2023 Periodic Review Report

Former Coyne Textile Facility 140 Cortland Avenue City of Syracuse, New York

NYSDEC Site Number: C734144

CHA Project Number: 059294.001

Prepared for the Remedial Party:

Ranalli/Taylor St., LLC P.O. Box 580 Syracuse, New York 13205

Prepared by:

One Park Place 300 South State Street, Suite 600 Syracuse, New York 13202 Phone: (315) 471-3920

May 26, 2023

TABLE OF CONTENTS

1.0	Introi	NTRODUCTION1									
	1.1	Site Background	. 1								
	1.2	Contaminants of Concern	. 2								
	1.3	Summary of Site Remedy	. 2								
	1.4	Site Management Status									
2.0	INSTIT	UTIONAL AND ENGINEERING CONTROLS	. 5								
	2.1	Institutional Controls									
	2.2	Engineering Controls	6								
3.0	MONITORING PROGRAM COMPLIANCE										
	3.1	Components of the Monitoring Program	. 7								
		3.1.1 Changes to the Monitoring Program	. 7								
	3.2	Indoor Air Sampling	. 8								
		3.2.1 Chemical Inventory	.9								
		3.2.2 Indoor Air Sampling Results	9								
		3.2.3 Indoor Air Sampling Conclusions									
	3.3	SSDS Inspection	. 11								
	3.4	Site-Wide Inspection	. 11								
	3.5	Gauging Groundwater Monitoring Wells	. 11								
	3.6	Groundwater Sampling Event									
		3.6.1 Groundwater Sampling Methods	. 12								
		3.6.2 Waste Characterization									
		3.6.3 Groundwater Monitoring Results	. 13								
		3.6.4 Monitored Natural Attenuation Evaluation									
	3.7	Monitoring Deficiencies	. 17								
4.0	SUMMARY, CONCLUSIONS & RECOMMENDATIONS										
	4.1	Summary									
	4.2	Conclusions	. 18								
	4.3	Recommendations	. 18								
		LIST OF FIGURES									
Figure		Site Location Map									
Figure		Monitoring Well Location Map									
Figure		Indoor Air/Sub-Slab Vapor Sampling Locations									
Figure		Indoor Air/Sub-Slab Vapor Sampling Locations									
Figure		MW-5A/MW-5R Chlorinate Volatile Organic Compounds Time Series									
Figure		MW-6A/MW-6R Chlorinate Volatile Organic Compounds Time Series									
Figure	6	MW-7A/MW-7R Chlorinate Volatile Organic Compounds Time Series									

LIST OF TABLES

Indoor Air and Sub-Slab Vapor Analytical Results Compared to NYSDOH
Decision Matrices A, B, and C
Indoor Air and Sub-Slab Vapor Results - Detected Parameters
Groundwater Results – Detected Parameters

APPENDICES

Institutional & Engineering Controls Certification Forms
Monitoring Well Construction Logs
Indoor Air and Sub-Slab Vapor Samples Laboratory Analytical Report
Sub-Slab Depressurization System Inspection Checklist
Site Wide Inspection Checklist
Groundwater Monitoring Logs
Groundwater Samples Laboratory Analytical Report

LIST OF ACRONYMS & ABBREVIATIONS

AST	Aboveground Storage Tank
AWQS	Ambient Water Quality Standard
BCA	Brownfield Cleanup Agreement
BCP	Brownfield Cleanup Program
CHA	CHA Consulting, Inc.

CVOC Chlorinated Volatile Organic Compounds

DCE cis-1,2-Dichloroethene
EC Engineering Control
EC Engineering Controls

ELAP Environmental Laboratory Approval Program

FER Final Engineering Report
IC Institutional Control
ISCR In-Situ Chemical Reduction

MNA Monitored Natural Attenuation
MS/MSD Matrix Spike/Matrix Spike Duplicate

NYSDEC New York State Department of Environmental Conservation

NYSDOH New York State Department of Health

O&M Operation & Maintenance ORP Oxidation Reduction Potential

OSHA Occupational Safety and Health Administration

PCE Tetrachloroethene

PEL Permissible Exposure Limit PRR Periodic Review Report

RI Remedial Investigation SCO Soil Cleanup Objective

SMCL Secondary Maximum Contaminant Level

SMP Site Management Plan

SSDS Sub-Slab Depressurization System SVOC Semivolatile Organic Compound

TCE Trichloroethene
TO-15 Toxic Organics - 15
TOC Total Organic Carbon

TOGS Technical and Operational Guidance Series

TZ Treatment Zone

UST Underground Storage Tank

VC Vinyl Chloride

VOC Volatile Organic Compound

ZVI Zero-Valent Iron

bgs Below Ground Surface

mg/L Milligrams per Liter, or parts per million (ppm)

mg/kg Milligrams per Kilogram, or ppm

μg/L Micrograms per Liter, or parts per billion (ppb)

μg/m³ Micrograms per Cubic Meter

mV Millivolts

EXECUTIVE SUMMARY

Ranalli/Taylor St., LLC entered into a Brownfield Cleanup Agreement with the New York State Department of Environmental Conservation in September 2017 to investigate and remediate the Former Coyne Textile Facility, a property located at 140 Cortland Avenue in the City of Syracuse, Onondaga County, New York (Site). Historically, the Site was operated as an industrial drycleaning facility utilizing underground storage tanks containing Stoddard solvent and fuel oil, among other products stored and Site uses. The main contaminants of concern on the Site were found to be chlorinated volatile organic compounds. In 2020 and 2021, remediation and redevelopment of the Site was completed, and the Site was issued a certificate of completion on December 28, 2021.

This periodic review report details the monitoring activities from December 28, 2021, through April 28, 2023. In accordance with the SMP, a site-wide inspection, sub-slab depressurization inspection, indoor air sampling event, and groundwater monitoring event occurred.

The Site institutional controls (ICs) and engineering controls (ECs) are listed in this periodic review report. It is recommended that all current Site ICs and ECs remain in place, and the ECs continue to be inspected and monitored. It is recommended that the Site monitoring program continue in accordance with the SMP.

Due to Site redevelopment activities, three of the six proposed groundwater monitoring wells were unable to be sampled during the first quarter of 2023 groundwater monitoring event. No other major non-compliance issues were identified. CHA recommends removing monitoring well MW-105S from the gauging and sampling network because it was unable to be located during the post-construction monitoring and is expected to be buried under a minimum of three feet of fill material. Efforts were taken to find the monitoring well but were unsuccessful. Monitoring well MW-105D is screened within the same water bearing zone and is also located on the upgradient end of the Site. CHA also recommends cutting the PVC riser of the three down-gradient wells to facilitate the proper alignment of the gripper plug within the casing. It is anticipated that this repair will take place during the next monitoring period.

No changes to the operation and maintenance plans are recommended at this time. Groundwater monitoring will continue quarterly through the end of 2024, at which time the frequency will be re-evaluated. Provided that the ICs and ECs established for the Site remain in place, and are maintained, it is expected that the remedy will continue to be effective in protecting human health and the environment.

1.0 INTRODUCTION

Ranalli/Taylor St., LLC (Ranalli/Taylor St.) entered into a Brownfield Cleanup Agreement (BCA) with the New York State Department of Environmental Conservation (NYSDEC) in September 2017 to investigate and remediate the Former Coyne Textile Facility, a property located at 140 Cortland Avenue in the City of Syracuse, Onondaga County, New York (Site). In 2021, the BCA was amended at the request of Ranalli/Taylor St. and approved by the NYSDEC. The amendments included:

- A minor amendment to add seven entities to the BCA: JMA Tech Properties Holdings, LLC, JMA Tech Properties, LLC, JMA Tech LLC, XRN LLC, JMA Edge Services LLC, Prevail NY LLC, and CELLH LLC.
- A minor amendment to add 0.65 acres of South Clinton Street into the BCA.
- A minor amendment to correct the parcel sizes of two parcels east of Cortland Avenue. Tax Map No. 094.-20.01.0 was originally identified as a 0.57-acre parcel and Tax Map No. 094.-20-02.0 was originally identified as a 1.13-acre parcel for a total of 1.7 acres. The updated parcel acreage is 0.126 and 0.736 acres, respectively, totaling 0.862 acres.

With the approved amendments, the Site is situated on approximately 3.262-acres. Figure 1 presents the general vicinity of the Site and Figure 2 presents the Site layout and BCA boundary.

Several investigations to identify the nature and extent of contamination led to the NYSDEC-approved Remedial Design Work Plan and implementation of the remedial design during redevelopment in 2020 and 2021. Upon completion of that work, a Final Engineering Report (FER) prepared by CHA Consulting, Inc. (CHA), 2021, and Site Management Plan (SMP), prepared by CHA, 2021, were approved by the NYSDEC. On December 28, 2021, the Site achieved a Certificate of Completion and entered the Site management phase.

This Periodic Review Report (PRR) details the Site management activities that were conducted during the reporting period of December 28, 2021, through April 28, 2023.

1.1 SITE BACKGROUND

The Site was utilized as an industrial laundering facility beginning in the mid-1930s through 2015 under various entities of Coyne Textile Services. Dry-cleaning activities using tetrachloroethylene (PCE) and Stoddard solvent (a petroleum mixture made from distilled alkanes, cycloalkanes (napthenes) and aromatic hydrocarbons) were conducted at the Site until 2000. These dry-cleaning

liquids were stored in aboveground and underground storage tanks (ASTs and USTs). Additionally, a fuel oil tank for heating the building at 140 Cortland Avenue was identified beneath the boiler room and a gasoline filling station was previously located on the southern portion of the Site in the 1980s. The region to the east of the building, known as the former employee parking lot, was owned by Coyne Textile Services and used as a parking lot from 1989 to 2016. Prior to that use, this portion of the Site was a bus storage and repair facility, the Syracuse Streetcar Barn, retail stores, and a gasoline filling station (circa 1950-1970).

A detailed Site history including a summary of previous investigations conducted between 2014 and 2020 was provided in the FER (CHA, 2021).

1.2 CONTAMINANTS OF CONCERN

Low levels of volatile organic compounds (VOCs) and semivolatile organic compounds (SVOCs) were identified Site-wide. However, the primary contaminants of concern for remediation were the following chlorinated volatile organic compounds (CVOCs):

- Tetrachloroethylene (PCE)
- Trichloroethene (TCE)
- 1,2-dichloroethene (DCE)
- Vinyl Chloride (VC)

1.3 SUMMARY OF SITE REMEDY

Based on the remedial investigation (RI) and supplemental investigations, the Site contaminants were grouped into areas of concern, later classified into treatment zones during the remedial design and implementation. The remedial goal was source removal or in-situ treatment, treatment of the impacted groundwater, and protection of human and environmental health.

The Site remedy is described in more detail in the FER (CHA, revised December 2021). Briefly, the treatment zones and each selected remedy included the following major components:

- 1) Treatment Zone 1 (TZ-1) Excavation and Backfill
 - a) Excavation and off-site disposal of soil/fill exceeding Commercial Use Soil Cleanup Objectives (SCOs) to the depth of groundwater
 - b) Excavation and removal of USTs and associated underground piping discovered during remedial implementation
 - c) Import clean fill to replace excavated soil to re-establish grades at the Site.

- d) Re-use excavated soils that did not exceed Commercial Use SCOs or exhibit evidence of contamination in other areas of the Site (within the boundaries of the BCA).
- 2) Treatment Zone 2 (TZ-2) Soil Mixing/In-Situ Reduction
 - a) In-situ chemical reduction (ISCR) of contaminated soil in an approximately 6,000 square foot area with treatment depths of 16 to 26 feet below ground surface.
 - b) Mix in place with zero valent iron (ZVI) slurry.
 - c) Soil from 9 feet bgs to existing grade was mixed with a cement slurry to provide sufficient bearing grade for Site redevelopment.
- 3) Treatment Zone 3 (TZ-3) Groundwater Extraction and Treatment
 - a) Groundwater extraction, ex-situ treatment with sodium permanganate, and reinjection into the plume area through a series of extraction and injection wells.
 - b) Extracted groundwater was treated with a dosing rate of 5 grams per liter of sodium permanganate designed based on a bench scale study.
 - c) Two pore volumes, totaling approximately 672,000 gallons of water, within the contaminated groundwater zone was treated.

4) Cover System

- a) During Site redevelopment, the cover system was enhanced. The cover system consists of building footprints, asphalt paved surfaces, concrete sidewalks, and soil cover in greenspace areas.
- b) A demarcation layer consisting of non-woven geotextile was installed to delineate between existing Site soils and imported fill material.
- 5) Vapor Mitigation Sub-Slab Depressurization System (SSDS)
 - a) An SSDS was designed and installed beneath both, the renovated portion of the existing building (south end of the Site), and the newly constructed building to mitigate the potential migration of any remaining vapors into the building from the subsurface soil and groundwater.
- 6) Execution of an Environmental Easement
 - a) An Environmental Easement has been placed on the Site to prevent future exposure to contamination remaining at the Site.
- 7) Site Management Plan
 - a) A Site Management Plan was developed for long term management of remaining contamination and includes plans for institutional and engineering controls (discussed in Section 2), monitoring, operation and maintenance, and reporting.
- 8) Periodic certification of the institutional and engineering controls, as described in this PRR.

No significant changes have been made to the remedy since the remedy was selected and implemented.

1.4 SITE MANAGEMENT STATUS

Submittal of an annual PRR is required by the NYSDEC to document the status of the controls established by the SMP. The components of the remedy listed in Section 1.3 have been fully implemented and are complete, in the case of TZ-1, TZ-2, and TZ-3, or are ongoing as part of the remedy, in the case of cover systems, vapor mitigation, environmental easement, site management, and periodic certification.

This PRR was prepared by CHA on behalf of Ranalli/Taylor St. LLC to document the status of the controls, established by the SMP, during the reporting period from December 28, 2021, through April 28, 2023.

The SMP requirements include:

- An inspection of the institutional controls (ICs) and engineering controls (ECs);
- Indoor air and sub-slab vapor sampling; and
- Groundwater monitoring.

2.0 INSTITUTIONAL AND ENGINEERING CONTROLS

ICs and ECs have been established to protect public health and the environment for future use of the Site. The IC and EC Certification Forms are included in Appendix A. As further detailed in the following sections, the ICs and ECs remained in place and effective during this reporting period and no changes are proposed at this time.

2.1 INSTITUTIONAL CONTROLS

ICs are defined as any non-physical means of enforcing a restriction on the use of a real property that limits human and environmental exposure, restricts the use of groundwater, provides notice to potential future owners, operator, or members of the public, or prevents actions that would interfere with the effectiveness of a remedial program or with the effectiveness and/or integrity of operation, maintenance, or monitoring activities at or pertaining to a remedial Site. The ICs implemented at the Site include:

- The property may be used for industrial and commercial uses;
- All ECs must be operated and maintained as specified in the SMP;
- All ECs must be inspected at a frequency and in a manner defined in the SMP;
- The use of groundwater underlying the property is prohibited without necessary water quality treatment as determined by the New York State Department of Health (NYSDOH) or the Onondaga County Department of Health to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the NYSDEC;
- Groundwater and other environmental or public health monitoring must be performed as defined in the SMP;
- Data and information pertinent to Site management must be reported at the frequency and in a manner as defined in the SMP;
- All future activities that will disturb remaining contaminated material must be conducted in accordance with the SMP;
- Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in the SMP;
- Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical component of the remedy shall be performed as defined in the SMP;
- Access to the Site must be provided to agents, employees or other representatives of the State of New York with reasonably prior notice to the property owner to assure compliance with the restrictions identified by the Environmental Easement;

- The potential for vapor intrusion must be evaluated for any buildings developed in the area within the IC boundaries and any potential impacts that are identified must monitored or mitigated;
- Vegetable gardens and farming on the Site are prohibited; and,
- An evaluation shall be performed to determine the need for further investigation and remediation should large scale redevelopment occur, if any of the existing structures are demolished, or if the subsurface is otherwise made accessible.

2.2 ENGINEERING CONTROLS

ECs are physical barriers or methods employed to actively or passively contain, stabilize, or monitor contamination, restrict the movement of contamination, or eliminate potential exposure pathways to contamination. The ECs implemented at the Site include:

- Site-Wide Cover and Cap
- Sub-Slab Depressurization Systems
- Groundwater Monitoring Wells

3.0 MONITORING PROGRAM COMPLIANCE

3.1 COMPONENTS OF THE MONITORING PROGRAM

This section details the results of the monitoring program described in the SMP. In brief, the monitoring program includes:

Completed Once

• Indoor air quality sampling event

Annually

- SSDS inspection
- Site-Wide inspection

Quarterly

- Gauging of groundwater monitoring wells
- Groundwater sampling

3.1.1 Changes to the Monitoring Program

Since the submission and approval of the SMP and during post-remediation Site development, there were no changes made to the SSDS or cover system for the Site. The following changes were made to the monitoring well network:

- Monitoring wells MW-5A, MW-6A, and MW-6B were damaged during Site clearing and utility excavations in 2021. These wells, along with the other nested monitoring wells, were damaged beyond repair. Therefore, a driller was mobilized to re-install three monitoring wells on the downgradient perimeter of the Site. Currently, monitoring wells MW-5R, MW-6R, and MW-7R are installed in the locations presented on Figure 2. Monitoring well construction logs are included in Appendix B.
- Monitoring well MW-4 was covered with topsoil and sod during the landscaping efforts at the Site. After the sampling event in first quarter of 2023, CHA utilized a metal detector and successfully found the location of MW-4. MW-4 will be enhanced with a new concrete curb box and monitored in subsequent groundwater monitoring events.
- Monitoring wells MW-105S and MW-105D were covered with soil, topsoil, and sod during landscaping efforts at the Site. After the sampling event in first quarter of 2023, a metal detector was utilized and successfully identified the location of MW-105D. CHA believes MW-105S is buried under a minimum of three feet of soil placed in a berm along the eastern perimeter of the Site. Per the SMP, MW-105D will be sampled in subsequent groundwater monitoring events. CHA proposes removing MW-105S from the monitoring network given that MW-105D is also considered an upgradient well and is screened at an

interval consistent with the first water bearing zone for the Site, similar to the downgradient wells and CVOC plume.

3.2 INDOOR AIR SAMPLING

In accordance with the SMP, indoor air quality sampling occurred following startup of the SSDS, during the first heating season. On February 18, 2023, a CHA environmental engineer mobilized to the Site to perform sub-slab vapor, indoor air, and outdoor ambient air sampling. CHA set up five sub-slab vapor samples, nine indoor air samples and one outdoor (background) air sample utilizing 2.7-liter SUMMA® canisters that were individually certified clean by Alpha Analytical, Inc. (Alpha). The sub-slab samples were connected to permanent vapor monitoring points installed as part of the Remedial Design. The sampling locations are presented on Figures 3A and 3B. Prior to sampling, at least one liter of stagnant air was purged from the tubing using a GilAir personal sampling pump. Tubing purge rates and sample flow rates were controlled so they did not exceed 0.2 liters per minute, per the New York State Department of Health (NYSDOH) guidance criteria described in the "Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York" released in 2006 and updated in May 2017. The canisters were setup to collect the samples over eight hours, during which the building was mostly unoccupied with the exception of two security guards and two employees working on the manufacturing floor.

The outdoor air sample was placed on the southwest corner of the building within the fenced-in area of the Site. At approximately 14:15, the SUMMA® canister was stolen by a passerby who reached through the fence posts, maneuvered the canister toward the top of the fence, and pulled it over the top. This incident was caught on security cameras and a police report was filed. However, the SUMMA® canister was unable to be recovered and, therefore, an outdoor air background sample was not able to be analyzed.

After the eight-hour sampling event, the SUMMA® canisters were closed/sealed and the flow regulators were removed. The samples were labeled with the project name, sample identification, date, start and stop time, start and stop vacuum pressures, sampler's initials, and applicable laboratory analyses. The sample canisters were submitted to Alpha located in Mansfield, Massachusetts (Environmental Laboratory Accreditation Program (ELAP) Certification Number 11627 for NYSDOH) under proper chain-of-custody protocols. The samples were analyzed for VOCs via Environmental Protection Agency (EPA) Method Toxic Organics-15 (TO-15).

3.2.1 Chemical Inventory

To effectively evaluate the source of detections of concentrations of a chemical, an inventory of all chemicals utilized within the building was conducted. The following chemicals were observed during the Site visit and the active ingredients were identified on safety data sheets provided by the various manufacturers.

Item	Main Active Ingredients				
Envirox H ₂ Orange 2 Light Duty and	Hydrogen peroxide, orange oil, surfactants				
Heavy-Duty Sanitizer					
Flex Wipes Disinfectant Wipes	di-C8-10-alkyldimethyl chlorides, benzyl-C12-				
	16-alkyldimethyl chlorides, water, propriety				
	ingredients				
Stainless Steel Cleaner	Water, solvent naptha (petroleum), white mineral				
	oil (petroleum), butane, propane				
Dial Basics Soaps	Alcohols, sodium chloride, inner salts				
Lite & Foamy Cranberry Ice Hand, Hair,	Water, sodium laureth sulfate				
and Body Wash					
Various Hand Sanitizer	Ethyl alcohol, glycerol, hydrogen peroxide, water				
Contempo Spotting Solution	Water, butoxydiglycol, hydrogen peroxide, citric				
	acid, sodium sesquicarbonate, disodium cetyl				
	phenyl ether disulfonate, undeceth-3,				
	polycarbonate sodium salt				
Propylene Glycol	Propylene glycol				
Isopropyl Alcohol Spray Bottles	Isopropyl alcohol, water				
Smart Foam A and B	Polymeric diphenylmethane diisocyanate,				
	diphenylmethane-4,4'-diisocyanate				

3.2.2 Indoor Air Sampling Results

The laboratory analytical report is included in Appendix C. The five concurrent indoor air and subslab vapor samples were compared to the NYSDOH matrices and the results are presented in Table 1. The matrix result indicated "No Further Action" for all parameters with the exception of TCE at Location 4 and Location 6. The concentration of TCE in the indoor air sample (IA-04-20230218) exceeds 1 microgram per cubic meter ($\mu g/m^3$) (result 1.39 $\mu g/m^3$) indicating an action of "Identify Source(s) and Resample or Mitigate". However, TCE was not detected in the sub-slab sample (SS-04-20230218) and the Site is already mitigated with an active SSDS maintaining a

negative pressure under the concrete slab. Due to the non-detect concentration in the sub-slab sample, the TCE is likely not associated with vapor intrusion but instead likely an indoor source.

Additionally, the indoor air sample IA-06-20230218 exceeds 1 μ g/m³ (result 2.46 μ g/m³) indicating an action of "Identify Source(s) and Resample or Mitigate" based on the decision matrix. The result also exceeds the air guideline value of 2 μ g/m³ set by the NYSDOH. By similar merit, the Site is already mitigated and the sub-slab vapor sampling throughout the building indicates sub-slab vapors are not accumulating in elevated concentrations and, therefore, vapor intrusion is not significant. Rather, the presence of TCE is likely from an indoor source. The chemical inventory, provided above, did not specifically identify an indoor source of TCE, but new building finishes, construction materials, lubricants, adhesives, and other chemical cleaning products may be the source.

All detected parameters for indoor air and sub-slab vapor are presented in Table 2. The indoor air results were compared to Table C2. EPA 2001: Building Assessment and Survey Evaluation Database, SUMMA canister method for the 95th percentile values for indoor air found in the above-referenced NYSDOH document. Isopropanol exceeded the 95th percentile indoor air concentration in five of the indoor air samples. No other parameters exceeded the 95th percentile values listed in Table C.2. Various cleaning solution spray bottles were noted in the main manufacturing area and at least one was found to contain 70% isopropyl alcohol, which is synonymous for isopropanol, and most cleaning products contain isopropanol. This indoor air contaminant is not considered to be a threat to human health because the Occupational Health and Safety Administration (OSHA) permissible exposure limit (PEL) is 400 mg/m³.

As previously noted, the outdoor air sample was unable to be recovered and, therefore, results are not available. CHA does not anticipate the outdoor air to have a significant impact on CVOC concentrations in the building and/or sub-slab vapor. Overhead doors and man doors were kept closed during the sampling event with the exception of occasional personnel entering or leaving through the main entrance on the west side of the building.

3.2.3 Indoor Air Sampling Conclusions

Based upon the results of the laboratory analysis conducted, CHA has concluded that soil vapor intrusion is successfully being mitigated by the active SSDS installed as part of the Remedial Design. Indoor air quality impacted by TCE and isopropanol is likely from indoor sources such as cleaning products and newly installed building materials. Sub-slab vapor samples did not indicate accumulation of CVOC parameters beneath the concrete slab.

3.3 SSDS INSPECTION

Concurrently with the indoor air quality sampling event, the SSDS was inspected in accordance with the SMP. The system checklist is provided in Appendix D. No significant deficiencies or maintenance issues were noted at the time of the inspection. Each of the five SSDSs were operating as intended and maintaining at least 1.35 inches of water column vacuum pressure at the pressure gauges.

3.4 SITE-WIDE INSPECTION

In accordance with the SMP, a site-wide inspection was conducted to document performance of the ECs and compliance with the SMP and Environmental Easement. It should be noted the building was not occupied until June 2022. One site-wide inspection was performed on March 30, 2023. The inspection checklist is provided in Appendix E.

The results of the inspections indicate the following:

- The cover system was in good condition; there was no evidence of erosion, depressions, significant cracks, or damage to the cover systems.
- Vegetation is well established over the greenspace areas. No significant bare or thin areas were noted. There was no evidence of stressed vegetation, overgrowth that required maintenance, or excavation of disturbed areas.
- There was no evidence of vector activity.
- Site drainage systems appeared to be in good condition with no evidence of erosion around drainage structure, settlement, siltation or debris constricting flow. Manhole covers were present and in good condition.
- The Site access controls were observed to be in good condition.
- To improve security on the monitoring wells, maintenance is required on monitoring wells MW-5R, MW-6R, and MW-7R. The pvc-riser of each well should be cut flush to facilitate proper seating of the gripper plug.
- As previously noted, monitoring wells MW-5, MW-105S, and MW-105D were unable to be located during the Site-wide inspection. This deficiency was corrected as discussed in Section 3.1.

3.5 GAUGING GROUNDWATER MONITORING WELLS

Groundwater water level measurements were collected on March 30, 2023, from each of the accessible groundwater monitoring wells. At the submission of this PRR, the monitoring wells have not been surveyed as several wells could not be found or require maintenance (as discussed

in previous sections). A groundwater contour map will be developed for subsequent sampling events after the wells are surveyed.

3.6 GROUNDWATER SAMPLING EVENT

The purpose of the groundwater monitoring event is to identify contaminant trends within the groundwater and evaluate whether or not monitored natural attenuation (MNA) is occurring.

3.6.1 Groundwater Sampling Methods

In accordance with the SMP, purging and sampling was conducted using a submersible pump and low-flow purging and sampling techniques. A Monsoon submersible pump with dedicated polyethylene tubing and a water quality meter (e.g. Horiba) with flow-through cell were utilized to determine when purge water from the well had reached stable conditions. Field water quality parameters including depth to water, pH, temperature, turbidity, dissolved oxygen, specific conductance, and oxidation-reduction potential (ORP) were measured and recorded on logs included in Appendix F. After three consecutive readings within stabilization parameters, one sample was collected from the dedicated tubing. Following collection, the groundwater samples were packed into coolers with ice and transported to Alpha Analytical, Inc laboratories certified under the NYSDOH Environmental Laboratory Approval Program (ELAP).

Samples were submitted to Alpha Analytical for the following analyses:

- VOCs via EPA Method 8260C;
- Total Iron via EPA Method 6010D;
- Sulfate via EPA Method 300.0:
- Sulfide via EPA Method SM 4500;
- Dissolved gases Methane and Carbon Dioxide;
- Total Organic Carbon (TOC) via EPA Method SM2320;
- Chloride via EPA Method 300; and,
- Nitrogen and Nitrate via EPA Method 300.0.

For quality assurance purposes, one blind duplicate (CHA-1) was collected at well MW-6R and matrix spike/matrix spike duplicate (MS/MSD) samples were collected at well MW-5R. One trip blank was prepared by the laboratory and accompanied the sample containers throughout the sampling and transport processes. The laboratory analytical results from the groundwater sampling event are presented in Table 3 and summarized in the following section.

3.6.2 Waste Characterization

Purge water was containerized in a 55-gallon steel drum and characterized for waste disposal purposes. The purge water was sampled for waste characterization purposes and results indicated the water is non-hazardous. Given the accumulated purge water is less than 20 gallons, the drum was staged on-site to be utilized for future groundwater monitoring events. A waste disposal contractor will be retained to transport the drum to a permitted facility once the drum is full. A manifest of drum disposal activity will be included in future PRR submissions.

3.6.3 Groundwater Monitoring Results

Groundwater results were compared to the *Technical and Operational Guidance Series 1.1.1* (TOGS 1.1.1) Ambient Water Quality Standards (AWQS) for Class GA waters. The analytical results are included in Table 3 and the full laboratory analytical report is included in Appendix G.

Chlorinated Volatile Organic Compounds

Based on the analytical laboratory results, CVOCs were identified at concentrations typically in exceedance of the AWQS of 5 micrograms per liter (μ g/L) for PCE, TCE, and DCE and 2 μ g/L for VC.

- PCE was identified at concentrations of 8.2 μg/L and 9.7 μg/L in monitoring wells MW-5R and MW-6R, respectively, but not detected in MW-7R.
- TCE was identified at concentrations of 5.8 μ g/L, 13 μ g/L, and 0.32 J μ g/L in MW-5R, MW-6R, and MW-7R, respectively.
- DCE was identified at concentrations of 34 μ g/L, 130 μ g/L, and 670 μ g/L in MW-5R, MW-6R, and MW-7R, respectively.
- VC was identified at concentrations of 220 μ g/L, 190 μ g/L, and 180 μ g/L in MW-5R, MW-6R, and MW-7R, respectively.

The concentrations of these CVOCs are significantly lower than the solubilities of these compounds in water. If the contaminants were found at concentrations greater than their solubilities, sampling errors such as emulsification of non-aqueous phase liquid likely occurred.

Volatile Organic Compounds

No other volatile organic compounds were identified at concentrations exceeding their respective AWQS.

Other Parameters

To establish trends and to identify if MNA is occurring, multiple additional parameters were analyzed. These parameters will be compared to the upgradient monitoring well (MW-105D) when data is available and trends over time during the MNA evaluation period will be evaluated. These parameters were not sampled historically and can only be compared to AWQS, if available, or general groundwater characteristics for this event. A preliminary evaluation of MNA is provided in Section 3.7.3.

- Iron was identified at relatively high concentrations ranging from 9,650 μg/L to 16,300 μg/L compared to an AWQS of 300 μg/L.
- The anions chloride and sulfate were identified at concentrations ranging from 75 to 301 milligrams per liter (mg/L). The anion sulfide was identified at lower concentrations ranging from 27 to 40 µg/L. Nitrate was not detected in the groundwater samples. No AWQS is available for comparison for any of these anions. The secondary maximum contaminant level (SMCL) for chloride and sulfate in drinking water is 250 mg/L.
- Dissolved gasses carbon dioxide, methane, ethane, and ethene were sampled and identified at various concentrations. No AWQS is available for comparison.
- General chemistry parameters alkalinity and total organic carbon were sampled. No AWQS is available for comparison.

3.6.4 Monitored Natural Attenuation Evaluation

The Environmental Protection Agency Technical Protocol for Evaluation Natural Attenuation of Chlorinated Solved in Groundwater, September 1998, was referenced to describe the process of natural attenuation and aided in evaluating groundwater parameters. Natural attenuation consists of several processes that work, over time, to reduce the concentration of a given contaminant. These processes include biodegradation, dispersion, advection, dilution from recharge, sorption, and volatilization. Biodegradation is the most important mechanism to reduce contaminant concentrations, and the main contaminants of concern for this Site, CVOCs, biodegrade under natural conditions via reductive dechlorination. CVOCs are halogenated hydrocarbons where at least one hydrogen atom is replaced by a halogen, chlorine. During reductive dechlorination, the CVOC is used as an electron acceptor and a halogen (chlorine) is removed and replaced with a hydrogen atom. In order for this to occur, there must be an appropriate source of carbon for microbial growth. The carbon source can be naturally occurring TOC in the soil or a low-level presence of petroleum hydrocarbons. During the remedial design phase at this Site, detections of high levels of TOC and low-levels of benzene were identified Site-wide in subsurface clays.

Reductive dechlorination results in the formation of intermediates that are more reduced than the parent compound. The source contaminant at the Site is PCE and the sequential reductive

dechlorination daughter compounds are TCE, DCE, and VC with a final end product of ethene. Generally, one or more of the following is observed at a site where reductive dechlorination is occurring:

- Low dissolved oxygen concentrations
- Accumulation of daughter products
- Chloride concentrations increase
- Ethene produced
- Methane produced
- Iron (II) produced
- Hydrogen concentrations greater than 1 nanomoles

As previously mentioned, one set of groundwater sampling results are available for this reporting period. Therefore, comparison to previous data and trend analysis of the MNA parameters will be presented in future PRRs. The preliminary discussion of MNA parameters incorporates field and laboratory data and will be updated as additional groundwater quality data is available.

Dissolved Oxygen

Reductive dechlorination occurs in an anaerobic environment, which is typically identified as less than 0.5 mg/L dissolved oxygen. Dissolved oxygen was monitored via a flow-through cell on a water quality meter during the purging process. All monitoring wells were found to be trending toward 0 mg/L during the purging process with final MW-5R and MW-6R readings below 0.5 mg/L. The low oxygen environment is a strong indicator that the conditions for MNA via reductive dechlorination exist.

Accumulation of Daughter Products

One round of sampling on monitoring wells MW-5R, MW-6R, and MW-7R has been conducted. The nested wells at MW-5, MW-6 and MW-7 were historically monitored in July 2015 and December 2020. Trend analysis on PCE and the daughter products TCE, DCE and VC are presented in graphs in Figures 4-7. Monitoring well MW-5A/MW-5R is located furthest south of the three monitoring wells likely near the leading southern edge of the plume and is showing strong declines in PCE and TCE with increases in DCE and VC which is indicative of reductive dechlorination. The production of daughter products in monitoring wells MW-6A/MW-6R and MW-7A/MW-7R is less clear, but overall, there are strong declines in the total CVOC concentrations identified. This trend will continue to be evaluated.

Chloride

During the breakdown of CVOCs, chlorine is released, and the groundwater concentrations of chloride are likely to increase. Chloride concentrations in each of the monitoring wells ranged from 212 to 301 mg/L. Historical data on groundwater chloride concentrations was not available. In future sampling events, the concentrations in the downgradient wells will be compared to the upgradient well in addition to previous events.

Sulfate

Sulfate at high concentrations, such as those identified in monitoring wells MW-5R, MW-6R, and MW-7R, may compete with CVOC reductive dechlorination. This concentration will continue to be evaluated.

Ethene and Ethane

Low concentrations of ethene and ethane were identified in the groundwater from each of the monitoring wells ranging from 9.77 to 221 μ g/L. Any detection of ethene indicates the final breakdown of CVOCs and is indicative of reductive dechlorination biodegradation processes. The concentrations of ethene and ethane will be monitored over time to determine a trend.

<u>Methane</u>

Concentrations of methane ranging from 1.4 to 6.9 mg/L were identified in the groundwater from each of the monitoring wells. Any detection of ethene indicates the final breakdown of CVOCs and is indicative of reductive dechlorination biodegradation processes.

Iron (II)

Iron (III) can be used as an electron acceptor which is reduced to a water-soluble form, iron (II). Iron (II) concentrations greater than 1 mg/L are indicative of conditions where reductive dechlorination may occur. Total iron concentrations identified at monitoring wells MW-5R, MW-6R, and MW-7R were found to be 16.3, 11.4 and 9.65 mg/L, respectively. This parameter will continue to be evaluated.

pH

Groundwater pH was monitored via a flow-through cell on a water quality meter during the purging process. The pH during the first quarter 2023 monitoring event was identified between 8.2 and 8.6 pH units which correlates to a hydrogen ion concentration between 2.5 and 6.3 nanomoles. The groundwater pH levels are conducive to reductive dechlorination.

Oxidation Reduction Potential

An ORP of less than 50 millivolts (mV) indicates reductive dechlorination is possible and less than -100 millivolts (mV) indicates it is likely. Monitoring wells MW-5R and MW-6R show strong negative ORP around -100 mV and MW-7R is around -70 mV. The ORP levels are conducive to reductive dechlorination.

Total Organic Carbon

The TOC concentrations identified in monitoring wells MW-5R, MW-6R, and MW-7R were found to be 5.79, 10.4, and 4.74 mg/L, respectively, which is lower than the ideal TOC concentration of greater than 20 mg/L. This parameter will continue to be evaluated.

3.7 MONITORING DEFICIENCIES

As previously noted, the monitoring wells MW-4, MW-105S, and MW-105D were not gauged or sampled during this monitoring period. This deficiency has been corrected by utilizing a metal detector to identify the buried locations of MW-4 and MW-105D which will be added to subsequent monitoring events. However, monitoring well MW-105S was unable to be located and is suspected to be buried below at least three feet of soil and sod. CHA recommends removing MW-105S from the monitoring network because MW-105D can be utilized as the upgradient monitoring well and is screened at an interval that is adequate for identifying potential off-site contamination impacting the Site and evaluating groundwater chemistry upgradient of the CVOC plume.

4.0 SUMMARY, CONCLUSIONS & RECOMMENDATIONS

4.1 SUMMARY

The Site was observed to be in overall good condition at the time of the 2022-2023 activities. In summary:

- CHA conducted indoor air and sub-slab vapor sampling to demonstrate the efficacy of the SSDS by managing the accumulation of sub-slab vapors and preventing intrusion into the indoor air.
- CHA inspected the SSDS and identified it was functioning as intended.
- CHA inspected the Site, including the soil cover systems, and found the Site to be in good condition.
- CHA gauged the monitoring wells that were accessible. Note monitoring wells MW-4 and MW-105D were not accessible at the time of the groundwater sampling event but have since been found and will be gauged and sampled in future sampling events. Monitoring well MW-105S was unable to be located.
- Groundwater results indicated concentrations of CVOCs exceed the AWQS, but generally show a declining trend compared to pre-remedial activity.
- MNA parameters were preliminarily evaluated and indicate favorable conditions for MNA and that it is likely occurring. This evaluation will be further developed in future PRRs.

4.2 CONCLUSIONS

As previously indicated, the IC and EC Certification Forms are included in Appendix A. Provided that the ICs and ECs established for the Site remain in place, and are maintained, it is expected that the remedy will continue to be effective in protecting human health and the environment. The results of the indoor air sampling event indicate the SSDS is effectively mitigating the accumulation of sub-slab vapors from the CVOC contamination, and no additional vapor intrusion mitigation is necessary. The results of the groundwater sampling event indicate a significant decline in overall CVOC concentrations compared to previous sampling event prior to the completion of the remedy. Evaluation of MNA parameters indicates the right subsurface conditions exist for reductive dechlorination to be a successful pathway to reduce the contaminants of concern at the Site.

4.3 RECOMMENDATIONS

It is recommended that all current Site ICs and ECs remain in place, and the ECs continue to be inspected and monitored. It is recommended that the Site monitoring program continue in accordance with the SMP.

CHA recommends removing monitoring well MW-105S from the gauging and sampling network because it was unable to be identified during the post-construction monitoring and is expected to be buried under a minimum of three feet of fill material. Efforts were taken to find the monitoring well but were unsuccessful. Monitoring well MW-105D is screened within the same water bearing zone and is also located on the upgradient end of the Site. CHA recommends cutting the PVC riser of the three down-gradient wells to facilitate the proper alignment of the gripper plug within the casing. It is anticipated that this repair will take place during the next monitoring period.

No changes to the operation and maintenance plans are recommended at this time. Groundwater monitoring will continue quarterly through the end of 2024, at which time the frequency will be re-evaluated.

FIGURES

File: V:\PROJECTS\ANY\K5\059294.001\CADD_ACAD\ENVP\PRR\PRR_FIGURES.DWG

Site layout from the Alpine Environmental Services First Floor Offices Pressure Monitoring Port Locations, provided in the SMP.

INDOOR AIR AND SUB-SLAB VAPOR SAMPLING LOCATIONS

FORMER COYNE TEXTILE 140 CORTLAND AVENUE SYRACUSE, NEW YORK PROJECT NO. 059294.001

DATE: 05/2023

FIGURE 3A

Site layout from the Alpine Environmental Services First Floor Offices Pressure Monitoring Port Locations, provided in the SMP.

INDOOR AIR AND SUB-SLAB VAPOR SAMPLING LOCATIONS

FORMER COYNE TEXTILE 140 CORTLAND AVENUE SYRACUSE, NEW YORK PROJECT NO. 059294.001

DATE: 05/2023

FIGURE 3B

TABLES

Table 1.

Indoor Air and Sub-Slab Vapor Analytical Results Compared to NYSDOH Decision Matrices A, B, and C.

Former Coyne Textile Facility Sub-Slab Depressurization System Performance Monitoring

		Location 1			Location 2			Location 3		
	Sampling Location	IA-01- 20230218	SS-01- 20230218		IA-02- 20230218	SS-02- 20230218	NYSDOH Guidance	IA-03- 20230218	SS-03- 20230218	
Parameter	Units			NYSDOH Guidance Recommended Action			Recommended Action			NYSDOH Guidance Recommended Action
1,1,1-Trichloroethane	ug/m3	ND	ND	No Further Action	ND	ND	No Further Action	ND	ND	No Further Action
1,1-Dichloroethene	ug/m3	ND	ND	No Further Action	ND	ND	No Further Action	ND	ND	No Further Action
Carbon tetrachloride	ug/m3	0.465	ND	No Further Action	0.472	ND	No Further Action	0.51	ND	No Further Action
cis-1,2-Dichloroethene	ug/m3	ND	ND	No Further Action	ND	ND	No Further Action	ND	5.35	No Further Action
Methylene Chloride	ug/m3	ND	ND	No Further Action	ND	ND	No Further Action	ND	ND	No Further Action
Tetrachloroethene	ug/m3	0.19	ND	No Further Action	0.142	ND	No Further Action	ND	7.19	No Further Action
Trichloroethene	ug/m3	0.532	ND	No Further Action	ND	ND	No Further Action	ND	4.06	No Further Action
Vinyl chloride	ug/m3	ND	ND	No Further Action	ND	ND	No Further Action	ND	1.5	No Further Action

Samples collected by CHA Consulting on 2/18/2023.

Samples analyzed by Alpha Analytical (ELAP 11627 for NYSDOH)

ND - Not detected

Soil Vapor/Indoor Air Matrix Actions

No Further Action

Identify Source(s) and Resample or Mitigate

Monitor

Mitigate

Table 1.

Indoor Air and Sub-Slab Vapor Analytical Results Compared to NYSDOH Decision Matrices A, B, and C.

Former Coyne Textile Facility Sub-Slab Depressurization System Performance Monitoring

		Location 4			Location 5			
	Sampling Location	IA-04- 20230218	SS-04-20230218	NYSDOH Guidance Recommended	IA-05- 20230218	SS-05-20230218	NYSDOH Guidance	
Parameter	Units			Action			Recommended Action	
1,1,1-Trichloroethane	ug/m3	ND	ND	No Further Action	ND	ND	No Further Action	
1,1-Dichloroethene	ug/m3	ND	ND	No Further Action	ND	ND	No Further Action	
Carbon tetrachloride	ug/m3	0.472	ND	No Further Action	0.453	ND	No Further Action	
cis-1,2-Dichloroethene	ug/m3	ND	ND	No Further Action	ND	ND	No Further Action	
Methylene Chloride	ug/m3	ND	ND	No Further Action	ND	ND	No Further Action	
Tetrachloroethene	ug/m3	ND	ND	No Further Action	ND	ND	No Further Action	
				Identify Source(s) and Resample or				
Trichloroethene	ug/m3	1.39	ND	Mitigate	0.333	ND	No Further Action	
Vinyl chloride	ug/m3	ND	ND	No Further Action	ND	ND	No Further Action	

Samples collected by CHA Consulting on 2/18/2023.

Samples analyzed by Alpha Analytical (ELAP 11627 for NYSDOH)

ND - Not detected

Soil Vapor/Indoor Air Matrix Actions

No Further Action

Identify Source(s) and Resample or Mitigate

Monitor

Mitigate

Table 1.

Indoor Air and Sub-Slab Vapor Analytical Results Compared to NYSDOH Decision Matrices A, B, and C.

Former Coyne Textile Facility Sub-Slab Depressurization System Performance Monitoring

		Supplemental Indoor Air Samples							
	Sampling Location	IA-06-20230218	IA-07-20230218	IA-08-20230218	IA-09-20230218				
Parameter	Units								
1,1,1-Trichloroethane	ug/m3	ND	ND	ND	ND				
1,1-Dichloroethene	ug/m3	ND	ND	ND	ND				
Carbon tetrachloride	ug/m3	0.528	0.484	0.453	0.503				
cis-1,2-Dichloroethene	ug/m3	0.103	ND	ND	ND				
Methylene Chloride	ug/m3	ND	ND	ND	ND				
Tetrachloroethene	ug/m3	0.414	ND	ND	0.454				
Trichloroethene	ug/m3	2.46	ND	ND	ND				
Vinyl chloride	ug/m3	ND	ND	ND	ND				

Samples collected by CHA Consulting on 2/18/2023.

Samples analyzed by Alpha Analytical (ELAP 11627 for NYSDOH)

ND - Not detected

Soil Vapor/Indoor Air Matrix Actions

No Further Action

Identify Source(s) and Resample or Mitigate

Monitor

Mitigate

Table 2.Indoor Air and Sub-Slab Vapor Results - Detected Parameters

Former Coyne Textile Facility Sub-Slab Depressurization System Performance Monitoring

LOCATION			IA-01-20	230218	SS-01-20	0230218	IA-02-20	0230218	SS-02-20	0230218	IA-03-20	0230218	SS-03-20	0230218
SAMPLING DATE			2/18/2	2023	2/18/2	2023	2/18/	2023	2/18/	2023	2/18/2	2023	2/18/2	2023
LAB SAMPLE ID			L23091	01-01	L23091	101-02	L2309	101-03	L2309	101-04	L23091	101-05	L23091	101-06
SAMPLE TYPE			AI	R	SOIL_V	APOR	Al	IR	SOIL_V	APOR	AI	R	SOIL_V	APOR
	Table C.2 Indoor Air 95th Percentile for Indoor Air Sample Comparison	Units	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual
Volatile Organics in Air														
1,2,4-Trimethylbenzene	13.7	ug/m3	1.06		2.37		0.983	U	0.983	U	0.983	U	2.89	U
2-Butanone	13.5	ug/m3	2.14		2.37		1.47	U	1.47	U	1.47	U	8.82	
2-Hexanone		ug/m3	0.82	U	0.82	U	0.82	U	0.82	U	0.82	U	27.1	
Acetone	120.2	ug/m3	28.5		26.6		27.3		27.8		30.2		50.6	
Benzene	12.5	ug/m3	0.639	U	0.639	U	0.639	U	0.639	U	0.639	U	1.88	U
Chloromethane	4.4	ug/m3	1.33		1.38		1.24		1.36		1.18		1.21	U
cis-1,2-Dichloroethene	< 2.0	ug/m3	-	-	0.793	U	-	-	0.793	U	-	-	5.35	
Dichlorodifluoromethane	32.9	ug/m3	2.52		2.54		2.53		2.43		2.5		2.91	U
Ethanol	290	ug/m3	154		53.5		165		165		12.3		27.7	U
Isopropanol	475	ug/m3	138		57.8		245		227		602		1010	
n-Hexane	15.2	ug/m3	0.705	U	0.705	U	0.705	U	0.705	U	0.705	U	6.13	
Styrene	4.3	ug/m3	1.67		2.02		0.903		0.852	U	0.852	U	2.5	U
Tetrachloroethene	25.4	ug/m3	-	-	1.36	U	-	-	1.36	U	-	-	7.19	
Tetrahydrofuran		ug/m3	2.37		2.78		1.47	U	1.47	U	1.47	U	4.34	U
Toluene	70.8	ug/m3	2.37		3.05		1.7		1.53		1.01		19.3	
Trichloroethene	6.5	ug/m3	-	-	1.07	U	-	-	1.07	U	-	-	4.06	
Trichlorofluoromethane	9.4	ug/m3	1.25		1.31		1.29		1.21		1.25		3.3	U
Vinyl chloride	<2.2	ug/m3	-	-	0.511	U	-	-	0.511	U	-	-	1.5	
Volatile Organics in Air by SIM														
Carbon tetrachloride	0.7	ug/m3	0.465		-	-	0.472		-	-	0.51		-	-
cis-1,2-Dichloroethene	<2.0	ug/m3	0.079	U	-	-	0.079	U	-	-	0.079	U	-	-
Tetrachloroethene	25.4	ug/m3	0.19		-	-	0.142		-	-	0.136	U	-	-
Trichloroethene	6.5	ug/m3	0.532		-	-	0.107	U	-		0.107	U	-	-

Samples collected by CHA Consulting on 2/18/2023.

Samples analyzed by Alpha Analytical (ELAP 11627 for NYSDOH)

U - Non-Detected Parameter

Indoor air samples only compared to Table C.2 95th percentile indoor air samples.

Blue highlighted cells exceed the Table C.2 95th percentile value

Table 2.Indoor Air and Sub-Slab Vapor Results - Detected Parameters

Former Coyne Textile Facility Sub-Slab Depressurization System Performance Monitoring

LOCATION			IA-04-20	0230218	SS-04-20	0230218	IA-05-20	0230218	SS-05-20	0230218
SAMPLING DATE			2/18/	2023	2/18/2	2023	2/18/2	2023	2/18/	2023
LAB SAMPLE ID			L2309	101-07	L23091	101-08	L23091	101-09	L23091	101-10
SAMPLE TYPE			Al	IR	SOIL_V	APOR	AI	R	SOIL_V	APOR
	Table C.2 Indoor Air 95th Percentile for Indoor Air Sample Comparison	Units	Results	Qual	Results	Qual	Results	Qual	Results	Qual
Volatile Organics in Air										
1,2,4-Trimethylbenzene	13.7	ug/m3	0.983	U	2.34	U	0.983	U	2.24	U
2-Butanone	13.5	ug/m3	1.47	U	3.51	U	1.47	U	3.66	
2-Hexanone		ug/m3	0.82	U	1.95	U	0.82	U	1.86	U
Acetone	120.2	ug/m3	29.5		26.6		27.3		26.8	
Benzene	12.5	ug/m3	0.639	U	1.52	U	0.639	U	1.45	U
Chloromethane	4.4	ug/m3	1.19		1.17		1.22		1.18	
cis-1,2-Dichloroethene	<2.0	ug/m3	-	-	1.89	U	-	-	1.8	U
Dichlorodifluoromethane	32.9	ug/m3	2.46		2.35		2.5		2.42	
Ethanol	290	ug/m3	12.8		22.4	U	13.3		21.5	U
Isopropanol	475	ug/m3	774		767		885		769	
n-Hexane	15.2	ug/m3	0.705	U	1.68	U	0.705	U	1.6	U
Styrene	4.3	ug/m3	0.852	U	2.03	U	0.852	U	1.94	U
Tetrachloroethene	25.4	ug/m3	-	-	3.23	U	-	-	3.09	U
Tetrahydrofuran		ug/m3	1.47	U	3.51	U	1.47	U	3.36	U
Toluene	70.8	ug/m3	1.02		1.79	U	1.05		1.94	
Trichloroethene	6.5	ug/m3	-	-	2.56	U	-	-	2.45	U
Trichlorofluoromethane	9.4	ug/m3	1.24		2.67	U	1.25		2.56	U
Vinyl chloride	<2.2	ug/m3	-	-	1.22	U	-	-	1.16	U
Volatile Organics in Air by SIM					•					
Carbon tetrachloride	0.7	ug/m3	0.472		-	-	0.453		-	-
cis-1,2-Dichloroethene	<2.0	ug/m3	0.079	U	-	-	0.079	U	-	-
Tetrachloroethene	25.4	ug/m3	0.136	U	-	-	0.136	U	-	_
Trichloroethene	6.5	ug/m3	1.39		-	-	0.333		_	

Samples collected by CHA Consulting on 2/18/2023.

Samples analyzed by Alpha Analytical (ELAP 11627 for NYSDOH)

U - Non-Detected Parameter

Indoor air samples only compared to Table C.2 95th percentile indoor air samples.

Blue highlighted cells exceed the Table C.2 95th percentile value

Table 2.Indoor Air and Sub-Slab Vapor Results - Detected Parameters

Former Coyne Textile Facility Sub-Slab Depressurization System Performance Monitoring

LOCATION			IA-06-20)230218	IA-07-20	230218	IA-08-20	230218	IA-09-20)230218
SAMPLING DATE			2/18/	2023	2/18/2	2023	2/18/2	2023	2/18/	2023
LAB SAMPLE ID			L23091	101-11	L23091	101-12	L23091	101-13	L23091	101-14
SAMPLE TYPE			Al	R	AI	R	AI	R	Al	R
	Table C.2 Indoor Air 95th Percentile for Indoor Air Sample Comparison	Units	Results	Qual	Results	Qual	Results	Qual	Results	Qual
Volatile Organics in Air										
1,2,4-Trimethylbenzene	13.7	ug/m3	0.983	U	0.983	U	0.983	U	0.983	U
2-Butanone	13.5	ug/m3	1.85		1.48		1.47	U	1.47	U
2-Hexanone		ug/m3	0.82	U	0.82	U	0.82	U	0.82	U
Acetone	120.2	ug/m3	46.3		28.3		18.8		34	
Benzene	12.5	ug/m3	0.639	U	0.639	U	1		0.639	U
Chloromethane	4.4	ug/m3	1.4		1.32		1.22		1.18	
cis-1,2-Dichloroethene	<2.0	ug/m3	-	-	-	-	-	-	-	-
Dichlorodifluoromethane	32.9	ug/m3	2.58		2.5		2.41		2.51	
Ethanol	290	ug/m3	109		163		15.4		13.2	
Isopropanol	475	ug/m3	99.3		206		499		1140	
n-Hexane	15.2	ug/m3	0.705	U	0.705	U	0.705	U	0.705	U
Styrene	4.3	ug/m3	0.852	U	1.14		0.852	U	0.852	U
Tetrachloroethene	25.4	ug/m3	-	-	-	-	-	-	-	-
Tetrahydrofuran		ug/m3	1.47	U	1.47	U	1.47	U	1.47	U
Toluene	70.8	ug/m3	1.84		1.71		4.22		1.15	
Trichloroethene	6.5	ug/m3	-	-	-	-	-	-	-	_
Trichlorofluoromethane	9.4	ug/m3	1.24		1.27		1.27		1.26	
Vinyl chloride	<2.2	ug/m3	-	-	-	-	-	-	_	-
Volatile Organics in Air by SIM									<u> </u>	
Carbon tetrachloride	0.7	ug/m3	0.528		0.484		0.453		0.503	
cis-1,2-Dichloroethene	<2.0	ug/m3	0.103		0.079	U	0.079	U	0.079	U
Tetrachloroethene	25.4	ug/m3	0.414		0.136	U	0.136	U	0.454	
Trichloroethene	6.5	ug/m3	2.46		0.107	U	0.107	U	0.107	U

Samples collected by CHA Consulting on 2/18/2023.

Samples analyzed by Alpha Analytical (ELAP 11627 for NYSDOH)

U - Non-Detected Parameter

Indoor air samples only compared to Table C.2 95th percentile indoor air samples.

Blue highlighted cells exceed the Table C.2 95th percentile value

Table 3.Groundwater Sample Results Detections Only

Former Coyne Textile Facility Periodic Review Report

						Q1 202	3		
		L	OCATION	MW-5R		MW-61	R	MW-7	R
		SAMPL	ING DATE	3/30/2023		3/30/202	23	3/30/20	23
		LAB S.	AMPLE ID	L2316812-0	3	L2316812	2-02	L2316812	2-01
		TOT	AL DEPTH	20'		20'		20'	
	SC	REENED I	NTERVAL	10' - 20' bgs	S	10' - 20']	bgs	10' - 20'	bgs
		NY-							
	CasNum	AWQS	Units	Results (Qual	Results	Qual	Results	Qual
Anions by Ion Chromatography									
Chloride	16887-00-6		μg/L	212,000		299,000		301,000	
Sulfate	14808-79-08		μg/L	187,000		75,000		86,100	
Sulfide	18496-25-8		μg/L	34		27		40	
Dissolved Gases by GC									
Carbon Dioxide	124-38-9		μg/L	41,200		65,400		61,800	
Ethane	74-84-0		μg/L	55		221		9.77	
Ethene	74-85-1		μg/L	30.4		185		15.8	
Methane	74-82-8		μg/L	1,390		6,850		4,910	
General Chemistry									
Alkalinity, Total	471-34-1		mg CaCO	328		375		376	
Total Organic Carbon	7440-44-0		μg/L	5,790		10,400		4,740	
Volatile Organics by GC/MS									
1,1-Dichloroethene	75-35-4	5	μg/L	ND		0.46	J	3.7	
Benzene	71-43-2	1	μg/L	0.31	J	0.36	J	0.43	J
Chloroethane	75-00-3	5	μg/L	ND		ND		ND	
cis-1,2-Dichloroethene	156-59-2	5	μg/L	34		130		670	
Tetrachloroethene	127-18-4	5	μg/L	8.2		9.7		ND	
trans-1,2-Dichloroethene	156-60-5	5	μg/L	ND		2.7		2.5	
Trichloroethene	79-01-6	5	μg/L	5.8		13		0.32	J
Vinyl chloride	75-01-4	2	μg/L	220		190		180	
Metals									
Iron	7439-89-6	300	μg/L	16,300		11,400		9,650	

Samples collected by CHA Consulting on March 30, 2023.

Samples analyzed by Alpha Analytical (ELAP 11148)

J - Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses.

parameter exceeds NY-AWQS: New York TOGS 111

BOLD Ambient Water Quality Standards

APPENDIX A

Institutional and Engineering Controls Certification Forms

Enclosure 2

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit	Site Details e No. C734144	Box 1	
Sit	e Name Former Coyne Textile		
Cit Co	e Address: 140 Cortland Avenue Zip Code: 13202 y/Town: Syracuse unty: Onondaga e Acreage: 3.255 3.262		
Re	porting Period: December 28, 2021 to April 28, 2023		
		YES	NO
1.	Is the information above correct?		X
	If NO, include handwritten above or on a separate sheet.		
2.	Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period?		X
3.	Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))?		X
4.	Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period?		X
	If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form.		
5.	Is the site currently undergoing development?		X
		Box 2	
		YES	NO
6.	Is the current site use consistent with the use(s) listed below? Commercial and Industrial	X	
7.	Are all ICs in place and functioning as designed?		
	IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below a DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.	nd	
Α (Corrective Measures Work Plan must be submitted along with this form to address th	ıese issı	ues.
Sig	nature of Owner, Remedial Party or Designated Representative Date		

		Box 2	A
		YES	NO
8.	Has any new information revealed that assumptions made in the Qualitative Exposure Assessment regarding offsite contamination are no longer valid?		X
	If you answered YES to question 8, include documentation or evidence that documentation has been previously submitted with this certification form.		
9.	Are the assumptions in the Qualitative Exposure Assessment still valid? (The Qualitative Exposure Assessment must be certified every five years)	X	
	If you answered NO to question 9, the Periodic Review Report must include an updated Qualitative Exposure Assessment based on the new assumptions.		
SITI	E NO. C734144	Вох	c 3
	Description of Institutional Controls		

Parcel Owner Institutional Control

O94.-05-06.0 Ranalli/Taylor St., LLC

Ground Water Use Restriction

Landuse Restriction Monitoring Plan Site Management Plan O&M Plan IC/EC Plan

- Property to be used for commercial and industrial uses.

- Continued inspection and maintenance of engineering controls.
- Prohibition on use of groundwater without treatment (adequacy of treatment determined by County Health Department or NYSDOH).
- Site management data and information reporting.
- Operation, maintenance, monitoring, inspection, and reporting related to physical components of remedy.
- Maintain access to the site.
- Prohibition on vegetable gardens and farming.

094.-20-01.0

Ranalli/Taylor St., LLC

Ground Water Use Restriction Landuse Restriction Monitoring Plan Site Management Plan O&M Plan IC/EC Plan

- Property to be used for commercial and industrial uses.
- Continued inspection and maintenance of engineering controls.
- Prohibition on use of groundwater without treatment (adequacy of treatment determined by County Health Department or NYSDOH).
- Site management data and information reporting.
- Operation, maintenance, monitoring, inspection, and reporting related to physical components of remedy.
- Maintain access to the site.
- Prohibition on vegetable gardens and farming.

094.-20-02.0 Ranalli/Taylor St., LLC

Ground Water Use Restriction Landuse Restriction Monitoring Plan Site Management Plan O&M Plan IC/EC Plan

- Property to be used for commercial and industrial uses.
- Continued inspection and maintenance of engineering controls.
- Prohibition on use of groundwater without treatment (adequacy of treatment determined by County Health Department or NYSDOH).
- Site management data and information reporting.
- Operation, maintenance, monitoring, inspection, and reporting related to physical components of remedy.
- Maintain access to the site.
- Prohibition on vegetable gardens and farming.

28,500sqft of South Clinton JMA Tech Properties, LLC

Ground Water Use Restriction Landuse Restriction Monitoring Plan Site Management Plan O&M Plan IC/EC Plan

- Property to be used for commercial and industrial uses.
- Continued inspection and maintenance of engineering controls.
- Prohibition on use of groundwater without treatment (adequacy of treatment determined by County Health Department or NYSDOH).
- Site management data and information reporting.
- Operation, maintenance, monitoring, inspection, and reporting related to physical components of remedy.
- Maintain access to the site.
- Prohibition on vegetable gardens and farming.

Box 4

Description of Engineering Controls

<u>Parcel</u> <u>Engineering Control</u>

094.-05-06.0

Vapor Mitigation Cover System Monitoring Wells

- Cover System

- Vapor Mitigation Systems

094.-20-01.0

Vapor Mitigation Cover System Monitoring Wells

- Cover System

- Vapor Mitigation Systems

094.-20-02.0

Vapor Mitigation Cover System Monitoring Wells

- Cover System

- Vapor Mitigation Systems

28,500sqft of South Clinton St

Vapor Mitigation Cover System Monitoring Wells

- Cover System

- Vapor Mitigation Systems

	Box 5
ection of, a	and
in this cererally acce	
YES	NO
YES	NO
X	
l of the	
epartment;	
t public he	alth and
,	
te the	
ıl;	

	Periodic Review Report (PRR) Certification Statements	
1.	I certify by checking "YES" below that:	
	a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification;	
	 b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete. 	
	YES NO	
	f X	
2.	For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:	
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;	
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;	
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;	
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and	
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.	
	YES NO	
	f X	
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.	
	A Corrective Measures Work Plan must be submitted along with this form to address these issues.	
	Signature of Owner, Remedial Party or Designated Representative Date	

IC CERTIFICATIONS SITE NO. C734144

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

orint name at_	140 Cortland Ave Syracuse, N) print business address
am certifying as	(Owner or Remedial Party)
for the Site named in the Site Details Section	of this form.
A Gawley	5-25-2023
Signature of Owner, Remedial Party, or Designature of Owner, Remedial Party, o	gnated Representative Date

EC CERTIFICATIONS

Box 7

Professional Engineer Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

1_	Samantha Miller	at	300 South State Street, Suite 600, Syracuse, NY 13202
	print name		print business address
am	certifying as a Professional Engin	eer fo	or the Owner
			(Owner or Remedial Party)

Samantha Miller

Signature of Professional Engineer, for the Owner or Remedial Party, Rendering Certification

May 18, 2023

Stamp (Required for PE)

Date

APPENDIX B

Monitoring Well Construction Logs

Ct	A	WELL CONSTRUCTIO	N LOG	BORING NO.
PROJECT & LOCATIO	ON: JMA Wireless/Forme	er Coyne Textile Facility		WELL NO. MW-5R
CLIENT: CONTRACTOR:	GEC Consulting	· · · · · · · · · · · · · · · · · · ·		PROJECT NO.: 059294
CONTRACTOR:	NW Contracting			SHEET NO.: 1 OF 1
				ELEVATION:
				START DATE: 10-14-21 TIME: 08:30
				FINISH DATE: 10-14-21 TIME: 11:00
				DRILLER: Steve/Vince
				INSPECTOR: K. Ehmann
Riser Pipe: Type of Cap:_	Ground to Top of		Inside Dia. Of O	tive Casing:flushmount Casing:8 inches Fround of Casing: e Seal:Portland Cement urface Seal:18 inches
Type of Backf Pipe:	ter of Riser			ite Seal: <u>bentonite chips</u> f Bentonite Seal: <u>5 feet</u>
Choke:				:PVC er:2 inch
Type of Sand I	Pack: <u>silica qua</u>	artz		
Depth to Top of	of Sand Pack: 8			re: 0.01
Depth to Botto	m of Sand Pack: 2		Debtu to Tob o	f Screen:10
			Depth to Bottor	m of Screen:20
Backfill (if any)): <u>N/A</u>		Depth to Botton	m of Borehole: 20

CHA	WELL CONSTRUCTION	N LOG BORING NO.
ROJECT & LOCATION: JMA Wireless/Forme		WELL NO. MW-6R
LIENT: GEC Consulting	a Coyne Textile Facility	PROJECT NO.: 059294
ONTRACTOR: NW Contracting		SHEET NO.: 1 OF 1
		ELEVATION:
		START DATE: 10-13-21 TIME: 14:30
		FINISH DATE: 10-13-21 TIME: 16:30
		DRILLER: Steve/Vince
		INSPECTOR: K. Ehmann
	Γ	Type of Protective Casing:flushmount
V	/	Inside Dia. Of Casing: 8 inches
Depth Below Ground to Top of		Depth Below Ground of Casing:
Riser Pipe:		Type of Surface Seal: Portland Cement
Type of Cap: J Plug		Thickness of Surface Seal: 18 inches
Diameter Borehole: 7 5/8"		
Diameter Borehole: 7 5/8" Type of Backfill Around Riser Pipe: grout Inside Diameter of Riser Pipe: 2 inch		
Type of Backfill Around Riser Pipe: grout Inside Diameter of Riser		Type of Bentonite Seal: <u>bentonite chips</u>
Type of Backfill Around Riser Pipe:	!	Type of Bentonite Seal: <u>bentonite chips</u> Depth to Top of Bentonite Seal: <u>5 feet</u>
Type of Backfill Around Riser Pipe: grout Inside Diameter of Riser Pipe: 2 inch		
Type of Backfill Around Riser Pipe: grout Inside Diameter of Riser Pipe: 2 inch Depth to Top of Fine Sand Choke: 00-morie		Depth to Top of Bentonite Seal: 5 feet
Type of Backfill Around Riser Pipe:grout	urtz	Depth to Top of Bentonite Seal: 5 feet Type of Screen: PVC
Type of Backfill Around Riser Pipe:	urtz	Depth to Top of Bentonite Seal: 5 feet Type of Screen: PVC Screen Diameter: 2 inch
Type of Backfill Around Riser Pipe:grout	urtz O	Depth to Top of Bentonite Seal: 5 feet Type of Screen: PVC Screen Diameter: 2 inch Screen Slot Size: 0.01

38

SCALE: NOT TO SCALE

MR

REVISION NO.

PROJECT NO. 21.0056730.40

DATE: AUGUST 2015

DESIGNED BY:

MW-4 MONITORING WELL INSTALLATION DIAGRAM

NOTES:

- 1. OVERBURDEN DRILLED WITH 6 1/4 INCH I.D. HOLLOW STEM AUGERS TO A DEPTH OF 26.0 FEET BELOW GROUND SURFACE.
- DRAWING IS NOT TO SCALE. WELL HAS BEEN DEPICTED WITH HORIZONTAL EXAGGERATION FOR PURPOSES OF PRESENTATION.

APPENDIX C

Indoor Air and Sub-Slab Vapor Samples Laboratory Report

ANALYTICAL REPORT

Lab Number: L2309101

Client: CHA Companies

One Park Place

300 South State St., Suite 600

Syracuse, NY 13202

ATTN: Samantha Miller Phone: (315) 471-3920

Project Name: JMA WIRELESS

Project Number: 059294.001

Report Date: 03/06/23

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0141), DoD (L2474), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NJ (MA015), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-17-00150), USFWS (Permit #206964).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Number: 059294.001 Lab Number: L2309101 Report Date: 03/06/23

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2309101-01	IA-01-20230218	AIR	SYRACUSE NY	02/18/23 15:23	02/20/23
L2309101-02	SS-01-20230218	SOIL_VAPOR	SYRACUSE NY	02/18/23 15:12	02/20/23
L2309101-03	IA-02-20230218	AIR	SYRACUSE NY	02/18/23 15:18	02/20/23
L2309101-04	SS-02-20230218	SOIL_VAPOR	SYRACUSE NY	02/18/23 15:43	02/20/23
L2309101-05	IA-03-20230218	AIR	SYRACUSE NY	02/18/23 15:07	02/20/23
L2309101-06	SS-03-20230218	SOIL_VAPOR	SYRACUSE NY	02/18/23 15:32	02/20/23
L2309101-07	IA-04-20230218	AIR	SYRACUSE NY	02/18/23 16:12	02/20/23
L2309101-08	SS-04-20230218	SOIL_VAPOR	SYRACUSE NY	02/18/23 14:18	02/20/23
L2309101-09	IA-05-20230218	AIR	SYRACUSE NY	02/18/23 16:34	02/20/23
L2309101-10	SS-05-20230218	SOIL_VAPOR	SYRACUSE NY	02/18/23 15:57	02/20/23
L2309101-11	IA-06-20230218	AIR	SYRACUSE NY	02/18/23 15:50	02/20/23
L2309101-12	IA-07-20230218	AIR	SYRACUSE NY	02/18/23 15:51	02/20/23
L2309101-13	IA-08-20230218	AIR	SYRACUSE NY	02/18/23 14:23	02/20/23
L2309101-14	IA-09-20230218	AIR	SYRACUSE NY	02/18/23 15:35	02/20/23

Project Name:JMA WIRELESSLab Number:L2309101Project Number:059294.001Report Date:03/06/23

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Serial_No:03062315:43

Project Name:JMA WIRELESSLab Number:L2309101Project Number:059294.001Report Date:03/06/23

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on February 14, 2023. The canister certification results are provided as an addendum.

L2309101-05D, -07D, -09D, and -14D: The sample was re-analyzed on dilution in order to quantitate the results within the calibration range. The result(s) should be considered estimated, and are qualified with an E flag, for any compound(s) that exceeded the calibration range in the initial analysis. The re-analysis was performed only for the compound(s) that exceeded the calibration range.

L2309101-06D, -08D, and -10D: The sample has elevated detection limits due to the dilution required by the elevated concentrations of target compounds in the sample.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 03/06/23

Christopher J. Anderson

ALPHA

AIR

Project Number: 059294.001

Lab Number:

L2309101

Report Date: 03/06/23

SAMPLE RESULTS

Lab ID: L2309101-01

Client ID: IA-01-20230218 Sample Location: SYRACUSE NY Date Collected: 02/18/23 15:23

Date Received: 02/20/23 Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15 Analytical Date: 03/01/23 19:40

Analyst: RAY

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.509	0.200		2.52	0.989			1
Chloromethane	0.643	0.200		1.33	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	81.5	5.00		154	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	12.0	1.00		28.5	2.38			1
Trichlorofluoromethane	0.223	0.200		1.25	1.12			1
Isopropanol	56.3	0.500		138	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	0.725	0.500		2.14	1.47			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	0.804	0.500		2.37	1.47			1

059294.001

SYRACUSE NY

Lab Number:

L2309101

Report Date: 03/06/23

SAMPLE RESULTS

Lab ID: L2309101-01 Client ID: IA-01-20230218

Date Collected: 02/18/23 15:23 Date Received: 02/20/23

Field Prep: Not Specified

Sample Depth:

Sample Location:

Project Number:

оапріє Беріп.		ppbV			ug/m3			Dilution Factor
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
Volatile Organics in Air - Mansfie	eld Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Benzene	ND	0.200		ND	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
sis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
,1,2-Trichloroethane	ND	0.200		ND	1.09			1
oluene	0.630	0.200		2.37	0.754			1
-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
n/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	0.393	0.200		1.67	0.852			1
,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
-Xylene	ND	0.200		ND	0.869			1
-Ethyltoluene	ND	0.200		ND	0.983			1
,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

Project Number: 059294.001

Lab Number:

L2309101

Report Date:

03/06/23

SAMPLE RESULTS

Lab ID: L2309101-01

Client ID: IA-01-20230218 Sample Location: SYRACUSE NY Date Collected: 0

02/18/23 15:23

Date Received: Field Prep:

02/20/23 Not Specified

Sample Depth:

		ppbV ug/m3				Dilution		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
1,2,4-Trimethylbenzene	0.216	0.200		1.06	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	97		60-140
Bromochloromethane	96		60-140
chlorobenzene-d5	96		60-140

Project Number: 059294.001

Lab Number:

L2309101

Report Date:

03/06/23

SAMPLE RESULTS

Lab ID: L2309101-01

Client ID: IA-01-20230218 Sample Location: SYRACUSE NY Date Collected: 02/18/23 15:23

Date Received: 02/20/23 Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 03/01/23 19:40

Analyst: RAY

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Ma	nsfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.074	0.020		0.465	0.126			1
Trichloroethene	0.099	0.020		0.532	0.107			1
Tetrachloroethene	0.028	0.020		0.190	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	95		60-140
bromochloromethane	95		60-140
chlorobenzene-d5	96		60-140

Project Number: 059294.001

Lab Number:

L2309101

Report Date: 03/06/23

SAMPLE RESULTS

Lab ID: L2309101-02

Client ID: SS-01-20230218
Sample Location: SYRACUSE NY

Date Collected: 02/18/23 15:12

Date Received: 02/20/23 Field Prep: Not Specified

Sample Depth:

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 03/02/23 02:21

Analyst: RAY

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.514	0.200		2.54	0.989			1
Chloromethane	0.669	0.200		1.38	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	28.4	5.00		53.5	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	11.2	1.00		26.6	2.38			1
Trichlorofluoromethane	0.234	0.200		1.31	1.12			1
Isopropanol	23.5	0.500		57.8	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	0.804	0.500		2.37	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1

Project Number: 059294.001

Lab Number:

L2309101

Report Date: 03/06/23

SAMPLE RESULTS

Lab ID: L2309101-02

Client ID: SS-01-20230218 Sample Location: SYRACUSE NY Date Collected: 02/18/23 15:12

Date Received: 02/20/23 Field Prep: Not Specified

Sample Depth:

	ppbV			ug/m3		Dilution	
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
d Lab							
ND	0.500		ND	1.80			1
ND	0.200		ND	0.977			1
0.942	0.500		2.78	1.47			1
ND	0.200		ND	0.809			1
ND	0.200		ND	0.705			1
ND	0.200		ND	1.09			1
ND	0.200		ND	0.639			1
ND	0.200		ND	1.26			1
ND	0.200		ND	0.688			1
ND	0.200		ND	0.924			1
ND	0.200		ND	1.34			1
ND	0.200		ND	0.721			1
ND	0.200		ND	1.07			1
ND	0.200		ND	0.934			1
ND	0.200		ND	0.820			1
ND	0.200		ND	0.908			1
ND	0.500		ND	2.05			1
ND	0.200		ND	0.908			1
ND	0.200		ND	1.09			1
0.810	0.200		3.05	0.754			1
ND	0.200		ND	0.820			1
ND	0.200		ND	1.70			1
ND	0.200		ND	1.54			1
ND	0.200		ND	1.36			1
ND	0.200		ND	0.921			1
ND	0.200		ND	0.869			1
	ND N	Results RL d Lab ND 0.500 ND 0.200 0.942 0.500 ND 0.200 ND 0.500 ND 0.200 ND	Results RL MDL d Lab ND 0.500 ND 0.200 ND 0.200 <td>Results RL MDL Results Id Lab ND 0.500 ND ND 0.200 ND ND 0.200 </td> <td>Results RL MDL Results RL d Lab ND 0.500 ND 1.80 ND 0.200 ND 0.977 0.942 0.500 2.78 1.47 ND 0.200 ND 0.809 ND 0.200 ND 0.705 ND 0.200 ND 0.705 ND 0.200 ND 0.639 ND 0.200 ND 0.688 ND 0.200 ND 0.924 ND 0.200 ND 0.721 ND 0.200 ND 0.934</td> <td>Results RL MDL Results RL MDL d Lab ND 0.500 ND 1.80 ND 0.200 ND 0.977 0.942 0.500 2.78 1.47 ND 0.200 ND 0.809 ND 0.200 ND 0.809 ND 0.200 ND 0.809 ND 0.200 ND 0.705 ND 0.200 ND 1.09 ND 0.200 ND 0.639 ND 0.200 ND 0.639 ND 0.200 ND 0.639 ND 0.200 ND 0.924 ND 0.200 ND 0.934</td> <td>Results RL MDL Results RL MDL Qualifier d Lab ND 0.500 ND 1.80 ND 0.200 ND 0.977 0.942 0.500 2.78 1.47 ND 0.200 ND 0.809 ND 0.200 ND 0.809 ND 0.200 ND 0.809 ND 0.200 ND 0.705 ND 0.200 ND 0.639 ND 0.200 ND 0.639 ND 0.200 ND 0.639 ND 0.200 ND 0.688 ND 0.200 ND 0.721 ND 0.200 <</td>	Results RL MDL Results Id Lab ND 0.500 ND ND 0.200 ND ND 0.200	Results RL MDL Results RL d Lab ND 0.500 ND 1.80 ND 0.200 ND 0.977 0.942 0.500 2.78 1.47 ND 0.200 ND 0.809 ND 0.200 ND 0.705 ND 0.200 ND 0.705 ND 0.200 ND 0.639 ND 0.200 ND 0.688 ND 0.200 ND 0.924 ND 0.200 ND 0.721 ND 0.200 ND 0.934	Results RL MDL Results RL MDL d Lab ND 0.500 ND 1.80 ND 0.200 ND 0.977 0.942 0.500 2.78 1.47 ND 0.200 ND 0.809 ND 0.200 ND 0.809 ND 0.200 ND 0.809 ND 0.200 ND 0.705 ND 0.200 ND 1.09 ND 0.200 ND 0.639 ND 0.200 ND 0.639 ND 0.200 ND 0.639 ND 0.200 ND 0.924 ND 0.200 ND 0.934	Results RL MDL Results RL MDL Qualifier d Lab ND 0.500 ND 1.80 ND 0.200 ND 0.977 0.942 0.500 2.78 1.47 ND 0.200 ND 0.809 ND 0.200 ND 0.809 ND 0.200 ND 0.809 ND 0.200 ND 0.705 ND 0.200 ND 0.639 ND 0.200 ND 0.639 ND 0.200 ND 0.639 ND 0.200 ND 0.688 ND 0.200 ND 0.721 ND 0.200 <

Project Number: 059294.001

Lab Number:

L2309101

Report Date: 03/06/23

SAMPLE RESULTS

Lab ID: L2309101-02 Client ID: SS-01-20230218

Sample Location: SYRACUSE NY

Date Collected: 02/18/23 15:12

Date Received: 02/20/23 Field Prep: Not Specified

Sample Depth:

	ppbV			ug/m3			Dilution
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
l Lab							
ND	0.400		ND	1.74			1
ND	0.200		ND	2.07			1
0.475	0.200		2.02	0.852			1
ND	0.200		ND	1.37			1
ND	0.200		ND	0.869			1
ND	0.200		ND	0.983			1
ND	0.200		ND	0.983			1
0.482	0.200		2.37	0.983			1
ND	0.200		ND	1.04			1
ND	0.200		ND	1.20			1
ND	0.200		ND	1.20			1
ND	0.200		ND	1.20			1
ND	0.200		ND	1.48			1
ND	0.200		ND	2.13			1
	ND ND 0.475 ND	Results RL I Lab ND	Results RL MDL I Lab ND 0.400 ND 0.200 0.475 0.200 ND 0.200	Results RL MDL Results I Lab ND 0.400 ND ND 0.200 ND 0.475 0.200 ND ND 0.200 ND	Results RL MDL Results RL I Lab ND 0.400 ND 1.74 ND 0.200 ND 2.07 0.475 0.200 ND 1.37 ND 0.200 ND 0.869 ND 0.200 ND 0.983 ND 0.200 ND 0.983 ND 0.200 ND 1.04 ND 0.200 ND 1.20 ND 0.200 ND 1.48	Results RL MDL Results RL MDL I Lab ND 0.400 ND 1.74 ND 0.200 ND 2.07 ND 0.200 ND 1.37 ND 0.200 ND 0.869 ND 0.200 ND 0.983 ND 0.200 ND 0.983 ND 0.200 ND 0.983 ND 0.200 ND 1.04 ND 0.200 ND 1.04 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.48	Results RL MDL Results RL MDL Qualifier I Lab ND 0.400 ND 1.74 ND 0.200 ND 2.07 0.475 0.200 ND 0.852 ND 0.200 ND 0.869 ND 0.200 ND 0.983 ND 0.200 ND 0.983 ND 0.200 ND 1.04 ND 0.200 ND 1.04 ND 0.200 ND 1.20 ND 1.20 ND 0.200 ND 1.20 ND 1.20 ND 0.200 ND

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	94		60-140
Bromochloromethane	94		60-140
chlorobenzene-d5	95		60-140

Project Number: 059294.001

Lab Number:

L2309101

Report Date:

03/06/23

SAMPLE RESULTS

Lab ID: L2309101-03

Client ID: IA-02-20230218 Sample Location: SYRACUSE NY Date Collected: 02/18/23 15:18

Date Received: 02/20/23 Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15 Analytical Date: 03/01/23 20:19

Analyst: RAY

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.511	0.200		2.53	0.989			1
Chloromethane	0.601	0.200		1.24	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	87.8	5.00		165	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	11.5	1.00		27.3	2.38			1
Trichlorofluoromethane	0.230	0.200		1.29	1.12			1
Isopropanol	99.8	0.500		245	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

Project Number: 059294.001

Lab Number:

L2309101

Report Date:

03/06/23

SAMPLE RESULTS

Lab ID: L2309101-03

Client ID: IA-02-20230218 Sample Location: SYRACUSE NY Date Collected: 02/18/23 15:18

Date Received: 02/20/23 Field Prep: Not Specified

Sample Depth:

оатріє Беріп.		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Benzene	ND	0.200		ND	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	0.451	0.200		1.70	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	0.212	0.200		0.903	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

Project Number: 059294.001

Lab Number:

L2309101

Report Date:

03/06/23

SAMPLE RESULTS

Lab ID: L2309101-03

Client ID: IA-02-20230218 Sample Location: SYRACUSE NY Date Collected: 02/18/23 15:18

Date Received: 02/20/23 Field Prep: Not Specified

Sample Depth:

Campio Bopaii.		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	field Lab							
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	97		60-140
Bromochloromethane	97		60-140
chlorobenzene-d5	96		60-140

Project Number: 059294.001 Lab Number:

L2309101

Report Date:

03/06/23

SAMPLE RESULTS

Lab ID: L2309101-03

Client ID: IA-02-20230218 Sample Location: SYRACUSE NY

Date Collected: 02/18/23 15:18

Date Received: 02/20/23 Field Prep: Not Specified

Sample Depth:

Matrix:

Air Anaytical Method: 48,TO-15-SIM

Analytical Date: 03/01/23 20:19

Analyst: RAY

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Mar	nsfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.075	0.020		0.472	0.126			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	0.021	0.020		0.142	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	96		60-140
bromochloromethane	96		60-140
chlorobenzene-d5	96		60-140

Project Number: 059294.001

Lab Number:

L2309101

Report Date:

03/06/23

SAMPLE RESULTS

Lab ID: L2309101-04

Client ID: SS-02-20230218 Sample Location: SYRACUSE NY Date Collected: 02/18/23 15:43

Date Received: 02/20/23 Field Prep: Not Specified

Sample Depth:

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 03/02/23 03:02

Analyst: RAY

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	field Lab							
Dichlorodifluoromethane	0.491	0.200		2.43	0.989			1
Chloromethane	0.658	0.200		1.36	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	87.4	5.00		165	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	11.7	1.00		27.8	2.38			1
Trichlorofluoromethane	0.216	0.200		1.21	1.12			1
sopropanol	92.2	0.500		227	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1

Project Number: 059294.001

Lab Number:

L2309101

Report Date:

03/06/23

SAMPLE RESULTS

Lab ID: L2309101-04

Client ID: SS-02-20230218 Sample Location: SYRACUSE NY Date Collected: 02/18/23 15:43

Date Received: 02/20/23 Field Prep: Not Specified

Campie Dopaii		ppbV			ug/m3	13		Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab							
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	0.407	0.200		1.53	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1

059294.001

Lab Number: L2309101

Report Date: 03/06/23

SAMPLE RESULTS

Lab ID: L2309101-04 Client ID: SS-02-20230218

Sample Location: SYRACUSE NY

Date Collected: 02/18/23 15:43

Date Received: 02/20/23
Field Prep: Not Specified

Sample Depth:

Project Number:

			ug/m3				Dilution
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
_ab							
ND	0.400		ND	1.74			1
ND	0.200		ND	2.07			1
ND	0.200		ND	0.852			1
ND	0.200		ND	1.37			1
ND	0.200		ND	0.869			1
ND	0.200		ND	0.983			1
ND	0.200		ND	0.983			1
ND	0.200		ND	0.983			1
ND	0.200		ND	1.04			1
ND	0.200		ND	1.20			1
ND	0.200		ND	1.20			1
ND	0.200		ND	1.20			1
ND	0.200		ND	1.48			1
ND	0.200		ND	2.13			1
	ND N	ND 0.400 ND 0.200 ND 0.200	Results RL MDL .ab ND 0.400 ND 0.200 ND 0.200	Results RL MDL Results .ab	Results RL MDL Results RL AD 0.400 ND 1.74 ND 0.200 ND 2.07 ND 0.200 ND 0.852 ND 0.200 ND 1.37 ND 0.200 ND 0.869 ND 0.200 ND 0.983 ND 0.200 ND 0.983 ND 0.200 ND 1.04 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.48	Results RL MDL Results RL MDL Lab ND 0.400 ND 1.74 ND 0.200 ND 2.07 ND 0.200 ND 0.852 ND 0.200 ND 1.37 ND 0.200 ND 0.869 ND 0.200 ND 0.983 ND 0.200 ND 0.983 ND 0.200 ND 1.04 ND 0.200 ND 1.04 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.48 </td <td>Results RL MDL Results RL MDL Qualifier Lab ND 0.400 ND 1.74 ND 0.200 ND 2.07 ND 0.200 ND 0.852 ND 0.200 ND 0.869 ND 0.200 ND 0.983 ND 0.200 ND 0.983 ND 0.200 ND 0.983 ND 0.200 ND 1.04 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.20 </td>	Results RL MDL Results RL MDL Qualifier Lab ND 0.400 ND 1.74 ND 0.200 ND 2.07 ND 0.200 ND 0.852 ND 0.200 ND 0.869 ND 0.200 ND 0.983 ND 0.200 ND 0.983 ND 0.200 ND 0.983 ND 0.200 ND 1.04 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.20

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	96		60-140
Bromochloromethane	96		60-140
chlorobenzene-d5	95		60-140

Project Number: 059294.001

Lab Number:

L2309101

Report Date:

03/06/23

SAMPLE RESULTS

Lab ID: L2309101-05

Client ID: IA-03-20230218 Sample Location: SYRACUSE NY Date Collected: 02/18/23 15:07

Date Received: 02/20/23 Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15 Analytical Date: 03/01/23 21:01

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.505	0.200		2.50	0.989			1
Chloromethane	0.571	0.200		1.18	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	6.54	5.00		12.3	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	12.7	1.00		30.2	2.38			1
Trichlorofluoromethane	0.222	0.200		1.25	1.12			1
Isopropanol	251	0.500		617	1.23		E	1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

03/06/23

Project Name: JMA WIRELESS

059294.001

Lab Number: L2309101 Report Date:

SAMPLE RESULTS

Lab ID: L2309101-05 Client ID: IA-03-20230218

SYRACUSE NY

Date Collected: 02/18/23 15:07

Date Received: 02/20/23 Field Prep: Not Specified

Sample Depth:

Sample Location:

Project Number:

		ppbV		ug/m3			Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	ld Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Benzene	ND	0.200		ND	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	0.269	0.200		1.01	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

Project Number: 059294.001

Lab Number:

L2309101

Report Date:

03/06/23

SAMPLE RESULTS

Lab ID: L2309101-05

Client ID: IA-03-20230218 Sample Location: SYRACUSE NY Date Collected: 02/18/23 15:07

Date Received: 02/20/23 Field Prep: Not Specified

Campio Bopan.		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	95		60-140
Bromochloromethane	95		60-140
chlorobenzene-d5	95		60-140

Project Number: 059294.001

Lab Number:

L2309101

Report Date: 03/06/23

SAMPLE RESULTS

Lab ID: L2309101-05

Client ID: IA-03-20230218 Sample Location: SYRACUSE NY Date Collected: 02/18/23 15:07

Date Received: 02/20/23 Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 03/01/23 21:01

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.081	0.020		0.510	0.126			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	ND	0.020		ND	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	94		60-140
bromochloromethane	95		60-140
chlorobenzene-d5	94		60-140

Project Name: JMA WIRELESS Lab Number: L2309101

Project Number: 059294.001 **Report Date:** 03/06/23

SAMPLE RESULTS

Lab ID: L2309101-05 D Date Collected: 02/18/23 15:07

Client ID: IA-03-20230218 Date Received: 02/20/23
Sample Location: SYRACUSE NY Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15 Analytical Date: 03/02/23 06:05

		ppbV	bV ug/m3					Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield La	ab							
Isopropanol	245	1.25		602	3.07			2.5

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	93		60-140
Bromochloromethane	90		60-140
chlorobenzene-d5	89		60-140

Project Name: JMA WIRELESS Lab Number: L2309101

Project Number: 059294.001 **Report Date:** 03/06/23

SAMPLE RESULTS

Lab ID: L2309101-06 D Date Collected: 02/18/23 15:32

Client ID: SS-03-20230218 Date Received: 02/20/23 Sample Location: SYRACUSE NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 03/02/23 03:38

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	ND	0.588		ND	2.91			2.941
Chloromethane	ND	0.588		ND	1.21			2.941
Freon-114	ND	0.588		ND	4.11			2.941
Vinyl chloride	0.588	0.588		1.50	1.50			2.941
1,3-Butadiene	ND	0.588		ND	1.30			2.941
Bromomethane	ND	0.588		ND	2.28			2.941
Chloroethane	ND	0.588		ND	1.55			2.941
Ethanol	ND	14.7		ND	27.7			2.941
Vinyl bromide	ND	0.588		ND	2.57			2.941
Acetone	21.3	2.94		50.6	6.98			2.941
Trichlorofluoromethane	ND	0.588		ND	3.30			2.941
Isopropanol	409	1.47		1010	3.61			2.941
1,1-Dichloroethene	ND	0.588		ND	2.33			2.941
Tertiary butyl Alcohol	ND	1.47		ND	4.46			2.941
Methylene chloride	ND	1.47		ND	5.11			2.941
3-Chloropropene	ND	0.588		ND	1.84			2.941
Carbon disulfide	ND	0.588		ND	1.83			2.941
Freon-113	ND	0.588		ND	4.51			2.941
trans-1,2-Dichloroethene	ND	0.588		ND	2.33			2.941
1,1-Dichloroethane	ND	0.588		ND	2.38			2.941
Methyl tert butyl ether	ND	0.588		ND	2.12			2.941
2-Butanone	2.99	1.47		8.82	4.34			2.941
cis-1,2-Dichloroethene	1.35	0.588		5.35	2.33			2.941

Lab Number:

L2309101

Project Number: 059294.001

Report Date: 03/06/23

SAMPLE RESULTS

Lab ID: L2309101-06 D
Client ID: SS-03-20230218
Sample Location: SYRACUSE NY

Date Collected: 02/18/23 15:32

Date Received: 02/20/23 Field Prep: Not Specified

оапіріє Беріп.		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	sfield Lab							
Ethyl Acetate	ND	1.47		ND	5.30			2.941
Chloroform	ND	0.588		ND	2.87			2.941
Tetrahydrofuran	ND	1.47		ND	4.34			2.941
1,2-Dichloroethane	ND	0.588		ND	2.38			2.941
n-Hexane	1.74	0.588		6.13	2.07			2.941
1,1,1-Trichloroethane	ND	0.588		ND	3.21			2.941
Benzene	ND	0.588		ND	1.88			2.941
Carbon tetrachloride	ND	0.588		ND	3.70			2.941
Cyclohexane	ND	0.588		ND	2.02			2.941
1,2-Dichloropropane	ND	0.588		ND	2.72			2.941
Bromodichloromethane	ND	0.588		ND	3.94			2.941
1,4-Dioxane	ND	0.588		ND	2.12			2.941
Trichloroethene	0.756	0.588		4.06	3.16			2.941
2,2,4-Trimethylpentane	ND	0.588		ND	2.75			2.941
Heptane	ND	0.588		ND	2.41			2.941
cis-1,3-Dichloropropene	ND	0.588		ND	2.67			2.941
4-Methyl-2-pentanone	ND	1.47		ND	6.02			2.941
trans-1,3-Dichloropropene	ND	0.588		ND	2.67			2.941
1,1,2-Trichloroethane	ND	0.588		ND	3.21			2.941
Toluene	5.11	0.588		19.3	2.22			2.941
2-Hexanone	6.61	0.588		27.1	2.41			2.941
Dibromochloromethane	ND	0.588		ND	5.01			2.941
1,2-Dibromoethane	ND	0.588		ND	4.52			2.941
Tetrachloroethene	1.06	0.588		7.19	3.99			2.941
Chlorobenzene	ND	0.588		ND	2.71			2.941
Ethylbenzene	ND	0.588		ND	2.55			2.941

Project Number: 059294.001

Lab Number:

L2309101

Report Date:

03/06/23

SAMPLE RESULTS

Lab ID: L2309101-06 D
Client ID: SS-03-20230218
Sample Location: SYRACUSE NY

Date Collected: 02/18/23 15:32

Date Received: 02/20/23

Field Prep: Not Specified

	ppbV		ug/m3				Dilution
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
_ab							
ND	1.18		ND	5.13			2.941
ND	0.588		ND	6.08			2.941
ND	0.588		ND	2.50			2.941
ND	0.588		ND	4.04			2.941
ND	0.588		ND	2.55			2.941
ND	0.588		ND	2.89			2.941
ND	0.588		ND	2.89			2.941
ND	0.588		ND	2.89			2.941
ND	0.588		ND	3.04			2.941
ND	0.588		ND	3.54			2.941
ND	0.588		ND	3.54			2.941
ND	0.588		ND	3.54			2.941
ND	0.588		ND	4.36			2.941
ND	0.588		ND	6.27			2.941
	ND N	Results RL Lab ND 1.18 ND 0.588 ND 0.588	Results RL MDL Lab ND 1.18 ND 0.588 ND 0.588	Results RL MDL Results Lab ND 1.18 ND ND 0.588 ND	Results RL MDL Results RL Lab ND 1.18 ND 5.13 ND 0.588 ND 6.08 ND 0.588 ND 2.50 ND 0.588 ND 4.04 ND 0.588 ND 2.89 ND 0.588 ND 2.89 ND 0.588 ND 3.04 ND 0.588 ND 3.54 ND	Results RL MDL Results RL MDL Lab ND 1.18 ND 5.13 ND 0.588 ND 6.08 ND 0.588 ND 2.50 ND 0.588 ND 4.04 ND 0.588 ND 2.55 ND 0.588 ND 2.89 ND 0.588 ND 3.04 ND 0.588 ND 3.54 ND 0.588 ND 3.54	Results RL MDL Results RL MDL Qualifier Lab ND 1.18 ND 5.13 ND 0.588 ND 6.08 ND 0.588 ND 2.50 ND 0.588 ND 4.04 ND 0.588 ND 2.55 ND 0.588 ND 2.89 ND 0.588 ND 3.04 ND 0.588 ND 3.54 ND 0.588 ND 3.54 ND 0.588 ND 3.54 ND 0.588 ND 3.54 ND

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	95		60-140
Bromochloromethane	94		60-140
chlorobenzene-d5	95		60-140

Project Number: 059294.001

Lab Number:

L2309101

Report Date:

03/06/23

SAMPLE RESULTS

Lab ID: L2309101-07

Client ID: IA-04-20230218 Sample Location: SYRACUSE NY Date Collected: 02/18/23 16:12

Date Received: 02/20/23 Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15 Analytical Date: 03/01/23 21:40

	ppbVug/m3			Dilution				
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.498	0.200		2.46	0.989			1
Chloromethane	0.577	0.200		1.19	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	6.81	5.00		12.8	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	12.4	1.00		29.5	2.38			1
Trichlorofluoromethane	0.220	0.200		1.24	1.12			1
Isopropanol	305	0.500		750	1.23		E	1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

Project Number: 059294.001

Lab Number:

L2309101

Report Date: 03/06/23

SAMPLE RESULTS

Lab ID: L2309101-07 Client ID: IA-04-20230218

Sample Location: SYRACUSE NY

Date Collected: 02/1

02/18/23 16:12

Date Received: 02/20/23 Field Prep: Not Specified

Sample Depth:		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Benzene	ND	0.200		ND	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	0.270	0.200		1.02	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

Project Number: 059294.001

Lab Number:

L2309101

Report Date:

03/06/23

SAMPLE RESULTS

Lab ID: L2309101-07

Client ID: IA-04-20230218 Sample Location: SYRACUSE NY Date Collected: 0

02/18/23 16:12

Date Received: Field Prep:

02/20/23 Not Specified

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	95		60-140
Bromochloromethane	95		60-140
chlorobenzene-d5	95		60-140

Project Number: 059294.001

Lab Number:

L2309101

Report Date:

03/06/23

SAMPLE RESULTS

Lab ID: L2309101-07

Client ID: IA-04-20230218 Sample Location: SYRACUSE NY Date Collected: 02/18/23 16:12

Date Received: 02/20/23 Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 03/01/23 21:40

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Ma	nsfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.075	0.020		0.472	0.126			1
Trichloroethene	0.258	0.020		1.39	0.107			1
Tetrachloroethene	ND	0.020		ND	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	94		60-140
bromochloromethane	95		60-140
chlorobenzene-d5	94		60-140

L2309101

Project Name: JMA WIRELESS Lab Number:

Project Number: 059294.001 **Report Date:** 03/06/23

SAMPLE RESULTS

Lab ID: L2309101-07 D Date Collected: 02/18/23 16:12

Client ID: IA-04-20230218 Date Received: 02/20/23
Sample Location: SYRACUSE NY Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15 Analytical Date: 03/02/23 09:16

		ppbV		ug/m3			Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield L	ab							
Isopropanol	315	1.67		774	4.10			3.333

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	92		60-140
Bromochloromethane	91		60-140
chlorobenzene-d5	91		60-140

Project Name:JMA WIRELESSLab Number:L2309101Project Number:059294.001Report Date:03/06/23

SAMPLE RESULTS

Lab ID: L2309101-08 D Date Collected: 02/18/23 14:18

Client ID: SS-04-20230218 Date Received: 02/20/23 Sample Location: SYRACUSE NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 03/02/23 04:15

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	sfield Lab							
Dichlorodifluoromethane	0.476	0.476		2.35	2.35			2.381
Chloromethane	0.567	0.476		1.17	0.983			2.381
Freon-114	ND	0.476		ND	3.33			2.381
Vinyl chloride	ND	0.476		ND	1.22			2.381
1,3-Butadiene	ND	0.476		ND	1.05			2.381
Bromomethane	ND	0.476		ND	1.85			2.381
Chloroethane	ND	0.476		ND	1.26			2.381
Ethanol	ND	11.9		ND	22.4			2.381
Vinyl bromide	ND	0.476		ND	2.08			2.381
Acetone	11.2	2.38		26.6	5.65			2.381
Trichlorofluoromethane	ND	0.476		ND	2.67			2.381
Isopropanol	312	1.19		767	2.93			2.381
1,1-Dichloroethene	ND	0.476		ND	1.89			2.381
Tertiary butyl Alcohol	ND	1.19		ND	3.61			2.381
Methylene chloride	ND	1.19		ND	4.13			2.381
3-Chloropropene	ND	0.476		ND	1.49			2.381
Carbon disulfide	ND	0.476		ND	1.48			2.381
Freon-113	ND	0.476		ND	3.65			2.381
trans-1,2-Dichloroethene	ND	0.476		ND	1.89			2.381
1,1-Dichloroethane	ND	0.476		ND	1.93			2.381
Methyl tert butyl ether	ND	0.476		ND	1.72			2.381
2-Butanone	ND	1.19		ND	3.51			2.381
cis-1,2-Dichloroethene	ND	0.476		ND	1.89			2.381

L2309101

Project Name:JMA WIRELESSLab Number:Project Number:059294.001Report Date:

Report Date: 03/06/23

SAMPLE RESULTS

Lab ID: L2309101-08 D
Client ID: SS-04-20230218
Sample Location: SYRACUSE NY

Date Collected: 02/18/23 14:18
Date Received: 02/20/23
Field Prep: Not Specified

Campio Dopuii		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	l Lab							
Ethyl Acetate	ND	1.19		ND	4.29			2.381
Chloroform	ND	0.476		ND	2.32			2.381
Tetrahydrofuran	ND	1.19		ND	3.51			2.381
1,2-Dichloroethane	ND	0.476		ND	1.93			2.381
n-Hexane	ND	0.476		ND	1.68			2.381
1,1,1-Trichloroethane	ND	0.476		ND	2.60			2.381
Benzene	ND	0.476		ND	1.52			2.381
Carbon tetrachloride	ND	0.476		ND	2.99			2.381
Cyclohexane	ND	0.476		ND	1.64			2.381
1,2-Dichloropropane	ND	0.476		ND	2.20			2.381
Bromodichloromethane	ND	0.476		ND	3.19			2.381
1,4-Dioxane	ND	0.476		ND	1.72			2.381
Trichloroethene	ND	0.476		ND	2.56			2.381
2,2,4-Trimethylpentane	ND	0.476		ND	2.22			2.381
Heptane	ND	0.476		ND	1.95			2.381
cis-1,3-Dichloropropene	ND	0.476		ND	2.16			2.381
4-Methyl-2-pentanone	ND	1.19		ND	4.88			2.381
trans-1,3-Dichloropropene	ND	0.476		ND	2.16			2.381
1,1,2-Trichloroethane	ND	0.476		ND	2.60			2.381
Toluene	ND	0.476		ND	1.79			2.381
2-Hexanone	ND	0.476		ND	1.95			2.381
Dibromochloromethane	ND	0.476		ND	4.06			2.381
1,2-Dibromoethane	ND	0.476		ND	3.66			2.381
Tetrachloroethene	ND	0.476		ND	3.23			2.381
Chlorobenzene	ND	0.476		ND	2.19			2.381
Ethylbenzene	ND	0.476		ND	2.07			2.381

Project Name:JMA WIRELESSLab Number:L2309101Project Number:059294.001Report Date:03/06/23

SAMPLE RESULTS

Lab ID: L2309101-08 D
Client ID: SS-04-20230218
Sample Location: SYRACUSE NY

Date Collected: 02/18/23 14:18
Date Received: 02/20/23
Field Prep: Not Specified

оапріє Беріп.		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	sfield Lab							
p/m-Xylene	ND	0.952		ND	4.14			2.381
Bromoform	ND	0.476		ND	4.92			2.381
Styrene	ND	0.476		ND	2.03			2.381
1,1,2,2-Tetrachloroethane	ND	0.476		ND	3.27			2.381
o-Xylene	ND	0.476		ND	2.07			2.381
4-Ethyltoluene	ND	0.476		ND	2.34			2.381
1,3,5-Trimethylbenzene	ND	0.476		ND	2.34			2.381
1,2,4-Trimethylbenzene	ND	0.476		ND	2.34			2.381
Benzyl chloride	ND	0.476		ND	2.46			2.381
1,3-Dichlorobenzene	ND	0.476		ND	2.86			2.381
1,4-Dichlorobenzene	ND	0.476		ND	2.86			2.381
1,2-Dichlorobenzene	ND	0.476		ND	2.86			2.381
1,2,4-Trichlorobenzene	ND	0.476		ND	3.53			2.381
Hexachlorobutadiene	ND	0.476		ND	5.08			2.381

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	96		60-140
Bromochloromethane	95		60-140
chlorobenzene-d5	96		60-140

Project Number: 059294.001

Lab Number: L2309101

Report Date: 03/06/23

SAMPLE RESULTS

Lab ID: L2309101-09

Client ID: IA-05-20230218 Sample Location: SYRACUSE NY Date Collected: 02/18/23 16:34

Date Received: 02/20/23 Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15 Analytical Date: 03/01/23 22:20

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.505	0.200		2.50	0.989			1
Chloromethane	0.590	0.200		1.22	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	7.08	5.00		13.3	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	11.5	1.00		27.3	2.38			1
Trichlorofluoromethane	0.222	0.200		1.25	1.12			1
Isopropanol	354	0.500		870	1.23		E	1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

Project Number: 059294.001

Lab Number:

L2309101

Report Date: 03/06/23

SAMPLE RESULTS

Lab ID: L2309101-09

Client ID: IA-05-20230218 Sample Location: SYRACUSE NY Date Collected: 02/18/23 16:34

Date Received: 02/20/23 Field Prep: Not Specified

Sample Depth:		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	ld Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Benzene	ND	0.200		ND	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	0.279	0.200		1.05	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

Project Number: 059294.001

Lab Number:

L2309101

Report Date:

03/06/23

SAMPLE RESULTS

Lab ID: L2309101-09

Client ID: IA-05-20230218 Sample Location: SYRACUSE NY Date Collected: 02/18/23 16:34

Date Received: 02/20/23

Field Prep: Not Specified

Campio Bopan.		ppbV				Dilution		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	94		60-140
Bromochloromethane	94		60-140
chlorobenzene-d5	94		60-140

Project Number: 059294.001

Lab Number:

L2309101

Report Date:

03/06/23

SAMPLE RESULTS

Lab ID: L2309101-09

Client ID: IA-05-20230218 Sample Location: SYRACUSE NY Date Collected: 02/18/2

02/18/23 16:34

Date Received: Field Prep:

02/20/23 Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 03/01/23 22:20

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	l - Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.072	0.020		0.453	0.126			1
Trichloroethene	0.062	0.020		0.333	0.107			1
Tetrachloroethene	ND	0.020		ND	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	94		60-140
bromochloromethane	94		60-140
chlorobenzene-d5	94		60-140

Project Number: 059294.001 Lab Number:

L2309101

Report Date:

03/06/23

SAMPLE RESULTS

Lab ID: L2309101-09 D

Client ID: IA-05-20230218 Sample Location: SYRACUSE NY Date Collected:

02/18/23 16:34

Date Received: Field Prep:

02/20/23 Not Specified

Sample Depth:

Matrix:

Anaytical Method: 48 Analytical Date: 03

Analyst:

Air 48,TO-15 03/02/23 09:53 RAY			
	ppbV	ug/m3	Dilution

Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield La	ıb							
Isopropanol	360	2.50		885	6.15			5

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	90		60-140
Bromochloromethane	90		60-140
chlorobenzene-d5	90		60-140

L2309101

Project Name:JMA WIRELESSLab Number:Project Number:059294.001Report Date:

Report Date: 03/06/23

SAMPLE RESULTS

Lab ID: L2309101-10 D Date Collected: 02/18/23 15:57

Client ID: SS-05-20230218 Date Received: 02/20/23 Sample Location: SYRACUSE NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 03/02/23 04:52

		Vdqq		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.489	0.455		2.42	2.25			2.273
Chloromethane	0.573	0.455		1.18	0.940			2.273
Freon-114	ND	0.455		ND	3.18			2.273
Vinyl chloride	ND	0.455		ND	1.16			2.273
1,3-Butadiene	ND	0.455		ND	1.01			2.273
Bromomethane	ND	0.455		ND	1.77			2.273
Chloroethane	ND	0.455		ND	1.20			2.273
Ethanol	ND	11.4		ND	21.5			2.273
Vinyl bromide	ND	0.455		ND	1.99			2.273
Acetone	11.3	2.27		26.8	5.39			2.273
Trichlorofluoromethane	ND	0.455		ND	2.56			2.273
Isopropanol	313	1.14		769	2.80			2.273
1,1-Dichloroethene	ND	0.455		ND	1.80			2.273
Tertiary butyl Alcohol	ND	1.14		ND	3.46			2.273
Methylene chloride	ND	1.14		ND	3.96			2.273
3-Chloropropene	ND	0.455		ND	1.42			2.273
Carbon disulfide	ND	0.455		ND	1.42			2.273
Freon-113	ND	0.455		ND	3.49			2.273
trans-1,2-Dichloroethene	ND	0.455		ND	1.80			2.273
1,1-Dichloroethane	ND	0.455		ND	1.84			2.273
Methyl tert butyl ether	ND	0.455		ND	1.64			2.273
2-Butanone	1.24	1.14		3.66	3.36			2.273
cis-1,2-Dichloroethene	ND	0.455		ND	1.80			2.273

Project Number: 059294.001

Lab Number:

L2309101

Report Date: 03/06/23

SAMPLE RESULTS

Lab ID: L2309101-10 D
Client ID: SS-05-20230218
Sample Location: SYRACUSE NY

Date Collected: 02/18/23 15:57

Date Received: 02/20/23 Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
/olatile Organics in Air - Mansfield	Lab							
Ethyl Acetate	ND	1.14		ND	4.11			2.273
Chloroform	ND	0.455		ND	2.22			2.273
etrahydrofuran	ND	1.14		ND	3.36			2.273
,2-Dichloroethane	ND	0.455		ND	1.84			2.273
-Hexane	ND	0.455		ND	1.60			2.273
,1,1-Trichloroethane	ND	0.455		ND	2.48			2.273
Benzene	ND	0.455		ND	1.45			2.273
Carbon tetrachloride	ND	0.455		ND	2.86			2.273
Cyclohexane	ND	0.455		ND	1.57			2.273
,2-Dichloropropane	ND	0.455		ND	2.10			2.273
Bromodichloromethane	ND	0.455		ND	3.05			2.273
,4-Dioxane	ND	0.455		ND	1.64			2.273
richloroethene	ND	0.455		ND	2.45			2.273
2,2,4-Trimethylpentane	ND	0.455		ND	2.13			2.273
Heptane	ND	0.455		ND	1.86			2.273
sis-1,3-Dichloropropene	ND	0.455		ND	2.07			2.273
-Methyl-2-pentanone	ND	1.14		ND	4.67			2.273
rans-1,3-Dichloropropene	ND	0.455		ND	2.07			2.273
,1,2-Trichloroethane	ND	0.455		ND	2.48			2.273
oluene	0.514	0.455		1.94	1.71			2.273
2-Hexanone	ND	0.455		ND	1.86			2.273
Dibromochloromethane	ND	0.455		ND	3.88			2.273
,2-Dibromoethane	ND	0.455		ND	3.50			2.273
etrachloroethene	ND	0.455		ND	3.09			2.273
Chlorobenzene	ND	0.455		ND	2.10			2.273
Ethylbenzene	ND	0.455		ND	1.98			2.273

Project Number: 059294.001

Lab Number:

L2309101

Report Date:

03/06/23

SAMPLE RESULTS

Lab ID: L2309101-10 D
Client ID: SS-05-20230218
Sample Location: SYRACUSE NY

Date Collected:

02/18/23 15:57

Date Received: Field Prep:

02/20/23 Not Specified

Sample Depth:

ppbV ug/m3 Dilution
Results RL MDL Qualifier Factor

	• • • • • • • • • • • • • • • • • • • •					Dilution		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfi	eld Lab							
p/m-Xylene	ND	0.909		ND	3.95			2.273
Bromoform	ND	0.455		ND	4.70			2.273
Styrene	ND	0.455		ND	1.94			2.273
1,1,2,2-Tetrachloroethane	ND	0.455		ND	3.12			2.273
o-Xylene	ND	0.455		ND	1.98			2.273
4-Ethyltoluene	ND	0.455		ND	2.24			2.273
1,3,5-Trimethylbenzene	ND	0.455		ND	2.24			2.273
1,2,4-Trimethylbenzene	ND	0.455		ND	2.24			2.273
Benzyl chloride	ND	0.455		ND	2.36			2.273
1,3-Dichlorobenzene	ND	0.455		ND	2.74			2.273
1,4-Dichlorobenzene	ND	0.455		ND	2.74			2.273
1,2-Dichlorobenzene	ND	0.455		ND	2.74			2.273
1,2,4-Trichlorobenzene	ND	0.455		ND	3.38			2.273
Hexachlorobutadiene	ND	0.455		ND	4.85			2.273

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	96		60-140
Bromochloromethane	95		60-140
chlorobenzene-d5	96		60-140

Project Number: 059294.001

Lab Number:

L2309101

Report Date: 03/06/23

SAMPLE RESULTS

Lab ID: L2309101-11

Client ID: IA-06-20230218 Sample Location: SYRACUSE NY Date Collected: 02/18/23 15:50

Date Received: 02/20/23 Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15 Analytical Date: 03/01/23 23:42

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.522	0.200		2.58	0.989			1
Chloromethane	0.676	0.200		1.40	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	57.7	5.00		109	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	19.5	1.00		46.3	2.38			1
Trichlorofluoromethane	0.220	0.200		1.24	1.12			1
Isopropanol	40.4	0.500		99.3	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	0.626	0.500		1.85	1.47			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

059294.001

Lab Number: L2309101

Report Date: 03/06/23

SAMPLE RESULTS

Lab ID: L2309101-11 Client ID: IA-06-20230218

Sample Location: SYRACUSE NY

Date Collected: 02/18/23 15:50

Date Received: 02/20/23 Field Prep: Not Specified

Sample Depth:

Project Number:

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Benzene	ND	0.200		ND	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
I-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Foluene	0.489	0.200		1.84	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
I-Ethyltoluene	ND	0.200		ND	0.983			1
,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

Project Number: 059294.001

Lab Number:

L2309101

Report Date:

03/06/23

SAMPLE RESULTS

Lab ID: L2309101-11

Client ID: IA-06-20230218 Sample Location: SYRACUSE NY Date Collected: 02/18/23 15:50

Date Received: 02/20/23 Field Prep: Not Specified

ppbV			ug/m3				Dilution
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
₋ab							
ND	0.200		ND	0.983			1
ND	0.200		ND	1.04			1
ND	0.200		ND	1.20			1
ND	0.200		ND	1.20			1
ND	0.200		ND	1.20			1
ND	0.200		ND	1.48			1
ND	0.200		ND	2.13			1
	ND	ND 0.200 ND 0.200	Results RL MDL Lab ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200	Results RL MDL Results Lab ND 0.200 ND ND 0.200 ND	Results RL MDL Results RL Lab ND 0.200 ND 0.983 ND 0.200 ND 1.04 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.48	Results RL MDL Results RL MDL Lab ND 0.200 ND 0.983 ND 0.200 ND 1.04 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.48	Results RL MDL Results RL MDL Qualifier Lab ND 0.200 ND 0.983 ND 0.200 ND 1.04 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.48 ND 0.200 ND 1.48

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	96		60-140
Bromochloromethane	94		60-140
chlorobenzene-d5	94		60-140

Project Number: 059294.001

Lab Number:

L2309101

Report Date:

03/06/23

SAMPLE RESULTS

Lab ID: L2309101-11

Client ID: IA-06-20230218 Sample Location: SYRACUSE NY Date Collected: 02/18/23 15:50

Date Received: 02/20/23 Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 03/01/23 23:42

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	0.026	0.020		0.103	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.084	0.020		0.528	0.126			1
Trichloroethene	0.457	0.020		2.46	0.107			1
Tetrachloroethene	0.061	0.020		0.414	0.136			1

			Acceptance
Internal Standard	% Recovery	Qualifier	Criteria
1,4-difluorobenzene	94		60-140
bromochloromethane	93		60-140
chlorobenzene-d5	94		60-140

Project Number: 059294.001

Lab Number:

L2309101

Report Date: 03/06/23

SAMPLE RESULTS

Lab ID: L2309101-12

Client ID: IA-07-20230218 Sample Location: SYRACUSE NY Date Collected: 02/18/23 15:51 Date Received: 02/20/23

Field Prep:

Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15 Analytical Date: 03/02/23 00:22

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.506	0.200		2.50	0.989			1
Chloromethane	0.641	0.200		1.32	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	86.4	5.00		163	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	11.9	1.00		28.3	2.38			1
Trichlorofluoromethane	0.226	0.200		1.27	1.12			1
Isopropanol	83.7	0.500		206	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	0.501	0.500		1.48	1.47			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

Project Number: 059294.001

Lab Number:

L2309101

Report Date: 03/06/23

SAMPLE RESULTS

Lab ID: L2309101-12 Client ID: IA-07-20230218

Sample Location: SYRACUSE NY

Date Collected: 02/18/23 15:51

Date Received: 02/20/23 Field Prep: Not Specified

затріє Беріп.	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Benzene	ND	0.200		ND	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
is-1,3-Dichloropropene	ND	0.200		ND	0.908			1
-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
,1,2-Trichloroethane	ND	0.200		ND	1.09			1
oluene	0.454	0.200		1.71	0.754			1
-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
n/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	0.267	0.200		1.14	0.852			1
,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
1-Ethyltoluene	ND	0.200		ND	0.983			1
,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

Project Number: 059294.001

Lab Number:

L2309101

Report Date: 03/06/23

SAMPLE RESULTS

Lab ID: L2309101-12

Client ID: IA-07-20230218 Sample Location: SYRACUSE NY Date Collected: 02/18/23 15:51

Date Received: 02/20/23 Field Prep: Not Specified

Campio Bopan.		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	96		60-140
Bromochloromethane	95		60-140
chlorobenzene-d5	95		60-140

Project Number: 059294.001

Lab Number:

L2309101

Report Date:

03/06/23

SAMPLE RESULTS

Lab ID: L2309101-12

Client ID: IA-07-20230218 Sample Location: SYRACUSE NY Date Collected: 02/18/23 15:51

Date Received: 02/20/23 Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 03/02/23 00:22

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.077	0.020		0.484	0.126			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	ND	0.020		ND	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	96		60-140
bromochloromethane	94		60-140
chlorobenzene-d5	95		60-140

Project Number: 059294.001

Lab Number:

L2309101

Report Date:

03/06/23

SAMPLE RESULTS

Lab ID: L2309101-13

Client ID: IA-08-20230218 Sample Location: SYRACUSE NY Date Collected: 02/18/23 14:23

Date Received: 02/20/23 Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15 Analytical Date: 03/02/23 01:02

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	field Lab							
Dichlorodifluoromethane	0.487	0.200		2.41	0.989			1
Chloromethane	0.593	0.200		1.22	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	8.15	5.00		15.4	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	7.93	1.00		18.8	2.38			1
Trichlorofluoromethane	0.226	0.200		1.27	1.12			1
Isopropanol	203	0.500		499	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

059294.001

Lab Number: L2309101

Report Date: 03/06/23

SAMPLE RESULTS

Lab ID: L2309101-13 Client ID: IA-08-20230218

SYRACUSE NY

Date Collected: 02/18/23 14:23 Date Received: 02/20/23

Field Prep: Not Specified

Sample Depth:

Sample Location:

Project Number:

Sample Depth:		Vdqq			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansf	field Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Benzene	0.313	0.200		1.00	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	1.12	0.200		4.22	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

Project Number: 059294.001

Lab Number:

L2309101

Report Date:

03/06/23

SAMPLE RESULTS

Lab ID: L2309101-13

Client ID: IA-08-20230218 Sample Location: SYRACUSE NY Date Collected:

02/18/23 14:23

1

1

Date Received: Field Prep:

02/20/23 Not Specified

Sample Depth:

1,2,4-Trichlorobenzene

Hexachlorobutadiene

ppbV ug/m3 Dilution **Factor** RL Qualifier Results MDL **Parameter** RL Results MDL Volatile Organics in Air - Mansfield Lab 1,2,4-Trimethylbenzene ND 0.200 ND0.983 1 Benzyl chloride ND 0.200 ND 1.04 --1 --1,3-Dichlorobenzene ND 0.200 ND 1.20 1 1,4-Dichlorobenzene ND 0.200 ND 1.20 1 ----1,2-Dichlorobenzene 1 ND 0.200 ND 1.20

--

--

ND

ND

1.48

2.13

--

--

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	98		60-140
Bromochloromethane	96		60-140
chlorobenzene-d5	96		60-140

0.200

0.200

ND

ND

Project Number: 059294.001 Lab Number:

L2309101

Report Date:

03/06/23

SAMPLE RESULTS

Lab ID: L2309101-13

Client ID: IA-08-20230218 Sample Location:

Date Collected: 02/18/23 14:23

02/20/23

SYRACUSE NY

Date Received: Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15-SIM Analytical Date: 03/02/23 01:02

Analyst: RAY

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Ma	nsfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.072	0.020		0.453	0.126			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	ND	0.020		ND	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	96		60-140
bromochloromethane	95		60-140
chlorobenzene-d5	96		60-140

Project Number: 059294.001

Lab Number:

L2309101

03/06/23

Report Date:

SAMPLE RESULTS

Lab ID: L2309101-14

Client ID: IA-09-20230218 Sample Location: SYRACUSE NY Date Collected: 02/18/23 15:35

Date Received: 02/20/23 Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15 Analytical Date: 03/02/23 01:42

Analyst: RAY

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.508	0.200		2.51	0.989			1
Chloromethane	0.569	0.200		1.18	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	7.02	5.00		13.2	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	14.3	1.00		34.0	2.38			1
Trichlorofluoromethane	0.225	0.200		1.26	1.12			1
Isopropanol	441	0.500		1080	1.23		E	1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

059294.001

Lab Number: L2309101

Report Date: 03/06/23

SAMPLE RESULTS

Lab ID: L2309101-14
Client ID: IA-09-20230218
Sample Location: SYRACUSE NY

Date Collected: 02/18/23 15:35

Date Received: 02/20/23 Field Prep: Not Specified

Sample Depth:

Project Number:

ppbV			ug/m3				Dilution
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Lab							
ND	0.200		ND	0.809			1
ND	0.200		ND	0.705			1
ND	0.200		ND	0.639			1
ND	0.200		ND	0.688			1
ND	0.200		ND	0.924			1
ND	0.200		ND	1.34			1
ND	0.200		ND	0.721			1
ND	0.200		ND	0.934			1
ND	0.200		ND	0.820			1
ND	0.200		ND	0.908			1
ND	0.500		ND	2.05			1
ND	0.200		ND	0.908			1
ND	0.200		ND	1.09			1
0.305	0.200		1.15	0.754			1
ND	0.200		ND	0.820			1
ND	0.200		ND	1.70			1
ND	0.200		ND	1.54			1
ND	0.200		ND	0.921			1
ND	0.200		ND	0.869			1
ND	0.400		ND	1.74			1
ND	0.200		ND	2.07			1
ND	0.200		ND	0.852			1
ND	0.200		ND	1.37			1
ND	0.200		ND	0.869			1
ND	0.200		ND	0.983			1
ND	0.200		ND	0.983			1
	ND N	Results RL Lab ND 0.200 ND	Results RL MDL Lab ND 0.200 ND 0.200	Results RL MDL Results Lab ND 0.200 ND ND 0.200	Results RL MDL Results RL Lab ND 0.200 ND 0.809 ND 0.200 ND 0.705 ND 0.200 ND 0.639 ND 0.200 ND 0.639 ND 0.200 ND 0.639 ND 0.200 ND 0.639 ND 0.200 ND 0.688 ND 0.200 ND 0.924 ND 0.200 ND 0.924 ND 0.200 ND 0.721 ND 0.200 ND 0.721 ND 0.200 ND 0.934 ND 0.200 ND 0.908 ND 0.200 ND 0.908 ND 0.200 ND 1.09 <t< td=""><td>Results RL MDL Results RL MDL Lab ND 0.200 ND 0.809 ND 0.200 ND 0.705 ND 0.200 ND 0.639 ND 0.200 ND 0.639 ND 0.200 ND 0.639 ND 0.200 ND 0.639 ND 0.200 ND 0.638 ND 0.200 ND 0.924 ND 0.200 ND 0.924 ND 0.200 ND 0.721 ND 0.200 ND 0.820 ND 0.200 ND 0.908 ND 0.200 ND 1.09</td><td>Results RL MDL Results RL MDL Qualifier Lab ND 0.200 ND 0.809 ND 0.200 ND 0.705 ND 0.200 ND 0.639 ND 0.200 ND 0.688 ND 0.200 ND 0.924 ND 0.200 ND 0.924 ND 0.200 ND 0.721 ND 0.200 ND 0.934 ND 0.200 ND 0.934 ND 0.200 ND 0.908 ND 0.200 ND 0.908 </td></t<>	Results RL MDL Results RL MDL Lab ND 0.200 ND 0.809 ND 0.200 ND 0.705 ND 0.200 ND 0.639 ND 0.200 ND 0.639 ND 0.200 ND 0.639 ND 0.200 ND 0.639 ND 0.200 ND 0.638 ND 0.200 ND 0.924 ND 0.200 ND 0.924 ND 0.200 ND 0.721 ND 0.200 ND 0.820 ND 0.200 ND 0.908 ND 0.200 ND 1.09	Results RL MDL Results RL MDL Qualifier Lab ND 0.200 ND 0.809 ND 0.200 ND 0.705 ND 0.200 ND 0.639 ND 0.200 ND 0.688 ND 0.200 ND 0.924 ND 0.200 ND 0.924 ND 0.200 ND 0.721 ND 0.200 ND 0.934 ND 0.200 ND 0.934 ND 0.200 ND 0.908 ND 0.200 ND 0.908

Project Number: 059294.001

Lab Number:

L2309101

Report Date:

03/06/23

SAMPLE RESULTS

Lab ID: L2309101-14

Client ID: IA-09-20230218 Sample Location: SYRACUSE NY Date Collected: 02/18/23 15:35

Date Received: 02/20/23 Field Prep: Not Specified

Campio Boptii.		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	field Lab							
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	96		60-140
Bromochloromethane	94		60-140
chlorobenzene-d5	95		60-140

Project Number: 059294.001

Lab Number:

L2309101

Report Date:

03/06/23

SAMPLE RESULTS

Lab ID: L2309101-14

Client ID: IA-09-20230218 Sample Location: SYRACUSE NY Date Collected: 02/18/23 15:35

Date Received: 02/20/23 Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 03/02/23 01:42

Analyst: RAY

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	/I - Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.080	0.020		0.503	0.126			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	0.067	0.020		0.454	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	95		60-140
bromochloromethane	94		60-140
chlorobenzene-d5	96		60-140

Project Name: JMA WIRELESS Lab Number: L2309101

Project Number: 059294.001 **Report Date:** 03/06/23

SAMPLE RESULTS

Lab ID: L2309101-14 D Date Collected: 02/18/23 15:35

Client ID: IA-09-20230218 Date Received: 02/20/23
Sample Location: SYRACUSE NY Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15 Analytical Date: 03/02/23 11:06

Analyst: RAY

		ppbV			ug/m3			Dilution
Parameter	Results RL MDL		Results	RL MDL		Qualifier	Factor	
Volatile Organics in Air - Mansfield L	ab							
Isopropanol	462	2.50		1140	6.15			5

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	90		60-140
Bromochloromethane	89		60-140
chlorobenzene-d5	90		60-140

L2309101

Project Name: Lab Number: JMA WIRELESS Project Number: 059294.001

Report Date: 03/06/23

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 03/01/23 16:36

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	ld Lab for samp	ole(s): 01-	·14 Batch	: WG17500	37-4			
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1

Project Name: Lab Number: JMA WIRELESS L2309101 Project Number: 059294.001

Report Date: 03/06/23

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 03/01/23 16:36

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab for samp	le(s): 01-	·14 Batch	: WG17500	37-4			
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1

Project Name: JMA WIRELESS Lab Number: L2309101

Project Number: 059294.001 **Report Date:** 03/06/23

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 03/01/23 16:36

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab for samp	ole(s): 01	-14 Batch	: WG17500	37-4			
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name: JMA WIRELESS Lab Number: L2309101

Project Number: 059294.001 **Report Date:** 03/06/23

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15-SIM Analytical Date: 03/01/23 17:15

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab f	or sample	(s): 01,0	3,05,07,09,1	1-14 Ba	tch: Wo	G1750039	-4
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	ND	0.020		ND	0.136			1

Project Name: JMA WIRELESS

Project Number: 059294.001

Lab Number: L2309101

rameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab A	ssociated sample(s):	01-14	Batch: WG175003	7-3				
Dichlorodifluoromethane	100		-		70-130	-		
Chloromethane	99		-		70-130	-		
Freon-114	99		-		70-130	-		
Vinyl chloride	98		-		70-130	-		
1,3-Butadiene	99		-		70-130	-		
Bromomethane	93		-		70-130	-		
Chloroethane	96		-		70-130	-		
Ethanol	101		-		40-160	-		
Vinyl bromide	88		-		70-130	-		
Acetone	101		-		40-160	-		
Trichlorofluoromethane	100		-		70-130	-		
Isopropanol	92		-		40-160	-		
1,1-Dichloroethene	100		-		70-130	-		
Tertiary butyl Alcohol	78		-		70-130	-		
Methylene chloride	100		-		70-130	-		
3-Chloropropene	103		-		70-130	-		
Carbon disulfide	88		-		70-130	-		
Freon-113	91		-		70-130	-		
trans-1,2-Dichloroethene	93		-		70-130	-		
1,1-Dichloroethane	97		-		70-130	-		
Methyl tert butyl ether	82		-		70-130	-		
2-Butanone	98		-		70-130	-		
cis-1,2-Dichloroethene	98		-		70-130	-		

Project Name: JMA WIRELESS

Project Number: 059294.001

Lab Number: L2309101

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab As	ssociated sample(s):	01-14 E	Batch: WG17500	37-3				
Ethyl Acetate	97		-		70-130	-		
Chloroform	99		-		70-130	-		
Tetrahydrofuran	96		-		70-130	-		
1,2-Dichloroethane	97		-		70-130	-		
n-Hexane	99		-		70-130	-		
1,1,1-Trichloroethane	106		-		70-130	-		
Benzene	91		-		70-130	-		
Carbon tetrachloride	110		-		70-130	-		
Cyclohexane	99		-		70-130	-		
1,2-Dichloropropane	101		-		70-130	-		
Bromodichloromethane	106		-		70-130	-		
1,4-Dioxane	97		-		70-130	-		
Trichloroethene	95		-		70-130	-		
2,2,4-Trimethylpentane	102		-		70-130	-		
Heptane	105		-		70-130	-		
cis-1,3-Dichloropropene	103		-		70-130	-		
4-Methyl-2-pentanone	106		-		70-130	-		
trans-1,3-Dichloropropene	87		-		70-130	-		
1,1,2-Trichloroethane	97		-		70-130	-		
Toluene	85		-		70-130	-		
2-Hexanone	95		-		70-130	-		
Dibromochloromethane	99		-		70-130	-		
1,2-Dibromoethane	87		-		70-130	-		

Project Name: JMA WIRELESS

Project Number: 059294.001

Lab Number: L2309101

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics in Air - Mansfield Lab	Associated sample(s):	01-14	Batch: WG175003	37-3				
Tetrachloroethene	82		-		70-130	-		
Chlorobenzene	86		-		70-130	-		
Ethylbenzene	90		-		70-130	-		
p/m-Xylene	90		-		70-130	-		
Bromoform	94		-		70-130	-		
Styrene	86		-		70-130	-		
1,1,2,2-Tetrachloroethane	84		-		70-130	-		
o-Xylene	90		-		70-130	-		
4-Ethyltoluene	91		-		70-130	-		
1,3,5-Trimethylbenzene	85		-		70-130	-		
1,2,4-Trimethylbenzene	88		-		70-130	-		
Benzyl chloride	91		-		70-130	-		
1,3-Dichlorobenzene	82		-		70-130	-		
1,4-Dichlorobenzene	81		-		70-130	-		
1,2-Dichlorobenzene	81		-		70-130	-		
1,2,4-Trichlorobenzene	72		-		70-130	-		
Hexachlorobutadiene	72		-		70-130	-		

Project Name: JMA WIRELESS

Project Number: 059294.001

Lab Number:

L2309101

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics in Air by SIM - Mansfield La	ab Associated sa	ample(s):	01,03,05,07,09,11-14	Batch:	WG1750039-3				
Vinyl chloride	94		-		70-130	-		25	
1,1-Dichloroethene	95		-		70-130	-		25	
cis-1,2-Dichloroethene	91		-		70-130	-		25	
1,1,1-Trichloroethane	97		-		70-130	-		25	
Carbon tetrachloride	103		-		70-130	-		25	
Trichloroethene	89		-		70-130	-		25	
Tetrachloroethene	77		-		70-130	-		25	

L2309101

Lab Duplicate Analysis Batch Quality Control

Project Name: JMA WIRELESS **Project Number:** 059294.001

Report Date: 03/06/23

Lab Number:

Parameter	Native Sample	Duplicate Sample	Units	RPD	RF Qual Lir	PD nits
olatile Organics in Air - Mansfield Lab	Associated sample(s): 01-14	QC Batch ID: WG1750037-5	QC Sample:	L2309101-	09 Client ID: IA	-05-20230218
Dichlorodifluoromethane	0.505	0.513	ppbV	2		25
Chloromethane	0.590	0.603	ppbV	2		25
Freon-114	ND	ND	ppbV	NC		25
1,3-Butadiene	ND	ND	ppbV	NC		25
Bromomethane	ND	ND	ppbV	NC		25
Chloroethane	ND	ND	ppbV	NC		25
Ethanol	7.08	7.24	ppbV	2		25
Vinyl bromide	ND	ND	ppbV	NC		25
Acetone	11.5	11.8	ppbV	3		25
Trichlorofluoromethane	0.222	0.231	ppbV	4		25
Isopropanol	354E	359E	ppbV	1		25
Tertiary butyl Alcohol	ND	ND	ppbV	NC		25
Methylene chloride	ND	ND	ppbV	NC		25
3-Chloropropene	ND	ND	ppbV	NC		25
Carbon disulfide	ND	ND	ppbV	NC		25
Freon-113	ND	ND	ppbV	NC		25
trans-1,2-Dichloroethene	ND	ND	ppbV	NC		25
1,1-Dichloroethane	ND	ND	ppbV	NC		25
Methyl tert butyl ether	ND	ND	ppbV	NC		25
2-Butanone	ND	ND	ppbV	NC		25
Ethyl Acetate	ND	ND	ppbV	NC		25

Lab Duplicate Analysis Batch Quality Control

Project Name: JMA WIRELESS **Project Number:** 059294.001

Lab Number: L2309101

arameter	Native Sample	Duplicate Sample	Units	RPD		RPD Limits
platile Organics in Air - Mansfield Lab	Associated sample(s): 01-14	QC Batch ID: WG1750037-5	QC Sample:	L2309101-09	Olient ID:	IA-05-20230218
Chloroform	ND	ND	ppbV	NC		25
Tetrahydrofuran	ND	ND	ppbV	NC		25
1,2-Dichloroethane	ND	ND	ppbV	NC		25
n-Hexane	ND	ND	ppbV	NC		25
Benzene	ND	ND	ppbV	NC		25
Cyclohexane	ND	ND	ppbV	NC		25
1,2-Dichloropropane	ND	ND	ppbV	NC		25
Bromodichloromethane	ND	ND	ppbV	NC		25
1,4-Dioxane	ND	ND	ppbV	NC		25
2,2,4-Trimethylpentane	ND	ND	ppbV	NC		25
Heptane	ND	ND	ppbV	NC		25
cis-1,3-Dichloropropene	ND	ND	ppbV	NC		25
4-Methyl-2-pentanone	ND	ND	ppbV	NC		25
trans-1,3-Dichloropropene	ND	ND	ppbV	NC		25
1,1,2-Trichloroethane	ND	ND	ppbV	NC		25
Toluene	0.279	0.282	ppbV	1		25
2-Hexanone	ND	ND	ppbV	NC		25
Dibromochloromethane	ND	ND	ppbV	NC		25
1,2-Dibromoethane	ND	ND	ppbV	NC		25
Chlorobenzene	ND	ND	ppbV	NC		25
Ethylbenzene	ND	ND	ppbV	NC		25

Lab Duplicate Analysis Batch Quality Control

Project Name: JMA WIRELESS

Project Number: 059294.001

Lab Number: L2309101

arameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab	Associated sample(s): 01-14	QC Batch ID: WG1750037-5	QC Sample:	L2309101-0	9 Client ID:	IA-05-20230218
p/m-Xylene	ND	ND	ppbV	NC		25
Bromoform	ND	ND	ppbV	NC		25
Styrene	ND	ND	ppbV	NC		25
1,1,2,2-Tetrachloroethane	ND	ND	ppbV	NC		25
o-Xylene	ND	ND	ppbV	NC		25
4-Ethyltoluene	ND	ND	ppbV	NC		25
1,3,5-Trimethylbenzene	ND	ND	ppbV	NC		25
1,2,4-Trimethylbenzene	ND	ND	ppbV	NC		25
Benzyl chloride	ND	ND	ppbV	NC		25
1,3-Dichlorobenzene	ND	ND	ppbV	NC		25
1,4-Dichlorobenzene	ND	ND	ppbV	NC		25
1,2-Dichlorobenzene	ND	ND	ppbV	NC		25
1,2,4-Trichlorobenzene	ND	ND	ppbV	NC		25
Hexachlorobutadiene	ND	ND	ppbV	NC		25
platile Organics in Air - Mansfield Lab	Associated sample(s): 01-14	QC Batch ID: WG1750037-5	QC Sample:	L2309101-0	9 Client ID:	IA-05-20230218
Isopropanol	360	360	ppbV	0		25

Lab Duplicate Analysis Batch Quality Control

JMA WIRELESS **Project Number:**

Lab Number:

L2309101

Report Date:

03/06/23

Parameter	Native Sample	Duplicate Sam	ple Units	RPD	Qual	RPD Limits
Volatile Organics in Air by SIM - Mansfield Lab ID: IA-05-20230218	Associated sample(s):	01,03,05,07,09,11-14	QC Batch ID: WG	G1750039-5	QC Sample:	L2309101-09 Client
Vinyl chloride	ND	ND	ppbV	NC		25
1,1-Dichloroethene	ND	ND	ppbV	NC		25
cis-1,2-Dichloroethene	ND	ND	ppbV	NC		25
1,1,1-Trichloroethane	ND	ND	ppbV	NC		25
Carbon tetrachloride	0.072	0.069	ppbV	4		25
Trichloroethene	0.062	0.067	ppbV	8		25
Tetrachloroethene	ND	ND	ppbV	NC		25

Project Name:

059294.001

Lab Number: L2309101

Report Date: 03/06/23

Project Number: 059294.001

JMA WIRELESS

Project Name:

Canister and Flow Controller Information

								Initial	Pressure	Flow			
Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leal Check				Flow Out mL/min	Flow In mL/min	% RPD
L2309101-01	IA-01-20230218	0340	Flow 5	02/14/23	412588		-	-	-	Pass	4.5	4.6	2
L2309101-01	IA-01-20230218	423	2.7L Can	02/14/23	412588	L2306405-06	Pass	-29.0	-5.2	-	-	-	-
L2309101-02	SS-01-20230218	01631	Flow 4	02/14/23	412588		-	-	-	Pass	4.5	4.9	9
L2309101-02	SS-01-20230218	3735	2.7L Can	02/14/23	412588	L2306405-06	Pass	-29.0	-4.5	-	-	-	-
L2309101-03	IA-02-20230218	01895	Flow 5	02/14/23	412588		-	-	-	Pass	4.5	4.9	9
L2309101-03	IA-02-20230218	3243	2.7L Can	02/14/23	412588	L2306405-06	Pass	-28.5	-4.0	-	-	-	
L2309101-04	SS-02-20230218	02254	Flow 4	02/14/23	412588		-	-	-	Pass	4.5	4.7	4
L2309101-04	SS-02-20230218	3232	2.7L Can	02/14/23	412588	L2306405-06	Pass	-28.7	-8.2	-	-	-	-
L2309101-05	IA-03-20230218	0270	Flow 5	02/14/23	412588		-	-	-	Pass	4.5	5.0	11
L2309101-05	IA-03-20230218	2211	2.7L Can	02/14/23	412588	L2306405-06	Pass	-28.9	-7.8	-	-	-	-
L2309101-06	SS-03-20230218	0043	Flow 4	02/14/23	412588		-	-	-	Pass	4.5	5.2	14
L2309101-06	SS-03-20230218	202	2.7L Can	02/14/23	412588	L2306405-06	Pass	-28.9	-5.9	-	-	-	_
L2309101-07	IA-04-20230218	02155	Flow 5	02/14/23	412588		-	-	-	Pass	4.5	3.6	22
L2309101-07	IA-04-20230218	2199	2.7L Can	02/14/23	412588	L2306405-06	Pass	-29.0	-5.9	-	-	-	-
L2309101-08	SS-04-20230218	01282	Flow 5	02/14/23	412588		-	-	-	Pass	4.5	7.7	52

Lab Number: L2309101

Report Date: 03/06/23

Project Number: 059294.001

JMA WIRELESS

Project Name:

Canister and Flow Controller Information

									_				
Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check	Initial Pressure (in. Hg)	Pressure on Receipt (in. Hg)	Flow Controler Leak Chk	Flow Out mL/min	Flow In mL/min	% RPD
L2309101-08	SS-04-20230218	2015	2.7L Can	02/14/23	412588	L2306405-06	Pass	-28.9	-3.4	-	-	-	-
L2309101-09	IA-05-20230218	01219	Flow 5	02/14/23	412588		-	-	-	Pass	4.5	4.9	9
L2309101-09	IA-05-20230218	2392	2.7L Can	02/14/23	412588	L2306405-06	Pass	-29.0	-6.1	-	-	-	-
L2309101-10	SS-05-20230218	01736	Flow 5	02/14/23	412588		-	-	-	Pass	4.5	5.5	20
L2309101-10	SS-05-20230218	140	2.7L Can	02/14/23	412588	L2306405-06	Pass	-28.9	-5.4	-	-	-	-
L2309101-11	IA-06-20230218	01685	Flow 5	02/14/23	412588		-	-	-	Pass	4.5	4.5	0
L2309101-11	IA-06-20230218	3439	2.7L Can	02/14/23	412588	L2306405-06	Pass	-29.0	-6.2	-	-	-	-
L2309101-12	IA-07-20230218	01675	Flow 5	02/14/23	412588		-	-	-	Pass	4.5	4.6	2
L2309101-12	IA-07-20230218	533	2.7L Can	02/14/23	412588	L2306405-06	Pass	-29.0	-6.2	-	-	-	-
L2309101-13	IA-08-20230218	01465	Flow 5	02/14/23	412588		-	-	-	Pass	4.5	9.0	67
L2309101-13	IA-08-20230218	122	2.7L Can	02/14/23	412588	L2306405-06	Pass	-29.0	-1.4	-	-	-	-
L2309101-14	IA-09-20230218	0008	Flow 5	02/14/23	412588		-	-	-	Pass	4.5	4.8	6
L2309101-14	IA-09-20230218	3223	2.7L Can	02/14/23	412588	L2306405-06	Pass	-28.9	-5.1	-	-	-	-

L2306405

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 03/06/23

Air Canister Certification Results

Lab ID: L2306405-06

Date Collected: 02/07/23 11:00 Client ID: CAN 546 SHELF 22 Date Received: 02/07/23

Sample Location:

Field Prep: Not Specified

Sample Depth:

Matrix: Air Anaytical Method: 48,TO-15 Analytical Date: 02/07/23 22:26

Analyst: JMB

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab	1							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1

L2306405

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 03/06/23

Air Canister Certification Results

Lab ID: L2306405-06

Date Collected: 02/07/23 11:00 Client ID: CAN 546 SHELF 22 Date Received: 02/07/23

Sample Location:

Field Prep: Not Specified

Запріє Беріп.		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab								
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
Xylenes, total	ND	0.600		ND	0.869			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
1,2-Dichloroethene (total)	ND	1.00		ND	1.00			1
tert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
tert-Amyl Methyl Ether	ND	0.200		ND	0.836			1

L2306405

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 03/06/23

Air Canister Certification Results

Lab ID: L2306405-06

Date Collected: 02/07/23 11:00 Client ID: CAN 546 SHELF 22 Date Received: 02/07/23

Sample Location:

Field Prep: Not Specified

Sample Depth:		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab							
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1

L2306405

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 03/06/23

Air Canister Certification Results

Lab ID: L2306405-06

Date Collected: 02/07/23 11:00 Client ID: CAN 546 SHELF 22 Date Received: 02/07/23

Sample Location:

Field Prep: Not Specified

Sample Depth:		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	ld Lab							
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane	ND	0.200		ND	1.05			1
Isopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
4-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
ert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
1,2,3-Trimethylbenzene	ND	0.200		ND	0.983			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1

Project Name: BATCH CANISTER CERTIFICATION Lab Number: L2306405

Project Number: CANISTER QC BAT **Report Date:** 03/06/23

Air Canister Certification Results

Lab ID: L2306405-06

Date Collected: Client ID: CAN 546 SHELF 22

Date Received: 02/07/23 Field Prep: Not Specified

02/07/23 11:00

Sample Location:

Sample Depth:

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab								
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Dilution Factor Results Qualifier Units **RDL** Tentatively Identified Compounds

No Tentatively Identified Compounds

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	94		60-140
Bromochloromethane	95		60-140
chlorobenzene-d5	97		60-140

L2306405

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 03/06/23

Air Canister Certification Results

Lab ID: L2306405-06

Date Collected: 02/07/23 11:00 Client ID: CAN 546 SHELF 22 Date Received: 02/07/23

Sample Location:

Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15-SIM Analytical Date: 02/07/23 22:26

Analyst: JMB

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.100		ND	0.264			1
Acrolein	ND	0.050		ND	0.115			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
Freon-113	ND	0.050		ND	0.383			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1

L2306405

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 03/06/23

Air Canister Certification Results

Lab ID: L2306405-06

Date Collected: 02/07/23 11:00 Client ID: CAN 546 SHELF 22 Date Received: 02/07/23

Sample Location:

Field Prep: Not Specified

Sample Depth.									
Davameter	Results	ppbV	MDI	Results	ug/m3 RL	MDL	Qualifier	Dilution Factor	
Parameter Volatile Organics in Air by SIM - I		RL	MDL	Results	NL .	MIDL	Qualifier		
-									
1,2-Dichloropropane	ND	0.020		ND	0.092			1	
Bromodichloromethane	ND	0.020		ND	0.134			1	
1,4-Dioxane	ND	0.100		ND	0.360			1	
Trichloroethene	ND	0.020		ND	0.107			1	
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1	
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1	
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1	
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1	
Toluene	ND	0.100		ND	0.377			1	
Dibromochloromethane	ND	0.020		ND	0.170			1	
1,2-Dibromoethane	ND	0.020		ND	0.154			1	
Tetrachloroethene	ND	0.020		ND	0.136			1	
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1	
Chlorobenzene	ND	0.100		ND	0.461			1	
Ethylbenzene	ND	0.020		ND	0.087			1	
p/m-Xylene	ND	0.040		ND	0.174			1	
Bromoform	ND	0.020		ND	0.207			1	
Styrene	ND	0.020		ND	0.085			1	
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1	
o-Xylene	ND	0.020		ND	0.087			1	
Isopropylbenzene	ND	0.200		ND	0.983			1	
4-Ethyltoluene	ND	0.020		ND	0.098			1	
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1	
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1	
Benzyl chloride	ND	0.100		ND	0.518			1	
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1	
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1	

Project Name: Lab Number: **BATCH CANISTER CERTIFICATION** L2306405

Project Number: CANISTER QC BAT **Report Date:** 03/06/23

Air Canister Certification Results

Lab ID: L2306405-06

Date Collected: 02/07/23 11:00 Client ID: **CAN 546 SHELF 22** Date Received: 02/07/23

Sample Location: Field Prep: Not Specified

		ppbV			ug/m3	_	Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	96		60-140
bromochloromethane	98		60-140
chlorobenzene-d5	101		60-140

Lab Number: L2309101

Report Date: 03/06/23

Sample Receipt and Container Information

Were project specific reporting limits specified?

JMA WIRELESS

Cooler Information

Project Name:

Cooler Custody Seal

NA Absent

Project Number: 059294.001

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рH	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2309101-01A	Canister - 2.7 Liter	NA	NA			Υ	Absent		TO15-LL(30),TO15-SIM(30)
L2309101-02A	Canister - 2.7 Liter	NA	NA			Υ	Absent		TO15-LL(30)
L2309101-03A	Canister - 2.7 Liter	NA	NA			Υ	Absent		TO15-LL(30),TO15-SIM(30)
L2309101-04A	Canister - 2.7 Liter	NA	NA			Υ	Absent		TO15-LL(30)
L2309101-05A	Canister - 2.7 Liter	NA	NA			Υ	Absent		TO15-SIM(30),TO15-LL(30)
L2309101-06A	Canister - 2.7 Liter	NA	NA			Υ	Absent		TO15-LL(30)
L2309101-07A	Canister - 2.7 Liter	NA	NA			Υ	Absent		TO15-LL(30),TO15-SIM(30)
L2309101-08A	Canister - 2.7 Liter	NA	NA			Υ	Absent		TO15-LL(30)
L2309101-09A	Canister - 2.7 Liter	NA	NA			Υ	Absent		TO15-LL(30),TO15-SIM(30)
L2309101-10A	Canister - 2.7 Liter	NA	NA			Υ	Absent		TO15-LL(30)
L2309101-11A	Canister - 2.7 Liter	NA	NA			Υ	Absent		TO15-LL(30),TO15-SIM(30)
L2309101-12A	Canister - 2.7 Liter	NA	NA			Υ	Absent		TO15-SIM(30),TO15-LL(30)
L2309101-13A	Canister - 2.7 Liter	NA	NA			Υ	Absent		TO15-LL(30),TO15-SIM(30)
L2309101-14A	Canister - 2.7 Liter	NA	NA			Υ	Absent		TO15-LL(30),TO15-SIM(30)

Project Name:JMA WIRELESSLab Number:L2309101Project Number:059294.001Report Date:03/06/23

GLOSSARY

Acronyms

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

 NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

SRM

Project Name:JMA WIRELESSLab Number:L2309101Project Number:059294.001Report Date:03/06/23

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- ${\bf J} \qquad \hbox{-Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs)}.$
- Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.

Report Format: Data Usability Report

Project Name:JMA WIRELESSLab Number:L2309101Project Number:059294.001Report Date:03/06/23

Data Qualifiers

- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: Data Usability Report

Project Name:JMA WIRELESSLab Number:L2309101Project Number:059294.001Report Date:03/06/23

REFERENCES

Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 19

Published Date: 4/2/2021 1:14:23 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

APPENDIX D

Sub-Slab Depressurization System Inspection Checklist

SUB-SLAB DEPRESSURIZATION SYSTEM CHECKLIST

Report No. \$505-01 Date: 3-30-2023 Time: 1400

	ĺ									
Project Name: Former Coyne Textile	Pro	ject L	ocatio	on: 1	40 Co	rtland Av	enue, Syracu	se, New Yorl	K	
Inspector(s): Kann Ehmann					Proje	ect No.	059294	1.001		
SamanthaMiller						ther:				
Type of Inspection: ☐ Routine ☐ Post S	evere	Con	dition		Tem	p.: Hi	37 FLOW	22F		
FAMBLOWER SYSTEM INSPECTION	ON							edia s		
ITEM/CONDITION		F	AN IE	כ		O BARAS	THE			
(Check all that are true)	F-1	F-2	F-3	F-4	F-5	COMME	=N19			
The blower unit is operational,	Ø	Ø	Ø	Ø	Ø					
There is no excessive noise emanating from the blower.	Ø	Ø	Ø	Ø						
There is no excessive vibration emanating from the blower.	Ø	a	Q	ব্ৰ	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\					
The blower unit is not excessively hot to the touch.	卤	Q	Q	র্						
The blower unit housing is clean and in good condition.	Q	Q	D	d	囚		***************************************			
The fan is mounted securely.	Q	Ø	Image: second content of the s	A	Q					
Roof stands positioned correctly and in good condition.	\square	Ø	Q	囚	Ø					
Coupling connections are secure.	Q	Q	図	Ø	K					
Seals around exhaust stack/conduit properly sealed.	Q	Ø	Ø	Ø	1					
Condensate lines are functioning properly, if present.						not ay	pplicable			
Screen cap on exhaust point present and free of obstructions.										
Fan ID labels are present and legible.	D	Ø	Ø	Ø						
No new openings or intakes installed with 10-feet of the exhaust discharge point.		Ø	Ø	X	Q					
Blower runs when switch in "on" position.	N V	\square	Ø	Ø						
Blower stops when switch in "off" position.	Ø	Ø	Ø	Ø	囡					
PIPING SYSTEM INSPECTION										
ITEM/CONDITION		F	ANIC)						
(Check all that are true)	F-1			F-4	F-5	COMME	ENTS		ļ	
All visible above-grade piping in good condition and free of cracks or other damage. No "hissing" indicating leakage.	Ø	Q	Q	ত্র	Q					
No gurgling or indication system is drawing water or excessive moisture.	Q	₫	Ø	Q	Ø					
All visible pipe supports are undamaged and functional (6-feet o.c. horizontal, 8-feet o.c. vertically).	ত	₫	ব	Ø	প্র					
Suction points are completely sealed at the	Ø	Ø		囚	Ø					

There are no significant building use

changes (e.g. manufacturing space

converted to office space).

SUB-SLAB DEPRESSURIZATION SYSTEM CHECKLIST

SS05-01 Report No. Date: 3.30.2023 Time: 1400 All labels present and legible. ELECTRICAL/ALARM INSPECTION **FANID** ITEM/CONDITION COMMENTS (Check all that are true) F-3 F-1 F-2 F-4 F-5 No observable electrical component \square M থি \square damage. All electrical disconnects/switches tested M প M \square \square and functional. 乊 All electrical connections appear secure. \square \square \square \square ৰ্ \square Ø Junction boxes are closed. \square Conduits properly supported and have no পি Q M V N visible evidence of damage. Not applicable Electric sub-meters, if present, are in good П \Box condition. SSDS breakers are identified in electrical M M থ اکا M panel. Audible alarm sounds when blower power \square \square \square V \square is disconnected, and pressure falls below alarm set point. Audible alarm and associated tubing in Ø ഠ ៧ M M good condition. Pressure gauge and associated tubing in M \square \square প good condition. All stacks, alarms and pressure gauges are M M M Q Ø properly labelled, and labels are legible. PRESSURE MONITORING PORT INSPECTION (14 TOTAL) ITEM/CONDITION TRUE FALSE N/A **COMMENTS** PMP-9/PMP-10 New COVES. PVC receptacles with covers present and Facility Mantenunce Momed undamaged. PVC risers undamaged. Tubing inside receptacle undamaged. Screw on caps installed/re-installed following testing. PVC conduit sealed properly at slab. Receptacles properly labelled and labels are legible. CONCRETE SLAB & BUILDING USE INSPECTION TRUE FALSE ITEM/CONDITION COMMENTS N/A All visible pipe penetrations appear \square \Box properly sealed (e.g. no air leak noise).

 \square

SUB-SLAB DEPRESSURIZATION SYSTEM CHECKLIST

SYSTEM CHECKLIST Report No. 5505-01 Date: 3 30 2023 Time: 1400 There are no changes to the floor 区 covering materials. CONCRETE SLAB & BUILDING USE INSPECTION (CONTINUED) TRUE FALSE ITEM/CONDITION N/A **COMMENTS** There are no new significant, observable floor cracks or penetrations that may X breach the floor tightness and effectiveness of the system. There are no additions or significant modifications to the building that 凶 necessitate additional investigation and/or mitigation. SYSTEM PRESSURE INSPECTION FAN PRESSURES **BASELINE PRESSURE CURRENT PRESSURE** (INCHES H₂0) **FANID** (INCHES H₂0) F-1 1.6 1.5 F-2 1.5 F-3 1.4 F-4 F-5 1.35 PRESSURE MONITORING PORT PRESSURES **CURRENT PRESSURE BASELINE PRESSURE** (INCHES H₂0) PRESSURE MONITORING PORT ID (INCHES H₂0) PMP-01 PMP-02 PMP-03 PMP-04 PMP-05 PMP-06 PMP-07 PMP-08 PMP-09 PMP-10 PMP-11 PMP-12 **PMP-13**

PMP-14

SUB-SLAB DEPRESSURIZATION SYSTEM CHECKLIST

 Report No.
 SSDS-01

 Date:
 3:30:23
 Time:
 1400

ADDITIONAL MOTEO/OODDECTIV	T ACTIONS	ing the control of the control of the control of the state of the stat
ADDITIONAL NOTES/CORRECTIVE	E ACTIONS	
÷		
Cianatura		Total Inspection Times
Signature:		Total Inspection Time:

APPENDIX E

Site-Wide Inspection Checklist

INSPECTION CHECKLIST

Report No. 001 Date: 03/30/2023 Time: 1530 Site Name: Former Coyne Textile NYSDEC Site No. C734144 140 Cortland Avenue Project No. 059294 Address: Inspector(s): S. Miller Weather: Overcast K. Ehmann Temp.: Hi 37 Low 25 Type of Inspection: ☐ Routine ☐ Post Severe Condition SOIL COVER SYSTEM INSPECTION ITEM/CONDITION TRUE FALSE N/A **COMMENTS** There is no evidence of erosion of cover \boxtimes soils/materials from Site surface. There is no evidence of depressions in \boxtimes \Box \Box cover materials. There is no evidence of significant cracks \boxtimes П П in cover materials. There is no evidence of exposed or \boxtimes damaged demarcation barrier. There is no evidence of vapors or odors \boxtimes \Box emanating from the Site. **VEGETATIVE INSPECTION** ITEM/CONDITION TRUE FALSE N/A **COMMENTS** Vegetation is well established over \boxtimes greenspace areas. There is no evidence of stressed \bowtie П vegetation. There is no evidence of bare or thin \bowtie \Box vegetative cover. There is no evidence of overgrowth or \bowtie \Box areas that need to be mowed. There is no evidence of recent areas of \Box excavation or disturbed areas. **VECTOR INSPECTION** ITEM/CONDITION TRUE FALSE N/A **COMMENTS** No vectors or vector activity (e.g. tracks, \boxtimes droppings, dens, etc.) were observed. There was no evidence of damage to the \boxtimes \Box soil cover system due to vector activity. **DRAINAGE SYSTEM INSPECTION** ITEM/CONDITION TRUE FALSE N/A **COMMENTS** There is no evidence of erosion around \boxtimes drainage structures. There is no evidence of settlement of \boxtimes \Box П drainage structures. Manhole covers present & in good \bowtie \Box There is no evidence of siltation, debris, or \boxtimes other restrictions in the manholes.

INSPECTION CHECKLIST

MONITORIN					
<u>WIONI I OKIN</u>	IG WELL INSPECTION				
TEM/CONDIT	ΓΙΟΝ	TRUE	FALSE	N/A	COMMENTS
The monitoring condition.	g wells are in generally good				
Well caps are	installed on the wells.	\boxtimes			The riser needs to be cut to be even so that the J-Plug sits properly
ocks present	and secured.			\boxtimes	
SITE ACCES	SSIBILITY INSPECTION				
TEM/CONDIT	ΓΙΟΝ	TRUE	FALSE	N/A	COMMENTS
Site accessible	e and passable.	\boxtimes			
NSTITUTION	AL CONTROL INSPECTION				
TEM/CONDIT		TRUE	FALSE	N/A	COMMENTS
	vidence of groundwater Nor use on Site.	\boxtimes			
DDITIONAL	NOTES & OBSERVATIONS				
Signature:	<i>V.</i>		<u>j</u> /I Â	- U	∴ Total Inspection Time: 30 min

APPENDIX F

Groundwater Monitoring Logs

Monitoring Well Sampling Development Log						Sample/	Well ID: M\	<i>N</i> _7D			
				Develo	pment Lo	g					
	Number: 0592							Date: Mai			
	acility Name ocation/Sam	-		land Ava (Suracusa NV	,		By: S. Miller			
	Sampling Me						Weather/Temp: Overcast/37°F Water Level Measurement Device:				
P S	Jamping ivie	tilou. F =	ruigilig ivi	etilou 3 – .	Janipinig ivit	etilou		er Level Me			
	ubmersible Pu	ump Mod	del: <u>Monso</u>	on				rface Probe		el:	
	eristaltic Pum	-	del:								
□ □ De	edicated Pum		del:				Water Q	uality Instru	ımentation	:	
	licroPurge Pu	=		☐ Dedic	ated 🗌 Dis	posable	Instrun	nent: <u>Horib</u>	<u>a</u>		
Ва		Тур	e:					nent:	_		
	ther:							nent:		\ 0.44	
	ell Unlocked:			Time Well L	.ocked: <u>1015</u>	<u>)</u>	Depth to	Static Wat	er Level (ft.): <u>8.14</u>	
-	ace Reading: 1-mount casin						Pump In	take Depth	(ft.): <u>18.5</u>		
	te (mL/min):		up casing				Controlle	er ID No.: <u>F</u>	N02116		
				_	dition: A = A	Acceptable		•			
A U				V U				A U			
	Vell visibility	-4:	_	Surfa		i & i		☐ Tota	•		
	Vell Identifica Vell lock/secu				ce casing cor sion of surfa			□ Silta□ Rech			
	Vell cap & gri	•			Casing/Scre	_		Othe			
		bbe: bin9		3 🔲e.	Field An		• 1				
	Depth to	000/51					_	Other	Other	Other	Other
Time	Water	ORP/Eh	рН	Cond.	Turbidity	D.O.	Temp.	Field	Field	Field	Field
	(ft.)	(mV)		(mS/cm)	(NTU)	(mg/L)	(°C)	Data:	Data:	Data:	Data:
0940	8.25	-57	8.27	1.9	658	1.04	11.01				
0945	8.27	-68	8.30	1.89	530	0.9	10.72				
0946	8.27	-70	8.27	1.87	466	0.82	10.84				
0949	8.29	-76	8.35	1.87	408	0.75	10.92				
0955	8.23	-73	8.22	1.87	60	0.71	10.74				
			<u> </u>								
	ge Time: <u>093</u> ge Time: <u>095</u>		al Vol. Purg al Purge Tir		Odor: <u> </u>	<u>n/a</u> mild cloud	_	e Water Dis n Observed	-	nod: <u>drum</u>	
Sampling	g Information	 1:			Sampli	ing Time:	1000	Laborator	y: <u>Alpha Ar</u>	nalytical	
-	Analyses: <u>826</u>			Metals,	No. Bo	ttles: <u>14 s</u>	sample,				
	Alkalinity, Dis					<u>, 14 MSD</u>					
Commen	its/Additiona	l Observatio	ons: Grippe	er plug not s	secure, riser	needs to b	oe cut ever	nly			
Signature	e(s) of Sampli	ing Team:	- Kar	n Sm	alman .	0	the 1	Miller	,		

U

		_									
	CH	A	M	•	Well Sam pment Lo		Sample/	Well ID: M	W-6R		
Project N	lumber: 0592	294 001		Develo	pinent Lo	5	Sampling	g Date: Mai	rch 30, 202	3	
	acility Name		ne Textile					By: S. Miller			
	ocation/Sam	-		land Ave., S	Syracuse, NY	,		/Temp: O			
Purging/S	Sampling Me	thod: P =	Purging M	ethod S =	Sampling Me	ethod	Water Le	Water Level Measurement Device:			
P S								er Level Me			
	ıbmersible Pı	•	del: <u>Monso</u>	<u>on</u>			☐ Inte	rface Probe	e Mode	el:	
	eristaltic Pum edicated Pum		del: del:				Matair O	Water Quality Instrumentation:			
	icroPurge Pu				ated 🔲 Dis	nosahle		Water Quality Instrumentation: Instrument: Horiba			
□ □ Ba	•	•	e:	_ Deale	atea 🗆 Dis	розавіс		nent: <u>Hone</u>	 '		
☐ ☐ Ot		,,					Instrun	· · · · · · · · · · · · · · · · · · ·	_		
Time We	ne Well Unlocked: <u>1215</u> Time Well Locked: <u>1315</u>						Depth to	Static Wat	er Level (ft.	.): <u>7.67</u>	
Headspace Reading: 0.0 ppm N/A							Pump In	take Depth	(ft)· 16 5		
☐ Flush-mount casing ☐ Stickup casing Flow Rate (mL/min):											
FIOW Rai	te (mt/min):			!! 6	11.1			er ID No.: <u>F/</u>	<u>402116</u>		
A U				i g Well Con . ∪	dition: A = A	Acceptable		acceptable A U			
_	Vell visibility			. ∪ ☑ □ Surfa	ce seal			☐ Tota	l depth		
	Vell Identifica	ation	_		ce casing cor	ndition			•		
 ✓ Well lock/security ✓ Corrosion of surface casing 							□ Rech				
$\square \boxtimes W$	Vell cap & gri	pper plug		☐ Inner	Casing/Scre		:у	☐ ☐ Othe	er:		
	I 5	T T		1	Field An	alysis:		0.1	0.1	0.1	Lou
Time	Depth to Water	ORP/Eh	nЦ	Cond.	Turbidity	D.O.	Temp.	Other Field	Other Field	Other Field	Other Field
Tille	(ft.)	(mV)	рН	(mS/cm)	(NTU)	(mg/L)	(°C)	Data:	Data:	Data:	Data:
1226	7.78	-36	8.42	0.756	>1000	9.66	10.99	Bata.	Data.	Butu.	- Batai
1229	7.76	-47	8.49	0.931	>1000	9.47	10.84				
1232	7.83	-61	8.57	1.13	>1000	8.91	11.2				
1236	7.91	-74	8.52	1.38	>1000	8.37	11.53				
1247	7.83	-102	8.64	1.7	790	0.73	11.26				
1252	7.86	-100	8.61	1.71	320	0.42	11.54				
1256	7.85	-102	8.60	1.75	67.7	0.39	11.53				
											†
Start Pur	ge Time: <u>122</u>	<u>3</u> Tota	al Vol. Purg	ed: <u>8</u> gal.	Odor:	N/A	Purg	e Water Dis	sposal Metl	hod: <u>drum</u>	
End Purg	e Time: <u>130</u>	<u>0</u> Tota	al Purge Tir	ne: <u>37</u> min	Color: <u>c</u>	cloudy	Shee	n Observed	l?: <u>none</u>		
	g Information					ing Time:		Laborator	y: <u>Alpha Ar</u>	<u>nalytical</u>	
	nalyses: <u>826</u>			Metals,		ottles: <u>14 s</u>	sample,				
	Alkalinity, Dis ts/Additiona			r nlug not :	14 Dur		ne cut over	Ny			
commen	ts/AuditiOffd	ı Observatil	אווט פווע.	n plug 1100	secure, riser	neeus to I	se cat ever	ıı y			
Signatura	e(s) of Sampli	ing Team:	-1/.	5/		0	a ()	(Y) . 1 l n 1			
Signature	عري در عمالالها	ing realli.	Mary	Mma	m g	Samon	tha HI	Miller			_
				_			U				

	CH	4	Mo	Monitoring Well Sampling/ Development Log				Well ID: M\	N-5R		
Project N	lumber: 0592	294.001			-		Sampling	Date: Mar	ch 30, 202	3	
Project/F	acility Name	: JMA/Coyı	ne Textile				Logged E	y: S. Miller	/K. Ehman	n	
	ocation/Sam						Weather	/Temp: O	vercast/37	°F	
P S ⊠ ⊠ Su	Sampling Me Ibmersible Pueristaltic Pum	ump Mod	Purging Model: Monsodel: M		Sampling Me	ethod	Wat	Water Level Measurement Device: ☑ Water Level Meter Model: Solinst ☐ Interface Probe Model:			
□ □ De	edicated Pum icroPurge Pu ailer	np Mod mp Mod	del:	☐ Dedic	ated 🗌 Dis	posable	Instrun	uality Instrunent: <u>Horib</u> nent:	<u>a</u>	:	
	ell Unlocked:			Time Well L	ocked: <u>1415</u>	<u>.</u>	Depth to	Static Wate	er Level (ft.	.): <u>8.24</u>	
	ace Reading: -mount casir						Pump In	take Depth	(ft.): <u>19.5</u>		
Flow Ra	te (mL/min):						Controlle	er ID No.: <u>F</u>	<u> 102116</u>		
				_	dition: A = A	Acceptable					
A U					A U Tota Silta Rech	tion level narge Rate					
					Field An	alysis:					
Time	Depth to Water (ft.)	ORP/Eh (mV)	рН	Cond Turbidity D.O.			Temp. (°C)	Other Field Data:	Other Field Data:	Other Field Data:	Other Field Data:
1345	8.72	-92	8.55	1.68	>1000	0.64	11.13				
1348	8.85	-103	8.59	1.67	>1000	0.54	11.60				
1351	8.72	-107	8.60	1.66	811	0.48	11.58				
1354	8.66	-110	8.6	1.66	780	0.43	11.56				
1359	8.65	-112	8.60	1.66	90	0.43	11.62				
1403	8.52	-106	8.44	1.66	89.7	0.38	11.66				
1406	8.52	-104	8.36	1.66	70	0.44	11.72				
	ge Time: <u>133</u> e Time: <u>140</u>		al Vol. Purg al Purge Tin		Odor: <u> </u> Color: <u>(</u>		_	e Water Dis n Observed	•	hod: <u>drum</u>	
Sampling Sample A	Information	n: 50, SO4, CL,	NO3, Tot.		Sampli	ing Time: 1 ottles: 14			y: <u>Alpha Ar</u>	nalytical_	
	<u>lkalinity, Dis</u> ts/Additiona			r plug not	secure, riser	needs to b	e cut ever	nly			
			11	01	^			_			
Signature	e(s) of Sampli	ing Team:	Karzy/	man	n San	nontha	AMi	ller			

Ü

APPENDIX G

Groundwater Samples Laboratory Analytical Report

ANALYTICAL REPORT

Lab Number: L2316812

Client: CHA Companies

One Park Place

300 South State St., Suite 600

Syracuse, NY 13202

ATTN: Samantha Miller Phone: (315) 471-3920

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Report Date: 04/13/23

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

 Lab Number:
 L2316812

 Report Date:
 04/13/23

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2316812-01	MW-7R-20230330	WATER	SYRACUSE, NY	03/30/23 10:00	03/30/23
L2316812-02	MW-6R-20230330	WATER	SYRACUSE, NY	03/30/23 13:00	03/30/23
L2316812-03	MW-5R-20230330	WATER	SYRACUSE, NY	03/30/23 14:10	03/30/23
L2316812-04	CHA-1-20230330	WATER	SYRACUSE, NY	03/30/23 12:00	03/30/23
L2316812-05	TRIP BLANK	WATER	SYRACUSE, NY	03/30/23 00:00	03/30/23

Project Name:FORMER COYNE TEXTILELab Number:L2316812Project Number:059294.001Report Date:04/13/23

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name: FORMER COYNE TEXTILE Lab Number: L2316812 04/13/23

Project Number: 059294.001 **Report Date:**

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

The analysis of Sulfide was subcontracted. A copy of the laboratory report is included as an addendum. Please note: This data is only available in PDF format and is not available on Data Merger.

Volatile Organics

The WG1763951-6/-7 MS/MSD recoveries, performed on L2316812-01, are outside the acceptance criteria for vinyl chloride (0%/0%) and cis-1,2-dichloroethene (0%/0%). The unacceptable percent recoveries are attributed to the elevated concentrations of target compounds present in the native sample.

Dissolved Gases

L2316812-01 and -02: The sample was collected in pre-preserved vials; however, the pH of the sample was determined to be greater than two.

The WG1763194-4/-5 MS/MSD recoveries, performed on L2316812-01, are outside the acceptance criteria for methane (0%/0%). The unacceptable percent recoveries are attributed to the elevated concentrations of target compounds present in the native sample.

Carbon Dioxide

The WG1763031-4/-5 MS/MSD recoveries, performed on L2316812-01, are outside the acceptance criteria for carbon dioxide (165%/188%); however, the associated LCS/LCSD recoveries are within overall method allowances. No further action was required.

Anions by Ion Chromatography

The WG1761478-3/-4 MS/MSD recoveries for chloride (67%/67%), performed on L2316812-01, do not apply because the sample concentration is greater than four times the spike amount added.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Date: 04/13/23 Title: Technical Director/Representative

600, Senstrom Kelly Stenstrom

ORGANICS

VOLATILES

03/30/23 10:00

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

SAMPLE RESULTS

Lab Number: L2316812

Report Date: 04/13/23

Lab ID: L2316812-01 Date Collected:

Client ID: Date Received: 03/30/23 MW-7R-20230330 Field Prep: Sample Location: Not Specified SYRACUSE, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 04/06/23 18:22

Analyst: MJV

1,1-Dichloroethane ND ug/l 2.5 0.70 1 Chloroform ND ug/l 2.5 0.70 1 Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 0.50 0.14 1 Dibromochloromethane ND ug/l 0.50 0.14 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethane ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichloroethane ND ug/l 2.5 0.70 1 Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.19 1 Bromodichloromethane ND ug/l 0.50 0.14 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,1-Dichloroethane	Volatile Organics by GC/MS - Westbe	orough Lab					
Chloroform ND ug/l 2.5 0.70 1 Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethane ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 trans-1,2-Dichloropropene ND ug/l 0.50	Methylene chloride	ND		ug/l	2.5	0.70	1
Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 0.50 0.18 1 Tetrachloroethane ND ug/l 2.5 0.70 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.19 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 <td>1,1-Dichloroethane</td> <td>ND</td> <td></td> <td>ug/l</td> <td>2.5</td> <td>0.70</td> <td>1</td>	1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
1,2-Dichloropropane ND Ug/l 1.0 0.14 1 1 1 1 1 1 1 1 1	Chloroform	ND		ug/l	2.5	0.70	1
Dibromochloromethane ND	Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,1,2-Trichloroethane	1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Tetrachloroethene ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 Trichloroethane ND ug/l 2.5 0.70 1 1,1-Prichloroethane ND ug/l 2.5 0.70 1 1,1-Trichloroethane ND ug/l 2.5 0.70 1 1,1-Trichloroethane ND ug/l 2.5 0.70 1 Eromodichloromethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.19 1 Eromodichloromethane ND ug/l 0.50 0.19 1 Eromodichloropropene ND ug/l 0.50 0.16 1 Cis-1,3-Dichloropropene ND ug/l 0.50 0.16 1 Cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Eromoform ND ug/l 0.50 0.14 1 Eromoform ND ug/l 0.50 0.17 1 Eromoform ND ug/l 0.50 0.17 1 Eromoform ND ug/l 0.50 0.16 1 Cis-1,3-Dichloroethane ND ug/l 0.50 0.17 1 Elhylbenzene ND ug/l 0.50 0.16 1 Chloromethane ND ug/l 0.50 0.70 1 Chloroethane 0.32 Ug/l 0.50 0.70 1 Chloroethane 0.32 Ug/l 0.50 0.70 1	Dibromochloromethane	ND		ug/l	0.50	0.15	1
ND	1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Trichlorofluoromethane	Tetrachloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichloroethane	Chlorobenzene	ND		ug/l	2.5	0.70	1
1,1,1-Trichloroethane	Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane ND ug/l 0.50 0.19 1 ttrans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene 0.43 J ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride 250 E ug/l 2.5 0.70 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene 3.7 ug/l 2.5 0.70<	1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene 0.43 J ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride 250 E ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene 3.7 ug/l 0.50 0.17 1 trans-1,2-Dichloroethene 2.5 ug/l 0.50	1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
ND	Bromodichloromethane	ND		ug/l	0.50	0.19	1
ND Ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND Ug/l 0.50 0.17 1 1 1 1 1 1 1 1 1	trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
1,1,2,2-Tetrachloroethane	cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Benzene	Bromoform	ND		ug/l	2.0	0.65	1
Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride 250 E ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 Chloroethane ND ug/l 2.5 0.70 1 Tirichloroethene 3.7 ug/l 0.50 0.17 1 Trichloroethene 0.32 J ug/l 0.50 0.18 1	1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride 250 E ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene 3.7 ug/l 0.50 0.17 1 trans-1,2-Dichloroethene 2.5 ug/l 2.5 0.70 1 Trichloroethene 0.32 J ug/l 0.50 0.18 1	Benzene	0.43	J	ug/l	0.50	0.16	1
Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride 250 E ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene 3.7 ug/l 0.50 0.17 1 trans-1,2-Dichloroethene 2.5 ug/l 2.5 0.70 1 Trichloroethene 0.32 J ug/l 0.50 0.18 1	Toluene	ND		ug/l	2.5	0.70	1
ND ug/l 2.5 0.70 1	Ethylbenzene	ND		ug/l	2.5	0.70	1
Vinyl chloride 250 E ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene 3.7 ug/l 0.50 0.17 1 trans-1,2-Dichloroethene 2.5 ug/l 2.5 0.70 1 Trichloroethene 0.32 J ug/l 0.50 0.18 1	Chloromethane	ND		ug/l	2.5	0.70	1
Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene 3.7 ug/l 0.50 0.17 1 trans-1,2-Dichloroethene 2.5 ug/l 2.5 0.70 1 Trichloroethene 0.32 J ug/l 0.50 0.18 1	Bromomethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene 3.7 ug/l 0.50 0.17 1 trans-1,2-Dichloroethene 2.5 ug/l 2.5 0.70 1 Trichloroethene 0.32 J ug/l 0.50 0.18 1	Vinyl chloride	250	E	ug/l	1.0	0.07	1
trans-1,2-Dichloroethene 2.5 ug/l 2.5 0.70 1 Trichloroethene 0.32 J ug/l 0.50 0.18 1	Chloroethane	ND		ug/l	2.5	0.70	1
Trichloroethene 0.32 J ug/l 0.50 0.18 1	1,1-Dichloroethene	3.7		ug/l	0.50	0.17	1
	trans-1,2-Dichloroethene	2.5		ug/l	2.5	0.70	1
1,2-Dichlorobenzene ND ug/l 2.5 0.70 1	Trichloroethene	0.32	J	ug/l	0.50	0.18	1
	1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: FORMER COYNE TEXTILE Lab Number: L2316812

Project Number: 059294.001 **Report Date:** 04/13/23

SAMPLE RESULTS

Lab ID: L2316812-01 Date Collected: 03/30/23 10:00

Client ID: MW-7R-20230330 Date Received: 03/30/23 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	jh Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	930	Е	ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	105	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	101	70-130	
Dibromofluoromethane	104	70-130	

Project Name: FORMER COYNE TEXTILE **Lab Number:** L2316812

Project Number: 059294.001 **Report Date:** 04/13/23

SAMPLE RESULTS

Lab ID: L2316812-01 Date Collected: 03/30/23 10:00

Client ID: MW-7R-20230330 Date Received: 03/30/23
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 117,-

Analytical Date: 04/05/23 17:03

Analyst: BJB

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Dissolved Gases by GC - Mansfield Lab							
Methane	4910		ug/l	2.00	2.00	1	Α
Ethene	15.8		ug/l	0.500	0.500	1	Α
Ethane	9.77		ug/l	0.500	0.500	1	Α

Project Name: FORMER COYNE TEXTILE **Lab Number:** L2316812

Project Number: 059294.001 **Report Date:** 04/13/23

SAMPLE RESULTS

Lab ID: L2316812-01 D Date Collected: 03/30/23 10:00

Client ID: MW-7R-20230330 Date Received: 03/30/23
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 04/07/23 15:44

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	RL MDL Dilution Fa		
Volatile Organics by GC/MS - We	estborough Lab						
Vinyl chloride	180		ug/l	10	0.71	10	
cis-1,2-Dichloroethene	670		ug/l	25	7.0	10	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	106	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	103	70-130	

Project Name: FORMER COYNE TEXTILE **Lab Number:** L2316812

Project Number: 059294.001 **Report Date:** 04/13/23

SAMPLE RESULTS

Lab ID: L2316812-01 D Date Collected: 03/30/23 10:00

Client ID: MW-7R-20230330 Date Received: 03/30/23 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 117,-

Analytical Date: 04/05/23 10:13

Analyst: BJB

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Dissolved Gases by GC - Mansfield Lab						
Carbon Dioxide	61.8		mg/l	6.00	6.00	2

03/30/23 13:00

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

SAMPLE RESULTS

L2316812

Lab Number:

Date Collected:

Report Date: 04/13/23

Lab ID: L2316812-02

Client ID: MW-6R-20230330 Sample Location: SYRACUSE, NY

Date Received: 03/30/23 Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 04/06/23 18:43

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	n Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	9.7		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	0.36	J	ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	250	E	ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	0.46	J	ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	2.7		ug/l	2.5	0.70	1
Trichloroethene	13		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: FORMER COYNE TEXTILE Lab Number: L2316812

Project Number: 059294.001 **Report Date:** 04/13/23

SAMPLE RESULTS

Lab ID: L2316812-02 Date Collected: 03/30/23 13:00

Client ID: MW-6R-20230330 Date Received: 03/30/23 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	130		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	107	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	102	70-130	
Dibromofluoromethane	106	70-130	

Project Name: Lab Number: FORMER COYNE TEXTILE L2316812

Project Number: Report Date: 059294.001 04/13/23

SAMPLE RESULTS

Lab ID: L2316812-02 Date Collected: 03/30/23 13:00

Client ID: Date Received: 03/30/23 MW-6R-20230330 Field Prep: Sample Location: Not Specified SYRACUSE, NY

Sample Depth:

Matrix: Water Analytical Method: 117,-

Analytical Date: 04/05/23 19:44

Analyst: BJB

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Dissolved Gases by GC - Mansfield Lab							
Methane	6850		ug/l	2.00	2.00	1	Α
Ethene	185		ug/l	0.500	0.500	1	А
Ethane	221		ug/l	0.500	0.500	1	А

Project Name: FORMER COYNE TEXTILE Lab Number: L2316812

Project Number: 059294.001 **Report Date:** 04/13/23

SAMPLE RESULTS

Lab ID: L2316812-02 D Date Collected: 03/30/23 13:00

Client ID: MW-6R-20230330 Date Received: 03/30/23
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 04/07/23 14:26

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough L	.ab					
Vinyl chloride	190		ug/l	5.0	0.36	5

Surrogate	% Recovery	Qualifier	Acceptance Criteria
1,2-Dichloroethane-d4	106		70-130
Toluene-d8	101		70-130
4-Bromofluorobenzene	98		70-130
Dibromofluoromethane	104		70-130

Project Name: FORMER COYNE TEXTILE **Lab Number:** L2316812

Project Number: 059294.001 **Report Date:** 04/13/23

SAMPLE RESULTS

Lab ID: L2316812-02 D Date Collected: 03/30/23 13:00

Client ID: MW-6R-20230330 Date Received: 03/30/23
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 117,-

Analytical Date: 04/05/23 10:30

Analyst: BJB

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Dissolved Gases by GC - Mansfield Lab						
Carbon Dioxide	65.4		mg/l	6.00	6.00	2

03/30/23 14:10

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

SAMPLE RESULTS

Lab Number: L2316812

Report Date: 04/13/23

Lab ID: L2316812-03 Date Collected:

Client ID: Date Received: 03/30/23 MW-5R-20230330 Field Prep: Sample Location: Not Specified SYRACUSE, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 04/06/23 19:04

Analyst: MJV

			Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	8.2		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	0.31	J	ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	280	E	ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	5.8		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: FORMER COYNE TEXTILE Lab Number: L2316812

Project Number: 059294.001 **Report Date:** 04/13/23

SAMPLE RESULTS

Lab ID: L2316812-03 Date Collected: 03/30/23 14:10

Client ID: MW-5R-20230330 Date Received: 03/30/23 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbord	ough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	34		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	e
1,2-Dichloroethane-d4	105	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	108	70-130	
Dibromofluoromethane	106	70-130	

Project Name: Lab Number: FORMER COYNE TEXTILE L2316812

Project Number: Report Date: 059294.001 04/13/23

SAMPLE RESULTS

Lab ID: L2316812-03 Date Collected: 03/30/23 14:10

Client ID: Date Received: 03/30/23 MW-5R-20230330 Field Prep: Sample Location: Not Specified SYRACUSE, NY

Sample Depth:

Matrix: Water Analytical Method: 117,-

Analytical Date: 04/05/23 20:07

Analyst: BJB

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Dissolved Gases by GC - Mansfield Lab							
Methane	1390		ug/l	2.00	2.00	1	Α
Ethene	30.4		ug/l	0.500	0.500	1	Α
Ethane	55.0		ug/l	0.500	0.500	1	А

Project Name: FORMER COYNE TEXTILE Lab Number: L2316812

Project Number: 059294.001 **Report Date:** 04/13/23

SAMPLE RESULTS

Lab ID: L2316812-03 D Date Collected: 03/30/23 14:10

Client ID: MW-5R-20230330 Date Received: 03/30/23 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 04/07/23 14:52

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westborough Lab							
Vinyl chloride	220		ug/l	10	0.71	10	
					A		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	107		70-130	
Toluene-d8	101		70-130	
4-Bromofluorobenzene	97		70-130	
Dibromofluoromethane	104		70-130	

Project Name: Lab Number: FORMER COYNE TEXTILE L2316812

Project Number: Report Date: 059294.001 04/13/23

SAMPLE RESULTS

Lab ID: D Date Collected: 03/30/23 14:10 L2316812-03

Client ID: Date Received: 03/30/23 MW-5R-20230330 Field Prep: Sample Location: Not Specified SYRACUSE, NY

Sample Depth:

Matrix: Water Analytical Method: 117,-

Analytical Date: 04/05/23 10:47

Analyst: BJB

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Dissolved Gases by GC - Mansfield Lab						
Carbon Dioxide	41.2		mg/l	6.00	6.00	2

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

SAMPLE RESULTS

Lab Number: L2316812

Report Date: 04/13/23

Lab ID: L2316812-04 Date Collected: 03/30/23 12:00

Client ID: Date Received: 03/30/23 CHA-1-20230330 Field Prep: Sample Location: Not Specified SYRACUSE, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 04/06/23 19:25

Analyst: MJV

					MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	10		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	0.37	J	ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	250	Е	ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	0.52		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	2.8		ug/l	2.5	0.70	1
Trichloroethene	14		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: FORMER COYNE TEXTILE Lab Number: L2316812

Project Number: 059294.001 **Report Date:** 04/13/23

SAMPLE RESULTS

Lab ID: L2316812-04 Date Collected: 03/30/23 12:00

Client ID: CHA-1-20230330 Date Received: 03/30/23 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	140		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	106	70-130	
Dibromofluoromethane	107	70-130	

Project Name: FORMER COYNE TEXTILE Lab Number: L2316812

Project Number: 059294.001 **Report Date:** 04/13/23

SAMPLE RESULTS

Lab ID: L2316812-04 Date Collected: 03/30/23 12:00

Client ID: CHA-1-20230330 Date Received: 03/30/23
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 117,-

Analytical Date: 04/05/23 20:30

Analyst: BJB

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Dissolved Gases by GC - Mansfield Lab							
Methane	6560		ug/l	2.00	2.00	1	Α
Ethene	178		ug/l	0.500	0.500	1	Α
Ethane	214		ug/l	0.500	0.500	1	А

Project Name: FORMER COYNE TEXTILE Lab Number: L2316812

Project Number: 059294.001 **Report Date:** 04/13/23

SAMPLE RESULTS

Lab ID: L2316812-04 D Date Collected: 03/30/23 12:00

Client ID: CHA-1-20230330 Date Received: 03/30/23
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 04/07/23 15:18

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westborough Lab							
Vinyl chloride	200		ug/l	5.0	0.36	5	

Surrogate	% Recovery	Qualifier	Acceptance Criteria
- Surrogate	% Recovery	Quaimer	Criteria
1,2-Dichloroethane-d4	107		70-130
Toluene-d8	100		70-130
4-Bromofluorobenzene	97		70-130
Dibromofluoromethane	104		70-130

Project Name: FORMER COYNE TEXTILE Lab Number: L2316812

Project Number: 059294.001 **Report Date:** 04/13/23

SAMPLE RESULTS

Lab ID: L2316812-04 D Date Collected: 03/30/23 12:00

Client ID: CHA-1-20230330 Date Received: 03/30/23
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 117,-

Analytical Date: 04/05/23 11:05

Analyst: BJB

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Dissolved Gases by GC - Mansfield Lab						
Carbon Dioxide	62.4		mg/l	6.00	6.00	2

L2316812

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

SAMPLE RESULTS

Lab Number:

Report Date: 04/13/23

Lab ID: L2316812-05 Date Collected: 03/30/23 00:00

Client ID: Date Received: 03/30/23 TRIP BLANK Field Prep: Sample Location: Not Specified SYRACUSE, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 04/04/23 13:07

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: FORMER COYNE TEXTILE Lab Number: L2316812

Project Number: 059294.001 **Report Date:** 04/13/23

SAMPLE RESULTS

Lab ID: L2316812-05 Date Collected: 03/30/23 00:00

Client ID: TRIP BLANK Date Received: 03/30/23
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	gh Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	108	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	99	70-130	
Dibromofluoromethane	102	70-130	

Project Number: 059294.001 **Report Date:** 04/13/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 04/04/23 09:39

Analyst: PID

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s): 0	5 Batch:	WG1762920-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Number: 059294.001 **Report Date:** 04/13/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 04/04/23 09:39

Analyst: PID

Parameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - Wes	stborough Lab	for sample(s): 05	Batch:	WG1762920-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
1,4-Dioxane	ND	ug/l	250	61.
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

Project Number: 059294.001 **Report Date:** 04/13/23

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 04/04/23 09:39

Analyst: PID

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 05 Batch: WG1762920-5

		Acceptance		
Surrogate	%Recovery 0	Qualifier Criteria		
1,2-Dichloroethane-d4	101	70-130		
Toluene-d8	102	70-130		
4-Bromofluorobenzene	100	70-130		
Dibromofluoromethane	99	70-130		

Project Name: FORMER COYNE TEXTILE **Lab Number:** L2316812

Project Number: 059294.001 **Report Date:** 04/13/23

Method Blank Analysis Batch Quality Control

Analytical Method: 117,-

Analytical Date: 04/05/23 09:31

Analyst: BJB

Parameter	Result	Qualifier	Units		RL	MDL
Dissolved Gases by GC - Mansfield	Lab for san	nple(s): 0°	1-04	Batch:	WG176303	1-3
Carbon Dioxide	ND		mg/l		3.00	3.00

Project Number: 059294.001 **Report Date:** 04/13/23

Method Blank Analysis Batch Quality Control

Analytical Method: 117,-

Analytical Date: 04/05/23 16:40

Analyst: BJB

Parameter	Result	Qualifier	Units	RL	MDL	
Dissolved Gases by GC - Mansfield	l Lab for san	nple(s): 0°	I-04 E	Batch: WG176319	94-3	
Methane	ND		ug/l	2.00	2.00	А
Ethene	ND		ug/l	0.500	0.500	Α
Ethane	ND		ug/l	0.500	0.500	Α

Project Number: 059294.001 **Report Date:** 04/13/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 04/06/23 18:01

Analyst: TMS

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-04 Batch:	WG1763951-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Number: 059294.001 **Report Date:** 04/13/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 04/06/23 18:01

Analyst: TMS

Parameter	Result	Qualifier Units	RL	MDL
Volatile Organics by GC/MS - Wes	tborough Lab	for sample(s): 01-04	Batch:	WG1763951-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
1,4-Dioxane	ND	ug/l	250	61.
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

Project Number: 059294.001 **Report Date:** 04/13/23

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 04/06/23 18:01

Analyst: TMS

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01-04 Batch: WG1763951-5

		Acceptance
Surrogate	%Recovery Q	ualifier Criteria
1,2-Dichloroethane-d4	110	70-130
Toluene-d8	96	70-130
4-Bromofluorobenzene	102	70-130
Dibromofluoromethane	112	70-130

Project Number: 059294.001 **Report Date:** 04/13/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 04/07/23 10:57

Analyst: PID

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-04 Batch:	WG1765107-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Number: 059294.001 **Report Date:** 04/13/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 04/07/23 10:57

Analyst: PID

Parameter	Result	Qualifier Unit	s	RL	MDL
olatile Organics by GC/MS - W	Vestborough Lab	for sample(s):	01-04	Batch:	WG1765107-5
1,4-Dichlorobenzene	ND	ug	/I	2.5	0.70
Methyl tert butyl ether	ND	ug	/I	2.5	0.70
p/m-Xylene	ND	ug	/I	2.5	0.70
o-Xylene	ND	ug	/I	2.5	0.70
cis-1,2-Dichloroethene	ND	ug	/I	2.5	0.70
Styrene	ND	ug	/I	2.5	0.70
Dichlorodifluoromethane	ND	ug	/I	5.0	1.0
Acetone	ND	ug	/I	5.0	1.5
Carbon disulfide	ND	ug	/I	5.0	1.0
2-Butanone	ND	ug	/I	5.0	1.9
4-Methyl-2-pentanone	ND	ug	/I	5.0	1.0
2-Hexanone	ND	ug	/I	5.0	1.0
Bromochloromethane	ND	ug	/I	2.5	0.70
1,2-Dibromoethane	ND	ug	/I	2.0	0.65
1,2-Dibromo-3-chloropropane	ND	ug	/I	2.5	0.70
Isopropylbenzene	ND	ug	/I	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug	/I	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug	/I	2.5	0.70
Methyl Acetate	ND	ug	/I	2.0	0.23
Cyclohexane	ND	ug	/I	10	0.27
1,4-Dioxane	ND	ug	/I	250	61.
Freon-113	ND	ug	/I	2.5	0.70
Methyl cyclohexane	ND	ug	/I	10	0.40

Project Number: 059294.001 **Report Date:** 04/13/23

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 04/07/23 10:57

Analyst: PID

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01-04 Batch: WG1765107-5

	Acceptance					
Surrogate	%Recovery (Qualifier	Criteria			
1,2-Dichloroethane-d4	110		70-130			
Toluene-d8	101		70-130			
4-Bromofluorobenzene	99		70-130			
Dibromofluoromethane	104		70-130			

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number: L2316812

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 05	5 Batch: WG	1762920-3	WG1762920-4			
Methylene chloride	92		93		70-130	1	20	
1,1-Dichloroethane	98		98		70-130	0	20	
Chloroform	96		96		70-130	0	20	
Carbon tetrachloride	99		100		63-132	1	20	
1,2-Dichloropropane	96		97		70-130	1	20	
Dibromochloromethane	89		91		63-130	2	20	
1,1,2-Trichloroethane	92		94		70-130	2	20	
Tetrachloroethene	97		98		70-130	1	20	
Chlorobenzene	95		97		75-130	2	20	
Trichlorofluoromethane	110		110		62-150	0	20	
1,2-Dichloroethane	94		96		70-130	2	20	
1,1,1-Trichloroethane	97		97		67-130	0	20	
Bromodichloromethane	92		92		67-130	0	20	
trans-1,3-Dichloropropene	92		93		70-130	1	20	
cis-1,3-Dichloropropene	92		93		70-130	1	20	
Bromoform	85		89		54-136	5	20	
1,1,2,2-Tetrachloroethane	95		97		67-130	2	20	
Benzene	98		98		70-130	0	20	
Toluene	97		97		70-130	0	20	
Ethylbenzene	96		97		70-130	1	20	
Chloromethane	79		80		64-130	1	20	
Bromomethane	74		73		39-139	1	20	
Vinyl chloride	100		100		55-140	0	20	

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number: L2316812

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0	95 Batch: WG17	762920-3	WG1762920-4			
Chloroethane	110		110		55-138	0	20	
1,1-Dichloroethene	100		110		61-145	10	20	
trans-1,2-Dichloroethene	97		98		70-130	1	20	
Trichloroethene	94		95		70-130	1	20	
1,2-Dichlorobenzene	95		97		70-130	2	20	
1,3-Dichlorobenzene	95		97		70-130	2	20	
1,4-Dichlorobenzene	94		96		70-130	2	20	
Methyl tert butyl ether	91		93		63-130	2	20	
p/m-Xylene	95		95		70-130	0	20	
o-Xylene	95		95		70-130	0	20	
cis-1,2-Dichloroethene	96		97		70-130	1	20	
Styrene	95		95		70-130	0	20	
Dichlorodifluoromethane	94		93		36-147	1	20	
Acetone	89		90		58-148	1	20	
Carbon disulfide	100		100		51-130	0	20	
2-Butanone	83		84		63-138	1	20	
4-Methyl-2-pentanone	79		83		59-130	5	20	
2-Hexanone	80		82		57-130	2	20	
Bromochloromethane	96		96		70-130	0	20	
1,2-Dibromoethane	92		94		70-130	2	20	
1,2-Dibromo-3-chloropropane	83		83		41-144	0	20	
Isopropylbenzene	98		99		70-130	1	20	
1,2,3-Trichlorobenzene	92		94		70-130	2	20	

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number: L2316812

Dozomotov	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Parameter	/onecovery	Quai	70Necovery	Quai	Lillits	KPU	Quai	LIIIIII	
Volatile Organics by GC/MS - Westborough L	ab Associated s	sample(s): 05	Batch: WG	1762920-3	WG1762920-4				
1,2,4-Trichlorobenzene	93		94		70-130	1		20	
Methyl Acetate	88		90		70-130	2		20	
Cyclohexane	96		97		70-130	1		20	
1,4-Dioxane	90		88		56-162	2		20	
Freon-113	110		110		70-130	0		20	
Methyl cyclohexane	96		96		70-130	0		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	99	99	70-130
Toluene-d8	101	102	70-130
4-Bromofluorobenzene	101	101	70-130
Dibromofluoromethane	101	100	70-130

Project Name: FORMER COYNE TEXTILE

Lab Number:

L2316812

Project Number: 059294.001

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Dissolved Gases by GC - Mansfield Lab A	ssociated sample(s)	: 01-04	Batch: WG17630)31-2					
Carbon Dioxide	102		-		80-120	-			

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number:

L2316812

Report Date:

Parameter Dissolved Gases by GC - Mansfield Lab A	LCS %Recovery	Qual s): 01-04	LCSD %Recovery Batch: WG17631	Qual 94-2	%Recovery Limits	RPD	Qual	RPD Limits	Column
Methane	118				80-120			25	А
Ethene	111		-		80-120	-		25	Α
Ethane	108		-		80-120	-		25	Α

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number: L2316812

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westbord	ough Lab Associated	sample(s): 01-	-04 Batch: W	/G1763951-3	WG1763951-4		
Methylene chloride	100		100		70-130	0	20
1,1-Dichloroethane	100		100		70-130	0	20
Chloroform	100		100		70-130	0	20
Carbon tetrachloride	110		110		63-132	0	20
1,2-Dichloropropane	98		100		70-130	2	20
Dibromochloromethane	100		100		63-130	0	20
1,1,2-Trichloroethane	100		110		70-130	10	20
Tetrachloroethene	100		110		70-130	10	20
Chlorobenzene	100		100		75-130	0	20
Trichlorofluoromethane	110		110		62-150	0	20
1,2-Dichloroethane	100		100		70-130	0	20
1,1,1-Trichloroethane	100		110		67-130	10	20
Bromodichloromethane	100		100		67-130	0	20
trans-1,3-Dichloropropene	93		94		70-130	1	20
cis-1,3-Dichloropropene	96		98		70-130	2	20
Bromoform	98		100		54-136	2	20
1,1,2,2-Tetrachloroethane	100		100		67-130	0	20
Benzene	100		110		70-130	10	20
Toluene	100		100		70-130	0	20
Ethylbenzene	100		100		70-130	0	20
Chloromethane	100		100		64-130	0	20
Bromomethane	92		100		39-139	8	20
Vinyl chloride	110		110		55-140	0	20

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number: L2316812

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
platile Organics by GC/MS - Westborough	Lab Associated s	sample(s):	01-04 Batch:	WG1763951-3	WG1763951-4		
Chloroethane	95		97		55-138	2	20
1,1-Dichloroethene	100		100		61-145	0	20
trans-1,2-Dichloroethene	100		100		70-130	0	20
Trichloroethene	110		110		70-130	0	20
1,2-Dichlorobenzene	100		100		70-130	0	20
1,3-Dichlorobenzene	100		100		70-130	0	20
1,4-Dichlorobenzene	100		100		70-130	0	20
Methyl tert butyl ether	100		100		63-130	0	20
p/m-Xylene	105		110		70-130	5	20
o-Xylene	105		110		70-130	5	20
cis-1,2-Dichloroethene	100		100		70-130	0	20
Styrene	110		110		70-130	0	20
Dichlorodifluoromethane	110		110		36-147	0	20
Acetone	98		110		58-148	12	20
Carbon disulfide	100		100		51-130	0	20
2-Butanone	110		110		63-138	0	20
4-Methyl-2-pentanone	100		110		59-130	10	20
2-Hexanone	100		110		57-130	10	20
Bromochloromethane	100		100		70-130	0	20
1,2-Dibromoethane	100		100		70-130	0	20
1,2-Dibromo-3-chloropropane	100		100		41-144	0	20
Isopropylbenzene	100		100		70-130	0	20
1,2,3-Trichlorobenzene	100		100		70-130	0	20

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number: L2316812

Parameter	LCS %Recovery	Qual		.CSD ecovery		%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-04	Batch:	WG1763951-3	WG1763951-4				
1,2,4-Trichlorobenzene	99			99		70-130	0		20	
Methyl Acetate	100			100		70-130	0		20	
Cyclohexane	100			110		70-130	10		20	
1,4-Dioxane	110			110		56-162	0		20	
Freon-113	110			110		70-130	0		20	
Methyl cyclohexane	98			100		70-130	2		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	99	99	70-130
Toluene-d8	102	102	70-130
4-Bromofluorobenzene	98	98	70-130
Dibromofluoromethane	98	98	70-130

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number: L2316812

Parameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	RPD Qual Limits	
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-04 Batch:	WG1765107-3	WG1765107-4			
Methylene chloride	94		93		70-130	1	20	
1,1-Dichloroethane	100		100		70-130	0	20	
Chloroform	96		96		70-130	0	20	
Carbon tetrachloride	98		100		63-132	2	20	
1,2-Dichloropropane	97		98		70-130	1	20	
Dibromochloromethane	83		84		63-130	1	20	
1,1,2-Trichloroethane	86		87		70-130	1	20	
Tetrachloroethene	91		94		70-130	3	20	
Chlorobenzene	92		92		75-130	0	20	
Trichlorofluoromethane	120		120		62-150	0	20	
1,2-Dichloroethane	96		97		70-130	1	20	
1,1,1-Trichloroethane	97		99		67-130	2	20	
Bromodichloromethane	91		92		67-130	1	20	
trans-1,3-Dichloropropene	86		87		70-130	1	20	
cis-1,3-Dichloropropene	92		93		70-130	1	20	
Bromoform	75		79		54-136	5	20	
1,1,2,2-Tetrachloroethane	84		90		67-130	7	20	
Benzene	98		100		70-130	2	20	
Toluene	92		93		70-130	1	20	
Ethylbenzene	92		94		70-130	2	20	
Chloromethane	82		83		64-130	1	20	
Bromomethane	71		72		39-139	1	20	
Vinyl chloride	100		100		55-140	0	20	

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number: L2316812

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics by GC/MS - W	Vestborough Lab Associated	sample(s):	01-04 Batch: \	WG1765107-3	WG1765107-4			
Chloroethane	120		120		55-138	0		20
1,1-Dichloroethene	110		110		61-145	0		20
trans-1,2-Dichloroethene	96		99		70-130	3		20
Trichloroethene	94		95		70-130	1		20
1,2-Dichlorobenzene	90		91		70-130	1		20
1,3-Dichlorobenzene	92		92		70-130	0		20
1,4-Dichlorobenzene	91		92		70-130	1		20
Methyl tert butyl ether	89		92		63-130	3		20
p/m-Xylene	90		90		70-130	0		20
o-Xylene	90		90		70-130	0		20
cis-1,2-Dichloroethene	96		97		70-130	1		20
Styrene	90		90		70-130	0		20
Dichlorodifluoromethane	96		98		36-147	2		20
Acetone	96		88		58-148	9		20
Carbon disulfide	120		120		51-130	0		20
2-Butanone	84		87		63-138	4		20
4-Methyl-2-pentanone	75		78		59-130	4		20
2-Hexanone	74		78		57-130	5		20
Bromochloromethane	94		94		70-130	0		20
1,2-Dibromoethane	85		88		70-130	3		20
1,2-Dibromo-3-chloropropane	69		75		41-144	8		20
Isopropylbenzene	92		94		70-130	2		20
1,2,3-Trichlorobenzene	83		88		70-130	6		20

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number: L2316812

Parameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough	_ab Associated s	sample(s):	01-04 Batch:	WG1765107-3	WG1765107-4			
1,2,4-Trichlorobenzene	87		90		70-130	3		20
Methyl Acetate	87		89		70-130	2		20
Cyclohexane	100		100		70-130	0		20
1,4-Dioxane	98		98		56-162	0		20
Freon-113	110		120		70-130	9		20
Methyl cyclohexane	97		100		70-130	3		20

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	104	105	70-130
Toluene-d8	101	99	70-130
4-Bromofluorobenzene	97	99	70-130
Dibromofluoromethane	106	106	70-130

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number:

L2316812

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits
Dissolved Gases by GC - M 20230330	lansfield Lab	Associated sa	mple(s): 01-04	QC Batch I	D: WG17	63031-4 W	/G1763031-5	QC Sar	mple: L2316	812-01	Client	ID: MW-7R-
Carbon Dioxide	61.8	12	81.6	165	Q	84.3	188	Q	80-120	3		25

Parameter	Native Sample	MS Added	MS Found %	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits	Column
Dissolved Gases by GC - N 20230330	Mansfield Lab	Associated sa	mple(s): 01-04	QC Batch II	D: WG17	'63194-4 V	VG1763194-5	QC Sa	mple: L2316	812-01	Client	ID: MW	-7R-
Methane	4910	54.6	4900	0	Q	4870	0	Q	80-120	1		25	Α
Ethene	15.8	95.5	106	94		104	92		80-120	2		25	Α
Ethane	9.77	102	104	92		102	90		80-120	2		25	Α

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number:

L2316812

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recover	y Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS MW-7R-20230330	- Westborough	Lab Asso	ciated sample((s): 01-04 C	C Batch ID	: WG17639	951-6 WG1763	3951-7	QC Sample	e: L2316	812-01	Client ID:
Methylene chloride	ND	10	11	110		11	110		70-130	0		20
1,1-Dichloroethane	ND	10	12	120		12	120		70-130	0		20
Chloroform	ND	10	12	120		11	110		70-130	9		20
Carbon tetrachloride	ND	10	13	130		13	130		63-132	0		20
1,2-Dichloropropane	ND	10	11	110		11	110		70-130	0		20
Dibromochloromethane	ND	10	11	110		11	110		63-130	0		20
1,1,2-Trichloroethane	ND	10	12	120		12	120		70-130	0		20
Tetrachloroethene	ND	10	12	120		12	120		70-130	0		20
Chlorobenzene	ND	10	11	110		11	110		75-130	0		20
Trichlorofluoromethane	ND	10	13	130		13	130		62-150	0		20
1,2-Dichloroethane	ND	10	11	110		11	110		70-130	0		20
1,1,1-Trichloroethane	ND	10	12	120		12	120		67-130	0		20
Bromodichloromethane	ND	10	11	110		11	110		67-130	0		20
trans-1,3-Dichloropropene	ND	10	9.9	99		10	100		70-130	1		20
cis-1,3-Dichloropropene	ND	10	10	100		10	100		70-130	0		20
Bromoform	ND	10	11	110		10	100		54-136	10		20
1,1,2,2-Tetrachloroethane	ND	10	11	110		11	110		67-130	0		20
Benzene	0.43J	10	12	120		12	120		70-130	0		20
Toluene	ND	10	11	110		12	120		70-130	9		20
Ethylbenzene	ND	10	11	110		12	120		70-130	9		20
Chloromethane	ND	10	11	110		11	110		64-130	0		20
Bromomethane	ND	10	6.6	66		7.5	75		39-139	13		20
Vinyl chloride	250E	10	250E	0	Q	240E	0	Q	55-140	4		20

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number:

L2316812

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recover	y Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS MW-7R-20230330	S - Westborough	Lab Asso	ciated sample((s): 01-04 C	C Batch ID	: WG17639	951-6 WG1763	3951-7	QC Sample	e: L2316	812-01	Client ID:
Chloroethane	ND	10	11	110		11	110		55-138	0		20
1,1-Dichloroethene	3.7	10	16	123		16	123		61-145	0		20
trans-1,2-Dichloroethene	2.5	10	14	115		14	115		70-130	0		20
Trichloroethene	0.32J	10	13	130		13	130		70-130	0		20
1,2-Dichlorobenzene	ND	10	11	110		11	110		70-130	0		20
1,3-Dichlorobenzene	ND	10	11	110		11	110		70-130	0		20
1,4-Dichlorobenzene	ND	10	11	110		11	110		70-130	0		20
Methyl tert butyl ether	ND	10	12	120		12	120		63-130	0		20
o/m-Xylene	ND	20	24	120		24	120		70-130	0		20
o-Xylene	ND	20	23	115		24	120		70-130	4		20
cis-1,2-Dichloroethene	930E	10	890E	0	Q	830E	0	Q	70-130	7		20
Styrene	ND	20	24	120		24	120		70-130	0		20
Dichlorodifluoromethane	ND	10	12	120		12	120		36-147	0		20
Acetone	ND	10	10	100		11	110		58-148	10		20
Carbon disulfide	ND	10	12	120		12	120		51-130	0		20
2-Butanone	ND	10	10	100		10	100		63-138	0		20
4-Methyl-2-pentanone	ND	10	10	100		11	110		59-130	10		20
2-Hexanone	ND	10	10	100		10	100		57-130	0		20
Bromochloromethane	ND	10	12	120		12	120		70-130	0		20
1,2-Dibromoethane	ND	10	11	110		11	110		70-130	0		20
1,2-Dibromo-3-chloropropane	ND	10	11	110		11	110		41-144	0		20
Isopropylbenzene	ND	10	12	120		12	120		70-130	0		20
1,2,3-Trichlorobenzene	ND	10	11	110		11	110		70-130	0		20

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number:

L2316812

04/13/23

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - MW-7R-20230330	Westborough	Lab Asso	ciated sample(s	s): 01-04 Q0	C Batch ID:	WG17639	951-6 WG1763	3951-7	QC Sample	: L2310	6812-01	Client ID:
1,2,4-Trichlorobenzene	ND	10	11	110		11	110		70-130	0		20
Methyl Acetate	ND	10	11	110		11	110		70-130	0		20
Cyclohexane	ND	10	12	120		13	130		70-130	8		20
1,4-Dioxane	ND	500	580	116		560	112		56-162	4		20
Freon-113	ND	10	12	120		13	130		70-130	8		20
Methyl cyclohexane	ND	10	11	110		12	120		70-130	9		20

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
1,2-Dichloroethane-d4	102	98	70-130
4-Bromofluorobenzene	98	97	70-130
Dibromofluoromethane	99	98	70-130
Toluene-d8	98	99	70-130

METALS

Project Name:FORMER COYNE TEXTILELab Number:L2316812Project Number:059294.001Report Date:04/13/23

SAMPLE RESULTS

 Lab ID:
 L2316812-01
 Date Collected:
 03/30/23 10:00

 Client ID:
 MW-7R-20230330
 Date Received:
 03/30/23

 Sample Location:
 SYRACUSE, NY
 Field Prep:
 Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Matala, Man	مام المادئون										
Total Metals - Man	isileid Lab										
Iron, Total	9.65		mg/l	0.0500	0.0090	1	04/03/23 11:5	0 04/03/23 22:13	EPA 3005A	1,6010D	GCL

Project Name:FORMER COYNE TEXTILELab Number:L2316812Project Number:059294.001Report Date:04/13/23

SAMPLE RESULTS

Lab ID:L2316812-02Date Collected:03/30/23 13:00Client ID:MW-6R-20230330Date Received:03/30/23Sample Location:SYRACUSE, NYField Prep:Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Ma	ansfield Lab										
Iron, Total	11.4		mg/l	0.0500	0.0090	1	04/03/23 11:5	0 04/04/23 00:22	EPA 3005A	1,6010D	GCL

Project Name:FORMER COYNE TEXTILELab Number:L2316812Project Number:059294.001Report Date:04/13/23

SAMPLE RESULTS

 Lab ID:
 L2316812-03
 Date Collected:
 03/30/23 14:10

 Client ID:
 MW-5R-20230330
 Date Received:
 03/30/23

 Sample Location:
 SYRACUSE, NY
 Field Prep:
 Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Iron, Total	16.3		mg/l	0.0500	0.0090	1	04/03/23 11:5	0 04/04/23 00:27	EPA 3005A	1,6010D	GCL

Project Name:FORMER COYNE TEXTILELab Number:L2316812Project Number:059294.001Report Date:04/13/23

SAMPLE RESULTS

Lab ID:L2316812-04Date Collected:03/30/23 12:00Client ID:CHA-1-20230330Date Received:03/30/23Sample Location:SYRACUSE, NYField Prep:Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Iron, Total	11.6		mg/l	0.0500	0.0090	1	04/03/23 11:5	0 04/04/23 00:32	EPA 3005A	1,6010D	GCL

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number:

L2316812

Report Date:

04/13/23

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfield	Lab for sample(s):	01-04 E	Batch: Wo	G17613	84-1				
Iron, Total	ND	mg/l	0.0500	0.0090	1	04/03/23 11:50	04/03/23 21:48	3 1,6010D	GCL

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name: FORMER COYNE TEXTILE

Lab Number:

L2316812

Project Number: 059294.001

Report Date:

04/13/23

Parameter	LCS %Recovery Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01-04 Batch: WG	1761384-2					
Iron, Total	106	-		80-120	-		

Matrix Spike Analysis Batch Quality Control

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number:

L2316812

Report Date: 04/13/23

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD Qu	RPD al Limits
Total Metals - Mansfield Lab As 20230330	ssociated san	nple(s): 01-04	QC Bat	ch ID: WG1761	1384-3	WG176138	4-4 QC Samp	ole: L2316812-01	Client ID:	MW-7R-
Iron, Total	9.65	1	10.8	115		10.9	125	75-125	1	20

L2316812

Lab Serial Dilution
Analysis
Batch Quality Control

FORMER COYNE TEXTILE

Project Number: 059294.001

Project Name:

Report Date: 04/13/23

Lab Number:

Parameter	Native Sample	Serial Dilution	n Units	% D	Qual RPD Limits	
Total Metals - Mansfield Lab Associated sample(s): 01-	04 QC Batch ID:	WG1761384-6 QC Sa	mple: L2316812-01	Client ID:	MW-7R-20230330	
Iron, Total	9.65	9.10	mg/l	6	20	

INORGANICS & MISCELLANEOUS

Project Name: FORMER COYNE TEXTILE Lab Number: L2316812

Project Number: 059294.001 **Report Date:** 04/13/23

SAMPLE RESULTS

 Lab ID:
 L2316812-01
 Date Collected:
 03/30/23 10:00

 Client ID:
 MW-7R-20230330
 Date Received:
 03/30/23

Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result (Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab								
Alkalinity, Total	376.	mg CaCO3/L	2.00	NA	1	-	04/13/23 13:12	121,2320B	MKT
Total Organic Carbon	4.74	mg/l	0.500	0.097	1	-	04/10/23 07:23	121,5310C	DEW
Anions by Ion Chromat	ography - Westbo	orough Lab							
Chloride	301.	mg/l	5.00	0.839	10	-	03/31/23 23:03	44,300.0	AVT
Nitrogen, Nitrate	ND	mg/l	0.050	0.012	1	-	03/31/23 15:57	44,300.0	AVT
Sulfate	86.1	mg/l	1.00	0.454	1	-	03/31/23 15:57	44,300.0	AVT

Project Name: FORMER COYNE TEXTILE Lab Number: L2316812

Project Number: 059294.001 **Report Date:** 04/13/23

SAMPLE RESULTS

 Lab ID:
 L2316812-02
 Date Collected:
 03/30/23 13:00

 Client ID:
 MW-6R-20230330
 Date Received:
 03/30/23

Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result (Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab								
Alkalinity, Total	375.	mg CaCO3/L	2.00	NA	1	-	04/13/23 13:44	121,2320B	MKT
Total Organic Carbon	10.4	mg/l	1.00	0.194	2	-	04/10/23 07:53	121,5310C	DEW
Anions by Ion Chromat	ography - Westb	orough Lab							
Chloride	299.	mg/l	5.00	0.839	10	-	04/01/23 00:31	44,300.0	AVT
Nitrogen, Nitrate	ND	mg/l	0.050	0.012	1	-	03/31/23 16:08	44,300.0	AVT
Sulfate	75.0	mg/l	1.00	0.454	1	-	03/31/23 16:08	44,300.0	AVT

Project Name: FORMER COYNE TEXTILE Lab Number: L2316812

Project Number: 059294.001 **Report Date:** 04/13/23

SAMPLE RESULTS

 Lab ID:
 L2316812-03
 Date Collected:
 03/30/23 14:10

 Client ID:
 MW-5R-20230330
 Date Received:
 03/30/23

Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	tborough Lab)							
Alkalinity, Total	328.	mg CaCO3/L	2.00	NA	1	-	04/13/23 13:53	121,2320B	MKT
Total Organic Carbon	5.79	mg/l	1.00	0.194	2	-	04/10/23 08:19	121,5310C	DEW
Anions by Ion Chromatog	raphy - West	borough Lab							
Chloride	212.	mg/l	5.00	0.839	10	-	04/01/23 00:42	44,300.0	AVT
Nitrogen, Nitrate	ND	mg/l	0.050	0.012	1	-	03/31/23 16:19	44,300.0	AVT
Sulfate	187.	mg/l	10.0	4.54	10	-	04/01/23 00:42	44,300.0	AVT

Project Name: FORMER COYNE TEXTILE Lab Number: L2316812

Project Number: 059294.001 **Report Date:** 04/13/23

SAMPLE RESULTS

 Lab ID:
 L2316812-04
 Date Collected:
 03/30/23 12:00

 Client ID:
 CHA-1-20230330
 Date Received:
 03/30/23

Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result (Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab								
Alkalinity, Total	374.	mg CaCO3/L	2.00	NA	1	-	04/13/23 14:02	121,2320B	MKT
Total Organic Carbon	10.5	mg/l	1.00	0.194	2	-	04/10/23 08:48	121,5310C	DEW
Anions by Ion Chromat	ography - Westb	orough Lab							
Chloride	299.	mg/l	5.00	0.839	10	-	04/01/23 00:53	44,300.0	AVT
Nitrogen, Nitrate	ND	mg/l	0.050	0.012	1	-	03/31/23 16:30	44,300.0	AVT
Sulfate	76.9	mg/l	1.00	0.454	1	-	03/31/23 16:30	44,300.0	AVT

Project Name: Lab Number: FORMER COYNE TEXTILE L2316812

Project Number: 059294.001 Report Date: 04/13/23

Method	Blank	Analysis
Batch	Quality	Control

Parameter	Result (Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Anions by Ion Chroma	tography - Wes	tborough	Lab for sa	mple(s):	01-04	Batch: W	VG1761478-1			
Chloride	ND		mg/l	0.500	0.083	1	-	03/31/23 15:35	44,300.0	AVT
Nitrogen, Nitrate	0.021	J	mg/l	0.050	0.012	1	-	03/31/23 15:35	44,300.0	AVT
Sulfate	ND		mg/l	1.00	0.454	1	-	03/31/23 15:35	44,300.0	AVT
General Chemistry - W	estborough Lal	b for san	nple(s): 01-	04 Bat	tch: WC	G1764563-	1			
Total Organic Carbon	ND		mg/l	0.500	0.097	1	-	04/10/23 04:03	121,5310C	DEW
General Chemistry - W	estborough Lal	b for san	nple(s): 01-	04 Bat	tch: WC	G1766170-	1			
Alkalinity, Total	ND		mg CaCO3/L	2.00	NA	1	-	04/13/23 12:40	121,2320B	MKT

Lab Control Sample Analysis Batch Quality Control

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number:

L2316812

Report Date:

04/13/23

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Anions by Ion Chromatography - Westboroug	jh Lab Associat	ed samp	le(s): 01-04 Bate	ch: WG176	61478-2			
Chloride	101		-		90-110	-		
Nitrogen, Nitrate	102		-		90-110	-		
Sulfate	101		-		90-110	-		
General Chemistry - Westborough Lab Asso	ciated sample(s): 01-04	Batch: WG1764	563-2				
Total Organic Carbon	98		-		90-110	-		
General Chemistry - Westborough Lab Asso	ciated sample(s): 01-04	Batch: WG1766	170-2				
Alkalinity, Total	101		-		90-110	-		10

Matrix Spike Analysis Batch Quality Control

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number:

L2316812

Report Date:

04/13/23

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	•	Qual	RPD Limits
Anions by Ion Chromatography Client ID: MW-7R-20230330	- Westborou	gh Lab Asso	ociated samp	ole(s): 01-04	QC Bat	ch ID: WG	1761478-3 W	G1761	478-4 QC	Sample	: L2316	812-01
Chloride	301.	40	327	67	Q	328	67	Q	90-110	0		18
Nitrogen, Nitrate	ND	4	4.24	106		4.14	103		90-110	2		15
Sulfate	86.1	80	171	106		170	105		90-110	1		20
General Chemistry - Westboroug	gh Lab Asso	ciated samp	ole(s): 01-04	QC Batch I	D: WG1	764563-4	QC Sample:	L2317	721-05 C	lient ID:	MS Sa	mple
Total Organic Carbon	9.74	40	51.8	105		-	-		85-115	-		15
General Chemistry - Westboroug 20230330	gh Lab Asso	ciated samp	ole(s): 01-04	QC Batch I	D: WG1	764563-6	QC Sample:	L2316	312-01 C	lient ID:	MW-7F	₹-
Total Organic Carbon	4.74	16	20.6	99		-	-		85-115	-		15
General Chemistry - Westboroug	gh Lab Asso	ciated samp	ole(s): 01-04	QC Batch I	D: WG1	766170-4	QC Sample:	L2316	312-01 C	lient ID:	MW-7F	₹-
Alkalinity, Total	376.	100	472	96		-	-		86-116	-		10

Lab Duplicate Analysis Batch Quality Control

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number: L2316812

Report Date: 04/13/23

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Associ	ciated sample(s): 01-04 QC Batch I	D: WG1764563-3	QC Sample:	L2317721-05	Client ID:	DUP Sample
Total Organic Carbon	9.74	10.3	mg/l	6		15
General Chemistry - Westborough Lab Assoc 20230330	ciated sample(s): 01-04 QC Batch I	D: WG1764563-5	QC Sample:	L2316812-01	Client ID:	MW-7R-
Total Organic Carbon	4.74	4.87	mg/l	3		15
General Chemistry - Westborough Lab Assoc 20230330	ciated sample(s): 01-04 QC Batch I	D: WG1766170-3	QC Sample:	L2316812-01	Client ID:	MW-7R-
Alkalinity, Total	376.	383	mg CaCO3/L	2		10

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number: L2316812
Report Date: 04/13/23

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler Custody Seal

A Absent B Absent

Container Info	Container Information			Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2316812-01A	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260-R2(14)
L2316812-01A1	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260-R2(14)
L2316812-01A2	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260-R2(14)
L2316812-01B	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260-R2(14)
L2316812-01B1	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260-R2(14)
L2316812-01B2	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260-R2(14)
L2316812-01C	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260-R2(14)
L2316812-01C1	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260-R2(14)
L2316812-01C2	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260-R2(14)
L2316812-01D	Vial H2SO4 preserved	Α	NA		2.9	Υ	Absent		TOC-5310(28)
L2316812-01D1	Vial H2SO4 preserved	Α	NA		2.9	Υ	Absent		TOC-5310(28)
L2316812-01D2	Vial H2SO4 preserved	Α	NA		2.9	Υ	Absent		TOC-5310(28)
L2316812-01E	Vial H2SO4 preserved	Α	NA		2.9	Υ	Absent		TOC-5310(28)
L2316812-01E1	Vial H2SO4 preserved	Α	NA		2.9	Υ	Absent		TOC-5310(28)
L2316812-01E2	Vial H2SO4 preserved	Α	NA		2.9	Υ	Absent		TOC-5310(28)
L2316812-01F	Vial unpreserved 20ml	Α	NA		2.9	Υ	Absent		DISSGAS-CO2(7)
L2316812-01F1	Vial unpreserved 20ml	Α	NA		2.9	Υ	Absent		DISSGAS-CO2(7)
L2316812-01F2	Vial unpreserved 20ml	Α	NA		2.9	Υ	Absent		DISSGAS-CO2(7)
L2316812-01G	Vial unpreserved 20ml	Α	NA		2.9	Υ	Absent		DISSGAS-CO2(7)
L2316812-01G1	Vial unpreserved 20ml	Α	NA		2.9	Υ	Absent		DISSGAS-CO2(7)
L2316812-01G2	Vial unpreserved 20ml	Α	NA		2.9	Υ	Absent		DISSGAS-CO2(7)
L2316812-01H	20ml Vial HCl preserved	Α	NA		2.9	Υ	Absent		DISSGAS(14)

Lab Number: L2316812

Report Date: 04/13/23

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2316812-01H1	20ml Vial HCl preserved	Α	NA		2.9	Υ	Absent		DISSGAS(14)
L2316812-01H2	20ml Vial HCl preserved	Α	NA		2.9	Υ	Absent		DISSGAS(14)
L2316812-01I	20ml Vial HCl preserved	Α	NA		2.9	Υ	Absent		DISSGAS(14)
L2316812-01I1	20ml Vial HCl preserved	Α	NA		2.9	Υ	Absent		DISSGAS(14)
L2316812-01I2	20ml Vial HCl preserved	Α	NA		2.9	Υ	Absent		DISSGAS(14)
L2316812-01J	Plastic 250ml unpreserved/No Headspace	Α	NA		2.9	Υ	Absent		ALK-T-2320(14)
L2316812-01J1	Plastic 250ml unpreserved/No Headspace	Α	NA		2.9	Υ	Absent		ALK-T-2320(14)
L2316812-01J2	Plastic 250ml unpreserved/No Headspace	Α	NA		2.9	Υ	Absent		ALK-T-2320(14)
L2316812-01K	Plastic 250ml unpreserved	Α	7	7	2.9	Υ	Absent		SO4-300(28),CL-300(28),NO3-300(2)
L2316812-01K1	Plastic 250ml unpreserved	Α	7	7	2.9	Υ	Absent		SO4-300(28),CL-300(28),NO3-300(2)
L2316812-01K2	Plastic 250ml unpreserved	Α	7	7	2.9	Υ	Absent		SO4-300(28),CL-300(28),NO3-300(2)
L2316812-01L	Plastic 250ml HNO3 preserved	Α	<2	<2	2.9	Υ	Absent		FE-TI(180)
L2316812-01L1	Plastic 250ml HNO3 preserved	Α	<2	<2	2.9	Υ	Absent		FE-TI(180)
L2316812-01L2	Plastic 250ml HNO3 preserved	Α	<2	<2	2.9	Υ	Absent		FE-TI(180)
L2316812-01M	Plastic 250ml Zn Acetate/NaOH preserved	Α	>9	>9	2.9	Υ	Absent		SUB-SULFIDE()
L2316812-01M1	Plastic 250ml Zn Acetate/NaOH preserved	Α	>9	>9	2.9	Υ	Absent		SUB-SULFIDE()
L2316812-01M2	Plastic 250ml Zn Acetate/NaOH preserved	Α	>9	>9	2.9	Υ	Absent		SUB-SULFIDE()
L2316812-01N	Plastic 250ml Zn Acetate/NaOH preserved	Α	>9	>9	2.9	Υ	Absent		SUB-SULFIDE()
L2316812-01N1	Plastic 250ml Zn Acetate/NaOH preserved	Α	>9	>9	2.9	Υ	Absent		SUB-SULFIDE()
L2316812-01N2	Plastic 250ml Zn Acetate/NaOH preserved	Α	>9	>9	2.9	Υ	Absent		SUB-SULFIDE()
L2316812-02A	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260-R2(14)
L2316812-02B	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260-R2(14)
L2316812-02C	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260-R2(14)
L2316812-02D	Vial H2SO4 preserved	Α	NA		2.9	Υ	Absent		TOC-5310(28)
L2316812-02E	Vial H2SO4 preserved	Α	NA		2.9	Υ	Absent		TOC-5310(28)
L2316812-02F	Vial unpreserved 20ml	Α	NA		2.9	Υ	Absent		DISSGAS-CO2(7)
L2316812-02G	Vial unpreserved 20ml	Α	NA		2.9	Υ	Absent		DISSGAS-CO2(7)
L2316812-02H	20ml Vial HCl preserved	Α	NA		2.9	Υ	Absent		DISSGAS(14)

Lab Number: L2316812

Report Date: 04/13/23

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Container Info	Container Information		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2316812-02I	20ml Vial HCl preserved	Α	NA		2.9	Υ	Absent		DISSGAS(14)
L2316812-02J	Plastic 250ml unpreserved/No Headspace	Α	NA		2.9	Υ	Absent		ALK-T-2320(14)
L2316812-02K	Plastic 250ml unpreserved	Α	7	7	2.9	Υ	Absent		SO4-300(28),CL-300(28),NO3-300(2)
L2316812-02L	Plastic 250ml HNO3 preserved	Α	<2	<2	2.9	Υ	Absent		FE-TI(180)
L2316812-02M	Plastic 250ml Zn Acetate/NaOH preserved	Α	>9	>9	2.9	Υ	Absent		SUB-SULFIDE()
L2316812-02N	Plastic 250ml Zn Acetate/NaOH preserved	Α	>9	>9	2.9	Υ	Absent		SUB-SULFIDE()
L2316812-03A	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260-R2(14)
L2316812-03B	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260-R2(14)
L2316812-03C	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260-R2(14)
L2316812-03D	Vial H2SO4 preserved	Α	NA		2.9	Υ	Absent		TOC-5310(28)
L2316812-03E	Vial H2SO4 preserved	Α	NA		2.9	Υ	Absent		TOC-5310(28)
L2316812-03F	Vial unpreserved 20ml	Α	NA		2.9	Υ	Absent		DISSGAS-CO2(7)
L2316812-03G	Vial unpreserved 20ml	Α	NA		2.9	Υ	Absent		DISSGAS-CO2(7)
L2316812-03H	20ml Vial HCl preserved	Α	NA		2.9	Υ	Absent		DISSGAS(14)
L2316812-03I	20ml Vial HCl preserved	Α	NA		2.9	Υ	Absent		DISSGAS(14)
L2316812-03J	Plastic 250ml unpreserved/No Headspace	Α	NA		2.9	Υ	Absent		ALK-T-2320(14)
L2316812-03K	Plastic 250ml unpreserved	Α	7	7	2.9	Υ	Absent		SO4-300(28),CL-300(28),NO3-300(2)
L2316812-03L	Plastic 250ml HNO3 preserved	Α	<2	<2	2.9	Υ	Absent		FE-TI(180)
L2316812-03M	Plastic 250ml Zn Acetate/NaOH preserved	Α	>9	>9	2.9	Υ	Absent		SUB-SULFIDE()
L2316812-03N	Plastic 250ml Zn Acetate/NaOH preserved	Α	>9	>9	2.9	Υ	Absent		SUB-SULFIDE()
L2316812-04A	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260-R2(14)
L2316812-04B	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260-R2(14)
L2316812-04C	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260-R2(14)
L2316812-04D	Vial H2SO4 preserved	Α	NA		2.9	Υ	Absent		TOC-5310(28)
L2316812-04E	Vial H2SO4 preserved	Α	NA		2.9	Υ	Absent		TOC-5310(28)
L2316812-04F	Vial unpreserved 20ml	Α	NA		2.9	Υ	Absent		DISSGAS-CO2(7)
L2316812-04G	Vial unpreserved 20ml	Α	NA		2.9	Υ	Absent		DISSGAS-CO2(7)
L2316812-04H	20ml Vial HCl preserved	Α	NA		2.9	Υ	Absent		DISSGAS(14)

Lab Number: L2316812

Report Date: 04/13/23

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Con	Container Information			Initial	Final	Temp			Frozen	
Con	tainer ID	Container Type	Cooler	pН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2316	812-041	20ml Vial HCl preserved	Α	NA		2.9	Υ	Absent		DISSGAS(14)
L2316	812-04J	Plastic 250ml unpreserved/No Headspace	Α	NA		2.9	Υ	Absent		ALK-T-2320(14)
L2316	812-04K	Plastic 250ml unpreserved	Α	7	7	2.9	Υ	Absent		SO4-300(28),CL-300(28),NO3-300(2)
L2316	812-04L	Plastic 250ml HNO3 preserved	Α	<2	<2	2.9	Υ	Absent		FE-TI(180)
L2316	812-04M	Plastic 250ml Zn Acetate/NaOH preserved	Α	>9	>9	2.9	Υ	Absent		SUB-SULFIDE()
L2316	812-04N	Plastic 250ml Zn Acetate/NaOH preserved	Α	>9	>9	2.9	Υ	Absent		SUB-SULFIDE()
L2316	812-05A	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260-R2(14)
L2316	812-05B	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260-R2(14)

Project Name: Lab Number: FORMER COYNE TEXTILE L2316812 059294.001 **Report Date: Project Number:** 04/13/23

GLOSSARY

Acronyms

LOQ

MS

RPD

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile NR Organic TIC only requests.

- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:FORMER COYNE TEXTILELab Number:L2316812Project Number:059294.001Report Date:04/13/23

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit
 (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Project Name:FORMER COYNE TEXTILELab Number:L2316812Project Number:059294.001Report Date:04/13/23

Data Qualifiers

Identified Compounds (TICs).

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name:FORMER COYNE TEXTILELab Number:L2316812Project Number:059294.001Report Date:04/13/23

REFERENCES

- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I VI, 2018.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- Technical Guidance for the Natural Attenuation Indicators: Methane, Ethane, and Ethene, EPA-NE, Revision 1, February 21, 2002 and Sample Preparation & Calculations for Dissolved Gas Analysis in Water Samples using a GC Headspace Equilibration Technique, EPA RSKSOP-175, Revision 2, May 2004.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Revision 19

ID No.:17873

Page 1 of 1

Published Date: 4/2/2021 1:14:23 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

ALPHA	NEW YORK CHAIN OF	Service Centers Mahwah, NJ 07430: 35 Whitn Albany, NY 12205: 14 Walker			Pag	e of 1		Date	Rec'd	3/3	21/	0)	ALPHA Job #
A STATE OF THE PARTY OF THE PAR	CUSTODY	Tonawanda, NY 14130: 273 C		105	+	1		in	Lab	2/1	24	0-	2	12316812
Westborough, MA 01581	Mansfield, MA 02048	Project Information	20140	Que de la constitución de la con	Name and Address of		Deli	verable	c	Marine S	-	SERVICE SERVIC	190	Billing Information
8 Walkup Dr. TEL: 508-898-9220	320 Forbes Blvd TEL: 508-822-9300		C		1.1.		100000	ASP-			(ASF) D		Same as Client Info
FAX: 508-898-9193	FAX: 508-822-3288		ner Coys	re lex	HIE		-1 1:	7		- 7	4.00		ma-v	
G1 11 C	Charles and the last	Project Location: Sy		Y Y			-1 12		S (1 File	")	EQ.	uIS (4 I	rile)	05929403 4013
Client Information		Project # 059294					and the same of	Other	-			_	_	1897 - 1885 - 1885 - 1897 - 18
Client: CHA		(Use Project name as F					- Manager (Sec.)	NONTHERD PARTY.	Require	ment			-	Disposal Site Information
Address: 2005.5		Project Manager: S	miller				_ X	NY TO	GS	L	NYF	Part 375		Please identify below location of
Syracuse, NY		ALPHAQuote #: 20	0880					AWQ	Standard	s [NY	CP-51		applicable disposal facilities.
Phone: 315257	7154	Turn-Around Time						NY Re	stricted I	Jse [Othe	ır		Disposal Facility:
Fax:		Standar	rd'V	Due Date	2:		7 🗆	NY Un	restricted	i Use				□ NJ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Email: Smiller Din	arampanies.com	Rush (only if pre approve	a) 🗍	# of Days	3.		1 🗆	NYCS	ewer Dis	charge				Other:
These samples have be								LYSIS						Sample Filtration
Other project specific												Т	Т	
1								NO3	Tetal Metals	4200	2330	1		□ Done □ Lab to do Preservation □ Lab to do
Please specify Metals	or TAL.				-44		1	N	3	7	1 3	3 6		Lab to do
							1 ^	3	5	Sulfich	7	1,55905	15	(Please Specify below)
ALPHA Lab ID			Colle	ection	Sample	Sampler's	1 3	3	- 2	£ :	Y Y	3- 6	12	
(Lab Use Only)	Sar	nple ID	Date	Time	Matrix	Initials	8360	204	13	5 6	H K	1 0	,	Sample Specific Comments
1682-01	MW-7R-2	1020320	03/30/23	100000000000000000000000000000000000000	liquid	Smlke	-	X	V	x V	×	X	X	116
102	The Alle Alle Alle Alle Alle Alle Alle Al		03/30/23		Jugaro.	SITYKE	Ý	y	X.	1/ 1/2	11	Y	Ý	
THE RESERVE TO SHARE THE PARTY OF THE PARTY	MW-5R-20		03/30/23	1410			Ŷ	1	v	X X	- V	1	-	14
				William Town	 		X	X	2	-	1	1	X	14
-04	MS-209303	7.00700 R	03/36/23	100			-	-	X	X	1×	X	-	14
705	MSD-20230		03/30/23		1	- /	У	X	^	X	, x	X	K.	14
	CHA-1-202		03/30/93	1200		A	X	Y	XX	. V	X	K	V	14
-07	Trip Bla	nk	03/30/23				X	XV.	e			_		1
	1/30													
						=								
	Container Code	Westboro: Certification N	lo: MA935											Please print clearly, legibly
	P = Plastic A = Amber Glass	Mansfield: Certification N	lo: MA015		Cont	ainer Type	V	P	PF	P	V	IV	١V	and completely. Samples can
C = HNO ₃	V = Vial		12111111111111112-1-750			- Aras			- '					not be logged in and
	G = Glass				P	reservative	B	A	CK	EA	IA	B	D	turnaround time clock will not
	B = Bacteria Cup C = Cube	T 50	-	200						,	1/	1	4	start until any ambiguities are
G = NaHSO ₄	O = Other	Relinquished	-	Date/		111/2 4		ed By:	7. 7	-/-	$\overline{}$	/Time		resolved. BY EXECUTING THIS COC, THE CLIENT
11 - 11020203	E = Encore D = BOD Bottle					45 Car		_	ust		123	180	0	HAS READ AND AGREES
K/E = Zn Ac/NaOH O = Other	- DOD DOME	Arseay Su	forst	3/30/23	1820	Well,	, ,	Se 2	ka. si	3/3	123	182	W	TO BE BOUND BY ALPHA'S
G - Olifei		RBOR S. S	st	3/30/27	1820		(_	3/3	1/23	0211)	TERMS & CONDITIONS.
Form No: 01-25 HC (rev. 30-	-Sept-2013)	v												(See reverse side.)
age 82 of 93														

Monday, April 10, 2023

Attn: Melissa Deyo Alpha Analytical Lab 8 Walkup Drive Westborough, MA 01581

Project ID: L2316812 SDG ID: GCN73647

Sample ID#s: CN73647 - CN73650

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

Enclosed are revised Analysis Report pages. Please replace and discard the original pages. If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

Phyllis/Shiller

Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #M-CT007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

SDG Comments

April 10, 2023

SDG I.D.: GCN73647

Any compound that is not detected above the MDL/LOD is reported as ND on the report and is reported in the electronic deliverables (EDD) as <RL or U at the RL per state and EPA guidance.

Compounds that are detected above MDL but below RL are qualified with a J flag.

Page 84 of 93

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Sample Id Cross Reference

April 10, 2023

SDG I.D.: GCN73647

Project ID: L2316812

Client Id	Lab Id	Matrix
MW-7R-20230330	CN73647	WATER
MW-6R-20230330	CN73648	WATER
MW-5R-20230330	CN73649	WATER
CHA-1-20230330	CN73650	WATER

Page 85 of 93

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

April 10, 2023

FOR: Attn: Melissa Deyo

Alpha Analytical Lab 8 Walkup Drive

Westborough, MA 01581

Sample Information **Custody Information** <u>Date</u> <u>Time</u> WATER Collected by: 03/30/23 Matrix: 10:00 **ALPHA** Received by: **Location Code:** SR1 04/03/23 13:15 Rush Request: Standard

Analyzed by: see "By" below

aboratory Data

SDG ID: GCN73647

Phoenix ID: CN73647

Project ID: L2316812

Client ID: MW-7R-20230330

> RL/ LOD/

Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Sulfide Client MS/MSD	0.040 Completed	J 0.050	0.025	mg/L	1	04/05/23 04/05/23	GD	SM4500S-D-11

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level L=Biased Low J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1

Comments:

P.O.#:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

April 10, 2023

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

April 10, 2023

FOR: Attn: Melissa Deyo

Alpha Analytical Lab 8 Walkup Drive

Westborough, MA 01581

Sample InformationCustody InformationDateTimeMatrix:WATERCollected by:03/30/2313:00Location Code:ALPHAReceived by:SR104/03/2313:15

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

Laboratory Data

SDG ID: GCN73647

Phoenix ID: CN73648

Project ID: L2316812

Client ID: MW-6R-20230330

RL/ LOD/

Parameter Result **PQL** MDL Units Dilution Date/Time Reference Βv Sulfide 0.027 J 0.050 0.025 mg/L 1 04/05/23 GD SM4500S-D-11

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level L=Biased Low J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

April 10, 2023

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

April 10, 2023

FOR: Attn: Melissa Deyo

Alpha Analytical Lab 8 Walkup Drive

Westborough, MA 01581

Sample InformationCustody InformationDateTimeMatrix:WATERCollected by:03/30/2314:10Location Code:ALPHAReceived by:SR104/03/2313:15

Rush Request: Standard Analyzed by: see "By" below

<u>Laboratory Data</u>

SDG ID: GCN73647

Phoenix ID: CN73649

Project ID: L2316812

Client ID: MW-5R-20230330

RL/ LOD/

Parameter Result **PQL** MDL Units Dilution Date/Time Reference Βv Sulfide 0.034 J 0.050 0.025 mg/L 1 04/05/23 GD SM4500S-D-11

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level L=Biased Low J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1

Comments:

P.O.#:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

April 10, 2023

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

April 10, 2023

FOR: Attn: Melissa Deyo

Alpha Analytical Lab 8 Walkup Drive

Westborough, MA 01581

Sample Informa	<u>ation</u>	Custody Inform	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	WATER	Collected by:		03/30/23	12:00
Location Code:	ALPHA	Received by:	SR1	04/03/23	13:15
Rush Request:	Standard	Analyzed by:	see "By" below		

P.O.#:

Laboratory Data

SDG ID: GCN73647

Phoenix ID: CN73650

Project ID: L2316812

Client ID: CHA-1-20230330

RL/ LOD/

Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Sulfide	0.031	J 0.050	0.025	mg/L	1	04/05/23	GD	SM4500S-D-11

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level L=Biased Low J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

April 10, 2023

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102

QA/QC Report

April 10, 2023

QA/QC Data

CDCID	GCN73647
ZI)(-II) ·	

Parameter	Blank F	RL Result	Result	Dup RPD	%	LCSD %	RPD	MS %	MSD %	MS RPD	Rec Limits	RPD Limits
QA/QC Batch 671332 (mg/L), QC	•		•	-		CN7364	19, CN7	,			00 110	20
Sulfide	•	0.050 0.040 J	•	NC	103	CIVIO	+7, CIN7	84.4				90 - 110

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director

April 10, 2023

Monday, April 10, 2023 Criteria: NY: GW

Sample Criteria Exceedances Report GCN73647 - ALPHA

State: NY

RL Analysis SampNo Acode Phoenix Analyte Criteria Units

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

Page 91 of 93

^{***} No Data to Display ***

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

NY Temperature Narration

April 10, 2023

SDG I.D.: GCN73647

The samples in this delivery group were received at 1.0° C. (Note acceptance criteria for relevant matrices is above freezing up to 6° C)

Page 92 of 93

960000					D1 0:1	
		¹S	bcontra	Subcontract Chain of Custody		
A PHA		Phoer 587 E	nix Environn ast Middle 1 nester, CT 0	Phoenix Environmental Laboratories 587 East Middle Turnpike Manchester, CT 06040	Alpha Job Number L2316812	mber
Client Information	ormation		Project Information	ormation	Regulatory Requirements/Report Limits	
Client: Alpha Analytical Labs Address: Eight Walkup Drive Westborough, MA 01581-1019	Labs ive A 01581-1019	Project Location: N Project Manager: N	Location: NY Manager: Melissa Deyo Turnaround & Deliver	Location: NY Manager: Melissa Deyo urnaround & Deliverables Information	State/Federal Program: Regulatory Criteria: NY-TOGS-GA	
Phone: 716.427.5229 Email: mdeyo@alphalab.com	b.com	Due Date: Deliverables:				
		Project Specific F	Requireme	Specific Requirements and/or Report Requirements		
Reference	Reference following Alpha Job Number on final report/deliverables: L2316812	nber on final report/de	eliverables:		Report to include Method Blank, LCS/LCSD:	
Additional Comments: Se	Additional Comments: Send all results/reports to subreports@alphalab.com	ubreports@alphalab.c	moc			
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)						
Lab ID	Client ID	Collection Date/Time	Sample Matrix	Analysis	Ba	Batch QC
73647 73648 73649 72649	MW-7R-20230330 MW-6R-20230330 MW-5R-20230330 CHA-1-20230330	03-30-23 10:00 03-30-23 13:00 03-30-23 14:10 03-30-23 12:00	WATER WATER WATER WATER	Sulfide	MS;MSD	MSD
				THOR 97 *	* Le Bottles W/NAOH (MP)	
				H09-1 (1)	(1) 1- bothe w/NAOH (mp)	
	Rejinduished B	ev:		Date/Time:	Received By: Date/Time: 4/15/15/15	15
Form No: AL_subcoc						

