PART A - SECTION III.1

PRIOR INVESTIGATION REPORT

PCBS IN SURFACE SOILS REPORT BROWNFIELD APPLICATION AREA NYSDEC SPILL FILE NUMBER 13-00433

Woodbine Business Park Canada Drive Town of Dewitt, New York

May 11, 2016

Prepared by:

Asbestos and Environmental Consulting Corporation 6308 Fly Road East Syracuse, New York 13057 (315) 432-9400

Prepared for:

Woodbine Business Park, Inc. 505 East Fayette Street Syracuse, New York

TABLE OF CONTENTS

1.0	INTRO	DDUCTION	. 1
	1.1 1.2 1.3	Purpose	. 1
2.0	SOIL	SAMPLING EVENTS AND RESULTS	. 2
	2.1 2.2	METHODOLOGY	.2
	2.3	SURFACE SOIL SAMPLING - EARLY OCTOBER 2014	.3
	2.4	FOLLOW-UP / ADDITIONAL SURFACE SOIL SAMPLING - LATE OCTOBER 2014	. 4
	2.5	FOLLOW-UP / ADDITIONAL SURFACE SOIL SAMPLING - EARLY DECEMBER 2014	. 4
	2.6	ADDITIONAL SURFACE SOIL SAMPLING AND DEPTH SAMPLING - MID-DECEMBER 2014	. 5
3.0	CONC	CLUSIONS	.6

FIGURES

Figure 1: Sample Location Plan

TABLES

Table 1: Surface Soil and Soil Pile Sampling Results

APPENDICES

Appendix A: Laboratory Analysis Reports

Brownfield Application Area - Woodbine Business Park Canada Drive, Town of Dewitt, New York

1.0 INTRODUCTION

The Asbestos & Environmental Consulting Corporation (AECC) performed an investigation of polychlorinated biphenyls (PCBs) in surface soils at the vacant 12.47-acre parcel of the larger Woodbine Business Park that is to be the subject of a Brownfield Cleanup Program Application. Note that when referencing the subject site (parcel), it will hereafter be referenced as the "Site", while the business park in its entirety will be referenced as the "Park". The Site is located along Loucks Road and Canada Drive in the Town of Dewitt, New York.

1.1 PURPOSE

The purpose of the investigation was to evaluate the extent of PCB-impacted surface soils, which had been previously identified in topsoil that potentially originated at the Park (see Project History, below).

1.2 PROJECT HISTORY

A Phase I Environmental Site Assessment (ESA) was commissioned by Woodbine Business Park, Inc. (Woodbine) prior to development of the Park (limited to infrastructure improvements). The ESA report was completed by Beardsley Design Associates in October 2009. The ESA report stated that the prior uses of the Park were limited to agriculture (field crops) with a small sand quarry along Collamer Road. The report did not identify Recognized Environmental Conditions (RECs) originating at the Park (potential arsenic impacts originating from the adjacent cemetery were noted).

In early 2013, Woodbine was informed that PCBs were allegedly detected in surface soil samples collected at the location of a former topsoil pile on the Park (Soil Pile #1) that was created during site development activities. The samples were collected by Certified Environmental Services, Inc. (CES), on behalf of RH Law, Inc. ("RH Law") in November 2012 without the prior knowledge or consent of Woodbine. Laboratory analysis of the four composite surface soil samples collected by CES revealed Aroclor-1248 concentrations ranging from 78 to 199 ppm (parts-per-million). No other Aroclors were detected.

AECC duplicated the CES sampling event, and the PCB Aroclor-1248 was detected in all four of the samples collected, ranging in concentration from 6.32 to 34.4 ppm. No other Aroclors were detected.

Upon receipt of the laboratory results, AECC called the New York State Spill Hotline on behalf of Woodbine, and Spill File Number 13-00433 was assigned.

The following section (Section 2 – Soil Sampling Events) details the subsequent sampling that has occurred at the Site in an effort to determine the nature and extent of possible PCB contamination and locate the potential source of the contamination.

1.3 SITE CHARACTERISTICS

The Site is mostly flat and thickly vegetated by numerous weed and shrub species ranging two to eight feet in height depending on plant species and season. There are some areas (primarily in the southern portion) that are forested with trees ranging from approximately one inch to one foot in trunk diameter. Soil moisture was observed to fluctuate depending upon time of year and location across the Site. The soil tended to be a tan sandy loam, particularly sandy on the southern portion of the Site, with some areas of darker coloration in the lightly forested areas.

Brownfield Application Area - Woodbine Business Park Canada Drive, Town of Dewitt, New York

2.0 SOIL SAMPLING EVENTS AND RESULTS

All sample locations are shown on the Sample Location Plan (Figure 1).

Table 1 summarizes the results of all surface soil sampling performed by AECC at the Site from May 2013 to December 2014. Soil sample analysis results were compared to the applicable Soil Cleanup Objectives (SCOs) referenced in NYSDEC Commissioner's Policy #51 (CP-51), and/or 6 NYCRR Part 375 (Part 375).

The complete laboratory analysis reports are presented as Appendix A.

2.1 METHODOLOGY

Sampling typically followed the following protocol:

Due to extensive vegetative growth and size of the site, AECC utilized GPS technology to locate sampling points in the field. First, AECC uploaded sample location coordinates from the planned sample grid (in AutoCAD format) into a handheld GPS device (Trimble Geo6000XH). AECC then used the GPS device to locate the uploaded sample location coordinates in the field.

The samples were collected at 6 to 8 inches below grade (soil immediately beneath the vegetative layer). AECC first broke the surface adjacent to each sampling location using a long-handled digging shovel, and then pried to lift / loosen the soil from beneath the sample location. Disposable plastic trowels were then used to collect the soil sample, which was immediately placed in a laboratory-provided glass jar.

All samples were placed in coolers and transported under proper chain-of-custody to Spectrum Analytical, Inc. (now Eurofins Spectrum Analytical, Inc., and hereafter referred to as "Spectrum"), an ELAP and NVLAP certified laboratory, for analysis of PCBs via USEPA SW-846 Method 8082 (PCB Aroclors) with Soxhlet prep. Duplicate samples were collected at a rate of approximately one duplicate for every 20 samples, and were submitted to Life Science Laboratories, Inc. (hereafter referred to as "LSL") under separate chain-of-custody.

At the end of each sampling event, trowels, gloves, over-boots, and other waste materials were placed in a sealable, steel 55-gallon drum on-Site.

2.2 SOIL PILE SAMPLING - MAY 2013

Two soil piles that were created during site development activities currently exist at the Park: a large soil pile located on-Site along Loucks Road Extension (Soil Pile #2), and a small soil pile located off-Site southeast of the Canada Drive cul-de-sac (Soil Pile #3). Note: Soil Pile #1 had already been removed from the Site, and deposited at the RH Law facility.

On May 31, 2013, AECC personnel collected ten (10) grab soil samples (SP2-01 through SP2-10) from Soil Pile #2. All soil samples were collected from approximately 12-18 inches below the soil pile surface.

PCBs were detected in nine of the ten samples collected from Soil Pile #2. No PCBs were detected in sample SP2-10.

Brownfield Application Area - Woodbine Business Park Canada Drive, Town of Dewitt, New York

Sample SP2-03 had a total PCB concentration of 0.0802 ppm (0.0648 ppm Aroclor-1248 and 0.0154 ppm Aroclor-1260), which is less than the Unrestricted SCO value of 0.1 ppm for total PCBs.

Each of the remaining eight (8) samples from Soil Pile #2 had a concentration of total PCBs greater than the Unrestricted SCO value of 0.1 ppm. Sample SP2-08 had the greatest concentration of total PCBs (25.673 ppm) and is the only sample from Soil Pile #2 that exhibited PCB concentrations greater than the Industrial Use SCO. The results of the sampling of Soil Pile 2 are included in Table 1.

2.3 SURFACE SOIL SAMPLING – EARLY OCTOBER 2014

On October 7, 2014, AECC personnel performed surface soil sampling in a grid layout at the Site. A total of thirty (30) surface soil samples (identified as SS-37 thru SS-66) were collected from the Site as a part of the grid sampling plan during this sampling event. In addition, four (4) samples adjacent to Loucks road (separate from the grid layout) were collected as a part of this sampling event (these samples are identified as Road 1 through Road 4).

Of the thirty-four (34) total samples collected during this sampling event, PCBs were not detected in eight (8) of the samples (SS-48, SS-56, SS-58, SS-60, SS-61, SS-62, SS-64, SS-66).

PCBs were detected, but at a concentration below the Unrestricted SCO value of 0.1 ppm, from eight (8) of the samples collected during this sampling event (SS-40, SS-47, SS-55, SS-57, SS-63, SS-65, Road 2, and Road 4).

The remaining eighteen (18) samples collected during this sampling event contained PCBs greater than the Unrestricted SCO value of 0.1 ppm. The total concentration of PCBs detected in these eighteen samples are summarized in the table below:

DCD Averal	CACAL	SS-37	SS-38	SS-39	SS-41	SS-42	SS-43	SS-44	SS-45	SS-46
PCB Arocior	CAS Number	10/7/2014	10/7/2014	10/7/2014	10/7/2014	10/7/2014	10/7/2014	10/7/2014	10/7/2014	10/7/2014
Aroclor-1248	12672-29-6	54.3	44.8	0.207	19.7	7.46	0.112	0.0451	17.3	0.194
Aroclor-1254	11097-69-1	46	39.3	0.487	17.4	7.4	0.117	0.123	18.3	0.333
Aroclor-1260	11096-82-5	4.08	3.33	0.0771	1.43	0.616	0.0456	0.0263	1.52	0.0603
Total PCBs		104.38	87.43	0.7711	38.53	15.476	0.2746	0.1944	37.12	0.5873
DCB Araclar	CAS Number	SS-49	SS-50	SS-51	SS-52	SS-53	SS-54	SS-59	Road 1	Road 3
PCB AIOCIOI	CAS Number	10/7/2014	10/7/2014	10/7/2014	10/7/2014	10/7/2014	10/7/2014	10/7/2014	10/7/2014	10/7/2014
Aroclor-1248	12672-29-6	32.3	0.0695	78	25.3	98.1	0.0557	0.619	0.164	0.0537
Aroclor-1254	11097-69-1	53.1	0.0947	54.5	37.5	93.1	0.0792	0.974	0.217	0.0995
Aroclor-1260	11096-82-5	5.11	0.0276	5.44	3.72	6.64	BRL	0.0875	0.03	BRL
Total PCBs		90.51	0.1918	137.94	66.52	197.84	0.1349	1.6805	0.411	0.1532
All concentration	s in milligrams pe	er kilogram (mg/	kg or approximat	e parts per millio	on - ppm)					
The following PCB Aroclors were not found above the detection limit in any of the above samples: Aroclor-1016, -1221, -1232, -1242, -1262, -1268										
	Total PCB Concentration between 0.1 and 25 ppm (Above Unrestricted SCO but below the Industrial SCO, per 6 NYCRR 375, Table 375-6.8(a))									
	Total PCB Concentration between 25 and 50 ppm (Above Industrial Use SCO but less than the Hazardous Waste Characterization (Toxicity) limit)									
	Total PCB Concentration exceeds 50 ppm (Hazardous Waste Characterization (Toxicity) limit)									

AECC submitted two duplicate samples (identified as SS-40d and SS60d) to LSL for analysis as Quality assurance/control. LSL did not detect PCBs in either of these two samples, which generally confirmed the Spectrum results.

Brownfield Application Area - Woodbine Business Park Canada Drive, Town of Dewitt, New York

2.4 FOLLOW-UP / ADDITIONAL SURFACE SOIL SAMPLING – LATE OCTOBER 2014

On October 29, 2014, AECC personnel performed additional surface soil sampling at locations interspersed within the prior grid layout in an effort to more accurately determine the extent of PCB contamination. An additional twelve (12) surface soils samples were collected as a part of this sampling event (identified as SS-67 through SS-78).

Of the twelve additional samples collected during this sampling event, six (6) samples had no PCBs detected by laboratory analysis (SS-68, SS-69, SS-70, SS-71, SS-77, and SS-78).

PCBs were detected, but at a concentration below the Unrestricted SCO value of 0.1 ppm, from two (2) of the samples collected during this sampling event (SS-72 and SS-74).

The remaining four (4) samples collected during this event contained PCBs greater than the Unrestricted SCO value of 0.1 ppm. The total concentration of PCBs detected in these four samples is summarized in the table below:

PCB Aroclor	CAS Number	SS-67	SS-73	SS-75	SS-75d	SS-76
		10/29/2014	10/29/2014	10/29/2014	10/29/2014	10/29/2014
Aroclor-1248	12672-29-6	61.3	BRL	BRL	6.9	2.69
Aroclor-1254	11097-69-1	56.4	0.516	1.28	BRL	2.63
Aroclor-1260	11096-82-5	3.37	0.0518	0.0883	BRL	0.203
Total PCBs		121.07	0.5678	1.3683	6.9	5.523

All concentrations in milligrams per kilogram (mg/kg or approximate parts per million - ppm)

The following PCB Aroclors were not found above the detection limit in any of the above samples: Aroclor-1016, -1221, -1232, -1242, -1262, -1268

Total PCB Concentration between 0.1 and 25 ppm (Above Unrestricted SCO but below the Industrial SCO, per 6 NYCRR 375, Table 375-6.8(a))

Total PCB Concentration between 25 and 50 ppm (Above Industrial Use SCO but less than the Hazardous Waste Characterization (Toxicity) limit)

Total PCB Concentration exceeds 50 ppm (Hazardous Waste Characterization (Toxicity) limit)

Additionally, as represented on the table above, a duplicate sample was submitted to LSL for analysis (identified as SS-75d). The results were in the same order-of-magnitude as the Spectrum result.

2.5 FOLLOW-UP / ADDITIONAL SURFACE SOIL SAMPLING – EARLY DECEMBER 2014

On December 2, 2014, AECC personnel performed further delineation sampling at the Site. An additional eighteen (18) samples (identified as SS-79 through SS-96) were collected as a part of this sampling event.

According to laboratory analysis, of the eighteen (18) samples collected as a part of this sampling event, only one (1) sample did not contain PCBs (SS-79).

PCBs were detected, but at a concentration below the Unrestricted SCO value of 0.1 ppm, from four (4) of the samples collected during this event (SS-93, SS-94, SS-95, and SS-96).

The remaining thirteen (13) samples collected contained PCBs greater than the Unrestricted SCO value of 0.1 ppm. The total concentration of PCBs detected in these thirteen samples is summarized in the table below:

Brownfield Application Area - Woodbine Business Park Canada Drive, Town of Dewitt, New York

		66.00	66.04	66.00	66.00	66.04	66.05	55.05
PCB Aroclor	CAS Number	SS-80	SS-81	SS-82	SS-83	SS-84	SS-85	SS-86
		12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014
Aroclor-1248	12672-29-6	0.0798	BRL	184	2440	0.271	BRL	42
Aroclor-1254	11097-69-1	0.102	13.5	172	1840	BRL	1.11	33.1
Aroclor-1260	11096-82-5	BRL	0.818	11.7	124	BRL	0.0943	2.72
Total PCBs		0.1818	14.318	367.7	4404	0.271	1.2043	77.82
DCD Association	CAC November	SS-87	SS-88	SS-89	SS-90	SS-91	SS-92	
PCB Arocior	CAS Number	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	
Aroclor-1248	12672-29-6	BRL	BRL	2.43	0.11	BRL	0.116	
Aroclor-1254	11097-69-1	3.29	2.66	2.56	0.207	0.907	0.101	
Aroclor-1260	11096-82-5	0.207	0.147	0.185	0.0318	0.0952	BRL	
Total PCBs		3.497	2.807	5.175	0.3488	1.0022	0.217	
All concentration	ns in milligrams pe	er kilogram (mg/	kg or approximat	e parts per millio	on - ppm)			
The following PCB Aroclors were not found above the detection limit in any of the above samples: Aroclor-1016, -1221, -1232, -1242, -1268								
	Total PCB Concentration between 0.1 and 25 ppm (Above Unrestricted SCO but below the Industrial SCO, per 6 NYCRR 375, Table 375-6.8							
	Total PCB Concer	ntration between	25 and 50 ppm (Above Industrial	Use SCO but less	than the Hazard	ous Waste Chard	cterization (Toxi
	Total PCB Concer	ntration exceeds	50 ppm (Hazardo	us Waste Charac	terization (Toxici	ity) limit)		

AECC submitted one duplicate sample (identified as SS-95d) to Life Science Laboratory for analysis as Quality assurance/control. LSL did not detect PCBs in the sample, which generally confirmed the Spectrum result.

2.6 ADDITIONAL SURFACE SOIL SAMPLING AND DEPTH SAMPLING – MID-DECEMBER 2014

On December 15, 2014, AECC personnel performed further delineation (surface soil) sampling at the Site. In addition, AECC personnel collected soil samples from depth at four locations in an effort to begin determining a vertical profile of the PCB contamination. In total, an additional five (5) surface soil samples (identified as SS-98 through SS-101, and SS-106) and a total of eight (8) samples from depth were collected (four from 1.5 feet below ground surface and four from 2.5 feet below ground surface at locations CS-1, SS-53, SS-83, and SS-87).

PCBs were detected in all of the samples collected during this sampling event.

PCBs were detected, but at a concentration below the Unrestricted SCO value of 0.1 ppm, from three (3) of the surface soil samples collected during this event (SS-98, SS-100, and SS-106).

The remaining two (2) surface soil samples collected contained PCBs greater than the Unrestricted SCO value of 0.1 ppm. The total concentration of PCBs detected in these two samples is summarized in the table below:

Brownfield Application Area - Woodbine Business Park Canada Drive, Town of Dewitt, New York

DCD Aveeler	CAS Number	SS-99	SS-101					
PCB AIOCIOI	CAS Number	12/15/2014	12/15/2014					
Aroclor-1248	12672-29-6	49.1	0.0611					
Aroclor-1254	11097-69-1	47.6	0.0647					
Aroclor-1260	11096-82-5	BRL	BRL					
Total PCBs		96.7	0.1258					
All concentration	ns in milligrams p	er kilogram (mg/	kg or approximat					
The following PC	B Aroclors were r	not found above t	he detection limi					
	Total PCB Concentration between 0.1 and 25 ppm (Above Unrestricted SCO but below the Industrial SCO, per 6 NYCRR 375, Table 375-6							
	Total PCB Concentration between 25 and 50 ppm (Above Industrial Use SCO but less than the Hazardous Waste Characterization (Toxici							
	Total PCB Concer	ntration exceeds :	50 ppm (Hazardo					

PCBs were detected above the Unrestricted SCO value of 0.1 ppm in all of the samples collected from depth at each of the four unique locations. The results revealed a general trend of decreasing PCB concentrations with additional depth, and are summarized in the tables below:

PCR Araclar	CAS Number	CS-1 (1.5')	CS-1 (2.5')	SS-53 (1.5')	SS-53 (2.5')	SS-83 (1.5')	SS-83 (2.5')	SS-87 (1.5')	SS-87 (2.5')
T CD AIOCIOI	CAS IVUITIBET	12/15/2014	12/15/2014	12/15/2014	12/15/2014	12/15/2014	12/15/2014	12/15/2014	12/15/2014
Aroclor-1248	12672-29-6	0.941	0.172	7.79	3.21	38.9	177	2.68	0.106
Aroclor-1254	11097-69-1	0.657	0.129	5.52	2.85	27.7	120	2.07	0.067
Aroclor-1260	11096-82-5	0.0546	BRL	BRL	BRL	BRL	BRL	0.13	BRL
Total PCBs		1.6526	0.301	13.31	6.06	66.6	297	4.88	0.173

Depth of Sample	CS-1		SS-53		SS-83		SS-87	
Depth of Sample	4/8/2013	12/15/2014	10/7/2014	12/15/2014	12/2/2014	12/15/2014	12/2/2014	12/15/2014
"Surface" (~0.5' bgs)	34.4	-	197.84	-	4404	-	3.497	-
1.5' bgs	-	1.6526	-	13.31	-	66.6	-	4.88
2.5' bgs	-	0.301	-	6.06	-	297	-	0.173
All concentrations in milligrams p	er kilogram (mg/	kg or approximat	e parts per millio	on - ppm)				
All concetrations represent the to	tal PCBs detected	l within the samp	ole					
bgs - below ground surface								
Total PCB Concer	Total PCB Concentration between 0.1 and 25 ppm (Above Unrestricted SCO but below the Industrial SCO, per 6 NYCRR 375, Table 375-6.8(a))							
Total PCB Conce	Total PCB Concentration between 25 and 50 ppm (Above Industrial Use SCO but less than the Hazardous Wast						cterization (Toxi	city) limit)
Total PCB Conce	ntration exceeds	50 ppm (Hazardo	us Waste Charac	terization (Toxici	ty) limit)			

3.0 CONCLUSIONS

Based on the results of the sampling events, AECC presents the following conclusions:

- PCBs are present in the soil pile currently stored at the Site. Nine (9) of ten (10) grab samples
 collected from the soil pile contained PCBs, and eight (8) of them contained PCBs at a
 concentration greater than the Unrestricted use SCO of 0.1 ppm.
- Significant PCB contamination is present in surface soils at the Site, primarily in the center of the Site. The extent of surface soil contamination has been roughly delineated.
- Limited sampling of subsurface soils (to 2.5 feet below ground surface) indicates that contamination exists to a depth of 2.5 feet (and potentially greater) at locations where depth samples were collected. There was a general trend of decreasing PCB concentrations with additional depth.

Brownfield Application Area - Woodbine Business Park Canada Drive, Town of Dewitt, New York

If you should have any questions regarding the information presented in this report, please feel free to contact our office at your convenience.

Sincerely,

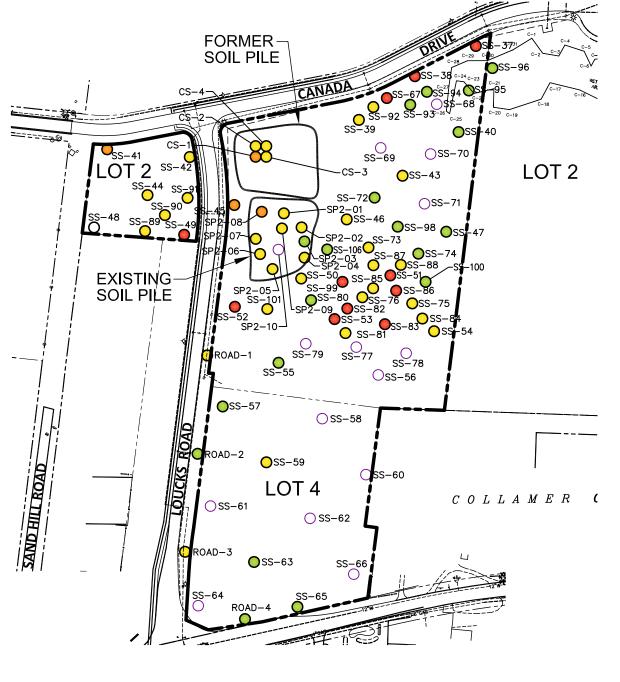
Asbestos & Environmental Consulting Corporation

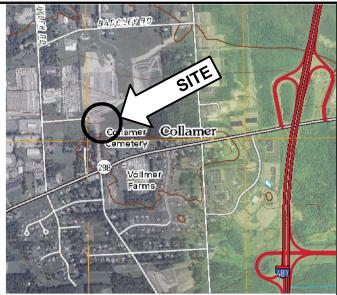
Richard D. McKenna Project Manager

FIGURES

Sample Location	Date	Total PCBs (ppm)
SS-37	10/07/14	104.38
SS-38	10/07/14	87.43
SS-39	10/07/14	0.77
SS-40	10/07/14	0.04
SS-40d	10/07/14	0.00
SS-41	10/07/14	38.53
SS-42	10/07/14	15.48
SS-43	10/07/14	0.27
SS-44	10/07/14	0.19
SS-45	10/07/14	37.12
SS-46	10/07/14	0.59
SS-47	10/07/14	0.02
SS-49	10/07/14	90.51
SS-50	10/07/14	0.19
SS-51	10/07/14	137.94
SS-52	10/07/14	66.52
SS-53	10/07/14	197.84
SS-54	10/07/14	0.13
SS-55	10/07/14	0.04
SS-57	10/07/14	0.03
SS-59	10/07/14	1.68
SS-63	10/07/14	0.09
SS-65	10/07/14	0.07
SS-67	10/29/14	121.07
SS-72	10/29/14	0.05
SS-73	10/29/14	0.57
SS-74	10/29/14	0.02
SS-75	10/29/14	1.37
SS-75d	10/29/14	6.90
SS-76	10/29/14	5.52
SS-80	12/02/14	0.18
SS-81	12/02/14	14.32
SS-82	12/02/14	367.7
SS-83	12/02/14	4,404
SS-84	12/02/14	0.27
SS-85	12/02/14	1.20
SS-86	12/02/14	77.82
SS-87	12/02/14	3.50
SS-88	12/02/14	2.81
SS-89	12/02/14	5.18
SS-90	12/02/14	0.35
SS-91	12/02/14	1.00
SS-92	12/02/14	0.22
SS-93	12/02/14	0.03
SS-94	12/02/14	0.0985
	N THIS GRAPHIC REPRESENTA	

THE INFORMATION INCLIDED ON THIS GRAPHIC REPRESENTATION HAS BEEN COMPILED PROFILE AVAILETY OF SOURCES AND IS SUBJECT TO CHANGE WITHOUT NOTICE. ARCC MAKES NO REPRESENTATIONS OF WARRANTES, EMPRESS OR IMPLIED, AS TO ACCURACY, COMPILETINESS, THE LINESS, OR RIGHTS TO THE USE OF SUCH INFORMATION THIS DOCUMENT IS NOT INTENDED FOR USE AS A LAND SURVEY PRODUCT NOR IS IT DESCARD OR INTENDED AS A CONSTRUCTION DESIGN DOCUMENT. THE USE OR MISSING OF THE ROPRITATION CONTAINED ON THIS GRAPHIC REPRESENTATION IS AT THE SOLE RISK OF THE


Sample Location	Date	Total PCBs (ppm)		
SS-95	12/02/14	0.03		
SS-95d	12/02/14	0.00		
SS-96	12/02/14	0.03		
SS-98	12/15/14	0.05		
SS-99	12/15/14	96.7		
SS-100	12/15/14	0.07		
SS-101	12/15/14	0.13		
SS-106	12/15/14	0.08		


Sample Location	Date	Total PCBs (ppm)		
SP2-01	05/31/13	9.072		
SP2-02	05/31/13	0.110		
SP2-03	05/31/13	0.0802		
SP2-04	05/31/13	0.271		
SP2-05	05/31/13	9.926		
SP2-06	05/31/13	7.273		
SP2-07	05/31/13	14.405		
SP2-08	05/31/13	25.673		
SP2-09	05/31/13	0.119		

ROAD-1	10/07/14	0.411
ROAD-2	10/07/14	0.0297
ROAD-3	10/07/14	0.1532
ROAD-4	10/07/14	0.038

Sample Location	Date	Total PCBs (ppm)		
CS-1	04/08/13	34.4		
CS-2	04/08/13	6.32		
CS-3	04/08/13	7.8		
CS-4	04/08/13	9.41		

Sample Location	Date	Total PCBs (ppm)
CS-1(0.5')	04/08/13	34.4
CS-1(1.5')	12/15/14	1.65
CS-1(2.5')	12/15/14	0.30
SS-53(0.5')	10/07/14	197.84
SS-53(1.5')	12/15/14	13.31
SS-53(2.5')	12/15/14	6.06
SS-83(0.5')	12/02/14	4,404
SS-83(1.5')	12/15/14	66.6
SS-83(2.5')	12/15/14	297.0
SS-87(0.5')	12/02/14	3.50
SS-87(1.5')	12/15/14	4.88
SS-87(2.5')	12/15/14	0.17

SITE LOCATION

LEGEND:

BROWNFIELD AREA EXTENT

PROPERTY LINE
----- RIGHT-OF-WAY

SURFACE SOIL SAMPLE LOCATION

NOTES:

- BASE MAP MODIFIED FROM ELECTRONIC DRAWING FILES PROVIDED BY CLIENT.
- = PCB CONCENTRATION EXCEEDS 50 ppm (HAZARDOUS)
- PCB CONCENTRATION BETWEEN 25 AND 50 ppm (ABOVE INDUSTRIAL USE SCO BUT LESS THAN THE HAZARDOUS WASTE CHARACTERIZATION LIMIT)
- PCB CONCENTRATION BETWEEN 0.1 AND 25 ppm (ABOVE UNRESTRICTED USE SCO BUT BELOW THE INDUSTRIAL USE SCO)
- = PCB CONCENTRATION LESS THAN 0.1 ppm (BELOW UNRESTRICTED USE SCO)
- O = NO PCBs DETECTED

DRAFT

THIS IS A CONFIDENTIAL DOCUMENT SUBJECT TO THE ATTORNEY WORK PRODUCT DOCTRINE AND/OR ATTORNEY-CLIENT PRIVILEGE

PROJECT NO.	14-091	
DRAWN:	MAY 2016	
DRAWN BY:	нэ	
CHECKED BY:	RM	
FILE NAME:		

SAMPLE LOCATION PLAN

WOODBINE BUSINESS PARK CANADA DRIVE, TOWN OF DEWITT ONONDAGA COUNTY, NEW YORK 1

FIGURE

TABLES

Aroclor-1260

Total PCBs

11096-82-5

BRL

0.0985

0.0276

0.0276

Woodbine Business Park - Canada Drive, Dewitt, NY
AECC Project #14-091
NYSDEC Spill #13-00433

	PCB Aroclor	CAS Number	CS-1	CS-2	CS-3	CS-4	SP2-01	SP2-02	SP2-03	SP2-04	SP2-05	SP2-06	SP2-07	SP2-08	SP2-09	SP2-10
S	PCB ATOCIOI	CAS Nulliber	4/8/2013	4/8/2013	4/8/2013	4/8/2013	5/31/2013	5/31/2013	5/31/2013	5/31/2013	5/31/2013	5/31/2013	5/31/2013	5/31/2013	5/31/2013	5/31/2013
Pile	Aroclor-1248	12672-29-6	34.4	6.32	7.8	9.41	8.78	0.11	0.0648	0.271	9.64	7.08	13.9	24.7	0.119	BRL
ē	Aroclor-1254	11097-69-1	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL
S	Aroclor-1260	11096-82-5	BRL	BRL	BRL	BRL	0.292	BRL	0.0154	BRL	0.286	0.193	0.505	0.973	BRL	BRL
	Total PCBs		34.4	6.32	7.8	9.41	9.072	0.11	0.0802	0.271	9.926	7.273	14.405	25.673	0.119	0

	_	_															1				•
PCB Aroclor	CAS Number	SS-37	SS-38	SS-39	SS-40	SS-40d	SS-41	SS-42	SS-43	SS-44	SS-45	SS-46	SS-47	SS-48	SS-49	SS-50	SS-51	SS-52	SS-53	SS-54	SS-55
. 62766.61		10/7/2014	10/7/2014	10/7/2014	10/7/2014	10/7/2014	10/7/2014	10/7/2014	10/7/2014	10/7/2014	10/7/2014	10/7/2014	10/7/2014	10/7/2014	10/7/2014	10/7/2014	10/7/2014	10/7/2014	10/7/2014	10/7/2014	10/7/2014
Aroclor-1248	12672-29-6	54.3	44.8	0.207	BRL	BRL	19.7	7.46	0.112	0.0451	17.3	0.194	BRL	BRL	32.3	0.0695	78	25.3	98.1	0.0557	0.0373
Aroclor-1254	11097-69-1	46	39.3	0.487	0.0353	BRL	17.4	7.4	0.117	0.123	18.3	0.333	0.0204	BRL	53.1	0.0947	54.5	37.5	93.1	0.0792	BRL
Aroclor-1260	11096-82-5	4.08	3.33	0.0771	BRL	BRL	1.43	0.616	0.0456	0.0263	1.52	0.0603	BRL	BRL	5.11	0.0276	5.44	3.72	6.64	BRL	BRL
Total PCBs		104.38	87.43	0.7711	0.0353	0	38.53	15.476	0.2746	0.1944	37.12	0.5873	0.0204	0	90.51	0.1918	137.94	66.52	197.84	0.1349	0.0373
DCD Avados	CAC Number	SS-56	SS-57	SS-58	SS-59	SS-60	SS-60d	SS-61	SS-62	SS-63	SS-64	SS-65	SS-66	SS-67	SS-68	SS-69	SS-70	SS-71	SS-72	SS-73	SS-74
PCB Aroclor	CAS Number	10/7/2014	10/7/2014	10/7/2014	10/7/2014	10/7/2014	10/7/2014	10/7/2014	10/7/2014	10/7/2014	10/7/2014	10/7/2014	10/7/2014	10/29/2014	10/29/2014	10/29/2014	10/29/2014	10/29/2014	10/29/2014	10/29/2014	10/29/2014
Aroclor-1248	12672-29-6	BRL	BRL	BRL	0.619	BRL	BRL	BRL	BRL	0.0282	BRL	BRL	BRL	61.3	BRL						
Aroclor-1254	11097-69-1	BRL	0.0258	BRL	0.974	BRL	BRL	BRL	BRL	0.0655	BRL	0.0746	BRL	56.4	BRL	BRL	BRL	BRL	0.0302	0.516	0.0179
Aroclor-1260	11096-82-5	BRL	BRL	BRL	0.0875	BRL	BRL	BRL	BRL	BRL	BRL	BRL	BRL	3.37	BRL	BRL	BRL	BRL	0.0168	0.0518	BRL
Total PCBs		0	0.0258	0	1.6805	0	0	0	0	0.0937	0	0.0746	0	121.07	0	0	0	0	0.047	0.5678	0.0179
DCD Avardan	CAC Noveless	SS-75	SS-75d	SS-76	SS-77	SS-78	SS-79	SS-80	SS-81	SS-82	SS-83	SS-84	SS-85	SS-86	SS-87	SS-88	SS-89	SS-90	SS-91	SS-92	SS-93
PCB Aroclor	CAS Number	10/29/2014	10/29/2014	10/29/2014	10/29/2014	10/29/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/2/2014
Aroclor-1248	12672-29-6	BRL	6.9	2.69	BRL	BRL	BRL	0.0798	BRL	184	2440	0.271	BRL	42	BRL	BRL	2.43	0.11	BRL	0.116	BRL
Aroclor-1254	11097-69-1	1.28	BRL	2.63	BRL	BRL	BRL	0.102	13.5	172	1840	BRL	1.11	33.1	3.29	2.66	2.56	0.207	0.907	0.101	0.0266
Aroclor-1260	11096-82-5	0.0883	BRL	0.203	BRL	BRL	BRL	BRL	0.818	11.7	124	BRL	0.0943	2.72	0.207	0.147	0.185	0.0318	0.0952	BRL	BRL
Total PCBs		1.3683	6.9	5.523	0	0	0	0.1818	14.318	367.7	4404	0.271	1.2043	77.82	3.497	2.807	5.175	0.3488	1.0022	0.217	0.0266
		SS-94	SS-95	SS-95d	SS-96	SS-98	SS-99	SS-100	SS-101	SS-106	Road 1	Road 2	Road 3	Road 4		•	•	•	•		•
PCB Aroclor	CAS Number	12/2/2014	12/2/2014	12/2/2014	12/2/2014	12/15/2014	12/15/2014	12/15/2014	12/15/2014	12/15/2014		10/7/2014	10/7/2014	10/7/2014							
Aroclor-1248	12672-29-6	0.0324	BRL	BRL	BRL	0.0254	49.1	0.0365	0.0611	BRL	0.164	BRL	0.0537	BRL							
Aroclor-1254	11097-69-1	0.0661	BRL	BRL	0.0309	0.0224	47.6	0.0321	0.0647	0.0763	0.217	0.0297	0.0995	0.038							

BRL

0.0763

	PCB Aroclor	CAS Number	CS-1 (1.5')	CS-1 (2.5')	SS-53 (1.5')	SS-53 (2.5')	SS-83 (1.5')	SS-83 (2.5')	SS-87 (1.5')	SS-87 (2.5 ['])
ء	PCB ATOCIOI	CAS Number	12/15/2014	12/15/2014	12/15/2014	12/15/2014	12/15/2014	12/15/2014	12/15/2014	12/15/2014
ept	Aroclor-1248	12672-29-6	0.941	0.172	7.79	3.21	38.9	177	2.68	0.106
Ϋ́	Aroclor-1254	11097-69-1	0.657	0.129	5.52	2.85	27.7	120	2.07	0.067
⋖	Aroclor-1260	11096-82-5	0.0546	BRL	BRL	BRL	BRL	BRL	0.13	BRL
	Total PCBs		1.6526	0.301	13.31	6.06	66.6	297	4.88	0.173

BRL

0

BRL

0.0309

BRL

0.0478

BRL

BRL

0.0686

BRL

0.1258

All concentrations in milligrams per kilogram (mg/kg or approximate parts per million - ppm)

BRL

0.038

BRL

0.1532

BRL - Below Reportable/Detectable Limit

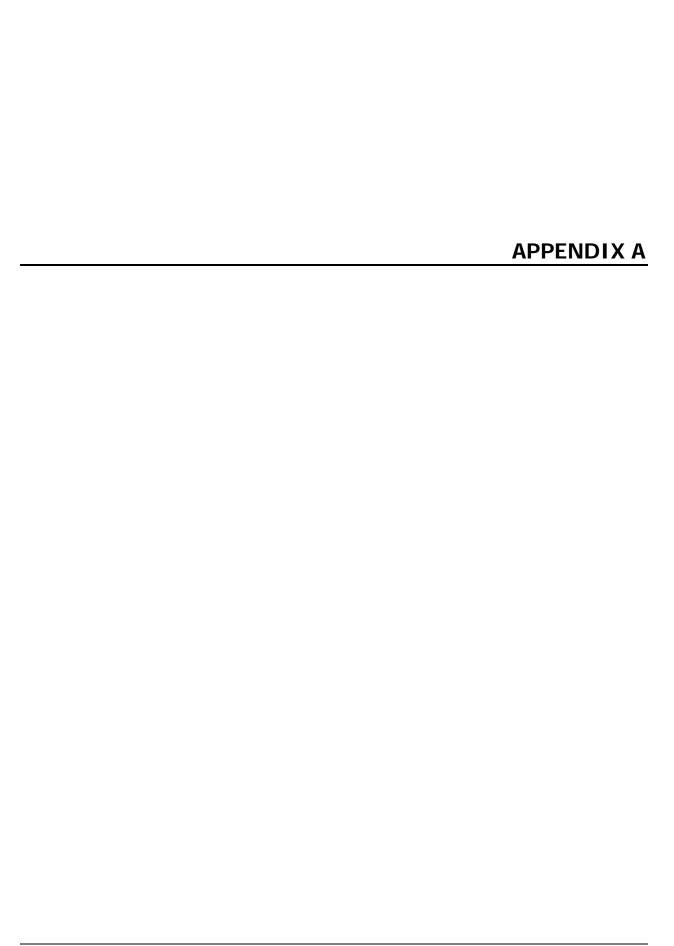
BRL

0.0297

* - Composite Sample

0.03

0.411


The following PCB Aroclors were not found above the detection limit in any of the above samples: Aroclor-1016, -1221, -1232, -1242, -1262, -1268

Total PCB Concentration less than 0.1 ppm (Below Unrestricted Use SCO per 6 NYCRR 375, Table 375-6.8(a))

Total PCB Concentration between 0.1 and 25 ppm (Above Unrestricted SCO but below the Industrial SCO, per 6 NYCRR 375, Table 375-6.8(a))

Total PCB Concentration between 25 and 50 ppm (Above Industrial Use SCO but less than the Hazardous Waste Characterization (Toxicity) limit)

Total PCB Concentration exceeds 50 ppm (Hazardous Waste Characterization (Toxicity) limit)

Report Date: 11-Apr-13 15:00

☑ Final Report☐ Re-Issued Report☐ Revised Report

Laboratory Report

AECC Environmental Consulting 6308 Fly Road

East Syracuse, NY 13057 Attn: Rico McKenna Project: WBP - East Syracuse, NY

Project #: 13-067

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SB67363-01	CS-1	Soil	08-Apr-13 15:40	09-Apr-13 21:00
SB67363-02	CS-2	Soil	08-Apr-13 15:45	09-Apr-13 21:00
SB67363-03	CS-3	Soil	08-Apr-13 15:50	09-Apr-13 21:00
SB67363-04	CS-4	Soil	08-Apr-13 15:55	09-Apr-13 21:00

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011/MA012 New York # 11393/11840 Pennsylvania # 68-04426/68-02924 Rhode Island # 98 USDA # S-51435

Authorized by:

Nicole Leja Laboratory Director

Dicole Leja

Spectrum Analytical holds certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 10 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, FL-E87936 and NJ-MA012).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

CASE NARRATIVE:

The sample temperature upon receipt by Spectrum Analytical courier was recorded as 13.5 degrees Celsius. The condition of these samples was further noted as received on ice. The samples were transported on ice to the laboratory facility and the temperature was recorded at 1.3 degrees Celsius upon receipt at the laboratory. Please refer to the Chain of Custody for details specific to sample receipt times.

An infrared thermometer with a tolerance of +/- 1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

SW846 8082A

Spikes:

1307976-MS1 Source: SB67363-01

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

The RPD and/or percent recovery for this QC spike sample cannot be accurately calculated due to the high concentration of analyte inherent in the sample.

Aroclor-1016 Aroclor-1016 [2C] Aroclor-1260 Aroclor-1260 [2C]

1307976-MSD1 Source: SB67363-01

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

The RPD and/or percent recovery for this QC spike sample cannot be accurately calculated due to the high concentration of analyte inherent in the sample.

Aroclor-1016 Aroclor-1016 [2C] Aroclor-1260 Aroclor-1260 [2C]

Duplicates:

1307976-DUP1 Source: SB67363-01

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interference's.

4,4-DB-Octafluorobiphenyl (Sr) 4,4-DB-Octafluorobiphenyl (Sr) [2C] Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr) [2C]

Samples:

SB67363-01 *CS-1*

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

SW846 8082A

Samples:

SB67363-01 *CS-1*

The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interference's.

4,4-DB-Octafluorobiphenyl (Sr)

4,4-DB-Octafluorobiphenyl (Sr) [2C]

Decachlorobiphenyl (Sr)

Decachlorobiphenyl (Sr) [2C]

SB67363-02

CS-2

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

SB67363-03

CS-3

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

SB67363-04

CS-4

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

Sample Acceptance Check Form

Client:	AECC Environmental Consulting
Project:	WBP - East Syracuse, NY / 13-067
Work Order:	SB67363
Sample(s) received on:	4/9/2013

Received by:

Vickie Knowles

The following outlines the condition of samples for the attached Chain of Custody upon receipt.

		<u>y es</u>	<u>No</u>	N/A
1.	Were custody seals present?		$\overline{\mathbf{V}}$	
2.	Were custody seals intact?			✓
3.	Were samples received at a temperature of $\leq 6^{\circ}$ C?		\checkmark	
4.	Were samples cooled on ice upon transfer to laboratory representative?	\checkmark		
5.	Were samples refrigerated upon transfer to laboratory representative?		\checkmark	
6.	Were sample containers received intact?	\checkmark		
7.	Were samples properly labeled (labels affixed to sample containers and include sample ID, site location, and/or project number and the collection date)?	\overline{V}		
8.	Were samples accompanied by a Chain of Custody document?	\checkmark		
9.	Does Chain of Custody document include proper, full, and complete documentation, which shall include sample ID, site location, and/or project number, date and time of collection, collector's name, preservation type, sample matrix and any special remarks concerning the sample?	\checkmark		
0.	Did sample container labels agree with Chain of Custody document?	\checkmark		
1.	Were samples received within method-specific holding times?	$\overline{\mathbf{V}}$		

CS-1 SB67363	dentification			Client P	-		<u>Matrix</u> Soil		-Apr-13 15			Apr-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Semivolat	tile Organic Compounds by C	GC											
	ated Biphenyls		GS1										
<u>Prepared</u> 12674-11-2	I by method SW846 3545A Aroclor-1016	< 533	U, D	ua/ka da	1070	533	EO	SW846 8082A	10 Apr 12	11 Apr 10	IMR	1307976	Х
11104-28-2	Aroclor-1221	< 960	U, D	μg/kg dry μg/kg dry	1070 1070	960	50 50	30040 0002A	10-Apr-13 "	11-Apr-13	IIVIIX	130/9/0	X
11141-16-5	Aroclor-1232	< 684	U, D	μg/kg dry μg/kg dry	1070	684	50				"		X
53469-21-9	Aroclor-1242	< 628	U, D	μg/kg dry μg/kg dry	1070	628	50	п					X
12672-29-6	Aroclor-1248 [2C]	34,400	D	μg/kg dry	1070	432	50	п					Х
11097-69-1	Aroclor-1254	< 888	U, D	μg/kg dry	1070	888	50						Х
11096-82-5	Aroclor-1260	< 661	U, D	μg/kg dry	1070	661	50	п					Х
37324-23-5	Aroclor-1262	< 993	U, D	μg/kg dry	1070	993	50	п					Х
11100-14-4	Aroclor-1268	< 335	U, D	μg/kg dry	1070	335	50				"		Х
			- ,	pg/ng dry	1070								
Surrogate red 10386-84-2	4,4-DB-Octafluorobiphenyl	0	S01, U		30-15	0 %		н					
10386-84-2	(Sr) 4,4-DB-Octafluorobiphenyl	0	S01, U		30-15	0 %		и			"		
	(Sr) [2C]										_		
2051-24-3 2051-24-3	Decachlorobiphenyl (Sr) Decachlorobiphenyl (Sr)	0 0	S01, U S01, U		30-15 30-15						"		
	[2C]												
General C	Chemistry Parameters												
	% Solids	87.0		%			1	SM2540 G Mod.	10-Apr-13	10-Apr-13	DT	1307977	
Sample Id	dentification			Client P			Matrica	G-11	antian Data	/T:	D		
CS-2				13-0	•		<u>Matrix</u> Soil		ection Date -Apr-13 15			<u>eeived</u> Apr-13	
SB67363	3-02			13-0			3011		-Api-13 13	.43	09-1	Арт-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Semivolat	tile Organic Compounds by C	GC											
	ated Biphenyls		GS1										
	by method SW846 3545A												
12674-11-2	Aroclor-1016	< 105	U, D	μg/kg dry	211	105	10	SW846 8082A	10-Apr-13	11-Apr-13	IMR	1307976	Χ
11104-28-2	Aroclor-1221	< 190	U, D	μg/kg dry	211	190	10	"			"		Χ
11141-16-5	Aroclor-1232	< 135	U, D	μg/kg dry	211	135	10	"			"		Χ
	Aroclor-1242	< 124	U, D	μg/kg dry	211	124	10	"					Х
53469-21-9			_		011	05.4	40				"		X
12672-29-6	Aroclor-1248 [2C]	6,320	D	μg/kg dry	211	85.4	10	_	_	_		_	
12672-29-6 11097-69-1	Aroclor-1248 [2C] Aroclor-1254	< 176	U, D	μg/kg dry	211	176	10				"		X
12672-29-6 11097-69-1 11096-82-5	Aroclor-1248 [2C] Aroclor-1254 Aroclor-1260	< 176 < 131	U, D U, D	μg/kg dry μg/kg dry	211 211	176 131	10 10				"		Χ
12672-29-6 11097-69-1 11096-82-5 37324-23-5	Aroclor-1248 [2C] Aroclor-1254 Aroclor-1260 Aroclor-1262	< 176 < 131 < 196	U, D U, D U, D	μg/kg dry μg/kg dry μg/kg dry	211 211 211	176 131 196	10 10 10				"		X X
12672-29-6 11097-69-1 11096-82-5 37324-23-5	Aroclor-1248 [2C] Aroclor-1254 Aroclor-1260	< 176 < 131	U, D U, D	μg/kg dry μg/kg dry	211 211	176 131	10 10						Χ
12672-29-6 11097-69-1 11096-82-5 37324-23-5	Aroclor-1248 [2C] Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268	< 176 < 131 < 196	U, D U, D U, D	μg/kg dry μg/kg dry μg/kg dry	211 211 211	176 131 196	10 10 10				"		X X
12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4	Aroclor-1248 [2C] Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268	< 176 < 131 < 196	U, D U, D U, D	μg/kg dry μg/kg dry μg/kg dry	211 211 211	176 131 196 66.2	10 10 10				"		X X
12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate rec	Aroclor-1248 [2C] Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268 coveries: 4,4-DB-Octafluorobiphenyl	< 176 < 131 < 196 < 66.2	U, D U, D U, D	μg/kg dry μg/kg dry μg/kg dry	211 211 211 211	176 131 196 66.2	10 10 10				"		X X
12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4 Surrogate rec 10386-84-2	Aroclor-1248 [2C] Aroclor-1254 Aroclor-1260 Aroclor-1262 Aroclor-1268 coveries: 4,4-DB-Octafluorobiphenyl (Sr) 4,4-DB-Octafluorobiphenyl	< 176 < 131 < 196 < 66.2	U, D U, D U, D	μg/kg dry μg/kg dry μg/kg dry	211 211 211 211 211	176 131 196 66.2	10 10 10				"		X X

	dentification			Client P	roject#		<u>Matrix</u>	Coll	ection Date	/Time	Rec	ceived	
CS-2 SB67363	-02			13-0	067		Soil	08	3-Apr-13 15	:45	09-	Apr-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
General C	Chemistry Parameters												
	% Solids	86.9		%			1	SM2540 G Mod.	10-Apr-13	10-Apr-13	DT	1307977	
Sample I	dentification			Client P	roject#		Matrix	Coll	ection Date	/Time	Red	ceived	
CS-3				13-			Soil		3-Apr-13 15			Apr-13	
SB67363	-03							00	5-7 1 p1-13-13	.50	07-1	tp1-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC .											
	ated Biphenyls by method SW846 3545A		GS1										
12674-11-2	Aroclor-1016	< 122	U, D	μg/kg dry	245	122	10	SW846 8082A	10-Apr-13	11-Apr-13	IMR	1307976	Χ
11104-28-2	Aroclor-1221	< 221	U, D	μg/kg dry	245	221	10	и			"		Χ
11141-16-5	Aroclor-1232	< 157	U, D	μg/kg dry	245	157	10				"		Х
53469-21-9	Aroclor-1242	< 144	U, D	μg/kg dry	245	144	10				"		Х
12672-29-6	Aroclor-1248	7,800	D	μg/kg dry	245	120	10	п			"		Х
11097-69-1	Aroclor-1254	< 204	U, D	μg/kg dry	245	204	10	п			"		Χ
11096-82-5	Aroclor-1260	< 152	U, D	μg/kg dry	245	152	10	и			"		Χ
37324-23-5	Aroclor-1262	< 228	U, D	μg/kg dry	245	228	10	п			"		Χ
11100-14-4	Aroclor-1268	< 76.9	U, D	μg/kg dry	245	76.9	10	II .			"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	100			30-15	0 %					"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	100			30-15	0 %					"		
2051-24-3	Decachlorobiphenyl (Sr)	100			30-15	0 %		II .			"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	100			30-15	0 %					"		
General C	Chemistry Parameters												
	% Solids	80.0		%			1	SM2540 G Mod.	10-Apr-13	10-Apr-13	DT	1307977	

Sample Id CS-4 SB67363	dentification			Client P			<u>Matrix</u> Soil	·	ection Date 3-Apr-13 15			ceived Apr-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC .											
	ted Biphenyls		GS1										
Prepared	by method SW846 3545A												
12674-11-2	Aroclor-1016	< 115	U, D	μg/kg dry	231	115	10	SW846 8082A	10-Apr-13	11-Apr-13	IMR	1307976	Χ
11104-28-2	Aroclor-1221	< 208	U, D	μg/kg dry	231	208	10			"	"		Х
11141-16-5	Aroclor-1232	< 148	U, D	μg/kg dry	231	148	10	н			"		Χ
53469-21-9	Aroclor-1242	< 136	U, D	μg/kg dry	231	136	10				"		Χ
12672-29-6	Aroclor-1248	9,410	D	μg/kg dry	231	113	10			и	"		Χ
11097-69-1	Aroclor-1254	< 192	U, D	μg/kg dry	231	192	10				"		Χ
11096-82-5	Aroclor-1260	< 143	U, D	μg/kg dry	231	143	10				"		Х
37324-23-5	Aroclor-1262	< 215	U, D	μg/kg dry	231	215	10				"		Х
11100-14-4	Aroclor-1268	< 72.4	U, D	μg/kg dry	231	72.4	10	п			"		Х
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	100			30-15	0 %		н			"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	100			30-15	0 %		н		"	"		
2051-24-3	Decachlorobiphenyl (Sr)	150			30-15	0 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	100			30-15	50 %					"		
General C	Chemistry Parameters												

SM2540 G Mod.

10-Apr-13 10-Apr-13

DT

1307977

% Solids

81.5

Semivolatile Organic Compounds by GC - Quality Control

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1307976 - SW846 3545A										
Blank (1307976-BLK1)					Pre	pared & Analy	/zed: 10-Apr-13			
Aroclor-1016	< 9.99	U	μg/kg wet	9.99						
Aroclor-1016 [2C]	< 9.98	U	μg/kg wet	9.98						
Aroclor-1221	< 18.0	U	μg/kg wet	18.0						
Aroclor-1221 [2C]	< 13.1	U	μg/kg wet	13.1						
Aroclor-1232	< 12.8	U	μg/kg wet	12.8						
Aroclor-1232 [2C]	< 15.7	U	μg/kg wet	15.7						
Aroclor-1242	< 11.8	U	μg/kg wet	11.8						
Aroclor-1242 [2C]	< 7.86	U	μg/kg wet	7.86						
Aroclor-1248	< 9.81	U	μg/kg wet	9.81						
Aroclor-1248 [2C]	< 8.11	U	μg/kg wet	8.11						
Aroclor-1254	< 16.7	U	μg/kg wet	16.7						
Aroclor-1254 [2C]	< 8.49	U	μg/kg wet	8.49						
Aroclor-1260	< 12.4	U	μg/kg wet	12.4						
Aroclor-1260 [2C]	< 8.93	U	μg/kg wet	8.93						
Aroclor-1262	< 18.6	U	μg/kg wet	18.6						
Aroclor-1262 [2C]	< 19.2	U	μg/kg wet	19.2						
Aroclor-1268	< 6.28	U	μg/kg wet	6.28						
Aroclor-1268 [2C]	< 9.90	U	μg/kg wet	9.90						
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	20.0		μg/kg wet		20.0		100	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	23.0		μg/kg wet		20.0		115	30-150		
Surrogate: Decachlorobiphenyl (Sr)	24.0		μg/kg wet		20.0		120	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	25.0		μg/kg wet		20.0		125	30-150		
LCS (1307976-BS1)					Pre	pared & Analy	/zed: 10-Apr-13			
Aroclor-1016	270		μg/kg wet	9.99	250		108	40-140		
Aroclor-1016 [2C]	234		μg/kg wet	9.98	250		94	40-140		
Aroclor-1260	247		μg/kg wet	12.4	250		99	40-140		
Aroclor-1260 [2C]	246		μg/kg wet	8.93	250		98	40-140		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	19.0		μg/kg wet		20.0		95	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	20.0		μg/kg wet		20.0		100	30-150		
Surrogate: Decachlorobiphenyl (Sr)	21.0		μg/kg wet		20.0		105	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	22.0		μg/kg wet		20.0		110	30-150		
LCS Dup (1307976-BSD1)					Pre	pared & Analy	/zed: 10-Apr-13			
Aroclor-1016	273		μg/kg wet	9.99	250		109	40-140	1	30
Aroclor-1016 [2C]	248		μg/kg wet	9.98	250		99	40-140	6	30
Aroclor-1260	248		μg/kg wet	12.4	250		99	40-140	0.4	30
Aroclor-1260 [2C]	225		μg/kg wet	8.93	250		90	40-140	9	30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	19.0		μg/kg wet		20.0		95	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	19.0		μg/kg wet		20.0		95	30-150		
Surrogate: Decachlorobiphenyl (Sr)	22.0		μg/kg wet		20.0		110	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	21.0		μg/kg wet		20.0		105	30-150		
Duplicate (1307976-DUP1)		GS1	Source: SB	67363-01		pared: 10-Apr	-13 Analyzed:			
Aroclor-1016	< 561	U, D	μg/kg dry	561		BRL	,			30
Aroclor-1016 [2C]	< 561	U, D	μg/kg dry	561		BRL				30
Aroclor-1221	< 1010	U, D	μg/kg dry	1010		BRL				30
Aroclor-1221 [2C]	< 734	U, D	μg/kg dry	734		BRL				30
Aroclor-1232	< 721	U, D	μg/kg dry	721		BRL				30
Aroclor-1232 [2C]	< 881	U, D	μg/kg dry	881		BRL				30
Aroclor-1242	< 662	U, D	μg/kg dry	662		BRL				30
Aroclor-1242 [2C]	< 441	U, D	μg/kg dry	441		BRL				30
Aroclor-1248	45400	D	μg/kg dry	551		34000			29	30

Semivolatile Organic Compounds by GC - Quality Control

					Spike	Source		%REC		RPD
nalyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limi
atch 1307976 - SW846 3545A										
<u>Duplicate (1307976-DUP1)</u>		GS1	Source: SE	367363-01	Pre	pared: 10-Apr	-13 Analyzed:	11-Apr-13		
Aroclor-1248 [2C]	45600	D	μg/kg dry	455		34400			28	30
Aroclor-1254	< 937	U, D	μg/kg dry	937		BRL				30
Aroclor-1254 [2C]	< 477	U, D	μg/kg dry	477		BRL				30
Aroclor-1260	< 697	U, D	μg/kg dry	697		BRL				30
Aroclor-1260 [2C]	< 502	U, D	μg/kg dry	502		480				30
Aroclor-1262	< 1050	U, D	μg/kg dry	1050		BRL				30
Aroclor-1262 [2C]	< 1080	U, D	μg/kg dry	1080		BRL				30
Aroclor-1268	< 353	U, D	μg/kg dry	353		BRL				30
Aroclor-1268 [2C]	< 556	U, D	μg/kg dry	556		BRL				30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	0.00	S01, U	μg/kg dry		22.5			30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	0.00	S01, U	μg/kg dry		22.5			30-150		
Surrogate: Decachlorobiphenyl (Sr)	0.00	S01, U	μg/kg dry		22.5			30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	0.00	S01, U	μg/kg dry		22.5			30-150		
Matrix Spike (1307976-MS1)		GS1	Source: SE	<u> 867363-01</u>	Pre	pared: 10-Apr	-13 Analyzed:	11-Apr-13		
Aroclor-1016	12100	QM2, D	μg/kg dry	108	270	BRL	4490	40-140		
Aroclor-1016 [2C]	13600	QM2, D	μg/kg dry	108	270	BRL	5020	40-140		
Aroclor-1260	2530	QM2, D	μg/kg dry	134	270	BRL	936	40-140		
Aroclor-1260 [2C]	2620	QM2, D	μg/kg dry	96.5	270	480	790	40-140		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	32.4		μg/kg dry		21.6		150	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	32.4		μg/kg dry		21.6		150	30-150		
Surrogate: Decachlorobiphenyl (Sr)	32.4		μg/kg dry		21.6		150	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	32.4		μg/kg dry		21.6		150	30-150		
Matrix Spike Dup (1307976-MSD1)		GS1	Source: SE	867363-01	<u>Pre</u>	pared: 10-Apr	-13 Analyzed:	11-Apr-13		
Aroclor-1016	10400	QM2, D	μg/kg dry	111	278	BRL	3750	40-140	18	30
Aroclor-1016 [2C]	11200	QM2, D	μg/kg dry	111	278	BRL	4050	40-140	21	30
Aroclor-1260	2490	QM2, D	μg/kg dry	138	278	BRL	896	40-140	4	30
Aroclor-1260 [2C]	2580	QM2, D	μg/kg dry	99.1	278	480	755	40-140	5	30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	33.3		μg/kg dry		22.2		150	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	33.3		μg/kg dry		22.2		150	30-150		
Surrogate: Decachlorobiphenyl (Sr)	33.3		μg/kg dry		22.2		150	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	33.3		μg/kg dry		22.2		150	30-150		

Notes and Definitions

D Data reported from a dilution

GS1 Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

J Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration

(CLP J-Flag).

QM2 The RPD and/or percent recovery for this QC spike sample cannot be accurately calculated due to the high concentration

of analyte inherent in the sample.

S01 The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration

and/or matrix interference's.

U Analyte included in the analysis, but not detected at or above the MDL.

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

Matrix Spike: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

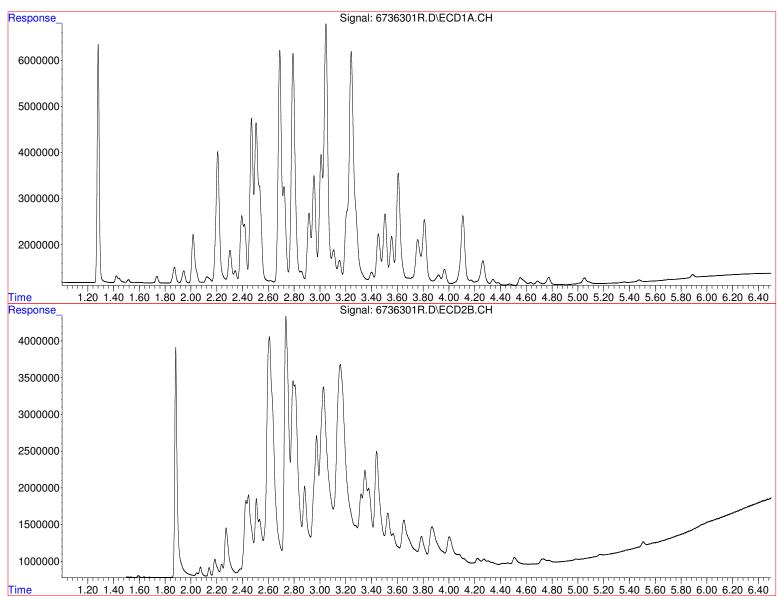
<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification:</u> The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

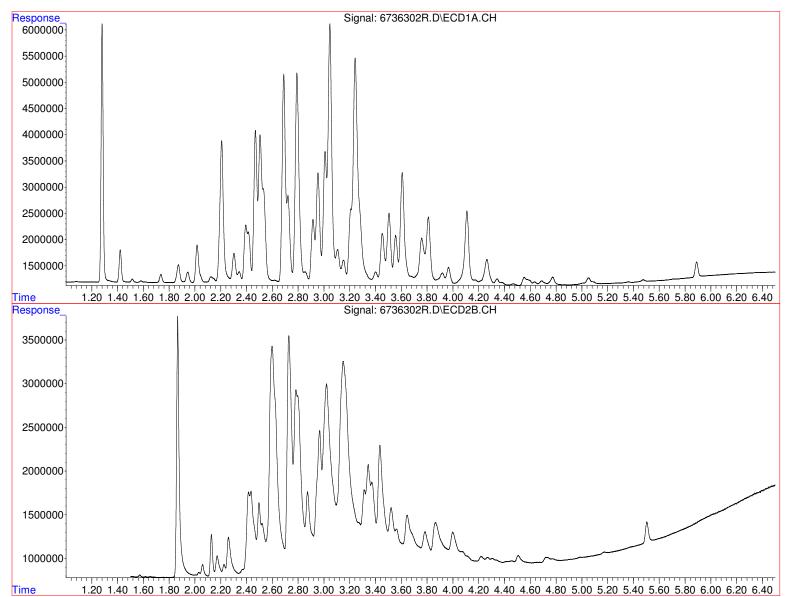

Validated by: June O'Connor File :G:\Apr2013\HPS12\DATA\PCB120410\6736301R.D

Operator : IMR

Acquired : 11 Apr 2013 9:01 am using AcqMethod 60120306.M

Instrument: HP G1530A Sample Name: SB67363-01 @ CS-1

Misc Info : 1:50 DIL ????????

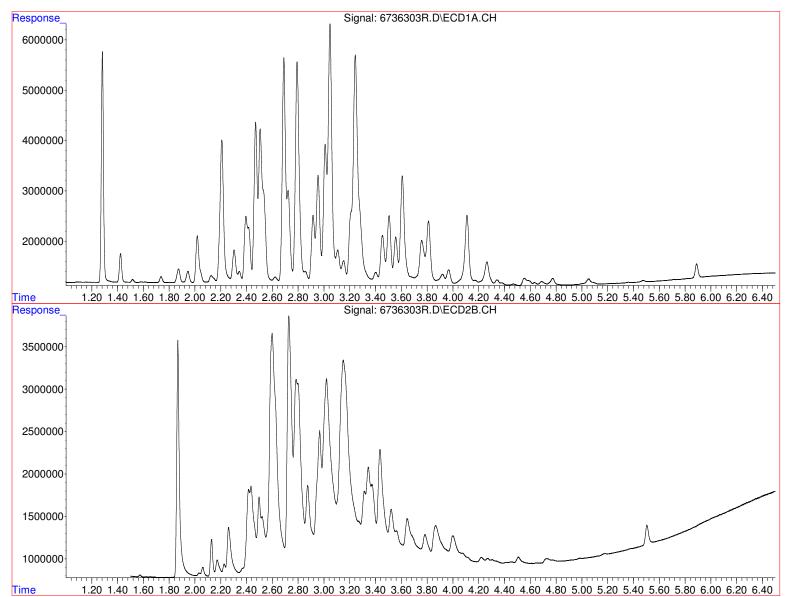

File :G:\Apr2013\HPS12\DATA\PCB120410\6736302R.D

Operator : IMR

Acquired : 11 Apr 2013 9:11 am using AcqMethod 60120306.M

Instrument: HP G1530A Sample Name: SB67363-02 @ CS-2

Misc Info : 1:10 DIL ????????

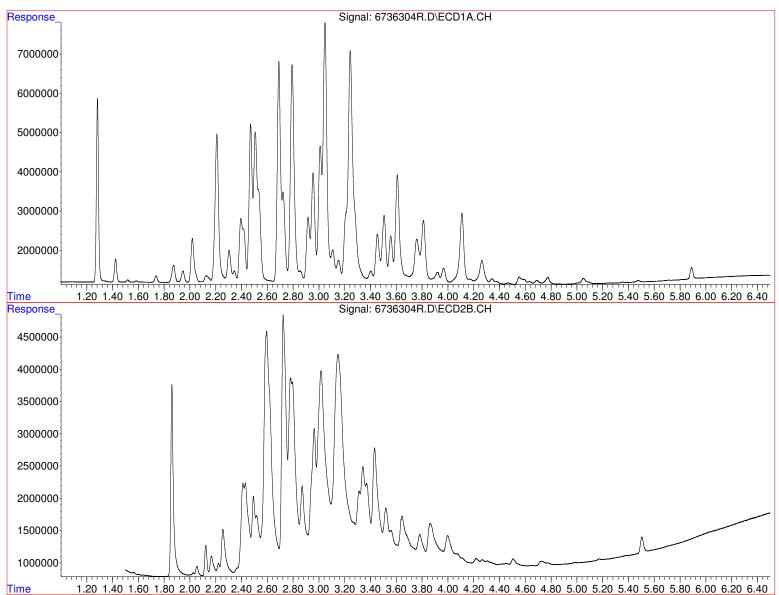

File :G:\Apr2013\HPS12\DATA\PCB120410\6736303R.D

Operator : IMR

Acquired : 11 Apr 2013 9:21 am using AcqMethod 60120306.M

Instrument: HP G1530A Sample Name: SB67363-03 @ CS-3

Misc Info : 1:10 DIL ????????


File :G:\Apr2013\HPS12\DATA\PCB120410\6736304R.D

Operator : IMR

Acquired : 11 Apr 2013 9:31 am using AcqMethod 60120306.M

Instrument: HP G1530A Sample Name: SB67363-04 @ CS-4

Misc Info : 1:10 DIL ????????

M.
W
0
4
W
0,
W
7
1
1

6308 E Sta Telephone #	Report To:	SP
6308 FLYRD E STRACUSE, NY 13057 Telephone #: 315 - 432 - 9400 Project Mar. R. J. M. France		SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY
P.O. No.: 13-067 RQN:	Invoice To: SAME	CHAIN OF CUSTODY RECOR
7) 70	Project No.: 3-067	Special Handling: Standard TAT - 7 to 10 business days Rush TAT - Date Needed: 3-DAY All TATs subject to laboratory approval. Min. 24-hour notification needed for rushes. Samples disposed of after 60 days unless otherwise instructed.

Condition upon receipt: Annient Refrigerated DIVOA Frozen Soil Jar Frozen	Condition upon receipt:		:							
emekenna a aeccgroup, com		70.0	7.76	V	21/2/1		8		Emry)	The state of the s
	EDD Format	> 2.1	u.a.	3	4/01		1	1	The state of the s	MON
		Temp°C	Time:	fe:	Date:	1	Received hv:	Becc.	Relinquished by:	Relina
			-	0 1						
		,								- al
										ipital di Sententia Pital Dis
		×		1	50	r	3:55	-	CS-H	104
		7.		-	8.	^	3:50	=	CS-3	103
		×		-	50	0	3145	2	CS-2	202
		×		_	So	0	3:40	4/8/13	(5-1	3-0l
Other State-specific reporting standards:		808.	# of C		Matrix	Туре	Time:	Date:	Sample Id:	Lab Id:
□ NY ASP A* □ NY ASP B* □ NJ Reduced* □ NJ Full*		2 PC	lear G	OA Vi				nposite	G=Grab C=Composite	
CT DPH RCP Report: Yes □ No □ QA/QC Reporting Level Standard □ No OC □ DOA**		35	lass		1		SL=Sludge A=Air X3=		O=O ₁ SW= Surface Water SO=S ₀ X1=	X1= XI=
MA DEP MCP CAM Report: Yes □ No□	Analyses:		Containers:	Cor			WW=Wastewater	vater WW=	0	DW=Drinking Water
QA/QC Reporting Notes: * additional charges may apply	List preservative code below:	Li	7=CH ₃ OH		6=Ascorbic Acid	6=Asco	5=NaOH) ₄ 11=	O ₄ 4=HNO ₃ er 10= H ₃ PO ₄	O ₃ 2=HCl 3=H ₂ SO ₄ 9= Deionized Water	1=Na ₂ S2O ₃ 8= NaHSO ₄
	Sampler(S): NCH / C	0		KQN:	96	1000	P.O. No.:	A	RICH MCKENNA	Project Mgr.
THUNA	amplace Pickery A	2	7	מ	1		1 C E	0	215-172-1700	тетерпопе #.

N.
W
67
2
02
7
7

CHAIN OF CUSTODY RECORI

Page __l_of __l_

Special Handling: ☐ Standard TAT - 7 to 10 business days ☐ Rush TAT - Date Needed: З-¬¬Aγ All TATs subject to laboratory approval. • Min. 24-hour notification needed for rushes. • Samples disposed of after 60 days unless otherwise instructed.	The second secon			¥				
	THE RESERVE THE PARTY OF THE PA	otherwise instructed.	 Samples disposed of after 60 days unless 	 Min. 24-hour notification needed for rushes. 	 All TATs subject to laboratory approval. 	Rush TAT - Date Needed: 5-DAY	☐ Standard TAT - 7 to 10 business days	Special Handling:

	MARK	W. O. M. Henry	Relinquished by:						1 -04 CS-4	-03 05-3	1 -02 CS-2	1723-01 CS-1	Lab Id: Sample Id:	G=Grab C=	73.2		ä	8= NaHSO ₄ 9= Deionized Water	$1=Na_2S2O_3$ $2=HC1$ $3=H_2SO_4$	Rica	hone #: 3(5 - 432	A CAN AND	しょうな ロックラ	Report 10:
		The state of the s	Récei						***	. =	0	4/8/13	Date:	C=Composite		SO=Soil SL=Sludge	2	Water 10= H ₃ PO ₄	H_2SO_4 4= HNO_3	UNIA	9400	13057		
	3	1 Mills	wed by:		-				3:55	3:50	3:45	3:40	Time:			ge A=Aır	CO)4 11=	5=NaOH	P.O. No.:				Invoice To:
			1	,					0	^	0	0	Туре						6=Asco					
11.11	201	4/8/	Date:						50	8	50	50	Matrix					12=	6=Ascorbic Acid	13-067				SAME
	CIL	13)	ie:						-	-	-		# of V # of A			S	Co			RQN:				"
	236	4:46	Tiı										# of C		lass		Containers:		7=CH ₃ OH	Ž				
	26	6	Time:	E. Ki	No.	-							# of P	lastic			3:							
^	in	13.5	Temp°C						×.	γ.	×.	×.	४०४२	PC	Bs					70			1	
Condition up Ambient	¥ □ □-maii		ŠÍ FD														Analyses:		List preservative code below:	Sampler(s):	Location: E		Site Name	Project No.:
on receipt:	0 . 70	out to	D Format										×				ses:		e code below:	CCH N	TAST JYRACIS	0	(PV	13-067
Condition upon receipt: Anbient	E-mail (0 me kenna a mech group, com)					è	5			-			☐ TIER II* ☐ TIER IV* ☐ Other State-specific reporting standards:	□ NY ASP A* □ NY ASP B*	QA/QC Reporting Level Standard □ No OC □ DOA:	CT DPH RCP Report: Yes ☐ No ☐	MA DEP MCP CAM Report: Yes □ No□	* additional charges may apply	OA/QC Reporting Notes:	Kich NICKENNA	State: NT	~	Samuel Samuel	1

Report Date: 14-Jun-13 13:58

☑ Final Report☐ Re-Issued Report☐ Revised Report

Laboratory Report

AECC Environmental Consulting 6308 Fly Road

East Syracuse, NY 13057

Attn: Rico McKenna

Project: WBP - Collamer, NY

Project #: 13-067

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SB70857-01	SP2-01	Soil	31-May-13 13:40	31-May-13 16:15
SB70857-02	SP2-02	Soil	31-May-13 13:45	31-May-13 16:15
SB70857-03	SP2-03	Soil	31-May-13 13:50	31-May-13 16:15
SB70857-04	SP2-04	Soil	31-May-13 13:55	31-May-13 16:15
SB70857-05	SP2-05	Soil	31-May-13 14:00	31-May-13 16:15
SB70857-06	SP2-06	Soil	31-May-13 14:05	31-May-13 16:15
SB70857-07	SP2-07	Soil	31-May-13 14:10	31-May-13 16:15
SB70857-08	SP2-08	Soil	31-May-13 14:15	31-May-13 16:15
SB70857-09	SP2-09	Soil	31-May-13 14:20	31-May-13 16:15
SB70857-10	SP2-10	Soil	31-May-13 14:25	31-May-13 16:15
SB70857-11	SP3-01	Soil	31-May-13 15:00	31-May-13 16:15
SB70857-12	SP3-02	Soil	31-May-13 15:05	31-May-13 16:15
SB70857-13	SP3-03	Soil	31-May-13 15:10	31-May-13 16:15
SB70857-14	SP3-04	Soil	31-May-13 15:15	31-May-13 16:15
SB70857-15	SP3-05	Soil	31-May-13 15:20	31-May-13 16:15
SB70857-16	SP3-06	Soil	31-May-13 15:25	31-May-13 16:15

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011/MA012 New York # 11393/11840 Pennsylvania # 68-04426/68-02924 Rhode Island # 98 USDA # S-51435

Authorized by:

Nicole Leja Laboratory Director

Nicole Leja

Spectrum Analytical holds certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 24 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, FL-E87936 and NJ-MA012).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

CASE NARRATIVE:

The sample temperature upon receipt by Spectrum Analytical courier was recorded as 12.4 degrees Celsius. The condition of these samples was further noted as received on ice. The samples were transported on ice to the laboratory facility and the temperature was recorded at 1.1 degrees Celsius upon receipt at the laboratory. Samples were received within 24 hours of collection. Please refer to the Chain of Custody for details specific to sample receipt times.

An infrared thermometer with a tolerance of +/- 1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

SW846 8082A

Laboratory Control Samples:

1313358 BSD

Aroclor-1016 RPD 37% (30%) is outside individual acceptance criteria.

Samples:

SB70857-01 SP2-01

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

SB70857-05 SP2-05

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

SB70857-06 SP2-06

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

SB70857-07 SP2-07

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

SB70857-08 SP2-08

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

Sample Acceptance Check Form

Client:	AECC Environmental Consulting
Project:	WBP - Collamer, NY / 13-067
Work Order:	SB70857
Sample(s) received on:	5/31/2013
Received by:	Vickie Knowles

The following outlines the condition of samples for the attached Chain of Custody upon receipt.

		<u>y es</u>	No	N/A
1.	Were custody seals present?		\checkmark	
2.	Were custody seals intact?			✓
3.	Were samples received at a temperature of $\leq 6^{\circ}$ C?		\checkmark	
4.	Were samples cooled on ice upon transfer to laboratory representative?	\checkmark		
5.	Were samples refrigerated upon transfer to laboratory representative?		\checkmark	
6.	Were sample containers received intact?	\checkmark		
7.	Were samples properly labeled (labels affixed to sample containers and include sample ID, site location, and/or project number and the collection date)?	✓		
8.	Were samples accompanied by a Chain of Custody document?	\checkmark		
9.	Does Chain of Custody document include proper, full, and complete documentation, which shall include sample ID, site location, and/or project number, date and time of collection, collector's name, preservation type, sample matrix and any special remarks concerning the sample?	V		
0.	Did sample container labels agree with Chain of Custody document?	✓		
1.	Were samples received within method-specific holding times?	\checkmark		

SP2-01 SB70857	-01			Client P	-		<u>Matrix</u> Soil		ection Date -May-13 13			ceived May-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC .											
	ated Biphenyls by method SW846 3545A		GS1										
12674-11-2	Aroclor-1016	< 112	U, D	μg/kg dry	225	112	10	SW846 8082A	07-Jun-13	13-Jun-13	IMR	1313358	Χ
11104-28-2	Aroclor-1221	< 202	U, D	μg/kg dry	225	202	10				"		Χ
11141-16-5	Aroclor-1232	< 144	U, D	μg/kg dry	225	144	10	п		п	"		Χ
53469-21-9	Aroclor-1242	< 132	U, D	μg/kg dry	225	132	10	п		и	"		Χ
12672-29-6	Aroclor-1248	8,780	D	μg/kg dry	225	110	10	п		и	"		Χ
11097-69-1	Aroclor-1254	< 187	U, D	μg/kg dry	225	187	10	п		и	"		Χ
11096-82-5	Aroclor-1260	292	D	μg/kg dry	225	139	10				"		Χ
37324-23-5	Aroclor-1262	< 209	U, D	μg/kg dry	225	209	10				"		Χ
11100-14-4	Aroclor-1268	< 70.5	U, D	μg/kg dry	225	70.5	10	II .			"		Х
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	150			30-15	0 %					"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	150			30-15	0 %		и			"		

30-150 %

30-150 %

SM2540 G Mod.

10-Jun-13 10-Jun-13

DT

1313546

2051-24-3

2051-24-3

Decachlorobiphenyl (Sr)

Decachlorobiphenyl (Sr)

[2C]
General Chemistry Parameters
% Solids

150

100

87.6

Sample Io SP2-02 SB70857	dentification -02			Client P	<u>roject #</u> 067		<u>Matrix</u> Soil	·	ection Date -May-13 13			ceived May-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
	ated Biphenyls by method SW846 3545A												
12674-11-2	Aroclor-1016	< 11.1	U	μg/kg dry	22.2	11.1	1	SW846 8082A	07-Jun-13	12-Jun-13	BLM	1313358	Χ
11104-28-2	Aroclor-1221	< 20.0	U	μg/kg dry	22.2	20.0	1				"		Χ
11141-16-5	Aroclor-1232	< 14.3	U	μg/kg dry	22.2	14.3	1	II .		п	"		Χ
53469-21-9	Aroclor-1242	< 13.1	U	μg/kg dry	22.2	13.1	1	н			"		Χ
12672-29-6	Aroclor-1248 [2C]	110		μg/kg dry	22.2	9.00	1	н			"		Χ
11097-69-1	Aroclor-1254	< 18.5	U	μg/kg dry	22.2	18.5	1				"		Х
11096-82-5	Aroclor-1260	< 13.8	U	μg/kg dry	22.2	13.8	1	н			"		Χ
37324-23-5	Aroclor-1262	< 20.7	U	μg/kg dry	22.2	20.7	1	н			"		Χ
11100-14-4	Aroclor-1268	< 6.97	U	μg/kg dry	22.2	6.97	1			"	"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	125			30-15	60 %		и			"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	115			30-15	0 %		н		u	"		
2051-24-3	Decachlorobiphenyl (Sr)	115			30-15	0 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	125			30-15	50 %		п		н	"		
General C	Chemistry Parameters												

10-Jun-13 10-Jun-13

DT

1313546

% Solids

Sample Io SP2-03 SB70857	dentification -03			Client P			<u>Matrix</u> Soil	· · · · · · · · · · · · · · · · · · ·	ection Date -May-13 13			ceived May-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
Polychlorina	ated Biphenyls												
Prepared	by method SW846 3545A												
12674-11-2	Aroclor-1016	< 11.0	U	μg/kg dry	22.0	11.0	1	SW846 8082A	07-Jun-13	12-Jun-13	BLM	1313358	Χ
11104-28-2	Aroclor-1221	< 19.8	U	μg/kg dry	22.0	19.8	1			u u	"		Χ
11141-16-5	Aroclor-1232	< 14.1	U	μg/kg dry	22.0	14.1	1	п		п			Χ
53469-21-9	Aroclor-1242	< 12.9	U	μg/kg dry	22.0	12.9	1	ı		и			Χ
12672-29-6	Aroclor-1248 [2C]	64.8		μg/kg dry	22.0	8.91	1	п		и	"		Χ
11097-69-1	Aroclor-1254	< 18.3	U	μg/kg dry	22.0	18.3	1	п		и	"		Χ
11096-82-5	Aroclor-1260 [2C]	15.4	J	μg/kg dry	22.0	9.81	1			u	"		Χ
37324-23-5	Aroclor-1262	< 20.5	U	μg/kg dry	22.0	20.5	1			u	"		Χ
11100-14-4	Aroclor-1268	< 6.90	U	μg/kg dry	22.0	6.90	1	ı		п	"		Х
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	120			30-15	50 %		н		ı	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	115			30-15	50 %		н		ı	"		
2051-24-3	Decachlorobiphenyl (Sr)	115			30-15	50 %		ı		и			
2051-24-3	Decachlorobiphenyl (Sr) [2C]	120			30-15	50 %		II		ı	"		
General C	Chemistry Parameters												

10-Jun-13 10-Jun-13

DT

1313546

% Solids

Sample I SP2-04 SB70857	dentification 7-04			Client P	<u>Project #</u> 067		<u>Matrix</u> Soil	·	ection Date -May-13 13			ceived May-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivola	tile Organic Compounds by C	GC											
Polychlorin	ated Biphenyls												
Prepared	d by method SW846 3545A												
12674-11-2	Aroclor-1016	< 11.2	U	μg/kg dry	22.3	11.2	1	SW846 8082A	07-Jun-13	12-Jun-13	BLM	1313358	Χ
11104-28-2	Aroclor-1221	< 20.1	U	μg/kg dry	22.3	20.1	1				"		Χ
11141-16-5	Aroclor-1232	< 14.3	U	μg/kg dry	22.3	14.3	1						Χ
53469-21-9	Aroclor-1242	< 13.1	U	μg/kg dry	22.3	13.1	1						Х
12672-29-6	Aroclor-1248 [2C]	271		μg/kg dry	22.3	9.05	1	п			"		Х
11097-69-1	Aroclor-1254	< 18.6	U	μg/kg dry	22.3	18.6	1	п			"		Х
11096-82-5	Aroclor-1260	< 13.8	U	μg/kg dry	22.3	13.8	1	н			"		Х
37324-23-5	Aroclor-1262	< 20.8	U	μg/kg dry	22.3	20.8	1	н			"		Х
11100-14-4	Aroclor-1268	< 7.01	U	μg/kg dry	22.3	7.01	1	п			"		Χ
Surrogate re	ecoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	115			30-15	50 %		н	•	п	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	110			30-15	50 %		н		ı	"		
2051-24-3	Decachlorobiphenyl (Sr)	105			30-15	50 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	120			30-15	50 %		н	н	ı	"		
General (Chemistry Parameters												
	% Solids	89.3		%			1	SM2540 G Mod.	10-Jun-13	10-Jun-13	DT	1313546	

Sample Io SP2-05 SB70857	dentification			Client P	-		<u>Matrix</u> Soil	·	ection Date -May-13 14			ceived May-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by G	ЭC											
	ated Biphenyls by method SW846 3545A		GS1										
12674-11-2	Aroclor-1016	< 110	U, D	μg/kg dry	220	110	10	SW846 8082A	07-Jun-13	13-Jun-13	IMR	1313358	Χ
11104-28-2	Aroclor-1221	< 198	U, D	μg/kg dry	220	198	10				"		Χ
11141-16-5	Aroclor-1232	< 141	U, D	μg/kg dry	220	141	10				"		Χ
53469-21-9	Aroclor-1242	< 130	U, D	μg/kg dry	220	130	10				"		Χ
12672-29-6	Aroclor-1248	9,640	D	μg/kg dry	220	108	10				"		Χ
11097-69-1	Aroclor-1254	< 183	U, D	μg/kg dry	220	183	10				"		Χ
11096-82-5	Aroclor-1260	286	D	μg/kg dry	220	136	10				"		Х
37324-23-5	Aroclor-1262	< 205	U, D	μg/kg dry	220	205	10				"		Χ
11100-14-4	Aroclor-1268	< 69.0	U, D	μg/kg dry	220	69.0	10				"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	100			30-15	0 %		н			"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	100			30-15	0 %		н			"		
2051-24-3	Decachlorobiphenyl (Sr)	100			30-15	0 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	100			30-15	0 %		п			"		

10-Jun-13 10-Jun-13

DT

1313546

General Chemistry Parameters % Solids

Sample Id SP2-06 SB70857	lentification			Client P	-		<u>Matrix</u> Soil	·	ection Date -May-13 14			ceived May-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
	ted Biphenyls by method SW846 3545A		GS1										
12674-11-2	Aroclor-1016	< 113	U, D	μg/kg dry	227	113	10	SW846 8082A	07-Jun-13	13-Jun-13	IMR	1313358	Χ
11104-28-2	Aroclor-1221	< 204	U, D	μg/kg dry	227	204	10	п		п	"		Χ
11141-16-5	Aroclor-1232	< 146	U, D	μg/kg dry	227	146	10	ı			"		Χ
53469-21-9	Aroclor-1242	< 134	U, D	μg/kg dry	227	134	10	ı			"		Χ
12672-29-6	Aroclor-1248	7,080	D	μg/kg dry	227	111	10	ı			"		Χ
11097-69-1	Aroclor-1254	< 189	U, D	μg/kg dry	227	189	10	ı			"		Χ
11096-82-5	Aroclor-1260	193	J, D	μg/kg dry	227	141	10	II .			"		Χ
37324-23-5	Aroclor-1262	< 211	U, D	μg/kg dry	227	211	10	II .			"		Χ
11100-14-4	Aroclor-1268	< 71.3	U, D	μg/kg dry	227	71.3	10				"		Χ
Surrogate rec	overies:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	150			30-15	50 %					"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	150			30-15	50 %		n			"		
2051-24-3	Decachlorobiphenyl (Sr)	100			30-15	50 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	100			30-15	50 %			н		"		
General C	hemistry Parameters												

10-Jun-13 10-Jun-13

DT

1313546

% Solids

Sample Id SP2-07 SB70857-	dentification -07			Client P			<u>Matrix</u> Soil		ection Date -May-13 14			ceived May-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
	tted Biphenyls by method SW846 3545A		GS1										
12674-11-2	Aroclor-1016	< 105	U, D	μg/kg dry	210	105	10	SW846 8082A	07-Jun-13	13-Jun-13	IMR	1313358	Χ
11104-28-2	Aroclor-1221	< 189	U, D	μg/kg dry	210	189	10	II .			"		Χ
11141-16-5	Aroclor-1232	< 135	U, D	μg/kg dry	210	135	10				"		Χ
53469-21-9	Aroclor-1242	< 124	U, D	μg/kg dry	210	124	10				"		Χ
12672-29-6	Aroclor-1248 [2C]	13,900	D	μg/kg dry	210	85.2	10	и			"		Χ
11097-69-1	Aroclor-1254	< 175	U, D	μg/kg dry	210	175	10				"		Χ
11096-82-5	Aroclor-1260	505	D	μg/kg dry	210	130	10	и			"		Χ
37324-23-5	Aroclor-1262	< 196	U, D	μg/kg dry	210	196	10	и			"		Χ
11100-14-4	Aroclor-1268	< 66.0	U, D	μg/kg dry	210	66.0	10	11			"		Χ
Surrogate rec	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	100			30-15	0 %		я			"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	100			30-15	0 %					"		
2051-24-3	Decachlorobiphenyl (Sr)	150			30-15	0 %		п			"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	100			30-15	0 %					"		

10-Jun-13 10-Jun-13

DT

1313546

General Chemistry Parameters % Solids

Sample Io SP2-08 SB70857-	lentification -08			Client P	-		<u>Matrix</u> Soil	·	ection Date -May-13 14			ceived May-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
	ted Biphenyls by method SW846 3545A		GS1										
12674-11-2	Aroclor-1016	< 105	U, D	μg/kg dry	209	105	10	SW846 8082A	07-Jun-13	13-Jun-13	IMR	1313358	Χ
11104-28-2	Aroclor-1221	< 189	U, D	μg/kg dry	209	189	10			н	"		Χ
11141-16-5	Aroclor-1232	< 134	U, D	μg/kg dry	209	134	10				"		Χ
53469-21-9	Aroclor-1242	< 123	U, D	μg/kg dry	209	123	10				"		Χ
12672-29-6	Aroclor-1248	24,700	D	μg/kg dry	209	103	10				"		Χ
11097-69-1	Aroclor-1254	< 174	U, D	μg/kg dry	209	174	10			н	"		Χ
11096-82-5	Aroclor-1260	973	D	μg/kg dry	209	130	10				"		Χ
37324-23-5	Aroclor-1262	< 195	U, D	μg/kg dry	209	195	10				"		Χ
11100-14-4	Aroclor-1268	< 65.7	U, D	μg/kg dry	209	65.7	10			н	"		Χ
Surrogate rec	overies:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	150			30-15	0 %				ı	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	150			30-15	0 %					"		
2051-24-3	Decachlorobiphenyl (Sr)	150			30-15	0 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	150			30-15	50 %					"		
General C	hemistry Parameters												

10-Jun-13 10-Jun-13

DT

1313546

% Solids

Sample I SP2-09 SB70857	dentification 7-09			Client P			<u>Matrix</u> Soil		ection Date -May-13 14			ceived May-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivola	tile Organic Compounds by C	GC											
Polychlorin	ated Biphenyls												
Prepared	by method SW846 3545A												
12674-11-2	Aroclor-1016	< 10.5	U	μg/kg dry	20.9	10.5	1	SW846 8082A	07-Jun-13	12-Jun-13	BLM	1313358	Χ
11104-28-2	Aroclor-1221	< 18.8	U	μg/kg dry	20.9	18.8	1	н			"		Χ
11141-16-5	Aroclor-1232	< 13.4	U	μg/kg dry	20.9	13.4	1			н	"		Χ
53469-21-9	Aroclor-1242	< 12.3	U	μg/kg dry	20.9	12.3	1				"		Χ
12672-29-6	Aroclor-1248	119		μg/kg dry	20.9	10.3	1				"		Χ
11097-69-1	Aroclor-1254	< 17.4	U	μg/kg dry	20.9	17.4	1				"		Χ
11096-82-5	Aroclor-1260	< 13.0	U	μg/kg dry	20.9	13.0	1	п			"		Χ
37324-23-5	Aroclor-1262	< 19.5	U	μg/kg dry	20.9	19.5	1	п			"		Χ
11100-14-4	Aroclor-1268	< 6.57	U	μg/kg dry	20.9	6.57	1	п			"		Χ
Surrogate re	ecoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	115			30-15	i0 %		u			n		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	120			30-15	0 %		н			"		
2051-24-3	Decachlorobiphenyl (Sr)	125			30-15	60 %				н	"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	130			30-15	50 %		н			"		
General (Chemistry Parameters												
	% Solids	92.1		%			1	SM2540 G Mod.	10-Jun-13	10-Jun-13	DT	1313546	

Sample I SP2-10 SB70857	dentification 7-10			Client P	<u>Project #</u> 067		<u>Matrix</u> Soil	·	ection Date -May-13 14			ceived May-13	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivola	tile Organic Compounds by C	GC											
Polychlorin	ated Biphenyls												
Prepared	by method SW846 3545A												
12674-11-2	Aroclor-1016	< 10.8	U	μg/kg dry	21.7	10.8	1	SW846 8082A	07-Jun-13	12-Jun-13	BLM	1313358	Χ
11104-28-2	Aroclor-1221	< 19.5	U	μg/kg dry	21.7	19.5	1				"		Χ
11141-16-5	Aroclor-1232	< 13.9	U	μg/kg dry	21.7	13.9	1			и	"		Х
53469-21-9	Aroclor-1242	< 12.8	U	μg/kg dry	21.7	12.8	1			н	"		Χ
12672-29-6	Aroclor-1248	< 10.6	U	μg/kg dry	21.7	10.6	1	п			"		Χ
11097-69-1	Aroclor-1254	< 18.1	U	μg/kg dry	21.7	18.1	1	п			"		Χ
11096-82-5	Aroclor-1260	< 13.4	U	μg/kg dry	21.7	13.4	1	п			"		Χ
37324-23-5	Aroclor-1262	< 20.2	U	μg/kg dry	21.7	20.2	1	п			"		Χ
11100-14-4	Aroclor-1268	< 6.81	U	μg/kg dry	21.7	6.81	1				"		Χ
Surrogate re	ecoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	130			30-15	50 %		п			"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	120			30-15	50 %		н		"	"		
2051-24-3	Decachlorobiphenyl (Sr)	125			30-15	50 %				п	"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	130			30-15	50 %		н		"	"		
General (Chemistry Parameters												
	% Solids	88.7		%			1	SM2540 G Mod.	10-Jun-13	10-Jun-13	DT	1313546	

Semivolatile Organic Compounds by GC - Quality Control

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPE Limi
atch 1313358 - SW846 3545A										
Blank (1313358-BLK1)					Pre	pared: 07-Jur	n-13 Analyzed:	09-Jun-13		
Aroclor-1016	< 9.99	U	μg/kg wet	9.99						
Aroclor-1016 [2C]	< 9.98	U	μg/kg wet	9.98						
Aroclor-1221	< 18.0	U	μg/kg wet	18.0						
Aroclor-1221 [2C]	< 13.1	U	μg/kg wet	13.1						
Aroclor-1232	< 12.8	U	μg/kg wet	12.8						
Aroclor-1232 [2C]	< 15.7	U	μg/kg wet	15.7						
Aroclor-1242	< 11.8	U	μg/kg wet	11.8						
Aroclor-1242 [2C]	< 7.86	U	μg/kg wet	7.86						
Aroclor-1248	< 9.81	U	μg/kg wet	9.81						
Aroclor-1248 [2C]	< 8.11	U	μg/kg wet	8.11						
Aroclor-1254	< 16.7	U	μg/kg wet	16.7						
Aroclor-1254 [2C]	< 8.49	U	μg/kg wet	8.49						
Aroclor-1260	< 12.4	U	μg/kg wet	12.4						
Aroclor-1260 [2C]	< 8.93	U	μg/kg wet	8.93						
Aroclor-1262	< 18.6	U	μg/kg wet	18.6						
Aroclor-1262 [2C]	< 19.2	U	μg/kg wet	19.2						
Aroclor-1268	< 6.28	U	μg/kg wet	6.28						
Aroclor-1268 [2C]	< 9.90	U	μg/kg wet	9.90						
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	20.0		μg/kg wet		20.0		100	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	21.0		μg/kg wet		20.0		105	30-150		
Surrogate: Decachlorobiphenyl (Sr)	18.0		μg/kg wet		20.0		90	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	20.0		μg/kg wet		20.0		100	30-150		
LCS (1313358-BS1)					Pre	pared: 07-Jur	n-13 Analyzed:	09-Jun-13		
Aroclor-1016	290		μg/kg wet	9.99	250		116	40-140		
Aroclor-1016 [2C]	233		μg/kg wet	9.98	250		93	40-140		
Aroclor-1260	221		μg/kg wet	12.4	250		88	40-140		
Aroclor-1260 [2C]	268		μg/kg wet	8.93	250		107	40-140		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	20.0		μg/kg wet		20.0		100	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	22.0		μg/kg wet		20.0		110	30-150		
Surrogate: Decachlorobiphenyl (Sr)	15.0		μg/kg wet		20.0		75	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	23.0		μg/kg wet		20.0		115	30-150		
LCS Dup (1313358-BSD1)					Pre	pared: 07-Jur	n-13 Analyzed:	09-Jun-13		
Aroclor-1016	199	QR2	μg/kg wet	9.99	250		80	40-140	37	30
Aroclor-1016 [2C]	230		μg/kg wet	9.98	250		92	40-140	1	30
Aroclor-1260	175		μg/kg wet	12.4	250		70	40-140	23	30
Aroclor-1260 [2C]	234		μg/kg wet	8.93	250		94	40-140	14	30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	19.0		μg/kg wet		20.0		95	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	21.0		μg/kg wet		20.0		105	30-150		
Surrogate: Decachlorobiphenyl (Sr)	15.0		μg/kg wet		20.0		75	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	21.0		μg/kg wet		20.0		105	30-150		
Duplicate (1313358-DUP1)			Source: SB	70857-10	Pre	pared: 07-Jur	n-13 Analyzed:	13-Jun-13		
Aroclor-1016	< 11.2	U	μg/kg dry	11.2		BRL				30
Aroclor-1016 [2C]	< 11.2	U	μg/kg dry	11.2		BRL				30
Aroclor-1221	< 20.2	U	μg/kg dry	20.2		BRL				30
Aroclor-1221 [2C]	< 14.6	U	μg/kg dry	14.6		BRL				30
Aroclor-1232	< 14.4	U	μg/kg dry	14.4		BRL				30
Aroclor-1232 [2C]	< 17.6	U	μg/kg dry	17.6		BRL				30
Aroclor-1242	< 13.2	U	μg/kg dry	13.2		BRL				30
Aroclor-1242 [2C]	< 8.80	U	μg/kg dry	8.80		BRL				30
Aroclor-1248	< 11.0	U	μg/kg dry	11.0		BRL				30

Semivolatile Organic Compounds by GC - Quality Control

					Spike	Source		%REC		RPD
nalyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limi
atch 1313358 - SW846 3545A										
<u>Duplicate (1313358-DUP1)</u>			Source: SE	70857-10	<u>Pre</u>	pared: 07-Jun	-13 Analyzed:	13-Jun-13		
Aroclor-1248 [2C]	< 9.08	U	μg/kg dry	9.08		BRL				30
Aroclor-1254	< 18.7	U	μg/kg dry	18.7		BRL				30
Aroclor-1254 [2C]	< 9.51	U	μg/kg dry	9.51		BRL				30
Aroclor-1260	< 13.9	U	μg/kg dry	13.9		BRL				30
Aroclor-1260 [2C]	< 10.0	U	μg/kg dry	10.0		BRL				30
Aroclor-1262	< 20.9	U	μg/kg dry	20.9		BRL				30
Aroclor-1262 [2C]	< 21.5	U	μg/kg dry	21.5		BRL				30
Aroclor-1268	< 7.03	U	μg/kg dry	7.03		BRL				30
Aroclor-1268 [2C]	< 11.1	U	μg/kg dry	11.1		BRL				30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	23.5		μg/kg dry		22.4		105	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	26.9		μg/kg dry		22.4		120	30-150		
Surrogate: Decachlorobiphenyl (Sr)	26.9		μg/kg dry		22.4		120	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	29.1		μg/kg dry		22.4		130	30-150		
Matrix Spike (1313358-MS1)			Source: SE	70857-10	Pre	pared: 07-Jun	-13 Analyzed:	13-Jun-13		
Aroclor-1016	302		μg/kg dry	11.1	277	BRL	109	40-140		
Aroclor-1016 [2C]	279		μg/kg dry	11.0	277	BRL	101	40-140		
Aroclor-1260	277		μg/kg dry	13.7	277	BRL	100	40-140		
Aroclor-1260 [2C]	215		μg/kg dry	9.88	277	BRL	78	40-140		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	26.5		μg/kg dry		22.1		120	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	27.7		μg/kg dry		22.1		125	30-150		
Surrogate: Decachlorobiphenyl (Sr)	25.4		μg/kg dry		22.1		115	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	25.4		μg/kg dry		22.1		115	30-150		
Matrix Spike Dup (1313358-MSD1)			Source: SE	70857-10	Pre	pared: 07-Jun	-13 Analyzed:	13-Jun-13		
Aroclor-1016	326		μg/kg dry	11.1	278	BRL	118	40-140	7	30
Aroclor-1016 [2C]	301		μg/kg dry	11.1	278	BRL	108	40-140	7	30
Aroclor-1260	316		μg/kg dry	13.8	278	BRL	114	40-140	13	30
Aroclor-1260 [2C]	260		μg/kg dry	9.91	278	BRL	94	40-140	19	30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	27.8		μg/kg dry		22.2		125	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	28.9		μg/kg dry		22.2		130	30-150		
Surrogate: Decachlorobiphenyl (Sr)	26.6		μg/kg dry		22.2		120	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	28.9		μg/kg dry		22.2		130	30-150		

General Chemistry Parameters - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1313547 - General Preparation										
Duplicate (1313547-DUP1)			Source: SI	370857-12	Pre	pared & Analy	zed: 10-Jun-13			
% Solids	75.1		%			75.9			1	20

Notes and Definitions

D Data reported from a dilution

GS1 Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

J Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration

(CLP J-Flag).

QR2 The RPD result exceeded the QC control limits; however, both percent recoveries were acceptable. Sample results for the

QC batch were accepted based on percent recoveries and completeness of QC data.

U Analyte included in the analysis, but not detected at or above the MDL.

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

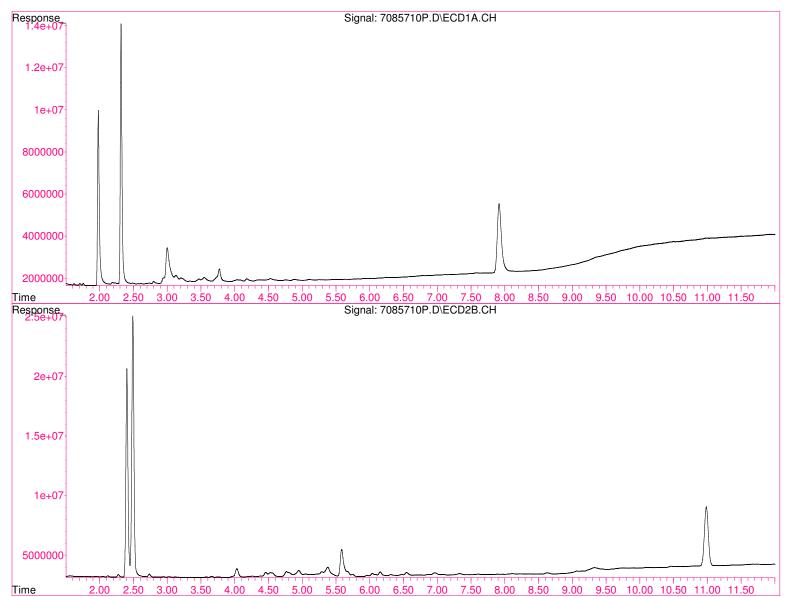
Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification:</u> The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

Validated by: June O'Connor Rebecca Merz File :G:\Jun2013\HPS11\data\PCB110611\7085710P.D


Operator : BLM

Acquired : 12 Jun 2013 5:39 pm using AcqMethod 60110424.M

Instrument: HP G1530A

Sample Name: SB70857-10 @ SP2-10

Misc Info : ????????

File :G:\Jun2013\HPS11\data\PCB110611\7085709P.D


Operator : BLM

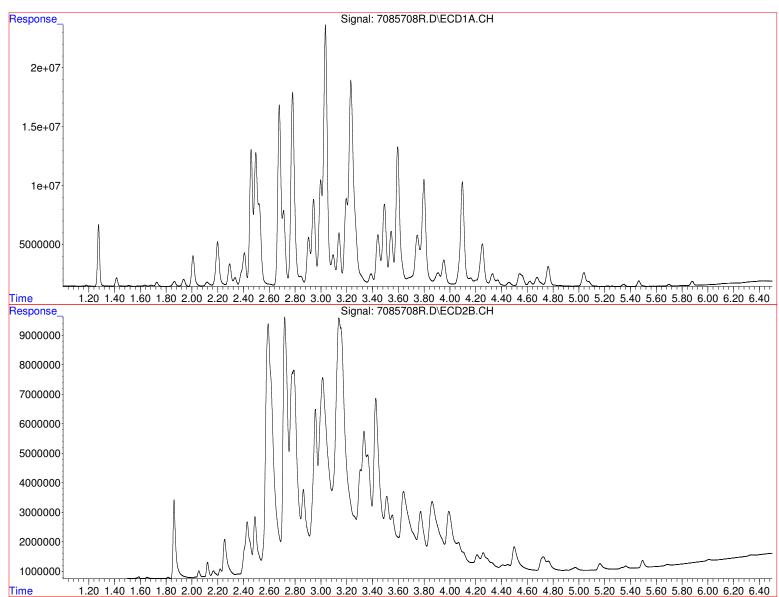
Acquired: 12 Jun 2013 5:24 pm using AcqMethod 60110424.M

Instrument: HP G1530A

Sample Name: SB70857-09 @ SP2-09

Misc Info : ????????

File :G:\Jun2013\HPS12\data\PCB120612\7085708R.D


Operator : IMR

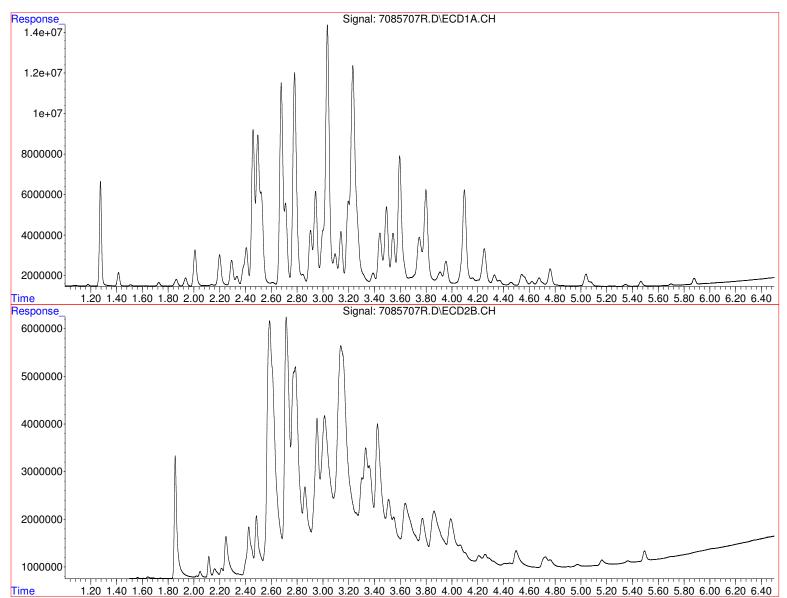
Acquired: 13 Jun 2013 11:54 am using AcqMethod 60120306.M

Instrument: HP G1530A

Sample Name: SB70857-08 @ SP2-08

Misc Info : 1:10 DIL ????????

File :G:\Jun2013\HPS12\data\PCB120612\7085707R.D


Operator : IMR

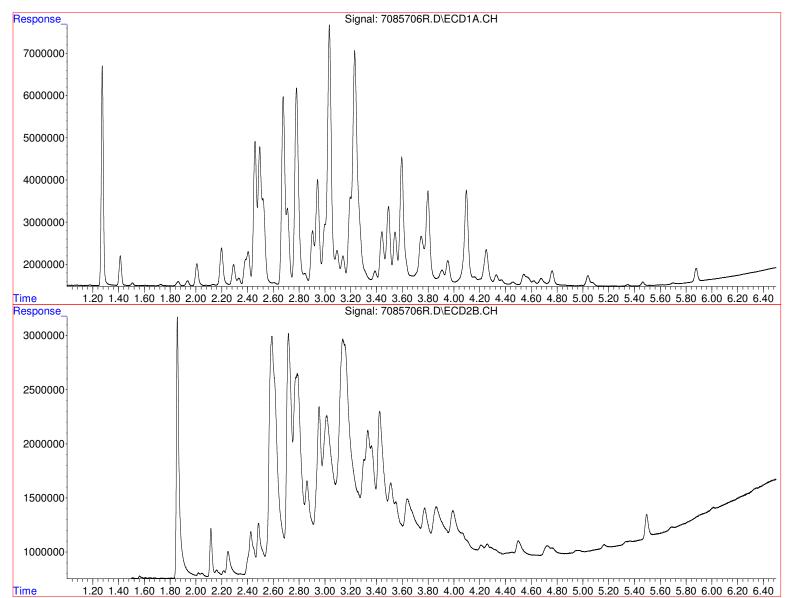
Acquired: 13 Jun 2013 11:44 am using AcqMethod 60120306.M

Instrument: HP G1530A

Sample Name: SB70857-07 @ SP2-07

Misc Info : 1:10 DIL ????????

File :G:\Jun2013\HPS12\data\PCB120612\7085706R.D


Operator : IMR

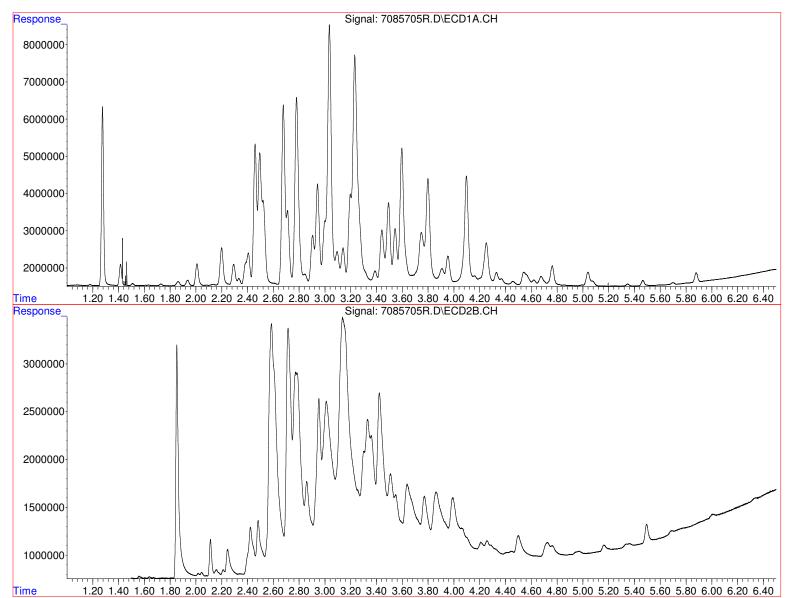
Acquired: 13 Jun 2013 11:35 am using AcqMethod 60120306.M

Instrument: HP G1530A

Sample Name: SB70857-06 @ SP2-06

Misc Info : 1:10 DIL ????????

File :G:\Jun2013\HPS12\data\PCB120612\7085705R.D


Operator : IMR

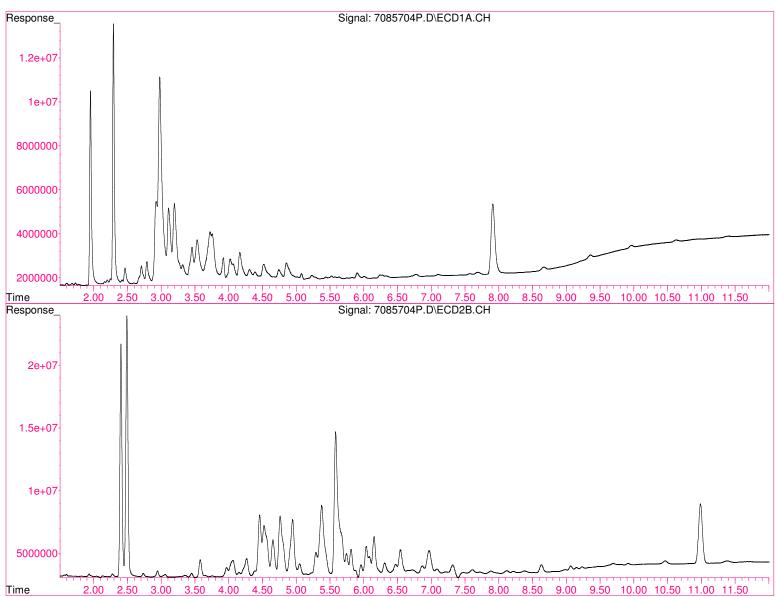
Acquired: 13 Jun 2013 11:25 am using AcqMethod 60120306.M

Instrument: HP G1530A

Sample Name: SB70857-05 @ SP2-05

Misc Info : 1:10 DIL ????????

File :G:\Jun2013\HPS11\data\PCB110611\7085704P.D


Operator : BLM

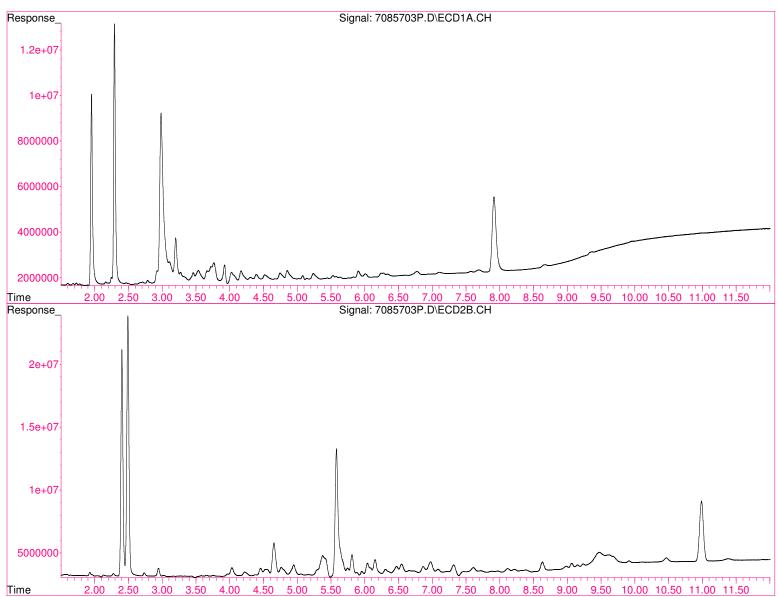
Acquired: 12 Jun 2013 2:50 pm using AcqMethod 60110424.M

Instrument: HP G1530A

Sample Name: SB70857-04 @ SP2-04

Misc Info : ????????

File :G:\Jun2013\HPS11\data\PCB110611\7085703P.D


Operator : BLM

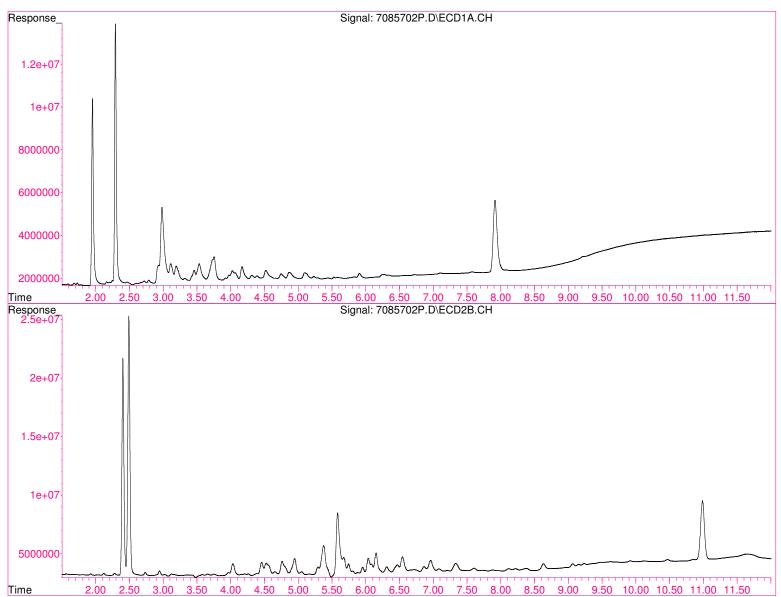
Acquired : 12 Jun 2013 2:34 pm using AcqMethod 60110424.M

Instrument: HP G1530A

Sample Name: SB70857-03 @ SP2-03

Misc Info : ????????

File :G:\Jun2013\HPS11\data\PCB110611\7085702P.D


Operator : BLM

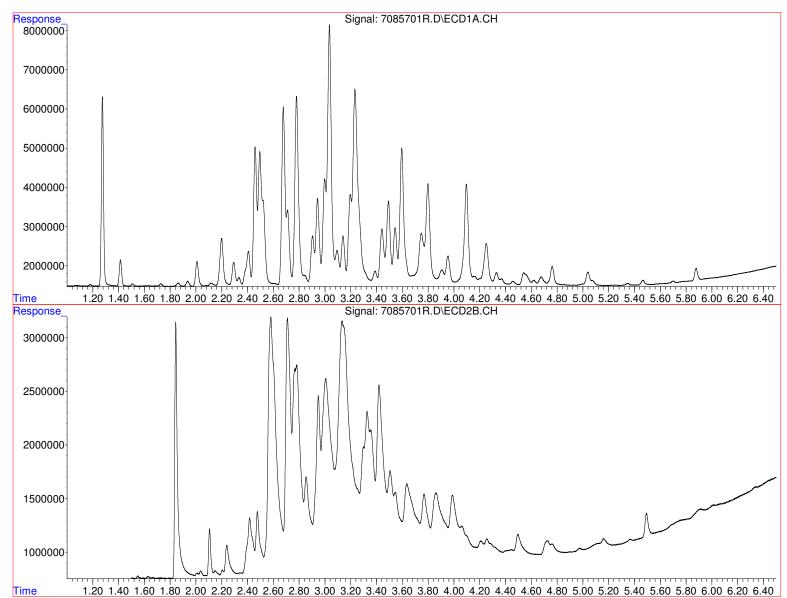
Acquired : 12 Jun 2013 2:19 pm using AcqMethod 60110424.M

Instrument: HP G1530A

Sample Name: SB70857-02 @ SP2-02

Misc Info : ???????

File :G:\Jun2013\HPS12\data\PCB120612\7085701R.D


Operator : IMR

Acquired: 13 Jun 2013 11:15 am using AcqMethod 60120306.M

Instrument: HP G1530A

Sample Name: SB70857-01 @ SP2-01

Misc Info : 1:10 DIL ????????

CHAIN OF CUSTODY RECORD

pe	
cial	
Har	
ıdli	
ng:	
	cial Hand

□ Rush TAT - Date Needed:

 Min. 24-hour notification needed for rushes. · All TATs subject to laboratory approval.

· Samples disposed of after 60 days unless otherwise instructed.

	11 H 11		AND MACK	Relinquished by:	6	8	8	9	89	8	a s	3	RS	S 10-10	Lab Id:		X1=	Ě	DW=Drinking Water	8= NaHSO ₄	$I=Na_2S2O_3$		Telephone #: 3	CAST STR	6308 F	Report To: Kic
		200	enne /	shed by:	SP2-10	SP2-09	SP2-08	SP2-07	P2-06	1P2 - 05	SP2-04	SPA - 03	SP2-02	S72-01	Sample Id:	G=Grab C=C	X2=	V	ater GW=Groundwater	9= Deioniz	3 = HC1 $3 = H2SO4$	2	315 432 9	TRACUSE, NY	-C7 RD	VICHARD MICKENNA
	5	1 40/2	X) Rec	genci Anti	7	=	11		*	-	×		5/31/13	Date:	C=Composite	X3=	SI			SO ₄ 4=HNO ₃		2400	13057		UNA
	0	Heles	7 0 0 K	Received by:	2:25	2:20	2:15	2:10	285	2:00	1:55	1:50	1:45	1240	Time:			lge A=Air	WW=Wastewater		5=NaOH	P.O. No.:			Samo	Invoice To:
		1	1	10	#	5	11	=	11	=	7	ı	-	0	Туре						6=Ascorbic	13-		1		E
11	10/4	6116	CN XX	D	11	43		=	n	=		=	=	8	Matrix					12	rbic Acid	1.90		T DDICO -		Accors
	113	11/13	STEEL STEEL	ate: /	, , ,	\$-	5	=		10	2	11			# of V # of A	OA V			0			R		C	٨	The same
	Qs	11											741		# of C				Containers:		7=CH ₃ OH	RQN:				AVABLE
	901	52	613	Time:											# of P	lastic			iers:		HC					W
	111		D.F	Temp°C	7	7	7	7	7	7	7	7	7	1	80%	Q PC	В			\	List	Sam	-	Loca	Site	Proj
Condition Ambier		E-mail to	1	M EDD Format									W.F	9	3/45				An		preserva	Sampler(s):		Location:	Site Name:	Project No.:
n upon red		ail to) Form						1)		79		ly and			Analyses:		tive co	1	C	6	5	
Condition upon receipt: ☐ Ambient		mocenna		at Excer			213														List preservative code below:	CONTRO		oce Amer	しなつ	3-067
ed 🛘 DI VOA Frozen 🗖 Soil Jar Frozen		wa a vector con)	PDF											Other State-specific reporting standards:	□ NY ASP A* □ NY ASP B* □ NJ Reduced* □ NJ Full*	QA/QC Reporting Level ☑ Standard ☐ No QC ☐ DQA*	CT DPH RCP Report: Yes □ No □	MA DEP MCP CAM Report: Yes □ No□	* additional charges may apply	QA/QC Reporting Notes:) I Ickerna	3	State: >>		7

Report Date: 14-Oct-14 12:26

HANIBAL TECHNOLOGY

Laboratory Report

AECC Environmental Consulting 6308 Fly Road

East Syracuse, NY 13057

Attn: Rich McKenna

Project: WBP - Dewitt, NY

☐ Re-Issued Report □ Revised Report

Project #: 14-091

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SB97664-01	SS-52	Soil	07-Oct-14 11:10	07-Oct-14 16:45
SB97664-02	SS-55	Soil	07-Oct-14 11:20	07-Oct-14 16:45
SB97664-03	SS-53	Soil	07-Oct-14 11:26	07-Oct-14 16:45
SB97664-04	SS-50	Soil	07-Oct-14 11:34	07-Oct-14 16:45
SB97664-05	SS-49	Soil	07-Oct-14 11:53	07-Oct-14 16:45
SB97664-06	SS-48	Soil	07-Oct-14 12:07	07-Oct-14 16:45
SB97664-07	SS-44	Soil	07-Oct-14 12:19	07-Oct-14 16:45
SB97664-08	SS-41	Soil	07-Oct-14 12:33	07-Oct-14 16:45
SB97664-09	SS-42	Soil	07-Oct-14 12:39	07-Oct-14 16:45
SB97664-10	SS-45	Soil	07-Oct-14 12:47	07-Oct-14 16:45
SB97664-11	SS-39	Soil	07-Oct-14 13:00	07-Oct-14 16:45
SB97664-12	SS-46	Soil	07-Oct-14 13:09	07-Oct-14 16:45
SB97664-13	SS-51	Soil	07-Oct-14 13:16	07-Oct-14 16:45
SB97664-14	SS-54	Soil	07-Oct-14 13:23	07-Oct-14 16:45
SB97664-15	SS-47	Soil	07-Oct-14 13:31	07-Oct-14 16:45
SB97664-16	SS-43	Soil	07-Oct-14 13:38	07-Oct-14 16:45
SB97664-17	SS-40	Soil	07-Oct-14 13:50	07-Oct-14 16:45
SB97664-18	SS-38	Soil	07-Oct-14 13:59	07-Oct-14 16:45
SB97664-19	SS-37	Soil	07-Oct-14 14:04	07-Oct-14 16:45
SB97664-20	SS-57	Soil	07-Oct-14 14:20	07-Oct-14 16:45
SB97664-21	SS-58	Soil	07-Oct-14 14:26	07-Oct-14 16:45
SB97664-22	SS-56	Soil	07-Oct-14 14:32	07-Oct-14 16:45
SB97664-23	SS-60	Soil	07-Oct-14 14:43	07-Oct-14 16:45
SB97664-24	SS-59	Soil	07-Oct-14 14:50	07-Oct-14 16:45
SB97664-25	SS-61	Soil	07-Oct-14 15:05	07-Oct-14 16:45
SB97664-26	SS-62	Soil	07-Oct-14 15:12	07-Oct-14 16:45
SB97664-27	SS-66	Soil	07-Oct-14 15:16	07-Oct-14 16:45
SB97664-28	SS-65	Soil	07-Oct-14 15:21	07-Oct-14 16:45
SB97664-29	SS-63	Soil	07-Oct-14 15:25	07-Oct-14 16:45
SB97664-30	SS-64	Soil	07-Oct-14 15:29	07-Oct-14 16:45

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011/MA012 New York # 11393/11840 Pennsylvania # 68-04426/68-02924 Rhode Island # 98 USDA # S-51435

Authorized by:

Nicole Leja Laboratory Director

Nicole Leja

Spectrum Analytical holds certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 41 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey, Pennsylvania and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, NJ-MA012, PA-68-04426 and FL-E87936).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

CASE NARRATIVE:

Data has been reported to the MDL. This report includes estimated concentrations detected below the RDL and above the MDL (J-Flag).

The samples were received 5.7 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of \pm 1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

SW846 8082A

Samples:

SB97664-01

SS-52

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interference's.

4,4-DB-Octafluorobiphenyl (Sr)

4,4-DB-Octafluorobiphenyl (Sr) [2C]

Decachlorobiphenyl (Sr)

Decachlorobiphenyl (Sr) [2C]

SB97664-03

SS-53

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interference's.

4,4-DB-Octafluorobiphenyl (Sr)

4,4-DB-Octafluorobiphenyl (Sr) [2C]

Decachlorobiphenyl (Sr)

Decachlorobiphenyl (Sr) [2C]

SB97664-05

SS-49

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interference's.

4,4-DB-Octafluorobiphenyl (Sr)

4,4-DB-Octafluorobiphenyl (Sr) [2C]

Decachlorobiphenyl (Sr)

Decachlorobiphenyl (Sr) [2C]

SB97664-08

SS-41

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interference's.

4,4-DB-Octafluorobiphenyl (Sr)

4,4-DB-Octafluorobiphenyl (Sr) [2C]

Decachlorobiphenyl (Sr)

Decachlorobiphenyl (Sr) [2C]

SW846 8082A

Samples:

SB97664-09 SS-42

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

SB97664-10 SS-45

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

SB97664-12 SS-46

Difference between the two GC columns is greater than 40%.

Aroclor-1254 [2C]

SB97664-13 SS-51

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interference's.

4,4-DB-Octafluorobiphenyl (Sr)

4,4-DB-Octafluorobiphenyl (Sr) [2C]

Decachlorobiphenyl (Sr)

Decachlorobiphenyl (Sr) [2C]

SB97664-18 SS-38

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interference's.

4,4-DB-Octafluorobiphenyl (Sr)

4,4-DB-Octafluorobiphenyl (Sr) [2C]

Decachlorobiphenyl (Sr)

Decachlorobiphenyl (Sr) [2C]

SB97664-19 SS-37

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interference's.

4,4-DB-Octafluorobiphenyl (Sr)

4,4-DB-Octafluorobiphenyl (Sr) [2C]

Decachlorobiphenyl (Sr)

Decachlorobiphenyl (Sr) [2C]

SB97664-22 SS-56

The Reporting Limit has been raised to account for matrix interference.

Aroclor-1254

SB97664-27 SS-66

The Reporting Limit has been raised to account for matrix interference.

SB97664-28 SS-65

SW846 8082A

Samples:

SB97664-28 SS-65

The Reporting Limit has been raised to account for matrix interference.

Aroclor-1016

Aroclor-1221

Aroclor-1232

Aroclor-1242

Aroclor-1248

Sample Acceptance Check Form

Client:	AECC Environmental Consulting			
Project:	WBP - Dewitt, NY / 14-091			
Work Order:	SB97664			
Sample(s) received on:	10/7/2014			
The following outlines th	ne condition of samples for the attached Chain of Custody upon receipt.			
		Yes	<u>No</u>	<u>N/A</u>
1. Were custody se	als present?		\checkmark	
2. Were custody se	als intact?			\checkmark
3. Were samples re	ceived at a temperature of $\leq 6^{\circ}$ C?	\checkmark		
4. Were samples co	poled on ice upon transfer to laboratory representative?	\checkmark		
5. Were samples re	frigerated upon transfer to laboratory representative?		\checkmark	
6. Were sample con	ntainers received intact?	\checkmark		
	roperly labeled (labels affixed to sample containers and include sample ID, site project number and the collection date)?			
8. Were samples ac	ecompanied by a Chain of Custody document?	\checkmark		
include sample I	Sustody document include proper, full, and complete documentation, which shall D, site location, and/or project number, date and time of collection, collector's name, e, sample matrix and any special remarks concerning the sample?	✓		
10. Did sample cont	ainer labels agree with Chain of Custody document?	\checkmark		

11. Were samples received within method-specific holding times?

Sample Id SS-52 SB97664	397664-01			Client Project # 14-091			<u>Matrix</u> Soil	<u>Coll</u> 07	Received 07-Oct-14				
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
Polychlorina	ated Biphenyls		GS1										
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 1160	U, D	μg/kg dry	1240	1160	50	SW846 8082A	08-Oct-14	10-Oct-14	IMR	1423784	Χ
11104-28-2	Aroclor-1221	< 1060	U, D	μg/kg dry	1240	1060	50				"		Χ
11141-16-5	Aroclor-1232	< 1110	U, D	μg/kg dry	1240	1110	50				"		Χ
53469-21-9	Aroclor-1242	< 551	U, D	μg/kg dry	1240	551	50				"		Χ
12672-29-6	Aroclor-1248 [2C]	25,300	D	μg/kg dry	1240	680	50	п			"		Х
11097-69-1	Aroclor-1254	37,500	D	μg/kg dry	1240	783	50	п			"		Х
11096-82-5	Aroclor-1260	3,720	D	μg/kg dry	1240	887	50						Х
37324-23-5	Aroclor-1262	< 672	U, D	μg/kg dry	1240	672	50						Х
11100-14-4	Aroclor-1268	< 1220	U, D	μg/kg dry	1240	1220	50	п			"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	0	S01, U		30-15	0 %		as .		н	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	0	S01, U		30-15	0 %		я		п	"		
2051-24-3	Decachlorobiphenyl (Sr)	0	S01, U		30-15	0 %					"		
2051-24-3	Decachlorobiphenyl (Sr)	0	S01, U		30-15	0 %		п			"		

08-Oct-14 08-Oct-14

DT

1423765

[2C]
General Chemistry Parameters
% Solids

Sample Io SS-55 SB97664	dentification -02		Client Project # 14-091			<u>Matrix</u> Soil	<u>Coll</u> 07	Received 07-Oct-14					
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
Polychlorina	ated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 21.8	U	μg/kg dry	23.3	21.8	1	SW846 8082A	08-Oct-14	10-Oct-14	IMR	1423784	Χ
11104-28-2	Aroclor-1221	< 19.8	U	μg/kg dry	23.3	19.8	1			п	"		Χ
11141-16-5	Aroclor-1232	< 20.9	U	μg/kg dry	23.3	20.9	1			II .	"		Χ
53469-21-9	Aroclor-1242	< 10.4	U	μg/kg dry	23.3	10.4	1			п	•		Χ
12672-29-6	Aroclor-1248 [2C]	37.3		μg/kg dry	23.3	12.8	1			н	"		Χ
11097-69-1	Aroclor-1254	< 14.7	U	μg/kg dry	23.3	14.7	1	п		и	"		Χ
11096-82-5	Aroclor-1260	< 16.7	U	μg/kg dry	23.3	16.7	1	п		н	"		Χ
37324-23-5	Aroclor-1262	< 12.6	U	μg/kg dry	23.3	12.6	1	п		u	"		Χ
11100-14-4	Aroclor-1268	< 22.9	U	μg/kg dry	23.3	22.9	1	п			"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	95			30-15	50 %		н		н	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	105			30-15	50 %		ı		н	"		
2051-24-3	Decachlorobiphenyl (Sr)	105			30-15	50 %				п	"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	85			30-15	50 %		н		ıı	"		
General C	Chemistry Parameters												
	% Solids	84.8		%			1	SM2540 G Mod.	08-Oct-14	08-Oct-14	DT	1423765	

SS-53 SB97664	-03		<u>Client Project #</u> 14-091				<u>Matrix</u> Soil		ection Date 7-Oct-14 11	Received 07-Oct-14			
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Semivolat	ile Organic Compounds by 0	GC											
	<u>ited Biphenyls</u> by method SW846 3540C		GS1										
12674-11-2	Aroclor-1016	< 2170	U, D	μg/kg dry	2330	2170	100	SW846 8082A	08-Oct-14	10-Oct-14	IMR	1423784	Х
11104-28-2	Aroclor-1221	< 1980	U, D	μg/kg dry	2330	1980	100	п			"		Х
11141-16-5	Aroclor-1232	< 2090	U, D	μg/kg dry	2330	2090	100	п			"		Х
53469-21-9	Aroclor-1242	< 1030	U, D	μg/kg dry	2330	1030	100	п			"		Х
12672-29-6	Aroclor-1248	98,100	D	μg/kg dry	2330	1270	100	п			"		Х
11097-69-1	Aroclor-1254	93,100	D	μg/kg dry	2330	1470	100	п			"		Х
11096-82-5	Aroclor-1260 [2C]	6,640	D	μg/kg dry	2330	2210	100				"		Х
37324-23-5	Aroclor-1262	< 1260	U, D	μg/kg dry	2330	1260	100			н	"		Х
11100-14-4	Aroclor-1268	< 2290	U, D	μg/kg dry	2330	2290	100	п			"		Χ
Surrogate rec	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	0	S01, U		30-15	0 %		п		ı	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	0	S01, U		30-15	0 %		п		ı	"		
2051-24-3	Decachlorobiphenyl (Sr)	0	S01, U		30-15	0 %					"		

30-150 %

SM2540 G Mod.

08-Oct-14

08-Oct-14

DT

1423765

Decachlorobiphenyl (Sr)

[2C]
General Chemistry Parameters
% Solids

2051-24-3

S01, U

0

SS-50	ample Identification 8-50 397664-04				Client Project # 14-091			<u>Coll</u> . 07	Received 07-Oct-14				
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
Polychlorina	ated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 22.4	U	μg/kg dry	24.0	22.4	1	SW846 8082A	08-Oct-14	10-Oct-14	IMR	1423784	Χ
11104-28-2	Aroclor-1221	< 20.4	U	μg/kg dry	24.0	20.4	1				"		Χ
11141-16-5	Aroclor-1232	< 21.5	U	μg/kg dry	24.0	21.5	1	н			"		Χ
53469-21-9	Aroclor-1242	< 10.7	U	μg/kg dry	24.0	10.7	1				"		Χ
12672-29-6	Aroclor-1248 [2C]	69.5		μg/kg dry	24.0	13.1	1				"		Χ
11097-69-1	Aroclor-1254 [2C]	94.7		μg/kg dry	24.0	14.3	1	п			"		Χ
11096-82-5	Aroclor-1260 [2C]	27.6		μg/kg dry	24.0	22.7	1	п			"		Х
37324-23-5	Aroclor-1262	< 13.0	U	μg/kg dry	24.0	13.0	1	п			"		Х
11100-14-4	Aroclor-1268	< 23.6	U	μg/kg dry	24.0	23.6	1	п			"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	90			30-15	0 %		u		п	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	95			30-15	0 %		н		п	"		
2051-24-3	Decachlorobiphenyl (Sr)	100			30-15	i0 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	90			30-15	50 %		н		н	"		
General C	Chemistry Parameters												
	% Solids	80.5		%			1	SM2540 G Mod.	08-Oct-14	08-Oct-14	DT	1423765	

SS-49	ample Identification S-49 B97664-05				Client Project # 14-091			<u>Coll</u> 07	<u>Red</u>				
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
	ted Biphenyls		GS1										
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 2390	U, D	μg/kg dry	2550	2390	100	SW846 8082A	08-Oct-14	10-Oct-14	IMR	1423784	Χ
11104-28-2	Aroclor-1221	< 2170	U, D	μg/kg dry	2550	2170	100			"	"		Χ
11141-16-5	Aroclor-1232	< 2290	U, D	μg/kg dry	2550	2290	100				"		Χ
53469-21-9	Aroclor-1242	< 1140	U, D	μg/kg dry	2550	1140	100			"	"		Χ
12672-29-6	Aroclor-1248 [2C]	32,300	D	μg/kg dry	2550	1400	100				"		Χ
11097-69-1	Aroclor-1254	53,100	D	μg/kg dry	2550	1610	100				"		Χ
11096-82-5	Aroclor-1260 [2C]	5,110	D	μg/kg dry	2550	2420	100	п			"		Χ
37324-23-5	Aroclor-1262	< 1380	U, D	μg/kg dry	2550	1380	100				"		Χ
11100-14-4	Aroclor-1268	< 2510	U, D	μg/kg dry	2550	2510	100	п			"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	0	S01, U		30-15	50 %		н			"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	0	S01, U		30-15	50 %		н			"		
2051-24-3	Decachlorobiphenyl (Sr)	0	S01, U		30-15	50 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	0	S01, U		30-15	50 %			•		"		
General C	Chemistry Parameters												

08-Oct-14 08-Oct-14

DT

1423765

% Solids

SS-48	397664-06			Client Project # 14-091			<u>Matrix</u> Soil	Collection Date/Time 07-Oct-14 12:07			Received 07-Oct-14		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
	ated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 22.7	U	μg/kg dry	24.3	22.7	1	SW846 8082A	08-Oct-14	10-Oct-14	IMR	1423784	Χ
11104-28-2	Aroclor-1221	< 20.7	U	μg/kg dry	24.3	20.7	1				"		Χ
11141-16-5	Aroclor-1232	< 21.9	U	μg/kg dry	24.3	21.9	1				"		Χ
53469-21-9	Aroclor-1242	< 10.8	U	μg/kg dry	24.3	10.8	1				"		Χ
12672-29-6	Aroclor-1248	< 13.2	U	μg/kg dry	24.3	13.2	1				"		Х
11097-69-1	Aroclor-1254	< 15.3	U	μg/kg dry	24.3	15.3	1	п			"		Х
11096-82-5	Aroclor-1260	< 17.4	U	μg/kg dry	24.3	17.4	1	п			"		Х
37324-23-5	Aroclor-1262	< 13.2	U	μg/kg dry	24.3	13.2	1	п			"		Х
11100-14-4	Aroclor-1268	< 23.9	U	μg/kg dry	24.3	23.9	1	п			"		Х
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	85			30-15	0 %		н			"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	85			30-15	0 %		as .			"		
2051-24-3	Decachlorobiphenyl (Sr)	100			30-15	i0 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	85			30-15	60 %		N			"		
General C	Chemistry Parameters												
	% Solids	80.1		%			1	SM2540 G Mod.	08-Oct-14	08-Oct-14	DT	1423765	

Sample Io SS-44 SB97664	dentification -07			Client P			<u>Matrix</u> Soil	-	ection Date 7-Oct-14 12			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
Polychlorina	ated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 23.4	U	μg/kg dry	25.1	23.4	1	SW846 8082A	08-Oct-14	10-Oct-14	IMR	1423784	Χ
11104-28-2	Aroclor-1221	< 21.3	U	μg/kg dry	25.1	21.3	1				"		Χ
11141-16-5	Aroclor-1232	< 22.5	U	μg/kg dry	25.1	22.5	1				"		Χ
53469-21-9	Aroclor-1242	< 11.1	U	μg/kg dry	25.1	11.1	1			и	"		Х
12672-29-6	Aroclor-1248	45.1		μg/kg dry	25.1	13.6	1			н	"		Х
11097-69-1	Aroclor-1254 [2C]	123		μg/kg dry	25.1	14.9	1	п			"		Χ
11096-82-5	Aroclor-1260	26.3		μg/kg dry	25.1	17.9	1				"		Χ
37324-23-5	Aroclor-1262	< 13.6	U	μg/kg dry	25.1	13.6	1				"		Χ
11100-14-4	Aroclor-1268	< 24.6	U	μg/kg dry	25.1	24.6	1	п			"		Х
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	85			30-15	50 %		н	•	ı	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	100			30-15	50 %		н		"	"		
2051-24-3	Decachlorobiphenyl (Sr)	105			30-15	50 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	90			30-15	50 %		н		"	"		
General C	Chemistry Parameters												
	% Solids	78.5		%			1	SM2540 G Mod.	08-Oct-14	08-Oct-14	DT	1423765	

Sample Io SS-41 SB97664	dentification			<u>Client P</u> 14-0			<u>Matrix</u> Soil		ection Date 7-Oct-14 12			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
	ated Biphenyls by method SW846 3540C		GS1										
12674-11-2	Aroclor-1016	< 1120	U, D	μg/kg dry	1200	1120	50	SW846 8082A	08-Oct-14	10-Oct-14	IMR	1423784	Χ
11104-28-2	Aroclor-1221	< 1020	U, D	μg/kg dry	1200	1020	50	и		п	"		Χ
11141-16-5	Aroclor-1232	< 1070	U, D	μg/kg dry	1200	1070	50	п		u	"		Χ
53469-21-9	Aroclor-1242	< 531	U, D	μg/kg dry	1200	531	50	ı			"		Χ
12672-29-6	Aroclor-1248	19,700	D	μg/kg dry	1200	650	50	п		u	"		Χ
11097-69-1	Aroclor-1254	17,400	D	μg/kg dry	1200	754	50	п		u	"		Χ
11096-82-5	Aroclor-1260 [2C]	1,430	D	μg/kg dry	1200	1130	50	ı			"		Χ
37324-23-5	Aroclor-1262	< 648	U, D	μg/kg dry	1200	648	50	ı			"		Χ
11100-14-4	Aroclor-1268	< 1170	U, D	μg/kg dry	1200	1170	50	и		н	"		Х
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	0	S01, U		30-15	0 %		п		ı	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	0	S01, U		30-15	0 %		п		ı	"		
2051-24-3	Decachlorobiphenyl (Sr)	0	S01, U		30-15	i0 %		п			"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	0	S01, U		30-15	50 %				н	"		
General C	Chemistry Parameters												

08-Oct-14 08-Oct-14

DT

1423765

% Solids

Sample Id SS-42 SB97664	dentification			Client P			<u>Matrix</u> Soil		ection Date 7-Oct-14 12			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
	ated Biphenyls		GS1										
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 426	U, D	μg/kg dry	457	426	20	SW846 8082A	08-Oct-14	10-Oct-14	IMR	1423784	Χ
11104-28-2	Aroclor-1221	< 389	U, D	μg/kg dry	457	389	20			"	"		Χ
11141-16-5	Aroclor-1232	< 410	U, D	μg/kg dry	457	410	20				"		Χ
53469-21-9	Aroclor-1242	< 203	U, D	μg/kg dry	457	203	20	п		п	"		Χ
12672-29-6	Aroclor-1248	7,460	D	μg/kg dry	457	248	20				"		Χ
11097-69-1	Aroclor-1254 [2C]	7,400	D	μg/kg dry	457	272	20				"		Χ
11096-82-5	Aroclor-1260 [2C]	616	D	μg/kg dry	457	433	20				"		Χ
37324-23-5	Aroclor-1262	< 247	U, D	μg/kg dry	457	247	20				"		Χ
11100-14-4	Aroclor-1268	< 449	U, D	μg/kg dry	457	449	20	п			"		Х
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	100			30-15	0 %		н			"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	100			30-15	0 %		н			"		
2051-24-3	Decachlorobiphenyl (Sr)	100			30-15	0 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	100			30-15	50 %					"		
General C	Chemistry Parameters												

08-Oct-14 08-Oct-14

DT

1423765

% Solids

Sample Id SS-45 SB97664	dentification			<u>Client P</u> 14-0			<u>Matrix</u> Soil	·	ection Date 7-Oct-14 12			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC .											
	ated Biphenyls by method SW846 3540C		GS1										
12674-11-2	Aroclor-1016	< 450	U, D	μg/kg dry	482	450	20	SW846 8082A	08-Oct-14	10-Oct-14	IMR	1423784	Χ
11104-28-2	Aroclor-1221	< 410	U, D	μg/kg dry	482	410	20	ı		ıı	"		Χ
11141-16-5	Aroclor-1232	< 433	U, D	μg/kg dry	482	433	20	п		u	"		Χ
53469-21-9	Aroclor-1242	< 214	U, D	μg/kg dry	482	214	20			u	"		Χ
12672-29-6	Aroclor-1248	17,300	D	μg/kg dry	482	262	20			u	"		Χ
11097-69-1	Aroclor-1254	18,300	D	μg/kg dry	482	304	20			u	"		Χ
11096-82-5	Aroclor-1260 [2C]	1,520	D	μg/kg dry	482	457	20	н			"		Χ
37324-23-5	Aroclor-1262	< 261	U, D	μg/kg dry	482	261	20	н			"		Χ
11100-14-4	Aroclor-1268	< 474	U, D	μg/kg dry	482	474	20			ıı	"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	100			30-15	0 %				н	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	100			30-15	0 %				н	"		
2051-24-3	Decachlorobiphenyl (Sr)	100			30-15	0 %		н			"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	100			30-15	0 %				н	"		
General C	Chemistry Parameters												

08-Oct-14 08-Oct-14

DT

1423766

% Solids

Sample Io SS-39 SB97664	dentification			<u>Client P</u> 14-0			<u>Matrix</u> Soil		ection Date '-Oct-14 13			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC .											
	ated Biphenyls by method SW846 3540C												
12674-11-2	Aroclor-1016	< 22.8	U	μg/kg dry	24.5	22.8	1	SW846 8082A	08-Oct-14	10-Oct-14	IMR	1423784	Χ
11104-28-2	Aroclor-1221	< 20.8	U	μg/kg dry	24.5	20.8	1						Χ
11141-16-5	Aroclor-1232	< 22.0	U	μg/kg dry	24.5	22.0	1						Χ
53469-21-9	Aroclor-1242	< 10.9	U	μg/kg dry	24.5	10.9	1						Χ
12672-29-6	Aroclor-1248 [2C]	207		μg/kg dry	24.5	13.4	1				"		Χ
11097-69-1	Aroclor-1254 [2C]	487		μg/kg dry	24.5	14.6	1				"		Χ
11096-82-5	Aroclor-1260 [2C]	77.1		μg/kg dry	24.5	23.2	1				"		Χ
37324-23-5	Aroclor-1262	< 13.3	U	μg/kg dry	24.5	13.3	1				"		Χ
11100-14-4	Aroclor-1268	< 24.0	U	μg/kg dry	24.5	24.0	1				"		Х
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	85			30-15	0 %					"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	90			30-15	0 %				ı	"		
2051-24-3	Decachlorobiphenyl (Sr)	100			30-15	0 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	85			30-15	0 %		•			II		
General C	Chemistry Parameters												
	% Solids	78.8		%			1	SM2540 G Mod.	08-Oct-14	08-Oct-14	DT	1423766	

<u>Sample 10</u> SS-46 SB97664	-12			<u>Client P</u> 14-0			<u>Matrix</u> Soil	-	r-Oct-14 13			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	ЭC											
	ated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 25.6	U	μg/kg dry	27.4	25.6	1	SW846 8082A	08-Oct-14	10-Oct-14	IMR	1423784	Χ
11104-28-2	Aroclor-1221	< 23.3	U	μg/kg dry	27.4	23.3	1				"		Χ
11141-16-5	Aroclor-1232	< 24.6	U	μg/kg dry	27.4	24.6	1				"		Χ
53469-21-9	Aroclor-1242	< 12.2	U	μg/kg dry	27.4	12.2	1				"		Х
12672-29-6	Aroclor-1248	194		μg/kg dry	27.4	14.9	1				"		Χ
11097-69-1	Aroclor-1254 [2C]	333	Р	μg/kg dry	27.4	16.3	1	п					Χ
11096-82-5	Aroclor-1260	60.3		μg/kg dry	27.4	19.6	1				"		Χ
37324-23-5	Aroclor-1262	< 14.8	U	μg/kg dry	27.4	14.8	1	п					Х
11100-14-4	Aroclor-1268	< 26.9	U	μg/kg dry	27.4	26.9	1	п		п	"		Х
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	105			30-15	0 %		и		п	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	105			30-15	0 %		н		ı	"		
2051-24-3	Decachlorobiphenyl (Sr)	135			30-15	0 %				н	"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	90			30-15	0 %		н		н	"		
General C	Chemistry Parameters												
	% Solids	72.2		%			1	SM2540 G Mod.	08-Oct-14	08-Oct-14	DT	1423766	

Sample Id SS-51 SB97664	dentification			<u>Client P</u> 14-0			<u>Matrix</u> Soil		ection Date. 7-Oct-14 13			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	БС											
	ated Biphenyls by method SW846 3540C		GS1										
12674-11-2	Aroclor-1016	< 2420	U, D	μg/kg dry	2590	2420	100	SW846 8082A	08-Oct-14	10-Oct-14	IMR	1423784	Χ
11104-28-2	Aroclor-1221	< 2200	U, D	μg/kg dry	2590	2200	100	п			"		Χ
11141-16-5	Aroclor-1232	< 2330	U, D	μg/kg dry	2590	2330	100			н	"		Χ
53469-21-9	Aroclor-1242	< 1150	U, D	μg/kg dry	2590	1150	100			н	"		Χ
12672-29-6	Aroclor-1248	78,000	D	μg/kg dry	2590	1410	100			н	"		Χ
11097-69-1	Aroclor-1254 [2C]	54,500	D	μg/kg dry	2590	1550	100			н	"		Χ
11096-82-5	Aroclor-1260 [2C]	5,440	D	μg/kg dry	2590	2460	100			н	"		Χ
37324-23-5	Aroclor-1262	< 1400	U, D	μg/kg dry	2590	1400	100			н	"		Χ
11100-14-4	Aroclor-1268	< 2550	U, D	μg/kg dry	2590	2550	100	п			"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	0	S01, U		30-15	0 %		п			"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	0	S01, U		30-15	0 %		п			"		
2051-24-3	Decachlorobiphenyl (Sr)	0	S01, U		30-15	0 %		п			"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	0	S01, U		30-15	0 %		· ·			"		

08-Oct-14 08-Oct-14

DT

1423766

General Chemistry Parameters
% Solids

Sample I SS-54 SB97664	dentification			<u>Client P</u> 14-0			<u>Matrix</u> Soil	-	ection Date 7-Oct-14 13			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
	ated Biphenyls by method SW846 3540C												
12674-11-2	Aroclor-1016	< 23.1	U	μg/kg dry	24.7	23.1	1	SW846 8082A	08-Oct-14	10-Oct-14	IMR	1423784	Χ
11104-28-2	Aroclor-1221	< 21.1	U	μg/kg dry	24.7	21.1	1	п		п	"		Χ
11141-16-5	Aroclor-1232	< 22.2	U	μg/kg dry	24.7	22.2	1				"		Χ
53469-21-9	Aroclor-1242	< 11.0	U	μg/kg dry	24.7	11.0	1				"		Χ
12672-29-6	Aroclor-1248 [2C]	55.7		μg/kg dry	24.7	13.6	1				"		Χ
11097-69-1	Aroclor-1254	79.2		μg/kg dry	24.7	15.6	1				"		Χ
11096-82-5	Aroclor-1260	< 17.7	U	μg/kg dry	24.7	17.7	1				"		Χ
37324-23-5	Aroclor-1262	< 13.4	U	μg/kg dry	24.7	13.4	1				"		Χ
11100-14-4	Aroclor-1268	< 24.3	U	μg/kg dry	24.7	24.3	1	и			"		Χ
Surrogate re	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	95			30-15	0 %		и		ı	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	95			30-15	0 %		п			"		
2051-24-3	Decachlorobiphenyl (Sr)	105			30-15	0 %		п			"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	85			30-15	0 %		n.			"		
General C	Chemistry Parameters												
	% Solids	79.0		%			1	SM2540 G Mod.	08-Oct-14	08-Oct-14	DT	1423766	

Sample Io SS-47 SB97664	dentification			Client P			<u>Matrix</u> Soil	-	ection Date 7-Oct-14 13			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
Polychlorina	ated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 23.8	U	μg/kg dry	25.5	23.8	1	SW846 8082A	08-Oct-14	10-Oct-14	IMR	1423784	Χ
11104-28-2	Aroclor-1221	< 21.7	U	μg/kg dry	25.5	21.7	1			п	"		Χ
11141-16-5	Aroclor-1232	< 22.9	U	μg/kg dry	25.5	22.9	1				"		Χ
53469-21-9	Aroclor-1242	< 11.3	U	μg/kg dry	25.5	11.3	1	п		"	"		Χ
12672-29-6	Aroclor-1248	< 13.9	U	μg/kg dry	25.5	13.9	1				"		Χ
11097-69-1	Aroclor-1254 [2C]	20.4	J	μg/kg dry	25.5	15.2	1				"		Χ
11096-82-5	Aroclor-1260	< 18.3	U	μg/kg dry	25.5	18.3	1	и			"		Χ
37324-23-5	Aroclor-1262	< 13.8	U	μg/kg dry	25.5	13.8	1	и			"		Χ
11100-14-4	Aroclor-1268	< 25.1	U	μg/kg dry	25.5	25.1	1	п			"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	85			30-15	50 %		н			"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	90			30-15	50 %		as .			"		
2051-24-3	Decachlorobiphenyl (Sr)	100			30-15	50 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	80			30-15	50 %		as .	•		"		
General C	Chemistry Parameters												
	% Solids	78.2		%			1	SM2540 G Mod.	08-Oct-14	08-Oct-14	DT	1423766	

11104-28-2	Sample Id SS-43 SB97664-	dentification			Client P			<u>Matrix</u> Soil	·	ection Date 7-Oct-14 13			ceived Oct-14	
Polychloriated Biphenyls Prepared by method SW846 3540C	CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Prepared by method SW846 3540C	Semivolati	ile Organic Compounds by G	ЭC											
11104-28-2	•													
11141-16-5 Aroclor-1232 < 23.4 U	2674-11-2	Aroclor-1016	< 24.3	U	μg/kg dry	26.1	24.3	1	SW846 8082A	08-Oct-14	10-Oct-14	IMR	1423784	Χ
Sade Parameters Sade	1104-28-2	Aroclor-1221	< 22.2	U	μg/kg dry	26.1	22.2	1	п			"		Χ
12672-296	1141-16-5	Aroclor-1232	< 23.4	U	μg/kg dry	26.1	23.4	1	п		п	"		Х
11097-69-1 Aroclor-1254 [2C] 117 yg/kg dry 26.1 15.5 1 " " " " " " " " "	3469-21-9	Aroclor-1242	< 11.6	U	μg/kg dry	26.1	11.6	1	п		п	"		Х
11097-95-1 Aroclor-1264 2C 117	2672-29-6	Aroclor-1248	112		μg/kg dry	26.1	14.2	1	п		п	•		Х
Aroclor-1260 As-6 pg/kg dry 26.1 24.7 1	1097-69-1	Aroclor-1254 [2C]	117		μg/kg dry	26.1	15.5	1			ıı	"		Х
Arodor-1262	1096-82-5	Aroclor-1260 [2C]	45.6		μg/kg dry	26.1	24.7	1				"		Χ
Surrogate recoveries: 10386-84-2	7324-23-5	Aroclor-1262	< 14.1	U	μg/kg dry	26.1	14.1	1	п		п	•		Х
10386-84-2 (Sr) 4,4-DB-Octafluorobiphenyl (Sr) 95 30-150 % "	1100-14-4	Aroclor-1268	< 25.6	U	μg/kg dry	26.1	25.6	1	п			"		Χ
10386-84-2	Surrogate rec	overies:												
105 30-150 %	0386-84-2		95			30-15	50 %		и	•	ı	"		
2051-24-3 Decachlorobiphenyl (Sr) 85 30-150 % General Chemistry Parameters	0386-84-2		105			30-15	50 %		н			"		
[2C] General Chemistry Parameters	051-24-3	Decachlorobiphenyl (Sr)	105			30-15	50 %		п		п	•		
·	051-24-3		85			30-15	50 %		н		"	"		
% Solids 76.1 % 1 SM2540 G Mod 08-Oct-14 08-Oct-14 DT 1	General C	hemistry Parameters												
70 Contact 1 Miles 10 Contact 1 Miles 10 Contact 1 Miles 10 Contact 1 Miles 10 Contact 1 Miles 1 Miles 1 Miles 10 Contact 1 Miles 1 Mi		% Solids	76.1		%			1	SM2540 G Mod.	08-Oct-14	08-Oct-14	DT	1423766	

Sample Io SS-40 SB97664	-17			Client P			<u>Matrix</u> Soil	-	ection Date 7-Oct-14 13			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
	ated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 25.3	U	μg/kg dry	27.1	25.3	1	SW846 8082A	08-Oct-14	10-Oct-14	IMR	1423784	Χ
11104-28-2	Aroclor-1221	< 23.1	U	μg/kg dry	27.1	23.1	1				"		Χ
11141-16-5	Aroclor-1232	< 24.4	U	μg/kg dry	27.1	24.4	1				"		Χ
53469-21-9	Aroclor-1242	< 12.1	U	μg/kg dry	27.1	12.1	1			и	•		Х
12672-29-6	Aroclor-1248	< 14.8	U	μg/kg dry	27.1	14.8	1			н	"		Χ
11097-69-1	Aroclor-1254 [2C]	35.3		μg/kg dry	27.1	16.2	1	п			"		Х
11096-82-5	Aroclor-1260	< 19.4	U	μg/kg dry	27.1	19.4	1				"		Х
37324-23-5	Aroclor-1262	< 14.7	U	μg/kg dry	27.1	14.7	1				"		Χ
11100-14-4	Aroclor-1268	< 26.7	U	μg/kg dry	27.1	26.7	1	п			"		Х
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	105			30-15	50 %		п			"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	105			30-15	50 %		н		"	"		
2051-24-3	Decachlorobiphenyl (Sr)	115			30-15	50 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	80			30-15	50 %		н		"	"		
General C	Chemistry Parameters												
	% Solids	72.8		%			1	SM2540 G Mod.	08-Oct-14	08-Oct-14	DT	1423766	

Sample II SS-38 SB97664	dentification			<u>Client P</u> 14-0			<u>Matrix</u> Soil	· · · · · · · · · · · · · · · · · · ·	ection Date 7-Oct-14 13			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC .											
	ated Biphenyls by method SW846 3540C		GS1										
12674-11-2	Aroclor-1016	< 1090	U, D	μg/kg dry	1170	1090	50	SW846 8082A	08-Oct-14	10-Oct-14	IMR	1423784	Χ
11104-28-2	Aroclor-1221	< 996	U, D	μg/kg dry	1170	996	50				"		Χ
11141-16-5	Aroclor-1232	< 1050	U, D	μg/kg dry	1170	1050	50				"		Χ
53469-21-9	Aroclor-1242	< 520	U, D	μg/kg dry	1170	520	50				"		Х
12672-29-6	Aroclor-1248 [2C]	44,800	D	μg/kg dry	1170	641	50	ı			"		Х
11097-69-1	Aroclor-1254 [2C]	39,300	D	μg/kg dry	1170	698	50	п			"		Χ
11096-82-5	Aroclor-1260 [2C]	3,330	D	μg/kg dry	1170	1110	50				"		Х
37324-23-5	Aroclor-1262	< 634	U, D	μg/kg dry	1170	634	50				"		Х
11100-14-4	Aroclor-1268	< 1150	U, D	μg/kg dry	1170	1150	50	ı			"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	0	S01, U		30-15	0 %		п			"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	0	S01, U		30-15	0 %		п			"		
2051-24-3	Decachlorobiphenyl (Sr)	0	S01, U		30-15	0 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	0	S01, U		30-15	0 %		п		н	"		
General C	Chemistry Parameters												

08-Oct-14 08-Oct-14

DT

1423766

% Solids

Sample Io SS-37 SB97664	dentification			<u>Client P</u> 14-0			<u>Matrix</u> Soil		ection Date 7-Oct-14 14			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC .											
	ated Biphenyls by method SW846 3540C		GS1										
12674-11-2	Aroclor-1016	< 1030	U, D	μg/kg dry	1100	1030	50	SW846 8082A	08-Oct-14	10-Oct-14	IMR	1423784	Χ
11104-28-2	Aroclor-1221	< 939	U, D	μg/kg dry	1100	939	50	II .			"		Χ
11141-16-5	Aroclor-1232	< 992	U, D	μg/kg dry	1100	992	50	и			"		Χ
53469-21-9	Aroclor-1242	< 491	U, D	μg/kg dry	1100	491	50	п			"		Χ
12672-29-6	Aroclor-1248 [2C]	54,300	D	μg/kg dry	1100	605	50	п			"		Χ
11097-69-1	Aroclor-1254 [2C]	46,000	D	μg/kg dry	1100	658	50	п			"		Χ
11096-82-5	Aroclor-1260 [2C]	4,080	D	μg/kg dry	1100	1050	50	ı			"		Χ
37324-23-5	Aroclor-1262	< 598	U, D	μg/kg dry	1100	598	50	ı			"		Χ
11100-14-4	Aroclor-1268	< 1080	U, D	μg/kg dry	1100	1080	50	и			"		Х
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	0	S01, U		30-15	0 %					"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	0	S01, U		30-15	0 %					"		
2051-24-3	Decachlorobiphenyl (Sr)	0	S01, U		30-15	i0 %		ı			"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	0	S01, U		30-15	50 %					"		
General C	Chemistry Parameters												

08-Oct-14 08-Oct-14

DT

1423766

% Solids

Sample Io SS-57 SB97664	dentification -20			Client P	<u>Project #</u> 091		<u>Matrix</u> Soil		ection Date 7-Oct-14 14			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	tile Organic Compounds by C	GC											
	ated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 19.3	U	μg/kg dry	20.6	19.3	1	SW846 8082A	08-Oct-14	10-Oct-14	IMR	1423784	Χ
11104-28-2	Aroclor-1221	< 17.6	U	μg/kg dry	20.6	17.6	1	п		н	"		Χ
11141-16-5	Aroclor-1232	< 18.5	U	μg/kg dry	20.6	18.5	1			u	"		Χ
53469-21-9	Aroclor-1242	< 9.17	U	μg/kg dry	20.6	9.17	1			п	"		Χ
12672-29-6	Aroclor-1248	< 11.2	U	μg/kg dry	20.6	11.2	1			н	"		Χ
11097-69-1	Aroclor-1254 [2C]	25.8		μg/kg dry	20.6	12.3	1	п		и	"		Χ
11096-82-5	Aroclor-1260	< 14.8	U	μg/kg dry	20.6	14.8	1	п		u	"		Χ
37324-23-5	Aroclor-1262	< 11.2	U	μg/kg dry	20.6	11.2	1	п		u	"		Χ
11100-14-4	Aroclor-1268	< 20.3	U	μg/kg dry	20.6	20.3	1	п			"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	100			30-15	50 %		н	•	ı	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	105			30-15	50 %		н		ıı	"		
2051-24-3	Decachlorobiphenyl (Sr)	110			30-15	50 %				н	"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	85			30-15	50 %		11	•	ı	"		
General C	Chemistry Parameters												
	% Solids	93.3		%			1	SM2540 G Mod.	08-Oct-14	08-Oct-14	DT	1423766	

Sample Io SS-58 SB97664	-21			Client P			<u>Matrix</u> Soil		ection Date 7-Oct-14 14			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	ЭC											
Polychlorina	ated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 21.3	U	μg/kg dry	22.8	21.3	1	SW846 8082A	08-Oct-14	09-Oct-14	IMR	1423786	Χ
11104-28-2	Aroclor-1221	< 19.4	U	μg/kg dry	22.8	19.4	1				"		Χ
11141-16-5	Aroclor-1232	< 20.5	U	μg/kg dry	22.8	20.5	1				"		Χ
53469-21-9	Aroclor-1242	< 10.1	U	μg/kg dry	22.8	10.1	1	п		п	"		Χ
12672-29-6	Aroclor-1248	< 12.4	U	μg/kg dry	22.8	12.4	1				"		Χ
11097-69-1	Aroclor-1254	< 14.4	U	μg/kg dry	22.8	14.4	1			и	"		Х
11096-82-5	Aroclor-1260	< 16.3	U	μg/kg dry	22.8	16.3	1			u	"		Х
37324-23-5	Aroclor-1262	< 12.3	U	μg/kg dry	22.8	12.3	1			"	"		Х
11100-14-4	Aroclor-1268	< 22.4	U	μg/kg dry	22.8	22.4	1	ı			"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	90			30-15	i0 %					"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	100			30-15	0 %		н		ı	"		
2051-24-3	Decachlorobiphenyl (Sr)	95			30-15	0 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	75			30-15	50 %		п		н	"		
General C	Chemistry Parameters												
	% Solids	86.3		%			1	SM2540 G Mod.	08-Oct-14	08-Oct-14	DT	1423766	

Sample Io SS-56 SB97664	dentification -22			<u>Client P</u> 14-0			<u>Matrix</u> Soil	-	ection Date 7-Oct-14 14			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
Polychlorina	ated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 20.3	U	μg/kg dry	21.8	20.3	1	SW846 8082A	08-Oct-14	09-Oct-14	IMR	1423786	Χ
11104-28-2	Aroclor-1221	< 18.5	U	μg/kg dry	21.8	18.5	1	н		"	•		Χ
11141-16-5	Aroclor-1232	< 19.6	U	μg/kg dry	21.8	19.6	1				"		Χ
53469-21-9	Aroclor-1242	< 9.68	U	μg/kg dry	21.8	9.68	1				"		Х
12672-29-6	Aroclor-1248	< 11.8	U	μg/kg dry	21.8	11.8	1				"		Х
11097-69-1	Aroclor-1254	< 27.5	R01, U	μg/kg dry	43.6	27.5	1				•		Х
11096-82-5	Aroclor-1260	< 15.6	U	μg/kg dry	21.8	15.6	1				"		Χ
37324-23-5	Aroclor-1262	< 11.8	U	μg/kg dry	21.8	11.8	1				"		Χ
11100-14-4	Aroclor-1268	< 21.4	U	μg/kg dry	21.8	21.4	1	ı			"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	100			30-15	50 %					"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	100			30-15	50 %		н			"		
2051-24-3	Decachlorobiphenyl (Sr)	110			30-15	50 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	85			30-15	50 %		н	•		"		
General C	Chemistry Parameters												
	% Solids	90.7		%			1	SM2540 G Mod.	08-Oct-14	08-Oct-14	DT	1423766	

Sample 16 SS-60 SB97664	-23			Client P			<u>Matrix</u> Soil	-	ection Date 7-Oct-14 14			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
	ated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 20.5	U	μg/kg dry	22.0	20.5	1	SW846 8082A	08-Oct-14	09-Oct-14	IMR	1423786	Χ
11104-28-2	Aroclor-1221	< 18.7	U	μg/kg dry	22.0	18.7	1				"		Χ
11141-16-5	Aroclor-1232	< 19.7	U	μg/kg dry	22.0	19.7	1	п		"	"		Χ
53469-21-9	Aroclor-1242	< 9.76	U	μg/kg dry	22.0	9.76	1				"		Х
12672-29-6	Aroclor-1248	< 11.9	U	μg/kg dry	22.0	11.9	1				"		Χ
11097-69-1	Aroclor-1254	< 13.9	U	μg/kg dry	22.0	13.9	1	и			"		Χ
11096-82-5	Aroclor-1260	< 15.7	U	μg/kg dry	22.0	15.7	1				"		Χ
37324-23-5	Aroclor-1262	< 11.9	U	μg/kg dry	22.0	11.9	1	п			"		Х
11100-14-4	Aroclor-1268	< 21.6	U	μg/kg dry	22.0	21.6	1	п			"		Х
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	90			30-15	0 %		н	•		"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	90			30-15	0 %		н			"		
2051-24-3	Decachlorobiphenyl (Sr)	100			30-15	i0 %		п		п	"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	75			30-15	0 %		п			"		
General C	Chemistry Parameters												
	% Solids	88.7		%			1	SM2540 G Mod.	08-Oct-14	08-Oct-14	DT	1423766	

Sample Io SS-59 SB97664	dentification -24			Client P	-		<u>Matrix</u> Soil		ection Date 7-Oct-14 14			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
	ated Biphenyls by method SW846 3540C												
12674-11-2	Aroclor-1016	< 21.5	U	μg/kg dry	23.0	21.5	1	SW846 8082A	08-Oct-14	09-Oct-14	IMR	1423786	Х
11104-28-2	Aroclor-1221	< 19.6	U	μg/kg dry	23.0	19.6	1			п	"		Χ
11141-16-5	Aroclor-1232	< 20.7	U	μg/kg dry	23.0	20.7	1				"		Х
53469-21-9	Aroclor-1242	< 10.2	U	μg/kg dry	23.0	10.2	1			п	"		Χ
12672-29-6	Aroclor-1248	619		μg/kg dry	23.0	12.5	1				"		Х
11097-69-1	Aroclor-1254 [2C]	974		μg/kg dry	23.0	13.7	1				"		Х
11096-82-5	Aroclor-1260 [2C]	87.5		μg/kg dry	23.0	21.8	1				"		Х
37324-23-5	Aroclor-1262	< 12.5	U	μg/kg dry	23.0	12.5	1				"		Х
11100-14-4	Aroclor-1268	< 22.6	U	μg/kg dry	23.0	22.6	1				"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	85			30-15	0 %					"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	85			30-15	0 %		•			II		
2051-24-3	Decachlorobiphenyl (Sr)	85			30-15	0 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	75			30-15	0 %		•			II		
General C	Chemistry Parameters												
	% Solids	86.4		%			1	SM2540 G Mod.	08-Oct-14	08-Oct-14	DT	1423766	

Sample Io SS-61 SB97664	dentification -25			Client P	<u>roject #</u> 091		<u>Matrix</u> Soil		ection Date 7-Oct-14 15			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
	ted Biphenyls by method SW846 3540C												
12674-11-2	Aroclor-1016	< 18.9	U	μg/kg dry	20.2	18.9	1	SW846 8082A	08-Oct-14	09-Oct-14	IMR	1423786	Χ
11104-28-2	Aroclor-1221	< 17.2	U	μg/kg dry	20.2	17.2	1			"	"		Χ
11141-16-5	Aroclor-1232	< 18.2	U	μg/kg dry	20.2	18.2	1	п		"	"		Χ
53469-21-9	Aroclor-1242	< 8.98	U	μg/kg dry	20.2	8.98	1	н			"		Χ
12672-29-6	Aroclor-1248	< 11.0	U	μg/kg dry	20.2	11.0	1	и		u	"		Χ
11097-69-1	Aroclor-1254	< 12.7	U	μg/kg dry	20.2	12.7	1	и		u	"		Χ
11096-82-5	Aroclor-1260	< 14.5	U	μg/kg dry	20.2	14.5	1				"		Χ
37324-23-5	Aroclor-1262	< 11.0	U	μg/kg dry	20.2	11.0	1	п			"		Χ
11100-14-4	Aroclor-1268	< 19.9	U	μg/kg dry	20.2	19.9	1	п		"	"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	95			30-15	50 %		п		н	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	90			30-15	50 %		п		н	"		
2051-24-3	Decachlorobiphenyl (Sr)	95			30-15	50 %		п			"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	75			30-15	50 %		п		н	"		
General C	Chemistry Parameters												

08-Oct-14 08-Oct-14

DT

1423766

% Solids

SS-62 SB97664	-26			<u>Client P</u> 14-0			<u>Matrix</u> Soil	· · · · · · · · · · · · · · · · · · ·	ection Date 7-Oct-14 15			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
	tted Biphenyls by method SW846 3540C												
12674-11-2	Aroclor-1016	< 20.1	U	μg/kg dry	21.5	20.1	1	SW846 8082A	08-Oct-14	09-Oct-14	IMR	1423786	Х
11104-28-2	Aroclor-1221	< 18.3	U	μg/kg dry	21.5	18.3	1				"		Х
11141-16-5	Aroclor-1232	< 19.3	U	μg/kg dry	21.5	19.3	1				"		Χ
53469-21-9	Aroclor-1242	< 9.57	U	μg/kg dry	21.5	9.57	1				"		Χ
12672-29-6	Aroclor-1248	< 11.7	U	μg/kg dry	21.5	11.7	1				"		Χ
11097-69-1	Aroclor-1254	< 13.6	U	μg/kg dry	21.5	13.6	1				"		Χ
11096-82-5	Aroclor-1260	< 15.4	U	μg/kg dry	21.5	15.4	1				"		Х
37324-23-5	Aroclor-1262	< 11.7	U	μg/kg dry	21.5	11.7	1				"		Х
11100-14-4	Aroclor-1268	< 21.2	U	μg/kg dry	21.5	21.2	1				"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	90			30-15	50 %		•			"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	105			30-15	50 %		•			"		
2051-24-3	Decachlorobiphenyl (Sr)	90			30-15	50 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	75			30-15	50 %				п	"		

08-Oct-14 08-Oct-14

DT

1423766

% Solids

SS-66 SB97664	dentification -27			<u>Client P</u> 14-0			<u>Matrix</u> Soil	-	ection Date 7-Oct-14 15			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC .											
	ated Biphenyls		R01										
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 40.3	U	μg/kg dry	43.2	40.3	1	SW846 8082A	08-Oct-14	10-Oct-14	IMR	1423786	Χ
11104-28-2	Aroclor-1221	< 36.7	U	μg/kg dry	43.2	36.7	1				"		Χ
11141-16-5	Aroclor-1232	< 38.8	U	μg/kg dry	43.2	38.8	1				"		Χ
53469-21-9	Aroclor-1242	< 19.2	U	μg/kg dry	43.2	19.2	1			п	"		Χ
12672-29-6	Aroclor-1248	< 23.5	U	μg/kg dry	43.2	23.5	1			н	"		Х
11097-69-1	Aroclor-1254	< 27.2	U	μg/kg dry	43.2	27.2	1			н	"		Х
11096-82-5	Aroclor-1260	< 30.9	U	μg/kg dry	43.2	30.9	1				"		Х
37324-23-5	Aroclor-1262	< 23.4	U	μg/kg dry	43.2	23.4	1				"		Х
11100-14-4	Aroclor-1268	< 42.4	U	μg/kg dry	43.2	42.4	1	п			"		Х
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	100			30-15	50 %				н	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	120			30-15	50 %				н	"		
2051-24-3	Decachlorobiphenyl (Sr)	110			30-15	50 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	85			30-15	50 %		п			"		

08-Oct-14 08-Oct-14

DT

1423766

% Solids

Sample Id SS-65 SB97664	dentification			<u>Client P</u> 14-0			<u>Matrix</u> Soil	-	ection Date 7-Oct-14 15			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	tile Organic Compounds by C	GC											
Polychlorina	ated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 40.4	R01, U	μg/kg dry	43.2	40.4	1	SW846 8082A	08-Oct-14	10-Oct-14	IMR	1423786	Χ
11104-28-2	Aroclor-1221	< 36.8	R01, U	μg/kg dry	43.2	36.8	1				"		Χ
11141-16-5	Aroclor-1232	< 38.9	R01, U	μg/kg dry	43.2	38.9	1	н		"	"		Χ
53469-21-9	Aroclor-1242	< 19.2	R01, U	μg/kg dry	43.2	19.2	1				•		Χ
12672-29-6	Aroclor-1248	< 23.5	R01, U	μg/kg dry	43.2	23.5	1				"		Χ
11097-69-1	Aroclor-1254 [2C]	74.6		μg/kg dry	21.6	12.9	1	п			"		Χ
11096-82-5	Aroclor-1260 [2C]	< 20.5	U	μg/kg dry	21.6	20.5	1				"		Χ
37324-23-5	Aroclor-1262	< 11.7	U	μg/kg dry	21.6	11.7	1				"		Χ
11100-14-4	Aroclor-1268	< 21.3	U	μg/kg dry	21.6	21.3	1	ı			"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	100			30-15	50 %			•		"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	105			30-15	50 %		н			"		
2051-24-3	Decachlorobiphenyl (Sr)	115			30-15	50 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	135			30-15	50 %		н			"		
General C	Chemistry Parameters												
	% Solids	92.2		%			1	SM2540 G Mod.	08-Oct-14	08-Oct-14	DT	1423766	

Sample I SS-63 SB97664	dentification -29			Client P			<u>Matrix</u> Soil	-	ection Date 7-Oct-14 15			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
	ated Biphenyls by method SW846 3540C												
12674-11-2	Aroclor-1016	< 21.1	U	μg/kg dry	22.6	21.1	1	SW846 8082A	08-Oct-14	09-Oct-14	IMR	1423786	Χ
11104-28-2	Aroclor-1221	< 19.2	U	μg/kg dry	22.6	19.2	1	п		п	"		Χ
11141-16-5	Aroclor-1232	< 20.3	U	μg/kg dry	22.6	20.3	1				"		Χ
53469-21-9	Aroclor-1242	< 10.0	U	μg/kg dry	22.6	10.0	1				"		Χ
12672-29-6	Aroclor-1248 [2C]	28.2		μg/kg dry	22.6	12.4	1				"		Χ
11097-69-1	Aroclor-1254 [2C]	65.5		μg/kg dry	22.6	13.5	1				"		Χ
11096-82-5	Aroclor-1260 [2C]	< 21.4	U	μg/kg dry	22.6	21.4	1	п			"		Х
37324-23-5	Aroclor-1262	< 12.2	U	μg/kg dry	22.6	12.2	1				"		Χ
11100-14-4	Aroclor-1268	< 22.2	U	μg/kg dry	22.6	22.2	1	и			"		Χ
Surrogate re	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	95			30-15	0 %		u			"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	100			30-15	0 %		п			"		
2051-24-3	Decachlorobiphenyl (Sr)	100			30-15	0 %		п		п	"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	85			30-15	0 %		п			"		
General C	Chemistry Parameters												
	% Solids	87.3		%			1	SM2540 G Mod.	08-Oct-14	08-Oct-14	DT	1423766	

Sample Id SS-64 SB97664	dentification			Client P			<u>Matrix</u> Soil	-	ection Date 7-Oct-14 15			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	ЭC											
	ated Biphenyls by method SW846 3540C												
12674-11-2	Aroclor-1016	< 20.8	U	μg/kg dry	22.3	20.8	1	SW846 8082A	08-Oct-14	09-Oct-14	IMR	1423786	Χ
11104-28-2	Aroclor-1221	< 19.0	U	μg/kg dry	22.3	19.0	1	п			"		Χ
11141-16-5	Aroclor-1232	< 20.0	U	μg/kg dry	22.3	20.0	1	п			"		Χ
53469-21-9	Aroclor-1242	< 9.91	U	μg/kg dry	22.3	9.91	1	п			"		Χ
12672-29-6	Aroclor-1248	< 12.1	U	μg/kg dry	22.3	12.1	1	п			"		Χ
11097-69-1	Aroclor-1254	< 14.1	U	μg/kg dry	22.3	14.1	1	п			"		Χ
11096-82-5	Aroclor-1260	< 16.0	U	μg/kg dry	22.3	16.0	1	п			"		Χ
37324-23-5	Aroclor-1262	< 12.1	U	μg/kg dry	22.3	12.1	1	п			"		Χ
11100-14-4	Aroclor-1268	< 21.9	U	μg/kg dry	22.3	21.9	1	и			"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	95			30-15	0 %		н		п	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	95			30-15	0 %		п			"		
2051-24-3	Decachlorobiphenyl (Sr)	90			30-15	0 %		п			"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	75			30-15	0 %		u .		ı	"		
General C	Chemistry Parameters												
	% Solids	85.7		%			1	SM2540 G Mod.	08-Oct-14	08-Oct-14	DT	1423767	

Semivolatile Organic Compounds by GC - Quality Control

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPE Limi
atch 1423784 - SW846 3540C										
Blank (1423784-BLK1)					Prep	ared: 08-Oct	-14 Analyzed:	10-Oct-14		
Aroclor-1016	< 18.3	U	μg/kg wet	18.3			-			
Aroclor-1016 [2C]	< 12.7	U	μg/kg wet	12.7						
Aroclor-1221	< 16.7	U	μg/kg wet	16.7						
Aroclor-1221 [2C]	< 14.4	U	μg/kg wet	14.4						
Aroclor-1232	< 17.6	U	μg/kg wet	17.6						
Aroclor-1232 [2C]	< 15.1	U	μg/kg wet	15.1						
Aroclor-1242	< 8.70	U	μg/kg wet	8.70						
Aroclor-1242 [2C]	< 15.3	U	μg/kg wet	15.3						
Aroclor-1248	< 10.6	U	μg/kg wet	10.6						
Aroclor-1248 [2C]	< 10.7	U	μg/kg wet	10.7						
Aroclor-1254	< 12.4	U	μg/kg wet	12.4						
Aroclor-1254 [2C]	< 11.7	U	μg/kg wet	11.7						
Aroclor-1260	< 14.0	U	μg/kg wet	14.0						
Aroclor-1260 [2C]	< 18.6	U	μg/kg wet	18.6						
Aroclor-1262	< 10.6	U	μg/kg wet	10.6						
Aroclor-1262 [2C]	< 9.79	U	μg/kg wet	9.79						
Aroclor-1268	< 19.2	U	μg/kg wet	19.2						
Aroclor-1268 [2C]	< 18.8	U	μg/kg wet	18.8						
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	16.6		μg/kg wet		19.6		85	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	17.6		μg/kg wet		19.6		90	30-150		
Surrogate: Decachlorobiphenyl (Sr)	18.6		μg/kg wet		19.6		95	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	15.7		μg/kg wet		19.6		80	30-150		
LCS (1423784-BS1)					Prep	ared: 08-Oct	-14 Analyzed:	10-Oct-14		
Aroclor-1016	217		μg/kg wet	18.4	246		88	40-140		
Aroclor-1016 [2C]	216		μg/kg wet	12.7	246		88	40-140		
Aroclor-1260	201		μg/kg wet	14.1	246		82	40-140		
Aroclor-1260 [2C]	199		μg/kg wet	18.6	246		81	40-140		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	17.7		μg/kg wet		19.7		90	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	18.7		μg/kg wet		19.7		95	30-150		
Surrogate: Decachlorobiphenyl (Sr)	19.7		μg/kg wet		19.7		100	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	16.7		μg/kg wet		19.7		85	30-150		
LCS Dup (1423784-BSD1)					Prep	ared: 08-Oct	-14 Analyzed:	10-Oct-14		
Aroclor-1016	215		μg/kg wet	18.3	244		88	40-140	0.5	30
Aroclor-1016 [2C]	212		μg/kg wet	12.7	244		87	40-140	1	30
Aroclor-1260	197		μg/kg wet	14.0	244		81	40-140	1	30
Aroclor-1260 [2C]	194		μg/kg wet	18.5	244		80	40-140	1	30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	17.6		μg/kg wet		19.5		90	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	18.6		μg/kg wet		19.5		95	30-150		
Surrogate: Decachlorobiphenyl (Sr)	19.5		μg/kg wet		19.5		100	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	16.6		μg/kg wet		19.5		85	30-150		
<u>Duplicate (1423784-DUP1)</u>			Source: SB		Prep		-14 Analyzed:	10-Oct-14		
Aroclor-1016	< 19.9	U	μg/kg dry	19.9		BRL				30
Aroclor-1016 [2C]	< 13.8	U	μg/kg dry	13.8		BRL				30
Aroclor-1221	< 18.1	U	μg/kg dry	18.1		BRL				30
Aroclor-1221 [2C]	< 15.6	U	μg/kg dry	15.6		BRL				30
Aroclor-1232	< 19.1	U	μg/kg dry	19.1		BRL				30
Aroclor-1232 [2C]	< 16.4	U	μg/kg dry	16.4		BRL				30
Aroclor-1242	< 9.46	U	μg/kg dry	9.46		BRL				30
Aroclor-1242 [2C]	< 16.6	U	μg/kg dry	16.6		BRL				30
Aroclor-1248	< 11.6	U	μg/kg dry	11.6		BRL				30

Semivolatile Organic Compounds by GC - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1423784 - SW846 3540C										
Duplicate (1423784-DUP1)			Source: SE	97664-20	Pre	pared: 08-Oc	t-14 Analyzed:	: 10-Oct-14		
Aroclor-1248 [2C]	< 11.7	U	μg/kg dry	11.7		BRL	•			30
Aroclor-1254	25.5		μg/kg dry	13.4		27.9			9	30
Aroclor-1254 [2C]	26.6		μg/kg dry	12.7		25.8			3	30
Aroclor-1260	< 15.2	U	μg/kg dry	15.2		BRL				30
Aroclor-1260 [2C]	< 20.2	U	μg/kg dry	20.2		BRL				30
Aroclor-1262	< 11.5	U	μg/kg dry	11.5		BRL				30
Aroclor-1262 [2C]	< 10.6	U	μg/kg dry	10.6		BRL				30
Aroclor-1268	< 20.9	U	μg/kg dry	20.9		BRL				30
Aroclor-1268 [2C]	< 20.4	U	μg/kg dry	20.4		BRL				30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	25.5		μg/kg dry		21.3		120	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	21.3		μg/kg dry		21.3		100	30-150		
Surrogate: Decachlorobiphenyl (Sr)	27.7		μg/kg dry		21.3		130	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	18.1		μg/kg dry		21.3		85	30-150		
Matrix Spike (1423784-MS1)			Source: SE	97664-20		pared: 08-Oc	t-14 Analyzed:			
Aroclor-1016	245		μg/kg dry	20.0	267	BRL	92	40-140		
Aroclor-1016 [2C]	247		μg/kg dry	13.9	267	BRL	92	40-140		
Aroclor-1260	242		μg/kg dry	15.3	267	BRL	90	40-140		
Aroclor-1260 [2C]	223		μg/kg dry	20.3	267	BRL	84	40-140		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	20.3		μg/kg dry		21.4		95	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	20.3		μg/kg dry		21.4		95	30-150		
Surrogate: Decachlorobiphenyl (Sr)	24.6		μg/kg dry		21.4		115	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	18.2		μg/kg dry		21.4		85	30-150		
Matrix Spike Dup (1423784-MSD1)			Source: SE	97664-20		nared: 08-Oc	t-14 Analyzed:			
Aroclor-1016	253		μg/kg dry	19.8	265	BRL	96	40-140	4	30
Aroclor-1016 [2C]	246		μg/kg dry	13.7	265	BRL	93	40-140	0.4	30
Aroclor-1260	242		μg/kg dry μg/kg dry	15.7	265	BRL	91	40-140	0.4	30
Aroclor-1260 [2C]	226		μg/kg dry	20.1	265	BRL	85	40-140	2	30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	20.1		μg/kg dry		21.2		95	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	21.2		μg/kg dry		21.2		100	30-150		
Surrogate: Decachlorobiphenyl (Sr)	23.3		μg/kg dry		21.2		110	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]							90			
Satch 1423786 - SW846 3540C	19.1		μg/kg dry		21.2		30	30-150		
Blank (1423786-BLK1)					Pro	nared: 08-Oc	t-14 Analyzed:	· 09-0ct-14		
Aroclor-1016	< 18.3	U	ua/ka wot	18.3	116	pareu. 00-00	i-14 Allalyzeu.	. 03-001-14		
Aroclor-1016 [2C]	< 12.7	U	μg/kg wet	12.7						
Aroclor-1211	< 16.7	U	μg/kg wet	16.7						
Aroclor-1221 [2C]	< 10.7 < 14.4	U	μg/kg wet	14.4						
Aroclor-1221 [20] Aroclor-1232	< 14.4 < 17.6	U	μg/kg wet							
		U	μg/kg wet	17.6 15.1						
Aroclor 1242	< 15.1	U	μg/kg wet	15.1 8.71						
Arcelor 1242	< 8.71		μg/kg wet	8.71						
Arcelor 1242 [2C]	< 15.3	U	μg/kg wet	15.3						
Arcelor 1248	< 10.6	U	μg/kg wet	10.6						
Aroclor-1248 [2C]	< 10.7	U	μg/kg wet	10.7						
Aroclor-1254	< 12.4	U	μg/kg wet	12.4						
Aroclor-1254 [2C]	< 11.7	U	μg/kg wet	11.7						
Aroclor-1260	< 14.0	U	μg/kg wet	14.0						
Aroclor-1260 [2C]	< 18.6	U	μg/kg wet	18.6						
Aroclor-1262	< 10.6	U	μg/kg wet	10.6						
Aroclor-1262 [2C]	< 9.79	U	μg/kg wet	9.79						
Aroclor-1268	< 19.3	U	μg/kg wet	19.3						

Semivolatile Organic Compounds by GC - Quality Control

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPE Limi
atch 1423786 - SW846 3540C										
Blank (1423786-BLK1)					Pre	pared: 08-Oct-	14 Analyzed:	09-Oct-14		
Aroclor-1268 [2C]	< 18.8	U	μg/kg wet	18.8						
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	16.6		μg/kg wet		19.6		85	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	17.6		μg/kg wet		19.6		90	30-150		
Surrogate: Decachlorobiphenyl (Sr)	19.6		μg/kg wet		19.6		100	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	14.7		μg/kg wet		19.6		75	30-150		
LCS (1423786-BS1)					<u>Pre</u>	pared: 08-Oct-	-14 Analyzed:	09-Oct-14		
Aroclor-1016	221		μg/kg wet	18.3	245		90	40-140		
Aroclor-1016 [2C]	206		μg/kg wet	12.7	245		84	40-140		
Aroclor-1260	198		μg/kg wet	14.0	245		81	40-140		
Aroclor-1260 [2C]	196		μg/kg wet	18.6	245		80	40-140		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	17.7		μg/kg wet		19.6		90	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	18.7		μg/kg wet		19.6		95	30-150		
Surrogate: Decachlorobiphenyl (Sr)	20.6		μg/kg wet		19.6		105	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	15.7		μg/kg wet		19.6		80	30-150		
LCS Dup (1423786-BSD1)					Pre	pared: 08-Oct-	14 Analyzed:	09-Oct-14		
Aroclor-1016	221		μg/kg wet	18.5	248		89	40-140	0.9	30
Aroclor-1016 [2C]	208		μg/kg wet	12.9	248		84	40-140	0.000009	30
Aroclor-1260	201		μg/kg wet	14.2	248		81	40-140	0.5	30
Aroclor-1260 [2C]	208		μg/kg wet	18.8	248		84	40-140	5	30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	17.8		μg/kg wet		19.8		90	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	18.8		μg/kg wet		19.8		95	30-150		
Surrogate: Decachlorobiphenyl (Sr)	19.8		μg/kg wet		19.8		100	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	16.9		μg/kg wet		19.8		85	30-150		

General Chemistry Parameters - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1423766 - General Preparation										
<u>Duplicate (1423766-DUP1)</u>			Source: SE	<u> 897664-10</u>	Pre	pared & Analy	zed: 08-Oct-14			
% Solids	81.8		%			81.4			0.4	5
<u>Duplicate (1423766-DUP2)</u>			Source: SE	<u> 897664-11</u>	Pre	pared & Analy	zed: 08-Oct-14			
% Solids	78.9		%			78.8			0.08	5
Batch 1423767 - General Preparation										
<u>Duplicate (1423767-DUP1)</u>			Source: SE	<u> 897664-30</u>	<u>Pre</u>	pared & Analy	zed: 08-Oct-14	:		
% Solids	85.7		%			85.7			0.02	5

Notes and Definitions

D Data reported from a dilution

GS1 Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

J Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration

(CLP J-Flag).

P Difference between the two GC columns is greater than 40%.

R01 The Reporting Limit has been raised to account for matrix interference.

S01 The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration

and/or matrix interference's.

U Analyte included in the analysis, but not detected at or above the MDL.

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

Method Blank: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

<u>Method Detection Limit (MDL)</u>: The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification:</u> The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

Validated by: June O'Connor

SPECTRUM ANALYTICAL, INC. HANIBAL TECHNOLOGY Featuring

CHAIN OF CUSTODY RECORD

 Samples disposed of after 60 days unless · Min. 24-hour notification needed for rushes.

otherwise instructed.

	~
	0
	7.
2	
	0
Spe	5
Sp	1
Specia	
1 2	
田田	
and	

ECORD	69766
Special Handling: Standard TAT - 7 to 10 business days Rush TAT - Date Needed: All TATs subject to laboratory approval.	4 By

Man	A X X X	Sar But	Relinquished by:	10 8-45	1 09 55-42	1 3 SS-41	0) 55-44	84-55 90	05 55-49	04 55-50	e) SS-53	12 55-55	1640 SS-52	Lab Id: Sample Id:	G=Grab (X2=_	DW=Drinking Water GW=G 0=Oil SW=Surface Water	$1=Na_2S2O_3$ $2=HC1$ $3=H_2SO_2$ $8=NaHSO_4$ $9=Deionized Water$	2 1101	Telephone #: (315) 43a - 9400	East Syraiuse,	6308 Fly Road	Report To: Rich McKenna AECC
	The state of the s	0)/CRe	<								-	10 7114	Date:	C=Composite		GW=Groundwater WW=Wa Vater SO=Soil SL=Sludge	$3 = H_2 SO_4$ $4 = HNO_3$ $2 = H_3 PO_4$ $4 = H_3 PO_4$		9400	NY 13057		14
10.00	" all	SO DE	Received by:	1247	1239	1233	1219	1207	1153	1134	1126	1120	1110	Time:			WW=Wastewater	04 11=	1	PO No.			Invoice To:
10%	(/b	10	1	+									G 50	Type Matrix	K			b=Ascorbic Acid		100-11			
11/10	12/14	7/14	Date:	•									-	# of V # of A # of C	mber	Glass	Containers:	12=		RON:			Acct's Payable
210	5100	045	Time: T										×	# of P.	lastic	18.5		OH I		Buc		T. Commission of the Commissio	
	E-mail to two chenna e a eccession proving	Department of the second	Temp°C KEDD Format PDE Excel			5050					1001/100			State-specific reporting standards:	□ NY ASP A* □ NJ Reduced*	OA/QC Reporting Level Standard □ No QC □ DQA*	Analyses: MA DEP MCP CAM Report: Yes □ No □ CT DPH RCP Report: Ye s □ No □	* additional charges may apply		Sampler(s): Drees Brashner	Location: Caroda Dr. Dewit State: N	Site Name: Woodbine Business Park	Project No.: 4-09

Condition upon receipt:
☐ Ambient ☐ Teed ☐ Refigerated ☐ DIVOA Frozen ☐ Soil Jar Frozen

CHAIN OF CUSTODY RECORD

Page 2 of 3

7 4	gp
-}	eci
1	[2]
1	I
1	21
1	d
ε	no.

S697664 Fr

X		
Rush TAT - Date Needed:	Stand	
TA	ard 7	
7	TAT	
)ate	- 7	
Ze	to	
ede	10	
d:	bus	
1	to 10 business	
_	dą,	

- All TATs subject to laboratory approval
- Min. 24-hour notification needed for rushes. Samples disposed of after 60 days unless

otherwise instructed.	samples disposed of after
	0
	udys
	III

# of Amber C # of Clear Gl # of Plastic # of Clear Gl # of Plastic # of Clear Gl # of Plastic # of Clear Gl # of Plastic # of Clear Gl # of Plastic # of Clear Gl # of Plastic # of Plastic # of Clear Gl # of Plastic # of Clear Gl # of Plastic # of Clear Gl # of Plastic # o	Report To: Rick McKenner **Report To: Rick McKenner **Lock McK	Invoice T P.O. No.: 5=NaOH 11= astewater A=Air	Flass Cont 7=C	otherwise instructed. Project No.: 4-09 Site Name: Woodbine Business Park Location: Canada, Drive, Pewith State: 1 Sampler(s): Dread Brank Sampler(s): OA/QC Reporting * additional charges ma Analyses: MA DEP MCP CAM Report: Ye QA/QC Reporting CAM Report: Ye QA/QC Report: Ye QA/QC Reporting CAM Report: Ye QA/QC Re
Sample Id: Date: Time: Type So A Vi Size-specific reporting s SS-4	=Drinking Water GW=Groundwater iii SW= Surface Water SO=Soil SI X2=	Wastewater ge A=Air		
	G=Grab C=Comp		Matrix # of VOA V # of Amber # of Clear G	□ NY ASP A* □ NY □ NJ Reduced* □ N □ TIER II* □ TII □ Other □ State-specific reporting s
\$5-51 1316 \$5-54 \$5-54 \$5-54 \$5-47 \$1338 \$5-40 \$5-40 \$5-40 \$5-40 \$5-40 \$5-38 \$1350 \$5-38 \$1359 \$5-37 \$1404 \$5-37 \$1404 \$1400	9 617			
55-47 1338 55-47 1338 55-40 1350 55-38 1359 1359 55-37 1404 1420 1420 1420 1420 1420 1420 1420	33	1316		3.10 5. 30
1350 1350 1350 1350 1350 1350 1350 1350 1350 1350 1404 1404 1404 1404 1600	15 55-47	133		
1359 1359 1404 1404 1404 1404 1404 1404 1645 1420	1) Ss-40	1350		
inquished by: Received by: Pate Time: Temp°C EDD Format Cold Day 1000 E-mail to	18 55-38	1359		
inquished by: Received by: Date: Time: Temp°C EDD Format Color				
7/1/5/00 E-mail to _	inquished by:	Ø. 10	Date.	emp°C FDD Format
2/M 5:00	the off	Specific	SHO1 41/2	ITAL
	The way	July .	10:50 M/4/01	

Condition upor receipt:

Ambient Sceed Refrigerated DI VOA Frozen Soil Jar Frozen

CHAIN OF CUSTODY RECORD

Page W of W

91
Imprest.
6
693
(30
63
Post o
84
polar
passes
SCHOOL STATE
bestval
0.0
SPECT .
hand
(mar)
1000
protes
Juneani
psed o
James
(Marco)
mo.
(A. col

Rush TAT - Date Needed: Standard TAT - 7 to 10 business days

Joselbine	14	Samples dispo	Min. 24-hr no	All TATs sub
Business Park	14-091	Samples disposed after 60 days unless otherwise instru	Min. 24-hr notification needed for rushes	All TATs subject to laboratory approval
Park		less otherwise i	rushes	proval
		nstr		

ANY 13057 ANY 13057 PO No.: 14-09 Operation Condition Cond	Condition upon receipt: Custody Seals: Present 1 Anabient X leed Refrieerated DI VOA Frozen	IRID#	17/14 21	11	3		
Invite Tive Accest's Propable Site Name: Abordhive Businers ANY 13057 ANY 13057 ANY 13057 PONO: 14-09 QuoteRON: Site Name: Abordhive Code below: Any Site Name: Abordhive Code below: Dr.		Corrected	9 11/4/	1)	Ch.	Mon !	7
NY 13057	E-mail to:	Userved Observed	11 HILK	7	rock	N. M.	A A
MY 13057 Selection Machine M	EDD format:		,		ed by:	Rocety	
NY 13657 PONG: 14-09 Sinc Name: Location: Canada Dr. Registrative Code below: 11= 12= 13= 1505 1433 1516 1516 1535 1555 15		4			1529	+	64
Analysis Invoice To: Acct's Regards Site Name: Weathine Bus Site Name: Weathine Bus Location: Cerach Dr. D. Sampler(s): Dress Brandan Sampler(s): Dres				54.2	1525		55-63
ACCT'S Payable Project No. H-09 Site Name: Location: Decarded Dr.	3			S.a.i	1521		S
ANY 13057 WAY 13057 WAY 13057 WAY 13057 WAY 13057 WAY 13057 WAY 13057 PONO: 14-09 Quote/RON: Location: Containers Accept of Passive Code below: Draw Brack of Passive Valer WW=Vaste Water WW=Vaste				Total Control	1516		55-66
Analysis No Compatie Time: Date: Time: Type Matrix # of Clear Glass # of Plastic C-Compsile I433 I4433 I4450 Indoor/Ambient Air SC-Soil Gas No J7114 1430- 14433 1	10/2/4/01			1 321	1512		55-62
Invoice To: Accr's Payable Sie Name: Location: Accr's Payable Sie Name: Location: Carock Dr. To. Sampler(s): Carock Dr. To. Sw-Surface Water Ww=Waste Water Sw-Surface Water Ww=Waste Water Sw-Surface Water Time: Type Matrix X2= C-Compsite Time: Type Matrix Hof Clear Glass Wo of Clear Glass Wo of Plastic Check if chlorinated 1450 1450	C5.10 2:1				1505		6
Invoice To: ACCT'S Payable Project No: 14-09 Invoice To: ACCT'S Payable Site Name: Location: Location: Carada Dr. D. Sampler(s): Decubrate Dr. D. Sampl					1450		9
Invoice To: Accrt's Payable Project No: 14-09 Site Name: Location: Caroda Dr. Dr. Sampler(s): Draw Branchu Sumpler(s): Draw Branchu Sw-Surface Water Ww=Waste Water Sw-Surface Water Ww=Waste Water C=Compsite C=Compsite Time: Time: Type Matrix Date: Time: Type Matrix Mo of Clear Glass # of Clear Glass # of Plastic C=Compsite Time: Time: Type Matrix Mo of Clear Glass # of Plastic Date: Time: Type Matrix Mo of Clear Glass # of Plastic Date: Time: Type Matrix Mo of Clear Glass # of Plastic Date: Time: Type Matrix Mo of Clear Glass # of Plastic					1443		00
Invoice To: Acct's Payable Project No: 14-09 Site Name: Wedding Business Acct's Payable Site Name: Wedding Business Site Name: Wedding Business Canada Dr. D. D.			7	_	1432		56
Invoice To: Acct Frayable Project No: 14-09 Site Name: Location: Location: Site Name: Location: Location: Carock Or, P.		×	_		1426	三	83
Invoice To: Acct's Payable Site Name: Acct's Payable Location: Cende Dr.	Other: State-specific reporting standards:		# of 2		Time:	Date:	ple ID:
Invoice To: Accr's Payable Site Name: Location: Canada Dr. D. NOV. 13057 P.O.No.: 14-091 Quote/RON: Sampler(s): Draw Brankn, Sampler(s): Draw Brankn, ter 10=H ₃ PO ₄ 4=HNO ₃ 5=NaOH 6=Ascorbic Acid ter 10=H ₃ PO ₄ 11= 12= SW=Surface Water Ww=Waste Water Containers Containers Analysis Analysis Analysis Analysis	k if cl		Amber		site	C=Comps	
Invoice To: Acct's Payable Site Name: Welking Business Site Name: Welking Business Site Name: Welking Business Site Name: Welking Business Location: Carada Dr. D.	nlorina		r Glass		3=	×	X2=_
Invoice To: Acct's Payable Site Name: Welling Rolling		Bs "			soil Gas		A=Indoor
Invoice To: Acct's Payable Site Name: Weekline Busines Project No: 14-09 Site Name: Weekline Busines Location: Carada Dr. Drews Branknes Sampler(s): Drews Branknes 4=HNO3 5=NaOH 6=Ascorbic Acid List Preservative Code below:			Container		VW=Waste Wate		
Invoice To: Acct's Payable Project No: 14-0 Site Name: (Acclbine B Location: Carola Dr. P.O No.: 14-091 Quote/RON: Sampler(s): Drew Brach 4=HNO3 5=NaOH 6=Ascorbic Acid List Preservative Code below:	* additional charges may appply			14-			or waret to
A Project No: 14-09 Quote/RQN: Sampler(s): Sampler(s): Sampler(s): Drew Branch	st Preservative Code below:		cid	-Ascorbic A	S=NaOH	4=HNO ₃)=HCl 3=
Invoice To: Acct's Payable Project No: 14-0 Site Name: Weathing B	Dew Bran			14	P.O No.		12
Invoice To: Acct's Payable Project No: 4-	Woodbane \$			aule;			Road
	= = = = = = = = = = = = = = = = = = = =	6			Invoice To		McKenna
	The state of the s						TANDAL TECHNOLOGY

Life Science Laboratories, Inc.

Rich McKenna Asbestos & Environmental Consulting Corp 6308 Fly Road East Syracuse, NY 13057 Phone:

(315) 432-9400

FAX:

(315) 432-9405

Laboratory Analysis Report Prepared For

Asbestos & Environmental Consulting Corp

LSL Project ID: **1416437**Receive Date/Time: 10/07/14 16:50

Life Science Laboratories, Inc. warrants, to the best of its knowledge and belief, the accuracy of the analytical test results contained in this report, but makes no other warranty, expressed or implied, especially no warranties of merchantability or fitness for a particular purpose. By the Client's acceptance and/or use of this report, the Client agrees that LSL is hereby released from any and all liabilities, claims, damages or causes of action affecting or which may affect the Client as regards to the results contained in this report. The Client further agrees that the only remedy available to the Client in the event of proven non-conformity with the above warranty shall be for LSL to re-perform the analytical test(s) at no charge to the Client. The data contained in this report are for the exclusive use of the Client to whom it is addressed, and the release of these data to any other party, or the use of the name, trademark or service mark of Life Science Laboratories, Inc. especially for the use of advertising to the general public, is strictly prohibited without express prior written consent of Life Science Laboratories, Inc. This report may only be reproduced in its entirety. No partial duplication is allowed. The Chain of Custody and the Sample Receipt documents submitted with these samples are considered by LSL to be an appendix of this report and may contain specific information that pertains to the samples included in this report. The analytical result(s) in this report are only representative of the sample(s) submitted for analysis. LSL makes no claim of a sample's representativeness, or integrity, if sampling was not performed by LSL personnel.

LSL Central Lab 5854 Butternut Drive East Syracuse, NY 13057 Tel. (315) 445-1900 Fax (315) 445-1104 NYS DOH ELAP #10248 PA DEP #68-2556 LSL North Lab 131 St. Lawrence Avenue Waddington, NY 13694 Tel. (315) 388-4476 Fax (315) 388-4061 NYS DOH ELAP #10900 LSL Finger Lakes Lab 16 N. Main St., PO Box 424 Wayland, NY 14572 Tel. (585) 728-3320 Fax (585) 728-2711 NYS DOH ELAP #11667 LSL Southern Tier Office Cuba, NY Tel. (585) 209-4032

LSL MidLakes Office Canandaigua, NY Tel. (585) 728-3320

This report was reviewed by:

Dent Marie

Date.

drolly

David J. Prichard, Director of Tech. Services

-- LABORATORY ANALYSIS REPORT --

Asbestos & Environmental Consulting Corp

East Syracuse, NY

Sample ID:

SS-40D Grab

LSL Sample ID:

1416437-001

Location:

Sampled:

10/07/14 13:50

Sampled By:

Sample Matrix: SHW as Recd

Analytical Method		Prep Method	Prep	Analysis	Analyst
Analyte	Result	Units	Date	Date & Time	Initials
(I) EPA 8082A PCBs		EPA 3550C	7107	2,000,000	
Aroclor-1016	< 0.02	mg/kg	10/9/14	10/9/14	CRT
Aroclor-1221	< 0.02	mg/kg	10/9/14	10/9/14	CRT
Aroclor-1232	< 0.02	mg/kg	10/9/14	10/9/14	CRT
Aroclor-1242	< 0.02	mg/kg	10/9/14	10/9/14	CRT
Aroclor-1248	< 0.02	mg/kg	10/9/14	10/9/14	CRT
Aroclor-1254	< 0.02	mg/kg	10/9/14	10/9/14	CRT
Aroclor-1260	< 0.02	mg/kg	10/9/14	10/9/14	CRT
Surrogate (DCB)	104	%R	10/9/14	10/9/14	CRT

Sample ID:

SS-60D Grab

LSL Sample ID:

1416437-002

Location:

Sampled:

10/07/14 14:43

Sampled By:

Sample Matrix: SHW as Recd

Analytical Method		Prep Method	Prep	Analysis	Analyst
Analyte	Result	Units	Date	Date & Time	Initials
(1) EPA 8082A PCBs		EPA 3550C			
Aroclor-1016	< 0.02	mg/kg	10/9/14	10/9/14	CRT
Aroclor-1221	< 0.02	mg/kg	10/9/14	10/9/14	CRT
Aroclor-1232	< 0.02	mg/kg	10/9/14	10/9/14	CRT
Aroclor-1242	< 0.02	mg/kg	10/9/14	10/9/14	CRT
Aroclor-1248	< 0.02	mg/kg	10/9/14	10/9/14	CRT
Aroclor-1254	< 0.02	mg/kg	10/9/14	10/9/14	CRT
Aroclor-1260	< 0.02	mg/kg	10/9/14	10/9/14	CRT
Surrogate (DCB)	107	%R	10/9/14	10/9/14	CRT

Analysis performed at: (1) LSL Central Lab, (2) LSL North Lab, (3) LSL Finger Lakes Lab

	OR STATE
	M
S)
1	

Life Science Laboratories, Inc. CHAIN OF CUSTODY RECORD

Email: Islcentral@Isl-inc.com East Syracuse, NY 13057 Phone: (315) 445-1900 5854 Butternut Drive Fax: (315) 445-1301 SL Central Lab

Email: IsInfo@IsI-inc.com Waddington, NY 13694 Phone: (315) 388-4476 131 St Lawrence Ave Fax: (315) 388-4081 St. North Lab

Wayland, NY 14572 Phone: (585) 728-3320 Email: Islfil@Isl-inc.com LSL Finger Lakes Lab 16 North Main Street Fax: (585) 728-2711

Phone: (585) 968-2640 Email: IsIstl@IsI-inc.com LSL Southern Tier Lab Fax: (585) 968-0906 30 East Main Street Cuba, NY 14727

Turnaround Time (Business Day)

別別

5909

16:50 100V 4:23 Time *Additional Charges #CITST ઉ 100 Sample Temp とんの 10/7/14 may apply Date Preserv Check *** All areas of this Chain of Custody Record MUST be filled out in order to process samples in a timely manner IN PEN ONLY*** M 3-Day * 7-Day* Date Needed or Special Instructions: 2020 るしま Analyses RBS が と か Pre-Authorized Authorization or P.O. # 808D SON SON Next Day* ISI Project Number: Rec'd for Lab By: 2-Day * Received Intact: Received By: Received By 402. Aus. Goz Amb. size/type Custody Fransfers Normal 10 DAY Containers # Fax: (315) 432-9405 Preserv McKrons Added 1305 Mairix TO R 18 4000 grab/comp 000 Relinquished By: do to Shipment Method: Relinquished By Sampled By: 1413 10/1/4 1350 Time Sample | Sample rimchenna @ apa grow-picom 1077114 Containers this C-O-C Date McKenna 7 6308 Fly Road East Syndense Client Project ID/Client Site ID 84.00 84.00 Client's Sample Identifications (315) 43a-ROH-SS 450 1 Rich Report Address: 50 City/State: LSL use only: Company: Phone: Street: Name: Email

Reg COC

0274

Report Date: 14-Oct-14 12:35

☑ Final Report☐ Re-Issued Report☐ Revised Report

HANIBAL TECHNOLOGY Laboratory Report

AECC Environmental Consulting 6308 Fly Road

East Syracuse, NY 13057 Attn: Rich McKenna Project #: 14-091

Project: WBP - Dewitt, NY

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SB97668-01	Road 1	Soil	07-Oct-14 10:40	07-Oct-14 21:00
SB97668-02	Road 2	Soil	07-Oct-14 10:46	07-Oct-14 21:00
SB97668-03	Road 3	Soil	07-Oct-14 10:52	07-Oct-14 21:00
SB97668-04	Road 4	Soil	07-Oct-14 10:58	07-Oct-14 21:00

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011/MA012 New York # 11393/11840 Pennsylvania # 68-04426/68-02924 Rhode Island # 98 USDA # S-51435

Authorized by:

Nicole Leja Laboratory Director

Dicolo Seja

Spectrum Analytical holds certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 11 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey, Pennsylvania and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, NJ-MA012, PA-68-04426 and FL-E87936).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

CASE NARRATIVE:

Data has been reported to the MDL. This report includes estimated concentrations detected below the RDL and above the MDL (J-Flag).

The samples were received 5.7 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of \pm 1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

There is no relevant protocol-specific QC and/or performance standards non-conformances to report.

Sample Acceptance Check Form

Client:	AECC Environmental Consulting			
Project:	WBP - Dewitt, NY / 14-091			
Work Order:	SB97668			
Sample(s) received on:	10/7/2014			
The following outlines th	ne condition of samples for the attached Chain of Custody upon receipt.			
Were custody se	als present?	Yes	<u>No</u> ✓	<u>N/A</u>
2. Were custody se	als intact?			✓
3. Were samples re	ceived at a temperature of ≤ 6 °C?	✓		
4. Were samples co	ooled on ice upon transfer to laboratory representative?	\checkmark		
5. Were samples re	frigerated upon transfer to laboratory representative?		✓	
6. Were sample con	ntainers received intact?	\checkmark		
	roperly labeled (labels affixed to sample containers and include sample ID, site project number and the collection date)?			
8. Were samples ac	ecompanied by a Chain of Custody document?	✓		
include sample I	ustody document include proper, full, and complete documentation, which shall D, site location, and/or project number, date and time of collection, collector's name, e, sample matrix and any special remarks concerning the sample?			
10. Did sample cont	ainer labels agree with Chain of Custody document?	\checkmark		

11. Were samples received within method-specific holding times?

Sample Io Road 1 SB97668	dentification			Client P			<u>Matrix</u> Soil	-	ection Date 7-Oct-14 10			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
Polychlorina	ated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 19.3	U	μg/kg dry	20.7	19.3	1	SW846 8082A	08-Oct-14	09-Oct-14	IMR	1423786	Χ
11104-28-2	Aroclor-1221	< 17.6	U	μg/kg dry	20.7	17.6	1				"		Χ
11141-16-5	Aroclor-1232	< 18.6	U	μg/kg dry	20.7	18.6	1	п		"	"		Χ
53469-21-9	Aroclor-1242	< 9.20	U	μg/kg dry	20.7	9.20	1				"		Χ
12672-29-6	Aroclor-1248 [2C]	164		μg/kg dry	20.7	11.3	1				"		Χ
11097-69-1	Aroclor-1254 [2C]	217		μg/kg dry	20.7	12.3	1	и			"		Χ
11096-82-5	Aroclor-1260	30.0		μg/kg dry	20.7	14.8	1	п			"		Χ
37324-23-5	Aroclor-1262	< 11.2	U	μg/kg dry	20.7	11.2	1	п			"		Χ
11100-14-4	Aroclor-1268	< 20.3	U	μg/kg dry	20.7	20.3	1	п			"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	90			30-15	50 %		и			"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	95			30-15	50 %		as .			"		
2051-24-3	Decachlorobiphenyl (Sr)	100			30-15	50 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	80			30-15	50 %		as .			"		
General C	Chemistry Parameters												
	% Solids	92.8		%			1	SM2540 G Mod.	08-Oct-14	08-Oct-14	DT	1423767	

Sample Id Road 2 SB97668	dentification -02			Client P			<u>Matrix</u> Soil	-	ection Date 7-Oct-14 10			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	ЭC											
Polychlorina	ated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 20.5	U	μg/kg dry	22.0	20.5	1	SW846 8082A	08-Oct-14	09-Oct-14	IMR	1423786	Χ
11104-28-2	Aroclor-1221	< 18.7	U	μg/kg dry	22.0	18.7	1			н	"		Χ
11141-16-5	Aroclor-1232	< 19.7	U	μg/kg dry	22.0	19.7	1	н			"		Χ
53469-21-9	Aroclor-1242	< 9.77	U	μg/kg dry	22.0	9.77	1				"		Χ
12672-29-6	Aroclor-1248	< 11.9	U	μg/kg dry	22.0	11.9	1				"		Χ
11097-69-1	Aroclor-1254 [2C]	29.7		μg/kg dry	22.0	13.1	1	п			"		Χ
11096-82-5	Aroclor-1260 [2C]	< 20.8	U	μg/kg dry	22.0	20.8	1	п			"		Χ
37324-23-5	Aroclor-1262	< 11.9	U	μg/kg dry	22.0	11.9	1	п			"		Χ
11100-14-4	Aroclor-1268	< 21.6	U	μg/kg dry	22.0	21.6	1	п			"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	100			30-15	0 %		н		п	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	100			30-15	0 %		п		ı	"		
2051-24-3	Decachlorobiphenyl (Sr)	105			30-15	60 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	90			30-15	0 %		п		ı	"		
General C	Chemistry Parameters												
	% Solids	89.8		%			1	SM2540 G Mod.	08-Oct-14	08-Oct-14	DT	1423767	

Sample Id Road 3 SB97668	dentification -03			<u>Client P</u> 14-0			<u>Matrix</u> Soil		ection Date '-Oct-14 10			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
Polychlorina	ated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 20.9	U	μg/kg dry	22.4	20.9	1	SW846 8082A	08-Oct-14	09-Oct-14	IMR	1423786	Χ
11104-28-2	Aroclor-1221	< 19.0	U	μg/kg dry	22.4	19.0	1			н	"		Χ
11141-16-5	Aroclor-1232	< 20.1	U	μg/kg dry	22.4	20.1	1				"		Χ
53469-21-9	Aroclor-1242	< 9.94	U	μg/kg dry	22.4	9.94	1				"		Χ
12672-29-6	Aroclor-1248 [2C]	53.7		μg/kg dry	22.4	12.3	1				"		Χ
11097-69-1	Aroclor-1254 [2C]	99.5		μg/kg dry	22.4	13.3	1						Χ
11096-82-5	Aroclor-1260 [2C]	< 21.2	U	μg/kg dry	22.4	21.2	1						Χ
37324-23-5	Aroclor-1262	< 12.1	U	μg/kg dry	22.4	12.1	1						Χ
11100-14-4	Aroclor-1268	< 22.0	U	μg/kg dry	22.4	22.0	1				"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	90			30-15	0 %				п	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	80			30-15	0 %				п	"		
2051-24-3	Decachlorobiphenyl (Sr)	100			30-15	i0 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	70			30-15	50 %				н	"		
General C	Chemistry Parameters												
	% Solids	87.7		%			1	SM2540 G Mod.	08-Oct-14	08-Oct-14	DT	1423767	

Sample Id Road 4 SB97668	dentification -04			Client P			<u>Matrix</u> Soil	-	ection Date '-Oct-14 10			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC .											
	ated Biphenyls by method SW846 3540C												
12674-11-2	Aroclor-1016	< 21.5	U	μg/kg dry	23.1	21.5	1	SW846 8082A	08-Oct-14	10-Oct-14	IMR	1423786	Χ
11104-28-2	Aroclor-1221	< 19.6	U	μg/kg dry	23.1	19.6	1	п					Χ
11141-16-5	Aroclor-1232	< 20.7	U	μg/kg dry	23.1	20.7	1	II.					Χ
53469-21-9	Aroclor-1242	< 10.2	U	μg/kg dry	23.1	10.2	1	II.					Х
12672-29-6	Aroclor-1248	< 12.5	U	μg/kg dry	23.1	12.5	1	II.					Χ
11097-69-1	Aroclor-1254	38.0		μg/kg dry	23.1	14.6	1				"		Х
11096-82-5	Aroclor-1260	< 16.5	U	μg/kg dry	23.1	16.5	1				"		Χ
37324-23-5	Aroclor-1262	< 12.5	U	μg/kg dry	23.1	12.5	1	II.			"		Χ
11100-14-4	Aroclor-1268	< 22.7	U	μg/kg dry	23.1	22.7	1	и			"		Х
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	100			30-15	0 %		п			"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	100			30-15	0 %		n.			"		
2051-24-3	Decachlorobiphenyl (Sr)	100			30-15	0 %		п			"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	85			30-15	0 %					II		
General C	Chemistry Parameters												
	% Solids	84.8		%			1	SM2540 G Mod.	08-Oct-14	08-Oct-14	DT	1423767	

Semivolatile Organic Compounds by GC - Quality Control

alyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
tch 1423786 - SW846 3540C										
Blank (1423786-BLK1)					Pre	pared: 08-Oc	-14 Analyzed:	09-Oct-14		
Aroclor-1016	< 18.3	U	μg/kg wet	18.3						
Aroclor-1016 [2C]	< 12.7	U	μg/kg wet	12.7						
Aroclor-1221	< 16.7	U	μg/kg wet	16.7						
Aroclor-1221 [2C]	< 14.4	U	μg/kg wet	14.4						
Aroclor-1232	< 17.6	U	μg/kg wet	17.6						
Aroclor-1232 [2C]	< 15.1	U	μg/kg wet	15.1						
Aroclor-1242	< 8.71	U	μg/kg wet	8.71						
Aroclor-1242 [2C]	< 15.3	U	μg/kg wet	15.3						
Aroclor-1248	< 10.6	U	μg/kg wet	10.6						
Aroclor-1248 [2C]	< 10.7	U	μg/kg wet	10.7						
Aroclor-1254	< 12.4	U	μg/kg wet	12.4						
Aroclor-1254 [2C]	< 11.7	U	μg/kg wet	11.7						
Aroclor-1260	< 14.0	U	μg/kg wet	14.0						
Aroclor-1260 [2C]	< 18.6	U	μg/kg wet	18.6						
Aroclor-1262	< 10.6	U	μg/kg wet	10.6						
Aroclor-1262 [2C]	< 9.79	U	μg/kg wet	9.79						
Aroclor-1268	< 19.3	U	μg/kg wet	19.3						
Aroclor-1268 [2C]	< 18.8	U	μg/kg wet	18.8						
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	16.6		μg/kg wet		19.6		85	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	17.6		μg/kg wet		19.6		90	30-150		
Surrogate: Decachlorobiphenyl (Sr)	19.6		μg/kg wet		19.6		100	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	14.7		μg/kg wet		19.6		75	30-150		
LCS (1423786-BS1)					Pre	pared: 08-Oct	-14 Analyzed:	09-Oct-14		
Aroclor-1016	221		μg/kg wet	18.3	245		90	40-140		
Aroclor-1016 [2C]	206		μg/kg wet	12.7	245		84	40-140		
Aroclor-1260	198		μg/kg wet	14.0	245		81	40-140		
Aroclor-1260 [2C]	196		μg/kg wet	18.6	245		80	40-140		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	17.7		μg/kg wet		19.6		90	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	18.7		μg/kg wet		19.6		95	30-150		
Surrogate: Decachlorobiphenyl (Sr)	20.6		μg/kg wet		19.6		105	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	15.7		μg/kg wet		19.6		80	30-150		
LCS Dup (1423786-BSD1)			10 0			pared: 08-Oct	-14 Analyzed:			
Aroclor-1016	221		μg/kg wet	18.5	248	<u> </u>	89	40-140	0.9	30
Aroclor-1016 [2C]	208		μg/kg wet	12.9	248		84	40-140	0.000009	30
Aroclor-1260	201		μg/kg wet	14.2	248		81	40-140	0.5	30
Aroclor-1260 [2C]	208		μg/kg wet	18.8	248		84	40-140	5	30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	17.8		μg/kg wet		19.8		90	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	18.8		μg/kg wet		19.8		95	30-150		
Surrogate: Decachlorobiphenyl (Sr)	19.8		μg/kg wet		19.8		100	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	16.9		μg/kg wet		19.8		85	30-150		
Duplicate (1423786-DUP1)	70.0		Source: SB	07669 04		arad: 00 Oa	-14 Analyzed:			
Aroclor-1016	< 21.9	U		21.9	<u> </u>	BRL	-14 Allalyzeu.	03-001-14		30
Aroclor-1016 [2C]	< 15.2	U	μg/kg dry	15.2		BRL				30
Aroclor-1221	< 20.0	U	μg/kg dry	20.0		BRL				30
Aroclor-1221 [2C]	< 17.2	U	μg/kg dry μg/kg dry	20.0 17.2		BRL				30
Aroclor-1232	< 21.1	U		21.1		BRL				30
Aroclor-1232 [2C]	< 18.1	U	μg/kg dry	18.1		BRL				30
Aroclor-1232 [20] Aroclor-1242	< 10.1	U	μg/kg dry	10.1						
AI 00101-1242	< 10.4 < 18.3	U	μg/kg dry μg/kg dry	18.3		BRL				30 30
Aroclor-1242 [2C]						BRL				

Semivolatile Organic Compounds by GC - Quality Control

					Spike	Source		%REC		RPD
nalyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limi
atch 1423786 - SW846 3540C										
<u>Duplicate (1423786-DUP1)</u>			Source: SB	97668-04	Pre	pared: 08-Oct	-14 Analyzed:	09-Oct-14		
Aroclor-1248 [2C]	< 12.9	U	μg/kg dry	12.9		BRL				30
Aroclor-1254	38.7		μg/kg dry	14.8		38.0			2	30
Aroclor-1254 [2C]	38.7		μg/kg dry	14.0		39.2			1	30
Aroclor-1260	< 16.8	U	μg/kg dry	16.8		BRL				30
Aroclor-1260 [2C]	< 22.2	U	μg/kg dry	22.2		BRL				30
Aroclor-1262	< 12.7	U	μg/kg dry	12.7		BRL				30
Aroclor-1262 [2C]	< 11.7	U	μg/kg dry	11.7		BRL				30
Aroclor-1268	< 23.1	U	μg/kg dry	23.1		BRL				30
Aroclor-1268 [2C]	< 22.5	U	μg/kg dry	22.5		BRL				30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	22.3		μg/kg dry		23.5		95	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	21.1		μg/kg dry		23.5		90	30-150		
Surrogate: Decachlorobiphenyl (Sr)	25.8		μg/kg dry		23.5		110	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	18.8		μg/kg dry		23.5		80	30-150		
Matrix Spike (1423786-MS1)			Source: SB	97668-04	Pre	pared: 08-Oct	-14 Analyzed:	09-Oct-14		
Aroclor-1016	246		μg/kg dry	21.8	292	BRL	84	40-140		
Aroclor-1016 [2C]	244		μg/kg dry	15.1	292	BRL	84	40-140		
Aroclor-1260	253		μg/kg dry	16.7	292	BRL	87	40-140		
Aroclor-1260 [2C]	232		μg/kg dry	22.1	292	BRL	80	40-140		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	21.0		μg/kg dry		23.3		90	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	21.0		μg/kg dry		23.3		90	30-150		
Surrogate: Decachlorobiphenyl (Sr)	24.5		μg/kg dry		23.3		105	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	19.8		μg/kg dry		23.3		85	30-150		
Matrix Spike Dup (1423786-MSD1)			Source: SB	97668-04	Pre	pared: 08-Oct	-14 Analyzed:	09-Oct-14		
Aroclor-1016	257		μg/kg dry	21.3	285	BRL	90	40-140	7	30
Aroclor-1016 [2C]	241		μg/kg dry	14.8	285	BRL	85	40-140	1	30
Aroclor-1260	252		μg/kg dry	16.3	285	BRL	88	40-140	2	30
Aroclor-1260 [2C]	236		μg/kg dry	21.6	285	BRL	83	40-140	4	30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	13.7		μg/kg dry		22.8		60	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	13.7		μg/kg dry		22.8		60	30-150		
Surrogate: Decachlorobiphenyl (Sr)	14.8		μg/kg dry		22.8		65	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	12.5		μg/kg dry		22.8		55	30-150		

General Chemistry Parameters - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1423767 - General Preparation										
Duplicate (1423767-DUP2)			Source: SI	B97668-01	Pre	pared & Analy	zed: 08-Oct-14			
% Solids	92.4		%			92.8			0.4	5

Notes and Definitions

J Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).

U Analyte included in the analysis, but not detected at or above the MDL.

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification:</u> The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

Validated by: June O'Connor

Report To:

Rich Notenna

Invoice To:

Acct's Payable

Project No:

Site Name:

RECC

6308

Fly Road

CHAIN OF CUSTODY RECORD

897668 Special Handling:

X	
Rus	Star
hΤA	ıdarc
	TA
- Date 1	T-7
Need	7 to 10
ded:	0 bus
Γ.	sines
0	Jay
T	5
71	
1	_

Samples disposed after 60 days unless otherwise instructed. All TATs subject to laboratory approval Min. 24-hr notification needed for rushes

Drew	Woodbine	1
Brankner Dewit	ane Business Part	4-091
	S Park	
State: V	1 1 24	

Telephone #: (315) 432-9400 Project Mgr:		P.O No.: 14-09	Quote/RQN:	Sampler(s): Drew Brantner	rentres siate: N
tered 1=Na ₂ S2O ₃ 2= HCl 8=NaHSO ₄ 9=Deionized Water	4=HNO ₃ 5=NaOH	6=Ascorbic Acid		List Preservative Code below:	QA/QC Reporting Notes: * additional charges may appply
nw=Dinking Water GW=Groundwater SW	SW=Surface Water WW=Waste Water		Containers	Analysis	eport? Yes
SL=Sludge A=Inde				35.	CT DPH1
X1=X2=	X3=	shpa p ISA SA	r Glass Glass	PC:	ASP A* ASP B*
G = Grab	C=Compsite	pe trix		82	☐ ∏er II*
Lab ID: Sample ID:	Date: Time:		# of .	86	Che State-specific reporting standards:
76680 Road	10/7/14 1040	G 50		X	
102 Road 2	0/14/ 1/17/01	8		X	
03 Rod 3	10/7/14 1052	8		×	
]

Relinquished by:

0

Date:

Time:

Temp °C

3ag

Exce

XX

E-mail to: EDD format:

rnchenna@ recigration

Condition upon receipt:

Custody Seals:

☐ Present

Intact

Broken

Ambient X Iced

☐ Refrigerated

☐ DI VOA Frozen

☐ Soil Jar Frozen

Report Date: 04-Nov-14 15:37

☑ Final Report☐ Re-Issued Report☐ Revised Report

HANIBAL TECHNOLOGY Laboratory Report

AECC Environmental Consulting 6308 Fly Road

East Syracuse, NY 13057

Attn: Rich McKenna

Project: Woodbine Business Park - Dewitt, NY

Project #: 14-091

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SB98955-01	SS-67	Soil	29-Oct-14 15:01	30-Oct-14 21:00
SB98955-02	SS-69	Soil	29-Oct-14 15:08	30-Oct-14 21:00
SB98955-03	SS-70	Soil	29-Oct-14 15:15	30-Oct-14 21:00
SB98955-04	SS-68	Soil	29-Oct-14 15:21	30-Oct-14 21:00
SB98955-05	SS-71	Soil	29-Oct-14 15:29	30-Oct-14 21:00
SB98955-06	SS-74	Soil	29-Oct-14 15:36	30-Oct-14 21:00
SB98955-07	SS-73	Soil	29-Oct-14 15:43	30-Oct-14 21:00
SB98955-08	SS-72	Soil	29-Oct-14 15:49	30-Oct-14 21:00
SB98955-09	SS-75	Soil	29-Oct-14 16:02	30-Oct-14 21:00
SB98955-10	SS-78	Soil	29-Oct-14 16:11	30-Oct-14 21:00
SB98955-11	SS-77	Soil	29-Oct-14 16:27	30-Oct-14 21:00
SB98955-12	SS-76	Soil	29-Oct-14 16:33	30-Oct-14 21:00

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011/MA012 New York # 11393/11840 Pennsylvania # 68-04426/68-02924 Rhode Island # 98 USDA # S-51435

Authorized by:

Nicole Leja Laboratory Director

Nicole Leja

Spectrum Analytical holds certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 19 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey, Pennsylvania and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, NJ-MA012, PA-68-04426 and FL-E87936).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

CASE NARRATIVE:

Data has been reported to the MDL. This report includes estimated concentrations detected below the RDL and above the MDL (J-Flag).

All non-detects and all results below the detection limit are reported as "<" (less than) the detection limit in this report.

The samples were received 1.9 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of ± 1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

SW846 8082A

Samples:

SB98955-01 SS-67

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

Sample Acceptance Check Form

Client:	AECC Environmental Consulting			
Project:	Woodbine Business Park - Dewitt, NY / 14-091			
Work Order:	SB98955			
Sample(s) received on:	10/30/2014			
The following outlines th	he condition of samples for the attached Chain of Custody upon receipt.			
Were custody se	als present?	Yes	<u>No</u> ✓	<u>N/A</u>
2. Were custody se	als intact?			✓
3. Were samples re	ceived at a temperature of \leq 6°C?	✓		
4. Were samples co	poled on ice upon transfer to laboratory representative?	✓		
5. Were samples re	frigerated upon transfer to laboratory representative?		✓	
6. Were sample con	ntainers received intact?	✓		
	roperly labeled (labels affixed to sample containers and include sample ID, site project number and the collection date)?			
8. Were samples ac	ecompanied by a Chain of Custody document?	\checkmark		
include sample I	Sustody document include proper, full, and complete documentation, which shall D, site location, and/or project number, date and time of collection, collector's name, e, sample matrix and any special remarks concerning the sample?	V		
10. Did sample cont	ainer labels agree with Chain of Custody document?	$\overline{\checkmark}$		

11. Were samples received within method-specific holding times?

SS-67 SB98955	-01			<u>Client P</u> 14-0			<u>Matrix</u> Soil	-	ection Date 9-Oct-14 15			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
	ted Biphenyls by method SW846 3540C		GS1										
12674-11-2	Aroclor-1016	< 499	U, D	μg/kg dry	534	499	20	SW846 8082A	31-Oct-14	04-Nov-14	IMR	1425831	Χ
11104-28-2	Aroclor-1221	< 455	U, D	μg/kg dry	534	455	20	п			"		Χ
11141-16-5	Aroclor-1232	< 480	U, D	μg/kg dry	534	480	20	п			"		Χ
53469-21-9	Aroclor-1242	< 238	U, D	μg/kg dry	534	238	20	п			"		Χ
12672-29-6	Aroclor-1248	61,300	D	μg/kg dry	534	290	20	п			"		Х
11097-69-1	Aroclor-1254	56,400	D	μg/kg dry	534	337	20	п			"		Х
11096-82-5	Aroclor-1260 [2C]	3,370	D	μg/kg dry	534	507	20	п		п	"		Χ
37324-23-5	Aroclor-1262	< 290	U, D	μg/kg dry	534	290	20	п		п	"		Χ
11100-14-4	Aroclor-1268	< 525	U, D	μg/kg dry	534	525	20				"		Х
Surrogate red	overies:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	100			30-15	50 %		W.		ı	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	100			30-15	50 %		п			"		
2051-24-3	Decachlorobiphenyl (Sr)	100			30-15	50 %		п			"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	100			30-15	50 %		н			"		

31-Oct-14 31-Oct-14

DT

1425851

% Solids

Sample Io SS-69 SB98955	dentification			Client P			<u>Matrix</u> Soil		ection Date O-Oct-14 15			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	ЭC											
	ated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 25.9	U	μg/kg dry	27.8	25.9	1	SW846 8082A	31-Oct-14	03-Nov-14	IMR	1425831	Χ
11104-28-2	Aroclor-1221	< 23.6	U	μg/kg dry	27.8	23.6	1				"		Χ
11141-16-5	Aroclor-1232	< 24.9	U	μg/kg dry	27.8	24.9	1	и			"		Χ
53469-21-9	Aroclor-1242	< 12.3	U	μg/kg dry	27.8	12.3	1				"		Χ
12672-29-6	Aroclor-1248	< 15.1	U	μg/kg dry	27.8	15.1	1			н	"		Χ
11097-69-1	Aroclor-1254	< 17.5	U	μg/kg dry	27.8	17.5	1				"		Χ
11096-82-5	Aroclor-1260	< 19.9	U	μg/kg dry	27.8	19.9	1				"		Χ
37324-23-5	Aroclor-1262	< 15.0	U	μg/kg dry	27.8	15.0	1				"		Χ
11100-14-4	Aroclor-1268	< 27.3	U	μg/kg dry	27.8	27.3	1	и			"		Х
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	95			30-15	0 %		и		п	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	105			30-15	0 %		п		ı	"		
2051-24-3	Decachlorobiphenyl (Sr)	90			30-15	60 %				н	"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	90			30-15	0 %		н		п	"		
General C	Chemistry Parameters												
	% Solids	67.5		%			1	SM2540 G Mod.	31-Oct-14	31-Oct-14	DT	1425851	

Sample Id SS-70 SB98955-	lentification -03			<u>Client P</u> 14-0			<u>Matrix</u> Soil	· · · · · · · · · · · · · · · · · · ·	ection Date O-Oct-14 15			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	ile Organic Compounds by C	GC											
	ted Biphenyls by method SW846 3540C												
12674-11-2	Aroclor-1016	< 27.2	U	μg/kg dry	29.1	27.2	1	SW846 8082A	31-Oct-14	03-Nov-14	IMR	1425831	Χ
11104-28-2	Aroclor-1221	< 24.8	U	μg/kg dry	29.1	24.8	1				"		Χ
11141-16-5	Aroclor-1232	< 26.2	U	μg/kg dry	29.1	26.2	1	п			"		Χ
53469-21-9	Aroclor-1242	< 12.9	U	μg/kg dry	29.1	12.9	1	п			"		Χ
12672-29-6	Aroclor-1248	< 15.8	U	μg/kg dry	29.1	15.8	1	п			"		Χ
11097-69-1	Aroclor-1254	< 18.4	U	μg/kg dry	29.1	18.4	1	п			"		Χ
11096-82-5	Aroclor-1260	< 20.8	U	μg/kg dry	29.1	20.8	1				"		Χ
37324-23-5	Aroclor-1262	< 15.8	U	μg/kg dry	29.1	15.8	1				"		Χ
11100-14-4	Aroclor-1268	< 28.6	U	μg/kg dry	29.1	28.6	1	п			"		Χ
Surrogate rec	overies:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	100			30-15	0 %					"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	105			30-15	0 %					"		
2051-24-3	Decachlorobiphenyl (Sr)	95			30-15	0 %		п			"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	95			30-15	0 %		ı			II		
General C	hemistry Parameters												

31-Oct-14 31-Oct-14

DT

1425852

% Solids

Sample Id SS-68 SB98955	dentification			Client P			<u>Matrix</u> Soil		ection Date O-Oct-14 15			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GС											
	ated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 24.7	U	μg/kg dry	26.4	24.7	1	SW846 8082A	31-Oct-14	03-Nov-14	IMR	1425831	Χ
11104-28-2	Aroclor-1221	< 22.5	U	μg/kg dry	26.4	22.5	1				"		Χ
11141-16-5	Aroclor-1232	< 23.8	U	μg/kg dry	26.4	23.8	1	и			"		Χ
53469-21-9	Aroclor-1242	< 11.8	U	μg/kg dry	26.4	11.8	1				"		Χ
12672-29-6	Aroclor-1248	< 14.4	U	μg/kg dry	26.4	14.4	1				"		Χ
11097-69-1	Aroclor-1254	< 16.7	U	μg/kg dry	26.4	16.7	1				"		Χ
11096-82-5	Aroclor-1260	< 18.9	U	μg/kg dry	26.4	18.9	1				"		Χ
37324-23-5	Aroclor-1262	< 14.3	U	μg/kg dry	26.4	14.3	1				"		Χ
11100-14-4	Aroclor-1268	< 26.0	U	μg/kg dry	26.4	26.0	1	п			"		Х
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	100			30-15	0 %		и		п	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	105			30-15	0 %		п		п	"		
2051-24-3	Decachlorobiphenyl (Sr)	90			30-15	60 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	95			30-15	0 %		п		и	"		
General C	Chemistry Parameters												
	% Solids	71.7		%			1	SM2540 G Mod.	31-Oct-14	31-Oct-14	DT	1425852	

Sample Io SS-71 SB98955	dentification			Client P			<u>Matrix</u> Soil	·	ection Date 9-Oct-14 15			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
Polychlorina	ated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 25.5	U	μg/kg dry	27.3	25.5	1	SW846 8082A	31-Oct-14	03-Nov-14	IMR	1425831	Χ
11104-28-2	Aroclor-1221	< 23.2	U	μg/kg dry	27.3	23.2	1			u u	"		Χ
11141-16-5	Aroclor-1232	< 24.5	U	μg/kg dry	27.3	24.5	1	п		п	"		Χ
53469-21-9	Aroclor-1242	< 12.1	U	μg/kg dry	27.3	12.1	1			и	"		Χ
12672-29-6	Aroclor-1248	< 14.8	U	μg/kg dry	27.3	14.8	1			и	"		Χ
11097-69-1	Aroclor-1254	< 17.2	U	μg/kg dry	27.3	17.2	1			и	"		Χ
11096-82-5	Aroclor-1260	< 19.5	U	μg/kg dry	27.3	19.5	1	ı		и	"		Χ
37324-23-5	Aroclor-1262	< 14.8	U	μg/kg dry	27.3	14.8	1	ı		и	"		Χ
11100-14-4	Aroclor-1268	< 26.8	U	μg/kg dry	27.3	26.8	1				"		Х
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	100			30-15	50 %		н		ı	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	105			30-15	50 %		н		ı	"		
2051-24-3	Decachlorobiphenyl (Sr)	95			30-15	50 %		ı		п	"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	95			30-15	50 %		ı	•	ı	"		
General C	Chemistry Parameters												

31-Oct-14 31-Oct-14

DT

1425852

% Solids

Sample Io SS-74 SB98955	dentification			<u>Client P</u>			<u>Matrix</u> Soil	-	ection Date O-Oct-14 15			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC .											
	ated Biphenyls by method SW846 3540C												
12674-11-2	Aroclor-1016	< 27.8	U	μg/kg dry	29.8	27.8	1	SW846 8082A	31-Oct-14	03-Nov-14	IMR	1425831	Χ
11104-28-2	Aroclor-1221	< 25.4	U	μg/kg dry	29.8	25.4	1	п					Χ
11141-16-5	Aroclor-1232	< 26.8	U	μg/kg dry	29.8	26.8	1						Χ
53469-21-9	Aroclor-1242	< 13.2	U	μg/kg dry	29.8	13.2	1						Χ
12672-29-6	Aroclor-1248	< 16.2	U	μg/kg dry	29.8	16.2	1						Χ
11097-69-1	Aroclor-1254 [2C]	17.9	J	μg/kg dry	29.8	17.8	1				"		Χ
11096-82-5	Aroclor-1260	< 21.3	U	μg/kg dry	29.8	21.3	1				"		Χ
37324-23-5	Aroclor-1262	< 16.2	U	μg/kg dry	29.8	16.2	1				"		Χ
11100-14-4	Aroclor-1268	< 29.3	U	μg/kg dry	29.8	29.3	1	п			"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	95			30-15	0 %		п			"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	105			30-15	0 %		n.			"		
2051-24-3	Decachlorobiphenyl (Sr)	90			30-15	i0 %		п			"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	90			30-15	60 %					II		
General C	Chemistry Parameters												
	% Solids	63.9		%			1	SM2540 G Mod.	31-Oct-14	31-Oct-14	DT	1425852	

Sample I SS-73 SB98955	dentification 5-07			Client P			<u>Matrix</u> Soil		ection Date O-Oct-14 15			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivola	tile Organic Compounds by C	GC											
Polychlorin	ated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 24.8	U	μg/kg dry	26.6	24.8	1	SW846 8082A	31-Oct-14	03-Nov-14	IMR	1425831	Χ
11104-28-2	Aroclor-1221	< 22.6	U	μg/kg dry	26.6	22.6	1	н			"		Χ
11141-16-5	Aroclor-1232	< 23.9	U	μg/kg dry	26.6	23.9	1			н			Χ
53469-21-9	Aroclor-1242	< 11.8	U	μg/kg dry	26.6	11.8	1				"		Χ
12672-29-6	Aroclor-1248	< 14.4	U	μg/kg dry	26.6	14.4	1				"		Χ
11097-69-1	Aroclor-1254 [2C]	516		μg/kg dry	26.6	15.8	1				"		Х
11096-82-5	Aroclor-1260 [2C]	51.8		μg/kg dry	26.6	25.2	1				"		Х
37324-23-5	Aroclor-1262	< 14.4	U	μg/kg dry	26.6	14.4	1				"		Х
11100-14-4	Aroclor-1268	< 26.1	U	μg/kg dry	26.6	26.1	1	и			"		Χ
Surrogate re	ecoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	100			30-15	60 %		u			W		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	105			30-15	0 %		н			"		
2051-24-3	Decachlorobiphenyl (Sr)	95			30-15	60 %				н	"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	95			30-15	50 %		н			"		
General (Chemistry Parameters												
	% Solids	70.8		%			1	SM2540 G Mod.	31-Oct-14	31-Oct-14	DT	1425852	

CAS No. Analyte(s) Result Flag Units *RDL MDL Dilution Method Ref. Prepared Analyzed Analysis Analysis Analysis Semivolatile Organic Compounds by GC	Sample Id SS-72 SB98955-	lentification			Client P			<u>Matrix</u> Soil	<u></u>	ection Date 9-Oct-14 15			ceived Oct-14	
Polychlorinates Prepared by method SW846 3540C 2674-11-2	CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Prepared by method SW846 3540C	emivolati	lle Organic Compounds by G	GC											
12674-11-2 Aroclor-1016 < 20.9 U	olychlorinat	ted Biphenyls												
11104-28-2 Aroclor-1221 < 19.0 U µg/kg dry 22.4 19.0 1 " " " " " " 11141-16-5 Aroclor-1232 < 20.1 U µg/kg dry 22.4 20.1 1 " " " " " " " " 153469-21-9 Aroclor-1242 < 9.94 U µg/kg dry 22.4 9.94 1 " " " " " " " " " " " " " " " " " "	repared	by method SW846 3540C												
11141-16-5 Aroclor-1232 < 20.1 U	2674-11-2	Aroclor-1016	< 20.9	U	μg/kg dry	22.4	20.9	1	SW846 8082A	31-Oct-14	03-Nov-14	IMR	1425831	Χ
Sade9-21-9 Aroclor-1242 Sade9-21-9 Aroclor-1242 Sade9-21-9 Aroclor-1248 Sade9-21-9 Aroclor-1248 Sade9-21-9 Aroclor-1248 Sade9-21-9 Aroclor-1254 [2C] Sade9-21-9 Aroclor-1254 [2C] Sade9-21-9 Aroclor-1254 [2C] Sade9-21-9 Aroclor-1254 [2C] Sade9-21-9 Aroclor-1260 Sade9-21-9 Aroclor-1260 Sade9-21-9 Aroclor-1260 Sade9-21-9 Aroclor-1260 Sade9-21-9 Sade9-21-	1104-28-2	Aroclor-1221	< 19.0	U	μg/kg dry	22.4	19.0	1			"	"		Χ
12672-29-6 Aroclor-1248 < 12.2 U	1141-16-5	Aroclor-1232	< 20.1	U	μg/kg dry	22.4	20.1	1			и	•		Χ
11097-69-1 Aroclor-1254 [2C] 30.2 µg/kg dry 22.4 13.3 1 " " " " " " " " "	3469-21-9	Aroclor-1242	< 9.94	U	μg/kg dry	22.4	9.94	1			н	"		Χ
11096-82-5 Aroclor-1260 16.8 J µg/kg dry 22.4 16.0 1 " " " " " " " " "	2672-29-6	Aroclor-1248	< 12.2	U	μg/kg dry	22.4	12.2	1				"		Χ
37324-23-5 Aroclor-1262 < 12.1 U μg/kg dry 22.4 12.1 1 " " " " " " " " " " " " " " " " " "	1097-69-1	Aroclor-1254 [2C]	30.2		μg/kg dry	22.4	13.3	1	и			"		Χ
Arodor-1268 < 22.0 U µg/kg dry 22.4 22.0 1 " " " " " " " " " " " " " " " " " "	1096-82-5	Aroclor-1260	16.8	J	μg/kg dry	22.4	16.0	1	и			"		Х
Surrogate recoveries: 10386-84-2	7324-23-5	Aroclor-1262	< 12.1	U	μg/kg dry	22.4	12.1	1			н	"		Х
10386-84-2 (Sr) 4,4-DB-Octafluorobiphenyl (Sr) 100 30-150 % "	1100-14-4	Aroclor-1268	< 22.0	U	μg/kg dry	22.4	22.0	1	11			"		Χ
1006-64-2	urrogate reco	overies:												
105 30-150 %	0386-84-2		100			30-15	50 %		и		ı	u		
2051-24-3 Decachlorobiphentyl (Sr) 95 30-150 % " " " " "	0386-84-2		105			30-15	50 %		as .			"		
2001-24-3 Decacniorobipnenyi (Sr) 95 30-150 %	051-24-3	Decachlorobiphenyl (Sr)	95			30-15	50 %				и	"		
	051-24-3		95			30-15	50 %		as .			"		
General Chemistry Parameters	General Cl	hemistry Parameters												
% Solids 84.6 % 1 SM2540 G Mod. 31-Oct-14 31-Oct-14 DT		% Solids	84.6		%			1	SM2540 G Mod.	31-Oct-14	31-Oct-14	DT	1425852	

Sample Io SS-75 SB98955	dentification			Client P			<u>Matrix</u> Soil	-	ection Date O-Oct-14 16			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC .											
	ated Biphenyls by method SW846 3540C												
12674-11-2	Aroclor-1016	< 23.9	U	μg/kg dry	25.6	23.9	1	SW846 8082A	31-Oct-14	03-Nov-14	IMR	1425831	Χ
11104-28-2	Aroclor-1221	< 21.8	U	μg/kg dry	25.6	21.8	1	п					Χ
11141-16-5	Aroclor-1232	< 23.0	U	μg/kg dry	25.6	23.0	1						Χ
53469-21-9	Aroclor-1242	< 11.4	U	μg/kg dry	25.6	11.4	1						Χ
12672-29-6	Aroclor-1248	< 13.9	U	μg/kg dry	25.6	13.9	1						Χ
11097-69-1	Aroclor-1254	1,280		μg/kg dry	25.6	16.1	1				"		Χ
11096-82-5	Aroclor-1260 [2C]	88.3		μg/kg dry	25.6	24.3	1				"		Χ
37324-23-5	Aroclor-1262	< 13.9	U	μg/kg dry	25.6	13.9	1				"		Χ
11100-14-4	Aroclor-1268	< 25.1	U	μg/kg dry	25.6	25.1	1	и			"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	90			30-15	0 %					"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	95			30-15	0 %		n.			"		
2051-24-3	Decachlorobiphenyl (Sr)	90			30-15	i0 %		п			"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	85			30-15	60 %					"		
General C	Chemistry Parameters												
	% Solids	75.7		%			1	SM2540 G Mod.	31-Oct-14	31-Oct-14	DT	1425852	

Sample Id SS-78 SB98955	dentification			Client P			<u>Matrix</u> Soil		ection Date O-Oct-14 16			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	БС											
	ated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 22.8	U	μg/kg dry	24.4	22.8	1	SW846 8082A	31-Oct-14	04-Nov-14	IMR	1425831	Χ
11104-28-2	Aroclor-1221	< 20.8	U	μg/kg dry	24.4	20.8	1				"		Χ
11141-16-5	Aroclor-1232	< 21.9	U	μg/kg dry	24.4	21.9	1	н			"		Χ
53469-21-9	Aroclor-1242	< 10.9	U	μg/kg dry	24.4	10.9	1				"		Χ
12672-29-6	Aroclor-1248	< 13.3	U	μg/kg dry	24.4	13.3	1			н	"		Χ
11097-69-1	Aroclor-1254	< 15.4	U	μg/kg dry	24.4	15.4	1				"		Χ
11096-82-5	Aroclor-1260	< 17.5	U	μg/kg dry	24.4	17.5	1				"		Χ
37324-23-5	Aroclor-1262	< 13.2	U	μg/kg dry	24.4	13.2	1				"		Χ
11100-14-4	Aroclor-1268	< 24.0	U	μg/kg dry	24.4	24.0	1	и			"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	85			30-15	50 %		н		п	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	95			30-15	50 %		п		ı	"		
2051-24-3	Decachlorobiphenyl (Sr)	85			30-15	50 %				н	"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	80			30-15	50 %		н		п	"		
General C	Chemistry Parameters												
	% Solids	77.6		%			1	SM2540 G Mod.	31-Oct-14	31-Oct-14	DT	1425852	

SS-77 SB98955	-11			<u>Client P</u> 14-0			<u>Matrix</u> Soil		ection Date 9-Oct-14 16			ceived Oct-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
	ated Biphenyls by method SW846 3540C												
12674-11-2	Aroclor-1016	< 21.2	U	μg/kg dry	22.7	21.2	1	SW846 8082A	31-Oct-14	04-Nov-14	IMR	1425831	Χ
11104-28-2	Aroclor-1221	< 19.3	U	μg/kg dry	22.7	19.3	1	н			"		Χ
11141-16-5	Aroclor-1232	< 20.4	U	μg/kg dry	22.7	20.4	1	н			"		Χ
53469-21-9	Aroclor-1242	< 10.1	U	μg/kg dry	22.7	10.1	1	п			"		Χ
12672-29-6	Aroclor-1248	< 12.3	U	μg/kg dry	22.7	12.3	1	п			"		Χ
11097-69-1	Aroclor-1254	< 14.3	U	μg/kg dry	22.7	14.3	1	п			"		Χ
11096-82-5	Aroclor-1260	< 16.3	U	μg/kg dry	22.7	16.3	1	п			"		Χ
37324-23-5	Aroclor-1262	< 12.3	U	μg/kg dry	22.7	12.3	1	п			"		Χ
11100-14-4	Aroclor-1268	< 22.3	U	μg/kg dry	22.7	22.3	1	II .			"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	90			30-15	0 %			н	п	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	95			30-15	0 %				п	"		
2051-24-3	Decachlorobiphenyl (Sr)	90			30-15	i0 %		п			"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	90			30-15	0 %		п		н	"		

31-Oct-14 31-Oct-14

DT

1425852

% Solids

Sample Identification SS-76 SB98955-12			<u>Client P</u> 14-0			<u>Matrix</u> Soil	-	Collection Date/Time 29-Oct-14 16:33			Received 30-Oct-14		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC .											
	ated Biphenyls by method SW846 3540C												
12674-11-2	Aroclor-1016	< 23.1	U	μg/kg dry	24.7	23.1	1	SW846 8082A	31-Oct-14	04-Nov-14	IMR	1425831	Χ
11104-28-2	Aroclor-1221	< 21.1	U	μg/kg dry	24.7	21.1	1	п					Χ
11141-16-5	Aroclor-1232	< 22.2	U	μg/kg dry	24.7	22.2	1	II.		н			Χ
53469-21-9	Aroclor-1242	< 11.0	U	μg/kg dry	24.7	11.0	1	II.		н			Χ
12672-29-6	Aroclor-1248	2,690		μg/kg dry	24.7	13.5	1	II.		н	"		Χ
11097-69-1	Aroclor-1254	2,630		μg/kg dry	24.7	15.6	1			н	"		Χ
11096-82-5	Aroclor-1260	203		μg/kg dry	24.7	17.7	1			н	"		Χ
37324-23-5	Aroclor-1262	< 13.4	U	μg/kg dry	24.7	13.4	1	II.		н	"		Χ
11100-14-4	Aroclor-1268	< 24.3	U	μg/kg dry	24.7	24.3	1	и			"		Х
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	90			30-15	0 %		п		п	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	95			30-15	0 %		n.			"		
2051-24-3	Decachlorobiphenyl (Sr)	90			30-15	0 %		п			"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	90			30-15	0 %					"		
General C	Chemistry Parameters												
	% Solids	74.2		%			1	SM2540 G Mod.	31-Oct-14	31-Oct-14	DT	1425852	

Semivolatile Organic Compounds by GC - Quality Control

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1425831 - SW846 3540C										
Blank (1425831-BLK1)					<u>Pre</u>	pared: 31-Oct	-14 Analyzed:	03-Nov-14		
Aroclor-1016	< 18.1	U	μg/kg wet	18.1						
Aroclor-1016 [2C]	< 12.5	U	μg/kg wet	12.5						
Aroclor-1221	< 16.5	U	μg/kg wet	16.5						
Aroclor-1221 [2C]	< 14.2	U	μg/kg wet	14.2						
Aroclor-1232	< 17.4	U	μg/kg wet	17.4						
Aroclor-1232 [2C]	< 14.9	U	μg/kg wet	14.9						
Aroclor-1242	< 8.59	U	μg/kg wet	8.59						
Aroclor-1242 [2C]	< 15.1	U	μg/kg wet	15.1						
Aroclor-1248	< 10.5	U	μg/kg wet	10.5						
Aroclor-1248 [2C]	< 10.6	U	μg/kg wet	10.6						
Aroclor-1254	< 12.2	U	μg/kg wet	12.2						
Aroclor-1254 [2C]	< 11.5	U	μg/kg wet	11.5						
Aroclor-1260	< 13.8	U	μg/kg wet	13.8						
Aroclor-1260 [2C]	< 18.3	U	μg/kg wet	18.3						
Aroclor-1262	< 10.5	U	μg/kg wet	10.5						
Aroclor-1262 [2C]	< 9.67	U	μg/kg wet	9.67						
Aroclor-1268	< 19.0	U	μg/kg wet	19.0						
Aroclor-1268 [2C]	< 18.6	U	μg/kg wet	18.6						
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	22.2		μg/kg wet		19.3		115	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	21.3		μg/kg wet		19.3		110	30-150		
Surrogate: Decachlorobiphenyl (Sr)	16.4		μg/kg wet		19.3		85	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	15.5		μg/kg wet		19.3		80	30-150		
LCS (1425831-BS1)					Pre	pared: 31-Oct	-14 Analyzed:	03-Nov-14		
Aroclor-1016	226		μg/kg wet	18.5	248		91	40-140		
Aroclor-1016 [2C]	205		μg/kg wet	12.8	248		83	40-140		
Aroclor-1260	218		μg/kg wet	14.2	248		88	40-140		
Aroclor-1260 [2C]	186		μg/kg wet	18.8	248		75	40-140		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	21.8		μg/kg wet		19.8		110	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	20.8		μg/kg wet		19.8		105	30-150		
Surrogate: Decachlorobiphenyl (Sr)	17.8		μg/kg wet		19.8		90	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	15.8		μg/kg wet		19.8		80	30-150		
LCS Dup (1425831-BSD1)					Pre	pared: 31-Oct	-14 Analyzed:	03-Nov-14		
Aroclor-1016	213		μg/kg wet	17.9	239		89	40-140	2	30
Aroclor-1016 [2C]	213		μg/kg wet	12.4	239		89	40-140	7	30
Aroclor-1260	209		μg/kg wet	13.7	239		87	40-140	0.9	30
Aroclor-1260 [2C]	187		μg/kg wet	18.1	239		78	40-140	4	30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	21.1		μg/kg wet		19.1		110	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	20.1		μg/kg wet		19.1		105	30-150		
Surrogate: Decachlorobiphenyl (Sr)	17.2		μg/kg wet		19.1		90	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	16.3		μg/kg wet		19.1		85	30-150		

General Chemistry Parameters - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1425852 - General Preparation										
Duplicate (1425852-DUP1)			Source: SE	<u>398955-03</u>	Pre	pared & Analy	zed: 31-Oct-14			
% Solids	64.2		%			66.9			4	5

Notes and Definitions

D Data reported from a dilution

GS1 Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

J Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration

(CLP J-Flag).

U Analyte included in the analysis, but not detected at or above the MDL.

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification:</u> The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

Validated by: June O'Connor Rebecca Merz

Telephone #:

Report To:

Rich

M ANALYTICAL, INC., Featuring	CHAIN OF CUSTODY RECORD Page 1 of 2	X Rush TAT - Date Needed: 3 - DAY All TATs subject to laboratory approval Min. 24-hr notification needed for rushes Samples disposed after 60 days unless otherwise instructed
Rich McKenne	Invoice To: Acct's Payable	roject No: $ 4-o9 $
1308 Flu Road		site Name: Woodbine Business Park
(315) 432-9400	P.O No.: 4-69 Quote/RQN:	Sampler(s): Drew Brankner State: NY

,)	July 1	N	Drew	Relinc	1, 70	109	É	S	-06	. 93	-6	18	12	9895571	Lab ID:	6	X1=	O=Oil SO=Soil	DW =Dinking Water	F=Field Filtered 1=N; 7=CH3OH 8=NaHSO ₄	Project Mgr:
		ROA	Button	Relinquished by:	55-78	55-75	55-72	55-73	55-74	65-71	80-58	\$5-70	55-69	SS-67	Sample ID:	G= Grab	X2=	SL=Sludge A=Inde	GW=Groundwater	1=Na ₂ S2O ₃ 2=HCl 3=H ₂ SO ₄ HSO ₄ 9=Deionized Water 10=H ₃ PO ₄	
	OM	Too Kestler	N X X	Received by:	+									10/29/14	Date:	C=Compsite	= X3=	A=Indoor/Ambient Air SG=Soil Gas	SW=Surface Water WW=	4=HNO ₃	
			OK	N. S.	1611 +	1602	1549	1543	1536	1529	152	1515	1508	150 6	Time:	/pe		Jas	WW=Waste Water	5=NaOH 6=Ascorbic Acid	P.O No.: 17-09
	Claulty	168014	10/2014	Date:	*									50	# of .		Glass		Con	c Acid	Quote/RQN:
	MM)	1620	ahou	Time:										14.63		Clear (Containers		QN:
IR ID#	Corrected	Corection Factor	Observed	Temp °C	+									×	80	52	PCE	35			
Ambient XIced	Condition upon receipt:		E-mail to:	EDD format:			11/11/11/2	11/20/14/	401										Analysis	List Preservative Code below:	
☐ Refrigerated	:: Custody Seals:		makenna (TOF E											Chec	ck if cl	hlorinat	ed		below:	
☐ DI VOA Frozen ☐ So	☐ Present ☐ Intact ☐		mckenner @ a eccopoup. con	Excel		にのだ	1901				The second secon	Soxhlet P			Other: State-specific reporting standards:	NJ Reduced*	ASP A*	Standard No	teport?	QA/QC Reporting Notes: * additional charges may appply	
Soil Jar Frozen	Broken		D. C.	Service Servic		R						9			ndards:	NJ Full* Tier IV*	8 '	00 [Notes: y appply	

Report To:

Rich McKenna

AFCC

6308 Fly Road

CHAIN OF CUSTODY RECORD

Acct's Payable

|--|

X	
Rush TAT - Date Needed:	Standard TAT - 7 to 10 busin
Ü	ess days

			0
Samp	Min. 24-hr notification needed for rushes	All TATs subject to laboratory approval	ACCOUNT AT AT A COMM THE OWNER.
les	24-	AT	
disp	hr 1	us s	,
osed	notific	bject	2000
after	ation	to lat	110
60	ne	200	5
days	eded	tory	
lun	for	app	1
ess	rus	TOV:	i
oth	hes	al	1
Samples disposed after 60 days unless otherwise			17

instructed.

ACCOUNTY TO THE STATE OF THE ST
7

Site Name:

Project No

American Control of the Control of t		8985 -11 55-77 10/29/14 1627 G SO 1 X	C=Compsite Type Matrix # of VOA Vials # of Plastic Matrix # of Plastic	DW=Dinking Water GW=Groundwater SW=Surface Water WW=Waste Water Containers Analysis	F=Field Filtered 1=Na ₂ S2O ₃ 2=HCl 3=H ₂ SO ₄ 4=HNO ₃ 5=NaOH 6=Ascorbic Acid List Preservative Code be a considered to the construction of the con	Eost Syracuse, NY 13057 Telephone #: (35) 432 - 9400 Project Mgr: Project Mgr: P.O.No.: 14-09 Quote/RQN: Sampler(s):
M Miles College	m di on C	××	8082 PCBs	Analysis	List Preservative Code below:	Location: Area Pr. Sampler(s): Drew
		Soxhlet Prep	CT DPH RCP Report?	MA DEP MCP CAM Report? ☐ Yes ☐ No	QA/QC Reporting Notes: * additional charges may appply	Brankner State: NY

Relinquished by:

Time:

Temp °C

E-mail to:

1995

Exce

mukenna @ accigrate com

Condition upon receipt: Ambient Alced

☐ Refrigerated Custody Seals:

☐ DI VOA Frozen

Soil Jar Frozen

Present

☐ Intact

☐ Broken

Life Science Laboratories, Inc.

Rich McKenna Asbestos & Environmental Consulting Corp 6308 Fly Road East Syracuse, NY 13057 Phone:

(315) 432-9400

FAX:

(315) 432-9405

Laboratory Analysis ReportPrepared For

Asbestos & Environmental Consulting Corp

LSL Project ID: **1418046**Receive Date/Time: 11/04/14 13:17

Life Science Laboratories, Inc. warrants, to the best of its knowledge and belief, the accuracy of the analytical test results contained in this report, but makes no other warranty, expressed or implied, especially no warranties of merchantability or fitness for a particular purpose. By the Client's acceptance and/or use of this report, the Client agrees that LSL is hereby released from any and all liabilities, claims, damages or causes of action affecting or which may affect the Client as regards to the results contained in this report. The Client further agrees that the only remedy available to the Client in the event of proven non-conformity with the above warranty shall be for LSL to re-perform the analytical test(s) at no charge to the Client. The data contained in this report are for the exclusive use of the Client to whom it is addressed, and the release of these data to any other party, or the use of the name, trademark or service mark of Life Science Laboratories, Inc. especially for the use of advertising to the general public, is strictly prohibited without express prior written consent of Life Science Laboratories, Inc. This report may only be reproduced in its entirety. No partial duplication is allowed. The Chain of Custody and the Sample Receipt documents submitted with these samples are considered by LSL to be an appendix of this report and may contain specific information that pertains to the samples included in this report. The analytical result(s) in this report are only representative of the sample(s) submitted for analysis. LSL makes no claim of a sample's representativeness, or integrity, if sampling was not performed by LSL personnel.

LSL Central Lab 5854 Butternut Drive East Syracuse, NY 13057 Tel. (315) 445-1900 Fax (315) 445-1104 NYS DOH ELAP #10248 PA DEP #68-2556

LSL North Lab 131 St. Lawrence Avenue Waddington, NY 13694 Tel. (315) 388-4476 Fax (315) 388-4061 NYS DOH ELAP #10900 LSL Finger Lakes Lab 16 N. Main St., PO Box 424 Wayland, NY 14572 Tel. (585) 728-3320 Fax (585) 728-2711 NYS DOH ELAP #11667 LSL Southern Tier Office Cuba, NY Tel. (585) 209-4032

LSL MidLakes Office Canandaigua, NY Tel. (585) 728-3320

This report was reviewed by:

David

Date:

ulchy

David J. Prichard, Director of Tech. Services

-- LABORATORY ANALYSIS REPORT --

Asbestos & Environmental Consulting Corp

East Syracuse, NY

Sample ID:

SS-75d Grab

LSL Sample ID:

1418046-001

Location:

Sampled:

10/29/14 16:02

Sampled By: DB

Sample Matrix: SHW Dry Wt, Soil

Analytical Method		Prep Method	Prep	Analysis	Analyst
Analyte	Result	Units	Date	Date & Time	Initials
(1) EPA 8082A PCBs (Dry Weight)		EPA 3540			
Aroclor-1016	<1	mg/kg dry	11/5/14	11/6/14	CRT
Aroclor-1221	<1	mg/kg dry	11/5/14	11/6/14	CRT
Aroclor-1232	<1	mg/kg dry	11/5/14	11/6/14	CRT
Aroclor-1242	<1	mg/kg dry	11/5/14	11/6/14	CRT
Aroclor-1248	6.9	mg/kg dry	11/5/14	11/6/14	CRT
Aroclor-1254	<1	mg/kg dry	11/5/14	11/6/14	CRT
Aroclor-1260	<1	mg/kg dry	11/5/14	11/6/14	CRT
Surrogate (DCB)	120	%R	11/5/14	11/6/14	CRT

Analysis performed at: (1) LSL Central Lab, (2) LSL North Lab, (3) LSL Finger Lakes Lab

Life Science Laboratories, Inc. CHAIN OF CUSTODY RECORD

Email: Islcentral@Isl-inc.com East Syracuse, NY 13057. Phone: (315) 445-1900 5854 Buttemut Drive Fax: (315) 445-1104 LSL Central Lab

Email: IsInfo@IsI-inc.com Waddington, NY 13694 Phone: (315) 388-4476 131 St Lawrence Ave Fax: (315) 388-4081 LSL North Lab

Email: Islstl@Isl-inc.com Email: Islfil@Isl-inc.com Phone: (585) 728-3320 LSL Finger Lakes Lab 16 North Main Street Fax: (585) 728-2711 Wayland, NY 14572

24 A West Main Street Phone: (585) 968-2640 LSL Southern Tier Lab Fax: (585) 968-0906 Cuba, NY 14727

2700 Tel

*Additional Charges LSL ID# Time 00 13.1 Sample Temp may apply Check 11/4/11 Preserv Date Containers this C-O-C Shipment Method:
*** All areas of this Chain of Custody Record MUST be filled out in order to process samples in a timely manner IN PEN ONLY*** X 区 7.17 14-09 3-Day * 7-Day* Date Needed or Special Instructions: PCBs Analyses Turnaround Time (Business Day) *Noxalet Pre-Authorized 8082 Authorization or P.O. # Next Day* LSI Project Number: 2-Day * Rec'd for Lab By: Received By: Received By: size/type 402 Amber Normal 10 DAY **Custody Transfers** Containers Fax: (3|5) 432 - 9405 Relinquished By: Naw Marks Preserv Added Drew Branch 1305 Mateix Ŕ Zip: Type grab/comp Bab Relinquished By: Sampled By: Client Project ID/Client Site ID Time Sample | Sample 0/27/14 1402 McKenna Date temp otal Siacuser 6308 Fly Road 00Hb-ECH (SIE) Rich Identifications Client's Sample East Client. -75d * Sample receipt Report Address: por City/State: Company \ \ \ LSL use only: Phone: Street: Vame: Email: 5

Reg COC rev1

Report Date: 05-Dec-14 15:12

☑ Final Report☐ Re-Issued Report☐ Revised Report

Featuring HANIBAL TECHNOLOGY

Laboratory Report

AECC Environmental Consulting 6308 Fly Road

East Syracuse, NY 13057

Attn: Rich McKenna

Project: Woodbine Business Park - Dewitt, NY

Project #: 14-091

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SC00580-01	SS-79	Soil	02-Dec-14 10:40	02-Dec-14 21:00
SC00580-02	SS-81	Soil	02-Dec-14 10:46	02-Dec-14 21:00
SC00580-03	SS-83	Soil	02-Dec-14 10:52	02-Dec-14 21:00
SC00580-04	SS-84	Soil	02-Dec-14 10:57	02-Dec-14 21:00
SC00580-05	SS-86	Soil	02-Dec-14 11:03	02-Dec-14 21:00
SC00580-06	SS-80	Soil	02-Dec-14 11:15	02-Dec-14 21:00
SC00580-07	SS-82	Soil	02-Dec-14 11:21	02-Dec-14 21:00
SC00580-08	SS-85	Soil	02-Dec-14 11:26	02-Dec-14 21:00
SC00580-09	SS-87	Soil	02-Dec-14 11:32	02-Dec-14 21:00
SC00580-10	SS-88	Soil	02-Dec-14 11:37	02-Dec-14 21:00
SC00580-11	SS-89	Soil	02-Dec-14 11:48	02-Dec-14 21:00
SC00580-12	SS-90	Soil	02-Dec-14 11:55	02-Dec-14 21:00
SC00580-13	SS-91	Soil	02-Dec-14 12:02	02-Dec-14 21:00
SC00580-14	SS-92	Soil	02-Dec-14 12:13	02-Dec-14 21:00
SC00580-15	SS-93	Soil	02-Dec-14 12:19	02-Dec-14 21:00
SC00580-16	SS-94	Soil	02-Dec-14 12:23	02-Dec-14 21:00
SC00580-17	SS-95	Soil	02-Dec-14 12:30	02-Dec-14 21:00
SC00580-18	SS-96	Soil	02-Dec-14 12:36	02-Dec-14 21:00
SC00580-19	SS-97	Soil	02-Dec-14 12:47	02-Dec-14 21:00

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011/MA012 New York # 11393/11840 Pennsylvania # 68-04426/68-02924 Rhode Island # 98 USDA # S-51435

Authorized by:

Nicole Leja Laboratory Director

Nicole Leja

Spectrum Analytical holds certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 27 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our Quality'web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey, Pennsylvania and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, NJ-MA012, PA-68-04426 and FL-E87936).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

CASE NARRATIVE:

Data has been reported to the MDL. This report includes estimated concentrations detected below the RDL and above the MDL (J-Flag).

All non-detects and all results below the detection limit are reported as "<" (less than) the detection limit in this report.

The samples were received 5.7 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of +/- 1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

SW846 8082A

Samples:

SC00580-02 SS-81

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

SC00580-03 SS-83

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interference's.

4,4-DB-Octafluorobiphenyl (Sr)

4,4-DB-Octafluorobiphenyl (Sr) [2C]

Decachlorobiphenyl (Sr)

Decachlorobiphenyl (Sr) [2C]

SC00580-05 SS-86

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interference's.

4,4-DB-Octafluorobiphenyl (Sr)

4,4-DB-Octafluorobiphenyl (Sr) [2C]

Decachlorobiphenyl (Sr)

Decachlorobiphenyl (Sr) [2C]

SC00580-07 SS-82

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interference's.

4,4-DB-Octafluorobiphenyl (Sr)

4,4-DB-Octafluorobiphenyl (Sr) [2C]

Decachlorobiphenyl (Sr)

Decachlorobiphenyl (Sr) [2C]

Sample Acceptance Check Form

AECC Environmental Consulting

Were samples received within method-specific holding times?

Client:

Project:	Woodbine Business Park - Dewitt, NY / 14-091			
Work Order:	SC00580			
Sample(s) received on:	12/2/2014			
The following outlines th	ne condition of samples for the attached Chain of Custody upon receipt.			
		<u>Yes</u>	<u>No</u>	<u>N/A</u>
Were custody se	als present?		\checkmark	
Were custody se	als intact?			\checkmark
Were samples re	ceived at a temperature of \leq 6°C?	\checkmark		
Were samples co	oled on ice upon transfer to laboratory representative?	✓		
Were sample con	ntainers received intact?	✓		
	operly labeled (labels affixed to sample containers and include sample ID, site project number and the collection date)?	\checkmark		
Were samples ac	companied by a Chain of Custody document?	✓		
include sample I	ustody document include proper, full, and complete documentation, which shall D, site location, and/or project number, date and time of collection, collector's name, e, sample matrix and any special remarks concerning the sample?			
Did sample cont	ainer labels agree with Chain of Custody document?	✓		

Sample Ic SS-79 SC00580-	dentification			<u>Client P</u> 14-0	-		<u>Matrix</u> Soil		ection Date -Dec-14 10			ceived Dec-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	ile Organic Compounds by C	GC											
Polychlori	nated Biphenyls												
<u>Prepared</u>	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 22.4	U	μg/kg dry	24.0	22.4	1	SW846 8082A	03-Dec-14	04-Dec-14	IMR	1428496	Χ
11104-28-2	Aroclor-1221	< 20.4	U	μg/kg dry	24.0	20.4	1	"	"	"	"	"	Χ
11141-16-5	Aroclor-1232	< 21.5	U	μg/kg dry	24.0	21.5	1	"	"	"		"	Х
53469-21-9	Aroclor-1242	< 10.6	U	μg/kg dry	24.0	10.6	1	"	"	"	"	"	Х
12672-29-6	Aroclor-1248	< 13.0	U	μg/kg dry	24.0	13.0	1	"	"	"	"	"	Х
11097-69-1	Aroclor-1254 [2C]	< 14.3	U	μg/kg dry	24.0	14.3	1	"	"	"	"	"	Х
11096-82-5	Aroclor-1260	< 17.1	U	μg/kg dry	24.0	17.1	1	"	"	"	"	"	X
37324-23-5	Aroclor-1262	< 13.0	U	μg/kg dry	24.0	13.0	1	"	"	"	"	"	Х
11100-14-4	Aroclor-1268	< 23.5	U	μg/kg dry	24.0	23.5	1	"	"		"	"	Х
Surrogate	recoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	85			30-15	50 %		"	"	"	"	"	
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	90			30-15	50 %		"	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr)	105			30-15	50 %		"	"	"		"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	110			30-15	50 %		"	"	"	·	"	
General C	hemistry Parameters												
	% Solids	82.0		%			1	SM2540 G Mod.	03-Dec-14	03-Dec-14	DT	1428498	

Sample Id SS-81 SC00580-	lentification 02			<u>Client Pr</u> 14-0			<u>Matrix</u> Soil	-	ection Date -Dec-14 10			ceived Dec-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	le Organic Compounds by C	GC											
	nated Biphenyls by method SW846 3540C		GS1										
12674-11-2	Aroclor-1016	< 228	U, D	μg/kg dry	244	228	10	SW846 8082A	03-Dec-14	04-Dec-14	IMR	1428496	Х
11104-28-2	Aroclor-1221	< 208	U, D	μg/kg dry	244	208	10	"	"	"	"	"	Х
11141-16-5	Aroclor-1232	< 219	U, D	μg/kg dry	244	219	10	"	"	"	"	"	Х
53469-21-9	Aroclor-1242	< 109	U, D	μg/kg dry	244	109	10	"	u u	"	"	"	Х
12672-29-6	Aroclor-1248	< 133	U, D	μg/kg dry	244	133	10	"	u u	"	"	"	Х
11097-69-1	Aroclor-1254 [2C]	13,500	D	μg/kg dry	244	146	10	"	u u	"	"	"	Х
11096-82-5	Aroclor-1260	818	D	μg/kg dry	244	175	10	"	"	"	"	"	Х
37324-23-5	Aroclor-1262	< 132	U, D	μg/kg dry	244	132	10	"	u u	"	"	"	Х
11100-14-4	Aroclor-1268	< 240	U, D	μg/kg dry	244	240	10	"	"	"	"	"	Χ
Surrogate i	recoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	100			30-15	50 %		"	"	"	u	u	
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	100			30-15	50 %		"	u	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr)	100			30-15	50 %		"	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	100			30-15	50 %		"	u	"	"	"	
General C	hemistry Parameters												
	% Solids	80.9		%			1	SM2540 G Mod.	03-Dec-14	03-Dec-14	DT	1428498	

Sample Id SS-83 SC00580-	entification 03			<u>Client P</u> 14-0			<u>Matrix</u> Soil		ection Date -Dec-14 10			ceived Dec-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	le Organic Compounds by C	GC											
	nated Biphenyls by method SW846 3540C		GS1										
12674-11-2	Aroclor-1016	< 51300	U, D	μg/kg dry	54900	51300	2000	SW846 8082A	03-Dec-14	04-Dec-14	IMR	1428496	Х
11104-28-2	Aroclor-1221	< 46700	U, D	μg/kg dry	54900	46700	2000	"	"	"	"	"	Х
11141-16-5	Aroclor-1232	< 49300	U, D	μg/kg dry	54900	49300	2000	"	"	"	"	"	Х
53469-21-9	Aroclor-1242	< 24400	U, D	μg/kg dry	54900	24400	2000	"	"	"	"	"	Х
12672-29-6	Aroclor-1248 [2C]	2,440,000	D	μg/kg dry	54900	30100	2000	"	"	"	"	"	Х
11097-69-1	Aroclor-1254	1,840,000	D	μg/kg dry	54900	34600	2000	"	"	"	"	"	Х
11096-82-5	Aroclor-1260	124,000	D	μg/kg dry	54900	39300	2000	"	"	"	"	"	Х
37324-23-5	Aroclor-1262	< 29800	U, D	μg/kg dry	54900	29800	2000	"	"	"	"	"	Х
11100-14-4	Aroclor-1268	< 54000	U, D	μg/kg dry	54900	54000	2000	"	"	"	"	"	Χ
Surrogate i	ecoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	0	S01, U		30-15	50 %		"	"	n .	"	"	
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	0	S01, U		30-15	50 %		"	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr)	0	S01, U		30-15	50 %		"	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	0	S01, U		30-15	50 %		"	"	"	"	"	
General C	hemistry Parameters												
	% Solids	71.8		%			1	SM2540 G Mod.	03-Dec-14	03-Dec-14	DT	1428498	

Sample Id SS-84 SC00580-	entification 04			<u>Client Pr</u> 14-0			<u>Matrix</u> Soil	·	ection Date -Dec-14 10			ceived Dec-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	le Organic Compounds by C	ЭC											
Polychlori	nated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 25.3	U	μg/kg dry	27.1	25.3	1	SW846 8082A	03-Dec-14	04-Dec-14	IMR	1428496	Χ
11104-28-2	Aroclor-1221	< 23.1	U	μg/kg dry	27.1	23.1	1	"	"	"	"	"	Χ
11141-16-5	Aroclor-1232	< 24.4	U	μg/kg dry	27.1	24.4	1	"	"	"		"	Х
53469-21-9	Aroclor-1242	< 12.0	U	μg/kg dry	27.1	12.0	1	"	"	"	"	"	Х
12672-29-6	Aroclor-1248	271		μg/kg dry	27.1	14.7	1	"	"	"	"	"	Х
11097-69-1	Aroclor-1254	< 17.1	U	μg/kg dry	27.1	17.1	1	"	"	"	"	"	Х
11096-82-5	Aroclor-1260	< 19.4	U	μg/kg dry	27.1	19.4	1	"	"	"	"	"	Х
37324-23-5	Aroclor-1262	< 14.7	U	μg/kg dry	27.1	14.7	1			"	"		Х
11100-14-4	Aroclor-1268	< 26.6	U	μg/kg dry	27.1	26.6	1	"	"	"	"	"	Χ
Surrogate r	ecoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	90			30-15	50 %		"	"	u	ıı	"	
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	95			30-15	50 %		u u	"	н	"	"	
2051-24-3	Decachlorobiphenyl (Sr)	105			30-15	50 %		"	"	"		"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	115			30-15	50 %		u	"	"	"	"	
General C	hemistry Parameters												
	% Solids	72.4		%			1	SM2540 G Mod.	03-Dec-14	03-Dec-14	DT	1428498	

Sample Id SS-86 SC00580-	lentification 05			<u>Client Pr</u> 14-0			<u>Matrix</u> Soil	-	ection Date -Dec-14 11			ceived Dec-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	le Organic Compounds by C	GC											
	nated Biphenyls by method SW846 3540C		GS1										
12674-11-2	Aroclor-1016	< 1210	U, D	μg/kg dry	1300	1210	50	SW846 8082A	03-Dec-14	04-Dec-14	IMR	1428496	Х
11104-28-2	Aroclor-1221	< 1100	U, D	μg/kg dry	1300	1100	50	"	"	"	"	"	Х
11141-16-5	Aroclor-1232	< 1160	U, D	μg/kg dry	1300	1160	50	"	"	"	"	"	Х
53469-21-9	Aroclor-1242	< 576	U, D	μg/kg dry	1300	576	50	"	u u	"	"	"	Х
12672-29-6	Aroclor-1248	42,000	D	μg/kg dry	1300	704	50	"	u u	"	"		Х
11097-69-1	Aroclor-1254	33,100	D	μg/kg dry	1300	817	50	"	u u	"	"		Х
11096-82-5	Aroclor-1260 [2C]	2,720	D	μg/kg dry	1300	1230	50	"	"	"	"	"	Х
37324-23-5	Aroclor-1262	< 702	U, D	μg/kg dry	1300	702	50	"	u u	"	"		Х
11100-14-4	Aroclor-1268	< 1270	U, D	μg/kg dry	1300	1270	50	"	"	"	"	"	Χ
Surrogate i	ecoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	0	S01, U		30-15	50 %		"	"	"	u	"	
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	0	S01, U		30-15	50 %		"	II	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr)	0	S01, U		30-15	50 %		"	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	0	S01, U		30-15	50 %		"	u	"	"	"	
General C	hemistry Parameters												
	% Solids	76.0		%			1	SM2540 G Mod.	03-Dec-14	03-Dec-14	DT	1428498	

Sample Id SS-80 SC00580-	entification 06			Client Pr	-		<u>Matrix</u> Soil		ection Date 2-Dec-14 11			eceived Dec-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	le Organic Compounds by C	GC											
Polychlorii	nated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 22.6	U	μg/kg dry	24.2	22.6	1	SW846 8082A	03-Dec-14	04-Dec-14	IMR	1428496	Χ
11104-28-2	Aroclor-1221	< 20.6	U	μg/kg dry	24.2	20.6	1	"	"	"		"	Χ
11141-16-5	Aroclor-1232	< 21.7	U	μg/kg dry	24.2	21.7	1	"	"	"	"	"	Х
53469-21-9	Aroclor-1242	< 10.8	U	μg/kg dry	24.2	10.8	1	"	"	"	"	"	Х
12672-29-6	Aroclor-1248	79.8		μg/kg dry	24.2	13.1	1	"	"	"	"	"	Х
11097-69-1	Aroclor-1254 [2C]	102		μg/kg dry	24.2	14.4	1	"	"	"	"		Х
11096-82-5	Aroclor-1260	< 17.3	U	μg/kg dry	24.2	17.3	1	"	"	"	"		Х
37324-23-5	Aroclor-1262	< 13.1	U	μg/kg dry	24.2	13.1	1	"	"	"	"	"	Х
11100-14-4	Aroclor-1268	< 23.8	U	μg/kg dry	24.2	23.8	1	"	"	"	"	"	Χ
Surrogate r	ecoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	85			30-15	50 %		"	"	u	"	"	
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	85			30-15	50 %		"	"	н	"	"	
2051-24-3	Decachlorobiphenyl (Sr)	100			30-15	50 %		"	"	"		"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	100			30-15	50 %		"	II	n .	"	"	
General Cl	hemistry Parameters												
	% Solids	81.4		%			1	SM2540 G Mod.	03-Dec-14	03-Dec-14	DT	1428498	

Sample Id SS-82 SC00580-	entification 07			<u>Client P</u> 14-0			<u>Matrix</u> Soil	-	ection Date -Dec-14 11	,		ceived Dec-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	le Organic Compounds by C	GC											
	nated Biphenyls by method SW846 3540C		GS1										
12674-11-2	Aroclor-1016	< 2410	U, D	μg/kg dry	2580	2410	100	SW846 8082A	03-Dec-14	04-Dec-14	IMR	1428496	Х
11104-28-2	Aroclor-1221	< 2190	U, D	μg/kg dry	2580	2190	100	"	"	"	"	"	Х
11141-16-5	Aroclor-1232	< 2310	U, D	μg/kg dry	2580	2310	100	"	"	"	"	"	Х
53469-21-9	Aroclor-1242	< 1150	U, D	μg/kg dry	2580	1150	100	"	u u	"	"		Х
12672-29-6	Aroclor-1248	184,000	D	μg/kg dry	2580	1400	100	"	u u	"	"		Х
11097-69-1	Aroclor-1254	172,000	D	μg/kg dry	2580	1630	100	"	u u	"	"		Х
11096-82-5	Aroclor-1260	11,700	D	μg/kg dry	2580	1840	100		"	"	"	"	Х
37324-23-5	Aroclor-1262	< 1400	U, D	μg/kg dry	2580	1400	100	"	u u	"	"		Х
11100-14-4	Aroclor-1268	< 2530	U, D	μg/kg dry	2580	2530	100	"	"	"	"	"	Χ
Surrogate i	ecoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	0	S01, U		30-15	50 %		"	"	"	u	"	
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	0	S01, U		30-15	50 %		"	II	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr)	0	S01, U		30-15	50 %		"	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	0	S01, U		30-15	50 %		"	II	"	"	"	
General C	hemistry Parameters												
	% Solids	74.5		%			1	SM2540 G Mod.	03-Dec-14	03-Dec-14	DT	1428498	

Sample Id SS-85 SC00580-	lentification			<u>Client P</u>			<u>Matrix</u> Soil	·	ection Date -Dec-14 11			eceived Dec-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	lle Organic Compounds by C	GC											
	nated Biphenyls by method SW846 3540C												
12674-11-2	Aroclor-1016	< 25.2	U	μg/kg dry	26.9	25.2	1	SW846 8082A	03-Dec-14	04-Dec-14	IMR	1428496	Х
11104-28-2	Aroclor-1221	< 22.9	U	μg/kg dry	26.9	22.9	1		"	"	"	"	Х
11141-16-5	Aroclor-1232	< 24.2	U	μg/kg dry	26.9	24.2	1		"	"	"	"	Х
53469-21-9	Aroclor-1242	< 12.0	U	μg/kg dry	26.9	12.0	1	"	u u	"	"	"	Х
12672-29-6	Aroclor-1248	< 14.6	U	μg/kg dry	26.9	14.6	1	"	u u	"	"	"	Х
11097-69-1	Aroclor-1254 [2C]	1,110		μg/kg dry	26.9	16.1	1	"	u u	"	"	"	Х
11096-82-5	Aroclor-1260	94.3		μg/kg dry	26.9	19.3	1		"	"	"	"	Х
37324-23-5	Aroclor-1262	< 14.6	U	μg/kg dry	26.9	14.6	1	"	u u	"	"	"	X
11100-14-4	Aroclor-1268	< 26.5	U	μg/kg dry	26.9	26.5	1	"	"	"	"	"	Χ
Surrogate i	recoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	85			30-15	50 %		"	"	"	"	"	
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	90			30-15	50 %		"	II	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr)	95			30-15	50 %		"	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	105			30-15	50 %		"	"	"	"	"	
General C	hemistry Parameters												
	% Solids	74.2		%			1	SM2540 G Mod.	03-Dec-14	03-Dec-14	DT	1428498	

Sample Id SS-87 SC00580-	entification 09			<u>Client Pr</u> 14-0	-		<u>Matrix</u> Soil		ection Date -Dec-14 11			eceived Dec-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	le Organic Compounds by C	GC											
Polychlorii	nated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 25.8	U	μg/kg dry	27.6	25.8	1	SW846 8082A	03-Dec-14	04-Dec-14	IMR	1428496	Χ
11104-28-2	Aroclor-1221	< 23.5	U	μg/kg dry	27.6	23.5	1	"	"	"	"	"	Χ
11141-16-5	Aroclor-1232	< 24.8	U	μg/kg dry	27.6	24.8	1	"	"	"	"	"	Χ
53469-21-9	Aroclor-1242	< 12.3	U	μg/kg dry	27.6	12.3	1	"	u u	"	"	"	Х
12672-29-6	Aroclor-1248	< 15.0	U	μg/kg dry	27.6	15.0	1	"	"	"	"	"	Х
11097-69-1	Aroclor-1254 [2C]	3,290		μg/kg dry	27.6	16.5	1	"	"	"	"	"	Х
11096-82-5	Aroclor-1260	207		μg/kg dry	27.6	19.8	1	"	"	"	"	"	Х
37324-23-5	Aroclor-1262	< 15.0	U	μg/kg dry	27.6	15.0	1	"	"	"	"	"	Х
11100-14-4	Aroclor-1268	< 27.2	U	μg/kg dry	27.6	27.2	1	II .	"	"	"	"	Х
Surrogate r	ecoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	80			30-15	50 %		"	"	u	"	"	
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	85			30-15	50 %		"	"	н	"	"	
2051-24-3	Decachlorobiphenyl (Sr)	95			30-15	50 %		"	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	105			30-15	50 %		"	u	н	"	"	
General Cl	hemistry Parameters												
	% Solids	70.4		%			1	SM2540 G Mod.	03-Dec-14	03-Dec-14	DT	1428498	

Sample Id SS-88 SC00580-	lentification			<u>Client P</u> 14-0	-		<u>Matrix</u> Soil		ection Date -Dec-14 11			eceived Dec-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	le Organic Compounds by C	БС											
Polychlori	nated Biphenyls												
<u>Prepared</u>	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 25.7	U	μg/kg dry	27.5	25.7	1	SW846 8082A	03-Dec-14	04-Dec-14	IMR	1428496	Χ
11104-28-2	Aroclor-1221	< 23.4	U	μg/kg dry	27.5	23.4	1	"	"	"	"	"	X
11141-16-5	Aroclor-1232	< 24.7	U	μg/kg dry	27.5	24.7	1		"	"	"	"	Х
53469-21-9	Aroclor-1242	< 12.2	U	μg/kg dry	27.5	12.2	1	"	"	"	"	"	X
12672-29-6	Aroclor-1248	< 14.9	U	μg/kg dry	27.5	14.9	1	"	"	"	"		Х
11097-69-1	Aroclor-1254	2,660		μg/kg dry	27.5	17.3	1	"	"	"	"		Х
11096-82-5	Aroclor-1260	147		μg/kg dry	27.5	19.7	1	"	"	"	"	"	Х
37324-23-5	Aroclor-1262	< 14.9	U	μg/kg dry	27.5	14.9	1	"	"	"	"	"	Х
11100-14-4	Aroclor-1268	< 27.0	U	μg/kg dry	27.5	27.0	1	u u	"	"	"	"	Х
Surrogate i	ecoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	80			30-15	50 %		"	n .	"	"	"	
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	85			30-15	50 %		"	"	n .	"	"	
2051-24-3	Decachlorobiphenyl (Sr)	100			30-15	50 %			"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	105			30-15	50 %		"	n .	"	"	"	
General C	hemistry Parameters												
	% Solids	72.6		%			1	SM2540 G Mod.	03-Dec-14	03-Dec-14	DT	1428498	

Sample Id SS-89 SC00580-	entification 11			<u>Client Pr</u> 14-0	-		<u>Matrix</u> Soil		ection Date -Dec-14 11			ceived Dec-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	le Organic Compounds by C	GC											
Polychlorii	nated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 21.6	U	μg/kg dry	23.1	21.6	1	SW846 8082A	03-Dec-14	04-Dec-14	IMR	1428496	Χ
11104-28-2	Aroclor-1221	< 19.7	U	μg/kg dry	23.1	19.7	1	"	"	"	"	"	Χ
11141-16-5	Aroclor-1232	< 20.8	U	μg/kg dry	23.1	20.8	1	"	"	"	"	"	Х
53469-21-9	Aroclor-1242	< 10.3	U	μg/kg dry	23.1	10.3	1	"	"	"	"	"	Х
12672-29-6	Aroclor-1248	2,430		μg/kg dry	23.1	12.6	1	"	"	"	"	"	Х
11097-69-1	Aroclor-1254	2,560		μg/kg dry	23.1	14.6	1	"	"		"	"	Х
11096-82-5	Aroclor-1260	185		μg/kg dry	23.1	16.5	1	"	"	"	"	"	Х
37324-23-5	Aroclor-1262	< 12.5	U	μg/kg dry	23.1	12.5	1	"	"		"		Х
11100-14-4	Aroclor-1268	< 22.7	U	μg/kg dry	23.1	22.7	1	"	"		"	"	Χ
Surrogate r	ecoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	85			30-15	50 %		"	"	"	ıı	"	
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	95			30-15	50 %		"	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr)	105			30-15	50 %		"	"		"	"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	110			30-15	50 %		"	"	"	"	"	
General Cl	hemistry Parameters												
	% Solids	83.7		%			1	SM2540 G Mod.	03-Dec-14	03-Dec-14	DT	1428498	

Sample Id SS-90 SC00580-	entification 12			Client Pr	-		<u>Matrix</u> Soil		ection Date 2-Dec-14 11			ceived Dec-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	le Organic Compounds by C	ЭC											
Polychlorin	nated Biphenyls												
Prepared I	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 22.9	U	μg/kg dry	24.5	22.9	1	SW846 8082A	03-Dec-14	04-Dec-14	IMR	1428496	Χ
11104-28-2	Aroclor-1221	< 20.8	U	μg/kg dry	24.5	20.8	1	"	"	"	"	"	Χ
11141-16-5	Aroclor-1232	< 22.0	U	μg/kg dry	24.5	22.0	1	"	"	"	"	"	Χ
53469-21-9	Aroclor-1242	< 10.9	U	μg/kg dry	24.5	10.9	1	"	"	"	"	"	Х
12672-29-6	Aroclor-1248	110		μg/kg dry	24.5	13.3	1	"	"	"	"	"	Х
11097-69-1	Aroclor-1254	207		μg/kg dry	24.5	15.5	1	"	"	"	"	"	Х
11096-82-5	Aroclor-1260 [2C]	31.8		μg/kg dry	24.5	23.2	1	"	"	"	"	"	Х
37324-23-5	Aroclor-1262	< 13.3	U	μg/kg dry	24.5	13.3	1	"	"	"	"	"	Х
11100-14-4	Aroclor-1268	< 24.1	U	μg/kg dry	24.5	24.1	1	"	"	"	"	"	Χ
Surrogate r	ecoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	85			30-15	50 %		"	"	"	"	"	
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	90			30-15	50 %		"	"	н	"	"	
2051-24-3	Decachlorobiphenyl (Sr)	100			30-15	50 %		"	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	115			30-15	50 %		"	"	"	"	"	
General Cl	hemistry Parameters												
	% Solids	80.1		%			1	SM2540 G Mod.	03-Dec-14	03-Dec-14	DT	1428498	

Sample Id SS-91 SC00580-	dentification -13			<u>Client Pr</u> 14-0	-		<u>Matrix</u> Soil		ection Date -Dec-14 12			ceived Dec-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	ile Organic Compounds by C	GC .											
	nated Biphenyls by method SW846 3540C												
12674-11-2	Aroclor-1016	< 24.0	U	μg/kg dry	25.7	24.0	1	SW846 8082A	03-Dec-14	04-Dec-14	IMR	1428496	Х
11104-28-2	Aroclor-1221	< 21.9	U	μg/kg dry	25.7	21.9	1	"	"	"	"	"	Х
11141-16-5	Aroclor-1232	< 23.1	U	μg/kg dry	25.7	23.1	1	"	"	"	"	"	Х
53469-21-9	Aroclor-1242	< 11.4	U	μg/kg dry	25.7	11.4	1	"	u u	"	"		Х
12672-29-6	Aroclor-1248	< 14.0	U	μg/kg dry	25.7	14.0	1	"	u u	"	"		Х
11097-69-1	Aroclor-1254 [2C]	907		μg/kg dry	25.7	15.3	1	"	u u	"	"	"	Х
11096-82-5	Aroclor-1260 [2C]	95.2		μg/kg dry	25.7	24.4	1	"	"	"	"	"	Х
37324-23-5	Aroclor-1262	< 13.9	U	μg/kg dry	25.7	13.9	1	"	u u	"	"	"	Х
11100-14-4	Aroclor-1268	< 25.3	U	μg/kg dry	25.7	25.3	1	"	"	"	"	"	Χ
Surrogate i	recoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	85			30-15	50 %		"	"	"	u	"	
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	95			30-15	50 %		"	II	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr)	105			30-15	50 %		"	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	115			30-15	50 %		"	II	"	"	"	
General C	hemistry Parameters												
	% Solids	74.2		%			1	SM2540 G Mod.	03-Dec-14	03-Dec-14	DT	1428498	

Sample Id SS-92 SC00580-	entification 14			<u>Client Pr</u> 14-0	-		<u>Matrix</u> Soil		ection Date -Dec-14 12			eceived Dec-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	le Organic Compounds by C	GC											
Polychlorii	nated Biphenyls												
<u>Prepared</u>	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 26.5	U	μg/kg dry	28.3	26.5	1	SW846 8082A	03-Dec-14	04-Dec-14	IMR	1428496	Χ
11104-28-2	Aroclor-1221	< 24.1	U	μg/kg dry	28.3	24.1	1	"	"	"		"	Χ
11141-16-5	Aroclor-1232	< 25.5	U	μg/kg dry	28.3	25.5	1	"	"	"	"	"	Х
53469-21-9	Aroclor-1242	< 12.6	U	μg/kg dry	28.3	12.6	1	"	"	"	"	"	Х
12672-29-6	Aroclor-1248	116		μg/kg dry	28.3	15.4	1	"	"	"	"	"	Х
11097-69-1	Aroclor-1254	101		μg/kg dry	28.3	17.9	1	"	"	"	"		Х
11096-82-5	Aroclor-1260	< 20.3	U	μg/kg dry	28.3	20.3	1	"	"	"	"	"	Х
37324-23-5	Aroclor-1262	< 15.4	U	μg/kg dry	28.3	15.4	1	"	"	"	"	"	Х
11100-14-4	Aroclor-1268	< 27.9	U	μg/kg dry	28.3	27.9	1	II .	"	"	"	"	Х
Surrogate r	ecoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	85			30-15	50 %		"	"	u	"	"	
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	95			30-15	50 %		"	"	н	"	"	
2051-24-3	Decachlorobiphenyl (Sr)	105			30-15	50 %		"	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	110			30-15	50 %		"	"	n .	"	"	
General Cl	hemistry Parameters												
	% Solids	66.0		%			1	SM2540 G Mod.	03-Dec-14	03-Dec-14	DT	1428498	

Sample Id SS-93 SC00580-	entification 15			<u>Client Pr</u> 14-0			<u>Matrix</u> Soil	-	ection Date -Dec-14 12			eceived Dec-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	le Organic Compounds by C	GC .											
	nated Biphenyls by method SW846 3540C												
12674-11-2	Aroclor-1016	< 26.1	U	μg/kg dry	28.0	26.1	1	SW846 8082A	03-Dec-14	04-Dec-14	IMR	1428496	Χ
11104-28-2	Aroclor-1221	< 23.8	U	μg/kg dry	28.0	23.8	1		"	"	"	"	Χ
11141-16-5	Aroclor-1232	< 25.1	U	μg/kg dry	28.0	25.1	1	"	"	"	"	"	Χ
53469-21-9	Aroclor-1242	< 12.4	U	μg/kg dry	28.0	12.4	1		"	"	"	"	Χ
12672-29-6	Aroclor-1248	< 15.2	U	μg/kg dry	28.0	15.2	1		"	"	"	"	Χ
11097-69-1	Aroclor-1254 [2C]	26.6	J	μg/kg dry	28.0	16.7	1		"	"	"	"	Χ
11096-82-5	Aroclor-1260	< 20.0	U	μg/kg dry	28.0	20.0	1	"	"	"	"	"	Χ
37324-23-5	Aroclor-1262	< 15.2	U	μg/kg dry	28.0	15.2	1		"	"	"	"	Χ
11100-14-4	Aroclor-1268	< 27.5	U	μg/kg dry	28.0	27.5	1	"	"	"	"	"	Х
Surrogate r	recoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	85			30-15	50 %		"	"	"	"	"	
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	95			30-15	50 %		"	II	n	"	"	
2051-24-3	Decachlorobiphenyl (Sr)	110			30-15	50 %		"	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	120			30-15	50 %		"	"	u	"	"	
General C	hemistry Parameters												
	% Solids	69.0		%			1	SM2540 G Mod.	03-Dec-14	03-Dec-14	DT	1428499	

Sample Id SS-94 SC00580-	entification 16			<u>Client Pr</u> 14-0	-		<u>Matrix</u> Soil		ection Date -Dec-14 12			eceived Dec-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	le Organic Compounds by C	GC											
Polychlorii	nated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 24.2	U	μg/kg dry	25.9	24.2	1	SW846 8082A	03-Dec-14	04-Dec-14	IMR	1428496	Χ
11104-28-2	Aroclor-1221	< 22.1	U	μg/kg dry	25.9	22.1	1	"	"	"	"	"	Χ
11141-16-5	Aroclor-1232	< 23.3	U	μg/kg dry	25.9	23.3	1	"	"	"	"	"	Χ
53469-21-9	Aroclor-1242	< 11.5	U	μg/kg dry	25.9	11.5	1	"	u u	"	"	"	Х
12672-29-6	Aroclor-1248 [2C]	32.4		μg/kg dry	25.9	14.2	1	"	"	"	"	"	X
11097-69-1	Aroclor-1254 [2C]	66.1		μg/kg dry	25.9	15.5	1	"	"	"	"	"	Х
11096-82-5	Aroclor-1260	< 18.6	U	μg/kg dry	25.9	18.6	1	"	"	"	"	"	Х
37324-23-5	Aroclor-1262	< 14.1	U	μg/kg dry	25.9	14.1	1	"	"	"	"	"	Х
11100-14-4	Aroclor-1268	< 25.5	U	μg/kg dry	25.9	25.5	1	"	"	"	"	"	Χ
Surrogate r	ecoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	85			30-15	50 %		"	"	u	"	"	
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	95			30-15	50 %		"	"	н	"	"	
2051-24-3	Decachlorobiphenyl (Sr)	105			30-15	50 %		"	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	110			30-15	50 %		"	"	n .	"	"	
General Cl	hemistry Parameters												
	% Solids	71.3		%			1	SM2540 G Mod.	03-Dec-14	03-Dec-14	DT	1428499	

Sample Id SS-95 SC00580-	entification 17			<u>Client Pr</u> 14-0			<u>Matrix</u> Soil		ection Date -Dec-14 12			eceived Dec-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	le Organic Compounds by C	GC											
	nated Biphenyls by method SW846 3540C												
12674-11-2	Aroclor-1016	< 28.7	U	μg/kg dry	30.7	28.7	1	SW846 8082A	03-Dec-14	04-Dec-14	IMR	1428496	Х
11104-28-2	Aroclor-1221	< 26.1	U	μg/kg dry	30.7	26.1	1	"	"	"	"	"	Х
11141-16-5	Aroclor-1232	< 27.6	U	μg/kg dry	30.7	27.6	1		"	"	"	"	Χ
53469-21-9	Aroclor-1242	< 13.6	U	μg/kg dry	30.7	13.6	1		"	"	"	"	Χ
12672-29-6	Aroclor-1248	< 16.7	U	μg/kg dry	30.7	16.7	1		"	"	"	"	Χ
11097-69-1	Aroclor-1254	< 19.4	U	μg/kg dry	30.7	19.4	1		"	"	"	"	Χ
11096-82-5	Aroclor-1260	27.6	J	μg/kg dry	30.7	22.0	1		"	"	"	"	Χ
37324-23-5	Aroclor-1262	< 16.6	U	μg/kg dry	30.7	16.6	1		"	"	"	"	Χ
11100-14-4	Aroclor-1268	< 30.2	U	μg/kg dry	30.7	30.2	1	"	"	"	"	"	Х
Surrogate r	ecoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	85			30-15	50 %		"	"	"	"	"	
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	95			30-15	50 %		"	u	n	"	"	
2051-24-3	Decachlorobiphenyl (Sr)	105			30-15	50 %		"	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	115			30-15	50 %		"	"	u	"	"	
General C	hemistry Parameters												
	% Solids	63.5		%			1	SM2540 G Mod.	03-Dec-14	03-Dec-14	DT	1428499	

Sample Id SS-96 SC00580-	lentification			Client P	-		<u>Matrix</u> Soil		ection Date Dec-14 12			eceived Dec-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	ile Organic Compounds by C	ЭC											
	nated Biphenyls												
<u>Prepared</u>	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 34.0	U	μg/kg dry	36.4	34.0	1	SW846 8082A	03-Dec-14	04-Dec-14	IMR	1428496	Χ
11104-28-2	Aroclor-1221	< 31.0	U	μg/kg dry	36.4	31.0	1	"	"	"	"	"	Χ
11141-16-5	Aroclor-1232	< 32.7	U	μg/kg dry	36.4	32.7	1		"	"	"	"	Х
53469-21-9	Aroclor-1242	< 16.2	U	μg/kg dry	36.4	16.2	1	"	"	"	"	"	X
12672-29-6	Aroclor-1248	< 19.8	U	μg/kg dry	36.4	19.8	1	"	"	"	"		Х
11097-69-1	Aroclor-1254	30.9	J	μg/kg dry	36.4	23.0	1	"	"	"	"		Х
11096-82-5	Aroclor-1260	< 26.1	U	μg/kg dry	36.4	26.1	1	"	"	"	"	"	Х
37324-23-5	Aroclor-1262	< 19.7	U	μg/kg dry	36.4	19.7	1	"	"	"	"		Х
11100-14-4	Aroclor-1268	< 35.8	U	μg/kg dry	36.4	35.8	1	u u	"	"	"	"	Х
Surrogate i	recoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	80			30-15	50 %		"	"	"	"	"	
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	90			30-15	50 %		"	n .	n .	"	"	
2051-24-3	Decachlorobiphenyl (Sr)	100			30-15	50 %			"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	110			30-15	50 %		"	"	"	"	"	
General C	hemistry Parameters												
	% Solids	52.9		%			1	SM2540 G Mod.	03-Dec-14	03-Dec-14	DT	1428499	

Semivolatile Organic Compounds by GC - Quality Control

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
atch 1428496 - SW846 3540C										
Blank (1428496-BLK1)					Pre	epared: 03-	Dec-14 An	alyzed: 04-D	ec-14	
Aroclor-1016	< 18.4	U	μg/kg wet	18.4						
Aroclor-1016 [2C]	< 12.8	U	μg/kg wet	12.8						
Aroclor-1221	< 16.7	U	μg/kg wet	16.7						
Aroclor-1221 [2C]	< 14.5	U	μg/kg wet	14.5						
Aroclor-1232	< 17.7	U	μg/kg wet	17.7						
Aroclor-1232 [2C]	< 15.2	U	μg/kg wet	15.2						
Aroclor-1242	< 8.75	U	μg/kg wet	8.75						
Aroclor-1242 [2C]	< 15.4	U	μg/kg wet	15.4						
Aroclor-1248	< 10.7	U	μg/kg wet	10.7						
Aroclor-1248 [2C]	< 10.8	U	μg/kg wet	10.8						
Aroclor-1254	< 12.4	U	μg/kg wet	12.4						
Aroclor-1254 [2C]	< 11.7	U	μg/kg wet	11.7						
Aroclor-1260	< 14.1	U	μg/kg wet	14.1						
Aroclor-1260 [2C]	< 18.7	U	μg/kg wet	18.7						
Aroclor-1262	< 10.7	U	μg/kg wet	10.7						
Aroclor-1262 [2C]	< 9.84	U	μg/kg wet	9.84						
Aroclor-1268	< 19.3	U	μg/kg wet	19.3						
Aroclor-1268 [2C]	< 18.9	U	μg/kg wet	18.9						
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	11.8		μg/kg wet		19.7		60	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	12.8		μg/kg wet		19.7		65	30-150		
Surrogate: Decachlorobiphenyl (Sr)	15.7		μg/kg wet		19.7		80	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	14.8		μg/kg wet		19.7		75	30-150		
LCS (1428496-BS1)					Pre	epared: 03-	Dec-14 An	alyzed: 04-D	ec-14	
Aroclor-1016	256		μg/kg wet	18.5	248		104	40-140		
Aroclor-1016 [2C]	241		μg/kg wet	12.8	248		97	40-140		
Aroclor-1260	253		μg/kg wet	14.2	248		102	40-140		
Aroclor-1260 [2C]	218		μg/kg wet	18.8	248		88	40-140		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	8.91		μg/kg wet		19.8		45	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	8.91		μg/kg wet		19.8		45	30-150		
Surrogate: Decachlorobiphenyl (Sr)	10.9		μg/kg wet		19.8		55	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	10.9		μg/kg wet		19.8		55	30-150		
LCS Dup (1428496-BSD1)					Pre	epared: 03-	Dec-14 An	alyzed: 04-D	ec-14	
Aroclor-1016	254		μg/kg wet	18.2	244		104	40-140	0.8	30
Aroclor-1016 [2C]	242		μg/kg wet	12.6	244		99	40-140	2	30
Aroclor-1260	248		μg/kg wet	14.0	244		102	40-140	0.4	30
Aroclor-1260 [2C]	207		μg/kg wet	18.5	244		85	40-140	4	30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	8.77		μg/kg wet		19.5		45	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	8.77		μg/kg wet		19.5		45	30-150		
Surrogate: Decachlorobiphenyl (Sr)	10.7		μg/kg wet		19.5		55	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	10.7		μg/kg wet		19.5		55	30-150		
Duplicate (1428496-DUP1)			Source: SC	00580-01		epared: 03-		alyzed: 04-D	ec-14	
Aroclor-1016	< 22.0	U	μg/kg dry	22.0		BRL				30
Aroclor-1016 [2C]	< 15.2	U	μg/kg dry	15.2		BRL				30
Aroclor-1221	< 20.0	U	μg/kg dry	20.0		BRL				30
Aroclor-1221 [2C]	< 17.3	U	μg/kg dry	17.3		BRL				30
Aroclor-1232	< 21.1	U	μg/kg dry	21.1		BRL				30
Aroclor-1232 [2C]	< 18.1	U	μg/kg dry	18.1		BRL				30
Aroclor-1242	< 10.5	U	μg/kg dry	10.5		BRL				30

Semivolatile Organic Compounds by GC - Quality Control

					Spike	Source		%REC		RPD
.nalyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limi
atch 1428496 - SW846 3540C										
Duplicate (1428496-DUP1)			Source: SC	00580-01	<u>Pre</u>	pared: 03-	Dec-14 An	alyzed: 04-E	ec-14	
Aroclor-1242 [2C]	< 18.4	U	μg/kg dry	18.4		BRL				30
Aroclor-1248	< 12.8	U	μg/kg dry	12.8		BRL				30
Aroclor-1248 [2C]	< 12.9	U	μg/kg dry	12.9		BRL				30
Aroclor-1254	< 14.8	U	μg/kg dry	14.8		BRL				30
Aroclor-1254 [2C]	< 14.0	U	μg/kg dry	14.0		BRL				30
Aroclor-1260	< 16.8	U	μg/kg dry	16.8		BRL				30
Aroclor-1260 [2C]	< 22.3	U	μg/kg dry	22.3		BRL				30
Aroclor-1262	< 12.7	U	μg/kg dry	12.7		BRL				30
Aroclor-1262 [2C]	< 11.8	U	μg/kg dry	11.8		BRL				30
Aroclor-1268	< 23.1	U	μg/kg dry	23.1		BRL				30
Aroclor-1268 [2C]	< 22.6	U	μg/kg dry	22.6		BRL				30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	20.0		μg/kg dry		23.5		85	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	22.3		μg/kg dry		23.5		95	30-150		
Surrogate: Decachlorobiphenyl (Sr)	27.1		μg/kg dry		23.5		115	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	28.2		μg/kg dry		23.5		120	30-150		
Matrix Spike (1428496-MS1)			Source: SC	00580-01	Pre	epared: 03-	Dec-14 An	alyzed: 04-E	ec-14	
Aroclor-1016	269		μg/kg dry	22.6	303	BRL	89	40-140		
Aroclor-1016 [2C]	269		μg/kg dry	15.7	303	BRL	89	40-140		
Aroclor-1260	287		μg/kg dry	17.3	303	BRL	95	40-140		
Aroclor-1260 [2C]	248		μg/kg dry	23.0	303	BRL	82	40-140		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	21.8		μg/kg dry		24.2		90	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	21.8		μg/kg dry		24.2		90	30-150		
Surrogate: Decachlorobiphenyl (Sr)	27.8		μg/kg dry		24.2		115	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	26.6		μg/kg dry		24.2		110	30-150		
Matrix Spike Dup (1428496-MSD1)			Source: SC	00580-01	<u>Pre</u>	pared: 03-	Dec-14 An	alyzed: 04-E	ec-14	
Aroclor-1016	262		μg/kg dry	22.1	296	BRL	88	40-140	0.5	30
Aroclor-1016 [2C]	258		μg/kg dry	15.4	296	BRL	87	40-140	2	30
Aroclor-1260	277		μg/kg dry	17.0	296	BRL	94	40-140	1	30
Aroclor-1260 [2C]	236		μg/kg dry	22.5	296	BRL	80	40-140	3	30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	21.3		μg/kg dry		23.7		90	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	21.3		μg/kg dry		23.7		90	30-150		
Surrogate: Decachlorobiphenyl (Sr)	26.1		μg/kg dry		23.7		110	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	26.1		μg/kg dry		23.7		110	30-150		

General Chemistry Parameters - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1428499 - General Preparation										
<u>Duplicate (1428499-DUP1)</u>			Source: SC	00580-15	Pre	epared & Ar	nalyzed: 03-	Dec-14		
% Solids	68.3		%			69.0			1	5
<u>Duplicate (1428499-DUP2)</u>			Source: SC	00580-16	Pre	epared & Ar	nalyzed: 03-	Dec-14		
% Solids	71.7		%			71.3			0.5	5

Notes and Definitions

D Data reported from a dilution

GS1 Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

J Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration

(CLP J-Flag).

The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration

and/or matrix interference's.

U Analyte included in the analysis, but not detected at or above the MDL.

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification:</u> The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

Validated by: Kimberly LaPlante

Telephone #:

432-9400

3057

Report To:

Rich Mikema

Invoice To:

Acct's Payable

CHAIN OF CUSTODY RECORD

Page of &

Special Handling:

SC 06 S 80

Rush TAT - Date Needed: 3-DAY ☐ Standard TAT - 7 to 10 business days

am	fin	H
ple	n. 2	IA
s d	4-h	Ts
isp	rn	dus
ose	otif	ATs subject to la
d a	ica	t to
fter	tior	lab
60	ne	3100
day	24-hr notification needed for rush	tor
'S	ď	y a
In	Or	pp
ess	rus	VO.
011	hes	al
er		
isposed after 60 days unless otherwise i		
inst		

tructed.

Location: Sampler(s):	Site Name:	Project No:
Drew Brandmer State: NY	Woodline Business Park	14-09

		0	72	17/14	0		Q.	K K	HODE Y	XF
mckenne @ aeccgroup and	X E-mail to: Cmcke	Observed	1548	hist.	\	MA	Z Z	A A	natur	Drow
Exce	X EDD format: PDF	Temp °C	Time:	Date:		by:	Received by:	\	Relinquished by:	Relin
		+		<	<	1137	+	$ \infty $	55-88	(0)
ON ON R						1132		7	55-87	109
0000	enc Las					1126			55-85	08
(5)						12		X	55-82	0)
						1115			28-80	90
						1103			SS-84	05
						1057			48-55	94
						1052		8	55-83	03
						1046			8-55	02
		×		_	G 50	1040	12/2/14	9	55-7	2005000
Chec Other: State-specific reporting standards:		80	-	# of	-	Time:	Date:	ID:	Sample ID:	Lab ID:
Tier II*	16 - 72 2-41,0	182	Clear Plastic	VOA	ype atrix		C=Compsite		G= Grab	
□ No QC		PGS.		Vials r Glass		l Gas	nt Air SG=Soil Gas	A=Indoor/Ambient Air X2=	SL=Sludge	0=0il
MA DEP MCP CAM Report? Yes No	Analysis		Containers	Co	r	WW=Waste Water	SW=Surface Water WV		er GW=Groundwater	DW=Dinking Water
QA/QC Reporting Notes: * additional charges may appply	List Preservative Code below:			rcid	6=Ascorbic Acid	5=NaOH 6=	4=HNO ₃	HCl 3=H ₂ SO ₄ Water 10=H ₃ PO ₄	red 1=Na ₂ S2O ₃ 2=HCl 3=H ₂ SO ₄ 8=NaHSO ₄ 9=Deionized Water 10=H ₃ PO ₄	F=Field Filtered 7=CH3OH 8=Na
			Quote/RQN:		14-09	P.O No.:				Project Mgr:

Condition upon receipt:

Custody Seals:

☐ Present

☐ Intact

☐ Broken

Ambient | Iced

☐ Refrigerated

☐ DI VOA Frozen

Soil Jar Frozen

CHAIN OF CUSTODY RECORD

Page Q of Q

-	C	3	
	0	D	
	C	5	
	113	٥	
		I	4
	2	٥	7
	H	2	
	٤	2	4
		1	
r	1	2	
V.	3,	4	

, r.,

SC GOSDO

			_
1	X		
-	Ru	Sta	
1	sh	ind	-
}	TA	Standard	
	-	T	(
	_		7
	Dan	1	
	0	7	1
	Z	to	1
	Rush TAT - Date Needed:	1 TAT - 7 to 10 business day	Obergan same
	d:	mg	-
	u	NE.	0
	1	SS	
	V	de	
	7	ıys	
	1 0		

- All TATs subject to laboratory approval.
 Min. 24-hour notification needed for rushes.

otherwise instructed.	Samples disposed of after 60 days unles	TATILL 27-HOUR HOUSEGROUN HOOGG TOT ICE
	60	TIC
	days	Luca 1
	unles	LOT TO

A NOW THE	Drew Bounty of St	Relinquished by:	19 55-97	\$ 55-96	17 35-95	16 55-94	15 55-93	14 55-92	13 55-91	12 55-90	1919/14 SS-89 1/3/3/14	Lab Id: Sample Id: Date:	G=Grab C=Composite	X1=X2=X	IS	GW=Groundwater	$1=Na_2S2O_3$ $2=HC1$ $3=H_2SO_4$ $4=HNO_3$ $8=NaHSO_4$ $9=Deionized Water 10=H_3PO_4$	Project Mgr. (3 5) 433 -7700	Show I		Report To: Rich McKenna AECC
3	SCHOOL	Received by:	1247	1236	1230	1223	1219	1213	laca	1155	1148 O	Time:		X3=	ludge A=Air	WW=Wastewater	5=NaOH O ₄ 11=	P.O. No.:			Invoice To:
12/2/14	12/2/19	7 pate/	*	7/						,	8	Type Matrix # of V # of A	OA V			Co	6=Ascorbic Acid 7=0	14-091 RQN:			Acct's
2012	1848	Time: I			44			100	1 21		~	# of C	lastic			Containers:	7=CH ₃ OH	N:			Payable.
1	_	Temp°C EDD Format		19/8/12 ru								808	2 P	CBS		Analyses:	List preservative code below:	Sampler(s): Drew Br	Location: Canada Dr,	Site Name: Woodbine Business	Project No.: 14-09
	mikana Daessanu can	PDF Excel	MET LIFE	200 N		701	135	STATE OF THE PARTY	of her	(°X		☐ Other ☐ Oth	*		CT DPH RCP Report: Yes 🗆 No 🗇	MA DEP MCP CAM Report: Yes II NoII	QA/QC Reporting Notes: * additional charges may apply	Branner	DeWith State: NY	susiness Park	

Condition upon peceipt:

Ambient Coed Refrigerated DIVOA Frozen Soil Jar Frozen

Life Science Laboratories, Inc.

Rich McKenna Asbestos & Environmental Consulting Corp 6308 Fly Road East Syracuse, NY 13057

Phone:

(315) 432-9400

FAX:

(315) 432-9405

Authorization: PO#14-091

Laboratory Analysis Report Prepared For

Asbestos & Environmental Consulting Corp

LSL Project ID: 1419581

Receive Date/Time: 12/02/14 16:01

Life Science Laboratories, Inc. warrants, to the best of its knowledge and belief, the accuracy of the analytical test results contained in this report, but makes no other warranty, expressed or implied, especially no warranties of merchantability or fitness for a particular purpose. By the Client's acceptance and/or use of this report, the Client agrees that LSL is hereby released from any and all liabilities, claims, damages or causes of action affecting or which may affect the Client as regards to the results contained in this report. The Client further agrees that the only remedy available to the Client in the event of proven non-conformity with the above warranty shall be for LSL to re-perform the analytical test(s) at no charge to the Client. The data contained in this report are for the exclusive use of the Client to whom it is addressed, and the release of these data to any other party, or the use of the name, trademark or service mark of Life Science Laboratories, Inc. especially for the use of advertising to the general public, is strictly prohibited without express prior written consent of Life Science Laboratories, Inc. This report may only be reproduced in its entirety. No partial duplication is allowed. The Chain of Custody and the Sample Receipt documents submitted with these samples are considered by LSL to be an appendix of this report and may contain specific information that pertains to the samples included in this report. The analytical result(s) in this report are only representative of the sample(s) submitted for analysis. LSL makes no claim of a sample's representativeness, or integrity, if sampling was not performed by LSL personnel.

LSL Central Lab 5854 Butternut Drive East Syracuse, NY 13057 Tel. (315) 445-1900 Fax (315) 445-1104 NYS DOH ELAP #10248 PA DEP #68-2556

LSL North Lab 131 St. Lawrence Avenue Waddington, NY 13694 Tel. (315) 388-4476 Fax (315) 388-4061 NYS DOH ELAP #10900

LSL Finger Lakes Lab 16 N. Main St., PO Box 424 Wayland, NY 14572 Tel. (585) 728-3320 Fax (585) 728-2711 NYS DOH ELAP #11667

LSL Southern Tier Office Cuba, NY Tel. (585) 209-4032

LSL MidLakes Office Canandaigua, NY Tel. (585) 728-3320

David J. Prichard, Director of Tech. Services

Page 1 of 2

A copy of this report was sent to:

Date Printed:

12/5/14

-- LABORATORY ANALYSIS REPORT --

Asbestos & Environmental Consulting Corp

East Syracuse, NY

Sample ID:

SS-95d Grab

LSL Sample ID:

1419581-001

Location:

Sampled:

12/02/14 13:46

Sampled By: DB

Sample Matrix: SHW Dry Wt

Analytical Method Analyte	Result	Prep Method Units	Prep Date	Analysis Date & Time	Analyst Initials
I) EPA 8082A PCBs		EPA 3540			
-	< 0.02	mg/kg dry	12/4/14	12/5/14	CRT
Aroclor-1016		-	12/4/14	12/5/14	CRT
Aroclor-1221		mg/kg dry	12/4/14	12/5/14	CRT
Aroclor-1232		mg/kg dry	12/4/14	12/5/14	CRT
Aroclor-1242		mg/kg dry	12/4/14	12/5/14	CRT
Aroclor-1248		mg/kg dry	12/4/14	12/5/14	CRT
Aroclor-1254		mg/kg dry	12/4/14	12/5/14	CRT
Aroclor-1260 Surrogate (DCB)	55		12/4/14	12/5/14	CRT
7) SM 2540 B-97,-11 Total Solids Total Solids @ 103-105 C	59	%	12/4/14	12/4/14	AIS

Analysis performed at: (1) LSL Central Lab, (2) LSL North Lab, (3) LSL Finger Lakes Lab

Life Science Laboratories, Inc.

Sample Receipt Checklist

LSL LIMS

Project ID 1	419581	Client ID: AEG	CC
Shipment Number 1		SRC Completed By: RSD2 Date	. 12/2/2014 4:04:20 PM
COC Date/Time Receive 12/2/2014 4:01:00 PM RSD2	ved By	Carrier Shipping I Hand Delivered	D
Shipping container/cooler in good condition?	Yes	Sample containers intact?	Yes
Custody seal intact on shipping container/cooler?	N/A	Sufficient sample volume for indicated test?	Yes
Custody seals intact on sample bottles?	N/A	All samples received within holding time?	Yes
Chain of Custody present?	Yes	Container/Temp Blank temperature in compliance?	No
COC signed when relinquished and received?	Yes	Water - VOA vials have zero headspace?	N/A
COC agrees with sample labels?	Yes	Water - pH acceptable upon receipt?	N/A
Samples in proper containers/bottles?	Yes	Water - HNO3 added to unpreserved metal sample(s) to a pH of $<$ 2?	N/A

Comments:

Receipt temp okay as per Client. RD 12/02/14

Corrective Action:

Reviewed Rv.

Printed: Wednesday, December 03, 2014

Page 1 of 1

Life Science Laboratories, Inc. CHAIN OF CUSTODY RECORD

Email: Islcentral@Isl-inc.com East Syracuse, NY 13057. Phone: (315) 445-1900 5854 Buttemut Drive Fax: (315) 445-1104 LSL Central Lab

Fax: (315) 388-4081 Email: Islnfo@Isl-inc.com Naddington, NY 13694 Phone: (315) 388-4476 131 St Lawrence Ave LSL North Lab

Email: Islfil@Isl-inc.com Phone: (585) 728-3320 LSL Finger Lakes Lab 16 North Main Street Wayland, NY 14572 Fax: (585) 728-2711

Phone: (585) 968-2640 Fax: (585) 968-0906 Email: Islstl@Isl-inc.com 24 A West Main Street LSL Southern Tier Lab Cuba, NY 14727

And the second of the second o

Turnaround Time (Business Day)

*Additional Charges EST ID# lime 10:01 8 Sample Temp may apply 17/8/6 Preserv Check Date Containers this C-O-C Shipment Method:
*** All areas of this Chain of Custody Record MUST be filled out in order to process samples in a timely manner IN PEN ONLY*** 3540) X 20 polo repositive limit 3-Day * 7-Day* RC Dimber 160-141 Date Needed or Special Instructions: Souhlet Prep Analyses PCBS Pre-Authorized 8083 Authorization or P.O. # Next Day* ISI Project Number: 2-Day * Rec'd for Lab By: Received By: Received By: 462 Amber size/type Normal 10 DAY Custody Transfers Containers # (3/5) 432-9405 Branke Preserv Matrix | Added 1305 Relinquished By: しんっこ Car Fax: Zip: grab/comp lype Gat Gat Relinquished By: Sampled By: C mckenna @ deceg oup com Sample Time 1346 19/3/14 Sample 5 Date Road * Reeint temp okoy as per check po wally McKenna East Syraciuse, (315) 433-9400 Client Project ID/Client Site ID 14 Identifications Client's Sample 8089 AECC Ss-95J Report Address: City/State: Company: LSL use only: Phone: Street: Name: Email:

Reg COC rev1

Report Date: 19-Dec-14 12:04

☑ Final Report☐ Re-Issued Report☐ Revised Report

HANIBAL TECHNOLOGY

Laboratory Report

AECC Environmental Consulting 6308 Fly Road

East Syracuse, NY 13057

Attn: Rich McKenna

Project: Woodbine Business Park - Dewitt, NY

Project #: 14-091

Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
CS-1 (1.5')	Soil	15-Dec-14 10:20	15-Dec-14 21:00
CS-1 (2.5')	Soil	15-Dec-14 10:25	15-Dec-14 21:00
SS-53 (1.5')	Soil	15-Dec-14 10:50	15-Dec-14 21:00
SS-53 (2.5')	Soil	15-Dec-14 10:55	15-Dec-14 21:00
SS-83 (1.5')	Soil	15-Dec-14 11:12	15-Dec-14 21:00
SS-83 (2.5')	Soil	15-Dec-14 11:20	15-Dec-14 21:00
SS-87 (1.5')	Soil	15-Dec-14 11:33	15-Dec-14 21:00
SS-87 (2.5')	Soil	15-Dec-14 11:42	15-Dec-14 21:00
SS-101	Soil	15-Dec-14 11:55	15-Dec-14 21:00
SS-99	Soil	15-Dec-14 12:09	15-Dec-14 21:00
SS-100	Soil	15-Dec-14 12:16	15-Dec-14 21:00
SS-98	Soil	15-Dec-14 12:29	15-Dec-14 21:00
SS-102	Soil	15-Dec-14 12:40	15-Dec-14 21:00
SS-104	Soil	15-Dec-14 12:58	15-Dec-14 21:00
SS-105	Soil	15-Dec-14 13:05	15-Dec-14 21:00
SS-103	Soil	15-Dec-14 13:14	15-Dec-14 21:00
	CS-1 (1.5') CS-1 (2.5') SS-53 (1.5') SS-53 (2.5') SS-83 (1.5') SS-83 (2.5') SS-87 (1.5') SS-87 (2.5') SS-101 SS-99 SS-100 SS-98 SS-102 SS-104 SS-105	CS-1 (1.5') Soil CS-1 (2.5') Soil SS-53 (1.5') Soil SS-83 (1.5') Soil SS-83 (2.5') Soil SS-87 (1.5') Soil SS-87 (2.5') Soil SS-101 Soil SS-99 Soil SS-100 Soil SS-98 Soil SS-102 Soil SS-104 Soil SS-105 Soil	CS-1 (1.5') Soil 15-Dec-14 10:20 CS-1 (2.5') Soil 15-Dec-14 10:25 SS-53 (1.5') Soil 15-Dec-14 10:50 SS-53 (2.5') Soil 15-Dec-14 10:55 SS-83 (1.5') Soil 15-Dec-14 11:12 SS-83 (2.5') Soil 15-Dec-14 11:20 SS-87 (1.5') Soil 15-Dec-14 11:33 SS-87 (2.5') Soil 15-Dec-14 11:42 SS-101 Soil 15-Dec-14 11:55 SS-99 Soil 15-Dec-14 12:09 SS-100 Soil 15-Dec-14 12:16 SS-98 Soil 15-Dec-14 12:29 SS-102 Soil 15-Dec-14 12:40 SS-104 Soil 15-Dec-14 12:58 SS-105 Soil 15-Dec-14 13:05

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011/MA012 New York # 11393/11840 Pennsylvania # 68-04426/68-02924 Rhode Island # 98 USDA # S-51435

Authorized by:

Nicole Leja Laboratory Director

Nicole Leja

Spectrum Analytical holds certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 25 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey, Pennsylvania and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, NJ-MA012, PA-68-04426 and FL-E87936).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

CASE NARRATIVE:

Data has been reported to the MDL. This report includes estimated concentrations detected below the RDL and above the MDL (J-Flag).

All non-detects and all results below the detection limit are reported as "<" (less than) the detection limit in this report.

The samples were received 5.5 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of +/- 1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

SW846 8082A

Samples:

SC01291-03 SS-53 (1.5')

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

The surrogate recovery for this sample cannot be accurately quantified due to interference from coeluting organic compounds present in the sample extract.

Decachlorobiphenyl (Sr) [2C]

SC01291-04 SS-53 (2.5')

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

SC01291-05 SS-83 (1.5')

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interference's.

4,4-DB-Octafluorobiphenyl (Sr)

4,4-DB-Octafluorobiphenyl (Sr) [2C]

Decachlorobiphenyl (Sr)

Decachlorobiphenyl (Sr) [2C]

SC01291-06 SS-83 (2.5')

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interference's.

4,4-DB-Octafluorobiphenyl (Sr)

4,4-DB-Octafluorobiphenyl (Sr) [2C]

Decachlorobiphenyl (Sr)

Decachlorobiphenyl (Sr) [2C]

SC01291-10 SS-99

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

SW846 8082A

Samples:

SC01291-10 SS-99

The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interference's.

4,4-DB-Octafluorobiphenyl (Sr)

4,4-DB-Octafluorobiphenyl (Sr) [2C]

Decachlorobiphenyl (Sr)

Decachlorobiphenyl (Sr) [2C]

SC01291-16

SS-103

The surrogate recovery for this sample cannot be accurately quantified due to interference from coeluting organic compounds present in the sample extract.

Decachlorobiphenyl (Sr) [2C]

Sample Acceptance Check Form

AECC Environmental Consulting

Were samples received within method-specific holding times?

Client:

Project:	Woodbine Business Park - Dewitt, NY / 14-091			
Work Order:	SC01291			
Sample(s) received on:	12/15/2014			
The following outlines to	he condition of samples for the attached Chain of Custody upon receipt.			
Were custody se	als present?	Yes	<u>No</u>	<u>N/A</u>
Were custody se				$\overline{\checkmark}$
Were samples re	exceived at a temperature of $\leq 6^{\circ}$ C?	\checkmark		
Were samples co	poled on ice upon transfer to laboratory representative?	✓		
Were sample co	ntainers received intact?	\checkmark		
	roperly labeled (labels affixed to sample containers and include sample ID, site project number and the collection date)?	V		
Were samples ac	ecompanied by a Chain of Custody document?	✓		
include sample l	Oustody document include proper, full, and complete documentation, which shall D, site location, and/or project number, date and time of collection, collector's name, e, sample matrix and any special remarks concerning the sample?			
Did sample cont	ainer labels agree with Chain of Custody document?	\checkmark		

Sample I CS-1 (1.5 SC01291				<u>Client P</u> 14-0			<u>Matrix</u> Soil		ection Date -Dec-14 10			ceived Dec-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	tile Organic Compounds by C	GC											
Polychlorina	ated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 23.7	U	μg/kg dry	25.4	23.7	1	SW846 8082A	17-Dec-14	18-Dec-14	IMR	1429590	Χ
11104-28-2	Aroclor-1221	< 21.6	U	μg/kg dry	25.4	21.6	1	н			"		Χ
11141-16-5	Aroclor-1232	< 22.8	U	μg/kg dry	25.4	22.8	1			п			Χ
53469-21-9	Aroclor-1242	< 11.3	U	μg/kg dry	25.4	11.3	1			п	"		Χ
12672-29-6	Aroclor-1248	941		μg/kg dry	25.4	13.8	1				"		Χ
11097-69-1	Aroclor-1254	657		μg/kg dry	25.4	16.0	1	и			"		Χ
11096-82-5	Aroclor-1260 [2C]	54.6		μg/kg dry	25.4	24.1	1				"		Χ
37324-23-5	Aroclor-1262	< 13.8	U	μg/kg dry	25.4	13.8	1				"		Χ
11100-14-4	Aroclor-1268	< 24.9	U	μg/kg dry	25.4	24.9	1	п			"		Х
Surrogate re	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	90			30-15	60 %		u			W		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	100			30-15	0 %		п			"		
2051-24-3	Decachlorobiphenyl (Sr)	95			30-15	60 %				н	"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	100			30-15	0 %		п			"		
General (Chemistry Parameters												
	% Solids	77.4		%			1	SM2540 G Mod.	17-Dec-14	17-Dec-14	DT	1429604	

Sample Id CS-1 (2.5 SC01291				<u>Client P</u>			<u>Matrix</u> Soil	·	ection Date -Dec-14 10			ceived Dec-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC .											
Polychlorina	ted Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 24.7	U	μg/kg dry	26.4	24.7	1	SW846 8082A	17-Dec-14	18-Dec-14	IMR	1429590	Χ
11104-28-2	Aroclor-1221	< 22.5	U	μg/kg dry	26.4	22.5	1				"		Χ
11141-16-5	Aroclor-1232	< 23.7	U	μg/kg dry	26.4	23.7	1				"		Χ
53469-21-9	Aroclor-1242	< 11.7	U	μg/kg dry	26.4	11.7	1				"		Χ
12672-29-6	Aroclor-1248	172		μg/kg dry	26.4	14.4	1				"		Χ
11097-69-1	Aroclor-1254 [2C]	129		μg/kg dry	26.4	15.8	1				"		Χ
11096-82-5	Aroclor-1260	< 18.9	U	μg/kg dry	26.4	18.9	1				"		Х
37324-23-5	Aroclor-1262	< 14.3	U	μg/kg dry	26.4	14.3	1	н			"		Х
11100-14-4	Aroclor-1268	< 26.0	U	μg/kg dry	26.4	26.0	1	п			"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	90			30-15	50 %		н	•	п	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	100			30-15	50 %		п		ı	"		
2051-24-3	Decachlorobiphenyl (Sr)	95			30-15	50 %		п		н	"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	100			30-15	50 %		я		п	"		
General C	Chemistry Parameters												
	% Solids	74.3		%			1	SM2540 G Mod.	17-Dec-14	17-Dec-14	DT	1429604	

Sample Id SS-53 (1.: SC01291-	,			Client P			<u>Matrix</u> Soil		ection Date -Dec-14 10			ceived Dec-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC .											
	ted Biphenyls by method SW846 3540C		GS1										
12674-11-2	Aroclor-1016	< 115	U, D	μg/kg dry	123	115	5	SW846 8082A	17-Dec-14	18-Dec-14	IMR	1429590	Χ
11104-28-2	Aroclor-1221	< 105	U, D	μg/kg dry	123	105	5	п			"		Χ
11141-16-5	Aroclor-1232	< 111	U, D	μg/kg dry	123	111	5			н	"		Χ
53469-21-9	Aroclor-1242	< 54.9	U, D	μg/kg dry	123	54.9	5			н	"		Х
12672-29-6	Aroclor-1248	7,790	D	μg/kg dry	123	67.1	5			н	"		Χ
11097-69-1	Aroclor-1254	5,520	D	μg/kg dry	123	77.9	5			н	"		Χ
11096-82-5	Aroclor-1260	< 88.3	U, D	μg/kg dry	123	88.3	5			н	"		Χ
37324-23-5	Aroclor-1262	< 66.9	U, D	μg/kg dry	123	66.9	5			н	"		Χ
11100-14-4	Aroclor-1268	< 121	U, D	μg/kg dry	123	121	5	п			"		Χ
Surrogate rec	overies:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	100			30-15	0 %		н	•	п	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	125			30-15	0 %		п			"		
2051-24-3	Decachlorobiphenyl (Sr)	100			30-15	i0 %		п			"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	275	S02		30-15	60 %		· ·			"		
General C	hemistry Parameters												
	% Solids	79.7		%			1	SM2540 G Mod.	17-Dec-14	17-Dec-14	DT	1429604	

Sample I SS-53 (2. SC01291				Client P	<u>Project #</u> 091		<u>Matrix</u> Soil		ection Date -Dec-14 10			ceived Dec-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	tile Organic Compounds by C	GC											
Polychlorina	ated Biphenyls		GS1										
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 116	U, D	μg/kg dry	125	116	5	SW846 8082A	17-Dec-14	18-Dec-14	IMR	1429590	Χ
11104-28-2	Aroclor-1221	< 106	U, D	μg/kg dry	125	106	5	п			"		Χ
11141-16-5	Aroclor-1232	< 112	U, D	μg/kg dry	125	112	5	п		н	"		Χ
53469-21-9	Aroclor-1242	< 55.4	U, D	μg/kg dry	125	55.4	5			н	"		Χ
12672-29-6	Aroclor-1248 [2C]	3,210	D	μg/kg dry	125	68.2	5			н	"		Χ
11097-69-1	Aroclor-1254	2,850	D	μg/kg dry	125	78.6	5	и			"		Х
11096-82-5	Aroclor-1260	< 89.1	U, D	μg/kg dry	125	89.1	5				"		Χ
37324-23-5	Aroclor-1262	< 67.5	U, D	μg/kg dry	125	67.5	5				"		Х
11100-14-4	Aroclor-1268	< 122	U, D	μg/kg dry	125	122	5	11			"		Χ
Surrogate re	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	125			30-15	50 %		п			"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	125			30-15	50 %		п		ı	"		
2051-24-3	Decachlorobiphenyl (Sr)	100			30-15	50 %		п			"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	125			30-15	50 %				ı	"		
General C	Chemistry Parameters												
	% Solids	79.1		%			1	SM2540 G Mod.	17-Dec-14	17-Dec-14	DT	1429604	

Sample I SS-83 (1. SC01291	,			Client P			<u>Matrix</u> Soil		ection Date -Dec-14 11			ceived Dec-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	tile Organic Compounds by C	GC .											
Polychlorina	ated Biphenyls		GS1										
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 1120	U, D	μg/kg dry	1200	1120	50	SW846 8082A	17-Dec-14	18-Dec-14	IMR	1429590	Χ
11104-28-2	Aroclor-1221	< 1020	U, D	μg/kg dry	1200	1020	50			п	"		Х
11141-16-5	Aroclor-1232	< 1080	U, D	μg/kg dry	1200	1080	50	п			"		Χ
53469-21-9	Aroclor-1242	< 533	U, D	μg/kg dry	1200	533	50	п			"		Χ
12672-29-6	Aroclor-1248 [2C]	38,900	D	μg/kg dry	1200	658	50			п	"		Х
11097-69-1	Aroclor-1254	27,700	D	μg/kg dry	1200	757	50	н			"		Х
11096-82-5	Aroclor-1260	< 859	U, D	μg/kg dry	1200	859	50	н			"		Х
37324-23-5	Aroclor-1262	< 650	U, D	μg/kg dry	1200	650	50	н			"		Х
11100-14-4	Aroclor-1268	< 1180	U, D	μg/kg dry	1200	1180	50	п			"		Х
Surrogate re	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	0	S01, U		30-15	i0 %		п	u		"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	0	S01, U		30-15	0 %		н			"		
2051-24-3	Decachlorobiphenyl (Sr)	0	S01, U		30-15	60 %				н	"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	0	S01, U		30-15	50 %		н			"		
General C	Chemistry Parameters												
	% Solids	80.6		%			1	SM2540 G Mod.	17-Dec-14	17-Dec-14	DT	1429604	

Sample I SS-83 (2. SC01291	,			Client P			<u>Matrix</u> Soil		ection Date -Dec-14 11			ceived Dec-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	tile Organic Compounds by C	GC											
Polychlorina	ated Biphenyls		GS1										
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 2360	U, D	μg/kg dry	2530	2360	100	SW846 8082A	17-Dec-14	18-Dec-14	IMR	1429590	Х
11104-28-2	Aroclor-1221	< 2150	U, D	μg/kg dry	2530	2150	100				"		Χ
11141-16-5	Aroclor-1232	< 2270	U, D	μg/kg dry	2530	2270	100	п			"		Χ
53469-21-9	Aroclor-1242	< 1120	U, D	μg/kg dry	2530	1120	100	п			"		Χ
12672-29-6	Aroclor-1248 [2C]	177,000	D	μg/kg dry	2530	1380	100	н			"		Х
11097-69-1	Aroclor-1254	120,000	D	μg/kg dry	2530	1590	100				"		Х
11096-82-5	Aroclor-1260	< 1810	U, D	μg/kg dry	2530	1810	100	н			"		Х
37324-23-5	Aroclor-1262	< 1370	U, D	μg/kg dry	2530	1370	100	н			"		Х
11100-14-4	Aroclor-1268	< 2480	U, D	μg/kg dry	2530	2480	100	п			"		Χ
Surrogate re	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	0	S01, U		30-15	60 %		п	u		"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	0	S01, U		30-15	0 %		н			"		
2051-24-3	Decachlorobiphenyl (Sr)	0	S01, U		30-15	60 %				н	"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	0	S01, U		30-15	0 %		н			"		
General (Chemistry Parameters												
	% Solids	77.1		%			1	SM2540 G Mod.	17-Dec-14	17-Dec-14	DT	1429604	

Sample I. SS-87 (1. SC01291	<i>'</i>			<u>Client P</u> 14-0	-		<u>Matrix</u> Soil		ection Date -Dec-14 11			ceived Dec-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	tile Organic Compounds by C	GC											
Polychlorina	ated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 26.2	U	μg/kg dry	28.0	26.2	1	SW846 8082A	17-Dec-14	18-Dec-14	IMR	1429590	Χ
11104-28-2	Aroclor-1221	< 23.9	U	μg/kg dry	28.0	23.9	1	п			"		Χ
11141-16-5	Aroclor-1232	< 25.2	U	μg/kg dry	28.0	25.2	1			н			Χ
53469-21-9	Aroclor-1242	< 12.5	U	μg/kg dry	28.0	12.5	1			п	"		Χ
12672-29-6	Aroclor-1248	2,680		μg/kg dry	28.0	15.2	1				"		Χ
11097-69-1	Aroclor-1254 [2C]	2,070		μg/kg dry	28.0	16.7	1				"		Χ
11096-82-5	Aroclor-1260 [2C]	130		μg/kg dry	28.0	26.6	1				"		Х
37324-23-5	Aroclor-1262	< 15.2	U	μg/kg dry	28.0	15.2	1				"		Χ
11100-14-4	Aroclor-1268	< 27.6	U	μg/kg dry	28.0	27.6	1	и			"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	95			30-15	60 %		u	u		n		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	105			30-15	0 %		п			"		
2051-24-3	Decachlorobiphenyl (Sr)	100			30-15	60 %				н	"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	100			30-15	0 %		н			"		
General C	Chemistry Parameters												
	% Solids	70.9		%			1	SM2540 G Mod.	17-Dec-14	17-Dec-14	DT	1429604	

Sample I. SS-87 (2. SC01291				<u>Client P</u> 14-0			<u>Matrix</u> Soil		ection Date -Dec-14 11			ceived Dec-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	tile Organic Compounds by C	GC											
Polychlorina	ated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 24.1	U	μg/kg dry	25.8	24.1	1	SW846 8082A	17-Dec-14	18-Dec-14	IMR	1429590	Χ
11104-28-2	Aroclor-1221	< 21.9	U	μg/kg dry	25.8	21.9	1	п			"		Χ
11141-16-5	Aroclor-1232	< 23.2	U	μg/kg dry	25.8	23.2	1				"		Χ
53469-21-9	Aroclor-1242	< 11.5	U	μg/kg dry	25.8	11.5	1				"		Χ
12672-29-6	Aroclor-1248	106		μg/kg dry	25.8	14.0	1				"		Χ
11097-69-1	Aroclor-1254	67.0		μg/kg dry	25.8	16.3	1				"		Χ
11096-82-5	Aroclor-1260	< 18.4	U	μg/kg dry	25.8	18.4	1				"		Χ
37324-23-5	Aroclor-1262	< 14.0	U	μg/kg dry	25.8	14.0	1				"		Χ
11100-14-4	Aroclor-1268	< 25.3	U	μg/kg dry	25.8	25.3	1	и			"		Х
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	90			30-15	50 %		и	•	п	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	100			30-15	50 %		п		ı	"		
2051-24-3	Decachlorobiphenyl (Sr)	95			30-15	50 %		н			"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	100			30-15	50 %		п	н	и	"		
General C	Chemistry Parameters												
	% Solids	76.2		%			1	SM2540 G Mod.	17-Dec-14	17-Dec-14	DT	1429604	

Sample Io SS-101 SC01291	dentification			Client P			<u>Matrix</u> Soil	-	ection Date -Dec-14 11			ceived Dec-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
	ated Biphenyls by method SW846 3540C												
12674-11-2	Aroclor-1016	< 22.4	U	μg/kg dry	24.0	22.4	1	SW846 8082A	17-Dec-14	18-Dec-14	IMR	1429590	Х
11104-28-2	Aroclor-1221	< 20.4	U	μg/kg dry	24.0	20.4	1				"		Χ
11141-16-5	Aroclor-1232	< 21.5	U	μg/kg dry	24.0	21.5	1			н	"		Х
53469-21-9	Aroclor-1242	< 10.7	U	μg/kg dry	24.0	10.7	1			н	"		Х
12672-29-6	Aroclor-1248	61.1		μg/kg dry	24.0	13.0	1			н	"		Х
11097-69-1	Aroclor-1254	64.7		μg/kg dry	24.0	15.1	1			н	"		Χ
11096-82-5	Aroclor-1260	< 17.1	U	μg/kg dry	24.0	17.1	1			н	"		Х
37324-23-5	Aroclor-1262	< 13.0	U	μg/kg dry	24.0	13.0	1			н	"		Х
11100-14-4	Aroclor-1268	< 23.6	U	μg/kg dry	24.0	23.6	1	п			"		Χ
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	95			30-15	0 %		н		ı	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	100			30-15	0 %		п			"		
2051-24-3	Decachlorobiphenyl (Sr)	95			30-15	60 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	100			30-15	60 %		п			"		
General C	Chemistry Parameters												
	% Solids	80.6		%			1	SM2540 G Mod.	17-Dec-14	17-Dec-14	DT	1429604	

Sample I SS-99 SC01291	dentification			Client P	<u>Project #</u> 091		<u>Matrix</u> Soil	-	ection Date -Dec-14 12			ceived Dec-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivola	tile Organic Compounds by C	GC											
Polychlorina	ated Biphenyls		GS1										
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 1350	U, D	μg/kg dry	1450	1350	50	SW846 8082A	17-Dec-14	18-Dec-14	IMR	1429590	Х
11104-28-2	Aroclor-1221	< 1230	U, D	μg/kg dry	1450	1230	50				"		Χ
11141-16-5	Aroclor-1232	< 1300	U, D	μg/kg dry	1450	1300	50				"		Χ
53469-21-9	Aroclor-1242	< 643	U, D	μg/kg dry	1450	643	50	п			"		Х
12672-29-6	Aroclor-1248 [2C]	49,100	D	μg/kg dry	1450	793	50	п			"		Х
11097-69-1	Aroclor-1254 [2C]	47,600	D	μg/kg dry	1450	863	50				"		Х
11096-82-5	Aroclor-1260	< 1040	U, D	μg/kg dry	1450	1040	50	н			"		Х
37324-23-5	Aroclor-1262	< 785	U, D	μg/kg dry	1450	785	50	н			"		Х
11100-14-4	Aroclor-1268	< 1420	U, D	μg/kg dry	1450	1420	50	п			"		Х
Surrogate re	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	0	S01, U		30-15	50 %		н	•		"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	0	S01, U		30-15	50 %		н		ı	"		
2051-24-3	Decachlorobiphenyl (Sr)	0	S01, U		30-15	50 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	0	S01, U		30-15	50 %		н			"		
General (Chemistry Parameters												
	% Solids	69.0		%			1	SM2540 G Mod.	17-Dec-14	17-Dec-14	DT	1429604	

Sample Io SS-100 SC01291	dentification -11			Client P			<u>Matrix</u> Soil		ection Date -Dec-14 12			ceived Dec-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	tile Organic Compounds by C	GC											
Polychlorina	ated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 27.3	U	μg/kg dry	29.2	27.3	1	SW846 8082A	17-Dec-14	18-Dec-14	IMR	1429590	Χ
11104-28-2	Aroclor-1221	< 24.9	U	μg/kg dry	29.2	24.9	1				"		Х
11141-16-5	Aroclor-1232	< 26.2	U	μg/kg dry	29.2	26.2	1				"		Χ
53469-21-9	Aroclor-1242	< 13.0	U	μg/kg dry	29.2	13.0	1	п			"		Χ
12672-29-6	Aroclor-1248	36.5		μg/kg dry	29.2	15.9	1	п			"		Х
11097-69-1	Aroclor-1254	32.1		μg/kg dry	29.2	18.4	1	ı			"		Х
11096-82-5	Aroclor-1260	< 20.9	U	μg/kg dry	29.2	20.9	1	п			"		Х
37324-23-5	Aroclor-1262	< 15.8	U	μg/kg dry	29.2	15.8	1	п			"		Х
11100-14-4	Aroclor-1268	< 28.7	U	μg/kg dry	29.2	28.7	1				"		Х
Surrogate red	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	95			30-15	50 %			u	и	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	105			30-15	50 %		н		ı	"		
2051-24-3	Decachlorobiphenyl (Sr)	90			30-15	50 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	100			30-15	50 %		п			"		
General C	Chemistry Parameters												
	% Solids	68.4		%			1	SM2540 G Mod.	17-Dec-14	17-Dec-14	DT	1429604	

Sample Io SS-98 SC01291	dentification			Client P			<u>Matrix</u> Soil		ection Date -Dec-14 12			ceived Dec-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by C	GC											
Polychlorina	ated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 27.9	U	μg/kg dry	29.9	27.9	1	SW846 8082A	17-Dec-14	18-Dec-14	IMR	1429590	Χ
11104-28-2	Aroclor-1221	< 25.4	U	μg/kg dry	29.9	25.4	1				"		Χ
11141-16-5	Aroclor-1232	< 26.8	U	μg/kg dry	29.9	26.8	1				"		Χ
53469-21-9	Aroclor-1242	< 13.3	U	μg/kg dry	29.9	13.3	1				"		Χ
12672-29-6	Aroclor-1248	25.4	J	μg/kg dry	29.9	16.2	1	п			"		Χ
11097-69-1	Aroclor-1254	22.4	J	μg/kg dry	29.9	18.8	1	п			"		Х
11096-82-5	Aroclor-1260	< 21.4	U	μg/kg dry	29.9	21.4	1	п			"		Χ
37324-23-5	Aroclor-1262	< 16.2	U	μg/kg dry	29.9	16.2	1	н			"		Х
11100-14-4	Aroclor-1268	< 29.4	U	μg/kg dry	29.9	29.4	1	п			"		Χ
Surrogate rec	coveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	95			30-15	0 %		н	•	п	"		
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	105			30-15	0 %		н		ı	"		
2051-24-3	Decachlorobiphenyl (Sr)	100			30-15	0 %					"		
2051-24-3	Decachlorobiphenyl (Sr) [2C]	105			30-15	0 %		н		ı	"		
General C	Chemistry Parameters												
	% Solids	62.8		%			1	SM2540 G Mod.	17-Dec-14	17-Dec-14	DT	1429604	

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPI Lim
atch 1429590 - SW846 3540C										
Blank (1429590-BLK1)					Prep	ared: 17-Dec	:-14 Analyzed	: 18-Dec-14		
Aroclor-1016	< 18.4	U	μg/kg wet	18.4						
Aroclor-1016 [2C]	< 12.8	U	μg/kg wet	12.8						
Aroclor-1221	< 16.8	U	μg/kg wet	16.8						
Aroclor-1221 [2C]	< 14.5	U	μg/kg wet	14.5						
Aroclor-1232	< 17.7	U	μg/kg wet	17.7						
Aroclor-1232 [2C]	< 15.2	U	μg/kg wet	15.2						
Aroclor-1242	< 8.76	U	μg/kg wet	8.76						
Aroclor-1242 [2C]	< 15.4	U	μg/kg wet	15.4						
Aroclor-1248	< 10.7	U	μg/kg wet	10.7						
Aroclor-1248 [2C]	< 10.8	U	μg/kg wet	10.8						
Aroclor-1254	< 12.4	U	μg/kg wet	12.4						
Aroclor-1254 [2C]	< 11.8	U	μg/kg wet	11.8						
Aroclor-1260	< 14.1	U	μg/kg wet	14.1						
Aroclor-1260 [2C]	< 18.7	U	μg/kg wet	18.7						
Aroclor-1262	< 10.7	U	μg/kg wet	10.7						
Aroclor-1262 [2C]	< 9.85	U	μg/kg wet	9.85						
Aroclor-1268	< 19.4	U	μg/kg wet	19.4						
Aroclor-1268 [2C]	< 18.9	U	μg/kg wet	18.9						
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	10.8		μg/kg wet		19.7		55	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	11.8		μg/kg wet		19.7		60	30-150		
Surrogate: Decachlorobiphenyl (Sr)	11.8		μg/kg wet		19.7		60	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	12.8		μg/kg wet		19.7		65	30-150		
LCS (1429590-BS1)					Prep	ared: 17-Dec	-14 Analyzed	: 18-Dec-14		
Aroclor-1016	252		μg/kg wet	18.3	245		103	40-140		
Aroclor-1016 [2C]	239		μg/kg wet	12.7	245		98	40-140		
Aroclor-1260	218		μg/kg wet	14.0	245		89	40-140		
Aroclor-1260 [2C]	203		μg/kg wet	18.6	245		83	40-140		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	20.6		μg/kg wet		19.6		105	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	20.6		μg/kg wet		19.6		105	30-150		
Surrogate: Decachlorobiphenyl (Sr)	19.6		μg/kg wet		19.6		100	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	20.6		μg/kg wet		19.6		105	30-150		
LCS Dup (1429590-BSD1)					Prep	ared: 17-Dec	-14 Analyzed	: 18-Dec-14		
Aroclor-1016	254		μg/kg wet	18.1	242		105	40-140	2	30
Aroclor-1016 [2C]	236		μg/kg wet	12.6	242		97	40-140	0.4	30
Aroclor-1260	224		μg/kg wet	13.9	242		92	40-140	4	30
Aroclor-1260 [2C]	201		μg/kg wet	18.4	242		83	40-140	0	30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	20.4		μg/kg wet		19.4		105	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	20.4		μg/kg wet		19.4		105	30-150		
Surrogate: Decachlorobiphenyl (Sr)	20.4		μg/kg wet		19.4		105	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	20.4		μg/kg wet		19.4		105	30-150		
<u>Duplicate (1429590-DUP1)</u>			Source: SC	01291-01	Prep	ared: 17-Dec	-14 Analyzed	: 18-Dec-14		
Aroclor-1016	< 23.9	U	μg/kg dry	23.9		BRL				30
Aroclor-1016 [2C]	< 16.6	U	μg/kg dry	16.6		BRL				30
Aroclor-1221	< 21.7	U	μg/kg dry	21.7		BRL				30
Aroclor-1221 [2C]	< 18.8	U	μg/kg dry	18.8		BRL				30
Aroclor-1232	< 23.0	U	μg/kg dry	23.0		BRL				30
Aroclor-1232 [2C]	< 19.7	U	μg/kg dry	19.7		BRL				30
Aroclor-1242	< 11.4	U	μg/kg dry	11.4		BRL				30
Aroclor-1242 [2C]	< 19.9	U	μg/kg dry	19.9		BRL				30
Aroclor-1248	986		μg/kg dry	13.9		941			5	30

					Spike	Source		%REC		RPD
nalyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limi
atch 1429590 - SW846 3540C										
<u>Duplicate (1429590-DUP1)</u>			Source: SC	01291-01	Pre	pared: 17-Dec	-14 Analyzed	: 18-Dec-14		
Aroclor-1248 [2C]	977		μg/kg dry	14.0		976			0.2	30
Aroclor-1254	628		μg/kg dry	16.1		657			4	30
Aroclor-1254 [2C]	724		μg/kg dry	15.2		665			9	30
Aroclor-1260	62.6		μg/kg dry	18.3		60.9			3	30
Aroclor-1260 [2C]	60.0		μg/kg dry	24.2		54.6			10	30
Aroclor-1262	< 13.8	U	μg/kg dry	13.8		BRL				30
Aroclor-1262 [2C]	< 12.8	U	μg/kg dry	12.8		BRL				30
Aroclor-1268	< 25.1	U	μg/kg dry	25.1		BRL				30
Aroclor-1268 [2C]	< 24.5	U	μg/kg dry	24.5		BRL				30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	24.3		μg/kg dry		25.5		95	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	25.5		μg/kg dry		25.5		100	30-150		
Surrogate: Decachlorobiphenyl (Sr)	24.3		μg/kg dry		25.5		95	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	26.8		μg/kg dry		25.5		105	30-150		
Matrix Spike (1429590-MS1)			Source: SC	01291-01	Pre	pared: 17-Dec	:-14 Analyzed	: 18-Dec-14		
Aroclor-1016	398		μg/kg dry	23.3	312	BRL	128	40-140		
Aroclor-1016 [2C]	387		μg/kg dry	16.2	312	BRL	124	40-140		
Aroclor-1260	258		μg/kg dry	17.9	312	60.9	63	40-140		
Aroclor-1260 [2C]	223		μg/kg dry	23.7	312	54.6	54	40-140		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	24.9		μg/kg dry		24.9		100	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	23.7		μg/kg dry		24.9		95	30-150		
Surrogate: Decachlorobiphenyl (Sr)	22.5		μg/kg dry		24.9		90	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	24.9		μg/kg dry		24.9		100	30-150		
Matrix Spike Dup (1429590-MSD1)			Source: SC	01291-01	Pre	pared: 17-Dec	:-14 Analyzed	: 18-Dec-14		
Aroclor-1016	408		μg/kg dry	23.9	320	BRL	128	40-140	0	30
Aroclor-1016 [2C]	410		μg/kg dry	16.6	320	BRL	128	40-140	3	30
Aroclor-1260	284		μg/kg dry	18.3	320	60.9	70	40-140	10	30
Aroclor-1260 [2C]	253		μg/kg dry	24.2	320	54.6	62	40-140	14	30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	25.6		μg/kg dry		25.6		100	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	24.3		μg/kg dry		25.6		95	30-150		
Surrogate: Decachlorobiphenyl (Sr)	25.6		μg/kg dry		25.6		100	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	26.9		μg/kg dry		25.6		105	30-150		

General Chemistry Parameters - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1429605 - General Preparation										
<u>Duplicate (1429605-DUP1)</u>			Source: SC	01291-13	Pre	pared & Analy	zed: 17-Dec-14	<u>1</u>		
% Solids	68.1		%			68.8			1	5
<u>Duplicate (1429605-DUP2)</u>			Source: SC	01291-14	Pre	pared & Analy	zed: 17-Dec-14	<u>1</u>		
% Solids	62.7		%			62.3			0.6	5

Notes and Definitions

D Data reported from a dilution GS1 Sample dilution required for high concentration of target analytes to be within the instrument calibration range. J Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag). S01 The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interference's. S02 The surrogate recovery for this sample cannot be accurately quantified due to interference from coeluting organic compounds present in the sample extract. U Analyte included in the analysis, but not detected at or above the MDL. dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

Matrix Spike: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification:</u> The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

Validated by: June O'Connor Kimberly LaPlante

Report To:

Rich McKenna

Invoice To:

Acet's Payable

East 6308 AECC

Rand

CHAIN OF CUSTODY RECORD

Page	
of	
Q)	
	100

Site Name: Woodbine Business Park Location: Caracla Dr, DeWitt	Project No: 14-69	All TATs subject to laboratory approval Min. 24-hr notification needed for rushes Samples disposed after 64 days unless otherwise instructed.	Rush TAT - Date Needed: 3 - DAY	☐ Standard TAT - 7 to 10 business days	Special Handling:	
Park State: NY		approval if for rushes s unless otherwise instructed.	3-DAY	iness days	lling:	2001 11 JUN

600000	t Ending !	XXX.	Dur Count	Relinquished by:	N (0) 55-99	1 09 55-10	08 55-8	07 55-8	06 5-83	05 55-83	04 55-53	03 55-53	. 60 Cs-1	SC01391-4 CS-1	Lab ID:	G= Grab	X1=	O=Oil SO=Soil SL=Sludge	DW=Dinking Water GW=Gro	F=Field Filtered 1=Na ₂ S2O ₃ 7=CH3OH 8=NaHSO ₄ 9=Deic	Telephone #: (315) 43
	2	THE THE	U)	99	0	55-87 (2.5)	7(1.5')	3 (2.5')	3 (1.5')	3 (a.5')	3 (1.5')	(2.5')	(1.5')	Sample ID:		X2=	ge A=Indoor/Ambient Air	GW=Groundwater SW=Surface Water	₂₅ S2O ₃ 2 =HCl 3 =H ₂ SO ₄ 9 =Deionized Water 10 =H ₃ PO ₄	432-9480
	0	なよい	The state of the s	Received by:	*									12/15/14	Date:	C=Compsite	X3=	nt Air SG=Soil Gas		4=HNO ₃ 5	
	0		MON	by:	1209 4	1155	142	1133	120	Ē	1055	650	1025	1020 5	Time:	ype		l Gas	WW=Waste Water	5=NaOH 6=Asc	P.O No.: 14-09
	12/16/14	h 1/9/1/21	12/15/14	Date:	+									5	Ma # of	atrix VOA	Vials r Glass			6=Ascorbic Acid 12=	
(2100	130	1545	Time:		<i>V</i>									-	Clear			Containers	r =	Quote/RQN:
IRID#	ď	Corecction Factor	<u> </u>	Temp °C	4									×	80	182	PCB	5		List	Ligini
☐ Ambient X Iced	Condition upon receipt:		E-mail to:	EDD format:												2		241.2	Analysis	List Preservative Code below:	Sampler(s):
☐ Refrigerated	: Custody Seals:	,	(mekenner)	POF.												1:6		4.3		pelow:	Des B
☐ DI VOA Frozen	☐ Present ☐ Intact		(mekenne @ aeugroup.ion	Exce		90,00			(%)		2000	1/6	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Cher: Other: State-specific reporting standards:	Ter II*		X Standard	MA DEP MCP CAM Report? CT DPH RCP Report?	QA/QC Reporting Notes: * additional charges may appply	Bizamer
Soil Jar Frozen	Broken	-	5	1		R V				0	1				standards:	Tier IV*	ASP B*		Yes No	g Notes: nay apppfy	

Report To:

Rich McKenna

Invoice To:

Next's Payable

AECC

6308 Ay Road

CHAIN OF CUSTODY RECORD

Page & of &

Charle	SACO	
TABLE	2	
H R S S H K	I S	
- annan	entral result and o	
	9.	

Project No: 14-69])	1	Site Name: Wardbre Business Park Location: Carieda Dr. Dewitt State: NY
		Waa	Wordbire Business Per Canada Dr. Dewitt

Telephone #:Project Mgr:	(315) 432-9400	505/	P.O No.:	14-09		Quote	Quote/RQN:			8 1	Location: Sampler(s):	111	Drew		Diantre	ther	Je Court		State: 1	
F=Field Filtered 1	F=Field Filtered 1=Na ₂ S2O ₃ 2=HCl 3=H ₂ SO ₄ 7=CH3OH 8=NaHSO ₄ 9=Deionized Water 10=H ₂ PO ₄	4=HNO ₃	5=NaOH 6=As	6=Ascorbic Acid	id	-			F	List Preservative Code below:	rvative	Code b	elow:)A/QC	QA/QC Reporting Notes:	ing Not	es:
DW=Dinking Water	GW=Groundwater SW=S	SW=Surface Water WV	ww=Waste Water			00	Containers	SUS			Analysis	Sis				MA DI	MA DEP MCP CAM R CT DPH RCP Report?	MA DEP MCP CAM Report? CT DPH RCP Report?	rt? ☐ Yes	es es No
O=Oil SO=Soil	SL=Sludge A=Indoor/Ambient Air	bient Air SG=Soil Gas	l Gas		na.			Accessor	35						ated	X	Standard		No QC	
X1=	X2=	X3=			/ials	Glass	Blass		Pci		-				hlorin		ASP A*	A* [] ASP B∗	
G=	G= Grab	C=Compsite			VOA V	Amber	Clear (Plastic	182					-	ck if c		NJ Reduced* Tier II*	ced.	NJ Full*	<i>x</i> *
Lab ID:	Sample ID:	Date:	Time:	Ty Ma	# of '	# of .	# of	# of .	80						Che	Sta	Other: State-specif	Other: State-specific reporting standards:	ng standa	ırds:
SC 81291-11	55-100	19/15/14	lalle (S		_			×			•				luš ii				describing the second of the s
D	55-98			9		-		2 3							10					
3	SS -10a		1240			l Gu							-					-		
2	55-104		1258	CIES TO:		1 1 1 1 1 1 1					7.5					1	8	The,		
1/ 1/5	SS-105		1305			140				=	BO	- 64				1	1	12	1	
601	55-103	4	1314	+		14			*							-		3	10	
										13/4		+	+	+				1	A	2
									1							V	10	10	R	X
Relinqu	Relinquished by:	Received by:	lby:	3	Date:	` .		Time:	Temp °C	X	EDD format:	at:	PDF	100	Exce	- ×				X
Dun	hatra	The same of the sa	Har	Ė	2/15	44	CO	345	Observed	×	E-mail to:		5	3		@aeligroup.com	care	40.0	3	6
N X	10AX	adi		12	18	Ji I	(120	Corecction Factor				,							1
X			0	2	1/1	1/11	1	110	Corrected /	Conditi	Condition upon receipt:	receint.		Custody Seals:		Present		Intact		Broken

Ambient Alced

☐ Refrigerated ☐ DI VOA Frozen

Soil Jar Frozen

Report Date: 30-Dec-14 13:19

☑ Final Report☐ Re-Issued Report☐ Revised Report

☐ Keviseu Kepoi

AECC Environmental Consulting 6308 Fly Road

East Syracuse, NY 13057 Attn: Rich McKenna Project: Woodbine Business Park - Dewitt, NY

Project #: 14-091

 Laboratory ID
 Client Sample ID
 Matrix
 Date Sampled
 Date Received

 SC01671-01
 SS-106
 Soil
 15-Dec-14 12:03
 23-Dec-14 21:00

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011/MA012 New York # 11393/11840 Pennsylvania # 68-04426/68-02924 Rhode Island # 98 USDA # S-51435

Authorized by:

Nicole Leja Laboratory Director

Icolo Leja

Spectrum Analytical holds certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 7 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey, Pennsylvania and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, NJ-MA012, PA-68-04426 and FL-E87936).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

CASE NARRATIVE:

Data has been reported to the MDL. This report includes estimated concentrations detected below the RDL and above the MDL (J-Flag).

All non-detects and all results below the detection limit are reported as "<" (less than) the detection limit in this report.

The samples were received 3.4 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of \pm 1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

There is no relevant protocol-specific QC and/or performance standards non-conformances to report.

Sample Acceptance Check Form

AECC Environmental Consulting

Client:

Project:	Woodbine Business Park - Dewitt, NY / 14-091			
Work Order:	SC01671			
Sample(s) received on:	12/23/2014			
The following outlines th	ne condition of samples for the attached Chain of Custody upon receipt.			
		Yes	<u>No</u>	<u>N/A</u>
Were custody se	als present?		\checkmark	
Were custody se	als intact?			✓
Were samples re	ceived at a temperature of $\leq 6^{\circ}$ C?	\checkmark		
Were samples co	ooled on ice upon transfer to laboratory representative?	\checkmark		
Were sample con	ntainers received intact?	\checkmark		

Were samples properly labeled (labels affixed to sample containers and include sample ID, site

Does Chain of Custody document include proper, full, and complete documentation, which shall include sample ID, site location, and/or project number, date and time of collection, collector's name,

preservation type, sample matrix and any special remarks concerning the sample?

Did sample container labels agree with Chain of Custody document?

Were samples received within method-specific holding times?

location, and/or project number and the collection date)?
Were samples accompanied by a Chain of Custody document?

Sample Id SS-106 SC01671-	-01			Client Pr			<u>Matrix</u> Soil		ection Date -Dec-14 12			ceived Dec-14	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	ile Organic Compounds by C	GC											
Polychlori	nated Biphenyls												
Prepared	by method SW846 3540C												
12674-11-2	Aroclor-1016	< 24.2	U	μg/kg dry	25.9	24.2	1	SW846 8082A	26-Dec-14	30-Dec-14	IMR	1430210	Χ
11104-28-2	Aroclor-1221	< 22.0	U	μg/kg dry	25.9	22.0	1	"	"	"		"	Χ
11141-16-5	Aroclor-1232	< 23.2	U	μg/kg dry	25.9	23.2	1	"	"	"	"	"	Х
53469-21-9	Aroclor-1242	< 11.5	U	μg/kg dry	25.9	11.5	1	"	"	"	"	"	Х
12672-29-6	Aroclor-1248	< 14.1	U	μg/kg dry	25.9	14.1	1	"	"	"	"		Х
11097-69-1	Aroclor-1254 [2C]	76.3		μg/kg dry	25.9	15.4	1	"	"	"	"	"	Х
11096-82-5	Aroclor-1260 [2C]	< 24.5	U	μg/kg dry	25.9	24.5	1	"	"	"	"	"	Х
37324-23-5	Aroclor-1262	< 14.0	U	μg/kg dry	25.9	14.0	1	"	"	"	"	"	Х
11100-14-4	Aroclor-1268	< 25.4	U	μg/kg dry	25.9	25.4	1	"	n	"	"	"	Х
Surrogate i	recoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	105			30-15	50 %		"	II	"	"	"	
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	115			30-15	50 %		"	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr)	110			30-15	50 %		"	"	"		"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	115			30-15	50 %		"	"	"	"	"	
General C	hemistry Parameters												
	% Solids	74.3		%			1	SM2540 G Mod.	24-Dec-14	24-Dec-14	EEM	1430139	

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
atch 1430210 - SW846 3540C										
Blank (1430210-BLK1)					Pre	epared: 26-l	Dec-14 An	alyzed: 29-D	ec-14	
Aroclor-1016	< 18.1	U	μg/kg wet	18.1				-		
Aroclor-1016 [2C]	< 12.6	U	μg/kg wet	12.6						
Aroclor-1221	< 16.5	U	μg/kg wet	16.5						
Aroclor-1221 [2C]	< 14.2	U	μg/kg wet	14.2						
Aroclor-1232	< 17.4	U	μg/kg wet	17.4						
Aroclor-1232 [2C]	< 14.9	U	μg/kg wet	14.9						
Aroclor-1242	< 8.62	U	μg/kg wet	8.62						
Aroclor-1242 [2C]	< 15.1	U	μg/kg wet	15.1						
Aroclor-1248	< 10.5	U	μg/kg wet	10.5						
Aroclor-1248 [2C]	< 10.6	U	μg/kg wet	10.6						
Aroclor-1254	< 12.2	U	μg/kg wet	12.2						
Aroclor-1254 [2C]	< 11.6	U	μg/kg wet	11.6						
Aroclor-1260	< 13.9	U	μg/kg wet	13.9						
Aroclor-1260 [2C]	< 18.4	U	μg/kg wet	18.4						
Aroclor-1262	< 10.5	U	μg/kg wet	10.5						
Aroclor-1262 [2C]	< 9.69	U	μg/kg wet	9.69						
Aroclor-1268	< 19.1	U	μg/kg wet	19.1						
Aroclor-1268 [2C]	< 18.6	U	μg/kg wet	18.6						
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	15.5		μg/kg wet		19.4		80	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	17.4		μg/kg wet		19.4		90	30-150		
Surrogate: Decachlorobiphenyl (Sr)	15.5		μg/kg wet		19.4		80	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	16.5		μg/kg wet		19.4		85	30-150		
LCS (1430210-BS1)			10 0			enared: 26-l	Dec-14 An	alvzed: 30-E	ec-14	
Aroclor-1016	242		μg/kg wet	18.3	245	<u> </u>	99	40-140	11	
Aroclor-1016 [2C]	216		μg/kg wet	12.7	245		88	40-140		
Aroclor-1260	207		μg/kg wet	14.0	245		84	40-140		
Aroclor-1260 [2C]	188		μg/kg wet	18.6	245		77	40-140		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	21.6		μg/kg wet		19.6		110	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	19.6		μg/kg wet		19.6		100	30-150		
Surrogate: Decachlorobiphenyl (Sr)	22.5		μg/kg wet		19.6		115	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	19.6		μg/kg wet		19.6		100	30-150		
LCS Dup (1430210-BSD1)					Pre	epared: 26-l	Dec-14 An	alyzed: 30-E	ec-14	
Aroclor-1016	241		μg/kg wet	18.3	245		98	40-140	0.4	30
Aroclor-1016 [2C]	212		μg/kg wet	12.7	245		86	40-140	2	30
Aroclor-1260	210		μg/kg wet	14.0	245		86	40-140	1	30
Aroclor-1260 [2C]	185		μg/kg wet	18.6	245		76	40-140	2	30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	20.6		μg/kg wet		19.6		105	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	19.6		μg/kg wet		19.6		100	30-150		
Surrogate: Decachlorobiphenyl (Sr)	20.6		μg/kg wet		19.6		105	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	19.6		μg/kg wet		19.6		100	30-150		
Duplicate (1430210-DUP1)			Source: SC	<u>0167</u> 1-01	Pre	epared: 26-l	Dec-14 An	alyzed: 29-D	ec-14	
Aroclor-1016	< 24.5	U	μg/kg dry	24.5		BRL				30
Aroclor-1016 [2C]	< 17.0	U	μg/kg dry	17.0		BRL				30
Aroclor-1221	< 22.3	U	μg/kg dry	22.3		BRL				30
Aroclor-1221 [2C]	< 19.3	U	μg/kg dry	19.3		BRL				30
Aroclor-1232	< 23.6	U	μg/kg dry	23.6		BRL				30
Aroclor-1232 [2C]	< 20.2	U	μg/kg dry μg/kg dry	20.2		BRL				30
Aroclor-1242	< 11.7	U	μg/kg dry μg/kg dry	11.7		BRL				30

					Spike	Source		%REC		RPD
nalyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limi
atch 1430210 - SW846 3540C										
<u>Duplicate (1430210-DUP1)</u>			Source: SC	<u>01671-01</u>	<u>Pre</u>	pared: 26-	Dec-14 An	alyzed: 29-D	Dec-14	
Aroclor-1242 [2C]	< 20.5	U	μg/kg dry	20.5		BRL				30
Aroclor-1248	< 14.3	U	μg/kg dry	14.3		BRL				30
Aroclor-1248 [2C]	< 14.4	U	μg/kg dry	14.4		BRL				30
Aroclor-1254	82.7		μg/kg dry	16.6		85.4			3	30
Aroclor-1254 [2C]	78.7		μg/kg dry	15.7		76.3			3	30
Aroclor-1260	19.7	J	μg/kg dry	18.8		BRL				30
Aroclor-1260 [2C]	< 24.9	U	μg/kg dry	24.9		BRL				30
Aroclor-1262	< 14.2	U	μg/kg dry	14.2		BRL				30
Aroclor-1262 [2C]	< 13.1	U	μg/kg dry	13.1		BRL				30
Aroclor-1268	< 25.8	U	μg/kg dry	25.8		BRL				30
Aroclor-1268 [2C]	< 25.2	U	μg/kg dry	25.2		BRL				30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	28.9		μg/kg dry		26.2		110	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	30.2		μg/kg dry		26.2		115	30-150		
Surrogate: Decachlorobiphenyl (Sr)	28.9		μg/kg dry		26.2		110	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	28.9		μg/kg dry		26.2		110	30-150		
Matrix Spike (1430210-MS1)			Source: SC	<u>01671-01</u>	Pre	pared: 26-	Dec-14 An	alyzed: 29-E	Dec-14	
Aroclor-1016	363		μg/kg dry	23.8	319	BRL	114	40-140		
Aroclor-1016 [2C]	354		μg/kg dry	16.5	319	BRL	111	40-140		
Aroclor-1260	333		μg/kg dry	18.3	319	BRL	104	40-140		
Aroclor-1260 [2C]	286		μg/kg dry	24.2	319	BRL	90	40-140		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	31.9		μg/kg dry		25.5		125	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	33.2		μg/kg dry		25.5		130	30-150		
Surrogate: Decachlorobiphenyl (Sr)	31.9		μg/kg dry		25.5		125	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	31.9		μg/kg dry		25.5		125	30-150		
Matrix Spike Dup (1430210-MSD1)			Source: SC	01671-01	Pre	pared: 26-	Dec-14 An	alyzed: 29-E	Dec-14	
Aroclor-1016	376		μg/kg dry	24.2	323	BRL	116	40-140	2	30
Aroclor-1016 [2C]	357		μg/kg dry	16.8	323	BRL	110	40-140	0.4	30
Aroclor-1260	345		μg/kg dry	18.5	323	BRL	107	40-140	2	30
Aroclor-1260 [2C]	274		μg/kg dry	24.5	323	BRL	85	40-140	6	30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	33.6		μg/kg dry		25.9		130	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	32.3		μg/kg dry		25.9		125	30-150		
Surrogate: Decachlorobiphenyl (Sr)	32.3		μg/kg dry		25.9		125	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	32.3		μg/kg dry		25.9		125	30-150		

Notes and Definitions

J Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).

U Analyte included in the analysis, but not detected at or above the MDL.

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification:</u> The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

Validated by: June O'Connor

Report To:

McKenna

Invoice To:

Acct's Payable

State: NY

AECC

Road

CHAIN OF CUSTODY RECO

Project No: 14-09	Special Handling: Special Handling: Standard TAT - 7 to 10 business days KRush TAT - Date Needed: 3-DAY All TATs subject to laboratory approval Min. 24-hr notification needed for rushes
-------------------	--

# of Clear Glass # of Plastic # of Plastic	Ascorbic Acid Type Matrix # of VOA Vials # of Amber Glass # of Clear Glass
	Analysis Analysis Analysis Condition upon receipt:

☐ Ambient

X Iced

☐ Refrigerated ☐ DI VOA Frozen

Soil Jar Frozen