Not Detected
Benzene		71-43-2	0.023	0.025	5 0.21	0.56
Carbon Tetrachloride	1	56-23-5	0.078	0.078	0.17	0.47
Chloroethane		75-00-3	0.031	0.088	0.18	0.041 J
Chloroform		67-66-3	0.016	0.039	9 0.13	0.077 J
Chloromethane		74-87-3	0.026	0.069	9 1.4	0.90 J
cis-1,2-Dichloroether	e	156-59-2	0.025	0.032	0.10	Not Detected
Ethyl Benzene		100-41-4	0.022	0.035	5 0.12	0.21
Freon 114		76-14-2	0.062	0.062	0.18	0.12 J
Freon 12		75-71-8	0.035	0.039	3.3	2.3 J
m,p-Xylene		108-38-3	0.033	0.035	5 0.23	0.65
Methyl tert-butyl ethe	r	1634-04-4	0.024	0.029	0.48	Not Detected
Naphthalene		91-20-3	0.066	0.14	0.35	0.24 J
o-Xylene		95-47-6	0.039	0.039	0.12	0.32
Tetrachloroethene		127-18-4	0.016	0.054	4 0.18	0.067 J
Toluene		108-88-3	0.021	0.030	0.10	0.81
trans-1,2-Dichloroeth	ene	156-60-5	0.033	0.033	0.53	Not Detected

Air Toxics

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN BMS SVI

AMB-3 **Client ID:** 1901510-03B Date/Time Analyzed: Lab ID: 2/6/19 02:36 PM Date/Time Collected: 1/24/19 04:40 PM **Dilution Factor:** 1.33 Media: 6 Liter Summa Canister (SIM Certified) Instrument/Filename: msdv.i / v020610sim Rpt. Limit MDL LOD Amount (ug/m3) (ug/m3) (ug/m3) (ug/m3) Compound CAS# 0.043 0.033 J Trichloroethene 0.018 0.14 79-01-6 Vinyl Chloride 0.025 0.025 0.034 Not Detected 75-01-4 J = Estimated value. D: Analyte not within the DoD scope of accreditation. %Recovery Limits Surrogates CAS# 1,2-Dichloroethane-d4 70-130 99 17060-07-0 4-Bromofluorobenzene 70-130 104 460-00-4 Toluene-d8 70-130 101 2037-26-5

Air Toxics

Client ID:Lab BlankLab ID:1901510-04ADate/Time Collected:NA - Not ApplicateMedia:Instantian (Instantian)	ble	Date/Time A Dilution Fac Instrument/F	nalyzed: 2/6/19 tor: 1.00 filename: msdv.i	12:30 PM / v020607a	
		MDL	LOD	Rpt. Limit	Amount
Compound	CAS#	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)
1,2,4-Trichlorobenzene	120-82-1	1.0	3.0	3.7	Not Detected
1,2,4-Trimethylbenzene	95-63-6	0.34	0.44	0.49	Not Detected
1,2-Dichlorobenzene	95-50-1	0.25	0.54	0.60	Not Detected
1,2-Dichloropropane	78-87-5	0.43	0.43	0.46	Not Detected
1,3,5-Trimethylbenzene	108-67-8	0.39	0.44	0.49	Not Detected
1,3-Butadiene	106-99-0	0.13	0.20	0.22	Not Detected
1,3-Dichlorobenzene	541-73-1	0.24	0.54	0.60	Not Detected
1,4-Dioxane	123-91-1	0.21	0.32	0.36	Not Detected
2,2,4-Trimethylpentane	540-84-1	0.69	1.9	2.3	Not Detected
2-Butanone (Methyl Ethyl Ketone)	78-93-3	0.44	1.2	1.5	Not Detected
2-Hexanone	591-78-6	0.48	1.6	2.0	Not Detected
2-Propanol	67-63-0	0.40	0.98	1.2	Not Detected
3-Chloropropene	107-05-1	0.78	1.2	1.6	Not Detected
4-Ethyltoluene	622-96-8	0.33	0.44	0.49	Not Detected
4-Methyl-2-pentanone	108-10-1	0.14	0.37	0.41	Not Detected
Acetone	67-64-1	0.79	0.95	1.2	Not Detected
alpha-Chlorotoluene	100-44-7	0.29	0.46	0.52	Not Detected
Bromodichloromethane	75-27-4	0.31	0.60	0.67	Not Detected
Bromoform	75-25-2	0.33	0.93	1.0	Not Detected
Bromomethane	74-83-9	0.88	1.6	1.9	Not Detected
Carbon Disulfide	75-15-0	0.35	1.2	1.6	Not Detected
Chlorobenzene	108-90-7	0.24	0.41	0.46	Not Detected
cis-1,3-Dichloropropene	10061-01-5	0.33	0.41	0.45	Not Detected
Cumene	98-82-8	0.26	0.44	0.49	Not Detected

Air Toxics

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN BMS SVI

Client ID: Lab ID: Date/Time Collected: Media:	ent ID:Lab Blankb ID:1901510-04Ate/Time Collected:NA - Not Applicableedia:Edia:		Date/Time An Dilution Fact Instrument/F	nalyzed: or: ilename:	2/6/19 12:30 PM 1.00 msdv.i / v020607a	
Compound		CAS#	MDL (ug/m3)	LOD (ug/m3	Rpt. Limit 3) (ug/m3)	Amount (ug/m3)
Cyclohexane		110-82-7	0.22	0.31	0.34	Not Detected
Dibromochloromethan	е	124-48-1	0.44	0.77	0.85	Not Detected
Ethanol		64-17-5	0.88	0.88	1.9	Not Detected
Freon 11		75-69-4	0.26	0.50	0.56	Not Detected
Freon 113		76-13-1	0.34	0.69	0.77	Not Detected
Heptane		142-82-5	0.34	0.37	0.41	Not Detected
Hexachlorobutadiene		87-68-3	1.5	4.3	5.3	Not Detected
Hexane		110-54-3	0.26	0.32	0.35	Not Detected
Methylene Chloride		75-09-2	0.24	0.31	0.69	Not Detected
Propylbenzene		103-65-1	0.23	0.44	0.49	Not Detected
Styrene		100-42-5	0.27	0.38	0.42	Not Detected
Tetrahydrofuran		109-99-9	0.76	1.2	1.5	Not Detected
trans-1,3-Dichloroprop	ene	10061-02-6	0.27	0.41	0.45	Not Detected

D: Analyte not within the DoD scope of accreditation.

TENTATIVELY IDENTIFIED COMPOUNDS

		Match	LOD	Amount	
Compound	CAS#			ppbv	
1,2,3-Trimethylbenzene	526-73-8	NA		Not Detected	
2-Nitropropane	79-46-9	NA		Not Detected	
4-Chlorotoluene	106-43-4	NA		Not Detected	
Acetonitrile	75-05-8	NA		Not Detected	
Benzaldehyde	100-52-7	NA		Not Detected	
bis(2-Chloroethyl) Ether	111-44-4	NA		Not Detected	

Air Toxics

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN BMS SVI

Client ID:	Lab Blank		
Lab ID:	1901510-04A	Date/Time Analyzed:	2/6/19 12:30 PM
Date/Time Collected:	NA - Not Applicable	Dilution Factor:	1.00
Media:	NA - Not Applicable	Instrument/Filename:	msdv.i / v020607a

TENTATIVELY IDENTIFIED COMPOUNDS

		Match	LOD	Amount	
Compound	CAS#			ppbv	
Cyclohexene	110-83-8	NA		Not Detected	
Epichlorohydrin	106-89-8	NA		Not Detected	
Ethyl Acetate	141-78-6	NA		Not Detected	
Isobutanol	78-83-1	NA		Not Detected	
Isopropyl ether	108-20-3	NA		Not Detected	
Methacrylonitrile	126-98-7	NA		Not Detected	
Methyl Acetate	79-20-9	NA		Not Detected	
N,N-Dimethyl Aniline	121-69-7	NA		Not Detected	
n-Butanol	71-36-3	NA		Not Detected	
Nitrobenzene	98-95-3	NA		Not Detected	
Pentane	109-66-0	NA		Not Detected	
Propylene	115-07-1	NA		Not Detected	
Pyridine	110-86-1	NA		Not Detected	

D: Analyte not within the DoD scope of accreditation.

Surrogates	CAS#	Limits	%Recovery
1,2-Dichloroethane-d4	17060-07-0	70-130	102
4-Bromofluorobenzene	460-00-4	70-130	109
Toluene-d8	2037-26-5	70-130	98

Air Toxics

Client ID: Lab ID: Date/Time Collected: Media:	Lab Blank 1901510-04B NA - Not Applicable NA - Not Applicable		Date/Time Ar Dilution Fact Instrument/Fi	nalyzed: or: ilename:	2/6/19 12:30 PM 1.00 msdv.i / v020607sima	
			MDL	LOD	Rpt. Limit	Amount
Compound		CAS#	(ug/m3)	(ug/m3)) (ug/m3)	(ug/m3)
		71-55-6	0.024	0.033	0.11	Not Detected
1,1,2,2- i etrachioroeti	nane	79-34-5	0.035	0.041	0.14	Not Detected
1,1,2- I richloroethane		79-00-5	0.030	0.033	0.11	Not Detected
1,1-Dichloroethane		75-34-3	0.022	0.024	0.081	Not Detected
1,1-Dichloroethene		75-35-4	0.017	0.024	0.040	Not Detected
1,2-Dibromoethane (E	EDB)	106-93-4	0.017	0.040	0.15	Not Detected
1,2-Dichloroethane		107-06-2	0.018	0.024	0.081	Not Detected
1,4-Dichlorobenzene		106-46-7	0.044	0.044	0.12	0.057 J
Benzene		71-43-2	0.017	0.019	0.16	Not Detected
Carbon Tetrachloride		56-23-5	0.059	0.059	0.12	Not Detected
Chloroethane		75-00-3	0.024	0.066	0.13	Not Detected
Chloroform		67-66-3	0.012	0.029	0.098	Not Detected
Chloromethane		74-87-3	0.020	0.052	1.0	Not Detected
cis-1,2-Dichloroethen	e	156-59-2	0.019	0.024	0.079	Not Detected
Ethyl Benzene		100-41-4	0.017	0.026	0.087	Not Detected
Freon 114		76-14-2	0.047	0.047	0.14	Not Detected
Freon 12		75-71-8	0.027	0.030	2.5	Not Detected
m,p-Xylene		108-38-3	0.025	0.026	0.17	0.026 J
Methyl tert-butyl ether	r	1634-04-4	0.018	0.022	0.36	Not Detected
Naphthalene		91-20-3	0.050	0.10	0.26	0.063 J
o-Xylene		95-47-6	0.029	0.029	0.087	Not Detected
Tetrachloroethene		127-18-4	0.012	0.041	0.14	Not Detected
Toluene		108-88-3	0.016	0.023	0.075	Not Detected
trans-1,2-Dichloroethe	ene	156-60-5	0.025	0.025	0.40	Not Detected

Air Toxics

Client ID: .ab ID: Date/Time Collected: Media:	Lab Blank 1901510-04B NA - Not Applicable NA - Not Applicable	Date/Time Dilution F Instrumen	Analyzed: actor: t/Filename:	2/6/19 12:30 PM 1.00 msdv.i / v020607sima	
		MDL	LOD	Rpt. Limit	Amount
Compound	CAS	S# (ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)
Trichloroethene	79-01-6	o.014	0.032	0.11	Not Detected
Vinyl Chloride	75-01-4	ų 0.019	0.019	0.026	Not Detected
J = Estimated value. D: Analyte not within t	the DoD scope of accreditation.				
Surrogates	CAS	S#		Limits	%Recovery
1,2-Dichloroethane-d4	17060-	07-0		70-130	98
4-Bromofluorobenzen	e 460-00	-4		70-130	107
Toluene-d8	2037-20	6-5		70-130	99

Air Toxics

Client ID: Lab ID: Date/Time Collected: Media:	Lab Blank 1901510-04C NA - Not Applicable NA - Not Applicable		Date/Time Analyz Dilution Factor: Instrument/Filena	ed: 2 1 1 1 me: r	2/6/19 11:48 AM 1.00 msd20.i / 20020606sima	
			MDL	LOD	Rpt. Limit	Amount
Compound		CAS# ((ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)
Naphthalene	91-	20-3	0.049	0.10	0.26	Not Detected
D: Analyte not within	the DoD scope of accreditati	on.				
Surrogates		CAS#			Limits	%Recovery
1,2-Dichloroethane-d	4 170	060-07-0			70-130	107
4-Bromofluorobenzer	ie 460)-00-4			70-130	96
Toluene-d8	203	37-26-5			70-130	100

Air Toxics

Client ID:	CCV		
Lab ID:	1901510-05A	Date/Time Analyzed:	2/6/19 09:44 AM
Date/Time Collected:	NA - Not Applicable	Dilution Factor:	1.00
Media:	NA - Not Applicable	Instrument/Filename:	msdv.i / v020603

Compound CAS# %Recovery 12.4-Trichlorobenzene 120-82-1 102 12.4-Trichlorobenzene 95-63-6 106 12.2-Litrimethylbenzene 95-63-6 106 12.2-Dichlorobenzene 95-63-6 101 12.2-Dichloropropane 78-87-5 101 13.5-Trimethylbenzene 108-67-8 97 13-Butadiene 106-99-0 81 13.5-Trimethylbenzene 108-67-8 97 13-Butadiene 106-99-0 81 13.2-Dichlorobenzene 123-91-1 89 12.4-Trimethylpentane 540-84-1 89 2.4-Trimethylpentane 540-84-1 89 2.4-Trimethylpentane 591-78-6 112 2.4-Trimethylpentane 591-78-6 121 2.4-Trimethylpentane 62-96-8 87 2.4-Trimethylpentane 102-04-1 121 2.4-Trimethylpentane 108-10-1 111 2.4-Trimethylpentane 62-96-8 87 2.4-Trimethylpentane 100-44-7 98 <th></th> <th></th> <th></th>			
12.4-Trichlorobenzene 120-82-1 102 2.4-Trinethylbenzene 95-63-6 106 12Dichlorobenzene 95-50-1 83 12Dichloropopane 78-87-5 101 13.5-Trimethylbenzene 106-67-8 97 13.5-Dichlorobenzene 106-67-8 97 13.5-Dichlorobenzene 106-99-0 81 13.5-Dichlorobenzene 541-73-1 78 14.4-Dioxane 123-91-1 89 2.4-Trimethylpentane 540-84-1 89 2.4-Trimethylpentane 591-78-6 112 2.4-Trimethylpentane 591-78-6 127 2.Folopopopene 107-05-1 121 2.Fethylbuene 622-96-8 87 14Methyl-2-pentanone 102-05-1 111 Vetone 67-64-1 113 14pha-Chlorobuene 102-96-8 87 14methyl-2-pentanone 102-95-2 96 3romodichloromethane 75-27-4 96 3romodichloromethane 75-25-2 96	Compound	CAS#	%Recovery
12.4-Trimethylbenzene95-63-610612.2-Dichlorobenzene95-50-18312.2-Dichloropropane78-87-510113.5-Trimethylbenzene106-99-0813.8-Butadiene106-99-08113.3-Dichlorobenzene541-73-17814.4-Dioxane123-91-1892.2.4-Trimethylbentane540-84-1892.2.4-Trimethylbentane540-84-1892.2.4-Trimethylbentane591-78-61122-Popanol67-63-01272-Chloropropene107-05-11212-Propanol622-96-8872-Muhyl-2-pentanone108-40-1113Apha-Chlorotoluene100-44-7893romodichloromethane75-27-4963romodichloromethane75-25-2963romodichloromethane75-15-0963romodichloromethane108-90-7963romodichloromethane63-90-7963romodichloromethane63-90-7963romodichloromethane63-90-7963romodichloromethane64-1963romodichloromethane75-15-0963romodichloromethane108-90-7963romodichloromethane90-790Chlorobenzene106-101-590Chlorobenzene106-101-590Chlorobenzene106-101-590Chlorobenzene106-101-590Chlorobenzene106-101-590Chlorobenzene106-101-590Chl	1,2,4-Trichlorobenzene	120-82-1	102
1,2-Dichlorobenzene 95-50-1 83 1,2-Dichloropropane 78-87-5 101 1,3-5-Trimethylbenzene 108-67-8 97 1,3-Butadiene 106-99-0 81 1,3-Dichlorobenzene 541-73-1 78 1,4-Dioxane 123-91-1 89 2,2-4-Trimethylbentane 50-84-1 89 2,2-4-Trimethylbentane 591-78-6 89 2,2-4-Trimethylbentane 591-78-6 112 2-Propanol 67-63-0 127 2-Propanol 67-63-0 127 2-Propanol 622-96-8 87 2-Hethylbuene 622-96-8 87 2-Hethylbuene 108-10-1 111 Acetone 76-64-1 113 3-Baromotichloromethane 75-27-4 96 3-Bromotichloromethane 75-27-4 96 3-Bromotichloropropene 108-90-7 96 3-Disolifide 75-15-0 96 3-Stohon Disulfide 108-90-7 96 3-13-Dichloropropene <td< td=""><td>1,2,4-Trimethylbenzene</td><td>95-63-6</td><td>106</td></td<>	1,2,4-Trimethylbenzene	95-63-6	106
1,2-Dichloropropane 78-87-5 101 1,3,5-Trimethylbenzene 108-67-8 97 1,3-Butadiene 106-99-0 81 1,3-Dichlorobenzene 541-73-1 78 1,4-Dioxane 123-91-1 89 2,4-Trimethylpentane 540-84-1 89 2,4-Trimethylpentane 540-84-1 89 2,4-Trimethylpentane 59-78-0 95 2-Hexanone (Methyl Ethyl Ketone) 78-93-3 95 2-Horopanol 67-63-0 127 2-Propanol 67-63-0 121 2-Hotopropene 107-05-1 111 4-Ethyltoluene 622-96-8 87 4-Hotopropene 100-44-7 98 4-Diorotoluene 100-44-7 98 4-Diorotoluene 100-44-7 96 4-Diorotoluene 75-25-2 96 4-Diorotolusentane 74-83-9 96 4-Diorotolusentane 75-15-0 96 4-Diorotolusentane 108-90-7 96 4-Diorotolusentane <t< td=""><td>1,2-Dichlorobenzene</td><td>95-50-1</td><td>83</td></t<>	1,2-Dichlorobenzene	95-50-1	83
1,3-5-Trimethylbenzene108-67-8971,3-Butadiene106-99-0811,3-Dichlorobenzene541-73-1781,4-Dioxane123-91-1892,2,4-Trimethylpentane540-84-1892-Butanone (Methyl Ethyl Ketone)78-93-3952-Hexanone67-63-01122-Chloropopene107-05-11212-Chloropopene108-10-11134-Methyl-2-pentanone67-64-11134-Methyl-2-pentanone67-64-11134-Methyl-2-pentanone10-44-7983romodichloromethane75-27-4963romodichloromethane75-25-2963romodichloromethane148-39-1133romodichloropopene108-90-7903romodichloropopene108-90-790	1,2-Dichloropropane	78-87-5	101
A-Butadiene106-99-081A-Diokhorobenzene541-73.178A-Dioxane123-91.1892.2.4-Trimethylpentane540-84.1892.2.4-Trimethylpentane540-84.1892.4-tronone (Methyl Ethyl Ketone)78-93.3952-Hexanone591-78-61122-Popanol67-63-01272-Choropopene07-05-11212-Ethyltoluene622-96-8872-Methyl-2-pentanone07-04-1113Acetone75-27.4963-mondichloromethane75-25.2963-mondichloromethane75-15-0963-mondichloropopene00-10-5903-mondichloropopene100-10-590	1,3,5-Trimethylbenzene	108-67-8	97
1,3-Dichlorobenzene541-73-1781,4-Dioxane123-91-1892,2.4-Trimethylpentane540-84-1892,2.4-Trimethylpentane78-93-3952-Butanone (Methyl Ethyl Ketone)78-93-31122-Propanol67-63-01272-Chloropropene107-05-11212-Chloropropene108-10-11112-Ethyltoluene622-96-8872-Methyl-2-pentanone108-10-11132-Methyl-2-pentanone108-10-11132-Moromothane75-27-4963comoform75-25-2963comothane74-83-91132-Arbon Disulfide75-15-096Chlorobenzene108-90-7902-Stanone106-11-51042-Mene98-82-890	1,3-Butadiene	106-99-0	81
1,4-Dioxane 123-91-1 89 2,2,4-Trimethylpentane 540-84-1 89 2-Butanone (Methyl Ethyl Ketone) 78-93-3 95 2-Hexanone 591-78-6 112 2-Propanol 67-63-0 127 3-Chloropropene 107-05-1 121 4-Ethyltoluene 622-96-8 87 4-Methyl-2-pentanone 108-10-1 111 Acctone 67-64-1 113 Alpha-Chloroptomethane 100-44-7 98 3ormodichloromethane 75-27-4 96 3ormothane 75-25-2 96 Chlorobenzene 18-90-7 90 Chlorobenzene 108-90-7 90 Chlorobenzene 100-10-15 104	1,3-Dichlorobenzene	541-73-1	78
2,4-Trimethylpentane 540-84-1 89 2-Butanone (Methyl Ethyl Ketone) 78-93-3 95 2-Hexanone 591-78-6 112 2-Propanol 67-63-0 127 3-Chloropropene 107-05-1 121 4-Ethyltoluene 622-96-8 87 4-Methyl-2-pentanone 108-10-1 111 Acetone 67-64-1 113 alpha-Chlorotoluene 100-44-7 98 aromodichloromethane 75-27-4 96 Bromodichloromethane 74-83-9 91 Carbon Disulfide 75-15-0 96 Chlorobenzene 108-90-7 90 Chlorobenzene 108-90-7 90 Chlorobenzene 10061-01-5 90 Chlorobenzene 98-82-8 90	1,4-Dioxane	123-91-1	89
2-Butanone (Methyl Ethyl Ketone) 78-93-3 95 2-Hexanone 591-78-6 112 2-Propanol 67-63-0 127 3-Chloropropene 107-05-1 121 4-Ethylbluene 622-96-8 87 4-Methyl-2-pentanone 108-10-1 111 Acetone 67-63-1 113 Apha-Chlorotoluene 10-04-7 98 Bromodichloromethane 75-27-4 96 Bromodichloromethane 75-25-2 96 Bromodichloropopene 113 96 Bromodichloropopene 75-15-0 96 Bromodichloropopene 108-00-7 90 Bromodichloropopene 108-00-7 90 Bromodichloropopene 108-00-7 90 Bromodichloropopene 100-01-5 90	2,2,4-Trimethylpentane	540-84-1	89
2-Hexanone 591-78-6 112 2-Propanol 67-63-0 127 3-Chloropropene 107-05-1 121 1-Ethyltoluene 622-96-8 87 1-Methyl-2-pentanone 108-10-1 111 Acetone 67-64-1 113 alpha-Chlorotoluene 76-27-4 98 Bromoferm 75-27-4 96 Bromoferm 75-25-2 96 Carbon Disulfide 75-15-0 96 Carbon Disulfide 75-15-0 96 Chlorobenzene 108-90-7 96 Chlorobenzene 108-90-7 96 Chlorobenzene 96-91 96 Chlorobenzene 96-91 96 Chlorobenzene 98-91 96 Chlorobenzene 108-90-7 96 Chlorobenzene <td>2-Butanone (Methyl Ethyl Ketone)</td> <td>78-93-3</td> <td>95</td>	2-Butanone (Methyl Ethyl Ketone)	78-93-3	95
2-Propanol 67-63-0 127 3-Chloropropene 107-05-1 121 4-Ethyltoluene 622-96-8 87 4-Methyl-2-pentanone 108-10-1 111 Acetone 67-64-1 113 alpha-Chlorotoluene 100-44-7 98 Bromodichloromethane 75-27-4 96 Bromodichloromethane 74-83-9 113 Carbon Disulfide 75-15-0 96 Chlorobenzene 108-90-7 90 cist-1,3-Dichloropropene 100-10-5 90	2-Hexanone	591-78-6	112
A-Chloropropene 107-05-1 121 I-Ethyltoluene 622-96-8 87 I-Methyl-2-pentanone 108-10-1 111 Acetone 67-64-1 113 Apha-Chlorotoluene 100-44-7 98 Bromodichloromethane 75-27-4 96 Bromoform 75-25-2 96 Bromoform 75-15-0 96 Carbon Disulfide 75-15-0 96 Chlorobenzene 108-90-7 90 Sis-1,3-Dichloropropene 10061-01-5 104 Cumene 98-82-8 90	2-Propanol	67-63-0	127
I-Ethyltoluene 622-96-8 87 I-Methyl-2-pentanone 108-10-1 111 Acetone 67-64-1 113 Apha-Chlorotoluene 100-44-7 98 Bromodichloromethane 75-27-4 96 Bromodethane 75-25-2 96 Bromodethane 74-83-9 113 Carbon Disulfide 75-15-0 96 Chlorobenzene 108-90-7 96 Chlorobenzene 108-90-7 96 Chlorobenzene 108-90-7 96 Chlorobenzene 96-90-7 96 Chlorobenzene 98-90-7 90 Chumene 98-82-8 90	3-Chloropropene	107-05-1	121
I-Methyl-2-pentanone 108-10-1 111 Acetone 67-64-1 113 alpha-Chlorotoluene 100-44-7 98 Bromodichloromethane 75-27-4 96 Bromoform 75-25-2 96 Bromomethane 74-83-9 113 Carbon Disulfide 75-15-0 96 Chlorobenzene 108-90-7 90 Chlorobenzene 10061-01-5 90 Cumene 98-82-8 90	4-Ethyltoluene	622-96-8	87
Acetone 67-64-1 113 alpha-Chlorotoluene 100-44-7 98 Bromodichloromethane 75-27-4 96 Bromoform 75-25-2 96 Bromomethane 74-83-9 113 Carbon Disulfide 75-15-0 96 Chlorobenzene 108-90-7 91 Chlorobenzene 10061-01-5 90 Cumene 98-82-8 104	4-Methyl-2-pentanone	108-10-1	111
Alpha-Chlorotoluene 100-44-7 98 Bromodichloromethane 75-27-4 96 Bromoform 75-25-2 96 Bromomethane 74-83-9 113 Carbon Disulfide 75-15-0 96 Chlorobenzene 108-90-7 90 Cis-1,3-Dichloropropene 10061-01-5 104 Cumene 98-82-8 90	Acetone	67-64-1	113
Bromodichloromethane 75-27-4 96 Bromoform 75-25-2 96 Bromomethane 74-83-9 113 Carbon Disulfide 75-15-0 96 Chlorobenzene 108-90-7 90 cis-1,3-Dichloropropene 10061-01-55 104 Cumene 98-82-8 90	alpha-Chlorotoluene	100-44-7	98
Bromoform 75-25-2 96 Bromomethane 74-83-9 113 Carbon Disulfide 75-15-0 96 Chlorobenzene 108-90-7 90 cis-1,3-Dichloropropene 10061-01-5 104 Cumene 98-82-8 90	Bromodichloromethane	75-27-4	96
Bromomethane 74-83-9 113 Carbon Disulfide 75-15-0 96 Chlorobenzene 108-90-7 90 cis-1,3-Dichloropropene 10061-01-5 104 Cumene 98-82-8 90	Bromoform	75-25-2	96
Carbon Disulfide 75-15-0 96 Chlorobenzene 108-90-7 90 cis-1,3-Dichloropropene 10061-01-5 104 Cumene 98-82-8 90	Bromomethane	74-83-9	113
Chlorobenzene 108-90-7 90 cis-1,3-Dichloropropene 10061-01-5 104 Cumene 98-82-8 90	Carbon Disulfide	75-15-0	96
sis-1,3-Dichloropropene 10061-01-5 104 Cumene 98-82-8 90	Chlorobenzene	108-90-7	90
Cumene 98-82-8 90	cis-1,3-Dichloropropene	10061-01-5	104
	Cumene	98-82-8	90

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN BMS SVI

Air Toxics

Client ID:	CCV		
Lab ID:	1901510-05A	Date/Time Analyzed:	2/6/19 09:44 AM
Date/Time Collected:	NA - Not Applicable	Dilution Factor:	1.00
Media:	NA - Not Applicable	Instrument/Filename:	msdv.i / v020603

Compound	CAS#	%Recovery
Cyclohexane	110-82-7	90
Dibromochloromethane	124-48-1	92
Ethanol	64-17-5	129
Freon 11	75-69-4	97
Freon 113	76-13-1	92
Heptane	142-82-5	100
Hexachlorobutadiene	87-68-3	94
Hexane	110-54-3	106
Methylene Chloride	75-09-2	88
Propylbenzene	103-65-1	84
Styrene	100-42-5	103
Tetrahydrofuran	109-99-9	103
trans-1,3-Dichloropropene	10061-02-6	102

D: Analyte not within the DoD scope of accreditation.

Γ

Surrogates	CAS#	Limits	%Recovery
1,2-Dichloroethane-d4	17060-07-0	70-130	103
4-Bromofluorobenzene	460-00-4	70-130	91
Toluene-d8	2037-26-5	70-130	104

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN BMS SVI

Client ID:	ссч		
Lab ID:	1901510-05B	Date/Time Analyzed:	2/6/19 09:44 AM
Date/Time Collected:	NA - Not Applicable	Dilution Factor:	1.00
Media:	NA - Not Applicable	Instrument/Filename:	msdv.i / v020603sim

Compound	CAS#	%Recovery
1,1,1-Trichloroethane	71-55-6	94
1,1,2,2-Tetrachloroethane	79-34-5	81
1,1,2-Trichloroethane	79-00-5	88
1,1-Dichloroethane	75-34-3	90
1,1-Dichloroethene	75-35-4	98
1,2-Dibromoethane (EDB)	106-93-4	94
1,2-Dichloroethane	107-06-2	82
1,4-Dichlorobenzene	106-46-7	71
Benzene	71-43-2	85
Carbon Tetrachloride	56-23-5	88
Chloroethane	75-00-3	84
Chloroform	67-66-3	88
Chloromethane	74-87-3	89
cis-1,2-Dichloroethene	156-59-2	90
Ethyl Benzene	100-41-4	102
Freon 114	76-14-2	94
Freon 12	75-71-8	92
m,p-Xylene	108-38-3	98
Methyl tert-butyl ether	1634-04-4	111
Naphthalene	91-20-3	127
o-Xylene	95-47-6	101
Tetrachloroethene	127-18-4	90
Toluene	108-88-3	87
trans-1,2-Dichloroethene	156-60-5	87

Air Toxics

Air Toxics

Client ID: Lab ID: Date/Time Collected: Media:	CCV 1901510-05B NA - Not Applicable NA - Not Applicable	Date/Time Analyzed: Dilution Factor: Instrument/Filename:	2/6/19 09:44 AM 1.00 msdv.i / v020603sim	
_				0/ Decessory
Compound	CAS#			%Recovery
Trichloroethene	79-01-6			86
Vinyl Chloride	75-01-4			94
D: Analyte not within	the DoD scope of accreditation.			
Surrogates	CAS#		Limits	%Recovery
1,2-Dichloroethane-d	4 17060-07-0		70-130	97
4-Bromofluorobenzer	e 460-00-4		70-130	96
Toluene-d8	2037-26-5		70-130	99

Air Toxics

Client ID: Lab ID: Date/Time Collected: Media:	CCV 1901510-05C NA - Not Applicable NA - Not Applicable	Date/Time Analyzed: Dilution Factor: Instrument/Filename:	2/6/19 09:04 AM 1.00 msd20.i / 20020602sim	
Compound	CAS#			%Recovery
Naphthalene	91-20-3			96
D: Analyte not within	the DoD scope of accreditation.			
Surrogates	CAS#		Limits	%Recovery
1,2-Dichloroethane-d4	4 17060-07-0		70-130	93
4-Bromofluorobenzen	e 460-00-4		70-130	101
Toluene-d8	2037-26-5		70-130	101

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN BMS SVI

Г

Air Toxics

Client ID:	LCS		
Lab ID:	1901510-06A	Date/Time Analyzed:	2/6/19 10:28 AM
Date/Time Collected:	NA - Not Applicable	Dilution Factor:	1.00
Media:	NA - Not Applicable	Instrument/Filename:	msdv.i / v020604

Compound	CAS#	%Recovery
1,2,4-Trichlorobenzene	120-82-1	122
1,2,4-Trimethylbenzene	95-63-6	118
1,2-Dichlorobenzene	95-50-1	97
1,2-Dichloropropane	78-87-5	99
1,3,5-Trimethylbenzene	108-67-8	112
1,3-Butadiene	106-99-0	97
1,3-Dichlorobenzene	541-73-1	92
1,4-Dioxane	123-91-1	94
2,2,4-Trimethylpentane	540-84-1	89
2-Butanone (Methyl Ethyl Ketone)	78-93-3	99
2-Hexanone	591-78-6	127
2-Propanol	67-63-0	117
3-Chloropropene	107-05-1	115
4-Ethyltoluene	622-96-8	101
4-Methyl-2-pentanone	108-10-1	121
Acetone	67-64-1	131 Q
alpha-Chlorotoluene	100-44-7	110
Bromodichloromethane	75-27-4	98
Bromoform	75-25-2	103
Bromomethane	74-83-9	122
Carbon Disulfide	75-15-0	105
Chlorobenzene	108-90-7	100
cis-1,3-Dichloropropene	10061-01-5	108
Cumene	98-82-8	104

Air Toxics

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN BMS SVI

Client ID:LCSLab ID:1901510-06ADate/Time Analyzed:2/6/19 10:28 AMDate/Time Collected:NA - Not ApplicableDilution Factor:1.00Media:NA - Not ApplicableInstrument/Filename:msdv.i / v020604

Compound	CAS#	%Recovery
Cyclohexane	110-82-7	94
Dibromochloromethane	124-48-1	95
Ethanol	64-17-5	131 Q
Freon 11	75-69-4	103
Freon 113	76-13-1	104
Heptane	142-82-5	99
Hexachlorobutadiene	87-68-3	104
Hexane	110-54-3	117
Methylene Chloride	75-09-2	93
Propylbenzene	103-65-1	97
Styrene	100-42-5	110
Tetrahydrofuran	109-99-9	107
trans-1,3-Dichloropropene	10061-02-6	105

Q = Exceeds Quality Control limits.

D: Analyte not within the DoD scope of accreditation.

Surrogates	CAS#	Limits	%Recovery
1,2-Dichloroethane-d4	17060-07-0	70-130	98
4-Bromofluorobenzene	460-00-4	70-130	99
Toluene-d8	2037-26-5	70-130	100

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN BMS SVI

Г

Air Toxics

Client ID:	LCSD		
Lab ID:	1901510-06AA	Date/Time Analyzed:	2/6/19 11:10 AM
Date/Time Collected:	NA - Not Applicable	Dilution Factor:	1.00
Media:	NA - Not Applicable	Instrument/Filename:	msdv.i / v020605

Compound	CAS#	%Recovery
1,2,4-Trichlorobenzene	120-82-1	119
1,2,4-Trimethylbenzene	95-63-6	122
1,2-Dichlorobenzene	95-50-1	94
1,2-Dichloropropane	78-87-5	96
1,3,5-Trimethylbenzene	108-67-8	109
1,3-Butadiene	106-99-0	101
1,3-Dichlorobenzene	541-73-1	87
1,4-Dioxane	123-91-1	91
2,2,4-Trimethylpentane	540-84-1	96
2-Butanone (Methyl Ethyl Ketone)	78-93-3	104
2-Hexanone	591-78-6	127
2-Propanol	67-63-0	141 Q
3-Chloropropene	107-05-1	121
4-Ethyltoluene	622-96-8	100
4-Methyl-2-pentanone	108-10-1	118
Acetone	67-64-1	128
alpha-Chlorotoluene	100-44-7	112
Bromodichloromethane	75-27-4	96
Bromoform	75-25-2	105
Bromomethane	74-83-9	121
Carbon Disulfide	75-15-0	107
Chlorobenzene	108-90-7	99
cis-1,3-Dichloropropene	10061-01-5	110
Cumene	98-82-8	98

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN BMS SVI

Air Toxics

Client ID:	LCSD		
Lab ID:	1901510-06AA	Date/Time Analyzed:	2/6/19 11:10 AM
Date/Time Collected:	NA - Not Applicable	Dilution Factor:	1.00
Media:	NA - Not Applicable	Instrument/Filename:	msdv.i / v020605

Compound	CAS#	%Recovery
Cyclohexane	110-82-7	101
Dibromochloromethane	124-48-1	96
Ethanol	64-17-5	137 Q
Freon 11	75-69-4	108
Freon 113	76-13-1	102
Heptane	142-82-5	99
Hexachlorobutadiene	87-68-3	102
Hexane	110-54-3	119
Methylene Chloride	75-09-2	92
Propylbenzene	103-65-1	95
Styrene	100-42-5	108
Tetrahydrofuran	109-99-9	112
trans-1,3-Dichloropropene	10061-02-6	105

Q = Exceeds Quality Control limits.D: Analyte not within the DoD scope of accreditation.

Surrogates	CAS#	Limits	%Recovery
1,2-Dichloroethane-d4	17060-07-0	70-130	102
4-Bromofluorobenzene	460-00-4	70-130	100
Toluene-d8	2037-26-5	70-130	99

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN BMS SVI

Client ID:	LCS		
Lab ID:	1901510-06B	Date/Time Analyzed:	2/6/19 10:28 AM
Date/Time Collected:	NA - Not Applicable	Dilution Factor:	1.00
Media:	NA - Not Applicable	Instrument/Filename:	msdv.i / v020604sim

Compound	CAS#	%Recovery
1,1,1-Trichloroethane	71-55-6	100
1,1,2,2-Tetrachloroethane	79-34-5	90
1,1,2-Trichloroethane	79-00-5	93
1,1-Dichloroethane	75-34-3	96
1,1-Dichloroethene	75-35-4	102
1,2-Dibromoethane (EDB)	106-93-4	99
1,2-Dichloroethane	107-06-2	84
1,4-Dichlorobenzene	106-46-7	81
Benzene	71-43-2	88
Carbon Tetrachloride	56-23-5	75
Chloroethane	75-00-3	94
Chloroform	67-66-3	92
Chloromethane	74-87-3	102
cis-1,2-Dichloroethene	156-59-2	89
Ethyl Benzene	100-41-4	110
Freon 114	76-14-2	106
Freon 12	75-71-8	106
m,p-Xylene	108-38-3	108
Methyl tert-butyl ether	1634-04-4	121
Naphthalene	91-20-3	196 Q
o-Xylene	95-47-6	114
Tetrachloroethene	127-18-4	93
Toluene	108-88-3	92
trans-1,2-Dichloroethene	156-60-5	102

* % Recovery is calculated using unrounded analytical results.

Air Toxics

Air Toxics

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN BMS SVI

Client ID: Lab ID: Date/Time Collected: Media:	LCS 1901510-06B NA - Not Applicable NA - Not Applicable	Date/Time Analyzed: Dilution Factor: Instrument/Filename:	2/6/19 10:28 AM 1.00 msdv.i / v020604sim	
Commound	010#			%Recovery
Compound	CAS#			/orcecovery
Trichloroethene	79-01-6			90
Vinyl Chloride	75-01-4			103

Q = Exceeds Quality Control limits. D: Analyte not within the DoD scope of accreditation.

Surrogates	CAS#	Limits	%Recovery
1,2-Dichloroethane-d4	17060-07-0	70-130	98
4-Bromofluorobenzene	460-00-4	70-130	101
Toluene-d8	2037-26-5	70-130	100

Air Toxics

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN BMS SVI

Client ID:	LCSD		
Lab ID:	1901510-06BB	Date/Time Analyzed:	2/6/19 11:10 AM
Date/Time Collected:	NA - Not Applicable	Dilution Factor:	1.00
Media:	NA - Not Applicable	Instrument/Filename:	msdv.i / v020605sim

Compound	CAS#	%Recovery
1,1,1-Trichloroethane	71-55-6	99
1,1,2,2-Tetrachloroethane	79-34-5	91
1,1,2-Trichloroethane	79-00-5	93
1,1-Dichloroethane	75-34-3	96
1,1-Dichloroethene	75-35-4	103
1,2-Dibromoethane (EDB)	106-93-4	98
1,2-Dichloroethane	107-06-2	84
1,4-Dichlorobenzene	106-46-7	81
Benzene	71-43-2	89
Carbon Tetrachloride	56-23-5	75
Chloroethane	75-00-3	94
Chloroform	67-66-3	92
Chloromethane	74-87-3	102
cis-1,2-Dichloroethene	156-59-2	89
Ethyl Benzene	100-41-4	110
Freon 114	76-14-2	106
Freon 12	75-71-8	105
m,p-Xylene	108-38-3	108
Methyl tert-butyl ether	1634-04-4	121
Naphthalene	91-20-3	195 Q
o-Xylene	95-47-6	114
Tetrachloroethene	127-18-4	93
Toluene	108-88-3	92
trans-1,2-Dichloroethene	156-60-5	103

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN BMS SVI

Client ID: Lab ID: Date/Time Collected: Media:	LCSD 1901510-06BB NA - Not Applicable NA - Not Applicable	Date/Time Analyzed: Dilution Factor: Instrument/Filename:	2/6/19 11:10 AM 1.00 msdv.i / v020605sim	
Compound	CAS#			%Recovery
Trichloroethene	79-01-6			91
Vinyl Chloride	75-01-4			102
Q = Exceeds Quality D: Analyte not within	Control limits. the DoD scope of accreditation.			
Surrogates	CAS#		Limits	%Recovery

Surrogates	CAS#	Limits	%Recovery
1,2-Dichloroethane-d4	17060-07-0	70-130	98
4-Bromofluorobenzene	460-00-4	70-130	100
Toluene-d8	2037-26-5	70-130	100

* % Recovery is calculated using unrounded analytical results.

Air Toxics

Air Toxics

Client ID: Lab ID: Date/Time Collected: Media:	LCS 1901510-06C NA - Not Applicable NA - Not Applicable	Date/Time Analyzed: Dilution Factor: Instrument/Filename:	2/6/19 09:49 AM 1.00 msd20.i / 20020603sim	
Compound	CAS#			%Recovery
Naphthalene	91-20-3			115
D: Analyte not within	the DoD scope of accreditation.			
Surrogates	CAS#		Limits	%Recovery
1,2-Dichloroethane-de	4 17060-07-0		70-130	93
4-Bromofluorobenzer	e 460-00-4		70-130	100
Toluene-d8	2037-26-5		70-130	101

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN BMS SVI

Client ID: Lab ID: Date/Time Collected: Media:	LCSD 1901510-06CC NA - Not Applicable NA - Not Applicable	Date/Time Analyzed: Dilution Factor: Instrument/Filename:	2/6/19 10:28 AM 1.00 msd20.i / 20020604sim	
Compound	CAS#			%Recovery
Naphthalene	91-20-3			123
D: Analyte not within	the DoD scope of accreditation.			
Surrogates	CAS#		Limits	%Recovery
1,2-Dichloroethane-d	4 17060-07-0		70-130	93
4-Bromofluorobenzen	e 460-00-4		70-130	100
Toluene-d8	2037-26-5		70-130	100

* % Recovery is calculated using unrounded analytical results.

Air Toxics

Data Usability Summary Report

Bristol-Myers Squibb Thompson Road Investigation

Data Usability Summary Report

Syracuse, NY

Volatile Organic Compound (VOC) analysis

SDGs # 1901510

Analyses Performed By: Eurofins Air Toxics

Folsom, CA

Report #32062R Review Level: Tier III Project: B0087363.0031.00002

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Groups (SDGs) # 1901510 for samples collected in association with the with the Bristol-Myers Squibb Thompson Road Site. The review was conducted as a Tier III evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

SDG Number	Sample ID	Lab ID Matrix		Sample Collection Date	Parent Sample	Analysis				
			Matrix			voc	svoc	РСВ	MET	MISC
1901510	IA-3 01242019	1901510-01	GS	01/24/2019		Х				
	DUP-012419	1901510-02	GS	01/24/2019	IA-3	Х				
	AMB-3 01242019	1901510-03	GS	01/24/2019		х				
ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

		Reported		Performance Acceptable		Not
	Items Reviewed	No	Yes	No	Yes	Required
1.	Sample receipt condition		Х		Х	
2.	Requested analyses and sample results		Х		Х	
3.	Master tracking list		Х		Х	
4.	Methods of analysis		Х		Х	
5.	Reporting limits		Х		Х	
6.	Sample collection date		Х		Х	
7.	Laboratory sample received date		Х		Х	
8.	Sample preservation verification (as applicable)		Х		Х	
9.	Sample preparation/extraction/analysis dates		Х		Х	
10.	Fully executed Chain-of-Custody (COC) form		Х		Х	
11.	Narrative summary of QA or sample problems provided		Х		Х	
12.	Data Package Completeness and Compliance		X		Х	

Note:

QA - Quality Assurance

List of Acronyms

- %D: Percent Difference
- %R: Percent Recovery
- AC: Acceptable
- ALC/GLY: Alcohols/Glycols
- BAL: Blank Action Level
- CCV: Continuing Calibration Verification
- **CRDL:** Contract Required Detection Limit
- D: Dilution
- EIS: Extractable Internal Standard
- FB: Field Blank
- FD: Field Duplicate
- ALD: Aldehydes
- GC/ECD: Gas Chromatograph/Electron Capture Detector
- GC/MS: Gas Chromatograph/Mass spectrometer
- HT: Holding Time
- ICP: Inductively Coupled Plasma
- ICS: Interference Control Sample
- ICV: Initial Calibration Verification
- ISTD: Internal Standards
- LabDup: Laboratory Duplicate
- LCS: Lab Control Sample
- LCSD: Lab Control Sample Duplicate
- LL: Lower Control Limit
- MB: Method Blank
- MDL: Method Detection Limit
- MET: Metals
- MS: Matrix Spike
- MSD: Matrix Spike Duplicate
- N/A: Not Applicable
- NC: Not Compliant

List of Acronyms, Continued

- PAH: Polyaromatic Hydrocarbon
- PCB: Polychlorinated Biphenyl
- PEST: Pesticide
- PFAS: Per- and Polyfluoroalkyl Substances
- QA: Quality Assurance
- QC: Quality Control
- RB: Rinse Blank
- **RL: Reporting Limit**
- **RPD:** Relative Percent Difference
- RRF: Relative Response Factor
- **RSD:** Relative Standard Deviation
- RT: Retention Time
- SDG: Sample Delivery Group
- SerDil: Serial Dilution
- SIM: Single Ion Monitoring
- SOP: Standard Operating Procedure
- SSTD: Surrogate Standards
- SVOC: Semivolatile Organic Compound
- TB: Trip Blank
- TIC: Tentatively Identified Compound
- TOC: Total Organic Carbon
- TOTDIS: Total and Dissolved
- UL: Upper Control Limit
- USEPA: United States Environmental Protection Agency
- VOC: Volatile Organic Compound

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) Method TO-15 and TO-15 Modified (SIM). Data were reviewed in accordance with USEPA National Functional Guidelines of October 1999, USEPA Region II SOP HW-31- Validating Air Samples Volatile Organic Analysis of Ambient Air In Canister by Method TO-15 of October 2006, New York State DEC Analytical Method ASP 2005 TO-15 (QA/QC Criteria R9 TO-15), NYSDEC Modifications to R9 TO-15 QA/QC Criteria October 2009.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
 - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
 - UB Compound considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and

provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservatiojn	Return Cannister Pressure
EPA TO-15 and TO- 15 Modified (SIM)	Air	30 days from collection to analysis	Ambient Temperature	< -1" Hg

All samples were analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

All compounds associated with the QA blanks exhibited a concentration less than the MDL, with the exception of the compounds listed in the following table. Sample results associated with QA blank contamination that were greater than the BAL resulted in the removal of the laboratory qualifier (B) of data. Sample results less than the BAL associated with the following sample locations were qualified as listed in the following table.

Sample Locations	Analytes	Sample Result	Qualification
AMB-3	Naphthalene	Detected sample results <rl <bal<="" and="" td=""><td>"UB" at the RL</td></rl>	"UB" at the RL

Note:

RL Reporting limit

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable, and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of

acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (30%) and an RRF value greater than control limit (0.05).

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (30%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits, with the exception of the compounds presented in the following table.

Sample Locations	Initial/Continuing	Compound	Criteria
IA-3 01242019			
DUP-012419	ICV %RSD	1,4-Dichlorobenzene	30.4%
AMB-3 01242019			

The criteria used to evaluate the initial and continuing calibration are presented in the following table. In the case of a calibration deviation, the sample results are qualified.

Initial/Continuing	Criteria	Sample Result	Qualification
		Non-detect	R
	NNF \$0.03	Detect	J
Initial and Continuing		Non-detect	R
Calibration		Detect	J
	RRF >0.05 or RRF >0.01 ¹	Non-detect	No Action
		Detect	NO ACION
	% RSD > 15% or a correlation coefficient <0.00	Non-detect	UJ
Initial Calibration		Detect	J
	%RSD >90%	Non-detect	R

Initial/Continuing	Criteria	Sample Result	Qualification
		Detect	J
	%D >20% (increase in sensitivity)	Non-detect	No Action
		Detect	J
Continuing Calibration	%D >20% (decrease in sensitivity)	Non-detect	UJ
Continuing Calibration		Detect	J
	%D >00% (increase/decrease in sensitivity)	Non-detect	R
		Detect	J

Note:

¹ RRF of 0.01 only applies to compounds which are typically poor responding compounds (i.e., ketones, 1,4-dioxane, etc.)

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. VOC analysis requires that all surrogates associated with the analysis exhibit a percent recovery within the established acceptance limits of 70% to 130%.

All surrogate recoveries were within control limits.

6. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria require the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

7. Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD) Analysis

The LCS/LCSD analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS/LCSD analysis must exhibit a percent recovery within the established acceptance limits of 70% to 130%.

Sample locations associated with LCS/LCSD analysis exhibiting recoveries outside of the control limits presented in the following table.

Sample Locations	Sample Locations Compound		LCSD Recovery
IA-3 01242019	Acetone	>UL	AC
DUP-012419	Ethanol	>UL	>UL

Sample Locations	Compound	LCS Recovery	LCSD Recovery
AMB-3 01242019	2-Propanol	AC	>UL
	Naphthalene	>UL	>UL

The criteria used to evaluate the LCS/LCSD recoveries are presented in the following table. In the case of an LCS/LCSD deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> the upper centrel limit (III.)	Non-detect	No Action
	Detect	J
< the lower control limit (11) but > 10%	Non-detect	UJ
	Detect	J
< 100/	Non-detect	R
< 10%	Detect	J

9. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 50% for water matrices is applied to the RPD between the parent sample and field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
	1,2,4-Trimethylbenzene	10	10	AC
	1,3,5-Trimethylbenzene	1.9	2.0	AC
	2-Butanone (Methyl Ethyl Ketone)	1.2 J	2.3	AC
	2-Hexanone	2.7 U	0.95 J	AC
	2-Propanol	4.6	5.3	AC
IA-3 /DUP-012419	4-Ethyltoluene	2.3	2.5	AC
	4-Methyl-2-pentanone	0.23 J	0.56 U	AC
	Acetone	7.3	9.7	AC
	Carbon Disulfide	2.0 J	2.1 U	AC
	Cumene	0.40 J	0.67 U	AC
	Ethanol	51	57	11.1%

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
	Freon 11	1.2	1.2	AC
	Freon 113	0.74 J	0.66 J	AC
	Heptane	0.82	0.99	AC
	Hexane	0.61	0.71	AC
	Methylene Chloride	0.64 J	0.58 J	AC
	Propylbenzene	1.2	1.2	AC
	1,1,1-Trichloroethane	0.039 J	0.039 J	AC
	1,2-Dichloroethane	0.086 J	0.092 J	AC
	Benzene	0.64	0.64	AC
	Carbon Tetrachloride	0.47	0.48	AC
	Chloroethane	0.18 U	0.059 J	AC
	Chloroform	0.34	0.33	AC
	Chloromethane	0.84 J	0.97 J	AC
	cis-1,2-Dichloroethene	0.12	0.11	AC
	Ethyl Benzene	2.1	1.8	15.4%
	Freon 114	0.11 J	0.15 J	AC
	Freon 12	2.2 J	2.4 J	AC
	m,p-Xylene	10	9.1	9.4%
	o-Xylene	4.1	3.8	7.6%
	Tetrachloroethene	0.18 J	0.17 J	AC
	Toluene	5.0	4.5	10.5%
	Trichloroethene	0.59	0.61	AC
	Naphthalene	4.5	4.2	6.9%

Notes:

AC Acceptable

U Not detected

The calculated RPDs between the parent sample and field duplicate were acceptable.

10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra. All identified compounds met the specified criteria.

Tentatively identified compounds (TICs) were identified in all sample locations associated with this SDG. VOC analysis requires that TICs be qualified as estimated (JN).

11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR VOCs

VOCs: EPA TO-15		ported	Perfo Acce	ermance eptable	Not
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROMETR	Y (GC/N	IS)			
Tier II Validation					
Holding times		X		X	
Reporting limits (units)		x		Х	
Blanks					
A. Method blanks		Х	Х		
B. Equipment blanks					Х
C. Trip blanks					Х
Laboratory Control Sample (LCS)		Х	Х		
Laboratory Control Sample Duplicate(LCSD)		X	Х		
LCS/LCSD Precision (RPD)		X		Х	
Matrix Spike (MS)					Х
Matrix Spike Duplicate(MSD)					Х
MS/MSD Precision (RPD)					Х
Field/Lab Duplicate (RPD)		Х		Х	
Surrogate Spike Recoveries		Х		Х	
Dilution Factor		Х		Х	
Moisture Content					Х
Tier III Validation					
System performance and column resolution		Х		Х	
Initial calibration %RSDs		х	Х		
Continuing calibration RRFs		Х		Х	
Continuing calibration %Ds		Х		Х	
Instrument tune and performance check		Х		Х	
Ion abundance criteria for each instrument used		Х		Х	
Internal standard		х		Х	
Compound identification and quantitation					
A. Reconstructed ion chromatograms		X		Х	
B. Quantitation Reports		Х		Х	

	VOCs: EPA TO-15	Rep	orted	Perfor Acce	rmance ptable	Not
		No	Yes	No	Yes	Required
GA	AS CHROMATOGRAPHY/MASS SPECTROMETR	Y (GC/M	S)			
C.	RT of sample compounds within the established RT windows		х		x	
D.	Transcription/calculation errors present		Х		Х	
E.	Reporting limits adjusted to reflect sample dilutions		Х		Х	
E.	Reporting limits adjusted to reflect sample dilutions		Х		Х	

Notes:

%RSD Relative standard deviation

- %R Percent recovery
- RPD Relative percent difference
- %D Percent difference

DATA USABILITY SUMMARY REPORT

Sample	Ormulian					C	Compliancy	y ¹		
Group (SDG)	Sampling Date	Protocol	Sample ID	Matrix	voc	svoc	PFAS	MET	MISC	Noncompliance
	01/24/2019	TO-15	IA-3 01242019	Air	No	-	-	-	-	VOC: ICV %RSD, LCS/LCSD %R
1901510	01/24/2019	TO-15	DUP-012419	Air	No	-	-	-	-	VOC: ICV %RSD, LCS/LCSD %R
	01/24/2019	TO-15	AMB-3 01242019	Air	No	-	-	_	-	VOC: ICV %RSD, LCS/LCSD %R, MB

SAMPLE COMPLIANCE REPORT

Note:

1 Samples which are compliant with no added validation qualifiers are listed as "yes". Samples which are non-compliant or which have added qualifiers are listed as "no". A "no" designation does not necessarily indicate that the data have been rejected or are otherwise unusable.

VALIDATION PERFORMED BY: Jeffrey L. Davin

SIGNATURE:

DATE: March 14, 2019

PEER REVIEW: Joseph Houser

DATE: March 14, 2019

CHAIN OF CUSTODY CORRECTED SAMPLE ANALYSIS DATA SHEETS (Following 73 pages)

Air Totics PID	1, handling, of shipping of	elated to the collection	any kind, re	ction, of a	nand, or a	olaim, den	gainst any o 37-4922	s Air Toxics a otline (800) 46	nnify Eurofin les. D.O.T H	nd, and inder samp	harmless, defe	eement to holo	elinquishing signature also indicates agr	any kind. R	
Arralysis Request / Canister Chain of Custody B. Four Four Super-State Super-State </td <td>ations and ordinances of</td> <td>ternational laws. regul</td> <td>ral, and int</td> <td>ate, Fede</td> <td>e local, St</td> <td>applicable</td> <td>nce with all</td> <td>ed in complia</td> <td>No les are shipp</td> <td>es that samp</td> <td>ocument indical</td> <td>ature on this d</td> <td>insportation Notice: Relinquishing sign</td> <td>Sample Tra</td>	ations and ordinances of	ternational laws. regul	ral, and int	ate, Fede	e local, St	applicable	nce with all	ed in complia	No les are shipp	es that samp	ocument indical	ature on this d	insportation Notice: Relinquishing sign	Sample Tra	
Analysis Request / Canister Chain of Custody source discrete discr								lse Only	Lab L	D D	5			Chinner Nerr	
Arralysis Request/Canister Chain of Custody recultaneous participantity of the second participantity	ā	Calo		(11)		, (o.9101							P12		
Arralysis Request/Canister Chain of Custody Reclusion of Custody Product $\frac{1}{2}$ Such $\frac{1}{2$	Timo	Dafa		3	re/Affiliat	/: (Signati	Received by		Time		Date		by: (Signature/Affiliation)	Relinquished	
Analysis Request/Canister Chain of Custody For Laboratory Use One 10 10 10 10 Special retroutions/Vise One 10 10 10 Special retroutions/Vise One 10 10 10 Turnacound The Relati survivage may apply Special retroutions/Vise One 10 10 10 10 Turnacound The Relati survivage may apply Special retroutions/Vise One 10 10 10 10 Turnacound The Relati survivage may apply Controller # Turnacound The Relati survivage may apply Controller # Turnacound The Relati survivage may apply Controller # Turnacound The Relation of Custody Turnacound The Relation of Custody Turnacound	Time	Date		on)	Jre/Affiliat	/: (Signatu	Received by		Time	*	Date	-	by: (Signature/Affiliation)	Relinquished	
Air Torics Analysis Request / Canister Chain of Custody B, Folsom, cs 9530 PID:	7 Time	Date // 78/ (A		and Affiliat	V: (Signat	Received by	8		27/11	Date	` د	and the second s	, internation	
For Luborary Use Offset Chain of Custody For Luborary Use Offset C In				\mathbb{N}					1			1	hy (Sinnaturo/Affiliation)	Relinguished	
For Luborary Use Offs 1 ft B. Follow: Colspan="2" For Luborary Use Offs 1 ft Inc. Colspan="2" Control on the follow: Start Sampling Same Colspan="2" Control of the follow: Start Sampling Inc. Control of the follow: Start Sampling Inc. Control of the follow: Start Sampling Information Information Control of the follow: Start Sampling Information Information Information Start Sampling Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information Information <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>\sum</td> <td></td>				_									\sum		
Arralysis Request /Canister Chain of Custody For Laboratory Use Only If B. Following # 901510° PIC Import - Impor															
Analysis Request / Canister Chain of Custody For Lawatery Use Only 10 01510 B. Folson CASS0 PID:															
Arralysis Request/Canister Chain of Custody For Laboratory Use Only For Laboratory Use Only Special Instructions/Note: Special Instructions/Note: Special Instructions/Note: Caria Sch 2: Caria Sch 2: Special Instructions/Note: Special Instructions/Note: Special Instructions/Note: Caria Sch 2: Caria Sch 2: Special Instructions/Note: Turnaround Time (Rush stanges may apply) Canister Vacuum/Pressure Notice only Stant Sampling Intractional Time (Rush stanges may apply) Canister Vacuum/Pressure Represented Analyses More only Intractional Time (Rush stanges may apply) Canister Vacuum/Pressure Represented Analyses More only Interview of the Stant Sampling Interview of the Stant Sampling <th colspan<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th>	<td></td>														
Analysis Request / Canister Chain of Custody For Laboratory Use One State PID:				-											
Analysis Request / Canister Chain of Custody Follow:			-	_	-										
Analysis Request/Canister Chain of Custody For Laboratory Use Only 10 monorer #1901510 PID:															
Air Toxics For Laboratory Use Only If f () For Laboratory Use Only If f () PID: Workorder # $9015f$ () Special Instructions/Notes: Special Instructions/Note: Turaround Time (Rush surcharges may apply) Cantister Cast: Special Instructions/Note: Special Instructions/Note: Special Instructions/Note: Special Instructions/Note: Requested Analyses						ľ									
Analysis Request / Canister Chain of Custody For Laboratory Use Only 10: PID:															
Air Toxics Analysis Request/Canister Chain of Custody For Laboratory Use Only 10 10 10 PID:														-	
Air Toxics For Laboratory Use Only, I for For Laboratory Use Only, I for PID: Worker # 901510° PID: Worker # 901510° PID: Worker # 901510° Special Instructions/Noles: Turnaround Time (Rush surcharges may apply) Cantroller # BOO8 734, 23, 4008 None Time Time Into mation Information Information Information Information Information Information Information <th colspan="</td> <td></td>															
Analysis Request /Canister Chain of Custody For Laboratory Use Only 15 10 PID: Workorder # 901510° PID: Workorder # 901510° PID: Workorder # 901510° Special Instructions/Noles: Turnaround Time (Rush surcharges may apply) Start Sampling Turnaround Time (Rush surcharges may apply) Canister Vacuum/Pressure Requested Analyses Art A Start Sampling Intermation Intertion(Location) Can # Flow Start Sampling Intertion and in the intertion and intertion and intertion and intertion and i				8	- 0	164	1/24/19	2840	124/19 1	272 1	22	1901 N	<u>NB-3</u>	OBA A.	
Analysis Request / Canister Chain of Custody For Laboratory Use Only 19 For Laboratory Use Only 19 page-of Special Instructions/Notes: Canister Vacuum/Pressure Requested Analyses Special Instructi	*			ర	۸ ذ	V	1/24/19	X	124/19	650 1	16 23	0031	18-012419	02A DU	
Analysis Request /Canister Chain of Custody For Laboratory Use Only 15 1 () PID: Workorder #190151 () PID: Workorder #190151 () Special Instructions/Notes: Turnaround Time (Rush surcharges may apply) Standard X Special Instructions/Notes: Turnaround Time (Rush surcharges may apply) Standard X Requested Analyses Adv X Special Instructions/Notes: Turnaround Time (Rush surcharges may apply) Standard X Special Instructions/Notes: Colspandard X Special I	\times			Ś	- +	631	1/24/19	12890	/24/19	334 1	2	0033	A-3	DIA I	
Air Toxics For Laboratory Use Only For Laboratory Use Only For Laboratory Use Only Pile page-of B, Folsom, CA 95630 PID: Workorder # 901510 Pile page-of Sara Case - Arcad is Special Instructions/Noles: Turnaround Time (Rush surcharges may apply) Sara Case - SVI Special Instructions/Noles: Turnaround Time (Rush surcharges may apply) Sara Case - SVI Special Instructions/Noles: Turnaround Time (Rush surcharges may apply) Sara Case - SVI Project # 60087363.000 Start Sampling Start Sampling sc Saribb - Cast - Sara Case Flow Start Sampling Stop Sampling Eight -		Fina Gas	Fina Rec	Initia	ē	Tin	Date	Time	Date						
Air Toxics Analysis Request //Canister Chain of Custody For Laboratory Use Only 19 01510* For Laboratory Use Only 10 0* B, Folsom, CA 95630 PID: Workorder # 901510* x (916) 351-8279 PID: Special Instructions/Notes: Secarate SVI Special Instructions/Notes: Turnaround Time (Rush surcharges may apply) Secarate SVI Special Instructions/Notes: Standard Rush Son: bb - Cast Secarate Standard Lab Use Only 1	15 TC 2-15 TEC	II (psig) : N₂ / He	eipt	al (in Hg		Sampling	Stop Info	npling xtion	Start Sar Informa	Flow troller #	t t Cor	Can	ہے۔ d Sample Identification(Location)	ID Fiel	
Air Toxics Analysis Request // Canister Chain of Custody For Laboratory Use Only For Laboratory Use Only B, Folsom, CA 95630 PID: Variation (916) 351-8279 Vorkorder #1901510 Sara Custor Arcadits Special Instructions/Notes: Sara Custor Sv1 Rush surcharges may apply) Sara Custor Sv1 Rush surcharges may apply Sara Custor Sv1 Sara Custor Sv1	, <u>L</u>) T_)							racuse	East Se	Bristol Myers Sou; bb -	Site Name:	
Air Toxics Analysis Request /Canister Chain of Custody For Laboratory Use Only 19 015 I 0 For Laboratory Use Only 19 015 I 0 B, Folsom, CA 95630 PID: Workorder # 9 015 I 0 x (916) 351-8279 Special Instructions/Notes: Sara Custor SVI Special Instructions/Notes: Standard Rush Standard Rush Standard Rush	Requested Analyses	um/Pressure	ster Vacuu	Cani	1						10/2003		Dan Zuck	Sampler:	
Air Toxics Analysis Request /Canister Chain of Custody For Laboratory Use Only For Laboratory Use Only B, Folsom, CA 95630 PID: Workorder #1.901510 x (916) 351-8279 page-of SpraCuse-Arcadis Special Instructions/Notes: SpraCuse-Arcadis Special Instructions/Notes:	(specity)	. Kush		Stangard	Т						201		mar: n 7 Ju	Project Mar	
Air Toxics Analysis Request /Canister Chain of Custody For Laboratory Use Only PID: For Laboratory Use Only PID: Workorder #1901510 Vorticate Material States Analysis (Second Instructions Material States) PID: Page-of	rges may apply)	1 Time (Rush surcha	urnaround	-				Ŷ				tradis _	D/MS Syracuse-	Project Nar	
Air Toxics Analysis Request /Canister Chain of Custody For Laboratory Use Only 1 0 B, Folsom, CA 95630 PID: Workorder #1 9 0 1 5 1 0		pageof							intinan/Ninto	Openial loof		*)) 985-5955; Fax (916) 351-8279	Phone (80)	
Air Toxics For Laboratory Use Only For Laboratory Use								ł		Workorder #		30	avine Rd. Suite B, Folsom, CA 956	180 Blue R	
Analysis Request /Canister Chain of Custody				Construction of the second s				Ş		For Laborate	5	J	I AIT IOXICS		
					VOV	usto	n of (r Chai	aniste	iest /C	is Requ	Analys	rofins	, Pu	

🛟 eurofins

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN BMS SVI

IA-3 **Client ID:** Lab ID: 1901510-01A **Date/Time Analyzed:** 2/6/19 01:21 PM Date/Time Collected: 1/24/19 04:37 PM **Dilution Factor:** 1.34 Media: msdv.i / v020608 Instrument/Filename: LOD **Rpt.** Limit Amount MDL (ug/m3)(ug/m3)(ug/m3)(ug/m3) Compound CAS# 4.0 1,2,4-Trichlorobenzene 1.4 5.0 Not Detected 120-82-1 0.59 10 1,2,4-Trimethylbenzene 0.46 0.66 95-63-6 0.72 1,2-Dichlorobenzene 0.33 0.80 Not Detected 95-50-1 0.57 0.62 Not Detected 1,2-Dichloropropane 0.57 78-87-5 0.52 0.59 1.9 0.66 1,3,5-Trimethylbenzene 108-67-8 0.17 0.27 0.30 Not Detected 1.3-Butadiene 106-99-0 0.72 Not Detected 1,3-Dichlorobenzene 0.32 0.80 541-73-1 0.43 0.28 0.48 Not Detected 1,4-Dioxane 123-91-1 0.92 2.5 Not Detected 2,2,4-Trimethylpentane 3.1 540-84-1 2-Butanone (Methyl Ethyl Ketone) 0.60 1.6 2.0 1.2 J 78-93-3 2.2 2-Hexanone 0.64 2.7 Not Detected 591-78-6 1.3 4.6 2-Propanol 0.54 1.6 J 67-63-0 1.7 Not Detected 1.0 2.1 3-Chloropropene 107-05-1 0.44 0.59 0.66 2.3 4-Ethyltoluene 622-96-8 0.49 0.55 0.23 J 4-Methyl-2-pentanone 108-10-1 0.19 1.3 7.3 Acetone 1.0 1.6 67-64-1 J 0.62 alpha-Chlorotoluene 0.39 0.69 Not Detected 100-44-7 0.81 Bromodichloromethane 0.42 0.90 Not Detected 75-27-4 1.2 Not Detected Bromoform 0.45 1.4 75-25-2 2.1 Bromomethane 1.2 2.6 Not Detected 74-83-9 1.7 2.0 J Carbon Disulfide 0.46 2.1 75-15-0 0.56 Not Detected Chlorobenzene 0.33 0.62 108-90-7 0.44 0.55 Not Detected 0.61 cis-1,3-Dichloropropene 10061-01-5 0.59 0.66 0.40 J Cumene 0.35 98-82-8

Air Toxics

Air Toxics

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN BMS SVI

 Client ID:
 IA-3

 Lab ID:
 1901510-01A
 Date/Time Analyzed:
 2/6/19 01:21 PM

 Date/Time Collected:
 1/24/19 04:37 PM
 Dilution Factor:
 1.34

 Media:
 Instrument/Filename:
 msdv.i / v020608

		MDL	LOD	Rpt. Limit	Amount
Compound	CAS#	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)
Cyclohexane	110-82-7	0.29	0.42	0.46	Not Detected
Dibromochloromethane	124-48-1	0.59	1.0	1.1	Not Detected
Ethanol	64-17-5	1.2	1.2	2.5	51 J
Freon 11	75-69-4	0.35	0.68	0.75	1.2
Freon 113	76-13-1	0.46	0.92	1.0	0.74 J
Heptane	142-82-5	0.46	0.49	0.55	0.82
Hexachlorobutadiene	87-68-3	2.0	5.7	7.1	Not Detected
Hexane	110-54-3	0.35	0.42	0.47	0.61
Methylene Chloride	75-09-2	0.32	0.42	0.93	0.64 J
Propylbenzene	103-65-1	0.30	0.59	0.66	1.2
Styrene	100-42-5	0.36	0.51	0.57	Not Detected
Tetrahydrofuran	109-99-9	1.0	1.6	2.0	Not Detected
trans-1,3-Dichloropropene	10061-02-6	0.36	0.55	0.61	Not Detected

D: Analyte not within the DoD scope of accreditation.

TENTATIVELY IDENTIFIED COMPOUNDS

		Match	LOD	Amount	
Compound	CAS#			ppbv	
2-Nitropropane	79-46-9	NA		Not Detected	
4-Chlorotoluene	106-43-4	NA		Not Detected	
Acetonitrile	75-05-8	NA		Not Detected	
Benzaldehyde	100-52-7	NA		Not Detected	
Benzene, 1,2,3-trimethyl-	526-73-8	81%		0.89 NJ	
bis(2-Chloroethyl) Ether	111-44-4	NA		Not Detected	

Air Toxics

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN BMS SVI

Client ID:	IA-3		
Lab ID:	1901510-01A	Date/Time Analyzed:	2/6/19 01:21 PM
Date/Time Collected:	1/24/19 04:37 PM	Dilution Factor:	1.34
Media:	6 Liter Summa Canister (SIM Certified)	Instrument/Filename:	msdv.i / v020608

TENTATIVELY IDENTIFIED COMPOUNDS

		Match	LOD	Amount	
Compound	CAS#			ppbv	
Cyclohexene	110-83-8	NA		Not Detected	
Epichlorohydrin	106-89-8	NA		Not Detected	
Ethyl Acetate	141-78-6	NA		Not Detected	
Isobutanol	78-83-1	NA		Not Detected	
Isopropyl ether	108-20-3	NA		Not Detected	
Methacrylonitrile	126-98-7	NA		Not Detected	
Methyl Acetate	79-20-9	NA		Not Detected	
N,N-Dimethyl Aniline	121-69-7	NA		Not Detected	
n-Butanol	71-36-3	NA		Not Detected	
Nitrobenzene	98-95-3	NA		Not Detected	
Pentane	109-66-0	80%		0.93 NJ	
Propylene	115-07-1	NA		Not Detected	
Pyridine	110-86-1	NA		Not Detected	

J = Estimated value.

ſ

NJ =The identification is based on presumptive evidence; estimated value. D: Analyte not within the DoD scope of accreditation.

Surrogates	CAS#	Limits	%Recovery
1,2-Dichloroethane-d4	17060-07-0	70-130	96
4-Bromofluorobenzene	460-00-4	70-130	86
Toluene-d8	2037-26-5	70-130	98

🛟 eurofins

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN BMS SVI

Client ID: Lab ID: Date/Time Collected: Media:	IA-3 1901510-01B 1/24/19 04:37 F 6 Liter Summa	PM Canister (SIM Certified)	Date/Time A Dilution Fac Instrument/F	nalyzed: 2 tor: 1 filename: n	2/6/19 01:21 PM I.34 nsdv.i / v020608sim	
			MDL	LOD	Rpt. Limit	Amount
Compound		CAS#	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)
1,1,1-Irichloroethane	9	71-55-6	0.032	0.044	0.15	0.039 J
1,1,2,2-I etrachloroet	hane	79-34-5	0.047	0.055	0.18	Not Detected
1,1,2-Irichloroethane	e	79-00-5	0.040	0.044	0.15	Not Detected
1,1-Dichloroethane		75-34-3	0.030	0.032	0.11	Not Detected
1,1-Dichloroethene		75-35-4	0.022	0.032	0.053	Not Detected
1,2-Dibromoethane (EDB)	106-93-4	0.023	0.062	0.20	Not Detected
1,2-Dichloroethane		107-06-2	0.024	0.032	0.11	0.086 J
1,4-Dichlorobenzene		106-46-7	0.059	0.059	0.16	Not Detected J
Benzene		71-43-2	0.023	0.026	0.21	0.64
Carbon Tetrachloride	;	56-23-5	0.079	0.079	0.17	0.47
Chloroethane		75-00-3	0.032	0.088	0.18	Not Detected
Chloroform		67-66-3	0.016	0.039	0.13	0.34
Chloromethane		74-87-3	0.027	0.069	1.4	0.84 J
cis-1,2-Dichloroether	ne	156-59-2	0.025	0.032	0.11	0.12
Ethyl Benzene		100-41-4	0.022	0.035	0.12	2.1
Freon 114		76-14-2	0.062	0.062	0.19	0.11 J
Freon 12		75-71-8	0.036	0.040	3.3	2.2 J
m,p-Xylene		108-38-3	0.033	0.035	0.23	10
Methyl tert-butyl ethe	r	1634-04-4	0.024	0.029	0.48	Not Detected
o-Xylene		95-47-6	0.039	0.039	0.12	4.1
Tetrachloroethene		127-18-4	0.016	0.054	0.18	0.18 J
Toluene		108-88-3	0.021	0.030	0.10	5.0
trans-1,2-Dichloroeth	iene	156-60-5	0.034	0.034	0.53	Not Detected
Trichloroethene		79-01-6	0.019	0.043	0.14	0.59

Air Toxics

Air Toxics

Client ID: Lab ID: Date/Time Collected: Media:	IA-3 1901510-01B 1/24/19 04:37 PM 6 Liter Summa Canister (SIM Certified)	Date/Time A Dilution Fac Instrument/F	nalyzed: tor: ïlename:	2/6/19 01:21 PM 1.34 msdv.i / v020608sim			
		MDL	LOD	Rpt. Limit	Amount		
Compound	CAS#	(ug/m3)	(ug/m3) (ug/m3)	(ug/m3)		
Vinyl Chloride	75-01-4	0.026	0.026	0.034	Not Detected		
J = Estimated value. D: Analyte not within the DoD scope of accreditation.							
·	· · · · · · · · · · · · · · · · · · ·						
Surrogates	CAS#			Limits	%Recovery		
1,2-Dichloroethane-d	17060-07-0			70-130	100		
4-Bromofluorobenzen	e 460-00-4			70-130	94		
Toluene-d8	2037-26-5			70-130	96		

Air Toxics

Client ID: Lab ID: Date/Time Collected: Media:	IA-3 1901510-01C 1/24/19 04:37 PM 6 Liter Summa Canister (SIM Certified)	Date/Time Dilution Fa	Analyzed: actor: /Filename:	2/6/19 06:13 PM 1.34 msd20.i / 20020612sim			
		MDL	LOD	Rpt. Limit	Amount		
Compound	CAS#	(ug/m3)	(ug/m3) (ug/m3)	(ug/m3)		
Naphthalene	91-20-3	0.065	0.14	0.35	4.6 J		
D: Analyte not within the DoD scope of accreditation.							
Surrogates	CAS#			Limits	%Recovery		
1,2-Dichloroethane-d	4 17060-07-0			70-130	104		
4-Bromofluorobenzer	ne 460-00-4			70-130	97		
Toluene-d8	2037-26-5			70-130	98		

Air Toxics

Client ID: DUP-012419 Lab ID: 1901510-02A Date/Time Collected: 1/24/19 12:00 AW Media: Image: Collected:	1	Date/Time A Dilution Fac Instrument/F	nalyzed: 2/6 tor: 1.3 filename: ms	6/19 01:59 PM 37 sdv.i / v020609	
		MDL	LOD	Rpt. Limit	Amount
Compound	CAS#	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)
1,2,4-Trichlorobenzene	120-82-1	1.4	4.1	5.1	Not Detected
1,2,4-Trimethylbenzene	95-63-6	0.47	0.61	0.67	10
1,2-Dichlorobenzene	95-50-1	0.34	0.74	0.82	Not Detected
1,2-Dichloropropane	78-87-5	0.59	0.59	0.63	Not Detected
1,3,5-Trimethylbenzene	108-67-8	0.54	0.61	0.67	2.0
1,3-Butadiene	106-99-0	0.18	0.27	0.30	Not Detected
1,3-Dichlorobenzene	541-73-1	0.32	0.74	0.82	Not Detected
1,4-Dioxane	123-91-1	0.29	0.44	0.49	Not Detected
2,2,4-Trimethylpentane	540-84-1	0.94	2.6	3.2	Not Detected
2-Butanone (Methyl Ethyl Ketone)	78-93-3	0.61	1.6	2.0	2.3
2-Hexanone	591-78-6	0.66	2.2	2.8	0.95 J
2-Propanol	67-63-0	0.55	1.3	1.7	5.3 J
3-Chloropropene	107-05-1	1.1	1.7	2.1	Not Detected
4-Ethyltoluene	622-96-8	0.45	0.61	0.67	2.5
4-Methyl-2-pentanone	108-10-1	0.19	0.50	0.56	Not Detected
Acetone	67-64-1	1.1	1.3	1.6	9.7 J
alpha-Chlorotoluene	100-44-7	0.40	0.64	0.71	Not Detected
Bromodichloromethane	75-27-4	0.43	0.83	0.92	Not Detected
Bromoform	75-25-2	0.46	1.3	1.4	Not Detected
Bromomethane	74-83-9	1.2	2.1	2.7	Not Detected
Carbon Disulfide	75-15-0	0.47	1.7	2.1	Not Detected
Chlorobenzene	108-90-7	0.34	0.57	0.63	Not Detected
cis-1,3-Dichloropropene	10061-01-5	0.45	0.56	0.62	Not Detected
Cumene	98-82-8	0.36	0.61	0.67	Not Detected

eurofins

Air Toxics

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN BMS SVI

Client ID:

Lab ID:

Media:

DUP-012419 1901510-02A Date/Time Analyzed: 2/6/19 01:59 PM Date/Time Collected: 1/24/19 12:00 AM **Dilution Factor:** 1.37

Instrument/Filename:

msdv.i / v020609

		MDL	LOD	Rpt. Limit	Amount
Compound	CAS#	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)
Cyclohexane	110-82-7	0.30	0.42	0.47	Not Detected
Dibromochloromethane	124-48-1	0.60	1.0	1.2	Not Detected
Ethanol	64-17-5	1.2	1.2	2.6	57 J
Freon 11	75-69-4	0.36	0.69	0.77	1.2
Freon 113	76-13-1	0.47	0.94	1.0	0.66 J
Heptane	142-82-5	0.47	0.50	0.56	0.99
Hexachlorobutadiene	87-68-3	2.0	5.8	7.3	Not Detected
Hexane	110-54-3	0.35	0.43	0.48	0.71
Methylene Chloride	75-09-2	0.32	0.43	0.95	0.58 J
Propylbenzene	103-65-1	0.31	0.61	0.67	1.2
Styrene	100-42-5	0.36	0.52	0.58	Not Detected
Tetrahydrofuran	109-99-9	1.0	1.6	2.0	Not Detected
trans-1,3-Dichloropropene	10061-02-6	0.37	0.56	0.62	Not Detected

D: Analyte not within the DoD scope of accreditation.

TENTATIVELY IDENTIFIED COMPOUNDS

		Match	LOD	Amount	
Compound	CAS#			ppbv	
2-Nitropropane	79-46-9	NA		Not Detected	
4-Chlorotoluene	106-43-4	NA		Not Detected	
Acetonitrile	75-05-8	NA		Not Detected	
Benzaldehyde	100-52-7	NA		Not Detected	
Benzene, 1,2,3-trimethyl-	526-73-8	95%		1.2 NJ	
bis(2-Chloroethyl) Ether	111-44-4	NA		Not Detected	

Air Toxics

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN BMS SVI

Client ID:	DUP-012419		
Lab ID:	1901510-02A	Date/Time Analyzed:	2/6/19 01:59 PM
Date/Time Collected:	1/24/19 12:00 AM	Dilution Factor:	1.37
Media:	6 Liter Summa Canister (SIM Certified)	Instrument/Filename:	msdv.i / v020609

TENTATIVELY IDENTIFIED COMPOUNDS

		Match	LOD	Amount	
Compound	CAS#			ppbv	
Cyclohexene	110-83-8	NA		Not Detected	
Epichlorohydrin	106-89-8	NA		Not Detected	
Ethyl Acetate	141-78-6	NA		Not Detected	
Isobutanol	78-83-1	NA		Not Detected	
Isopropyl ether	108-20-3	NA		Not Detected	
Methacrylonitrile	126-98-7	NA		Not Detected	
Methyl Acetate	79-20-9	NA		Not Detected	
N,N-Dimethyl Aniline	121-69-7	NA		Not Detected	
n-Butanol	71-36-3	NA		Not Detected	
Nitrobenzene	98-95-3	NA		Not Detected	
Pentane	109-66-0	80%		1.6 NJ	
Propylene	115-07-1	NA		Not Detected	
Pyridine	110-86-1	NA		Not Detected	

J = Estimated value.

ſ

NJ =The identification is based on presumptive evidence; estimated value. D: Analyte not within the DoD scope of accreditation.

Surrogates	CAS#	Limits	%Recovery
1,2-Dichloroethane-d4	17060-07-0	70-130	94
4-Bromofluorobenzene	460-00-4	70-130	102
Toluene-d8	2037-26-5	70-130	100

Air Toxics

Client ID: DUP-012419 Lab ID: 1901510-02B Date/Time Collected: 1/24/19 12:00 AM Media: 6 Liter Summa Canister (SIM Certified)		Date/Time Analyzed: Dilution Factor: Instrument/Filename:		2/6/19 01:59 PM 1.37 msdv.i / v020609sim		
			MDL	LOD	Rpt. Limit	Amount
Compound		CAS#	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)
1,1,1-Trichloroethane		71-55-6	0.032	0.045	0.15	0.039 J
1,1,2,2-Tetrachloroet	hane	79-34-5	0.048	0.056	0.19	Not Detected
1,1,2-Trichloroethane	9	79-00-5	0.040	0.045	0.15	Not Detected
1,1-Dichloroethane		75-34-3	0.031	0.033	0.11	Not Detected
1,1-Dichloroethene		75-35-4	0.023	0.032	0.054	Not Detected
1,2-Dibromoethane (EDB)	106-93-4	0.023	0.063	0.21	0.024 J
1,2-Dichloroethane		107-06-2	0.024	0.033	0.11	0.092 J
1,4-Dichlorobenzene		106-46-7	0.060	0.060	0.16	Not Detected J
Benzene		71-43-2	0.024	0.026	0.22	0.64
Carbon Tetrachloride)	56-23-5	0.081	0.081	0.17	0.48
Chloroethane		75-00-3	0.032	0.090	0.18	0.059 J
Chloroform		67-66-3	0.016	0.040	0.13	0.33
Chloromethane		74-87-3	0.027	0.071	1.4	0.97 J
cis-1,2-Dichloroether	ne	156-59-2	0.026	0.032	0.11	0.11
Ethyl Benzene		100-41-4	0.023	0.036	0.12	1.8
Freon 114		76-14-2	0.064	0.064	0.19	0.15 J
Freon 12		75-71-8	0.036	0.041	3.4	2.4 J
m,p-Xylene		108-38-3	0.034	0.036	0.24	9.1
Methyl tert-butyl ethe	r	1634-04-4	0.025	0.030	0.49	Not Detected
o-Xylene		95-47-6	0.040	0.040	0.12	3.8
Tetrachloroethene		127-18-4	0.016	0.056	0.18	0.17 J
Toluene		108-88-3	0.022	0.031	0.10	4.5
trans-1,2-Dichloroeth	ene	156-60-5	0.034	0.034	0.54	Not Detected
Trichloroethene		79-01-6	0.019	0.044	0.15	0.61

Air Toxics

Client ID: Lab ID: Date/Time Collected: Media:	DUP-012419 1901510-02B 1/24/19 12:00 AM 6 Liter Summa Canister (SIM Certified)	Date/Time A Dilution Fact Instrument/F	nalyzed: 2/0 tor: 1.3 illename: ma	6/19 01:59 PM 37 sdv.i / v020609sim	
		MDL	LOD	Rpt. Limit	Amount
Compound	CAS#	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)
Vinyl Chloride	75-01-4	0.026	0.026	0.035	Not Detected
J = Estimated value.					
D: Analyte not within	the DoD scope of accreditation.				
Surrogates	CAS#			Limits	%Recovery
1,2-Dichloroethane-d4	17060-07-0			70-130	99
4-Bromofluorobenzen	e 460-00-4			70-130	102
Toluene-d8	2037-26-5			70-130	99

Air Toxics

Client ID: Lab ID: Date/Time Collected: Media:	DUP-012419 1901510-02C 1/24/19 12:00 AM 6 Liter Summa Canister (SIM Certified)	Date/Time Dilution Fa Instrument	Analyzed: ctor: /Filename:	2/6/19 06:58 PM 1.37 msd20.i / 20020613sim	
		MDL	LOD	Rpt. Limit	Amount
Compound	CAS#	(ug/m3)	(ug/m3	s) (ug/m3)	(ug/m3)
Naphthalene	91-20-3	0.067	0.14	0.36	4.2 J
D: Analyte not within	the DoD scope of accreditation.				
Surrogates	CAS#			Limits	%Recovery
1,2-Dichloroethane-d	4 17060-07-0			70-130	102
4-Bromofluorobenzer	e 460-00-4			70-130	97
Toluene-d8	2037-26-5			70-130	98

🛟 eurofins

Air Toxics

Client ID: AMB-3 Lab ID: 1901510-03A Date/Time Collected: 1/24/19 04:40 PM Media: Image: Collected:		Date/Time Analyzed: Dilution Factor: Instrument/Filename:		2/6/19 02:36 PM 1.33 msdv.i / v020610		
		MDL	LOD	Rpt. Limit	Amount	
Compound	CAS#	(ug/m3)	(ug/m3)	(ug/ms)	(ug/iiis)	
	120-82-1	1.3	3.9 0.50	4.9	Not Detected	
	95-63-6	0.40	0.39	0.00	Not Detected	
	95-50-1	0.33	0.72	0.80	Not Detected	
1,2-Dichloropropane	78-87-5	0.57	0.57	0.65	Not Detected	
1, 3, 5- mmetnyibenzene	108-67-8	0.52	0.09	0.20	Not Detected	
	106-99-0	0.17	0.20	0.29	Not Detected	
	541-73-1	0.31	0.72	0.00	Not Detected	
	123-91-1	0.20	2.45	0.40	Not Detected	
2,2,4- minemyperiale	540-84-1	0.92	2.5	3. I 2 O		
	78-93-3	0.59	2.0	2.0	ارچ ی Not Detected	
	591-78-6	0.04	13	2.1		
2-Filopanoi 3-Chloropropene	67-63-0	0.00	1.5	1.0	Not Detected	
	107-05-1	0.44	0.59	2.1	Not Detected	
4-Methyl-2-pentanone	622-96-8	0.44	0.09	0.00		
	108-10-1	10	1.3	1.6	70 1	
alpha-Chlorotaluene	67-64-1 400-44-7	0.30	0.62	0.69	ں تی ہ Not Detected	
Bromodichloromethane	100-44-7	0.09	0.80	0.03	Not Detected	
Bromoform	10-21-4	0.42	1.2	1 4	Not Detected	
Bromomethane	70-20-2	1.2	21	26	Not Detected	
Carbon Disulfide	75 15 0	0.46	1.6	2.0	Not Detected	
Chlorobenzene	109 00 7	0.32	0.55	0.61	Not Detected	
cis-1 3-Dichloropropene	100-90-7	0.44	0.54	0.60	Not Detected	
Cumene	C-10-10001	0.34	0.59	0.65	Not Detected	
Guillene	90-02-0	0.04	0.00	0.05	NOL DELECIEU	

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN BMS SVI

Air Toxics

Client ID: Lab ID: Date/Time Collected: Media:	AMB-3 1901510-03A 1/24/19 04:40 PM		Date/Time Anal Dilution Factor Instrument/File	yzed: : name:	2/6/19 02:36 PM 1.33 msdv.i / v020610	
			MDL	LOD	Rpt. Limit	Amount
Compound		CAS#	(ug/m3)	(ug/m3)) (ug/m3)	(ug/m3)
Cyclohexane		110-82-7	0.29	0.41	0.46	Not Detected
Dibromochloromethan	е	124-48-1	0.59	1.0	1.1	Not Detected
Ethanol		64-17-5	1.2	1.2	2.5	5.3 J
Freon 11		75-69-4	0.35	0.67	0.75	1.4
Freon 113		76-13-1	0.46	0.92	1.0	0.75 J
Heptane		142-82-5	0.46	0.49	0.54	Not Detected
Hexachlorobutadiene		87-68-3	2.0	5.7	7.1	Not Detected
Hexane		110-54-3	0.34	0.42	0.47	0.76
Methylene Chloride		75-09-2	0.32	0.42	0.92	0.82 J
Propylbenzene		103-65-1	0.30	0.59	0.65	Not Detected
Styrene		100-42-5	0.35	0.51	0.57	Not Detected
Tetrahydrofuran		109-99-9	1.0	1.6	2.0	Not Detected
trans-1,3-Dichloroprop	ene	10061-02-6	0.36	0.54	0.60	Not Detected

D: Analyte not within the DoD scope of accreditation.

TENTATIVELY IDENTIFIED COMPOUNDS

		Match	LOD	Amount	
Compound	CAS#			ppbv	
1,2,3-Trimethylbenzene	526-73-8	NA		Not Detected	
2-Nitropropane	79-46-9	NA		Not Detected	
4-Chlorotoluene	106-43-4	NA		Not Detected	
Acetonitrile	75-05-8	NA		Not Detected	
Benzaldehyde	100-52-7	NA		Not Detected	
bis(2-Chloroethyl) Ether	111-44-4	NA		Not Detected	

Air Toxics

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN BMS SVI

Client ID:	AMB-3		
Lab ID:	1901510-03A	Date/Time Analyzed:	2/6/19 02:36 PM
Date/Time Collected:	1/24/19 04:40 PM	Dilution Factor:	1.33
Media:	6 Liter Summa Canister (SIM Certified)	Instrument/Filename:	msdv.i / v020610

TENTATIVELY IDENTIFIED COMPOUNDS

		Match	LOD	Amount	
Compound	CAS#			ppbv	
Cyclohexene	110-83-8	NA		Not Detected	
Epichlorohydrin	106-89-8	NA		Not Detected	
Ethyl Acetate	141-78-6	NA		Not Detected	
Isobutanol	78-83-1	NA		Not Detected	
Isopropyl ether	108-20-3	NA		Not Detected	
Methacrylonitrile	126-98-7	NA		Not Detected	
Methyl Acetate	79-20-9	NA		Not Detected	
N,N-Dimethyl Aniline	121-69-7	NA		Not Detected	
n-Butanol	71-36-3	NA		Not Detected	
Nitrobenzene	98-95-3	NA		Not Detected	
Pentane	109-66-0	NA		Not Detected	
Propylene	115-07-1	NA		Not Detected	
Pyridine	110-86-1	NA		Not Detected	

J = Estimated value.

D: Analyte not within the DoD scope of accreditation.

Surrogates	CAS#	Limits	%Recovery
1,2-Dichloroethane-d4	17060-07-0	70-130	102
4-Bromofluorobenzene	460-00-4	70-130	99
Toluene-d8	2037-26-5	70-130	98

Air Toxics

Client ID: Lab ID: Date/Time Collected: Media:	AMB-3 1901510-03B Iected: 1/24/19 04:40 PM 6 Liter Summa Canister (SIM Certified)		Date/Time Analyzed: Dilution Factor: Instrument/Filename:		2/6/19 02:36 PM 1.33 msdv.i / v020610sim			
			MDL	LOD	Rpt. Limit		Amount	
Compound		CAS#	(ug/m3)	(ug/m3	s) (ug/m3)		(ug/m3)	
1,1,1-Irichloroethane	<u>}</u>	71-55-6	0.031	0.044	0.14		Not Detected	
1,1,2,2-letrachloroet	hane	79-34-5	0.047	0.055	0.18		Not Detected	
1,1,2-Irichloroethane	<u>)</u>	79-00-5	0.039	0.044	0.14		Not Detected	
1,1-Dichloroethane		75-34-3	0.030	0.032	0.11		Not Detected	
1,1-Dichloroethene		75-35-4	0.022	0.032	0.053		Not Detected	
1,2-Dibromoethane (I	EDB)	106-93-4	0.022	0.001	0.20		Not Detected	
1,2-Dichloroethane		107-06-2	0.024	0.032	0.11		0.088 J	
1,4-Dichlorobenzene		106-46-7	0.058	0.058	0.16		Not Detected	J
Benzene		71-43-2	0.023	0.025	0.21		0.56	
Carbon Tetrachloride	•	56-23-5	0.078	0.078	0.17		0.47	
Chloroethane		75-00-3	0.031	0.088	0.18		0.041 J	
Chloroform		67-66-3	0.016	0.039	0.13		0.077 J	
Chloromethane		74-87-3	0.026	0.069	1.4		0.90 J	
cis-1,2-Dichloroethen	ie	156-59-2	0.025	0.032	0.10		Not Detected	
Ethyl Benzene		100-41-4	0.022	0.035	0.12		0.21	
Freon 114		76-14-2	0.062	0.062	0.18		0.12 J	
Freon 12		75-71-8	0.035	0.039	3.3		2.3 J	
m,p-Xylene		108-38-3	0.033	0.035	0.23		0.65	
Methyl tert-butyl ethe	r	1634-04-4	0.024	0.029	0.48		Not Detected	
Naphthalene		91-20-3	0.066	0.14	0.35	0.35	0.24 J	UB
o-Xylene		95-47-6	0.039	0.039	0.12		0.32	
Tetrachloroethene		127-18-4	0.016	0.054	0.18		0.067 J	
Toluene		108-88-3	0.021	0.030	0.10		0.81	
trans-1,2-Dichloroeth	ene	156-60-5	0.033	0.033	0.53		Not Detected	

Air Toxics

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN BMS SVI

AMB-3 **Client ID:** 1901510-03B Date/Time Analyzed: Lab ID: 2/6/19 02:36 PM Date/Time Collected: 1/24/19 04:40 PM **Dilution Factor:** 1.33 Media: 6 Liter Summa Canister (SIM Certified) Instrument/Filename: msdv.i / v020610sim Rpt. Limit MDL LOD Amount (ug/m3) (ug/m3) (ug/m3) (ug/m3) Compound CAS# 0.043 0.033 J Trichloroethene 0.018 0.14 79-01-6 Vinyl Chloride 0.025 0.025 0.034 Not Detected 75-01-4 J = Estimated value. D: Analyte not within the DoD scope of accreditation. %Recovery Limits Surrogates CAS# 1,2-Dichloroethane-d4 70-130 99 17060-07-0 4-Bromofluorobenzene 70-130 104 460-00-4 Toluene-d8 70-130 101 2037-26-5

Arcadis of New York, Inc.

One Lincoln Center

110 West Fayette Street

Suite 300

Syracuse, New York 13202

Tel 315 446 9120

Fax 315 449 0017