

PCBS IN SURFACE SOILS REPORT NYSDEC SPILL FILE NUMBER 13-00433

Woodbine Business Park Canada Drive Town of Dewitt, New York

September 15, 2015

Prepared by:

Asbestos and Environmental Consulting Corporation 6308 Fly Road East Syracuse, New York 13057 (315) 432-9400

Prepared for:

Woodbine Business Park, Inc. 505 East Fayette Street Syracuse, New York

TABLE OF CONTENTS

1.0	INTR	ODUCTION	1
	1.1 1.2 1.3	PURPOSEPROJECT HISTORYSITE CHARACTERISTICS	1
2.0	SOIL	SAMPLING EVENTS AND RESULTS	1
	2.1	METHODOLOGY	2
	2.2	SAMPLING OF FORMER SOIL PILE LOCATION – APRIL 2013	2
	2.3	SOIL PILE SAMPLING - MAY 2013	
	2.4	RETENTION POND BERM SAMPLING – MAY 2013	
	2.5	'DEVELOPMENT PARCEL' SAMPLING – JULY 2013	
	2.6	ADDITIONAL DEVELOPMENT PARCEL SAMPLING – OCTOBER AND DECEMBER 2014	
	2.7	CONFIRMATORY DEVELOPMENT PARCEL SAMPLING – OCTOBER 2014	
	2.8	CONFIRMATORY 'SOIL PILE 3' SAMPLING – DECEMBER 2014	
3.0	CON	CLUSIONS	5

FIGURES

Figure 1: Sample Location Plan

TABLES

Table 1: Surface Soil and Soil Pile Sampling Results

ATTACHMENTS

Attachment A: Laboratory Analysis Reports – Soil Pile Sampling
Attachment B: Laboratory Analysis Reports – Surface Soil Sampling
Laboratory Analysis Reports – Soil Sampling at Depth

Woodbine Business Park Canada Drive, Town of Dewitt, New York

1.0 INTRODUCTION

The Asbestos & Environmental Consulting Corporation (AECC) performed an investigation of polychlorinated biphenyls (PCBs) in surface soils at the vacant lots of the Woodbine Business Park (hereafter referenced as "WBP, or "Site"). The Site is located along Canada Drive, Loucks Road Extension, and Collamer Road (NYS Route 298) in the Town of Dewitt, New York.

1.1 PURPOSE

The purpose of the investigation was to evaluate the extent of PCB impacted shallow soils, which had been previously identified in topsoil that potentially originated at the Site (see Project History, below).

1.2 PROJECT HISTORY

A Phase I Environmental Site Assessment (ESA) was commissioned by Woodbine Business Park, Inc. (Woodbine) prior to development of the Site (limited to infrastructure improvements). The ESA report was completed by Beardsley Design Associates in October 2009. The ESA report stated that the prior uses of the Site were limited to agriculture (field crops) with a small sand quarry along Collamer Road. The report did not identify Recognized Environmental Conditions (RECs) originating at the Site (potential arsenic impacts originating from the adjacent cemetery were noted).

In early 2013, Woodbine was informed that PCBs were allegedly detected in surface soil samples collected at the location of a former topsoil pile on the Site (Soil Pile #1) that was created during site development activities. The samples were collected by Certified Environmental Services, Inc. (CES), on behalf of RH Law, Inc. ("RH Law") in November 2012 without the prior knowledge or consent of Woodbine. Laboratory analysis of the four composite surface soil samples collected by CES revealed Aroclor-1248 concentrations ranging from 78 to 199 ppm (parts-per-million). No other Aroclors were detected.

The following section (Section 2 – Soil Sampling Events) details the subsequent sampling that has occurred at the Site in an effort to determine the extent of PCB contamination and locate the potential source of the contamination.

1.3 SITE CHARACTERISTICS

The Site is mostly flat and thickly vegetated by numerous weed and shrub species ranging two to eight feet in height depending on plant species and season. There are some areas (primarily to the east and south) that are forested with trees ranging from approximately one inch to one foot in trunk diameter. Soil moisture was observed to fluctuate depending upon time of year and location across the Site; however, the discrete reedy areas and the hardwood forest in the eastern portion of the Site were consistently moist. The soil tended to be a tan sandy loam, with some areas of darker coloration in and adjacent to the forested areas.

2.0 SOIL SAMPLING EVENTS AND RESULTS

All sample locations are shown on the Sample Location Plan (Figure 1).

Table 1 summarizes the results of all surface soil sampling performed by AECC at the Site from April 2013 to December 2014. Soil sample analysis results were compared to the applicable Soil Cleanup Objectives (SCOs) referenced in NYSDEC Commissioner's Policy #51 (CP-51), and / or 6 NYCRR Part 375 (Part 375).

Woodbine Business Park
Canada Drive, Town of Dewitt, New York

The complete laboratory analysis reports are presented as Attachments A, B, and C.

2.1 METHODOLOGY

Sampling typically followed the following protocol:

Due to extensive vegetative growth and size of the site, AECC utilized GPS technology to locate sampling points in the field. First, AECC uploaded sample location coordinates from the planned sample grid (in AutoCAD format) into a handheld GPS device (Trimble Geo6000XH). AECC then used the GPS device to locate the uploaded sample location coordinates in the field.

The samples were collected at 6 to 8 inches below grade. AECC first broke the surface adjacent to each sampling location using a long-handled digging shovel, and then pried to lift / loosen the soil from beneath the sample location. Disposable plastic trowels were then used to collect the soil sample, which was immediately placed in a laboratory-provided glass jar.

All samples were placed in coolers and transported under proper chain-of-custody to Spectrum Analytical, Inc., an ELAP and NVLAP certified laboratory, for analysis of PCBs via USEPA SW-846 Method 8082 (PCB Aroclors). Duplicate samples were collected at a rate of one duplicate for every 20 samples, and were submitted to Life Science Laboratories, Inc. under separate chain-of-custody.

At the end of each sampling event, trowels, gloves, over-boots, and other waste materials were placed in a sealable, steel 55-gallon drum on-Site.

2.2 SAMPLING OF FORMER SOIL PILE LOCATION – APRIL 2013

In accordance with a Work Plan submitted to the New York State Department of Environmental Conservation (NYSDEC), AECC conducted soil sampling in an attempt to confirm the initial CES results.

On April 8, 2013, AECC personnel collected a total of twelve (12) "confirmatory" surface grab soil samples 6-8 inches below ground surface (bgs), approximately one foot from the CES locations (observed as open shallow holes). These twelve (12) grab samples, were combined into four (4) composite samples (samples CS-1 thru CS-4) to duplicate the prior work done by CES.

The PCB Aroclor-1248 was detected in all four of the samples collected, and ranged in concentration from 6.32 to 34.4 ppm. No other Aroclors were detected.

Upon receipt of the laboratory results, AECC called the New York State Spill Hotline on behalf of Woodbine, and Spill File Number 13-00433 was assigned.

2.3 SOIL PILE SAMPLING – MAY 2013

Two soil piles that were created during site development activities currently exist at the Site: a large soil pile located along Loucks Road Extension (Soil Pile #2), an a small soil pile located southeast of the Canada Drive cul-de-sac (Soil Pile #3). Note: Soil Pile #1 had already been removed from the Site, and deposited at the RH Law facility.

Woodbine Business Park
Canada Drive, Town of Dewitt, New York

On May 31, 2013, AECC personnel collected 10 grab soil samples (SP2-01 through SP2-10) from Soil Pile #2, and 6 grab soil samples (SP3-01 through SP3-06) from Soil Pile #3. All soil samples were collected from approximately 12-18 inches below the soil pile surface.

Aroclor-1248 was detected in nine of the ten samples collected from Soil Pile #2. The detected concentrations ranged from 0.0802 ppm in sample SP2-03 to 25.673 ppm in sample SP2-08.

The highest concentration of Aroclor-1248 was detected in sample SP2-08, where the concentration of Aroclor-1248 was 24.70 ppm. In addition, Aroclor-1260 was detected in six of the ten samples collected from Soil Pile #2. The highest concentration of Aroclor-1260 was also detected in sample SP2-08, where the concentration of Aroclor-1260 was 0.973 ppm.

PCBs were detected in one of the six samples collected from Soil Pile #3. Sample SP3-03 had a total PCB concentration of 0.046 ppm (Aroclor-1248 only), which is less than the Unrestricted SCO value of 0.1 ppm for total PCBs.

2.4 RETENTION POND BERM SAMPLING – MAY 2013

Woodbine informed AECC that some of the stockpiled soil originated from the area around the existing retention pond on the eastern portion of the site. As a result, AECC personnel collected 4 grab soil samples (Pond-01 through Pond-04) from the berm surrounding the retention pond at the northeast corner of the Site on May 31, 2013. No PCBs were detected in any of the samples collected from the berms.

2.5 'DEVELOPMENT PARCEL' SAMPLING – JULY 2013

On July 17, 2013, AECC personnel collected 36 grab soil samples (SS-1 through SS-36). Since neither the EPA nor DEC had an applicable guidance for sampling frequency on large parcels, AECC followed the sampling frequency guidelines in the "Guidance for Evaluation Residual Pesticides on Lands Formerly Used for Agricultural Production" published by the Oregon Department of Environmental Quality, the exceptions being that none of the samples were composited and no subsurface samples (2-3 feet below grade) were collected. The sampling locations are displayed on the attached Sample Location Plan (Figure 1).

Of the 36 soil samples collected, three contained detectable concentrations. Samples SS-02, SS-11, and SS-30 had concentrations of 0.0254 ppm, 0.0475 ppm, and 0.0742 ppm, respectively (only Aroclor-1254). The detected concentrations are below the Unrestricted SCO value of 0.1 ppm for total PCBs.

2.6 ADDITIONAL DEVELOPMENT PARCEL SAMPLING – OCTOBER AND DECEMBER 2014

AECC personnel collected an additional 30 grab soil samples on October 7, 2014 (SS-37 through SS-66). The samples were collected using the same grid pattern as used in the initial development parcel sampling event, extended to the west and south. In addition, four grab soil samples (ROAD-1 through ROAD-4) were collected from soils adjacent to Collamer Road and Loucks Road Extension, and submitted to the laboratory under separate chain-of-custody.

PCBs were detected in 26 of the 34 samples, including all four of the 'ROAD' samples. Concentrations of detected PCBs ranged from below the Unrestricted SCO to 104.38 ppm in sample SS-37. A mixture of Aroclor-1248, Aroclor-1254, and Aroclor-1260 contributed to the total PCB concentrations.

Woodbine Business Park
Canada Drive, Town of Dewitt, New York

AECC collected an additional 12 samples on October 29, 2014 (identified as SS-67 thru SS-78). These sampling points were selected to further delineate the location of elevated PCB contamination revealed during prior sampling events. Of the 12 samples collected, 6 contained detectable concentrations of Aroclor-1248, Aroclor-1254, and / or Aroclor-1260. Sample SS-67 contained the highest detected concentration of total PCBs with 121.07 ppm PCBs. The other five samples in which PCBs were detected contained less than 5.6 ppm PCBs.

On December 2, 2014, AECC personnel performed an additional round of confirmatory / delineation sampling by collecting 19 samples (identified as SS-79 thru SS-97). Of the 19 samples collected, 17 contained detectable concentrations of Aroclor-1248, Aroclor-1254, and / or Aroclor-1260. Sample SS-83 contained the highest detected concentration of total PCBs with 4,404 ppm PCBs. Sample SS-82 contained the next-highest detected concentration of total PCBs with 367.7 ppm, and sample SS-86 contained 77.82 ppm PCBs. The other twelve samples in which PCBs were detected contained less than 14.4 ppm PCBs.

AECC personnel performed one final round of confirmatory / delineation sampling on December 15, 2014, by collecting an additional 9 samples (identified as SS-98 thru SS-106), as well as 8 samples from depth at specific, previously sampled, locations. Samples from depth were collected from the original sampling area (confirmatory sample CS-1, formerly beneath Soil Pile #1), from the area of greatest detected PCB concentration (surface samples SS-53 and SS-83), and from the edge of the greatest concentration of contamination (surface sample SS-87).

Aroclor-1248 and Aroclor-1254 were detected in 6 of the 9 new sampling locations, with the largest concentration detected in SS-99, totaling 96.7 ppm PCBs. All other locations from this round of sampling contained a concentration of less than 0.13 ppm PCBs.

Aroclor-1248, Aroclor-1254, and / or Aroclor-1260 were detected in all 8 soil samples collected from depth. In general, total PCB concentrations trended downward as depth of the sample collection point increased, although SS-83 did not exactly follow this trend. Sample SS-83 (surface) had a concentration of 4,404 ppm total PCBs, while the 1.5' bgs sample had a concentration of 66.6 ppm and the 2.5' bgs sample had a concentration of 297 ppm.

2.7 CONFIRMATORY DEVELOPMENT PARCEL SAMPLING – OCTOBER 2014

On October 9, 2014, AECC personnel collected 11 confirmatory samples around the previously sampled locations SS-02, SS-11, and SS-30 to determine if the original "hits" were anomalies in the otherwise "clean" eastern portion of the Site, or if they were part of larger areas of contamination. The sampling plan consisted of the collection of four grab samples around each original sample location (except that only three samples were collected in the vicinity of SS-02, due to the proximity of Soil Pile #3). The confirmatory samples were located at the cardinal directions 20 feet from the original sample locations.

Of the three samples collected around SS-02, one detected no PCBs, one detected a mixture of Aroclor-1248 and Aroclor-1254 totaling 0.0788 ppm PCBs (below the Unrestricted SCO), and one contained a total concentration of PCBs of 2.39 ppm (Aroclor-1248, Aroclor-1254, and Aroclor-1260 all contributed to this total), which is above the Unrestricted SCO for total PCBs and is greater than the concentration of PCBs originally detected in sample SS-02.

PCBs were not detected in any of the four samples collected around SS-11.

Woodbine Business Park
Canada Drive, Town of Dewitt, New York

Aroclor-1254 (only) was detected in two of the four samples collected around SS-30 at concentrations below the Unrestricted SCO (0.0175 and 0.0183 ppm).

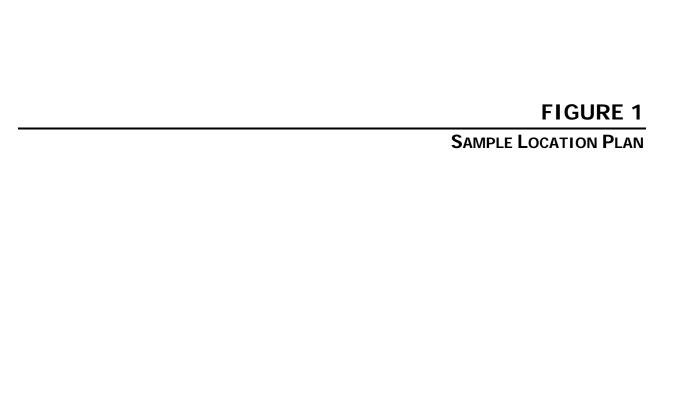
2.8 CONFIRMATORY 'SOIL PILE 3' SAMPLING - DECEMBER 2014

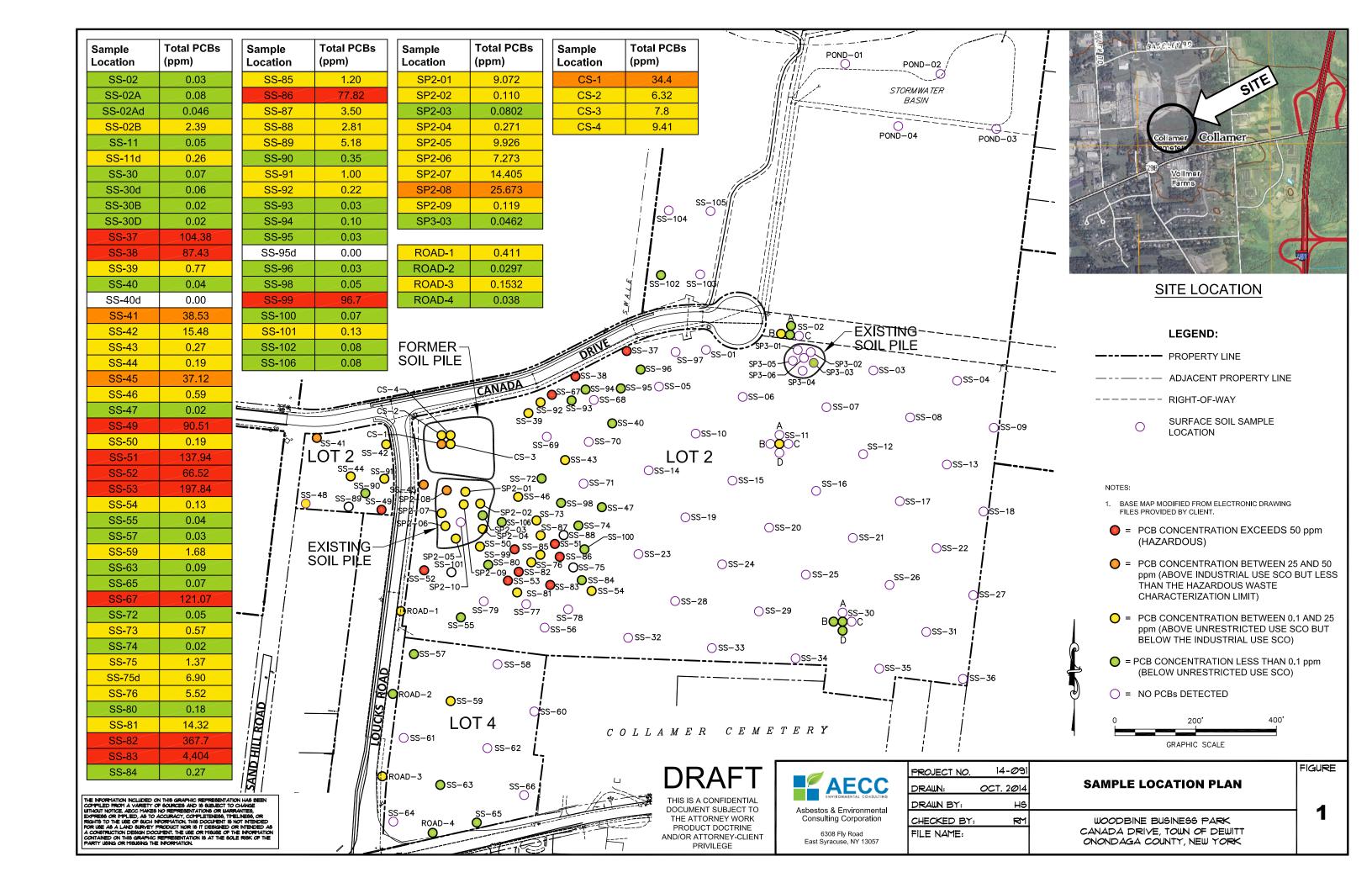
On December 29, 2014, AECC personnel collected 2 composite samples (SP3-07 and SP3-08) from the previously-sampled Soil Pile #3 near the cul-de-sac. The sampling frequency was performed in accordance with the NYSDEC Commissioner's Policy (CP-51) sampling guidelines for stockpiled soils. No PCBs were detected in either of the composite samples.

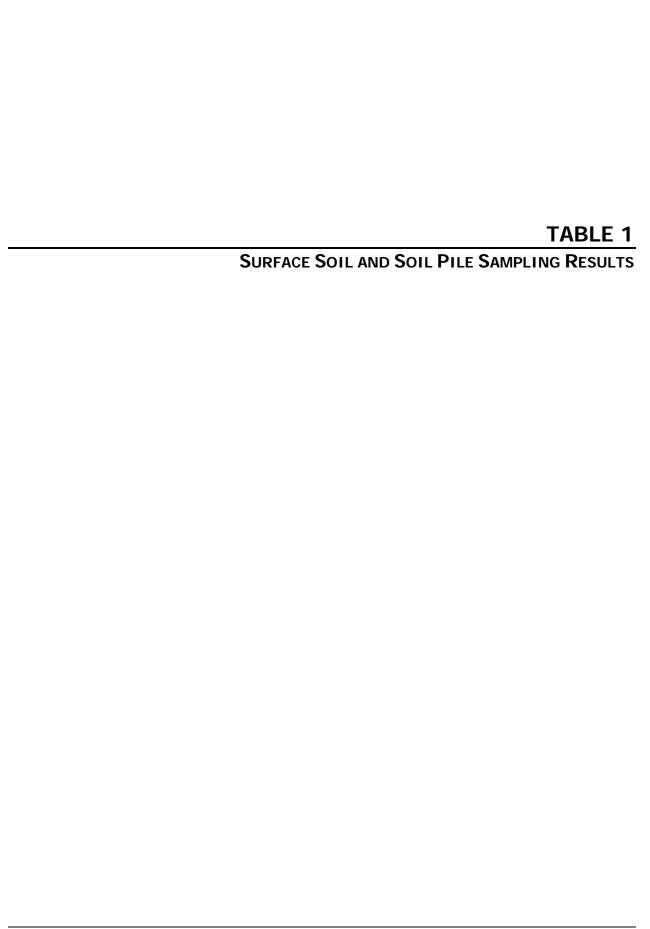
3.0 CONCLUSIONS

The source of the PCB contamination is still unknown.

The following trends were noted after tabulating and mapping the results of the sampling events:


- The eastern and southern portions of the Site are relatively free of PCB contamination. The few "hits" tended to contain only Aroclor-1254.
- The limited sampling conducted in the northern portion of the site did not suggest that this area is a concern for extensive PCB contamination. Laboratory analysis revealed that only one of the eight samples collected in this area contained PCBs, and that concentration was below the Unrestricted SCO.
- In the western portion of the Site, the heaviest contamination appears to extend out in an approximate 125-foot radius, centered around sampling locations SS-82 and SS-83, which also happen to be the samples with the highest recorded PCB concentrations. Typically, Aroclor-1248, Aroclor-1254, and Aroclor-1260 were detected in these samples.
- The samples collected in the vicinity of Loucks Road Extension and Canada Drive show elevated PCB concentrations. Typically, Aroclor-1248, Aroclor-1254, and Aroclor-1260 were detected in these samples.


If you should have any questions regarding the information presented in this report, please feel free to contact our office at your convenience.


Sincerely,

Asbestos & Environmental Consulting Corporation

Richard D. McKenna Project Manager

Aroclor-1248

Aroclor-1254

Aroclor-1260

Total PCBs

12672-29-6

11097-69-1

11096-82-5

BRL

0.0297

BRL

0.0297

0.0537

0.0995

BRL

0.1532

Woodbine Business Park - Canada Drive, Dewitt, NY

AECC Project #14-091

NYSDEC Spill #13-00433

	PCB Aroclor	CAS Number	CS-1	CS-2	CS-3	CS-4	SP2-01	SP2-02	SP2-03	SP2-04	SP2-05	SP2-06	SP2-07	SP2-08	SP2-09	SP2-10	SP3-01	SP3-02	SP3-03	SP3-04	SP3-05	SP3-06	SP3-07*	SP3-08*
Ś	PCB AIOCIOI	CAS Nulliber	4/8/2013	4/8/2013	4/8/2013	4/8/2013	5/31/2013	5/31/2013	5/31/2013	5/31/2013	5/31/2013	5/31/2013	5/31/2013	5/31/2013	5/31/2013	5/31/2013	5/31/2013	5/31/2013	5/31/2013	5/31/2013	5/31/2013	5/31/2013	12/29/2014	12/29/2014
Fie I	Aroclor-1248	12672-29-6	34.4	6.32	7.8	9.41	8.78	0.11	0.0648	0.271	9.64	7.08	13.9	24.7	0.119	BRL	BRL	BRL	0.0462	BRL	BRL	BRL	BRL	BRL
ē	Aroclor-1254	11097-69-1	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL
Š	Aroclor-1260	11096-82-5	BRL	BRL	BRL	BRL	0.292	BRL	0.0154	BRL	0.286	0.193	0.505	0.973	BRL	BRL								
	Total PCBs		34.4	6.32	7.8	9.41	9.072	0.11	0.0802	0.271	9.926	7.273	14.405	25.673	0.119	0	0	0	0.0462	0	0	0	0	0

PCB Aroclor	CAS Number	SS-01	SS-02	SS-02A	SS-02Ad	SS-02B	SS-02C	SS-03	SS-04	SS-05	SS-06	SS-07	SS-07d	SS-08	SS-09	SS-10	SS-11	SS-11d	SS-11A	SS-11B	SS-11C	SS-11D	SS-12
PCB ATOCIOF	CAS Number	7/13/2013	7/13/2013	10/9/2014	10/9/2014	10/9/2014	10/9/2014	7/13/2013	7/13/2013	7/13/2013	7/13/2013	7/13/2013	7/13/2013	7/13/2013	7/13/2013	7/13/2013	7/13/2013	7/13/2013	10/9/2014	10/9/2014	10/9/2014	10/9/2014	7/13/2013
Aroclor-1248	12672-29-6	BRL	BRL	0.024	BRL	1.2	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL
Aroclor-1254	11097-69-1	BRL	0.0254	0.0548	0.046	1.1	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	0.0465	0.12	BRL	BRL	BRL	BRL	BRL
Aroclor-1260	11096-82-5	BRL	BRL	BRL	BRL	0.0871	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	0.14	BRL	BRL	BRL	BRL	BRL
Total PCBs		0	0.0254	0.0788	0.046	2.3871	0	0	0	0	0	0	0	0	0	0	0.0465	0.26	0	0	0	0	0
PCB Aroclor	CAS Number	SS-13	SS-14	SS-15	SS-16	SS-17	SS-18	SS-19	SS-20	SS-21	SS-22	SS-23	SS-23d	SS-24	SS-25	SS-26	SS-27	SS-28	SS-29	SS-30	SS-30d	SS-30A	SS-30B
r CD Alocioi	CAS Number	7/13/2013	7/13/2013	7/13/2013	7/13/2013	7/13/2013	7/13/2013	7/13/2013	7/13/2013	7/13/2013	7/13/2013	7/13/2013	7/13/2013	7/13/2013	7/13/2013	7/13/2013	7/13/2013	7/13/2013	7/13/2013	7/13/2013	7/13/2013	10/9/2014	10/9/2014
Aroclor-1248	12672-29-6	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL								
Aroclor-1254	11097-69-1	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	0.0742	0.064	BRL	0.0183								
Aroclor-1260	11096-82-5	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL								
Total PCBs		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0742	0.064	0	0.0183
PCB Aroclor	CAS Number	SS-30C	SS-30D	SS-31	SS-32	SS-33	SS-34	SS-35	SS-36	SS-37	SS-38	SS-39	SS-40	SS-40d	SS-41	SS-42	SS-43	SS-44	SS-45	SS-46	SS-47	SS-48	SS-49
1 65741 66161		10/9/2014	10/9/2014	7/13/2013	7/13/2013	7/13/2013	7/13/2013	7/13/2013	7/13/2013	10/7/2014	10/7/2014	10/7/2014	10/7/2014	10/7/2014	10/7/2014	10/7/2014	10/7/2014	10/7/2014	10/7/2014	10/7/2014	10/7/2014	10/7/2014	10/7/2014
Aroclor-1248	12672-29-6	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	54.3	44.8	0.207	BRL	BRL	19.7	7.46	0.112	0.0451	17.3	0.194	BRL	BRL	32.3
Aroclor-1254	11097-69-1	BRL	0.0175	BRL	BRL	BRL	BRL	BRL	BRL	46	39.3	0.487	0.0353	BRL	17.4	7.4	0.117	0.123	18.3	0.333	0.0204	BRL	53.1
Aroclor-1260	11096-82-5	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	4.08	3.33	0.0771	BRL	BRL	1.43	0.616	0.0456	0.0263	1.52	0.0603	BRL	BRL	5.11
Total PCBs		0	0.0175	0	0	0	0	0	0	104.38	87.43	0.7711	0.0353	0	38.53	15.476	0.2746	0.1944	37.12	0.5873	0.0204	0	90.51
PCB Aroclor	CAS Number	SS-50	SS-51	SS-52	SS-53	SS-54	SS-55	SS-56	SS-57	SS-58	SS-59	SS-60	SS-60d	SS-61	SS-62	SS-63	SS-64	SS-65	SS-66	SS-67	SS-68	SS-69	SS-70
		10/7/2014	10/7/2014	10/7/2014	10/7/2014	10/7/2014	10/7/2014	10/7/2014	10/7/2014	10/7/2014	10/7/2014	10/7/2014	10/7/2014	10/7/2014	10/7/2014	10/7/2014	10/7/2014	10/7/2014		10/29/2014			
Aroclor-1248	12672-29-6	0.0695	78	25.3	98.1	0.0557	0.0373	BRL	BRL	BRL	0.619	BRL	BRL	BRL	BRL	0.0282	BRL	BRL	BRL	61.3	BRL	BRL	BRL
Aroclor-1254	11097-69-1	0.0947	54.5	37.5	93.1	0.0792	BRL	BRL	0.0258	BRL	0.974	BRL	BRL	BRL	BRL	0.0655	BRL	0.0746	BRL	56.4	BRL	BRL	BRL
Aroclor-1260	11096-82-5	0.0276	5.44	3.72	6.64	BRL	BRL	BRL	BRL	BRL	0.0875	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	3.37	BRL	BRL	BRL
Total PCBs		0.1918	137.94	66.52	197.84	0.1349	0.0373	0	0.0258	0	1.6805	0	0	0	0	0.0937	0	0.0746	0	121.07	0	0	0
PCB Aroclor	CAS Number	SS-71	SS-72	SS-73	SS-74	SS-75	SS-75d	SS-76	SS-77	SS-78	SS-79	SS-80	SS-81	SS-82	SS-83	SS-84	SS-85	SS-86	SS-87	SS-88	SS-89	SS-90	SS-91
			10/29/2014		10/29/2014		10/29/2014		10/29/2014		12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014		12/2/2014	12/2/2014	12/2/2014	12/2/2014
Aroclor-1248	12672-29-6	BRL	BRL	BRL	BRL	BRL	6.9	2.69	BRL	BRL	BRL	0.0798	BRL	184	2440	0.271	BRL	42	BRL	BRL	2.43	0.11	BRL
Aroclor-1254	11097-69-1	BRL	0.0302	0.516	0.0179	1.28	BRL	2.63	BRL	BRL	BRL	0.102	13.5	172	1840	BRL	1.11	33.1	3.29	2.66	2.56	0.207	0.907
Aroclor-1260	11096-82-5	BRL	0.0168	0.0518	BRL	0.0883	BRL	0.203	BRL	BRL	BRL	BRL	0.818	11.7	124	BRL	0.0943	2.72	0.207	0.147	0.185	0.0318	0.0952
Total PCBs		0	0.047	0.5678	0.0179	1.3683	6.9	5.523	0	0	0	0.1818	14.318	367.7	4404	0.271	1.2043	77.82	3.497	2.807	5.175	0.3488	1.0022
PCB Aroclor	CAS Number	SS-92	SS-93	SS-94	SS-95	SS-95d	SS-96	SS-97	SS-98	SS-99	SS-100	SS-101	SS-102	SS-103	SS-104	SS-105	SS-105d	SS-106	Pond-01	Pond-02	Pond-03	Pond-04	Road 1
4 4 4240	12672.20.6	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/15/2014		12/15/2014	12/15/2014				12/15/2014	12/15/2014	• •		5/31/2013	5/31/2013	5/31/2013	10/7/2014
Aroclor-1248	12672-29-6	0.116	BRL	0.0324	BRL	BRL	BRL	BRL	0.0254	49.1	0.0365	0.0611	0.0489	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	0.164
Aroclor-1254	11097-69-1	0.101	0.0266	0.0661	BRL	BRL	0.0309	BRL	0.0224	47.6	0.0321	0.0647	0.0279	BRL	BRL	BRL	BRL	0.0763	BRL	BRL	BRL	BRL	0.217
Aroclor-1260	11096-82-5	BRL	BRL	BRL	0.0276	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	0.03
Total PCBs		0.217	0.0266	0.0985	0.0276	0	0.0309	0	0.0478	96.7	0.0686	0.1258	0.0768	0	0	0	0	0.0763	0	0	0	0	0.411
PCB Aroclor	CAS Number	Road 2	Road 3	Road 4																			
		10/7/2014	10/7/2014	10/7/2014																			

	PCB Aroclor	CAS Number	CS-1 (1.5')	CS-1 (2.5')	SS-53 (1.5')	SS-53 (2.5')	SS-83 (1.5')	SS-83 (2.5')	SS-87 (1.5')	SS-87 (2.5')
ء		CAS Number	12/15/2014	12/15/2014	12/15/2014	12/15/2014	12/15/2014	12/15/2014	12/15/2014	12/15/2014
ept	Aroclor-1248	12672-29-6	0.941	0.172	7.79	3.21	38.9	177	2.68	0.106
Þ	Aroclor-1254	11097-69-1	0.657	0.129	5.52	2.85	27.7	120	2.07	0.067
۸	Aroclor-1260	11096-82-5	0.0546	BRL	BRL	BRL	BRL	BRL	0.13	BRL
	Total PCBs		1.6526	0.301	13.31	6.06	66.6	297	4.88	0.173

BRL

0.038

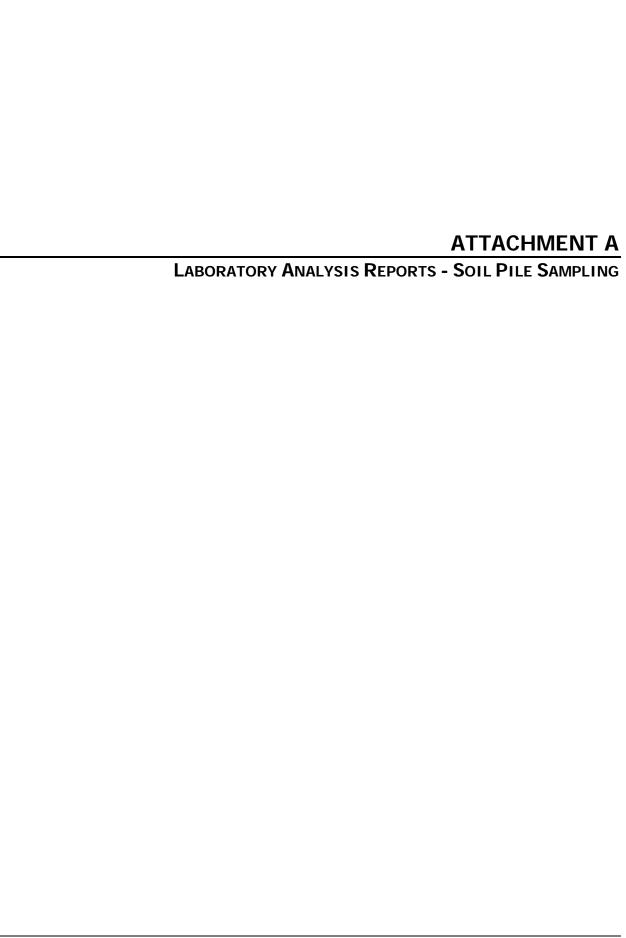
BRL

0.038

All concentrations in milligrams per kilogram (mg/kg or approximate parts per million - ppm)

BRL - Below Reportable/Detectable Limit

The following PCB Aroclors were not found above the detection limit in any of the above samples: Aroclor-1016, -1221, -1232, -1242, -1262, -1268


Total PCB Concentration less than 0.1 ppm (Below Unrestricted Use SCO per 6 NYCRR 375, Table 375-6.8(a))

Total PCB Concentration between 0.1 and 25 ppm (Above Unrestricted SCO but below the Industrial SCO, per 6 NYCRR 375, Table 375-6.8(a))

Total PCB Concentration between 25 and 50 ppm (Above Industrial Use SCO but less than the Hazardous Waste Characterization (Toxicity) limit)

Total PCB Concentration exceeds 50 ppm (Hazardous Waste Characterization (Toxicity) limit)

^{* -} Composite Sample

Report Date: 11-Apr-13 15:00

☑ Final Report☐ Re-Issued Report☐ Revised Report

HANIBAL TECHNOLOGY

Laboratory Report

AECC Environmental Consulting 6308 Fly Road

East Syracuse, NY 13057

Attn: Rico McKenna

Project: WBP - East Syracuse, NY

Project #: 13-067

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SB67363-01	CS-1	Soil	08-Apr-13 15:40	09-Apr-13 21:00
SB67363-02	CS-2	Soil	08-Apr-13 15:45	09-Apr-13 21:00
SB67363-03	CS-3	Soil	08-Apr-13 15:50	09-Apr-13 21:00
SB67363-04	CS-4	Soil	08-Apr-13 15:55	09-Apr-13 21:00

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011/MA012 New York # 11393/11840 Pennsylvania # 68-04426/68-02924 Rhode Island # 98 USDA # S-51435

Authorized by:

Nicole Leja Laboratory Director

Dicolo Leja

Spectrum Analytical holds certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 10 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, FL-E87936 and NJ-MA012).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

CASE NARRATIVE:

The sample temperature upon receipt by Spectrum Analytical courier was recorded as 13.5 degrees Celsius. The condition of these samples was further noted as received on ice. The samples were transported on ice to the laboratory facility and the temperature was recorded at 1.3 degrees Celsius upon receipt at the laboratory. Please refer to the Chain of Custody for details specific to sample receipt times.

An infrared thermometer with a tolerance of +/- 1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

SW846 8082A

Spikes:

1307976-MS1 Source: SB67363-01

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

The RPD and/or percent recovery for this QC spike sample cannot be accurately calculated due to the high concentration of analyte inherent in the sample.

Aroclor-1016 Aroclor-1016 [2C] Aroclor-1260 Aroclor-1260 [2C]

1307976-MSD1 Source: SB67363-01

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

The RPD and/or percent recovery for this QC spike sample cannot be accurately calculated due to the high concentration of analyte inherent in the sample.

Aroclor-1016 Aroclor-1016 [2C] Aroclor-1260 Aroclor-1260 [2C]

Duplicates:

1307976-DUP1 Source: SB67363-01

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interference's.

4,4-DB-Octafluorobiphenyl (Sr) 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) [2C]

Samples:

SB67363-01 *CS-1*

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

SW846 8082A

Samples:

SB67363-01 *CS-1*

The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interference's.

4,4-DB-Octafluorobiphenyl (Sr)

4,4-DB-Octafluorobiphenyl (Sr) [2C]

Decachlorobiphenyl (Sr)

Decachlorobiphenyl (Sr) [2C]

SB67363-02

CS-2

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

SB67363-03

CS-3

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

SB67363-04

CS-4

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

Sample Acceptance Check Form

Client:	AECC Environmental Consulting
Project:	WBP - East Syracuse, NY / 13-067
Work Order:	SB67363
Sample(s) received on:	4/9/2013

Vickie Knowles

Received by:

The following outlines the condition of samples for the attached Chain of Custody upon receipt.

		<u>y es</u>	<u>No</u>	N/A
1.	Were custody seals present?		$\overline{\mathbf{V}}$	
2.	Were custody seals intact?			✓
3.	Were samples received at a temperature of $\leq 6^{\circ}$ C?		\checkmark	
4.	Were samples cooled on ice upon transfer to laboratory representative?	$\overline{\mathbf{V}}$		
5.	Were samples refrigerated upon transfer to laboratory representative?		\checkmark	
6.	Were sample containers received intact?	\checkmark		
7.	Were samples properly labeled (labels affixed to sample containers and include sample ID, site location, and/or project number and the collection date)?	\checkmark		
8.	Were samples accompanied by a Chain of Custody document?	\checkmark		
9.	Does Chain of Custody document include proper, full, and complete documentation, which shall include sample ID, site location, and/or project number, date and time of collection, collector's name, preservation type, sample matrix and any special remarks concerning the sample?	\checkmark		
0.	Did sample container labels agree with Chain of Custody document?	\checkmark		
1.	Were samples received within method-specific holding times?	$\overline{\mathbf{V}}$		

CS-1 SB67363	dentification -01			Client P			<u>Matrix</u> Soil	·	ection Date S-Apr-13 15			<u>ceived</u> Apr-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cer
Semivolat	tile Organic Compounds by (GC											
<u>Polychlorina</u>	ated Biphenyls		GS1										
Prepared	by method SW846 3545A												
12674-11-2	Aroclor-1016	< 533	U, D	μg/kg dry	1070	533	50	SW846 8082A	10-Apr-13	11-Apr-13	IMR	1307976	Χ
11104-28-2	Aroclor-1221	< 960	U, D	μg/kg dry	1070	960	50			н	"		Χ
11141-16-5	Aroclor-1232	< 684	U, D	μg/kg dry	1070	684	50			н	"		Χ
53469-21-9	Aroclor-1242	< 628	U, D	μg/kg dry	1070	628	50			н	"		Χ
12672-29-6	Aroclor-1248 [2C]	34,400	D	μg/kg dry	1070	432	50			н	"		Χ
11097-69-1	Aroclor-1254	< 888	U, D	μg/kg dry	1070	888	50				"		Χ
11096-82-5	Aroclor-1260	< 661	U, D	μg/kg dry	1070	661	50			н	"		Χ
37324-23-5	Aroclor-1262	< 993	U, D	μg/kg dry	1070	993	50			н	"		Χ
11100-14-4	Aroclor-1268	< 335	U, D	μg/kg dry	1070	335	50				"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	0	S01, U		30-15	0 %			н		"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	0	S01, U		30-15	0 %				п	"		
2051-24-3	Decachlorobiphenyl (Sr)	0	S01, U		30-15	0 %				н			
2051-24-3	Decachlorobiphenyl (Sr) [2C]	0	S01, U		30-15	0 %				п	"		
General C	Chemistry Parameters												
	% Solids	87.0		%			1	SM2540 G Mod.	10-Apr-13	10-Apr-13	DT	1307977	
Sample Id	dentification_							~					
CS-2				Client P			Matrix		ection Date			<u>ceived</u>	
SB67363	-02			13-0	067		Soil	08	3-Apr-13 15	:45	09-7	Apr-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cer
Semivolat	tile Organic Compounds by C	GC											
	ated Biphenyls I by method SW846 3545A		GS1										
													.,
12674-11-2	Aroclor-1016	< 105	U, D	μg/kg dry	211	105	10	SW846 8082A	10-Apr-13	11-Apr-13	IMR	1307976	Х
	Aroclor-1016 Aroclor-1221	< 105 < 190	U, D U, D	μg/kg dry μg/kg dry	211 211	105 190	10 10	SW846 8082A	10-Apr-13	11-Apr-13	IMR "	1307976	X
11104-28-2								SW846 8082A "	10-Apr-13 "	11-Apr-13			
11104-28-2 11141-16-5	Aroclor-1221	< 190	U, D	μg/kg dry	211	190	10	SW846 8082A "	10-Apr-13 "	11-Apr-13	"		Х
11104-28-2 11141-16-5 53469-21-9	Aroclor-1221 Aroclor-1232	< 190 < 135	U, D U, D	μg/kg dry μg/kg dry	211 211	190 135	10 10	SW846 8082A	10-Apr-13 " " "	"	"		X X
11104-28-2 11141-16-5 53469-21-9 12672-29-6	Aroclor-1221 Aroclor-1232 Aroclor-1242	< 190 < 135 < 124	U, D U, D U, D	μg/kg dry μg/kg dry μg/kg dry	211 211 211	190 135 124	10 10 10	SW846 8082A , , ,	10-Apr-13 " " " "		" "		X X X
11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1	Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 [2C]	< 190 < 135 < 124 6,320	U, D U, D U, D D	µg/kg dry µg/kg dry µg/kg dry µg/kg dry	211 211 211 211	190 135 124 85.4	10 10 10 10	SW846 8082A " " "	10-Apr-13		" "	:	X X X
11104-28-2 111141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5	Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 [2C] Aroclor-1254	< 190 < 135 < 124 6,320 < 176	U, D U, D U, D D U, D	µg/kg dry µg/kg dry µg/kg dry µg/kg dry µg/kg dry	211 211 211 211 211	190 135 124 85.4 176	10 10 10 10 10	SW846 8082A 	10-Apr-13		" "		X X X X
11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5	Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 [2C] Aroclor-1254 Aroclor-1260	< 190 < 135 < 124 6,320 < 176 < 131	U, D U, D U, D D U, D U, D	µg/kg dry µg/kg dry µg/kg dry µg/kg dry µg/kg dry µg/kg dry	211 211 211 211 211 211	190 135 124 85.4 176 131	10 10 10 10 10	SW846 8082A 	10-Apr-13		" " "		X X X X X
11104-28-2 111141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4	Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 [2C] Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268	< 190 < 135 < 124 6,320 < 176 < 131 < 196	U, D U, D U, D D U, D U, D U, D	μg/kg dry μg/kg dry μg/kg dry μg/kg dry μg/kg dry μg/kg dry μg/kg dry	211 211 211 211 211 211 211	190 135 124 85.4 176 131	10 10 10 10 10 10 10	SW846 8082A 	10-Apr-13				x x x x x x
12674-11-2 11104-28-2 111141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate rec 10386-84-2	Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 [2C] Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268 coveries: 4,4-DB-Octafluorobiphenyl	< 190 < 135 < 124 6,320 < 176 < 131 < 196	U, D U, D U, D D U, D U, D U, D	μg/kg dry μg/kg dry μg/kg dry μg/kg dry μg/kg dry μg/kg dry μg/kg dry	211 211 211 211 211 211 211	190 135 124 85.4 176 131 196 66.2	10 10 10 10 10 10 10	SW846 8082A	10-Apr-13				x x x x x x
11104-28-2 111141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate rec	Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 [2C] Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268 coveries: 4,4-DB-Octafluorobiphenyl (Sr) 4,4-DB-Octafluorobiphenyl	< 190 < 135 < 124 6,320 < 176 < 131 < 196 < 66.2	U, D U, D U, D D U, D U, D U, D	μg/kg dry μg/kg dry μg/kg dry μg/kg dry μg/kg dry μg/kg dry μg/kg dry	211 211 211 211 211 211 211 211 211	190 135 124 85.4 176 131 196 66.2	10 10 10 10 10 10 10	SW846 8082A	10-Apr-13				x x x x x x
11104-28-2 111141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate rec 10386-84-2	Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 [2C] Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268 coveries: 4,4-DB-Octafluorobiphenyl (Sr)	< 190 < 135 < 124 6,320 < 176 < 131 < 196 < 66.2	U, D U, D U, D D U, D U, D U, D	μg/kg dry μg/kg dry μg/kg dry μg/kg dry μg/kg dry μg/kg dry μg/kg dry	211 211 211 211 211 211 211 211 211	190 135 124 85.4 176 131 196 66.2	10 10 10 10 10 10 10	SW846 8082A	10-Apr-13				x x x x x x

CS-2	dentification			Client P	roject#		<u>Matrix</u>	Coll	ection Date	/Time	Rec	ceived	
CS-2 SB67363	-02			13-0	067		Soil	08	8-Apr-13 15	:45	09-2	Apr-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
General C	Chemistry Parameters												
	% Solids	86.9		%			1	SM2540 G Mod.	10-Apr-13	10-Apr-13	DT	1307977	
Sample Id	dentification			Client P	roject#		Matrix	Call	ection Date	/Time	Da	ceived	
CS-3				13-0			Soil		3-Apr-13 15			Apr-13	
SB67363	-03			13-0	J0 /		3011	Uc	5-Api-13 13	.50	09-2	Арт-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by G	GC											
Polychlorina	ted Biphenyls		GS1										
Prepared	by method SW846 3545A												
12674-11-2	Aroclor-1016	< 122	U, D	μg/kg dry	245	122	10	SW846 8082A	10-Apr-13	11-Apr-13	IMR	1307976	Χ
11104-28-2	Aroclor-1221	< 221	U, D	μg/kg dry	245	221	10			н	"		Χ
11141-16-5	Aroclor-1232	< 157	U, D	μg/kg dry	245	157	10	п		н	"		Χ
53469-21-9	Aroclor-1242	< 144	U, D	μg/kg dry	245	144	10			ı	"		Χ
12672-29-6	Aroclor-1248	7,800	D	μg/kg dry	245	120	10			ı	"		Χ
11097-69-1	Aroclor-1254	< 204	U, D	μg/kg dry	245	204	10			ı	"		Χ
11096-82-5	Aroclor-1260	< 152	U, D	μg/kg dry	245	152	10			ı	"		Χ
37324-23-5	Aroclor-1262	< 228	U, D	μg/kg dry	245	228	10	п			"		Χ
11100-14-4	Aroclor-1268	< 76.9	U, D	μg/kg dry	245	76.9	10	II			"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	100			30-15	0 %		п			"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	100			30-15	0 %		u .			"		
2051-24-3	Decachlorobiphenyl (Sr)	100			30-15	0 %				ı	"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	100			30-15	0 %		u .			"		
General C	Themistry Parameters												
	% Solids	80.0		%			1	SM2540 G Mod.	10-Apr-13	10-Apr-13	DT	1307977	

Sample Id CS-4 SB67363	dentification -04			Client P			<u>Matrix</u> Soil		ection Date Apr-13 15			ceived Apr-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
Polychlorina	ted Biphenyls		GS1										
Prepared	by method SW846 3545A												
12674-11-2	Aroclor-1016	< 115	U, D	μg/kg dry	231	115	10	SW846 8082A	10-Apr-13	11-Apr-13	IMR	1307976	Χ
11104-28-2	Aroclor-1221	< 208	U, D	μg/kg dry	231	208	10				"		Χ
11141-16-5	Aroclor-1232	< 148	U, D	μg/kg dry	231	148	10				"		Χ
53469-21-9	Aroclor-1242	< 136	U, D	μg/kg dry	231	136	10				"		Χ
12672-29-6	Aroclor-1248	9,410	D	μg/kg dry	231	113	10				"		Χ
11097-69-1	Aroclor-1254	< 192	U, D	μg/kg dry	231	192	10	п			"		Х
11096-82-5	Aroclor-1260	< 143	U, D	μg/kg dry	231	143	10	п			"		Х
37324-23-5	Aroclor-1262	< 215	U, D	μg/kg dry	231	215	10				"		Χ
11100-14-4	Aroclor-1268	< 72.4	U, D	μg/kg dry	231	72.4	10	II .			"		Х
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	100			30-15	0 %		п			"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	100			30-15	0 %		п			"		
2051-24-3	Decachlorobiphenyl (Sr)	150			30-15	60 %		п			•		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	100			30-15	50 %					"		
General C	Chemistry Parameters												

10-Apr-13 10-Apr-13

DT

1307977

% Solids

Semivolatile Organic Compounds by GC - Quality Control

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
tch 1307976 - SW846 3545A										
Blank (1307976-BLK1)					Pre	pared & Analy	zed: 10-Apr-13			
Aroclor-1016	< 9.99	U	μg/kg wet	9.99						
Aroclor-1016 [2C]	< 9.98	U	μg/kg wet	9.98						
Aroclor-1221	< 18.0	U	μg/kg wet	18.0						
Aroclor-1221 [2C]	< 13.1	U	μg/kg wet	13.1						
Aroclor-1232	< 12.8	U	μg/kg wet	12.8						
Aroclor-1232 [2C]	< 15.7	U	μg/kg wet	15.7						
Aroclor-1242	< 11.8	U	μg/kg wet	11.8						
Aroclor-1242 [2C]	< 7.86	U	μg/kg wet	7.86						
Aroclor-1248	< 9.81	U	μg/kg wet	9.81						
Aroclor-1248 [2C]	< 8.11	U	μg/kg wet	8.11						
Aroclor-1254	< 16.7	U	μg/kg wet	16.7						
Aroclor-1254 [2C]	< 8.49	U	μg/kg wet	8.49						
Aroclor-1260	< 12.4	U	μg/kg wet	12.4						
Aroclor-1260 [2C]	< 8.93	U	μg/kg wet	8.93						
Aroclor-1262	< 18.6	U	μg/kg wet	18.6						
Aroclor-1262 [2C]	< 19.2	U	μg/kg wet	19.2						
Aroclor-1268	< 6.28	U	μg/kg wet	6.28						
Aroclor-1268 [2C]	< 9.90	U	μg/kg wet	9.90						
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	20.0		μg/kg wet		20.0		100	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	23.0		μg/kg wet		20.0		115	30-150		
Surrogate: Decachlorobiphenyl (Sr)	24.0		μg/kg wet		20.0		120	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	25.0		μg/kg wet		20.0		125	30-150		
LCS (1307976-BS1)					Pre	pared & Analy	zed: 10-Apr-13			
Aroclor-1016	270		μg/kg wet	9.99	250		108	40-140		
Aroclor-1016 [2C]	234		μg/kg wet	9.98	250		94	40-140		
Aroclor-1260	247		μg/kg wet	12.4	250		99	40-140		
Aroclor-1260 [2C]	246		μg/kg wet	8.93	250		98	40-140		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	19.0		μg/kg wet		20.0		95	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	20.0		μg/kg wet		20.0		100	30-150		
Surrogate: Decachlorobiphenyl (Sr)	21.0		μg/kg wet		20.0		105	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	22.0		μg/kg wet		20.0		110	30-150		
LCS Dup (1307976-BSD1)			F9.19.111			nared & Analy	zed: 10-Apr-13			
Aroclor-1016	273		μg/kg wet	9.99	250	paroa a marj	109	40-140	1	30
Aroclor-1016 [2C]	248		μg/kg wet	9.98	250		99	40-140	6	30
Aroclor-1260	248		μg/kg wet	12.4	250		99	40-140	0.4	30
Aroclor-1260 [2C]	225		μg/kg wet	8.93	250		90	40-140	9	30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	19.0		μg/kg wet		20.0		95	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	19.0		μg/kg wet		20.0		95	30-150		
Surrogate: Decachlorobiphenyl (Sr)	22.0		μg/kg wet		20.0		110	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	21.0		μg/kg wet		20.0		105	30-150		
Duplicate (1307976-DUP1)	21.0	GS1	Source: SB	67363-01		nared: 10-Δnr	-13 Analyzed:			
Aroclor-1016	< 561	U, D	μg/kg dry	561	110	BRL	10 Analyzeu.	11 Apr 10		30
Aroclor-1016 [2C]	< 561	U, D	μg/kg dry	561		BRL				30
Aroclor-1221	< 1010	U, D	μg/kg dry μg/kg dry	1010		BRL				30
Aroclor-1221 [2C]	< 734	U, D	μg/kg dry μg/kg dry	734		BRL				30
Aroclor-1221 [20]	< 721	U, D	μg/kg dry μg/kg dry	734		BRL				30
Aroclor-1232 [2C]	< 881	U, D	μg/kg dry μg/kg dry	881		BRL				30
Aroclor-1242	< 662	U, D		662		BRL				30
Aroclor-1242 [2C]	< 441	U, D	μg/kg dry μg/kg dry	441		BRL				30
	~ 44 I	υ, υ								3U

Semivolatile Organic Compounds by GC - Quality Control

					Spike	Source		%REC		RPD
nalyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limi
atch 1307976 - SW846 3545A										
<u>Duplicate (1307976-DUP1)</u>		GS1	Source: SE	867363-01	Pre	pared: 10-Apr	-13 Analyzed:	11-Apr-13		
Aroclor-1248 [2C]	45600	D	μg/kg dry	455		34400			28	30
Aroclor-1254	< 937	U, D	μg/kg dry	937		BRL				30
Aroclor-1254 [2C]	< 477	U, D	μg/kg dry	477		BRL				30
Aroclor-1260	< 697	U, D	μg/kg dry	697		BRL				30
Aroclor-1260 [2C]	< 502	U, D	μg/kg dry	502		480				30
Aroclor-1262	< 1050	U, D	μg/kg dry	1050		BRL				30
Aroclor-1262 [2C]	< 1080	U, D	μg/kg dry	1080		BRL				30
Aroclor-1268	< 353	U, D	μg/kg dry	353		BRL				30
Aroclor-1268 [2C]	< 556	U, D	μg/kg dry	556		BRL				30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	0.00	S01, U	μg/kg dry		22.5			30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	0.00	S01, U	μg/kg dry		22.5			30-150		
Surrogate: Decachlorobiphenyl (Sr)	0.00	S01, U	μg/kg dry		22.5			30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	0.00	S01, U	μg/kg dry		22.5			30-150		
Matrix Spike (1307976-MS1)		GS1	Source: SE	867363-01	Pre	pared: 10-Apr	-13 Analyzed:	11-Apr-13		
Aroclor-1016	12100	QM2, D	μg/kg dry	108	270	BRL	4490	40-140		
Aroclor-1016 [2C]	13600	QM2, D	μg/kg dry	108	270	BRL	5020	40-140		
Aroclor-1260	2530	QM2, D	μg/kg dry	134	270	BRL	936	40-140		
Aroclor-1260 [2C]	2620	QM2, D	μg/kg dry	96.5	270	480	790	40-140		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	32.4		μg/kg dry		21.6		150	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	32.4		μg/kg dry		21.6		150	30-150		
Surrogate: Decachlorobiphenyl (Sr)	32.4		μg/kg dry		21.6		150	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	32.4		μg/kg dry		21.6		150	30-150		
Matrix Spike Dup (1307976-MSD1)		GS1	Source: SE	367363-01	<u>Pre</u>	pared: 10-Apr	-13 Analyzed:	11-Apr-13		
Aroclor-1016	10400	QM2, D	μg/kg dry	111	278	BRL	3750	40-140	18	30
Aroclor-1016 [2C]	11200	QM2, D	μg/kg dry	111	278	BRL	4050	40-140	21	30
Aroclor-1260	2490	QM2, D	μg/kg dry	138	278	BRL	896	40-140	4	30
Aroclor-1260 [2C]	2580	QM2, D	μg/kg dry	99.1	278	480	755	40-140	5	30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	33.3		μg/kg dry		22.2		150	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	33.3		μg/kg dry		22.2		150	30-150		
Surrogate: Decachlorobiphenyl (Sr)	33.3		μg/kg dry		22.2		150	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	33.3		μg/kg dry		22.2		150	30-150		

Notes and Definitions

D Data reported from a dilution

GS1 Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

J Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration

(CLP J-Flag).

QM2 The RPD and/or percent recovery for this QC spike sample cannot be accurately calculated due to the high concentration

of analyte inherent in the sample.

S01 The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration

and/or matrix interference's.

U Analyte included in the analysis, but not detected at or above the MDL.

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

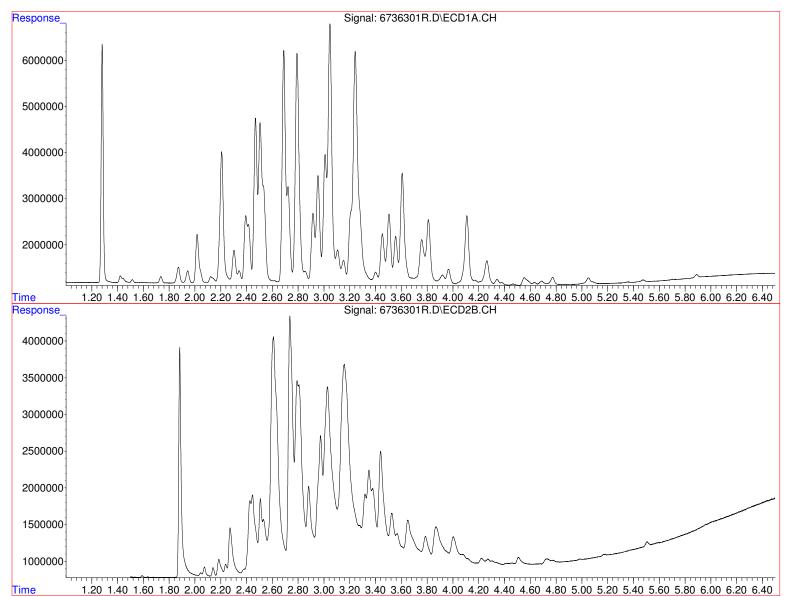
<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification:</u> The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

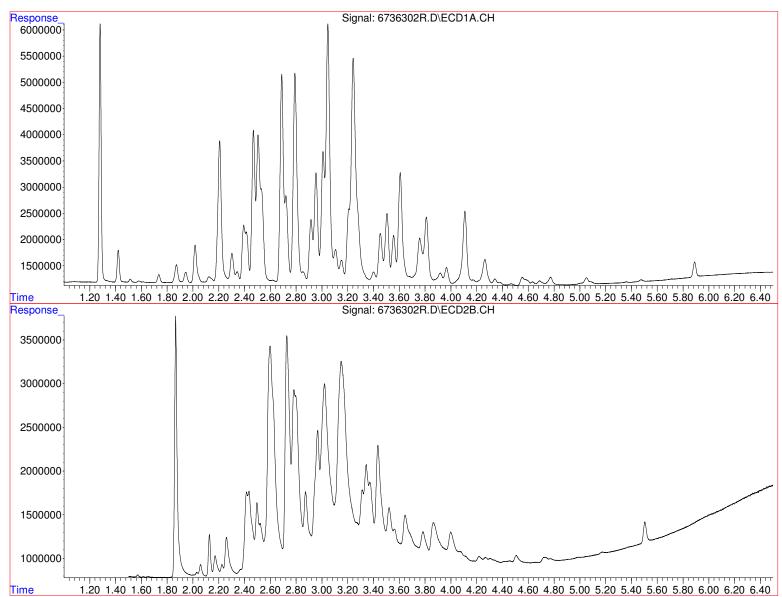

Validated by: June O'Connor File :G:\Apr2013\HPS12\DATA\PCB120410\6736301R.D

Operator : IMR

Acquired : 11 Apr 2013 9:01 am using AcqMethod 60120306.M

Instrument: HP G1530A Sample Name: SB67363-01 @ CS-1

Misc Info : 1:50 DIL ????????

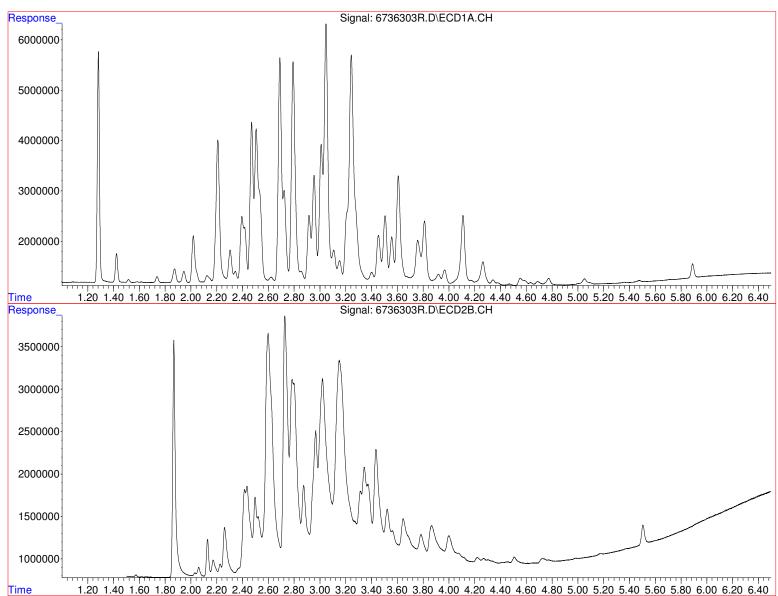

File :G:\Apr2013\HPS12\DATA\PCB120410\6736302R.D

Operator : IMR

Acquired : 11 Apr 2013 9:11 am using AcqMethod 60120306.M

Instrument: HP G1530A Sample Name: SB67363-02 @ CS-2

Misc Info : 1:10 DIL ????????

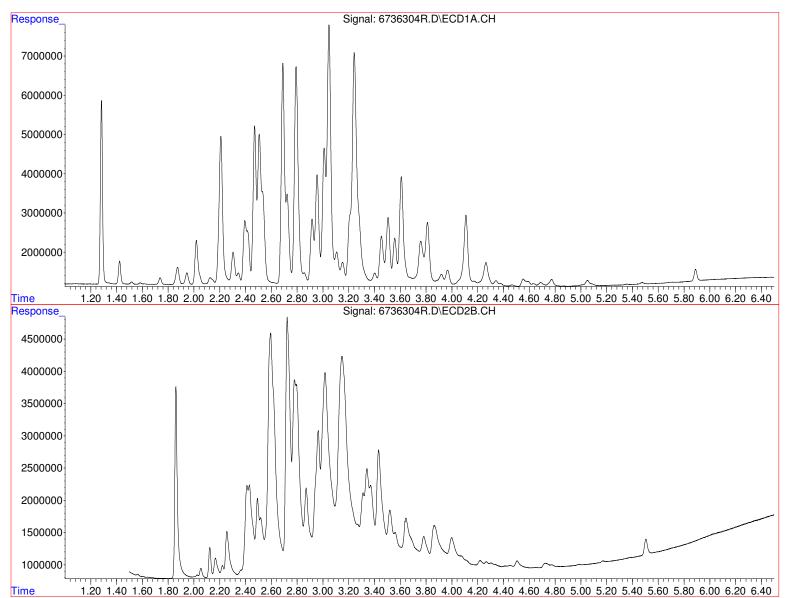

File :G:\Apr2013\HPS12\DATA\PCB120410\6736303R.D

Operator : IMR

Acquired : 11 Apr 2013 9:21 am using AcqMethod 60120306.M

Instrument: HP G1530A Sample Name: SB67363-03 @ CS-3

Misc Info : 1:10 DIL ????????


File :G:\Apr2013\HPS12\DATA\PCB120410\6736304R.D

Operator : IMR

Acquired : 11 Apr 2013 9:31 am using AcqMethod 60120306.M

Instrument: HP G1530A Sample Name: SB67363-04 @ CS-4

Misc Info : 1:10 DIL ????????

	U
Special Han	B673
dling:	02
	7
	_

CHAIN OF CUSTODY RECORD

		×			_	So	0	3:55		CS-4	4 64
		×			-	8	^	3:50		CS-3	103
		×			_	50	0	3:45	0	CS-2	20-
		×				So	0	3:40	4/8/13	(5-1	33-d
☐ Other ☐ THER II* ☐ THER IV* ☐ Other State-specific reporting standards:		8087	# of P	# of C	# of V # of A	Matrix	Туре	Time:	Date:	Sample Id:	Lab Id:
□ NY ASP A* □ NY ASP B* □ NJ Reduced* □ NJ Full*		e Pc	lastic		-				C=Composite	G=Grab C=(
QA/QC Reporting Level Standard		Bs						1	X3=	X2=	X1=
MA DEP MCP CAM Report: Yes □ No □ CT DPH RCP Report: Yes □ No □	Analyses:		ers:	Containers:	_			r WW=Wastewater SL=Sludge A=Air		DW=Drinking Water GW=Groundwater O=Oil SW= Surface Water SO=Soil	DW=Drinking Water O=Oil SW= Surface
* additional charges may apply					1	12=		04 11=	10	O ₄ 9= Deionized Water	8= NaHSO ₄
QA/QC Reporting Notes:	List preservative code below:		H	7=CH ₃ OH		rbic Ac	6=Ascorbic Acid	5=NaOH		Lad.	I=Na ₂ S;
Koung	Sampler(s): Rica McKownA			RQN:	R	19	13-067	P.O. No.:	NA	RIGH MCKENNA	Project Mgr.
State: NY	Location: EAST SYRACUSE								57	E STRACUSE, NY 1305	
	Site Name: ~ BP									4744	6308 FLYRD
	Project No.: 3-067				al	SAME	ς. ο.	Invoice To:			Report To:
Mm. 24-hour notitication needed for rushes. Samples disposed of after 60 days unless otherwise instructed.	Samples disposed of otherwise instructed.			of L	l of	Page				SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY	SPEC H.
☐ Standard TAT - 7 to 10 business days ☐ Rush TAT - Date Needed: З¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬	- ⋈ □	RH	YC	10	S	CC	OF	CHAIN OF CUSTODY RECORD	CI	2	

Relinquished by:

4/8/13 Date:

4:46 Time:

13.5 Temp°C

M EDD Format

E-mail to rackenna

accident com

5B67363 MM

CHAIN OF CUSTODY RECORD

Page _ _ _ of _ _ _

Special Handling:

- ☐ Standard TAT 7 to 10 business days

 ☐ Rush TAT Date Needed: 3-DAY

 · All TATs subject to laboratory approval.

- · Min. 24-hour notification needed for rushes.
- · Samples disposed of after 60 days unless otherwise instructed.

	FLYRD ACUSE, Alt 130 315-432-9		Invoice	То:	SAM	NE					_	Site		:_ E1	ا ا	BF	> 2AC	State: NY
	RICH MCKEN		P.O. No	.: 13-	067		RQ	N: _				San	npler(s):	2,00	+ i	Mc	Kenna
1=Na ₂ S 8= NaHS	O_4 2=HCl 3=H O ₄ 9= Deionized V	I_2SO_4 4=HNO Vater 10= H ₃ F	O4 11=	6=Asc	orbic A	Acid 12=_	7=0	CH ₃ C)H			List	preser	vativ	e code	belo	w:	QA/QC Reporting Notes: * additional charges may apply
O=Oil SW=	g Water GW=Grou = Surface Water SC X2=	=Soil SL=Slu	dge A=Air			ials		ntaine			20		A	analy	ses:			MA DEP MCP CAM Report: Yes □ No □ CT DPH RCP Report: Yes □ No □ QA/QC Reporting Level Standard □ No QC □ DQA*
Lab Id:	G=Grab C=	Composite Date:	Time:	Type	Matrix	# of VOA Vials	# of Amber Glass	# of Clear Glass	# of Plastic		SOSS PCB							□ NY ASP A* □ NY ASP B* □ NJ Reduced* □ NJ Full* □ TIER II* □ TIER IV* □ Other State-specific reporting standards:
7363-01	C5-1	4/8/13	3:40	С	50		i				x		- 1					State-specific reporting standards.
1-02	C5-2	**	3:45	C	56		ŧ				X					\top		
1-03	CS-3	И	3:50	<	50		1				×							
4-04	CS-4	2 5	3:55	<u>_</u>	50		l				×							
												-		-			-	
										1								
Relin	quished by:	n Rec	eived by:		I	Date:	20.00		Time:	7,0	Temp	o°C						
MA		A CONTRACTOR OF THE PARTY OF TH	ZAL.			113)	3	4:	46		13.	5	EI E-				kenn	a Daecegroup.com
1000	7)	UV2	0(1		7/6	11-		\propto_{ℓ}	00	ř.	(Conditi	on up	n recei	pt:	Refrigera	ated DI VOA Frozen Soil Jar Frozen

Report Date: 14-Jun-13 13:58

☑ Final Report☐ Re-Issued Report☐ Revised Report

Laboratory Report

AECC Environmental Consulting 6308 Fly Road

East Syracuse, NY 13057

Attn: Rico McKenna

Project: WBP - Collamer, NY

Project #: 13-067

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SB70857-01	SP2-01	Soil	31-May-13 13:40	31-May-13 16:15
SB70857-02	SP2-02	Soil	31-May-13 13:45	31-May-13 16:15
SB70857-03	SP2-03	Soil	31-May-13 13:50	31-May-13 16:15
SB70857-04	SP2-04	Soil	31-May-13 13:55	31-May-13 16:15
SB70857-05	SP2-05	Soil	31-May-13 14:00	31-May-13 16:15
SB70857-06	SP2-06	Soil	31-May-13 14:05	31-May-13 16:15
SB70857-07	SP2-07	Soil	31-May-13 14:10	31-May-13 16:15
SB70857-08	SP2-08	Soil	31-May-13 14:15	31-May-13 16:15
SB70857-09	SP2-09	Soil	31-May-13 14:20	31-May-13 16:15
SB70857-10	SP2-10	Soil	31-May-13 14:25	31-May-13 16:15
SB70857-11	SP3-01	Soil	31-May-13 15:00	31-May-13 16:15
SB70857-12	SP3-02	Soil	31-May-13 15:05	31-May-13 16:15
SB70857-13	SP3-03	Soil	31-May-13 15:10	31-May-13 16:15
SB70857-14	SP3-04	Soil	31-May-13 15:15	31-May-13 16:15
SB70857-15	SP3-05	Soil	31-May-13 15:20	31-May-13 16:15
SB70857-16	SP3-06	Soil	31-May-13 15:25	31-May-13 16:15

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011/MA012 New York # 11393/11840 Pennsylvania # 68-04426/68-02924 Rhode Island # 98 USDA # S-51435

Authorized by:

Nicole Leja Laboratory Director

Spectrum Analytical holds certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 24 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, FL-E87936 and NJ-MA012).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

CASE NARRATIVE:

The sample temperature upon receipt by Spectrum Analytical courier was recorded as 12.4 degrees Celsius. The condition of these samples was further noted as received on ice. The samples were transported on ice to the laboratory facility and the temperature was recorded at 1.1 degrees Celsius upon receipt at the laboratory. Samples were received within 24 hours of collection. Please refer to the Chain of Custody for details specific to sample receipt times.

An infrared thermometer with a tolerance of +/- 1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

SW846 8082A

Laboratory Control Samples:

1313358 BSD

Aroclor-1016 RPD 37% (30%) is outside individual acceptance criteria.

Samples:

SB70857-01 SP2-01

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

SB70857-05 SP2-05

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

SB70857-06 SP2-06

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

SB70857-07 SP2-07

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

SB70857-08 SP2-08

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

Sample Acceptance Check Form

Client:	AECC Environmental Consulting
Project:	WBP - Collamer, NY / 13-067
Work Order:	SB70857
Sample(s) received on:	5/31/2013
Received by:	Vickie Knowles

The following outlines the condition of samples for the attached Chain of Custody upon receipt.

		<u>Y es</u>	<u>No</u>	N/A
1.	Were custody seals present?		\checkmark	
2.	Were custody seals intact?			✓
3.	Were samples received at a temperature of $\leq 6^{\circ}$ C?		\checkmark	
4.	Were samples cooled on ice upon transfer to laboratory representative?	\checkmark		
5.	Were samples refrigerated upon transfer to laboratory representative?		\checkmark	
6.	Were sample containers received intact?	\checkmark		
7.	Were samples properly labeled (labels affixed to sample containers and include sample ID, site location, and/or project number and the collection date)?	√		
8.	Were samples accompanied by a Chain of Custody document?	\checkmark		
9.	Does Chain of Custody document include proper, full, and complete documentation, which shall include sample ID, site location, and/or project number, date and time of collection, collector's name, preservation type, sample matrix and any special remarks concerning the sample?	V		
0.	Did sample container labels agree with Chain of Custody document?	✓		
1.	Were samples received within method-specific holding times?	\checkmark		

SP2-01 SB70857	dentification			Client P	-		<u>Matrix</u> Soil	-	ection Date -May-13 13			ceived May-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	ЭC											
Polychlorina	ated Biphenyls		GS1										
Prepared	by method SW846 3545A												
12674-11-2	Aroclor-1016	< 112	U, D	μg/kg dry	225	112	10	SW846 8082A	07-Jun-13	13-Jun-13	IMR	1313358	Χ
11104-28-2	Aroclor-1221	< 202	U, D	μg/kg dry	225	202	10			u	"		Χ
11141-16-5	Aroclor-1232	< 144	U, D	μg/kg dry	225	144	10	ı		и	"		Х
53469-21-9	Aroclor-1242	< 132	U, D	μg/kg dry	225	132	10				"		Х
12672-29-6	Aroclor-1248	8,780	D	μg/kg dry	225	110	10	ı		и	"		Х
11097-69-1	Aroclor-1254	< 187	U, D	μg/kg dry	225	187	10	ı		и	"		Х
11096-82-5	Aroclor-1260	292	D	μg/kg dry	225	139	10	п		и	"		Х
37324-23-5	Aroclor-1262	< 209	U, D	μg/kg dry	225	209	10	п		и	"		Х
11100-14-4	Aroclor-1268	< 70.5	U, D	μg/kg dry	225	70.5	10	п			"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	150			30-15	0 %					"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	150			30-15	0 %		н		ı	"		
2051-24-3	Decachlorobiphenyl (Sr)	150			30-15	0 %		ı		п	"		
2051-24-3	Decachlorobiphenyl (Sr)	100			30-15	0 %				u	"		

10-Jun-13 10-Jun-13

DT

1313546

[2C]
General Chemistry Parameters
% Solids

Sample Io SP2-02 SB70857	dentification -02			Client P			<u>Matrix</u> Soil		ection Date -May-13 13	,		ceived May-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
Polychlorina	ated Biphenyls												
Prepared	by method SW846 3545A												
12674-11-2	Aroclor-1016	< 11.1	U	μg/kg dry	22.2	11.1	1	SW846 8082A	07-Jun-13	12-Jun-13	BLM	1313358	Χ
11104-28-2	Aroclor-1221	< 20.0	U	μg/kg dry	22.2	20.0	1	п		II .	"		Χ
11141-16-5	Aroclor-1232	< 14.3	U	μg/kg dry	22.2	14.3	1			u	"		Χ
53469-21-9	Aroclor-1242	< 13.1	U	μg/kg dry	22.2	13.1	1	н			"		Χ
12672-29-6	Aroclor-1248 [2C]	110		μg/kg dry	22.2	9.00	1	п		ıı	•		Χ
11097-69-1	Aroclor-1254	< 18.5	U	μg/kg dry	22.2	18.5	1	п		ıı	"		Χ
11096-82-5	Aroclor-1260	< 13.8	U	μg/kg dry	22.2	13.8	1			и	"		Χ
37324-23-5	Aroclor-1262	< 20.7	U	μg/kg dry	22.2	20.7	1			и	"		Χ
11100-14-4	Aroclor-1268	< 6.97	U	μg/kg dry	22.2	6.97	1				"		Х
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	125			30-15	0 %		н		ı	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	115			30-15	0 %				н	"		
2051-24-3	Decachlorobiphenyl (Sr)	115			30-15	0 %				п	"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	125			30-15	50 %		н		ı	"		
General C	Chemistry Parameters												

10-Jun-13 10-Jun-13

DT

1313546

% Solids

Sample Io SP2-03 SB70857	dentification -03			Client P			<u>Matrix</u> Soil	·	ection Date -May-13 13			ceived May-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
Polychlorina	ated Biphenyls												
Prepared	by method SW846 3545A												
12674-11-2	Aroclor-1016	< 11.0	U	μg/kg dry	22.0	11.0	1	SW846 8082A	07-Jun-13	12-Jun-13	BLM	1313358	Χ
11104-28-2	Aroclor-1221	< 19.8	U	μg/kg dry	22.0	19.8	1			u u	"		Χ
11141-16-5	Aroclor-1232	< 14.1	U	μg/kg dry	22.0	14.1	1			п			Χ
53469-21-9	Aroclor-1242	< 12.9	U	μg/kg dry	22.0	12.9	1				"		Χ
12672-29-6	Aroclor-1248 [2C]	64.8		μg/kg dry	22.0	8.91	1				"		Χ
11097-69-1	Aroclor-1254	< 18.3	U	μg/kg dry	22.0	18.3	1			и	"		Χ
11096-82-5	Aroclor-1260 [2C]	15.4	J	μg/kg dry	22.0	9.81	1			"	"		Χ
37324-23-5	Aroclor-1262	< 20.5	U	μg/kg dry	22.0	20.5	1	ı		и	"		Χ
11100-14-4	Aroclor-1268	< 6.90	U	μg/kg dry	22.0	6.90	1	и		п	"		Х
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	120			30-15	50 %		н		ı	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	115			30-15	50 %		н		ı	"		
2051-24-3	Decachlorobiphenyl (Sr)	115			30-15	50 %				и			
2051-24-3	Decachlorobiphenyl (Sr) [2C]	120			30-15	50 %		ı	•	ı	ı		
General C	Chemistry Parameters												

10-Jun-13 10-Jun-13

DT

1313546

% Solids

Sample I SP2-04 SB70857	dentification 7-04			Client P	<u>Project #</u> 067		<u>Matrix</u> Soil	·	ection Date -May-13 13			ceived May-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivola	tile Organic Compounds by C	GC											
Polychlorin	ated Biphenyls												
Prepared	by method SW846 3545A												
12674-11-2	Aroclor-1016	< 11.2	U	μg/kg dry	22.3	11.2	1	SW846 8082A	07-Jun-13	12-Jun-13	BLM	1313358	Χ
11104-28-2	Aroclor-1221	< 20.1	U	μg/kg dry	22.3	20.1	1				"		Χ
11141-16-5	Aroclor-1232	< 14.3	U	μg/kg dry	22.3	14.3	1				•		Χ
53469-21-9	Aroclor-1242	< 13.1	U	μg/kg dry	22.3	13.1	1				"		Х
12672-29-6	Aroclor-1248 [2C]	271		μg/kg dry	22.3	9.05	1	п			"		Х
11097-69-1	Aroclor-1254	< 18.6	U	μg/kg dry	22.3	18.6	1	п			"		Х
11096-82-5	Aroclor-1260	< 13.8	U	μg/kg dry	22.3	13.8	1	н			"		Х
37324-23-5	Aroclor-1262	< 20.8	U	μg/kg dry	22.3	20.8	1	н			"		Х
11100-14-4	Aroclor-1268	< 7.01	U	μg/kg dry	22.3	7.01	1	п			"		Х
Surrogate re	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	115			30-15	50 %		н	•		"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	110			30-15	50 %		н		ı	"		
2051-24-3	Decachlorobiphenyl (Sr)	105			30-15	50 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	120			30-15	50 %		н			"		
General (Chemistry Parameters												
	% Solids	89.3		%			1	SM2540 G Mod.	10-Jun-13	10-Jun-13	DT	1313546	

Sample Io SP2-05 SB70857	-05			Client P	-		<u>Matrix</u> Soil		ection Date -May-13 14			ceived May-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC .											
Polychlorina	ted Biphenyls		GS1										
Prepared	by method SW846 3545A												
12674-11-2	Aroclor-1016	< 110	U, D	μg/kg dry	220	110	10	SW846 8082A	07-Jun-13	13-Jun-13	IMR	1313358	Χ
11104-28-2	Aroclor-1221	< 198	U, D	μg/kg dry	220	198	10				"		Χ
11141-16-5	Aroclor-1232	< 141	U, D	μg/kg dry	220	141	10				"		Χ
53469-21-9	Aroclor-1242	< 130	U, D	μg/kg dry	220	130	10				"		Χ
12672-29-6	Aroclor-1248	9,640	D	μg/kg dry	220	108	10				"		Χ
11097-69-1	Aroclor-1254	< 183	U, D	μg/kg dry	220	183	10				"		Χ
11096-82-5	Aroclor-1260	286	D	μg/kg dry	220	136	10				"		Χ
37324-23-5	Aroclor-1262	< 205	U, D	μg/kg dry	220	205	10				"		Χ
11100-14-4	Aroclor-1268	< 69.0	U, D	μg/kg dry	220	69.0	10	п			"		Х
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	100			30-15	0 %		н			"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	100			30-15	0 %		н			"		
2051-24-3	Decachlorobiphenyl (Sr)	100			30-15	0 %							
2051-24-3	Decachlorobiphenyl (Sr) [2C]	100			30-15	0 %					"		
General C	Chemistry Parameters												

10-Jun-13 10-Jun-13

DT

1313546

% Solids

Sample Io SP2-06 SB70857-	dentification			Client P			<u>Matrix</u> Soil		ection Date -May-13 14			<u>ceived</u> May-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	ЭC											
Polychlorina	ted Biphenyls		GS1										
Prepared	by method SW846 3545A												
12674-11-2	Aroclor-1016	< 113	U, D	μg/kg dry	227	113	10	SW846 8082A	07-Jun-13	13-Jun-13	IMR	1313358	Χ
11104-28-2	Aroclor-1221	< 204	U, D	μg/kg dry	227	204	10	и			"		Χ
11141-16-5	Aroclor-1232	< 146	U, D	μg/kg dry	227	146	10			н	"		Χ
53469-21-9	Aroclor-1242	< 134	U, D	μg/kg dry	227	134	10	п			"		Χ
12672-29-6	Aroclor-1248	7,080	D	μg/kg dry	227	111	10	п			"		Χ
11097-69-1	Aroclor-1254	< 189	U, D	μg/kg dry	227	189	10	п					Χ
11096-82-5	Aroclor-1260	193	J, D	μg/kg dry	227	141	10	п					Χ
37324-23-5	Aroclor-1262	< 211	U, D	μg/kg dry	227	211	10	п			"		Χ
11100-14-4	Aroclor-1268	< 71.3	U, D	μg/kg dry	227	71.3	10	п			"		Χ
Surrogate rec	overies:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	150			30-15	0 %		п		п	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	150			30-15	0 %		п		ı	"		
2051-24-3	Decachlorobiphenyl (Sr)	100			30-15	0 %				н	"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	100			30-15	0 %		п	н	ı	"		
General C	hemistry Parameters												

10-Jun-13 10-Jun-13

DT

1313546

% Solids

Sample Id SP2-07 SB70857	-07			Client P			<u>Matrix</u> Soil		ection Date -May-13 14			<u>ceived</u> May-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	БС											
	ted Biphenyls		GS1										
Prepared	by method SW846 3545A												
12674-11-2	Aroclor-1016	< 105	U, D	μg/kg dry	210	105	10	SW846 8082A	07-Jun-13	13-Jun-13	IMR	1313358	Χ
11104-28-2	Aroclor-1221	< 189	U, D	μg/kg dry	210	189	10	и			"		Χ
11141-16-5	Aroclor-1232	< 135	U, D	μg/kg dry	210	135	10				"		Χ
53469-21-9	Aroclor-1242	< 124	U, D	μg/kg dry	210	124	10				"		Χ
12672-29-6	Aroclor-1248 [2C]	13,900	D	μg/kg dry	210	85.2	10				"		Χ
11097-69-1	Aroclor-1254	< 175	U, D	μg/kg dry	210	175	10				"		Χ
11096-82-5	Aroclor-1260	505	D	μg/kg dry	210	130	10				"		Х
37324-23-5	Aroclor-1262	< 196	U, D	μg/kg dry	210	196	10				"		Х
11100-14-4	Aroclor-1268	< 66.0	U, D	μg/kg dry	210	66.0	10	и			"		Х
Surrogate rec	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	100			30-15	0 %		п		н	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	100			30-15	0 %		п		н	"		
2051-24-3	Decachlorobiphenyl (Sr)	150			30-15	0 %		п			"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	100			30-15	0 %		II			"		

10-Jun-13 10-Jun-13

DT

1313546

General Chemistry Parameters % Solids

Sample Id SP2-08 SB70857	dentification -08			Client P			<u>Matrix</u> Soil		ection Date -May-13 14			ceived May-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
Polychlorina	ated Biphenyls		GS1										
Prepared	by method SW846 3545A												
12674-11-2	Aroclor-1016	< 105	U, D	μg/kg dry	209	105	10	SW846 8082A	07-Jun-13	13-Jun-13	IMR	1313358	Χ
11104-28-2	Aroclor-1221	< 189	U, D	μg/kg dry	209	189	10				"		Χ
11141-16-5	Aroclor-1232	< 134	U, D	μg/kg dry	209	134	10				"		Χ
53469-21-9	Aroclor-1242	< 123	U, D	μg/kg dry	209	123	10				"		Χ
12672-29-6	Aroclor-1248	24,700	D	μg/kg dry	209	103	10				"		Χ
11097-69-1	Aroclor-1254	< 174	U, D	μg/kg dry	209	174	10	п			"		Χ
11096-82-5	Aroclor-1260	973	D	μg/kg dry	209	130	10	п			"		Χ
37324-23-5	Aroclor-1262	< 195	U, D	μg/kg dry	209	195	10	п			"		Χ
11100-14-4	Aroclor-1268	< 65.7	U, D	μg/kg dry	209	65.7	10	II .			"		Х
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	150			30-15	50 %		п		п	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	150			30-15	50 %		п		п	"		
2051-24-3	Decachlorobiphenyl (Sr)	150			30-15	50 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	150			30-15	50 %				и	"		
General C	Chemistry Parameters												

10-Jun-13 10-Jun-13

DT

1313546

% Solids

Sample I SP2-09 SB70857	dentification 7-09			Client P	-		<u>Matrix</u> Soil		ection Date -May-13 14			ceived May-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivola	tile Organic Compounds by C	GC											
Polychlorina	ated Biphenyls												
Prepared	by method SW846 3545A												
12674-11-2	Aroclor-1016	< 10.5	U	μg/kg dry	20.9	10.5	1	SW846 8082A	07-Jun-13	12-Jun-13	BLM	1313358	Χ
11104-28-2	Aroclor-1221	< 18.8	U	μg/kg dry	20.9	18.8	1	п			"		Х
11141-16-5	Aroclor-1232	< 13.4	U	μg/kg dry	20.9	13.4	1				"		Х
53469-21-9	Aroclor-1242	< 12.3	U	μg/kg dry	20.9	12.3	1				"		Х
12672-29-6	Aroclor-1248	119		μg/kg dry	20.9	10.3	1				"		Х
11097-69-1	Aroclor-1254	< 17.4	U	μg/kg dry	20.9	17.4	1	и			"		Х
11096-82-5	Aroclor-1260	< 13.0	U	μg/kg dry	20.9	13.0	1				"		Χ
37324-23-5	Aroclor-1262	< 19.5	U	μg/kg dry	20.9	19.5	1	п			"		Х
11100-14-4	Aroclor-1268	< 6.57	U	μg/kg dry	20.9	6.57	1	п			"		Χ
Surrogate re	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	115			30-15	60 %		u		n	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	120			30-15	0 %		н		н	"		
2051-24-3	Decachlorobiphenyl (Sr)	125			30-15	0 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	130			30-15	0 %		и		п	"		
General (Chemistry Parameters												
	% Solids	92.1		%			1	SM2540 G Mod.	10-Jun-13	10-Jun-13	DT	1313546	

Sample I SP2-10 SB70857	dentification 7-10			Client P			<u>Matrix</u> Soil		ection Date -May-13 14			ceived May-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	tile Organic Compounds by C	GC											
Polychlorina	ated Biphenyls												
Prepared	by method SW846 3545A												
12674-11-2	Aroclor-1016	< 10.8	U	μg/kg dry	21.7	10.8	1	SW846 8082A	07-Jun-13	12-Jun-13	BLM	1313358	Χ
11104-28-2	Aroclor-1221	< 19.5	U	μg/kg dry	21.7	19.5	1				"		Χ
11141-16-5	Aroclor-1232	< 13.9	U	μg/kg dry	21.7	13.9	1			н	"		Х
53469-21-9	Aroclor-1242	< 12.8	U	μg/kg dry	21.7	12.8	1			н	"		Х
12672-29-6	Aroclor-1248	< 10.6	U	μg/kg dry	21.7	10.6	1				"		Х
11097-69-1	Aroclor-1254	< 18.1	U	μg/kg dry	21.7	18.1	1	и			"		Х
11096-82-5	Aroclor-1260	< 13.4	U	μg/kg dry	21.7	13.4	1				"		Х
37324-23-5	Aroclor-1262	< 20.2	U	μg/kg dry	21.7	20.2	1				"		Х
11100-14-4	Aroclor-1268	< 6.81	U	μg/kg dry	21.7	6.81	1	п			"		Χ
Surrogate re	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	130			30-15	60 %		u			"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	120			30-15	0 %		н		"	"		
2051-24-3	Decachlorobiphenyl (Sr)	125			30-15	60 %				п	"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	130			30-15	50 %		н		"	"		
General (Chemistry Parameters												
	% Solids	88.7		%			1	SM2540 G Mod.	10-Jun-13	10-Jun-13	DT	1313546	

Sample Io SP3-01 SB70857	dentification			Client P			<u>Matrix</u> Soil		ection Date -May-13 15	,		ceived May-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
Polychlorina	ated Biphenyls												
Prepared	by method SW846 3545A												
12674-11-2	Aroclor-1016	< 13.1	U	μg/kg dry	26.2	13.1	1	SW846 8082A	07-Jun-13	12-Jun-13	BLM	1313358	Χ
11104-28-2	Aroclor-1221	< 23.6	U	μg/kg dry	26.2	23.6	1			II .	"		Χ
11141-16-5	Aroclor-1232	< 16.8	U	μg/kg dry	26.2	16.8	1			u	"		Χ
53469-21-9	Aroclor-1242	< 15.4	U	μg/kg dry	26.2	15.4	1	п			"		Χ
12672-29-6	Aroclor-1248	< 12.8	U	μg/kg dry	26.2	12.8	1	п			"		Χ
11097-69-1	Aroclor-1254	< 21.8	U	μg/kg dry	26.2	21.8	1	II .		ıı	"		Х
11096-82-5	Aroclor-1260	< 16.2	U	μg/kg dry	26.2	16.2	1			и	"		Χ
37324-23-5	Aroclor-1262	< 24.4	U	μg/kg dry	26.2	24.4	1			и	"		Χ
11100-14-4	Aroclor-1268	< 8.22	U	μg/kg dry	26.2	8.22	1	п			"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	130			30-15	0 %		п		ı	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	125			30-15	0 %				н	"		
2051-24-3	Decachlorobiphenyl (Sr)	130			30-15	0 %				п	"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	135			30-15	50 %		н		ı	"		
General C	Chemistry Parameters												

10-Jun-13 10-Jun-13

DT

1313546

% Solids

Sample Io SP3-02 SB70857	dentification			Client P	<u>roject #</u> 067		<u>Matrix</u> Soil		ection Date -May-13 15			ceived May-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
	ated Biphenyls by method SW846 3545A												
12674-11-2	Aroclor-1016	< 12.2	U	μg/kg dry	24.4	12.2	1	SW846 8082A	07-Jun-13	12-Jun-13	BLM	1313358	Х
11104-28-2	Aroclor-1221	< 22.0	U	μg/kg dry	24.4	22.0	1	и			"		Χ
11141-16-5	Aroclor-1232	< 15.7	U	μg/kg dry	24.4	15.7	1	п		"	"		Χ
53469-21-9	Aroclor-1242	< 14.4	U	μg/kg dry	24.4	14.4	1	и			"		Χ
12672-29-6	Aroclor-1248	< 12.0	U	μg/kg dry	24.4	12.0	1	и			"		Χ
11097-69-1	Aroclor-1254	< 20.3	U	μg/kg dry	24.4	20.3	1	и			"		Χ
11096-82-5	Aroclor-1260	< 15.1	U	μg/kg dry	24.4	15.1	1	п		"	"		Χ
37324-23-5	Aroclor-1262	< 22.7	U	μg/kg dry	24.4	22.7	1	п		"	"		Χ
11100-14-4	Aroclor-1268	< 7.66	U	μg/kg dry	24.4	7.66	1				"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	130			30-15	50 %					"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	125			30-15	50 %					"		
2051-24-3	Decachlorobiphenyl (Sr)	130			30-15	50 %		п		"	"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	135			30-15	50 %					"		
General C	Chemistry Parameters												

10-Jun-13 10-Jun-13

DT

1313547

% Solids

September 10 Septe	-13			Client P	-		<u>Matrix</u> Soil	·	ection Date -May-13 15			ceived May-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	ile Organic Compounds by C	GC											
	ted Biphenyls												
Prepared	by method SW846 3545A												
12674-11-2	Aroclor-1016	< 12.8	U	μg/kg dry	25.7	12.8	1	SW846 8082A	07-Jun-13	12-Jun-13	BLM	1313358	Χ
11104-28-2	Aroclor-1221	< 23.1	U	μg/kg dry	25.7	23.1	1	u u			"		Χ
11141-16-5	Aroclor-1232	< 16.5	U	μg/kg dry	25.7	16.5	1				"		Χ
53469-21-9	Aroclor-1242	< 15.1	U	μg/kg dry	25.7	15.1	1				"		Χ
12672-29-6	Aroclor-1248	46.2		μg/kg dry	25.7	12.6	1			н	"		Χ
11097-69-1	Aroclor-1254	< 21.4	U	μg/kg dry	25.7	21.4	1	ı		н	"		Χ
11096-82-5	Aroclor-1260	< 15.9	U	μg/kg dry	25.7	15.9	1				"		Χ
37324-23-5	Aroclor-1262	< 23.9	U	μg/kg dry	25.7	23.9	1				"		Χ
11100-14-4	Aroclor-1268	< 8.07	U	μg/kg dry	25.7	8.07	1	н			"		Χ
Surrogate rec	overies:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	120			30-15	50 %		п		п	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	115			30-15	50 %		п		п	"		
2051-24-3	Decachlorobiphenyl (Sr)	110			30-15	50 %		п		н	"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	125			30-15	50 %		ı	н	ı	"		
General C	hemistry Parameters												

10-Jun-13 10-Jun-13

DT

1313547

% Solids

Sample I SP3-04 SB70857	Identification 7-14			Client P	<u>Project #</u> 067		<u>Matrix</u> Soil		ection Date -May-13 15			ceived May-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivola	tile Organic Compounds by C	GC											
	ated Biphenyls												
Prepared	d by method SW846 3545A												
12674-11-2	Aroclor-1016	< 12.5	U	μg/kg dry	25.0	12.5	1	SW846 8082A	07-Jun-13	12-Jun-13	BLM	1313358	Χ
11104-28-2	Aroclor-1221	< 22.5	U	μg/kg dry	25.0	22.5	1				"		Χ
11141-16-5	Aroclor-1232	< 16.1	U	μg/kg dry	25.0	16.1	1						Х
53469-21-9	Aroclor-1242	< 14.7	U	μg/kg dry	25.0	14.7	1				"		Х
12672-29-6	Aroclor-1248	< 12.3	U	μg/kg dry	25.0	12.3	1				"		Х
11097-69-1	Aroclor-1254	< 20.9	U	μg/kg dry	25.0	20.9	1				"		Х
11096-82-5	Aroclor-1260	< 15.5	U	μg/kg dry	25.0	15.5	1				"		Χ
37324-23-5	Aroclor-1262	< 23.3	U	μg/kg dry	25.0	23.3	1				"		Х
11100-14-4	Aroclor-1268	< 7.86	U	μg/kg dry	25.0	7.86	1				"		Χ
Surrogate re	ecoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	125			30-15	50 %		ı	•		"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	120			30-15	50 %		н			"		
2051-24-3	Decachlorobiphenyl (Sr)	120			30-15	50 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	130			30-15	50 %		н	•		"		
General (Chemistry Parameters												
	% Solids	77.6		%			1	SM2540 G Mod.	10-Jun-13	10-Jun-13	DT	1313547	

Sample I SP3-05 SB70857	dentification 7-15			Client P			<u>Matrix</u> Soil		ection Date -May-13 15			ceived May-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivola	tile Organic Compounds by C	GC											
Polychlorina	ated Biphenyls												
Prepared	by method SW846 3545A												
12674-11-2	Aroclor-1016	< 12.8	U	μg/kg dry	25.6	12.8	1	SW846 8082A	07-Jun-13	12-Jun-13	BLM	1313358	Χ
11104-28-2	Aroclor-1221	< 23.0	U	μg/kg dry	25.6	23.0	1	п			"		Χ
11141-16-5	Aroclor-1232	< 16.4	U	μg/kg dry	25.6	16.4	1				"		Χ
53469-21-9	Aroclor-1242	< 15.1	U	μg/kg dry	25.6	15.1	1			н	"		Х
12672-29-6	Aroclor-1248	< 12.5	U	μg/kg dry	25.6	12.5	1	и			"		Х
11097-69-1	Aroclor-1254	< 21.3	U	μg/kg dry	25.6	21.3	1	и			"		Х
11096-82-5	Aroclor-1260	< 15.9	U	μg/kg dry	25.6	15.9	1	и			"		Х
37324-23-5	Aroclor-1262	< 23.8	U	μg/kg dry	25.6	23.8	1	и			"		Х
11100-14-4	Aroclor-1268	< 8.03	U	μg/kg dry	25.6	8.03	1	п			"		Χ
Surrogate re	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	105			30-15	60 %					"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	115			30-15	0 %		as .			"		
2051-24-3	Decachlorobiphenyl (Sr)	120			30-15	0 %				и	"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	125			30-15	0 %		81		ı	"		
General (Chemistry Parameters												
	% Solids	75.5		%			1	SM2540 G Mod.	10-Jun-13	10-Jun-13	DT	1313547	

Sample I SP3-06 SB70857	dentification 7-16			Client P			<u>Matrix</u> Soil		ection Date -May-13 15			ceived May-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivola	tile Organic Compounds by C	GC											
Polychlorina	ated Biphenyls												
Prepared	by method SW846 3545A												
12674-11-2	Aroclor-1016	< 12.9	U	μg/kg dry	25.9	12.9	1	SW846 8082A	07-Jun-13	12-Jun-13	BLM	1313358	Χ
11104-28-2	Aroclor-1221	< 23.3	U	μg/kg dry	25.9	23.3	1				"		Χ
11141-16-5	Aroclor-1232	< 16.6	U	μg/kg dry	25.9	16.6	1				"		Χ
53469-21-9	Aroclor-1242	< 15.3	U	μg/kg dry	25.9	15.3	1			н	"		Χ
12672-29-6	Aroclor-1248	< 12.7	U	μg/kg dry	25.9	12.7	1				"		Х
11097-69-1	Aroclor-1254	< 21.6	U	μg/kg dry	25.9	21.6	1	и			"		Х
11096-82-5	Aroclor-1260	< 16.1	U	μg/kg dry	25.9	16.1	1				"		Х
37324-23-5	Aroclor-1262	< 24.1	U	μg/kg dry	25.9	24.1	1	п			"		Х
11100-14-4	Aroclor-1268	< 8.13	U	μg/kg dry	25.9	8.13	1	п			"		Χ
Surrogate re	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	120			30-15	60 %		u			"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	115			30-15	0 %		н			"		
2051-24-3	Decachlorobiphenyl (Sr)	125			30-15	0 %				и	"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	130			30-15	0 %		и		ı	"		
General (Chemistry Parameters												
	% Solids	75.9		%			1	SM2540 G Mod.	10-Jun-13	10-Jun-13	DT	1313547	

Semivolatile Organic Compounds by GC - Quality Control

alyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPE Limi
tch 1313358 - SW846 3545A										
Blank (1313358-BLK1)					Pre	oared: 07-Jun	ı-13 Analyzed:	: 09-Jun-13		
Aroclor-1016	< 9.99	U	μg/kg wet	9.99						
Aroclor-1016 [2C]	< 9.98	U	μg/kg wet	9.98						
Aroclor-1221	< 18.0	U	μg/kg wet	18.0						
Aroclor-1221 [2C]	< 13.1	U	μg/kg wet	13.1						
Aroclor-1232	< 12.8	U	μg/kg wet	12.8						
Aroclor-1232 [2C]	< 15.7	U	μg/kg wet	15.7						
Aroclor-1242	< 11.8	U	μg/kg wet	11.8						
Aroclor-1242 [2C]	< 7.86	U	μg/kg wet	7.86						
Aroclor-1248	< 9.81	U	μg/kg wet	9.81						
Aroclor-1248 [2C]	< 8.11	U	μg/kg wet	8.11						
Aroclor-1254	< 16.7	U	μg/kg wet	16.7						
Aroclor-1254 [2C]	< 8.49	U	μg/kg wet	8.49						
Aroclor-1260	< 12.4	U	μg/kg wet	12.4						
Aroclor-1260 [2C]	< 8.93	U	μg/kg wet	8.93						
Aroclor-1262	< 18.6	U	μg/kg wet	18.6						
Aroclor-1262 [2C]	< 19.2	U	μg/kg wet	19.2						
Aroclor-1268	< 6.28	U	μg/kg wet	6.28						
Aroclor-1268 [2C]	< 9.90	U	μg/kg wet	9.90						
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	20.0		μg/kg wet		20.0		100	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	21.0		μg/kg wet		20.0		105	30-150		
Surrogate: Decachlorobiphenyl (Sr)	18.0		μg/kg wet		20.0		90	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	20.0		μg/kg wet		20.0		100	30-150		
LCS (1313358-BS1)					Pre	oared: 07-Jun	-13 Analyzed:	: 09-Jun-13		
Aroclor-1016	290		μg/kg wet	9.99	250		116	40-140		
Aroclor-1016 [2C]	233		μg/kg wet	9.98	250		93	40-140		
Aroclor-1260	221		μg/kg wet	12.4	250		88	40-140		
Aroclor-1260 [2C]	268		μg/kg wet	8.93	250		107	40-140		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	20.0		μg/kg wet		20.0		100	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	22.0		μg/kg wet μg/kg wet		20.0		110	30-150		
Surrogate: Decachlorobiphenyl (Sr)	15.0		μg/kg wet μg/kg wet		20.0		75	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	23.0		μg/kg wet μg/kg wet		20.0		115	30-150		
	20.0		pg/kg wet			aarad: 07 Jun	ı-13 Analyzed:			
<u>LCS Dup (1313358-BSD1)</u> Aroclor-1016	199	QR2	ua/ka wat	9.99		Jareu. 07-Juri	80	40-140	27	30
Aroclor-1016 [2C]	230	QIVE	μg/kg wet μg/kg wet	9.98	250 250		92	40-140	37 1	30
Aroclor-1260	175		μg/kg wet μg/kg wet	12.4	250		70	40-140	23	30
Aroclor-1260 [2C]	234		μg/kg wet μg/kg wet	8.93	250		94	40-140	14	30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	19.0		μg/kg wet		20.0		95	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	21.0		μg/kg wet μg/kg wet		20.0		105	30-150		
Surrogate: 0.20 Surrogate: Decachlorobiphenyl (Sr)	21.0 15.0		μg/kg wet μg/kg wet		20.0		75	30-150 30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	21.0		μg/kg wet μg/kg wet		20.0		105	30-150		
	21.0			70057 10		aradi 07 lun				
<u>Duplicate (1313358-DUP1)</u> Aroclor-1016	< 11.2	U	Source: SB	11.2	Pre	BRL	ı-13 Analyzed:	: 13-Jun-13		30
	< 11.2	U	μg/kg dry							
Aroclor-1016 [2C]		U	μg/kg dry	11.2 20.2		BRL				30
Aroclor 1221 [2C]	< 20.2 < 14.6	U	μg/kg dry	20.2 14.6		BRL				30
Aroclor-1221 [2C] Aroclor-1232	< 14.6 < 14.4	U	μg/kg dry			BRL				30
	< 14.4 < 17.6	U	μg/kg dry	14.4 17.6		BRL				30
Aroclor-1232 [2C]		U	μg/kg dry	17.6		BRL				30
Aroclor-1242 Aroclor-1242 [2C]	< 13.2 < 8.80	U	μg/kg dry μg/kg dry	13.2 8.80		BRL BRL				30 30

Semivolatile Organic Compounds by GC - Quality Control

					Spike	Source		%REC		RPD
nalyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limi
atch 1313358 - SW846 3545A										
<u>Duplicate (1313358-DUP1)</u>			Source: SE	70857-10	<u>Pre</u>	pared: 07-Jun	-13 Analyzed:	: 13-Jun-13		
Aroclor-1248 [2C]	< 9.08	U	μg/kg dry	9.08		BRL				30
Aroclor-1254	< 18.7	U	μg/kg dry	18.7		BRL				30
Aroclor-1254 [2C]	< 9.51	U	μg/kg dry	9.51		BRL				30
Aroclor-1260	< 13.9	U	μg/kg dry	13.9		BRL				30
Aroclor-1260 [2C]	< 10.0	U	μg/kg dry	10.0		BRL				30
Aroclor-1262	< 20.9	U	μg/kg dry	20.9		BRL				30
Aroclor-1262 [2C]	< 21.5	U	μg/kg dry	21.5		BRL				30
Aroclor-1268	< 7.03	U	μg/kg dry	7.03		BRL				30
Aroclor-1268 [2C]	< 11.1	U	μg/kg dry	11.1		BRL				30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	23.5		μg/kg dry		22.4		105	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	26.9		μg/kg dry		22.4		120	30-150		
Surrogate: Decachlorobiphenyl (Sr)	26.9		μg/kg dry		22.4		120	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	29.1		μg/kg dry		22.4		130	30-150		
Matrix Spike (1313358-MS1)			Source: SE	70857-10	Pre	pared: 07-Jun	-13 Analyzed:	: 13-Jun-13		
Aroclor-1016	302		μg/kg dry	11.1	277	BRL	109	40-140		
Aroclor-1016 [2C]	279		μg/kg dry	11.0	277	BRL	101	40-140		
Aroclor-1260	277		μg/kg dry	13.7	277	BRL	100	40-140		
Aroclor-1260 [2C]	215		μg/kg dry	9.88	277	BRL	78	40-140		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	26.5		μg/kg dry		22.1		120	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	27.7		μg/kg dry		22.1		125	30-150		
Surrogate: Decachlorobiphenyl (Sr)	25.4		μg/kg dry		22.1		115	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	25.4		μg/kg dry		22.1		115	30-150		
Matrix Spike Dup (1313358-MSD1)			Source: SE	70857-10	Pre	pared: 07-Jun	-13 Analyzed:	: 13-Jun-13		
Aroclor-1016	326		μg/kg dry	11.1	278	BRL	118	40-140	7	30
Aroclor-1016 [2C]	301		μg/kg dry	11.1	278	BRL	108	40-140	7	30
Aroclor-1260	316		μg/kg dry	13.8	278	BRL	114	40-140	13	30
Aroclor-1260 [2C]	260		μg/kg dry	9.91	278	BRL	94	40-140	19	30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	27.8		μg/kg dry		22.2		125	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	28.9		μg/kg dry		22.2		130	30-150		
Surrogate: Decachlorobiphenyl (Sr)	26.6		μg/kg dry		22.2		120	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	28.9		μg/kg dry		22.2		130	30-150		

General Chemistry Parameters - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1313547 - General Preparation										
Duplicate (1313547-DUP1)			Source: SI	B70857-12	Pre	pared & Analy	zed: 10-Jun-13			
% Solids	75.1		%			75.9			1	20

Notes and Definitions

D Data reported from a dilution

GS1 Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

J Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration

(CLP J-Flag).

QR2 The RPD result exceeded the QC control limits; however, both percent recoveries were acceptable. Sample results for the

QC batch were accepted based on percent recoveries and completeness of QC data.

U Analyte included in the analysis, but not detected at or above the MDL.

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

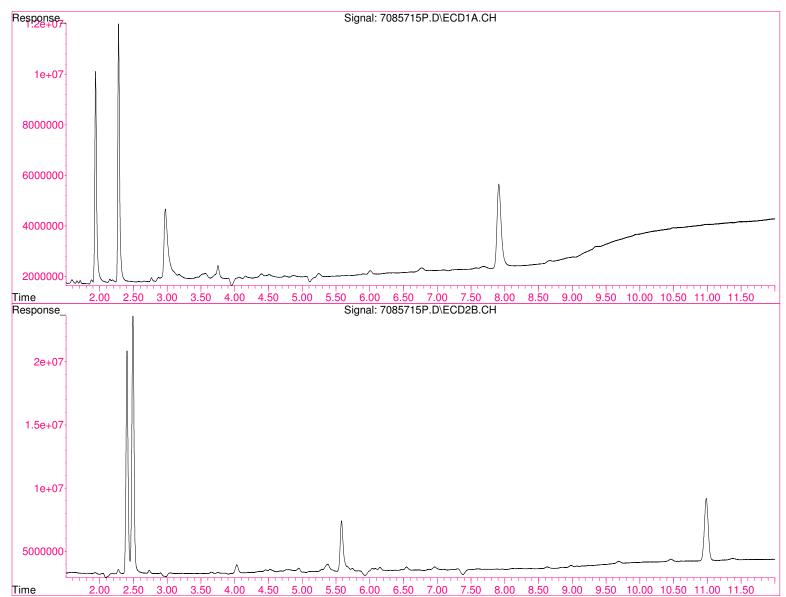
Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification:</u> The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

Validated by: June O'Connor Rebecca Merz File :G:\Jun2013\HPS11\data\PCB110611\7085715P.D


Operator : BLM

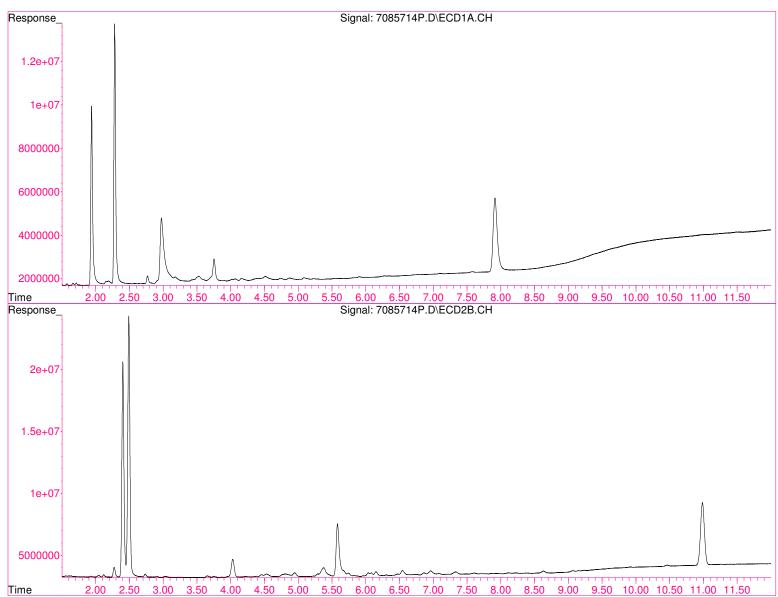
Acquired : 12 Jun 2013 6:56 pm using AcqMethod 60110424.M

Instrument: HP G1530A

Sample Name: SB70857-15 @ SP3-05

Misc Info : ????????

File :G:\Jun2013\HPS11\data\PCB110611\7085714P.D


Operator : BLM

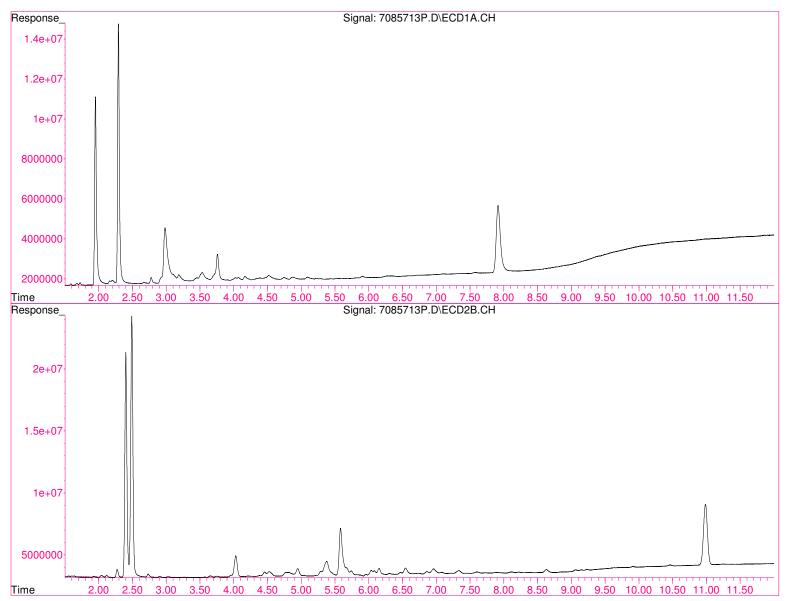
Acquired : 12 Jun 2013 6:41 pm using AcqMethod 60110424.M

Instrument: HP G1530A

Sample Name: SB70857-14 @ SP3-04

Misc Info : ????????

File :G:\Jun2013\HPS11\data\PCB110611\7085713P.D


Operator : BLM

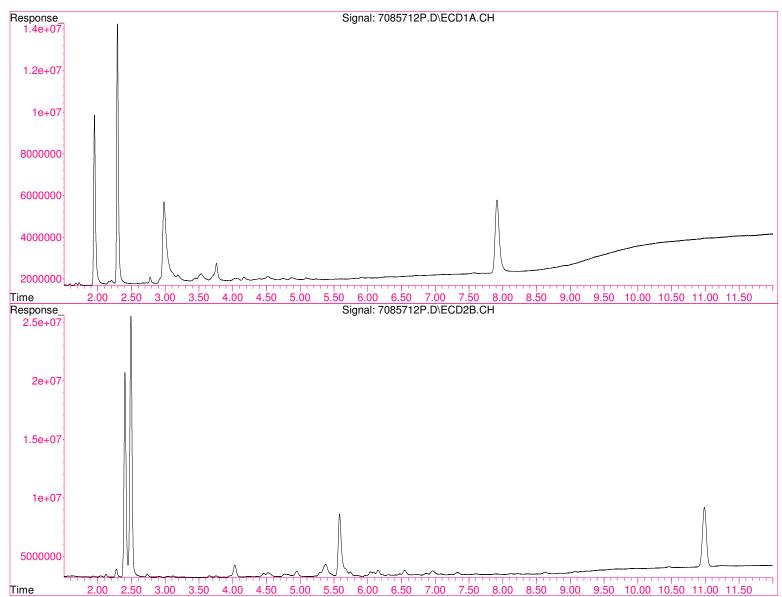
Acquired : 12 Jun 2013 6:25 pm using AcqMethod 60110424.M

Instrument: HP G1530A

Sample Name: SB70857-13 @ SP3-03

Misc Info : ????????

File :G:\Jun2013\HPS11\data\PCB110611\7085712P.D


Operator : BLM

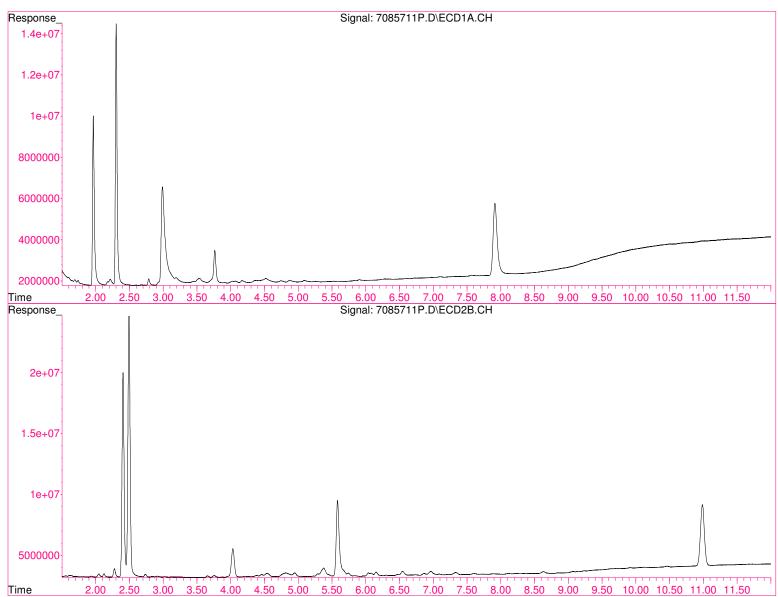
Acquired : 12 Jun 2013 6:10 pm using AcqMethod 60110424.M

Instrument: HP G1530A

Sample Name: SB70857-12 @ SP3-02

Misc Info : ????????

File :G:\Jun2013\HPS11\data\PCB110611\7085711P.D


Operator : BLM

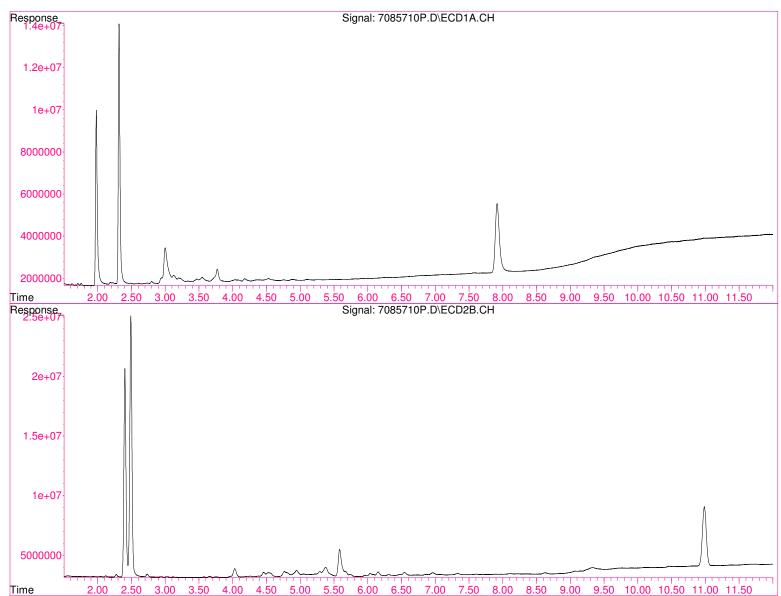
Acquired: 12 Jun 2013 5:54 pm using AcqMethod 60110424.M

Instrument: HP G1530A

Sample Name: SB70857-11 @ SP3-01

Misc Info : ????????

File :G:\Jun2013\HPS11\data\PCB110611\7085710P.D


Operator : BLM

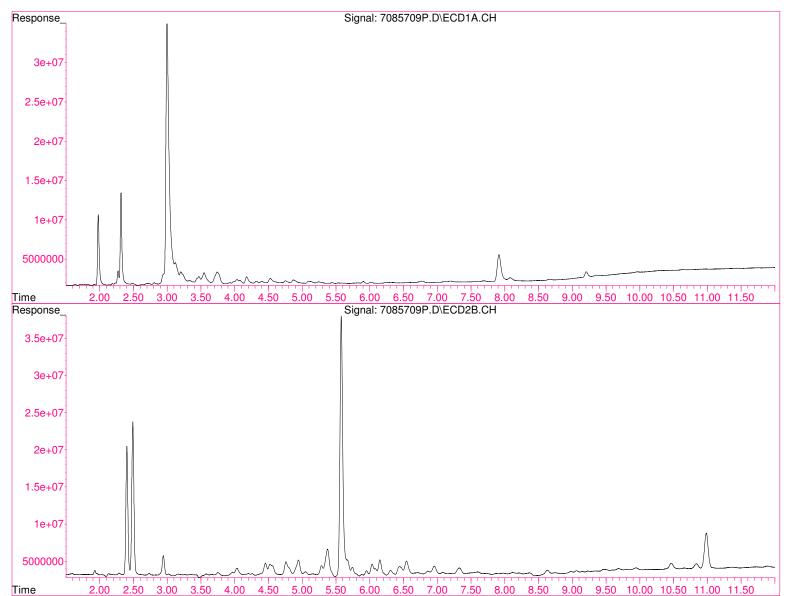
Acquired : 12 Jun 2013 5:39 pm using AcqMethod 60110424.M

Instrument: HP G1530A

Sample Name: SB70857-10 @ SP2-10

Misc Info : ????????

File :G:\Jun2013\HPS11\data\PCB110611\7085709P.D


Operator : BLM

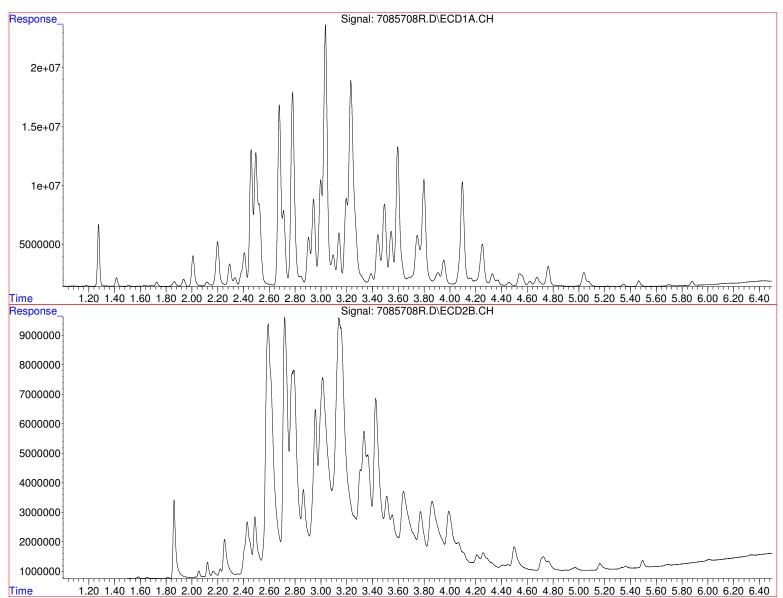
Acquired : 12 Jun 2013 5:24 pm using AcqMethod 60110424.M

Instrument: HP G1530A

Sample Name: SB70857-09 @ SP2-09

Misc Info : ????????

File :G:\Jun2013\HPS12\data\PCB120612\7085708R.D


Operator : IMR

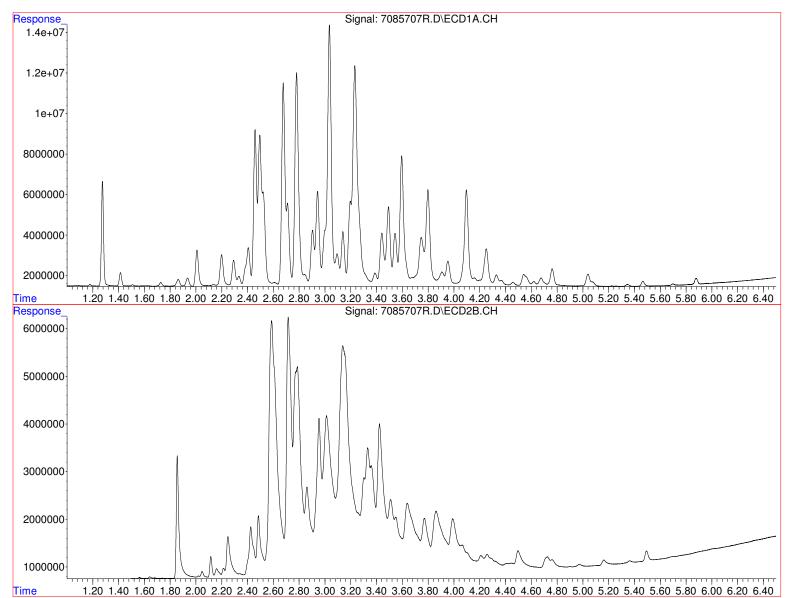
Acquired: 13 Jun 2013 11:54 am using AcqMethod 60120306.M

Instrument: HP G1530A

Sample Name: SB70857-08 @ SP2-08

Misc Info : 1:10 DIL ????????

File :G:\Jun2013\HPS12\data\PCB120612\7085707R.D


Operator : IMR

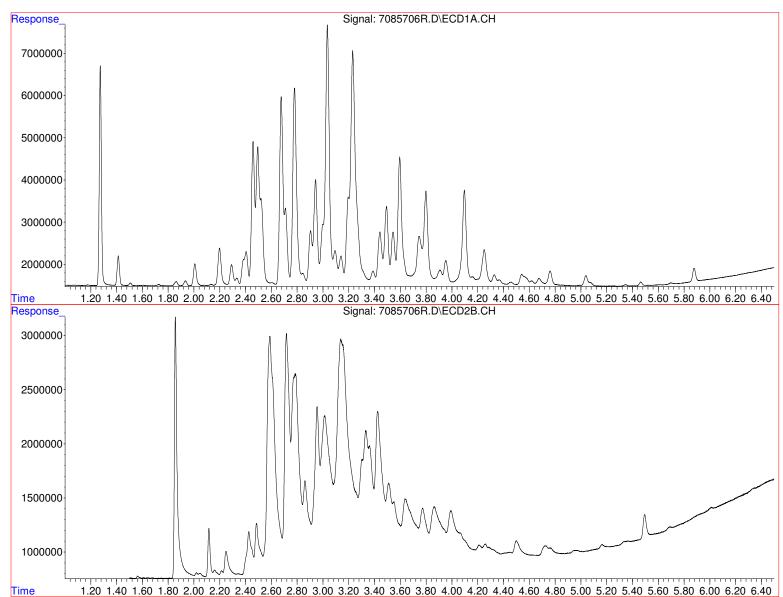
Acquired: 13 Jun 2013 11:44 am using AcqMethod 60120306.M

Instrument: HP G1530A

Sample Name: SB70857-07 @ SP2-07

Misc Info : 1:10 DIL ????????

File :G:\Jun2013\HPS12\data\PCB120612\7085706R.D


Operator : IMR

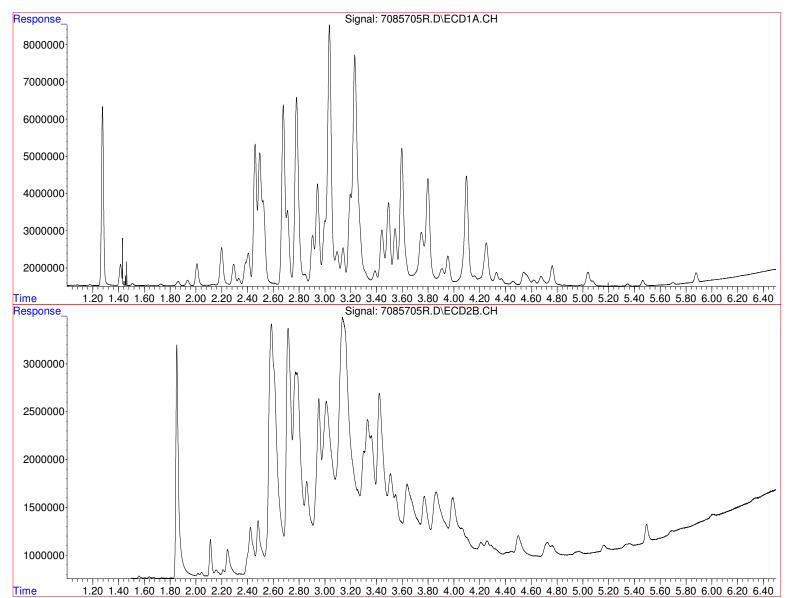
Acquired: 13 Jun 2013 11:35 am using AcqMethod 60120306.M

Instrument: HP G1530A

Sample Name: SB70857-06 @ SP2-06

Misc Info : 1:10 DIL ????????

File :G:\Jun2013\HPS12\data\PCB120612\7085705R.D


Operator : IMR

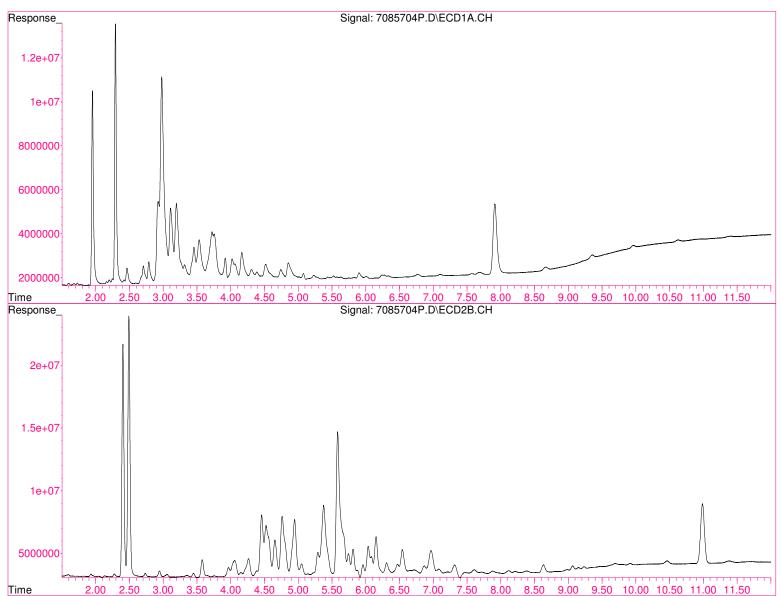
Acquired: 13 Jun 2013 11:25 am using AcqMethod 60120306.M

Instrument: HP G1530A

Sample Name: SB70857-05 @ SP2-05

Misc Info : 1:10 DIL ????????

File :G:\Jun2013\HPS11\data\PCB110611\7085704P.D


Operator : BLM

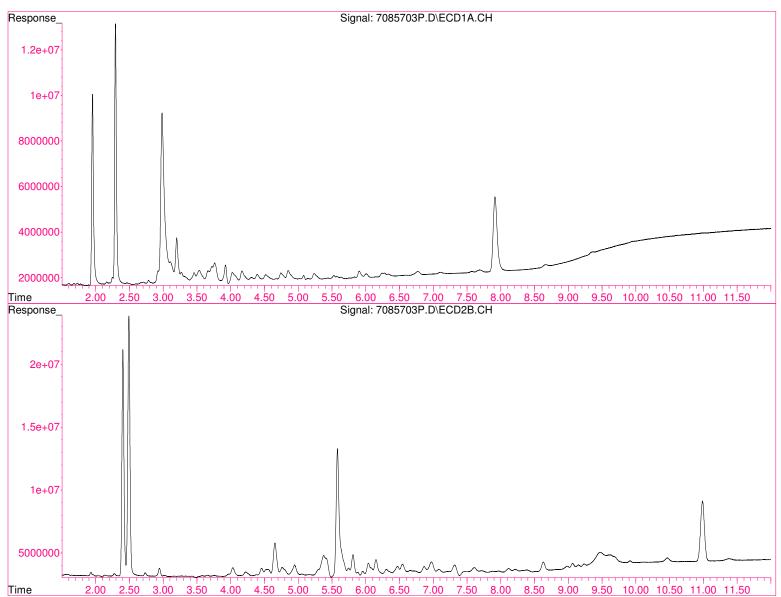
Acquired : 12 Jun 2013 2:50 pm using AcqMethod 60110424.M

Instrument: HP G1530A

Sample Name: SB70857-04 @ SP2-04

Misc Info : ????????

File :G:\Jun2013\HPS11\data\PCB110611\7085703P.D


Operator : BLM

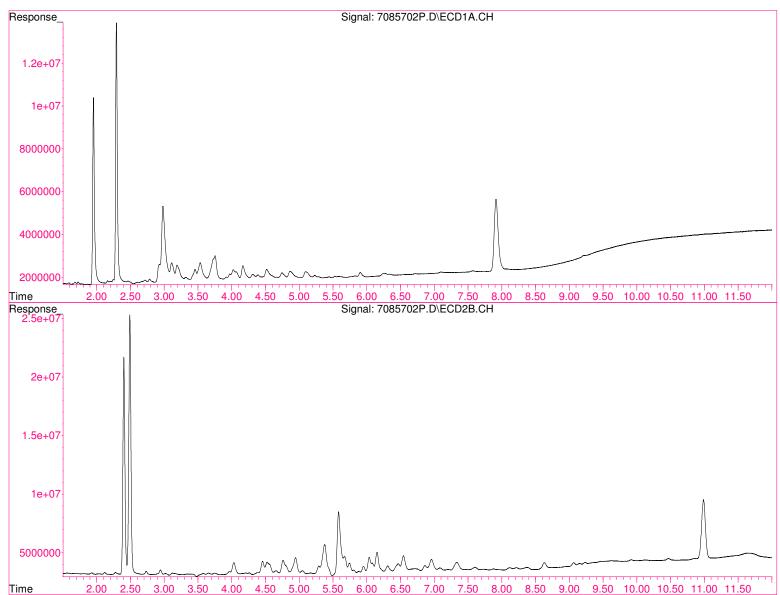
Acquired: 12 Jun 2013 2:34 pm using AcqMethod 60110424.M

Instrument: HP G1530A

Sample Name: SB70857-03 @ SP2-03

Misc Info : ????????

File :G:\Jun2013\HPS11\data\PCB110611\7085702P.D


Operator : BLM

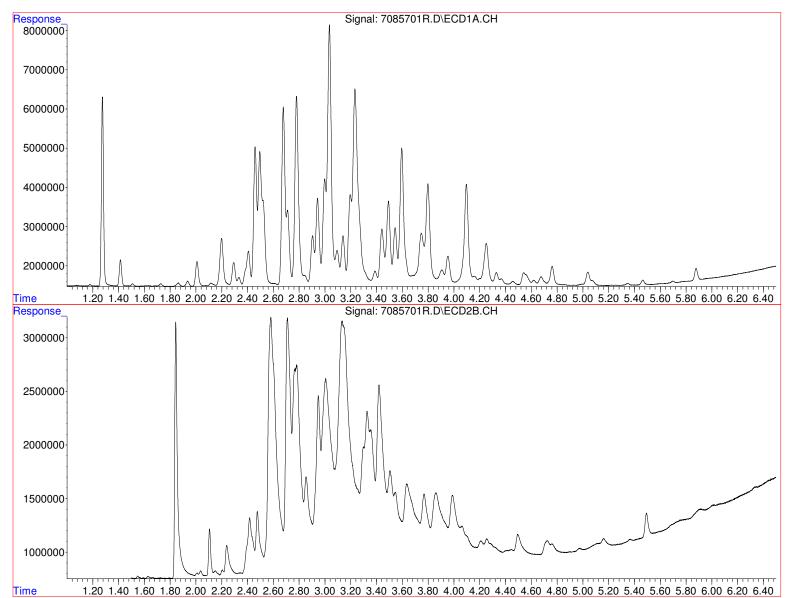
Acquired : 12 Jun 2013 2:19 pm using AcqMethod 60110424.M

Instrument: HP G1530A

Sample Name: SB70857-02 @ SP2-02

Misc Info : ???????

File :G:\Jun2013\HPS12\data\PCB120612\7085701R.D


Operator : IMR

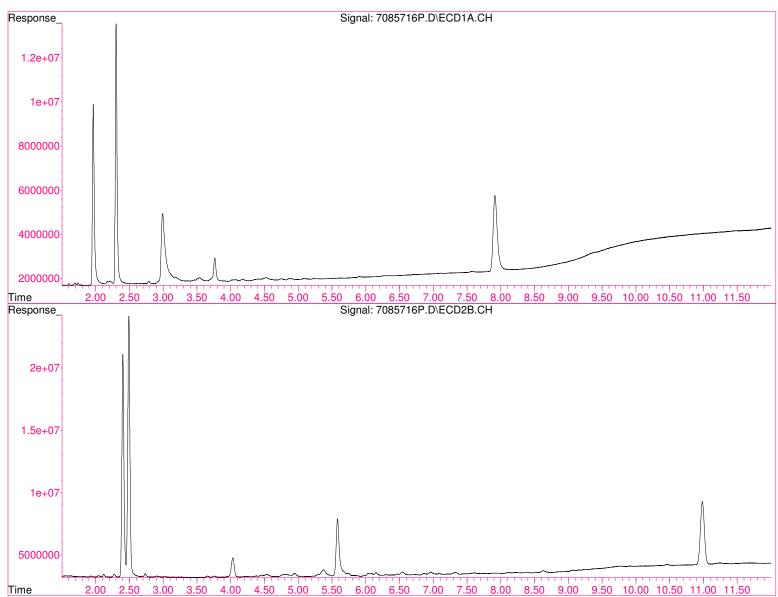
Acquired: 13 Jun 2013 11:15 am using AcqMethod 60120306.M

Instrument: HP G1530A

Sample Name: SB70857-01 @ SP2-01

Misc Info : 1:10 DIL ????????

File :G:\Jun2013\HPS11\data\PCB110611\7085716P.D


Operator : BLM

Acquired : 12 Jun 2013 7:11 pm using AcqMethod 60110424.M

Instrument: HP G1530A

Sample Name: SB70857-16 @ SP3-06

Misc Info : ????????

CHAIN OF CUSTODY RECORD

Page / of Z

~		** ' *	
- 0	necial	Hand	Ina.
0	occiai	11anu	11115.

36708

- Standard TAT 7 to 10 business days
- ☐ Rush TAT Date Needed:
- · All TATs subject to laboratory approval.
- · Min. 24-hour notification needed for rushes.
- · Samples disposed of after 60 days unless otherwise instructed.

AECC		ENNA	Invoice	Invoice To: ACCTS PATABLE						_		roject No.: 13-067				
6308	FLY RD STRACUSE, NY	13057	SAM	SAME ADDRESS							1	ocation: COLLAMER State: NY				
	: 315 432					_										
Project Mgr.			P.O. No	D.: 13-	067	-	RQ	N: _			San	mpler(s):	HARD	D Mikenna		
	S2O ₃ 2=HCl 3=H SO ₄ 9= Deionized V			6=Asc		Acid 12=	7=0	CH ₃ C	Н	-	List	preservative code b	elow:	QA/QC Reporting Notes: * additional charges may apply		
	ng Water GW=Grou						Con	ntain	ers:			Analyses:		MA DEP MCP CAM Report: Yes □ No□		
	O=Oil SW= Surface Water SO=Soil SL=Sludge A=Air X1=						of Amber Glass	Glass	0		2			CT DPH RCP Report: Yes □ No □ QA/QC Reporting Level Standard □ No QC □ DQA* □ NY ASP A* □ NY ASP B*		
	G=Grab C=	Composite		ا م	vix	# of VOA Vials	fAmbe	of Clear Glass	of Plastic		7 70			□ NJ Reduced* □ NJ Full* □ TIER II* □ TIER IV*		
Lab Id:	Sample Id:	Date:	Time:	Type	Matrix	# 0	10 #	# 0	#	5	5			Other State-specific reporting standards:		
357-01	SP2-01	5/31/13	1:40	G	50		1			V	1					
102	SP2-02	M	1:45	te	14.		4			1/	1					
103	SP2 - 03	N	1:50	V	19		n			V	/					
ay	SP2-04	u	1:55	30	-11		11			V	1					
05	5P2-05	¥	2:00	11	Ж		16			V	/					
06	SP2-06	4	2305	- 11	11		at .			V	/					
07	SP2-07	ti.	2:10	h	41	*	ri i			V	/					
08	SP2-08	ч	2:15	и	10		4.			V	/					
. 09	SP2-09	ч	2:20	15-	4	4	11			V	/					
0 10	SP2-10	Ţŧ.	2:25	H-	33		1				/					
Reli	nquished by:	A Re	ceived by:	11	1	Date:	/		Time:	T	emp°G	☑ EDD Format _	Exce	PDF		
MAR	AcKenna M	40	1/4 000	4	3/	94	13	1	013	F	24	M E-mail to	melce	na Daecegroup. com		
The	The contract	OV	13.		6/	4//	3	17	100	,	111	Condition upon receipt				
	//											Ambient T lead	T Refriger	led DIVOA Emzen D Soil Jar Frozen		

CHAIN OF CUSTODY RECORD

Page 2 of 2

		BB7085
Special	H	landling:

✓ Standard TAT - 7 to 10 business days

☐ Rush TAT - Date Needed:

- · All TATs subject to laboratory approval.
- Min. 24-hour notification needed for rushes.
- Samples disposed of after 60 days unless otherwise instructed.

Acce	RICHARD MCKE	ENNA	Invoice	То:	COT	5	PA	TARS	E			oject No.: 13-06	
	FURD		SA	ME /	FDDR	ES	5				Sit	te Name: WBP	
	STRACUSE, NY										Lo	ocation: Coccame	State: NY
	3(5 432 9	400	P.O. No	o.: 13-	X-7		RO	N:			Sa	mpler(s): REMARD	DMcKENNA
Project Mgr.	2-1101 2-1	I CO 4-UNO					14.7		NII.	7		at preservative code below:	
	$S2O_3$ 2=HCl 3=F SO_4 9= Deionized V			0-Asc		12-	1-0	П3€	П		/ 13	preservative code below.	QA/QC Reporting Notes: * additional charges may apply
O=Oil SW	ng Water GW=Grou = Surface Water SC X2=	D=Soil SL=Slud	lge A=Air			Vials		ntain SSEL	ers:		220	Analyses:	MA DEP MCP CAM Report: Yes No CT DPH RCP Report: Yes No QA/QC Reporting Level
	G=Grab C=	Composite		Dype	Matrix	= of VOAV	# of Amber Glass	of Clear Glass	of Plastic		2002		□ NY ASP A* □ NY ASP B* □ NJ Reduced* □ NJ Full* □ TIER II* □ TIER IV* □ Other
Lab Id:	Sample Id:	Date:	Time:	1		, iii	41:	#	41:	,			State-specific reporting standards:
0857-11	SP3-01	5/31/13	3:00	C	50		1			· V	-	1795 · J	
1 12	SP3-02	4	3:05	4	14		4			V	1		
B	SP3-03	11	3:10	H	14		4			V			
14	SP3-04	.16	3:15	и	4		4			V			
1.15	SP3-05	4	3:20	H	ч		d			v	/		
96	SP3-06	И	3:25	N.	4		31.			ı	/		
						2				4			
	nquished by: Alkenny	Rec	eived by:	1	3	Onte:	18	1	Time: 05	2	Cemp"C	Ex EDD Format Ex	CEL, PDF Cenna Daecegroup: com
PIV	My	ON ON	40.		10/	4/1	11	3	1/00	1	111	Condition upon receipt:	
	//		10		41	11.0						Condition upon receipt:	rigerated DIVOA Frozen D Soil Jar Froz

Report Date: 05-Jan-15 13:54

☐ Final Report
☐ Re-Issued Report

☐ Revised Report

Laboratory Report

AECC Environmental Consulting 6308 Fly Road East Syracuse, NY 13057

Attn: Rich McKenna

Project: Woodbine Business Park - Dewitt, NY

Project #: 14-091

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SC01849-01	SP3-07	Soil	29-Dec-14 09:30	29-Dec-14 21:00
SC01849-02	SP3-08	Soil	29-Dec-14 09:35	29-Dec-14 21:00

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011/MA012 New York # 11393/11840 Pennsylvania # 68-04426/68-02924 Rhode Island # 98 USDA # S-51435

Authorized by:

Nicole Leja Laboratory Director

riole Leja

Spectrum Analytical holds certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 8 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey, Pennsylvania and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, NJ-MA012, PA-68-04426 and FL-E87936).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

CASE NARRATIVE:

Data has been reported to the MDL. This report includes estimated concentrations detected below the RDL and above the MDL (J-Flag).

All non-detects and all results below the detection limit are reported as "<" (less than) the detection limit in this report.

The samples were received 3.9 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of ± 1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

There is no relevant protocol-specific QC and/or performance standards non-conformances to report.

Sample Acceptance Check Form

AECC Environmental Consulting

preservation type, sample matrix and any special remarks concerning the sample?

Did sample container labels agree with Chain of Custody document?

Were samples received within method-specific holding times?

Client:

Project:	Woodbine Business Park - Dewitt, NY / 14-091			
Work Order:	SC01849			
Sample(s) received on:	12/29/2014			
The following outlines to	he condition of samples for the attached Chain of Custody upon receipt.			
		Yes	<u>No</u>	<u>N/A</u>
Were custody se	als present?		\checkmark	
Were custody se	als intact?			✓
Were samples re	exceived at a temperature of \leq 6°C?	\checkmark		
Were samples co	poled on ice upon transfer to laboratory representative?	✓		
Were sample co	ntainers received intact?	\checkmark		
	roperly labeled (labels affixed to sample containers and include sample ID, site project number and the collection date)?			
Were samples a	ecompanied by a Chain of Custody document?	✓		
	Custody document include proper, full, and complete documentation, which shall D, site location, and/or project number, date and time of collection, collector's name,	~		

Sample Identification SP3-07 SC01849-01			Client Project # 14-091			<u>Matrix</u> Soil	Collection Date/Time 29-Dec-14 09:30			Received 29-Dec-14			
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	le Organic Compounds by C	GC											
	nated Biphenyls by method SW846 3540C												
12674-11-2	Aroclor-1016	< 25.7	U	μg/kg dry	27.6	25.7	1	SW846 8082A	31-Dec-14	02-Jan-15	IMR	1430416	Х
11104-28-2	Aroclor-1221	< 23.5	U	μg/kg dry	27.6	23.5	1	"	"	"	"	"	Х
11141-16-5	Aroclor-1232	< 24.8	U	μg/kg dry	27.6	24.8	1	"	"	"	"	"	Х
53469-21-9	Aroclor-1242	< 12.3	U	μg/kg dry	27.6	12.3	1	"	"	"	"	"	Х
12672-29-6	Aroclor-1248	< 15.0	U	μg/kg dry	27.6	15.0	1	"	"	"	"	"	Х
11097-69-1	Aroclor-1254	< 17.4	U	μg/kg dry	27.6	17.4	1	"	"	"	"	"	Х
11096-82-5	Aroclor-1260	< 19.7	U	μg/kg dry	27.6	19.7	1	"	"	"	"	"	X
37324-23-5	Aroclor-1262	< 14.9	U	μg/kg dry	27.6	14.9	1	"	"	"	"	"	Х
11100-14-4	Aroclor-1268	< 27.1	U	μg/kg dry	27.6	27.1	1	"	"	"	"	"	Χ
Surrogate i	ecoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	110			30-15	0 %		"	"	"	u	"	
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	120			30-15	0 %		"	u	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr)	110			30-15	0 %		"	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	115			30-15	0 %		"	u	"	"	"	
General C	hemistry Parameters												
	% Solids	71.3		%			1	SM2540 G Mod.	31-Dec-14	31-Dec-14	BD	1430437	

Sample Identification SP3-08 SC01849-02			Client Project # 14-091			<u>Matrix</u> Soil	Collection Date/Time 29-Dec-14 09:35			Received 29-Dec-14			
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	le Organic Compounds by C	GC .											
	nated Biphenyls by method SW846 3540C												
12674-11-2	Aroclor-1016	< 24.5	U	μg/kg dry	26.2	24.5	1	SW846 8082A	31-Dec-14	02-Jan-15	IMR	1430416	Х
11104-28-2	Aroclor-1221	< 22.3	U	μg/kg dry	26.2	22.3	1		"	u u	"	"	Х
11141-16-5	Aroclor-1232	< 23.6	U	μg/kg dry	26.2	23.6	1	"	"	u	"	"	Χ
53469-21-9	Aroclor-1242	< 11.7	U	μg/kg dry	26.2	11.7	1		"	"	"	"	Χ
12672-29-6	Aroclor-1248	< 14.3	U	μg/kg dry	26.2	14.3	1		"	"	"	"	Х
11097-69-1	Aroclor-1254	< 16.5	U	μg/kg dry	26.2	16.5	1		"	"	"	"	Х
11096-82-5	Aroclor-1260	< 18.8	U	μg/kg dry	26.2	18.8	1	"	"	"	"	"	X
37324-23-5	Aroclor-1262	< 14.2	U	μg/kg dry	26.2	14.2	1		"	"	"	"	Х
11100-14-4	Aroclor-1268	< 25.8	U	μg/kg dry	26.2	25.8	1	"	"	"	"	"	Х
Surrogate r	ecoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	105			30-15	50 %		"	"	"	"	"	
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	115			30-15	50 %		"	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr)	105			30-15	50 %		"	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	110			30-15	50 %		"	"	"	"	"	
General C	hemistry Parameters												
	% Solids	71.8		%			1	SM2540 G Mod.	31-Dec-14	31-Dec-14	BD	1430437	

Semivolatile Organic Compounds by GC - Quality Control

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPI Lim
tch 1430416 - SW846 3540C										
Blank (1430416-BLK1)					Pre	epared: 31-	Dec-14 An	alyzed: 02-J	an-15	
Aroclor-1016	< 17.5	U	μg/kg wet	17.5						
Aroclor-1016 [2C]	< 12.1	U	μg/kg wet	12.1						
Aroclor-1221	< 15.9	U	μg/kg wet	15.9						
Aroclor-1221 [2C]	< 13.8	U	μg/kg wet	13.8						
Aroclor-1232	< 16.8	U	μg/kg wet	16.8						
Aroclor-1232 [2C]	< 14.4	U	μg/kg wet	14.4						
Aroclor-1242	< 8.33	U	μg/kg wet	8.33						
Aroclor-1242 [2C]	< 14.6	U	μg/kg wet	14.6						
Aroclor-1248	< 10.2	U	μg/kg wet	10.2						
Aroclor-1248 [2C]	< 10.3	U	μg/kg wet	10.3						
Aroclor-1254	< 11.8	U	μg/kg wet	11.8						
Aroclor-1254 [2C]	< 11.2	U	μg/kg wet	11.2						
Aroclor-1260	< 13.4	U	μg/kg wet	13.4						
Aroclor-1260 [2C]	< 17.8	U	μg/kg wet	17.8						
Aroclor-1262	< 10.2	U	μg/kg wet	10.2						
Aroclor-1262 [2C]	< 9.37	U	μg/kg wet	9.37						
Aroclor-1268	< 18.4	U	μg/kg wet	18.4						
Aroclor-1268 [2C]	< 18.0	U	μg/kg wet	18.0						
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	15.0		μg/kg wet		18.7		80	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	16.9		μg/kg wet		18.7		90	30-150		
Surrogate: Decachlorobiphenyl (Sr)	15.9		μg/kg wet		18.7		85	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	16.9		μg/kg wet		18.7		90	30-150		
LCS (1430416-BS1)					Pre	epared: 31-	Dec-14 An	alyzed: 02-J	<u>an-15</u>	
Aroclor-1016	222		μg/kg wet	17.1	229		97	40-140		
Aroclor-1016 [2C]	194		μg/kg wet	11.9	229		85	40-140		
Aroclor-1260	199		μg/kg wet	13.1	229		87	40-140		
Aroclor-1260 [2C]	172		μg/kg wet	17.4	229		75	40-140		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	19.2		μg/kg wet		18.3		105	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	18.3		μg/kg wet		18.3		100	30-150		
Surrogate: Decachlorobiphenyl (Sr)	19.2		μg/kg wet		18.3		105	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	18.3		μg/kg wet		18.3		100	30-150		
LCS Dup (1430416-BSD1)					Pre	epared: 31-	Dec-14 An	alyzed: 02-J	an-15	
Aroclor-1016	240		μg/kg wet	18.3	244		98	40-140	1	30
Aroclor-1016 [2C]	211		μg/kg wet	12.7	244		86	40-140	2	30
Aroclor-1260	208		μg/kg wet	14.0	244		85	40-140	2	30
Aroclor-1260 [2C]	177		μg/kg wet	18.5	244		72	40-140	4	30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	20.5		μg/kg wet		19.6		105	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	19.6		μg/kg wet		19.6		100	30-150		
Surrogate: Decachlorobiphenyl (Sr)	19.6		μg/kg wet		19.6		100	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	18.6		μg/kg wet		19.6		95	30-150		
Matrix Spike (1430416-MS1)			Source: SC	01849-01	Pre	epared: 31-	Dec-14 An	alyzed: 02-J	an-15	
Aroclor-1016	335		μg/kg dry	24.4	327	BRL	102	40-140	<u>-</u> _	
Aroclor-1016 [2C]	320		μg/kg dry	16.9	327	BRL	98	40-140		
Aroclor-1260	290		μg/kg dry	18.7	327	BRL	89	40-140		
Aroclor-1260 [2C]	258		μg/kg dry μg/kg dry	24.8	327	BRL	79	40-140		
						· · · ·				
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	30.1		μg/kg dry		26.2		115	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	30.1		μg/kg dry		26.2		115	30-150		

Semivolatile Organic Compounds by GC - Quality Control

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1430416 - SW846 3540C										
Matrix Spike (1430416-MS1)			Source: SC	<u>01849-01</u>	Pre	epared: 31-	Dec-14 An	nalyzed: 02-J	an-15	
Surrogate: Decachlorobiphenyl (Sr)	28.8		μg/kg dry		26.2		110	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	28.8		μg/kg dry		26.2		110	30-150		
Matrix Spike Dup (1430416-MSD1)			Source: SC	01849-01	Pre	epared: 31-	Dec-14 An	nalyzed: 02-J	an-15	
Aroclor-1016	338		μg/kg dry	24.0	321	BRL	105	40-140	3	30
Aroclor-1016 [2C]	297		μg/kg dry	16.7	321	BRL	92	40-140	6	30
Aroclor-1260	302		μg/kg dry	18.4	321	BRL	94	40-140	6	30
Aroclor-1260 [2C]	256		μg/kg dry	24.4	321	BRL	80	40-140	1	30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	29.6		μg/kg dry		25.7		115	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	29.6		μg/kg dry		25.7		115	30-150		
Surrogate: Decachlorobiphenyl (Sr)	32.1		μg/kg dry		25.7		125	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	29.6		μg/kg dry		25.7		115	30-150		

Notes and Definitions

U Analyte included in the analysis, but not detected at or above the MDL.

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.


Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

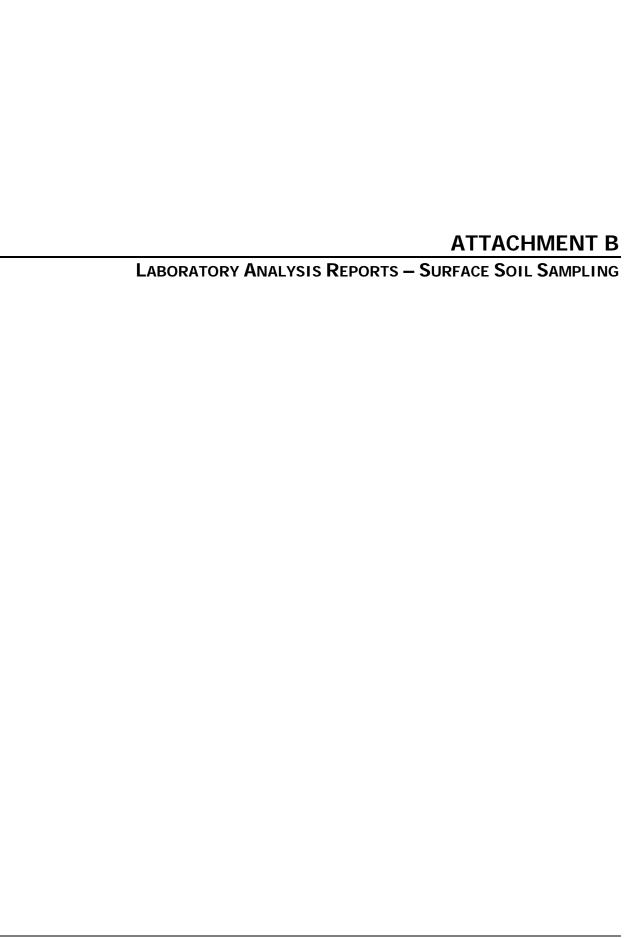
<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification:</u> The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

Validated by: June O'Connor

CHAIN OF CUSTODY RECORD

Page of


Special Handling:

☐ Standard TAT - 7 to 10 business days

Rush TAT - Date Needed: 3-5 DAY

All TATs subject to laboratory approval
Min. 24-hr notification needed for rushes
Samples disposed after 60 days unless otherwise instructed

HANIBA	AL TECHNOLOGY		~					- 0				Samples dispo	osed after 60 days unless otherwise instructed.
	h McKenna		Invoice To		Acol	15	Paye	sble			Project No:	14-00	1
_AE	308 Fly Road			_			,			-	Site Name:	Woodbin	e Business Park
Ea	(35) 432-9400	3057		- 1/1							Location: Sampler(s):	Canada Prew]	Dr. DeWith State: NY Branner
Project Mgr:			P.O No.:	17	-09	1	Quot	e/RQN:					
	1=Na ₂ S2O ₃		5=NaOH 6=								List Preservative Coo	le below:	QA/QC Reporting Notes: * additional charges may appply
						_		202001					
DW=Dinking Wate	er GW=Groundwater SW=S	urface Water W	W=Waste Water	T .			C	ontaine	ers.		Analysis		MA DEP MCP CAM Report? Yes No
O=Oil SO=Soi	I SL=Sludge A=Indoor/Am	bient Air SG=So	il Gas							250			. 4
X1=	X2=	X3=				als	ilass	ass		23			□ DQA* □ ASP A* □ ASP B*
	G= Grab	C=Compsit		7.7H		AVi	per (ar Gl	stic	70.0			NJ Reduced* NJ Full*
	100			Type	Matrix	of VOA Vials	of Amber Glass	of Clear Glass	of Plastic	20%			Standard No QC DQA* ASP A* ASP B* NJ Reduced* NJ Full* Tier II* Tier IV* Other: State-specific reporting standards:
Lab ID:	Sample ID:	Date:	Time:			#	**	非	#				State-specific reporting standards:
30018494	5P3-07	12/29/14	0930	C	So		1			X			(Met 12540)
V 00	573-08	12/29/14	0935	C	50		1			X			- 20 Died (12.1
			16 07										
				-									
						-							
										1			
													00000000
										1 = 1			011012 R
						-			-	-			N XX
Doline	quished by:	Panairas	l ben			Data			Time	Temp	°C M	Po-	
()	quished by:	Received	A = (71	1 -	Date:	1.		Time:		EDD format:	TDF	, Exce
Dager	Butung C	2006	0	L	12	21	114	15	545	Observed	E-mail to:	maken	ina@ aeccgroup.com P'
#19	30011 2	Kerk			11	8/1	14	1	1,27	Corecction Fa	sctor	derant	There accigning com
1)	+	7)	-27	12	120	11	1	(در ر	Compiled	Constitution		
13 D	ua-				10/	241	4	X	100	IR ID#	1		: Present Intact Broken
					1					01	Ambient 1c	ed Refrigerate	ed DI VOA Frozen Soit Jar Frozen
					_								

Report Date: 14-Jun-13 11:59

☑ Final Report☐ Re-Issued Report☐ Revised Report

HANIBAL TECHNOLOGY Laboratory Report

AECC Environmental Consulting 6308 Fly Road East Syracuse, NY 13057

Attn: Rico McKenna

Project: WBP - Collamer, NY

Project #: 13-067

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SB70846-01	Pond - 01	Soil	31-May-13 15:40	31-May-13 21:00
SB70846-02	Pond - 02	Soil	31-May-13 15:45	31-May-13 21:00
SB70846-03	Pond - 03	Soil	31-May-13 15:50	31-May-13 21:00
SB70846-04	Pond - 04	Soil	31-May-13 16:00	31-May-13 21:00

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011/MA012 New York # 11393/11840 Pennsylvania # 68-04426/68-02924 Rhode Island # 98 USDA # S-51435

Authorized by:

Nicole Leja Laboratory Director

Spectrum Analytical holds certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 10 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, FL-E87936 and NJ-MA012).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

CASE NARRATIVE:

The samples were received 1.2 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of \pm 1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

There is no relevant protocol-specific QC and/or performance standards non-conformances to report.

Sample Acceptance Check Form

Client:	AECC Environmental Consulting
Project:	WBP - Collamer, NY / 13-067
Work Order:	SB70846
Sample(s) received on:	5/31/2013
Received by:	Vickie Knowles

The following outlines the condition of samples for the attached Chain of Custody upon receipt.

		Yes	<u>No</u>	<u>N/A</u>
1.	Were custody seals present?		\checkmark	
2.	Were custody seals intact?			✓
3.	Were samples received at a temperature of $\leq 6^{\circ}$ C?	✓		
4.	Were samples cooled on ice upon transfer to laboratory representative?	✓		
5.	Were samples refrigerated upon transfer to laboratory representative?		\checkmark	
6.	Were sample containers received intact?	✓		
7.	Were samples properly labeled (labels affixed to sample containers and include sample ID, site location, and/or project number and the collection date)?	✓		
8.	Were samples accompanied by a Chain of Custody document?	✓		
9.	Does Chain of Custody document include proper, full, and complete documentation, which shall include sample ID, site location, and/or project number, date and time of collection, collector's name, preservation type, sample matrix and any special remarks concerning the sample?	<u> </u>		
10.	Did sample container labels agree with Chain of Custody document?	\checkmark		
11.	Were samples received within method-specific holding times?	\checkmark	П	П

Sample Identification Pond - 01 SB70846-01			<u>Client Project #</u> 13-067			<u>Matrix</u> Soil	· · · · · · · · · · · · · · · · · · ·	ection Date -May-13 15		Received 31-May-13			
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivola	tile Organic Compounds by C	GC											
Polychlorin	ated Biphenyls												
Prepared	d by method SW846 3545A												
12674-11-2	Aroclor-1016	< 23.1		μg/kg dry	23.1	11.5	1	SW846 8082A	08-Jun-13	12-Jun-13	BLM	1313470	Χ
11104-28-2	Aroclor-1221	< 23.1		μg/kg dry	23.1	20.8	1				"		Х
11141-16-5	Aroclor-1232	< 23.1		μg/kg dry	23.1	14.8	1				"		Χ
53469-21-9	Aroclor-1242	< 23.1		μg/kg dry	23.1	13.6	1	н			"		Х
12672-29-6	Aroclor-1248	< 23.1		μg/kg dry	23.1	11.3	1	н			"		Х
11097-69-1	Aroclor-1254	< 23.1		μg/kg dry	23.1	19.2	1	н			"		Х
11096-82-5	Aroclor-1260	< 23.1		μg/kg dry	23.1	14.3	1	н			"		Х
37324-23-5	Aroclor-1262	< 23.1		μg/kg dry	23.1	21.5	1				"		Х
11100-14-4	Aroclor-1268	< 23.1		μg/kg dry	23.1	7.25	1				"		Χ
Surrogate re	ecoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	75			30-15	50 %			•		"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	75			30-15	50 %		н			"		
2051-24-3	Decachlorobiphenyl (Sr)	75			30-15	50 %				"	"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	80			30-15	50 %		н			"		
General (Chemistry Parameters												
	% Solids	84.3		%			1	SM2540 G Mod.	10-Jun-13	10-Jun-13	DT	1313546	

Sample Identification Pond - 02 SB70846-02			Client Project # 13-067			<u>Matrix</u> Soil	Collection Date/Time 31-May-13 15:45			Received 31-May-13			
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
	ated Biphenyls by method SW846 3545A												
12674-11-2	Aroclor-1016	< 22.3		μg/kg dry	22.3	11.1	1	SW846 8082A	08-Jun-13	12-Jun-13	BLM	1313470	Х
11104-28-2	Aroclor-1221	< 22.3		μg/kg dry	22.3	20.1	1				"		Х
11141-16-5	Aroclor-1232	< 22.3		μg/kg dry	22.3	14.3	1				"		Х
53469-21-9	Aroclor-1242	< 22.3		μg/kg dry	22.3	13.1	1	п			"		Х
12672-29-6	Aroclor-1248	< 22.3		μg/kg dry	22.3	10.9	1				"		Х
11097-69-1	Aroclor-1254	< 22.3		μg/kg dry	22.3	18.6	1				"		Х
11096-82-5	Aroclor-1260	< 22.3		μg/kg dry	22.3	13.8	1				"		Х
37324-23-5	Aroclor-1262	< 22.3		μg/kg dry	22.3	20.8	1	п			"		Х
11100-14-4	Aroclor-1268	< 22.3		μg/kg dry	22.3	7.00	1	п			"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	85			30-15	0 %		н			"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	90			30-15	60 %		п		ı	"		
2051-24-3	Decachlorobiphenyl (Sr)	90			30-15	60 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	90			30-15	50 %					"		
General C	Chemistry Parameters												
	% Solids	84.0		%			1	SM2540 G Mod.	10-Jun-13	10-Jun-13	DT	1313546	

Sample Identification Pond - 03 SB70846-03			Client Project # 13-067			<u>Matrix</u> Soil	Collection Date/Time 31-May-13 15:50			<u>Rec</u> 31-N			
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
	ated Biphenyls												
	by method SW846 3545A												
12674-11-2	Aroclor-1016	< 22.8		μg/kg dry	22.8	11.4	1	SW846 8082A	08-Jun-13	12-Jun-13	BLM	1313470	Х
11104-28-2	Aroclor-1221	< 22.8		μg/kg dry	22.8	20.5	1			"	"		Χ
11141-16-5	Aroclor-1232	< 22.8		μg/kg dry	22.8	14.6	1				"		Χ
53469-21-9	Aroclor-1242	< 22.8		μg/kg dry	22.8	13.4	1				"		Χ
12672-29-6	Aroclor-1248	< 22.8		μg/kg dry	22.8	11.2	1				"		Χ
11097-69-1	Aroclor-1254	< 22.8		μg/kg dry	22.8	19.0	1				"		Χ
11096-82-5	Aroclor-1260	< 22.8		μg/kg dry	22.8	14.1	1	п			"		Х
37324-23-5	Aroclor-1262	< 22.8		μg/kg dry	22.8	21.2	1						Х
11100-14-4	Aroclor-1268	< 22.8		μg/kg dry	22.8	7.15	1	п			"		Х
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	60			30-15	0 %		н		ı	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	60			30-15	60 %		п		ı	"		
2051-24-3	Decachlorobiphenyl (Sr)	55			30-15	0 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	60			30-15	0 %		н			"		
General C	Chemistry Parameters												
	% Solids	84.6		%			1	SM2540 G Mod.	10-Jun-13	10-Jun-13	DT	1313546	

Sample Identification Pond - 04 SB70846-04			Client Project # 13-067			<u>Matrix</u> Soil	<u>Coll</u> .	<u>Rec</u> 31-N					
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivola	tile Organic Compounds by C	GC											
Polychlorin	ated Biphenyls												
Prepared	d by method SW846 3545A												
12674-11-2	Aroclor-1016	< 24.5		μg/kg dry	24.5	12.2	1	SW846 8082A	10-Jun-13	13-Jun-13	BLM	1313501	Χ
11104-28-2	Aroclor-1221	< 24.5		μg/kg dry	24.5	22.0	1				"		Χ
11141-16-5	Aroclor-1232	< 24.5		μg/kg dry	24.5	15.7	1				"		Χ
53469-21-9	Aroclor-1242	< 24.5		μg/kg dry	24.5	14.4	1				"		Χ
12672-29-6	Aroclor-1248	< 24.5		μg/kg dry	24.5	12.0	1	н			"		Χ
11097-69-1	Aroclor-1254	< 24.5		μg/kg dry	24.5	20.4	1	н			"		Χ
11096-82-5	Aroclor-1260	< 24.5		μg/kg dry	24.5	15.2	1				"		Χ
37324-23-5	Aroclor-1262	< 24.5		μg/kg dry	24.5	22.8	1	н			"		Χ
11100-14-4	Aroclor-1268	< 24.5		μg/kg dry	24.5	7.68	1				"		Χ
Surrogate re	ecoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	90			30-15	50 %		ı			"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	80			30-15	50 %		н			"		
2051-24-3	Decachlorobiphenyl (Sr)	80			30-15	50 %				"	"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	80			30-15	50 %		н			"		
General (Chemistry Parameters												
	% Solids	80.2		%			1	SM2540 G Mod.	10-Jun-13	10-Jun-13	DT	1313546	

Semivolatile Organic Compounds by GC - Quality Control

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPI Lim
atch 1313470 - SW846 3545A										
Blank (1313470-BLK1)					Prei	pared: 08-Jun	-13 Analyzed:	09-Jun-13		
Aroclor-1016	< 20.0		μg/kg wet	20.0			•			
Aroclor-1016 [2C]	< 20.0		μg/kg wet	20.0						
Aroclor-1221	< 20.0		μg/kg wet	20.0						
Aroclor-1221 [2C]	< 20.0		μg/kg wet	20.0						
Aroclor-1232	< 20.0		μg/kg wet	20.0						
Aroclor-1232 [2C]	< 20.0		μg/kg wet	20.0						
Aroclor-1242	< 20.0		μg/kg wet	20.0						
Aroclor-1242 [2C]	< 20.0		μg/kg wet	20.0						
Aroclor-1248	< 20.0		μg/kg wet	20.0						
Aroclor-1248 [2C]	< 20.0		μg/kg wet	20.0						
Aroclor-1254	< 20.0		μg/kg wet	20.0						
Aroclor-1254 [2C]	< 20.0		μg/kg wet	20.0						
Aroclor-1260	< 20.0		μg/kg wet	20.0						
Aroclor-1260 [2C]	< 20.0		μg/kg wet	20.0						
Aroclor-1262	< 20.0		μg/kg wet	20.0						
Aroclor-1262 [2C]	< 20.0		μg/kg wet	20.0						
Aroclor-1268	< 20.0		μg/kg wet	20.0						
Aroclor-1268 [2C]	< 20.0		μg/kg wet	20.0						
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	21.0		μg/kg wet		20.0		105	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	21.0		μg/kg wet		20.0		105	30-150		
Surrogate: Decachlorobiphenyl (Sr)	18.0		μg/kg wet		20.0		90	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	21.0		μg/kg wet		20.0		105	30-150		
LCS (1313470-BS1)			10 0			oared: 08-Jun	-13 Analyzed:			
Aroclor-1016	257		μg/kg wet	20.0	250		103	40-140		
Aroclor-1016 [2C]	224		μg/kg wet	20.0	250		90	40-140		
Aroclor-1260	177		μg/kg wet	20.0	250		71	40-140		
Aroclor-1260 [2C]	193		μg/kg wet	20.0	250		77	40-140		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	22.0		μg/kg wet		20.0		110	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	22.0		μg/kg wet		20.0		110	30-150		
Surrogate: Decachlorobiphenyl (Sr)	16.0		μg/kg wet		20.0		80	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	21.0		μg/kg wet		20.0		105	30-150		
LCS Dup (1313470-BSD1)			pg///g //or			nared: 08lun	-13 Analyzed:			
Aroclor-1016	277		μg/kg wet	20.0	250	parca. 00 barr	111	40-140	7	30
Aroclor-1016 [2C]	232		μg/kg wet μg/kg wet	20.0	250		93	40-140	4	30
Aroclor-1260	185		μg/kg wet	20.0	250		74	40-140	4	30
Aroclor-1260 [2C]	198		μg/kg wet μg/kg wet	20.0	250		79	40-140	3	30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	23.0		μg/kg wet		20.0		115	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	22.0		μg/kg wet		20.0		110	30-150		
Surrogate: Decachlorobiphenyl (Sr)	17.0		μg/kg wet		20.0		85	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	20.0		μg/kg wet		20.0		100	30-150		
atch 1313501 - SW846 3545A	20.0		pg/kg wet		20.0		,00	00 100		
Blank (1313501-BLK1)					Pre	narod: 10- lun	-13 Analyzed:	12- lun-13		
Aroclor-1016	< 20.0		ua/ka wat	20.0	116	pareu. 10-juii	-10 Allalyzeu.	12-0011-10		
Aroclor-1016 [2C]	< 20.0		μg/kg wet μg/kg wet	20.0						
Aroclor-1221	< 20.0 < 20.0			20.0						
Aroclor-1221 [2C]	< 20.0 < 20.0		μg/kg wet	20.0						
Aroclor-1221 [2C] Aroclor-1232	< 20.0 < 20.0		μg/kg wet	20.0						
	< 20.0 < 20.0		μg/kg wet	20.0						
Aroclor-1232 [2C]	< 20.0 < 20.0		μg/kg wet μg/kg wet	20.0						
Aroclor-1242										

Semivolatile Organic Compounds by GC - Quality Control

1.46	P 1:	E.	TT 1:	*****	Spike	Source	A/REG	%REC	DES	RPI
nalyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Lim
atch 1313501 - SW846 3545A										
Blank (1313501-BLK1)					Pre	pared: 10-Jun	-13 Analyzed:	12-Jun-13		
Aroclor-1248	< 20.0		μg/kg wet	20.0						
Aroclor-1248 [2C]	< 20.0		μg/kg wet	20.0						
Aroclor-1254	< 20.0		μg/kg wet	20.0						
Aroclor-1254 [2C]	< 20.0		μg/kg wet	20.0						
Aroclor-1260	< 20.0		μg/kg wet	20.0						
Aroclor-1260 [2C]	< 20.0		μg/kg wet	20.0						
Aroclor-1262	< 20.0		μg/kg wet	20.0						
Aroclor-1262 [2C]	< 20.0		μg/kg wet	20.0						
Aroclor-1268	< 20.0		μg/kg wet	20.0						
Aroclor-1268 [2C]	< 20.0		μg/kg wet	20.0						
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	16.0		μg/kg wet		20.0		80	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	17.0		μg/kg wet		20.0		85	30-150		
Surrogate: Decachlorobiphenyl (Sr)	14.0		μg/kg wet		20.0		70	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	15.0		μg/kg wet		20.0		75	30-150		
LCS (1313501-BS1)					Pre	pared: 10-Jun	-13 Analyzed:	13-Jun-13		
Aroclor-1016	287		μg/kg wet	20.0	250		115	40-140		
Aroclor-1016 [2C]	277		μg/kg wet	20.0	250		111	40-140		
Aroclor-1260	274		μg/kg wet	20.0	250		110	40-140		
Aroclor-1260 [2C]	279		μg/kg wet	20.0	250		112	40-140		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	25.0		μg/kg wet		20.0		125	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	23.0		μg/kg wet		20.0		115	30-150		
Surrogate: Decachlorobiphenyl (Sr)	23.0		μg/kg wet		20.0		115	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	24.0		μg/kg wet		20.0		120	30-150		
LCS Dup (1313501-BSD1)					Pre	pared: 10-Jun	-13 Analyzed:	13-Jun-13		
Aroclor-1016	289		μg/kg wet	20.0	250		116	40-140	0.7	30
Aroclor-1016 [2C]	280		μg/kg wet	20.0	250		112	40-140	1	30
Aroclor-1260	278		μg/kg wet	20.0	250		111	40-140	1	30
Aroclor-1260 [2C]	289		μg/kg wet	20.0	250		116	40-140	4	30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	25.0		μg/kg wet		20.0		125	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	23.0		μg/kg wet		20.0		115	30-150		
Surrogate: Decachlorobiphenyl (Sr)	24.0		μg/kg wet		20.0		120	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	24.0		μg/kg wet		20.0		120	30-150		

Notes and Definitions

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

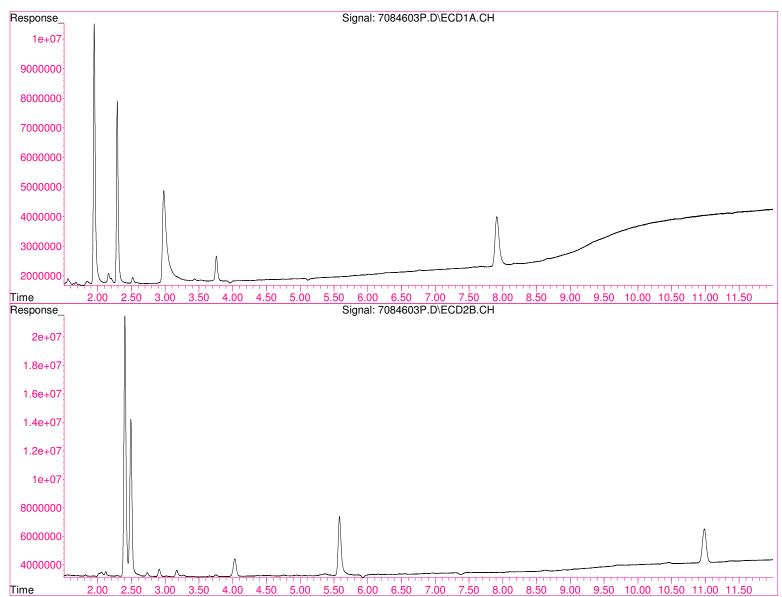
Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification:</u> The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

Validated by: June O'Connor Kimberly Wisk File :G:\Jun2013\HPS11\data\PCB110611\7084603P.D


Operator : BLM

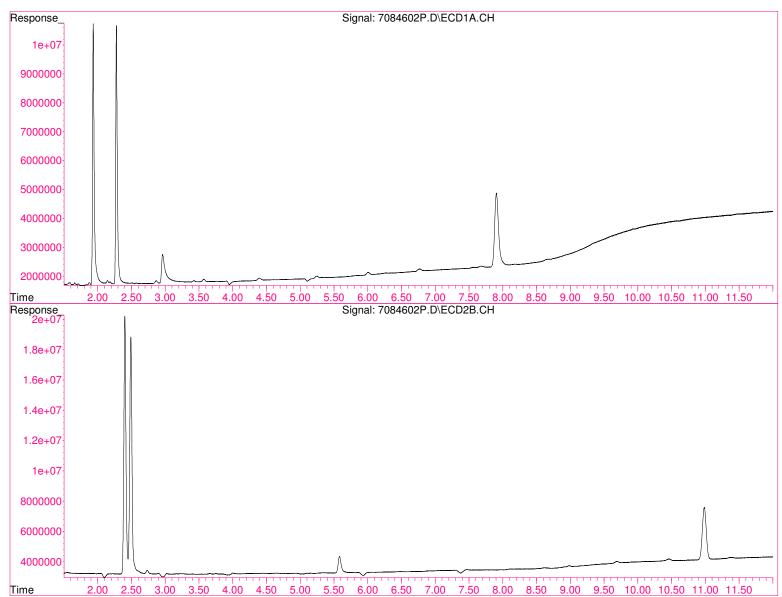
Acquired : 12 Jun 2013 9:43 pm using AcqMethod 60110424.M

Instrument: HP G1530A

Sample Name: SB70846-03 @ Pond - 03

Misc Info : ????????

File :G:\Jun2013\HPS11\data\PCB110611\7084602P.D


Operator : BLM Acquired : 12 3

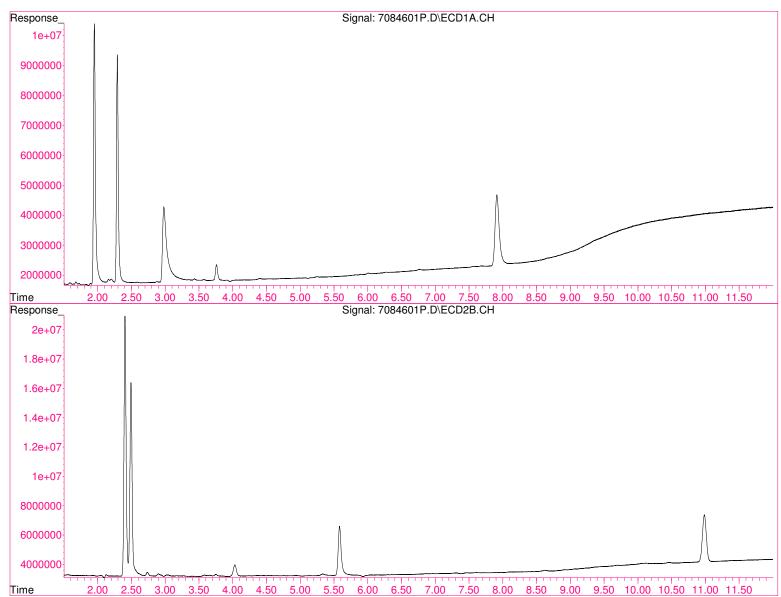
: 12 Jun 2013 9:28 pm using AcqMethod 60110424.M

Instrument: HP G1530A

Sample Name: SB70846-02 @ Pond - 02

Misc Info : ????????

File :G:\Jun2013\HPS11\data\PCB110611\7084601P.D


Operator : BLM

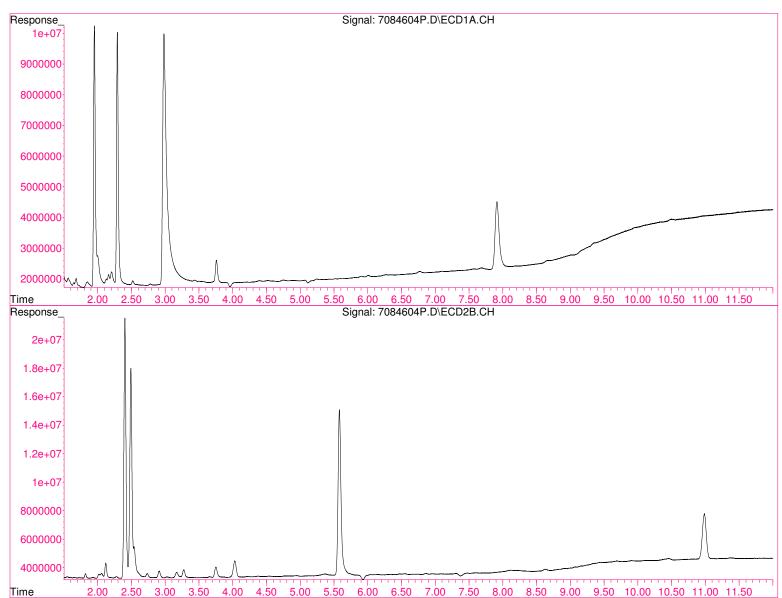
: 12 Jun 2013 9:12 pm using AcqMethod 60110424.M Acquired

Instrument: HP G1530A

Sample Name: SB70846-01 @ Pond - 01

Misc Info : ???????

File :G:\Jun2013\HPS11\data\PCB110611\7084604P.D


Operator : BLM

Acquired : 13 Jun 2013 1:20 am using AcqMethod 60110424.M

Instrument: HP G1530A

Sample Name: SB70846-04 @ Pond - 04

Misc Info : ????????

SPECTRUM ANALYTICAL, INC.
Featuring
HANIBAL TECTINOLOGY

CHAIN OF CUSTODY RECORD

	1
of	1
	of

C	ecial	TI	11		
N13/	20191	H-0.	$n\alpha$	11n	7
DU	oulai	11a	IIU.	11112	4

SB 70846

☑ Standard TAT - 7 to 10 business days

☐ Rush TAT - Date Needed:

- · All TATs subject to laboratory approval.
- · Min. 24-hour notification needed for rushes.
- Samples disposed of after 60 days unless otherwise instructed.

Report To:	RICHARD McK	ENNA	Invoice	то: Д	CCT	s P	AYF	+BL	E		1 7	ject No			7. 1	
6308	FLY RD		Sam	E A	DDO	=50					Site	e Name:	u	S	P	
	YRACUSE, NY	13057		- 11	DI ICC	- 15					Loc	cation:	Con	CAT	NER	State: NY
Telephone #:	315 432 0	1400	- DO N		~ 7		DO	VT.		_			-			D McKENNA
Project Mgr.			P.O. No	13-	001	-	RQI	N:								y Viere Pi-4
	$S2O_3$ 2=HCl 3=H SO_4 9= Deionized V			6=Asc		Acid 12=_	7=0	CH ₃ O	H	-	List	preserv	rative c	ode be	elow:	QA/QC Reporting Notes: * additional charges may apply
	ng Water GW=Grou						Cor	ntaine	ers:			A	nalyse	s:		MA DEP MCP CAM Report: Yes □ No□
	= Surface Water SC X2=					als	Glass	lass			0)					CT DPH RCP Report: Yes □ No □ QA/QC Reporting Level Standard □ No QC □ DQA*
	G=Grab C=	Composite			×	# of VOA Vials	# of Amber Glass	of Clear Glass	of Plastic		200					□ NY A SP A* □ NY A SP B* □ NJ Reduced* □ NJ Full* □ TIER II* □ TIER IV*
Lab Id:	Sample Id:	Date:	Time:	Type	Matrix	# of 1	# of /	# of (# of I	1	8					☐ Other
0846-01	POND - DI	5/31/13	3:40	G	50	4	1			2	1	4	*			
1 0	POND-02	31	3:45	N	4		1			V	1					
13	POND-03	t ₁	3:50	4	**		l.			V	/					
9 04	POND-04	ti.	4:00	h	и		1			V						*
						9										
						ž					+					
				-			1									
Reli	nquished by:	M Re	ceived by:	11	1	ate:	1		Γime:	. 1	Temp°C	N DI	D For	an at	Even	PDF
	Takenna of	E John	1900	1	3/	31	13	1	65	2	12.4	Z E-	mail to	_Ca	nekeni	, PDF na Daeccgroup.com
910	The second	10	100		16/	4/1	3	á	100		5,1	-				J. ,
0 .7	N				4/	,,,				1		Conditi Ambi	on upon	reecipt:	☐ Refrigera	ated DI VOA Frozen Soil Jar Frozen

Report Date: 22-Jul-13 15:20

□ Re-Issued Report□ Revised Report

HANIBAL TECHNOLOGY

Laboratory Report

AECC Environmental Consulting 6308 Fly Road

East Syracuse, NY 13057

Attn: Rico McKenna

Project: WBP - Collamer, NY

Project #: 13-067

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SB73342-01	SS-1	Soil	17-Jul-13 08:26	17-Jul-13 21:00
SB73342-02	SS-2	Soil	17-Jul-13 08:33	17-Jul-13 21:00
SB73342-03	SS-3	Soil	17-Jul-13 08:40	17-Jul-13 21:00
SB73342-04	SS-4	Soil	17-Jul-13 08:45	17-Jul-13 21:00
SB73342-05	SS-5	Soil	17-Jul-13 09:22	17-Jul-13 21:00
SB73342-06	SS-6	Soil	17-Jul-13 09:15	17-Jul-13 21:00
SB73342-07	SS-7	Soil	17-Jul-13 09:07	17-Jul-13 21:00
SB73342-08	SS-8	Soil	17-Jul-13 09:00	17-Jul-13 21:00
SB73342-09	SS-9	Soil	17-Jul-13 08:53	17-Jul-13 21:00
SB73342-10	SS-10	Soil	17-Jul-13 09:52	17-Jul-13 21:00
SB73342-11	SS-11	Soil	17-Jul-13 10:00	17-Jul-13 21:00
SB73342-12	SS-12	Soil	17-Jul-13 10:08	17-Jul-13 21:00
SB73342-13	SS-13	Soil	17-Jul-13 10:14	17-Jul-13 21:00
SB73342-14	SS-14	Soil	17-Jul-13 10:38	17-Jul-13 21:00
SB73342-15	SS-15	Soil	17-Jul-13 10:34	17-Jul-13 21:00
SB73342-16	SS-16	Soil	17-Jul-13 10:28	17-Jul-13 21:00
SB73342-17	SS-17	Soil	17-Jul-13 10:23	17-Jul-13 21:00
SB73342-18	SS-18	Soil	17-Jul-13 10:19	17-Jul-13 21:00
SB73342-19	SS-19	Soil	17-Jul-13 11:24	17-Jul-13 21:00
SB73342-20	SS-20	Soil	17-Jul-13 11:31	17-Jul-13 21:00
SB73342-21	SS-21	Soil	17-Jul-13 11:41	17-Jul-13 21:00
SB73342-22	SS-22	Soil	17-Jul-13 11:45	17-Jul-13 21:00
SB73342-23	SS-23	Soil	17-Jul-13 12:11	17-Jul-13 21:00
SB73342-24	SS-24	Soil	17-Jul-13 12:02	17-Jul-13 21:00
SB73342-25	SS-25	Soil	17-Jul-13 11:57	17-Jul-13 21:00
SB73342-26	SS-26	Soil	17-Jul-13 11:53	17-Jul-13 21:00
SB73342-27	SS-27	Soil	17-Jul-13 11:49	17-Jul-13 21:00
SB73342-28	SS-28	Soil	17-Jul-13 15:03	17-Jul-13 21:00
SB73342-29	SS-29	Soil	17-Jul-13 15:07	17-Jul-13 21:00
SB73342-30	SS-30	Soil	17-Jul-13 15:16	17-Jul-13 21:00
SB73342-31	SS-31	Soil	17-Jul-13 15:22	17-Jul-13 21:00
SB73342-32	SS-32	Soil	17-Jul-13 15:40	17-Jul-13 21:00
SB73342-33	SS-33	Soil	17-Jul-13 15:35	17-Jul-13 21:00
SB73342-34	SS-34	Soil	17-Jul-13 15:32	17-Jul-13 21:00
SB73342-35	SS-35	Soil	17-Jul-13 15:28	17-Jul-13 21:00
SB73342-36	SS-36	Soil	17-Jul-13 15:25	17-Jul-13 21:00

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011/MA012 New York # 11393/11840 Pennsylvania # 68-04426/68-02924 Rhode Island # 98 USDA # S-51435

Authorized by:

Nicole Leja Laboratory Director

Spectrum Analytical holds certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 46 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, FL-E87936 and NJ-MA012).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

CASE NARRATIVE:

The samples were received 1.2 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of \pm 1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

There is no relevant protocol-specific QC and/or performance standards non-conformances to report.

Sample Acceptance Check Form

Client:	AECC Environmental Consulting
Project:	WBP - Collamer, NY / 13-067
Work Order:	SB73342
Sample(s) received on:	7/17/2013

Vickie Knowles

Received by:

The following outlines the condition of samples for the attached Chain of Custody upon receipt.

		<u>Y es</u>	<u>No</u>	N/A
1.	Were custody seals present?		\checkmark	
2.	Were custody seals intact?			✓
3.	Were samples received at a temperature of $\leq 6^{\circ}$ C?	\checkmark		
4.	Were samples cooled on ice upon transfer to laboratory representative?	\checkmark		
5.	Were samples refrigerated upon transfer to laboratory representative?		\checkmark	
6.	Were sample containers received intact?	\checkmark		
7.	Were samples properly labeled (labels affixed to sample containers and include sample ID, site location, and/or project number and the collection date)?	√		
8.	Were samples accompanied by a Chain of Custody document?	\checkmark		
9.	Does Chain of Custody document include proper, full, and complete documentation, which shall include sample ID, site location, and/or project number, date and time of collection, collector's name, preservation type, sample matrix and any special remarks concerning the sample?	V		
0.	Did sample container labels agree with Chain of Custody document?	✓		
1.	Were samples received within method-specific holding times?	\checkmark		

Sample Identification SS-1 SB73342-01			Client Project # 13-067			<u>Matrix</u> Soil	<u>Coll</u> .	Received 17-Jul-13					
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
	tted Biphenyls by method SW846 3550C												
12674-11-2	Aroclor-1016	< 24.9	U	μg/kg dry	33.4	24.9	1	SW846 8082A	18-Jul-13	19-Jul-13	IMR	1316997	Х
11104-28-2	Aroclor-1221	< 30.1	U	μg/kg dry	33.4	30.1	1	"	10-3ul-13	19-001-13	"	1010337	X
11141-16-5	Aroclor-1232	< 21.4	U	μg/kg dry	33.4	21.4	1	п			"		X
53469-21-9	Aroclor-1242	< 20.1	U	μg/kg dry	33.4	20.1	1	п			"		X
12672-29-6	Aroclor-1248	< 17.4	U	μg/kg dry	33.4	17.4	1	н			"		Х
11097-69-1	Aroclor-1254	< 27.8	U	μg/kg dry	33.4	27.8	1				"		Х
11096-82-5	Aroclor-1260	< 20.7	U	μg/kg dry	33.4	20.7	1				"		Х
37324-23-5	Aroclor-1262	< 31.1	U	μg/kg dry	33.4	31.1	1	п			"		Х
11100-14-4	Aroclor-1268	< 13.8	U	μg/kg dry	33.4	13.8	1				"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	105			30-15	50 %		и			"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	110			30-15	50 %		н			"		
2051-24-3	Decachlorobiphenyl (Sr)	120			30-15	50 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	115			30-15	50 %		н			"		
General C	Themistry Parameters												

18-Jul-13

18-Jul-13

DT

1316965

% Solids

Sample Identification SS-2 SB73342-02				Client Project # 13-067			<u>Matrix</u> Soil	<u>Colle</u>	Received 17-Jul-13				
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
	tted Biphenyls by method SW846 3550C												
12674-11-2	Aroclor-1016	< 20.0	U	μg/kg dry	26.8	20.0	1	SW846 8082A	18-Jul-13	19-Jul-13	IMR	1316997	Χ
11104-28-2	Aroclor-1221	< 24.1	U	μg/kg dry	26.8	24.1	1				"		Χ
11141-16-5	Aroclor-1232	< 17.2	U	μg/kg dry	26.8	17.2	1	п			"		Χ
53469-21-9	Aroclor-1242	< 16.1	U	μg/kg dry	26.8	16.1	1	п			"		Χ
12672-29-6	Aroclor-1248	< 13.9	U	μg/kg dry	26.8	13.9	1	п			"		Χ
11097-69-1	Aroclor-1254	25.4	J	μg/kg dry	26.8	22.3	1				"		Χ
11096-82-5	Aroclor-1260	< 16.6	U	μg/kg dry	26.8	16.6	1	п			"		Χ
37324-23-5	Aroclor-1262	< 24.9	U	μg/kg dry	26.8	24.9	1	п			"		Χ
11100-14-4	Aroclor-1268	< 11.0	U	μg/kg dry	26.8	11.0	1	п			"		Χ
Surrogate red	overies:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	100			30-15	0 %		u .			"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	105			30-15	0 %					n n		
2051-24-3	Decachlorobiphenyl (Sr)	125			30-15	0 %		п			"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	115			30-15	0 %		ı		ı	II		
General C	Chemistry Parameters												

18-Jul-13

18-Jul-13

DT

1316965

% Solids

Sample Identification SS-3 SB73342-03				Client Project # 13-067			<u>Matrix</u> Soil	<u>Coll</u>	Received 17-Jul-13				
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
	ated Biphenyls by method SW846 3550C												
12674-11-2	Aroclor-1016	< 19.4	U	μg/kg dry	25.9	19.4	1	SW846 8082A	18-Jul-13	19-Jul-13	IMR	1316997	Χ
11104-28-2	Aroclor-1221	< 23.4	U	μg/kg dry	25.9	23.4	1			u	"		Χ
11141-16-5	Aroclor-1232	< 16.6	U	μg/kg dry	25.9	16.6	1				"		Χ
53469-21-9	Aroclor-1242	< 15.6	U	μg/kg dry	25.9	15.6	1				"		Χ
12672-29-6	Aroclor-1248	< 13.5	U	μg/kg dry	25.9	13.5	1			u	"		Χ
11097-69-1	Aroclor-1254	< 21.6	U	μg/kg dry	25.9	21.6	1			u	"		Χ
11096-82-5	Aroclor-1260	< 16.1	U	μg/kg dry	25.9	16.1	1				"		Χ
37324-23-5	Aroclor-1262	< 24.1	U	μg/kg dry	25.9	24.1	1			u	"		Χ
11100-14-4	Aroclor-1268	< 10.7	U	μg/kg dry	25.9	10.7	1	п		ıı	"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	105			30-15	50 %		H .			"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	115			30-15	50 %					"		
2051-24-3	Decachlorobiphenyl (Sr)	115			30-15	50 %				u	"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	130			30-15	50 %		п		н	"		
General C	Chemistry Parameters												

18-Jul-13

18-Jul-13

DT

1316965

% Solids

Sample Identification SS-4 SB73342-04				Client Project # 13-067			<u>Matrix</u> Soil	Collection Date/Time 17-Jul-13 08:45			Received 17-Jul-13		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	БС											
	tted Biphenyls by method SW846 3550C												
12674-11-2	Aroclor-1016	< 19.2	U	μg/kg dry	25.7	19.2	1	SW846 8082A	18-Jul-13	19-Jul-13	IMR	1316997	Χ
11104-28-2	Aroclor-1221	< 23.1	U	μg/kg dry	25.7	23.1	1	п			"		Χ
11141-16-5	Aroclor-1232	< 16.5	U	μg/kg dry	25.7	16.5	1	п			"		Χ
53469-21-9	Aroclor-1242	< 15.4	U	μg/kg dry	25.7	15.4	1	п			"		Χ
12672-29-6	Aroclor-1248	< 13.3	U	μg/kg dry	25.7	13.3	1	п			"		Χ
11097-69-1	Aroclor-1254	< 21.4	U	μg/kg dry	25.7	21.4	1	п			"		Χ
11096-82-5	Aroclor-1260	< 15.9	U	μg/kg dry	25.7	15.9	1	п			"		Χ
37324-23-5	Aroclor-1262	< 23.9	U	μg/kg dry	25.7	23.9	1	п			"		Χ
11100-14-4	Aroclor-1268	< 10.6	U	μg/kg dry	25.7	10.6	1				"		Χ
Surrogate rec	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	100			30-15	0 %		n .	н	и	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	105			30-15	0 %		u .			"		
2051-24-3	Decachlorobiphenyl (Sr)	110			30-15	0 %		п			"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	120			30-15	0 %		ı			"		
General C	Chemistry Parameters												

18-Jul-13

18-Jul-13

DT

1316965

% Solids

Sample Identification SS-5 SB73342-05				Client Project # 13-067			<u>Matrix</u> Soil	Collection Date/Time 17-Jul-13 09:22			Received 17-Jul-13		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
	tted Biphenyls by method SW846 3550C												
12674-11-2	Aroclor-1016	< 21.2	U	μg/kg dry	28.3	21.2	1	SW846 8082A	18-Jul-13	19-Jul-13	IMR	1316997	Х
11104-28-2	Aroclor-1221	< 25.5	U	μg/kg dry	28.3	25.5	1	"	10-0ul-13	19-001-13	"	1010337	X
11141-16-5	Aroclor-1232	< 18.2	U	μg/kg dry	28.3	18.2	1	п			"		X
53469-21-9	Aroclor-1242	< 17.0	U	μg/kg dry	28.3	17.0	1	п			"		X
12672-29-6	Aroclor-1248	< 14.7	U	μg/kg dry	28.3	14.7	1	п			"		Х
11097-69-1	Aroclor-1254	< 23.6	U	μg/kg dry	28.3	23.6	1	п			"		Х
11096-82-5	Aroclor-1260	< 17.6	U	μg/kg dry	28.3	17.6	1	п			"		Х
37324-23-5	Aroclor-1262	< 26.4	U	μg/kg dry	28.3	26.4	1				"		Х
11100-14-4	Aroclor-1268	< 11.7	U	μg/kg dry	28.3	11.7	1	и			"		Χ
Surrogate red	coveries:												-
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	95			30-15	50 %		и			"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	100			30-15	50 %		и		ı	"		
2051-24-3	Decachlorobiphenyl (Sr)	110			30-15	50 %		и			"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	115			30-15	50 %		u	•		"		
General C	Chemistry Parameters												

18-Jul-13

18-Jul-13

DT

1316965

% Solids

Sample Identification SS-6 SB73342-06				Client Project # 13-067			<u>Matrix</u> Soil	Collection Date/Time 17-Jul-13 09:15			Received 17-Jul-13		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	tile Organic Compounds by C	GC											
Polychlorina	ated Biphenyls												
Prepared	by method SW846 3550C												
12674-11-2	Aroclor-1016	< 19.9	U	μg/kg dry	26.7	19.9	1	SW846 8082A	18-Jul-13	19-Jul-13	IMR	1316997	Χ
11104-28-2	Aroclor-1221	< 24.1	U	μg/kg dry	26.7	24.1	1			u u	"		Χ
11141-16-5	Aroclor-1232	< 17.1	U	μg/kg dry	26.7	17.1	1	п		п			Χ
53469-21-9	Aroclor-1242	< 16.1	U	μg/kg dry	26.7	16.1	1	ı		и			Χ
12672-29-6	Aroclor-1248	< 13.9	U	μg/kg dry	26.7	13.9	1	п		и	"		Χ
11097-69-1	Aroclor-1254	< 22.3	U	μg/kg dry	26.7	22.3	1	п		и	"		Χ
11096-82-5	Aroclor-1260	< 16.6	U	μg/kg dry	26.7	16.6	1			u	"		Χ
37324-23-5	Aroclor-1262	< 24.9	U	μg/kg dry	26.7	24.9	1			u	"		Χ
11100-14-4	Aroclor-1268	< 11.0	U	μg/kg dry	26.7	11.0	1	ı		п	"		Х
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	105			30-15	50 %		н		ı	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	105			30-15	50 %		н		ı	"		
2051-24-3	Decachlorobiphenyl (Sr)	125			30-15	50 %				н	"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	130			30-15	50 %		II		ı	"		
General C	Chemistry Parameters												

18-Jul-13

18-Jul-13

DT

1316965

% Solids

Sample Identification SS-7 SB73342-07				Client Project # 13-067			<u>Matrix</u> Soil	Collection Date/Time 17-Jul-13 09:07			Received 17-Jul-13		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
	ated Biphenyls by method SW846 3550C												
12674-11-2	Aroclor-1016	< 21.9	U	μg/kg dry	29.4	21.9	1	SW846 8082A	18-Jul-13	19-Jul-13	IMR	1316997	Х
11104-28-2	Aroclor-1221	< 26.4	U	μg/kg dry	29.4	26.4	1	п		u	"		Χ
11141-16-5	Aroclor-1232	< 18.8	U	μg/kg dry	29.4	18.8	1	ı		u	"		Χ
53469-21-9	Aroclor-1242	< 17.7	U	μg/kg dry	29.4	17.7	1	п		u	"		Χ
12672-29-6	Aroclor-1248	< 15.3	U	μg/kg dry	29.4	15.3	1	ı		и	"		Χ
11097-69-1	Aroclor-1254	< 24.5	U	μg/kg dry	29.4	24.5	1	ı		ıı	"		Χ
11096-82-5	Aroclor-1260	< 18.2	U	μg/kg dry	29.4	18.2	1	ı		и	"		Χ
37324-23-5	Aroclor-1262	< 27.3	U	μg/kg dry	29.4	27.3	1	ı		ıı	"		Χ
11100-14-4	Aroclor-1268	< 12.1	U	μg/kg dry	29.4	12.1	1				ıı .		Х
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	95			30-15	0 %		п			"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	105			30-15	0 %		п			"		
2051-24-3	Decachlorobiphenyl (Sr)	110			30-15	0 %				u	"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	120			30-15	60 %		п			"		
General C	Chemistry Parameters												

18-Jul-13

18-Jul-13

DT

1316965

% Solids

Sample Identification SS-8 SB73342-08				Client Project # 13-067			<u>Matrix</u> Soil	Collection Date/Time 17-Jul-13 09:00			Received 17-Jul-13		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	ЭC											
	tted Biphenyls by method SW846 3550C												
12674-11-2	Aroclor-1016	< 21.6	U	μg/kg dry	28.9	21.6	1	SW846 8082A	18-Jul-13	19-Jul-13	IMR	1316997	Χ
11104-28-2	Aroclor-1221	< 26.0	U	μg/kg dry	28.9	26.0	1				"		Χ
11141-16-5	Aroclor-1232	< 18.6	U	μg/kg dry	28.9	18.6	1	п		н	"		Χ
53469-21-9	Aroclor-1242	< 17.4	U	μg/kg dry	28.9	17.4	1	п			"		Χ
12672-29-6	Aroclor-1248	< 15.0	U	μg/kg dry	28.9	15.0	1	п			"		Χ
11097-69-1	Aroclor-1254	< 24.1	U	μg/kg dry	28.9	24.1	1	п		н	"		Χ
11096-82-5	Aroclor-1260	< 17.9	U	μg/kg dry	28.9	17.9	1	п			"		Χ
37324-23-5	Aroclor-1262	< 26.9	U	μg/kg dry	28.9	26.9	1	п			"		Χ
11100-14-4	Aroclor-1268	< 11.9	U	μg/kg dry	28.9	11.9	1			н	"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	90			30-15	0 %		n .	н	ı	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	105			30-15	0 %		u .			"		
2051-24-3	Decachlorobiphenyl (Sr)	105			30-15	0 %		п			"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	95			30-15	0 %					"		
General C	Chemistry Parameters												

18-Jul-13

18-Jul-13

DT

1316965

% Solids

Sample Identification SS-9 SB73342-09				Client Project # 13-067			<u>Matrix</u> Soil	Collection Date/Time 17-Jul-13 08:53			Received 17-Jul-13		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
Polychlorina	ted Biphenyls												
Prepared	by method SW846 3550C												
12674-11-2	Aroclor-1016	< 21.5	U	μg/kg dry	28.8	21.5	1	SW846 8082A	18-Jul-13	19-Jul-13	IMR	1316997	Χ
11104-28-2	Aroclor-1221	< 26.0	U	μg/kg dry	28.8	26.0	1				"		Χ
11141-16-5	Aroclor-1232	< 18.5	U	μg/kg dry	28.8	18.5	1				"		Χ
53469-21-9	Aroclor-1242	< 17.3	U	μg/kg dry	28.8	17.3	1				"		Χ
12672-29-6	Aroclor-1248	< 15.0	U	μg/kg dry	28.8	15.0	1				"		Χ
11097-69-1	Aroclor-1254	< 24.0	U	μg/kg dry	28.8	24.0	1				"		Χ
11096-82-5	Aroclor-1260	< 17.9	U	μg/kg dry	28.8	17.9	1				"		Χ
37324-23-5	Aroclor-1262	< 26.8	U	μg/kg dry	28.8	26.8	1				"		Χ
11100-14-4	Aroclor-1268	< 11.9	U	μg/kg dry	28.8	11.9	1				"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	100			30-15	50 %		•		и	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	110			30-15	50 %				п	"		
2051-24-3	Decachlorobiphenyl (Sr)	125			30-15	50 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	125			30-15	50 %				н	"		
General C	Chemistry Parameters												

18-Jul-13

18-Jul-13

DT

1316965

% Solids

Sample I SS-10 SB73342	dentification 2-10			Client P			<u>Matrix</u> Soil	· · · · · · · · · · · · · · · · · · ·	ection Date 7-Jul-13 09			ceived Jul-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivola	tile Organic Compounds by C	GC											
Polychlorin	ated Biphenyls												
Prepared	by method SW846 3550C												
12674-11-2	Aroclor-1016	< 20.1	U	μg/kg dry	26.9	20.1	1	SW846 8082A	18-Jul-13	19-Jul-13	IMR	1316997	Χ
11104-28-2	Aroclor-1221	< 24.2	U	μg/kg dry	26.9	24.2	1	н			"		Χ
11141-16-5	Aroclor-1232	< 17.3	U	μg/kg dry	26.9	17.3	1			н	"		Χ
53469-21-9	Aroclor-1242	< 16.2	U	μg/kg dry	26.9	16.2	1				"		Χ
12672-29-6	Aroclor-1248	< 14.0	U	μg/kg dry	26.9	14.0	1				"		Х
11097-69-1	Aroclor-1254	< 22.4	U	μg/kg dry	26.9	22.4	1						Х
11096-82-5	Aroclor-1260	< 16.7	U	μg/kg dry	26.9	16.7	1				"		Х
37324-23-5	Aroclor-1262	< 25.1	U	μg/kg dry	26.9	25.1	1	п			"		Х
11100-14-4	Aroclor-1268	< 11.1	U	μg/kg dry	26.9	11.1	1	п			"		Χ
Surrogate re	ecoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	95			30-15	0 %		и	•		"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	105			30-15	0 %		н			"		
2051-24-3	Decachlorobiphenyl (Sr)	115			30-15	60 %				н			
2051-24-3	Decachlorobiphenyl (Sr) [2C]	110			30-15	50 %		н			"		
General (Chemistry Parameters												
	% Solids	72.0		%			1	SM2540 G Mod.	18-Jul-13	18-Jul-13	DT	1316965	

Sample I SS-11 SB73342	dentification			Client P	-		<u>Matrix</u> Soil		ection Date 7-Jul-13 10			ceived Jul-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivola	tile Organic Compounds by C	GC											
Polychlorina	ated Biphenyls												
Prepared	by method SW846 3550C												
12674-11-2	Aroclor-1016	< 19.8	U	μg/kg dry	26.6	19.8	1	SW846 8082A	18-Jul-13	19-Jul-13	IMR	1316997	Χ
11104-28-2	Aroclor-1221	< 23.9	U	μg/kg dry	26.6	23.9	1	п			"		Х
11141-16-5	Aroclor-1232	< 17.1	U	μg/kg dry	26.6	17.1	1				"		Х
53469-21-9	Aroclor-1242	< 16.0	U	μg/kg dry	26.6	16.0	1				"		Χ
12672-29-6	Aroclor-1248	< 13.8	U	μg/kg dry	26.6	13.8	1				"		Χ
11097-69-1	Aroclor-1254	46.5		μg/kg dry	26.6	22.1	1	и			"		Х
11096-82-5	Aroclor-1260	< 16.5	U	μg/kg dry	26.6	16.5	1				"		Χ
37324-23-5	Aroclor-1262	< 24.7	U	μg/kg dry	26.6	24.7	1				"		Χ
11100-14-4	Aroclor-1268	< 11.0	U	μg/kg dry	26.6	11.0	1	и			"		Χ
Surrogate re	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	95			30-15	60 %		u		n	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	105			30-15	0 %		н	•	н	"		
2051-24-3	Decachlorobiphenyl (Sr)	115			30-15	0 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	125			30-15	0 %		н		п	"		
General (Chemistry Parameters												
	% Solids	73.7		%			1	SM2540 G Mod.	18-Jul-13	18-Jul-13	DT	1316965	

Sample Id SS-12 SB73342	dentification -12			Client P	<u>Project #</u> 067		<u>Matrix</u> Soil		ection Date 7-Jul-13 10			ceived Jul-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
Polychlorina	ated Biphenyls												
Prepared	by method SW846 3550C												
12674-11-2	Aroclor-1016	< 21.6	U	μg/kg dry	28.9	21.6	1	SW846 8082A	18-Jul-13	19-Jul-13	IMR	1316997	Χ
11104-28-2	Aroclor-1221	< 26.0	U	μg/kg dry	28.9	26.0	1				"		Χ
11141-16-5	Aroclor-1232	< 18.6	U	μg/kg dry	28.9	18.6	1	н			"		Χ
53469-21-9	Aroclor-1242	< 17.4	U	μg/kg dry	28.9	17.4	1				"		Χ
12672-29-6	Aroclor-1248	< 15.0	U	μg/kg dry	28.9	15.0	1				"		Х
11097-69-1	Aroclor-1254	< 24.1	U	μg/kg dry	28.9	24.1	1				"		Χ
11096-82-5	Aroclor-1260	< 17.9	U	μg/kg dry	28.9	17.9	1				"		Χ
37324-23-5	Aroclor-1262	< 26.9	U	μg/kg dry	28.9	26.9	1				"		Х
11100-14-4	Aroclor-1268	< 11.9	U	μg/kg dry	28.9	11.9	1	п			"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	95			30-15	i0 %		п	н	п	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	100			30-15	0 %		н		п	"		
2051-24-3	Decachlorobiphenyl (Sr)	115			30-15	0 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	110			30-15	50 %		11		н	"		
General C	Chemistry Parameters												
	% Solids	69.2		%			1	SM2540 G Mod.	18-Jul-13	18-Jul-13	DT	1316965	

Sample Id SS-13 SB73342	dentification -13			Client P	<u>Project #</u> 067		<u>Matrix</u> Soil	·	ection Date 7-Jul-13 10			ceived Jul-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
	ated Biphenyls by method SW846 3550C												
12674-11-2	Aroclor-1016	< 22.0	U	μg/kg dry	29.5	22.0	1	SW846 8082A	18-Jul-13	19-Jul-13	IMR	1316997	Χ
11104-28-2	Aroclor-1221	< 26.5	U	μg/kg dry	29.5	26.5	1	п			"		Χ
11141-16-5	Aroclor-1232	< 18.9	U	μg/kg dry	29.5	18.9	1				"		Χ
53469-21-9	Aroclor-1242	< 17.7	U	μg/kg dry	29.5	17.7	1				"		Χ
12672-29-6	Aroclor-1248	< 15.3	U	μg/kg dry	29.5	15.3	1				"		Х
11097-69-1	Aroclor-1254	< 24.5	U	μg/kg dry	29.5	24.5	1				"		Χ
11096-82-5	Aroclor-1260	< 18.3	U	μg/kg dry	29.5	18.3	1	н			"		Х
37324-23-5	Aroclor-1262	< 27.4	U	μg/kg dry	29.5	27.4	1	н			"		Х
11100-14-4	Aroclor-1268	< 12.1	U	μg/kg dry	29.5	12.1	1				"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	95			30-15	50 %					"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	115			30-15	50 %					"		
2051-24-3	Decachlorobiphenyl (Sr)	100			30-15	50 %		н			"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	110			30-15	50 %					"		
General C	Chemistry Parameters												

18-Jul-13

18-Jul-13

DT

1316965

% Solids

Sample I SS-14 SB73342	Identification 2-14			Client P	<u>Project #</u> 067		<u>Matrix</u> Soil		ection Date 7-Jul-13 10			ceived -Jul-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivola	tile Organic Compounds by C	GC											
Polychlorin	ated Biphenyls												
Prepared	d by method SW846 3550C												
12674-11-2	Aroclor-1016	< 18.6	U	μg/kg dry	24.9	18.6	1	SW846 8082A	18-Jul-13	19-Jul-13	IMR	1316997	Χ
11104-28-2	Aroclor-1221	< 22.4	U	μg/kg dry	24.9	22.4	1			"			Χ
11141-16-5	Aroclor-1232	< 16.0	U	μg/kg dry	24.9	16.0	1	н					Х
53469-21-9	Aroclor-1242	< 15.0	U	μg/kg dry	24.9	15.0	1				"		Х
12672-29-6	Aroclor-1248	< 12.9	U	μg/kg dry	24.9	12.9	1				"		Х
11097-69-1	Aroclor-1254	< 20.7	U	μg/kg dry	24.9	20.7	1						Х
11096-82-5	Aroclor-1260	< 15.4	U	μg/kg dry	24.9	15.4	1						Х
37324-23-5	Aroclor-1262	< 23.2	U	μg/kg dry	24.9	23.2	1				"		Х
11100-14-4	Aroclor-1268	< 10.3	U	μg/kg dry	24.9	10.3	1	ı			"		Χ
Surrogate re	ecoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	95			30-15	50 %		ı			"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	110			30-15	50 %		н			"		
2051-24-3	Decachlorobiphenyl (Sr)	110			30-15	50 %				"	"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	115			30-15	50 %		н			"		
General (Chemistry Parameters												
	% Solids	77.7		%			1	SM2540 G Mod.	18-Jul-13	18-Jul-13	DT	1316966	

Sample I SS-15 SB73342	dentification 2-15			Client P	<u>Project #</u> 067		<u>Matrix</u> Soil	· · · · · · · · · · · · · · · · · · ·	ection Date 7-Jul-13 10:			ceived Jul-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivola	tile Organic Compounds by C	GC											
Polychlorin	ated Biphenyls												
Prepared	d by method SW846 3550C												
12674-11-2	Aroclor-1016	< 18.8	U	μg/kg dry	25.1	18.8	1	SW846 8082A	18-Jul-13	19-Jul-13	IMR	1316997	Χ
11104-28-2	Aroclor-1221	< 22.6	U	μg/kg dry	25.1	22.6	1				"		Х
11141-16-5	Aroclor-1232	< 16.1	U	μg/kg dry	25.1	16.1	1				"		Χ
53469-21-9	Aroclor-1242	< 15.1	U	μg/kg dry	25.1	15.1	1	н			"		Χ
12672-29-6	Aroclor-1248	< 13.1	U	μg/kg dry	25.1	13.1	1	н			"		Х
11097-69-1	Aroclor-1254	< 20.9	U	μg/kg dry	25.1	20.9	1				"		Χ
11096-82-5	Aroclor-1260	< 15.6	U	μg/kg dry	25.1	15.6	1	н			"		Х
37324-23-5	Aroclor-1262	< 23.4	U	μg/kg dry	25.1	23.4	1				"		Х
11100-14-4	Aroclor-1268	< 10.4	U	μg/kg dry	25.1	10.4	1	п			"		Χ
Surrogate re	ecoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	95			30-15	50 %			•	H	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	105			30-15	50 %		и			"		
2051-24-3	Decachlorobiphenyl (Sr)	110			30-15	50 %				"	"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	120			30-15	50 %		н			"		
General (Chemistry Parameters												
	% Solids	78.6		%			1	SM2540 G Mod.	18-Jul-13	18-Jul-13	DT	1316966	

				13-0	067		<u>Matrix</u> Soil		ection Date/ 7-Jul-13 10:			Jul-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
	ated Biphenyls by method SW846 3550C												
12674-11-2	Aroclor-1016	< 21.1	U	μg/kg dry	28.2	21.1	1	SW846 8082A	18-Jul-13	19-Jul-13	IMR	1316997	Х
11104-28-2	Aroclor-1221	< 25.4	U	μg/kg dry	28.2	25.4	1	п			"		Х
11141-16-5	Aroclor-1232	< 18.1	U	μg/kg dry	28.2	18.1	1	п			"		Х
53469-21-9	Aroclor-1242	< 17.0	U	μg/kg dry	28.2	17.0	1	п			"		Х
12672-29-6	Aroclor-1248	< 14.7	U	μg/kg dry	28.2	14.7	1	и			"		Х
11097-69-1	Aroclor-1254	< 23.5	U	μg/kg dry	28.2	23.5	1	и			"		Х
11096-82-5	Aroclor-1260	< 17.5	U	μg/kg dry	28.2	17.5	1	и			"		Х
37324-23-5	Aroclor-1262	< 26.3	U	μg/kg dry	28.2	26.3	1				"		Х
11100-14-4	Aroclor-1268	< 11.6	U	μg/kg dry	28.2	11.6	1	и			"		Х
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	100			30-15	0 %		и			"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	110			30-15	0 %		н		ı	"		
2051-24-3	Decachlorobiphenyl (Sr)	115			30-15	0 %		п			"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	125			30-15	0 %		п			"		
General (Chemistry Parameters												
	% Solids	69.9		%			1	SM2540 G Mod.	18-Jul-13	18-Jul-13	DT	1316966	

Sample I SS-17 SB73342	dentification			Client P	-		<u>Matrix</u> Soil		ection Date 7-Jul-13 10			ceived Jul-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivola	tile Organic Compounds by C	GC											
Polychlorina	ated Biphenyls												
Prepared	by method SW846 3550C												
12674-11-2	Aroclor-1016	< 21.2	U	μg/kg dry	28.4	21.2	1	SW846 8082A	18-Jul-13	19-Jul-13	IMR	1316997	Χ
11104-28-2	Aroclor-1221	< 25.6	U	μg/kg dry	28.4	25.6	1	н			"		Χ
11141-16-5	Aroclor-1232	< 18.2	U	μg/kg dry	28.4	18.2	1				"		Х
53469-21-9	Aroclor-1242	< 17.1	U	μg/kg dry	28.4	17.1	1				"		Х
12672-29-6	Aroclor-1248	< 14.8	U	μg/kg dry	28.4	14.8	1				"		Х
11097-69-1	Aroclor-1254	< 23.7	U	μg/kg dry	28.4	23.7	1	и			"		Х
11096-82-5	Aroclor-1260	< 17.6	U	μg/kg dry	28.4	17.6	1				"		Χ
37324-23-5	Aroclor-1262	< 26.5	U	μg/kg dry	28.4	26.5	1	п			"		Х
11100-14-4	Aroclor-1268	< 11.7	U	μg/kg dry	28.4	11.7	1	п			"		Χ
Surrogate re	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	100			30-15	0 %		и		н	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	105			30-15	0 %		н		п	"		
2051-24-3	Decachlorobiphenyl (Sr)	110			30-15	60 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	120			30-15	50 %		н		п	"		
General C	Chemistry Parameters												
	% Solids	70.0		%			1	SM2540 G Mod.	18-Jul-13	18-Jul-13	DT	1316966	

Sample I SS-18 SB73342	Identification 2-18			Client P	<u>Project #</u> 067		<u>Matrix</u> Soil		ection Date 7-Jul-13 10			ceived -Jul-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivola	tile Organic Compounds by C	GC											
Polychlorin	ated Biphenyls												
Prepared	by method SW846 3550C												
12674-11-2	Aroclor-1016	< 22.6	U	μg/kg dry	30.2	22.6	1	SW846 8082A	18-Jul-13	19-Jul-13	IMR	1316997	Χ
11104-28-2	Aroclor-1221	< 27.2	U	μg/kg dry	30.2	27.2	1			"			Χ
11141-16-5	Aroclor-1232	< 19.4	U	μg/kg dry	30.2	19.4	1				"		Х
53469-21-9	Aroclor-1242	< 18.2	U	μg/kg dry	30.2	18.2	1				"		Х
12672-29-6	Aroclor-1248	< 15.7	U	μg/kg dry	30.2	15.7	1				"		Х
11097-69-1	Aroclor-1254	< 25.2	U	μg/kg dry	30.2	25.2	1				"		Х
11096-82-5	Aroclor-1260	< 18.7	U	μg/kg dry	30.2	18.7	1				"		Х
37324-23-5	Aroclor-1262	< 28.1	U	μg/kg dry	30.2	28.1	1				"		Х
11100-14-4	Aroclor-1268	< 12.5	U	μg/kg dry	30.2	12.5	1	п			"		Х
Surrogate re	ecoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	95			30-15	50 %			•	H	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	105			30-15	50 %		н			"		
2051-24-3	Decachlorobiphenyl (Sr)	105			30-15	50 %		п			"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	110			30-15	50 %		н	•		"		
General (Chemistry Parameters												
	% Solids	64.6		%			1	SM2540 G Mod.	18-Jul-13	18-Jul-13	DT	1316966	

Sample I SS-19 SB73342	dentification 2-19			Client P	<u>Project #</u> 067		<u>Matrix</u> Soil	· · · · · · · · · · · · · · · · · · ·	ection Date 7-Jul-13 11:			ceived Jul-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivola	tile Organic Compounds by C	GC											
Polychlorin	ated Biphenyls												
Prepared	d by method SW846 3550C												
12674-11-2	Aroclor-1016	< 19.0	U	μg/kg dry	25.5	19.0	1	SW846 8082A	18-Jul-13	19-Jul-13	IMR	1316997	Χ
11104-28-2	Aroclor-1221	< 23.0	U	μg/kg dry	25.5	23.0	1				"		Χ
11141-16-5	Aroclor-1232	< 16.4	U	μg/kg dry	25.5	16.4	1	н			"		Х
53469-21-9	Aroclor-1242	< 15.3	U	μg/kg dry	25.5	15.3	1	н			"		Х
12672-29-6	Aroclor-1248	< 13.3	U	μg/kg dry	25.5	13.3	1				"		Х
11097-69-1	Aroclor-1254	< 21.3	U	μg/kg dry	25.5	21.3	1				"		Х
11096-82-5	Aroclor-1260	< 15.8	U	μg/kg dry	25.5	15.8	1				"		Х
37324-23-5	Aroclor-1262	< 23.7	U	μg/kg dry	25.5	23.7	1				"		Х
11100-14-4	Aroclor-1268	< 10.5	U	μg/kg dry	25.5	10.5	1	п			"		Χ
Surrogate re	ecoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	95			30-15	50 %		н	•		"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	105			30-15	50 %		и			"		
2051-24-3	Decachlorobiphenyl (Sr)	105			30-15	50 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	110			30-15	50 %		н			"		
General (Chemistry Parameters												
	% Solids	76.3		%			1	SM2540 G Mod.	18-Jul-13	18-Jul-13	DT	1316966	

Sample I SS-20 SB73342	dentification 2-20			Client P	<u>Project #</u> 067		<u>Matrix</u> Soil	· · · · · · · · · · · · · · · · · · ·	ection Date 7-Jul-13 11:			ceived Jul-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivola	tile Organic Compounds by C	GC											
Polychlorina	ated Biphenyls												
Prepared	by method SW846 3550C												
12674-11-2	Aroclor-1016	< 18.7	U	μg/kg dry	25.0	18.7	1	SW846 8082A	18-Jul-13	19-Jul-13	IMR	1316997	Χ
11104-28-2	Aroclor-1221	< 22.5	U	μg/kg dry	25.0	22.5	1			"	"		Χ
11141-16-5	Aroclor-1232	< 16.0	U	μg/kg dry	25.0	16.0	1	н			"		Х
53469-21-9	Aroclor-1242	< 15.0	U	μg/kg dry	25.0	15.0	1	н			"		Χ
12672-29-6	Aroclor-1248	< 13.0	U	μg/kg dry	25.0	13.0	1				"		Х
11097-69-1	Aroclor-1254	< 20.8	U	μg/kg dry	25.0	20.8	1				"		Х
11096-82-5	Aroclor-1260	< 15.5	U	μg/kg dry	25.0	15.5	1				"		Х
37324-23-5	Aroclor-1262	< 23.3	U	μg/kg dry	25.0	23.3	1				"		Х
11100-14-4	Aroclor-1268	< 10.3	U	μg/kg dry	25.0	10.3	1	п			"		Χ
Surrogate re	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	90			30-15	50 %		н	•		"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	100			30-15	50 %		и			"		
2051-24-3	Decachlorobiphenyl (Sr)	100			30-15	50 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	110			30-15	50 %		н			"		
General (Chemistry Parameters												
	% Solids	76.6		%			1	SM2540 G Mod.	18-Jul-13	18-Jul-13	DT	1316966	

Sample Id SS-21 SB73342	dentification -21			Client P			<u>Matrix</u> Soil	· · · · · · · · · · · · · · · · · · ·	ection Date 7-Jul-13 11:			<u>ceived</u> Jul-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
Polychlorina	ted Biphenyls												
Prepared	by method SW846 3550C												
12674-11-2	Aroclor-1016	< 19.7	U	μg/kg dry	26.3	19.7	1	SW846 8082A	18-Jul-13	19-Jul-13	IMR	1316999	Χ
11104-28-2	Aroclor-1221	< 23.7	U	μg/kg dry	26.3	23.7	1				"		Χ
11141-16-5	Aroclor-1232	< 16.9	U	μg/kg dry	26.3	16.9	1				"		Χ
53469-21-9	Aroclor-1242	< 15.8	U	μg/kg dry	26.3	15.8	1				"		Χ
12672-29-6	Aroclor-1248	< 13.7	U	μg/kg dry	26.3	13.7	1				"		Χ
11097-69-1	Aroclor-1254	< 22.0	U	μg/kg dry	26.3	22.0	1				"		Χ
11096-82-5	Aroclor-1260	< 16.3	U	μg/kg dry	26.3	16.3	1				"		Χ
37324-23-5	Aroclor-1262	< 24.5	U	μg/kg dry	26.3	24.5	1				"		Χ
11100-14-4	Aroclor-1268	< 10.9	U	μg/kg dry	26.3	10.9	1				"		Χ
Surrogate rec	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	105			30-15	50 %				п	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	110			30-15	50 %				н	"		
2051-24-3	Decachlorobiphenyl (Sr)	105			30-15	50 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	115			30-15	50 %		•	•	н	"		
General C	Chemistry Parameters												

18-Jul-13

18-Jul-13

DT

1316966

% Solids

Sample I SS-22 SB73342	dentification			Client P	•		<u>Matrix</u> Soil		ection Date 7-Jul-13 11:			ceived Jul-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivola	tile Organic Compounds by C	GC											
Polychlorina	ated Biphenyls												
Prepared	by method SW846 3550C												
12674-11-2	Aroclor-1016	< 19.8	U	μg/kg dry	26.5	19.8	1	SW846 8082A	18-Jul-13	19-Jul-13	IMR	1316999	Χ
11104-28-2	Aroclor-1221	< 23.8	U	μg/kg dry	26.5	23.8	1	н			"		Х
11141-16-5	Aroclor-1232	< 17.0	U	μg/kg dry	26.5	17.0	1				"		Х
53469-21-9	Aroclor-1242	< 15.9	U	μg/kg dry	26.5	15.9	1				"		Х
12672-29-6	Aroclor-1248	< 13.8	U	μg/kg dry	26.5	13.8	1	п			"		Х
11097-69-1	Aroclor-1254	< 22.1	U	μg/kg dry	26.5	22.1	1	п			"		Х
11096-82-5	Aroclor-1260	< 16.4	U	μg/kg dry	26.5	16.4	1	п			"		Χ
37324-23-5	Aroclor-1262	< 24.6	U	μg/kg dry	26.5	24.6	1	п			"		Χ
11100-14-4	Aroclor-1268	< 10.9	U	μg/kg dry	26.5	10.9	1	п			"		Χ
Surrogate re	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	95			30-15	0 %		н	•	п	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	105			30-15	0 %		н		п	"		
2051-24-3	Decachlorobiphenyl (Sr)	120			30-15	60 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	115			30-15	50 %		н		п	"		
General (Chemistry Parameters												
	% Solids	73.4		%			1	SM2540 G Mod.	18-Jul-13	18-Jul-13	DT	1316966	

Sample Io SS-23 SB73342	dentification -23			Client P			<u>Matrix</u> Soil		ection Date 7-Jul-13 12			ceived Jul-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	БС											
	ated Biphenyls												
Prepared	by method SW846 3550C												
12674-11-2	Aroclor-1016	< 18.9	U	μg/kg dry	25.3	18.9	1	SW846 8082A	18-Jul-13	19-Jul-13	IMR	1316999	Χ
11104-28-2	Aroclor-1221	< 22.8	U	μg/kg dry	25.3	22.8	1				"		Χ
11141-16-5	Aroclor-1232	< 16.2	U	μg/kg dry	25.3	16.2	1				"		Χ
53469-21-9	Aroclor-1242	< 15.2	U	μg/kg dry	25.3	15.2	1	н			"		Χ
12672-29-6	Aroclor-1248	< 13.2	U	μg/kg dry	25.3	13.2	1				"		Χ
11097-69-1	Aroclor-1254	< 21.1	U	μg/kg dry	25.3	21.1	1	п			"		Χ
11096-82-5	Aroclor-1260	< 15.7	U	μg/kg dry	25.3	15.7	1	п			"		Χ
37324-23-5	Aroclor-1262	< 23.6	U	μg/kg dry	25.3	23.6	1	п			"		Χ
11100-14-4	Aroclor-1268	< 10.4	U	μg/kg dry	25.3	10.4	1				"		Х
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	95			30-15	i0 %		п		n	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	105			30-15	0 %		н	•	н	"		
2051-24-3	Decachlorobiphenyl (Sr)	110			30-15	0 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	120			30-15	50 %		11		н	"		
General C	Chemistry Parameters												
	% Solids	77.3		%			1	SM2540 G Mod.	18-Jul-13	18-Jul-13	DT	1316966	

Sample I SS-24 SB73342	dentification 2-24			Client P			<u>Matrix</u> Soil		ection Date 7-Jul-13 12			ceived Jul-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivola	tile Organic Compounds by C	GC											
Polychlorin	ated Biphenyls												
Prepared	by method SW846 3550C												
12674-11-2	Aroclor-1016	< 18.3	U	μg/kg dry	24.5	18.3	1	SW846 8082A	18-Jul-13	19-Jul-13	IMR	1316999	Χ
11104-28-2	Aroclor-1221	< 22.1	U	μg/kg dry	24.5	22.1	1				"		Χ
11141-16-5	Aroclor-1232	< 15.7	U	μg/kg dry	24.5	15.7	1				"		Χ
53469-21-9	Aroclor-1242	< 14.8	U	μg/kg dry	24.5	14.8	1				"		Χ
12672-29-6	Aroclor-1248	< 12.8	U	μg/kg dry	24.5	12.8	1				"		Χ
11097-69-1	Aroclor-1254	< 20.4	U	μg/kg dry	24.5	20.4	1				"		Χ
11096-82-5	Aroclor-1260	< 15.2	U	μg/kg dry	24.5	15.2	1				"		Χ
37324-23-5	Aroclor-1262	< 22.8	U	μg/kg dry	24.5	22.8	1				"		Х
11100-14-4	Aroclor-1268	< 10.1	U	μg/kg dry	24.5	10.1	1	ı			"		Χ
Surrogate re	ecoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	95			30-15	50 %		н			"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	105			30-15	50 %		н			"		
2051-24-3	Decachlorobiphenyl (Sr)	105			30-15	50 %				"	"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	110			30-15	50 %		н			"		
General (Chemistry Parameters												
	% Solids	80.1		%			1	SM2540 G Mod.	18-Jul-13	18-Jul-13	DT	1316966	

Sample I SS-25 SB73342	dentification			Client P	-		<u>Matrix</u> Soil		ection Date 7-Jul-13 11:			ceived Jul-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivola	tile Organic Compounds by C	GC											
Polychlorina	ated Biphenyls												
Prepared	by method SW846 3550C												
12674-11-2	Aroclor-1016	< 19.9	U	μg/kg dry	26.6	19.9	1	SW846 8082A	18-Jul-13	19-Jul-13	IMR	1316999	Χ
11104-28-2	Aroclor-1221	< 24.0	U	μg/kg dry	26.6	24.0	1	н			"		Х
11141-16-5	Aroclor-1232	< 17.1	U	μg/kg dry	26.6	17.1	1				"		Χ
53469-21-9	Aroclor-1242	< 16.0	U	μg/kg dry	26.6	16.0	1				"		Х
12672-29-6	Aroclor-1248	< 13.8	U	μg/kg dry	26.6	13.8	1	п			"		Х
11097-69-1	Aroclor-1254	< 22.2	U	μg/kg dry	26.6	22.2	1	п			"		Х
11096-82-5	Aroclor-1260	< 16.5	U	μg/kg dry	26.6	16.5	1	п			"		Χ
37324-23-5	Aroclor-1262	< 24.8	U	μg/kg dry	26.6	24.8	1				"		Х
11100-14-4	Aroclor-1268	< 11.0	U	μg/kg dry	26.6	11.0	1	п			"		Χ
Surrogate re	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	95			30-15	50 %		п	•	n	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	110			30-15	50 %		н		н	"		
2051-24-3	Decachlorobiphenyl (Sr)	120			30-15	50 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	110			30-15	50 %		11		н	"		
General C	Chemistry Parameters												
	% Solids	73.8		%			1	SM2540 G Mod.	18-Jul-13	18-Jul-13	DT	1316966	

Sample I SS-26 SB73342	dentification 2-26			Client P			<u>Matrix</u> Soil		ection Date 7-Jul-13 11:			ceived Jul-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivola	tile Organic Compounds by C	GC											
Polychlorin	ated Biphenyls												
Prepared	by method SW846 3550C												
12674-11-2	Aroclor-1016	< 20.4	U	μg/kg dry	27.3	20.4	1	SW846 8082A	18-Jul-13	19-Jul-13	IMR	1316999	Χ
11104-28-2	Aroclor-1221	< 24.6	U	μg/kg dry	27.3	24.6	1	н			"		Χ
11141-16-5	Aroclor-1232	< 17.6	U	μg/kg dry	27.3	17.6	1			н	"		Χ
53469-21-9	Aroclor-1242	< 16.4	U	μg/kg dry	27.3	16.4	1				"		Х
12672-29-6	Aroclor-1248	< 14.2	U	μg/kg dry	27.3	14.2	1				"		Х
11097-69-1	Aroclor-1254	< 22.8	U	μg/kg dry	27.3	22.8	1						Х
11096-82-5	Aroclor-1260	< 16.9	U	μg/kg dry	27.3	16.9	1	п					Х
37324-23-5	Aroclor-1262	< 25.5	U	μg/kg dry	27.3	25.5	1	п			"		Х
11100-14-4	Aroclor-1268	< 11.3	U	μg/kg dry	27.3	11.3	1	п			"		Χ
Surrogate re	ecoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	100			30-15	0 %		и	•		"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	105			30-15	0 %		н			"		
2051-24-3	Decachlorobiphenyl (Sr)	110			30-15	60 %				н			
2051-24-3	Decachlorobiphenyl (Sr) [2C]	130			30-15	50 %		н			"		
General (Chemistry Parameters												
	% Solids	72.1		%			1	SM2540 G Mod.	18-Jul-13	18-Jul-13	DT	1316966	

Sample Io SS-27 SB73342	dentification -27			Client P			<u>Matrix</u> Soil	·	ection Date 7-Jul-13 11			ceived -Jul-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
Polychlorina	ated Biphenyls												
Prepared	by method SW846 3550C												
12674-11-2	Aroclor-1016	< 25.8	U	μg/kg dry	34.6	25.8	1	SW846 8082A	18-Jul-13	19-Jul-13	IMR	1316999	Χ
11104-28-2	Aroclor-1221	< 31.2	U	μg/kg dry	34.6	31.2	1			u u	"		Χ
11141-16-5	Aroclor-1232	< 22.2	U	μg/kg dry	34.6	22.2	1	п		п	"		Χ
53469-21-9	Aroclor-1242	< 20.8	U	μg/kg dry	34.6	20.8	1			и	"		Χ
12672-29-6	Aroclor-1248	< 18.0	U	μg/kg dry	34.6	18.0	1			и	"		Χ
11097-69-1	Aroclor-1254	< 28.8	U	μg/kg dry	34.6	28.8	1			и	"		Χ
11096-82-5	Aroclor-1260	< 21.5	U	μg/kg dry	34.6	21.5	1	ı		и	"		Χ
37324-23-5	Aroclor-1262	< 32.2	U	μg/kg dry	34.6	32.2	1	ı		и	"		Χ
11100-14-4	Aroclor-1268	< 14.3	U	μg/kg dry	34.6	14.3	1				"		Х
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	100			30-15	50 %		н		ı	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	115			30-15	50 %		н		ı	"		
2051-24-3	Decachlorobiphenyl (Sr)	115			30-15	50 %				и	"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	110			30-15	50 %		ı	•	ı	"		
General C	Chemistry Parameters												

18-Jul-13

18-Jul-13

DT

1316966

% Solids

Sample I SS-28 SB73342	dentification 2-28			Client P			<u>Matrix</u> Soil		ection Date 7-Jul-13 15			ceived Jul-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivola	tile Organic Compounds by C	GC											
Polychlorin	ated Biphenyls												
Prepared	by method SW846 3550C												
12674-11-2	Aroclor-1016	< 16.1	U	μg/kg dry	21.5	16.1	1	SW846 8082A	18-Jul-13	19-Jul-13	IMR	1316999	Χ
11104-28-2	Aroclor-1221	< 19.4	U	μg/kg dry	21.5	19.4	1	н			"		Χ
11141-16-5	Aroclor-1232	< 13.8	U	μg/kg dry	21.5	13.8	1			н	"		Χ
53469-21-9	Aroclor-1242	< 12.9	U	μg/kg dry	21.5	12.9	1				"		Χ
12672-29-6	Aroclor-1248	< 11.2	U	μg/kg dry	21.5	11.2	1	п			"		Χ
11097-69-1	Aroclor-1254	< 17.9	U	μg/kg dry	21.5	17.9	1	п					Χ
11096-82-5	Aroclor-1260	< 13.3	U	μg/kg dry	21.5	13.3	1	п			"		Χ
37324-23-5	Aroclor-1262	< 20.0	U	μg/kg dry	21.5	20.0	1	п			"		Χ
11100-14-4	Aroclor-1268	< 8.88	U	μg/kg dry	21.5	8.88	1	п			"		Χ
Surrogate re	ecoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	95			30-15	0 %		и	•		"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	100			30-15	0 %		п			"		
2051-24-3	Decachlorobiphenyl (Sr)	110			30-15	60 %				н			
2051-24-3	Decachlorobiphenyl (Sr) [2C]	115			30-15	50 %		п			"		
General (Chemistry Parameters												
	% Solids	88.4		%			1	SM2540 G Mod.	18-Jul-13	18-Jul-13	DT	1316966	

Sample Id SS-29 SB73342	dentification -29			Client P			<u>Matrix</u> Soil		ection Date 7-Jul-13 15			ceived Jul-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
Polychlorina	ated Biphenyls												
Prepared	by method SW846 3550C												
12674-11-2	Aroclor-1016	< 17.7	U	μg/kg dry	23.7	17.7	1	SW846 8082A	18-Jul-13	20-Jul-13	IMR	1316999	Χ
11104-28-2	Aroclor-1221	< 21.3	U	μg/kg dry	23.7	21.3	1				"		Χ
11141-16-5	Aroclor-1232	< 15.2	U	μg/kg dry	23.7	15.2	1				"		Χ
53469-21-9	Aroclor-1242	< 14.2	U	μg/kg dry	23.7	14.2	1	п			"		Χ
12672-29-6	Aroclor-1248	< 12.3	U	μg/kg dry	23.7	12.3	1	п			"		Χ
11097-69-1	Aroclor-1254	< 19.7	U	μg/kg dry	23.7	19.7	1	п			"		Χ
11096-82-5	Aroclor-1260	< 14.7	U	μg/kg dry	23.7	14.7	1				"		Χ
37324-23-5	Aroclor-1262	< 22.1	U	μg/kg dry	23.7	22.1	1				"		Х
11100-14-4	Aroclor-1268	< 9.77	U	μg/kg dry	23.7	9.77	1	п			"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	90			30-15	50 %		н	•		"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	100			30-15	50 %		н			"		
2051-24-3	Decachlorobiphenyl (Sr)	110			30-15	50 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	110			30-15	50 %		11			"		
General C	Chemistry Parameters												

18-Jul-13

18-Jul-13

DT

1316966

% Solids

Sample I SS-30 SB73342	dentification 2-30			Client P			<u>Matrix</u> Soil	-	ection Date 7-Jul-13 15:			<u>ceived</u> Jul-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivola	tile Organic Compounds by C	GC											
Polychlorin	ated Biphenyls												
Prepared	d by method SW846 3550C												
12674-11-2	Aroclor-1016	< 19.5	U	μg/kg dry	26.1	19.5	1	SW846 8082A	18-Jul-13	20-Jul-13	IMR	1316999	Χ
11104-28-2	Aroclor-1221	< 23.5	U	μg/kg dry	26.1	23.5	1				"		Χ
11141-16-5	Aroclor-1232	< 16.7	U	μg/kg dry	26.1	16.7	1				"		Χ
53469-21-9	Aroclor-1242	< 15.7	U	μg/kg dry	26.1	15.7	1				"		Χ
12672-29-6	Aroclor-1248	< 13.5	U	μg/kg dry	26.1	13.5	1				"		Χ
11097-69-1	Aroclor-1254	74.2		μg/kg dry	26.1	21.7	1	н					Χ
11096-82-5	Aroclor-1260	< 16.2	U	μg/kg dry	26.1	16.2	1						Х
37324-23-5	Aroclor-1262	< 24.3	U	μg/kg dry	26.1	24.3	1						Х
11100-14-4	Aroclor-1268	< 10.7	U	μg/kg dry	26.1	10.7	1	п		п	"		Х
Surrogate re	ecoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	95			30-15	50 %		н	•	п	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	110			30-15	50 %		п		ı	"		
2051-24-3	Decachlorobiphenyl (Sr)	115			30-15	50 %		п		н	"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	110			30-15	50 %				ı	"		
General (Chemistry Parameters												
	% Solids	72.8		%			1	SM2540 G Mod.	18-Jul-13	18-Jul-13	DT	1316966	

Sample Id SS-31 SB73342	dentification -31			Client P			<u>Matrix</u> Soil	-	ection Date 7-Jul-13 15			ceived Jul-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
	tted Biphenyls by method SW846 3550C												
12674-11-2	Aroclor-1016	< 19.5	U	μg/kg dry	26.0	19.5	1	SW846 8082A	18-Jul-13	20-Jul-13	IMR	1316999	Х
11104-28-2	Aroclor-1221	< 23.5	U	μg/kg dry	26.0	23.5	1	п			"		Χ
11141-16-5	Aroclor-1232	< 16.7	U	μg/kg dry	26.0	16.7	1	п			"		Χ
53469-21-9	Aroclor-1242	< 15.7	U	μg/kg dry	26.0	15.7	1				"		Χ
12672-29-6	Aroclor-1248	< 13.5	U	μg/kg dry	26.0	13.5	1	п			"		Χ
11097-69-1	Aroclor-1254	< 21.7	U	μg/kg dry	26.0	21.7	1	п			"		Χ
11096-82-5	Aroclor-1260	< 16.1	U	μg/kg dry	26.0	16.1	1	п			"		Χ
37324-23-5	Aroclor-1262	< 24.3	U	μg/kg dry	26.0	24.3	1	п			"		Χ
11100-14-4	Aroclor-1268	< 10.7	U	μg/kg dry	26.0	10.7	1				"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	90			30-15	50 %		н			"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	95			30-15	50 %		н			"		
2051-24-3	Decachlorobiphenyl (Sr)	105			30-15	50 %		п			"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	115			30-15	50 %		н			"		
General C	Chemistry Parameters												

18-Jul-13

18-Jul-13

DT

1316966

% Solids

Sample Id SS-32 SB73342	dentification -32			Client P	<u>Project #</u> 067		<u>Matrix</u> Soil	· · · · · · · · · · · · · · · · · · ·	ection Date 7-Jul-13 15			ceived Jul-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
Polychlorina	ated Biphenyls												
Prepared	by method SW846 3550C												
12674-11-2	Aroclor-1016	< 17.1	U	μg/kg dry	22.9	17.1	1	SW846 8082A	18-Jul-13	20-Jul-13	IMR	1316999	Χ
11104-28-2	Aroclor-1221	< 20.7	U	μg/kg dry	22.9	20.7	1			u u	"		Χ
11141-16-5	Aroclor-1232	< 14.7	U	μg/kg dry	22.9	14.7	1	н			"		Χ
53469-21-9	Aroclor-1242	< 13.8	U	μg/kg dry	22.9	13.8	1	ı		и	"		Χ
12672-29-6	Aroclor-1248	< 11.9	U	μg/kg dry	22.9	11.9	1	ı		и	"		Χ
11097-69-1	Aroclor-1254	< 19.1	U	μg/kg dry	22.9	19.1	1	ı		и	"		Χ
11096-82-5	Aroclor-1260	< 14.2	U	μg/kg dry	22.9	14.2	1	п		и	"		Χ
37324-23-5	Aroclor-1262	< 21.4	U	μg/kg dry	22.9	21.4	1	п		и	"		Χ
11100-14-4	Aroclor-1268	< 9.46	U	μg/kg dry	22.9	9.46	1				"		Х
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	95			30-15	50 %		н		ı	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	105			30-15	50 %		н		ı	"		
2051-24-3	Decachlorobiphenyl (Sr)	110			30-15	50 %				н	"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	115			30-15	50 %		II	•	ı	"		
General C	Chemistry Parameters												

18-Jul-13

18-Jul-13

DT

1316966

% Solids

Sample I SS-33 SB73342	Identification 2-33			Client P			<u>Matrix</u> Soil	· · · · · · · · · · · · · · · · · · ·	ection Date 7-Jul-13 15			ceived Jul-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivola	tile Organic Compounds by C	GC											
Polychlorin	ated Biphenyls												
Prepared	by method SW846 3550C												
12674-11-2	Aroclor-1016	< 16.8	U	μg/kg dry	22.5	16.8	1	SW846 8082A	18-Jul-13	20-Jul-13	IMR	1316999	Χ
11104-28-2	Aroclor-1221	< 20.2	U	μg/kg dry	22.5	20.2	1	н			"		Χ
11141-16-5	Aroclor-1232	< 14.4	U	μg/kg dry	22.5	14.4	1			н	"		Χ
53469-21-9	Aroclor-1242	< 13.5	U	μg/kg dry	22.5	13.5	1				"		Х
12672-29-6	Aroclor-1248	< 11.7	U	μg/kg dry	22.5	11.7	1				"		Х
11097-69-1	Aroclor-1254	< 18.7	U	μg/kg dry	22.5	18.7	1						Х
11096-82-5	Aroclor-1260	< 13.9	U	μg/kg dry	22.5	13.9	1				"		Χ
37324-23-5	Aroclor-1262	< 20.9	U	μg/kg dry	22.5	20.9	1				"		Χ
11100-14-4	Aroclor-1268	< 9.26	U	μg/kg dry	22.5	9.26	1	п			"		Χ
Surrogate re	ecoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	100			30-15	0 %		и	•		"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	110			30-15	0 %		н			"		
2051-24-3	Decachlorobiphenyl (Sr)	115			30-15	60 %				н			
2051-24-3	Decachlorobiphenyl (Sr) [2C]	145			30-15	50 %		н			"		
General (Chemistry Parameters												
	% Solids	87.7		%			1	SM2540 G Mod.	18-Jul-13	18-Jul-13	DT	1316967	

Sample Identification SS-34 SB73342-34			Client Project # 13-067			<u>Matrix</u> Soil	<u>Coll</u> e	Received 17-Jul-13					
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivola	tile Organic Compounds by C	GC											
Polychlorin	ated Biphenyls												
Prepared	by method SW846 3550C												
12674-11-2	Aroclor-1016	< 16.0	U	μg/kg dry	21.5	16.0	1	SW846 8082A	18-Jul-13	20-Jul-13	IMR	1316999	Χ
11104-28-2	Aroclor-1221	< 19.3	U	μg/kg dry	21.5	19.3	1				"		Χ
11141-16-5	Aroclor-1232	< 13.8	U	μg/kg dry	21.5	13.8	1				"		Χ
53469-21-9	Aroclor-1242	< 12.9	U	μg/kg dry	21.5	12.9	1				"		Χ
12672-29-6	Aroclor-1248	< 11.2	U	μg/kg dry	21.5	11.2	1	п			"		Χ
11097-69-1	Aroclor-1254	< 17.9	U	μg/kg dry	21.5	17.9	1	п			"		Χ
11096-82-5	Aroclor-1260	< 13.3	U	μg/kg dry	21.5	13.3	1	н			"		Χ
37324-23-5	Aroclor-1262	< 20.0	U	μg/kg dry	21.5	20.0	1	н			"		Χ
11100-14-4	Aroclor-1268	< 8.86	U	μg/kg dry	21.5	8.86	1	п			"		Χ
Surrogate re	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	95			30-15	50 %		н	•		"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	100			30-15	50 %		н		ı	"		
2051-24-3	Decachlorobiphenyl (Sr)	120			30-15	50 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	110			30-15	50 %		н			"		
General (Chemistry Parameters												
	% Solids	88.4		%			1	SM2540 G Mod.	18-Jul-13	18-Jul-13	DT	1316967	

Sample Identification SS-35 SB73342-35				Client Project # 13-067			<u>Matrix</u> Soil	<u>Coll</u> 1	Received 17-Jul-13				
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
	ated Biphenyls by method SW846 3550C												
12674-11-2	Aroclor-1016	< 15.9	U	μg/kg dry	21.3	15.9	1	SW846 8082A	18-Jul-13	20-Jul-13	IMR	1316999	Х
11104-28-2	Aroclor-1221	< 19.2	U	μg/kg dry	21.3	19.2	1	п			"		Χ
11141-16-5	Aroclor-1232	< 13.7	U	μg/kg dry	21.3	13.7	1				"		Χ
53469-21-9	Aroclor-1242	< 12.8	U	μg/kg dry	21.3	12.8	1				"		Χ
12672-29-6	Aroclor-1248	< 11.1	U	μg/kg dry	21.3	11.1	1				"		Χ
11097-69-1	Aroclor-1254	< 17.7	U	μg/kg dry	21.3	17.7	1				"		Χ
11096-82-5	Aroclor-1260	< 13.2	U	μg/kg dry	21.3	13.2	1	н			"		Х
37324-23-5	Aroclor-1262	< 19.8	U	μg/kg dry	21.3	19.8	1	н			"		Х
11100-14-4	Aroclor-1268	< 8.77	U	μg/kg dry	21.3	8.77	1				"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	100			30-15	50 %					"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	105			30-15	50 %				н	"		
2051-24-3	Decachlorobiphenyl (Sr)	110			30-15	50 %		н			"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	115			30-15	50 %					"		
General C	Chemistry Parameters												

18-Jul-13

18-Jul-13

DT

1316967

% Solids

Sample Identification SS-36 SB73342-36			Client Project # 13-067			<u>Matrix</u> Soil	<u>Colle</u>	Received 17-Jul-13					
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivola	tile Organic Compounds by C	GC											
Polychlorin	ated Biphenyls												
Prepared	by method SW846 3550C												
12674-11-2	Aroclor-1016	< 16.9	U	μg/kg dry	22.6	16.9	1	SW846 8082A	18-Jul-13	20-Jul-13	IMR	1316999	Χ
11104-28-2	Aroclor-1221	< 20.4	U	μg/kg dry	22.6	20.4	1	п			"		Χ
11141-16-5	Aroclor-1232	< 14.5	U	μg/kg dry	22.6	14.5	1				"		Χ
53469-21-9	Aroclor-1242	< 13.6	U	μg/kg dry	22.6	13.6	1				"		Χ
12672-29-6	Aroclor-1248	< 11.8	U	μg/kg dry	22.6	11.8	1	н			"		Χ
11097-69-1	Aroclor-1254	< 18.9	U	μg/kg dry	22.6	18.9	1				"		Χ
11096-82-5	Aroclor-1260	< 14.0	U	μg/kg dry	22.6	14.0	1	н			"		Χ
37324-23-5	Aroclor-1262	< 21.1	U	μg/kg dry	22.6	21.1	1	н			"		Χ
11100-14-4	Aroclor-1268	< 9.34	U	μg/kg dry	22.6	9.34	1	п			"		Χ
Surrogate re	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	90			30-15	50 %		н	•		"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	100			30-15	50 %		п		ı	"		
2051-24-3	Decachlorobiphenyl (Sr)	115			30-15	50 %		п			"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	115			30-15	50 %		я			"		
General (Chemistry Parameters												
	% Solids	85.6		%			1	SM2540 G Mod.	18-Jul-13	18-Jul-13	DT	1316967	

analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
Satch 1316997 - SW846 3550C										
Blank (1316997-BLK1)					Pre	pared: 18-Jul-	-13 Analyzed:	19-Jul-13		
Aroclor-1016	< 14.9	U	μg/kg wet	14.9						
Aroclor-1016 [2C]	< 13.0	U	μg/kg wet	13.0						
Aroclor-1221	< 18.0	U	μg/kg wet	18.0						
Aroclor-1221 [2C]	< 14.4	U	μg/kg wet	14.4						
Aroclor-1232	< 12.8	U	μg/kg wet	12.8						
Aroclor-1232 [2C]	< 15.7	U	μg/kg wet	15.7						
Aroclor-1242	< 12.0	U	μg/kg wet	12.0						
Aroclor-1242 [2C]	< 9.67	U	μg/kg wet	9.67						
Aroclor-1248	< 10.4	U	μg/kg wet	10.4						
Aroclor-1248 [2C]	< 8.78	U	μg/kg wet	8.78						
Aroclor-1254	< 16.7	U	μg/kg wet	16.7						
Aroclor-1254 [2C]	< 11.7	U	μg/kg wet	11.7						
Aroclor-1260	< 12.4	U	μg/kg wet	12.4						
Aroclor-1260 [2C]	< 10.0	U	μg/kg wet	10.0						
Aroclor-1262	< 18.6	U	μg/kg wet	18.6						
Aroclor-1262 [2C]	< 19.2	U	μg/kg wet	19.2						
Aroclor-1268	< 8.25	U	μg/kg wet	8.25						
Aroclor-1268 [2C]	< 9.90	U	μg/kg wet	9.90						
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	15.0		μg/kg wet		20.0		75	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	17.0				20.0		85	30-150 30-150		
Surrogate: Decachlorobiphenyl (Sr)	20.0		μg/kg wet		20.0		100	30-150 30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	22.0		μg/kg wet μg/kg wet		20.0		110	30-150 30-150		
	22.0		µg/kg wet							
LCS (1316997-BS1)	050			110		pared: 18-Jul-	13 Analyzed:			
Aroclor-1016	253		μg/kg wet	14.9	250		101	40-140		
Aroclor-1016 [2C]	266		μg/kg wet	13.0	250		106	40-140		
Arcelor 1260	217		μg/kg wet	12.4	250		87 106	40-140		
Aroclor-1260 [2C]	264		μg/kg wet	10.0	250		106	40-140		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	15.0		μg/kg wet		20.0		75	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	15.0		μg/kg wet		20.0		75	30-150		
Surrogate: Decachlorobiphenyl (Sr)	21.0		μg/kg wet		20.0		105	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	22.0		μg/kg wet		20.0		110	30-150		
LCS Dup (1316997-BSD1)					Pre	pared: 18-Jul-	13 Analyzed:	19-Jul-13		
Aroclor-1016	254		μg/kg wet	14.9	250		102	40-140	0.4	30
Aroclor-1016 [2C]	261		μg/kg wet	13.0	250		104	40-140	2	30
Aroclor-1260	218		μg/kg wet	12.4	250		87	40-140	0.5	30
Aroclor-1260 [2C]	243		μg/kg wet	10.0	250		97	40-140	8	30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	15.0		μg/kg wet		20.0		75	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	15.0		μg/kg wet		20.0		75	30-150		
Surrogate: Decachlorobiphenyl (Sr)	22.0		μg/kg wet		20.0		110	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	22.0		μg/kg wet		20.0		110	30-150		
<u>Duplicate (1316997-DUP1)</u>			Source: SB	73342-01	Pre	pared: 18-Jul-	13 Analyzed:	19-Jul-13		
Aroclor-1016	< 25.3	U	μg/kg dry	25.3		BRL				30
Aroclor-1016 [2C]	< 22.0	U	μg/kg dry	22.0		BRL				30
Aroclor-1221	< 30.5	U	μg/kg dry	30.5		BRL				30
Aroclor-1221 [2C]	< 24.4	U	μg/kg dry	24.4		BRL				30
Aroclor-1232	< 21.8	U	μg/kg dry	21.8		BRL				30
Aroclor-1232 [2C]	< 26.6	U	μg/kg dry	26.6		BRL				30
Aroclor-1242	< 20.4	U	μg/kg dry	20.4		BRL				30
Aroclor-1242 [2C]	< 16.4	U	μg/kg dry	16.4		BRL				30
Aroclor-1248	< 17.6	U	μg/kg dry	17.6		BRL				30

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1316997 - SW846 3550C										
Duplicate (1316997-DUP1)			Source: SB	73342-01	Pre	pared: 18-Jul-	-13 Analyzed:	19-Jul-13		
Aroclor-1248 [2C]	< 14.9	U	μg/kg dry	14.9		BRL	•			30
Aroclor-1254	< 28.3	U	μg/kg dry	28.3		BRL				30
Aroclor-1254 [2C]	< 19.8	U	μg/kg dry	19.8		BRL				30
Aroclor-1260	< 21.0	U	μg/kg dry	21.0		BRL				30
Aroclor-1260 [2C]	< 17.0	U	μg/kg dry	17.0		BRL				30
Aroclor-1262	< 31.6	U	μg/kg dry	31.6		BRL				30
Aroclor-1262 [2C]	< 32.5	U	μg/kg dry	32.5		BRL				30
Aroclor-1268	< 14.0	U	μg/kg dry	14.0		BRL				30
Aroclor-1268 [2C]	< 16.8	U	μg/kg dry	16.8		BRL				30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	49.1		μg/kg dry		33.9		145	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	50.8		μg/kg dry		33.9		150	30-150		
Surrogate: Decachlorobiphenyl (Sr)	50.8		μg/kg dry		33.9		150	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	49.1		μg/kg dry		33.9		145	30-150		
Matrix Spike (1316997-MS1)			Source: SB	73342-01		nared: 18- lul	-13 Analyzed:			
Aroclor-1016	529		μg/kg dry	25.3	424	BRL	125	40-140		
Aroclor-1016 [2C]	510		μg/kg dry	22.1	424	BRL	120	40-140		
Aroclor-1260	485			21.0	424	BRL	114	40-140		
Aroclor-1260 [2C]	512		μg/kg dry μg/kg dry	17.0	424	BRL	121	40-140		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	39.0		μg/kg dry		33.9		115	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	37.3		μg/kg dry		33.9		110	30-150		
Surrogate: Decachlorobiphenyl (Sr)	40.7		μg/kg dry		33.9		120	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	40.7		μg/kg dry μg/kg dry		33.9		120	30-150		
	40.7			72242 04		navadi 10 liil				
Matrix Spike Dup (1316997-MSD1)	540		Source: SB				-13 Analyzed:		0	00
Arcelor-1016	546		μg/kg dry	25.3	424	BRL	129	40-140	3	30
Aroclor-1016 [2C]	492		μg/kg dry	22.1	424	BRL	116	40-140	4	30
Arcelor 1000 root	485		μg/kg dry	21.0	424	BRL	114	40-140	0	30
Aroclor-1260 [2C]	517		μg/kg dry	17.0	424	BRL	122	40-140	1	30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	39.0		μg/kg dry		33.9		115	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	35.6		μg/kg dry		33.9		105	30-150		
Surrogate: Decachlorobiphenyl (Sr)	40.7		μg/kg dry		33.9		120	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	42.4		μg/kg dry		33.9		125	30-150		
atch 1316999 - SW846 3550C										
Blank (1316999-BLK1)					Pre	pared: 18-Jul-	-13 Analyzed:	19-Jul-13		
Aroclor-1016	< 14.9	U	μg/kg wet	14.9						
Aroclor-1016 [2C]	< 13.0	U	μg/kg wet	13.0						
Aroclor-1221	< 18.0	U	μg/kg wet	18.0						
Aroclor-1221 [2C]	< 14.4	U	μg/kg wet	14.4						
Aroclor-1232	< 12.8	U	μg/kg wet	12.8						
Aroclor-1232 [2C]	< 15.7	U	μg/kg wet	15.7						
Aroclor-1242	< 12.0	U	μg/kg wet	12.0						
Aroclor-1242 [2C]	< 9.67	U	μg/kg wet	9.67						
Aroclor-1248	< 10.4	U	μg/kg wet	10.4						
Aroclor-1248 [2C]	< 8.78	U	μg/kg wet	8.78						
Aroclor-1254	< 16.7	U	μg/kg wet	16.7						
Aroclor-1254 [2C]	< 11.7	U	μg/kg wet	11.7						
Aroclor-1260	< 12.4	U	μg/kg wet	12.4						
Aroclor-1260 [2C]	< 10.0	U	μg/kg wet	10.0						
Aroclor-1262	< 18.6	U	μg/kg wet	18.6						
Aroclor-1262 [2C]	< 19.2	U	μg/kg wet	19.2						
			100							

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1316999 - SW846 3550C										
Blank (1316999-BLK1)					Pre	pared: 18-Jul-	13 Analyzed:	19-Jul-13		
Aroclor-1268 [2C]	< 9.90	U	μg/kg wet	9.90			·			
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	14.0		μg/kg wet		20.0		70	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	16.0		μg/kg wet μg/kg wet		20.0		80	30-150		
Surrogate: Decachlorobiphenyl (Sr)	20.0		μg/kg wet		20.0		100	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	23.0		μg/kg wet		20.0		115	30-150		
LCS (1316999-BS1)	20.0		pg///g mor			nared: 18- lul-	13 Analyzed:			
Aroclor-1016	246		μg/kg wet	14.9	250	pared. 10-Jul-	98	40-140		
Aroclor-1016 [2C]	263		μg/kg wet	13.0	250		105	40-140		
Aroclor-1260	222		μg/kg wet	12.4	250		89	40-140		
Aroclor-1260 [2C]	266		μg/kg wet	10.0	250		106	40-140		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	15.0		μg/kg wet		20.0		75	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	15.0		μg/kg wet		20.0		75	30-150		
Surrogate: Decachlorobiphenyl (Sr)	21.0		μg/kg wet		20.0		105	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	25.0		μg/kg wet		20.0		125	30-150		
LCS Dup (1316999-BSD1)			10 0		Pre	nared: 18-Jul-	13 Analyzed:	19-Jul-13		
Aroclor-1016	246		μg/kg wet	14.9	250		98	40-140	0	30
Aroclor-1016 [2C]	266		μg/kg wet	13.0	250		106	40-140	1	30
Aroclor-1260	219		μg/kg wet	12.4	250		88	40-140	1	30
Aroclor-1260 [2C]	259		μg/kg wet	10.0	250		104	40-140	3	30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	15.0		μg/kg wet		20.0		75	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	15.0		μg/kg wet		20.0		75	30-150		
Surrogate: Decachlorobiphenyl (Sr)	21.0		μg/kg wet		20.0		105	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	25.0		μg/kg wet		20.0		125	30-150		
Duplicate (1316999-DUP1)			Source: SB	73342-21		nared: 18-Jul-	13 Analyzed:			
Aroclor-1016	< 19.8	U	μg/kg dry	19.8	110	BRL	10 Tilaly20a.	10 001 10		30
Aroclor-1016 [2C]	< 17.3	U	μg/kg dry	17.3		BRL				30
Aroclor-1221	< 23.9	U	μg/kg dry	23.9		BRL				30
Aroclor-1221 [2C]	< 19.1	U	μg/kg dry	19.1		BRL				30
Aroclor-1232	< 17.1	U	μg/kg dry	17.1		BRL				30
Aroclor-1232 [2C]	< 20.8	U	μg/kg dry	20.8		BRL				30
Aroclor-1242	< 16.0	U	μg/kg dry	16.0		BRL				30
Aroclor-1242 [2C]	< 12.8	U	μg/kg dry	12.8		BRL				30
Aroclor-1248	< 13.8	U	μg/kg dry	13.8		BRL				30
Aroclor-1248 [2C]	< 11.7	U	μg/kg dry	11.7		BRL				30
Aroclor-1254	< 22.1	U	μg/kg dry	22.1		BRL				30
Aroclor-1254 [2C]	< 15.6	U	μg/kg dry	15.6		BRL				30
Aroclor-1260	< 16.5	U	μg/kg dry	16.5		BRL				30
Aroclor-1260 [2C]	< 13.3	U	μg/kg dry	13.3		BRL				30
Aroclor-1262	< 24.7	U	μg/kg dry	24.7		BRL				30
Aroclor-1262 [2C]	< 25.5	U	μg/kg dry	25.5		BRL				30
Aroclor-1268	< 11.0	U	μg/kg dry	11.0		BRL				30
Aroclor-1268 [2C]	< 13.2	U	μg/kg dry	13.2		BRL				30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	31.9		μg/kg dry		26.6		120	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	34.5		μg/kg dry		26.6		130	30-150		
Surrogate: Decachlorobiphenyl (Sr)	34.5		μg/kg dry		26.6		130	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	39.8		μg/kg dry		26.6		150	30-150		
Matrix Spike (1316999-MS1)			Source: SB	73342-21	Pre	pared: 18-Jul-	13 Analyzed:	19-Jul-13		
Aroclor-1016	420		μg/kg dry	19.8	332	BRL	126	40-140		
Aroclor-1016 [2C]	370		μg/kg dry	17.3	332	BRL	112	40-140		
Aroclor-1260	410		μg/kg dry	16.5	332	BRL	124	40-140		

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1316999 - SW846 3550C										
Matrix Spike (1316999-MS1)			Source: SB	73342-21	<u>Pre</u>	pared: 18-Jul-	13 Analyzed:	19-Jul-13		
Aroclor-1260 [2C]	402		μg/kg dry	13.3	332	BRL	121	40-140		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	33.2		μg/kg dry		26.6		125	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	33.2		μg/kg dry		26.6		125	30-150		
Surrogate: Decachlorobiphenyl (Sr)	37.2		μg/kg dry		26.6		140	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	38.5		μg/kg dry		26.6		145	30-150		
Matrix Spike Dup (1316999-MSD1)			Source: SB	73342-21	<u>Pre</u>	pared: 18-Jul-	13 Analyzed:	19-Jul-13		
Aroclor-1016	398		μg/kg dry	19.9	332	BRL	120	40-140	6	30
Aroclor-1016 [2C]	376		μg/kg dry	17.3	332	BRL	113	40-140	1	30
Aroclor-1260	346		μg/kg dry	16.5	332	BRL	104	40-140	17	30
Aroclor-1260 [2C]	392		μg/kg dry	13.3	332	BRL	118	40-140	3	30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	30.6		μg/kg dry		26.6		115	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	29.3		μg/kg dry		26.6		110	30-150		
Surrogate: Decachlorobiphenyl (Sr)	33.2		μg/kg dry		26.6		125	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	33.2		μg/kg dry		26.6		125	30-150		

General Chemistry Parameters - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1316967 - General Preparation										
<u>Duplicate (1316967-DUP1)</u>			Source: SI	B73342-33	Pre	pared & Analy	zed: 18-Jul-13			
% Solids	87.2		%			87.7			0.5	20

Notes and Definitions

J Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).

U Analyte included in the analysis, but not detected at or above the MDL.

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification:</u> The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

Validated by: Kimberly Wisk

Quantitation Report (QT Reviewed)

Data File : C:\msdchem\1\DATA\PCB120719\7334201P.D Vial: 11

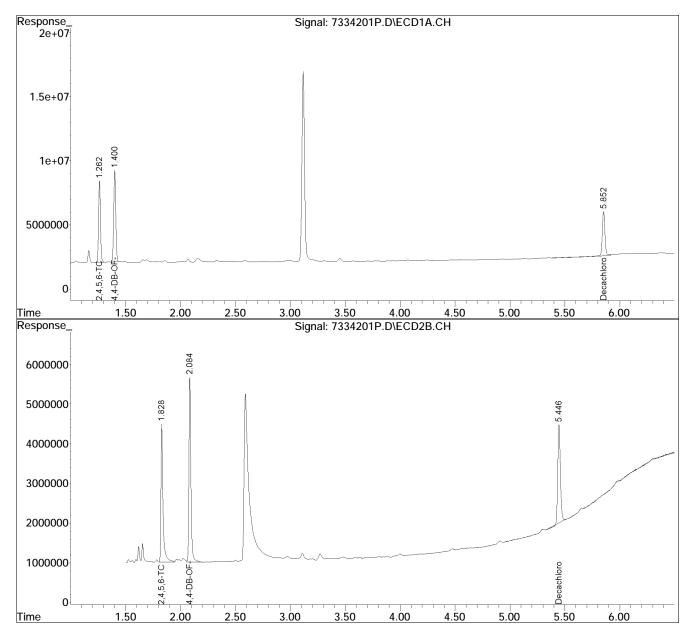
Signal(s) : Signal #1: ECD1A.CH Signal #2: ECD2B.CH

Integration File signal 1: AUTOINT1.E
Integration File signal 2: AUTOINT2.E

Quant Time: Jul 20 10:07:07 2013 Quant Results File: 60120716.RES

Quant Method: C:\MSDCHEM\1\METHODS\PCB120716\60120716.M

Quant Title : EPA 608 & SW-846 8082 Aroclor-1016 & Aroclor-1260


QLast Update : Tue Jul 16 14:17:19 2013

Response via : Initial Calibration

DataAcq Meth: 60120716.M

Volume Inj. :

Signal #1 Phase: Signal #2 Phase: Signal #1 Info: Signal #2 Info:

Quantitation Report (QT Reviewed)

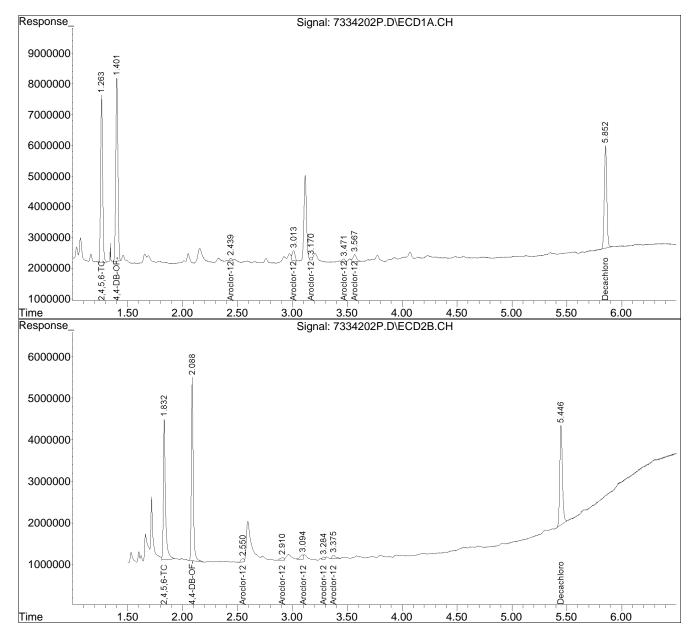
Data File : C:\msdchem\1\DATA\PCB120719\7334202P.D Vial: 12

Signal(s) : Signal #1: ECD1A.CH Signal #2: ECD2B.CH

Integration File signal 1: AUTOINT1.E
Integration File signal 2: AUTOINT2.E

Quant Time: Jul 20 11:20:41 2013 Quant Results File: 54120716.RES

Quant Method : C:\msdchem\1\METHODS\PCB120716\54120716.M Quant Title : GC PCB 1254 Method EPA 608 SW-846 8082


QLast Update : Tue Jul 16 14:30:37 2013

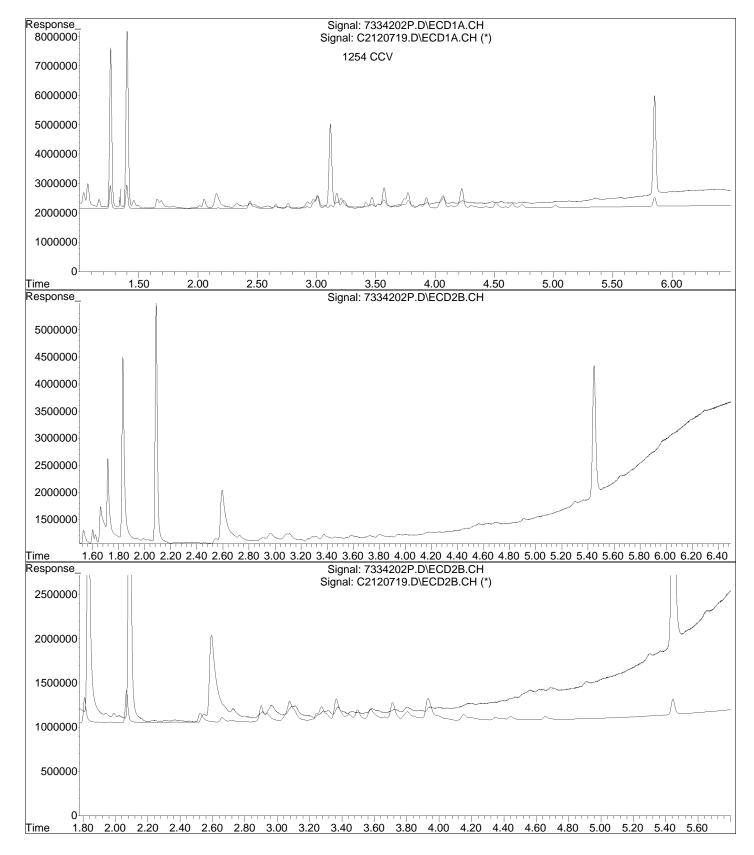
Response via : Initial Calibration

DataAcq Meth: 60120716.M

Volume Inj. :

Signal #1 Phase: Signal #2 Phase: Signal #1 Info : Signal #2 Info :

File :C:\msdchem\1\DATA\PCB120719\7334202P.D


Operator : IMR

Acquired: 19 Jul 2013 5:53 pm using AcqMethod 60120716.M

Instrument: HP G1530A Sample Name: SB73342-02 @ SS-2

Misc Info : ????????

Vial Number: 12

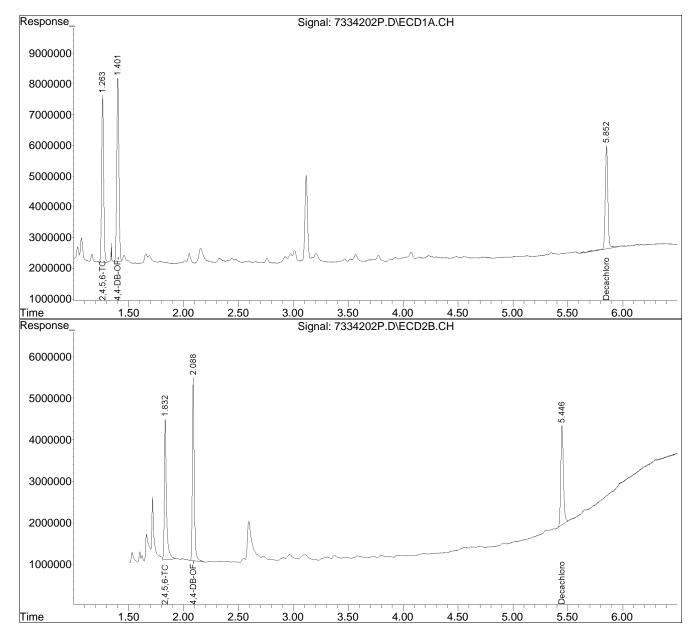
Signal(s) : Signal #1: ECD1A.CH Signal #2: ECD2B.CH

Integration File signal 1: AUTOINT1.E
Integration File signal 2: AUTOINT2.E

Quant Time: Jul 20 11:22:09 2013 Quant Results File: 60120716.RES

Quant Method: C:\MSDCHEM\1\METHODS\PCB120716\60120716.M

Quant Title : EPA 608 & SW-846 8082 Aroclor-1016 & Aroclor-1260


QLast Update : Tue Jul 16 14:17:19 2013

Response via : Initial Calibration

DataAcq Meth: 60120716.M

Volume Inj. :

Signal #1 Phase: Signal #2 Phase: Signal #1 Info : Signal #2 Info :

60120716.M Sat Jul 20 11:22:15 2013

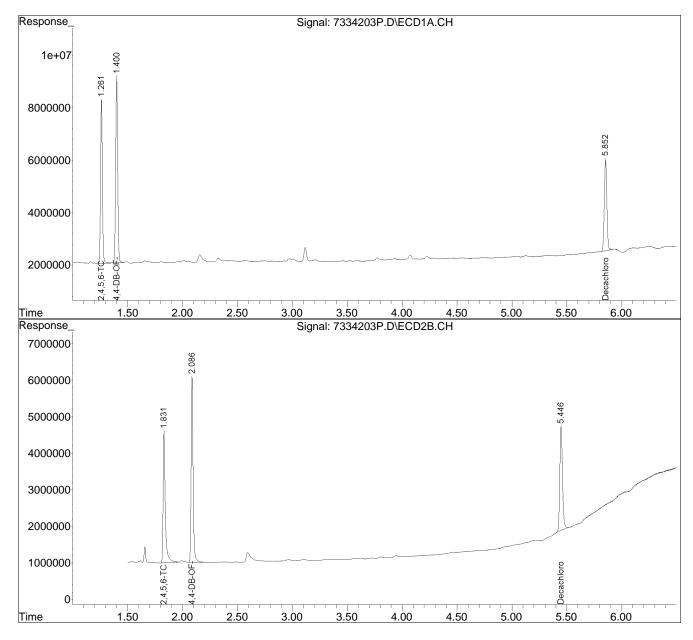
Data File : C:\msdchem\1\DATA\PCB120719\7334203P.D Vial: 13

Signal(s) : Signal #1: ECD1A.CH Signal #2: ECD2B.CH

Integration File signal 1: AUTOINT1.E
Integration File signal 2: AUTOINT2.E

Quant Time: Jul 20 11:22:38 2013 Quant Results File: 60120716.RES

Quant Method: C:\MSDCHEM\1\METHODS\PCB120716\60120716.M


Quant Title : EPA 608 & SW-846 8082 Aroclor-1016 & Aroclor-1260

QLast Update : Tue Jul 16 14:17:19 2013

Response via : Initial Calibration

DataAcq Meth: 60120716.M

Volume Inj. :

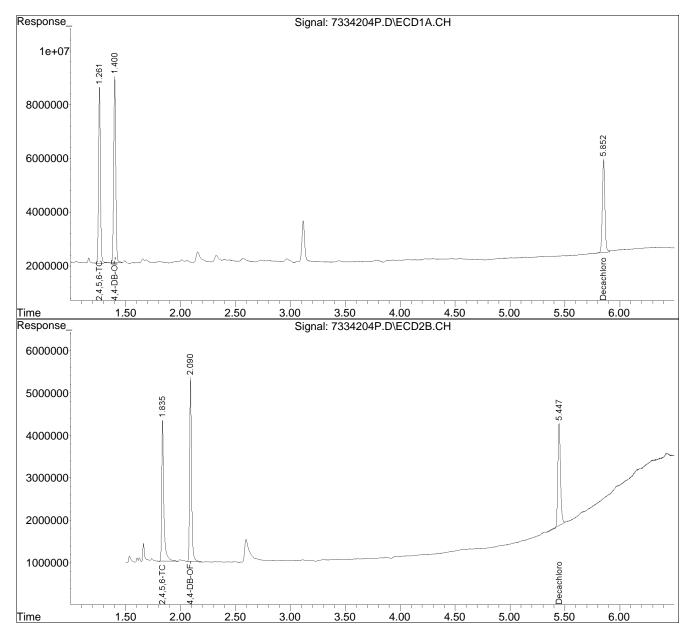
Data File : C:\msdchem\1\DATA\PCB120719\7334204P.D Vial: 14

Signal(s) : Signal #1: ECD1A.CH Signal #2: ECD2B.CH

Integration File signal 1: AUTOINT1.E
Integration File signal 2: AUTOINT2.E

Quant Time: Jul 20 11:28:04 2013 Quant Results File: 60120716.RES

Ouant Method : C:\MSDCHEM\1\METHODS\PCB120716\60120716.M


Quant Title : EPA 608 & SW-846 8082 Aroclor-1016 & Aroclor-1260

QLast Update : Tue Jul 16 14:17:19 2013

Response via : Initial Calibration

DataAcq Meth: 60120716.M

Volume Inj. :

Data File : C:\msdchem\1\DATA\PCB120719\7334205P.D Vial: 15

Signal(s) : Signal #1: ECD1A.CH Signal #2: ECD2B.CH

 Acq On
 : 19 Jul 2013 6:22 pm
 Operator: IMR

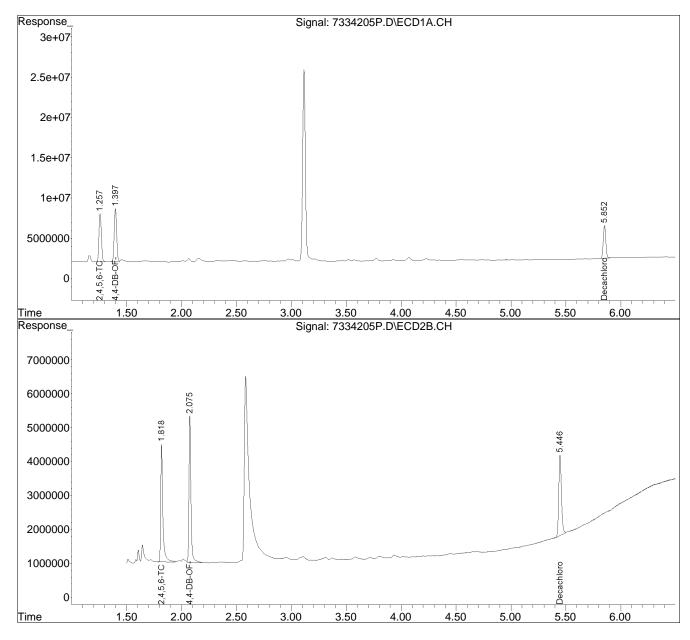
 Sample
 : SB73342-05 @ SS-5
 Inst : HPS12

 Misc
 : []
 Multiplr: 1.00

Integration File signal 1: AUTOINT1.E
Integration File signal 2: AUTOINT2.E

Quant Time: Jul 20 11:28:40 2013 Quant Results File: 60120716.RES

Quant Method: C:\MSDCHEM\1\METHODS\PCB120716\60120716.M


Quant Title : EPA 608 & SW-846 8082 Aroclor-1016 & Aroclor-1260

QLast Update : Tue Jul 16 14:17:19 2013

Response via : Initial Calibration

DataAcq Meth: 60120716.M

Volume Inj. :

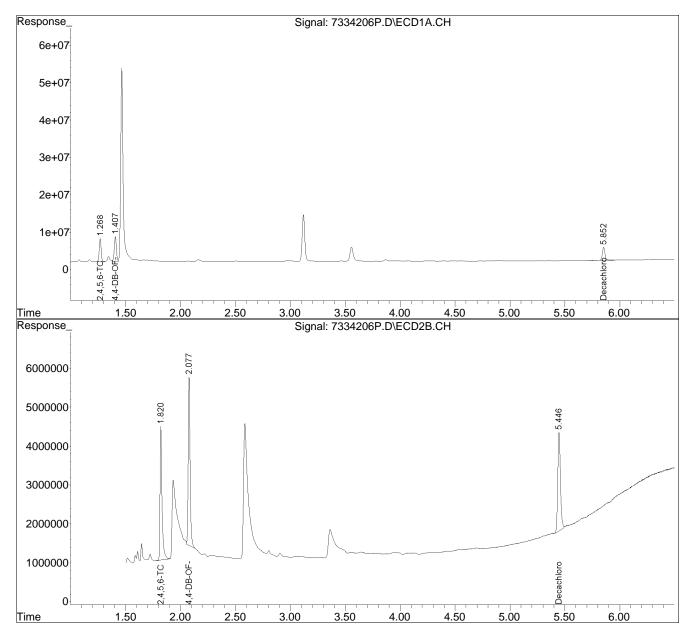
Data File : C:\msdchem\1\DATA\PCB120719\7334206P.D Vial: 16

Signal(s) : Signal #1: ECD1A.CH Signal #2: ECD2B.CH

Integration File signal 1: AUTOINT1.E
Integration File signal 2: AUTOINT2.E

Quant Time: Jul 20 11:29:07 2013 Quant Results File: 60120716.RES

Ouant Method : C:\MSDCHEM\1\METHODS\PCB120716\60120716.M


Quant Title : EPA 608 & SW-846 8082 Aroclor-1016 & Aroclor-1260

QLast Update : Tue Jul 16 14:17:19 2013

Response via : Initial Calibration

DataAcq Meth: 60120716.M

Volume Inj. :

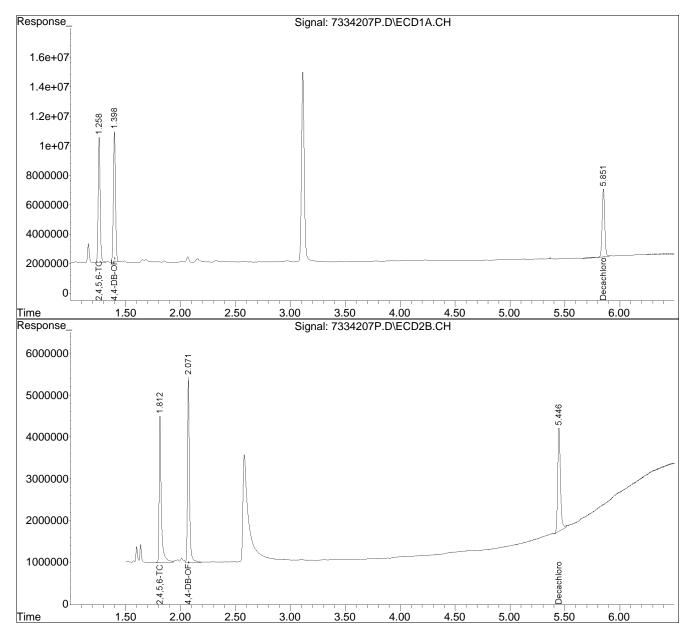
Data File : C:\msdchem\1\DATA\PCB120719\7334207P.D
Vial: 17

Signal(s) : Signal #1: ECD1A.CH Signal #2: ECD2B.CH

Integration File signal 1: AUTOINT1.E
Integration File signal 2: AUTOINT2.E

Quant Time: Jul 20 11:29:26 2013 Quant Results File: 60120716.RES

Quant Method: C:\MSDCHEM\1\METHODS\PCB120716\60120716.M


Quant Title : EPA 608 & SW-846 8082 Aroclor-1016 & Aroclor-1260

QLast Update : Tue Jul 16 14:17:19 2013

Response via : Initial Calibration

DataAcq Meth: 60120716.M

Volume Inj. :

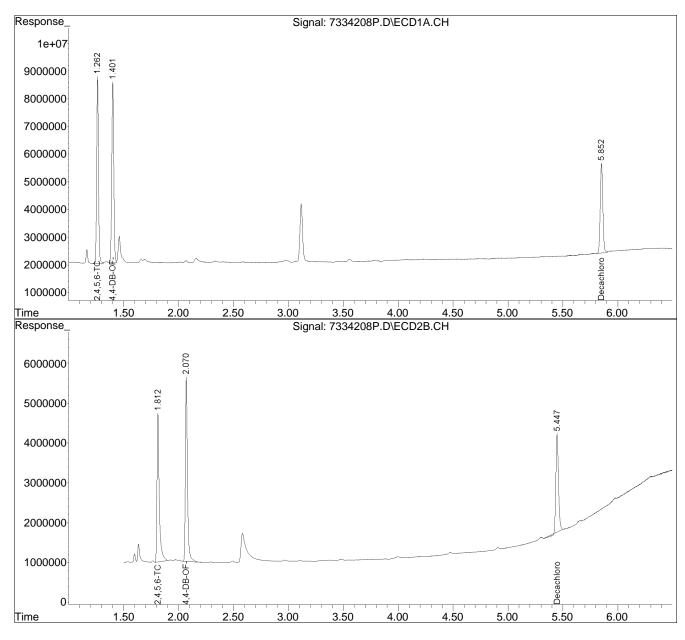
Data File : C:\msdchem\1\DATA\PCB120719\7334208P.D Vial: 18

Signal(s) : Signal #1: ECD1A.CH Signal #2: ECD2B.CH

Integration File signal 1: AUTOINT1.E
Integration File signal 2: AUTOINT2.E

Quant Time: Jul 20 11:29:42 2013 Quant Results File: 60120716.RES

Quant Method: C:\MSDCHEM\1\METHODS\PCB120716\60120716.M


Quant Title : EPA 608 & SW-846 8082 Aroclor-1016 & Aroclor-1260

QLast Update : Tue Jul 16 14:17:19 2013

Response via : Initial Calibration

DataAcq Meth: 60120716.M

Volume Inj. :

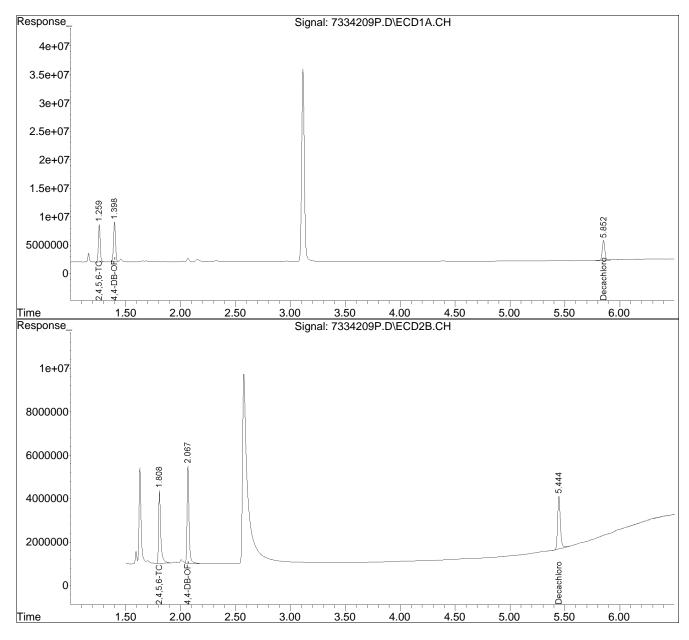
Data File : C:\msdchem\1\DATA\PCB120719\7334209P.D Vial: 19

Signal(s) : Signal #1: ECD1A.CH Signal #2: ECD2B.CH

Integration File signal 1: AUTOINT1.E
Integration File signal 2: AUTOINT2.E

Quant Time: Jul 20 11:30:03 2013 Quant Results File: 60120716.RES

Quant Method: C:\MSDCHEM\1\METHODS\PCB120716\60120716.M


Quant Title : EPA 608 & SW-846 8082 Aroclor-1016 & Aroclor-1260

QLast Update : Tue Jul 16 14:17:19 2013

Response via : Initial Calibration

DataAcq Meth: 60120716.M

Volume Inj. :

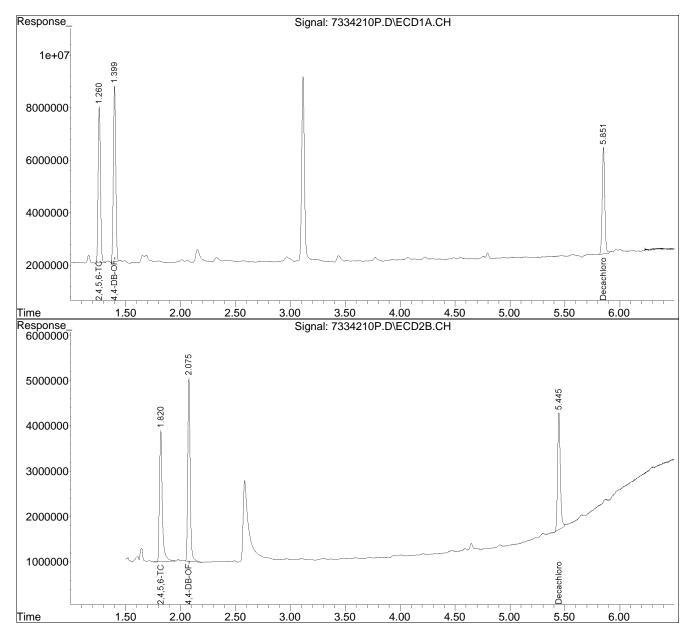
Data File : C:\msdchem\1\DATA\PCB120719\7334210P.D Vial: 20

Signal(s) : Signal #1: ECD1A.CH Signal #2: ECD2B.CH

Integration File signal 1: AUTOINT1.E
Integration File signal 2: AUTOINT2.E

Quant Time: Jul 20 11:30:20 2013 Quant Results File: 60120716.RES

Quant Method: C:\MSDCHEM\1\METHODS\PCB120716\60120716.M


Quant Title : EPA 608 & SW-846 8082 Aroclor-1016 & Aroclor-1260

QLast Update : Tue Jul 16 14:17:19 2013

Response via : Initial Calibration

DataAcq Meth: 60120716.M

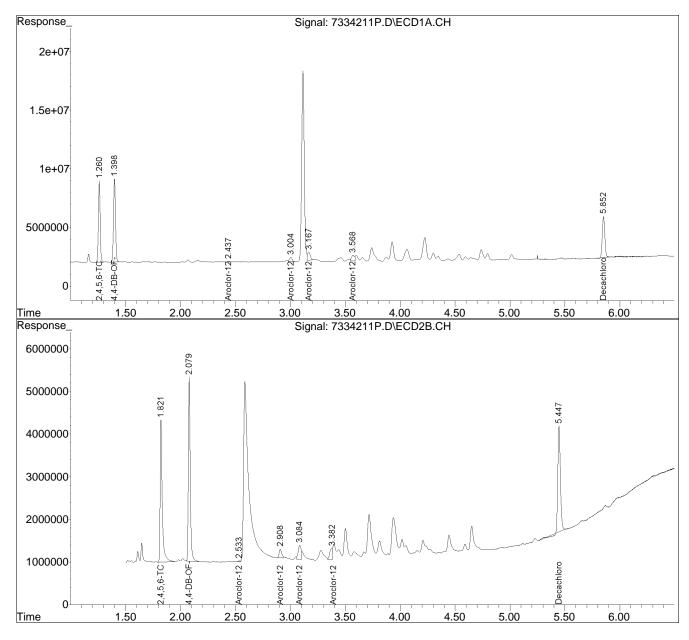
Volume Inj. :

Data File : C:\msdchem\1\DATA\PCB120719\7334211P.D Vial: 21

Signal(s) : Signal #1: ECD1A.CH Signal #2: ECD2B.CH

Integration File signal 1: AUTOINT1.E
Integration File signal 2: AUTOINT2.E

Quant Time: Jul 20 11:34:19 2013 Quant Results File: 54120716.RES


Quant Method : C:\msdchem\1\METHODS\PCB120716\54120716.M Quant Title : GC PCB 1254 Method EPA 608 SW-846 8082

QLast Update : Tue Jul 16 14:30:37 2013

Response via : Initial Calibration

DataAcq Meth: 60120716.M

Volume Inj. :

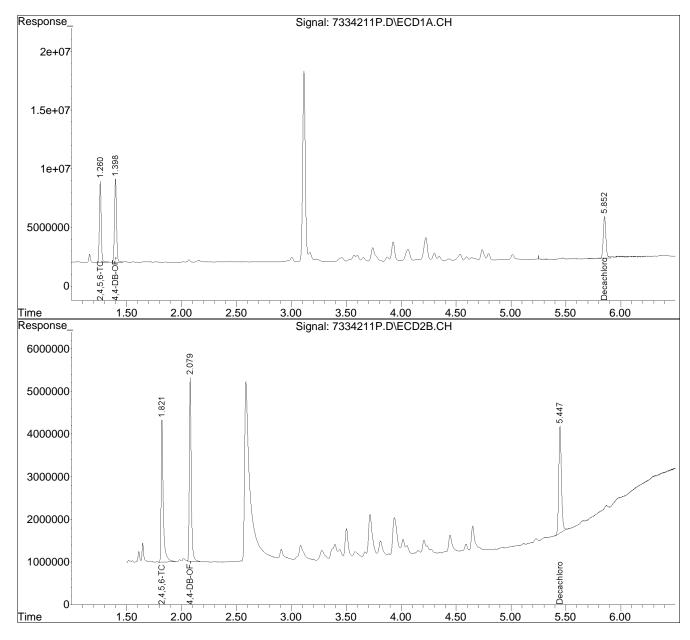
Data File : C:\msdchem\1\DATA\PCB120719\7334211P.D
Vial: 21

Signal(s) : Signal #1: ECD1A.CH Signal #2: ECD2B.CH

Integration File signal 1: AUTOINT1.E
Integration File signal 2: AUTOINT2.E

Quant Time: Jul 20 11:35:03 2013 Quant Results File: 60120716.RES

Quant Method: C:\MSDCHEM\1\METHODS\PCB120716\60120716.M


Quant Title : EPA 608 & SW-846 8082 Aroclor-1016 & Aroclor-1260

QLast Update : Tue Jul 16 14:17:19 2013

Response via : Initial Calibration

DataAcq Meth: 60120716.M

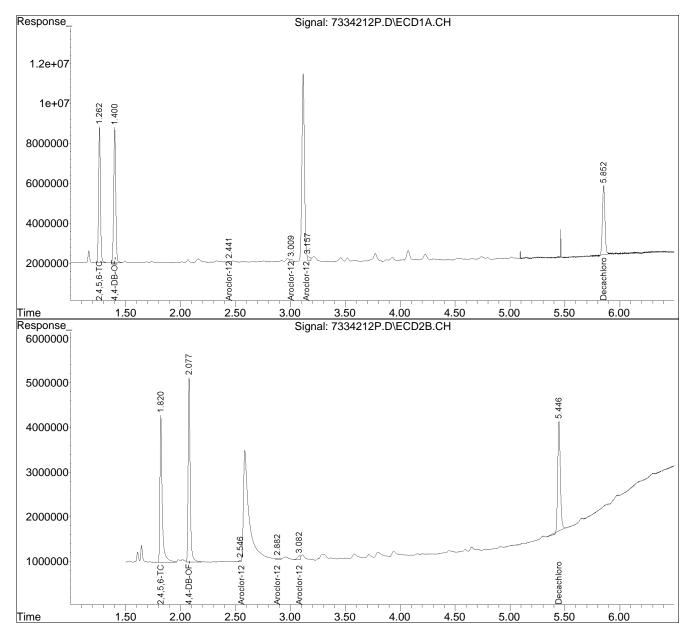
Volume Inj. :

Data File : C:\msdchem\1\DATA\PCB120719\7334212P.D Vial: 22

Signal(s) : Signal #1: ECD1A.CH Signal #2: ECD2B.CH

Integration File signal 1: AUTOINT1.E
Integration File signal 2: AUTOINT2.E

Quant Time: Jul 20 11:36:07 2013 Quant Results File: 54120716.RES


Quant Method : C:\msdchem\1\METHODS\PCB120716\54120716.M Quant Title : GC PCB 1254 Method EPA 608 SW-846 8082

QLast Update : Tue Jul 16 14:30:37 2013

Response via : Initial Calibration

DataAcq Meth: 60120716.M

Volume Inj. :

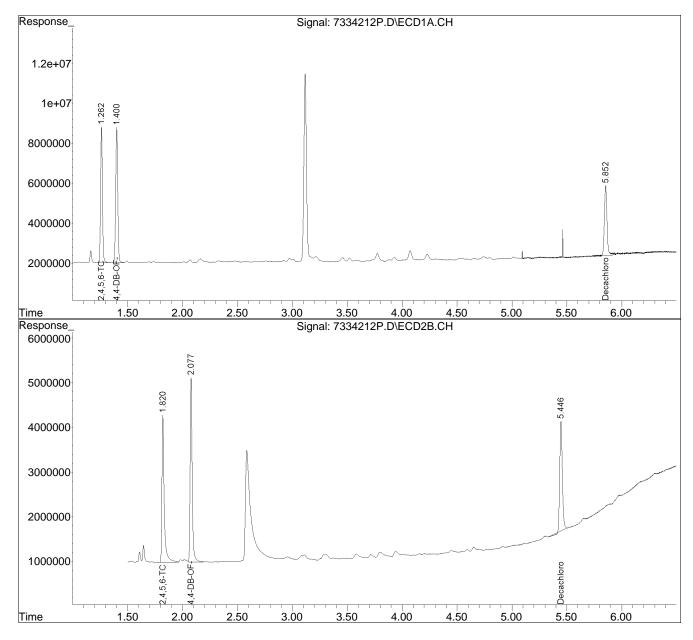
Data File : C:\msdchem\1\DATA\PCB120719\7334212P.D Vial: 22

Signal(s) : Signal #1: ECD1A.CH Signal #2: ECD2B.CH

Integration File signal 1: AUTOINT1.E
Integration File signal 2: AUTOINT2.E

Quant Time: Jul 20 11:36:39 2013 Quant Results File: 60120716.RES

Ouant Method : C:\MSDCHEM\1\METHODS\PCB120716\60120716.M


Quant Title : EPA 608 & SW-846 8082 Aroclor-1016 & Aroclor-1260

QLast Update : Tue Jul 16 14:17:19 2013

Response via : Initial Calibration

DataAcq Meth: 60120716.M

Volume Inj. :

Data File : C:\msdchem\1\DATA\PCB120719\7334213P.D Vial: 23

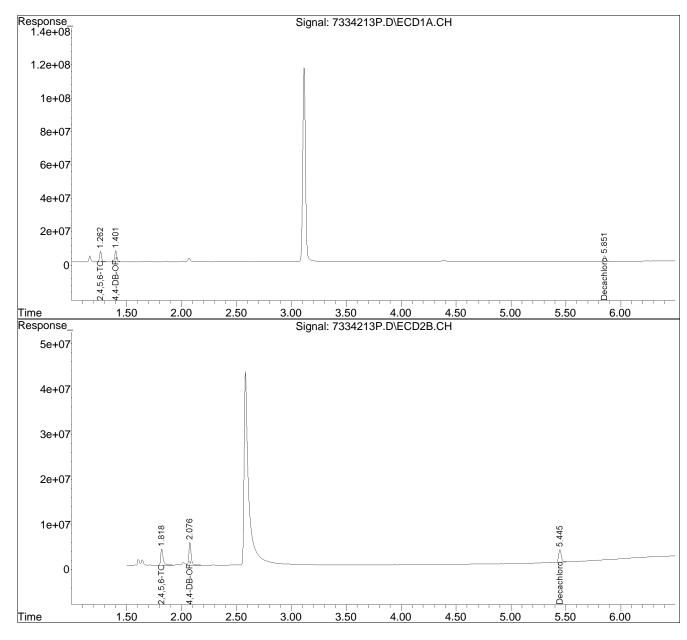
Signal(s) : Signal #1: ECD1A.CH Signal #2: ECD2B.CH

Integration File signal 1: AUTOINT1.E
Integration File signal 2: AUTOINT2.E

Quant Time: Jul 20 11:37:45 2013 Quant Results File: 60120716.RES

Quant Method: C:\MSDCHEM\1\METHODS\PCB120716\60120716.M

Quant Title : EPA 608 & SW-846 8082 Aroclor-1016 & Aroclor-1260


QLast Update : Tue Jul 16 14:17:19 2013

Response via : Initial Calibration

DataAcq Meth: 60120716.M

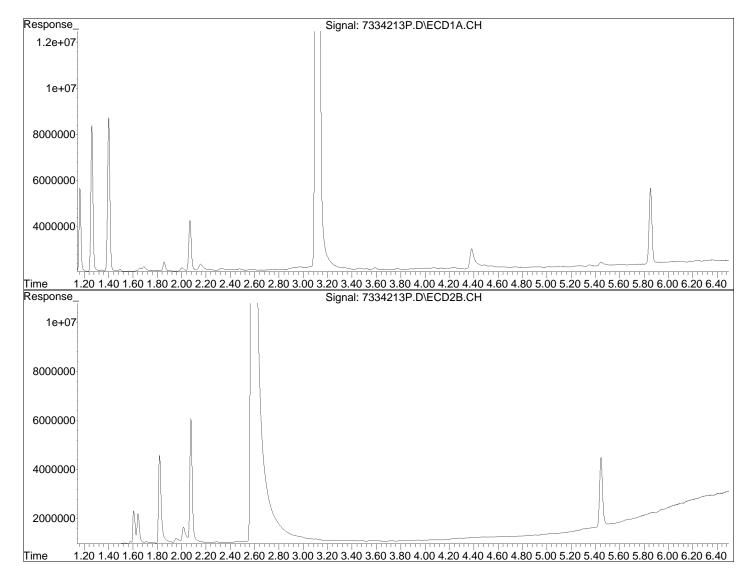
Volume Inj. :

Signal #1 Phase: Signal #2 Phase: Signal #1 Info: Signal #2 Info:

60120716.M Sat Jul 20 11:37:49 2013

File :C:\msdchem\1\DATA\PCB120719\7334213P.D

Operator : IMR


Acquired: 19 Jul 2013 7:41 pm using AcqMethod 60120716.M

Instrument: HP G1530A

Sample Name: SB73342-13 @ SS-13

Misc Info : ????????

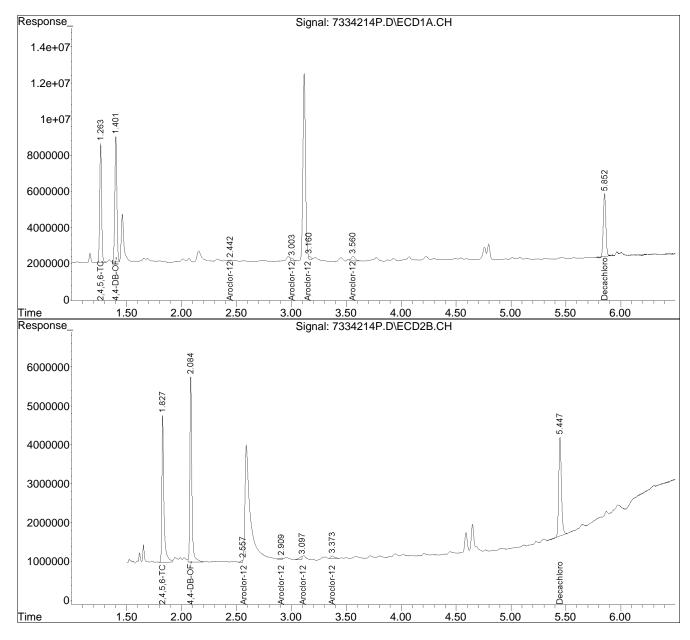
Vial Number: 23

Data File : C:\msdchem\1\DATA\PCB120719\7334214P.D Vial: 24

Signal(s) : Signal #1: ECD1A.CH Signal #2: ECD2B.CH

Integration File signal 1: AUTOINT1.E
Integration File signal 2: AUTOINT2.E

Quant Time: Jul 20 11:39:13 2013 Quant Results File: 54120716.RES


Quant Method : C:\msdchem\1\METHODS\PCB120716\54120716.M Quant Title : GC PCB 1254 Method EPA 608 SW-846 8082

QLast Update : Tue Jul 16 14:30:37 2013

Response via : Initial Calibration

DataAcq Meth: 60120716.M

Volume Inj. :

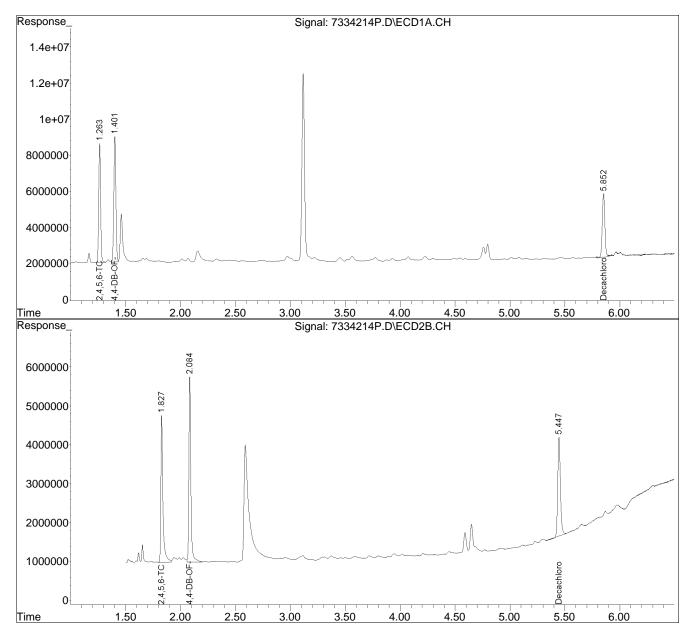
Data File : C:\msdchem\1\DATA\PCB120719\7334214P.D Vial: 24

Signal(s) : Signal #1: ECD1A.CH Signal #2: ECD2B.CH

Integration File signal 1: AUTOINT1.E
Integration File signal 2: AUTOINT2.E

Quant Time: Jul 20 11:39:47 2013 Quant Results File: 60120716.RES

Quant Method: C:\MSDCHEM\1\METHODS\PCB120716\60120716.M


Quant Title : EPA 608 & SW-846 8082 Aroclor-1016 & Aroclor-1260

QLast Update : Tue Jul 16 14:17:19 2013

Response via : Initial Calibration

DataAcq Meth: 60120716.M

Volume Inj. :

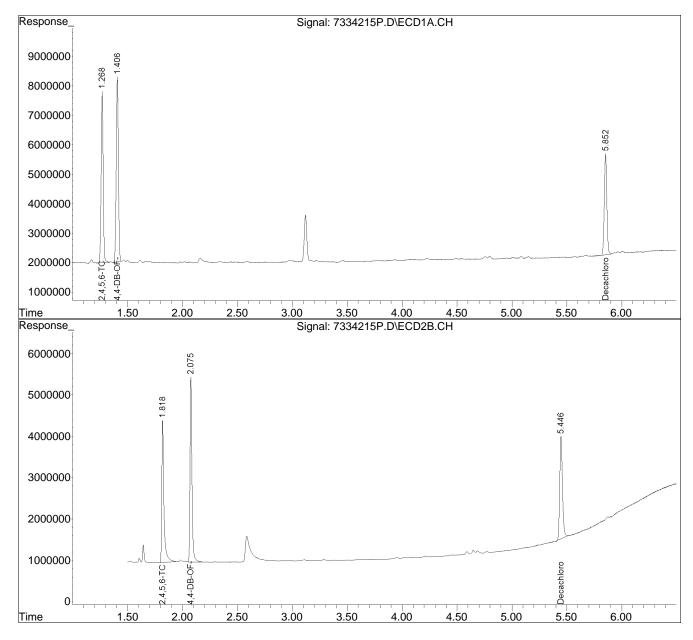
Data File : C:\msdchem\1\DATA\PCB120719\7334215P.D Vial: 30

Signal(s) : Signal #1: ECD1A.CH Signal #2: ECD2B.CH

Integration File signal 1: AUTOINT1.E
Integration File signal 2: AUTOINT2.E

Quant Time: Jul 20 11:40:04 2013 Quant Results File: 60120716.RES

Ouant Method : C:\MSDCHEM\1\METHODS\PCB120716\60120716.M


Quant Title : EPA 608 & SW-846 8082 Aroclor-1016 & Aroclor-1260

QLast Update : Tue Jul 16 14:17:19 2013

Response via : Initial Calibration

DataAcq Meth: 60120716.M

Volume Inj. :

Data File : C:\msdchem\1\DATA\PCB120719\7334216P.D Vial: 31

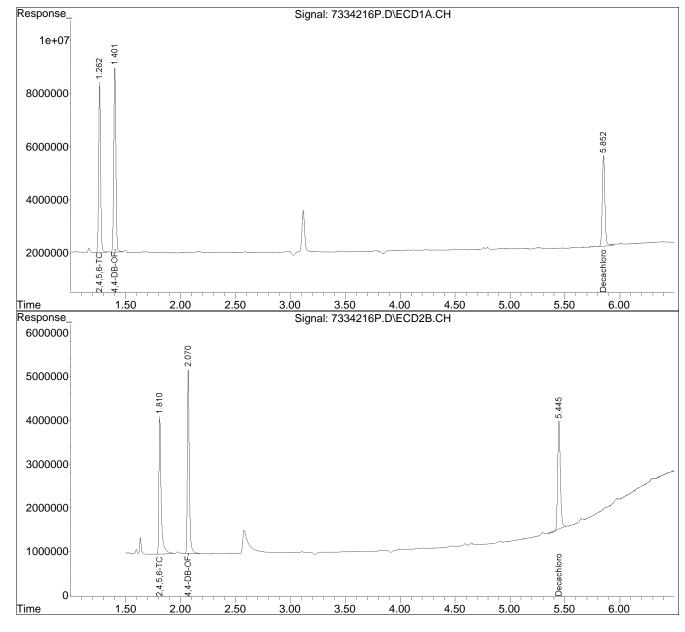
Signal(s) : Signal #1: ECD1A.CH Signal #2: ECD2B.CH

Integration File signal 1: AUTOINT1.E
Integration File signal 2: AUTOINT2.E

Quant Time: Jul 20 11:40:20 2013 Quant Results File: 60120716.RES

Ouant Method : C:\MSDCHEM\1\METHODS\PCB120716\60120716.M

Quant Title : EPA 608 & SW-846 8082 Aroclor-1016 & Aroclor-1260


QLast Update : Tue Jul 16 14:17:19 2013

Response via : Initial Calibration

DataAcq Meth: 60120716.M

Volume Inj. :

Signal #1 Phase: Signal #2 Phase: Signal #1 Info : Signal #2 Info :

60120716.M Sat Jul 20 11:40:22 2013

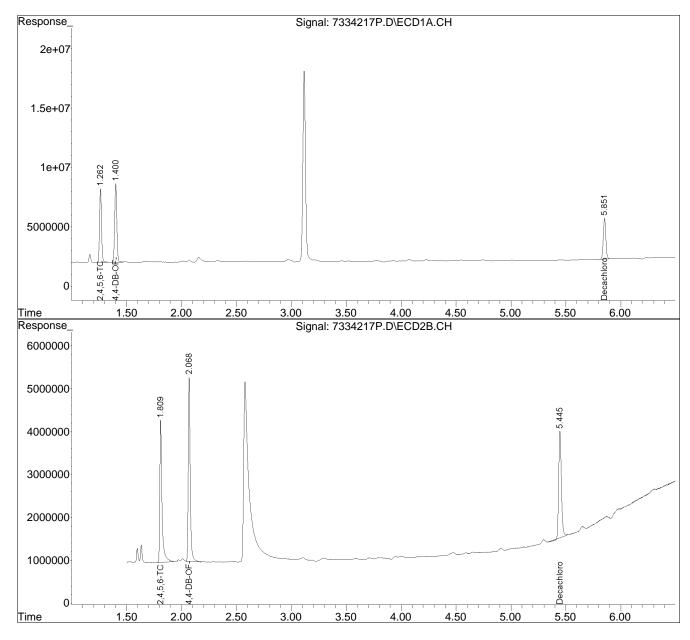
Data File : C:\msdchem\1\DATA\PCB120719\7334217P.D Vial: 32

Signal(s) : Signal #1: ECD1A.CH Signal #2: ECD2B.CH

Integration File signal 1: AUTOINT1.E
Integration File signal 2: AUTOINT2.E

Quant Time: Jul 20 11:40:35 2013 Quant Results File: 60120716.RES

Quant Method: C:\MSDCHEM\1\METHODS\PCB120716\60120716.M


Quant Title : EPA 608 & SW-846 8082 Aroclor-1016 & Aroclor-1260

QLast Update : Tue Jul 16 14:17:19 2013

Response via : Initial Calibration

DataAcq Meth: 60120716.M

Volume Inj. :

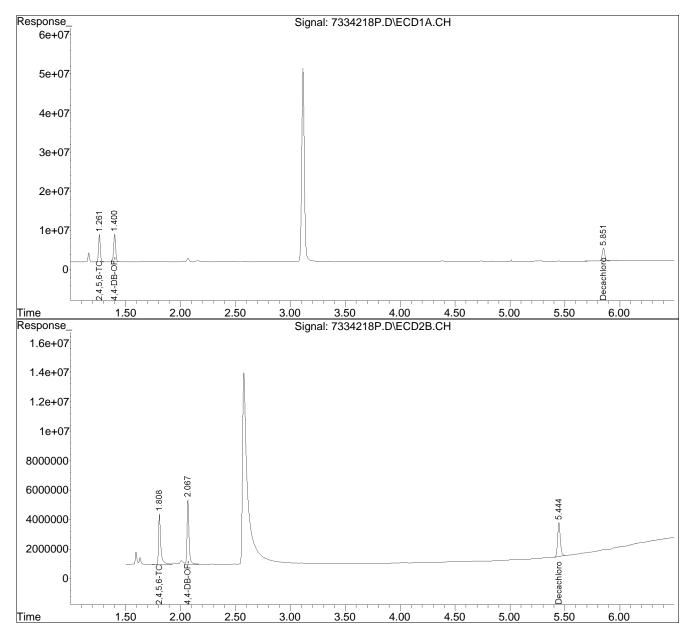
Data File : C:\msdchem\1\DATA\PCB120719\7334218P.D Vial: 33

Signal(s) : Signal #1: ECD1A.CH Signal #2: ECD2B.CH

Integration File signal 1: AUTOINT1.E
Integration File signal 2: AUTOINT2.E

Quant Time: Jul 20 11:40:53 2013 Quant Results File: 60120716.RES

Quant Method: C:\MSDCHEM\1\METHODS\PCB120716\60120716.M


Quant Title : EPA 608 & SW-846 8082 Aroclor-1016 & Aroclor-1260

QLast Update : Tue Jul 16 14:17:19 2013

Response via : Initial Calibration

DataAcq Meth: 60120716.M

Volume Inj. :

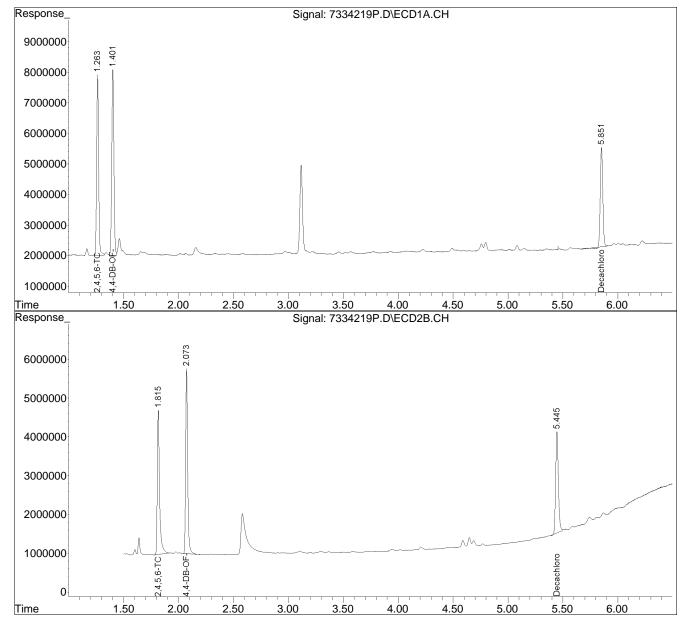
Data File : C:\msdchem\1\DATA\PCB120719\7334219P.D Vial: 34

Signal(s) : Signal #1: ECD1A.CH Signal #2: ECD2B.CH

Integration File signal 1: AUTOINT1.E
Integration File signal 2: AUTOINT2.E

Quant Time: Jul 20 11:41:12 2013 Quant Results File: 60120716.RES

Ouant Method : C:\MSDCHEM\1\METHODS\PCB120716\60120716.M


Quant Title : EPA 608 & SW-846 8082 Aroclor-1016 & Aroclor-1260

QLast Update : Tue Jul 16 14:17:19 2013

Response via : Initial Calibration

DataAcq Meth: 60120716.M

Volume Inj. :

Data File : C:\msdchem\1\DATA\PCB120719\7334220P.D Vial: 35

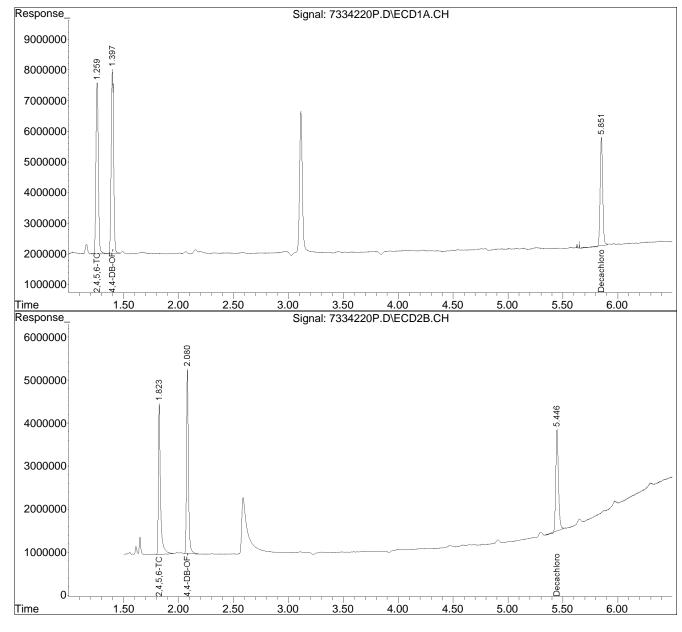
Signal(s) : Signal #1: ECD1A.CH Signal #2: ECD2B.CH

Integration File signal 1: AUTOINT1.E
Integration File signal 2: AUTOINT2.E

Quant Time: Jul 20 11:41:27 2013 Quant Results File: 60120716.RES

Quant Method: C:\MSDCHEM\1\METHODS\PCB120716\60120716.M

Quant Title : EPA 608 & SW-846 8082 Aroclor-1016 & Aroclor-1260


QLast Update : Tue Jul 16 14:17:19 2013

Response via : Initial Calibration

DataAcq Meth: 60120716.M

Volume Inj. :

Signal #1 Phase: Signal #2 Phase: Signal #1 Info: Signal #2 Info:

60120716.M Sat Jul 20 11:41:30 2013

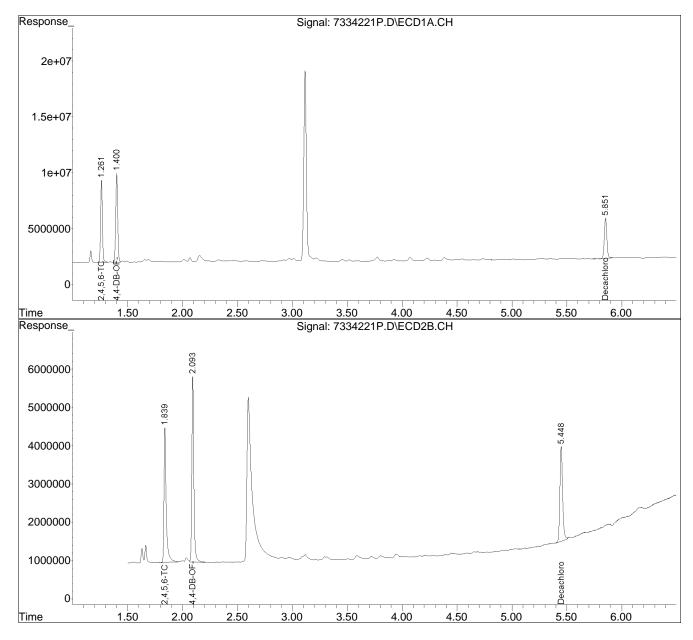
Data File : C:\msdchem\1\DATA\PCB120719\7334221P.D
Vial: 42

Signal(s) : Signal #1: ECD1A.CH Signal #2: ECD2B.CH

Integration File signal 1: AUTOINT1.E
Integration File signal 2: AUTOINT2.E

Quant Time: Jul 20 10:07:42 2013 Quant Results File: 60120716.RES

Quant Method: C:\MSDCHEM\1\METHODS\PCB120716\60120716.M


Quant Title : EPA 608 & SW-846 8082 Aroclor-1016 & Aroclor-1260

QLast Update : Tue Jul 16 14:17:19 2013

Response via : Initial Calibration

DataAcq Meth: 60120716.M

Volume Inj. :

Data File : C:\msdchem\1\DATA\PCB120719\7334222P.D Vial: 43

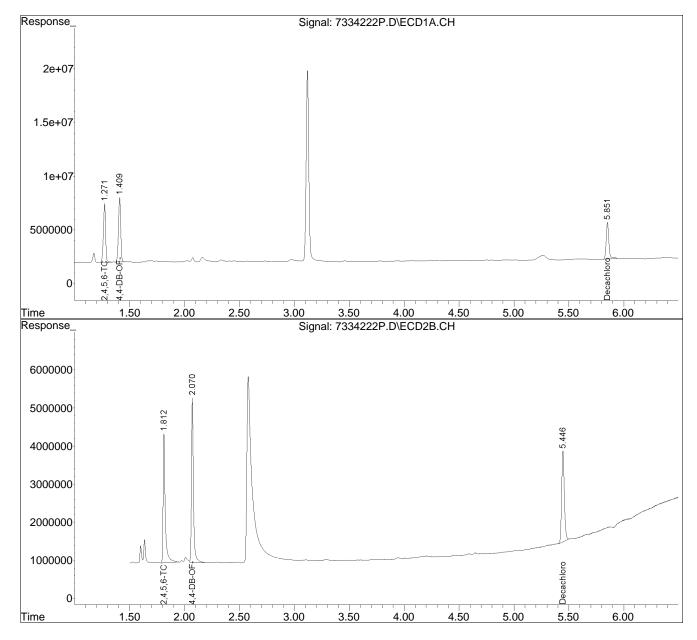
Signal(s) : Signal #1: ECD1A.CH Signal #2: ECD2B.CH

Integration File signal 1: AUTOINT1.E
Integration File signal 2: AUTOINT2.E

Quant Time: Jul 20 11:42:42 2013 Quant Results File: 60120716.RES

Quant Method: C:\MSDCHEM\1\METHODS\PCB120716\60120716.M

Quant Title : EPA 608 & SW-846 8082 Aroclor-1016 & Aroclor-1260


QLast Update : Tue Jul 16 14:17:19 2013

Response via : Initial Calibration

DataAcq Meth: 60120716.M

Volume Inj. :

Signal #1 Phase: Signal #2 Phase: Signal #1 Info : Signal #2 Info :

60120716.M Sat Jul 20 11:42:47 2013

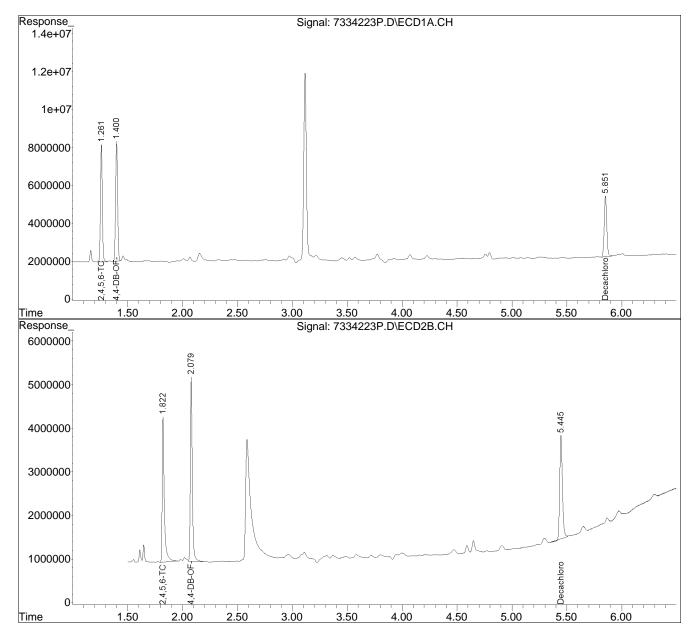
Data File : C:\msdchem\1\DATA\PCB120719\7334223P.D Vial: 44

Signal(s) : Signal #1: ECD1A.CH Signal #2: ECD2B.CH

Integration File signal 1: AUTOINT1.E
Integration File signal 2: AUTOINT2.E

Quant Time: Jul 20 11:43:02 2013 Quant Results File: 60120716.RES

Ouant Method : C:\MSDCHEM\1\METHODS\PCB120716\60120716.M


Quant Title : EPA 608 & SW-846 8082 Aroclor-1016 & Aroclor-1260

QLast Update : Tue Jul 16 14:17:19 2013

Response via : Initial Calibration

DataAcq Meth: 60120716.M

Volume Inj. :

Data File : C:\msdchem\1\DATA\PCB120719\7334224P.D
Vial: 45

Signal(s) : Signal #1: ECD1A.CH Signal #2: ECD2B.CH

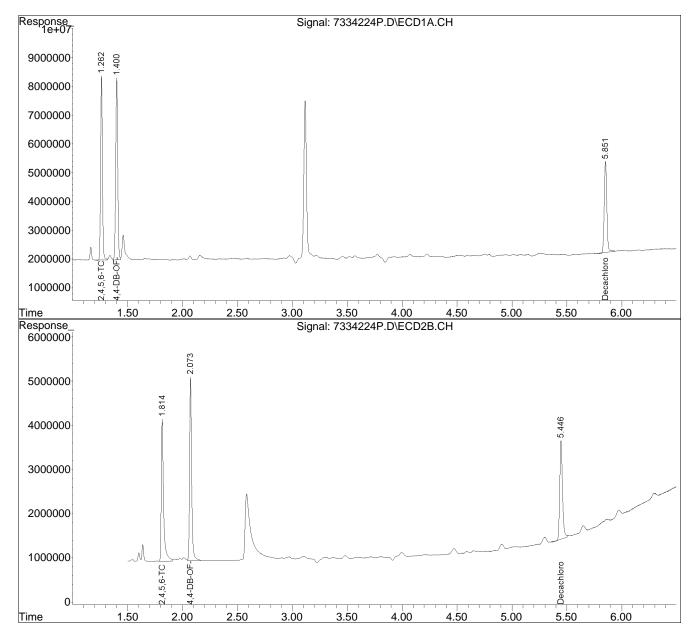
Acq On : 19 Jul 2013 11:18 pm Operator: IMR Sample : SB73342-24 @ SS-24 Inst : HPS12 Misc : _[] Multiplr: 1.00

Integration File signal 1: AUTOINT1.E
Integration File signal 2: AUTOINT2.E

Quant Time: Jul 20 11:43:17 2013 Quant Results File: 60120716.RES

Quant Method: C:\MSDCHEM\1\METHODS\PCB120716\60120716.M

Quant Title : EPA 608 & SW-846 8082 Aroclor-1016 & Aroclor-1260


QLast Update : Tue Jul 16 14:17:19 2013

Response via : Initial Calibration

DataAcq Meth: 60120716.M

Volume Inj. :

Signal #1 Phase: Signal #2 Phase: Signal #1 Info: Signal #2 Info:

60120716.M Sat Jul 20 11:43:20 2013

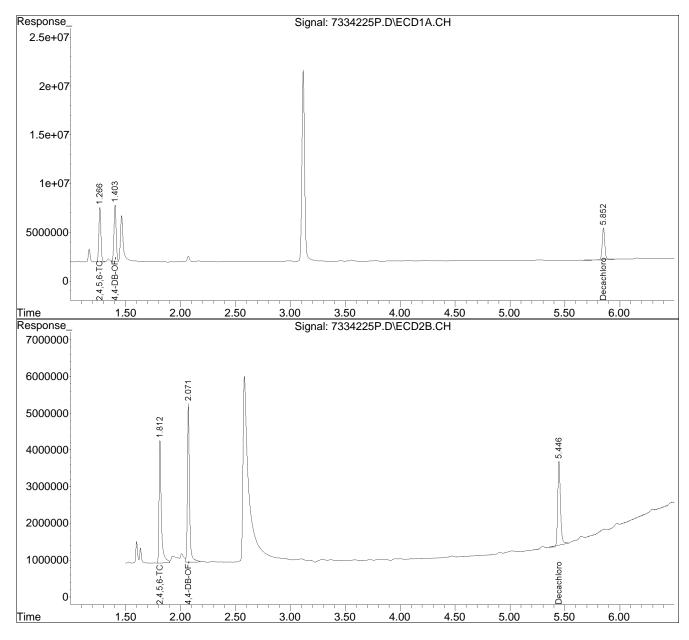
Data File : C:\msdchem\1\DATA\PCB120719\7334225P.D Vial: 46

Signal(s) : Signal #1: ECD1A.CH Signal #2: ECD2B.CH

Integration File signal 1: AUTOINT1.E
Integration File signal 2: AUTOINT2.E

Quant Time: Jul 20 11:43:42 2013 Quant Results File: 60120716.RES

Quant Method: C:\MSDCHEM\1\METHODS\PCB120716\60120716.M


Quant Title : EPA 608 & SW-846 8082 Aroclor-1016 & Aroclor-1260

QLast Update : Tue Jul 16 14:17:19 2013

Response via : Initial Calibration

DataAcq Meth: 60120716.M

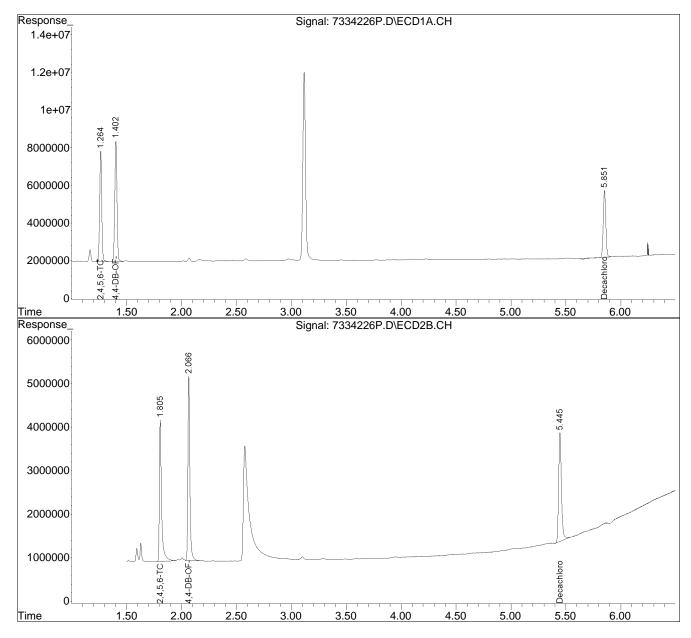
Volume Inj. :

Signal(s) : Signal #1: ECD1A.CH Signal #2: ECD2B.CH

Integration File signal 1: AUTOINT1.E
Integration File signal 2: AUTOINT2.E

Quant Time: Jul 20 11:43:57 2013 Quant Results File: 60120716.RES

Ouant Method : C:\MSDCHEM\1\METHODS\PCB120716\60120716.M


Quant Title : EPA 608 & SW-846 8082 Aroclor-1016 & Aroclor-1260

QLast Update : Tue Jul 16 14:17:19 2013

Response via : Initial Calibration

DataAcq Meth: 60120716.M

Volume Inj. :

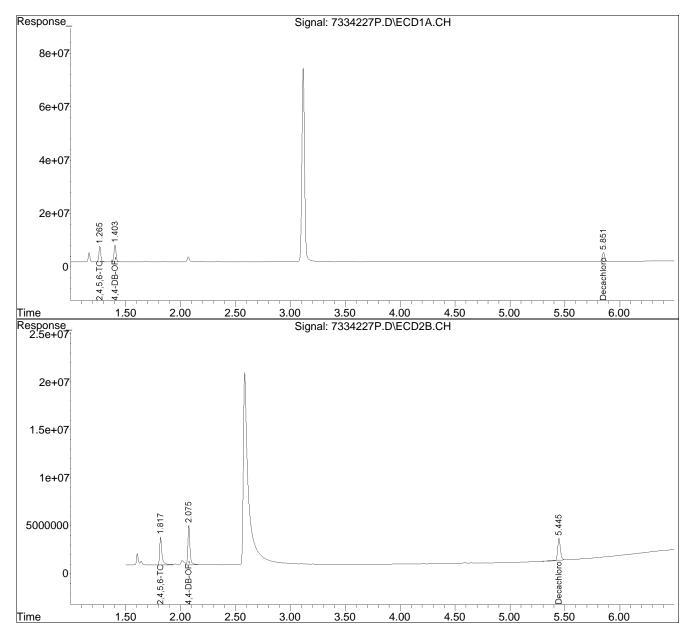
Data File : C:\msdchem\1\DATA\PCB120719\7334227P.D Vial: 48

Signal(s) : Signal #1: ECD1A.CH Signal #2: ECD2B.CH

Integration File signal 1: AUTOINT1.E
Integration File signal 2: AUTOINT2.E

Quant Time: Jul 20 11:44:12 2013 Quant Results File: 60120716.RES

Quant Method: C:\MSDCHEM\1\METHODS\PCB120716\60120716.M


Quant Title : EPA 608 & SW-846 8082 Aroclor-1016 & Aroclor-1260

QLast Update : Tue Jul 16 14:17:19 2013

Response via : Initial Calibration

DataAcq Meth: 60120716.M

Volume Inj. :

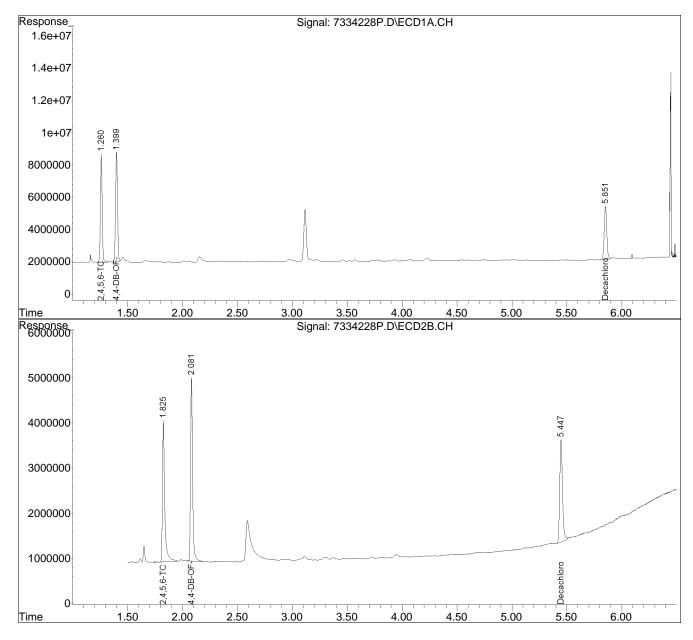
Signal(s) : Signal #1: ECD1A.CH Signal #2: ECD2B.CH

Integration File signal 1: AUTOINT1.E
Integration File signal 2: AUTOINT2.E

Quant Time: Jul 20 11:44:27 2013 Quant Results File: 60120716.RES

Quant Method: C:\MSDCHEM\1\METHODS\PCB120716\60120716.M

Quant Title : EPA 608 & SW-846 8082 Aroclor-1016 & Aroclor-1260


QLast Update : Tue Jul 16 14:17:19 2013

Response via : Initial Calibration

DataAcq Meth: 60120716.M

Volume Inj. :

Signal #1 Phase: Signal #2 Phase: Signal #1 Info : Signal #2 Info :

60120716.M Sat Jul 20 11:44:29 2013

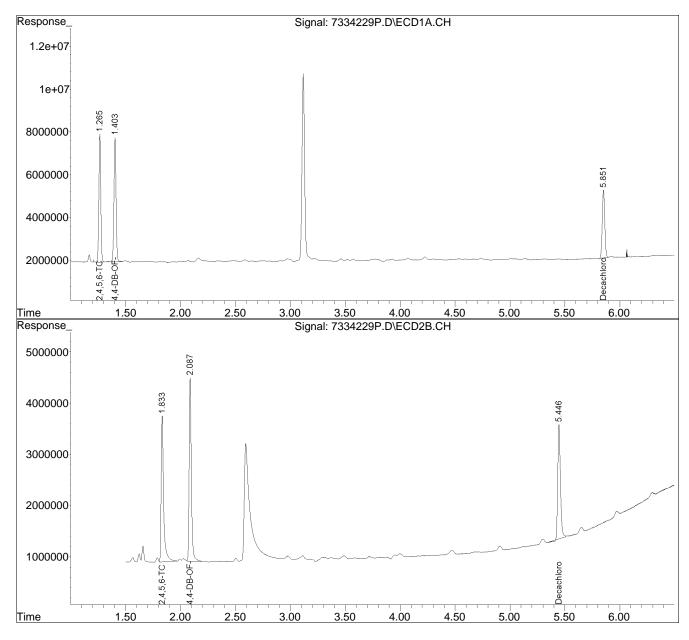
Data File : C:\msdchem\1\DATA\PCB120719\7334229P.D Vial: 54

Signal(s) : Signal #1: ECD1A.CH Signal #2: ECD2B.CH

Integration File signal 1: AUTOINT1.E
Integration File signal 2: AUTOINT2.E

Quant Time: Jul 20 11:44:43 2013 Quant Results File: 60120716.RES

Quant Method: C:\MSDCHEM\1\METHODS\PCB120716\60120716.M


Quant Title : EPA 608 & SW-846 8082 Aroclor-1016 & Aroclor-1260

QLast Update : Tue Jul 16 14:17:19 2013

Response via : Initial Calibration

DataAcq Meth: 60120716.M

Volume Inj. :

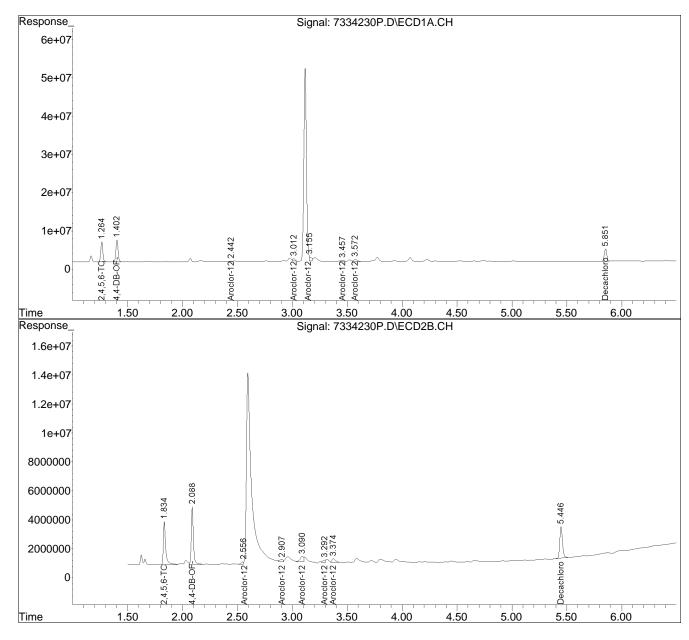
Data File : C:\msdchem\1\DATA\PCB120719\7334230P.D Vial: 55

Signal(s) : Signal #1: ECD1A.CH Signal #2: ECD2B.CH

Acq On : 20 Jul 2013 12:56 am Operator: IMR Sample : SB73342-30 @ SS-30 Inst : HPS12 Misc : _[] Multiplr: 1.00

Integration File signal 1: AUTOINT1.E
Integration File signal 2: AUTOINT2.E

Quant Time: Jul 20 11:47:01 2013 Quant Results File: 54120716.RES


Quant Method : C:\msdchem\1\METHODS\PCB120716\54120716.M Quant Title : GC PCB 1254 Method EPA 608 SW-846 8082

QLast Update : Tue Jul 16 14:30:37 2013

Response via : Initial Calibration

DataAcq Meth: 60120716.M

Volume Inj. :

Data File : C:\msdchem\1\DATA\PCB120719\7334230P.D Vial: 55

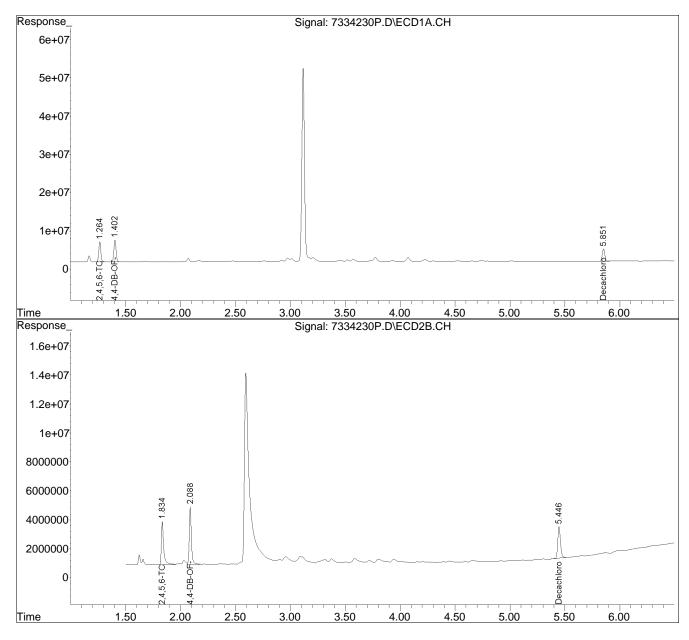
Signal(s) : Signal #1: ECD1A.CH Signal #2: ECD2B.CH

Acq On : 20 Jul 2013 12:56 am Operator: IMR Sample : SB73342-30 @ SS-30 Inst : HPS12 Misc : [] Multiplr: 1.00

Integration File signal 1: AUTOINT1.E
Integration File signal 2: AUTOINT2.E

Quant Time: Jul 20 11:47:30 2013 Quant Results File: 60120716.RES

Quant Method: C:\MSDCHEM\1\METHODS\PCB120716\60120716.M


Quant Title : EPA 608 & SW-846 8082 Aroclor-1016 & Aroclor-1260

QLast Update : Tue Jul 16 14:17:19 2013

Response via : Initial Calibration

DataAcq Meth: 60120716.M

Volume Inj. :

Data File : C:\msdchem\1\DATA\PCB120719\7334231P.D Vial: 56

Signal(s) : Signal #1: ECD1A.CH Signal #2: ECD2B.CH

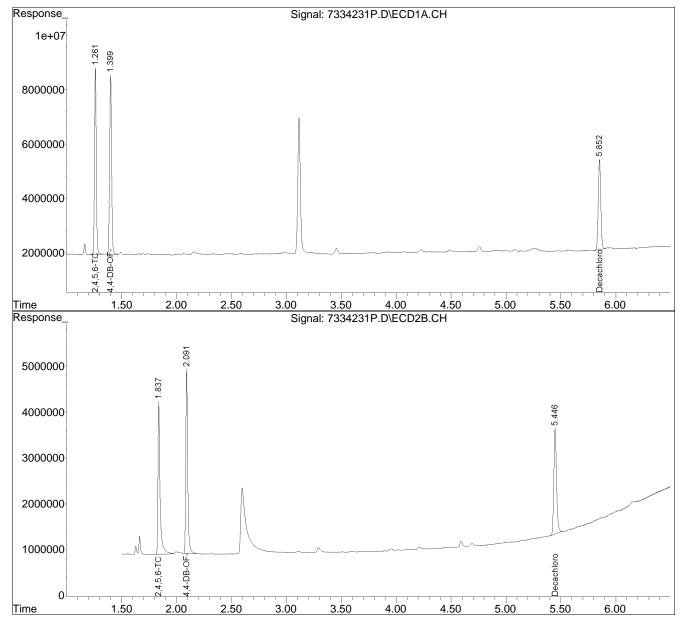
Acq On : 20 Jul 2013 1:06 am Operator: IMR Sample : SB73342-31 @ SS-31 Inst : HPS12 Misc : _[] Multiplr: 1.00

Integration File signal 1: AUTOINT1.E
Integration File signal 2: AUTOINT2.E

Quant Time: Jul 20 11:47:53 2013 Quant Results File: 60120716.RES

Quant Method: C:\MSDCHEM\1\METHODS\PCB120716\60120716.M

Quant Title : EPA 608 & SW-846 8082 Aroclor-1016 & Aroclor-1260


QLast Update : Tue Jul 16 14:17:19 2013

Response via : Initial Calibration

DataAcq Meth: 60120716.M

Volume Inj. :

Signal #1 Phase: Signal #2 Phase: Signal #1 Info : Signal #2 Info :

60120716.M Sat Jul 20 11:47:56 2013

Data File : C:\msdchem\1\DATA\PCB120719\7334232P.D Vial: 57

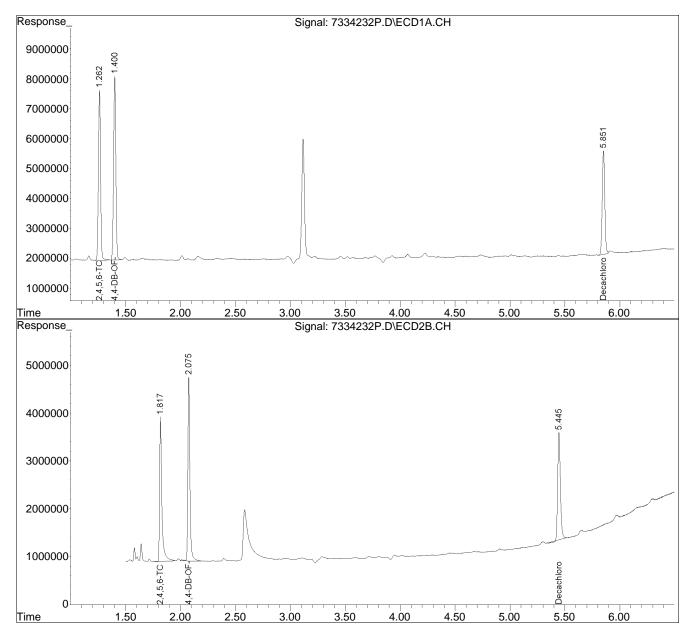
Signal(s) : Signal #1: ECD1A.CH Signal #2: ECD2B.CH

Acq On : 20 Jul 2013 1:16 am Operator: IMR Sample : SB73342-32 @ SS-32 Inst : HPS12 Misc : _[] Multiplr: 1.00

Integration File signal 1: AUTOINT1.E
Integration File signal 2: AUTOINT2.E

Quant Time: Jul 20 11:48:09 2013 Quant Results File: 60120716.RES

Quant Method: C:\MSDCHEM\1\METHODS\PCB120716\60120716.M


Quant Title : EPA 608 & SW-846 8082 Aroclor-1016 & Aroclor-1260

QLast Update : Tue Jul 16 14:17:19 2013

Response via : Initial Calibration

DataAcq Meth: 60120716.M

Volume Inj. :

Data File : C:\msdchem\1\DATA\PCB120719\7334233P.D Vial: 58

Signal(s) : Signal #1: ECD1A.CH Signal #2: ECD2B.CH

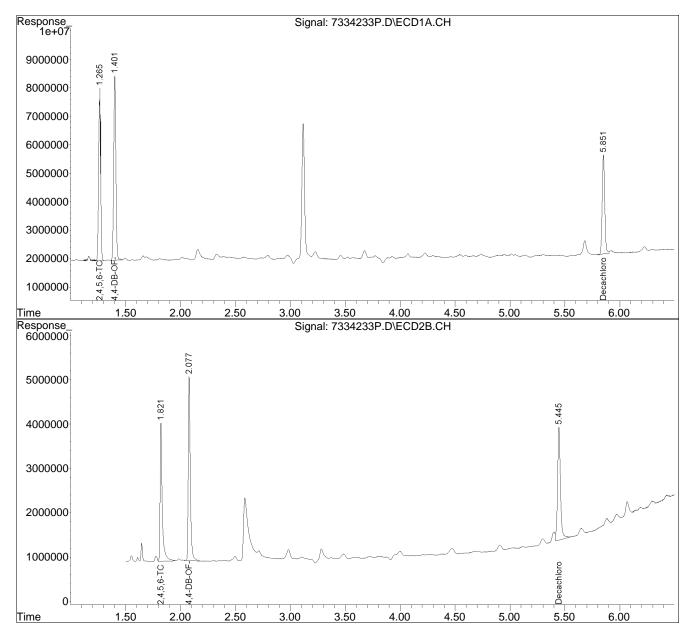
Acq On : 20 Jul 2013 1:25 am Operator: IMR Sample : SB73342-33 @ SS-33 Inst : HPS12 Misc : _[] Multiplr: 1.00

Integration File signal 1: AUTOINT1.E
Integration File signal 2: AUTOINT2.E

Quant Time: Jul 20 11:48:24 2013 Quant Results File: 60120716.RES

Quant Method: C:\MSDCHEM\1\METHODS\PCB120716\60120716.M

Quant Title : EPA 608 & SW-846 8082 Aroclor-1016 & Aroclor-1260


QLast Update : Tue Jul 16 14:17:19 2013

Response via : Initial Calibration

DataAcq Meth: 60120716.M

Volume Inj. :

Signal #1 Phase: Signal #2 Phase: Signal #1 Info : Signal #2 Info :

Data File : C:\msdchem\1\DATA\PCB120719\7334234P.D Vial: 59

Signal(s) : Signal #1: ECD1A.CH Signal #2: ECD2B.CH

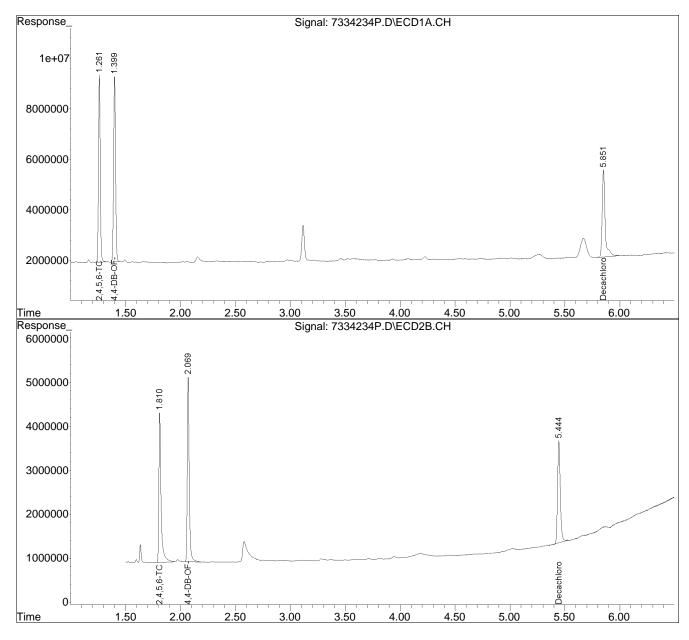
Acq On : 20 Jul 2013 1:35 am Operator: IMR Sample : SB73342-34 @ SS-34 Inst : HPS12 Misc : _[] Multiplr: 1.00

Integration File signal 1: AUTOINT1.E
Integration File signal 2: AUTOINT2.E

Quant Time: Jul 20 11:48:42 2013 Quant Results File: 60120716.RES

Quant Method: C:\MSDCHEM\1\METHODS\PCB120716\60120716.M

Quant Title : EPA 608 & SW-846 8082 Aroclor-1016 & Aroclor-1260


QLast Update : Tue Jul 16 14:17:19 2013

Response via : Initial Calibration

DataAcq Meth: 60120716.M

Volume Inj. :

Signal #1 Phase: Signal #2 Phase: Signal #1 Info : Signal #2 Info :

Data File : C:\msdchem\1\DATA\PCB120719\7334235P.D Vial: 60

Signal(s) : Signal #1: ECD1A.CH Signal #2: ECD2B.CH

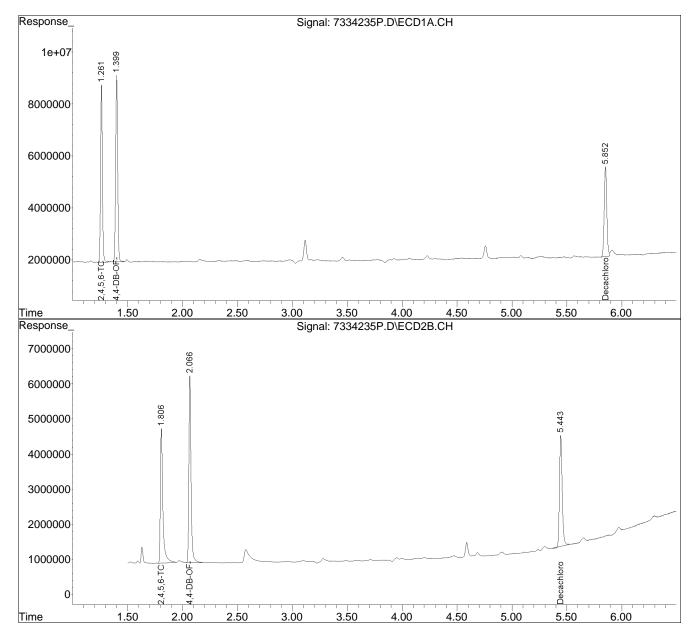
Acq On : 20 Jul 2013 1:45 am Operator: IMR Sample : SB73342-35 @ SS-35 Inst : HPS12 Misc : _[] Multiplr: 1.00

Integration File signal 1: AUTOINT1.E
Integration File signal 2: AUTOINT2.E

Quant Time: Jul 20 11:48:57 2013 Quant Results File: 60120716.RES

Quant Method: C:\MSDCHEM\1\METHODS\PCB120716\60120716.M

Quant Title : EPA 608 & SW-846 8082 Aroclor-1016 & Aroclor-1260


QLast Update : Tue Jul 16 14:17:19 2013

Response via : Initial Calibration

DataAcq Meth: 60120716.M

Volume Inj. :

Signal #1 Phase: Signal #2 Phase: Signal #1 Info : Signal #2 Info :

Data File : C:\msdchem\1\DATA\PCB120719\7334236P.D Vial: 61

Signal(s) : Signal #1: ECD1A.CH Signal #2: ECD2B.CH

Acq On : 20 Jul 2013 1:55 am Operator: IMR Sample : SB73342-36 @ SS-36 Inst : HPS12 Misc : _[] Multiplr: 1.00

Integration File signal 1: AUTOINT1.E
Integration File signal 2: AUTOINT2.E

Quant Time: Jul 20 11:49:14 2013 Quant Results File: 60120716.RES

Quant Method: C:\MSDCHEM\1\METHODS\PCB120716\60120716.M

Quant Title : EPA 608 & SW-846 8082 Aroclor-1016 & Aroclor-1260


QLast Update : Tue Jul 16 14:17:19 2013

Response via : Initial Calibration

DataAcq Meth: 60120716.M

Volume Inj. :

Signal #1 Phase: Signal #2 Phase: Signal #1 Info : Signal #2 Info :

60120716.M Sat Jul 20 11:49:16 2013

SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY

CHAIN OF CUSTODY RECORD

Page 1 of 4

TT 112
Handling

☐ Standard TAT - 7 to 10 business days

8B73342RH

Rush TAT - Date Needed: 3 DAY

- · All TATs subject to laboratory approval. · Min. 24-hour notification needed for rushes.

	Samples disposed of after 60 days unless
	otherwise instructed.
_	

AECC 6308 F	TY RO CUSE, NY 1		Invoice (SA	To: A	DORE	SS	144	+BL	Ē		Sit		. 4	100	DBIN	IE BUSINESS PARK
	315-432-		_													State: NY
Project Mgr.		1100	P.O. No.	.: 13-	067		RQ	N: _			Sa	mpler(s)): Ric	HAR	DM.	KENNA/ DAVID BONDER
8= NaHS	$2O_3$ 2=HCl 3= O_4 9= Deionized	Water 10= H ₃ F	PO ₄ 11=	6=Asc		cid 12=	7=(CH ₃ C	Н		Lis	t preser	vative o	code be	elow:	QA/QC Reporting Notes: * additional charges may apply
DW=Drinking	g Water GW=Gro	oundwater WW	=Wastewater				Co	ntain	ers:			A	nalyse	s:		MA DEP MCP CAM Report: Yes ☐ No☐
	D=Oil SW= Surface Water SO=Soil SL=Slud X1=					Vials	rass	ass		CY						CT DPH RCP Report: Yes □ No □ QA/QC Reporting Level X Standard □ No QC □ DQA*
	G=Grab C=Composite					of VOA Vi	of Amber Glass	of Clear Glass	of Plastic	8					□ NY ASP A* □ NY ASP B* □ NJ Reduced* □ NJ Full* □ TIER II* □ TIER IV*	
Lab Id:	Sample Id:	Date:	Time:	Type	Matrix	Jo#	/ Jo #) jo #	# of I	808						Other State-specific reporting standards:
SB7334201	SS-1	7/17/13	8126	G	So		1		.	X						
Acceptance of the control of the con	55-2	1	6:33	1	1		1			1						100
-03	SS-3		8 40													
	55-4		8:45													
-05	55-5		9,22													
-06	55-6		9.15											4		-
-07	55.7		9107													
80-	55-8		9:00													
	55-9		8:53													
1 -10			9152	1			1						1			
Relin	quished by:	A Rex	eived by:	1	7/	Date:	13	10	olc 20	-	,,	X E	DD For	mat_	PDF	Excel radaeccgrapcon
(('		417	1/	2	2/	00	1.3/	2/1.7	Condition Ambi	on upon	receipt: Iced I	☐ Refrige	erated DI VOA Frozen Soil Jar Frozen	

SB7334284

CHAIN OF CUSTODY RECORD

Page 2 of 4

Special Handling:

☐ Standard TAT - 7 to 10 business days
☐ Rush TAT - Date Needed: 3 - DAY

· All TATs subject to laboratory approval.

· Min. 24-hour notification needed for rushes.

 Samples disposed of after 60 days unless otherwise instructed.

Report To:	-		Invoice	То:								oject No.: _	13-	067	
Telephone #	t		DO N				no.	N			Lo	cation:	7 13	ande	State:
Project Mgr.			P.O. No)
	$S2O_3$ 2=HCl 3=H SO_4 9= Deionized						7=0	CH ₃ C	H		Lis	t preservat	ive code l	pelow:	QA/QC Reporting Notes: * additional charges may apply
O=Oil SW	ng Water GW=Grow /= Surface Water SG X2=	D=Soil SL=Slu	dge A=Air			Vials		ntaine		0)'	Ana	lyses:		MA DEP MCP CAM Report: Yes \(\text{No} \) CT DPH RCP Report: Yes \(\text{No} \) QA/QC Reporting Level Standard \(\text{No} \text{No} \text{QC} \) DQA*
	G=Grab C=	Composite			×	of VOA V	of Amber Glass	of Clear Glass	of Plastic	0	8				□ NY ASP A* □ NY ASP B* □ NJ Reduced* □ NJ Full* □ TIER II* □ TIER IV*
Lab Id:	Sample Id:	Date:	Time:	Type	Matrix	# of \	# of A	# of C	# of F	8.5					OtherState-specific reporting standards:
S\$7334211	55-11	7/17/13	10:00	G	50		1			×	(
1 -12	55-12	1	10106)	1		1								
-13	55-13		10:14												
-14	55-14		10:38												
-15	55-15		10:34												
-16	55-16		10:28												
-17	55-17		10:23												
-18	55-18		10:19												
-19	55-19		11:24											1	
1-20	55-20	1	11:31		1									N III	
Reli	inguished)by:	A Rec	Gered by:	A	1//	Pate:	1	1	Pime; 610 26		emp°C	E-ma	iil to		entrad DIVOA Ferezon D Sail les Ferezon

SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY

CHAIN OF CUSTODY RECORD

Page 3 of 4

Special Handling:

- ☐ Standard TAT 7 to 10 business days

 ☐ Rush TAT Date Needed: 3 DAY
- · All TATs subject to laboratory approval.
- Min. 24-hour notification needed for rushes.
 Samples disposed of after 60 days unless otherwise instructed.

Containers Con	Repor	t To: _			Invoice	То:								e Name:	3-067	
Project Mgr.													Lo	cation:	۸	State:
1 = Na, \$20; 2 = HCl 3 = H ₂ \$0.4					PO No				RO	N.			Sat	nnler(s).	izente.	~
8= NaHSO ₄ 9= Deionized Water 10= H3PO ₄ 11= 12=				8-27												
O=Oil SW= Surface Water X2=	8=	1=Na ₂ S = NaHS	$S2O_3$ 2=HCl 3=H SO_4 9= Deionized V	$_2SO_4$ 4=HNO ₃ Vater 10= H ₃ PC	5=NaOH) ₄ 11=	6=Asc	orbic A		7=(CH ₃ C	H		List	preservative of	ode below:	
X1 =		O=Oil SW= Surface Water SO=Soil SL=Slu							Con	ntaine	ers:			Analyses:		MA DEP MCP CAM Report: Yes □ No □
Sample 10: Date: Time: State-specific reporting standards: S								als	Glass	lass		4	3			■ QA/QC Reporting Level
Sample 10: Date: Time: State-specific reporting standards: S			G=Grab C=	Composite			×	70A Vi	Amber (Tear G	lastic	1	g g			□ NY ASP A* □ NY ASP B* □ NJ Reduced* □ NJ Full*
12 55 - 27	Lab	Id:	Sample Id:	Date:	Time:	Type	Matri	# of \	# of		H of I		2			□ Other
123 55 - 23	50733	42-21	55-21	7/17/13	11341	G	50		1			3	X			
-24 55-24 12:02 -25 55-25 11:57 -26 55-26 11:57 -27 55-27 11:49 -29 55-26 3:03 -29 55-26 3:07 -29 55-30 3:16 Relinquished by Acceived by: Pate: Time: Temp°C TEMP Format	1	-22	55-22		11245	1	1		1				1			
-25 55-25 11.57 -26 55-26 11.53 -27 55-26 3:03 -29 55-29 3:07 Relinquished by Accepted by: Mate: Time: Temp°C TIEDD Formet		-23	55 - 23		12:11											
-76 55-26 11:99 11:99 1 1 12:99 1 1 12:99 1 1 12:99 1 1 12:99 1 1 12:99 1 1 12:99 1 1 12:99 1 1 12:99 1 1 12:99 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		-24	55-24		12:02											
-27 55-26 3:03 3:07		-25	55-25		11:57											
-27 55-26 3:03 3:07		-76	55-26		11:53											
-73 55-26 3:03 -29 55-30 3:07 V=30 55-30 Relinquished by: Received by: Time: Temp°C II RDD Format				J = 14 1 = 1	11:49								1			
-29 55-39 3:07																
Relinquished by / Received by: Date: Temp°C TEMP Formet					3:07											
Relinquished by Acceived by: Date: Time: Temp°C EDD Format E-mail to	V	-30	55-30		3:16		1	1	1				1			
line Off	3	Relin	nquished by	A Received	eived by:	D	71	Date:	13	1	Time:	0 6	Temp°C	E-mail to		
Condition upon eccipt: Ambient Noted Refrigerated DIVOA Frozen Soil Jar Frozen	1	om	94	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0		1	1	10	/				Condition upon	eceipt:	

SB73342R4

CHAIN OF CUSTODY RECORD

Page 4 of 4

C.	ania1	TIL	- 11	13.	-
SD	ecial	па	na	\mathbf{m}	Ε.

- ☐ Standard TAT 7 to 10 business days
- Rush TAT Date Needed: 3 DAY
 All TATs subject to laboratory approval.
- Min. 24-hour notification needed for rushes.
- · Samples disposed of after 60 days unless otherwise instructed.

Report To:			Invoice	To:								oject No.: 3-C	067	
Telephone #:												ocation:	10	State:
Project Mgr.			P.O. No).:			RQ	N: _			Sa	impler(s): D Bende	1/10	
1=Na ₂ \$ 8= NaH\$	S2O ₃ 2=HCl 3=I SO ₄ 9= Deionized V	H ₂ SO ₄ 4=HNO ₃ Water 10= H ₃ PO	5=NaOH 4 11=	6=Asc	orbic A	Acid 12=	7=0	CH ₃ C	Н		Lis	st preservative code bel	ow:	QA/QC Reporting Notes: * additional charges may apply
DW=Drinkin O=Oil SW=	ng Water GW=Groot = Surface Water SG X2=	undwater WW=V D=Soil SL=Sludg	Vastewater ge A=Air		1	Vials		Class		0)	Analyses:		MA DEP MCP CAM Report: Yes □ No □ CT DPH RCP Report: Yes □ No □ QA/QC Reporting Level X Standard □ No QC □ DQA*
Lab Id:	G=Grab C=	Composite Date:	Time:	Type	Matrix	# of VOA	# of Amber Glass	# of Clear Glass	# of Plastic	0 000	5			□ NY ASP A* □ NY ASP B* □ NJ Reduced* □ NJ Full* □ TIER II* □ TIER IV* □ Other
5073347231		7/17/13	312Z	G	50)		3.6	×	-			State-specific reporting standards:
-, -37	4-	111415	3:40		1		1			1				
-30	- 11		3:35	+										
	55-34		3:32	1			+							
	55-35		3:28				+							
V -36	55-36		3:25											
Relin	nguish by:	//Rece	ived by:	n	I	late:	,		Cime:	Te	em p°C			
Del C	Bal	The state of the s	P.CO	XV	7/	7/	3	17	Fime: 610) 5	2/3	E-mail to Condition upon receipt:		
										1		Ambient M Iced	Refrioerate	ed DIVOA Frozen D Soil Jar Frozen

Rich McKenna Asbestos & Environmental Consulting Corp 6296 Fly Road East Syracuse, NY 13057 Phone: (315) 432-9400

FAX: (315) 432-9405

Laboratory Analysis Report For

Asbestos & Environmental Consulting Corp

Client Project ID:

13-067

LSL Project ID: **1311077**

Receive Date/Time: 07/17/13 16:25

Project Received by: GS

Life Science Laboratories, Inc. warrants, to the best of its knowledge and belief, the accuracy of the analytical test results contained in this report, but makes no other warranty, expressed or implied, especially no warranties of merchantability or fitness for a particular purpose. By the Client's acceptance and/or use of this report, the Client agrees that LSL is hereby released from any and all liabilities, claims, damages or causes of action affecting or which may affect the Client as regards to the results contained in this report. The Client further agrees that the only remedy available to the Client in the event of proven non-conformity with the above warranty shall be for LSL to re-perform the analytical test(s) at no charge to the Client. The data contained in this report are for the exclusive use of the Client to whom it is addressed, and the release of these data to any other party, or the use of the name, trademark or service mark of Life Science Laboratories, Inc. especially for the use of advertising to the general public, is strictly prohibited without express prior written consent of Life Science Laboratories, Inc. This report may only be reproduced in its entirety. No partial duplication is allowed. The Chain of Custody document submitted with these samples is considered by LSL to be an appendix of this report and may contain specific information that pertains to the samples included in this report. The analytical result(s) in this report are only representative of the sample(s) submitted for analysis. LSL makes no claim of a sample's representativeness, or integrity, if sampling was not performed by LSL personnel.

Life Science Laboratories, Inc.

LSL Central Lab 5854 Butternut Drive East Syracuse, NY 13057 Tel. (315) 445-1900 Fax (315) 445-1104 NYS DOH ELAP #10248 PA DEP #68-2556

LSL North Lab 131 St. Lawrence Avenue Waddington, NY 13694 Tel. (315) 388-4476 Fax (315) 388-4061 NYS DOH ELAP #10900

LSL Finger Lakes Lab 16 N. Main St., PO Box 424 Wayland, NY 14572 Tel. (585) 728-3320 Fax (585) 728-2711 NYS DOH ELAP #11667 LSL Southern Tier Field Office 30 East Main Street Cuba, NY 14727 Tel. (585) 968-2640 Fax (585) 968-0906 LSL MidLakes Field Offfice 493 South Main Street Canandaigua, NY 14424 Tel. (585) 728-3320 Fax (585) 728-2711

This report	was	reviewed	by.
-------------	-----	----------	-----

Life Science Laboratories Inc

Date.

7/23/13

A copy of this report was sent to:

Page 1 of 5

Date Printed:

7/23/13

Asbestos & Environmental Consulting Corp

East Syracuse, NY

Sample ID:

SS-7D Grab

LSL Sample ID:

1311077-001

Location:

Sampled:

07/17/13 9:07

Sampled By: RM

Sample Matrix: SHW Dry Wt, Soil

Analytical Method		Prep Method	Prep	Analysis	Analyst
Analyte	Result	Units	<u>Date</u>	Date & Time	<u>Initials</u>
(1) EPA 8082 PCB's		EPA 3550B			
Aroclor-1016	< 0.03	mg/kg dry	7/22/13	7/23/13	CRT
Aroclor-1221	< 0.03	mg/kg dry	7/22/13	7/23/13	CRT
Aroclor-1232	< 0.03	mg/kg dry	7/22/13	7/23/13	CRT
Aroclor-1242	< 0.03	mg/kg dry	7/22/13	7/23/13	CRT
Aroclor-1248	< 0.03	mg/kg dry	7/22/13	7/23/13	CRT
Aroclor-1254	< 0.03	mg/kg dry	7/22/13	7/23/13	CRT
Aroclor-1260	< 0.03	mg/kg dry	7/22/13	7/23/13	CRT
Surrogate (DCB)	44	%R	7/22/13	7/23/13	CRT
(1) SM 18-20 2540B Total Solids					
Total Solids @ 103-105 C	66	%		7/18/13	CRT

Asbestos & Environmental Consulting Corp

East Syracuse, NY

Sample ID:

SS-11D Grab

LSL Sample ID:

1311077-002

Location:

Sampled:

07/17/13 10:00

Sampled By: RM

Sample Matrix: SHW Dry Wt, Soil

Analytical Method		Prep Method	Prep	Analysis	Analyst
Analyte	Result	Units	<u>Date</u>	Date & Time	<u>Initials</u>
(1) EPA 8082 PCB's		EPA 3550B			
Aroclor-1016	< 0.02	mg/kg dry	7/22/13	7/23/13	CRT
Aroclor-1221	< 0.02	mg/kg dry	7/22/13	7/23/13	CRT
Aroclor-1232	< 0.02	mg/kg dry	7/22/13	7/23/13	CRT
Aroclor-1242	< 0.02	mg/kg dry	7/22/13	7/23/13	CRT
Aroclor-1248	< 0.02	mg/kg dry	7/22/13	7/23/13	CRT
Aroclor-1254		mg/kg dry	7/22/13	7/23/13	CRT
Aroclor-1260		mg/kg dry	7/22/13	7/23/13	CRT
Surrogate (DCB)	79	%R	7/22/13	7/23/13	CRT
(1) SM 18-20 2540B Total Solids				= /40/40	CDT
Total Solids @ 103-105 C	73	%		7/18/13	CRT
Analysis is not certifiable by NYS DOH ELAP.					

Asbestos & Environmental Consulting Corp

East Syracuse, NY

Sample ID:

SS-23D Grab

LSL Sample ID:

1311077-003

Location:

Sampled:

07/17/13 12:11

Sampled By: RM

Sample Matrix: SHW Dry Wt, Soil

Analytical Method		Prep Method	Prep	Analysis	Analyst
Analyte	Result	Units	Date	Date & Time	Initials
(1) EPA 8082 PCB's		EPA 3550B			
Aroclor-1016	< 0.02	mg/kg dry	7/22/13	7/23/13	CRT
Aroclor-1221	< 0.02	mg/kg dry	7/22/13	7/23/13	CRT
Aroclor-1232	< 0.02	mg/kg dry	7/22/13	7/23/13	CRT
Aroclor-1242	< 0.02	mg/kg dry	7/22/13	7/23/13	CRT
Aroclor-1248	< 0.02	mg/kg dry	7/22/13	7/23/13	CRT
Aroclor-1254	< 0.02	mg/kg dry	7/22/13	7/23/13	CRT
Aroclor-1260	< 0.02	mg/kg dry	7/22/13	7/23/13	CRT
Surrogate (DCB)	58	%R	7/22/13	7/23/13	CRT
(1) SM 18-20 2540B Total Solids					
Total Solids @ 103-105 C	78	%		7/18/13	CRT

Analysis is not certifiable by NYS DOH ELAP.

Life Science Laboratories, Inc.

Asbestos & Environmental Consulting Corp

East Syracuse, NY

Sample ID:

SS-30D Grab

LSL Sample ID:

1311077-004

Location:

Sampled:

07/17/13 15:16

Sampled By: RM

Sample Matrix: SHW Dry Wt, Soil

Analytical Method		Prep Method	Prep	Analysis	Analyst
Analyte	Result	Units	Date	Date & Time	Initials
(1) EPA 8082 PCB's		EPA 3550B			
Aroclor-1016	< 0.02	mg/kg dry	7/22/13	7/23/13	CRT
Aroclor-1221	< 0.02	mg/kg dry	7/22/13	7/23/13	CRT
Aroclor-1232	< 0.02	mg/kg dry	7/22/13	7/23/13	CRT
Aroclor-1242	< 0.02	mg/kg dry	7/22/13	7/23/13	CRT
Aroclor-1248	< 0.02	mg/kg dry	7/22/13	7/23/13	CRT
Aroclor-1254	0.064	mg/kg dry	7/22/13	7/23/13	CRT
Aroclor-1260	< 0.02	mg/kg dry	7/22/13	7/23/13	CRT
Surrogate (DCB)	66	%R	7/22/13	7/23/13	CRT
(1) SM 18-20 2540B Total Solids					
Total Solids @ 103-105 C Analysis is not certifiable by NYS DOH ELAP.	74	%		7/18/13	CRT

SURROGATE RECOVERY CONTROL LIMITS FOR ORGANIC METHODS

<u>Method</u>	Surrogate(s)	Water <u>Limits, %R</u>	SHW <u>Limits, %R</u>
EPA 504	TCMX	80-120	NA
EPA 508	DCB	70-130	NA
EPA 515.4	DCAA	70-130	NA
EPA 524.2	1,2-DCA-d4	70-130	NA
EPA 524.2	Tol-d8, 4-BFB	75-125	NA
EPA 525.2	1,3-DM-2-NB, TPP, Per-d12	70-130	NA
EPA 526	1,3-DM-2-NB, TPP	70-130	NA
EPA 528	2-CP-3,4,5,6-d4, 2,4,6-TBP	70-130	NA
EPA 551.1	Decafluorobiphenyl	80-120	NA
EPA 552.2	2,3-DBPA	70-130	NA
EPA 601/602	1,2-DCA-d4	70-130	NA
EPA 601/602	Tol-d8, 4-BFB	75-125	NA
EPA 608	TCMX, DCB	30-150	NA
EPA 624	1,2-DCA-d4	70-130	NA
EPA 624	Tol-d8, 4-BFB	75-125	NA
EPA 625, AE	2-Fluorophenol	21-110	NA
EPA 625, AE	Phenol-d5	10-110	NA
EPA 625, AE	2,4,6-Tribromophenol	10-123	NA
EPA 625, BN	Nitrobenzene-d5	35-114	NA
EPA 625, BN	2-Fluorobiphenyl	43-116	NA
EPA 625, BN	Terphenyl-d14	33-141	NA
EPA 8010/8020/8021	1,2-DCA-d4	70-130	69-127
EPA 8010/8020/8021	Tol-d8	75-125	72-138
EPA 8010/8020/8021	4-BFB	75-125	53-167
EPA 8081	TCMX, DCB	30-150	30-150
EPA 8082	DCB	30-150	30-150
EPA 8151	DCAA	30-130	30-120
EPA 8260	1,2-DCA-d4	70-130	69-127
EPA 8260	Tol-d8	75-125	72-138
EPA 8260	4-BFB	75-125	53-167
EPA 8270, AE	2-Fluorophenol	21-110	25-121
EPA 8270, AE	Phenol-d5	10-110	24-113
EPA 8270, AE	2,4,6-Tribromophenol	10-123	19-122
EPA 8270, BN	Nitrobenzene-d5	35-114	23-120
EPA 8270, BN	2-Fluorobiphenyl	43-116	30-115
EPA 8270, BN	Terphenyl-d14	33-141	18-137
DOH 310-13	Terphenyl-d14	40-110	40-110
DOH 310-14	Terphenyl-d14	40-110	40-110
DOH 310-15	Terphenyl-d14	40-110	40-110
DOH 310-34	4-BFB	50-150	50-150
DOH 313-4	DCB	NA	30-150
8015M_GRO	4-BFB	50-150	50-150
8015M_DRO	Terphenyl-d14	50-150	50-150

Units Key:	ug/l = microgram per liter
-	ug/kg = microgram per kilogram
	mg/l = milligram per liter
	mg/kg = milligram per kilogram
	%R = Percent Recovery

LSL

Life Science Laboratories, Inc.

CHAIN OF CUSTODY RECORD

LSL Central Lab 5854 Butternut Drive East Syracuse, NY 13057 Phone: (315) 445-1900 Fax: (315) 445-1301 Email: Islcentral@Isl-inc.com

LSL North Lab 131 St Lawrence Ave Waddington, NY 13694 Phone: (315) 388-4476 Fax: (315) 388-4081 Email: lslnfo@lsl-inc.com

LSL Finger Lakes Lab 16 North Main Street Wayland, NY 14572 Phone: (585) 728-3320 Fax: (585) 728-2711 Email: lslfll@lsl-inc.com LSL Southern Tier Lab 30 East Main Street Cuba, NY 14727 Phone: (585) 968-2640 Fax: (585) 968-0906 Email: Islstl@Isl-inc.com 1311077 AECC

6063

____ பாவா. பாயாழுISI-Inc.com

Report Address: Normal Pre-Authorized 10 DAY Next Day* 3-Day * *Additional Charges 2-Day * 7-Day*								Turnarour	nd Time (Business Day)		
Name: Key Means Company: Acce Street: Good Fey Ro City/State: Cast Streams, NY Fin: Jass 7 July		·····						Normal	Pre-Authorized		
Street	Report Address: Name: Kich McKen	A						10 DAY	Next Day* 3-Day *	:	- 1
Client's Sample S	Company: AECC			····				Date Need		may appry	y
Fax: Authorization or P.O. # 13 - OG7	Street: 6308 FLY R	Ø						-	or obecim manachens:		
Fax: Authorization or P.O. # 13 - OG7	City/State: GAST STRAC	inger, 1	77	Zip:	130	DS7					
Client Project ID/Client Site ID Sample Type Tree	Phone: 315 432 94	ම ළු ්		Fax:				Authorizat	ion or P O #		
Client's Sample Identifications Sample Identifications Date Time grab/comp Matrix Added # size/type Analyses Preserv Check ISL ID#	Email: mckenna de	recc,	(CO)	com				-	13-067		
Client's Sample Identifications Date Time Fresh Iterations	Client Project ID/Client Site ID		······································					I SI Projec	Number		
Identifications Date Time grab/comp Matrix Added # size/type Check LSL ID#										£4. Hedi	elenar de l'A
Identifications		Sample	Sample	Туре	T T	Preserv	Con		Analyses		erant a Andrian ag
SS-78	Identifications	Date	Time	grab/comp	Matrix						
SS-11d 4 10 \times 11 11 11 11 11 12 13 14 15 15 15 15 15 15 15	(- 7	-ii		0						Спеск	LSL ID#
SS-23	33+1a	111113	7:07	GRAB	SIL	1	ĺ	802	SOS PCR		1
SS-23d	111-22	ધ	10.00	i t	i (t				*(001.
LSL use only: Custody Transfers Sampled By: Marken Received By: Relinquished By: Received By: Rec			10 200							1	007
LSL use only: Custody Transfers Sampled By: Marken Received By: Relinquished By: Received By: Rec	SS-23d	il	12:11	71	પ		Į	¥	V		003
LSL use only: Custody Transfers Sampled By: Mylem Received By: Relinquished By: Relinquished By: Relinquished By: Received By: Relinquished By: Received By: Re	SS-30d	ta	3:16	λ	n		1	łı	11		004
Sampled By: // //// Received By: Relinquished By: Received By: Relinquished By: Received By: Relinquished By: Received By: Relinquished By: Received By: 7-/7-/0 16,25					†						, t
Sampled By: // //// Received By: Relinquished By: Received By: Relinquished By: Received By: Relinquished By: Received By: Relinquished By: Received By: 7-/7-/0 16,25					1				·	ł	
Sampled By: // //// Received By: Relinquished By: Received By: Relinquished By: Received By: Relinquished By: Received By: Relinquished By: Received By: 7-/7-/0 16,25										- 	
Sampled By: // //// Received By: Relinquished By: Received By: Relinquished By: Received By: Relinquished By: Received By: Relinquished By: Received By: 7-/7-/0 16,25						<u> </u>			·	1	
Sampled By: // //// Received By: Relinquished By: Received By: Relinquished By: Received By: Relinquished By: Received By: Relinquished By: Received By: 7-/7-/0 16,25											
Sampled By: // //// Received By: Relinquished By: Received By: Relinquished By: Received By: Relinquished By: Received By: Relinquished By: Received By: 7-/7-/0 16,25											
Sampled By: // //// Received By: Relinquished By: Received By: Relinquished By: Received By: Relinquished By: Received By: Relinquished By: Received By: 7-/7-/0 16,25											
Sampled By: // //// Received By: Relinquished By: Received By: Relinquished By: Received By: Relinquished By: Received By: Relinquished By: Received By: 7-/7-/0 16,25					 	<u> </u>	···			<u>. j</u>	
Sampled By: // //// Received By: Relinquished By: Received By: Relinquished By: Received By: Relinquished By: Received By: Relinquished By: Received By: 7-/7-/0 16,25											
Sampled By: // //// Received By: Relinquished By: Received By: Relinquished By: Received By: Relinquished By: Received By: Relinquished By: Received By: 7-/7-/0 16,25					 						
Sampled By: // //// Received By: Relinquished By: Received By: Relinquished By: Received By: Relinquished By: Received By: Relinquished By: Received By: 7-/7-/0 16,25						ŀ			· ·		
Sampled By: // ///// Received By: Relinquished By: Received By: Relinquished By: Received By: Relinquished By: Received By: Relinquished By: Received By: Receive	LSL use only:					<u> </u>	Custody 1	Transfore			
Relinquished By: Received By: R			Sample	d By: 1007	V. Ken	7.5	Judiouy		Rv.	Date	Time
Relinquished By: Containers this C-O-C Shipment Method: Rec'd for Lab By: 7-77-73 16,25			Relinqu	ished By:							
Containers this C-O-C Tolloment Method.			Relinqu	ished By:	· · · · · · · · · · · · · · · · · · ·						1,,,,
All areas of this Chain of Custody Record MUST be filled out in order to process samples in a timely manner IN DEN ONLY***	Containers th	nis C-O-C	Shipmer	nt Method:				n : ::			
	*** All areas of	this Chai	n of Cus	stody Record MU	ST be fil	led out in	order to	process s	amples in a timely manner IN DEN C	Sample Ten	

Report Date: 14-Oct-14 12:26

☑ Final Report☐ Re-Issued Report☐ Revised Report

Featuring HANIBAL TECHNOLOGY

Laboratory Report

AECC Environmental Consulting 6308 Fly Road

East Syracuse, NY 13057

Attn: Rich McKenna

Project: WBP - Dewitt, NY

Project #: 14-091

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SB97664-01	SS-52	Soil	07-Oct-14 11:10	07-Oct-14 16:45
SB97664-02	SS-55	Soil	07-Oct-14 11:20	07-Oct-14 16:45
SB97664-03	SS-53	Soil	07-Oct-14 11:26	07-Oct-14 16:45
SB97664-04	SS-50	Soil	07-Oct-14 11:34	07-Oct-14 16:45
SB97664-05	SS-49	Soil	07-Oct-14 11:53	07-Oct-14 16:45
SB97664-06	SS-48	Soil	07-Oct-14 12:07	07-Oct-14 16:45
SB97664-07	SS-44	Soil	07-Oct-14 12:19	07-Oct-14 16:45
SB97664-08	SS-41	Soil	07-Oct-14 12:33	07-Oct-14 16:45
SB97664-09	SS-42	Soil	07-Oct-14 12:39	07-Oct-14 16:45
SB97664-10	SS-45	Soil	07-Oct-14 12:47	07-Oct-14 16:45
SB97664-11	SS-39	Soil	07-Oct-14 13:00	07-Oct-14 16:45
SB97664-12	SS-46	Soil	07-Oct-14 13:09	07-Oct-14 16:45
SB97664-13	SS-51	Soil	07-Oct-14 13:16	07-Oct-14 16:45
SB97664-14	SS-54	Soil	07-Oct-14 13:23	07-Oct-14 16:45
SB97664-15	SS-47	Soil	07-Oct-14 13:31	07-Oct-14 16:45
SB97664-16	SS-43	Soil	07-Oct-14 13:38	07-Oct-14 16:45
SB97664-17	SS-40	Soil	07-Oct-14 13:50	07-Oct-14 16:45
SB97664-18	SS-38	Soil	07-Oct-14 13:59	07-Oct-14 16:45
SB97664-19	SS-37	Soil	07-Oct-14 14:04	07-Oct-14 16:45
SB97664-20	SS-57	Soil	07-Oct-14 14:20	07-Oct-14 16:45
SB97664-21	SS-58	Soil	07-Oct-14 14:26	07-Oct-14 16:45
SB97664-22	SS-56	Soil	07-Oct-14 14:32	07-Oct-14 16:45
SB97664-23	SS-60	Soil	07-Oct-14 14:43	07-Oct-14 16:45
SB97664-24	SS-59	Soil	07-Oct-14 14:50	07-Oct-14 16:45
SB97664-25	SS-61	Soil	07-Oct-14 15:05	07-Oct-14 16:45
SB97664-26	SS-62	Soil	07-Oct-14 15:12	07-Oct-14 16:45
SB97664-27	SS-66	Soil	07-Oct-14 15:16	07-Oct-14 16:45
SB97664-28	SS-65	Soil	07-Oct-14 15:21	07-Oct-14 16:45
SB97664-29	SS-63	Soil	07-Oct-14 15:25	07-Oct-14 16:45
SB97664-30	SS-64	Soil	07-Oct-14 15:29	07-Oct-14 16:45

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011/MA012 New York # 11393/11840 Pennsylvania # 68-04426/68-02924 Rhode Island # 98 USDA # S-51435

Authorized by:

Nicole Leja Laboratory Director

Spectrum Analytical holds certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 41 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey, Pennsylvania and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, NJ-MA012, PA-68-04426 and FL-E87936).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

CASE NARRATIVE:

Data has been reported to the MDL. This report includes estimated concentrations detected below the RDL and above the MDL (J-Flag).

The samples were received 5.7 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of \pm 1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

SW846 8082A

Samples:

SB97664-01

SS-52

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interference's.

4,4-DB-Octafluorobiphenyl (Sr)

4,4-DB-Octafluorobiphenyl (Sr) [2C]

Decachlorobiphenyl (Sr)

Decachlorobiphenyl (Sr) [2C]

SB97664-03

SS-53

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interference's.

4,4-DB-Octafluorobiphenyl (Sr)

4,4-DB-Octafluorobiphenyl (Sr) [2C]

Decachlorobiphenyl (Sr)

Decachlorobiphenyl (Sr) [2C]

SB97664-05

SS-49

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interference's.

4,4-DB-Octafluorobiphenyl (Sr)

4,4-DB-Octafluorobiphenyl (Sr) [2C]

Decachlorobiphenyl (Sr)

Decachlorobiphenyl (Sr) [2C]

SB97664-08

SS-41

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interference's.

4,4-DB-Octafluorobiphenyl (Sr)

4,4-DB-Octafluorobiphenyl (Sr) [2C]

Decachlorobiphenyl (Sr)

Decachlorobiphenyl (Sr) [2C]

SW846 8082A

Samples:

SB97664-09 SS-42

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

SB97664-10 SS-45

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

SB97664-12 SS-46

Difference between the two GC columns is greater than 40%.

Aroclor-1254 [2C]

SB97664-13 SS-51

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interference's.

4,4-DB-Octafluorobiphenyl (Sr)

4,4-DB-Octafluorobiphenyl (Sr) [2C]

Decachlorobiphenyl (Sr)

Decachlorobiphenyl (Sr) [2C]

SB97664-18 SS-38

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interference's.

4,4-DB-Octafluorobiphenyl (Sr)

4,4-DB-Octafluorobiphenyl (Sr) [2C]

Decachlorobiphenyl (Sr)

Decachlorobiphenyl (Sr) [2C]

SB97664-19 SS-37

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interference's.

4,4-DB-Octafluorobiphenyl (Sr)

4,4-DB-Octafluorobiphenyl (Sr) [2C]

Decachlorobiphenyl (Sr)

Decachlorobiphenyl (Sr) [2C]

SB97664-22 SS-56

The Reporting Limit has been raised to account for matrix interference.

Aroclor-1254

SB97664-27 SS-66

The Reporting Limit has been raised to account for matrix interference.

SB97664-28 SS-65

SW846 8082A

Samples:

SB97664-28 SS-65

The Reporting Limit has been raised to account for matrix interference.

Aroclor-1016

Aroclor-1221

Aroclor-1232

Aroclor-1242

Aroclor-1248

Sample Acceptance Check Form

Client:	AECC Environmental Consulting			
Project:	WBP - Dewitt, NY / 14-091			
Work Order:	SB97664			
Sample(s) received on:	10/7/2014			
The following outlines th	ne condition of samples for the attached Chain of Custody upon receipt.			
		Yes	<u>No</u>	<u>N/A</u>
1. Were custody se	als present?		\checkmark	
2. Were custody se	als intact?			\checkmark
3. Were samples re	ceived at a temperature of \leq 6°C?	\checkmark		
4. Were samples co	oled on ice upon transfer to laboratory representative?	\checkmark		
5. Were samples re	frigerated upon transfer to laboratory representative?		\checkmark	
6. Were sample cor	ntainers received intact?	\checkmark		
	operly labeled (labels affixed to sample containers and include sample ID, site project number and the collection date)?			
8. Were samples ac	companied by a Chain of Custody document?	\checkmark		
include sample I	ustody document include proper, full, and complete documentation, which shall D, site location, and/or project number, date and time of collection, collector's name, e, sample matrix and any special remarks concerning the sample?			
10. Did sample conta	ainer labels agree with Chain of Custody document?	\checkmark		

11. Were samples received within method-specific holding times?

SS-52 SB97664	dentification			Client P			<u>Matrix</u> Soil		ection Date 7-Oct-14 11	,		oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
	ated Biphenyls by method SW846 3540C		GS1										
12674-11-2	Aroclor-1016	< 1160	U, D	μg/kg dry	1240	1160	50	SW846 8082A	08-Oct-14	10-Oct-14	IMR	1423784	Χ
11104-28-2	Aroclor-1221	< 1060	U, D	μg/kg dry	1240	1060	50	п		u	"		Χ
11141-16-5	Aroclor-1232	< 1110	U, D	μg/kg dry	1240	1110	50				"		Χ
53469-21-9	Aroclor-1242	< 551	U, D	μg/kg dry	1240	551	50				"		Χ
12672-29-6	Aroclor-1248 [2C]	25,300	D	μg/kg dry	1240	680	50				"		Χ
11097-69-1	Aroclor-1254	37,500	D	μg/kg dry	1240	783	50				"		Χ
11096-82-5	Aroclor-1260	3,720	D	μg/kg dry	1240	887	50	II .		ıı	"		Χ
37324-23-5	Aroclor-1262	< 672	U, D	μg/kg dry	1240	672	50	II .		ıı	"		Χ
11100-14-4	Aroclor-1268	< 1220	U, D	μg/kg dry	1240	1220	50	II .			"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	0	S01, U		30-15	0 %		ı	•	ı	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	0	S01, U		30-15	0 %		п		н	"		
2051-24-3	Decachlorobiphenyl (Sr)	0	S01, U		30-15	0 %				ıı	"		
2051-24-3	Decachlorobiphenyl (Sr)	0	S01, U		30-15	0 %		п		u	"		

08-Oct-14

08-Oct-14

DT

1423765

[2C]
General Chemistry Parameters
% Solids

Sample Io SS-55 SB97664	dentification -02			Client P			<u>Matrix</u> Soil	-	ection Date 7-Oct-14 11			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
	ated Biphenyls by method SW846 3540C												
12674-11-2	Aroclor-1016	< 21.8	U	μg/kg dry	23.3	21.8	1	SW846 8082A	08-Oct-14	10-Oct-14	IMR	1423784	Χ
11104-28-2	Aroclor-1221	< 19.8	U	μg/kg dry	23.3	19.8	1	п		п	"		Χ
11141-16-5	Aroclor-1232	< 20.9	U	μg/kg dry	23.3	20.9	1				"		Χ
53469-21-9	Aroclor-1242	< 10.4	U	μg/kg dry	23.3	10.4	1				"		Χ
12672-29-6	Aroclor-1248 [2C]	37.3		μg/kg dry	23.3	12.8	1				"		Χ
11097-69-1	Aroclor-1254	< 14.7	U	μg/kg dry	23.3	14.7	1				"		Χ
11096-82-5	Aroclor-1260	< 16.7	U	μg/kg dry	23.3	16.7	1				"		Χ
37324-23-5	Aroclor-1262	< 12.6	U	μg/kg dry	23.3	12.6	1				"		Χ
11100-14-4	Aroclor-1268	< 22.9	U	μg/kg dry	23.3	22.9	1	и			"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	95			30-15	0 %		u		ı	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	105			30-15	0 %		п			"		
2051-24-3	Decachlorobiphenyl (Sr)	105			30-15	0 %		п		п	"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	85			30-15	0 %		п			"		
General C	Chemistry Parameters												
	% Solids	84.8		%			1	SM2540 G Mod.	08-Oct-14	08-Oct-14	DT	1423765	

SS-53	SB97664-03			Client Project # 14-091			<u>Matrix</u> Soil		llection Date/Time 07-Oct-14 11:26		Received 07-Oct-14		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
	ated Biphenyls by method SW846 3540C		GS1										
12674-11-2	Aroclor-1016	< 2170	U, D	μg/kg dry	2330	2170	100	SW846 8082A	08-Oct-14	10-Oct-14	IMR	1423784	Χ
11104-28-2	Aroclor-1221	< 1980	U, D	μg/kg dry	2330	1980	100			н	"		Χ
11141-16-5	Aroclor-1232	< 2090	U, D	μg/kg dry	2330	2090	100	ı		п	"		Х
53469-21-9	Aroclor-1242	< 1030	U, D	μg/kg dry	2330	1030	100			н	"		Х
12672-29-6	Aroclor-1248	98,100	D	μg/kg dry	2330	1270	100			н	"		Х
11097-69-1	Aroclor-1254	93,100	D	μg/kg dry	2330	1470	100			н	"		Χ
11096-82-5	Aroclor-1260 [2C]	6,640	D	μg/kg dry	2330	2210	100			н	"		Χ
37324-23-5	Aroclor-1262	< 1260	U, D	μg/kg dry	2330	1260	100			н	"		Χ
11100-14-4	Aroclor-1268	< 2290	U, D	μg/kg dry	2330	2290	100	п			"		Х
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	0	S01, U		30-15	50 %		п		н	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	0	S01, U		30-15	0 %		п		н	"		

30-150 %

30-150 %

SM2540 G Mod.

08-Oct-14

08-Oct-14

DT

1423765

2051-24-3

2051-24-3

Decachlorobiphenyl (Sr)

Decachlorobiphenyl (Sr)

[2C]
General Chemistry Parameters
% Solids

0

0

82.3

S01, U

S01, U

Sample Io SS-50 SB97664	dentification			Client P			<u>Matrix</u> Soil	<u></u>	ection Date 7-Oct-14 11			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
Polychlorina	ated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 22.4	U	μg/kg dry	24.0	22.4	1	SW846 8082A	08-Oct-14	10-Oct-14	IMR	1423784	Χ
11104-28-2	Aroclor-1221	< 20.4	U	μg/kg dry	24.0	20.4	1	п		ıı	"		Χ
11141-16-5	Aroclor-1232	< 21.5	U	μg/kg dry	24.0	21.5	1				"		Χ
53469-21-9	Aroclor-1242	< 10.7	U	μg/kg dry	24.0	10.7	1	н			"		Χ
12672-29-6	Aroclor-1248 [2C]	69.5		μg/kg dry	24.0	13.1	1			и	"		Χ
11097-69-1	Aroclor-1254 [2C]	94.7		μg/kg dry	24.0	14.3	1				"		Х
11096-82-5	Aroclor-1260 [2C]	27.6		μg/kg dry	24.0	22.7	1			н	"		Х
37324-23-5	Aroclor-1262	< 13.0	U	μg/kg dry	24.0	13.0	1			н	"		Х
11100-14-4	Aroclor-1268	< 23.6	U	μg/kg dry	24.0	23.6	1	п			"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	90			30-15	0 %		н		ı	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	95			30-15	0 %		н			"		
2051-24-3	Decachlorobiphenyl (Sr)	100			30-15	0 %				и	"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	90			30-15	50 %		11			"		
General C	Chemistry Parameters												
	% Solids	80.5		%			1	SM2540 G Mod.	08-Oct-14	08-Oct-14	DT	1423765	

Sample Id SS-49 SB97664	-05			Client P			<u>Matrix</u> Soil		ection Date 7-Oct-14 11			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
Polychlorina	ted Biphenyls		GS1										
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 2390	U, D	μg/kg dry	2550	2390	100	SW846 8082A	08-Oct-14	10-Oct-14	IMR	1423784	Χ
11104-28-2	Aroclor-1221	< 2170	U, D	μg/kg dry	2550	2170	100	н			"		Χ
11141-16-5	Aroclor-1232	< 2290	U, D	μg/kg dry	2550	2290	100			"	"		Χ
53469-21-9	Aroclor-1242	< 1140	U, D	μg/kg dry	2550	1140	100				•		Χ
12672-29-6	Aroclor-1248 [2C]	32,300	D	μg/kg dry	2550	1400	100				•		Χ
11097-69-1	Aroclor-1254	53,100	D	μg/kg dry	2550	1610	100				"		Χ
11096-82-5	Aroclor-1260 [2C]	5,110	D	μg/kg dry	2550	2420	100	п			"		Χ
37324-23-5	Aroclor-1262	< 1380	U, D	μg/kg dry	2550	1380	100	п			"		Χ
11100-14-4	Aroclor-1268	< 2510	U, D	μg/kg dry	2550	2510	100				"		Х
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	0	S01, U		30-15	50 %		n.			"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	0	S01, U		30-15	50 %		п			"		
2051-24-3	Decachlorobiphenyl (Sr)	0	S01, U		30-15	50 %		п					
2051-24-3	Decachlorobiphenyl (Sr) [2C]	0	S01, U		30-15	50 %					"		
General C	Chemistry Parameters												

08-Oct-14 08-Oct-14

DT

1423765

% Solids

Sample Id SS-48 SB97664	dentification			Client P			<u>Matrix</u> Soil	-	ection Date 7-Oct-14 12			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	tile Organic Compounds by C	GC											
Polychlorina	ated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 22.7	U	μg/kg dry	24.3	22.7	1	SW846 8082A	08-Oct-14	10-Oct-14	IMR	1423784	Χ
11104-28-2	Aroclor-1221	< 20.7	U	μg/kg dry	24.3	20.7	1				"		Χ
11141-16-5	Aroclor-1232	< 21.9	U	μg/kg dry	24.3	21.9	1				"		Χ
53469-21-9	Aroclor-1242	< 10.8	U	μg/kg dry	24.3	10.8	1				"		Χ
12672-29-6	Aroclor-1248	< 13.2	U	μg/kg dry	24.3	13.2	1				"		Х
11097-69-1	Aroclor-1254	< 15.3	U	μg/kg dry	24.3	15.3	1						Х
11096-82-5	Aroclor-1260	< 17.4	U	μg/kg dry	24.3	17.4	1				"		Χ
37324-23-5	Aroclor-1262	< 13.2	U	μg/kg dry	24.3	13.2	1				"		Χ
11100-14-4	Aroclor-1268	< 23.9	U	μg/kg dry	24.3	23.9	1	ı			"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	85			30-15	50 %					"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	85			30-15	50 %		н			"		
2051-24-3	Decachlorobiphenyl (Sr)	100			30-15	50 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	85			30-15	50 %		н	•		"		
General C	Chemistry Parameters												
	% Solids	80.1		%			1	SM2540 G Mod.	08-Oct-14	08-Oct-14	DT	1423765	

Sample Io SS-44 SB97664	dentification -07			<u>Client P</u> 14-0			<u>Matrix</u> Soil	-	ection Date 7-Oct-14 12			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
	ated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 23.4	U	μg/kg dry	25.1	23.4	1	SW846 8082A	08-Oct-14	10-Oct-14	IMR	1423784	Χ
11104-28-2	Aroclor-1221	< 21.3	U	μg/kg dry	25.1	21.3	1			ıı	"		Χ
11141-16-5	Aroclor-1232	< 22.5	U	μg/kg dry	25.1	22.5	1				"		Χ
53469-21-9	Aroclor-1242	< 11.1	U	μg/kg dry	25.1	11.1	1			и	"		Х
12672-29-6	Aroclor-1248	45.1		μg/kg dry	25.1	13.6	1			н	"		Χ
11097-69-1	Aroclor-1254 [2C]	123		μg/kg dry	25.1	14.9	1				"		Χ
11096-82-5	Aroclor-1260	26.3		μg/kg dry	25.1	17.9	1				"		Х
37324-23-5	Aroclor-1262	< 13.6	U	μg/kg dry	25.1	13.6	1				"		Х
11100-14-4	Aroclor-1268	< 24.6	U	μg/kg dry	25.1	24.6	1	п			"		Х
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	85			30-15	50 %		п		ı	u		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	100			30-15	50 %		н			"		
2051-24-3	Decachlorobiphenyl (Sr)	105			30-15	50 %				и	"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	90			30-15	50 %		н	•	ı	"		
General C	Chemistry Parameters												
	% Solids	78.5		%			1	SM2540 G Mod.	08-Oct-14	08-Oct-14	DT	1423765	

Sample Identification SS-41 SB97664-08				<u>Client P</u> 14-0			<u>Matrix</u> Soil	Collection Date/Time 07-Oct-14 12:33			<u>Re</u> 07-		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
	ated Biphenyls by method SW846 3540C		GS1										
12674-11-2	Aroclor-1016	< 1120	U, D	μg/kg dry	1200	1120	50	SW846 8082A	08-Oct-14	10-Oct-14	IMR	1423784	Χ
11104-28-2	Aroclor-1221	< 1020	U, D	μg/kg dry	1200	1020	50	и		u	"		Χ
11141-16-5	Aroclor-1232	< 1070	U, D	μg/kg dry	1200	1070	50	п		u	"		Χ
53469-21-9	Aroclor-1242	< 531	U, D	μg/kg dry	1200	531	50	ı			"		Χ
12672-29-6	Aroclor-1248	19,700	D	μg/kg dry	1200	650	50	п		u	"		Χ
11097-69-1	Aroclor-1254	17,400	D	μg/kg dry	1200	754	50	п		u	"		Χ
11096-82-5	Aroclor-1260 [2C]	1,430	D	μg/kg dry	1200	1130	50	ı			"		Χ
37324-23-5	Aroclor-1262	< 648	U, D	μg/kg dry	1200	648	50	ı			"		Χ
11100-14-4	Aroclor-1268	< 1170	U, D	μg/kg dry	1200	1170	50	и		и	"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	0	S01, U		30-15	0 %		п		ı	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	0	S01, U	30-150 %			п		ı	"			
2051-24-3	Decachlorobiphenyl (Sr)	0	S01, U		30-15	0 %		п		п	"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	0	S01, U		30-15	50 %				н	"		
General C	Chemistry Parameters												

08-Oct-14 08-Oct-14

DT

1423765

% Solids

Sample Identification SS-42 SB97664-09				Client P			<u>Matrix</u> Soil	Collection Date/Time 07-Oct-14 12:39			<u>Re</u> 07-		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
	ated Biphenyls		GS1										
	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 426	U, D	μg/kg dry	457	426	20	SW846 8082A	08-Oct-14	10-Oct-14	IMR	1423784	Х
11104-28-2	Aroclor-1221	< 389	U, D	μg/kg dry	457	389	20				•		Χ
11141-16-5	Aroclor-1232	< 410	U, D	μg/kg dry	457	410	20			"	"		Χ
53469-21-9	Aroclor-1242	< 203	U, D	μg/kg dry	457	203	20			"	"		Χ
12672-29-6	Aroclor-1248	7,460	D	μg/kg dry	457	248	20			п	"		Χ
11097-69-1	Aroclor-1254 [2C]	7,400	D	μg/kg dry	457	272	20				"		Χ
11096-82-5	Aroclor-1260 [2C]	616	D	μg/kg dry	457	433	20	п		п	"		Χ
37324-23-5	Aroclor-1262	< 247	U, D	μg/kg dry	457	247	20				"		Χ
11100-14-4	Aroclor-1268	< 449	U, D	μg/kg dry	457	449	20	н			"		Х
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	100			30-15	0 %		н			"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	100			30-15	0 %		н			"		
2051-24-3	Decachlorobiphenyl (Sr)	100			30-15	0 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	100			30-15	50 %					"		
General C	Chemistry Parameters												

08-Oct-14 08-Oct-14

DT

1423765

% Solids

Sample Identification SS-45 SB97664-10				<u>Client P</u>			<u>Matrix</u> Soil	Collection Date/Time 07-Oct-14 12:47			<u>Re</u> 07-		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
	ated Biphenyls by method SW846 3540C		GS1										
12674-11-2	Aroclor-1016	< 450	U, D	μg/kg dry	482	450	20	SW846 8082A	08-Oct-14	10-Oct-14	IMR	1423784	Χ
11104-28-2	Aroclor-1221	< 410	U, D	μg/kg dry	482	410	20	н		и	"		Χ
11141-16-5	Aroclor-1232	< 433	U, D	μg/kg dry	482	433	20	п		u	"		Χ
53469-21-9	Aroclor-1242	< 214	U, D	μg/kg dry	482	214	20			u	"		Χ
12672-29-6	Aroclor-1248	17,300	D	μg/kg dry	482	262	20			u	"		Χ
11097-69-1	Aroclor-1254	18,300	D	μg/kg dry	482	304	20			u	"		Χ
11096-82-5	Aroclor-1260 [2C]	1,520	D	μg/kg dry	482	457	20	н			"		Χ
37324-23-5	Aroclor-1262	< 261	U, D	μg/kg dry	482	261	20	н			"		Χ
11100-14-4	Aroclor-1268	< 474	U, D	μg/kg dry	482	474	20	п		и	"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	100			30-15	0 %				н	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	100		30-150 %						н	"		
2051-24-3	Decachlorobiphenyl (Sr)	100		30-150 %				н			"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	100			30-15	0 %				н	"		
General C	Chemistry Parameters												

08-Oct-14 08-Oct-14

DT

1423766

% Solids

Sample Identification SS-39 SB97664-11				<u>Client P</u> 14-0			<u>Matrix</u> Soil	Collection Date/Time 07-Oct-14 13:00			<u>Rec</u> 07-		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
	ated Biphenyls by method SW846 3540C												
12674-11-2	Aroclor-1016	< 22.8	U	μg/kg dry	24.5	22.8	1	SW846 8082A	08-Oct-14	10-Oct-14	IMR	1423784	Χ
11104-28-2	Aroclor-1221	< 20.8	U	μg/kg dry	24.5	20.8	1				"		Χ
11141-16-5	Aroclor-1232	< 22.0	U	μg/kg dry	24.5	22.0	1				"		Χ
53469-21-9	Aroclor-1242	< 10.9	U	μg/kg dry	24.5	10.9	1				"		Χ
12672-29-6	Aroclor-1248 [2C]	207		μg/kg dry	24.5	13.4	1				"		Χ
11097-69-1	Aroclor-1254 [2C]	487		μg/kg dry	24.5	14.6	1				"		Χ
11096-82-5	Aroclor-1260 [2C]	77.1		μg/kg dry	24.5	23.2	1				"		Χ
37324-23-5	Aroclor-1262	< 13.3	U	μg/kg dry	24.5	13.3	1				"		Χ
11100-14-4	Aroclor-1268	< 24.0	U	μg/kg dry	24.5	24.0	1				"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	85			30-15	0 %			•	п	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	90			30-15	0 %				н	"		
2051-24-3	Decachlorobiphenyl (Sr)	100			30-15	60 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	85			30-15	50 %				п	"		
General C	Chemistry Parameters												
	% Solids	78.8		%			1	SM2540 G Mod.	08-Oct-14	08-Oct-14	DT	1423766	

Sample Identification SS-46 SB97664-12					ient Project # Matrix 14-091 Soil				Collection Date/Time 07-Oct-14 13:09			Received 07-Oct-14		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.	
Semivolat	ile Organic Compounds by C	GC .												
	ated Biphenyls by method SW846 3540C													
12674-11-2	Aroclor-1016	< 25.6	U	μg/kg dry	27.4	25.6	1	SW846 8082A	08-Oct-14	10-Oct-14	IMR	1423784	Χ	
11104-28-2	Aroclor-1221	< 23.3	U	μg/kg dry	27.4	23.3	1				"		Χ	
11141-16-5	Aroclor-1232	< 24.6	U	μg/kg dry	27.4	24.6	1				"		Χ	
53469-21-9	Aroclor-1242	< 12.2	U	μg/kg dry	27.4	12.2	1				"		Χ	
12672-29-6	Aroclor-1248	194		μg/kg dry	27.4	14.9	1				"		Χ	
11097-69-1	Aroclor-1254 [2C]	333	Р	μg/kg dry	27.4	16.3	1				"		Χ	
11096-82-5	Aroclor-1260	60.3		μg/kg dry	27.4	19.6	1				"		Χ	
37324-23-5	Aroclor-1262	< 14.8	U	μg/kg dry	27.4	14.8	1				"		Χ	
11100-14-4	Aroclor-1268	< 26.9	U	μg/kg dry	27.4	26.9	1				"		Х	
Surrogate red	coveries:													
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	105			30-15	0 %					"			
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	105			30-15	0 %					"			
2051-24-3	Decachlorobiphenyl (Sr)	135			30-15	0 %					"			
2051-24-3	Decachlorobiphenyl (Sr) [2C]	90			30-15	0 %		•			II			
General C	Chemistry Parameters													
	% Solids	72.2		%			1	SM2540 G Mod.	08-Oct-14	08-Oct-14	DT	1423766		

SS-51	SB97664-13			Client Project # Matrix 14-091 Soil			·	ection Date 7-Oct-14 13			ceived Oct-14		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	ЭC											
	ated Biphenyls by method SW846 3540C		GS1										
12674-11-2	Aroclor-1016	< 2420	U, D	μg/kg dry	2590	2420	100	SW846 8082A	08-Oct-14	10-Oct-14	IMR	1423784	Χ
11104-28-2	Aroclor-1221	< 2200	U, D	μg/kg dry	2590	2200	100				"		Χ
11141-16-5	Aroclor-1232	< 2330	U, D	μg/kg dry	2590	2330	100			н	"		Χ
53469-21-9	Aroclor-1242	< 1150	U, D	μg/kg dry	2590	1150	100			н	"		Χ
12672-29-6	Aroclor-1248	78,000	D	μg/kg dry	2590	1410	100			н	"		Χ
11097-69-1	Aroclor-1254 [2C]	54,500	D	μg/kg dry	2590	1550	100			н	"		Χ
11096-82-5	Aroclor-1260 [2C]	5,440	D	μg/kg dry	2590	2460	100			н	"		Χ
37324-23-5	Aroclor-1262	< 1400	U, D	μg/kg dry	2590	1400	100			н	"		Χ
11100-14-4	Aroclor-1268	< 2550	U, D	μg/kg dry	2590	2550	100	п			"		Х
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	0	S01, U		30-150 %			н		ı	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	0	S01, U		30-15	50 %		п			"		
2051-24-3	Decachlorobiphenyl (Sr)	0	S01, U	30-150 %						"			
2051-24-3	Decachlorobiphenyl (Sr) [2C]	0	S01, U		30-15	50 %		п			"		

08-Oct-14 08-Oct-14

DT

1423766

General Chemistry Parameters
% Solids

Sample Identification SS-54 SB97664-14					ent Project # Matrix 14-091 Soil			-	Collection Date/Time 07-Oct-14 13:23			Received 07-Oct-14		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.	
Semivolat	ile Organic Compounds by C	GC .												
	ated Biphenyls by method SW846 3540C													
12674-11-2	Aroclor-1016	< 23.1	U	μg/kg dry	24.7	23.1	1	SW846 8082A	08-Oct-14	10-Oct-14	IMR	1423784	Χ	
11104-28-2	Aroclor-1221	< 21.1	U	μg/kg dry	24.7	21.1	1	II.			"		Χ	
11141-16-5	Aroclor-1232	< 22.2	U	μg/kg dry	24.7	22.2	1				"		Χ	
53469-21-9	Aroclor-1242	< 11.0	U	μg/kg dry	24.7	11.0	1				"		Χ	
12672-29-6	Aroclor-1248 [2C]	55.7		μg/kg dry	24.7	13.6	1				"		Χ	
11097-69-1	Aroclor-1254	79.2		μg/kg dry	24.7	15.6	1	п			"		Χ	
11096-82-5	Aroclor-1260	< 17.7	U	μg/kg dry	24.7	17.7	1				"		Χ	
37324-23-5	Aroclor-1262	< 13.4	U	μg/kg dry	24.7	13.4	1				"		Χ	
11100-14-4	Aroclor-1268	< 24.3	U	μg/kg dry	24.7	24.3	1	n			"		Х	
Surrogate red	coveries:													
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	95			30-15	0 %					"			
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	95			30-15	0 %		п		ı	"			
2051-24-3	Decachlorobiphenyl (Sr)	105			30-15	0 %		II.			"			
2051-24-3	Decachlorobiphenyl (Sr) [2C]	85			30-15	0 %		n .	н	ı	"			
General C	Chemistry Parameters													
	% Solids	79.0		%			1	SM2540 G Mod.	08-Oct-14	08-Oct-14	DT	1423766		

Sample Identification SS-47 SB97664-15				Client P		et # <u>Matrix</u> Soil		Collection Date/Time 07-Oct-14 13:31			Received 07-Oct-14		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	ЭC											
	ated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 23.8	U	μg/kg dry	25.5	23.8	1	SW846 8082A	08-Oct-14	10-Oct-14	IMR	1423784	Χ
11104-28-2	Aroclor-1221	< 21.7	U	μg/kg dry	25.5	21.7	1				"		Χ
11141-16-5	Aroclor-1232	< 22.9	U	μg/kg dry	25.5	22.9	1	п			"		Χ
53469-21-9	Aroclor-1242	< 11.3	U	μg/kg dry	25.5	11.3	1				"		Х
12672-29-6	Aroclor-1248	< 13.9	U	μg/kg dry	25.5	13.9	1				"		Χ
11097-69-1	Aroclor-1254 [2C]	20.4	J	μg/kg dry	25.5	15.2	1	и					Χ
11096-82-5	Aroclor-1260	< 18.3	U	μg/kg dry	25.5	18.3	1				"		Χ
37324-23-5	Aroclor-1262	< 13.8	U	μg/kg dry	25.5	13.8	1	п					Х
11100-14-4	Aroclor-1268	< 25.1	U	μg/kg dry	25.5	25.1	1	п		п	"		Х
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	85			30-15	0 %		н		п	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	90			30-15	0 %		н		ı	"		
2051-24-3	Decachlorobiphenyl (Sr)	100			30-15	0 %		п		н	"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	80			30-15	0 %		N .		п	"		
General C	Chemistry Parameters												
	% Solids	78.2		%			1	SM2540 G Mod.	08-Oct-14	08-Oct-14	DT	1423766	

Sample Io SS-43 SB97664	dentification			Client P			<u>Matrix</u> Soil	-	ection Date 7-Oct-14 13			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	ЭC											
Polychlorina	ated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 24.3	U	μg/kg dry	26.1	24.3	1	SW846 8082A	08-Oct-14	10-Oct-14	IMR	1423784	Χ
11104-28-2	Aroclor-1221	< 22.2	U	μg/kg dry	26.1	22.2	1				"		Χ
11141-16-5	Aroclor-1232	< 23.4	U	μg/kg dry	26.1	23.4	1	н			"		Χ
53469-21-9	Aroclor-1242	< 11.6	U	μg/kg dry	26.1	11.6	1				"		Χ
12672-29-6	Aroclor-1248	112		μg/kg dry	26.1	14.2	1				"		Χ
11097-69-1	Aroclor-1254 [2C]	117		μg/kg dry	26.1	15.5	1	п			"		Χ
11096-82-5	Aroclor-1260 [2C]	45.6		μg/kg dry	26.1	24.7	1	п			"		Х
37324-23-5	Aroclor-1262	< 14.1	U	μg/kg dry	26.1	14.1	1				"		Χ
11100-14-4	Aroclor-1268	< 25.6	U	μg/kg dry	26.1	25.6	1	п			"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	95			30-15	0 %		и		п	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	105			30-15	0 %		н		п	"		
2051-24-3	Decachlorobiphenyl (Sr)	105			30-15	0 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	85			30-15	50 %		н	•	н	"		
General C	Chemistry Parameters												
	% Solids	76.1		%			1	SM2540 G Mod.	08-Oct-14	08-Oct-14	DT	1423766	

Sample Io SS-40 SB97664	-17			Client P			<u>Matrix</u> Soil	-	ection Date 7-Oct-14 13			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
	ated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 25.3	U	μg/kg dry	27.1	25.3	1	SW846 8082A	08-Oct-14	10-Oct-14	IMR	1423784	Χ
11104-28-2	Aroclor-1221	< 23.1	U	μg/kg dry	27.1	23.1	1				"		Χ
11141-16-5	Aroclor-1232	< 24.4	U	μg/kg dry	27.1	24.4	1			"	"		Χ
53469-21-9	Aroclor-1242	< 12.1	U	μg/kg dry	27.1	12.1	1				"		Х
12672-29-6	Aroclor-1248	< 14.8	U	μg/kg dry	27.1	14.8	1				"		Χ
11097-69-1	Aroclor-1254 [2C]	35.3		μg/kg dry	27.1	16.2	1				"		Χ
11096-82-5	Aroclor-1260	< 19.4	U	μg/kg dry	27.1	19.4	1				"		Х
37324-23-5	Aroclor-1262	< 14.7	U	μg/kg dry	27.1	14.7	1				"		Х
11100-14-4	Aroclor-1268	< 26.7	U	μg/kg dry	27.1	26.7	1	п			"		Х
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	105			30-15	50 %		п			"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	105			30-15	50 %		н			"		
2051-24-3	Decachlorobiphenyl (Sr)	115			30-15	50 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	80			30-15	50 %		н			"		
General C	Chemistry Parameters												
	% Solids	72.8		%			1	SM2540 G Mod.	08-Oct-14	08-Oct-14	DT	1423766	

Sample II SS-38 SB97664	dentification			<u>Client P</u> 14-0			<u>Matrix</u> Soil	-	ection Date 7-Oct-14 13			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
	ated Biphenyls by method SW846 3540C		GS1										
12674-11-2	Aroclor-1016	< 1090	U, D	μg/kg dry	1170	1090	50	SW846 8082A	08-Oct-14	10-Oct-14	IMR	1423784	Χ
11104-28-2	Aroclor-1221	< 996	U, D	μg/kg dry	1170	996	50	и			"		Χ
11141-16-5	Aroclor-1232	< 1050	U, D	μg/kg dry	1170	1050	50	и			"		Χ
53469-21-9	Aroclor-1242	< 520	U, D	μg/kg dry	1170	520	50	и			"		Χ
12672-29-6	Aroclor-1248 [2C]	44,800	D	μg/kg dry	1170	641	50	и			"		Χ
11097-69-1	Aroclor-1254 [2C]	39,300	D	μg/kg dry	1170	698	50	II .			"		Х
11096-82-5	Aroclor-1260 [2C]	3,330	D	μg/kg dry	1170	1110	50	и			"		Χ
37324-23-5	Aroclor-1262	< 634	U, D	μg/kg dry	1170	634	50	и			"		Χ
11100-14-4	Aroclor-1268	< 1150	U, D	μg/kg dry	1170	1150	50	п		н	"	•	Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	0	S01, U		30-15	50 %				ı	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	0	S01, U		30-15	50 %				ı	"		
2051-24-3	Decachlorobiphenyl (Sr)	0	S01, U		30-15	50 %		п			"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	0	S01, U		30-15	50 %					"		
General C	Chemistry Parameters												

08-Oct-14 08-Oct-14

DT

1423766

% Solids

Sample Io SS-37 SB97664	dentification			<u>Client P</u> 14-0			<u>Matrix</u> Soil		ection Date 7-Oct-14 14			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
	ated Biphenyls by method SW846 3540C		GS1										
12674-11-2	Aroclor-1016	< 1030	U, D	μg/kg dry	1100	1030	50	SW846 8082A	08-Oct-14	10-Oct-14	IMR	1423784	Χ
11104-28-2	Aroclor-1221	< 939	U, D	μg/kg dry	1100	939	50	и		п	"		Χ
11141-16-5	Aroclor-1232	< 992	U, D	μg/kg dry	1100	992	50	п		u	"		Χ
53469-21-9	Aroclor-1242	< 491	U, D	μg/kg dry	1100	491	50	п		u	"		Χ
12672-29-6	Aroclor-1248 [2C]	54,300	D	μg/kg dry	1100	605	50	п		u	"		Χ
11097-69-1	Aroclor-1254 [2C]	46,000	D	μg/kg dry	1100	658	50	п		u	"		Χ
11096-82-5	Aroclor-1260 [2C]	4,080	D	μg/kg dry	1100	1050	50	ı			"		Χ
37324-23-5	Aroclor-1262	< 598	U, D	μg/kg dry	1100	598	50	ı			"		Χ
11100-14-4	Aroclor-1268	< 1080	U, D	μg/kg dry	1100	1080	50			н	"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	0	S01, U		30-15	0 %		п		ı	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	0	S01, U		30-15	0 %				н	"		
2051-24-3	Decachlorobiphenyl (Sr)	0	S01, U		30-15	i0 %		ı			"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	0	S01, U		30-15	50 %				н	"		
General C	Chemistry Parameters												

08-Oct-14 08-Oct-14

DT

1423766

% Solids

Sample Io SS-57 SB97664	dentification -20			Client P	<u>Project #</u> 091		<u>Matrix</u> Soil		ection Date 7-Oct-14 14			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
	ated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 19.3	U	μg/kg dry	20.6	19.3	1	SW846 8082A	08-Oct-14	10-Oct-14	IMR	1423784	Χ
11104-28-2	Aroclor-1221	< 17.6	U	μg/kg dry	20.6	17.6	1			н	"		Χ
11141-16-5	Aroclor-1232	< 18.5	U	μg/kg dry	20.6	18.5	1			II .	"		Χ
53469-21-9	Aroclor-1242	< 9.17	U	μg/kg dry	20.6	9.17	1			п	"		Χ
12672-29-6	Aroclor-1248	< 11.2	U	μg/kg dry	20.6	11.2	1			н	"		Χ
11097-69-1	Aroclor-1254 [2C]	25.8		μg/kg dry	20.6	12.3	1			н	"		Χ
11096-82-5	Aroclor-1260	< 14.8	U	μg/kg dry	20.6	14.8	1	п		н	"		Χ
37324-23-5	Aroclor-1262	< 11.2	U	μg/kg dry	20.6	11.2	1	п		н	"		Χ
11100-14-4	Aroclor-1268	< 20.3	U	μg/kg dry	20.6	20.3	1	п			"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	100			30-15	50 %		н		ıı	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	105			30-15	50 %		н		ıı	"		
2051-24-3	Decachlorobiphenyl (Sr)	110			30-15	50 %				н	"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	85			30-15	50 %		11	•	ı	"		
General C	Chemistry Parameters												
	% Solids	93.3		%			1	SM2540 G Mod.	08-Oct-14	08-Oct-14	DT	1423766	

SS-58 SB97664	-21			<u>Client P</u> 14-0			<u>Matrix</u> Soil		ection Date 7-Oct-14 14			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	БС											
Polychlorina	ated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 21.3	U	μg/kg dry	22.8	21.3	1	SW846 8082A	08-Oct-14	09-Oct-14	IMR	1423786	Χ
11104-28-2	Aroclor-1221	< 19.4	U	μg/kg dry	22.8	19.4	1				"		Χ
11141-16-5	Aroclor-1232	< 20.5	U	μg/kg dry	22.8	20.5	1			"	"		Χ
53469-21-9	Aroclor-1242	< 10.1	U	μg/kg dry	22.8	10.1	1				"		Х
12672-29-6	Aroclor-1248	< 12.4	U	μg/kg dry	22.8	12.4	1	п			"		Χ
11097-69-1	Aroclor-1254	< 14.4	U	μg/kg dry	22.8	14.4	1	п			"		Х
11096-82-5	Aroclor-1260	< 16.3	U	μg/kg dry	22.8	16.3	1				"		Х
37324-23-5	Aroclor-1262	< 12.3	U	μg/kg dry	22.8	12.3	1				"		Х
11100-14-4	Aroclor-1268	< 22.4	U	μg/kg dry	22.8	22.4	1	ı			"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	90			30-15	0 %					"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	100			30-15	0 %		н			"		
2051-24-3	Decachlorobiphenyl (Sr)	95			30-15	0 %				"	"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	75			30-15	0 %		п			"		
General C	Chemistry Parameters												
	% Solids	86.3		%			1	SM2540 G Mod.	08-Oct-14	08-Oct-14	DT	1423766	

Sample Id SS-56 SB97664	dentification -22			<u>Client P</u> 14-0			<u>Matrix</u> Soil		ection Date 7-Oct-14 14			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	БС											
	ated Biphenyls by method SW846 3540C												
12674-11-2	Aroclor-1016	< 20.3	U	μg/kg dry	21.8	20.3	1	SW846 8082A	08-Oct-14	09-Oct-14	IMR	1423786	Χ
11104-28-2	Aroclor-1221	< 18.5	U	μg/kg dry	21.8	18.5	1				"		Χ
11141-16-5	Aroclor-1232	< 19.6	U	μg/kg dry	21.8	19.6	1				"		Χ
53469-21-9	Aroclor-1242	< 9.68	U	μg/kg dry	21.8	9.68	1				"		Χ
12672-29-6	Aroclor-1248	< 11.8	U	μg/kg dry	21.8	11.8	1				"		Χ
11097-69-1	Aroclor-1254	< 27.5	R01, U	μg/kg dry	43.6	27.5	1				"		Х
11096-82-5	Aroclor-1260	< 15.6	U	μg/kg dry	21.8	15.6	1				"		Χ
37324-23-5	Aroclor-1262	< 11.8	U	μg/kg dry	21.8	11.8	1				"		Χ
11100-14-4	Aroclor-1268	< 21.4	U	μg/kg dry	21.8	21.4	1				"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	100			30-15	50 %				п	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	100			30-15	50 %			•	н	"		
2051-24-3	Decachlorobiphenyl (Sr)	110			30-15	50 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	85			30-15	50 %				п	"		
General C	Chemistry Parameters												
	% Solids	90.7		%			1	SM2540 G Mod.	08-Oct-14	08-Oct-14	DT	1423766	

Sample Io SS-60 SB97664	dentification -23			Client P			<u>Matrix</u> Soil	-	ection Date 7-Oct-14 14			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
	ated Biphenyls by method SW846 3540C												
12674-11-2	Aroclor-1016	< 20.5	U	μg/kg dry	22.0	20.5	1	SW846 8082A	08-Oct-14	09-Oct-14	IMR	1423786	Χ
11104-28-2	Aroclor-1221	< 18.7	U	μg/kg dry	22.0	18.7	1	п			"		Χ
11141-16-5	Aroclor-1232	< 19.7	U	μg/kg dry	22.0	19.7	1				"		Χ
53469-21-9	Aroclor-1242	< 9.76	U	μg/kg dry	22.0	9.76	1				"		Χ
12672-29-6	Aroclor-1248	< 11.9	U	μg/kg dry	22.0	11.9	1				"		Χ
11097-69-1	Aroclor-1254	< 13.9	U	μg/kg dry	22.0	13.9	1				"		Χ
11096-82-5	Aroclor-1260	< 15.7	U	μg/kg dry	22.0	15.7	1	п			"		Χ
37324-23-5	Aroclor-1262	< 11.9	U	μg/kg dry	22.0	11.9	1				"		Χ
11100-14-4	Aroclor-1268	< 21.6	U	μg/kg dry	22.0	21.6	1	и			"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	90			30-15	0 %		u		н	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	90			30-15	0 %		п		п	"		
2051-24-3	Decachlorobiphenyl (Sr)	100			30-15	0 %		п					
2051-24-3	Decachlorobiphenyl (Sr) [2C]	75			30-15	0 %		п		и	"		
General C	Chemistry Parameters												
	% Solids	88.7		%			1	SM2540 G Mod.	08-Oct-14	08-Oct-14	DT	1423766	

Sample Io SS-59 SB97664	dentification -24			Client P			<u>Matrix</u> Soil	-	ection Date 7-Oct-14 14			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
Polychlorina	ated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 21.5	U	μg/kg dry	23.0	21.5	1	SW846 8082A	08-Oct-14	09-Oct-14	IMR	1423786	Χ
11104-28-2	Aroclor-1221	< 19.6	U	μg/kg dry	23.0	19.6	1			н	"		Χ
11141-16-5	Aroclor-1232	< 20.7	U	μg/kg dry	23.0	20.7	1	н			"		Χ
53469-21-9	Aroclor-1242	< 10.2	U	μg/kg dry	23.0	10.2	1				"		Χ
12672-29-6	Aroclor-1248	619		μg/kg dry	23.0	12.5	1				"		Χ
11097-69-1	Aroclor-1254 [2C]	974		μg/kg dry	23.0	13.7	1			н	"		Χ
11096-82-5	Aroclor-1260 [2C]	87.5		μg/kg dry	23.0	21.8	1	п			"		Χ
37324-23-5	Aroclor-1262	< 12.5	U	μg/kg dry	23.0	12.5	1	п			"		Χ
11100-14-4	Aroclor-1268	< 22.6	U	μg/kg dry	23.0	22.6	1	п			"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	85			30-15	50 %		и		п	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	85			30-15	50 %		н		ı	"		
2051-24-3	Decachlorobiphenyl (Sr)	85			30-15	50 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	75			30-15	50 %		н	•	н	"		
General C	Chemistry Parameters												
	% Solids	86.4		%			1	SM2540 G Mod.	08-Oct-14	08-Oct-14	DT	1423766	

Sample Id SS-61 SB97664-	dentification			<u>Client P</u> 14-0			<u>Matrix</u> Soil	· · · · · · · · · · · · · · · · · · ·	ection Date '-Oct-14 15			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	ile Organic Compounds by C	GC											
	ted Biphenyls by method SW846 3540C												
12674-11-2	Aroclor-1016	< 18.9	U	μg/kg dry	20.2	18.9	1	SW846 8082A	08-Oct-14	09-Oct-14	IMR	1423786	Χ
11104-28-2	Aroclor-1221	< 17.2	U	μg/kg dry	20.2	17.2	1				"		Χ
11141-16-5	Aroclor-1232	< 18.2	U	μg/kg dry	20.2	18.2	1	п			"		Χ
53469-21-9	Aroclor-1242	< 8.98	U	μg/kg dry	20.2	8.98	1	п			"		Χ
12672-29-6	Aroclor-1248	< 11.0	U	μg/kg dry	20.2	11.0	1	п			"		Χ
11097-69-1	Aroclor-1254	< 12.7	U	μg/kg dry	20.2	12.7	1	п			"		Χ
11096-82-5	Aroclor-1260	< 14.5	U	μg/kg dry	20.2	14.5	1	п			"		Χ
37324-23-5	Aroclor-1262	< 11.0	U	μg/kg dry	20.2	11.0	1	п			"		Χ
11100-14-4	Aroclor-1268	< 19.9	U	μg/kg dry	20.2	19.9	1	п			"		Χ
Surrogate rec	overies:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	95			30-15	0 %					"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	90			30-15	0 %		u .			II		
2051-24-3	Decachlorobiphenyl (Sr)	95			30-15	0 %		п			"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	75			30-15	0 %		ı			"		
General C	hemistry Parameters												

08-Oct-14 08-Oct-14

DT

1423766

% Solids

SS-62 SB97664	-26			Client P			<u>Matrix</u> Soil	·	ection Date 7-Oct-14 15			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
	ated Biphenyls by method SW846 3540C												
12674-11-2	Aroclor-1016	< 20.1	U	μg/kg dry	21.5	20.1	1	SW846 8082A	08-Oct-14	09-Oct-14	IMR	1423786	Χ
11104-28-2	Aroclor-1221	< 18.3	U	μg/kg dry	21.5	18.3	1	п			"		Χ
11141-16-5	Aroclor-1232	< 19.3	U	μg/kg dry	21.5	19.3	1	ı			"		Χ
53469-21-9	Aroclor-1242	< 9.57	U	μg/kg dry	21.5	9.57	1	ı			"		Χ
12672-29-6	Aroclor-1248	< 11.7	U	μg/kg dry	21.5	11.7	1	ı			"		Χ
11097-69-1	Aroclor-1254	< 13.6	U	μg/kg dry	21.5	13.6	1	ı					Χ
11096-82-5	Aroclor-1260	< 15.4	U	μg/kg dry	21.5	15.4	1	п			"		Χ
37324-23-5	Aroclor-1262	< 11.7	U	μg/kg dry	21.5	11.7	1	п			"		Χ
11100-14-4	Aroclor-1268	< 21.2	U	μg/kg dry	21.5	21.2	1	и			"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	90			30-15	50 %				u	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	105			30-15	50 %					"		
2051-24-3	Decachlorobiphenyl (Sr)	90			30-15	50 %		ı			"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	75			30-15	50 %		as .			"		

08-Oct-14 08-Oct-14

DT

1423766

% Solids

SS-66 SB97664	-27			<u>Client P</u> 14-0			<u>Matrix</u> Soil		ection Date -Oct-14 15			oeived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	ЭC											
	tted Biphenyls by method SW846 3540C		R01										
12674-11-2	Aroclor-1016	< 40.3	U	μg/kg dry	43.2	40.3	1	SW846 8082A	08-Oct-14	10-Oct-14	IMR	1423786	Χ
11104-28-2	Aroclor-1221	< 36.7	U	μg/kg dry	43.2	36.7	1	п			"		Χ
11141-16-5	Aroclor-1232	< 38.8	U	μg/kg dry	43.2	38.8	1	п			"		Χ
53469-21-9	Aroclor-1242	< 19.2	U	μg/kg dry	43.2	19.2	1	п			"		Χ
12672-29-6	Aroclor-1248	< 23.5	U	μg/kg dry	43.2	23.5	1	п			"		Χ
11097-69-1	Aroclor-1254	< 27.2	U	μg/kg dry	43.2	27.2	1	п			"		Χ
11096-82-5	Aroclor-1260	< 30.9	U	μg/kg dry	43.2	30.9	1	н			"		Χ
37324-23-5	Aroclor-1262	< 23.4	U	μg/kg dry	43.2	23.4	1	н			"		Χ
11100-14-4	Aroclor-1268	< 42.4	U	μg/kg dry	43.2	42.4	1				"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	100			30-15	50 %					"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	120			30-15	50 %		u .			"		
2051-24-3	Decachlorobiphenyl (Sr)	110			30-15	50 %		п			"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	85			30-15	50 %		п		п	"		

08-Oct-14 08-Oct-14

DT

1423766

% Solids

SS-65	umple Identification 6-65 397664-28			Client P			<u>Matrix</u> Soil		ection Date 7-Oct-14 15	Received 07-Oct-14			
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
Polychlorina	ated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 40.4	R01, U	μg/kg dry	43.2	40.4	1	SW846 8082A	08-Oct-14	10-Oct-14	IMR	1423786	Χ
11104-28-2	Aroclor-1221	< 36.8	R01, U	μg/kg dry	43.2	36.8	1				"		Χ
11141-16-5	Aroclor-1232	< 38.9	R01, U	μg/kg dry	43.2	38.9	1				"		Χ
53469-21-9	Aroclor-1242	< 19.2	R01, U	μg/kg dry	43.2	19.2	1				"		Χ
12672-29-6	Aroclor-1248	< 23.5	R01, U	μg/kg dry	43.2	23.5	1				"		Х
11097-69-1	Aroclor-1254 [2C]	74.6		μg/kg dry	21.6	12.9	1						Х
11096-82-5	Aroclor-1260 [2C]	< 20.5	U	μg/kg dry	21.6	20.5	1						Х
37324-23-5	Aroclor-1262	< 11.7	U	μg/kg dry	21.6	11.7	1				"		Χ
11100-14-4	Aroclor-1268	< 21.3	U	μg/kg dry	21.6	21.3	1			п	"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	100			30-15	0 %				п	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	105			30-15	0 %				п	"		
2051-24-3	Decachlorobiphenyl (Sr)	115			30-15	i0 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	135			30-15	0 %				п	"		
General C	Chemistry Parameters												
	% Solids	92.2		%			1	SM2540 G Mod.	08-Oct-14	08-Oct-14	DT	1423766	

SS-63	ample Identification S-63 B97664-29			Client P			<u>Matrix</u> Soil	-	ection Date 7-Oct-14 15	Received 07-Oct-14			
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
	ated Biphenyls by method SW846 3540C												
12674-11-2	Aroclor-1016	< 21.1	U	μg/kg dry	22.6	21.1	1	SW846 8082A	08-Oct-14	09-Oct-14	IMR	1423786	Χ
11104-28-2	Aroclor-1221	< 19.2	U	μg/kg dry	22.6	19.2	1	п		п	"		Χ
11141-16-5	Aroclor-1232	< 20.3	U	μg/kg dry	22.6	20.3	1				"		Χ
53469-21-9	Aroclor-1242	< 10.0	U	μg/kg dry	22.6	10.0	1				"		Χ
12672-29-6	Aroclor-1248 [2C]	28.2		μg/kg dry	22.6	12.4	1				"		Χ
11097-69-1	Aroclor-1254 [2C]	65.5		μg/kg dry	22.6	13.5	1				"		Χ
11096-82-5	Aroclor-1260 [2C]	< 21.4	U	μg/kg dry	22.6	21.4	1	п			"		Х
37324-23-5	Aroclor-1262	< 12.2	U	μg/kg dry	22.6	12.2	1				"		Χ
11100-14-4	Aroclor-1268	< 22.2	U	μg/kg dry	22.6	22.2	1	и			"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	95			30-15	0 %		и		ı	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	100			30-15	0 %		п			II		
2051-24-3	Decachlorobiphenyl (Sr)	100			30-15	0 %		п			"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	85			30-15	0 %		· ·			II		
General C	Chemistry Parameters												
	% Solids	87.3		%			1	SM2540 G Mod.	08-Oct-14	08-Oct-14	DT	1423766	

SS-64	ample Identification S-64 B97664-30			Client P			<u>Matrix</u> Soil		ection Date '-Oct-14 15	Received 07-Oct-14			
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
	ated Biphenyls by method SW846 3540C												
12674-11-2	Aroclor-1016	< 20.8	U	μg/kg dry	22.3	20.8	1	SW846 8082A	08-Oct-14	09-Oct-14	IMR	1423786	Χ
11104-28-2	Aroclor-1221	< 19.0	U	μg/kg dry	22.3	19.0	1				"		Χ
11141-16-5	Aroclor-1232	< 20.0	U	μg/kg dry	22.3	20.0	1			н	"		Χ
53469-21-9	Aroclor-1242	< 9.91	U	μg/kg dry	22.3	9.91	1			п	"		Χ
12672-29-6	Aroclor-1248	< 12.1	U	μg/kg dry	22.3	12.1	1			п	"		Χ
11097-69-1	Aroclor-1254	< 14.1	U	μg/kg dry	22.3	14.1	1				"		Χ
11096-82-5	Aroclor-1260	< 16.0	U	μg/kg dry	22.3	16.0	1				"		Χ
37324-23-5	Aroclor-1262	< 12.1	U	μg/kg dry	22.3	12.1	1				"		Χ
11100-14-4	Aroclor-1268	< 21.9	U	μg/kg dry	22.3	21.9	1				"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	95			30-15	0 %			•		"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	95			30-15	0 %					"		
2051-24-3	Decachlorobiphenyl (Sr)	90			30-15	60 %				п	"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	75			30-15	60 %		•	н		"		
General C	Chemistry Parameters												
	% Solids	85.7		%			1	SM2540 G Mod.	08-Oct-14	08-Oct-14	DT	1423767	

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPI Lim
atch 1423784 - SW846 3540C										
Blank (1423784-BLK1)					Pre	pared: 08-Oct	-14 Analyzed:	10-Oct-14		
Aroclor-1016	< 18.3	U	μg/kg wet	18.3			-			
Aroclor-1016 [2C]	< 12.7	U	μg/kg wet	12.7						
Aroclor-1221	< 16.7	U	μg/kg wet	16.7						
Aroclor-1221 [2C]	< 14.4	U	μg/kg wet	14.4						
Aroclor-1232	< 17.6	U	μg/kg wet	17.6						
Aroclor-1232 [2C]	< 15.1	U	μg/kg wet	15.1						
Aroclor-1242	< 8.70	U	μg/kg wet	8.70						
Aroclor-1242 [2C]	< 15.3	U	μg/kg wet	15.3						
Aroclor-1248	< 10.6	U	μg/kg wet	10.6						
Aroclor-1248 [2C]	< 10.7	U	μg/kg wet	10.7						
Aroclor-1254	< 12.4	U	μg/kg wet	12.4						
Aroclor-1254 [2C]	< 11.7	U	μg/kg wet	11.7						
Aroclor-1260	< 14.0	U	μg/kg wet	14.0						
Aroclor-1260 [2C]	< 18.6	U	μg/kg wet	18.6						
Aroclor-1262	< 10.6	U	μg/kg wet	10.6						
Aroclor-1262 [2C]	< 9.79	U	μg/kg wet	9.79						
Aroclor-1268	< 19.2	U	μg/kg wet	19.2						
Aroclor-1268 [2C]	< 18.8	U	μg/kg wet	18.8						
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	16.6		μg/kg wet		19.6		85	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	17.6		μg/kg wet		19.6		90	30-150		
Surrogate: Decachlorobiphenyl (Sr)	18.6		μg/kg wet		19.6		95	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	15.7		μg/kg wet		19.6		80	30-150		
LCS (1423784-BS1)					Pre	pared: 08-Oct	-14 Analyzed:	10-Oct-14		
Aroclor-1016	217		μg/kg wet	18.4	246		88	40-140		
Aroclor-1016 [2C]	216		μg/kg wet	12.7	246		88	40-140		
Aroclor-1260	201		μg/kg wet	14.1	246		82	40-140		
Aroclor-1260 [2C]	199		μg/kg wet	18.6	246		81	40-140		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	17.7		μg/kg wet		19.7		90	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	18.7		μg/kg wet		19.7		95	30-150		
Surrogate: Decachlorobiphenyl (Sr)	19.7		μg/kg wet		19.7		100	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	16.7		μg/kg wet		19.7		85	30-150		
LCS Dup (1423784-BSD1)					Pre	pared: 08-Oct	-14 Analyzed:	10-Oct-14		
Aroclor-1016	215		μg/kg wet	18.3	244		88	40-140	0.5	30
Aroclor-1016 [2C]	212		μg/kg wet	12.7	244		87	40-140	1	30
Aroclor-1260	197		μg/kg wet	14.0	244		81	40-140	1	30
Aroclor-1260 [2C]	194		μg/kg wet	18.5	244		80	40-140	1	30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	17.6		μg/kg wet		19.5		90	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	18.6		μg/kg wet		19.5		95	30-150		
Surrogate: Decachlorobiphenyl (Sr)	19.5		μg/kg wet		19.5		100	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	16.6		μg/kg wet		19.5		85	30-150		
<u>Duplicate (1423784-DUP1)</u>			Source: SB	97664-20	Pre	pared: 08-Oct	-14 Analyzed:	10-Oct-14		
Aroclor-1016	< 19.9	U	μg/kg dry	19.9		BRL				30
Aroclor-1016 [2C]	< 13.8	U	μg/kg dry	13.8		BRL				30
Aroclor-1221	< 18.1	U	μg/kg dry	18.1		BRL				30
Aroclor-1221 [2C]	< 15.6	U	μg/kg dry	15.6		BRL				30
Aroclor-1232	< 19.1	U	μg/kg dry	19.1		BRL				30
Aroclor-1232 [2C]	< 16.4	U	μg/kg dry	16.4		BRL				30
Aroclor-1242	< 9.46	U	μg/kg dry	9.46		BRL				30
Aroclor-1242 [2C]	< 16.6	U	μg/kg dry	16.6		BRL				30
Aroclor-1248	< 11.6	U	μg/kg dry	11.6		BRL				30

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
eatch 1423784 - SW846 3540C										
Duplicate (1423784-DUP1)			Source: SE	97664-20	Pre	pared: 08-Oc	t-14 Analyzed:	10-Oct-14		
Aroclor-1248 [2C]	< 11.7	U	μg/kg dry	11.7		BRL	•			30
Aroclor-1254	25.5		μg/kg dry	13.4		27.9			9	30
Aroclor-1254 [2C]	26.6		μg/kg dry	12.7		25.8			3	30
Aroclor-1260	< 15.2	U	μg/kg dry	15.2		BRL				30
Aroclor-1260 [2C]	< 20.2	U	μg/kg dry	20.2		BRL				30
Aroclor-1262	< 11.5	U	μg/kg dry	11.5		BRL				30
Aroclor-1262 [2C]	< 10.6	U	μg/kg dry	10.6		BRL				30
Aroclor-1268	< 20.9	U	μg/kg dry	20.9		BRL				30
Aroclor-1268 [2C]	< 20.4	U	μg/kg dry	20.4		BRL				30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	25.5		μg/kg dry		21.3		120	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	21.3		μg/kg dry		21.3		100	30-150		
Surrogate: Decachlorobiphenyl (Sr)	27.7		μg/kg dry		21.3		130	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	18.1		μg/kg dry		21.3		85	30-150		
Matrix Spike (1423784-MS1)			Source: SE	97664-20	Pre	pared: 08-Oc	t-14 Analyzed:	10-Oct-14		
Aroclor-1016	245		μg/kg dry	20.0	267	BRL	92	40-140		
Aroclor-1016 [2C]	247		μg/kg dry	13.9	267	BRL	92	40-140		
Aroclor-1260	242		μg/kg dry	15.3	267	BRL	90	40-140		
Aroclor-1260 [2C]	223		μg/kg dry	20.3	267	BRL	84	40-140		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	20.3		μg/kg dry		21.4		95	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	20.3		μg/kg dry		21.4		95	30-150		
Surrogate: Decachlorobiphenyl (Sr)	24.6		μg/kg dry		21.4		115	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	18.2		μg/kg dry		21.4		85	30-150		
Matrix Spike Dup (1423784-MSD1)			Source: SE	97664-20	Pre	pared: 08-Oc	t-14 Analyzed:	10-Oct-14		
Aroclor-1016	253		μg/kg dry	19.8	265	BRL	96	40-140	4	30
Aroclor-1016 [2C]	246		μg/kg dry	13.7	265	BRL	93	40-140	0.4	30
Aroclor-1260	242		μg/kg dry	15.2	265	BRL	91	40-140	0.9	30
Aroclor-1260 [2C]	226		μg/kg dry	20.1	265	BRL	85	40-140	2	30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	20.1		μg/kg dry		21.2		95	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	21.2		μg/kg dry		21.2		100	30-150		
Surrogate: Decachlorobiphenyl (Sr)	23.3		μg/kg dry		21.2		110	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	19.1		μg/kg dry		21.2		90	30-150		
atch 1423786 - SW846 3540C										
Blank (1423786-BLK1)					Pre	pared: 08-Oc	t-14 Analyzed:	09-Oct-14		
Aroclor-1016	< 18.3	U	μg/kg wet	18.3						
Aroclor-1016 [2C]	< 12.7	U	μg/kg wet	12.7						
Aroclor-1221	< 16.7	U	μg/kg wet	16.7						
Aroclor-1221 [2C]	< 14.4	U	μg/kg wet	14.4						
Aroclor-1232	< 17.6	U	μg/kg wet	17.6						
Aroclor-1232 [2C]	< 15.1	U	μg/kg wet	15.1						
Aroclor-1242	< 8.71	U	μg/kg wet	8.71						
Aroclor-1242 [2C]	< 15.3	U	μg/kg wet	15.3						
Aroclor-1248	< 10.6	U	μg/kg wet	10.6						
Aroclor-1248 [2C]	< 10.7	U	μg/kg wet	10.7						
Aroclor-1254	< 12.4	U	μg/kg wet	12.4						
Aroclor-1254 [2C]	< 11.7	U	μg/kg wet	11.7						
Aroclor-1260	< 14.0	U	μg/kg wet	14.0						
Aroclor-1260 [2C]	< 18.6	U	μg/kg wet	18.6						
Aroclor-1262	< 10.6	U	μg/kg wet	10.6						
Aroclor-1262 [2C]	< 9.79	U	μg/kg wet	9.79						
Aroclor-1268	< 19.3	U	μg/kg wet	19.3						

.nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1423786 - SW846 3540C										
Blank (1423786-BLK1)					Pre	pared: 08-Oct-	·14 Analyzed:	09-Oct-14		
Aroclor-1268 [2C]	< 18.8	U	μg/kg wet	18.8						
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	16.6		μg/kg wet		19.6		85	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	17.6		μg/kg wet		19.6		90	30-150		
Surrogate: Decachlorobiphenyl (Sr)	19.6		μg/kg wet		19.6		100	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	14.7		μg/kg wet		19.6		75	30-150		
LCS (1423786-BS1)					<u>Pre</u>	pared: 08-Oct-	-14 Analyzed:	09-Oct-14		
Aroclor-1016	221		μg/kg wet	18.3	245		90	40-140		
Aroclor-1016 [2C]	206		μg/kg wet	12.7	245		84	40-140		
Aroclor-1260	198		μg/kg wet	14.0	245		81	40-140		
Aroclor-1260 [2C]	196		μg/kg wet	18.6	245		80	40-140		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	17.7		μg/kg wet		19.6		90	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	18.7		μg/kg wet		19.6		95	30-150		
Surrogate: Decachlorobiphenyl (Sr)	20.6		μg/kg wet		19.6		105	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	15.7		μg/kg wet		19.6		80	30-150		
LCS Dup (1423786-BSD1)					Pre	pared: 08-Oct-	14 Analyzed:	09-Oct-14		
Aroclor-1016	221		μg/kg wet	18.5	248		89	40-140	0.9	30
Aroclor-1016 [2C]	208		μg/kg wet	12.9	248		84	40-140	0.000009	30
Aroclor-1260	201		μg/kg wet	14.2	248		81	40-140	0.5	30
Aroclor-1260 [2C]	208		μg/kg wet	18.8	248		84	40-140	5	30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	17.8		μg/kg wet		19.8		90	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	18.8		μg/kg wet		19.8		95	30-150		
Surrogate: Decachlorobiphenyl (Sr)	19.8		μg/kg wet		19.8		100	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	16.9		μg/kg wet		19.8		85	30-150		

General Chemistry Parameters - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1423766 - General Preparation										
<u>Duplicate (1423766-DUP1)</u>			Source: SE	<u> 897664-10</u>	<u>Pre</u>	pared & Analy	zed: 08-Oct-14			
% Solids	81.8		%			81.4			0.4	5
<u>Duplicate (1423766-DUP2)</u>			Source: SE	<u> 897664-11</u>	Pre	pared & Analy	zed: 08-Oct-14			
% Solids	78.9		%			78.8			0.08	5
Batch 1423767 - General Preparation										
<u>Duplicate (1423767-DUP1)</u>			Source: SE	<u> 897664-30</u>	<u>Pre</u>	pared & Analy	zed: 08-Oct-14			
% Solids	85.7		%			85.7			0.02	5

Notes and Definitions

D Data reported from a dilution

GS1 Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

J Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration

(CLP J-Flag).

P Difference between the two GC columns is greater than 40%.

R01 The Reporting Limit has been raised to account for matrix interference.

S01 The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration

and/or matrix interference's.

U Analyte included in the analysis, but not detected at or above the MDL.

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

Method Blank: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification:</u> The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

Validated by: June O'Connor

CHAIN OF CUSTODY RECORD

Page of 3

5897664	By.
) 0	Special Handling:

Standard TAT - 7 to 10 business days

- Rush TAT Date Needed: 31
 All TATs subject to laboratory approval.
- · Min. 24-hour notification needed for rushes.
- Samples disposed of after 60 days unless otherwise instructed.

Report To: TAE	Invoice	То:	tect's	7	Payo	He			oject No.:			Business Park		
East Telephone #: Project Mgr.	Syracuse, N (315) 432-0	JY 13057 1400	P.O. No	.: _]4	-09	1	RQ	N:			cation: <u>Ca</u>		,	Dewitt State: NY
	2O ₃ 2=HCl 3= O ₄ 9= Deionized			6=Asc		cid 12=_	7=0	CH ₃ O	Н	List	t preservative	e code be	low:	QA/QC Reporting Notes: * additional charges may apply
O=Oil SW=	g Water GW=Gro Surface Water S X2=	O=Soil SL=Slu	dge A=Air			Viais		ntaine	ers:	PCBs .	Analy	ses:		MA DEP MCP CAM Report: Yes □ No □ CT DPH RCP Report: Yes □ No □ QA/QC Reporting Level Standard □ No QC □ DQA*
Lab Id:	G=Grab C= Sample Id:	=Composite Date:	Time:	Type	Matrix	# of VOA Vi	# of Amber Glass	# of Clear Glass	# of Plastic	8082 F				□ NY ASP A* □ NY ASP B* □ NJ Reduced* □ NJ Full* □ TIER II* □ TIER IV* □ Other State-specific reporting standards:
766421	55-52	10/7/14	1110	6	50		1			X		3.11	013	IR (//
1 82	SS-55		1120	+	++		1			11		11/7/	111 111	
03	55-53 55-50		1126		++		1			+++		14/	7 000	
05	55-49		1134	+	+									
06	55-48		1207											1
0)	55-44		1219											
1/08	55-41		1233										-	70 57R3
1/09	55-42	-3-	1239										-	TIN A
10	55-45	V	1247	V	V		4			4				
77	equished by:	Re	ceived by:	Œ.		Date:		10	Time:	Temp°C	K EDD I	to (mcker	na @aeccgroup.com
											☐ Ambient	Iced	☐ Refrigera	ated DI VOA Frozen Soil Jar Frozen

SPECTRUM ANALYTICAL, INC.
Featuring
HANIBAL TECHNOLOGY

CHAIN OF CUSTODY RECORD

Page 2 of 3

Special	Handling:
---------	-----------

- · All TATs subject to laboratory approval.
- · Min. 24-hour notification needed for rushes.

· Samples disposed of after 60 days unless otherwise instructed.

AE	Rich McKenna	1.6	Invoice	То:	Ace	ł's	Pa	yab	le			ect No.:					liness Park
East Telephone #: Project Mgr.	3 Fly Road Syracuse, A (315) 432-6	NY 13057 1400	P.O. No	.: 14	1-09	L	RQ	N: _		_ 1	Loca	ation: (iana	da,	Driv		itt State: NY
	2O ₃ 2=HCl 3=H O ₄ 9= Deionized V						7=0	CH ₃ O	Н	I	ist	preserva	ative co	ode be	low:		/QC Reporting Notes:
DW=Drinking O=Oil SW=	g Water GW=Grou Surface Water SO X2=	ndwater WW= D=Soil SL=Slud	Wastewater lge A=Air			Vials		ntaine Glass	ers:	PCBS .		Aı	alyses			CTI	P MCP CAM Report: Yes \(\subseteq \) No DPH RCP Report: Yes \(\subseteq \) No \(\subseteq \) QA/QC Reporting Level and ard \(\subseteq \) No QC \(\supseteq \) DQA
Lab Id:	G=Grab C=0 Sample Id:	Composite Date:	Time:	Type	Matrix	# of VOA V	# of Amber Glass	# of Clear G	# of Plastic	8682 P						□ □ Othe	NY ASP A* NY ASP B* NJ Reduced* NJ Full* TIER II* TIER IV* er specific reporting standards
7664-11	55-39	10/7/14	1300	6	SO		1			X							
1 12	55-46		1309	-1-	1		1					7	110	L	/	DI	
13	5s-51		1316	+			-			-		INI	5/11	P	7	101	
19	55-54 55-47		1333									14	117	Ca			
16	55-43		1338														*
17	55-40		1350														
18	55-38	- 10	1359				1									5	1057 -
1/19	55-37		1404				1										PP/R2
1/ 20	55-57	W.	1420	V	r		4.			4	0.00						X
Relinquished by: Recei			eived by:	A -	10	Tate!	4	10	Time: 243	Temp	r'C					of, E	xcel V
11/	M	V('		14	111	4	X	100			Condition Ambie	n upop	receipt:	□ Refri	gerated D	IVOA Frozen	

SPECTRUM ANALYTICAL INC.

SPECTRUM ANALYTICAL, INC.
Featuring

CHAIN OF CUSTODY RECORD

Page 3 of 3

C297664	Ba.	3	
5,21,100	Special Handling:	-	
	T		1.3

Li Standard 1741 - 7 to 10 bus.	mess u
Push TAT - Data Nandad	4
Puch TAT - Data Mandad	

All TATs subject to laboratory approval
Min. 24-hr notification needed for rushes

HANIBAL TECHNOLOGY												Samples disposed after 60 days unless otherwise instructed.			
Report To: Rich	h Motienna		Invoice To	:	Ae	ct's	Pa	iyat	le		Projec	t No:		14-0	IPO
	08 Fly Road	18.									Site N	lame: _	Woodbi	ne ?	Business Park
Eas	+ Syracuse, NY	13057									Locat	ion:	Canada	Dr	Dewitt State: NY
Telephone #: C	+ Syracuse, NY 315) 432-9400	200	P.O No.	_1'	4-00	71	Quot	e/RQN			Samp	ler(s):	Drew	Bran	Dewitt State: NY
	=Na ₂ S2O ₃ 2 =HCl 3 =H	7947	5=NaOH 6=			1					List Preservat	tive Code	below:		QA/QC Reporting Notes:
/=CH3OH 8=NaHS	O ₄ 9=Deionized Water 10=F	I ₃ PO ₄ 11=		12=	_							Т	11	-	* additional charges may appply
DW=Dinking Water	GW=Groundwater SW=	Surface Water W	W=Waste Water	r			C	ontain	ers		An	alysis			MA DEP MCP CAM Report? Yes No
O=Oil SO=Soil	SL=Sludge A=Indoor/A	mbient Air SG=So	il Gas							'n					CT DPH RCP Report?
X1=	X2=					Is	lass	SS		स्प्र			31 1	chlorinated	□ DQA*
	Grab	C=Compsite		o.	. _.	of VOA Vials	of Amber Glass	of Clear Glass	of Plastic	808				if chlo	☐ ASP A* ☐ ASP B* ☐ NJ Reduced* ☐ NJ Full* ☐ Tier II* ☐ Tier IV*
Lab ID:	Sample ID:	Date:	Time:	J K	Matrix	A Jo #	# of A	# of C	# of Pl	8				Check	Other: State-specific reporting standards:
7664-21	55-58	6/7/14	1426	6	SD		1		76	X					bate-specific reporting standards.
1 22	55-56	1	1432	1	1		1			1					
23	55-60		1443			Y .									
24	55-59		1450										61	IR	11
25	55-6		1505								3.	110	_12.1	11 3	1
26	55-62		1512								10	15/14	NIC		
27	55-66		1516								1/0/	17/1			
28	55-65		1521												man o
/ 29	55-63		1525							= 10 8					DIP PIR S
/ 30	55-64	1	1529	1	V		V			4					
Relinqui	shed by:	Received	by:	7		Date:	11	e .	Time:	Temp °C	EDD EDD	format:	POF	. Ex	cel Will
D'elest	Brunglas	120	att		10	17/	4	1	64	Observed	K E-mai	I to:	rmche	enna	@ aeccaroup: com
AS.	well	Win I	Pris		18	15/	1/4	8	1PO	Corecction Factor	307				3 ,
The	h	10)	10		101	5/1	4	2	100	Corrected	Condition up	pon receip	t: Custody	Seals:	☐ Present ☐ Intact ☐ Broken
0 11						111		N		IR ID#	☐ Ambier	nt XIced	I 🔲 Refri	gerated	☐ DI VOA Frozen ☐ Soil Jar Frozen

Report Date: 14-Oct-14 12:35

☑ Final Report☐ Re-Issued Report☐ Revised Report

Laboratory Report

AECC Environmental Consulting 6308 Fly Road

East Syracuse, NY 13057

Attn: Rich McKenna

Project: WBP - Dewitt, NY

Project #: 14-091

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SB97668-01	Road 1	Soil	07-Oct-14 10:40	07-Oct-14 21:00
SB97668-02	Road 2	Soil	07-Oct-14 10:46	07-Oct-14 21:00
SB97668-03	Road 3	Soil	07-Oct-14 10:52	07-Oct-14 21:00
SB97668-04	Road 4	Soil	07-Oct-14 10:58	07-Oct-14 21:00

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011/MA012 New York # 11393/11840 Pennsylvania # 68-04426/68-02924 Rhode Island # 98 USDA # S-51435

Authorized by:

Nicole Leja Laboratory Director

Spectrum Analytical holds certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 11 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey, Pennsylvania and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, NJ-MA012, PA-68-04426 and FL-E87936).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

CASE NARRATIVE:

Data has been reported to the MDL. This report includes estimated concentrations detected below the RDL and above the MDL (J-Flag).

The samples were received 5.7 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of \pm 1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

There is no relevant protocol-specific QC and/or performance standards non-conformances to report.

Sample Acceptance Check Form

Client:	AECC Environmental Consulting			
Project:	WBP - Dewitt, NY / 14-091			
Work Order:	SB97668			
Sample(s) received on:	10/7/2014			
The following outlines th	ne condition of samples for the attached Chain of Custody upon receipt.			
		Yes	<u>No</u>	N/A
1. Were custody se	als present?		$\overline{}$	
2. Were custody se	als intact?			\checkmark
3. Were samples re	ceived at a temperature of \leq 6°C?	✓		
4. Were samples co	ooled on ice upon transfer to laboratory representative?	\checkmark		
5. Were samples re	frigerated upon transfer to laboratory representative?		✓	
6. Were sample con	ntainers received intact?	\checkmark		
1 1	operly labeled (labels affixed to sample containers and include sample ID, site project number and the collection date)?			
8. Were samples ac	ecompanied by a Chain of Custody document?	\checkmark		
include sample I	ustody document include proper, full, and complete documentation, which shall D, site location, and/or project number, date and time of collection, collector's name, e, sample matrix and any special remarks concerning the sample?	\overline{V}		
10. Did sample cont	ainer labels agree with Chain of Custody document?	\checkmark		

11. Were samples received within method-specific holding times?

Sample Identification Road 1 SB97668-01			Client Project # 14-091			<u>Matrix</u> Soil	Collection Date/Time 07-Oct-14 10:40			Received 07-Oct-14			
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
Polychlorina	ated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 19.3	U	μg/kg dry	20.7	19.3	1	SW846 8082A	08-Oct-14	09-Oct-14	IMR	1423786	Χ
11104-28-2	Aroclor-1221	< 17.6	U	μg/kg dry	20.7	17.6	1				"		Χ
11141-16-5	Aroclor-1232	< 18.6	U	μg/kg dry	20.7	18.6	1				"		Χ
53469-21-9	Aroclor-1242	< 9.20	U	μg/kg dry	20.7	9.20	1				"		Х
12672-29-6	Aroclor-1248 [2C]	164		μg/kg dry	20.7	11.3	1	п			"		Χ
11097-69-1	Aroclor-1254 [2C]	217		μg/kg dry	20.7	12.3	1	п			"		Χ
11096-82-5	Aroclor-1260	30.0		μg/kg dry	20.7	14.8	1	н			"		Х
37324-23-5	Aroclor-1262	< 11.2	U	μg/kg dry	20.7	11.2	1	п			"		Х
11100-14-4	Aroclor-1268	< 20.3	U	μg/kg dry	20.7	20.3	1				"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	90			30-15	60 %		п			"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	95			30-15	0 %		н			"		
2051-24-3	Decachlorobiphenyl (Sr)	100			30-15	0 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	80			30-15	50 %		11			"		
General C	Chemistry Parameters												
	% Solids	92.8		%			1	SM2540 G Mod.	08-Oct-14	08-Oct-14	DT	1423767	

Sample Identification Road 2 SB97668-02				Client Project # 14-091			<u>Matrix</u> Soil	Collection Date/Time 07-Oct-14 10:46			<u>Rec</u> 07-		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	ЭC											
	ated Biphenyls by method SW846 3540C												
12674-11-2	Aroclor-1016	< 20.5	U	μg/kg dry	22.0	20.5	1	SW846 8082A	08-Oct-14	09-Oct-14	IMR	1423786	Χ
11104-28-2	Aroclor-1221	< 18.7	U	μg/kg dry	22.0	18.7	1				"		Χ
11141-16-5	Aroclor-1232	< 19.7	U	μg/kg dry	22.0	19.7	1			п	"		Χ
53469-21-9	Aroclor-1242	< 9.77	U	μg/kg dry	22.0	9.77	1			п	"		Χ
12672-29-6	Aroclor-1248	< 11.9	U	μg/kg dry	22.0	11.9	1			п	"		Χ
11097-69-1	Aroclor-1254 [2C]	29.7		μg/kg dry	22.0	13.1	1				"		Х
11096-82-5	Aroclor-1260 [2C]	< 20.8	U	μg/kg dry	22.0	20.8	1				"		Χ
37324-23-5	Aroclor-1262	< 11.9	U	μg/kg dry	22.0	11.9	1			п	"		Χ
11100-14-4	Aroclor-1268	< 21.6	U	μg/kg dry	22.0	21.6	1				"		Χ
Surrogate rec	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	100			30-15	0 %					"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	100			30-15	0 %					"		
2051-24-3	Decachlorobiphenyl (Sr)	105			30-15	60 %				п	"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	90			30-15	60 %		•			"		
General C	Chemistry Parameters												
	% Solids	89.8		%			1	SM2540 G Mod.	08-Oct-14	08-Oct-14	DT	1423767	

Sample Identification Road 3 SB97668-03			Client Project # 14-091			<u>Matrix</u> Soil	Collection Date/Time 07-Oct-14 10:52			Received 07-Oct-14			
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GС											
	ated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 20.9	U	μg/kg dry	22.4	20.9	1	SW846 8082A	08-Oct-14	09-Oct-14	IMR	1423786	Χ
11104-28-2	Aroclor-1221	< 19.0	U	μg/kg dry	22.4	19.0	1				"		Χ
11141-16-5	Aroclor-1232	< 20.1	U	μg/kg dry	22.4	20.1	1				"		Χ
53469-21-9	Aroclor-1242	< 9.94	U	μg/kg dry	22.4	9.94	1				"		Χ
12672-29-6	Aroclor-1248 [2C]	53.7		μg/kg dry	22.4	12.3	1				"		Χ
11097-69-1	Aroclor-1254 [2C]	99.5		μg/kg dry	22.4	13.3	1				"		Χ
11096-82-5	Aroclor-1260 [2C]	< 21.2	U	μg/kg dry	22.4	21.2	1	п			"		Χ
37324-23-5	Aroclor-1262	< 12.1	U	μg/kg dry	22.4	12.1	1				"		Χ
11100-14-4	Aroclor-1268	< 22.0	U	μg/kg dry	22.4	22.0	1	п			"		Х
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	90			30-15	50 %		п		н	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	80			30-15	50 %		п		п	"		
2051-24-3	Decachlorobiphenyl (Sr)	100			30-15	50 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	70			30-15	50 %		п		н	"		
General C	Chemistry Parameters												
	% Solids	87.7		%			1	SM2540 G Mod.	08-Oct-14	08-Oct-14	DT	1423767	

Sample Identification Road 4 SB97668-04			Client Project # 14-091			<u>Matrix</u> Soil	Collection Date/Time 07-Oct-14 10:58			Received 07-Oct-14			
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GС											
	ated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 21.5	U	μg/kg dry	23.1	21.5	1	SW846 8082A	08-Oct-14	10-Oct-14	IMR	1423786	Χ
11104-28-2	Aroclor-1221	< 19.6	U	μg/kg dry	23.1	19.6	1	п			"		Χ
11141-16-5	Aroclor-1232	< 20.7	U	μg/kg dry	23.1	20.7	1				"		Χ
53469-21-9	Aroclor-1242	< 10.2	U	μg/kg dry	23.1	10.2	1				"		Х
12672-29-6	Aroclor-1248	< 12.5	U	μg/kg dry	23.1	12.5	1				"		Χ
11097-69-1	Aroclor-1254	38.0		μg/kg dry	23.1	14.6	1				"		Χ
11096-82-5	Aroclor-1260	< 16.5	U	μg/kg dry	23.1	16.5	1	п			"		Χ
37324-23-5	Aroclor-1262	< 12.5	U	μg/kg dry	23.1	12.5	1				"		Χ
11100-14-4	Aroclor-1268	< 22.7	U	μg/kg dry	23.1	22.7	1				"		Х
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	100			30-15	0 %		н		н	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	100			30-15	0 %		п		и	"		
2051-24-3	Decachlorobiphenyl (Sr)	100			30-15	0 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	85			30-15	50 %		11		н	"		
General C	Chemistry Parameters												
	% Solids	84.8		%			1	SM2540 G Mod.	08-Oct-14	08-Oct-14	DT	1423767	

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
atch 1423786 - SW846 3540C										
Blank (1423786-BLK1)					Prep	pared: 08-Oct	-14 Analyzed:	09-Oct-14		
Aroclor-1016	< 18.3	U	μg/kg wet	18.3						
Aroclor-1016 [2C]	< 12.7	U	μg/kg wet	12.7						
Aroclor-1221	< 16.7	U	μg/kg wet	16.7						
Aroclor-1221 [2C]	< 14.4	U	μg/kg wet	14.4						
Aroclor-1232	< 17.6	U	μg/kg wet	17.6						
Aroclor-1232 [2C]	< 15.1	U	μg/kg wet	15.1						
Aroclor-1242	< 8.71	U	μg/kg wet	8.71						
Aroclor-1242 [2C]	< 15.3	U	μg/kg wet	15.3						
Aroclor-1248	< 10.6	U	μg/kg wet	10.6						
Aroclor-1248 [2C]	< 10.7	U	μg/kg wet	10.7						
Aroclor-1254	< 12.4	U	μg/kg wet	12.4						
Aroclor-1254 [2C]	< 11.7	U	μg/kg wet	11.7						
Aroclor-1260	< 14.0	U	μg/kg wet	14.0						
Aroclor-1260 [2C]	< 18.6	U	μg/kg wet	18.6						
Aroclor-1262	< 10.6	U	μg/kg wet	10.6						
Aroclor-1262 [2C]	< 9.79	U	μg/kg wet	9.79						
Aroclor-1268	< 19.3	U	μg/kg wet	19.3						
Aroclor-1268 [2C]	< 18.8	U	μg/kg wet	18.8						
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	16.6		μg/kg wet		19.6		85	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	17.6		μg/kg wet		19.6		90	30-150		
Surrogate: Decachlorobiphenyl (Sr)	19.6		μg/kg wet		19.6		100	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	14.7		μg/kg wet		19.6		75	30-150		
LCS (1423786-BS1)					Prer	pared: 08-Oct	-14 Analyzed:	09-Oct-14		
Aroclor-1016	221		μg/kg wet	18.3	245		90	40-140		
Aroclor-1016 [2C]	206		μg/kg wet	12.7	245		84	40-140		
Aroclor-1260	198		μg/kg wet	14.0	245		81	40-140		
Aroclor-1260 [2C]	196		μg/kg wet	18.6	245		80	40-140		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	17.7		μg/kg wet		19.6		90	30-150		
	18.7				19.6		95	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C] Surrogate: Decachlorobiphenyl (Sr)	20.6		μg/kg wet		19.6		95 105	30-150 30-150		
	20.6 15.7		μg/kg wet		19.6		80	30-150 30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	15.7		μg/kg wet							
LCS Dup (1423786-BSD1) Aroclor-1016	204			10 F		Dared: 08-Oct	-14 Analyzed: 89		0.0	00
	221		μg/kg wet	18.5	248			40-140	0.9	30
Aroclor-1016 [2C] Aroclor-1260	208		μg/kg wet	12.9	248		84	40-140	0.000009	30
Aroclor-1260 [2C]	201 208		μg/kg wet μg/kg wet	14.2 18.8	248 248		81 84	40-140 40-140	0.5 5	30 30
				10.0						
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	17.8		μg/kg wet		19.8		90	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	18.8		μg/kg wet		19.8		95	30-150		
Surrogate: Decachlorobiphenyl (Sr)	19.8		μg/kg wet		19.8		100	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	16.9		μg/kg wet		19.8		85	30-150		
<u>Duplicate (1423786-DUP1)</u>			Source: SB		Prep		-14 Analyzed:	09-Oct-14		
Aroclor-1016	< 21.9	U	μg/kg dry	21.9		BRL				30
Aroclor-1016 [2C]	< 15.2	U	μg/kg dry	15.2		BRL				30
Aroclor-1221	< 20.0	U	μg/kg dry	20.0		BRL				30
Aroclor-1221 [2C]	< 17.2	U	μg/kg dry	17.2		BRL				30
Aroclor-1232	< 21.1	U	μg/kg dry	21.1		BRL				30
Aroclor-1232 [2C]	< 18.1	U	μg/kg dry	18.1		BRL				30
Aroclor-1242	< 10.4	U	μg/kg dry	10.4		BRL				30
Aroclor-1242 [2C]	< 18.3	U	μg/kg dry	18.3		BRL				30
Aroclor-1248	< 12.8	U	μg/kg dry	12.8		BRL				30

					Spike	Source		%REC		RPD
nalyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limi
atch 1423786 - SW846 3540C										
<u>Duplicate (1423786-DUP1)</u>			Source: SE	97668-04	<u>Pre</u>	pared: 08-Oct	-14 Analyzed:	09-Oct-14		
Aroclor-1248 [2C]	< 12.9	U	μg/kg dry	12.9		BRL				30
Aroclor-1254	38.7		μg/kg dry	14.8		38.0			2	30
Aroclor-1254 [2C]	38.7		μg/kg dry	14.0		39.2			1	30
Aroclor-1260	< 16.8	U	μg/kg dry	16.8		BRL				30
Aroclor-1260 [2C]	< 22.2	U	μg/kg dry	22.2		BRL				30
Aroclor-1262	< 12.7	U	μg/kg dry	12.7		BRL				30
Aroclor-1262 [2C]	< 11.7	U	μg/kg dry	11.7		BRL				30
Aroclor-1268	< 23.1	U	μg/kg dry	23.1		BRL				30
Aroclor-1268 [2C]	< 22.5	U	μg/kg dry	22.5		BRL				30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	22.3		μg/kg dry		23.5		95	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	21.1		μg/kg dry		23.5		90	30-150		
Surrogate: Decachlorobiphenyl (Sr)	25.8		μg/kg dry		23.5		110	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	18.8		μg/kg dry		23.5		80	30-150		
Matrix Spike (1423786-MS1)			Source: SE	97668-04	Pre	pared: 08-Oct	-14 Analyzed:	09-Oct-14		
Aroclor-1016	246		μg/kg dry	21.8	292	BRL	84	40-140		
Aroclor-1016 [2C]	244		μg/kg dry	15.1	292	BRL	84	40-140		
Aroclor-1260	253		μg/kg dry	16.7	292	BRL	87	40-140		
Aroclor-1260 [2C]	232		μg/kg dry	22.1	292	BRL	80	40-140		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	21.0		μg/kg dry		23.3		90	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	21.0		μg/kg dry		23.3		90	30-150		
Surrogate: Decachlorobiphenyl (Sr)	24.5		μg/kg dry		23.3		105	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	19.8		μg/kg dry		23.3		85	30-150		
Matrix Spike Dup (1423786-MSD1)			Source: SE	97668-04	Pre	pared: 08-Oct	-14 Analyzed:	09-Oct-14		
Aroclor-1016	257		μg/kg dry	21.3	285	BRL	90	40-140	7	30
Aroclor-1016 [2C]	241		μg/kg dry	14.8	285	BRL	85	40-140	1	30
Aroclor-1260	252		μg/kg dry	16.3	285	BRL	88	40-140	2	30
Aroclor-1260 [2C]	236		μg/kg dry	21.6	285	BRL	83	40-140	4	30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	13.7		μg/kg dry		22.8		60	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	13.7		μg/kg dry		22.8		60	30-150		
Surrogate: Decachlorobiphenyl (Sr)	14.8		μg/kg dry		22.8		65	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	12.5		μg/kg dry		22.8		55	30-150		

General Chemistry Parameters - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1423767 - General Preparation										
Duplicate (1423767-DUP2)			Source: SI	B97668-01	Pre	pared & Analy	zed: 08-Oct-14			
% Solids	92.4		%			92.8			0.4	5

Notes and Definitions

J Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).

U Analyte included in the analysis, but not detected at or above the MDL.

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification:</u> The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

Validated by: June O'Connor

CHAIN OF CUSTODY RECORD

129711	2	Can	1
501100	0	190	
0		Spe	ecial Handling

☐ Standard TAT - 7 to 10 business days

Rush TAT - Date Needed:

All TATs subject to laboratory approval Min. 24-hr notification needed for rushes

Featuring HANIBAL TECHNOLOGY													Samples disposed			s dispos	ed af	fter 60 days unless otherwise instructed.		
Report To: Rich McKenna			Invoice To: Acit's Payable								Pı	oject No:		14	1-0	91				
AECC												Si	Site Name:		establine.		F	Business Park		
63	08 Fly Road					_					_									
East Syracuse, NY 13057													Location: Sampler(s):		Drew Br			Dewitt State: NY		
Telephone #:	515) 754-1100		P.O No.:	14-	-09	_	Quote	e/RQN:												
	=Na ₂ S2O ₃ 2 =HCl 3 =l										1	List Prese	rvative Co	de belo	w:			QA/QC Reporting Notes:		
7=CH3OH 8=NaHS	SO ₄ 9=Deionized Water 10=1	H_3PO_4 11=		12=_		_	_					TT						* additional charges may appply		
DW=Dinking Water GW=Groundwater SW=Surface Water WW=Waste Water						Containers						Analysis						MA DEP MCP CAM Report? Yes No		
	SL=Sludge A=Indoor//		Gas								10			1			ed	CT DPH RCP Report? Yes No		
						s	ass	95			PCBs						rinat	□ DQA* □ ASP B*		
X1= X2= X3=						# of VOA Vials	er Gl	r Gla	ig								Check if chlorinated	☐ NJ Reduced* ☐ NJ Full*		
G= Grab C=Compsite				ype	Matrix	.VO	# of Amber Glass	of Clear Glass	of Plastic		6883						eck i	☐ Tier II* ☐ Tier IV* ☐ Other:		
Lab ID:	Sample ID:	Date:	Time:		Σ	# of	# of	# 0	11:					-	-		Ch	State-specific reporting standards:		
9766801	Road	10/7/14	1040		50		1				X		-	-	-					
102	Road 2	10/7/14	1046		50						X			-	-			*		
03	Road 3	10/7/14	1052	1	50		1				X		1	1	-	R				
04	Road 4	10/7/14	1058	0	50		-				X	-		/_	- 8	# #_				
A TOUR															-					
															-					
1 S T 6 N					/										1					
								_										6705/103		
E				. =														Dill Pin		
AND AND																				
Relinquished by:					Date: Time:					Temp °C	C EDD format:			PDF, Excel						
Mar Maria de Shott				1	ic	171	17/14		16045		Ob served	X	E-mail to:	_ rmck			en	nna @ recigroup.com		
A Soll ton			My 1			111	1	5000			Corecction Factor							•		
						1/1/		0000		1	Corrected									
1/N/n	M	SIL			17/1	4	2/00			IR ID#		Condition upon receipt: Custody Seals: Present Intact Broken								
						(()					III III	□ A	Iced Refrigerated			ed	☐ DI VOA Frozen ☐ Soil Jar Frozen			

Report Date: 15-Oct-14 15:41

□ Re-Issued Report□ Revised Report

Laboratory Report

AECC Environmental Consulting 6308 Fly Road

East Syracuse, NY 13057

Attn: Rich McKenna

Project: WBP - Dewitt, NY

Project #: 14-091

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SB97867-01	SS-30A	Soil	09-Oct-14 12:07	09-Oct-14 21:00
SB97867-02	SS-30B	Soil	09-Oct-14 12:12	09-Oct-14 21:00
SB97867-03	SS-30C	Soil	09-Oct-14 12:17	09-Oct-14 21:00
SB97867-04	SS-30D	Soil	09-Oct-14 12:22	09-Oct-14 21:00
SB97867-05	SS-11A	Soil	09-Oct-14 12:34	09-Oct-14 21:00
SB97867-06	SS-11B	Soil	09-Oct-14 12:39	09-Oct-14 21:00
SB97867-07	SS-11C	Soil	09-Oct-14 12:44	09-Oct-14 21:00
SB97867-08	SS-11D	Soil	09-Oct-14 12:48	09-Oct-14 21:00
SB97867-09	SS-02A	Soil	09-Oct-14 12:56	09-Oct-14 21:00
SB97867-10	SS-02B	Soil	09-Oct-14 13:01	09-Oct-14 21:00
SB97867-11	SS-02C	Soil	09-Oct-14 13:06	09-Oct-14 21:00

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011/MA012 New York # 11393/11840 Pennsylvania # 68-04426/68-02924 Rhode Island # 98 USDA # S-51435

Authorized by:

Nicole Leja Laboratory Director

Spectrum Analytical holds certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 16 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey, Pennsylvania and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, NJ-MA012, PA-68-04426 and FL-E87936).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

CASE NARRATIVE:

Data has been reported to the MDL. This report includes estimated concentrations detected below the RDL and above the MDL (J-Flag).

The samples were received 5.6 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of \pm 1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

There is no relevant protocol-specific QC and/or performance standards non-conformances to report.

Sample Acceptance Check Form

Client:	AECC Environmental Consulting			
Project:	WBP - Dewitt, NY / 14-091			
Work Order:	SB97867			
Sample(s) received on:	10/9/2014			
The following outlines th	ne condition of samples for the attached Chain of Custody upon receipt.			
		<u>Yes</u>	<u>No</u>	<u>N/A</u>
1. Were custody se	als present?		\checkmark	
2. Were custody se	als intact?			\checkmark
3. Were samples re	ceived at a temperature of \leq 6°C?	✓		
4. Were samples co	ooled on ice upon transfer to laboratory representative?	\checkmark		
5. Were samples re	frigerated upon transfer to laboratory representative?		\checkmark	
6. Were sample con	ntainers received intact?	V		
• •	roperly labeled (labels affixed to sample containers and include sample ID, site project number and the collection date)?	~		
8. Were samples ac	ecompanied by a Chain of Custody document?	~		
include sample I	ustody document include proper, full, and complete documentation, which shall D, site location, and/or project number, date and time of collection, collector's name, e, sample matrix and any special remarks concerning the sample?	✓		
10. Did sample cont	ainer labels agree with Chain of Custody document?	\checkmark		

11. Were samples received within method-specific holding times?

Sample Io SS-30A SB97867	dentification -01			Client P			<u>Matrix</u> Soil		ection Date 9-Oct-14 12			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
Polychlorina	ated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 26.4	U	μg/kg dry	28.2	26.4	1	SW846 8082A	10-Oct-14	11-Oct-14	IMR	1424044	Χ
11104-28-2	Aroclor-1221	< 24.0	U	μg/kg dry	28.2	24.0	1				"		Χ
11141-16-5	Aroclor-1232	< 25.4	U	μg/kg dry	28.2	25.4	1	п		п			Χ
53469-21-9	Aroclor-1242	< 12.5	U	μg/kg dry	28.2	12.5	1			н	"		Χ
12672-29-6	Aroclor-1248	< 15.3	U	μg/kg dry	28.2	15.3	1	п			"		Χ
11097-69-1	Aroclor-1254 [2C]	< 16.8	U	μg/kg dry	28.2	16.8	1	п			"		Χ
11096-82-5	Aroclor-1260	< 20.2	U	μg/kg dry	28.2	20.2	1	п			"		Χ
37324-23-5	Aroclor-1262	< 15.3	U	μg/kg dry	28.2	15.3	1	п			"		Χ
11100-14-4	Aroclor-1268	< 27.7	U	μg/kg dry	28.2	27.7	1				"		Х
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	80			30-15	0 %		н			"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	85			30-15	0 %		н		"	"		
2051-24-3	Decachlorobiphenyl (Sr)	110			30-15	0 %				и	•		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	65			30-15	50 %		11			"		
General C	Chemistry Parameters												
	% Solids	70.0		%			1	SM2540 G Mod.	10-Oct-14	10-Oct-14	DT	1424046	

Sample I SS-30B SB97867	dentification 7-02			Client P			<u>Matrix</u> Soil	· · · · · · · · · · · · · · · · · · ·	ection Date O-Oct-14 12			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivola	tile Organic Compounds by C	GC											
Polychlorin	ated Biphenyls												
Prepared	d by method SW846 3540C												
12674-11-2	Aroclor-1016	< 24.4	U	μg/kg dry	26.1	24.4	1	SW846 8082A	10-Oct-14	11-Oct-14	IMR	1424044	Χ
11104-28-2	Aroclor-1221	< 22.2	U	μg/kg dry	26.1	22.2	1				"		Χ
11141-16-5	Aroclor-1232	< 23.4	U	μg/kg dry	26.1	23.4	1	п		н	"		Χ
53469-21-9	Aroclor-1242	< 11.6	U	μg/kg dry	26.1	11.6	1			п	"		Х
12672-29-6	Aroclor-1248	< 14.2	U	μg/kg dry	26.1	14.2	1				"		Χ
11097-69-1	Aroclor-1254 [2C]	18.3	J	μg/kg dry	26.1	15.6	1				"		Χ
11096-82-5	Aroclor-1260	< 18.7	U	μg/kg dry	26.1	18.7	1				"		Х
37324-23-5	Aroclor-1262	< 14.1	U	μg/kg dry	26.1	14.1	1				"		Х
11100-14-4	Aroclor-1268	< 25.6	U	μg/kg dry	26.1	25.6	1	п			"		Х
Surrogate re	ecoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	70			30-15	50 %		н	•		"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	75			30-15	50 %		н			"		
2051-24-3	Decachlorobiphenyl (Sr)	60			30-15	50 %		п		н	"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	65			30-15	50 %		н			"		
General (Chemistry Parameters												
	% Solids	74.9		%			1	SM2540 G Mod.	10-Oct-14	10-Oct-14	DT	1424046	

Sample Io SS-30C SB97867	-03			<u>Client P</u> 14-0			<u>Matrix</u> Soil		ection Date 9-Oct-14 12			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
Polychlorina	ted Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 27.6	U	μg/kg dry	29.5	27.6	1	SW846 8082A	10-Oct-14	11-Oct-14	IMR	1424044	Χ
11104-28-2	Aroclor-1221	< 25.1	U	μg/kg dry	29.5	25.1	1				"		Χ
11141-16-5	Aroclor-1232	< 26.5	U	μg/kg dry	29.5	26.5	1	н			"		Χ
53469-21-9	Aroclor-1242	< 13.1	U	μg/kg dry	29.5	13.1	1				"		Χ
12672-29-6	Aroclor-1248	< 16.1	U	μg/kg dry	29.5	16.1	1				"		Χ
11097-69-1	Aroclor-1254	< 18.6	U	μg/kg dry	29.5	18.6	1				"		Χ
11096-82-5	Aroclor-1260	< 21.1	U	μg/kg dry	29.5	21.1	1	п			"		Х
37324-23-5	Aroclor-1262	< 16.0	U	μg/kg dry	29.5	16.0	1	п			"		Χ
11100-14-4	Aroclor-1268	< 29.0	U	μg/kg dry	29.5	29.0	1	п			"		Х
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	85			30-15	50 %		н			"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	90			30-15	50 %		н			"		
2051-24-3	Decachlorobiphenyl (Sr)	75			30-15	50 %					•		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	75			30-15	50 %					"		
General C	Chemistry Parameters												

10-Oct-14 10-Oct-14

DT

1424046

% Solids

Sample I SS-30D SB97867	dentification 7-04			Client F	<u>Project #</u> 091		<u>Matrix</u> Soil		ection Date O-Oct-14 12			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivola	tile Organic Compounds by C	GC											
Polychlorin	ated Biphenyls												
Prepared	d by method SW846 3540C												
12674-11-2	Aroclor-1016	< 21.9	U	μg/kg dry	23.4	21.9	1	SW846 8082A	10-Oct-14	11-Oct-14	IMR	1424044	Χ
11104-28-2	Aroclor-1221	< 19.9	U	μg/kg dry	23.4	19.9	1				"		Χ
11141-16-5	Aroclor-1232	< 21.0	U	μg/kg dry	23.4	21.0	1				"		Х
53469-21-9	Aroclor-1242	< 10.4	U	μg/kg dry	23.4	10.4	1	п			"		Х
12672-29-6	Aroclor-1248	< 12.7	U	μg/kg dry	23.4	12.7	1	п			"		Х
11097-69-1	Aroclor-1254 [2C]	17.5	J	μg/kg dry	23.4	14.0	1				"		Х
11096-82-5	Aroclor-1260	< 16.7	U	μg/kg dry	23.4	16.7	1	н			"		Х
37324-23-5	Aroclor-1262	< 12.7	U	μg/kg dry	23.4	12.7	1	н			"		Х
11100-14-4	Aroclor-1268	< 23.0	U	μg/kg dry	23.4	23.0	1	п			"		Χ
Surrogate re	ecoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	80			30-15	50 %		н	•	п	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	90			30-15	50 %		н		ı	"		
2051-24-3	Decachlorobiphenyl (Sr)	70			30-15	50 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	75			30-15	50 %		11		н	"		
General (Chemistry Parameters												
	% Solids	85.4		%			1	SM2540 G Mod.	10-Oct-14	10-Oct-14	DT	1424046	

Sample I SS-11A SB97867	dentification 7-05			Client P	•		<u>Matrix</u> Soil		ection Date 9-Oct-14 12			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivola	tile Organic Compounds by C	GC											
Polychlorina	ated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 25.6	U	μg/kg dry	27.4	25.6	1	SW846 8082A	10-Oct-14	11-Oct-14	IMR	1424044	Χ
11104-28-2	Aroclor-1221	< 23.4	U	μg/kg dry	27.4	23.4	1				"		Χ
11141-16-5	Aroclor-1232	< 24.7	U	μg/kg dry	27.4	24.7	1				"		Х
53469-21-9	Aroclor-1242	< 12.2	U	μg/kg dry	27.4	12.2	1				"		Х
12672-29-6	Aroclor-1248	< 14.9	U	μg/kg dry	27.4	14.9	1				"		Χ
11097-69-1	Aroclor-1254	< 17.3	U	μg/kg dry	27.4	17.3	1				"		Χ
11096-82-5	Aroclor-1260	< 19.6	U	μg/kg dry	27.4	19.6	1				"		Χ
37324-23-5	Aroclor-1262	< 14.9	U	μg/kg dry	27.4	14.9	1				"		Χ
11100-14-4	Aroclor-1268	< 27.0	U	μg/kg dry	27.4	27.0	1	п			"		Χ
Surrogate re	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	85			30-15	0 %		и		п	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	90			30-15	0 %		н		п	"		
2051-24-3	Decachlorobiphenyl (Sr)	75			30-15	60 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	80			30-15	50 %		н		п	"		
General (Chemistry Parameters												
	% Solids	71.2		%			1	SM2540 G Mod.	10-Oct-14	10-Oct-14	DT	1424046	

Sample I SS-11B SB97867	dentification 7-06			Client F	<u>Project #</u> 091		<u>Matrix</u> Soil	· · · · · · · · · · · · · · · · · · ·	ection Date 9-Oct-14 12			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivola	tile Organic Compounds by C	GC											
Polychlorina	ated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 24.2	U	μg/kg dry	25.9	24.2	1	SW846 8082A	10-Oct-14	11-Oct-14	IMR	1424044	Χ
11104-28-2	Aroclor-1221	< 22.1	U	μg/kg dry	25.9	22.1	1						Х
11141-16-5	Aroclor-1232	< 23.3	U	μg/kg dry	25.9	23.3	1	п			"		Х
53469-21-9	Aroclor-1242	< 11.5	U	μg/kg dry	25.9	11.5	1	п			"		Χ
12672-29-6	Aroclor-1248	< 14.1	U	μg/kg dry	25.9	14.1	1			ıı	"		Х
11097-69-1	Aroclor-1254	< 16.4	U	μg/kg dry	25.9	16.4	1			n .	"		Х
11096-82-5	Aroclor-1260	< 18.5	U	μg/kg dry	25.9	18.5	1			ıı	"		Х
37324-23-5	Aroclor-1262	< 14.0	U	μg/kg dry	25.9	14.0	1			ıı	"		Х
11100-14-4	Aroclor-1268	< 25.5	U	μg/kg dry	25.9	25.5	1	и			"		Χ
Surrogate re	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	70			30-18	50 %		ı		n	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	75			30-15	50 %		и		н	"		
2051-24-3	Decachlorobiphenyl (Sr)	65			30-15	50 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	65			30-15	50 %		н		н	"		
General (Chemistry Parameters												
	% Solids	76.2		%			1	SM2540 G Mod.	10-Oct-14	10-Oct-14	DT	1424046	

Sample Id SS-11C SB97867	dentification -07			Client P			<u>Matrix</u> Soil		ection Date 9-Oct-14 12			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
Polychlorina	ated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 25.4	U	μg/kg dry	27.2	25.4	1	SW846 8082A	10-Oct-14	11-Oct-14	IMR	1424044	Χ
11104-28-2	Aroclor-1221	< 23.1	U	μg/kg dry	27.2	23.1	1			"	"		Χ
11141-16-5	Aroclor-1232	< 24.4	U	μg/kg dry	27.2	24.4	1			и	"		Χ
53469-21-9	Aroclor-1242	< 12.1	U	μg/kg dry	27.2	12.1	1			н	"		Χ
12672-29-6	Aroclor-1248	< 14.8	U	μg/kg dry	27.2	14.8	1	п			"		Χ
11097-69-1	Aroclor-1254	< 17.2	U	μg/kg dry	27.2	17.2	1	п			"		Χ
11096-82-5	Aroclor-1260	< 19.5	U	μg/kg dry	27.2	19.5	1	п			"		Χ
37324-23-5	Aroclor-1262	< 14.7	U	μg/kg dry	27.2	14.7	1	п			"		Χ
11100-14-4	Aroclor-1268	< 26.7	U	μg/kg dry	27.2	26.7	1				"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	80			30-15	0 %		н			"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	85			30-15	0 %		н			"		
2051-24-3	Decachlorobiphenyl (Sr)	70			30-15	0 %				и	•		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	70			30-15	50 %		11			"		
General C	Chemistry Parameters												
	% Solids	72.0		%			1	SM2540 G Mod.	10-Oct-14	10-Oct-14	DT	1424046	

Sample I SS-11D SB97867	dentification			Client P			<u>Matrix</u> Soil	-	ection Date 9-Oct-14 12			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
	ated Biphenyls by method SW846 3540C												
12674-11-2	Aroclor-1016	< 25.4	U	μg/kg dry	27.2	25.4	1	SW846 8082A	10-Oct-14	11-Oct-14	IMR	1424044	Χ
11104-28-2	Aroclor-1221	< 23.1	U	μg/kg dry	27.2	23.1	1	п			"		Χ
11141-16-5	Aroclor-1232	< 24.4	U	μg/kg dry	27.2	24.4	1				"		Χ
53469-21-9	Aroclor-1242	< 12.1	U	μg/kg dry	27.2	12.1	1				"		Χ
12672-29-6	Aroclor-1248	< 14.8	U	μg/kg dry	27.2	14.8	1				"		Χ
11097-69-1	Aroclor-1254	< 17.2	U	μg/kg dry	27.2	17.2	1				"		Χ
11096-82-5	Aroclor-1260	< 19.5	U	μg/kg dry	27.2	19.5	1				"		Χ
37324-23-5	Aroclor-1262	< 14.7	U	μg/kg dry	27.2	14.7	1				"		Χ
11100-14-4	Aroclor-1268	< 26.7	U	μg/kg dry	27.2	26.7	1	и			"		Χ
Surrogate re	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	80			30-15	0 %		и		п	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	85			30-15	0 %		п		п	"		
2051-24-3	Decachlorobiphenyl (Sr)	75			30-15	0 %		п					
2051-24-3	Decachlorobiphenyl (Sr) [2C]	75			30-15	0 %		п		и	"		
General C	Chemistry Parameters												
	% Solids	72.7		%			1	SM2540 G Mod.	10-Oct-14	10-Oct-14	DT	1424046	

Sample I SS-02A SB97867	dentification 7-09			Client P	<u>Project #</u> 091		<u>Matrix</u> Soil		ection Date O-Oct-14 12			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivola	tile Organic Compounds by C	GC											
Polychlorin	ated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 21.3	U	μg/kg dry	22.8	21.3	1	SW846 8082A	10-Oct-14	11-Oct-14	IMR	1424044	Χ
11104-28-2	Aroclor-1221	< 19.4	U	μg/kg dry	22.8	19.4	1				"		Χ
11141-16-5	Aroclor-1232	< 20.5	U	μg/kg dry	22.8	20.5	1				"		Х
53469-21-9	Aroclor-1242	< 10.1	U	μg/kg dry	22.8	10.1	1	п			"		Х
12672-29-6	Aroclor-1248	24.0		μg/kg dry	22.8	12.4	1	п			"		Х
11097-69-1	Aroclor-1254 [2C]	54.8		μg/kg dry	22.8	13.6	1				"		Х
11096-82-5	Aroclor-1260	< 16.3	U	μg/kg dry	22.8	16.3	1	н			"		Х
37324-23-5	Aroclor-1262	< 12.4	U	μg/kg dry	22.8	12.4	1	н			"		Х
11100-14-4	Aroclor-1268	< 22.4	U	μg/kg dry	22.8	22.4	1	п			"		Χ
Surrogate re	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	95			30-15	50 %		н	•	п	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	100			30-15	50 %		н		ı	"		
2051-24-3	Decachlorobiphenyl (Sr)	85			30-15	50 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	90			30-15	50 %		н		п	"		
General (Chemistry Parameters												
	% Solids	85.0		%			1	SM2540 G Mod.	10-Oct-14	10-Oct-14	DT	1424046	

Sample I SS-02B SB97867	dentification 7-10			Client P	<u>Project #</u> 091		<u>Matrix</u> Soil	·	ection Date O-Oct-14 13			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivola	tile Organic Compounds by C	GC											
Polychlorin	ated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 24.7	U	μg/kg dry	26.4	24.7	1	SW846 8082A	10-Oct-14	11-Oct-14	IMR	1424044	Χ
11104-28-2	Aroclor-1221	< 22.5	U	μg/kg dry	26.4	22.5	1				"		Χ
11141-16-5	Aroclor-1232	< 23.7	U	μg/kg dry	26.4	23.7	1				"		Х
53469-21-9	Aroclor-1242	< 11.7	U	μg/kg dry	26.4	11.7	1	п			"		Χ
12672-29-6	Aroclor-1248	1,200		μg/kg dry	26.4	14.4	1	п			"		Х
11097-69-1	Aroclor-1254 [2C]	1,100		μg/kg dry	26.4	15.8	1				"		Χ
11096-82-5	Aroclor-1260 [2C]	87.1		μg/kg dry	26.4	25.0	1	н			"		Х
37324-23-5	Aroclor-1262	< 14.3	U	μg/kg dry	26.4	14.3	1				"		Х
11100-14-4	Aroclor-1268	< 26.0	U	μg/kg dry	26.4	26.0	1	п			"		Χ
Surrogate re	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	90			30-15	50 %		н			"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	90			30-15	50 %		н		ı	"		
2051-24-3	Decachlorobiphenyl (Sr)	90			30-15	50 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	80			30-15	50 %		11			"		
General (Chemistry Parameters												
	% Solids	75.1		%			1	SM2540 G Mod.	10-Oct-14	10-Oct-14	DT	1424046	

Sample I SS-02C SB97867	Identification 7-11			Client P	•		<u>Matrix</u> Soil	·	ection Date O-Oct-14 13			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivola	tile Organic Compounds by C	GC											
Polychlorin	ated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 24.8	U	μg/kg dry	26.5	24.8	1	SW846 8082A	10-Oct-14	11-Oct-14	IMR	1424044	Χ
11104-28-2	Aroclor-1221	< 22.6	U	μg/kg dry	26.5	22.6	1	п		н	"		Χ
11141-16-5	Aroclor-1232	< 23.8	U	μg/kg dry	26.5	23.8	1	п			"		Х
53469-21-9	Aroclor-1242	< 11.8	U	μg/kg dry	26.5	11.8	1	п			"		Х
12672-29-6	Aroclor-1248	< 14.4	U	μg/kg dry	26.5	14.4	1	н			"		Х
11097-69-1	Aroclor-1254	< 16.7	U	μg/kg dry	26.5	16.7	1				"		Х
11096-82-5	Aroclor-1260	< 19.0	U	μg/kg dry	26.5	19.0	1	н			"		Х
37324-23-5	Aroclor-1262	< 14.4	U	μg/kg dry	26.5	14.4	1	н			"		Х
11100-14-4	Aroclor-1268	< 26.1	U	μg/kg dry	26.5	26.1	1	п			"		Χ
Surrogate re	ecoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	90			30-15	50 %		п		п	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	95			30-15	50 %		н		п	"		
2051-24-3	Decachlorobiphenyl (Sr)	85			30-15	50 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	80			30-15	50 %		11		н	"		
General (Chemistry Parameters												
	% Solids	73.3		%			1	SM2540 G Mod.	10-Oct-14	10-Oct-14	DT	1424046	

Semivolatile Organic Compounds by GC - Quality Control

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1424044 - SW846 3540C										
Blank (1424044-BLK1)					Pre	pared: 10-Oct	-14 Analyzed:	11-Oct-14		
Aroclor-1016	< 18.5	U	μg/kg wet	18.5						
Aroclor-1016 [2C]	< 12.8	U	μg/kg wet	12.8						
Aroclor-1221	< 16.8	U	μg/kg wet	16.8						
Aroclor-1221 [2C]	< 14.5	U	μg/kg wet	14.5						
Aroclor-1232	< 17.8	U	μg/kg wet	17.8						
Aroclor-1232 [2C]	< 15.3	U	μg/kg wet	15.3						
Aroclor-1242	< 8.80	U	μg/kg wet	8.80						
Aroclor-1242 [2C]	< 15.5	U	μg/kg wet	15.5						
Aroclor-1248	< 10.8	U	μg/kg wet	10.8						
Aroclor-1248 [2C]	< 10.8	U	μg/kg wet	10.8						
Aroclor-1254	< 12.5	U	μg/kg wet	12.5						
Aroclor-1254 [2C]	< 11.8	U	μg/kg wet	11.8						
Aroclor-1260	< 14.2	U	μg/kg wet	14.2						
Aroclor-1260 [2C]	< 18.8	U	μg/kg wet	18.8						
Aroclor-1262	< 10.7	U	μg/kg wet	10.7						
Aroclor-1262 [2C]	< 9.90	U	μg/kg wet	9.90						
Aroclor-1268	< 19.5	U	μg/kg wet	19.5						
Aroclor-1268 [2C]	< 19.0	U	μg/kg wet	19.0						
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	17.8		μg/kg wet		19.8		90	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	18.8		μg/kg wet		19.8		95	30-150		
Surrogate: Decachlorobiphenyl (Sr)	13.9		μg/kg wet		19.8		70	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	16.8		μg/kg wet		19.8		85	30-150		
LCS (1424044-BS1)					Pre	pared: 10-Oct	-14 Analyzed:	11-Oct-14		
Aroclor-1016	210		μg/kg wet	17.9	240		88	40-140		
Aroclor-1016 [2C]	208		μg/kg wet	12.4	240		87	40-140		
Aroclor-1260	157		μg/kg wet	13.7	240		66	40-140		
Aroclor-1260 [2C]	169		μg/kg wet	18.2	240		70	40-140		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	19.2		μg/kg wet		19.2		100	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	19.2		μg/kg wet		19.2		100	30-150		
Surrogate: Decachlorobiphenyl (Sr)	14.4		μg/kg wet		19.2		75	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	17.3		μg/kg wet		19.2		90	30-150		
LCS Dup (1424044-BSD1)					Pre	pared: 10-Oct	-14 Analyzed:	11-Oct-14		
Aroclor-1016	222		μg/kg wet	18.1	243		92	40-140	4	30
Aroclor-1016 [2C]	210		μg/kg wet	12.6	243		86	40-140	0.5	30
Aroclor-1260	174		μg/kg wet	13.9	243		72	40-140	9	30
Aroclor-1260 [2C]	163		μg/kg wet	18.4	243		67	40-140	5	30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	19.4		μg/kg wet		19.4		100	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	19.4		μg/kg wet		19.4		100	30-150		
Surrogate: Decachlorobiphenyl (Sr)	16.5		μg/kg wet		19.4		85	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	15.5		μg/kg wet		19.4		80	30-150		

Notes and Definitions

J Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).

U Analyte included in the analysis, but not detected at or above the MDL.

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification:</u> The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

Validated by: June O'Connor Nicole Leja

SPECTRUM ANALYTICAL, INC.

CHAIN OF CUSTODY RECORD

Page 1 of 2

Special Handling:	
-------------------	--

Rush TAT - Date Needed: 3 -Day	☐ Standard TAT - 7 to 10 bus	iness eags
	Rush TAT - Date Needed:	3-Day

Min. 24-hr notification needed for rushes
Samples disposed after 60 days unless otherwise instructe

HANIBA	L TECHNOLOGY												Sant	nes dispose	ed after 00 days unless otherwise insuracted.		
Report To: 3	ich McKenna		Invoice To:		Acc	+1'5	Po	ayable				Project No		14-091			
6	Fast Syrause, NY 13057				14-89/ Quote/RQN:										Business Park T. De Witt State: NY anther		
Project Mgr:							Quot	e/RQN:									
F=Field Filtered 1=Na ₂ S2O ₃ 2=HCl 3=H ₂ SO ₄ 4=HNO ₃ 5=NaOH 6=Ascorbic Acid 7=CH3OH 8=NaHSO ₄ 9=Deionized Water 10=H ₃ PO ₄ 11= 12=										List Preservative Code below:				QA/QC Reporting Notes: * additional charges may appply			
DW=Dinking Water	V=Dinking Water GW=Groundwater SW=Surface Water WW=Waste Water						C	ontain	ers			Analysi	s		MA DEP MCP CAM Report? Yes No		
	SL=Sludge A=Indoor/Am X2=					Vials	r Glass	Glass	ō	PRBS.					CT DPH RCP Report? Yes No Standard No QC DQA* ASP A* ASP B* NJ Reduced* NJ Full*		
	= Grab	C=Compsite		iype	Matrix	of VOA Vials	of Amber Glass	of Clear Glass	of Plastic	8682					Tier II* Tier IV*		
Lab ID:	Sample ID:	Date:	Time:			0 #	#	0 #	#	1				1	State-specific reporting standards:		
7867-01	55-30A	10/9/14	1207	6	50		1			X							
-0	55-30B		1212	1	1		+			1							
-03	55-30 C		1217	1	1		+										
- 04	SS-30D		1222	1	1		+				1	110 N	ARU	4			
- 03	SS - 11 A		1234	H	-		+			-	/	1 8/11		- 1			
- 06	55 - 11B		1239	1	1		4			+	10	14/9	1010				
1-01	35 - 11C		1244	1	1		+					1			do A Elo 3		
-08	SS - IID		1248	1			4			\Box			4	L	DY IV DYR		
09	SS-02A		1256				+						4-4-				
1,-10	55-02B		1301	*	4		*			4							
Relino	quished by: Branny	Received	by:	2	10	Date:	of the	1	Time:	Tem Observed	p °C	E-mail to:	em PD	F, E	- accignop-com		
# Z	golf h	Ah Ste	0		10	fall.	114	4	148	Corrected		Condition upon r	eceint: Custo	dy Seals:	☐ Present ☐ Intact ☐ Broken		
1110	ng '	Cyl			10	///	_	0	700	IR ID#			/		☐ DI VOA Frozen ☐ Soil Jar Frozen		

CHAIN OF CUSTODY RECORD

Page <u>2</u> of <u>2</u>

Special	Han	dling
Special	TIME	unnig.

☐ Standard TAT - 7 to 10 business days

Rush TAT - Date Needed:

All TATs subject to laboratory approval
Min. 24-hr notification needed for rushes

Min. 24-hr notification needed for rushes Samples disposed after 60 days unless otherwise instructed

HANIBAI	L TECHNOLOGY										4	Samples disp	osed after 60 days unless otherwise instructed.
	ich McKenna		Invoice To:	A	cct'	5	Payo	able			Project No:		14-09
A	ECC 308 Fly Road						,				Site Name:	Woodbine	2 Business Park
Eo	308 Fly Road st syracuse, NY (315) 432-9400	13057									Location:	Carada D	Brankner State: NY
Telephone #: Project Mgr:	(315) 432-9400		P.O No.:	14-0	191	Que	ote/RQN:				Sampler(s):	Drew	Brankner
	1=Na ₂ S2O ₃	5O ₄ 4=HNO ₃ 5 PO ₄ 11=			veid					1	List Preservative Cod	de below:	QA/QC Reporting Notes:
7-0113011 0 1141	1504 > Delonized water 10 1131	04					-						* additional charges may appply
DW=Dinking Water	GW=Groundwater SW=S	urface Water WW	V=Waste Water				Contain	ers			Analysis		MA DEP MCP CAM Report? Yes No
O=Oil SO=Soil	SL=Sludge A=Indoor/Am	bient Air SG=Soil	l Gas				1			B			CT DPH RCP Report? Yes No
X1=	X2=	X3=			ials	Glass	lass			PCB			Standard No QC DQA* ASP A* ASP B* NJ Reduced* NJ Full* Tier II* Tier IV* Other: State-specific reporting standards:
G	= Grab	C=Compsite		9	of VOA Vials	of Amber Glass	of Clear Glass	of Plastic		2			NJ Reduced* NJ Full*
Lab ID:	Sample ID:	Date:	Time:	Type	y jo #	# of A	# of C	# of Pl		808			Other: State-specific reporting standards:
7867-011	SS-OAC	10/9/14	1306	65	0	1				×			
210/11	PH				_	-							
						1/					1 11 1/11	ID	
						#				1.7	1019	1114	
1 8 1					-	1				1	010/W	111	
						1			-	1	4 //	VIC	
					+				-				500 50-30
					+				-				D PAR
Relina	uished by:	/ Received	by:	7	Dat	e: /		Time:		Temp °C	EDD format:	PAG	
1	01	HZA		10	No	lul	1	501	7	bserved	X . E-mail to:	TUP	Fxcel na@aeccgroup.com
of your	to leave of		200	1	17	17	10)(orecction Factor	-	mcken	nacaeccgroup.com
20	>XXXXX	Mon &	len	1	0/9	/14	4	11/8		orrected			
ging		W/	()"	1	1/9/	14	á	1/00	/		Condition upon rece	cipt: Custody Seals	: Present Intact Broken
/					1 17			•	n	R ID #	Ambient Tc	ed Refrigerate	ed 🔲 DI VOA Frozen 🔲 Soil Jar Frozen

PROJECT CHANGE FORM

						Date	10/20/14		
Revision Re	equested by: LSL	DJP			Client N	Jame A	ECC	,	
Client Conta	act for Revision	Richard Mc			LSL Proj		1416707		
Reason for I and/or Invoi	Revision of Reporce:	t The client na revised rep		mg/kg R	DL for this soil s	ample. F	Please revis	e and send out	
REVISE	************************* D REPORT I opriate LSL sect	INFORMA					*********** No	******	
		.10113,		Market					
SECTION	: Micro	HPLC	Inorganics	Orga	nics SCI)			
Done By:				10M	44				
Date:				1/0/2	0[1/]				
OFFICE	TD 4 TD * 4 T	0.4.4			7 A 7	1 354			
OFFICE Initials:	Rpt Printed	QA Appro	val Fa	xed	e-Mailed	Mai	~	Copied To	
Date:	10 00/14	1 1111111111111111111111111111111111111	,		10/20/14	101	2//14		
Time:	134111	1347			Dan -	10/0	7///		
******	*******	******		******	******	<u> </u> *******	******	*****	
REVISI	ED INVOIC	TE INFOR	MATIO	N Ic	sue new invoice	2 🗆 3	Yes 🖂	No	
	port Date:		Client Nu			·:	res 🔼	INO	
Circulate a	es follows:				Dono Dry		Doto		
Change app				_	Done By		Date		
	nge price in LIM	<u>(2).</u>							
	rint new invoice		ov of this	· 					
	project file):	F F	-) -)						
Accounting	(Adjust in Acco	unts Receivab	le)						
Sent Chang	es to Benefactor	•							
	NO D	EVIATION 1	O THIS CI	RCULA	TION IS ACC	EPTAE	BLE		
Note the Sar	mple Number and	Test Group to b	e changed		Olo	1\$	Ne	w \$	
			<u></u>						
TOTAL									
	· · · · · · · · · · · · · · · · · · ·								

R:\word\forms\projchg.doc

Life Science Laboratories, Inc.

Rich Mckenna **Asbestos & Environmental Consulting Corp** 6308 Fly Road East Syracuse, NY 13057

Phone:

(315) 432-9400

FAX:

(315) 432-9405

Authorization: 14-091

Revised Laboratory Analysis Report **Prepared for**

Asbestos & Environmental Consulting Corp

LSL Project ID: 1416707

Receive Date/Time: 10/09/14 16:00

Project Received by: gis1

Life Science Laboratories, Inc. warrants, to the best of its knowledge and belief, the accuracy of the analytical test results contained in this report, but makes no other warranty, expressed or implied, especially no warranties of merchantability or fitness for a particular purpose. By the Client's acceptance and/or use of this report, the Client agrees that LSL is hereby released from any and all liabilities, claims, damages or causes of action affecting or which may affect the Client as regards to the results contained in this report. The Client further agrees that the only remedy available to the Client in the event of proven non-conformity with the above warranty shall be for LSL to re-perform the analytical test(s) at no charge to the Client. The data contained in this report are for the exclusive use of the Client to whom it is addressed, and the release of these data to any other party, or the use of the name, trademark or service mark of Life Science Laboratories, Inc. especially for the use of advertising to the general public, is strictly prohibited without express prior written consent of Life Science Laboratories, Inc. This report may only be reproduced in its entirety. No partial duplication is allowed. The Chain of Custody and the Sample Receipt documents submitted with these samples are considered by LSL to be an appendix of this report and may contain specific information that pertains to the samples included in this report. The analytical result(s) in this report are only representative of the sample(s) submitted for analysis. LSL makes no claim of a sample's representativeness, or integrity, if sampling was not performed by LSL personnel.

LSL Central Lab 5854 Butternut Drive East Syracuse, NY 13057 Tel. (315) 445-1900 Fax (315) 445-1104 NYS DOH ELAP #10248 PA DEP #68-2556

LSL North Lab 131 St. Lawrence Avenue Waddington, NY 13694 Tel. (315) 388-4476 Fax (315) 388-4061 NYS DOH ELAP #10900

LSL Finger Lakes Lab 16 N. Main St., PO Box 424 Wayland, NY 14572 Tel. (585) 728-3320 Fax (585) 728-2711 NYS DOH ELAP #11667

LSL Southern Tier Office Cuba, NY Tel. (585) 209-4032

LSL MidLakes Office Canandaigua, NY Tel. (585) 728-3320

This report was reviewed by:

David J. Prichard, Director of Tech. Services

A copy of this report was sent to: Original Report Date: 10/14/14

Page 1 of 2

10/20/14

Date Printed:

-- REVISED LABORATORY ANALYSIS REPORT --

Asbestos & Environmental Consulting Corp

East Syracuse, NY

Sample ID:

SS-02Ad Grab

LSL Sample ID:

1416707-001

Location:

Sampled:

10/09/14 12:57

Sampled By: DB

Sample Matrix: SHW as Recd

Analytical Method Analyte	Result	Prep Method Units	Prep Date	Analysis Date & Time	Analyst Initials
(1) EPA 8082A PCBs		EPA 3550C			
Aroclor-1016	< 0.02	mg/kg	10/13/14	10/13/14	CRT
Aroclor-1221	< 0.02	mg/kg	10/13/14	10/13/14	CRT
Aroclor-1221 Aroclor-1232		mg/kg	10/13/14	10/13/14	CRT
Aroclor-1242		mg/kg	10/13/14	10/13/14	CRT
Aroclor-1242 Aroclor-1248		mg/kg	10/13/14	10/13/14	CRT
Aroclor-1254	0.046	mg/kg		10/13/14	CRT
This target analyte appears to be biol	logically degraded and	l/or environmentally weather	ed.		
Aroclor-1260	< 0.02		10/13/14	10/13/14	CRT
Surrogate (DCB)	103	%R	10/13/14	10/13/14	CRT

Analysis performed at: (1) LSL Central Lab, (2) LSL North Lab, (3) LSL Finger Lakes Lab

Page 2 of 2 10/20/14

LSL

Life Science Laboratories, Inc

CHAIN OF CUSTODY RECORD

1416707 AECC

LSL Central Lab 5854 Buttemut Drive East Syracuse, NY 13057. Phone: (315) 445-1900 Fax: (315) 445-1104 Email: Islcentral@Isl-inc.com LSL North Lab 131 St Lawrence Ave Waddington, NY 13694 Phone: (315) 388-4476 Fax: (315) 388-4081 Email: isInfo@lsI-inc.com LSL Finger Lakes Lab 16 North Main Street Wayland, NY 14572 Phone: (585) 728-3320 Fax: (585) 728-2711 Email: islfil@isl-inc.com LSL. Southern Tier Lab 24 A West Main Street Cuba, NY 14727 Phone: (585) 968-2640 Fax: (585) 968-0906 Email: Islsti@isl-inc.com

6063

Fax: (585) 396-0377 Email: Islml@lsl-inc.com

								u rime (Busine Pre-Authorize			1 .			
Report Address:		·····						Next Day*	u 3-Day *_		*#dditions	I Obowdoo		
	Kenna							2-Day *	3-Day 7-Day* .	A	may apply	l Charges		
Company: AECC	THEMEN							d or Special In	· · · · · · · · · · · · · · · · · · ·		intery exploit			
Street: 6308 Fly	Road													
City/State: Eo-St Syracus	se i NY	ø	Zip	: 13	057									
Phone: (3 5) 432-9400)				132-940	5	Authorization or P.O. # 1/1 a O /							
Email: (mckenna@ae		, COM	~				AURIGIZATION OF F-U. # 14-091							
Client Project ID/Client Site ID						ISL Project Number:								
Client's Sample .	Sample	Sample	Туре		Preserv	Cor	tainers		Analyses		Preserv	#14 A 4 A 4 A 4 A 4 A 4 A 4 A 4 A 4 A 4 A		
Identifications	Date		grab/comp	Matrix	Added	#	size/type		•		Check	LSL ID#		
55-02AL	10/9/14	1257	Grab	Sil			402 Auber	8083	PCBs			001		
Winter and Control of the Control of	-													
										1				
						and the second second								
									When the state of					
							,			:				
		 		1						ä				
		ļ		_										
										,				
							Company of the Compan		у.		,			
LSL use only:		 	1		1	Custody	Transfers		· · · · · · · · · · · · · · · · · · ·	W	Date	Time		
		Sample	ed By: Dre	F Ca	vientre		Received	Ву:						
de de la company			uished By:			<u> </u>	Received		7 -					
				rles	law.		Rec'd for		52		16-9-14	16 ia		
Containers t	this C-O-C	Shipme	ent Method:				Received I	ntact Y N	12		Sample Ter	np		

*** All areas of this Chain of Custody Record MUST be filled out in order to process samples in a timely manner IN PEN ONLY***

Reg COC rev1

OKTO Proceed MITINTO

Life Science Laboratories, Inc..

Sample Receipt Checklist

LSL LIMS

Project ID 1	416707	Clie	ent ID: AEC	
Shipment Number 1	SRC	Completed By: gis1	Date:	,10/9/2014 4:15:50 PM
COC Date/Time Receiv 10/9/2014 4:00:00 PM gis1	ed By	Carrier Hand Delivered	ShippingID	
Shipping container/cooler in good condition?	Yes	Sample containers intact	?	Yes
Custody seal intact on shipping container/cooler?	N/A	Sufficient sample volume indicated test?	e for	Yes
Custody seals intact on sample bottles?	N/A	All samples received with time?	hin holding	Yes
Chain of Custody present?	Yes	Container/Temp Blank to in compliance?	emperature ,	No
COC signed when relinquished and received?	Yes	Water - VOA vials have headspace?	zero	N/A
COC agrees with sample labels?	Yes	Water - pH acceptable u	pon receipt?	N/A
Samples in proper containers/bottles?	Yes	Water - HNO3 added to metal sample(s) to a pH		N/A

Comments:

Sample was not iced. OK to proceed per client.

Corrective Action:

Reviewed By:

Printed: Friday, October 10, 2014

Page 1 of 1

Report Date: 04-Nov-14 15:37

☐ Re-Issued Report □ Revised Report

HANIBAL TECHNOLOGY

Laboratory Report

AECC Environmental Consulting 6308 Fly Road

East Syracuse, NY 13057

Attn: Rich McKenna

Project: Woodbine Business Park - Dewitt, NY

Project #: 14-091

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SB98955-01	SS-67	Soil	29-Oct-14 15:01	30-Oct-14 21:00
SB98955-02	SS-69	Soil	29-Oct-14 15:08	30-Oct-14 21:00
SB98955-03	SS-70	Soil	29-Oct-14 15:15	30-Oct-14 21:00
SB98955-04	SS-68	Soil	29-Oct-14 15:21	30-Oct-14 21:00
SB98955-05	SS-71	Soil	29-Oct-14 15:29	30-Oct-14 21:00
SB98955-06	SS-74	Soil	29-Oct-14 15:36	30-Oct-14 21:00
SB98955-07	SS-73	Soil	29-Oct-14 15:43	30-Oct-14 21:00
SB98955-08	SS-72	Soil	29-Oct-14 15:49	30-Oct-14 21:00
SB98955-09	SS-75	Soil	29-Oct-14 16:02	30-Oct-14 21:00
SB98955-10	SS-78	Soil	29-Oct-14 16:11	30-Oct-14 21:00
SB98955-11	SS-77	Soil	29-Oct-14 16:27	30-Oct-14 21:00
SB98955-12	SS-76	Soil	29-Oct-14 16:33	30-Oct-14 21:00

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011/MA012 New York # 11393/11840 Pennsylvania # 68-04426/68-02924 Rhode Island # 98 USDA # S-51435

Authorized by:

Nicole Leja Laboratory Director

Spectrum Analytical holds certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 19 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey, Pennsylvania and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, NJ-MA012, PA-68-04426 and FL-E87936).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

CASE NARRATIVE:

Data has been reported to the MDL. This report includes estimated concentrations detected below the RDL and above the MDL (J-Flag).

All non-detects and all results below the detection limit are reported as "<" (less than) the detection limit in this report.

The samples were received 1.9 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of ± 1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

SW846 8082A

Samples:

SB98955-01 SS-67

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

Sample Acceptance Check Form

Client:	AECC Environmental Consulting			
Project:	Woodbine Business Park - Dewitt, NY / 14-091			
Work Order:	SB98955			
Sample(s) received on:	10/30/2014			
The following outlines th	ne condition of samples for the attached Chain of Custody upon receipt.			
		Yes	<u>No</u>	<u>N/A</u>
1. Were custody se	als present?		\checkmark	
2. Were custody se	als intact?			√
3. Were samples re	ceived at a temperature of ≤ 6 °C?	\checkmark		
4. Were samples co	ooled on ice upon transfer to laboratory representative?	\checkmark		
5. Were samples re	frigerated upon transfer to laboratory representative?		\checkmark	
6. Were sample con	ntainers received intact?	\checkmark		
1 1	operly labeled (labels affixed to sample containers and include sample ID, site project number and the collection date)?	\overline{C}		
8. Were samples ac	ecompanied by a Chain of Custody document?	\checkmark		
include sample I	ustody document include proper, full, and complete documentation, which shall D, site location, and/or project number, date and time of collection, collector's name, e, sample matrix and any special remarks concerning the sample?	<u> </u>		

10. Did sample container labels agree with Chain of Custody document?

11. Were samples received within method-specific holding times?

SS-67 SB98955	-01			<u>Client P</u> 14-0			<u>Matrix</u> Soil		ection Date P-Oct-14 15			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
	ated Biphenyls		GS1										
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 499	U, D	μg/kg dry	534	499	20	SW846 8082A	31-Oct-14	04-Nov-14	IMR	1425831	Χ
11104-28-2	Aroclor-1221	< 455	U, D	μg/kg dry	534	455	20	п			"		Χ
11141-16-5	Aroclor-1232	< 480	U, D	μg/kg dry	534	480	20				"		Χ
53469-21-9	Aroclor-1242	< 238	U, D	μg/kg dry	534	238	20				"		Χ
12672-29-6	Aroclor-1248	61,300	D	μg/kg dry	534	290	20	п			"		Х
11097-69-1	Aroclor-1254	56,400	D	μg/kg dry	534	337	20	п			"		Х
11096-82-5	Aroclor-1260 [2C]	3,370	D	μg/kg dry	534	507	20	п			"		Х
37324-23-5	Aroclor-1262	< 290	U, D	μg/kg dry	534	290	20	п			"		Х
11100-14-4	Aroclor-1268	< 525	U, D	μg/kg dry	534	525	20				"		Х
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	100			30-15	0 %		п		п	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	100			30-15	0 %		п		п	"		
2051-24-3	Decachlorobiphenyl (Sr)	100			30-15	0 %		п			"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	100			30-15	60 %		u	•	н	"		

31-Oct-14 31-Oct-14

DT

1425851

% Solids

Sample Id SS-69 SB98955	dentification -02			Client P			<u>Matrix</u> Soil		ection Date 9-Oct-14 15			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
Polychlorina	ated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 25.9	U	μg/kg dry	27.8	25.9	1	SW846 8082A	31-Oct-14	03-Nov-14	IMR	1425831	Χ
11104-28-2	Aroclor-1221	< 23.6	U	μg/kg dry	27.8	23.6	1				"		Χ
11141-16-5	Aroclor-1232	< 24.9	U	μg/kg dry	27.8	24.9	1	н			"		Χ
53469-21-9	Aroclor-1242	< 12.3	U	μg/kg dry	27.8	12.3	1			и	"		Χ
12672-29-6	Aroclor-1248	< 15.1	U	μg/kg dry	27.8	15.1	1			н	"		Х
11097-69-1	Aroclor-1254	< 17.5	U	μg/kg dry	27.8	17.5	1				"		Χ
11096-82-5	Aroclor-1260	< 19.9	U	μg/kg dry	27.8	19.9	1				"		Χ
37324-23-5	Aroclor-1262	< 15.0	U	μg/kg dry	27.8	15.0	1				"		Χ
11100-14-4	Aroclor-1268	< 27.3	U	μg/kg dry	27.8	27.3	1				"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	95			30-15	i0 %		п			"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	105			30-15	0 %		н			"		
2051-24-3	Decachlorobiphenyl (Sr)	90			30-15	0 %				и	"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	90			30-15	50 %		11			"		
General C	Chemistry Parameters												
	% Solids	67.5		%			1	SM2540 G Mod.	31-Oct-14	31-Oct-14	DT	1425851	

Sample Io SS-70 SB98955	No. Analyte(s) Result			Client Project # 14-091			<u>Matrix</u> Soil	Collection Date/Time 29-Oct-14 15:15			Received 30-Oct-14		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
Polychlorina	ated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 27.2	U	μg/kg dry	29.1	27.2	1	SW846 8082A	31-Oct-14	03-Nov-14	IMR	1425831	Χ
11104-28-2	Aroclor-1221	< 24.8	U	μg/kg dry	29.1	24.8	1			u u	"		Χ
11141-16-5	Aroclor-1232	< 26.2	U	μg/kg dry	29.1	26.2	1	п		п			Χ
53469-21-9	Aroclor-1242	< 12.9	U	μg/kg dry	29.1	12.9	1			и			Χ
12672-29-6	Aroclor-1248	< 15.8	U	μg/kg dry	29.1	15.8	1			и			Χ
11097-69-1	Aroclor-1254	< 18.4	U	μg/kg dry	29.1	18.4	1			и	"		Χ
11096-82-5	Aroclor-1260	< 20.8	U	μg/kg dry	29.1	20.8	1	ı		и	"		Χ
37324-23-5	Aroclor-1262	< 15.8	U	μg/kg dry	29.1	15.8	1	ı		и	"		Χ
11100-14-4	Aroclor-1268	< 28.6	U	μg/kg dry	29.1	28.6	1				"		Х
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	100			30-15	50 %		н		ı	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	105			30-15	50 %		н		ı	"		
2051-24-3	Decachlorobiphenyl (Sr)	95			30-15	50 %				н	"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	95			30-15	50 %		ı		ı	"		
General C	Chemistry Parameters												

31-Oct-14 31-Oct-14

DT

1425852

% Solids

Sample Io SS-68 SB98955	dentification			Client P			<u>Matrix</u> Soil		ection Date O-Oct-14 15			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GС											
	ated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 24.7	U	μg/kg dry	26.4	24.7	1	SW846 8082A	31-Oct-14	03-Nov-14	IMR	1425831	Χ
11104-28-2	Aroclor-1221	< 22.5	U	μg/kg dry	26.4	22.5	1	п			"		Χ
11141-16-5	Aroclor-1232	< 23.8	U	μg/kg dry	26.4	23.8	1				"		Χ
53469-21-9	Aroclor-1242	< 11.8	U	μg/kg dry	26.4	11.8	1				"		Χ
12672-29-6	Aroclor-1248	< 14.4	U	μg/kg dry	26.4	14.4	1				"		Χ
11097-69-1	Aroclor-1254	< 16.7	U	μg/kg dry	26.4	16.7	1				"		Χ
11096-82-5	Aroclor-1260	< 18.9	U	μg/kg dry	26.4	18.9	1				"		Χ
37324-23-5	Aroclor-1262	< 14.3	U	μg/kg dry	26.4	14.3	1				"		Χ
11100-14-4	Aroclor-1268	< 26.0	U	μg/kg dry	26.4	26.0	1	и			"		Х
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	100			30-15	0 %		и		п	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	105			30-15	0 %		н	•	н	"		
2051-24-3	Decachlorobiphenyl (Sr)	90			30-15	0 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	95			30-15	50 %		н		н	"		
General C	Chemistry Parameters												
	% Solids	71.7		%			1	SM2540 G Mod.	31-Oct-14	31-Oct-14	DT	1425852	

SS-71	98955-05			<u>Client Project #</u> 14-091		<u>Matrix</u> Soil	Collection Date/Time 29-Oct-14 15:29			Received 30-Oct-14			
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
Polychlorina	ted Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 25.5	U	μg/kg dry	27.3	25.5	1	SW846 8082A	31-Oct-14	03-Nov-14	IMR	1425831	Χ
11104-28-2	Aroclor-1221	< 23.2	U	μg/kg dry	27.3	23.2	1				"		Χ
11141-16-5	Aroclor-1232	< 24.5	U	μg/kg dry	27.3	24.5	1	п			"		Χ
53469-21-9	Aroclor-1242	< 12.1	U	μg/kg dry	27.3	12.1	1			п	"		Χ
12672-29-6	Aroclor-1248	< 14.8	U	μg/kg dry	27.3	14.8	1			и	"		Χ
11097-69-1	Aroclor-1254	< 17.2	U	μg/kg dry	27.3	17.2	1			и	"		Χ
11096-82-5	Aroclor-1260	< 19.5	U	μg/kg dry	27.3	19.5	1	и		и	"		Χ
37324-23-5	Aroclor-1262	< 14.8	U	μg/kg dry	27.3	14.8	1	и		и	"		Χ
11100-14-4	Aroclor-1268	< 26.8	U	μg/kg dry	27.3	26.8	1	н			"		Х
Surrogate red	overies:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	100			30-15	50 %		as .	•	ı	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	105			30-15	50 %		н		ı	"		
2051-24-3	Decachlorobiphenyl (Sr)	95			30-15	50 %				п	"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	95			30-15	50 %		н		ı	"		
General C	hemistry Parameters												

31-Oct-14 31-Oct-14

DT

1425852

% Solids

Sample I SS-74 SB98955	dentification 5-06			Client P			<u>Matrix</u> Soil	· · · · · · · · · · · · · · · · · · ·	ection Date P-Oct-14 15			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivola	tile Organic Compounds by C	GC											
Polychlorin	ated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 27.8	U	μg/kg dry	29.8	27.8	1	SW846 8082A	31-Oct-14	03-Nov-14	IMR	1425831	Χ
11104-28-2	Aroclor-1221	< 25.4	U	μg/kg dry	29.8	25.4	1	н			"		Χ
11141-16-5	Aroclor-1232	< 26.8	U	μg/kg dry	29.8	26.8	1			н	"		Χ
53469-21-9	Aroclor-1242	< 13.2	U	μg/kg dry	29.8	13.2	1				"		Χ
12672-29-6	Aroclor-1248	< 16.2	U	μg/kg dry	29.8	16.2	1	п			"		Х
11097-69-1	Aroclor-1254 [2C]	17.9	J	μg/kg dry	29.8	17.8	1	п			"		Х
11096-82-5	Aroclor-1260	< 21.3	U	μg/kg dry	29.8	21.3	1	п			"		Χ
37324-23-5	Aroclor-1262	< 16.2	U	μg/kg dry	29.8	16.2	1	п			"		Χ
11100-14-4	Aroclor-1268	< 29.3	U	μg/kg dry	29.8	29.3	1	п			"		Χ
Surrogate re	ecoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	95			30-15	0 %		u	•		"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	105			30-15	0 %		п			"		
2051-24-3	Decachlorobiphenyl (Sr)	90			30-15	60 %				н	"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	90			30-15	0 %		п			"		
General (Chemistry Parameters												
	% Solids	63.9		%			1	SM2540 G Mod.	31-Oct-14	31-Oct-14	DT	1425852	

Sample I SS-73 SB98955	dentification 5-07			Client P	<u>Project #</u> 091		<u>Matrix</u> Soil		ection Date O-Oct-14 15			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivola	tile Organic Compounds by C	GC											
Polychlorin	ated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 24.8	U	μg/kg dry	26.6	24.8	1	SW846 8082A	31-Oct-14	03-Nov-14	IMR	1425831	Χ
11104-28-2	Aroclor-1221	< 22.6	U	μg/kg dry	26.6	22.6	1				"		Χ
11141-16-5	Aroclor-1232	< 23.9	U	μg/kg dry	26.6	23.9	1				"		Χ
53469-21-9	Aroclor-1242	< 11.8	U	μg/kg dry	26.6	11.8	1	п			"		Χ
12672-29-6	Aroclor-1248	< 14.4	U	μg/kg dry	26.6	14.4	1	п			"		Χ
11097-69-1	Aroclor-1254 [2C]	516		μg/kg dry	26.6	15.8	1				"		Χ
11096-82-5	Aroclor-1260 [2C]	51.8		μg/kg dry	26.6	25.2	1	н			"		Χ
37324-23-5	Aroclor-1262	< 14.4	U	μg/kg dry	26.6	14.4	1	н			"		Χ
11100-14-4	Aroclor-1268	< 26.1	U	μg/kg dry	26.6	26.1	1	п			"		Χ
Surrogate re	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	100			30-15	50 %		п		и	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	105			30-15	50 %		н		п	"		
2051-24-3	Decachlorobiphenyl (Sr)	95			30-15	50 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	95			30-15	50 %		н		п	"		
General (Chemistry Parameters												
	% Solids	70.8		%			1	SM2540 G Mod.	31-Oct-14	31-Oct-14	DT	1425852	

Sample Io SS-72 SB98955	dentification			Client P			<u>Matrix</u> Soil	-	ection Date 0-Oct-14 15			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC .											
	ated Biphenyls by method SW846 3540C												
12674-11-2	Aroclor-1016	< 20.9	U	μg/kg dry	22.4	20.9	1	SW846 8082A	31-Oct-14	03-Nov-14	IMR	1425831	Χ
11104-28-2	Aroclor-1221	< 19.0	U	μg/kg dry	22.4	19.0	1	п			"		Χ
11141-16-5	Aroclor-1232	< 20.1	U	μg/kg dry	22.4	20.1	1				"		Χ
53469-21-9	Aroclor-1242	< 9.94	U	μg/kg dry	22.4	9.94	1				"		Χ
12672-29-6	Aroclor-1248	< 12.2	U	μg/kg dry	22.4	12.2	1				"		Χ
11097-69-1	Aroclor-1254 [2C]	30.2		μg/kg dry	22.4	13.3	1				"		Χ
11096-82-5	Aroclor-1260	16.8	J	μg/kg dry	22.4	16.0	1				"		Χ
37324-23-5	Aroclor-1262	< 12.1	U	μg/kg dry	22.4	12.1	1				"		Χ
11100-14-4	Aroclor-1268	< 22.0	U	μg/kg dry	22.4	22.0	1	и			"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	100			30-15	0 %		п			"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	105			30-15	0 %		n.			"		
2051-24-3	Decachlorobiphenyl (Sr)	95			30-15	0 %		п			"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	95			30-15	0 %					II		
General C	Chemistry Parameters												
	% Solids	84.6		%			1	SM2540 G Mod.	31-Oct-14	31-Oct-14	DT	1425852	

Sample Io SS-75 SB98955	dentification			Client P			<u>Matrix</u> Soil	-	ection Date O-Oct-14 16			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	ЭC											
	ated Biphenyls by method SW846 3540C												
12674-11-2	Aroclor-1016	< 23.9	U	μg/kg dry	25.6	23.9	1	SW846 8082A	31-Oct-14	03-Nov-14	IMR	1425831	Χ
11104-28-2	Aroclor-1221	< 21.8	U	μg/kg dry	25.6	21.8	1	п			"		Χ
11141-16-5	Aroclor-1232	< 23.0	U	μg/kg dry	25.6	23.0	1				"		Χ
53469-21-9	Aroclor-1242	< 11.4	U	μg/kg dry	25.6	11.4	1				"		Χ
12672-29-6	Aroclor-1248	< 13.9	U	μg/kg dry	25.6	13.9	1				"		Χ
11097-69-1	Aroclor-1254	1,280		μg/kg dry	25.6	16.1	1				"		Χ
11096-82-5	Aroclor-1260 [2C]	88.3		μg/kg dry	25.6	24.3	1				"		Χ
37324-23-5	Aroclor-1262	< 13.9	U	μg/kg dry	25.6	13.9	1				"		Χ
11100-14-4	Aroclor-1268	< 25.1	U	μg/kg dry	25.6	25.1	1	и			"		Х
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	90			30-15	0 %					"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	95			30-15	0 %		n.			"		
2051-24-3	Decachlorobiphenyl (Sr)	90			30-15	0 %		п			"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	85			30-15	0 %					II		
General C	Chemistry Parameters												
	% Solids	75.7		%			1	SM2540 G Mod.	31-Oct-14	31-Oct-14	DT	1425852	

Sample Id SS-78 SB98955	dentification			Client P			<u>Matrix</u> Soil		ection Date O-Oct-14 16			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GС											
	ated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 22.8	U	μg/kg dry	24.4	22.8	1	SW846 8082A	31-Oct-14	04-Nov-14	IMR	1425831	Χ
11104-28-2	Aroclor-1221	< 20.8	U	μg/kg dry	24.4	20.8	1	п			"		Χ
11141-16-5	Aroclor-1232	< 21.9	U	μg/kg dry	24.4	21.9	1				"		Χ
53469-21-9	Aroclor-1242	< 10.9	U	μg/kg dry	24.4	10.9	1	н			"		Χ
12672-29-6	Aroclor-1248	< 13.3	U	μg/kg dry	24.4	13.3	1				"		Χ
11097-69-1	Aroclor-1254	< 15.4	U	μg/kg dry	24.4	15.4	1			н	"		Χ
11096-82-5	Aroclor-1260	< 17.5	U	μg/kg dry	24.4	17.5	1				"		Χ
37324-23-5	Aroclor-1262	< 13.2	U	μg/kg dry	24.4	13.2	1				"		Χ
11100-14-4	Aroclor-1268	< 24.0	U	μg/kg dry	24.4	24.0	1	п			"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	85			30-15	50 %		н		п	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	95			30-15	50 %		н		ı	"		
2051-24-3	Decachlorobiphenyl (Sr)	85			30-15	50 %				н	"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	80			30-15	50 %		п		ı	"		
General C	Chemistry Parameters												
	% Solids	77.6		%			1	SM2540 G Mod.	31-Oct-14	31-Oct-14	DT	1425852	

Sample Identification SS-77 SB98955-11				<u>Client P</u> 14-0			<u>Matrix</u> Soil		ection Date 9-Oct-14 16	Received 30-Oct-14				
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.	
Semivolat	ile Organic Compounds by C	ЭC												
	ated Biphenyls by method SW846 3540C													
12674-11-2	Aroclor-1016	< 21.2	U	μg/kg dry	22.7	21.2	1	SW846 8082A	31-Oct-14	04-Nov-14	IMR	1425831	Χ	
11104-28-2	Aroclor-1221	< 19.3	U	μg/kg dry	22.7	19.3	1	п			"		Х	
11141-16-5	Aroclor-1232	< 20.4	U	μg/kg dry	22.7	20.4	1	п			"		Х	
53469-21-9	Aroclor-1242	< 10.1	U	μg/kg dry	22.7	10.1	1	н			"		Х	
12672-29-6	Aroclor-1248	< 12.3	U	μg/kg dry	22.7	12.3	1	п			"		Χ	
11097-69-1	Aroclor-1254	< 14.3	U	μg/kg dry	22.7	14.3	1	п			"		Χ	
11096-82-5	Aroclor-1260	< 16.3	U	μg/kg dry	22.7	16.3	1	п			"		Х	
37324-23-5	Aroclor-1262	< 12.3	U	μg/kg dry	22.7	12.3	1	н			"		Х	
11100-14-4	Aroclor-1268	< 22.3	U	μg/kg dry	22.7	22.3	1				"		Х	
Surrogate red	coveries:													
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	90			30-15	0 %			н	п	"			
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	95			30-15	0 %				п	"			
2051-24-3	Decachlorobiphenyl (Sr)	90			30-15	i0 %		п			"			
2051-24-3	Decachlorobiphenyl (Sr) [2C]	90			30-15	0 %		n .		п	"			

SM2540 G Mod.

31-Oct-14 31-Oct-14

DT

1425852

% Solids

83.3

SS-76	Sample Identification SS-76 SB98955-12			Client P			<u>Matrix</u> Soil		ection Date O-Oct-14 16	Received 30-Oct-14			
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	ЭC											
	ated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 23.1	U	μg/kg dry	24.7	23.1	1	SW846 8082A	31-Oct-14	04-Nov-14	IMR	1425831	Χ
11104-28-2	Aroclor-1221	< 21.1	U	μg/kg dry	24.7	21.1	1				"		Χ
11141-16-5	Aroclor-1232	< 22.2	U	μg/kg dry	24.7	22.2	1				"		Χ
53469-21-9	Aroclor-1242	< 11.0	U	μg/kg dry	24.7	11.0	1				"		Χ
12672-29-6	Aroclor-1248	2,690		μg/kg dry	24.7	13.5	1				"		Χ
11097-69-1	Aroclor-1254	2,630		μg/kg dry	24.7	15.6	1			н	"		Χ
11096-82-5	Aroclor-1260	203		μg/kg dry	24.7	17.7	1				"		Χ
37324-23-5	Aroclor-1262	< 13.4	U	μg/kg dry	24.7	13.4	1				"		Χ
11100-14-4	Aroclor-1268	< 24.3	U	μg/kg dry	24.7	24.3	1	п			"		Х
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	90			30-15	50 %		н		п	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	95			30-15	50 %		н		ı	"		
2051-24-3	Decachlorobiphenyl (Sr)	90			30-15	50 %				н	"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	90			30-15	50 %		н		п	"		
General C	Chemistry Parameters												
	% Solids	74.2		%			1	SM2540 G Mod.	31-Oct-14	31-Oct-14	DT	1425852	

Semivolatile Organic Compounds by GC - Quality Control

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
atch 1425831 - SW846 3540C										
Blank (1425831-BLK1)					Pre	pared: 31-Oct-	·14 Analyzed:	03-Nov-14		
Aroclor-1016	< 18.1	U	μg/kg wet	18.1						
Aroclor-1016 [2C]	< 12.5	U	μg/kg wet	12.5						
Aroclor-1221	< 16.5	U	μg/kg wet	16.5						
Aroclor-1221 [2C]	< 14.2	U	μg/kg wet	14.2						
Aroclor-1232	< 17.4	U	μg/kg wet	17.4						
Aroclor-1232 [2C]	< 14.9	U	μg/kg wet	14.9						
Aroclor-1242	< 8.59	U	μg/kg wet	8.59						
Aroclor-1242 [2C]	< 15.1	U	μg/kg wet	15.1						
Aroclor-1248	< 10.5	U	μg/kg wet	10.5						
Aroclor-1248 [2C]	< 10.6	U	μg/kg wet	10.6						
Aroclor-1254	< 12.2	U	μg/kg wet	12.2						
Aroclor-1254 [2C]	< 11.5	U	μg/kg wet	11.5						
Aroclor-1260	< 13.8	U	μg/kg wet	13.8						
Aroclor-1260 [2C]	< 18.3	U	μg/kg wet	18.3						
Aroclor-1262	< 10.5	U	μg/kg wet	10.5						
Aroclor-1262 [2C]	< 9.67	U	μg/kg wet	9.67						
Aroclor-1268	< 19.0	U	μg/kg wet	19.0						
Aroclor-1268 [2C]	< 18.6	U	μg/kg wet	18.6						
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	22.2		μg/kg wet		19.3		115	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	21.3		μg/kg wet		19.3		110	30-150		
Surrogate: Decachlorobiphenyl (Sr)	16.4		μg/kg wet		19.3		85	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	15.5		μg/kg wet		19.3		80	30-150		
LCS (1425831-BS1)					Pre	pared: 31-Oct-	14 Analyzed:	03-Nov-14		
Aroclor-1016	226		μg/kg wet	18.5	248		91	40-140		
Aroclor-1016 [2C]	205		μg/kg wet	12.8	248		83	40-140		
Aroclor-1260	218		μg/kg wet	14.2	248		88	40-140		
Aroclor-1260 [2C]	186		μg/kg wet	18.8	248		75	40-140		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	21.8		μg/kg wet		19.8		110	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	20.8		μg/kg wet		19.8		105	30-150		
Surrogate: Decachlorobiphenyl (Sr)	17.8		μg/kg wet		19.8		90	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	15.8		μg/kg wet		19.8		80	30-150		
LCS Dup (1425831-BSD1)					<u>Pre</u>	pared: 31-Oct-	14 Analyzed:	03-Nov-14		
Aroclor-1016	213		μg/kg wet	17.9	239		89	40-140	2	30
Aroclor-1016 [2C]	213		μg/kg wet	12.4	239		89	40-140	7	30
Aroclor-1260	209		μg/kg wet	13.7	239		87	40-140	0.9	30
Aroclor-1260 [2C]	187		μg/kg wet	18.1	239		78	40-140	4	30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	21.1		μg/kg wet		19.1		110	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	20.1		μg/kg wet		19.1		105	30-150		
Surrogate: Decachlorobiphenyl (Sr)	17.2		μg/kg wet		19.1		90	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	16.3		μg/kg wet		19.1		85	30-150		

General Chemistry Parameters - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1425852 - General Preparation										
<u>Duplicate (1425852-DUP1)</u>			Source: SE	<u>398955-03</u>	Pre	pared & Analy	zed: 31-Oct-14			
% Solids	64.2		%			66.9			4	5

Notes and Definitions

D Data reported from a dilution

GS1 Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

J Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration

(CLP J-Flag).

U Analyte included in the analysis, but not detected at or above the MDL.

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

Matrix Spike: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification:</u> The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

Validated by: June O'Connor Rebecca Merz

CHAIN OF CUSTODY RECORD

Page of 2

Special	Handling:

☐ Standard TAT - 7 to 10 business days

Rush TAT - Date Needed: 3-DAY

All TATs subject to laboratory approval
Min. 24-hr notification needed for rushes
Samples disposed after 60 days unless otherwise instructed

HANIBAI	L TECHNOLOGY											Sample	es disposed :	after 60 days unless otherwise instructed.		
	ich McKenna		Invoice To	0:	Acc	13	Paye	able			Project No:		14-09			
Ce	ECC 308 Fly Road										Site Name:			Business Park		
Telephone #: Project Mgr:	(315) 432-9400	13057	P,O No	14	-091		Ouo	te/RQN:		-	Location: Sampler(s):	Dewitt State: NY				
F=Field Filtered	1=Na ₂ S2O ₃		S=NaOH 6	=Asco	bic Aci	d		_			List Preservative Co	de below:		QA/QC Reporting Notes: * additional charges may appply		
DW=Dinking Water	GW=Groundwater SW=St	urface Water WV	V=Waste Wate	er			C	Contain	ers		Analysis			MA DEP MCP CAM Report? Yes No		
O=Oil SO=Soil	SL=Sludge A=Indoor/Amh	oient Air SG=Soi	Gas							8		1 1 -	pa	CT DPH RCP Report? Yes No		
X1=	X2=	X3=			5	Vials	of Amber Glass	Glass	0	P.C.B.s			hlorinat	☐ DQA* ☐ ASP A* ☐ ASP B*		
G	= Grab	C=Compsite	:	Type	Matrix	of VOA Vials	Ambe	of Clear Glass	of Plastic	C208			Check if c	☐ Tier II* ☐ Tier IV*		
Lab ID:	Sample ID:	Date:	Time:	1	M	Jo#	jo#	# of	Jo#	-			Che	Other: State-specific reporting standards:		
	55-67	10/29/14	1501	6	So		1			X						
10	55-69		1508	1	1		1					3				
-03	55-70		1515											Soxhlet Prep		
- Cy	35-68		1521													
- 05	85-71		1529					10-1			10					
-06	55-74		1536								12101	7 30				
10	55-73		1543								TURNIU	79/	-, -			
,00	55-72		1549			J		E			1900/1	Cet		199 h -		
-09	55-75		1602					U						UNITED,		
1 -10	55-78	*	1611	-	4		4			1				XX		
Relinq	uished by:	Received		/	,	Pate:	1.		Time:	Temp °	C EDD format:	305	E	wel WA		
Drew	Butter	1	100	V	10	38	14	10	940	Observed Corecction Faci	E-mail to:	rmck	enna (accegroup. com		
AZ	doll !	Jac Kerlic	oris		10	30	14	1/0	1,20		1.01					
Suker	da	, MM	1		10/3	0/1	/	1	100	Corrected	Condition upon rec	eipt: Custody	Seals:	☐ Present ☐ Intact ☐ Broken		
. /					1					IR ID #	Ambient Al	ced Refr	igerated	☐ DI VOA Frozen ☐ Soil Jar Frozen		
				7.7	100		C CELL C		TEXTORES							

CHAIN OF CUSTODY RECORD

Page 2 of 2

	50000	
	Special Handling:	
ard	TAT - 7 to 10 business days	

☐ Standa

Rush TAT - Date Needed:	3-DAY

All TATs subject to laboratory approval Min. 24-hr notification needed for rushes

HANIBA	L TECHNOLOGY															Samples disposed after 60 days unless otherwise instructed.				
	ch McKenna		Invoice T	o:	Acc	1'5	Par	oble						Project	No:	14-091				
AI	FCC BOB Fly Road													Site Na	me:	Li	bood	bine		Business Park
Eo	St Syrause, NY (35) 432-9400	13057			-						_			Locatio Sample	n:	Canada Dr. Deloith State: NY Drew Brantner				
Telephone #: Project Mgr:	(33) 732-1700		P.O No	.: 12	1-00	11_	Quo	te/RQN	·					Sample	r(s):		rew	Di	04	Moes
	1=Na ₂ S2O ₃		5=NaOH (-				L	ist Pres	ervativ	ve Co	de belo	w:			QA/QC Reporting Notes: * additional charges may appply
DW=Dinking Water	GW=Groundwater SW=S	Surface Water W	W=Waste Wat	r Containers							Analysis								1	MA DEP MCP CAM Report? Yes No
O=Oil SO =Soil	il Gas			Vials	Slass	Glass			PeBs							To do to to	if chlorinated	CT DPH RCP Report?		
G	= Grab	C=Compsit	e	Type	Matrix	of VOA Vi	of Amber Glass	of Clear Gl	of Plastic		8083									NJ Reduced* NJ Full* Tier II* Tier TV*
Lab ID:	Sample ID:	Date:	Time:	1	Ma	Jo#	# of	# of	# of l		8							Chan	Check	Other: State-specific reporting standards:
98955 -11	55-77	10/29/14	1627	0	50		1				X									
1 -12	55-76	10/29/14	1633	G	50		1				X					- 1				
														_						Soxhlet Prep
		+		+)								-							1	
				1						/		7	10	11	2	0/	1		+	
								ښرد			1	1	10	14	15.1	11/2	_			
							-					1	10/3	391	14 1	H				90190
													_] =	TIP IR
0.00				200								No.71							1	
Reling	uished by:	Received	by:	7	V	Date:	1.1	45	Time:	-	Temp	°C	X I	EDD fo	rmat:	T	DF	, 2	Ex	recigroup com P
The Year	Baut wy	Je X	CON C		10	30	14	-	-		Corecction F	actor				CW	elsen	na c	2) 0	recegroup com fut
1	2000	In Kest	ens		10	lone	14	1	621	7)	Corrected			NA.						
Dike	las	W			19	20/1	14	0	10		IR ID#				,	/				Present Intact Broken
,													☐ Ar	nbient	X Ic	ed [Refrig	gerated	E	DI VOA Frozen Soil Jar Frozen

Life Science Laboratories, Inc.

Rich McKenna Asbestos & Environmental Consulting Corp 6308 Fly Road East Syracuse, NY 13057 Phone:

(315) 432-9400

FAX:

(315) 432-9405

Laboratory Analysis ReportPrepared For

Asbestos & Environmental Consulting Corp

LSL Project ID: **1418046**

Receive Date/Time: 11/04/14 13:17

Life Science Laboratories, Inc. warrants, to the best of its knowledge and belief, the accuracy of the analytical test results contained in this report, but makes no other warranty, expressed or implied, especially no warranties of merchantability or fitness for a particular purpose. By the Client's acceptance and/or use of this report, the Client agrees that LSL is hereby released from any and all liabilities, claims, damages or causes of action affecting or which may affect the Client as regards to the results contained in this report. The Client further agrees that the only remedy available to the Client in the event of proven non-conformity with the above warranty shall be for LSL to re-perform the analytical test(s) at no charge to the Client. The data contained in this report are for the exclusive use of the Client to whom it is addressed, and the release of these data to any other party, or the use of the name, trademark or service mark of Life Science Laboratories, Inc. especially for the use of advertising to the general public, is strictly prohibited without express prior written consent of Life Science Laboratories, Inc. This report may only be reproduced in its entirety. No partial duplication is allowed. The Chain of Custody and the Sample Receipt documents submitted with these samples are considered by LSL to be an appendix of this report and may contain specific information that pertains to the samples included in this report. The analytical result(s) in this report are only representative of the sample(s) submitted for analysis. LSL makes no claim of a sample's representativeness, or integrity, if sampling was not performed by LSL personnel.

LSL Central Lab 5854 Butternut Drive East Syracuse, NY 13057 Tel. (315) 445-1900 Fax (315) 445-1104 NYS DOH ELAP #10248 PA DEP #68-2556 LSL North Lab 131 St. Lawrence Avenue Waddington, NY 13694 Tel. (315) 388-4476 Fax (315) 388-4061 NYS DOH ELAP #10900 LSL Finger Lakes Lab 16 N. Main St., PO Box 424 Wayland, NY 14572 Tel. (585) 728-3320 Fax (585) 728-2711 NYS DOH ELAP #11667 LSL Southern Tier Office Cuba, NY Tel. (585) 209-4032

LSL MidLakes Office Canandaigua, NY Tel. (585) 728-3320

This report was reviewed by:

David Jan

-

11/6/14

David J. Prichard, Director of Tech. Services

-- LABORATORY ANALYSIS REPORT --

Asbestos & Environmental Consulting Corp

East Syracuse, NY

Sample ID:

SS-75d Grab

LSL Sample ID:

1418046-001

Location:

Sampled:

10/29/14 16:02

Sampled By: DB

Sample Matrix: SHW Dry Wt, Soil

Analytical Method Analyte	Result	Prep Method Units	Prep Date	Analysis Date & Time	Analyst Initials
D EPA 8082A PCBs (Dry Weight)		EPA 3540			
Aroclor-1016	<1	mg/kg dry	11/5/14	11/6/14	CRT
Aroclor-1221	<1	mg/kg dry	11/5/14	11/6/14	CRT
Aroclor-1232	<1	mg/kg dry	11/5/14	11/6/14	CRT
Aroclor-1242	<1	mg/kg dry	11/5/14	11/6/14	CRT
Aroclor-1248	6.9	mg/kg dry	11/5/14	11/6/14	CRT
Aroclor-1254	<1	mg/kg dry	11/5/14	11/6/14	CRT
Aroclor-1260	<1	mg/kg dry	11/5/14	11/6/14	CRT
Surrogate (DCB)	120	%R	11/5/14	11/6/14	CRT

Analysis performed at: (1) LSL Central Lab, (2) LSL North Lab, (3) LSL Finger Lakes Lab

Life Science Laboratories, Inc. CHAIN OF CUSTODY RECORD

LSL Central Lab 5854 Buttemut Drive East Syracuse, NY 13057. Phone: (315) 445-1900 Fax: (315) 445-1104 Email: Islcentral@Isl-inc.com LSL North Lab 131 St Lawrence Ave Waddington, NY 13694 Phone: (315) 388-4476 Fax: (315) 388-4081 Email: IsInfo@IsI-inc.com

LSL Finger Lakes Lab 16 North Main Street Wayland, NY 14572 Phone: (585) 728-3320 Fax: (585) 728-2711 Email: Islfll@isl-inc.com

LSL Southern Tier Lab 24 A West Main Street Cuba, NY 14727 Phone: (585) 968-2640 Fax: (585) 968-0906 Email: IsIstl@IsI-inc.com

1410046

AECC

6063

Report Address: Name: Rich Mchenna Turnaround Time (Business Day) Normal Pre-Authorized 10 DAY Next Day* 3-Day* *Additional Cloth Company: AECC 2-Day* 7-Day* may apply Street: (6308 Fly Road City/State: East Syracuse, NY Zip: 3057 Phone: (3 5) 432-9400 Fax: (3 5) 432-9405 Authorization or P.O. #	ıarges
Name: Rich McKenna 10 DAY Next Day* 3-Day * Additional Clean Company: A Ecc. 2-Day * 7-Day* may apply	arges
Company: AFCC PLOY T-Day Additional of may apply	harges
Company: Al-CC	
Street: (6308 Fly Royal Date Needed or Special Instructions:	
City/State: East Surcuse, NY Zip: 13057	
Phone: (315) 432-94400 For (215) 432-94400	
Phone: (3 5) 432-9400 Fax: (3 5) 432-9405 Authorization or P.O. #	
Email: Cmckenna @aeccgroup.com Client Project ID/Client Site ID LEED TO COMMITTEE IN 14-091	
LSI Project Number:	Billials
Client's Sample Sample Type Presery Containers Analysis	
Identifications Analyses Preserv	
Check IS	L ID#
55-75d 10/29/14 1602 Gab Soil 1 402 Amber 8082 PCBS	
33-15d 10/21/19 1602 6ab Soil 402 Ander 8082 PCBs	01
*Soxhlet Prep *	
JOHNEY TREPT	

LSt. use only:	
Customy Iransiers Date T	ime
TRECEIVED DV.	***************************************
Relinquished By: Received By:	
Relinquished By: New Vocation Rec'd for Lab By:	177
Containers this C-O-C Shipment Method: Received Intact: Y N Sample Temp /6	2 100

filled out in order to process samples in a timely manner IN PEN ONLY***

Reg COC rev1

Report Date: 05-Dec-14 15:12

☐ Re-Issued Report □ Revised Report

Featuring HANIBAL TECHNOLOGY

Laboratory Report

AECC Environmental Consulting 6308 Fly Road

East Syracuse, NY 13057 Attn: Rich McKenna

Project: Woodbine Business Park - Dewitt, NY

Project #: 14-091

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SC00580-01	SS-79	Soil	02-Dec-14 10:40	02-Dec-14 21:00
SC00580-02	SS-81	Soil	02-Dec-14 10:46	02-Dec-14 21:00
SC00580-03	SS-83	Soil	02-Dec-14 10:52	02-Dec-14 21:00
SC00580-04	SS-84	Soil	02-Dec-14 10:57	02-Dec-14 21:00
SC00580-05	SS-86	Soil	02-Dec-14 11:03	02-Dec-14 21:00
SC00580-06	SS-80	Soil	02-Dec-14 11:15	02-Dec-14 21:00
SC00580-07	SS-82	Soil	02-Dec-14 11:21	02-Dec-14 21:00
SC00580-08	SS-85	Soil	02-Dec-14 11:26	02-Dec-14 21:00
SC00580-09	SS-87	Soil	02-Dec-14 11:32	02-Dec-14 21:00
SC00580-10	SS-88	Soil	02-Dec-14 11:37	02-Dec-14 21:00
SC00580-11	SS-89	Soil	02-Dec-14 11:48	02-Dec-14 21:00
SC00580-12	SS-90	Soil	02-Dec-14 11:55	02-Dec-14 21:00
SC00580-13	SS-91	Soil	02-Dec-14 12:02	02-Dec-14 21:00
SC00580-14	SS-92	Soil	02-Dec-14 12:13	02-Dec-14 21:00
SC00580-15	SS-93	Soil	02-Dec-14 12:19	02-Dec-14 21:00
SC00580-16	SS-94	Soil	02-Dec-14 12:23	02-Dec-14 21:00
SC00580-17	SS-95	Soil	02-Dec-14 12:30	02-Dec-14 21:00
SC00580-18	SS-96	Soil	02-Dec-14 12:36	02-Dec-14 21:00
SC00580-19	SS-97	Soil	02-Dec-14 12:47	02-Dec-14 21:00

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011/MA012 New York # 11393/11840 Pennsylvania # 68-04426/68-02924 Rhode Island # 98 USDA # S-51435

Authorized by:

Nicole Leja Laboratory Director

Spectrum Analytical holds certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 27 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our Quality'web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey, Pennsylvania and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, NJ-MA012, PA-68-04426 and FL-E87936).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

CASE NARRATIVE:

Data has been reported to the MDL. This report includes estimated concentrations detected below the RDL and above the MDL (J-Flag).

All non-detects and all results below the detection limit are reported as "<" (less than) the detection limit in this report.

The samples were received 5.7 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of +/- 1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

SW846 8082A

Samples:

SC00580-02 SS-81

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

SC00580-03 SS-83

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interference's.

4,4-DB-Octafluorobiphenyl (Sr)

4,4-DB-Octafluorobiphenyl (Sr) [2C]

Decachlorobiphenyl (Sr)

Decachlorobiphenyl (Sr) [2C]

SC00580-05 SS-86

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interference's.

4,4-DB-Octafluorobiphenyl (Sr)

4,4-DB-Octafluorobiphenyl (Sr) [2C]

Decachlorobiphenyl (Sr)

Decachlorobiphenyl (Sr) [2C]

SC00580-07 SS-82

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interference's.

4,4-DB-Octafluorobiphenyl (Sr)

4,4-DB-Octafluorobiphenyl (Sr) [2C]

Decachlorobiphenyl (Sr)

Decachlorobiphenyl (Sr) [2C]

Sample Acceptance Check Form

AECC Environmental Consulting

Were samples received within method-specific holding times?

Client:

Project:	Woodbine Business Park - Dewitt, NY / 14-091			
Work Order:	SC00580			
Sample(s) received on:	12/2/2014			
The following outlines th	he condition of samples for the attached Chain of Custody upon receipt.			
		<u>Yes</u>	<u>No</u>	<u>N/A</u>
Were custody se	als present?		\checkmark	
Were custody se	als intact?			✓
Were samples re	ceived at a temperature of ≤ 6 °C?	✓		
Were samples co	ooled on ice upon transfer to laboratory representative?	✓		
Were sample con	ntainers received intact?	\checkmark		
	operly labeled (labels affixed to sample containers and include sample ID, site project number and the collection date)?	\checkmark		
Were samples ac	companied by a Chain of Custody document?	✓		
include sample I	Sustody document include proper, full, and complete documentation, which shall D, site location, and/or project number, date and time of collection, collector's name, e, sample matrix and any special remarks concerning the sample?			
Did sample cont	ainer labels agree with Chain of Custody document?	\checkmark		

Sample Ic SS-79 SC00580-	dentification			<u>Client P</u> 14-0	-		<u>Matrix</u> Soil		ection Date -Dec-14 10			ceived Dec-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	ile Organic Compounds by C	GC											
Polychlori	nated Biphenyls												
<u>Prepared</u>	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 22.4	U	μg/kg dry	24.0	22.4	1	SW846 8082A	03-Dec-14	04-Dec-14	IMR	1428496	Χ
11104-28-2	Aroclor-1221	< 20.4	U	μg/kg dry	24.0	20.4	1	"	"	"	"	"	Χ
11141-16-5	Aroclor-1232	< 21.5	U	μg/kg dry	24.0	21.5	1		"	"		"	Х
53469-21-9	Aroclor-1242	< 10.6	U	μg/kg dry	24.0	10.6	1	"	"	"	"	"	Х
12672-29-6	Aroclor-1248	< 13.0	U	μg/kg dry	24.0	13.0	1	"	"	"	"	"	Х
11097-69-1	Aroclor-1254 [2C]	< 14.3	U	μg/kg dry	24.0	14.3	1	"	"	"	"	"	Х
11096-82-5	Aroclor-1260	< 17.1	U	μg/kg dry	24.0	17.1	1	"	"	"	"	"	Х
37324-23-5	Aroclor-1262	< 13.0	U	μg/kg dry	24.0	13.0	1	"	"	"	"	"	Х
11100-14-4	Aroclor-1268	< 23.5	U	μg/kg dry	24.0	23.5	1		"	"	"	"	Х
Surrogate	recoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	85			30-15	50 %		"	"	"	"	"	
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	90			30-15	50 %		"	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr)	105			30-15	50 %			"	"		"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	110			30-15	50 %		"	"	"	"	"	
General C	hemistry Parameters												
	% Solids	82.0		%			1	SM2540 G Mod.	03-Dec-14	03-Dec-14	DT	1428498	

Sample Id SS-81 SC00580-	lentification 02			<u>Client Pr</u> 14-0			<u>Matrix</u> Soil		ection Date -Dec-14 10			ceived Dec-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	le Organic Compounds by C	GC											
	nated Biphenyls by method SW846 3540C		GS1										
12674-11-2	Aroclor-1016	< 228	U, D	μg/kg dry	244	228	10	SW846 8082A	03-Dec-14	04-Dec-14	IMR	1428496	Х
11104-28-2	Aroclor-1221	< 208	U, D	μg/kg dry	244	208	10		"	"	"	"	Х
11141-16-5	Aroclor-1232	< 219	U, D	μg/kg dry	244	219	10		"	"	"	"	Х
53469-21-9	Aroclor-1242	< 109	U, D	μg/kg dry	244	109	10	"	u u	"	"	"	Х
12672-29-6	Aroclor-1248	< 133	U, D	μg/kg dry	244	133	10	"	u u	"	"	"	Х
11097-69-1	Aroclor-1254 [2C]	13,500	D	μg/kg dry	244	146	10	"	u u	"	"	"	Х
11096-82-5	Aroclor-1260	818	D	μg/kg dry	244	175	10	"	"	"	"	"	Х
37324-23-5	Aroclor-1262	< 132	U, D	μg/kg dry	244	132	10	"	u u	"	"	"	Х
11100-14-4	Aroclor-1268	< 240	U, D	μg/kg dry	244	240	10	"	"	"	"	"	Χ
Surrogate i	recoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	100			30-15	50 %		"	"	"	u	u	
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	100			30-15	50 %		"	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr)	100			30-15	50 %		"	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	100			30-15	50 %		"	"	"	"	"	
General C	hemistry Parameters												
	% Solids	80.9		%			1	SM2540 G Mod.	03-Dec-14	03-Dec-14	DT	1428498	

Sample Id SS-83 SC00580-	lentification 03			<u>Client P</u>			<u>Matrix</u> Soil	'	ection Date -Dec-14 10			ceived Dec-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	le Organic Compounds by C	БС											
	nated Biphenyls by method SW846 3540C		GS1										
12674-11-2	Aroclor-1016	< 51300	U, D	μg/kg dry	54900	51300	2000	SW846 8082A	03-Dec-14	04-Dec-14	IMR	1428496	X
11104-28-2	Aroclor-1221	< 46700	U, D	μg/kg dry	54900	46700	2000		"	"	"	"	Х
11141-16-5	Aroclor-1232	< 49300	U, D	μg/kg dry	54900	49300	2000		"	"	"	"	X
53469-21-9	Aroclor-1242	< 24400	U, D	μg/kg dry	54900	24400	2000	"	"	"	"	"	X
12672-29-6	Aroclor-1248 [2C]	2,440,000	D	μg/kg dry	54900	30100	2000	"	"	"	"	"	X
11097-69-1	Aroclor-1254	1,840,000	D	μg/kg dry	54900	34600	2000	"	"	"	"	"	X
11096-82-5	Aroclor-1260	124,000	D	μg/kg dry	54900	39300	2000	"	"	"	"	"	X
37324-23-5	Aroclor-1262	< 29800	U, D	μg/kg dry	54900	29800	2000	"	"	"	"	"	X
11100-14-4	Aroclor-1268	< 54000	U, D	μg/kg dry	54900	54000	2000	"	"	"	"	"	Χ
Surrogate i	recoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	0	S01, U		30-15	50 %		"	"	"	u	"	
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	0	S01, U		30-15	50 %		"	II	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr)	0	S01, U		30-15	50 %		"	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	0	S01, U		30-15	50 %		"	n .	"	"	"	
General C	hemistry Parameters												
	% Solids	71.8		%			1	SM2540 G Mod.	03-Dec-14	03-Dec-14	DT	1428498	

Sample Id SS-84 SC00580-	entification 04			<u>Client Pr</u> 14-0	-		<u>Matrix</u> Soil		ection Date -Dec-14 10			eceived Dec-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	le Organic Compounds by C	GC											
Polychlorii	nated Biphenyls												
<u>Prepared</u>	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 25.3	U	μg/kg dry	27.1	25.3	1	SW846 8082A	03-Dec-14	04-Dec-14	IMR	1428496	Χ
11104-28-2	Aroclor-1221	< 23.1	U	μg/kg dry	27.1	23.1	1	"	"	"	"	"	Χ
11141-16-5	Aroclor-1232	< 24.4	U	μg/kg dry	27.1	24.4	1	"	"	"	"	"	Х
53469-21-9	Aroclor-1242	< 12.0	U	μg/kg dry	27.1	12.0	1	"	"	"	"	"	Х
12672-29-6	Aroclor-1248	271		μg/kg dry	27.1	14.7	1	"	"	"	"	"	Х
11097-69-1	Aroclor-1254	< 17.1	U	μg/kg dry	27.1	17.1	1	"	"	"	"		Х
11096-82-5	Aroclor-1260	< 19.4	U	μg/kg dry	27.1	19.4	1	"	"	"	"	"	Х
37324-23-5	Aroclor-1262	< 14.7	U	μg/kg dry	27.1	14.7	1	"	"	"	"	"	Х
11100-14-4	Aroclor-1268	< 26.6	U	μg/kg dry	27.1	26.6	1	II .	"	"	"	"	Х
Surrogate r	ecoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	90			30-15	50 %		"	"	u u	"	"	
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	95			30-15	50 %		"	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr)	105			30-15	50 %		"	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	115			30-15	50 %		"	"	"	"	"	
General Cl	hemistry Parameters												
	% Solids	72.4		%			1	SM2540 G Mod.	03-Dec-14	03-Dec-14	DT	1428498	

Sample Id SS-86 SC00580-	lentification 05			<u>Client Pr</u> 14-0			<u>Matrix</u> Soil		ection Date -Dec-14 11			ceived Dec-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	le Organic Compounds by C	GC											
	nated Biphenyls by method SW846 3540C		GS1										
12674-11-2	Aroclor-1016	< 1210	U, D	μg/kg dry	1300	1210	50	SW846 8082A	03-Dec-14	04-Dec-14	IMR	1428496	Х
11104-28-2	Aroclor-1221	< 1100	U, D	μg/kg dry	1300	1100	50		"	"	"	"	Х
11141-16-5	Aroclor-1232	< 1160	U, D	μg/kg dry	1300	1160	50		"	"	"	"	Х
53469-21-9	Aroclor-1242	< 576	U, D	μg/kg dry	1300	576	50	"	u u	"	"		Х
12672-29-6	Aroclor-1248	42,000	D	μg/kg dry	1300	704	50	"	u u	"	"		X
11097-69-1	Aroclor-1254	33,100	D	μg/kg dry	1300	817	50	"	u u	"	"		Х
11096-82-5	Aroclor-1260 [2C]	2,720	D	μg/kg dry	1300	1230	50	"	"	"	"	"	Х
37324-23-5	Aroclor-1262	< 702	U, D	μg/kg dry	1300	702	50	"	u u	"	"		Х
11100-14-4	Aroclor-1268	< 1270	U, D	μg/kg dry	1300	1270	50	"	"	"	"	"	Χ
Surrogate i	recoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	0	S01, U		30-15	50 %		"	"	"	u	"	
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	0	S01, U		30-15	50 %		"	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr)	0	S01, U		30-15	50 %		"	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	0	S01, U		30-15	50 %		"	"	"	"	"	
General C	hemistry Parameters												
	% Solids	76.0		%			1	SM2540 G Mod.	03-Dec-14	03-Dec-14	DT	1428498	

Sample Ic SS-80 SC00580-	dentification			<u>Client P</u> 14-0	-		<u>Matrix</u> Soil		ection Date -Dec-14 11			ceived Dec-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	ile Organic Compounds by C	GC											
Polychlori	nated Biphenyls												
<u>Prepared</u>	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 22.6	U	μg/kg dry	24.2	22.6	1	SW846 8082A	03-Dec-14	04-Dec-14	IMR	1428496	Χ
11104-28-2	Aroclor-1221	< 20.6	U	μg/kg dry	24.2	20.6	1	"	u u	"	"	"	Χ
11141-16-5	Aroclor-1232	< 21.7	U	μg/kg dry	24.2	21.7	1		"	"		"	Х
53469-21-9	Aroclor-1242	< 10.8	U	μg/kg dry	24.2	10.8	1	"	"	"	"	"	Х
12672-29-6	Aroclor-1248	79.8		μg/kg dry	24.2	13.1	1	"	"	"	"	"	Х
11097-69-1	Aroclor-1254 [2C]	102		μg/kg dry	24.2	14.4	1	"	"	"	"	"	Х
11096-82-5	Aroclor-1260	< 17.3	U	μg/kg dry	24.2	17.3	1	"	"	"			Х
37324-23-5	Aroclor-1262	< 13.1	U	μg/kg dry	24.2	13.1	1	"	"	"	"		Х
11100-14-4	Aroclor-1268	< 23.8	U	μg/kg dry	24.2	23.8	1	u u	n	"	u.	"	Х
Surrogate	recoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	85			30-15	50 %		"	"	"	"	"	
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	85			30-15	50 %		"	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr)	100			30-15	50 %			"	"		"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	100			30-15	50 %		"	"	"	·	"	
General C	hemistry Parameters												
	% Solids	81.4		%			1	SM2540 G Mod.	03-Dec-14	03-Dec-14	DT	1428498	

Sample Id SS-82 SC00580-	lentification 07			Client P			<u>Matrix</u> Soil		ection Date -Dec-14 11			ceived Dec-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	le Organic Compounds by C	ЭC											
	nated Biphenyls by method SW846 3540C		GS1										
12674-11-2	Aroclor-1016	< 2410	U, D	μg/kg dry	2580	2410	100	SW846 8082A	03-Dec-14	04-Dec-14	IMR	1428496	X
11104-28-2	Aroclor-1221	< 2190	U, D	μg/kg dry	2580	2190	100	"	"	"	"	"	Х
11141-16-5	Aroclor-1232	< 2310	U, D	μg/kg dry	2580	2310	100	"	"	"	"	"	Х
53469-21-9	Aroclor-1242	< 1150	U, D	μg/kg dry	2580	1150	100	"	"	"	"	"	Х
12672-29-6	Aroclor-1248	184,000	D	μg/kg dry	2580	1400	100	"	"	"	"	"	Х
11097-69-1	Aroclor-1254	172,000	D	μg/kg dry	2580	1630	100	"	"	"	"	"	Х
11096-82-5	Aroclor-1260	11,700	D	μg/kg dry	2580	1840	100	"	u u	"	"	"	Х
37324-23-5	Aroclor-1262	< 1400	U, D	μg/kg dry	2580	1400	100	"	u u	"	"	"	Х
11100-14-4	Aroclor-1268	< 2530	U, D	μg/kg dry	2580	2530	100	"	"	"	"	"	Χ
Surrogate i	recoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	0	S01, U		30-15	50 %		"	"	"	u	"	
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	0	S01, U		30-15	50 %		"	II	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr)	0	S01, U		30-15	50 %		"	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	0	S01, U		30-15	50 %		"	n .	"	"	"	
General C	hemistry Parameters												
	% Solids	74.5		%			1	SM2540 G Mod.	03-Dec-14	03-Dec-14	DT	1428498	

Sample Id SS-85 SC00580-	entification 08			<u>Client Pr</u> 14-0	-		<u>Matrix</u> Soil		ection Date -Dec-14 11			ceived Dec-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	le Organic Compounds by C	ЭC											
Polychlorii	nated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 25.2	U	μg/kg dry	26.9	25.2	1	SW846 8082A	03-Dec-14	04-Dec-14	IMR	1428496	Χ
11104-28-2	Aroclor-1221	< 22.9	U	μg/kg dry	26.9	22.9	1	"	"	"	"	"	Χ
11141-16-5	Aroclor-1232	< 24.2	U	μg/kg dry	26.9	24.2	1	"	"	"	"	"	Χ
53469-21-9	Aroclor-1242	< 12.0	U	μg/kg dry	26.9	12.0	1	"	u u	"	"	"	Х
12672-29-6	Aroclor-1248	< 14.6	U	μg/kg dry	26.9	14.6	1	"	"	"	"	"	Х
11097-69-1	Aroclor-1254 [2C]	1,110		μg/kg dry	26.9	16.1	1	"	"	"	"	"	Х
11096-82-5	Aroclor-1260	94.3		μg/kg dry	26.9	19.3	1	"	"	"	"	"	Х
37324-23-5	Aroclor-1262	< 14.6	U	μg/kg dry	26.9	14.6	1	"	"	"	"	"	Х
11100-14-4	Aroclor-1268	< 26.5	U	μg/kg dry	26.9	26.5	1	"	"	"	"	"	Χ
Surrogate r	ecoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	85			30-15	50 %		"	"	"	"	"	
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	90			30-15	50 %		"	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr)	95			30-15	50 %		"	"	"		"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	105			30-15	50 %		"	u	"	"	"	
General Cl	hemistry Parameters												
	% Solids	74.2		%			1	SM2540 G Mod.	03-Dec-14	03-Dec-14	DT	1428498	

Sample Id SS-87 SC00580-	entification 09			<u>Client Pr</u> 14-0	-		<u>Matrix</u> Soil		ection Date -Dec-14 11			eceived Dec-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	le Organic Compounds by C	GC											
Polychlorii	nated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 25.8	U	μg/kg dry	27.6	25.8	1	SW846 8082A	03-Dec-14	04-Dec-14	IMR	1428496	Χ
11104-28-2	Aroclor-1221	< 23.5	U	μg/kg dry	27.6	23.5	1	"	"	"	"	"	Χ
11141-16-5	Aroclor-1232	< 24.8	U	μg/kg dry	27.6	24.8	1	"	"	"	"	"	Х
53469-21-9	Aroclor-1242	< 12.3	U	μg/kg dry	27.6	12.3	1	"	"	"	"	"	Х
12672-29-6	Aroclor-1248	< 15.0	U	μg/kg dry	27.6	15.0	1	"	"	"	"	"	Х
11097-69-1	Aroclor-1254 [2C]	3,290		μg/kg dry	27.6	16.5	1	"	"	"	"		Х
11096-82-5	Aroclor-1260	207		μg/kg dry	27.6	19.8	1	"	"	"	"	"	Х
37324-23-5	Aroclor-1262	< 15.0	U	μg/kg dry	27.6	15.0	1	"	"	"	"		Х
11100-14-4	Aroclor-1268	< 27.2	U	μg/kg dry	27.6	27.2	1	"	"	"	"	"	Х
Surrogate r	ecoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	80			30-15	50 %		"	"	u u	"	"	
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	85			30-15	50 %		"	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr)	95			30-15	50 %		"	"	"		"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	105			30-15	50 %		"	"	"	"	"	
General Cl	hemistry Parameters												
	% Solids	70.4		%			1	SM2540 G Mod.	03-Dec-14	03-Dec-14	DT	1428498	

Sample Id SS-88 SC00580-	entification 10			Client Pr	-		<u>Matrix</u> Soil		ection Date -Dec-14 11			ceived Dec-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	le Organic Compounds by C	GC											
Polychlorii	nated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 25.7	U	μg/kg dry	27.5	25.7	1	SW846 8082A	03-Dec-14	04-Dec-14	IMR	1428496	Χ
11104-28-2	Aroclor-1221	< 23.4	U	μg/kg dry	27.5	23.4	1	"	"	"	"	"	Χ
11141-16-5	Aroclor-1232	< 24.7	U	μg/kg dry	27.5	24.7	1	"	"	"	"	"	Х
53469-21-9	Aroclor-1242	< 12.2	U	μg/kg dry	27.5	12.2	1	"	"	"	"	"	Х
12672-29-6	Aroclor-1248	< 14.9	U	μg/kg dry	27.5	14.9	1	"	"	"	"	"	Х
11097-69-1	Aroclor-1254	2,660		μg/kg dry	27.5	17.3	1	"	"	"	"	"	Х
11096-82-5	Aroclor-1260	147		μg/kg dry	27.5	19.7	1	"	"	"	"	"	Х
37324-23-5	Aroclor-1262	< 14.9	U	μg/kg dry	27.5	14.9	1	"	"	"	"	"	Х
11100-14-4	Aroclor-1268	< 27.0	U	μg/kg dry	27.5	27.0	1	II .	"	"	"	"	Χ
Surrogate r	ecoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	80			30-15	50 %		"	"	u u	ıı	"	
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	85			30-15	50 %		"	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr)	100			30-15	50 %		"	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	105			30-15	50 %		"	"	"	"	"	
General Cl	hemistry Parameters												
	% Solids	72.6		%			1	SM2540 G Mod.	03-Dec-14	03-Dec-14	DT	1428498	

Sample Id SS-89 SC00580-	entification 11			Client Pr			<u>Matrix</u> Soil	·	ection Date -Dec-14 11			ceived Dec-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	le Organic Compounds by C	GC .											
Polychlorii	nated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 21.6	U	μg/kg dry	23.1	21.6	1	SW846 8082A	03-Dec-14	04-Dec-14	IMR	1428496	Χ
11104-28-2	Aroclor-1221	< 19.7	U	μg/kg dry	23.1	19.7	1	"	"	"		"	Χ
11141-16-5	Aroclor-1232	< 20.8	U	μg/kg dry	23.1	20.8	1	"	"	"	"	"	Х
53469-21-9	Aroclor-1242	< 10.3	U	μg/kg dry	23.1	10.3	1	"	"	"	"	"	Х
12672-29-6	Aroclor-1248	2,430		μg/kg dry	23.1	12.6	1	"	"	"	"	"	Х
11097-69-1	Aroclor-1254	2,560		μg/kg dry	23.1	14.6	1	"	"	"	"	"	Х
11096-82-5	Aroclor-1260	185		μg/kg dry	23.1	16.5	1	"	"	"	"	"	Х
37324-23-5	Aroclor-1262	< 12.5	U	μg/kg dry	23.1	12.5	1	"	"	"	"	"	Х
11100-14-4	Aroclor-1268	< 22.7	U	μg/kg dry	23.1	22.7	1	"	"	"	u.	u	Х
Surrogate r	ecoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	85			30-15	60 %		"	"	u u	ıı	"	
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	95			30-15	0 %		u	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr)	105			30-15	0 %		"	"	"		"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	110			30-15	0 %		n .	"	n .	·	"	
General Cl	hemistry Parameters												
	% Solids	83.7		%			1	SM2540 G Mod.	03-Dec-14	03-Dec-14	DT	1428498	

Sample Id SS-90 SC00580-	C00580-12			Client Project # 14-091		<u>Matrix</u> Soil		ection Date -Dec-14 11			ceived Dec-14		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	le Organic Compounds by C	GC											
Polychlorii	nated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 22.9	U	μg/kg dry	24.5	22.9	1	SW846 8082A	03-Dec-14	04-Dec-14	IMR	1428496	Χ
11104-28-2	Aroclor-1221	< 20.8	U	μg/kg dry	24.5	20.8	1	"	"	"	"	"	Χ
11141-16-5	Aroclor-1232	< 22.0	U	μg/kg dry	24.5	22.0	1	"	"	"	"	"	Χ
53469-21-9	Aroclor-1242	< 10.9	U	μg/kg dry	24.5	10.9	1	"	"	"	"	"	Х
12672-29-6	Aroclor-1248	110		μg/kg dry	24.5	13.3	1	"	"	"	"	"	Х
11097-69-1	Aroclor-1254	207		μg/kg dry	24.5	15.5	1	"	"	"	"	"	Х
11096-82-5	Aroclor-1260 [2C]	31.8		μg/kg dry	24.5	23.2	1	"	"	"	"	"	Х
37324-23-5	Aroclor-1262	< 13.3	U	μg/kg dry	24.5	13.3	1	"	"	"	"	"	Х
11100-14-4	Aroclor-1268	< 24.1	U	μg/kg dry	24.5	24.1	1	"	"	"	"	"	Х
Surrogate r	ecoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	85			30-15	60 %		"	"	u u	ıı	"	
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	90			30-15	0 %		"	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr)	100			30-15	0 %		"	"	"		"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	115			30-15	0 %		"	"	"	"	"	
General Cl	hemistry Parameters												
	% Solids	80.1		%			1	SM2540 G Mod.	03-Dec-14	03-Dec-14	DT	1428498	

SS-91	000580-13			Client Project # 14-091		<u>Matrix</u> Soil	<u>-</u>				eceived Dec-14		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	le Organic Compounds by C	GC											
	nated Biphenyls by method SW846 3540C												
12674-11-2	Aroclor-1016	< 24.0	U	μg/kg dry	25.7	24.0	1	SW846 8082A	03-Dec-14	04-Dec-14	IMR	1428496	Χ
11104-28-2	Aroclor-1221	< 21.9	U	μg/kg dry	25.7	21.9	1	"	n n	"	"	"	Χ
11141-16-5	Aroclor-1232	< 23.1	U	μg/kg dry	25.7	23.1	1		"	"	"	"	Χ
53469-21-9	Aroclor-1242	< 11.4	U	μg/kg dry	25.7	11.4	1		"	"	"	"	Χ
12672-29-6	Aroclor-1248	< 14.0	U	μg/kg dry	25.7	14.0	1		"	"	"	"	Χ
11097-69-1	Aroclor-1254 [2C]	907		μg/kg dry	25.7	15.3	1		"	"	"	"	Χ
11096-82-5	Aroclor-1260 [2C]	95.2		μg/kg dry	25.7	24.4	1		"	"	"	"	Χ
37324-23-5	Aroclor-1262	< 13.9	U	μg/kg dry	25.7	13.9	1		"	"	"	"	Χ
11100-14-4	Aroclor-1268	< 25.3	U	μg/kg dry	25.7	25.3	1	"	"	"	"	"	Х
Surrogate r	recoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	85			30-15	50 %		"	H .	"	"	"	
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	95			30-15	50 %		"	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr)	105			30-15	50 %		"	II .	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	115			30-15	50 %		"	"	"	"	"	
General C	hemistry Parameters												
	% Solids	74.2		%			1	SM2540 G Mod.	03-Dec-14	03-Dec-14	DT	1428498	

Sample Id SS-92 SC00580-	C00580-14			Client Project # 14-091		<u>Matrix</u> Soil		ection Date -Dec-14 12			eceived Dec-14		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	le Organic Compounds by C	GC											
Polychlorii	nated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 26.5	U	μg/kg dry	28.3	26.5	1	SW846 8082A	03-Dec-14	04-Dec-14	IMR	1428496	Χ
11104-28-2	Aroclor-1221	< 24.1	U	μg/kg dry	28.3	24.1	1	"	"	"	"	"	Χ
11141-16-5	Aroclor-1232	< 25.5	U	μg/kg dry	28.3	25.5	1	"	"	"	"	"	Х
53469-21-9	Aroclor-1242	< 12.6	U	μg/kg dry	28.3	12.6	1	"	"	"	"	"	Х
12672-29-6	Aroclor-1248	116		μg/kg dry	28.3	15.4	1	"	"	"	"	"	Х
11097-69-1	Aroclor-1254	101		μg/kg dry	28.3	17.9	1	"	"	"	"		Х
11096-82-5	Aroclor-1260	< 20.3	U	μg/kg dry	28.3	20.3	1	"	"	"	"	"	Х
37324-23-5	Aroclor-1262	< 15.4	U	μg/kg dry	28.3	15.4	1	"	"	"	"		Х
11100-14-4	Aroclor-1268	< 27.9	U	μg/kg dry	28.3	27.9	1	"	"	"	"	"	Χ
Surrogate r	ecoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	85			30-15	50 %		"	"	u u	"	"	
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	95			30-15	50 %		"	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr)	105			30-15	50 %		"	"	"		"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	110			30-15	50 %		"	"	"	"	"	
General Cl	hemistry Parameters												
	% Solids	66.0		%			1	SM2540 G Mod.	03-Dec-14	03-Dec-14	DT	1428498	

SS-93	C00580-15			<u>Client Pr</u> 14-0			<u>Matrix</u> Soil	-	ection Date -Dec-14 12			eceived Dec-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	le Organic Compounds by C	GC .											
	nated Biphenyls by method SW846 3540C												
12674-11-2	Aroclor-1016	< 26.1	U	μg/kg dry	28.0	26.1	1	SW846 8082A	03-Dec-14	04-Dec-14	IMR	1428496	Χ
11104-28-2	Aroclor-1221	< 23.8	U	μg/kg dry	28.0	23.8	1		n n	"	"	"	Χ
11141-16-5	Aroclor-1232	< 25.1	U	μg/kg dry	28.0	25.1	1	"	"	"	"	"	Χ
53469-21-9	Aroclor-1242	< 12.4	U	μg/kg dry	28.0	12.4	1		"	"	"	"	Χ
12672-29-6	Aroclor-1248	< 15.2	U	μg/kg dry	28.0	15.2	1		"	"	"	"	Χ
11097-69-1	Aroclor-1254 [2C]	26.6	J	μg/kg dry	28.0	16.7	1		"	"	"	"	Χ
11096-82-5	Aroclor-1260	< 20.0	U	μg/kg dry	28.0	20.0	1	"	"	"	"	"	Χ
37324-23-5	Aroclor-1262	< 15.2	U	μg/kg dry	28.0	15.2	1		"	"	"	"	Χ
11100-14-4	Aroclor-1268	< 27.5	U	μg/kg dry	28.0	27.5	1	"	"	"	"	"	Х
Surrogate r	recoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	85			30-15	50 %		"	H .	"	"	"	
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	95			30-15	50 %		"	W	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr)	110			30-15	50 %		"	II .	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	120			30-15	50 %		"	"	"	"	"	
General C	hemistry Parameters												
	% Solids	69.0		%			1	SM2540 G Mod.	03-Dec-14	03-Dec-14	DT	1428499	

Sample Id SS-94 SC00580-	C00580-16			Client Project # 14-091		<u>Matrix</u> Soil	<u></u>				eceived Dec-14		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	le Organic Compounds by C	GC											
Polychlorii	nated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 24.2	U	μg/kg dry	25.9	24.2	1	SW846 8082A	03-Dec-14	04-Dec-14	IMR	1428496	Χ
11104-28-2	Aroclor-1221	< 22.1	U	μg/kg dry	25.9	22.1	1	"	"	"	"	"	Χ
11141-16-5	Aroclor-1232	< 23.3	U	μg/kg dry	25.9	23.3	1	"	"	"	"	"	Χ
53469-21-9	Aroclor-1242	< 11.5	U	μg/kg dry	25.9	11.5	1	"	u u	"	"	"	X
12672-29-6	Aroclor-1248 [2C]	32.4		μg/kg dry	25.9	14.2	1	"	"	"	"	"	X
11097-69-1	Aroclor-1254 [2C]	66.1		μg/kg dry	25.9	15.5	1	"	"	"	"	"	Х
11096-82-5	Aroclor-1260	< 18.6	U	μg/kg dry	25.9	18.6	1	"	"	"	"	"	Х
37324-23-5	Aroclor-1262	< 14.1	U	μg/kg dry	25.9	14.1	1	"	"	"	"	"	Х
11100-14-4	Aroclor-1268	< 25.5	U	μg/kg dry	25.9	25.5	1	"	"	"	"	"	Χ
Surrogate r	ecoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	85			30-15	50 %		"	"	u u	"	"	
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	95			30-15	50 %		"	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr)	105			30-15	50 %		"	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	110			30-15	50 %		"	"	"	"	"	
General Cl	hemistry Parameters												
	% Solids	71.3		%			1	SM2540 G Mod.	03-Dec-14	03-Dec-14	DT	1428499	

Sample Id SS-95 SC00580-	entification 17			Client Pr	-		<u>Matrix</u> Soil		ection Date -Dec-14 12			ceived Dec-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	le Organic Compounds by C	GC											
Polychlorii	nated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 28.7	U	μg/kg dry	30.7	28.7	1	SW846 8082A	03-Dec-14	04-Dec-14	IMR	1428496	Χ
11104-28-2	Aroclor-1221	< 26.1	U	μg/kg dry	30.7	26.1	1	"	"	"	"	"	Χ
11141-16-5	Aroclor-1232	< 27.6	U	μg/kg dry	30.7	27.6	1	"	"	"	"	"	Х
53469-21-9	Aroclor-1242	< 13.6	U	μg/kg dry	30.7	13.6	1	"	"	"	"	"	Х
12672-29-6	Aroclor-1248	< 16.7	U	μg/kg dry	30.7	16.7	1	"	"	"	"	"	Х
11097-69-1	Aroclor-1254	< 19.4	U	μg/kg dry	30.7	19.4	1	"	"	"	"	"	Х
11096-82-5	Aroclor-1260	27.6	J	μg/kg dry	30.7	22.0	1	"	"	"	"	"	Х
37324-23-5	Aroclor-1262	< 16.6	U	μg/kg dry	30.7	16.6	1	"	"	"	"		Х
11100-14-4	Aroclor-1268	< 30.2	U	μg/kg dry	30.7	30.2	1	"	"	"	"	"	Χ
Surrogate r	ecoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	85			30-15	50 %		"	"	"	"	"	
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	95			30-15	50 %		"	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr)	105			30-15	50 %		"	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	115			30-15	50 %		"	n .	"	"	"	
General Cl	hemistry Parameters												
	% Solids	63.5		%			1	SM2540 G Mod.	03-Dec-14	03-Dec-14	DT	1428499	

Sample Id SS-96 SC00580-	200580-18			Client Project # 14-091		<u>Matrix</u> Soil					eceived Dec-14		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	le Organic Compounds by C	GC											
Polychlorii	nated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 34.0	U	μg/kg dry	36.4	34.0	1	SW846 8082A	03-Dec-14	04-Dec-14	IMR	1428496	Χ
11104-28-2	Aroclor-1221	< 31.0	U	μg/kg dry	36.4	31.0	1	"	"	"	"	"	Χ
11141-16-5	Aroclor-1232	< 32.7	U	μg/kg dry	36.4	32.7	1	"	"	"	"	"	Х
53469-21-9	Aroclor-1242	< 16.2	U	μg/kg dry	36.4	16.2	1	"	"	"	"	"	Х
12672-29-6	Aroclor-1248	< 19.8	U	μg/kg dry	36.4	19.8	1	"	"	"	"	"	Х
11097-69-1	Aroclor-1254	30.9	J	μg/kg dry	36.4	23.0	1	"	"	"	"		Х
11096-82-5	Aroclor-1260	< 26.1	U	μg/kg dry	36.4	26.1	1	"	"	"	"	"	Х
37324-23-5	Aroclor-1262	< 19.7	U	μg/kg dry	36.4	19.7	1	"	"	"	"		Х
11100-14-4	Aroclor-1268	< 35.8	U	μg/kg dry	36.4	35.8	1	"	"	"	"	"	Χ
Surrogate r	ecoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	80			30-15	50 %		"	"	"	"	"	
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	90			30-15	50 %		"	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr)	100			30-15	50 %		"	"	"		"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	110			30-15	50 %		"	u	"	"	"	
General Cl	hemistry Parameters												
	% Solids	52.9		%			1	SM2540 G Mod.	03-Dec-14	03-Dec-14	DT	1428499	

SS-97	C00580-19			Client Project # 14-091		<u>Matrix</u> Soil	<u> </u>				ceived Dec-14		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	le Organic Compounds by C	ЭC											
	nated Biphenyls by method SW846 3540C												
12674-11-2	Aroclor-1016	< 25.7	U	μg/kg dry	27.5	25.7	1	SW846 8082A	03-Dec-14	04-Dec-14	IMR	1428496	X
11104-28-2	Aroclor-1221	< 23.4	U	μg/kg dry	27.5	23.4	1		"	"	"	"	Х
11141-16-5	Aroclor-1232	< 24.7	U	μg/kg dry	27.5	24.7	1		u u	"	"	"	Х
53469-21-9	Aroclor-1242	< 12.2	U	μg/kg dry	27.5	12.2	1		"	"	"	"	Х
12672-29-6	Aroclor-1248	< 15.0	U	μg/kg dry	27.5	15.0	1		"	"	"	"	Х
11097-69-1	Aroclor-1254	< 17.4	U	μg/kg dry	27.5	17.4	1		"	"	"	"	Х
11096-82-5	Aroclor-1260	< 19.7	U	μg/kg dry	27.5	19.7	1	"	"	"	"	"	Х
37324-23-5	Aroclor-1262	< 14.9	U	μg/kg dry	27.5	14.9	1		u u	"	"	"	Х
11100-14-4	Aroclor-1268	< 27.1	U	μg/kg dry	27.5	27.1	1	"	"	"	"	"	Χ
Surrogate i	recoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	85			30-15	0 %		u	"	"	"	"	
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	95			30-15	0 %		"	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr)	105			30-15	0 %		"	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	115			30-15	0 %		u	"	"	"	"	
General C	hemistry Parameters												
	% Solids	67.2		%			1	SM2540 G Mod.	03-Dec-14	03-Dec-14	DT	1428499	

Semivolatile Organic Compounds by GC - Quality Control

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
atch 1428496 - SW846 3540C										
Blank (1428496-BLK1)					Pre	epared: 03-	Dec-14 An	alyzed: 04-D	ec-14	
Aroclor-1016	< 18.4	U	μg/kg wet	18.4						
Aroclor-1016 [2C]	< 12.8	U	μg/kg wet	12.8						
Aroclor-1221	< 16.7	U	μg/kg wet	16.7						
Aroclor-1221 [2C]	< 14.5	U	μg/kg wet	14.5						
Aroclor-1232	< 17.7	U	μg/kg wet	17.7						
Aroclor-1232 [2C]	< 15.2	U	μg/kg wet	15.2						
Aroclor-1242	< 8.75	U	μg/kg wet	8.75						
Aroclor-1242 [2C]	< 15.4	U	μg/kg wet	15.4						
Aroclor-1248	< 10.7	U	μg/kg wet	10.7						
Aroclor-1248 [2C]	< 10.8	U	μg/kg wet	10.8						
Aroclor-1254	< 12.4	U	μg/kg wet	12.4						
Aroclor-1254 [2C]	< 11.7	U	μg/kg wet	11.7						
Aroclor-1260	< 14.1	U	μg/kg wet	14.1						
Aroclor-1260 [2C]	< 18.7	U	μg/kg wet	18.7						
Aroclor-1262	< 10.7	U	μg/kg wet	10.7						
Aroclor-1262 [2C]	< 9.84	U	μg/kg wet	9.84						
Aroclor-1268	< 19.3	U	μg/kg wet	19.3						
Aroclor-1268 [2C]	< 18.9	U	μg/kg wet	18.9						
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	11.8		μg/kg wet		19.7		60	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	12.8		μg/kg wet		19.7		65	30-150		
Surrogate: Decachlorobiphenyl (Sr)	15.7		μg/kg wet		19.7		80	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	14.8		μg/kg wet		19.7		75	30-150		
LCS (1428496-BS1)					Pre	epared: 03-	Dec-14 An	alyzed: 04-D	ec-14	
Aroclor-1016	256		μg/kg wet	18.5	248		104	40-140		
Aroclor-1016 [2C]	241		μg/kg wet	12.8	248		97	40-140		
Aroclor-1260	253		μg/kg wet	14.2	248		102	40-140		
Aroclor-1260 [2C]	218		μg/kg wet	18.8	248		88	40-140		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	8.91		μg/kg wet		19.8		45	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	8.91		μg/kg wet		19.8		45	30-150		
Surrogate: Decachlorobiphenyl (Sr)	10.9		μg/kg wet		19.8		55	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	10.9		μg/kg wet		19.8		55	30-150		
LCS Dup (1428496-BSD1)					Pre	epared: 03-	Dec-14 An	alyzed: 04-D	ec-14	
Aroclor-1016	254		μg/kg wet	18.2	244		104	40-140	0.8	30
Aroclor-1016 [2C]	242		μg/kg wet	12.6	244		99	40-140	2	30
Aroclor-1260	248		μg/kg wet	14.0	244		102	40-140	0.4	30
Aroclor-1260 [2C]	207		μg/kg wet	18.5	244		85	40-140	4	30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	8.77		μg/kg wet		19.5		45	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	8.77		μg/kg wet		19.5		45	30-150		
Surrogate: Decachlorobiphenyl (Sr)	10.7		μg/kg wet		19.5		55	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	10.7		μg/kg wet		19.5		55	30-150		
Duplicate (1428496-DUP1)			Source: SC	00580-01	Pre	epared: 03-	Dec-14 An	alyzed: 04-D	ec-14	
Aroclor-1016	< 22.0	U	μg/kg dry	22.0		BRL		 		30
Aroclor-1016 [2C]	< 15.2	U	μg/kg dry	15.2		BRL				30
Aroclor-1221	< 20.0	U	μg/kg dry	20.0		BRL				30
Aroclor-1221 [2C]	< 17.3	U	μg/kg dry	17.3		BRL				30
Aroclor-1232	< 21.1	U	μg/kg dry	21.1		BRL				30
Aroclor-1232 [2C]	< 18.1	U	μg/kg dry	18.1		BRL				30
Aroclor-1242	< 10.5	U	μg/kg dry	10.5		BRL				30

Semivolatile Organic Compounds by GC - Quality Control

					Spike	Source		%REC		RPD
nalyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limi
atch 1428496 - SW846 3540C										
<u>Duplicate (1428496-DUP1)</u>			Source: SC	00580-01	<u>Pre</u>	pared: 03-	Dec-14 An	alyzed: 04-E	ec-14	
Aroclor-1242 [2C]	< 18.4	U	μg/kg dry	18.4		BRL				30
Aroclor-1248	< 12.8	U	μg/kg dry	12.8		BRL				30
Aroclor-1248 [2C]	< 12.9	U	μg/kg dry	12.9		BRL				30
Aroclor-1254	< 14.8	U	μg/kg dry	14.8		BRL				30
Aroclor-1254 [2C]	< 14.0	U	μg/kg dry	14.0		BRL				30
Aroclor-1260	< 16.8	U	μg/kg dry	16.8		BRL				30
Aroclor-1260 [2C]	< 22.3	U	μg/kg dry	22.3		BRL				30
Aroclor-1262	< 12.7	U	μg/kg dry	12.7		BRL				30
Aroclor-1262 [2C]	< 11.8	U	μg/kg dry	11.8		BRL				30
Aroclor-1268	< 23.1	U	μg/kg dry	23.1		BRL				30
Aroclor-1268 [2C]	< 22.6	U	μg/kg dry	22.6		BRL				30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	20.0		μg/kg dry		23.5		85	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	22.3		μg/kg dry		23.5		95	30-150		
Surrogate: Decachlorobiphenyl (Sr)	27.1		μg/kg dry		23.5		115	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	28.2		μg/kg dry		23.5		120	30-150		
Matrix Spike (1428496-MS1)			Source: SC	00580-01	Pre	pared: 03-	Dec-14 An	alyzed: 04-E	ec-14	
Aroclor-1016	269		μg/kg dry	22.6	303	BRL	89	40-140		
Aroclor-1016 [2C]	269		μg/kg dry	15.7	303	BRL	89	40-140		
Aroclor-1260	287		μg/kg dry	17.3	303	BRL	95	40-140		
Aroclor-1260 [2C]	248		μg/kg dry	23.0	303	BRL	82	40-140		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	21.8		μg/kg dry		24.2		90	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	21.8		μg/kg dry		24.2		90	30-150		
Surrogate: Decachlorobiphenyl (Sr)	27.8		μg/kg dry		24.2		115	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	26.6		μg/kg dry		24.2		110	30-150		
Matrix Spike Dup (1428496-MSD1)			Source: SC	<u>00580-01</u>	<u>Pre</u>	pared: 03-	Dec-14 An	alyzed: 04-D	ec-14	
Aroclor-1016	262		μg/kg dry	22.1	296	BRL	88	40-140	0.5	30
Aroclor-1016 [2C]	258		μg/kg dry	15.4	296	BRL	87	40-140	2	30
Aroclor-1260	277		μg/kg dry	17.0	296	BRL	94	40-140	1	30
Aroclor-1260 [2C]	236		μg/kg dry	22.5	296	BRL	80	40-140	3	30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	21.3		μg/kg dry		23.7		90	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	21.3		μg/kg dry		23.7		90	30-150		
Surrogate: Decachlorobiphenyl (Sr)	26.1		μg/kg dry		23.7		110	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	26.1		μg/kg dry		23.7		110	30-150		

General Chemistry Parameters - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1428499 - General Preparation										
<u>Duplicate (1428499-DUP1)</u>			Source: SC	00580-15	Pre	epared & Ai	nalyzed: 03-	-Dec-14		
% Solids	68.3		%			69.0			1	5
<u>Duplicate (1428499-DUP2)</u>			Source: SC	00580-16	Pre	epared & Ai	nalyzed: 03-	-Dec-14		
% Solids	71.7		%			71.3			0.5	5

Notes and Definitions

D Data reported from a dilution

GS1 Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

J Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration

(CLP J-Flag).

The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration

and/or matrix interference's.

U Analyte included in the analysis, but not detected at or above the MDL.

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification:</u> The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

Validated by: Kimberly LaPlante

SPECTRUM ANALYTICAL, INC.

SPECTRUM ANALYTICAL, IN Featuring HANIBAL TECHNOLOGY

CHAIN OF CUSTODY RECORD

SC06580 By

Page 1 of 2

Special	Handling:
---------	-----------

☐ Standard TAT - 7 to 10 business days

Rush TAT - Date Needed:	3-DAY

All TATs subject to laboratory approval
Min. 24-hr notification needed for rushes
Samples disposed after 60 days unless otherwise instructed.

63	CC 08 Fly Rond		Invoice To:	A	ct.	5 P	eya	ble					Business Park
Telephone #: Project Mgr:	(315) 432-9400	13057	P.O No.:	14-0	091		Quote	e/RQN:			Location: Sampler(s):	Drew 7	Dr. DeWitt State: NY Brantner
	1=Na ₂ S2O ₃		=NaOH 6 =								List Preservative Co	de below:	QA/QC Reporting Notes: * additional charges may appply
DW=Dinking Water	GW=Groundwater SW=	Surface Water WW	=Waste Water				C	ontain	ers		Analysis		MA DEP MCP CAM Report? Yes No
	SL=Sludge A=Indoor/A					Vials	r Glass	Glass		PUBS.			CT DPH RCP Report?
G= Lab ID:	= Grab Sample ID:	C=Compsite Date:	Time:	Type	Matrix	of VOA Vials	of Amber Glass	of Clear Glass	of Plastic	8083			NJ Reduced* NJ Full* Tier IV* Other: State-specific reporting standards:
005800	55-79	12/2/14	1040	5 5	0	46	1	44:	4:	X			State-specific reporting standards.
1 07	55-81		1046	1	1		1						
03	55-83		1052										
04	55-84		1057		Ш				T M				P 7/24
05	55-86		1103										D 10/12/20
06	55-80		1115		11								
07	55-82		1121		\perp			/-					
08	55-85		1126		Ш						16 -		P10600
1 09	55-87		1132		\square								12/10/P/R
1/ (0)	55-88	1	1137	1	*		4			Ψ			
Relinq	uished by:	Received	by:	/	1	Date:	-		Time:	Temp °C	EDD format:	PDF,	Excel V
Diger	Martin	100	et	,	2	1	14	15	546	S Corecction Facto	E-mail to:	make	na @ aecegroup com
200	work)	Algert		1	2-1	11	4	1	1~	Corrected			
Coy	(An)	M'		/	12/	3/1	4	á	100	RID#	-		als: Present Intact Broken ated DI VOA Frozen Soil Jar Frozen
V										01	Ambient	keinger	ated Di VOA Plozell D Soil Jar Prozen

CHAIN OF CUSTODY RECORD

Page 2 of 2

Special	Handling:
operin	Trumb.

Rush TAT - Date Needed: 3 DAY
All TATs subject to laboratory approval.

Min. 24-hour notification needed for rushes.
 Samples disposed of after 60 days unless

otherwise instructed.

SC 00580

AEC	8 Fly Road	- 13057	Invoice	To:/	Acct"	5	Pay	able	2	Site		Business Park
Telephone #: _ Project Mgr.	(315) 432-9	1400	P.O. No	.: 14-	-091		RQI	N:			npler(s): Drew	Brantner State: NY
1=Na ₂ S2	2O ₃ 2=HCl 3=H O ₄ 9= Deionized V			6=Asc		cid 2=	7=0	CH ₃ O	H	List	preservative code below:	QA/QC Reporting Notes: * additional charges may apply
O=Oil SW=	Water GW=Grou Surface Water SC X2=	D=Soil SL=Slud	ge A=Air			Vials	Con	dlass	rs:	GBS .	Analyses:	MA DEP MCP CAM Report: Yes □ No □ CT DPH RCP Report: Yes □ No □ QA/QC Reporting Level Standard □ No QC □ DQA*
	G=Grab C=		Time:	Type	Matrix	# of VOA V	# of Amber	# of Clear G	# of Plastic	8082 P		□ NY ASP A* □ NY ASP B* □ NJ Reduced* □ NJ Full* □ TIER II* □ TIER IV* □ Other State-specific reporting standards:
Lab Id:	Sample Id: 55-89	Date: /2/2/14	1148	6	so		1			X		State-specific reporting standards.
1 12	55-90		1155	l i			1			11		No.X
13	55-91		1202						-	111		bothet
14	55-92		1213	1						+++-		(ON
15	SS-93		1219	11			1			+++	1 1 1 1 1 1	10/ (35)
16	55-94		1223	1			1				1./ 1 / 1/e /	Ind/
17	55-95		1230								12/2/14/11	
18	55-96		1236		1						12/2/11	510510
19	55-97	*	1247	1	V		V			V		
Relin	quished by:	Rec	oived by:	C	12/3/	2/1	4	15	Time: 545	Temp°C	E-mail to	DF, Excel
Cico	((2n)				1	1					Condition upon receipt:	efrigerated DIVOA Frozen Soil Jar Frozen

Life Science Laboratories, Inc.

Rich McKenna Asbestos & Environmental Consulting Corp 6308 Fly Road East Syracuse, NY 13057

Phone:

(315) 432-9400

FAX:

(315) 432-9405

Authorization: PO#14-091

Laboratory Analysis Report Prepared For

Asbestos & Environmental Consulting Corp

LSL Project ID: 1419581

Receive Date/Time: 12/02/14 16:01

Life Science Laboratories, Inc. warrants, to the best of its knowledge and belief, the accuracy of the analytical test results contained in this report, but makes no other warranty, expressed or implied, especially no warranties of merchantability or fitness for a particular purpose. By the Client's acceptance and/or use of this report, the Client agrees that LSL is hereby released from any and all liabilities, claims, damages or causes of action affecting or which may affect the Client as regards to the results contained in this report. The Client further agrees that the only remedy available to the Client in the event of proven non-conformity with the above warranty shall be for LSL to re-perform the analytical test(s) at no charge to the Client. The data contained in this report are for the exclusive use of the Client to whom it is addressed, and the release of these data to any other party, or the use of the name, trademark or service mark of Life Science Laboratories, Inc. especially for the use of advertising to the general public, is strictly prohibited without express prior written consent of Life Science Laboratories, Inc. This report may only be reproduced in its entirety. No partial duplication is allowed. The Chain of Custody and the Sample Receipt documents submitted with these samples are considered by LSL to be an appendix of this report and may contain specific information that pertains to the samples included in this report. The analytical result(s) in this report are only representative of the sample(s) submitted for analysis. LSL makes no claim of a sample's representativeness, or integrity, if sampling was not performed by LSL personnel.

LSL Central Lab 5854 Butternut Drive East Syracuse, NY 13057 Tel. (315) 445-1900 Fax (315) 445-1104 NYS DOH ELAP #10248 PA DEP #68-2556

LSL North Lab 131 St. Lawrence Avenue Waddington, NY 13694 Tel. (315) 388-4476 Fax (315) 388-4061 NYS DOH ELAP #10900

LSL Finger Lakes Lab 16 N. Main St., PO Box 424 Wayland, NY 14572 Tel. (585) 728-3320 Fax (585) 728-2711 NYS DOH ELAP #11667

LSL Southern Tier Office Cuba, NY Tel. (585) 209-4032

LSL MidLakes Office Canandaigua, NY Tel. (585) 728-3320

David J. Prichard, Director of Tech. Services

Page 1 of 2

A copy of this report was sent to:

Date Printed:

12/5/14

-- LABORATORY ANALYSIS REPORT --

Asbestos & Environmental Consulting Corp Eas

East Syracuse, NY

Sample ID:

SS-95d Grab

LSL Sample ID:

1419581-001

Location:

Sampled:

12/02/14 13:46

Sampled By: DB

Sample Matrix: SHW Dry Wt

Analytical Method Analyte	Result	Prep Method Units	Prep Date	Analysis Date & Time	Analyst Initials
		EPA 3540			
I) EPA 8082A PCBs	< 0.02	mg/kg dry	12/4/14	12/5/14	CRT
Aroclor-1016	< 0.02	mg/kg dry	12/4/14	12/5/14	CRT
Aroclor-1221	<0.02	C C .	12/4/14	12/5/14	CRT
Aroclor-1232	<0.02		12/4/14	12/5/14	CRT
Aroclor-1242		mg/kg dry	12/4/14	12/5/14	CRT
Aroclor-1248	<0.02		12/4/14	12/5/14	CRT
Aroclor-1254		mg/kg dry	12/4/14	12/5/14	CRT
Aroclor-1260 Surrogate (DCB)	55	%R	12/4/14	12/5/14	CRT
7) SM 2540 B-97,-11 Total Solids Total Solids @ 103-105 C	59	%	12/4/14	12/4/14	AIS

Analysis performed at: (1) LSL Central Lab, (2) LSL North Lab, (3) LSL Finger Lakes Lab

Life Science Laboratories, Inc.

Sample Receipt Checklist

LSL LIMS

Project ID	1419581	Client ID	AECC	
Shipment Number 1		SRC Completed By: RSD2	Date:	12/2/2014 4:04:20 PM
	Received By RSD2	Carrier Ship,	pingID	
Shipping container/cooler i	n Yes	Sample containers intact?	Yes	
Custody seal intact on shipp container/cooler?	ping N/A	Sufficient sample volume for indicated test?	Yes	
Custody seals intact on sambottles?	ıple N/A	All samples received within hold time?	ding Yes	
Chain of Custody present?	Yes	Container/Temp Blank tempera in compliance?	ture No	
COC signed when relinquis	shed Yes	Water - VOA vials have zero headspace?	N/A	
COC agrees with sample la	abels? Yes	Water - pH acceptable upon rec	ceipt? N/A	
Samples in proper containers/bottles?	Yes	Water - HNO3 added to unpres metal sample(s) to a pH of $<$ 2?	erved N/A	

Comments:

Receipt temp okay as per Client. RD 12/02/14

Corrective Action:

Reviewed Ry:

Printed: Wednesday, December 03, 2014

Page 1 of 1

LSL

Life Science Laboratories, Inc. CHAIN OF CUSTODY RECORD

LSL Central Lab 5854 Buttemut Drive East Syracuse, NY 13057. Phone: (315) 445-1900 Fax: (315) 445-1104 Email: Islcentral@Isl-inc.com LSL North Lab 131 St Lawrence Ave Waddington, NY 13694 Phone: (315) 388-4476 Fax: (315) 388-4081 Email: lslnfo@lsl-inc.com

LSL Finger Lakes Lab 16 North Main Street Wayland, NY 14572 Phone: (585) 728-3320 Fax: (585) 728-2711 Email: Islfil@Isl-inc.com

LSL Southern Tier Lab 24 A West Main Street Cuba, NY 14727 Phone: (585) 968-2640 Fax: (585) 968-0906 Email: Islstl@Isl-inc.com

1419501

AECC

6063

								nd Time (Business Day)	¥	· · · · · · · · · · · · · · · · · · ·			
Report Address:		-					Normal	Pre-Authorized					
1 ~							10 DAY	Next Day* 3-Day * 🔀	*Addition	al Charge			
Name: Rich Mck.	inna							2-Day * 7-Day*	may appl	_			
Company: AECC							Date Needed or Special Instructions:						
Street: 6308 Fly	Koad		_					•					
City/State: East Syracus Phone: (315) 432 - 94	se, NY		_	Zip:	057								
Phone: (315) 432 - 94	00		_	Zip: 3 Fax: (3/5	1432-90	108	Authorizat	tion or P.O. #					
Email: mchenna @	aeccan	ان ، حوسان	\sim		14-091								
Client Project ID/Client Site II	, ,			ISI Projec	t Number:	an basished dan orbin a biring	BALLYA I SOMOWANI.						
Client's Sample	Sample	Sample	Туре		Preserv	Co	ntainers	Analyses					
Identifications	Date	4	grab/comp	Matrix	E :	#	size/type		Preserv				
					- Audubu	****	Size/type		Check	LSL ID#			
SS-95d	12/2/14	13410	Grab	انک)	402 Auber	PART DIRE /					
	10/11	1010	<u> </u>	110			966 Muster	8082 PCBS W		001			
								Soxhlet Prep (3540)					
		 	 			**************************************		JOKATET PREP (3540)		ļ			
				l	[.			1/20 1]			
			and the second s		 			(20 ppb reporting limit)					
				1						Ì			
				- /-									
					Ì								
					1								
				Ä				The state of the s					
				-/			- Andrews						
·				/				·					
				\ 		AND DESCRIPTION OF THE PARTY OF							
				4									
				-		THE COLUMN TWO IS NOT THE OWNER.		:		ļ			
				l									
									<u> </u>				
			ĺ	1				*	<i></i>				
LSL use only:	***					Custady	Transfers						
* Roceint temp oka	اعمد	Sample	d By:	Drew B	rantne		Received	Du.	Date	Time			
* Receipt temp oka			ished By: /	1 100 10	ios mies								
per client. RD 12	1214	Relinan	ished By:) 10 × 1/2			Received						
Containers t	' '		nt Method:	140,5 12	Deuler		Rec'd for I		12/2/14	16:01			
*** All areas of	this Chai	n of Cree	tody Dagged	MUCTA	Had and		received i	ntact: Y N amples in a timely manner IN PEN ON		106.8 m			

Reg COC rev1

Report Date: 19-Dec-14 12:04

☑ Final Report☐ Re-Issued Report☐ Revised Report

HANIBAL TECHNOLOGY Laboratory Report

AECC Environmental Consulting 6308 Fly Road

East Syracuse, NY 13057

Attn: Rich McKenna

Project: Woodbine Business Park - Dewitt, NY

Project #: 14-091

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SC01291-01	CS-1 (1.5')	Soil	15-Dec-14 10:20	15-Dec-14 21:00
SC01291-02	CS-1 (2.5')	Soil	15-Dec-14 10:25	15-Dec-14 21:00
SC01291-03	SS-53 (1.5')	Soil	15-Dec-14 10:50	15-Dec-14 21:00
SC01291-04	SS-53 (2.5')	Soil	15-Dec-14 10:55	15-Dec-14 21:00
SC01291-05	SS-83 (1.5')	Soil	15-Dec-14 11:12	15-Dec-14 21:00
SC01291-06	SS-83 (2.5')	Soil	15-Dec-14 11:20	15-Dec-14 21:00
SC01291-07	SS-87 (1.5')	Soil	15-Dec-14 11:33	15-Dec-14 21:00
SC01291-08	SS-87 (2.5')	Soil	15-Dec-14 11:42	15-Dec-14 21:00
SC01291-09	SS-101	Soil	15-Dec-14 11:55	15-Dec-14 21:00
SC01291-10	SS-99	Soil	15-Dec-14 12:09	15-Dec-14 21:00
SC01291-11	SS-100	Soil	15-Dec-14 12:16	15-Dec-14 21:00
SC01291-12	SS-98	Soil	15-Dec-14 12:29	15-Dec-14 21:00
SC01291-13	SS-102	Soil	15-Dec-14 12:40	15-Dec-14 21:00
SC01291-14	SS-104	Soil	15-Dec-14 12:58	15-Dec-14 21:00
SC01291-15	SS-105	Soil	15-Dec-14 13:05	15-Dec-14 21:00
SC01291-16	SS-103	Soil	15-Dec-14 13:14	15-Dec-14 21:00

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011/MA012 New York # 11393/11840 Pennsylvania # 68-04426/68-02924 Rhode Island # 98 USDA # S-51435

Authorized by:

Nicole Leja Laboratory Director

Spectrum Analytical holds certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 25 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey, Pennsylvania and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, NJ-MA012, PA-68-04426 and FL-E87936).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

CASE NARRATIVE:

Data has been reported to the MDL. This report includes estimated concentrations detected below the RDL and above the MDL (J-Flag).

All non-detects and all results below the detection limit are reported as "<" (less than) the detection limit in this report.

The samples were received 5.5 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of +/- 1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

SW846 8082A

Samples:

SC01291-03 SS-53 (1.5')

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

The surrogate recovery for this sample cannot be accurately quantified due to interference from coeluting organic compounds present in the sample extract.

Decachlorobiphenyl (Sr) [2C]

SC01291-04 SS-53 (2.5')

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

SC01291-05 SS-83 (1.5')

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interference's.

4,4-DB-Octafluorobiphenyl (Sr)

4,4-DB-Octafluorobiphenyl (Sr) [2C]

Decachlorobiphenyl (Sr)

Decachlorobiphenyl (Sr) [2C]

SC01291-06 SS-83 (2.5')

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interference's.

4,4-DB-Octafluorobiphenyl (Sr)

4,4-DB-Octafluorobiphenyl (Sr) [2C]

Decachlorobiphenyl (Sr)

Decachlorobiphenyl (Sr) [2C]

SC01291-10 SS-99

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

SW846 8082A

Samples:

SC01291-10 SS-99

The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interference's.

4,4-DB-Octafluorobiphenyl (Sr)

4,4-DB-Octafluorobiphenyl (Sr) [2C]

Decachlorobiphenyl (Sr)

Decachlorobiphenyl (Sr) [2C]

SC01291-16

SS-103

The surrogate recovery for this sample cannot be accurately quantified due to interference from coeluting organic compounds present in the sample extract.

Decachlorobiphenyl (Sr) [2C]

Sample Acceptance Check Form

AECC Environmental Consulting

Were samples received within method-specific holding times?

Client:

Project		Woodbine Business Park - Dewitt, NY / 14-091			
Work C	Order:	SC01291			
Sample	(s) received on:	12/15/2014			
Tl £-1					
i ne joi	lowing outlines th	e condition of samples for the attached Chain of Custody upon receipt.			
			Yes	No	<u>N/A</u>
	Were custody sea	als present?		\checkmark	
	Were custody sea	als intact?			✓
	Were samples re	ceived at a temperature of $\leq 6^{\circ}$ C?	\checkmark		
	Were samples co	oled on ice upon transfer to laboratory representative?	\checkmark		
	Were sample cor	ntainers received intact?	\checkmark		
		operly labeled (labels affixed to sample containers and include sample ID, site project number and the collection date)?	\checkmark		
	Were samples ac	companied by a Chain of Custody document?	\checkmark		
	include sample I	ustody document include proper, full, and complete documentation, which shall D, site location, and/or project number, date and time of collection, collector's name, e, sample matrix and any special remarks concerning the sample?			
	Did sample conta	ainer labels agree with Chain of Custody document?	\checkmark		

Sample Identification SS-101 SC01291-09				Client P			<u>Matrix</u> Soil	Collection Date/Time 15-Dec-14 11:55			Received 15-Dec-14		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC .											
	ated Biphenyls by method SW846 3540C												
12674-11-2	Aroclor-1016	< 22.4	U	μg/kg dry	24.0	22.4	1	SW846 8082A	17-Dec-14	18-Dec-14	IMR	1429590	Х
11104-28-2	Aroclor-1221	< 20.4	U	μg/kg dry	24.0	20.4	1				"		Χ
11141-16-5	Aroclor-1232	< 21.5	U	μg/kg dry	24.0	21.5	1				"		Χ
53469-21-9	Aroclor-1242	< 10.7	U	μg/kg dry	24.0	10.7	1				"		Х
12672-29-6	Aroclor-1248	61.1		μg/kg dry	24.0	13.0	1				"		Χ
11097-69-1	Aroclor-1254	64.7		μg/kg dry	24.0	15.1	1				"		Χ
11096-82-5	Aroclor-1260	< 17.1	U	μg/kg dry	24.0	17.1	1				"		Χ
37324-23-5	Aroclor-1262	< 13.0	U	μg/kg dry	24.0	13.0	1				"		Χ
11100-14-4	Aroclor-1268	< 23.6	U	μg/kg dry	24.0	23.6	1	п			"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	95			30-15	50 %		н			"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	100			30-15	0 %					"		
2051-24-3	Decachlorobiphenyl (Sr)	95			30-15	60 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	100			30-15	60 %					"		
General C	Chemistry Parameters												
	% Solids	80.6		%			1	SM2540 G Mod.	17-Dec-14	17-Dec-14	DT	1429604	

Sample Identification SS-99 SC01291-10				Client P	•		<u>Matrix</u> Soil	Collection Date/Time 15-Dec-14 12:09			Received 15-Dec-14		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	tile Organic Compounds by C	GC											
Polychlorina	ated Biphenyls		GS1										
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 1350	U, D	μg/kg dry	1450	1350	50	SW846 8082A	17-Dec-14	18-Dec-14	IMR	1429590	Χ
11104-28-2	Aroclor-1221	< 1230	U, D	μg/kg dry	1450	1230	50	и			"		Χ
11141-16-5	Aroclor-1232	< 1300	U, D	μg/kg dry	1450	1300	50				"		Χ
53469-21-9	Aroclor-1242	< 643	U, D	μg/kg dry	1450	643	50				"		Х
12672-29-6	Aroclor-1248 [2C]	49,100	D	μg/kg dry	1450	793	50	п			"		Х
11097-69-1	Aroclor-1254 [2C]	47,600	D	μg/kg dry	1450	863	50				"		Х
11096-82-5	Aroclor-1260	< 1040	U, D	μg/kg dry	1450	1040	50	п			"		Х
37324-23-5	Aroclor-1262	< 785	U, D	μg/kg dry	1450	785	50	п			"		Х
11100-14-4	Aroclor-1268	< 1420	U, D	μg/kg dry	1450	1420	50	п			"		Χ
Surrogate re	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	0	S01, U		30-15	0 %		u	•	n	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	0	S01, U		30-15	0 %		н		н	"		
2051-24-3	Decachlorobiphenyl (Sr)	0	S01, U		30-15	0 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	0	S01, U		30-15	0 %		н		н	"		
General C	Chemistry Parameters												
	% Solids	69.0		%			1	SM2540 G Mod.	17-Dec-14	17-Dec-14	DT	1429604	

SS-100	C01291-11			Client Project # 14-091		<u>Matrix</u> Soil		Collection Date/Time 15-Dec-14 12:16		Received 15-Dec-14			
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	tile Organic Compounds by C	GC											
Polychlorina	ated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 27.3	U	μg/kg dry	29.2	27.3	1	SW846 8082A	17-Dec-14	18-Dec-14	IMR	1429590	Χ
11104-28-2	Aroclor-1221	< 24.9	U	μg/kg dry	29.2	24.9	1				"		Χ
11141-16-5	Aroclor-1232	< 26.2	U	μg/kg dry	29.2	26.2	1				"		Χ
53469-21-9	Aroclor-1242	< 13.0	U	μg/kg dry	29.2	13.0	1	п			"		Χ
12672-29-6	Aroclor-1248	36.5		μg/kg dry	29.2	15.9	1	п			"		Х
11097-69-1	Aroclor-1254	32.1		μg/kg dry	29.2	18.4	1	п			"		Χ
11096-82-5	Aroclor-1260	< 20.9	U	μg/kg dry	29.2	20.9	1	п			"		Х
37324-23-5	Aroclor-1262	< 15.8	U	μg/kg dry	29.2	15.8	1	п			"		Х
11100-14-4	Aroclor-1268	< 28.7	U	μg/kg dry	29.2	28.7	1				"		Χ
Surrogate re	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	95			30-15	50 %			и	и	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	105			30-15	50 %		н		ı	"		
2051-24-3	Decachlorobiphenyl (Sr)	90			30-15	50 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	100			30-15	50 %		п			"		
General (Chemistry Parameters												
	% Solids	68.4		%			1	SM2540 G Mod.	17-Dec-14	17-Dec-14	DT	1429604	

SS-98	01291-12			Client Project # 14-091		<u>Matrix</u> Soil		Collection Date/Time 15-Dec-14 12:29		Received 15-Dec-14			
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC .											
	ated Biphenyls by method SW846 3540C												
12674-11-2	Aroclor-1016	< 27.9	U	μg/kg dry	29.9	27.9	1	SW846 8082A	17-Dec-14	18-Dec-14	IMR	1429590	Х
11104-28-2	Aroclor-1221	< 25.4	U	μg/kg dry	29.9	25.4	1				"		Χ
11141-16-5	Aroclor-1232	< 26.8	U	μg/kg dry	29.9	26.8	1				"		Χ
53469-21-9	Aroclor-1242	< 13.3	U	μg/kg dry	29.9	13.3	1				"		Х
12672-29-6	Aroclor-1248	25.4	J	μg/kg dry	29.9	16.2	1				"		Х
11097-69-1	Aroclor-1254	22.4	J	μg/kg dry	29.9	18.8	1				"		Χ
11096-82-5	Aroclor-1260	< 21.4	U	μg/kg dry	29.9	21.4	1	II .			"		Х
37324-23-5	Aroclor-1262	< 16.2	U	μg/kg dry	29.9	16.2	1				"		Х
11100-14-4	Aroclor-1268	< 29.4	U	μg/kg dry	29.9	29.4	1	п			"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	95			30-15	0 %		н			"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	105			30-15	0 %					"		
2051-24-3	Decachlorobiphenyl (Sr)	100			30-15	60 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	105			30-15	50 %			н		"		
General C	Chemistry Parameters												
	% Solids	62.8		%			1	SM2540 G Mod.	17-Dec-14	17-Dec-14	DT	1429604	

SS-102	201291-13			Client Project # 14-091		<u>Matrix</u> Soil		Collection Date/Time 15-Dec-14 12:40		Received 15-Dec-14			
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC .											
	ated Biphenyls by method SW846 3540C												
12674-11-2	Aroclor-1016	< 26.1	U	μg/kg dry	27.9	26.1	1	SW846 8082A	17-Dec-14	18-Dec-14	IMR	1429590	Х
11104-28-2	Aroclor-1221	< 23.8	U	μg/kg dry	27.9	23.8	1				"		Χ
11141-16-5	Aroclor-1232	< 25.1	U	μg/kg dry	27.9	25.1	1			н	"		Χ
53469-21-9	Aroclor-1242	< 12.4	U	μg/kg dry	27.9	12.4	1			н	"		Х
12672-29-6	Aroclor-1248	48.9		μg/kg dry	27.9	15.2	1			н	"		Х
11097-69-1	Aroclor-1254	27.9		μg/kg dry	27.9	17.6	1			н	"		Χ
11096-82-5	Aroclor-1260	< 20.0	U	μg/kg dry	27.9	20.0	1	II .		н	"		Х
37324-23-5	Aroclor-1262	< 15.1	U	μg/kg dry	27.9	15.1	1			н	"		Χ
11100-14-4	Aroclor-1268	< 27.5	U	μg/kg dry	27.9	27.5	1	п			"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	95			30-15	0 %		н		п	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	105			30-15	0 %					"		
2051-24-3	Decachlorobiphenyl (Sr)	100			30-15	0 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	105			30-15	0 %			н		"		
General C	Chemistry Parameters												
	% Solids	68.8		%			1	SM2540 G Mod.	17-Dec-14	17-Dec-14	DT	1429605	

SS-104	C01291-14			Client Project # 14-091		<u>Matrix</u> Soil		Collection Date/Time 15-Dec-14 12:58			Received 15-Dec-14		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	tile Organic Compounds by C	GC											
Polychlorina	ated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 28.9	U	μg/kg dry	31.0	28.9	1	SW846 8082A	17-Dec-14	18-Dec-14	IMR	1429590	Χ
11104-28-2	Aroclor-1221	< 26.4	U	μg/kg dry	31.0	26.4	1	п			"		Χ
11141-16-5	Aroclor-1232	< 27.8	U	μg/kg dry	31.0	27.8	1				"		Χ
53469-21-9	Aroclor-1242	< 13.8	U	μg/kg dry	31.0	13.8	1				"		Χ
12672-29-6	Aroclor-1248	< 16.8	U	μg/kg dry	31.0	16.8	1				"		Χ
11097-69-1	Aroclor-1254	< 19.6	U	μg/kg dry	31.0	19.6	1	и			"		Χ
11096-82-5	Aroclor-1260	< 22.2	U	μg/kg dry	31.0	22.2	1				"		Χ
37324-23-5	Aroclor-1262	< 16.8	U	μg/kg dry	31.0	16.8	1				"		Χ
11100-14-4	Aroclor-1268	< 30.5	U	μg/kg dry	31.0	30.5	1	11			"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	100			30-15	50 %		п	и	и	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	110			30-15	50 %		п		ı	"		
2051-24-3	Decachlorobiphenyl (Sr)	105			30-15	50 %		п			"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	100			30-15	50 %					"		
General C	Chemistry Parameters												
	% Solids	62.3		%			1	SM2540 G Mod.	17-Dec-14	17-Dec-14	DT	1429605	

SS-105	C01291-15			Client Project # 14-091		<u>Matrix</u> Soil	·	Collection Date/Time 15-Dec-14 13:05			Received 15-Dec-14		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivola	tile Organic Compounds by C	GC											
Polychlorin	ated Biphenyls												
Prepared	d by method SW846 3540C												
12674-11-2	Aroclor-1016	< 30.0	U	μg/kg dry	32.1	30.0	1	SW846 8082A	17-Dec-14	18-Dec-14	IMR	1429590	Χ
11104-28-2	Aroclor-1221	< 27.3	U	μg/kg dry	32.1	27.3	1			"	"		Χ
11141-16-5	Aroclor-1232	< 28.8	U	μg/kg dry	32.1	28.8	1	н			"		Χ
53469-21-9	Aroclor-1242	< 14.3	U	μg/kg dry	32.1	14.3	1				"		Χ
12672-29-6	Aroclor-1248	< 17.4	U	μg/kg dry	32.1	17.4	1	н			"		Х
11097-69-1	Aroclor-1254	< 20.2	U	μg/kg dry	32.1	20.2	1	н			"		Χ
11096-82-5	Aroclor-1260	< 23.0	U	μg/kg dry	32.1	23.0	1	н			"		Χ
37324-23-5	Aroclor-1262	< 17.4	U	μg/kg dry	32.1	17.4	1	н			"		Χ
11100-14-4	Aroclor-1268	< 31.5	U	μg/kg dry	32.1	31.5	1				"		Χ
Surrogate re	ecoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	90			30-15	50 %		н			"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	100			30-15	50 %		п			"		
2051-24-3	Decachlorobiphenyl (Sr)	95			30-15	50 %				п	"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	100			30-15	50 %		н			"		
General (Chemistry Parameters												
	% Solids	60.5		%			1	SM2540 G Mod.	17-Dec-14	17-Dec-14	DT	1429605	

SS-103	C01291-16			Client Project # 14-091		<u>Matrix</u> Soil	-	Collection Date/Time 15-Dec-14 13:14		Received 15-Dec-14			
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC .											
	ated Biphenyls by method SW846 3540C												
12674-11-2	Aroclor-1016	< 29.7	U	μg/kg dry	31.8	29.7	1	SW846 8082A	17-Dec-14	18-Dec-14	IMR	1429590	Χ
11104-28-2	Aroclor-1221	< 27.0	U	μg/kg dry	31.8	27.0	1				•		Х
11141-16-5	Aroclor-1232	< 28.6	U	μg/kg dry	31.8	28.6	1			н	•		Х
53469-21-9	Aroclor-1242	< 14.1	U	μg/kg dry	31.8	14.1	1			н	•		Х
12672-29-6	Aroclor-1248	< 17.3	U	μg/kg dry	31.8	17.3	1			н	•		Х
11097-69-1	Aroclor-1254	< 20.1	U	μg/kg dry	31.8	20.1	1			н	"		Х
11096-82-5	Aroclor-1260	< 22.7	U	μg/kg dry	31.8	22.7	1	ı		н	"		Х
37324-23-5	Aroclor-1262	< 17.2	U	μg/kg dry	31.8	17.2	1			н	•		Χ
11100-14-4	Aroclor-1268	< 31.2	U	μg/kg dry	31.8	31.2	1	п			u		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	70			30-15	50 %		н		п	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	120			30-15	50 %		п			"		
2051-24-3	Decachlorobiphenyl (Sr)	100			30-15	50 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	320	S02		30-15	50 %		п			"		
General C	Chemistry Parameters												
	% Solids	60.4		%			1	SM2540 G Mod.	17-Dec-14	17-Dec-14	DT	1429605	

Semivolatile Organic Compounds by GC - Quality Control

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPI Lim
atch 1429590 - SW846 3540C										
Blank (1429590-BLK1)					Prep	ared: 17-Dec	:-14 Analyzed	: 18-Dec-14		
Aroclor-1016	< 18.4	U	μg/kg wet	18.4						
Aroclor-1016 [2C]	< 12.8	U	μg/kg wet	12.8						
Aroclor-1221	< 16.8	U	μg/kg wet	16.8						
Aroclor-1221 [2C]	< 14.5	U	μg/kg wet	14.5						
Aroclor-1232	< 17.7	U	μg/kg wet	17.7						
Aroclor-1232 [2C]	< 15.2	U	μg/kg wet	15.2						
Aroclor-1242	< 8.76	U	μg/kg wet	8.76						
Aroclor-1242 [2C]	< 15.4	U	μg/kg wet	15.4						
Aroclor-1248	< 10.7	U	μg/kg wet	10.7						
Aroclor-1248 [2C]	< 10.8	U	μg/kg wet	10.8						
Aroclor-1254	< 12.4	U	μg/kg wet	12.4						
Aroclor-1254 [2C]	< 11.8	U	μg/kg wet	11.8						
Aroclor-1260	< 14.1	U	μg/kg wet	14.1						
Aroclor-1260 [2C]	< 18.7	U	μg/kg wet	18.7						
Aroclor-1262	< 10.7	U	μg/kg wet	10.7						
Aroclor-1262 [2C]	< 9.85	U	μg/kg wet	9.85						
Aroclor-1268	< 19.4	U	μg/kg wet	19.4						
Aroclor-1268 [2C]	< 18.9	U	μg/kg wet	18.9						
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	10.8		μg/kg wet		19.7		55	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	11.8		μg/kg wet		19.7		60	30-150		
Surrogate: Decachlorobiphenyl (Sr)	11.8		μg/kg wet		19.7		60	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	12.8		μg/kg wet		19.7		65	30-150		
LCS (1429590-BS1)			P9.19.111			ared: 17-Dec	-14 Analyzed			
Aroclor-1016	252		μg/kg wet	18.3	245	arca. 17 Dcc	103	40-140		
Aroclor-1016 [2C]	239		μg/kg wet	12.7	245		98	40-140		
Aroclor-1260	218		μg/kg wet μg/kg wet	14.0	245		89	40-140		
Aroclor-1260 [2C]	203		μg/kg wet	18.6	245		83	40-140		
				10.0						
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	20.6		μg/kg wet		19.6		105	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	20.6		μg/kg wet		19.6		105	30-150		
Surrogate: Decachlorobiphenyl (Sr)	19.6		μg/kg wet		19.6		100	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	20.6		μg/kg wet		19.6		105	30-150		
LCS Dup (1429590-BSD1)						ared: 17-Dec	-14 Analyzed			
Aroclor-1016	254		μg/kg wet	18.1	242		105	40-140	2	30
Aroclor-1016 [2C]	236		μg/kg wet	12.6	242		97	40-140	0.4	30
Aroclor-1260	224		μg/kg wet	13.9	242		92	40-140	4	30
Aroclor-1260 [2C]	201		μg/kg wet	18.4	242		83	40-140	0	30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	20.4		μg/kg wet		19.4		105	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	20.4		μg/kg wet		19.4		105	30-150		
Surrogate: Decachlorobiphenyl (Sr)	20.4		μg/kg wet		19.4		105	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	20.4		μg/kg wet		19.4		105	30-150		
<u>Duplicate (1429590-DUP1)</u>			Source: SC	01291-01	Prep	ared: 17-Dec	:-14 Analyzed	: 18-Dec-14		
Aroclor-1016	< 23.9	U	μg/kg dry	23.9		BRL				30
Aroclor-1016 [2C]	< 16.6	U	μg/kg dry	16.6		BRL				30
Aroclor-1221	< 21.7	U	μg/kg dry	21.7		BRL				30
Aroclor-1221 [2C]	< 18.8	U	μg/kg dry	18.8		BRL				30
Aroclor-1232	< 23.0	U	μg/kg dry	23.0		BRL				30
Aroclor-1232 [2C]	< 19.7	U	μg/kg dry	19.7		BRL				30
Aroclor-1242	< 11.4	U	μg/kg dry	11.4		BRL				30
Aroclor-1242 [2C]	< 19.9	U	μg/kg dry	19.9		BRL				30
Aroclor-1248	986		μg/kg dry	13.9		941			5	30

Semivolatile Organic Compounds by GC - Quality Control

					Spike	Source		%REC		RPD
nalyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limi
atch 1429590 - SW846 3540C										
<u>Duplicate (1429590-DUP1)</u>			Source: SC	01291-01	Pre	pared: 17-Dec	-14 Analyzed	: 18-Dec-14		
Aroclor-1248 [2C]	977		μg/kg dry	14.0		976			0.2	30
Aroclor-1254	628		μg/kg dry	16.1		657			4	30
Aroclor-1254 [2C]	724		μg/kg dry	15.2		665			9	30
Aroclor-1260	62.6		μg/kg dry	18.3		60.9			3	30
Aroclor-1260 [2C]	60.0		μg/kg dry	24.2		54.6			10	30
Aroclor-1262	< 13.8	U	μg/kg dry	13.8		BRL				30
Aroclor-1262 [2C]	< 12.8	U	μg/kg dry	12.8		BRL				30
Aroclor-1268	< 25.1	U	μg/kg dry	25.1		BRL				30
Aroclor-1268 [2C]	< 24.5	U	μg/kg dry	24.5		BRL				30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	24.3		μg/kg dry		25.5		95	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	25.5		μg/kg dry		25.5		100	30-150		
Surrogate: Decachlorobiphenyl (Sr)	24.3		μg/kg dry		25.5		95	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	26.8		μg/kg dry		25.5		105	30-150		
Matrix Spike (1429590-MS1)			Source: SC	01291-01	Pre	pared: 17-Dec	-14 Analyzed	: 18-Dec-14		
Aroclor-1016	398		μg/kg dry	23.3	312	BRL	128	40-140		
Aroclor-1016 [2C]	387		μg/kg dry	16.2	312	BRL	124	40-140		
Aroclor-1260	258		μg/kg dry	17.9	312	60.9	63	40-140		
Aroclor-1260 [2C]	223		μg/kg dry	23.7	312	54.6	54	40-140		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	24.9		μg/kg dry		24.9		100	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	23.7		μg/kg dry		24.9		95	30-150		
Surrogate: Decachlorobiphenyl (Sr)	22.5		μg/kg dry		24.9		90	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	24.9		μg/kg dry		24.9		100	30-150		
Matrix Spike Dup (1429590-MSD1)			Source: SC	01291-01	Pre	pared: 17-Dec	c-14 Analyzed	: 18-Dec-14		
Aroclor-1016	408		μg/kg dry	23.9	320	BRL	128	40-140	0	30
Aroclor-1016 [2C]	410		μg/kg dry	16.6	320	BRL	128	40-140	3	30
Aroclor-1260	284		μg/kg dry	18.3	320	60.9	70	40-140	10	30
Aroclor-1260 [2C]	253		μg/kg dry	24.2	320	54.6	62	40-140	14	30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	25.6		μg/kg dry		25.6		100	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	24.3		μg/kg dry		25.6		95	30-150		
Surrogate: Decachlorobiphenyl (Sr)	25.6		μg/kg dry		25.6		100	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	26.9		μg/kg dry		25.6		105	30-150		

General Chemistry Parameters - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1429605 - General Preparation										
<u>Duplicate (1429605-DUP1)</u>			Source: SC	01291-13	Pre	pared & Analy	zed: 17-Dec-14	:		
% Solids	68.1		%			68.8			1	5
<u>Duplicate (1429605-DUP2)</u>			Source: SC	01291-14	Pre	pared & Analy	zed: 17-Dec-14			
% Solids	62.7		%			62.3			0.6	5

Notes and Definitions

D Data reported from a dilution GS1 Sample dilution required for high concentration of target analytes to be within the instrument calibration range. J Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag). S01 The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interference's. S02 The surrogate recovery for this sample cannot be accurately quantified due to interference from coeluting organic compounds present in the sample extract. U Analyte included in the analysis, but not detected at or above the MDL. dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification:</u> The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

Validated by: June O'Connor Kimberly LaPlante

SPECTRUM ANALYTICAL, INC. Featuring

CHAIN OF CUSTODY RECORD

Page ___ of 2

Canadal	Handling
Special	Handling:

	Standard	TAT-	- 7 to	10 business	days	
--	----------	------	--------	-------------	------	--

XI	Rush	TAT -	Date	Needed:	3-DA	Y
1						1

SC01291 JUH

All TATs subject to laboratory approval
Min. 24-hr notification needed for rushes
Samples disposed after 60 days unless otherwise instructed.

_AE	ch McKenna ECC 308 Fly Rocal st Syracuse, NY (315) 432-9400	13057	Invoice To								Sit	100		Business Park Dr., DeWitt State: NY Bransner
	1=Na ₂ S2O ₃ 2=HCl 3= HSO ₄ 9=Deionized Water 10=		5=NaOH 6=				_				List Preser	vative Coo	de below:	QA/QC Reporting Notes: * additional charges may appply
DW=Dinking Wate	r GW=Groundwater SW	/=Surface Water W	W=Waste Wate	r			C	ontaine	ers		1	Analysis		MA DEP MCP CAM Report? Yes No
O=Oil SO=Soi	1 SL=Sludge A=Indoor/. X2=	Ambient Air SG=So				Vials	r Glass	Glass	3	7.035				CT DPH RCP Report? Yes No Standard No QC DQA* ASP A* ASP B* NJ Reduced* NJ Full*
	G= Grab	C=Compsit	1	Type	Matrix	of VOA Vials	of Amber Glass	of Clear Glass	of Plastic	8883				Tier II* Tier IV*
Lab ID:	Sample ID:	Date:	Time:		-	#	**	#	*					State-specific reporting standards:
1	CS-1 (1.5')	12/15/14	1020	6	5		1			X		-		
	CS-1 (2.5')		1025	+	+		1				-			T XoX
	SS-53 (1.5')		1050	+	+						-	-		- 1- De 10
	SS-53 (a.5')		1055	+	H		+							of gret .
OS			1112	+	+		H	-			-	-		(2640)
	55-83 (2.5')		1120	+	H		H	-			1	-		
	55-87 (1.5')		1133	+	+		+			+++	-	+		
	55-87 (2.5')		1142	+	+		+		-	-11		+		650 65 3
109			1155	1	1									DO DIR
' (0)	55-99	Receive	1209		*	Date	1		Time:	Temp °C	7 60		D	
A) une	quished by:	A Receive	roll		16	Date:	1	1	54	5 Observed	X E-	mail to:	mckenne	Excel Con Con
XX	acott	Dadi	~		12	106	114	(130	Corecction Facts	II.		- 27	6
Dur	Eust	VOM	0	er.	12	16/	14	ó	7/10	Corrected	1	-		s: Present Intact Broken
					1	/				O /	Amt	oient 10	ced Refrigerat	ted DI VOA Frozen Soil Jar Frozen

CHAIN OF CUSTODY RECORI

		111111111111111111111111111111111111111			to 10 business days
		X	Rush TA	T - Date	Needed: 3-DAY
			Min. 24-1	hr notific	o laboratory approval ation needed for rushes after 60 days unless otherwise instructed.
Pr	oject No:		14-	091	
e:	te Name:	43	millin	o F	Business Park
	ocation: ampler(s):	T	cda	B	Dewitt State: NY
	uniprente).		700		111.0
Presei	rvative C	ode belo	w:		QA/QC Reporting Notes:
T					* additional charges may appply
	Analysis	3)			MA DEP MCP CAM Report? Yes No
	11/10			pa	CT DPH RCP Report? ☐ Yes ☐ No Standard ☐ No QC
				Check if chlorinated	□ DQA*
				chlo	☐ ASP A* ☐ ASP B* ☐ NJ Reduced* ☐ NJ Full*
				ck if	☐ Tier II* ☐ Tier IV*
				Che	Other: State-specific reporting standards:
		10			
					\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
					Godfeel
					De Pres
					12640)
1					
			_		10 10
-					55,0 150R
+					
					X
	DD forma	it:	PDF,	Exc	el
E	-mail to:	Y	make	ma	@aecigroup.com

Fe	NALYTICAL, INC. eaturing TECHNOLOGY		<	Page	2	of _	×					osed after 60 days unless otherwise instructed.
	1 43 6		Invoice To:	Acet	's T	Payo	ble			Project No:	14-09	
AFC	c									Site Name:	Wardbine	Business Park
_1030	8 Fly Road	13057								Location:	Carida -	Dr. Delditt State: NY
Telephone #:	+ Syrause, NY (315) 432-9400	7365 /		ul al						Sampler(s):	Drew I	Dr. DeWitt State: NY Brentner
Project Mgr:				14-091		Quote	/RQN:					
	1=Na ₂ S2O ₃ 2= HCl 3= H ₂ SO ₄ 9= Deionized Water 10= H ₃					_			1	ist Preservative Coo	le below:	QA/QC Reporting Notes: * additional charges may appply
DW=Dinking Water	GW=Groundwater SW=	Surface Water WV	V=Waste Water			Co	ntaine	ers		Analysis		MA DEP MCP CAM Report? Yes No
	SL=Sludge A=Indoor/An								10	11 11 11 11 11 11		CT DPH RCP Report? Yes No
	X2=				Is	lass	SS		23			Standard No QC DQA* DQA* ASP A* NJ Reduced* NJ Full* Tier IJ*
			_		A Via	ber G	ar Gla	stic				NJ Reduced* NJ Full*
	Grab	C=Compsite	-	Type	of VOA Vials	of Amber Glass	of Clear Glass	of Plastic	5305			Other:
Lab ID:	Sample ID:	Date:	Time:		#	**	#	#:	×	- A		State-specific reporting standards:
3001291-11	55-100	12/15/14	1216	5 S		1			1			
12	55-98		1229			+						
13	55-102		1258	111		+						- wet
1/15	55-104 55-105		1305	++								o Got Pret
W 10	55 - 103		1314	11		1			1			12640)
46	55-103		1911	-)						
												1/0 de m
100					1							55010 150R
Relinqu	uished by:	Received	by:	177	Date:	1.		Time:	Temp °C	EDD format:	POF, E	a @aecigrap.com
()	11	MS/	106	UB	2/15/	14	15	545	- Observed	E-mail to:	rnicken	a Quellyraup com
pung	A Company	100		111	11			130	Corecction Factor			2, 6
100	en e) day	1	12	1	14	,11	1 -1	Corrected			
N	adinte	Al	(12	16/	14	21	10	Corrected /	-		s: Present Intact Broken
				/	1.				01	Ambient A	ced Refrigerat	ted DI VOA Frozen Soil Jar Frozen

Report Date: 30-Dec-14 13:19

☐ Final Report
☐ Re-Issued Report
☐ Payised Peport

☐ Revised Report

Project: Woodbine Business Park - Dewitt, NY

Project #: 14-091

AECC Environmental Consulting 6308 Fly Road East Syracuse, NY 13057 Attn: Rich McKenna

Laboratory IDClient Sample IDMatrixDate SampledDate ReceivedSC01671-01SS-106Soil15-Dec-14 12:0323-Dec-14 21:00

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011/MA012 New York # 11393/11840 Pennsylvania # 68-04426/68-02924 Rhode Island # 98 USDA # S-51435

Authorized by:

Nicole Leja Laboratory Director

Spectrum Analytical holds certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 7 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey, Pennsylvania and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, NJ-MA012, PA-68-04426 and FL-E87936).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

CASE NARRATIVE:

Data has been reported to the MDL. This report includes estimated concentrations detected below the RDL and above the MDL (J-Flag).

All non-detects and all results below the detection limit are reported as "<" (less than) the detection limit in this report.

The samples were received 3.4 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of \pm 1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

There is no relevant protocol-specific QC and/or performance standards non-conformances to report.

Sample Acceptance Check Form

AECC Environmental Consulting

Client:

Project:	Woodbine Business Park - Dewitt, NY / 14-091			
Work Order:	SC01671			
Sample(s) received on:	12/23/2014			
The following outlines to	he condition of samples for the attached Chain of Custody upon receipt.			
		Yes	<u>No</u>	<u>N/A</u>
Were custody se	als present?		\checkmark	
Were custody se	als intact?			√
Were samples re	ceived at a temperature of \leq 6°C?	\checkmark		
Were samples co	poled on ice upon transfer to laboratory representative?	\checkmark		
Were sample co	ntainers received intact?	\checkmark		
	roperly labeled (labels affixed to sample containers and include sample ID, site project number and the collection date)?	\checkmark		
Were samples as	ecompanied by a Chain of Custody document?	\checkmark		

Does Chain of Custody document include proper, full, and complete documentation, which shall include sample ID, site location, and/or project number, date and time of collection, collector's name,

preservation type, sample matrix and any special remarks concerning the sample?

Did sample container labels agree with Chain of Custody document?

Were samples received within method-specific holding times?

Sample Id SS-106 SC01671-	entification 01			Client Pr	-		<u>Matrix</u> Soil		/ <u>Time</u> 2:03		ceived Dec-14		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	le Organic Compounds by C	GC											
Polychlorii	nated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 24.2	U	μg/kg dry	25.9	24.2	1	SW846 8082A	26-Dec-14	30-Dec-14	IMR	1430210	Χ
11104-28-2	Aroclor-1221	< 22.0	U	μg/kg dry	25.9	22.0	1	"	"	"	"	"	Χ
11141-16-5	Aroclor-1232	< 23.2	U	μg/kg dry	25.9	23.2	1	"	"	"	"	"	Х
53469-21-9	Aroclor-1242	< 11.5	U	μg/kg dry	25.9	11.5	1	"	"	"	"	"	Х
12672-29-6	Aroclor-1248	< 14.1	U	μg/kg dry	25.9	14.1	1	"	"	"	"	"	Х
11097-69-1	Aroclor-1254 [2C]	76.3		μg/kg dry	25.9	15.4	1	"	"	"	"	"	Х
11096-82-5	Aroclor-1260 [2C]	< 24.5	U	μg/kg dry	25.9	24.5	1	"	"	"	"	"	Х
37324-23-5	Aroclor-1262	< 14.0	U	μg/kg dry	25.9	14.0	1	"	"	"	"		Х
11100-14-4	Aroclor-1268	< 25.4	U	μg/kg dry	25.9	25.4	1	"	"	"	"	"	Χ
Surrogate r	recoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	105			30-15	50 %		"	n .	II .	"	"	
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	115			30-15	50 %		"	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr)	110			30-15	50 %		"	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	115			30-15	50 %		"	n .	II .	"	"	
General Cl	hemistry Parameters												
	% Solids	74.3		%			1	SM2540 G Mod.	24-Dec-14	24-Dec-14	EEM	1430139	

Semivolatile Organic Compounds by GC - Quality Control

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPE Limi
atch 1430210 - SW846 3540C										
Blank (1430210-BLK1)					Pre	epared: 26-	Dec-14 An	alyzed: 29-E	ec-14	
Aroclor-1016	< 18.1	U	μg/kg wet	18.1						
Aroclor-1016 [2C]	< 12.6	U	μg/kg wet	12.6						
Aroclor-1221	< 16.5	U	μg/kg wet	16.5						
Aroclor-1221 [2C]	< 14.2	U	μg/kg wet	14.2						
Aroclor-1232	< 17.4	U	μg/kg wet	17.4						
Aroclor-1232 [2C]	< 14.9	U	μg/kg wet	14.9						
Aroclor-1242	< 8.62	U	μg/kg wet	8.62						
Aroclor-1242 [2C]	< 15.1	U	μg/kg wet	15.1						
Aroclor-1248	< 10.5	U	μg/kg wet	10.5						
Aroclor-1248 [2C]	< 10.6	U	μg/kg wet	10.6						
Aroclor-1254	< 12.2	U	μg/kg wet	12.2						
Aroclor-1254 [2C]	< 11.6	U	μg/kg wet	11.6						
Aroclor-1260	< 13.9	U	μg/kg wet	13.9						
Aroclor-1260 [2C]	< 18.4	U	μg/kg wet	18.4						
Aroclor-1262	< 10.5	U	μg/kg wet	10.5						
Aroclor-1262 [2C]	< 9.69	U	μg/kg wet	9.69						
Aroclor-1268	< 19.1	U	μg/kg wet	19.1						
Aroclor-1268 [2C]	< 18.6	U	μg/kg wet	18.6						
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	15.5		μg/kg wet		19.4		80	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	17.4		μg/kg wet		19.4		90	30-150		
Surrogate: Decachlorobiphenyl (Sr)	15.5		μg/kg wet		19.4		80	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	16.5		μg/kg wet		19.4		85	30-150		
LCS (1430210-BS1)					Pre	epared: 26-	Dec-14 An	alyzed: 30-E	ec-14	
Aroclor-1016	242		μg/kg wet	18.3	245		99	40-140		
Aroclor-1016 [2C]	216		μg/kg wet	12.7	245		88	40-140		
Aroclor-1260	207		μg/kg wet	14.0	245		84	40-140		
Aroclor-1260 [2C]	188		μg/kg wet	18.6	245		77	40-140		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	21.6		μg/kg wet		19.6		110	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	19.6		μg/kg wet		19.6		100	30-150		
Surrogate: Decachlorobiphenyl (Sr)	22.5		μg/kg wet		19.6		115	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	19.6		μg/kg wet		19.6		100	30-150		
LCS Dup (1430210-BSD1)					Pre	epared: 26-	Dec-14 An	alyzed: 30-E	ec-14	
Aroclor-1016	241		μg/kg wet	18.3	245		98	40-140	0.4	30
Aroclor-1016 [2C]	212		μg/kg wet	12.7	245		86	40-140	2	30
Aroclor-1260	210		μg/kg wet	14.0	245		86	40-140	1	30
Aroclor-1260 [2C]	185		μg/kg wet	18.6	245		76	40-140	2	30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	20.6		μg/kg wet		19.6		105	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	19.6		μg/kg wet		19.6		100	30-150		
Surrogate: Decachlorobiphenyl (Sr)	20.6		μg/kg wet		19.6		105	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	19.6		μg/kg wet		19.6		100	30-150		
<u>Duplicate (1430210-DUP1)</u>			Source: SC	<u>01671-</u> 01	<u>P</u> re	epared: 26-	Dec-14 An	alyzed: 29-E	ec-14	
Aroclor-1016	< 24.5	U	μg/kg dry	24.5		BRL		 		30
Aroclor-1016 [2C]	< 17.0	U	μg/kg dry	17.0		BRL				30
Aroclor-1221	< 22.3	U	μg/kg dry	22.3		BRL				30
Aroclor-1221 [2C]	< 19.3	U	μg/kg dry	19.3		BRL				30
Aroclor-1232	< 23.6	U	μg/kg dry	23.6		BRL				30
Aroclor-1232 [2C]	< 20.2	U	μg/kg dry	20.2		BRL				30
Aroclor-1242	< 11.7	U	μg/kg dry	11.7		BRL				30

Semivolatile Organic Compounds by GC - Quality Control

	Dl/	E1-	T I:4	*DDI	Spike	Source	0/DEC	%REC	DDD	RPD
nalyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limi
atch 1430210 - SW846 3540C										
<u>Duplicate (1430210-DUP1)</u>			Source: SC	<u>01671-01</u>	Pre	epared: 26-	Dec-14 An	alyzed: 29-D	ec-14	
Aroclor-1242 [2C]	< 20.5	U	μg/kg dry	20.5		BRL				30
Aroclor-1248	< 14.3	U	μg/kg dry	14.3		BRL				30
Aroclor-1248 [2C]	< 14.4	U	μg/kg dry	14.4		BRL				30
Aroclor-1254	82.7		μg/kg dry	16.6		85.4			3	30
Aroclor-1254 [2C]	78.7		μg/kg dry	15.7		76.3			3	30
Aroclor-1260	19.7	J	μg/kg dry	18.8		BRL				30
Aroclor-1260 [2C]	< 24.9	U	μg/kg dry	24.9		BRL				30
Aroclor-1262	< 14.2	U	μg/kg dry	14.2		BRL				30
Aroclor-1262 [2C]	< 13.1	U	μg/kg dry	13.1		BRL				30
Aroclor-1268	< 25.8	U	μg/kg dry	25.8		BRL				30
Aroclor-1268 [2C]	< 25.2	U	μg/kg dry	25.2		BRL				30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	28.9		μg/kg dry		26.2		110	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	30.2		μg/kg dry		26.2		115	30-150		
Surrogate: Decachlorobiphenyl (Sr)	28.9		μg/kg dry		26.2		110	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	28.9		μg/kg dry		26.2		110	30-150		
Matrix Spike (1430210-MS1)			Source: SC	<u>01671-01</u>	Pre	epared: 26-	Dec-14 An	alyzed: 29-D	ec-14	
Aroclor-1016	363		μg/kg dry	23.8	319	BRL	114	40-140		
Aroclor-1016 [2C]	354		μg/kg dry	16.5	319	BRL	111	40-140		
Aroclor-1260	333		μg/kg dry	18.3	319	BRL	104	40-140		
Aroclor-1260 [2C]	286		μg/kg dry	24.2	319	BRL	90	40-140		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	31.9		μg/kg dry		25.5		125	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	33.2		μg/kg dry		25.5		130	30-150		
Surrogate: Decachlorobiphenyl (Sr)	31.9		μg/kg dry		25.5		125	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	31.9		μg/kg dry		25.5		125	30-150		
Matrix Spike Dup (1430210-MSD1)			Source: SC	01671-01	Pre	epared: 26-	Dec-14 An	alyzed: 29-D	ec-14	
Aroclor-1016	376		μg/kg dry	24.2	323	BRL	116	40-140	2	30
Aroclor-1016 [2C]	357		μg/kg dry	16.8	323	BRL	110	40-140	0.4	30
Aroclor-1260	345		μg/kg dry	18.5	323	BRL	107	40-140	2	30
Aroclor-1260 [2C]	274		μg/kg dry	24.5	323	BRL	85	40-140	6	30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	33.6		μg/kg dry		25.9		130	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	32.3		μg/kg dry		25.9		125	30-150		
Surrogate: Decachlorobiphenyl (Sr)	32.3		μg/kg dry		25.9		125	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	32.3		μg/kg dry		25.9		125	30-150		

Notes and Definitions

J Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).

U Analyte included in the analysis, but not detected at or above the MDL.

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification:</u> The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

Validated by: June O'Connor

CHAIN OF CUSTODY RECORD

		1		
S	pecial	Han	dling	

☐ Standard TAT - 7 to 10 business days

**M*Rush TAT - Date Needed: **3-DAY

F	ANALYTICAL, INC.			111	Page	1	of	1		TLL C				= A M	ll TATs sul lin. 24-hr n	bject to la notificatio	boratory approval in needed for rush r 60 days unless o	
AF	ich McKenna		Invoice To	A	cct	S T	Cayo	ible			-		ot No:	1.).		-09 R	usiness "	Pade
Telephone #: Project Mgr:	308 Fly Road St Syracuse, NY (315) 432-9400	13057	P.O No.	14	-09	\	Quot	te/RQN:	:			Locat						State: NY
	1=Na ₂ S2O ₃		5=NaOH 6								1	ist Preserva	tive Cod	e below:			QA/QC Re	porting Notes:
r-Citson d Nan	504 7-Belonized Water 10 1131	04		- "													* additional c	harges may appply
DW=Dinking Water	GW=Groundwater SW=S	urface Water W	W=Waste Wate	er			C	ontain	ers			An	alysis				MA DEP MCP CAM	Report? Yes No
O=Oil SO=Soil	SL=Sludge A=Indoor/Aml	bient Air SG=So				of VOA Vials	# of Amber Glass	of Clear Glass	IC		X rcDs					Check if chlorinated	Standard Standard DQA ASP A*	□ No QC * □ ASP B*
G=	= Grab	C=Compsit	e	Type	Matrix	VOA	Amb	Clear	of Plastic	2	2000					eck if	☐ Tier II*	☐ Tier IV*
Lab ID:	Sample ID:	Date:	Time:	-	-	# of	# of	# of	# of		-						State-specific r	eporting standards:
6016710	55-20-101	0 12/15/14	1203	6	50		1			×							Soxhlet	Prep (3540)
								_			-	-						
2 (2 3 3)				_														
													1				÷	
																	34,0,	34R 3
Α	uished by:	Receive	d by:		1	Date:	14	母	Time:		emp °C	E-ma	format:	T	DF	, E	xcel	
15 X	Budge of	I skeylan	3u		12	-25 -25	14	1	430	Coreci	3 etion Factor	2-410		rn	ncke	nna	weeceg	rup.com
Ditter	lan	(All'			12	13/	14	d	100	IR ID	3		. /					Intact Broken Soil Jar Frozen

Life Science Laboratories, Inc.

Rich McKenna Asbestos & Environmental Consulting Corp 6308 Fly Road East Syracuse, NY 13057 Phone:

(315) 432-9400

FAX:

(315) 432-9405

Laboratory Analysis Report Prepared For

Asbestos & Environmental Consulting Corp

LSL Project ID: **1420290**

Receive Date/Time: 12/16/14 8:40

Life Science Laboratories, Inc. warrants, to the best of its knowledge and belief, the accuracy of the analytical test results contained in this report, but makes no other warranty, expressed or implied, especially no warranties of merchantability or fitness for a particular purpose. By the Client's acceptance and/or use of this report, the Client agrees that LSL is hereby released from any and all liabilities, claims, damages or eauses of action affecting or which may affect the Client as regards to the results contained in this report. The Client further agrees that the only remedy available to the Client in the event of proven non-conformity with the above warranty shall be for LSL to re-perform the analytical test(s) at no charge to the Client. The data contained in this report are for the exclusive use of the Client to whom it is addressed, and the release of these data to any other party, or the use of the name, trademark or service mark of Life Science Laboratories, Inc. especially for the use of advertising to the general public, is strictly prohibited without express prior written consent of Life Science Laboratories, Inc. This report may only be reproduced in its entirety. No partial duplication is allowed. The Chain of Custody and the Sample Receipt documents submitted with these samples are considered by LSL to be an appendix of this report and may contain specific information that pertains to the samples included in this report. The analytical result(s) in this report are only representative of the sample(s) submitted for analysis. LSL makes no claim of a sample's representativeness, or integrity, if sampling was not performed by LSL personnel.

LSL Central Lab 5854 Butternut Drive East Syracuse, NY 13057 Tel. (315) 445-1900 Fax (315) 445-1104 NYS DOH ELAP #10248 PA DEP #68-2556 LSL North Lab 131 St. Lawrence Avenue Waddington, NY 13694 Tel. (315) 388-4476 Fax (315) 388-4061 NYS DOH ELAP #10900 LSL Finger Lakes Lab 16 N. Main St., PO Box 424 Wayland, NY 14572 Tel. (585) 728-3320 Fax (585) 728-2711 NYS DOH ELAP #11667 LSL Southern Tier Office Cuba, NY Tel. (585) 209-4032

LSL MidLakes Office Canandaigua, NY Tel. (585) 728-3320

Reviewed by:

mit there

Date:

12/31/14

David J. Prichard, Director of Tech. Services

Page 1 of 2

-- LABORATORY ANALYSIS REPORT --

Asbestos & Environmental Consulting Corp

East Syracuse, NY

Sample ID:

SS-105D Grab

LSL Sample ID:

1420290-001

Location:

Sampled:

12/15/14 13:05

Sampled By: DB

Sample Matrix: SHW as Recd

Analytical Method	Result	Prep Method	Prep Date	Analysis Date & Time	Analyst Initials
Analyte	Kesuit				
(1) EPA 8082A PCBs		EPA 3540		10/20/14	CRT
Aroclor-1016	< 0.02	mg/kg	12/29/14	12/30/14	CRT
Aroclor-1221	< 0.02	mg/kg	12/29/14	12/30/14	
Aroclor-1232	< 0.02	mg/kg	12/29/14	12/30/14	CRT
	< 0.02	mg/kg	12/29/14	12/30/14	CRT
Aroclor-1242		mg/kg	12/29/14	12/30/14	CRT
Aroclor-1248	< 0.02		12/29/14	12/30/14	CRT
Aroclor-1254		mg/kg	12/29/14	12/30/14	CRT
Aroclor-1260			12/29/14	12/30/14	CRT
Surrogate (DCB)	29			1270071	
Surrogate recoveries for this analysis were below estab	lished control limits. San	nple results may be biasea tow	'.		
(1) SM 2540 B-97,-11 Total Solids Total Solids @ 103-105 C	65	%	12/29/14	12/29/14	AIS

Analysis performed at: (1) LSL Central Lab, (2) LSL North Lab, (3) LSL Finger Lakes Lab

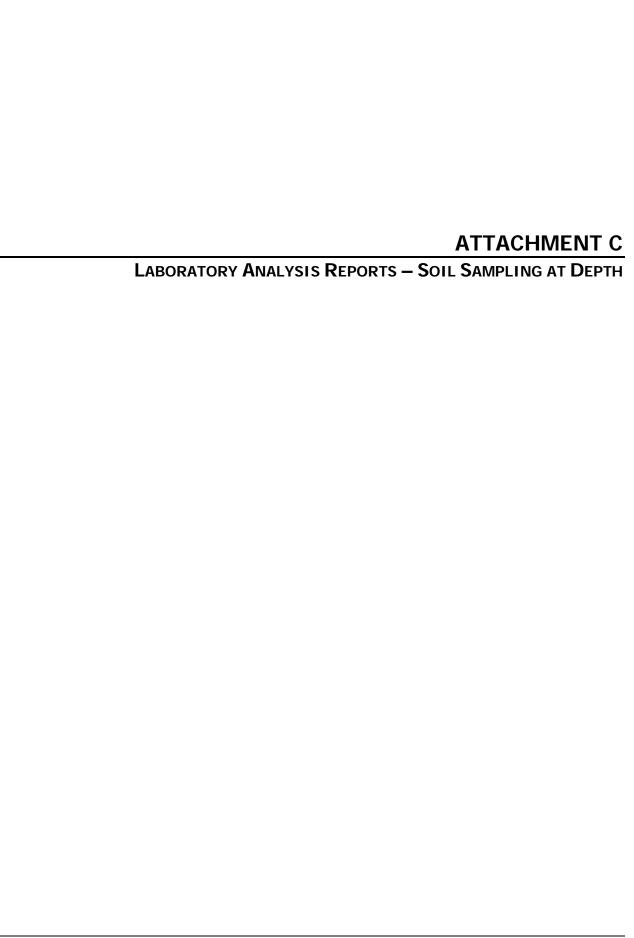
(LSL)

Life Science Laboratories, Inc. CHAIN OF CUSTODY RECORD

LSL Central Lab 5854 Butternut Drive East Syracuse, NY 13057. Phone: (315) 445-1900 Fax: (315) 445-1104 Email: Isloentral@lsl-inc.com LSL North Lab . 131 St Lawrence Ave Waddington, NY 13694 Phone: (315) 388-4476 Fax: (315) 388-4081 Email: IsInfo@lsI-inc.com

LSL Finger Lakes Lab 16 North Main Street Wayland, NY 14572 Phone: (585) 728-3320 Fax: (585) 728-2711 Email: Islfil@isl-inc.com LSL Southern Tier Lab 24 A West Main Street Cuba, NY 14727 Phone: (585) 968-2640 Fax: (585) 968-0906 Email: Islstl@lsl-inc.com

AECC


1420290

Proceed W. R. Analysis

6063 Email: Islml@lsl-inc.com

Turnaround Time (Business Day) Normal Pre-Authorized Report Address: 10 DAY Next Day* 3-Day * *Additional Charges Name: 2-Day * 7-Day* may apply Company: Date Needed or Special Instructions: Street: City/State: 13057 Phone: Fax: (3/5) 432-9405 Authorization or P.O. # Email: mckenne @ aeccare Client Project ID/Client Site ID LSL Project Number: Client's Sample Sample Sample Type Preserv Containers Analyses Preserv Identifications Date Time grab/comp Matrix Added # size/type Check LSL ID# 1305 001 LSL use only: **Custody Transfers** Date Time Sampled By: Received By: Relinquished By: Received By: Relinquished By: >> Rec'd for Lab By: Shipment Method: Containers this C-O-C Received Intact: Sample Temp *** All areas of this Chain of Custody Record MUST be filled out in order to process samples in a timely manner IN PEN ONLY***

Reg COC rev1

Report Date: 19-Dec-14 12:04

☑ Final Report☐ Re-Issued Report☐ Revised Report

HANIBAL TECHNOLOGY

Laboratory Report

AECC Environmental Consulting 6308 Fly Road

East Syracuse, NY 13057

Attn: Rich McKenna

Project: Woodbine Business Park - Dewitt, NY

Project #: 14-091

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SC01291-01	CS-1 (1.5')	Soil	15-Dec-14 10:20	15-Dec-14 21:00
SC01291-02	CS-1 (2.5')	Soil	15-Dec-14 10:25	15-Dec-14 21:00
SC01291-03	SS-53 (1.5')	Soil	15-Dec-14 10:50	15-Dec-14 21:00
SC01291-04	SS-53 (2.5')	Soil	15-Dec-14 10:55	15-Dec-14 21:00
SC01291-05	SS-83 (1.5')	Soil	15-Dec-14 11:12	15-Dec-14 21:00
SC01291-06	SS-83 (2.5')	Soil	15-Dec-14 11:20	15-Dec-14 21:00
SC01291-07	SS-87 (1.5')	Soil	15-Dec-14 11:33	15-Dec-14 21:00
SC01291-08	SS-87 (2.5')	Soil	15-Dec-14 11:42	15-Dec-14 21:00
SC01291-09	SS-101	Soil	15-Dec-14 11:55	15-Dec-14 21:00
SC01291-10	SS-99	Soil	15-Dec-14 12:09	15-Dec-14 21:00
SC01291-11	SS-100	Soil	15-Dec-14 12:16	15-Dec-14 21:00
SC01291-12	SS-98	Soil	15-Dec-14 12:29	15-Dec-14 21:00
SC01291-13	SS-102	Soil	15-Dec-14 12:40	15-Dec-14 21:00
SC01291-14	SS-104	Soil	15-Dec-14 12:58	15-Dec-14 21:00
SC01291-15	SS-105	Soil	15-Dec-14 13:05	15-Dec-14 21:00
SC01291-16	SS-103	Soil	15-Dec-14 13:14	15-Dec-14 21:00

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011/MA012 New York # 11393/11840 Pennsylvania # 68-04426/68-02924 Rhode Island # 98 USDA # S-51435

Authorized by:

Nicole Leja Laboratory Director

Nicole Leja

Spectrum Analytical holds certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 25 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey, Pennsylvania and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, NJ-MA012, PA-68-04426 and FL-E87936).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

CASE NARRATIVE:

Data has been reported to the MDL. This report includes estimated concentrations detected below the RDL and above the MDL (J-Flag).

All non-detects and all results below the detection limit are reported as "<" (less than) the detection limit in this report.

The samples were received 5.5 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of +/- 1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

SW846 8082A

Samples:

SC01291-03 SS-53 (1.5')

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

The surrogate recovery for this sample cannot be accurately quantified due to interference from coeluting organic compounds present in the sample extract.

Decachlorobiphenyl (Sr) [2C]

SC01291-04 SS-53 (2.5')

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

SC01291-05 SS-83 (1.5')

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interference's.

4,4-DB-Octafluorobiphenyl (Sr)

4,4-DB-Octafluorobiphenyl (Sr) [2C]

Decachlorobiphenyl (Sr)

Decachlorobiphenyl (Sr) [2C]

SC01291-06 SS-83 (2.5')

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interference's.

4,4-DB-Octafluorobiphenyl (Sr)

4,4-DB-Octafluorobiphenyl (Sr) [2C]

Decachlorobiphenyl (Sr)

Decachlorobiphenyl (Sr) [2C]

SC01291-10 SS-99

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

SW846 8082A

Samples:

SC01291-10 SS-99

The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interference's.

4,4-DB-Octafluorobiphenyl (Sr)

4,4-DB-Octafluorobiphenyl (Sr) [2C]

Decachlorobiphenyl (Sr)

Decachlorobiphenyl (Sr) [2C]

SC01291-16

SS-103

The surrogate recovery for this sample cannot be accurately quantified due to interference from coeluting organic compounds present in the sample extract.

Decachlorobiphenyl (Sr) [2C]

Sample Acceptance Check Form

AECC Environmental Consulting

Were samples received within method-specific holding times?

Client:

Project:	Woodbine Business Park - Dewitt, NY / 14-091			
Work Order:	SC01291			
Sample(s) received on:	12/15/2014			
The following outlines th	ne condition of samples for the attached Chain of Custody upon receipt.			
		Yes	No	<u>N/A</u>
Were custody se	als present?		✓	
Were custody se	als intact?			✓
Were samples re	ceived at a temperature of $\leq 6^{\circ}$ C?	\checkmark		
Were samples co	ooled on ice upon transfer to laboratory representative?	✓		
Were sample con	ntainers received intact?	✓		
	roperly labeled (labels affixed to sample containers and include sample ID, site project number and the collection date)?	$\overline{\checkmark}$		
Were samples ac	ecompanied by a Chain of Custody document?	✓		
include sample I	ustody document include proper, full, and complete documentation, which shall D, site location, and/or project number, date and time of collection, collector's name, e, sample matrix and any special remarks concerning the sample?			
Did sample cont	ainer labels agree with Chain of Custody document?	\checkmark		

Sample I CS-1 (1.5 SC01291				<u>Client P</u> 14-0			<u>Matrix</u> Soil	·	ection Date -Dec-14 10			ceived Dec-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	tile Organic Compounds by C	GC											
Polychlorina	ated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 23.7	U	μg/kg dry	25.4	23.7	1	SW846 8082A	17-Dec-14	18-Dec-14	IMR	1429590	Χ
11104-28-2	Aroclor-1221	< 21.6	U	μg/kg dry	25.4	21.6	1	н			"		Χ
11141-16-5	Aroclor-1232	< 22.8	U	μg/kg dry	25.4	22.8	1			п	•		Χ
53469-21-9	Aroclor-1242	< 11.3	U	μg/kg dry	25.4	11.3	1			п	"		Χ
12672-29-6	Aroclor-1248	941		μg/kg dry	25.4	13.8	1				"		Χ
11097-69-1	Aroclor-1254	657		μg/kg dry	25.4	16.0	1	и			"		Χ
11096-82-5	Aroclor-1260 [2C]	54.6		μg/kg dry	25.4	24.1	1				"		Χ
37324-23-5	Aroclor-1262	< 13.8	U	μg/kg dry	25.4	13.8	1				"		Χ
11100-14-4	Aroclor-1268	< 24.9	U	μg/kg dry	25.4	24.9	1	п			"		Х
Surrogate re	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	90			30-15	60 %		u			W		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	100			30-15	0 %		п			"		
2051-24-3	Decachlorobiphenyl (Sr)	95			30-15	60 %				н	"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	100			30-15	0 %		п			"		
General (Chemistry Parameters												
	% Solids	77.4		%			1	SM2540 G Mod.	17-Dec-14	17-Dec-14	DT	1429604	

Sample Id CS-1 (2.5 SC01291				<u>Client P</u>			<u>Matrix</u> Soil	·	ection Date -Dec-14 10			ceived Dec-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC .											
Polychlorina	ted Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 24.7	U	μg/kg dry	26.4	24.7	1	SW846 8082A	17-Dec-14	18-Dec-14	IMR	1429590	Χ
11104-28-2	Aroclor-1221	< 22.5	U	μg/kg dry	26.4	22.5	1				"		Χ
11141-16-5	Aroclor-1232	< 23.7	U	μg/kg dry	26.4	23.7	1				"		Χ
53469-21-9	Aroclor-1242	< 11.7	U	μg/kg dry	26.4	11.7	1				"		Χ
12672-29-6	Aroclor-1248	172		μg/kg dry	26.4	14.4	1				"		Χ
11097-69-1	Aroclor-1254 [2C]	129		μg/kg dry	26.4	15.8	1				"		Χ
11096-82-5	Aroclor-1260	< 18.9	U	μg/kg dry	26.4	18.9	1				"		Х
37324-23-5	Aroclor-1262	< 14.3	U	μg/kg dry	26.4	14.3	1	н			"		Х
11100-14-4	Aroclor-1268	< 26.0	U	μg/kg dry	26.4	26.0	1	п			"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	90			30-15	50 %		н		п	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	100			30-15	50 %				ı	"		
2051-24-3	Decachlorobiphenyl (Sr)	95			30-15	50 %		п		н	"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	100			30-15	50 %		я		п	"		
General C	Chemistry Parameters												
	% Solids	74.3		%			1	SM2540 G Mod.	17-Dec-14	17-Dec-14	DT	1429604	

Sample Id SS-53 (1.: SC01291-	,			Client P			<u>Matrix</u> Soil		ection Date -Dec-14 10			ceived Dec-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC .											
	ted Biphenyls by method SW846 3540C		GS1										
12674-11-2	Aroclor-1016	< 115	U, D	μg/kg dry	123	115	5	SW846 8082A	17-Dec-14	18-Dec-14	IMR	1429590	Χ
11104-28-2	Aroclor-1221	< 105	U, D	μg/kg dry	123	105	5	п			"		Χ
11141-16-5	Aroclor-1232	< 111	U, D	μg/kg dry	123	111	5			н	"		Χ
53469-21-9	Aroclor-1242	< 54.9	U, D	μg/kg dry	123	54.9	5			н	"		Х
12672-29-6	Aroclor-1248	7,790	D	μg/kg dry	123	67.1	5			н	"		Χ
11097-69-1	Aroclor-1254	5,520	D	μg/kg dry	123	77.9	5			н	"		Χ
11096-82-5	Aroclor-1260	< 88.3	U, D	μg/kg dry	123	88.3	5			н	"		Χ
37324-23-5	Aroclor-1262	< 66.9	U, D	μg/kg dry	123	66.9	5			н	"		Χ
11100-14-4	Aroclor-1268	< 121	U, D	μg/kg dry	123	121	5	п			"		Χ
Surrogate rec	overies:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	100			30-15	0 %		и	•	п	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	125			30-15	0 %		п			"		
2051-24-3	Decachlorobiphenyl (Sr)	100			30-15	i0 %		п			"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	275	S02		30-15	60 %		n .			"		
General C	hemistry Parameters												
	% Solids	79.7		%			1	SM2540 G Mod.	17-Dec-14	17-Dec-14	DT	1429604	

Sample I SS-53 (2. SC01291				Client P	<u>Project #</u> 091		<u>Matrix</u> Soil		ection Date -Dec-14 10			ceived Dec-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	tile Organic Compounds by C	GC											
Polychlorina	ated Biphenyls		GS1										
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 116	U, D	μg/kg dry	125	116	5	SW846 8082A	17-Dec-14	18-Dec-14	IMR	1429590	Χ
11104-28-2	Aroclor-1221	< 106	U, D	μg/kg dry	125	106	5	п			"		Χ
11141-16-5	Aroclor-1232	< 112	U, D	μg/kg dry	125	112	5	п		н	"		Χ
53469-21-9	Aroclor-1242	< 55.4	U, D	μg/kg dry	125	55.4	5			н	"		Χ
12672-29-6	Aroclor-1248 [2C]	3,210	D	μg/kg dry	125	68.2	5			н	"		Χ
11097-69-1	Aroclor-1254	2,850	D	μg/kg dry	125	78.6	5	и			"		Х
11096-82-5	Aroclor-1260	< 89.1	U, D	μg/kg dry	125	89.1	5				"		Χ
37324-23-5	Aroclor-1262	< 67.5	U, D	μg/kg dry	125	67.5	5				"		Х
11100-14-4	Aroclor-1268	< 122	U, D	μg/kg dry	125	122	5	11			"		Χ
Surrogate re	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	125			30-15	50 %		п			"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	125			30-15	50 %		п		ı	"		
2051-24-3	Decachlorobiphenyl (Sr)	100			30-15	50 %		п			"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	125			30-15	50 %				ı	"		
General C	Chemistry Parameters												
	% Solids	79.1		%			1	SM2540 G Mod.	17-Dec-14	17-Dec-14	DT	1429604	

Sample I SS-83 (1. SC01291	,			Client P			<u>Matrix</u> Soil		ection Date -Dec-14 11			ceived Dec-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	tile Organic Compounds by C	GC .											
Polychlorina	ated Biphenyls		GS1										
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 1120	U, D	μg/kg dry	1200	1120	50	SW846 8082A	17-Dec-14	18-Dec-14	IMR	1429590	Χ
11104-28-2	Aroclor-1221	< 1020	U, D	μg/kg dry	1200	1020	50			п	"		Х
11141-16-5	Aroclor-1232	< 1080	U, D	μg/kg dry	1200	1080	50	п			"		Χ
53469-21-9	Aroclor-1242	< 533	U, D	μg/kg dry	1200	533	50	п			"		Χ
12672-29-6	Aroclor-1248 [2C]	38,900	D	μg/kg dry	1200	658	50			п	"		Х
11097-69-1	Aroclor-1254	27,700	D	μg/kg dry	1200	757	50	н			"		Х
11096-82-5	Aroclor-1260	< 859	U, D	μg/kg dry	1200	859	50	н			"		Х
37324-23-5	Aroclor-1262	< 650	U, D	μg/kg dry	1200	650	50	н			"		Х
11100-14-4	Aroclor-1268	< 1180	U, D	μg/kg dry	1200	1180	50	п			"		Х
Surrogate re	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	0	S01, U		30-15	i0 %		п	и		"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	0	S01, U		30-15	0 %		н			"		
2051-24-3	Decachlorobiphenyl (Sr)	0	S01, U		30-15	60 %				н	"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	0	S01, U		30-15	50 %		н			"		
General C	Chemistry Parameters												
	% Solids	80.6		%			1	SM2540 G Mod.	17-Dec-14	17-Dec-14	DT	1429604	

Sample I SS-83 (2. SC01291	,			Client P			<u>Matrix</u> Soil		ection Date -Dec-14 11			ceived Dec-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	tile Organic Compounds by C	GC											
Polychlorina	ated Biphenyls		GS1										
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 2360	U, D	μg/kg dry	2530	2360	100	SW846 8082A	17-Dec-14	18-Dec-14	IMR	1429590	Х
11104-28-2	Aroclor-1221	< 2150	U, D	μg/kg dry	2530	2150	100				"		Χ
11141-16-5	Aroclor-1232	< 2270	U, D	μg/kg dry	2530	2270	100	п			"		Χ
53469-21-9	Aroclor-1242	< 1120	U, D	μg/kg dry	2530	1120	100	п			"		Χ
12672-29-6	Aroclor-1248 [2C]	177,000	D	μg/kg dry	2530	1380	100	н			"		Х
11097-69-1	Aroclor-1254	120,000	D	μg/kg dry	2530	1590	100				"		Х
11096-82-5	Aroclor-1260	< 1810	U, D	μg/kg dry	2530	1810	100	н			"		Х
37324-23-5	Aroclor-1262	< 1370	U, D	μg/kg dry	2530	1370	100	н			"		Х
11100-14-4	Aroclor-1268	< 2480	U, D	μg/kg dry	2530	2480	100	п			"		Χ
Surrogate re	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	0	S01, U		30-15	60 %		п	и		"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	0	S01, U		30-15	0 %		н			"		
2051-24-3	Decachlorobiphenyl (Sr)	0	S01, U		30-15	60 %				н	"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	0	S01, U		30-15	0 %		н			"		
General (Chemistry Parameters												
	% Solids	77.1		%			1	SM2540 G Mod.	17-Dec-14	17-Dec-14	DT	1429604	

Sample I. SS-87 (1. SC01291	<i>'</i>			<u>Client P</u> 14-0	-		<u>Matrix</u> Soil	·	ection Date -Dec-14 11			ceived Dec-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	tile Organic Compounds by C	GC											
Polychlorina	ated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 26.2	U	μg/kg dry	28.0	26.2	1	SW846 8082A	17-Dec-14	18-Dec-14	IMR	1429590	Χ
11104-28-2	Aroclor-1221	< 23.9	U	μg/kg dry	28.0	23.9	1	п			"		Χ
11141-16-5	Aroclor-1232	< 25.2	U	μg/kg dry	28.0	25.2	1			н			Χ
53469-21-9	Aroclor-1242	< 12.5	U	μg/kg dry	28.0	12.5	1			п	"		Χ
12672-29-6	Aroclor-1248	2,680		μg/kg dry	28.0	15.2	1				"		Χ
11097-69-1	Aroclor-1254 [2C]	2,070		μg/kg dry	28.0	16.7	1				"		Χ
11096-82-5	Aroclor-1260 [2C]	130		μg/kg dry	28.0	26.6	1				"		Х
37324-23-5	Aroclor-1262	< 15.2	U	μg/kg dry	28.0	15.2	1				"		Χ
11100-14-4	Aroclor-1268	< 27.6	U	μg/kg dry	28.0	27.6	1	и			"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	95			30-15	60 %		u	и		n		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	105			30-15	0 %		п			"		
2051-24-3	Decachlorobiphenyl (Sr)	100			30-15	60 %				н	"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	100			30-15	0 %		н			"		
General C	Chemistry Parameters												
	% Solids	70.9		%			1	SM2540 G Mod.	17-Dec-14	17-Dec-14	DT	1429604	

Sample I. SS-87 (2. SC01291				<u>Client P</u> 14-0			<u>Matrix</u> Soil	·	ection Date -Dec-14 11			ceived Dec-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	tile Organic Compounds by C	GC											
Polychlorina	ated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 24.1	U	μg/kg dry	25.8	24.1	1	SW846 8082A	17-Dec-14	18-Dec-14	IMR	1429590	Χ
11104-28-2	Aroclor-1221	< 21.9	U	μg/kg dry	25.8	21.9	1	п			"		Χ
11141-16-5	Aroclor-1232	< 23.2	U	μg/kg dry	25.8	23.2	1				"		Χ
53469-21-9	Aroclor-1242	< 11.5	U	μg/kg dry	25.8	11.5	1				"		Χ
12672-29-6	Aroclor-1248	106		μg/kg dry	25.8	14.0	1				"		Χ
11097-69-1	Aroclor-1254	67.0		μg/kg dry	25.8	16.3	1				"		Χ
11096-82-5	Aroclor-1260	< 18.4	U	μg/kg dry	25.8	18.4	1				"		Χ
37324-23-5	Aroclor-1262	< 14.0	U	μg/kg dry	25.8	14.0	1				"		Χ
11100-14-4	Aroclor-1268	< 25.3	U	μg/kg dry	25.8	25.3	1	и			"		Х
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	90			30-15	50 %		и		п	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	100			30-15	50 %		п		ı	"		
2051-24-3	Decachlorobiphenyl (Sr)	95			30-15	50 %		и			"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	100			30-15	50 %		п	н	и	"		
General C	Chemistry Parameters												
	% Solids	76.2		%			1	SM2540 G Mod.	17-Dec-14	17-Dec-14	DT	1429604	

Semivolatile Organic Compounds by GC - Quality Control

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPI Lim
atch 1429590 - SW846 3540C										
Blank (1429590-BLK1)					Prep	ared: 17-Dec	:-14 Analyzed	: 18-Dec-14		
Aroclor-1016	< 18.4	U	μg/kg wet	18.4						
Aroclor-1016 [2C]	< 12.8	U	μg/kg wet	12.8						
Aroclor-1221	< 16.8	U	μg/kg wet	16.8						
Aroclor-1221 [2C]	< 14.5	U	μg/kg wet	14.5						
Aroclor-1232	< 17.7	U	μg/kg wet	17.7						
Aroclor-1232 [2C]	< 15.2	U	μg/kg wet	15.2						
Aroclor-1242	< 8.76	U	μg/kg wet	8.76						
Aroclor-1242 [2C]	< 15.4	U	μg/kg wet	15.4						
Aroclor-1248	< 10.7	U	μg/kg wet	10.7						
Aroclor-1248 [2C]	< 10.8	U	μg/kg wet	10.8						
Aroclor-1254	< 12.4	U	μg/kg wet	12.4						
Aroclor-1254 [2C]	< 11.8	U	μg/kg wet	11.8						
Aroclor-1260	< 14.1	U	μg/kg wet	14.1						
Aroclor-1260 [2C]	< 18.7	U	μg/kg wet	18.7						
Aroclor-1262	< 10.7	U	μg/kg wet	10.7						
Aroclor-1262 [2C]	< 9.85	U	μg/kg wet	9.85						
Aroclor-1268	< 19.4	U	μg/kg wet	19.4						
Aroclor-1268 [2C]	< 18.9	U	μg/kg wet	18.9						
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	10.8		μg/kg wet		19.7		55	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	11.8		μg/kg wet		19.7		60	30-150		
Surrogate: Decachlorobiphenyl (Sr)	11.8		μg/kg wet		19.7		60	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	12.8		μg/kg wet		19.7		65	30-150		
LCS (1429590-BS1)					Prep	ared: 17-Dec	-14 Analyzed	: 18-Dec-14		
Aroclor-1016	252		μg/kg wet	18.3	245		103	40-140		
Aroclor-1016 [2C]	239		μg/kg wet	12.7	245		98	40-140		
Aroclor-1260	218		μg/kg wet	14.0	245		89	40-140		
Aroclor-1260 [2C]	203		μg/kg wet	18.6	245		83	40-140		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	20.6		μg/kg wet		19.6		105	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	20.6		μg/kg wet		19.6		105	30-150		
Surrogate: Decachlorobiphenyl (Sr)	19.6		μg/kg wet		19.6		100	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	20.6		μg/kg wet		19.6		105	30-150		
LCS Dup (1429590-BSD1)					Prep	ared: 17-Dec	-14 Analyzed	: 18-Dec-14		
Aroclor-1016	254		μg/kg wet	18.1	242		105	40-140	2	30
Aroclor-1016 [2C]	236		μg/kg wet	12.6	242		97	40-140	0.4	30
Aroclor-1260	224		μg/kg wet	13.9	242		92	40-140	4	30
Aroclor-1260 [2C]	201		μg/kg wet	18.4	242		83	40-140	0	30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	20.4		μg/kg wet		19.4		105	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	20.4		μg/kg wet		19.4		105	30-150		
Surrogate: Decachlorobiphenyl (Sr)	20.4		μg/kg wet		19.4		105	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	20.4		μg/kg wet		19.4		105	30-150		
<u>Duplicate (1429590-DUP1)</u>			Source: SC	01291-01	Prep	ared: 17-Dec	-14 Analyzed	: 18-Dec-14		
Aroclor-1016	< 23.9	U	μg/kg dry	23.9		BRL				30
Aroclor-1016 [2C]	< 16.6	U	μg/kg dry	16.6		BRL				30
Aroclor-1221	< 21.7	U	μg/kg dry	21.7		BRL				30
Aroclor-1221 [2C]	< 18.8	U	μg/kg dry	18.8		BRL				30
Aroclor-1232	< 23.0	U	μg/kg dry	23.0		BRL				30
Aroclor-1232 [2C]	< 19.7	U	μg/kg dry	19.7		BRL				30
Aroclor-1242	< 11.4	U	μg/kg dry	11.4		BRL				30
Aroclor-1242 [2C]	< 19.9	U	μg/kg dry	19.9		BRL				30
Aroclor-1248	986		μg/kg dry	13.9		941			5	30

Semivolatile Organic Compounds by GC - Quality Control

					Spike	Source		%REC		RPD
nalyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limi
atch 1429590 - SW846 3540C										
<u>Duplicate (1429590-DUP1)</u>			Source: SC	01291-01	Pre	pared: 17-Dec	-14 Analyzed	: 18-Dec-14		
Aroclor-1248 [2C]	977		μg/kg dry	14.0		976			0.2	30
Aroclor-1254	628		μg/kg dry	16.1		657			4	30
Aroclor-1254 [2C]	724		μg/kg dry	15.2		665			9	30
Aroclor-1260	62.6		μg/kg dry	18.3		60.9			3	30
Aroclor-1260 [2C]	60.0		μg/kg dry	24.2		54.6			10	30
Aroclor-1262	< 13.8	U	μg/kg dry	13.8		BRL				30
Aroclor-1262 [2C]	< 12.8	U	μg/kg dry	12.8		BRL				30
Aroclor-1268	< 25.1	U	μg/kg dry	25.1		BRL				30
Aroclor-1268 [2C]	< 24.5	U	μg/kg dry	24.5		BRL				30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	24.3		μg/kg dry		25.5		95	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	25.5		μg/kg dry		25.5		100	30-150		
Surrogate: Decachlorobiphenyl (Sr)	24.3		μg/kg dry		25.5		95	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	26.8		μg/kg dry		25.5		105	30-150		
Matrix Spike (1429590-MS1)			Source: SC	01291-01	Pre	pared: 17-Dec	:-14 Analyzed	: 18-Dec-14		
Aroclor-1016	398		μg/kg dry	23.3	312	BRL	128	40-140		
Aroclor-1016 [2C]	387		μg/kg dry	16.2	312	BRL	124	40-140		
Aroclor-1260	258		μg/kg dry	17.9	312	60.9	63	40-140		
Aroclor-1260 [2C]	223		μg/kg dry	23.7	312	54.6	54	40-140		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	24.9		μg/kg dry		24.9		100	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	23.7		μg/kg dry		24.9		95	30-150		
Surrogate: Decachlorobiphenyl (Sr)	22.5		μg/kg dry		24.9		90	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	24.9		μg/kg dry		24.9		100	30-150		
Matrix Spike Dup (1429590-MSD1)			Source: SC	01291-01	Pre	pared: 17-Dec	:-14 Analyzed	: 18-Dec-14		
Aroclor-1016	408		μg/kg dry	23.9	320	BRL	128	40-140	0	30
Aroclor-1016 [2C]	410		μg/kg dry	16.6	320	BRL	128	40-140	3	30
Aroclor-1260	284		μg/kg dry	18.3	320	60.9	70	40-140	10	30
Aroclor-1260 [2C]	253		μg/kg dry	24.2	320	54.6	62	40-140	14	30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	25.6		μg/kg dry		25.6		100	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	24.3		μg/kg dry		25.6		95	30-150		
Surrogate: Decachlorobiphenyl (Sr)	25.6		μg/kg dry		25.6		100	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	26.9		μg/kg dry		25.6		105	30-150		

General Chemistry Parameters - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1429605 - General Preparation										
<u>Duplicate (1429605-DUP1)</u>			Source: SC	01291-13	Pre	pared & Analy	zed: 17-Dec-14	<u>1</u>		
% Solids	68.1		%			68.8			1	5
<u>Duplicate (1429605-DUP2)</u>			Source: SC	01291-14	Pre	pared & Analy	zed: 17-Dec-14	<u>1</u>		
% Solids	62.7		%			62.3			0.6	5

Notes and Definitions

D Data reported from a dilution GS1 Sample dilution required for high concentration of target analytes to be within the instrument calibration range. J Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag). S01 The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interference's. S02 The surrogate recovery for this sample cannot be accurately quantified due to interference from coeluting organic compounds present in the sample extract. U Analyte included in the analysis, but not detected at or above the MDL. dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

Matrix Spike: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification:</u> The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

Validated by: June O'Connor Kimberly LaPlante

SPECTRUM ANALYTICAL, INC. Featuring

CHAIN OF CUSTODY RECORD

Page of 2

-	- 0 E E -	W W		CI.
2.	CHRESS	2-3:3 m	pecial	201
-	RELLES	RESTRE	rciai	200

Standard TAT - 7 to 10 business days

Rush TAT - Date Needed: 3-DAY

All TATs subject to laboratory approval
Min. 24-hr notification needed for rushes
Samples disposed after 6¢ days unless otherwise instructed.

SC01291JUH

	ch McKenna		Invoice To	. 4	teet	5 7	Paya	He		60 50 50		Project N	No:	14.	-091	
AE	CC	<u> </u>	3	1			- 1			20	- 1	Site Nam	1	Woodbin	e B	usiness Pork
Telephone #: Project Mgr:	\$68 Fly Road st Synause, NY (315) 432-9460	13057	P.O No.	14-	091		Quote	e/RQN:			-	Location Sampler(Dewitt State: NY
	1=Na ₂ S2O ₃		5=NaOH 6								Li	st Preservative	e Code	below:		QA/QC Reporting Notes: * additional charges may apppfy
DW=Dinking Water	r GW=Groundwater SV	V=Surface Water W	W=Waste Wate	r			Co	ontaine	ers			Analy	sis			MA DEP MCP CAM Report? Yes No
O=Oil SO=Soil	SL=Sludge A=Indoor/	Ambient Air SG=S	oil Gas						-						ted	Standard No QC
X1=	X2=	. X3				Vials	of Amber Glass	Glass	v	7/8					chlorinated	☐ DQA* ☐ ASP A* ☐ ASP B* ☐ NJ Reduced* ☐ NJ Full*
G	G= Grab	C=Comps	te	Type	Matrix	of VOA Vials	Ambe	of Clear Glass	of Plastic	CAN					Check if	☐ Tier II* ☐ Tier IV*
Lab ID:	Sample ID:	Date:	Time:			# of	Jo#	to#	fo#						ð	State-specific reporting standards:
	CS-1 (1.5')	12/15/14	1020	6	5		1			X						
CONTROL CONTRO	CS-1 (2.5')		1025								-					X
	55-53 (1.5')		1050						7-11							1 stake
	SS-53 (a.5')		1055		9											Do pret
OS	55-83 (1.5')		1112													(2640)
	55-83 (2.5')		1120	+H												
	55-87 (1.5')		1/33		+											
	55-87 (2.5')		1142	+	+											650 65 2
109	55-101		1155													OF WIR
• (0)	55-99		1209		_	Data	1		Time:	Tor	np °C	g/		0	ᆜᆜ	- XX
Relin	quished by:	Receiv	a by:	1	16	Date: 2/15	114		540	5 Ohserve	9/	E-mail to	mat: - o: -	PDF Cmcken	, t na@	accegrage con
XX	asth	Esti.			12	100	14	l	130	0	on Factor		_			0
Flint	Eust	MO	e	**	12	16/	14	ó	7/10	Correcte IR ID #	d /		-			☐ Present ☐ Intact ☐ Broken
					1	1			The same of	O C	1	Ambient	Ice	d Refrig	erated	☐ DI VOA Frozen ☐ Soil Jar Frozen

3001291JUH

CHAIN OF CUSTODY RECORD

Page 2 of 2

Special	Handling:
---------	-----------

☐ Standard TAT - 7 to 10 busi	ness days
Rush TAT - Date Needed:	3-DAY

All TATs subject to laboratory approval

Min. 24-hr notification needed for rushes

Samples disposed after 6@ days unless otherwise instruct

	eaturing TECHNOLOGY		-61	. 11	1 ugu	05_				4/8		Samples	disposed at	fter 60 days unless otherwise instructed.	
	h McKenna		Invoice To: Acct's Payable							100	Project No:	14-091			
AFC	ce					10					Site Name:	Woodbi	ne B	usiness Park	
_ 630	of Fly Read														
Eas	+ Syrause, NY 13 (315) 432-9400	3057							a parakanan faarraanan roomata	***************************************	Location: Sampler(s):	De	Bar	Dewitt State: NY	
Telephone #: Project Mgr:	(33) 432-4400		P.O No.	14	-091		Quot	e/RQN:			Samplet(s).	- Press	17164		
	1=Na ₂ S2O ₃	4 4=HNO ₃	5=NaOH 6=	=Ascort	oic Acid	1					List Preservative Co	de below:		OA/OC Reporting Notes:	
	SO ₄ 9=Deionized Water 10 =H ₃ PO			12=	-			-			Dist Preservative Co.	T T		* additional charges may appply	
DW Dinking Water	GW=Groundwater SW=Sur	face Water W	W=Waste Wate	r			C	ontain	ers		Analysis			MA DEP MCP CAM Report? Yes No	
DW=Dinking Water													-5	CT DPH RCP Report? Yes No	
O=Oil SO=Soil							SS			1235			chlorinated	Standard No QC	
X1=	X2=	X3=				Vials	r Gla	Glass					hiori	☐ ASP A* ☐ ASP B* ☐ NJ Reduced* ☐ NJ Full*	
G=	= Grab	C=Compsit	e	be	Matrix	# of VOA Vials	# of Amber Glass	of Clear Glass	of Plastic	6808			Const.	☐ Tier II* ☐ Tier IV*	
Lab ID:	Sample ID:	Date:	Time:	Ty	Mar	# of 1	7 Jo #) Jo #	I Jo#				Check	Other: State-specific reporting standards:	
1-12/2010	55-100	12/15/14	1214	6	S		1			X					
1.12	55-98		1229	1			1					9 - 3			
13	55-102		1240												
14	55-104		1258		ä									The	
1/15	55-105		1305											Pret	
Lo	55-103	1	1314	1	4		4	F				A La		13570)	
				-											
						- Pg	/	8 8						11 a 16 m	
											-			5010 159R /	
														V/X	
Poling	uished by:	Receive	d by:			Date:	1		Time:	Temp °C	W EDD format:	Por		· XX	
Kennqi	uished by.	VI CO	4 _ /	1	1	+	Int	1			Empilta:	- IVF	Exce	Paccignosp com	
Hum	trutya 1	W 1	8 COK	2	15	419	114	1 1	545	Observed Corecction Factor	D-man to.	Y mck	enna (exactigroup.com	
1100	NOW X	sodies.	M	• - 3.	12	16	114	1	f30	O					
- 3/			1	47	in	1/1	1111	1	1 171	Corrected	Condition upon rec	eipt: Custody	Seals:	☐ Present ☐ Intact ☐ Broken	
N	adure	GAI.	(101	14/	17	01	10	IR ID#		_			
					'					01	Ambient	ced L Refri	gerated	☐ DI VOA Frozen ☐ Soil Jar Frozen	