

PHASE II SUBSURFACE INVESTIGATION REPORT

Widewaters Syracuse

5840 Bridge Street (not actual address) East Syracuse, New York 13057

> August 16, 2021 PSG Project Number: 21-323758.2

> > Prepared for:

Firstrust Bank

15 East Ridge Pike Conshohocken, Pennsylvania 19428

Engineers who understand your business

August 16, 2021

John Rooney Firstrust Bank 15 East Ridge Pike Conshohocken, Pennsylvania 19428

Subject: Phase II Subsurface Investigation Report Widewaters Syracuse 5840 Bridge Street (not actual address) East Syracuse, New York 13057 PSG Project Number: 21-323758.2

Dear Mr. Rooney:

PSG Engineering and Geology, D.P.C. (PSG) is pleased to provide the results of the assessment performed at the above-referenced property. The following report describes the field activities, methods, and findings of the Phase II Subsurface Investigation conducted at the above-referenced property.

This assessment was performed consistent with acceptable industry standards. The independent conclusions represent PSG's best professional judgment based upon existing conditions and the information and data available to us during the course of this assignment.

We appreciate the opportunity to provide these services. If you have any questions concerning this report, or if we can assist you in any other matter, please contact AJ Nosek at (716) 572-1408.

Sincerely,

PSG Engineering and Geology, D.P.C.

Jonathan Lokko Project Scientist

AJ Nosek National Client Manager

Apd: M. May

Jodi Markowsky Senior Project Manager

TABLE OF CONTENTS

1.0	Introduction	1
1.1	Purpose	1
1.2	Limitations	1
1.3	User Reliance	1
2.0	Site Background	2
2.1	Site Description	2
2.2	Site History	2
2.3	Geology and Hydrogeology	3
3.0	Field Activities	5
3.1	Preparatory Activities	5
3.7	1.1 Utility Clearance	5
3.7	1.2 Health and Safety Plan	5
3.2	Drilling Equipment	5
3.3	Sample Locations	5
3.4	Soil Boring	6
3.5	Groundwater Sampling	6
3.6	Soil Gas Sampling	6
3.7	Post-Sampling Activities	7
4.0	Data Analysis	B
4.1	Laboratory Analysis	8
4.2	Regulatory Agency Comparison Criteria	8
4.2	2.1 Groundwater	8
4.2	2.2 Soil Gas	8
4.3	Groundwater Sample Data Analysis	9
4.4	Soil Gas Sample Data Analysis	9
4.5	Discussion12	2
4.	5.1 Groundwater	2
4.	5.2 Soil Gas12	2
5.0	Summary and Conclusions13	3

ATTACHMENTS

- Tables1. Summary of Investigation Scope
 - 2. Groundwater Sample Laboratory Results Summary
 - 3. Soil Gas Sample Laboratory Results Summary

Figures 1. Site Vicinity Map

- 2. Topographic Map
- 3. Sample Location Map

Appendices A. Boring Logs

- B. Soil Gas Sampling Log
- C. Laboratory Analytical Report
- D. EPA Calculated VISLs-Commercial
- E. NYSDOH Soil Vapor/Indoor Air Decision Matrices

1.0 INTRODUCTION

1.1 Purpose

The purpose of the investigation was to evaluate the current groundwater conditions and the vapor intrusion pathway relating to the previously detected volatile organic compounds (VOCs). Firstrust Bank provided project authorization of PSG Proposal Number P21-323758.2.

1.2 Limitations

This report presents a summary of work conducted by PSG. The work includes observations of site conditions encountered and the analytical results provided by an independent third-party laboratory of samples collected during the course of the project. The number and location of samples were selected to provide the required information. It cannot be assumed that the limited available data are representative of subsurface conditions in areas not sampled.

Conclusions and/or recommendations are based on the observations, laboratory analyses, and the governing regulations. Conclusions and/or recommendations beyond those stated and reported herein should not be inferred from this document.

PSG warrants that the environmental consulting services contained herein were accomplished in accordance with generally accepted practices in the environmental engineering, geology, and hydrogeology fields that existed at the time and location of work. No other warranties are implied or expressed.

1.3 User Reliance

PSG was engaged by Firstrust Bank (the Addressee), or their authorized representative, to perform this investigation. The engagement agreement specifically states the scope and purpose of the investigation, as well as the contractual obligations and limitations of both parties. This report and the information therein, are for the exclusive use of the Addressee. This report has no other purpose and may not be relied upon, or used, by any other person or entity without the written consent of PSG. Third parties that obtain this report, or the information therein, shall have no rights of recourse or recovery against PSG, its officers, employees, vendors, successors or assigns. Any such unauthorized user shall be responsible to protect, indemnify and hold PSG, the Addressee and their respective officers, employees, vendors, successors and assigns harmless from any and all claims, damages, losses, liabilities, expenses (including reasonable attorneys' fees) and costs attributable to such use. Unauthorized use of this report shall constitute acceptance of, and commitment to, these responsibilities, which shall be irrevocable and shall apply regardless of the cause of action or legal theory pled or asserted.

This report has been completed under specific Terms and Conditions relating to scope, relying parties, limitations of liability, indemnification, dispute resolution, and other factors relevant to any reliance on this report. Any parties relying on this report do so having accepted PSG's standard Terms and Conditions, a copy of which can be found at <u>http://www.partneresi.com/terms-and-conditions.php.</u>

2.0 SITE BACKGROUND

2.1 Site Description

The subject property consists of two parcels of land comprising approximately 5.61 acres located on the south side of Widewaters Parkway, north and east of Phyllis Lane, within a commercial area of East Syracuse, Onondaga County, New York. The subject property is currently vacant land, with no buildings, improvements, or occupants.

The subject property is bound by Widewaters Parkway beyond which is Holiday Inn Express & Suites (5908 Widewaters Parkway) and Dunn Tire (5830 Bridge Street) to the north, vacant land to the east, warehouse and office (6615 Towpath Road) to the south, and Home Depot (5814 Bridge Street) and Cornerstone Paving contractor's office (5820 Phyllis Lane) to the west. Refer to Figure 1 for a site vicinity map showing site features and surrounding properties.

2.2 Site History

Partner Assessment Corporation (Partner) completed a *Phase I Environmental Site Assessment Report* (Phase I) for the subject property, dated July 1, 2021 on behalf of Firstrust Bank. According to the reviewed historical sources, the subject property was formerly undeveloped land and/or agricultural land from as early as 1895 through the 1950s. By 1966, debris piles and a drainage ditch were evident on the property, as well as one or two small sheds. A prior environmental report indicated that the area was likely used as a muck farm. By 1978, the southern portion of the property appeared to be used as a contractor storage yard, and by 1995, a significant quantity of stored materials and containers were evident on the southern portion of the property. In 1997, abandoned oil drums and other debris were removed from the site, as well as a significant quantity of contaminated soil. By 2006, the property was vacant grass land and has remained as such to present day.

The following recognized environmental condition (REC) was identified in the Partner Phase I:

Three spills (Spill Numbers: 9206711, 9304349 and 9600805) related to the identification of hazardous materials being improperly stored and/or handled at the subject property were reported to the New York State Department of Environmental Conservation (NYSDEC) between 1992 and 1996. A Phase I conducted at the subject property in 1997 indicated that the southern portion of the subject property was used as a contractor's storage yard beginning in at least 1978. During the site reconnaissance, the consultant identified five-gallon pails and 55-gallon drums of unidentifiable materials (presumably petroleum products) on the southern portion of the subject property. In addition, areas of mounded earth and debris piles were also identified. These conditions were identified as a REC and a Phase II subsurface investigation was recommended.

A Phase II subsurface investigation was conducted at the subject property in March 1997. The scope of work included the installation of test pits and monitoring wells for the collection of soil and groundwater samples. The following contaminants of concern were identified in soil and/or groundwater at the subject property in excess of regulatory criteria: trichloroethene (TCE), 1,2-dichloroethene (1,2-DCE), vinyl chloride, toluene and xylenes. Based on the soil and groundwater analytical results, remedial activities at the subject property were determined to be necessary.

By October 1997, construction/demolition debris had been removed from the subject property and disposed off-site, eight 55-gallon drums had been preliminarily characterized, sampled and overpacked, and an additional area exhibiting soil staining was identified. The drums were subsequently characterized and disposed in accordance with state regulations. Contaminated soils from three areas of concern located on the southern and western portions of the subject property were excavated on October 6 and 7, 1997. Soil confirmation samples collected from the sidewalls of the excavations were submitted for laboratory analysis. Detected concentrations of contaminants of concern were reported below the cleanup guidance values, except for a slight exceedance of 1,2-dichlrorethene in one location. Approximately 77 tons of soil were transported for off-site disposal. Post excavation groundwater samples collected following excavation activities showed a substantial decrease in the concentration of detectable contaminants of concern. Two additional test pits were installed in the vicinity of the newly identified area of staining. No visual and/or olfactory evidence or elevated photoionization detector (PID) readings were identified in the test pits.

Although concentrations of contaminants in the monitoring well located on the northern portion of the subject property (MW-1) were shown to have declined, chlorinated solvents detected in the monitoring well installed on the central portion of the subject property (MW-2) were not addressed. The Phase II report indicated that the chlorinated solvents may be migrating on-site from an offsite source and have the potential to impact future construction activities at the subject property.

The consultant concluded that based on the availability of municipal water in the subject property vicinity, the commercial/light industrial land use of the subject property vicinity, the proposed development of the subject property as a single-story slab on grade retail structure and the presence an asphalt paved parking area in the vicinity of the monitoring well impacted by chlorinated solvents, no further investigation was recommended.

Although all three spills associated with the remedial activities identified in the remedial activities report received regulatory closure, the identification of chlorinated solvents in groundwater at concentrations in excess of screening criteria represents a vapor intrusion concern for any future development. Additionally, based on the shallow depth to groundwater (approximately 4 to 6 feet below ground surface (bgs), the presence of chlorinated solvents in groundwater is also a concern for construction workers. Based on the historic presence of chlorinated solvents in groundwater at the subject property, this condition represents a REC.

2.3 Geology and Hydrogeology

Review of the United States Geological Survey (USGS) *Syracuse East, New York* Quadrangle topographic map, indicates the subject property is situated approximately 450 feet above mean sea level, and the local topography is sloping gently to the northwest. Refer to Figure 2 for a topographic map of the site vicinity

According to USGS New York State Geology Online Spatial Data, geologic rock formations in the area of the subject property are part of the Syracuse Formation of Upper Silurian age, consisting of dolostone, shale, gypsum, and salt.

Based on borings advanced during this investigation, the underlying subsurface consists predominantly of brown silty sand with varying portions of gravel from the ground surface to approximately 7 feet below ground surface (bgs). From 7 to 10 feet bgs, the subsurface consists predominantly of gravish brown silty clay. From 10 to 12 feet bgs, the subsurface consists predominantly of fine brown sand to the terminal drilling depth of 12 feet bgs. Groundwater was encountered during this investigation between 5.3 and 10 feet bgs. Refer to Appendix A for boring logs from this investigation.

3.0 FIELD ACTIVITIES

The Phase II Subsurface Investigation scope included the advancement of four borings (B-1 through B-4) to collect investigative groundwater samples and the collection of four soil gas samples (SG-1 through SG-4). Refer to Table 1 for a summary of the borings, sampling schedule, and laboratory analyses for this investigation.

3.1 Preparatory Activities

Prior to the initiation of fieldwork, PSG completed the following activities.

3.1.1 Utility Clearance

NW Contracting (NW) notified Dig Safe New York to clear public utility lines as required by law at least three business days prior to drilling activities. Dig Safe New York issued ticket number 07201-001-635 for the project. In addition, PSG subcontracted with East Coast Geophysics, Inc. (ECG) of Bensalem, Pennsylvania on July 27, 2021 to clear boring locations of utilities. The geophysical survey was performed using a Geophysical Survey Systems Inc. SIR-3000 cart-mounted Ground Penetrating Radar (GPR) unit with a 400 Mhz antenna, TW-6 Metallic Locator, and Radio detection RD7000 precision utility locator.

A closely spaced rectilinear grid was established around the proposed boring locations. The grid was systematically traversed using electromagnetic induction (EM) equipment, GPR equipment, and/or utility tracers. The equipment data was interpreted in real time and compiled as necessary in order to identify subsurface anomalies consistent with utilities. Based on the findings of the GPR survey, no subsurface utilities were identified within the boring locations.

3.1.2 Health and Safety Plan

PSG prepared a site-specific Health and Safety Plan, which was reviewed with on-site personnel involved in the project prior to the commencement of drilling activities.

3.2 Drilling Equipment

On July 27, 2021, PSG subcontracted with NW to provide and operate drilling equipment. NW, under the direction of PSG, advanced borings B-1 through B-4 and temporary soil gas points SG-1 through SG-4 with a track-mounted Geoprobe Model 66DT direct-push rig. Sampling equipment was decontaminated between sample intervals and boring locations to prevent cross-contamination.

3.3 Sample Locations

Boring B-1 was advanced west of reported onsite monitoring well MW-2 location. Boring B-2 was advanced south of reported onsite monitoring well MW-2 location. Boring B-3 was advanced east of reported onsite monitoring well MW-2 location. Boring B-4 was advanced north of reported onsite monitoring well MW-2 location. Soil gas samples SG-1 through SG-4 were installed immediately adjacent to borings B-1 through B-4, respectively. Refer to Figure 3 for a map indicating sample locations.

3.4 Soil Boring

Borings B-1 through B-4 were located in unimproved areas. Borings B-1 through B-4 were advanced to a terminal depth of 12 feet bgs Soil borings B-1 through B-4 were each advanced using a 4-foot long by 2-inch diameter MacroCore sampler with a 4-foot-long acetate liner, which was advanced by the direct-push drill rig using 4-foot long by 1.5-inch diameter drill rods. The samplers were driven into the subsurface to allow undisturbed soil to enter the open MacroCore barrel and retrieved to recover the soil-filled liners. A lengthwise section of each acetate liner was removed with a splitting tool to expose the soil and the samples were collected. The soil column at each boring was visually inspected for discoloration, monitored for odors and classified in accordance with the Unified Soil Classification System (USCS). Additionally, the soil column was field screened with a photoionization detector (PID) calibrated to 100 parts per million (ppm) isobutylene.

No olfactory evidence of impacted conditions were detected on the soil profile screened from any of the borings. PID readings on the soil profile screened from borings B-1 through B-4 ranged from 0.1 ppm to 0.2 ppm. Refer to Appendix A for boring logs from this investigation.

3.5 Groundwater Sampling

Temporary well points B-1GW through B-4GW were respectively installed within soil borings B-1 through B-4. Temporary groundwater sampling points B-1GW through B-4GW consisted of 5 feet of 1-inch diameter polyvinyl chloride (PVC) screen. Groundwater samples B-1GW through B-4GW were retrieved using new dedicated disposal bailers. Groundwater samples from each temporary well were conveyed into three hydrochloric acid-preserved, 40 milliliter (mL) vials for submittal of samples for VOC analysis. Each vial was filled with no observable headspace or air bubbles to minimize the potential for volatilization, labeled for identification and stored in an iced-cooler.

3.6 Soil Gas Sampling

To facilitate the collection of soil gas samples, temporary soil gas sampling points SG-1 through SG-4 were installed adjacent to soil boring location B-1 through B-4, respectively. Soil gas sampling points SG-1, SG-3, and SG-4 were each screened from 2.0 to 2.5 feet bgs. Soil gas sampling point SG-2 was screened from 3.5 to 4.0 feet bgs. The soil gas sampling point consisted of a 6-inch prefabricated stainless-steel slotted screen. Sand was poured into the annulus to form a sand pack around the slotted screen and approximately 2 inches of dry, granular bentonite was placed atop the sand pack, and the remainder of the borehole was backfilled with hydrated bentonite to the ground surface to form a seal.

The soil gas sample was collected using a 2.7-liter, stainless-steel, cylindrical SUMMA® canisters. The sampling container was provided by Alpha Analytical Laboratories (Alpha), a state-certified laboratory in Westborough Massachusetts, which subjected the canister to a rigorous cleaning process using a combination of dilution, heat, and high vacuum. After cleaning, the canister was batch-certified to be free of target contaminants to a specified reporting limit via gas chromatography/mass spectroscopy prior to delivery.

PSG received the SUMMA® canisters evacuated approximately -29 inches of mercury. The SUMMA® canisters were fitted with stainless-steel flow controllers, which Alpha calibrated to maintain constant flow rate of 10 minutes of sampling time.

PSG purged each soil gas sampling point by connecting new Teflon sample tubing to a PID for approximately three minutes. PID readings ranging from 0.2 parts per million (ppm) to 1.2 ppm were detected during the purging of soil gas samples SG-1, SG-2, SG-3, and SG-4. Once the sampling trains were purged of ambient air, the sampling ends of the tubing were fitted to the sampling canisters and the port valves were opened, causing air to enter the sample containers due to the pressure differential. PSG closed the valves after the canisters were evacuated to approximately 0.6 to 1.2 inches of mercury and after the 10 minutes duration, with pertinent data (e.g., time, canister vacuum) recorded at the start and end of sampling. There was a false vacuum reading on SG-2 due to groundwater getting sucked into the canister. The SUMMA® canisters were labeled for identification and stored away from direct sunlight prior to analysis. Refer to Appendix B for the soil gas sampling log from this investigation.

3.7 Post-Sampling Activities

Probes/temporary well points and soil gas points were removed from the subsurface and the boreholes were backfilled with hydrated bentonite chips following sampling activities. Boreholes advanced in improved areas were capped with concrete or asphalt patch to match existing ground cover after being backfilled.

No significant amounts of derived wastes were generated during this investigation.

4.0 DATA ANALYSIS

4.1 Laboratory Analysis

PSG collected four groundwater samples B-1GW through B-4GW and four soil gas samples SG-1 through SG-4 on July 27, 2021 which were transported under chain-of-custody protocol to Alpha, a state-certified laboratory [Environmental Laboratory Accreditation Program (ELAP) certificate number 11148] in Westborough (groundwater) and Mansfield (soil gas), Massachusetts for analysis.

Groundwater samples B-1GW through B-4GW were analyzed for VOCs in accordance with EPA Method 8260. Soil gas samples SG-1, SG-3 and SG-4 were analyzed for VOCs in accordance with EPA Method TO-15. Soil gas sample SG-2 was not analyzed due to suction of groundwater in the canister which will present false analytical results data.

Laboratory analytical results are included in Appendix C and discussed below collected.

4.2 Regulatory Agency Comparison Criteria

4.2.1 Groundwater

The groundwater analytical results were compared to the NYSDEC New York Technical & Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards (AWQS).

4.2.2 Soil Gas

The EPA Office of Land and Emergency Management (OLEM) issued the guidance document "Office of Solid Waste and Emergency Response (OSWER) Technical Guide for Assessing and Mitigating the Vapor Intrusion Pathway from Subsurface Vapor Sources to Indoor Air," dated June 2015, to specifically address the "vapor intrusion pathway." The intent of this guidance document is to provide a tool to help the user conduct a screening evaluation as to whether the vapor intrusion exposure pathway to indoor air is complete and, if so, whether it poses an unacceptable risk to human health. The EPA recommends using an individual lifetime cancer risk of 10⁻⁶ as a point of departure for establishing cleanup levels based upon potential cancer effects.

Given the commercial development of the subject property, the soil gas samples were compared to the EPA Calculated 10⁻⁶ Target Soil Gas Concentrations for Carcinogens in the Commercial Exposure Scenario, which represents the most stringent Vapor Intrusion Screening Levels (VISLs) applicable to the subject property use; the EPA Calculated 10⁻⁵ Target Soil Gas Concentrations for Carcinogens in the Commercial Exposure Scenario, which represents the EPA's recommended VISLs for the vapor intrusion pathway applicable to the subject property use; and to the EPA Calculated 10⁻⁴ Target Soil Gas Concentrations for Carcinogens in the Commercial Exposure in the Commercial Exposure Scenario, which represents the Ieast stringent VISLs applicable to the subject property use. Exceedance of the 10⁻⁴ criteria typically indicates the need for remedial action.

Further, as multiple VOCs were identified and may be present in the soil gas samples, a Target Hazard Quotient of 0.1 was utilized to calculate the VISLs due to the potential for cumulative health effects. The criteria were produced by accessing the EPA Vapor Intrusion Screening Calculator (<u>https://epa-visl.ornl.gov/cgi-bin/visl search</u>). Refer to Appendix D for the EPA Calculated VISLs.

Neither the NYSDEC nor the New York State Department of Health (NYSDOH) provide direct sub-slab soil gas comparison criteria. However, the NYSDOH has established Soil Vapor/Indoor Air Matrices for various VOCs, which are included in Appendix E and are further discussed below.

4.3 Groundwater Sample Data Analysis

Five VOC analytes including 1,2-DCE, acetone, cis-1,2-DCE, TCE, and vinyl chloride were detected at concentrations above the laboratory method detection limits (MDLs) in the groundwater samples B-1GW through B-4GW collected from borings B-1 through B-4, respectively. Of the detected VOCs, the concentrations of cis-1,2-DCE [28 micrograms per liter (μ g/l)] and vinyl chloride (3.9 μ g/l) were reported above the TOGS 1.1.1 AWQS in the groundwater sample B-4GW. The remaining VOCs were not identified at concentrations above the TOGS 1.1.1 AWQS. Refer to Table 2 for a summary of the groundwater sample laboratory analysis results.

4.4 Soil Gas Sample Data Analysis

4.4.1 EPA VISLs

As shown in Table 3, thirty VOC analytes were detected at concentrations above the laboratory reporting limits (RLs) in soil gas samples SG-1 and SG-3 through SG-4. Of the detected VOCs, TCE was detected in SG-1 at a concentration of 110 micrograms per cubic meter (μ g/m³) which exceeds the 10⁻⁶, 10⁻⁵, and 10⁻⁴ Target Soil Gas Concentrations for Carcinogens for the Commercial Exposure. All the detected VOCs in soil gas samples were below the most stringent EPA VISL 10⁻⁶ Target Soil-Gas Concentrations for Carcinogens in the Commercial scenario.

Refer to Table 3 for a summary of the soil gas sample VOCs laboratory analysis results.

4.4.2 NYSDOH Decision Matrices

NYSDOH Decision Matrix A

The NYSDOH Soil Vapor/Indoor Air Matrix A (May 2017), a copy of which is provided as Appendix E, was designed to compare TCE, cis-1,2-DCE, 1,1-DCE and carbon tetrachloride sub-slab analytical results with their respective indoor air analytical results, and by extension, to determine the necessity for mitigation. Indoor air samples were not collected during this investigation.

As shown in Table 3, TCE was detected in soil gas samples SG-1 (110 μ g/m³) and SG-4 (2.99 μ g/m³). When entering the highest TCE concentration detected in soil gas sample SG-1 into Matrix A in the sub-slab soil gas sample entry row "60 μ g/m³ and above", the matrix returns a value of "mitigate" regardless of the indoor air concentration of TCE. As TCE was additionally identified above the 10⁻⁶, 10⁻⁵, and 10⁻⁴ Target Soil Gas Concentrations for Carcinogens in the Commercial Exposure Scenario in soil gas sample SG-1, further investigation and/or mitigation regarding TCE is recommended.

The following table compares the highest TCE concentration detected during this investigation to the applicable NYSDOH Matrix A guidance recommendations (highlighted in yellow):

		Indoor Air = Not Sampled				
Matrix A - TCE		< 0.2	0.2 to < 1	1 and above		
110 µg/m3	< 6	No further action	No turther action	ldentify source(s) and resample or mitigate		
П	6 to < 60	No further action	Monitor	Mitigate		
Soil Gas SG-1	60 and above	Mitigate	Mitigate	Mitigate		

Cis-1,2-DCE was detected in soil gas sample SG-1 (8.45 μ g/m³). When entering the cis-1,2-DCE concentration detected in soil gas sample SG-1 into Matrix A in the sub-slab soil gas sample entry row "6 to <6 μ g/m³," the matrix returns a value of either "no further action" or "monitor" or "mitigate" depending on the indoor air concentration of cis-1,2-DCE. Cis-1,2-DCE was not detected above the laboratory reporting limit in soil gas samples SG-3 and SG-4.

The following table compares the cis-1,2-DCE concentration detected during this investigation to the applicable NYSDOH Matrix A guidance recommendations (highlighted in yellow):

		Indoor Air = Not Sampled				
Matrix	A - cis-1,2-DCE	< 0.2	0.2 to < 1	1 and above		
8.45 µg/m3	< 6	No further action	No further action	ldentify source(s) and resample or mitigate		
Ш	6 to < 60	No further action	Monitor	Mitigate		
Soil Gas SG-1	60 and above	Mitigate	Mitigate	Mitigate		

1,1-DCE, and carbon tetrachloride were not detected at concentrations above the laboratory RLs in the soil gas samples SG-1, SG-3, and SG-4. Based on this information, no further investigation/mitigation appears to be warranted regarding 1,1-DCE and carbon tetrachloride.

NYSDOH Decision Matrix B

The NYSDOH Soil Vapor/Indoor Air Matrix B (May 2017), a copy of which is provided as Appendix E, was designed to compare PCE, 1,1,1-TCA, and methylene chloride sub-slab analytical results with their respective indoor air analytical results, and by extension, to determine the necessity for mitigation. Indoor air samples were not collected during this investigation.

As shown in table 3, PCE was detected in soil gas samples SG-1 (2.96 μ g/m³), SG-3 (11 μ g/m³), and SG-4 (7.05 μ g/m³). When entering the highest PCE concentration detected in sub-slab soil gas sample SG-3 into Matrix B in the sub-slab soil gas sample entry row "<100 μ g/m³," the matrix returns a value of either "no further action" or "identify source(s) and resample or mitigate" depending on the indoor air concentrations, identify source(s), and resample or mitigate. Indoor air samples were not collected as a part of this investigation. The concentrations of PCE detected in sub-slab soil gas samples SG-1, SG-3 and SG-4 were not identified above the most stringent 10⁻⁶ Target Soil Gas Concentrations for Carcinogens in the Commercial Exposure Scenario. Based on this information, no further investigation/mitigation appears to be warranted regarding PCE.

The following table compares the highest PCE concentration detected during this investigation to the applicable NYSDOH Matrix B guidance recommendations (highlighted in yellow):

Matrix B - PCE		Indoor Air = Not Sampled				
		< 3	< 3 3 to < 10 10 an			
Soil Gas SG-3=11 µg/m3	< 100	No further action	No further action	Identify source(s) and resample or mitigate		
.=8-9S	100 to < 1,000	No further action	Monitor	Mitigate		
Soil Gas	1,000 and above	Mitigate	Mitigate	Mitigate		

1,1,1-TCA and methylene chloride were not detected at concentrations above the laboratory RLs in soil gas samples SG-1, SG-3 and SG-4. Based on this information, no further investigation/mitigation appears to be warranted regarding 1,1,1-TCA and methylene chloride.

NYSDOH Decision Matrix C

The NYSDOH Soil Vapor/Indoor Air Matrix C (May 2017), a copy of which is provided as Appendix E, was designed to compare vinyl chloride sub-slab analytical results with their respective indoor air analytical results, and by extension, to determine the necessity for mitigation. Indoor air samples were not collected during this investigation. Vinyl chloride was not detected at concentrations above the laboratory RLs in soil gas samples SG-1, SG-3 and SG-4. Based on this information, no further investigation/mitigation appears to be warranted regarding vinyl chloride.

Refer to Table 3 for a summary of the soil gas sample VOCs laboratory analysis results.

4.5 Discussion

4.5.1 Groundwater

As presented in Table 2, concentrations of VOCs (cis-1,2-DCE and vinyl chloride) were detected in groundwater samples collected from borings B-4 at concentrations above their corresponding their applicable NYSDEC AWQS. Based on the groundwater analytical results, there is evidence of groundwater impacts at the subject property. Based on these findings, further groundwater investigation or monitoring warranted.

4.5.2 Soil Gas

Based on the analytical results of the soil gas samples compared to EPA criteria, there is evidence of TCE, impacts in soil gas below the subject property. Further, comparison of the TCE concentrations detected in soil gas sample SG-1 to the NYSDOH Decision Matrices indicates the need for additional investigation and/or mitigation of TCE impacts.

5.0 SUMMARY AND CONCLUSIONS

PSG conducted a Phase II Subsurface Investigation at the subject property to evaluate the current groundwater conditions and the vapor intrusion pathway relating to the previously detected VOCs.

The scope of the Phase II Subsurface Investigation the advancement of four borings (B-1 through B-4) to collect representative groundwater samples and the installation of four temporary soil gas sampling points (SG-1 through SG-4) to collect soil gas samples.

Four groundwater samples B-1GW through B-4GW and three soil gas samples SG-1, SG-3 and SG-4 were analyzed for VOCs.

The groundwater analytical results indicate that VOCs (cis-1,2-DCE and vinyl chloride) were detected in groundwater samples collected from borings B-4 at concentrations above their corresponding their applicable NYSDEC AWQS. Based on the groundwater analytical results, there is evidence of groundwater impacts at the subject property.

Based on the analytical results of the soil gas samples compared to EPA criteria, there is evidence of TCE impacts in soil gas below the subject property. Further, comparison of the TCE concentrations detected in soil gas sample SG-1 to the NYSDOH Decision Matrices indicates the need for additional investigation and/or mitigation of TCE impacts.

Based on these findings, further groundwater investigation and vapor assessment is warranted at the subject property.

TABLES

Table 1: Summary of Investigation Scope Widewaters Syracus-Vacant Land 5840 Bridge Street (not actual address) East Syracuse, New York 13057 PSG Project Number 21-323758.2 July 27, 2021

Boring Identification	REC/Issue	Location	Terminal Depth (feet bqs)	Sample Identification	Matrix Sampled	Sampling Depths (feet bgs)	Target Analytes
B-1		West of reported onsite monitoring well MW-2 location	12.0	B-1GW		7.0-12.0	
В-2		South of reported onsite monitoring well MW-2 location	12.0	B-2GW	Groundwater	7.0-12.0	VOCs (8260)
В-3		East of reported onsite monitoring well MW-2 location	12.0	B-3GW	Groundwater	7.0-12.0	VOCS (8260)
В-4	On-site groundwater	North of reported onsite monitoring well MW-2 location	12.0	B-4GW		7.0-12.0	
SG-1	contamination	Adjacent to boring B-1 location	2.5	SG-1		2.0-2.5	
SG-2	-	Adjacent to boring B-2 location	4.0	SG-2	Soil ass	3.5-4.0	VOCs (TO-15)
SG-3		Adjacent to boring B-3 location	2.5	SG-3	Soil gas	2.0-2.5	VOCS (10-13)
SG-4		Adjacent boring B-4 location	2.5	SG-4		2.0-2.5	

Notes:

VOCs (8260) = Volatile organic compounds in accordance with United States Environmental Protection Agency (EPA) method 8260

VOCs (TO-15) = Volatile organic compounds in accordance with United States Environmental Protection Agency (EPA) method TO-15

REC = Recognized environmental condition

bgs = Below ground surface

Table 2: Groundwater Sample Laboratory Results Summary Widewaters Syracuse-Vacant Land 5840 Bridge Street (not actual address) East Syracuse, New York 13057 PSG Project Number 21-323758.2 July 27, 2021

Analyte	NY-AWQS	B-1GW	B-2GW	B-3GW	B-4GW
	VOCs	via EPA method 826	0 (µg/l)		
1,2-Dichloroethene, Total	NE	2.1J	<2.5	<2.5	28
Acetone	50	4.8J	3.2J	5.2	3.2J
cis-1,2-Dichloroethene	5	2.1J	<2.5	<2.5	28
Trichloroethene	5	0.86	<0.5	<0.5	0.99
Vinyl chloride	2	0.61J	0.14J	<1	3.9

Notes:

NY-AWQS=New York TOGS 111 Ambient Water Quality Standards criteria reflects all addendum to criteria through June 2004.

VOCs = Volatile Organic Compounds in accordance with Environmental Protection Agency (EPA) method 8260

EPA = United States Environmental Protection Agency

μg/l = micrograms per liter

NE = Not established

Exceeds standard

Table 3: Soil Gas Sample Laboratory Results Summary Widewaters Syracuse-Vacant Land 5840 Bridge Street (not actual address) East Syracuse, New York 13057 PSG Project Number 21-323758.2 July 27, 2021

Analyte	EPA Commercial VISL (10 ⁻⁶)*	EPA Commercial VISL (10 ⁻⁵)*	EPA Commercial VISL (10 ⁻⁴)*	SG-1	SG-3	SG-4
	VO	Cs via EPA Metho	od TO-15 (μg/m ³))		
1,2,4-Trimethylbenzene	876	876	876	63.9	66.4	51.1
1,2-Dichloroethene (total)	NE	NE	NE	8.45	<0.793	<0.793
1,3,5-Trimethylbenzene	876	876	876	30.4	31.1	23.5
1,3-Butadiene	13.6	29.2	29.2	2.11	4.76	1.27
2-Butanone	73000	73000	73000	11.1	44.5	25.8
2-Hexanone	438	438	438	<0.82	12.5	3.48
4-Ethyltoluene	NE	NE	NE	<0.983	7.72	5.41
4-Methyl-2-pentanone	43800	43800	43800	<2.05	11.5	15.4
Acetone	451000	451000	451000	143	290	235
Benzene	52.4	438	438	22.7	24.7	35.1
Carbon disulfide	10200	10200	10200	3.61	12.1	8.38
Carbon tetrachloride	68.1	681	1460	<1.26	<1.26	14.5
Chloroform	17.8	178	1430	2.85	2.74	4.09
Chloromethane	1310	1310	1310	<0.413	1.16	0.859
cis-1,2-Dichloroethene	NE	NE	NE	8.45	<0.793	<0.793
Cyclohexane	87600	87600	87600	50.3	27.6	46.5
Dichlorodifluoromethane	1460	1460	1460	2.96	1.67	2.91
Ethyl Alcohol	NE	NE	NE	<9.42	29	33.2
Ethylbenzene	164	1640	14600	5.04	17.7	10.6
Heptane	5840	5840	5840	67.2	39.3	66.4
iso-Propyl Alcohol	2920	2920	2920	2.21	7.03	8.85
n-Hexane	10200	10200	10200	101	57.1	103
o-Xylene	1460	1460	1460	47.3	58.2	41.5
p/m-Xylene	NE	NE	NE	27.9	67.3	50.4
tert-Butyl Alcohol	NE	NE	NE	<1.52	7.34	11.2
Tetrachloroethene	584	584	584	2.96	11	7.05
Toluene	73000	73000	73000	20.1	84.4	69.3
Trichloroethene	29.2	29.2	29.2	110	<1.07	2.99
Trichlorofluoromethane	NE	NE	NE	77.6	1.34	8.09
Xylene (Total)	1460	1460	1460	75.1	126	92.1

Notes:

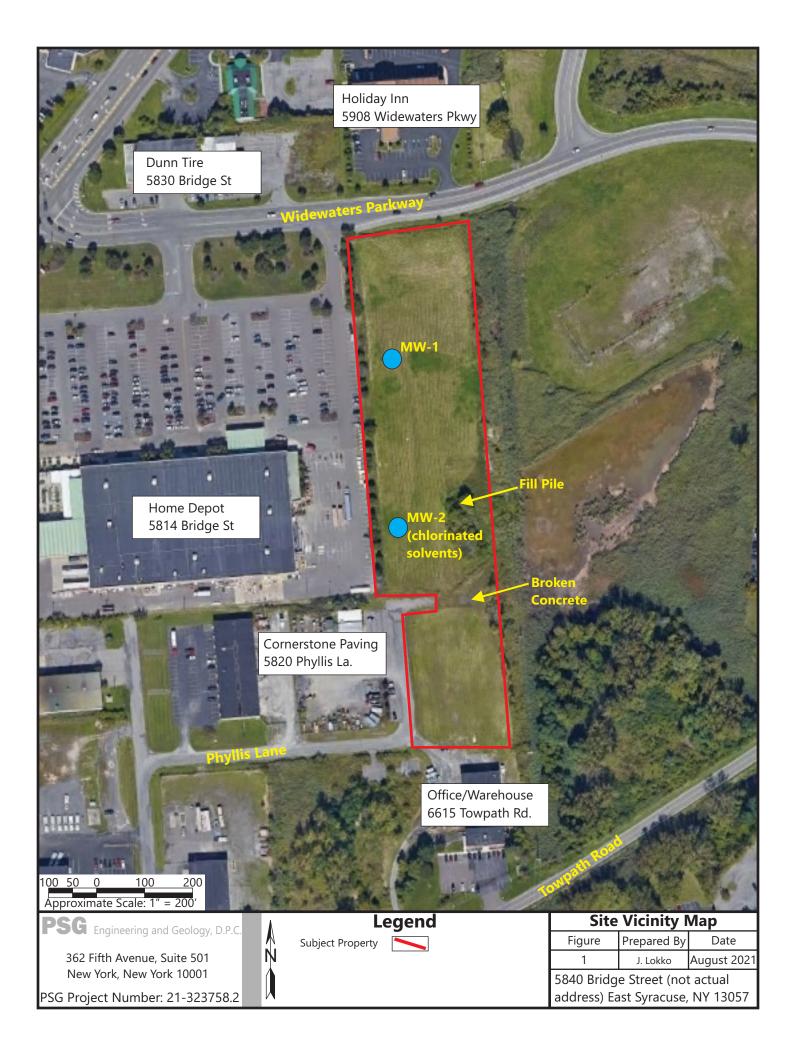
VOCs = Volatile Organic Compounds

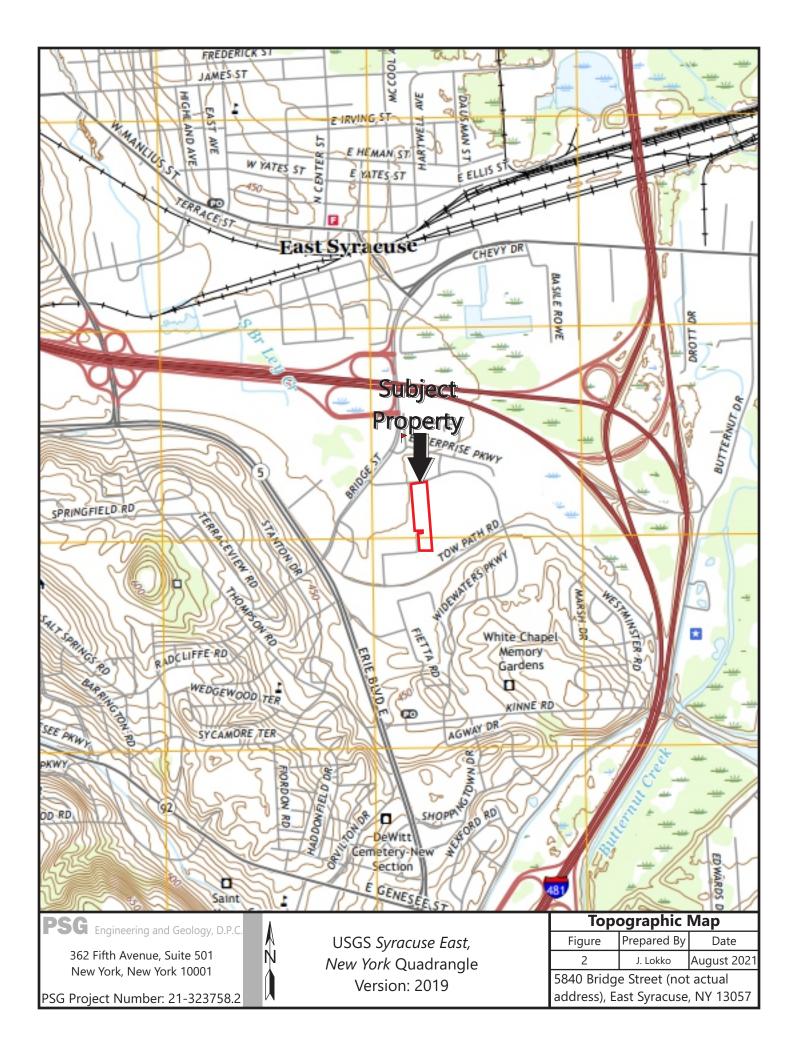
EPA = United States Environmental Protection Agency

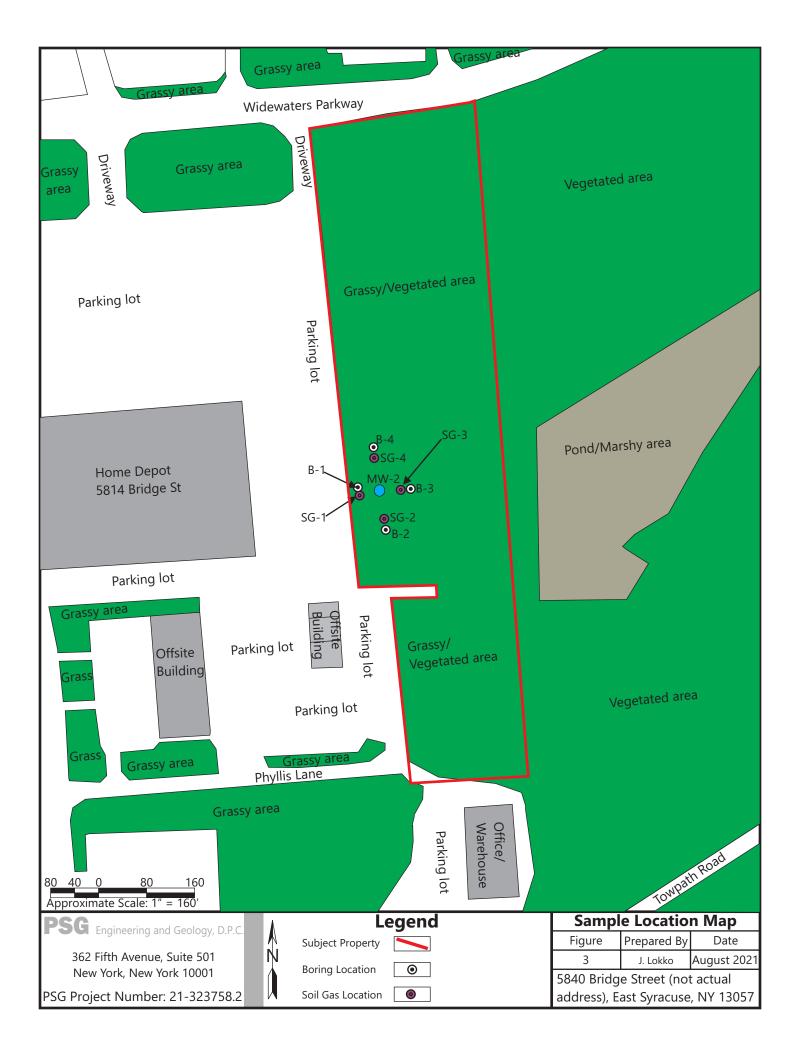
 $\mu g/m^3$ = micrograms per cubic meter

VISL = Vapor Intrusion Screening Level

* = Target Soil-Gas Concentrations for Carcinogens in the Commercial Exposure Scenario


< = not detected above the indicated laboratory reporting limit (RL)


Exceeds standard



FIGURES

APPENDIX A: BORING LOGS

Boring I	Number:	B-1				Page 1 of 1			
Locatio	า:	West o	f report	ed onsite monitoring well MW-2 location	Date Started: 7/27/2021				
Site Address:		5840 B	ridge S	treet (not actual address)	Date Completed:	7/27/2021			
Site Address:			racuse	, New York 13057	Depth to Groundwater:	5.3 feet			
Project	Number:	21-323	758.2		Field Technician:	Jonathan Lokko			
Drill Rig	Туре:	Geopr	obe 66[DT	PSG Engineering and	Geology, D.P.C			
Sampling	g Equipment:	4 ft Ma	acrocor	es	362 Fifth Avenue	e, Suite 501			
Borehole	e Diameter:	2 inch			New York, New	/ork 10001			
Depth	Sample	PID	USCS	Description	Notes				
1		0.0							
2		0.1							
3		0.2	SM	Brown silty Sand with gravel	3.5 feet recovery. No odors or staining observed.				
_		-							
4		0.1							
5		0.0							
6		0.0	SM	Brown silty Sand with gravel, wet	3.0 feet recovery. No odors or staining observed.				
7		0.0							
8		0.0	CL	Grayish brown silty Clay, wet					
9		0.0							
10		0.0	CL	Grayish brown silty Clay, wet					
_		0.0			3.5 feet recovery. No odors of	or staining observed.			
11	11		SM	Brown fine Sand, saturated					
12		0.0							
				Boring terminated at 12.0 feet bgs	Boring converted to temporary we depth of 12.0 ft; screened from the screened from t	-			

Boring I	Number:	B-2				Page 1 of 1		
Locatio	n:	South o	of repor	ted onsite monitoring well MW-2 location	Date Started: 7/27/2021			
Site Address:		5840 B	ridge S	treet (not actual address)	Date Completed:	7/27/2021		
Site Address'			vracuse,	, New York 13057	Depth to Groundwater:	8.0 feet		
Project	Number:	21-323	3758.2		Field Technician:	Jonathan Lokko		
Drill Rig	Туре:	Geopr	obe 66[DT	PSG Engineering and	Geology, D.P.C		
Sampling	g Equipment:	4 ft Ma	acrocor	es	362 Fifth Avenue	e, Suite 501		
Borehole	e Diameter:	2 inch			New York, New Y	York 10001		
Depth	Sample	PID	USCS	Description	Notes			
1		0.0						
2		0.1						
3		0.1	SM	Brown silty Sand with gravel	3.5 feet recovery. No odors or staining observed.			
4		0.1						
5		0.1						
6		0.1	SM	Brown silty Sand with gravel	3.0 feet recovery. No odors or staining observed.			
7		0.0			3.0 feet recovery. No odors o	or staining observed.		
8		0.0	CL	Grayish brown silty Clay, wet at 8 feet				
9		0.0						
10		0.0	CL	Grayish brown silty Clay, wet				
11					3.8 feet recovery. No odors	or staining observed.		
	0.0 SM		SM	Brown fine Sand, saturated				
12		0.0						
				Boring terminated at 12.0 feet bgs	Boring converted to temporary we depth of 12.0 ft; screened from the screened from t			

Boring I	Number:	B-3				Page 1 of 1		
Locatio	n:	East of	reporte	ed onsite monitoring well MW-2 location	Date Started: 7/27/2021			
Site Address [.]		5840 E	ridge S	treet (not actual address)	Date Completed:	7/27/2021		
Site Address.			racuse,	, New York 13057	Depth to Groundwater:	6.5 feet		
Project	Number:	21-323	3758.2		Field Technician:	Jonathan Lokko		
Drill Rig	Туре:	Geopr	obe 66[Т	PSG Engineering and	Geology, D.P.C		
-	g Equipment:		acrocor	es	362 Fifth Avenue	•		
Borehole	e Diameter:	2 inch			New York, New Y	York 10001		
Depth	Sample	PID	USCS	Description	Notes			
1		0.0						
2		0.2				or staining observed.		
3		0.2	SM	Brown silty Sand with gravel	3.5 feet recovery. No odors of			
4		0.2						
5		0.1						
6		0.1	SM	Brown silty Sand with gravel, wet 6.5 feet				
7		0.0			3.0 feet recovery. No odors of	or staining observed.		
8		0.0	CL	Grayish brown silty Clay, moist				
9		0.0						
10		0.0						
11		0.0	SM	Brown fine Sand, saturated	3.8 feet recovery. No odors of	or staining observed.		
12		0.0						
				Boring terminated at 12.0 feet bgs	Boring converted to temporary we depth of 12.0 ft; screened fro			

Boring I	Number:	B-4				Page 1 of 1		
Locatio	n:	North o	of repor	ted onsite monitoring well MW-2 location	Date Started: 7/27/2021			
Site Address:		5840 B	Bridge S	treet (not actual address)	Date Completed:	7/27/2021		
Site Address:			/racuse	, New York 13057	Depth to Groundwater:	7.0 feet		
Project	Number:	21-323	3758.2		Field Technician:	Jonathan Lokko		
Drill Rig	Type:	Geopre	obe 66[Т	PSG Engineering and	Geology, D.P.C		
	g Equipment:	4 ft Ma	acrocor	es	362 Fifth Avenue	•		
Borehole	e Diameter:	2 inch			New York, New Y	York 10001		
Depth	Sample	PID	USCS	Description	Notes			
1		0.0						
2		0.0						
3		0.0	SM	Brown silty Sand with gravel	3.5 feet recovery. No odors	dors or staining observed.		
4		0.0						
5		0.0						
6		0.0	SM	Brown silty Sand with gravel, wet 6.5 feet	3.0 feet recovery. No odors or staining observed.			
7		0.0			3.0 feet recovery. No odors o	or staining observed.		
8		0.0	CL	Grayish brown silty Clay, moist				
9		0.0						
10		0.0	SM	Drown fine Cond. seturated	2.9 fact receivery. No odore	ar staining abconud		
11	11	0.0	21/1	Brown fine Sand, saturated	3.8 feet recovery. No odors of	or standing observed.		
12		0.0						
				Boring terminated at 12.0 feet bgs	Boring converted to temporary we depth of 12.0 ft; screened fro			

APPENDIX B: SOIL GAS SAMPLING LOG

Appendix B: Soil Gas	Sampling Log				Page 1 of 1
Site Address:	5840 Bridge Stree	address)	Date Sampled:	7/27/2021	
Sile Address.	East Syracuse, Ne	w York 13057	PSG Engineering and Geology, D.P.		
Project Number:	21-323758.2			365 Fifth Avenu	ue, Suite 501
Field Technician:	Jonathan Lokko			New York, New	v York 10001
Sample ID: SG-1	Canister # 3210		Flow Controller # 02118	Note	es
Location: Adjacent to b	ooring B-1 location	Time	Vacuum		
	Initial:	11:13	-29.08	Maximum PID rea during purgin	5
	Final:	11:23	-2.67		
Sample ID: SG-2	Canister # 3242		Flow Controller # 01227	Note	es
Location: Adjacent to b	ooring B-2 location	Time	Vacuum	Maximum PID reading obser during purging: 0.9 ppm. Fa	
	Initial:	11:43	-29.26	vacuum readinngs realised in canister due to suction c	
	Final:	11:53	-21.30	canister due to groundv	
Sample ID: SG-3	Canister # 2769		Flow Controller # 01050	Note	es
Location: Adjacent to b	ooring B-3 location	Time	Vacuum	Maximum PID rea	iding observed
	Initial:	15:00	-29.13	during purgin	g: 0.2 ppm
	Final:	15:10	0.65		
Sample ID: SG-4	Canister # 3171		Flow Controller # 0864	Note	es
Location:Adjacent to boring B-4 location		Time	Vacuum	Maximum DID	din e ale como l
	Initial:	14:56	-29.12	Maximum PID rea during purgin	5
	Final:	15:06	-1.51		

APPENDIX C: LABORATORY ANALYTICAL REPORT

ANALYTICAL REPORT

Lab Number:	L2140362
Client:	Partner Engineering & Science, Inc. 611 Industrial Way W. Eatontown, NJ 07724
ATTN:	Jonathan Lokko
Phone:	(732) 380-1700
Project Name:	21-323758.2
Project Number:	21-323758.2
Report Date:	08/03/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:08032110:28

Project Name:	21-323758.2
Project Number:	21-323758.2

 Lab Number:
 L2140362

 Report Date:
 08/03/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2140362-01	B-1GW	WATER	BRIDGE STREET, EAST SYRACUSE, NY	07/27/21 11:55	07/27/21
L2140362-02	B-2GW	WATER	BRIDGE STREET, EAST SYRACUSE, NY	07/27/21 11:30	07/27/21
L2140362-03	B-3GW	WATER	BRIDGE STREET, EAST SYRACUSE, NY	07/27/21 14:40	07/27/21
L2140362-04	B-4GW	WATER	BRIDGE STREET, EAST SYRACUSE, NY	07/27/21 15:15	07/27/21

 Project Name:
 21-323758.2

 Project Number:
 21-323758.2

 Lab Number:
 L2140362

 Report Date:
 08/03/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

 Project Name:
 21-323758.2

 Project Number:
 21-323758.2

 Lab Number:
 L2140362

 Report Date:
 08/03/21

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

L2140362-02: The collection date and time on the chain of custody was 27-JUL-21 11:35; however, the collection time on the container label was 11:30. At the client's request, the collection date/time is reported as 27-JUL-21 11:30.

L2140362-04B: Headspace was noted in the sample container submitted for Volatile Organics.

Volatile Organics

L2140362-01, -02, -03, and -04: The pH of the sample was greater than two; however, the sample was analyzed within the method required holding time.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Cattlin Wallen Caitlin Walukevich

Title: Technical Director/Representative

Date: 08/03/21

ORGANICS

VOLATILES

		Serial_N	o:08032110:28
Project Name:	21-323758.2	Lab Number:	L2140362
Project Number:	21-323758.2	Report Date:	08/03/21
	SAMPLE RESULTS		
Lab ID:	L2140362-01	Date Collected:	07/27/21 11:55
Client ID:	B-1GW	Date Received:	07/27/21
Sample Location:	BRIDGE STREET, EAST SYRACUSE, NY	Field Prep:	Not Specified
Sample Depth:	Weter		

Matrix:	Water
Analytical Method:	1,8260C
Analytical Date:	07/30/21 16:02
Analyst:	MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westborough Lab							
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1	
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	0.61	J	ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	

		Serial_No:08032110:28			
Project Name:	21-323758.2	Lab Number:	L2140362		
Project Number:	21-323758.2	Report Date:	08/03/21		
	SAMPLE RESULTS				
Lab ID:	L2140362-01	Date Collected:	07/27/21 11:55		
Client ID:	B-1GW	Date Received:	07/27/21		
Sample Location:	BRIDGE STREET, EAST SYRACUSE, NY	Field Prep:	Not Specified		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westborough Lab							
Trichloroethene	0.86		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1	
o/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
Xylenes, Total	ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	2.1	J	ug/l	2.5	0.70	1	
1,2-Dichloroethene, Total	2.1	J	ug/l	2.5	0.70	1	
Dibromomethane	ND		ug/l	5.0	1.0	1	
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1	
Acrylonitrile	ND		ug/l	5.0	1.5	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	4.8	J	ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.9	1	
Vinyl acetate	ND		ug/l	5.0	1.0	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
Bromochloromethane	ND		ug/l	2.5	0.70	1	
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1	
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1	
Bromobenzene	ND		ug/l	2.5	0.70	1	
n-Butylbenzene	ND		ug/l	2.5	0.70	1	
sec-Butylbenzene	ND		ug/l	2.5	0.70	1	
ert-Butylbenzene	ND		ug/l	2.5	0.70	1	
p-Chlorotoluene	ND		ug/l	2.5	0.70	1	
p-Chlorotoluene	ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1	
				0.5	0.70	4	
sopropylbenzene	ND		ug/l	2.5	0.70	1	
sopropylbenzene p-lsopropyltoluene	ND ND		ug/l ug/l	2.5	0.70	1	

		Serial_No:08032110:28			
Project Name:	21-323758.2	Lab Number: L2140362			
Project Number:	21-323758.2	Report Date: 08/03/21			
	SAMPLE RESULTS				
Lab ID:	L2140362-01	Date Collected: 07/27/21 11:55			
Client ID:	B-1GW	Date Received: 07/27/21			
Sample Location:	BRIDGE STREET, EAST SYRACUSE, NY	Field Prep: Not Specified			

Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab							
ND		ug/l	2.5	0.70	1		
ND		ug/l	2.5	0.70	1		
ND		ug/l	2.5	0.70	1		
ND		ug/l	2.5	0.70	1		
ND		ug/l	2.5	0.70	1		
ND		ug/l	250	61.	1		
ND		ug/l	2.0	0.70	1		
ND		ug/l	2.0	0.70	1		
ND		ug/l	2.0	0.54	1		
ND		ug/l	2.5	0.70	1		
ND		ug/l	2.5	0.70	1		
	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ug/l ND ug/l ND ug/l ND ug/l ND ug/l ND ug/l ND ug/l ND ug/l ND ug/l ND ug/l	ND ug/l 2.5 ND ug/l 2.0 ND ug/l 2.0	ND ug/l 2.5 0.70 ND ug/l 2.0 0.54 ND ug/l 2.5 0.70		

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	95	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	98	70-130	
Dibromofluoromethane	109	70-130	

		Serial_No:08032110:28		
Project Name:	21-323758.2	Lab Number:	L2140362	
Project Number:	21-323758.2	Report Date:	08/03/21	
	SAMPLE RESULTS			
Lab ID:	L2140362-02	Date Collected:	07/27/21 11:30	
Client ID:	B-2GW	Date Received:	07/27/21	
Sample Location:	BRIDGE STREET, EAST SYRACUSE, NY	Field Prep:	Not Specified	
Sample Depth:				

Matrix:	Water
Analytical Method:	1,8260C
Analytical Date:	07/29/21 20:38
Analyst:	MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westborough Lab							
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1	
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	0.14	J	ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	

		Serial_No:08032110:28			
Project Name:	21-323758.2	Lab Number:	L2140362		
Project Number:	21-323758.2	Report Date:	08/03/21		
	SAMPLE RESULTS				
Lab ID:	L2140362-02	Date Collected:	07/27/21 11:30		
Client ID:	B-2GW	Date Received:	07/27/21		
Sample Location:	BRIDGE STREET, EAST SYRACUSE, NY	Field Prep:	Not Specified		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	3.2	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

		Serial_No:08032110:28		
Project Name:	21-323758.2	Lab Number:	L2140362	
Project Number:	21-323758.2	Report Date:	08/03/21	
	SAMPLE RESULTS			
Lab ID:	L2140362-02	Date Collected:	07/27/21 11:30	
Client ID:	B-2GW	Date Received:	07/27/21	
Sample Location:	BRIDGE STREET, EAST SYRACUSE, NY	Field Prep:	Not Specified	

Result	Qualifier	Units	RL	MDL	Dilution Factor
h Lab					
ND		ug/l	2.5	0.70	1
ND		ug/l	2.5	0.70	1
ND		ug/l	2.5	0.70	1
ND		ug/l	2.5	0.70	1
ND		ug/l	2.5	0.70	1
ND		ug/l	250	61.	1
ND		ug/l	2.0	0.70	1
ND		ug/l	2.0	0.70	1
ND		ug/l	2.0	0.54	1
ND		ug/l	2.5	0.70	1
ND		ug/l	2.5	0.70	1
	ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	h Lab ND ug/l ND ug/l ND ug/l ND ug/l ND ug/l ND ug/l ND ug/l ND ug/l ND ug/l	ND ug/l 2.5 ND ug/l 2.0 ND ug/l 2.0	ND ug/l 2.5 0.70 ND ug/l 2.0 0.54 ND ug/l 2.5 0.70

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	98	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	105	70-130	
Dibromofluoromethane	96	70-130	

		Serial_No:08032110:28		
Project Name:	21-323758.2	Lab Number:	L2140362	
Project Number:	21-323758.2	Report Date:	08/03/21	
	SAMPLE RESULTS			
Lab ID:	L2140362-03	Date Collected:	07/27/21 14:40	
Client ID:	B-3GW	Date Received:	07/27/21	
Sample Location:	BRIDGE STREET, EAST SYRACUSE, NY	Field Prep:	Not Specified	
Sample Depth:				
Matrix:	Water			

_						
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Analytical Method:

Analytical Date:

Analyst:

1,8260C

MKS

07/29/21 21:00

		Serial_No:08032110:28		
Project Name:	21-323758.2	Lab Number:	L2140362	
Project Number:	21-323758.2	Report Date:	08/03/21	
	SAMPLE RESULTS			
Lab ID:	L2140362-03	Date Collected:	07/27/21 14:40	
Client ID:	B-3GW	Date Received:	07/27/21	
Sample Location:	BRIDGE STREET, EAST SYRACUSE, NY	Field Prep:	Not Specified	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	5.2		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

		Serial_No:08032110:28		
Project Name:	21-323758.2	Lab Number:	L2140362	
Project Number:	21-323758.2	Report Date:	08/03/21	
	SAMPLE RESULTS			
Lab ID:	L2140362-03	Date Collected:	07/27/21 14:40	
Client ID:	B-3GW	Date Received:	07/27/21	
Sample Location:	BRIDGE STREET, EAST SYRACUSE, NY	Field Prep:	Not Specified	

Result	Qualifier	Units	RL	MDL	Dilution Factor
h Lab					
ND		ug/l	2.5	0.70	1
ND		ug/l	2.5	0.70	1
ND		ug/l	2.5	0.70	1
ND		ug/l	2.5	0.70	1
ND		ug/l	2.5	0.70	1
ND		ug/l	250	61.	1
ND		ug/l	2.0	0.70	1
ND		ug/l	2.0	0.70	1
ND		ug/l	2.0	0.54	1
ND		ug/l	2.5	0.70	1
ND		ug/l	2.5	0.70	1
	ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	h Lab ND ug/l ND ug/l ND ug/l ND ug/l ND ug/l ND ug/l ND ug/l ND ug/l ND ug/l	ND ug/l 2.5 ND ug/l 2.0 ND ug/l 2.0	ND ug/l 2.5 0.70 ND ug/l 2.0 0.54 ND ug/l 2.5 0.70

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	97	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	105	70-130	
Dibromofluoromethane	96	70-130	

		Serial_No:08032110:28		
Project Name:	21-323758.2	Lab Number:	L2140362	
Project Number:	21-323758.2	Report Date:	08/03/21	
	SAMPLE RESULTS			
Lab ID:	L2140362-04	Date Collected:	07/27/21 15:15	
Client ID:	B-4GW	Date Received:	07/27/21	
Sample Location:	BRIDGE STREET, EAST SYRACUSE, NY	Field Prep:	Not Specified	
Sample Depth:				
Matrix:	Water			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We		qualifier	onno			
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	3.9		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Analytical Method:

Analytical Date:

Analyst:

1,8260C

MKS

07/29/21 21:23

		Serial_No	p:08032110:28
Project Name:	21-323758.2	Lab Number:	L2140362
Project Number:	21-323758.2	Report Date:	08/03/21
	SAMPLE RESULTS		
Lab ID:	L2140362-04	Date Collected:	07/27/21 15:15
Client ID:	B-4GW	Date Received:	07/27/21
Sample Location:	BRIDGE STREET, EAST SYRACUSE, NY	Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Trichloroethene	0.99		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	28		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	28		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	3.2	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

		Serial_No:08032110:28
Project Name:	21-323758.2	Lab Number: L2140362
Project Number:	21-323758.2	Report Date: 08/03/21
	SAMPLE RESULTS	
Lab ID:	L2140362-04	Date Collected: 07/27/21 15:15
Client ID:	B-4GW	Date Received: 07/27/21
Sample Location:	BRIDGE STREET, EAST SYRACUSE, NY	Field Prep: Not Specified

Result	Qualifier	Units	RL	MDL	Dilution Factor
h Lab					
ND		ug/l	2.5	0.70	1
ND		ug/l	2.5	0.70	1
ND		ug/l	2.5	0.70	1
ND		ug/l	2.5	0.70	1
ND		ug/l	2.5	0.70	1
ND		ug/l	250	61.	1
ND		ug/l	2.0	0.70	1
ND		ug/l	2.0	0.70	1
ND		ug/l	2.0	0.54	1
ND		ug/l	2.5	0.70	1
ND		ug/l	2.5	0.70	1
	ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	h Lab ND ug/l ND ug/l ND ug/l ND ug/l ND ug/l ND ug/l ND ug/l ND ug/l ND ug/l	ND ug/l 2.5 ND ug/l 2.0 ND ug/l 2.0	ND ug/l 2.5 0.70 ND ug/l 2.0 0.54 ND ug/l 2.5 0.70

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	96	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	106	70-130	
Dibromofluoromethane	96	70-130	

 Project Name:
 21-323758.2

 Project Number:
 21-323758.2

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:07/29/21 19:29Analyst:AJK

arameter	Result	Qualifier Un	its	RL	MDL
olatile Organics by GC/MS - V	Vestborough Lat	o for sample(s)	: 02-04	Batch:	WG1529798-5
Methylene chloride	ND	u	g/l	2.5	0.70
1,1-Dichloroethane	ND	u	g/l	2.5	0.70
Chloroform	ND	u	g/l	2.5	0.70
Carbon tetrachloride	ND	u	g/l	0.50	0.13
1,2-Dichloropropane	ND	u	g/l	1.0	0.14
Dibromochloromethane	ND	u	g/l	0.50	0.15
1,1,2-Trichloroethane	ND	u	g/l	1.5	0.50
Tetrachloroethene	ND	u	g/l	0.50	0.18
Chlorobenzene	ND	u	g/l	2.5	0.70
Trichlorofluoromethane	ND	u	g/l	2.5	0.70
1,2-Dichloroethane	ND	u	g/l	0.50	0.13
1,1,1-Trichloroethane	ND	u	g/l	2.5	0.70
Bromodichloromethane	ND	u	g/l	0.50	0.19
trans-1,3-Dichloropropene	ND	u	g/l	0.50	0.16
cis-1,3-Dichloropropene	ND	u	g/l	0.50	0.14
1,3-Dichloropropene, Total	ND	u	g/l	0.50	0.14
1,1-Dichloropropene	ND	u	g/l	2.5	0.70
Bromoform	ND	u	g/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	u	g/l	0.50	0.17
Benzene	ND	u	g/l	0.50	0.16
Toluene	ND	u	g/l	2.5	0.70
Ethylbenzene	ND	u	g/l	2.5	0.70
Chloromethane	ND	u	g/l	2.5	0.70
Bromomethane	ND	u	g/l	2.5	0.70
Vinyl chloride	ND	u	g/l	1.0	0.07
Chloroethane	ND	u	g/l	2.5	0.70
1,1-Dichloroethene	ND	u	g/l	0.50	0.17
trans-1,2-Dichloroethene	ND	u	g/l	2.5	0.70
Trichloroethene	ND	u	g/l	0.50	0.18

 Project Name:
 21-323758.2

 Project Number:
 21-323758.2

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:07/29/21 19:29Analyst:AJK

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lab	for sample(s): 02-04	Batch:	WG1529798-5
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
Xylenes, Total	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70
Dibromomethane	ND	ug/l	5.0	1.0
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70
Acrylonitrile	ND	ug/l	5.0	1.5
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
Vinyl acetate	ND	ug/l	5.0	1.0
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
2,2-Dichloropropane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,3-Dichloropropane	ND	ug/l	2.5	0.70
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70
Bromobenzene	ND	ug/l	2.5	0.70
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70

 Project Name:
 21-323758.2

 Project Number:
 21-323758.2

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C
Analytical Date:	07/29/21 19:29
Analyst:	AJK

arameter	Result	Qualifier Units	s RL	MDL
platile Organics by GC/MS - V	Vestborough Lab	for sample(s):	02-04 Batch	n: WG1529798-5
o-Chlorotoluene	ND	ug/l	2.5	0.70
p-Chlorotoluene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Hexachlorobutadiene	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70
1,4-Dioxane	ND	ug/l	250	61.
p-Diethylbenzene	ND	ug/l	2.0	0.70
p-Ethyltoluene	ND	ug/l	2.0	0.70
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.54
Ethyl ether	ND	ug/l	2.5	0.70
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70

		Acceptance		
Surrogate	%Recovery Qualifie	r Criteria		
1,2-Dichloroethane-d4	95	70-130		
Toluene-d8	102	70-130		
4-Bromofluorobenzene	104	70-130		
Dibromofluoromethane	95	70-130		

Lab Number: L2140362 **Report Date:** 08/03/21

Project Name: 21-323758.2 **Project Number:** 21-323758.2

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: Analyst: PD

1,8260C 07/30/21 10:44

arameter	Result	Qualifier	Units	RL	MDL
olatile Organics by GC/MS - West	tborough Lab	o for sampl	e(s): 01	Batch:	WG1530559-5
Methylene chloride	ND		ug/l	2.5	0.70
1,1-Dichloroethane	ND		ug/l	2.5	0.70
Chloroform	ND		ug/l	2.5	0.70
Carbon tetrachloride	ND		ug/l	0.50	0.13
1,2-Dichloropropane	ND		ug/l	1.0	0.14
Dibromochloromethane	ND		ug/l	0.50	0.15
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50
Tetrachloroethene	ND		ug/l	0.50	0.18
Chlorobenzene	ND		ug/l	2.5	0.70
Trichlorofluoromethane	ND		ug/l	2.5	0.70
1,2-Dichloroethane	ND		ug/l	0.50	0.13
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70
Bromodichloromethane	ND		ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14
1,1-Dichloropropene	ND		ug/l	2.5	0.70
Bromoform	ND		ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17
Benzene	ND		ug/l	0.50	0.16
Toluene	ND		ug/l	2.5	0.70
Ethylbenzene	ND		ug/l	2.5	0.70
Chloromethane	ND		ug/l	2.5	0.70
Bromomethane	ND		ug/l	2.5	0.70
Vinyl chloride	ND		ug/l	1.0	0.07
Chloroethane	ND		ug/l	2.5	0.70
1,1-Dichloroethene	ND		ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70
Trichloroethene	ND		ug/l	0.50	0.18

 Project Name:
 21-323758.2

 Project Number:
 21-323758.2

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:07/30/21 10:44Analyst:PD

arameter	Result	Qualifier	Units	RL	MDL
olatile Organics by GC/MS - V	Vestborough Lab	o for sampl	e(s): 01	Batch:	WG1530559-5
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70
Methyl tert butyl ether	ND		ug/l	2.5	0.70
p/m-Xylene	ND		ug/l	2.5	0.70
o-Xylene	ND		ug/l	2.5	0.70
Xylenes, Total	ND		ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70
Dibromomethane	ND		ug/l	5.0	1.0
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70
Acrylonitrile	ND		ug/l	5.0	1.5
Styrene	ND		ug/l	2.5	0.70
Dichlorodifluoromethane	ND		ug/l	5.0	1.0
Acetone	ND		ug/l	5.0	1.5
Carbon disulfide	ND		ug/l	5.0	1.0
2-Butanone	ND		ug/l	5.0	1.9
Vinyl acetate	ND		ug/l	5.0	1.0
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0
2-Hexanone	ND		ug/l	5.0	1.0
Bromochloromethane	ND		ug/l	2.5	0.70
2,2-Dichloropropane	ND		ug/l	2.5	0.70
1,2-Dibromoethane	ND		ug/l	2.0	0.65
1,3-Dichloropropane	ND		ug/l	2.5	0.70
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70
Bromobenzene	ND		ug/l	2.5	0.70
n-Butylbenzene	ND		ug/l	2.5	0.70
sec-Butylbenzene	ND		ug/l	2.5	0.70
tert-Butylbenzene	ND		ug/l	2.5	0.70

Lab Number: L2140362 **Report Date:** 08/03/21

Project Name: 21-323758.2

Project Number: 21-323758.2

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C
Analytical Date:	07/30/21 10:44
Analyst:	PD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - W	/estborough Lat	o for sample(s): 01	Batch:	WG1530559-5
o-Chlorotoluene	ND	ug/l	2.5	0.70
p-Chlorotoluene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Hexachlorobutadiene	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70
1,4-Dioxane	ND	ug/l	250	61.
p-Diethylbenzene	ND	ug/l	2.0	0.70
p-Ethyltoluene	ND	ug/l	2.0	0.70
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.54
Ethyl ether	ND	ug/l	2.5	0.70
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70

			Acceptance
Surrogate	%Recovery	Qualifier	Criteria
1,2-Dichloroethane-d4	93		70-130
Toluene-d8	102		70-130
4-Bromofluorobenzene	101		70-130
Dibromofluoromethane	108		70-130

Lab Number: L2140362 Report Date: 08/03/21

Parameter	LCS %Recovery	Qual		LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	02-04	Batch:	WG1529798-3	WG1529798-4			
Methylene chloride	92			92		70-130	0		20
1,1-Dichloroethane	100			100		70-130	0		20
Chloroform	94			94		70-130	0		20
Carbon tetrachloride	100			99		63-132	1		20
1,2-Dichloropropane	100			100		70-130	0		20
Dibromochloromethane	88			88		63-130	0		20
1,1,2-Trichloroethane	87			86		70-130	1		20
Tetrachloroethene	94			93		70-130	1		20
Chlorobenzene	93			93		75-130	0		20
Trichlorofluoromethane	96			95		62-150	1		20
1,2-Dichloroethane	94			94		70-130	0		20
1,1,1-Trichloroethane	96			94		67-130	2		20
Bromodichloromethane	90			90		67-130	0		20
trans-1,3-Dichloropropene	83			83		70-130	0		20
cis-1,3-Dichloropropene	85			86		70-130	1		20
1,1-Dichloropropene	98			96		70-130	2		20
Bromoform	76			76		54-136	0		20
1,1,2,2-Tetrachloroethane	91			92		67-130	1		20
Benzene	96			96		70-130	0		20
Toluene	96			95		70-130	1		20
Ethylbenzene	96			95		70-130	1		20
Chloromethane	90			90		64-130	0		20
Bromomethane	56			64		39-139	13		20

Lab Number: L2140362 Report Date: 08/03/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	02-04 Batch:	WG1529798-3	WG1529798-4			
Vinyl chloride	100		98		55-140	2		20
Chloroethane	98		98		55-138	0		20
1,1-Dichloroethene	93		94		61-145	1		20
trans-1,2-Dichloroethene	99		98		70-130	1		20
Trichloroethene	94		94		70-130	0		20
1,2-Dichlorobenzene	88		90		70-130	2		20
1,3-Dichlorobenzene	91		92		70-130	1		20
1,4-Dichlorobenzene	90		90		70-130	0		20
Methyl tert butyl ether	90		90		63-130	0		20
p/m-Xylene	95		95		70-130	0		20
o-Xylene	90		90		70-130	0		20
cis-1,2-Dichloroethene	94		94		70-130	0		20
Dibromomethane	81		82		70-130	1		20
1,2,3-Trichloropropane	85		88		64-130	3		20
Acrylonitrile	100		100		70-130	0		20
Styrene	85		85		70-130	0		20
Dichlorodifluoromethane	77		76		36-147	1		20
Acetone	84		86		58-148	2		20
Carbon disulfide	98		97		51-130	1		20
2-Butanone	87		85		63-138	2		20
Vinyl acetate	110		110		70-130	0		20
4-Methyl-2-pentanone	79		85		59-130	7		20
2-Hexanone	78		79		57-130	1		20

Lab Number: L2140362

Parameter	LCS %Recovery Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborou	gh Lab Associated sample(s): 02-04 Batch:	WG1529798-3 WG1529798-4			
Bromochloromethane	91	94	70-130	3	20	
2,2-Dichloropropane	100	99	63-133	1	20	
1,2-Dibromoethane	84	85	70-130	1	20	
1,3-Dichloropropane	89	90	70-130	1	20	
1,1,1,2-Tetrachloroethane	91	90	64-130	1	20	
Bromobenzene	87	89	70-130	2	20	
n-Butylbenzene	99	99	53-136	0	20	
sec-Butylbenzene	110	110	70-130	0	20	
tert-Butylbenzene	99	98	70-130	1	20	
o-Chlorotoluene	96	94	70-130	2	20	
p-Chlorotoluene	94	94	70-130	0	20	
1,2-Dibromo-3-chloropropane	73	77	41-144	5	20	
Hexachlorobutadiene	100	110	63-130	10	20	
Isopropylbenzene	100	99	70-130	1	20	
p-Isopropyltoluene	100	100	70-130	0	20	
Naphthalene	82	89	70-130	8	20	
n-Propylbenzene	98	97	69-130	1	20	
1,2,3-Trichlorobenzene	80	89	70-130	11	20	
1,2,4-Trichlorobenzene	88	92	70-130	4	20	
1,3,5-Trimethylbenzene	96	95	64-130	1	20	
1,2,4-Trimethylbenzene	95	94	70-130	1	20	
1,4-Dioxane	64	72	56-162	12	20	
p-Diethylbenzene	100	100	70-130	0	20	

 Project Name:
 21-323758.2

 Project Number:
 21-323758.2

 Lab Number:
 L2140362

 Report Date:
 08/03/21

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Volatile Organics by GC/MS - Westborough I	ab Associated	sample(s):	02-04 Batch:	WG1529798-3	WG1529798-4				
p-Ethyltoluene	100		98		70-130	2		20	
1,2,4,5-Tetramethylbenzene	100		100		70-130	0		20	
Ethyl ether	91		94		59-134	3		20	
trans-1,4-Dichloro-2-butene	82		83		70-130	1		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	96	96	70-130
Toluene-d8	101	103	70-130
4-Bromofluorobenzene	104	104	70-130
Dibromofluoromethane	97	98	70-130

Project Name: 21-323758.2 **Project Number:** 21-323758.2 Lab Number: L2140362

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
/olatile Organics by GC/MS - Westborough I	Lab Associated	sample(s): 0	1 Batch: WG	1530559-3	WG1530559-4		
Methylene chloride	110		110		70-130	0	20
1,1-Dichloroethane	110		100		70-130	10	20
Chloroform	110		100		70-130	10	20
Carbon tetrachloride	110		110		63-132	0	20
1,2-Dichloropropane	100		97		70-130	3	20
Dibromochloromethane	92		89		63-130	3	20
1,1,2-Trichloroethane	88		84		70-130	5	20
Tetrachloroethene	110		100		70-130	10	20
Chlorobenzene	110		100		75-130	10	20
Trichlorofluoromethane	120		110		62-150	9	20
1,2-Dichloroethane	98		94		70-130	4	20
1,1,1-Trichloroethane	110		100		67-130	10	20
Bromodichloromethane	98		93		67-130	5	20
trans-1,3-Dichloropropene	87		83		70-130	5	20
cis-1,3-Dichloropropene	96		91		70-130	5	20
1,1-Dichloropropene	120		110		70-130	9	20
Bromoform	80		77		54-136	4	20
1,1,2,2-Tetrachloroethane	96		92		67-130	4	20
Benzene	110		100		70-130	10	20
Toluene	110		100		70-130	10	20
Ethylbenzene	110		100		70-130	10	20
Chloromethane	95		88		64-130	8	20
Bromomethane	130		120		39-139	8	20

Project Name: 21-323758.2 Project Number: 21-323758.2 Lab Number: L2140362

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 01	1 Batch: WG ²	1530559-3	WG1530559-4				
Vinyl chloride	120		110		55-140	9		20	
Chloroethane	130		120		55-138	8		20	
1,1-Dichloroethene	110		110		61-145	0		20	
trans-1,2-Dichloroethene	120		110		70-130	9		20	
Trichloroethene	98		93		70-130	5		20	
1,2-Dichlorobenzene	100		100		70-130	0		20	
1,3-Dichlorobenzene	110		100		70-130	10		20	
1,4-Dichlorobenzene	110		100		70-130	10		20	
Methyl tert butyl ether	95		92		63-130	3		20	
p/m-Xylene	105		100		70-130	5		20	
o-Xylene	105		100		70-130	5		20	
cis-1,2-Dichloroethene	110		110		70-130	0		20	
Dibromomethane	100		98		70-130	2		20	
1,2,3-Trichloropropane	86		84		64-130	2		20	
Acrylonitrile	86		86		70-130	0		20	
Styrene	100		95		70-130	5		20	
Dichlorodifluoromethane	110		110		36-147	0		20	
Acetone	73		75		58-148	3		20	
Carbon disulfide	120		110		51-130	9		20	
2-Butanone	58	Q	62	Q	63-138	7		20	
Vinyl acetate	89		86		70-130	3		20	
4-Methyl-2-pentanone	63		61		59-130	3		20	
2-Hexanone	58		57		57-130	2		20	

Project Name: 21-323758.2 Project Number: 21-323758.2 Lab Number: L2140362

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westboro	ugh Lab Associated	sample(s): 01	Batch: WG1	1530559-3	WG1530559-4				
Bromochloromethane	110		110		70-130	0		20	
2,2-Dichloropropane	120		110		63-133	9		20	
1,2-Dibromoethane	92		89		70-130	3		20	
1,3-Dichloropropane	95		91		70-130	4		20	
1,1,1,2-Tetrachloroethane	94		91		64-130	3		20	
Bromobenzene	100		100		70-130	0		20	
n-Butylbenzene	100		99		53-136	1		20	
sec-Butylbenzene	120		120		70-130	0		20	
tert-Butylbenzene	110		100		70-130	10		20	
o-Chlorotoluene	100		100		70-130	0		20	
p-Chlorotoluene	100		98		70-130	2		20	
1,2-Dibromo-3-chloropropane	76		72		41-144	5		20	
Hexachlorobutadiene	110		100		63-130	10		20	
Isopropylbenzene	110		100		70-130	10		20	
p-Isopropyltoluene	110		100		70-130	10		20	
Naphthalene	94		92		70-130	2		20	
n-Propylbenzene	110		100		69-130	10		20	
1,2,3-Trichlorobenzene	96		94		70-130	2		20	
1,2,4-Trichlorobenzene	100		98		70-130	2		20	
1,3,5-Trimethylbenzene	100		94		64-130	6		20	
1,2,4-Trimethylbenzene	100		96		70-130	4		20	
1,4-Dioxane	90		88		56-162	2		20	
p-Diethylbenzene	100		100		70-130	0		20	

 Project Name:
 21-323758.2

 Project Number:
 21-323758.2

Lab Number: L2140362

	LCS	_	LCSD		%Recovery		_	RPD	
Parameter	%Recovery	Qual	%Recove	ery Qual	Limits	RPD	Qual	Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s): 0	1 Batch:	WG1530559-3	WG1530559-4				
p-Ethyltoluene	110		100		70-130	10		20	
1,2,4,5-Tetramethylbenzene	100		100		70-130	0		20	
Ethyl ether	100		100		59-134	0		20	
trans-1,4-Dichloro-2-butene	71		66	Q	70-130	7		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	91	92	70-130
Toluene-d8	101	101	70-130
4-Bromofluorobenzene	95	94	70-130
Dibromofluoromethane	103	103	70-130

Project Name: 21-323758.2 **Project Number:** 21-323758.2 Serial_No:08032110:28 Lab Number: L2140362 Report Date: 08/03/21

Analysis(*)

NYTCL-8260(14) NYTCL-8260(14)

NYTCL-8260(14)

NYTCL-8260(14)

NYTCL-8260(14)

NYTCL-8260(14)

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler	Custody Seal
A	Absent

Vial HCI preserved

Vial HCl preserved

Vial HCI preserved

Vial HCI preserved

Container Information			Initial	Final	Temp			Frozen
Container ID	Container Type	Cooler	pН	рН	deg C	Pres	Seal	Date/Time
L2140362-01A	Vial HCI preserved	А	NA		2.4	Y	Absent	
L2140362-01B	Vial HCI preserved	А	NA		2.4	Y	Absent	
L2140362-01C	Vial HCI preserved	А	NA		2.4	Y	Absent	
L2140362-02A	Vial HCI preserved	А	NA		2.4	Y	Absent	
L2140362-02B	Vial HCI preserved	А	NA		2.4	Y	Absent	
L2140362-02C	Vial HCI preserved	А	NA		2.4	Y	Absent	
L2140362-02D	Vial HCI preserved	А	NA		2.4	Y	Absent	
L2140362-03A	Vial HCI preserved	А	NA		2.4	Y	Absent	
L2140362-03B	Vial HCI preserved	А	NA		2.4	Y	Absent	
L2140362-03C	Vial HCI preserved	А	NA		2.4	Y	Absent	
L2140362-04A	Vial HCI preserved	А	NA		2.4	Y	Absent	

А

А

А

А

NA

NA

NA

NA

Container Information

L2140362-04B

L2140362-04C

L2140362-04D

L2140362-04E

2.4

2.4

2.4

2.4

Υ

Υ

Υ

Υ

Absent

Absent

Absent

Absent

Serial_No:08032110:28

Project Name: 21-323758.2

Project Number: 21-323758.2

Lab Number: L2140362

Report Date: 08/03/21

GLOSSARY

Acronyms

/ lor only mo	
DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:	21-323758.2	Lab Number:	L2140362
Project Number:	21-323758.2	Report Date:	08/03/21

Footnotes

1

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(a)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **F** The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Serial_No:08032110:28

Project Name:	21-323758.2	Lab Number:	L2140362
Project Number:	21-323758.2	Report Date:	08/03/21

Data Qualifiers

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.

 Project Name:
 21-323758.2

 Project Number:
 21-323758.2

 Lab Number:
 L2140362

 Report Date:
 08/03/21

REFERENCES

1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D/8270E: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. **SM4500**: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: <u>NPW:</u> PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. **EPA TO-15:** Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. **Biological Tissue Matrix:** EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics, EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II.

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs **EPA 625.1**: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045**: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B**

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Serial_No:08032110:28

Westborough, MA 01581	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048	Service Centers Mahwah, NJ 07430: 35 Whitney Rd, Suite 5 Albany, NY 12205: 14 Walker Way Tonawanda, NY 14150: 275 Cooper Ave, Suite 105			Page of	0.019			ec'd b 07	128/21			ALPHA JOB # 12140362	
8 Walkup Dr. TEL: 508-898-9220	320 Forbes Blvd TEL: 508-822-9300	Project Information Project Name: 21 - 1	323752	. 7	1000		Deliv	ASP-A			ASP-B		Billing Information	9
FAX: 508-898-9193	FAX: 508-822-3288	and the second se			Caut	NY 1205	i H	EQuIS	(1 File)			(4 File)	PO#	
Client Information	The second second	Project # 21-323	Project Location: Bridge Street, East Spacese i Project # 21-323758.2					Other		-			Velik.	
Client: PSG Ens	incerne & Geology	(Use Project name as Pr	Participant of the second seco				Regi		equireme	nt			Disposal Site Information	
Address: 362 Firth		Project Manager:		manon			X	NY TOGS NY Part 375			375	Please identify below location of	1	
New York 1	10001 14	ALPHAQuote #:						AWQ St	andards		NY CP-	51	applicable disposal facilities.	
Phone: 646 27	3 1290	Turn-Around Time		A COLOR	-	12 A. C.		NY Rest	ricted Use		Other		Disposal Facility:	
Fax: 646 513		Standard		Due Date:	2			NY Unre	stricted Us	e			NJ NY	+
Email: 10keles@pg	otheresi.com	Rush (only if pre approved		# of Days:	§		NYC Sewer Discharge Other:					Other:		
These samples have be	een previously analyz	ed by Alpha 🗌					ANA	LYSIS					Sample Filtration	
Other project specific Please specify Metals		nents:					(3260)						Done Lab to do Preservation Lab to do	t a 1 3
ALPHA Lab ID Collection				ction	Camela	Camplada	5 2						(Please Specify below)	
(Lab Use Only)	Sa	Imple ID Date Time			Sampler's Initials	7				52		Sample Specific Comments		
40362-61	B-1	C(.)	7/27/21	10.55	GIN	JL	×	+			-		compre optione comments	4
-02		LGIN	7-127/21	11.30	4N	50	1	+		+	-	_		-
-03		3510	7(27)	14440	Gur	JE	X	+	-	+	-	-		-
-04	B-	490	76761	13:15	GW	TE	X				-			-
														1
ASSISTER BERNELSEN														
Preservative Code:	Cantainas Cada								_					
A = None B = HCI	Container Code P = Plastic A = Amber Glass V = Vial G = Glass	Westboro: Certification N Mansfield: Certification N			ar		Please print clearly, legibly and completely. Samples ca not be logged in and							
E = NaOH	B = Bacteria Cup					reservative			_				turnaround time clock will no start until any ambiguities an	
F = MeOH C = Cube G = NaHSO4 O = Other H = Na2S2O3 E = Encore K/E = Zn Ac/NaOH D = BOD Bottle O = Other -		Relinquished By: Date/T The All The			1530 Mal			Received By:			1 Date/Time 7/27/21 (3:50 7/27/21 (3:50			5
Form No: 01-25 HC (rev. 30-Sept-2013)							0	- ×<		00525	(See reverse side.)			

```
JOB: L2140286 REPORT STYLE: Data Usability Report
0010: Alpha Analytical Report Cover Page - OK
0015: Sample Cross Reference Summary - OK
0060: Case Narrative - OK
2000: Air VOA Sample Results - OK
2010: Air VOA Method Blank Report - OK
2020: Air VOA LCS Report - OK
2030: Air VOA Duplicate Report - OK
2030: Air Canister & Flow Controller Information - OK
5000: Air Canister Certification Report - OK
5100: Sample Receipt & Container Information Report - OK
5200: Glossary - OK
5400: References - OK
```


ANALYTICAL REPORT

Lab Number:	L2140286
Client:	Partner Engineering & Science, Inc.
	611 Industrial Way W.
	Eatontown, NJ 07724
ATTN:	Andres Simonson
Phone:	(732) 380-1700
Project Name:	21-323758.2
Project Number:	21-323758.2
Report Date:	08/03/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0141), DoD (L2474), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NJ (MA015), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-17-00150), USFWS (Permit #206964).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Serial_No:08032115:15

Project Name:	21-323758.2
Project Number:	21-323758.2

 Lab Number:
 L2140286

 Report Date:
 08/03/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2140286-01	SG-1	SOIL_VAPOR	BRIDGE STREET EAST SYRACUSE NY	07/27/21 11:23	07/27/21
L2140286-02	SG-2	SOIL_VAPOR	BRIDGE STREET EAST SYRACUSE NY	07/27/21 11:53	07/27/21
L2140286-03	SG-3	SOIL_VAPOR	BRIDGE STREET EAST SYRACUSE NY	07/27/21 15:10	07/27/21
L2140286-04	SG-4	SOIL_VAPOR	BRIDGE STREET EAST SYRACUSE NY	07/27/21 15:06	07/27/21

 Project Name:
 21-323758.2

 Project Number:
 21-323758.2

 Lab Number:
 L2140286

 Report Date:
 08/03/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

 Project Name:
 21-323758.2

 Project Number:
 21-323758.2

 Lab Number:
 L2140286

 Report Date:
 08/03/21

Case Narrative (continued)

Report Submission

This is a partial report including the final results for the samples reported. A final report will be issued as soon as the associated air samples which are currently on hold are either released for analysis or disposal.

Volatile Organics in Air

Canisters were released from the laboratory on July 26, 2021. The canister certification results are provided as an addendum.

The WG1530005-3 LCS recoveries for propylene (139%), pentane (138%), 3-chloropropene (142%) and benzyl chloride (139%) are above the upper 130% acceptance limit. All samples associated with this LCS do not have reportable amounts of these analytes.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Christopher J. Anderson

Authorized Signature:

Title: Technical Director/Representative

Date: 08/03/21

AIR

Project Name:	21-323758.2	Lab Number:	L2140286
Project Number:	21-323758.2	Report Date:	08/03/21

SAMPLE RESULTS

Lab ID:	L2140286-01	Date Collected:	07/27/21 11:23
Client ID:	SG-1 BRIDGE STREET EAST SYRACUSE NY		07/27/21
Sample Location:	BRIDGE STREET EAST STRACUSE NT	Field Prep:	Not Specified

Sample Depth:	
Matrix:	Soil_Vapor
Anaytical Method:	48,TO-15
Analytical Date:	07/30/21 16:56
Analyst:	TS

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	d Lab							
Dichlorodifluoromethane	0.599	0.200		2.96	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	0.956	0.200		2.11	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethyl Alcohol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	60.1	1.00		143	2.38			1
Trichlorofluoromethane	13.8	0.200		77.6	1.12			1
iso-Propyl Alcohol	0.901	0.500		2.21	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
tert-Butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	1.16	0.200		3.61	0.623			1
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	3.77	0.500		11.1	1.47			1
cis-1,2-Dichloroethene	2.13	0.200		8.45	0.793			1

Project Name:	21-323758.2

Project Number: 21-323758.2

 Lab Number:
 L2140286

 Report Date:
 08/03/21

SAMPLE RESULTS

Lab ID:	L2140286-01	Date Collected:	07/27/21 11:23
Client ID:	SG-1	Date Received:	07/27/21
Sample Location:	BRIDGE STREET EAST SYRACUSE NY	Field Prep:	Not Specified

Sample Depth:

Sample Depth:		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	ld Lab							
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	0.584	0.200		2.85	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	28.6	0.200		101	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	7.10	0.200		22.7	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	14.6	0.200		50.3	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Xylene (Total)	17.3	0.200		75.1	0.869			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	20.5	0.200		110	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	16.4	0.200		67.2	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	5.34	0.200		20.1	0.754			1
1,2-Dichloroethene (total)	2.13	0.200		8.45	0.793			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,3-Dichloropropene, Total	ND	0.200		ND	0.908			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1

L2140286

Project Name:	21-323758.2

Project Number: 21-323758.2

Report Date: 08/03/21

Lab Number:

SAMPLE RESULTS

Lab ID:	L2140286-01	Date Collected:	07/27/21 11:23
Client ID:	SG-1	Date Received:	07/27/21
Sample Location:	BRIDGE STREET EAST SYRACUSE NY	Field Prep:	Not Specified

Sample Depth:

Sample Depth:								
		ppbV			ug/m3			Dilutior
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
Tetrachloroethene	0.437	0.200		2.96	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	1.16	0.200		5.04	0.869			1
p/m-Xylene	6.42	0.400		27.9	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	10.9	0.200		47.3	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	6.18	0.200		30.4	0.983			1
1,2,4-Trimethylbenzene	13.0	0.200		63.9	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

			Acceptance
Internal Standard	% Recovery	Qualifier	Criteria
1,4-Difluorobenzene	97		60-140
Bromochloromethane	96		60-140
chlorobenzene-d5	99		60-140

Project Name:	21-323758.2	Lab Number:	L2140286
Project Number:	21-323758.2	Report Date:	08/03/21

SAMPLE RESULTS

Lab ID:	L2140286-03	Date Collected:	07/27/21 15:10
Client ID:	SG-3	Date Received:	07/27/21
Sample Location:	BRIDGE STREET EAST SYRACUSE NY	Field Prep:	Not Specified

Sample Depth:Matrix:Soil_VaporAnaytical Method:48,TO-15Analytical Date:07/30/21 17:35Analyst:TS

	ppbV			ug/m3				Dilutio
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	d Lab							
Dichlorodifluoromethane	0.337	0.200		1.67	0.989			1
Chloromethane	0.562	0.200		1.16	0.413			1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	2.15	0.200		4.76	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethyl Alcohol	15.4	5.00		29.0	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	122	1.00		290	2.38			1
Trichlorofluoromethane	0.239	0.200		1.34	1.12			1
iso-Propyl Alcohol	2.86	0.500		7.03	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
tert-Butyl Alcohol	2.42	0.500		7.34	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	3.89	0.200		12.1	0.623			1
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	15.1	0.500		44.5	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1

Pr	ojec	t Name	:	21-323758.2
_	_			

Project Number: 21-323758.2

 Lab Number:
 L2140286

 Report Date:
 08/03/21

SAMPLE RESULTS

Lab ID:	L2140286-03	Date Collected:	07/27/21 15:10
Client ID:	SG-3	Date Received:	07/27/21
Sample Location:	BRIDGE STREET EAST SYRACUSE NY	Field Prep:	Not Specified

Sample Depth:

Sample Depth:		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab							
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	0.562	0.200		2.74	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	16.2	0.200		57.1	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	7.74	0.200		24.7	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	8.03	0.200		27.6	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Xylene (Total)	28.9	0.200		126	0.869			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	9.60	0.200		39.3	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	2.80	0.500		11.5	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	22.4	0.200		84.4	0.754			1
1,2-Dichloroethene (total)	ND	0.200		ND	0.793			1
2-Hexanone	3.04	0.200		12.5	0.820			1
1,3-Dichloropropene, Total	ND	0.200		ND	0.908			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1

Project Name: 21-323758.2

Project Number: 21-323758.2

 Lab Number:
 L2140286

 Report Date:
 08/03/21

SAMPLE RESULTS

Lab ID:	L2140286-03	Date Collected:	07/27/21 15:10
Client ID:	SG-3	Date Received:	07/27/21
Sample Location:	BRIDGE STREET EAST SYRACUSE NY	Field Prep:	Not Specified

Sample Depth:

Sample Depth:									
		ррьV			ug/m3			Dilutior	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor	
Volatile Organics in Air - Mans	field Lab								
Tetrachloroethene	1.62	0.200		11.0	1.36			1	
Chlorobenzene	ND	0.200		ND	0.921			1	
Ethylbenzene	4.08	0.200		17.7	0.869			1	
p/m-Xylene	15.5	0.400		67.3	1.74			1	
Bromoform	ND	0.200		ND	2.07			1	
Styrene	ND	0.200		ND	0.852			1	
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1	
o-Xylene	13.4	0.200		58.2	0.869			1	
4-Ethyltoluene	1.57	0.200		7.72	0.983			1	
1,3,5-Trimethylbenzene	6.32	0.200		31.1	0.983			1	
1,2,4-Trimethylbenzene	13.5	0.200		66.4	0.983			1	
Benzyl chloride	ND	0.200		ND	1.04			1	
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1	
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1	
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1	
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1	
Hexachlorobutadiene	ND	0.200		ND	2.13			1	

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	122		60-140
Bromochloromethane	127		60-140
chlorobenzene-d5	109		60-140

Project Name:	21-323758.2	Lab Number:	L2140286
Project Number:	21-323758.2	Report Date:	08/03/21

SAMPLE RESULTS

Lab ID:	L2140286-04	Date Collected:	07/27/21 15:06
Client ID:	SG-4	Date Received:	07/27/21
Sample Location:	BRIDGE STREET EAST SYRACUSE NY	Field Prep:	Not Specified

Sample Depth:	
Matrix:	Soil_Vapor
Anaytical Method:	48,TO-15
Analytical Date:	08/03/21 00:27
Analyst:	TS

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	d Lab							
Dichlorodifluoromethane	0.588	0.200		2.91	0.989			1
Chloromethane	0.416	0.200		0.859	0.413			1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	0.575	0.200		1.27	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethyl Alcohol	17.6	5.00		33.2	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	98.8	1.00		235	2.38			1
Trichlorofluoromethane	1.44	0.200		8.09	1.12			1
iso-Propyl Alcohol	3.60	0.500		8.85	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
tert-Butyl Alcohol	3.71	0.500		11.2	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	2.69	0.200		8.38	0.623			1
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	8.76	0.500		25.8	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1

Project Name:	21-323758.2

Project Number: 21-323758.2

 Lab Number:
 L2140286

 Report Date:
 08/03/21

SAMPLE RESULTS

Lab ID:	L2140286-04	Date Collected:	07/27/21 15:06
Client ID:	SG-4	Date Received:	07/27/21
Sample Location:	BRIDGE STREET EAST SYRACUSE NY	Field Prep:	Not Specified

Sample Depth:

Sample Depth:		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	sfield Lab							
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	0.838	0.200		4.09	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	29.1	0.200		103	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	11.0	0.200		35.1	0.639			1
Carbon tetrachloride	2.31	0.200		14.5	1.26			1
Cyclohexane	13.5	0.200		46.5	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Xylene (Total)	21.2	0.200		92.1	0.869			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	0.556	0.200		2.99	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	16.2	0.200		66.4	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	3.75	0.500		15.4	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	18.4	0.200		69.3	0.754			1
1,2-Dichloroethene (total)	ND	0.200		ND	0.793			1
2-Hexanone	0.849	0.200		3.48	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,3-Dichloropropene, Total	ND	0.200		ND	0.908			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1

Project Name: 21-323758.2

Project Number: 21-323758.2

 Lab Number:
 L2140286

 Report Date:
 08/03/21

SAMPLE RESULTS

Lab ID:	L2140286-04	Date Collected:	07/27/21 15:06
Client ID:	SG-4	Date Received:	07/27/21
Sample Location:	BRIDGE STREET EAST SYRACUSE NY	Field Prep:	Not Specified

Sample Depth:

Sample Depth:									
		ppbV			ug/m3		Dilution		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor	
Volatile Organics in Air - Mans	sfield Lab								
Tetrachloroethene	1.04	0.200		7.05	1.36			1	
Chlorobenzene	ND	0.200		ND	0.921			1	
Ethylbenzene	2.44	0.200		10.6	0.869			1	
p/m-Xylene	11.6	0.400		50.4	1.74			1	
Bromoform	ND	0.200		ND	2.07			1	
Styrene	ND	0.200		ND	0.852			1	
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1	
o-Xylene	9.56	0.200		41.5	0.869			1	
4-Ethyltoluene	1.10	0.200		5.41	0.983			1	
1,3,5-Trimethylbenzene	4.79	0.200		23.5	0.983			1	
1,2,4-Trimethylbenzene	10.4	0.200		51.1	0.983			1	
Benzyl chloride	ND	0.200		ND	1.04			1	
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1	
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1	
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1	
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1	
Hexachlorobutadiene	ND	0.200		ND	2.13			1	

			Acceptance
Internal Standard	% Recovery	Qualifier	Criteria
1,4-Difluorobenzene	99		60-140
Bromochloromethane	99		60-140
chlorobenzene-d5	103		60-140

Report Date:

Method Blank Analysis Batch Quality Control

		ррьV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	d Lab for samp	le(s): 01,0	03 Batch	: WG15300	05-4			
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethyl Alcohol	ND	5.00		ND	9.42			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
iso-Propyl Alcohol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
tert-Butyl Alcohol	ND	0.500		ND	1.52			1

Report Date:

Method Blank Analysis Batch Quality Control

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	d Lab for samp	ole(s): 01,0	03 Batch	: WG15300	05-4			
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
Xylene (Total)	ND	0.200		ND	0.869			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Isopropyl Ether	ND	0.200		ND	0.836			1
Ethyl-Tert-Butyl-Ether	ND	0.200		ND	0.836			1
1,2-Dichloroethene (total)	ND	0.200		ND	0.793			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
1,3-Dichloropropene, Total	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
		0.200			1.20			1

Report Date:

Method Blank Analysis Batch Quality Control

		ppbV						Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air	- Mansfield Lab for samp	ole(s): 01,0	3 Batch:	WG15300	05-4			
Cyclohexane	ND	0.200		ND	0.688			1
Tertiary-Amyl Methyl Ether	ND	0.200		ND	0.836			1
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl Acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1

Report Date:

Method Blank Analysis Batch Quality Control

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	field Lab for samp	le(s): 01,0	03 Batch	: WG15300	05-4			
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane (C9)	ND	0.200		ND	1.05			1
Isopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
o-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
p-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
tert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane (C10)	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1

Method Blank Analysis Batch Quality Control

	ppbV		ug/m3		_	Dilution	
Results	Results RL MDL		Results	RL MDL		Qualifier	Factor
Lab for samp	ole(s): 01,	03 Batch	n: WG15300	05-4			
ND	0.200		ND	1.28			1
ND	0.200		ND	1.39			1
ND	0.200		ND	1.48			1
ND	0.200		ND	1.05			1
ND	0.200		ND	1.48			1
ND	0.200		ND	2.13			1
	Lab for samp ND ND ND ND ND	Results RL Lab for sample(s): 01, ND 0.200 ND 0.200	Results RL MDL Lab for sample(s): 01,03 Batch ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200	Results RL MDL Results Lab for sample(s): 01,03 Batch: WG15300 ND 0.200 ND ND 0.200 ND	Results RL MDL Results RL Lab for sample(s): 01,03 Batch: WG1530005-4 ND 0.200 ND 1.28 ND 0.200 ND 1.39 ND 0.200 ND 1.48 ND 0.200 ND 1.05 ND 0.200 ND 1.48	Results RL MDL Results RL MDL Lab for sample(s): 01,03 Batch: WG1530005-4 VG1530005-4 ND 0.200 ND 1.28 ND 0.200 ND 1.39 ND 0.200 ND 1.48 ND 0.200 ND 1.48 ND 0.200 ND 1.48 ND 0.200 ND 1.48	Results RL MDL Results RL MDL Qualifier Lab for sample(s): 01,03 Batch: WG1530005-4 ND 1.28 ND 0.200 ND 1.39 ND 0.200 ND 1.48 ND 0.200 ND 1.48 ND 0.200 ND 1.48 ND 0.200 ND 1.48

Report Date:

Method Blank Analysis Batch Quality Control

		ppbV				Dilution		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab for samp	ole(s): 04	Batch:	WG1530669-	4			
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethyl Alcohol	ND	5.00		ND	9.42			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
iso-Propyl Alcohol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
tert-Butyl Alcohol	ND	0.500		ND	1.52			1

Report Date:

Method Blank Analysis Batch Quality Control

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	d Lab for samp	ole(s): 04	Batch:	WG1530669-	4			
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
Xylene (Total)	ND	0.200		ND	0.869			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Isopropyl Ether	ND	0.200		ND	0.836			1
Ethyl-Tert-Butyl-Ether	ND	0.200		ND	0.836			1
1,2-Dichloroethene (total)	ND	0.200		ND	0.793			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,3-Dichloropropene, Total	ND	0.200		ND	0.908			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1

Report Date:

Method Blank Analysis Batch Quality Control

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air	- Mansfield Lab for samp	ole(s): 04	Batch:	WG1530669-	4			
Cyclohexane	ND	0.200		ND	0.688			1
Tertiary-Amyl Methyl Ether	ND	0.200		ND	0.836			1
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl Acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1

Report Date:

Method Blank Analysis Batch Quality Control

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfi	ield Lab for samp	ole(s): 04	Batch:	WG1530669-	4			
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane (C9)	ND	0.200		ND	1.05			1
Isopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
o-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
p-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
tert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane (C10)	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1

Method Blank Analysis Batch Quality Control

		ppbV		u			Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	field Lab for samp	ole(s): 04	Batch:	WG1530669-4				
Undecane	ND	0.200		ND	1.28			1
Dodecane (C12)	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Lab Number: L2140286

Report Date: 08/03/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics in Air - Mansfield Lab A	ssociated sample(s):	01,03	Batch: WG153000	5-3				
Chlorodifluoromethane	93		-		70-130	-		
Propylene	139	Q	-		70-130	-		
Propane	96		-		70-130	-		
Dichlorodifluoromethane	101		-		70-130	-		
Chloromethane	107		-		70-130	-		
1,2-Dichloro-1,1,2,2-tetrafluoroethane	102		-		70-130	-		
Methanol	88		-		70-130	-		
Vinyl chloride	107		-		70-130	-		
1,3-Butadiene	108		-		70-130	-		
Butane	108		-		70-130	-		
Bromomethane	103				70-130	-		
Chloroethane	95		-		70-130	-		
Ethyl Alcohol	99		-		40-160	-		
Dichlorofluoromethane	102		-		70-130	-		
Vinyl bromide	101		-		70-130	-		
Acrolein	91		-		60-113	-		
Acetone	111		-		40-160	-		
Acetonitrile	103		-		70-130	-		
Trichlorofluoromethane	127		-		70-130	-		
iso-Propyl Alcohol	94		-		40-160	-		
Acrylonitrile	96		-		70-130	-		
Pentane	138	Q	-		70-130	-		
Ethyl ether	107		-		70-130	-		

Lab Number: L2140286

Report Date: 08/03/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics in Air - Mansfield Lab	Associated sample(s):	01,03	Batch: WG153000)5-3				
1,1-Dichloroethene	129		-		70-130	-		
tert-Butyl Alcohol	112		-		70-130	-		
Methylene chloride	125		-		70-130	-		
3-Chloropropene	142	Q	-		70-130	-		
Carbon disulfide	100		-		70-130	-		
1,1,2-Trichloro-1,2,2-Trifluoroethane	117		-		70-130	-		
trans-1,2-Dichloroethene	112		-		70-130	-		
1,1-Dichloroethane	113		-		70-130	-		
Methyl tert butyl ether	100		-		70-130	-		
Vinyl acetate	120		-		70-130	-		
2-Butanone	114		-		70-130	-		
cis-1,2-Dichloroethene	117		-		70-130	-		
Ethyl Acetate	121		-		70-130	-		
Chloroform	108		-		70-130	-		
Tetrahydrofuran	113		-		70-130	-		
2,2-Dichloropropane	103		-		70-130	-		
1,2-Dichloroethane	114		-		70-130	-		
n-Hexane	111		-		70-130	-		
Isopropyl Ether	100		-		70-130	-		
Ethyl-Tert-Butyl-Ether	109		-		70-130	-		
1,2-Dichloroethene (total)	114		-			-		
1,2-Dichloroethene (total)	114		-			-		
1,1,1-Trichloroethane	112		-		70-130	-		

Lab Control Sample Analysis

Batch Quality Control

Lab Number: L2140286 Report Date: 08/03/21

LCSD LCS %Recovery RPD %Recovery RPD %Recovery Limits Limits Parameter Qual Qual Qual Volatile Organics in Air - Mansfield Lab Associated sample(s): 01,03 Batch: WG1530005-3 1,1-Dichloropropene 96 70-130 --Benzene 98 70-130 --Carbon tetrachloride 123 70-130 --Cyclohexane 110 70-130 --Tertiary-Amyl Methyl Ether 97 70-130 --Dibromomethane 104 70-130 --1,2-Dichloropropane 118 70-130 --Bromodichloromethane 112 70-130 --1,4-Dioxane 96 70-130 --70-130 Trichloroethene 108 --2,2,4-Trimethylpentane 114 70-130 --Methyl Methacrylate 100 40-160 --Heptane 119 70-130 -cis-1,3-Dichloropropene 70-130 111 --4-Methyl-2-pentanone 125 70-130 -trans-1,3-Dichloropropene 99 70-130 --1,1,2-Trichloroethane 112 70-130 --Toluene 70-130 98 --1,3-Dichloropropane 70-130 82 --2-Hexanone 81 70-130 --Dibromochloromethane 114 70-130 --1,2-Dibromoethane 70-130 95 --70-130 Butyl Acetate 90 --

Lab Control Sample Analysis

Batch Quality Control

 Lab Number:
 L2140286

 Report Date:
 08/03/21

LCSD LCS %Recovery RPD %Recovery Limits RPD %Recovery Limits Parameter Qual Qual Qual Volatile Organics in Air - Mansfield Lab Associated sample(s): 01,03 Batch: WG1530005-3 Octane 89 70-130 --Tetrachloroethene 94 70-130 --1.1.1.2-Tetrachloroethane 98 70-130 --Chlorobenzene 96 70-130 --Ethylbenzene 102 70-130 --70-130 p/m-Xylene 103 --Bromoform 121 70-130 --Styrene 95 70-130 --1,1,2,2-Tetrachloroethane 110 70-130 _ -70-130 o-Xylene 106 --1,2,3-Trichloropropane 90 70-130 --Nonane (C9) 101 70-130 --Isopropylbenzene 93 70-130 --70-130 Bromobenzene 91 -o-Chlorotoluene 92 70-130 -n-Propylbenzene 99 70-130 _ p-Chlorotoluene 95 70-130 --4-Ethyltoluene 70-130 96 --1,3,5-Trimethylbenzene 70-130 100 -tert-Butylbenzene 100 70-130 --1,2,4-Trimethylbenzene 105 70-130 --Decane (C10) 70-130 103 --Benzyl chloride Q 70-130 139 --

Lab Number: L2140286 Report Date: 08/03/21

Parameter	LCS %Recovery	Qual	%	LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics in Air - Mansfield Lab As	ssociated sample(s):	01,03	Batch:	WG153000)5-3					
1,3-Dichlorobenzene	103			-		70-130	-			
1,4-Dichlorobenzene	102			-		70-130	-			
sec-Butylbenzene	94			-		70-130	-			
p-Isopropyltoluene	95			-		70-130	-			
1,2-Dichlorobenzene	103			-		70-130	-			
n-Butylbenzene	104			-		70-130	-			
1,2-Dibromo-3-chloropropane	106			-		70-130	-			
Undecane	108			-		70-130	-			
Dodecane (C12)	111			-		70-130	-			
1,2,4-Trichlorobenzene	103			-		70-130	-			
Naphthalene	101			-		70-130	-			
1,2,3-Trichlorobenzene	97			-		70-130	-			
Hexachlorobutadiene	103			-		70-130	-			

Lab Number: L2140286 08/03/21

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab As	sociated sample(s)	04 Batc	h: WG1530669-3					
Chlorodifluoromethane	81		-		70-130	-		
Propylene	126		-		70-130	-		
Propane	74		-		70-130	-		
Dichlorodifluoromethane	107		-		70-130	-		
Chloromethane	93		-		70-130	-		
1,2-Dichloro-1,1,2,2-tetrafluoroethane	106		-		70-130	-		
Methanol	83		-		70-130	-		
Vinyl chloride	113		-		70-130	-		
1,3-Butadiene	105		-		70-130	-		
Butane	98		-		70-130	-		
Bromomethane	127		-		70-130	-		
Chloroethane	115		-		70-130	-		
Ethyl Alcohol	79		-		40-160	-		
Dichlorofluoromethane	102		-		70-130	-		
Vinyl bromide	104		-		70-130	-		
Acrolein	85		-		60-113	-		
Acetone	102		-		40-160	-		
Acetonitrile	98		-		70-130	-		
Trichlorofluoromethane	123		-		70-130	-		
iso-Propyl Alcohol	100		-		40-160	-		
Acrylonitrile	84		-		70-130	-		
Pentane	97		-		70-130	-		
Ethyl ether	73		-		70-130	-		

Lab Number: L2140286 08/03/21

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics in Air - Mansfield Lab	Associated sample(s):	04 Batch	n: WG1530669-3					
1,1-Dichloroethene	126		-		70-130	-		
tert-Butyl Alcohol	104		-		70-130	-		
Methylene chloride	108		-		70-130	-		
3-Chloropropene	130		-		70-130	-		
Carbon disulfide	92		-		70-130	-		
1,1,2-Trichloro-1,2,2-Trifluoroethane	109		-		70-130	-		
trans-1,2-Dichloroethene	106		-		70-130	-		
1,1-Dichloroethane	105		-		70-130	-		
Methyl tert butyl ether	100		-		70-130	-		
Vinyl acetate	104		-		70-130	-		
2-Butanone	113		-		70-130	-		
cis-1,2-Dichloroethene	109		-		70-130	-		
Ethyl Acetate	111		-		70-130	-		
Chloroform	122		-		70-130	-		
Tetrahydrofuran	106		-		70-130	-		
2,2-Dichloropropane	93		-		70-130	-		
1,2-Dichloroethane	124		-		70-130	-		
n-Hexane	100		-		70-130	-		
Isopropyl Ether	87		-		70-130	-		
Ethyl-Tert-Butyl-Ether	84		-		70-130	-		
1,2-Dichloroethene (total)	108		-			-		
1,2-Dichloroethene (total)	108		-			-		
1,1,1-Trichloroethane	102		-		70-130	-		

Lab Number: L2140286 08/03/21

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab	Associated sample(s)	04 Batcl	h: WG1530669-3					
1,1-Dichloropropene	81		-		70-130	-		
Benzene	91		-		70-130	-		
Carbon tetrachloride	111		-		70-130	-		
Cyclohexane	100		-		70-130	-		
Tertiary-Amyl Methyl Ether	75		-		70-130	-		
Dibromomethane	85		-		70-130	-		
1,2-Dichloropropane	95		-		70-130	-		
Bromodichloromethane	111		-		70-130	-		
1,4-Dioxane	104		-		70-130	-		
Trichloroethene	99		-		70-130	-		
2,2,4-Trimethylpentane	103		-		70-130	-		
Methyl Methacrylate	77		-		40-160	-		
Heptane	100		-		70-130	-		
cis-1,3-Dichloropropene	96		-		70-130	-		
4-Methyl-2-pentanone	108		-		70-130	-		
trans-1,3-Dichloropropene	85		-		70-130	-		
1,1,2-Trichloroethane	91		-		70-130	-		
Toluene	88		-		70-130	-		
1,3-Dichloropropane	72		-		70-130	-		
2-Hexanone	96		-		70-130	-		
Dibromochloromethane	100		-		70-130	-		
1,2-Dibromoethane	86		-		70-130	-		
Butyl Acetate	67	Q	-		70-130	-		

Lab Number: L2140286

Report Date: 08/03/21

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab Ass	sociated sample(s):	04 Batch	WG1530669-3					
Octane	77		-		70-130	-		
Tetrachloroethene	83		-		70-130	-		
1,1,1,2-Tetrachloroethane	76		-		70-130	-		
Chlorobenzene	89		-		70-130	-		
Ethylbenzene	86		-		70-130	-		
p/m-Xylene	89		-		70-130	-		
Bromoform	87		-		70-130	-		
Styrene	83		-		70-130	-		
1,1,2,2-Tetrachloroethane	99		-		70-130	-		
o-Xylene	92		-		70-130	-		
1,2,3-Trichloropropane	76		-		70-130	-		
Nonane (C9)	74		-		70-130	-		
Isopropylbenzene	75		-		70-130	-		
Bromobenzene	78		-		70-130	-		
o-Chlorotoluene	74		-		70-130	-		
n-Propylbenzene	79		-		70-130	-		
p-Chlorotoluene	72		-		70-130	-		
4-Ethyltoluene	87		-		70-130	-		
1,3,5-Trimethylbenzene	88		-		70-130	-		
tert-Butylbenzene	81		-		70-130	-		
1,2,4-Trimethylbenzene	92		-		70-130	-		
Decane (C10)	80		-		70-130	-		
Benzyl chloride	90		-		70-130	-		

Lab Number: L2140286 08/03/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab Ass	ociated sample(s):	04 Batch	: WG1530669-3					
1,3-Dichlorobenzene	89		-		70-130	-		
1,4-Dichlorobenzene	86		-		70-130	-		
sec-Butylbenzene	75		-		70-130	-		
p-Isopropyltoluene	76		-		70-130	-		
1,2-Dichlorobenzene	87		-		70-130	-		
n-Butylbenzene	80		-		70-130	-		
1,2-Dibromo-3-chloropropane	83		-		70-130	-		
Undecane	81		-		70-130	-		
Dodecane (C12)	84		-		70-130	-		
1,2,4-Trichlorobenzene	87		-		70-130	-		
Naphthalene	78		-		70-130	-		
1,2,3-Trichlorobenzene	76		-		70-130	-		
Hexachlorobutadiene	88		-		70-130	-		

L2140286

Lab Duplicate Analysis Batch Quality Control

 Project Name:
 21-323758.2

 Project Number:
 21-323758.2

Lab Number:

Report Date: 08/03/21

rameter	Native Sample	Duplicate Sample	Units	RPD		RPD Limits
atile Organics in Air - Mansfield Lab	Associated sample(s): 01,03	QC Batch ID: WG1530005-5	QC Sample	: L2140286-0	3 Client ID:	SG-3
Dichlorodifluoromethane	0.337	0.302	ppbV	11		25
Chloromethane	0.562	0.510	ppbV	10		25
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	ND	ppbV	NC		25
Vinyl chloride	ND	ND	ppbV	NC		25
1,3-Butadiene	2.15	2.01	ppbV	7		25
Bromomethane	ND	ND	ppbV	NC		25
Chloroethane	ND	ND	ppbV	NC		25
Ethyl Alcohol	15.4	14.4	ppbV	7		25
Vinyl bromide	ND	ND	ppbV	NC		25
Acetone	122	108	ppbV	12		25
Trichlorofluoromethane	0.239	ND	ppbV	NC		25
iso-Propyl Alcohol	2.86	2.73	ppbV	5		25
1,1-Dichloroethene	ND	ND	ppbV	NC		25
tert-Butyl Alcohol	2.42	2.44	ppbV	1		25
Methylene chloride	ND	ND	ppbV	NC		25
3-Chloropropene	ND	ND	ppbV	NC		25
Carbon disulfide	3.89	3.97	ppbV	2		25
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	ND	ppbV	NC		25
trans-1,2-Dichloroethene	ND	ND	ppbV	NC		25
1,1-Dichloroethane	ND	ND	ppbV	NC		25
Methyl tert butyl ether	ND	ND	ppbV	NC		25

Lab Duplicate Analysis Batch Quality Control

Project Name: 21-323758.2 **Project Number:** 21-323758.2 Lab Number:

L2140286 Report Date: 08/03/21

arameter	Native Sample	Duplicate Sample	Units	RPD		RPD Limits
blatile Organics in Air - Mansfield Lab	Associated sample(s): 01,03	QC Batch ID: WG1530005-5	QC Sample:	L2140286-	03 Client ID:	SG-3
2-Butanone	15.1	14.5	ppbV	4		25
cis-1,2-Dichloroethene	ND	ND	ppbV	NC		25
Ethyl Acetate	ND	ND	ppbV	NC		25
Chloroform	0.562	0.543	ppbV	3		25
Tetrahydrofuran	ND	ND	ppbV	NC		25
1,2-Dichloroethane	ND	ND	ppbV	NC		25
n-Hexane	16.2	16.2	ppbV	0		25
1,1,1-Trichloroethane	ND	ND	ppbV	NC		25
Benzene	7.74	7.94	ppbV	3		25
Carbon tetrachloride	ND	ND	ppbV	NC		25
Cyclohexane	8.03	8.12	ppbV	1		25
1,2-Dichloropropane	ND	ND	ppbV	NC		25
Xylene (Total)	28.9	29.4	ppbV	2		25
Bromodichloromethane	ND	ND	ppbV	NC		25
1,4-Dioxane	ND	ND	ppbV	NC		25
Trichloroethene	ND	ND	ppbV	NC		25
2,2,4-Trimethylpentane	ND	ND	ppbV	NC		25
Heptane	9.60	9.41	ppbV	2		25
cis-1,3-Dichloropropene	ND	ND	ppbV	NC		25
4-Methyl-2-pentanone	2.80	2.74	ppbV	2		25
trans-1,3-Dichloropropene	ND	ND	ppbV	NC		25

Lab Duplicate Analysis Batch Quality Control

 Project Name:
 21-323758.2

 Project Number:
 21-323758.2

L

 Lab Number:
 L2140286

 Report Date:
 08/03/21

rameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits	
latile Organics in Air - Mansfield Lab	Associated sample(s): 01,03	QC Batch ID: WG1530005-5	QC Sample	: L2140286-	03 Client ID: SG-3	
1,1,2-Trichloroethane	ND	ND	ppbV	NC	25	
Toluene	22.4	23.2	ppbV	4	25	
1,2-Dichloroethene (total)	ND	ND	ppbV	NC	25	
2-Hexanone	3.04	3.10	ppbV	2	25	
Dibromochloromethane	ND	ND	ppbV	NC	25	
1,3-Dichloropropene, Total	ND	ND	ppbV	NC	25	
1,2-Dibromoethane	ND	ND	ppbV	NC	25	
Tetrachloroethene	1.62	1.73	ppbV	7	25	
Chlorobenzene	ND	ND	ppbV	NC	25	
Ethylbenzene	4.08	4.13	ppbV	1	25	
p/m-Xylene	15.5	15.8	ppbV	2	25	
Bromoform	ND	ND	ppbV	NC	25	
Styrene	ND	ND	ppbV	NC	25	
1,1,2,2-Tetrachloroethane	ND	ND	ppbV	NC	25	
o-Xylene	13.4	13.5	ppbV	1	25	
4-Ethyltoluene	1.57	1.61	ppbV	3	25	
1,3,5-Trimethylbenzene	6.32	6.54	ppbV	3	25	
1,2,4-Trimethylbenzene	13.5	13.7	ppbV	1	25	
Benzyl chloride	ND	ND	ppbV	NC	25	
1,3-Dichlorobenzene	ND	ND	ppbV	NC	25	
1,4-Dichlorobenzene	ND	ND	ppbV	NC	25	

Project Name:	21-323758.2	Lab Duplicate Analysis Batch Quality Control	Lab Number:	L2140286
Project Number:	21-323758.2		Report Date:	08/03/21

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab	Associated sample(s): 01,03	QC Batch ID: WG1530005-5	QC Sample:	L2140286-03	3 Client ID	: SG-3
1,2-Dichlorobenzene	ND	ND	ppbV	NC		25
1,2,4-Trichlorobenzene	ND	ND	ppbV	NC		25
Hexachlorobutadiene	ND	ND	ppbV	NC		25

Project Name: 21-323758.2

Project Number: 21-323758.2

Serial_No:08032115:15 Lab Number: L2140286

Report Date: 08/03/21

Canister and Flow Controller Information

Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check	Initial Pressure (in. Hg)	Pressure on Receipt (in. Hg)	Flow Controler Leak Chk	Flow Out mL/min	Flow In mL/min	% RPD
L2140286-01	SG-1	02118	SV200	07/26/21	359116		-	-	-	Pass	219	218	0
L2140286-01	SG-1	3210	2.7L Can	07/26/21	359116	L2138920-07	Pass	-29.1	-3.5	-	-	-	-
L2140286-02	SG-2	01227	SV200	07/26/21	359116		-	-	-	Pass	218	118	60
L2140286-02	SG-2	3242	2.7L Can	07/26/21	359116	L2138920-07	Pass	-29.1	-22.4	-	-	-	-
L2140286-03	SG-3	01050	SV200	07/26/21	359116		-	-	-	Pass	218	215	1
L2140286-03	SG-3	2769	2.7L Can	07/26/21	359116	L2138920-07	Pass	-29.1	-1.1	-	-	-	-
L2140286-04	SG-4	0864	SV200	07/26/21	359116		-	-	-	Pass	218	214	2
L2140286-04	SG-4	3171	2.7L Can	07/26/21	359116	L2138920-07	Pass	-29.1	-1.9	-	-	-	-

Project Number: CANISTER QC BAT **Report Date:** 08/03/21 **Air Canister Certification Results** Lab ID: L2138920-07 Date Collected: 07/21/21 09:00 Client ID: CAN 2032 SHELF 8 Date Received: 07/21/21 Sample Location: Field Prep: Not Specified Sample Depth: Matrix: Air 48,TO-15 Anaytical Method: Analytical Date: 07/22/21 20:55 RY Analyst: ppbV ug/m3 Dilution Factor RL Qualifier Parameter Results RL Results MDL MDL Volatile Organics in Air - Mansfield Lab Chlorodifluoromethane ND 0.200 ND 0.707 ------1 Propylene ND 0.500 1 ND 0.861 ------Propane ND 0.500 ND 0.902 1 -----Dichlorodifluoromethane ND 0.200 ---ND 0.989 ---1 Chloromethane ND 0.200 ND 0.413 ---1 ---Freon-114 ND 0.200 ND 1.40 1 ------Methanol ND 5.00 ND 6.55 1 -----Vinyl chloride ND 0.200 ---ND 0.511 ---1 1,3-Butadiene ND 0.200 ND 0.442 1 ------Butane ND 0.200 ND 0.475 1 ------Bromomethane ND 0.200 ND 0.777 1 ------Chloroethane ND 0.200 ND 0.528 ---1 --Ethanol ND 5.00 ---ND 9.42 ---1 Dichlorofluoromethane ND 0.200 ND 0.842 1 -----Vinyl bromide ND 0.200 ND 0.874 1 ------Acrolein ND 0.500 ND 1 ---1.15 ---Acetone ND 1.00 --ND 2.38 ---1 Acetonitrile ND 0.200 ND 0.336 1 ------Trichlorofluoromethane 0.200 ND ND 1 ---1.12 ---Isopropanol ND 0.500 --ND 1.23 --1 Acrylonitrile ND 0.500 ---ND 1.09 ---1 Pentane 1 ND 0.200 ND 0.590 ----Ethyl ether ND 0.200 ND 0.606 1 ------1,1-Dichloroethene ND 0.200 ND 0.793 ------1

Serial_No:08032115:15

L2138920

Lab Number:

Project Name:

BATCH CANISTER CERTIFICATION

	Serial_No:08	3032115:15
DN	Lab Number:	L2138920

L2138920 **Report Date:** 08/03/21

Air Canister Certification Results

Lab ID:	L2138920-07	Date Collected:	07/21/21 09:00
Client ID:	CAN 2032 SHELF 8	Date Received:	07/21/21
Sample Location:		Field Prep:	Not Specified

Sample Depth:		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab							
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
rans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
Xylenes, total	ND	0.600		ND	0.869			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
ert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,2-Dichloroethene (total)	ND	1.00		ND	1.00			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
ert-Amyl Methyl Ether	ND	0.200		ND	0.836			1

	Serial_No:08	3032115:15
TION	Lab Number:	L2138920

ber: L2138920 **Report Date:** 08/03/21

Air Canister Certification Results

Lab ID:	L2138920-07	Date Collected:	07/21/21 09:00
Client ID:	CAN 2032 SHELF 8	Date Received:	07/21/21
Sample Location:		Field Prep:	Not Specified

Sample Depth:		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab							
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Frichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1

	Serial_No:08	3032115:15
J	Lab Number:	L2138920

L2138920 **Report Date:** 08/03/21

Air Canister Certification Results

Lab ID:	L2138920-07	Date Collected:	07/21/21 09:00
Client ID:	CAN 2032 SHELF 8	Date Received:	07/21/21
Sample Location:		Field Prep:	Not Specified

		ppbV		ug/m3		Dilution		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab							
o-Xylene	field Lab ND 0.200			ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane	ND	0.200		ND	1.05			1
sopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
4-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
ert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
I,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

							Serial	_No:080	32115:15
Project Name:	BATCH CANIST	ER CERTI	FICATION	I		La	b Num	ber:	L2138920
Project Number:	CANISTER QC	ВАТ				Re	port D	ate:	08/03/21
		Air Can	ister Ce	rtification	Results				
Lab ID: Client ID: Sample Location:	L2138920-07 CAN 2032 SHE	LF 8				Date C Date R Field F	eceive		07/21/21 09:00 07/21/21 Not Specified
Sample Depth:			ppbV			ug/m3			Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	r Factor
Volatile Organics in	Air - Mansfield Lab								
		Re	sults	Qualifier	Units	RDL		Dilutio Facto	
Tentatively Identified Con	npounds								

No Tentatively Identified Compounds

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	89		60-140
Bromochloromethane	98		60-140
chlorobenzene-d5	89		60-140

Air Canister Certification Results Lab ID: L2138920-07 Date Collected: 07/21/21 09:00 Client ID: CAN 2032 SHELF 8 Date Received: 07/21/21 Sample Location: Field Prep: Not Specified Sample Depth: Matrix: Air 48,TO-15-SIM Anaytical Method: Analytical Date: 07/22/21 20:55 RY Analyst: ppbV ug/m3 Dilution Factor RL Qualifier RL Results MDL Parameter Results MDL Volatile Organics in Air by SIM - Mansfield Lab Dichlorodifluoromethane 0.200 ND ND ---0.989 ---1 Chloromethane 0.200 ND ND 0.413 1 ------Freon-114 ND 0.050 ND 0.349 1 -----Vinyl chloride ND 0.020 ---ND 0.051 ---1 1,3-Butadiene ND 0.020 ND 0.044 ---1 ---Bromomethane ND 1 ND 0.020 0.078 ------Chloroethane ND 0.100 ND 0.264 1 -----Acrolein ND 0.050 ---ND 0.115 ---1 Acetone ND 1.00 ND 2.38 1 -----Trichlorofluoromethane ND 0.050 ND 0.281 1 ------Acrylonitrile ND 0.500 ND 1.09 1 ------1,1-Dichloroethene ND 0.020 ND 0.079 1 ----Methylene chloride ND 0.500 ---ND 1.74 ---1 Freon-113 ND 0.050 ND 1 ---0.383 -trans-1,2-Dichloroethene ND 0.020 ND 0.079 1 ------1,1-Dichloroethane ND 0.020 ND 0.081 1 ------Methyl tert butyl ether ND 0.200 ---ND 0.721 ---1 2-Butanone ND 0.500 1 ---ND 1.47 --cis-1,2-Dichloroethene ND 0.020 ND 0.079 1 ------Chloroform ND 0.020 ND 0.098 --1 --1,2-Dichloroethane ND 0.020 ---ND 0.081 ---1 1,1,1-Trichloroethane ND 0.020 ND 1 --0.109 --Benzene ND 0.100 ND 1 0.319 ------Carbon tetrachloride ND 0.020 ND 0.126 ---1 ---

Serial_No:08032115:15

L2138920

08/03/21

Lab Number:

Report Date:

Project Name:

Project Number:

BATCH CANISTER CERTIFICATION

CANISTER QC BAT

L2138920

08/03/21

Project Name: BATCH CANISTER CERTIFICATION Project Number: CANISTER QC BAT

Air Canister Certification Results

Lab ID:	L2138920-07	Date Collected:	07/21/21 09:00
Client ID:	CAN 2032 SHELF 8	Date Received:	07/21/21
Sample Location:		Field Prep:	Not Specified

Results ND	RL 0.092 0.134 0.360 0.107 0.091 2.05 0.091 0.109	MDL	Qualifier	Dilution Factor
ND ND ND ND ND ND ND	0.134 0.360 0.107 0.091 2.05 0.091 0.109	 		1 1 1 1 1
ND ND ND ND ND ND ND	0.134 0.360 0.107 0.091 2.05 0.091 0.109	 		1 1 1 1 1
ND ND ND ND ND	0.360 0.107 0.091 2.05 0.091 0.109	 		1 1 1 1
ND ND ND ND	0.107 0.091 2.05 0.091 0.109			1 1 1
ND ND ND ND	0.091 2.05 0.091 0.109			1
ND ND ND	2.05 0.091 0.109			1
ND ND	0.091 0.109			
ND	0.109			1
ND	0 4 0 0			1
	0.188			1
ND	0.170			1
ND	0.154			1
ND	0.136			1
ND	0.137			1
ND	0.461			1
ND	0.087			1
ND	0.174			1
ND	0.207			1
ND	0.085			1
ND	0.137			1
ND	0.087			1
ND	0.983			1
ND	0.098			1
ND	0.098			1
ND	0.098			1
ND	1.04			1
ND	0.120			1
ND	0.120			1
	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND 0.170 ND 0.154 ND 0.136 ND 0.137 ND 0.137 ND 0.461 ND 0.461 ND 0.087 ND 0.174 ND 0.207 ND 0.207 ND 0.085 ND 0.085 ND 0.087 ND 0.087 ND 0.087 ND 0.087 ND 0.087 ND 0.087 ND 0.098 ND 0.098 ND 0.098 ND 0.098 ND 1.04 ND 0.120	ND 0.188 ND 0.170 ND 0.154 ND 0.136 ND 0.137 ND 0.461 ND 0.461 ND 0.461 ND 0.174 ND 0.174 ND 0.174 ND 0.137 ND 0.137 ND 0.137 ND 0.085 ND 0.085 ND 0.087 ND 0.087 ND 0.087 ND 0.087 ND 0.098 ND 0.098 ND 0.098 ND 0.098 ND 1.04	ND 0.188 ND 0.170 ND 0.154 ND 0.136 ND 0.137 ND 0.137 ND 0.461 ND 0.087 ND 0.174 ND 0.207 ND 0.207 ND 0.137 ND 0.085 ND 0.087 ND 0.087 ND 0.087 ND 0.087 ND 0.0983 ND 0.098 ND 0.098 ND 0.098 ND 0.098 ND 1.04 ND 0.120

		Serial_No:08	3032115:15
Project Name:	BATCH CANISTER CERTIFICATION	Lab Number:	L2138920
Project Number:	CANISTER QC BAT	Report Date:	08/03/21

Air Canister Certification Results

Lab ID:	L2138920-07	Date Collected:	07/21/21 09:00
Client ID:	CAN 2032 SHELF 8	Date Received:	07/21/21
Sample Location:		Field Prep:	Not Specified

Sample Depth:

		ppbV			ug/m3		Dilution	
Parameter	Results		RL MDL		Results RL		Qualifier	Factor
Volatile Organics in Air by SIN	I - Mansfield Lab							
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	89		60-140
bromochloromethane	98		60-140
chlorobenzene-d5	90		60-140

 Project Name:
 21-323758.2

 Project Number:
 21-323758.2

Serial_No:08032115:15 *Lab Number:* L2140286 *Report Date:* 08/03/21

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler	Custody Seal				
NA	Absent				

Container Information

Container Information			Initial	nitial Final				Frozen		
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)	
L2140286-01A	Canister - 2.7 Liter	NA	NA			Y	Absent		TO15-LL(30)	
L2140286-02A	Canister - 2.7 Liter	NA	NA			Y	Absent		HOLD-AIR-INV(30)	
L2140286-03A	Canister - 2.7 Liter	NA	NA			Y	Absent		TO15-LL(30)	
L2140286-04A	Canister - 2.7 Liter	NA	NA			Y	Absent		TO15-LL(30)	

Project Name: 21-323758.2

Project Number: 21-323758.2

Lab Number: L2140286

Report Date: 08/03/21

GLOSSARY

Acronyms

,,,,	
DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

Project Name:	21-323758.2	Lab Number:	L2140286
Project Number:	21-323758.2	Report Date:	08/03/21

Footnotes

1

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(a)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **F** The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Report Format: Data Usability Report

Serial_No:08032115:15

 Project Name:
 21-323758.2

 Project Number:
 21-323758.2

Lab Number: L2140286

Report Date: 08/03/21

Data Qualifiers

the identification is based on a mass spectral library search.

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.

Report Format: Data Usability Report

 Project Name:
 21-323758.2

 Project Number:
 21-323758.2

 Lab Number:
 L2140286

 Report Date:
 08/03/21

REFERENCES

48 Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D/8270E: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. **SM4500**: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: <u>NPW</u>: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics, EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II.

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs **EPA 625.1**: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045**: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B**

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Serial No:08032115:15

320 Forbes Blvd, Mansfield, MA 02048 Project Information Report Information - Data Deliverables Billing Information TEL: 508-822-9300 FAX: 508-822-3288 Project Name: 21 - 323758-2 IFAX Same as Client Client Information Project Location Froject Manager: And Same Same Same Same Same Same Same Same	ntinfo PO#:
TEL: 508-822-9300 FAX: 508-822-3288 Project Name: 21 - 323758:2 IFAX Same as Client Client Information Project Location Project Location Ifax Same as Client Client: PSG Formation Project Manager: And for Succession Project #: 21 - 323758:2 IFAX Same as Client Address: 362 Fight Ave, Suite Sol Project Manager: And for Succession Project Manager: And for Succession We EMAIL (standard pdf report) Regulatory Report to: (different transfreed Vences) Num York Nim York Turn-Around Time Report to: (different transfreed Vences) State/Fed	ntinfo PO#:
Client: Information Project Location Trace for an AY P ADEx Client: PSG Ensurements 5 sectors Project #: 21 - 22-3 7 58 - 2 Oriteria Checker: Option Regulatory Criterie Industrie) Address: 362 Fight Ave, S. (c. 50) Project Manager: A Address Sciences Other Formats: Peroject I address Sciences New York NY (600) ALPHA Quote #: Unable Clienter Sciences Project Manager: A Address Sciences Phone: 646 2 73 1290 Turn-Around Time Report to: (different time Project Manager) State/Fed	
Client: Information Project Location Trace for an NY P ADEx Client: PSG Ensuring 3 Sectory Project #: 21 - 22-3 7 58 · 2 Oriteria Checker: (Defeut Jassed on Regulatory Criterie Industed) Address: 362 Fight Ave, S. Ic. 501 Project Manager: A Address Sciences Vertex Sciences Vertex Industed on Regulatory Criterie Industed) New York NY 16001 ALPHA Quote #. U Additional Deliverables. Regulatory Report to: (different time Project Manager) Phone: 646 2 73 1290 Turn-Around Time Report to: (different time Project Manager) State/Fed	
Client: PSG Ensurements 3 Sectory Project #: 21 - 223 753 · 2 (Defeutit Exection Regulatory Criterie Industrie) Address: 362 Fight Ave, Suite Seit Project #: 21 - 223 753 · 2 (Defeutit Exection Regulatory Criterie Industrie) New York Nith York Project #: 21 - 223 753 · 2 (Defeutit Exection Regulatory Criterie Industrie) New York Nith York Project Manager: A Adres Summer Vertex Summer New York Nith York ALPHA Quote # Data Summer Vertex Summer Phone: 646 2 73 12 70 Turn-Around Time Report to: (defease than Project Manager) State/Fed	
Address: 3.62 Fight Ave Suite Seil Project Manager: A Suite Scines Other Formats: New York Nit York Nit York Nit York Nit York Nit York Regulatory Research Phone: 646 2.73 1290 Turn-Around Time Report to: (different time Project Manager) State/Fed	
New York NY 10001 ALPHA Quote #. D Additional Deliverables. State/Fed F Phone: 6466273 273 1290 Turn-Around Time Report to: (Guilleged Menager) State/Fed F	
Phone: 646 273 1290 Turn-Around Time Report to: 646 and Proved Manageri	Requirements/Report Limi
Fax: 646 512 0221	Program Res / Comm
Email: 10/c/co@partneresi.com	
These samples have been previously analyzed by Alpha Date Due: Time:	SIS
Other Project Specific Requirements/Comments:	2
0 18 1	
All Columns Below Must Be Filled Out	
Mah Use On La Sawala ID GULLEGI Com a second a 10 State 2 Stat	
(Lab Use Only) Sample ID COLLECTION Initial Vacuum Sample Sample's Can I D ID ID Frow D E E E G E E E E G E E E G E E E G E E E G E E E G E E E G E E E G E <t< td=""><td>Sample Comments (i.a. PID</td></t<>	Sample Comments (i.a. PID
1-114 (1:15) 11-05 21:00 2.67 38 JL 2.1-5/0 02/18 V	
704701 (1:43 11:53 29.76 21.30 SN JC 2.4- 3042 81227 X	1 M
93 58-3 767/21 15:00 15:10 25.13 0.65 SN JL 2769 DIOSOX	
04 SG-4 76761 14:56 15:06 29.12 1.51 SV JL 2.74 3171 0864 x	
*SAMPLE MATRIX CODES AA = Ambient Air (Indoor Outdoor) SV = Soil Vapor/Landfill Gas/SVE Other = Plane Specify	Please print clearly, legibly and
const - 1 that officially	completely. Samples can not be logged in and furnaround time
Date/Time Pre- Received By: Date/Time:	clock will not start until any ambi- guities are resolved. All samples
and a spectra part is a fair a fair as the spectra fair as the spe	subnitted are subject to Alpha's Terms and Conditions.
	See reverse side.

APPENDIX D: EPA CALCULATED VISLS

Commercial Air Inputs

Variable	Commercial Air Default Value	Form-input Value
AF (Attenuation Factor Groundwater) unitless	0.001	0.001
AF (Attenuation Factor Sub-Slab) unitless	0.03	0.03
AT, (averaging time - composite worker)	365	365
ED_{ω} (exposure duration - composite worker) yr	25	25
EF, (exposure frequency - composite worker) day/yr	250	250
ET, (exposure time - composite worker) hr	8	8
THQ (target hazard quotient) unitless	0.1	0.1
LT (lifetime) yr	70	70
TR (target risk) unitless	1.0E-06	1.0E-04

1

Chemical	CAS Number	Does the chemical meet the definition for volatility? (HLC>1E-5 or VP>1)	Does the chemical have inhalation toxicity data? (IUR and/or RfC)	Is Chemical Sufficiently Volatile and Toxic to Pose Inhalation Risk Via Vapor Intrusion from Soil Source? (C _{vp} > C _{i,a} ,Target?)	Is Chemical Sufficiently Volatile and Toxic to Pose Inhalation Risk Via Vapor Intrusion from Groundwater Source? (C _{hc} > C _{i,a} ,Target?)	Target Indoor Air Concentration (TCR=0.0001 or THQ=0.1) MIN(C _{iac} ,C _{ia,nc}) (μg/m ³)	Toxicity Basis	Target Sub-Slab and Near-source Soil Gas Concentration (TCR=0.0001 or THQ=0.1) C _{sg} ,Target (μg/m ³)	Target Groundwater Concentration (TCR=0.0001 or THQ=0.1) C _{gw} ,Target (μg/L)
Acetone	67-64-1	Yes	Yes	Yes	Yes	1.35E+04	NC	4.51E+05	9.46E+06
Benzene	71-43-2	Yes	Yes	Yes	Yes	1.31E+01	NC	4.38E+02	5.79E+01
Butadiene, 1,3-	106-99-0	Yes	Yes	Yes	Yes	8.76E-01	NC	2.92E+01	2.91E-01
Butyl Alcohol, t-	75-65-0	Yes	No	No Inhal. Tox. Info	No Inhal. Tox. Info	-		-	-
Carbon Disulfide	75-15-0	Yes	Yes	Yes	Yes	3.07E+02	NC	1.02E+04	5.21E+02
Carbon Tetrachloride	56-23-5	Yes	Yes	Yes	Yes	4.38E+01	NC	1.46E+03	3.88E+01
Chloroform	67-66-3	Yes	Yes	Yes	Yes	4.28E+01	NC	1.43E+03	2.85E+02
Chloromethane	74-87-3	Yes	Yes	Yes	Yes	3.94E+01	NC	1.31E+03	1.09E+02
Cyclohexane	110-82-7	Yes	Yes	Yes	Yes	2.63E+03	NC	8.76E+04	4.29E+02
Dichlorodifluoromethane	75-71-8	Yes	Yes	Yes	Yes	4.38E+01	NC	1.46E+03	3.12E+00
Dichloroethylene, cis-1,2-	156-59-2	Yes	No	No Inhal. Tox. Info	No Inhal. Tox. Info	-		-	-
Ethanol	64-17-5	Yes	No	No Inhal. Tox. Info	No Inhal. Tox. Info	-		-	-
Ethylbenzene	100-41-4	Yes	Yes	Yes	Yes	4.38E+02	NC	1.46E+04	1.36E+03
Heptane, N-	142-82-5	Yes	Yes	Yes	Yes	1.75E+02	NC	5.84E+03	2.14E+00
Hexane, N-	110-54-3	Yes	Yes	Yes	Yes	3.07E+02	NC	1.02E+04	4.17E+00
Hexanone, 2-	591-78-6	Yes	Yes	Yes	Yes	1.31E+01	NC	4.38E+02	3.45E+03
Isopropanol	67-63-0	Yes	Yes	Yes	Yes	8.76E+01	NC	2.92E+03	2.65E+05
Methyl Ethyl Ketone (2-Butanone)	78-93-3	Yes	Yes	Yes	Yes	2.19E+03	NC	7.30E+04	9.41E+05
Methyl Isobutyl Ketone (4-methyl-2-pentanone)	108-10-1	Yes	Yes	Yes	Yes	1.31E+03	NC	4.38E+04	2.33E+05
Tetrachloroethylene	127-18-4	Yes	Yes	Yes	Yes	1.75E+01	NC	5.84E+02	2.42E+01
Toluene	108-88-3	Yes	Yes	Yes	Yes	2.19E+03	NC	7.30E+04	8.07E+03
Trichloroethylene Trichlorofluoromethane	79-01-6 75-69-4	Yes Yes	Yes No	Yes No Inhal. Tox. Info	Yes No Inhal. Tox. Info	8.76E-01 -	NC	2.92E+01 -	2.18E+00 -

Is Target Groundwater Concentration < MCL?	Pure Phase Vapor Concentration C _{vp} \ (25 °C)\	Maximum Groundwater Vapor Concentration C _{hc} \	Temperature for Maximum Groundwater Vapor Concentration	Lower Explosive Limit LEL (% by	LEL	IUR	IUR	RfC	RfC	Mutagenic	Carcinogenic VISL TCR=0.0001 C _{ia,c}	Noncarcinogenic VISL THQ=0.1 C _{ia.nc}
$(C_{gw} < MCL?)$	(µ g/m³)	(μ g/m³)	(°C)	volume)	Ref	(ug/m ³) ⁻¹	Ref	(mg/m ³)	Ref	Indicator	(μ g/m³)	(μ g/m ³)
	7.25E+08	1.43E+09	25	2.50	U	-		3.09E+01	U	No	-	1.35E+04
No (5)	3.98E+08	4.06E+08	25	1.20	U	7.80E-06	U	3.00E-02	U	No	1.57E+02	1.31E+01
	6.14E+09	2.21E+09	25	2.00	U	3.00E-05	U	2.00E-03	U	No	4.09E+01	8.76E-01
	1.62E+08	3.70E+08	25	2.40	U	-		-		No	-	-
	1.47E+09	1.27E+09	25	1.30	U	-		7.00E-01	U	No	-	3.07E+02
No (5)	9.51E+08	8.95E+08	25	-		6.00E-06	U	1.00E-01	U	No	2.04E+02	4.38E+01
No (80)	1.26E+09	1.19E+09	25	-		2.30E-05	U	9.77E-02	U	No	5.33E+01	4.28E+01
	1.17E+10	1.92E+09	25	8.10	U	-		9.00E-02	U	No	-	3.94E+01
	4.39E+08	3.37E+08	25	1.30	U	-		6.00E+00	U	No	-	2.63E+03
	3.15E+10	3.93E+09	25	-		-		1.00E-01	U	No	-	4.38E+01
	1.04E+09	1.07E+09	25	3.00	U	-		-		No	-	-
	1.47E+08	2.04E+08	25	3.30	U	-		-		No	-	-
No (700)	5.48E+07	5.44E+07	25	0.80	U	2.50E-06	U	1.00E+00	U	No	4.91E+02	4.38E+02
	2.48E+08	2.78E+08	25	1.05	U	-		4.00E-01	U	No	-	1.75E+02
	7.00E+08	6.99E+08	25	1.10	U	-		7.00E-01	U	No	-	3.07E+02
	6.25E+07	6.55E+07	25	1.00	U	-		3.00E-02	U	No	-	1.31E+01
	1.47E+08	3.31E+08	25	2.00	U	-		2.00E-01	U	No	-	8.76E+01
	3.51E+08	5.19E+08	25	1.40	U	-		5.00E+00	U	No	-	2.19E+03
-	1.07E+08	1.07E+08	25	1.20	U	-		3.00E+00	U	No	-	1.31E+03
No (5)	1.65E+08	1.49E+08	25	-		2.60E-07	U	4.00E-02	U	No	4.72E+03	1.75E+01
No (1000)	1.41E+08	1.43E+08	25	1.10	U	-		5.00E+00	U	No	-	2.19E+03
Yes (5)	4.88E+08	5.15E+08	25	8.00	U	4.10E-06	U	2.00E-03	U	Mut	2.99E+02	8.76E-01
	5.93E+09	4.36E+09	25	-		-		-		No	-	-

Key: I = IRIS; P = PPRTV; O = OPP; A = ATSDR; C = Cal EPA; X = PPRTV Screening Level; H = HEAST; D = DWSHA; W = TEF applied; E = RPF applied; U = user provided; G = see RSL User's Guide Section 5; CA = cancer; NC = noncancer.

Chemical	CAS Number	Does the chemical meet the definition for volatility? (HLC>1E-5 or VP>1)	chemical have inhalation toxicity data? (IUR and/or	Is Chemical Sufficiently Volatile and Toxic to Pose Inhalation Risk Via Vapor Intrusion from Soil Source? (C _{vp} > C _{i,a} ,Target?)	to Pose Inhalation Risk Via Vapor Intrusion from Groundwater Source?	Target Indoor Air Concentration (TCR=0.0001 or THQ=0.1) MIN(C _{ia,c} ,C _{ia,nc}) (µg/m ³)	Toxicity Basis	Target Sub-Slab and Near-source Soil Gas Concentration (TCR=0.0001 or THQ=0.1) C _{sg} ,Target (µg/m ³)	Target Groundwater Concentration (TCR=0.0001 or THQ=0.1) C _{gw} ,Target (μg/L)
Trimethylbenzene, 1,2,4-	95-63-6	Yes	Yes	Yes	Yes	2.63E+01	NC	8.76E+02	1.04E+02
Trimethylbenzene, 1,3,5-	108-67-8	Yes	Yes	Yes	Yes	2.63E+01	NC	8.76E+02	7.33E+01
Xylene, o-	95-47-6	Yes	Yes	Yes	Yes	4.38E+01	NC	1.46E+03	2.07E+02
Xylenes	1330-20-7	Yes	Yes	Yes	Yes	4.38E+01	NC	1.46E+03	1.62E+02

4

Is Target Groundwater Concentration < MCL? (C _{gw} < MCL?)	Pure Phase Vapor Concentration C _{vp} \ (25 °C)\ (µg/m ³)	Maximum Groundwater Vapor Concentration C _{hc} \ (µg/m³)	Temperature for Maximum Groundwater Vapor Concentration (°C)	Lower Explosive Limit LEL (% by volume)	LEL Ref	IUR (ug/m ³) ⁻¹	IUR Ref			Mutagenic Indicator	VISL TCR=0.0001	Noncarcinogenic VISL THQ=0.1 C _{ia,nc} (µg/m ³)
	1.36E+07	1.44E+07	25	0.90	U	-		6.00E-02	U	No	-	2.63E+01
	1.60E+07	1.73E+07	25	1.00	U	-		6.00E-02	U	No	-	2.63E+01
	3.77E+07	3.77E+07	25	0.90	U	-		1.00E-01	U	No	-	4.38E+01
Yes (10000)	4.56E+07	2.87E+07	25	-		-		1.00E-01	U	No	-	4.38E+01

Chemical Properties

Chemical	CAS Number	Does the chemical meet the definition for volatility? (HLC>1E-5	Does the chemical have inhalation toxicity data? (IUR and/or	MW	MW	Vapor Pressure VP	VP	S	S	MCL
Acetone	67-64-1	or VP>1) Yes	RfC) Yes	58.08	U	(mm Hg) 2.32E+02	U	(mg/L) 1.00E+06	U	(ug/L)
	67-64-1 71-43-2	Yes	Yes	56.06 78.12	_	2.32E+02 9.48E+01		1.00E+06 1.79E+03	U	- 5
Benzene	71-43-2 106-99-0	Yes	Yes	76.12 54.09		9.46E+01 2.11E+03	U	7.35E+02	U	Э
Butadiene, 1,3- Butyl Alcohol, t-	75-65-0	Yes	No	54.09 74.12	U	2.11E+03 4.07E+01	U	1.00E+06	U	-
Carbon Disulfide	75-05-0	Yes	Yes	76.12	U	4.07E+01 3.59E+02	-	2.16E+03	U	
Carbon Disulide Carbon Tetrachloride	75-15-0 56-23-5	Yes	Yes	153.82	U	3.59E+02 1.15E+02	U U	2.16E+03 7.93E+02	U	- 5
Chloroform	50-23-5 67-66-3	Yes	Yes	119.38	U U	1.13E+02 1.97E+02	-	7.95E+02	U	80
Chloromethane	74-87-3	Yes	Yes	50.49	U	4.30E+02		7.95E+03 5.32E+03	U	00
Cyclohexane	74-07-3 110-82-7	Yes	Yes	50.49 84.16	-	4.30E+03 9.69E+01		5.50E+01	U	-
Dichlorodifluoromethane	75-71-8	Yes	Yes	120.91	U	4.85E+03		2.80E+02	U	-
Dichloroethylene, cis-1,2-	156-59-2	Yes	No	96.94	-	4.03E+03 2.00E+02	U	6.41E+03	U	70
Ethanol	64-17-5	Yes	No	46.07		5.93E+01		1.00E+06	U	70
Ethylbenzene	100-41-4	Yes	Yes	106.17	U	9.60E+00		1.69E+02	U	700
Heptane, N-	142-82-5	Yes	Yes	100.21	U	4.60E+01		3.40E+02	U	-
Hexane, N-	142-02-3	Yes	Yes	86.18	U	1.51E+02	U	9.50E+00	U	_
Hexanone, 2-	591-78-6	Yes	Yes	100.16	U	1.16E+01	-	1.72E+04	U	-
Isopropanol	67-63-0	Yes	Yes	60.10	-	4.54E+01		1.00E+06	U	-
Methyl Ethyl Ketone (2-Butanone)	78-93-3	Yes	Yes	72.11		9.06E+01		2.23E+05	U	-
Methyl Isobutyl Ketone (4-methyl-2-pentanone)	108-10-1	Yes	Yes	100.16	U	1.99E+01	U	1.90E+04	U	-
Tetrachloroethylene	127-18-4	Yes	Yes	165.83	U	1.85E+01	U	2.06E+02	U	5
Toluene	108-88-3	Yes	Yes	92.14	U	2.84E+01	Ū	5.26E+02	U	1000
Trichloroethylene	79-01-6	Yes	Yes	131.39	U	6.90E+01	U	1.28E+03	U	5
Trichlorofluoromethane	75-69-4	Yes	No	137.37		8.03E+02	U	1.10E+03	U	-
Trimethylbenzene, 1,2,4-	95-63-6	Yes	Yes	120.20	U	2.10E+00	U	5.70E+01	U	-
Trimethylbenzene, 1,3,5-	108-67-8	Yes	Yes	120.20	U	2.48E+00	U	4.82E+01	U	-
Xylene, o-	95-47-6	Yes	Yes	106.17	U	6.61E+00	U	1.78E+02	U	-
Xylenes	1330-20-7	Yes	Yes	106.17	U	7.99E+00	U	1.06E+02	U	10000

Chemical Properties

	Henry's Law	H` and	Henry's Law Constant Used in	Point		Critical Temperature	- \	Enthalpy of vaporization at the normal boiling point △H _{vb} \	∆H _v ,\	Lower Explosive Limit LEL (%	
HLC (atm-m ³ /mole)	Constant (unitless)	-	Calcs (unitless)	BP (K)	BP Ref	Т _с \ (К)	T _c \ Ref	(cal/mol)	Ref	by volume)	LEL Ref
3.50E-05	1.43E-03	U	1.43E-03	329.15	U	5.08E+02	U	6960.00	U	2.50	U
5.55E-03	2.27E-01	U	2.27E-01	353.15	U	5.62E+02	U	7340.00	U	1.20	U
7.36E-02	3.01E+00	U	3.01E+00	268.75	U	4.25E+02	U	5370.00	U	2.00	U
9.05E-06	3.70E-04	U	3.70E-04	355.55	U	5.06E+02	U	9340.00	U	2.40	U
1.44E-02	5.89E-01	U	5.89E-01	319.15	U	5.52E+02	U	6390.00	U	1.30	U
2.76E-02	1.13E+00	U	1.13E+00	349.95	U	5.56E+02	U	7130.00	U	-	
3.67E-03	1.50E-01	U	1.50E-01	334.25	U	5.36E+02	U	6990.00	U	-	
8.82E-03	3.61E-01	U	3.61E-01	249.15	U	4.16E+02	U	5110.00	U	8.10	U
1.50E-01	6.13E+00	U	6.13E+00	353.85	U	5.53E+02	U	7160.00	U	1.30	U
3.43E-01	1.40E+01	U	1.40E+01	243.35	U	3.85E+02	U	4800.00	U	-	
4.08E-03	1.67E-01	U	1.67E-01	333.25	U	5.36E+02	U	7220.00	U	3.00	U
5.00E-06	2.04E-04	U	2.04E-04	351.35	U	5.15E+02	U	9220.00	U	3.30	U
7.88E-03	3.22E-01	U	3.22E-01	409.15	U	6.17E+02	U	8500.00	U	0.80	U
2.00E+00	8.18E+01	U	8.18E+01	371.65	U	5.40E+02	U	7590.00	U	1.05	U
1.80E+00	7.36E+01	U	7.36E+01	341.85	U	5.08E+02	U	6900.00	U	1.10	U
9.32E-05	3.81E-03	U	3.81E-03	401.15	U	5.87E+02	U	8690.00	U	1.00	U
8.10E-06	3.31E-04	U	3.31E-04	355.45	U	5.08E+02	U	9520.00	U	2.00	U
5.69E-05	2.33E-03	U	2.33E-03	352.65	U	5.37E+02	U	7480.00	U	1.40	U
1.38E-04	5.64E-03	U	5.64E-03	389.15	U	5.75E+02	U	8240.00	U	1.20	U
1.77E-02	7.24E-01	U	7.24E-01	394.15	U	6.20E+02	U	8290.00	U	-	
6.64E-03	2.71E-01	U	2.71E-01	384.15	U	5.92E+02	U	7930.00	U	1.10	U
9.85E-03	4.03E-01	U	4.03E-01	360.35	U	5.71E+02	U	7500.00	U	8.00	U
9.70E-02	3.97E+00	U	3.97E+00	296.85	U	4.71E+02	U	6000.00	U	-	
6.16E-03	2.52E-01	U	2.52E-01	442.15	U	6.49E+02	U	9370.00	U	0.90	U
8.77E-03	3.59E-01	U	3.59E-01	438.15	U	6.37E+02	U	9320.00	U	1.00	U
5.18E-03	2.12E-01	U	2.12E-01	417.15	U	6.30E+02	U	8660.00	U	0.90	U
6.63E-03	2.71E-01	U	2.71E-01	411.15	U	6.20E+02	U	8520.00	U	-	

7

Commercial Air Inputs

Variable	Commercial Air Default Value	Form-input Value
AF (Attenuation Factor Groundwater) unitless	0.001	0.001
AF (Attenuation Factor Sub-Slab) unitless	0.03	0.03
AT, (averaging time - composite worker)	365	365
ED_{ω} (exposure duration - composite worker) yr	25	25
EF, (exposure frequency - composite worker) day/yr	250	250
ET_{w} (exposure time - composite worker) hr	8	8
THQ (target hazard quotient) unitless	0.1	0.1
LT (lifetime) yr	70	70
TR (target risk) unitless	1.0E-06	1.0E-05

1

Chemical	CAS Number	Does the chemical meet the definition for volatility? (HLC>1E-5 or VP>1)	Does the chemical have inhalation toxicity data? (IUR and/or RfC)	Is Chemical Sufficiently Volatile and Toxic to Pose Inhalation Risk Via Vapor Intrusion from Soil Source? (C _{vp} > C _{i,a} ,Target?)	Is Chemical Sufficiently Volatile and Toxic to Pose Inhalation Risk Via Vapor Intrusion from Groundwater Source? (C _{hc} > C _{i,a} ,Target?)	Target Indoor Air Concentration (TCR=1E-05 or THQ=0.1) MIN(C _{ia.c} ,C _{ia.nc}) (μg/m ³)	Toxicity Basis	Target Sub-Slab and Near-source Soil Gas Concentration (TCR=1E-05 or THQ=0.1) C _{sg} ,Target (μg/m ³)	Target Groundwater Concentration (TCR=1E-05 or THQ=0.1) C _{gw} ,Target (μg/L)
Acetone	67-64-1	Yes	Yes	Yes	Yes	1.35E+04	NC	4.51E+05	9.46E+06
Benzene	71-43-2	Yes	Yes	Yes	Yes	1.31E+01	NC	4.38E+02	5.79E+01
Butadiene, 1,3-	106-99-0	Yes	Yes	Yes	Yes	8.76E-01	NC	2.92E+01	2.91E-01
Butyl Alcohol, t-	75-65-0	Yes	No	No Inhal. Tox. Info	No Inhal. Tox. Info	-		-	-
Carbon Disulfide	75-15-0	Yes	Yes	Yes	Yes	3.07E+02	NC	1.02E+04	5.21E+02
Carbon Tetrachloride	56-23-5	Yes	Yes	Yes	Yes	2.04E+01	CA	6.81E+02	1.81E+01
Chloroform	67-66-3	Yes	Yes	Yes	Yes	5.33E+00	CA	1.78E+02	3.55E+01
Chloromethane	74-87-3	Yes	Yes	Yes	Yes	3.94E+01	NC	1.31E+03	1.09E+02
Cyclohexane	110-82-7	Yes	Yes	Yes	Yes	2.63E+03	NC	8.76E+04	4.29E+02
Dichlorodifluoromethane	75-71-8	Yes	Yes	Yes	Yes	4.38E+01	NC	1.46E+03	3.12E+00
Dichloroethylene, cis-1,2-	156-59-2	Yes	No	No Inhal. Tox. Info	No Inhal. Tox. Info	-		-	-
Ethanol	64-17-5	Yes	No	No Inhal. Tox. Info	No Inhal. Tox. Info	-		-	-
Ethylbenzene	100-41-4	Yes	Yes	Yes	Yes	4.91E+01	CA	1.64E+03	1.52E+02
Heptane, N-	142-82-5	Yes	Yes	Yes	Yes	1.75E+02	NC	5.84E+03	2.14E+00
Hexane, N-	110-54-3	Yes	Yes	Yes	Yes	3.07E+02	NC	1.02E+04	4.17E+00
Hexanone, 2-	591-78-6	Yes	Yes	Yes	Yes	1.31E+01	NC	4.38E+02	3.45E+03
Isopropanol	67-63-0	Yes	Yes	Yes	Yes	8.76E+01	NC	2.92E+03	2.65E+05
Methyl Ethyl Ketone (2-Butanone)	78-93-3	Yes	Yes	Yes	Yes	2.19E+03	NC	7.30E+04	9.41E+05
Methyl Isobutyl Ketone (4-methyl-2-pentanone)	108-10-1	Yes	Yes	Yes	Yes	1.31E+03	NC	4.38E+04	2.33E+05
Tetrachloroethylene	127-18-4	Yes	Yes	Yes	Yes	1.75E+01	NC	5.84E+02	2.42E+01
Toluene	108-88-3	Yes	Yes	Yes	Yes	2.19E+03	NC	7.30E+04	8.07E+03
Trichloroethylene Trichlorofluoromethane	79-01-6 75-69-4	Yes Yes	Yes No	Yes No Inhal. Tox. Info	Yes No Inhal. Tox. Info	8.76E-01 -	NC	2.92E+01 -	2.18E+00 -
				-	-				

Is Target Groundwater Concentration < MCL?	Pure Phase Vapor Concentration C _{vp} \ (25 °C)\	Maximum Groundwater Vapor Concentration C _{hc} \	Temperature for Maximum Groundwater Vapor Concentration	Lower Explosive Limit LEL (% by	LEL	IUR	IUR	RfC	RfC	Mutagenic	Carcinogenic VISL TCR=1E-05 C _{ia.c}	Noncarcinogenic VISL THQ=0.1 C _{ia.nc}
($C_{gw} < MCL$?)	(μ g/m³)	(μ g/m³)	(°C)	volume)	Ref	(ug/m ³) ⁻¹	Ref	(mg/m ³)	Ref	Indicator	(μ g/m³)	(μ g/m³)
	7.25E+08	1.43E+09	25	2.50	U	-		3.09E+01	U	No	-	1.35E+04
No (5)	3.98E+08	4.06E+08	25	1.20	U	7.80E-06	U	3.00E-02	U	No	1.57E+01	1.31E+01
	6.14E+09	2.21E+09	25	2.00	U	3.00E-05	U	2.00E-03	U	No	4.09E+00	8.76E-01
	1.62E+08	3.70E+08	25	2.40	U	-		-		No	-	-
	1.47E+09	1.27E+09	25	1.30	U	-		7.00E-01	U	No	-	3.07E+02
No (5)	9.51E+08	8.95E+08	25	-		6.00E-06	U	1.00E-01	U	No	2.04E+01	4.38E+01
Yes (80)	1.26E+09	1.19E+09	25	-		2.30E-05	U	9.77E-02	U	No	5.33E+00	4.28E+01
	1.17E+10	1.92E+09	25	8.10	U	-		9.00E-02	U	No	-	3.94E+01
	4.39E+08	3.37E+08	25	1.30	U	-		6.00E+00	U	No	-	2.63E+03
	3.15E+10	3.93E+09	25	-		-		1.00E-01	U	No	-	4.38E+01
	1.04E+09	1.07E+09	25	3.00	U	-		-		No	-	-
	1.47E+08	2.04E+08	25	3.30	U	-		-		No	-	-
Yes (700)	5.48E+07	5.44E+07	25	0.80	U	2.50E-06	U	1.00E+00	U	No	4.91E+01	4.38E+02
	2.48E+08	2.78E+08	25	1.05	U	-		4.00E-01	U	No	-	1.75E+02
	7.00E+08	6.99E+08	25	1.10	U	-		7.00E-01	U	No	-	3.07E+02
	6.25E+07	6.55E+07	25	1.00	U	-		3.00E-02	U	No	-	1.31E+01
	1.47E+08	3.31E+08	25	2.00	U	-		2.00E-01	U	No	-	8.76E+01
	3.51E+08	5.19E+08	25	1.40	U	-		5.00E+00	U	No	-	2.19E+03
-	1.07E+08	1.07E+08	25	1.20	U	-		3.00E+00	U	No	-	1.31E+03
No (5)	1.65E+08	1.49E+08	25	-		2.60E-07	U	4.00E-02	U	No	4.72E+02	1.75E+01
No (1000)	1.41E+08	1.43E+08	25	1.10	U	-		5.00E+00	U	No	-	2.19E+03
Yes (5)	4.88E+08	5.15E+08	25	8.00	U	4.10E-06	U	2.00E-03	U	Mut	2.99E+01	8.76E-01
	5.93E+09	4.36E+09	25	-		-		-		No	-	-

Chemical	CAS Number	Does the chemical meet the definition for volatility? (HLC>1E-5 or VP>1)	chemical have inhalation toxicity data? (IUR and/or	Is Chemical Sufficiently Volatile and Toxic to Pose Inhalation Risk Via Vapor Intrusion from Soil Source? (C _{vp} > C _{i,a} ,Target?)	to Pose Inhalation Risk Via Vapor Intrusion from Groundwater Source?	Target Indoor Air Concentration (TCR=1E-05 or THQ=0.1) MIN(C _{ia,c} ,C _{ia,nc}) (µg/m ³)	Toxicity Basis	Target Sub-Slab and Near-source Soil Gas Concentration (TCR=1E-05 or THQ=0.1) C _{sg} ,Target (µg/m ³)	Target Groundwater Concentration (TCR=1E-05 or THQ=0.1) C _{gw} ,Target (μg/L)
Trimethylbenzene, 1,2,4-	95-63-6	Yes	Yes	Yes	Yes	2.63E+01	NC	8.76E+02	1.04E+02
Trimethylbenzene, 1,3,5-	108-67-8	Yes	Yes	Yes	Yes	2.63E+01	NC	8.76E+02	7.33E+01
Xylene, o-	95-47-6	Yes	Yes	Yes	Yes	4.38E+01	NC	1.46E+03	2.07E+02
Xylenes	1330-20-7	Yes	Yes	Yes	Yes	4.38E+01	NC	1.46E+03	1.62E+02

Is Target Groundwater Concentration < MCL? (C _{gw} < MCL?)	Pure Phase Vapor Concentration C _{vp} \ (25 °C)\ (µg/m³)	Maximum Groundwater Vapor Concentration C _{hc} \ (µg/m³)	Temperature for Maximum Groundwater Vapor Concentration (°C)	Lower Explosive Limit LEL (% by volume)	LEL Ref	IUR (ug/m ³) ⁻¹	IUR Ref			Mutagenic Indicator	VISL TCR=1E-05	Noncarcinogenic VISL THQ=0.1 C _{ia,nc} (µg/m ³)
	1.36E+07	1.44E+07	25	0.90	U	-		6.00E-02	U	No	-	2.63E+01
	1.60E+07	1.73E+07	25	1.00	U	-		6.00E-02	U	No	-	2.63E+01
	3.77E+07	3.77E+07	25	0.90	U	-		1.00E-01	U	No	-	4.38E+01
Yes (10000)	4.56E+07	2.87E+07	25	-		-		1.00E-01	U	No	-	4.38E+01

Chemical Properties

Chemical	CAS Number	Does the chemical meet the definition for volatility? (HLC>1E-5 or VP>1)	Does the chemical have inhalation toxicity data? (IUR and/or RfC)	MW	MW	Vapor Pressure VP	VP	S (mg/l)	S	MCL (ug/L)
Acetone	67-64-1	Yes	Yes	58.08	U	(mm Hg) 2.32E+02	U	(mg/L) 1.00E+06	U	(ug/L)
Benzene	71-43-2	Yes	Yes	78.12	U	2.32E+02 9.48E+01	U	1.79E+03	U	- 5
Butadiene, 1,3-	7 1-43-2 106-99-0	Yes	Yes	54.09	U	9.46E+01 2.11E+03	-	7.35E+02	U	5
Butyl Alcohol, t-	75-65-0	Yes	No	74.12	U	4.07E+03	U	1.00E+06	U	-
Carbon Disulfide	75-15-0	Yes	Yes	76.12	U	4.07E+01 3.59E+02	U	2.16E+03	U	-
Carbon Tetrachloride	56-23-5	Yes	Yes	153.82	U	3.39E+02 1.15E+02	U	7.93E+02	U	- 5
Chloroform	67-66-3	Yes	Yes	119.38	U	1.97E+02	-	7.95E+02	U	80
Chloromethane	07-00-3 74-87-3	Yes	Yes	50.49	-	4.30E+02		5.32E+03	U	
Cyclohexane	110-82-7	Yes	Yes	84.16		9.69E+01		5.50E+01	U	_
Dichlorodifluoromethane	75-71-8	Yes	Yes	120.91	U	4.85E+03		2.80E+02	U	_
Dichloroethylene, cis-1,2-	156-59-2	Yes	No	96.94	_	2.00E+02	U	6.41E+03	U	70
Ethanol	64-17-5	Yes	No	46.07		5.93E+01	U	1.00E+06	U	-
Ethylbenzene	100-41-4	Yes	Yes	106.17		9.60E+00	-	1.69E+02	U	700
Heptane, N-	142-82-5	Yes	Yes	100.21	U	4.60E+01		3.40E+00	U	-
Hexane, N-	110-54-3	Yes	Yes	86.18	U	1.51E+02		9.50E+00	U	-
Hexanone, 2-	591-78-6	Yes	Yes	100.16	U	1.16E+01		1.72E+04	U	-
Isopropanol	67-63-0	Yes	Yes	60.10	U	4.54E+01		1.00E+06	U	-
Methyl Ethyl Ketone (2-Butanone)	78-93-3	Yes	Yes	72.11	U	9.06E+01	U	2.23E+05	U	-
Methyl Isobutyl Ketone (4-methyl-2-pentanone)	108-10-1	Yes	Yes	100.16	U	1.99E+01	U	1.90E+04	U	-
Tetrachloroethylene	127-18-4	Yes	Yes	165.83	U	1.85E+01	U	2.06E+02	U	5
Toluene	108-88-3	Yes	Yes	92.14	U	2.84E+01	U	5.26E+02	U	1000
Trichloroethylene	79-01-6	Yes	Yes	131.39	U	6.90E+01	U	1.28E+03	U	5
Trichlorofluoromethane	75-69-4	Yes	No	137.37	U	8.03E+02	U	1.10E+03	U	-
Trimethylbenzene, 1,2,4-	95-63-6	Yes	Yes	120.20	U	2.10E+00	U	5.70E+01	U	-
Trimethylbenzene, 1,3,5-	108-67-8	Yes	Yes	120.20	U	2.48E+00	U	4.82E+01	U	-
Xylene, o-	95-47-6	Yes	Yes	106.17	U	6.61E+00	U	1.78E+02	U	-
Xylenes	1330-20-7	Yes	Yes	106.17	U	7.99E+00	U	1.06E+02	U	10000

Chemical Properties

	Henry's Law	H` and	Henry's Law Constant Used in	Point		Critical Temperature	- \	Enthalpy of vaporization at the normal boiling point △H _{vb} \	∆H _v ,\	Lower Explosive Limit LEL (%	
HLC (atm-m ³ /mole)	Constant (unitless)	-	Calcs (unitless)	BP (K)	BP Ref	Т _с \ (К)	T _c \ Ref	(cal/mol)	Ref	by volume)	LEL Ref
3.50E-05	1.43E-03	U	1.43E-03	329.15	U	5.08E+02	U	6960.00	U	2.50	U
5.55E-03	2.27E-01	U	2.27E-01	353.15	U	5.62E+02	U	7340.00	U	1.20	U
7.36E-02	3.01E+00	U	3.01E+00	268.75	U	4.25E+02	U	5370.00	U	2.00	U
9.05E-06	3.70E-04	U	3.70E-04	355.55	U	5.06E+02	U	9340.00	U	2.40	U
1.44E-02	5.89E-01	U	5.89E-01	319.15	U	5.52E+02	U	6390.00	U	1.30	U
2.76E-02	1.13E+00	U	1.13E+00	349.95	U	5.56E+02	U	7130.00	U	-	
3.67E-03	1.50E-01	U	1.50E-01	334.25	U	5.36E+02	U	6990.00	U	-	
8.82E-03	3.61E-01	U	3.61E-01	249.15	U	4.16E+02	U	5110.00	U	8.10	U
1.50E-01	6.13E+00	U	6.13E+00	353.85	U	5.53E+02	U	7160.00	U	1.30	U
3.43E-01	1.40E+01	U	1.40E+01	243.35	U	3.85E+02	U	4800.00	U	-	
4.08E-03	1.67E-01	U	1.67E-01	333.25	U	5.36E+02	U	7220.00	U	3.00	U
5.00E-06	2.04E-04	U	2.04E-04	351.35	U	5.15E+02	U	9220.00	U	3.30	U
7.88E-03	3.22E-01	U	3.22E-01	409.15	U	6.17E+02	U	8500.00	U	0.80	U
2.00E+00	8.18E+01	U	8.18E+01	371.65	U	5.40E+02	U	7590.00	U	1.05	U
1.80E+00	7.36E+01	U	7.36E+01	341.85	U	5.08E+02	U	6900.00	U	1.10	U
9.32E-05	3.81E-03	U	3.81E-03	401.15	U	5.87E+02	U	8690.00	U	1.00	U
8.10E-06	3.31E-04	U	3.31E-04	355.45	U	5.08E+02	U	9520.00	U	2.00	U
5.69E-05	2.33E-03	U	2.33E-03	352.65	U	5.37E+02	U	7480.00	U	1.40	U
1.38E-04	5.64E-03	U	5.64E-03	389.15	U	5.75E+02	U	8240.00	U	1.20	U
1.77E-02	7.24E-01	U	7.24E-01	394.15	U	6.20E+02	U	8290.00	U	-	
6.64E-03	2.71E-01	U	2.71E-01	384.15	U	5.92E+02	U	7930.00	U	1.10	U
9.85E-03	4.03E-01	U	4.03E-01	360.35	U	5.71E+02	U	7500.00	U	8.00	U
9.70E-02	3.97E+00	U	3.97E+00	296.85	U	4.71E+02	U	6000.00	U	-	
6.16E-03	2.52E-01	U	2.52E-01	442.15	U	6.49E+02	U	9370.00	U	0.90	U
8.77E-03	3.59E-01	U	3.59E-01	438.15	U	6.37E+02	U	9320.00	U	1.00	U
5.18E-03	2.12E-01	U	2.12E-01	417.15	U	6.30E+02	U	8660.00	U	0.90	U
6.63E-03	2.71E-01	U	2.71E-01	411.15	U	6.20E+02	U	8520.00	U	-	

7

Commercial Air Inputs

Variable	Commercial Air Default Value	Form-input Value
AF (Attenuation Factor Groundwater) unitless	0.001	0.001
AF (Attenuation Factor Sub-Slab) unitless	0.03	0.03
AT, (averaging time - composite worker)	365	365
ED_{ω} (exposure duration - composite worker) yr	25	25
EF, (exposure frequency - composite worker) day/yr	250	250
ET, (exposure time - composite worker) hr	8	8
THQ (target hazard quotient) unitless	0.1	0.1
LT (lifetime) yr	70	70
TR (target risk) unitless	1.0E-06	1.0E-06

1

Chemical	CAS Number	Does the chemical meet the definition for volatility? (HLC>1E-5 or VP>1)	Does the chemical have inhalation toxicity data? (IUR and/or RfC)	Is Chemical Sufficiently Volatile and Toxic to Pose Inhalation Risk Via Vapor Intrusion from Soil Source? (C _{vp} > C _{i,a} ,Target?)	Is Chemical Sufficiently Volatile and Toxic to Pose Inhalation Risk Via Vapor Intrusion from Groundwater Source? (C _{hc} > C _{i,a} ,Target?)	Target Indoor Air Concentration (TCR=1E-06 or THQ=0.1) MIN(C _{iac} ,C _{ia,nc}) (μg/m ³)	Toxicity Basis	Target Sub-Slab and Near-source Soil Gas Concentration (TCR=1E-06 or THQ=0.1) C _{sg} ,Target (µg/m ³)	Target Groundwater Concentration (TCR=1E-06 or THQ=0.1) C _{gw} ,Target (μg/L)
Acetone	67-64-1	Yes	Yes	Yes	Yes	1.35E+04	NC	4.51E+05	9.46E+06
Benzene	71-43-2	Yes	Yes	Yes	Yes	1.57E+00	CA	5.24E+01	6.93E+00
Butadiene, 1,3-	106-99-0	Yes	Yes	Yes	Yes	4.09E-01	CA	1.36E+01	1.36E-01
Butyl Alcohol, t-	75-65-0	Yes	No	No Inhal. Tox. Info	No Inhal. Tox. Info	-		-	-
Carbon Disulfide	75-15-0	Yes	Yes	Yes	Yes	3.07E+02	NC	1.02E+04	5.21E+02
Carbon Tetrachloride	56-23-5	Yes	Yes	Yes	Yes	2.04E+00	CA	6.81E+01	1.81E+00
Chloroform	67-66-3	Yes	Yes	Yes	Yes	5.33E-01	CA	1.78E+01	3.55E+00
Chloromethane	74-87-3	Yes	Yes	Yes	Yes	3.94E+01	NC	1.31E+03	1.09E+02
Cyclohexane	110-82-7	Yes	Yes	Yes	Yes	2.63E+03	NC	8.76E+04	4.29E+02
Dichlorodifluoromethane	75-71-8	Yes	Yes	Yes	Yes	4.38E+01	NC	1.46E+03	3.12E+00
Dichloroethylene, cis-1,2-	156-59-2	Yes	No	No Inhal. Tox. Info	No Inhal. Tox. Info	-		-	-
Ethanol	64-17-5	Yes	No	No Inhal. Tox. Info	No Inhal. Tox. Info	-		-	-
Ethylbenzene	100-41-4	Yes	Yes	Yes	Yes	4.91E+00	CA	1.64E+02	1.52E+01
Heptane, N-	142-82-5	Yes	Yes	Yes	Yes	1.75E+02	NC	5.84E+03	2.14E+00
Hexane, N-	110-54-3	Yes	Yes	Yes	Yes	3.07E+02	NC	1.02E+04	4.17E+00
Hexanone, 2-	591-78-6	Yes	Yes	Yes	Yes	1.31E+01	NC	4.38E+02	3.45E+03
Isopropanol	67-63-0	Yes	Yes	Yes	Yes	8.76E+01	NC	2.92E+03	2.65E+05
Methyl Ethyl Ketone (2-Butanone)	78-93-3	Yes	Yes	Yes	Yes	2.19E+03	NC	7.30E+04	9.41E+05
Methyl Isobutyl Ketone (4-methyl-2-pentanone)	108-10-1	Yes	Yes	Yes	Yes	1.31E+03	NC	4.38E+04	2.33E+05
Tetrachloroethylene	127-18-4	Yes	Yes	Yes	Yes	1.75E+01	NC	5.84E+02	2.42E+01
Toluene	108-88-3	Yes	Yes	Yes	Yes	2.19E+03	NC	7.30E+04	8.07E+03
Trichloroethylene Trichlorofluoromethane	79-01-6 75-69-4	Yes Yes	Yes No	Yes No Inhal. Tox. Info	Yes No Inhal. Tox. Info	8.76E-01 -	NC	2.92E+01 -	2.18E+00 -

Commercial Vapor Intrusion Screening Levels (VISL)

Key: I = IRIS; P = PPRTV; O = OPP; A = ATSDR; C = Cal EPA; X = PPRTV Screening Level; H = HEAST; D = DWSHA; W = TEF applied; E = RPF applied; U = user provided; G = see RSL User's Guide Section 5; CA = cancer; NC = noncancer.

Is Target Groundwater Concentration < MCL?	Pure Phase Vapor Concentration C _{vp} \ (25 °C)\	Maximum Groundwater Vapor Concentration C _{hc} \	Temperature for Maximum Groundwater Vapor Concentration	Lower Explosive Limit LEL (% by	LEL	IUR	IUR	RfC	RfC	Mutagenic	Carcinogenic VISL TCR=1E-06 C _{ia.c}	Noncarcinogenic VISL THQ=0.1 C _{ia.nc}
($C_{gw} < MCL$?)	(μ g/m³)	(μ g/m³)	(°C)	volume)	Ref	(ug/m ³) ⁻¹	Ref	(mg/m ³)	Ref	Indicator	(μ g/m³)	(μ g/m³)
	7.25E+08	1.43E+09	25	2.50	U	-		3.09E+01	U	No	-	1.35E+04
No (5)	3.98E+08	4.06E+08	25	1.20	U	7.80E-06	U	3.00E-02	U	No	1.57E+00	1.31E+01
	6.14E+09	2.21E+09	25	2.00	U	3.00E-05	U	2.00E-03	U	No	4.09E-01	8.76E-01
	1.62E+08	3.70E+08	25	2.40	U	-		-		No	-	-
	1.47E+09	1.27E+09	25	1.30	U	-		7.00E-01	U	No	-	3.07E+02
Yes (5)	9.51E+08	8.95E+08	25	-		6.00E-06	U	1.00E-01	U	No	2.04E+00	4.38E+01
Yes (80)	1.26E+09	1.19E+09	25	-		2.30E-05	U	9.77E-02	U	No	5.33E-01	4.28E+01
	1.17E+10	1.92E+09	25	8.10	U	-		9.00E-02	U	No	-	3.94E+01
	4.39E+08	3.37E+08	25	1.30	U	-		6.00E+00	U	No	-	2.63E+03
	3.15E+10	3.93E+09	25	-		-		1.00E-01	U	No	-	4.38E+01
	1.04E+09	1.07E+09	25	3.00	U	-		-		No	-	-
	1.47E+08	2.04E+08	25	3.30	U	-		-		No	-	-
Yes (700)	5.48E+07	5.44E+07	25	0.80	U	2.50E-06	U	1.00E+00	U	No	4.91E+00	4.38E+02
	2.48E+08	2.78E+08	25	1.05	U	-		4.00E-01	U	No	-	1.75E+02
	7.00E+08	6.99E+08	25	1.10	U	-		7.00E-01	U	No	-	3.07E+02
	6.25E+07	6.55E+07	25	1.00	U	-		3.00E-02	U	No	-	1.31E+01
	1.47E+08	3.31E+08	25	2.00	U	-		2.00E-01	U	No	-	8.76E+01
	3.51E+08	5.19E+08	25	1.40	U	-		5.00E+00	U	No	-	2.19E+03
-	1.07E+08	1.07E+08	25	1.20	U	-		3.00E+00	U	No	-	1.31E+03
No (5)	1.65E+08	1.49E+08	25	-		2.60E-07	U	4.00E-02	U	No	4.72E+01	1.75E+01
No (1000)	1.41E+08	1.43E+08	25	1.10	U	-		5.00E+00	U	No	-	2.19E+03
Yes (5)	4.88E+08	5.15E+08	25	8.00	U	4.10E-06	U	2.00E-03	U	Mut	2.99E+00	8.76E-01
	5.93E+09	4.36E+09	25	-		-		-		No	-	-

Commercial Vapor Intrusion Screening Levels (VISL)

Key: I = IRIS; P = PPRTV; O = OPP; A = ATSDR; C = Cal EPA; X = PPRTV Screening Level; H = HEAST; D = DWSHA; W = TEF applied; E = RPF applied; U = user provided; G = see RSL User's Guide Section 5; CA = cancer; NC = noncancer.

Chemical	CAS Number	Does the chemical meet the definition for volatility? (HLC>1E-5 or VP>1)	chemical have inhalation toxicity data? (IUR and/or	Is Chemical Sufficiently Volatile and Toxic to Pose Inhalation Risk Via Vapor Intrusion from Soil Source? (C _{vp} > C _{i,a} ,Target?)	to Pose Inhalation Risk Via Vapor Intrusion from Groundwater Source?	Target Indoor Air Concentration (TCR=1E-06 or THQ=0.1) MIN(C _{ia,c} ,C _{ia,nc}) (µg/m ³)	Toxicity Basis	Target Sub-Slab and Near-source Soil Gas Concentration (TCR=1E-06 or THQ=0.1) C _{sg} ,Target (µg/m ³)	Target Groundwater Concentration (TCR=1E-06 or THQ=0.1) C _{gw} ,Target (μg/L)
Trimethylbenzene, 1,2,4-	95-63-6	Yes	Yes	Yes	Yes	2.63E+01	NC	8.76E+02	1.04E+02
Trimethylbenzene, 1,3,5-	108-67-8	Yes	Yes	Yes	Yes	2.63E+01	NC	8.76E+02	7.33E+01
Xylene, o-	95-47-6	Yes	Yes	Yes	Yes	4.38E+01	NC	1.46E+03	2.07E+02
Xylenes	1330-20-7	Yes	Yes	Yes	Yes	4.38E+01	NC	1.46E+03	1.62E+02

Commercial Vapor Intrusion Screening Levels (VISL)

Key: I = IRIS; P = PPRTV; O = OPP; A = ATSDR; C = Cal EPA; X = PPRTV Screening Level; H = HEAST; D = DWSHA; W = TEF applied; E = RPF applied; U = user provided; G = see RSL User's Guide Section 5; CA = cancer; NC = noncancer.

Is Target Groundwater Concentration < MCL? (C _{gw} < MCL?)	Pure Phase Vapor Concentration C _{vp} \ (25 °C)\ (µg/m ³)	Maximum Groundwater Vapor Concentration C _{hc} \ (μg/m ³)	Temperature for Maximum Groundwater Vapor Concentration (°C)	Lower Explosive Limit LEL (% by volume)	LEL Ref	IUR (ug/m ³) ⁻¹	IUR Ref			Mutagenic Indicator	VISL TCR=1E-06	Noncarcinogenic VISL THQ=0.1 C _{ia,nc} (µg/m ³)
	1.36E+07	1.44E+07	25	0.90	U	-		6.00E-02	U	No	-	2.63E+01
	1.60E+07	1.73E+07	25	1.00	U	-		6.00E-02	U	No	-	2.63E+01
	3.77E+07	3.77E+07	25	0.90	U	-		1.00E-01	U	No	-	4.38E+01
Yes (10000)	4.56E+07	2.87E+07	25	-		-		1.00E-01	U	No	-	4.38E+01

Chemical Properties

Chemical	CAS Number	Does the chemical meet the definition for volatility? (HLC>1E-5	Does the chemical have inhalation toxicity data? (IUR and/or	MW	MW	Vapor Pressure VP	VP	S	S	MCL
Acetone	67-64-1	or VP>1) Yes	RfC) Yes	58.08	U	(mm Hg) 2.32E+02	U	(mg/L) 1.00E+06	U	(ug/L)
	67-64-1 71-43-2	Yes	Yes	56.06 78.12	_	2.32E+02 9.48E+01		1.00E+06 1.79E+03	U	- 5
Benzene	71-43-2 106-99-0	Yes	Yes	76.12 54.09		9.46E+01 2.11E+03	U	7.35E+02	U	Э
Butadiene, 1,3- Butyl Alcohol, t-	75-65-0	Yes	No	54.09 74.12	U	2.11E+03 4.07E+01	U	1.00E+06	U	-
Carbon Disulfide	75-05-0	Yes	Yes	76.12	U	4.07E+01 3.59E+02	-	2.16E+03	U	
Carbon Disulide Carbon Tetrachloride	75-15-0 56-23-5	Yes	Yes	153.82	U	3.59E+02 1.15E+02	U U	2.16E+03 7.93E+02	U	- 5
Chloroform	50-23-5 67-66-3	Yes	Yes	119.38	U U	1.13E+02 1.97E+02	-	7.95E+02	U	80
Chloromethane	74-87-3	Yes	Yes	50.49	U	4.30E+02		7.95E+03 5.32E+03	U	00
Cyclohexane	74-07-3 110-82-7	Yes	Yes	50.49 84.16	-	4.30E+03 9.69E+01		5.50E+01	U	-
Dichlorodifluoromethane	75-71-8	Yes	Yes	120.91	U	4.85E+03		2.80E+02	U	-
Dichloroethylene, cis-1,2-	156-59-2	Yes	No	96.94	-	4.03E+03 2.00E+02	U	6.41E+03	U	- 70
Ethanol	64-17-5	Yes	No	46.07		5.93E+01		1.00E+06	U	70
Ethylbenzene	100-41-4	Yes	Yes	106.17	U	9.60E+00		1.69E+02	U	700
Heptane, N-	142-82-5	Yes	Yes	100.21	U	4.60E+01		3.40E+02	U	-
Hexane, N-	142-02-3	Yes	Yes	86.18	U	1.51E+02	U	9.50E+00	U	_
Hexanone, 2-	591-78-6	Yes	Yes	100.16	U	1.16E+01	-	1.72E+04	U	-
Isopropanol	67-63-0	Yes	Yes	60.10	-	4.54E+01		1.00E+06	U	-
Methyl Ethyl Ketone (2-Butanone)	78-93-3	Yes	Yes	72.11		9.06E+01		2.23E+05	U	-
Methyl Isobutyl Ketone (4-methyl-2-pentanone)	108-10-1	Yes	Yes	100.16	U	1.99E+01	U	1.90E+04	U	-
Tetrachloroethylene	127-18-4	Yes	Yes	165.83	U	1.85E+01	U	2.06E+02	U	5
Toluene	108-88-3	Yes	Yes	92.14	U	2.84E+01	Ū	5.26E+02	U	1000
Trichloroethylene	79-01-6	Yes	Yes	131.39	U	6.90E+01	U	1.28E+03	U	5
Trichlorofluoromethane	75-69-4	Yes	No	137.37		8.03E+02	U	1.10E+03	U	-
Trimethylbenzene, 1,2,4-	95-63-6	Yes	Yes	120.20	U	2.10E+00	U	5.70E+01	U	-
Trimethylbenzene, 1,3,5-	108-67-8	Yes	Yes	120.20	U	2.48E+00	U	4.82E+01	U	-
Xylene, o-	95-47-6	Yes	Yes	106.17	U	6.61E+00	U	1.78E+02	U	-
Xylenes	1330-20-7	Yes	Yes	106.17	U	7.99E+00	U	1.06E+02	U	10000

Chemical Properties

-	Henry's Law Constant	-	Henry's Law Constant Used in Calcs	Point BP	BP	Critical Temperature T _c \	T_\	Enthalpy of vaporization at the normal boiling point $\Delta H_{v,b}$	∆H _{v,b} \ Dof	Lower Explosive Limit LEL (% by	LEL
(atm-m ³ /mole) 3.50E-05	1.43E-03	U	(unitless) 1.43E-03	(K) 329.15	Ref U	(K) 5.08E+02	Ref U	(cal/mol) 6960.00	Ref U	volume) 2.50	Ref U
5.55E-03	1.43E-03 2.27E-01	U	1.43E-03 2.27E-01	353.15	U	5.62E+02	U	7340.00	U	2.50 1.20	U
	3.01E+00	U	3.01E+00	268.75	U	4.25E+02	U	5370.00	U	2.00	U
			3.70E-04	200.75 355.55			U	9340.00	U	2.00 2.40	U
	3.70E-04 5.89E-01	U	5.89E-01	319.15	U U	5.06E+02 5.52E+02	U	9340.00 6390.00	U	2.40 1.30	U
	1.13E+00	U U	5.69E-01 1.13E+00	349.95	U	5.52E+02 5.56E+02	U	7130.00	U		U
3.67E-02	1.13E+00 1.50E-01	U	1.50E-01	334.25	U	5.36E+02	U	6990.00	U	-	
	3.61E-01	U	3.61E-01	249.15	U	4.16E+02	U	5110.00	U	- 8.10	U
	6.13E+00	U	6.13E+00	353.85	U	4.10E+02 5.53E+02	U	7160.00	U	1.30	U
	1.40E+01	U	1.40E+01	243.35	U	3.85E+02	U	4800.00	U	-	0
4.08E-03	1.40E+01 1.67E-01	U	1.67E-01	333.25	U	5.36E+02	U	7220.00	U	- 3.00	U
	2.04E-04	U	2.04E-04	351.35	U	5.15E+02	U	9220.00	U	3.30	U
7.88E-03	2.04Ľ-04 3.22E-01	U	2.04Ľ-04 3.22E-01	409.15	U	6.17E+02	U	9220.00 8500.00	U	0.80	U
	8.18E+01	U	8.18E+01	371.65	U	5.40E+02	U	7590.00	U	1.05	U
	7.36E+01	U	7.36E+01	341.85	U	5.08E+02	U	6900.00	U	1.10	U
	3.81E-03	U	3.81E-03	401.15	U	5.87E+02	U	8690.00	U	1.00	U
	3.31E-04	U	3.31E-04	355.45	U	5.08E+02	U	9520.00	U	2.00	U
	2.33E-03	U	2.33E-03	352.65	U	5.37E+02	U	7480.00	U	1.40	U
1.38E-04	5.64E-03	U	5.64E-03	389.15	U	5.75E+02	U	8240.00	U	1.20	U
1.77E-02	7.24E-01	Ŭ	7.24E-01	394.15	U	6.20E+02	U	8290.00	U	-	Ŭ
	2.71E-01	U	2.71E-01	384.15	U	5.92E+02	U	7930.00	U	1.10	U
	4.03E-01	Ŭ	4.03E-01	360.35	U	5.71E+02	U	7500.00	U	8.00	Ŭ
	3.97E+00	U	3.97E+00	296.85	U	4.71E+02	U	6000.00	U	-	Ŭ
	2.52E-01	U	2.52E-01	442.15	U	6.49E+02	U	9370.00	U	0.90	U
	3.59E-01	U	3.59E-01	438.15	U	6.37E+02	U	9320.00	U	1.00	U
5.18E-03	2.12E-01	Ū	2.12E-01	417.15	U	6.30E+02	U	8660.00	U	0.90	U
6.63E-03	2.71E-01	U	2.71E-01	411.15	U	6.20E+02	U	8520.00	U	-	

7

APPENDIX E: NYSDOH SOIL VAPOR/INDOOR AIR DECISION MATRICES

Soil Vapor/Indoor Air Matrix A May 2017

Analytes Assigned:

Trichloroethene (TCE), cis-1,2-Dichloroethene (c12-DCE), 1,1-Dichloroethene (11-DCE), Carbon Tetrachloride

	INDOOR AIR CONCENTRATION of COMPOUND (mcg/m ³)							
SUB-SLAB VAPOR CONCENTRATION of COMPOUND (mcg/m ³)	< 0.2	0.2 to < 1	1 and above					
< 6	1. No further action	2. No Further Action	3. IDENTIFY SOURCE(S) and RESAMPLE or MITIGATE					
6 to < 60	4. No further action	5. MONITOR	6. MITIGATE					
60 and above	7. MITIGATE	8. MITIGATE	9. MITIGATE					

No further action: No additional actions are recommended to address human exposures.

Identify Source(s) and Resample or Mitigate: We recommend that reasonable and practical actions be taken to identify the source(s) affecting the indoor air quality and that actions be implemented to reduce indoor air concentrations to within background ranges. For example, if an indoor or outdoor air source is identified, we recommend the appropriate party implement actions to reduce the levels. In the event that indoor or outdoor sources are not readily identified or confirmed, resampling (which might include additional sub-slab vapor and indoor air sampling locations) is recommended to demonstrate that SVI mitigation actions are not needed. Based on the information available, mitigation might also be recommended when soil vapor intrusion cannot be ruled out.

Monitor: We recommend monitoring (sampling on a recurring basis), including but not necessarily limited to sub-slab vapor, basement air and outdoor air sampling, to determine whether concentrations in the indoor air or sub-slab vapor have changed and/or to evaluate temporal influences. Monitoring might also be recommended to determine whether existing building conditions (e.g., positive pressure heating, ventilation and air-conditioning systems) are maintaining the desired mitigation endpoint and to determine whether changes are needed. The type and frequency of monitoring is determined based on site-, building- and analyte-specific information, taking into account applicable environmental data and building operating conditions. Monitoring is an interim measure required to evaluate exposures related to soil vapor intrusion until contaminated environmental media are remediated.

Mitigate: We recommend mitigation to minimize current or potential exposures associated with soil vapor intrusion. The most common mitigation methods are sealing preferential pathways in conjunction with installing a sub-slab depressurization system and changing the pressurization of the building in conjunction with monitoring. The type, or combination of types, of mitigation is determined on a building-specific basis, taking into account building construction and operating conditions. Mitigation is considered a temporary measure implemented to address exposures related to soil vapor intrusion until contaminated environmental media are remediated.

These general recommendations are made with consideration being given to the additional notes on page 2.

MATRIX A Page 1 of 2

This matrix summarizes actions recommended to address current and potential exposures related to soil vapor intrusion. To use the matrix appropriately as a tool in the decision-making process, the following should be noted:

- [1] The matrix is generic. As such, it may be appropriate to modify a recommended action to accommodate analyte-specific, building-specific conditions (e.g., dirt floor in basement, crawl spaces, thick slabs, current occupancy, etc.), and/or factors provided in Section 3.2 of the guidance (e.g., current land use, environmental conditions, etc.). For example, collection of additional samples may be recommended when the matrix indicates "no further action" for a particular building, but the results of adjacent buildings (especially sub-slab vapor results) indicate a need to take actions to address exposures related to soil vapor intrusion. Mitigation might be recommended when the results of multiple contaminants indicate monitoring is recommended. Proactive actions may be proposed at any time. For example, the party implementing the actions may decide to install sub-slab depressurization systems on buildings where the matrix indicates "no further action" or "monitoring." Such an action might be undertaken for reasons other than public health (e.g., seeking community acceptance, reducing costs, etc.). However, actions implemented in lieu of sampling will typically be expected to be captured in the final engineering report and site management plan, and might not rule out the need for post-implementation sampling (e.g., to document effectiveness or to support terminating the action).
- [2] Actions provided in the matrix are specific to addressing human exposures. Implementation of these actions does not preclude investigating possible sources of soil vapor contamination, nor does it preclude remediating contaminated soil vapor or the source of soil vapor contamination.
- [3] Appropriate care should be taken during all aspects of sample collection to ensure that high quality data are obtained. Since the data are being used in the decision-making process, the laboratory analyzing the environmental samples must have current Environmental Laboratory Approval Program (ELAP) certification for the appropriate analyte and environmental matrix combinations. Furthermore, samples should be analyzed by methods that can achieve a minimum reporting limit of 0.20 microgram per cubic meter for indoor and outdoor air samples. For sub-slab vapor samples and dirt floor soil vapor samples, a minimum reporting limit of 1 microgram per cubic meter is recommended.
- [4] Sub-slab vapor and indoor air samples are typically collected when the likelihood of soil vapor intrusion is considered to be the greatest (i.e., worst-case conditions). If samples are collected at other times (typically, samples collected outside of the heating season), then resampling during worst-case conditions might be appropriate to verify that actions taken to address exposures related to soil vapor intrusion are protective of human health.
- [5] When current exposures are attributed to sources other than soil vapor intrusion, the agencies should be given documentation (e.g., applicable environmental data, completed indoor air sampling questionnaire, digital photographs, etc.) to support a proposed action other than that provided in the matrix box and to support agency assessment and follow-up.
- [6] The party responsible for implementing the recommended actions will differ depending upon several factors, including but not limited to the following: the identified source of the volatile chemicals, the environmental remediation program, and analyte-specific, site-specific and building-specific factors.

Soil Vapor/Indoor Air Matrix B May 2017

Analytes Assigned:

Tetrachloroethene (PCE), 1,1,1-Trichloroethane (111-TCA), Methylene Chloride

	INDOOR AIR CONCENTRATION of COMPOUND (mcg/m ³)								
SUB-SLAB VAPOR CONCENTRATION of COMPOUND (mcg/m ³)	< 3	3 to < 10	10 and above						
< 100	1. No further action	2. No Further Action	3. IDENTIFY SOURCE(S) and RESAMPLE or MITIGATE						
100 to < 1,000	4. No further action	5. MONITOR	6. MITIGATE						
1,000 and above	7. MITIGATE	8. MITIGATE	9. MITIGATE						

No further action: No additional actions are recommended to address human exposures.

Identify Source(s) and Resample or Mitigate: We recommend that reasonable and practical actions be taken to identify the source(s) affecting the indoor air quality and that actions be implemented to reduce indoor air concentrations to within background ranges. For example, if an indoor or outdoor air source is identified, we recommend the appropriate party implement actions to reduce the levels. In the event that indoor or outdoor sources are not readily identified or confirmed, resampling (which might include additional sub-slab vapor and indoor air sampling locations) is recommended to demonstrate that SVI mitigation actions are not needed. Based on the information available, mitigation might also be recommended when soil vapor intrusion cannot be ruled out.

Monitor: We recommend monitoring (sampling on a recurring basis), including but not necessarily limited to sub-slab vapor, basement air and outdoor air sampling, to determine whether concentrations in the indoor air or sub-slab vapor have changed and/or to evaluate temporal influences. Monitoring might also be recommended to determine whether existing building conditions (e.g., positive pressure heating, ventilation and air-conditioning systems) are maintaining the desired mitigation endpoint and to determine whether changes are needed. The type and frequency of monitoring is determined based on site-, building- and analyte-specific information, taking into account applicable environmental data and building operating conditions. Monitoring is an interim measure required to evaluate exposures related to soil vapor intrusion until contaminated environmental media are remediated.

Mitigate: We recommend mitigation to minimize current or potential exposures associated with soil vapor intrusion. The most common mitigation methods are sealing preferential pathways in conjunction with installing a sub-slab depressurization system and changing the pressurization of the building in conjunction with monitoring. The type, or combination of types, of mitigation is determined on a building-specific basis, taking into account building construction and operating conditions. Mitigation is considered a temporary measure implemented to address exposures related to soil vapor intrusion until contaminated environmental media are remediated.

These general recommendations are made with consideration being given to the additional notes on page 2.

MATRIX B Page 1 of 2

This matrix summarizes actions recommended to address current and potential exposures related to soil vapor intrusion. To use the matrix appropriately as a tool in the decision-making process, the following should be noted:

- [1] The matrix is generic. As such, it may be appropriate to modify a recommended action to accommodate analyte-specific, building-specific conditions (e.g., dirt floor in basement, crawl spaces, thick slabs, current occupancy, etc.), and/or factors provided in Section 3.2 of the guidance (e.g., current land use, environmental conditions, etc.). For example, collection of additional samples may be recommended when the matrix indicates "no further action" for a particular building, but the results of adjacent buildings (especially sub-slab vapor results) indicate a need to take actions to address exposures related to soil vapor intrusion. Mitigation might be recommended when the results of multiple contaminants indicate monitoring is recommended. Proactive actions may be proposed at any time. For example, the party implementing the actions may decide to install sub-slab depressurization systems on buildings where the matrix indicates "no further action" or "monitoring." Such an action might be undertaken for reasons other than public health (e.g., seeking community acceptance, reducing costs, etc.). However, actions implemented in lieu of sampling will typically be expected to be captured in the final engineering report and site management plan, and might not rule out the need for post-implementation sampling (e.g., to document effectiveness or to support terminating the action).
- [2] Actions provided in the matrix are specific to addressing human exposures. Implementation of these actions does not preclude investigating possible sources of soil vapor contamination, nor does it preclude remediating contaminated soil vapor or the source of soil vapor contamination.
- [3] Appropriate care should be taken during all aspects of sample collection to ensure that high quality data are obtained. Since the data are being used in the decision-making process, the laboratory analyzing the environmental samples must have current Environmental Laboratory Approval Program (ELAP) certification for the appropriate analyte and environmental matrix combinations. Furthermore, samples should be analyzed by methods that can achieve a minimum reporting limit of 1 microgram per cubic meter for indoor and outdoor air samples. For sub-slab vapor samples and dirt floor soil vapor samples, a minimum reporting limit of 1 microgram per cubic meter is recommended.
- [4] Sub-slab vapor and indoor air samples are typically collected when the likelihood of soil vapor intrusion is considered to be the greatest (i.e., worst-case conditions). If samples are collected at other times (typically, samples collected outside of the heating season), then resampling during worst-case conditions might be appropriate to verify that actions taken to address exposures related to soil vapor intrusion are protective of human health.
- [5] When current exposures are attributed to sources other than soil vapor intrusion, the agencies should be given documentation (e.g., applicable environmental data, completed indoor air sampling questionnaire, digital photographs, etc.) to support a proposed action other than that provided in the matrix box and to support agency assessment and follow-up.
- [6] The party responsible for implementing the recommended actions will differ depending upon several factors, including but not limited to the following: the identified source of the volatile chemicals, the environmental remediation program, and analyte-specific, site-specific and building-specific factors.

Soil Vapor/Indoor Air Matrix C

May 2017

Analytes Assigned:

Vinyl Chloride

	INDOOR AIR CONCENTRATION of COMPOUND (mcg/					
SUB-SLAB VAPOR CONCENTRATION of COMPOUND (mcg/m ³)	< 0.2	0.2 and above				
< 6	1. No further action	2. IDENTIFY SOURCE(S) and RESAMPLE or MITIGATE				
6 to < 60	3. MONITOR	4. MITIGATE				
60 and above	5. MITIGATE	6. MITIGATE				

No further action: No additional actions are recommended to address human exposures.

Identify Source(s) and Resample or Mitigate: We recommend that reasonable and practical actions be taken to identify the source(s) affecting the indoor air quality and that actions be implemented to reduce indoor air concentrations to within background ranges. For example, if an indoor or outdoor air source is identified, we recommend the appropriate party implement actions to reduce the levels. In the event that indoor or outdoor sources are not readily identified or confirmed, resampling (which might include additional sub-slab vapor and indoor air sampling locations) is recommended to demonstrate that SVI mitigation actions are not needed. Based on the information available, mitigation might also be recommended when soil vapor intrusion cannot be ruled out.

Monitor: We recommend monitoring (sampling on a recurring basis), including but not necessarily limited to sub-slab vapor, basement air and outdoor air sampling, to determine whether concentrations in the indoor air or sub-slab vapor have changed and/or to evaluate temporal influences. Monitoring might also be recommended to determine whether existing building conditions (e.g., positive pressure heating, ventilation and air-conditioning systems) are maintaining the desired mitigation endpoint and to determine whether changes are needed. The type and frequency of monitoring is determined based on site-, building- and analyte-specific information, taking into account applicable environmental data and building operating conditions. Monitoring is an interim measure required to evaluate exposures related to soil vapor intrusion until contaminated environmental media are remediated.

Mitigate: We recommend mitigation to minimize current or potential exposures associated with soil vapor intrusion. The most common mitigation methods are sealing preferential pathways in conjunction with installing a sub-slab depressurization system and changing the pressurization of the building in conjunction with monitoring. The type, or combination of types, of mitigation is determined on a building-specific basis, taking into account building construction and operating conditions. Mitigation is considered a temporary measure implemented to address exposures related to soil vapor intrusion until contaminated environmental media are remediated.

These general recommendations are made with consideration being given to the additional notes on page 2.

MATRIX C Page 1 of 2

This matrix summarizes actions recommended to address current and potential exposures related to soil vapor intrusion. To use the matrix appropriately as a tool in the decision-making process, the following should be noted:

- [1] The matrix is generic. As such, it may be appropriate to modify a recommended action to accommodate analyte-specific, building-specific conditions (e.g., dirt floor in basement, crawl spaces, thick slabs, current occupancy, etc.), and/or factors provided in Section 3.2 of the guidance (e.g., current land use, environmental conditions, etc.). For example, collection of additional samples may be recommended when the matrix indicates "no further action" for a particular building, but the results of adjacent buildings (especially sub-slab vapor results) indicate a need to take actions to address exposures related to soil vapor intrusion. Mitigation might be recommended when the results of multiple contaminants indicate monitoring is recommended. Proactive actions may be proposed at any time. For example, the party implementing the actions may decide to install sub-slab depressurization systems on buildings where the matrix indicates "no further action" or "monitoring." Such an action might be undertaken for reasons other than public health (e.g., seeking community acceptance, reducing costs, etc.). However, actions implemented in lieu of sampling will typically be expected to be captured in the final engineering report and site management plan, and might not rule out the need for post-implementation sampling (e.g., to document effectiveness or to support terminating the action).
- [2] Actions provided in the matrix are specific to addressing human exposures. Implementation of these actions does not preclude investigating possible sources of soil vapor contamination, nor does it preclude remediating contaminated soil vapor or the source of soil vapor contamination.
- [3] Appropriate care should be taken during all aspects of sample collection to ensure that high quality data are obtained. Since the data are being used in the decision-making process, the laboratory analyzing the environmental samples must have current Environmental Laboratory Approval Program (ELAP) certification for the appropriate analyte and environmental matrix combinations. Furthermore, samples should be analyzed by methods that can achieve a minimum reporting limit of 0.20 microgram per cubic meter for indoor and outdoor air samples. For sub-slab vapor samples and dirt floor soil vapor samples, a minimum reporting limit of 1 microgram per cubic meter is recommended.
- [4] Sub-slab vapor and indoor air samples are typically collected when the likelihood of soil vapor intrusion is considered to be the greatest (i.e., worst-case conditions). If samples are collected at other times (typically, samples collected outside of the heating season), then resampling during worst-case conditions might be appropriate to verify that actions taken to address exposures related to soil vapor intrusion are protective of human health.
- [5] When current exposures are attributed to sources other than soil vapor intrusion, the agencies should be given documentation (e.g., applicable environmental data, completed indoor air sampling questionnaire, digital photographs, etc.) to support a proposed action other than that provided in the matrix box and to support agency assessment and follow-up.
- [6] The party responsible for implementing the recommended actions will differ depending upon several factors, including but not limited to the following: the identified source of the volatile chemicals, the environmental remediation program, and analyte-specific, site-specific and building-specific factors.