

Former Penfield Manufacturing Facility 1714 North Salina Street Syracuse, NY 13208

July 8, 2019

Prepared by:

Asbestos and Environmental Consulting Corporation 6308 Fly Road East Syracuse, New York 13057

Prepared for:

Dakota Partners, Inc. 1264 Main Street Waltham, Massachusetts 02451

AECC Project No. 19-072 July 8, 2019

TABLE OF CONTENTS

1.0	INTRO	DUCTION AND BACKGROUND	1
	1.1	Purpose	
	1.2	Project History	
	1.3	Limitations and Standard of Care	2
2.0	INVES	TIGATION METHODOLOGY	3
	2.1	Utility Clearances	
	2.2	Soil Investigation	
	2.3	Groundwater Investigation	
3.0	FIELD	OBSERVATIONS	6
	3.1	Soil Investigation	
	3.2	Groundwater Investigation	6
4.0	LABO	RATORY ANALYTICAL RESULTS	7
	4.1	Subsurface Soils	7
		4.1.1 Volatile Organic Compounds	7
		4.1.2 Semi-Volatile Organic Compounds	
		4.1.3 PCBs	7
		4.1.4 Metals	
	4.2	Soil Berm / Pile Sampling	10
5.0	SUMN	MARY AND CONCLUSIONS	11
		FIGURES	
FIGUR	E 1	SITE PLAN	
		TABLES	
TABLE	1	SUMMARY OF ANALYTICAL DATA – SUBSURFACE SOILS (VOCS)	
TABLE	2	SUMMARY OF ANALYTICAL DATA – SUBSURFACE SOILS (SVOCS)	
TABLE	3	SUMMARY OF ANALYTICAL DATA – SUBSURFACE SOILS (METALS)	
TABLE	4	SUMMARY OF ANALYTICAL DATA – SUBSURFACE SOILS (PCBS)	
TABLE	5	SUMMARY OF ANALYTICAL DATA – SOIL PILE (SVOCS, PCBS AND METALS)	
		ATTACHMENTS	
ATTAC	HMENT	A PHOTO LOG	
ATTAC	HMENT	B SOIL BORING LOGS	
ATTAC	HMENT	C ALPHA ANALYTICAL LABORATORY ANALYSIS REPORT	

Former Penfield Manufacturing Facility, 1714 North Salina Street, Syracuse, New York

COMMON ACRONYMS / ABBREVIATIONS

The following are common abbreviations and/or acronyms that have been used throughout the following report:

bgs - Below Ground Surface

CP-51 – (NYSDEC) Commissioner's Policy #51 (for Soil Cleanup Guidance)

ESA - Environmental Site Assessment

LSI - Limited Subsurface Investigation

N/A - Not Applicable

NYSDEC - New York State Department of Environmental Conservation

NY-UNRES - NYSDEC Unrestricted Soil Cleanup Standard

NY-RESR - NYSDEC Restricted Residential Soil Cleanup Standard

PAH - Polycyclic Aromatic Hydrocarbons

PCB - Poly-Chlorinated Biphenyl

PID - Photoionization Detector

ppb – Parts Per Billion

ppm - Parts Per Million

RCRA – Resource Conservation and Recovery Act

REC – Recognized Environmental Condition

RSCO - Restricted Soil Cleanup Objective

SCO - Soil Cleanup Objective

STARS - Spill Technology and Remediation Series

SVOC - Semi-Volatile Organic Compound

USEPA - United States Environmental Protection Agency

UST – Underground Storage Tank

VOC - Volatile Organic Compound

AECC Project No. 19-072 July 8, 2019

Former Penfield Manufacturing Facility, 1714 North Salina Street, Syracuse, New York

1.0 INTRODUCTION AND BACKGROUND

The Asbestos & Environmental Consulting Corporation (AECC) was retained by Dakota Partners, Inc. (Dakota) to perform a Limited Phase II Environmental Site Assessment (ESA) at the former Penfield Manufacturing Site, located at 1714 North Salina Street, in the City of Syracuse, New York (hereafter referred to as the "Site" or "Property"). The investigation was conducted in connection with Dakota's potential purchase of the property for redevelopment. The existing property layout is depicted on attached Figure 1 (Site Plan).

1.1 Purpose

AECC previously conducted a Phase I Environmental Site Assessment (Phase I ESA) of the subject property at the request of, and on behalf of Dakota. During the Phase I ESA, Dakota also provided AECC with previous Phase I ESA reports prepared by C&H Engineers, P.C. (dated November 26, 1997) and Dynamic Environmental Associates, Inc. (dated January 11, 2012). The two (2) prior Phase I ESAs identified a number of *recognized environmental conditions* relative to the subject property, including:

- Suspect asbestos-containing materials;
- o Potential PCBs (light ballasts, electrical transformers, elevator control system reservoir);
- Suspect lead-based paint;
- USTs (two fuel oil storage tanks reportedly located beneath the loading dock. The USTs were not in use at the time of either prior assessment.);
- Hazardous materials (various boiler-related chemicals, paint, degreasing agents, waste oil, etc.); and
- Potential soil/groundwater impact (based upon property manufacturing history)

AECC's historical research and site observations confirmed these RECs, and also identified the following additional concerns:

- A soil berm / pile is located along a portion of the western perimeter of the Site. The soil is comprised of a variety of sand, gravel, brick, and asphalt debris, the origin of which is unknown.
- The western portion of the property (now consisting of a paved parking area) was historically occupied by a rail spur, coal sheds, and other use / storage of manufacturing materials. The storage and handling of coal, coal ash, and other manufacturing-related materials can result in elevated levels of semi-volatile organic compounds (SVOCs), heavy metals, and other contaminants to be introduced to site soil.
- Two (2) upgradient sites with historic operations of potential concern (former dry cleaning facility and former retail gasoline service station) are located in close proximity to the subject property.

This Limited Phase II ESA was conducted for the purpose of investigating subsurface conditions at the subject property, to assess conditions associated with the former USTs; the soil berm / pile; the former coal sheds, rail spur and other activities on the exterior, western portion of the site; the potential for former manufacturing operations to have impacted subsurface soil and groundwater; and the potential for the two (2) upgradient sites of concern to have impacted subsurface soil and groundwater.

Former Penfield Manufacturing Facility, 1714 North Salina Street, Syracuse, New York

1.2 Limitations and Standard of Care

AECC prepared this report on behalf, and for the exclusive use, of Dakota Partners, Inc., for the stated purpose(s) and location(s) identified in this Report. This report is not intended for nor should it be relied upon in connection with other projects or third parties. The use of this report by an undesignated third party or parties will be at such party's sole risk, and AECC and Dakota Partners, Inc. disclaim liability for any such third party use or reliance.

Our services were performed in a manner consistent with generally accepted practices of environmental consulting services undertaken for a Limited Phase II ESA for the property location, and based on readily available information about the property. Our services were performed using the degree of skill and care ordinarily exercised by qualified professionals performing the same type of services, at the same time, under similar conditions, at the same or a similar property. No warranty, expressed or implied, is made. Specifically, we do not and cannot represent that the site contains no hazardous material, oil, or other latent condition beyond what was encountered, and evaluated by this investigation and expressed herein.

AECC performed this Limited Phase II ESA in accordance with the Scope of Services, as reflected in our proposal dated April 2, 2019. The scope of the investigation was developed to provide representative sampling of the specific areas of concern through direct-push sampling methodologies, within schedule and budget limitations, and given available historical information. No environmental site assessment or investigation can eliminate all uncertainty.

The findings and conclusions presented in this report are based upon conditions encountered at the locations and depths, and at the times at which samples were obtained, using the analysis methods cited above. As with any subsurface investigation, conditions beyond the locations encompassed by the soil borings may vary from those encountered at these locations. Such variations in conditions may not become evident until excavation or other disturbance occurs in that area.

The boring locations were limited to the western portion of the property, due to the presence of existing structures, buried utilities, concerns for structural integrity of the buildings, and other site features. Additionally, due to the dense nature of the native soils present beneath the site, groundwater was not encountered. Sampler refusal was consistently encountered prior to reaching depths at which groundwater may exist. As such, AECC is not able to provide an opinion as to conditions present beneath the existing structures, or regarding groundwater conditions beneath the subject property.

2.0 INVESTIGATION METHODOLOGY

The investigation was conducted under the direction and oversight of AECC. Drilling services were provided by AECC's drilling subcontractor, NYEG Drilling, LLC (NYEG). Laboratory analysis services were provided by AECC's laboratory subcontractor, Alpha Analytical, Inc. (Alpha). The methodologies employed in the performance of the investigation are detailed below.

2.1 Utility Clearances

Prior to initiating soil borings, AECC's subcontractor, NYEG, contacted Dig Safely New York to identify and mark the location of buried public utilities at the site boundaries.

The subject property is presently owned by an out-of-state corporation, and its representatives are not familiar with the nature and location of private site utilities. As such, AECC relied upon historical facility drawings to identify the location of a buried electrical line on the western portion of the Site.

2.2 Soil Investigation

The investigation included an assessment of subsurface soil at select, representative locations across the property, as well as sampling of the soil of unknown origin that comprises the berm / pile along the western edge of the site. The methodologies relating to each of these tasks are summarized below.

Shallow and Subsurface Soil Investigation

The subsurface investigation included the advancement of eight (8) soil borings on the subject property. The borings were advanced by NYEG, under the direction of AECC. The soil borings were identified as SB-01 through SB-08. The boring locations were limited to the western portion of the property, due to the presence of existing structures, buried utilities, concerns for structural integrity of the buildings, and other site features. The boring locations are depicted on attached Figure 1.

The borings were completed using direct-push sampling methods. Continuous soil samples were collected from each boring with macro-core soil samplers, which consist of five (5) feet long steel sampling barrels of 2.125-inch outside diameter. The samplers were equipped with disposal (single-use) acetate liners. Continuous cores of the soil column were collected within the acetate liners as the steel samplers were advanced, using a hydraulically-driven hammer and hydraulic pressure. The borings were advanced in an attempt to encounter the groundwater table beneath the site; however, the dense nature of the compacted sand, sampler refusal was consistently encountered prior to reaching the local water table.

The soil samples recovered from these borings were classified with respect to predominant soil types, texture, and relative moisture content; examined for staining or obvious odors suggestive of impact by petroleum products; and field screened with a portable photo-ionization detector (PID), to document whether volatile organic compounds (VOC) are released from the soil. The PID screening was performed by headspace analysis methods, by placing a representative portion of the soil sample into a re-sealable plastic bag, and monitoring the airspace surrounding the soil within the bag as the soil is agitated to promote the release of VOC. The PID was calibrated daily with a 100 part-per-million (ppm) isobutylene/air calibration gas mixture. The observed soil lithology, PID headspace screening results, and pertinent observations are documented on the Soil Boring Logs contained in Attachment B.

Former Penfield Manufacturing Facility, 1714 North Salina Street, Syracuse, New York

Samples of soil were retained from six (6) select borings for laboratory analysis to document concentrations of specific volatile and semi-volatile organic compounds (VOC and SVOC, respectively), heavy metals, and poly-chlorinated biphenyls (PCBs). The location and depth of soil sample collection for laboratory analysis were based upon field observations and professional judgment at that time. The analysis methods used for the respective compounds of concern were as follows:

Analyte	Analysis Method
Volatile Organic Compounds	USEPA Method 8260 -Target Compound List
Semi-Volatile Organic Compounds	USEPA Method 8270 – NYSDEC 'STARS' List
RCRA-8 metals	USEPA Method 6010/7471
PCBs	USEPA Method 8082

Collected soil samples were placed into individual, labeled, laboratory-supplied containers and transported, on ice and in a cooler, under chain-of-custody, and relinquished to the Syracuse service center of Alpha. The samples were subsequently transferred by Alpha to their laboratory in Westborough, Massachusetts.

Soil Berm / Pile Sampling

Two grab samples, identified as SP-01 and SP-02, were collected from the on-site soil berm / pile that exists along the western edge of the site, adjacent to Exchange Place. These samples were manually collected, using disposable trowels. The samples were placed into individual, labeled, laboratory-supplied containers and transported, on ice and in a cooler, under chain-of-custody, and relinquished to the Syracuse service center of Alpha. The samples were subsequently transferred by Alpha to their laboratory in Westborough, Massachusetts.

The samples were subjected to laboratory analysis for the following compounds of concern, using the noted analysis methods:

Analyte	Analysis Method
Semi-Volatile Organic Compounds	USEPA Method 8270 – NYSDEC 'STARS' List
RCRA-8 Metals	USEPA Method 6010/7471
PCBs	USEPA Method 8082

2.3 Groundwater Investigation

The scope of the investigation was to include sampling of local groundwater beneath the site, if groundwater was encountered prior to encountering sampler refusal using direct-push methods. During the investigation, sampler refusal was encountered at all borings advanced during the work, at depths ranging from 7.5 to 18.5 feet below grade, due to the dense/compacted nature of the soil. No evidence of groundwater was observed within these achieved depths.

A temporary groundwater well was installed within boring SB-3, the boring that reached the greatest depth on the site, to monitor for groundwater over an extended period. Subsequent monitoring of the temporary well over the following week revealed no evidence of groundwater.

Former Penfield Manufacturing Facility, 1714 North Salina Street, Syracuse, New York

Information obtained from the NYSDEC relating to an historic petroleum spill investigation conducted to the southwest of the site indicates that groundwater was present at depths exceeding twenty-five (25) feet below grade in that area.

3.0 FIELD OBSERVATIONS

The following section details the field conditions observed during the investigation on April 11, 2019. Attachment A presents photographs taken by AECC personnel during the investigation.

3.1 Soil Investigation

Shallow Surface and Subsurface Soils

The western portion of the site is almost entirely surfaced with asphalt pavement. The surface soil, immediately beneath the pavement, generally consists of dark gray colored, coarse sand, extending to a depth of approximately 2 feet below the pavement. Remnants of brick, concrete, and other former building foundation debris were frequently present in much of the shallow surface soils. Soil below the upper two feet consisted of dense, light tan colored, medium sand and medium coarse sand. Sampler refusal was encountered between 7.5 feet bgs (SB-02) and 18.5 feet bgs (SB-03) due to the presence of these dense sand deposits. No saturated soil was encountered.

No obvious petroleum or atypical odors were noted during soil screening, and, with the exception of one trace reading (that was potentially the result of moisture), no instrument response was recorded during PID headspace analysis.

A description of the soil lithology, general observations, and PID screening results corresponding to each boring are contained on the Boring Logs included in Attachment B.

Following sampling, the borings were filled to original grade with boring cuttings.

Soil Berm / Pile

A long, narrow soil berm / pile is present along a portion of the western boundary of the Site, adjacent to Exchange Place (refer to Figure 1 for location). The soil within the pile consists of a mixture of brown medium to coarse sand and gravel, with brick fragments and various building and asphalt debris dispersed throughout. No obvious petroleum or atypical odors were noted during soil screening, and no instrument response was recorded during PID headspace analysis.

3.2 Groundwater Investigation

One temporary monitoring well, constructed with a ten (10) foot section of one-inch diameter/ 0.10-inch slotted screen and 10 feet of one-inch diameter threaded riser, was installed at boring location SB-03 (see Figure 1). AECC chose this location to check for groundwater because it was nearest the location of the suspected USTs and estimated to be hydraulically downgradient of the UST grave; the attained depth was the deepest of all borings (18.5' bgs); and AECC observed discrete areas of moist soil at depth in the soil profile.

AECC allowed the well to rest for two hours, and then gauged it for depth to water (DTW). Groundwater was not present. AECC checked the well the following day and again found no water. As such, the well was subsequently removed and the borehole was backfilled with cuttings.

4.0 LABORATORY ANALYSIS RESULTS

Copies of the laboratory analytical data packages relating to the soil samples collected during the investigation are contained in Attachment C. The analysis results were compared to applicable Soil Cleanup Objectives (SCOs) referenced in 6 NYCRR Part 375 (Part 375). For this site, the laboratory analysis results have been compared to the Unrestricted Use SCOs and the Restricted Use-Residential SCOs published in Part 375.

4.1 Subsurface Soils

The tables in the following sections summarize the soil contaminant concentrations detected in samples of soil collected from the soil borings during this investigation that were identified to be in exceedance of applicable SCOs. The complete laboratory analysis report is included in Attachment C.

4.1.1 Volatile Organic Compounds

Three subsurface soil samples (SB-03, SB-04 and SB-08) were analyzed for TCL VOCs. No VOCs were present at concentrations greater than the NYSDEC Unrestricted Use Site Cleanup Objectives (SCOs) / Standards (NY-UNRES) or the NYSDEC Restricted Use Standard – Residential (NY-RESR). There were, however, several low concentration detections (see Attachment C for details).

SAMPLE ID / LOCATION	SB-03	SB-04	SB-08		
SAMPLE DEPTH (bgs)	15 - 16.25'	1 - 2.25'	6 - 6.5'		
Compound	NY-RESR	NY-UNRES			
2-Butanone	100	0.12	BRL	0.018	BRL
Acetone	100	0.05	BRL	0.11	BRL
cis-1,2-Dichloroethene	59	0.25	0.00029 J	BRL	BRL
Methyl Cyclohexane	NS	NS	0.0011 J	BRL	BRL
Tetrachloroethene	19	1.3	0.022	BRL	0.0034
trans-1,2-Dichloroethene	100	0.19	0.00021 J	BRL	0.0002 J
Trichloroethene	21	0.47	0.12	0.00018 J	BRL

NOTES:

- -All values are reported in mg/kg (parts per million ppm)
- -NY-RESR: Restricted Residential use Criteria per 6 NYCRR Part 375 Environmental Remediation Programs, effective December 14, 2006.
- -NY-UNRES: Unrestricted use Criteria per 6 NYCRR Part 375 Environmental Remediation Programs, effective December 14, 2006.
- -NS No NY-UNRES or NY-RESR value defined for this compound
- -J Estimated value (the concentration is greater than the Method Detection Limit, but below the quantitation limit)
- -BRL- Below Reporting Limit

4.1.2 Semi-Volatile Organic Compounds

Six soil samples, three surface samples (SB-01, SB-05, and SB-06) and the three subsurface samples (WHICH ONES) were analyzed for 'STARS'-list SVOCs. The samples from SB-01, SB-05, and SB-06 contain eight SVOCs consisting of the polynuclear aromatic hydrocarbons (PAHs) at concentrations that exceed either the NY-UNRES or NY-RESR standards. No PAHs were detected in SB-03 or SB-04 while only low concentrations of PAHs were detected in the samples from SB-08 and the soil pile.

Former Penfield Manufacturing Facility, 1714 North Salina Street, Syracuse, New York

SAMPLE ID / LOCATION			SB-01	SB-03	SB-04	SB-05	SB-06	SB-08
SAMPLE DEPTH (bgs)	0.5 - 1.5'	15 - 16.25'	1 - 2.25'	0.5 - 1.5'	0.5 - 1.5'	6 - 6.5'		
Compound	NY-RESR	NY-UNRES						
Acenaphthene	100	20	1.4	BRL	BRL	0.12J	0.21J	BRL
Anthracene	100	100	2.4	BRL	BRL	0.95	1.4	0.063J
Benzo(a)anthracene	1	1	7.3	BRL	BRL	3.4	9.2	0.17
Benzo(a)pyrene	1	1	6.4	BRL	BRL	4.3	11	0.15
Benzo(b)fluoranthene	1	1	8.2	BRL	BRL	5.4	15	0.19
Benzo(ghi)perylene	100	100	3.4	BRL	BRL	2.8	5.3	0.084J
Benzo(k)fluoranthene	3.9	0.8	2.8	BRL	BRL	1.8	3.8	0.064J
Chrysene	3.9	1	7	BRL	BRL	3.6	7.8	0.16
Dibenzo(a,h)anthracene	0.33	0.33	0.76	BRL	BRL	0.62	1.3	BRL
Fluoranthene	100	100	14	BRL	0.027J	5.3	11	0.37
Fluorene	100	30	1.2	BRL	BRL	0.25	0.38J	0.019J
Indeno(1,2,3-cd)pyrene	0.5	0.5	3.7	BRL	BRL	3.1	5.9	0.096J
Phenanthrene	100	100	12	BRL	BRL	2.7	2.5	0.25
Pyrene	100	100	12	BRL	0.025J	5.3	12	0.29

NOTES:

- -All values are reported in mg/kg (parts per million ppm)
- -NY-RESR: Residential Restricted use Criteria per 6 NYCRR Part 375 Environmental Remediation Programs, effective December 14, 2006.
- -NY-UNRES: Unrestricted use Criteria per 6 NYCRR Part 375 Environmental Remediation Programs, effective December 14, 2006.
- -NS No NY-UNRES or NY-RESR value defined for this compound
- -J Estimated value (the concentration is greater than the Method Detection Limit, but below the quantitation limit)
- -BRL- Below Reporting Limit
- -Bold and Shaded Cells Detected concentration exceeds the NY-RESR value
- -Bold Detected concentration exceeds the NY-UNRES value

4.1.3 PCBs

All six soil samples were analyzed for PCBs, with no detectable PCBs in any of them greater than the NY-UNRES or NY-RESR standards. Sample SB-01 (at a depth of X feet bgs) had a single detection of Aroclor 1268 (0.00422 mg/kg) (see Attachment C).

(Summary table on next page)

Former Penfield Manufacturing Facility, 1714 North Salina Street, Syracuse, New York

SAMPLE ID / LOC	CATION		SB-01	SB-03	SB-04	SB-05	SB-06	SB-08
SAMPLE DEPTH (bgs)			0.5 - 1.5'	15 - 16.25'	1 - 2.25'	0.5 - 1.5'	0.5 - 1.5'	6 - 6.5'
Compound	NY-RESR	NY-UNRES						
Aroclor 1016	NS	NS	BRL	BRL	BRL	BRL	BRL	BRL
Aroclor 1221	NS	NS	BRL	BRL	BRL	BRL	BRL	BRL
Aroclor 1232	NS	NS	BRL	BRL	BRL	BRL	BRL	BRL
Aroclor 1242	NS	NS	BRL	BRL	BRL	BRL	BRL	BRL
Aroclor 1248	NS	NS	BRL	BRL	BRL	BRL	BRL	BRL
Aroclor 1254	NS	NS	BRL	BRL	BRL	BRL	BRL	BRL
Aroclor 1260	NS	NS	BRL	BRL	BRL	BRL	BRL	BRL
Aroclor 1262	NS	NS	BRL	BRL	BRL	BRL	BRL	BRL
Aroclor 1268	NS	NS	0.00422 J	BRL	BRL	BRL	BRL	BRL
PCBs, Total	1	0.1	0.00422 J	BRL	BRL	BRL	BRL	BRL

NOTES:

All values are reported in mg/kg (parts per million - ppm)

NY-RESR: Residential Restricted use Criteria per 6 NYCRR Part 375 Environmental Remediation Programs, effective December 14, 2006.

NY-UNRES: Unrestricted use Criteria per 6 NYCRR Part 375 Environmental Remediation Programs, effective December 14, 2006.

NS - No NY-UNRES or NY-RESC value defined for this compound

J - Estimated value (the concentration is greater than the Method Detection Limit, but below the quantitation limit)

BRL- Below Reporting Limit

4.1.4 *Metals*

All eight soil samples were submitted for analysis of RCRA8 Metals. Four metals (arsenic, barium, lead an mercury) were detected at concentrations greater than the NY-UNRES or NY-RESR standard in one or more of the samples, as shown in the table below. The complete laboratory analysis report is contained in Attachment C.

(Summary table on next page)

Former Penfield Manufacturing Facility, 1714 North Salina Street, Syracuse, New York

SAMPLE ID /	LOCATION		SB-01	SB-03	SB-04	SB-05	SB-06	SB-08
SAMPLE DEP	SAMPLE DEPTH (bgs)			15 - 16.25'	1 - 2.25'	0.5 - 1.5'	0.5 - 1.5'	6 - 6.5'
Compound	NY-RESR	NY-UNRES						
Arsenic	16	13	21.6	19.6	4.81	13.9	10.6	2.44
Barium	400	350	399	34	64.4	156	153	82.5
Cadmium	4.3	2.5	0.559	0.247 J	0.234 J	0.701	0.478	0.27 J
Chromium	110/180*	1/30*	11.7	16	11.6	20.4	10.8	10.2
Lead	400	63	663	38.8	78.6	885	297	28.5
Mercury	0.81	0.18	0.861	0.034 J	0.188	0.461	0.431	BRL
Selenium	180	3.9	0.992	0.209 J	0.578 J	0.979 J	1.07	0.68 J
Silver	180	2	0.141 J	BRL	BRL	BRL	0.15 J	BRL

NOTES:

All values are reported in mg/kg (parts per million - ppm)

NY-RESR: Residential Restricted use Criteria per 6 NYCRR Part 375 Environmental Remediation Programs, effective December 14, 2006. NY-UNRES: Unrestricted use Criteria per 6 NYCRR Part 375 Environmental Remediation Programs, effective December 14, 2006.

NS - No NY-UNRES or NY-RESC value defined for this compound

- J Estimated value (the concentration is greater than the Method Detection Limit, but below the quantitation limit)
- * The SCO for chromium is represented as "hexavalent chromium / trivalent chromium"

BRL- Below Reporting Limit

Bold and Shaded Cells - Detected concentration exceeds the NY-Restricted Residential value

Bold - Detected concentration exceeds the NY-UNRES value

4.2 Soil Berm / Pile Sampling

Trace concentrations of certain SVOCs and metals were detected in the two samples (SP-01 and SP-02) collected from the soil berm / pile on the western perimeter of the Site; however, none of the detections exceeded their respective NY-UNRES or NY-RESR standards. No PCBs were detected in either of the two samples (SP-01 and SP-02) collected from the soil berm / pile.

5.0 SUMMARY AND CONCLUSIONS

Based on the findings of this Limited Site Investigation, AECC concludes:

- Soils from the surface to approximately 2 feet below the asphalt pavement generally consist of dark gray colored, coarse sand intermingled with brick and other building debris (apparent 'fill' material). Below 2 feet in depth, soils are generally a light tan colored, medium-to- medium coarse, densely compacted sand.
- The investigation did not encounter groundwater at the depths reached by the borings (approximately 7 to 18 feet below ground surface). Sampler refusal was encountered at all boring locations, due to the dense nature of the native sandy soil. Records from previous environmental investigations on a property to the west indicate that groundwater was generally present at depths greater than twenty-five (25) feet on that site. Therefore, groundwater appears to be greater than 18 feet in depth. Rotary drilling methods would be necessary to assess groundwater beneath the Site.
- Where sampled, VOCs were not encountered in soils at concentrations greater than current Unrestricted SCOs. No indication of elevated VOC concentrations was detected by field PID headspace screening at these or the other boring locations.
- Low concentrations of SVOCs (almost all PAHs) were detected within shallow / near surface soils samples (0.5 2' below grade, within the layer of apparent fill material). At SB-01, SB-05, and SB-06, the detected concentrations were greater than applicable Unrestricted SCOs and Residential SCOs. These PAHs are common to petroleum products, coal, coal tar, coal ash, roofing tar, and incompletely burned coal, oil and gas, garbage, wood, and tobacco, and are commonly found where urban fill material exists.
- Low concentrations of certain metals (arsenic, barium, lead, and mercury) were detected in shallow subsurface soils (apparent fill layer). At SB-01, SB-04, SB-05, and SB-06 the detected concentrations were greater than applicable Unrestricted SCOs and Residential SCOs.
- Only a trace concentration of PCBs was detectable at SB-01, which did not exceed applicable standards. No other PCBs were detected in the soil samples collected from the Site.
- No PCBs, SVOCs, or metals concentrations exceeding applicable NYSDEC standards were
 detected in the samples collected from the soil berm / pile on the western perimeter of the Site.
 Reuse of such soils on the Site may be considered, depending on future development plans.
 Alternatively, off-site disposal as a non-hazardous waste is an option, although one that would
 likely require additional sampling of the soil to meet landfill disposal requirements.
- The nature and distribution of the SVOC and metal compounds detected at the site are consistent with those often encountered where urban fill material exists. Future redevelopment or other activities at the Site that may disturb surface and/or subsurface soil should include proper planning for the special handling, management, and disposal of materials generated in connection with the planned work. AEEC recommends, when considering future Site redevelopment, that plans be included, to the extent necessary, for handling of site soils with SVOCs and metals concentrations beyond NYSDEC criteria.
- Two (2) fuel USTs on the site that were used to store fuel oil are believed to remain buried beneath the concrete floor of the loading dock area. Due to their presence beneath the

Former Penfield Manufacturing Facility, 1714 North Salina Street, Syracuse, New York

building, borings were placed as close as possible on the downgradient side of the area. The soil samples from the borings did not identify evidence of petroleum contamination. However, the closest boring to this location (SB-03) did not intersect the water table, and is located approximately 50 feet from their purported location. Therefore, the potential exists for petroleum contamination to exist in soil in closer proximity to or beneath the tanks, beyond the ability to sample at this time. These tanks will require registration with NYSDEC and formal closure following property acquisition. Soil in close proximity to these tanks should be sampled at that time to verify the absence of petroleum contamination.

- At the time of the investigation, the electrical transformer vault was locked and inaccessible. As such, no wipe samples were collected in the transformer area, as called for in the work scope. Surface wipes of the floor areas exhibiting visible staining should be performed in connection with planning for future building renovations and electrical system upgrades.
- Sampling of the oil reservoir for the elevator equipment was determined to be unsafe due to
 concerns regarding the equipment being potentially powered. Access to the floor area around
 that equipment was also similarly unsafe. Therefore this sampling was omitted from this
 investigation. Any oils present in the elevator control equipment should be sampled at the time
 of its decommissioning, and appropriately handled and disposed of.
- Sampling of the oil contained within the various electrical transformers was determined to be unsafe due to the units being energized. Any oils present in the transformers should be sampled at the time of their decommissioning, and appropriately handled and disposed of.

Recommendations

Based on the findings and conclusions, AECC recommends the following:

- Sampling oil within the transformers and elevator components to determine if PCB's are present, and if so, at what concentration. If PCBs are present, the transformers will be subject to special handling and disposal requirements.
- Sampling of soil beneath and adjacent to the existing fuel oil USTs at the time of their permanent closure.
- A groundwater investigation due to the limitations of this effort. The drilling method used in this investigation (Geoprobe) was incapable of advancing to the water table due to the very dense sandy soil encountered beneath the site. Rotary drilling methods will be necessary to achieve installation of groundwater monitoring points.
- A vapor intrusion investigation should be performed to assess whether VOC from upgradient, off-site properties of concern (former dry cleaning facility and former retail gasoline station) pose a risk of vapor intrusion into the buildings.

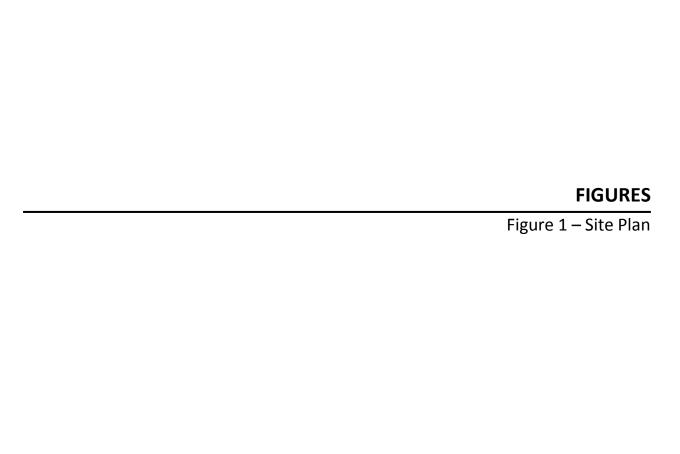
Former Penfield Manufacturing Facility, 1714 North Salina Street, Syracuse, New York

If you should have any questions regarding the information presented in this report, please feel free to contact our corporate office (315) 432-9400 at your convenience. AECC appreciates the opportunity to work with you on this important project.

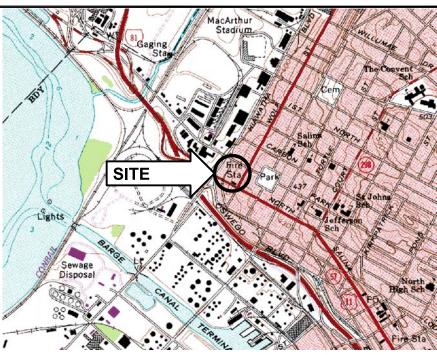
Sincerely,

Asbestos & Environmental Consulting Corporation

Drew Brantner


Environmental Scientist

Drew Brauter

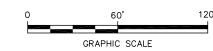

H. Nevin Bradford, III, P.E.

y. Vern Bradford

Vice President / Sr. Environmental Engineer

SITE LOCATION

LEGEND:


PROPERTY LINE

SOIL BORING LOCATION

SOIL PILE SAMPLE LOCATION

NOTES:

- AERIAL PHOTOGRAPH FROM GOOGLE EARTH WEBSITE.
 APPROXIMATE PROPERTY LINE BASED ON CITY OF SYRACUSE, NEW YORK, TAX MAP.
 ALL LOCATIONS ARE APPROXIMATE.

THE INFORMATION INCLUDED ON THIS GRAPHIC REPRESENTATION HAS BEEN COMPILED PROFIT A VARIETY OF SOURCES AND IS SUBJECT TO CHANGE UITHOUT NOTICE. ARCC MAKES NO REPRESENTATIONS OR MARRANTES, DESCRIPTIONS OF IMPLIED, AS TO ACCURACY, COMPILETINESS, THE LINESS, OR RIGHTS TO THE WEST OF SUBJECT AND THE OPEN THE STATEMENT OF THE OPEN WEST AS A LAND SURVEY PRODUCT NOR IS IT DESIGNED OR NITERIOED AS A CONSTRUCTION DESIGN DOCUMENT. THE USE OR MISUBLE OF THE IMPORMATION CONTINUED ON THIS GRAPHIC REPRESENTATION IS AT THE SOLE RISK OF THE PARTY MISING OR MISUSING THE INFORMATION.

	AECC ENVIRONMENTAL CONSULTING	
,	 os & Environmental ulting Corporation	
	6308 Fly Road Svracuse, NY 13057	

PROJECT NO.	19-072 APR 2019	SITE PLAN	FIGURE
DRAWN BY:	HS/DB	FORMER PENFIELD MANUFACTURING 1714 NORTH SALINA STREET SYRACUSE, NEW YORK 13208	1

TABLES

Table 1 – Subsurface Soils (VOCs)

Table 2 – Subsurface Soils (SVOCs)

Table 3 – Subsurface Soils (Metals)

Table 4 – Subsurface Soils (PCBs)

Table 5 – Soil Pile (SVOCs, PCBs AND Metals)

SAMPLE ID / LOCATION	SB-03	SB-04	SB-08			
SAMPLING DATE	4/11/2019	4/11/2019	4/11/2019			
SAMPLE DEPTH (bgs)				15 - 16.25'	1 - 2.25'	6 - 6.5'
Compound	CAS#	NY-RESR	NY-UNRES			
1,1,1-Trichloroethane	71-55-6	100	0.68	BRL	BRL	BRL
1,1,2,2-Tetrachloroethane	79-34-5	NS	NS	BRL	BRL	BRL
1,1,2-Trichloroethane	79-00-5	NS	NS	BRL	BRL	BRL
1,1-Dichloroethane	75-34-3	26	0.27	BRL	BRL	BRL
1,1-Dichloroethene	75-35-4	100	0.33	BRL	BRL	BRL
1.2.3-Trichlorobenzene	87-61-6	NS	NS	BRL	BRL	BRL
1.2.4-Trichlorobenzene	120-82-1	NS	NS	BRL	BRL	BRL
1,2-Dibromo-3-chloropropane	96-12-8	NS	NS	BRL	BRL	BRL
1,2-Dibromoethane	106-93-4	NS	NS	BRL	BRL	BRL
1,2-Dichlorobenzene	95-50-1	100	1.1	BRL	BRL	BRL
1,2-Dichloroethane	107-06-2	3.1	0.02	BRL	BRL	BRL
1,2-Dichloropropane	78-87-5	NS	NS	BRL	BRL	BRL
1,3-Dichlorobenzene	541-73-1	49	2.4	BRL	BRL	BRL
·		13	1.8		BRL	
1,4-Dichlorobenzene 1,4-Dioxane	106-46-7 123-91-1	13	0.1	BRL BRL	BRL	BRL BRL
· ·	78-93-3	100	0.12	BRL	0.018	BRL
2-Butanone		NS NS	NS			BRL
2-Hexanone	591-78-6			BRL	BRL	
4-Methyl-2-pentanone	108-10-1	NS 100	NS 0.05	BRL	BRL	BRL
Acetone	67-64-1	100	0.05	BRL	0.11	BRL
Benzene	71-43-2	4.8	0.06	BRL	BRL	BRL
Bromochloromethane	74-97-5	NS	NS	BRL	BRL	BRL
Bromodichloromethane	75-27-4	NS	NS	BRL	BRL	BRL
Bromoform	75-25-2	NS	NS	BRL	BRL	BRL
Bromomethane	74-83-9	NS	NS	BRL	BRL	BRL
Carbon disulfide	75-15-0	NS	NS	BRL	BRL	BRL
Carbon tetrachloride	56-23-5	2.4	0.76	BRL	BRL	BRL
Chlorobenzene	108-90-7	100	1.1	BRL	BRL	BRL
Chloroethane	75-00-3	NS	NS	BRL	BRL	BRL
Chloroform	67-66-3	49	0.37	BRL	BRL	BRL
Chloromethane	74-87-3	NS	NS	BRL	BRL	BRL
cis-1,2-Dichloroethene	156-59-2	59	0.25	0.00029 J	BRL	BRL
cis-1,3-Dichloropropene	10061-01-5	NS	NS	BRL	BRL	BRL
Cyclohexane	110-82-7	NS	NS	BRL	BRL	BRL
Dibromochloromethane	124-48-1	NS	NS	BRL	BRL	BRL
Dichlorodifluoromethane	75-71-8	NS	NS	BRL	BRL	BRL
Ethylbenzene	100-41-4	41	1	BRL	BRL	BRL
Freon-113	76-13-1	NS	NS	BRL	BRL	BRL
Isopropylbenzene	98-82-8	NS	NS	BRL	BRL	BRL
Methyl acetate	79-20-9	NS	NS	BRL	BRL	BRL
Methyl cyclohexane	108-87-2	NS	NS	0.0011 J	BRL	BRL
Methyl tert butyl ether	1634-04-4	100	0.93	BRL	BRL	BRL
Methylene chloride	75-09-2	100	0.05	BRL	BRL	BRL
o-Xylene	95-47-6	NS	0.26*	BRL	BRL	BRL
p/m-Xylene	179601-23-1	NS	0.26*	BRL	BRL	BRL
Styrene	100-42-5	NS	NS	BRL	BRL	BRL
Tetrachloroethene	127-18-4	19	1.3	0.022	BRL	0.0034
Toluene	108-88-3	100	0.7	BRL	BRL	BRL
trans-1,2-Dichloroethene	156-60-5	100	0.19	0.00021 J	BRL	0.0002 J
trans-1,3-Dichloropropene	10061-02-6	NS	NS	BRL	BRL	BRL
Trichloroethene	79-01-6	21	0.47	0.12	0.00018 J	BRL
Trichlorofluoromethane	75-69-4	NS	NS	BRL	BRL	BRL
Vinyl chloride	75-01-4	0.9	0.02	BRL	BRL	BRL

All values are reported in mg/kg (parts per million - ppm)

NY-RESR: Residential Restricted use Criteria per 6 NYCRR Part 375 Environmental Remediation Programs, effective December 14, 2006. NY-UNRES: Unrestricted use Criteria per 6 NYCRR Part 375 Environmental Remediation Programs, effective December 14, 2006.

NS - No NY-UNRES or NY-RESR value defined for this compound

J - Estimated value (the concentration is greater than the Method Detection Limit, but below the quantitation limit) BRL- Below Reporting Limit

^{* -} Standard shown is for mixed xylenes.

Limited Subsurface Investigation
Former Penfield Manufacturing
1714 N Salina Street, Syracuse, NY
AECC Project # 19-072

SAMPLE ID / LOCATION	SB-01	SB-03	SB-04	SB-05	SB-06	SB-08			
SAMPLING DATE	4/11/2019	4/11/2019	4/11/2019	4/11/2019	4/11/2019	4/11/2019			
SAMPLE DEPTH (bgs)				0.5 - 1.5'	15 - 16.25'	1 - 2.25'	0.5 - 1.5'	0.5 - 1.5'	6 - 6.5'
Compound	CAS#	NY-RESR	NY-UNRES						
Acenaphthene	83-32-9	100	20	1.4	BRL	BRL	0.12 J	0.21 J	BRL
Anthracene	120-12-7	100	100	2.4	BRL	BRL	0.95	1.4	0.063 J
Benzo(a)anthracene	56-55-3	1	1	7.3	BRL	BRL	3.4	9.2	0.17
Benzo(a)pyrene	50-32-8	1	1	6.4	BRL	BRL	4.3	11	0.15
Benzo(b)fluoranthene	205-99-2	1	1	8.2	BRL	BRL	5.4	15	0.19
Benzo(ghi)perylene	191-24-2	100	100	3.4	BRL	BRL	2.8	5.3	0.084 J
Benzo(k)fluoranthene	207-08-9	3.9	0.8	2.8	BRL	BRL	1.8	3.8	0.064 J
Chrysene	218-01-9	3.9	1	7	BRL	BRL	3.6	7.8	0.16
Dibenzo(a,h)anthracene	53-70-3	0.33	0.33	0.76	BRL	BRL	0.62	1.3	BRL
Fluoranthene	206-44-0	100	100	14	BRL	0.027 J	5.3	11	0.37
Fluorene	86-73-7	100	30	1.2	BRL	BRL	0.25	0.38 J	0.019 J
Indeno(1,2,3-cd)pyrene	193-39-5	0.5	0.5	3.7	BRL	BRL	3.1	5.9	0.096 J
Phenanthrene	85-01-8	100	100	12	BRL	BRL	2.7	2.5	0.25
Pyrene	129-00-0	100	100	12	BRL	0.025 J	5.3	12	0.29

All values are reported in mg/kg (parts per million - ppm)

NY-RESR: Residential Restricted use Criteria per 6 NYCRR Part 375 Environmental Remediation Programs, effective December 14, 2006.

NY-UNRES: Unrestricted use Criteria per 6 NYCRR Part 375 Environmental Remediation Programs, effective December 14, 2006.

NS - No NY-UNRES or NY-RESR value defined for this compound

J - Estimated value (the concentration is greater than the Method Detection Limit, but below the quantitation limit)

BRL- Below Reporting Limit

Shading - Detected concentration exceeds the NY-RESR value

Bold - Detected concentration exceeds the NY-UNRES value

Limited Subsurface Investigation
Former Penfield Manufacturing
1714 N Salina Street, Syracuse, NY
AECC Project # 19-072

SAMPLE ID / L	OCATION			SB-01	SB-03	SB-04	SB-05	SB-06	SB-08
SAMPLING DA	ATE			4/11/2019	4/11/2019	4/11/2019	4/11/2019	4/11/2019	4/11/2019
SAMPLE DEPT	H (bgs)			0.5 - 1.5'	15 - 16.25'	1 - 2.25'	0.5 - 1.5'	0.5 - 1.5'	6 - 6.5'
Compound	CAS#	NY-RESR	NY-UNRES						
Aroclor 1016	12674-11-2	NS	NS	BRL	BRL	BRL	BRL	BRL	BRL
Aroclor 1221	11104-28-2	NS	NS	BRL	BRL	BRL	BRL	BRL	BRL
Aroclor 1232	11141-16-5	NS	NS	BRL	BRL	BRL	BRL	BRL	BRL
Aroclor 1242	53469-21-9	NS	NS	BRL	BRL	BRL	BRL	BRL	BRL
Aroclor 1248	12672-29-6	NS	NS	BRL	BRL	BRL	BRL	BRL	BRL
Aroclor 1254	11097-69-1	NS	NS	BRL	BRL	BRL	BRL	BRL	BRL
Aroclor 1260	11096-82-5	NS	NS	BRL	BRL	BRL	BRL	BRL	BRL
Aroclor 1262	37324-23-5	NS	NS	BRL	BRL	BRL	BRL	BRL	BRL
Aroclor 1268	11100-14-4	NS	NS	0.00422 J	BRL	BRL	BRL	BRL	BRL
PCBs, Total	1336-36-3	1	0.1	0.00422 J	BRL	BRL	BRL	BRL	BRL

All values are reported in mg/kg (parts per million - ppm)

NY-RESR: Residential Restricted use Criteria per 6 NYCRR Part 375 Environmental Remediation Programs, effective December 14, 2006.

NY-UNRES: Unrestricted use Criteria per 6 NYCRR Part 375 Environmental Remediation Programs, effective December 14, 2006.

NS - No NY-UNRES or NY-RESC value defined for this compound

J - Estimated value (the concentration is greater than the Method Detection Limit, but below the quantitation limit)

BRL- Below Reporting Limit

Limited Subsurface Investigation

Former Penfield Manufacturing 1714 N Salina Street, Syracuse, NY AECC Project # 19-072

SAMPLE ID / L	OCATION			SB-01	SB-03	SB-04	SB-05	SB-06	SB-08
SAMPLING DA	TE			4/11/2019	4/11/2019	4/11/2019	4/11/2019	4/11/2019	4/11/2019
SAMPLE DEPTI	H (bgs)			0.5 - 1.5'	15 - 16.25'	1 - 2.25'	0.5 - 1.5'	0.5 - 1.5'	6 - 6.5'
Compound	CAS#	NY-RESR	NY-UNRES						
Arsenic	7440-38-2	16	13	21.6	19.6	4.81	13.9	10.6	2.44
Barium	7440-39-3	400	350	399	34	64.4	156	153	82.5
Cadmium	7440-43-9	4.3	2.5	0.559	0.247 J	0.234 J	0.701	0.478	0.27 J
Chromium	7440-47-3	110/180*	1/30*	11.7	16	11.6	20.4	10.8	10.2
Lead	7439-92-1	400	63	663	38.8	78.6	885	297	28.5
Mercury	7439-97-6	0.81	0.18	0.861	0.034 J	0.188	0.461	0.431	BRL
Selenium	7782-49-2	180	3.9	0.992	0.209 J	0.578 J	0.979 J	1.07	0.68 J
Silver	7440-22-4	180	2	0.141 J	BRL	BRL	BRL	0.15 J	BRL

All values are reported in mg/kg (parts per million - ppm)

NY-RESR: Residential Restricted use Criteria per 6 NYCRR Part 375 Environmental Remediation Programs, effective December 14, 2006.

NY-UNRES: Unrestricted use Criteria per 6 NYCRR Part 375 Environmental Remediation Programs, effective December 14, 2006.

NS - No NY-UNRES or NY-RESC value defined for this compound

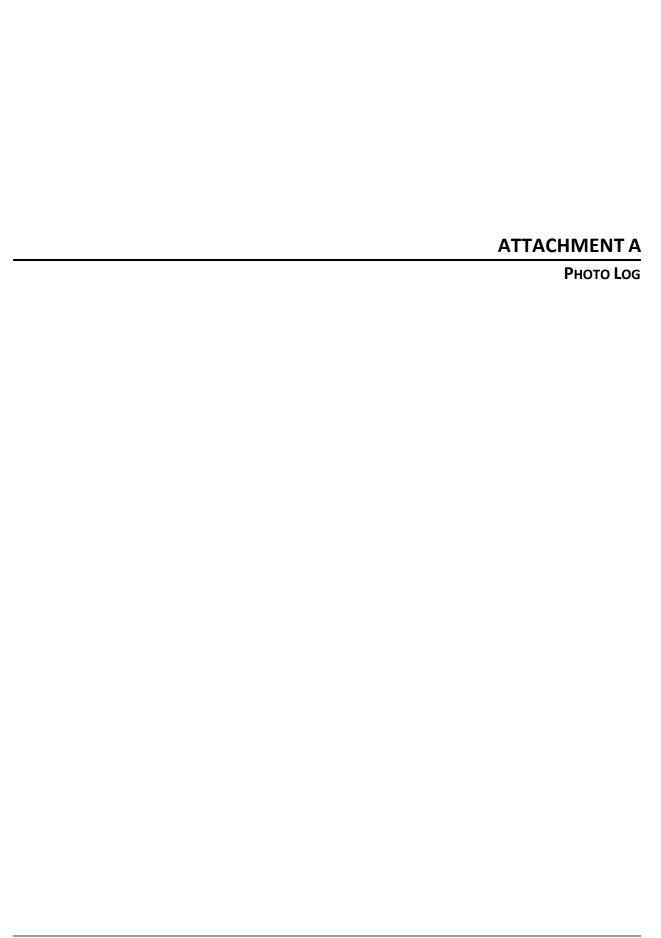
- J Estimated value (the concentration is greater than the Method Detection Limit, but below the quantitation limit)
- * The SCO for chromium is represented as "hexavalent chromium / trivalent chromium" BRL- Below Reporting Limit

Bold - Detected concentration exceeds the NY-UNRES value

- Detected concentration exceeds the NY-Restricted Residential value

USEPA Methods 6010/7471, 8270, and 8082

SAMPLE ID / LOCATION				SP-01	SP-02								
SAMPLING DATE				4/11/2019	4/11/2019								
Compound	CAS#	NY-RESR	NY-UNRES										
·	Polych	lorinated I	Biphenyls										
Aroclor 1016	12674-11-2	1	0.1	BRL	BRL								
Aroclor 1221	11104-28-2	1	0.1	BRL	BRL								
Aroclor 1232	11141-16-5	1	0.1	BRL	BRL								
Aroclor 1242	53469-21-9	1	0.1	BRL	BRL								
Aroclor 1248	12672-29-6	1	0.1	BRL	BRL								
Aroclor 1254	11097-69-1	1	0.1	BRL	BRL								
Aroclor 1260	11096-82-5	1	0.1	BRL	BRL								
Aroclor 1262	37324-23-5	1	0.1	BRL	BRL								
Aroclor 1268	11100-14-4	1	0.1	BRL	BRL								
PCBs, Total	1336-36-3	1	0.1	BRL	BRL								
Semivolatile Organic Compounds													
Acenaphthene	83-32-9	100	20	BRL	0.08 J								
Anthracene	120-12-7	100	100	BRL	0.16								
Benzo(a)anthracene	56-55-3	1	1	0.076 J	0.37								
Benzo(a)pyrene	50-32-8	1	1	0.073 J	0.34								
Benzo(b)fluoranthene	205-99-2	1	1	0.09 J	0.44								
Benzo(ghi)perylene	191-24-2	100	100	0.043 J	0.19								
Benzo(k)fluoranthene	207-08-9	3.9	0.8	0.035 J	0.13								
Chrysene	218-01-9	3.9	1	0.071 J	0.36								
Dibenzo(a,h)anthracene	53-70-3	0.33	0.33	BRL	0.048 J								
Fluoranthene	206-44-0	100	100	0.12	0.64								
Fluorene	86-73-7	100	30	BRL	0.083 J								
Indeno(1,2,3-cd)pyrene	193-39-5	0.5	0.5	0.051 J	0.21								
Phenanthrene	85-01-8	100	100	0.069 J	0.72								
Pyrene	129-00-0	100	100	0.11	0.64								
		Total Met	als										
Arsenic, Total	7440-38-2	16	13	4.45	3.85								
Barium, Total	7440-39-3	400	350	71.1	124								
Cadmium, Total	7440-43-9	4.3	2.5	0.238 J	0.193 J								
Chromium, Total	7440-47-3	110/180	1/30	10.6	10.2								
Lead, Total	7439-92-1	400	63	60.4	52.8								
Mercury, Total	7439-97-6	0.81	0.18	0.12	0.146								
Selenium, Total	7782-49-2	180	3.9	BRL	0.317 J								
Silver, Total	7440-22-4	180	2	0.233 J	BRL								


All values are reported in mg/kg (approximate parts per million - ppm)

NY-RESR: Residential Restricted use Criteria per 6 NYCRR Part 375 Environmental Remediation Programs, effective December 14, 2006. NY-UNRES: Unrestricted use Criteria per 6 NYCRR Part 375 Environmental Remediation Programs, effective December 14, 2006.

NS - No NY-UNRES or NY-RESC value defined for this compound

J - Estimated value (the concentration is greater than the Method Detection Limit, but below the quantitation limit) BRL- Below Reporting Limit

^{* -} The SCO for chromium is represented as "hexavalent chromium / trivalent chromium"

1714 North Salina Street, Syracuse, New York

Date: 04/11/2019

Photo No. 1

Photo Description:

Parking lot on western portion of Site.

1714 North Salina Street, Syracuse, New York

Photo No. 2

Photo Description:

Soil berm / pile on western perimeter of Site.

1714 North Salina Street, Syracuse, New York

Date: 04/11/2019

Photo No. 3

Photo Description:

Buried electric line running to utility pole west of Site, with portion of soil berm / pile also shown.

1714 North Salina Street, Syracuse, New York

Photo No. 4

Photo Description:

Buried electric line running into facility's transformer vault.

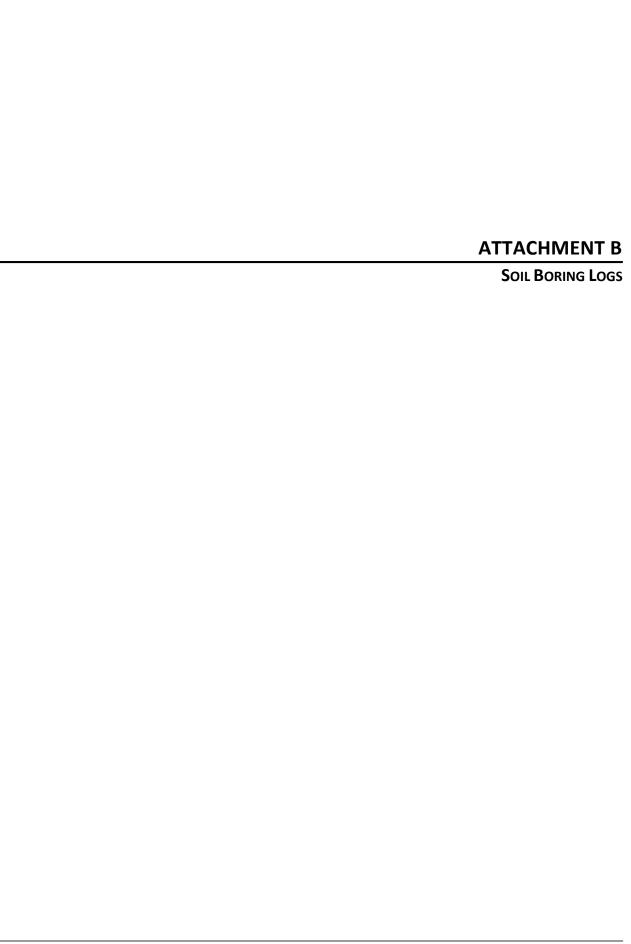

1714 North Salina Street, Syracuse, New York

Photo No. 5

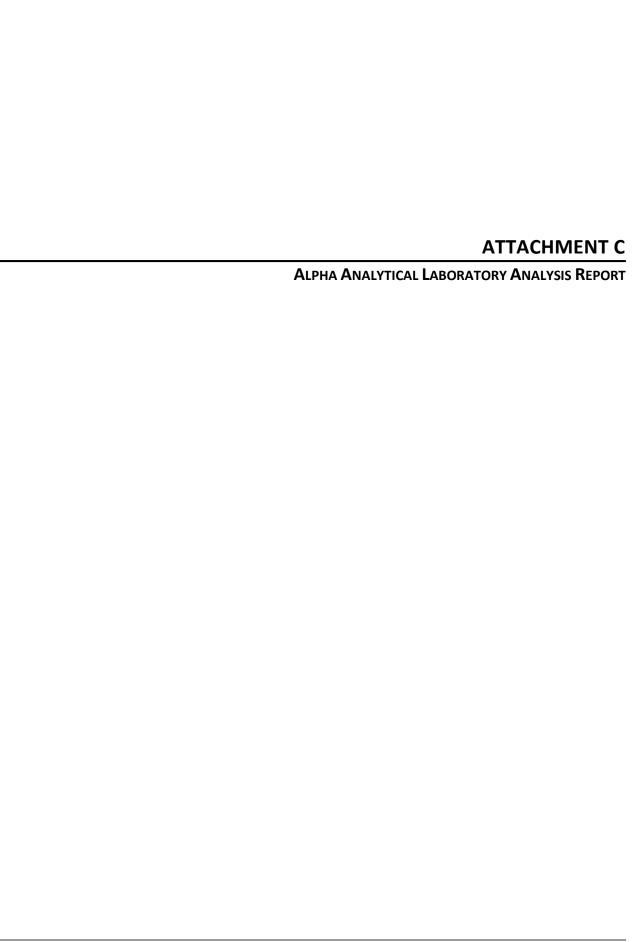
Photo Description:

Alleyway on southeastern portion of Site, with drill-rig also shown (location SB-01).

					Project #/Name:	19-072 / Former Penfield M	lanufacturing			BORING	i ID·
			C	0	Client:	Dakota Partners					
	. /-				Site Location:	1714 N. Salina Street, Syra	cuse, New York			SB-	U 1
	ENV	IRONMEN	TAL CONS	ULTING	Boring Location:	Alleyway				Sheet:	1 of 1
		_	_		Drilling Contractor:	NYEG Drilling, LLC				Logged By:	DB
5	Soil E	Borin	g Log	3	Drilling Method:	Direct Push Geoprobe				Boring Diameter:	2"
Pate:			04/11/19		Sample Type(s):	5" Macrocore				Ground Elevation:	
ime Star	t:		1408		77. (-)	Temporary/Permanent:	N/A	Diameter:	N/A	Boring Depth:	14' bgs
ime Finis			1436		Monitoring Well?	Screened Interval:	N/A	Riser Height:	N/A	Water Level:	
	£										_
Depth (ft)	Sample Depth (ft)	Blow Count (per 6 inches)	Recovery (ft)	PID Response (ppmv)	Color, size, range	MAIN COMPONENT, minor grain size, oo			tructure, a	ngularity, maximum	Lab Sample ID (Depth)
					0 - 0.25' - Gray, 0	GRAVEL					
1 —				(0.0)	0.25 - 1.25' - Dar	k gray, coarse SAND, some fi	ne gravel, trace	brick			Sample SB-01 fo SVOCs, Metals,
' -					1.25 - 2' - Grayisl	n-tan, medium-coarse SAND a	and brick				and PCBs
2 —					0 01 Tan 011 T	listle and diversified and d					
			3		2 - 3 - Tall, SILT	, little medium-fine sand					
3 —											
4											
5											
					5 - 6' - Tan, medi	um-coarse SAND, dense/com	pacted				
				0.0							
6 —					6 - 9.25' - Light ta	n, medium-coarse SAND, der	nse/compacted				
				(0.0)							
7 —			5	, ,							
8 —				0.0							
				0.0							
9 —											
				0.0	9.25 - 10' - Light	tan, SILTY-fine sand, dense/c	ompacted				
10											
					10 - 14' - Light ta	n and light gray, medium SAN	D and medium-	coarse sand, dense/co	ompacted		
11 —				0.0							
40			4	0.0							
12 —											
				0.0							
13 —											
14					Refusal @ 14' bg	is .					
						·-					
15					+						
16 —											
17 —											
18 —											
-											
10											
19 —											
20											
· · · · ·			1	1	NOTES: All enc	ountered soils dry					<u> </u>
bgs :	= below (ground su	rface								
▼ :	= observe	ed water I	evei								
Tha -	a aoil hair	na loca	ro prose	d in cont	notion with an anxiety	contal investigation. The date	nroconto d aball :-	ot he used for any other	r nurnaaa /	an anatophainel and and	mont etc.)
ı nese	SUII DOFII	ıy ıogs we	re prepare	u iri conju	กษนบก พศก an environn	nental investigation. The data re	presentea shall n	υι νε usea for any othe	purpose (e	zx - geotecnnical assess	ттети, етс.).

Clear Dakou Parties She						Project #/Name:	19-072 / Former Penfield N	lanufacturing			BORING	ID:		
Soil Boring Log March Soi				0	0									
Soil Boring Log Sing Contracts. All encountered bools are control to the control		. /-					1714 N. Salina Street, Syra	icuse, New York			⊣ SB-	U 2		
Soil Boring Log Sile Of 1/19		ENV	IRONMENT	AL CONST	ULTING	Boring Location:	Alleyway, 20' from Overhea	ad Door			Sheet:	1 of 1		
SOIL BOTING LOG a: Upd1/17b aspect played: of Microsope Source		·		_							Logged By:			
Service Typing) Simple Typing) Simpl	S	OII E	sorin	g Log	3		Direct Push Geoprobe					2"		
we Start: 1432 Monitoring Well? Temposopy-Phromeneut: NNA. Disorder: NNA Boring Speper: 7.5 bg Speper: 7.5 bg Monitoring Well? Screened Internet: NNA. Disorder: NNA Wider Level: No. Wider Level	ate:			04/11/19										
Personal Property 1452	ime Start:							N/A	Diameter:	N/A		7.5' bgs		
AMATERIALS: MATERIALS: MATERIALS: MATERIALS: Color, size, range, MAIN COMPONENT, minor component(s), moisture content, structure, angularity, maximum grain size, oder, and general unit of hovern) O - 1.5 - Dark glay, coarse SAND, some fine gravel 1.5 - 3.5 - Tarnish-brown, medium SAND, trace coarse sand 5 0.0 3.5 - 5 - Tar, SILTY-fine sand 0.0 5 - 7.5 - Light tan, medium-causes SAND, disnue/correpacted 2.5 0.0 Refusal @ 7.5 bgs NOTES: All encountered soils dry Days - below ground surface T - observed water level NOTES: All encountered soils dry	ime Finish					Monitoring Well?								
0.0 0.1.5 - Dark gray, coarse SAND, some fine gravel 1.5 - 3.5 - Tarnrish-brown, medium SAND, trace coarse sand 0.0 0.3.5 - 6 - Tan, SILTY-fine sand 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.		£												
1.5 - 3.5' - Tannish-brown, medium SAND, trace coarse sand 0.0 3.5 - 5 - Tan, SILTY-line sand 0.0 5 - 7.5' - Light tan, medium-coarse SAND, dense/compacted 2.5 0.0 Refusel (8 7.5' bgs NOTES: All encountered soils dry	Depth (ft)	Sample Depth (f	Blow Count (per 6 inches)	Recovery (ft)	PID Response (ppmv)	Color, size, range,	or, size, range, MAIN COMPONENT, minor component(s), moisture content, structure, angularity, maximum							
1.5 - 3.5 - Tannish-brown, medium SAND, trace coarse sand 1.5 - 3.5 - Tan, SILTY-fine sand 0.0 3.5 - 5 - Tan, SILTY-fine sand 0.0 6 - 7.5 - Light tan, medium-coarse SAND, dense/compacted 0.0 Refusal @ 7.5 bgs Refusal @ 7.5 bgs NOTES: All encountered soils dry y - observed water level						0 - 1.5' - Dark gra	y, coarse SAND, some fine g	ravel						
1.5 - 3.5' - Tannish-brown, medium SAND, trace coarse sand 0.0 3.5 - 5 - Tan, SiLTY-fine sand 0.0 6 - 7.5' - Light tan, medium-coarse SAND, dense/compacted 0.0 Refusal @ 7.5' bgs. Refusal @ 7.5' bgs. NOTES: All encountered soils dry y = observed water level					(0.0)									
S - 7.5' - Light tan, medium-coarse SAND, dende/compacted 2.5 0.0 Refusal @ 7.5' bgs Refusal @ 7.5' bgs NOTES: All encountered soils dry	1 —													
3.5 · 5 · Tan, SiLTY-fine sand 0.0 3.5 · 5 · Tan, SiLTY-fine sand 0.0 5 · 7.5 · Light tan, medium-coarse SAND, dense/compacted 2.5 0.0 Refusal @ 7.5 bgs Notes: All encountered solis dry y - observed water level						1.5 - 3.5' - Tannis	h-brown, medium SAND, trac	e coarse sand						
3.5 - 5 - Tan, SiLTY-fine sand 0.0 5 - 7.5 - Light tan, medium-coarse SAND, dense/compacted 2.5 0.0 Refusal @ 7.5 bgs Refusal @ 7.5 bgs Notes: All encountered soils dry y - observed water level	2 —			5										
3.5 - 5' - Tan, SilLTY-fine sand 0.0 5 - 7.5' - Light tan, medium-coarse SAND, dense/compacted 2.5 0.0 Refusal @ 7.5' bgs NOTES: All encountered soils dry - observed water level					0.0									
Degs = below ground surface NOTES: All encountered soils dry	3 —													
Degs = below ground surface NOTES: All encountered soils dry						3.5 - 5' - Tan, SIL	TY-fine sand							
S - 7.5' - Light tan, medium-coarse SAND, dense/compacted Refusal @ 7.5' bgs Refusal @ 7.5' bgs NOTES: All encountered soils dry	4				0.0									
S - 7.5' - Light tan, medium-coarse SAND, dense/compacted Refusal @ 7.5' bgs Refusal @ 7.5' bgs NOTES: All encountered soils dry														
Refusal @ 7.5' bgs Refusal @ 7.5' bgs Refusal @ 7.5' bgs NOTES: All encountered soils dry	5					5 - 7.5' - Light tar	. medium-coarse SAND, den	se/compacted						
Refusal @ 7.5' bgs Refusal @ 7.5' bgs NOTES: All encountered soils dry					0.0	2 7.0 2.9.1. (a.	,	oo, oopaotoa						
Refusal @ 7.5' bgs Refusal @ 7.5' bgs NOTES: All encountered soils dry y = observed water level	6 —			2.5	0.0									
Refusal @ 7.5' bgs Refusal @ 7.5' bgs Refusal @ 7.5' bgs NOTES: All encountered soils dry				2.5	0.0									
NOTES: All encountered soils dry	7 —				0.0									
NOTES: All encountered soils dry NOTES: All encountered soils dry	8 —					Refusal @ 7.5' b	gs							
NOTES: All encountered soils dry NOTES: All encountered soils dry	9 —													
NOTES: All encountered soils dry NOTES: All encountered soils dry	3													
NOTES: All encountered soils dry NOTES: All encountered soils dry	10													
bgs = below ground surface Notes: All encountered soils dry Notes: All encountere														
bgs = below ground surface y = observed water level NOTES: All encountered soils dry	11 —													
bgs = below ground surface y = observed water level NOTES: All encountered soils dry	.													
bgs = below ground surface	12 —													
bgs = below ground surface														
Solution Note Note	13 —													
Solution Note Note														
So —	14 —													
So —														
bgs = below ground surface y = observed water level NOTES: All encountered soils dry	5													
bgs = below ground surface y = observed water level NOTES: All encountered soils dry														
By a below ground surface ▼ = observed water level NOTES: All encountered soils dry	16 —													
By a below ground surface ▼ = observed water level NOTES: All encountered soils dry														
bgs = below ground surface ▼ = observed water level NOTES: All encountered soils dry	17 —													
bgs = below ground surface ▼ = observed water level NOTES: All encountered soils dry														
bgs = below ground surface ▼ = observed water level NOTES: All encountered soils dry	18 —													
bgs = below ground surface ▼ = observed water level NOTES: All encountered soils dry														
bgs = below ground surface ▼ = observed water level NOTES: All encountered soils dry	19 —													
bgs = below ground surface ▼ = observed water level NOTES: All encountered soils dry														
bgs = below ground surface ▼ = observed water level	20				<u> </u>	NOTES: All ence	ountered soils dry							
▼ = observed water level	bgs =	below g	round su	rface		All ello	January Solid Gry							
	<u></u>	observe	ed water l	evel										
	Th	aail t '		## ### · ·	مالم	nation with a result	anntal investigation. The dis	nunnanta -1 -111	at he weed for		au gantanhataal	mant -1-1		

			47 J 15 15 15 15 15	2020 N	Project #/Name: 19-072 / Former Penfield Manufacturing	BORING	ID:
			C		Client: Dakota Partners	1 _	
	• <i>F</i>	4 🗆	U	U	Site Location: 1714 N. Salina Street, Syracuse, New York	SB-	US
	ENV	IRONMENT	TAL CONST	ULTING	Boring Location: Loading Dock, near Vent Pipe	Sheet:	1 of 1
(Sail F	Rorin	g Log	v	Drilling Contractor: NYEG Drilling, LLC	Logged By:	DB
`	JUII L	יווווסל	g Lot	1	Drilling Method: Direct Push Geoprobe	Boring Diameter:	2"
Date:			04/11/19		Sample Type(s): 5" Macrocore	Ground Elevation:	
Time Star	rt:		1506		Monitoring Well? Temporary/Permanent: Temp Diameter: 1" PVC	Boring Depth:	18.5' bgs
Time Fini	sh:		1536	ı	Screened Interval: ~8.5 - 18.5' bgs Riser Height: ~1.5' ags	Water Level:	
Depth (ft)	Sample Depth (ft)	Blow Count (per 6 inches)	Recovery (ft)	PID Response (ppmv)	MATERIALS: Color, size, range, MAIN COMPONENT, minor component(s), moisture content, structure, an grain size, odor, and geologic unit (if known)	gularity, maximum	Lab Sample ID (Depth)
					0 - 0.25' - Gray, ASPHALT/GRAVEL		
1 _				(0.1)	0.25 - 1' - Brown w/some gray, medium SAND and coarse sand, trace fine gravel, moist		
					1 - 2.25' - Brown, medium SAND, some silt, dry		
2 —				0.0			
			3.5		2.25 - 3.5' - Light tan, medium SAND, dense/compacted, dry		
3 —				0.0			
4							
4 —							
5 —							
5 —					*Liner could not be dislodged; limited material forced out directly into ziplock bag		
				(0.3)	Light tan, medium-coarse SAND, dense/compacted, moist		
6 —							
7							
'			*				
8 —							
0 —							
9 —							
40							
10 —					10 - 11.25' - Light tan, medium-coarse SAND, dense/compacted, dry		
				0.0			
11 —					11.25 - 12.25' - Light brown/tan, SILT and medium-fine sand, dense/compacted, moist		
				0.0			
12 —			5		12.25 - 13.25' - Light brown, SILT, some medium-find sand, dense/compacted, moist		
				0.0			
13 —					13.25 - 15' - Light brown, medium SAND and medium coarse sand, dense/compacted, dry		
				0.0			
14 —							
15 —					15 - 16.25' - Light tan, medium-coarse SAND, dense/compacted, dry		Sample SB-03
				0.0			for VOCs,
16 —					16.25 - 18.5' - Tan, medium-coarse SAND, some silt, dense/compacted, moist		SVOCs, Metals, and PCBs
				0.0	, , , , , , , , , , , , , , , , , , , ,		
17 —			3.5				
			0.5				
18 —							
					Refusal @ 18.5' bgs		
19 —					1.5.252. © 10.0 bg0		
20				<u> </u>	NOTES:		
bgs	= below g	round su	rface				
_ ▼	= observe	ed water l	evel				
Thor	e soil hori	na loae wo	re prepara	d in coniv	I nction with an environmental investigation. The data represented shall not be used for any other purpose (ex	- geotechnical assess	ment etc l
rnes	o son boril	ig iogs we	. о ргераге	a iii conju	nacon man an environmental investigation. The data represented shall not be used for any other purpose (ex	geoleciiiildai assessi	om, 610. <i>j</i> .


			47 J 13 NO. 1	2020 N	Project #/Name: 19-0	072 / Former Penfield Ma	anufacturing			BORING	ID:
			C		Client: Dak	ota Partners				_	
-		4 🗆		U	Site Location: 171	4 N. Salina Street, Syrad	cuse, New York			⊦ SB-	U4
	ENV	IRONMEN	TAL CONS	ULTING	Boring Location: Nea	r Loading Dock				Sheet:	1 of 1
(Soil F	Rorin	g Log	v	Drilling Contractor: NYE	EG Drilling, LLC				Logged By:	DB
	JOII L		g Lot	1	Drilling Method: Dire	ect Push Geoprobe				Boring Diameter:	2"
Date:			04/11/19		Sample Type(s): 5" N	1acrocore				Ground Elevation:	
Time Star	rt:		1540		Monitorina Well? ——	porary/Permanent:	N/A	Diameter:	N/A	Boring Depth:	9' bgs
Time Fini	sh:	-	1601	ı	Scre	ened Interval:	N/A	Riser Height:	N/A	Water Level:	
Depth (ft)	Sample Depth (ft)	Blow Count (per 6 inches)	Recovery (ft)	PID Response (ppmv)	Color, size, range, MAIN				ructure, ar	ngularity, maximum	Lab Sample ID (Depth)
					0 - 0.5' - Gray, GRAVEI						
1 —				0.0		rse SAND and fine grav					
					1 - 2.25' - Light brown w	v/some gray, SILT and n	edium-fine sand	l, moist			Sample SB-04 for VOCs, SVOCs,
2 —				0.0							Metals, and PCBs
			3.75		2.25 - 3.75' - Tan, medi	um SAND, dense/compa	cted, moist				
3 —				0.0							
4 —											
-											
5 —											
					5 - 5.75' - Tan, SILT and	d medium-fine sand, mo	st				
6 —				0.0	5.75 - 6.5' - Light tan, m	nedium-coarse SAND, de	ense/compacted	, dry			
7 —			4	0.0	6.5 - 7.25' - Tan, mediu	m SAND, some silt, dry					
'					7.25 - 9' - Tan, medium	SAND and medium-coa	rse sand, dense	compacted, dry			
0				0.0							
8 —											
9 —					Refusal @ 9' bgs						
10 —											
11 —											
12 —											
13 —											
14 —											
15 —											
16 —											
17 —											
18 —											
19 —											
20				<u> </u>	NOTES: Water Level N	Meter detected no water					
bgs	= below (round su	rface								
_ ▼	= observe	ed water l	evel								
Thes	e soil horii	na loas we	re prenare	d in coniu	I nction with an environmental i	investigation. The data rer	resented shall no	t be used for any other	r purpose /e	x - geotechnical assess	ment. etc.)
11103	- 5511 50111	.g .ugu we	. s propare	oongu	an onvironmental t	Jouganoin The data lep	John Od Gridii 110	accaron any outer	Pa. 6000 (6.	. gootoomnourassess	

				P 200 10	Project #/Name:	19-072 / Former Penfield	l Manufacturing			BORING	iD:
		λE			Client:	Dakota Partners				SB-	05
					Site Location:	1714 N. Salina Street, Sy	racuse, New York			30-	UJ
	ENV	IRONMENT	AL CONST	ULTING	Boring Location:	Northwestern portion of F	Parking Lot (former	rail bed)		Sheet:	1 of 1
9	Soil E	Boring	a Loc	r	Drilling Contractor:	NYEG Drilling, LLC				Logged By:	DB
					Drilling Method:	Direct Push Geoprobe				Boring Diameter:	2"
Date: Time Star	rt·		04/11/19 1603		Sample Type(s):	5" Macrocore Temporary/Permanent:	N/A	Diameter:	N/A	Ground Elevation: Boring Depth:	9' bgs
Time Star			1619		Monitoring Well?	Screened Interval:	N/A	Riser Height:	N/A	Water Level:	9 bys
7 11 110 7 11 110			1010			Coronica interval.	14/71	ruder rieigni.	IN/A	Trator Lovoi.	
Depth (ft)	Sample Depth (ft)	Blow Count (per 6 inches)	Recovery (ft)	PID Response (ppmv)	Color, size, range,	MAIN COMPONENT, min- grain size,			tructure, an	gularity, maximum	Lab Sample ID (Depth)
					-	SPHALT/GRAVEL					
1 —				(0.0)	0.25 - 1.5' - Dark	gray, coarse SAND and fin	e gravel				Sample SB-05 for SVOCs, Metals,
											and PCBs
2 —					1.5 - 4' - Tan w/so	ome light gray, medium SAI	ND, some silt, dens	se/compacted			
			4								
3 —											
4 —											
5 —					5 - 8' - Tan w/som	ue light gray, medium SANI) some silt dense	e/compacted			
				0.0		o ngin gray, mealam er mi	5, come on, acres	,,compacted			
6 —				0.0							
			3								
7 —				0.0							
8 —											
9					Refusal @ 9' bgs						
10 —											
10											
11 —											
12 —											
13 —											
14 —											
15 —											
16 —											
17 —											
18 —											
40											
19 —											
20											
					NOTES: All enco	ountered soils dry					•
		ground sur ed water l									
Thes	e soil bori	na loas we	re prepare	ed in coniu	nction with an environm	ental investigation. The data	represented shall n	ot be used for any othe	r purpose (ex	- geotechnical assess	ment. etc.).

					Project #/Name:	19-072 / Former Penfield M	lanufacturing			BORING	i ID:
		\F	C		Client:	Dakota Partners					
	- <i>F</i>	4 🗆			Site Location:	1714 N. Salina Street, Syra	cuse, New York			⊣ SB-	Ub
	ENV	IRONMEN'	TAL CONS	ULTING	Boring Location:	Center of Parking Lot				Sheet:	1 of 1
	- 				Drilling Contractor:	NYEG Drilling, LLC				Logged By:	DB
;	SOII E	sorin	g Log	9	Drilling Method:	Direct Push Geoprobe				Boring Diameter:	2"
ate:			04/11/19)	Sample Type(s):	5" Macrocore				Ground Elevation:	
ime Star	t:		1625			Temporary/Permanent:	N/A	Diameter:	N/A	Boring Depth:	8' bgs
ime Finis	sh:		1636		Monitoring Well?	Screened Interval:	N/A	Riser Height:	N/A	Water Level:	
	£			_							_
Depth (ft)	Sample Depth (ft)	Blow Count (per 6 inches)	Recovery (ft)	PID Response (ppmv)	Color, size, range,	MAIN COMPONENT, minor grain size, o			ructure, a	ngularity, maximum	Lab Sample ID (Depth)
					0 - 1' - Dark gray	and red, coarse SAND, trace	fine gravel, trace	e brick			
1 —				0.0							Sample SB-06 f SVOCs, Metals
' _					1 - 3' - Brownish-	tan, coarse SAND, some med	ium sand, trace	fine gravel			and PCBs
,											
2 —			4.5	0.0							
3 —					3 - 4.5' - Tan, me	dium-coarse SAND, dense/co	mpacted				
				0.0		,					
4 —				0.0							
5					5 - 91 Tan	um-coarea CAND #ross silt -	anca/compost-	1			
					5 - 8' - Tan, medi	um-coarse SAND, trace silt, o	ense/compacted	1			
6 —				0.0							
			3								
7				0.0							
8					Refusal @ 8' bgs						
_											
9 —											
10											
11 —											
12 —											
13 —											
14 —											
15											
-											
16 —											
10											
,											
17 —											
18 —											
19 —											
20					NOTES: All enc	ountered soils dry					
bgs :	= below o	ground su	rface		All enc	ountered soils dry					
<u>▼</u>	= observe	ed water I	evel								
					<u> </u>						
These	e soil borir	ng logs we	re prepare	ed in conju	nction with an environn	nental investigation. The data re	presented shall n	ot be used for any other	purpose (e	ex - geotechnical assess	ment, etc.).

	1				Project #/Name:	19-072 / Former Penfield	Manufacturing			BORING	ID:
			C		Client:	Dakota Partners				SB-	07
					Site Location:	1714 N. Salina Street, Sy	racuse, New York			3D-	U <i>I</i>
	ENV	IRONMENT	TAL CONST	ULTING	Boring Location:	South-center of Parking L	ot, near Building (Corner		Sheet:	1 of 1
9	Soil E	Borin	g Log	1	Drilling Contractor:	NYEG Drilling, LLC				Logged By:	DB
					Drilling Method:	Direct Push Geoprobe				Boring Diameter:	2"
Date: Time Star			04/11/19 1638		Sample Type(s):	5" Macrocore Temporary/Permanent:	N/A	Diameter:	N/A	Ground Elevation: Boring Depth:	8' bgs
Time Star			1650		Monitoring Well?	Screened Interval:	N/A	Riser Height:	N/A	Water Level:	o bys
7 11 110 7 11 110			1000			Corconca miorvai.	14/7	Tuoci Tioigii.	IN/A	Water Level.	_
Depth (ft)	Sample Depth (ft)	Blow Count (per 6 inches)	Recovery (ft)	PID Response (ppmv)	Color, size, range,	MAIN COMPONENT, mine grain size,	MATERIALS or component(s), odor, and geolog		tructure, an	gularity, maximum	Lab Sample ID (Depth)
					1	dark gray, very coarse SAI	_				
1 —				0.0	0.75 - 3.75' - Ligh	t gray, coarse GRAVEL and	d stone, some med	dium sand, some coar	se sand		
				0.0							
2 —			3.75								
			0.70	0.0							
3 —											
4 —											
_											
5 —					POOR RECOVER	RY					
6					(similar to abov	e)					
O			<1								
7 —											
8 —					D (10 0)						
					Refusal @ 8' bgs						
9 —											
10 —											
11 —											
12 —											
4.0											
13 —											
14 —											
14											
15 —											
16 —											
17 —											
18 —											
19 —											
20				<u> </u>	NOTES: All enco	ountered soils dry					
		ground sur				•					
	= odserv	ed water l	evel								
Thes	e soil bori	na loas we	re prepare	d in coniu	nction with an environm	nental investigation. The data	represented shall n	ot be used for any othe	r purpose (ex	: - geotechnical assess	ment. etc.).

					Project #/Name:	19-072 / Former Penfield M	anufacturing			BORING	ID:
			0	0	Client:	Dakota Partners					
	. /-	4 =	C		Site Location:	1714 N. Salina Street, Syra	cuse, New York			SB-	U8
	ENV	IRONMENT	TAL CONS	ULTING	Boring Location:	Southern Corner of Site (Ar				Sheet:	1 of 1
		_	_		Drilling Contractor:	NYEG Drilling, LLC		3 ,		Logged By:	DB
S	oil E	Borin	g Log	3	Drilling Method:	Direct Push Geoprobe				Boring Diameter:	2"
ate:			04/11/19		Sample Type(s):	5" Macrocore				Ground Elevation:	
ime Start	:		1652			Temporary/Permanent:	N/A	Diameter:	N/A	Boring Depth:	14' bgs
ime Finis	h:		1722		Monitoring Well?	Screened Interval:	N/A	Riser Height:	N/A	Water Level:	
Depth (ft)	Sample Depth (ft)	Blow Count (per 6 inches)	Recovery (ft)	PID Response (ppmv)	Color, size, range,	MAIN COMPONENT, minor grain size, od			tructure, a	ingularity, maximum	Lab Sample ID (Depth)
					0 - 0.25' - Gray, A	ASPHALT?GRAVEL					
				0.0	0.25 - 1.25' - Gra	y, coarse SAND and fine grav	el				
1 —					1.25 - 2.5' - Red,	BRICK					
2			2.5								
3 —											
,											
4											
_											
5					5 - 6' - Red, BRIC	K					
_											
6 —				(0.0)	6' - *Thin layer of	brown coarse material, estim	ated bottom of fo	ormer building / found	ation		Sample SB-08
					6 - 8' - Light tan,	medium SAND and medium-c	oarse sand, den	se/compacted, dry			VOCs, SVOC Metals, and PC
7 —			3	0.0							
8 —											
9 —											
10					10 - 12' - Tan, me	edium SAND, some silt, moist					
				0.0							
11 —											
			4								
2 —					12 - 14' - Tan, me	edium SAND, dense/compacte	ed, dry				
				0.0	,	, , , ,	, , ,				
3 —											
4					Refusal @ 14' bg	S					
5											
16 —											
17 —											
18 —											
19 —											
20				<u> </u>	NOTES:						
		ground sur									
▼ =	observe	ed water l	evel								
These	soil hori	na loas we	re nrenare	ed in coniu	nction with an environm	nental investigation. The data re	nresented shall n	ot he used for any other	er nurnose /e	ex - geotechnical assess	ment etc.)
rriese	SUII DOI'II	ıy ıugs we	e prepare	ы ні сопји	ncuon with an environn	тетнат штvesugation. The data re	oreserneu snail n	or ne usea for any othe	ı purpose (e	-x - geotecrinical assess	ment, etc.).

ANALYTICAL REPORT

Lab Number: L1915092

Client: Asbestos & Environmental Consulting Corp

6308 Fly Road

East Syracuse, NY 13057

ATTN: Drew Brantner Phone: (315) 432-9400

Project Name: FORMER PENFIELD

Project Number: 19-072 Report Date: 04/22/19

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: FORMER PENFIELD

Project Number: 19-072

Lab Number:

L1915092

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1915092-01	SP-01	SOIL	1714 N. SALINA ST., SYRACUSE, NY	04/11/19 09:03	04/12/19
L1915092-02	SP-02	SOIL	1714 N. SALINA ST., SYRACUSE, NY	04/11/19 09:06	04/12/19
L1915092-03	SB-01	SOIL	1714 N. SALINA ST., SYRACUSE, NY	04/11/19 14:48	04/12/19
L1915092-04	SB-03	SOIL	1714 N. SALINA ST., SYRACUSE, NY	04/11/19 15:41	04/12/19
L1915092-05	SB-04	SOIL	1714 N. SALINA ST., SYRACUSE, NY	04/11/19 16:02	04/12/19
L1915092-06	SB-05	SOIL	1714 N. SALINA ST., SYRACUSE, NY	04/11/19 16:14	04/12/19
L1915092-07	SB-06	SOIL	1714 N. SALINA ST., SYRACUSE, NY	04/11/19 16:54	04/12/19
L1915092-08	SB-08	SOIL	1714 N. SALINA ST., SYRACUSE, NY	04/11/19 17:04	04/12/19
L1915092-09	TRIP BLANK	WATER	1714 N. SALINA ST., SYRACUSE, NY	04/11/19 00:00	04/12/19

Lab Number:

Project Name: FORMER PENFIELD

Project Number: 19-072 Report Date: 04/22/19

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name: FORMER PENFIELD Lab Number: L1915092

Project Number: 19-072 Report Date: 04/22/19

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Semivolatile Organics

L1915092-03 and -07: The sample has elevated detection limits due to the dilution required by the sample matrix.

Total Mercury

The WG1227137-4 Laboratory Duplicate RPD for mercury (31%), performed on L1915092-01, is outside the acceptance criteria. The elevated RPD has been attributed to the non-homogeneous nature of the native sample.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 04/22/19

Melissa Cripps Melissa Cripps

ORGANICS

VOLATILES

L1915092

04/22/19

Lab Number:

Project Name: FORMER PENFIELD

Project Number: 19-072 Report Date:

SAMPLE RESULTS

Lab ID: L1915092-04 Date Collected: 04/11/19 15:41

Client ID: SB-03 Date Received: 04/12/19

Sample Location: 1714 N. SALINA ST., SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 04/18/19 14:48

Analyst: PK
Percent Solids: 82%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low - Wes	stborough Lab					
Methylene chloride	ND		ug/kg	4.6	2.1	1
1,1-Dichloroethane	ND		ug/kg	0.93	0.13	1
Chloroform	ND		ug/kg	1.4	0.13	1
Carbon tetrachloride	ND		ug/kg	0.93	0.21	1
1,2-Dichloropropane	ND		ug/kg	0.93	0.12	1
Dibromochloromethane	ND		ug/kg	0.93	0.13	1
1,1,2-Trichloroethane	ND		ug/kg	0.93	0.25	1
Tetrachloroethene	22		ug/kg	0.46	0.18	1
Chlorobenzene	ND		ug/kg	0.46	0.12	1
Trichlorofluoromethane	ND		ug/kg	3.7	0.64	1
1,2-Dichloroethane	ND		ug/kg	0.93	0.24	1
1,1,1-Trichloroethane	ND		ug/kg	0.46	0.15	1
Bromodichloromethane	ND		ug/kg	0.46	0.10	1
trans-1,3-Dichloropropene	ND		ug/kg	0.93	0.25	1
cis-1,3-Dichloropropene	ND		ug/kg	0.46	0.15	1
Bromoform	ND		ug/kg	3.7	0.23	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.46	0.15	1
Benzene	ND		ug/kg	0.46	0.15	1
Toluene	ND		ug/kg	0.93	0.50	1
Ethylbenzene	ND		ug/kg	0.93	0.13	1
Chloromethane	ND		ug/kg	3.7	0.86	1
Bromomethane	ND		ug/kg	1.8	0.54	1
Vinyl chloride	ND		ug/kg	0.93	0.31	1
Chloroethane	ND		ug/kg	1.8	0.42	1
1,1-Dichloroethene	ND		ug/kg	0.93	0.22	1
trans-1,2-Dichloroethene	0.21	J	ug/kg	1.4	0.13	1
Trichloroethene	120		ug/kg	0.46	0.13	1
1,2-Dichlorobenzene	ND		ug/kg	1.8	0.13	1

Project Name: Lab Number: FORMER PENFIELD L1915092

Project Number: Report Date: 19-072 04/22/19

SAMPLE RESULTS

Lab ID: Date Collected: 04/11/19 15:41 L1915092-04

Client ID: Date Received: 04/12/19 **SB-03**

Sample Location: 1714 N. SALINA ST., SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low	- Westborough Lab					
1,3-Dichlorobenzene	ND		ug/kg	1.8	0.14	1
1,4-Dichlorobenzene	ND		ug/kg	1.8	0.16	1
Methyl tert butyl ether	ND		ug/kg	1.8	0.19	1
p/m-Xylene	ND		ug/kg	1.8	0.52	1
o-Xylene	ND		ug/kg	0.93	0.27	1
cis-1,2-Dichloroethene	0.29	J	ug/kg	0.93	0.16	1
Styrene	ND		ug/kg	0.93	0.18	1
Dichlorodifluoromethane	ND		ug/kg	9.3	0.85	1
Acetone	ND		ug/kg	9.3	4.4	1
Carbon disulfide	ND		ug/kg	9.3	4.2	1
2-Butanone	ND		ug/kg	9.3	2.0	1
4-Methyl-2-pentanone	ND		ug/kg	9.3	1.2	1
2-Hexanone	ND		ug/kg	9.3	1.1	1
Bromochloromethane	ND		ug/kg	1.8	0.19	1
1,2-Dibromoethane	ND		ug/kg	0.93	0.26	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	2.8	0.92	1
Isopropylbenzene	ND		ug/kg	0.93	0.10	1
1,2,3-Trichlorobenzene	ND		ug/kg	1.8	0.30	1
1,2,4-Trichlorobenzene	ND		ug/kg	1.8	0.25	1
Methyl Acetate	ND		ug/kg	3.7	0.88	1
Cyclohexane	ND		ug/kg	9.3	0.50	1
1,4-Dioxane	ND		ug/kg	74	32.	1
Freon-113	ND		ug/kg	3.7	0.64	1
Methyl cyclohexane	1.1	J	ug/kg	3.7	0.56	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	121	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	103	70-130	

04/11/19 16:02

Not Specified

04/12/19

Project Name: FORMER PENFIELD

Project Number: 19-072

SAMPLE RESULTS

L1915092

Report Date: 04/22/19

Lab Number:

Date Collected:

Date Received:

Field Prep:

Lab ID: L1915092-05

Client ID: **SB-04**

Sample Location: 1714 N. SALINA ST., SYRACUSE, NY

Sample Depth:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 04/17/19 22:16

Analyst: MV 76% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low -	Westborough Lab					
Methylene chloride	ND		ug/kg	5.4	2.5	1
1,1-Dichloroethane	ND		ug/kg	1.1	0.16	1
Chloroform	ND		ug/kg	1.6	0.15	1
Carbon tetrachloride	ND		ug/kg	1.1	0.25	1
1,2-Dichloropropane	ND		ug/kg	1.1	0.13	1
Dibromochloromethane	ND		ug/kg	1.1	0.15	1
1,1,2-Trichloroethane	ND		ug/kg	1.1	0.29	1
Tetrachloroethene	ND		ug/kg	0.54	0.21	1
Chlorobenzene	ND		ug/kg	0.54	0.14	1
Trichlorofluoromethane	ND		ug/kg	4.3	0.75	1
1,2-Dichloroethane	ND		ug/kg	1.1	0.28	1
1,1,1-Trichloroethane	ND		ug/kg	0.54	0.18	1
Bromodichloromethane	ND		ug/kg	0.54	0.12	1
trans-1,3-Dichloropropene	ND		ug/kg	1.1	0.29	1
cis-1,3-Dichloropropene	ND		ug/kg	0.54	0.17	1
Bromoform	ND		ug/kg	4.3	0.26	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.54	0.18	1
Benzene	ND		ug/kg	0.54	0.18	1
Toluene	ND		ug/kg	1.1	0.58	1
Ethylbenzene	ND		ug/kg	1.1	0.15	1
Chloromethane	ND		ug/kg	4.3	1.0	1
Bromomethane	ND		ug/kg	2.1	0.62	1
Vinyl chloride	ND		ug/kg	1.1	0.36	1
Chloroethane	ND		ug/kg	2.1	0.48	1
1,1-Dichloroethene	ND		ug/kg	1.1	0.26	1
trans-1,2-Dichloroethene	ND		ug/kg	1.6	0.15	1
Trichloroethene	0.18	J	ug/kg	0.54	0.15	1
1,2-Dichlorobenzene	ND		ug/kg	2.1	0.15	1

MDL

Dilution Factor

Project Name: FORMER PENFIELD Lab Number: L1915092

Project Number: 19-072 Report Date: 04/22/19

SAMPLE RESULTS

Lab ID: L1915092-05 Date Collected: 04/11/19 16:02

Client ID: SB-04 Date Received: 04/12/19

Result

Sample Location: 1714 N. SALINA ST., SYRACUSE, NY Field Prep: Not Specified

Qualifier

Units

RL

Sample Depth:

Parameter

i arameter	Nosun	Qualifici Offics	114		Dilution i dotoi	
Volatile Organics by EPA 5035 Low -	Westborough Lab					
1,3-Dichlorobenzene	ND	ug/kg	2.1	0.16	1	
1,4-Dichlorobenzene	ND	ug/kg	2.1	0.18	1	
Methyl tert butyl ether	ND	ug/kg	2.1	0.22	1	
p/m-Xylene	ND	ug/kg	2.1	0.60	1	
o-Xylene	ND	ug/kg	1.1	0.31	1	
cis-1,2-Dichloroethene	ND	ug/kg	1.1	0.19	1	
Styrene	ND	ug/kg	1.1	0.21	1	
Dichlorodifluoromethane	ND	ug/kg	11	0.98	1	
Acetone	110	ug/kg	11	5.2	1	
Carbon disulfide	ND	ug/kg	11	4.9	1	
2-Butanone	18	ug/kg	11	2.4	1	
4-Methyl-2-pentanone	ND	ug/kg	11	1.4	1	
2-Hexanone	ND	ug/kg	11	1.3	1	
Bromochloromethane	ND	ug/kg	2.1	0.22	1	
1,2-Dibromoethane	ND	ug/kg	1.1	0.30	1	
1,2-Dibromo-3-chloropropane	ND	ug/kg	3.2	1.1	1	
Isopropylbenzene	ND	ug/kg	1.1	0.12	1	
1,2,3-Trichlorobenzene	ND	ug/kg	2.1	0.35	1	
1,2,4-Trichlorobenzene	ND	ug/kg	2.1	0.29	1	
Methyl Acetate	ND	ug/kg	4.3	1.0	1	
Cyclohexane	ND	ug/kg	11	0.58	1	
1,4-Dioxane	ND	ug/kg	86	38.	1	
Freon-113	ND	ug/kg	4.3	0.74	1	
Methyl cyclohexane	ND	ug/kg	4.3	0.65	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	128	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	99	70-130	
Dibromofluoromethane	110	70-130	

L1915092

Project Name: Lab Number: FORMER PENFIELD

Project Number: Report Date: 19-072 04/22/19

SAMPLE RESULTS

Lab ID: L1915092-08 Date Collected: 04/11/19 17:04

Client ID: Date Received: 04/12/19 **SB-08** Field Prep: Sample Location: 1714 N. SALINA ST., SYRACUSE, NY Not Specified

Sample Depth:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 04/18/19 14:21

PΚ Analyst: 92% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 Low	- Westborough Lab						
Methylene chloride	ND		ug/kg	4.1	1.9	1	
1,1-Dichloroethane	ND		ug/kg	0.82	0.12	1	
Chloroform	ND		ug/kg	1.2	0.11	1	
Carbon tetrachloride	ND		ug/kg	0.82	0.19	1	
1,2-Dichloropropane	ND		ug/kg	0.82	0.10	1	
Dibromochloromethane	ND		ug/kg	0.82	0.11	1	
1,1,2-Trichloroethane	ND		ug/kg	0.82	0.22	1	
Tetrachloroethene	3.4		ug/kg	0.41	0.16	1	
Chlorobenzene	ND		ug/kg	0.41	0.10	1	
Trichlorofluoromethane	ND		ug/kg	3.3	0.57	1	
1,2-Dichloroethane	ND		ug/kg	0.82	0.21	1	
1,1,1-Trichloroethane	ND		ug/kg	0.41	0.14	1	
Bromodichloromethane	ND		ug/kg	0.41	0.09	1	
trans-1,3-Dichloropropene	ND		ug/kg	0.82	0.22	1	
cis-1,3-Dichloropropene	ND		ug/kg	0.41	0.13	1	
Bromoform	ND		ug/kg	3.3	0.20	1	
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.41	0.14	1	
Benzene	ND		ug/kg	0.41	0.14	1	
Toluene	ND		ug/kg	0.82	0.44	1	
Ethylbenzene	ND		ug/kg	0.82	0.12	1	
Chloromethane	ND		ug/kg	3.3	0.76	1	
Bromomethane	ND		ug/kg	1.6	0.48	1	
Vinyl chloride	ND		ug/kg	0.82	0.27	1	
Chloroethane	ND		ug/kg	1.6	0.37	1	
1,1-Dichloroethene	ND		ug/kg	0.82	0.19	1	
trans-1,2-Dichloroethene	0.20	J	ug/kg	1.2	0.11	1	
Trichloroethene	ND		ug/kg	0.41	0.11	1	
1,2-Dichlorobenzene	ND		ug/kg	1.6	0.12	1	

MDL

Dilution Factor

Project Name: FORMER PENFIELD Lab Number: L1915092

Project Number: 19-072 Report Date: 04/22/19

SAMPLE RESULTS

Lab ID: L1915092-08 Date Collected: 04/11/19 17:04

Client ID: SB-08 Date Received: 04/12/19

Result

Sample Location: 1714 N. SALINA ST., SYRACUSE, NY Field Prep: Not Specified

Qualifier

Units

RL

Sample Depth:

Parameter

i arameter	Nosun	Qualifici Offics	114		Dilution i dotoi	
Volatile Organics by EPA 5035 Low -	Westborough Lab					
1,3-Dichlorobenzene	ND	ug/kg	1.6	0.12	1	
1,4-Dichlorobenzene	ND	ug/kg	1.6	0.14	1	
Methyl tert butyl ether	ND	ug/kg	1.6	0.16	1	
p/m-Xylene	ND	ug/kg	1.6	0.46	1	
o-Xylene	ND	ug/kg	0.82	0.24	1	
cis-1,2-Dichloroethene	ND	ug/kg	0.82	0.14	1	
Styrene	ND	ug/kg	0.82	0.16	1	
Dichlorodifluoromethane	ND	ug/kg	8.2	0.75	1	
Acetone	ND	ug/kg	8.2	3.9	1	
Carbon disulfide	ND	ug/kg	8.2	3.7	1	
2-Butanone	ND	ug/kg	8.2	1.8	1	
4-Methyl-2-pentanone	ND	ug/kg	8.2	1.0	1	
2-Hexanone	ND	ug/kg	8.2	0.97	1	
Bromochloromethane	ND	ug/kg	1.6	0.17	1	
1,2-Dibromoethane	ND	ug/kg	0.82	0.23	1	
1,2-Dibromo-3-chloropropane	ND	ug/kg	2.4	0.82	1	
Isopropylbenzene	ND	ug/kg	0.82	0.09	1	
1,2,3-Trichlorobenzene	ND	ug/kg	1.6	0.26	1	
1,2,4-Trichlorobenzene	ND	ug/kg	1.6	0.22	1	
Methyl Acetate	ND	ug/kg	3.3	0.78	1	
Cyclohexane	ND	ug/kg	8.2	0.44	1	
1,4-Dioxane	ND	ug/kg	65	29.	1	
Freon-113	ND	ug/kg	3.3	0.57	1	
Methyl cyclohexane	ND	ug/kg	3.3	0.49	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	124	70-130	
Toluene-d8	107	70-130	
4-Bromofluorobenzene	108	70-130	
Dibromofluoromethane	104	70-130	

L1915092

04/22/19

Project Name: FORMER PENFIELD

Project Number: 19-072

SAMPLE RESULTS

Date Collected: 04/11/19 00:00

Lab ID: L1915092-09

Client ID: TRIP BLANK

Sample Location: 1714 N. SALINA ST., SYRACUSE, NY

Date Received: 04/12/19
Field Prep: Not Specified

Lab Number:

Report Date:

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 04/17/19 17:55

Analyst: NLK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	ıh Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: FORMER PENFIELD Lab Number: L1915092

Project Number: 19-072 Report Date: 04/22/19

SAMPLE RESULTS

Lab ID: L1915092-09 Date Collected: 04/11/19 00:00

Client ID: TRIP BLANK Date Received: 04/12/19
Sample Location: 1714 N. SALINA ST., SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbor	ough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	2.8	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	0.75	J	ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	109	70-130	
Toluene-d8	110	70-130	
4-Bromofluorobenzene	107	70-130	
Dibromofluoromethane	96	70-130	

Project Name: FORMER PENFIELD Lab Number:

Project Number: 19-072 Report Date: 04/22/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/17/19 08:49

Analyst: PD

arameter	Result	Qualifier Un	its	RL	MDL
olatile Organics by GC/MS - V	Vestborough La	b for sample(s)	: 09	Batch:	WG1227405-5
Methylene chloride	ND	u	g/l	2.5	0.70
1,1-Dichloroethane	ND	u	g/l	2.5	0.70
Chloroform	ND	u	g/l	2.5	0.70
Carbon tetrachloride	ND	u	g/l	0.50	0.13
1,2-Dichloropropane	ND	u	g/l	1.0	0.14
Dibromochloromethane	ND	u	g/l	0.50	0.15
1,1,2-Trichloroethane	ND	u	g/l	1.5	0.50
Tetrachloroethene	ND	u	g/l	0.50	0.18
Chlorobenzene	ND	u	g/l	2.5	0.70
Trichlorofluoromethane	ND	u	g/l	2.5	0.70
1,2-Dichloroethane	ND	u	g/l	0.50	0.13
1,1,1-Trichloroethane	ND	u	g/l	2.5	0.70
Bromodichloromethane	ND	u	g/l	0.50	0.19
trans-1,3-Dichloropropene	ND	u	g/l	0.50	0.16
cis-1,3-Dichloropropene	ND	u	g/l	0.50	0.14
Bromoform	ND	u	g/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	uį	g/l	0.50	0.17
Benzene	ND	u	g/l	0.50	0.16
Toluene	ND	uį	g/l	2.5	0.70
Ethylbenzene	ND	uį	g/l	2.5	0.70
Chloromethane	ND	uį	g/l	2.5	0.70
Bromomethane	0.74	J u	g/l	2.5	0.70
Vinyl chloride	ND	uį	g/l	1.0	0.07
Chloroethane	ND	u	g/l	2.5	0.70
1,1-Dichloroethene	ND	u	g/l	0.50	0.17
trans-1,2-Dichloroethene	ND	u	g/l	2.5	0.70
Trichloroethene	ND	u	g/l	0.50	0.18
1,2-Dichlorobenzene	ND	u	g/l	2.5	0.70
1,3-Dichlorobenzene	ND	u	g/l	2.5	0.70

Project Name: FORMER PENFIELD Lab Number:

Project Number: 19-072 Report Date: 04/22/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/17/19 08:49

Analyst: PD

A-Dichlorobenzene ND	arameter	Result	Qualifier	Units	RL	MDL
Methyl tert butyl ether ND ug/l 2.5 0.70 p/m-Xylene ND ug/l 2.5 0.70 o-Xylene ND ug/l 2.5 0.70 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 Styrene ND ug/l 2.5 0.70 Dichlorodifluoromethane ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70	olatile Organics by GC/MS - V	/estborough Lat	o for samp	le(s): 09	Batch:	WG1227405-5
p/m-Xylene ND ug/l 2.5 0.70 o-Xylene ND ug/l 2.5 0.70 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 Styrene ND ug/l 2.5 0.70 Dichlorodifluoromethane ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate 0.32 J ug/l 2.5	1,4-Dichlorobenzene	ND		ug/l	2.5	0.70
o-Xylene ND ug/l 2.5 0.70 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 Styrene ND ug/l 2.5 0.70 Dichlorodifluoromethane ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 <	Methyl tert butyl ether	ND		ug/l	2.5	0.70
cis-1,2-Dichloroethene ND ug/l 2.5 0.70 Styrene ND ug/l 2.5 0.70 Dichlorodifluoromethane ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,2-Dibromoe-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate 0.32 J ug/l	p/m-Xylene	ND		ug/l	2.5	0.70
Styrene ND ug/l 2.5 0.70 Dichlorodifluoromethane ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate 0.32 J ug/l 2.0 0.23 Cyclohexane ND ug/l	o-Xylene	ND		ug/l	2.5	0.70
Dichlorodifluoromethane ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 5.0 1.0 1,2-Dibromoethane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate 0.32 J ug/l 2.0 0.23 Cyclohexane ND ug/l 250 61 61 Freon-113 ND ug/	cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70
Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate 0.32 J ug/l 2.0 0.23 Cyclohexane ND ug/l 2.5 0.70 1,4-Dioxane ND ug/l 2.5 0.70	Styrene	ND		ug/l	2.5	0.70
Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate 0.32 J ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 2.5 0.70	Dichlorodifluoromethane	ND		ug/l	5.0	1.0
2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate 0.32 J ug/l 2.0 0.23 Cyclohexane ND ug/l 2.5 0.70 1,4-Dioxane ND ug/l 2.5 0.70 1,4-Dioxane ND ug/l 2.5 0.70	Acetone	ND		ug/l	5.0	1.5
4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate 0.32 J ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61 Freon-113 ND ug/l 2.5 0.70 0.70 0.70	Carbon disulfide	ND		ug/l	5.0	1.0
2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.0 0.65 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate 0.32 J ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61 Freon-113 ND ug/l 2.5 0.70	2-Butanone	ND		ug/l	5.0	1.9
Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.0 0.65 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate 0.32 J ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61 Freon-113 ND ug/l 2.5 0.70	4-Methyl-2-pentanone	ND		ug/l	5.0	1.0
1,2-Dibromoethane ND ug/l 2.0 0.65 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate 0.32 J ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61 Freon-113 ND ug/l 2.5 0.70	2-Hexanone	ND		ug/l	5.0	1.0
1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate 0.32 J ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61 Freon-113 ND ug/l 2.5 0.70	Bromochloromethane	ND		ug/l	2.5	0.70
Sopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate 0.32 J ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61. Freon-113 ND ug/l 2.5 0.70	1,2-Dibromoethane	ND		ug/l	2.0	0.65
1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate 0.32 J ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61. Freon-113 ND ug/l 2.5 0.70	1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70
1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate 0.32 J ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61. Freon-113 ND ug/l 2.5 0.70	Isopropylbenzene	ND		ug/l	2.5	0.70
Methyl Acetate 0.32 J ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61. Freon-113 ND ug/l 2.5 0.70	1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70
Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61. Freon-113 ND ug/l 2.5 0.70	1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70
1,4-Dioxane ND ug/l 250 61. Freon-113 ND ug/l 2.5 0.70	Methyl Acetate	0.32	J	ug/l	2.0	0.23
Freon-113 ND ug/l 2.5 0.70	Cyclohexane	ND		ug/l	10	0.27
	1,4-Dioxane	ND		ug/l	250	61.
Methyl cyclohexane ND ug/l 10 0.40	Freon-113	ND		ug/l	2.5	0.70
	Methyl cyclohexane	ND		ug/l	10	0.40

Project Name: FORMER PENFIELD **Lab Number:** L1915092

Project Number: 19-072 Report Date: 04/22/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/17/19 08:49

Analyst: PD

ParameterResultQualifierUnitsRLMDLVolatile Organics by GC/MS - Westborough Lab for sample(s):09Batch:WG1227405-5

		Acceptance
Surrogate	%Recovery Qualifi	er Criteria
1,2-Dichloroethane-d4	106	70-130
Toluene-d8	109	70-130
4-Bromofluorobenzene	108	70-130
Dibromofluoromethane	100	70-130

Lab Number:

Project Name: FORMER PENFIELD

Project Number: Report Date: 19-072 04/22/19

Method Blank Analysis Batch Quality Control

Analyst: AD

1,8260C

04/17/19 14:03

Analytical Method:

Analytical Date:

arameter	Result	Qualifier	Units	RL		MDL
olatile Organics by EPA 5035 Low	· - Westboro	ough Lab fo	r sample(s):	05	Batch:	WG1227500-5
Methylene chloride	ND		ug/kg	5.0		2.3
1,1-Dichloroethane	ND		ug/kg	1.0		0.14
Chloroform	ND		ug/kg	1.5		0.14
Carbon tetrachloride	ND		ug/kg	1.0		0.23
1,2-Dichloropropane	ND		ug/kg	1.0		0.12
Dibromochloromethane	ND		ug/kg	1.0		0.14
1,1,2-Trichloroethane	ND		ug/kg	1.0		0.27
Tetrachloroethene	ND		ug/kg	0.50		0.20
Chlorobenzene	ND		ug/kg	0.50		0.13
Trichlorofluoromethane	ND		ug/kg	4.0		0.70
1,2-Dichloroethane	ND		ug/kg	1.0		0.26
1,1,1-Trichloroethane	ND		ug/kg	0.50		0.17
Bromodichloromethane	ND		ug/kg	0.50		0.11
trans-1,3-Dichloropropene	ND		ug/kg	1.0		0.27
cis-1,3-Dichloropropene	ND		ug/kg	0.50		0.16
Bromoform	ND		ug/kg	4.0		0.25
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.50		0.17
Benzene	ND		ug/kg	0.50		0.17
Toluene	ND		ug/kg	1.0		0.54
Ethylbenzene	ND		ug/kg	1.0		0.14
Chloromethane	ND		ug/kg	4.0		0.93
Bromomethane	ND		ug/kg	2.0		0.58
Vinyl chloride	ND		ug/kg	1.0		0.34
Chloroethane	ND		ug/kg	2.0		0.45
1,1-Dichloroethene	ND		ug/kg	1.0		0.24
trans-1,2-Dichloroethene	ND		ug/kg	1.5		0.14
Trichloroethene	ND		ug/kg	0.50		0.14
1,2-Dichlorobenzene	ND		ug/kg	2.0		0.14
1,3-Dichlorobenzene	ND		ug/kg	2.0		0.15

Lab Number:

Project Name: FORMER PENFIELD

Project Number: Report Date: 19-072 04/22/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/17/19 14:03

Analyst: AD

Parameter	Result	Qualifier	Units	RL		MDL
olatile Organics by EPA 5035 Lo	ow - Westbord	ough Lab fo	r sample(s):	05	Batch:	WG1227500-5
1,4-Dichlorobenzene	ND		ug/kg	2.0		0.17
Methyl tert butyl ether	ND		ug/kg	2.0		0.20
p/m-Xylene	ND		ug/kg	2.0		0.56
o-Xylene	ND		ug/kg	1.0		0.29
cis-1,2-Dichloroethene	ND		ug/kg	1.0		0.18
Styrene	ND		ug/kg	1.0		0.20
Dichlorodifluoromethane	ND		ug/kg	10		0.92
Acetone	ND		ug/kg	10		4.8
Carbon disulfide	ND		ug/kg	10		4.6
2-Butanone	ND		ug/kg	10		2.2
4-Methyl-2-pentanone	ND		ug/kg	10		1.3
2-Hexanone	ND		ug/kg	10		1.2
Bromochloromethane	ND		ug/kg	2.0		0.20
1,2-Dibromoethane	ND		ug/kg	1.0		0.28
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.0		1.0
Isopropylbenzene	ND		ug/kg	1.0		0.11
1,2,3-Trichlorobenzene	ND		ug/kg	2.0		0.32
1,2,4-Trichlorobenzene	ND		ug/kg	2.0		0.27
Methyl Acetate	ND		ug/kg	4.0		0.95
Cyclohexane	ND		ug/kg	10		0.54
1,4-Dioxane	ND		ug/kg	80		35.
Freon-113	ND		ug/kg	4.0		0.69
Methyl cyclohexane	ND		ug/kg	4.0		0.60

Project Name: FORMER PENFIELD **Lab Number:** L1915092

Project Number: 19-072 Report Date: 04/22/19

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/17/19 14:03

Analyst: AD

ParameterResultQualifierUnitsRLMDLVolatile Organics by EPA 5035 Low - Westborough Lab for sample(s):05Batch:WG1227500-5

		Acceptance
Surrogate	%Recovery Qualif	ier Criteria
1,2-Dichloroethane-d4	124	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	101	70-130
Dibromofluoromethane	106	70-130

Project Name: FORMER PENFIELD Lab Number:

Project Number: 19-072 Report Date: 04/22/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/18/19 13:27

Analyst: JC

arameter	Result	Qualifier	Units	RL	M	DL
olatile Organics by EPA 5035 Lov	w - Westbord	ough Lab for	sample(s):	04,08	Batch:	WG1227993-5
Methylene chloride	ND		ug/kg	5.0	;	2.3
1,1-Dichloroethane	ND		ug/kg	1.0	C).14
Chloroform	ND		ug/kg	1.5	C).14
Carbon tetrachloride	ND		ug/kg	1.0	C).23
1,2-Dichloropropane	ND		ug/kg	1.0	C).12
Dibromochloromethane	ND		ug/kg	1.0	C).14
1,1,2-Trichloroethane	ND		ug/kg	1.0	C).27
Tetrachloroethene	ND		ug/kg	0.50	C	0.20
Chlorobenzene	ND		ug/kg	0.50	C).13
Trichlorofluoromethane	ND		ug/kg	4.0	C).70
1,2-Dichloroethane	ND		ug/kg	1.0	C	0.26
1,1,1-Trichloroethane	ND		ug/kg	0.50	C).17
Bromodichloromethane	ND		ug/kg	0.50	C).11
trans-1,3-Dichloropropene	ND		ug/kg	1.0	C).27
cis-1,3-Dichloropropene	ND		ug/kg	0.50	C).16
Bromoform	ND		ug/kg	4.0	C).25
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.50	C).17
Benzene	ND		ug/kg	0.50	C).17
Toluene	ND		ug/kg	1.0	C).54
Ethylbenzene	ND		ug/kg	1.0	C).14
Chloromethane	ND		ug/kg	4.0	C).93
Bromomethane	ND		ug/kg	2.0	C).58
Vinyl chloride	ND		ug/kg	1.0	C).34
Chloroethane	ND		ug/kg	2.0	C).45
1,1-Dichloroethene	ND		ug/kg	1.0	C).24
trans-1,2-Dichloroethene	ND		ug/kg	1.5	C).14
Trichloroethene	ND		ug/kg	0.50	C).14
1,2-Dichlorobenzene	ND		ug/kg	2.0	C).14
1,3-Dichlorobenzene	ND		ug/kg	2.0	C).15

Project Name: FORMER PENFIELD Lab Number:

Project Number: 19-072 Report Date: 04/22/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/18/19 13:27

Analyst: JC

Parameter	Result	Qualifier	Units	RL	MDL
olatile Organics by EPA 5035 L	.ow - Westbord	ough Lab for	sample(s):	04,08	Batch: WG1227993-5
1,4-Dichlorobenzene	ND		ug/kg	2.0	0.17
Methyl tert butyl ether	ND		ug/kg	2.0	0.20
p/m-Xylene	ND		ug/kg	2.0	0.56
o-Xylene	ND		ug/kg	1.0	0.29
cis-1,2-Dichloroethene	ND		ug/kg	1.0	0.18
Styrene	ND		ug/kg	1.0	0.20
Dichlorodifluoromethane	ND		ug/kg	10	0.92
Acetone	ND		ug/kg	10	4.8
Carbon disulfide	ND		ug/kg	10	4.6
2-Butanone	ND		ug/kg	10	2.2
4-Methyl-2-pentanone	ND		ug/kg	10	1.3
2-Hexanone	ND		ug/kg	10	1.2
Bromochloromethane	ND		ug/kg	2.0	0.20
1,2-Dibromoethane	ND		ug/kg	1.0	0.28
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.0	1.0
Isopropylbenzene	ND		ug/kg	1.0	0.11
1,2,3-Trichlorobenzene	ND		ug/kg	2.0	0.32
1,2,4-Trichlorobenzene	ND		ug/kg	2.0	0.27
Methyl Acetate	ND		ug/kg	4.0	0.95
Cyclohexane	ND		ug/kg	10	0.54
1,4-Dioxane	ND		ug/kg	80	35.
Freon-113	ND		ug/kg	4.0	0.69
Methyl cyclohexane	ND		ug/kg	4.0	0.60

Project Name: FORMER PENFIELD Lab Number: L1915092

Project Number: 19-072 Report Date: 04/22/19

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/18/19 13:27

Analyst: JC

ParameterResultQualifierUnitsRLMDLVolatile Organics by EPA 5035 Low - Westborough Lab for sample(s):04,08Batch:WG1227993-5

Acceptance Surrogate %Recovery Qualifier Criteria 1,2-Dichloroethane-d4 124 70-130 Toluene-d8 101 70-130 4-Bromofluorobenzene 100 70-130 Dibromofluoromethane 106 70-130

Project Name: FORMER PENFIELD

Project Number: 19-072

Lab Number: L1915092

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough I	_ab Associated	sample(s): 09	Batch: WG	1227405-3	WG1227405-4		
Methylene chloride	97		97		70-130	0	20
1,1-Dichloroethane	94		98		70-130	4	20
Chloroform	93		95		70-130	2	20
Carbon tetrachloride	58	Q	66		63-132	13	20
1,2-Dichloropropane	94		96		70-130	2	20
Dibromochloromethane	93		94		63-130	1	20
1,1,2-Trichloroethane	100		100		70-130	0	20
Tetrachloroethene	100		100		70-130	0	20
Chlorobenzene	100		100		75-130	0	20
Trichlorofluoromethane	94		96		62-150	2	20
1,2-Dichloroethane	90		95		70-130	5	20
1,1,1-Trichloroethane	90		93		67-130	3	20
Bromodichloromethane	90		91		67-130	1	20
trans-1,3-Dichloropropene	81		84		70-130	4	20
cis-1,3-Dichloropropene	84		87		70-130	4	20
Bromoform	100		100		54-136	0	20
1,1,2,2-Tetrachloroethane	100		110		67-130	10	20
Benzene	94		95		70-130	1	20
Toluene	110		110		70-130	0	20
Ethylbenzene	110		110		70-130	0	20
Chloromethane	78		79		64-130	1	20
Bromomethane	56		54		39-139	4	20
Vinyl chloride	91		92		55-140	1	20

Project Name: FORMER PENFIELD

Project Number: 19-072

Lab Number: L1915092

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 09	Batch: WG	1227405-3	WG1227405-4		
Chloroethane	110		110		55-138	0	20
1,1-Dichloroethene	98		100		61-145	2	20
trans-1,2-Dichloroethene	92		93		70-130	1	20
Trichloroethene	90		92		70-130	2	20
1,2-Dichlorobenzene	100		110		70-130	10	20
1,3-Dichlorobenzene	110		110		70-130	0	20
1,4-Dichlorobenzene	110		110		70-130	0	20
Methyl tert butyl ether	73		77		63-130	5	20
p/m-Xylene	110		110		70-130	0	20
o-Xylene	110		110		70-130	0	20
cis-1,2-Dichloroethene	93		92		70-130	1	20
Styrene	110		115		70-130	4	20
Dichlorodifluoromethane	69		69		36-147	0	20
Acetone	120		130		58-148	8	20
Carbon disulfide	90		93		51-130	3	20
2-Butanone	94		96		63-138	2	20
4-Methyl-2-pentanone	91		93		59-130	2	20
2-Hexanone	93		94		57-130	1	20
Bromochloromethane	94		96		70-130	2	20
1,2-Dibromoethane	88		90		70-130	2	20
1,2-Dibromo-3-chloropropane	88		88		41-144	0	20
Isopropylbenzene	120		120		70-130	0	20
1,2,3-Trichlorobenzene	86		100		70-130	15	20

Project Name: FORMER PENFIELD

Project Number: 19-072

Lab Number:

L1915092

Report Date:

04/22/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough La	•				WG1227405-4	III D	quui		
		odinpio(o). oo		1227 100 0					
1,2,4-Trichlorobenzene Methyl Acetate	96 99		100		70-130 70-130	1		20	
Cyclohexane	97		100		70-130	3		20	
1,4-Dioxane	108		110		56-162	2		20	
Freon-113	95		95		70-130	0		20	
Methyl cyclohexane	96		100		70-130	4		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	103	105	70-130
Toluene-d8	111	110	70-130
4-Bromofluorobenzene	111	108	70-130
Dibromofluoromethane	98	101	70-130

Project Name: FORMER PENFIELD

Project Number: 19-072

Lab Number: L1915092

arameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery V Qual Limits	RPD	RPD Qual Limits
olatile Organics by EPA 5035 Low - Westbo	rough Lab Ass	sociated sample(s): 05 Ba	atch: WG1227500-3 WG1227	7500-4	
Methylene chloride	90		93	70-130	3	30
1,1-Dichloroethane	104		106	70-130	2	30
Chloroform	99		102	70-130	3	30
Carbon tetrachloride	79		83	70-130	5	30
1,2-Dichloropropane	102		104	70-130	2	30
Dibromochloromethane	71		76	70-130	7	30
1,1,2-Trichloroethane	87		97	70-130	11	30
Tetrachloroethene	84		88	70-130	5	30
Chlorobenzene	85		89	70-130	5	30
Trichlorofluoromethane	106		109	70-139	3	30
1,2-Dichloroethane	113		114	70-130	1	30
1,1,1-Trichloroethane	91		95	70-130	4	30
Bromodichloromethane	90		95	70-130	5	30
trans-1,3-Dichloropropene	86		92	70-130	7	30
cis-1,3-Dichloropropene	92		97	70-130	5	30
Bromoform	63	Q	72	70-130	13	30
1,1,2,2-Tetrachloroethane	81		86	70-130	6	30
Benzene	98		99	70-130	1	30
Toluene	88		92	70-130	4	30
Ethylbenzene	90		95	70-130	5	30
Chloromethane	110		111	52-130	1	30
Bromomethane	91		100	57-147	9	30
Vinyl chloride	108		112	67-130	4	30

Project Name: FORMER PENFIELD

Project Number: 19-072

Lab Number: L1915092

Chloroethane 120 118 50-151 2 1,1-Dichloroethene 110 114 65-135 4 trans-1,2-Dichloroethene 88 89 70-130 1 Trichloroethene 98 98 70-130 0 1,2-Dichloroethene 78 85 70-130 9 1,3-Dichlorobenzene 82 88 70-130 7 1,4-Dichlorobenzene 81 85 70-130 7 1,4-Dichlorobenzene 81 85 70-130 5 Methyl tert butyl ether 91 95 66-130 4 p/m-Xylene 90 95 70-130 5 o-Xylene 91 96 70-130 5 cis-1,2-Dichloroethene 91 93 70-130 2 Styrene 90 94 70-130 4 Dichloroethene 91 93 70-130 4 Acetore 146 Q 147 Q 54-140	RPD Limits	Qual	RPD	%Recovery Limits	Qual	CSD ecovery		LCS %Recovery	Parameter
1,1-Dichloroethene 110 114 65-135 4 trans-1,2-Dichloroethene 88 89 70-130 1 Trichloroethene 98 98 70-130 0 1,2-Dichlorobenzene 78 85 70-130 9 1,3-Dichlorobenzene 82 88 70-130 7 1,4-Dichlorobenzene 81 85 70-130 5 Methyl tert butyl ether 91 95 66-130 4 p/m-Xylene 90 95 70-130 5 o-Xylene 91 96 70-130 5 cis-1,2-Dichloroethene 91 93 70-130 2 Styrene 90 94 70-130 4 Dichlorodifluoromethane 69 70 30-146 1 Acetone 146 Q 147 Q 54-140 1 Carbon disulfide 112 108 59-130 4 2-Butanone 114 124 70-130 8 4-Methyl-2-pentanone 94 88 70-130			500-4	500-3 WG12275	WG12275	05 Batch:	ociated sample(s):	ough Lab Ass	Volatile Organics by EPA 5035 Low - Westbor
trans-1,2-Dichloroethene 88 89 70-130 1 Trichloroethene 98 98 70-130 0 1,2-Dichlorobenzene 78 85 70-130 9 1,3-Dichlorobenzene 82 88 70-130 7 1,4-Dichlorobenzene 81 85 70-130 5 Methyl tert butyl ether 91 95 66-130 4 p/m-Xylene 90 95 70-130 5 o-Xylene 91 96 70-130 5 cis-1,2-Dichloroethene 91 93 70-130 2 Styrene 90 94 70-130 2 Styrene 90 94 70-130 4 Dichlorodifluoromethane 69 70 30-146 1 Acetone 146 Q 147 Q 54-140 1 Carbon disulfide 112 108 59-130 4 2-Butanone 114 124 70-130	30	1	2	50-151		118		120	Chloroethane
Trichloroethene 98 98 70-130 0 1,2-Dichlorobenzene 78 85 70-130 9 1,3-Dichlorobenzene 82 88 70-130 7 1,4-Dichlorobenzene 81 85 70-130 5 Methyl tert butyl ether 91 95 66-130 4 p/m-Xylene 90 95 70-130 5 o-Xylene 91 96 70-130 5 cis-1,2-Dichloroethene 91 93 70-130 2 Styrene 90 94 70-130 4 Dichlorodifluoromethane 69 70 30-146 1 Acetone 146 Q 147 Q 54-140 1 Carbon disulfide 112 108 59-130 4 2-Butanone 114 124 70-130 8 4-Methyl-2-pentanone 94 88 70-130 7 2-Hexanone 98 109 70-130	30		4	65-135		114		110	1,1-Dichloroethene
1,2-Dichlorobenzene 78 85 70-130 9 1,3-Dichlorobenzene 82 88 70-130 7 1,4-Dichlorobenzene 81 85 70-130 5 Methyl tert butyl ether 91 95 66-130 4 p/m-Xylene 90 95 70-130 5 o-Xylene 91 96 70-130 5 cis-1,2-Dichloroethene 91 93 70-130 2 Styrene 90 94 70-130 4 Dichlorodifluoromethane 69 70 30-146 1 Acetone 146 Q 147 Q 54-140 1 Carbon disulfide 112 108 59-130 4 2-Butanone 114 124 70-130 8 4-Methyl-2-pentanone 94 88 70-130 7 2-Hexanone 98 109 70-130 11 Bromochloromethane 84 85 70-130 1	30		1	70-130		89		88	trans-1,2-Dichloroethene
1,3-Dichlorobenzene 82 88 70-130 7 1,4-Dichlorobenzene 81 85 70-130 5 Methyl tert butyl ether 91 95 66-130 4 p/m-Xylene 90 95 70-130 5 o-Xylene 91 96 70-130 5 cis-1,2-Dichloroethene 91 93 70-130 2 Styrene 90 94 70-130 4 Dichlorodifluoromethane 69 70 30-146 1 Acetone 146 Q 147 Q 54-140 1 Carbon disulfide 112 108 59-130 4 2-Butanone 114 124 70-130 8 4-Methyl-2-pentanone 94 88 70-130 7 2-Hexanone 98 109 70-130 11 Bromochloromethane 84 85 70-130 1	30		0	70-130		98		98	Trichloroethene
1,4-Dichlorobenzene 81 85 70-130 5 Methyl tert butyl ether 91 95 66-130 4 p/m-Xylene 90 95 70-130 5 o-Xylene 91 96 70-130 5 cis-1,2-Dichloroethene 91 93 70-130 2 Styrene 90 94 70-130 4 Dichlorodifluoromethane 69 70 30-146 1 Acetone 146 Q 147 Q 54-140 1 Carbon disulfide 112 108 59-130 4 2-Butanone 114 124 70-130 8 4-Methyl-2-pentanone 94 88 70-130 7 2-Hexanone 98 109 70-130 11 Bromochloromethane 84 85 70-130 1	30		9	70-130		85		78	1,2-Dichlorobenzene
Methyl tert butyl ether 91 95 66-130 4 p/m-Xylene 90 95 70-130 5 o-Xylene 91 96 70-130 5 cis-1,2-Dichloroethene 91 93 70-130 2 Styrene 90 94 70-130 4 Dichlorodifluoromethane 69 70 30-146 1 Acetone 146 Q 147 Q 54-140 1 Carbon disulfide 112 108 59-130 4 2-Butanone 114 124 70-130 8 4-Methyl-2-pentanone 94 88 70-130 7 2-Hexanone 98 109 70-130 11 Bromochloromethane 84 85 70-130 1	30		7	70-130		88		82	1,3-Dichlorobenzene
p/m-Xylene 90 95 70-130 5 o-Xylene 91 96 70-130 5 cis-1,2-Dichloroethene 91 93 70-130 2 Styrene 90 94 70-130 4 Dichlorodifluoromethane 69 70 30-146 1 Acetone 146 Q 147 Q 54-140 1 Carbon disulfide 112 108 59-130 4 2-Butanone 114 124 70-130 8 4-Methyl-2-pentanone 94 88 70-130 7 2-Hexanone 98 109 70-130 11 Bromochloromethane 84 85 70-130 1	30		5	70-130		85		81	1,4-Dichlorobenzene
o-Xylene 91 96 70-130 5 cis-1,2-Dichloroethene 91 93 70-130 2 Styrene 90 94 70-130 4 Dichlorodifluoromethane 69 70 30-146 1 Acetone 146 Q 147 Q 54-140 1 Carbon disulfide 112 108 59-130 4 2-Butanone 114 124 70-130 8 4-Methyl-2-pentanone 94 88 70-130 7 2-Hexanone 98 109 70-130 11 Bromochloromethane 84 85 70-130 1	30		4	66-130		95		91	Methyl tert butyl ether
cis-1,2-Dichloroethene 91 93 70-130 2 Styrene 90 94 70-130 4 Dichlorodifluoromethane 69 70 30-146 1 Acetone 146 Q 147 Q 54-140 1 Carbon disulfide 112 108 59-130 4 2-Butanone 114 124 70-130 8 4-Methyl-2-pentanone 94 88 70-130 7 2-Hexanone 98 109 70-130 11 Bromochloromethane 84 85 70-130 1	30		5	70-130		95		90	p/m-Xylene
Styrene 90 94 70-130 4 Dichlorodifluoromethane 69 70 30-146 1 Acetone 146 Q 147 Q 54-140 1 Carbon disulfide 112 108 59-130 4 2-Butanone 114 124 70-130 8 4-Methyl-2-pentanone 94 88 70-130 7 2-Hexanone 98 109 70-130 11 Bromochloromethane 84 85 70-130 1	30		5	70-130		96		91	o-Xylene
Dichlorodifluoromethane 69 70 30-146 1 Acetone 146 Q 147 Q 54-140 1 Carbon disulfide 112 108 59-130 4 2-Butanone 114 124 70-130 8 4-Methyl-2-pentanone 94 88 70-130 7 2-Hexanone 98 109 70-130 11 Bromochloromethane 84 85 70-130 1	30		2	70-130		93		91	cis-1,2-Dichloroethene
Acetone 146 Q 147 Q 54-140 1 Carbon disulfide 112 108 59-130 4 2-Butanone 114 124 70-130 8 4-Methyl-2-pentanone 94 88 70-130 7 2-Hexanone 98 109 70-130 11 Bromochloromethane 84 85 70-130 1	30		4	70-130		94		90	Styrene
Carbon disulfide 112 108 59-130 4 2-Butanone 114 124 70-130 8 4-Methyl-2-pentanone 94 88 70-130 7 2-Hexanone 98 109 70-130 11 Bromochloromethane 84 85 70-130 1	30		1	30-146		70		69	Dichlorodifluoromethane
2-Butanone 114 124 70-130 8 4-Methyl-2-pentanone 94 88 70-130 7 2-Hexanone 98 109 70-130 11 Bromochloromethane 84 85 70-130 1	30		1	54-140	Q	147	Q	146	Acetone
4-Methyl-2-pentanone 94 88 70-130 7 2-Hexanone 98 109 70-130 11 Bromochloromethane 84 85 70-130 1	30		4	59-130		108		112	Carbon disulfide
2-Hexanone 98 109 70-130 11 Bromochloromethane 84 85 70-130 1	30		8	70-130		124		114	2-Butanone
Bromochloromethane 84 85 70-130 1	30		7	70-130		88		94	4-Methyl-2-pentanone
	30		11	70-130		109		98	2-Hexanone
	30		1	70-130		85		84	Bromochloromethane
1,2-Dibromoethane 82 89 70-130 8	30		8	70-130		89		82	1,2-Dibromoethane
1,2-Dibromo-3-chloropropane 66 Q 71 68-130 7	30		7	68-130		71	Q	66	1,2-Dibromo-3-chloropropane
Isopropylbenzene 80 84 70-130 5	30		5	70-130		84		80	Isopropylbenzene
1,2,3-Trichlorobenzene 86 88 70-130 2	30		2	70-130		88		86	1,2,3-Trichlorobenzene

Project Name: FORMER PENFIELD

Project Number: 19-072

Lab Number: L1915092

Parameter	LCS %Recovery	Qual	LCSD %Recovery	9 Qual	6Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by EPA 5035 Low - West	tborough Lab Assoc	ciated sample	(s): 05 Batch	n: WG1227500)-3 WG122750	0-4		
1,2,4-Trichlorobenzene	91		95		70-130	4		30
Methyl Acetate	120		123		51-146	2		30
Cyclohexane	101		100		59-142	1		30
1,4-Dioxane	100		106		65-136	6		30
Freon-113	105		105		50-139	0		30
Methyl cyclohexane	86		90		70-130	5		30

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	127	118	70-130
Toluene-d8	100	99	70-130
4-Bromofluorobenzene	96	100	70-130
Dibromofluoromethane	106	105	70-130

Project Name: FORMER PENFIELD

Project Number: 19-072

Lab Number: L1915092

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
/olatile Organics by EPA 5035 Low - Westb	orough Lab Ass	ociated sample(s): 04,08 Bat	ch: WG1227993-3 WG122	7993-4	
Methylene chloride	90		100	70-130	11	30
1,1-Dichloroethane	103		120	70-130	15	30
Chloroform	97		111	70-130	13	30
Carbon tetrachloride	78		94	70-130	19	30
1,2-Dichloropropane	106		124	70-130	16	30
Dibromochloromethane	67	Q	86	70-130	25	30
1,1,2-Trichloroethane	92		108	70-130	16	30
Tetrachloroethene	86		102	70-130	17	30
Chlorobenzene	83		99	70-130	18	30
Trichlorofluoromethane	105		123	70-139	16	30
1,2-Dichloroethane	114		129	70-130	12	30
1,1,1-Trichloroethane	91		108	70-130	17	30
Bromodichloromethane	88		105	70-130	18	30
trans-1,3-Dichloropropene	86		103	70-130	18	30
cis-1,3-Dichloropropene	91		110	70-130	19	30
Bromoform	64	Q	95	70-130	39	Q 30
1,1,2,2-Tetrachloroethane	83		95	70-130	13	30
Benzene	99		112	70-130	12	30
Toluene	89		103	70-130	15	30
Ethylbenzene	89		106	70-130	17	30
Chloromethane	112		122	52-130	9	30
Bromomethane	111		125	57-147	12	30
Vinyl chloride	112		121	67-130	8	30

Project Name: FORMER PENFIELD

Project Number: 19-072

Lab Number: L1915092

arameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
olatile Organics by EPA 5035 Low - Westbo	rough Lab Ass	ociated sample(s	s): 04,08 Bat	ch: WG1227993-3 WG1	227993-4		
Chloroethane	109		128	50-151	16		30
1,1-Dichloroethene	106		116	65-135	9		30
trans-1,2-Dichloroethene	86		104	70-130	19		30
Trichloroethene	93		109	70-130	16		30
1,2-Dichlorobenzene	82		93	70-130	13		30
1,3-Dichlorobenzene	85		94	70-130	10		30
1,4-Dichlorobenzene	84		97	70-130	14		30
Methyl tert butyl ether	91		104	66-130	13		30
p/m-Xylene	91		106	70-130	15		30
o-Xylene	89		101	70-130	13		30
cis-1,2-Dichloroethene	95		102	70-130	7		30
Styrene	89		102	70-130	14		30
Dichlorodifluoromethane	70		79	30-146	12		30
Acetone	153	Q	133	54-140	14		30
Carbon disulfide	84		95	59-130	12		30
2-Butanone	123		125	70-130	2		30
4-Methyl-2-pentanone	90		108	70-130	18		30
2-Hexanone	99		113	70-130	13		30
Bromochloromethane	89		102	70-130	14		30
1,2-Dibromoethane	85		96	70-130	12		30
1,2-Dibromo-3-chloropropane	62	Q	87	68-130	34	Q	30
Isopropylbenzene	82		93	70-130	13		30
1,2,3-Trichlorobenzene	85		98	70-130	14		30

Project Name: FORMER PENFIELD

Project Number: 19-072

Lab Number:

L1915092

Report Date:

04/22/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by EPA 5035 Low - Westbo	rough Lab Asso	ciated sample	(s): 04,08 Ba	tch: WG12	27993-3 WG122	7993-4		
1,2,4-Trichlorobenzene	89		104		70-130	16		30
Methyl Acetate	118		132		51-146	11		30
Cyclohexane	100		118		59-142	17		30
1,4-Dioxane	106		113		65-136	6		30
Freon-113	86		95		50-139	10		30
Methyl cyclohexane	86		99		70-130	14		30

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	125	119	70-130
Toluene-d8	99	101	70-130
4-Bromofluorobenzene	96	97	70-130
Dibromofluoromethane	106	105	70-130

SEMIVOLATILES

Project Name: FORMER PENFIELD Lab Number: L1915092

Project Number: 19-072 Report Date: 04/22/19

SAMPLE RESULTS

Lab ID: L1915092-01 Date Collected: 04/11/19 09:03

Client ID: SP-01 Date Received: 04/12/19

Sample Location: 1714 N. SALINA ST., SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Percent Solids:

87%

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8270D Extraction Date: 04/18/19 09:26

Analytical Date: 04/18/19 16:46
Analyst: JG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westbo	rough Lab					
Acenaphthene	ND		ug/kg	150	20.	1
Fluoranthene	120		ug/kg	110	22.	1
Benzo(a)anthracene	76	J	ug/kg	110	21.	1
Benzo(a)pyrene	73	J	ug/kg	150	46.	1
Benzo(b)fluoranthene	90	J	ug/kg	110	32.	1
Benzo(k)fluoranthene	35	J	ug/kg	110	30.	1
Chrysene	71	J	ug/kg	110	20.	1
Anthracene	ND		ug/kg	110	37.	1
Benzo(ghi)perylene	43	J	ug/kg	150	22.	1
Fluorene	ND		ug/kg	190	18.	1
Phenanthrene	69	J	ug/kg	110	23.	1
Dibenzo(a,h)anthracene	ND		ug/kg	110	22.	1
Indeno(1,2,3-cd)pyrene	51	J	ug/kg	150	26.	1
Pyrene	110		ug/kg	110	19.	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	78		23-120	
2-Fluorobiphenyl	71		30-120	
4-Terphenyl-d14	61		18-120	

Project Name: FORMER PENFIELD Lab Number: L1915092

Project Number: 19-072 Report Date: 04/22/19

SAMPLE RESULTS

Lab ID: L1915092-02 Date Collected: 04/11/19 09:06

Client ID: SP-02 Date Received: 04/12/19

Sample Location: 1714 N. SALINA ST., SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8270D Extraction Date: 04/18/19 09:26

Analytical Date: 04/18/19 17:11

Analyst: JG Percent Solids: 86%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - Westborough Lab							
Acenaphthene	80	J	ug/kg	150	20.	1	
Fluoranthene	640		ug/kg	110	22.	1	
Benzo(a)anthracene	370		ug/kg	110	22.	1	
Benzo(a)pyrene	340		ug/kg	150	47.	1	
Benzo(b)fluoranthene	440		ug/kg	110	32.	1	
Benzo(k)fluoranthene	130		ug/kg	110	31.	1	
Chrysene	360		ug/kg	110	20.	1	
Anthracene	160		ug/kg	110	37.	1	
Benzo(ghi)perylene	190		ug/kg	150	22.	1	
Fluorene	83	J	ug/kg	190	18.	1	
Phenanthrene	720		ug/kg	110	23.	1	
Dibenzo(a,h)anthracene	48	J	ug/kg	110	22.	1	
Indeno(1,2,3-cd)pyrene	210		ug/kg	150	27.	1	
Pyrene	640		ug/kg	110	19.	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	78	23-120	
2-Fluorobiphenyl	75	30-120	
4-Terphenyl-d14	59	18-120	

Project Name: FORMER PENFIELD Lab Number: L1915092

Project Number: 19-072 Report Date: 04/22/19

SAMPLE RESULTS

Lab ID: L1915092-03 D Date Collected: 04/11/19 14:48

Client ID: SB-01 Date Received: 04/12/19

Sample Location: 1714 N. SALINA ST., SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Analytical Date:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8270D Extraction Date: 04/18/19 09:26

Analyst: ALS Percent Solids: 82%

04/19/19 11:42

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS	6 - Westborough Lab					
Acenaphthene	1400		ug/kg	800	100	5
Fluoranthene	14000		ug/kg	600	120	5
Benzo(a)anthracene	7300		ug/kg	600	110	5
Benzo(a)pyrene	6400		ug/kg	800	240	5
Benzo(b)fluoranthene	8200		ug/kg	600	170	5
Benzo(k)fluoranthene	2800		ug/kg	600	160	5
Chrysene	7000		ug/kg	600	100	5
Anthracene	2400		ug/kg	600	200	5
Benzo(ghi)perylene	3400		ug/kg	800	120	5
Fluorene	1200		ug/kg	1000	98.	5
Phenanthrene	12000		ug/kg	600	120	5
Dibenzo(a,h)anthracene	760		ug/kg	600	120	5
Indeno(1,2,3-cd)pyrene	3700		ug/kg	800	140	5
Pyrene	12000		ug/kg	600	100	5

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	71		23-120	
2-Fluorobiphenyl	72		30-120	
4-Terphenyl-d14	61		18-120	

Project Name: FORMER PENFIELD Lab Number: L1915092

Project Number: 19-072 Report Date: 04/22/19

SAMPLE RESULTS

Lab ID: L1915092-04 Date Collected: 04/11/19 15:41

Client ID: SB-03 Date Received: 04/12/19

Sample Location: 1714 N. SALINA ST., SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8270D Extraction Date: 04/18/19 09:26

Analytical Date: 04/18/19 18:02

Analyst: JG
Percent Solids: 82%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS -	Westborough Lab						
Acenaphthene	ND		ug/kg	160	21.	1	
Fluoranthene	ND		ug/kg	120	23.	1	
Benzo(a)anthracene	ND		ug/kg	120	23.	1	
Benzo(a)pyrene	ND		ug/kg	160	49.	1	
Benzo(b)fluoranthene	ND		ug/kg	120	34.	1	
Benzo(k)fluoranthene	ND		ug/kg	120	32.	1	
Chrysene	ND		ug/kg	120	21.	1	
Anthracene	ND		ug/kg	120	39.	1	
Benzo(ghi)perylene	ND		ug/kg	160	24.	1	
Fluorene	ND		ug/kg	200	20.	1	
Phenanthrene	ND		ug/kg	120	24.	1	
Dibenzo(a,h)anthracene	ND		ug/kg	120	23.	1	
Indeno(1,2,3-cd)pyrene	ND		ug/kg	160	28.	1	
Pyrene	ND		ug/kg	120	20.	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	84	23-120	
2-Fluorobiphenyl	76	30-120	
4-Terphenyl-d14	69	18-120	

Project Name: FORMER PENFIELD Lab Number: L1915092

Project Number: 19-072 Report Date: 04/22/19

SAMPLE RESULTS

Lab ID: L1915092-05 Date Collected: 04/11/19 16:02

Client ID: SB-04 Date Received: 04/12/19

Sample Location: 1714 N. SALINA ST., SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8270D Extraction Date: 04/18/19 09:26

Analytical Date: 04/18/19 18:28

Analyst: JG Percent Solids: 76%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS	- Westborough Lab						
Acenaphthene	ND		ug/kg	170	22.	1	
Fluoranthene	27	J	ug/kg	130	25.	1	
Benzo(a)anthracene	ND		ug/kg	130	24.	1	
Benzo(a)pyrene	ND		ug/kg	170	53.	1	
Benzo(b)fluoranthene	ND		ug/kg	130	36.	1	
Benzo(k)fluoranthene	ND		ug/kg	130	34.	1	
Chrysene	ND		ug/kg	130	22.	1	
Anthracene	ND		ug/kg	130	42.	1	
Benzo(ghi)perylene	ND		ug/kg	170	25.	1	
Fluorene	ND		ug/kg	220	21.	1	
Phenanthrene	ND		ug/kg	130	26.	1	
Dibenzo(a,h)anthracene	ND		ug/kg	130	25.	1	
Indeno(1,2,3-cd)pyrene	ND		ug/kg	170	30.	1	
Pyrene	25	J	ug/kg	130	21.	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	•
Nitrobenzene-d5	81	23-120	
2-Fluorobiphenyl	76	30-120	
4-Terphenyl-d14	64	18-120	

Project Name: FORMER PENFIELD Lab Number: L1915092

Project Number: 19-072 Report Date: 04/22/19

SAMPLE RESULTS

Lab ID: L1915092-06 Date Collected: 04/11/19 16:14

Client ID: SB-05 Date Received: 04/12/19
Sample Location: 1714 N. SALINA ST., SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 1,8270D Extraction Date: 04/18/19 09:26
Analytical Date: 04/18/19 18:53

Analyst: JG Percent Solids: 78%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS	- Westborough Lab						
Acenaphthene	120	J	ug/kg	170	22.	1	
Fluoranthene	5300		ug/kg	120	24.	1	
Benzo(a)anthracene	3400		ug/kg	120	24.	1	
Benzo(a)pyrene	4300		ug/kg	170	51.	1	
Benzo(b)fluoranthene	5400		ug/kg	120	35.	1	
Benzo(k)fluoranthene	1800		ug/kg	120	34.	1	
Chrysene	3600		ug/kg	120	22.	1	
Anthracene	950		ug/kg	120	41.	1	
Benzo(ghi)perylene	2800		ug/kg	170	25.	1	
Fluorene	250		ug/kg	210	20.	1	
Phenanthrene	2700		ug/kg	120	25.	1	
Dibenzo(a,h)anthracene	620		ug/kg	120	24.	1	
Indeno(1,2,3-cd)pyrene	3100		ug/kg	170	29.	1	
Pyrene	5300		ug/kg	120	21.	1	

Surrogate	% Recovery	Accep Qualifier Crite	
Nitrobenzene-d5	81	23	-120
2-Fluorobiphenyl	68	30	-120
4-Terphenyl-d14	57	18	-120

Project Name: FORMER PENFIELD Lab Number: L1915092

Project Number: 19-072 Report Date: 04/22/19

SAMPLE RESULTS

Lab ID: L1915092-07 D Date Collected: 04/11/19 16:54

Client ID: SB-06 Date Received: 04/12/19

Sample Location: 1714 N. SALINA ST., SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8270D Extraction Date: 04/18/19 09:26
Analytical Date: 04/19/19 12:06

Analyst: ALS Percent Solids: 86%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - Westborough Lab							
Acenaphthene	210	J	ug/kg	760	99.	5	
Fluoranthene	11000		ug/kg	570	110	5	
Benzo(a)anthracene	9200		ug/kg	570	110	5	
Benzo(a)pyrene	11000		ug/kg	760	230	5	
Benzo(b)fluoranthene	15000		ug/kg	570	160	5	
Benzo(k)fluoranthene	3800		ug/kg	570	150	5	
Chrysene	7800		ug/kg	570	99.	5	
Anthracene	1400		ug/kg	570	190	5	
Benzo(ghi)perylene	5300		ug/kg	760	110	5	
Fluorene	380	J	ug/kg	960	93.	5	
Phenanthrene	2500		ug/kg	570	120	5	
Dibenzo(a,h)anthracene	1300		ug/kg	570	110	5	
Indeno(1,2,3-cd)pyrene	5900		ug/kg	760	130	5	
Pyrene	12000		ug/kg	570	95.	5	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	80		23-120	
2-Fluorobiphenyl	77		30-120	
4-Terphenyl-d14	57		18-120	

Project Name: FORMER PENFIELD Lab Number: L1915092

Project Number: 19-072 Report Date: 04/22/19

SAMPLE RESULTS

Lab ID: L1915092-08 Date Collected: 04/11/19 17:04

Client ID: SB-08 Date Received: 04/12/19

Sample Location: 1714 N. SALINA ST., SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Analytical Date:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8270D Extraction Date: 04/18/19 09:26

Analyst: JG Percent Solids: 92%

04/18/19 19:44

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS - Westborough Lab									
Acenaphthene	ND		ug/kg	140	19.	1			
Fluoranthene	370		ug/kg	110	21.	1			
Benzo(a)anthracene	170		ug/kg	110	20.	1			
Benzo(a)pyrene	150		ug/kg	140	44.	1			
Benzo(b)fluoranthene	190		ug/kg	110	30.	1			
Benzo(k)fluoranthene	64	J	ug/kg	110	29.	1			
Chrysene	160		ug/kg	110	19.	1			
Anthracene	63	J	ug/kg	110	35.	1			
Benzo(ghi)perylene	84	J	ug/kg	140	21.	1			
Fluorene	19	J	ug/kg	180	18.	1			
Phenanthrene	250		ug/kg	110	22.	1			
Dibenzo(a,h)anthracene	ND		ug/kg	110	21.	1			
Indeno(1,2,3-cd)pyrene	96	J	ug/kg	140	25.	1			
Pyrene	290		ug/kg	110	18.	1			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	81		23-120	
2-Fluorobiphenyl	74		30-120	
4-Terphenyl-d14	55		18-120	

L1915092

Lab Number:

Project Name: FORMER PENFIELD

Project Number: 19-072 Report Date: 04/22/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Extraction Method: EPA 3546
Analytical Date: 04/18/19 21:46 Extraction Date: 04/18/19 09:26

Analyst: JG

arameter	Result	Qualifier	Units	RL		MDL
emivolatile Organics by GC/MS	- Westboroug	h Lab for s	ample(s):	01-08	Batch:	WG1227727-1
Acenaphthene	ND		ug/kg	130		17.
Fluoranthene	ND		ug/kg	99		19.
Benzo(a)anthracene	ND		ug/kg	99		19.
Benzo(a)pyrene	ND		ug/kg	130		40.
Benzo(b)fluoranthene	ND		ug/kg	99		28.
Benzo(k)fluoranthene	ND		ug/kg	99		26.
Chrysene	ND		ug/kg	99		17.
Anthracene	ND		ug/kg	99		32.
Benzo(ghi)perylene	ND		ug/kg	130		19.
Fluorene	ND		ug/kg	160		16.
Phenanthrene	ND		ug/kg	99		20.
Dibenzo(a,h)anthracene	ND		ug/kg	99		19.
Indeno(1,2,3-cd)pyrene	ND		ug/kg	130		23.
Pyrene	ND		ug/kg	99		16.

		Acceptance	
Surrogate	%Recovery	Qualifier Criteria	
Nitrobenzene-d5	74	23-120	
2-Fluorobiphenyl	75	30-120	
4-Terphenyl-d14	97	18-120	

Lab Control Sample Analysis Batch Quality Control

Project Name: FORMER PENFIELD

Project Number: 19-072

Lab Number: L1915092

Report Date:

04/22/19

arameter	LCS %Recovery	Qual	LCSD %Recove	ry	% Qual	Recovery Limits	RPD	Qual	RPD Limits	
emivolatile Organics by GC/MS - Westboro	ugh Lab Associ	ated sample(s):	01-08 i	Batch:	WG122772	7-2 WG12277	727-3			
Acenaphthene	90		94			31-137	4		50	
Fluoranthene	80		83			40-140	4		50	
Benzo(a)anthracene	91		96			40-140	5		50	
Benzo(a)pyrene	97		104			40-140	7		50	
Benzo(b)fluoranthene	90		97			40-140	7		50	
Benzo(k)fluoranthene	100		106			40-140	6		50	
Chrysene	87		92			40-140	6		50	
Anthracene	80		85			40-140	6		50	
Benzo(ghi)perylene	81		83			40-140	2		50	
Fluorene	89		94			40-140	5		50	
Phenanthrene	76		77			40-140	1		50	
Dibenzo(a,h)anthracene	79		86			40-140	8		50	
Indeno(1,2,3-cd)pyrene	78		83			40-140	6		50	
Pyrene	80		81			35-142	1		50	

Surrogate	LCS	LCSD	Acceptance
	%Recovery Qual	%Recovery Qual	Criteria
Nitrobenzene-d5	69	84	23-120
2-Fluorobiphenyl	75	79	30-120
4-Terphenyl-d14	80	83	18-120

PCBS

Project Name: FORMER PENFIELD Lab Number: L1915092

Project Number: 19-072 Report Date: 04/22/19

SAMPLE RESULTS

Lab ID: L1915092-01 Date Collected: 04/11/19 09:03

Client ID: SP-01 Date Received: 04/12/19
Sample Location: 1714 N. SALINA ST., SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 1,8082A Extraction Date: 04/18/19 06:15
Analytical Date: 04/19/19 01:32 Cleanup Method: EPA 3665A

Applyot: 04/18/19

Analyst: HT Cleanup Date: 04/18/19
Percent Solids: 87% Cleanup Method: EPA 3660B
Cleanup Date: 04/18/19

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - V	Vestborough Lab						
Aroclor 1016	ND		ug/kg	38.0	3.38	1	Α
Aroclor 1221	ND		ug/kg	38.0	3.81	1	Α
Aroclor 1232	ND		ug/kg	38.0	8.06	1	Α
Aroclor 1242	ND		ug/kg	38.0	5.13	1	Α
Aroclor 1248	ND		ug/kg	38.0	5.71	1	Α
Aroclor 1254	ND		ug/kg	38.0	4.16	1	Α
Aroclor 1260	ND		ug/kg	38.0	7.03	1	Α
Aroclor 1262	ND		ug/kg	38.0	4.83	1	Α
Aroclor 1268	ND		ug/kg	38.0	3.94	1	Α
PCBs, Total	ND		ug/kg	38.0	3.38	1	Α

Surrogato	9/ Bassyany	Ovalifian	Acceptance	Caluman
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	62		30-150	Α
Decachlorobiphenyl	75		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	63		30-150	В
Decachlorobiphenyl	89		30-150	В

Project Name: FORMER PENFIELD Lab Number: L1915092

Project Number: 19-072 Report Date: 04/22/19

SAMPLE RESULTS

Lab ID: L1915092-02 Date Collected: 04/11/19 09:06

Client ID: SP-02 Date Received: 04/12/19

Sample Location: 1714 N. SALINA ST., SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8082A Extraction Date: 04/18/19 06:15
Analytical Date: 04/19/19 01:45 Cleanup Method: EPA 3665A

Analyst: HT Cleanup Date: 04/18/19
Percent Solids: 86% Cleanup Method: EPA 3660B
Cleanup Date: 04/18/19

Parameter	Result	Qualifier	Units	RL	MDL	IDL Dilution Factor	
Polychlorinated Biphenyls by G	C - Westborough Lab						
Aroclor 1016	ND		ug/kg	37.3	3.31	1	Α
Aroclor 1221	ND		ug/kg	37.3	3.74	1	Α
Aroclor 1232	ND		ug/kg	37.3	7.91	1	Α
Aroclor 1242	ND		ug/kg	37.3	5.03	1	Α
Aroclor 1248	ND		ug/kg	37.3	5.59	1	Α
Aroclor 1254	ND		ug/kg	37.3	4.08	1	Α
Aroclor 1260	ND		ug/kg	37.3	6.89	1	Α
Aroclor 1262	ND		ug/kg	37.3	4.74	1	Α
Aroclor 1268	ND		ug/kg	37.3	3.86	1	Α
PCBs, Total	ND		ug/kg	37.3	3.31	1	Α

Surrogata	0/ Danassams	Ovelities	Acceptance	0.1
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	68		30-150	Α
Decachlorobiphenyl	83		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	67		30-150	В
Decachlorobiphenyl	97		30-150	В

Project Name: Lab Number: FORMER PENFIELD L1915092

Project Number: 19-072 **Report Date:** 04/22/19

SAMPLE RESULTS

Lab ID: Date Collected: 04/11/19 14:48 L1915092-03

Date Received: Client ID: 04/12/19 SB-01 Field Prep:

Sample Location: 1714 N. SALINA ST., SYRACUSE, NY Not Specified

Sample Depth:

Extraction Method: EPA 3546 Matrix: Soil **Extraction Date:** 04/18/19 06:15 Analytical Method: 1,8082A Cleanup Method: EPA 3665A Analytical Date: 04/19/19 01:57

Cleanup Date: 04/18/19 Analyst: HT Cleanup Method: EPA 3660B 82% Percent Solids: Cleanup Date: 04/18/19

Parameter	Result	Result Qualifier		RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC	- Westborough Lab						
Aroclor 1016	ND		ug/kg	40.1	3.56	1	Α
Aroclor 1221	ND		ug/kg	40.1	4.02	1	Α
Aroclor 1232	ND		ug/kg	40.1	8.49	1	Α
Aroclor 1242	ND		ug/kg	40.1	5.40	1	Α
Aroclor 1248	ND		ug/kg	40.1	6.01	1	Α
Aroclor 1254	ND		ug/kg	40.1	4.38	1	Α
Aroclor 1260	ND		ug/kg	40.1	7.40	1	Α
Aroclor 1262	ND		ug/kg	40.1	5.09	1	Α
Aroclor 1268	4.22	J	ug/kg	40.1	4.15	1	Α
PCBs, Total	4.22	J	ug/kg	40.1	3.56	1	Α

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	52		30-150	Α
Decachlorobiphenyl	68		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	53		30-150	В
Decachlorobiphenyl	93		30-150	В

04/18/19

Cleanup Date:

Project Name: FORMER PENFIELD Lab Number: L1915092

Project Number: 19-072 Report Date: 04/22/19

SAMPLE RESULTS

Lab ID: L1915092-04 Date Collected: 04/11/19 15:41

Client ID: SB-03 Date Received: 04/12/19
Sample Location: 1714 N. SALINA ST., SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8082A Extraction Date: 04/18/19 06:15
Analytical Date: 04/19/19 02:09 Cleanup Method: EPA 3665A

Analytical Date: 04/19/19 02:09

Analyst: HT

Percent Solids: 82%

Cleanup Method: EPA 3665A

Cleanup Date: 04/18/19

Cleanup Method: EPA 3660B

Qualifier RL MDL Result Units **Dilution Factor** Column **Parameter** Polychlorinated Biphenyls by GC - Westborough Lab Aroclor 1016 ND ug/kg 40.4 3.59 1 Α Aroclor 1221 ND ug/kg 40.4 4.05 Α Aroclor 1232 ND ug/kg 40.4 8.56 1 Α ND 1 Aroclor 1242 ug/kg 40.4 5.44 Α Aroclor 1248 ND ug/kg 40.4 6.06 1 Α ND Aroclor 1254 ug/kg 40.4 4.42 1 Α Aroclor 1260 ND 40.4 7.46 1 Α ug/kg Aroclor 1262 ND 40.4 5.13 1 Α ug/kg Aroclor 1268 ND 40.4 1 ug/kg 4.18 Α PCBs, Total ND 40.4 3.59 1 Α ug/kg

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	59		30-150	Α
Decachlorobiphenyl	62		30-150	A
2,4,5,6-Tetrachloro-m-xylene	54		30-150	В
Decachlorobiphenyl	67		30-150	В

Project Name: FORMER PENFIELD Lab Number: L1915092

Project Number: 19-072 Report Date: 04/22/19

SAMPLE RESULTS

Lab ID: L1915092-05 Date Collected: 04/11/19 16:02

Client ID: SB-04 Date Received: 04/12/19
Sample Location: 1714 N. SALINA ST., SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8082A Extraction Date: 04/18/19 06:15
Analytical Date: 04/19/19 02:21 Cleanup Method: EPA 3665A

Analytical Date: 04/19/19 02:21 Cleanup Method: EPA 3665A
Analyst: HT Cleanup Date: 04/18/19
Percent Solids: 76% Cleanup Method: EPA 3660B
Cleanup Date: 04/18/19

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - We	estborough Lab						
Aroclor 1016	ND		ug/kg	42.1	3.74	1	Α
Aroclor 1221	ND		ug/kg	42.1	4.22	1	Α
Aroclor 1232	ND		ug/kg	42.1	8.92	1	Α
Aroclor 1242	ND		ug/kg	42.1	5.67	1	А
Aroclor 1248	ND		ug/kg	42.1	6.31	1	А
Aroclor 1254	ND		ug/kg	42.1	4.60	1	Α
Aroclor 1260	ND		ug/kg	42.1	7.78	1	Α
Aroclor 1262	ND		ug/kg	42.1	5.34	1	Α
Aroclor 1268	ND		ug/kg	42.1	4.36	1	Α
PCBs, Total	ND		ug/kg	42.1	3.74	1	Α

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	52		30-150	Α
Decachlorobiphenyl	51		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	52		30-150	В
Decachlorobiphenyl	58		30-150	В

Project Name: Lab Number: FORMER PENFIELD L1915092

Project Number: 19-072 **Report Date:** 04/22/19

SAMPLE RESULTS

Lab ID: Date Collected: 04/11/19 16:14 L1915092-06

Date Received: Client ID: 04/12/19 **SB-05** Sample Location: Field Prep:

1714 N. SALINA ST., SYRACUSE, NY Not Specified

Sample Depth:

Extraction Method: EPA 3546 Matrix: Soil **Extraction Date:** 04/18/19 06:15 1,8082A Analytical Method: Cleanup Method: EPA 3665A Analytical Date: 04/19/19 02:34

Cleanup Date: 04/18/19 Analyst: HT Cleanup Method: EPA 3660B 78% Percent Solids: Cleanup Date: 04/18/19

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC -	Westborough Lab						
Aroclor 1016	ND		ug/kg	40.8	3.63	1	А
Aroclor 1221	ND		ug/kg	40.8	4.09	1	Α
Aroclor 1232	ND		ug/kg	40.8	8.66	1	Α
Aroclor 1242	ND		ug/kg	40.8	5.51	1	Α
Aroclor 1248	ND		ug/kg	40.8	6.13	1	Α
Aroclor 1254	ND		ug/kg	40.8	4.47	1	Α
Aroclor 1260	ND		ug/kg	40.8	7.55	1	В
Aroclor 1262	ND		ug/kg	40.8	5.19	1	Α
Aroclor 1268	ND		ug/kg	40.8	4.23	1	В
PCBs, Total	ND		ug/kg	40.8	3.63	1	В

O	a. =		Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	48		30-150	Α
Decachlorobiphenyl	57		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	48		30-150	В
Decachlorobiphenyl	74		30-150	В

Project Name: Lab Number: FORMER PENFIELD L1915092

Project Number: 19-072 **Report Date:** 04/22/19

SAMPLE RESULTS

Lab ID: Date Collected: 04/11/19 16:54 L1915092-07

Date Received: Client ID: 04/12/19 **SB-06** Field Prep:

Sample Location: 1714 N. SALINA ST., SYRACUSE, NY Not Specified

Sample Depth:

Extraction Method: EPA 3546 Matrix: Soil **Extraction Date:** 04/18/19 06:15 Analytical Method: 1,8082A Cleanup Method: EPA 3665A Analytical Date: 04/19/19 02:46

Cleanup Date: 04/18/19 Analyst: HT Cleanup Method: EPA 3660B 86% Percent Solids: Cleanup Date: 04/18/19

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - Wes	tborough Lab						
Aroclor 1016	ND		ug/kg	36.7	3.26	1	Α
Aroclor 1221	ND		ug/kg	36.7	3.68	1	Α
Aroclor 1232	ND		ug/kg	36.7	7.78	1	А
Aroclor 1242	ND		ug/kg	36.7	4.94	1	Α
Aroclor 1248	ND		ug/kg	36.7	5.50	1	Α
Aroclor 1254	ND		ug/kg	36.7	4.01	1	Α
Aroclor 1260	ND		ug/kg	36.7	6.78	1	Α
Aroclor 1262	ND		ug/kg	36.7	4.66	1	Α
Aroclor 1268	ND		ug/kg	36.7	3.80	1	А
PCBs, Total	ND		ug/kg	36.7	3.26	1	Α

Currente	0/ 8	0	Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	43		30-150	Α
Decachlorobiphenyl	55		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	42		30-150	В
Decachlorobiphenyl	74		30-150	В

Project Name: FORMER PENFIELD Lab Number: L1915092

Project Number: 19-072 Report Date: 04/22/19

SAMPLE RESULTS

Lab ID: L1915092-08 Date Collected: 04/11/19 17:04

Client ID: SB-08 Date Received: 04/12/19
Sample Location: 1714 N. SALINA ST., SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8082A Extraction Date: 04/19/19 04:13

Analytical Date: 04/19/19 19:48 Cleanup Method: EPA 3665A
Analyst: WR Cleanup Date: 04/19/19

Percent Solids: 92% Cleanup Method: EPA 3660B Cleanup Date: 04/19/19

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column	
Polychlorinated Biphenyls by GC - Westborough Lab								
Aroclor 1016	ND		ug/kg	35.2	3.12	1	Α	
Aroclor 1221	ND		ug/kg	35.2	3.52	1	Α	
Aroclor 1232	ND		ug/kg	35.2	7.45	1	Α	
Aroclor 1242	ND		ug/kg	35.2	4.74	1	Α	
Aroclor 1248	ND		ug/kg	35.2	5.27	1	Α	
Aroclor 1254	ND		ug/kg	35.2	3.84	1	Α	
Aroclor 1260	ND		ug/kg	35.2	6.50	1	Α	
Aroclor 1262	ND		ug/kg	35.2	4.46	1	Α	
Aroclor 1268	ND		ug/kg	35.2	3.64	1	Α	
PCBs, Total	ND		ug/kg	35.2	3.12	1	Α	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	71		30-150	A
Decachlorobiphenyl	67		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	76		30-150	В
Decachlorobiphenyl	73		30-150	В

L1915092

Lab Number:

Project Name: FORMER PENFIELD

Report Date: Project Number: 19-072 04/22/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8082A Analytical Date: 04/19/19 00:55

Analyst: HT

Extraction Method: EPA 3546 04/18/19 06:15 **Extraction Date:** Cleanup Method: EPA 3665A Cleanup Date: 04/18/19 Cleanup Method: EPA 3660B Cleanup Date: 04/18/19

Parameter	Result	Qualifier	Units	RL		MDL	Column
Polychlorinated Biphenyls by GC	- Westboroug	h Lab for s	ample(s):	01-07	Batch:	WG12	27629-1
Aroclor 1016	ND		ug/kg	32.0		2.84	А
Aroclor 1221	ND		ug/kg	32.0		3.20	Α
Aroclor 1232	ND		ug/kg	32.0		6.78	Α
Aroclor 1242	ND		ug/kg	32.0		4.31	Α
Aroclor 1248	ND		ug/kg	32.0		4.80	Α
Aroclor 1254	ND		ug/kg	32.0		3.50	Α
Aroclor 1260	ND		ug/kg	32.0		5.91	Α
Aroclor 1262	ND		ug/kg	32.0		4.06	Α
Aroclor 1268	ND		ug/kg	32.0		3.31	Α
PCBs, Total	ND		ug/kg	32.0		2.84	Α

		A	Acceptano	е
Surrogate	%Recovery Q	ualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	72		30-150	Α
Decachlorobiphenyl	90		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	73		30-150	В
Decachlorobiphenyl	95		30-150	В

L1915092

Project Name: FORMER PENFIELD

Report Date: Project Number: 19-072 04/22/19

Lab Number:

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8082A Analytical Date: 04/19/19 03:13

Analyst: JM

Extraction Method: EPA 3546 04/18/19 14:26 **Extraction Date:** Cleanup Method: EPA 3665A Cleanup Date: 04/19/19 Cleanup Method: EPA 3660B Cleanup Date: 04/19/19

Parameter	Result	Qualifier Units	RL	MDL	Column
Polychlorinated Biphenyls by	GC - Westborough	Lab for sample(s):	08 Batch:	WG1227833	3-1
Aroclor 1016	ND	ug/kg	31.7	2.82	Α
Aroclor 1221	ND	ug/kg	31.7	3.18	Α
Aroclor 1232	ND	ug/kg	31.7	6.72	Α
Aroclor 1242	ND	ug/kg	31.7	4.28	Α
Aroclor 1248	ND	ug/kg	31.7	4.76	А
Aroclor 1254	ND	ug/kg	31.7	3.47	Α
Aroclor 1260	ND	ug/kg	31.7	5.86	Α
Aroclor 1262	ND	ug/kg	31.7	4.03	Α
Aroclor 1268	ND	ug/kg	31.7	3.29	Α
PCBs, Total	ND	ug/kg	31.7	2.82	Α
1 0D3, 10tal	ND	ug/kg	31.7	2.02	

		A	Acceptano	e
Surrogate	%Recovery (Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	72		30-150	Α
Decachlorobiphenyl	87		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	72		30-150	В
Decachlorobiphenyl	70		30-150	В

Lab Control Sample Analysis Batch Quality Control

Project Name: FORMER PENFIELD

Lab Number:

L1915092

04/22/19

Project Number: 19-072 Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Polychlorinated Biphenyls by GC - Westboro	ugh Lab Associa	ated sample(s)	: 01-07 Batch	: WG122	7629-2 WG12276	29-3			
Aroclor 1016	68		58		40-140	16		50	Α
Aroclor 1260	69		60		40-140	14		50	А

Surrogate	LCS %Recovery C	LCSD Qual %Recovery Qua	Acceptance Criteria Column
2,4,5,6-Tetrachloro-m-xylene	74	64	30-150 A
Decachlorobiphenyl	93	82	30-150 A
2,4,5,6-Tetrachloro-m-xylene	74	64	30-150 B
Decachlorobiphenyl	94	84	30-150 B

Lab Control Sample Analysis Batch Quality Control

Project Name: FORMER PENFIELD

Lab Number:

L1915092

Project Number: 19-072

Report Date:

04/22/19

	LCS		LCSD	9	%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
Polychlorinated Biphenyls by GC - Westb	orough Lab Associa	ited sample(s):	08 Batch:	WG1227833-2	WG1227833-3				
Aroclor 1016	83		76		40-140	9		50	Α
Aroclor 1260	79		70		40-140	12		50	Α

Surrogate	LCS %Recovery Q	LCSD ual %Recovery Qual	Acceptance Criteria Column
2,4,5,6-Tetrachloro-m-xylene	78	71	30-150 A
Decachlorobiphenyl	92	84	30-150 A
2,4,5,6-Tetrachloro-m-xylene	78	74	30-150 B
Decachlorobiphenyl	82	72	30-150 B

METALS

04/11/19 09:03

Date Collected:

Project Name:FORMER PENFIELDLab Number:L1915092Project Number:19-072Report Date:04/22/19

SAMPLE RESULTS

Lab ID: L1915092-01

Client ID: SP-01 Date Received: 04/12/19
Sample Location: 1714 N. SALINA ST., SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil
Percent Solids: 87%

01 /0					Dilution	Date	Date	Prep	Analytical	
Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
sfield Lab										
4.45		mg/kg	0.457	0.095	1	04/17/19 21:05	04/19/19 00:52	EPA 3050B	1,6010D	AB
71.1		mg/kg	0.457	0.080	1	04/17/19 21:05	04/19/19 00:52	EPA 3050B	1,6010D	AB
0.238	J	mg/kg	0.457	0.045	1	04/17/19 21:05	04/19/19 00:52	EPA 3050B	1,6010D	AB
10.6		mg/kg	0.457	0.044	1	04/17/19 21:05	04/19/19 00:52	EPA 3050B	1,6010D	AB
60.4		mg/kg	2.28	0.122	1	04/17/19 21:05	04/19/19 00:52	EPA 3050B	1,6010D	AB
0.120		mg/kg	0.073	0.015	1	04/17/19 08:30	04/17/19 13:53	EPA 7471B	1,7471B	GD
ND		mg/kg	0.914	0.118	1	04/17/19 21:05	04/19/19 00:52	EPA 3050B	1,6010D	AB
0.233	J	mg/kg	0.457	0.129	1	04/17/19 21:05	04/19/19 00:52	EPA 3050B	1,6010D	AB
	Result 4.45 71.1 0.238 10.6 60.4 0.120 ND	Result Qualifier Sfield Lab 4.45 71.1 0.238 J 10.6 60.4 0.120 ND	Result Qualifier Units Sfield Lab 4.45 mg/kg 71.1 mg/kg 0.238 J mg/kg 10.6 mg/kg 60.4 mg/kg 0.120 mg/kg ND mg/kg	Result Qualifier Units RL sfield Lab 4.45 mg/kg 0.457 71.1 mg/kg 0.457 0.238 J mg/kg 0.457 10.6 mg/kg 0.457 60.4 mg/kg 2.28 0.120 mg/kg 0.073 ND mg/kg 0.914	Result Qualifier Units RL MDL Sfield Lab 4.45 mg/kg 0.457 0.095 71.1 mg/kg 0.457 0.080 0.238 J mg/kg 0.457 0.045 10.6 mg/kg 0.457 0.044 60.4 mg/kg 2.28 0.122 0.120 mg/kg 0.073 0.015 ND mg/kg 0.914 0.118	Result Qualifier Units RL MDL Dilution Factor Sfield Lab 4.45 mg/kg 0.457 0.095 1 71.1 mg/kg 0.457 0.080 1 0.238 J mg/kg 0.457 0.045 1 10.6 mg/kg 0.457 0.044 1 60.4 mg/kg 2.28 0.122 1 0.120 mg/kg 0.073 0.015 1 ND mg/kg 0.914 0.118 1	Result Qualifier Units RL MDL Dilution Factor Date Prepared Sfield Lab 4.45 mg/kg 0.457 0.095 1 04/17/19 21:05 71.1 mg/kg 0.457 0.080 1 04/17/19 21:05 0.238 J mg/kg 0.457 0.045 1 04/17/19 21:05 10.6 mg/kg 0.457 0.044 1 04/17/19 21:05 60.4 mg/kg 2.28 0.122 1 04/17/19 21:05 0.120 mg/kg 0.073 0.015 1 04/17/19 08:30 ND mg/kg 0.914 0.118 1 04/17/19 21:05	Result Qualifier Units RL MDL Dilution Factor Date Prepared Date Analyzed 8field Lab 4.45 mg/kg 0.457 0.095 1 04/17/19 21:05 04/19/19 00:52 71.1 mg/kg 0.457 0.080 1 04/17/19 21:05 04/19/19 00:52 0.238 J mg/kg 0.457 0.045 1 04/17/19 21:05 04/19/19 00:52 10.6 mg/kg 0.457 0.044 1 04/17/19 21:05 04/19/19 00:52 60.4 mg/kg 2.28 0.122 1 04/17/19 21:05 04/19/19 00:52 0.120 mg/kg 0.073 0.015 1 04/17/19 08:30 04/17/19 13:53 ND mg/kg 0.914 0.118 1 04/17/19 21:05 04/19/19 00:52	Result Qualifier Units RL MDL Dilution Factor Date Prepared Date Analyzed Prep Method 8field Lab 4.45 mg/kg 0.457 0.095 1 04/17/19 21:05 04/19/19 00:52 EPA 3050B 71.1 mg/kg 0.457 0.080 1 04/17/19 21:05 04/19/19 00:52 EPA 3050B 0.238 J mg/kg 0.457 0.045 1 04/17/19 21:05 04/19/19 00:52 EPA 3050B 10.6 mg/kg 0.457 0.044 1 04/17/19 21:05 04/19/19 00:52 EPA 3050B 60.4 mg/kg 2.28 0.122 1 04/17/19 21:05 04/19/19 00:52 EPA 3050B 0.120 mg/kg 0.073 0.015 1 04/17/19 08:30 04/17/19 13:53 EPA 7471B ND mg/kg 0.914 0.118 1 04/17/19 21:05 04/19/19 00:52 EPA 3050B	Result Qualifier Units RL MDL Dilution Factor Date Prepared Date Analyzed Prep Method Analytical Method 4:45 mg/kg 0.457 0.095 1 04/17/19 21:05 04/19/19 00:52 EPA 3050B 1,6010D 71.1 mg/kg 0.457 0.080 1 04/17/19 21:05 04/19/19 00:52 EPA 3050B 1,6010D 0.238 J mg/kg 0.457 0.045 1 04/17/19 21:05 04/19/19 00:52 EPA 3050B 1,6010D 10.6 mg/kg 0.457 0.044 1 04/17/19 21:05 04/19/19 00:52 EPA 3050B 1,6010D 60.4 mg/kg 2.28 0.122 1 04/17/19 21:05 04/19/19 00:52 EPA 3050B 1,6010D 0.120 mg/kg 0.073 0.015 1 04/17/19 08:30 04/17/19 13:53 EPA 7471B 1,7471B ND mg/kg 0.914 0.118 1 04/17/19 21:05 04/19/19 00:52 EPA 3050B 1,6010D

SAMPLE RESULTS

Lab ID: L1915092-02 Date Collected: 04/11/19 09:06

Client ID: SP-02 Date Received: 04/12/19
Sample Location: 1714 N. SALINA ST., SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 86%

Prep Dilution Date Date Analytical Method **Parameter** Qualifier Units Factor **Prepared** Analyzed Method Result RLMDL Analyst Total Metals - Mansfield Lab Arsenic, Total 3.85 mg/kg 0.460 0.096 1 04/17/19 21:05 04/19/19 00:56 EPA 3050B 1,6010D AΒ Barium, Total 124 mg/kg 0.460 0.080 1 04/17/19 21:05 04/19/19 00:56 EPA 3050B 1,6010D ΑB J 1 Cadmium, Total 0.193 mg/kg 0.460 0.045 04/17/19 21:05 04/19/19 00:56 EPA 3050B 1,6010D AΒ 1 Chromium, Total 10.2 mg/kg 0.460 0.044 04/17/19 21:05 04/19/19 00:56 EPA 3050B 1,6010D AΒ 52.8 2.30 0.123 04/17/19 21:05 04/19/19 00:56 EPA 3050B 1,6010D AΒ Lead, Total mg/kg 1 1,7471B Mercury, Total 0.146 0.074 0.016 1 04/17/19 08:30 04/17/19 14:01 EPA 7471B GD mg/kg J Selenium, Total 0.317 mg/kg 0.920 0.119 1 04/17/19 21:05 04/19/19 00:56 EPA 3050B 1,6010D AΒ Silver, Total ND 0.460 0.130 1 04/17/19 21:05 04/19/19 00:56 EPA 3050B 1,6010D ΑB mg/kg

SAMPLE RESULTS

Lab ID: L1915092-03 Date Collected: 04/11/19 14:48

Client ID: SB-01 Date Received: 04/12/19
Sample Location: 1714 N. SALINA ST., SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 82%

Prep Dilution Date Date Analytical Method **Parameter** Result Qualifier Units Factor **Prepared** Analyzed Method RLMDL Analyst Total Metals - Mansfield Lab Arsenic, Total 21.6 mg/kg 0.470 0.098 1 04/17/19 21:05 04/19/19 01:01 EPA 3050B 1,6010D AΒ Barium, Total 399 mg/kg 0.470 0.082 1 04/17/19 21:05 04/19/19 01:01 EPA 3050B 1,6010D ΑB 1 1,6010D Cadmium, Total 0.559 mg/kg 0.470 0.046 04/17/19 21:05 04/19/19 01:01 EPA 3050B AΒ 1 Chromium, Total 11.7 mg/kg 0.470 0.045 04/17/19 21:05 04/19/19 01:01 EPA 3050B 1,6010D AΒ 663 2.35 0.126 04/17/19 21:05 04/19/19 01:01 EPA 3050B 1,6010D AΒ Lead, Total mg/kg 1 1,7471B Mercury, Total 0.861 0.077 0.016 1 04/17/19 08:30 04/17/19 14:03 EPA 7471B GD mg/kg Selenium, Total 0.992 mg/kg 0.940 0.121 1 04/17/19 21:05 04/19/19 01:01 EPA 3050B 1,6010D AΒ Silver, Total J 0.470 0.133 1 04/17/19 21:05 04/19/19 01:01 EPA 3050B 1,6010D ΑB 0.141 mg/kg

04/11/19 15:41

Date Collected:

Project Name:FORMER PENFIELDLab Number:L1915092Project Number:19-072Report Date:04/22/19

SAMPLE RESULTS

Lab ID: L1915092-04

Client ID: SB-03 Date Received: 04/12/19
Sample Location: 1714 N. SALINA ST., SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 82%

i crociit dollas.	0_70					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Man	efiold Lab										
Total Metals - Mail	Sileiu Lab										
Arsenic, Total	19.6		mg/kg	0.474	0.099	1	04/17/19 21:05	04/19/19 01:06	EPA 3050B	1,6010D	AB
Barium, Total	34.0		mg/kg	0.474	0.083	1	04/17/19 21:05	04/19/19 01:06	EPA 3050B	1,6010D	AB
Cadmium, Total	0.247	J	mg/kg	0.474	0.047	1	04/17/19 21:05	04/19/19 01:06	EPA 3050B	1,6010D	AB
Chromium, Total	16.0		mg/kg	0.474	0.046	1	04/17/19 21:05	04/19/19 01:06	EPA 3050B	1,6010D	AB
Lead, Total	38.8		mg/kg	2.37	0.127	1	04/17/19 21:05	04/19/19 01:06	EPA 3050B	1,6010D	AB
Mercury, Total	0.034	J	mg/kg	0.077	0.016	1	04/17/19 08:30	04/17/19 14:05	EPA 7471B	1,7471B	GD
Selenium, Total	0.209	J	mg/kg	0.949	0.122	1	04/17/19 21:05	04/19/19 01:06	EPA 3050B	1,6010D	AB
Silver, Total	ND		mg/kg	0.474	0.134	1	04/17/19 21:05	04/19/19 01:06	EPA 3050B	1,6010D	AB

SAMPLE RESULTS

 Lab ID:
 L1915092-05
 Date Collected:
 04/11/19 16:02

 Client ID:
 SB-04
 Date Received:
 04/12/19

Sample Location: 1714 N. SALINA ST., SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 76%

Prep Dilution Date Date Analytical Method **Parameter** Result Qualifier Units Factor **Prepared** Analyzed Method RLMDL Analyst Total Metals - Mansfield Lab Arsenic, Total 4.81 mg/kg 0.498 0.104 1 04/17/19 21:05 04/19/19 01:57 EPA 3050B 1,6010D AΒ Barium, Total 64.4 mg/kg 0.498 0.087 1 04/17/19 21:05 04/19/19 01:57 EPA 3050B 1,6010D ΑB J 1 1,6010D Cadmium, Total 0.234 mg/kg 0.498 0.049 04/17/19 21:05 04/19/19 01:57 EPA 3050B AΒ 1 Chromium, Total 11.6 mg/kg 0.498 0.048 04/17/19 21:05 04/19/19 01:57 EPA 3050B 1,6010D AΒ 78.6 2.49 0.133 04/17/19 21:05 04/19/19 01:57 EPA 3050B 1,6010D AΒ Lead, Total mg/kg 1 1,7471B Mercury, Total 0.188 0.083 0.017 1 04/17/19 08:30 04/17/19 14:07 EPA 7471B GD mg/kg J Selenium, Total 0.578 mg/kg 0.996 0.128 1 04/17/19 21:05 04/19/19 01:57 EPA 3050B 1,6010D AΒ Silver, Total ND 0.498 0.141 1 04/17/19 21:05 04/19/19 01:57 EPA 3050B 1,6010D ΑB mg/kg

SAMPLE RESULTS

Lab ID: L1915092-06 Date Collected: 04/11/19 16:14

Client ID: SB-05 Date Received: 04/12/19
Sample Location: 1714 N. SALINA ST., SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 78%

Prep Dilution Date Date Analytical Method **Parameter** Result Qualifier Units Factor **Prepared** Analyzed Method RLMDL Analyst Total Metals - Mansfield Lab Arsenic, Total 13.9 mg/kg 0.504 0.105 1 04/17/19 21:05 04/19/19 02:01 EPA 3050B 1,6010D AΒ Barium, Total 156 mg/kg 0.504 0.088 1 04/17/19 21:05 04/19/19 02:01 EPA 3050B 1,6010D ΑB 1 1,6010D Cadmium, Total 0.701 mg/kg 0.504 0.049 04/17/19 21:05 04/19/19 02:01 EPA 3050B AΒ 1 Chromium, Total 20.4 mg/kg 0.504 0.048 04/17/19 21:05 04/19/19 02:01 EPA 3050B 1,6010D AΒ 885 2.52 0.135 04/17/19 21:05 04/19/19 02:01 EPA 3050B 1,6010D AΒ Lead, Total mg/kg 1 1,7471B Mercury, Total 0.461 0.081 0.017 1 04/17/19 08:30 04/17/19 14:12 EPA 7471B GD mg/kg J Selenium, Total 0.979 mg/kg 1.01 0.130 1 04/17/19 21:05 04/19/19 02:01 EPA 3050B 1,6010D AΒ Silver, Total ND 0.504 0.143 1 04/17/19 21:05 04/19/19 02:01 EPA 3050B 1,6010D ΑB mg/kg

SAMPLE RESULTS

 Lab ID:
 L1915092-07
 Date Collected:
 04/11/19 16:54

 Client ID:
 SB-06
 Date Received:
 04/12/19

Sample Location: 1714 N. SALINA ST., SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil
Percent Solids: 86%

Percent Solids: Dilution Date Date Prep Analytical Method **Parameter** Result Qualifier Units Factor **Prepared** Analyzed Method RLMDL Analyst Total Metals - Mansfield Lab Arsenic, Total 10.6 mg/kg 0.443 0.092 1 04/17/19 21:40 04/18/19 10:45 EPA 3050B 1,6010D AΒ Barium, Total 153 mg/kg 0.443 0.077 1 04/17/19 21:40 04/18/19 10:45 EPA 3050B 1,6010D ΑB 1 1,6010D Cadmium, Total 0.478 mg/kg 0.443 0.043 04/17/19 21:40 04/18/19 10:45 EPA 3050B AΒ 1 Chromium, Total 10.8 mg/kg 0.443 0.043 04/17/19 21:40 04/18/19 10:45 EPA 3050B 1,6010D AΒ 297 2.21 04/17/19 21:40 04/18/19 10:45 EPA 3050B 1,6010D AΒ Lead, Total mg/kg 0.119 1 1,7471B Mercury, Total 0.431 0.073 0.015 1 04/17/19 08:30 04/17/19 14:14 EPA 7471B GD mg/kg Selenium, Total 1.07 mg/kg 0.886 0.114 1 04/17/19 21:40 04/18/19 10:45 EPA 3050B 1,6010D AΒ Silver, Total 0.150 J 0.443 0.125 1 04/17/19 21:40 04/18/19 10:45 EPA 3050B 1,6010D ΑB mg/kg

SAMPLE RESULTS

 Lab ID:
 L1915092-08
 Date Collected:
 04/11/19 17:04

 Client ID:
 SB-08
 Date Received:
 04/12/19

Client ID: SB-08 Date Received: 04/12/19
Sample Location: 1714 N. SALINA ST., SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil
Percent Solids: 92%

Percent Solids:	92 /0					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Man	sfield Lab										
Arsenic, Total	2.44		mg/kg	0.423	0.088	1	04/17/19 21:40	04/18/19 15:32	EPA 3050B	1,6010D	AB
Barium, Total	82.5		mg/kg	0.423	0.074	1	04/17/19 21:40	04/18/19 15:32	EPA 3050B	1,6010D	AB
Cadmium, Total	0.270	J	mg/kg	0.423	0.041	1	04/17/19 21:40	04/18/19 15:32	EPA 3050B	1,6010D	AB
Chromium, Total	10.2		mg/kg	0.423	0.041	1	04/17/19 21:40	04/18/19 15:32	EPA 3050B	1,6010D	AB
Lead, Total	28.5		mg/kg	2.11	0.113	1	04/17/19 21:40	04/18/19 15:32	EPA 3050B	1,6010D	AB
Mercury, Total	ND		mg/kg	0.069	0.015	1	04/17/19 08:30	04/17/19 14:16	EPA 7471B	1,7471B	GD
Selenium, Total	0.680	J	mg/kg	0.845	0.109	1	04/17/19 21:40	04/18/19 15:32	EPA 3050B	1,6010D	AB
Silver, Total	ND		mg/kg	0.423	0.120	1	04/17/19 21:40	04/18/19 15:32	EPA 3050B	1,6010D	AB

Project Name: FORMER PENFIELD

Project Number: 19-072

Lab Number:

L1915092

Report Date:

04/22/19

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared		Analytical Method	
Total Metals - Mansfield	Lab for sample(s):	01-08 B	atch: Wo	G12271	37-1				
Mercury, Total	ND	mg/kg	0.083	0.018	1	04/17/19 08:30	04/17/19 13:49	1,7471B	GD

Prep Information

Digestion Method: EPA 7471B

Parameter	Result (Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for sa	ample(s):	01-06 Ba	atch: Wo	G12274	34-1				
Arsenic, Total	ND		mg/kg	0.400	0.083	1	04/17/19 21:05	04/18/19 22:29	1,6010D	AB
Barium, Total	ND		mg/kg	0.400	0.070	1	04/17/19 21:05	04/18/19 22:29	1,6010D	AB
Cadmium, Total	ND		mg/kg	0.400	0.039	1	04/17/19 21:05	04/18/19 22:29	1,6010D	AB
Chromium, Total	0.048	J	mg/kg	0.400	0.038	1	04/17/19 21:05	04/18/19 22:29	1,6010D	AB
Lead, Total	ND		mg/kg	2.00	0.107	1	04/17/19 21:05	04/18/19 22:29	1,6010D	AB
Selenium, Total	ND		mg/kg	0.800	0.103	1	04/17/19 21:05	04/18/19 22:29	1,6010D	AB
Silver, Total	ND		mg/kg	0.400	0.113	1	04/17/19 21:05	04/18/19 22:29	1,6010D	AB

Prep Information

Digestion Method: EPA 3050B

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansf	field Lab for sample(s):	07-08 B	atch: W	G12274	69-1				
Arsenic, Total	ND	mg/kg	0.400	0.083	1	04/17/19 21:40	04/18/19 10:12	1,6010D	AB
Barium, Total	ND	mg/kg	0.400	0.070	1	04/17/19 21:40	04/18/19 10:12	1,6010D	AB
Cadmium, Total	ND	mg/kg	0.400	0.039	1	04/17/19 21:40	04/18/19 10:12	1,6010D	AB
Chromium, Total	ND	mg/kg	0.400	0.038	1	04/17/19 21:40	04/18/19 10:12	1,6010D	AB
Lead, Total	ND	mg/kg	2.00	0.107	1	04/17/19 21:40	04/18/19 10:12	1,6010D	AB
Selenium, Total	ND	mg/kg	0.800	0.103	1	04/17/19 21:40	04/18/19 10:12	1,6010D	AB
Silver, Total	ND	mg/kg	0.400	0.113	1	04/17/19 21:40	04/18/19 10:12	1,6010D	AB

Project Name: FORMER PENFIELD **Lab Number:** L1915092

Project Number: 19-072 Report Date: 04/22/19

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 3050B

Lab Control Sample Analysis Batch Quality Control

Project Name: FORMER PENFIELD

Project Number: 19-072

Lab Number: L1915092

Report Date: 04/22/19

arameter	LCS %Recove	ry Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
otal Metals - Mansfield Lab Ass	sociated sample(s): 01-08	Batch: WG12	27137-2 SRM	Lot Number: D	0101-540			
Mercury, Total	100		-		65-135	-		
otal Metals - Mansfield Lab Ass	sociated sample(s): 01-06	Batch: WG12	27434-2 SRM	Lot Number: D	0101-540			
Arsenic, Total	103		-		83-117	-		
Barium, Total	100		-		83-118	-		
Cadmium, Total	96		-		83-117	-		
Chromium, Total	98		-		81-118	-		
Lead, Total	97		-		83-117	-		
Selenium, Total	103		-		79-121	-		
Silver, Total	101		-		80-120	-		
otal Metals - Mansfield Lab Ass	sociated sample(s): 07-08	Batch: WG12	27469-2 SRM	Lot Number: D	0101-540			
Arsenic, Total	109		-		83-117	-		
Barium, Total	101		-		83-118	-		
Cadmium, Total	98		-		83-117	-		
Chromium, Total	102		-		81-118	-		
Lead, Total	106		-		83-117	-		
Selenium, Total	109		-		79-121	-		
Silver, Total	105		-		80-120	-		

Matrix Spike Analysis Batch Quality Control

Project Name: FORMER PENFIELD

Project Number: 19-072

Lab Number: L1915092

Report Date: 04/22/19

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery Qu	Recovery al Limits	RPD Qual	RPD Limits
Γotal Metals - Mansfield	Lab Associated san	nple(s): 01-08	QC Bat	ch ID: WG122	7137-3	QC Sam	ple: L1915092-01	Client ID: SF	P-01	
Mercury, Total	0.120	0.144	0.248	88		-	-	80-120	-	20
otal Metals - Mansfield	Lab Associated san	nple(s): 01-06	QC Bat	ch ID: WG122	7434-3	QC Sam	ple: L1914570-01	Client ID: MS	S Sample	
Arsenic, Total	1.13	11.3	9.36	73	Q	-	-	75-125	-	20
Barium, Total	241	188	362	64	Q	-	-	75-125	-	20
Cadmium, Total	ND	4.8	3.14	65	Q	-	-	75-125	-	20
Chromium, Total	7.76	18.8	19.6	63	Q	-	-	75-125	-	20
Lead, Total	0.619J	48	31.9	66	Q	-	-	75-125	-	20
Selenium, Total	6.55	11.3	14.6	71	Q	-	-	75-125	-	20
Silver, Total	0.493J	28.2	24.1	85		-	-	75-125	-	20
otal Metals - Mansfield Lab Associated sample(s): 07-08		QC Batch ID: WG1227469-3			QC Sample: L1914964-01		Client ID: MS Sample			
Arsenic, Total	11.2	11.4	21.8	93		-	-	75-125	-	20
Barium, Total	85.4	190	244	84		-	-	75-125	-	20
Cadmium, Total	0.715	4.84	4.75	83		-	-	75-125	-	20
Chromium, Total	136	19	122	0	Q	-	-	75-125	-	20
Lead, Total	33.9	48.4	71.6	78		-	-	75-125	-	20
Selenium, Total	0.490J	11.4	10.2	90		-	-	75-125	-	20
Silver, Total	0.166J	28.5	26.6	93		-	-	75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: FORMER PENFIELD

Project Number: 19-072

Lab Number:

L1915092

Report Date:

04/22/19

Parameter	Native Sample	Duplica	ate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01-0	3 QC Batch ID:	WG1227137-4	QC Sample:	L1915092-01	Client ID:	SP-01	
Mercury, Total	0.120		0.088	mg/kg	31	Q	20
Total Metals - Mansfield Lab Associated sample(s): 01-0	6 QC Batch ID:	WG1227434-4	QC Sample:	L1914570-01	Client ID:	DUP Sampl	e
Arsenic, Total	1.13		1.06	mg/kg	6		20
Barium, Total	241		253	mg/kg	5		20
Cadmium, Total	ND	0.188J		mg/kg	NC		20
Chromium, Total	7.76	15.4		mg/kg	66	Q	20
Lead, Total	0.619J		1.04J	mg/kg	NC		20
Selenium, Total	6.55		6.32	mg/kg	4		20
Silver, Total	0.493J	C	.631J	mg/kg	NC		20
Fotal Metals - Mansfield Lab Associated sample(s): 07-0	3 QC Batch ID:	WG1227469-4	QC Sample:	L1914964-01	Client ID:	DUP Sampl	e
Chromium, Total	136		116	mg/kg	16		20

INORGANICS & MISCELLANEOUS

Project Name: FORMER PENFIELD Lab Number: L1915092

Project Number: 19-072 Report Date: 04/22/19

SAMPLE RESULTS

Lab ID: L1915092-01 Date Collected: 04/11/19 09:03

Client ID: SP-01 Date Received: 04/12/19
Sample Location: 1714 N. SALINA ST., SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result Qual	ifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab								
Solids, Total	86.7	%	0.100	NA	1	-	04/13/19 07:59	121,2540G	RI

Project Name: FORMER PENFIELD Lab Number: L1915092

Project Number: 19-072 Report Date: 04/22/19

SAMPLE RESULTS

Lab ID: L1915092-02 Date Collected: 04/11/19 09:06

Client ID: SP-02 Date Received: 04/12/19
Sample Location: 1714 N. SALINA ST., SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result Qual	ifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab								
Solids, Total	85.6	%	0.100	NA	1	-	04/13/19 07:59	121,2540G	RI

Project Name: FORMER PENFIELD Lab Number: L1915092

Project Number: 19-072 Report Date: 04/22/19

SAMPLE RESULTS

Lab ID: L1915092-03 Date Collected: 04/11/19 14:48

Client ID: SB-01 Date Received: 04/12/19
Sample Location: 1714 N. SALINA ST., SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - '	Westborough Lab)								
Solids, Total	82.2		%	0.100	NA	1	-	04/13/19 07:59	121,2540G	RI

Project Name: FORMER PENFIELD Lab Number: L1915092

Project Number: 19-072 Report Date: 04/22/19

SAMPLE RESULTS

Lab ID: L1915092-04 Date Collected: 04/11/19 15:41

Client ID: SB-03 Date Received: 04/12/19
Sample Location: 1714 N. SALINA ST., SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab									
Solids, Total	81.5		%	0.100	NA	1	-	04/13/19 07:59	121,2540G	RI

Project Name: FORMER PENFIELD Lab Number: L1915092

Project Number: 19-072 Report Date: 04/22/19

SAMPLE RESULTS

Lab ID: L1915092-05 Date Collected: 04/11/19 16:02

Client ID: SB-04 Date Received: 04/12/19
Sample Location: 1714 N. SALINA ST., SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result Qual	ifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab								
Solids, Total	75.9	%	0.100	NA	1	-	04/13/19 07:59	121,2540G	RI

Project Name: FORMER PENFIELD Lab Number: L1915092

Project Number: 19-072 Report Date: 04/22/19

SAMPLE RESULTS

Lab ID: L1915092-06 Date Collected: 04/11/19 16:14

Client ID: SB-05 Date Received: 04/12/19
Sample Location: 1714 N. SALINA ST., SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result Qu	alifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab									
Solids, Total	77.9		%	0.100	NA	1	=	04/13/19 07:59	121,2540G	RI

Project Name: FORMER PENFIELD Lab Number: L1915092

Project Number: 19-072 Report Date: 04/22/19

SAMPLE RESULTS

Lab ID: L1915092-07 Date Collected: 04/11/19 16:54

Client ID: SB-06 Date Received: 04/12/19
Sample Location: 1714 N. SALINA ST., SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Westborough Lab									
Solids, Total	86.2		%	0.100	NA	1	-	04/13/19 07:59	121,2540G	RI

Project Name: FORMER PENFIELD Lab Number: L1915092

Project Number: 19-072 Report Date: 04/22/19

SAMPLE RESULTS

Lab ID: L1915092-08 Date Collected: 04/11/19 17:04

Client ID: SB-08 Date Received: 04/12/19
Sample Location: 1714 N. SALINA ST., SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	91.7		%	0.100	NA	1	-	04/13/19 07:59	121,2540G	RI

Lab Duplicate Analysis

Batch Quality Control

Lab Number: **Project Name:** FORMER PENFIELD L1915092

04/22/19 **Project Number:** 19-072 Report Date:

Parameter	Native Sam	ple D	uplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-08	QC Batch ID:	WG1226106-1	QC Sample:	L1915092-01	Client ID:	SP-01
Solids, Total	86.7		86.1	%	1		20

Project Name: FORMER PENFIELD

Project Number: 19-072

Lab Number: L1915092 **Report Date:** 04/22/19

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler Custody Seal

A Absent

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН		Pres	Seal	Date/Time	Analysis(*)
L1915092-01A	Glass 120ml/4oz unpreserved	Α	NA		2.9	Υ	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),HG-T(28),CD- TI(180)
L1915092-01B	Glass 120ml/4oz unpreserved	Α	NA		2.9	Υ	Absent		TS(7),NYSTARS-PAH(14),NYTCL-8082(14)
L1915092-01C	Glass 120ml/4oz unpreserved	Α	NA		2.9	Υ	Absent		TS(7),NYSTARS-PAH(14),NYTCL-8082(14)
L1915092-02A	Glass 120ml/4oz unpreserved	Α	NA		2.9	Y	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),HG-T(28),CD- TI(180)
L1915092-02B	Glass 120ml/4oz unpreserved	Α	NA		2.9	Υ	Absent		TS(7),NYSTARS-PAH(14),NYTCL-8082(14)
L1915092-02C	Glass 120ml/4oz unpreserved	Α	NA		2.9	Υ	Absent		TS(7),NYSTARS-PAH(14),NYTCL-8082(14)
L1915092-03A	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		2.9	Y	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),HG-T(28),CD- TI(180)
L1915092-03B	Glass 250ml/8oz unpreserved	Α	NA		2.9	Υ	Absent		TS(7),NYSTARS-PAH(14),NYTCL-8082(14)
L1915092-04A	Vial MeOH preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260HLW-R2(14)
L1915092-04B	Vial water preserved	Α	NA		2.9	Υ	Absent	13-APR-19 07:14	NYTCL-8260HLW-R2(14)
L1915092-04C	Vial water preserved	Α	NA		2.9	Υ	Absent	13-APR-19 07:14	NYTCL-8260HLW-R2(14)
L1915092-04D	Plastic 2oz unpreserved for TS	Α	NA		2.9	Υ	Absent		TS(7)
L1915092-04E	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		2.9	Υ	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),HG-T(28),CD- TI(180)
L1915092-04F	Glass 250ml/8oz unpreserved	Α	NA		2.9	Υ	Absent		NYSTARS-PAH(14),NYTCL-8082(14)
L1915092-05A	Vial MeOH preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260HLW-R2(14)
L1915092-05B	Vial water preserved	Α	NA		2.9	Υ	Absent	13-APR-19 07:14	NYTCL-8260HLW-R2(14)
L1915092-05C	Vial water preserved	Α	NA		2.9	Υ	Absent	13-APR-19 07:14	NYTCL-8260HLW-R2(14)
L1915092-05D	Plastic 2oz unpreserved for TS	Α	NA		2.9	Υ	Absent		TS(7)
L1915092-05E	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		2.9	Υ	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),HG-T(28),CD- TI(180)

Lab Number: L1915092

Report Date: 04/22/19

Project Name: FORMER PENFIELD

Project Number: 19-072

Container Info	Container Information		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1915092-05F	Glass 250ml/8oz unpreserved	Α	NA		2.9	Υ	Absent		NYSTARS-PAH(14),NYTCL-8082(14)
L1915092-06A	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		2.9	Y	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),HG-T(28),CD- TI(180)
L1915092-06B	Glass 250ml/8oz unpreserved	Α	NA		2.9	Υ	Absent		TS(7),NYSTARS-PAH(14),NYTCL-8082(14)
L1915092-07A	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		2.9	Y	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),HG-T(28),CD- TI(180)
L1915092-07B	Glass 250ml/8oz unpreserved	Α	NA		2.9	Υ	Absent		TS(7),NYSTARS-PAH(14),NYTCL-8082(14)
L1915092-08A	Vial MeOH preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260HLW-R2(14)
L1915092-08B	Vial water preserved	Α	NA		2.9	Υ	Absent	13-APR-19 07:14	NYTCL-8260HLW-R2(14)
L1915092-08C	Vial water preserved	Α	NA		2.9	Υ	Absent	13-APR-19 07:14	NYTCL-8260HLW-R2(14)
L1915092-08D	Plastic 2oz unpreserved for TS	Α	NA		2.9	Υ	Absent		TS(7)
L1915092-08E	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		2.9	Y	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),HG-T(28),CD- TI(180)
L1915092-08F	Glass 250ml/8oz unpreserved	Α	NA		2.9	Υ	Absent		NYSTARS-PAH(14),NYTCL-8082(14)
L1915092-09A	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260-R2(14)
L1915092-09B	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260-R2(14)

Project Name:FORMER PENFIELDLab Number:L1915092Project Number:19-072Report Date:04/22/19

GLOSSARY

Acronyms

LOQ

MS

NP

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable (DoD report formats only)

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for
which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated
using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

Report Format: DU Report with 'J' Qualifiers

Project Name:FORMER PENFIELDLab Number:L1915092Project Number:19-072Report Date:04/22/19

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- **NJ** Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers

Project Name:FORMER PENFIELDLab Number:L1915092Project Number:19-072Report Date:04/22/19

REFERENCES

1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 12

Published Date: 10/9/2018 4:58:19 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene: 4-Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 6860: SCM: Perchlorate

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Διрна	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitr Albany, NY 12205: 14 Walke Tonawanda, NY 14150: 275 (r Way	95	Page of	/	C	Date F in L			1/13	119	ALPHA Job# L19150	92
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information				AUU HES	MOUNTAIN	rables			1	T. Cont.	Billing Information	
TEL: 508-898-9220	TEL: 508-622-9300	Project Name: #	ormer Po	ofield			_	ASP-A				P-B	Same as Client Info	
FAX: 508-898-9193	FAX: 508-822-3288	Project Location:	714 N. So	lina St., s	Syause,	NY		EQuIS	(1 Fil	e)	EQ	ulS (4 File)	PO# 19-07Z	
Client Information			9-072	- 20	7.	100		Other					cbeck@aecegn	the Real Property lies, the Parket Inches
Client: AECC		(Use Project name as					Regul	atory I	₹equir	emen			Disposal Site Information	
Address: 6308 -	My Road	Project Manager: 7	new Bra	ther		. Inde	_	NY TO				Part 375	Please identify below location	n of
East Syrace	use, NY 13057	ALPHAQuote #:						AWQ S	Standar	ds	☐ NY	CP-51	applicable disposal facilities.	
Phone: (35) 432		Turn-Around Time						NY Re	stricted	Use	Oth	ier	Disposal Facility:	000000000000000000000000000000000000000
Fax:		Standa	ard 🛛	Due Date	ŧ.			NY Un	restricte	ed Use			□ NJ □ NY	
Email: Abrantner @	acceroup com	Rush (only if pre approv	red)	# of Days	400			NYC S	ewer D	ischarg	je .		Other:	
These samples have be		ed by Alpha					ANAL	YSIS			700	- California	Sample Filtration	T
Other project specific Please specify Metals		nents:					אסה (ערד)	SUDCS	8 Meta	8082 PCBs	Skiks		Done Lab to do Preservation Lab to do (Please Specify below)	t a I B o t
ALPHA Lab ID	fi sac	Yours	Coll	ection	Sample	Sampler's	3200	0128	1	22	1		N 12 2	
(Lab Use Only)	Sa	imple ID	Date	Time	Matrix	Initials	2	13	B	R	Total	1 1	Sample Specific Comment	s e
15092 - 01	5P-0	١	4/11/19	0903	Soil	HH	1	X	X	X				3
02	5P-0	-	4/1/19	0906	Soil	HH		X	X	X				3
03	SB-01		4/11/19	1448	Soil	HH		X	×	×				2
04	58-0		4/11/19	1541	Soil	НН	X	K	X	X	X			6
05	5B-0		4/11/19	1602	Soil	HH	X	K	X	×	X			6
06	5B-0		4/11/19	1614	Soil	HH	1	X	X	X				62 Z
n	5B-0		4/1/19	1654	Soil	#H		X	×					Z
08	5B-0		4/1/19	1704	Soil	HH	×	X	_		X			6
09	Trip B		7-11	-	-	-	X							2
											-	+		
Preservative Code: A = None B = HCI C = HNO ₃	Container Code P = Plastic A = Amber Glass V = Vial	Westboro: Certificatio Mansfield: Certificatio		7	1120100	tainer Type	-	A	A	A	P		Please print clearly, le and completely. Samp not be logged in and	oles can
D = H ₂ SO ₄ E = NaOH	G = Glass B = Bacteria Cup			(F	reservative	F	A	A	A	A		turnaround time clock start until any ambigui	
F = MeOH	C = Cube	Relinquish	ed By:	Date	/Time		Recei	ved By	r:		D	ate/Time	resolved. BY EXECU	
G = NaHSO ₄	O = Other E = Encore		agn/	4/12/20			1				4/12	114 1410	THIS COC, THE CLIE	
H = Na ₂ S ₂ O ₃ K/E = Zn Ac/NaOH	D = BOD Bottle	The state of the s		4/12/14		0		Y			4/13/1	9150	TO BE BOUND BY A	
O = Other				7715/11	110		0	_			, ,		TERMS & CONDITIO	NS.
Form No: 01-25 HC (rev. 3)	0-Sept-2013)		5.09	Nogrim in so									(See reverse side.)	