Phase II Environmental Site Assessment

Location:

100 Buckley Road Syracuse, New York

Prepared for:

Mr. Vittorio Pascarella Pascarella Development & Management, LLC 925 7th North Street

Liverpool, NY 13088

LaBella Project No. 2201387

May 8, 2020

Table of Contents

1.0	INTROE	DUCTION	
1.1		ial Terms & Conditions	
1.2	Limit	ations & Exceptions	
2.0	BACKG	ROUND	
2.1		Description & Features	
2.2	Phys	ical Setting	2
2.3	Site I	History & Land Use	2
2.4	Adjad	cent Property Use	
2.5	Sum	mary of Previous Studies	2
2	2.5.1	LaBella Associates, D.P.C. Phase I ESA Report, dated April 3, 2020	2
3.0		ΓΙVE	
4.0	SCOPE	OF WORK	4
5.0 5.1		GSbhysical Survey	
5.2			
		Geology and Hydrology	
5.3		Screening Results	
5.4		ratory Analytical Results	
		Soil	
_		Groundwater	
6.0		USIONS	
7.0 8.0		IMENDATIONS URES OF ENVIRONMENTAL PROFESSIONALS	
0.0			
Figure	S	Figure 1 – Site Location Map Figure 2 – Testing Locations	
Tables	3	Table 1 – Summary of Volatile Organic Compounds in Soil Table 2 – Summary of Semi-Volatile Organic Compounds in Soil Table 3 – Summary of Metals in Soil Table 4 – Summary of Polychlorinated Biphenyls in Soil Table 5 – Summary of Volatile Organic Compounds in Groundwater Table 6 – Summary of Semi-Volatile Organic Compounds in Groundwater	
Appen Appen	dix 2	Geophysical Report Field Logs Laboratory Report	

1.0 INTRODUCTION

LaBella Associates, D.P.C. ("LaBella") was retained by Pascarella Development & Management, LLC to conduct a Phase II Environmental Site Assessment (ESA) at the property located at 100 Buckley Road, Syracuse, Onondaga County, New York, hereinafter referred to as the "Site" (see Figure 1). This Phase II ESA has been performed in conformance with the scope and limitations of ASTM Practice E 1903-11.

1.1 Special Terms & Conditions

The findings of this Phase II ESA are based on the scope of work and project objectives as stated in LaBella Proposal number P2001661, dated April 6, 2020.

1.2 Limitations & Exceptions

Work associated with this Phase II ESA was performed in accordance with generally accepted environmental engineering and environmental contracting practices for this region. LaBella Associates, D.P.C., makes no other warranty or representation, either expressed or implied, nor is one intended to be included as part of its services, proposals, contracts or reports.

In addition, LaBella cannot provide guarantees, certifications or warranties that the property is or is not free of environmental impairment or other regulated solid wastes. The Client shall be aware that the data and representative samples from any given soil sampling point or monitoring well may represent conditions that apply only at that particular location, and such conditions may not necessarily apply to the general Site as a whole.

2.0 BACKGROUND

2.1 Site Description & Features

The Site consists of one tax parcel totaling 11.50 acres located to the east of Buckley Road. The Site is developed with two three-story buildings and six single-story buildings that were constructed between 1900 to 1971.

Site Building #1 is a 23,700 square feet three-story building constructed in 1900. Site Building #2 is a 34,440 square foot three-story building constructed in 1900. Site Building #3 is a 32,980 square foot one-story building constructed in 1961. Site Building #4 is a 37,550 square foot one-story building constructed in 1969. Site Building #5 is a 33,600 square foot one-story building constructed in 1971. Site Building #6 is a 5,985 square foot one-story building constructed in 1930. Site Building #7 is a 4,675 square foot one-story building constructed in 1930 and Site Building #8 is a 5,550 square foot one-story building constructed in 1930.

The Site was previously owned and operated by Will & Baumer Inc., a candle manufacturing facility. Building #1 includes a vacant former office building in poor condition with a full basement. Building #2 includes a vacant former Candle factory building in fair condition with a full basement. Building #3 includes a vacant former storage and candle works building with a full basement. Building #4 includes a vacant former storage and bleach house building constructed on concrete slab. Building #5 includes Sustainable Office Solutions, an office furniture warehouse, reportedly constructed on a concrete slab. No access was provided the interior of this structure. Building #6 includes a vacant

former wax storage and bleach house building constructed on concrete slab. Building #7 includes a vacant former boiler house building with smokestack constructed on concrete slab. Building #8 includes the current boiler building (former pipe shop) constructed on a concrete slab. Two natural gas boilers, an electric hot water heater and a parts/fittings room are located in this building.

The exterior of the Site includes asphalt-paved parking areas, an access road, concrete pavement and overgrown brush areas. In addition, the northwestern and eastern portions of the Site consist of undeveloped wooded areas.

2.2 Physical Setting

The Site is located to the east of Buckley Road and to the west of Interstate 81. The Site is located in an urban area; surrounding properties include residential dwellings, commercial buildings, highways, and undeveloped land.

2.3 Site History & Land Use

The Site has historically been utilized by the Will & Baumer Candle Co. as a bees wax and candle manufacturing facility since at least 1911 to approximately 2010. The site included offices, a candle factory, a laboratory, press and pan rooms, multiple sheds, a digester house, still house, a store room, a machine shop, a bleach house, a bleach yard, an oil house, and packaging and decorating areas. Multiple bulk storage tanks including grease and oil as well as an acid tank and a fuel oil tank were identified on historic maps in the southeastern portion of the Site. Railroad spurs were located between the site buildings on the eastern portion of the Site running north and south from at least 1911 until at least 1990.

2.4 Adjacent Property Use

The Site is bordered by the following properties:

Direction	Land Use
North	Retina-Vitreous Surgeons of Central New York (200 Greenfield
140141	Parkway), House Dermatology PC (235 Greenfield Parkway)
East	Interstate 81, undeveloped wooded land
South	Buckley Road, Park Street, Onondaga Lake Parkway
West	Buckley Road, Residential (6430 Onondaga Lake Parkway, 99-
West	101 Buckley Road),

2.5 Summary of Previous Studies

The following environmental reports were prepared and reviewed for the Site:

2.5.1 LaBella Associates, D.P.C. Phase I ESA Report, dated April 3, 2020

LaBella recently completed a Phase I ESA report, dated April 3, 2020, at the Site which identified the following Recognized Environmental Conditions (RECs) as summarized below:

Historical Industrial Operations and Regulatory Listings at the Site

Based on the historical records reviewed, it appears that the Site has historically been utilized by the Will & Baumer Candle Co. as a bees wax and candle manufacturing facility since at least 1911 to approximately 2010. The site included offices, a candle factory, a laboratory, press and pan rooms,

multiple sheds, a digester house, still house, a store room, a machine shop, a bleach house, a bleach yard, an oil house, and packaging and decorating areas. Multiple bulk storage tanks including grease and oil as well as an acid tank and a fuel oil tank were identified on historic maps in the southeastern portion of the Site. Railroad spurs were located between the site buildings on the eastern portion of the Site running north and south from at least 1911 until at least 1990. In addition, a refinery building was located adjacent south in the at least 1911.

Regulatory listings were identified for the Site including former aboveground storage tanks (ASTs) containing fuel oil and gasoline, and a chemical AST of unknown nature. These tanks are listed as having been removed from the Site. An inactive NYSDEC spill is associated with the Site (Spill #9200872), indicates contamination of fuel oil was found while decommissioning old ASTs. No additional information was made available regarding this spill. In addition, hazardous waste generation was identified at the Site from at least 1982 through at least 2010. Wastes generated include spent non halogenated solvents, ignitable wastes, corrosive wastes, chromium, methyl ethyl ketone, lead, benzene, chloroform, spent halogenated solvents, mercury and cresol.

A prior soil and groundwater investigation completed in 2010 included the installation of six soil borings which were converted to temporary groundwater monitoring wells at the Site. Laboratory analytical results indicated the presence of several constituents in shallow fill and groundwater with concentrations generally low and below applicable standards, with the exception of toluene which was identified at concentrations above groundwater standards at three locations. These exceedances were attributed to residual impacts from the historic ASTs in the southeast portion of the Site and the prior Spill incident inactivated by the NYSDEC.

While no further work was recommended as a result of this 2010 investigation, the prior work was limited in scope and appears insufficient to assess potential environmental impacts based on the industrial history and nature of this Site.

Drums of Unknown Nature located at the Site

Six 55-gallon drums of what appeared to be soil were identified to the north of Building #7. Three of these drums were tipped over spilling their contents to the ground surface. The origin and nature of this material is unknown. It should be noted that while LaBella plans to sample soil and groundwater in this area as part of the Phase II investigation, removal of the drums and material should be performed by the owner of the Site.

Based on the RECs summarized above, there is a potential for subsurface impacts to be present at the Site.

3.0 OBJECTIVE

The objective of this Phase II ESA was to conduct an evaluation of subsurface conditions to assess for potential impacts identified in the recent Phase I ESA.

4.0 SCOPE OF WORK

To achieve the project objectives, the following Scope of Work was performed:

- 1. Prior to the initiation of subsurface work, LaBella retained the services of a geophysical survey sub-consultant New York Leak Detection, Inc. (NYLD) to perform a nonintrusive limited subsurface survey of the Site. The limited geophysical survey was completed on April 13, 2020, to clear soil boring locations.
- 2. In addition, prior to the initiation of subsurface work, an underground utility stake-out, via *Dig Safely New York*, was completed at the Site to locate utilities in the areas where the subsurface assessment would take place.
- 3. A direct push soil boring and sampling program of the overburden at the Site was implemented. Soil borings were advanced with a track-mounted Geoprobe® Systems Model 6610DT direct-push sampling system. The use of direct-push technology allows for sampling, observation, and characterization of overburden soils. The Geoprobe utilizes a 5-foot (ft) MacroCore® sampler with disposable polyethylene sleeves. Soil cores are retrieved in 5-ft sections and are cut from the polyethylene sleeves for observation and sampling. The MacroCore® sampler was decontaminated between boring locations using an Alconox® and potable water solution. A total of twenty-one (21) soil borings were advanced at the Site to a depths ranging between 10 and 15 feet (ft) below ground surface (bgs). Soil boring locations are depicted on Figure 2. Is should be noted that sampling beneath the buildings was not completed as part of the work.
- 4. Soils from the borings were continuously assessed for visible impairment, olfactory indications of impairment, and/or indication of detectable volatile organic compounds (VOCs) with a photo-ionization detector (PID). Positive indications from any of these screening methods are collectively referred to as "evidence of impairment."
- 5. Seven (7) soil borings were converted to temporary overburden groundwater monitoring wells. Each well was completed with 5-ft or 10-ft. (or the total depth of the well) of 0.010-slot well screen connected to an appropriate length of solid PVC well riser to complete the well. The annulus was sand packed with quartz sand to a nominal depth of 1-ft above the well screen section. A 1-ft bentonite seal was placed above the sand pack. Refer to Section 5.2 for additional information.

- 6. Soil and groundwater samples were placed in a cooler on ice and sent under standard chain of custody procedures to Alpha Analytical in Westborough, Massachusetts. The following laboratory analyses were performed (See Figure 2 for soil boring locations):
 - a. Soil

Sample ID	Sample Depth (ft bgs)	Laboratory Analyses
SB-03	7.5-10	
SB-05	2.5-5	
SB-05	8-10	 USEPA TCL and CP-51 List VOCs
SB-06	5-7.5	- CP-51 List SVOCs
SB-14	7.5-10	RCRA MetalsPCBs
SB-17	5-10	
SB-18	12.5-15	

Notes:

- USEPA Target Compound List (TCL) and New York State Department of Environmental Conservation (NYSDEC) Commissioner Policy (CP-51) list VOC analysis performed via USEPA Method 8260.
- 2. CP-51 List SVOC analysis performed via USEPA Method 8270.
- 3. RCRA Metals analysis performed via USEPA Method 6010 and 7471.
- 4. Polychlorinated Biphenyls (PCB) analysis performed via USEPA Method 8082.
- 5. Emerging contaminant testing was not included as part of the scope of work.

b. Groundwater

Sample ID	Exploration Location	Screened Interval (ft bgs)	Depth to Water (ft bgs)	Laboratory Analyses
MW-01	SB-02	5-15	3.7	
MW-02	SB-04	5-10	0.4	
MW-03	SB-06	5-10	1.6	- USEPA TCL and CP-
MW-04	SB-14	5-15	1.7	51 List VOCs
MW-05	SB-17	5-10	1.5	- CP-51 List SVOCs
MW-06	SB-18	5-15	7.2	
MW-07	SB-20	5-15	3.3	

Notes:

- 1. USEPA TCL and NYSDEC CP-51 list VOC analysis performed via USEPA Method 8260.
- 2. CP-51 List SVOC analysis performed via USEPA Method 8270.

5.0 FINDINGS

5.1 Geophysical Survey

The limited geophysical survey was conducted at the Site to locate underground utilities to clear soil boring locations. Based on the results of the limited geophysical survey at the Site, utilities including natural gas, water and railroad tracks were identified and planned boring locations were moved accordingly. A copy of the geophysical survey report is included in Appendix 1.

5.2 Site Geology and Hydrology

Twenty-one (21) soil borings were advanced at the Site on April 20, 2020, designated SB-01 through SB-21. The soil borings were advanced at the Site to terminal depths between 10 and 15 ft bgs. Equipment refusal was not encountered during the work.

Soils at the Site beneath an initial asphalt or gravel layer consisted generally of brown, dark brown and gray silt, grey/brown clay and sub-angular gravel. Urban fill materials (black material, bricks, ash, etc.) were identified in the upper five (5) feet of the majority of borings.

All soil cores were continuously assessed by a LaBella Environmental Geologist for soil type and evidence of impairment. Olfactory evidence of environmental impairment (petroleum odors) was identified associated with SB-05 from 5 to 10 ft bgs. In addition, slight petroleum odors and globs of possible product and sheen were identified associated with SB-14 from 9 to 10 ft bgs. Elevated PID readings (i.e., greater than 5 part per million (ppm)) were also observed at these soil boring locations, with the highest PID reading measured in boring SB-05 (160.9 ppm) at approximately 7.5 to 10 ft bgs and SB-14 (10.5 ppm) at approximately 2.5 to 5 ft bgs. Refer to Section 5.3 for additional information regarding field screening results. PID readings collected from the soil borings are included in the test boring field logs in Appendix 2.

Seven (7) temporary overburden groundwater monitoring wells, designated MW-01 through MW-07 were installed at the Site. The wells were completed with 5-ft to 10-ft. of 0.01-inch slotted well screen below PVC risers, to total depths ranging from 10 to 15 ft bgs. The annulus surrounding the wells was filled with quartz sand. The depth to groundwater ranged from 0.4 to 7.2 ft bgs. The groundwater monitoring wells were developed by purging approximately three (3) well volumes using a dedicated bailer. It should be noted that the groundwater samples collected remained fairly turbid after development.

Soil borings and monitoring well location are shown on Figure 2. Copies of the Soil Boring Logs are included in Appendix 2.

5.3 Field Screening Results

The table below summarizes PID readings detected above background obtained at various depth intervals from the soil borings. Note only SB-05 and SB-14 showed PID readings above background:

Test Boring Soil PID Readings Above Background

Test Boring ID	Sample Interval (ft bgs)										
rest boiling ib	0-2.5	2.5-5	5-7.5	7.5-10	10-12.5	12.5-15					
SB-05	0.0	66.6*	7.7	160.9*	39.7	45.6					
SB-14	0.0	10.5*	0.5	0.7	10.1	4.0					

Notes:

- All PID readings were collected utilizing a Minirae 3000 photoionization detector and are expressed in parts per million.
- The PID screening is performed as a method of determining general presence of VOCs in soil, and to provide a
 basis for selecting samples for laboratory analysis. The readings obtained provide only an indication of the
 relative levels of VOC presence in the soil, and are not considered to be a direct quantization of actual soil VOC
 concentration.
- 3. "-" denotes boring not completed to above-listed depth or insufficient recovery occurred at specified depth.
- 4. "*" denotes a soil sample was submitted for laboratory analysis from this interval.

5.4 Laboratory Analytical Results

5.4.1 Soil

A total of seven (7) soil samples were selected for laboratory analysis of the parameters identified in the table in Section 4.0. The soil results have been compared to the Soil Cleanup Objectives (SCOs) included in the 6NYCRR Part 375-6.8 Unrestricted Use, Residential Use, Restricted Residential Use, Protection of Groundwater and Commercial Use SCOs. Refer to Tables 1 through 4 for a summary of VOCs, SVOCs, Metals and PCBs in soil. The laboratory report is included as Appendix 3. Below is a summary of soil results.

VOCs:

- One VOC, acetone was detected in SB-05 (2.5-5 and 8 to 10 ft bgs), SB-06 (5 to 7.5 ft bgs), SB-14 (7.5 to 10 ft bgs) and SB-17 (5 to 10 ft bgs) slightly above NYSDEC Unrestricted Use and Protection of Groundwater SCOs. It should be noted that acetone is a common laboratory contaminant.
- Additional VOCs were detected in soils at concentrations above laboratory method detection limits (MDLs) in each of the soil samples collected; however, the concentrations detected were well below Unrestricted Use or Protection of Groundwater SCOs.

SVOCs:

SVOCs were detected in soils from SB-05 (2.5-5 and 8 to 10 ft bgs) and SB-17 (5 to 10 ft bgs) at concentrations above laboratory MDLs; however, the concentrations detected were well below Unrestricted Use or Protection of Groundwater SCOs.

RCRA Metals

RCRA Metals were detected above laboratory MDLs in each of the soil samples. Of these
detections, lead was identified in exceedance of Unrestricted Use SCOs in soils from SB-05
(2.5-5 and 8 to 10 ft bgs). All other detected concentrations did not exceed Unrestricted Use
or Protection of Groundwater SCOs.

PCBs

 Seven (7) soil samples were analyzed for PCBs. No PCBs were detected above laboratory MDLs in soil.

It should be noted that soils from SB-05 (0-2.5 ft bgs) and SB-05 (8-10 ft bgs) both were collected from relatively shallow depths, were black in color and contained apparent urban fill materials (black material, bricks, ash, etc.). In addition, apparent urban fill material was identified at soil borings SB-06, SB-07, SB-08, SB-09 and SB-14.

5.4.2 Groundwater

Groundwater samples were collected from wells MW-01 (SB-01), MW-02 (SB-04), MW-03 (SB-06), MW-04 (SB-14), MW-05 (SB-17), MW-06 (SB-18) and MW-07 (SB-20) and submitted for laboratory analysis of the parameters identified in the table in Section 4.0. The groundwater results were compared to NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values. Refer to Tables 5 and 6 for a summary of VOCs and SVOCs in groundwater. The laboratory report is included as Appendix 3. Below is a summary of groundwater results.

VOCs:

• VOCs were detected at concentrations above laboratory MDLs in each of the groundwater samples; however, the concentrations detected did not exceed TOGS Standards.

SVOCs:

• A total of six (6) SVOCs were detected in groundwater samples from MW-02, MW-03, MW-04, MW-05 and MW-07 at concentrations slightly in exceedance of TOGS Standards. These SVOCs included benzo(a)anthracene, benzo(b)fluoranthene, benzo(a)pyrene, benzo(k)fluoranthene, indeno(1,2,3-cd)pyrene and chrysene. In addition, benzo(b)fluoranthene was detected in the groundwater sample from MW-06 at concentrations slightly in exceedance of TOGS Standards. The compounds identified are polyaromatic hydrocarbons (PAHs), which are generated from the partial combustion of fossil fuels and are often found in urban fill material, but are also found in coal tar, soot and asphalt. In addition, these types of SVOCs are generally insoluble in water. Based on the groundwater samples being relatively turbid during sample collection, these detections may not be representative of actual groundwater conditions but rather particulate matter within the sample.

6.0 CONCLUSIONS

LaBella was retained by Pascarella Development & Management, LLC to conduct a Phase II Environmental Site Assessment (ESA) at the property located at 100 Buckley Road, Syracuse, Onondaga County, New York. The Phase II ESA consisted of the advancement of twenty-one (21) soil borings, installation of seven (7) temporary groundwater monitoring wells, and the laboratory analysis of soil and groundwater samples. This Phase II ESA was performed to evaluate the Site for potential subsurface impacts related to the RECs identified in the Phase I ESA report recently completed by LaBella. The following conclusions have been made:

- One VOC, acetone, was detected in four of the soil samples slightly above NYSDEC
 Unrestricted Use and Protection of Groundwater SCOs. When compared to less stringent
 criteria, such as Residential Use SCOs, these levels are below NYSDEC standards. In
 addition, it should be noted that acetone is a common laboratory contaminant and acetone
 was not detected at concentrations above the TOGS Standards in the groundwater samples.
- No SVOCs were detected in soils above NYSDEC SCOs.
- One metal, lead, was detected in two soil samples collected from the same soil boring (SB-05) slightly in exceedance of Unrestricted Use SCOs. When compared to less stringent criteria, such as Residential Use SCOs, these levels are below NYSDEC standards.
- No PCBs were detected above laboratory MDLs in soil.
- No VOCs were detected in groundwater at concentrations in exceedance of TOGS Standards.
- A total of six (6) SVOCs were detected in groundwater samples from MW-02, MW-03, MW-04, MW-05 and MW-07 at concentrations slightly in exceedance of TOGS Standards. The compounds identified in exceedance are PAHs, which are generated from the partial combustion of fossil fuels and are often found in urban fill material. The detections and exceedances of SVOCs may be related to particulate within the groundwater samples (as noted in Section 5.2 and 5.4.2 above) as opposed to dissolved phase concentrations of SVOCs. As such, these results may not be representative of groundwater conditions. Regardless, the SVOCs identified do not appear to represent a remedial concern at this time based on the low-level concentrations. In addition, the Site is located in an urban area and groundwater is not a source of drinking water. Drinking water is supplied from a municipal source.

7.0 RECOMMENDATIONS

Although low-level VOCs and metals impacts in soil at concentrations above NYSDEC criteria were identified, the slightly elevated concentrations were sporadic and when compared to less stringent NYSDEC criteria (such as Residential Use), these levels were below standards. In addition, the VOC exceedance included acetone, which is a common laboratory contaminant and the metals exceedance included only lead at one soil boring location.

While SVOC impacts in groundwater at concentrations above NYSDEC criteria were identified, the slightly elevated concentrations were not identified in other areas of the Site, such as in soils, and no evidence of impairment (other than urban fill and slightly elevated PID results and petroleum odors at two soil boring locations) was observed in the field. In addition, based on the nature of the relatively shallow soils identified, historical usage and urban nature of the Site, these impacts appear to be associated with historic/urban fill materials identified on-Site, rather than a single release event. Based on this information, additional soil and groundwater investigation and/or remediation does not appear warranted at the Site at this time.

However, based on the exceedances of NYSDEC criteria identified in soil and groundwater, the urban/historical fill materials, future excavations will require excavated material to be handled/managed in accordance with applicable regulations. Specifically, fill material will require management in accordance with NYSDEC Part 360 regulations. In addition, due to the detections of SVOCs in groundwater, future dewatering activities may require special consideration (e.g., filtration and sampling to confirm chemical content prior to discharge).

Finally, based on the apparent urban fill material observed at the Site, the elevated concentrations of SVOCs in groundwater and the long history of manufacturing operations (which could have resulted in discrete areas of impacts, such as, beneath buildings), development of an Environmental Management Plan (EMP) is recommended. The EMP would outline procedures for the proper identification and management of known or unknown impacted materials which could be encountered during any future earthwork or construction at the Site (e.g., utility maintenance, redevelopment, etc.).

As previously indicated, the six 55-gallon drums of what appeared to be soil should be removed from the Site by the owner in accordance with all applicable regulations.

A copy of all information collected during this assessment, including maps, notes, analytical data and other material will be kept on file at the offices of LaBella Associates, D.P.C. This information is available upon the request.

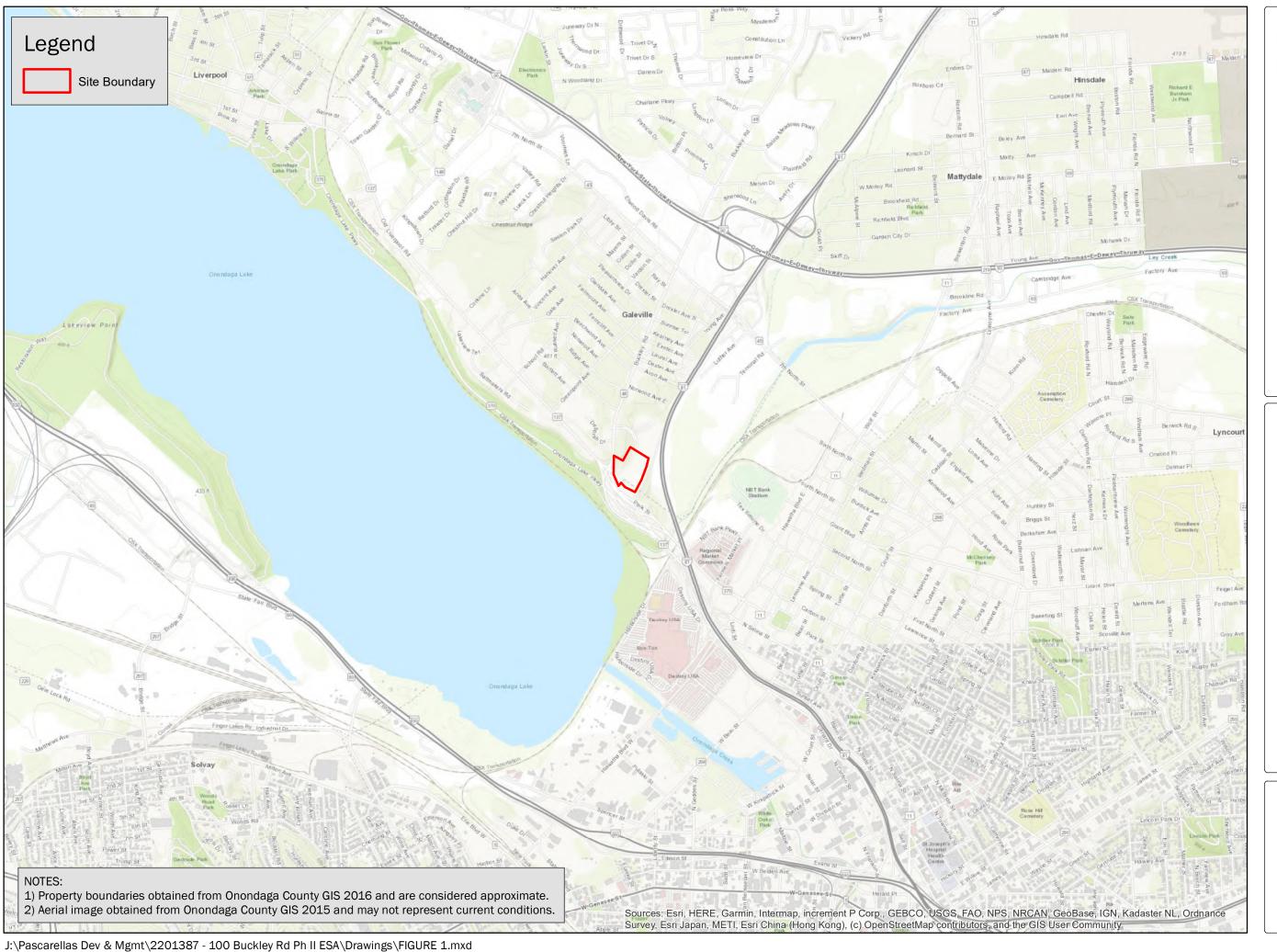
8.0 SIGNATURES OF ENVIRONMENTAL PROFESSIONALS

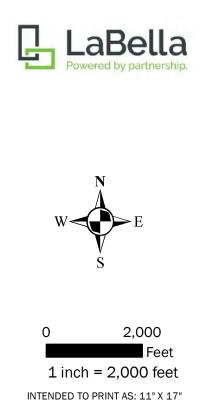
Report Prepared:

William K. Sisco

Regional Environmental Manager

MU fre


Report Reviewed By:

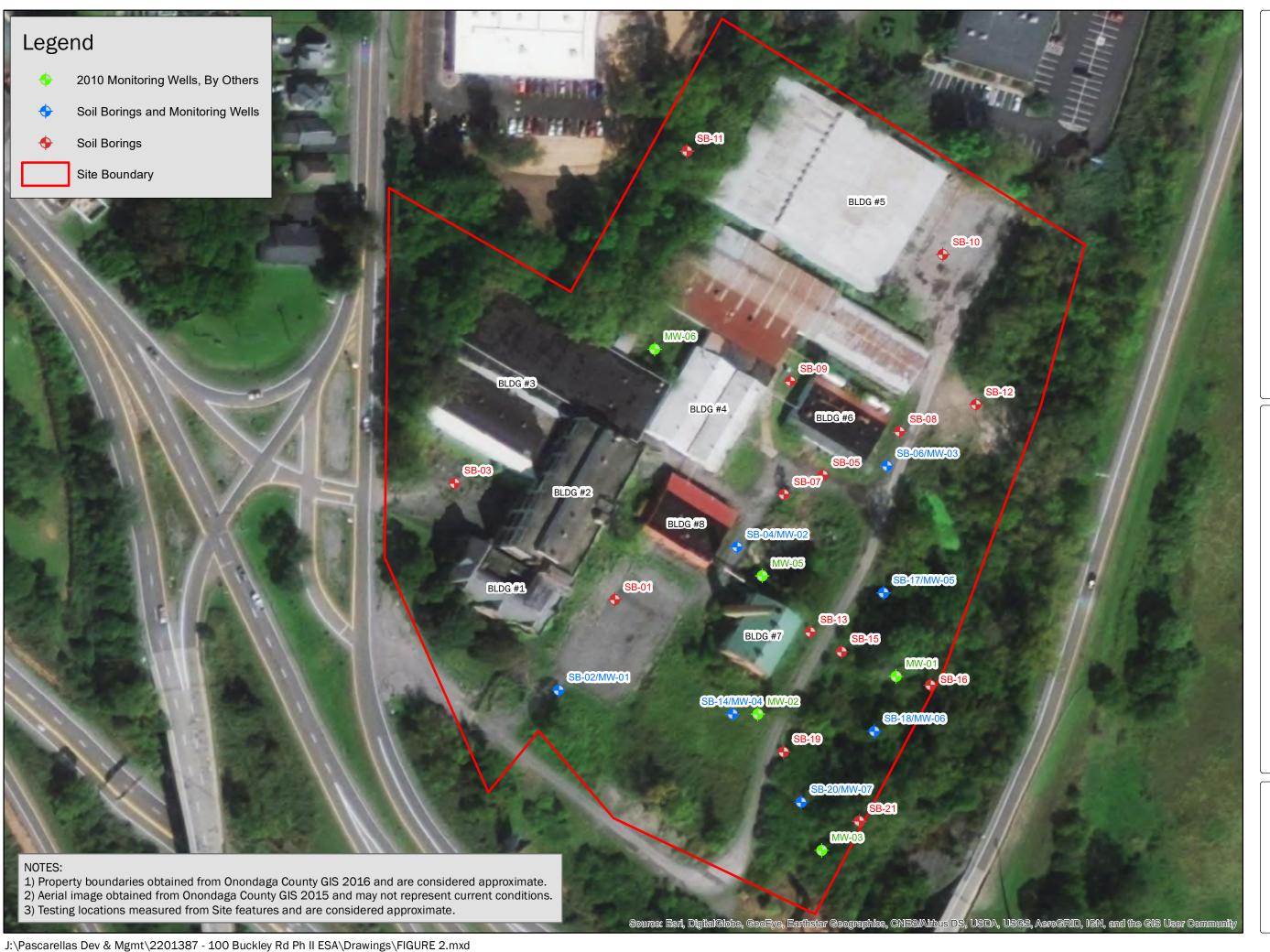

Dan Noll, P.E.

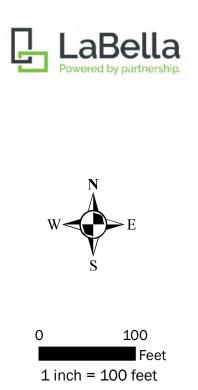
Remedial Design Engineer

FIGURES

CLIENT:

PASCARELLA DEVELOPMENT & MANAGEMENT


PROJECT:


100 BUCKLEY ST SYRACUSE. NY

DRAWING NAME:

SITE LOCATION MAP

PROJECT :	#/DRAWING #/ DATE
22	01387
FI	GURE 1
5,	/7/2020

CLIENT:

INTENDED TO PRINT AS: 11" X 17"

PASCARELLA DEVELOPMENT & MANAGEMENT

PROJECT:

100 BUCKLEY ST SYRACUSE. NY

DRAWING NAME:

TESTING LOCATION MAP

2201387

PROJECT #/DRAWING #/ DATE

FIGURE 2

5/8/2020

TABLES

Table 1 Phase II Environmental Site Assessment 100 Buckley Road, Liverpool, NY Summary of Volatile Organic Compounds in Soil LaBella Project #2201387

Sample ID	NYCRR Part 375	NYCRR Part 375	NYCRR Part 375	NYCRR Part 375	NYCRR Part 375	SB-03	SB-05	SB-05	SB-06	SB-14	SB-17	SB-18
Sample Depth (ft bgs)	Unrestricted Use	Residential Use	Restricted Residential Use	Commercial Use	Protection of	7.5-10.0	2.5-5.0	8.0-10.0	5.0-7.5	7.5-10.0	5.0-10.0	12.5-15.0
Sample Date	SC0s	SCOs	SCOs	SC0s	Groundwater SCOs	4/20/2020	4/20/2020	4/20/2020	4/20/2020	4/20/2020	4/20/2020	4/20/2020
Volatile Organic Compounds												
1,1,1-Trichloroethane	0.68	100	100	500	0.68	<0.00018 U	<0.0003 U	<0.00028 U	<0.00018 U	<0.00016 U	<0.00029 U	<0.00038 U
1,1,2,2-Tetrachloroethane	NL	NL	NL	NL	NL	<0.00018 U		<0.00028 U	<0.00018 U	<0.00016 U	<0.00029 U	<0.00038 U
1,1,2-Trichloroethane	NL	NL	NL	NL	NL	<0.00029 U		<0.00045 U	<0.0003 U	<0.00026 U	<0.00047 U	<0.0006 U
1,1-Dichloroethane	0.27	19	26	240	0.27	<0.00016 U		<0.00025 U	<0.00016 U	<0.00014 U	<0.00025 U	<0.00033 U
1,1-Dichloroethene	0.33	100	100	500	0.33	<0.00026 U		<0.0004 U	<0.00026 U	<0.00023 U	<0.00042 U	<0.00054 U
1,2,4-Trichlorobenzene	NL 2.0	NL 47	NL 50	NL 100	NL	<0.0003 U		<0.00046 U	<0.0003 U	<0.00027 U	<0.00048 U	<0.00062 U <0.00076 U
1,2,4-Trimethylbenzene	3.6	47	52	190	3.6	<0.00037 U <0.0011 U	0.0011 J <0.0018 U	0.0024 J	0.00075 J	<0.00033 U	<0.00058 U	<0.00076 U <0.0022 U
1,2-Dibromo-3-chloropropane	NL NL	NL NL	NL NL	NL NL	NL NL	<0.0011 U <0.0003 U		<0.0017 U <0.00047 U	<0.0011 U <0.00031 U	<0.00098 U <0.00027 U	<0.0017 U <0.00049 U	<0.0022 U
1,2-Dibromoethane 1,2-Dichlorobenzene	NL 1.1	NL 100	NL 100	NL 500	1.1	<0.0003 U		<0.00047 U <0.00024 U	<0.00031 U <0.00016 U	<0.00027 U <0.00014 U	<0.00049 U <0.00025 U	<0.00083 U
1,2-Dichloroethane	0.02	2.3	3.1	30	0.02	<0.00018 U		<0.00024 U	<0.00018 U	<0.00014 U	<0.00025 U	<0.00032 U
1,2-Dichloropropane	NL	NL	NL NL	NL NL	NL	<0.00028 U		<0.00044 U	<0.00028 U	<0.00023 U	<0.00045 U	<0.00038 U
1,3,5-Trimethylbenzene	8.4	47	52	190	8.4	<0.00014 U		0.00054 J	<0.00014 U	<0.00012 U	<0.00022 U	<0.00044 U
1,3-Dichlorobenzene	2.4	17	49	280	2.4	<0.00016 U	<0.00027 U	<0.00025 U	<0.00016 U	<0.00014 U	<0.00026 U	<0.00033 U
1.4-Dichlorobenzene	1.8	9.8	13	130	1.8	<0.00010 U		<0.00029 U	<0.00010 U	<0.00014 U	<0.00020 U	<0.00039 U
2-Butanone	0.12	100	100	500	0.12	<0.0024 U		0.055	0.0082 J	0.012	0.0084 J	<0.005 U
2-Hexanone	NL	NL	NL	NL	NL	<0.0013 U		<0.002 U	<0.0013 U	<0.0012 U	<0.0021 U	<0.0027 U
4-Methyl-2-pentanone	NL	NL	NL	NL	NL	<0.0014 U	<0.0023 U	0.016 J	<0.0014 U	<0.0012 U	<0.0022 U	<0.0029 U
Acetone	0.05	100	100	500	0.05	0.0056 J	0.12	0.26	0.05	0.064	0.074	0.033
Benzene	0.06	2.9	4.8	44	0.06	<0.00018 U	0.0028	0.012	0.0029	<0.00016 U	<0.00029 U	<0.00038 U
Bromodichloromethane	NL	NL	NL	NL	NL	<0.00012 U	<0.0002 U	<0.00018 U	<0.00012 U	<0.00011 U	<0.00019 U	<0.00025 U
Bromoform	NL	NL	NL	NL	NL	<0.00027 U	<0.00045 U	<0.00042 U	<0.00027 U	<0.00024 U	<0.00043 U	<0.00056 U
Bromomethane	NL	NL	NL	NL	NL	<0.00064 U	<0.001 U	<0.00099 U	<0.00064 U	<0.00057 U	<0.001 U	<0.0013 U
Carbon disulfide	NL	NL	NL	NL	NL	<0.005 U	0.0088 J	0.026	0.0057 J	<0.0045 U	<0.008 U	<0.01 U
Carbon tetrachloride	0.76	1.4	2.4	22	0.76	<0.00025 U		<0.00039 U	<0.00025 U	<0.00022 U	<0.0004 U	<0.00052 U
Chlorobenzene	1.1	100	100	500	1.1	<0.00014 U	<0.00023 U	<0.00022 U	<0.00014 U	<0.00012 U	<0.00022 U	<0.00029 U
Chloroethane	NL	NL	NL	NL	NL	<0.0005 U		<0.00077 U	<0.0005 U	<0.00044 U	<0.00079 U	<0.001 U
Chloroform	0.37	10	49.0	350	0.37	0.00066 J	<0.00025 U	<0.00024 U	<0.00015 U	<0.00014 U	<0.00024 U	<0.00032 U
Chloromethane	NL	NL	NL	NL	NL	<0.001 U		<0.0016 U	<0.001 U	<0.00092 U	<0.0016 U	<0.0021 U
cis-1,2-Dichloroethene	0.25	59	100	500	0.25	<0.00019 U		<0.0003 U	<0.00019 U	<0.00017 U	<0.00031 U	<0.0004 U
cis-1,3-Dichloropropene	NL	NL	NL	NL	NL	<0.00017 U		<0.00027 U	<0.00017 U	<0.00016 U	<0.00028 U	<0.00036 U
Cyclohexane	NL	NL	NL	NL	NL	<0.0006 U		<0.00092 U	<0.0006 U	<0.00053 U	<0.00095 U	<0.0012 U
Dibromochloromethane	NL	NL	NL	NL	NL	<0.00015 U		<0.00024 U	<0.00015 U	<0.00014 U	<0.00024 U	<0.00032 U
Dichlorodifluoromethane	NL	NL 00	NL	NL 200	NL	<0.001 U		<0.0016 U	<0.001 U	<0.0009 U	<0.0016 U	<0.0021 U
Ethylbenzene	1 NL	30 NL	41 NL	390 NL	1 NL	<0.00015 U <0.00076 U	0.00037 J <0.0012 U	0.0023 <0.0012 U	0.001 J <0.00077 U	<0.00014 U <0.00068 U	<0.00025 U <0.0012 U	<0.00032 U <0.0016 U
Freon-113	NL NL	NL NL	NI NI	NL NL	NL NL	<0.00076 U <0.00012 U	<0.0012 U	0.00023 J	<0.00077 U <0.00012 U	<0.00068 U	<0.0012 U	<0.0016 U <0.00025 U
Isopropylbenzene Methyl Acetate	NL NL	NL NL	NL NL	NL NL	NL NL	<0.0012 U		<0.0016 U	<0.00012 U	<0.00011 U	<0.00019 U	<0.0025 U
Methyl cyclohexane	NL NL	NL NL	NL NL	NL NL	NL NL	<0.0001 U		0.0010 U	<0.001 U	<0.00059 U	<0.0017 U	<0.0021 U
Methyl tert butyl ether	0.93	62	100	500	0.93	<0.00022 U		<0.0011 J	<0.00022 U	<0.00039 U	<0.001 U	<0.0014 U
Methylene chloride	0.95	51	100	500	0.95	<0.00022 U		<0.0034 U	<0.00022 U	<0.0002 U	<0.004 U	<0.0052 U
n-Butylbenzene	12	100	100	500	12	<0.0023 U		0.0084	0.0082	<0.0022 U	<0.00029 U	<0.0032 U
n-Propylbenzene	3.9	100	100	500	3.9	<0.00019 U		0.0034	0.003	<0.00017 U	<0.0003 U	<0.00039 U
Naphthalene	12	100	100	500	12	<0.00010 U		0.028	0.0063	<0.00064 U	<0.0011 U	<0.0015 U
o-Xylene	NL	NL	NL	NL	NL	<0.00032 U		0.0019	0.00058 J	<0.00028 U	<0.00051 U	<0.00066 U
p-Isopropyltoluene	NL	NL	NL	NL	NL NL	<0.00012 U		0.04	0.0021	<0.00011 U	<0.00019 U	<0.00025 U
p/m-Xylene	NL	NL	NL	NL	NL	<0.00061 U		0.0018 J	0.00067 J	<0.00055 U	<0.00098 U	<0.0013 U
sec-Butylbenzene	11	100	100	500	11	<0.00016 U		<0.00025 U	<0.00016 U	<0.00014 U	<0.00026 U	<0.00033 U
Styrene	NL	NL	NL	NL	NL	<0.00021 U	<0.00036 U	<0.00033 U	<0.00022 U	<0.00019 U	<0.00034 U	<0.00044 U
tert-Butylbenzene	5.9	100	100	500	5.9	<0.00013 U		<0.0002 U	<0.00013 U	<0.00012 U	<0.00021 U	<0.00027 U
Tetrachloroethene	1.3	5.5	19	150	1.3	<0.00021 U		<0.00033 U	<0.00022 U	<0.00019 U	<0.00034 U	<0.00044 U
Toluene	0.7	100	100	500	0.7	<0.0006 U	<0.00099 U	0.0025	0.00099 J	<0.00053 U	<0.00095 U	<0.0012 U
trans-1,2-Dichloroethene	0.19	100	100	500	0.19	<0.00015 U		<0.00023 U	<0.00015 U	<0.00013 U	<0.00024 U	<0.00031 U
trans-1,3-Dichloropropene	NL	NL	NL	NL	NL	<0.0003 U		<0.00046 U	<0.0003 U	<0.00027 U	<0.00048 U	<0.00062 U
Trichloroethene	0.47	10	21	200	0.47	<0.00015 U	<0.00025 U	<0.00023 U	<0.00015 U	<0.00013 U	<0.00024 U	<0.00031 U
Trichlorofluoromethane	NL	NL	NL	NL	NL	<0.00076 U	<0.0013 U	<0.0012 U	<0.00077 U	<0.00068 U	<0.0012 U	<0.0016 U
Vinyl chloride	0.02	0.21	0.9	13	0.02	<0.00037 U 0.00626 -	<0.00061 U 0.20987 -	<0.00057 U	<0.00037 U	<0.00033 U	<0.00059 U 0.0824 -	<0.00076 U

All values displayed in milligrams per kilograms (mg/kg) or parts per million (ppm)

"<" - Indicates compound was not detected above the indicated laboratory method detection limit (MDL).

Bold font indicates that the compound was detected at a concentration above its respective NYCRR Part 375-6.8(a) Unrestricted Use Soil Cleanup Objective (SCO)

Single underline indicates that the compound was detected at a concentration above its respective NYCRR Part 375-6.8(b) Residential Use SCO

Red font indicates that the compound was detected at a concentration above its respective NYCRR Part 375-6.8(b) Restricted Residential Use SCO Yellow highlight indicates that the compound was detected at a concentration above its respective NYCRR Part 375-6.8(b) Commercial Use SCO

Bold Italic font indicates that the compound was detected at a concentration above its respective NYCRR Part 375-6.8(b) Protection of Groundwater SCO

VOCs analyzed by USEPA Method 8260

NL indicates Not Listed

ND indicates None Detected J indicates an estimated value

Table 2 Phase II Environmental Site Assessment 100 Buckley Road, Liverpool, NY Summary of Semi-volatile Organic Compounds in Soil LaBella Project #2201387

Sample ID	NYCRR Part 375	NYCRR Part 375	NYCRR Part 375	NYCRR Part 375	NYCRR Part 375	SB-03	SB-05	SB-05	SB-06	SB-14	SB-17	SB-18
Sample Depth (ft bgs)	Unrestricted Use	Residential Use	Restricted Residential Use	Commercial Use	Protection of	7.5-10.0	2.5-5.0	8.0-10.0	5.0-7.5	7.5-10.0	5.0-10.0	12.5-15.0
Sample Date	SC0s	SCOs	SC0s	SCOs	Groundwater SCOs	4/20/2020	4/20/2020	4/20/2020	4/20/2020	4/20/2020	4/20/2020	4/20/2020
Semi-volatile Organic Compounds												
Acenaphthene	20	100	100	500	98	<0.021 U	<0.48 U	<0.026 U	<0.47 U	<0.02 U	<0.027 U	<0.028 U
Acenaphthylene	100	100	100	500	107	<0.031 U	<0.71 U	<0.038 U	<0.7 U	<0.03 U	<0.041 U	<0.041 U
Anthracene	100	100	100	500	1000	<0.04 U	<0.9 U	<0.048 U	<0.88 U	<0.038 U	<0.052 U	<0.052 U
Benzo(a)anthracene	1	1	1	5.6	1	<0.023 U	<0.52 U	<0.028 U	<0.51 U	<0.022 U	0.056 J	<0.03 U
Benzo(a)pyrene	1	1	1	1	22	<0.05 U	<1.1 U	<0.061 U	<1.1 U	<0.047 U	<0.065 U	<0.065 U
Benzo(b)fluoranthene	1	1	1	5.6	1.7	<0.034 U	<0.78 U	<0.042 U	<0.76 U	<0.033 U	0.061 J	<0.045 U
Benzo(ghi)perylene	100	100	100	500	1000	<0.024 U	<0.54 U	<0.029 U	<0.53 U	<0.023 U	<0.031 U	<0.031 U
Benzo(k)fluoranthene	0.8	1	3.9	56	1.7	<0.032 U	<0.74 U	<0.04 U	<0.72 U	<0.031 U	<0.042 U	<0.042 U
Chrysene	1	1	3.9	56	1	<0.021 U	<0.48 U	<0.026 U	<0.47 U	<0.02 U	0.048 J	<0.028 U
Dibenzo(a,h)anthracene	0.33	0.33	0.33	0.56	1000	<0.024 U	<0.54 U	<0.029 U	<0.52 U	<0.022 U	<0.031 U	<0.031 U
Fluoranthene	100	100	100	500	1000	<0.023 U	<0.53 U	0.034 J	<0.52 U	<0.022 U	0.091 J	<0.03 U
Fluorene	30	100	100	500	386	<0.02 U	<0.45 U	<0.024 U	<0.44 U	<0.019 U	<0.026 U	<0.026 U
Indeno(1,2,3-cd)pyrene	0.5	0.5	0.5	5.6	8.2	<0.028 U	<0.64 U	<0.035 U	<0.63 U	<0.027 U	<0.037 U	<0.037 U
Phenanthrene	100	100	100	500	1000	<0.025 U	1.3 J	0.062 J	<0.55 U	<0.024 U	0.087 J	<0.032 U
Pyrene	100	100	100	500	1000	<0.02 U	<0.46 U	0.026 J	<0.45 U	<0.019 U	0.08 J	<0.026 U
Total SVOCs	-	-	-	-	-		1.3 -	0.122 -			0.423 -	

All values displayed in milligrams per kilograms (mg/kg) or parts per million (ppm)

"<" - Indicates compound was not detected above the indicated laboratory method detection limit (MDL).

Bold font indicates that the compound was detected at a concentration above its respective NYCRR Part 375-6.8(a) Unrestricted Use Soil Cleanup Objective (SCO)

Single underline indicates that the compound was detected at a concentration above its respective NYCRR Part 375-6.8(b) Residential Use SCO

Red font indicates that the compound was detected at a concentration above its respective NYCRR Part 375-6.8(b) Restricted Residential Use SCO
Yellow highlight indicates that the compound was detected at a concentration above its respective NYCRR Part 375-6.8(b) Commercial Use SCO

Bold Italic font Indicates that the compound was detected at a concentration above its respective NYCRR Part 375-6.8(b) Protection of Groundwater SCO

SVOCs analyzed by USEPA Method 8270

NL indicates Not Listed ND indicates None Detected

J indicates an estimated value

Table 3
Phase II Environmental Site Assessment
100 Buckley Road, Liverpool, NY
Summary of Metals in Soli
LaBella Project #2201387

Sample ID	NYCRR Part 375	NYCRR Part 375	NYCRR Part 375	NYCRR Part 375	NYCRR Part 375	SB-03	SB-05	SB-05	SB-06	SB-14	SB-17	SB-18
Sample Depth (ft bgs)	Unrestricted Use	Residential Use	Restricted Residential Use	Commercial Use	Protection of	7.5-10.0	2.5-5.0	8.0-10.0	5.0-7.5	7.5-10.0	5.0-10.0	12.5-15.0
Sample Date	SC0s	SCOs	SC0s	SCOs	Groundwater SCOs	4/20/2020	4/20/2020	4/20/2020	4/20/2020	4/20/2020	4/20/2020	4/20/2020
Metals												
Arsenic	13	16	16	16	16	2.47	1	4.05	1.28	3.51	2.52	<0.13 U
Barium	350	350	400	400	820	4.7	61.9	87.3	40.2	16.6	20.2	38.2
Cadmium	2.5	2.5	4.3	9.3	7.5	0.171 J	<0.054 U	0.352 J	0.179 J	0.33 J	0.245 J	0.394 J
Chromium	30	36	180	1500	NL	2.98	1.1	9.93	3.48	9.09	5.24	7.25
Lead	63	400	400	1000	450	3.81	80.2	175	36.5	14.2	10.4	1.59 J
Mercury	0.18	0.81	0.81	2.8	0.73	<0.052 U	0.163	0.081 J	0.155	0.162	<0.077 U	<0.072 U
Selenium	3.9	36	180	1500	4	0.166 J	<0.142 U	0.502 J	1.96	0.298 J	0.961 J	0.6 J
Silver	2	36	180	1500	8.3	<0.134 U	<0.156 U	<0.163 U	<0.154 U	<0.13 U	<0.182 U	<0.177 U

NOTES:

All values displayed in milligrams per kilograms (mg/kg) or parts per million (ppm)

"<" - Indicates compound was not detected above the indicated laboratory method detection limit (MDL).

Bold font indicates that the compound was detected at a concentration above its respective NYCRR Part 375-6.8(a) Unrestricted Use Soil Cleanup Objective (SCO)

 $\underline{\textbf{Single underline indicates that the compound was detected at a concentration above its respective NYCRR Part 375-6.8(b) Residential Use \underline{\textbf{SCO}}}$

Red font indicates that the compound was detected at a concentration above its respective NYCRR Part 375-6.8(b) Restricted Residential Use SCO

Yellow highlight indicates that the compound was detected at a concentration above its respective NYCRR Part 375-6.8(b) Commercial Use SCO

Bold Italic font Indicates that the compound was detected at a concentration above its respective NYCRR Part 375-6.8(b) Protection of Groundwater SCO

Metals analyzed by USEPA Method 6010

NL indicates Not Listed

ND indicates None Detected

J indicates an estimated value

Table 4 Phase II Environmental Site Assessment 100 Buckley Road, Liverpool, NY Summary of Polychlorinated Biphenyls in Soil LaBella Project #2201387

Sample ID	NYCRR Part 375 NYCRR Part 375		NYCRR Part 375	NYCRR Part 375	NYCRR Part 375	SB-03	SB-05	SB-05	SB-06	SB-14	SB-17	SB-18		
Sample Depth (ft bgs)	Unrestricted Use	Residential Use SCOs			Restricted Residential Use	Commercial Use	Protection of	7.5-10.0	2.5-5.0	8.0-10.0	5.0-7.5	7.5-10.0	5.0-10.0	12.5-15.0
Sample Date	SC0s		SC0s	SC0s	Groundwater SCOs	4/20/2020	4/20/2020	4/20/2020	4/20/2020	4/20/2020	4/20/2020	4/20/2020		
PCBs														
Aroclor 1016	0.1	1	1	1	3.2	<0.00346 U	<0.00413 U	<0.00437 U	<0.00392 U	<0.0033 U	<0.0124 U	<0.00467 U		
Aroclor 1221	0.1	1	1	1	3.2	<0.0039 U	<0.00466 U	<0.00494 U	<0.00442 U	<0.00372 U	<0.014 U	<0.00527 U		
Aroclor 1232	0.1	1	1	1	3.2	<0.00826 U	<0.00987 U	<0.0104 U	<0.00936 U	<0.00788 U	<0.0296 U	<0.0112 U		
Aroclor 1242	0.1	1	1	1	3.2	<0.00525 U	<0.00628 U	<0.00664 U	<0.00595 U	<0.00501 U	<0.0188 U	<0.00709 U		
Aroclor 1248	0.1	1	1	1	3.2	<0.00585 U	<0.00698 U	<0.00739 U	<0.00662 U	<0.00558 U	<0.021 U	<0.00789 U		
Aroclor 1254	0.1	1	1	1	3.2	<0.00426 U	<0.00509 U	<0.00539 U	<0.00483 U	<0.00407 U	<0.0153 U	<0.00576 U		
Aroclor 1260	0.1	1	1	1	3.2	<0.0072 U	<0.0086 U	<0.0091 U	<0.00816 U	<0.00687 U	<0.0258 U	<0.00972 U		
Aroclor 1262	0.1	1	1	1	3.2	<0.00495 U	<0.00591 U	<0.00626 U	<0.00561 U	<0.00472 U	<0.0177 U	<0.00668 U		
Aroclor 1268	0.1	1	1	1	3.2	<0.00404 U	<0.00482 U	<0.0051 U	<0.00457 U	<0.00385 U	<0.0145 U	<0.00545 U		
PCBs, Total	0.1	1	1	1	3.2	<0.00346 U	<0.00413 U	<0.00437 U	<0.00392 U	<0.0033 U	<0.0124 U	<0.00467 U		

NOTES:

All values displayed in milligrams per kilograms (mg/kg) or parts per million (ppm)

"<" - Indicates compound was not detected above the indicated laboratory method detection limit (MDL).

Bold font indicates that the compound was detected at a concentration above its respective NYCRR Part 375-6.8(a) Unrestricted Use Soil Cleanup Objective (SCO)

 $\underline{\textbf{Single underline indicates that the compound was detected at a concentration above its respective NYCRR Part 375-6.8(b) Residential Use SCO}$

Red font indicates that the compound was detected at a concentration above its respective NYCRR Part 375-6.8(b) Restricted Residential Use SCO Yellow highlight indicates that the compound was detected at a concentration above its respective NYCRR Part 375-6.8(b) Commercial Use SCO

Bold italic font indicates that the compound was detected at a concentration above its respective NYCRR Part 375-6.8(b) Protection of Groundwater SCO

PCBs analyzed by USEPA Method 8082

NL indicates Not Listed

ND indicates None Detected

J indicates an estimated value

Table 5
Phase II Environmental Site Assessment
100 Buckley Road, Liverpool, NY
Summary of Volatile Organic Compounds in Groundwater
LaBella Project #2201387

Sample ID	TOGS 1.1.1	SB-02, MV	V-01	SB-04, MW	-02	SB-06, MW-	03	SB-14, MW	-04	SB-17, MV	V-05	SB-18, MV	V-06	SB-20, MV	V-07
Screened Interval (ft bgs)	Groundwater Quality	5.0-15.	0	5.0-10.0)	5.0-10.0		5.0-15.0)	5.0-10.	0	5.0-15.	0	5.0-15.	.0
Sample Date	Standards	4/21/20	20	4/21/20	20	4/21/202)	4/21/202	20	4/21/20	20	4/21/20	20	4/21/20	20
Volatile Organic Compounds															
1,1,1-Trichloroethane	5	<0.7	U	< 0.7	U	< 0.7	С	<0.7	U	<0.7	U	<0.7	U	< 0.7	U
1,1,2,2-Tetrachloroethane	5	<0.17	U	<0.17	U	<0.17	U	<0.17	U	<0.17	U	<0.17	U	<0.17	U
1,1,2-Trichloroethane	1	<0.5	U	<0.5	U	<0.5	U	<0.5	U	<0.5	U	<0.5	U	<0.5	U
1,1-Dichloroethane	5	<0.7	U	<0.7	U	<0.7	U	<0.7	U	<0.7	U	<0.7	U	<0.7	U
1,1-Dichloroethene	5	<0.17	U	<0.17	U	<0.17	U	<0.17	U	<0.17	U	<0.17	U	<0.17	U
1,2,4-Trichlorobenzene	5	<0.7	U	<0.7	U	<0.7	U	<0.7	U	<0.7	U	<0.7	U	<0.7	U
1,2,4-Trimethylbenzene	5	<0.7	U	< 0.7	U	<0.7	U	<0.7	U	<0.7	U	<0.7	U	<0.7	U
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane	0.04 0.0006	<0.7 <0.65	U	<0.7 <0.65	U	<0.7 <0.65	U	<0.7 <0.65	U	<0.7 <0.65	U	<0.7 <0.65	U	<0.7 <0.65	U
1.2-Dioromoethane 1.2-Dichlorobenzene	3	<0.65	U	<0.65	U	<0.65	U	<0.65	U	<0.65	U	<0.65	U	<0.65	U
1,2-Dichloroethane	0.6	<0.13	U	<0.7	U	<0.13	U	<0.13	U	<0.13	U	<0.13	U	<0.13	U
1,2-Dichloropropane	1	<0.13	U	<0.13	U	<0.13	U	<0.13	U	<0.13	U	<0.13	U	<0.13	U
1,3,5-Trimethylbenzene	5	<0.7	U	<0.7	U	<0.14	U	<0.14	U	<0.14	U	<0.14	U	<0.7	U
1,3-Dichlorobenzene	3	<0.7	U	<0.7	U	<0.7	U	<0.7	U	<0.7	U	<0.7	U	<0.7	U
1,4-Dichlorobenzene	3	<0.7	U	<0.7	U	<0.7	U	<0.7	U	<0.7	U	<0.7	U	<0.7	U
2-Butanone	50	<1.9	U	<1.9	U	<1.9	U	<1.9	U	<1.9	U	<1.9	U	2.5	J
2-Hexanone	50	<1	U	<1.5	U	<1.5	U	<1	U	<1.5	U	<1	U	<1	U
4-Methyl-2-pentanone	NL NL	<1	Ü	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U
Acetone	50	2.8	J	8.8		<1.5	U	5.4		2.2	j	4.1	J	12	
Benzene	1	<0.16	U	<0.16	U	<0.16	U	<0.16	U	<0.16	U	<0.16	U	<0.16	U
Bromodichloromethane	50	< 0.19	U	<0.19	U	<0.19	U	<0.19	U	< 0.19	U	<0.19	U	< 0.19	U
Bromoform	50	< 0.65	U	< 0.65	U	< 0.65	U	< 0.65	U	< 0.65	U	< 0.65	U	< 0.65	U
Bromomethane	5	< 0.7	U	< 0.7	U	< 0.7	U	<0.7	U	<0.7	U	<0.7	U	<0.7	U
Carbon disulfide	60	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U
Carbon tetrachloride	5	<0.13	U	<0.13	U	<0.13	U	<0.13	U	<0.13	U	<0.13	U	<0.13	U
Chlorobenzene	5	< 0.7	U	< 0.7	U	< 0.7	U	<0.7	U	<0.7	U	<0.7	U	<0.7	U
Chloroethane	5	<0.7	U	< 0.7	U	< 0.7	U	<0.7	U	<0.7	U	<0.7	U	< 0.7	U
Chloroform	7	< 0.7	U	< 0.7	U	< 0.7	U	<0.7	U	<0.7	U	<0.7	U	< 0.7	U
Chloromethane	NL	<0.7	U	<0.7	U	<0.7	U	<0.7	U	<0.7	U	<0.7	U	<0.7	U
cis-1,2-Dichloroethene	5	<0.7	U	<0.7	U	<0.7	U	<0.7	U	<0.7	U	<0.7	U	<0.7	U
cis-1,3-Dichloropropene	0.4	<0.14	U	<0.14	U	<0.14	U	<0.14	U	<0.14	U	<0.14	U	<0.14	U
Cyclohexane	NL	<0.27	U	<0.27	U	<0.27	U	<0.27	U	<0.27	U	<0.27	U	<0.27	U
Dibromochloromethane	50	<0.15	U	<0.15	U	<0.15	U	<0.15	U	<0.15	U	<0.15	U	<0.15	U
Dichlorodifluoromethane	5	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U
Ethylbenzene	5	<0.7	U	<0.7	U	<0.7	U	<0.7	U	<0.7	U	<0.7	U	<0.7	U
Freon-113	5	< 0.7	U	< 0.7	U	< 0.7	U	<0.7	U	< 0.7	U	< 0.7	U	<0.7	U
Isopropylbenzene	5 NL	<0.7 <0.23	U	<0.7 <0.23	U	<0.7 <0.23	U	<0.7 1.1	U	<0.7 <0.23	U	<0.7	U	<0.7 <0.23	U
Methyl Acetate Methyl cyclohexane	NL NL	<0.23	U	<0.23	U	<0.23	U	<0.4	J	<0.23	U	<0.4	J	<0.23	U
Methyl tert butyl ether	10	<0.7	U	<0.4	U	<0.7	U	<0.4	U	<0.4	U	<0.7	U	<0.7	U
Methylene chloride	5	<0.7	U	<0.7	U	<0.7	U	<0.7	U	<0.7	U	<0.7	U	<0.7	U
n-Butylbenzene	5	<0.7	U	<0.7	U	<0.7	U	<0.7	U	<0.7	U	<0.7	U	<0.7	U
n-Propylbenzene	5	<0.7	U	<0.7	U	<0.7	U	<0.7	U	<0.7	U	<0.7	U	<0.7	U
Naphthalene	10	<0.7	U	<0.7	U	<0.7	U	<0.7	U	<0.7	U	<0.7	U	<0.7	U
o-Xylene	5	<0.7	U	<0.7	U	<0.7	U	<0.7	U	<0.7	U	<0.7	U	<0.7	U
p-Isopropyltoluene	5	<0.7	U	<0.7	U	<0.7	U	<0.7	U	<0.7	U	<0.7	U	<0.7	U
p/m-Xylene	5	<0.7	U	<0.7	U	<0.7	U	<0.7	U	<0.7	U	<0.7	U	<0.7	Ü
sec-Butylbenzene	5	<0.7	U	<0.7	U	<0.7	U	<0.7	U	<0.7	U	<0.7	U	<0.7	U
Styrene	930	<0.7	U	<0.7	U	<0.7	U	<0.7	U	<0.7	U	<0.7	U	<0.7	U
tert-Butylbenzene	5	<0.7	U	<0.7	U	<0.7	U	<0.7	U	<0.7	U	<0.7	U	<0.7	U
Tetrachloroethene	5	<0.18	U	<0.18	U	<0.18	U	<0.18	U	<0.18	U	<0.18	U	<0.18	U
Toluene	5	<0.7	U	< 0.7	U	<0.7	U	<0.7	U	<0.7	U	<0.7	U	<0.7	U
trans-1,2-Dichloroethene	5	<0.7	U	<0.7	U	<0.7	U	<0.7	U	<0.7	U	<0.7	U	<0.7	U
trans-1,3-Dichloropropene	0.4	<0.16	U	<0.16	U	<0.16	U	<0.16	U	<0.16	U	<0.16	U	<0.16	U
Trichloroethene	5	0.2	J	<0.18	U	<0.18	U	<0.18	U	<0.18	U	<0.18	U	<0.18	U
Trichlorofluoromethane	5	<0.7	U	<0.7	U	<0.7	U	<0.7	U	<0.7	U	<0.7	U	<0.7	U
Vinyl chloride	2	<0.07	U	<0.07	U	0.08	J	<0.07	U	<0.07	U	<0.07	U	<0.07	U
Total VOCs	-	3	-	8.8	-	0.08	-	6.5	-	2.2	-	5.1	-	14.5	-
NOTES:															

NOTES:
All values displayed in micrograms per liter (ug/L) or parts per billion (ppb)

"<" - Indicates compound was not detected above the indicated laboratory method detection limit (MDL).

Yellow highlight indicates that the compound was detected at a concentration above its respective 6 NYCRR Part 703
Groundwater Quality Standard or Technical and Operational Guidance Series (TOGS 1.1.1) Guidance Value

VOCs analyzed by USEPA Method 8260

NL indicates Not Listed

J indicates an estimated value

U indicates the analyte was not detected above laboratory MDLs

Table 6
Phase II Environmental Site Assessment
100 Buckley Road, Liverpool, NY
Summary of Semi-volatile Organic Compounds in Groundwater
LaBella Project #2201387

Sample ID	TOGS 1.1.1	SB-02, MW	/-01	SB-04, MV	V-02	SB-06, MW	/-03	SB-14, MW	/-04	SB-17, MW	<i>l-</i> 05	SB-18, MV	V-06	SB-20, MW-07	r
Screened Interval (ft bgs)	Groundwater Quality	5.0-15.0	5.0-15.0		5.0-10.0		0	5.0-15.0		5.0-10.0		5.0-15.0		5.0-15.0	
Sample Date	Standards	4/21/2020		4/21/2020		4/21/2020		4/21/2020		4/21/2020		4/21/2020		4/21/2020	
Semi-volatile Organic Compounds															
Acenaphthene	20	<0.01	U	<0.01	U	0.13		0.65		0.03	J	<0.01	U	0.19	
Acenaphthylene	NL	<0.01	U	<0.01	U	<0.01	U	< 0.01	U	<0.01	U	<0.01	U	0.17	
Anthracene	50	<0.01	U	<0.01	U	0.16		<0.01	U	0.04	J	<0.01	U	0.56	
Benzo(a)anthracene	0.002	<0.02	U	0.02	J	0.4		0.12		0.1		<0.02	U	2	
Benzo(a)pyrene	0	<0.02	U	0.02	J	0.39		0.07	J	0.09	J	<0.02	U	1.9	
Benzo(b)fluoranthene	0.002	<0.01	U	0.03	J	0.62		0.07	J	0.15		0.02	J	2.4	
Benzo(ghi)perylene	NL	<0.01	U	0.02	J	0.27		0.04	J	0.07	J	<0.01	U	1.1	
Benzo(k)fluoranthene	0.002	<0.01	U	0.01	J	0.15		0.02	J	0.04	J	<0.01	U	0.8	
Chrysene	0.002	<0.01	U	0.01	J	0.43		0.14		0.1	J	<0.01	U	1.6	
Dibenzo(a,h)anthracene	NL	<0.01	U	<0.01	U	0.07	J	<0.01	U	<0.01	U	<0.01	U	0.27	
Fluoranthene	50	<0.02	U	0.03	J	0.9		0.17		0.18		<0.02	U	3.6	
Fluorene	50	<0.01	U	<0.01	U	0.16		0.57		0.03	J	<0.01	U	0.23	
Indeno(1,2,3-cd)pyrene	0.002	<0.01	U	0.02	J	0.31		0.03	J	0.08	J	<0.01	U	1.3	
Phenanthrene	50	<0.02	U	0.03	J	0.66		0.11		0.14		<0.02	U	2.2	
Pyrene	50	<0.02	U	0.03	J	0.73		0.33		0.16		<0.02	U	3	
Total SVOCs	50	-	-	0.22	-	5.38	-	2.32	-	1.21	-	0.02	-	21.32	-

NOTES:

All values displayed in micrograms per liter (ug/L) or parts per billion (ppb)

"<" - Indicates compound was not detected above the indicated laboratory method detection limit (MDL).

Yellow highlight indicates that the compound was detected at a concentration above its respective 6 NYCRR Part 703 Groundwater Quality Standard or Technical and Operational Guidance Series (TOGS 1.1.1) Guidance Value

VOCs analyzed by USEPA Method 8260

NL indicates Not Listed

J indicates an estimated value

APPENDIX 1

Geophysical Report

NYLD Infrastructure

NEW YORK LEAK DETECTION, INC.

Field Report – Utility Location

PO Box 269, Jamesville, NY 13078 315-469-4601 info@nyld.com

Date(s) on site: 04-13-2020

Other Technicians on site: Sonny Kentile **Technician**: Mike Bishop **Customer:** LaBella Associates Site Address: 100 Buckley Road Syracuse, NY Contact Person: Bill Sisco Phone: 315-243-8441 **Scope of Work:** Utility Location Services – Clear 11 boring locations (original scope was 20 locations). NOTE: The nine (9) located in the eastern wooded/brush portion we will not need surveyed. Type of Service: mark all that apply Leak Detection Comprehensive Leak Survey Pressurized Pipe Inspection □ Utility Location/GPR Infrastructure Assessment Video Inspection Valve Exercising mark all that apply **Type of Equipment Used:** ☐ Profiler EMP 400 | | MetroTech vLocPro2 LC2500 Leak Correlator Noggin 250 MHz PosiTector UTG G3 S-30 Surveyor ☐ Noggin 500 MHz Sonde / Locatable Rodder ☐ Helium # **Bottles** Conquest 1000 MHz Leica Robotic Total Station Leica RTK GPS ☐ Valve Maintenance Trailer ZCorr Data Loggers Thermal Imaging Camera Marking Used: mark all that apply Chalk/Marker Paint ⊠ Flags Other____ Updated Onsite Mapping Tape

Rev 6-1-18

1

NEW YORK LEAK DETECTION, INC. PO Box 269, Jamesville, NY 13078

Field Report – Utility Location

315-469-4601 info@nyld.com

Ground Cover/Weather Conditions: Asphalt, Concrete, & Soil. 50's & Rain. Instructions from Onsite Contact: See Scope.	Site Access/Safety Training: N/A	Expiration Date: N/A						
Instructions from Onsite Contact: See Scope.	Ground Cover/Weather Conditions: Asphalt, Concrete, & Soil. 50's & Rain.							
	Instructions from Onsite Contact: See Scope.							
Information Transfer:	Information Transfer:							
In addition to this field report, mark all that apply:		1 ,						
		☐ Hand drawn sketch	☐ Maps updated onsite					
Bill	Bill	☐ Photographs	☐ Surveyed by others					
☐ Surveyed and AutoCAD Mapping by NYLD		☐ Surveyed and AutoCAD Mapping by NYLD						

Notes/Testing Results:

A visual inspection was performed in the area of concern to assess for utility structures. Utilizing the RD8000 in conductive, inductive, and power/radio modes, located and marked out utilities as shown in the area below. Sonde/Locatable Rodder was used within applicable utilities. Additional confirmation performed with the Noggin using the 250 MHz antenna. GPR signal reception varies depending upon soil conditions. Therefore, it is utilized in combination with various other geophysical tools for the most accurate verification of known/unknown utilities and/or structures.

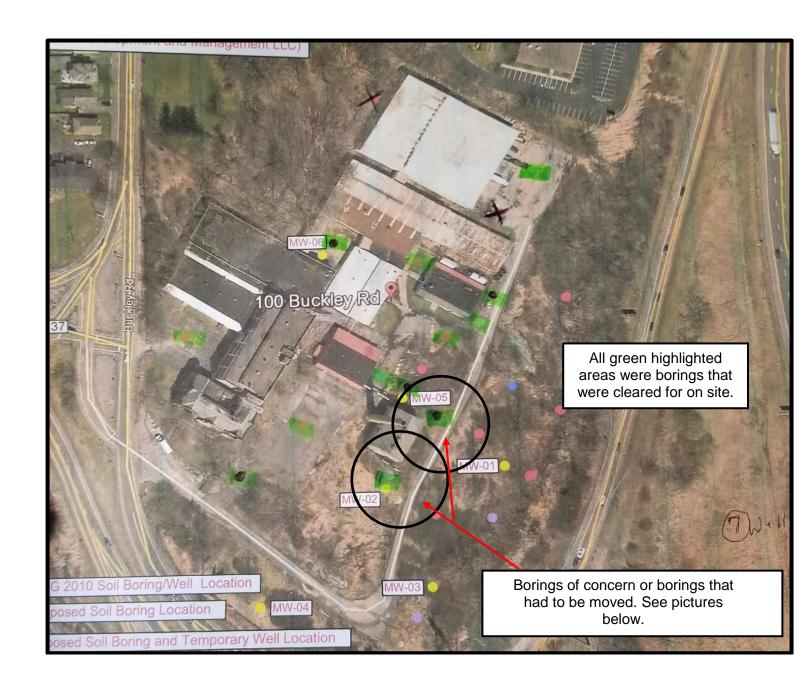
Utilities were painted in appropriate color and depths were provided where possible.

This report is back up to information relayed and marked on site at time of service. It is for informational purposes only.

NEW YORK LEAK DETECTION, INC.

PO Box 269, Jamesville, NY 13078 315-469-4601 info@nyld.com

Field Report - Utility Location



NYLD Infrastructure

NEW YORK LEAK DETECTION, INC.

PO Box 269, Jamesville, NY 13078 315-469-4601 info@nyld.com

Field Report - Utility Location


Key

Blue	Water		
Red	Power		
Orange	Communications		
Yellow	Gas/Flammable Fuel		
White	Unknown		
Green	Storm/Sanitary		

Rev 6-1-18 4

NEW YORK LEAK DETECTION, INC.


Field Report - Utility Location

Field Report - Utility Location

NEW YORK LEAK DETECTION, INC. PO Box 269, Jamesville, NY 13078 315-469-4601 info@nyld.com

Borings of concern or borings that had to be moved

NEW YORK LEAK DETECTION, INC.

PO Box 269, Jamesville, NY 13078 315-469-4601 info@nyld.com

Field Report - Utility Location

Subsurface Limitations

Utility locating is the art and science of using non-intrusive methods to search for, find and mark out buried, unseen conduits or other objects. There are innumerable variables involved in locating underground utilities, such as topography, size and complexity of job site, depth and proximity of buried utilities, above ground obstructions, short turnaround schedules, changes in the scope of work, lack of (or outdated) blueprints and adverse weather conditions.

New York Leak Detection, Inc. (NYLD) has made a substantial financial investment in crossover technologies and training to meet our clients' needs when locating and mapping utilities. However, due to unpredictable factors that may affect the results, NYLD makes no guarantee, expressed or implied, with respect to the completeness or accuracy of the information provided. Any use or reliance on the information or opinion is at the risk of the user and NYLD shall not be liable for any damage or injury arising out of the use or misuse of the information provided.

NYLD strives to provide the highest quality utility location services possible with the technical expertise of our field specialists and state-of-the-art equipment used. Every effort is made to provide our clients with the most accurate information possible without adverse consequences.

NYLD makes no guarantee that all subsurface utilities and obstructions will be detected. GPR signal penetration might not be sufficient to detect all utilities. NYLD is not responsible for detecting subsurface utilities and obstructions that normally cannot be detected by the methods employed or that cannot be detected because of site conditions. NYLD is not responsible for maintaining markouts after leaving the work area. Mark-outs made in inclement weather and in high traffic areas may not last. Surveyor assumes responsibility of picking up data on site.

APPENDIX 2

Field Logs

BORING: **PROJECT** SB - 01 LaBella 2201387 SHEET 01 of 21 100 Buckley Road JOB: CHKD BY: Syracuse, NY 13088 300 STATE STREET, ROCHESTER, NY DATE: 4/20/2020 ENVIRONMENTAL ENGINEERING CONSULTANTS 9:00 TO 9:20 CONTRACTOR: LaBella Env. LLC BORING LOCATION: TIME: DRILLER: A. Bement GROUND SURFACE ELEVATION DATUM: NA NA LABELLA REPRESENTATIVE: E. Thierfelder START DATE: 4/20/20 END DATE: 04/20/2020 WEATHER: 50°Sunny, windy TYPE OF DRILL RIG: Geoprobe 6610DT DRIVE SAMPLER TYPE: Macrocore INSIDE DIAMETER: 2" AUGER SIZE AND TYPE: NA OVERBURDEN SAMPLING METHOD: Direct Push OTHER: DEPTH (FEET BGS) SAMPLE PID FIELD VISUAL CLASSIFICATION REMARKS STRATA SCREEN SAMPLE RECOVERY SAMPLE NO. AND CHANGE (FEET (PPM) (INCHES) DEPTH BGS) 0 6" Asphalt/gravel subbase 0 6"-1.3' Light grey silt and clay 1 1.3'-5' Dark grey silt and clay, wet 0 24" 2 0 3 0 4 0 0 5'-5.1' Dark grey silt and clay, saturated 6 5.1'-8' SAA, some organics- roots, dark brown to black in color 0 25"

Dark brown dense clay, some silt, saturated

0

0 0

BORING:

SB - 01

19							
20							
·				DEPTH (FT)		NOTES:	
WATER LEVEL DATA		BOTTOM OF	BOTTOM OF	GROUNDWATER			
DATE	TIME	ELAPSED TIME	CASING	BORING	ENCOUNTERED		
				10'	1.3'		

GENERAL NOTES

8

9

1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.

8'-10'

2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

BGS = Below Ground Surface and = 35 - 50% C = Coarse R = Rounded NA = Not Applicable some = 20 - 35% M = MediumA = Angularlittle = 10 - 20% F = Fine SR = Subrounded

trace = 1 - 10% VF = Very Fine SA = Subangular

PROJECT 2201387 100 Buckley Road Syracuse, NY 13088 BORING: SB - 02, MW-01 SHEET 02 of 21

JOB:

300 STATE STREET, ROCHESTER, NY ENVIRONMENTAL ENGINEERING CONSULTANTS

CONTRACTOR: LaBella Env. LLC

BORING LOCATION:

DATE: TIME:

WEATHER:

CHKD BY:

4/20/2020

DRILLER:

A. Bement

GROUND SURFACE ELEVATION

4/20/20

START DATE:

NA

9:30 TO 9:40

DATUM:

NA 50°Sunny, windy

BORING:

SB - 02, N

LABELLA REPRESENTATIVE: E. Thierfelder TYPE OF DRILL RIG: Geoprobe 6610DT

OVERBURDEN SAMPLING METHOD: Direct Push

AUGER SIZE AND TYPE: NA

END DATE: 04/20/2020 DRIVE SAMPLER TYPE: Macrocore INSIDE DIAMETER: 2"

OTHER:

DEPTH (FEET BGS)		SAMPLE		VISUAL CLASSIFICATION			PID FIELD	REMARKS
DEPTH BG	SAMPLE RECOVERY (INCHES)	SAMPLE NO. AND DEPTH	STRATA CHANGE (FEET BGS)				SCREEN (PPM)	REIVIARNS
0	24"		6" 6"-5'		Asphalt/gravel subbase Dark brown silt, trace MF gravel, moist			
1	24		0 - 3	Dark brown sit, ti	Jaik blown siit, trace imp graver, moist			
2							0	
3							0.1	
4								Depth to water on 4/21/20- 3.7'
5							0	
6	36"		5'-7'	SAA			0	
7			7'-10'	Brown to yellow c	lay and silt, some orga	nics- roots at 8', wet	0	
8							0	
9							0	
10							0	
11	48"		10'-15'	Brown to yellow s	ilt and F sand, trace SA	gravel, wet	0.1	
12							0	
13							0	
14							0	
15							0	
16								
17								
18								
19								
20								
			DEPTH (FT) NOTES:					
	WATER LEVEL		BOTTOM OF	BOTTOM OF	GROUNDWATER	Well installed to 15'. 10' screen, 5' riser		
DATE	TIME	ELAPSED TIME	CASING	BORING	ENCOUNTERED	*Turbid water not clearing up when sampling		
				15'	6"			

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

BGS = Below Ground Surface and = 35 - 50% C = Coarse R = Rounded NA = Not Applicable some = 20 - 35% M = Medium A = Angularlittle = 10 - 20% F = Fine SR = Subrounded

trace = 1 - 10% VF = Very Fine SA = Subangular

BORING: **PROJECT** SB - 03 2201387 SHEET 03 of 21 LaBella 100 Buckley Road JOB: CHKD BY: Syracuse, NY 13088 300 STATE STREET, ROCHESTER, NY DATE: 4/20/2020 ENVIRONMENTAL ENGINEERING CONSULTANTS BORING LOCATION: 9:45 TO 10:00 CONTRACTOR: LaBella Env. LLC TIME: DRILLER: A. Bement GROUND SURFACE ELEVATION DATUM: NA NA LABELLA REPRESENTATIVE: E. Thierfelder START DATE: 4/20/20 END DATE: 04/20/2020 WEATHER: 50°Sunny, windy TYPE OF DRILL RIG: Geoprobe 6610DT DRIVE SAMPLER TYPE: Macrocore INSIDE DIAMETER: 2" AUGER SIZE AND TYPE: NA OVERBURDEN SAMPLING METHOD: Direct Push OTHER: DEPTH (FEET BGS) SAMPLE PID FIELD VISUAL CLASSIFICATION REMARKS STRATA SCREEN SAMPLE RECOVERY SAMPLE NO. AND CHANGE (FEET (PPM) (INCHES) DEPTH BGS) 0 6" Asphalt/gravel subbase 0 18" 6"-5' Brown to red silt, some clay, trace SA gravel, moist 1 0 2 0 3 0 4 0 0 5'-6.5' 6 0 39" 6.5'-10' Brown to red silt and clay, some F sand, saturated SB-03 (7.5'-10') 0 8 0 9 0.1 0.2 10 11 12 13 14 15 16 17 18 19 20 DEPTH (FT) NOTES:

GENERAL NOTES

DATE

WATER LEVEL DATA

TIME

ELAPSED TIME

1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.

BOTTOM OF

CASING

2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

BOTTOM OF

BORING

10'

BGS = Below Ground Surface and = 35 - 50% C = Coarse R = Rounded NA = Not Applicable some = 20 - 35% M = MediumA = Angularlittle = 10 - 20% F = Fine SR = Subrounded

trace = 1 - 10% VF = Very Fine SA = Subangular

GROUNDWATER

ENCOUNTERED 6"

BORING:

SB - 03

BORING: PROJECT SB - 04, MW-02 2201387 SHEET 04 of 21 LaBella 100 Buckley Road JOB: CHKD BY: Syracuse, NY 13088 300 STATE STREET, ROCHESTER, NY DATE: 4/20/2020 ENVIRONMENTAL ENGINEERING CONSULTANTS BORING LOCATION: 10:00 TO 10:15 CONTRACTOR: LaBella Env. LLC TIME: DRILLER: A. Bement GROUND SURFACE ELEVATION DATUM: NA NA LABELLA REPRESENTATIVE: E. Thierfelder START DATE: 4/20/20 END DATE: 04/20/2020 WEATHER: 50°Sunny, windy TYPE OF DRILL RIG: Geoprobe 6610DT DRIVE SAMPLER TYPE: Macrocore INSIDE DIAMETER: 2" AUGER SIZE AND TYPE: NA OVERBURDEN SAMPLING METHOD: Direct Push OTHER: DEPTH (FEET BGS) SAMPLE PID FIELD VISUAL CLASSIFICATION REMARKS STRATA SCREEN SAMPLE RECOVERY SAMPLE NO. AND CHANGE (FEET (PPM) (INCHES) DEPTH BGS) 0 0 6" Asphalt, gravel subbase 6"-5' Dark brown silt and clay, some red and yellow brick and stone, moist Depth to water on 1 0 4/21/20-0.4 12" 2 0 3 0 4 0 0 5'-10' Grey to black silt and sand, some light grey crushed stone, saturated-sleeve full of 6 0 6" 0 8 0 9 0 0 10 11 12 13 14 15 16 17 18 19 20 DEPTH (FT) NOTES: WATER LEVEL DATA BOTTOM OF BOTTOM OF GROUNDWATER Well installed to 10'. 5' screen 5' riser DATE ELAPSED TIME TIME CASING BORING ENCOUNTERED 10' 6"

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

BGS = Below Ground Surface and = 35 - 50% C = Coarse R = Rounded NA = Not Applicable some = 20 - 35% M = MediumA = Angularlittle = 10 - 20% F = Fine SR = Subrounded

trace = 1 - 10% VF = Very Fine SA = Subangular

BORING:

SB - 04, N

PROJECT 2201387 100 Buckley Road

Syracuse, NY 13088

BORING: SHEET

SB - 05 05 of 21

DATE:

JOB:

CHKD BY:

300 STATE STREET, ROCHESTER, NY ENVIRONMENTAL ENGINEERING CONSULTANTS

CONTRACTOR: LaBella Env. LLC

OVERBURDEN SAMPLING METHOD: Direct Push

BORING LOCATION:

TIME:

4/20/2020

DRILLER:

A. Bement

GROUND SURFACE ELEVATION

NA

10:15 TO 10:30

TYPE OF DRILL RIG: Geoprobe 6610DT

LABELLA REPRESENTATIVE: E. Thierfelder

START DATE: 4/20/20

END DATE: 04/20/2020

DATUM: NA WEATHER: 50°Sunny, windy

AUGER SIZE AND TYPE: NA

DRIVE SAMPLER TYPE: Macrocore

INSIDE DIAMETER: 2"

OTHER:

OVL	INDUNDEN SAMFLING	METHOD. Direct Pusit		OTHER.				
(FEET S)		SAMPLE			\#0\\\\	N 100 F10 1710 U	PID FIELD	DEMBYO
DEPTH (FEET BGS)	SAMPLE RECOVERY (INCHES)	SAMPLE NO. AND DEPTH	STRATA CHANGE (FEET BGS)		VISUAL C	CLASSIFICATION	SCREEN (PPM)	REMARKS
0	38"		3" 3"-2'	Asphalt, gravel su	ibbase ilt, trace grey SA gravel	wet	0	
1	33		2'-2.5' 2.5'-5'	White unknown "s	sticky" material, ilt, some gravel, wet, st		0	
2		SB-05 (2.5'-5')	2.5 -5	Black Sanu and S	air, some graver, wer, st	rong petroleum odor	5.8	
3							24.2	
4							21.2	
5							66.6	
6	31"		5'-7'	SAA, wet, strong p	petroleum odor		1.1	Water appears to be foaming
7			7'-8'	Black sand and s	tone, trace yellow stone	e, wet	7.7	
8		SB-05 (8'-10')	8'-10'	Black silt, some g	grey stone, moist, petro	leum odor	160.9	
9								
10								
11	29"		10'-12'	SAA, trace decayi	SAA, trace decaying wood		39.7	
12	20		12'-15'	Grey dense clay a	and silt, light sheen, str	ong odor	45.6	
13							0.1	
							0	
14								
15								
16								
17								
18								
19								
20				DEDTIL (ET)		NOTES:		
	WATER LEVEL	DATA	BOTTOM OF	DEPTH (FT) BOTTOM OF	GROUNDWATER	INUTES:		
DATE	TIME	ELAPSED TIME	CASING	BORING	ENCOUNTERED			
				15'	2.5'			

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

BGS = Below Ground Surface NA = Not Applicable

and = 35 - 50% some = 20 - 35% little = 10 - 20%

C = Coarse M = Medium R = Rounded A = Angular

trace = 1 - 10%

F = Fine VF = Very Fine SR = Subrounded SA = Subangular

BORING:

SB - 05

BORING: **PROJECT** SB - 06, MW-03 2201387 SHEET 06 of 21 LaBella 100 Buckley Road JOB: CHKD BY: Syracuse, NY 13088 300 STATE STREET, ROCHESTER, NY DATE: 4/20/2020 ENVIRONMENTAL ENGINEERING CONSULTANTS BORING LOCATION: CONTRACTOR: LaBella Env. LLC TIME: 10:30 TO 10:45 DRILLER: A. Bement GROUND SURFACE ELEVATION DATUM: NA NA LABELLA REPRESENTATIVE: E. Thierfelder START DATE: 4/20/20 END DATE: 04/20/2020 WEATHER: 50°Sunny, windy TYPE OF DRILL RIG: Geoprobe 6610DT DRIVE SAMPLER TYPE: Macrocore INSIDE DIAMETER: 2" AUGER SIZE AND TYPE: NA OVERBURDEN SAMPLING METHOD: Direct Push OTHER: DEPTH (FEET BGS) SAMPLE PID FIELD VISUAL CLASSIFICATION REMARKS STRATA SCREEN SAMPLE RECOVERY SAMPLE NO. AND CHANGE (FEET (PPM) (INCHES) DEPTH BGS) 0 6" Asphalt, gravel subbase 0 25" 6"-1' Tan to yellow crushed stone Depth to water on 1 1'-5' Black crushed stone, some sand, trace tan to yellow stone, saturated at 2' 0 4/21/20- 1.6' 2 0 3 0 4 0 0 SB-06 (5'-7.5') 5'-6' Black crushed stone, some red brick and decaying wood 6 6'-9' Dark brown to grey dense clay and silt 2.6 19" 0.1 8 0 9 9'-10' 0.1 SAA, decaying wood mixed in 10 0.1 11 12 13 14 15 16 17 18 19

GENERAL NOTES

WATER LEVEL DATA

ELAPSED TIME

TIME

20

DATE

1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.

BOTTOM OF

CASING

2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

DEPTH (FT)

BOTTOM OF

BORING

10'

BGS = Below Ground Surface and = 35 - 50% C = Coarse R = Rounded NA = Not Applicable some = 20 - 35% M = Medium A = Angular little = 10 - 20% F = Fine SR = Subrounded

trace = 1 - 10% VF = Very Fine SA = Subangular

GROUNDWATER

ENCOUNTERED

NOTES:

Well installed to 10'. 5' screen 5' riser

*Slight sheen on water, dark turbid water

BORING:

SB - 06, N

BORING: **PROJECT** SB - 07 2201387 SHEET 07of 21 LaBella 100 Buckley Road JOB: CHKD BY: Syracuse, NY 13088 300 STATE STREET, ROCHESTER, NY DATE: 4/20/2020 ENVIRONMENTAL ENGINEERING CONSULTANTS BORING LOCATION: 10:45 TO 11:10 CONTRACTOR: LaBella Env. LLC TIME: DRILLER: A. Bement GROUND SURFACE ELEVATION DATUM: NA NA LABELLA REPRESENTATIVE: E. Thierfelder START DATE: 4/20/20 END DATE: 04/20/2020 WEATHER: 50°Sunny, windy TYPE OF DRILL RIG: Geoprobe 6610DT DRIVE SAMPLER TYPE: Macrocore INSIDE DIAMETER: 2" AUGER SIZE AND TYPE: NA OVERBURDEN SAMPLING METHOD: Direct Push OTHER: DEPTH (FEET BGS) SAMPLE PID FIELD VISUAL CLASSIFICATION REMARKS STRATA SCREEN SAMPLE RECOVERY SAMPLE NO. AND CHANGE (FEET (PPM) (INCHES) DEPTH BGS) 0 0 6" Gravel 25" 6"-5' Dark grey to black clay and silt, trace black gravel, saturated at 2' 1 0.1 2 0.2 3 0.1 4 0.1 0.1 6'-10' SAA, trace larger red stone 6 10" 0.1 7 0 8 0 9 0 0 10 11 12 13 14 15 16 17 18 19 20 DEPTH (FT) NOTES:

GENERAL NOTES

DATE

WATER LEVEL DATA

TIME

ELAPSED TIME

1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.

BOTTOM OF

CASING

2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

BOTTOM OF

BORING

10'

GROUNDWATER

ENCOUNTERED

VF = Very Fine SA = Subangular BORING: SB - 07

PROJECT 2201387

100 Buckley Road Syracuse, NY 13088 BORING: SHEET

SB - 08 08 of 21

JOB:

CHKD BY:

DATE:

300 STATE STREET, ROCHESTER, NY

ENVIRONMENTAL ENGINEERING CONSULTANTS CONTRACTOR:

LaBella Env. LLC BORING LOCATION:

> GROUND SURFACE ELEVATION NA

TIME:

11:20 TO 11:35

4/20/2020

DRILLER:

A. Bement

START DATE: 4/20/20

END DATE: 04/20/2020

DATUM:

NA

LABELLA REPRESENTATIVE: E. Thierfelder TYPE OF DRILL RIG: Geoprobe 6610DT

AUGER SIZE AND TYPE: NA

DRIVE SAMPLER TYPE: Macrocore INSIDE DIAMETER: 2"

WEATHER: 50°Sunny, windy

OVERBURDEN SAMPLING METHOD: Direct Push

OTHER:

DEPTH (FEET BGS)		SAMPLE		VISUAL CLASSIFICATION	I ASSIFICATION	PID FIELD	REMARKS	
DEPTH	SAMPLE RECOVERY (INCHES)	SAMPLE NO. AND DEPTH	STRATA CHANGE (FEET BGS)		VISUAL CI	EASSI IOATION	SCREEN (PPM)	NEWARKS
0			3"	Grass and soil			0	
1	30"		3"-3'	Brown to black sil	t and sand, some crush	ed gravei, wet at 2'	0	
2							0	
3			3'-3.3' 3.3'-5'	Tan to yellow stor	ne and clay, trace SA grave	el wet	0	
4			0.0 0	Brown to groy out	and only, trace on grant	5, 1100	0	
5							0	
6	18"		5'-9'	Black SA gravel, t	race red brick and stone	e, wet	0	
7	10						0	
8							0	
9			9'-10'	Brown to black cla	ay and silt, trace decayi	ng wood, trace F gravel	0	
10							0	
11								
12								
13								
14								
15								
16								
17								
18								
19								
20								
				DEPTH (FT)		NOTES:		
	WATER LEVEL		BOTTOM OF	BOTTOM OF	GROUNDWATER			
DATE	TIME	ELAPSED TIME	CASING	BORING	ENCOUNTERED			
	1			10'	2'			

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

BGS = Below Ground Surface NA = Not Applicable

and = 35 - 50% some = 20 - 35% little = 10 - 20% trace = 1 - 10%

C = Coarse M = MediumF = Fine

VF = Very Fine

R = Rounded A = Angular SR = Subrounded SA = Subangular

BORING:

SB - 08

BORING: **PROJECT** SB - 09 LaBella 2201387 SHEET 09 of 21 100 Buckley Road JOB: CHKD BY: Syracuse, NY 13088 300 STATE STREET, ROCHESTER, NY DATE: 4/20/2020 ENVIRONMENTAL ENGINEERING CONSULTANTS LaBella Env. LLC BORING LOCATION: 11:40 TO 12:00 CONTRACTOR: TIME: DRILLER: A. Bement GROUND SURFACE ELEVATION DATUM: NA NA LABELLA REPRESENTATIVE: E. Thierfelder START DATE: 4/20/20 END DATE: 04/20/2020 WEATHER: 50°Sunny, windy TYPE OF DRILL RIG: Geoprobe 6610DT DRIVE SAMPLER TYPE: Macrocore INSIDE DIAMETER: 2" AUGER SIZE AND TYPE: NA OVERBURDEN SAMPLING METHOD: Direct Push OTHER: DEPTH (FEET BGS) SAMPLE PID FIELD VISUAL CLASSIFICATION REMARKS STRATA SCREEN SAMPLE RECOVERY SAMPLE NO. AND CHANGE (FEET (PPM) (INCHES) DEPTH BGS) 0 3" Grass, soil 0 3"-5' Grey to black sand and silt, black crushed stone, trace brown to red F gravel 1 15" saturated at 2.5' 0 2 0 3 0 4 0

Grey clay and silt, dense, black streaks, trace F sand

0

0

0

0 0

BORING:

SB - 09

20							
				DEPTH (FT)		NOTES:	
			BOTTOM OF	BOTTOM OF	GROUNDWATER		
DATE	TIME	ELAPSED TIME	CASING	BORING	ENCOUNTERED		
				10'	2.5'		

GENERAL NOTES

6

7

8 9

20"

1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.

5'-7'

7'-10'

2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

BGS = Below Ground Surface and = 35 - 50% C = Coarse R = Rounded NA = Not Applicable some = 20 - 35% M = MediumA = Angularlittle = 10 - 20% F = Fine SR = Subrounded trace = 1 - 10%

VF = Very Fine SA = Subangular

BORING: **PROJECT** SB - 10 2201387 SHEET 10 of 21 LaBella 100 Buckley Road JOB: CHKD BY: Syracuse, NY 13088 300 STATE STREET, ROCHESTER, NY DATE: 4/20/2020 ENVIRONMENTAL ENGINEERING CONSULTANTS BORING LOCATION: CONTRACTOR: LaBella Env. LLC TIME: 12:00 TO 12:30 DRILLER: A. Bement GROUND SURFACE ELEVATION DATUM: NA NA LABELLA REPRESENTATIVE: E. Thierfelder START DATE: 4/20/20 END DATE: 04/20/2020 WEATHER: 50°Sunny, windy TYPE OF DRILL RIG: Geoprobe 6610DT DRIVE SAMPLER TYPE: Macrocore INSIDE DIAMETER: 2" AUGER SIZE AND TYPE: NA OVERBURDEN SAMPLING METHOD: Direct Push OTHER: DEPTH (FEET BGS) SAMPLE PID FIELD VISUAL CLASSIFICATION REMARKS STRATA SCREEN SAMPLE RECOVERY SAMPLE NO. AND CHANGE (FEET (PPM) (INCHES) DEPTH BGS) 0 6" Crushed stone 0 11" 6"-5' Brown to grey or green silt and sand, some SA gravel, moist 1 0 2 0 3 0 4 0 0 5'-10' No recovery- all water 6 8 9 10 11 12 13 14 15 16 17 18 19 20 DEPTH (FT) NOTES: WATER LEVEL DATA BOTTOM OF BOTTOM OF GROUNDWATER DATE ELAPSED TIME TIME CASING BORING ENCOUNTERED 10' **GENERAL NOTES**

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

BORING: SB - 10

BORING: **PROJECT** SB - 11 2201387 SHEET 11 of 21 LaBella 100 Buckley Road JOB: CHKD BY: Syracuse, NY 13088 300 STATE STREET, ROCHESTER, NY DATE: 4/20/2020 ENVIRONMENTAL ENGINEERING CONSULTANTS BORING LOCATION: CONTRACTOR: LaBella Env. LLC TIME: 12:30 TO 13:00 DRILLER: A. Bement GROUND SURFACE ELEVATION DATUM: NA NA LABELLA REPRESENTATIVE: E. Thierfelder START DATE: 4/20/20 END DATE: 04/20/2020 WEATHER: 50°Sunny, windy TYPE OF DRILL RIG: Geoprobe 6610DT DRIVE SAMPLER TYPE: Macrocore INSIDE DIAMETER: 2" AUGER SIZE AND TYPE: NA OVERBURDEN SAMPLING METHOD: Direct Push OTHER: DEPTH (FEET BGS) SAMPLE PID FIELD VISUAL CLASSIFICATION REMARKS STRATA SCREEN SAMPLE RECOVERY SAMPLE NO. AND CHANGE (FEET (PPM) (INCHES) DEPTH BGS) Brown silt and sand, trace organic material- roots and grass, trace black SA gravel 0 0 22" saturated at 6" 1 0 2 0 3 0 4 0 0 No recovery, all water 6 8 9 10 11 12 13 14 15 16 17 18 19 20 DEPTH (FT) NOTES: WATER LEVEL DATA BOTTOM OF BOTTOM OF GROUNDWATER DATE ELAPSED TIME TIME CASING BORING ENCOUNTERED **GENERAL NOTES** 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL. 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER BGS = Below Ground Surface and = 35 - 50% C = Coarse R = Rounded

M = Medium

VF = Very Fine

F = Fine

A = Angular

SR = Subrounded

SA = Subangular

BORING:

SB - 11

NA = Not Applicable

some = 20 - 35%

little = 10 - 20%

trace = 1 - 10%

BORING: **PROJECT** SB - 12 2201387 SHEET 12 of 21 LaBella 100 Buckley Road JOB: CHKD BY: Syracuse, NY 13088 300 STATE STREET, ROCHESTER, NY DATE: 4/20/2020 ENVIRONMENTAL ENGINEERING CONSULTANTS BORING LOCATION: CONTRACTOR: LaBella Env. LLC TIME: 13:30 TO 13:45 DRILLER: A. Bement GROUND SURFACE ELEVATION DATUM: NA NA LABELLA REPRESENTATIVE: E. Thierfelder START DATE: 4/20/20 END DATE: 04/20/2020 WEATHER: 50°Sunny, windy TYPE OF DRILL RIG: Geoprobe 6610DT DRIVE SAMPLER TYPE: Macrocore INSIDE DIAMETER: 2" AUGER SIZE AND TYPE: NA OVERBURDEN SAMPLING METHOD: Direct Push OTHER: DEPTH (FEET BGS) SAMPLE PID FIELD VISUAL CLASSIFICATION REMARKS STRATA SCREEN SAMPLE RECOVERY SAMPLE NO. AND CHANGE (FEET (PPM) (INCHES) DEPTH BGS) 0 6" Crushed gravel 0 17" 6"-5' Brown to grey silt and clay, trace SA gravel, wet at 5' 1 0 2 0 3 0 4 0 0 5'-10' Brown silt and sand, some clay, some SA gravel, wet 6 6" 0 0 8 9 0 0 10 11 12 13 14 15 16 17 18 19 20 DEPTH (FT) NOTES: WATER LEVEL DATA BOTTOM OF BOTTOM OF GROUNDWATER ELAPSED TIME BORING DATE TIME CASING ENCOUNTERED

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

BGS = Below Ground Surface and = 35 - 50% C = Coarse R = Rounded NA = Not Applicable some = 20 - 35% M = MediumA = Angularlittle = 10 - 20% F = Fine SR = Subrounded

trace = 1 - 10% VF = Very Fine SA = Subangular

BORING:

SB - 12

BORING: **PROJECT** SB - 13 2201387 SHEET 13 of 21 LaBella 100 Buckley Road JOB: CHKD BY: Syracuse, NY 13088 300 STATE STREET, ROCHESTER, NY DATE: 4/20/2020 ENVIRONMENTAL ENGINEERING CONSULTANTS BORING LOCATION: CONTRACTOR: LaBella Env. LLC TIME: 13:50 TO 14:15 DRILLER: A. Bement GROUND SURFACE ELEVATION DATUM: NA NA LABELLA REPRESENTATIVE: E. Thierfelder START DATE: 4/20/20 END DATE: 04/20/2020 WEATHER: 50°Sunny, windy TYPE OF DRILL RIG: Geoprobe 6610DT DRIVE SAMPLER TYPE: Macrocore INSIDE DIAMETER: 2" AUGER SIZE AND TYPE: NA OVERBURDEN SAMPLING METHOD: Direct Push OTHER: DEPTH (FEET BGS) SAMPLE PID FIELD VISUAL CLASSIFICATION REMARKS STRATA SCREEN SAMPLE RECOVERY SAMPLE NO. AND CHANGE (FEET (PPM) (INCHES) DEPTH BGS) 0 Grass, soil 0 33" 7"-4" Dark brown silt, some clay and sand, some grey gravel, moist 1 0 2 0 3 0 4'-5' 4 SAA, some yellow silt and clay, wet 0 0 5'-6' 6 28" 6'-8' Dense brown to yellow clay and silt, trace SA gravel, wet 0 0 8 8'-10' Brown to grey silt, some F sand, trace organics- roots and grass 0 9 0 0 10 11 12 13 14 15 16 17 18 19 20 DEPTH (FT) NOTES:

GENERAL NOTES

DATE

WATER LEVEL DATA

TIME

ELAPSED TIME

1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.

BOTTOM OF

CASING

2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

BOTTOM OF

BORING

GROUNDWATER

ENCOUNTERED

BORING: SB - 13

PROJECT 2201387 100 Buckley Road Syracuse, NY 13088 BORING: SHEET

SB - 14, MW-04 14 of 21

4/20/2020

JOB:

DATE:

WEATHER:

CHKD BY:

300 STATE STREET, ROCHESTER, NY

ENVIRONMENTAL ENGINEERING CONSULTANTS CONTRACTOR: LaBella Env. LLC

BORING LOCATION:

50°Sunny, windy

BORING:

SB - 14, N

DRILLER: LABELLA REPRESENTATIVE: E. Thierfelder

A. Bement

GROUND SURFACE ELEVATION START DATE: 4/20/20

NA END DATE: 04/20/2020

14:15 TO 14:45 TIME: DATUM: NA

TYPE OF DRILL RIG: Geoprobe 6610DT

DRIVE SAMPLER TYPE: Macrocore

INSIDE DIAMETER: 2"

OTHER:

AUGER SIZE AND TYPE: NA OVERBURDEN SAMPLING METHOD: Direct Push

(FEET S)		SAMPLE			VISUAL CLASSIFICATION			DEMARKS.
DEPTH (FEET BGS)	SAMPLE RECOVERY (INCHES)	SAMPLE NO. AND DEPTH	STRATA CHANGE (FEET BGS)		VISUAL C	LASSIFICATION	SCREEN (PPM)	REMARKS
0			6" 6"-3'	Grass, soil	a alay traca CA grayal		0	
1	35"		6-3	Light brown to tar	n clay, trace SA gravel		0	Depth to water on
2							0	4/21/20- 1.7'
3			3'-4.5'	Dark brown to bla	ick crushed stone, som	e silt and sand, moist	0	
4			4.5'-5'	Dongo grov olov r	moint		3.1	
5				Dense grey clay, r	HOIST		10.5	
6	34"		5'-7.5'	SAA, saturated			0.5	
7		SB-14 (7.5'-10')	7.5'-9'	Brown grey clay w	rith brown streaks, satu	rated	0.7	
8							0.4	
9			9'-10'		ick clay, trace organics	roots, trace SA gravel, neen, slight petroleum odor	0.6	
10					. petro product, stigrit si	0		
11			10'-12'	SAA, saturated		0.2		
12	60"		12'-13'	Brown to red dens	se clay, black streaks		0.4	
13			13'-14'	Dense grey clay, v	wet		0.3	
14			14'-15'	Brown to yellow v	ery dense clay, wet		0.4	
15							0.2	
16								
17								
18								
19								
20								
				DEPTH (FT)		NOTES:		
	WATER LEVEL		BOTTOM OF	BOTTOM OF	GROUNDWATER	Well installed to 15'. 10' screen, 5' riser		
DATE	TIME	ELAPSED TIME	CASING	BORING ENCOUNTERED *Slight sheen on water, black globs while sam			npling	
GEN	IERAL NOTES			15'	5'	<u> </u>		

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

BGS = Below Ground Surface and = 35 - 50% R = Rounded C = Coarse NA = Not Applicable some = 20 - 35% M = MediumA = Angular little = 10 - 20% F = Fine SR = Subrounded

trace = 1 - 10% VF = Very Fine SA = Subangular

BORING: **PROJECT** SB - 15 2201387 SHEET 15 of 21 LaBella 100 Buckley Road JOB: CHKD BY: Syracuse, NY 13088 300 STATE STREET, ROCHESTER, NY DATE: 4/20/2020 ENVIRONMENTAL ENGINEERING CONSULTANTS BORING LOCATION: CONTRACTOR: LaBella Env. LLC TIME: 14:45 TO 15:10 DRILLER: A. Bement GROUND SURFACE ELEVATION DATUM: NA NA LABELLA REPRESENTATIVE: E. Thierfelder START DATE: 4/20/20 END DATE: 04/20/2020 WEATHER: 50°Sunny, windy TYPE OF DRILL RIG: Geoprobe 6610DT DRIVE SAMPLER TYPE: Macrocore INSIDE DIAMETER: 2" AUGER SIZE AND TYPE: NA OVERBURDEN SAMPLING METHOD: Direct Push OTHER: DEPTH (FEET BGS) SAMPLE PID FIELD VISUAL CLASSIFICATION REMARKS STRATA SCREEN SAMPLE RECOVERY SAMPLE NO. AND CHANGE (FEET (PPM) (INCHES) DEPTH BGS) 0 6" Grass, soil 0 31" 6"-3' Brown to yellow silt, some SA gravel, some F sand, wet 1 0 2 0 3'-5' 3 SAA, dark brown 0 4 0 0 5'-10' SAA, yellow streaks, saturated 6 14" 0 7 0 8 9 0 0 10 11 12 13 14 15 16 17 18 19 20 DEPTH (FT) NOTES: WATER LEVEL DATA BOTTOM OF BOTTOM OF GROUNDWATER

GENERAL NOTES

TIME

DATE

1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.

CASING

ELAPSED TIME

2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

BORING

10'

BGS = Below Ground Surface and = 35 - 50% C = Coarse R = Rounded NA = Not Applicable some = 20 - 35% M = MediumA = Angularlittle = 10 - 20% F = Fine SR = Subrounded

trace = 1 - 10% VF = Very Fine SA = Subangular

ENCOUNTERED

1.5'

BORING:

SB - 15

BORING: **PROJECT** SB - 16 2201387 SHEET 16 of 21 LaBella 100 Buckley Road JOB: CHKD BY: Syracuse, NY 13088 300 STATE STREET, ROCHESTER, NY DATE: 4/20/2020 ENVIRONMENTAL ENGINEERING CONSULTANTS BORING LOCATION: CONTRACTOR: LaBella Env. LLC TIME: 15:10 TO 15:30 DRILLER: A. Bement GROUND SURFACE ELEVATION DATUM: NA NA LABELLA REPRESENTATIVE: E. Thierfelder START DATE: 4/20/20 END DATE: 04/20/2020 WEATHER: 50°Sunny, windy TYPE OF DRILL RIG: Geoprobe 6610DT DRIVE SAMPLER TYPE: Macrocore INSIDE DIAMETER: 2" AUGER SIZE AND TYPE: NA OVERBURDEN SAMPLING METHOD: Direct Push OTHER: DEPTH (FEET BGS) SAMPLE PID FIELD VISUAL CLASSIFICATION REMARKS STRATA SCREEN SAMPLE RECOVERY SAMPLE NO. AND CHANGE (FEET (PPM) (INCHES) DEPTH BGS) 0 6" grass, soil 0 6"-5' Grey to black crushed stone, some silt and sand, trace red and yellow stone, wet at 4' 1 16" 0 2 0 3 0 4 0 0 5'-10' SAA, saturated 6 7" 0 7 0 8 9 0 0 10 11 12 13 14 15 16 17 18 19 20 DEPTH (FT) NOTES:

GENERAL NOTES

DATE

WATER LEVEL DATA

TIME

ELAPSED TIME

1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.

BOTTOM OF

CASING

2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

BOTTOM OF

BORING

10'

BGS = Below Ground Surface and = 35 - 50% C = Coarse R = Rounded NA = Not Applicable some = 20 - 35% M = MediumA = Angularlittle = 10 - 20% F = Fine SR = Subrounded

trace = 1 - 10% VF = Very Fine SA = Subangular

GROUNDWATER

ENCOUNTERED

BORING:

SB - 16

BORING: **PROJECT** SB - 17, MW-05 LaBella 2201387 SHEET 17of 21 100 Buckley Road JOB: CHKD BY: Syracuse, NY 13088 300 STATE STREET, ROCHESTER, NY DATE: 4/20/2020 ENVIRONMENTAL ENGINEERING CONSULTANTS LaBella Env. LLC BORING LOCATION: CONTRACTOR: TIME: 15:30 TO 15:45 DRILLER: A. Bement GROUND SURFACE ELEVATION DATUM: NA NA LABELLA REPRESENTATIVE: E. Thierfelder START DATE: 4/20/20 END DATE: 04/20/2020 WEATHER: 50°Sunny, windy TYPE OF DRILL RIG: Geoprobe 6610DT DRIVE SAMPLER TYPE: Macrocore INSIDE DIAMETER: 2" AUGER SIZE AND TYPE: NA OVERBURDEN SAMPLING METHOD: Direct Push OTHER: DEPTH (FEET BGS) SAMPLE PID FIELD VISUAL CLASSIFICATION REMARKS STRATA SCREEN SAMPLE RECOVERY SAMPLE NO. AND CHANGE (FEET (PPM) (INCHES) DEPTH BGS) 0 0 6" Grass, soil 31" 6"-4' Brown silt and sand, trace grey SA gravel 1 0 Depth to water on 4/21/20- 1.5' 2 0 3 0 4'-5' 4 Brown dense clay, saturated 0 0 SB-17 (5'-10') 5'-7' 6 19" 0.4 7 7'-10' Brown silt and sand, trace organics- roots, wet 0 8 0 9 0 0 10 11 12 13 14 15 16 17 18 19 20 DEPTH (FT) NOTES: WATER LEVEL DATA BOTTOM OF BOTTOM OF GROUNDWATER Well installed at 10'. 5' screen 5' riser DATE ELAPSED TIME TIME CASING BORING ENCOUNTERED 10'

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

BGS = Below Ground Surface and = 35 - 50% C = Coarse R = Rounded NA = Not Applicable some = 20 - 35% M = MediumA = Angularlittle = 10 - 20% F = Fine SR = Subrounded

trace = 1 - 10% VF = Very Fine SA = Subangular

BORING:

SB - 17, N

PROJECT 2201387 100 Buckley Road BORING: SHEET

CHKD BY:

SB - 18, MW-06 18 of 21

Syracuse, NY 13088

JOB:

DATE:

4/20/2020

300 STATE STREET, ROCHESTER, NY

ENVIRONMENTAL ENGINEERING CONSULTANTS CONTRACTOR:

LaBella Env. LLC BORING LOCATION: TIME:

15:45 TO 16:15

DRILLER:

A. Bement

GROUND SURFACE ELEVATION START DATE: 4/20/20

NA END DATE: 04/20/2020 DATUM: NA

LABELLA REPRESENTATIVE: E. Thierfelder TYPE OF DRILL RIG: Geoprobe 6610DT

AUGER SIZE AND TYPE: NA

DRIVE SAMPLER TYPE: Macrocore

WEATHER: 50°Sunny, windy

INSIDE DIAMETER: 2"

OTHER:

OVERBURDEN SAMPLING METHOD: Direct Push

		METHORI BHOCCI don		*****					
(FEET S)		SAMPLE			VICUALO	U ACCIFICATION	PID FIELD	DEMARKS	
DEPTH (FEET BGS)	SAMPLE RECOVERY (INCHES)	SAMPLE NO. AND DEPTH	STRATA CHANGE (FEET BGS)		VISUAL C	LASSIFICATION	SCREEN (PPM)	REMARKS	
0			3"	Grass, soil			0		
1	42"		3"-4'	Brown to red clay	and silt, some F sand,	some SA gravel, dry to moist	0		
2							0		
3							0		
4			4'-5'	SAA, wet			0		
5							0		
6	37"		5'-8'	SAA, wet			0		
7	0.						0	Depth to water on	
8			8'-9'	Grey clay and sail	, some F sand		0	4/21/20-7.2'	
9			9'-9.5'	Black silt and sar	nd, trace SA gravel	0			
10			9.5'-10'		me silt, trace red grave	0			
11	42"		10'-14'	SAA		0			
12	42	SB-18 (12.5'-18')					0		
13							0		
14			14'-15'	Dark brown to gre	ey dense clay		4.5		
15							0.7		
16									
17									
18									
19									
20						T			
				DEPTH (FT)		NOTES:			
	WATER LEVEL		BOTTOM OF	BOTTOM OF	GROUNDWATER	Well installed to 15'. 10' screen, 5' riser			
DATE	TIME	ELAPSED TIME	CASING	BORING	ENCOUNTERED	-			
	IEDAL NOTEO			15'	4'				

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

BGS = Below Ground Surface NA = Not Applicable

and = 35 - 50% some = 20 - 35% C = Coarse

R = Rounded

little = 10 - 20%

M = MediumF = Fine

A = AngularSR = Subrounded

trace = 1 - 10%

VF = Very Fine

SA = Subangular

BORING:

SB - 18, N

BORING: **PROJECT** SB - 19 2201387 SHEET 19 of 21 LaBella 100 Buckley Road JOB: CHKD BY: Syracuse, NY 13088 300 STATE STREET, ROCHESTER, NY DATE: 4/20/2020 ENVIRONMENTAL ENGINEERING CONSULTANTS BORING LOCATION: 16:15 TO 16:40 CONTRACTOR: LaBella Env. LLC TIME: DRILLER: A. Bement GROUND SURFACE ELEVATION DATUM: NA NA LABELLA REPRESENTATIVE: E. Thierfelder START DATE: 4/20/20 END DATE: 04/20/2020 WEATHER: 50°Sunny, windy TYPE OF DRILL RIG: Geoprobe 6610DT DRIVE SAMPLER TYPE: Macrocore INSIDE DIAMETER: 2" AUGER SIZE AND TYPE: NA OVERBURDEN SAMPLING METHOD: Direct Push OTHER: DEPTH (FEET BGS) SAMPLE PID FIELD VISUAL CLASSIFICATION REMARKS STRATA SCREEN SAMPLE RECOVERY SAMPLE NO. AND CHANGE (FEET (PPM) (INCHES) DEPTH BGS) 0 6" Grass, soil 0 34" 6"-5' Brown to grey clay, trace yellow clay, some silt and F sand, trace SA gravel 1 wet at 4' 0 2 0 3 0 4 0 0 5'-9' SAA, saturated 6 0 0 8 9 9'-10' Darker grey to black silt and clay 0 0 10 11 12 13 14 15 16 17 18 19

GENERAL NOTES

WATER LEVEL DATA

TIME

ELAPSED TIME

20

DATE

1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.

BOTTOM OF

CASING

2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

DEPTH (FT)

BOTTOM OF

BORING

10'

BGS = Below Ground Surface and = 35 - 50% C = Coarse R = Rounded NA = Not Applicable some = 20 - 35% M = MediumA = Angularlittle = 10 - 20% F = Fine SR = Subrounded

trace = 1 - 10% VF = Very Fine SA = Subangular

GROUNDWATER

ENCOUNTERED

NOTES:

BORING:

SB - 19

BORING: **PROJECT** SB - 20, MW-07 LaBella 2201387 SHEET 20 of 21 100 Buckley Road JOB: CHKD BY: Syracuse, NY 13088 300 STATE STREET, ROCHESTER, NY DATE: 4/20/2020 ENVIRONMENTAL ENGINEERING CONSULTANTS BORING LOCATION: 16:45 TO 17:10 CONTRACTOR: LaBella Env. LLC TIME: DRILLER: A. Bement GROUND SURFACE ELEVATION DATUM: NA NA LABELLA REPRESENTATIVE: E. Thierfelder START DATE: 4/20/20 END DATE: 04/20/2020 WEATHER: 50°Sunny, windy TYPE OF DRILL RIG: Geoprobe 6610DT DRIVE SAMPLER TYPE: Macrocore INSIDE DIAMETER: 2" AUGER SIZE AND TYPE: NA OVERBURDEN SAMPLING METHOD: Direct Push OTHER: DEPTH (FEET BGS) SAMPLE PID FIELD VISUAL CLASSIFICATION REMARKS STRATA SCREEN SAMPLE RECOVERY SAMPLE NO. AND CHANGE (FEET (PPM) (INCHES) DEPTH BGS) 0 6" Crushed stone 0 8" 6"-5' Brown silt and sand, trace SA gravel 1 0 2 0 3 0 Depth to water on 4/21/20-3.3' 4 0 0 5'-10' SAA, moist, trace yellow stone 6 6" 0 7 0 8 0 9 0 10 0 10'-13' Grey silt and clay, trace F gravel, saturated 60" 11 0.2 12 0 13 13'-15' Dense brown to grey clay with black and yellow streaks 0 0 14 15 16 17 18 19

GENERAL NOTES

WATER LEVEL DATA

TIME

ELAPSED TIME

20

DATE

1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.

BOTTOM OF

CASING

2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

DEPTH (FT)

BOTTOM OF

BORING

15'

BGS = Below Ground Surface and = 35 - 50% C = Coarse R = Rounded NA = Not Applicable some = 20 - 35% M = MediumA = Angular little = 10 - 20% F = Fine SR = Subrounded

trace = 1 - 10% VF = Very Fine SA = Subangular

GROUNDWATER

ENCOUNTERED

NOTES:

Well installed to 15', 10' screen 5' riser

BORING:

SB - 20, N

*Turbid water when sampling wells

BORING: **PROJECT** SB - 21 LaBella 2201387 SHEET 21 of 21 100 Buckley Road JOB: CHKD BY: Syracuse, NY 13088 300 STATE STREET, ROCHESTER, NY DATE: 4/20/2020 ENVIRONMENTAL ENGINEERING CONSULTANTS BORING LOCATION: 17:15 TO 17:30 CONTRACTOR: LaBella Env. LLC TIME: DRILLER: A. Bement GROUND SURFACE ELEVATION DATUM: NA NA LABELLA REPRESENTATIVE: E. Thierfelder START DATE: 4/20/20 END DATE: 04/20/2020 WEATHER: 50°Sunny, windy TYPE OF DRILL RIG: Geoprobe 6610DT DRIVE SAMPLER TYPE: Macrocore INSIDE DIAMETER: 2" AUGER SIZE AND TYPE: NA OVERBURDEN SAMPLING METHOD: Direct Push OTHER: DEPTH (FEET BGS) SAMPLE PID FIELD VISUAL CLASSIFICATION REMARKS STRATA SCREEN SAMPLE RECOVERY SAMPLE NO. AND CHANGE (FEET (PPM) (INCHES) DEPTH BGS) Brown silt and stong, trace yellow stone, saturated 0 0 6" 1 0 2 0 3 0 4 0 0 5'-10' Dark brown to black silt and clay, trace red stone, trace organic material-roots, saturate 6 0.3 6" 0 8 0 9 0 0 10 11 12 13 14 15 16 17 18 19 20 DEPTH (FT) NOTES: WATER LEVEL DATA BOTTOM OF BOTTOM OF GROUNDWATER DATE ELAPSED TIME TIME CASING BORING ENCOUNTERED

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

10'

BGS = Below Ground Surface and = 35 - 50% C = Coarse R = Rounded NA = Not Applicable some = 20 - 35% M = MediumA = Angularlittle = 10 - 20% F = Fine SR = Subrounded

trace = 1 - 10% VF = Very Fine SA = Subangular

2'-5'

BORING:

SB - 21

APPENDIX 3

Laboratory Report

ANALYTICAL REPORT

Lab Number: L2016449

Client: LaBella Associates

316 S. Clinton Street

2nd Floor

Syracuse, NY 13202

ATTN: William Sisco Phone: (315) 243-8441

Project Name: 100 BUCKLEY RD SYRACUSE

Project Number: 2201387 Report Date: 04/27/20

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 100 BUCKLEY RD SYRACUSE

Project Number: 2201387

Lab Number: L2016449 **Report Date:** 04/27/20

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2016449-01	SB-05 (8'-10')	SOIL	100 BUCKLEY RD SYRACUSE	04/20/20 10:00	04/20/20
L2016449-02	SB-03 (7.5'-10')	SOIL	100 BUCKLEY RD SYRACUSE	04/20/20 09:45	04/20/20
L2016449-03	SB-06 (5'-7.5')	SOIL	100 BUCKLEY RD SYRACUSE	04/20/20 10:40	04/20/20
L2016449-04	SB-14 (7.5'-10.0')	SOIL	100 BUCKLEY RD SYRACUSE	04/20/20 13:15	04/20/20
L2016449-05	SB-17 (5'-10')	SOIL	100 BUCKLEY RD SYRACUSE	04/20/20 14:45	04/20/20
L2016449-06	SB-18 (12.5-15')	SOIL	100 BUCKLEY RD SYRACUSE	04/20/20 15:00	04/20/20
L2016449-07	SB-05 (2.5'-5.0')	SOIL	100 BUCKLEY RD SYRACUSE	04/20/20 10:05	04/20/20
L2016449-08	TRIP BLANK	WATER	100 BUCKLEY RD SYRACUSE	04/20/20 00:00	04/20/20

Project Name: 100 BUCKLEY RD SYRACUSE Lab Number: L2016449
Project Number: 2201387 Report Date: 04/27/20

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name: 100 BUCKLEY RD SYRACUSE Lab Number: L2016449
Project Number: 2201387 Report Date: 04/27/20

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

L2016449-08: A sample identified as "TRIP BLANK" was received, but not listed on the Chain of Custody. This sample was not analyzed.

Volatile Organics

L2016449-01: The internal standard (IS) response(s) for chlorobenzene-d5 (40%) and 1,4-dichlorobenzene-d4 (22%) and the surrogate recovery for 4-bromofluorobenzene (151%) were outside the acceptance criteria; however, re-analysis achieved similar results: 1,4-dichlorobenzene-d4 (28%) and 4-bromofluorobenzene (153%). The results of both analyses are reported.

L2016449-07: The internal standard (IS) response(s) for chlorobenzene-d5 (47%) and 1,4-dichlorobenzene-d4 (30%) and the surrogate recovery for 4-bromofluorobenzene (136%) were outside the acceptance criteria; however, re-analysis achieved similar results: 1,4-dichlorobenzene-d4 (37%) and 4-bromofluorobenzene (150%). The results of both analyses are reported.

Semivolatile Organics

L2016449-03: The sample has elevated detection limits due to the dilution required by the elevated concentrations of non-target compounds in the sample.

L2016449-03 and -07: The surrogate recoveries are below the acceptance criteria for nitrobenzene-d5 (0%), 2-fluorobiphenyl (0%) and 4-terphenyl-d14 (0%) due to the dilution required to quantitate the sample. Reextraction was not required; therefore, the results of the original analysis are reported.

L2016449-07: The sample has elevated detection limits due to the dilution required by the matrix interferences encountered during the concentration of the sample and the analytical dilution required by the non-target compounds present in the sample.

Project Name: 100 BUCKLEY RD SYRACUSE Lab Number: L2016449
Project Number: 2201387 Report Date: 04/27/20

Case Narrative (continued)

PCBs

L2016449-05: The sample has elevated detection limits due to the limited sample volume utilized during extraction, as required by the sample matrix.

Total Metals

The WG1363084-3 MS recoveries, performed on L2016449-01, are outside the acceptance criteria for barium (58%) and lead (0%). A post digestion spike was performed and was within acceptance criteria.

The WG1363084-4 Laboratory Duplicate RPDs for arsenic (43%), barium (41%), chromium (64%) and lead (71%), performed on L2016449-01, are outside the acceptance criteria. The elevated RPDs have been attributed to the non-homogeneous nature of the native sample.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Whalle M. Morris

Authorized Signature:

Title: Technical Director/Representative

ALPHA

Date: 04/27/20

ORGANICS

VOLATILES

L2016449

04/27/20

04/20/20

Project Name: 100 BUCKLEY RD SYRACUSE

Project Number: 2201387

SAMPLE RESULTS

Lab Number:

Report Date:

Date Received:

Lab ID: L2016449-01 Date Collected: 04/20/20 10:00

Client ID: SB-05 (8'-10')

Sample Location: 100 BUCKLEY RD SYRACUSE Field Prep: Not Specified

Sample Depth:

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 04/23/20 09:33

Analyst: JC Percent Solids: 66%

Volatile Organics by EPA 5035 Low - Wes					Dilution Factor
Volatile Organics by Li A 3000 Low VVC3	tborough Lab				
Methylene chloride	ND	ug/kg	8.5	3.9	1
1,1-Dichloroethane	ND	ug/kg	1.7	0.25	1
Chloroform	ND	ug/kg	2.6	0.24	1
Carbon tetrachloride	ND	ug/kg	1.7	0.39	1
1,2-Dichloropropane	ND	ug/kg	1.7	0.21	1
Dibromochloromethane	ND	ug/kg	1.7	0.24	1
1,1,2-Trichloroethane	ND	ug/kg	1.7	0.45	1
Tetrachloroethene	ND	ug/kg	0.85	0.33	1
Chlorobenzene	ND	ug/kg	0.85	0.22	1
Trichlorofluoromethane	ND	ug/kg	6.8	1.2	1
1,2-Dichloroethane	ND	ug/kg	1.7	0.44	1
1,1,1-Trichloroethane	ND	ug/kg	0.85	0.28	1
Bromodichloromethane	ND	ug/kg	0.85	0.18	1
trans-1,3-Dichloropropene	ND	ug/kg	1.7	0.46	1
cis-1,3-Dichloropropene	ND	ug/kg	0.85	0.27	1
Bromoform	ND	ug/kg	6.8	0.42	1
1,1,2,2-Tetrachloroethane	ND	ug/kg	0.85	0.28	1
Benzene	12	ug/kg	0.85	0.28	1
Toluene	2.5	ug/kg	1.7	0.92	1
Ethylbenzene	2.3	ug/kg	1.7	0.24	1
Chloromethane	ND	ug/kg	6.8	1.6	1
Bromomethane	ND	ug/kg	3.4	0.99	1
Vinyl chloride	ND	ug/kg	1.7	0.57	1
Chloroethane	ND	ug/kg	3.4	0.77	1
1,1-Dichloroethene	ND	ug/kg	1.7	0.40	1
trans-1,2-Dichloroethene	ND	ug/kg	2.6	0.23	1
Trichloroethene	ND	ug/kg	0.85	0.23	1
1,2-Dichlorobenzene	ND	ug/kg	3.4	0.24	1

MDL

Dilution Factor

Project Name: 100 BUCKLEY RD SYRACUSE Lab Number: L2016449

Project Number: 2201387 Report Date: 04/27/20

SAMPLE RESULTS

Qualifier

Units

RL

Lab ID: Date Collected: 04/20/20 10:00

Client ID: SB-05 (8'-10') Date Received: 04/20/20

Sample Location: 100 BUCKLEY RD SYRACUSE Field Prep: Not Specified

Result

Sample Depth:

Parameter

Volatile Organics by EPA 5035 Low - Westboroug 1,3-Dichlorobenzene Ni 1,4-Dichlorobenzene Ni Methyl tert butyl ether p/m-Xylene 1. o-Xylene 1. cis-1,2-Dichloroethene Styrene Ni Dichlorodifluoromethane Ni Acetone	0 0 0 8 8 0 0 0	ug/kg ug/kg ug/kg ug/kg	3.4 3.4 3.4 3.4 1.7 1.7	0.25 0.29 0.34 0.95 0.50 0.30	1 1 1 1 1 1	
1,4-Dichlorobenzene NI Methyl tert butyl ether NI p/m-Xylene 1. o-Xylene 1. cis-1,2-Dichloroethene NI Styrene NI Dichlorodifluoromethane NI	0 0 3 3 0 0 0	ug/kg ug/kg Ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	3.4 3.4 3.4 1.7 1.7	0.29 0.34 0.95 0.50 0.30 0.33	1 1 1 1	
Methyl tert butyl ether NI p/m-Xylene 1. o-Xylene 1. cis-1,2-Dichloroethene NI Styrene NI Dichlorodifluoromethane NI	0 3 9 0 0 0	ug/kg U ug/kg ug/kg ug/kg ug/kg ug/kg	3.4 3.4 1.7 1.7	0.34 0.95 0.50 0.30 0.33	1 1 1	
p/m-Xylene 1. o-Xylene 1. cis-1,2-Dichloroethene NI Styrene NI Dichlorodifluoromethane NI	3	U ug/kg ug/kg ug/kg ug/kg ug/kg	3.4 1.7 1.7 1.7	0.95 0.50 0.30 0.33	1 1 1	
o-Xylene 1. cis-1,2-Dichloroethene NI Styrene NI Dichlorodifluoromethane NI	9 D D D	ug/kg ug/kg ug/kg ug/kg	1.7 1.7 1.7	0.50 0.30 0.33	1 1	
cis-1,2-Dichloroethene NI Styrene NI Dichlorodifluoromethane NI	o o o	ug/kg ug/kg ug/kg	1.7 1.7	0.30 0.33	1	
Styrene NI Dichlorodifluoromethane NI	0	ug/kg ug/kg	1.7	0.33		
Dichlorodifluoromethane NI	0	ug/kg			1	
	0		17			
Acetone 26			17	1.6	1	
		ug/kg	17	8.2	1	
Carbon disulfide 26	6	ug/kg	17	7.7	1	
2-Butanone 55	5	ug/kg	17	3.8	1	
4-Methyl-2-pentanone	3 ,	J ug/kg	17	2.2	1	
2-Hexanone NI)	ug/kg	17	2.0	1	
1,2-Dibromoethane NI)	ug/kg	1.7	0.47	1	
n-Butylbenzene 8.	4	ug/kg	1.7	0.28	1	
sec-Butylbenzene NI)	ug/kg	1.7	0.25	1	
tert-Butylbenzene NI)	ug/kg	3.4	0.20	1	
1,2-Dibromo-3-chloropropane NI)	ug/kg	5.1	1.7	1	
Isopropylbenzene 0.2	23 .	J ug/kg	1.7	0.18	1	
p-Isopropyltoluene 40)	ug/kg	1.7	0.18	1	
Naphthalene 28	3	ug/kg	6.8	1.1	1	
n-Propylbenzene 3.	4	ug/kg	1.7	0.29	1	
1,2,4-Trichlorobenzene NI)	ug/kg	3.4	0.46	1	
1,3,5-Trimethylbenzene 0.5	54 .	J ug/kg	3.4	0.33	1	
1,2,4-Trimethylbenzene 2.	4 .	J ug/kg	3.4	0.57	1	
Methyl Acetate NI)	ug/kg	6.8	1.6	1	
Cyclohexane)	ug/kg	17	0.92	1	
Freon-113 NI)	ug/kg	6.8	1.2	1	
Methyl cyclohexane 1.	1 .	J ug/kg	6.8	1.0	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	115		70-130	
Toluene-d8	117		70-130	
4-Bromofluorobenzene	151	Q	70-130	
Dibromofluoromethane	102		70-130	

L2016449

04/27/20

Project Name: 100 BUCKLEY RD SYRACUSE

L2016449-01

Project Number: 2201387

SAMPLE RESULTS

Date Collected: 04/20/20 10:00

Lab Number:

Report Date:

DAINIF LE RESOLTS

Client ID: SB-05 (8'-10') Date Received: 04/20/20 Sample Location: 100 BUCKLEY RD SYRACUSE Field Prep: Not Specified

R

Sample Depth:

Lab ID:

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 04/24/20 09:40

Analyst: JC Percent Solids: 66%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low - Westb	orough Lab					
Methylene chloride	ND		ug/kg	8.2	3.8	1
1,1-Dichloroethane	ND		ug/kg	1.6	0.24	1
Chloroform	ND		ug/kg	2.4	0.23	1
Carbon tetrachloride	ND		ug/kg	1.6	0.38	1
1,2-Dichloropropane	ND		ug/kg	1.6	0.20	1
Dibromochloromethane	ND		ug/kg	1.6	0.23	1
1,1,2-Trichloroethane	ND		ug/kg	1.6	0.44	1
Tetrachloroethene	ND		ug/kg	0.82	0.32	1
Chlorobenzene	ND		ug/kg	0.82	0.21	1
Trichlorofluoromethane	ND		ug/kg	6.6	1.1	1
1,2-Dichloroethane	ND		ug/kg	1.6	0.42	1
1,1,1-Trichloroethane	ND		ug/kg	0.82	0.27	1
Bromodichloromethane	ND		ug/kg	0.82	0.18	1
trans-1,3-Dichloropropene	ND		ug/kg	1.6	0.45	1
cis-1,3-Dichloropropene	ND		ug/kg	0.82	0.26	1
Bromoform	ND		ug/kg	6.6	0.40	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.82	0.27	1
Benzene	11		ug/kg	0.82	0.27	1
Toluene	2.2		ug/kg	1.6	0.89	1
Ethylbenzene	1.6		ug/kg	1.6	0.23	1
Chloromethane	ND		ug/kg	6.6	1.5	1
Bromomethane	ND		ug/kg	3.3	0.95	1
Vinyl chloride	ND		ug/kg	1.6	0.55	1
Chloroethane	ND		ug/kg	3.3	0.74	1
1,1-Dichloroethene	ND		ug/kg	1.6	0.39	1
trans-1,2-Dichloroethene	ND		ug/kg	2.4	0.22	1
Trichloroethene	ND		ug/kg	0.82	0.22	1
1,2-Dichlorobenzene	ND		ug/kg	3.3	0.24	1

MDL

Dilution Factor

Project Name: 100 BUCKLEY RD SYRACUSE Lab Number: L2016449

Project Number: 2201387 Report Date: 04/27/20

SAMPLE RESULTS

Lab ID: L2016449-01 R Date Collected: 04/20/20 10:00

Client ID: SB-05 (8'-10') Date Received: 04/20/20 Sample Location: 100 BUCKLEY RD SYRACUSE Field Prep: Not Specified

Qualifier

Units

RL

Result

Sample Depth:

Parameter

Volatile Organics by EPA 5035 Low - V	Vestborough Lab						
1,3-Dichlorobenzene	ND		ug/kg	3.3	0.24	1	
1,4-Dichlorobenzene	ND		ug/kg	3.3	0.28	1	
Methyl tert butyl ether	ND		ug/kg	3.3	0.33	1	
p/m-Xylene	1.4	J	ug/kg	3.3	0.92	1	
o-Xylene	1.5	J	ug/kg	1.6	0.48	1	
cis-1,2-Dichloroethene	ND		ug/kg	1.6	0.29	1	
Styrene	ND		ug/kg	1.6	0.32	1	
Dichlorodifluoromethane	ND		ug/kg	16	1.5	1	
Acetone	240		ug/kg	16	7.9	1	
Carbon disulfide	34		ug/kg	16	7.4	1	
2-Butanone	58		ug/kg	16	3.6	1	
4-Methyl-2-pentanone	14	J	ug/kg	16	2.1	1	
2-Hexanone	ND		ug/kg	16	1.9	1	
1,2-Dibromoethane	ND		ug/kg	1.6	0.46	1	
n-Butylbenzene	5.1		ug/kg	1.6	0.27	1	
sec-Butylbenzene	ND		ug/kg	1.6	0.24	1	
tert-Butylbenzene	ND		ug/kg	3.3	0.19	1	
1,2-Dibromo-3-chloropropane	ND		ug/kg	4.9	1.6	1	
Isopropylbenzene	ND		ug/kg	1.6	0.18	1	
p-Isopropyltoluene	32		ug/kg	1.6	0.18	1	
Naphthalene	23		ug/kg	6.6	1.1	1	
n-Propylbenzene	2.2		ug/kg	1.6	0.28	1	
1,2,4-Trichlorobenzene	ND		ug/kg	3.3	0.44	1	
1,3,5-Trimethylbenzene	ND		ug/kg	3.3	0.32	1	
1,2,4-Trimethylbenzene	1.6	J	ug/kg	3.3	0.55	1	
Methyl Acetate	ND		ug/kg	6.6	1.6	1	
Cyclohexane	ND		ug/kg	16	0.89	1	
Freon-113	ND		ug/kg	6.6	1.1	1	
Methyl cyclohexane	ND		ug/kg	6.6	0.99	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	116		70-130	
Toluene-d8	107		70-130	
4-Bromofluorobenzene	153	Q	70-130	
Dibromofluoromethane	105		70-130	

L2016449

04/20/20

Not Specified

Project Name: 100 BUCKLEY RD SYRACUSE

Project Number: 2201387

SAMPLE RESULTS

Poport Doto:

Report Date: 04/27/20

Lab Number:

Date Received:

Field Prep:

Lab ID: L2016449-02 Date Collected: 04/20/20 09:45

Client ID: SB-03 (7.5'-10')

Sample Location: 100 BUCKLEY RD SYRACUSE

Sample Depth:

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 04/23/20 09:59

Analyst: JC Percent Solids: 82%

		Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low - We	stborough Lab					
Methylene chloride	ND		ug/kg	5.5	2.5	1
1,1-Dichloroethane	ND		ug/kg	1.1	0.16	1
Chloroform	0.66	J	ug/kg	1.6	0.15	1
Carbon tetrachloride	ND		ug/kg	1.1	0.25	1
1,2-Dichloropropane	ND		ug/kg	1.1	0.14	1
Dibromochloromethane	ND		ug/kg	1.1	0.15	1
1,1,2-Trichloroethane	ND		ug/kg	1.1	0.29	1
Tetrachloroethene	ND		ug/kg	0.55	0.21	1
Chlorobenzene	ND		ug/kg	0.55	0.14	1
Trichlorofluoromethane	ND		ug/kg	4.4	0.76	1
1,2-Dichloroethane	ND		ug/kg	1.1	0.28	1
1,1,1-Trichloroethane	ND		ug/kg	0.55	0.18	1
Bromodichloromethane	ND		ug/kg	0.55	0.12	1
trans-1,3-Dichloropropene	ND		ug/kg	1.1	0.30	1
cis-1,3-Dichloropropene	ND		ug/kg	0.55	0.17	1
Bromoform	ND		ug/kg	4.4	0.27	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.55	0.18	1
Benzene	ND		ug/kg	0.55	0.18	1
Toluene	ND		ug/kg	1.1	0.60	1
Ethylbenzene	ND		ug/kg	1.1	0.15	1
Chloromethane	ND		ug/kg	4.4	1.0	1
Bromomethane	ND		ug/kg	2.2	0.64	1
Vinyl chloride	ND		ug/kg	1.1	0.37	1
Chloroethane	ND		ug/kg	2.2	0.50	1
1,1-Dichloroethene	ND		ug/kg	1.1	0.26	1
trans-1,2-Dichloroethene	ND		ug/kg	1.6	0.15	1
Trichloroethene	ND		ug/kg	0.55	0.15	1
1,2-Dichlorobenzene	ND		ug/kg	2.2	0.16	1

L2016449

04/27/20

Dilution Factor

Project Name: Lab Number: 100 BUCKLEY RD SYRACUSE

Project Number: 2201387

L2016449-02

SAMPLE RESULTS

Date Collected: 04/20/20 09:45

MDL

Report Date:

RL

Date Received: Client ID: SB-03 (7.5'-10') 04/20/20

Result

Sample Location: 100 BUCKLEY RD SYRACUSE Field Prep: Not Specified

Qualifier

Units

Sample Depth:

Parameter

Lab ID:

1,4-Dichlorobenzene Methyl tert butyl ether p/m-Xylene o-Xylene cis-1,2-Dichloroethene	ND ND ND ND ND ND ND ND		ug/kg ug/kg ug/kg ug/kg ug/kg	2.2 2.2 2.2 2.2	0.16 0.19 0.22 0.61	1 1 1
1,4-Dichlorobenzene Methyl tert butyl ether p/m-Xylene o-Xylene cis-1,2-Dichloroethene	ND ND ND ND ND		ug/kg ug/kg ug/kg	2.2 2.2 2.2	0.19 0.22	1
Methyl tert butyl ether p/m-Xylene o-Xylene cis-1,2-Dichloroethene	ND ND ND		ug/kg ug/kg	2.2	0.22	1
p/m-Xylene o-Xylene cis-1,2-Dichloroethene	ND ND ND		ug/kg	2.2		
o-Xylene cis-1,2-Dichloroethene	ND ND				0.61	1
cis-1,2-Dichloroethene	ND		ua/ka			1
,			~9 [,] 119	1.1	0.32	1
Styrene	ND		ug/kg	1.1	0.19	1
	ND		ug/kg	1.1	0.21	1
Dichlorodifluoromethane	ND		ug/kg	11	1.0	1
Acetone	5.6	J	ug/kg	11	5.3	1
Carbon disulfide	ND		ug/kg	11	5.0	1
2-Butanone	ND		ug/kg	11	2.4	1
4-Methyl-2-pentanone	ND		ug/kg	11	1.4	1
2-Hexanone	ND		ug/kg	11	1.3	1
1,2-Dibromoethane	ND		ug/kg	1.1	0.30	1
n-Butylbenzene	ND		ug/kg	1.1	0.18	1
sec-Butylbenzene	ND		ug/kg	1.1	0.16	1
tert-Butylbenzene	ND		ug/kg	2.2	0.13	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.3	1.1	1
Isopropylbenzene	ND		ug/kg	1.1	0.12	1
p-Isopropyltoluene	ND		ug/kg	1.1	0.12	1
Naphthalene	ND		ug/kg	4.4	0.71	1
n-Propylbenzene	ND		ug/kg	1.1	0.19	1
1,2,4-Trichlorobenzene	ND		ug/kg	2.2	0.30	1
1,3,5-Trimethylbenzene	ND		ug/kg	2.2	0.21	1
1,2,4-Trimethylbenzene	ND		ug/kg	2.2	0.37	1
Methyl Acetate	ND		ug/kg	4.4	1.0	1
Cyclohexane	ND		ug/kg	11	0.60	1
Freon-113	ND		ug/kg	4.4	0.76	1
Methyl cyclohexane	ND		ug/kg	4.4	0.66	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	97	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	94	70-130	
Dibromofluoromethane	93	70-130	

L2016449

04/27/20

Not Specified

04/20/20

Project Name: 100 BUCKLEY RD SYRACUSE

Project Number: 2201387

SAMPLE RESULTS

Lab Number:

Report Date:

Date Received:

Lab ID: L2016449-03 Date Collected: 04/20/20 10:40

Client ID: SB-06 (5'-7.5')

Sample Location: 100 BUCKLEY RD SYRACUSE Field Prep:

Sample Depth:

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 04/24/20 10:05

Analyst: JC Percent Solids: 73%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 L	Low - Westborough Lab						
Methylene chloride	ND		ug/kg	5.5	2.5	1	
1,1-Dichloroethane	ND		ug/kg	1.1	0.16	1	
Chloroform	ND		ug/kg	1.6	0.15	1	
Carbon tetrachloride	ND		ug/kg	1.1	0.25	1	
1,2-Dichloropropane	ND		ug/kg	1.1	0.14	1	
Dibromochloromethane	ND		ug/kg	1.1	0.15	1	
1,1,2-Trichloroethane	ND		ug/kg	1.1	0.30	1	
Tetrachloroethene	ND		ug/kg	0.55	0.22	1	
Chlorobenzene	ND		ug/kg	0.55	0.14	1	
Trichlorofluoromethane	ND		ug/kg	4.4	0.77	1	
1,2-Dichloroethane	ND		ug/kg	1.1	0.28	1	
1,1,1-Trichloroethane	ND		ug/kg	0.55	0.18	1	
Bromodichloromethane	ND		ug/kg	0.55	0.12	1	
trans-1,3-Dichloropropene	ND		ug/kg	1.1	0.30	1	
cis-1,3-Dichloropropene	ND		ug/kg	0.55	0.17	1	
Bromoform	ND		ug/kg	4.4	0.27	1	
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.55	0.18	1	
Benzene	2.9		ug/kg	0.55	0.18	1	
Toluene	0.99	J	ug/kg	1.1	0.60	1	
Ethylbenzene	1.0	J	ug/kg	1.1	0.16	1	
Chloromethane	ND		ug/kg	4.4	1.0	1	
Bromomethane	ND		ug/kg	2.2	0.64	1	
Vinyl chloride	ND		ug/kg	1.1	0.37	1	
Chloroethane	ND		ug/kg	2.2	0.50	1	
1,1-Dichloroethene	ND		ug/kg	1.1	0.26	1	
trans-1,2-Dichloroethene	ND		ug/kg	1.6	0.15	1	
Trichloroethene	ND		ug/kg	0.55	0.15	1	
1,2-Dichlorobenzene	ND		ug/kg	2.2	0.16	1	

L2016449

04/27/20

Project Name: 100 BUCKLEY RD SYRACUSE

L2016449-03

SB-06 (5'-7.5')

100 BUCKLEY RD SYRACUSE

Project Number: 2201387

SAMPLE RESULTS

Date Collected: 04/20/20 10:40

Date Received: 04/20/20 Field Prep: Not Specified

Lab Number:

Report Date:

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Lov	w - Westborough Lab					
1,3-Dichlorobenzene	ND		ug/kg	2.2	0.16	1
1,4-Dichlorobenzene	ND		ug/kg	2.2	0.19	1
Methyl tert butyl ether	ND		ug/kg	2.2	0.22	1
p/m-Xylene	0.67	J	ug/kg	2.2	0.62	1
o-Xylene	0.58	J	ug/kg	1.1	0.32	1
cis-1,2-Dichloroethene	ND		ug/kg	1.1	0.19	1
Styrene	ND		ug/kg	1.1	0.22	1
Dichlorodifluoromethane	ND		ug/kg	11	1.0	1
Acetone	50		ug/kg	11	5.3	1
Carbon disulfide	5.7	J	ug/kg	11	5.0	1
2-Butanone	8.2	J	ug/kg	11	2.4	1
4-Methyl-2-pentanone	ND		ug/kg	11	1.4	1
2-Hexanone	ND		ug/kg	11	1.3	1
1,2-Dibromoethane	ND		ug/kg	1.1	0.31	1
n-Butylbenzene	8.2		ug/kg	1.1	0.18	1
sec-Butylbenzene	ND		ug/kg	1.1	0.16	1
tert-Butylbenzene	ND		ug/kg	2.2	0.13	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.3	1.1	1
Isopropylbenzene	ND		ug/kg	1.1	0.12	1
p-Isopropyltoluene	2.1		ug/kg	1.1	0.12	1
Naphthalene	6.3		ug/kg	4.4	0.72	1
n-Propylbenzene	3.0		ug/kg	1.1	0.19	1
1,2,4-Trichlorobenzene	ND		ug/kg	2.2	0.30	1
1,3,5-Trimethylbenzene	ND		ug/kg	2.2	0.21	1
1,2,4-Trimethylbenzene	0.75	J	ug/kg	2.2	0.37	1
Methyl Acetate	ND		ug/kg	4.4	1.0	1
Cyclohexane	ND		ug/kg	11	0.60	1
Freon-113	ND		ug/kg	4.4	0.77	1
Methyl cyclohexane	ND		ug/kg	4.4	0.67	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	109	70-130	
Toluene-d8	94	70-130	
4-Bromofluorobenzene	111	70-130	
Dibromofluoromethane	98	70-130	

L2016449

04/20/20 13:15

Not Specified

Dilution Factor

04/20/20

Project Name: 100 BUCKLEY RD SYRACUSE

Project Number: 2201387

SAMPLE RESULTS

Lab Number:

Date Collected:

Date Received:

Field Prep:

RL

MDL

Report Date: 04/27/20

SAIVIPLE RESUL

Lab ID: L2016449-04 Client ID: SB-14 (7.5'-10.0')

Sample Location: 100 BUCKLEY RD SYRACUSE

Sample Depth:

Parameter

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 04/23/20 10:25

Analyst: JC Percent Solids: 85%

raiailielei	Result	Qualifier	Ullita	IV.L	WIDL	Dilution i actor	
Volatile Organics by EPA 5035 Low -	Westborough Lab						
Methylene chloride	ND		ug/kg	4.9	2.2	1	
1,1-Dichloroethane	ND		ug/kg	0.98	0.14	1	
Chloroform	ND		ug/kg	1.5	0.14	1	
Carbon tetrachloride	ND		ug/kg	0.98	0.22	1	
1,2-Dichloropropane	ND		ug/kg	0.98	0.12	1	
Dibromochloromethane	ND		ug/kg	0.98	0.14	1	
1,1,2-Trichloroethane	ND		ug/kg	0.98	0.26	1	
Tetrachloroethene	ND		ug/kg	0.49	0.19	1	
Chlorobenzene	ND		ug/kg	0.49	0.12	1	
Trichlorofluoromethane	ND		ug/kg	3.9	0.68	1	
1,2-Dichloroethane	ND		ug/kg	0.98	0.25	1	
1,1,1-Trichloroethane	ND		ug/kg	0.49	0.16	1	
Bromodichloromethane	ND		ug/kg	0.49	0.11	1	
trans-1,3-Dichloropropene	ND		ug/kg	0.98	0.27	1	
cis-1,3-Dichloropropene	ND		ug/kg	0.49	0.16	1	
Bromoform	ND		ug/kg	3.9	0.24	1	
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.49	0.16	1	
Benzene	ND		ug/kg	0.49	0.16	1	
Toluene	ND		ug/kg	0.98	0.53	1	
Ethylbenzene	ND		ug/kg	0.98	0.14	1	
Chloromethane	ND		ug/kg	3.9	0.92	1	
Bromomethane	ND		ug/kg	2.0	0.57	1	
Vinyl chloride	ND		ug/kg	0.98	0.33	1	
Chloroethane	ND		ug/kg	2.0	0.44	1	
1,1-Dichloroethene	ND		ug/kg	0.98	0.23	1	
trans-1,2-Dichloroethene	ND		ug/kg	1.5	0.13	1	
Trichloroethene	ND		ug/kg	0.49	0.13	1	
1,2-Dichlorobenzene	ND		ug/kg	2.0	0.14	1	

Qualifier

Result

Units

L2016449

04/27/20

Dilution Factor

Project Name: Lab Number: 100 BUCKLEY RD SYRACUSE

Result

Project Number: 2201387

SAMPLE RESULTS

Date Collected: 04/20/20 13:15

MDL

Report Date:

RL

Lab ID: L2016449-04 Date Received: Client ID: SB-14 (7.5'-10.0') 04/20/20

Qualifier

Units

Sample Location: 100 BUCKLEY RD SYRACUSE Field Prep: Not Specified

Sample Depth:

Parameter

Volatile Organics by EPA 5035 Low - We 1,3-Dichlorobenzene 1,4-Dichlorobenzene	estborough Lab				
	ND				
1,4-Dichlorobenzene		ug/kg	2.0	0.14	1
	ND	ug/kg	2.0	0.17	1
Methyl tert butyl ether	ND	ug/kg	2.0	0.20	1
p/m-Xylene	ND	ug/kg	2.0	0.55	1
o-Xylene	ND	ug/kg	0.98	0.28	1
cis-1,2-Dichloroethene	ND	ug/kg	0.98	0.17	1
Styrene	ND	ug/kg	0.98	0.19	1
Dichlorodifluoromethane	ND	ug/kg	9.8	0.90	1
Acetone	64	ug/kg	9.8	4.7	1
Carbon disulfide	ND	ug/kg	9.8	4.5	1
2-Butanone	12	ug/kg	9.8	2.2	1
4-Methyl-2-pentanone	ND	ug/kg	9.8	1.2	1
2-Hexanone	ND	ug/kg	9.8	1.2	1
1,2-Dibromoethane	ND	ug/kg	0.98	0.27	1
n-Butylbenzene	ND	ug/kg	0.98	0.16	1
sec-Butylbenzene	ND	ug/kg	0.98	0.14	1
tert-Butylbenzene	ND	ug/kg	2.0	0.12	1
1,2-Dibromo-3-chloropropane	ND	ug/kg	2.9	0.98	1
Isopropylbenzene	ND	ug/kg	0.98	0.11	1
p-Isopropyltoluene	ND	ug/kg	0.98	0.11	1
Naphthalene	ND	ug/kg	3.9	0.64	1
n-Propylbenzene	ND	ug/kg	0.98	0.17	1
1,2,4-Trichlorobenzene	ND	ug/kg	2.0	0.27	1
1,3,5-Trimethylbenzene	ND	ug/kg	2.0	0.19	1
1,2,4-Trimethylbenzene	ND	ug/kg	2.0	0.33	1
Methyl Acetate	ND	ug/kg	3.9	0.93	1
Cyclohexane	ND	ug/kg	9.8	0.53	1
Freon-113	ND	ug/kg	3.9	0.68	1
Methyl cyclohexane	ND	ug/kg	3.9	0.59	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	97	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	94	70-130	
Dibromofluoromethane	94	70-130	

L2016449

Project Name: 100 BUCKLEY RD SYRACUSE

Project Number: 2201387

SAMPLE RESULTS

Report Date: 04/27/20

Lab Number:

14/2//20

Lab ID: Date Collected: 04/20/20 14:45

Client ID: SB-17 (5'-10') Date Received: 04/20/20 Sample Location: 100 BUCKLEY RD SYRACUSE Field Prep: Not Specified

Sample Depth:

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 04/23/20 10:51

Analyst: JC Percent Solids: 62%

Volatile Organics by EPA 5035 Low - West	borough Lab				
Methylene chloride	ND				
		ug/kg	8.8	4.0	1
1,1-Dichloroethane	ND	ug/kg	1.8	0.25	1
Chloroform	ND	ug/kg	2.6	0.24	1
Carbon tetrachloride	ND	ug/kg	1.8	0.40	1
1,2-Dichloropropane	ND	ug/kg	1.8	0.22	1
Dibromochloromethane	ND	ug/kg	1.8	0.24	1
1,1,2-Trichloroethane	ND	ug/kg	1.8	0.47	1
Tetrachloroethene	ND	ug/kg	0.88	0.34	1
Chlorobenzene	ND	ug/kg	0.88	0.22	1
Trichlorofluoromethane	ND	ug/kg	7.0	1.2	1
1,2-Dichloroethane	ND	ug/kg	1.8	0.45	1
1,1,1-Trichloroethane	ND	ug/kg	0.88	0.29	1
Bromodichloromethane	ND	ug/kg	0.88	0.19	1
trans-1,3-Dichloropropene	ND	ug/kg	1.8	0.48	1
cis-1,3-Dichloropropene	ND	ug/kg	0.88	0.28	1
Bromoform	ND	ug/kg	7.0	0.43	1
1,1,2,2-Tetrachloroethane	ND	ug/kg	0.88	0.29	1
Benzene	ND	ug/kg	0.88	0.29	1
Toluene	ND	ug/kg	1.8	0.95	1
Ethylbenzene	ND	ug/kg	1.8	0.25	1
Chloromethane	ND	ug/kg	7.0	1.6	1
Bromomethane	ND	ug/kg	3.5	1.0	1
Vinyl chloride	ND	ug/kg	1.8	0.59	1
Chloroethane	ND	ug/kg	3.5	0.79	1
1,1-Dichloroethene	ND	ug/kg	1.8	0.42	1
trans-1,2-Dichloroethene	ND	ug/kg	2.6	0.24	1
Trichloroethene	ND	ug/kg	0.88	0.24	1
1,2-Dichlorobenzene	ND	ug/kg	3.5	0.25	1

L2016449

04/27/20

Dilution Factor

Project Name: 100 BUCKLEY RD SYRACUSE

Project Number: 2201387

SAMPLE RESULTS

Qualifier

Units

Date Collected: 04/20/20 14:45

Lab Number:

Report Date:

RL

Lab ID: L2016449-05 Client ID: SB-17 (5'-10')

Client ID: SB-17 (5'-10') Date Received Sample Location: 100 BUCKLEY RD SYRACUSE Field Prep:

Result

Date Received: 04/20/20

Field Prep: Not Specified

MDL

Sample Depth:

Parameter

Volatile Organics by EPA 5035 Low - Westborough Lal 1,3-Dichlorobenzene ND 1,4-Dichlorobenzene ND Methyl tert butyl ether ND p/m-Xylene ND o-Xylene ND cis-1,2-Dichloroethene ND Styrene ND Dichlorodifluoromethane ND Acetone 74	b	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	3.5 3.5 3.5 3.5 1.8	0.26 0.30 0.35 0.98	1 1 1 1
1,4-Dichlorobenzene ND Methyl tert butyl ether ND p/m-Xylene ND o-Xylene ND cis-1,2-Dichloroethene ND Styrene ND Dichlorodifluoromethane ND		ug/kg ug/kg ug/kg ug/kg	3.5 3.5 3.5 1.8	0.30 0.35 0.98	1 1 1
Methyl tert butyl ether ND p/m-Xylene ND o-Xylene ND cis-1,2-Dichloroethene ND Styrene ND Dichlorodifluoromethane ND		ug/kg ug/kg ug/kg	3.5 3.5 1.8	0.35 0.98	1 1
p/m-Xylene ND o-Xylene ND cis-1,2-Dichloroethene ND Styrene ND Dichlorodifluoromethane ND		ug/kg ug/kg	3.5 1.8	0.98	1
o-Xylene ND cis-1,2-Dichloroethene ND Styrene ND Dichlorodifluoromethane ND		ug/kg	1.8		
cis-1,2-Dichloroethene ND Styrene ND Dichlorodifluoromethane ND				0.51	
Styrene ND Dichlorodifluoromethane ND		ug/kg			1
Dichlorodifluoromethane ND			1.8	0.31	1
		ug/kg	1.8	0.34	1
Acetone 74		ug/kg	18	1.6	1
		ug/kg	18	8.4	1
Carbon disulfide ND		ug/kg	18	8.0	1
2-Butanone 8.4	J	ug/kg	18	3.9	1
4-Methyl-2-pentanone ND		ug/kg	18	2.2	1
2-Hexanone ND		ug/kg	18	2.1	1
1,2-Dibromoethane ND		ug/kg	1.8	0.49	1
n-Butylbenzene ND		ug/kg	1.8	0.29	1
sec-Butylbenzene ND		ug/kg	1.8	0.26	1
tert-Butylbenzene ND		ug/kg	3.5	0.21	1
1,2-Dibromo-3-chloropropane ND		ug/kg	5.2	1.7	1
Isopropylbenzene ND		ug/kg	1.8	0.19	1
p-Isopropyltoluene ND		ug/kg	1.8	0.19	1
Naphthalene ND		ug/kg	7.0	1.1	1
n-Propylbenzene ND		ug/kg	1.8	0.30	1
1,2,4-Trichlorobenzene ND		ug/kg	3.5	0.48	1
1,3,5-Trimethylbenzene ND		ug/kg	3.5	0.34	1
1,2,4-Trimethylbenzene ND		ug/kg	3.5	0.58	1
Methyl Acetate ND		ug/kg	7.0	1.7	1
Cyclohexane ND		ug/kg	18	0.95	1
Freon-113 ND		ug/kg	7.0	1.2	1
Methyl cyclohexane ND		ug/kg	7.0	1.0	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	98		70-130	
Toluene-d8	101		70-130	
4-Bromofluorobenzene	96		70-130	
Dibromofluoromethane	95		70-130	

L2016449

04/20/20 15:00

Not Specified

04/20/20

Project Name: 100 BUCKLEY RD SYRACUSE

Project Number: 2201387

SAMPLE RESULTS

Report Date: 04/27/20

Lab Number:

Date Collected:

Date Received:

Field Prep:

Lab ID: L2016449-06 Client ID: SB-18 (12.5-15')

Sample Location: 100 BUCKLEY RD SYRACUSE

Sample Depth:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 04/23/20 11:17

Analyst: JC 61% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low - Wes	tborough Lab					
Methylene chloride	ND		ug/kg	11	5.2	1
1,1-Dichloroethane	ND		ug/kg	2.3	0.33	1
Chloroform	ND		ug/kg	3.4	0.32	1
Carbon tetrachloride	ND		ug/kg	2.3	0.52	1
1,2-Dichloropropane	ND		ug/kg	2.3	0.28	1
Dibromochloromethane	ND		ug/kg	2.3	0.32	1
1,1,2-Trichloroethane	ND		ug/kg	2.3	0.60	1
Tetrachloroethene	ND		ug/kg	1.1	0.44	1
Chlorobenzene	ND		ug/kg	1.1	0.29	1
Trichlorofluoromethane	ND		ug/kg	9.0	1.6	1
1,2-Dichloroethane	ND		ug/kg	2.3	0.58	1
1,1,1-Trichloroethane	ND		ug/kg	1.1	0.38	1
Bromodichloromethane	ND		ug/kg	1.1	0.25	1
trans-1,3-Dichloropropene	ND		ug/kg	2.3	0.62	1
cis-1,3-Dichloropropene	ND		ug/kg	1.1	0.36	1
Bromoform	ND		ug/kg	9.0	0.56	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	1.1	0.38	1
Benzene	ND		ug/kg	1.1	0.38	1
Toluene	ND		ug/kg	2.3	1.2	1
Ethylbenzene	ND		ug/kg	2.3	0.32	1
Chloromethane	ND		ug/kg	9.0	2.1	1
Bromomethane	ND		ug/kg	4.5	1.3	1
Vinyl chloride	ND		ug/kg	2.3	0.76	1
Chloroethane	ND		ug/kg	4.5	1.0	1
1,1-Dichloroethene	ND		ug/kg	2.3	0.54	1
trans-1,2-Dichloroethene	ND		ug/kg	3.4	0.31	1
Trichloroethene	ND		ug/kg	1.1	0.31	1
1,2-Dichlorobenzene	ND		ug/kg	4.5	0.32	1

L2016449

Project Name: 100 BUCKLEY RD SYRACUSE Lab Number:

Project Number: 2201387 Report Date: 04/27/20

SAMPLE RESULTS

Lab ID: L2016449-06 Date Collected: 04/20/20 15:00

Client ID: SB-18 (12.5-15') Date Received: 04/20/20 Sample Location: 100 BUCKLEY RD SYRACUSE Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low - Y	Westborough Lab					
1,3-Dichlorobenzene	ND		ug/kg	4.5	0.33	1
1,4-Dichlorobenzene	ND		ug/kg	4.5	0.39	1
Methyl tert butyl ether	ND		ug/kg	4.5	0.45	1
p/m-Xylene	ND		ug/kg	4.5	1.3	1
o-Xylene	ND		ug/kg	2.3	0.66	1
cis-1,2-Dichloroethene	ND		ug/kg	2.3	0.40	1
Styrene	ND		ug/kg	2.3	0.44	1
Dichlorodifluoromethane	ND		ug/kg	23	2.1	1
Acetone	33		ug/kg	23	11.	1
Carbon disulfide	ND		ug/kg	23	10.	1
2-Butanone	ND		ug/kg	23	5.0	1
4-Methyl-2-pentanone	ND		ug/kg	23	2.9	1
2-Hexanone	ND		ug/kg	23	2.7	1
1,2-Dibromoethane	ND		ug/kg	2.3	0.63	1
n-Butylbenzene	ND		ug/kg	2.3	0.38	1
sec-Butylbenzene	ND		ug/kg	2.3	0.33	1
tert-Butylbenzene	ND		ug/kg	4.5	0.27	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	6.8	2.2	1
Isopropylbenzene	ND		ug/kg	2.3	0.25	1
p-Isopropyltoluene	ND		ug/kg	2.3	0.25	1
Naphthalene	ND		ug/kg	9.0	1.5	1
n-Propylbenzene	ND		ug/kg	2.3	0.39	1
1,2,4-Trichlorobenzene	ND		ug/kg	4.5	0.62	1
1,3,5-Trimethylbenzene	ND		ug/kg	4.5	0.44	1
1,2,4-Trimethylbenzene	ND		ug/kg	4.5	0.76	1
Methyl Acetate	ND		ug/kg	9.0	2.1	1
Cyclohexane	ND		ug/kg	23	1.2	1
Freon-113	ND		ug/kg	9.0	1.6	1
Methyl cyclohexane	ND		ug/kg	9.0	1.4	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	100		70-130	
Toluene-d8	102		70-130	
4-Bromofluorobenzene	95		70-130	
Dibromofluoromethane	96		70-130	

L2016449

04/27/20

Project Name: 100 BUCKLEY RD SYRACUSE

L2016449-07

Project Number: 2201387

SAMPLE RESULTS

Date Collected: 04/20/20 10:05

D + 0 II + 1 0 04/00/00 40 00

Lab Number:

Report Date:

Client ID: SB-05 (2.5'-5.0') Date Received: 04/20/20 Sample Location: 100 BUCKLEY RD SYRACUSE Field Prep: Not Specified

Sample Depth:

Lab ID:

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 04/23/20 11:43

Analyst: JC Percent Solids: 71%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low - West	borough Lab					
Methylene chloride	ND		ug/kg	9.1	4.2	1
1,1-Dichloroethane	ND		ug/kg	1.8	0.26	1
Chloroform	ND		ug/kg	2.7	0.25	1
Carbon tetrachloride	ND		ug/kg	1.8	0.42	1
1,2-Dichloropropane	ND		ug/kg	1.8	0.23	1
Dibromochloromethane	ND		ug/kg	1.8	0.25	1
1,1,2-Trichloroethane	ND		ug/kg	1.8	0.48	1
Tetrachloroethene	ND		ug/kg	0.91	0.36	1
Chlorobenzene	ND		ug/kg	0.91	0.23	1
Trichlorofluoromethane	ND		ug/kg	7.3	1.3	1
1,2-Dichloroethane	ND		ug/kg	1.8	0.47	1
1,1,1-Trichloroethane	ND		ug/kg	0.91	0.30	1
Bromodichloromethane	ND		ug/kg	0.91	0.20	1
trans-1,3-Dichloropropene	ND		ug/kg	1.8	0.50	1
cis-1,3-Dichloropropene	ND		ug/kg	0.91	0.29	1
Bromoform	ND		ug/kg	7.3	0.45	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.91	0.30	1
Benzene	2.8		ug/kg	0.91	0.30	1
Toluene	ND		ug/kg	1.8	0.99	1
Ethylbenzene	0.37	J	ug/kg	1.8	0.26	1
Chloromethane	ND		ug/kg	7.3	1.7	1
Bromomethane	ND		ug/kg	3.6	1.0	1
Vinyl chloride	ND		ug/kg	1.8	0.61	1
Chloroethane	ND		ug/kg	3.6	0.82	1
1,1-Dichloroethene	ND		ug/kg	1.8	0.43	1
trans-1,2-Dichloroethene	ND		ug/kg	2.7	0.25	1
Trichloroethene	ND		ug/kg	0.91	0.25	1
1,2-Dichlorobenzene	ND		ug/kg	3.6	0.26	1

MDL

Dilution Factor

Project Name: 100 BUCKLEY RD SYRACUSE Lab Number: L2016449

Project Number: 2201387 Report Date: 04/27/20

SAMPLE RESULTS

Result

Lab ID: L2016449-07 Date Collected: 04/20/20 10:05

Client ID: SB-05 (2.5'-5.0') Date Received: 04/20/20

Sample Location: 100 BUCKLEY RD SYRACUSE Field Prep: Not Specified

Qualifier

Units

RL

Sample Depth:

Parameter

Volatile Organics by EPA 5035 Low - Westborough Lab 1,3-Dichlorobenzene ND 1,4-Dichlorobenzene ND Methyl tert butyl ether ND p/m-Xylene ND o-Xylene ND cis-1,2-Dichloroethene ND Styrene ND Dichlorodifluoromethane ND Acetone 120 Carbon disulfide 8.8	J	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	3.6 3.6 3.6 3.6 1.8 1.8 1.8	0.27 0.31 0.36 1.0 0.53 0.32 0.36 1.7	1 1 1 1 1 1 1
1,4-Dichlorobenzene ND Methyl tert butyl ether ND p/m-Xylene ND o-Xylene ND cis-1,2-Dichloroethene ND Styrene ND Dichlorodifluoromethane ND Acetone 120	J	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	3.6 3.6 3.6 1.8 1.8 1.8	0.31 0.36 1.0 0.53 0.32 0.36 1.7	1 1 1 1 1 1
Methyl tert butyl ether ND p/m-Xylene ND o-Xylene ND cis-1,2-Dichloroethene ND Styrene ND Dichlorodifluoromethane ND Acetone 120	J	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	3.6 3.6 1.8 1.8 1.8	0.36 1.0 0.53 0.32 0.36 1.7	1 1 1 1
p/m-Xylene ND o-Xylene ND cis-1,2-Dichloroethene ND Styrene ND Dichlorodifluoromethane ND Acetone 120	J	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	3.6 1.8 1.8 1.8	1.0 0.53 0.32 0.36 1.7	1 1 1 1
o-Xylene ND cis-1,2-Dichloroethene ND Styrene ND Dichlorodifluoromethane ND Acetone 120	J	ug/kg ug/kg ug/kg ug/kg ug/kg	1.8 1.8 1.8	0.53 0.32 0.36 1.7	1 1 1
cis-1,2-Dichloroethene ND Styrene ND Dichlorodifluoromethane ND Acetone 120	J	ug/kg ug/kg ug/kg ug/kg	1.8 1.8 18	0.32 0.36 1.7	1
Styrene ND Dichlorodifluoromethane ND Acetone 120	J	ug/kg ug/kg ug/kg	1.8 18	0.36 1.7	1
Dichlorodifluoromethane ND Acetone 120	J	ug/kg ug/kg	18	1.7	
Acetone 120	J	ug/kg			1
	J		18		
Carbon disulfide 8.8	J		. •	8.7	1
		ug/kg	18	8.3	1
2-Butanone 19		ug/kg	18	4.0	1
4-Methyl-2-pentanone ND		ug/kg	18	2.3	1
2-Hexanone ND		ug/kg	18	2.1	1
1,2-Dibromoethane ND		ug/kg	1.8	0.51	1
n-Butylbenzene 1.3	J	ug/kg	1.8	0.30	1
sec-Butylbenzene ND		ug/kg	1.8	0.26	1
tert-Butylbenzene ND		ug/kg	3.6	0.21	1
1,2-Dibromo-3-chloropropane ND		ug/kg	5.4	1.8	1
Isopropylbenzene ND		ug/kg	1.8	0.20	1
p-Isopropyltoluene 34		ug/kg	1.8	0.20	1
Naphthalene 22		ug/kg	7.3	1.2	1
n-Propylbenzene 0.50	J	ug/kg	1.8	0.31	1
1,2,4-Trichlorobenzene ND		ug/kg	3.6	0.49	1
1,3,5-Trimethylbenzene ND		ug/kg	3.6	0.35	1
1,2,4-Trimethylbenzene 1.1	J	ug/kg	3.6	0.61	1
Methyl Acetate ND		ug/kg	7.3	1.7	1
Cyclohexane ND		ug/kg	18	0.99	1
Freon-113 ND		ug/kg	7.3	1.2	1
Methyl cyclohexane ND		ug/kg	7.3	1.1	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	110		70-130	
Toluene-d8	114		70-130	
4-Bromofluorobenzene	136	Q	70-130	
Dibromofluoromethane	102		70-130	

L2016449

04/27/20

Project Name: 100 BUCKLEY RD SYRACUSE

Project Number: 2201387

SAMPLE RESULTS

Lab Number:

Report Date:

Lab ID: L2016449-07 R Date Collected: 04/20/20 10:05

Client ID: Date Received: 04/20/20 SB-05 (2.5'-5.0') Not Specified

Field Prep: Sample Location: 100 BUCKLEY RD SYRACUSE

Sample Depth:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 04/24/20 10:30

JC Analyst: 71% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 L	_ow - Westborough Lab						
Methylene chloride	ND		ug/kg	9.4	4.3	1	
1,1-Dichloroethane	ND		ug/kg	1.9	0.27	1	
Chloroform	ND		ug/kg	2.8	0.26	1	
Carbon tetrachloride	ND		ug/kg	1.9	0.43	1	
1,2-Dichloropropane	ND		ug/kg	1.9	0.24	1	
Dibromochloromethane	ND		ug/kg	1.9	0.26	1	
1,1,2-Trichloroethane	ND		ug/kg	1.9	0.50	1	
Tetrachloroethene	ND		ug/kg	0.94	0.37	1	
Chlorobenzene	ND		ug/kg	0.94	0.24	1	
Trichlorofluoromethane	ND		ug/kg	7.6	1.3	1	
1,2-Dichloroethane	ND		ug/kg	1.9	0.48	1	
1,1,1-Trichloroethane	ND		ug/kg	0.94	0.32	1	
Bromodichloromethane	ND		ug/kg	0.94	0.21	1	
trans-1,3-Dichloropropene	ND		ug/kg	1.9	0.52	1	
cis-1,3-Dichloropropene	ND		ug/kg	0.94	0.30	1	
Bromoform	ND		ug/kg	7.6	0.46	1	
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.94	0.31	1	
Benzene	3.0		ug/kg	0.94	0.31	1	
Toluene	ND		ug/kg	1.9	1.0	1	
Ethylbenzene	0.41	J	ug/kg	1.9	0.27	1	
Chloromethane	ND		ug/kg	7.6	1.8	1	
Bromomethane	ND		ug/kg	3.8	1.1	1	
Vinyl chloride	ND		ug/kg	1.9	0.63	1	
Chloroethane	ND		ug/kg	3.8	0.85	1	
1,1-Dichloroethene	ND		ug/kg	1.9	0.45	1	
trans-1,2-Dichloroethene	ND		ug/kg	2.8	0.26	1	
Trichloroethene	ND		ug/kg	0.94	0.26	1	
1,2-Dichlorobenzene	ND		ug/kg	3.8	0.27	1	

MDL

Dilution Factor

Project Name: 100 BUCKLEY RD SYRACUSE Lab Number: L2016449

Project Number: 2201387 Report Date: 04/27/20

SAMPLE RESULTS

Lab ID: L2016449-07 R Date Collected: 04/20/20 10:05

Client ID: SB-05 (2.5'-5.0') Date Received: 04/20/20 Sample Location: 100 BUCKLEY RD SYRACUSE Field Prep: Not Specified

Qualifier

Units

RL

Result

Sample Depth:

Parameter

raiailletei	Nesuit	Qualifier	Ullita	IN.L	MIDL	Dilution ractor	
Volatile Organics by EPA 5035 Lo	ow - Westborough Lab						
1,3-Dichlorobenzene	ND		ug/kg	3.8	0.28	1	
1,4-Dichlorobenzene	ND		ug/kg	3.8	0.32	1	
Methyl tert butyl ether	ND		ug/kg	3.8	0.38	1	
p/m-Xylene	ND		ug/kg	3.8	1.0	1	
o-Xylene	ND		ug/kg	1.9	0.55	1	
cis-1,2-Dichloroethene	ND		ug/kg	1.9	0.33	1	
Styrene	ND		ug/kg	1.9	0.37	1	
Dichlorodifluoromethane	ND		ug/kg	19	1.7	1	
Acetone	110		ug/kg	19	9.1	1	
Carbon disulfide	12	J	ug/kg	19	8.6	1	
2-Butanone	21		ug/kg	19	4.2	1	
4-Methyl-2-pentanone	ND		ug/kg	19	2.4	1	
2-Hexanone	ND		ug/kg	19	2.2	1	
1,2-Dibromoethane	ND		ug/kg	1.9	0.53	1	
n-Butylbenzene	1.5	J	ug/kg	1.9	0.32	1	
sec-Butylbenzene	ND		ug/kg	1.9	0.28	1	
tert-Butylbenzene	ND		ug/kg	3.8	0.22	1	
1,2-Dibromo-3-chloropropane	ND		ug/kg	5.7	1.9	1	
Isopropylbenzene	ND		ug/kg	1.9	0.21	1	
p-Isopropyltoluene	46		ug/kg	1.9	0.21	1	
Naphthalene	27		ug/kg	7.6	1.2	1	
n-Propylbenzene	0.45	J	ug/kg	1.9	0.32	1	
1,2,4-Trichlorobenzene	ND		ug/kg	3.8	0.51	1	
1,3,5-Trimethylbenzene	ND		ug/kg	3.8	0.36	1	
1,2,4-Trimethylbenzene	1.3	J	ug/kg	3.8	0.63	1	
Methyl Acetate	ND		ug/kg	7.6	1.8	1	
Cyclohexane	ND		ug/kg	19	1.0	1	
Freon-113	ND		ug/kg	7.6	1.3	1	
Methyl cyclohexane	ND		ug/kg	7.6	1.1	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	111		70-130	
Toluene-d8	106		70-130	
4-Bromofluorobenzene	150	Q	70-130	
Dibromofluoromethane	101		70-130	

Project Number: 2201387 Report Date: 04/27/20

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/23/20 07:24

Analyst: MV

Parameter	Result	Qualifier	Units	RL	MDL	
olatile Organics by EPA 5035 Low	- Westboro	ugh Lab fo	r sample(s):	01-02,04-07	Batch:	WG1363738
Methylene chloride	ND		ug/kg	5.0	2.3	
1,1-Dichloroethane	ND		ug/kg	1.0	0.14	
Chloroform	ND		ug/kg	1.5	0.14	
Carbon tetrachloride	ND		ug/kg	1.0	0.23	
1,2-Dichloropropane	ND		ug/kg	1.0	0.12	
Dibromochloromethane	ND		ug/kg	1.0	0.14	
1,1,2-Trichloroethane	ND		ug/kg	1.0	0.27	
Tetrachloroethene	ND		ug/kg	0.50	0.20	
Chlorobenzene	ND		ug/kg	0.50	0.13	
Trichlorofluoromethane	ND		ug/kg	4.0	0.70	
1,2-Dichloroethane	ND		ug/kg	1.0	0.26	
1,1,1-Trichloroethane	ND		ug/kg	0.50	0.17	
Bromodichloromethane	ND		ug/kg	0.50	0.11	
trans-1,3-Dichloropropene	ND		ug/kg	1.0	0.27	
cis-1,3-Dichloropropene	ND		ug/kg	0.50	0.16	
Bromoform	ND		ug/kg	4.0	0.25	
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.50	0.17	
Benzene	ND		ug/kg	0.50	0.17	
Toluene	ND		ug/kg	1.0	0.54	
Ethylbenzene	ND		ug/kg	1.0	0.14	
Chloromethane	ND		ug/kg	4.0	0.93	
Bromomethane	ND		ug/kg	2.0	0.58	
Vinyl chloride	ND		ug/kg	1.0	0.34	
Chloroethane	ND		ug/kg	2.0	0.45	
1,1-Dichloroethene	ND		ug/kg	1.0	0.24	
trans-1,2-Dichloroethene	ND		ug/kg	1.5	0.14	
Trichloroethene	ND		ug/kg	0.50	0.14	
1,2-Dichlorobenzene	ND		ug/kg	2.0	0.14	
1,3-Dichlorobenzene	ND		ug/kg	2.0	0.15	

Project Number: 2201387 Report Date: 04/27/20

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/23/20 07:24

Analyst: MV

arameter	Result	Qualifier (Jnits	RL	MDL	
olatile Organics by EPA 5035 L 0	.ow - Westboro	ough Lab for s	sample(s):	01-02,04-07	Batch:	WG1363738
1,4-Dichlorobenzene	ND		ug/kg	2.0	0.17	
Methyl tert butyl ether	ND		ug/kg	2.0	0.20	
p/m-Xylene	ND		ug/kg	2.0	0.56	
o-Xylene	ND		ug/kg	1.0	0.29	
cis-1,2-Dichloroethene	ND		ug/kg	1.0	0.18	
Styrene	ND		ug/kg	1.0	0.20	
Dichlorodifluoromethane	ND		ug/kg	10	0.92	
Acetone	ND		ug/kg	10	4.8	
Carbon disulfide	ND		ug/kg	10	4.6	
2-Butanone	ND		ug/kg	10	2.2	
4-Methyl-2-pentanone	ND		ug/kg	10	1.3	
2-Hexanone	ND		ug/kg	10	1.2	
1,2-Dibromoethane	ND		ug/kg	1.0	0.28	
n-Butylbenzene	ND		ug/kg	1.0	0.17	
sec-Butylbenzene	ND		ug/kg	1.0	0.15	
tert-Butylbenzene	ND		ug/kg	2.0	0.12	
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.0	1.0	
Isopropylbenzene	ND		ug/kg	1.0	0.11	
p-Isopropyltoluene	ND		ug/kg	1.0	0.11	
Naphthalene	ND		ug/kg	4.0	0.65	
n-Propylbenzene	ND		ug/kg	1.0	0.17	
1,2,4-Trichlorobenzene	ND		ug/kg	2.0	0.27	
1,3,5-Trimethylbenzene	ND		ug/kg	2.0	0.19	
1,2,4-Trimethylbenzene	ND		ug/kg	2.0	0.33	
Methyl Acetate	ND		ug/kg	4.0	0.95	
Cyclohexane	ND		ug/kg	10	0.54	
Freon-113	ND		ug/kg	4.0	0.69	
Methyl cyclohexane	ND		ug/kg	4.0	0.60	

Project Number: 2201387 Report Date: 04/27/20

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/23/20 07:24

Analyst: MV

Parameter Result Qualifier Units RL MDL

Volatile Organics by EPA 5035 Low - Westborough Lab for sample(s): 01-02,04-07 Batch: WG1363738-10

Acceptance Criteria **Surrogate** %Recovery Qualifier 1,2-Dichloroethane-d4 96 70-130 Toluene-d8 101 70-130 4-Bromofluorobenzene 95 70-130 Dibromofluoromethane 91 70-130

Project Number: 2201387 Report Date: 04/27/20

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/24/20 08:24

Analyst: MV

Parameter	Result	Qualifier	Units	RL	MDL	
olatile Organics by EPA 5035 Low	- Westboro	ugh Lab fo	r sample(s):	01,03,07	Batch:	WG1364233-5
Methylene chloride	ND		ug/kg	5.0	2.3	
1,1-Dichloroethane	ND		ug/kg	1.0	0.14	
Chloroform	0.18	J	ug/kg	1.5	0.14	
Carbon tetrachloride	ND		ug/kg	1.0	0.23	
1,2-Dichloropropane	ND		ug/kg	1.0	0.12	
Dibromochloromethane	ND		ug/kg	1.0	0.14	
1,1,2-Trichloroethane	ND		ug/kg	1.0	0.27	
Tetrachloroethene	ND		ug/kg	0.50	0.20	
Chlorobenzene	ND		ug/kg	0.50	0.13	
Trichlorofluoromethane	ND		ug/kg	4.0	0.70	
1,2-Dichloroethane	ND		ug/kg	1.0	0.26	
1,1,1-Trichloroethane	ND		ug/kg	0.50	0.17	
Bromodichloromethane	ND		ug/kg	0.50	0.11	
trans-1,3-Dichloropropene	ND		ug/kg	1.0	0.27	
cis-1,3-Dichloropropene	ND		ug/kg	0.50	0.16	
Bromoform	ND		ug/kg	4.0	0.25	
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.50	0.17	
Benzene	ND		ug/kg	0.50	0.17	
Toluene	ND		ug/kg	1.0	0.54	
Ethylbenzene	ND		ug/kg	1.0	0.14	
Chloromethane	ND		ug/kg	4.0	0.93	
Bromomethane	ND		ug/kg	2.0	0.58	
Vinyl chloride	ND		ug/kg	1.0	0.34	
Chloroethane	ND		ug/kg	2.0	0.45	
1,1-Dichloroethene	ND		ug/kg	1.0	0.24	
trans-1,2-Dichloroethene	ND		ug/kg	1.5	0.14	
Trichloroethene	ND		ug/kg	0.50	0.14	
1,2-Dichlorobenzene	ND		ug/kg	2.0	0.14	
1,3-Dichlorobenzene	ND		ug/kg	2.0	0.15	

Project Number: 2201387 Report Date: 04/27/20

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/24/20 08:24

Analyst: MV

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by EPA 5035 Low	- Westboro	ugh Lab fo	or sample(s):	01,03,07	Batch:	WG1364233-5
1,4-Dichlorobenzene	ND		ug/kg	2.0	0.17	
Methyl tert butyl ether	0.32	J	ug/kg	2.0	0.20	
p/m-Xylene	ND		ug/kg	2.0	0.56	
o-Xylene	ND		ug/kg	1.0	0.29	
cis-1,2-Dichloroethene	ND		ug/kg	1.0	0.18	
Styrene	ND		ug/kg	1.0	0.20	
Dichlorodifluoromethane	ND		ug/kg	10	0.92	
Acetone	ND		ug/kg	10	4.8	
Carbon disulfide	ND		ug/kg	10	4.6	
2-Butanone	ND		ug/kg	10	2.2	
4-Methyl-2-pentanone	ND		ug/kg	10	1.3	
2-Hexanone	ND		ug/kg	10	1.2	
1,2-Dibromoethane	ND		ug/kg	1.0	0.28	
n-Butylbenzene	ND		ug/kg	1.0	0.17	
sec-Butylbenzene	ND		ug/kg	1.0	0.15	
tert-Butylbenzene	ND		ug/kg	2.0	0.12	
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.0	1.0	
Isopropylbenzene	ND		ug/kg	1.0	0.11	
p-Isopropyltoluene	ND		ug/kg	1.0	0.11	
Naphthalene	ND		ug/kg	4.0	0.65	
n-Propylbenzene	ND		ug/kg	1.0	0.17	
1,2,4-Trichlorobenzene	ND		ug/kg	2.0	0.27	
1,3,5-Trimethylbenzene	ND		ug/kg	2.0	0.19	
1,2,4-Trimethylbenzene	ND		ug/kg	2.0	0.33	
Methyl Acetate	ND		ug/kg	4.0	0.95	
Cyclohexane	ND		ug/kg	10	0.54	
Freon-113	ND		ug/kg	4.0	0.69	
Methyl cyclohexane	ND		ug/kg	4.0	0.60	

Project Number: 2201387 Report Date: 04/27/20

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/24/20 08:24

Analyst: MV

Parameter Result Qualifier Units RL MDL

Volatile Organics by EPA 5035 Low - Westborough Lab for sample(s): 01,03,07 Batch: WG1364233-5

		Acceptance		
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	100		70-130	
Toluene-d8	94		70-130	
4-Bromofluorobenzene	102		70-130	
Dibromofluoromethane	93		70-130	

Project Name: 100 BUCKLEY RD SYRACUSE

Project Number: 2201387

Lab Number: L2016449

Parameter	LCS %Recovery	Qual %	LCSD Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by EPA 5035 Low - Westb	orough Lab Ass	ociated sample(s)	: 01-02,04-07	Batch:	WG1363738-8	WG1363738-9	
Methylene chloride	96		90		70-130	6	30
1,1-Dichloroethane	104		99		70-130	5	30
Chloroform	93		89		70-130	4	30
Carbon tetrachloride	93		89		70-130	4	30
1,2-Dichloropropane	101		98		70-130	3	30
Dibromochloromethane	96		90		70-130	6	30
1,1,2-Trichloroethane	97		92		70-130	5	30
Tetrachloroethene	102		98		70-130	4	30
Chlorobenzene	94		92		70-130	2	30
Trichlorofluoromethane	78		73		70-139	7	30
1,2-Dichloroethane	98		92		70-130	6	30
1,1,1-Trichloroethane	93		90		70-130	3	30
Bromodichloromethane	88		85		70-130	3	30
trans-1,3-Dichloropropene	104		99		70-130	5	30
cis-1,3-Dichloropropene	94		90		70-130	4	30
Bromoform	100		93		70-130	7	30
1,1,2,2-Tetrachloroethane	88		82		70-130	7	30
Benzene	90		86		70-130	5	30
Toluene	94		90		70-130	4	30
Ethylbenzene	93		92		70-130	1	30
Chloromethane	117		107		52-130	9	30
Bromomethane	66		61		57-147	8	30
Vinyl chloride	96		88		67-130	9	30

Project Name: 100 BUCKLEY RD SYRACUSE

Project Number: 2201387

Lab Number: L2016449

Parameter	LCS %Recovery	Qual %	LCSD Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by EPA 5035 Low - Westl	oorough Lab Ass	ociated sample(s)	: 01-02,04-07	Batch:	WG1363738-8	WG1363738-9	
Chloroethane	77		72		50-151	7	30
1,1-Dichloroethene	102		95		65-135	7	30
trans-1,2-Dichloroethene	97		91		70-130	6	30
Trichloroethene	95		92		70-130	3	30
1,2-Dichlorobenzene	93		92		70-130	1	30
1,3-Dichlorobenzene	93		92		70-130	1	30
1,4-Dichlorobenzene	93		92		70-130	1	30
Methyl tert butyl ether	85		77		66-130	10	30
p/m-Xylene	88		87		70-130	1	30
o-Xylene	85		84		70-130	1	30
cis-1,2-Dichloroethene	104		99		70-130	5	30
Styrene	88		86		70-130	2	30
Dichlorodifluoromethane	83		76		30-146	9	30
Acetone	136		114		54-140	18	30
Carbon disulfide	81		77		59-130	5	30
2-Butanone	117		100		70-130	16	30
4-Methyl-2-pentanone	113		100		70-130	12	30
2-Hexanone	141	Q	123		70-130	14	30
1,2-Dibromoethane	102		95		70-130	7	30
n-Butylbenzene	91		91		70-130	0	30
sec-Butylbenzene	88		88		70-130	0	30
tert-Butylbenzene	94		94		70-130	0	30
1,2-Dibromo-3-chloropropane	94		84		68-130	11	30

Project Name: 100 BUCKLEY RD SYRACUSE

Project Number: 2201387

Lab Number: L2016449

arameter	LCS %Recovery	Qual %	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by EPA 5035 Low - W	estborough Lab Asso	ociated sample(s): 01-02,04-07	Batch:	WG1363738-8	WG1363738-9		
Isopropylbenzene	94		93		70-130	1		30
p-Isopropyltoluene	94		95		70-130	1		30
Naphthalene	93		89		70-130	4		30
n-Propylbenzene	92		92		70-130	0		30
1,2,4-Trichlorobenzene	93		92		70-130	1		30
1,3,5-Trimethylbenzene	91		91		70-130	0		30
1,2,4-Trimethylbenzene	91		91		70-130	0		30
Methyl Acetate	132		112		51-146	16		30
Cyclohexane	119		116		59-142	3		30
Freon-113	104		97		50-139	7		30
Methyl cyclohexane	97		96		70-130	1		30

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	99	95	70-130
Toluene-d8	104	104	70-130
4-Bromofluorobenzene	97	97	70-130
Dibromofluoromethane	99	97	70-130

Project Name: 100 BUCKLEY RD SYRACUSE

Project Number: 2201387

Lab Number: L2016449

arameter	LCS %Recovery	Qual %	LCSD 6Recovery	Qual	%Recover Limits	y RPD	Qual	RPD Limits
platile Organics by EPA 5035 Low - Westbo	rough Lab Ass	ociated sample(s)): 01,03,07	Batch:	WG1364233-3	WG1364233-4		
Methylene chloride	88		86		70-130	2		30
1,1-Dichloroethane	104		100		70-130	4		30
Chloroform	90		87		70-130	3		30
Carbon tetrachloride	109		103		70-130	6		30
1,2-Dichloropropane	101		98		70-130	3		30
Dibromochloromethane	90		88		70-130	2		30
1,1,2-Trichloroethane	85		83		70-130	2		30
Tetrachloroethene	98		94		70-130	4		30
Chlorobenzene	85		83		70-130	2		30
Trichlorofluoromethane	104		101		70-139	3		30
1,2-Dichloroethane	95		93		70-130	2		30
1,1,1-Trichloroethane	101		96		70-130	5		30
Bromodichloromethane	84		83		70-130	1		30
trans-1,3-Dichloropropene	94		94		70-130	0		30
cis-1,3-Dichloropropene	97		95		70-130	2		30
Bromoform	89		88		70-130	1		30
1,1,2,2-Tetrachloroethane	79		77		70-130	3		30
Benzene	90		86		70-130	5		30
Toluene	91		88		70-130	3		30
Ethylbenzene	94		91		70-130	3		30
Chloromethane	126		119		52-130	6		30
Bromomethane	76		72		57-147	5		30
Vinyl chloride	88		81		67-130	8		30

Project Name: 100 BUCKLEY RD SYRACUSE

Project Number: 2201387

Lab Number: L2016449

Parameter	LCS %Recovery	Qual %	LCSD 6Recovery	Qual	%Recovery Limits	, RPD	Qual	RPD Limits
olatile Organics by EPA 5035 Low - Westh	oorough Lab Asso	ociated sample(s)): 01,03,07	Batch:	WG1364233-3	WG1364233-4		
Chloroethane	65		60		50-151	8		30
1,1-Dichloroethene	106		101		65-135	5		30
trans-1,2-Dichloroethene	94		90		70-130	4		30
Trichloroethene	97		92		70-130	5		30
1,2-Dichlorobenzene	88		85		70-130	3		30
1,3-Dichlorobenzene	90		88		70-130	2		30
1,4-Dichlorobenzene	90		87		70-130	3		30
Methyl tert butyl ether	96		93		66-130	3		30
p/m-Xylene	96		93		70-130	3		30
o-Xylene	90		88		70-130	2		30
cis-1,2-Dichloroethene	99		95		70-130	4		30
Styrene	90		89		70-130	1		30
Dichlorodifluoromethane	115		109		30-146	5		30
Acetone	120		116		54-140	3		30
Carbon disulfide	89		86		59-130	3		30
2-Butanone	111		111		70-130	0		30
4-Methyl-2-pentanone	106		103		70-130	3		30
2-Hexanone	112		110		70-130	2		30
1,2-Dibromoethane	88		88		70-130	0		30
n-Butylbenzene	97		93		70-130	4		30
sec-Butylbenzene	96		92		70-130	4		30
tert-Butylbenzene	107		102		70-130	5		30
1,2-Dibromo-3-chloropropane	89		89		68-130	0		30

Project Name: 100 BUCKLEY RD SYRACUSE

Project Number: 2201387

Lab Number: L2016449

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recover Limits	y RPD	Qual	RPD Limits
olatile Organics by EPA 5035 Low - Wes	stborough Lab Asso	ciated sample	(s): 01,03,07	Batch:	WG1364233-3	WG1364233-4		
Isopropylbenzene	105		100		70-130	5		30
p-Isopropyltoluene	109		104		70-130	5		30
Naphthalene	109		107		70-130	2		30
n-Propylbenzene	98		93		70-130	5		30
1,2,4-Trichlorobenzene	96		94		70-130	2		30
1,3,5-Trimethylbenzene	103		99		70-130	4		30
1,2,4-Trimethylbenzene	102		98		70-130	4		30
Methyl Acetate	109		107		51-146	2		30
Cyclohexane	139		132		59-142	5		30
Freon-113	113		107		50-139	5		30
Methyl cyclohexane	110		104		70-130	6		30

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	99	98	70-130
Toluene-d8	95	95	70-130
4-Bromofluorobenzene	104	104	70-130
Dibromofluoromethane	97	96	70-130

SEMIVOLATILES

L2016449

04/27/20

Project Name: 100 BUCKLEY RD SYRACUSE

Project Number: 2201387

SAMPLE RESULTS

Date Collected: 04/20/20 10:00

Lab Number:

Report Date:

Lab ID: L2016449-01 Date Received: Client ID: SB-05 (8'-10') 04/20/20

Sample Location: 100 BUCKLEY RD SYRACUSE Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3546 Matrix: Soil **Extraction Date:** 04/22/20 03:57 Analytical Method: 1,8270D Analytical Date: 04/23/20 00:10

Analyst: JG 66% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westborn	ough Lab					
Assessable and	ND			200	200	4
Acenaphthene	ND		ug/kg	200	26.	1
Fluoranthene	34	J	ug/kg	150	28.	1
Benzo(a)anthracene	ND		ug/kg	150	28.	1
Benzo(a)pyrene	ND		ug/kg	200	61.	1
Benzo(b)fluoranthene	ND		ug/kg	150	42.	1
Benzo(k)fluoranthene	ND		ug/kg	150	40.	1
Chrysene	ND		ug/kg	150	26.	1
Acenaphthylene	ND		ug/kg	200	38.	1
Anthracene	ND		ug/kg	150	48.	1
Benzo(ghi)perylene	ND		ug/kg	200	29.	1
Fluorene	ND		ug/kg	250	24.	1
Phenanthrene	62	J	ug/kg	150	30.	1
Dibenzo(a,h)anthracene	ND		ug/kg	150	29.	1
Indeno(1,2,3-cd)pyrene	ND		ug/kg	200	35.	1
Pyrene	26	J	ug/kg	150	25.	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	70		23-120	
2-Fluorobiphenyl	77		30-120	
4-Terphenyl-d14	19		18-120	

L2016449

04/27/20

Project Name: 100 BUCKLEY RD SYRACUSE

04/22/20 22:02

Project Number: 2201387

SAMPLE RESULTS

Date Collected: 04/20/20 09:45

Lab Number:

Report Date:

Lab ID: L2016449-02 Date Received: Client ID: SB-03 (7.5'-10') 04/20/20

Sample Location: 100 BUCKLEY RD SYRACUSE Field Prep: Not Specified

Sample Depth:

Analytical Date:

Extraction Method: EPA 3546 Matrix: Soil **Extraction Date:** 04/22/20 03:57 Analytical Method: 1,8270D

Analyst: JG 82% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - We	stborough Lab					
Acenaphthene	ND		ug/kg	160	21.	1
Fluoranthene	ND		ug/kg	120	23.	
Benzo(a)anthracene	ND		ug/kg	120	23.	1
Benzo(a)pyrene	ND		ug/kg	160	50.	1
Benzo(b)fluoranthene	ND		ug/kg	120	34.	1
Benzo(k)fluoranthene	ND		ug/kg	120	32.	1
Chrysene	ND		ug/kg	120	21.	1
Acenaphthylene	ND		ug/kg	160	31.	1
Anthracene	ND		ug/kg	120	40.	1
Benzo(ghi)perylene	ND		ug/kg	160	24.	1
Fluorene	ND		ug/kg	200	20.	1
Phenanthrene	ND		ug/kg	120	25.	1
Dibenzo(a,h)anthracene	ND		ug/kg	120	24.	1
Indeno(1,2,3-cd)pyrene	ND		ug/kg	160	28.	1
Pyrene	ND		ug/kg	120	20.	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	70	23-120	
2-Fluorobiphenyl	89	30-120	
4-Terphenyl-d14	76	18-120	

L2016449

04/27/20

04/22/20 03:57

Project Name: 100 BUCKLEY RD SYRACUSE

Project Number: 2201387

SAMPLE RESULTS

Date Collected: 04/20/20 10:40

Lab Number:

Report Date:

Lab ID: L2016449-03 D Client ID: SB-06 (5'-7.5')

Date Received: 04/20/20 100 BUCKLEY RD SYRACUSE Sample Location: Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3546 Matrix: Soil **Extraction Date:** Analytical Method: 1,8270D Analytical Date: 04/27/20 07:42

Analyst: WR 73% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - We	stborough Lab					
Acenaphthene	ND		ug/kg	3600	470	20
Fluoranthene	ND		ug/kg	2700	520	20
Benzo(a)anthracene	ND		ug/kg	2700	510	20
Benzo(a)pyrene	ND		ug/kg	3600	1100	20
Benzo(b)fluoranthene	ND		ug/kg	2700	760	20
Benzo(k)fluoranthene	ND		ug/kg	2700	720	20
Chrysene	ND		ug/kg	2700	470	20
Acenaphthylene	ND		ug/kg	3600	700	20
Anthracene	ND		ug/kg	2700	880	20
Benzo(ghi)perylene	ND		ug/kg	3600	530	20
Fluorene	ND		ug/kg	4500	440	20
Phenanthrene	ND		ug/kg	2700	550	20
Dibenzo(a,h)anthracene	ND		ug/kg	2700	520	20
Indeno(1,2,3-cd)pyrene	ND		ug/kg	3600	630	20
Pyrene	ND		ug/kg	2700	450	20

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	0	Q	23-120	
2-Fluorobiphenyl	0	Q	30-120	
4-Terphenyl-d14	0	Q	18-120	

L2016449

04/27/20

Project Name: 100 BUCKLEY RD SYRACUSE

04/22/20 22:23

Project Number: 2201387

SAMPLE RESULTS

Date Collected: 04/20/20 13:15

Lab Number:

Report Date:

Lab ID: L2016449-04 Date Received: Client ID: SB-14 (7.5'-10.0') 04/20/20

Sample Location: 100 BUCKLEY RD SYRACUSE Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3546 Matrix: Soil **Extraction Date:** 04/22/20 03:57 Analytical Method: 1,8270D Analytical Date:

Analyst: JG 85% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - We	stborough Lab						
Acenaphthene	ND		ug/kg	160	20.	1	
Fluoranthene	ND		ug/kg	120	22.	1	
Benzo(a)anthracene	ND		ug/kg	120	22.	1	
Benzo(a)pyrene	ND		ug/kg	160	47.	1	
Benzo(b)fluoranthene	ND		ug/kg	120	33.	1	
Benzo(k)fluoranthene	ND		ug/kg	120	31.	1	
Chrysene	ND		ug/kg	120	20.	1	
Acenaphthylene	ND		ug/kg	160	30.	1	
Anthracene	ND		ug/kg	120	38.	1	
Benzo(ghi)perylene	ND		ug/kg	160	23.	1	
Fluorene	ND		ug/kg	190	19.	1	
Phenanthrene	ND		ug/kg	120	24.	1	
Dibenzo(a,h)anthracene	ND		ug/kg	120	22.	1	
Indeno(1,2,3-cd)pyrene	ND		ug/kg	160	27.	1	
Pyrene	ND		ug/kg	120	19.	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	75		23-120	
2-Fluorobiphenyl	95		30-120	
4-Terphenyl-d14	85		18-120	

L2016449

04/27/20

Project Name: 100 BUCKLEY RD SYRACUSE

Project Number: 2201387

SAMPLE RESULTS

Date Collected: 04/20/20 14:45

Lab ID: L2016449-05 Client ID: SB-17 (5'-10')

Sample Location: 100 BUCKLEY RD SYRACUSE

Date Received: 04/20/20 Field Prep: Not Specified

Lab Number:

Report Date:

Sample Depth:

Matrix: Soil
Analytical Method: 1,8270D
Analytical Date: 04/22/20 23:06

Analyst: JG Percent Solids: 62% Extraction Method: EPA 3546
Extraction Date: 04/22/20 03:57

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - Westb	orough Lab						
Acenaphthene	ND		ug/kg	210	27.	1	
Fluoranthene	91	J	ug/kg	160	30.	1	
Benzo(a)anthracene	56	J	ug/kg	160	30.	1	
Benzo(a)pyrene	ND		ug/kg	210	65.	1	
Benzo(b)fluoranthene	61	J	ug/kg	160	45.	1	
Benzo(k)fluoranthene	ND		ug/kg	160	42.	1	
Chrysene	48	J	ug/kg	160	28.	1	
Acenaphthylene	ND		ug/kg	210	41.	1	
Anthracene	ND		ug/kg	160	52.	1	
Benzo(ghi)perylene	ND		ug/kg	210	31.	1	
Fluorene	ND		ug/kg	260	26.	1	
Phenanthrene	87	J	ug/kg	160	32.	1	
Dibenzo(a,h)anthracene	ND		ug/kg	160	31.	1	
Indeno(1,2,3-cd)pyrene	ND		ug/kg	210	37.	1	
Pyrene	80	J	ug/kg	160	26.	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	72		23-120	
2-Fluorobiphenyl	91		30-120	
4-Terphenyl-d14	77		18-120	

L2016449

04/27/20

Project Name: 100 BUCKLEY RD SYRACUSE

Project Number: 2201387

SAMPLE RESULTS

Date Collected: 04/20/20 15:00

Lab Number:

Report Date:

Lab ID: L2016449-06 Date Received: Client ID: SB-18 (12.5-15') 04/20/20

Sample Location: 100 BUCKLEY RD SYRACUSE Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3546 Matrix: Soil **Extraction Date:** 04/22/20 03:57 Analytical Method: 1,8270D Analytical Date: 04/23/20 03:19

Analyst: IM 61% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - We	stborough Lab					
Acenaphthene	ND		ug/kg	210	28.	1
Fluoranthene	ND		ug/kg	160	30.	1
Benzo(a)anthracene	ND		ug/kg	160	30.	1
Benzo(a)pyrene	ND		ug/kg	210	65.	1
Benzo(b)fluoranthene	ND		ug/kg	160	45.	1
Benzo(k)fluoranthene	ND		ug/kg	160	42.	1
Chrysene	ND		ug/kg	160	28.	1
Acenaphthylene	ND		ug/kg	210	41.	1
Anthracene	ND		ug/kg	160	52.	1
Benzo(ghi)perylene	ND		ug/kg	210	31.	1
Fluorene	ND		ug/kg	270	26.	1
Phenanthrene	ND		ug/kg	160	32.	1
Dibenzo(a,h)anthracene	ND		ug/kg	160	31.	1
Indeno(1,2,3-cd)pyrene	ND		ug/kg	210	37.	1
Pyrene	ND		ug/kg	160	26.	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	85		23-120	
2-Fluorobiphenyl	75		30-120	
4-Terphenyl-d14	73		18-120	

L2016449

04/27/20

Project Name: 100 BUCKLEY RD SYRACUSE

04/27/20 07:18

Project Number: 2201387

SAMPLE RESULTS

Lab Number:

Report Date:

Lab ID: L2016449-07 D Date Collected: 04/20/20 10:05

Date Received: Client ID: SB-05 (2.5'-5.0') 04/20/20 Sample Location: 100 BUCKLEY RD SYRACUSE Field Prep: Not Specified

Sample Depth:

Analytical Date:

Extraction Method: EPA 3546 Matrix: Soil **Extraction Date:** 04/24/20 13:38 Analytical Method: 1,8270D

Analyst: WR 71% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Semivolatile Organics by GC/MS - Westborough Lab										
Acenaphthene	ND		ug/kg	3700	480	20				
Fluoranthene	ND		ug/kg	2800	530	20				
Benzo(a)anthracene	ND		ug/kg	2800	520	20				
Benzo(a)pyrene	ND		ug/kg	3700	1100	20				
Benzo(b)fluoranthene	ND		ug/kg	2800	780	20				
Benzo(k)fluoranthene	ND		ug/kg	2800	740	20				
Chrysene	ND		ug/kg	2800	480	20				
Acenaphthylene	ND		ug/kg	3700	710	20				
Anthracene	ND		ug/kg	2800	900	20				
Benzo(ghi)perylene	ND		ug/kg	3700	540	20				
Fluorene	ND		ug/kg	4600	450	20				
Phenanthrene	1300	J	ug/kg	2800	560	20				
Dibenzo(a,h)anthracene	ND		ug/kg	2800	540	20				
Indeno(1,2,3-cd)pyrene	ND		ug/kg	3700	640	20				
Pyrene	ND		ug/kg	2800	460	20				

Surrogate	% Recovery	Qualifier	Acceptance Criteria
Nitrobenzene-d5	0	Q	23-120
2-Fluorobiphenyl	0	Q	30-120
4-Terphenyl-d14	0	Q	18-120

L2016449

Lab Number:

Project Name: 100 BUCKLEY RD SYRACUSE

Project Number: 2201387 Report Date: 04/27/20

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Extraction Method: EPA 3546
Analytical Date: 04/22/20 19:16 Extraction Date: 04/22/20 03:47

Analyst: JG

Parameter	Result	Qualifier	Units	RL		MDL
Semivolatile Organics by GC/MS	- Westborougl	h Lab for s	ample(s):	01-06	Batch:	WG1363227-1
Acenaphthene	ND		ug/kg	130		17.
Fluoranthene	ND		ug/kg	97		19.
Benzo(a)anthracene	ND		ug/kg	97		18.
Benzo(a)pyrene	ND		ug/kg	130		40.
Benzo(b)fluoranthene	ND		ug/kg	97		27.
Benzo(k)fluoranthene	ND		ug/kg	97		26.
Chrysene	ND		ug/kg	97		17.
Acenaphthylene	ND		ug/kg	130		25.
Anthracene	ND		ug/kg	97		32.
Benzo(ghi)perylene	ND		ug/kg	130		19.
Fluorene	ND		ug/kg	160		16.
Phenanthrene	ND		ug/kg	97		20.
Dibenzo(a,h)anthracene	ND		ug/kg	97		19.
Indeno(1,2,3-cd)pyrene	ND		ug/kg	130		23.
Pyrene	ND		ug/kg	97		16.

		Acceptance			
Surrogate	%Recovery Q	ualifier Criteria			
Nitrobenzene-d5	102	23-120			
2-Fluorobiphenyl	94	30-120			
4-Terphenyl-d14	103	18-120			

L2016449

Lab Number:

Project Name: 100 BUCKLEY RD SYRACUSE

Project Number: Report Date: 2201387 04/27/20

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 04/24/20 09:03

Analyst: SZ Extraction Method: EPA 3546 04/24/20 03:00 **Extraction Date:**

Parameter	Result	Qualifier	Units		RL	MDL	
Semivolatile Organics by GC/M	S - Westborough	Lab for sa	ample(s):	07	Batch:	WG1364098-1	
Acenaphthene	ND		ug/kg		130	17.	
Fluoranthene	ND		ug/kg		97	19.	
Benzo(a)anthracene	ND		ug/kg		97	18.	
Benzo(a)pyrene	ND		ug/kg		130	40.	
Benzo(b)fluoranthene	ND		ug/kg		97	27.	
Benzo(k)fluoranthene	ND		ug/kg		97	26.	
Chrysene	ND		ug/kg		97	17.	
Acenaphthylene	ND		ug/kg		130	25.	
Anthracene	ND		ug/kg		97	32.	
Benzo(ghi)perylene	ND		ug/kg		130	19.	
Fluorene	ND		ug/kg		160	16.	
Phenanthrene	ND		ug/kg		97	20.	
Dibenzo(a,h)anthracene	ND		ug/kg		97	19.	
Indeno(1,2,3-cd)pyrene	ND		ug/kg		130	23.	
Pyrene	ND		ug/kg		97	16.	

		Acceptance
Surrogate	%Recovery Qual	ifier Criteria
		_
Nitrobenzene-d5	84	23-120
2-Fluorobiphenyl	78	30-120
4-Terphenyl-d14	88	18-120

Project Name: 100 BUCKLEY RD SYRACUSE

Project Number: 2201387

Lab Number: L2016449

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westbord	ough Lab Associ	ated sample(s):	01-06 Bato	h: WG13632	227-2 WG13632	27-3		
Acenaphthene	86		88		31-137	2		50
Fluoranthene	86		89		40-140	3		50
Benzo(a)anthracene	84		85		40-140	1		50
Benzo(a)pyrene	85		85		40-140	0		50
Benzo(b)fluoranthene	74		76		40-140	3		50
Benzo(k)fluoranthene	100		103		40-140	3		50
Chrysene	87		88		40-140	1		50
Acenaphthylene	85		88		40-140	3		50
Anthracene	88		93		40-140	6		50
Benzo(ghi)perylene	86		87		40-140	1		50
Fluorene	87		90		40-140	3		50
Phenanthrene	83		88		40-140	6		50
Dibenzo(a,h)anthracene	88		87		40-140	1		50
Indeno(1,2,3-cd)pyrene	84		80		40-140	5		50
Pyrene	86		89		35-142	3		50

Surrogate	LCS %Recovery Qu	LCSD ual %Recovery Qua	Acceptance Criteria
Nitrobenzene-d5	91	94	23-120
2-Fluorobiphenyl	78	81	30-120
4-Terphenyl-d14	81	82	18-120

Project Name: 100 BUCKLEY RD SYRACUSE

Project Number: 2201387

Lab Number: L2016449

promotor	LCS %Recovery	Qual %	LCSD %Recovery	% Qual	%Recovery Limits	RPD	Qual	RPD Limits
arameter	/ønecovery	Quai /	onecovery	Quai	Lillits	KPD	Quai	Lilling
emivolatile Organics by GC/MS - W	estborough Lab Associate	ed sample(s):	07 Batch:	WG1364098-2	WG1364098-3			
Acenaphthene	79		77		31-137	3		50
Fluoranthene	84		83		40-140	1		50
Benzo(a)anthracene	80		78		40-140	3		50
Benzo(a)pyrene	86		83		40-140	4		50
Benzo(b)fluoranthene	80		77		40-140	4		50
Benzo(k)fluoranthene	88		89		40-140	1		50
Chrysene	84		84		40-140	0		50
Acenaphthylene	85		84		40-140	1		50
Anthracene	82		81		40-140	1		50
Benzo(ghi)perylene	78		76		40-140	3		50
Fluorene	82		80		40-140	2		50
Phenanthrene	78		76		40-140	3		50
Dibenzo(a,h)anthracene	78		76		40-140	3		50
Indeno(1,2,3-cd)pyrene	80		78		40-140	3		50
Pyrene	82		81		35-142	1		50

Surrogate	LCS %Recovery Qu	LCSD al %Recovery Qual	Acceptance Criteria
Nitrobenzene-d5	83	83	23-120
2-Fluorobiphenyl	81	81	30-120
4-Terphenyl-d14	90	87	18-120

PCBS

Project Name: 100 BUCKLEY RD SYRACUSE Lab Number: L2016449

Project Number: 2201387 Report Date: 04/27/20

SAMPLE RESULTS

Lab ID: L2016449-01 Date Collected: 04/20/20 10:00

Client ID: SB-05 (8'-10') Date Received: 04/20/20

Sample Location: 100 BUCKLEY RD SYRACUSE Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8082A Extraction Date: 04/21/20 18:34
Analytical Date: 04/22/20 15:30 Cleanup Method: EPA 3665A

Analytical Date: 04/22/20 15:30 Cleanup Method: EPA 3665A
Analyst: KB Cleanup Date: 04/22/20
Percent Solids: 66% Cleanup Method: EPA 3660B
Cleanup Date: 04/22/20

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - Wes	tborough Lab						
Aroclor 1016	ND		ug/kg	49.3	4.37	1	А
Aroclor 1221	ND		ug/kg	49.3	4.94	1	Α
Aroclor 1232	ND		ug/kg	49.3	10.4	1	Α
Aroclor 1242	ND		ug/kg	49.3	6.64	1	Α
Aroclor 1248	ND		ug/kg	49.3	7.39	1	Α
Aroclor 1254	ND		ug/kg	49.3	5.39	1	Α
Aroclor 1260	ND		ug/kg	49.3	9.10	1	Α
Aroclor 1262	ND		ug/kg	49.3	6.26	1	Α
Aroclor 1268	ND		ug/kg	49.3	5.10	1	Α
PCBs, Total	ND		ug/kg	49.3	4.37	1	Α

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	50		30-150	Α
Decachlorobiphenyl	40		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	48		30-150	В
Decachlorobiphenyl	45		30-150	В

Project Name: 100 BUCKLEY RD SYRACUSE Lab Number: L2016449

Project Number: 2201387 Report Date: 04/27/20

SAMPLE RESULTS

Lab ID: L2016449-02 Date Collected: 04/20/20 09:45

Client ID: SB-03 (7.5'-10') Date Received: 04/20/20 Sample Location: 100 BUCKLEY RD SYRACUSE Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8082A Extraction Date: 04/21/20 18:34
Analytical Date: 04/22/20 15:42 Cleanup Method: EPA 3665A

Analytical Date: 04/22/20 15:42 Cleanup Method: EPA 3665A
Analyst: KB Cleanup Date: 04/22/20
Percent Solids: 82% Cleanup Method: EPA 3660B
Cleanup Date: 04/22/20
Cleanup Date: 04/22/20

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column		
Polychlorinated Biphenyls by GC - Westborough Lab									
Aroclor 1016	ND		ug/kg	39.0	3.46	1	Α		
Aroclor 1221	ND		ug/kg	39.0	3.90	1	Α		
Aroclor 1232	ND		ug/kg	39.0	8.26	1	Α		
Aroclor 1242	ND		ug/kg	39.0	5.25	1	Α		
Aroclor 1248	ND		ug/kg	39.0	5.85	1	Α		
Aroclor 1254	ND		ug/kg	39.0	4.26	1	Α		
Aroclor 1260	ND		ug/kg	39.0	7.20	1	Α		
Aroclor 1262	ND		ug/kg	39.0	4.95	1	Α		
Aroclor 1268	ND		ug/kg	39.0	4.04	1	Α		
PCBs, Total	ND		ug/kg	39.0	3.46	1	Α		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	58		30-150	Α
Decachlorobiphenyl	54		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	56		30-150	В
Decachlorobiphenyl	52		30-150	В

Project Name: 100 BUCKLEY RD SYRACUSE Lab Number: L2016449

Project Number: 2201387 Report Date: 04/27/20

SAMPLE RESULTS

Lab ID: L2016449-03 Date Collected: 04/20/20 10:40

Client ID: SB-06 (5'-7.5') Date Received: 04/20/20

Sample Location: 100 BUCKLEY RD SYRACUSE Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8082A Extraction Date: 04/21/20 18:34
Analytical Date: 04/22/20 15:54 Cleanup Method: EPA 3665A

Analytical Date: 04/22/20 15:54 Cleanup Method: EPA 3665A
Analyst: KB Cleanup Date: 04/22/20
Percent Solids: 73% Cleanup Method: EPA 3660B

Cleanup Date: 04/22/20

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column		
Polychlorinated Biphenyls by GC - Westborough Lab									
Aroclor 1016	ND		ug/kg	44.1	3.92	1	Α		
Aroclor 1221	ND		ug/kg	44.1	4.42	1	Α		
Aroclor 1232	ND		ug/kg	44.1	9.36	1	Α		
Aroclor 1242	ND		ug/kg	44.1	5.95	1	Α		
Aroclor 1248	ND		ug/kg	44.1	6.62	1	Α		
Aroclor 1254	ND		ug/kg	44.1	4.83	1	Α		
Aroclor 1260	ND		ug/kg	44.1	8.16	1	Α		
Aroclor 1262	ND		ug/kg	44.1	5.61	1	Α		
Aroclor 1268	ND		ug/kg	44.1	4.57	1	Α		
PCBs, Total	ND		ug/kg	44.1	3.92	1	Α		

Surrogato	9/ Pageyany	Ovalities	Acceptance	Caluman
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	62		30-150	Α
Decachlorobiphenyl	45		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	57		30-150	В
Decachlorobiphenyl	55		30-150	В

Project Name: 100 BUCKLEY RD SYRACUSE Lab Number: L2016449

Project Number: 2201387 Report Date: 04/27/20

SAMPLE RESULTS

Lab ID: L2016449-04 Date Collected: 04/20/20 13:15

Client ID: SB-14 (7.5'-10.0') Date Received: 04/20/20

Sample Location: 100 BUCKLEY RD SYRACUSE Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8082A Extraction Date: 04/21/20 18:34
Analytical Date: 04/22/20 16:05 Cleanup Method: EPA 3665A

Analytical Date: 04/22/20 16:05

Analyst: KB

Percent Solids: 85%

Cleanup Method: EPA 3665A

Cleanup Date: 04/22/20

Cleanup Method: EPA 3660B

Cleanup Method: EPA 3660B

Cleanup Date: 04/22/20

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column		
Polychlorinated Biphenyls by GC - Westborough Lab									
Aroclor 1016	ND		ug/kg	37.2	3.30	1	Α		
Aroclor 1221	ND		ug/kg	37.2	3.72	1	Α		
Aroclor 1232	ND		ug/kg	37.2	7.88	1	Α		
Aroclor 1242	ND		ug/kg	37.2	5.01	1	Α		
Aroclor 1248	ND		ug/kg	37.2	5.58	1	Α		
Aroclor 1254	ND		ug/kg	37.2	4.07	1	Α		
Aroclor 1260	ND		ug/kg	37.2	6.87	1	Α		
Aroclor 1262	ND		ug/kg	37.2	4.72	1	Α		
Aroclor 1268	ND		ug/kg	37.2	3.85	1	Α		
PCBs, Total	ND		ug/kg	37.2	3.30	1	Α		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	67		30-150	Α
Decachlorobiphenyl	62		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	63		30-150	В
Decachlorobiphenyl	61		30-150	В

04/22/20

Cleanup Date:

Project Name: 100 BUCKLEY RD SYRACUSE Lab Number: L2016449

Project Number: 2201387 Report Date: 04/27/20

SAMPLE RESULTS

Lab ID: L2016449-05 Date Collected: 04/20/20 14:45

Client ID: SB-17 (5'-10') Date Received: 04/20/20

Sample Location: 100 BUCKLEY RD SYRACUSE Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8082A Extraction Date: 04/21/20 18:34
Analytical Date: 04/22/20 16:17 Cleanup Method: EPA 3665A

Analytical Date: 04/22/20 16:17 Cleanup Method: EPA 3665A
Analyst: KB Cleanup Date: 04/22/20
Percent Solids: 62% Cleanup Method: EPA 3660B

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC	- Westborough Lab						
Aroclor 1016	ND		ug/kg	140	12.4	1	Α
Aroclor 1221	ND		ug/kg	140	14.0	1	Α
Aroclor 1232	ND		ug/kg	140	29.6	1	Α
Aroclor 1242	ND		ug/kg	140	18.8	1	А
Aroclor 1248	ND		ug/kg	140	21.0	1	Α
Aroclor 1254	ND		ug/kg	140	15.3	1	А
Aroclor 1260	ND		ug/kg	140	25.8	1	А
Aroclor 1262	ND		ug/kg	140	17.7	1	А
Aroclor 1268	ND		ug/kg	140	14.5	1	А
PCBs, Total	ND		ug/kg	140	12.4	1	Α

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	57		30-150	Α
Decachlorobiphenyl	58		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	56		30-150	В
Decachlorobiphenyl	58		30-150	В

Project Name: 100 BUCKLEY RD SYRACUSE Lab Number: L2016449

Project Number: 2201387 Report Date: 04/27/20

SAMPLE RESULTS

Data Callastado 04/00/00 45:00

Lab ID: L2016449-06 Date Collected: 04/20/20 15:00 Client ID: SB-18 (12.5-15') Date Received: 04/20/20

Client ID: SB-18 (12.5-15') Date Received: 04/20/20 Sample Location: 100 BUCKLEY RD SYRACUSE Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8082A Extraction Date: 04/21/20 18:34

Analytical Date: 04/22/20 16:29

Analyst: KB

Cleanup Method: EPA 3665A

Cleanup Date: 04/22/20

Cleanup Method: EPA 3660B

Percent Solids: 61% Cleanup Method: EPA 3660 Cleanup Date: 04/22/20

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - West	borough Lab						
Aroclor 1016	ND		ug/kg	52.6	4.67	1	А
Aroclor 1221	ND		ug/kg	52.6	5.27	1	Α
Aroclor 1232	ND		ug/kg	52.6	11.2	1	Α
Aroclor 1242	ND		ug/kg	52.6	7.09	1	Α
Aroclor 1248	ND		ug/kg	52.6	7.89	1	Α
Aroclor 1254	ND		ug/kg	52.6	5.76	1	Α
Aroclor 1260	ND		ug/kg	52.6	9.72	1	Α
Aroclor 1262	ND		ug/kg	52.6	6.68	1	Α
Aroclor 1268	ND		ug/kg	52.6	5.45	1	Α
PCBs, Total	ND		ug/kg	52.6	4.67	1	Α

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
	70 Necovery	Quanner	Ciliteria	Column
2,4,5,6-Tetrachloro-m-xylene	62		30-150	Α
Decachlorobiphenyl	55		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	61		30-150	В
Decachlorobiphenyl	59		30-150	В

Project Name: 100 BUCKLEY RD SYRACUSE Lab Number: L2016449

Project Number: 2201387 Report Date: 04/27/20

SAMPLE RESULTS

Lab ID: L2016449-07 Date Collected: 04/20/20 10:05

Client ID: SB-05 (2.5'-5.0') Date Received: 04/20/20 Sample Location: 100 BUCKLEY RD SYRACUSE Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8082A Extraction Date: 04/23/20 10:12
Analytical Date: 04/25/20 12:01 Cleanup Method: EPA 3665A

Analytical Date: 04/25/20 12:01 Cleanup Method: EPA 3665A
Analyst: CW
Percent Solids: 71% Cleanup Date: 04/23/20
Cleanup Method: EPA 3660B
Cleanup Date: 04/23/20

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - We	stborough Lab						
Aroclor 1016	ND		ug/kg	46.6	4.13	1	Α
Aroclor 1221	ND		ug/kg	46.6	4.66	1	Α
Aroclor 1232	ND		ug/kg	46.6	9.87	1	Α
Aroclor 1242	ND		ug/kg	46.6	6.28	1	Α
Aroclor 1248	ND		ug/kg	46.6	6.98	1	Α
Aroclor 1254	ND		ug/kg	46.6	5.09	1	А
Aroclor 1260	ND		ug/kg	46.6	8.60	1	А
Aroclor 1262	ND		ug/kg	46.6	5.91	1	А
Aroclor 1268	ND		ug/kg	46.6	4.82	1	Α
PCBs, Total	ND		ug/kg	46.6	4.13	1	Α

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	43		30-150	Α
Decachlorobiphenyl	59		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	45		30-150	В
Decachlorobiphenyl	63		30-150	В

L2016449

Lab Number:

Project Name: 100 BUCKLEY RD SYRACUSE

Report Date: **Project Number:** 2201387 04/27/20

Method Blank Analysis

Batch Quality Control

Analytical Method: 1,8082A Analytical Date: 04/21/20 16:53

Analyst: KΒ

Extraction Method: EPA 3546 04/20/20 19:05 **Extraction Date:** Cleanup Method: EPA 3665A Cleanup Date: 04/21/20 Cleanup Method: EPA 3660B Cleanup Date: 04/21/20

Parameter	Result	Qualifier	Units	RL		MDL	Column
Polychlorinated Biphenyls by GC -	Westborough	n Lab for s	ample(s):	01-06	Batch:	WG13	62805-1
Aroclor 1016	ND		ug/kg	31.4		2.79	А
Aroclor 1221	ND		ug/kg	31.4		3.15	Α
Aroclor 1232	ND		ug/kg	31.4		6.66	Α
Aroclor 1242	ND		ug/kg	31.4		4.24	Α
Aroclor 1248	ND		ug/kg	31.4		4.71	Α
Aroclor 1254	ND		ug/kg	31.4		3.44	Α
Aroclor 1260	ND		ug/kg	31.4		5.81	Α
Aroclor 1262	ND		ug/kg	31.4		3.99	Α
Aroclor 1268	ND		ug/kg	31.4		3.26	Α
PCBs, Total	ND		ug/kg	31.4		2.79	Α

		Acceptano	ce
Surrogate	%Recovery Qualific	er Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	62	30-150	Α
Decachlorobiphenyl	47	30-150	Α
2,4,5,6-Tetrachloro-m-xylene	63	30-150	В
Decachlorobiphenyl	62	30-150	В

L2016449

Lab Number:

Project Name: 100 BUCKLEY RD SYRACUSE

Report Date: Project Number: 2201387 04/27/20

Method Blank Analysis

Batch Quality Control

Analytical Method: 1,8082A Analytical Date: 04/24/20 02:48

Analyst: CW

Extraction Method: EPA 3546 04/23/20 10:12 **Extraction Date:** Cleanup Method: EPA 3665A Cleanup Date: 04/23/20 Cleanup Method: EPA 3660B Cleanup Date: 04/23/20

Parameter	Result	Qualifier	Units		RL	MDL	Column
Polychlorinated Biphenyls by GC -	Westborough	Lab for sa	mple(s):	07	Batch:	WG1363843-	1
Aroclor 1016	ND		ug/kg	;	32.6	2.89	Α
Aroclor 1221	ND		ug/kg	;	32.6	3.26	Α
Aroclor 1232	ND		ug/kg	;	32.6	6.91	Α
Aroclor 1242	ND		ug/kg	;	32.6	4.39	Α
Aroclor 1248	ND		ug/kg	;	32.6	4.89	Α
Aroclor 1254	ND		ug/kg	;	32.6	3.56	Α
Aroclor 1260	ND		ug/kg	;	32.6	6.02	А
Aroclor 1262	ND		ug/kg	;	32.6	4.14	Α
Aroclor 1268	ND		ug/kg	;	32.6	3.38	Α
PCBs, Total	ND		ug/kg	;	32.6	2.89	Α

		Acceptance			
Surrogate	%Recovery Qualifie	r Criteria	Column		
2,4,5,6-Tetrachloro-m-xylene	64	30-150	Α		
Decachlorobiphenyl	70	30-150	Α		
2,4,5,6-Tetrachloro-m-xylene	65	30-150	В		
Decachlorobiphenyl	85	30-150	В		

Lab Control Sample Analysis Batch Quality Control

Project Name: 100 BUCKLEY RD SYRACUSE

Lab Number: L2016449

Project Number: 2201387

Report Date: 04/27/20

_	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
Polychlorinated Biphenyls by GC - Westb	orough Lab Associa	ted sample(s)	: 01-06 Batch:	WG1362	2805-2 WG136280)5-3			
Aroclor 1016	72		68		40-140	6		50	Α
Aroclor 1260	60		57		40-140	5		50	А

Surrogate	LCS %Recovery Qua	LCSD al %Recovery Qual	Acceptance Criteria Column
2,4,5,6-Tetrachloro-m-xylene	67	61	30-150 A
Decachlorobiphenyl	51	51	30-150 A
2,4,5,6-Tetrachloro-m-xylene	65	61	30-150 B
Decachlorobiphenyl	63	61	30-150 B

Lab Control Sample Analysis Batch Quality Control

Project Name:

100 BUCKLEY RD SYRACUSE

Project Number: 2201387 Lab Number:

L2016449

04/27/20

Report Date:

Parameter	LCS %Recovery	Qual		CSD covery	% Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Polychlorinated Biphenyls by GC - Westboro	ugh Lab Associa	ated sample(s):	: 07	Batch:	WG1363843-2	WG1363843-3	3			
Aroclor 1016	68			69		40-140	1		50	Α
Aroclor 1260	65			66		40-140	2		50	Α

Surrogate	LCS %Recovery Qua	LCSD I %Recovery Qual	Acceptance Criteria Column
2,4,5,6-Tetrachloro-m-xylene	69	70	30-150 A
Decachlorobiphenyl	70	71	30-150 A
2,4,5,6-Tetrachloro-m-xylene	68	69	30-150 B
Decachlorobiphenyl	84	88	30-150 B

METALS

Project Name: 100 BUCKLEY RD SYRACUSE Lab Number: L2016449

Project Number: 2201387 Report Date: 04/27/20

SAMPLE RESULTS

 Lab ID:
 L2016449-01
 Date Collected:
 04/20/20 10:00

 Client ID:
 SB-05 (8'-10')
 Date Received:
 04/20/20

Sample Location: 100 BUCKLEY RD SYRACUSE Field Prep: Not Specified

Sample Depth:

Matrix: Soil
Percent Solids: 66%

Percent Solids.	0070					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Matala Man	ما ا ما										
Total Metals - Man	sileid Lab										
Arsenic, Total	4.05		mg/kg	0.576	0.120	1	04/21/20 20:11	1 04/25/20 13:53	EPA 3050B	1,6010D	LC
Barium, Total	87.3		mg/kg	0.576	0.100	1	04/21/20 20:1	1 04/25/20 13:53	EPA 3050B	1,6010D	LC
Cadmium, Total	0.352	J	mg/kg	0.576	0.057	1	04/21/20 20:1	1 04/25/20 13:53	EPA 3050B	1,6010D	LC
Chromium, Total	9.93		mg/kg	0.576	0.055	1	04/21/20 20:1	1 04/25/20 13:53	EPA 3050B	1,6010D	LC
Lead, Total	175		mg/kg	2.88	0.154	1	04/21/20 20:1	1 04/25/20 13:53	EPA 3050B	1,6010D	LC
Mercury, Total	0.081	J	mg/kg	0.10	0.065	1	04/21/20 20:52	2 04/22/20 09:32	EPA 7471B	1,7471B	GD
Selenium, Total	0.502	J	mg/kg	1.15	0.149	1	04/21/20 20:11	1 04/25/20 13:53	EPA 3050B	1,6010D	LC
Silver, Total	ND		mg/kg	0.576	0.163	1	04/21/20 20:1	1 04/25/20 13:53	EPA 3050B	1,6010D	LC

Project Name: Lab Number: 100 BUCKLEY RD SYRACUSE L2016449 04/27/20

Project Number: Report Date: 2201387

SAMPLE RESULTS

Date Collected:

04/20/20 09:45

Lab ID: L2016449-02 Client ID: SB-03 (7.5'-10')

Date Received:

04/20/20

100 BUCKLEY RD SYRACUSE Sample Location:

Field Prep: Not Specified

Sample Depth:

Matrix:

Soil

82% Percent Solids:

Percent Solids:	02 /6					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Man	sfield Lab										
Arsenic, Total	2.47		mg/kg	0.476	0.099	1	04/21/20 20:11	04/25/20 14:34	EPA 3050B	1,6010D	LC
Barium, Total	4.70		mg/kg	0.476	0.083	1	04/21/20 20:11	04/25/20 14:34	EPA 3050B	1,6010D	LC
Cadmium, Total	0.171	J	mg/kg	0.476	0.047	1	04/21/20 20:11	04/25/20 14:34	EPA 3050B	1,6010D	LC
Chromium, Total	2.98		mg/kg	0.476	0.046	1	04/21/20 20:11	04/25/20 14:34	EPA 3050B	1,6010D	LC
Lead, Total	3.81		mg/kg	2.38	0.127	1	04/21/20 20:11	04/25/20 14:34	EPA 3050B	1,6010D	LC
Mercury, Total	ND		mg/kg	0.080	0.052	1	04/21/20 20:52	2 04/22/20 09:52	EPA 7471B	1,7471B	GD
Selenium, Total	0.166	J	mg/kg	0.951	0.123	1	04/21/20 20:11	04/25/20 14:34	EPA 3050B	1,6010D	LC
Silver, Total	ND		mg/kg	0.476	0.134	1	04/21/20 20:11	04/25/20 14:34	EPA 3050B	1,6010D	LC

Project Name: 100 BUCKLEY RD SYRACUSE Lab Number: L2016449 **Report Date:** 04/27/20

Project Number: 2201387

SAMPLE RESULTS

Lab ID: L2016449-03 Date Collected: 04/20/20 10:40 Date Received: 04/20/20 Client ID: SB-06 (5'-7.5')

100 BUCKLEY RD SYRACUSE Field Prep: Not Specified Sample Location:

Sample Depth:

Matrix: Soil 73% Percent Solids:

Prep Dilution Date Date Analytical Method **Parameter** Qualifier Factor **Prepared** Analyzed Method Result Units RLMDL Analyst Total Metals - Mansfield Lab Arsenic, Total 1.28 mg/kg 0.544 0.113 1 04/21/20 20:11 04/25/20 14:39 EPA 3050B 1,6010D LC Barium, Total 40.2 0.544 0.095 1 04/21/20 20:11 04/25/20 14:39 EPA 3050B 1,6010D LC mg/kg J 1 LC Cadmium, Total 0.179 mg/kg 0.544 0.053 04/21/20 20:11 04/25/20 14:39 EPA 3050B 1,6010D 1 Chromium, Total 3.48 mg/kg 0.544 0.052 04/21/20 20:11 04/25/20 14:39 EPA 3050B 1,6010D LC 36.5 2.72 0.146 04/21/20 20:11 04/25/20 14:39 EPA 3050B 1,6010D LC Lead, Total mg/kg 1 Mercury, Total 0.155 0.088 0.057 1 04/21/20 20:52 04/22/20 09:56 EPA 7471B 1,7471B GD mg/kg Selenium, Total 1.96 mg/kg 1.09 0.140 1 04/21/20 20:11 04/25/20 14:39 EPA 3050B 1,6010D LC Silver, Total ND 0.544 0.154 1 04/21/20 20:11 04/25/20 14:39 EPA 3050B 1,6010D LC mg/kg

Project Name: Lab Number: 100 BUCKLEY RD SYRACUSE L2016449 **Report Date:** 04/27/20

Project Number: 2201387

SAMPLE RESULTS

Date Collected: Lab ID: L2016449-04 04/20/20 13:15 Client ID: SB-14 (7.5'-10.0') Date Received: 04/20/20

100 BUCKLEY RD SYRACUSE Field Prep: Sample Location: Not Specified

Sample Depth:

Matrix: Soil 85% Percent Solids:

reiterit solius.	0070					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Man	sfield Lab										
Arsenic, Total	3.51		mg/kg	0.459	0.096	1	04/21/20 20:11	1 04/25/20 14:43	EPA 3050B	1,6010D	LC
Barium, Total	16.6		mg/kg	0.459	0.080	1	04/21/20 20:11	1 04/25/20 14:43	EPA 3050B	1,6010D	LC
Cadmium, Total	0.330	J	mg/kg	0.459	0.045	1	04/21/20 20:11	1 04/25/20 14:43	EPA 3050B	1,6010D	LC
Chromium, Total	9.09		mg/kg	0.459	0.044	1	04/21/20 20:11	1 04/25/20 14:43	EPA 3050B	1,6010D	LC
Lead, Total	14.2		mg/kg	2.30	0.123	1	04/21/20 20:11	1 04/25/20 14:43	EPA 3050B	1,6010D	LC
Mercury, Total	0.162		mg/kg	0.076	0.049	1	04/21/20 20:52	2 04/22/20 09:59	EPA 7471B	1,7471B	GD
Selenium, Total	0.298	J	mg/kg	0.918	0.118	1	04/21/20 20:11	1 04/25/20 14:43	EPA 3050B	1,6010D	LC
Silver, Total	ND		mg/kg	0.459	0.130	1	04/21/20 20:11	1 04/25/20 14:43	EPA 3050B	1,6010D	LC

04/20/20 14:45

Project Name: Lab Number: 100 BUCKLEY RD SYRACUSE L2016449

Project Number: Report Date: 2201387

04/27/20

Date Collected:

SAMPLE RESULTS

Lab ID: L2016449-05 Client ID: SB-17 (5'-10')

Date Received: 04/20/20 100 BUCKLEY RD SYRACUSE Field Prep: Not Specified Sample Location:

Sample Depth:

Matrix: Soil 62% Percent Solids:

Percent Solids:	02%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Man	sfield Lab										
Arsenic, Total	2.52		mg/kg	0.645	0.134	1	04/21/20 20:11	04/25/20 14:48	EPA 3050B	1,6010D	LC
Barium, Total	20.2		mg/kg	0.645	0.112	1	04/21/20 20:11	04/25/20 14:48	EPA 3050B	1,6010D	LC
Cadmium, Total	0.245	J	mg/kg	0.645	0.063	1	04/21/20 20:11	04/25/20 14:48	EPA 3050B	1,6010D	LC
Chromium, Total	5.24		mg/kg	0.645	0.062	1	04/21/20 20:11	04/25/20 14:48	EPA 3050B	1,6010D	LC
Lead, Total	10.4		mg/kg	3.22	0.173	1	04/21/20 20:11	04/25/20 14:48	EPA 3050B	1,6010D	LC
Mercury, Total	ND		mg/kg	0.119	0.077	1	04/21/20 20:52	2 04/22/20 10:02	EPA 7471B	1,7471B	GD
Selenium, Total	0.961	J	mg/kg	1.29	0.166	1	04/21/20 20:11	04/25/20 14:48	EPA 3050B	1,6010D	LC
Silver, Total	ND		mg/kg	0.645	0.182	1	04/21/20 20:11	04/25/20 14:48	EPA 3050B	1,6010D	LC

Project Name: Lab Number: 100 BUCKLEY RD SYRACUSE L2016449 04/27/20

Project Number: 2201387 **Report Date:**

SAMPLE RESULTS

Date Collected:

04/20/20 15:00

Lab ID: L2016449-06 Client ID: SB-18 (12.5-15')

Date Received: Field Prep:

04/20/20

100 BUCKLEY RD SYRACUSE Sample Location:

Not Specified

Sample Depth:

Matrix:

Soil

61% Percent Solids:

Percent Solids:	01/0					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Mans	stield Lab										
Arsenic, Total	ND		mg/kg	0.625	0.130	1	04/21/20 20:11	04/25/20 14:52	EPA 3050B	1,6010D	LC
Barium, Total	38.2		mg/kg	0.625	0.109	1	04/21/20 20:11	04/25/20 14:52	EPA 3050B	1,6010D	LC
Cadmium, Total	0.394	J	mg/kg	0.625	0.061	1	04/21/20 20:11	04/25/20 14:52	EPA 3050B	1,6010D	LC
Chromium, Total	7.25		mg/kg	0.625	0.060	1	04/21/20 20:11	04/25/20 14:52	EPA 3050B	1,6010D	LC
Lead, Total	1.59	J	mg/kg	3.12	0.167	1	04/21/20 20:11	04/25/20 14:52	EPA 3050B	1,6010D	LC
Mercury, Total	ND		mg/kg	0.111	0.072	1	04/21/20 20:52	2 04/22/20 10:05	EPA 7471B	1,7471B	GD
Selenium, Total	0.600	J	mg/kg	1.25	0.161	1	04/21/20 20:11	04/25/20 14:52	EPA 3050B	1,6010D	LC
Silver, Total	ND		mg/kg	0.625	0.177	1	04/21/20 20:11	04/25/20 14:52	EPA 3050B	1,6010D	LC

Project Name: 100 BUCKLEY RD SYRACUSE Lab Number: L2016449 **Report Date:** 04/27/20

Project Number: 2201387

SAMPLE RESULTS

Lab ID: L2016449-07 Date Collected: 04/20/20 10:05 Date Received: 04/20/20 Client ID: SB-05 (2.5'-5.0')

100 BUCKLEY RD SYRACUSE Field Prep: Not Specified Sample Location:

Sample Depth:

Matrix: Soil 71% Percent Solids:

Prep Dilution Date Date Analytical Method **Parameter** Qualifier Factor **Prepared** Analyzed Method Result Units RLMDL Analyst Total Metals - Mansfield Lab Arsenic, Total 1.00 mg/kg 0.552 0.115 1 04/21/20 20:11 04/25/20 14:57 EPA 3050B 1,6010D LC Barium, Total 61.9 0.552 0.096 1 1,6010D LC mg/kg 04/21/20 20:11 04/25/20 14:57 EPA 3050B 1 LC Cadmium, Total ND mg/kg 0.552 0.054 04/21/20 20:11 04/25/20 14:57 EPA 3050B 1,6010D Chromium, Total 1.10 mg/kg 0.552 0.053 1 04/21/20 20:11 04/25/20 14:57 EPA 3050B 1,6010D LC 80.2 2.76 04/21/20 20:11 04/25/20 14:57 EPA 3050B 1,6010D LC Lead, Total mg/kg 0.148 1 Mercury, Total 0.163 0.094 0.061 1 04/21/20 20:52 04/22/20 10:09 EPA 7471B 1,7471B GD mg/kg Selenium, Total ND mg/kg 1.10 0.142 1 04/21/20 20:11 04/25/20 14:57 EPA 3050B 1,6010D LC Silver, Total ND 0.552 0.156 1 1,6010D LC mg/kg 04/21/20 20:11 04/25/20 14:57 EPA 3050B

Project Name: 100 BUCKLEY RD SYRACUSE

Project Number: 2201387

Lab Number:

L2016449

Report Date: 04/27/20

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for sample(s):	01-07 B	atch: Wo	G13630	84-1				
Arsenic, Total	ND	mg/kg	0.400	0.083	1	04/21/20 20:11	04/25/20 13:30	1,6010D	LC
Barium, Total	ND	mg/kg	0.400	0.070	1	04/21/20 20:11	04/25/20 13:30	1,6010D	LC
Cadmium, Total	ND	mg/kg	0.400	0.039	1	04/21/20 20:11	04/25/20 13:30	1,6010D	LC
Chromium, Total	ND	mg/kg	0.400	0.038	1	04/21/20 20:11	04/25/20 13:30	1,6010D	LC
Lead, Total	ND	mg/kg	2.00	0.107	1	04/21/20 20:11	04/25/20 13:30	1,6010D	LC
Selenium, Total	ND	mg/kg	0.800	0.103	1	04/21/20 20:11	04/25/20 13:30	1,6010D	LC
Silver, Total	ND	mg/kg	0.400	0.113	1	04/21/20 20:11	04/25/20 13:30	1,6010D	LC

Prep Information

Digestion Method: EPA 3050B

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mans	sfield Lab for sample(s):	01-07 B	atch: W	G13630	85-1				
Mercury, Total	ND	mg/kg	0.083	0.054	1	04/21/20 20:52	04/22/20 09:26	5 1,7471B	GD

Prep Information

Digestion Method: EPA 7471B

Lab Control Sample Analysis Batch Quality Control

Project Name: 100 BUCKLEY RD SYRACUSE

Project Number: 2201387

Lab Number: L2016449

Report Date: 04/27/20

Parameter	LCS %Recovery	y Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01-07 E	Batch: WG130	63084-2 SRM I	Lot Number:	D105-540			
Arsenic, Total	105		-		70-130	-		
Barium, Total	100		-		75-125	-		
Cadmium, Total	98		-		75-125	-		
Chromium, Total	99		-		70-130	-		
Lead, Total	101		-		71-128	-		
Selenium, Total	106		-		63-137	-		
Silver, Total	107		-		69-131	-		
Total Metals - Mansfield Lab Associated sample	e(s): 01-07 E	Batch: WG136	63085-2 SRM I	Lot Number:	D105-540			
Mercury, Total	95		-		60-141	-		

Matrix Spike Analysis Batch Quality Control

Project Name: 100 BUCKLEY RD SYRACUSE

Project Number: 2201387

Lab Number: L2016449

Report Date: 04/27/20

Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery Qu	•	r RPD Qual	RPD Limits
o Associated sam	nple(s): 01-07	QC Bat	tch ID: WG136	3084-3	QC Sam	nple: L2016449-01	Client ID: S	B-05 (8'-10')	
4.05	14.1	21.0	120		-	-	75-125	-	20
87.3	235	224	58	Q	-	-	75-125	-	20
0.352J	5.99	6.18	103		-	-	75-125	-	20
9.93	23.5	29.2	82		-	-	75-125	-	20
175	59.9	167	0	Q	-	-	75-125	-	20
0.502J	14.1	15.6	110		-	-	75-125	-	20
ND	35.3	34.4	98		-	-	75-125	-	20
o Associated sam	nple(s): 01-07	QC Bat	tch ID: WG136	3085-3	QC Sam	nple: L2016449-01	Client ID: S	B-05 (8'-10')	
0.081J	0.202	0.238	118		-	-	80-120	-	20
	Sample Associated sam 4.05 87.3 0.352J 9.93 175 0.502J ND Associated sam Associated sam	Sample Added Associated sample(s): 01-07 4.05 14.1 87.3 235 0.352J 5.99 9.93 23.5 175 59.9 0.502J 14.1 ND 35.3 Associated sample(s): 01-07	Sample Added Found a Associated sample(s): 01-07 QC Bate 4.05 14.1 21.0 87.3 235 224 0.352J 5.99 6.18 9.93 23.5 29.2 175 59.9 167 0.502J 14.1 15.6 ND 35.3 34.4 a Associated sample(s): 01-07 QC Bate	Sample Added Found %Recovery Associated sample(s): 01-07 QC Batch ID: WG136 4.05 14.1 21.0 120 87.3 235 224 58 0.352J 5.99 6.18 103 9.93 23.5 29.2 82 175 59.9 167 0 0.502J 14.1 15.6 110 ND 35.3 34.4 98 Associated sample(s): 01-07 QC Batch ID: WG136	Sample Added Found %Recovery Qual Associated sample(s): 01-07 QC Batch ID: WG1363084-3 4.05 14.1 21.0 120 87.3 235 224 58 Q 0.352J 5.99 6.18 103 9.93 23.5 29.2 82 175 59.9 167 0 Q 0.502J 14.1 15.6 110 110 110 ND Associated sample(s): 01-07 QC Batch ID: WG1363085-3 QC Batch ID: WG1363085-3	Sample Added Found %Recovery Qual Found Associated sample(s): 01-07 QC Batch ID: WG1363084-3 QC Same A.05 14.1 21.0 120 - 87.3 235 224 58 Q - 0.352J 5.99 6.18 103 - 9.93 23.5 29.2 82 - 175 59.9 167 0 Q - 0.502J 14.1 15.6 110 - - ND 35.3 34.4 98 - Associated sample(s): 01-07 QC Batch ID: WG1363085-3 QC Same Associated Sample (s): 01-07	Sample Added Found %Recovery Qual Found %Recovery Qual Associated sample(s): 01-07 QC Batch ID: WG1363084-3 QC Sample: L2016449-01 4.05 14.1 21.0 120 - - - 87.3 235 224 58 Q - - - 0.352J 5.99 6.18 103 - - - - 9.93 23.5 29.2 82 - - - 175 59.9 167 0 Q - - 0.502J 14.1 15.6 110 - - - 0 Associated sample(s): 01-07 QC Batch ID: WG1363085-3 QC Sample: L2016449-01 QC Sample: L2016449-01	Sample Added Found %Recovery Qual Found %Recovery Qual Limits Associated sample(s): 01-07 QC Batch ID: WG1363084-3 QC Sample: L2016449-01 Client ID: Sample: L2016449-01	Sample Added Found %Recovery Qual Found %Recovery Qual Limits RPD Qual Associated sample(s): 01-07 QC Batch ID: WG1363084-3 QC Sample: L2016449-01 Client ID: SB-05 (8'-10') 4.05 14.1 21.0 120 - - - 75-125 - 87.3 235 224 58 Q - - 75-125 - 9.93 23.5 29.2 82 - - - 75-125 - 175 59.9 167 0 Q - - 75-125 - 0.502J 14.1 15.6 110 - - 75-125 - ND 35.3 34.4 98 - - - 75-125 - Associated sample(s): 01-07 QC Batch ID: WG1363085-3 QC Sample: L2016449-01 Client ID: SB-05 (8'-10')

Lab Duplicate Analysis Batch Quality Control

Project Name: 100 BUCKLEY RD SYRACUSE

Project Number: 2201387

Lab Number:

L2016449 04/27/20

Report Date:

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sa	ample(s): 01-07 QC Batch ID: WG13	63084-4 QC Sample	e: L2016449-01	Client ID:	SB-05 (8'-1	0')
Arsenic, Total	4.05	2.63	mg/kg	43	Q	20
Barium, Total	87.3	57.6	mg/kg	41	Q	20
Cadmium, Total	0.352J	0.326J	mg/kg	NC		20
Chromium, Total	9.93	5.10	mg/kg	64	Q	20
Lead, Total	175	83.3	mg/kg	71	Q	20
Selenium, Total	0.502J	0.553J	mg/kg	NC		20
Silver, Total	ND	ND	mg/kg	NC		20
Total Metals - Mansfield Lab Associated sa	ample(s): 01-07 QC Batch ID: WG13	63085-4 QC Sample	e: L2016449-01	Client ID:	SB-05 (8'-1	0')
Mercury, Total	0.081J	ND	mg/kg	NC		20

INORGANICS & MISCELLANEOUS

Project Name: 100 BUCKLEY RD SYRACUSE Lab Number: L2016449

Project Number: 2201387 Report Date: 04/27/20

SAMPLE RESULTS

Lab ID: L2016449-01 Date Collected: 04/20/20 10:00

Client ID: SB-05 (8'-10') Date Received: 04/20/20 Sample Location: 100 BUCKLEY RD SYRACUSE Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	65.9		%	0.100	NA	1	-	04/21/20 12:23	121,2540G	RI

Project Name: 100 BUCKLEY RD SYRACUSE Lab Number: L2016449

Project Number: 2201387 Report Date: 04/27/20

SAMPLE RESULTS

Lab ID: L2016449-02 Date Collected: 04/20/20 09:45

Client ID: SB-03 (7.5'-10') Date Received: 04/20/20 Sample Location: 100 BUCKLEY RD SYRACUSE Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	81.7		%	0.100	NA	1	-	04/21/20 12:23	121,2540G	RI

Project Name: 100 BUCKLEY RD SYRACUSE Lab Number: L2016449

Project Number: 2201387 Report Date: 04/27/20

SAMPLE RESULTS

Lab ID: L2016449-03 Date Collected: 04/20/20 10:40

Client ID: SB-06 (5'-7.5') Date Received: 04/20/20 Sample Location: 100 BUCKLEY RD SYRACUSE Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	72.6		%	0.100	NA	1	-	04/21/20 12:23	121,2540G	RI

Project Name: 100 BUCKLEY RD SYRACUSE Lab Number: L2016449

Project Number: 2201387 Report Date: 04/27/20

SAMPLE RESULTS

Lab ID: L2016449-04 Date Collected: 04/20/20 13:15

Client ID: SB-14 (7.5'-10.0') Date Received: 04/20/20 Sample Location: 100 BUCKLEY RD SYRACUSE Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Westborough Lab)								
Solids, Total	84.7		%	0.100	NA	1	-	04/21/20 12:23	121,2540G	RI

Project Name: 100 BUCKLEY RD SYRACUSE Lab Number: L2016449

Project Number: 2201387 Report Date: 04/27/20

SAMPLE RESULTS

Lab ID: L2016449-05 Date Collected: 04/20/20 14:45

Client ID: SB-17 (5'-10') Date Received: 04/20/20 Sample Location: 100 BUCKLEY RD SYRACUSE Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	61.9		%	0.100	NA	1	-	04/21/20 12:23	121,2540G	RI

Project Name: 100 BUCKLEY RD SYRACUSE Lab Number: L2016449

Project Number: 2201387 Report Date: 04/27/20

SAMPLE RESULTS

Lab ID: L2016449-06 Date Collected: 04/20/20 15:00

Client ID: SB-18 (12.5-15') Date Received: 04/20/20

Sample Location: 100 BUCKLEY RD SYRACUSE Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	61.2		%	0.100	NA	1	-	04/21/20 12:23	121,2540G	RI

Project Name: 100 BUCKLEY RD SYRACUSE Lab Number: L2016449

Project Number: 2201387 Report Date: 04/27/20

SAMPLE RESULTS

Lab ID: L2016449-07 Date Collected: 04/20/20 10:05

Client ID: SB-05 (2.5'-5.0') Date Received: 04/20/20 Sample Location: 100 BUCKLEY RD SYRACUSE Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab									
Solids, Total	70.7		%	0.100	NA	1	-	04/21/20 12:23	121,2540G	RI

Lab Duplicate Analysis

Batch Quality Control

Project Name: 100 BUCKLEY RD SYRACUSE

Project Number: 2201387

Lab Number:

L2016449

Report Date:

04/27/20

Parameter	Native Sam	ple D	uplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-07	QC Batch ID:	WG1363047-1	QC Sample:	L2016145-01	Client ID:	DUP Sample
Solids, Total	84.4		85.4	%	1		20

Project Name: 100 BUCKLEY RD SYRACUSE

Project Number: 2201387

Lab Number: L2016449
Report Date: 04/27/20

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler Custody Seal

A Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	•	Pres	Seal	Date/Time	Analysis(*)
L2016449-01A	Vial MeOH preserved	Α	NA		2.7	Υ	Absent		NYTCL-8260HLW-R2(14)
L2016449-01B	Vial water preserved	Α	NA		2.7	Υ	Absent	21-APR-20 05:06	NYTCL-8260HLW-R2(14)
L2016449-01C	Vial water preserved	Α	NA		2.7	Υ	Absent	21-APR-20 05:06	NYTCL-8260HLW-R2(14)
L2016449-01D	Plastic 2oz unpreserved for TS	Α	NA		2.7	Υ	Absent		TS(7)
L2016449-01E	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		2.7	Y	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),HG-T(28),CD- TI(180)
L2016449-01F	Glass 250ml/8oz unpreserved	Α	NA		2.7	Υ	Absent		NYCP51-PAH(14),NYTCL-8082(14)
L2016449-02A	Vial MeOH preserved	Α	NA		2.7	Υ	Absent		NYTCL-8260HLW-R2(14)
L2016449-02B	Vial water preserved	Α	NA		2.7	Υ	Absent	21-APR-20 05:06	NYTCL-8260HLW-R2(14)
L2016449-02C	Vial water preserved	Α	NA		2.7	Υ	Absent	21-APR-20 05:06	NYTCL-8260HLW-R2(14)
L2016449-02D	Plastic 2oz unpreserved for TS	Α	NA		2.7	Υ	Absent		TS(7)
L2016449-02E	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		2.7	Υ	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),HG-T(28),CD- TI(180)
L2016449-02F	Glass 250ml/8oz unpreserved	Α	NA		2.7	Υ	Absent		NYCP51-PAH(14),NYTCL-8082(14)
L2016449-03A	Vial MeOH preserved	Α	NA		2.7	Υ	Absent		NYTCL-8260HLW-R2(14)
L2016449-03B	Vial water preserved	Α	NA		2.7	Υ	Absent	21-APR-20 05:06	NYTCL-8260HLW-R2(14)
L2016449-03C	Vial water preserved	Α	NA		2.7	Υ	Absent	21-APR-20 05:06	NYTCL-8260HLW-R2(14)
L2016449-03D	Plastic 2oz unpreserved for TS	Α	NA		2.7	Υ	Absent		TS(7)
L2016449-03E	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		2.7	Υ	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),SE-TI(180),PB-TI(180),HG-T(28),CD- TI(180)
L2016449-03F	Glass 250ml/8oz unpreserved	Α	NA		2.7	Υ	Absent		NYCP51-PAH(14),NYTCL-8082(14)
L2016449-04A	Vial MeOH preserved	Α	NA		2.7	Υ	Absent		NYTCL-8260HLW-R2(14)
L2016449-04B	Vial water preserved	Α	NA		2.7	Υ	Absent	21-APR-20 05:06	NYTCL-8260HLW-R2(14)

Lab Number: L2016449

Report Date: 04/27/20

Project Name: 100 BUCKLEY RD SYRACUSE

Project Number: 2201387

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2016449-04C	Vial water preserved	Α	NA		2.7	Υ	Absent	21-APR-20 05:06	NYTCL-8260HLW-R2(14)
L2016449-04D	Plastic 2oz unpreserved for TS	Α	NA		2.7	Υ	Absent		TS(7)
L2016449-04E	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		2.7	Υ	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),HG-T(28),CD- TI(180)
L2016449-04F	Glass 250ml/8oz unpreserved	Α	NA		2.7	Υ	Absent		NYCP51-PAH(14),NYTCL-8082(14)
L2016449-05A	Vial MeOH preserved	Α	NA		2.7	Υ	Absent		NYTCL-8260HLW-R2(14)
L2016449-05B	Vial water preserved	Α	NA		2.7	Υ	Absent	21-APR-20 05:06	NYTCL-8260HLW-R2(14)
L2016449-05C	Vial water preserved	Α	NA		2.7	Υ	Absent	21-APR-20 05:06	NYTCL-8260HLW-R2(14)
L2016449-05D	Plastic 2oz unpreserved for TS	Α	NA		2.7	Υ	Absent		TS(7)
L2016449-05E	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		2.7	Y	Absent		BA-TI(180),AS-TI(180),AG-TI(180),CR- TI(180),SE-TI(180),PB-TI(180),HG-T(28),CD- TI(180)
L2016449-05F	Glass 250ml/8oz unpreserved	Α	NA		2.7	Υ	Absent		NYCP51-PAH(14),NYTCL-8082(14)
L2016449-06A	Vial MeOH preserved	Α	NA		2.7	Υ	Absent		NYTCL-8260HLW-R2(14)
L2016449-06B	Vial water preserved	Α	NA		2.7	Υ	Absent	21-APR-20 05:06	NYTCL-8260HLW-R2(14)
L2016449-06C	Vial water preserved	Α	NA		2.7	Υ	Absent	21-APR-20 05:06	NYTCL-8260HLW-R2(14)
L2016449-06D	Plastic 2oz unpreserved for TS	Α	NA		2.7	Υ	Absent		TS(7)
L2016449-06E	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		2.7	Y	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),HG-T(28),CD- TI(180)
L2016449-06F	Glass 250ml/8oz unpreserved	Α	NA		2.7	Υ	Absent		NYCP51-PAH(14),NYTCL-8082(14)
L2016449-07A	Vial MeOH preserved	Α	NA		2.7	Υ	Absent		NYTCL-8260HLW-R2(14)
L2016449-07B	Vial water preserved	Α	NA		2.7	Υ	Absent	21-APR-20 05:06	NYTCL-8260HLW-R2(14)
L2016449-07C	Vial water preserved	Α	NA		2.7	Υ	Absent	21-APR-20 05:06	NYTCL-8260HLW-R2(14)
L2016449-07D	Plastic 2oz unpreserved for TS	Α	NA		2.7	Υ	Absent		TS(7)
L2016449-07E	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		2.7	Y	Absent		BA-TI(180),AS-TI(180),AG-TI(180),CR- TI(180),SE-TI(180),PB-TI(180),HG-T(28),CD- TI(180)
L2016449-07F	Glass 250ml/8oz unpreserved	Α	NA		2.7	Υ	Absent		NYCP51-PAH(14),NYTCL-8082(14)
L2016449-08A	Vial HCI preserved	Α	NA		2.7	Υ	Absent		-
L2016449-08B	Vial HCl preserved	Α	NA		2.7	Υ	Absent		-

Project Name: 100 BUCKLEY RD SYRACUSE Lab Number: L2016449

Project Number: 2201387 Report Date: 04/27/20

GLOSSARY

Acronyms

LOQ

MS

NP

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

Report Format: DU Report with 'J' Qualifiers

Project Name: 100 BUCKLEY RD SYRACUSE Lab Number: L2016449
Project Number: 2201387 Report Date: 04/27/20

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_main_section} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration

Report Format: DU Report with 'J' Qualifiers

Project Name:100 BUCKLEY RD SYRACUSELab Number:L2016449Project Number:2201387Report Date:04/27/20

Data Qualifiers

Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)

- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers

Project Name: 100 BUCKLEY RD SYRACUSE Lab Number: L2016449
Project Number: 2201387 Report Date: 04/27/20

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 16

Page 1 of 1

Published Date: 2/17/2020 10:46:05 AM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-

Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

EPA TO-12 Non-methane organics

EPA 3C Fixed gases

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate.

EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

Westborough, MA 01581	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048	Service Centers Mahwah, NJ 07430: 35 Whitne Albany, NY 12205: 14 Walker Tonawanda, NY 14150: 275 Co	Way	95	Page of			Date I in L	.ab		bolo	70	ALPHA Job# 17016449
8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193	320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288	Project Information Project Name: \(\(\)()() Project Location: \(\)()()		HAJ RO		1005e		ASP-/ EQuis	A S (1 Fi	ile)	ASF	P-B alS (4 File)	Same as Client Info
Client: Labella	Associates	(Use Project name as P	- 1)()/				-	latory		remen	t	11111	Disposal Site Information
Address: 300 54			11 515	co				NY TO	-	i Cilion		art 375	Please identify below location of
Rachester L		ALPHAQuote #:						AWQ S	Standa	rds	NYC	P-51	applicable disposal facilities.
Phone: 315-2	The state of the s	Turn-Around Time	013	The state of	300			NY Re	stricted	Use	Othe	r	Disposal Facility:
Fax:		Standar	d 🗌	Due Date:				NY Un	restrict	ed Use			□ NJ □ NY
Email: (2)51500	1 abellance	Rush (only if pre approve	d) [# of Days:				NYC S	ewer D	Dischar	30		Other:
These samples have b	een previously analyze	ed by Alpha					ANALYSIS						Sample Filtration
Other project specific Please specify Metals		ents:					CD5 1	15/ 5Vers	A MERIS COTOLITY	35 BOB7			□ Done □ Lab to do Preservation □ Lab to do (Please Specify below)
ALPHA Lab ID	Sa	mple ID	Colle	ection	Sample Matrix	Sampler's	75	CC	C7 + 9	20		1 1	
(Lab Use Only)			Date	Initials	15	US	55	25	Sample Specific Comments G				
16449 01	58-05/8-1		4-20	10:00	5	13	X	X	X	X			
702		5'-10')	4-20	9.45	5	27	X	X	X	X			
73	5B-06 (5'-	7,5)	4-20	10:40	5	27	X	X	X	X			
701		5-10.0)	4-20	13:15	5	27	X	X	X	X			
TOS	58-17 (5'	-101)	4-20	14 45	5	13	X	X	X	x			
76	- /	5-15)	4-20	15:00	_5	57	X	X	1	X		-	
70	58-05 (2.	5 -5.0)	4-20	10.05	_ 5_	25	X	X		X			
Preservative Code:	Container Code		1111005										
A = None B = HCl C = HNO ₃ D = H ₂ SO ₄ E = NaOH F = MeOH	P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup	Westboro: Certification Mansfield: Certification	No: MA015		F	reservative							Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are
G = NaHSO ₄ H = Na ₂ S ₂ O ₃ K/E = Zn Ac/NaOH O = Other	C = Cube O = Other E = Encore D = BOD Bottle	Relinquished EMUS T	By:	Date/ 4-76 54/20/2020	800	a	Receiv		_		04/20/3	e/Time 220 185 23;50	resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA'S TERMS & CONDITIONS. (See reverse side.)
Form No: 01-25 HC (rev. 30-Sept-2013)						/			11				A STORES SOUTH TO THE PARTY

ANALYTICAL REPORT

Lab Number: L2016610

Client: LaBella Associates

316 S. Clinton Street

2nd Floor

Syracuse, NY 13202

ATTN: William Sisco Phone: (315) 243-8441

Project Name: 100 BUCKLEY RD SYRACUSE

Project Number: 2201387 Report Date: 04/27/20

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 100 BUCKLEY RD SYRACUSE

Project Number: 2201387

 Lab Number:
 L2016610

 Report Date:
 04/27/20

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2016610-01	SB-02, MW-01	WATER	100 BUCKLEY RD SYRACUSE	04/21/20 09:00	04/21/20
L2016610-02	SB-04, MW-02	WATER	100 BUCKLEY RD SYRACUSE	04/21/20 09:30	04/21/20
L2016610-03	SB-06, MW-03	WATER	100 BUCKLEY RD SYRACUSE	04/21/20 10:00	04/21/20
L2016610-04	SB-14, MW-04	WATER	100 BUCKLEY RD SYRACUSE	04/21/20 10:30	04/21/20
L2016610-05	SB-17, MW-05	WATER	100 BUCKLEY RD SYRACUSE	04/21/20 11:00	04/21/20
L2016610-06	SB-18, MW-06	WATER	100 BUCKLEY RD SYRACUSE	04/21/20 11:15	04/21/20
L2016610-07	SB-20, MW-07	WATER	100 BUCKLEY RD SYRACUSE	04/21/20 11:25	04/21/20

Project Name: 100 BUCKLEY RD SYRACUSE Lab Number: L2016610
Project Number: 2201387 Report Date: 04/27/20

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name: 100 BUCKLEY RD SYRACUSE Lab Number: L2016610
Project Number: 2201387 Report Date: 04/27/20

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 04/27/20

Melissa Sturgis Melissa Sturgis

ORGANICS

VOLATILES

L2016610

04/27/20

Not Specified

04/21/20

Project Name: 100 BUCKLEY RD SYRACUSE

Project Number: 2201387

SAMPLE RESULTS

Lab Number:

Report Date:

Date Received:

Field Prep:

Lab ID: L2016610-01 Date Collected: 04/21/20 09:00

Client ID: SB-02, MW-01

Sample Location: 100 BUCKLEY RD SYRACUSE

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 04/24/20 09:25

Analyst: NLK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	jh Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	0.20	J	ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

04/27/20

Project Name: Lab Number: 100 BUCKLEY RD SYRACUSE L2016610

Project Number: 2201387

SAMPLE RESULTS

Date Collected: 04/21/20 09:00

Report Date:

L2016610-01 Date Received: 04/21/20 Client ID: SB-02, MW-01

Sample Location: 100 BUCKLEY RD SYRACUSE Field Prep: Not Specified

Sample Depth:

Lab ID:

No	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,4-Dichlorobenzene ND Ug/l 2.5 0.70 1 1 1 1 1 1 1 1 1	Volatile Organics by GC/MS - Westbo	rough Lab					
1.4-Dichlorobenzene ND ug/l 2.5 0.70 1 Methyl tert bulyl ether ND ug/l 2.5 0.70 1 prm-xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone 2.8 J ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 1-2-Bitromoethane ND ug/l 2.5 0.70 1	1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl terb butyl ether ND ug/l 2.5 0.70 1 p/m-Xylane ND ug/l 2.5 0.70 1 o-Xylane ND ug/l 2.5 0.70 1 ois-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Slyrene ND ug/l 2.5 0.70 1 Dichlorodiffluoromethane ND ug/l 5.0 1.0 1 Acetone 2.8 J ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 1-2-Butanone ND ug/l 5.0 1.0 1 1-2-Dibromothane ND ug/l 2.5 0.70 1 1-Butylbenzene ND ug/l 2.5 0.70 1	1,4-Dichlorobenzene	ND			2.5	0.70	1
p/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone 2.8 J ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 1,2-Distromethane ND ug/l 2.5 0.70 1 1-Butylbenzene ND ug/l 2.5 0.70 1 <	Methyl tert butyl ether	ND			2.5	0.70	1
cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodiffluoromethane ND ug/l 5.0 1.0 1 Acetone 2.8 J ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 1,2-Dibromo-3-chlororomethane ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 <	p/m-Xylene	ND			2.5	0.70	1
Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone 2.8 J ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 1,2-Dibromethane ND ug/l 2.5 0.70 1 1,2-Dibromethane ND ug/l 2.5 0.70 1 8ec-Butylbenzene ND ug/l 2.5 0.70 1 1-Butylbenzene ND ug/l 2.5 0.70 1 1-Er-Butylbenzene ND ug/l 2.5 0.70 1 1-2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 <td>o-Xylene</td> <td>ND</td> <td></td> <td></td> <td>2.5</td> <td>0.70</td> <td>1</td>	o-Xylene	ND			2.5	0.70	1
Dichlorodiffluoromethane ND ug/l 5.0 1.0 1 Acetone 2.8 J ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 2.0 0.65 1 1,2-Dibromo-3-chorogropane ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l	cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Acetone 2.8 J ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1	Styrene	ND		ug/l	2.5	0.70	1
Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 <td< td=""><td>Dichlorodifluoromethane</td><td>ND</td><td></td><td>ug/l</td><td>5.0</td><td>1.0</td><td>1</td></td<>	Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.	Acetone	2.8	J	ug/l	5.0	1.5	1
A-Methyl-2-pentanone ND ug/l 5.0 1.0 1	Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Hexanone ND	2-Butanone	ND		ug/l	5.0	1.9	1
1,2-Dibromoethane ND ug/l 2.0 0.65 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 P-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.5 0.70 <	4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 P-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 N-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.5 0.70 1 Cyclohexane ND ug/l 2.5 0.70 1 </td <td>2-Hexanone</td> <td>ND</td> <td></td> <td>ug/l</td> <td>5.0</td> <td>1.0</td> <td>1</td>	2-Hexanone	ND		ug/l	5.0	1.0	1
sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.5 0.70 1 Cyclohexane ND ug/l 2.0 0.23 1 Freon-113 ND ug/l 2.5 0.70 1	1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Cyclohexane ND ug/l 2.0 0.23 1 Ereon-113 ND ug/l 1.0 0.27 1 Freon-113	n-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	sec-Butylbenzene	ND		ug/l	2.5	0.70	1
Isopropylbenzene ND ug/l 2.5 0.70 1	tert-Butylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Cyclohexane ND ug/l 2.0 0.23 1 Freon-113 ND ug/l 10 0.27 1 Freon-113	1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	Isopropylbenzene	ND		ug/l	2.5	0.70	1
n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	Naphthalene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Freon-113 ND ug/l 2.5 0.70 1	Methyl Acetate	ND		ug/l	2.0	0.23	1
	Cyclohexane	ND		ug/l	10	0.27	1
	Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane ND ug/l 10 0.40 1	Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	95	70-130	
Toluene-d8	96	70-130	
4-Bromofluorobenzene	90	70-130	
Dibromofluoromethane	106	70-130	

L2016610

04/21/20 09:30

Project Name: 100 BUCKLEY RD SYRACUSE

Project Number: 2201387

Lab Number:

Date Collected:

Report Date: 04/27/20

SAMPLE RESULTS

Lab ID: L2016610-02

Client ID: SB-04, MW-02 Sample Location: 100 BUCKLEY RD SYRACUSE Date Received: 04/21/20 Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 04/24/20 09:50

Analyst: NLK

Volatile Organics by GC/MS - Westborough Methylene chloride	n Lab				
Mathylana ahlarida					
Metrylerie Chloride	ND	ug/l	2.5	0.70	1
1,1-Dichloroethane	ND	ug/l	2.5	0.70	1
Chloroform	ND	ug/l	2.5	0.70	1
Carbon tetrachloride	ND	ug/l	0.50	0.13	1
1,2-Dichloropropane	ND	ug/l	1.0	0.14	1
Dibromochloromethane	ND	ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50	1
Tetrachloroethene	ND	ug/l	0.50	0.18	1
Chlorobenzene	ND	ug/l	2.5	0.70	1
Trichlorofluoromethane	ND	ug/l	2.5	0.70	1
1,2-Dichloroethane	ND	ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70	1
Bromodichloromethane	ND	ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14	1
Bromoform	ND	ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17	1
Benzene	ND	ug/l	0.50	0.16	1
Toluene	ND	ug/l	2.5	0.70	1
Ethylbenzene	ND	ug/l	2.5	0.70	1
Chloromethane	ND	ug/l	2.5	0.70	1
Bromomethane	ND	ug/l	2.5	0.70	1
Vinyl chloride	ND	ug/l	1.0	0.07	1
Chloroethane	ND	ug/l	2.5	0.70	1
1,1-Dichloroethene	ND	ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70	1
Trichloroethene	ND	ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70	1

MDL

L2016610

Dilution Factor

Project Name: 100 BUCKLEY RD SYRACUSE Lab Number:

Result

Project Number: 2201387 **Report Date:** 04/27/20

SAMPLE RESULTS

Lab ID: L2016610-02 Date Collected: 04/21/20 09:30

Client ID: SB-04, MW-02 Date Received: 04/21/20 Sample Location: 100 BUCKLEY RD SYRACUSE Field Prep: Not Specified

Qualifier

Units

RL

Sample Depth:

Parameter

raiailletei	Nesuit	Qualifier	Ullits	NL.	WIDE	Dilution i actor
Volatile Organics by GC/MS - Wes	stborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	8.8		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	95	70-130	
Toluene-d8	95	70-130	
4-Bromofluorobenzene	88	70-130	
Dibromofluoromethane	107	70-130	

L2016610

04/27/20

Project Name: 100 BUCKLEY RD SYRACUSE

Project Number: 2201387

SAMPLE RESULTS

Date Collected: 04/21/20 10:00

Lab ID: L2016610-03

Client ID: SB-06, MW-03

Sample Location: 100 BUCKLEY RD SYRACUSE

Date Received: 04/21/20
Field Prep: Not Specified

Lab Number:

Report Date:

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 04/24/20 10:14

Analyst: NLK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	0.08	J	ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

MDL

Dilution Factor

Project Name: 100 BUCKLEY RD SYRACUSE Lab Number: L2016610

Project Number: 2201387 Report Date: 04/27/20

SAMPLE RESULTS

Lab ID: L2016610-03 Date Collected: 04/21/20 10:00

Client ID: SB-06, MW-03 Date Received: 04/21/20 Sample Location: 100 BUCKLEY RD SYRACUSE Field Prep: Not Specified

Qualifier

Units

RL

Result

Sample Depth:

Parameter

raiailletei	Nesuit	Qualifier	Ullita	NL.	WIDE	Dilution i actor
Volatile Organics by GC/MS - Wes	stborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Accepta Qualifier Criter	
1,2-Dichloroethane-d4	96	70-1	30
Toluene-d8	95	70-1	30
4-Bromofluorobenzene	87	70-1	30
Dibromofluoromethane	106	70-1	30

L2016610

04/27/20

Project Name: 100 BUCKLEY RD SYRACUSE

Project Number: 2201387

SAMPLE RESULTS

Date Collected: 04/21/20 10:30

Lab ID: L2016610-04

Client ID: SB-14, MW-04

Sample Location: 100 BUCKLEY RD SYRACUSE

Date Received: 04/21/20
Field Prep: Not Specified

Lab Number:

Report Date:

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 04/24/20 10:39

Analyst: NLK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

L2016610

04/27/20

Project Name: Lab Number: 100 BUCKLEY RD SYRACUSE

Project Number: 2201387

L2016610-04

SAMPLE RESULTS

Date Collected: 04/21/20 10:30

Report Date:

Date Received: 04/21/20 Client ID: SB-14, MW-04

Sample Location: 100 BUCKLEY RD SYRACUSE Field Prep: Not Specified

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	5.4		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	1.1	J	ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	99		70-130	
Toluene-d8	95		70-130	
4-Bromofluorobenzene	87		70-130	
Dibromofluoromethane	111		70-130	

L2016610

04/21/20 11:00

Not Specified

04/21/20

Project Name: 100 BUCKLEY RD SYRACUSE

Project Number: 2201387

SAMPLE RESULTS

Report Date: 04/27/20

Lab Number:

Date Collected:

Date Received:

Field Prep:

Lab ID: L2016610-05 SB-17, MW-05 Client ID:

Sample Location: 100 BUCKLEY RD SYRACUSE

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 04/24/20 11:04

Analyst: NLK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	ıh Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

L2016610

Project Name: Lab Number: 100 BUCKLEY RD SYRACUSE

Project Number: Report Date: 2201387 04/27/20

SAMPLE RESULTS

Lab ID: L2016610-05 Date Collected: 04/21/20 11:00

Date Received: 04/21/20 Client ID: SB-17, MW-05 Sample Location: 100 BUCKLEY RD SYRACUSE Field Prep: Not Specified

Sample Depth:

			Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	n Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	2.2	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	99	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	88	70-130	
Dibromofluoromethane	107	70-130	

L2016610

04/27/20

Project Name: 100 BUCKLEY RD SYRACUSE

Project Number: 2201387

SAMPLE RESULTS

Lab Number:

Report Date:

L2016610-06 Date Collected: 04/21/20 11:15

Client ID: Date Received: 04/21/20 SB-18, MW-06 Sample Location: Field Prep: 100 BUCKLEY RD SYRACUSE Not Specified

Sample Depth:

Lab ID:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 04/24/20 11:28

Analyst: NLK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

L2016610

04/27/20

Project Name: 100 BUCKLEY RD SYRACUSE Lab Number:

Project Number: 2201387

L2016610-06

SB-18, MW-06

SAMPLE RESULTS

Date Collected: 04/21/20 11:15

Report Date:

Date Received: 04/21/20

Sample Location: 100 BUCKLEY RD SYRACUSE Field Prep: Not Specified

Sample Depth:

Lab ID:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	gh Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	4.1	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	1.0	J	ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	102		70-130	
Toluene-d8	96		70-130	
4-Bromofluorobenzene	87		70-130	
Dibromofluoromethane	110		70-130	

L2016610

04/27/20

Project Name: 100 BUCKLEY RD SYRACUSE

Project Number: 2201387

SAMPLE RESULTS

Date Collected: 04/21/20 11:25

Lab Number:

Report Date:

Date Received: 04/21/20
Field Prep: Not Specified

Lab ID: L2016610-07 Client ID: SB-20, MW-07

Sample Location: 100 BUCKLEY RD SYRACUSE

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 04/24/20 11:53

Analyst: NLK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

L2016610

04/27/20

Project Name: 100 BUCKLEY RD SYRACUSE

100 BUCKLEY RD SYRACUSE

L2016610-07

SB-20, MW-07

Project Number: 2201387

SAMPLE RESULTS

Date Collected: 04/21/20 11:25

Lab Number:

Report Date:

Date Received: 04/21/20 Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbor	ough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	12		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	2.5	J	ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	100		70-130	
Toluene-d8	95		70-130	
4-Bromofluorobenzene	87		70-130	
Dibromofluoromethane	109		70-130	

L2016610

Project Name: 100 BUCKLEY RD SYRACUSE Lab Number:

Project Number: 2201387 Report Date: 04/27/20

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/24/20 09:00

Analyst: PD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-07 Batch:	WG1364681-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

L2016610

Lab Number:

Project Name: 100 BUCKLEY RD SYRACUSE

Project Number: Report Date: 2201387 04/27/20

Method Blank Analysis Batch Quality Control

1,8260C

04/24/20 09:00

Analyst: PD

Analytical Method:

Analytical Date:

arameter	Result	Qualifier Units	RL RL	MDL
olatile Organics by GC/MS - V	Vestborough Lab	for sample(s):	01-07 Batch:	WG1364681-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
1,2-Dibromoethane	ND	ug/l	2.0	0.65
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

Project Name: 100 BUCKLEY RD SYRACUSE Lab Number: L2016610

Project Number: 2201387 Report Date: 04/27/20

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/24/20 09:00

Analyst: PD

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01-07 Batch: WG1364681-5

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
1,2-Dichloroethane-d4	93	70-130
Toluene-d8	97	70-130
4-Bromofluorobenzene	90	70-130
Dibromofluoromethane	105	70-130

Project Name: 100 BUCKLEY RD SYRACUSE

Project Number: 2201387

Lab Number: L2016610

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-07 Batch: W0	G1364681-3 WG1364681-4		
Methylene chloride	100		100	70-130	0	20
1,1-Dichloroethane	94		96	70-130	2	20
Chloroform	100		100	70-130	0	20
Carbon tetrachloride	110		110	63-132	0	20
1,2-Dichloropropane	89		90	70-130	1	20
Dibromochloromethane	96		96	63-130	0	20
1,1,2-Trichloroethane	94		96	70-130	2	20
Tetrachloroethene	110		110	70-130	0	20
Chlorobenzene	100		100	75-130	0	20
Trichlorofluoromethane	110		100	62-150	10	20
1,2-Dichloroethane	94		87	70-130	8	20
1,1,1-Trichloroethane	110		110	67-130	0	20
Bromodichloromethane	100		100	67-130	0	20
trans-1,3-Dichloropropene	96		93	70-130	3	20
cis-1,3-Dichloropropene	94		95	70-130	1	20
Bromoform	93		92	54-136	1	20
1,1,2,2-Tetrachloroethane	90		89	67-130	1	20
Benzene	99		100	70-130	1	20
Toluene	98		98	70-130	0	20
Ethylbenzene	99		100	70-130	1	20
Chloromethane	100		100	64-130	0	20
Bromomethane	75		79	39-139	5	20
Vinyl chloride	92		91	55-140	1	20

Project Name: 100 BUCKLEY RD SYRACUSE

Project Number: 2201387

Lab Number: L2016610

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-07 Batch: W0	G1364681-3 WG1364681-4		
Chloroethane	100		100	55-138	0	20
1,1-Dichloroethene	110		110	61-145	0	20
trans-1,2-Dichloroethene	110		110	70-130	0	20
Trichloroethene	110		110	70-130	0	20
1,2-Dichlorobenzene	97		97	70-130	0	20
1,3-Dichlorobenzene	100		98	70-130	2	20
1,4-Dichlorobenzene	98		98	70-130	0	20
Methyl tert butyl ether	100		100	63-130	0	20
p/m-Xylene	105		105	70-130	0	20
o-Xylene	100		100	70-130	0	20
cis-1,2-Dichloroethene	110		110	70-130	0	20
Styrene	100		100	70-130	0	20
Dichlorodifluoromethane	100		100	36-147	0	20
Acetone	77		74	58-148	4	20
Carbon disulfide	110		110	51-130	0	20
2-Butanone	93		94	63-138	1	20
4-Methyl-2-pentanone	76		72	59-130	5	20
2-Hexanone	81		81	57-130	0	20
1,2-Dibromoethane	98		96	70-130	2	20
n-Butylbenzene	98		97	53-136	1	20
sec-Butylbenzene	95		95	70-130	0	20
tert-Butylbenzene	94		94	70-130	0	20
1,2-Dibromo-3-chloropropane	89		86	41-144	3	20

Project Name: 100 BUCKLEY RD SYRACUSE

Project Number: 2201387

Lab Number: L2016610

arameter	LCS %Recovery	Qual	-	LCSD ecovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-07	Batch:	WG1364681-3	WG1364681-4			
Isopropylbenzene	94			98		70-130	4		20
p-Isopropyltoluene	100			99		70-130	1		20
Naphthalene	96			95		70-130	1		20
n-Propylbenzene	95			95		69-130	0		20
1,2,4-Trichlorobenzene	99			96		70-130	3		20
1,3,5-Trimethylbenzene	95			95		64-130	0		20
1,2,4-Trimethylbenzene	96			96		70-130	0		20
Methyl Acetate	160	Q		150	Q	70-130	6		20
Cyclohexane	91			92		70-130	1		20
Freon-113	110			110		70-130	0		20
Methyl cyclohexane	100			100		70-130	0		20

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	81	80	70-130
Toluene-d8	94	94	70-130
4-Bromofluorobenzene	89	88	70-130
Dibromofluoromethane	103	103	70-130

SEMIVOLATILES

Project Name: 100 BUCKLEY RD SYRACUSE Lab Number: L2016610

Project Number: 2201387 Report Date: 04/27/20

SAMPLE RESULTS

Lab ID: L2016610-01 Date Collected: 04/21/20 09:00

Client ID: SB-02, MW-01 Date Received: 04/21/20 Sample Location: 100 BUCKLEY RD SYRACUSE Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 04/22/20 15:39
Analytical Date: 04/23/20 19:54

Analyst: JJW

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS-SIM	- Westborough La	ab					
Acenaphthene	ND		ug/l	0.10	0.01	1	
Fluoranthene	ND		ug/l	0.10	0.02	1	
Benzo(a)anthracene	ND		ug/l	0.10	0.02	1	
Benzo(a)pyrene	ND		ug/l	0.10	0.02	1	
Benzo(b)fluoranthene	ND		ug/l	0.10	0.01	1	
Benzo(k)fluoranthene	ND		ug/l	0.10	0.01	1	
Chrysene	ND		ug/l	0.10	0.01	1	
Acenaphthylene	ND		ug/l	0.10	0.01	1	
Anthracene	ND		ug/l	0.10	0.01	1	
Benzo(ghi)perylene	ND		ug/l	0.10	0.01	1	
Fluorene	ND		ug/l	0.10	0.01	1	
Phenanthrene	ND		ug/l	0.10	0.02	1	
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	1	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01	1	
Pyrene	ND		ug/l	0.10	0.02	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	73	23-120	
2-Fluorobiphenyl	68	15-120	
4-Terphenyl-d14	79	41-149	

Project Name: Lab Number: 100 BUCKLEY RD SYRACUSE L2016610

Project Number: Report Date: 2201387 04/27/20

SAMPLE RESULTS

Lab ID: L2016610-02 Date Collected: 04/21/20 09:30

Date Received: 04/21/20 Client ID: SB-04, MW-02 Sample Location: 100 BUCKLEY RD SYRACUSE Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: 04/22/20 15:39 Analytical Method: 1,8270D-SIM Analytical Date: 04/23/20 20:10

Analyst: JJW

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS-	SIM - Westborough La	ab					
Acenaphthene	ND		ug/l	0.10	0.01	1	
Fluoranthene	0.03	J	ug/l	0.10	0.02	1	
Benzo(a)anthracene	0.02	J	ug/l	0.10	0.02	1	
Benzo(a)pyrene	0.02	J	ug/l	0.10	0.02	1	
Benzo(b)fluoranthene	0.03	J	ug/l	0.10	0.01	1	
Benzo(k)fluoranthene	0.01	J	ug/l	0.10	0.01	1	
Chrysene	0.01	J	ug/l	0.10	0.01	1	
Acenaphthylene	ND		ug/l	0.10	0.01	1	
Anthracene	ND		ug/l	0.10	0.01	1	
Benzo(ghi)perylene	0.02	J	ug/l	0.10	0.01	1	
Fluorene	ND		ug/l	0.10	0.01	1	
Phenanthrene	0.03	J	ug/l	0.10	0.02	1	
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	1	
Indeno(1,2,3-cd)pyrene	0.02	J	ug/l	0.10	0.01	1	
Pyrene	0.03	J	ug/l	0.10	0.02	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	75	23-120	
2-Fluorobiphenyl	73	15-120	
4-Terphenyl-d14	81	41-149	

Project Name: 100 BUCKLEY RD SYRACUSE Lab Number: L2016610

Project Number: 2201387 Report Date: 04/27/20

SAMPLE RESULTS

Lab ID: L2016610-03 Date Collected: 04/21/20 10:00

Client ID: SB-06, MW-03 Date Received: 04/21/20 Sample Location: 100 BUCKLEY RD SYRACUSE Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 04/22/20 15:39
Analytical Date: 04/23/20 20:27

Analyst: JJW

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS	-SIM - Westborough La	b				
Acenaphthene	0.13		ug/l	0.10	0.01	1
Fluoranthene	0.90		ug/l	0.10	0.02	1
Benzo(a)anthracene	0.40		ug/l	0.10	0.02	1
Benzo(a)pyrene	0.39		ug/l	0.10	0.02	1
Benzo(b)fluoranthene	0.62		ug/l	0.10	0.01	1
Benzo(k)fluoranthene	0.15		ug/l	0.10	0.01	1
Chrysene	0.43		ug/l	0.10	0.01	1
Acenaphthylene	ND		ug/l	0.10	0.01	1
Anthracene	0.16		ug/l	0.10	0.01	1
Benzo(ghi)perylene	0.27		ug/l	0.10	0.01	1
Fluorene	0.16		ug/l	0.10	0.01	1
Phenanthrene	0.66		ug/l	0.10	0.02	1
Dibenzo(a,h)anthracene	0.07	J	ug/l	0.10	0.01	1
Indeno(1,2,3-cd)pyrene	0.31		ug/l	0.10	0.01	1
Pyrene	0.73		ug/l	0.10	0.02	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	78	23-120	
2-Fluorobiphenyl	78	15-120	
4-Terphenyl-d14	74	41-149	

Project Name: Lab Number: 100 BUCKLEY RD SYRACUSE L2016610

Project Number: Report Date: 2201387 04/27/20

SAMPLE RESULTS

Lab ID: L2016610-04 Date Collected: 04/21/20 10:30

Date Received: 04/21/20 Client ID: SB-14, MW-04

Sample Location: 100 BUCKLEY RD SYRACUSE Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: 04/22/20 15:39 Analytical Method: 1,8270D-SIM Analytical Date: 04/23/20 20:44

Analyst: JJW

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS-S	SIM - Westborough La	b					
Acenaphthene	0.65		ug/l	0.10	0.01	1	
Fluoranthene	0.17		ug/l	0.10	0.02	1	
Benzo(a)anthracene	0.12		ug/l	0.10	0.02	1	
Benzo(a)pyrene	0.07	J	ug/l	0.10	0.02	1	
Benzo(b)fluoranthene	0.07	J	ug/l	0.10	0.01	1	
Benzo(k)fluoranthene	0.02	J	ug/l	0.10	0.01	1	
Chrysene	0.14		ug/l	0.10	0.01	1	
Acenaphthylene	ND		ug/l	0.10	0.01	1	
Anthracene	ND		ug/l	0.10	0.01	1	
Benzo(ghi)perylene	0.04	J	ug/l	0.10	0.01	1	
Fluorene	0.57		ug/l	0.10	0.01	1	
Phenanthrene	0.11		ug/l	0.10	0.02	1	
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	1	
Indeno(1,2,3-cd)pyrene	0.03	J	ug/l	0.10	0.01	1	
Pyrene	0.33		ug/l	0.10	0.02	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	78		23-120	
2-Fluorobiphenyl	89		15-120	
4-Terphenyl-d14	80		41-149	

Project Name: 100 BUCKLEY RD SYRACUSE Lab Number: L2016610

Project Number: 2201387 Report Date: 04/27/20

SAMPLE RESULTS

Lab ID: L2016610-05 Date Collected: 04/21/20 11:00

Client ID: SB-17, MW-05 Date Received: 04/21/20 Sample Location: 100 BUCKLEY RD SYRACUSE Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 04/22/20 15:39
Analytical Date: 04/23/20 21:00

Analyst: JJW

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS-SI	M - Westborough La	ıb					
Acenaphthene	0.03	J	ug/l	0.10	0.01	1	
Fluoranthene	0.18		ug/l	0.10	0.02	1	
Benzo(a)anthracene	0.10		ug/l	0.10	0.02	1	
Benzo(a)pyrene	0.09	J	ug/l	0.10	0.02	1	
Benzo(b)fluoranthene	0.15		ug/l	0.10	0.01	1	
Benzo(k)fluoranthene	0.04	J	ug/l	0.10	0.01	1	
Chrysene	0.10	J	ug/l	0.10	0.01	1	
Acenaphthylene	ND		ug/l	0.10	0.01	1	
Anthracene	0.04	J	ug/l	0.10	0.01	1	
Benzo(ghi)perylene	0.07	J	ug/l	0.10	0.01	1	
Fluorene	0.03	J	ug/l	0.10	0.01	1	
Phenanthrene	0.14		ug/l	0.10	0.02	1	
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	1	
Indeno(1,2,3-cd)pyrene	0.08	J	ug/l	0.10	0.01	1	
Pyrene	0.16		ug/l	0.10	0.02	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	77	23-120	
2-Fluorobiphenyl	74	15-120	
4-Terphenyl-d14	73	41-149	

Project Name: Lab Number: 100 BUCKLEY RD SYRACUSE L2016610

Project Number: Report Date: 2201387 04/27/20

SAMPLE RESULTS

Lab ID: L2016610-06 Date Collected: 04/21/20 11:15

Date Received: 04/21/20 Client ID: SB-18, MW-06 Sample Location: 100 BUCKLEY RD SYRACUSE Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: 04/22/20 15:39 Analytical Method: 1,8270D-SIM Analytical Date: 04/23/20 21:17

Analyst: JJW

Result	Qualifier	Units	RL	MDL	Dilution Factor	
Westborough La	ab					
ND		ug/l	0.10	0.01	1	
ND		ug/l	0.10	0.02	1	
ND		ug/l	0.10	0.02	1	
ND		ug/l	0.10	0.02	1	
0.02	J	ug/l	0.10	0.01	1	
ND		ug/l	0.10	0.01	1	
ND		ug/l	0.10	0.01	1	
ND		ug/l	0.10	0.01	1	
ND		ug/l	0.10	0.01	1	
ND		ug/l	0.10	0.01	1	
ND		ug/l	0.10	0.01	1	
ND		ug/l	0.10	0.02	1	
ND		ug/l	0.10	0.01	1	
ND		ug/l	0.10	0.01	1	
ND		ug/l	0.10	0.02	1	
	ND N	ND N	ND ug/l ND ug/l	ND	ND	ND

Surrogate	% Recovery	A Qualifier	cceptance Criteria	
Nitrobenzene-d5	81		23-120	
2-Fluorobiphenyl	78		15-120	
4-Terphenyl-d14	85		41-149	

Project Name: Lab Number: 100 BUCKLEY RD SYRACUSE L2016610

Project Number: Report Date: 2201387 04/27/20

SAMPLE RESULTS

Lab ID: L2016610-07 Date Collected: 04/21/20 11:25

Date Received: 04/21/20 Client ID: SB-20, MW-07 Sample Location: Field Prep: 100 BUCKLEY RD SYRACUSE Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: 04/22/20 15:39 Analytical Method: 1,8270D-SIM Analytical Date: 04/23/20 21:34

Analyst: JJW

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Semivolatile Organics by GC/MS-SIM - Westborough Lab										
Acenaphthene	0.19		ug/l	0.10	0.01	1				
Fluoranthene	3.6		ug/l	0.10	0.02	1				
Benzo(a)anthracene	2.0		ug/l	0.10	0.02	1				
Benzo(a)pyrene	1.9		ug/l	0.10	0.02	1				
Benzo(b)fluoranthene	2.4		ug/l	0.10	0.01	1				
Benzo(k)fluoranthene	0.80		ug/l	0.10	0.01	1				
Chrysene	1.6		ug/l	0.10	0.01	1				
Acenaphthylene	0.17		ug/l	0.10	0.01	1				
Anthracene	0.56		ug/l	0.10	0.01	1				
Benzo(ghi)perylene	1.1		ug/l	0.10	0.01	1				
Fluorene	0.23		ug/l	0.10	0.01	1				
Phenanthrene	2.2		ug/l	0.10	0.02	1				
Dibenzo(a,h)anthracene	0.27		ug/l	0.10	0.01	1				
Indeno(1,2,3-cd)pyrene	1.3		ug/l	0.10	0.01	1				
Pyrene	3.0		ug/l	0.10	0.02	1				

Surrogate	% Recovery	Accepta Qualifier Criter	
Nitrobenzene-d5	81	23-1	20
2-Fluorobiphenyl	76	15-1	20
4-Terphenyl-d14	72	41-1	49

Project Name: 100 BUCKLEY RD SYRACUSE

Project Number: 2201387 Lab Number:

L2016610

Report Date: 04/27/20

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date:

1,8270D-SIM 04/23/20 10:42

Analyst: DV

Extraction Method: EPA 3510C **Extraction Date:**

04/22/20 15:39

Parameter	Result	Qualifier	Units	RL	MDL	
Semivolatile Organics by GC/MS-S	IM - Westbo	rough Lab	for sample(s)	: 01-07	Batch: WO	G1363563-1
Acenaphthene	ND		ug/l	0.10	0.01	
Fluoranthene	ND		ug/l	0.10	0.02	
Benzo(a)anthracene	ND		ug/l	0.10	0.02	
Benzo(a)pyrene	ND		ug/l	0.10	0.02	
Benzo(b)fluoranthene	ND		ug/l	0.10	0.01	
Benzo(k)fluoranthene	ND		ug/l	0.10	0.01	
Chrysene	ND		ug/l	0.10	0.01	
Acenaphthylene	ND		ug/l	0.10	0.01	
Anthracene	ND		ug/l	0.10	0.01	
Benzo(ghi)perylene	ND		ug/l	0.10	0.01	
Fluorene	ND		ug/l	0.10	0.01	
Phenanthrene	ND		ug/l	0.10	0.02	
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01	
Pyrene	ND		ug/l	0.10	0.02	

		Acceptance
Surrogate	%Recovery Qua	alifier Criteria
		_
Nitrobenzene-d5	83	23-120
2-Fluorobiphenyl	78	15-120
4-Terphenyl-d14	97	41-149

Project Name: 100 BUCKLEY RD SYRACUSE

Project Number: 2201387

Lab Number: L2016610

	LCS		LCSD		%Recove	ry		RPD
arameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits
emivolatile Organics by GC/MS-SIM - We	stborough Lab Ass	ociated samp	le(s): 01-07	Batch: V	VG1363563-2	WG1363563-3		
Acenaphthene	79		74		40-140	7		40
Fluoranthene	84		85		40-140	1		40
Benzo(a)anthracene	86		86		40-140	0		40
Benzo(a)pyrene	91		91		40-140	0		40
Benzo(b)fluoranthene	96		95		40-140	1		40
Benzo(k)fluoranthene	86		88		40-140	2		40
Chrysene	79		83		40-140	5		40
Acenaphthylene	78		71		40-140	9		40
Anthracene	80		80		40-140	0		40
Benzo(ghi)perylene	85		87		40-140	2		40
Fluorene	81		79		40-140	3		40
Phenanthrene	77		77		40-140	0		40
Dibenzo(a,h)anthracene	88		91		40-140	3		40
Indeno(1,2,3-cd)pyrene	94		96		40-140	2		40
Pyrene	82		84		40-140	2		40

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qua	l %Recovery Qual	Criteria
Nitrobenzene-d5	89	74	23-120
2-Fluorobiphenyl	83	85	15-120
4-Terphenyl-d14	103	102	41-149

Project Name: 100 BUCKLEY RD SYRACUSE

Project Number: 2201387

Lab Number: L2016610 **Report Date:** 04/27/20

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler Custody Seal

A Absent

Container Information			Initial	Final	Temp			Frozen		
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)	
L2016610-01A	Vial HCl preserved	Α	NA		3.6	Υ	Absent		NYTCL-8260-R2(14)	
L2016610-01B	Vial HCl preserved	Α	NA		3.6	Υ	Absent		NYTCL-8260-R2(14)	
L2016610-01C	Vial HCl preserved	Α	NA		3.6	Υ	Absent		NYTCL-8260-R2(14)	
L2016610-01D	Amber 250ml unpreserved	Α	7	7	3.6	Υ	Absent		NYCP51-PAHSIM-LVI(7)	
L2016610-01E	Amber 250ml unpreserved	Α	7	7	3.6	Υ	Absent		NYCP51-PAHSIM-LVI(7)	
L2016610-02A	Vial HCI preserved	Α	NA		3.6	Υ	Absent		NYTCL-8260-R2(14)	
L2016610-02B	Vial HCI preserved	Α	NA		3.6	Υ	Absent		NYTCL-8260-R2(14)	
L2016610-02C	Vial HCl preserved	Α	NA		3.6	Υ	Absent		NYTCL-8260-R2(14)	
L2016610-02D	Amber 250ml unpreserved	Α	7	7	3.6	Υ	Absent		NYCP51-PAHSIM-LVI(7)	
L2016610-02E	Amber 250ml unpreserved	Α	7	7	3.6	Υ	Absent		NYCP51-PAHSIM-LVI(7)	
L2016610-03A	Vial HCI preserved	Α	NA		3.6	Υ	Absent		NYTCL-8260-R2(14)	
L2016610-03B	Vial HCI preserved	Α	NA		3.6	Υ	Absent		NYTCL-8260-R2(14)	
L2016610-03C	Vial HCl preserved	Α	NA		3.6	Υ	Absent		NYTCL-8260-R2(14)	
L2016610-03D	Amber 250ml unpreserved	Α	7	7	3.6	Υ	Absent		NYCP51-PAHSIM-LVI(7)	
L2016610-03E	Amber 250ml unpreserved	Α	7	7	3.6	Υ	Absent		NYCP51-PAHSIM-LVI(7)	
L2016610-04A	Vial HCI preserved	Α	NA		3.6	Υ	Absent		NYTCL-8260-R2(14)	
L2016610-04B	Vial HCI preserved	Α	NA		3.6	Υ	Absent		NYTCL-8260-R2(14)	
L2016610-04C	Vial HCI preserved	Α	NA		3.6	Υ	Absent		NYTCL-8260-R2(14)	
L2016610-04D	Amber 250ml unpreserved	Α	7	7	3.6	Υ	Absent		NYCP51-PAHSIM-LVI(7)	
L2016610-04E	Amber 250ml unpreserved	Α	7	7	3.6	Υ	Absent		NYCP51-PAHSIM-LVI(7)	
L2016610-05A	Vial HCI preserved	Α	NA		3.6	Υ	Absent		NYTCL-8260-R2(14)	
L2016610-05B	Vial HCl preserved	Α	NA		3.6	Υ	Absent		NYTCL-8260-R2(14)	
L2016610-05C	Vial HCl preserved	Α	NA		3.6	Υ	Absent		NYTCL-8260-R2(14)	

Lab Number: L2016610

Report Date: 04/27/20

Project Name: 100 BUCKLEY RD SYRACUSE

Project Number: 2201387

Container Information			Initial	Final	Temp			Frozen		
Container ID	Container Type	Cooler		рН		Pres	Seal	Date/Time	Analysis(*)	
L2016610-05D	Amber 250ml unpreserved	Α	7	7	3.6	Υ	Absent		NYCP51-PAHSIM-LVI(7)	
L2016610-05E	Amber 250ml unpreserved	Α	7	7	3.6	Υ	Absent		NYCP51-PAHSIM-LVI(7)	
L2016610-06A	Vial HCl preserved	Α	NA		3.6	Υ	Absent		NYTCL-8260-R2(14)	
L2016610-06B	Vial HCl preserved	Α	NA		3.6	Υ	Absent		NYTCL-8260-R2(14)	
L2016610-06C	Vial HCl preserved	Α	NA		3.6	Υ	Absent		NYTCL-8260-R2(14)	
L2016610-06D	Amber 250ml unpreserved	Α	7	7	3.6	Υ	Absent		NYCP51-PAHSIM-LVI(7)	
L2016610-06E	Amber 250ml unpreserved	Α	7	7	3.6	Υ	Absent		NYCP51-PAHSIM-LVI(7)	
L2016610-07A	Vial HCl preserved	Α	NA		3.6	Υ	Absent		NYTCL-8260-R2(14)	
L2016610-07B	Vial HCl preserved	Α	NA		3.6	Υ	Absent		NYTCL-8260-R2(14)	
L2016610-07C	Vial HCl preserved	Α	NA		3.6	Υ	Absent		NYTCL-8260-R2(14)	
L2016610-07D	Amber 250ml unpreserved	Α	7	7	3.6	Υ	Absent		NYCP51-PAHSIM-LVI(7)	
L2016610-07E	Amber 250ml unpreserved	Α	7	7	3.6	Υ	Absent		NYCP51-PAHSIM-LVI(7)	

Project Name: 100 BUCKLEY RD SYRACUSE Lab Number: L2016610
Project Number: 2201387 Report Date: 04/27/20

GLOSSARY

Acronyms

EDL

LOQ

MS

RPD

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

Report Format: DU Report with 'J' Qualifiers

Project Name:100 BUCKLEY RD SYRACUSELab Number:L2016610Project Number:2201387Report Date:04/27/20

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration

Report Format: DU Report with 'J' Qualifiers

Project Name:100 BUCKLEY RD SYRACUSELab Number:L2016610Project Number:2201387Report Date:04/27/20

Data Qualifiers

Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)

- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers

Project Name: 100 BUCKLEY RD SYRACUSE Lab Number: L2016610
Project Number: 2201387 Report Date: 04/27/20

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 16

Published Date: 2/17/2020 10:46:05 AM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-

Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

EPA TO-12 Non-methane organics

EPA 3C Fixed gases

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate.

EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

Дірна	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Rd, Suite 5 Albany, NY 12205: 14 Walker Way Tonawanda, NY 14150: 275 Cooper Ave, Suite 105			Page / of	7 9	Date Rec'd in Lab 4/12 /20					ALPHA Job # 610		
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information					Deliverables					Billing Information		
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project Location:		clay ra	ra cuse	158		ASP-A EQuIS (1	File)	ASP-	B S (4 File)	Same as Client	Info	
Client Information		Project # 220138	57	l	- 1			Other						
Client: La Bella	Associates	(Use Project name as F							uirement	Disposal Site Informa	ation			
Address: 300 St	ale St	Project Manager: 3	J-11 - 2 1000.						dards	Please identify below to applicable disposal facil				
Phone: 315 743	5-8441	Turn-Around Time	1513	FT . 5		250	NY Restricted Use Other					Disposal Facility:		
Fax:		Standa		Due Date				NY Unrestr				□ m □	NY	
		Rush (only if pre approve	(d)	# of Days	E .		NYC Sewer Discharge					Other:	-	
These samples have be							ANA	LYSIS		_		Sample Filtration	0	
Other project specific Please specify Metals		ents:					CP 5/2 60	SKO				Done Lab to do Preservation Lab to do (Please Specify bei	t a l	
ALPHA Lab ID Sample ID		mole ID	Collection Sample			Sampler's							3	
(Lab Use Only)		imple to	Date	Time	Matrix	Initials	173	3				Sample Specific Comr	ments e	
16610 01	5B-02, MW	-0	04-21	9:00	GW	27	X	X					5	
02	SB-04 MW	-02	04-21	9:30	GW	57	Y.	X					5	
03.	SB-06, MW	-03	04-21	10:00	eyz	EÍ	8	×					5	
04	58-14 UW		04-21	10:30	GW	ET	1x	1/2					9	
05	5B-17, MW	05	04-21	11:00	GW	£7	X	x					5	
0 %		06	04-21	11:15	GW	ET	X	×					5	
07	5B-20, MW		04-21	11:25	GW	27	x	7					5	
Preservative Code:	Container Code													
A = None P = Plastic Westboro: Certificate B = HCI A = Amber Glass Mansfield: Certificate C = HNO3 V = Vial Mansfield: Certificate D = H2SO4 G = Glass B = Bacteria Cup E = NaOH B = Bacteria Cup		Westboro: Certification Mansfield: Certification				reservative						Please print clearl and completely. S not be logged in a turnaround time cl start until any amb	amples can ind lock will not	
		Relinquished	d By:	4/4//	Date/Time (1)//20 15:31 20 14/21/20 19/15 //			Received By:			/Time /7/ 0 00:0	resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA'S TERMS & CONDITIONS. (See reverse side.)		
Form No: 01-25 HC (rev. 30)-Sept-2013)					/		-				(See levelse side	,	