2024 PERIODIC REVIEW REPORT

Former Coyne Textile Facility 140 Cortland Avenue Syracuse, New York 13202

Project Site # C734144 CHA Project Number: 059294.003

May 2024

Prepared for: Ranalli/Taylor St., LLC

Prepared by: CHA Consulting, Inc. 300 South State Street, Suite 600 Syracuse, New York 13202 Phone: (315) 471-3920

TABLE OF CONTENTS

1.0	INTRO	DDUCTION	1
	1.1	Site Background	1
	1.2	Contaminants of Concern	2
	1.3	Summary of the Site Remedy	2
	1.4	Site Management Status	
2.0	INSTI	TUTIONAL AND ENGINEERING CONTROLS	3
	2.1	Institutional Controls	
	2.2	Engineering Controls	
3.0	MONII	TORING PROGRAM COMPLIANCE	
3.0	3.1	Components of the Monitoring Program	
	3.1	3.1.1 Changes to the Monitoring Program	5 5
	3.2	3.1.1 Changes to the Monitoring Program	5
	3.2	3.2.1 Chemical Inventory	
		3.2.2 Indoor Air Sampling Results	
		3.2.3 Indoor Air Sampling Conclusions	
	3.3	SSDS Inspection	
	3.4	Site-Wide Inspection	
	3.5	Gauging Groundwater Monitoring Wells	
	3.6	Groundwater Sampling Event	
	0.0	3.6.1 Groundwater Sampling Methods	8
		3.6.2 Waste Characterization	
		3.6.3 Groundwater Monitoring Results	
		3.6.3.1 Upgradient Monitoring Well VOCs	9
		3.6.3.2 Downgradient Monitoring Well VOCs	9
		3.6.3.3 Other Parameters	10
		3.6.4 Monitored Natural Attenuation Evaluation	
		3.6.4.1 Accumulation of Daughter Products	
		3.6.4.2 Parameters Associated with Terminal Electron Acceptors	
		3.6.4.3 Additional Parameters	12
		3.6.4.4 Natural Attenuation Software	13
	3.7	Monitoring Deficiencies	13
4.0	SUMN	MARY, CONCLUSIONS & RECOMMENDATIONS	13
	4.1	Summary	13
	4.2	Conclusions	
	4.3	Recommendations	

LIST OF TABLES

Table 1 January 13, 2024 Supplemental Ambient Air Results – Detected Parameters Only

Table 2 Groundwater Sample Results – Detected Parameters Only

LIST OF FIGURES

Figure 1 Site Location Map

Figure 2 Site Layout and Property Boundary

Figure 3A/3B	Supplemental Ambient Air Sampling Locations
Figure 4	Groundwater Contour Map
Figure 5	Groundwater Monitoring Results – Volatile Organic Compound Exceedances
	Only
Figure 6	CVOC Concentrations at MW-4
Figure 7	CVOC Concentrations at MW-5R
Figure 8	CVOC Concentrations at MW-6R
Figure 9	CVOC Concentrations at MW-7R
Figure 10	Trend of Sulfate
Figure 11	Trend of Iron
Figure 12	Trend of Methane
Figure 13	Trend of Chloride
Figure 14	Trend of Ethene

LIST OF APPENDICES

Appendix A	Institutional Control and Engineering Control Certification Forms
Appendix B	Sub-Slab Depressurization System Inspection Form
Appendix C	Air Sampling Laboratory Report
Appendix D	Site-Wide Inspection Forms
Appendix E	Field Water Quality Parameters
Appendix F	Purge Water Disposal Documentation
Appendix G	Groundwater Laboratory Reports

LIST OF ACRONYMS & ABBREVIATIONS

AST Aboveground Storage Tank
AWQS Ambient Water Quality Standard
BCA Brownfield Cleanup Agreement
BCP Brownfield Cleanup Program

CHA Consulting, Inc.

CVOC Chlorinated Volatile Organic Compounds

DCE cis-1,2-Dichloroethene
EC Engineering Control
EC Engineering Controls

ELAP Environmental Laboratory Approval Program

EPA Environmental Protection Agency

FER Final Engineering Report IC Institutional Control

ISCR In-Situ Chemical Reduction
MNA Monitored Natural Attenuation
MS/MSD Matrix Spike/Matrix Spike Duplicate

NYSDEC New York State Department of Environmental Conservation

NYSDOH New York State Department of Health

O&M Operation & Maintenance
ORP Oxidation Reduction Potential

PCE Tetrachloroethene
PRR Periodic Review Report
RI Remedial Investigation
SCO Soil Cleanup Objective
SMP Site Management Plan

SSDS Sub-Slab Depressurization System SVOC Semivolatile Organic Compound

TCE Trichloroethene
TO-15 Toxic Organics - 15
TOC Total Organic Carbon

TOGS Technical and Operational Guidance Series

TZ Treatment Zone

UST Underground Storage Tank

VC Vinyl Chloride

VOC Volatile Organic Compound

ZVI Zero-Valent Iron

 $\begin{array}{ll} \text{bgs} & \text{Below Ground Surface} \\ \text{in H}_2\text{O} & \text{Inches of Water Column} \end{array}$

mg/L Milligrams per Liter, or parts per million (ppm)

mg/kg Milligrams per Kilogram, or ppm

Micrograms per Liter, or parts per billion (ppb)

µg/m³ Micrograms per Cubic Meter

mV Millivolts

V:\Projects\ANY\K7\059294.003\08_Reports\Groundwater Monitoring\2024 Periodic Review Report\Final\2024-05-28_C734144_2024PeriodicReviewReport.docx

EXECUTIVE SUMMARY

Ranalli/Taylor St., LLC entered into a Brownfield Cleanup Agreement with the New York State Department of Environmental Conservation in September 2017 to investigate and remediate the Former Coyne Textile Facility, a property located at 140 Cortland Avenue in the City of Syracuse, Onondaga County, New York (Site). Historically, the Site was operated as an industrial drycleaning facility which utilized underground storage tanks containing Stoddard solvent and fuel oil as part of Site operations. The main contaminants of concern on the Site were found to be chlorinated volatile organic compounds. In 2020 and 2021, remediation and redevelopment of the Site was completed, and the Site was issued a certificate of completion on December 28, 2021.

This periodic review report details the monitoring activities from April 28th, 2023, through April 28th, 2024. In accordance with the SMP, site-wide inspections, a sub-slab depressurization inspection, indoor air sampling event, and quarterly groundwater monitoring events occurred.

The Site institutional controls (ICs) and engineering controls (ECs) are listed in this periodic review report. The site-wide cover system appeared to be in good condition during the site inspections conducted throughout the reporting year. The sub-slab depressurization system (SSDS) was functioning as intended with the appropriate sub-slab vacuum pressure and additional indoor air monitoring, conducted in conformance with the approval letter for the 2023 Periodic Review Report (PRR), concluded the indoor air is not impacted by the accumulation of sub-slab vapors. Quarterly groundwater monitoring indicated the subsurface groundwater remains impacted by Site contaminants of concern, but the conditions are present for reductive dechlorination, and the process is occurring slowly, as noted by a general increase in daughter products and a decrease in source product as well as an evaluation of other MNA parameters.

CHA recommends reducing only the MNA parameters to bi-annual sampling events with proposed sampling frequency of Q2 and Q4. Additionally, CHA recommends changing the total iron analysis to speciate between ferric and ferrous iron during the bi-annual sampling events in which MNA parameters are included.

No other changes to the operation and maintenance plans are recommended at this time. To remain consistent with the reporting period starting and ending on April 28th, groundwater monitoring will continue quarterly through Q1 of 2025, at which time a PRR for the April 28th, 2024, through April 28th, 2025, reporting year will be submitted and the frequency of groundwater monitoring will be re-evaluated. Provided that the ICs and ECs established for the Site remain in place, and are maintained, it is expected that the remedy will continue to be effective in protecting human health and the environment.

1.0 INTRODUCTION

Ranalli/Taylor St., LLC (Ranalli/Taylor St.) entered into a Brownfield Cleanup Agreement (BCA) with the New York State Department of Environmental Conservation (NYSDEC) in September 2017 to investigate and remediate the Former Coyne Textile Facility, a property located at 140 Cortland Avenue in the City of Syracuse, Onondaga County, New York (Site). In 2021, the BCA was amended at the request of Ranalli/Taylor St. and approved by the NYSDEC. The amendments included:

- A minor amendment to add seven entities to the BCA: JMA Tech Properties Holdings, LLC, JMA Tech Properties, LLC, JMA Tech LLC, XRN LLC, JMA Edge Services LLC, Prevail NY LLC, and CELLH LLC.
- A minor amendment to add 0.65 acres of South Clinton Street into the BCA.
- A minor amendment to correct the parcel sizes of two parcels east of Cortland Avenue. Tax Map No. 094.-20.01.0 was originally identified as a 0.57-acre parcel and Tax Map No. 094.-20-02.0 was originally identified as a 1.13-acre parcel for a total of 1.7 acres. The updated parcel acreage is 0.126 and 0.736 acres, respectively, totaling 0.862 acres.

With the approved amendments, the Site is situated on approximately 3.262-acres. Figure 1 presents the general vicinity of the Site and Figure 2 presents the Site layout and BCA boundary.

Several investigations to identify the nature and extent of contamination led to the NYSDEC-approved Remedial Design Work Plan and implementation of the remedial design during redevelopment in 2020 and 2021. Upon completion of that work, a Final Engineering Report (FER) prepared by CHA Consulting, Inc. (CHA), 2021, and Site Management Plan (SMP), prepared by CHA, 2021, were approved by the NYSDEC. On December 28, 2021, the Site achieved a Certificate of Completion and entered the Site management phase.

This Periodic Review Report (PRR) details the Site management activities that were conducted during the reporting period of April 28th, 2023, through April 28th, 2024.

1.1 Site Background

The Site was utilized as an industrial laundering facility beginning in the mid-1930s through 2015 under various entities of Coyne Textile Services. Dry-cleaning activities using tetrachloroethylene (PCE) and Stoddard solvent (a petroleum mixture made from distilled alkanes, cycloalkanes (napthenes) and aromatic hydrocarbons) were conducted at the Site until 2000. These dry-cleaning liquids were stored in aboveground and underground storage tanks (ASTs and USTs). Additionally, a fuel oil tank for heating the building at 140 Cortland Avenue was identified beneath the boiler room and a gasoline filling station was previously located on the southern portion of the Site in the 1980s. The region to the east of the building, known as the former employee parking lot, was owned by Coyne Textile Services and used as a parking lot from 1989 to 2016. Prior to that use, this portion of the Site was a bus storage and repair facility, the Syracuse Streetcar Barn, retail stores, and a gasoline filling station (circa 1950-1970).

A detailed Site history including a summary of previous investigations conducted between 2014 and 2020 was provided in the FER (CHA, 2021).

1.2 Contaminants of Concern

Low levels of volatile organic compounds (VOCs) and semivolatile organic compounds (SVOCs) were identified Site-wide. However, the primary contaminants of concern (COCs) for remediation were tetrachloroethylene and the breakdown daughter products, collectively called chlorinated volatile organic compounds (CVOCs):

- Tetrachloroethylene (PCE)
- Trichloroethene (TCE)
- 1,2-dichloroethene (DCE)
- Vinyl Chloride (VC)

Ethene is the final breakdown daughter product of reductive dechlorination of PCE.

1.3 Summary of the Site Remedy

Based on the remedial investigation (RI) and supplemental investigations, the Site contaminants were grouped into areas of concern, later classified into treatment zones during the remedial design and implementation. The remedial goal was source removal or in-situ treatment, treatment of the impacted groundwater, and protection of human and environmental health.

The Site remedy is described in more detail in the FER (CHA, revised December 2021). Briefly, the treatment zones and each selected remedy included the following major components:

- 1) Treatment Zone 1 (TZ-1) Excavation and Backfill
 - a) Excavation and off-site disposal of soil/fill exceeding Commercial Use Soil Cleanup Objectives (SCOs) to the depth of groundwater.
 - b) Excavation and removal of USTs and associated underground piping discovered during remedial implementation.
 - c) Import clean fill to replace excavated soil to re-establish grades at the Site.
 - d) Re-use excavated soils that did not exceed Commercial Use SCOs or exhibit evidence of contamination in other areas of the Site (within the boundaries of the BCA).
- 2) Treatment Zone 2 (TZ-2) Soil Mixing/In-Situ Reduction
 - a) In-situ chemical reduction (ISCR) of contaminated soil in an approximately 6,000 square foot area with treatment depths of 16 to 26 feet below ground surface.
 - b) Mix in place with zero valent iron (ZVI) slurry.
 - c) Soil from 9 feet bgs to existing grade was mixed with a cement slurry to provide sufficient bearing grade for Site redevelopment.
- 3) Treatment Zone 3 (TZ-3) Groundwater Extraction and Treatment
 - a) Groundwater extraction, ex-situ treatment with sodium permanganate, and reinjection into the plume area through a series of extraction and injection wells.
 - b) Extracted groundwater was treated with a dosing rate of 5 grams per liter of sodium permanganate designed based on a bench scale study.
 - c) Two pore volumes, totaling approximately 672,000 gallons of water, within the contaminated groundwater zone was treated.

4) Cover System

- a) During Site redevelopment, the cover system was enhanced. The cover system consists of building footprints, asphalt paved surfaces, concrete sidewalks, and soil cover in greenspace areas.
- b) A demarcation layer consisting of non-woven geotextile was installed to delineate between existing Site soils and imported fill material.
- 5) Vapor Mitigation Sub-Slab Depressurization System (SSDS)
 - a) An SSDS was designed and installed beneath both, the renovated portion of the existing building (south end of the Site), and the newly constructed building to mitigate the potential migration of any remaining vapors into the building from the subsurface soil and groundwater.
- 6) Execution of an Environmental Easement
 - a) An Environmental Easement has been placed on the Site to prevent future exposure to contamination remaining at the Site.
- 7) Site Management Plan
 - a) A Site Management Plan was developed for long term management of remaining contamination and includes plans for institutional and engineering controls (discussed in Section 2), monitoring, operation and maintenance, and reporting.
- 8) Periodic certification of the institutional and engineering controls, as described in this PRR.

No significant changes have been made to the remedy since the remedy was selected and implemented.

1.4 Site Management Status

Submittal of an annual PRR is required by the NYSDEC to document the status of the controls established by the SMP. The components of the remedy listed in Section 1.3 have been fully implemented and are complete, in the case of TZ-1, TZ-2, and TZ-3, or are ongoing as part of the remedy, in the case of cover systems, vapor mitigation, environmental easement, site management, and periodic certification.

This PRR was prepared by CHA on behalf of Ranalli/Taylor St. LLC to document the status of the controls, established by the SMP, during the reporting period from April 28th, 2023, through April 28th, 2024.

2.0 INSTITUTIONAL AND ENGINEERING CONTROLS

Institutional Controls (ICs) and Engineering Controls (ECs) have been established to protect public health and the environment for future use of the Site. The IC and EC Certification Forms are included in Appendix A. As further detailed in the following sections, the ICs and ECs remained in place and were effective during this reporting period and no changes are proposed at this time.

2.1 Institutional Controls

ICs are defined as any non-physical means of enforcing a restriction on the use of a real property that limits human and environmental exposure, restricts the use of groundwater, provides notice

to potential future owners, operator, or members of the public, or prevents actions that would interfere with the effectiveness of a remedial program or with the effectiveness and/or integrity of operation, maintenance, or monitoring activities at or pertaining to a remedial Site. The ICs implemented at the Site include:

- The property may be used for industrial and commercial uses;
- All ECs must be operated and maintained as specified in the SMP;
- All ECs must be inspected at a frequency and in a manner defined in the SMP;
- The use of groundwater underlying the property is prohibited without necessary water quality treatment as determined by the New York State Department of Health (NYSDOH) or the Onondaga County Department of Health to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the NYSDEC;
- Groundwater and other environmental or public health monitoring must be performed as defined in the SMP:
- Data and information pertinent to Site management must be reported at the frequency and in a manner as defined in the SMP;
- All future activities that will disturb remaining contaminated material must be conducted in accordance with the SMP:
- Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in the SMP;
- Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical component of the remedy shall be performed as defined in the SMP;
- Access to the Site must be provided to agents, employees or other representatives of the State of New York with reasonably prior notice to the property owner to assure compliance with the restrictions identified by the Environmental Easement;
- The potential for vapor intrusion must be evaluated for any buildings developed in the area within the IC boundaries and any potential impacts that are identified must monitored or mitigated;
- Vegetable gardens and farming on the Site are prohibited; and,
- An evaluation shall be performed to determine the need for further investigation and remediation should large scale redevelopment occur, if any of the existing structures are demolished, or if the subsurface is otherwise made accessible.

2.2 Engineering Controls

ECs are physical barriers or methods employed to actively or passively contain, stabilize, or monitor contamination, restrict the movement of contamination, or eliminate potential exposure pathways to contamination. The ECs implemented at the Site include:

- Site-Wide Cover and Cap
- Sub-Slab Depressurization Systems

3.0 MONITORING PROGRAM COMPLIANCE

3.1 Components of the Monitoring Program

This section details the results of the monitoring program described in the SMP. In brief, the monitoring program includes:

Singular Event

Indoor air quality sampling event

<u>Annually</u>

- SSDS inspection
- Site-Wide inspection

Quarterly

- Gauging of groundwater monitoring wells
- Groundwater sampling

3.1.1 Changes to the Monitoring Program

At the request of the NYSDOH in the 2023 approval letter, CHA performed one round of additional indoor and outdoor ambient air monitoring at locations prescribed by the department. The methodology and results of that additional sampling are provided in Section 3.2.

Additionally, one change to the monitoring well network was approved with acceptance of the 2023 PRR. Monitoring well MW-105S was removed from the gauging and monitoring network because it was unable to be recovered after Site redevelopment.

There have been no changes made to the SSDS or cover system for the Site since completion of Site redevelopment.

3.2 Indoor Air Sampling

In accordance with the request stated in the 2023 PRR approval letter, indoor air quality sampling was repeated in two locations within the building and an outdoor air sample was collected and analyzed. Additionally, the SSDS vacuum pressure was confirmed prior to sampling with the results discussed in Section 3.3 and provided in Appendix B.

On January 10, 2024, an inspection of the SSDS and vacuum pressure monitoring was conducted. On January 13, 2024, CHA mobilized to the Site to perform indoor air sampling at two locations within the building and outdoor air sampling at a generally upwind location. Figures 3A

and 3B identify the sample locations. CHA utilized 2.7-liter SUMMA® canisters that were individually certified clean by Pace Analytical Services, LLC. The canisters were setup to collect the samples over eight hours, during which the building was mostly unoccupied. The outdoor air sample was placed on the southwest corner of the building within the fenced-in area of the Site.

After the eight-hour sampling event, the SUMMA® canisters were closed/sealed and the flow regulators were removed. The samples were labeled with the project name, sample identification, date, start and stop time, start and stop vacuum pressures, sampler's initials, and applicable laboratory analyses. The sample canisters were submitted to Pace's laboratory located in Mansfield, Massachusetts (NYSDOH Environmental Laboratory Accreditation Program (ELAP) Certification Number 11627) under proper chain-of-custody protocols. The samples were analyzed for VOCs via Environmental Protection Agency (EPA) Method Toxic Organics-15 (TO-15).

3.2.1 Chemical Inventory

To effectively evaluate the source of detections of concentrations of a chemical, an inventory of all chemicals utilized within the building was conducted. The following chemicals were observed during the Site visit and the active ingredients were identified on safety data sheets provided by the various manufacturers.

Item	Main Active Ingredients						
Envirox H ₂ Orange 2 Light Duty and Heavy-	Hydrogen peroxide, orange oil, surfactants						
Duty Sanitizer							
Stainless Steel Cleaner	Water, solvent naptha (petroleum), white mineral						
	oil (petroleum), butane, propane						
Dial Basics Soaps	Alcohols, sodium chloride, inner salts						
Lite & Foamy Cranberry Ice Hand, Hair, and	Water, sodium laureth sulfate						
Body Wash							
Contempo Spotting Solution	Water, butoxydiglycol, hydrogen peroxide, citric						
	acid, sodium sesquicarbonate, disodium cetyl						
	phenyl ether disulfonate, undeceth-3,						
	polycarbonate sodium salt						
Propylene Glycol	Propylene glycol						
Isopropyl Alcohol Spray Bottles	Isopropyl alcohol, water						
Smart Foam A and B	Polymeric diphenylmethane diisocyanate,						
	diphenylmethane-4,4'-diisocyanate						

3.2.2 Indoor Air Sampling Results

The laboratory analytical report is included in Appendix C. All detected parameters for indoor air and outdoor air are presented in Table 1. The detections were compared to Table C2. EPA 2001: Building Assessment and Survey Evaluation Database, SUMMA canister method for the 95th percentile values for indoor or outdoor air found in the above-referenced NYSDOH document. No

detected parameters exceeded their respective Table C.2 Indoor or Outdoor Air comparison values.

3.2.3 Indoor Air Sampling Conclusions

Based upon the results of the laboratory analysis conducted, CHA has concluded that soil vapor intrusion is successfully being mitigated by the active SSDS installed as part of the Remedial Design.

3.3 SSDS Inspection

Concurrently with the indoor air quality sampling event, the SSDS was inspected in accordance with the SMP. The inspection form is included in Appendix B. The inspection identified the following:

- No significant deficiencies or maintenance issues were noted at the time of the inspection.
- Each of the five SSDSs were operating as intended and maintaining at least 1.35 inches
 of water column (in H₂O) vacuum pressure at the pressure gauges.
- A minimum vacuum pressure of -0.004 in H₂O was verified at all SSDS monitoring points accessible for inspection.
- The alarm system for all fans were tested and were in good working order.
- The rooftop fans were in good condition with no evidence of wear, excessive shaking, or electrical failures.
- Two monitoring points (PMP-06 and PMP-12) were inaccessible for inspection due to proximity of equipment.

3.4 Site-Wide Inspection

In accordance with the SMP, a site-wide inspection was conducted to document performance of the ECs and compliance with the SMP and Environmental Easement. Although one annual site-wide inspection is required, the Site was thoroughly inspected and the checklist completed concurrently with each quarterly groundwater monitoring event. The inspection checklists are provided in Appendix D.

The results of the inspections indicate the following:

- The cover system was in good condition; there was no evidence of erosion, depressions, significant cracks, or damage to the cover systems.
- Vegetation is well established over the greenspace areas. No significant bare or thin areas were noted. There was no evidence of stressed vegetation, overgrowth that required maintenance, or excavation of disturbed areas.
- There was no evidence of vector activity.
- Site drainage systems appeared to be in good condition with no evidence of erosion around drainage structure, settlement, siltation or debris constricting flow. Manhole covers were present and in good condition.

• The Site access controls were observed to be in good condition.

3.5 Gauging Groundwater Monitoring Wells

Groundwater water level measurements were monitored during the quarterly groundwater sampling events from each of the groundwater monitoring wells. Since the previous PRR, the groundwater monitoring well riser and top of casing elevations were surveyed to facilitate development of a groundwater contour map. Quarterly groundwater contour maps were provided in quarterly reports. A groundwater contour map for the representative of the reporting year is included in Figure 4.

3.6 Groundwater Sampling Event

The purpose of the groundwater monitoring event is to identify contaminant trends within the groundwater and evaluate whether or not monitored natural attenuation (MNA) is occurring.

3.6.1 Groundwater Sampling Methods

In accordance with the SMP, purging and sampling was conducted using a submersible pump and low-flow purging and sampling techniques quarterly from the second quarter 2023 through the first quarter 2024. A Monsoon submersible pump with dedicated polyethylene tubing and a water quality meter (e.g. Horiba) with flow-through cell were utilized to determine when stable conditions representative of the monitored groundwater zone had been achieved. Due to the small riser diameter size, monitoring well MW-4 is unable to be purged and sampled with the Monsoon submersible pump, so a combination of peristaltic pump and/or disposable polyethylene bailer were utilized to purge a minimum of three well volumes prior to sample collection. Field water quality parameters including depth to water, pH, temperature, turbidity, dissolved oxygen, specific conductance, and oxidation-reduction potential (ORP) were measured and recorded on logs included in Appendix E at each monitoring well location. After three consecutive readings within stabilization parameters, one sample was collected from the dedicated tubing. Following collection, the groundwater samples were packed into coolers with ice and transported to Pace Analytical Services laboratories certified under the NYSDOH Environmental Laboratory Approval Program (ELAP).

Samples were submitted to Alpha Analytical for the following analyses:

- VOCs via EPA Method 8260C;
- Total Iron via EPA Method 6010D;
- Sulfate via EPA Method 300.0;
- Sulfide via EPA Method SM 4500;
- Dissolved gases Methane and Carbon Dioxide;
- Total Organic Carbon (TOC) via EPA Method SM2320;
- Chloride via EPA Method 300; and,
- Nitrogen and Nitrate via EPA Method 300.0.

For quality assurance purposes, one blind duplicate (CHA-1) and matrix spike/matrix spike duplicate (MS/MSD) samples were collected. One trip blank was prepared by the laboratory and accompanied the sample containers throughout the sampling and transport processes. The laboratory analytical results from the four groundwater sampling events conducted during this reporting period are presented in Table 2 and summarized in Section 3.6.3.

3.6.2 Waste Characterization

Purge water was containerized in 55-gallon steel drums and characterized for waste disposal purposes. Laboratory analytical results indicated the water was non-hazardous. The drums were staged on-site to be utilized for future groundwater monitoring events. A waste disposal contractor was retained to transport the drums to a permitted facility in December 2023. The manifest for drum disposal is included in Appendix F.

3.6.3 Groundwater Monitoring Results

Groundwater results were compared to the *Technical and Operational Guidance Series 1.1.1* (TOGS 1.1.1) Ambient Water Quality Standards (AWQS) for Class GA waters. The analytical results are included in Table 2 and presented in Figure 5. The full analytical laboratory reports are included in Appendix G.

3.6.3.1 Upgradient Monitoring Well VOCs

Monitoring well MW-105D is located on the eastern perimeter of the Site and acts as the upgradient monitoring well. Throughout the reporting period, benzene was detected at concentrations between 1.3 and 6.9 μ g/L, which slightly exceeds the TOGS 1.1.1. AWQS of 1 μ g/L. No other VOC parameters were detected in exceedance of their applicable standards. Analytical results indicate the upgradient monitoring well is not impacted by the Site COCs.

3.6.3.2 Downgradient Monitoring Well VOCs

Monitoring wells MW-4, MW-5R, MW-6R, and MW-7R are located near the source area, on the western perimeter of the Site, and act as the downgradient monitoring wells. Generally, these wells show elevated CVOC parameters in exceedance of TOGS 1.1.1 AWQS, as discussed below.

- Monitoring well MW-4 was found to have detections of the daughter products DCE ranging from non-detect to 74 μg/L and VC ranging from 0.26 to 140 μg/L in three of the four monitoring events during the reporting period. CHA redeveloped monitoring well MW-4 during the third quarter sampling event, so the second quarter 2023 sampling event in which detections were lower than other events is likely not associated with an increase of CVOCs.
- Monitoring well MW-5R was found to have detections of:
 - PCE at concentrations ranging from 8.2 to 74 μg/L;
 - TCE at concentrations ranging from 4.3 to 11 μg/L;
 - O DCE at concentrations ranging from 14 to 34 μg/L; and,
 - VC at concentrations ranging from 180 to 280 μg/L.
- Monitoring well MW-6R was found to have detections of:
 - PCE at concentrations ranging from 2.7 to 21 μg/L;
 - TCE at concentrations ranging from 3.5 to 26 μg/L;
 - DCE at concentrations ranging from 41 to 400 μg/L;
 - VC at concentrations ranging from 190 to 1,400 μg/L; and,
 - $_{\odot}$ Benzene at concentrations typically not exceeding the TOGS 1.1.1. AWQS with the exception of one estimated detection at 1.2 J μ g/L.

- Monitoring well MW-7R was found to have detections of:
 - 1,1-dichloroethene at concentrations ranging from 1.7 to 6.4 J μg/L;
 - o DCE at concentrations ranging from 390 to 1,600 μg/L; and,
 - VC at concentrations ranging from 140 to 560 μg/L.

3.6.3.3 Other Parameters

To establish trends and to identify if MNA is occurring, multiple additional parameters were analyzed. These parameters are compared to the upgradient monitoring well (MW-105D) and trends over time during the MNA evaluation period are evaluated. A preliminary evaluation of MNA is provided in the following section.

3.6.4 Monitored Natural Attenuation Evaluation

The Environmental Protection Agency Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solved in Groundwater, September 1998, was referenced to describe the process of natural attenuation and aided in evaluating groundwater parameters. Natural attenuation consists of several processes that work, over time, to reduce the concentration of a given contaminant. These processes include biodegradation, dispersion, advection, dilution from recharge, sorption, and volatilization. Biodegradation is the most important mechanism to reduce contaminant concentrations, and the main contaminants of concern for this Site, CVOCs, biodegrade under natural conditions via reductive dechlorination. CVOCs are halogenated hydrocarbons where at least one hydrogen atom is replaced by a halogen, chlorine. During reductive dechlorination, the CVOC is used as an electron acceptor and a halogen (chlorine) is removed and replaced with a hydrogen atom. In order for this to occur, there must be an appropriate source of carbon for microbial growth. The carbon source can be naturally occurring TOC in the soil or a low-level presence of petroleum hydrocarbons. During the remedial design phase at this Site, detections of high levels of TOC and low-levels of benzene were identified Site-wide in subsurface clays.

Reductive dechlorination results in the formation of intermediates that are more reduced than the parent compound. The source contaminant at the Site is PCE and the sequential reductive dechlorination daughter compounds are TCE, DCE, and VC with a final end product of ethene. Generally, one or more of the following is observed at a site where reductive dechlorination is occurring:

- Low dissolved oxygen concentrations
- Accumulation of daughter products
- Chloride concentrations increase
- Ethene produced
- Methane produced
- Iron (II) produced
- Hydrogen concentrations greater than 1 nanomoles which equals a pH of less than 9 standard units.

As previously mentioned, one set of groundwater sampling results are available for this reporting period. Therefore, comparison to previous data and trend analysis of the MNA parameters will be presented in future PRRs. The preliminary discussion of MNA parameters incorporates field and laboratory data and will be updated as additional groundwater quality data is available.

3.6.4.1 Accumulation of Daughter Products

Figures 6 through 9 present trend graphs of CVOC parameters at monitoring wells MW-4, MW-5R, MW-6R, and MW-7R including historical data collected prior to remediation.

- Limited historical information was available for monitoring well MW-4, but generally this
 monitoring well appeared to be impacted by daughter products DCE and VC, only. Data
 from the reporting year indicates an upward trend of DCE and VC, likely from advection
 of the source PCE plume and subsequent reductive dechlorination.
- Monitoring well MW-5R is showing a strong decline in PCE, TCE and DCE with an increase in VC concentrations, which is indicative of reductive dechlorination.
- Although there are detections of source product PCE at monitoring well MW-6R, the levels appear to be low with respect to daughter products such as DCE and VC which appear to be increasing, indicative of reductive dechlorination.
- Monitoring well MW-7R is slightly to the north of the source area and, based on the data, is likely on the edge of the PCE source plume. Concentrations of daughter products DCE and VC are the only parameters detected at concentrations exceeding TOGS 1.1.1 AWQS. The relatively stable but varying concentrations identified in the reporting year are likely due to continued reductive dechlorination within the source plume and advection of groundwater.

3.6.4.2 Parameters Associated with Terminal Electron Acceptors

Dissolved Oxygen

Reductive dechlorination occurs in an anaerobic environment, which is typically identified as less than 0.5 mg/L dissolved oxygen. Dissolved oxygen was monitored via a flow-through cell on a water quality meter during the low flow purging process for all monitoring wells except for MW-4. The dissolved oxygen concentration of upgradient monitoring well MW-105D was generally less than 2 mg/L which is considered low oxygen, hypoxic, condition. The surrounding area is covered with asphalt, concrete, and buildings, and, therefore, the conditions do not exist to re-oxygenate the groundwater as it moves downgradient.

Generally, the recorded dissolved oxygen concertation was below 0.5 mg/L in downgradient monitoring wells MW-5R and MW-6R once the monitoring well had stabilized. Monitoring well MW-7R was generally slightly above 0.5 mg/L but less than 1.0 mg/L, indicating an oxygen deficient environment despite levels exceeding 0.5 mg/L.

The low oxygen environment is a strong indicator that the conditions for MNA via reductive dechlorination exist.

Nitrate

After dissolved oxygen has been depleted, nitrate may be used as an electron acceptor in anaerobic biodegradation. In order for reductive dechlorination to occur, nitrate concentrations in groundwater should be less than 1 mg/L. In all monitoring wells and all sampling events from the reporting period, except for one (MW-5R sample in Q2 2023), nitrate concentrations were found to be less than 1 mg/L with many quarters of non-detect. There was no appreciable difference between the upgradient and downgradient monitoring wells. Therefore, the conditions exist for MNA via reductive dechlorination.

Sulfate

Sulfate at concentrations above approximately 20 mg/L may compete with CVOC reductive dechlorination and cause competitive exclusion where sulfate-reducing bacteria and bacteria capable of reducing CVOC concentrations are competing for sulfate as a terminal electron acceptor. Background concentrations of sulfate in groundwater exceed 20 mg/L, based on the data from upgradient monitoring well MW-105D.

The reduction of sulfate produces sulfide. Sulfide concentrations vary widely, but are typically detected in MW-4, MW-5R, and MW-6R. It is likely the naturally occurring sulfate is high and strongly reducing conditions exist particularly around MW-4, MW-5R, and MW-6R based on the production of sulfide. Figure 10 shows the sulfate concentrations in each monitoring well over time.

Iron (II)

Iron (III) can be used as an electron acceptor which is reduced to a water-soluble form, iron (II). Iron (II) concentrations greater than 1 mg/L are indicative of conditions where reductive dechlorination may occur, including at the upgradient monitoring well MW-105D. Total iron concentrations repeatedly exceed 1 mg/L in all monitoring wells, as shown on Figure 11. CHA proposes sampling iron (III) [ferric] and iron (II) [ferrous] during the next reporting year to confirm the presence of iron (II) at concentrations exceeding 1 mg/L.

Methane

Methanogenesis typically occurs after oxygen, nitrate, and sulfate have been depleted in the treatment zone. During methanogenesis carbon dioxide is used as an electron acceptor and is reduced to methane. Generally, the presence of methane in groundwater is indicative of strongly reducing conditions. The upgradient monitoring well MW-105D was found to have slightly lower methane concentrations compared to the downgradient monitoring wells, as shown on Figure 12. Therefore, it is expected the presence of contamination is further producing methane and further enhancing the reducing conditions.

3.6.4.3 Additional Parameters

Alkalinity

Increased alkalinity is generally associated with enhanced microbial activity. Since the start of quarterly monitoring in Q1 of 2023, the alkalinity concentrations are relatively stable. A decrease in alkalinity concentrations at MW-4 is likely due to development of the well after excessively turbid samples were collected. This parameter will continue to be monitored.

Chloride

During the breakdown of CVOCs, chlorine is released, and the groundwater concentrations of chloride are likely to increase. As shown on Figure 13, chloride concentrations in the downgradient monitoring wells show a strong increasing trend since quarterly monitoring began in Q1 2023.

Ethene

Ethene is the final breakdown product of reductive dechlorination of PCE. Ethene concentrations were found to be non-detect in the upgradient monitoring well MW-105D for all quarters. Ethene was detected at concentrations ranging from 8.4 to 515 μ g/L in the downgradient monitoring wells with a strong increasing trend at monitoring well MW-6R which is suspected to be near the center

of the remaining contaminant plume. Detection of ethene above the background concentration (non-detect) is a strong indicator that reductive dechlorination is occurring downgradient of the PCE source. Figure 14 shows the ethene concentrations in the downgradient monitoring wells.

рΗ

Groundwater pH was monitored via a flow-through cell on a water quality meter during the purging process. The pH in the upgradient monitoring well MW-105D was found to range between 6.8 and 7.3 pH units. The downgradient monitoring wells ranged from 6.7 to 8.4 pH units which correlates to a hydrogen ion concentration between 4 and 200 nanomoles. The groundwater pH levels are conducive to reductive dechlorination.

Oxidation Reduction Potential

An ORP of less than 50 millivolts (mV) indicates reductive dechlorination is possible and less than -100 millivolts (mV) indicates it is likely. The downgradient monitoring wells show strong negative ORP around -50 to -150 mV. The ORP levels are conducive to reductive dechlorination.

Total Organic Carbon

Total organic carbon is the energy source for reductive dechlorination. The carbon source could be natural organic matter or anthropogenic carbon sources such as fuel from a release. Generally, the ideal concentration of TOC in the subsurface groundwater for reductive dechlorination to occur is >20 mg/L. The background TOC concentrations are approximately 5 to 7 mg/L while the downgradient monitoring well TOC concentrations ranged from 0.8 to 30.4 mg/L. This parameter will continue to be evaluated.

3.6.4.4 Natural Attenuation Software

The Natural Attenuation Software (NAS) was built by various government agencies and Virginia Tech for the purpose of estimating remediation timeframes for MNA. The software assumes several monitoring wells are installed in a line along the approximate centerline of the plume. Due to the location of the source and available real estate downgradient of the source, the downgradient monitoring wells MW-5R, MW-6R, and MW-7R transect the plume on the Site boundary. Additionally, due to redevelopment of the Site, no monitoring well was able to be installed directly in the source area to monitor COCs. Therefore, the applicability of this model is limited. CHA has evaluated several MNA parameters and have shown through other means that the conditions for reductive dechlorination are present at the Site.

3.7 Monitoring Deficiencies

Carbon dioxide was unable to be analyzed during the third quarter 2023 sampling event due to improper bottle ware supplied by the contract laboratory to extract and analyze the parameter. No other deficiencies are noted for the reporting period.

4.0 SUMMARY, CONCLUSIONS & RECOMMENDATIONS

4.1 Summary

The Site was observed to be in overall good condition at the time of the 2023-2024 activities. In summary:

 CHA conducted supplemental indoor air and outdoor air sampling to demonstrate the efficacy of the SSDS.

- CHA inspected the SSDS and identified it was functioning as intended including verifying vacuum pressure at the pressure monitoring points.
- CHA inspected the Site, including the soil cover systems, and found the Site to be in good condition.
- CHA gauged and sampled the monitoring wells for Site COCs and MNA parameters.
- Groundwater results indicated concentrations of CVOCs exceed the AWQS, but generally show a declining trend compared to pre-remedial activity.
- MNA parameters were evaluated and indicate favorable conditions for reductive dechlorination to reduce CVOC concentrations over time. MNA is a slow process that will require periodic evaluation over the coming years.

4.2 Conclusions

As previously indicated, the IC and EC Certification Forms are included in Appendix A. Provided that the ICs and ECs established for the Site remain in place, and are maintained, it is expected that the remedy will continue to be effective in protecting human health and the environment. The results of the indoor air sampling event indicate the SSDS is effectively mitigating the accumulation of sub-slab vapors from the CVOC contamination, and no additional vapor intrusion mitigation or testing is necessary. The results of the groundwater sampling event indicate a significant decline in overall CVOC concentrations compared to pre-remediation conditions. Based on the MNA evaluation, the conditions persist in the groundwater to continue to reduce the remaining contaminant mass via reductive dechlorination of PCE.

4.3 Recommendations

It is recommended that all current Site ICs and ECs remain in place, and the ECs continue to be inspected and monitored. It is recommended that the Site monitoring program continue in accordance with the SMP.

CHA recommends reducing only the laboratory analyzed MNA parameters to bi-annual sampling events with proposed sampling frequency of Q2 and Q4. Additionally, CHA recommends changing the total iron analysis to speciate between ferric and ferrous iron during the bi-annual sampling events in which MNA parameters are included. Therefore, the schedule would consist of the following:

- Quarters 1 and 3
 - VOCs via EPA Method 8260
 - Field Water Quality Parameters
 - Oxygen Reduction Potential
 - Dissolved Oxygen
 - pH
 - Specific Conductivity
 - Temperature
- Quarters 2 and 4
 - VOCs via EPA Method 8260
 - o Iron II via EPA Method 6010
 - Sulfate and Chloride via EPA Method 300
 - Sulfide via EPA Method 4500
 - o Methane, Ethane, Ethene, and Carbon Dioxide via EPA Method 117
 - o Total Organic Carbon via EPA Method 9060

- o Alkalinity via EPA Method 2320
- Nitrate via EPA Method 353
- Field Water Quality Parameters
 - Oxygen Reduction Potential
 - Dissolved Oxygen
 - pH
 - Specific Conductivity
 - Temperature

No other changes to the operation and maintenance plans are recommended at this time. To remain consistent with the reporting period starting and ending on April 28th, groundwater monitoring will continue quarterly through Q1 of 2025, at which time a PRR for the April 28th, 2024 through April 28th 2025 reporting year will be submitted and the frequency of groundwater monitoring will be re-evaluated.

TABLES

Table 1.January 13, 2024 Supplemental Ambient Air Results - Detected Parameters Only

Former Coyne Textile Facility Sub-Slab Depressuriziation System Performance Monitoring

LOCATION				OA-01-2024	40113	IA-01-202	40113	IA-02-20240113		
SAMPLING DATE				1/13/202	24	1/13/20	024	1/13/2024		
LAB SAMPLE ID				L2402331	-03	L240233	31-01	L2402331-02		
SAMPLE TYPE				OUTDOOR AME	BIENT AIR	INDOOF	RAIR	INDOOR AIR		
	Table C.2 Indoor Air 95th Percentile for Indoor Air Sample Comparison	Table C.2 Indoor Air 95th Percentile for Outdoor Air Sample Comparison	Units	Results	Qual	Results	Qual	Results	Qual	
Volatile Organics in Air										
2-Butanone	13.5	14.8	μg/m ³	1.47	U	2.03		1.47	U	
Acetone	120.2	56	μg/m³	3.52		40.4		35.9		
Chloromethane	4.4	2.6	μg/m³	1.2		1.33		1.26		
Dichlorodifluoromethane	32.9	12.2	μg/m ³	2.35		2.37		2.41		
Ethanol	290	82.5	µg/m³	9.42	C	202		13.9		
Isopropanol	475	23.5	µg/m³	1.23	U	39.1		177		
Methylene chloride		10.3	µg/m³	1.74	U	1.74	U	1.94		
n-Hexane	15.2	11.4	µg/m³	0.705	U	0.976		0.705	U	
Styrene	4.3	3.6	µg/m³	0.852	U	1.47		1.89		
Tetrahydrofuran			µg/m³	1.58		2.9		1.55		
Toluene	70.8	49.2	μg/m ³	0.754	U	1.68		0.754	U	
Trichlorofluoromethane	9.4	5.6	μg/m ³	1.3		1.3		1.3		
Volatile Organics in Air by SIM						_		_		
Carbon tetrachloride	0.7	0.7	μg/m ³	0.421		0.453		0.453		

Samples collected by CHA Consulting on 1/13/2024.

Samples analyzed by Alpha Analytical (ELAP 11627 for NYSDOH)

U - Non-Detected Parameter

listed in the NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York.

Blue highlighted cells exceed the Table C.2 95th percentile value

Table 2. Groundwater Sample Results Detected Parameters Only

Former Coyne Textile Facility
Periodic Review Report

Reporting Period: April 28th, 2023 through April 28th, 2024

		LOCATION		MW-1	105D		MW-4						
	SAMPI	ING DATE	5/3/2023	8/16/2023	10/24/2023	3/20/2024	5/3/2023	8/16/2023	10/24/2023	3/21/2024			
	TOT	AL DEPTH	26'	26'	26'	26' 26'		18'	18'	18'			
SCREENED INTERVAL		16' - 26' bgs	16' - 26' bgs	16' - 26' bgs	16' - 26' bgs	8' - 18' bgs	8' - 18' bgs	8' - 18' bgs	8' - 18' bgs				
	NY-												
	AWQS	Units	Results Qua	ıl Results Qua	l Results Qual	Results Qua							
Anions by Ion Chromatograp	ohy												
Chloride	250,000	μg/L	67,900	160,000	65,900	53,200	197,000	132,000	258,000	286,000			
Nitrogen, Nitrate	10,000	μg/L	542	ND	23 J	ND	366	100	170	28 J			
Sulfate	250,000	μg/L	42,900	44,400	23,400	23,200	33,800	138,000	96,900	81,400			
Sulfide	50	μg/L	ND	ND	ND	ND	ND	2,100	1,700	800			
Dissolved Gases by GC													
Carbon Dioxide		μg/L	85,400	NS	91,800	58,700	116,000	NS	56,600	52,400			
Ethane		μg/L	2.35	5.49	5.32	ND	925	750	407	604			
Ethene		μg/L	ND	ND	ND	ND	136	226	81.5	90.6			
Methane		μg/L	2,560	3,520	3,340	1,890	10,700	8,760	7,650	8,800			
General Chemistry													
Alkalinity, Total		mg CaCO	460	577	582	551	941	776	430	406			
Total Organic Carbon		μg/L	5,870	6,110	7,400	6,030	30,400	15,900	20,000	800			
Volatile Organics by GC/MS													
1,1-Dichloroethene	5	μg/L	ND	ND	ND	ND	ND	ND	ND	0.18 J			
Acetone	50	μg/L	ND	ND	ND	ND	3.7 J	2 J	2.3 J	ND			
Benzene	1	μg/L	1.3	6.9	5.7	6.4	ND	0.38	0.48 J	0.59			
Chloroethane	5	μg/L	0.9 J	0.94 J	ND	ND	ND	ND	ND	ND			
cis-1,2-Dichloroethene	5	μg/L	ND	ND	ND	ND	ND	39	56	74			
Methyl cyclohexane		μg/L	ND	ND	ND	ND	0.63 J	0.61 J	ND	ND			
Tetrachloroethene	5	μg/L	ND	ND	ND	ND	ND	ND	ND	ND			
trans-1,2-Dichloroethene	5	μg/L	ND	ND	ND	ND	ND	ND	ND	ND			
Trichloroethene	5	μg/L	ND	ND	ND	ND	ND	ND	ND	ND			
Vinyl chloride	2	μg/L	0.1 J	0.49 J	0.16 J	ND	0.26 J	70	90	140			
Metals							110.000						
Iron	300	μg/L	1,750	2,140	2350	918	142,000	50,600	105,000	6,630			

Samples collected by CHA Consulting, Inc. and analyzed by Alpha Analytical Laboratories (ELAP 11148) or Pace Analytical Services, LLC.

ND - Non Detect

NS - Not Sampled

J - Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses.

BOLD parameter exceeds NY-AWQS: New York TOGS 1.1.1 Ambient Water Quality Standards

Table 2. Groundwater Sample Results Detected Parameters Only

Former Coyne Textile Facility
Periodic Review Report

Reporting Period: April 28th, 2023 through April 28th, 2024

		LOCATION			MW-5R			MW-6R						
	SAMPI	ING DATE	3/30/2023	5/3/2023	8/16/2023	10/24/2023	3/20/2024	3/30/2023	5/3/2023	8/16/2023	10/24/2023	3/20/2024		
	TOTAL DEPTH				20'	20'	20'	20'	20'	20'	20'	20'		
S	CREENED	INTERVAL	10' - 20' bgs											
	NY-													
	AWQS	Units	Results Qual											
Anions by Ion Chromatograph														
Chloride	250,000	μg/L	212,000	188,000	206,000	277,000	318,000	299,000	245,000	407,000	330,000	303,000		
Nitrogen, Nitrate	10,000	μg/L	BD	2,140	ND	ND	ND	ND	521	ND	23 J	37 J		
Sulfate	250,000	μg/L	187,000	169,000	166,000	184,000	162,000	75,000	42,800	63,400	113,000	71,800		
Sulfide	50	μg/L	34	100	470	250	ND	27	ND	ND	150	ND		
Dissolved Gases by GC			_											
Carbon Dioxide		μg/L	41,200	41,700	NS	37,700	29,100	65,400	57,200	NS	69,200	58,700		
Ethane		μg/L	55	55.5	42.8	50.1	37.8	221	200	262	303	259		
Ethene		μg/L	30.4	24.7	22.9	32.6	22.5	185	162	296	343	515		
Methane		μg/L	1,390	1,480	1,270	1,210	788	6,850	6,090	8,240	7,860	4,730		
General Chemistry														
Alkalinity, Total		mg CaCO	328	322	327	270	277	375	350	524	384	421		
Total Organic Carbon		μg/L	5,790	5,960	4,210	3,200	3,060	10,400	9,360	15,200	12,000	12,200		
Volatile Organics by GC/MS														
1,1-Dichloroethene	5	μg/L	ND	ND	ND	ND	ND	0.46 J	0.42 J	ND	0.96 J	0.74 J		
Acetone	50	μg/L	ND											
Benzene	1	μg/L	0.31 J	0.4 J	0.74	0.64	0.88	0.36 J	0.35 J	ND	1 J	1.2 J		
Chloroethane	5	μg/L	ND	2.2 J	ND	1.8 J	1.2 J	ND	1 J	ND	ND	ND		
cis-1,2-Dichloroethene	5	μg/L	34	16	14	14	27	130	98	41	380	400		
Methyl cyclohexane		μg/L		ND	ND	ND	ND		ND	ND	ND	ND		
Tetrachloroethene	5	μg/L	8.2	12	28	11	74	9.7	7.9	2.7	21	9		
trans-1,2-Dichloroethene	5	μg/L	ND	ND	ND	ND	ND	2.7	2.4	ND	ND	3.3 J		
Trichloroethene	5	μg/L	5.8	6.1	7.1	4.3	13	13	11	3.5	26	11		
Vinyl chloride	2	μg/L	220	280	180	200	190	190	470	920	1,500	1400		
Metals		,	10.000	1 = 0 0				11.100						
Iron	300	μg/L	16,300	4,730	7,090	3,010	2,300	11,400	7,420	14,700	11,100	8,620		

Table 2. Groundwater Sample Results Detected Parameters Only

Former Coyne Textile Facility
Periodic Review Report
Reporting Period: April 28th, 2023 through April 28th, 2024

		LOCATION	MW-7R											
	LING DATE	3/30/2023		5/3/2023		8/16/2023		10/24/2023		3/20/2024				
	20'		20'		20'		20'		20'					
SCREENED INTERVAL			10' - 20' b	gs	10' - 20' k	gs	10' - 20'	bgs	10' - 20' bgs		10' - 20' bgs			
	NY-													
	AWQS	Units	Results	Qua	Results	Qual	Results	Qual	Results	Qual	Results	Qual		
Anions by Ion Chromatograp	ohy													
Chloride	250,000	μg/L	301,000		316,000		373,000		338,000		372,000			
Nitrogen, Nitrate	10,000	μg/L	ND		761		ND		ND		28	J		
Sulfate	250,000	μg/L	86,100		65,800		63,000		126,000		92,700			
Sulfide	50	μg/L	40		ND		ND		ND		ND			
Dissolved Gases by GC														
Carbon Dioxide		μg/L	61,800		49,100		NS		74,700		61,600			
Ethane		μg/L	9.77		5.35		24.3		17.9		11.5	J		
Ethene		μg/L	15.8		8.4		36		50.7		28.9			
Methane		μg/L	4,910		2,890		3,710		4,460		4,040			
General Chemistry														
Alkalinity, Total		mg CaCO	376		297		396		382		378			
Total Organic Carbon		μg/L	4,740		2,950		4,540		4,800		5,990			
Volatile Organics by GC/MS														
1,1-Dichloroethene	5	μg/L	3.7		1.9		6.4	J	5.5		3.7	J		
Acetone	50	μg/L	ND		ND		ND		ND		ND			
Benzene	1	μg/L	0.43	J	0.2	J	ND		ND		ND			
Chloroethane	5	μg/L	ND		ND		ND		ND		ND			
cis-1,2-Dichloroethene	5	μg/L	670		390		1600		1400		820			
Methyl cyclohexane		μg/L	ND		ND		ND		ND		ND			
Tetrachloroethene	5	μg/L	ND		ND		ND		ND		ND			
trans-1,2-Dichloroethene	5	μg/L	2.5		1.1	J	ND		ND		ND			
Trichloroethene	5	μg/L	0.32	J	ND		ND		ND		ND			
Vinyl chloride	2	μg/L	180		140		560		510		370			
Metals														
Iron	300	μg/L	9,650		5,020		6,250		4,540		7,270			

FIGURES

V:\PROJECTS\ANY\K7\059294.003\09_DESIGN\DRAWINGS\ENV\PRR_FIGURES.DWG

Site layout from the Alpine Environmental Services First Floor Offices Pressure Monitoring Port Locations, provided in the SMP.

SUPPLEMENTAL AMBIENT AIR SAMPLING LOCATIONS

FORMER COYNE TEXTILE 140 CORTLAND AVENUE SYRACUSE, NEW YORK PROJECT NO. 059294.003

DATE: 04/2024

FIGURE 3A

Figure 6: CVOC Concentrations at MW-4

Figure 7: CVOC Concentrations at MW-5A/MW-5R

Figure 8: CVOC Concentrations at MW-6A/MW-6R

Figure 9: CVOC Concentrations at MW-7A/MW-7R

Figure 10: Trend of Sulfate

Figure 11: Trend of Iron

Note: MW-4 not graphed due to likely interferences from highly turbid samples.

Figure 12: Trend of Methane

Figure 13: Trend of Chloride

Figure 14: Trend of Ethene

APPENDIX A

Institutional Control and Engineering Control Certification Forms

Enclosure 2

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit	Site Details e No. C734144	Box 1	
	e Name Former Coyne Textile		
City Co	e Address: 140 Cortland Avenue Zip Code: 13202 y/Town: Syracuse unty: Onondaga e Acreage: 3.255		
Re	porting Period: April 28, 2023 to April 28, 2024		
		YES	NO
1.	Is the information above correct?		X
	If NO, include handwritten above or on a separate sheet.		
2.	Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period?		X
3.	Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))?		X
4.	Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period?		X
	If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form.		
5.	Is the site currently undergoing development?		X
		Box 2	
		YES	NO
6.	Is the current site use consistent with the use(s) listed below? Commercial and Industrial	X	
7.	Are all ICs in place and functioning as designed?		
	IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below a DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.	ind	
AC	Corrective Measures Work Plan must be submitted along with this form to address th	nese iss	ues.
Sig	nature of Owner, Remedial Party or Designated Representative Date		

		Box 2	A
		YES	NO
	las any new information revealed that assumptions made in the Qualitative Exposure assessment regarding offsite contamination are no longer valid?		X
	you answered YES to question 8, include documentation or evidence hat documentation has been previously submitted with this certification form.		
	are the assumptions in the Qualitative Exposure Assessment still valid? The Qualitative Exposure Assessment must be certified every five years)	X	
	you answered NO to question 9, the Periodic Review Report must include an epdated Qualitative Exposure Assessment based on the new assumptions.		
SITE N	NO. C734144	Воз	x 3
Description of Institutional Controls			

Parcel Owner Institutional Control

O94.-05-06.0 Ranalli/Taylor St., LLC

Ground Water Use Restriction

Landuse Restriction Monitoring Plan Site Management Plan O&M Plan IC/EC Plan

- Property to be used for commercial and industrial uses.

- Continued inspection and maintenance of engineering controls.
- Prohibition on use of groundwater without treatment (adequacy of treatment determined by County Health Department or NYSDOH).
- Site management data and information reporting.
- Operation, maintenance, monitoring, inspection, and reporting related to physical components of remedy.
- Maintain access to the site.
- Prohibition on vegetable gardens and farming.

094.-20-01.0

Ranalli/Taylor St., LLC

Ground Water Use Restriction Landuse Restriction Monitoring Plan Site Management Plan O&M Plan IC/EC Plan

- Property to be used for commercial and industrial uses.
- Continued inspection and maintenance of engineering controls.
- Prohibition on use of groundwater without treatment (adequacy of treatment determined by County Health Department or NYSDOH).
- Site management data and information reporting.
- Operation, maintenance, monitoring, inspection, and reporting related to physical components of remedy.
- Maintain access to the site.
- Prohibition on vegetable gardens and farming.

094.-20-02.0 Ranalli/Taylor St., LLC

Ground Water Use Restriction Landuse Restriction Monitoring Plan Site Management Plan O&M Plan IC/EC Plan

- Property to be used for commercial and industrial uses.
- Continued inspection and maintenance of engineering controls.
- Prohibition on use of groundwater without treatment (adequacy of treatment determined by County Health Department or NYSDOH).
- Site management data and information reporting.
- Operation, maintenance, monitoring, inspection, and reporting related to physical components of remedy.
- Maintain access to the site.
- Prohibition on vegetable gardens and farming.

28,500sqft of South Clinton JMA Tech Properties, LLC

Ground Water Use Restriction Landuse Restriction Monitoring Plan Site Management Plan O&M Plan IC/EC Plan

- Property to be used for commercial and industrial uses.
- Continued inspection and maintenance of engineering controls.
- Prohibition on use of groundwater without treatment (adequacy of treatment determined by County Health Department or NYSDOH).
- Site management data and information reporting.
- Operation, maintenance, monitoring, inspection, and reporting related to physical components of remedy.
- Maintain access to the site.
- Prohibition on vegetable gardens and farming.

Box 4

Description of Engineering Controls

<u>Parcel</u> <u>Engineering Control</u>

094.-05-06.0

Vapor Mitigation Cover System Monitoring Wells

- Cover System

- Vapor Mitigation Systems

094.-20-01.0

Vapor Mitigation Cover System Monitoring Wells

- Cover System

- Vapor Mitigation Systems

094.-20-02.0

Vapor Mitigation Cover System Monitoring Wells

- Cover System

- Vapor Mitigation Systems

28,500sqft of South Clinton St

Vapor Mitigation Cover System Monitoring Wells

- Cover System

- Vapor Mitigation Systems

Box 5	
ection of, and	
in this certification erally accepted	
YES NO	
X	
of the	
nartment:	
partment;	
public health and	
o the	
e the ;	

	Periodic Review Report (PRR) Certification Statements
1.	I certify by checking "YES" below that:
	a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification;
	 b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete.
	YES NO
	old Z
2.	For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.
	YES NO
	${f X}$
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.
	A Corrective Measures Work Plan must be submitted along with this form to address these issues.
	Signature of Owner, Remedial Party or Designated Representative Date

IC CERTIFICATIONS SITE NO. C734144

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Dino Peios	at PO Box 580, Syracuse, NY 13205 print business address				
am certifying asOwner	(Owner or Remedial Party)				
for the Site named in the Site Details Section of this form.					
Signature of Owner Remedial Party,	or Designated Representative Date				
Signature of Owner Remedial Party, Rendering Certification					

EC CERTIFICATIONS

Box 7

Professional Engineer Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

I Samantha J. Miller at	300 S. State St. Suite 600, Syracuse, NY 1320,2
print name	print business address
am certifying as a Professional Engineer for	the Owner
, ,	(Owner or Remedial Party)

Signature of Professional Engineer, for the Owner or Remedial Party, Rendering Certification

May 28, 2024

Stamp (Required for PE)

Date

APPENDIX B

Sub-Slab Depressurization System Inspection Form

SUB-SLAB DEPRESSURIZATION SYSTEM CHECKLIST

Report No. 5505-02

Date: 110 2024 Time: 08/5

Project Name: Former Coyne Textile Project Location: 140 Cortland Avenue, Syracuse, New York									
Inspector(s): Karyn Ehman						Project No. <i>059</i> 294			
Andrew Hodgens					Wea	ither: overcast			
Type of Inspection: ☐Routine ☐Post S	Severe Condition				Tem	p.: Hi 48 FLow 31 F			
FAN/BLOWER SYSTEMINSPECT	ON								
ITEM/CONDITION		F	FAN II	D		COMMENTS			
(Check all that are true)	F-1	F-2	F-3	F-4	F-5	COMMENTS			
The blower unit is operational,	X	Q	X		図				
There is no excessive noise emanating from the blower.	凶	X	×	N	×				
There is no excessive vibration emanating from the blower.	囟	[X]	È	Ø	应				
The blower unit is not excessively hot to the touch.	\boxtimes	Ì	凶	\(\begin{array}{c} \omega \\ \end{array}\)					
The blower unit housing is clean and in good condition.	风	M	\boxtimes	Ø	×				
The fan is mounted securely.		M	\\\\\\		13				
Roof stands positioned correctly and in good condition.	⅓	M	Ø	Z	Ŋ				
Coupling connections are secure.	卤	ΙXΊ	凶	ZV.	卤				
Seals around exhaust stack/conduit properly sealed.	₩ W	<u>,</u>	Ż	区	凶				
Condensate lines are functioning properly, f present.						NA			
Screen cap on exhaust point present and ree of obstructions.	×	ĭ⊠i	Ø	区					
an ID labels are present and legible.			Ø	\square	\square	\a			
No new openings or intakes installed with 10-feet of the exhaust discharge point.	Ŋ			⊠	B	·			
Blower runs when switch in "on" position.	K	Ø	 	[X	X				
Blower stops when switch in "off" position.						no suitch to test at blaves			
PIPING SYSTEM INSPECTION									
TEM/CONDITION		F	AN IE)					
Check all that are true)	F-1	F-2	F-3	F-4	F-5	COMMENTS			
All visible above-grade piping in good condition and free of cracks or other lamage. No "hissing" indicating leakage.	Ø	3 ′	⊠.	Ø	Ø				
No gurgling or indication system is drawing vater or excessive moisture.	Ø	DX	□X	Ø	☑				
Il visible pipe supports are undamaged ind functional (6-feet o.c. horizontal, 8-feet i.c. vertically).	Ø	DX.	K J	Z X	X				
Suction points are completely sealed at the lab penetration.	B	Ø	X	- 	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ 	no suction points			

SUB-SLAB DEPRESSURIZATION SYSTEM CHECKLIST

Report No. 55D5~02

Date: 1.10.2024 Time: 0.815

<u> </u>)ate:	1.10	2.20	224	Time:	0	815		
All labels present and legible.											
ELECTRICAL/ALARM INSPECTION											
ITEM/CONDITION		ı	FAN II	D		COMMENTS					
(Check all that are true)	F-1	F-2	F-3	F-4	F-5	COMIN	MENTS				
No observable electrical component damage.	X	Ø	团	\square	ξ.						
All electrical disconnects/switches tested and functional.	囟	Ø	X	\boxtimes							
All electrical connections appear secure.	X	Q	X								
Junction boxes are closed.	Ø	X		\mathbf{X}	8						
Conduits properly supported and have no visible evidence of damage.	\boxtimes	X		4	团						
Electric sub-meters, if present, are in good condition.						NA	†				
SSDS breakers are identified in electrical panel.	Ø	K	Ø	凶	Ø						
Audible alarm sounds when blower power is disconnected, and pressure falls below alarm set point.		\boxtimes	Ø		\boxtimes						į
Audible alarm and associated tubing in good condition.	Ø		DX	X							
Pressure gauge and associated tubing in good condition.	\boxtimes				X						
All stacks, alarms and pressure gauges are properly labelled, and labels are legible.	B		A		Ø						
PRESSURE MONITORING PORT IN	ISPE	CT	ON (14 T	OTA	(L)				Maria k	
ITEM/CONDITION	TRU	E F	ALSE	N	Α	t .	MENTS				
PVC receptacles with covers present and undamaged.			X			PMP PM	coulers r P-10	الذك أأمم	and sul	MP -9	. and
PVC risers undamaged.	X										
Tubing inside receptacle undamaged.	X										
Screw on caps installed/re-installed following testing.			X			Sin	ew (lif	m s	Silvy	2 DM	P-4
PVC conduit sealed properly at slab.	X	.									
Receptacles properly labelled and labels are legible.	X										
CONCRETE SLAB & BUILDING USE INSPECTION											
ITEM/CONDITION	TRU	E F	ALSE	N.	/A	COM	MENTS				,
All visible pipe penetrations appear properly sealed (e.g. no air leak noise).	×										
There are no significant building use changes (e.g. manufacturing space converted to office space).	风]						

SUB-SLAB DEPRESSURIZATION SYSTEM CHECKLIST

Report No. SSDS-02 Date: 1.10.2024 Time: 0875 There are no changes to the floor X covering materials. CONCRETE SLAB & BUILDING USE INSPECTION (CONTINUED) TRUE FALSE N/A ITEM/CONDITION COMMENTS There are no new significant, observable floor cracks or penetrations that may 攵 breach the floor tightness and effectiveness of the system. There are no additions or significant modifications to the building that X П \Box necessitate additional investigation and/or mitigation. SYSTEM PRESSURE INSPECTION FAN PRESSURES **BASELINE PRESSURE CURRENT PRESSURE** (INCHES H₂0) **FANID** (INCHES H₂0) F-1 165 F-2 F-3 F-4 ,45 1.35 F-5 PRESSURE MONITORING PORT PRESSURES **CURRENT PRESSURE BASELINE PRESSURE** (INCHES H₂0) PRESSURE MONITORING PORT ID (INCHES H₂0) regume - 0.004 - D. 064 PMP-01 PMP-02 - D:020 PMP-03 -0.011 PMP-04 -0.232 PMP-05 -0.111 PMP-06 unable to access PMP-07 -0,037 PMP-08 -0,229 PMP-09 **PMP-10** war -0.188 PMP-11 PMP-12 Unable to access PMP-13 -0.110 PMP-14 -0.004

SUB-SLAB DEPRESSURIZATION SYSTEM CHECKLIST

Report No.	
Date:	Time:

ADDITIONAL NOTES/CORRECTIVE ACTIONS					
		٠			
Circumstance .	T-1-11				
Signature: Icha-lip.com\proj\Projects\ANYK5\059294.001\Reports\Coyne - SSDS Design Report\Draft\Appendix C - Draft Inspection Log	Total Inspection Time: ASSD System Inspection Checklist_Rev 1.doc				

APPENDIX C Air Sampling Laboratory Report

ANALYTICAL REPORT

Lab Number: L2402331

Client: CHA Companies

One Park Place

300 South State St., Suite 600

Syracuse, NY 13202

ATTN: Samantha Miller Phone: (315) 471-3920

Project Name: JMA AIR SAMPLING

Project Number: 059294.001.0005235

Report Date: 01/25/24

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0825), DoD (L2474), FL (E87814), IL (200081), IN (C-MA-04), KY (KY98046), LA (85084), ME (MA00030), MD (350), MI (99110), NJ (MA015), NY (11627), NC (685), OH (CL106), OR (MA-0262), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #525-23-107-88708), USFWS (Permit #206964).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name: JMA AIR SAMPLING **Project Number:** 059294.001.0005235

Lab Number: L2402331 **Report Date:** 01/25/24

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2402331-01	IA-01-20240113	AIR	SYRACUSE, NY	01/13/24 15:45	01/15/24
L2402331-02	IA-02-20240113	AIR	SYRACUSE, NY	01/13/24 13:37	01/15/24
L2402331-03	OA-01-20240113	AIR	SYRACUSE, NY	01/13/24 15:38	01/15/24

Project Name:JMA AIR SAMPLINGLab Number:L2402331Project Number:059294.001.0005235Report Date:01/25/24

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Serial_No:01252417:25

 Project Name:
 JMA AIR SAMPLING
 Lab Number:
 L2402331

 Project Number:
 059294.001.0005235
 Report Date:
 01/25/24

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on January 9, 2024. The canister certification data is provided as an addendum.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 01/25/24

Christopher J. Anderson

ДІРНА

AIR

SAMPLE RESULTS

Lab ID: L2402331-01 Date Collected: 01/13/24 15:45
Client ID: IA-01-20240113 Date Received: 01/15/24

Client ID: IA-01-20240113 Date Received: 01/15/24 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15 Analytical Date: 01/23/24 16:34

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.480	0.200		2.37	0.989			1
Chloromethane	0.645	0.200		1.33	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	107	5.00		202	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	17.0	1.00		40.4	2.38			1
Trichlorofluoromethane	0.231	0.200		1.30	1.12			1
Isopropanol	15.9	0.500		39.1	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	0.687	0.500		2.03	1.47			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	0.983	0.500		2.90	1.47			1

SAMPLE RESULTS

Lab ID: L2402331-01
Client ID: IA-01-20240113
Sample Location: SYRACUSE, NY

Date Collected: 01/13/24 15:45
Date Received: 01/15/24
Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	field Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	0.277	0.200		0.976	0.705			1
Benzene	ND	0.200		ND	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
I-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	0.446	0.200		1.68	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	0.346	0.200		1.47	0.852			1
,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

SAMPLE RESULTS

Lab ID: L2402331-01
Client ID: IA-01-20240113
Sample Location: SYRACUSE, NY

Date Collected: 01/13/24 15:45
Date Received: 01/15/24
Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	93		60-140
Bromochloromethane	93		60-140
chlorobenzene-d5	94		60-140

SAMPLE RESULTS

Lab ID: Date Collected: 01/13/24 15:45

Client ID: IA-01-20240113 Date Received: 01/15/24 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 01/23/24 16:34

		ppbV		ug/m3				Dilution
Parameter	Results	Results RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SII	M - Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.072	0.020		0.453	0.126			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	ND	0.020		ND	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	90		60-140
bromochloromethane	95		60-140
chlorobenzene-d5	93		60-140

SAMPLE RESULTS

Lab ID: L2402331-02 Date Collected: 01/13/24 13:37

Client ID: IA-02-20240113 Date Received: 01/15/24 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15 Analytical Date: 01/23/24 17:13

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
Dichlorodifluoromethane	0.487	0.200		2.41	0.989			1
Chloromethane	0.608	0.200		1.26	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	7.40	5.00		13.9	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	15.1	1.00		35.9	2.38			1
Trichlorofluoromethane	0.232	0.200		1.30	1.12			1
sopropanol	72.0	0.500		177	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	0.558	0.500		1.94	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
rans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	0.524	0.500		1.55	1.47			1

SAMPLE RESULTS

Lab ID: L2402331-02
Client ID: IA-02-20240113
Sample Location: SYRACUSE, NY

Date Collected: 01/13/24 13:37
Date Received: 01/15/24
Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfi	eld Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Benzene	ND	0.200		ND	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
I-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
oluene	ND	0.200		ND	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	0.443	0.200		1.89	0.852			1
,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

SAMPLE RESULTS

Lab ID: L2402331-02 Date Collected: 01/13/24 13:37 Client ID: IA-02-20240113 Date Received: 01/15/24

Client ID: IA-02-20240113 Date Received: 01/15/24
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Campic Deptil.								
r - r -		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	nsfield Lab							
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	93		60-140
Bromochloromethane	93		60-140
chlorobenzene-d5	95		60-140

SAMPLE RESULTS

Lab ID: Date Collected: 01/13/24 13:37

Client ID: IA-02-20240113 Date Received: 01/15/24 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 01/23/24 17:13

		ppbV			ug/m3			Dilution
Parameter	Results	RL	RL MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SII	M - Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.072	0.020		0.453	0.126			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	ND	0.020		ND	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	90		60-140
bromochloromethane	95		60-140
chlorobenzene-d5	95		60-140

SAMPLE RESULTS

 Lab ID:
 L2402331-03
 Date Collected:
 01/13/24 15:38

 Client ID:
 OA-01-20240113
 Date Received:
 01/15/24

Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15 Analytical Date: 01/23/24 17:52

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.476	0.200		2.35	0.989			1
Chloromethane	0.579	0.200		1.20	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	1.48	1.00		3.52	2.38			1
Trichlorofluoromethane	0.231	0.200		1.30	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Гetrahydrofuran	0.537	0.500		1.58	1.47			1

SAMPLE RESULTS

Lab ID: L2402331-03
Client ID: OA-01-20240113
Sample Location: SYRACUSE, NY

Date Collected: 01/13/24 15:38
Date Received: 01/15/24
Field Prep: Not Specified

Затріе Беріп.		Vdqq		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansf	ield Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Benzene	ND	0.200		ND	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
I-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
n/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
1-Ethyltoluene	ND	0.200		ND	0.983			1
,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

L2402331

Project Name:JMA AIR SAMPLINGLab Number:Project Number:059294.001.0005235Report Date:

Report Date: 01/25/24

SAMPLE RESULTS

Lab ID: L2402331-03
Client ID: OA-01-20240113
Sample Location: SYRACUSE, NY

Date Collected: 01/13/24 15:38
Date Received: 01/15/24
Field Prep: Not Specified

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	91		60-140
Bromochloromethane	93		60-140
chlorobenzene-d5	96		60-140

SAMPLE RESULTS

Lab ID: L2402331-03 Date Collected: 01/13/24 15:38

Client ID: OA-01-20240113 Date Received: 01/15/24 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 01/23/24 17:52

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SII	M - Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.067	0.020		0.421	0.126			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	ND	0.020		ND	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	89		60-140
bromochloromethane	95		60-140
chlorobenzene-d5	95		60-140

Project Name:JMA AIR SAMPLINGLab Number:L2402331Project Number:059294.001.0005235Report Date:01/25/24

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 01/23/24 13:57

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab for samp	ole(s): 01	-03 Batch	: WG18773	867-4			
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1

Project Name:JMA AIR SAMPLINGLab Number:L2402331Project Number:059294.001.0005235Report Date:01/25/24

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 01/23/24 13:57

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	d Lab for samp	ole(s): 01	-03 Batch:	: WG18773	67-4			
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1

Project Name: Lab Number: JMA AIR SAMPLING L2402331 **Project Number:** 059294.001.0005235

Report Date: 01/25/24

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 01/23/24 13:57

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	field Lab for samp	ole(s): 01-	03 Batcl	n: WG18773	67-4			
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name: Lab Number: JMA AIR SAMPLING L2402331 **Project Number:** 059294.001.0005235

Report Date: 01/25/24

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15-SIM Analytical Date: 01/23/24 14:36

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - N	/lansfield Lab f	or sample	e(s): 01-03	Batch: W	G187736	8-4		
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	ND	0.020		ND	0.136			1

Project Name: JMA AIR SAMPLING **Project Number:** 059294.001.0005235

Baten Quanty Control

Lab Number: L2402331

Report Date: 01/25/24

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics in Air - Mansfield Lab	Associated sample(s):	01-03	Batch: WG187736	67-3					
Dichlorodifluoromethane	85		-		70-130	-			
Chloromethane	91		-		70-130	-			
Freon-114	100		-		70-130	-			
Vinyl chloride	95		-		70-130	-			
1,3-Butadiene	100		-		70-130	-			
Bromomethane	95		-		70-130	-			
Chloroethane	99		-		70-130	-			
Ethanol	107		-		40-160	-			
Vinyl bromide	100		-		70-130	-			
Acetone	112		-		40-160	-			
Trichlorofluoromethane	105		-		70-130	-			
Isopropanol	93		-		40-160	-			
1,1-Dichloroethene	99		-		70-130	-			
Tertiary butyl Alcohol	92		-		70-130	-			
Methylene chloride	95		-		70-130	-			
3-Chloropropene	106		-		70-130	-			
Carbon disulfide	90		-		70-130	-			
Freon-113	94		-		70-130	-			
trans-1,2-Dichloroethene	97		-		70-130	-			
1,1-Dichloroethane	93		-		70-130	-			
Methyl tert butyl ether	91		-		70-130	-			
2-Butanone	101		-		70-130	-			
cis-1,2-Dichloroethene	96		-		70-130	-			

Project Name: JMA AIR SAMPLING **Project Number:** 059294.001.0005235

,

Lab Number: L2402331

Report Date: 01/25/24

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab As	sociated sample(s):	01-03	Batch: WG187736	37-3				
Ethyl Acetate	100		-		70-130	-		
Chloroform	88		-		70-130	-		
Tetrahydrofuran	98		-		70-130	-		
1,2-Dichloroethane	99		-		70-130	-		
n-Hexane	114		-		70-130	-		
1,1,1-Trichloroethane	105		-		70-130	-		
Benzene	94		-		70-130	-		
Carbon tetrachloride	103		-		70-130	-		
Cyclohexane	111		-		70-130	-		
1,2-Dichloropropane	101		-		70-130	-		
Bromodichloromethane	111		-		70-130	-		
1,4-Dioxane	103		-		70-130	-		
Trichloroethene	93		-		70-130	-		
2,2,4-Trimethylpentane	114		-		70-130	-		
Heptane	116		-		70-130	-		
cis-1,3-Dichloropropene	98		-		70-130	-		
4-Methyl-2-pentanone	116		-		70-130	-		
trans-1,3-Dichloropropene	98		-		70-130	-		
1,1,2-Trichloroethane	98		-		70-130	-		
Toluene	86		-		70-130	-		
2-Hexanone	103		-		70-130	-		
Dibromochloromethane	102		-		70-130	-		
1,2-Dibromoethane	85		-		70-130	-		

Project Name: JMA AIR SAMPLING **Project Number:** 059294.001.0005235

Lab Number:

L2402331

Report Date:

01/25/24

arameter		LCS %Recovery	Qual	_	SD overy	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics in Air -	Mansfield Lab A	Associated sample(s):	01-03	Batch: W	G187736	67-3					
Tetrachloroethene		77			-		70-130	-			
Chlorobenzene		82			-		70-130	-			
Ethylbenzene		86			-		70-130	-			
p/m-Xylene		90			-		70-130	-			
Bromoform		98			-		70-130	-			
Styrene		83			-		70-130	-			
1,1,2,2-Tetrachloroethane		90			-		70-130	-			
o-Xylene		94			-		70-130	-			
4-Ethyltoluene		92			-		70-130	-			
1,3,5-Trimethylbenzene		94			-		70-130	-			
1,2,4-Trimethylbenzene		92			-		70-130	-			
Benzyl chloride		93			-		70-130	-			
1,3-Dichlorobenzene		84			-		70-130	-			
1,4-Dichlorobenzene		84			-		70-130	-			
1,2-Dichlorobenzene		83			-		70-130	-			
1,2,4-Trichlorobenzene		73			-		70-130	-			
Hexachlorobutadiene		72			-		70-130	-			

Project Name: JMA AIR SAMPLING **Project Number:** 059294.001.0005235

Lab Number:

L2402331

Report Date:

01/25/24

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics in Air by SIM - Mansfield La	b Associated s	ample(s):	01-03 Batch: WC	91877368-3	3				
Vinyl chloride	100		-		70-130	-		25	
1,1-Dichloroethene	100		-		70-130	-		25	
cis-1,2-Dichloroethene	95		-		70-130	-		25	
1,1,1-Trichloroethane	104		-		70-130	-		25	
Carbon tetrachloride	101		-		70-130	-		25	
Trichloroethene	93		-		70-130	-		25	
Tetrachloroethene	77		-		70-130	-		25	

Lab Number: L2402331

Report Date: 01/25/24

Project Number: 059294.001.0005235

JMA AIR SAMPLING

Project Name:

Canister and Flow Controller Information

								Initial	Pressure	Flow			
Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check			Controler Leak Chk	Flow Out mL/min	Flow In mL/min	% RPD
L2402331-01	IA-01-20240113	02440	Flow 5	01/09/24	448839		-	-	-	Pass	4.5	4.7	4
L2402331-01	IA-01-20240113	3402	2.7L Can	01/09/24	448839	L2400729-10	Pass	-30.0	-6.4	-	-	-	-
L2402331-02	IA-02-20240113	01189	Flow 5	01/09/24	448839		-	-	-	Pass	4.5	4.2	7
L2402331-02	IA-02-20240113	142	2.7L Can	01/09/24	448839	L2400729-10	Pass	-30.0	-5.4	-	-	-	-
L2402331-03	OA-01-20240113	0482	Flow 5	01/09/24	448839		-	-	-	Pass	4.5	3.8	17
L2402331-03	OA-01-20240113	106	2.7L Can	01/09/24	448839	L2400729-10	Pass	-30.1	-5.1	-	-	-	

L2400729

Project Name: BATCH CANISTER CERTIFICATION Lab Number:

Project Number: CANISTER QC BAT Report Date: 01/25/24

Air Canister Certification Results

Lab ID: Date Collected: 01/05/24 12:00

Client ID: CAN 373 SHELF 9 Date Received: 01/05/24 Sample Location: Field Prep: Not Specified

Sample Depth:

Matrix: Air
Anaytical Method: 48,TO-15
Analytical Date: 01/06/24 21:23

Analyst: RAY

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	d Lab							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1

L2400729

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 01/25/24

Air Canister Certification Results

Lab ID: L2400729-10
Client ID: CAN 373 SHELF 9

Sample Location:

Date Collected: 01/05/24 12:00 Date Received: 01/05/24

Field Prep: Not Specified

	ppbV				ug/m3			Dilutio
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab								
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
Xylenes, total	ND	0.600		ND	0.869			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
tert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,2-Dichloroethene (total)	ND	1.00		ND	1.00			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
tert-Amyl Methyl Ether	ND	0.200		ND	0.836			1

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 01/25/24

Air Canister Certification Results

Lab ID: L2400729-10
Client ID: CAN 373 SHELF 9

Sample Location:

Date Collected:

Lab Number:

01/05/24 12:00

L2400729

Date Received: 01/05/24

Field Prep: Not Specified

Sample Depth:		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	d Lab							
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1

L2400729

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 01/25/24

Air Canister Certification Results

Lab ID: L2400729-10
Client ID: CAN 373 SHELF 9

Sample Location:

Date Collected: 01/05/24 12:00 Date Received: 01/05/24

Field Prep: Not Specified

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansf	ield Lab							
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane	ND	0.200		ND	1.05			1
sopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
1-Chlorotoluene	ND	0.200		ND	1.04			1
1-Ethyltoluene	ND	0.200		ND	0.983			1
,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
ert-Butylbenzene	ND	0.200		ND	1.10			1
,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
,3-Dichlorobenzene	ND	0.200		ND	1.20			1
,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
o-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Jndecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name: Lab Number: **BATCH CANISTER CERTIFICATION** L2400729

Project Number: CANISTER QC BAT **Report Date:** 01/25/24

Air Canister Certification Results

Lab ID: L2400729-10 Date Collected: 01/05/24 12:00

Client ID: CAN 373 SHELF 9 Date Received: 01/05/24 Sample Location:

Field Prep: Not Specified

Sample Depth:

ppbV ug/m3 Dilution Factor RLResults RL MDL Qualifier **Parameter** Results MDL

Volatile Organics in Air - Mansfield Lab

Dilution **Factor** Results Qualifier Units RDL

Tentatively Identified Compounds

No Tentatively Identified Compounds

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	96		60-140
Bromochloromethane	96		60-140
chlorobenzene-d5	94		60-140

L2400729

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 01/25/24

Air Canister Certification Results

Lab ID: Date Collected: 01/05/24 12:00

Client ID: CAN 373 SHELF 9 Date Received: 01/05/24 Sample Location: Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 01/06/24 21:23

Analyst: RAY

		ppbV			ug/m3	_	Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.100		ND	0.264			1
Acrolein	ND	0.050		ND	0.115			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
Freon-113	ND	0.050		ND	0.383			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1

L2400729

Not Specified

Lab Number:

Field Prep:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 01/25/24

Air Canister Certification Results

Lab ID: L2400729-10 Client ID: CAN 373 SHELF 9

Sample Location:

Date Collected: 01/05/24 12:00 Date Received: 01/05/24

сипро вории.		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
1,2-Dichloropropane	ND	0.020		ND	0.092			1
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.100		ND	0.377			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
p/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
Isopropylbenzene	ND	0.200		ND	0.983			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
Benzyl chloride	ND	0.100		ND	0.518			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 01/25/24

Air Canister Certification Results

Lab ID: L2400729-10

Client ID: CAN 373 SHELF 9

Sample Location:

Date Collected:

01/05/24 12:00

Date Received:

Lab Number:

01/05/24

L2400729

Field Prep:

Not Specified

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	95		60-140
bromochloromethane	96		60-140
chlorobenzene-d5	95		60-140

Lab Number: L2402331

Report Date: 01/25/24

Sample Receipt and Container Information

Were project specific reporting limits specified?

JMA AIR SAMPLING

Cooler Information

Project Name:

Cooler Custody Seal

Project Number: 059294.001.0005235

NA Absent

Contair	ner Info	rmation			Initial	Final	Temp			Frozen	
Contair	ner ID	Container Type	(Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2402331-	01A	Canister - 2.7 Liter	1	NA	NA			Υ	Absent		TO15-LL(30),TO15-SIM(30)
L2402331-	02A	Canister - 2.7 Liter	1	NA	NA			Υ	Absent		TO15-SIM(30),TO15-LL(30)
L2402331-	-03A	Canister - 2.7 Liter	ı	NA	NA			Υ	Absent		TO15-LL(30),TO15-SIM(30)

YES

Project Name:JMA AIR SAMPLINGLab Number:L2402331Project Number:059294.001.0005235Report Date:01/25/24

GLOSSARY

Acronyms

EDL

LOQ

MS

RL

RPD

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

 NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.

Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

Project Name:JMA AIR SAMPLINGLab Number:L2402331Project Number:059294.001.0005235Report Date:01/25/24

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- ${\bf J} \qquad \hbox{-Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs)}.$
- Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.

Report Format: Data Usability Report

Project Name:JMA AIR SAMPLINGLab Number:L2402331Project Number:059294.001.0005235Report Date:01/25/24

Data Qualifiers

- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: Data Usability Report

Project Name:JMA AIR SAMPLINGLab Number:L2402331Project Number:059294.001.0005235Report Date:01/25/24

REFERENCES

Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 20

Published Date: 6/16/2023 4:52:28 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; 4-Ethyltoluene, Az

EPA 8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables).

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

1														OCII	.aii 1 0	3.01202+17	.20
ALPHA	AIR CHAIN OF CUSTO	ANAL	/SIS	1 50	PAGE	of 1	Date I	Rec'd in L	ab:				,	ALPI	IA Jo	b#: L2	40233
320 Forhes Blvd A	Mansfield, MA 02048	Projec	t Informa		A S		Repo	ort Inforr	nation	Data	Delivera	bles		Billin	ng Info	rmation	A SOUTH
	0 FAX: 508-822-3288	Project	Name: 31	MA Ai	r Sam	Oline	□ FA	ιx	111000			***********		(CO) 14 / 10	Section Contracts	STATE OF THE PARTY OF	# 059294
Client Informati	on	Project	Location: S	WWW	se N	V	MAE	DEx								Seq 22	
Client: CHA	ansulting	Project	# 0597	194 00	1 /100	5235	1	Criteria C. (Default ba		ulatory Cr	iteria Indicati	ea)	- -	7	- 1		
Address: 300	S. State St. Suite	600 Project I	Manager. S	10 man 1	1:000.	1630		Other For		ranad\	y 		-	Regu	latory	Requireme	nts/Report Li
Syracuse	NY 13202	ALPHA	Quote #:	27 497	8 RI			Iditional De						State/F		Program	Res / Coi
Phone: 315 - 2	57-7250	State of the last	Around Ti			BUN	Repor	rt to: (#differe	nt than Proje	: Manager)						201-10-201	
Fax:	1												-				
Email: Kehma	nha Chasolutions. Cov	Stand	ard [RUSH (only	confirmed if pre-a	pproved)			_	_				100	ANAL	Vele	_
- Units - Carlotte	ive been previously analyzed by A	and the state of the latest	ie:		Time:								1	7	ANAL	1313	%
	Specific Requirements/C						1						/	//	2//	2 / / 2	
Project-Specific	Target Compound List							- 7					11	1	1//1	8	
			***				1000					_/	/_	A Now	es les	/ / /	
ALPHA Lab ID		All Co					Be	fille	0	ut	3.7	1/40	SSIM	Subles P	2 8 A	//	
(Lab Use Only)	Sample ID	End Date	COI Start Time	End Time	Initial Vacuum	Final Vacuum	Sample Matrix*	Sampler' Initials	s Can Size	I D Can	I D - Flow Controller	2	10.75 SIM	Fixed Ga	The state of the s	Sample	Comments (i.e. F
02331-01	IA-01-20240113	01-13-2	4 17:43	15:45	-18 81	-5.61	AA	Alt		3402	02440			П			
-02	IA-02-202401	3 13-13-21	07:49	13:37	-79.75	-473	AΔ	AH	1	120155	01189	-	-				
-03	0A -01 - 2024011	61-13-24	07:56	15:38	-79 70	-5 37	AA				6482	-		\vdash	+		
	01. 01 200 1011	A DESCRIPTION	01.06	13-30	41.40	0.51	MIT	AH	L.TL	100	0482	٨		H	+		
								-	-			+	+	H			
													1				
The state of																	
												T	T		Ħ		
*SAMPLE	MATRIX CODES	AA = Ambier SV = Soil Val Other = Please	xor/Landfill C			UY		С	ontainer	Туре		S		\dagger	+	TARREST CONTRACTOR AND ADDRESS.	clearly, legibly and Samples can not b
		Relinqui	shed By:		Date	/Time		Recei	ved By:			7	Date/1	īme:		clock will not	d tumaround time t start until any ami
	0	den 1	lodger	~	1-13-2		0	, _		AAL	1	1		090	0	submitted an	esolved. All sample e subject to Alpha's
Page 410 of 241 v. (25.5	Sep-15)	T 6	-AAL		1/15/24	0915	My	1	-	AL	1	116	130	4	003	See reverse	onditions. side
- 5 Ho. 14 - 62 Nev. (20-3	sep (a)	200	Α.	Α1 .	11/4/8	4 500	W	000	P	ML	1/16/	24	0500	5			

APPENDIX D Site-Wide Inspection Forms

INSPECTION CHECKLIST

Report No. 002 Time: 09:30 Date: 05/03/2023 Site Name: Former Coyne Textile NYSDEC Site No. C734144 140 Cortland Avenue Project No. 059294 Address: Inspector(s): K. Ehmann Weather: Rain Temp.: Hi 48 deg F Low 40 deg F Type of Inspection: X Routine Post Severe Condition SOIL COVER SYSTEM INSPECTION ITEM/CONDITION TRUE FALSE N/A **COMMENTS** There is no evidence of erosion of cover \boxtimes soils/materials from Site surface. There is no evidence of depressions in \boxtimes \Box \Box cover materials. There is no evidence of significant cracks \boxtimes П П in cover materials. There is no evidence of exposed or \boxtimes damaged demarcation barrier. There is no evidence of vapors or odors \boxtimes \Box emanating from the Site. **VEGETATIVE INSPECTION** ITEM/CONDITION TRUE FALSE N/A **COMMENTS** Vegetation is well established over \boxtimes greenspace areas. There is no evidence of stressed \bowtie П vegetation. There is no evidence of bare or thin \bowtie \Box vegetative cover. There is no evidence of overgrowth or \bowtie \Box areas that need to be mowed. There is no evidence of recent areas of \Box excavation or disturbed areas. **VECTOR INSPECTION** ITEM/CONDITION TRUE FALSE N/A **COMMENTS** No vectors or vector activity (e.g. tracks, \boxtimes droppings, dens, etc.) were observed. There was no evidence of damage to the \boxtimes \Box soil cover system due to vector activity. **DRAINAGE SYSTEM INSPECTION** ITEM/CONDITION TRUE FALSE N/A **COMMENTS** There is no evidence of erosion around \boxtimes drainage structures. There is no evidence of settlement of \boxtimes \Box П drainage structures. Manhole covers present & in good \bowtie \Box There is no evidence of siltation, debris, or \boxtimes other restrictions in the manholes.

INSPECTION CHECKLIST

Report No. 002

Date: 05/03/2023 Time: 09:30

MONITORING WELL INSPECTION				
ITEM/CONDITION	TRUE	FALSE	N/A	COMMENTS
The monitoring wells are in generally good condition.				
Well caps are installed on the wells.				The risers need to be cut to be even so that the J-Plug sits properly
Locks present and secured.			\boxtimes	
SITE ACCESSIBILITY INSPECTION				
ITEM/CONDITION	TRUE	FALSE	N/A	COMMENTS
Site accessible and passable.	\boxtimes			
INSTITUTIONAL CONTROL INSPECTION				
ITEM/CONDITION	TRUE	FALSE	N/A	COMMENTS
There is no evidence of groundwater extraction and/or use on Site.	\boxtimes			
ADDITIONAL NOTES & OBSERVATIONS				

Prior to the second quarter sampling event, CHA used a metal detector to find monitoring wells MW-105Dand MW-4 on April 14, 2023.

MW-105S was unable to be recovered.

Signature:	Karn Imann	Total Inspection Time: 30 min
------------	------------	-------------------------------

There is no evidence of siltation, debris, or

other restrictions in the manholes.

INSPECTION CHECKLIST

Report No. 003 Date: 8/16/2023 Time: 09:00 Site Name: Former Coyne Textile NYSDEC Site No. C734144 Project No. 059294 140 Cortland Avenue Address: Inspector(s): K. Ehmann, A. Hodgens Weather: Overcast Temp.: Hi 80°F Low 68°F Type of Inspection:

Routine Post Severe Condition SOIL COVER SYSTEM INSPECTION ITEM/CONDITION TRUE FALSE N/A **COMMENTS** There is no evidence of erosion of cover \boxtimes soils/materials from Site surface. There is no evidence of depressions in \boxtimes cover materials. There is no evidence of significant cracks \boxtimes in cover materials. There is no evidence of exposed or \boxtimes damaged demarcation barrier. There is no evidence of vapors or odors \bowtie П emanating from the Site. **VEGETATIVE INSPECTION** ITEM/CONDITION TRUE FALSE N/A **COMMENTS** Vegetation is well established over \boxtimes П greenspace areas. There is no evidence of stressed \boxtimes vegetation. There is no evidence of bare or thin \bowtie П П vegetative cover. There is no evidence of overgrowth or \boxtimes areas that need to be mowed. There is no evidence of recent areas of \boxtimes \Box excavation or disturbed areas. **VECTOR INSPECTION** ITEM/CONDITION TRUE FALSE N/A **COMMENTS** No vectors or vector activity (e.g. tracks, \boxtimes droppings, dens, etc.) were observed. There was no evidence of damage to the \bowtie soil cover system due to vector activity. **DRAINAGE SYSTEM INSPECTION** ITEM/CONDITION TRUE FALSE **COMMENTS** N/A There is no evidence of erosion around \boxtimes drainage structures. There is no evidence of settlement of \bowtie drainage structures. Manhole covers present & in good \bowtie condition.

 \boxtimes

INSPECTION CHECKLIST

Report No. 003 Date: 8/16/2023 Time: 09:00 MONITORING WELL INSPECTION **ITEM/CONDITION** TRUE FALSE N/A **COMMENTS** The monitoring wells are in generally good \boxtimes condition. Risers repaired since previous \boxtimes Well caps are installed on the wells. inspection. Locks present and secured. \boxtimes SITE ACCESSIBILITY INSPECTION ITEM/CONDITION TRUE FALSE N/A COMMENTS Site accessible and passable. **INSTITUTIONAL CONTROL INSPECTION** ITEM/CONDITION TRUE FALSE N/A COMMENTS There is no evidence of groundwater \boxtimes extraction and/or use on Site. **ADDITIONAL NOTES & OBSERVATIONS** No additional notes or observations.

mann V:\Projects\ANY\K5\059294.001\Reports\Groundwater Reports\Field Logs\2023 Q1\Inspection Checklist.doc

Signature:

Total Inspection Time: 30 minutes

other restrictions in the manholes.

INSPECTION CHECKLIST

Report No. 004 Date: 10/24/2023 Time: 09:00 Site Name: Former Coyne Textile NYSDEC Site No. C734144 140 Cortland Avenue Project No. 059294 Address: Inspector(s): K. Ehmann, A. Hodgens Weather: Overcast Temp.: Hi 71°F Low 45°F Type of Inspection: X Routine Post Severe Condition SOIL COVER SYSTEM INSPECTION ITEM/CONDITION N/A TRUE FALSE **COMMENTS** There is no evidence of erosion of cover \boxtimes soils/materials from Site surface. There is no evidence of depressions in \boxtimes \Box П cover materials. There is no evidence of significant cracks \boxtimes in cover materials. There is no evidence of exposed or \bowtie damaged demarcation barrier. There is no evidence of vapors or odors \bowtie \Box emanating from the Site. **VEGETATIVE INSPECTION** ITEM/CONDITION TRUE FALSE N/A **COMMENTS** Vegetation is well established over \boxtimes greenspace areas. There is no evidence of stressed \boxtimes vegetation. There is no evidence of bare or thin \bowtie П vegetative cover. There is no evidence of overgrowth or \boxtimes areas that need to be mowed. There is no evidence of recent areas of \boxtimes П excavation or disturbed areas. **VECTOR INSPECTION** ITEM/CONDITION TRUE FALSE N/A **COMMENTS** No vectors or vector activity (e.g. tracks, \boxtimes droppings, dens, etc.) were observed. There was no evidence of damage to the \boxtimes \Box soil cover system due to vector activity. **DRAINAGE SYSTEM INSPECTION** ITEM/CONDITION TRUE FALSE N/A **COMMENTS** There is no evidence of erosion around \boxtimes drainage structures. There is no evidence of settlement of \boxtimes \Box \Box drainage structures. Manhole covers present & in good \bowtie П condition. There is no evidence of siltation, debris, or \boxtimes

INSPECTION CHECKLIST

Report No. 004 Date: 10/24/2023 Time: 09:00 MONITORING WELL INSPECTION **ITEM/CONDITION** TRUE FALSE N/A **COMMENTS** The monitoring wells are in generally good \boxtimes condition. \boxtimes Well caps are installed on the wells. \boxtimes Locks present and secured. SITE ACCESSIBILITY INSPECTION ITEM/CONDITION TRUE FALSE N/A **COMMENTS** Site accessible and passable. INSTITUTIONAL CONTROL INSPECTION **ITEM/CONDITION** TRUE FALSE N/A **COMMENTS** There is no evidence of groundwater \bowtie extraction and/or use on Site. **ADDITIONAL NOTES & OBSERVATIONS** No additional notes or observations. Monitoring Well MW-4 turbid upon purging with bailer. Consider switching sampling techniques to peristaltic pump or other type capable of sampling for 1-inch monitoring well. Kary Jmann Total Inspection Time: 30 minutes Signature:

other restrictions in the manholes.

INSPECTION CHECKLIST

Report No. 005 Date: 3/20/2024 Time: 09:00 Site Name: Former Coyne Textile NYSDEC Site No. C734144 140 Cortland Avenue Project No. 059294 Address: Inspector(s): K. Ehmann, A. Hodgens Weather: Cold, Wintery Temp.: Hi 42°F Low 32°F Type of Inspection: X Routine Post Severe Condition SOIL COVER SYSTEM INSPECTION ITEM/CONDITION N/A TRUE FALSE **COMMENTS** There is no evidence of erosion of cover \boxtimes soils/materials from Site surface. There is no evidence of depressions in \boxtimes \Box П cover materials. There is no evidence of significant cracks \boxtimes in cover materials. There is no evidence of exposed or \bowtie damaged demarcation barrier. There is no evidence of vapors or odors \bowtie \Box emanating from the Site. **VEGETATIVE INSPECTION** ITEM/CONDITION TRUE FALSE N/A **COMMENTS** Vegetation is well established over \boxtimes greenspace areas. There is no evidence of stressed \boxtimes vegetation. There is no evidence of bare or thin \bowtie П vegetative cover. There is no evidence of overgrowth or \boxtimes areas that need to be mowed. There is no evidence of recent areas of \boxtimes П excavation or disturbed areas. **VECTOR INSPECTION** ITEM/CONDITION TRUE FALSE N/A **COMMENTS** No vectors or vector activity (e.g. tracks, \boxtimes droppings, dens, etc.) were observed. There was no evidence of damage to the \boxtimes \Box soil cover system due to vector activity. **DRAINAGE SYSTEM INSPECTION** ITEM/CONDITION TRUE FALSE N/A **COMMENTS** There is no evidence of erosion around \boxtimes drainage structures. There is no evidence of settlement of \boxtimes \Box \Box drainage structures. Manhole covers present & in good \bowtie П condition. There is no evidence of siltation, debris, or \boxtimes

Signature:

INSPECTION CHECKLIST

Report No. 005 Date: 3/20/2024 Time: 09:00 MONITORING WELL INSPECTION **ITEM/CONDITION** TRUE FALSE N/A **COMMENTS** The monitoring wells are in generally good \boxtimes condition. Well caps are installed on the wells. \boxtimes \boxtimes Locks present and secured. SITE ACCESSIBILITY INSPECTION ITEM/CONDITION TRUE FALSE N/A **COMMENTS** Site accessible and passable. INSTITUTIONAL CONTROL INSPECTION **ITEM/CONDITION** TRUE FALSE N/A **COMMENTS** There is no evidence of groundwater \bowtie extraction and/or use on Site. **ADDITIONAL NOTES & OBSERVATIONS** No additional notes or observations. Kary Jmann Total Inspection Time: 30 minutes

APPENDIX E Field Water Quality Parameters

Appendix E Fleld Water Quality Parameters During Groundwater Purging Periodic Review Report

Monitoring Well	Sampling Event	Time	ORP (mV)	рН	Conductivity (mS/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Temperature (deg C)	Depth to Water (ft)
		1345	-92	8.55	1.68	>1000	0.64	11.13	8.72
		1348	-103	8.59	1.67	>1000	0.54	11.6	8.85
		1351	-107	8.6	1.66	811	0.48	11.57	8.72
	2023 Q1	1354	-110	8.6	1.66	780	0.43	11.56	8.66
		1359	-112	8.6	1.66	90	0.43	11.62	8.65
		1403	-106	8.44	1.66	89.7	0.38	11.66	8.52
		1406	-104	8.36	1.66	70	0.44	11.72	8.52
		958	-77	6.67	1.63	949	2.41	11.52	8.67
		1001	-82	6.65	1.63	580	1.15	11.64	8.45
		1005	-88	6.73	1.63	269	0.78	11.68	8.38
	2023 Q2	1009	-90	6.72	1.64	123	0.6	11.65	8.36
		1013	-93	6.71	1.65	66.4	0.51	11.66	8.36
		1017	-95	6.69	1.65	45.9	0.47	11.59	8.34
		1021	-97	6.71	1.65	46.4	0.43	11.55	8.34
		09:03	-105	7.34	1.47	480	7.57	14.4	NR
		09:06	-115	7.36	1.47	373	6.66	14.12	NR
		09:09	-120	7.27	1.48	145	5.29	13.68	NR
		09:12	-120	7.08	1.49	69.7	4.58	13.54	9.01
		09:16	-124	6.93	1.49	37.3	4.03	13.48	9.01
	0000 00	09:19	-132	6.94	1.5	29.8	3.92	13.41	9.06
	2023 Q3	09:22	-133	6.84	1.51	41	4.2	13.25	9.06
		09:25	-137	6.83	1.51	41.6	3.7	13.22	9.08
MW-5R		09:28	-142	6.87	1.51	29.5	3.51	13.25	9.04
		09:31	-149	6.94	1.5	17.1	3.42	13.28	9.07
		09:33	-148	6.89	1.51	16.8	3.4	13.16	9.1
		09:36	-148	6.83	1.51	17.2	3.39	13.14	9.11
		1150	-29	6.14	1.65	403	2.34	16.21	NR
		1154	-101	6.94	1.63	562	0.7	16.27	NR
		1157	-113	7.03	1.63	474	0.65	16.43	NR
	2023 Q4	1200	-111	6.96	1.63	145	0.52	15.64	NR
		1203	-116	6.96	1.63	155	0.46	15.59	NR
		1206	-117	6.96	1.63	71.7	0.43	15.76	NR
		1209	-120	6.97	1.63	36.4	0.45	16.03	NR
		10:37	86	NR	1.74	247	0.51	12.09	8.74
		10:40	107	NR	1.73	227	0.48	12.22	8.66
		11:00	-107	7.45	1.83	117	0.89	11.51	8.68
		11:03	-120	7.32	1.75	45.8	0.53	12.15	8.72
		11:06	-126	7.25	1.3	81.5	0.46	12.33	8.72
		11:09	-127	7.18	1.73	29.9	2.63	12.37	8.74
	2024 Q1	11:12	-128	7.14	1.73	28.7	2.46	12.34	8.68
		11:15	-130	7.1	1.74	31.6	2.18	12.37	8.77
		11:18	-132	7.09	1.73	29	1.94	12.43	8.8
		11:21	-134	7.06	1.74	21.4	1.75	12.47	8.82
		11:24	-136	7.06	1.73	21.4	1.62	12.47	8.74
		11:27	-138	7.06	1.73	20.5	1.48	12.47	8.76

Appendix E Fleld Water Quality Parameters During Groundwater Purging Periodic Review Report

Monitoring Well	Sampling Event	Time	ORP (mV)	рН	Conductivity (mS/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Temperature (deg C)	Depth to Water (ft)
		1226	-36	8.42	0.756	>1000	9.66	10.99	7.78
		1229	-47	8.49	0.931	>1000	9.47	10.84	7.76
		1232	-61	8.57	1.13	>1000	8.91	11.2	7.83
	2023 Q1	1236	-74	8.52	1.38	>1000	8.37	11.53	7.91
		1247	-102	8.64	1.7	790	0.73	11.26	7.83
		1252	-100	8.61	1.71	320	0.42	11.54	7.86
		1256	-102	8.6	1.75	67.7	0.39	11.53	7.85
		1114	-48	6.34	0.912	>1000	1.83	10.82	7.58
		1118	-68	6.43	0.714	588	0.97	10.97	7.55
		1122	-79	6.54	0.718	227	0.68	11.01	7.6
		1126	-82	6.56	0.778	155	0.55	10.99	7.6
		1130	-85	6.58	0.861	102	0.47	11.02	7.6
	2023 Q2	1134	-86	6.57	1.03	90.6	0.36	11.09	7.7
	2020 02	1138	-85	6.58	1.13	49.1	0.47	11.02	7.68
		1142	-90	6.6	1.23	34	0.3	11.15	7.68
		1146	-93	6.61	1.31	32.9	0.28	11.16	7.68
		1150	-93	6.6	1.38	29	0.29	11.16	7.68
		1154	-96	6.63	1.4	19.7	0.3	11.17	7.66
		1158	-98	6.66	1.42	20.9	0.28	11.17	7.66
		10:35	-136	7.67	2.39	492	1.64	14.53	8.22
		10:38	-141	7.67	2.42	386	1.66	14.49	8.2
		10:42	-143	7.65	2.41	469	1.86	14.42	8.25
		10:46	-146	7.65	2.4	309	2.05	13.92	8.25
	2023 Q3	10:50	-140	7.64	2.37	186	2.22	13.88	8.25
		10:54	-149	7.63	2.35	138	2.39	13.95	8.23
MW-6R		10:57	-150	7.62	2.33	135	2.46	13.75	8.22
		11:01	-150	7.61	2.32	81.4	2.45	13.9	8.25
		11:05	-150	7.59	2.31	136	2.41	14.04	8.22
		11:08	-150	7.59	2.3	70.4	2.39	14.03	8.22
		1037	-123	6.9	2.3	>1000	1.35	15.71	NR
		1040 1043	-131 -133	6.81 6.79	2.39 2.19	>1000 >1000	0.93 0.68	15.66	NR NR
								15.59	
		1047 1051	-141 -144	6.81 6.81	2.12 2.08	>1000 881	0.61 0.58	15.77 15.83	NR NR
		1051	-144 -147	6.82	2.08	504	0.56 0.54	15.72	NR NR
		1054	-150	6.83	2.04	303	0.54	15.72	NR NR
	2023 Q4	1100	-152	6.83	1.98	228	0.48	15.68	NR NR
		1100	-158	6.89	1.95	138	0.53	NR	NR NR
		1104	-156	6.84	1.95	142	0.49	15.46	NR NR
		1107	-157	6.84	1.93	106	0.49	15.46	NR NR
		1112	-159	6.85	1.92	108	0.47	15.48	NR NR
		1115	-162	6.86	1.91	89.7	0.45	15.56	NR NR
		1117	-163	6.86	19	78.3	0.44	15.52	NR NR
		12:40	-109	6.92	1.39	1000	9.79	11.1	-8.09
		12:43	-117	6.74	1.42	1000	8.77	11.3	8.07
		12:46	-120	6.72	1.47	734	0.64	11.42	8.1
		12:49	-123	6.7	1.54	400	0.57	11.4	8.1
	2024 Q1	12:53	-122	6.64	1.62	238	0.51	11.5	8.1
		12:56	-122	6.63	1.64	145	0.49	11.62	8.12
		12:59	-123	6.62	1.67	85.5	0.47	11.59	8.14
		13:03	-124	6.61	1.7	76.4	0.44	11.59	8.14
		13:06	-124	6.62	1.71	49.3	0.43	11.61	8.11

Appendix E Fleld Water Quality Parameters During Groundwater Purging Periodic Review Report

Monitoring Well	Sampling Event	Time	ORP (mV)	рН	Conductivity (mS/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Temperature (deg C)	Depth to Water (ft)
		940	-57	8.27	1.9	658	1.08	11.04	8.25
		945	-68	8.3	1.89	530	0.9	10.72	8.27
	2023 Q1	946	-70	8.27	1.87	466	0.82	10.84	8.27
		949	-76	8.35	1.87	408	0.75	10.92	8.29
		955	-73	8.22	1.87	60	0.71	10.74	8.23
		1245	-23	6.85	1.85	228	3.73	10.42	
		1249	-35	6.85	1.98	84.5	2.21	10.81	
	2023 Q2	1253	-43	6.9	1.98	32.7	1.68	11	8.02
	2023 Q2	1258	-43	6.9	1.93	18.9	1.15	11.09	8.02
		1302	-41	6.88	1.94	16	0.85	11.17	8.03
		1306	-42	6.89	1.93	14.3	0.73	11.18	8.04
		11:53	-121	7.61	2.43	143	2.11	14	8.72
		11:56	-122	7.59	2.16	69.6	1.91	13.76	8.71
		11:59	-120	7.56	2.04	43.1	1.83	13.69	8.7
	2023 Q3	12:02	-118	7.54	1.95	26.5	1.87	13.71	8.71
MW-7R	2023 Q3	12:05	-118	7.53	1.93	24.8	1.9	13.72	8.71
IVIVV-7 PC		12:08	-118	7.52	1.89	17.4	1.93	13.81	8.71
		12:11	-118	7.52	1.88	21.6	1.96	13.88	8.71
		12:14	-118	7.52	1.88	21.3	1.97	13.82	8.72
		918	-119	6.81	2.11	79.9	1.13	15.31	NR
		922	-129	6.83	2.06	41.7	0.88	15.24	NR
		925	-129	6.84	2.06	28.2	0.75	15.25	NR
	2023 Q4	929	-130	6.84	2.04	20.4	0.68	15.17	NR
		932	-131	6.85	2.01	20.4	0.65	15.2	NR
		936	-132	6.85	1.99	13.5	0.6	15.21	NR
		940	-133	6.86	2	9.57	0.64	15.21	NR
		14:20	-67	6.9	1.53	418	2.56	9.93	8.42
		14:23	-83	6.64	1.86	219	0.85	11.44	8.46
	2024 Q1	14:26	-89	6.62	1.98	130	0.7	11.75	8.54
	2024 Q1	14:29	-92	6.64	2.02	56.1	0.6	11.83	8.31
		14:32	-93	6.68	2	31.6	0.55	11.64	8.46
		14:35	-94	6.69	2	32.4	0.5	11.65	8.45

Appendix E Fleld Water Quality Parameters During Groundwater Purging Periodic Review Report

Monitoring Well	Sampling Event	Time	ORP (mV)	рН	Conductivity (mS/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Temperature (deg C)	Depth to Water (ft)
		1500	-46	7.05	1.36	>1000	4.59	12.38	10.86
		1504	-38	7.04	1.36	653	1.67	12.41	10.56
		1508	-32	7.04	1.21	364	1.45	12.4	10.49
		1512	-28	7.04	1.14	203	2.53	12.44	10.87
		1516	-28	7.07	1.15	181	1.7	12.49	11.02
	2023 Q2	1521	-28	7.09	1.2	165	2.73	12.55	11.26
	2023 Q2	1526	-30	7.1	1.22	163	1.9	12.59	11.39
		1531	-30	7.11	1.22	160	2.29	12.57	11.34
		1536	-30	7.11	1.24	85.5	1.17	12.59	11.45
		1540	-32	7.12	1.25	73.4	1.35	12.62	11.49
		1544	-32	7.11	1.27	54.1	2.31	12.6	11.48
		1548	-32	7.11	1.27	42.1	1.88	12.58	11.38
		15:01	-83	7.36	1.23	1000	4.33	16.83	11.23
		15:04	-91	7.36	1.27	1000	2.51	16.23	11.45
		15:08	-90	7.34	1.2	755	1.9	16.73	11.77
		15:11	-87	7.34	1.2	199	1.6	16.53	12.15
	2023 Q3	15:14	-86	7.34	1.2	113	1.47	16.58	11.94
	2023 Q3	15:17	-86	7.34	1.2	100	1.37	16.55	11.67
		15:20	-84	7.34	1.21	72.3	1.28	16.49	11.74
1014 40ED		15:24	-78	7.33	1.25	48.2	1.14	15.26	11.84
MW-105D		15:27	-78	7.34	1.26	29.7	1.13	15.05	11.78
		15:30	-79	7.34	1.27	23	1.11	15.16	11.54
		1516	-62	6.88	1.17	728	0.6	17.13	NR
	2023 Q4	1519	-208	8.16	1.22	739	0.45	16.53	NR
		1522	-84	8.84	1.21	716	0.4	16.4	NR
		1525	-84	6.83	1.19	355	0.38	16.3	NR
		1528	-86	6.82	1.18	200	0.38	16.34	NR
		1531	-86	6.83	1.18	120	0.38	16.46	NR
		1534	-86	6.83	1.18	78.6	0.37	16.46	NR
		1538	-86	6.82	1.19	45.8	0.36	16.41	NR
		08:47			0.855	1000	1.21	12.07	10.77
		08:53			0.888	1000	1.1	11.83	11.14
		08:56			0.866	814	1.19	12.25	12.17
		08:59			0.868	227	1.3	12.26	12.59
	0004.04	09:03	RedOx meter	pH meter not	0.891	159	1.33	12.44	12.84
	2024 Q1	09:07	not functioning	functioning	0.92	96.1	1.08	12.54	12.82
		09:10	correctly	appropriately	0.933	80.9	1.01	12.55	13.01
		09:13			0.947	57.6	0.94	12.68	13.06
		09:16			0.947	55.7	0.93	12.66	13.07
		09:19			0.953	45.5	0.85	12.73	13.19
		1334	-82	6.91	1.89	>1000	9.51	11	NR
	2023 Q2	1343	-85	6.84	1.86	>1000	6.1	11.16	NR
		1352	-77	6.77	1.87	>1000	5.47	11.37	NR
MW-4		13:46	-167	7.46	1.71	14.2	3.07	13.65	NR
(Conventional	2023 Q3	13:51	-187	7.43	1.71	13.5	2.1	13.51	NR
Sampling)		13:57	-207	7.41	1.71	13.2	2.22	13.52	NR
yy		08:03	-104	6.96	1.78	52.3	3.61	7.46	NR
	2024 Q1	08:07	-102	6.88	1.76	32.4	3.34	7.4	NR
	2027 01	08:11	-101	6.88	1.75	19.3	3.19	7.45	NR NR

NR = Not Recorded

APPENDIX F

Purge Water Disposal Documentation

SOLVENTS & PETROLEUM

1405 Brewerton Road • Syracuse, NY 13208 Phone: 315-454-4467 | Fax: 315-454-8230 Toll Free: 1-800-315-4467 Page 1

793819

Order Date	Requested Date	P.O. Number	Customer Phone Number
12/04/23	12/04/23		518-453-4500

SOLD TO:

CHA CONSULTING, INC 3 WINNERS CIRCLE ALBANY, NY 12205 Ship To: RANALLI/TAYLOR ST. LLC 140 CORTLAND AVE SYRACUSE, NY 13202

Drivers Instructions/Notes:

ED

SEE MAP & INSTRUCTIONS ATTACHED. MUST HAVE PROPER DOCUMENTS. MUST DO FRIDAY 12/29

Diver Date: 12/29/23 Customer: Life Manuta (Geoff Hawthome)

Empty Drums Returned:

HM Product Description

DOT Description

Quantity Unit

WASTE PURGE WATER

PURGE WATER NON-REGULATED

WASTE PURGE WATER APP# CHACONSULT01 PURGE WATER, NON-REGULATED MATERIAL PER 40 & 49 CFR

2.00 55-G

ADMINISTRATION FEE BOL/ADMIN/PROFILES

1.00 UNIT

Waste Profile Sheet

1405 Brewerto	troleum S	ervice					ΔΙ	PPROV	/A1 #	OLIA	00110111				and the Control of th
	n Rd. Syr	racuse, N	YY 1	3208				ecertific			CONSUL				
Phone (315)45	4-4467 - F	ax (315)	454-	8230						NO		Ar	proval #	# SA	AME
EPA ID# NYD0	13277454							ample #		NON					
							-	ate Sub			4/2023				
					CEN	-DAI	Sa	alespers	son	MAR	K FARRE	LL			
Generator Name	e: RAN	ALLI/TAY	101	R ST. LLC	GENE	:RAL		RMATI							
	CORTLA	AND AVE	NILIE	SI. LLC		-		ling Na		CHA	CONSUL	TING	, INC.		
City: SY	RACUSE		State		14000	1		idress:		3 WII	NNERS C	IRCL	E		
	-699-0840	-	Fax:	Contract of the last of the la	1320	9	Cit		ALBANY	/	State	e: NY	ZIP:	112	205
echnical Conta	ct KAR	YN EHM	A NINI		-			one:		518-4	53-4500			1	
PA ID# VSC	OG TOWN	TH LINE	AIVIN				Fa								
		1000	_				Bill	ling Co	ntact:						
lame of Waste:	IMAS	TE PUR	CEN	AVATED	WAST	E & I	N TOC	NFORM	IATION					_	
rocess Genera														-	
Seneration Sour	co Codo (EM CLEAN O										_	
this a Virgin P	roduct or (G G1	13	Wa	ste Form				W2	00	SIC	Code		_	
levated tempor	Office Marke	Snemical	?			es X	No								
levated temper	ature Mate	erial? (sh	ip>1	00° F)	Ye	s X	No					_			*
IS EPA Hazardo	ous vvaste	17 (40CF)	R Pa	irt 261)	Ye	s X	No			Vaste	9	IX	Non-		
C DOT HELL										Nate		^			
S DOT Hazardo	ous Materi	al? (49C	FR 1	71-177)	Ye	s X	No			· · · · · ·		100	Waste	wate	
S DOT Hazardo	ous Substa	ance? (49	9CFF	R 302)	YE	s X	No								
oes your waste	contain M	larine pol	lutar	nt?	Ye	s X	No		Please lis	st. I		-			2.4
roper Shipping		PURGE	WAT	TER, NON-RE	GULAT	ED M	ATER	IAL PE	R 40 & 4	9 CF	P	_		-	
azardous class	. 14//			DOT Labe	els: N/	A				UN/N		-	T DI C		
eportable Quan		N/A		Based or	n: N/		72.5		-	014/1	1.11	G#	Pkg G	roup	IN/A
entify ALL appl	icable US	EPA was	ste c	odes: N/A						4	ER	G#	N/A	_	
ackaging:	Bulk S			Bulk Liquid	OHD5	5 Dr	ums -	Type S	ize C	TEC	L/POLY		lou		
nticipated Volun	ne	1 - 2 DRI	JMS	Free	uency:			nthly		_	Quarterly	X	Other	100	
				- 100						10	Ruarterry	^	Yearly	1	One Time
ansportation Ed	quipment:		Ta	ank Truck X	Liftgate		Vacu	uum		- 6	oll off	-	-		
HEMICAL COM	IPOSITIO	N: List AI	LL C	onstituents pr	esent				CHAR	CTE	RISTICS		Box Tra	iler	Tank Car
any combinatio	m Allant		I 1	MCDC if	able			. 0.07	OHANA	CIL	KISTICS				
A STATE OF THE PARTY OF THE PAR	m. Attach	analytica	OI	viodo il avalla											
onstituents	n. Attach	analytica Range /Ur	nits			X	Liqui	id V	Chida	1000	10 ""		THE OWNER OF THE PERSONS NAMED IN	-	
nstituents		analytica	nits	Physical State	@70°	X	Liqui		Contract of the last		Solid		Powder		Debris
IRGE WATER	1	analytica Range /Ur	nits	Physical State Specific Gravi	@70° ity: N/A	1		id X	Contract of the last	ge H Ran	ge 5		1	10	Debris
JRGE WATER	1	analytica Range /Ur	nits	Physical State Specific Gravi Flash(°F)	e @70° ity: N/A >14	1			Contract of the last				1	10	Debris
IRGE WATER	1	analytica Range /Ur	nits	Physical State Specific Gravi Flash(°F) BTU/Pound	e @70° ity: N/A >14 N/A	0			Contract of the last		ge 5 Actual		1	10	Debris
IRGE WATER	1	analytica Range /Ur	nits	Physical State Specific Gravi Flash(°F) BTU/Pound Odor	e @70° ity: N/A >14 N/A VARIES	0	to		Contract of the last		ge 5 Actual		1	10	Debris
RGE WATER	1	analytica Range /Ur	nits	Physical State Specific Gravi Flash(°F) BTU/Pound Odor Pumpable @	e @70° ity: N/A >14 N/A VARIES	0 X	to	N/A	Contract of the last	H Ran	ge 5 Actual Color No		to	10	Debris
JRGE WATER	1	analytica Range /Ur	nits	Physical State Specific Gravi Flash(°F) BTU/Pound Odor Pumpable @ Viscosity	e @70° ity: N/A >14 N/A VARIES	X X	Yes Low	N/A	Contract of the last		ge 5 Actual Color No Medium		to	10	Debris
IRGE WATER	1	analytica Range /Ur	nits	Physical State Specific Gravi Flash(°F) BTU/Pound Odor Pumpable @ Viscosity Boiling Point	e @70° ity: N/A >14 N/A VARIES 70° F	X X X	Yes Low >95°	N/A	Contract of the last	H Ran	ge 5 Actual Color No Medium <95° F		to	10	
RGE WATER	1	analytica Range /Ur	nits	Physical State Specific Gravi Flash(°F) BTU/Pound Odor Pumpable @ Viscosity	e @70° ity: N/A >14 N/A VARIES 70° F	X X X X <5	Yes Low >95° % So	N/A F Dilid	P	H Ran	ge 5 Actual Color No Medium <95° F		to	10	
JRGE WATER	1	analytica Range /Ur	nits	Physical State Specific Gravi Flash(°F) BTU/Pound Odor Pumpable @ Viscosity Boiling Point	e @70° ity: N/A >14 N/A VARIES 70° F	X X X X <5 <5	Yes Low >95° % So % Dis	F plid ssolved	Solids	H Ran	ge 5 Actual Color No Medium <95° F		to	10	
onstituents JRGE WATER EE ANALYTICAL	1	analytica Range /Ur	nits	Physical State Specific Gravi Flash(°F) BTU/Pound Odor Pumpable @ Viscosity Boiling Point	e @70° ity: N/A >14 N/A VARIES 70° F	X X X X <5 <5 <5	Yes Low >95° % So % Dis % Su	F plid ssolved uspende	Solids d Solids	H Ran	ge 5 Actual Color No Medium <95° F		to	10	
PRINTER JRGE WATER EE ANALYTICAL)	analytica Range /Ur 100%	nits	Physical State Specific Gravi Flash(°F) BTU/Pound Odor Pumpable @ Viscosity Boiling Point >20 % Wa	e @70° N/A >14 N/A VARIES 70° F	X X X X <5 <5 <5 <5	Yes Low >95° % So % Dis % Su % As	F blid ssolved uspendesh Conte	Solids d Solids	H Ran	ge 5 Actual Color No Medium <95° F	rine	DARK		
PRINTER PROPERTY OF THE PROPE)	analytica Range /Ur 100%	nits	Physical State Specific Gravi Flash(°F) BTU/Pound Odor Pumpable @ Viscosity Boiling Point >20 % Wa	e @70° ty: N/A >14 N/A VARIES 70° F	X X X X <5 <5 <5 <5 X	Yes Low >95° % So % Dis % Su % As	F Did ssolved uspende sh Conterpable	Solids d Solids nt Dispe	H Ran	ge 5 Actual Color No Medium <95° F 5 % Chio	prine	to DARK Solids<2		
IRGE WATER) R	analytica Range /Ur 100%	nits X	Physical State Specific Gravi Flash(°F) BTU/Pound Odor Pumpable @ Viscosity Boiling Point >20 % Wa	e @70° N/A >14 N/A VARIES 70° F	X X X X <5 <5 <5 <5	Yes Low >95° % So % Dis % Su % As	F Did ssolved uspende sh Conterpable	Solids d Solids	H Ran	ge 5 Actual Color No Medium <95° F	prine	to DARK Solids<2		High Solids>250
DISTITUTENTS URGE WATER EE ANALYTICAL District of the control o)	analytica Range /Ur 100%	nits	Physical State Specific Gravi Flash(°F) BTU/Pound Odor Pumpable @ Viscosity Boiling Point >20 % Wa	e @70° ty: N/A >14 N/A VARIES 70° F	X X X X <5 <5 <5 <5 X	Yes Low >95° % So % Dis % Su % As	F Did ssolved uspende sh Conterpable	Solids d Solids nt Dispe	H Ran	ge 5 Actual Color No Medium <95° F 5 % Chio	prine	to DARK Solids<2		High
PROFESSIONAL STREET STR	Process Solids	analytica Range /Ur 100% Reclaim	nits	Physical State Specific Gravi Flash(°F) BTU/Pound Odor Pumpable @ Viscosity Boiling Point >20 % Wa Fractionation Inceneration	e @70° ty: N/A >14 N/A VARIES 70° F	X X X <55 <55 <55 X X Lan	Yes Low >95° % So % Dis % Su % As Pump dfill	F blid ssolved uspendersh Conte pable Ha	Solids d Solids nt Dispe	H Ran	ge 5 Actual Color No Medium <95° F 5 % Chio	prine	to DARK Solids<2		High Solids>250
JRGE WATER	Process Solids	analytica Range /Ur 100% Reclaim Reclaim	X	Physical State Specific Gravi Flash(°F) BTU/Pound Odor Pumpable @ Viscosity Boiling Point >20 % Wa Fractionation Inceneration	e @70° ty: N/A >14 N/A VARIES 70° F Fue X	X X X <55 <55 <55 X X Lan	Yes Low >95° % So % Dis % Su % As	F blid ssolved uspendersh Conte pable Ha	Solids d Solids nt Dispe	H Ram	ge 5 Actual Color No Medium <95° F 5 % Chio	prine	DARK Solids<2	50#	High Solids>250 Other
DIRECTION OF THE PROPERTY OF T	Process Solids Process	analytica Range /Ur 100% Reclaim Reclaim	X	Physical State Specific Gravi Flash(°F) BTU/Pound Odor Pumpable @ Viscosity Boiling Point >20 % Wa Fractionation Inceneration	e @70° ty: N/A >14 N/A VARIES 70° F	X X X <55 <55 <55 X X Lan	Yes Low >95° % So % Dis % Su % As Pump dfill	F Dilid SSOIVED AIR PROPERTY OF THE PROPERTY O	Solids d Solids nt Dispe	H Ram	ge 5 Actual Color No Medium <95° F 5 % Chlo	prine	DARK Solids<2 er	50#	Solids>250 Other Solids>250
DISTITUTE TO STORY OF THE PROPERTY OF THE PROP	Process Solids R Process Solids	analytica Range /Ur 100% Reclaim Reclaim	X	Physical State Specific Gravi Flash(°F) BTU/Pound Odor Pumpable @ Viscosity Boiling Point >20 % Wa Fractionation Inceneration	e @70° ty: N/A >14 N/A VARIES 70° F Fue X	X X X X <5 <5 <5 <5 Lan	Yes Low >95° % So % Dis % Su % As Pump dfill	F Dilid SSOIVED AIR PROPERTY OF THE PROPERTY O	Solids d Solids nt Dispe	H Ram	ge 5 Actual Color No Medium <95° F 5 % Chio	prine	DARK Solids<2 er	50#	High Solids>250 Other
DISTITUTENTS JRGE WATER EE ANALYTICAL District for: S Use Only: Droved for:	Process Solids Process Solids DGARDO	analytica Range /Ur 100% Reclaim Reclaim	X	Physical State Specific Gravi Flash(°F) BTU/Pound Odor Pumpable @ Viscosity Boiling Point >20 % Wa Fractionation Inceneration	e @70° ty: N/A >14 N/A VARIES 70° F Fue X	X X X < <5 < <5 < <5 Land	Yes Low >95° % So % Dis % Su % As Pump dfill	F Dilid SSOIVED AIR PROPERTY OF THE PROPERTY O	Solids d Solids int Dispe az Water Dispel az Water	X X < < E	ge 5 Actual Color No Medium <95° F 5 % Chlo	prine az Wat	DARK Solids<2 er	50#	Solids>250 Other Solids>250

PLEASE SIGN & RETURN

Does Your Waste Exhibit the	Following Properties?		Does Your Waste Contain:		NO	Actual D
Hydrophonic (Reacts	with water)	NO	PCB"s > 25ppm		Yes	Actual Range
Pyrophonic (Reacts)	with Flame)	Yes	Phenolics >100ppm		Yes	
(100,000)	vith movement)	Yes	Free Ammonia		Yes	
Thermally Sensitive (Reacts	when beat in	Yes	Free Sulfides		Yes	
Acid Reactive	when heated)	Yes	Free Cyanides		Yes	
Oxidizer		Yes	OSHA Carcinogens	-	Yes	
Alkaline Reactive		Yes	Dioxins	-		
Auto Polymerizer		Yes	Pesticides	-	Yes	
		Yes	NESHAP Benzene >10%	-	Yes	
METALS & ORGANICS	TCLP TOTAL	X NONE IN	THIS SECTION		Yes	
D-Code Constituents	reg. Level	Actual Ra	THIS SECTION			***
D004 Arsenic	>= 5.0 mg/l		D028 1,2-Dichloroethane		Reg. Level	Actual Range
D005 Barium	>=100 mg/l	77	DO20 1,2-Dichloroethane		>=0.5 mg/l	
D006 Cadmium	>=1.0 mg/l		D029 1,1-Dichloroethylene		>=0.7 mg/l	
D007 Chromium	>=5.0 mg/l		D030 1,4-Dinitrotoluene		>=0.13 mg/l	
D008 Lead	>=5.0 mg/l	-	D031 Heptachlor (and it's epoxide	9)	>=0.008 mg/l	
D009 Mercury	>=0.2 mg/l	-	D032 Hexachlorobenzene		>=0.13 mg/l	
D010 Selenium	>=1.0 mg/l	-	D033 Hexachlorobutadiene		>=0.5 mg/l	
D011 Silver	>=5.0 mg/l		D034 Hexachloroethane		>=3.0 mg/l	
0012 Endrin	>=0.02 mg/l		D035 Methyl Ethyl Ketone		>=200 mg/l	
0013 Lindane	>=0.4 mg/l		D036 Nitrobenzene		>=2.0 mg/l	
0014 Methoxychlor	>=10.0 mg/l		D037 Pentachlorophenol		>=100 mg/l	
0015 Toxaphene			D038 Pyridine	_	>=5.0 mg/l	
0016 2,4-D	>=0.5 mg/l		D039 Tetrachloroethylene	_	>=0.7 mg/l	
0017 2,4,5-TP Silver	>=10.0 mg/l		D040 Trichloroethylene	+	>=0.7 mg/l	
0018 Benzene	>=1.0 mg/l		D041 2,4,5-Trichlorophenol	-		
019 Carbon Tetachloride	>=0.5 mg/l		D042 2,4,6-Trichlorophenol	\dashv	>=400 mg/l	
020 Chlordane	>=0.5 mg/l		D043 Vinyl Chloride	-	>=2.0 mg/l	
021 Chlorobenzene	>=0.03 mg/l		Other Metals		>=0.2 Mg/l	
022 Chloroform	>=100 mg/i		Aluminum	_		11
	>=6.0 mg/l		Beryllium	+	>=5.0 mg/l	
023 O-Cresol	>=200 mg/l		Copper	_	>=10.0 mg/l	
024 m-Cresol	>=200 mg/l		Maganese	-	>=1500 mg/l	
025 p-Cresol	>=200 mg/l		Nickel	-	>=100 mg/l	a substitution of the subs
026 Cresol	>=200 mg/l		Thallium	_	>=1000 mg/l	and the same of th
027 1,4-Dichlorobenzene	>=7.5 mg/l		Zinc		>=100 mg/l	
alifornia List Contaminants:	X Unknown None Pre	nont.			>=3000 mg/l	
Nickel >134 mg/l	Yes X No	sent	Thallium >130 mg/l Yes		X No	
JPPLEMENTAL INFORMATION			HOC'S >1000 mg/l Yes		X No	
OTE: Wasta automitted	ON:					
JIE: Waste submitted for Lan	nd Disposal requires MSDS,	Analytical, or	Sample for analysis. Similar information requires Sample and Between			
for other waste streams.	Waste submitted for Reclair	m or Fractiona	Sample for analysis. Similar informati ation requires Sample and Return Spe	on ma	y be required	
ipplemental Information Attacl	hed? X Yes	No XI	ab Analysis Profile MSD	Cificati		
			ab Analysis Profile MSD	s [Other	
imple Submitted ith Waste Da	ata Sheet? Yes X	No	D			
claim/Fractionation Specificat		_	Date previously submitted:			
his waste contains balance	tions Submitted?	Yes	No			
his waste contains halogens >	>1000ppm, what is the source	e?				
ed in subpart D of red and	>1000ppm, I hereby rebut the	e presumption	that our used oil has been mixed with	h halos	ronated by	
ed in subpart D of part 261 of						
	7.00 X	Not Applicab	le (this waste contains <1000 ppm ha	losona		
NERATOR CERTIFICATION:			t Tood ppin ha	iogens	, or is not a used	oil)
ereby certify that I have person	nally examined and am fami	liar with the in	forms time to the second			
inquiry of those individuals in	nmediately responsible for o	hai willi lile if	formation submitted in this and all atta	ached	documents. Base	ed on
complete, and that all known	and suspected hazards have	blaining this if	nformation. I believe that the submitted osed. I further certify that the sample I	d inform	nation is true, ac	curate
y representative of this waste	stream	ve been disclo	sed. I further certify that the sample I	submi	tted with this prof	ile is
eoff Hawthoma 15	reach land	01 10 1	1+		1 ,	
nted Name/Title	curity bear	2/1/19	Dh		12/29/2	-3
thorization to Correct WPS:		Signature		T	Date	
thorize Solvents & Petrolous	Comeration				AM.	
racterzation and/or regulation	Corporation to make correct	tions to this V	VPS form, such corrections being continued a corrected convivuil he could be	sistent	with the results	of name!-
in and/or regulatory	7		mat a confected copy will be sent to m	e	uie resuits (n sample
e. Any significant changes or	deviations from the waste re	ceived versus	s the information on this form requires		Marin decident and the	

NOTE: Solvents & Petroleum DOES NOT accept waste containing PCB'S >25ppm, Dixon, Radioactive, or Biological Compounds

APPENDIX G Groundwater Laboratory Reports

ANALYTICAL REPORT

Lab Number: L2324376

Client: CHA Companies

One Park Place

300 South State St., Suite 600

Syracuse, NY 13202

ATTN: Samantha Miller Phone: (315) 471-3920

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Report Date: 05/17/23

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OH (CL108), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number: L2324376 **Report Date:** 05/17/23

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2324376-01	MW-5R-20230503	WATER	SYRACUSE,NY	05/03/23 10:25	05/03/23
L2324376-02	MW-6R-20230503	WATER	SYRACUSE,NY	05/03/23 12:05	05/03/23
L2324376-03	MW-7R-20230503	WATER	SYRACUSE,NY	05/03/23 13:10	05/03/23
L2324376-04	MW-4-20230503	WATER	SYRACUSE,NY	05/03/23 14:00	05/03/23
L2324376-05	MW-105D-20230503	WATER	SYRACUSE,NY	05/03/23 15:50	05/03/23
L2324376-06	CHA-1-20230503	WATER	SYRACUSE,NY	05/03/23 12:00	05/03/23
L2324376-07	TRIP BLANK-20230503	WATER	SYRACUSE,NY	05/03/23 00:00	05/03/23

Project Name:FORMER COYNE TEXTILELab Number:L2324376Project Number:059294.001Report Date:05/17/23

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.							

Project Name: FORMER COYNE TEXTILE Lab Number: L2324376

Project Number: 059294.001 **Report Date:** 05/17/23

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

The analysis of Sulfide was subcontracted. A copy of the laboratory report is included as an addendum. Please note: This data is only available in PDF format and is not available on Data Merger.

Sample Receipt

L2324376-04: The sample was received above the appropriate pH for the Total Metals analysis. The laboratory added additional HNO3 to a pH <2.

Volatile Organics

L2324376-04: The sample was received in the proper acid-preserved containers; however, upon analysis, the pH was determined to be greater than 2, and thus the method required holding time was exceeded. The WG1778909-6 MS recovery, performed on L2324376-03, is outside the acceptance criteria for cis-1,2-dichloroethene (0%). The unacceptable percent recovery is attributed to the elevated concentrations of target compounds present in the native sample.

Dissolved Gases

L2324376-01, -04, and -06: The samples were collected in pre-preserved vials; however, the pH of the samples were determined to be greater than two.

The WG1777653-4/-5 MS/MSD recoveries, performed on L2324376-03, are outside the acceptance criteria for methane (55%/37%). The unacceptable percent recoveries are attributed to the elevated concentrations of target compounds present in the native sample.

Carbon Dioxide

The WG1775064-4D/-5D MS/MSD recoveries, performed on L2324376-03, are outside the acceptance

Project Name:FORMER COYNE TEXTILELab Number:L2324376Project Number:059294.001Report Date:05/17/23

Case Narrative (continued)

criteria for carbon dioxide (123%/137%). The unacceptable percent recoveries are attributed to the elevated concentrations of target compounds present in the native sample.

Anions by Ion Chromatography

The WG1774875-3/-4 MS/MSD recoveries, performed on L2324376-03, are outside the acceptance criteria for nitrogen, nitrate (74%/76%), sulfate (MS 111%); however, the associated LCS recoveries are within criteria. No further action was taken.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 05/17/23

Jufani Morrissey-Tiffani Morrissey

ORGANICS

VOLATILES

05/03/23 10:25

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

SAMPLE RESULTS

Lab Number: L2324376

Report Date: 05/17/23

Lab ID: Date Collected: L2324376-01

Client ID: Date Received: 05/03/23 MW-5R-20230503 Field Prep: Sample Location: SYRACUSE,NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 05/14/23 12:45

Analyst: JIC

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	12		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	0.40	J	ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	340	Е	ug/l	1.0	0.07	1
Chloroethane	2.2	J	ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	6.1		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: FORMER COYNE TEXTILE L2324376

Project Number: Report Date: 059294.001 05/17/23

SAMPLE RESULTS

Lab ID: Date Collected: 05/03/23 10:25 L2324376-01

Client ID: Date Received: 05/03/23 MW-5R-20230503 Sample Location: Field Prep: SYRACUSE,NY Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	16		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	110	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	103	70-130	
Dibromofluoromethane	102	70-130	

Project Name: FORMER COYNE TEXTILE Lab Number: L2324376

Project Number: Report Date: 059294.001 05/17/23

SAMPLE RESULTS

Lab ID: L2324376-01 Date Collected: 05/03/23 10:25

Client ID: Date Received: 05/03/23 MW-5R-20230503 Field Prep: Sample Location: Not Specified SYRACUSE,NY

Sample Depth:

Matrix: Water Analytical Method: 117,-

Analytical Date: 05/11/23 17:38

Analyst: SRO

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Dissolved Gases by GC - Mansfield Lab							
Methane	1480		ug/l	2.00	2.00	1	Α
Ethene	24.7		ug/l	0.500	0.500	1	Α
Ethane	55.5		ug/l	0.500	0.500	1	Α

Project Name: Lab Number: FORMER COYNE TEXTILE L2324376

Project Number: Report Date: 059294.001 05/17/23

SAMPLE RESULTS

Lab ID: D Date Collected: 05/03/23 10:25 L2324376-01

Client ID: Date Received: 05/03/23 MW-5R-20230503 Field Prep: Sample Location: SYRACUSE,NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 05/17/23 00:27

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab									
Vinyl chloride	280		ug/l	5.0	0.36	5			

Surrogate	% Recovery	Acceptan Qualifier Criteria	
1,2-Dichloroethane-d4	101	70-13	0
Toluene-d8	101	70-13	0
4-Bromofluorobenzene	107	70-13	0
Dibromofluoromethane	92	70-13	0

Project Name: FORMER COYNE TEXTILE Lab Number: L2324376

Project Number: 059294.001 **Report Date:** 05/17/23

SAMPLE RESULTS

07 mm == 11=00=10

 Lab ID:
 L2324376-01
 D
 Date Collected:
 05/03/23 10:25

 Client ID:
 MW-5R-20230503
 Date Received:
 05/03/23

 Sample Location:
 SYRACUSE,NY
 Field Prep:
 Not Specified

Sample Depth:

Matrix: Water Analytical Method: 117,-

Analytical Date: 05/05/23 17:05

Analyst: SRO

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Dissolved Gases by GC - Mansfield Lab						
Carbon Dioxide	41.7		mg/l	6.00	6.00	2

L2324376

05/03/23 12:05

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

SAMPLE RESULTS

Lab Number:

Date Collected:

Report Date: 05/17/23

Lab ID: L2324376-02

Client ID: MW-6R-20230503 Sample Location: SYRACUSE,NY

Date Received: 05/03/23 Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 05/14/23 13:07

Analyst: JIC

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	7.9		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	0.35	J	ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	630	E	ug/l	1.0	0.07	1
Chloroethane	1.0	J	ug/l	2.5	0.70	1
1,1-Dichloroethene	0.42	J	ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	2.4	J	ug/l	2.5	0.70	1
Trichloroethene	11		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: FORMER COYNE TEXTILE Lab Number: L2324376

Project Number: 059294.001 **Report Date:** 05/17/23

SAMPLE RESULTS

Lab ID: L2324376-02 Date Collected: 05/03/23 12:05

Client ID: MW-6R-20230503 Date Received: 05/03/23 Sample Location: SYRACUSE,NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	borough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	98		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	110	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	105	70-130	
Dibromofluoromethane	106	70-130	

Project Name: Lab Number: FORMER COYNE TEXTILE L2324376

Project Number: Report Date: 059294.001 05/17/23

SAMPLE RESULTS

Lab ID: Date Collected: 05/03/23 12:05 L2324376-02

Client ID: Date Received: 05/03/23 MW-6R-20230503 Field Prep: Sample Location: Not Specified SYRACUSE,NY

Sample Depth:

Matrix: Water Analytical Method: 117,-

Analytical Date: 05/11/23 17:56

Analyst: SRO

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Dissolved Gases by GC - Mansfield Lab							
Methane	6090		ug/l	2.00	2.00	1	Α
Ethene	162		ug/l	0.500	0.500	1	Α
Ethane	200		ug/l	0.500	0.500	1	Α

Project Name: FORMER COYNE TEXTILE Lab Number: L2324376

Project Number: 059294.001 **Report Date:** 05/17/23

SAMPLE RESULTS

Lab ID: L2324376-02 D Date Collected: 05/03/23 12:05

Client ID: MW-6R-20230503 Date Received: 05/03/23
Sample Location: SYRACUSE,NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 05/17/23 00:51

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough L	ab					
Vinyl chloride	470		ug/l	10	0.71	10

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	103		70-130	
Toluene-d8	103		70-130	
4-Bromofluorobenzene	107		70-130	
Dibromofluoromethane	95		70-130	

Project Name: FORMER COYNE TEXTILE Lab Number: L2324376

Project Number: 059294.001 **Report Date:** 05/17/23

SAMPLE RESULTS

Lab ID: L2324376-02 D Date Collected: 05/03/23 12:05

Client ID: MW-6R-20230503 Date Received: 05/03/23 Sample Location: SYRACUSE,NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 117,-

Analytical Date: 05/05/23 17:21

Analyst: SRO

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Dissolved Gases by GC - Mansfield Lab						
Carbon Dioxide	57.2		mg/l	6.00	6.00	2

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

SAMPLE RESULTS

Lab Number: L2324376

Report Date: 05/17/23

Lab ID: Date Collected: 05/03/23 13:10 L2324376-03

Client ID: Date Received: 05/03/23 MW-7R-20230503 Field Prep: Sample Location: SYRACUSE,NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 05/14/23 13:28

Analyst: JIC

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	gh Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	0.20	J	ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	140		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	1.9		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	1.1	J	ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: FORMER COYNE TEXTILE L2324376

Project Number: Report Date: 059294.001 05/17/23

SAMPLE RESULTS

Lab ID: Date Collected: 05/03/23 13:10 L2324376-03

Date Received: Client ID: 05/03/23 MW-7R-20230503 Sample Location: Field Prep: SYRACUSE,NY Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	borough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	400	E	ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	106	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	102	70-130	
Dibromofluoromethane	105	70-130	

Project Name: FORMER COYNE TEXTILE Lab Number: L2324376

Project Number: Report Date: 059294.001 05/17/23

SAMPLE RESULTS

Lab ID: Date Collected: 05/03/23 13:10 L2324376-03

Client ID: Date Received: 05/03/23 MW-7R-20230503 Field Prep: Sample Location: SYRACUSE,NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 117,-

Analytical Date: 05/11/23 14:50

Analyst: SRO

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Dissolved Gases by GC - Mansfield Lab							
Methane	2890		ug/l	2.00	2.00	1	Α
Ethene	8.40		ug/l	0.500	0.500	1	Α
Ethane	5.35		ug/l	0.500	0.500	1	Α

Project Name: FORMER COYNE TEXTILE Lab Number: L2324376

Project Number: 059294.001 **Report Date:** 05/17/23

SAMPLE RESULTS

Lab ID: L2324376-03 D Date Collected: 05/03/23 13:10

Client ID: MW-7R-20230503 Date Received: 05/03/23 Sample Location: SYRACUSE,NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 05/17/23 01:39

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
cis-1,2-Dichloroethene	390		ug/l	12	3.5	5

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	108	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	105	70-130
Dibromofluoromethane	100	70-130

Project Name: FORMER COYNE TEXTILE Lab Number: L2324376

Project Number: 059294.001 **Report Date:** 05/17/23

SAMPLE RESULTS

Lab ID: L2324376-03 D Date Collected: 05/03/23 13:10

Client ID: MW-7R-20230503 Date Received: 05/03/23 Sample Location: SYRACUSE,NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 117,-

Analytical Date: 05/05/23 07:14

Analyst: SRO

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Dissolved Gases by GC - Mansfield Lab						
Carbon Dioxide	49.1		mg/l	6.00	6.00	2

L2324376

05/03/23 14:00

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

SAMPLE RESULTS

Lab Number:

Date Collected:

Report Date: 05/17/23

Lab ID: L2324376-04

Client ID: MW-4-20230503 Sample Location: SYRACUSE,NY

Date Received: 05/03/23 Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 05/14/23 13:50

Analyst: JIC

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	ıh Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	0.26	J	ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: FORMER COYNE TEXTILE Lab Number: L2324376

Project Number: 059294.001 **Report Date:** 05/17/23

SAMPLE RESULTS

Lab ID: L2324376-04 Date Collected: 05/03/23 14:00

Client ID: MW-4-20230503 Date Received: 05/03/23 Sample Location: SYRACUSE,NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	3.7	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	0.63	J	ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	110	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	102	70-130	
Dibromofluoromethane	114	70-130	

Project Name: Lab Number: FORMER COYNE TEXTILE L2324376

Project Number: Report Date: 059294.001 05/17/23

SAMPLE RESULTS

Lab ID: L2324376-04 Date Collected: 05/03/23 14:00

Client ID: Date Received: 05/03/23 MW-4-20230503 Field Prep: Sample Location: SYRACUSE,NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 117,-

Analytical Date: 05/05/23 19:22

Analyst: SRO

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Dissolved Gases by GC - Mansfield Lab						
Carbon Dioxide	116		mg/l	3.00	3.00	1

Project Name: Lab Number: FORMER COYNE TEXTILE L2324376

Project Number: Report Date: 059294.001 05/17/23

SAMPLE RESULTS

Lab ID: L2324376-04 Date Collected: 05/03/23 14:00

Client ID: Date Received: 05/03/23 MW-4-20230503 Field Prep: Sample Location: SYRACUSE,NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 117,-

Analytical Date: 05/11/23 18:15

Analyst: SRO

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Dissolved Gases by GC - Mansfield Lab							
Methane	10700		ug/l	2.00	2.00	1	Α
Ethene	136		ug/l	0.500	0.500	1	Α
Ethane	925		ug/l	0.500	0.500	1	Α

L2324376

05/03/23 15:50

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

SAMPLE RESULTS

Report Date: 05/17/23

Lab Number:

Date Collected:

Lab ID: L2324376-05

Client ID: MW-105D-20230503 Sample Location: SYRACUSE,NY

Date Received: 05/03/23 Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 05/14/23 14:11

Analyst: JIC

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbook	ough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	1.3		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	0.10	J	ug/l	1.0	0.07	1
Chloroethane	0.90	J	ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

MDL

Dilution Factor

Project Name: FORMER COYNE TEXTILE Lab Number: L2324376

Result

Project Number: 059294.001 **Report Date:** 05/17/23

SAMPLE RESULTS

Lab ID: L2324376-05 Date Collected: 05/03/23 15:50

Client ID: MW-105D-20230503 Date Received: 05/03/23 Sample Location: SYRACUSE,NY Field Prep: Not Specified

Qualifier

Units

RL

Sample Depth:

Parameter

i arameter	Nosun	Qualifici	Office			Dilation ractor	
Volatile Organics by GC/MS - Westb	orough Lab						
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	ND		ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
Bromochloromethane	ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl Acetate	ND		ug/l	2.0	0.23	1	
Cyclohexane	ND		ug/l	10	0.27	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Methyl cyclohexane	ND		ug/l	10	0.40	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	109	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	102	70-130	
Dibromofluoromethane	100	70-130	

Project Name: Lab Number: FORMER COYNE TEXTILE L2324376

Project Number: Report Date: 059294.001 05/17/23

SAMPLE RESULTS

Lab ID: Date Collected: 05/03/23 15:50 L2324376-05

Client ID: Date Received: 05/03/23 MW-105D-20230503 Field Prep: Sample Location: SYRACUSE,NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 117,-

Analytical Date: 05/05/23 19:39

Analyst: SRO

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Dissolved Gases by GC - Mansfield Lab						
Carbon Dioxide	85.4		mg/l	3.00	3.00	1

Project Name: Lab Number: FORMER COYNE TEXTILE L2324376

Project Number: Report Date: 059294.001 05/17/23

SAMPLE RESULTS

Lab ID: Date Collected: 05/03/23 15:50 L2324376-05

Client ID: Date Received: 05/03/23 MW-105D-20230503 Field Prep: Sample Location: SYRACUSE,NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 117,-

Analytical Date: 05/12/23 17:45

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Dissolved Gases by GC - Mansfield Lab							
Methane	2560		ug/l	2.00	2.00	1	Α
Ethene	ND		ug/l	0.500	0.500	1	Α
Ethane	2.35		ug/l	0.500	0.500	1	Α

05/03/23 12:00

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

SAMPLE RESULTS

Lab Number: L2324376

Report Date: 05/17/23

Lab ID: L2324376-06

Client ID: CHA-1-20230503 Sample Location: SYRACUSE,NY

Date Received: 05/03/23 Field Prep: Not Specified

Date Collected:

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 05/14/23 14:33

Analyst: JIC

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	6.2		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	0.36	J	ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	620	E	ug/l	1.0	0.07	1	
Chloroethane	1.4	J	ug/l	2.5	0.70	1	
1,1-Dichloroethene	0.36	J	ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	2.2	J	ug/l	2.5	0.70	1	
Trichloroethene	8.1		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1	

Project Name: FORMER COYNE TEXTILE Lab Number: L2324376

Project Number: 059294.001 **Report Date:** 05/17/23

SAMPLE RESULTS

Lab ID: L2324376-06 Date Collected: 05/03/23 12:00

Client ID: CHA-1-20230503 Date Received: 05/03/23 Sample Location: SYRACUSE,NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	gh Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	88		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	105	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	107	70-130	
Dibromofluoromethane	103	70-130	

Project Name: FORMER COYNE TEXTILE Lab Number: L2324376

Project Number: 059294.001 **Report Date:** 05/17/23

SAMPLE RESULTS

Lab ID: L2324376-06 Date Collected: 05/03/23 12:00

Client ID: CHA-1-20230503 Date Received: 05/03/23
Sample Location: SYRACUSE,NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 117,-

Analytical Date: 05/05/23 19:57

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Dissolved Gases by GC - Mansfield Lab						
Carbon Dioxide	66.9		mg/l	3.00	3.00	1

Project Name: Lab Number: FORMER COYNE TEXTILE L2324376

Project Number: Report Date: 059294.001 05/17/23

SAMPLE RESULTS

Lab ID: L2324376-06 Date Collected: 05/03/23 12:00

Client ID: Date Received: 05/03/23 CHA-1-20230503 Field Prep: Sample Location: Not Specified SYRACUSE,NY

Sample Depth:

Matrix: Water Analytical Method: 117,-

Analytical Date: 05/11/23 18:51

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Dissolved Gases by GC - Mansfield Lab							
Methane	5040		ug/l	2.00	2.00	1	Α
Ethene	86.3		ug/l	0.500	0.500	1	Α
Ethane	140		ug/l	0.500	0.500	1	А

Project Name: FORMER COYNE TEXTILE Lab Number: L2324376

Project Number: 059294.001 **Report Date:** 05/17/23

SAMPLE RESULTS

Lab ID: L2324376-06 D Date Collected: 05/03/23 12:00

Client ID: CHA-1-20230503 Date Received: 05/03/23
Sample Location: SYRACUSE,NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 05/17/23 01:15

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - V	Westborough Lab						
Vinyl chloride	500		ug/l	10	0.71	10	
					Δαα	entance	

Surrogate	% Recovery	Qualifier A	Acceptance Criteria	
1,2-Dichloroethane-d4	101		70-130	
Toluene-d8	100		70-130	
4-Bromofluorobenzene	104		70-130	
Dibromofluoromethane	95		70-130	

L2324376

05/03/23 00:00

Not Specified

05/03/23

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

SAMPLE RESULTS

Lab Number:

Date Collected:

Date Received:

Field Prep:

Report Date: 05/17/23

Lab ID: L2324376-07

Client ID: TRIP BLANK-20230503

Sample Location: SYRACUSE,NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 05/14/23 09:34

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbook	ough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: FORMER COYNE TEXTILE Lab Number: L2324376

Project Number: 059294.001 **Report Date:** 05/17/23

SAMPLE RESULTS

Lab ID: L2324376-07 Date Collected: 05/03/23 00:00

Client ID: TRIP BLANK-20230503 Date Received: 05/03/23 Sample Location: SYRACUSE,NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	gh Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	108		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	101		70-130	
Dibromofluoromethane	103		70-130	

Project Name: FORMER COYNE TEXTILE Lab Number: L2324376

Project Number: 059294.001 **Report Date:** 05/17/23

Method Blank Analysis Batch Quality Control

Analytical Method: 117,-

Analytical Date: 05/05/23 06:42

Parameter	Result	Qualifier	ι	Jnits	RL	MDL
Dissolved Gases by GC - Mansfield	Lab for san	nple(s): 0	3	Batch:	WG1775064-3	
Carbon Dioxide	ND			mg/l	3.00	3.00

Project Name: FORMER COYNE TEXTILE Lab Number: L2324376

Project Number: 059294.001 **Report Date:** 05/17/23

Method Blank Analysis Batch Quality Control

Analytical Method: 117,-

Analytical Date: 05/05/23 16:23

Parameter	Result	Qualifier	Units	RL	MDL	
Dissolved Gases by GC - Mansfield	Lab for sa	ample(s): (01-02,04-06	Batch:	WG1776096-3	
Carbon Dioxide	ND		mg/l	3.00	3.00	

Project Number: 059294.001 **Report Date:** 05/17/23

Method Blank Analysis Batch Quality Control

Analytical Method: 117,-

Analytical Date: 05/11/23 14:11

Parameter	Result	Qualifier	Units	RL	MDL	
Dissolved Gases by GC - Mansfield	Lab for sam	nple(s): C	01-04,06	Batch: WG1	777653-3	
Methane	ND		ug/l	2.00	2.00	Α
Ethene	ND		ug/l	0.500	0.500	Α
Ethane	ND		ug/l	0.500	0.500	Α

Project Number: 059294.001 **Report Date:** 05/17/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 05/14/23 08:09

Analyst: MJV

arameter	Result	Qualifier Uni	ts	RL	MDL
olatile Organics by GC/MS - \	Westborough Lab	for sample(s):	01-07	Batch:	WG1778909-5
Methylene chloride	ND	uç	g/l	2.5	0.70
1,1-Dichloroethane	ND	uç	g/l	2.5	0.70
Chloroform	ND	uç	g/l	2.5	0.70
Carbon tetrachloride	ND	uç	g/l	0.50	0.13
1,2-Dichloropropane	ND	uç	g/l	1.0	0.14
Dibromochloromethane	ND	uç	g/l	0.50	0.15
1,1,2-Trichloroethane	ND	uç	g/l	1.5	0.50
Tetrachloroethene	ND	uç	g/l	0.50	0.18
Chlorobenzene	ND	uç	g/l	2.5	0.70
Trichlorofluoromethane	ND	uç	g/l	2.5	0.70
1,2-Dichloroethane	ND	uç	g/l	0.50	0.13
1,1,1-Trichloroethane	ND	uç	g/l	2.5	0.70
Bromodichloromethane	ND	uç	g/l	0.50	0.19
trans-1,3-Dichloropropene	ND	uç	g/l	0.50	0.16
cis-1,3-Dichloropropene	ND	uç	g/l	0.50	0.14
Bromoform	ND	uç	g/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	uç	g/l	0.50	0.17
Benzene	ND	uç	g/l	0.50	0.16
Toluene	ND	uç	g/l	2.5	0.70
Ethylbenzene	ND	uç	g/l	2.5	0.70
Chloromethane	ND	uç	g/l	2.5	0.70
Bromomethane	ND	uç	g/l	2.5	0.70
Vinyl chloride	ND	uç	g/l	1.0	0.07
Chloroethane	ND	uç	g/l	2.5	0.70
1,1-Dichloroethene	ND	uç	g/l	0.50	0.17
trans-1,2-Dichloroethene	ND	uç	g/l	2.5	0.70
Trichloroethene	ND	uç	g/l	0.50	0.18
1,2-Dichlorobenzene	ND	uç	g/l	2.5	0.70
1,3-Dichlorobenzene	ND	uç	g/l	2.5	0.70

L2324376

Project Name: FORMER COYNE TEXTILE Lab Number:

Project Number: 059294.001 **Report Date:** 05/17/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 05/14/23 08:09

Analyst: MJV

Parameter	Result	Qualifier Unit	s	RL	MDL	
Volatile Organics by GC/MS - We	stborough Lab	for sample(s):	01-07	Batch:	WG1778909-5	
1,4-Dichlorobenzene	ND	ug/	Ί	2.5	0.70	
Methyl tert butyl ether	ND	ug/	1	2.5	0.70	
p/m-Xylene	ND	ug/	1	2.5	0.70	
o-Xylene	ND	ug/	1	2.5	0.70	
cis-1,2-Dichloroethene	ND	ug/	Ί	2.5	0.70	
Styrene	ND	ug/	Ί	2.5	0.70	
Dichlorodifluoromethane	ND	ug/	1	5.0	1.0	
Acetone	ND	ug/	1	5.0	1.5	
Carbon disulfide	ND	ug/	1	5.0	1.0	
2-Butanone	ND	ug/	1	5.0	1.9	
4-Methyl-2-pentanone	ND	ug/	1	5.0	1.0	
2-Hexanone	ND	ug/	1	5.0	1.0	
Bromochloromethane	ND	ug/	1	2.5	0.70	
1,2-Dibromoethane	ND	ug/	1	2.0	0.65	
1,2-Dibromo-3-chloropropane	ND	ug/	1	2.5	0.70	
Isopropylbenzene	ND	ug/	1	2.5	0.70	
1,2,3-Trichlorobenzene	ND	ug/	1	2.5	0.70	
1,2,4-Trichlorobenzene	ND	ug/	Ί	2.5	0.70	
Methyl Acetate	ND	ug/	Ί	2.0	0.23	
Cyclohexane	ND	ug/	Ί	10	0.27	
1,4-Dioxane	ND	ug/	Ί	250	61.	
Freon-113	ND	ug/	Ί	2.5	0.70	
Methyl cyclohexane	ND	ug/	Ί	10	0.40	

Project Number: 059294.001 **Report Date:** 05/17/23

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 05/14/23 08:09

Analyst: MJV

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01-07 Batch: WG1778909-5

		Acceptance						
Surrogate	%Recovery	Qualifier Criteria						
1,2-Dichloroethane-d4	107	70-130						
Toluene-d8	99	70-130						
4-Bromofluorobenzene	102	70-130						
Dibromofluoromethane	105	70-130						

Project Number: 059294.001 **Report Date:** 05/17/23

Method Blank Analysis Batch Quality Control

Analytical Method: 117,-

Analytical Date: 05/12/23 08:27

Parameter	Result	Qualifier	Units	RL	MDL	
Dissolved Gases by GC - Mansfield	Lab for sam	ple(s): 05	Batch:	WG1778973-3		
Methane	ND		ug/l	2.00	2.00	Α
Ethene	ND		ug/l	0.500	0.500	Α
Ethane	ND		ug/l	0.500	0.500	Α

Project Number: 059294.001 **Report Date:** 05/17/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 05/16/23 19:17

Analyst: LAC

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-03,06 Ba	atch: WG1780033-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Number: 059294.001 **Report Date:** 05/17/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 05/16/23 19:17

Analyst: LAC

Parameter	Result	Qualifier Unit	s RL	-	MDL	
Volatile Organics by GC/MS - Wes	stborough Lab	for sample(s):	01-03,06	Batch:	WG1780033-5	
1,4-Dichlorobenzene	ND	ug/	1 2.5	5	0.70	
Methyl tert butyl ether	ND	ug/	2.5	5	0.70	
p/m-Xylene	ND	ug/	2.5	5	0.70	
o-Xylene	ND	ug/	2.5	5	0.70	
cis-1,2-Dichloroethene	ND	ug/	2.5	5	0.70	
Styrene	ND	ug/	2.5	5	0.70	
Dichlorodifluoromethane	ND	ug/	5.0)	1.0	
Acetone	ND	ug/	5.0)	1.5	
Carbon disulfide	ND	ug/	5.0)	1.0	
2-Butanone	ND	ug/	5.0)	1.9	
4-Methyl-2-pentanone	ND	ug/	5.0)	1.0	
2-Hexanone	ND	ug/	5.0)	1.0	
Bromochloromethane	ND	ug/	2.5	5	0.70	
1,2-Dibromoethane	ND	ug/	2.0)	0.65	
1,2-Dibromo-3-chloropropane	ND	ug/	2.5	5	0.70	
Isopropylbenzene	ND	ug/	2.5	5	0.70	
1,2,3-Trichlorobenzene	ND	ug/	2.5	5	0.70	
1,2,4-Trichlorobenzene	ND	ug/	2.5	5	0.70	
Methyl Acetate	ND	ug/	2.0)	0.23	
Cyclohexane	ND	ug/	10		0.27	
1,4-Dioxane	ND	ug/	250)	61.	
Freon-113	ND	ug/	2.5	5	0.70	
Methyl cyclohexane	ND	ug/	I 10		0.40	

Project Number: 059294.001 **Report Date:** 05/17/23

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 05/16/23 19:17

Analyst: LAC

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01-03,06 Batch: WG1780033-5

	Acceptance					
Surrogate	%Recovery Qua	alifier Criteria				
1,2-Dichloroethane-d4	105	70-130				
Toluene-d8	100	70-130				
4-Bromofluorobenzene	109	70-130				
Dibromofluoromethane	97	70-130				

Project Name: FORMER COYNE TEXTILE

Lab Number:

L2324376

Project Number: 059294.001

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Dissolved Gases by GC - Mansfield Lab	Associated sample(s):	03 I	Batch: WG1775064-2						
Carbon Dioxide	105		-		80-120	-			

Project Name: FORMER COYNE TEXTILE

Lab Number:

L2324376

Project Number: 059294.001

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Dissolved Gases by GC - Mansfield Lab	Associated sample(s)	: 01-02,04-06	6 Batch: V	VG1776096-2					
Carbon Dioxide	101		-		80-120	-			

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number:

L2324376

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Dissolved Gases by GC - Mansfield Lab As	sociated sample(s	s): 01-04,06	Batch: WG17	77653-2					
Methane	107		-		80-120	-		25	Α
Ethene	97		-		80-120	-		25	Α
Ethane	95		-		80-120	-		25	Α

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number: L2324376

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-07 Batch: WC	G1778909-3 WG1778909-4		
Methylene chloride	93		94	70-130	1	20
1,1-Dichloroethane	97		98	70-130	1	20
Chloroform	89		98	70-130	10	20
Carbon tetrachloride	99		98	63-132	1	20
1,2-Dichloropropane	86		94	70-130	9	20
Dibromochloromethane	85		88	63-130	3	20
1,1,2-Trichloroethane	91		92	70-130	1	20
Tetrachloroethene	96		94	70-130	2	20
Chlorobenzene	94		93	75-130	1	20
Trichlorofluoromethane	100		89	62-150	12	20
1,2-Dichloroethane	96		97	70-130	1	20
1,1,1-Trichloroethane	89		99	67-130	11	20
Bromodichloromethane	88		92	67-130	4	20
trans-1,3-Dichloropropene	91		89	70-130	2	20
cis-1,3-Dichloropropene	89		91	70-130	2	20
Bromoform	78		83	54-136	6	20
1,1,2,2-Tetrachloroethane	89		92	67-130	3	20
Benzene	92		96	70-130	4	20
Toluene	96		93	70-130	3	20
Ethylbenzene	96		93	70-130	3	20
Chloromethane	96		88	64-130	9	20
Bromomethane	82		77	39-139	6	20
Vinyl chloride	95		95	55-140	0	20

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number: L2324376

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
/olatile Organics by GC/MS - Westbord	ough Lab Associated	sample(s):	01-07 Batch:	WG1778909-3	3 WG1778909-4			
Chloroethane	110		110		55-138	0	20	
1,1-Dichloroethene	79		86		61-145	8	20	
trans-1,2-Dichloroethene	81		89		70-130	9	20	
Trichloroethene	88		87		70-130	1	20	
1,2-Dichlorobenzene	91		96		70-130	5	20	
1,3-Dichlorobenzene	95		96		70-130	1	20	
1,4-Dichlorobenzene	92		94		70-130	2	20	
Methyl tert butyl ether	81		86		63-130	6	20	
p/m-Xylene	95		95		70-130	0	20	
o-Xylene	95		95		70-130	0	20	
cis-1,2-Dichloroethene	88		83		70-130	6	20	
Styrene	95		95		70-130	0	20	
Dichlorodifluoromethane	96		92		36-147	4	20	
Acetone	76		88		58-148	15	20	
Carbon disulfide	96		94		51-130	2	20	
2-Butanone	59	Q	55	Q	63-138	7	20	
4-Methyl-2-pentanone	80		78		59-130	3	20	
2-Hexanone	76		82		57-130	8	20	
Bromochloromethane	89		93		70-130	4	20	
1,2-Dibromoethane	89		90		70-130	1	20	
1,2-Dibromo-3-chloropropane	74		86		41-144	15	20	
Isopropylbenzene	93		96		70-130	3	20	
1,2,3-Trichlorobenzene	84		90		70-130	7	20	

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number: L2324376

Parameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-07 Batch:	WG1778909-3	WG1778909-4				
1,2,4-Trichlorobenzene	91		95		70-130	4		20	
Methyl Acetate	90		89		70-130	1		20	
Cyclohexane	78		85		70-130	9		20	
1,4-Dioxane	92		116		56-162	23	Q	20	
Freon-113	83		98		70-130	17		20	
Methyl cyclohexane	90		94		70-130	4		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	94	105	70-130
Toluene-d8	100	100	70-130
4-Bromofluorobenzene	102	101	70-130
Dibromofluoromethane	84	104	70-130

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number:

L2324376

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Dissolved Gases by GC - Mansfield Lab A	ssociated sample(s): 05 Ba	tch: WG1778973-	2					
Methane	86		-		80-120	-		25	Α
Ethene	80		-		80-120	-		25	Α
Ethane	80		-		80-120	-		25	А

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number: L2324376

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - We	stborough Lab Associated	sample(s): 01	-03,06 Batch:	WG1780033-3 WG1780033	-4	
Methylene chloride	98		100	70-130	2	20
1,1-Dichloroethane	100		110	70-130	10	20
Chloroform	95		96	70-130	1	20
Carbon tetrachloride	92		92	63-132	0	20
1,2-Dichloropropane	110		110	70-130	0	20
Dibromochloromethane	85		85	63-130	0	20
1,1,2-Trichloroethane	96		96	70-130	0	20
Tetrachloroethene	91		94	70-130	3	20
Chlorobenzene	92		95	75-130	3	20
Trichlorofluoromethane	82		82	62-150	0	20
1,2-Dichloroethane	100		100	70-130	0	20
1,1,1-Trichloroethane	92		94	67-130	2	20
Bromodichloromethane	95		95	67-130	0	20
trans-1,3-Dichloropropene	92		93	70-130	1	20
cis-1,3-Dichloropropene	100		100	70-130	0	20
Bromoform	82		82	54-136	0	20
1,1,2,2-Tetrachloroethane	96		96	67-130	0	20
Benzene	100		100	70-130	0	20
Toluene	94		98	70-130	4	20
Ethylbenzene	92		94	70-130	2	20
Chloromethane	90		90	64-130	0	20
Bromomethane	47		51	39-139	8	20
Vinyl chloride	81		81	55-140	0	20

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number: L2324376

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-03,06 Batcl	n: WG1780033-3 WG178003	3-4	
Chloroethane	76		84	55-138	10	20
1,1-Dichloroethene	90		89	61-145	1	20
trans-1,2-Dichloroethene	93		95	70-130	2	20
Trichloroethene	89		94	70-130	5	20
1,2-Dichlorobenzene	93		94	70-130	1	20
1,3-Dichlorobenzene	88		90	70-130	2	20
1,4-Dichlorobenzene	92		93	70-130	1	20
Methyl tert butyl ether	100		100	63-130	0	20
p/m-Xylene	90		90	70-130	0	20
o-Xylene	90		90	70-130	0	20
cis-1,2-Dichloroethene	93		96	70-130	3	20
Styrene	90		90	70-130	0	20
Dichlorodifluoromethane	54		53	36-147	2	20
Acetone	90		93	58-148	3	20
Carbon disulfide	91		92	51-130	1	20
2-Butanone	110		100	63-138	10	20
4-Methyl-2-pentanone	100		100	59-130	0	20
2-Hexanone	88		85	57-130	3	20
Bromochloromethane	95		95	70-130	0	20
1,2-Dibromoethane	92		91	70-130	1	20
1,2-Dibromo-3-chloropropane	85		83	41-144	2	20
Isopropylbenzene	92		94	70-130	2	20
1,2,3-Trichlorobenzene	89		89	70-130	0	20

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number: L2324376

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough	Lab Associated sa	ample(s):	01-03,06 Batch:	WG1780033	3-3 WG1780033	-4		
1,2,4-Trichlorobenzene	91		91		70-130	0		20
Methyl Acetate	120		120		70-130	0		20
Cyclohexane	110		110		70-130	0		20
1,4-Dioxane	120		114		56-162	5		20
Freon-113	86		89		70-130	3		20
Methyl cyclohexane	94		97		70-130	3		20

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	112	109	70-130
Toluene-d8	100	100	70-130
4-Bromofluorobenzene	106	109	70-130
Dibromofluoromethane	99	98	70-130

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number:

L2324376

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits
Dissolved Gases by GC - N 20230503	Mansfield Lab	Associated sar	mple(s): 03	QC Batch ID: V	VG17750	64-4 WG1	775064-5 QC	Sampl	e: L2324376	6-03 (Client ID:	MW-7R-
Carbon Dioxide	49.1	12	63.8	123	Q	65.5	137	Q	80-120	3		25

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSI Qual Fou		Recovery y Qual Limits	RPD Qua	RPD al Limits
Dissolved Gases by GC - Ma 20230503	ansfield Lab	Associated sar	mple(s): 01-0)2,04-06 QC E	Batch ID: WG177	6096-5 QC S	ample: L2324376-02	Client ID: M	IW-6R-
Carbon Dioxide	57.2	12	70.8	113	-	-	80-120	-	25

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number:

L2324376

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	, RPD	Qual	RPD Limits	Column
Dissolved Gases by GC - Mar 7R-20230503	nsfield Lab	Associated sa	ample(s): 01-04	,06 QC Bato	h ID: W	G1777653-4	WG1777653-	5 QC	Sample: L2	2324376-	03 Clie	ent ID:	MW-
Methane	2890	54.6	2920	55	Q	2910	37	Q	80-120	0		25	Α
Ethene	8.40	95.5	98.0	94		96.4	92		80-120	2		25	Α
Ethane	5.35	102	100	92		96.1	89		80-120	4		25	Α

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number:

L2324376

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recover	y Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/M MW-7R-20230503	S - Westborough	Lab Assoc	ciated sample	(s): 01-07 C	C Batch ID	: WG17789	909-6 WG1778	3909-7	QC Sample	: L2324	1376-03	Client ID:
Methylene chloride	ND	10	10	100		11	110		70-130	10		20
1,1-Dichloroethane	ND	10	12	120		12	120		70-130	0		20
Chloroform	ND	10	11	110		11	110		70-130	0		20
Carbon tetrachloride	ND	10	11	110		12	120		63-132	9		20
1,2-Dichloropropane	ND	10	10	100		11	110		70-130	10		20
Dibromochloromethane	ND	10	10	100		10	100		63-130	0		20
1,1,2-Trichloroethane	ND	10	11	110		11	110		70-130	0		20
Tetrachloroethene	ND	10	11	110		11	110		70-130	0		20
Chlorobenzene	ND	10	10	100		11	110		75-130	10		20
Trichlorofluoromethane	ND	10	13	130		14	140		62-150	7		20
1,2-Dichloroethane	ND	10	11	110		12	120		70-130	9		20
1,1,1-Trichloroethane	ND	10	11	110		11	110		67-130	0		20
Bromodichloromethane	ND	10	10	100		11	110		67-130	10		20
rans-1,3-Dichloropropene	ND	10	9.8	98		9.9	99		70-130	1		20
cis-1,3-Dichloropropene	ND	10	9.4	94		10	100		70-130	6		20
Bromoform	ND	10	8.9	89		9.3	93		54-136	4		20
1,1,2,2-Tetrachloroethane	ND	10	11	110		11	110		67-130	0		20
Benzene	0.20J	10	11	110		12	120		70-130	9		20
Toluene	ND	10	11	110		11	110		70-130	0		20
Ethylbenzene	ND	10	11	110		11	110		70-130	0		20
Chloromethane	ND	10	10	100		10	100		64-130	0		20
Bromomethane	ND	10	6.3	63		7.6	76		39-139	19		20
Vinyl chloride	140	10	150	100		160	200	Q	55-140	6		20

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number:

L2324376

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS MW-7R-20230503	S - Westborough	Lab Assoc	ciated sample	(s): 01-07 Q	C Batch ID	: WG17789	909-6 WG1778	8909-7	QC Sample	e: L2324	376-03	Client ID:
Chloroethane	ND	10	14	140	Q	14	140	Q	55-138	0		20
1,1-Dichloroethene	1.9	10	14	121		14	121		61-145	0		20
trans-1,2-Dichloroethene	1.1J	10	12	120		12	120		70-130	0		20
Trichloroethene	ND	10	10	100		12	120		70-130	18		20
1,2-Dichlorobenzene	ND	10	10	100		11	110		70-130	10		20
1,3-Dichlorobenzene	ND	10	11	110		10	100		70-130	10		20
1,4-Dichlorobenzene	ND	10	11	110		10	100		70-130	10		20
Methyl tert butyl ether	ND	10	9.8	98		10	100		63-130	2		20
o/m-Xylene	ND	20	21	105		21	105		70-130	0		20
o-Xylene	ND	20	22	110		22	110		70-130	0		20
cis-1,2-Dichloroethene	400E	10	360E	0	Q	410E	100		70-130	13		20
Styrene	ND	20	22	110		22	110		70-130	0		20
Dichlorodifluoromethane	ND	10	11	110		10	100		36-147	10		20
Acetone	ND	10	13	130		12	120		58-148	8		20
Carbon disulfide	ND	10	12	120		12	120		51-130	0		20
2-Butanone	ND	10	8.4	84		13	130		63-138	43	Q	20
4-Methyl-2-pentanone	ND	10	9.6	96		9.9	99		59-130	3		20
2-Hexanone	ND	10	9.6	96		10	100		57-130	4		20
Bromochloromethane	ND	10	9.6	96		11	110		70-130	14		20
1,2-Dibromoethane	ND	10	11	110		11	110		70-130	0		20
1,2-Dibromo-3-chloropropane	ND	10	8.4	84		9.8	98		41-144	15		20
sopropylbenzene	ND	10	11	110		11	110		70-130	0		20
1,2,3-Trichlorobenzene	ND	10	10	100		10	100		70-130	0		20

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number:

L2324376

05/17/23

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	/ Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - MW-7R-20230503	- Westborough	Lab Assoc	iated sample(s	s): 01-07 Q	C Batch ID:	WG17789	909-6 WG1778	3909-7	QC Sample	: L232	4376-03	Client ID:
1,2,4-Trichlorobenzene	ND	10	10	100		10	100		70-130	0		20
Methyl Acetate	ND	10	10	100		11	110		70-130	10		20
Cyclohexane	ND	10	9.9J	99		10	100		70-130	1		20
1,4-Dioxane	ND	500	650	130		630	126		56-162	3		20
Freon-113	ND	10	11	110		11	110		70-130	0		20
Methyl cyclohexane	ND	10	10	100		10	100		70-130	0		20

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
1,2-Dichloroethane-d4	108	109	70-130
4-Bromofluorobenzene	103	99	70-130
Dibromofluoromethane	98	107	70-130
Toluene-d8	98	103	70-130

Lab Duplicate Analysis
Batch Quality Control

Lab Number: **Project Name:** FORMER COYNE TEXTILE L2324376

05/17/23 **Project Number:** Report Date: 059294.001

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits	
Dissolved Gases by GC - Mansfield Lab 20230503	Associated sample(s): 01-02,04-06	QC Batch ID: WG17	76096-4	QC Sample: L	_2324376-01	Client ID: N	MW-5R-
Carbon Dioxide	41.7	44.4	mg/l	6		25	

METALS

Project Name:FORMER COYNE TEXTILELab Number:L2324376Project Number:059294.001Report Date:05/17/23

SAMPLE RESULTS

 Lab ID:
 L2324376-01
 Date Collected:
 05/03/23 10:25

 Client ID:
 MW-5R-20230503
 Date Received:
 05/03/23

 Sample Location:
 SYRACUSE,NY
 Field Prep:
 Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Ma	nsfield Lab										
Iron, Total	4.73		mg/l	0.0500	0.0090	1	05/12/23 12:0	8 05/15/23 23:55	EPA 3005A	1,6010D	GCL

Project Name:FORMER COYNE TEXTILELab Number:L2324376Project Number:059294.001Report Date:05/17/23

SAMPLE RESULTS

 Lab ID:
 L2324376-02
 Date Collected:
 05/03/23 12:05

 Client ID:
 MW-6R-20230503
 Date Received:
 05/03/23

 Sample Location:
 SYRACUSE,NY
 Field Prep:
 Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Ma	nsfield Lab										
Iron, Total	7.42		mg/l	0.0500	0.0090	1	05/12/23 12:0	8 05/16/23 00:00	EPA 3005A	1,6010D	GCL

Project Name:FORMER COYNE TEXTILELab Number:L2324376Project Number:059294.001Report Date:05/17/23

SAMPLE RESULTS

 Lab ID:
 L2324376-03
 Date Collected:
 05/03/23 13:10

 Client ID:
 MW-7R-20230503
 Date Received:
 05/03/23

 Sample Location:
 SYRACUSE,NY
 Field Prep:
 Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Ma	nsfield Lab										
Iron, Total	5.02		mg/l	0.0500	0.0090	1	05/12/23 12:0	8 05/15/23 23:09	EPA 3005A	1,6010D	GCL

Project Name:FORMER COYNE TEXTILELab Number:L2324376Project Number:059294.001Report Date:05/17/23

SAMPLE RESULTS

 Lab ID:
 L2324376-04
 Date Collected:
 05/03/23 14:00

 Client ID:
 MW-4-20230503
 Date Received:
 05/03/23

 Sample Location:
 SYRACUSE,NY
 Field Prep:
 Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Iron, Total	142.		mg/l	0.0500	0.0090	1	05/12/23 12:0	8 05/16/23 00:05	EPA 3005A	1,6010D	GCL

05/03/23 15:50

Date Collected:

Project Name:FORMER COYNE TEXTILELab Number:L2324376Project Number:059294.001Report Date:05/17/23

SAMPLE RESULTS

Lab ID: L2324376-05

Client ID: MW-105D-20230503 Date Received: 05/03/23
Sample Location: SYRACUSE,NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Ma	nsfield Lab										
Iron, Total	1.75		mg/l	0.0500	0.0090	1	05/12/23 12:0	8 05/16/23 00:10	EPA 3005A	1,6010D	GCL

Project Name:FORMER COYNE TEXTILELab Number:L2324376Project Number:059294.001Report Date:05/17/23

SAMPLE RESULTS

 Lab ID:
 L2324376-06
 Date Collected:
 05/03/23 12:00

 Client ID:
 CHA-1-20230503
 Date Received:
 05/03/23

 Sample Location:
 SYRACUSE,NY
 Field Prep:
 Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Ma	nsfield Lab										
Iron, Total	7.37		mg/l	0.0500	0.0090	1	05/12/23 12:0	8 05/16/23 00:15	EPA 3005A	1,6010D	GCL

L2324376

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Report Date: 05/17/23

Lab Number:

Method Blank Analysis Batch Quality Control

Dilution Date Date Analytical Method Analyst **Parameter Result Qualifier** Units RL**Factor Prepared** Analyzed MDL Total Metals - Mansfield Lab for sample(s): 01-06 Batch: WG1778211-1 Iron, Total ND mg/l 0.0500 0.0090 1 1,6010D GCL

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name: FORMER COYNE TEXTILE

Lab Number:

L2324376

Project Number: 059294.001

Report Date:

05/17/23

Parameter	LCS %Recovery Qua	LCSD al %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01-06 Batch: W0	G1778211-2					
Iron, Total	101	-		80-120	-		

Matrix Spike Analysis Batch Quality Control

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number:

L2324376

Report Date:

05/17/23

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD Qı	RPD _{ual} Limits
Total Metals - Mansfield Lab A: 20230503	ssociated san	nple(s): 01-06	QC Bat	ch ID: WG1778	3211-3	WG177821	1-4 QC Sam	ple: L2324376-03	Client ID:	MW-7R-
Iron, Total	5.02	1	5.97	95		5.93	91	75-125	1	20

INORGANICS & MISCELLANEOUS

Project Name: FORMER COYNE TEXTILE Lab Number: L2324376

Project Number: 059294.001 **Report Date:** 05/17/23

SAMPLE RESULTS

 Lab ID:
 L2324376-01
 Date Collected:
 05/03/23 10:25

 Client ID:
 MW-5R-20230503
 Date Received:
 05/03/23

Sample Location: SYRACUSE,NY Field Prep: Not Specified

Sample Depth:

Parameter	Result C	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab								
Alkalinity, Total	322.	mg CaCO3/L	2.00	NA	1	-	05/16/23 09:03	121,2320B	MKT
Total Organic Carbon	5.96	mg/l	0.500	0.097	1	-	05/08/23 12:48	121,5310C	SMD
Anions by Ion Chromat	ography - Westbo	orough Lab							
Chloride	188.	mg/l	5.00	0.839	10	-	05/04/23 14:29	44,300.0	CVN
Nitrogen, Nitrate	2.14	mg/l	0.500	0.128	10	-	05/04/23 14:29	44,300.0	CVN
Sulfate	169.	mg/l	10.0	4.54	10	-	05/04/23 14:29	44,300.0	CVN

Project Name: FORMER COYNE TEXTILE Lab Number: L2324376

Project Number: 059294.001 **Report Date:** 05/17/23

SAMPLE RESULTS

 Lab ID:
 L2324376-02
 Date Collected:
 05/03/23 12:05

 Client ID:
 MW-6R-20230503
 Date Received:
 05/03/23

Sample Location: SYRACUSE,NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab								
Alkalinity, Total	350.	mg CaCO3/L	2.00	NA	1	=	05/16/23 09:11	121,2320B	MKT
Total Organic Carbon	9.36	mg/l	0.500	0.097	1	-	05/08/23 13:19	121,5310C	SMD
Anions by Ion Chromat	ography - Westb	orough Lab							
Chloride	245.	mg/l	5.00	0.839	10	=	05/04/23 14:40	44,300.0	CVN
Nitrogen, Nitrate	0.521	mg/l	0.050	0.012	1	-	05/04/23 12:29	44,300.0	CVN
Sulfate	42.8	mg/l	1.00	0.454	1	-	05/04/23 12:29	44,300.0	CVN

Project Name: FORMER COYNE TEXTILE Lab Number: L2324376

Project Number: 059294.001 **Report Date:** 05/17/23

SAMPLE RESULTS

 Lab ID:
 L2324376-03
 Date Collected:
 05/03/23 13:10

 Client ID:
 MW-7R-20230503
 Date Received:
 05/03/23

Sample Location: SYRACUSE,NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab								
Alkalinity, Total	297.	mg CaCO3/L	2.00	NA	1	=	05/16/23 09:20	121,2320B	MKT
Total Organic Carbon	2.95	mg/l	0.500	0.097	1	-	05/08/23 13:48	121,5310C	SMD
Anions by Ion Chromat	ography - Westb	orough Lab							
Chloride	316.	mg/l	5.00	0.839	10	-	05/04/23 14:51	44,300.0	CVN
Nitrogen, Nitrate	0.761	mg/l	0.050	0.012	1	-	05/04/23 12:40	44,300.0	CVN
Sulfate	65.8	mg/l	1.00	0.454	1	-	05/04/23 12:40	44,300.0	CVN

Project Name: FORMER COYNE TEXTILE Lab Number: L2324376

Project Number: 059294.001 **Report Date:** 05/17/23

SAMPLE RESULTS

 Lab ID:
 L2324376-04
 Date Collected:
 05/03/23 14:00

 Client ID:
 MW-4-20230503
 Date Received:
 05/03/23

Sample Location: SYRACUSE,NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab								
Alkalinity, Total	941.	mg CaCO3/L	10.0	NA	5	-	05/16/23 11:04	121,2320B	MKT
Total Organic Carbon	30.4	mg/l	4.00	0.776	8	-	05/08/23 20:36	121,5310C	SMD
Anions by Ion Chromat	ography - Westb	orough Lab							
Chloride	197.	mg/l	5.00	0.839	10	-	05/04/23 15:02	44,300.0	CVN
Nitrogen, Nitrate	0.366	mg/l	0.050	0.012	1	-	05/04/23 12:51	44,300.0	CVN
Sulfate	33.8	mg/l	1.00	0.454	1	-	05/04/23 12:51	44,300.0	CVN

Project Name: FORMER COYNE TEXTILE Lab Number: L2324376

Project Number: 059294.001 **Report Date:** 05/17/23

SAMPLE RESULTS

Lab ID: L2324376-05 Date Collected: 05/03/23 15:50

Client ID: MW-105D-20230503 Date Received: 05/03/23 Sample Location: SYRACUSE,NY Field Prep: Not Specified

Sample Depth:

Total Organic Carbon 5.87 mg/l 0.500 0.097 1 - 05/08/23 15:47 121,5310C SI Anions by Ion Chromatography - Westborough Lab Chloride 67.9 mg/l 5.00 0.839 10 - 05/04/23 13:13 44,300.0 CC Nitrogen, Nitrate 0.542 mg/l 0.050 0.012 1 - 05/04/23 13:02 44,300.0 CC	Parameter	Result C	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Organic Carbon 5.87 mg/l 0.500 0.097 1 - 05/08/23 15:47 121,5310C SI Anions by Ion Chromatography - Westborough Lab Chloride 67.9 mg/l 5.00 0.839 10 - 05/04/23 13:13 44,300.0 CC Nitrogen, Nitrate 0.542 mg/l 0.050 0.012 1 - 05/04/23 13:02 44,300.0 CC	General Chemistry - W	estborough Lab								
Anions by Ion Chromatography - Westborough Lab Chloride 67.9 mg/l 5.00 0.839 10 - 05/04/23 13:13 44,300.0 C' Nitrogen, Nitrate 0.542 mg/l 0.050 0.012 1 - 05/04/23 13:02 44,300.0 C'	Alkalinity, Total	460.	mg CaCO3/L	2.00	NA	1	-	05/16/23 10:03	121,2320B	MKT
Chloride 67.9 mg/l 5.00 0.839 10 - 05/04/23 13:13 44,300.0 C Nitrogen, Nitrate 0.542 mg/l 0.050 0.012 1 - 05/04/23 13:02 44,300.0 C	Total Organic Carbon	5.87	mg/l	0.500	0.097	1	-	05/08/23 15:47	121,5310C	SMD
Nitrogen, Nitrate 0.542 mg/l 0.050 0.012 1 - 05/04/23 13:02 44,300.0 C	Anions by Ion Chromat	tography - Westbo	orough Lab							
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Chloride	67.9	mg/l	5.00	0.839	10	-	05/04/23 13:13	44,300.0	CVN
Sulfete 42.0 mg/l 1.00 0.454 1 05/04/22.12:02 44.200.0 C	Nitrogen, Nitrate	0.542	mg/l	0.050	0.012	1	-	05/04/23 13:02	44,300.0	CVN
Sunate 43.0 mg/l 1.00 0.454 l - 05/04/25 15.02 44,500.0 C	Sulfate	43.0	mg/l	1.00	0.454	1	-	05/04/23 13:02	44,300.0	CVN

Project Name: FORMER COYNE TEXTILE Lab Number: L2324376

Project Number: 059294.001 **Report Date:** 05/17/23

SAMPLE RESULTS

 Lab ID:
 L2324376-06
 Date Collected:
 05/03/23 12:00

 Client ID:
 CHA-1-20230503
 Date Received:
 05/03/23

 Sample Location:
 SYRACUSE,NY
 Field Prep:
 Not Specified

Sample Depth:

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab								
Alkalinity, Total	348.	mg CaCO3/L	2.00	NA	1	-	05/16/23 10:15	121,2320B	MKT
Total Organic Carbon	10.0	mg/l	1.00	0.194	2	-	05/08/23 16:14	121,5310C	SMD
Anions by Ion Chromat	ography - Westb	orough Lab							
Chloride	239.	mg/l	5.00	0.839	10	-	05/04/23 15:13	44,300.0	CVN
Nitrogen, Nitrate	0.515	mg/l	0.050	0.012	1	-	05/04/23 13:45	44,300.0	CVN
Sulfate	42.9	mg/l	1.00	0.454	1	-	05/04/23 13:45	44,300.0	CVN

05/16/23 10:39

L2324376

MKT

121,2320B

Lab Number:

Project Name: FORMER COYNE TEXTILE

ND

Alkalinity, Total

Project Number: 059294.001 **Report Date:** 05/17/23

Method Blank Analysis Batch Quality Control

Parameter	Result (Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Anions by Ion Chrom	atography - Wes	tborough	Lab for sa	ample(s):	01-06	Batch: V	NG1774875-1			
Chloride	0.222	J	mg/l	0.500	0.083	1	-	05/04/23 11:56	44,300.0	CVN
Nitrogen, Nitrate	0.013	J	mg/l	0.050	0.012	1	-	05/04/23 11:56	44,300.0	CVN
Sulfate	ND		ma/l	1.00	0.454	1		05/04/23 11:56	44 300 O	CVN

Sulfate	ND	mg/l	1.00	0.454	1	-	05/04/23 11:56	44,300.0	CVN
General Chemistry - V	Vestborough Lab for	sample(s): 01-	·06 Bat	tch: WG1	776036-1				
Total Organic Carbon	ND	mg/l	0.500	0.097	1	-	05/08/23 09:51	121,5310C	SMD
General Chemistry - V	Vestborough Lab for	sample(s): 01-	·06 Bat	tch: WG1	779343-1				

2.00

NA

1

mg CaCO3/L

Lab Control Sample Analysis Batch Quality Control

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number:

L2324376

Report Date:

05/17/23

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Anions by Ion Chromatography - Westbor	ough Lab Associate	ed sample	e(s): 01-06 Bato	h: WG177	4875-2			
Chloride	95		-		90-110	-		
Nitrogen, Nitrate	90		-		90-110	-		
Sulfate	99		-		90-110	-		
General Chemistry - Westborough Lab A	ssociated sample(s)	: 01-06	Batch: WG17760)36-2				
Total Organic Carbon	96		-		90-110	-		
General Chemistry - Westborough Lab A	ssociated sample(s)	: 01-06	Batch: WG17793	343-2				
Alkalinity, Total	98		-		90-110	-		10

Matrix Spike Analysis Batch Quality Control

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number: L2324376

Report Date: 05/17/23

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits		Qual	RPD Limits
Anions by Ion Chromatography Client ID: MW-7R-20230503	- Westborou	gh Lab Asso	ociated samp	ole(s): 01-06	QC Ba	tch ID: WG	31774875-3 W	G17748	375-4 QC	Sample	: L23243	376-03
Chloride	316.	40	360	110		358	105		90-110	1		18
Nitrogen, Nitrate	0.761	4	3.71	74	Q	3.80	76	Q	90-110	2		15
Sulfate	65.8	80	155	111	Q	150	105		90-110	3		20
General Chemistry - Westborou 20230503	gh Lab Asso	ciated samp	ole(s): 01-06	QC Batch I	D: WG1	776036-3	QC Sample:	L23243	376-03 C	lient ID:	MW-7R	!-
Total Organic Carbon	2.95	32	37.3	107		-	-		85-115	-		15
General Chemistry - Westborou 20230503	gh Lab Asso	ciated samp	ole(s): 01-06	QC Batch I	D: WG1	779343-4	QC Sample:	L23243	376-03 C	lient ID:	MW-7R	\-
Alkalinity, Total	297.	100	400	103		-	-		86-116	-		10

Lab Duplicate Analysis Batch Quality Control

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number:

L2324376

Report Date:

05/17/23

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Asso 20230503	ociated sample(s): 01-06 QC	Batch ID: WG1776036-4	QC Sample: I	_2324376-03	Client ID:	MW-7R-
Total Organic Carbon	2.95	2.92	mg/l	1		15
General Chemistry - Westborough Lab Asso 20230503	ociated sample(s): 01-06 QC	Batch ID: WG1779343-3	QC Sample: I	_2324376-03	Client ID:	MW-7R-
Alkalinity, Total	297.	300	mg CaCO3/L	1		10

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number: L2324376 **Report Date:** 05/17/23

Sample Receipt and Container Information

YES

Were project specific reporting limits specified?

Cooler Information

Custody Seal Cooler

Α Absent В Absent

Container Information			Initial	Final	Temp			Frozen			
Container ID	Container Type	Cooler	рH	рН	•	Pres	Seal	Date/Time	Analysis(*)		
L2324376-01A	Vial HCl preserved	В	NA		3.3	Υ	Absent		NYTCL-8260-R2(14)		
L2324376-01B	Vial HCl preserved	В	NA		3.3	Υ	Absent		NYTCL-8260-R2(14)		
L2324376-01C	Vial HCl preserved	В	NA		3.3	Υ	Absent		NYTCL-8260-R2(14)		
L2324376-01D	Vial H2SO4 preserved	Α	NA		4.3	Υ	Absent		TOC-5310(28)		
L2324376-01E	Vial H2SO4 preserved	Α	NA		4.3	Υ	Absent		TOC-5310(28)		
L2324376-01F	Vial unpreserved 20ml	Α	NA		4.3	Υ	Absent		DISSGAS-CO2(7)		
L2324376-01G	Vial unpreserved 20ml	Α	NA		4.3	Υ	Absent		DISSGAS-CO2(7)		
L2324376-01H	20ml Vial HCl preserved	Α	NA		4.3	Υ	Absent		DISSGAS(14)		
L2324376-01J	20ml Vial HCl preserved	Α	NA		4.3	Υ	Absent		DISSGAS(14)		
L2324376-01K	Plastic 250ml unpreserved/No Headspace	Α	NA		4.3	Υ	Absent		ALK-T-2320(14)		
L2324376-01L	Plastic 250ml unpreserved	Α	7	7	4.3	Υ	Absent		SO4-300(28),CL-300(28),NO3-300(2)		
L2324376-01M	Plastic 500ml HNO3 preserved	A	<2	<2	4.3	Y	Absent		BA-6020T(180),SE-6020T(180),FE-6020T(180),TL-6020T(180),CA-6020T(180),NI-6020T(180),CR-6020T(180),CN-6020T(180),CN-6020T(180),AR-6020T(180),CU-6020T(180),PB-6020T(180),BS-6020T(180),AS-6020T(180),SB-6020T(180),AS		
L2324376-01N	Plastic 250ml Zn Acetate/NaOH preserved	Α	>9	>9	4.3	Υ	Absent		SUB-SULFIDE()		
L2324376-01P	Plastic 250ml Zn Acetate/NaOH preserved	Α	>9	>9	4.3	Υ	Absent		SUB-SULFIDE()		
L2324376-02A	Vial HCl preserved	В	NA		3.3	Υ	Absent		NYTCL-8260-R2(14)		
L2324376-02B	Vial HCl preserved	В	NA		3.3	Υ	Absent		NYTCL-8260-R2(14)		
L2324376-02C	Vial HCI preserved	В	NA		3.3	Υ	Absent		NYTCL-8260-R2(14)		
	Container ID L2324376-01A L2324376-01B L2324376-01C L2324376-01E L2324376-01F L2324376-01H L2324376-01H L2324376-01K L2324376-01L L2324376-01L L2324376-01L L2324376-01D	Container ID Container Type L2324376-01A Vial HCl preserved L2324376-01B Vial HCl preserved L2324376-01C Vial HCl preserved L2324376-01D Vial H2SO4 preserved L2324376-01E Vial H2SO4 preserved L2324376-01F Vial unpreserved 20ml L2324376-01G Vial unpreserved 20ml L2324376-01H 20ml Vial HCl preserved L2324376-01J 20ml Vial HCl preserved L2324376-01J Plastic 250ml unpreserved/No Headspace L2324376-01L Plastic 250ml unpreserved L2324376-01M Plastic 500ml HNO3 preserved L2324376-01M Plastic 250ml Zn Acetate/NaOH preserved L2324376-01P Plastic 250ml Zn Acetate/NaOH preserved L2324376-02A Vial HCl preserved Vial HCl preserved	Container ID Container Type Cooler L2324376-01A Vial HCl preserved B L2324376-01B Vial HCl preserved B L2324376-01C Vial HCl preserved B L2324376-01D Vial H2SO4 preserved A L2324376-01E Vial H2SO4 preserved A L2324376-01F Vial unpreserved 20ml A L2324376-01G Vial unpreserved 20ml A L2324376-01H 20ml Vial HCl preserved A L2324376-01J 20ml Vial HCl preserved A L2324376-01K Plastic 250ml unpreserved/No Headspace A L2324376-01L Plastic 250ml HNO3 preserved A L2324376-01M Plastic 500ml HNO3 preserved A L2324376-01P Plastic 250ml Zn Acetate/NaOH preserved A L2324376-02A Vial HCl preserved B L2324376-02B Vial HCl preserved B	Container ID Container Type Cooler PH L2324376-01A Vial HCl preserved B NA L2324376-01B Vial HCl preserved B NA L2324376-01C Vial HCl preserved B NA L2324376-01D Vial H2SO4 preserved A NA L2324376-01E Vial H2SO4 preserved A NA L2324376-01F Vial unpreserved 20ml A NA L2324376-01G Vial unpreserved 20ml A NA L2324376-01H 20ml Vial HCl preserved A NA L2324376-01J 20ml Vial HCl preserved A NA L2324376-01K Plastic 250ml unpreserved/No Headspace A NA L2324376-01L Plastic 250ml HNO3 preserved A -2 L2324376-01M Plastic 250ml Zn Acetate/NaOH preserved A >9 L2324376-01P Plastic 250ml Zn Acetate/NaOH preserved B NA L2324376-02A Vial HCl preserved B NA	Container ID Container Type Cooler Initial pH PH L2324376-01A Vial HCl preserved B NA L2324376-01B Vial HCl preserved B NA L2324376-01C Vial HCl preserved B NA L2324376-01D Vial H2SO4 preserved A NA L2324376-01E Vial H2SO4 preserved A NA L2324376-01F Vial unpreserved 20ml A NA L2324376-01G Vial unpreserved 20ml A NA L2324376-01H 20ml Vial HCl preserved A NA L2324376-01J 20ml Vial HCl preserved A NA L2324376-01L Plastic 250ml unpreserved/No Headspace A NA L2324376-01L Plastic 250ml HNO3 preserved A 7 7 L2324376-01M Plastic 250ml Zn Acetate/NaOH preserved A >9 >9 L2324376-02A Vial HCl preserved B NA L2324376-02B Vial HCl preserved B NA	Container ID Container Type Cooler nmath pH rmst deg C L2324376-01A Vial HCl preserved B NA 3.3 L2324376-01B Vial HCl preserved B NA 3.3 L2324376-01C Vial HCl preserved B NA 3.3 L2324376-01D Vial H2SO4 preserved A NA 4.3 L2324376-01E Vial H2SO4 preserved A NA 4.3 L2324376-01E Vial unpreserved 20ml A NA 4.3 L2324376-01F Vial unpreserved 20ml A NA 4.3 L2324376-01H 20ml Vial HCl preserved A NA 4.3 L2324376-01J 20ml Vial HCl preserved/No Headspace A NA 4.3 L2324376-01L Plastic 250ml unpreserved/No Headspace A NA 4.3 L2324376-01L Plastic 550ml HNO3 preserved A 7 7 4.3 L2324376-01M Plastic 250ml Zn Acetate/NaOH preserved A >9 >9 4.3 L2	Container ID Container Type Cooler pH PH deg C Pres L2324376-01A Vial HCl preserved B NA 3.3 Y L2324376-01B Vial HCl preserved B NA 3.3 Y L2324376-01C Vial HCl preserved B NA 3.3 Y L2324376-01D Vial H2SO4 preserved A NA 4.3 Y L2324376-01E Vial upreserved 20ml A NA 4.3 Y L2324376-01F Vial upreserved 20ml A NA 4.3 Y L2324376-01H 20ml Vial HCl preserved A NA 4.3 Y L2324376-01J 20ml Vial HCl preserved A NA 4.3 Y L2324376-01K Plastic 250ml unpreserved/No Headspace A NA 4.3 Y L2324376-01L Plastic 250ml unpreserved A 7 7 4.3 Y L2324376-01M Plastic 500ml HNO3 preserved A >9 >9 4.3 Y	Container ID Container Type Cooler PH PH PH deg C Pres Seal L2324376-01A Vial HCl preserved B NA 3.3 Y Absent L2324376-01B Vial HCl preserved B NA 3.3 Y Absent L2324376-01C Vial HCl preserved B NA 3.3 Y Absent L2324376-01D Vial H2SO4 preserved A NA 4.3 Y Absent L2324376-01E Vial H2SO4 preserved A NA 4.3 Y Absent L2324376-01F Vial unpreserved 20ml A NA 4.3 Y Absent L2324376-01H 20ml Vial HCl preserved A NA 4.3 Y Absent L2324376-01J 20ml Vial HCl preserved A NA 4.3 Y Absent L2324376-01L Plastic 250ml unpreserved/No Headspace A NA 4.3 Y Absent L2324376-01L Plastic 250ml preserved A 7 7 <th>Container ID Container Type Cooler pH nmmark pH deg C by Pres Seal Date/Time L2324376-01A Vial HCl preserved B NA 3.3 Y Absent L2324376-01B Vial HCl preserved B NA 3.3 Y Absent L2324376-01C Vial HCl preserved B NA 3.3 Y Absent L2324376-01D Vial H2SO4 preserved A NA 4.3 Y Absent L2324376-01E Vial unpreserved 20ml A NA 4.3 Y Absent L2324376-01G Vial unpreserved 20ml A NA 4.3 Y Absent L2324376-01H 20ml Vial HCl preserved A NA 4.3 Y Absent L2324376-01J 20ml Vial HCl preserved A NA 4.3 Y Absent L2324376-01L Plastic 250ml unpreserved/No Headspace A NA 4.3 Y Absent L2324376-01L Plastic 500ml HNO3 preserved A</th>	Container ID Container Type Cooler pH nmmark pH deg C by Pres Seal Date/Time L2324376-01A Vial HCl preserved B NA 3.3 Y Absent L2324376-01B Vial HCl preserved B NA 3.3 Y Absent L2324376-01C Vial HCl preserved B NA 3.3 Y Absent L2324376-01D Vial H2SO4 preserved A NA 4.3 Y Absent L2324376-01E Vial unpreserved 20ml A NA 4.3 Y Absent L2324376-01G Vial unpreserved 20ml A NA 4.3 Y Absent L2324376-01H 20ml Vial HCl preserved A NA 4.3 Y Absent L2324376-01J 20ml Vial HCl preserved A NA 4.3 Y Absent L2324376-01L Plastic 250ml unpreserved/No Headspace A NA 4.3 Y Absent L2324376-01L Plastic 500ml HNO3 preserved A		

Lab Number: L2324376

Report Date: 05/17/23

Project Name: FORMER COYNE TEXTILE

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler		рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2324376-02D	Vial H2SO4 preserved	Α	NA		4.3	Υ	Absent		TOC-5310(28)
L2324376-02E	Vial H2SO4 preserved	Α	NA		4.3	Υ	Absent		TOC-5310(28)
L2324376-02F	Vial unpreserved 20ml	Α	NA		4.3	Υ	Absent		DISSGAS-CO2(7)
L2324376-02G	Vial unpreserved 20ml	Α	NA		4.3	Υ	Absent		DISSGAS-CO2(7)
L2324376-02H	20ml Vial HCl preserved	Α	NA		4.3	Υ	Absent		DISSGAS(14)
L2324376-02J	20ml Vial HCl preserved	Α	NA		4.3	Υ	Absent		DISSGAS(14)
L2324376-02K	Plastic 250ml unpreserved/No Headspace	Α	NA		4.3	Υ	Absent		ALK-T-2320(14)
L2324376-02L	Plastic 250ml unpreserved	Α	7	7	4.3	Υ	Absent		SO4-300(28),CL-300(28),NO3-300(2)
L2324376-02M	Plastic 500ml HNO3 preserved	A	<2	<2	4.3	Y	Absent		TL-6020T(180),BA-6020T(180),SE-6020T(180),FE-6020T(180),NI-6020T(180),K-6020T(180),CR-6020T(180),CA-6020T(180),AN-6020T(180),CU-6020T(180),ZN-6020T(180),PB-6020T(180),BE-6020T(180),MN-6020T(180),V-6020T(180),AS-6020T(180),SB-6020T(180),AG-6020T(180),CD-6020T(180),FE-TI(180),MG-6020T(180),AL-6020T(180),HG-T(28),CO-6020T(180)
L2324376-02N	Plastic 250ml Zn Acetate/NaOH preserved	Α	>9	>9	4.3	Υ	Absent		SUB-SULFIDE()
L2324376-02P	Plastic 250ml Zn Acetate/NaOH preserved	Α	>9	>9	4.3	Υ	Absent		SUB-SULFIDE()
L2324376-03A	Vial HCl preserved	В	NA		3.3	Υ	Absent		NYTCL-8260-R2(14)
L2324376-03A1	Vial HCl preserved	В	NA		3.3	Υ	Absent		NYTCL-8260-R2(14)
L2324376-03A2	Vial HCl preserved	В	NA		3.3	Υ	Absent		NYTCL-8260-R2(14)
L2324376-03B	Vial HCl preserved	В	NA		3.3	Υ	Absent		NYTCL-8260-R2(14)
L2324376-03B1	Vial HCl preserved	В	NA		3.3	Υ	Absent		NYTCL-8260-R2(14)
L2324376-03B2	Vial HCl preserved	В	NA		3.3	Υ	Absent		NYTCL-8260-R2(14)
L2324376-03C	Vial HCl preserved	В	NA		3.3	Υ	Absent		NYTCL-8260-R2(14)
L2324376-03C1	Vial HCl preserved	В	NA		3.3	Υ	Absent		NYTCL-8260-R2(14)
L2324376-03C2	Vial HCl preserved	В	NA		3.3	Υ	Absent		NYTCL-8260-R2(14)
L2324376-03D	Vial H2SO4 preserved	Α	NA		4.3	Υ	Absent		TOC-5310(28)
L2324376-03D1	Vial H2SO4 preserved	Α	NA		4.3	Υ	Absent		TOC-5310(28)
L2324376-03D2	Vial H2SO4 preserved	В	NA		3.3	Υ	Absent		TOC-5310(28)
L2324376-03E	Vial H2SO4 preserved	Α	NA		4.3	Υ	Absent		TOC-5310(28)

Lab Number: L2324376

Report Date: 05/17/23

Project Name: FORMER COYNE TEXTILE

Container Info		Initial	Final	Temp			Frozen		
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2324376-03E1	Vial H2SO4 preserved	Α	NA		4.3	Υ	Absent		TOC-5310(28)
L2324376-03E2	Vial H2SO4 preserved	В	NA		3.3	Υ	Absent		TOC-5310(28)
L2324376-03F	Vial unpreserved 20ml	Α	NA		4.3	Υ	Absent		DISSGAS-CO2(7)
L2324376-03F1	Vial unpreserved 20ml	Α	NA		4.3	Υ	Absent		DISSGAS-CO2(7)
L2324376-03F2	Vial unpreserved 20ml	В	NA		3.3	Υ	Absent		DISSGAS-CO2(7)
L2324376-03G	Vial unpreserved 20ml	Α	NA		4.3	Υ	Absent		DISSGAS-CO2(7)
L2324376-03G1	Vial unpreserved 20ml	Α	NA		4.3	Υ	Absent		DISSGAS-CO2(7)
L2324376-03G2	Vial unpreserved 20ml	В	NA		3.3	Υ	Absent		DISSGAS-CO2(7)
L2324376-03H	20ml Vial HCl preserved	Α	NA		4.3	Υ	Absent		DISSGAS(14)
L2324376-03H1	20ml Vial HCl preserved	Α	NA		4.3	Υ	Absent		DISSGAS(14)
L2324376-03H2	20ml Vial HCl preserved	В	NA		3.3	Υ	Absent		DISSGAS(14)
L2324376-03J	20ml Vial HCl preserved	Α	NA		4.3	Υ	Absent		DISSGAS(14)
L2324376-03J1	20ml Vial HCl preserved	Α	NA		4.3	Υ	Absent		DISSGAS(14)
L2324376-03J2	20ml Vial HCl preserved	В	NA		3.3	Υ	Absent		DISSGAS(14)
L2324376-03K	Plastic 250ml unpreserved/No Headspace	Α	NA		4.3	Υ	Absent		ALK-T-2320(14)
L2324376-03K1	Plastic 250ml unpreserved/No Headspace	Α	NA		4.3	Υ	Absent		ALK-T-2320(14)
L2324376-03K2	Plastic 250ml unpreserved/No Headspace	В	NA		3.3	Υ	Absent		ALK-T-2320(14)
L2324376-03L	Plastic 250ml unpreserved	Α	7	7	4.3	Υ	Absent		SO4-300(28),CL-300(28),NO3-300(2)
L2324376-03L1	Plastic 250ml unpreserved	Α	7	7	4.3	Υ	Absent		SO4-300(28),CL-300(28),NO3-300(2)
L2324376-03L2	Plastic 250ml unpreserved	В	7	7	3.3	Υ	Absent		SO4-300(28),CL-300(28),NO3-300(2)
L2324376-03M	Plastic 500ml HNO3 preserved	A	<2	<2	4.3	Y	Absent		BA-6020T(180),FE-6020T(180),SE-6020T(180),TL-6020T(180),K-6020T(180),CR-6020T(180),NI-6020T(180),CA-6020T(180),CU-6020T(180),NA-6020T(180),BE-6020T(180),PB-6020T(180),MN-6020T(180),BE-6020T(180),V-6020T(180),BB-6020T(180),AS-6020T(180),HG-T(28),FE-TI(180),MG-6020T(180),CD-6020T(180),AG-6020T(180),CD-6020T(180),AG-6020T(180),CD-6020T(180)

Lab Number: L2324376

Report Date: 05/17/23

Project Name: FORMER COYNE TEXTILE

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН		Pres	Seal	Date/Time	Analysis(*)
L2324376-03M1	Plastic 500ml HNO3 preserved	A	<2	<2	4.3	Y	Absent		BA-6020T(180),FE-6020T(180),SE-6020T(180),TL-6020T(180),K-6020T(180),CR-6020T(180),NH-6020T(180),CA-6020T(180),CU-6020T(180),NA-6020T(180),ZN-6020T(180),PB-6020T(180),MN-6020T(180),AE-6020T(180),SB-6020T(180),AS-6020T(180),HG-T(28),FE-TI(180),MG-6020T(180),CD-6020T(180),AG-6020T(180),CD-6020T(180),AG-6020T(180),CD-6020T(180),AG-6020T(180),CO-6020T(180)
L2324376-03M2	Plastic 500ml HNO3 preserved	В	<2	<2	3.3	Y	Absent		BA-6020T(180),FE-6020T(180),SE-6020T(180),TL-6020T(180),K-6020T(180),CR-6020T(180),NI-6020T(180),CA-6020T(180),CU-6020T(180),NA-6020T(180),ZN-6020T(180),PB-6020T(180),MN-6020T(180),BE-6020T(180),V-6020T(180),SB-6020T(180),AS-6020T(180),HG-T(28),FE-TI(180),MG-6020T(180),CD-6020T(180),AG-6020T(180),CD-6020T(180),AG-6020T(180),CO-6020T(180)
L2324376-03N	Plastic 250ml Zn Acetate/NaOH preserved	Α	>9	>9	4.3	Υ	Absent		SUB-SULFIDE()
L2324376-03N1	Plastic 250ml Zn Acetate/NaOH preserved	Α	>9	>9	4.3	Υ	Absent		SUB-SULFIDE()
L2324376-03N2	Plastic 250ml Zn Acetate/NaOH preserved	В	>9	>9	3.3	Υ	Absent		SUB-SULFIDE()
L2324376-03P	Plastic 250ml Zn Acetate/NaOH preserved	Α	>9	>9	4.3	Υ	Absent		SUB-SULFIDE()
L2324376-03P1	Plastic 250ml Zn Acetate/NaOH preserved	Α	>9	>9	4.3	Υ	Absent		SUB-SULFIDE()
L2324376-03P2	Plastic 250ml Zn Acetate/NaOH preserved	В	>9	>9	3.3	Υ	Absent		SUB-SULFIDE()
L2324376-04A	Vial HCl preserved	В	NA		3.3	Υ	Absent		NYTCL-8260-R2(14)
L2324376-04B	Vial HCl preserved	В	NA		3.3	Υ	Absent		NYTCL-8260-R2(14)
L2324376-04C	Vial HCl preserved	В	NA		3.3	Υ	Absent		NYTCL-8260-R2(14)
L2324376-04D	Vial H2SO4 preserved	Α	NA		4.3	Υ	Absent		TOC-5310(28)
L2324376-04E	Vial H2SO4 preserved	Α	NA		4.3	Υ	Absent		TOC-5310(28)
L2324376-04F	Vial unpreserved 20ml	Α	NA		4.3	Υ	Absent		DISSGAS-CO2(7)
L2324376-04G	Vial unpreserved 20ml	Α	NA		4.3	Υ	Absent		DISSGAS-CO2(7)
L2324376-04H	20ml Vial HCl preserved	Α	NA		4.3	Υ	Absent		DISSGAS(14)
L2324376-04J	20ml Vial HCl preserved	Α	NA		4.3	Υ	Absent		DISSGAS(14)
L2324376-04K	Plastic 250ml unpreserved/No Headspace	Α	NA		4.3	Υ	Absent		ALK-T-2320(14)
L2324376-04L	Plastic 250ml unpreserved	Α	7	7	4.3	Υ	Absent		SO4-300(28),CL-300(28),NO3-300(2)

Lab Number: L2324376

Report Date: 05/17/23

Project Name: FORMER COYNE TEXTILE

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler		рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2324376-04M	Plastic 500ml HNO3 preserved	A	3	<2	4.3	N	Absent		TL-6020T(180),BA-6020T(180),SE-6020T(180),FE-6020T(180),K-6020T(180),NI-6020T(180),CA-6020T(180),CR-6020T(180),NA-6020T(180),CU-6020T(180),ZN-6020T(180),PB-6020T(180),BE-6020T(180),MN-6020T(180),AS-6020T(180),V-6020T(180),SB-6020T(180),AL-6020T(180),HG-T(28),CD-6020T(180),FE-TI(180),AG-6020T(180),MG-6020T(180),CO-6020T(180)
L2324376-04N	Plastic 250ml Zn Acetate/NaOH preserved	Α	>9	>9	4.3	Υ	Absent		SUB-SULFIDE()
L2324376-04P	Plastic 250ml Zn Acetate/NaOH preserved	Α	>9	>9	4.3	Υ	Absent		SUB-SULFIDE()
L2324376-05A	Vial HCl preserved	В	NA		3.3	Υ	Absent		NYTCL-8260-R2(14)
L2324376-05B	Vial HCl preserved	В	NA		3.3	Υ	Absent		NYTCL-8260-R2(14)
L2324376-05C	Vial HCl preserved	В	NA		3.3	Υ	Absent		NYTCL-8260-R2(14)
L2324376-05D	Vial H2SO4 preserved	В	NA		3.3	Υ	Absent		TOC-5310(28)
L2324376-05E	Vial H2SO4 preserved	В	NA		3.3	Υ	Absent		TOC-5310(28)
L2324376-05F	Vial unpreserved 20ml	В	NA		3.3	Υ	Absent		DISSGAS-CO2(7)
L2324376-05G	Vial unpreserved 20ml	В	NA		3.3	Υ	Absent		DISSGAS-CO2(7)
L2324376-05H	20ml Vial HCl preserved	В	NA		3.3	Υ	Absent		DISSGAS(14)
L2324376-05J	20ml Vial HCl preserved	В	NA		3.3	Υ	Absent		DISSGAS(14)
L2324376-05K	Plastic 250ml unpreserved/No Headspace	В	NA		3.3	Υ	Absent		ALK-T-2320(14)
L2324376-05L	Plastic 250ml unpreserved	В	7	7	3.3	Υ	Absent		SO4-300(28),CL-300(28),NO3-300(2)
L2324376-05M	Plastic 250ml HNO3 preserved	В	<2	<2	3.3	Y	Absent		SE-6020T(180),TL-6020T(180),BA-6020T(180),FE-6020T(180),NI-6020T(180),K-6020T(180),CR-6020T(180),NA-6020T(180),ZN-6020T(180),CB-6020T(180),CB-6020T(180),MN-6020T(180),SB-6020T(180),AS-6020T(180),AS-6020T(180),CD-6020T(180),MG-6020T(180),CD-6020T(180),HG-T(28),AG-6020T(180),FE-TI(180),CO-6020T(180)
L2324376-05N	Plastic 250ml Zn Acetate/NaOH preserved	В	>9	>9	3.3	Υ	Absent		SUB-SULFIDE()
L2324376-05P	Plastic 250ml Zn Acetate/NaOH preserved	В	>9	>9	3.3	Υ	Absent		SUB-SULFIDE()
L2324376-06A	Vial HCI preserved	В	NA		3.3	Υ	Absent		NYTCL-8260-R2(14)
L2324376-06B	Vial HCl preserved	В	NA		3.3	Υ	Absent		NYTCL-8260-R2(14)
L2324376-06C	Vial HCl preserved	В	NA		3.3	Υ	Absent		NYTCL-8260-R2(14)

Lab Number: L2324376

Report Date: 05/17/23

Project Name: FORMER COYNE TEXTILE

Container Information			Initial	Final	Temp		Frozen			
	Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
	L2324376-06D	Vial H2SO4 preserved	Α	NA		4.3	Υ	Absent		TOC-5310(28)
	L2324376-06E	Vial H2SO4 preserved	Α	NA		4.3	Υ	Absent		TOC-5310(28)
	L2324376-06F	Vial unpreserved 20ml	Α	NA		4.3	Υ	Absent		DISSGAS-CO2(7)
	L2324376-06G	Vial unpreserved 20ml	Α	NA		4.3	Υ	Absent		DISSGAS-CO2(7)
	L2324376-06H	20ml Vial HCl preserved	Α	NA		4.3	Υ	Absent		DISSGAS(14)
	L2324376-06J	20ml Vial HCl preserved	Α	NA		4.3	Υ	Absent		DISSGAS(14)
	L2324376-06K	Plastic 250ml unpreserved/No Headspace	Α	NA		4.3	Υ	Absent		ALK-T-2320(14)
	L2324376-06L	Plastic 250ml unpreserved	Α	7	7	4.3	Υ	Absent		SO4-300(28),CL-300(28),NO3-300(2)
	L2324376-06M	Plastic 500ml HNO3 preserved	A	<2	<2	4.3	Y	Absent		TL-6020T(180),SE-6020T(180),BA-6020T(180),FE-6020T(180),CR-6020T(180),NI-6020T(180),CA-6020T(180),CN-6020T(180),CN-6020T(180),AA-6020T(180),CU-6020T(180),PB-6020T(180),BE-6020T(180),MN-6020T(180),AS-6020T(180),SB-6020T(180),V-6020T(180),AL-6020T(180),CD-6020T(180),AG-6020T(180),FE-TI(180),HG-T(28),MG-6020T(180),CO-6020T(180)
	L2324376-06N	Plastic 250ml Zn Acetate/NaOH preserved	Α	>9	>9	4.3	Υ	Absent		SUB-SULFIDE()
	L2324376-06P	Plastic 250ml Zn Acetate/NaOH preserved	Α	>9	>9	4.3	Υ	Absent		SUB-SULFIDE()
	L2324376-07A	Vial HCl preserved	В	NA		3.3	Υ	Absent		NYTCL-8260-R2(14)
	L2324376-07B	Vial HCl preserved	В	NA		3.3	Υ	Absent		NYTCL-8260-R2(14)

Project Name: Lab Number: FORMER COYNE TEXTILE L2324376 059294.001 **Report Date: Project Number:** 05/17/23

GLOSSARY

Acronyms

EDL

LOQ

MS

RPD

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.

- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:FORMER COYNE TEXTILELab Number:L2324376Project Number:059294.001Report Date:05/17/23

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert buts.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Project Name:FORMER COYNE TEXTILELab Number:L2324376Project Number:059294.001Report Date:05/17/23

Data Qualifiers

Identified Compounds (TICs).

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name:FORMER COYNE TEXTILELab Number:L2324376Project Number:059294.001Report Date:05/17/23

REFERENCES

- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I VI, 2018.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- Technical Guidance for the Natural Attenuation Indicators: Methane, Ethane, and Ethene, EPA-NE, Revision 1, February 21, 2002 and Sample Preparation & Calculations for Dissolved Gas Analysis in Water Samples using a GC Headspace Equilibration Technique, EPA RSKSOP-175, Revision 2, May 2004.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc.
Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 19

Page 1 of 1

Published Date: 4/2/2021 1:14:23 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

4-Ethyltoluene.

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics.

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. **EPA 200.8:** Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. **EPA 245.1** Hg. **EPA 522, EPA 537.1.**

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

ALPHA Westborough, MA 01581	NEW YORK CHAIN OF CUSTODY Manufield, MA 92948	Service Centers Mahwah, NJ 07430: 35 Whitne Albany, NY 12205: 14 Walker V Tonawanda, NY 14150: 275 Co	tos	_	Page Date in t			in Lab 05 04 83				ALPHA Job# L0304376		
8 Walkup Dr. TEL: 508-896-9220 FAX: 508-898-9193	329 Forbes Blvd TEL: 508-822-5300 FAX: 508-822-3288		mer con		xtile			ASP-			ASP	-B IS (4 I	-ile)	Same as Client Info
Client Information		Project # 05929	4.001					Other						will email
Client: CHA		(Use Project name as Pr	roject#)				Regul	ntory	Requirer	nent				Disposal Site Information
Address: 300 S. S		Project Manager: SA	in Mille	25			X	NY TO	GS		NYP	art 375		Please identify below location of
THE REAL PROPERTY AND ADDRESS OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS N	N 13202	ALPHAQuote #: 2	0280				AWQ Standards NY CP-51						applicable disposal facilities.	
Phone: 315-25	7-7250	Turn-Around Time						NY Re	stricted U	ie [Other	1		Disposal Facility:
Fax:		nies. com Standard		Due Date	90			NY Un	restricted	Use				☐ NJ ☐ NY
Email: Kelnman	rechacom!	Rush (only if pre approved	1) 🗌	# of Days	91			NYCS	lewer Disc	harge				Other:
These samples have b	een previously analyze	ed by Alpha					ANAL	YSIS						Sample Filtration
GC. Same	miller	(2 coders)					\$20D	CI NO3	-	K-T-23 2D	Gas CO2	4		Done Lab to do Preservation Lab to do
								SOY		= 1	100		X	(Please Specify below)
ALPHA Lab ID (Lab Use Only)	Sar	mple ID	Coll	ection Time	Sample Matrix	Sampler's Initials	NOC	S	Otal	3 3	Diss	Dis	12	Sample Specific Comments
24376-01	MW-5R-2023	0503	5.3.23	1025	GW	KE	X	\Rightarrow	V .	1 2	×	V	×	Sample Specific Comments
Part of the latest and the latest an	MW-6R-2013		3.3.23	1205	GILA	P.E	3	0		70	×	V	X	
	MW-7R-202			1310			0	♦	√ 1	70	V	0	5	
-03	MS-2023050	3		1310			2	2	2 3	12	Ŷ	÷	V	
	MSD -202305			1310	 		∇	\Diamond	21	7	X	Ŷ	×	
-04	MW-4-2023			1400			V	X	Ŷ S	X	X	V	x	
-05	MW-105 D-2			1550	11		X	文	XX	T V	V	V	Y	
	CHA-1-20230		V	1200	1	V	V	X	XX	· V	Ŷ	×	X	1
The second secon	Trip Blank-2		5.3.23	_	Labhat	-	ŷ		^ ^	1			-	2
B = HCI C = HNO ₃	P = Plastic A = Amber Glass V = Vial	Westboro: Certification No Mansfield: Certification No			\vdash	tainer Type	0		PP	1	٧	V	V	Please print clearly, legibly and completely. Samples can not be logged in and
	G = Glass B = Bacteria Cup				l P	reservative	B	A	C 4	E A	A	B	D	turnaround time clock will not
F = MeOH	C = Cube	Religquished E	3v-	Date	Time		Perelye	ri Bu			Date	Time		start until any ambiguities are resolved. BY EXECUTING
1111110102	O = Other E = Encore	IK Show		Date/Time 3-23 / 1920 . Own		Received By:			1	5/3/23 14:20			THIS COC, THE CLIENT	
1 - 14020203	D = BOD Bottle	JongCon		श्रायभ		ferry	n De		Chi		04	12	3 -	HAS READ AND AGREES TO BEBOUND BY ALPHA'S TERMS & CONDITIONS.
Form No: 01-25 HC (rev. 30	-Sept-2013)													(See reverse side.)

Wednesday, May 10, 2023

Attn: Melissa Deyo Alpha Analytical Lab 8 Walkup Drive Westborough, MA 01581

Project ID: L2324376 SDG ID: GCN98762

Sample ID#s: CN98762 - CN98767

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

Phyllis/Shiller

Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #M-CT007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Sample Id Cross Reference

May 10, 2023

SDG I.D.: GCN98762

Project ID: L2324376

Client Id	Lab Id	Matrix
MW-5R-20230503	CN98762	WATER
MW-6R-20230503	CN98763	WATER
MW-7R-20230503	CN98764	WATER
MW-4-20230503	CN98765	WATER
MW-105D-20230503	CN98766	WATER
CHA-1-20230503	CN98767	WATER

Page 98 of 109 Page 2 of 13

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

May 10, 2023

FOR: Attn: Melissa Deyo

Alpha Analytical Lab 8 Walkup Drive

Westborough, MA 01581

Sample Information		Custody Inform	<u>Date</u>	<u>Time</u>	
Matrix:	WATER	Collected by:		05/03/23	10:25
Location Code:	ALPHA	Received by:	SR1	05/05/23	14:18
Durch Danisanti	Ota in allamat	A a l a al la	"B " 1 1		

Rush Request: Standard Analyzed by: see "By" below

P.O.#: Laboratory Data

SDG ID: GCN98762

Phoenix ID: CN98762

Project ID: L2324376

Client ID: MW-5R-20230503

RL/

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Sulfide	0.10	0.05	mg/L	1	05/08/23	GD	SM4500S-D-11

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

May 10, 2023

Reviewed and Released by: Anil Makol, Project Manager

Ver 1

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

May 10, 2023

FOR: Attn: Melissa Deyo

Alpha Analytical Lab 8 Walkup Drive

Westborough, MA 01581

Sample Informa	ation_	Custody Inform	<u>Date</u>	<u>Time</u>	
Matrix:	WATER	Collected by:		05/03/23	12:05
Location Code:	ALPHA	Received by:	SR1	05/05/23	14:18
Buch Boguest	Standard	Analyzed by:	ana IIDvill halavii		

Rush Request: Standard Analyzed by: see "By" below

<u> Laboratory Data</u>

SDG ID: GCN98762

Phoenix ID: CN98763

Project ID: L2324376

Client ID: MW-6R-20230503

RL/ Parameter Result **PQL** Units Dilution Date/Time Reference Βv Sulfide < 0.05 0.05 mg/L 1 05/08/23 GD SM4500S-D-11

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

P.O.#:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

May 10, 2023

Reviewed and Released by: Anil Makol, Project Manager

Ver 1

Page 100 of 109 Page 4 of 13

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

SDG ID: GCN98762

Phoenix ID: CN98764

Analysis Report

May 10, 2023

FOR: Attn: Melissa Deyo

> Alpha Analytical Lab 8 Walkup Drive

Westborough, MA 01581

Sample Information **Custody Information** <u>Date</u> <u>Time</u> WATER Collected by: 05/03/23 Matrix: 13:10 ALPHA Received by: Location Code: SR1 05/05/23 14:18 Standard

Rush Request: Analyzed by: see "By" below

P.O.#:

Project ID:

MW-7R-20230503 Client ID:

L2324376

RL/ Parameter Result **PQL** Units Dilution Date/Time Reference By Sulfide < 0.05 0.05 mg/L 1 05/08/23 GD SM4500S-D-11 Client MS/MSD Completed 05/08/23

aboratory Data

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

Reviewed and Released by: Anil Makol, Project Manager

Ver 1

Page 101 of 109 Page 5 of 13

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

May 10, 2023

FOR: Attn: Melissa Deyo

Alpha Analytical Lab 8 Walkup Drive

Westborough, MA 01581

Sample InformationCustody InformationDateTimeMatrix:WATERCollected by:05/03/2314:00Location Code:ALPHAReceived by:SR105/05/2314:18

Rush Request: Standard Analyzed by: see "By" below

<u>Laboratory Data</u>

SDG ID: GCN98762

Phoenix ID: CN98765

Project ID: L2324376

Client ID: MW-4-20230503

RL/

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Sulfide	< 0.05	0.05	mg/L	1	05/08/23	GD	SM4500S-D-11

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

P.O.#:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

May 10, 2023

Reviewed and Released by: Anil Makol, Project Manager

Ver 1

Page 102 of 109 Page 6 of 13

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

May 10, 2023

FOR: Attn: Melissa Deyo

Alpha Analytical Lab 8 Walkup Drive

Westborough, MA 01581

Sample Informa	<u>tion</u>	Custody Informa	<u>ation</u>	<u>Date</u>	<u>Time</u>
Matrix:	WATER	Collected by:		05/03/23	15:50
Location Code:	ALPHA	Received by:	SR1	05/05/23	14:18

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

Laboratory Data SDG ID: GCN98762
Phoenix ID: CN98766

Project ID: L2324376

Client ID: MW-105D-20230503

RL/ Parameter Result **PQL** Units Dilution Date/Time Reference Βv Sulfide < 0.05 0.05 mg/L 1 05/08/23 GD SM4500S-D-11

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

May 10, 2023

Reviewed and Released by: Anil Makol, Project Manager

Ver 1

Page 103 of 109 Page 7 of 13

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

May 10, 2023

FOR: Attn: Melissa Deyo

Alpha Analytical Lab 8 Walkup Drive

Westborough, MA 01581

Sample Information **Custody Information** <u>Date</u> <u>Time</u> WATER Collected by: 05/03/23 12:00 Matrix: **ALPHA** Received by: Location Code: SR1 05/05/23 14:18 Rush Request: Standard Analyzed by: see "By" below

P.O.#:

Laboratory Data

SDG ID: GCN98762

Phoenix ID: CN98767

Project ID: L2324376

Client ID: CHA-1-20230503

RL/ Parameter Result **PQL** Units Dilution Date/Time Reference Βv Sulfide < 0.05 0.05 mg/L 1 05/08/23 GD SM4500S-D-11

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

May 10, 2023

Reviewed and Released by: Anil Makol, Project Manager

Ver 1

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102

QA/QC Report

May 10, 2023

QA/QC Data

SDG I.D.: GCN98762

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 676641 (mg/L), C Sulfide	C Samp BRL	ole No: 0.05	CN98764 <0.05	(CN987 <0.05	62, CN NC	98763, 91.1	CN9876	64, CN9	98765, 84.4	CN9876	66, CN9	98767) 90 - 110	20

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director May 10, 2023

Page 105 of 109 Page 9 of 13

Wednesday, May 10, 2023

Criteria: NY: GW

Sample Criteria Exceedances Report GCN98762 - ALPHA

State: NY

RL Analysis SampNo Acode Phoenix Analyte Criteria Units

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

Page 106 of 109 Page 10 of 13

^{***} No Data to Display ***

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Comments

May 10, 2023 SDG I.D.: GCN98762

The following analysis comments are made regarding exceptions to criteria not already noted in the Analysis Report or QA/QC Report: None.

Page 107 of 109 Page 11 of 13

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

NY Temperature Narration

May 10, 2023

SDG I.D.: GCN98762

The samples in this delivery group were received at 2.4°C. (Note acceptance criteria for relevant matrices is above freezing up to 6°C)

Page 108 of 109 Page 12 of 13

Alpha Job Number Batch OC IS:MSD Regulatory Requirements/Report Limits L2324376 Date/Time: Report to include Method Blank, LCS/LCSD: Regulatory Criteria: NY-TOGS-GA State/Federal Program: Received, By: Project Specific Requirements and/or Report Requirements Analysis · 3-250ml PI. @ 6-25cmL PI Subcontract Chain of Custody Turnaround & Deliverables Information Phoenix Environmental Laboratories 587 East Middle Tumpike Manchester, CT 06040 Date/Time: Project Information Reference following Alpha Job Number on final report/deliverables: L2324376 Sulfide Sulfide Sulfide Sulfide Sulfide Sulfide Sulfide Sulfide Project Location: NY Project Manager: Melissa Deyo Sample Matrix WATER WATER WATER WATER Additional Comments: Send all results/reports to subreports@alphalab.com Due Date: Deliverables: 05-03-23 10:25 06-03-23 12:05 06-03-23 13:10 06-03-23 14:00 06-03-23 16:50 05-03-23 16:00 05-03-23 12:00 Collection Date/Time Relipeday MW 4-20230503 MW-105D-20230503 CHA-1-20230503 Client: Alpha Analytical Labs Address: Eight Walkup Drive Westborough, MA 01581-1019 AW-5R-20230503 IW-6R-20230503 IW-7R-20230503 Client Information Client ID Phone: 716.427.5229 Email: mdeyo@alphalab.com 98.75 43.75 43.75 93.75 83.75 83.75 Form No: AL subcoc Lab ID

ANALYTICAL REPORT

Lab Number: L2347588

Client: CHA Companies

One Park Place

300 South State St., Suite 600

Syracuse, NY 13202

ATTN: Samantha Miller Phone: (315) 471-3920

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Report Date: 09/07/23

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OH (CL108), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

 Lab Number:
 L2347588

 Report Date:
 09/07/23

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2347588-01	MW-5R-20230816	WATER	SYRACUSE, NY	08/16/23 09:45	08/16/23
L2347588-02	MW-6R-20230816	WATER	SYRACUSE, NY	08/16/23 11:10	08/16/23
L2347588-03	MW-7R-20230816	WATER	SYRACUSE, NY	08/16/23 12:20	08/16/23
L2347588-04	CHA-1-20230816	WATER	SYRACUSE, NY	08/16/23 12:00	08/16/23
L2347588-05	MW-4-20230816	WATER	SYRACUSE, NY	08/16/23 14:00	08/16/23
L2347588-06	MW-105D-20230816	WATER	SYRACUSE, NY	08/16/23 15:40	08/16/23
L2347588-07	TRIP BLANK-20230816	WATER	SYRACUSE, NY	08/16/23 00:00	08/16/23

Project Name: FORMER COYNE TEXTILE Lab Number: L2347588

Project Number: 059294.001 Report Date: 09/07/23

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:FORMER COYNE TEXTILELab Number:L2347588Project Number:059294.001Report Date:09/07/23

Case Narrative (continued)

Report Submission

September 07, 2023: This final report includes the results of all requested analyses.

August 30, 2023: This is a preliminary report.

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

L2347588-01 through -06: The analysis of Carbon Dioxide was requested on the Chain of Custody; however, sample containers were not received. This was verified by the client.

Volatile Organics

The WG1819137-6/-7 MS/MSD recoveries, performed on L2347588-01, are outside the acceptance criteria for vinyl chloride (0%/0%). The unacceptable percent recoveries are attributed to the elevated concentrations of target compounds present in the native sample.

Dissolved Gases

L2347588-03, -04, and -05: The sample was collected in pre-preserved vials; however, the pH of the sample was determined to be greater than two.

The WG1818146-4/-5 MS/MSD recoveries, performed on L2347588-01, are outside the acceptance criteria for methane (293%/311%). The unacceptable percent recoveries are attributed to the elevated concentrations of target compounds present in the native sample.

Total Metals

The WG1817302-3/-4 MS/MSD recoveries for calcium (MSD 210%) and sodium (60%/60%), performed on L2347588-01, do not apply because the sample concentration is greater than four times the spike amount added.

Project Name:FORMER COYNE TEXTILELab Number:L2347588Project Number:059294.001Report Date:09/07/23

Case Narrative (continued)

The WG1817302-3/-4 MS/MSD recoveries, performed on L2347588-01, are outside the acceptance criteria for selenium (61%/73%). A post digestion spike was performed and was within acceptance criteria.

Sulfide

The WG1818619-4 MS recovery, performed on L2347588-01, is outside the acceptance criteria for sulfide (19%); however, the associated LCS recovery is within criteria. No further action was taken.

The WG1818619-3 Laboratory Duplicate RPD for sulfide (69%), performed on L2347588-01, is above the acceptance criteria; however, the sample and duplicate results are less than five times the reporting limit. Therefore, the RPD is valid.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 09/07/23

Melissa Sturgis Melissa Sturgis

ORGANICS

VOLATILES

L2347588

08/16/23 09:45

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

SAMPLE RESULTS

Report Date: 09/07/23

Lab ID: L2347588-01 Client ID: MW-5R-20230816

Sample Location: SYRACUSE, NY Date Received: 08/16/23 Field Prep: Not Specified

Lab Number:

Date Collected:

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 08/21/23 19:41

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westl	oorough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	28		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	0.74		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	240	Е	ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	7.1		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

MDL

Dilution Factor

Project Name: FORMER COYNE TEXTILE Lab Number: L2347588

Project Number: 059294.001 **Report Date:** 09/07/23

SAMPLE RESULTS

Lab ID: Date Collected: 08/16/23 09:45

Client ID: MW-5R-20230816 Date Received: 08/16/23 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Qualifier

Units

RL

Result

Sample Depth:

Parameter

i arameter	resuit	Quanno	Oilles			Dilation ractor	
Volatile Organics by GC/MS - Westb	orough Lab						
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	14		ug/l	2.5	0.70	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	ND		ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
Bromochloromethane	ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl Acetate	ND		ug/l	2.0	0.23	1	
Cyclohexane	ND		ug/l	10	0.27	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Methyl cyclohexane	ND		ug/l	10	0.40	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	129	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	112	70-130	
Dibromofluoromethane	110	70-130	

Project Name: Lab Number: FORMER COYNE TEXTILE L2347588

Project Number: Report Date: 059294.001 09/07/23

SAMPLE RESULTS

Lab ID: L2347588-01 Date Collected: 08/16/23 09:45

Client ID: Date Received: 08/16/23 MW-5R-20230816 Field Prep: Sample Location: Not Specified SYRACUSE, NY

Sample Depth:

Matrix: Water Analytical Method: 117,-

Analytical Date: 08/21/23 07:50

Analyst: SRO

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Dissolved Gases by GC - Mansfield Lab							
Methane	1270		ug/l	2.00	2.00	1	Α
Ethene	22.9		ug/l	0.500	0.500	1	Α
Ethane	42.9		ug/l	0.500	0.500	1	А

Project Name: Lab Number: FORMER COYNE TEXTILE L2347588

Project Number: Report Date: 059294.001 09/07/23

SAMPLE RESULTS

D Date Collected: 08/16/23 09:45

Lab ID: L2347588-01 Client ID: Date Received: 08/16/23 MW-5R-20230816 Field Prep: Sample Location: SYRACUSE, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 08/23/23 09:25

Analyst: LAC

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough L	_ab					
Vinyl chloride	180		ug/l	5.0	0.36	5

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	100	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	89	70-130	
Dibromofluoromethane	102	70-130	

Project Name: Lab Number: FORMER COYNE TEXTILE L2347588

Project Number: Report Date: 059294.001 09/07/23

SAMPLE RESULTS

Lab ID: L2347588-02 Date Collected: 08/16/23 11:10

Client ID: Date Received: 08/16/23 MW-6R-20230816 Sample Location: Field Prep: Not Specified SYRACUSE, NY

Sample Depth:

Matrix: Water Analytical Method: 117,-

Analytical Date: 08/21/23 14:47

Analyst: SRO

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Dissolved Gases by GC - Mansfield Lab							
Methane	8240		ug/l	2.00	2.00	1	Α
Ethene	296		ug/l	0.500	0.500	1	А
Ethane	262		ug/l	0.500	0.500	1	А

L2347588

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

SAMPLE RESULTS

Date Collected: 08/16/23 11:10

Report Date: 09/07/23

Lab Number:

Lab ID: L2347588-02 D

Client ID: MW-6R-20230816 Sample Location: SYRACUSE, NY Date Received: 08/16/23 Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 08/21/23 20:03

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	h Lab					
Methylene chloride	ND		ug/l	12	3.5	5
1,1-Dichloroethane	ND		ug/l	12	3.5	5
Chloroform	ND		ug/l	12	3.5	5
Carbon tetrachloride	ND		ug/l	2.5	0.67	5
1,2-Dichloropropane	ND		ug/l	5.0	0.68	5
Dibromochloromethane	ND		ug/l	2.5	0.74	5
1,1,2-Trichloroethane	ND		ug/l	7.5	2.5	5
Tetrachloroethene	2.7		ug/l	2.5	0.90	5
Chlorobenzene	ND		ug/l	12	3.5	5
Trichlorofluoromethane	ND		ug/l	12	3.5	5
1,2-Dichloroethane	ND		ug/l	2.5	0.66	5
1,1,1-Trichloroethane	ND		ug/l	12	3.5	5
Bromodichloromethane	ND		ug/l	2.5	0.96	5
trans-1,3-Dichloropropene	ND		ug/l	2.5	0.82	5
cis-1,3-Dichloropropene	ND		ug/l	2.5	0.72	5
Bromoform	ND		ug/l	10	3.2	5
1,1,2,2-Tetrachloroethane	ND		ug/l	2.5	0.84	5
Benzene	ND		ug/l	2.5	0.80	5
Toluene	ND		ug/l	12	3.5	5
Ethylbenzene	ND		ug/l	12	3.5	5
Chloromethane	ND		ug/l	12	3.5	5
Bromomethane	ND		ug/l	12	3.5	5
Vinyl chloride	920		ug/l	5.0	0.36	5
Chloroethane	ND		ug/l	12	3.5	5
1,1-Dichloroethene	ND		ug/l	2.5	0.84	5
trans-1,2-Dichloroethene	ND		ug/l	12	3.5	5
Trichloroethene	3.5		ug/l	2.5	0.88	5
1,2-Dichlorobenzene	ND		ug/l	12	3.5	5

Project Name: Lab Number: FORMER COYNE TEXTILE L2347588

Project Number: Report Date: 059294.001 09/07/23

SAMPLE RESULTS

Lab ID: D Date Collected: 08/16/23 11:10 L2347588-02

Date Received: Client ID: 08/16/23 MW-6R-20230816 Sample Location: Field Prep: SYRACUSE, NY Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,3-Dichlorobenzene	ND		ug/l	12	3.5	5
1,4-Dichlorobenzene	ND		ug/l	12	3.5	5
Methyl tert butyl ether	ND		ug/l	12	3.5	5
p/m-Xylene	ND		ug/l	12	3.5	5
o-Xylene	ND		ug/l	12	3.5	5
cis-1,2-Dichloroethene	41		ug/l	12	3.5	5
Styrene	ND		ug/l	12	3.5	5
Dichlorodifluoromethane	ND		ug/l	25	5.0	5
Acetone	ND		ug/l	25	7.3	5
Carbon disulfide	ND		ug/l	25	5.0	5
2-Butanone	ND		ug/l	25	9.7	5
4-Methyl-2-pentanone	ND		ug/l	25	5.0	5
2-Hexanone	ND		ug/l	25	5.0	5
Bromochloromethane	ND		ug/l	12	3.5	5
1,2-Dibromoethane	ND		ug/l	10	3.2	5
1,2-Dibromo-3-chloropropane	ND		ug/l	12	3.5	5
Isopropylbenzene	ND		ug/l	12	3.5	5
1,2,3-Trichlorobenzene	ND		ug/l	12	3.5	5
1,2,4-Trichlorobenzene	ND		ug/l	12	3.5	5
Methyl Acetate	ND		ug/l	10	1.2	5
Cyclohexane	ND		ug/l	50	1.4	5
1,4-Dioxane	ND		ug/l	1200	300	5
Freon-113	ND		ug/l	12	3.5	5
Methyl cyclohexane	ND		ug/l	50	2.0	5

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	130	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	113	70-130	
Dibromofluoromethane	112	70-130	

Project Name: Lab Number: FORMER COYNE TEXTILE L2347588

Project Number: Report Date: 059294.001 09/07/23

SAMPLE RESULTS

Lab ID: L2347588-03 Date Collected: 08/16/23 12:20

Client ID: Date Received: 08/16/23 MW-7R-20230816 Sample Location: Field Prep: Not Specified SYRACUSE, NY

Sample Depth:

Matrix: Water Analytical Method: 117,-

Analytical Date: 08/21/23 15:05

Analyst: SRO

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Dissolved Gases by GC - Mansfield Lab							
Methane	3710		ug/l	2.00	2.00	1	Α
Ethene	36.0		ug/l	0.500	0.500	1	А
Ethane	24.3		ug/l	0.500	0.500	1	А

L2347588

09/07/23

Project Name: FORMER COYNE TEXTILE

L2347588-03

MW-7R-20230816

SYRACUSE, NY

Project Number: 059294.001

SAMPLE RESULTS

D

RESULIS

Date Collected: 08/16/23 12:20
Date Received: 08/16/23

Lab Number:

Report Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 08/21/23 20:25

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	gh Lab					
Methylene chloride	ND		ug/l	62	18.	25
1,1-Dichloroethane	ND		ug/l	62	18.	25
Chloroform	ND		ug/l	62	18.	25
Carbon tetrachloride	ND		ug/l	12	3.4	25
1,2-Dichloropropane	ND		ug/l	25	3.4	25
Dibromochloromethane	ND		ug/l	12	3.7	25
1,1,2-Trichloroethane	ND		ug/l	38	12.	25
Tetrachloroethene	ND		ug/l	12	4.5	25
Chlorobenzene	ND		ug/l	62	18.	25
Trichlorofluoromethane	ND		ug/l	62	18.	25
1,2-Dichloroethane	ND		ug/l	12	3.3	25
1,1,1-Trichloroethane	ND		ug/l	62	18.	25
Bromodichloromethane	ND		ug/l	12	4.8	25
trans-1,3-Dichloropropene	ND		ug/l	12	4.1	25
cis-1,3-Dichloropropene	ND		ug/l	12	3.6	25
Bromoform	ND		ug/l	50	16.	25
1,1,2,2-Tetrachloroethane	ND		ug/l	12	4.2	25
Benzene	ND		ug/l	12	4.0	25
Toluene	ND		ug/l	62	18.	25
Ethylbenzene	ND		ug/l	62	18.	25
Chloromethane	ND		ug/l	62	18.	25
Bromomethane	ND		ug/l	62	18.	25
Vinyl chloride	560		ug/l	25	1.8	25
Chloroethane	ND		ug/l	62	18.	25
1,1-Dichloroethene	6.4	J	ug/l	12	4.2	25
trans-1,2-Dichloroethene	ND		ug/l	62	18.	25
Trichloroethene	ND		ug/l	12	4.4	25
1,2-Dichlorobenzene	ND		ug/l	62	18.	25

Project Name: Lab Number: FORMER COYNE TEXTILE L2347588

Project Number: Report Date: 059294.001 09/07/23

SAMPLE RESULTS

Lab ID: D Date Collected: 08/16/23 12:20 L2347588-03

Date Received: Client ID: 08/16/23 MW-7R-20230816 Sample Location: Field Prep: SYRACUSE, NY Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,3-Dichlorobenzene	ND		ug/l	62	18.	25
1,4-Dichlorobenzene	ND		ug/l	62	18.	25
Methyl tert butyl ether	ND		ug/l	62	18.	25
p/m-Xylene	ND		ug/l	62	18.	25
o-Xylene	ND		ug/l	62	18.	25
cis-1,2-Dichloroethene	1600		ug/l	62	18.	25
Styrene	ND		ug/l	62	18.	25
Dichlorodifluoromethane	ND		ug/l	120	25.	25
Acetone	ND		ug/l	120	36.	25
Carbon disulfide	ND		ug/l	120	25.	25
2-Butanone	ND		ug/l	120	48.	25
4-Methyl-2-pentanone	ND		ug/l	120	25.	25
2-Hexanone	ND		ug/l	120	25.	25
Bromochloromethane	ND		ug/l	62	18.	25
1,2-Dibromoethane	ND		ug/l	50	16.	25
1,2-Dibromo-3-chloropropane	ND		ug/l	62	18.	25
Isopropylbenzene	ND		ug/l	62	18.	25
1,2,3-Trichlorobenzene	ND		ug/l	62	18.	25
1,2,4-Trichlorobenzene	ND		ug/l	62	18.	25
Methyl Acetate	ND		ug/l	50	5.8	25
Cyclohexane	ND		ug/l	250	6.8	25
1,4-Dioxane	ND		ug/l	6200	1500	25
Freon-113	ND		ug/l	62	18.	25
Methyl cyclohexane	ND		ug/l	250	9.9	25

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	129	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	113	70-130	
Dibromofluoromethane	112	70-130	

Project Name: FORMER COYNE TEXTILE Lab Number: L2347588

Project Number: 059294.001 **Report Date:** 09/07/23

SAMPLE RESULTS

Lab ID: L2347588-04 Date Collected: 08/16/23 12:00

Client ID: CHA-1-20230816 Date Received: 08/16/23
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 117,-

Analytical Date: 08/23/23 07:46

Analyst: SRO

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Dissolved Gases by GC - Mansfield Lab							
Methane	3790		ug/l	2.00	2.00	1	Α
Ethene	34.7		ug/l	0.500	0.500	1	Α
Ethane	24.0		ug/l	0.500	0.500	1	А

L2347588

09/07/23

Project Name: FORMER COYNE TEXTILE

L2347588-04

CHA-1-20230816

SYRACUSE, NY

D

Project Number: 059294.001

SAMPLE RESULTS

Date Collected: 08/16/23 12:00

Lab Number:

Report Date:

Date Received: 08/16/23
Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 08/23/23 08:59

Analyst: LAC

1,1-Dichloroethane	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,1-Dichloroethane	Volatile Organics by GC/MS - West	borough Lab					
Chloroform ND ug/l 25 7.0 10 Carbon tetrachloride ND ug/l 5.0 1.3 10 1,2-Dichloropropane ND ug/l 10 1.4 10 Dibromochloromethane ND ug/l 5.0 1.5 10 1,1,2-Trichloroethane ND ug/l 5.0 1.5 10 Tetrachloroethane ND ug/l 5.0 1.8 10 Chlorobenzene ND ug/l 25 7.0 10 Trichloroethane ND ug/l 25 7.0 10 1,2-Dichloroethane ND ug/l 5.0 1.3 10 1,1,1-Trichloroethane ND ug/l 5.0 1.3 10 Bromochioromethane ND ug/l 5.0 1.9 10 Bromochioromethane ND ug/l 5.0 1.6 10 Bromochioromethane ND ug/l 5.0 1.7 10 <td>Methylene chloride</td> <td>ND</td> <td></td> <td>ug/l</td> <td>25</td> <td>7.0</td> <td>10</td>	Methylene chloride	ND		ug/l	25	7.0	10
Carbon tetrachloride ND ug/l 5.0 1.3 10 1,2-Dichloropropane ND ug/l 10 1.4 10 Dibromochloromethane ND ug/l 5.0 1.5 10 1,1,2-Trichloroethane ND ug/l 5.0 1.8 10 Tetrachloroethane ND ug/l 5.0 1.8 10 Chlorobenzene ND ug/l 25 7.0 10 Trichlorofluoromethane ND ug/l 25 7.0 10 Trichlorofluoromethane ND ug/l 5.0 1.3 10 1,2-Dichloroethane ND ug/l 5.0 1.3 10 1,1-Trichloroethane ND ug/l 5.0 1.3 10 Bromodichloromethane ND ug/l 5.0 1.6 10 trans-1,3-Dichloropropene ND ug/l 5.0 1.6 10 cis-1,3-Dichloropropene ND ug/l 5.0	1,1-Dichloroethane	ND		ug/l	25	7.0	10
1,2-Dichloropropane ND ug/l 10 1.4 10 10 1.4 1.4 10 1.4 1.4 10 1.4 1.4 10 1.4 1.4 10 1.4	Chloroform	ND		ug/l	25	7.0	10
Dibromochloromethane ND ug/l 5.0 1.5 10 1,1,2-Trichloroethane ND ug/l 15 5.0 10 1,1,2-Trichloroethane ND ug/l 5.0 1.8 10 10 10 10 10 10 10 1	Carbon tetrachloride	ND		ug/l	5.0	1.3	10
1,1,2-Trichloroethane	1,2-Dichloropropane	ND		ug/l	10	1.4	10
Tetrachloroethene ND ug/l 5.0 1.8 10 Chlorobenzene ND ug/l 25 7.0 10 Trichlorofluoromethane ND ug/l 25 7.0 10 1,2-Dichloroethane ND ug/l 5.0 1.3 10 1,1,1-Trichloroethane ND ug/l 5.0 1.3 10 Bromodichloromethane ND ug/l 5.0 1.9 10 Bromodichloropropene ND ug/l 5.0 1.6 10 cis-1,3-Dichloropropene ND ug/l 5.0 1.4 10 Bromoform ND ug/l 5.0 1.4 10 Bromoform ND ug/l 5.0 1.7 10 Benzene ND ug/l 5.0 1.6 10 Toluene ND ug/l 25 7.0 10 Ethylbenzene ND ug/l 25 7.0 10	Dibromochloromethane	ND		ug/l	5.0	1.5	10
Chlorobenzene ND	1,1,2-Trichloroethane	ND		ug/l	15	5.0	10
Trichlorofluoromethane ND ug/l 25 7.0 10 1,2-Dichloroethane ND ug/l 5.0 1.3 10 1,1,1-Trichloroethane ND ug/l 25 7.0 10 Bromodichloromethane ND ug/l 5.0 1.9 10 trans-1,3-Dichloropropene ND ug/l 5.0 1.6 10 cis-1,3-Dichloropropene ND ug/l 5.0 1.4 10 Bromoform ND ug/l 5.0 1.4 10 Bromoform ND ug/l 5.0 1.7 10 Bromoform ND ug/l 5.0 1.7 10 Benzene ND ug/l 5.0 1.6 10 Toluene ND ug/l 5.0 1.7 10 Ethylbenzene ND ug/l 5.0 1.6 10 Chloromethane ND ug/l 5.0 1.6 10 Toluene ND ug/l 5.0 1.6 10 Chloromethane ND ug/l 25 7.0 10 Ethylbenzene ND ug/l 25 7.0 10 Chloromethane ND ug/l 25 7.0 10 Chloromethane ND ug/l 25 7.0 10 Chloromethane ND ug/l 25 7.0 10 Trichloroethene ND ug/l 5.0 1.7 10 Trichloroethene ND ug/l 5.0 1.8 10	Tetrachloroethene	ND		ug/l	5.0	1.8	10
1,2-Dichloroethane ND ug/l 5.0 1.3 10 1,1,1-Trichloroethane ND ug/l 25 7.0 10 Bromodichloromethane ND ug/l 5.0 1.9 10 trans-1,3-Dichloropropene ND ug/l 5.0 1.6 10 cis-1,3-Dichloropropene ND ug/l 5.0 1.4 10 Bromoform ND ug/l 20 6.5 10 Bromoform ND ug/l 20 6.5 10 1,1,2,2-Tetrachloroethane ND ug/l 5.0 1.7 10 Benzene ND ug/l 5.0 1.6 10 Toluene ND ug/l 25 7.0 10 Ethylbenzene ND ug/l 25 7.0 10 Chloromethane ND ug/l 25 7.0 10 Bromomethane ND ug/l 25 7.0 10	Chlorobenzene	ND		ug/l	25	7.0	10
1,1,1-Trichloroethane ND	Trichlorofluoromethane	ND		ug/l	25	7.0	10
Bromodichloromethane ND ug/l 5.0 1.9 10 trans-1,3-Dichloropropene ND ug/l 5.0 1.6 10 cis-1,3-Dichloropropene ND ug/l 5.0 1.4 10 Bromoform ND ug/l 20 6.5 10 1,1,2,2-Tetrachloroethane ND ug/l 5.0 1.7 10 Benzene ND ug/l 5.0 1.6 10 Toluene ND ug/l 25 7.0 10 Ethylbenzene ND ug/l 25 7.0 10 Chloromethane ND ug/l 25 7.0 10 Bromomethane ND ug/l 25 7.0 10 Vinyl chloride 450 ug/l 10 0.71 10 Chloroethane ND ug/l 25 7.0 10 1,1-Dichloroethene 6.6 ug/l 5.0 1.7 10 <	1,2-Dichloroethane	ND		ug/l	5.0	1.3	10
trans-1,3-Dichloropropene ND ug/l 5.0 1.6 10 cis-1,3-Dichloropropene ND ug/l 5.0 1.4 10 Bromoform ND ug/l 20 6.5 10 1,1,2,2-Tetrachloroethane ND ug/l 5.0 1.7 10 Benzene ND ug/l 5.0 1.6 10 Toluene ND ug/l 25 7.0 10 Ethylbenzene ND ug/l 25 7.0 10 Chloromethane ND ug/l 25 7.0 10 Bromomethane ND ug/l 25 7.0 10 Vinyl chloride 450 ug/l 10 0.71 10 Chloroethane ND ug/l 25 7.0 10 1,1-Dichloroethene 6.6 ug/l 5.0 1.7 10 trans-1,2-Dichloroethene ND ug/l 5.0 1.8 10	1,1,1-Trichloroethane	ND		ug/l	25	7.0	10
cis-1,3-Dichloropropene ND ug/l 5.0 1.4 10 Bromoform ND ug/l 20 6.5 10 1,1,2,2-Tetrachloroethane ND ug/l 5.0 1.7 10 Benzene ND ug/l 5.0 1.6 10 Toluene ND ug/l 25 7.0 10 Ethylbenzene ND ug/l 25 7.0 10 Chloromethane ND ug/l 25 7.0 10 Bromomethane ND ug/l 25 7.0 10 Vinyl chloride 450 ug/l 10 0.71 10 Chloroethane ND ug/l 25 7.0 10 1,1-Dichloroethene 6.6 ug/l 5.0 1.7 10 trans-1,2-Dichloroethene ND ug/l 25 7.0 10 Trichloroethene ND ug/l 5.0 1.8 10	Bromodichloromethane	ND		ug/l	5.0	1.9	10
Bromoform ND ug/l 20 6.5 10 1,1,2,2-Tetrachloroethane ND ug/l 5.0 1.7 10 Benzene ND ug/l 5.0 1.6 10 Toluene ND ug/l 25 7.0 10 Ethylbenzene ND ug/l 25 7.0 10 Chloromethane ND ug/l 25 7.0 10 Bromomethane ND ug/l 25 7.0 10 Vinyl chloride 450 ug/l 10 0.71 10 Chloroethane ND ug/l 25 7.0 10 1,1-Dichloroethene 6.6 ug/l 5.0 1.7 10 trans-1,2-Dichloroethene ND ug/l 25 7.0 10 Trichloroethene ND ug/l 5.0 1.8 10	trans-1,3-Dichloropropene	ND		ug/l	5.0	1.6	10
1,1,2,2-Tetrachloroethane ND ug/l 5.0 1.7 10 Benzene ND ug/l 5.0 1.6 10 Toluene ND ug/l 25 7.0 10 Ethylbenzene ND ug/l 25 7.0 10 Chloromethane ND ug/l 25 7.0 10 Bromomethane ND ug/l 25 7.0 10 Vinyl chloride 450 ug/l 10 0.71 10 Chloroethane ND ug/l 25 7.0 10 1,1-Dichloroethene 6.6 ug/l 5.0 1.7 10 trans-1,2-Dichloroethene ND ug/l 25 7.0 10 Trichloroethene ND ug/l 25 7.0 10 Trichloroethene ND ug/l 5.0 1.8 10	cis-1,3-Dichloropropene	ND		ug/l	5.0	1.4	10
Benzene ND ug/l 5.0 1.6 10 Toluene ND ug/l 25 7.0 10 Ethylbenzene ND ug/l 25 7.0 10 Chloromethane ND ug/l 25 7.0 10 Bromomethane ND ug/l 25 7.0 10 Bromomethane ND ug/l 25 7.0 10 Vinyl chloride 450 ug/l 10 0.71 10 Chloroethane ND ug/l 25 7.0 10 Tichloroethene 6.6 ug/l 5.0 1.7 10 Trichloroethene ND ug/l 25 7.0 10 Trichloroethene ND ug/l 5.0 1.8 10 Trichloroethene ND ug/l 5.0 1.8 10 Trichloroethene ND ug/l 5.0 1.8 10	Bromoform	ND		ug/l	20	6.5	10
Toluene ND ug/l 25 7.0 10 Ethylbenzene ND ug/l 25 7.0 10 Chloromethane ND ug/l 25 7.0 10 Bromomethane ND ug/l 25 7.0 10 Vinyl chloride 450 ug/l 10 0.71 10 Chloroethane ND ug/l 25 7.0 10 1,1-Dichloroethene 6.6 ug/l 5.0 1.7 10 trans-1,2-Dichloroethene ND ug/l 25 7.0 10 Trichloroethene ND ug/l 5.0 1.8 10	1,1,2,2-Tetrachloroethane	ND		ug/l	5.0	1.7	10
Ethylbenzene ND ug/l 25 7.0 10 Chloromethane ND ug/l 25 7.0 10 Bromomethane ND ug/l 25 7.0 10 Vinyl chloride 450 ug/l 10 0.71 10 Chloroethane ND ug/l 25 7.0 10 1,1-Dichloroethene 6.6 ug/l 5.0 1.7 10 trans-1,2-Dichloroethene ND ug/l 25 7.0 10 Trichloroethene ND ug/l 5.0 1.8 10	Benzene	ND		ug/l	5.0	1.6	10
Chloromethane ND ug/l 25 7.0 10 Bromomethane ND ug/l 25 7.0 10 Vinyl chloride 450 ug/l 10 0.71 10 Chloroethane ND ug/l 25 7.0 10 1,1-Dichloroethene 6.6 ug/l 5.0 1.7 10 trans-1,2-Dichloroethene ND ug/l 25 7.0 10 Trichloroethene ND ug/l 5.0 1.8 10	Toluene	ND		ug/l	25	7.0	10
Bromomethane ND ug/l 25 7.0 10 Vinyl chloride 450 ug/l 10 0.71 10 Chloroethane ND ug/l 25 7.0 10 1,1-Dichloroethene 6.6 ug/l 5.0 1.7 10 trans-1,2-Dichloroethene ND ug/l 25 7.0 10 Trichloroethene ND ug/l 5.0 1.8 10	Ethylbenzene	ND		ug/l	25	7.0	10
Vinyl chloride 450 ug/l 10 0.71 10 Chloroethane ND ug/l 25 7.0 10 1,1-Dichloroethene 6.6 ug/l 5.0 1.7 10 trans-1,2-Dichloroethene ND ug/l 25 7.0 10 Trichloroethene ND ug/l 5.0 1.8 10	Chloromethane	ND		ug/l	25	7.0	10
Chloroethane ND ug/l 25 7.0 10 1,1-Dichloroethene 6.6 ug/l 5.0 1.7 10 trans-1,2-Dichloroethene ND ug/l 25 7.0 10 Trichloroethene ND ug/l 5.0 1.8 10	Bromomethane	ND		ug/l	25	7.0	10
1,1-Dichloroethene 6.6 ug/l 5.0 1.7 10 trans-1,2-Dichloroethene ND ug/l 25 7.0 10 Trichloroethene ND ug/l 5.0 1.8 10	Vinyl chloride	450		ug/l	10	0.71	10
trans-1,2-Dichloroethene ND ug/l 25 7.0 10 Trichloroethene ND ug/l 5.0 1.8 10	Chloroethane	ND		ug/l	25	7.0	10
Trichloroethene ND ug/l 5.0 1.8 10	1,1-Dichloroethene	6.6		ug/l	5.0	1.7	10
	trans-1,2-Dichloroethene	ND		ug/l	25	7.0	10
1,2-Dichlorobenzene ND ug/l 25 7.0 10	Trichloroethene	ND		ug/l	5.0	1.8	10
	1,2-Dichlorobenzene	ND		ug/l	25	7.0	10

Project Name: FORMER COYNE TEXTILE Lab Number: L2347588

Project Number: 059294.001 **Report Date:** 09/07/23

SAMPLE RESULTS

Lab ID: L2347588-04 D Date Collected: 08/16/23 12:00

Client ID: CHA-1-20230816 Date Received: 08/16/23
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboro	ugh Lab					
1,3-Dichlorobenzene	ND		ug/l	25	7.0	10
1,4-Dichlorobenzene	ND		ug/l	25	7.0	10
Methyl tert butyl ether	ND		ug/l	25	7.0	10
p/m-Xylene	ND		ug/l	25	7.0	10
o-Xylene	ND		ug/l	25	7.0	10
cis-1,2-Dichloroethene	1600		ug/l	25	7.0	10
Styrene	ND		ug/l	25	7.0	10
Dichlorodifluoromethane	ND		ug/l	50	10.	10
Acetone	ND		ug/l	50	15.	10
Carbon disulfide	ND		ug/l	50	10.	10
2-Butanone	ND		ug/l	50	19.	10
4-Methyl-2-pentanone	ND		ug/l	50	10.	10
2-Hexanone	ND		ug/l	50	10.	10
Bromochloromethane	ND		ug/l	25	7.0	10
1,2-Dibromoethane	ND		ug/l	20	6.5	10
1,2-Dibromo-3-chloropropane	ND		ug/l	25	7.0	10
Isopropylbenzene	ND		ug/l	25	7.0	10
1,2,3-Trichlorobenzene	ND		ug/l	25	7.0	10
1,2,4-Trichlorobenzene	ND		ug/l	25	7.0	10
Methyl Acetate	ND		ug/l	20	2.3	10
Cyclohexane	ND		ug/l	100	2.7	10
1,4-Dioxane	ND		ug/l	2500	610	10
Freon-113	ND		ug/l	25	7.0	10
Methyl cyclohexane	ND		ug/l	100	4.0	10

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	100	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	90	70-130	
Dibromofluoromethane	102	70-130	

L2347588

08/16/23 14:00

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

SAMPLE RESULTS

Report Date: 09/07/23

Lab Number:

Date Collected:

Lab ID: L2347588-05

Client ID: MW-4-20230816 Sample Location: SYRACUSE, NY Date Received: 08/16/23 Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 08/21/23 21:09

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	rough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	0.38	J	ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	70		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: FORMER COYNE TEXTILE Lab Number: L2347588

Project Number: 059294.001 **Report Date:** 09/07/23

SAMPLE RESULTS

Lab ID: L2347588-05 Date Collected: 08/16/23 14:00

Client ID: MW-4-20230816 Date Received: 08/16/23 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	39		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	2.0	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	0.61	J	ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	127	70-130
Toluene-d8	101	70-130
4-Bromofluorobenzene	114	70-130
Dibromofluoromethane	113	70-130

Project Name: FORMER COYNE TEXTILE Lab Number: L2347588

Project Number: 059294.001 **Report Date:** 09/07/23

SAMPLE RESULTS

Lab ID: L2347588-05 Date Collected: 08/16/23 14:00

Client ID: MW-4-20230816 Date Received: 08/16/23
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 117,-

Analytical Date: 08/23/23 08:03

Analyst: SRO

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Dissolved Gases by GC - Mansfield Lab							
Methane	8760		ug/l	2.00	2.00	1	Α
Ethene	226		ug/l	0.500	0.500	1	Α
Ethane	750		ug/l	0.500	0.500	1	Α

L2347588

09/07/23

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

SAMPLE RESULTS

Date Collected: 08/16/23 15:40

Lab Number:

Report Date:

Lab ID: L2347588-06

Client ID: MW-105D-20230816 Sample Location: SYRACUSE, NY Date Received: 08/16/23
Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 08/21/23 21:31

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbor	ough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	6.9		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	0.49	J	ug/l	1.0	0.07	1
Chloroethane	0.94	J	ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: FORMER COYNE TEXTILE L2347588

Project Number: Report Date: 059294.001 09/07/23

SAMPLE RESULTS

Lab ID: Date Collected: 08/16/23 15:40 L2347588-06

Client ID: Date Received: 08/16/23 MW-105D-20230816 Sample Location: Field Prep: SYRACUSE, NY Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	128		70-130	
Toluene-d8	101		70-130	
4-Bromofluorobenzene	113		70-130	
Dibromofluoromethane	113		70-130	

Project Name: FORMER COYNE TEXTILE Lab Number: L2347588

Project Number: 059294.001 **Report Date:** 09/07/23

SAMPLE RESULTS

Lab ID: L2347588-06 Date Collected: 08/16/23 15:40

Client ID: MW-105D-20230816 Date Received: 08/16/23 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 117,-

Analytical Date: 08/23/23 08:21

Analyst: SRO

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Dissolved Gases by GC - Mansfield Lab							
Methane	3520		ug/l	2.00	2.00	1	Α
Ethene	ND		ug/l	0.500	0.500	1	Α
Ethane	5.49		ug/l	0.500	0.500	1	Α

L2347588

09/07/23

Project Name: FORMER COYNE TEXTILE

TRIP BLANK-20230816

SYRACUSE, NY

Project Number: 059294.001

SAMPLE RESULTS

Date Collected: 08/16/23 00:00

L2347588-07

Date Received: 08/16/23 Field Prep: Not Specified

Lab Number:

Report Date:

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 08/22/23 21:22

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	ıh Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: FORMER COYNE TEXTILE Lab Number: L2347588

Project Number: 059294.001 **Report Date:** 09/07/23

SAMPLE RESULTS

Lab ID: L2347588-07 Date Collected: 08/16/23 00:00

Client ID: TRIP BLANK-20230816 Date Received: 08/16/23 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	gh Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	100	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	90	70-130	
Dibromofluoromethane	103	70-130	

Project Number: 059294.001 **Report Date:** 09/07/23

Method Blank Analysis Batch Quality Control

Analytical Method: 117,-

Analytical Date: 08/21/23 07:27

Analyst: SRO

Parameter	Result	Qualifier	Units	RL	MDL	
Dissolved Gases by GC - Mansfield	Lab for sam	ple(s): 01	-03 Batch:	WG1818146	6-3	
Methane	ND		ug/l	2.00	2.00	Α
Ethene	ND		ug/l	0.500	0.500	Α
Ethane	ND		ug/l	0.500	0.500	Α

L2347588

Project Name: FORMER COYNE TEXTILE Lab Number:

Project Number: 059294.001 **Report Date:** 09/07/23

Method Blank Analysis Batch Quality Control

Batch Quality Control

1,8260D

08/22/23 20:56

Analyst: TMS

Analytical Method:

Analytical Date:

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	07 Batch:	WG1819025-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Number: 059294.001 **Report Date:** 09/07/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 08/22/23 20:56

Analyst: TMS

Parameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - Wes	stborough Lab	for sample(s): 07	Batch:	WG1819025-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
1,4-Dioxane	ND	ug/l	250	61.
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

Project Number: 059294.001 **Report Date:** 09/07/23

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 08/22/23 20:56

Analyst: TMS

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 07 Batch: WG1819025-5

		Acceptance
Surrogate	%Recovery C	ualifier Criteria
1,2-Dichloroethane-d4	103	70-130
Toluene-d8	101	70-130
4-Bromofluorobenzene	89	70-130
Dibromofluoromethane	105	70-130

Project Number: 059294.001 **Report Date:** 09/07/23

Method Blank Analysis Batch Quality Control

Analytical Method: 117,-

Analytical Date: 08/23/23 07:19

Analyst: SRO

Parameter	Result	Qualifier	Units	RL	MDL	
Dissolved Gases by GC - Mansfield	Lab for sam	ple(s): 04	1-06 Batch	: WG181903	2-3	
Methane	ND		ug/l	2.00	2.00	Α
Ethene	ND		ug/l	0.500	0.500	Α
Ethane	ND		ug/l	0.500	0.500	Α

Project Number: 059294.001 **Report Date:** 09/07/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 08/21/23 15:15

Analyst: MJV

arameter	Result	Qualifier Units	RL RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-03,05-06	Batch: WG1819137-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

L2347588

Project Name: FORMER COYNE TEXTILE Lab Number:

Project Number: 059294.001 **Report Date:** 09/07/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 08/21/23 15:15

Analyst: MJV

Parameter	Result	Qualifier Units	RL	MDL	
olatile Organics by GC/MS - W	Vestborough Lab	for sample(s):	01-03,05-06	Batch: WG1819137-5	5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70	
Methyl tert butyl ether	ND	ug/l	2.5	0.70	
p/m-Xylene	ND	ug/l	2.5	0.70	
o-Xylene	ND	ug/l	2.5	0.70	
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70	
Styrene	ND	ug/l	2.5	0.70	
Dichlorodifluoromethane	ND	ug/l	5.0	1.0	
Acetone	ND	ug/l	5.0	1.5	
Carbon disulfide	ND	ug/l	5.0	1.0	
2-Butanone	ND	ug/l	5.0	1.9	
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0	
2-Hexanone	ND	ug/l	5.0	1.0	
Bromochloromethane	ND	ug/l	2.5	0.70	
1,2-Dibromoethane	ND	ug/l	2.0	0.65	
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70	
Isopropylbenzene	ND	ug/l	2.5	0.70	
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70	
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70	
Methyl Acetate	ND	ug/l	2.0	0.23	
Cyclohexane	ND	ug/l	10	0.27	
1,4-Dioxane	ND	ug/l	250	61.	
Freon-113	ND	ug/l	2.5	0.70	
Methyl cyclohexane	ND	ug/l	10	0.40	

Project Number: 059294.001 **Report Date:** 09/07/23

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 08/21/23 15:15

Analyst: MJV

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01-03,05-06 Batch: WG1819137-5

		Acceptance
Surrogate	%Recovery Q	ualifier Criteria
1,2-Dichloroethane-d4	128	70-130
Toluene-d8	101	70-130
4-Bromofluorobenzene	111	70-130
Dibromofluoromethane	110	70-130

Project Number: 059294.001 **Report Date:** 09/07/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 08/23/23 08:34

Analyst: PID

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	· Westborough Lab	for sample(s):	01,04 Batch:	WG1819621-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Number: 059294.001 **Report Date:** 09/07/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 08/23/23 08:34

Analyst: PID

Parameter	Result	Qualifier Unit	s RL	MDL	
olatile Organics by GC/MS - We	estborough Lab	for sample(s):	01,04 Bato	ch: WG1819621-5	
1,4-Dichlorobenzene	ND	ug/	/l 2.5	0.70	
Methyl tert butyl ether	ND	ug/	l 2.5	0.70	
p/m-Xylene	ND	ug/	l 2.5	0.70	
o-Xylene	ND	ug/	Ί 2.5	0.70	
cis-1,2-Dichloroethene	ND	ug/	Ί 2.5	0.70	
Styrene	ND	ug/	Ί 2.5	0.70	
Dichlorodifluoromethane	ND	ug/	Í 5.0	1.0	
Acetone	ND	ug/	íl 5.0	1.5	
Carbon disulfide	ND	ug/	íl 5.0	1.0	
2-Butanone	ND	ug/	Í 5.0	1.9	
4-Methyl-2-pentanone	ND	ug/	íl 5.0	1.0	
2-Hexanone	ND	ug/	íl 5.0	1.0	
Bromochloromethane	ND	ug/	Ί 2.5	0.70	
1,2-Dibromoethane	ND	ug/	Ί 2.0	0.65	
1,2-Dibromo-3-chloropropane	ND	ug/	Ί 2.5	0.70	
Isopropylbenzene	ND	ug/	Ί 2.5	0.70	
1,2,3-Trichlorobenzene	ND	ug/	Ί 2.5	0.70	
1,2,4-Trichlorobenzene	ND	ug/	Ί 2.5	0.70	
Methyl Acetate	ND	ug/	l 2.0	0.23	
Cyclohexane	ND	ug/	Ί 10	0.27	
1,4-Dioxane	ND	ug/	l 250	61.	
Freon-113	ND	ug/	Ί 2.5	0.70	
Methyl cyclohexane	ND	ug/	Ί 10	0.40	

Project Number: 059294.001 **Report Date:** 09/07/23

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 08/23/23 08:34

Analyst: PID

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01,04 Batch: WG1819621-5

		Ac	ceptance	
Surrogate	%Recovery 0	Qualifier	Criteria	
1,2-Dichloroethane-d4	99	•	70-130	
Toluene-d8	102	•	70-130	
4-Bromofluorobenzene	91	•	70-130	
Dibromofluoromethane	101	•	70-130	

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number:

L2347588

Report Date:

Parameter Dissolved Gases by GC - Mansfield Lab As	LCS %Recovery sociated sample(s	Qual): 01-03	LCSD %Recovery	Qual 46-2	%Recovery Limits	RPD	Qual	RPD Limits	Column
Methane	95	,, ,,	-		80-120	-		25	А
Ethene	89		-		80-120	-		25	А
Ethane	88		-		80-120	-		25	А

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number: L2347588

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 07	Batch: WG1	819025-3	WG1819025-4			
Methylene chloride	100		100		70-130	0	20	
1,1-Dichloroethane	110		110		70-130	0	20	
Chloroform	110		110		70-130	0	20	
Carbon tetrachloride	100		100		63-132	0	20	
1,2-Dichloropropane	100		100		70-130	0	20	
Dibromochloromethane	93		95		63-130	2	20	
1,1,2-Trichloroethane	94		95		70-130	1	20	
Tetrachloroethene	110		110		70-130	0	20	
Chlorobenzene	100		100		75-130	0	20	
Trichlorofluoromethane	120		120		62-150	0	20	
1,2-Dichloroethane	100		100		70-130	0	20	
1,1,1-Trichloroethane	110		110		67-130	0	20	
Bromodichloromethane	100		100		67-130	0	20	
trans-1,3-Dichloropropene	91		90		70-130	1	20	
cis-1,3-Dichloropropene	94		95		70-130	1	20	
Bromoform	80		82		54-136	2	20	
1,1,2,2-Tetrachloroethane	96		97		67-130	1	20	
Benzene	110		110		70-130	0	20	
Toluene	100		100		70-130	0	20	
Ethylbenzene	100		100		70-130	0	20	
Chloromethane	100		100		64-130	0	20	
Bromomethane	98		99		39-139	1	20	
Vinyl chloride	120		120		55-140	0	20	

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number: L2347588

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0	7 Batch: WG18	819025-3	WG1819025-4			
Chloroethane	120		120		55-138	0	20	
1,1-Dichloroethene	120		120		61-145	0	20	
trans-1,2-Dichloroethene	110		110		70-130	0	20	
Trichloroethene	98		98		70-130	0	20	
1,2-Dichlorobenzene	100		100		70-130	0	20	
1,3-Dichlorobenzene	100		100		70-130	0	20	
1,4-Dichlorobenzene	100		100		70-130	0	20	
Methyl tert butyl ether	89		90		63-130	1	20	
p/m-Xylene	105		105		70-130	0	20	
o-Xylene	100		100		70-130	0	20	
cis-1,2-Dichloroethene	110		110		70-130	0	20	
Styrene	100		100		70-130	0	20	
Dichlorodifluoromethane	120		120		36-147	0	20	
Acetone	88		85		58-148	3	20	
Carbon disulfide	110		110		51-130	0	20	
2-Butanone	81		81		63-138	0	20	
4-Methyl-2-pentanone	77		83		59-130	8	20	
2-Hexanone	73		72		57-130	1	20	
Bromochloromethane	110		110		70-130	0	20	
1,2-Dibromoethane	93		94		70-130	1	20	
1,2-Dibromo-3-chloropropane	80		81		41-144	1	20	
Isopropylbenzene	100		100		70-130	0	20	
1,2,3-Trichlorobenzene	93		96		70-130	3	20	

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number: L2347588

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough					WG1819025-4	INI D	Quar	Limito	
volatile Organics by GC/MS - Westborough	T Lab Associated s	ample(s). 07	Balcii. WG	11019025-3	WG1819025-4				
1,2,4-Trichlorobenzene	93		95		70-130	2		20	
Methyl Acetate	98		100		70-130	2		20	
Cyclohexane	110		110		70-130	0		20	
1,4-Dioxane	106		118		56-162	11		20	
Freon-113	120		120		70-130	0		20	
Methyl cyclohexane	110		110		70-130	0		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	108	107	70-130
Toluene-d8	101	101	70-130
4-Bromofluorobenzene	92	95	70-130
Dibromofluoromethane	106	105	70-130

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number:

L2347588

Report Date:

<u>Parameter</u>	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Dissolved Gases by GC - Mansfield Lab /	Associated sample(s	s): 04-06	Batch: WG18190	32-2					
Methane	90		-		80-120	-		25	А
Ethene	83		-		80-120	-		25	Α
Ethane	86		-		80-120	-		25	Α

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number: L2347588

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westbord	ough Lab Associated	sample(s): (01-03,05-06 Bate	ch: WG181	9137-3 WG1819	137-4	
Methylene chloride	110		110		70-130	0	20
1,1-Dichloroethane	120		120		70-130	0	20
Chloroform	110		110		70-130	0	20
Carbon tetrachloride	120		110		63-132	9	20
1,2-Dichloropropane	120		120		70-130	0	20
Dibromochloromethane	96		91		63-130	5	20
1,1,2-Trichloroethane	100		100		70-130	0	20
Tetrachloroethene	100		91		70-130	9	20
Chlorobenzene	100		95		75-130	5	20
Trichlorofluoromethane	110		100		62-150	10	20
1,2-Dichloroethane	120		120		70-130	0	20
1,1,1-Trichloroethane	120		110		67-130	9	20
Bromodichloromethane	120		120		67-130	0	20
trans-1,3-Dichloropropene	110		100		70-130	10	20
cis-1,3-Dichloropropene	120		120		70-130	0	20
Bromoform	91		90		54-136	1	20
1,1,2,2-Tetrachloroethane	110		120		67-130	9	20
Benzene	120		110		70-130	9	20
Toluene	110		98		70-130	12	20
Ethylbenzene	110		100		70-130	10	20
Chloromethane	120		110		64-130	9	20
Bromomethane	97		81		39-139	18	20
Vinyl chloride	120		100		55-140	18	20

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number: L2347588

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-03,05-06 Bate	ch: WG1819137-3 WG18	19137-4	
Chloroethane	120		120	55-138	0	20
1,1-Dichloroethene	120		110	61-145	9	20
trans-1,2-Dichloroethene	110		110	70-130	0	20
Trichloroethene	110		100	70-130	10	20
1,2-Dichlorobenzene	96		92	70-130	4	20
1,3-Dichlorobenzene	98		92	70-130	6	20
1,4-Dichlorobenzene	98		92	70-130	6	20
Methyl tert butyl ether	110		120	63-130	9	20
p/m-Xylene	105		95	70-130	10	20
o-Xylene	100		95	70-130	5	20
cis-1,2-Dichloroethene	110		110	70-130	0	20
Styrene	105		95	70-130	10	20
Dichlorodifluoromethane	110		100	36-147	10	20
Acetone	110		120	58-148	9	20
Carbon disulfide	120		110	51-130	9	20
2-Butanone	100		120	63-138	18	20
4-Methyl-2-pentanone	98		110	59-130	12	20
2-Hexanone	92		110	57-130	18	20
Bromochloromethane	99		99	70-130	0	20
1,2-Dibromoethane	98		96	70-130	2	20
1,2-Dibromo-3-chloropropane	84		91	41-144	8	20
Isopropylbenzene	110		100	70-130	10	20
1,2,3-Trichlorobenzene	97		94	70-130	3	20

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number: L2

L2347588

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-03,05-06 Batc	h: WG18	19137-3 WG1819	9137-4			
1,2,4-Trichlorobenzene	100		95		70-130	5		20	
Methyl Acetate	110		120		70-130	9		20	
Cyclohexane	130		120		70-130	8		20	
1,4-Dioxane	114		124		56-162	8		20	
Freon-113	120		120		70-130	0		20	
Methyl cyclohexane	130		120		70-130	8		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	112	124	70-130
Toluene-d8	102	101	70-130
4-Bromofluorobenzene	106	110	70-130
Dibromofluoromethane	102	106	70-130

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number: L2347588

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics by GC/MS - W	Vestborough Lab Associated	sample(s): 0	1,04 Batch: W0	G1819621-3	WG1819621-4			
Methylene chloride	100		100		70-130	0		20
1,1-Dichloroethane	100		100		70-130	0		20
Chloroform	100		100		70-130	0		20
Carbon tetrachloride	99		100		63-132	1		20
1,2-Dichloropropane	97		99		70-130	2		20
Dibromochloromethane	92		93		63-130	1		20
1,1,2-Trichloroethane	93		93		70-130	0		20
Tetrachloroethene	110		110		70-130	0		20
Chlorobenzene	100		100		75-130	0		20
Trichlorofluoromethane	120		120		62-150	0		20
1,2-Dichloroethane	96		97		70-130	1		20
1,1,1-Trichloroethane	110		110		67-130	0		20
Bromodichloromethane	96		98		67-130	2		20
trans-1,3-Dichloropropene	92		90		70-130	2		20
cis-1,3-Dichloropropene	93		94		70-130	1		20
Bromoform	78		81		54-136	4		20
1,1,2,2-Tetrachloroethane	93		96		67-130	3		20
Benzene	100		100		70-130	0		20
Toluene	100		100		70-130	0		20
Ethylbenzene	100		100		70-130	0		20
Chloromethane	110		100		64-130	10		20
Bromomethane	110		100		39-139	10		20
Vinyl chloride	110		110		55-140	0		20

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number: L2347588

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by GC/MS - Wes	stborough Lab Associated	sample(s): (01,04 Batch: W0	G1819621-3	WG1819621-4				
Chloroethane	120		110		55-138	9		20	
1,1-Dichloroethene	97		97		61-145	0		20	
trans-1,2-Dichloroethene	110		110		70-130	0		20	
Trichloroethene	91		92		70-130	1		20	
1,2-Dichlorobenzene	100		100		70-130	0		20	
1,3-Dichlorobenzene	100		100		70-130	0		20	
1,4-Dichlorobenzene	100		100		70-130	0		20	
Methyl tert butyl ether	88		88		63-130	0		20	
p/m-Xylene	105		100		70-130	5		20	
o-Xylene	100		100		70-130	0		20	
cis-1,2-Dichloroethene	110		110		70-130	0		20	
Styrene	100		100		70-130	0		20	
Dichlorodifluoromethane	110		110		36-147	0		20	
Acetone	76		78		58-148	3		20	
Carbon disulfide	89		87		51-130	2		20	
2-Butanone	74		76		63-138	3		20	
4-Methyl-2-pentanone	77		76		59-130	1		20	
2-Hexanone	72		71		57-130	1		20	
Bromochloromethane	110		110		70-130	0		20	
1,2-Dibromoethane	94		92		70-130	2		20	
1,2-Dibromo-3-chloropropane	79		79		41-144	0		20	
Isopropylbenzene	110		110		70-130	0		20	
1,2,3-Trichlorobenzene	95		95		70-130	0		20	

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number:

L2347588

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	RPD Limits
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	01,04 Batch:	WG1819621-3	WG1819621-4		
1,2,4-Trichlorobenzene	95		98		70-130	3	20
Methyl Acetate	95		92		70-130	3	20
Cyclohexane	110		110		70-130	0	20
1,4-Dioxane	106		108		56-162	2	20
Freon-113	95		94		70-130	1	20
Methyl cyclohexane	100		100		70-130	0	20

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	102	104	70-130
Toluene-d8	102	101	70-130
4-Bromofluorobenzene	95	94	70-130
Dibromofluoromethane	101	102	70-130

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number:

L2347588

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits	Column
Dissolved Gases by GC - 20230816	Mansfield Lab	Associated sa	ample(s): 01-03	QC Batch I	D: WG18	18146-4 V	VG1818146-5	QC Sa	mple: L2347	7588-01	Client	ID: MW	-5R-
Methane	1270	54.6	1430	293	Q	1440	311	Q	80-120	1		25	Α
Ethene	22.9	95.5	109	90		108	89		80-120	1		25	Α
Ethane	42.9	102	138	93		135	90		80-120	2		25	Α

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number:

L2347588

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MSID: MW-5R-20230816	S - Westborough	Lab Assoc	ciated sample((s): 01-03,05-06	QC Batch ID: WO	31819137-6 V	/G1819137-7 QC S	ample	: L2347588-01 Client
Methylene chloride	ND	10	11	110	11	110	70-130	0	20
1,1-Dichloroethane	ND	10	13	130	12	120	70-130	8	20
Chloroform	ND	10	12	120	12	120	70-130	0	20
Carbon tetrachloride	ND	10	12	120	12	120	63-132	0	20
1,2-Dichloropropane	ND	10	12	120	12	120	70-130	0	20
Dibromochloromethane	ND	10	8.9	89	8.5	85	63-130	5	20
1,1,2-Trichloroethane	ND	10	9.9	99	9.4	94	70-130	5	20
Tetrachloroethene	28	10	36	80	38	100	70-130	5	20
Chlorobenzene	ND	10	9.9	99	9.5	95	75-130	4	20
Trichlorofluoromethane	ND	10	8.8	88	8.3	83	62-150	6	20
1,2-Dichloroethane	ND	10	12	120	12	120	70-130	0	20
1,1,1-Trichloroethane	ND	10	12	120	12	120	67-130	0	20
Bromodichloromethane	ND	10	12	120	11	110	67-130	9	20
trans-1,3-Dichloropropene	ND	10	10	100	9.7	97	70-130	3	20
cis-1,3-Dichloropropene	ND	10	11	110	11	110	70-130	0	20
Bromoform	ND	10	8.5	85	8.1	81	54-136	5	20
1,1,2,2-Tetrachloroethane	ND	10	11	110	11	110	67-130	0	20
Benzene	0.74	10	13	123	12	113	70-130	8	20
Toluene	ND	10	10	100	10	100	70-130	0	20
Ethylbenzene	ND	10	11	110	10	100	70-130	10	20
Chloromethane	ND	10	13	130	13	130	64-130	0	20
Bromomethane	ND	10	6.1	61	5.4	54	39-139	12	20
Vinyl chloride	240E	10	230E	0	Q 220E	0	Q 55-140	4	20

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number:

L2347588

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	RPD Qual Limits	;
Volatile Organics by GC/MS ID: MW-5R-20230816	S - Westborough	Lab Assoc	ciated sample((s): 01-03,05-06	QC Bate	ch ID: WG	G1819137-6 W	/G1819	137-7 QC S	Sample:	L2347588-01	Client
Chloroethane	ND	10	18	180	Q	16	160	Q	55-138	12	20	
1,1-Dichloroethene	ND	10	12	120		12	120		61-145	0	20	
trans-1,2-Dichloroethene	ND	10	12	120		11	110		70-130	9	20	
Trichloroethene	7.1	10	17	99		18	109		70-130	6	20	
1,2-Dichlorobenzene	ND	10	9.4	94		9.1	91		70-130	3	20	
1,3-Dichlorobenzene	ND	10	9.4	94		9.0	90		70-130	4	20	
1,4-Dichlorobenzene	ND	10	9.4	94		9.2	92		70-130	2	20	
Methyl tert butyl ether	ND	10	11	110		11	110		63-130	0	20	
o/m-Xylene	ND	20	20	100		20	100		70-130	0	20	
o-Xylene	ND	20	20	100		19	95		70-130	5	20	
cis-1,2-Dichloroethene	14	10	24	100		26	120		70-130	8	20	
Styrene	ND	20	20	100		19	95		70-130	5	20	
Dichlorodifluoromethane	ND	10	11	110		11	110		36-147	0	20	
Acetone	ND	10	13	130		12	120		58-148	8	20	
Carbon disulfide	ND	10	13	130		13	130		51-130	0	20	
2-Butanone	ND	10	11	110		11	110		63-138	0	20	
4-Methyl-2-pentanone	ND	10	10	100		10	100		59-130	0	20	
2-Hexanone	ND	10	10	100		9.4	94		57-130	6	20	
Bromochloromethane	ND	10	10	100		9.9	99		70-130	1	20	
1,2-Dibromoethane	ND	10	9.5	95		9.1	91		70-130	4	20	
1,2-Dibromo-3-chloropropane	ND	10	8.7	87		8.4	84		41-144	4	20	
Isopropylbenzene	ND	10	10	100		10	100		70-130	0	20	
1,2,3-Trichlorobenzene	ND	10	9.3	93		9.0	90		70-130	3	20	

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number:

L2347588

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS ID: MW-5R-20230816	- Westborough	Lab Assoc	ciated sample(s): 01-03,05-06	QC Ba	atch ID: WO	G1819137-6 W	/G1819137-7 QC	Sample	: L2347588-01 Client
1,2,4-Trichlorobenzene	ND	10	9.3	93		9.2	92	70-130	1	20
Methyl Acetate	ND	10	12	120		11	110	70-130	9	20
Cyclohexane	ND	10	14	140	Q	13	130	70-130	7	20
1,4-Dioxane	ND	500	560	112		540	108	56-162	4	20
Freon-113	ND	10	12	120		12	120	70-130	0	20
Methyl cyclohexane	ND	10	12	120		12	120	70-130	0	20

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
1,2-Dichloroethane-d4	125	125	70-130
4-Bromofluorobenzene	109	109	70-130
Dibromofluoromethane	108	107	70-130
Toluene-d8	100	100	70-130

METALS

Project Number: 059294.001

SAMPLE RESULTS

Lab ID: L2347588-01 Date Collected: 08/16/23 09:45 Client ID: MW-5R-20230816 Date Received: 08/16/23 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Aluminum, Total	1.05		mg/l	0.0100	0.00327	1	08/18/23 07:39	08/21/23 13:32	EPA 3005A	1,6020B	SMV
Antimony, Total	0.00301	J	mg/l	0.00400	0.00042	1	08/18/23 07:39	08/21/23 13:32	EPA 3005A	1,6020B	SMV
Arsenic, Total	0.00907		mg/l	0.00050	0.00016	1	08/18/23 07:39	08/21/23 13:32	EPA 3005A	1,6020B	SMV
Barium, Total	0.1427		mg/l	0.00050	0.00017	1	08/18/23 07:39	08/21/23 13:32	EPA 3005A	1,6020B	SMV
Beryllium, Total	ND		mg/l	0.00050	0.00010	1	08/18/23 07:39	08/21/23 13:32	EPA 3005A	1,6020B	SMV
Cadmium, Total	0.00015	J	mg/l	0.00020	0.00005	1	08/18/23 07:39	08/21/23 13:32	EPA 3005A	1,6020B	SMV
Calcium, Total	120.		mg/l	0.100	0.0394	1	08/18/23 07:39	08/21/23 13:32	EPA 3005A	1,6020B	SMV
Chromium, Total	0.00172		mg/l	0.00100	0.00017	1	08/18/23 07:39	08/21/23 13:32	EPA 3005A	1,6020B	SMV
Cobalt, Total	0.00082		mg/l	0.00050	0.00016	1	08/18/23 07:39	08/21/23 13:32	EPA 3005A	1,6020B	SMV
Copper, Total	0.00465		mg/l	0.00100	0.00038	1	08/18/23 07:39	08/21/23 13:32	EPA 3005A	1,6020B	SMV
Iron, Total	7.09		mg/l	0.0500	0.0191	1	08/18/23 07:39	08/21/23 13:32	EPA 3005A	1,6020B	SMV
Lead, Total	0.00435		mg/l	0.00100	0.00034	1	08/18/23 07:39	08/21/23 13:32	EPA 3005A	1,6020B	SMV
Magnesium, Total	33.0		mg/l	0.0700	0.0242	1	08/18/23 07:39	08/21/23 13:32	EPA 3005A	1,6020B	SMV
Manganese, Total	0.1572		mg/l	0.00100	0.00044	1	08/18/23 07:39	08/21/23 13:32	EPA 3005A	1,6020B	SMV
Mercury, Total	0.00011	J	mg/l	0.00020	0.00009	1	08/18/23 08:33	08/19/23 14:47	EPA 7470A	1,7470A	GMG
Nickel, Total	0.00187	J	mg/l	0.00200	0.00055	1	08/18/23 07:39	08/21/23 13:32	EPA 3005A	1,6020B	SMV
Potassium, Total	12.3		mg/l	0.100	0.0309	1	08/18/23 07:39	08/21/23 13:32	EPA 3005A	1,6020B	SMV
Selenium, Total	ND		mg/l	0.00500	0.00173	1	08/18/23 07:39	08/21/23 13:32	EPA 3005A	1,6020B	SMV
Silver, Total	ND		mg/l	0.00040	0.00016	1	08/18/23 07:39	08/21/23 13:32	EPA 3005A	1,6020B	SMV
Sodium, Total	133.		mg/l	0.100	0.0293	1	08/18/23 07:39	08/21/23 13:32	EPA 3005A	1,6020B	SMV
Thallium, Total	ND		mg/l	0.00100	0.00014	1	08/18/23 07:39	08/21/23 13:32	EPA 3005A	1,6020B	SMV
Vanadium, Total	0.00290	J	mg/l	0.00500	0.00157	1	08/18/23 07:39	08/21/23 13:32	EPA 3005A	1,6020B	SMV
Zinc, Total	0.04041		mg/l	0.01000	0.00341	1	08/18/23 07:39	08/21/23 13:32	EPA 3005A	1,6020B	SMV

Project Number: 059294.001

SAMPLE RESULTS

Lab ID: L2347588-02 Date Collected: 08/16/23 11:10 Client ID: MW-6R-20230816 Date Received: 08/16/23 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Aluminum, Total	1.52		mg/l	0.0100	0.00327	1	08/18/23 07:39	09/06/23 20:26	EPA 3005A	1,6020B	WKP
Antimony, Total	ND		mg/l	0.00400	0.00042	1	08/18/23 07:39	09/06/23 20:26	EPA 3005A	1,6020B	WKP
Arsenic, Total	0.00357		mg/l	0.00050	0.00016	1	08/18/23 07:39	09/06/23 20:26	EPA 3005A	1,6020B	WKP
Barium, Total	0.1421		mg/l	0.00050	0.00017	1	08/18/23 07:39	09/06/23 20:26	EPA 3005A	1,6020B	WKP
Beryllium, Total	ND		mg/l	0.00050	0.00010	1	08/18/23 07:39	09/06/23 20:26	EPA 3005A	1,6020B	WKP
Cadmium, Total	ND		mg/l	0.00020	0.00005	1	08/18/23 07:39	09/06/23 20:26	EPA 3005A	1,6020B	WKP
Calcium, Total	140.		mg/l	0.100	0.0394	1	08/18/23 07:39	09/06/23 20:26	EPA 3005A	1,6020B	WKP
Chromium, Total	0.00292		mg/l	0.00100	0.00017	1	08/18/23 07:39	09/06/23 20:26	EPA 3005A	1,6020B	WKP
Cobalt, Total	0.00136		mg/l	0.00050	0.00016	1	08/18/23 07:39	09/06/23 20:26	EPA 3005A	1,6020B	WKP
Copper, Total	0.00640		mg/l	0.00100	0.00038	1	08/18/23 07:39	09/06/23 20:26	EPA 3005A	1,6020B	WKP
Iron, Total	14.7		mg/l	0.0500	0.0191	1	08/18/23 07:39	09/06/23 20:26	EPA 3005A	1,6020B	WKP
Lead, Total	0.00623		mg/l	0.00100	0.00034	1	08/18/23 07:39	09/06/23 20:26	EPA 3005A	1,6020B	WKP
Magnesium, Total	24.2		mg/l	0.0700	0.0242	1	08/18/23 07:39	09/06/23 20:26	EPA 3005A	1,6020B	WKP
Manganese, Total	0.3977		mg/l	0.00100	0.00044	1	08/18/23 07:39	09/06/23 20:26	EPA 3005A	1,6020B	WKP
Mercury, Total	0.00013	J	mg/l	0.00020	0.00009	1	08/18/23 08:33	08/19/23 15:07	EPA 7470A	1,7470A	GMG
Nickel, Total	0.00364		mg/l	0.00200	0.00055	1	08/18/23 07:39	09/06/23 20:26	EPA 3005A	1,6020B	WKP
Potassium, Total	13.4		mg/l	0.100	0.0309	1	08/18/23 07:39	09/06/23 20:26	EPA 3005A	1,6020B	WKP
Selenium, Total	ND		mg/l	0.00500	0.00173	1	08/18/23 07:39	09/06/23 20:26	EPA 3005A	1,6020B	WKP
Silver, Total	ND		mg/l	0.00040	0.00016	1	08/18/23 07:39	09/06/23 20:26	EPA 3005A	1,6020B	WKP
Sodium, Total	283.		mg/l	0.100	0.0293	1	08/18/23 07:39	09/06/23 20:26	EPA 3005A	1,6020B	WKP
Thallium, Total	ND		mg/l	0.00100	0.00014	1	08/18/23 07:39	09/06/23 20:26	EPA 3005A	1,6020B	WKP
Vanadium, Total	0.00483	J	mg/l	0.00500	0.00157	1	08/18/23 07:39	09/06/23 20:26	EPA 3005A	1,6020B	WKP
Zinc, Total	0.02714		mg/l	0.01000	0.00341	1	08/18/23 07:39	09/06/23 20:26	EPA 3005A	1,6020B	WKP
·											

Project Name:FORMER COYNE TEXTILELab Number:L2347588Project Number:059294.001Report Date:09/07/23

SAMPLE RESULTS

Lab ID:L2347588-03Date Collected:08/16/23 12:20Client ID:MW-7R-20230816Date Received:08/16/23Sample Location:SYRACUSE, NYField Prep:Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Aluminum, Total	0.0683		mg/l	0.0100	0.00327	1	08/18/23 07:39	09/06/23 20:31	EPA 3005A	1,6020B	WKP
Antimony, Total	ND		mg/l	0.00400	0.00042	1	08/18/23 07:39	09/06/23 20:31	EPA 3005A	1,6020B	WKP
Arsenic, Total	0.00118		mg/l	0.00050	0.00016	1	08/18/23 07:39	09/06/23 20:31	EPA 3005A	1,6020B	WKP
Barium, Total	0.2943		mg/l	0.00050	0.00017	1	08/18/23 07:39	09/06/23 20:31	EPA 3005A	1,6020B	WKP
Beryllium, Total	ND		mg/l	0.00050	0.00010	1	08/18/23 07:39	09/06/23 20:31	EPA 3005A	1,6020B	WKP
Cadmium, Total	ND		mg/l	0.00020	0.00005	1	08/18/23 07:39	09/06/23 20:31	EPA 3005A	1,6020B	WKP
Calcium, Total	150.		mg/l	0.100	0.0394	1	08/18/23 07:39	09/06/23 20:31	EPA 3005A	1,6020B	WKP
Chromium, Total	0.00059	J	mg/l	0.00100	0.00017	1	08/18/23 07:39	09/06/23 20:31	EPA 3005A	1,6020B	WKP
Cobalt, Total	0.00019	J	mg/l	0.00050	0.00016	1	08/18/23 07:39	09/06/23 20:31	EPA 3005A	1,6020B	WKP
Copper, Total	0.00108		mg/l	0.00100	0.00038	1	08/18/23 07:39	09/06/23 20:31	EPA 3005A	1,6020B	WKP
Iron, Total	6.25		mg/l	0.0500	0.0191	1	08/18/23 07:39	09/06/23 20:31	EPA 3005A	1,6020B	WKP
Lead, Total	0.00080	J	mg/l	0.00100	0.00034	1	08/18/23 07:39	09/06/23 20:31	EPA 3005A	1,6020B	WKP
Magnesium, Total	40.7		mg/l	0.0700	0.0242	1	08/18/23 07:39	09/06/23 20:31	EPA 3005A	1,6020B	WKP
Manganese, Total	0.2527		mg/l	0.00100	0.00044	1	08/18/23 07:39	09/06/23 20:31	EPA 3005A	1,6020B	WKP
Mercury, Total	ND		mg/l	0.00020	0.00009	1	08/18/23 08:33	08/19/23 15:11	EPA 7470A	1,7470A	GMG
Nickel, Total	ND		mg/l	0.00200	0.00055	1	08/18/23 07:39	09/06/23 20:31	EPA 3005A	1,6020B	WKP
Potassium, Total	12.2		mg/l	0.100	0.0309	1	08/18/23 07:39	09/06/23 20:31	EPA 3005A	1,6020B	WKP
Selenium, Total	ND		mg/l	0.00500	0.00173	1	08/18/23 07:39	09/06/23 20:31	EPA 3005A	1,6020B	WKP
Silver, Total	ND		mg/l	0.00040	0.00016	1	08/18/23 07:39	09/06/23 20:31	EPA 3005A	1,6020B	WKP
Sodium, Total	147.		mg/l	0.100	0.0293	1	08/18/23 07:39	09/06/23 20:31	EPA 3005A	1,6020B	WKP
Thallium, Total	ND		mg/l	0.00100	0.00014	1	08/18/23 07:39	09/06/23 20:31	EPA 3005A	1,6020B	WKP
Vanadium, Total	ND		mg/l	0.00500	0.00157	1	08/18/23 07:39	09/06/23 20:31	EPA 3005A	1,6020B	WKP
Zinc, Total	0.00559	J	mg/l	0.01000	0.00341	1	08/18/23 07:39	09/06/23 20:31	EPA 3005A	1,6020B	WKP

Project Number: 059294.001

SAMPLE RESULTS

Lab ID: L2347588-04 Client ID: CHA-1-20230816 Sample Location: SYRACUSE, NY

Date Collected: 08/16/23 12:00 Date Received: 08/16/23 Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Aluminum, Total	0.0599		mg/l	0.0100	0.00327	1	08/18/23 07:39	09/06/23 20:36	EPA 3005A	1,6020B	WKP
Antimony, Total	ND		mg/l	0.00400	0.00042	1	08/18/23 07:39	09/06/23 20:36	EPA 3005A	1,6020B	WKP
Arsenic, Total	0.00113		mg/l	0.00050	0.00016	1	08/18/23 07:39	09/06/23 20:36	EPA 3005A	1,6020B	WKP
Barium, Total	0.2926		mg/l	0.00050	0.00017	1	08/18/23 07:39	09/06/23 20:36	EPA 3005A	1,6020B	WKP
Beryllium, Total	ND		mg/l	0.00050	0.00010	1	08/18/23 07:39	09/06/23 20:36	EPA 3005A	1,6020B	WKP
Cadmium, Total	ND		mg/l	0.00020	0.00005	1	08/18/23 07:39	09/06/23 20:36	EPA 3005A	1,6020B	WKP
Calcium, Total	144.		mg/l	0.100	0.0394	1	08/18/23 07:39	09/06/23 20:36	EPA 3005A	1,6020B	WKP
Chromium, Total	0.00045	J	mg/l	0.00100	0.00017	1	08/18/23 07:39	09/06/23 20:36	EPA 3005A	1,6020B	WKP
Cobalt, Total	0.00017	J	mg/l	0.00050	0.00016	1	08/18/23 07:39	09/06/23 20:36	EPA 3005A	1,6020B	WKP
Copper, Total	0.00053	J	mg/l	0.00100	0.00038	1	08/18/23 07:39	09/06/23 20:36	EPA 3005A	1,6020B	WKP
Iron, Total	6.26		mg/l	0.0500	0.0191	1	08/18/23 07:39	09/06/23 20:36	EPA 3005A	1,6020B	WKP
Lead, Total	0.00057	J	mg/l	0.00100	0.00034	1	08/18/23 07:39	09/06/23 20:36	EPA 3005A	1,6020B	WKP
Magnesium, Total	39.2		mg/l	0.0700	0.0242	1	08/18/23 07:39	09/06/23 20:36	EPA 3005A	1,6020B	WKP
Manganese, Total	0.2458		mg/l	0.00100	0.00044	1	08/18/23 07:39	09/06/23 20:36	EPA 3005A	1,6020B	WKP
Mercury, Total	ND		mg/l	0.00020	0.00009	1	08/18/23 08:33	08/19/23 15:14	EPA 7470A	1,7470A	GMG
Nickel, Total	ND		mg/l	0.00200	0.00055	1	08/18/23 07:39	09/06/23 20:36	EPA 3005A	1,6020B	WKP
Potassium, Total	11.8		mg/l	0.100	0.0309	1	08/18/23 07:39	09/06/23 20:36	EPA 3005A	1,6020B	WKP
Selenium, Total	ND		mg/l	0.00500	0.00173	1	08/18/23 07:39	09/06/23 20:36	EPA 3005A	1,6020B	WKP
Silver, Total	ND		mg/l	0.00040	0.00016	1	08/18/23 07:39	09/06/23 20:36	EPA 3005A	1,6020B	WKP
Sodium, Total	146.		mg/l	0.100	0.0293	1	08/18/23 07:39	09/06/23 20:36	EPA 3005A	1,6020B	WKP
Thallium, Total	ND		mg/l	0.00100	0.00014	1	08/18/23 07:39	09/06/23 20:36	EPA 3005A	1,6020B	WKP
Vanadium, Total	ND		mg/l	0.00500	0.00157	1	08/18/23 07:39	09/06/23 20:36	EPA 3005A	1,6020B	WKP
Zinc, Total	0.00400	J	mg/l	0.01000	0.00341	1	08/18/23 07:39	09/06/23 20:36	EPA 3005A	1,6020B	WKP

Project Number: 059294.001

SAMPLE RESULTS

Lab ID: L2347588-05 Date Collected: 08/16/23 14:00 Client ID: MW-4-20230816 Date Received: 08/16/23 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Aluminum, Total	17.1		mg/l	0.0100	0.00327	1	08/18/23 07:39	09/06/23 20:51	EPA 3005A	1,6020B	WKP
Antimony, Total	0.00044	J	mg/l	0.00400	0.00042	1	08/18/23 07:39	09/06/23 20:51	EPA 3005A	1,6020B	WKP
Arsenic, Total	0.01124		mg/l	0.00050	0.00016	1	08/18/23 07:39	09/06/23 20:51	EPA 3005A	1,6020B	WKP
Barium, Total	0.3166		mg/l	0.00050	0.00017	1	08/18/23 07:39	09/06/23 20:51	EPA 3005A	1,6020B	WKP
Beryllium, Total	0.00097		mg/l	0.00050	0.00010	1	08/18/23 07:39	09/06/23 20:51	EPA 3005A	1,6020B	WKP
Cadmium, Total	0.00038		mg/l	0.00020	0.00005	1	08/18/23 07:39	09/06/23 20:51	EPA 3005A	1,6020B	WKP
Calcium, Total	176.		mg/l	0.100	0.0394	1	08/18/23 07:39	09/06/23 20:51	EPA 3005A	1,6020B	WKP
Chromium, Total	0.03002		mg/l	0.00100	0.00017	1	08/18/23 07:39	09/06/23 20:51	EPA 3005A	1,6020B	WKP
Cobalt, Total	0.01509		mg/l	0.00050	0.00016	1	08/18/23 07:39	09/06/23 20:51	EPA 3005A	1,6020B	WKP
Copper, Total	0.03484		mg/l	0.00100	0.00038	1	08/18/23 07:39	09/06/23 20:51	EPA 3005A	1,6020B	WKP
Iron, Total	50.6		mg/l	0.0500	0.0191	1	08/18/23 07:39	09/06/23 20:51	EPA 3005A	1,6020B	WKP
Lead, Total	0.06434		mg/l	0.00100	0.00034	1	08/18/23 07:39	09/06/23 20:51	EPA 3005A	1,6020B	WKP
Magnesium, Total	36.4		mg/l	0.0700	0.0242	1	08/18/23 07:39	09/06/23 20:51	EPA 3005A	1,6020B	WKP
Manganese, Total	0.7492		mg/l	0.00100	0.00044	1	08/18/23 07:39	09/06/23 20:51	EPA 3005A	1,6020B	WKP
Mercury, Total	0.00037		mg/l	0.00020	0.00009	1	08/18/23 08:33	08/19/23 15:17	EPA 7470A	1,7470A	GMG
Nickel, Total	0.05791		mg/l	0.00200	0.00055	1	08/18/23 07:39	09/06/23 20:51	EPA 3005A	1,6020B	WKP
Potassium, Total	20.0		mg/l	0.100	0.0309	1	08/18/23 07:39	09/06/23 20:51	EPA 3005A	1,6020B	WKP
Selenium, Total	0.00423	J	mg/l	0.00500	0.00173	1	08/18/23 07:39	09/06/23 20:51	EPA 3005A	1,6020B	WKP
Silver, Total	0.00031	J	mg/l	0.00040	0.00016	1	08/18/23 07:39	09/06/23 20:51	EPA 3005A	1,6020B	WKP
Sodium, Total	158.		mg/l	0.100	0.0293	1	08/18/23 07:39	09/06/23 20:51	EPA 3005A	1,6020B	WKP
Thallium, Total	0.00019	J	mg/l	0.00100	0.00014	1	08/18/23 07:39	09/06/23 20:51	EPA 3005A	1,6020B	WKP
Vanadium, Total	0.03149		mg/l	0.00500	0.00157	1	08/18/23 07:39	09/06/23 20:51	EPA 3005A	1,6020B	WKP
Zinc, Total	0.1173		mg/l	0.01000	0.00341	1	08/18/23 07:39	09/06/23 20:51	EPA 3005A	1,6020B	WKP
•											

Project Number: 059294.001

SAMPLE RESULTS

Lab ID: L2347588-06

Date Collected: 08/16/23 15:40 Client ID: MW-105D-20230816 Date Received: 08/16/23 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Aluminum, Total	0.383		mg/l	0.0100	0.00327	1	08/18/23 07:39	09/06/23 20:56	EPA 3005A	1,6020B	WKP
Antimony, Total	ND		mg/l	0.00400	0.00042	1	08/18/23 07:39	09/06/23 20:56	EPA 3005A	1,6020B	WKP
Arsenic, Total	0.01819		mg/l	0.00050	0.00016	1	08/18/23 07:39	09/06/23 20:56	EPA 3005A	1,6020B	WKP
Barium, Total	1.364		mg/l	0.00050	0.00017	1	08/18/23 07:39	09/06/23 20:56	EPA 3005A	1,6020B	WKP
Beryllium, Total	ND		mg/l	0.00050	0.00010	1	08/18/23 07:39	09/06/23 20:56	EPA 3005A	1,6020B	WKP
Cadmium, Total	ND		mg/l	0.00020	0.00005	1	08/18/23 07:39	09/06/23 20:56	EPA 3005A	1,6020B	WKP
Calcium, Total	174.		mg/l	0.100	0.0394	1	08/18/23 07:39	09/06/23 20:56	EPA 3005A	1,6020B	WKP
Chromium, Total	0.00082	J	mg/l	0.00100	0.00017	1	08/18/23 07:39	09/06/23 20:56	EPA 3005A	1,6020B	WKP
Cobalt, Total	0.00304		mg/l	0.00050	0.00016	1	08/18/23 07:39	09/06/23 20:56	EPA 3005A	1,6020B	WKP
Copper, Total	0.00167		mg/l	0.00100	0.00038	1	08/18/23 07:39	09/06/23 20:56	EPA 3005A	1,6020B	WKP
Iron, Total	2.14		mg/l	0.0500	0.0191	1	08/18/23 07:39	09/06/23 20:56	EPA 3005A	1,6020B	WKP
Lead, Total	0.00118		mg/l	0.00100	0.00034	1	08/18/23 07:39	09/06/23 20:56	EPA 3005A	1,6020B	WKP
Magnesium, Total	46.4		mg/l	0.0700	0.0242	1	08/18/23 07:39	09/06/23 20:56	EPA 3005A	1,6020B	WKP
Manganese, Total	0.1667		mg/l	0.00100	0.00044	1	08/18/23 07:39	09/06/23 20:56	EPA 3005A	1,6020B	WKP
Mercury, Total	ND		mg/l	0.00020	0.00009	1	08/18/23 08:33	08/19/23 15:21	EPA 7470A	1,7470A	GMG
Nickel, Total	0.00704		mg/l	0.00200	0.00055	1	08/18/23 07:39	09/06/23 20:56	EPA 3005A	1,6020B	WKP
Potassium, Total	12.1		mg/l	0.100	0.0309	1	08/18/23 07:39	09/06/23 20:56	EPA 3005A	1,6020B	WKP
Selenium, Total	ND		mg/l	0.00500	0.00173	1	08/18/23 07:39	09/06/23 20:56	EPA 3005A	1,6020B	WKP
Silver, Total	ND		mg/l	0.00040	0.00016	1	08/18/23 07:39	09/06/23 20:56	EPA 3005A	1,6020B	WKP
Sodium, Total	43.0		mg/l	0.100	0.0293	1	08/18/23 07:39	09/06/23 20:56	EPA 3005A	1,6020B	WKP
Thallium, Total	ND		mg/l	0.00100	0.00014	1	08/18/23 07:39	09/06/23 20:56	EPA 3005A	1,6020B	WKP
Vanadium, Total	0.00166	J	mg/l	0.00500	0.00157	1	08/18/23 07:39	09/06/23 20:56	EPA 3005A	1,6020B	WKP
Zinc, Total	0.00467	J	mg/l	0.01000	0.00341	1	08/18/23 07:39	09/06/23 20:56	EPA 3005A	1,6020B	WKP

Serial_No:09072313:40

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number:

L2347588

Report Date: 09/07/23

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	l Analyst
Total Metals - Mansfield	Lab for sample(s):	01-06 E	Batch: Wo	G181730	2-1				
Aluminum, Total	ND	mg/l	0.0100	0.00327	1	08/18/23 07:39	08/21/23 15:17	1,6020B	WKP
Antimony, Total	ND	mg/l	0.00400	0.00042	1	08/18/23 07:39	08/21/23 15:17	1,6020B	WKP
Arsenic, Total	ND	mg/l	0.00050	0.00016	1	08/18/23 07:39	08/21/23 15:17	1,6020B	WKP
Barium, Total	ND	mg/l	0.00050	0.00017	1	08/18/23 07:39	08/21/23 15:17	1,6020B	WKP
Beryllium, Total	ND	mg/l	0.00050	0.00010	1	08/18/23 07:39	08/21/23 15:17	1,6020B	WKP
Cadmium, Total	ND	mg/l	0.00020	0.00005	1	08/18/23 07:39	08/21/23 15:17	1,6020B	WKP
Calcium, Total	ND	mg/l	0.100	0.0394	1	08/18/23 07:39	08/21/23 15:17	1,6020B	WKP
Chromium, Total	ND	mg/l	0.00100	0.00017	1	08/18/23 07:39	08/21/23 15:17	1,6020B	WKP
Cobalt, Total	ND	mg/l	0.00050	0.00016	1	08/18/23 07:39	08/21/23 15:17	1,6020B	WKP
Copper, Total	ND	mg/l	0.00100	0.00038	1	08/18/23 07:39	08/21/23 15:17	1,6020B	WKP
Iron, Total	ND	mg/l	0.0500	0.0191	1	08/18/23 07:39	08/21/23 15:17	1,6020B	WKP
Lead, Total	ND	mg/l	0.00100	0.00034	1	08/18/23 07:39	08/21/23 15:17	1,6020B	WKP
Magnesium, Total	ND	mg/l	0.0700	0.0242	1	08/18/23 07:39	08/21/23 15:17	1,6020B	WKP
Manganese, Total	ND	mg/l	0.00100	0.00044	1	08/18/23 07:39	08/21/23 15:17	1,6020B	WKP
Nickel, Total	ND	mg/l	0.00200	0.00055	1	08/18/23 07:39	08/21/23 15:17	1,6020B	WKP
Potassium, Total	ND	mg/l	0.100	0.0309	1	08/18/23 07:39	08/21/23 15:17	1,6020B	WKP
Selenium, Total	ND	mg/l	0.00500	0.00173	1	08/18/23 07:39	08/21/23 15:17	1,6020B	WKP
Silver, Total	ND	mg/l	0.00040	0.00016	1	08/18/23 07:39	08/21/23 15:17	1,6020B	WKP
Sodium, Total	ND	mg/l	0.100	0.0293	1	08/18/23 07:39	08/21/23 15:17	1,6020B	WKP
Thallium, Total	ND	mg/l	0.00100	0.00014	1	08/18/23 07:39	08/21/23 15:17	1,6020B	WKP
Vanadium, Total	ND	mg/l	0.00500	0.00157	1	08/18/23 07:39	08/21/23 15:17	1,6020B	WKP
Zinc, Total	ND	mg/l	0.01000	0.00341	1	08/18/23 07:39	08/21/23 15:17	1,6020B	WKP

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qu	alifier Un	its RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfie	eld Lab for sam	ple(s): 01-0	6 Batch:	WG18173	04-1				
Mercury, Total	0.00013	J m	g/l 0.000	0.00009	9 1	08/18/23 08:33	08/19/23 14:41	1,7470A	GMG

Serial_No:09072313:40

Project Name: FORMER COYNE TEXTILE **Lab Number:** L2347588

Project Number: 059294.001 **Report Date:** 09/07/23

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 7470A

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number: L2347588

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
otal Metals - Mansfield Lab Associated san	nple(s): 01-06 Bato	ch: WG1817	'302-2					
Aluminum, Total	105		-		80-120	-		
Antimony, Total	88		-		80-120	-		
Arsenic, Total	99		-		80-120	-		
Barium, Total	99		-		80-120	-		
Beryllium, Total	99		-		80-120	-		
Cadmium, Total	100		-		80-120	-		
Calcium, Total	100		-		80-120	-		
Chromium, Total	101		-		80-120	-		
Cobalt, Total	100		-		80-120	-		
Copper, Total	103		-		80-120	-		
Iron, Total	98		-		80-120	-		
Lead, Total	93		-		80-120	-		
Magnesium, Total	102		-		80-120	-		
Manganese, Total	102		-		80-120	-		
Nickel, Total	100		-		80-120	-		
Potassium, Total	100		-		80-120	-		
Selenium, Total	97		-		80-120	-		
Silver, Total	100		-		80-120	-		
Sodium, Total	101		-		80-120	-		
Thallium, Total	98		-		80-120	-		
Vanadium, Total	97		-		80-120	-		

Lab Control Sample Analysis Batch Quality Control

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number:

L2347588

Report Date:

09/07/23

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab Associa	ted sample(s): 01-06 Batcl	n: WG1817302-2			
Zinc, Total	98	-	80-120	-	
Total Metals - Mansfield Lab Associa	ted sample(s): 01-06 Batcl	n: WG1817304-2			
Mercury, Total	118	-	80-120	-	

Matrix Spike Analysis Batch Quality Control

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number: L2347588

Report Date: 09/07/23

arameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits		RPD Qual Limits
otal Metals - Mansfield L 0230816	ab Associated san	nple(s): 01-06	QC Bat	ch ID: WG181	7302-3 WG181	7302-4 QC San	nple: L2347588-01	Clien	t ID: MW-5R-
Aluminum, Total	1.05	2	3.45	120	3.36	116	75-125	3	20
Antimony, Total	0.00301J	0.5	0.4811	96	0.511	5 102	75-125	6	20
Arsenic, Total	0.00907	0.12	0.1281	99	0.138	108	75-125	8	20
Barium, Total	0.1427	2	2.160	101	2.28	2 107	75-125	5	20
Beryllium, Total	ND	0.05	0.05126	102	0.054	53 109	75-125	6	20
Cadmium, Total	0.00015J	0.053	0.05630	106	0.059	12 112	75-125	5	20
Calcium, Total	120.	10	131	110	141	210	Q 75-125	7	20
Chromium, Total	0.00172	0.2	0.2061	102	0.224	112	75-125	9	20
Cobalt, Total	0.00082	0.5	0.5119	102	0.538	32 107	75-125	5	20
Copper, Total	0.00465	0.25	0.2739	108	0.283	30 111	75-125	3	20
Iron, Total	7.09	1	8.25	116	8.26	117	75-125	0	20
Lead, Total	0.00435	0.53	0.5383	101	0.534	100	75-125	1	20
Magnesium, Total	33.0	10	43.6	106	43.0	100	75-125	1	20
Manganese, Total	0.1572	0.5	0.6860	106	0.708	110	75-125	3	20
Nickel, Total	0.00187J	0.5	0.5149	103	0.543	109	75-125	5	20
Potassium, Total	12.3	10	22.1	98	22.5	102	75-125	2	20
Selenium, Total	ND	0.12	0.0734	61	Q 0.087	73 73	Q 75-125	17	20
Silver, Total	ND	0.05	0.05191	104	0.054	93 110	75-125	6	20
Sodium, Total	133.	10	139	60	Q 139	60	Q 75-125	0	20
Thallium, Total	ND	0.12	0.1185	99	0.116	97	75-125	2	20
Vanadium, Total	0.00290J	0.5	0.5029	100	0.529	106	75-125	5	20

Matrix Spike Analysis Batch Quality Control

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number:

L2347588

Report Date:

09/07/23

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found %	MSD Recovery	Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab 2 20230816	Associated sam	ple(s): 01-06	QC Bato	ch ID: WG1817302-3	WG1817302-	4 QC Sample:	L2347588-01	Client ID:	MW-5R-
Zinc, Total	0.04041	0.5	0.5457	101	0.5742	107	75-125	5	20
Total Metals - Mansfield Lab 220230816	Associated sam	ple(s): 01-06	QC Bato	ch ID: WG1817304-3	WG1817304-4	4 QC Sample:	L2347588-01	Client ID:	MW-5R-
Mercury, Total	0.00011J	0.005	0.00537	107	0.00568	114	75-125	6	20

Lab Serial Dilution Analysis Batch Quality Control

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number: L2347588 **Report Date:** 09/07/23

arameter	Native Sample	Serial Dilution	Units	% D	Qual	RPD Limits
otal Metals - Mansfield Lab Associated sample(s): 01-0	6 QC Batch ID:	WG1817302-6 QC Sample:	L2347588-01	Client ID:	MW-5R-2	0230816
Aluminum, Total	1.05	1.03	mg/l	2		20
Barium, Total	0.1427	0.1403	mg/l	2		20
Calcium, Total	120.	116.	mg/l	3		20
Iron, Total	7.09	6.93	mg/l	2		20
Magnesium, Total	33.0	32.2	mg/l	2		20
Manganese, Total	0.1572	0.1521	mg/l	3		20
Potassium, Total	12.3	12.0	mg/l	2		20
Sodium, Total	133.	129.	mg/l	3		20

INORGANICS & MISCELLANEOUS

Project Name: FORMER COYNE TEXTILE Lab Number:

L2347588 Report Date: **Project Number:** 09/07/23 059294.001

SAMPLE RESULTS

Lab ID: Date Collected: L2347588-01 08/16/23 09:45

Client ID: Date Received: MW-5R-20230816 08/16/23 Not Specified Sample Location: SYRACUSE, NY Field Prep:

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough La	b							
Alkalinity, Total	327.	mg CaCO3/L	2.00	NA	1	-	08/30/23 11:35	121,2320B	MKT
Nitrogen, Nitrate	ND	mg/l	0.10	0.023	1	-	08/17/23 07:19	44,353.2	KAF
Sulfide	0.47	mg/l	0.10	0.10	1	08/22/23 10:27	08/22/23 11:54	121,4500S2-D	LOF
Total Organic Carbon	4.21	mg/l	0.500	0.097	1	-	08/29/23 13:47	121,5310C	DEW
Anions by Ion Chromat	ography - Wes	tborough Lab							
Chloride	206.	mg/l	5.00	0.839	10	-	08/18/23 17:32	44,300.0	CVN
Sulfate	166.	mg/l	10.0	4.54	10	-	08/18/23 17:32	44,300.0	CVN

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number:

L2347588

Report Date: 09/07/23

SAMPLE RESULTS

Lab ID: L2347588-02 Client ID: MW-6R-20230816

Sample Location: SYRACUSE, NY

Date Collected:

08/16/23 11:10

Date Received:

08/16/23

Field Prep:

Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab)							
Alkalinity, Total	524.	mg CaCO3/L	2.00	NA	1	-	08/30/23 11:35	121,2320B	MKT
Nitrogen, Nitrate	ND	mg/l	0.10	0.023	1	-	08/17/23 07:23	44,353.2	KAF
Sulfide	ND	mg/l	0.10	0.10	1	08/22/23 10:27	08/22/23 12:01	121,4500S2-D	LOF
Total Organic Carbon	15.2	mg/l	2.00	0.388	4	-	08/29/23 14:15	121,5310C	DEW
Anions by Ion Chroma	tography - West	borough Lab							
Chloride	407.	mg/l	5.00	0.839	10	-	08/18/23 14:54	44,300.0	CVN
Sulfate	63.4	mg/l	10.0	4.54	10	-	08/18/23 14:54	44,300.0	CVN

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number:

L2347588

Report Date: 09/07/23

SAMPLE RESULTS

Lab ID: L2347588-03
Client ID: MW-7R-20230816
Sample Location: SYRACUSE, NY

Date Collected:

08/16/23 12:20

Date Received: Field Prep:

08/16/23 Not Specified

Sample Depth:

Matrix:

Water

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab)							
Alkalinity, Total	396.	mg CaCO3/L	2.00	NA	1	-	08/30/23 11:35	121,2320B	MKT
Nitrogen, Nitrate	ND	mg/l	0.10	0.023	1	-	08/17/23 07:24	44,353.2	KAF
Sulfide	ND	mg/l	0.10	0.10	1	08/22/23 10:27	08/22/23 12:01	121,4500S2-D	LOF
Total Organic Carbon	4.54	mg/l	0.500	0.097	1	-	08/29/23 14:45	121,5310C	DEW
Anions by Ion Chroma	tography - West	borough Lab							
Chloride	373.	mg/l	5.00	0.839	10	-	08/18/23 15:07	44,300.0	CVN
Sulfate	63.0	mg/l	10.0	4.54	10	-	08/18/23 15:07	44,300.0	CVN

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001 Lab Number:

L2347588

Report Date: 09/07/23

SAMPLE RESULTS

Lab ID: L2347588-04 Client ID: CHA-1-20230816 Sample Location: SYRACUSE, NY

Date Collected:

08/16/23 12:00

Date Received:

08/16/23

Not Specified Field Prep:

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab								
Alkalinity, Total	388.	mg CaCO3/L	2.00	NA	1	-	08/30/23 11:35	121,2320B	MKT
Nitrogen, Nitrate	ND	mg/l	0.10	0.023	1	-	08/17/23 07:25	44,353.2	KAF
Sulfide	ND	mg/l	0.10	0.10	1	08/22/23 10:27	08/22/23 12:03	121,4500S2-D	LOF
Total Organic Carbon	4.47	mg/l	0.500	0.097	1	-	08/29/23 15:16	121,5310C	DEW
Anions by Ion Chromat	ography - Westb	orough Lab							
Chloride	266.	mg/l	5.00	0.839	10	-	08/18/23 15:19	44,300.0	CVN
Sulfate	145.	mg/l	10.0	4.54	10	-	08/18/23 15:19	44,300.0	CVN

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001 Lab Number:

L2347588

Report Date: 09/07/23

SAMPLE RESULTS

Lab ID: L2347588-05 Client ID: MW-4-20230816 Sample Location: SYRACUSE, NY Date Collected: Date Received: 08/16/23

08/16/23 14:00

Not Specified Field Prep:

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough Lat)							
Alkalinity, Total	776.	mg CaCO3/L	2.00	NA	1	-	08/30/23 11:35	121,2320B	MKT
Nitrogen, Nitrate	0.10	mg/l	0.10	0.023	1	-	08/17/23 07:30	44,353.2	KAF
Sulfide	2.1	mg/l	0.50	0.50	5	08/22/23 10:27	08/22/23 14:21	121,4500S2-D	LOF
Total Organic Carbon	15.9	mg/l	2.00	0.388	4	-	08/29/23 15:41	121,5310C	DEW
Anions by Ion Chromate	ography - Wes	borough Lab							
Chloride	132.	mg/l	5.00	0.839	10	-	08/18/23 16:19	44,300.0	CVN
Sulfate	138.	mg/l	10.0	4.54	10	-	08/18/23 16:19	44,300.0	CVN

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001 Lab Number:

L2347588

Report Date:

09/07/23

SAMPLE RESULTS

Lab ID: L2347588-06

MW-105D-20230816

Date Collected:

08/16/23 15:40

Sample Location: SYRACUSE, NY

Date Received: Field Prep:

08/16/23 Not Specified

Sample Depth:

Client ID:

Matrix:

Water

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab)							
Alkalinity, Total	577.	mg CaCO3/L	2.00	NA	1	-	08/30/23 11:35	121,2320B	MKT
Nitrogen, Nitrate	ND	mg/l	0.10	0.023	1	-	08/17/23 07:32	44,353.2	KAF
Sulfide	ND	mg/l	0.10	0.10	1	08/22/23 10:27	08/22/23 14:21	121,4500S2-D	LOF
Total Organic Carbon	6.11	mg/l	0.500	0.097	1	-	08/29/23 18:11	121,5310C	DEW
Anions by Ion Chroma	tography - West	borough Lab							
Chloride	160.	mg/l	5.00	0.839	10	-	08/18/23 16:31	44,300.0	CVN
Sulfate	44.4	mg/l	10.0	4.54	10	-	08/18/23 16:31	44,300.0	CVN

L2347588

Lab Number:

Project Name: FORMER COYNE TEXTILE

Report Date: Project Number: 059294.001 09/07/23

S

Method	В	lan	k /	۹na	lysi	S
Batch	Qι	ıalit	y C	Conti	rol	

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab for san	nple(s): 0°	1-06 Ba	tch: WG	31816860	-1			
Nitrogen, Nitrate	ND	mg/l	0.10	0.023	1	-	08/17/23 04:16	44,353.2	KAF
Anions by Ion Chromat	ography - Westborough	Lab for s	ample(s)	: 01-06	Batch: \	NG1817610-1			
Chloride	ND	mg/l	0.500	0.083	1	-	08/18/23 14:18	44,300.0	CVN
Sulfate	ND	mg/l	1.00	0.454	1	-	08/18/23 14:18	44,300.0	CVN
General Chemistry - W	estborough Lab for san	nple(s): 0°	1-06 Ba	tch: WC	G1818619	-1			
Sulfide	ND	mg/l	0.10	0.10	1	08/22/23 10:27	08/22/23 11:53	121,4500S2-D) LOF
General Chemistry - W	estborough Lab for san	nple(s): 0°	1-06 Ba	tch: WG	G1821222	-1			
Total Organic Carbon	ND	mg/l	0.500	0.097	1	-	08/29/23 07:08	121,5310C	DEW
General Chemistry - W	estborough Lab for san	nple(s): 0°	1-06 Ba	tch: WG	G1821833	-1			
Alkalinity, Total	ND	mg CaCO3/	L 2.00	NA	1	-	08/30/23 11:35	121,2320B	MKT

Lab Control Sample Analysis Batch Quality Control

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number:

L2347588

Report Date:

09/07/23

Parameter	LCS %Recovery Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Ass	ociated sample(s): 01-06	Batch: WG181686	60-2			
Nitrogen, Nitrate	100	-	90-110	-		
Anions by Ion Chromatography - Westborou	gh Lab Associated sam	ple(s): 01-06 Batch	n: WG1817610-2			
Chloride	101	-	90-110	-		
Sulfate	100	-	90-110	-		
General Chemistry - Westborough Lab Ass	ociated sample(s): 01-06	Batch: WG18186	19-2			
Sulfide	115	-	75-125	-		
General Chemistry - Westborough Lab Ass	ociated sample(s): 01-06	Batch: WG182122	22-2			
Total Organic Carbon	97	-	90-110	-		
General Chemistry - Westborough Lab Ass	ociated sample(s): 01-06	Batch: WG182183	33-2			
Alkalinity, Total	104	-	90-110	-		10

L2347588

Matrix Spike Analysis Batch Quality Control

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number:

Report Date: 09/07/23

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
General Chemistry - Westborot 20230816	ugh Lab Asso	ciated samp	ole(s): 01-06	QC Batch II	D: WG1816860-4	QC Sample: L	_2347588-01 Clie	ent ID:	MW-5R-
Nitrogen, Nitrate	ND	4	3.8	95	-	-	83-113	-	6
Anions by Ion Chromatography Client ID: MW-5R-20230816	/ - Westborou	gh Lab Asso	ociated sam	ole(s): 01-06	QC Batch ID: WC	G1817610-3 WG	G1817610-4 QC S	Sample	: L2347588-01
Chloride	206.	40	247	104	247	104	90-110	0	18
Sulfate	166.	80	247	101	247	101	90-110	0	20
General Chemistry - Westborot 20230816	ugh Lab Asso	ciated samp	ole(s): 01-06	QC Batch II	D: WG1818619-4	QC Sample: L	_2347588-01 Clie	ent ID:	MW-5R-
Sulfide	0.47	0.52	0.57	19	Q -	-	70-130	-	20
General Chemistry - Westboro	ugh Lab Asso	ciated samp	ole(s): 01-06	QC Batch II	D: WG1821222-4	QC Sample: L	_2348905-05 Clie	ent ID:	MS Sample
Total Organic Carbon	5890	6400	12900	109	-	-	85-115	-	15
General Chemistry - Westboro	ugh Lab Asso	ciated samp	ole(s): 01-06	QC Batch II	D: WG1821222-6	QC Sample: L	_2347588-01 Clie	ent ID:	MW-5R-
Total Organic Carbon	4.21	8	13.4	114	-	-	85-115	-	15
General Chemistry - Westboro	ugh Lab Asso	ciated samp	ole(s): 01-06	QC Batch II	D: WG1821833-4	QC Sample: L	_2347588-01 Clie	ent ID:	MW-5R-
Alkalinity, Total	327.	100	440	113	-	-	86-116	-	10

Lab Duplicate Analysis Batch Quality Control

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number:

L2347588 09/07/23

Report Date:

Parameter	Native Sam	ple D	ouplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab 20230816	Associated sample(s): 01-06	QC Batch ID:	WG1816860-3	QC Sample:	L2347588-01	Client ID:	MW-5R-
Nitrogen, Nitrate	ND		ND	mg/l	NC		6
General Chemistry - Westborough Lab 20230816	Associated sample(s): 01-06	QC Batch ID:	WG1818619-3	QC Sample:	L2347588-01	Client ID:	MW-5R-
Sulfide	0.47		0.23	mg/l	69	Q	20
General Chemistry - Westborough Lab	Associated sample(s): 01-06	QC Batch ID:	WG1821222-3	QC Sample:	L2348905-05	Client ID:	DUP Sample
Total Organic Carbon	5890		5620	mg/l	5		15
General Chemistry - Westborough Lab 20230816	Associated sample(s): 01-06	QC Batch ID:	WG1821222-5	QC Sample:	L2347588-01	Client ID:	MW-5R-
Total Organic Carbon	4.21		4.42	mg/l	5		15
General Chemistry - Westborough Lab 20230816	Associated sample(s): 01-06	QC Batch ID:	WG1821833-3	QC Sample:	L2347588-01	Client ID:	MW-5R-
Alkalinity, Total	327.		323	mg CaCO3/I	_ 1		10

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number: L2347588 **Report Date:** 09/07/23

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Cooler Information

Custody Seal Cooler

Α Absent В Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2347588-01A	Vial HCl preserved	В	NA		2.3	Υ	Absent		NYTCL-8260-R2(14)
L2347588-01A1	Vial HCl preserved	В	NA		2.3	Υ	Absent		NYTCL-8260-R2(14)
L2347588-01A2	Vial HCl preserved	В	NA		2.3	Υ	Absent		NYTCL-8260-R2(14)
L2347588-01B	Vial HCl preserved	В	NA		2.3	Υ	Absent		NYTCL-8260-R2(14)
L2347588-01B1	Vial HCl preserved	В	NA		2.3	Υ	Absent		NYTCL-8260-R2(14)
L2347588-01B2	Vial HCl preserved	В	NA		2.3	Υ	Absent		NYTCL-8260-R2(14)
L2347588-01C	Vial HCl preserved	В	NA		2.3	Υ	Absent		NYTCL-8260-R2(14)
L2347588-01C1	Vial HCl preserved	В	NA		2.3	Υ	Absent		NYTCL-8260-R2(14)
L2347588-01C2	Vial HCl preserved	В	NA		2.3	Υ	Absent		NYTCL-8260-R2(14)
L2347588-01D	Vial H2SO4 preserved	В	NA		2.3	Υ	Absent		TOC-5310(28)
L2347588-01D1	Vial H2SO4 preserved	В	NA		2.3	Υ	Absent		TOC-5310(28)
L2347588-01D2	Vial H2SO4 preserved	В	NA		2.3	Υ	Absent		TOC-5310(28)
L2347588-01E	Vial H2SO4 preserved	В	NA		2.3	Υ	Absent		TOC-5310(28)
L2347588-01E1	Vial H2SO4 preserved	В	NA		2.3	Υ	Absent		TOC-5310(28)
L2347588-01E2	Vial H2SO4 preserved	В	NA		2.3	Υ	Absent		ARCHIVE()
L2347588-01F	Vial unpreserved 20ml	В	NA		2.3	Υ	Absent		ARCHIVE()
L2347588-01F1	Vial unpreserved 20ml	В	NA		2.3	Υ	Absent		ARCHIVE()
L2347588-01F2	Vial unpreserved 20ml	В	NA		2.3	Υ	Absent		ARCHIVE()
L2347588-01G	Vial unpreserved 20ml	В	NA		2.3	Υ	Absent		ARCHIVE()
L2347588-01G1	Vial unpreserved 20ml	В	NA		2.3	Υ	Absent		ARCHIVE()
L2347588-01G2	Vial unpreserved 20ml	В	NA		2.3	Υ	Absent		ARCHIVE()
L2347588-01H	20ml Vial HCl preserved	В	NA		2.3	Υ	Absent		DISSGAS(14)

Lab Number: L2347588

Report Date: 09/07/23

Project Name: FORMER COYNE TEXTILE

Container Information				Final	Temp			Frozen	
Container ID	Container Type	Cooler	Initial pH	рН		Pres	Seal	Date/Time	Analysis(*)
L2347588-01H1	20ml Vial HCl preserved	В	NA		2.3	Υ	Absent		DISSGAS(14)
L2347588-01H2	20ml Vial HCl preserved	В	NA		2.3	Υ	Absent		DISSGAS(14)
L2347588-01I	20ml Vial HCl preserved	В	NA		2.3	Υ	Absent		DISSGAS(14)
L2347588-01I1	20ml Vial HCl preserved	В	NA		2.3	Υ	Absent		DISSGAS(14)
L2347588-01I2	20ml Vial HCl preserved	В	NA		2.3	Υ	Absent		DISSGAS(14)
L2347588-01J	Plastic 250ml unpreserved/No Headspace	В	NA		2.3	Υ	Absent		ALK-T-2320(14)
L2347588-01J1	Plastic 250ml unpreserved/No Headspace	В	NA		2.3	Υ	Absent		ALK-T-2320(14)
L2347588-01J2	Plastic 250ml unpreserved/No Headspace	В	NA		2.3	Υ	Absent		ALK-T-2320(14)
L2347588-01K	Plastic 250ml unpreserved	В	7	7	2.3	Υ	Absent		SO4-300(28),CL-300(28),NO3-353(2)
L2347588-01K1	Plastic 250ml unpreserved	В	7	7	2.3	Υ	Absent		SO4-300(28),CL-300(28),NO3-353(2)
L2347588-01K2	Plastic 250ml unpreserved	В	7	7	2.3	Υ	Absent		SO4-300(28),CL-300(28),NO3-353(2)
L2347588-01L	Plastic 250ml Zn Acetate/NaOH preserved	В	>9	>9	2.3	Υ	Absent		SULFIDE-4500(7)
L2347588-01L1	Plastic 250ml Zn Acetate/NaOH preserved	В	>9	>9	2.3	Υ	Absent		SULFIDE-4500(7),TOC-5310(28)
L2347588-01L2	Plastic 250ml Zn Acetate/NaOH preserved	В	>9	>9	2.3	Υ	Absent		SULFIDE-4500(7),TOC-5310(28)
L2347588-01M	Plastic 250ml Zn Acetate/NaOH preserved	В	>9	>9	2.3	Υ	Absent		SULFIDE-4500(7)
L2347588-01M1	Plastic 250ml Zn Acetate/NaOH preserved	В	>9	>9	2.3	Υ	Absent		SULFIDE-4500(7),TOC-5310(28)
L2347588-01M2	Plastic 250ml Zn Acetate/NaOH preserved	В	>9	>9	2.3	Υ	Absent		SULFIDE-4500(7),TOC-5310(28)
L2347588-01N	Plastic 250ml HNO3 preserved	В	<2	<2	2.3	Y	Absent		BA-6020T(180),SE-6020T(180),TL-6020T(180),FE-6020T(180),NI-6020T(180),CA-6020T(180),K-6020T(180),CR-6020T(180),ZN-6020T(180),NA-6020T(180),CU-6020T(180),BE-6020T(180),MN-6020T(180),BE-6020T(180),SB-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AG-6020T(180),CD-6020T(180),HG-T(28),CO-6020T(180)
L2347588-01N1	Plastic 250ml HNO3 preserved	В	<2	<2	2.3	Y	Absent		BA-6020T(180),SE-6020T(180),TL-6020T(180),FE-6020T(180),NI-6020T(180),CA-6020T(180),K-6020T(180),CR-6020T(180),ZN-6020T(180),NA-6020T(180),CU-6020T(180),PB-6020T(180),MN-6020T(180),BE-6020T(180),SB-6020T(180),V-6020T(180),AS-6020T(180),AL-6020T(180),MG-6020T(180),AG-6020T(180),CD-6020T(180),HG-T(28),CO-6020T(180)

Lab Number: L2347588

Report Date: 09/07/23

Project Name: FORMER COYNE TEXTILE

Container Information			Initial	Final	Temp			Frozen				
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)			
L2347588-01N2	Plastic 250ml HNO3 preserved	В	<2	<2	2.3	Y	Absent		BA-6020T(180),SE-6020T(180),TL-6020T(180),FE-6020T(180),NI-6020T(180),CA-6020T(180),K-6020T(180),CR-6020T(180),XN-6020T(180),CU-6020T(180),PB-6020T(180),MN-6020T(180),BE-6020T(180),SB-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),CD-6020T(180),AS-6020T(180),CD-6020T(180),CO-6020T(180)			
L2347588-02A	Vial HCl preserved	В	NA		2.3	Υ	Absent		NYTCL-8260-R2(14)			
L2347588-02B	Vial HCl preserved	В	NA		2.3	Υ	Absent		NYTCL-8260-R2(14)			
L2347588-02C	Vial HCl preserved	В	NA		2.3	Υ	Absent		NYTCL-8260-R2(14)			
L2347588-02D	Vial H2SO4 preserved	В	NA		2.3	Υ	Absent		TOC-5310(28)			
L2347588-02E	Vial H2SO4 preserved	В	NA		2.3	Υ	Absent		TOC-5310(28)			
L2347588-02F	Vial unpreserved 20ml	В	NA		2.3	Υ	Absent		ARCHIVE()			
L2347588-02G	Vial unpreserved 20ml	В	NA		2.3	Υ	Absent		ARCHIVE()			
L2347588-02H	20ml Vial HCl preserved	В	NA		2.3	Υ	Absent		DISSGAS(14)			
L2347588-02I	20ml Vial HCl preserved	В	NA		2.3	Υ	Absent		DISSGAS(14)			
L2347588-02J	Plastic 250ml unpreserved/No Headspace	В	NA		2.3	Υ	Absent		ALK-T-2320(14)			
L2347588-02K	Plastic 250ml unpreserved	В	7	7	2.3	Υ	Absent		SO4-300(28),CL-300(28),NO3-353(2)			
L2347588-02L	Plastic 250ml Zn Acetate/NaOH preserved	В	>9	>9	2.3	Υ	Absent		SULFIDE-4500(7)			
L2347588-02M	Plastic 250ml Zn Acetate/NaOH preserved	В	>9	>9	2.3	Υ	Absent		SULFIDE-4500(7)			
L2347588-02N	Plastic 250ml HNO3 preserved	В	<2	<2	2.3	Y	Absent		SE-6020T(180),TL-6020T(180),BA-6020T(180),FE-6020T(180),CA-6020T(180),K-6020T(180),NI-6020T(180),CR-6020T(180),CU-6020T(180),NN-6020T(180),NA-6020T(180),PB-6020T(180),MN-6020T(180),SE-6020T(180),AS-6020T(180),SB-6020T(180),V-6020T(180),MG-6020T(180),AC-6020T(180),HG-7(28),CO-6020T(180)			
L2347588-03A	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260-R2(14)			
L2347588-03B	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260-R2(14)			
L2347588-03C	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260-R2(14)			
L2347588-03D	Vial H2SO4 preserved	Α	NA		3.8	Υ	Absent		TOC-5310(28)			
L2347588-03E	Vial H2SO4 preserved	Α	NA		3.8	Υ	Absent		TOC-5310(28)			

Lab Number: L2347588

Report Date: 09/07/23

Project Name: FORMER COYNE TEXTILE

Container Information			Initial	Final	Temp			Frozen				
Container ID	Container Type	Cooler		рН	deg C	Pres	Seal	Date/Time	Analysis(*)			
L2347588-03F	Vial unpreserved 20ml	А	NA		3.8	Υ	Absent		ARCHIVE()			
L2347588-03G	Vial unpreserved 20ml	Α	NA		3.8	Υ	Absent		ARCHIVE()			
L2347588-03H	20ml Vial HCl preserved	Α	NA		3.8	Υ	Absent		DISSGAS(14)			
L2347588-03I	20ml Vial HCl preserved	Α	NA		3.8	Υ	Absent		DISSGAS(14)			
L2347588-03J	Plastic 250ml unpreserved/No Headspace	Α	NA		3.8	Υ	Absent		ALK-T-2320(14)			
L2347588-03K	Plastic 250ml unpreserved	Α	7	7	3.8	Υ	Absent		SO4-300(28),CL-300(28),NO3-353(2)			
L2347588-03L	Plastic 250ml Zn Acetate/NaOH preserved	Α	>9	>9	3.8	Υ	Absent		SULFIDE-4500(7)			
L2347588-03M	Plastic 250ml Zn Acetate/NaOH preserved	Α	>9	>9	3.8	Υ	Absent		SULFIDE-4500(7)			
L2347588-03N	Plastic 250ml HNO3 preserved	А	<2	<2	3.8	Y	Absent		FE-6020T(180),TL-6020T(180),BA-6020T(180),SE-6020T(180),CA-6020T(180),CR-6020T(180),CR-6020T(180),CR-6020T(180),CR-6020T(180),CR-6020T(180),CR-6020T(180),CR-6020T(180),CR-6020T(180),MN-6020T(180),BE-6020T(180),MN-6020T(180),V-6020T(180),CD-6020T(180),MG-6020T(180),AL-6020T(180),HG-T(28),AG-6020T(180),CO-6020T(180),HG-T(28),AG-6020T(180),CO-6020T(180)			
L2347588-04A	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260-R2(14)			
L2347588-04B	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260-R2(14)			
L2347588-04C	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260-R2(14)			
L2347588-04D	Vial H2SO4 preserved	Α	NA		3.8	Υ	Absent		TOC-5310(28)			
L2347588-04E	Vial H2SO4 preserved	Α	NA		3.8	Υ	Absent		TOC-5310(28)			
L2347588-04F	Vial unpreserved 20ml	Α	NA		3.8	Υ	Absent		ARCHIVE()			
L2347588-04G	Vial unpreserved 20ml	Α	NA		3.8	Υ	Absent		ARCHIVE()			
L2347588-04H	20ml Vial HCl preserved	Α	NA		3.8	Υ	Absent		DISSGAS(14)			
L2347588-04I	20ml Vial HCl preserved	Α	NA		3.8	Υ	Absent		DISSGAS(14)			
L2347588-04J	Plastic 250ml unpreserved/No Headspace	Α	NA		3.8	Υ	Absent		ALK-T-2320(14)			
L2347588-04K	Plastic 250ml unpreserved	Α	7	7	3.8	Υ	Absent		SO4-300(28),CL-300(28),NO3-353(2)			
L2347588-04L	Plastic 250ml Zn Acetate/NaOH preserved	Α	>9	>9	3.8	Υ	Absent		SULFIDE-4500(7)			
L2347588-04M	Plastic 250ml Zn Acetate/NaOH preserved	Α	>9	>9	3.8	Υ	Absent		SULFIDE-4500(7)			

Lab Number: L2347588

Report Date: 09/07/23

Project Name: FORMER COYNE TEXTILE

Container Information			Initial	Final	al Temp			Frozen	
Container ID	Container Type	Cooler		рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2347588-04N	Plastic 250ml HNO3 preserved	А	<2	<2	3.8	Y	Absent		BA-6020T(180),FE-6020T(180),SE-6020T(180),TL-6020T(180),CA-6020T(180),K-6020T(180),CR-6020T(180),NI-6020T(180),CU-6020T(180),ZN-6020T(180),NA-6020T(180),PB-6020T(180),BE-6020T(180),MN-6020T(180),CD-6020T(180),HG-T(28),AG-6020T(180),MG-6020T(180),AL-6020T(180),CO-6020T(180),AL-6020T(180),CO-6020T(180)
L2347588-05A	Vial HCI preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260-R2(14)
L2347588-05B	Vial HCI preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260-R2(14)
L2347588-05C	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260-R2(14)
L2347588-05D	Vial H2SO4 preserved	Α	NA		3.8	Υ	Absent		TOC-5310(28)
L2347588-05E	Vial H2SO4 preserved	Α	NA		3.8	Υ	Absent		TOC-5310(28)
L2347588-05F	Vial unpreserved 20ml	Α	NA		3.8	Υ	Absent		ARCHIVE()
L2347588-05G	Vial unpreserved 20ml	Α	NA		3.8	Υ	Absent		ARCHIVE()
L2347588-05H	20ml Vial HCl preserved	Α	NA		3.8	Υ	Absent		DISSGAS(14)
L2347588-05I	20ml Vial HCl preserved	Α	NA		3.8	Υ	Absent		DISSGAS(14)
L2347588-05J	Plastic 250ml unpreserved/No Headspace	Α	NA		3.8	Υ	Absent		ALK-T-2320(14)
L2347588-05K	Plastic 250ml unpreserved	Α	7	7	3.8	Υ	Absent		SO4-300(28),CL-300(28),NO3-353(2)
L2347588-05L	Plastic 250ml Zn Acetate/NaOH preserved	Α	>9	>9	3.8	Υ	Absent		SULFIDE-4500(7)
L2347588-05M	Plastic 250ml Zn Acetate/NaOH preserved	Α	>9	>9	3.8	Υ	Absent		SULFIDE-4500(7)
L2347588-05N	Plastic 250ml HNO3 preserved	А	<2	<2	3.8	Y	Absent		FE-6020T(180),SE-6020T(180),TL-6020T(180),BA-6020T(180),CR-6020T(180),NI-6020T(180),K-6020T(180),CA-6020T(180),CU-6020T(180),NA-6020T(180),ZN-6020T(180),PB-6020T(180),AS-6020T(180),BE-6020T(180),AS-6020T(180),V-6020T(180),SB-6020T(180),MG-6020T(180),CD-6020T(180),AL-6020T(180),HG-T(28),AG-6020T(180),CO-6020T(180),CO-6020T(180),CO-6020T(180),CO-6020T(180)
L2347588-06A	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260-R2(14)
L2347588-06B	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260-R2(14)
L2347588-06C	Vial HCl preserved	Α	NA		3.8	Υ	Absent		NYTCL-8260-R2(14)
L2347588-06D	Vial H2SO4 preserved	Α	NA		3.8	Υ	Absent		TOC-5310(28)
L2347588-06E	Vial H2SO4 preserved	Α	NA		3.8	Υ	Absent		TOC-5310(28)
L2347588-06F	Vial unpreserved 20ml	Α	NA		3.8	Υ	Absent		ARCHIVE()

Lab Number: L2347588

Report Date: 09/07/23

NYTCL-8260-R2(14)

Project Number: 059294.001

FORMER COYNE TEXTILE

Project Name:

Container Information			Initial	Final	Temp			Frozen		
	Container ID	Container Type	Cooler	рН	рН		Pres	Seal	Date/Time	Analysis(*)
	L2347588-06G	Vial unpreserved 20ml	Α	NA		3.8	Υ	Absent		ARCHIVE()
	L2347588-06H	20ml Vial HCl preserved	Α	NA		3.8	Υ	Absent		DISSGAS(14)
	L2347588-06I	20ml Vial HCl preserved	Α	NA		3.8	Υ	Absent		DISSGAS(14)
	L2347588-06J	Plastic 250ml unpreserved/No Headspace	Α	NA		3.8	Υ	Absent		ALK-T-2320(14)
	L2347588-06K	Plastic 250ml unpreserved	Α	7	7	3.8	Υ	Absent		SO4-300(28),CL-300(28),NO3-353(2)
	L2347588-06L	Plastic 250ml Zn Acetate/NaOH preserved	Α	>9	>9	3.8	Υ	Absent		SULFIDE-4500(7)
	L2347588-06M	Plastic 250ml Zn Acetate/NaOH preserved	Α	>9	>9	3.8	Υ	Absent		SULFIDE-4500(7)
	L2347588-06N	Plastic 250ml HNO3 preserved	A	<2	<2	3.8	Y	Absent		BA-6020T(180),FE-6020T(180),SE-6020T(180),TL-6020T(180),NI-6020T(180),K-6020T(180),CA-6020T(180),CR-6020T(180),ZN-6020T(180),NA-6020T(180),CU-6020T(180),PB-6020T(180),BE-6020T(180),MN-6020T(180),AS-6020T(180),V-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),CD-6020T(180),CO-6020T(180)
	L2347588-07A	Vial HCI preserved	В	NA		2.3	Υ	Absent		NYTCL-8260-R2(14)

2.3

Y Absent

В

NA

Container Comments

L2347588-07B

L2347588-01E2 container received empty

Vial HCl preserved

GLOSSARY

Acronyms

EPA

LOD

MDI

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations

 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

Environmental Protection Agency.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

 - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

oniy.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

adjustments from dilutions, concentrations or moisture content, where applicable.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Data Qualifiers

Identified Compounds (TICs). For calculated parameters, this represents that one or more values used in the calculation were estimated.

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- **NJ** Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

REFERENCES

- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I VI, 2018.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- Technical Guidance for the Natural Attenuation Indicators: Methane, Ethane, and Ethene, EPA-NE, Revision 1, February 21, 2002 and Sample Preparation & Calculations for Dissolved Gas Analysis in Water Samples using a GC Headspace Equilibration Technique, EPA RSKSOP-175, Revision 2, May 2004.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 20

Published Date: 6/16/2023 4:52:28 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; 4-Ethyltoluene, Az

EPA 8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables).

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

W.	NEW YORK	Service Centers			Pag	je									
ΔLPHA	CHAIN OF CUSTODY	Mahwah, NJ 07430: 35 Wt Albany, NY 12205: 14 Wal Tonawanda, NY 14150: 27	her Way	105		of			Rec'	9	1	71	2	3	ALPHA JOB# 1234758
Westborough, MA 0158 8 Walkup Dr.	The state of the s	Project Information	1	N .			Diali	verabl	BS:						Billing Information
TEL: 508-898-9220	329 Forbes Blvd TEL: 508-822-9300		rmer Congr	elextile.				ASP	_		N	ASP	-B		Same as Client Info
FAX: 508-898-9183	FAX: 508-822-3288		Syracuse				ᅥᆮ	4.0	dS (1 F	(ali:	V	EQu		(ali:	90.0
Client Information	A STATE	Project# 059	294.001	101			17			me)		(-00	15 (4.	no)	05929403 (
lient: CHA Consi	Liffon	(Use Project name as	The same of the sa				- CONTRACTOR	CONTRACTOR	Regu	literina	ot.	-			Disposal Site Information
	Stare Street Suit		Sam Mill					NYT		WEINE		NV P	uis 375	.VG	Learning to the control of the contr
Syracuse NY	13702	ALPHAQuote #:	MIL IMIL	K.S			-112	dana mara	Standa	and a		NYC		15	Please identify below location of applicable disposal facilities.
hone: 315-25		Turn-Around Time									=	ent and the			
BX:	1 1230		W. N.			-			estricte		-	Other			Disposal Facility:
mait k alamana	Chacompanies	Stand	fard X	Due Date	79				nrestric						□ nn □ nv
hasa samalas have	Conditionpanies	- risusin (only a pre appro	ved)	# of Days	1				Sewer I	Discha	rge .				Other:
	been previously analyzic requirements/comm						ANA	LYSIS	1	_	-	_		_	Sample Filtration
							٦,	Nos			0	7			Done
Cr O	an Miller	1) (1	oders				2778	3	1	4500	3	(0)			Lab to do
ease specify Meta	In on TAL						127		12	六	232	10	Gas		Preservation Lab to do
ease specify meta	Is or TAL.						1'	0	Metal	0		Cass	2	1	
							J.,	~		3	1	S	S	\simeq	(Please Specify below)
ALPHA Lab ID	Sa	mple ID	Coll	ection	Sample	Sampler's	12	3	多	=	1	X	X	1,0	
(Lab Use Only)	22.	DAMATIES:	Date	Time	Matrix	Initials	>	03	1	5	K	0	5	1	Sample Specific Comments
7588-01	MW-5R-202		8.16.23	0945	GW	KE/AH	IX	X	X	X	X	X	X	X	
01	MS-2023	0816		0945	1		IX	V	X	V	X	X	X	X	
01	MSD - 2023	0816		0945			TX	X	X	X	X	X	X	X	
02	MW-6R-2	0230816		1110			X	X	X	X	X	X	V	Ý	
03	MW-7R-Z	0230816		1220			X	Ŷ	Ż	V	X	X	Ž	Ŷ	
04		30816		1200			V	X	X	V	V	X	V	Ý	
05	MW-4 - 202	30816		1400			T 🗘	Ý	V	Ŷ	X	Ź	X	X	
06	MW-105D-		1	1540	V	<u> </u>	V	V	V	V	X	X	X	X	
07	TrioBlank 2	20130716	_	10-10	Lablyat	- V		^	^	^		/-	/	_	
	1				DOODYM	-				\neg			_		
servative Code.	Container Code	Westboro: Certification	No: MA935				1		_	D			V	. 1	
None HCI	P = Plastic	Mansfield: Certification	사건 기계가 먹었다.		Con	tainer Type	IV I	9	P	$Y \mid$	9	V	V	V	Please print clearly, legibly and completely. Samples of
HNO ₃	V = Vial	monancia. Certification	NO. WHO IS		_			÷		v 1	^		_	-	not be logged in and
H ₂ SO ₄	G = Glass				P	reservative	13	Al	C	7E	A	A	B	D	turnaround time clock will r
NaOH MeOH	B = Bacteria Cup C = Cube	O-Francisco	40.	-			-		_	-		_		-	start until any ambiguities a
NaHSO ₄	O = Other	Relinquishe	1 1	Date/		0 0	Receive			- 0	-7 1	Date/	time	500	resolved. BY EXECUTING THIS COC, THE CLIENT
Na ₂ S ₂ O ₃ = Zn Ac/NaOH	E = Encore D = BOD Bottle	- Day	offer	8-14-23		Sec	Md	-	000		717	612		Y	HAS READ AND AGREES
- Zn Ac/NeOH Other		secured	Storage	8/16/23	1900	h-27	NAM			_	YI	6/2	190	ō	TO BE BOUND BY ALPHA
				(* d)			-	_		- 1.	Se Birms	133	APPL LT		TERMS & CONDITIONS

ANALYTICAL REPORT

Lab Number: L2363190

Client: CHA Companies

One Park Place

300 South State St., Suite 600

Syracuse, NY 13202

ATTN: Samantha Miller Phone: (315) 471-3920

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Report Date: 12/05/23

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OH (CL108), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

 Lab Number:
 L2363190

 Report Date:
 12/05/23

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2363190-01	MW-7R-20231024	WATER	SYRACUSE, NY	10/24/23 09:45	10/24/23
L2363190-02	MW-6R-20231024	WATER	SYRACUSE, NY	10/24/23 11:20	10/24/23
L2363190-03	MW-5R-20231024	WATER	SYRACUSE, NY	10/24/23 12:20	10/24/23
L2363190-04	MW-4-20231024	WATER	SYRACUSE, NY	10/24/23 14:30	10/24/23
L2363190-05	MW-105D-20231024	WATER	SYRACUSE, NY	10/24/23 15:45	10/24/23
L2363190-06	CHA-1-20231024	WATER	SYRACUSE, NY	10/24/23 09:00	10/24/23
L2363190-07	TRIP BLANK	WATER	SYRACUSE, NY	10/24/23 00:00	10/24/23

Serial No:12052315:57

Project Name: FORMER COYNE TEXTILE Lab Number: L2363190

Project Number: 059294.001 **Report Date:** 12/05/23

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Serial_No:12052315:57

Project Name: FORMER COYNE TEXTILE Lab Number: L2363190

Project Number: 059294.001 Report Date: 12/05/23

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

L2363190-04: The pH was greater than two; however, the sample was analyzed within the method required holding time.

The WG1846880-7 MSD recovery, performed on L2363190-03, is outside the acceptance criteria for vinyl chloride (0%). The unacceptable percent recovery is attributed to the elevated concentration of target compound present in the native sample.

Dissolved Gases

L2363190-02 and -04: The pH was greater than two; however, the sample was analyzed within the method required holding time.

The WG1846268-4/-5 MS/MSD recoveries, performed on L2363190-03, are outside the acceptance criteria for methane (147%/201%), The unacceptable percent recoveries are attributed to the elevated concentrations of target compounds present in the native sample.

The WG1846268-4/-5 MS/MSD recoveries, performed on L2363190-03, are outside the acceptance criteria for ethene (227%/230%) and ethane (227%/227%); however, the associated LCS recoveries are within overall method allowances. No further action was required.

Carbon Dioxide

The WG1844478-4 MS recovery, performed on L2363190-03, is outside the acceptance criteria for carbon dioxide (12%); however, the associated LCS recovery is within overall method allowances. No further action was required.

Anions by Ion Chromatography

Serial_No:12052315:57

Project Name: FORMER COYNE TEXTILE Lab Number: L2363190

Project Number: 059294.001 **Report Date:** 12/05/23

Case Narrative (continued)

The WG1844850-3/-4 MS/MSD recoveries, performed on L2363190-03, are outside the acceptance criteria for chloride (76%/75%) and sulfate (89%/89%); however, the associated LCS recoveries are within criteria. No further action was taken.

Sulfide

The WG1846112-4 MS recovery, performed on L2363190-03, is outside the acceptance criteria for sulfide (56%); however, the associated LCS recovery is within criteria. No further action was taken.

The WG1846112-3 Laboratory Duplicate RPD for sulfide (46%), performed on L2363190-02, is above the acceptance criteria; however, the sample and duplicate results are less than five times the reporting limit. Therefore, the RPD is valid.

Total Alkalinity

The WG1846412-4 MS recovery, performed on L2363190-03, is outside the acceptance criteria for alkalinity, total (21%); however, the associated LCS recovery is within criteria. No further action was taken.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Season Kelly Stenstrom

Authorized Signature:

Title: Technical Director/Representative

ALPHA

Date: 12/05/23

ORGANICS

VOLATILES

Serial_No:12052315:57

Project Name: Lab Number: FORMER COYNE TEXTILE L2363190

Project Number: Report Date: 059294.001 12/05/23

SAMPLE RESULTS

Lab ID: L2363190-01 Date Collected: 10/24/23 09:45

Client ID: Date Received: 10/24/23 MW-7R-20231024 Field Prep: Sample Location: SYRACUSE, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 117,-

Analytical Date: 10/26/23 09:01

Analyst: SRO

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Dissolved Gases by GC - Mansfield Lab						
Carbon Dioxide	74.7		mg/l	3.00	3.00	1

Serial_No:12052315:57

12/05/23

Project Name: Lab Number: FORMER COYNE TEXTILE L2363190

Project Number: 059294.001

SAMPLE RESULTS

Report Date:

Lab ID: L2363190-01 Date Collected: 10/24/23 09:45 Client ID:

Date Received: 10/24/23 MW-7R-20231024 Field Prep: Sample Location: SYRACUSE, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 117,-

Analytical Date: 11/01/23 00:22

Analyst: SRO

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Dissolved Gases by GC - Mansfield Lab							
Methane	4460		ug/l	2.00	2.00	1	Α
Ethene	50.7		ug/l	0.500	0.500	1	Α
Ethane	17.6		ug/l	0.500	0.500	1	Α

10/24/23 09:45

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

SAMPLE RESULTS

Lab Number: L2363190

Report Date: 12/05/23

Lab ID: D Date Collected: L2363190-01

Client ID: Date Received: 10/24/23 MW-7R-20231024 Field Prep: Sample Location: SYRACUSE, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 10/31/23 15:36

Analyst: PID

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	igh Lab					
Methylene chloride	ND		ug/l	25	7.0	10
1,1-Dichloroethane	ND		ug/l	25	7.0	10
Chloroform	ND		ug/l	25	7.0	10
Carbon tetrachloride	ND		ug/l	5.0	1.3	10
1,2-Dichloropropane	ND		ug/l	10	1.4	10
Dibromochloromethane	ND		ug/l	5.0	1.5	10
1,1,2-Trichloroethane	ND		ug/l	15	5.0	10
Tetrachloroethene	ND		ug/l	5.0	1.8	10
Chlorobenzene	ND		ug/l	25	7.0	10
Trichlorofluoromethane	ND		ug/l	25	7.0	10
1,2-Dichloroethane	ND		ug/l	5.0	1.3	10
1,1,1-Trichloroethane	ND		ug/l	25	7.0	10
Bromodichloromethane	ND		ug/l	5.0	1.9	10
trans-1,3-Dichloropropene	ND		ug/l	5.0	1.6	10
cis-1,3-Dichloropropene	ND		ug/l	5.0	1.4	10
Bromoform	ND		ug/l	20	6.5	10
1,1,2,2-Tetrachloroethane	ND		ug/l	5.0	1.7	10
Benzene	ND		ug/l	5.0	1.6	10
Toluene	ND		ug/l	25	7.0	10
Ethylbenzene	ND		ug/l	25	7.0	10
Chloromethane	ND		ug/l	25	7.0	10
Bromomethane	ND		ug/l	25	7.0	10
Vinyl chloride	510		ug/l	10	0.71	10
Chloroethane	ND		ug/l	25	7.0	10
1,1-Dichloroethene	5.5		ug/l	5.0	1.7	10
trans-1,2-Dichloroethene	ND		ug/l	25	7.0	10
Trichloroethene	ND		ug/l	5.0	1.8	10
1,2-Dichlorobenzene	ND		ug/l	25	7.0	10

MDL

Dilution Factor

Project Name: FORMER COYNE TEXTILE Lab Number: L2363190

Project Number: 059294.001 **Report Date:** 12/05/23

SAMPLE RESULTS

Lab ID: L2363190-01 D Date Collected: 10/24/23 09:45

Client ID: MW-7R-20231024 Date Received: 10/24/23 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Qualifier

Units

RL

Result

Sample Depth:

Parameter

i didilicici	Nosun	Qualifici	Onito			Dilation ractor	
Volatile Organics by GC/MS - Westk	oorough Lab						
1,3-Dichlorobenzene	ND		ug/l	25	7.0	10	
1,4-Dichlorobenzene	ND		ug/l	25	7.0	10	
Methyl tert butyl ether	ND		ug/l	25	7.0	10	
p/m-Xylene	ND		ug/l	25	7.0	10	
o-Xylene	ND		ug/l	25	7.0	10	
cis-1,2-Dichloroethene	1400		ug/l	25	7.0	10	
Styrene	ND		ug/l	25	7.0	10	
Dichlorodifluoromethane	ND		ug/l	50	10.	10	
Acetone	ND		ug/l	50	15.	10	
Carbon disulfide	ND		ug/l	50	10.	10	
2-Butanone	ND		ug/l	50	19.	10	
4-Methyl-2-pentanone	ND		ug/l	50	10.	10	
2-Hexanone	ND		ug/l	50	10.	10	
Bromochloromethane	ND		ug/l	25	7.0	10	
1,2-Dibromoethane	ND		ug/l	20	6.5	10	
1,2-Dibromo-3-chloropropane	ND		ug/l	25	7.0	10	
Isopropylbenzene	ND		ug/l	25	7.0	10	
1,2,3-Trichlorobenzene	ND		ug/l	25	7.0	10	
1,2,4-Trichlorobenzene	ND		ug/l	25	7.0	10	
Methyl Acetate	ND		ug/l	20	2.3	10	
Cyclohexane	ND		ug/l	100	2.7	10	
1,4-Dioxane	ND		ug/l	2500	610	10	
Freon-113	ND		ug/l	25	7.0	10	
Methyl cyclohexane	ND		ug/l	100	4.0	10	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	104		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	102		70-130	
Dibromofluoromethane	102		70-130	

Project Name: FORMER COYNE TEXTILE Lab Number: L2363190

Project Number: 059294.001 **Report Date:** 12/05/23

SAMPLE RESULTS

L2363190-02

Date Collected: 10/24/23 11:20

Client ID: MW-6R-20231024 Date Received: 10/24/23
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Matrix: Water Analytical Method: 117,-

Analytical Date: 10/26/23 09:19

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Dissolved Gases by GC - Mansfield Lab						
Carbon Dioxide	69.2		mg/l	3.00	3.00	1

Project Name: FORMER COYNE TEXTILE Lab Number: L2363190

Project Number: 059294.001 **Report Date:** 12/05/23

SAMPLE RESULTS

Lab ID: L2363190-02 Date Collected: 10/24/23 11:20

Client ID: MW-6R-20231024 Date Received: 10/24/23 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 117,-

Analytical Date: 11/01/23 00:39

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Dissolved Gases by GC - Mansfield Lab							
Methane	7860		ug/l	2.00	2.00	1	Α
Ethene	343		ug/l	0.500	0.500	1	Α
Ethane	303		ug/l	0.500	0.500	1	Α

Project Name: FORMER COYNE TEXTILE Lab Number: L2363190

Project Number: 059294.001 **Report Date:** 12/05/23

SAMPLE RESULTS

Lab ID: L2363190-02 D2 Date Collected: 10/24/23 11:20

Client ID: MW-6R-20231024 Date Received: 10/24/23 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 11/02/23 09:15

Analyst: PID

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboroug	jh Lab						
Vinyl chloride	1400		ug/l	25	1.8	25	
					Acce	entance	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	104		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	103		70-130	
Dibromofluoromethane	101		70-130	

10/24/23 11:20

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

SAMPLE RESULTS

Lab Number: L2363190

Date Collected:

Report Date: 12/05/23

Lab ID: D L2363190-02

Client ID: MW-6R-20231024 Sample Location: SYRACUSE, NY

Date Received: 10/24/23 Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 10/31/23 16:00

Analyst: PID

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	gh Lab					
Methylene chloride	ND		ug/l	12	3.5	5
1,1-Dichloroethane	ND		ug/l	12	3.5	5
Chloroform	ND		ug/l	12	3.5	5
Carbon tetrachloride	ND		ug/l	2.5	0.67	5
1,2-Dichloropropane	ND		ug/l	5.0	0.68	5
Dibromochloromethane	ND		ug/l	2.5	0.74	5
1,1,2-Trichloroethane	ND		ug/l	7.5	2.5	5
Tetrachloroethene	21		ug/l	2.5	0.90	5
Chlorobenzene	ND		ug/l	12	3.5	5
Trichlorofluoromethane	ND		ug/l	12	3.5	5
1,2-Dichloroethane	ND		ug/l	2.5	0.66	5
1,1,1-Trichloroethane	ND		ug/l	12	3.5	5
Bromodichloromethane	ND		ug/l	2.5	0.96	5
trans-1,3-Dichloropropene	ND		ug/l	2.5	0.82	5
cis-1,3-Dichloropropene	ND		ug/l	2.5	0.72	5
Bromoform	ND		ug/l	10	3.2	5
1,1,2,2-Tetrachloroethane	ND		ug/l	2.5	0.84	5
Benzene	1.0	J	ug/l	2.5	0.80	5
Toluene	ND		ug/l	12	3.5	5
Ethylbenzene	ND		ug/l	12	3.5	5
Chloromethane	ND		ug/l	12	3.5	5
Bromomethane	ND		ug/l	12	3.5	5
Vinyl chloride	1500	E	ug/l	5.0	0.36	5
Chloroethane	ND		ug/l	12	3.5	5
1,1-Dichloroethene	0.96	J	ug/l	2.5	0.84	5
trans-1,2-Dichloroethene	ND		ug/l	12	3.5	5
Trichloroethene	26		ug/l	2.5	0.88	5
1,2-Dichlorobenzene	ND		ug/l	12	3.5	5

MDL

Dilution Factor

Project Name: FORMER COYNE TEXTILE Lab Number: L2363190

Project Number: 059294.001 **Report Date:** 12/05/23

SAMPLE RESULTS

Qualifier

Units

RL

Lab ID: L2363190-02 D Date Collected: 10/24/23 11:20

Client ID: MW-6R-20231024 Date Received: 10/24/23 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Result

Sample Depth:

Parameter

i didilictoi					2	
Volatile Organics by GC/MS - Westbo	orough Lab					
1,3-Dichlorobenzene	ND	ug/l	12	3.5	5	
1,4-Dichlorobenzene	ND	ug/l	12	3.5	5	
Methyl tert butyl ether	ND	ug/l	12	3.5	5	
p/m-Xylene	ND	ug/l	12	3.5	5	
o-Xylene	ND	ug/l	12	3.5	5	
cis-1,2-Dichloroethene	380	ug/l	12	3.5	5	
Styrene	ND	ug/l	12	3.5	5	
Dichlorodifluoromethane	ND	ug/l	25	5.0	5	
Acetone	ND	ug/l	25	7.3	5	
Carbon disulfide	ND	ug/l	25	5.0	5	
2-Butanone	ND	ug/l	25	9.7	5	
4-Methyl-2-pentanone	ND	ug/l	25	5.0	5	
2-Hexanone	ND	ug/l	25	5.0	5	
Bromochloromethane	ND	ug/l	12	3.5	5	
1,2-Dibromoethane	ND	ug/l	10	3.2	5	
1,2-Dibromo-3-chloropropane	ND	ug/l	12	3.5	5	
Isopropylbenzene	ND	ug/l	12	3.5	5	
1,2,3-Trichlorobenzene	ND	ug/l	12	3.5	5	
1,2,4-Trichlorobenzene	ND	ug/l	12	3.5	5	
Methyl Acetate	ND	ug/l	10	1.2	5	
Cyclohexane	ND	ug/l	50	1.4	5	
1,4-Dioxane	ND	ug/l	1200	300	5	
Freon-113	ND	ug/l	12	3.5	5	
Methyl cyclohexane	ND	ug/l	50	2.0	5	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	100	70-130	
Dibromofluoromethane	103	70-130	

L2363190

10/24/23 12:20

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

SAMPLE RESULTS

Report Date: 12/05/23

Lab Number:

Date Collected:

Lab ID: L2363190-03

Client ID: MW-5R-20231024 Sample Location: SYRACUSE, NY

Date Received: 10/24/23 Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 10/31/23 16:24

Analyst: PID

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboron	ugh Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	11		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	0.64		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	250	Е	ug/l	1.0	0.07	1
Chloroethane	1.8	J	ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	4.3		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: FORMER COYNE TEXTILE Lab Number: L2363190

Project Number: 059294.001 **Report Date:** 12/05/23

SAMPLE RESULTS

Lab ID: L2363190-03 Date Collected: 10/24/23 12:20

Client ID: MW-5R-20231024 Date Received: 10/24/23 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	14		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	104	70-130	
Dibromofluoromethane	100	70-130	

Project Name: Lab Number: FORMER COYNE TEXTILE L2363190

Project Number: Report Date: 059294.001 12/05/23

SAMPLE RESULTS

Date Collected: 10/24/23 12:20

Lab ID: L2363190-03 Client ID: Date Received: 10/24/23 MW-5R-20231024 Field Prep: Sample Location: Not Specified SYRACUSE, NY

Sample Depth:

Matrix: Water Analytical Method: 117,-

Analytical Date: 10/26/23 07:57

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Dissolved Gases by GC - Mansfield Lab						
Carbon Dioxide	37.7		mg/l	3.00	3.00	1

Project Name: Lab Number: FORMER COYNE TEXTILE L2363190

Project Number: Report Date: 059294.001 12/05/23

SAMPLE RESULTS

Lab ID: Date Collected: 10/24/23 12:20 L2363190-03

Client ID: Date Received: 10/24/23 MW-5R-20231024 Field Prep: Sample Location: Not Specified SYRACUSE, NY

Sample Depth:

Matrix: Water Analytical Method: 117,-

Analytical Date: 10/31/23 08:42

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Dissolved Gases by GC - Mansfield Lab							
Methane	1210		ug/l	2.00	2.00	1	Α
Ethene	32.6		ug/l	0.500	0.500	1	Α
Ethane	50.1		ug/l	0.500	0.500	1	А

Project Name: FORMER COYNE TEXTILE Lab Number: L2363190

Project Number: 059294.001 **Report Date:** 12/05/23

SAMPLE RESULTS

Lab ID: L2363190-03 D Date Collected: 10/24/23 12:20

Client ID: MW-5R-20231024 Date Received: 10/24/23 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 11/02/23 09:38

Analyst: PID

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	n Lab					
Vinyl chloride	200		ug/l	5.0	0.36	5
					Δαα	antance

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	106		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	100		70-130	
Dibromofluoromethane	102		70-130	

10/24/23 14:30

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

SAMPLE RESULTS

L2363190

Lab Number:

Date Collected:

Report Date: 12/05/23

Lab ID: L2363190-04

Client ID: MW-4-20231024 Sample Location: SYRACUSE, NY

Date Received: 10/24/23 Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 10/31/23 16:48

Analyst: PID

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	ıgh Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	0.48	J	ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	90		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: FORMER COYNE TEXTILE L2363190

Project Number: Report Date: 059294.001 12/05/23

SAMPLE RESULTS

Lab ID: Date Collected: 10/24/23 14:30 L2363190-04

Date Received: Client ID: 10/24/23 MW-4-20231024 Sample Location: Field Prep: SYRACUSE, NY Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab									
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1			
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1			
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1			
p/m-Xylene	ND		ug/l	2.5	0.70	1			
o-Xylene	ND		ug/l	2.5	0.70	1			
cis-1,2-Dichloroethene	56		ug/l	2.5	0.70	1			
Styrene	ND		ug/l	2.5	0.70	1			
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1			
Acetone	2.3	J	ug/l	5.0	1.5	1			
Carbon disulfide	ND		ug/l	5.0	1.0	1			
2-Butanone	ND		ug/l	5.0	1.9	1			
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1			
2-Hexanone	ND		ug/l	5.0	1.0	1			
Bromochloromethane	ND		ug/l	2.5	0.70	1			
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1			
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1			
Isopropylbenzene	ND		ug/l	2.5	0.70	1			
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1			
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1			
Methyl Acetate	ND		ug/l	2.0	0.23	1			
Cyclohexane	ND		ug/l	10	0.27	1			
1,4-Dioxane	ND		ug/l	250	61.	1			
Freon-113	ND		ug/l	2.5	0.70	1			
Methyl cyclohexane	ND		ug/l	10	0.40	1			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	104		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	104		70-130	
Dibromofluoromethane	100		70-130	

Project Name: FORMER COYNE TEXTILE Lab Number: L2363190

Project Number: 059294.001 **Report Date:** 12/05/23

SAMPLE RESULTS

 Lab ID:
 L2363190-04
 Date Collected:
 10/24/23 14:30

 Client ID:
 MW-4-20231024
 Date Received:
 10/24/23

 Sample Location:
 SYRACUSE, NY
 Field Prep:
 Not Specified

Sample Depth:

Matrix: Water Analytical Method: 117,-

Analytical Date: 10/26/23 09:37

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Dissolved Gases by GC - Mansfield Lab						
Carbon Dioxide	56.6		mg/l	3.00	3.00	1

Project Name: FORMER COYNE TEXTILE Lab Number: L2363190

Project Number: 059294.001 **Report Date:** 12/05/23

SAMPLE RESULTS

Lab ID: L2363190-04 Date Collected: 10/24/23 14:30

Client ID: MW-4-20231024 Date Received: 10/24/23
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 117,-

Analytical Date: 11/01/23 00:57

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Dissolved Gases by GC - Mansfield Lab							
Methane	7650		ug/l	2.00	2.00	1	Α
Ethene	81.5		ug/l	0.500	0.500	1	А
Ethane	407		ug/l	0.500	0.500	1	А

L2363190

12/05/23

Project Name: FORMER COYNE TEXTILE

L2363190-05

MW-105D-20231024

SYRACUSE, NY

Project Number: 059294.001

SAMPLE RESULTS

Date Collected: 10/24/23 15:45

Lab Number:

Report Date:

Date Received: 10/24/23 Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 10/31/23 17:11

Analyst: PID

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab									
Methylene chloride	ND		ug/l	2.5	0.70	1			
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1			
Chloroform	ND		ug/l	2.5	0.70	1			
Carbon tetrachloride	ND		ug/l	0.50	0.13	1			
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1			
Dibromochloromethane	ND		ug/l	0.50	0.15	1			
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1			
Tetrachloroethene	ND		ug/l	0.50	0.18	1			
Chlorobenzene	ND		ug/l	2.5	0.70	1			
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1			
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1			
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1			
Bromodichloromethane	ND		ug/l	0.50	0.19	1			
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1			
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1			
Bromoform	ND		ug/l	2.0	0.65	1			
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1			
Benzene	5.7		ug/l	0.50	0.16	1			
Toluene	ND		ug/l	2.5	0.70	1			
Ethylbenzene	ND		ug/l	2.5	0.70	1			
Chloromethane	ND		ug/l	2.5	0.70	1			
Bromomethane	ND		ug/l	2.5	0.70	1			
Vinyl chloride	0.16	J	ug/l	1.0	0.07	1			
Chloroethane	ND		ug/l	2.5	0.70	1			
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1			
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1			
Trichloroethene	ND		ug/l	0.50	0.18	1			
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1			

Project Name: FORMER COYNE TEXTILE Lab Number: L2363190

Project Number: 059294.001 **Report Date:** 12/05/23

SAMPLE RESULTS

Lab ID: L2363190-05 Date Collected: 10/24/23 15:45

Client ID: MW-105D-20231024 Date Received: 10/24/23 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	105	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	100	70-130	
Dibromofluoromethane	100	70-130	

Project Name: Lab Number: FORMER COYNE TEXTILE L2363190

Project Number: Report Date: 059294.001 12/05/23

SAMPLE RESULTS

Lab ID: Date Collected: 10/24/23 15:45 L2363190-05

Client ID: Date Received: 10/24/23 MW-105D-20231024 Field Prep: Sample Location: SYRACUSE, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 117,-

Analytical Date: 10/26/23 09:55

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Dissolved Gases by GC - Mansfield Lab						
Carbon Dioxide	91.8		mg/l	3.00	3.00	1

Project Name: Lab Number: FORMER COYNE TEXTILE L2363190

Project Number: Report Date: 059294.001 12/05/23

SAMPLE RESULTS

Lab ID: Date Collected: 10/24/23 15:45 L2363190-05

Client ID: Date Received: 10/24/23 MW-105D-20231024 Field Prep: Sample Location: SYRACUSE, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 117,-

Analytical Date: 11/01/23 01:15

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Dissolved Gases by GC - Mansfield Lab							
Methane	3340		ug/l	2.00	2.00	1	Α
Ethene	ND		ug/l	0.500	0.500	1	Α
Ethane	5.34		ug/l	0.500	0.500	1	Α

Project Name: FORMER COYNE TEXTILE Lab Number: L2363190

Project Number: 059294.001 **Report Date:** 12/05/23

SAMPLE RESULTS

 Lab ID:
 L2363190-06
 Date Collected:
 10/24/23 09:00

 Client ID:
 CHA-1-20231024
 Date Received:
 10/24/23

 Sample Location:
 SYRACUSE, NY
 Field Prep:
 Not Specified

Sample Depth:

Matrix: Water Analytical Method: 117,-

Analytical Date: 10/26/23 10:13

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Dissolved Gases by GC - Mansfield Lab						
Carbon Dioxide	73.2		mg/l	3.00	3.00	1

Project Name: Lab Number: FORMER COYNE TEXTILE L2363190

Project Number: Report Date: 059294.001 12/05/23

SAMPLE RESULTS

Date Collected: 10/24/23 09:00

Lab ID: L2363190-06 Client ID: Date Received: 10/24/23 CHA-1-20231024 Field Prep: Sample Location: SYRACUSE, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 117,-

Analytical Date: 11/01/23 01:33

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Dissolved Gases by GC - Mansfield Lab							
Methane	4950		ug/l	2.00	2.00	1	Α
Ethene	55.4		ug/l	0.500	0.500	1	Α
Ethane	20.6		ug/l	0.500	0.500	1	А

L2363190

10/24/23 09:00

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

SAMPLE RESULTS

Report Date: 12/05/23

Lab Number:

Date Collected:

Lab ID: D L2363190-06

Client ID: CHA-1-20231024 Sample Location: SYRACUSE, NY

Date Received: 10/24/23 Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 10/31/23 17:59

Analyst: PID

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westbord	ough Lab						
Methylene chloride	ND		ug/l	25	7.0	10	
1,1-Dichloroethane	ND		ug/l	25	7.0	10	
Chloroform	ND		ug/l	25	7.0	10	
Carbon tetrachloride	ND		ug/l	5.0	1.3	10	
1,2-Dichloropropane	ND		ug/l	10	1.4	10	
Dibromochloromethane	ND		ug/l	5.0	1.5	10	
1,1,2-Trichloroethane	ND		ug/l	15	5.0	10	
Tetrachloroethene	ND		ug/l	5.0	1.8	10	
Chlorobenzene	ND		ug/l	25	7.0	10	
Trichlorofluoromethane	ND		ug/l	25	7.0	10	
1,2-Dichloroethane	ND		ug/l	5.0	1.3	10	
1,1,1-Trichloroethane	ND		ug/l	25	7.0	10	
Bromodichloromethane	ND		ug/l	5.0	1.9	10	
trans-1,3-Dichloropropene	ND		ug/l	5.0	1.6	10	
cis-1,3-Dichloropropene	ND		ug/l	5.0	1.4	10	
Bromoform	ND		ug/l	20	6.5	10	
1,1,2,2-Tetrachloroethane	ND		ug/l	5.0	1.7	10	
Benzene	ND		ug/l	5.0	1.6	10	
Toluene	ND		ug/l	25	7.0	10	
Ethylbenzene	ND		ug/l	25	7.0	10	
Chloromethane	ND		ug/l	25	7.0	10	
Bromomethane	ND		ug/l	25	7.0	10	
Vinyl chloride	520		ug/l	10	0.71	10	
Chloroethane	ND		ug/l	25	7.0	10	
1,1-Dichloroethene	5.2		ug/l	5.0	1.7	10	
trans-1,2-Dichloroethene	ND		ug/l	25	7.0	10	
Trichloroethene	ND		ug/l	5.0	1.8	10	
1,2-Dichlorobenzene	ND		ug/l	25	7.0	10	

MDL

Dilution Factor

Project Name: FORMER COYNE TEXTILE Lab Number: L2363190

Project Number: 059294.001 **Report Date:** 12/05/23

SAMPLE RESULTS

Qualifier

Units

RL

Lab ID: L2363190-06 D Date Collected: 10/24/23 09:00

Client ID: CHA-1-20231024 Date Received: 10/24/23
Sample Location: SYRACUSE, NY Field Prep: Not Specified

Result

Sample Depth:

Parameter

i didilicici	Nosun	Qualifici	Onito			Dilation ractor	
Volatile Organics by GC/MS - Westk	oorough Lab						
1,3-Dichlorobenzene	ND		ug/l	25	7.0	10	
1,4-Dichlorobenzene	ND		ug/l	25	7.0	10	
Methyl tert butyl ether	ND		ug/l	25	7.0	10	
p/m-Xylene	ND		ug/l	25	7.0	10	
o-Xylene	ND		ug/l	25	7.0	10	
cis-1,2-Dichloroethene	1400		ug/l	25	7.0	10	
Styrene	ND		ug/l	25	7.0	10	
Dichlorodifluoromethane	ND		ug/l	50	10.	10	
Acetone	ND		ug/l	50	15.	10	
Carbon disulfide	ND		ug/l	50	10.	10	
2-Butanone	ND		ug/l	50	19.	10	
4-Methyl-2-pentanone	ND		ug/l	50	10.	10	
2-Hexanone	ND		ug/l	50	10.	10	
Bromochloromethane	ND		ug/l	25	7.0	10	
1,2-Dibromoethane	ND		ug/l	20	6.5	10	
1,2-Dibromo-3-chloropropane	ND		ug/l	25	7.0	10	
Isopropylbenzene	ND		ug/l	25	7.0	10	
1,2,3-Trichlorobenzene	ND		ug/l	25	7.0	10	
1,2,4-Trichlorobenzene	ND		ug/l	25	7.0	10	
Methyl Acetate	ND		ug/l	20	2.3	10	
Cyclohexane	ND		ug/l	100	2.7	10	
1,4-Dioxane	ND		ug/l	2500	610	10	
Freon-113	ND		ug/l	25	7.0	10	
Methyl cyclohexane	ND		ug/l	100	4.0	10	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	107	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	98	70-130	
Dibromofluoromethane	105	70-130	

L2363190

10/24/23 00:00

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

SAMPLE RESULTS

12/03/23

Report Date: 12/05/23

Lab Number:

Lab ID:L2363190-07Date Collected:Client ID:TRIP BLANKDate Received:Sample Location:SYRACUSE, NYField Prep:

Date Received: 10/24/23
Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 10/31/23 17:35

Analyst: PID

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	0.07	J	ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: FORMER COYNE TEXTILE L2363190

Project Number: Report Date: 059294.001 12/05/23

SAMPLE RESULTS

Lab ID: Date Collected: 10/24/23 00:00 L2363190-07

Date Received: Client ID: TRIP BLANK 10/24/23 Sample Location: Field Prep: SYRACUSE, NY Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	105	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	103	70-130	
Dibromofluoromethane	103	70-130	

Project Name: FORMER COYNE TEXTILE **Lab Number:** L2363190

Project Number: 059294.001 **Report Date:** 12/05/23

Method Blank Analysis Batch Quality Control

Analytical Method: 117,-

Analytical Date: 10/26/23 07:29

Parameter	Result	Qualifier	Units	i	RL	MDL
Dissolved Gases by GC - Mansfield	Lab for san	nple(s): 0°	1-06	Batch:	WG184447	8-3
Carbon Dioxide	ND		mg/l		3.00	3.00

Project Name: FORMER COYNE TEXTILE **Lab Number:** L2363190

Project Number: 059294.001 **Report Date:** 12/05/23

Method Blank Analysis Batch Quality Control

Analytical Method: 117,-

Analytical Date: 10/31/23 08:19

Parameter	Result	Qualifier	Units	RL	MDL	
Dissolved Gases by GC - Mansfield	Lab for sam	nple(s): 03	Batch:	WG1846268-3		
Methane	ND		ug/l	2.00	2.00	Α
Ethene	ND		ug/l	0.500	0.500	Α
Ethane	ND		ug/l	0.500	0.500	Α

Project Name: FORMER COYNE TEXTILE **Lab Number:** L2363190

Project Number: 059294.001 **Report Date:** 12/05/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 10/31/23 12:50

Analyst: PID

arameter	Result	Qualifier Units	RL RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-07 Batch:	WG1846880-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Name: FORMER COYNE TEXTILE **Lab Number:** L2363190

Project Number: 059294.001 **Report Date:** 12/05/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 10/31/23 12:50

Analyst: PID

Parameter	Result (Qualifier Units	RL	MDL
Volatile Organics by GC/MS - Wes	stborough Lab f	or sample(s): 01-07	Batch:	WG1846880-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
1,4-Dioxane	ND	ug/l	250	61.
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

Project Name: FORMER COYNE TEXTILE Lab Number: L2363190

Project Number: 059294.001 **Report Date:** 12/05/23

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 10/31/23 12:50

Analyst: PID

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01-07 Batch: WG1846880-5

		Acceptance
Surrogate	%Recovery Q	ualifier Criteria
1,2-Dichloroethane-d4	95	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	104	70-130
Dibromofluoromethane	97	70-130

Project Name: FORMER COYNE TEXTILE **Lab Number:** L2363190

Project Number: 059294.001 **Report Date:** 12/05/23

Method Blank Analysis Batch Quality Control

Analytical Method: 117,-

Analytical Date: 10/31/23 20:12

Parameter	Result	Qualifie	r Units	RL	MDL	
Dissolved Gases by GC - Mansfie	eld Lab for sar	mple(s):	01-02,04-06	Batch:	WG1846967-3	
Methane	ND		ug/l	2.00	2.00	Α
Ethene	ND		ug/l	0.500	0.500	Α
Ethane	ND		ug/l	0.500	0.500	Α

Project Name: FORMER COYNE TEXTILE **Lab Number:** L2363190

Project Number: 059294.001 **Report Date:** 12/05/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 11/02/23 08:27

Analyst: PID

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lab	for sample(s):	02-03 Batch:	WG1847518-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Name: FORMER COYNE TEXTILE **Lab Number:** L2363190

Project Number: 059294.001 **Report Date:** 12/05/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 11/02/23 08:27

Analyst: PID

A-Dichlorobenzene ND	Parameter	Result	Qualifier Units	s RL	MDL	
Methyl tert butyl ether ND ug/l 2.5 0.70 p/m-Xylene ND ug/l 2.5 0.70 o-Xylene ND ug/l 2.5 0.70 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 Styrene ND ug/l 2.5 0.70 Dichlorodifluoromethane ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70	olatile Organics by GC/MS - W	estborough Lab	for sample(s):	02-03 Batch:	WG1847518-5	
p/m-Xylene ND ug/l 2.5 0.70 o-Xylene ND ug/l 2.5 0.70 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 Styrene ND ug/l 2.5 0.70 Dichlorodifluoromethane ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5	1,4-Dichlorobenzene	ND	ug/	l 2.5	0.70	
o-Xylene ND ug/l 2.5 0.70 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 Styrene ND ug/l 2.5 0.70 Dichlorodifluoromethane ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.5 0.7	Methyl tert butyl ether	ND	ug/	1 2.5	0.70	
cis-1,2-Dichloroethene ND ug/l 2.5 0.70 Styrene ND ug/l 2.5 0.70 Dichlorodifluoromethane ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,2-Dibromoe-3-chloropropane ND ug/l 2.5 0.70 1,2-Dibromoe-3-chloropropane ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l <	p/m-Xylene	ND	ug/	1 2.5	0.70	
Styrene ND ug/l 2.5 0.70 Dichlorodifluoromethane ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.5 0.70 Cyclohexane ND ug/l 2.5	o-Xylene	ND	ug/	1 2.5	0.70	
Dichlorodifluoromethane ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 250 61 Freon-113 ND ug/l 2.5	cis-1,2-Dichloroethene	ND	ug/	1 2.5	0.70	
Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 250 61. Freon-113 ND ug/l 2.5 0.70	Styrene	ND	ug/	1 2.5	0.70	
Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 250 61 Freon-113 ND ug/l 2.5 0.70	Dichlorodifluoromethane	ND	ug/	1 5.0	1.0	
2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.5 0.70 Cyclohexane ND ug/l 2.0 0.23 Cyclohexane ND ug/l 2.0 0.27 1,4-Dioxane ND ug/l 2.5 0.70	Acetone	ND	ug/	1 5.0	1.5	
4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.0 0.65 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.5 0.70 1,4-Dioxane ND ug/l 2.0 0.23 Cyclohexane ND ug/l 2.0 0.27 1,4-Dioxane ND ug/l 250 61.	Carbon disulfide	ND	ug/	1 5.0	1.0	
2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.0 0.65 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61 Freon-113 ND ug/l 2.5 0.70	2-Butanone	ND	ug/	1 5.0	1.9	
Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.0 0.65 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61 Freon-113 ND ug/l 2.5 0.70	4-Methyl-2-pentanone	ND	ug/	1 5.0	1.0	
1,2-Dibromoethane ND ug/l 2.0 0.65 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61 Freon-113 ND ug/l 2.5 0.70	2-Hexanone	ND	ug/	1 5.0	1.0	
1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61 Freon-113 ND ug/l 2.5 0.70	Bromochloromethane	ND	ug/	1 2.5	0.70	
Isopropylbenzene	1,2-Dibromoethane	ND	ug/	1 2.0	0.65	
1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61. Freon-113 ND ug/l 2.5 0.70	1,2-Dibromo-3-chloropropane	ND	ug/	1 2.5	0.70	
1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61. Freon-113 ND ug/l 2.5 0.70	Isopropylbenzene	ND	ug/	1 2.5	0.70	
Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61. Freon-113 ND ug/l 2.5 0.70	1,2,3-Trichlorobenzene	ND	ug/	1 2.5	0.70	
Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61. Freon-113 ND ug/l 2.5 0.70	1,2,4-Trichlorobenzene	ND	ug/	1 2.5	0.70	
1,4-Dioxane ND ug/l 250 61. Freon-113 ND ug/l 2.5 0.70	Methyl Acetate	ND	ug/	1 2.0	0.23	
Freon-113 ND ug/l 2.5 0.70	Cyclohexane	ND	ug/	l 10	0.27	
· · · · · · · · · · · · · · · · · · ·	1,4-Dioxane	ND	ug/	1 250	61.	
Methyl cyclohexane ND ug/l 10 0.40	Freon-113	ND	ug/	1 2.5	0.70	
	Methyl cyclohexane	ND	ug/	l 10	0.40	

Project Name: FORMER COYNE TEXTILE Lab Number: L2363190

Project Number: 059294.001 **Report Date:** 12/05/23

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 11/02/23 08:27

Analyst: PID

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 02-03 Batch: WG1847518-5

		Acceptance
Surrogate	%Recovery Qua	lifier Criteria
1,2-Dichloroethane-d4	104	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	102	70-130
Dibromofluoromethane	103	70-130

Lab Control Sample Analysis Batch Quality Control

Project Name: FORMER COYNE TEXTILE

Lab Number:

L2363190

Project Number: 059294.001

Report Date:

12/05/23

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Dissolved Gases by GC - Mansfield Lab	Associated sample(s): 01-06	Batch: WG18444	78-2					
Carbon Dioxide	97		-		80-120	-			

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number:

L2363190

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Dissolved Gases by GC - Mansfield Lab A	ssociated sample(s	s): 03 E	Batch: WG1846268-2	2					
Methane	96		-		80-120	-		25	Α
Ethene	93		-		80-120	-		25	Α
Ethane	90		-		80-120	-		25	Α

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number: L2363190

Parameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	RPD Qual Limits	
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-07 Batch:	WG1846880-3	WG1846880-4			
Methylene chloride	97		100		70-130	3	20	
1,1-Dichloroethane	100		110		70-130	10	20	
Chloroform	97		110		70-130	13	20	
Carbon tetrachloride	100		110		63-132	10	20	
1,2-Dichloropropane	98		110		70-130	12	20	
Dibromochloromethane	91		100		63-130	9	20	
1,1,2-Trichloroethane	92		100		70-130	8	20	
Tetrachloroethene	100		110		70-130	10	20	
Chlorobenzene	100		110		75-130	10	20	
Trichlorofluoromethane	100		100		62-150	0	20	
1,2-Dichloroethane	90		100		70-130	11	20	
1,1,1-Trichloroethane	100		110		67-130	10	20	
Bromodichloromethane	93		100		67-130	7	20	
trans-1,3-Dichloropropene	97		100		70-130	3	20	
cis-1,3-Dichloropropene	97		110		70-130	13	20	
Bromoform	85		100		54-136	16	20	
1,1,2,2-Tetrachloroethane	93		110		67-130	17	20	
Benzene	100		110		70-130	10	20	
Toluene	100		110		70-130	10	20	
Ethylbenzene	100		110		70-130	10	20	
Chloromethane	110		110		64-130	0	20	
Bromomethane	76		91		39-139	18	20	
Vinyl chloride	110		110		55-140	0	20	

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number: L2363190

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-07 Batch: W	G1846880-3 WG1846880-4				
Chloroethane	110		110	55-138	0		20	
1,1-Dichloroethene	100		110	61-145	10		20	
trans-1,2-Dichloroethene	100		100	70-130	0		20	
Trichloroethene	100		100	70-130	0		20	
1,2-Dichlorobenzene	98		110	70-130	12		20	
1,3-Dichlorobenzene	100		110	70-130	10		20	
1,4-Dichlorobenzene	100		110	70-130	10		20	
Methyl tert butyl ether	86		99	63-130	14		20	
p/m-Xylene	105		110	70-130	5		20	
o-Xylene	105		115	70-130	9		20	
cis-1,2-Dichloroethene	100		110	70-130	10		20	
Styrene	105		115	70-130	9		20	
Dichlorodifluoromethane	110		110	36-147	0		20	
Acetone	73		79	58-148	8		20	
Carbon disulfide	110		110	51-130	0		20	
2-Butanone	79		98	63-138	21	Q	20	
4-Methyl-2-pentanone	85		100	59-130	16		20	
2-Hexanone	79		100	57-130	23	Q	20	
Bromochloromethane	100		110	70-130	10		20	
1,2-Dibromoethane	87		100	70-130	14		20	
1,2-Dibromo-3-chloropropane	80		110	41-144	32	Q	20	
Isopropylbenzene	110		110	70-130	0		20	
1,2,3-Trichlorobenzene	78		100	70-130	25	Q	20	

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number: L2363190

Parameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-07 Batch:	WG1846880-3	WG1846880-4				
1,2,4-Trichlorobenzene	82		95		70-130	15		20	
Methyl Acetate	85		100		70-130	16		20	
Cyclohexane	110		110		70-130	0		20	
1,4-Dioxane	72		94		56-162	27	Q	20	
Freon-113	110		100		70-130	10		20	
Methyl cyclohexane	120		100		70-130	18		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	97	100	70-130
Toluene-d8	100	100	70-130
4-Bromofluorobenzene	102	104	70-130
Dibromofluoromethane	98	97	70-130

Project Name: FORMER COYNE TEXTILE 059294.001

Project Number:

Lab Number:

L2363190

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Dissolved Gases by GC - Mansfield Lab Ass	sociated sample(s): 01-02,04	-06 Batch: WG	G1846967-2					
Methane	96		-		80-120	-		25	Α
Ethene	92		-		80-120	-		25	А
Ethane	90		-		80-120	-		25	А

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number: L2363190

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	02-03 Batch: W	G1847518-3 WG1847518-4		
Methylene chloride	97		100	70-130	3	20
1,1-Dichloroethane	99		100	70-130	1	20
Chloroform	97		100	70-130	3	20
Carbon tetrachloride	110		100	63-132	10	20
1,2-Dichloropropane	95		100	70-130	5	20
Dibromochloromethane	89		96	63-130	8	20
1,1,2-Trichloroethane	88		95	70-130	8	20
Tetrachloroethene	100		100	70-130	0	20
Chlorobenzene	97		100	75-130	3	20
Trichlorofluoromethane	100		92	62-150	8	20
1,2-Dichloroethane	95		100	70-130	5	20
1,1,1-Trichloroethane	100		100	67-130	0	20
Bromodichloromethane	96		100	67-130	4	20
trans-1,3-Dichloropropene	94		100	70-130	6	20
cis-1,3-Dichloropropene	96		100	70-130	4	20
Bromoform	86		95	54-136	10	20
1,1,2,2-Tetrachloroethane	86		96	67-130	11	20
Benzene	98		100	70-130	2	20
Toluene	99		100	70-130	1	20
Ethylbenzene	100		100	70-130	0	20
Chloromethane	100		100	64-130	0	20
Bromomethane	97		100	39-139	3	20
Vinyl chloride	100		100	55-140	0	20

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number: L2363190

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - We	stborough Lab Associated	sample(s): 02-0	03 Batch:	WG1847518-3	WG1847518-4			
Chloroethane	110		120		55-138	9		20
1,1-Dichloroethene	100		98		61-145	2		20
trans-1,2-Dichloroethene	98		100		70-130	2		20
Trichloroethene	98		100		70-130	2		20
1,2-Dichlorobenzene	95		100		70-130	5		20
1,3-Dichlorobenzene	100		100		70-130	0		20
1,4-Dichlorobenzene	100		100		70-130	0		20
Methyl tert butyl ether	87		96		63-130	10		20
p/m-Xylene	100		105		70-130	5		20
o-Xylene	100		105		70-130	5		20
cis-1,2-Dichloroethene	96		100		70-130	4		20
Styrene	100		105		70-130	5		20
Dichlorodifluoromethane	100		99		36-147	1		20
Acetone	70		83		58-148	17		20
Carbon disulfide	100		100		51-130	0		20
2-Butanone	75		84		63-138	11		20
4-Methyl-2-pentanone	77		95		59-130	21	Q	20
2-Hexanone	74		90		57-130	20		20
Bromochloromethane	100		110		70-130	10		20
1,2-Dibromoethane	84		92		70-130	9		20
1,2-Dibromo-3-chloropropane	80		92		41-144	14		20
Isopropylbenzene	100		100		70-130	0		20
1,2,3-Trichlorobenzene	78		90		70-130	14		20

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number: L2363190

Parameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	02-03 Batch:	WG1847518-3	WG1847518-4				
1,2,4-Trichlorobenzene	84		86		70-130	2		20	
Methyl Acetate	86		97		70-130	12		20	
Cyclohexane	110		99		70-130	11		20	
1,4-Dioxane	80		96		56-162	18		20	
Freon-113	100		98		70-130	2		20	
Methyl cyclohexane	110		99		70-130	11		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	103	106	70-130
Toluene-d8	100	98	70-130
4-Bromofluorobenzene	100	98	70-130
Dibromofluoromethane	102	101	70-130

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number:

L2363190

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits	
Dissolved Gases by GC - N 20231024	Mansfield Lab	Associated sa	mple(s): 01-06	QC Batch I	D: WG184	14478-4 V	/G1844478-5	QC Sample: L2363	190-03	Client ID: MW-5R-	
Carbon Dioxide	37.7	12	51.4	12	Q	50.0	103	80-120	3	25	

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits	Column
Dissolved Gases by GC - Ma 20231024	ansfield Lab	Associated sar	mple(s): 03	QC Batch ID: V	VG18462	68-4 WG1	846268-5 Q0	Samp	le: L2363190)-03 (Client ID:	MW-5R	
Methane	1210	54.6	1290	147	Q	1320	201	Q	80-120	2		25	Α
Ethene	32.6	95.5	249	227	Q	252	230	Q	80-120	1		25	Α
Ethane	50.1	102	283	227	Q	283	227	Q	80-120	0		25	Α

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number:

L2363190

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recove	ry Qu	MSD al Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - MW-5R-20231024	Westborough	Lab Ass	ociated sample(s): 01-07 (QC Batcl	n ID: WG18468	380-6 WG184	6880-7	QC Sample	e: L2363	3190-03	Client ID:
Methylene chloride	ND	10	11	110		11	110		70-130	0		20
1,1-Dichloroethane	ND	10	11	110		10	100		70-130	10		20
Chloroform	ND	10	10	100		9.7	97		70-130	3		20
Carbon tetrachloride	ND	10	11	110		10	100		63-132	10		20
1,2-Dichloropropane	ND	10	11	110		10	100		70-130	10		20
Dibromochloromethane	ND	10	9.7	97		9.5	95		63-130	2		20
1,1,2-Trichloroethane	ND	10	10	100		10	100		70-130	0		20
Tetrachloroethene	11	10	23	120		19	80		70-130	19		20
Chlorobenzene	ND	10	11	110		11	110		75-130	0		20
Trichlorofluoromethane	ND	10	11	110		9.1	91		62-150	19		20
1,2-Dichloroethane	ND	10	9.5	95		9.0	90		70-130	5		20
1,1,1-Trichloroethane	ND	10	11	110		10	100		67-130	10		20
Bromodichloromethane	ND	10	9.9	99		9.7	97		67-130	2		20
trans-1,3-Dichloropropene	ND	10	10	100		9.6	96		70-130	4		20
cis-1,3-Dichloropropene	ND	10	10	100		10	100		70-130	0		20
Bromoform	ND	10	9.8	98		9.2	92		54-136	6		20
1,1,2,2-Tetrachloroethane	ND	10	11	110		11	110		67-130	0		20
Benzene	0.64	10	12	114		12	114		70-130	0		20
Toluene	ND	10	11	110		11	110		70-130	0		20
Ethylbenzene	ND	10	11	110		11	110		70-130	0		20
Chloromethane	ND	10	11	110		10	100		64-130	10		20
Bromomethane	ND	10	8.6	86		9.0	90		39-139	5		20
Vinyl chloride	250E	10	260E	100		250E	0	Q	55-140	4		20

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number:

L2363190

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	/ Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MI MW-5R-20231024	S - Westborough	Lab Assoc	ciated sample	(s): 01-07 Q	C Batch ID	: WG18468	380-6 WG184	6880-7	QC Sample	: L2363	190-03	Client ID:
Chloroethane	1.8J	10	14	140	Q	13	130		55-138	7		20
1,1-Dichloroethene	ND	10	12	120		11	110		61-145	9		20
trans-1,2-Dichloroethene	ND	10	12	120		11	110		70-130	9		20
Trichloroethene	4.3	10	15	107		14	97		70-130	7		20
1,2-Dichlorobenzene	ND	10	11	110		10	100		70-130	10		20
1,3-Dichlorobenzene	ND	10	11	110		11	110		70-130	0		20
1,4-Dichlorobenzene	ND	10	11	110		10	100		70-130	10		20
Methyl tert butyl ether	ND	10	10	100		9.7	97		63-130	3		20
o/m-Xylene	ND	20	23	115		22	110		70-130	4		20
o-Xylene	ND	20	23	115		22	110		70-130	4		20
cis-1,2-Dichloroethene	14	10	26	120		25	110		70-130	4		20
Styrene	ND	20	22	110		21	105		70-130	5		20
Dichlorodifluoromethane	ND	10	11	110		10	100		36-147	10		20
Acetone	ND	10	8.6	86		7.7	77		58-148	11		20
Carbon disulfide	ND	10	12	120		12	120		51-130	0		20
2-Butanone	ND	10	9.1	91		8.6	86		63-138	6		20
4-Methyl-2-pentanone	ND	10	10	100		9.7	97		59-130	3		20
2-Hexanone	ND	10	9.3	93		9.2	92		57-130	1		20
Bromochloromethane	ND	10	11	110		11	110		70-130	0		20
1,2-Dibromoethane	ND	10	10	100		9.7	97		70-130	3		20
1,2-Dibromo-3-chloropropane	ND	10	10	100		9.8	98		41-144	2		20
sopropylbenzene	ND	10	12	120		11	110		70-130	9		20
1,2,3-Trichlorobenzene	ND	10	11	110		10	100		70-130	10		20

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number:

L2363190

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	v Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS MW-5R-20231024	- Westborough I	Lab Assoc	iated sample(s): 01-07 Q	C Batch ID:	WG18468	380-6 WG1846	880-7	QC Sample	: L2363	3190-03	Client ID:
1,2,4-Trichlorobenzene	ND	10	10	100		10	100		70-130	0		20
Methyl Acetate	ND	10	9.0	90		8.4	84		70-130	7		20
Cyclohexane	ND	10	12	120		11	110		70-130	9		20
1,4-Dioxane	ND	500	480	96		490	98		56-162	2		20
Freon-113	ND	10	11	110		10	100		70-130	10		20
Methyl cyclohexane	ND	10	12	120		11	110		70-130	9		20

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
1,2-Dichloroethane-d4	92	91	70-130
4-Bromofluorobenzene	101	101	70-130
Dibromofluoromethane	94	96	70-130
Toluene-d8	100	100	70-130

METALS

Project Name:FORMER COYNE TEXTILELab Number:L2363190Project Number:059294.001Report Date:12/05/23

SAMPLE RESULTS

 Lab ID:
 L2363190-01
 Date Collected:
 10/24/23 09:45

 Client ID:
 MW-7R-20231024
 Date Received:
 10/24/23

 Sample Location:
 SYRACUSE, NY
 Field Prep:
 Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mar	nsfield Lab										
Total Incial Incia											
Iron, Total	4.54		mg/l	0.0500	0.0191	1	10/26/23 03:4	5 11/01/23 21:53	EPA 3005A	1,6020B	MRC

Project Name:FORMER COYNE TEXTILELab Number:L2363190Project Number:059294.001Report Date:12/05/23

SAMPLE RESULTS

Lab ID:L2363190-02Date Collected:10/24/23 11:20Client ID:MW-6R-20231024Date Received:10/24/23Sample Location:SYRACUSE, NYField Prep:Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mai	octiold Lab										
Total Metals - Mai	isileiu Lab										
Iron, Total	11.1		mg/l	0.0500	0.0191	1	10/26/23 03:4	5 11/01/23 21:58	EPA 3005A	1,6020B	MRC

Project Name:FORMER COYNE TEXTILELab Number:L2363190Project Number:059294.001Report Date:12/05/23

SAMPLE RESULTS

 Lab ID:
 L2363190-03
 Date Collected:
 10/24/23 12:20

 Client ID:
 MW-5R-20231024
 Date Received:
 10/24/23

 Sample Location:
 SYRACUSE, NY
 Field Prep:
 Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Iron, Total	3.01		mg/l	0.0500	0.0191	1	10/26/23 03:4	5 10/28/23 10:00	EPA 3005A	1,6020B	MRC

Project Name:FORMER COYNE TEXTILELab Number:L2363190Project Number:059294.001Report Date:12/05/23

SAMPLE RESULTS

 Lab ID:
 L2363190-04
 Date Collected:
 10/24/23 14:30

 Client ID:
 MW-4-20231024
 Date Received:
 10/24/23

 Sample Location:
 SYRACUSE, NY
 Field Prep:
 Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mar	nsfield Lab										
Iron, Total	105.		mg/l	0.250	0.0955	5	10/26/23 03:4	5 11/01/23 22:02	EPA 3005A	1,6020B	MRC

10/24/23 15:45

Date Collected:

Project Name:FORMER COYNE TEXTILELab Number:L2363190Project Number:059294.001Report Date:12/05/23

SAMPLE RESULTS

Lab ID: L2363190-05

Client ID: MW-105D-20231024 Date Received: 10/24/23 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mar	nsfield I ah										
Total Motals Mai	ionora zab										
Iron, Total	2.35		mg/l	0.0500	0.0191	1	10/26/23 03:4	5 11/01/23 22:07	EPA 3005A	1,6020B	MRC

Project Name:FORMER COYNE TEXTILELab Number:L2363190Project Number:059294.001Report Date:12/05/23

SAMPLE RESULTS

 Lab ID:
 L2363190-06
 Date Collected:
 10/24/23 09:00

 Client ID:
 CHA-1-20231024
 Date Received:
 10/24/23

 Sample Location:
 SYRACUSE, NY
 Field Prep:
 Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Iron, Total	4.84		mg/l	0.0500	0.0191	1	10/26/23 03:4	5 11/01/23 22:12	2 EPA 3005A	1,6020B	MRC

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number:

L2363190

Report Date:

12/05/23

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfield	Lab for sample(s):	01-06 E	Batch: WO	G18440	99-1				
Iron, Total	ND	mg/l	0.0500	0.0191	1	10/26/23 03:45	10/30/23 13:36	1,6020B	SMV

Prep Information

Digestion Method: EPA 3005A

Project Name: FORMER COYNE TEXTILE

Lab Number:

L2363190

Project Number: 059294.001

Report Date:

Parameter	LCS %Recovery (LCSD Qual %Recovery		ecovery imits RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01-06 Batch:	: WG1844099-2				
Iron, Total	110	-	80)-120 -		

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number:

L2363190

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD Q	RPD ual Limits
Total Metals - Mansfield Lab A 20231024	ssociated sam	nple(s): 01-06	QC Bat	ch ID: WG1844	4099-3	WG1844099	9-4 QC Sam	ple: L2363190-03	Client ID	: MW-5R-
Iron, Total	3.01	1	3.79	78		4.07	106	75-125	7	20

Lab Serial Dilution
Analysis
Batch Quality Control

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number:

L2363190

Report Date:

Parameter	Native Sample	Serial	Dilution	Units	% D	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01-0	6 QC Batch ID:	WG1844099-6	QC Sample:	L2363190-03	Client ID:	MW-5R-202	231024
Iron, Total	3.01	2	2.83	mg/l	6		20

INORGANICS & MISCELLANEOUS

Project Name: FORMER COYNE TEXTILE Lab Number: L2363190

Project Number: 059294.001 **Report Date:** 12/05/23

SAMPLE RESULTS

 Lab ID:
 L2363190-01
 Date Collected:
 10/24/23 09:45

 Client ID:
 MW-7R-20231024
 Date Received:
 10/24/23

 Sample Location:
 SYRACUSE, NY
 Field Prep:
 Not Specified

Sample Depth:

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough Lab)							
Alkalinity, Total	382.	mg CaCO3/L	2.00	NA	1	-	10/31/23 10:55	121,2320B	MKT
Nitrogen, Nitrate	ND	mg/l	0.10	0.023	1	-	10/26/23 04:38	44,353.2	KAF
Sulfide	ND	mg/l	0.10	0.10	1	10/30/23 19:45	10/30/23 22:04	121,4500S2-D	TLH
Total Organic Carbon	4.8	mg/l	0.50	0.10	1	-	11/01/23 05:57	1,9060A	DEW
Anions by Ion Chromate	ography - West	borough Lab							
Chloride	338.	mg/l	5.00	0.839	10	-	10/26/23 20:00	44,300.0	AVT
Sulfate	126.	mg/l	10.0	4.54	10	-	10/26/23 20:00	44,300.0	AVT

Project Name: FORMER COYNE TEXTILE Lab Number: L2363190

Project Number: 059294.001 **Report Date:** 12/05/23

SAMPLE RESULTS

 Lab ID:
 L2363190-02
 Date Collected:
 10/24/23 11:20

 Client ID:
 MW-6R-20231024
 Date Received:
 10/24/23

Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Resul	t Qualifie	r Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough L	ab								
Alkalinity, Total	384.	r	ng CaCO3/L	2.00	NA	1	-	10/31/23 10:55	121,2320B	MKT
Nitrogen, Nitrate	0.023	J	mg/l	0.10	0.023	1	-	10/26/23 04:43	44,353.2	KAF
Sulfide	0.15		mg/l	0.10	0.10	1	10/30/23 19:45	10/30/23 22:04	121,4500S2-D	TLH
Total Organic Carbon	12		mg/l	2.0	0.39	4	-	11/01/23 06:32	1,9060A	DEW
Anions by Ion Chromat	ography - We	stborough	ı Lab							
Chloride	330.		mg/l	5.00	0.839	10	-	10/26/23 20:13	44,300.0	AVT
Sulfate	113.		mg/l	10.0	4.54	10	-	10/26/23 20:13	44,300.0	AVT

Project Name: FORMER COYNE TEXTILE Lab Number: L2363190

Project Number: 059294.001 **Report Date:** 12/05/23

SAMPLE RESULTS

 Lab ID:
 L2363190-03
 Date Collected:
 10/24/23 12:20

 Client ID:
 MW-5R-20231024
 Date Received:
 10/24/23

 Sample Location:
 SYRACUSE, NY
 Field Prep:
 Not Specified

Sample Depth:

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab)							
Alkalinity, Total	270.	mg CaCO3/L	2.00	NA	1	-	10/31/23 10:55	121,2320B	MKT
Nitrogen, Nitrate	ND	mg/l	0.10	0.023	1	-	10/26/23 04:45	44,353.2	KAF
Sulfide	0.25	mg/l	0.10	0.10	1	10/30/23 19:45	10/30/23 22:04	121,4500S2-D	TLH
Total Organic Carbon	3.2	mg/l	0.50	0.10	1	-	11/01/23 07:10	1,9060A	DEW
Anions by Ion Chromat	ography - West	borough Lab							
Chloride	277.	mg/l	5.00	0.839	10	-	10/26/23 20:25	44,300.0	AVT
Sulfate	184.	mg/l	10.0	4.54	10	-	10/26/23 20:25	44,300.0	AVT

Project Name: FORMER COYNE TEXTILE Lab Number: L2363190

Project Number: 059294.001 **Report Date:** 12/05/23

SAMPLE RESULTS

 Lab ID:
 L2363190-04
 Date Collected:
 10/24/23 14:30

 Client ID:
 MW-4-20231024
 Date Received:
 10/24/23

Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough La	b							
Alkalinity, Total	430.	mg CaCO3/L	5.00	NA	2.5	-	11/01/23 11:11	121,2320B	MKT
Nitrogen, Nitrate	0.17	mg/l	0.10	0.023	1	-	10/26/23 04:48	44,353.2	KAF
Sulfide	1.7	mg/l	0.50	0.50	5	10/30/23 19:45	10/30/23 22:05	121,4500S2-D	TLH
Total Organic Carbon	20	mg/l	2.0	0.39	4	-	11/01/23 07:44	1,9060A	DEW
Anions by Ion Chromat	ography - Wes	tborough Lab							
Chloride	258.	mg/l	5.00	0.839	10	-	10/26/23 20:37	44,300.0	AVT
Sulfate	96.9	mg/l	10.0	4.54	10	-	10/26/23 20:37	44,300.0	AVT

Project Name: FORMER COYNE TEXTILE Lab Number: L2363190

Project Number: 059294.001 **Report Date:** 12/05/23

SAMPLE RESULTS

Lab ID: L2363190-05 Date Collected: 10/24/23 15:45

Client ID: MW-105D-20231024 Date Received: 10/24/23 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Resul	t Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough L	ab								
Alkalinity, Total	582.	m	g CaCO3/L	5.00	NA	2.5	-	11/01/23 11:11	121,2320B	MKT
Nitrogen, Nitrate	0.023	J	mg/l	0.10	0.023	1	-	10/26/23 04:50	44,353.2	KAF
Sulfide	ND		mg/l	0.10	0.10	1	10/30/23 19:45	10/30/23 23:01	121,4500S2-D	TLH
Total Organic Carbon	7.4		mg/l	0.50	0.10	1	-	11/01/23 08:20	1,9060A	DEW
Anions by Ion Chromat	ography - We	stborough	Lab							
Chloride	65.9		mg/l	5.00	0.839	10	-	10/26/23 20:49	44,300.0	AVT
Sulfate	23.4		mg/l	10.0	4.54	10	-	10/26/23 20:49	44,300.0	AVT

Project Name: FORMER COYNE TEXTILE Lab Number: L2363190

Project Number: 059294.001 **Report Date:** 12/05/23

SAMPLE RESULTS

 Lab ID:
 L2363190-06
 Date Collected:
 10/24/23 09:00

 Client ID:
 CHA-1-20231024
 Date Received:
 10/24/23

 Sample Location:
 SYRACUSE, NY
 Field Prep:
 Not Specified

Sample Depth:

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lal	0							
Alkalinity, Total	384.	mg CaCO3/L	2.00	NA	1	-	10/31/23 10:55	121,2320B	MKT
Nitrogen, Nitrate	ND	mg/l	0.10	0.023	1	-	10/26/23 04:51	44,353.2	KAF
Sulfide	ND	mg/l	0.10	0.10	1	10/30/23 19:45	10/30/23 23:01	121,4500S2-D	TLH
Total Organic Carbon	4.8	mg/l	0.50	0.10	1	-	11/01/23 08:58	1,9060A	DEW
Anions by Ion Chromat	ography - Wes	tborough Lab							
Chloride	341.	mg/l	5.00	0.839	10	-	10/26/23 21:01	44,300.0	AVT
Sulfate	130.	mg/l	10.0	4.54	10	-	10/26/23 21:01	44,300.0	AVT

L2363190

Lab Number:

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001 **Report Date:** 12/05/23

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifie	r Units	RL	MDL	Dilution Factor		Date Analyzed	Analytical Method	Analyst
General Chemistry - Westb	orough Lab for sa	imple(s): 01	-06 Ba	itch: WC	G1844325	i-1			
Nitrogen, Nitrate	ND	mg/l	0.10	0.023	1	-	10/26/23 03:51	44,353.2	KAF
Anions by Ion Chromatogra	aphy - Westboroug	h Lab for sa	mple(s)	: 01-06	Batch: \	WG1844850-1			
Chloride	0.187 J	mg/l	0.500	0.083	1	-	10/26/23 18:00	44,300.0	AVT
Sulfate	ND	mg/l	1.00	0.454	1	-	10/26/23 18:00	44,300.0	AVT
General Chemistry - Westb	orough Lab for sa	mple(s): 01	-06 Ba	tch: WC	G1846112	<u>!</u> -1			
Sulfide	ND	mg/l	0.10	0.10	1	10/30/23 19:45	10/30/23 22:03	121,4500S2-E) TLH
General Chemistry - Westb	orough Lab for sa	mple(s): 01	-03,06	Batch:	WG18464	412-1			
Alkalinity, Total	ND	mg CaCO3/L	2.00	NA	1	-	10/31/23 10:55	121,2320B	MKT
General Chemistry - Westb	orough Lab for sa	mple(s): 01	-06 Ba	tch: WO	G1846749) - 1			
Total Organic Carbon	ND	mg/l	0.50	0.10	1	-	11/01/23 04:48	1,9060A	DEW
General Chemistry - Westb	orough Lab for sa	mple(s): 04	-05 Ba	tch: WC	G1847051	-1			
Alkalinity, Total	ND	mg CaCO3/L	2.00	NA	1	-	11/01/23 11:11	121,2320B	MKT

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number:

L2363190

Report Date:

Parameter	LCS %Recovery	Qual %	LCSD 6Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab As	ssociated sample(s):	01-06 Ba	tch: WG1844	325-2				
Nitrogen, Nitrate	98		-		90-110	-		
Anions by Ion Chromatography - Westbord	ough Lab Associated	l sample(s)	: 01-06 Bat	ch: WG1844	1850-2			
Chloride	100		-		90-110	-		
Sulfate	104		-		90-110	-		
General Chemistry - Westborough Lab As	ssociated sample(s):	01-06 Ba	tch: WG1846	112-2				
Sulfide	81		-		75-125	-		
General Chemistry - Westborough Lab As	ssociated sample(s):	01-03,06	Batch: WG18	346412-2				
Alkalinity, Total	104		-		90-110	-		10
General Chemistry - Westborough Lab As	ssociated sample(s):	01-06 Ba	tch: WG1846	749-2				
Total Organic Carbon	98		-		90-110	-		
General Chemistry - Westborough Lab As	ssociated sample(s):	04-05 Ba	tch: WG1847	051-2				
Alkalinity, Total	107		-		90-110	-		10

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number:

L2363190

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD		RPD Limits
General Chemistry - Westborou 20231024	ugh Lab Assoc	iated samp	ole(s): 01-06	QC Batch II	D: WG18	344325-4	QC Sample:	L23631	90-03 Cli	ent ID:	MW-5R	-
Nitrogen, Nitrate	ND	4	4.0	100		-	-		83-113	-		6
Anions by Ion Chromatography Client ID: MW-5R-20231024	- Westboroug	h Lab Asso	ociated samp	le(s): 01-06	QC Bat	ch ID: WG	1844850-3 W	G18448	350-4 QC S	Sample	: L23631	90-03
Chloride	277.	40	308	76	Q	308	75	Q	90-110	0		18
Sulfate	184.	80	254	89	Q	254	89	Q	90-110	0		20
General Chemistry - Westborou 20231024	ugh Lab Assoc	iated samp	ole(s): 01-06	QC Batch II	D: WG18	346112-4	QC Sample:	L23631	90-03 Cli	ent ID:	MW-5R	-
Sulfide	0.25	0.45	0.50	56	Q	-	-		70-130	-		20
General Chemistry - Westborou 20231024	ugh Lab Assoc	iated samp	ole(s): 01-03,0	06 QC Batc	h ID: W	G1846412-	4 QC Samp	le: L236	63190-03	Client I	ID: MW-	5R-
Alkalinity, Total	270.	100	291	21	Q	-	-		86-116	-		10
General Chemistry - Westborou 20231024	ugh Lab Assoc	iated samp	ole(s): 01-06	QC Batch II	D: WG18	346749-4	QC Sample:	L23631	90-03 Cli	ent ID:	MW-5R	-
Total Organic Carbon	3.2	16	21	112		-	-		80-120	-		20
General Chemistry - Westborou	ugh Lab Assoc	iated samp	ole(s): 04-05	QC Batch II	D: WG18	347051-4	QC Sample:	L23641	45-01 Cli	ent ID:	MS Sar	nple
Alkalinity, Total	113.	100	215	102		-	-		86-116	-		10

Lab Duplicate Analysis Batch Quality Control

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Lab Number:

L2363190

Report Date:

Parameter	Nati	ve Samı	ole D	ouplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab 20231024	Associated sample(s):	01-06	QC Batch ID:	WG1844325-3	QC Sample:	L2363190-03	Client ID:	MW-5R-
Nitrogen, Nitrate		ND		ND	mg/l	NC		6
General Chemistry - Westborough Lab 20231024	Associated sample(s):	01-06	QC Batch ID:	WG1846112-3	QC Sample:	L2363190-02	Client ID:	MW-6R-
Sulfide		0.15		0.24	mg/l	46	Q	20
General Chemistry - Westborough Lab 20231024	Associated sample(s):	01-03,0	6 QC Batch	ID: WG1846412-	·3 QC Samp	le: L2363190-	03 Client	ID: MW-5R-
Alkalinity, Total		270.		271	mg CaCO3/l	_ 0		10
General Chemistry - Westborough Lab 20231024	Associated sample(s):	01-06	QC Batch ID:	WG1846749-3	QC Sample:	L2363190-03	Client ID:	MW-5R-
Total Organic Carbon		3.2		3.5	mg/l	9		20
General Chemistry - Westborough Lab	Associated sample(s):	04-05	QC Batch ID:	WG1847051-3	QC Sample:	L2364145-01	Client ID:	DUP Sample
Alkalinity, Total		113.		112	mg CaCO3/l	_ 1		10

Lab Number: L2363190

Project Number: 059294.001 **Report Date:** 12/05/23

Sample Receipt and Container Information

Were project specific reporting limits specified?

FORMER COYNE TEXTILE

YES

Cooler Information

Project Name:

Cooler Custody Seal

A Absent B Absent

Container Information				Initial	Final	Temp			Frozen	
	Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
	L2363190-01A	Vial HCl preserved	В	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
	L2363190-01B	Vial HCl preserved	В	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
	L2363190-01C	Vial HCl preserved	В	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
	L2363190-01D	20ml Vial HCl preserved	Α	NA		4.4	Υ	Absent		DISSGAS(14)
	L2363190-01E	20ml Vial HCl preserved	Α	NA		4.4	Υ	Absent		DISSGAS(14)
	L2363190-01F	Vial unpreserved 20ml	Α	NA		4.4	Υ	Absent		DISSGAS-CO2(7)
	L2363190-01G	Vial unpreserved 20ml	Α	NA		4.4	Υ	Absent		DISSGAS-CO2(7)
	L2363190-01H	Vial H2SO4 preserved	Α	NA		4.4	Υ	Absent		TOC-9060(28)
	L2363190-01J	Vial H2SO4 preserved	Α	NA		4.4	Υ	Absent		TOC-9060(28)
	L2363190-01K	Plastic 250ml unpreserved	Α	7	7	4.4	Υ	Absent		SO4-300(28),CL-300(28),NO3-353(2)
	L2363190-01L	Plastic 250ml unpreserved/No Headspace	Α	NA		4.4	Υ	Absent		ALK-T-2320(14)
	L2363190-01M	Plastic 250ml HNO3 preserved	Α	<2	<2	4.4	Υ	Absent		BA-6020T(180),FE-6020T(180),SE- 6020T(180),CR-6020T(180),PB-6020T(180),AS- 6020T(180),CD-6020T(180),HG-T(28),AG- 6020T(180)
	L2363190-01N	Plastic 250ml Zn Acetate/NaOH preserved	Α	>9	>9	4.4	Υ	Absent		SULFIDE-4500(7)
	L2363190-01P	Plastic 250ml Zn Acetate/NaOH preserved	Α	>9	>9	4.4	Υ	Absent		SULFIDE-4500(7)
	L2363190-02A	Vial HCl preserved	В	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
	L2363190-02B	Vial HCl preserved	В	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
	L2363190-02C	Vial HCl preserved	В	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
	L2363190-02D	20ml Vial HCl preserved	Α	NA		4.4	Υ	Absent		DISSGAS(14)
	L2363190-02E	20ml Vial HCl preserved	Α	NA		4.4	Υ	Absent		DISSGAS(14)
	L2363190-02F	Vial unpreserved 20ml	Α	NA		4.4	Υ	Absent		DISSGAS-CO2(7)
	L2363190-02G	Vial unpreserved 20ml	Α	NA		4.4	Υ	Absent		DISSGAS-CO2(7)

Lab Number: L2363190

Report Date: 12/05/23

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Container Information				Final	Temp			Frozen	
Container ID	Container Type	Cooler	Initial pH	pН		Pres	Seal	Date/Time	Analysis(*)
L2363190-02H	Vial H2SO4 preserved	Α	NA		4.4	Υ	Absent		TOC-9060(28)
L2363190-02J	Vial H2SO4 preserved	Α	NA		4.4	Υ	Absent		TOC-9060(28)
L2363190-02K	Plastic 250ml unpreserved	Α	7	7	4.4	Υ	Absent		SO4-300(28),CL-300(28),NO3-353(2)
L2363190-02L	Plastic 250ml unpreserved/No Headspace	Α	NA		4.4	Υ	Absent		ALK-T-2320(14)
L2363190-02M	Plastic 250ml HNO3 preserved	Α	<2	<2	4.4	Y	Absent		FE-6020T(180),BA-6020T(180),SE- 6020T(180),CR-6020T(180),PB-6020T(180),AS- 6020T(180),CD-6020T(180),AG- 6020T(180),HG-T(28)
L2363190-02N	Plastic 250ml Zn Acetate/NaOH preserved	Α	>9	>9	4.4	Υ	Absent		SULFIDE-4500(7)
L2363190-02P	Plastic 250ml Zn Acetate/NaOH preserved	Α	>9	>9	4.4	Υ	Absent		SULFIDE-4500(7)
L2363190-03A	Vial HCI preserved	В	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2363190-03A1	Vial HCI preserved	В	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2363190-03A2	Vial HCI preserved	В	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2363190-03B	Vial HCI preserved	В	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2363190-03B1	Vial HCI preserved	В	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2363190-03B2	Vial HCI preserved	В	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2363190-03C	Vial HCI preserved	В	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2363190-03C1	Vial HCI preserved	В	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2363190-03C2	Vial HCI preserved	В	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2363190-03D	20ml Vial HCl preserved	В	NA		4.7	Υ	Absent		DISSGAS(14)
L2363190-03D1	20ml Vial HCl preserved	В	NA		4.7	Υ	Absent		DISSGAS(14)
L2363190-03D2	20ml Vial HCl preserved	В	NA		4.7	Υ	Absent		DISSGAS(14)
L2363190-03E	20ml Vial HCl preserved	В	NA		4.7	Υ	Absent		DISSGAS(14)
L2363190-03E1	20ml Vial HCl preserved	В	NA		4.7	Υ	Absent		DISSGAS(14)
L2363190-03E2	20ml Vial HCl preserved	В	NA		4.7	Υ	Absent		DISSGAS(14)
L2363190-03F	Vial unpreserved 20ml	В	NA		4.7	Υ	Absent		DISSGAS-CO2(7)
L2363190-03F1	Vial unpreserved 20ml	В	NA		4.7	Υ	Absent		DISSGAS-CO2(7)
L2363190-03F2	Vial unpreserved 20ml	В	NA		4.7	Υ	Absent		DISSGAS-CO2(7)
L2363190-03G	Vial unpreserved 20ml	В	NA		4.7	Υ	Absent		DISSGAS-CO2(7)
L2363190-03G1	Vial unpreserved 20ml	В	NA		4.7	Υ	Absent		DISSGAS-CO2(7)

Lab Number: L2363190

Report Date: 12/05/23

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	-	Pres	Seal	Date/Time	Analysis(*)
L2363190-03G2	Vial unpreserved 20ml	В	NA		4.7	Υ	Absent		DISSGAS-CO2(7)
L2363190-03H	Vial H2SO4 preserved	В	NA		4.7	Υ	Absent		TOC-9060(28)
L2363190-03H1	Vial H2SO4 preserved	В	NA		4.7	Υ	Absent		TOC-9060(28)
L2363190-03H2	Vial H2SO4 preserved	В	NA		4.7	Υ	Absent		TOC-9060(28)
L2363190-03J	Vial H2SO4 preserved	В	NA		4.7	Υ	Absent		TOC-9060(28)
L2363190-03J1	Vial H2SO4 preserved	В	NA		4.7	Υ	Absent		TOC-9060(28)
L2363190-03J2	Vial H2SO4 preserved	В	NA		4.7	Υ	Absent		TOC-9060(28)
L2363190-03K	Plastic 250ml unpreserved	В	7	7	4.7	Υ	Absent		SO4-300(28),CL-300(28),NO3-353(2)
L2363190-03K1	Plastic 250ml unpreserved	В	7	7	4.7	Υ	Absent		SO4-300(28),CL-300(28),NO3-353(2)
L2363190-03K2	Plastic 250ml unpreserved	В	7	7	4.7	Υ	Absent		SO4-300(28),CL-300(28),NO3-353(2)
L2363190-03L	Plastic 250ml unpreserved/No Headspace	В	NA		4.7	Υ	Absent		ALK-T-2320(14)
L2363190-03L1	Plastic 250ml unpreserved/No Headspace	В	NA		4.7	Υ	Absent		ALK-T-2320(14)
L2363190-03L2	Plastic 250ml unpreserved/No Headspace	В	NA		4.7	Υ	Absent		ALK-T-2320(14)
L2363190-03M	Plastic 250ml HNO3 preserved	В	<2	<2	4.7	Υ	Absent		BA-6020T(180),SE-6020T(180),FE- 6020T(180),CR-6020T(180),PB-6020T(180),AS- 6020T(180),AG-6020T(180),CD- 6020T(180),HG-T(28)
L2363190-03M1	Plastic 250ml HNO3 preserved	В	<2	<2	4.7	Υ	Absent		BA-6020T(180),SE-6020T(180),FE- 6020T(180),CR-6020T(180),PB-6020T(180),AS- 6020T(180),AG-6020T(180),CD- 6020T(180),HG-T(28)
L2363190-03M2	Plastic 250ml HNO3 preserved	В	<2	<2	4.7	Υ	Absent		BA-6020T(180),SE-6020T(180),FE- 6020T(180),CR-6020T(180),PB-6020T(180),AS- 6020T(180),AG-6020T(180),CD- 6020T(180),HG-T(28)
L2363190-03N	Plastic 250ml Zn Acetate/NaOH preserved	В	>9	>9	4.7	Υ	Absent		SULFIDE-4500(7)
L2363190-03N1	Plastic 250ml Zn Acetate/NaOH preserved	В	>9	>9	4.7	Υ	Absent		SULFIDE-4500(7)
L2363190-03N2	Plastic 250ml Zn Acetate/NaOH preserved	В	>9	>9	4.7	Υ	Absent		SULFIDE-4500(7)
L2363190-03P	Plastic 250ml Zn Acetate/NaOH preserved	В	>9	>9	4.7	Υ	Absent		SULFIDE-4500(7)
L2363190-03P1	Plastic 250ml Zn Acetate/NaOH preserved	В	>9	>9	4.7	Υ	Absent		SULFIDE-4500(7)
L2363190-03P2	Plastic 250ml Zn Acetate/NaOH preserved	В	>9	>9	4.7	Υ	Absent		SULFIDE-4500(7)
L2363190-04A	Vial HCI preserved	В	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2363190-04B	Vial HCI preserved	В	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)

Lab Number: L2363190

Report Date: 12/05/23

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	pН	-	Pres	Seal	Date/Time	Analysis(*)
L2363190-04C	Vial HCI preserved	В	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2363190-04D	20ml Vial HCl preserved	В	NA		4.7	Υ	Absent		DISSGAS(14)
L2363190-04E	20ml Vial HCl preserved	В	NA		4.7	Υ	Absent		DISSGAS(14)
L2363190-04F	Vial unpreserved 20ml	В	NA		4.7	Υ	Absent		DISSGAS-CO2(7)
L2363190-04G	Vial unpreserved 20ml	В	NA		4.7	Υ	Absent		DISSGAS-CO2(7)
L2363190-04H	Vial H2SO4 preserved	В	NA		4.7	Υ	Absent		TOC-9060(28)
L2363190-04J	Vial H2SO4 preserved	В	NA		4.7	Υ	Absent		TOC-9060(28)
L2363190-04K	Plastic 250ml unpreserved	В	7	7	4.7	Υ	Absent		SO4-300(28),CL-300(28),NO3-353(2)
L2363190-04L	Plastic 250ml unpreserved/No Headspace	В	NA		4.7	Υ	Absent		ALK-T-2320(14)
L2363190-04M	Plastic 250ml HNO3 preserved	В	<2	<2	4.7	Υ	Absent		FE-6020T(180),BA-6020T(180),SE- 6020T(180),CR-6020T(180),PB-6020T(180),AS- 6020T(180),CD-6020T(180),AG- 6020T(180),HG-T(28)
L2363190-04N	Plastic 250ml Zn Acetate/NaOH preserved	В	>9	>9	4.7	Υ	Absent		SULFIDE-4500(7)
L2363190-04P	Plastic 250ml Zn Acetate/NaOH preserved	В	>9	>9	4.7	Υ	Absent		SULFIDE-4500(7)
L2363190-05A	Vial HCl preserved	В	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2363190-05B	Vial HCl preserved	В	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2363190-05C	Vial HCl preserved	В	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2363190-05D	20ml Vial HCl preserved	В	NA		4.7	Υ	Absent		DISSGAS(14)
L2363190-05E	20ml Vial HCl preserved	В	NA		4.7	Υ	Absent		DISSGAS(14)
L2363190-05F	Vial unpreserved 20ml	В	NA		4.7	Υ	Absent		DISSGAS-CO2(7)
L2363190-05G	Vial unpreserved 20ml	В	NA		4.7	Υ	Absent		DISSGAS-CO2(7)
L2363190-05H	Vial H2SO4 preserved	В	NA		4.7	Υ	Absent		TOC-9060(28)
L2363190-05J	Vial H2SO4 preserved	В	NA		4.7	Υ	Absent		TOC-9060(28)
L2363190-05K	Plastic 250ml unpreserved	В	7	7	4.7	Υ	Absent		SO4-300(28),CL-300(28),NO3-353(2)
L2363190-05L	Plastic 250ml unpreserved/No Headspace	В	NA		4.7	Υ	Absent		ALK-T-2320(14)
L2363190-05M	Plastic 250ml HNO3 preserved	В	<2	<2	4.7	Υ	Absent		BA-6020T(180),SE-6020T(180),FE- 6020T(180),CR-6020T(180),PB-6020T(180),AS- 6020T(180),CD-6020T(180),AG- 6020T(180),HG-T(28)
L2363190-05N	Plastic 250ml Zn Acetate/NaOH preserved	В	>9	>9	4.7	Υ	Absent		SULFIDE-4500(7)

Lab Number: L2363190

Report Date: 12/05/23

Project Name: FORMER COYNE TEXTILE

Project Number: 059294.001

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН		Pres	Seal	Date/Time	Analysis(*)
L2363190-05P	Plastic 250ml Zn Acetate/NaOH preserved	В	>9	>9	4.7	Υ	Absent		SULFIDE-4500(7)
L2363190-06A	Vial HCl preserved	В	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2363190-06B	Vial HCl preserved	В	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2363190-06C	Vial HCl preserved	В	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2363190-06D	20ml Vial HCl preserved	Α	NA		4.4	Υ	Absent		DISSGAS(14)
L2363190-06E	20ml Vial HCl preserved	Α	NA		4.4	Υ	Absent		DISSGAS(14)
L2363190-06F	Vial unpreserved 20ml	Α	NA		4.4	Υ	Absent		DISSGAS-CO2(7)
L2363190-06G	Vial unpreserved 20ml	Α	NA		4.4	Υ	Absent		DISSGAS-CO2(7)
L2363190-06H	Vial H2SO4 preserved	Α	NA		4.4	Υ	Absent		TOC-9060(28)
L2363190-06J	Vial H2SO4 preserved	Α	NA		4.4	Υ	Absent		TOC-9060(28)
L2363190-06K	Plastic 250ml unpreserved	Α	7	7	4.4	Υ	Absent		SO4-300(28),CL-300(28),NO3-353(2)
L2363190-06L	Plastic 250ml unpreserved/No Headspace	Α	NA		4.4	Υ	Absent		ALK-T-2320(14)
L2363190-06M	Plastic 250ml HNO3 preserved	A	<2	<2	4.4	Υ	Absent		FE-6020T(180),BA-6020T(180),SE-6020T(180),CR-6020T(180),PB-6020T(180),AS-6020T(180),AG-6020T(180),HG-T(28),CD-6020T(180)
L2363190-06N	Plastic 250ml Zn Acetate/NaOH preserved	Α	>9	>9	4.4	Υ	Absent		SULFIDE-4500(7)
L2363190-06P	Plastic 250ml Zn Acetate/NaOH preserved	Α	>9	>9	4.4	Υ	Absent		SULFIDE-4500(7)
L2363190-07A	Vial HCl preserved	В	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2363190-07B	Vial HCl preserved	В	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)

Project Name: Lab Number: FORMER COYNE TEXTILE L2363190 059294.001 **Report Date: Project Number:** 12/05/23

GLOSSARY

Acronyms

EPA

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:FORMER COYNE TEXTILELab Number:L2363190Project Number:059294.001Report Date:12/05/23

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butylether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit
 (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Project Name:FORMER COYNE TEXTILELab Number:L2363190Project Number:059294.001Report Date:12/05/23

Data Qualifiers

Identified Compounds (TICs). For calculated parameters, this represents that one or more values used in the calculation were estimated.

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- **NJ** Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name:FORMER COYNE TEXTILELab Number:L2363190Project Number:059294.001Report Date:12/05/23

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- Technical Guidance for the Natural Attenuation Indicators: Methane, Ethane, and Ethene, EPA-NE, Revision 1, February 21, 2002 and Sample Preparation & Calculations for Dissolved Gas Analysis in Water Samples using a GC Headspace Equilibration Technique, EPA RSKSOP-175, Revision 2, May 2004.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 20

Page 1 of 1

Published Date: 6/16/2023 4:52:28 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; 4-Ethyltoluene, Az

EPA 8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables).

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

FAX: 508-899-9193 FAX: 508-822-3288 Project Location: Syractise NY	Дірна	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whit Albany, NY 12205: 14 Walke Tonawanda, NY 14150: 275	er Way		Pag	ge of			Rec'	d	o la	35	10	3	ALPHA JOB# L 2363190	
TEL 506-698-9220 TEL 506-692-9300 Project Name: Drimpt Coline Texhile ASP-A ASP-A Coline Colin		the page of a facility of the second of	Project Information					Deli	verab!	es						Billing Information	
Project Location: Suraulse Ny			Project Name: For	Nr (n	me Textile	0			ASP	-A		X	ASP	-B		Same as Client Info	
Client: CHA Consulting Project # 05 424 1.00 Client: CHA Consulting Client: Characteristic Client: Characterist	AX: 508-698-9193	FAX: 508-822-3288	THE PROPERTY OF THE PARTY OF TH						EQU	IS (1 F	ile)	8	EQU	15 (4)	File)		
Client: CHA Consulting (Use Project name as Project #) Resultatory Regulatory Please Investments Regulatory	AND Informitations			drau	De lo			-17	2000		ALS W.		`	ili estatului		will email	
Address 300 S. State St. Curcle OProject Manager: Sum Miller Sum Avioration NY Part 375 Sum Avioration NY Part 375 Sum Avioration NY Part 375 NY CP-51 N		Liboa	A house and agent area area and area	120 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	401			Pin			(complete	W	25 6	-	Militar		
Syracuse NY 13202 ALPHAQuote #:	CHIA CONSC	Hald C. C. Jold		and the second second second	1.			DOMEST:	name of the last o	A DECEMBER OF THE PARTY.	ile in a		NVP	ort 375		The state of the s	
Phone: 3 5-257-7250	ss: JUU J.	1 12202		VUM INI	116-			- X			and a	H	marrie .			applicable disposal facilities.	of
Standard Due Date:	racuse in	9 15/02	THE RESERVE TO SERVE THE PARTY OF THE PARTY	_			_					岩					******
Collection Sample Date Time Matrix Initials Date	515- 15	1-7250		-	4 4 4							\Box	Other			I DESCRIPTION OF THE PROPERTY	
ANALYSIS Sample Filtration					Due Dat	e:										□ N1 □ NA	
Other project specific requirements/comments: CC. SIMMILL 2.Codes Please specify Metals or TAL. ALPHA Lab ID (Lab Use Only) Sample ID Date Time Matrix Initials Initials ID MW-1R-20231024 I120 Sample Specific Comments I120 Sample Specific Comme	Kehmanne	chasolutions con	Rush (only if pre approv	red)	# of Day	S.			NYC	Sewer I	Dischar	ge				Other:	
CC. SamMiller Zcocles Sample Collection Sample	samples have b	een previously analyza	ed by Alpha					ANA	LYSIS	5	Det					Sample Filtration	
CC. Sam Miller 2.code	project specific	requirements/comm	ients:					1					-	I		Done	
Please specify Metals or TAL. Please Specify Metals or TAL. Please Specify below	00	San Millar	7.	1000				78		R	0	9	0	1			12
Please specify Metals or TAL. Please Specify Metals or TAL. Please Specify below	CC. Z	Milliand	1.00	107				12	1	5	3	3	0	1.70		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
ALPHA Lab ID	e specify Metals	or TAL.						-I V~	五	7		U	1	13		Lab to do	1
ALPHA Lab ID	- opening			_				ード	13	3	0	1	3	D		(Diana Casalfu halaw)	- 19
Date Time Madix Initials Fraction												-!-,	1	1000		(Please Specify below)	
Date Time Modula Modul		Sa	mple ID		Collection			5 2	1.8	3	0	#	15	S	P		-8
-03 Ms - 2023 1024 1120 XXXXXXXXXX MS/MsD Sumple -04 Mw - 4 - 2023 1024 1430 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		307.	MARK-BILL			Matrix	-		1	00	01	4	0	0	上	Sample Specific Comments	_8
-03 MS - 2023 1024 1220 XXXXXXXX MS/MSD Sumpl -04 MW-4 - 2023 1024 1430 XXXXXXXXX -05 MW-105D - 2023 1024 1545 XXXXXXXXX -00 CHA-1 - 2023 1024 0900 XXXXXXXXXX -03 MSD - 2023 1024 1220 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	190 -01	MW-7R-2023	31024	10.24	23 0945	GW	KE/A	$\parallel \times \parallel$	\times	\times	×	\times	\geq	\times	×	,	- 11
-03 MSD - 20231024 1220 XXXXXXXX MS/MSD Sumpl -04 MW-4 - 20231024 1430 XXXXXXXXXX -05 MW-105D - 20231024 1545 XXXXXXXXXXX -00 CHA-1 - 20231024 0900 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	-100)	MW-10R-20	231024		1120			\sim	$ \times$	1	\times	\times	×	×	X		
-DU MW-4-20231024 1430 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	-03							\sim	X	\times	X	\geq	X	×	X	MS/MSD Sampled	lure
-05 MW-105D-20231024 1545 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	-04								X	×	X	×	X	X	×		
-00 CHA-1-20231024 0900 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX						+	+	1	1×	×	\times	\sim	×	X	×		\top
-03 MS - 20231024 1220 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	-010			++-			\vdash	_	1	8	\propto	S	Z	V	X		-11
-03 MSD - 20231024 1220 V V XXXXXX	-02			++-			\vdash	ť		2	V	<	V	0	×		-11
	-			-		1	1.	10	10	0	0	0	-	13	2		V
-01 Trip Blank - 2023/024 V - Lab X				-	ILLLO	V	.4	10	^	75	0	△	\times	×	2		-13
	-01	Trip Blank -	20231024	V		Lan	-	X		\vdash	-	_			-		12
Preservative Code: Container Code Marchago Configuration No. MARCE	ative Code	Contains Code				_		-	_	-	\rightarrow	_	_	-	-		1
A = None P = Plastic Westboro: Certification No. MA933 Container Type V D D V V V Please print clearly, is	MIT .		Westboro: Certification	No: MA935		Cor	tainer Typ	e V	D	P	DI	D	V	11	V	Please print clearly, legi	100
I = HCl A = Amber Glass Mansfield: Certification No: MA015			Mansfield: Certification	No: MA015			57		1_	1	,	1	150	V	100	and completely. Sample	s car
= HNO ₃ V = Vial Preservative Q C Y A A A B D not be logged in and turnaround time clock		01 100751					rosonativ	0	0	KL	N	A	Δ	2	0	turnaround time clock wi	ili no
							I GOOD VALUE	0	-	1	17	17	"	0	ν	start until any ambiguitie	
= MeOH C = Cube Relinquished By: Date/Time 17/17 Received By: Date/Time resolved. BY EXECU	OH (C = Cube	A C Relinquished	f Rv:	Date	Time 1717	V	Receiv	and By				Date	Time		resolved, BY EXECUTIN	
SE NAHSO, DE OTHER	terior.		16 16/10				PRI	0.				int	_	3 301,000	3/5	THIS COC, THE CLIEN	
D = POD Ballla	3101	the commenced of the second of	10000 -			and the second second	1000	2		7 72		- 1			1000	HAS READ AND AGRE	50 King (1992)
0 = 20 A T	I ADIVACES	- no extension	A DO	_			Miser		- Se	16		-	-		-	TO BE BOUND BY ALP	
See st w/4/23 175 10/25/33 0100 TERMS & CONDITIO (See reverse side.)			MSCUE Su	Serst	10/4/23	175						10/	25/2	3 01	S	TERMS & CONDITIONS (See reverse side.)	10
orm No: 01-25 HC (rav. 30-Sept-2013) Page 90 of 90		-Sept-2013)									_1					(Joe to recise side.)	

ANALYTICAL REPORT

Lab Number: L2415362

Client: CHA Companies

One Park Place

300 South State St., Suite 600

Syracuse, NY 13202

ATTN: Samantha Miller Phone: (315) 471-3920

Project Name: JMA WIRELESS/FORMER COYNE TEXT

Project Number: 059294.003

Report Date: 04/04/24

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OH (CL108), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: JMA WIRELESS/FORMER COYNE TEXT

Project Number: 059294.003

Lab Number: L2415362 **Report Date:** 04/04/24

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2415362-01	MW-105D-20240320	WATER	SYRACUSE, NY	03/20/24 09:30	03/21/24
L2415362-02	MW-5R-20240320	WATER	SYRACUSE, NY	03/20/24 11:30	03/21/24
L2415362-03	MW-6R-20240320	WATER	SYRACUSE, NY	03/20/24 13:10	03/21/24
L2415362-04	MW-7R-20240320	WATER	SYRACUSE, NY	03/20/24 14:45	03/21/24
L2415362-05	CHA-1-20240320	WATER	SYRACUSE, NY	03/20/24 09:00	03/21/24
L2415362-06	MW-4-20240320	WATER	SYRACUSE, NY	03/21/24 08:20	03/21/24
L2415362-07	TRIP BLANK	WATER	SYRACUSE, NY	03/20/24 00:00	03/21/24

L2415362

Project Name: JMA WIRELESS/FORMER COYNE TEXT Lab Number:

Project Number: 059294.003 Report Date: 04/04/24

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name: JMA WIRELESS/FORMER COYNE TEXT Lab Number: L2415362
Project Number: 059294.003 Report Date: 04/04/24

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

The analysis of Dissolved Gases was subcontracted. A copy of the laboratory report is included as an addendum. Please note: This data is only available in PDF format and is not available on Data Merger.

Carbon Dioxide

The WG1900851-4 MS recovery, performed on L2415362-01, is outside the acceptance criteria for carbon dioxide (133%). The unacceptable percent recovery is attributed to the elevated concentration of target compound present in the native sample.

Sulfide

The WG1900702-4 MS recovery, performed on L2415362-01, is outside the acceptance criteria for sulfide (57%); however, the associated LCS recovery is within criteria. No further action was taken.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Season Kelly Stenstrom

Authorized Signature:

Title: Technical Director/Representative Date: 04/04/24

ORGANICS

VOLATILES

L2415362

03/20/24 09:30

Project Name: JMA WIRELESS/FORMER COYNE TEXT

Project Number: 059294.003

SAMPLE RESULTS

Lab Number:

Date Collected:

Report Date: 04/04/24

Lab ID: L2415362-01

Client ID: MW-105D-20240320 Sample Location: SYRACUSE, NY Date Received: 03/21/24
Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 03/31/24 18:54

Analyst: MAG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	rough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	6.4		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

04/04/24

Project Name: Lab Number: JMA WIRELESS/FORMER COYNE TEXT L2415362

Project Number: 059294.003

L2415362-01

SAMPLE RESULTS

Date Collected: 03/20/24 09:30

Report Date:

Date Received: Client ID: 03/21/24 MW-105D-20240320 Sample Location: Field Prep: SYRACUSE, NY

Not Specified

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	gh Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	116	70-130	
Toluene-d8	104	70-130	
4-Bromofluorobenzene	94	70-130	
Dibromofluoromethane	105	70-130	

04/04/24

Project Name: Lab Number: JMA WIRELESS/FORMER COYNE TEXT L2415362

Project Number: Report Date: 059294.003

SAMPLE RESULTS

Lab ID: L2415362-01 Date Collected: 03/20/24 09:30

Client ID: Date Received: 03/21/24 MW-105D-20240320 Field Prep: Sample Location: Not Specified SYRACUSE, NY

Sample Depth:

Matrix: Water Analytical Method: 117,-

Analytical Date: 03/26/24 09:52

Analyst: SRO

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Dissolved Gases by GC - Mansfield Lab							
Carbon Dioxide	58.7		mg/l	3.00	3.00	1	

L2415362

03/20/24 11:30

Project Name: JMA WIRELESS/FORMER COYNE TEXT

Project Number: 059294.003

SAMPLE RESULTS

04/04/24

Lab Number:

Date Collected:

Report Date: 04/04/24

Lab ID: L2415362-02 Client ID: MW-5R-20240320

Sample Location: SYRACUSE, NY

Date Received: 03/21/24
Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 03/31/24 19:19

Analyst: MAG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	oorough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	74		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	0.88		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	190		ug/l	1.0	0.07	1
Chloroethane	1.2	J	ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	13		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

L2415362

04/04/24

Project Name: JMA WIRELESS/FORMER COYNE TEXT

Project Number: 059294.003

L2415362-02

MW-5R-20240320

SYRACUSE, NY

SAMPLE RESULTS

Date Collected: 03/20/24 11:30

Date Received: 03/21/24

Lab Number:

Report Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboro	ugh Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	27		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	109		70-130	
Toluene-d8	104		70-130	
4-Bromofluorobenzene	95		70-130	
Dibromofluoromethane	105		70-130	

L2415362

03/20/24 11:30

Project Name: JMA WIRELESS/FORMER COYNE TEXT

Project Number: 059294.003

SAMPLE RESULTS

Report Date: 04/04/24

Lab Number:

Date Collected:

Lab ID: L2415362-02 Client ID: MW-5R-20240320 Sample Location: SYRACUSE, NY

Date Received: 03/21/24 Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 117,-

Analytical Date: 03/26/24 11:00

Analyst: SRO

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Dissolved Gases by GC - Mansfield Lab						
Carbon Dioxide	29.1		mg/l	3.00	3.00	1

L2415362

04/04/24

Project Name: Lab Number: JMA WIRELESS/FORMER COYNE TEXT

Project Number: 059294.003

SAMPLE RESULTS

Date Collected: 03/20/24 13:10

Report Date:

Lab ID: L2415362-03 Client ID: Date Received: 03/21/24 MW-6R-20240320 Field Prep: Sample Location: Not Specified SYRACUSE, NY

Sample Depth:

Matrix: Water Analytical Method: 117,-

Analytical Date: 03/26/24 11:18

Analyst: SRO

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Dissolved Gases by GC - Mansfield Lab						
Carbon Dioxide	58.7		mg/l	3.00	3.00	1

Project Name: JMA WIRELESS/FORMER COYNE TEXT

Project Number: 059294.003

SAMPLE RESULTS

Lab Number: L2415362

Report Date: 04/04/24

Lab ID: D2 L2415362-03

Client ID: MW-6R-20240320 Sample Location: SYRACUSE, NY

Date Collected: 03/20/24 13:10

Date Received: 03/21/24 Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 04/02/24 14:22

Analyst: MAG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westbo	rough Lab						
Vinyl chloride	1400		ug/l	10	0.71	10	

Surrogate	% Recovery	Qualifier	Acceptance Criteria
1,2-Dichloroethane-d4	100		70-130
Toluene-d8	97		70-130
4-Bromofluorobenzene	99		70-130
Dibromofluoromethane	105		70-130

Project Name: JMA WIRELESS/FORMER COYNE TEXT

Project Number: 059294.003

SAMPLE RESULTS

04/04/24

Report Date:

Lab ID: D L2415362-03

Client ID: MW-6R-20240320 Sample Location: SYRACUSE, NY

Date Received: Field Prep:

Lab Number:

Date Collected:

03/20/24 13:10 03/21/24

Not Specified

L2415362

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 03/31/24 19:43

Analyst: MAG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboro	ugh Lab					
Methylene chloride	ND		ug/l	10	2.8	4
1,1-Dichloroethane	ND		ug/l	10	2.8	4
Chloroform	ND		ug/l	10	2.8	4
Carbon tetrachloride	ND		ug/l	2.0	0.54	4
1,2-Dichloropropane	ND		ug/l	4.0	0.55	4
Dibromochloromethane	ND		ug/l	2.0	0.60	4
1,1,2-Trichloroethane	ND		ug/l	6.0	2.0	4
Tetrachloroethene	9.0		ug/l	2.0	0.72	4
Chlorobenzene	ND		ug/l	10	2.8	4
Trichlorofluoromethane	ND		ug/l	10	2.8	4
1,2-Dichloroethane	ND		ug/l	2.0	0.53	4
1,1,1-Trichloroethane	ND		ug/l	10	2.8	4
Bromodichloromethane	ND		ug/l	2.0	0.77	4
trans-1,3-Dichloropropene	ND		ug/l	2.0	0.66	4
cis-1,3-Dichloropropene	ND		ug/l	2.0	0.58	4
Bromoform	ND		ug/l	8.0	2.6	4
1,1,2,2-Tetrachloroethane	ND		ug/l	2.0	0.67	4
Benzene	1.2	J	ug/l	2.0	0.64	4
Toluene	ND		ug/l	10	2.8	4
Ethylbenzene	ND		ug/l	10	2.8	4
Chloromethane	ND		ug/l	10	2.8	4
Bromomethane	ND		ug/l	10	2.8	4
Vinyl chloride	1300	Е	ug/l	4.0	0.28	4
Chloroethane	ND		ug/l	10	2.8	4
1,1-Dichloroethene	0.74	J	ug/l	2.0	0.68	4
trans-1,2-Dichloroethene	3.3	J	ug/l	10	2.8	4
Trichloroethene	11		ug/l	2.0	0.70	4
1,2-Dichlorobenzene	ND		ug/l	10	2.8	4

04/04/24

Project Name: JMA WIRELESS/FORMER COYNE TEXT Lab Number: L2415362

D

Project Number: 059294.003

L2415362-03

SAMPLE RESULTS

Date Collected: 03/20/24 13:10

Report Date:

Client ID: MW-6R-20240320 Date Received: 03/21/24 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	gh Lab					
1,3-Dichlorobenzene	ND		ug/l	10	2.8	4
1,4-Dichlorobenzene	ND		ug/l	10	2.8	4
Methyl tert butyl ether	ND		ug/l	10	2.8	4
p/m-Xylene	ND		ug/l	10	2.8	4
o-Xylene	ND		ug/l	10	2.8	4
cis-1,2-Dichloroethene	400		ug/l	10	2.8	4
Styrene	ND		ug/l	10	2.8	4
Dichlorodifluoromethane	ND		ug/l	20	4.0	4
Acetone	ND		ug/l	20	5.8	4
Carbon disulfide	ND		ug/l	20	4.0	4
2-Butanone	ND		ug/l	20	7.8	4
4-Methyl-2-pentanone	ND		ug/l	20	4.0	4
2-Hexanone	ND		ug/l	20	4.0	4
Bromochloromethane	ND		ug/l	10	2.8	4
1,2-Dibromoethane	ND		ug/l	8.0	2.6	4
1,2-Dibromo-3-chloropropane	ND		ug/l	10	2.8	4
Isopropylbenzene	ND		ug/l	10	2.8	4
1,2,3-Trichlorobenzene	ND		ug/l	10	2.8	4
1,2,4-Trichlorobenzene	ND		ug/l	10	2.8	4
Methyl Acetate	ND		ug/l	8.0	0.94	4
Cyclohexane	ND		ug/l	40	1.1	4
1,4-Dioxane	ND		ug/l	1000	240	4
Freon-113	ND		ug/l	10	2.8	4
Methyl cyclohexane	ND		ug/l	40	1.6	4

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	116		70-130	
Toluene-d8	103		70-130	
4-Bromofluorobenzene	95		70-130	
Dibromofluoromethane	108		70-130	

L2415362

Project Name: JMA WIRELESS/FORMER COYNE TEXT

Project Number: 059294.003

SAMPLE RESULTS

04/04/24

Report Date:

Lab Number:

Lab ID: L2415362-04 Date Collected: 03/20/24 14:45

Client ID: Date Received: 03/21/24 MW-7R-20240320 Field Prep: Sample Location: Not Specified SYRACUSE, NY

Sample Depth:

Matrix: Water Analytical Method: 117,-

Analytical Date: 03/26/24 11:36

Analyst: SRO

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Dissolved Gases by GC - Mansfield Lab						
Carbon Dioxide	61.6		mg/l	3.00	3.00	1

L2415362

Project Name: JMA WIRELESS/FORMER COYNE TEXT

Project Number: 059294.003

Report Date: 04/04/24

Lab Number:

SAMPLE RESULTS

Lab ID: D Date Collected: 03/20/24 14:45 L2415362-04

Client ID: Date Received: 03/21/24 MW-7R-20240320 Field Prep: Sample Location: SYRACUSE, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 03/30/24 13:31

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	oorough Lab						
Methylene chloride	ND		ug/l	25	7.0	10	
1,1-Dichloroethane	ND		ug/l	25	7.0	10	
Chloroform	ND		ug/l	25	7.0	10	
Carbon tetrachloride	ND		ug/l	5.0	1.3	10	
1,2-Dichloropropane	ND		ug/l	10	1.4	10	
Dibromochloromethane	ND		ug/l	5.0	1.5	10	
1,1,2-Trichloroethane	ND		ug/l	15	5.0	10	
Tetrachloroethene	ND		ug/l	5.0	1.8	10	
Chlorobenzene	ND		ug/l	25	7.0	10	
Trichlorofluoromethane	ND		ug/l	25	7.0	10	
1,2-Dichloroethane	ND		ug/l	5.0	1.3	10	
1,1,1-Trichloroethane	ND		ug/l	25	7.0	10	
Bromodichloromethane	ND		ug/l	5.0	1.9	10	
trans-1,3-Dichloropropene	ND		ug/l	5.0	1.6	10	
cis-1,3-Dichloropropene	ND		ug/l	5.0	1.4	10	
Bromoform	ND		ug/l	20	6.5	10	
1,1,2,2-Tetrachloroethane	ND		ug/l	5.0	1.7	10	
Benzene	ND		ug/l	5.0	1.6	10	
Toluene	ND		ug/l	25	7.0	10	
Ethylbenzene	ND		ug/l	25	7.0	10	
Chloromethane	ND		ug/l	25	7.0	10	
Bromomethane	ND		ug/l	25	7.0	10	
Vinyl chloride	370		ug/l	10	0.71	10	
Chloroethane	ND		ug/l	25	7.0	10	
1,1-Dichloroethene	3.7	J	ug/l	5.0	1.7	10	
trans-1,2-Dichloroethene	ND		ug/l	25	7.0	10	
Trichloroethene	ND		ug/l	5.0	1.8	10	
1,2-Dichlorobenzene	ND		ug/l	25	7.0	10	

L2415362

04/04/24

Project Name: JMA WIRELESS/FORMER COYNE TEXT

L2415362-04

MW-7R-20240320

SYRACUSE, NY

D

Project Number: 059294.003

SAMPLE RESULTS

Date Collected: 03/20/24 14:45

Lab Number:

Report Date:

Date Received: 03/21/24

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	igh Lab					
1,3-Dichlorobenzene	ND		ug/l	25	7.0	10
1,4-Dichlorobenzene	ND		ug/l	25	7.0	10
Methyl tert butyl ether	ND		ug/l	25	7.0	10
p/m-Xylene	ND		ug/l	25	7.0	10
o-Xylene	ND		ug/l	25	7.0	10
cis-1,2-Dichloroethene	820		ug/l	25	7.0	10
Styrene	ND		ug/l	25	7.0	10
Dichlorodifluoromethane	ND		ug/l	50	10.	10
Acetone	ND		ug/l	50	15.	10
Carbon disulfide	ND		ug/l	50	10.	10
2-Butanone	ND		ug/l	50	19.	10
4-Methyl-2-pentanone	ND		ug/l	50	10.	10
2-Hexanone	ND		ug/l	50	10.	10
Bromochloromethane	ND		ug/l	25	7.0	10
1,2-Dibromoethane	ND		ug/l	20	6.5	10
1,2-Dibromo-3-chloropropane	ND		ug/l	25	7.0	10
Isopropylbenzene	ND		ug/l	25	7.0	10
1,2,3-Trichlorobenzene	ND		ug/l	25	7.0	10
1,2,4-Trichlorobenzene	ND		ug/l	25	7.0	10
Methyl Acetate	ND		ug/l	20	2.3	10
Cyclohexane	ND		ug/l	100	2.7	10
1,4-Dioxane	ND		ug/l	2500	610	10
Freon-113	ND		ug/l	25	7.0	10
Methyl cyclohexane	ND		ug/l	100	4.0	10

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	108	70-130	
Toluene-d8	105	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	104	70-130	

03/20/24 09:00

Project Name: JMA WIRELESS/FORMER COYNE TEXT

Project Number: 059294.003

SAMPLE RESULTS

Lab Number: L2415362

Report Date: 04/04/24

OAMI LE REGOL

Lab ID: L2415362-05
Client ID: CHA-1-20240320
Sample Location: SYRACUSE, NY

Date Received: 03/21/24
Field Prep: Not Specified

Date Collected:

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 03/30/24 13:56

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westh	oorough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	61		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	0.89		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	180		ug/l	1.0	0.07	1
Chloroethane	1.5	J	ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	10		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

L2415362

04/04/24

Project Name: JMA WIRELESS/FORMER COYNE TEXT Lab Number:

Project Number: 059294.003

L2415362-05

CHA-1-20240320

SYRACUSE, NY

SAMPLE RESULTS

Date Collected: 03/20/24 09:00

Date Received: 03/21/24

Report Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	24		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	106	70-130	
Toluene-d8	105	70-130	
4-Bromofluorobenzene	94	70-130	
Dibromofluoromethane	100	70-130	

Project Name: JMA WIRELESS/FORMER COYNE TEXT

Project Number: 059294.003

SAMPLE RESULTS

Lab Number: L2415362

Report Date: 04/04/24

03/20/24 09:00

Lab ID: L2415362-05 Date Collected:

Client ID: Date Received: 03/21/24 CHA-1-20240320 Field Prep: Sample Location: Not Specified SYRACUSE, NY

Sample Depth:

Matrix: Water Analytical Method: 117,-

Analytical Date: 03/26/24 11:53

Analyst: SRO

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Dissolved Gases by GC - Mansfield Lab						
Carbon Dioxide	27.6		mg/l	3.00	3.00	1

L2415362

03/21/24 08:20

Project Name: JMA WIRELESS/FORMER COYNE TEXT

Project Number: 059294.003

SAMPLE RESULTS

Lab Number:

Date Collected:

Report Date: 04/04/24

Lab ID: L2415362-06

Client ID: MW-4-20240320 Sample Location: SYRACUSE, NY Date Received: 03/21/24 Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 03/28/24 08:58

Analyst: MCM

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	stborough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	0.59		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	140		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	0.18	J	ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Trichloroethene	ND		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1	

L2415362

04/04/24

Dilution Factor

Project Name: JMA WIRELESS/FORMER COYNE TEXT

L2415362-06

MW-4-20240320

SYRACUSE, NY

Project Number: 059294.003

SAMPLE RESULTS

Qualifier

Units

Result

Date Collected: 03/21/24 08:20

Lab Number:

Report Date:

RL

Date Received: 03/21/24 Field Prep: Not Specified

MDL

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Parameter

i arameter	Nosun	Qualifici	Office			Dilution i dotoi	
Volatile Organics by GC/MS - Westb	orough Lab						
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	74		ug/l	2.5	0.70	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	ND		ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
Bromochloromethane	ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl Acetate	ND		ug/l	2.0	0.23	1	
Cyclohexane	ND		ug/l	10	0.27	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Methyl cyclohexane	ND		ug/l	10	0.40	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	113	70-130	
Toluene-d8	92	70-130	
4-Bromofluorobenzene	88	70-130	
Dibromofluoromethane	124	70-130	

L2415362

03/21/24 08:20

Project Name: JMA WIRELESS/FORMER COYNE TEXT

Project Number: 059294.003

SAMPLE RESULTS

Report Date: 04/04/24

Lab Number:

Date Collected:

Lab ID: L2415362-06 Client ID: MW-4-20240320 Sample Location: SYRACUSE, NY

Date Received: 03/21/24 Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 117,-

Analytical Date: 03/26/24 12:54

Analyst: SRO

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Dissolved Gases by GC - Mansfield Lab						
Carbon Dioxide	52.4		mg/l	3.00	3.00	1

Project Name: JMA WIRELESS/FORMER COYNE TEXT

Project Number: 059294.003

SAMPLE RESULTS

Report Date: 04/04/24

L2415362

Lab ID: L2415362-07 Client ID: TRIP BLANK

Sample Location: SYRACUSE, NY Date Received: Field Prep:

Date Collected:

Lab Number:

03/20/24 00:00 03/21/24 Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D

Analytical Date: 03/28/24 08:12

Analyst: MCM

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	tborough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Trichloroethene	ND		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1	

L2415362

04/04/24

Project Name: JMA WIRELESS/FORMER COYNE TEXT

L2415362-07

TRIP BLANK

SYRACUSE, NY

Project Number: 059294.003

SAMPLE RESULTS

Date Collected: 03/20/24 00:00

Date Received: 03/21/24
Field Prep: Not Specified

Lab Number:

Report Date:

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	igh Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	112	70-130	
Toluene-d8	94	70-130	
4-Bromofluorobenzene	84	70-130	
Dibromofluoromethane	123	70-130	

Project Name: JMA WIRELESS/FORMER COYNE TEXT **Lab Number:** L2415362

Project Number: 059294.003 **Report Date:** 04/04/24

Method Blank Analysis Batch Quality Control

Analytical Method: 117,-

Analytical Date: 03/26/24 09:26

Analyst: SRO

Parameter	Result	Qualifier	Units		RL	MDL
Dissolved Gases by GC - Mansfield	Lab for sam	ple(s): 01	-06	Batch:	WG190085	1-3
Carbon Dioxide	ND		mg/l		3.00	3.00

L2415362

Project Name: JMA WIRELESS/FORMER COYNE TEXT Lab Number:

Project Number: 059294.003 **Report Date:** 04/04/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 03/28/24 05:09

Analyst: MCM

arameter	Result	Qualifier Units	. RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	06-07 Batch:	WG1901939-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Name: JMA WIRELESS/FORMER COYNE TEXT

Project Number: 059294.003

Lab Number: L2415362

Report Date: 04/04/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 03/28/24 05:09

Analyst: MCM

Parameter	Result	Qualifier Units	RL	MDL
Volatile Organics by GC/MS - Wes	tborough Lab	for sample(s): 06-07	Batch:	WG1901939-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
1,4-Dioxane	ND	ug/l	250	61.
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

L2415362

Project Name: JMA WIRELESS/FORMER COYNE TEXT Lab Number:

> Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 03/28/24 05:09

Analyst: MCM

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 06-07 Batch: WG1901939-5

Acceptance Surrogate %Recovery Qualifier Criteria 1,2-Dichloroethane-d4 106 70-130 96 70-130 Toluene-d8 4-Bromofluorobenzene 70-130 88 Dibromofluoromethane 114 70-130

Project Name: JMA WIRELESS/FORMER COYNE TEXT

Project Number: 059294.003

Lab Number: L2415362

Report Date: 04/04/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 03/30/24 10:15

Analyst: PID

arameter	Result	Qualifier Uni	ts	RL	MDL
olatile Organics by GC/MS - V	Vestborough Lab	for sample(s):	04-05	Batch:	WG1903428-5
Methylene chloride	ND	ug	/I	2.5	0.70
1,1-Dichloroethane	ND	ug	/I	2.5	0.70
Chloroform	ND	ug	/I	2.5	0.70
Carbon tetrachloride	ND	ug	/I	0.50	0.13
1,2-Dichloropropane	ND	ug	/I	1.0	0.14
Dibromochloromethane	ND	ug	/I	0.50	0.15
1,1,2-Trichloroethane	ND	ug	/I	1.5	0.50
Tetrachloroethene	ND	ug	/I	0.50	0.18
Chlorobenzene	ND	ug	/I	2.5	0.70
Trichlorofluoromethane	ND	ug	/I	2.5	0.70
1,2-Dichloroethane	ND	ug	/I	0.50	0.13
1,1,1-Trichloroethane	ND	ug	/I	2.5	0.70
Bromodichloromethane	ND	ug	/I	0.50	0.19
trans-1,3-Dichloropropene	ND	ug	/I	0.50	0.16
cis-1,3-Dichloropropene	ND	ug	/I	0.50	0.14
Bromoform	ND	ug	/I	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug	/I	0.50	0.17
Benzene	ND	ug	/I	0.50	0.16
Toluene	ND	ug	/I	2.5	0.70
Ethylbenzene	ND	ug	/I	2.5	0.70
Chloromethane	ND	ug	/I	2.5	0.70
Bromomethane	ND	ug	/I	2.5	0.70
Vinyl chloride	ND	ug	/I	1.0	0.07
Chloroethane	ND	ug	/I	2.5	0.70
1,1-Dichloroethene	ND	ug	/I	0.50	0.17
trans-1,2-Dichloroethene	ND	ug	/I	2.5	0.70
Trichloroethene	ND	ug	/I	0.50	0.18
1,2-Dichlorobenzene	ND	ug	/I	2.5	0.70
1,3-Dichlorobenzene	ND	ug	/I	2.5	0.70

Project Name: JMA WIRELESS/FORMER COYNE TEXT

Project Number: 059294.003

Lab Number: L2415362

Report Date: 04/04/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 03/30/24 10:15

Analyst: PID

Parameter	Result	Qualifier Units	RL	MDL
Volatile Organics by GC/MS - Wes	tborough Lab	for sample(s): 04-05	Batch:	WG1903428-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
1,4-Dioxane	ND	ug/l	250	61.
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

L2415362

Project Name: JMA WIRELESS/FORMER COYNE TEXT Lab Number:

Project Number: 059294.003 **Report Date:** 04/04/24

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 03/30/24 10:15

Analyst: PID

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 04-05 Batch: WG1903428-5

		Acceptance		
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	107		70-130	
Toluene-d8	105		70-130	
4-Bromofluorobenzene	96		70-130	
Dibromofluoromethane	107		70-130	

L2415362

Project Name: JMA WIRELESS/FORMER COYNE TEXT Lab Number:

Project Number: 059294.003 **Report Date:** 04/04/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 03/31/24 15:36

Analyst: MAG

arameter	Result	Qualifier Units	RL RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-03 Batch:	WG1903646-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Name: JMA WIRELESS/FORMER COYNE TEXT

Project Number: 059294.003

Lab Number: L2415362

Report Date: 04/04/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 03/31/24 15:36

Analyst: MAG

Parameter	Result	Qualifier Units	RL	MDL
Volatile Organics by GC/MS - Wes	stborough Lab	for sample(s): 01-03	Batch:	WG1903646-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
1,4-Dioxane	ND	ug/l	250	61.
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

L2415362

Lab Number:

Project Name: JMA WIRELESS/FORMER COYNE TEXT

Project Number: 059294.003 **Report Date:** 04/04/24

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 03/31/24 15:36

Analyst: MAG

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01-03 Batch: WG1903646-5

		Acceptance
Surrogate	%Recovery Q	ualifier Criteria
4.0 Diableweethans d4	440	70.400
1,2-Dichloroethane-d4	113	70-130
Toluene-d8	104	70-130
4-Bromofluorobenzene	97	70-130
Dibromofluoromethane	107	70-130

L2415362

Project Name: JMA WIRELESS/FORMER COYNE TEXT Lab Number:

Project Number: 059294.003 **Report Date:** 04/04/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 04/02/24 11:42

Analyst: PID

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	03 Batch:	WG1904150-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Name: JMA WIRELESS/FORMER COYNE TEXT

Project Number: 059294.003

Lab Number: L2415362

Report Date: 04/04/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 04/02/24 11:42

Analyst: PID

Parameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - We	stborough Lab	for sample(s): 03	Batch:	WG1904150-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
1,4-Dioxane	ND	ug/l	250	61.
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

L2415362

Project Name: JMA WIRELESS/FORMER COYNE TEXT Lab Number:

Project Number: 059294.003 **Report Date:** 04/04/24

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 04/02/24 11:42

Analyst: PID

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 03 Batch: WG1904150-5

		Acceptance	
Surrogate	%Recovery Q	ualifier Criteria	
			_
1,2-Dichloroethane-d4	99	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	102	70-130	
Dibromofluoromethane	101	70-130	

Project Name: JMA WIRELESS/FORMER COYNE TEXT

Lab Number:

L2415362

Project Number: 059294.003

Report Date:

04/04/24

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Dissolved Gases by GC - Mansfield Lab	Associated sample(s	5): 01-06	Batch: WG19008	51-2					
Carbon Dioxide	97		_		80-120	_			

Project Name: JMA WIRELESS/FORMER COYNE TEXT

Project Number: 059294.003

Lab Number: L2415362

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
/olatile Organics by GC/MS - W	estborough Lab Associated	sample(s):	06-07 Batch: V	VG1901939-3	WG1901939-4				
Methylene chloride	120		82		70-130	38	Q	20	
1,1-Dichloroethane	110		91		70-130	19		20	
Chloroform	110		93		70-130	17		20	
Carbon tetrachloride	100		87		63-132	14		20	
1,2-Dichloropropane	100		86		70-130	15		20	
Dibromochloromethane	100		86		63-130	15		20	
1,1,2-Trichloroethane	100		88		70-130	13		20	
Tetrachloroethene	110		91		70-130	19		20	
Chlorobenzene	110		90		75-130	20		20	
Trichlorofluoromethane	110		91		62-150	19		20	
1,2-Dichloroethane	100		89		70-130	12		20	
1,1,1-Trichloroethane	100		86		67-130	15		20	
Bromodichloromethane	100		86		67-130	15		20	
trans-1,3-Dichloropropene	94		78		70-130	19		20	
cis-1,3-Dichloropropene	97		79		70-130	20		20	
Bromoform	93		79		54-136	16		20	
1,1,2,2-Tetrachloroethane	97		83		67-130	16		20	
Benzene	110		88		70-130	22	Q	20	
Toluene	100		87		70-130	14		20	
Ethylbenzene	99		82		70-130	19		20	
Chloromethane	98		80		64-130	20		20	
Bromomethane	100		83		39-139	19		20	
Vinyl chloride	100		82		55-140	20		20	

Project Name: JMA WIRELESS/FORMER COYNE TEXT

Project Number: 059294.003

Lab Number: L2415362

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	06-07 Batch: WG	1901939-3 WG1901939-4			
Chloroethane	110		88	55-138	22	Q	20
1,1-Dichloroethene	110		90	61-145	20		20
trans-1,2-Dichloroethene	110		81	70-130	30	Q	20
Trichloroethene	110		89	70-130	21	Q	20
1,2-Dichlorobenzene	100		88	70-130	13		20
1,3-Dichlorobenzene	100		87	70-130	14		20
1,4-Dichlorobenzene	100		87	70-130	14		20
Methyl tert butyl ether	100		76	63-130	27	Q	20
p/m-Xylene	105		90	70-130	15		20
o-Xylene	105		85	70-130	21	Q	20
cis-1,2-Dichloroethene	110		88	70-130	22	Q	20
Styrene	105		90	70-130	15		20
Dichlorodifluoromethane	87		72	36-147	19		20
Acetone	140		91	58-148	42	Q	20
Carbon disulfide	110		86	51-130	24	Q	20
2-Butanone	110		90	63-138	20		20
4-Methyl-2-pentanone	79		68	59-130	15		20
2-Hexanone	80		72	57-130	11		20
Bromochloromethane	120		98	70-130	20		20
1,2-Dibromoethane	100		86	70-130	15		20
1,2-Dibromo-3-chloropropane	92		82	41-144	11		20
Isopropylbenzene	86		73	70-130	16		20
1,2,3-Trichlorobenzene	99		84	70-130	16		20

Project Name: JMA WIRELESS/FORMER COYNE TEXT

Lab Number: L2415362

Project Number: 059294.003

_	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	06-07 Batch:	WG1901939-3	WG1901939-4				
1,2,4-Trichlorobenzene	93		78		70-130	18		20	
Methyl Acetate	120		82		70-130	38	Q	20	
Cyclohexane	92		76		70-130	19		20	
1,4-Dioxane	152		122		56-162	22	Q	20	
Freon-113	120		94		70-130	24	Q	20	
Methyl cyclohexane	93		75		70-130	21	Q	20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	107	105	70-130
Toluene-d8	98	98	70-130
4-Bromofluorobenzene	82	82	70-130
Dibromofluoromethane	109	107	70-130

Project Name: JMA WIRELESS/FORMER COYNE TEXT

Project Number: 059294.003

Lab Number: L2415362

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	04-05 Batch: \	VG1903428-3	WG1903428-4		
Methylene chloride	100		100		70-130	0	20
1,1-Dichloroethane	120		120		70-130	0	20
Chloroform	97		99		70-130	2	20
Carbon tetrachloride	100		100		63-132	0	20
1,2-Dichloropropane	100		110		70-130	10	20
Dibromochloromethane	77		78		63-130	1	20
1,1,2-Trichloroethane	81		80		70-130	1	20
Tetrachloroethene	110		110		70-130	0	20
Chlorobenzene	96		97		75-130	1	20
Trichlorofluoromethane	110		110		62-150	0	20
1,2-Dichloroethane	97		100		70-130	3	20
1,1,1-Trichloroethane	98		100		67-130	2	20
Bromodichloromethane	87		91		67-130	4	20
trans-1,3-Dichloropropene	81		82		70-130	1	20
cis-1,3-Dichloropropene	91		92		70-130	1	20
Bromoform	78		83		54-136	6	20
1,1,2,2-Tetrachloroethane	88		96		67-130	9	20
Benzene	97		110		70-130	13	20
Toluene	100		100		70-130	0	20
Ethylbenzene	100		100		70-130	0	20
Chloromethane	110		110		64-130	0	20
Bromomethane	36	Q	38	Q	39-139	5	20
Vinyl chloride	110		110		55-140	0	20

Project Name: JMA WIRELESS/FORMER COYNE TEXT

Project Number: 059294.003

Lab Number: L2415362

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - '	Westborough Lab Associated	sample(s):	04-05 Batch: \	WG1903428-3	WG1903428-4			
Chloroethane	120		110		55-138	9		20
1,1-Dichloroethene	120		110		61-145	9		20
trans-1,2-Dichloroethene	110		110		70-130	0		20
Trichloroethene	89		93		70-130	4		20
1,2-Dichlorobenzene	93		95		70-130	2		20
1,3-Dichlorobenzene	94		97		70-130	3		20
1,4-Dichlorobenzene	93		95		70-130	2		20
Methyl tert butyl ether	90		97		63-130	7		20
p/m-Xylene	100		100		70-130	0		20
o-Xylene	95		95		70-130	0		20
cis-1,2-Dichloroethene	100		100		70-130	0		20
Styrene	95		95		70-130	0		20
Dichlorodifluoromethane	120		110		36-147	9		20
Acetone	100		100		58-148	0		20
Carbon disulfide	120		120		51-130	0		20
2-Butanone	94		98		63-138	4		20
4-Methyl-2-pentanone	86		92		59-130	7		20
2-Hexanone	81		88		57-130	8		20
Bromochloromethane	100		100		70-130	0		20
1,2-Dibromoethane	84		87		70-130	4		20
1,2-Dibromo-3-chloropropane	71		73		41-144	3		20
Isopropylbenzene	100		100		70-130	0		20
1,2,3-Trichlorobenzene	95		100		70-130	5		20

Project Name: JMA WIRELESS/FORMER COYNE TEXT

Project Number: 059294.003 Lab Number: L2415362

Parameter	LCS %Recovery	Qual	LC. %Rec	SD overy	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	04-05 B	satch:	WG1903428-3	WG1903428-4				
1,2,4-Trichlorobenzene	99		1	00		70-130	1		20	
Methyl Acetate	110		1	10		70-130	0		20	
Cyclohexane	140	Q	14	40	Q	70-130	0		20	
1,4-Dioxane	104		1	02		56-162	2		20	
Freon-113	120		1:	20		70-130	0		20	
Methyl cyclohexane	110		1	10		70-130	0		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	105	107	70-130
Toluene-d8	104	103	70-130
4-Bromofluorobenzene	99	102	70-130
Dibromofluoromethane	102	101	70-130

Project Name: JMA WIRELESS/FORMER COYNE TEXT

Project Number: 059294.003

Lab Number: L2415362

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - W	estborough Lab Associated	sample(s):	01-03 Batch:	WG1903646-3	WG1903646-4			
Methylene chloride	100		98		70-130	2		20
1,1-Dichloroethane	120		110		70-130	9		20
Chloroform	98		94		70-130	4		20
Carbon tetrachloride	100		100		63-132	0		20
1,2-Dichloropropane	100		110		70-130	10		20
Dibromochloromethane	79		82		63-130	4		20
1,1,2-Trichloroethane	83		84		70-130	1		20
Tetrachloroethene	110		100		70-130	10		20
Chlorobenzene	94		94		75-130	0		20
Trichlorofluoromethane	120		110		62-150	9		20
1,2-Dichloroethane	100		100		70-130	0		20
1,1,1-Trichloroethane	98		98		67-130	0		20
Bromodichloromethane	88		90		67-130	2		20
trans-1,3-Dichloropropene	83		84		70-130	1		20
cis-1,3-Dichloropropene	92		93		70-130	1		20
Bromoform	82		82		54-136	0		20
1,1,2,2-Tetrachloroethane	92		98		67-130	6		20
Benzene	100		100		70-130	0		20
Toluene	98		97		70-130	1		20
Ethylbenzene	98		99		70-130	1		20
Chloromethane	120		100		64-130	18		20
Bromomethane	35	Q	34	Q	39-139	3		20
Vinyl chloride	110		100		55-140	10		20

Project Name: JMA WIRELESS/FORMER COYNE TEXT

Project Number: 059294.003

Lab Number: L2415362

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westboroug	h Lab Associated	sample(s):	01-03 Batch: V	VG1903646-3 WG1903646-4		
Chloroethane	110		100	55-138	10	20
1,1-Dichloroethene	110		100	61-145	10	20
trans-1,2-Dichloroethene	100		100	70-130	0	20
Trichloroethene	90		90	70-130	0	20
1,2-Dichlorobenzene	92		92	70-130	0	20
1,3-Dichlorobenzene	93		93	70-130	0	20
1,4-Dichlorobenzene	92		92	70-130	0	20
Methyl tert butyl ether	96		100	63-130	4	20
p/m-Xylene	95		95	70-130	0	20
o-Xylene	95		95	70-130	0	20
cis-1,2-Dichloroethene	100		99	70-130	1	20
Styrene	90		90	70-130	0	20
Dichlorodifluoromethane	120		110	36-147	9	20
Acetone	110		110	58-148	0	20
Carbon disulfide	120		110	51-130	9	20
2-Butanone	110		100	63-138	10	20
4-Methyl-2-pentanone	94		98	59-130	4	20
2-Hexanone	89		95	57-130	7	20
Bromochloromethane	100		96	70-130	4	20
1,2-Dibromoethane	86		86	70-130	0	20
1,2-Dibromo-3-chloropropane	75		80	41-144	6	20
Isopropylbenzene	97		98	70-130	1	20
1,2,3-Trichlorobenzene	98		99	70-130	1	20

Project Name: JMA WIRELESS/FORMER COYNE TEXT

Lab Number: L2415362

Project Number: 059294.003

Parameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough	•		01-03 Batch:	WG1903646-3	WG1903646-4				
1,2,4-Trichlorobenzene	100		99		70-130	1		20	
Methyl Acetate	120		120		70-130	0		20	
Cyclohexane	140	Q	130		70-130	7		20	
1,4-Dioxane	108		100		56-162	8		20	
Freon-113	120		120		70-130	0		20	
Methyl cyclohexane	100		100		70-130	0		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	110	111	70-130
Toluene-d8	104	104	70-130
4-Bromofluorobenzene	97	99	70-130
Dibromofluoromethane	103	102	70-130

Project Name: JMA WIRELESS/FORMER COYNE TEXT

Project Number: 059294.003

Lab Number: L2415362

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
/olatile Organics by GC/MS - Westbo	orough Lab Associated	sample(s): 0	3 Batch: WG1	1904150-3	WG1904150-4			
Methylene chloride	99		97		70-130	2	20	
1,1-Dichloroethane	100		99		70-130	1	20	
Chloroform	100		100		70-130	0	20	
Carbon tetrachloride	100		100		63-132	0	20	
1,2-Dichloropropane	100		100		70-130	0	20	
Dibromochloromethane	100		100		63-130	0	20	
1,1,2-Trichloroethane	100		100		70-130	0	20	
Tetrachloroethene	110		110		70-130	0	20	
Chlorobenzene	100		100		75-130	0	20	
Trichlorofluoromethane	110		110		62-150	0	20	
1,2-Dichloroethane	98		96		70-130	2	20	
1,1,1-Trichloroethane	100		100		67-130	0	20	
Bromodichloromethane	100		100		67-130	0	20	
trans-1,3-Dichloropropene	100		100		70-130	0	20	
cis-1,3-Dichloropropene	100		100		70-130	0	20	
Bromoform	100		100		54-136	0	20	
1,1,2,2-Tetrachloroethane	97		100		67-130	3	20	
Benzene	100		100		70-130	0	20	
Toluene	100		100		70-130	0	20	
Ethylbenzene	100		100		70-130	0	20	
Chloromethane	100		100		64-130	0	20	
Bromomethane	110		100		39-139	10	20	
Vinyl chloride	110		110		55-140	0	20	

Project Name: JMA WIRELESS/FORMER COYNE TEXT

Project Number: 059294.003

Lab Number: L2415362

arameter	LCS %Recovery	Qual	LCSD %Recovery	/ Qual	%Recovery Limits	RPD	Qual	RPD Limits
platile Organics by GC/MS - Westborough	Lab Associated	sample(s): 03	Batch: W	/G1904150-3	WG1904150-4			
Chloroethane	110		110		55-138	0		20
1,1-Dichloroethene	110		110		61-145	0		20
trans-1,2-Dichloroethene	100		100		70-130	0		20
Trichloroethene	100		99		70-130	1		20
1,2-Dichlorobenzene	99		100		70-130	1		20
1,3-Dichlorobenzene	100		100		70-130	0		20
1,4-Dichlorobenzene	100		100		70-130	0		20
Methyl tert butyl ether	100		100		63-130	0		20
p/m-Xylene	105		105		70-130	0		20
o-Xylene	105		105		70-130	0		20
cis-1,2-Dichloroethene	100		100		70-130	0		20
Styrene	105		105		70-130	0		20
Dichlorodifluoromethane	110		110		36-147	0		20
Acetone	110		89		58-148	21	Q	20
Carbon disulfide	110		110		51-130	0		20
2-Butanone	88		89		63-138	1		20
4-Methyl-2-pentanone	90		93		59-130	3		20
2-Hexanone	85		89		57-130	5		20
Bromochloromethane	110		110		70-130	0		20
1,2-Dibromoethane	100		100		70-130	0		20
1,2-Dibromo-3-chloropropane	100		110		41-144	10		20
Isopropylbenzene	100		100		70-130	0		20
1,2,3-Trichlorobenzene	100		110		70-130	10		20

Project Name: JMA WIRELESS/FORMER COYNE TEXT

Project Number: 059294.003

Lab Number: L2415362

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s): 03	Batch: Wo	G1904150-3	WG1904150-4			
1,2,4-Trichlorobenzene	100		110		70-130	10		20
Methyl Acetate	91		93		70-130	2		20
Cyclohexane	100		100		70-130	0		20
1,4-Dioxane	120		118		56-162	2		20
Freon-113	110		110		70-130	0		20
Methyl cyclohexane	110		110		70-130	0		20

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	96	95	70-130
Toluene-d8	100	100	70-130
4-Bromofluorobenzene	102	101	70-130
Dibromofluoromethane	102	101	70-130

Project Name: JMA WIRELESS/FORMER COYNE TEXT

Project Number: 059294.003

Lab Number: L2415362

Report Date: 04/04/24

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		overy mits	RPD	Qual	RPD Limits
Dissolved Gases by GC - N 105D-20240320	Mansfield Lab	Associated sar	mple(s): 01-06	QC Batch II	D: WG190	00851-4 V	WG1900851-5	QC Sample	: L241536	62-01	Client	ID: MW-
Carbon Dioxide	58.7	12	74.7	133	Q	71.2	104	80)-120	5		25

Project Name: JMA WIRELESS/FORMER COYNE TEXT

Project Number: 059294.003

Lab Number:

L2415362

Report Date:

04/04/24

Parameter	Native Sample	MS Added	MS Found	MS %Recover	y Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS MW-105D-20240320	G - Westborough	Lab Assoc	ciated sample	(s): 01-03 C	QC Batch ID:	WG19036	646-6 WG190	3646-7	QC Sample	: L2415	362-01	Client ID:
Methylene chloride	ND	10	10	100		9.8	98		70-130	2		20
1,1-Dichloroethane	ND	10	12	120		11	110		70-130	9		20
Chloroform	ND	10	10	100		9.7	97		70-130	3		20
Carbon tetrachloride	ND	10	11	110		11	110		63-132	0		20
1,2-Dichloropropane	ND	10	11	110		11	110		70-130	0		20
Dibromochloromethane	ND	10	7.8	78		8.1	81		63-130	4		20
1,1,2-Trichloroethane	ND	10	8.2	82		9.2	92		70-130	11		20
Tetrachloroethene	ND	10	11	110		11	110		70-130	0		20
Chlorobenzene	ND	10	9.6	96		9.7	97		75-130	1		20
Trichlorofluoromethane	ND	10	12	120		12	120		62-150	0		20
1,2-Dichloroethane	ND	10	10	100		10	100		70-130	0		20
1,1,1-Trichloroethane	ND	10	10	100		10	100		67-130	0		20
Bromodichloromethane	ND	10	9.2	92		9.1	91		67-130	1		20
trans-1,3-Dichloropropene	ND	10	7.9	79		8.1	81		70-130	2		20
cis-1,3-Dichloropropene	ND	10	8.4	84		8.8	88		70-130	5		20
Bromoform	ND	10	8.3	83		8.2	82		54-136	1		20
1,1,2,2-Tetrachloroethane	ND	10	9.3	93		9.7	97		67-130	4		20
Benzene	6.4	10	17	106		18	116		70-130	6		20
Toluene	ND	10	10	100		9.9	99		70-130	1		20
Ethylbenzene	ND	10	10	100		10	100		70-130	0		20
Chloromethane	ND	10	12	120		12	120		64-130	0		20
Bromomethane	ND	10	2.5	25	Q	2.8	28	Q	39-139	11		20
Vinyl chloride	ND	10	12	120		11	110		55-140	9		20

Project Name: JMA WIRELESS/FORMER COYNE TEXT

Project Number: 059294.003

Lab Number:

L2415362

Report Date:

04/04/24

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS MW-105D-20240320	- Westborough	Lab Asso	ciated sample	(s): 01-03 QC	Batch ID: WG19036	646-6 WG190	3646-7	QC Sample	: L2415	5362-01	Client ID:
Chloroethane	ND	10	11	110	11	110		55-138	0		20
1,1-Dichloroethene	ND	10	11	110	11	110		61-145	0		20
trans-1,2-Dichloroethene	ND	10	11	110	10	100		70-130	10		20
Trichloroethene	ND	10	9.4	94	9.5	95		70-130	1		20
1,2-Dichlorobenzene	ND	10	9.3	93	9.3	93		70-130	0		20
1,3-Dichlorobenzene	ND	10	9.3	93	9.3	93		70-130	0		20
1,4-Dichlorobenzene	ND	10	9.2	92	9.1	91		70-130	1		20
Methyl tert butyl ether	ND	10	9.7	97	10	100		63-130	3		20
o/m-Xylene	ND	20	19	95	19	95		70-130	0		20
o-Xylene	ND	20	19	95	19	95		70-130	0		20
cis-1,2-Dichloroethene	ND	10	10	100	10	100		70-130	0		20
Styrene	ND	20	18	90	18	90		70-130	0		20
Dichlorodifluoromethane	ND	10	11	110	11	110		36-147	0		20
Acetone	ND	10	11	110	11	110		58-148	0		20
Carbon disulfide	ND	10	12	120	11	110		51-130	9		20
2-Butanone	ND	10	9.7	97	10	100		63-138	3		20
4-Methyl-2-pentanone	ND	10	9.4	94	9.8	98		59-130	4		20
2-Hexanone	ND	10	9.0	90	9.2	92		57-130	2		20
Bromochloromethane	ND	10	10	100	9.8	98		70-130	2		20
1,2-Dibromoethane	ND	10	8.7	87	8.9	89		70-130	2		20
1,2-Dibromo-3-chloropropane	ND	10	7.4	74	7.8	78		41-144	5		20
sopropylbenzene	ND	10	10	100	10	100		70-130	0		20
1,2,3-Trichlorobenzene	ND	10	9.4	94	9.5	95		70-130	1		20

Project Name: JMA WIRELESS/FORMER COYNE TEXT

Project Number: 059294.003

Lab Number:

L2415362

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	/ Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - MW-105D-20240320	Westborough	Lab Assoc	iated sample(s	s): 01-03 Q	C Batch ID	: WG19036	646-6 WG190	3646-7	QC Sample	: L241	5362-01	Client ID:
1,2,4-Trichlorobenzene	ND	10	9.6	96		9.5	95		70-130	1		20
Methyl Acetate	ND	10	11	110		11	110		70-130	0		20
Cyclohexane	ND	10	14	140	Q	14	140	Q	70-130	0		20
1,4-Dioxane	ND	500	440	88		440	88		56-162	0		20
Freon-113	ND	10	12	120		12	120		70-130	0		20
Methyl cyclohexane	ND	10	9.7J	97		9.9J	99		70-130	2		20

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
1,2-Dichloroethane-d4	111	109	70-130
4-Bromofluorobenzene	99	99	70-130
Dibromofluoromethane	100	100	70-130
Toluene-d8	104	103	70-130

METALS

Project Name: JMA WIRELESS/FORMER COYNE TEXT Lab Number: L2415362

Project Number: 059294.003 **Report Date:** 04/04/24

SAMPLE RESULTS

Lab ID: L2415362-01 Date Collected: 03/20/24 09:30

Client ID: MW-105D-20240320 Date Received: 03/21/24 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Ma	anefield I ah										
Total Metals - Mi	ansheid Lab										
Iron, Total	0.918		mg/l	0.0500	0.0191	1	03/31/24 19:0	7 04/01/24 08:21	EPA 3005A	1,6020B	EJF

Project Name: JMA WIRELESS/FORMER COYNE TEXT Lab Number: L2415362

Project Number: 059294.003 **Report Date:** 04/04/24

SAMPLE RESULTS

 Lab ID:
 L2415362-02
 Date Collected:
 03/20/24 11:30

 Client ID:
 MW-5R-20240320
 Date Received:
 03/21/24

Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Ma	ansfield Lab										
Iron, Total	2.30		mg/l	0.0500	0.0191	1	03/31/24 19:0	7 04/01/24 21:20	EPA 3005A	1,6020B	EJF

Project Name: JMA WIRELESS/FORMER COYNE TEXT Lab Number: L2415362

Project Number: 059294.003 **Report Date:** 04/04/24

SAMPLE RESULTS

 Lab ID:
 L2415362-03
 Date Collected:
 03/20/24 13:10

 Client ID:
 MW-6R-20240320
 Date Received:
 03/21/24

Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mar	nsfield Lab										
Iron, Total	8.62		mg/l	0.0500	0.0191	1	03/31/24 19:0	7 04/01/24 21:25	5 EPA 3005A	1,6020B	EJF

Project Name: JMA WIRELESS/FORMER COYNE TEXT Lab Number: L2415362

Project Number: 059294.003 **Report Date:** 04/04/24

SAMPLE RESULTS

 Lab ID:
 L2415362-04
 Date Collected:
 03/20/24 14:45

 Client ID:
 MW-7R-20240320
 Date Received:
 03/21/24

Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - M	ansfield Lab										
Iron, Total	7.27		mg/l	0.0500	0.0191	1	03/31/24 19:0	7 04/01/24 21:29	EPA 3005A	1,6020B	EJF

Project Name: JMA WIRELESS/FORMER COYNE TEXT Lab Number: L2415362

Project Number: 059294.003 **Report Date:** 04/04/24

SAMPLE RESULTS

 Lab ID:
 L2415362-05
 Date Collected:
 03/20/24 09:00

 Client ID:
 CHA-1-20240320
 Date Received:
 03/21/24

Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - N	Mansfield Lab										
Iron, Total	2.12		mg/l	0.0500	0.0191	1	03/31/24 19:0	7 04/01/24 21:3	4 EPA 3005A	1,6020B	EJF

Project Name: JMA WIRELESS/FORMER COYNE TEXT Lab Number: L2415362

Project Number: 059294.003 **Report Date:** 04/04/24

SAMPLE RESULTS

Lab ID:L2415362-06Date Collected:03/21/24 08:20Client ID:MW-4-20240320Date Received:03/21/24Sample Location:SYRACUSE, NYField Prep:Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Ma	nsfield Lab										
Iron, Total	6.63		mg/l	0.0500	0.0191	1	03/31/24 19:0	7 04/01/24 21:39	EPA 3005A	1,6020B	EJF

L2415362

Project Name: JMA WIRELESS/FORMER COYNE TEXT

Project Number: 059294.003 **Report Date:**

04/04/24

Lab Number:

Method Blank Analysis Batch Quality Control

Dilution Date Date Analytical Method Analyst **Parameter Result Qualifier** Units RL**Factor Prepared** Analyzed MDL Total Metals - Mansfield Lab for sample(s): 01-06 Batch: WG1902788-1 Iron, Total ND mg/l 0.0500 0.0191 1 04/01/24 07:55 1,6020B EJF 03/31/24 19:07

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name: JMA WIRELESS/FORMER COYNE TEXT

Lab Number:

L2415362

Project Number: 059294.003

Report Date:

04/04/24

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Total Metals - Mansfield Lab Associated sample	e(s): 01-06 Bate	ch: WG19	02788-2						
Iron, Total	99		-		80-120	-			

Matrix Spike Analysis Batch Quality Control

Project Name: JMA WIRELESS/FORMER COYNE TEXT

Project Number: 059294.003

Lab Number:

L2415362

Report Date:

04/04/24

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD Qua	RPD al Limits
Total Metals - Mansfield Lab / 20240320	Associated sam	ple(s): 01-06	QC Bato	ch ID: WG1902	2788-3	WG190278	8-4 QC Sam	ple: L2415362-01	Client ID:	MW-105D-
Iron, Total	0.918	1	1.76	84		1.83	91	75-125	4	20
Total Metals - Mansfield Lab	Associated sam	ple(s): 01-06	QC Bato	ch ID: WG1902	2788-7	WG190278	8-8 QC Sam	ple: L2417074-01	Client ID:	MS Sample
Iron, Total	ND	1	1.10	110		1.06	106	75-125	4	20

INORGANICS & MISCELLANEOUS

Project Name: JMA WIRELESS/FORMER COYNE TEXT Lab Number: L2415362

Project Number: 059294.003 **Report Date:** 04/04/24

SAMPLE RESULTS

Lab ID: L2415362-01 Date Collected: 03/20/24 09:30

Client ID: MW-105D-20240320 Date Received: 03/21/24 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough La	ıb								
Alkalinity, Total	551.	mg	CaCO3/L	2.00	NA	1	-	03/26/24 09:09	121,2320B	MRW
Nitrogen, Nitrate	ND		mg/l	0.10	0.023	1	-	03/22/24 05:50	44,353.2	KAF
Sulfide	ND		mg/l	0.10	0.10	1	03/26/24 07:24	03/26/24 07:39	121,4500S2-D	DBN
Total Organic Carbon	6.03		mg/l	0.500	0.097	1	-	03/27/24 08:46	121,5310C	DEW
Anions by Ion Chromat	ography - Wes	stborough I	_ab							
Chloride	53.2		mg/l	2.50	0.420	5	-	03/26/24 23:33	44,300.0	AVT
Sulfate	23.2		mg/l	1.00	0.454	1	-	03/26/24 20:38	44,300.0	AVT

Project Name: JMA WIRELESS/FORMER COYNE TEXT Lab Number: L2415362

SAMPLE RESULTS

 Lab ID:
 L2415362-02
 Date Collected:
 03/20/24 11:30

 Client ID:
 MW-5R-20240320
 Date Received:
 03/21/24

Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough La	b							
Alkalinity, Total	277.	mg CaCO3/L	2.00	NA	1	-	03/26/24 10:41	121,2320B	MRW
Nitrogen, Nitrate	ND	mg/l	0.10	0.023	1	-	03/22/24 05:54	44,353.2	KAF
Sulfide	ND	mg/l	0.10	0.10	1	03/26/24 07:24	03/26/24 07:40	121,4500S2-D	DBN
Total Organic Carbon	3.06	mg/l	0.500	0.097	1	-	03/27/24 09:17	121,5310C	DEW
Anions by Ion Chromat	ography - Wes	tborough Lab							
Chloride	318.	mg/l	5.00	0.839	10	-	03/27/24 00:28	44,300.0	AVT
Sulfate	162.	mg/l	10.0	4.54	10	-	03/27/24 00:28	44,300.0	AVT

Project Name: JMA WIRELESS/FORMER COYNE TEXT Lab Number: L2415362

SAMPLE RESULTS

 Lab ID:
 L2415362-03
 Date Collected:
 03/20/24 13:10

 Client ID:
 MW-6R-20240320
 Date Received:
 03/21/24

Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Resul	t Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough La	ab								
Alkalinity, Total	421.	m	g CaCO3/L	2.00	NA	1	-	03/28/24 12:21	121,2320B	MRW
Nitrogen, Nitrate	0.037	J	mg/l	0.10	0.023	1	-	03/22/24 06:21	44,353.2	KAF
Sulfide	ND		mg/l	0.10	0.10	1	03/26/24 07:24	03/26/24 07:40	121,4500S2-D	DBN
Total Organic Carbon	12.2		mg/l	2.00	0.388	4	-	03/27/24 09:44	121,5310C	DEW
Anions by Ion Chromat	ography - We	stborough	Lab							
Chloride	303.		mg/l	5.00	0.839	10	-	03/27/24 00:39	44,300.0	AVT
Sulfate	71.8		mg/l	1.00	0.454	1	-	03/26/24 21:00	44,300.0	AVT

Project Name: JMA WIRELESS/FORMER COYNE TEXT Lab Number: L2415362

SAMPLE RESULTS

Lab ID: L2415362-04 Date Collected: 03/20/24 14:45

Client ID: MW-7R-20240320 Date Received: 03/21/24 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Resul	t Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough La	ab								
Alkalinity, Total	378.	m	g CaCO3/L	2.00	NA	1	-	03/28/24 12:47	121,2320B	MRW
Nitrogen, Nitrate	0.028	J	mg/l	0.10	0.023	1	-	03/22/24 06:22	44,353.2	KAF
Sulfide	ND		mg/l	0.10	0.10	1	03/26/24 07:24	03/26/24 08:42	121,4500S2-D	DBN
Total Organic Carbon	5.99		mg/l	1.00	0.194	2	-	03/27/24 10:13	121,5310C	DEW
Anions by Ion Chromat	ography - We	stborough	Lab							
Chloride	372.		mg/l	5.00	0.839	10	-	03/26/24 21:22	44,300.0	AVT
Sulfate	92.7		mg/l	1.00	0.454	1	-	03/26/24 21:11	44,300.0	AVT

Project Name: JMA WIRELESS/FORMER COYNE TEXT Lab Number: L2415362

Project Number: 059294.003 **Report Date:** 04/04/24

SAMPLE RESULTS

 Lab ID:
 L2415362-05
 Date Collected:
 03/20/24 09:00

 Client ID:
 CHA-1-20240320
 Date Received:
 03/21/24

Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Resul	t Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough La	ab								
Alkalinity, Total	273.	m	g CaCO3/L	2.00	NA	1	-	03/28/24 13:16	121,2320B	MRW
Nitrogen, Nitrate	0.028	J	mg/l	0.10	0.023	1	-	03/22/24 06:24	44,353.2	KAF
Sulfide	0.34		mg/l	0.10	0.10	1	03/22/24 19:20	03/22/24 23:49	121,4500S2-D	TLH
Total Organic Carbon	3.09		mg/l	0.500	0.097	1	-	03/27/24 10:43	121,5310C	DEW
Anions by Ion Chromat	ography - We	stborough	Lab							
Chloride	324.		mg/l	5.00	0.839	10	-	03/27/24 00:49	44,300.0	AVT
Sulfate	166.		mg/l	10.0	4.54	10	-	03/27/24 00:49	44,300.0	AVT

Project Name: JMA WIRELESS/FORMER COYNE TEXT Lab Number: L2415362

Project Number: 059294.003 **Report Date:** 04/04/24

SAMPLE RESULTS

 Lab ID:
 L2415362-06
 Date Collected:
 03/21/24 08:20

 Client ID:
 MW-4-20240320
 Date Received:
 03/21/24

Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Resul	t Qualifie	r Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough La	ab								
Alkalinity, Total	406.	r	ng CaCO3/L	2.00	NA	1	-	03/28/24 13:24	121,2320B	MRW
Nitrogen, Nitrate	0.028	J	mg/l	0.10	0.023	1	-	03/22/24 06:25	44,353.2	KAF
Sulfide	0.80		mg/l	0.50	0.50	5	03/26/24 07:24	03/26/24 08:47	121,4500S2-D	DBN
Total Organic Carbon	9.38		mg/l	2.00	0.388	4	-	03/27/24 11:10	121,5310C	DEW
Anions by Ion Chromat	ography - We	stborough	n Lab							
Chloride	286.		mg/l	5.00	0.839	10	-	03/26/24 22:17	44,300.0	AVT
Sulfate	81.4		mg/l	1.00	0.454	1	-	03/26/24 22:06	44,300.0	AVT

L2415362

Lab Number:

Project Name: JMA WIRELESS/FORMER COYNE TE>

Project Number: 059294.003 Report Date: 04/04/24

Method	В	lan	k /	٩na	lysi	S
Batch	Qι	ıalit	y C	Conti	rol	

Parameter	Result Qua	lifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Westborough Lab fo	or sample(s): 0	1-06 Ba	itch: WC	S1899382-	1			
Nitrogen, Nitrate	ND	mg/l	0.10	0.023	1	-	03/22/24 03:19	44,353.2	KAF
General Chemistry - V	Westborough Lab fo	or sample(s): 0	5 Batch	: WG18	99737-1				
Sulfide	ND	mg/l	0.10	0.10	1	03/22/24 19:20	03/22/24 23:46	121,4500S2-D	TLH
General Chemistry - V	Westborough Lab fo	or sample(s): 0	1-04,06	Batch:	WG19007	02-1			
Sulfide	ND	mg/l	0.10	0.10	1	03/26/24 07:24	03/26/24 07:36	121,4500S2-D	DBN
General Chemistry - V	Westborough Lab fo	or sample(s): 0	1-02 Ba	itch: WC	§1900834-	1			
Alkalinity, Total	ND	mg CaCO3	/L 2.00	NA	1	-	03/26/24 13:11	121,2320B	MRW
Anions by Ion Chroma	atography - Westbo	rough Lab for s	ample(s)	: 01-06	Batch: V	VG1901161-1			
Chloride	0.106	J mg/l	0.500	0.083	1	-	03/26/24 17:55	44,300.0	AVT
Sulfate	ND	mg/l	1.00	0.454	1	-	03/26/24 17:55	44,300.0	AVT
General Chemistry - V	Westborough Lab fo	or sample(s): 0	1-06 Ba	itch: WC	G1901185-	1			
Total Organic Carbon	ND	mg/l	0.500	0.097	1	-	03/27/24 03:15	121,5310C	DEW
General Chemistry - V	Westborough Lab fo	or sample(s): 03	3-06 Ba	itch: WG	§1901890-	1			
Alkalinity, Total	ND	mg CaCO3	/L 2.00	NA	1	-	03/28/24 14:51	121,2320B	MRW

Lab Control Sample Analysis Batch Quality Control

Project Name: JMA WIRELESS/FORMER COYNE TEXT

Project Number: 059294.003

Lab Number:

L2415362

Report Date:

04/04/24

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Asso	ciated sample(s)	: 01-06	Batch: WG1899	382-2				
Nitrogen, Nitrate	106		-		90-110	-		
General Chemistry - Westborough Lab Asso	ciated sample(s)	: 05 Ba	atch: WG1899737	-2				
Sulfide	77		-		75-125	-		
General Chemistry - Westborough Lab Asso	ciated sample(s)	: 01-04,0	06 Batch: WG19	00702-2				
Sulfide	77		-		75-125	-		
General Chemistry - Westborough Lab Asso	ciated sample(s)	: 01-02	Batch: WG19008	834-2				
Alkalinity, Total	104		-		90-110	-		10
Anions by Ion Chromatography - Westboroug	h Lab Associate	ed samp	le(s): 01-06 Bate	ch: WG190	1161-2			
Chloride	100		-		90-110	-		
Sulfate	101		-		90-110	-		
General Chemistry - Westborough Lab Asso	ciated sample(s)	: 01-06	Batch: WG1901	185-2				
Total Organic Carbon	100		-		90-110	-		
General Chemistry - Westborough Lab Asso	ciated sample(s)	: 03-06	Batch: WG19018	390-2				
Alkalinity, Total	106		-		90-110	-		10

Matrix Spike Analysis Batch Quality Control

Project Name: JMA WIRELESS/FORMER COYNE TEXT

Project Number: 059294.003

Lab Number:

L2415362

Report Date: 04/04/24

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recove Qual Limits	•	RPD Qual Limits
General Chemistry - Westborou 20240320	igh Lab Asso	ciated samp	ole(s): 01-06	QC Batch I	D: WG18	99382-4	QC Sample: I	_2415362-01	Client ID:	MW-105D-
Nitrogen, Nitrate	ND	4	4.2	105		-	-	83-113	-	6
General Chemistry - Westborou	igh Lab Asso	ciated samp	ole(s): 05 C	QC Batch ID: \	NG18997	737-4 C	C Sample: L24	14663-01 Cli	ent ID: MS	S Sample
Sulfide	ND	0.47	0.23	45	Q	-	-	70-130	-	20
General Chemistry - Westborou 20240320	igh Lab Asso	ciated samp	ole(s): 01-04	.06 QC Bato	ch ID: WO	G1900702	-4 QC Sampl	e: L2415362-0	1 Client	ID: MW-105D-
Sulfide	ND	0.47	0.27	57	Q	-	-	70-130	-	20
General Chemistry - Westborou 20240320	igh Lab Asso	ciated samp	ole(s): 01-02	QC Batch I	D: WG19	000834-4	QC Sample: I	_2415362-01	Client ID:	MW-105D-
Alkalinity, Total	551.	100	638	87		-	-	86-116	-	10
Anions by Ion Chromatography Client ID: MW-105D-20240320		gh Lab Asso	ciated samp	ole(s): 01-06	QC Bate	ch ID: WG	31901161-3 WC	G1901161-4 C	C Sample	: L2415362-01
Chloride	53.2	20	72.5	96		75.3	110	90-110	4	18
Sulfate	23.2	40	62.6	98		63.1	100	90-110	1	20
General Chemistry - Westborou	igh Lab Asso	ciated samp	ole(s): 01-06	QC Batch I	D: WG19	01185-4	QC Sample: I	_2415245-01	Client ID:	MS Sample
Total Organic Carbon	0.442J	16	16.2	101		-	-	85-115	-	15
General Chemistry - Westborou 20240320	igh Lab Asso	ciated samp	ole(s): 01-06	QC Batch I	D: WG19	01185-6	QC Sample: I	_2415362-01	Client ID:	MW-105D-
Total Organic Carbon	6.03	16	22.4	102		-	-	85-115	-	15
General Chemistry - Westborou	igh Lab Asso	ciated samp	ole(s): 03-06	QC Batch I	D: WG19	01890-4	QC Sample: I	_2415565-01	Client ID:	MS Sample
Alkalinity, Total	124.	100	226	102		-	-	86-116	-	10

Lab Duplicate Analysis Batch Quality Control

Project Name: JMA WIRELESS/FORMER COYNE TEXT

Project Number: 059294.003

Lab Number:

L2415362 04/04/24

Report Date:

Parameter	Nat	ive Samp	le [Ouplicate Sampl	le Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab 20240320	Associated sample(s):	01-06	QC Batch ID:	: WG1899382-3	QC Sample:	L2415362-01	Client ID:	MW-105D-
Nitrogen, Nitrate		ND		ND	mg/l	NC		6
General Chemistry - Westborough Lab	Associated sample(s):	05 QC	Batch ID: W	/G1899737-3 C	QC Sample: L24	414663-01 CI	ient ID: DI	JP Sample
Sulfide		ND		ND	mg/l	NC		20
General Chemistry - Westborough Lab 20240320	Associated sample(s):	01-04,06	QC Batch	ID: WG1900702	2-3 QC Samp	le: L2415362	-02 Client	ID: MW-5R-
Sulfide		ND		0.29	mg/l	NC		20
General Chemistry - Westborough Lab 20240320	Associated sample(s):	01-02	QC Batch ID:	: WG1900834-3	QC Sample:	L2415362-01	Client ID:	MW-105D-
Alkalinity, Total		551.		547	mg CaCO3/L	. 1		10
General Chemistry - Westborough Lab	Associated sample(s):	01-06	QC Batch ID:	: WG1901185-3	QC Sample:	L2415245-01	Client ID:	DUP Sample
Total Organic Carbon		0.442J		0.420J	mg/l	NC		15
General Chemistry - Westborough Lab 20240320	Associated sample(s):	01-06	QC Batch ID:	: WG1901185-5	QC Sample:	L2415362-01	Client ID:	MW-105D-
Total Organic Carbon		6.03		6.03	mg/l	0		15
General Chemistry - Westborough Lab	Associated sample(s):	03-06	QC Batch ID:	: WG1901890-3	QC Sample:	L2415565-01	Client ID:	DUP Sample
Alkalinity, Total		124.		125	mg CaCO3/L	1		10

Serial_No:04042414:41 *Lab Number:* L2415362

Project Name: JMA WIRELESS/FORMER COYNE TEXT

Project Number: 059294.003 **Report Date:** 04/04/24

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent
B Absent
C Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2415362-01A	Vial HCl preserved	В	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
L2415362-01A1	Vial HCl preserved	В	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
L2415362-01A2	Vial HCl preserved	В	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
L2415362-01B	Vial HCl preserved	В	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
L2415362-01B1	Vial HCl preserved	В	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
L2415362-01B2	Vial HCl preserved	В	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
L2415362-01C	Vial HCl preserved	В	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
L2415362-01C1	Vial HCl preserved	В	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
L2415362-01C2	Vial HCl preserved	В	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
L2415362-01D	Vial H2SO4 preserved	В	NA		2.4	Υ	Absent		TOC-5310(28)
L2415362-01D1	Vial H2SO4 preserved	В	NA		2.4	Υ	Absent		TOC-5310(28)
L2415362-01D2	Vial H2SO4 preserved	В	NA		2.4	Υ	Absent		TOC-5310(28)
L2415362-01E	Vial H2SO4 preserved	В	NA		2.4	Υ	Absent		TOC-5310(28)
L2415362-01E1	Vial H2SO4 preserved	В	NA		2.4	Υ	Absent		TOC-5310(28)
L2415362-01E2	Vial H2SO4 preserved	В	NA		2.4	Υ	Absent		TOC-5310(28)
L2415362-01F	Vial unpreserved 20ml	В	NA		2.4	Υ	Absent		DISSGAS-CO2(7)
L2415362-01F1	Vial unpreserved 20ml	В	NA		2.4	Υ	Absent		DISSGAS-CO2(7)
L2415362-01F2	Vial unpreserved 20ml	В	NA		2.4	Υ	Absent		DISSGAS-CO2(7)
L2415362-01G	Vial unpreserved 20ml	В	NA		2.4	Υ	Absent		DISSGAS-CO2(7)
L2415362-01G1	Vial unpreserved 20ml	В	NA		2.4	Υ	Absent		DISSGAS-CO2(7)
L2415362-01G2	Vial unpreserved 20ml	В	NA		2.4	Υ	Absent		DISSGAS-CO2(7)

Lab Number: L2415362

Report Date: 04/04/24

Project Name: JMA WIRELESS/FORMER COYNE TEXT

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	•	Pres	Seal	Date/Time	Analysis(*)
L2415362-01H	Vial HCI preserved	В	NA		2.4	Υ	Absent		SUB-DISSGAS(14)
L2415362-01H1	Vial HCl preserved	В	NA		2.4	Υ	Absent		SUB-DISSGAS(14)
L2415362-01H2	Vial HCl preserved	В	NA		2.4	Υ	Absent		SUB-DISSGAS(14)
L2415362-01I	Vial HCl preserved	В	NA		2.4	Υ	Absent		SUB-DISSGAS(14)
L2415362-01I1	Vial HCl preserved	В	NA		2.4	Υ	Absent		SUB-DISSGAS(14)
L2415362-01I2	Vial HCl preserved	В	NA		2.4	Υ	Absent		SUB-DISSGAS(14)
L2415362-01J	Plastic 250ml unpreserved/No Headspace	В	NA		2.4	Υ	Absent		ALK-T-2320(14)
L2415362-01J1	Plastic 250ml unpreserved/No Headspace	В	NA		2.4	Υ	Absent		ALK-T-2320(14)
L2415362-01J2	Plastic 250ml unpreserved/No Headspace	В	NA		2.4	Υ	Absent		ALK-T-2320(14)
L2415362-01K	Plastic 250ml unpreserved	В	7	7	2.4	Υ	Absent		SO4-300(28),CL-300(28),NO3-353(2)
L2415362-01K1	Plastic 250ml unpreserved	В	7	7	2.4	Υ	Absent		SO4-300(28),CL-300(28),NO3-353(2)
L2415362-01K2	Plastic 250ml unpreserved	В	7	7	2.4	Υ	Absent		SO4-300(28),CL-300(28),NO3-353(2)
L2415362-01L	Plastic 250ml Zn Acetate/NaOH preserved	В	>9	>9	2.4	Υ	Absent		SULFIDE-4500(7)
L2415362-01L1	Plastic 250ml Zn Acetate/NaOH preserved	В	>9	>9	2.4	Υ	Absent		SULFIDE-4500(7)
L2415362-01L2	Plastic 250ml Zn Acetate/NaOH preserved	В	>9	>9	2.4	Υ	Absent		SULFIDE-4500(7)
L2415362-01M	Plastic 250ml Zn Acetate/NaOH preserved	В	>9	>9	2.4	Υ	Absent		SULFIDE-4500(7)
L2415362-01M1	Plastic 250ml Zn Acetate/NaOH preserved	В	>9	>9	2.4	Υ	Absent		SULFIDE-4500(7)
L2415362-01M2	Plastic 250ml Zn Acetate/NaOH preserved	В	>9	>9	2.4	Υ	Absent		SULFIDE-4500(7)
L2415362-01N	Plastic 250ml HNO3 preserved	В	<2	<2	2.4	Υ	Absent		FE-6020T(180)
L2415362-01N1	Plastic 250ml HNO3 preserved	В	<2	<2	2.4	Υ	Absent		FE-6020T(180)
L2415362-01N2	Plastic 250ml HNO3 preserved	В	<2	<2	2.4	Υ	Absent		FE-6020T(180)
L2415362-02A	Vial HCI preserved	В	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
L2415362-02B	Vial HCI preserved	В	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
L2415362-02C	Vial HCI preserved	В	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
L2415362-02D	Vial H2SO4 preserved	В	NA		2.4	Υ	Absent		TOC-5310(28)
L2415362-02E	Vial H2SO4 preserved	В	NA		2.4	Υ	Absent		TOC-5310(28)
L2415362-02F	Vial unpreserved 20ml	В	NA		2.4	Υ	Absent		DISSGAS-CO2(7)
L2415362-02G	Vial unpreserved 20ml	В	NA		2.4	Υ	Absent		DISSGAS-CO2(7)

Lab Number: L2415362

Report Date: 04/04/24

Project Name: JMA WIRELESS/FORMER COYNE TEXT

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2415362-02H	Vial HCI preserved	В	NA		2.4	Υ	Absent		SUB-DISSGAS(14)
L2415362-02I	Vial HCl preserved	В	NA		2.4	Υ	Absent		SUB-DISSGAS(14)
L2415362-02J	Plastic 250ml unpreserved/No Headspace	В	NA		2.4	Υ	Absent		ALK-T-2320(14)
L2415362-02K	Plastic 250ml unpreserved	В	7	7	2.4	Υ	Absent		SO4-300(28),CL-300(28),NO3-353(2)
L2415362-02L	Plastic 250ml Zn Acetate/NaOH preserved	В	>9	>9	2.4	Υ	Absent		SULFIDE-4500(7)
L2415362-02M	Plastic 250ml Zn Acetate/NaOH preserved	В	>9	>9	2.4	Υ	Absent		SULFIDE-4500(7)
L2415362-02N	Plastic 250ml HNO3 preserved	В	<2	<2	2.4	Υ	Absent		FE-6020T(180)
L2415362-03A	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260-R2(14)
L2415362-03B	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260-R2(14)
L2415362-03C	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260-R2(14)
L2415362-03D	Vial H2SO4 preserved	Α	NA		3.4	Υ	Absent		TOC-5310(28)
L2415362-03E	Vial H2SO4 preserved	Α	NA		3.4	Υ	Absent		TOC-5310(28)
L2415362-03F	Vial unpreserved 20ml	Α	NA		3.4	Υ	Absent		DISSGAS-CO2(7)
L2415362-03G	Vial unpreserved 20ml	Α	NA		3.4	Υ	Absent		DISSGAS-CO2(7)
L2415362-03H	Vial HCl preserved	Α	NA		3.4	Υ	Absent		SUB-DISSGAS(14)
L2415362-03I	Vial HCl preserved	Α	NA		3.4	Υ	Absent		SUB-DISSGAS(14)
L2415362-03J	Plastic 250ml unpreserved/No Headspace	Α	NA		3.4	Υ	Absent		ALK-T-2320(14)
L2415362-03K	Plastic 250ml unpreserved	Α	7	7	3.4	Υ	Absent		SO4-300(28),CL-300(28),NO3-353(2)
L2415362-03L	Plastic 250ml Zn Acetate/NaOH preserved	Α	>9	>9	3.4	Υ	Absent		SULFIDE-4500(7)
L2415362-03M	Plastic 250ml Zn Acetate/NaOH preserved	Α	>9	>9	3.4	Υ	Absent		SULFIDE-4500(7)
L2415362-03N	Plastic 250ml HNO3 preserved	Α	<2	<2	3.4	Υ	Absent		FE-6020T(180)
L2415362-04A	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260-R2(14)
L2415362-04B	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260-R2(14)
L2415362-04C	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260-R2(14)
L2415362-04D	Vial H2SO4 preserved	Α	NA		3.4	Υ	Absent		TOC-5310(28)
L2415362-04E	Vial H2SO4 preserved	Α	NA		3.4	Υ	Absent		TOC-5310(28)
L2415362-04F	Vial unpreserved 20ml	Α	NA		3.4	Υ	Absent		DISSGAS-CO2(7)
L2415362-04G	Vial unpreserved 20ml	Α	NA		3.4	Υ	Absent		DISSGAS-CO2(7)

Lab Number: L2415362

Report Date: 04/04/24

Project Name: JMA WIRELESS/FORMER COYNE TEXT

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2415362-04H	Vial HCI preserved	Α	NA		3.4	Υ	Absent		SUB-DISSGAS(14)
L2415362-04I	Vial HCl preserved	Α	NA		3.4	Υ	Absent		SUB-DISSGAS(14)
L2415362-04J	Plastic 250ml unpreserved/No Headspace	Α	NA		3.4	Υ	Absent		ALK-T-2320(14)
L2415362-04K	Plastic 250ml unpreserved	Α	7	7	3.4	Υ	Absent		SO4-300(28),CL-300(28),NO3-353(2)
L2415362-04L	Plastic 250ml Zn Acetate/NaOH preserved	Α	>9	>9	3.4	Υ	Absent		SULFIDE-4500(7)
L2415362-04M	Plastic 250ml Zn Acetate/NaOH preserved	Α	>9	>9	3.4	Υ	Absent		SULFIDE-4500(7)
L2415362-04N	Plastic 250ml HNO3 preserved	Α	<2	<2	3.4	Υ	Absent		FE-6020T(180)
L2415362-05A	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260-R2(14)
L2415362-05B	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260-R2(14)
L2415362-05C	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260-R2(14)
L2415362-05D	Vial H2SO4 preserved	Α	NA		3.4	Υ	Absent		TOC-5310(28)
L2415362-05E	Vial H2SO4 preserved	Α	NA		3.4	Υ	Absent		TOC-5310(28)
L2415362-05F	Vial unpreserved 20ml	Α	NA		3.4	Υ	Absent		DISSGAS-CO2(7)
L2415362-05G	Vial unpreserved 20ml	Α	NA		3.4	Υ	Absent		DISSGAS-CO2(7)
L2415362-05H	Vial HCl preserved	Α	NA		3.4	Υ	Absent		SUB-DISSGAS(14)
L2415362-05I	Vial HCl preserved	Α	NA		3.4	Υ	Absent		SUB-DISSGAS(14)
L2415362-05J	Plastic 250ml unpreserved/No Headspace	Α	NA		3.4	Υ	Absent		ALK-T-2320(14)
L2415362-05K	Plastic 250ml unpreserved	Α	7	7	3.4	Υ	Absent		SO4-300(28),CL-300(28),NO3-353(2)
L2415362-05L	Plastic 250ml Zn Acetate/NaOH preserved	Α	>9	>9	3.4	Υ	Absent		SULFIDE-4500(7)
L2415362-05M	Plastic 250ml Zn Acetate/NaOH preserved	Α	>9	>9	3.4	Υ	Absent		SULFIDE-4500(7)
L2415362-05N	Plastic 250ml HNO3 preserved	Α	<2	<2	3.4	Υ	Absent		FE-6020T(180)
L2415362-06A	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260-R2(14)
L2415362-06B	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260-R2(14)
L2415362-06C	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260-R2(14)
L2415362-06D	Vial H2SO4 preserved	Α	NA		3.4	Υ	Absent		TOC-5310(28)
L2415362-06E	Vial H2SO4 preserved	Α	NA		3.4	Υ	Absent		TOC-5310(28)
L2415362-06F	Vial unpreserved 20ml	Α	NA		3.4	Υ	Absent		DISSGAS-CO2(7)
L2415362-06G	Vial unpreserved 20ml	Α	NA		3.4	Υ	Absent		DISSGAS-CO2(7)

Lab Number: L2415362

Report Date: 04/04/24

Project Name: JMA WIRELESS/FORMER COYNE TEXT

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2415362-06H	Vial HCl preserved	Α	NA		3.4	Υ	Absent		SUB-DISSGAS(14)
L2415362-06I	Vial HCl preserved	Α	NA		3.4	Υ	Absent		SUB-DISSGAS(14)
L2415362-06J	Plastic 250ml unpreserved/No Headspace	Α	NA		3.4	Υ	Absent		ALK-T-2320(14)
L2415362-06K	Plastic 250ml unpreserved	Α	7	7	3.4	Υ	Absent		SO4-300(28),CL-300(28),NO3-353(2)
L2415362-06L	Plastic 250ml Zn Acetate/NaOH preserved	Α	>9	>9	3.4	Υ	Absent		SULFIDE-4500(7)
L2415362-06M	Plastic 250ml Zn Acetate/NaOH preserved	Α	>9	>9	3.4	Υ	Absent		SULFIDE-4500(7)
L2415362-06N	Plastic 250ml HNO3 preserved	Α	<2	<2	3.4	Υ	Absent		FE-6020T(180)
L2415362-07A	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260-R2(14)
L2415362-07B	Vial HCl preserved	Α	NA		3.4	Υ	Absent		NYTCL-8260-R2(14)

Project Name: Lab Number: JMA WIRELESS/FORMER COYNE TEXT L2415362 059294.003 **Report Date: Project Number:** 04/04/24

GLOSSARY

Acronyms

EDL

LCSD

LOD

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

Laboratory Control Sample Duplicate: Refer to LCS.

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a

specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

> Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

> - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name: JMA WIRELESS/FORMER COYNE TEXT Lab Number: L2415362
Project Number: 059294.003 Report Date: 04/04/24

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyle ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Project Name:JMA WIRELESS/FORMER COYNE TEXTLab Number:L2415362Project Number:059294.003Report Date:04/04/24

Data Qualifiers

Identified Compounds (TICs). For calculated parameters, this represents that one or more values used in the calculation were estimated.

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- **NJ** Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name: JMA WIRELESS/FORMER COYNE TEXT Lab Number: L2415362
Project Number: 059294.003 Report Date: 04/04/24

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- Technical Guidance for the Natural Attenuation Indicators: Methane, Ethane, and Ethene, EPA-NE, Revision 1, February 21, 2002 and Sample Preparation & Calculations for Dissolved Gas Analysis in Water Samples using a GC Headspace Equilibration Technique, EPA RSKSOP-175, Revision 2, May 2004.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:04042414:41

ID No.:17873 Revision 20

Published Date: 6/16/2023 4:52:28 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; 4-Ethyltoluene, Az

EPA 8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables).

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Дерна	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitne Alberry, NY 12205: 14 Walker V Tonswanda, NY 14150: 275 Ce		Date Rec'd in Lab 03				12/24				ALPHA Joh# 3 62				
Westborough, MA 01581 6 Walkup Dr. TEL: 508-898-9220 FAX: 508-508-9193	Mansfield, MA 02048 320 Forbes Blyd TEL: 506-822-9300 FAX: 906-822-3288	Project Information Project Name: The Project Location: Si	NA Wire	less/Pby	野街!	yne	Deliverables ASP-A ASP-B Capilla (1 File) Equils (4 File)					ile)	Same as Client Info			
Client Information			94.003					Other					7/		Will Provide	
Client CHA Lons	u Hay u	(Use Project name as P					Regu	atory !	Requi	remer	it			55	Disposal Site Information	
Address: 300 S.S.	take St.	Project Manager: S	n Mille 226395				10	NY TO		rds		NY Pa			Please identify below location of applicable disposal facilities.	
Printe: 315-257		Turn-Around Time	4 2 0 5 10					NY Re	dricted	Use		Other			Disposal Facility:	
		Standar Standar		Due Date: # of Days:			200	NY UN							NJ NY	
These samples have b							ANAI	YSIS							Sample Filtration	V
Other project specific Please specify Metals							1 826D		a bold	645 COZ	SSGA	the 4500	7-130	CL NO3	Done Lab to do Preservation Lab to do (Please Specify below)) - E - E 0 -
ALPHA Lab ID (Lab Use Only)	Si	ample ID	13070	ection	Sample Matrix	Sampler's Initials	コドイ	101	Tron	MYS	DISS	Sulfale	AIK	Sou	Sample Specific Comments	
158/2-01	MW-1250 -	2024 n 20	3-20-24	71me	G	KEIAH	-	×	>	V	X	×	~	V	Derform MS/MSD	344
-01	MS-2024T		1	0930		I CONTRACTOR	×	X	X	X	X	×	×	2	person its/its	1
-01	M50-2021			0930			X	>	X	X	X	×	X	X		
-02		10240320		1130			X	×	×	×	X	X	×	×		
-03		70240320		1310			×	\times	×	X	X	×	×	X		
-04	MW- 7R-	20240320		1445			X	×	×	X	X	×	×	X		
-05	CHA-1-2	0246320	V	D4 DD			X	×	×	×	X	×	×	X		1
-05 -67	Trip Blank		3-21-24	DELD	· ·	V	×	×	×	X	X	×	×	7		2
Preservebye Code A = Norm B = HCl G = HNCl D = H ₂ SO ₄ E × NAOH F = MeOH G = NaHSO ₈ H = Na ₂ S ₂ O ₃ K/E = Zn Ao/NeOH O = Other	Container Code P = Plestic A = Arribor Clusto V = Vial G = Glass B = Bactene Cup C = Cube O = Other E = Encors D = BOD Bottle	Westboro: Certification Mansfield: Certification Relinquished	No: MA015	3-21-2 3/21		Preservative	10	D wed By	L	V A	-	P V/E Dute	/Time	:40	Please print clearly, legibly and completely. Samples on the logged in and turneround time clock will start until any ambiguities resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHOTERMS & CONDITIONS.	not are 3

Pace Analytical ANALYTICAL REPORT

Pace Analytical (Alpha) - Westborough, MA

L1718666 Sample Delivery Group:

Samples Received: 03/26/2024

Project Number: L2415362

Description:

Report To: Melissa Deyo

8 Walkup Drive

Westborough, MA 01581

Project Manager

Entire Report Reviewed By: Hally Torrence Haley Torrence

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be

reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW-105D-20240320 L1718666-01	5
MW-5R-20240320 L1718666-02	6
MW-6R-20240320 L1718666-03	7
MW-7R-20240320 L1718666-04	8
CHA-1-20240320 L1718666-05	9
MW-4-20240320 L1718666-06	10
Qc: Quality Control Summary	11
Volatile Organic Compounds (GC) by Method RSK175	11
GI: Glossary of Terms	13
Al: Accreditations & Locations	14
Sc: Sample Chain of Custody	15

SAMPLE SUMMARY

MW-105D-20240320 L1718666-01 GW			Collected by	Collected date/time 03/20/24 09:30	Received da 03/26/24 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method RSK175	WG2254257	1	03/27/24 15:42	03/27/24 15:42	CCM	Mt. Juliet, TN
MW-5R-20240320 L1718666-02 GW			Collected by	Collected date/time 03/20/24 11:30	Received da 03/26/24 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method RSK175	WG2254257	1	03/27/24 15:47	03/27/24 15:47	CCM	Mt. Juliet, TN
MW-6R-20240320 L1718666-03 GW			Collected by	Collected date/time 03/20/24 13:10	Received da 03/26/24 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method RSK175	WG2254257	1	03/27/24 15:56	03/27/24 15:56	CCM	Mt. Juliet, TN
MW-7R-20240320 L1718666-04 GW			Collected by	Collected date/time 03/20/24 14:45	Received da 03/26/24 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method RSK175	WG2254257	1	03/27/24 16:05	03/27/24 16:05	CCM	Mt. Juliet, TN
CHA-1-20240320 L1718666-05 GW			Collected by	Collected date/time 03/20/24 09:00	Received da 03/26/24 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method RSK175	WG2254257	1	03/27/24 16:10	03/27/24 16:10	CCM	Mt. Juliet, TN
MW-4-20240320 L1718666-06 GW			Collected by	Collected date/time 03/21/24 08:20	Received da 03/26/24 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location

Pace Analytical (Alpha) - Westborough,MA

Volatile Organic Compounds (GC) by Method RSK175

Volatile Organic Compounds (GC) by Method RSK175

WG2254257

WG2255277

1

10

03/27/24 16:15

03/27/24 17:07

03/27/24 16:15

03/27/24 17:07

CCM

CCM

Mt. Juliet, TN

Mt. Juliet, TN

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Haley Torrence Project Manager

Halus Torrence

MW-105D-20240320

SAMPLE RESULTS - 01

Serial_No:04042414:41

Collected date/time: 03/20/24 09:30

Volatile Organic Compounds (GC) by Method RSK175

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Methane	1890		2.91	10.0	1	03/27/2024 15:42	WG2254257
Ethane	U		4.07	13.0	1	03/27/2024 15:42	WG2254257
Ethene	U		4.26	13.0	1	03/27/2024 15:42	WG2254257
Propage	H		5 48	18.6	1	03/27/2024 15:42	WG2254257

MW-5R-20240320

SAMPLE RESULTS - 02

Serial_No:04042414:41

Collected date/time: 03/20/24 11:30

Volatile Organic Compounds (GC) by Method RSK175

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Methane	788		2.91	10.0	1	03/27/2024 15:47	WG2254257
Ethane	37.8		4.07	13.0	1	03/27/2024 15:47	WG2254257
Ethene	22.5		4.26	13.0	1	03/27/2024 15:47	WG2254257
Propage	U		5 48	18.6	1	03/27/2024 15:47	WG2254257

MW-6R-20240320

SAMPLE RESULTS - 03

Collected date/time: 03/20/24 13:10

Volatile Organic Compounds (GC) by Method RSK175

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Methane	4730		2.91	10.0	1	03/27/2024 15:56	WG2254257
Ethane	259		4.07	13.0	1	03/27/2024 15:56	WG2254257
Ethene	515		4.26	13.0	1	03/27/2024 15:56	WG2254257
Propage	H		5 48	18.6	1	03/27/2024 15:56	WG2254257

Serial_No:04042414:41

MW-7R-20240320

Collected date/time: 03/20/24 14:45

SAMPLE RESULTS - 04

Volatile Organic Compounds (GC) by Method RSK175

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Methane	4040		2.91	10.0	1	03/27/2024 16:05	WG2254257
Ethane	11.5	<u>J</u>	4.07	13.0	1	03/27/2024 16:05	WG2254257
Ethene	28.9		4.26	13.0	1	03/27/2024 16:05	WG2254257
Propage	H		5.48	18.6	1	03/27/2024 16:05	WG2254257

Serial_No:04042414:41

CHA-1-20240320

SAMPLE RESULTS - 05

Serial_No:04042414:41

Collected date/time: 03/20/24 09:00

Volatile Organic Compounds (GC) by Method RSK175

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Methane	846		2.91	10.0	1	03/27/2024 16:10	WG2254257
Ethane	39.3		4.07	13.0	1	03/27/2024 16:10	WG2254257
Ethene	24.7		4.26	13.0	1	03/27/2024 16:10	WG2254257
Propage	H		5.48	18.6	1	03/27/2024 16:10	WG2254257

MW-4-20240320

SAMPLE RESULTS - 06

Serial_No:04042414:41

Collected date/time: 03/21/24 08:20

Volatile Organic Compounds (GC) by Method RSK175

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Methane	8800		29.1	100	10	03/27/2024 17:07	WG2255277
Ethane	604		4.07	13.0	1	03/27/2024 16:15	WG2254257
Ethene	90.6		4.26	13.0	1	03/27/2024 16:15	WG2254257
Pronane	II.		5 48	18.6	1	03/27/2024 16:15	WG2254257

QUALITY CONTROL SUMMARY

Serial_No:04042414:41

Volatile Organic Compounds (GC) by Method RSK175

L1718666-01,02,03,04,05,06

Method Blank (MB)

(MB) R4050683-2 03/2	27/24 15:09			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Methane	U		2.91	10.0
Ethane	U		4.07	13.0
Ethene	U		4.26	13.0
Propane	11		5.48	18.6

²Tc

L1718034-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1718034-01 03/27/24 15:12 • (DUP) R4050683-3 03/27/24 16:02

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Methane	U	U	1	0.000		20
Ethane	U	U	1	0.000		20
Ethene	U	U	1	0.000		20
Propane	U	U	1	0.000		20

L1718666-05 Original Sample (OS) • Duplicate (DUP)

(OS) L1718666-05 03/27/24 16:10 • (DUP) R4050683-4 03/27/24 16:21

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Methane	846	850	1	0.472		20
Ethane	39.3	39.6	1	0.760		20
Ethene	24.7	24.7	1	0.000		20
Propane	U	U	1	0.000		20

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4050683-1 03/27/24 15:06 • (LCSD) R4050683-5 03/27/24 16:27

(LC3) K4030003-1 03/2/	724 13.00 • (LCS	D) K4030003	-5 05/2//24 10).∠/						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Methane	67.8	66.4	71.5	97.9	105	85.0-115			7.40	20
Ethane	129	122	123	94.6	95.3	85.0-115			0.816	20
Ethene	127	121	123	95.3	96.9	85.0-115			1.64	20
Propane	186	171	171	91.9	91.9	85.0-115			0.000	20

QUALITY CONTROL SUMMARY

Serial_No:04042414:41

Volatile Organic Compounds (GC) by Method RSK175

L1718666-06

Method Blank (MB)

(MB) R4050731-2 03/27/	/24 16:47			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Methane	U		2.91	10.0

²Tc

L1718385-01 Original Sample (OS) • Duplicate (DUP)

- 1	(OS)	11/18385-01	03/27/24 16:50 •	แบบษ	1 R4050/31-3	03/2//241/:12

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Methane	24700	25000	10	1.21		20

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4050731-1 03/27/24 16:44 • (LCSD) R4050731-4 03/27/24 17:17

(200) 1(10007011 00/27/2	110.11 (2002	, 10007011	00/2//2 1 1/.1/							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Methane	67.8	71.0	64.0	105	94.4	85.0-115			10.4	20

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resure ported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier Description

The identification of the analyte is acceptable; the reported value is an estimate.

ACCREDITATIONS & LOCATIONS

Pace Analytical National	12065 Lebanon Pd Mou	nt Juliat TN 37122
Face Analytical National	12000 Lebanon Ru Wou	HILJUIIEL, HN 3/122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina 1	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
ldaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
owa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ^{1 6}	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

Pace Analytical (Alpha) - Westborough, MA

EPA-Crypto

PAGE:

SDG:

^{*} Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

D250

Subcontract Chain of Custody

Pace Analytical National 12065 Lebanon Road Mt. Juliet, TN 37122

Alpha Job Number

L2415362 Regulatory Requirements/Report Limits Project Information Client Information State/Federal Program: NYDOH Client: Alpha Analytical Labs Address: Eight Walkup Drive Westborough, MA 01581-1019 Project Location: NY Project Manager: Melissa Deyo Regulatory Criteria: NY-TOGS-GA Turnaround & Deliverables Information Due Date: Phone: 716.427.5229 Email: Melissa.Deyo@pacelabs.com Deliverables: Project Specific Requirements and/or Report Requirements Report to include Method Blank, LCS/LCSD: Reference following Alpha Job Number on final report/deliverables: L2415362 Additional Comments: Invoices to: invoices@pacelabs.coupahost.com Reports to: west.subreports@pacelabs.com ; Report to the MDL; ASP-B required; DISSGAS: Methane. Ethane & Ethane Batch Collection Date/Time Sample Matrix Analysis Client ID Lab ID S:MSD WATER Dissolved Gasses 03-20-24 09:30 MW-105D-20240320 Dissolved Gasses WATER -OZMW-5R-20240320 03-20-24 11:30 Dissolved Gasses WATER MW-6R-20240320 03-20-24 13:10 Dissolved Gasses 03-20-24 14:45 WATER MW-7R-20240320 03-20-24 09:00 WATER Dissolved Gasses CHA-1-20240320 03-21-24 08:20 WATER **Dissolved Gasses** MW-4-20240320

03/01=04 DRAG Sample Receipt Checklist If Applicable COC Seal Present Intact: VOA Zero Headapace: COC Signed/Accurate ... Pres. Correct/Check: Bottles arrive intact: Correct bottles used: Sufficient volume sent: RA Screen <0.5 mR/hr:

	Relinguished By:	Date/Time:	Received By:	Date/Time:	
	0/	3/25/24	Demonth	3/26/24 0800	
	6		- Account of		
		To the law of the law		To the second	
Form No: AL_subcoc	THE A RESE				

www.chasolutions.com

