PHASE II ENVIRONMENTAL SITE ASSESSMENT

For

1117 WEST FAYETTE STREET SYRACUSE, NEW YORK 13204

Prepared by:

C&S Engineers, Inc. 499 Col. Eileen Collins Blvd. Syracuse, NY 13212

Prepared for:

Redev CNY, LLC 321 South Salina Street Syracuse, New York 13202

September 2022

C&S Project No: Z62.001.001

EXECUTIVE SUMMARY	1
1. INTRODUCTION	3
1.1. LIMITATIONS AND EXCEPTIONS	4
2. SITE DESCRIPTION	5
2.1. LOCATION AND LEGAL DESCRIPTION	5
2.2. CONTAMINATION CONCERNS	6
3. PHASE II ENVIRONMENTAL SITE ASSESSMENT RATIONALE AND METHODS	7
3.1. SCOPE AND OBJECTIVES	7
3.2. SITE INVESTIGATION METHODS	7
3.2.1. UTILITY CLEARING	7
3.2.2. SOIL BORING ADVANCEMENT	7
3.2.3. GROUNDWATER MONITORING WELL INSTALLATION	9
3.2.4. SOIL VAPOR INTRUSION SAMPLING	10
3.2.5. CHEMICAL INVENTORY	12
4. RESULTS	13
4.1. SITE GEOLOGY AND HYDROGEOLOGY	13
4.1.1. SITE GEOLOGY	13
4.1.2. SITE HYDROGEOLOGY	13
4.2. FIELD SCREENING RESULTS	13
4.3. LABORATORY ANALYTICAL DATA	14
4.3.1. SOIL ANALYTICAL DATA	15
5. DISCUSSION AND CONCLUSIONS	21
5.1. FINDINGS	21
5.2. RECOMMENDATIONS	23
ENVIRONMENTAL PROFESSIONAL STATEMENT AND QUALIFICATIONS	24
FIGURES	26
TABLES	27
APPENDICES	28

FIGURES

Figure 1	Project Location Map
Figure 2	Soil Sampling Map
Figure 3	Well Location Map
Figure 4	Air Sampling Map

TABLESTable 1

Table I	Soil Sample Data Summary
Table 2	Groundwater Data Summary
Table 3	Soil Vapor Intrusion Data Summary
Table 4	Indoor Air Sampling Data Summary

APPENDICES

Appendix A	Historical	Environmental	Documentation
11ppcmam 11	IIIJCOIICUI	LIIVII OIIIIICIICAI	Documentation

Appendix B Soil Boring Logs

Appendix C Laboratory Analytical Reports

EXECUTIVE SUMMARY

At the request of Redev CNY, LLC, C&S Engineers, Inc. (C&S) has prepared this Phase II Environmental Site Assessment (Phase II ESA or Investigation) Report of 1117 West Fayette Street, Syracuse, Onondaga County, New York (Site). The scope of services for the Phase II was based on our proposals dated July 22, 2022 and August 30, 2022. The location of the Site is shown on **Figure 1**.

Based on the results of the Phase I ESA conducted by C&S in June 2022, an investigation focused on subsurface soil, groundwater, and soil vapor intrusion was designed. Due to the historical land uses of the site and adjacent sites, samples collected as part of this Investigation were analyzed for a combination of volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), and metals.

C&S' Investigation of the Site was conducted on August 2, 2022 and September 6, 2022. The following summarizes and discusses the results of this Investigation.

Findings

C&S collected three sets of co-located 24-hour sub-slab and indoor air samples and one outdoor air sample on August 1 to August 2, 2022. C&S observed the drilling of ten soil borings and the installation of two temporary groundwater monitoring wells on August 2, 2022. C&S advanced an additional six hand-augured soil borings on September 6, 2022.

Subsurface Soil Samples:

A total of ten subsurface soil samples were collected from 16 soil borings advanced at the site. All of the soil samples were analyzed for SVOCs and total metals. Four of the samples were also analyzed for VOCs. Visual and olfactory evidence of petroleum impacts was only observed from 7.5 feet to 9 feet bgs at a single soil boring. HFM was observed from just below the surface to 5 or less feet bgs in 14 of the 16 soil borings. Trichloroethene (VOC) was detected at a concentration greater than the Unrestricted Use SCO in SB-10. No VOCs were detected above Restricted Residential Use SCOs. Two SVOCs were detected in SB-10A at concentrations greater than Restricted Residential SCOs and one SVOC was detected at a concentration greater than the Residential SCO in SB-10. The following summarizes the metal SCO exceedances for soil samples:

- Barium Residential Use (SB-02A) and Commercial Use (SB-03A)
- Copper Unrestricted Use (SB-02A, SB-03A, SB-05A, SB-07A, and SB-10) and Commercial Use (SB-10A)
- Lead Unrestricted Use (SB-02A, SB-03A, SB-05A, SB-06, SB-07A, SB-10, and SB-10A) and significant exceedance of Industrial Use (SB-04)

- Mercury Unrestricted Use (SB-02A, SB-04, SB-05A, SB-06, SB-10, and SB-10A), Restricted Residential Use (SB-03A), and Industrial Use (SB-07A)
- Nickel Unrestricted Use (SB-07A) and Residential Use (SB-10)
- Zinc Unrestricted Use (SB-02A, SB-03A, SB-05A, and SB-10A)
- Cyanide Significant exceedance of Commercial Use (SB-07A)

All of the aforementioned exceedances are associated with samples containing HFM located from just below the surface to 3.5 feet bgs.

Groundwater Samples:

Two temporary groundwater monitoring wells were installed at SB-10 (MW-1) and SB-03 (MW-2). Sample was collected from each monitoring well and submitted for laboratory analysis for VOCs, SVOCs, and metals. Groundwater was encountered at approximately eight to twelve feet bgs. No VOCs were detected in either sample above TOGs 1.1.1 Class GA Ambient Water Quality Standards. Six SVOCs and 15 metals were detected about groundwater standards in both samples. Metal concentrations were significantly greater than water quality standards. Generally, metals were detected at higher levels in the sample taken from MW-2 compared to the sample taken from MW-1. It is common for groundwater under an urban area to exhibit elevated SVOCs and metals as a result of general urban activity and development.

Soil Vapor Intrusion Samples:

Three sets of sub-slab and indoor air samples and one outdoor air sample was collected. One set of samples was collected in the northwestern portion of the northern building basement. Two of the sets of samples was collected from the southeast and south-southwest portion of the southern building on the site. No analytes were detected above respective guidance or screening values in the sub-slab or indoor air samples. Additionally, according to decision matrices developed by the NYSDOH (*Matrix A, B, and C*), no further action is required at the site with respect to vapor intrusion.

1. Introduction

At the request of Redev CNY, LLC, C&S Engineers, Inc. (C&S) has prepared this Phase II Environmental Site Assessment (Phase II or Investigation) Report of 1117 West Fayette Street, Syracuse, Onondaga County, New York (Site). The scope of services for the Phase II was based on our July 22, 2022 and August 30, 2022 proposals. The location of the Site is shown on **Figure 1**. The investigation was performed generally consistent with American Society of Testing and Materials (ASTM) E 1903-19 Standard Guide for Environmental Site Assessments: Phase II Environmental Site Assessment Process, unless noted otherwise in this report.

As indicated in the Standard, there are a wide variety of reasons to perform a Phase II Investigation:

- Assess whether there has been a release of a hazardous substance applicable to CERCLA for purposes including landowner liability protections (innocent landowner, bonafide prospective purchaser, or contiguous property owner);
- Provide information relevant to identifying, defining, or implementing landowner continuing obligations;
- Develop threshold knowledge of the presence of substances within the scope of CERCLA to qualify as a Brownfield;
- Provide information relative to identifying, defining, and evaluating conditions that could lead to environmental or human health hazards;
- Provide information relative to evaluating business environmental risk; and
- Provide information to support disclosure of liabilities for financial statements and reporting.

The scope of services for this Investigation included the following tasks

- Subsurface investigation of the geologic and hydrogeologic conditions of the Site;
- Collection and laboratory analytical testing of soil, groundwater, and air samples;
- Evaluation of the findings of the investigation and analytical testing; and
- Discussion of the potential impact of the observed conditions on the Site and recommendation of further actions.

This Investigation was intended to provide further information on the Site's environmental condition to render a professional opinion on the suspected presence or absence of petroleum or chemical impacts.

1.1. Limitations and Exceptions

C&S has performed this Investigation consistent with the contract scope of services, using reasonable efforts to identify areas of potential liability associated with environmental concerns at the Site. As detailed in our scope of services, the following limitations were encountered:

The conclusions in this report were based solely on geologic / hydrogeologic data collected on the Site and laboratory analytical results. C&S has made no independent investigation of the accuracy of any secondary sources and has assumed them to be accurate and complete. C&S does not warrant the accuracy of completeness of the information provided by the secondary sources. C&S does not warrant that contamination that may exist on the site has been discovered, that the site is suitable for any particular purpose, or that the site is clean or free of liability.

No environmental site investigation can wholly eliminate uncertainty regarding the potential nature and extent of the identified environmental concern(s) in connection with a property. Even when an Investigation is executed competently and consistent with the ASTM Standard, it must be recognized that certain conditions present especially difficult target analyte detection problems. Such conditions may include, but are not limited to, complex geological settings, unusual or generally poorly understood behavior and fate characteristics of certain substances, complex, discontinuous, random, dynamic, or spotty distributions of target analytes, physical impediments to investigation imposed by the location of utilities and other man-made objects, and the inherent limitations of assessment technologies.

Similar to a Phase I ESA, there is a point at which the cost of the information obtained or the time required to gather it outweighs the usefulness of the information and, in the context of private transactions and contractual responsibilities, may become a material detriment to the orderly completion of business. If the presence of target analytes is confirmed on a property, the extent of further assessment is a function of the degree of confidence required and the degree of uncertainty acceptable, in relation to the objectives of the assessment.

2. SITE DESCRIPTION

The following sections include a description of the location, site characteristics, and land use in the vicinity of the Site.

2.1. Location and Legal Description

The Site is approximately 0.46 acres, identified as tax parcel 099.-03-03.0, and is owned by NestFirst, LLC. The property is located at 1117 West Fayette Street, Syracuse, Onondaga County, New York.

The Site consists of two, three-story buildings joined by a second-level bridge, which occupy a majority of the Site. A courtyard and alley-way exists between the two buildings. The Site buildings are adjoined to the neighboring building to the east. The northern building is currently used as a commercial office space on the first floor, screen printing and general storage on the second floor, and general storage on the third floor. The southern building is currently occupied by A.M. Electric, who uses the first floor as general warehouse space. The second and third floor are used by the screen printing operation as storage space. The exterior features of the Site include a driveway along the western boundary of the Site and an alley along the southern boundary of the Site.

The list below describes the properties / features / roads immediately surrounding the Site:

Direction	Feature(s)
North	West Fayette Street, parking lot
East	Commercial office building, retail
South	Retail
West	Parking lot

2.2. Contamination Concerns

C&S completed a Phase I Environmental Site Assessment of the Site in June 2022. As a result of that assessment, several Recognized Environmental Conditions (RECs) were identified including:

- Historical painting operations on the Site;
- Historical manufacturing operations located on and in the immediate vicinity of the Site;
- The historical operation of a railroad within the immediate vicinity of the Site;
- The presence of a dry cleaning operation within the immediate vicinity of the Site;
- The presence of staining and material buildup in the vicinity of several five gallon containers, a 55-gallon drum, and an aboveground storage tank (AST).

Based on the above, further evaluation of the RECs was recommended. Due to the historical land uses of the site and adjacent sites, samples collected as part of this Investigation were analyzed for a combination of volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), and metals. A copy of the Phase I Report is provided as **Appendix A**.

3. Phase II Environmental Site Assessment Rationale and Methods

3.1. Scope and Objectives

This Investigation was intended to document current subsurface conditions. The scope of services detailed in our previously referenced proposal included:

- A subsurface investigation, which included the advancement of soil borings and installation of groundwater monitoring wells.
- The collection of subsurface soil, groundwater, and air samples.
- The laboratory analysis of the subsurface soil, groundwater, and air samples.

Samples were collected to characterize subsurface soil, groundwater, and air conditions and determine potential contaminant impacts in each medium.

3.2. Site Investigation Methods

3.2.1. Utility Clearing

Prior to intrusive investigation activities, DigSafe NY was notified to mark out public utilities that are located at the Site. C&S endeavored to maintain a minimum setback of at least three feet from the identified utilities during our investigation.

3.2.2. Soil Boring Advancement

C&S observed the drilling of soil borings by Matrix Environmental Technologies, Inc. on August 2, 2022. A total of ten soil borings were advanced (SB-01 to SB-10). Soil borings were advanced from the ground surface to 15 feet below ground surface (bgs). Drilling was conducted using a track-mounted Geoprobe® drilling unit. Each boring location was continuously sampled using a two-inch by five-foot steel sampling tube fitted with a disposable acetate liner. Non-disposable sampling equipment was decontaminated between runs and between drill locations to avoid potential cross contamination of samples.

C&S advanced six hand-augured soil borings on September 6, 2022. The hand-augured soil borings were advanced from the ground surface to 1.5 to 5 feet bgs. **Figure 2** shows the boring locations.

A majority of the Site is occupied by buildings. Thus, boring locations were generally selected to capture all exterior space at the Site.

Material description and physical evidence of petroleum contamination (staining or odors) of each direct push sample was recorded and organized into soil boring logs provided in **Appendix C.**

3.2.2.1. Field Screening

Each direct push sample was scanned in the field with a Mini-Rae 3000 photo-ionization detector ("PID") with a 10.6-volt lamp. The readings and corresponding depths are recorded on the soil boring logs provided in **Appendix B.** Soil that was collected and set aside on ice for potential subsequent lab analysis was placed in airtight plastic zip lock bags. Prior to collecting the sample, head space readings were conducted to represent the specific interval being sampled.

3.2.2.2. Soil Sample Collection

Generally, soil samples were selected for lab analysis based on presence of historic fill material (HFM), staining, PID readings, and spatial distribution across the Site. The samples were placed into glassware provided by the laboratory and put on ice in a cooler. C&S collected four soil samples on August 2, 2022 and six soil samples on September 6, 2022. The soil samples were submitted for New York State Department of Environmental Conservation (NYSDEC) Part 375 VOCs; Part 375 SVOCs; and Part 375 metals analysis. The samples were analyzed by Alpha Analytical of Westborough, Massachusetts.

Due to the variability of the contaminants possible to be present, the samples, the types of analysis varied by location. The following is a sample log:

Sample ID (depth)	Date	Analysis	Note
SB-01 (12.5-15)	08/02/2022	VOCs, SVOCs, Metals	Groundwater Interface
SB-02A (0.5-5)	09/06/2022	SVOCs, Metals	HFM
SB-03A (1-3.5)	09/06/2022	SVOCs, Metals	HFM
SB-04 (1-3.5)	08/02/2022	VOCs, SVOCs, Metals	HFM
SB-04A (0.5-1.5)	09/06/2022	SVOCs, Metals	HFM
SB-05A (1-3)	09/06/2022	SVOCs, Metals	HFM
SB-06 (1-5)	08/02/2022	VOCs, SVOCs, Metals	HFM
SB-07A (1.5-2)	09/06/2022	SVOCs, Metals	HFM
SB-10 (7.5-9)	08/02/2022	VOCs, SVOCs, Metals	Petroleum Impacted
SB-10A (1-1.5)	09/06/2022	SVOCs, Metals	HFM

3.2.3. Groundwater Monitoring Well Installation

C&S observed the drilling and installation of temporary groundwater monitoring wells by Matrix Environmental Technologies, Inc. on August 2, 2022. A total of two one-inch groundwater monitoring wells were installed (MW-1 and MW-2). **Figures 2** and **3** show the well locations. Drilling was conducted by advancing an approximate 2.5-inch diameter macrocore with a track-mounted Geoprobe[®] drilling unit. Non-disposable sampling equipment was decontaminated between runs and between drill locations to avoid potential cross contamination of samples.

3.2.3.1. Well Construction

The wells were installed within an approximate 2.5-inch diameter borehole, resulting from the completion of the boring by the drilling rig. The screened interval consisted of one-inch diameter 0.01 inch slotted PVC, positioned to straddle both the anticipated level of the water table and physical evidence of contamination, if applicable. Due to their temporary nature, the screened interval was not packed with sand and the upper extent of the wells were not sealed with bentonite.

The following table provides the depths of the wells.

Well No.		Total Sounded Depth (ft bgs)	Screened Interval (ft bgs)
MW-1	8.29	14.63	4.63-14.63
MW-2	11.81	14.24	4.24-14.24

3.2.3.2. Well Development and Sampling

Due to the temporary nature of the wells, well development was not attempted. However, approximately one well volume was removed prior to sampling in order to promote the infiltration of new groundwater through the well screen. The groundwater was observed to be very turbid with no odor.

The samples were placed into glassware provided by the laboratory and put on ice in a cooler. A total of two groundwater samples were collected by C&S on August 2, 2022 and submitted for New York State Department of Environmental Conservation (NYSDEC) Part 375 VOCs; Part 375 SVOCs; and Part 375 metals analysis. The samples were analyzed by Alpha Analytical of Westborough, Massachusetts.

3.2.4. Soil Vapor Intrusion Sampling

The SVI assessment was performed consistent with the NYSDOH document: *Guidance for Evaluating Soil Vapor Intrusion in the State of New York*, dated October 2006 (as amended). To assess the potential for soil vapor intrusion at the Site, C&S collected the following samples:

Sample ID	Location	Date Sampled
SS-1	NW portion of north	08/01-02/22
IA-1	building (basement)	08/01-02/22
SS-2	SE portion of south	08/01-02/22
IA-2	building (1st floor)	08/01-02/22
SS-3	SSW portion of south	08/01-02/22
IA-3	building (1st floor)	08/01-02/22
OA-1	Courtyard between buildings (exterior)	08/01-02/22

SS = Sub Slab
IA = Indoor Air
OA = Outdoor Air

Sample locations were selected by C&S based on the historical locations of commercial and industrial operations. Additionally, sampling locations were selected to avoid / minimize influence from current petroleum / chemical storage and avoid disrupting current site operations.

C&S' protocols for sample collection are consistent with NYSDOH guidance and are as follows:

Indoor Air Sampling

Indoor air samples are collected using a SummaTM canister (1-Liter capacity) equipped with a critical orifice flow regulation device sized to allow an air sample to be collected over a 24-hour sampling period. Care is taken to deploy the canisters away from the direct influence of any forced air emanating from air conditioning units, central air conditioning vents, furnaces or heaters. The indoor air sampling procedure is as follows:

 Prior to initiating sampling, C&S conducts a background review, building assessment, and preliminary screening in order to select appropriate sampling locations that will not be affected by building operations, construction, or features such as occupants, sumps / basements, windows / doors, heating / cooling systems, material storage, etc. In addition, an inventory of products utilized in or near the sampling areas was prepared. Petroleum and chemical storage is present in a closet in the southwest portion of the southern building at the Site. The location of SS-3 and IA-3 was selected to distance the samples from the closet (approximately 25 feet).

- Air sample canisters are labeled with a unique sample designation number. The sample number and location are recorded in the field log book.
- The canister vacuum is measured using an integrated vacuum gauge immediately prior to canister deployment and recorded in the field log book. The critical orifice flow controller is installed, as supplied by the laboratory, on the canister; the canister is opened fully at the beginning of sample collection period; and the start time is recorded.
- The canister valve is closed fully at the end of the sample period by disconnecting the regulator from the canister (after 24-hours) and the end time recorded. Any evidence of canister disturbance during the sample collection is recorded.
- The canister vacuum is measured and recorded immediately after canister retrieval at the end of the sample period. Once the vacuum is measured, the canisters are returned to their sampling boxes for safe storage and shipping. Field data is verified as correctly entered into field books prior to shipment and the canisters are shipped to the laboratory under a chain-of-custody.

Sub-Slab Soil Gas Sampling

Sub-slab sampling points are installed to collect soil gas immediately below the slab. Sub-slab gas samples are collected using a 1-Liter Summa[™] canister fitted with a flow orifice pre-calibrated to collect a 1-Liter sample over a 24-hour period. The sub-slab vapor points are installed by first drilling a small diameter hole (approximately 3/8-inches in diameter) through the floor slab to determine thickness. The hole extends through the slab and terminates at the interface with underlying material (i.e. gravel base or soil).

A sample point consisting of a length of tubing is placed into the hole through the slab until the tubing sits directing above the soil material below the slab. The remaining cored slab annulus is then filled with clay around the tubing to create an air-tight seal. Prior to sub-slab soil gas sample collection, the tubing is purged at a rate not exceeding 200 ml/min. The total volume purged prior to sample collection equals three volumes of air in the tubing.

Helium is used as a field tracer prior to sampling to confirm that sub-slab airspace and indoor air space are not connected. The helium is introduced into a dome positioned above the sampling point. The tubing and indoor air are isolated prior to introducing helium into the dome. The helium concentration is read using a helium meter that is capable to read down to 1-2%. If helium is detected by the meter, the clay seal is replaced and the tracer test is re-performed.

At the end of the sampling event, a pressure gauge reading is recorded so that the laboratory can compare the starting and ending pressures. Once the 24-hour

sampling period has been completed, the canister is disconnected from the flow orifice, boxed, and delivered / shipped to the laboratory for analysis. Field documentation are maintained in a field notebook and on field data forms.

Ambient Air Sampling

Ambient air samples are collected in the same manner as the indoor air samples.

The location of the ambient air sample is shown in **Figure 4**.

The air samples were analyzed by Centek Labs of Syracuse, New York. The samples were analyzed via USEPA Method TO-15 for VOCs. Centek's analytical methods are consistent with USEPA protocols for collecting air samples using TO-15 Summa™ canisters [(Compendium of Methods for the Determination of Compounds in Ambient Air, Second Edition, Compendium Method TO-15, Determination of Volatile Organic Compounds in Air Collected in Specially-prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GCMS)]. Each batch of canisters is certified clean by the laboratory according to USEPA Method TO-15.

3.2.5. Chemical Inventory

C&S walked accessible and safe interior areas of the building to identify the general contents and approximate number of chemical containers. The following describes the types of containers and their estimated quantities:

Petroleum / chemical storage closet on the first floor of the southern building

- Four 55-gallon drums, numerous five gallon containers, and an approximately 275-gallon AST containing petroleum products. The drums and five gallon containers appeared to be in poor condition, however no active leaks were observed.
- One less than five gallon container of methyl ethyl ketone.

4. RESULTS

4.1. Site Geology and Hydrogeology

4.1.1. Site Geology

Each soil sample retrieved from the Geoprobe® was observed for general soil type, estimated moisture content, and other pertinent features. The soils from borings were classified in the following simplified category:

Description	Approximate Depth
Asphalt, concrete, and / or subbase	0-1'
Brown / black coarse sand and HFM	1-4'
Brown / tan fine sand and / or silt	5-11'
Brown coarse sand	11-15'

4.1.2. Site Hydrogeology

Due to the presence of coarse-grained materials, the monitoring wells generally produce plentiful groundwater.

Groundwater elevations were not measured to create a groundwater gradient map. However, based on topography and the location of Onondaga Lake to the northnorthwest of the Site, it is likely that groundwater flow is to the north-northwest.

4.2. Field Screening Results

Physical observations of impacts in the soil borings were limited to HFM at the following locations and depths:

Boring No.	Sample Interval (depth in feet)					
	0'-1'	1'-2'	2'-3'	3'-4'	4'-5'	5'-6'
SB-02		X	X	X	X	
SB-02A	Х*	X*	X*	X*	X*	
SB-03		X	X			
SB-03A		X*	X*	X*		
SB-04		X	X	X		
SB-04A	X*	Х*				
SB-05			X	X		
SB-05A		X*	X*			
SB-06		Х*	X*	X*	X*	
SB-07		X	X			
SB-07A		Х*				
SB-09			X			
SB-10				X	X	
SB-10A		X*				

Notes:

- 1. "--" denotes boring not completed to above-listed depth or insufficient recovery occurred at a specified depth.
- 2. "*" denotes a soil sample was submitted for laboratory analysis from this interval.

Physical observations of petroleum impacts were observed in SB-10 from 7.5 to 9 feet bgs. This interval exhibited a petroleum odor, visual staining, and a PID reading of nine parts per million (ppm). A sample was collected from this interval. PID readings were collected utilizing a MiniRae 3000 PID. The PID screening is performed as a method of determining general presence or absence of VOCs in soil, and to provide a basis for selecting samples for laboratory analysis. The readings obtained provide only an indication of the relative levels of VOCs in the soil, and are not considered to be a direct quantification of actual soil VOC concentration.

4.3. Laboratory Analytical Data

As discussed above, subsurface soil, groundwater, and air samples were collected and analyzed. Summaries of the lab data as well as complete laboratory analytical reports are provided in **Appendix C.**

4.3.1. Soil Analytical Data

6 NYCRR Part 375-6, Remediation Program Soil Cleanup Objectives (SCO), effective December 14, 2006, includes SCOs that are based on protection of human health, groundwater, and ecological resources. The SCOs are based on the actual or intended site use.

The Unrestricted Use SCOs are considered to be representative of pre-release conditions unless an impact to ecological resources has been identified.

The Residential Use SCOs are intended for single family housing and requires the fewest restrictions on the use of the site. It allows only two restrictions: a groundwater use restriction and / or a prohibition against producing animal products for human consumption.

The Restricted Residential Use SCOs apply to land uses such as apartments, condominium, co-operative or other multi-family / common property control residential development. In addition to the restrictions for residential use, this use prohibits vegetable gardens, unless planted in gardens where the soil achieves the residential use soil cleanup objectives; and a prohibition of single-family housing. Restricted Residential use is the appropriate use category for day care or other child care facilities, elementary or secondary schools, or college or boarding school residential buildings. This use allows for active recreational uses, which includes recreational activities with a reasonable potential for soil contact.

The Commercial Use SCOs apply to businesses with the primary purpose of buying, selling or trading of merchandise or services.

The Industrial Use SCOs apply to businesses with the primary purpose of manufacturing goods for retail sale.

Given the proposed property use as commercial space and apartments, laboratory analytical data is compared to Unrestricted and Residential Restricted SCOs.

4.3.1.1. Subsurface Soil Analytical Data

Comparison of the subsurface soil analytical data indicates:

- The only VOC exceedance of Unrestricted Use SCOs was acetone in SB-10 (7.5-9). No VOCs were detected at concentrations greater than Restricted Residential SCOs.
- SVOCs (benzo(b)fluoranthene and indeno(1,2,3-cd)pyrene) were detected at concentrations greater than Restricted Residential SCOs in SB-10A (1-1.5). Chrysene was detected in SB-10 (7.5-9) at a concentration greater than the Residential Use SCO.

- Metals were detected at concentrations greater than Unrestricted and Restricted Residential SCOs.
 - Barium concentrations exceeded the Commercial SCO in SB-03A (1-3.5) and the Residential Use SCO in SB-02A (0.5-5).
 - Copper concentrations exceeded the Commercial Use SCO in SB-10A (1-1.5) and the Unrestricted Use SCO in five samples (SB-02A (0.5-5), SB-03A (1-3.5), SB-05A (1-3), SB-07A (1.5-2), and SB-10 (7.5-9)).
 - Lead concentrations significantly exceeded the Industrial Use SCO in SB-04 (1-3.5) and the Unrestricted Use SCO in seven samples (SB-02A (0.5-5), SB-03A (1-3.5), SB-05A (1-3), SB-06 (1-5), SB-07A (1.5-2), SB-10 (7.5-9), SB-10A (1-1.5)).
 - o Mercury concentrations exceeded the Restricted Residential SCO in SB-03A (1-3.5) and the Industrial Use SCO in SB-07A (1.5-2)) and the Unrestricted Use SCO in six samples (SB-02A (0.5-5), SB-04 (1-3.5), SB-05A (1-3), SB-06 (1-5), SB-10 (7.5-9), and SB-10A (1-1.5)).
 - Nickel concentrations exceeded the Residential Use SCO in SB-10 (7.5-9) and the Unrestricted Use SCO in SB-07A (1.5-2).
 - Zinc concentrations exceeded the Unrestricted Use SCO in four samples (SB-02A (0.5-5), SB-03A (1-3.5), SB-05A (1-3), and SB-10A (1-1.5)).
 - Cyanide was detected in SB-07A (1.5-2) at a concentration greater than the Commercial Use SCO.

4.3.1.2. Groundwater Analytical Data

Technical and Operational Guidance Series 1.1.1 (TOGS 1.1.1) presents NYSDEC Division of Water ambient water quality standards and guidance values and groundwater effluent limitations. The authority for these values is derived from Article 17 of the Environmental Conservation Law and 6 NYCRR Parts 700-706, Water Quality Regulations. The groundwater analytical data generated from this Investigation was compared to TOGS 1.1.1 Part I ambient standards and guidance values. Part II of the document describes and lists groundwater effluent limitations.

Comparison of the groundwater analytical data to the TOGs 1.1.1 Class GA Ambient Water Quality Standards indicates:

- No VOCs were detected above TOGs 1.1.1 Class GA Ambient Water Quality Standards in groundwater samples. Trichloroethene (MW-1) and acetone (MW-2) were detected well below groundwater standards.
- Six SVOCs (benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, and indeno(1,2,3-cd)pyrene) exceeded TOGs 1.1.1 Class GA Ambient Water Quality Standards in both groundwater samples.
- 15 metals (arsenic, barium, beryllium, cadmium, chromium, copper, iron, lead, magnesium, manganese, mercury, nickel, sodium, thallium, and zinc)

marginally to significantly exceeded TOGs 1.1.1 Class GA Ambient Water Quality Standards in both groundwater samples.

The locations of the groundwater wells are shown on **Figure 3**.

4.3.1.3. Soil Vapor Intrusion Sampling Analytical Data

Regulatory Guidance

The NYSDOH document: *Guidance for Evaluating Soil Vapor Intrusion in the State of New York*, dated October 2006 (as amended), states that soil vapor sampling results should be reviewed as a whole, in combination with the results of other environmental sampling, to identify trends and variations in the data. It also indicates that, to put perspective on the data, soil vapor results should be compared to background outdoor air levels, site-related outdoor and indoor air sampling results, and the NYSDOH's guidelines for VOCs in air. NYSDOH has a very limited list of compounds with air guideline values (AGV):

Compound	AGV (μg/M³)
Methylene Chloride	60
PCBs	1
tetrachlorodibenzo-p-dioxin	0.00001
PCE	30
TCE	2

The NYSDEC and NYSDOH do not currently have standards, criteria or guidance values for concentrations of petroleum-related compounds in soil vapor or indoor air. However, other state regulatory agencies such as Pennsylvania Department of Environmental Protection (PADEP) and New Jersey Department of Environmental Protection (NJDEP) have established indoor air screening values for a multitude of contaminants, including the following common petroleum compounds shown below.

Compound	Residential (μg/M³)	Non-residential (µg/M³)
Benzene	2 to 3.1	2 to 16
Toluene	5,200	22,000
Ethylbenzene	2	5
Xylenes	100	440

In addition, the NYSDOH has developed decision matrices to be used as a risk management tool for data assessment. They are designed to be applied on a case-by-case basis regarding actions that should be taken to address current and potential exposures related to SVI. The decision matrices are as follows:

Matrix A – carbon tetrachloride, 1,1-dichlorethene, cis-1,2-dichloroethene, and trichlorethane.

	Indoor Air Concentration of Compounds ($\mu g/M^3$)						
Sub-Slab Vapor Concentration of Compound ($\mu g/M^3$)	< 0.2	0.2 to < 1	1+				
< 6	No further action	No further action	Identify source(s) and resample or mitigate				
6 to < 60	No further action	Monitor	Mitigate				
60+	Mitigate	Mitigate	Mitigate				

Matrix B – methylene chloride, tetrachloroethene, and 1,1,1-trichloroethane.

	Indoor Air Concentration of Compounds (μg/M³)						
Sub-Slab Vapor Concentration of Compound ($\mu g/M^3$)	< 3	3 to 10	10+ Identify source(s) and resample or mitigate				
< 100	No further action	No further action					
100 to < 1,000	No further action	Monitor	Mitigate				
1,000+	Mitigate	Mitigate	Mitigate				

Matrix C – vinyl chloride

	Indoor Air Concentration of Compounds (μg/M³)				
Sub-Slab Vapor Concentration of Compound (µg/M³)	< 0.2	0.2+			
< 6	No further action	Identify source(s) and resample or mitigate			
6 to < 60	Monitor	Mitigate			
60+	Mitigate	Mitigate			

NYSDOH explains No Further Action, Identify Source(s) and Resample or Mitigate, Monitor, and Mitigate as follows:

No further action: No additional actions are recommended to address human exposures.

Identify Source(s) and Resample or Mitigate: DOH recommends that reasonable and practical actions be taken to identify the source(s) affecting the indoor air quality and that actions be implemented to reduce indoor air concentrations to within background ranges. For example, if an indoor or outdoor air source is identified, DOH recommends the appropriate party implement actions to reduce the levels. In the event that indoor or outdoor sources are not readily identified or confirmed, resampling (which might include additional sub-slab vapor and indoor air sampling locations) is recommended to demonstrate that SVI mitigation actions are not needed. Based on the information available, mitigation might also be recommended when soil vapor intrusion cannot be ruled out.

Monitor: DOH recommends monitoring (sampling on a recurring basis), including but not necessarily limited to sub-slab vapor, basement air and outdoor air sampling, to determine whether concentrations in the indoor air or sub-slab vapor have changed and/or to evaluate temporal influences. Monitoring might also be recommended to determine whether existing building conditions (e.g., positive pressure heating, ventilation and air-conditioning systems) are maintaining the desired mitigation endpoint and to determine whether changes are needed. The type and frequency of monitoring is determined based on site-, building- and analyte-specific information, taking into account applicable environmental data and building operating conditions. Monitoring is an interim measure required to evaluate exposures related to soil vapor intrusion until contaminated environmental media are remediated.

Mitigate: DOH recommends mitigation to minimize current or potential exposures associated with soil vapor intrusion. The most common mitigation methods are sealing preferential pathways in conjunction with installing a sub-slab depressurization system and changing the pressurization of the building in conjunction with monitoring. The type, or combination of types, of mitigation is determined on a building -specific basis, taking into account building construction and operating conditions. Mitigation is considered a temporary measure implemented to address exposures related to soil vapor intrusion until contaminated environmental media are remediated.

Results

The air sampling results were compared to applicable guidance to provide some measure of evaluation to the findings. The following observations regarding the data are provided:

- No analytes were detected above NYSDOH AGVs in the indoor air samples.
 - \circ Low-level (< 1.3 $\mu g/m3)$ methylene chloride was detected in all samples, including OA-1.
 - \circ Tetrachloroethylene was detected in SS-1 at a concentration of 0.45 $\mu g/m3.$
 - $\circ~$ Low-level (< 0.12 µg/m3) trichloroethene was detected in all samples except for SS-2 and SS-3, including OA-1.
- No petroleum-related compounds were detected above PADEP or NJDEP indoor air screening values in the indoor air samples.
 - ο Low-level 1,2,4-trimethylbenzene (< $0.84~\mu g/m3$), benzene (< $1.4~\mu g/m3$), m,p-xylene (< $2.8~\mu g/m3$), o-xylene (< $1.0~\mu g/m3$), and toluene (< $5.9~\mu g/m3$) was detected in IA-1, IA-2, and IA-3.
 - \circ Low-level 1,3,5-trimethylbenzene (< 0.36 μg/m3) and ethylbenzene (< 0.75 μg/m3) was detected in IA-2 and IA-3.
 - Petroleum-related compound concentrations were greater in IA-2 and IA-3 which were located in the southern building on the site. Of

- IA-2 and IA-3, IA-3 concentrations of petroleum-related compounds were greater. IA-3 was located approximately 25 feet from a closet storing petroleum and chemical products.
- According to *Matrix A, B, and C*, the laboratory analytical data indicates that no further action is necessary regarding vapor intrusion.

Summaries of the laboratory data compared to applicable guidance values is provided in **Tables 3 and 4**. Analytical reports for the media sampled are provided in **Appendix C**.

5. DISCUSSION AND CONCLUSIONS

At the request of the Redev CNY, LLC, C&S Engineers, Inc. (C&S) has prepared this Phase II Environmental Site Assessment (Phase II or Investigation) Report of 1117 West Fayette Street, Syracuse, Onondaga County, New York (Site). The location of the Site is shown on **Figure 1**.

C&S completed a Phase I Environmental Site Assessment of the Site in June 2022. As a result of that assessment, several Recognized Environmental Conditions (RECs) were identified including:

- Historical painting operations on the Site;
- Historical manufacturing operations located on and in the immediate vicinity of the Site;
- The historical operation of a railroad within the immediate vicinity of the Site;
- The presence of a dry cleaning operation within the immediate vicinity of the Site;
- The presence of staining and material buildup in the vicinity of several five gallon containers, 55-gallon drums, and an aboveground storage tank (AST).

Based on the above, further evaluation of the RECs was recommended. Due to the historical land uses of the site and adjacent sites, samples collected as part of this Investigation were analyzed for a combination of volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), and metals.

C&S' Investigation of the Site was conducted on August 2, 2022 and September 6, 2022. The following summarizes and discusses the results of this Investigation.

5.1. Findings

C&S collected three sets of co-located 24-hour sub-slab and indoor air samples and one outdoor air sample on August 1 to August 2, 2022. C&S observed the drilling of ten soil borings and the installation of two temporary groundwater monitoring wells on August 2, 2022. C&S advanced an additional six hand-augured soil borings on September 6, 2022.

Subsurface Soil Samples:

A total of ten subsurface soil samples were collected from 16 soil borings advanced at the site. All of the soil samples were analyzed for SVOCs and total metals. Four of the samples were also analyzed for VOCs. Visual and olfactory evidence of petroleum impacts was only observed from 7.5 feet to 9 feet bgs at a single soil boring. HFM was observed from just below the surface to 5 or less feet bgs in 14 of the 16 soil

borings. Trichloroethene (VOC) was detected at a concentration greater than the Unrestricted Use SCO in SB-10. No VOCs were detected above Restricted Residential Use SCOs. Two SVOCs were detected in SB-10A at concentrations greater than Restricted Residential SCOs and one SVOC was detected at a concentration greater than the Residential SCO in SB-10. The following summarizes the metal SCO exceedances for soil samples:

- Barium Residential Use (SB-02A) and Commercial Use (SB-03A)
- Copper Unrestricted Use (SB-02A, SB-03A, SB-05A, SB-07A, and SB-10) and Commercial Use (SB-10A)
- Lead Unrestricted Use (SB-02A, SB-03A, SB-05A, SB-06, SB-07A, SB-10, and SB-10A) and significant exceedance of Industrial Use (SB-04)
- Mercury Unrestricted Use (SB-02A, SB-04, SB-05A, SB-06, SB-10, and SB-10A), Restricted Residential Use (SB-03A), and Industrial Use (SB-07A)
- Nickel Unrestricted Use (SB-07A) and Residential Use (SB-10)
- Zinc Unrestricted Use (SB-02A, SB-03A, SB-05A, and SB-10A)
- Cyanide Significant exceedance of Commercial Use (SB-07A)

All of the aforementioned exceedances are associated with samples containing HFM located from just below the surface to 3.5 feet bgs.

Groundwater Samples:

Two temporary groundwater monitoring wells were installed at SB-10 (MW-1) and SB-03 (MW-2). A sample was collected from each monitoring well and submitted for laboratory analysis for VOCs, SVOCs, and metals. Groundwater was encountered at approximately eight to twelve feet bgs. No VOCs were detected in either sample above TOGs 1.1.1 Class GA Ambient Water Quality Standards. Six SVOCs and 15 metals were detected about groundwater standards in both samples. Metal concentrations were significantly greater than water quality standards. Generally, metals were detected at higher levels in the sample taken from MW-2 compared to the sample taken from MW-1. It is common for groundwater under an urban area to exhibit elevated SVOCs and metals as a result of general urban activity and development.

Soil Vapor Intrusion Samples:

Three sets of sub-slab and indoor air samples and one outdoor air sample was collected. One set of samples was collected in the northwestern portion of the northern building basement. Two of the sets of samples was collected from the southeast and south-southwest portion of the southern building on the site. No analytes were detected above respective guidance or screening values in the indoor air samples. Additionally, according to decision matrices developed by the NYSDOH (*Matrix A, B, and C*), no further action is required at the site with respect to vapor intrusion.

5.2. Recommendations

HFM was identified in 14 borings in the center and along the southern and western portions of the site. The presence of HFM is common in urban environments and the types of contaminants present within the HFM are also typical of urban environments. Of the eight samples collected containing HFM, two exhibited at least one exceedance of Restricted Residential SCOs, three exhibited an exceedance of Commercial Use SCOs, and two exhibited an exceedance of Industrial Use SCOs. Most notably, lead was detected in a sample at a concentration significantly greater than the Industrial Use SCO. Additionally, cyanide was detected in a sample at a concentration significantly greater than the Commercial Use SCO. The HFM is located from just below the surface to approximately five feet bgs. As such, it is likely that HFM will be disturbed during any future site development.

If future site development requires excavation at the site, special measures may be needed. NYS solid waste regulations may stipulate how excavated contaminated soils are managed. Surplus soils would likely require additional testing to determine if they can be reused onsite, for fill on another site, or require landfill disposal. If future site development requires earthwork on the site, any soil requiring offsite removal should be handled and disposed of consistent with local, state, and federal requirements.

Environmental Professional Statement and Qualifications

To the best of our professional knowledge and belief, C&S meets the definition of "environmental professional" as defined in §312.10 of 40 CFR 312.

We have the specific qualifications based on education, training, and experience to assess the nature, history, and setting of the Site. We have developed and performed all appropriate inquiries in conformance with the standards and practices set forth in 40 CFR Part 312.

Author's Signature:

anthony DiGiovanni

Anthony DiGiovanni

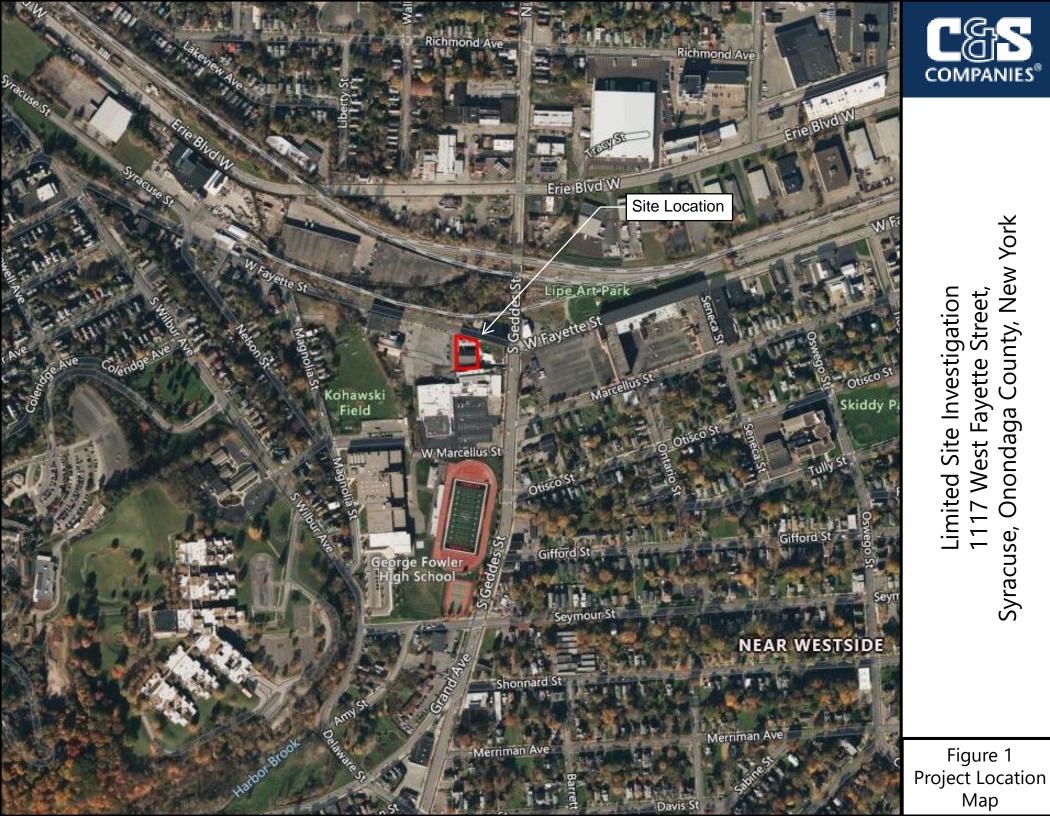
09/23/2022

Environmental Scientist

Project Manager's Signature:

Mag 2 When

Matthew Walker

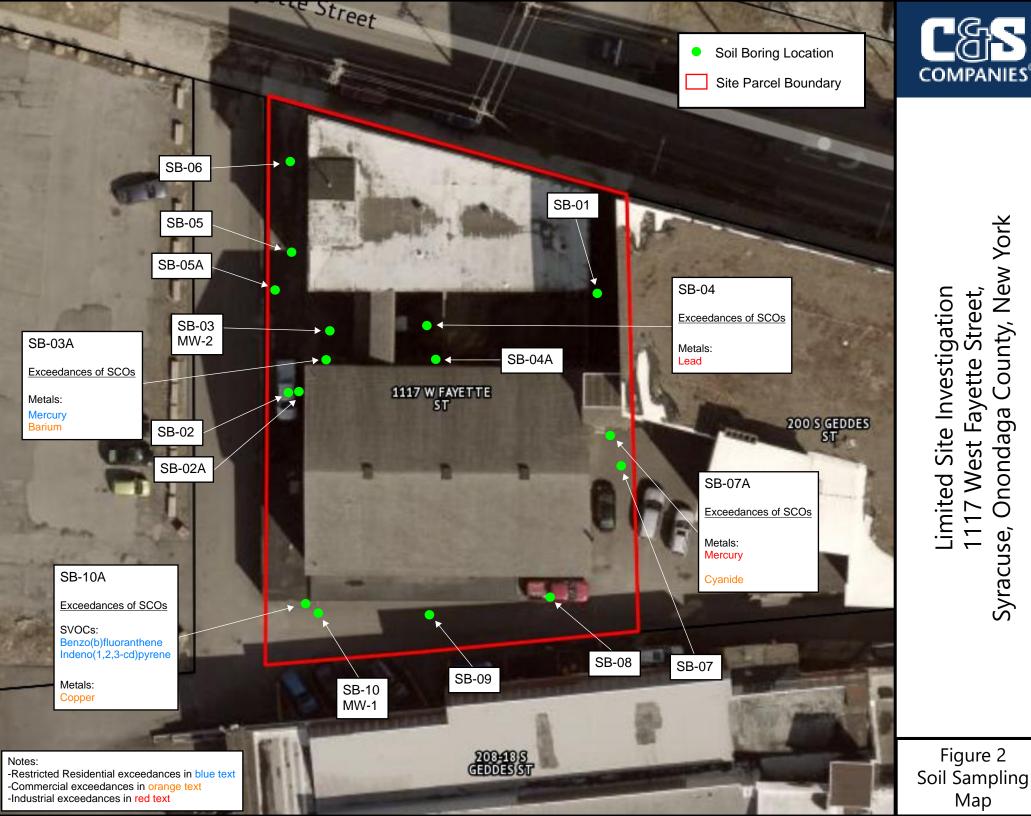

09/23/2022

Senior Scientist

Project

Environmental

FIGURES



Limited Site Investigation 1117 West Fayette Street,

Figure 1

Map



County, New York Limited Site Investigation 1117 West Fayette Street, Onondaga

Figure 2

Мар

County, New York Limited Site Investigation 1117 West Fayette Street, Syracuse, Onondaga

Figure 3 Well Location Map

Figure 4 Air Sampling Map

TABLES

Location						SB-01 (12.5-15)	SB-02A(0.5-5)	SB-03A(1-3.5)	SB-04 (1-3.5)	SB-04A(0.5-1.5)	SB-05A(1-3)	SB-06 (1-5)	SB-07A(1.5-2)	SB-10 (7.5-9)	SB-10A(1-1.5)
Sample Date						8/2/2022	9/6/2022	9/6/2022	8/2/2022	9/6/2022	9/6/2022	8/2/2022	9/6/2022	8/2/2022	9/6/2022
Lab Sample ID						L2241428-06	L2248271-02	L2248271-03	L2241428-05	L2248271-05	L2248271-06	L2241428-04	L2248271-01	L2241428-03	L2248271-04
Sample Type						Subsurface Soil	Subsurface Soil	Subsurface Soil	Subsurface Soil	Subsurface Soil	Subsurface Soil	Subsurface Soil	Subsurface Soil	Subsurface Soil	Subsurface Soil
Sample Type Sample Depth (ft)						12.5-15	0.5-5	1-3.5	1-3.5	0.5-1.5	1-3	1-5	1.5-2	7.5-9	1-1.5
Sample Depth (it)						12.0 10	0.0 0	1 0.0	1 0.0	0.0 1.0	10	1.0	1.0 2	7.00	11.0
	Unrestricted	Residential	Residential-	Commercial	Industrial	B	B	D	D. 11. 0.1	D. 16. O.1	D 1/2 0 1	D	D	B . #	D 1/2 0 1
	Use SCO	Use SCO	Restricted	Use SCO	Use SCO	Results Qual	Results Qual	Results Qual	Results Qual	Results Qual	Results Qual	Results Qual	Results Qual	Results Qual	Results Qual
			Use SCO												
Volatile Organics															
Chloroform	0.37	10	49	350	700	0.00024 J									
Tetrachloroethene	1.3	5.5	19	150	300									0.00061	
Ethylbenzene	1	30	41	390	780									0.00039 J	
Trichloroethene	0.47	10	21	200	400	0.00042 J								0.00027 J	
Acetone	0.05	100	100	500	1000									0.057	
2-Butanone	0.12	100	100	500	1000									0.012	
n-Butylbenzene	12	100	100	500	1000									0.00072 J	
sec-Butylbenzene	11	100	100	500	1000									0.00063 J	
n-Propylbenzene	3.9	100	100	500	1000									0.00037 J	
Semivolatile Organics	00	400	400	500	4000		0.035 J	0.098 J	0.054 J	0.051 J	0.024 J	0.031 J		I	0.048 J
Acenaphthene	20 100	100 100	100 100	500	1000		0.035 J 1.2	0.098 J 0.98	0.054 J 1.4	0.051 J 0.51	0.024 J 0.93	0.031 J	0.31	0.59	0.048 J 1.5
Fluoranthene Naphthalene	100	100	100	500 500	1000 1000		0.21	0.96 0.066 J	0.085 J	0.51	0.93 0.09 J	0.62 0.05 J	0.024 J	0.59	0.09 J
Benzo(a)anthracene	12	100	100	5.6	11		0.58	0.000 3	0.82	0.26	0.09 3	0.05 3	0.024 3	0.99	0.09 3
	1	1	1	5.6	1.1		0.65	0.47	0.65	0.27	0.49	0.37	0.16	0.99 0.27 J	0.8
Benzo(a)pyrene Benzo(b)fluoranthene	1	1	1	5.6	11		0.65	0.58	0.65	0.29	0.49	0.44	0.28	0.27 J 0.38 J	1.1
Benzo(k)fluoranthene	0.8	1	3.9	56	110		0.73	0.19	0.74	0.29 0.077 J	0.0	0.44	0.096 J	0.36 3	0.29
Chrysene	1	1	3.9	56	110		0.58	0.19	0.87	0.28	0.53	0.4	0.090 3	1.2	0.79
Acenaphthylene	100	100	100	500	1000		0.055 J	0.00	0.01	0.20	0.059 J	0.046 J	0.042 J	1.2	0.1 J
Anthracene	100	100	100	500	1000		0.21	0.2	0.19	0.1 J	0.12	0.1 J	0.058 J	0.22 J	0.18
Benzo(ghi)perylene	100	100	100	500	1000		0.33	0.29	0.39	0.15 J	0.34	0.24	0.16	0.14 J	0.54
Fluorene	30	100	100	500	1000		0.04 J	0.1 J	0.054 J	0.054 J	0.03 J	0.034 J	****	0.11 J	0.051 J
Phenanthrene	100	100	100	500	1000		0.78	1	1.1	0.67	0.53	0.43	0.23	0.29 J	0.78
Dibenzo(a,h)anthracene	0.33	0.33	0.33	0.56	1.1		0.074 J	0.057 J	0.088 J	0.031 J	0.076 J	0.054 J	0.032 J		0.1 J
Indeno(1,2,3-cd)pyrene	0.5	0.5	0.5	5.6	11		0.37	0.32	0.41	0.16 J	0.38	0.28	0.16	0.17 J	0.61
Pyrene	100	100	100	500	1000		1	0.8	1.6	0.52	0.87	0.57	0.25	0.95	1.4
Dibenzofuran	7	14	59	350	1000		0.061 J	0.097 J	0.039 J	0.14 J	0.035 J	0.031 J			0.053 J
Metals															
Arsenic, Total	13	16	16	16	16	2.42	10.8	8.13	9.56	6.81	8.86	7.16	8.57	5.68	7.23
Barium, Total	350	350	400	400	10000	12.1	372	462	88.2	53.6	96.1	50.1	79.5	47.4	85.1
Beryllium, Total	7.2	14	72	590	2700	0.126 J	0.43	0.353	0.342	0.374	0.331 J	0.302 J	0.15 J	0.217 J	0.215
Cadmium, Total	2.5	2.5	4.3	9.3	60	0.104 J	1.98	1.02	0.614	0.505	1.45	0.558 J	1.41	0.318 J	1.85
Chromium, Total						5.58	13.1	15.5	20.3	17	13.5	10.1	13.9	22.1	12.9
Chromium, Trivalent	30	36	180	1500	6800	5.6			20			10		22	
Copper, Total	50	270	270	270	10000	9.72	106	51.5	42.4	24	67	37.7	148	54.9	436
Lead, Total	63	400	400	1000	3900	3.29	383	360	4720	43.1	193	78.4	150	108	95.2
Manganese, Total	1600	2000	2000	10000	10000	176	291	290	200	72.6	273	251	231	239	278
Mercury, Total	0.18	0.81	0.81	2.8	5.7	7.50	0.623	2.32	0.292	0.149	0.638	0.549	71.6	0.22	0.568
Nickel, Total	30	140	310 180	310	10000	7.56	10.1	12.8 0.274 J	16.3 1	8.13	11.9	11 1.38 J	73.8	154	20.6 0.306 J
Selenium, Total Silver, Total		36	180 180	1500 1500	6800 6800		0.158 J 0.226 J	U.2/4 J	1	0.17 J		1.38 J	0.48 J		0.306 J
Zinc, Total	109	36 2200	10000	10000	10000	20.3	0.226 J 602	373	50.7	40.9	156	67	62	89.3	377
General Chemistry	109	2200	10000	10000	10000	20.3	002	3/3	50.7	40.9	100	0/	02	09.3	311
Solids, Total (%)					1	86.9	83.5	79.1	77.8	78.6	85.1	84.9	82.1	83.9	91.6
Cyanide, Total	27	27	27	27	10000	6.00	00.0	13.1	11.0	76.6 0.9 J	0.35 J	U+.3	140	15	0.61 J
Cyaniue, Total	41				10000	l .				U.3 J	0.55 J		140	10	U.U1 J

- Notes:
 Results and soil cleanup objectives (SCO) in mg/kg
 Analytical data compared to NYSDEC Part 375-6

- Highlighted color indicates the respective use SCO(s) exceeded. Use type SCOs are listed from left to right from most restrictive to least restrictive.
 Blank space indicates that a SCO does not exist OR analyte was not detected above laboratory detection limits.

 - "J" indicates estimated concentration.

 - "--" indicates that analysis was not performed.

LOCATION			MW-1	MW-2
SAMPLING DATE	8/2/2022	8/2/2022 L2241428-02		
LAB SAMPLE ID	L2241428-01			
SAMPLE TYPE	WATER	WATER		
	NY-TOGS-	Units	Results Qual	Pagulta Qual
	GA	Units	Results Qual	Results Qual
Volatile Organics				
Trichloroethene	5	ug/l	0.76	
Acetone	50	ug/l	2.3 J	5.7
Semivolatile Organics				
Bis(2-ethylhexyl)phthalate	5	ug/l	1.7 J	
Butyl benzyl phthalate	50	ug/l	2.1 J	
Di-n-butylphthalate	50	ug/l	0.45 J	
Diethyl phthalate	50	ug/l	0.43 J	0.43 J
Acenaphthene	20	ug/l	0.05 J	
Fluoranthene	50	ug/l	0.04 J	0.02 J
Benzo(a)anthracene	0.002	ug/l	0.04 J	0.04 J
Benzo(a)pyrene	0	ug/l	0.02 J	0.02 J
Benzo(b)fluoranthene	0.002	ug/l	0.03 J	0.03 J
Benzo(k)fluoranthene	0.002	ug/l	0.01 J	0.01 J
Chrysene	0.002	ug/l	0.02 J	0.01 J
Anthracene	50	ug/l	0.02 J	
Benzo(ghi)perylene		ug/l	0.02 J	0.02 J
Fluorene	50	ug/l	0.03 J	
Phenanthrene	50	ug/l	0.1 J	
Indeno(1,2,3-cd)pyrene	0.002	ug/l	0.02 J	0.02 J
Pyrene	50	ug/l	0.03 J	0.02
2-Methylnaphthalene	- 55	ug/l	0.02 J	
Total Metals		ug/1	0.02 0	
Aluminum, Total		ug/l	258000	679000
Arsenic, Total	25	ug/l	68.9	295.9
Barium, Total	1000	ug/l	3549	5871
Beryllium, Total	3	ug/l	15.76	38.77
Cadmium, Total	5	ug/l	6.2	15.5
Calcium, Total		ug/l	2840000	984000
Chromium, Total	50	ug/l	588.7	996.4
Cobalt, Total	- 00	ug/l	529.3	578.2
Copper, Total	200	ug/l	1101	2380
Iron, Total	300	ug/l	588000	1050000
Lead, Total	25	ug/l	2003	4180
Magnesium, Total	35000	ug/l	924000	396000
Manganese, Total	300	ug/l	30580	30170
Mercury, Total	0.7	ug/l	5.85	18.12
Nickel, Total	100	ug/l	1048	1322
Potassium, Total	100	ug/l	45400	80200
Sodium, Total	20000	ug/l	172000	42100
Thallium, Total	0.5	ug/l	10.06 J	10.07 J
Vanadium, Total	0.0		415.1	1156
Zinc, Total	2000	ug/l	2258	6368
ZIIIO, TOlai	2000	ug/l	2230	0300

Notes:

- Analytical results compared to NYSDEC Division of Water Technical and Operational Guidance Series (1.1.1) Ambient Water Quality Standards and Guidance Values.
- Highlighted cell indicates the respective groundwater limitation exceeded.
- Blank space indicates that a threshold does not exist OR analyte was not detected above laboratory detection limits.
- "J" indicates the analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

1117 West Fayette Street Limited Site Investigation Table 3 Soil Vapor Intrusion Data Summary

LOCATION			IA-1	SS-1	IA-2	SS-2	IA-3	SS-3	OA-1
SAMPLING DATE			8/1-2/22	8/1-2/22	8/1-2/22	8/1-2/22	8/1-2/22	8/1-2/22	8/1-2/22
LAB SAMPLE ID			C2208008-002A	C2208008-001A	C2208008-004A	C2208008-003A	C2208008-006A	C2208008-005A	C2208008-007A
SAMPLE TYPE			INDOOR AIR	SUBSLAB AIR	INDOOR AIR	SUBSLAB AIR	INDOOR AIR	SUBSLAB AIR	OUTDOOR AIR
	NYSDOH								
	Guidance	Units	Results Qual						
	Value								
Volatile Organics									
Methylene chloride	60	ug/m3	0.78	1.3	0.72	1.1	0.47	0.95	0.86
Polychlorinated Biphenyls	1	ug/m3		1	ì		1		
Tetrachlorodibenzo-p-dioxin equivalents	0.00001	ug/m3		1	ì		1		
Tetrachloroethylene	30	ug/m3		0.45					
Trichloroethene	2	ug/m3	0.07	0.12	0.09		0.07		0.06

Notes

- Analytical results compared to NYSDOH Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006. Only those analytes with accompanying NYSDOH guidance values are shown.
- Results and guidance in ug/m3
- Paired sample locations are IA-1 / SS-1, IA-2 / SS-2, and IA-3 / SS-3.
- Highlighted cell indicates the respective guidance value exceeded.
- "- -" indicates analysis not performed.
- Blank space indicates analyte not detected at a concentration greater than laboratory detection limits.

1117 West Fayette Street Limited Site Investigation Table 4 Indoor Air Sampling Data Summary

Petroleum-Related VOC	MDEQ	NJDEP	IA-1	IA-2	IA-3
1,2,4-trimethylbenzene	230		0.16	0.72	0.84
1,3,5-trimethylbenzene	230			0.33	0.36
Benzene	3.3	2	0.11	1.2	1.4
Ethylbenzene	87	2		0.61	0.75
m,p xylene	100	100	0.31	2.3	2.8
o xylene	100	100	0.13	0.82	1.0
Toluene	5200	5200	0.71	4.7	5.9

Notes:

Units are µg/m³

- Blank space indicates that a standard does not exist OR analyte was not detected above laboratory detection limits.

Michigan DEQ = Vapor Intrusion Indoor Air Screening Level cited in *MDEQ Guidance Document for the Vapor Intrusion Pathway*, dated May 2013.

NJDEP = NJDEP Master Table, Generic Vapor Intrusion Screening Levels, Indoor Air Screening Level for Residential Use, dated March 2013.

APPENDICES

Appendix A Historical Environmental Documentation

Phase I (submitted under separate cover)

Appendix B Soil Boring Logs

	C(Sy Ph Fa	9 Col Eilee racuse, No none: 315-4 x: 315-455	-9667		SORING LO	G	S	oring No. heet 1 of: oject No.:	SB-01 762.001.001	
Proje	ct Na	ame): 	1117 W	est Fage	4c Street Phose	-II			Surfa	ce Elev.:		
L	.oca	tior	1:	Syrouse	M						Datum:		
	CI	ien	t:	0						S	tart Date:	8/2/22	
Drilli	ng F	irm	1:	Matrix							ish Date:		
	Gro	oun	dw	ater	Depth	Date & Time	Drill Rig:		2		spector:		
		W	'hil	e Drilling:			Casing:		Rock Core:		Undist:		
Befo	re C	asi	ng	Removal:			Sampler:		Other:				
Aft	er C	asii	ng	Removal:			Hammer:						
			_	(N – No.	of blows	to drive sampler *	12" w/140 lb. har	nmer falling 30" AST	M D-1586, Stan	dard Pen	etration Te	est)	
Depth (ft)	Sample	Sol	Symbol	Blows on Sampler per 6"	c - coarse m - medium f - fine	n	MATERIAL	DESCRIPTION vel, C - Clay, cly - clay	a - and - s - some - I - little -	35-50%	(e.g., relative	COMMENTS N-value, recovery, moisture, core run, D, % recovered)	
			F		-	2" 0.01	,						
1	1		-			2" - Asphat					2.5	recovery	
2		2" 1' - Ton and block sand, FMb growt, dry										J	
2	1		-				0	PID					
3		1	ŀ		1-4.	Brown Co		16	actor husual				
4		1	H				104	7 4 7 5 0 2 0					
5			F		4.	-5 - Brown	51/+	, moist					
		1	+							_			
6		1				- 12	fine				2.	recovery	
		1			5.	-7.5 - Be	own Silt	moist.	to wel	1.		.)	
7		1	L					j /			Q .	PID	
8			E										
9			F		7	·5-10 - F	Scown Com	rse sand, mo	1154		No	odor/visval	
			F										
10	_		╁	2							And the Control of th		
11			H			11 50					31	Cecnery	
12			F			10-65 - 2		carse sand,	al			PID	
			E			10,000	COS SEC	course sound,	Wet				
13					16	1.5-13-50	ime as at	me, wet			No	ged 12:5-15	
14			1								Bow	ged 12:5-15	
15	-	1	-								-		
16			F										
17			F										
18													
19								,					
20			F										
21													
22													
23			_										

	С @		Sy Pt	99 Col Eilee		E	BORING LO	G	Si	oring No.	\$3-00
Proje	ct Nam	ne:								oject No.: ace Elev.:	
_	ocatio	_								Datum:	
	Clie								S	tart Date:	
Drilli	ing Fir								Fin	ish Date:	
	Grou			Depth	Date & Time	Drill Rig:				nspector:	
Befo			ile Drilling: g Removal:			Casing: Sampler:		Rock Core:		Undist:	
		_	Removal:			Hammer:		Other.			
			(N No	. of blows	to drive sampler	12" w/140 lb. ha	mmer falling 30" AST	M D-1586, Stan	idard Pen	etration Te	est)
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediun f - fine			DESCRIPTION avel, C - Clay, cly - clay	s - some - I - little -	- 35-50% - 20-35% - 10-20% e - 0-10%	(e.g., relative	COMMENTS N-value, recovery, moisture, core run, D, % recovered)
1				9	-7 - Acols	14				3' 1	Recarry
	1			2"	-7"- Asplan	1.01 (00	h. day			100	
2					1.) -	process.	1, 3			00	ID
3						The second secon	and the same	1./		120	
Ļ	1			1	.5-5- HI	EMI GENER	and black	and brown	sand,	No	odar
4						J	, , ,				
5										Bac	aged 1.5-5
6					5	- The second second	Par Harris L. D				The second second
6				.5-	7' Dira	4/ton sa	und & silt, de	4		4	Recovery
7				1.	8- Brow	A A A A A A A A A A A A A A A A A A A				Of	
8						Al SCALE				U.	
9					- Snall se					RE	No odor
10				8-1	101 - Bran	n F sond	& SIH, MOIS	*:			1
11		1		1	9-11- Bri	own F sc	and & sitt, m	noist		i.i	31 Recovery
12							sand, satura				
13										Q f	
14										No	, usual looker
15			TO ALL STREET		natur II						
16											
17											
18											
19											
20	f										
21		ļ									
22		ıţ									

C	OMF	IL 1A'	\$ 4 \$ P	99 Col Eilee		us e	BORING LO	G	Si	oring No. heet 1 of: oject No.:	58-03/Mur-2
Projec		_							Surfa	ce Elev.:	
	ocatio									Datum:	
	Clie								S	tart Date:	
Drilli	ng Fir	_		- Juli	,				Fin	ish Date:	
	_	_	water	Depth	Date & Time	Drill Rig:	4		Ir	spector:	
_			ile Drilling:			Casing:		Rock Core:		Undist:	
		_	Removal:			Sampler:		Other:			
An	er Cas	sing	Removal:		is deliver a second	Hammer:	6.00 0.00 4.07	110 1500 0			
Depth (ft)	Sample No.	Symbol	Blows on Sampler	c - coarse m - mediur		015 TH 107 TO 10	mmer falling 30" AST	a - and - s - some - J - little -	35-50% 20-35%	(e.g., 1	COMMENTS N-value, recovery,
De	တို _	S	per 6"	f - fine	S - Sano	d, \$ - Silt, G - Gra	avel, C - Clay, cly - clay				moisture, core run,), % recovered)
1				0-1	- AMC gra	nel and cr	ushed stone,	dy			15 Revolvy
2				1-	3'-Black	and tan	sarse sand, HFM (2=4) FM(q	rovel	C	PID
3				-					dry		Vosdor
4				3.	-5-Brown	and black	Food and s	ilt, moist		Bon	Vo-sdor
5											
6				5	-1 6	1 + 22 12 F	San II walion		-	2	5' Recaty
7				- 0	1 - Gray	7 6100011	-sand and sill	Meist		17.1	PID
8					9- Gray			.5-			odor/visie
9				9-1	o - Black	5.14 , .	de de	ryed wood,	moist		TO SUR !
10		H	1.				The second secon				**************************************
11							FUOM, HIZ			4,5	1 Recovery
12				11	1-12 Gra	y coarse s	and , saturate	duet		O f	
13				10	1-14- Br	own cours	ce send, but	oted		No	odor/vival
14				į	4-5-B.	OMU COUR	ce serol, we				
16										of the latest desired by a second law or have	*(*************************************
17											ī
18											
19											
20											
21						1					(
22									7,		

	C OMP		S Sy	99 Col Eilee		E	BORING LO	G	S	Boring No. Sheet 1 of: roject No.:	-3-04
	ct Nam	_								ace Elev.:	
L	Locatio	_								Datum:	
	Clie							-		Start Date:	
Drnn	Grou	_	lwater	Tarath	T - C Time	Diameter Control				nish Date:	
⊢			iwater nile Drilling:	Depth	Date & Time	Drill Rig:		T Cook Corns		Inspector:	
Befo			g Removal:			Casing: Sampler:	 '	Rock Core:		Undist:	
		_	g Removal:			Hammer:		Other.			
					to drive sampler		mmer falling 30" AST	rM D-1586, Star	ndard Per	netration Te	est)
Depth (ft)	Sample No.	Symbol			im:	MATERIAL	DESCRIPTION avel, C - Clay, cly - clay	a - and - s - some - l - little -	- 35-50%	(e.g., l relative	COMMENTS N-value, recovery, moisture, core run, D, % recovered)
1					:	Vari	- , I EM	e managet at	4	2.5	'Recovery
		1		0,	1- Brown.	Han cours	se sonal, FMI	L gran p	7	111252	J.
2	1	1		,						Q	PID
3				1-0	3.5 - Brow	in & Black	h FML sonal 4	silt, HFM (OSh)	٨	lo color
4				3.5	-5-Brow	n Fsanol	l and silt , mo	124			1182
5					ALL PARTY	,				15	Lagged 1-3.5
6	1 /	1								2	
7				- 2	5-10 f	3 count	soral and sill	r, mont		હ	Receivery
8											PID
9											No oder Armal
_10			٨		Strange Contract of the Contra	×					
11				JC)-12 - Bc	own F Sc	and & sitt, m	DIST			5' Recovery
12				Little		CS (orenous, wel				OPO
13	17	1		10	-/5	me in	100.00				No oder/usval
14		1			ê						
15	0.0	+			****		41.40)))18+0544				
16											
18											
19		F				-					
20		1									
21											
22	1	ŀ									

		<u> </u>	49 Sy	9 Col Eilee racuse, N	ineers, Inc. on Collins Blvd ew York 13212	В	ORING LO	G		oring No.	SR-05
C	ОМГ	1A ^c		none: 315-4 ax: 315-455		_	, G. (1110 EG)	•		heet 1 of:	
Proje	ct Nar	ne:								oject No.: ace Elev.:	
	Locatio	on:							00,10	Datum:	
	Clie	_							S	tart Date:	
Drill	ing Fi	_		r						ish Date:	
-			water ile Drilling:	Depth	Date & Time	Drill Rig:		Do-d-O	lı	spector:	
Befo			g Removal:			Casing: Sampler:		Rock Core: Other:		Undist:	
_		_	g Removal:			Hammer:		Other.			
		Ţ	(N No.	of blows	to drive sampler	12" w/140 lb. har	mmer falling 30" AST	M D-1586, Stan	dard Pen	etration Te	est)
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediur f - fine		000000	DESCRIPTION vel, C - Clay, cly - clay	s - some - I - little -	35-50% 20-35% 10-20% - 0-10%	(e.g., relative	COMMENTS N-value, recovery, moisture, core run, D, % recovered)
1				0-	o" - Aspha	# +				3	Recovery
2							a gravel, de	3			PD
							gravel, dry				
3	1			7-4	L Roya	and block	and some H	FM(coal o	anl		lo oder
4	1			4-6	o- Brown	Escard an	sand, some H	1=Mcgrovel	dry	Bo	gged 2-4
_5	-	-				5-10-6(1	of street AADIST	r water format	nen som som som ne		J
6	-			(5-8- BA	oun sitt,	Moist				1.5' Recovery
7	1	П				علايم المام					O PID
8	1	П		8	10 - Tan	Sidinor					
9	-	П									Mader Niew
10						7000					- Marine
11										2.	5' Recovery
12				10	15-Brau	n EMC SC	and wet				090
13											
14											Vo ader Nisual
15		H	A STATE OF THE PARTY OF THE PAR	A CANADA AND A CAN	ment VTR9 1844 HE 1-5 TO 40 3-20 Sense Western			CONTRACTOR AND ADDRESS OF THE ADDRES	الانا العلكم في المحمود المحمو		(i)
16											
17		1								192	
18											
19											
20											
21											
22											
23											

0	L @	i PAN	Sy Ph	99 Col Eilee		E	BORING LO	G	SI	oring No.	JB 06
Proje	ect Nam	ne:								oject No.:	
	Locatio	-							Suna	ace Elev.: Datum:	
	Clier	_							<u> </u>	tart Date:	
Drill	ing Fire					T	1			ish Date:	
	Grou	_	water	Depth	Date & Time	Drill Rig:				+	
			ile Drilling:		Date G Time	Casing:		Rock Core:		Indist:	
Befc			Removal:		 	Sampler:				Undist:	
			Removal:		 	Sampier: Hammer:		Other:			
—	<u> </u>	<u>s</u>			to drive sampler		Immer falling 30" AST	1586 Stan	deed Don	-testion Te	
	T	U			to dilvo comp.s.	12 WI 179 W	miller failing ou , to .	W D-1300, Sta	daru r.e.,		
Depth (ft)	Sample No.	Symbo	Blows on Sampler per 6"	m - mediun f - fine	s - San	nd, \$ - Silt, G - Gra	DESCRIPTION avel, C - Clay, cly - clay			(e.g., N	COMMENTS N-value, recovery, moisture, core run, D, % recovered)
1		1		1	0-2"- Asp	<i>draft</i>				06	0
2							and, FMC grow	vel, dry		2.5	Recovery
3							b), bladesa			Ba	gad 1-5
4				3-	5 - HFM1	lash), ble	och/trown F	= School al s.H.	Mols!		s odel
5		-		-	6-6						T DOON
6				生	3- Bod	c s. It, ms	nis t			4	Recovery
7					-7 - Brown					0	AD
8 9					9 - Brown		*			No	astor Nusval
10				9-	10 - Tan	FMC said	and silt, n	noi st			Orange of a soul 1
77=	11.70				***************************************		THE EXAMPLE AND ADDRESS OF THE PARTY OF THE				
11					10 16 0		-	(45)			Recovery
13				μ	0-15 Kr	coun Sonal	t hilt, saturate	cd			PID
14		F						E		/Ve	oder Kinal
15		+					-	A CONTRACTOR OF THE PARTY OF TH			
16											
17		F									
18		1									
20											
21		F									
22		F									
23		1 -									

	1 OMP	i AN	5 49 S) Pt	9 Col Eilee		В	ORING LO	G	S	oring No. heet 1 of:	2B-01
Proje	ct Nan	101				L				oject No.:	1.
_	cocatio	_				÷			Surfa	ace Elev.:	
	Clie	_								Datum:	
Drill	ing Fir	m:					ø-			ish Date:	
	Grou	ndv	vater	Depth	Date & Time	Drill Rig:				nspector:	
			le Drilling:			Casing:	1.	Rock Core:		Undist:	
_		_	Removal:			Sampler:		Other:			
An	er Cas	ing	Removal:	of blows	to drive sampler	Hammer:	mmer falling 30" AST	M D 1506 Cton	daed Doo	atastia - Ta	-0
F	0			OI DIOWS	to drive sampler	12 W/140 ID. Hai	Titler falling 30 AST	W D-1500, Stan	dard Per		COMMENTS
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediun f - fine	S - San	d, \$-Silt, G-Gra	DESCRIPTION vel, C - Clay, cly - clay	a - and - s - some - ! - little - ey t - trace	20-35%	(e.g., relative	N-value, recovery, moisture, core run, D, % recovered)
1		Н		0.4	2" - Markat	Ť				2	Panen
	1	П		2"	1.5' - Ro	cial subhase				6/.0	Recovery
2		П								011	2-0
,		П		1-5	- 2.5- HF	M (frace b	rich, ash), blo	ncle sand, d	ry	15/22/20	
3	1	Н			5-5- Brow)	No	oder
4		li		- × · ·	5 5 5	sand, mo	ST				
5											
		H									
6					5-Brown				1	3	5' Recons
7		[5.5	-6.5-Be	own sard,	wet		1		Sup 200
8				6.5	-10 - Bro	un Fsono	1 &sit, mois		4		
9		lt								PIDO	
										No ado.	STATE OF STA
10	-	-								100 4/01	ग े स
11				10.	-12 - 810	h Fonol	HS.H Satu	roted		0.	0
12				10	-13 - Bro	un cookse	Sand, man	24			Recory
13										Pro	5.71
14		ļ								No	oder/visual
15		_	62				4				
16		Ė									and the second s
17		-									
18		-									
19		Ŀ									
20		F									
21		E									
22		-									
23		-									

	- 6	2	C 49	&S Engi	ineers, Inc. en Collins Blvd				Во	oring No.	58-08
		jj	Sy		ew York 13212	В	ORING LO	G		eet 1 of:	20.00
C	ОМР	A٨	IIES Fa	x: 315-455	-9667					ject No.:	
Proje	ct Nan	1e:								ce Elev.:	
<u></u>	ocatio	_								Datum:	
Drilli	Clie									art Date:	
Drini	Grou	_	vater	Depth	Date & Time	Drill Rig:				sh Date: spector:	
			le Drilling:	Борин	Dute di rime	Casing:		Rock Core:		Undist:	
Befo	re Cas	ing	Removal:			Sampler:		Other:		ondiot:	
Aft	er Cas	ing	Removal:			Hammer:					
┝	_	П	(N No.	of blows	to drive sampler	12" w/140 lb. har	nmer falling 30" AST	M D-1586, Stan	dard Pene		
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediun f - fine	S - San	d, \$-Silt, G-Gra	DESCRIPTION vel, C - Clay, cly - clay	s - some - I - little -	35-50% 20-35% 10-20% - 0-10%	(e.g., relative	COMMENTS N-value, recovery, moisture, core run, D, % recovered)
1		Н		0.:	2 - Asphall					7 1	Recovery
	1	H		2"-	- Road	Subbose				24	11000
2	-			6	2		ral \$ silt, me			9	PID
3					5 - 50	con - Sa	rol & Sit, pre	*5T		No	orderfisal
4	-										
5											1.0
6					5-7.5-1	Stown Silt	, sal roted			3	Recovery
7										0	Recally pit
8				7;	5-10 -B	rown Silt.	, moist			No a	palar/visual
9											
10		4			• ****						
11		ļ								tj'	Recovery
12					0-15-3	rown Loo	urse sound, m	notot		90	D
13										No u	der hisual
14											
15		_									
16		Ė									
17	6	þ									
18		t									
19		-									
20		Ė									
21		E									
22		-									
23		-									(8)

			4 S	99 Col Eilee yracuse, N	ineers, Inc. en Collins Blvd lew York 13212	В	ORING LO	G		oring No.	SB-09
Phone: 315-455-2000										heet 1 of: oject No.:	*
Proie	et Nan	ne:								ce Elev.:	
_	ocatio	-								Datum:	
	Clie	nt:							S	tart Date:	
Drilli	ng Fir	m:							Fin	ish Date:	
	Grou			Depth	Date & Time	Drill Rig:	c	41	lr	spector:	
_			le Drilling:			Casing:		Rock Core:		Undist:	
_		Ť	Removal:			Sampler:		Other:			
An	er Cas	ing	Removal:	_	to drive sampler	Hammer:	mmer falling 30" AST	M D 1596 Stop	dard Dan	atration T	act\
=	ľ.,				to drive sampler	12 W/ 140 ID. Hal	miler failing 30 AST	W D-1300, Stan	iuaru Pen		COMMENTS
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediur f - fine			DESCRIPTION vel, C - Clay, cly - clay	s - some - l - little -	- 35-50% - 20-35% - 10-20% - 0-10%	(e.g., relative	N-value, recovery, moisture, core run, D, % recovered)
,		П		0.0	" Asphort					ų,	Recovery
1		Н			2' - Road	Subbase				-	ID 9
2		Н					1 224	Same HEM	16 40		70 9
		П		0/	J.5 - Black	sord, the	gravel, moist,	Sure In Fil	Bridge	N	booter
3				25	4. Grant	sanol/s, It,	FMK gravel, d	Ly .			
4				_	5- Breaun			J		- 30	1900 J-25
5					13 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15			5.			
6								***************************************		-	210
0		Н		1	-6.5-B	- 116 50 -	al carrier			3,5	Recary
7		lŀ								D	Do
		1	- Sc	6	5-8- Bro	un silt an	day, vet				C-
8										N	oder histal
9				8-	10-Bram	Course s	sand, dry				
10						-011					
11		F			SECTION AND THE SECTION AND TH	z H/.	W			3'	Recovery DO
		lt		10	-12. Rra	ع الماند في	lay, moist				<u></u>
12		[P	D O
13				/	2-15 - Br	own coars	e sand, ma	154		N	a ado-lusual
14											
15		ļ									
16		ŀ				W - W - W - W - W - W - W - W - W - W -			_		
17		ŀ									
						_					
18		 -									
19		l									
-											
20		-									
21		ŀ									
22											

0	2 OMP		Sy Ph	9 Col Eilee		Е	ORING LO	G	SI	oring No.	58-10/mu-1
Proje	ct Nan	10:								ject No.; ce Elev.:	
_	ocatio	-							Suria	Datum:	
	Clie								Si	tart Date:	
Drilli	ing Fir	m:								ish Date:	
	Grou		vater	Depth	Date & Time	Drill Rig:				spector:	
		Whi	le Drilling:			Casing:		Rock Core:		Undist:	
Befo	re Cas	ing	Removal:			Sampler:		Other:			
Aft	er Cas	ing	Removal:			Hammer:					
	_	_	(N No.	of blows	to drive sampler	12" w/140 lb. ha	mmer falling 30" AST	TM D-1586, Stan	dard Pen	etration Te	est)
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediun f - fine	S - San		DESCRIPTION Ivel, C - Clay, cly - clay	s - some - I - little -	- 35-50% - 20-35% - 10-20% 0-10%	(e.g., relative	COMMENTS N-value, recovery, moisture, core run, D, % recovered)
1		╽╂		0-8	1" - Aspinit					3.5	Recovery
2				2"-	3'- Rocces si	ibtore					DO
3			**	3-	5 - Black	sand, mon	st, somether	(brick, osh)		Boo	19eol 3-5
4											
5	_	H								~ ~ ~	10
6							e sand, moist				Recovery
7					5-9 Bro	un Coorse	sard w/ stain Petro	ed areas	×st	Some	petro staining
9				9	2-10 Brow	n coarse s				Pic	= 5pm @7 5-9"
10											
11								4 3 8			Recarry
12				/(9-15 Bro.	un Coorses	and, wet to so	alliarest			0
13										And	dorformaj
14											
15 16		-									
17											
18											
19		E									
20											
21		E									
22	Λ	-									
23		1									

-	S OMP		Sy Ph	9 Col Eilee		В	ORING LO	G	Si Pro	oring No. heet 1 of: oject No.:	SB-02A
_	ct Nan	_							Surfa	ce Elev.:	
<u> </u>	ocatio	_								Datum:	
Deilli	Clie ng Fir	-								tart Date:	9/6/122
Drilli	Grou		water	Depth	Date & Time	Drill Rig:				ish Date:	
<u> </u>			ile Drilling:	Deptil	Date & Time	Casing:		Rock Core:		Undist:	
Refo		_	Removal:		-	Sampler:		Other:		Oridist.	
_		_	Removal:			Hammer:	·	Other.			
				of blows	to drive sampler		mmer falling 30" AST	M D-1586, Star	dard Pen	etration Te	est)
Depth (ft)	Sample No.	Symbol		c - coarse m - mediur f - fine	m S - San	MATERIAL d, \$ - Silt, G - Gra	DESCRIPTION Ivel, C - Clay, cly - clay	a - and s - some I - little	35-50%	(e.g., l relative	COMMENTS N-value, recovery, moisture, core run, D, % recovered)
1				0-	3" Asphatt						
	1	П		50	31 - 8	- 020-400-61		HENCE	4	_	
2	ļ			0	Dena	L. Como L. Se	int & FME grows	I, III III BY	7	1 1	DO
١,				3-	51 - lan ca	arse Sand 8	roma gravel, HE	M (Bridgash	1		
3	1	ı	_				U				
4					*	sumpleal	SB-02A (0.5-5	5')			
		l					NA T				110
5		r									-
6		1 1				6h	d@ 51				
7											
8					EC .						
١ů	ĺ	2									
9											
10											
11											
12					10° 10						
13	.#0:		K								
14								*)			
15											
16											
17					-						
18	6										
19											
20				9							
21											
22											

	- @		49	9 Col Eilee	neers, Inc. n Collins Blvd				Boring	No.	58-03A
	_@		Ph	racuse, Ne none: 315-4	ew York 13212 55-2000	В	ORING LO	ف	Sheet 1	of:	
C	OMP.	AN	IIES Fa	x: 315-455	-9667			_	Project N	lo.:	
Proje	ct Nam	e:							Surface Ele	\rightarrow	
	ocatio.	_							Date	ım:	
	Clier	ıt:							Start Da	ate:	
Drilli	ng Fire	n:							Finish Da	ate:	
	Grou	_	vater	Depth	Date & Time	Drill Rig:			Inspec	tor:	
		Vhi	le Drilling:			Casing:		Rock Core:	Undi	st:	
Befo	re Cas	ing	Removal:			Sampler:		Other:			
			Removal:			Hammer:					
			(N No.	of blows	to drive sampler	12" w/140 lb. ha	mmer falling 30" AST	M D-1586, Stan	dard Penetratio	n Te	st)
£	a	٦	Blows on						25 50%	2	OMMENTS
ا ج	훁	힅	Sampler	c - coarse m - mediur		MATERIAL	DESCRIPTION	s - some -		e.g., 1	N-value, recovery,
Depth (ft)	Sample No.	ĮŠ.	per 6"	f - fine			ivel, C - Clay, cly - claye		10-20% rela		moisture, core run,
1	97	Ľ	Po. 0					э у		RQI), % recovered)
				0-	1'- FMC br	aun sound o	Dramort 3				
1	-	Н		.,		7.	J			i.	
		H		/′-	3.5' - HFM (1	creh, ask, 51	ag), coarse blac	le gard		D	-0
2	-	Н		3.6	W 754 5				X	IV	=0
1,		Н		0.5-	7 - 101 /- 30	the and s	organics eg), coase blac 14, moist			7.0	
3	1	H			= 1.512FA	1.1 4	3-03A(1-3.5)				
ı, j		Н		-	5ar	moles Do	D-O SHEFT SID				
4_		-									
5		H									
Ľ	1	H				Family at 190	4.27				
6		H				Endle	4			5	
Ť	1	H					*				
7		П									
	1	ΙÌ									
8		П						1.0			
	1	П			-					75.7	
9		П									1
	1	IJ							3		
10											
	77	Н									
11	-	Н									
1,0		H		-							
12	1										
12		H							- 41		
13	1	H								_	
14		H					-				
	1										
15											
	1										
16											
_17		[(<u> </u>						
		[P					
18		[30						
				10							
19				0.56			72				
						,					
20				-							
21	-										
						-					
22											
22											
23		Ш									

	O MP/		49 Sy Ph	9 Col Eilee		В	ORING LO	G	Sh Proj	ring No. eet 1 of: ject No.:	SB-07A
Projec		\rightarrow							Surfac	ce Elev.:	
	ocatio	_							04	Datum:	<i>at</i> 22
Delli	Clier	_						_		art Date: sh Date:	9/6/32
Drillii	ng Firi Groui	_	ratar	Danah	Date & Time	Drill Rig:				spector:	
_			le Drilling:	Depth	Date & Time	Casing:		Rock Core:		Undist:	
Befor			Removal:			Sampler:		Other:		Ondist.	
		_	Removal:			Hammer:		ourer.			
		Ť		of blows	to drive sampler		mmer falling 30" AST	M D-1586, Stan	dard Pene	etration Te	est)
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediur f - fine	S - San	d, \$ - Silt, G - Gra	DESCRIPTION vel, C - Clay, cly - clay	s - some - l - little -	· 35-50% · 20-35% · 10-20% · - 0-10%	(e.g., relative	COMMENTS N-value, recovery, moisture, core run, D, % recovered)
		П		0-7"	- Asphalt .5'- Subject :- Brain some					0.	
1		H		40-1	51- Subbase	-				PI)-()
2_		H	_	1.5-2	- Braun sono	P, HFMCE	rich cush)		_	, , ,	
3 _		П				Sample	P 45-21				
4		H				3					
Ť	1	l									
5											
6											C
7											
8		H						<u>}</u>	3		
		П									
9	s										
10		H									
11		Н									
12		П						- E			
13							*				
14											
15	12						ŤP				
	1							41			
16	-				-						
17		H									
	1										
18		П									4
		П									
19	-	H									
20		H				2					
	1										
21					-						
22						-					

C	() () () () ()	I AN	49 Sy Ph	9 Col Eilee		В	ORING LO	G	Sh	ring No.	SB-04A
Den in	4 Mana					l				ect No.:	
	ct Nam ocatio	$\overline{}$							Suriac	ce Elev.: Datum:	
<u> </u>	Clier	_							Sta	art Date:	9/6123
Drilli	ng Firi	_								sh Date:	170,00
	Grou	_	/ater	Depth	Date & Time	Drill Rig:				spector:	
	V	Vhi	le Drilling:			Casing:		Rock Core:		Undist:	
Befo	re Cas	ing	Removal:			Sampler:		Other:			
Aft	er Cas	ing	Removal:			Hammer:					
	_	_	(N No.	of blows	to drive sampler	12" w/140 lb. hai	mmer falling 30" AST	M D-1586, Stan	dard Pene		
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediur f - fine	S - San	id, \$ - Silt, G - Gra	DESCRIPTION vel, C - Clay, cly - clay	s - some - l - little - ey t - trace	35-50% 20-35% 10-20% - 0-10%	(e.g., relative	COMMENTS N-value, recovery, moisture, core run, D, % recovered)
1		H		C)-	6 - Tan so	organ	cs (lash, buck, C	4 1		01	D=0
<u> </u>	1			6	10-00m	Sanot, FM	Clash, bruck, C	wolfer)			
2		ľ									
	1	[Styped	D15				
3	-					Styped a	101	<u> </u>			
4	-	H			<i>Sa</i>	ingled (15 7.5				
	1	l									
5	ł	H									
6		l									
,											
7	1	H									
8											
9		╽┟							-,		
	1	lt									
10	-									-	
11		H						± -			
10	1					8					
12	1	H									
13							4				
14											
45											
15	1										
16	-										
17											
		[
18	1										
19											
20											
20	1	╽╏									
21											
	1										
22	-	[
22											
23		ш									

0	L @	AN	49 Sy Ph	9 Col Eilee		В	ORING LO	G	St	oring No. neet 1 of: nject No.:	SB-10A
Proie	ct Nam	e:								ce Elev.:	
	ocatio	_								Datum:	
	Clie	_							St		11/32
Drilli	ng Fir								Fin	ish Date:	Jacob V V
	Grou		ater	Depth	Date & Time	Drill Rig:				spector:	
			le Drilling:	-		Casing:		Rock Core:		Undist:	
Befo			Removal:			Sampler:		Other:			
		_	Removal:			Hammer:					
			(N No.	of blows	to drive sampler	12" w/140 lb. hai	nmer falling 30" AST	M D-1586, Stan	dard Pen	etration To	est)
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediur f - fine	S San	d \$ Silt G Gra	DESCRIPTION vel, C - Clay, cly - clay	s - some · I - little ·	- 35-50% - 20-35% - 10-20% - 0-10%	(e.g., relative	COMMENTS N-value, recovery, e moisture, core run, D, % recovered)
				01-6"	- Fing brow	m scinol					917-0
1	1			6 1	- Justine	2 1010	ome ha			/	11-0
2		ł		1-1.	- Fing brow - Subtree 5'- Brown to	the Sonal of S	or the orich				
	1	H			à.	F	D & 1.5				
3]						Q 65				
		П									
4	-										
5		H									
-	1	lŀ									
6		Ιŀ									
	1	Ιt			90						
7]	[
-8	-	lŀ									
9		Ιŀ									
Ť	1	ΙÌ									-
10											
	1	[
11	4	H									
1,1		H									
12	1							,			
13	1		i.								
	1	H				×.				(4	
14											
	-										
15	1										
16	1	H									
16	1	H									
17		H									
	1	H									
18	1										
	1	П									
19	1	H									W
20											
20	1										
21		H									
	1	H									
22]										
23		Ш				iř.					

	■© OMP/		Sy Pt	9 Col Eilee		В	ORING LO	G	She Proje	et 1 of:
Projec		\rightarrow							Surface	
	ocatio	\rightarrow								Datum:
2 1111	Clier	_				I=====================================				rt Date: 9/6/17
Drilli	ng Firi	_		T = "		D./// D:				h Date:
_	Groui		le Drilling:	Depth	Date & Time	Drill Rig:		Rock Core:		pector: Indist:
Rofo			Removal:	-		Casing: Sampler:		Other:	0	nuist.
		_	Removal:	-		Hammer:		Other.		
	., 003	ij		. of blows	to drive sampler		nmer falling 30" AST	M D-1586, Stan	dard Penet	ration Test)
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediur f - fine	n S - San	MATERIAL	DESCRIPTION vel, C - Clay, cly - clay	a - and - s - some - I - little - t - trace	- 35-50% - 20-35% - 10-20% - 0-10%	COMMENTS (e.g., N-value, recovery, relative moisture, core run, RQD, % recovered)
1				0-1	-FMC Brow	un sorel, a	organus			
2		╽╽								
3				1-3	- Brown	The sond	organus HFM (bruch, c	ish, some c	noter)	
4							1@ /-31			
5						Jampleo	(@ /-3 ¹			
6										
7										
8										il.
9										
10										-
11						_		90	AT.	ii.
12			2			e l		a-		
13										1
14										W
15									* ×	A
16										*
17									*	
18										
20					(6)	-				
21										
				1						
22										
23										

Appendix C Summaries of Lab Data & Laboratory Analytical Reports

43 Midler Park Drive * Syracuse, NY 13206
Phone (315) 431-9730 * Emergency 24/7 (315) 416-2752
NYSDOH ELAP Certificate No. 11830

Analytical Report

Wednesday, August 10, 2022

Order No.: C2208008

Matt Walker

C & S Engineers, Inc.

499 Col. Eileen Collins Blvd.

Syracuse, NY 13212

TEL: (315) 703-4110 FAX (315) 455-9667

RE: 1117 West Fayette Street Phase II

Dear Matt Walker:

Centek/SanAir Technologies Laboratory received 7 sample(s) on 8/2/2022 for the analyses presented in the following report.

I certify that this data package is in compliance with the terms and conditions of the Contract, both technically and for completeness. Release of the data contained in this hardcopy data package and/or in the computer readable data submitted has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Centek/SanAir Laboratories performs all analyses according to EPA, NIOSH or OSHA-approved analytical methods. Centek Laboratories is dedicated to providing quality analyses and exceptional customer service. All method blanks, laboratory spikes, and/or matrix spikes met quality assurance objective except as indicated in the case narrative. All samples were received and analyzed within the EPA recommended holding times. Test results are not Method Blank (MB) corrected for contamination.

We do our best to make our reporting format clear and understandable and hope you are thoroughly satisfied with our services. Please contact your client service representative at (315) 431-9730 or myself, if you would like any additional information regarding this report.

Thank you for using Centek/SanAir Laboratories. This report can not be reproduced except in its entirety, without prior written authorization.

Sincerely,

William Dobbin

Lead Technical Director

Disclaimer: The test results and procedures utilized, and laboratory interpretations of the data obtained by Centek/SanAir as contained in this report are believed by Centek to be accurate and

Centek/SanAir Labs Page 1 of 36

reliable for sample(s) tested. In accepting this report, the customer agrees that the full extent of any and all liability for actual and consequential damages of Centek/SanAir for the services performed shall be equal to the fee charged to the customer for the services as liquidated damages. ELAP does not offer certification for the following parameters by this method at present time, they are: 4-ethyltoluene, ethyl acetate, propylene, Tetrahydrofuran, 4-PCH, sulfur derived and silcon series compounds.

Centek/SanAir Laboratories - Terms and Conditions

Chain of Custody

Chain of Custody must be completed in full. Lack of any missing information will affect your Turn Around Times (TAT)

Internal Chain of Custody provided when you notify Centek/SanAir Laboratories

Sample Submission

All samples sent to Centek/SanAir Laboratories should be accompanied by our Request for Analysis Form or Chain of Custody Form. A Chain of Custody will be provided with each order shipped for all sampling events, or if needed, one is available at our website www.Centek/SanAirLabs.us. Samples received after 3:00pm are considered to be a part of the next day's business.

Sample Media

Samples can be collected in a canister or a Tedlar bag. Depending on your analytical needs, Centek/SanAir Laboratories may receive a bulk, liquid, soil or other matrix sample for headspace analysis.

Blanks

Every sample is run with a surrogate or tracer compound at a pre-established concentration. The surrogate compound run with each sample is used as a standard to measure the performance of each run of the instrument. If required, a Minican can be provided containing nitrogen to be run as a trip blank with your samples.

Sampling Equipment

Centek/SanAir Laboratories will be happy to provide the canisters to carry-out your sampling event at no charge. The necessary accessories, such as regulators, tubing or personal sampling belts, are also provided to meet your sampling needs. The customer is responsible for all shipping charges to the client's destination and return shipping to the laboratory. Client assumes all responsibility for lost, stolen and any damages of equipment.

Any sampling equipment that exceeds holding times, cancellation of job or non-notice of rescheduling is subject to restocking fees

Turn Around time (TAT)

Centek/SanAir Laboratories will provide results to its clients in one business-week by 6:00pm EST after receipt of samples. For example, if samples are received on a Monday they are due on the following Monday by 6:00pm EST. Results are faxed or emailed to the requested location indicated on the Chain of Custody. Non-routine analysis may require more than the one business-week turnaround time. Please confirm non-routine sample turnaround times.

Reporting

Centek/SanAir Labs Page 2 of 36

Results are emailed or faxed at no additional charge. A hard copy of the result report is mailed within 24 hours of the faxing or emailing of your results. Cat "B" like packages are within 3-4 weeks from time of analysis (add 10%/sample for Cat B). Standard Electronic Disk Deliverables (EDD) is also available at no additional charge.

Payment Terms

Payment for all purchases shall be due within 30 days from date of invoice. The client agrees to pay a finance charge of 1.5% per month on the overdue balance and cost of collection, including attorney fees, if collection proceedings are necessary. You must have a completed credit application on file to extend credit. Purchase orders or checks information must be submitted for us to release results

Rush Turnaround Samples

Expedited turn around times is available. Please confirm rush turnaround times with Client Services before submitting samples.

Applicable Surcharges for Rush Turnaround Samples: Same day TAT = 200%

Next business day TAT by Noon = 150%

Next business day TAT by 6:00pm = 100%

Second business day TAT by 6:00pm = 75%

Third business day TAT by 6:00pm = 50%

Fourth business day TAT by 6:00pm = 35%

Fifth business day = Standard

Statement of Confidentiality

Centek/SanAir Laboratories is aware of the importance of the confidentiality of results to many of our clients. Your name and data will be held in the strictest of confidence. We will not accept business that may constitute a conflict of interest. We commonly sign Confidential Nondisclosure Agreements with clients prior to beginning work. All research, results and reports will be kept strictly confidential. Secrecy Agreements and Disclosure Statements will be signed for the client if so specified. Results will be provided only to the addressee specified on the Chain of Custody Form submitted with the samples unless law requires release. Written permission is required from the addressee to release results to any other party.

Limitation on Liability

Centek/SanAir Laboratories warrants the test results to be accurate to the methodology and sample type for each sample submitted to Centek/SanAir Laboratories. In no event shall Centek/SanAir Laboratories be liable for direct, indirect, special, punitive, incidental, exemplary or consequential damages, or any damages whatsoever, even if Centek/SanAir Laboratories has been previously advised of the possibility of such damages whether in an action under contract, negligence, or any other theory, arising out of or in connection with the use, inability to use or performance of the information, services, products and materials available from the laboratory or this site. These limitations shall apply notwithstanding any failure of essential purpose of any limited remedy. Because some jurisdictions do not allow limitations on how long an implied warranty lasts, or the exclusion or limitation of liability for consequential or incidental damages, the above limitations may not apply to you. This is a comprehensive limitation of liability that applies to all damages of any kind, including (without limitation) compensatory, direct, indirect or consequential damages, loss of data, income or profit and or loss of or damage to property and claims of third parties.

Centek/SanAir Labs

Date: 15-Aug-22

CLIENT:

C & S Engineers, Inc.

Project:

1117 West Fayette Street Phase II

Lab Order:

C2208008

CASE NARRATIVE

Samples were analyzed using the methods outlined in the following references:

Centek Laboratories, LLC SOP TS-80

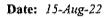
Compendium of Methods for the Determination of Toxic Organic Compounds, Compendium Method TO-15, January 1999

All method blanks, laboratory spikes, and/or matrix spikes met quality assurance objective except as indicated in the corrective action report(s). All samples were received and analyzed within the EPA recommended holding times. Test results are not Method Blank (MB) corrected for contamination.

NYSDEC ASP samples:

Canisters should be evacuated to a reading of less than or equal to 50 millitorr prior to shipment to sampling personnel. The vacuum in the canister will be field checked prior to sampling, and must read 28" of Hg (±2", vacuum, absolute) before a sample can be collected. After the sample has been collected, the pressure of the canister will be read and recorded again, and must be 5" of Hg (±1", vacuum, absolute) for the sample to be valid. Once received at the laboratory, the canister vacuum should be confirmed to be 5" of Hg,±1". Please record and report the pressure/vacuum of received canisters on the sample receipt paperwork. A pressure/vacuum reading should also be taken just prior to the withdrawal of sample from the canister, and recorded on the sample preparation log sheet. All regulators are calibrated to meet these requirements before they leave the laboratory. However, due to environmental conditions and use of the equipment Centek can not guarantee that this criteria can always be achieved.

Page 1 of 1


	Contain the Chain of Contains	240	1000	1	ŧ	コーンキン学のだった。		
	ספוונבע דמה	2 - 2	S C C C	700	offe warner, the control of	C. MUCH THUSE	Detection Limit	" Report Level
Centrak Laboratories	143 Midler Park Drive	Drive			ر پ	Sheet Mose H	Addds —	Level
1		3206			PO#: 7.63.002.001		Tug/M3	T Favel III
<i> </i>	315-431-9730		Vapor Intrusion & IAQ		# 0.30		N tug/M3 + 0.2 NYS	Cat '8" Like
	≥	ľ			Canister Order #: \\ \\ \\ \\ \\			
ò	AT ¥	Due Date:	Сотрапу: Ст5	S Engineers		Company: Check Here If Same:	Ē	
5 Business Days 4 Business Days	1	20133	Report to: Address: 499 (d. Evecn Collyns Rood	(d. Enegon ()	shins zhud	Invoice to:		
3 Business Days	 % %		City, State, Zip) 		City, State, Zip		
2 Business Days	75%		Surause, NY 15213	E1651 Y.V		1		
Next Day by Noon	150%		Email: Ma.J.	a He crya Co	٠. روس ١٠. روس	chail.		
*Same Day			Phone: 315	455 3000		Phone:		
For Same and Next Day TAT F	Pease Notify Lab		•	Regulator	Analysis Request	Field Vacuum	Labs Vacuum**	Соптепт
Clarific C	המופ סיר	naidillo	RUHIDE	Jacun N	7	Start / Stop	KecviAnalysis	
55-1	8/1/37-812/23	46) t	353	-	10-is	30115	61-141-	Start: 1430
IA-1	8/11/22-8/2123	2133	ρζ.	39.1	TD-15	3012	1011-	Ston: 1431
55-3	611133-81213	6676	[]	bhh	51-QL	3013	711	14 M 36
IA-3	Eli 173-41313	3 Pas	h <u>L</u> ll	348	51-01		1-11-	るような
55-3	ff1/32-56/113	et -	hg)	A38	70-15	37 / [8-16-	Stad: 1433 End: 0815
IA-3	6/11/3-8/1/3	ee)	355	433	T0-15	30108	7-11-	Stat: 1435 End: 1130
0A-1	EN132-82123	64′	475	396	70-15	501 व	1.11-	Skr+: 1438
						•	1	
						1	1	
						**	***	
						•••	***************************************	
						1	1	
						I	f	
						ł	Í	
						-	••••	
)			·			4	f	
						-	1	
						1	1	
stody	Print Name			Signature			Courier; CIRCLE ONE	
Sampled by:	Hottony D'GIONORA			きなる	٠٠	812/23 165:45	FedEx UPS Pickup/Dropoff	Угороff
Relinquished by:	,						"For LAB USE ONLY	6
Received at Lab by:	人、石石はない	3			k	6/2/20 16:1K	1	7882 7882
		١.				,		

***Chain of Custody must be completed in full. Lack of any missing information will affect your Turn Around Times (TAT) *** By signing Centek Labs Chain of Custody, you are accepting Centek Labs Terms and Conditions listed on the reverse side.

Sample Receipt Checklist

Client Name: C&S - SYRACUSE				Date and	Time Received		8/2/2022
Work Order Number C2208008	1			Received	by: RG		
Checklist completed by	Men 8/3/	/		Reviewed	t by <u>W</u>		8/3/2002
Matrix:	•	<u>Drop</u>	Off		12 100 100 2		; Dalla
Shipping container/cooler in good condition?		Yes	~]	No 🗆	Not Present		
Custody seals intact on shippping container/co	oler?	Yes		No 🗀	Not Present	V	
Custody seals intact on sample bottles?		Yes		No 🗔	Not Present	\mathbf{V}	
Chain of custody present?		Yes	\mathbf{S}	No 🗀			
COC signed when relinquished and received?		Yes	₹ }	No 🗀			
COC agrees with sample labels?		Yes	\checkmark	No 🗌			
COC completely filled out?		Yes	(\mathbf{Z})	No 🗀			
Sample containers intact?		Yes	\odot	No 🗀			
Sufficient sample volume for indicated test?		Yes	\mathbf{Z}	No 🗆			
All samples received within holding time?		Yes	\mathbf{Y}	No 🗆			
Container/Temp Blank temperature in compliar	ice?	Yes	\mathbf{V}	No 🗀			
Nater - VOA viałs have zero headspace?	No VOA vials submi	tted	\checkmark	Yes			
Nater - pH acceptable upon receipt?		Yes		No 🗹			
	Adjusted?			Checked by			
Any No and/or NA (not applicable) response m	ust be detailed in the cor	nmer	nts se		erson contacted:		
Tarakanta di Lara	PAGE Facility						
Contacted by:	Regarding:						
Comments:	**************************************			**************************************			
Corrective Action:	Value Abdrahaman						
	OCH						8/15/2022

CLIENT:

C & S Engineers, Inc.

Project:

1117 West Fayette Street Phase II

Lab Order:

C2208008

Work Order Sample Summary

Lab Sample ID C2208008-001A	*	Tag Number 353,441	Collection Date 8/1/2022	Date Received 8/2/2022
C2208008-002A	IA-1	207,391	8/1/2022	8/2/2022
C2208008-003A	SS-2	171,449	8/1/2022	8/2/2022
C2208008-004A	IA-2	1174,398	8/1/2022	8/2/2022
C2208008-005A	SS-3	164,438	8/1/2022	8/2/2022
C2208008-006A	1A-3	358,433	8/1/2022	8/2/2022
C2208008-007A	OA-1	475,396	8/1/2022	8/2/2022

>
<u>5</u>
bora
ab
\blacksquare
S
.20
0
2
2
Ξ
٠.
ij
III.
~~
ξŅ
3
₩
7

C & S Engineers, Inc.

Lab Order: Client:

DATES REPORT

15-Aug-22

Project:	1117 West Favette Street Phase II	Street Phase II				
		** A.C.W.T. ** A.C				
Sample ID	Client Sample ID	Collection Date	Matrix	Test Name	TCLP Date Prep Date	Analysis Date
C2208008-001A	SS-1	8/1/2022	Air	lug/M3 by Method TO15		8/9/2022
				lug/M3 by Method TO15		\$19,2022
				lug/M3 by Method TO15		8/9/2022
C2268668-062A	I-VI			lug/m3 w/ 0.2ug/M3 CT-TCE-VC-DCE- 1,1DCE		8/9/2022
				lug/m3 w/ 0.2ug/M3 CT-TCE-VC-DCE- 1,1DCE		8/9/2022
C2208008-003A	SS-2			lug/M3 by Method TO15		8/9/2022
				lug/M3 by Method TOIS		8/9/2022
				lug/M3 by Method TO15		8/9/2022
C2208008-004A	IA-2			lugim3 w/ 0.2 ng/M3 CT-TCE-VC-DCE.		8/9/2022
				lug/m3 w/ 0.2ug/M3 CT-TCE-VC-DCE- 1,1DCE		8/9/2022
C2208008-005A	SS-3			tug/M3 by Method TO15		8/9/2022
				lug/M3 by Method TO15		8/9/2022
				lug/M3 by Method TO15		8/9/2022
C2208008-006A	IA-3			lug/m3 w/0.2ug/M3 CT-TCE-VC-DCE- 1.1DCE		8/9/2022
				lug/m3 w/ 0.2ug/M3 CT-TCE-VC-DCE- 1, IDCE		8/9/2022
C2208008-007A	0A-I			lug/m3 w/ 0.2ug/M3 CT-TCE-VC-DCE- 1,1DCE		8/9/2022
				lug/m3 w/ 0.2ug/M3 CT-TCE-VC-DCE- 1,1DCE		8/9/2022

Centek/SanAir Labs Page 8 of 36

CLIENT: C & S Engineers, Inc.

Lab Order: C2208008

Project: 1117 West Fayette Street Phase II

Lab ID: C2208008-001A

Date: 10-Aug-22

Client Sample ID: SS-1

Tag Number: 353,441

Collection Date: 8/1/2022

Matrix: AIR

Analyses	Result	DL (Qual Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-14		"Hg		8/2/2022
Lab Vacuum Out	-30		"Hg		8/2/2022
1UG/M3 BY METHOD TO15		TO-1	5		Analyst: RJP
1,1,1-Trichloroethane	< 0.15	0.15	ppbV	1	8/9/2022 8:00:00 AM
1,1,2,2-Tetrachloroethane	< 0.15	0.15	ppbV	1	8/9/2022 8:00:00 AM
1,1,2-Trichloroethane	< 0.15	0.15	ppbV	1	8/9/2022 8:00:00 AM
1,1-Dichloroethane	< 0.15	0.15	ppbV	1	8/9/2022 8:00:00 AM
1,1-Dichloroethene	< 0.15	0.15	ppbV	1	8/9/2022 8:00:00 AM
1,2,4-Trichlorobenzene	< 0.15	0.15	ppbV	1	8/9/2022 8:00:00 AM
1,2,4-Trimethylbenzene	1.4	0.15	ppbV	1	8/9/2022 8:00:00 AM
1,2-Dibromoethane	< 0.15	0.15	ppbV	1	8/9/2022 8:00:00 AM
1,2-Dichlorobenzene	< 0.15	0.15	ppbV	1	8/9/2022 8:00:00 AM
1,2-Dichloroethane	< 0.15	0.15	ppbV	1	8/9/2022 8:00:00 AM
1,2-Dichloropropane	< 0.15	0.15	ppbV	1	8/9/2022 8:00:00 AM
1,3,5-Trimethylbenzene	0.72	0.15	ppbV	1	8/9/2022 8:00:00 AM
1,3-butadiene	< 0.15	0.15	ppbV	1	8/9/2022 8:00:00 AM
1,3-Dichlorobenzene	< 0.15	0.15	ppbV	1	8/9/2022 8:00:00 AM
1,4-Dichlorobenzene	< 0.15	0.15	ppbV	1	8/9/2022 8:00:00 AM
1,4-Dioxane	< 0.30	0.30	ppbV	1	8/9/2022 8:00:00 AM
2,2,4-trimethylpentane	0.15	0.15	ppbV	1	8/9/2022 8:00:00 AM
4-ethyltoluene	0.54	0.15	ppbV	1	8/9/2022 8:00:00 AM
Acetone	150	27	ppbV	90	8/9/2022 6:28:00 PM
Allyl chloride	< 0.15	0.15	ppbV	1	8/9/2022 8:00:00 AM
Benzene	0.67	0.15	ppbV	1	8/9/2022 8:00:00 AM
Benzyl chloride	< 0.15	0.15	ppbV	1	8/9/2022 8:00:00 AM
Bromodichloromethane	< 0.15	0.15	ppbV	1	8/9/2022 8:00:00 AM
Bromoform	< 0.15	0.15	ppbV	1	8/9/2022 8:00:00 AM
Bromomethane	< 0.15	0.15	ppbV	1	8/9/2022 8:00:00 AM
Carbon disulfide	10	1.4	ppbV	9	8/9/2022 5:44:00 PM
Carbon tetrachloride	0.13	0.15	J ppbV	1	8/9/2022 8:00:00 AM
Chlorobenzene	< 0.15	0.15	ppbV	1	8/9/2022 8:00:00 AM
Chloroethane	< 0.15	0.15	ppbV	1	8/9/2022 8:00:00 AM
Chloroform	0.20	0.15	ppbV	1	8/9/2022 8:00:00 AM
Chloromethane	0.51	0.15	ppbV	1	8/9/2022 8:00:00 AM
cis-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	8/9/2022 8:00:00 AM
cis-1,3-Dichloropropene	< 0.15	0.15	ppbV	1	8/9/2022 8:00:00 AM
Cyclohexane	1.6	0.15	ppbV	1	8/9/2022 8:00:00 AM
Dibromochloromethane	< 0.15	0.15	ppbV	1	8/9/2022 8:00:00 AM
Ethyl acetate	1.8	0.15	ppbV	1	8/9/2022 8:00:00 AM

Qualifiers:

- . Results reported are not blank corrected
- DL Detection Limit
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

C Sub-Contracted

Page 1 of 14

CLIENT: C & S Engineers, Inc.

Client Sample ID: SS-1 Lab Order: C2208008 **Tag Number:** 353,441

Collection Date: 8/1/2022 **Project:** 1117 West Fayette Street Phase II

Matrix: AIR C2208008-001A Lab ID:

Analyses	Result	DL	Qual U	J nits	DF	Date Analyzed
1UG/M3 BY METHOD TO15		то)-15			Analyst: RJP
Ethylbenzene	1.5	0.15	р	pbV	1	8/9/2022 8:00:00 AM
Freon 11	0.31	0.15	р	pbV	1	8/9/2022 8:00:00 AM
Freon 113	< 0.15	0.15	р	pbV	1	8/9/2022 8:00:00 AM
Freon 114	< 0.15	0.15	р	pbV	1	8/9/2022 8:00:00 AM
Freon 12	4.6	1.4	р	pbV	9	8/9/2022 5:44:00 PM
Heptane	3.0	1.4	р	pbV	9	8/9/2022 5:44:00 PM
Hexachloro-1,3-butadiene	< 0.15	0.15	р	pbV	1	8/9/2022 8:00:00 AM
Hexane	26	14	р	pbV	90	8/9/2022 6:28:00 PM
Isopropyl alcohol	23	14	р	pbV	90	8/9/2022 6:28:00 PM
m&p-Xylene	2.8	0.30	р	pbV	1	8/9/2022 8:00:00 AM
Methyl Butyl Ketone	< 0.30	0.30	р	pbV	1	8/9/2022 8:00:00 AM
Methyl Ethyl Ketone	5.7	2.7	р	pbV	9	8/9/2022 5:44:00 PM
Methyl Isobutyl Ketone	1.0	0.30	р	pbV	1	8/9/2022 8:00:00 AM
Methyl tert-butyl ether	4.2	1.4	р	pbV	9	8/9/2022 5:44:00 PM
Methylene chloride	1.3	0.15	р	pbV	1	8/9/2022 8:00:00 AM
o-Xylene	1.3	0.15	р	pbV	1	8/9/2022 8:00:00 AM
Propylene	< 0.15	0.15	р	pbV	1	8/9/2022 8:00:00 AM
Styrene	1.8	0.15	р	pbV	1	8/9/2022 8:00:00 AM
Tetrachloroethylene	0.45	0.15	р	pbV	1	8/9/2022 8:00:00 AM
Tetrahydrofuran	< 0.15	0.15	р	pbV	1	8/9/2022 8:00:00 AM
Toluene	3.7	1.4	р	pbV	9	8/9/2022 5:44:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15	p	pbV	1	8/9/2022 8:00:00 AM
trans-1,3-Dichloropropene	< 0.15	0.15	p	pbV	1	8/9/2022 8:00:00 AM
Trichloroethene	0.12	0.15	J p	pbV	1	8/9/2022 8:00:00 AM
Vinyl acetate	< 0.15	0.15	p	pbV	1	8/9/2022 8:00:00 AM
Vinyl Bromide	< 0.15	0.15	p	pbV	1	8/9/2022 8:00:00 AM
Vinyl chloride	< 0.15	0.15	p	pbV	1	8/9/2022 8:00:00 AM
Surr: Bromofluorobenzene	103	46.7-129	9	6REC	1	8/9/2022 8:00:00 AM

Qualifiers:

Results reported are not blank corrected

DL Detection Limit

Н Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

Spike Recovery outside accepted recovery limits

В Analyte detected in the associated Method Blank

Date: 10-Aug-22

Е Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Sub-Contracted

Page 2 of 14

CLIENT: C & S Engineers, Inc.

Lab Order: C2208008

Project: 1117 West Fayette Street Phase II

Lab ID: C2208008-002A

Date: 10-Aug-22

Client Sample ID: IA-1

Tag Number: 207,391

Collection Date: 8/1/2022

Matrix: AIR

Analyses	Result	DL	Qual	Units	DF	Date Analyzed
FIELD PARAMETERS	FLD				Analyst:	
Lab Vacuum In	-1			"Hg		8/2/2022
Lab Vacuum Out	-30			"Hg		8/2/2022
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE		TO-15				Analyst: RJP
1,1,1-Trichloroethane	0.29	0.15		ppbV	1	8/9/2022 4:30:00 AM
1,1,2,2-Tetrachloroethane	< 0.15	0.15		ppbV	1	8/9/2022 4:30:00 AM
1,1,2-Trichloroethane	< 0.15	0.15		ppbV	1	8/9/2022 4:30:00 AM
1,1-Dichloroethane	< 0.15	0.15		ppbV	1	8/9/2022 4:30:00 AM
1,1-Dichloroethene	< 0.040	0.040		ppbV	1	8/9/2022 4:30:00 AM
1,2,4-Trichlorobenzene	< 0.15	0.15		ppbV	1	8/9/2022 4:30:00 AM
1,2,4-Trimethylbenzene	0.16	0.15		ppbV	1	8/9/2022 4:30:00 AM
1,2-Dibromoethane	< 0.15	0.15		ppbV	1	8/9/2022 4:30:00 AM
1,2-Dichlorobenzene	< 0.15	0.15		ppbV	1	8/9/2022 4:30:00 AM
1,2-Dichloroethane	< 0.15	0.15		ppbV	1	8/9/2022 4:30:00 AM
1,2-Dichloropropane	< 0.15	0.15		ppbV	1	8/9/2022 4:30:00 AM
1,3,5-Trimethylbenzene	< 0.15	0.15		ppbV	1	8/9/2022 4:30:00 AM
1,3-butadiene	< 0.15	0.15		ppbV	1	8/9/2022 4:30:00 AM
1,3-Dichlorobenzene	< 0.15	0.15		ppbV	1	8/9/2022 4:30:00 AM
1,4-Dichlorobenzene	< 0.15	0.15		ppbV	1	8/9/2022 4:30:00 AM
1,4-Dioxane	< 0.30	0.30		ppbV	1	8/9/2022 4:30:00 AM
2,2,4-trimethylpentane	< 0.15	0.15		ppbV	1	8/9/2022 4:30:00 AM
4-ethyltoluene	< 0.15	0.15		ppbV	1	8/9/2022 4:30:00 AM
Acetone	8.7	3.0		ppbV	10	8/9/2022 2:50:00 PM
Allyl chloride	< 0.15	0.15		ppbV	1	8/9/2022 4:30:00 AM
Benzene	0.11	0.15	J	ppbV	1	8/9/2022 4:30:00 AM
Benzyl chloride	< 0.15	0.15		ppbV	1	8/9/2022 4:30:00 AM
Bromodichloromethane	< 0.15	0.15		ppbV	1	8/9/2022 4:30:00 AM
Bromoform	< 0.15	0.15		ppbV	1	8/9/2022 4:30:00 AM
Bromomethane	< 0.15	0.15		ppbV	1	8/9/2022 4:30:00 AM
Carbon disulfide	0.14	0.15	J	ppbV	1	8/9/2022 4:30:00 AM
Carbon tetrachloride	0.090	0.030		ppbV	1	8/9/2022 4:30:00 AM
Chlorobenzene	< 0.15	0.15		ppbV	1	8/9/2022 4:30:00 AM
Chloroethane	< 0.15	0.15		ppbV	1	8/9/2022 4:30:00 AM
Chloroform	< 0.15	0.15		ppbV	1	8/9/2022 4:30:00 AM
Chloromethane	< 0.15	0.15		ppbV	1	8/9/2022 4:30:00 AM
cis-1,2-Dichloroethene	< 0.040	0.040		ppbV	1	8/9/2022 4:30:00 AM
cis-1,3-Dichloropropene	< 0.15	0.15		ppbV	1	8/9/2022 4:30:00 AM
Cyclohexane	0.11	0.15	J	ppbV	1	8/9/2022 4:30:00 AM
Dibromochloromethane	< 0.15	0.15	•	ppbV	1	8/9/2022 4:30:00 AM
Ethyl acetate	1.4	0.15		ppbV	1	8/9/2022 4:30:00 AM

Qualifiers:

SC Sub-Contracted

Page 3 of 14

[.] Results reported are not blank corrected

DL Detection Limit

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

CLIENT: C & S Engineers, Inc.

Client Sample ID: IA-1

Lab Order: C2208008 **Tag Number: 207,391 Collection Date:** 8/1/2022 **Project:** 1117 West Fayette Street Phase II

Matrix: AIR C2208008-002A Lab ID:

Analyses	Result	DL	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE		TO-15				Analyst: RJF
Ethylbenzene	< 0.15	0.15		ppbV	1	8/9/2022 4:30:00 AM
Freon 11	0.35	0.15		ppbV	1	8/9/2022 4:30:00 AM
Freon 113	< 0.15	0.15		ppbV	1	8/9/2022 4:30:00 AM
Freon 114	< 0.15	0.15		ppbV	1	8/9/2022 4:30:00 AM
Freon 12	9.3	1.5		ppbV	10	8/9/2022 2:50:00 PM
Heptane	0.23	0.15		ppbV	1	8/9/2022 4:30:00 AM
Hexachloro-1,3-butadiene	< 0.15	0.15		ppbV	1	8/9/2022 4:30:00 AM
Hexane	0.14	0.15	J	ppbV	1	8/9/2022 4:30:00 AM
Isopropyl alcohol	1.3	0.15		ppbV	1	8/9/2022 4:30:00 AM
m&p-Xylene	0.31	0.30		ppbV	1	8/9/2022 4:30:00 AM
Methyl Butyl Ketone	< 0.30	0.30		ppbV	1	8/9/2022 4:30:00 AM
Methyl Ethyl Ketone	0.85	0.30		ppbV	1	8/9/2022 4:30:00 AM
Methyl Isobutyl Ketone	< 0.30	0.30		ppbV	1	8/9/2022 4:30:00 AM
Methyl tert-butyl ether	< 0.15	0.15		ppbV	1	8/9/2022 4:30:00 AM
Methylene chloride	0.78	0.15		ppbV	1	8/9/2022 4:30:00 AM
o-Xylene	0.13	0.15	J	ppbV	1	8/9/2022 4:30:00 AM
Propylene	< 0.15	0.15		ppbV	1	8/9/2022 4:30:00 AM
Styrene	< 0.15	0.15		ppbV	1	8/9/2022 4:30:00 AM
Tetrachloroethylene	< 0.15	0.15		ppbV	1	8/9/2022 4:30:00 AM
Tetrahydrofuran	< 0.15	0.15		ppbV	1	8/9/2022 4:30:00 AM
Toluene	0.71	0.15		ppbV	1	8/9/2022 4:30:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15		ppbV	1	8/9/2022 4:30:00 AM
trans-1,3-Dichloropropene	< 0.15	0.15		ppbV	1	8/9/2022 4:30:00 AM
Trichloroethene	0.070	0.030		ppbV	1	8/9/2022 4:30:00 AM
Vinyl acetate	< 0.15	0.15		ppbV	1	8/9/2022 4:30:00 AM
Vinyl Bromide	< 0.15	0.15		ppbV	1	8/9/2022 4:30:00 AM
Vinyl chloride	< 0.040	0.040		ppbV	1	8/9/2022 4:30:00 AM
Surr: Bromofluorobenzene	102	47-124		%REC	1	8/9/2022 4:30:00 AM

Qualifiers:

Results reported are not blank corrected

DL Detection Limit

Н Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

Spike Recovery outside accepted recovery limits

В Analyte detected in the associated Method Blank

Date: 10-Aug-22

Е Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Sub-Contracted

Page 4 of 14

CLIENT: C & S Engineers, Inc.

Lab Order: C2208008

Project: 1117 West Fayette Street Phase II

Lab ID: C2208008-003A

Date: 10-Aug-22

Client Sample ID: SS-2

Tag Number: 171,449

Collection Date: 8/1/2022

Matrix: AIR

Analyses	Result	DL Qua	l Units	DF	Date Analyzed
FIELD PARAMETERS		FLD		Analyst:	
Lab Vacuum In	-1		"Hg		8/2/2022
Lab Vacuum Out	-30		"Hg		8/2/2022
1UG/M3 BY METHOD TO15		TO-15		Analyst: RJP	
1,1,1-Trichloroethane	0.13	0.15 J	ppbV	1	8/9/2022 1:18:00 PM
1,1,2,2-Tetrachloroethane	< 0.15	0.15	ppbV	1	8/9/2022 1:18:00 PM
1,1,2-Trichloroethane	< 0.15	0.15	ppbV	1	8/9/2022 1:18:00 PM
1,1-Dichloroethane	< 0.15	0.15	ppbV	1	8/9/2022 1:18:00 PM
1,1-Dichloroethene	< 0.15	0.15	ppbV	1	8/9/2022 1:18:00 PM
1,2,4-Trichlorobenzene	< 0.15	0.15	ppbV	1	8/9/2022 1:18:00 PM
1,2,4-Trimethylbenzene	1.4	0.15	ppbV	1	8/9/2022 1:18:00 PM
1,2-Dibromoethane	< 0.15	0.15	ppbV	1	8/9/2022 1:18:00 PM
1,2-Dichlorobenzene	< 0.15	0.15	ppbV	1	8/9/2022 1:18:00 PM
1,2-Dichloroethane	< 0.15	0.15	ppbV	1	8/9/2022 1:18:00 PM
1,2-Dichloropropane	< 0.15	0.15	ppbV	1	8/9/2022 1:18:00 PM
1,3,5-Trimethylbenzene	0.76	0.15	ppbV	1	8/9/2022 1:18:00 PM
1,3-butadiene	< 0.15	0.15	ppbV	1	8/9/2022 1:18:00 PM
1,3-Dichlorobenzene	< 0.15	0.15	ppbV	1	8/9/2022 1:18:00 PM
1,4-Dichlorobenzene	< 0.15	0.15	ppbV	1	8/9/2022 1:18:00 PM
1,4-Dioxane	< 0.30	0.30	ppbV	1	8/9/2022 1:18:00 PM
2,2,4-trimethylpentane	0.16	0.15	ppbV	1	8/9/2022 1:18:00 PM
4-ethyltoluene	0.61	0.15	ppbV	1	8/9/2022 1:18:00 PM
Acetone	100	27	ppbV	90	8/9/2022 7:56:00 PM
Allyl chloride	< 0.15	0.15	ppbV	1	8/9/2022 1:18:00 PM
Benzene	0.93	0.15	ppbV	1	8/9/2022 1:18:00 PM
Benzyl chloride	< 0.15	0.15	ppbV	1	8/9/2022 1:18:00 PM
Bromodichloromethane	< 0.15	0.15	ppbV	1	8/9/2022 1:18:00 PM
Bromoform	< 0.15	0.15	ppbV	1	8/9/2022 1:18:00 PM
Bromomethane	< 0.15	0.15	ppbV	1	8/9/2022 1:18:00 PM
Carbon disulfide	8.6	1.4	ppbV	9	8/9/2022 7:13:00 PM
Carbon tetrachloride	0.12	0.15 J	ppbV	1	8/9/2022 1:18:00 PM
Chlorobenzene	< 0.15	0.15	ppbV	1	8/9/2022 1:18:00 PM
Chloroethane	< 0.15	0.15	ppbV	1	8/9/2022 1:18:00 PM
Chloroform	0.18	0.15	ppbV	1	8/9/2022 1:18:00 PM
Chloromethane	< 0.15	0.15	ppbV	1	8/9/2022 1:18:00 PM
cis-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	8/9/2022 1:18:00 PM
cis-1,3-Dichloropropene	< 0.15	0.15	ppbV	1	8/9/2022 1:18:00 PM
Cyclohexane	1.8	0.15	ppbV	1	8/9/2022 1:18:00 PM
Dibromochloromethane	< 0.15	0.15	ppbV	1	8/9/2022 1:18:00 PM
Ethyl acetate	1.8	0.15	ppbV	1	8/9/2022 1:18:00 PM

Qualifiers:

SC Sub-Contracted

Page 5 of 14

[.] Results reported are not blank corrected

DL Detection Limit

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

CLIENT: C & S Engineers, Inc. Client Sample ID: SS-2

Lab Order: C2208008

Lab ID:

Tag Number: 171,449 **Collection Date:** 8/1/2022

Project: 1117 West Fayette Street Phase II C2208008-003A

Matrix: AIR

Date: 10-Aug-22

Analyses	Result	DL	Qual Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		то	-15		Analyst: RJP
Ethylbenzene	1.6	0.15	ppbV	1	8/9/2022 1:18:00 PM
Freon 11	0.32	0.15	ppbV	1	8/9/2022 1:18:00 PM
Freon 113	< 0.15	0.15	ppbV	1	8/9/2022 1:18:00 PM
Freon 114	< 0.15	0.15	ppbV	1	8/9/2022 1:18:00 PM
Freon 12	0.58	0.15	ppbV	1	8/9/2022 1:18:00 PM
Heptane	3.5	1.4	ppbV	9	8/9/2022 7:13:00 PM
Hexachloro-1,3-butadiene	< 0.15	0.15	ppbV	1	8/9/2022 1:18:00 PM
Hexane	14	1.4	ppbV	9	8/9/2022 7:13:00 PM
Isopropyl alcohol	15	1.4	ppbV	9	8/9/2022 7:13:00 PM
m&p-Xylene	3.0	0.30	ppbV	1	8/9/2022 1:18:00 PM
Methyl Butyl Ketone	< 0.30	0.30	ppbV	1	8/9/2022 1:18:00 PM
Methyl Ethyl Ketone	3.9	2.7	ppbV	9	8/9/2022 7:13:00 PM
Methyl Isobutyl Ketone	1.0	0.30	ppbV	1	8/9/2022 1:18:00 PM
Methyl tert-butyl ether	2.2	1.4	ppbV	9	8/9/2022 7:13:00 PM
Methylene chloride	1.1	0.15	ppbV	1	8/9/2022 1:18:00 PM
o-Xylene	1.4	0.15	ppbV	1	8/9/2022 1:18:00 PM
Propylene	< 0.15	0.15	ppbV	1	8/9/2022 1:18:00 PM
Styrene	2.0	0.15	ppbV	1	8/9/2022 1:18:00 PM
Tetrachloroethylene	< 0.15	0.15	ppbV	1	8/9/2022 1:18:00 PM
Tetrahydrofuran	< 0.15	0.15	ppbV	1	8/9/2022 1:18:00 PM
Toluene	3.2	1.4	ppbV	9	8/9/2022 7:13:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	8/9/2022 1:18:00 PM
trans-1,3-Dichloropropene	< 0.15	0.15	ppbV	1	8/9/2022 1:18:00 PM
Trichloroethene	< 0.15	0.15	ppbV	1	8/9/2022 1:18:00 PM
Vinyl acetate	< 0.15	0.15	ppbV	1	8/9/2022 1:18:00 PM
Vinyl Bromide	< 0.15	0.15	ppbV	1	8/9/2022 1:18:00 PM
Vinyl chloride	< 0.15	0.15	ppbV	1	8/9/2022 1:18:00 PM
Surr: Bromofluorobenzene	107	46.7-129	%REC	1	8/9/2022 1:18:00 PM

Qualifiers:

- Results reported are not blank corrected
- DL Detection Limit
- Н Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Е Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection
- Sub-Contracted

Page 6 of 14

CLIENT: C & S Engineers, Inc.

C2208008

Project: 1117 West Fayette Street Phase II

Lab ID: C2208008-004A

Lab Order:

Date: 10-Aug-22

Client Sample ID: IA-2

Tag Number: 1174,398

Collection Date: 8/1/2022

Matrix: AIR

Analyses	Result	DL (Qual	Units	DF	Date Analyzed
FIELD PARAMETERS		FLI)			Analyst:
Lab Vacuum In	-1		1	"Hg		8/2/2022
Lab Vacuum Out	-30		,	"Hg		8/2/2022
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE		TO-15			Analyst: RJP	
1,1,1-Trichloroethane	< 0.15	0.15	1	ppbV	1	8/9/2022 5:15:00 AM
1,1,2,2-Tetrachloroethane	< 0.15	0.15	1	ppbV	1	8/9/2022 5:15:00 AM
1,1,2-Trichloroethane	< 0.15	0.15	1	ppbV	1	8/9/2022 5:15:00 AM
1,1-Dichloroethane	< 0.15	0.15	1	ppbV	1	8/9/2022 5:15:00 AM
1,1-Dichloroethene	< 0.040	0.040	1	ppbV	1	8/9/2022 5:15:00 AM
1,2,4-Trichlorobenzene	< 0.15	0.15	1	ppbV	1	8/9/2022 5:15:00 AM
1,2,4-Trimethylbenzene	0.72	0.15	1	ppbV	1	8/9/2022 5:15:00 AM
1,2-Dibromoethane	< 0.15	0.15	1	ppbV	1	8/9/2022 5:15:00 AM
1,2-Dichlorobenzene	< 0.15	0.15	1	ppbV	1	8/9/2022 5:15:00 AM
1,2-Dichloroethane	< 0.15	0.15	1	ppbV	1	8/9/2022 5:15:00 AM
1,2-Dichloropropane	< 0.15	0.15		ppbV	1	8/9/2022 5:15:00 AM
1,3,5-Trimethylbenzene	0.33	0.15		ppbV	1	8/9/2022 5:15:00 AM
1,3-butadiene	< 0.15	0.15	1	ppbV	1	8/9/2022 5:15:00 AM
1,3-Dichlorobenzene	< 0.15	0.15		ppbV	1	8/9/2022 5:15:00 AM
1,4-Dichlorobenzene	< 0.15	0.15		ppbV	1	8/9/2022 5:15:00 AM
1,4-Dioxane	< 0.30	0.30		ppbV	1	8/9/2022 5:15:00 AM
2,2,4-trimethylpentane	0.80	0.15		ppbV	1	8/9/2022 5:15:00 AM
4-ethyltoluene	0.27	0.15		ppbV	1	8/9/2022 5:15:00 AM
Acetone	16	3.0	1	ppbV	10	8/9/2022 3:33:00 PM
Allyl chloride	< 0.15	0.15		ppbV	1	8/9/2022 5:15:00 AM
Benzene	1.2	0.15	1	ppbV	1	8/9/2022 5:15:00 AM
Benzyl chloride	< 0.15	0.15	1	ppbV	1	8/9/2022 5:15:00 AM
Bromodichloromethane	< 0.15	0.15		ppbV	1	8/9/2022 5:15:00 AM
Bromoform	< 0.15	0.15		ppbV	1	8/9/2022 5:15:00 AM
Bromomethane	< 0.15	0.15		ppbV	1	8/9/2022 5:15:00 AM
Carbon disulfide	0.14	0.15	J	ppbV	1	8/9/2022 5:15:00 AM
Carbon tetrachloride	0.090	0.030		ppbV	1	8/9/2022 5:15:00 AM
Chlorobenzene	< 0.15	0.15		ppbV	1	8/9/2022 5:15:00 AM
Chloroethane	< 0.15	0.15		ppbV	1	8/9/2022 5:15:00 AM
Chloroform	< 0.15	0.15		ppbV	1	8/9/2022 5:15:00 AM
Chloromethane	< 0.15	0.15		ppbV	1	8/9/2022 5:15:00 AM
cis-1,2-Dichloroethene	< 0.040	0.040		ppbV	1	8/9/2022 5:15:00 AM
cis-1,3-Dichloropropene	< 0.15	0.15		ppbV	1	8/9/2022 5:15:00 AM
Cyclohexane	1.7	0.15		ppbV	1	8/9/2022 5:15:00 AM
Dibromochloromethane	< 0.15	0.15		ppbV	1	8/9/2022 5:15:00 AM
Ethyl acetate	0.38	0.15		ppbV	1	8/9/2022 5:15:00 AM

Qualifiers:

- . Results reported are not blank corrected
- DL Detection Limit
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

SC Sub-Contracted

Page 7 of 14

CLIENT: C & S Engineers, Inc.

Inc. Client Sample ID: IA-2

Lab Order: C2208008

Project: 1117 West Fayette Street Phase II

Tag Number: 1174,398 **Collection Date:** 8/1/2022

Lab ID: C2208008-004A

Matrix: AIR

Date: 10-Aug-22

Analyses	Result	DL	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-	-DCE-1,1DCE	тс)-15			Analyst: RJP
Ethylbenzene	0.61	0.15		ppbV	1	8/9/2022 5:15:00 AM
Freon 11	0.31	0.15		ppbV	1	8/9/2022 5:15:00 AM
Freon 113	< 0.15	0.15		ppbV	1	8/9/2022 5:15:00 AM
Freon 114	< 0.15	0.15		ppbV	1	8/9/2022 5:15:00 AM
Freon 12	0.61	0.15		ppbV	1	8/9/2022 5:15:00 AM
Heptane	1.3	0.15		ppbV	1	8/9/2022 5:15:00 AM
Hexachloro-1,3-butadiene	< 0.15	0.15		ppbV	1	8/9/2022 5:15:00 AM
Hexane	4.6	1.5		ppbV	10	8/9/2022 3:33:00 PM
Isopropyl alcohol	4.9	1.5		ppbV	10	8/9/2022 3:33:00 PM
m&p-Xylene	2.3	0.30		ppbV	1	8/9/2022 5:15:00 AM
Methyl Butyl Ketone	0.16	0.30	J	ppbV	1	8/9/2022 5:15:00 AM
Methyl Ethyl Ketone	2.6	3.0	J	ppbV	10	8/9/2022 3:33:00 PM
Methyl Isobutyl Ketone	0.17	0.30	J	ppbV	1	8/9/2022 5:15:00 AM
Methyl tert-butyl ether	< 0.15	0.15		ppbV	1	8/9/2022 5:15:00 AM
Methylene chloride	0.72	0.15		ppbV	1	8/9/2022 5:15:00 AM
o-Xylene	0.82	0.15		ppbV	1	8/9/2022 5:15:00 AM
Propylene	< 0.15	0.15		ppbV	1	8/9/2022 5:15:00 AM
Styrene	0.17	0.15		ppbV	1	8/9/2022 5:15:00 AM
Tetrachloroethylene	< 0.15	0.15		ppbV	1	8/9/2022 5:15:00 AM
Tetrahydrofuran	4.2	1.5		ppbV	10	8/9/2022 3:33:00 PM
Toluene	4.7	1.5		ppbV	10	8/9/2022 3:33:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15		ppbV	1	8/9/2022 5:15:00 AM
trans-1,3-Dichloropropene	< 0.15	0.15		ppbV	1	8/9/2022 5:15:00 AM
Trichloroethene	0.090	0.030		ppbV	1	8/9/2022 5:15:00 AM
Vinyl acetate	< 0.15	0.15		ppbV	1	8/9/2022 5:15:00 AM
Vinyl Bromide	< 0.15	0.15		ppbV	1	8/9/2022 5:15:00 AM
Vinyl chloride	< 0.040	0.040		ppbV	1	8/9/2022 5:15:00 AM
Surr: Bromofluorobenzene	100	47-124		%REC	1	8/9/2022 5:15:00 AM

Qualifiers:

. Results reported are not blank corrected

DL Detection Limit

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

SC Sub-Contracted

Page 8 of 14

CLIENT: C & S Engineers, Inc.

C2208008

Project: 1117 West Fayette Street Phase II

Lab ID: C2208008-005A

Lab Order:

Date: 10-Aug-22

Client Sample ID: SS-3

Tag Number: 164,438

Collection Date: 8/1/2022

Matrix: AIR

Analyses	Result	DL Qu	al Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-3		"Hg		8/2/2022
Lab Vacuum Out	-30		"Hg		8/2/2022
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.15	0.15	ppbV	1	8/9/2022 2:03:00 PM
1,1,2,2-Tetrachloroethane	< 0.15	0.15	ppbV	1	8/9/2022 2:03:00 PM
1,1,2-Trichloroethane	< 0.15	0.15	ppbV	1	8/9/2022 2:03:00 PM
1,1-Dichloroethane	< 0.15	0.15	ppbV	1	8/9/2022 2:03:00 PM
1,1-Dichloroethene	< 0.15	0.15	ppbV	1	8/9/2022 2:03:00 PM
1,2,4-Trichlorobenzene	< 0.15	0.15	ppbV	1	8/9/2022 2:03:00 PM
1,2,4-Trimethylbenzene	1.5	0.15	ppbV	1	8/9/2022 2:03:00 PM
1,2-Dibromoethane	< 0.15	0.15	ppbV	1	8/9/2022 2:03:00 PM
1,2-Dichlorobenzene	< 0.15	0.15	ppbV	1	8/9/2022 2:03:00 PM
1,2-Dichloroethane	< 0.15	0.15	ppbV	1	8/9/2022 2:03:00 PM
1,2-Dichloropropane	< 0.15	0.15	ppbV	1	8/9/2022 2:03:00 PM
1,3,5-Trimethylbenzene	0.73	0.15	ppbV	1	8/9/2022 2:03:00 PM
1,3-butadiene	< 0.15	0.15	ppbV	1	8/9/2022 2:03:00 PM
1,3-Dichlorobenzene	< 0.15	0.15	ppbV	1	8/9/2022 2:03:00 PM
1,4-Dichlorobenzene	< 0.15	0.15	ppbV	1	8/9/2022 2:03:00 PM
1,4-Dioxane	< 0.30	0.30	ppbV	1	8/9/2022 2:03:00 PM
2,2,4-trimethylpentane	0.16	0.15	ppbV	1	8/9/2022 2:03:00 PM
4-ethyltoluene	0.58	0.15	ppbV	1	8/9/2022 2:03:00 PM
Acetone	130	27	ppbV	90	8/9/2022 9:24:00 PM
Allyl chloride	< 0.15	0.15	ppbV	1	8/9/2022 2:03:00 PM
Benzene	0.87	0.15	ppbV	1	8/9/2022 2:03:00 PM
Benzyl chloride	< 0.15	0.15	ppbV	1	8/9/2022 2:03:00 PM
Bromodichloromethane	< 0.15	0.15	ppbV	1	8/9/2022 2:03:00 PM
Bromoform	< 0.15	0.15	ppbV	1	8/9/2022 2:03:00 PM
Bromomethane	< 0.15	0.15	ppbV	1	8/9/2022 2:03:00 PM
Carbon disulfide	11	1.4	ppbV	9	8/9/2022 8:41:00 PM
Carbon tetrachloride	0.13	0.15 J	ppbV	1	8/9/2022 2:03:00 PM
Chlorobenzene	< 0.15	0.15	ppbV	1	8/9/2022 2:03:00 PM
Chloroethane	< 0.15	0.15	ppbV	1	8/9/2022 2:03:00 PM
Chloroform	0.21	0.15	ppbV	1	8/9/2022 2:03:00 PM
Chloromethane	0.44	0.15	ppbV	1	8/9/2022 2:03:00 PM
cis-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	8/9/2022 2:03:00 PM
cis-1,3-Dichloropropene	< 0.15	0.15	ppbV	1	8/9/2022 2:03:00 PM
Cyclohexane	1.7	0.15	ppbV	1	8/9/2022 2:03:00 PM
Dibromochloromethane	< 0.15	0.15	ppbV	1	8/9/2022 2:03:00 PM
Ethyl acetate	1.8	0.15	ppbV	1	8/9/2022 2:03:00 PM

Qualifiers:

Sub-Contracted Pag

Page 9 of 14

[.] Results reported are not blank corrected

DL Detection Limit

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

CLIENT: C & S Engineers, Inc.

Client Sample ID: SS-3

Lab Order: C2208008

Lab ID:

Tag Number: 164,438 **Collection Date:** 8/1/2022

Project: 1117 West Fayette Street Phase II

C2208008-005A

Matrix: AIR

Date: 10-Aug-22

Analyses Result DL **Oual Units** DF **Date Analyzed 1UG/M3 BY METHOD TO15 TO-15** Analyst: RJP Ethylbenzene 1.7 0.15 ppbV 1 8/9/2022 2:03:00 PM 0.42 Freon 11 0.15 ppbV 1 8/9/2022 2:03:00 PM Freon 113 < 0.15 0.15 ppbV 1 8/9/2022 2:03:00 PM Freon 114 < 0.15 0.15 ppbV 1 8/9/2022 2:03:00 PM Freon 12 0.56 0.15 ppbV 1 8/9/2022 2:03:00 PM Heptane 3.8 1.4 ppbV 9 8/9/2022 8:41:00 PM Hexachloro-1,3-butadiene < 0.15 0.15 ppbV 1 8/9/2022 2:03:00 PM 17 9 8/9/2022 8:41:00 PM Hexane 1.4 ppbV 20 90 Isopropyl alcohol 14 ppbV 8/9/2022 9:24:00 PM m&p-Xylene 3.0 0.30 ppbV 1 8/9/2022 2:03:00 PM Methyl Butyl Ketone < 0.30 0.30 ppbV 1 8/9/2022 2:03:00 PM Methyl Ethyl Ketone 5.0 2.7 ppbV 9 8/9/2022 8:41:00 PM Methyl Isobutyl Ketone 1.2 0.30 ppbV 1 8/9/2022 2:03:00 PM Methyl tert-butyl ether 2.6 1.4 9 8/9/2022 8:41:00 PM ppbV Methylene chloride 0.95 0.15 ppbV 1 8/9/2022 2:03:00 PM 0.15 o-Xylene 1.4 ppbV 1 8/9/2022 2:03:00 PM Propylene < 0.15 0.15 ppbV 1 8/9/2022 2:03:00 PM Styrene 0.15 1 2.0 ppbV 8/9/2022 2:03:00 PM Tetrachloroethylene < 0.15 0.15 8/9/2022 2:03:00 PM ppbV 1 Tetrahydrofuran 0.15 < 0.15 ppbV 1 8/9/2022 2:03:00 PM Toluene 4.2 1.4 ppbV 9 8/9/2022 8:41:00 PM < 0.15 trans-1,2-Dichloroethene 0.15 ppbV 1 8/9/2022 2:03:00 PM trans-1,3-Dichloropropene < 0.15 0.15 ppbV 1 8/9/2022 2:03:00 PM Trichloroethene < 0.15 0.15 ppbV 1 8/9/2022 2:03:00 PM Vinyl acetate 8/9/2022 2:03:00 PM < 0.15 0.15 ppbV 1 Vinyl Bromide < 0.15 0.15 ppbV 1 8/9/2022 2:03:00 PM

0.15

46.7-129

ppbV

%REC

Qualifiers:

Vinvl chloride

Surr: Bromofluorobenzene

. Results reported are not blank corrected

DL Detection Limit

H Holding times for preparation or analysis exceeded

< 0.15

105

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

E Estimated Value above quantitation range

1

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

SC Sub-Contracted

Page 10 of 14

Centek/SanAir Labs

8/9/2022 2:03:00 PM

8/9/2022 2:03:00 PM

CLIENT: C & S Engineers, Inc.

C2208008

Project: 1117 West Fayette Street Phase II

Lab ID: C2208008-006A

Lab Order:

Date: 10-Aug-22

Client Sample ID: IA-3

Tag Number: 358,433

Collection Date: 8/1/2022

Matrix: AIR

Analyses	Result	DL (Qual	Units	DF	Date Analyzed
FIELD PARAMETERS		FLI	D			Analyst:
Lab Vacuum In	-1			"Hg		8/2/2022
Lab Vacuum Out	-30			"Hg		8/2/2022
1UG/M3 W/ 0.2UG/M3 CT-TCE-V0	1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.15	0.15		ppbV	1	8/9/2022 6:00:00 AM
1,1,2,2-Tetrachloroethane	< 0.15	0.15		ppbV	1	8/9/2022 6:00:00 AM
1,1,2-Trichloroethane	< 0.15	0.15		ppbV	1	8/9/2022 6:00:00 AM
1,1-Dichloroethane	< 0.15	0.15		ppbV	1	8/9/2022 6:00:00 AM
1,1-Dichloroethene	< 0.040	0.040		ppbV	1	8/9/2022 6:00:00 AM
1,2,4-Trichlorobenzene	< 0.15	0.15		ppbV	1	8/9/2022 6:00:00 AM
1,2,4-Trimethylbenzene	0.84	0.15		ppbV	1	8/9/2022 6:00:00 AM
1,2-Dibromoethane	< 0.15	0.15		ppbV	1	8/9/2022 6:00:00 AM
1,2-Dichlorobenzene	< 0.15	0.15		ppbV	1	8/9/2022 6:00:00 AM
1,2-Dichloroethane	< 0.15	0.15		ppbV	1	8/9/2022 6:00:00 AM
1,2-Dichloropropane	< 0.15	0.15		ppbV	1	8/9/2022 6:00:00 AM
1,3,5-Trimethylbenzene	0.36	0.15		ppbV	1	8/9/2022 6:00:00 AM
1,3-butadiene	< 0.15	0.15		ppbV	1	8/9/2022 6:00:00 AM
1,3-Dichlorobenzene	< 0.15	0.15		ppbV	1	8/9/2022 6:00:00 AM
1,4-Dichlorobenzene	< 0.15	0.15		ppbV	1	8/9/2022 6:00:00 AM
1,4-Dioxane	< 0.30	0.30		ppbV	1	8/9/2022 6:00:00 AM
2,2,4-trimethylpentane	0.84	0.15		ppbV	1	8/9/2022 6:00:00 AM
4-ethyltoluene	0.33	0.15		ppbV	1	8/9/2022 6:00:00 AM
Acetone	19	3.0		ppbV	10	8/9/2022 4:17:00 PM
Allyl chloride	< 0.15	0.15		ppbV	1	8/9/2022 6:00:00 AM
Benzene	1.4	0.15		ppbV	1	8/9/2022 6:00:00 AM
Benzyl chloride	< 0.15	0.15		ppbV	1	8/9/2022 6:00:00 AM
Bromodichloromethane	< 0.15	0.15		ppbV	1	8/9/2022 6:00:00 AM
Bromoform	< 0.15	0.15		ppbV	1	8/9/2022 6:00:00 AM
Bromomethane	< 0.15	0.15		ppbV	1	8/9/2022 6:00:00 AM
Carbon disulfide	0.14	0.15		ppbV	1	8/9/2022 6:00:00 AM
Carbon tetrachloride	0.090	0.030		ppbV	1	8/9/2022 6:00:00 AM
Chlorobenzene	< 0.15	0.15		ppbV	1	8/9/2022 6:00:00 AM
Chloroethane	< 0.15	0.15		ppbV	1	8/9/2022 6:00:00 AM
Chloroform	< 0.15	0.15		ppbV	1	8/9/2022 6:00:00 AM
Chloromethane	< 0.15	0.15		ppbV	1	8/9/2022 6:00:00 AM
cis-1,2-Dichloroethene	< 0.040	0.040		ppbV	1	8/9/2022 6:00:00 AM
cis-1,3-Dichloropropene	< 0.15	0.15		ppbV	1	8/9/2022 6:00:00 AM
Cyclohexane	1.8	0.15		ppbV	1	8/9/2022 6:00:00 AM
Dibromochloromethane	< 0.15	0.15		ppbV	1	8/9/2022 6:00:00 AM
Ethyl acetate	0.57	0.15		ppbV	1	8/9/2022 6:00:00 AM

Qualifiers:

SC Sub-Contracted P

Page 11 of 14

[.] Results reported are not blank corrected

DL Detection Limit

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

CLIENT: C & S Engineers, Inc.

Lab Order: C2208008

Project: 1117 West Fayette Street Phase II

Lab ID: C2208008-006A

Date: 10-Aug-22

Client Sample ID: IA-3

Tag Number: 358,433 **Collection Date:** 8/1/2022

Matrix: AIR

Analyses	Result	DL	Qual	Units	DF	Date Analyzed
IUG/M3 W/ 0.2UG/M3 CT-TCE-VC-	DCE-1,1DCE	то)-15			Analyst: RJP
Ethylbenzene	0.75	0.15		ppbV	1	8/9/2022 6:00:00 AM
Freon 11	0.30	0.15		ppbV	1	8/9/2022 6:00:00 AM
Freon 113	< 0.15	0.15		ppbV	1	8/9/2022 6:00:00 AM
Freon 114	< 0.15	0.15		ppbV	1	8/9/2022 6:00:00 AM
Freon 12	0.57	0.15		ppbV	1	8/9/2022 6:00:00 AM
Heptane	1.5	0.15		ppbV	1	8/9/2022 6:00:00 AM
Hexachloro-1,3-butadiene	< 0.15	0.15		ppbV	1	8/9/2022 6:00:00 AM
Hexane	5.1	1.5		ppbV	10	8/9/2022 4:17:00 PM
Isopropyl alcohol	5.3	1.5		ppbV	10	8/9/2022 4:17:00 PM
m&p-Xylene	2.8	0.30		ppbV	1	8/9/2022 6:00:00 AM
Methyl Butyl Ketone	0.13	0.30	J	ppbV	1	8/9/2022 6:00:00 AM
Methyl Ethyl Ketone	3.2	3.0		ppbV	10	8/9/2022 4:17:00 PM
Methyl Isobutyl Ketone	0.19	0.30	J	ppbV	1	8/9/2022 6:00:00 AM
Methyl tert-butyl ether	< 0.15	0.15		ppbV	1	8/9/2022 6:00:00 AM
Methylene chloride	0.47	0.15		ppbV	1	8/9/2022 6:00:00 AM
o-Xylene	1.0	0.15		ppbV	1	8/9/2022 6:00:00 AM
Propylene	< 0.15	0.15		ppbV	1	8/9/2022 6:00:00 AM
Styrene	0.23	0.15		ppbV	1	8/9/2022 6:00:00 AM
Tetrachloroethylene	< 0.15	0.15		ppbV	1	8/9/2022 6:00:00 AM
Tetrahydrofuran	5.2	1.5		ppbV	10	8/9/2022 4:17:00 PM
Toluene	5.9	1.5		ppbV	10	8/9/2022 4:17:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15		ppbV	1	8/9/2022 6:00:00 AM
trans-1,3-Dichloropropene	< 0.15	0.15		ppbV	1	8/9/2022 6:00:00 AM
Trichloroethene	0.070	0.030		ppbV	1	8/9/2022 6:00:00 AM
Vinyl acetate	< 0.15	0.15		ppbV	1	8/9/2022 6:00:00 AM
Vinyl Bromide	< 0.15	0.15		ppbV	1	8/9/2022 6:00:00 AM
Vinyl chloride	< 0.040	0.040		ppbV	1	8/9/2022 6:00:00 AM
Surr: Bromofluorobenzene	102	47-124		%REC	1	8/9/2022 6:00:00 AM

Qualifiers:

. Results reported are not blank corrected

DL Detection Limit

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Sub-Contracted Page 12 of 14

Centek/SanAir Labs

Page 20 of 36

CLIENT: C & S Engineers, Inc. Client Sample ID: OA-1

Lab Order: C2208008 **Tag Number:** 475,396

Project: 1117 West Fayette Street Phase II **Collection Date:** 8/1/2022

Date: 10-Aug-22

C2208008-007A Lab ID:

Matrix: AIR

Analyses	Result	DL	Qual	Units	DF	Date Analyzed
FIELD PARAMETERS		FL	.D			Analyst:
Lab Vacuum In	-1			"Hg		8/2/2022
Lab Vacuum Out	-30			"Hg		8/2/2022
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	C-DCE-1,1DCE	то	-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.15	0.15		ppbV	1	8/9/2022 6:44:00 AM
1,1,2,2-Tetrachloroethane	< 0.15	0.15		ppbV	1	8/9/2022 6:44:00 AM
1,1,2-Trichloroethane	< 0.15	0.15		ppbV	1	8/9/2022 6:44:00 AM
1,1-Dichloroethane	< 0.15	0.15		ppbV	1	8/9/2022 6:44:00 AM
1,1-Dichloroethene	< 0.040	0.040		ppbV	1	8/9/2022 6:44:00 AM
1,2,4-Trichlorobenzene	< 0.15	0.15		ppbV	1	8/9/2022 6:44:00 AM
1,2,4-Trimethylbenzene	0.16	0.15		ppbV	1	8/9/2022 6:44:00 AM
1,2-Dibromoethane	< 0.15	0.15		ppbV	1	8/9/2022 6:44:00 AM
1,2-Dichlorobenzene	< 0.15	0.15		ppbV	1	8/9/2022 6:44:00 AM
1,2-Dichloroethane	< 0.15	0.15		ppbV	1	8/9/2022 6:44:00 AM
1,2-Dichloropropane	< 0.15	0.15		ppbV	1	8/9/2022 6:44:00 AM
1,3,5-Trimethylbenzene	< 0.15	0.15		ppbV	1	8/9/2022 6:44:00 AM
1,3-butadiene	< 0.15	0.15		ppbV	1	8/9/2022 6:44:00 AM
1,3-Dichlorobenzene	< 0.15	0.15		ppbV	1	8/9/2022 6:44:00 AM
1,4-Dichlorobenzene	< 0.15	0.15		ppbV	1	8/9/2022 6:44:00 AM
1,4-Dioxane	< 0.30	0.30		ppbV	1	8/9/2022 6:44:00 AM
2,2,4-trimethylpentane	< 0.15	0.15		ppbV	1	8/9/2022 6:44:00 AM
4-ethyltoluene	< 0.15	0.15		ppbV	1	8/9/2022 6:44:00 AM
Acetone	8.8	3.0		ppbV	10	8/9/2022 5:00:00 PM
Allyl chloride	< 0.15	0.15		ppbV	1	8/9/2022 6:44:00 AM
Benzene	0.12	0.15	J	ppbV	1	8/9/2022 6:44:00 AM
Benzyl chloride	< 0.15	0.15		ppbV	1	8/9/2022 6:44:00 AM
Bromodichloromethane	< 0.15	0.15		ppbV	1	8/9/2022 6:44:00 AM
Bromoform	< 0.15	0.15		ppbV	1	8/9/2022 6:44:00 AM
Bromomethane	< 0.15	0.15		ppbV	1	8/9/2022 6:44:00 AM
Carbon disulfide	0.11	0.15	J	ppbV	1	8/9/2022 6:44:00 AM
Carbon tetrachloride	0.090	0.030		ppbV	1	8/9/2022 6:44:00 AM
Chlorobenzene	< 0.15	0.15		ppbV	1	8/9/2022 6:44:00 AM
Chloroethane	< 0.15	0.15		ppbV	1	8/9/2022 6:44:00 AM
Chloroform	< 0.15	0.15		ppbV	1	8/9/2022 6:44:00 AM
Chloromethane	0.58	0.15		ppbV	1	8/9/2022 6:44:00 AM
cis-1,2-Dichloroethene	< 0.040	0.040		ppbV	1	8/9/2022 6:44:00 AM
cis-1,3-Dichloropropene	< 0.15	0.040		ppbV	1	8/9/2022 6:44:00 AM
Cyclohexane	0.14	0.15	J	ppbV	1	8/9/2022 6:44:00 AM
Dibromochloromethane	< 0.15	0.15	J	ppbV	1	8/9/2022 6:44:00 AM
Ethyl acetate	0.36	0.15		ppbV	1	8/9/2022 6:44:00 AM

Qualifiers:

Sub-Contracted

Centek/SanAir Labs

Page 21 of 36

Results reported are not blank corrected

DL Detection Limit

Н Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

Spike Recovery outside accepted recovery limits

В Analyte detected in the associated Method Blank

Е Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

CLIENT: C & S Engineers, Inc.

Client Sample ID: OA-1

Lab Order: C2208008

Tag Number: 475,396 **Collection Date:** 8/1/2022

Project: 1117 West Fayette Street Phase II

Matrix: AIR

Date: 10-Aug-22

Lab ID: C2208008-007A Matr

Analyses	Result	DL	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	тс)-15			Analyst: RJP
Ethylbenzene	< 0.15	0.15		ppbV	1	8/9/2022 6:44:00 AM
Freon 11	0.32	0.15		ppbV	1	8/9/2022 6:44:00 AM
Freon 113	< 0.15	0.15		ppbV	1	8/9/2022 6:44:00 AM
Freon 114	< 0.15	0.15		ppbV	1	8/9/2022 6:44:00 AM
Freon 12	0.57	0.15		ppbV	1	8/9/2022 6:44:00 AM
Heptane	0.23	0.15		ppbV	1	8/9/2022 6:44:00 AM
Hexachloro-1,3-butadiene	< 0.15	0.15		ppbV	1	8/9/2022 6:44:00 AM
Hexane	0.32	0.15		ppbV	1	8/9/2022 6:44:00 AM
Isopropyl alcohol	1.3	0.15		ppbV	1	8/9/2022 6:44:00 AM
m&p-Xylene	0.19	0.30	J	ppbV	1	8/9/2022 6:44:00 AM
Methyl Butyl Ketone	0.11	0.30	J	ppbV	1	8/9/2022 6:44:00 AM
Methyl Ethyl Ketone	0.59	0.30		ppbV	1	8/9/2022 6:44:00 AM
Methyl Isobutyl Ketone	< 0.30	0.30		ppbV	1	8/9/2022 6:44:00 AM
Methyl tert-butyl ether	< 0.15	0.15		ppbV	1	8/9/2022 6:44:00 AM
Methylene chloride	0.86	0.15		ppbV	1	8/9/2022 6:44:00 AM
o-Xylene	< 0.15	0.15		ppbV	1	8/9/2022 6:44:00 AM
Propylene	< 0.15	0.15		ppbV	1	8/9/2022 6:44:00 AM
Styrene	< 0.15	0.15		ppbV	1	8/9/2022 6:44:00 AM
Tetrachloroethylene	< 0.15	0.15		ppbV	1	8/9/2022 6:44:00 AM
Tetrahydrofuran	< 0.15	0.15		ppbV	1	8/9/2022 6:44:00 AM
Toluene	0.47	0.15		ppbV	1	8/9/2022 6:44:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15		ppbV	1	8/9/2022 6:44:00 AM
trans-1,3-Dichloropropene	< 0.15	0.15		ppbV	1	8/9/2022 6:44:00 AM
Trichloroethene	0.060	0.030		ppbV	1	8/9/2022 6:44:00 AM
Vinyl acetate	< 0.15	0.15		ppbV	1	8/9/2022 6:44:00 AM
Vinyl Bromide	< 0.15	0.15		ppbV	1	8/9/2022 6:44:00 AM
Vinyl chloride	< 0.040	0.040		ppbV	1	8/9/2022 6:44:00 AM
Surr: Bromofluorobenzene	101	47-124		%REC	1	8/9/2022 6:44:00 AM

Qualifiers:

. Results reported are not blank corrected

DL Detection Limit

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of DetectionSC Sub-Contracted

Page 14 of 14

Page 22 of 36

Centek/SanAir Labs

CLIENT: C & S Engineers, Inc.

Lab Order: C2208008

Project: 1117 West Fayette Street Phase II

Lab ID: C2208008-001A

Date: 10-Aug-22

Client Sample ID: SS-1

Tag Number: 353,441

Collection Date: 8/1/2022

Matrix: AIR

Analyses	Result	DL	Qual U	U nits	DF	Date Analyzed
1UG/M3 BY METHOD TO15		то	-15			Analyst: RJ l
1,1,1-Trichloroethane	< 0.82	0.82	ι	ıg/m3	1	8/9/2022 8:00:00 AM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	ι	ıg/m3	1	8/9/2022 8:00:00 AM
1,1,2-Trichloroethane	< 0.82	0.82	ι	ıg/m3	1	8/9/2022 8:00:00 AM
1,1-Dichloroethane	< 0.61	0.61	ι	ıg/m3	1	8/9/2022 8:00:00 AM
1,1-Dichloroethene	< 0.59	0.59	ι	ıg/m3	1	8/9/2022 8:00:00 AM
1,2,4-Trichlorobenzene	< 1.1	1.1	ι	ıg/m3	1	8/9/2022 8:00:00 AM
1,2,4-Trimethylbenzene	6.7	0.74	ι	ıg/m3	1	8/9/2022 8:00:00 AM
1,2-Dibromoethane	< 1.2	1.2	ι	ıg/m3	1	8/9/2022 8:00:00 AM
1,2-Dichlorobenzene	< 0.90	0.90	ι	ıg/m3	1	8/9/2022 8:00:00 AM
1,2-Dichloroethane	< 0.61	0.61	ι	ıg/m3	1	8/9/2022 8:00:00 AM
1,2-Dichloropropane	< 0.69	0.69	ι	ıg/m3	1	8/9/2022 8:00:00 AM
1,3,5-Trimethylbenzene	3.5	0.74	ι	ıg/m3	1	8/9/2022 8:00:00 AM
1,3-butadiene	< 0.33	0.33	ι	ıg/m3	1	8/9/2022 8:00:00 AM
1,3-Dichlorobenzene	< 0.90	0.90	ι	ıg/m3	1	8/9/2022 8:00:00 AM
1,4-Dichlorobenzene	< 0.90	0.90	ι	ıg/m3	1	8/9/2022 8:00:00 AM
1,4-Dioxane	< 1.1	1.1	ι	ıg/m3	1	8/9/2022 8:00:00 AM
2,2,4-trimethylpentane	0.70	0.70	ι	ıg/m3	1	8/9/2022 8:00:00 AM
4-ethyltoluene	2.7	0.74	ι	ıg/m3	1	8/9/2022 8:00:00 AM
Acetone	350	64	ι	ıg/m3	90	8/9/2022 6:28:00 PM
Allyl chloride	< 0.47	0.47	ι	ıg/m3	1	8/9/2022 8:00:00 AM
Benzene	2.1	0.48	ι	ıg/m3	1	8/9/2022 8:00:00 AM
Benzyl chloride	< 0.86	0.86		ıg/m3	1	8/9/2022 8:00:00 AM
Bromodichloromethane	< 1.0	1.0	ι	ıg/m3	1	8/9/2022 8:00:00 AM
Bromoform	< 1.6	1.6	ι	ıg/m3	1	8/9/2022 8:00:00 AM
Bromomethane	< 0.58	0.58	ι	ıg/m3	1	8/9/2022 8:00:00 AM
Carbon disulfide	31	4.4		ıg/m3	9	8/9/2022 5:44:00 PM
Carbon tetrachloride	0.82	0.94	Jι	ıg/m3	1	8/9/2022 8:00:00 AM
Chlorobenzene	< 0.69	0.69		ıg/m3	1	8/9/2022 8:00:00 AM
Chloroethane	< 0.40	0.40		ıg/m3	1	8/9/2022 8:00:00 AM
Chloroform	0.98	0.73		ıg/m3	1	8/9/2022 8:00:00 AM
Chloromethane	1.1	0.31		ıg/m3	1	8/9/2022 8:00:00 AM
cis-1,2-Dichloroethene	< 0.59	0.59		ıg/m3	1	8/9/2022 8:00:00 AM
cis-1,3-Dichloropropene	< 0.68	0.68		ıg/m3	1	8/9/2022 8:00:00 AM
Cyclohexane	5.7	0.52		ıg/m3	1	8/9/2022 8:00:00 AM
Dibromochloromethane	< 1.3	1.3		ıg/m3	1	8/9/2022 8:00:00 AM
Ethyl acetate	6.6	0.54		ıg/m3	1	8/9/2022 8:00:00 AM
Ethylbenzene	6.7	0.65		.g/m3	1	8/9/2022 8:00:00 AM
Freon 11	1.7	0.84		.g/m3	1	8/9/2022 8:00:00 AM
Freon 113	< 1.1	1.1		ug/m3	1	8/9/2022 8:00:00 AM
Freon 114	< 1.0	1.0		ug/m3	1	8/9/2022 8:00:00 AM

Qualifiers:

- . Results reported are not blank corrected
- DL Detection Limit
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

SC Sub-Contracted

Page 1 of 14

CLIENT: C & S Engineers, Inc.

Client Sample ID: SS-1

Lab Order: C2208008

Tag Number: 353,441

Project: 1117 West Fayette Street Phase II

Collection Date: 8/1/2022

Date: 10-Aug-22

Lab ID: C2208008-001A Matrix: AIR

Analyses	Result	DL Qu	ual Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
Freon 12	23	6.9	ug/m3	9	8/9/2022 5:44:00 PM
Heptane	12	5.7	ug/m3	9	8/9/2022 5:44:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.6	ug/m3	1	8/9/2022 8:00:00 AM
Hexane	92	49	ug/m3	90	8/9/2022 6:28:00 PM
Isopropyl alcohol	58	34	ug/m3	90	8/9/2022 6:28:00 PM
m&p-Xylene	12	1.3	ug/m3	1	8/9/2022 8:00:00 AM
Methyl Butyl Ketone	< 1.2	1.2	ug/m3	1	8/9/2022 8:00:00 AM
Methyl Ethyl Ketone	17	8.0	ug/m3	9	8/9/2022 5:44:00 PM
Methyl Isobutyl Ketone	4.2	1.2	ug/m3	1	8/9/2022 8:00:00 AM
Methyl tert-butyl ether	15	5.0	ug/m3	9	8/9/2022 5:44:00 PM
Methylene chloride	4.5	0.52	ug/m3	1	8/9/2022 8:00:00 AM
o-Xylene	5.6	0.65	ug/m3	1	8/9/2022 8:00:00 AM
Propylene	< 0.26	0.26	ug/m3	1	8/9/2022 8:00:00 AM
Styrene	7.8	0.64	ug/m3	1	8/9/2022 8:00:00 AM
Tetrachloroethylene	3.1	1.0	ug/m3	1	8/9/2022 8:00:00 AM
Tetrahydrofuran	< 0.44	0.44	ug/m3	1	8/9/2022 8:00:00 AM
Toluene	14	5.3	ug/m3	9	8/9/2022 5:44:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	8/9/2022 8:00:00 AM
trans-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	8/9/2022 8:00:00 AM
Trichloroethene	0.64	0.81	J ug/m3	1	8/9/2022 8:00:00 AM
Vinyl acetate	< 0.53	0.53	ug/m3	1	8/9/2022 8:00:00 AM
Vinyl Bromide	< 0.66	0.66	ug/m3	1	8/9/2022 8:00:00 AM
Vinyl chloride	< 0.38	0.38	ug/m3	1	8/9/2022 8:00:00 AM

Qualifiers:

. Results reported are not blank corrected

DL Detection Limit

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

SC Sub-Contracted

Page 2 of 14

CLIENT: C & S Engineers, Inc.

Lab Order: C2208008

Project: 1117 West Fayette Street Phase II

Lab ID: C2208008-002A

Date: 10-Aug-22

Client Sample ID: IA-1

Tag Number: 207,391

Collection Date: 8/1/2022

Matrix: AIR

Analyses	Result	DL	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-V(C-DCE-1,1DCE	то-	-15			Analyst: RJP
1,1,1-Trichloroethane	1.6	0.82		ug/m3	1	8/9/2022 4:30:00 AM
1,1,2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	1	8/9/2022 4:30:00 AM
1,1,2-Trichloroethane	< 0.82	0.82		ug/m3	1	8/9/2022 4:30:00 AM
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	8/9/2022 4:30:00 AM
1,1-Dichloroethene	< 0.16	0.16		ug/m3	1	8/9/2022 4:30:00 AM
1,2,4-Trichlorobenzene	< 1.1	1.1		ug/m3	1	8/9/2022 4:30:00 AM
1,2,4-Trimethylbenzene	0.79	0.74		ug/m3	1	8/9/2022 4:30:00 AM
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	8/9/2022 4:30:00 AM
1,2-Dichlorobenzene	< 0.90	0.90		ug/m3	1	8/9/2022 4:30:00 AM
1,2-Dichloroethane	< 0.61	0.61		ug/m3	1	8/9/2022 4:30:00 AM
1,2-Dichloropropane	< 0.69	0.69		ug/m3	1	8/9/2022 4:30:00 AM
1,3,5-Trimethylbenzene	< 0.74	0.74		ug/m3	1	8/9/2022 4:30:00 AM
1,3-butadiene	< 0.33	0.33		ug/m3	1	8/9/2022 4:30:00 AM
1,3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	8/9/2022 4:30:00 AM
1,4-Dichlorobenzene	< 0.90	0.90		ug/m3	1	8/9/2022 4:30:00 AM
1,4-Dioxane	< 1.1	1.1		ug/m3	1	8/9/2022 4:30:00 AM
2,2,4-trimethylpentane	< 0.70	0.70		ug/m3	1	8/9/2022 4:30:00 AM
4-ethyltoluene	< 0.74	0.74		ug/m3	1	8/9/2022 4:30:00 AM
Acetone	21	7.1		ug/m3	10	8/9/2022 2:50:00 PM
Allyl chloride	< 0.47	0.47		ug/m3	1	8/9/2022 4:30:00 AM
Benzene	0.35	0.48	J	ug/m3	1	8/9/2022 4:30:00 AM
Benzyl chloride	< 0.86	0.86		ug/m3	1	8/9/2022 4:30:00 AM
Bromodichloromethane	< 1.0	1.0		ug/m3	1	8/9/2022 4:30:00 AM
Bromoform	< 1.6	1.6		ug/m3	1	8/9/2022 4:30:00 AM
Bromomethane	< 0.58	0.58		ug/m3	1	8/9/2022 4:30:00 AM
Carbon disulfide	0.44	0.47		ug/m3	1	8/9/2022 4:30:00 AM
Carbon tetrachloride	0.57	0.19		ug/m3	1	8/9/2022 4:30:00 AM
Chlorobenzene	< 0.69	0.69		ug/m3	1	8/9/2022 4:30:00 AM
Chloroethane	< 0.40	0.40		ug/m3	1	8/9/2022 4:30:00 AM
Chloroform	< 0.73	0.73		ug/m3	1	8/9/2022 4:30:00 AM
Chloromethane	< 0.31	0.31		ug/m3	1	8/9/2022 4:30:00 AM
cis-1,2-Dichloroethene	< 0.16	0.16		ug/m3	1	8/9/2022 4:30:00 AM
cis-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	8/9/2022 4:30:00 AM
Cyclohexane	0.38	0.52		ug/m3	1	8/9/2022 4:30:00 AM
Dibromochloromethane	< 1.3	1.3		ug/m3	1	8/9/2022 4:30:00 AM
Ethyl acetate	4.9	0.54		ug/m3	1	8/9/2022 4:30:00 AM
Ethylbenzene	< 0.65	0.65		ug/m3	1	8/9/2022 4:30:00 AM
Freon 11	2.0	0.84		ug/m3	1	8/9/2022 4:30:00 AM
Freon 113	< 1.1	1.1		ug/m3	1	8/9/2022 4:30:00 AM
Freon 114	< 1.0	1.0		ug/m3	1	8/9/2022 4:30:00 AM

Qualifiers:

Page 3 of 14

[.] Results reported are not blank corrected

DL Detection Limit

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of DetectionSC Sub-Contracted

CLIENT: C & S Engineers, Inc. Client Sample ID: IA-1

C2208008 Lab Order:

Lab ID:

Tag Number: 207,391 **Collection Date:** 8/1/2022

Project: 1117 West Fayette Street Phase II C2208008-002A

Matrix: AIR

Date: 10-Aug-22

Qual Units Analyses Result DL DF **Date Analyzed** 1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE **TO-15** Analyst: RJP Freon 12 7.4 ug/m3 10 8/9/2022 2:50:00 PM 0.94 Heptane 0.61 ug/m3 1 8/9/2022 4:30:00 AM Hexachloro-1,3-butadiene < 1.6 ug/m3 1 8/9/2022 4:30:00 AM 1.6 Hexane 0.49 0.53 ug/m3 1 8/9/2022 4:30:00 AM Isopropyl alcohol 3.1 0.37 ug/m3 1 8/9/2022 4:30:00 AM m&p-Xylene 1.3 1.3 ug/m3 8/9/2022 4:30:00 AM < 1.2 1.2 ug/m3 Methyl Butyl Ketone 1 8/9/2022 4:30:00 AM Methyl Ethyl Ketone 2.5 0.88 ug/m3 8/9/2022 4:30:00 AM < 1.2 1.2 1 Methyl Isobutyl Ketone ug/m3 8/9/2022 4:30:00 AM < 0.54 0.54 ug/m3 Methyl tert-butyl ether 1 8/9/2022 4:30:00 AM Methylene chloride 2.7 0.52 ug/m3 1 8/9/2022 4:30:00 AM o-Xylene 0.56 0.65 ug/m3 8/9/2022 4:30:00 AM Propylene < 0.26 0.26 ug/m3 8/9/2022 4:30:00 AM Styrene < 0.64 0.64 ug/m3 8/9/2022 4:30:00 AM 1 Tetrachloroethylene < 1.0 1.0 ug/m3 1 8/9/2022 4:30:00 AM Tetrahydrofuran < 0.44 0.44 ug/m3 1 8/9/2022 4:30:00 AM Toluene 2.7 0.57 ug/m3 1 8/9/2022 4:30:00 AM trans-1,2-Dichloroethene < 0.59 0.59 ug/m3 1 8/9/2022 4:30:00 AM trans-1,3-Dichloropropene < 0.68 0.68 ug/m3 8/9/2022 4:30:00 AM 0.16 Trichloroethene 0.38 ug/m3 8/9/2022 4:30:00 AM Vinyl acetate < 0.53 0.53 ug/m3 8/9/2022 4:30:00 AM Vinyl Bromide < 0.66 0.66 ug/m3 1 8/9/2022 4:30:00 AM

0.10

ug/m3

< 0.10

Qualifiers:

Vinyl chloride

Results reported are not blank corrected

DL**Detection Limit**

Η Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

Spike Recovery outside accepted recovery limits

В Analyte detected in the associated Method Blank

Е Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

SC Sub-Contracted Page 4 of 14

8/9/2022 4:30:00 AM

CLIENT: C & S Engineers, Inc.

Lab Order: C2208008

Project: 1117 West Fayette Street Phase II

Lab ID: C2208008-003A

Date: 10-Aug-22

Client Sample ID: SS-2

Tag Number: 171,449

Collection Date: 8/1/2022

Matrix: AIR

Analyses	Result	DL	Qual	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		ТО	-15			Analyst: RJ i
1,1,1-Trichloroethane	0.71	0.82	J	ug/m3	1	8/9/2022 1:18:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	1	8/9/2022 1:18:00 PM
1,1,2-Trichloroethane	< 0.82	0.82		ug/m3	1	8/9/2022 1:18:00 PM
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	8/9/2022 1:18:00 PM
1,1-Dichloroethene	< 0.59	0.59		ug/m3	1	8/9/2022 1:18:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1		ug/m3	1	8/9/2022 1:18:00 PM
1,2,4-Trimethylbenzene	7.0	0.74		ug/m3	1	8/9/2022 1:18:00 PM
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	8/9/2022 1:18:00 PM
1,2-Dichlorobenzene	< 0.90	0.90		ug/m3	1	8/9/2022 1:18:00 PM
1,2-Dichloroethane	< 0.61	0.61		ug/m3	1	8/9/2022 1:18:00 PM
1,2-Dichloropropane	< 0.69	0.69		ug/m3	1	8/9/2022 1:18:00 PM
1,3,5-Trimethylbenzene	3.7	0.74		ug/m3	1	8/9/2022 1:18:00 PM
1,3-butadiene	< 0.33	0.33		ug/m3	1	8/9/2022 1:18:00 PM
1,3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	8/9/2022 1:18:00 PM
1,4-Dichlorobenzene	< 0.90	0.90		ug/m3	1	8/9/2022 1:18:00 PM
1,4-Dioxane	< 1.1	1.1		ug/m3	1	8/9/2022 1:18:00 PM
2,2,4-trimethylpentane	0.75	0.70		ug/m3	1	8/9/2022 1:18:00 PM
4-ethyltoluene	3.0	0.74		ug/m3	1	8/9/2022 1:18:00 PM
Acetone	240	64		ug/m3	90	8/9/2022 7:56:00 PM
Allyl chloride	< 0.47	0.47		ug/m3	1	8/9/2022 1:18:00 PM
Benzene	3.0	0.48		ug/m3	1	8/9/2022 1:18:00 PM
Benzyl chloride	< 0.86	0.86		ug/m3	1	8/9/2022 1:18:00 PM
Bromodichloromethane	< 1.0	1.0		ug/m3	1	8/9/2022 1:18:00 PM
Bromoform	< 1.6	1.6		ug/m3	1	8/9/2022 1:18:00 PM
Bromomethane	< 0.58	0.58		ug/m3	1	8/9/2022 1:18:00 PM
Carbon disulfide	27	4.4		ug/m3	9	8/9/2022 7:13:00 PM
Carbon tetrachloride	0.75	0.94	J	ug/m3	1	8/9/2022 1:18:00 PM
Chlorobenzene	< 0.69	0.69		ug/m3	1	8/9/2022 1:18:00 PM
Chloroethane	< 0.40	0.40		ug/m3	1	8/9/2022 1:18:00 PM
Chloroform	0.88	0.73		ug/m3	1	8/9/2022 1:18:00 PM
Chloromethane	< 0.31	0.31		ug/m3	1	8/9/2022 1:18:00 PM
cis-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	8/9/2022 1:18:00 PM
cis-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	8/9/2022 1:18:00 PM
Cyclohexane	6.4	0.52		ug/m3	1	8/9/2022 1:18:00 PM
Dibromochloromethane	< 1.3	1.3		ug/m3	1	8/9/2022 1:18:00 PM
Ethyl acetate	6.4	0.54		ug/m3	1	8/9/2022 1:18:00 PM
Ethylbenzene	7.2	0.65		ug/m3	1	8/9/2022 1:18:00 PM
Freon 11	1.8	0.84		ug/m3	1	8/9/2022 1:18:00 PM
Freon 113	< 1.1	1.1		ug/m3	1	8/9/2022 1:18:00 PM
Freon 114	< 1.0	1.0		ug/m3	1	8/9/2022 1:18:00 PM

Qualifiers:

- . Results reported are not blank corrected
- DL Detection Limit
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

SC Sub-Contracted

Page 5 of 14

CLIENT: C & S Engineers, Inc.

Lab Order: C2208008

Project: 1117 West Fayette Street Phase II

Lab ID: C2208008-003A

Date: 10-Aug-22

Client Sample ID: SS-2

Tag Number: 171,449

Collection Date: 8/1/2022

Matrix: AIR

Analyses	Result	DL Q	ual Units	DF	Date Analyzed	
1UG/M3 BY METHOD TO15		TO-1	5		Analyst: RJP	
Freon 12	2.9	0.74	ug/m3	1	8/9/2022 1:18:00 PM	
Heptane	14	5.7	ug/m3	9	8/9/2022 7:13:00 PM	
Hexachloro-1,3-butadiene	< 1.6	1.6	ug/m3	1	8/9/2022 1:18:00 PM	
Hexane	49	4.9	ug/m3	9	8/9/2022 7:13:00 PM	
Isopropyl alcohol	37	3.4	ug/m3	9	8/9/2022 7:13:00 PM	
m&p-Xylene	13	1.3	ug/m3	1	8/9/2022 1:18:00 PM	
Methyl Butyl Ketone	< 1.2	1.2	ug/m3	1	8/9/2022 1:18:00 PM	
Methyl Ethyl Ketone	11	8.0	ug/m3	9	8/9/2022 7:13:00 PM	
Methyl Isobutyl Ketone	4.1	1.2	ug/m3	1	8/9/2022 1:18:00 PM	
Methyl tert-butyl ether	7.8	5.0	ug/m3	9	8/9/2022 7:13:00 PM	
Methylene chloride	3.7	0.52	ug/m3	1	8/9/2022 1:18:00 PM	
o-Xylene	6.0	0.65	ug/m3	1	8/9/2022 1:18:00 PM	
Propylene	< 0.26	0.26	ug/m3	1	8/9/2022 1:18:00 PM	
Styrene	8.4	0.64	ug/m3	1	8/9/2022 1:18:00 PM	
Tetrachloroethylene	< 1.0	1.0	ug/m3	1	8/9/2022 1:18:00 PM	
Tetrahydrofuran	< 0.44	0.44	ug/m3	1	8/9/2022 1:18:00 PM	
Toluene	12	5.3	ug/m3	9	8/9/2022 7:13:00 PM	
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	8/9/2022 1:18:00 PM	
trans-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	8/9/2022 1:18:00 PM	
Trichloroethene	< 0.81	0.81	ug/m3	1	8/9/2022 1:18:00 PM	
Vinyl acetate	< 0.53	0.53	ug/m3	1	8/9/2022 1:18:00 PM	
Vinyl Bromide	< 0.66	0.66	ug/m3	1	8/9/2022 1:18:00 PM	
Vinyl chloride	< 0.38	0.38	ug/m3	1	8/9/2022 1:18:00 PM	

Qualifiers:

. Results reported are not blank corrected

DL Detection Limit

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

SC Sub-Contracted

Page 6 of 14

CLIENT: C & S Engineers, Inc.

C2208008

Project: 1117 West Fayette Street Phase II

Lab ID: C2208008-004A

Lab Order:

Date: 10-Aug-22

Client Sample ID: IA-2

Tag Number: 1174,398

Collection Date: 8/1/2022

Matrix: AIR

Analyses	Result	DL	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-V(C-DCE-1,1DCE	TO	-15			Analyst: RJI
1,1,1-Trichloroethane	< 0.82	0.82		ug/m3	1	8/9/2022 5:15:00 AM
1,1,2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	1	8/9/2022 5:15:00 AM
1,1,2-Trichloroethane	< 0.82	0.82		ug/m3	1	8/9/2022 5:15:00 AM
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	8/9/2022 5:15:00 AM
1,1-Dichloroethene	< 0.16	0.16		ug/m3	1	8/9/2022 5:15:00 AM
1,2,4-Trichlorobenzene	< 1.1	1.1		ug/m3	1	8/9/2022 5:15:00 AM
1,2,4-Trimethylbenzene	3.5	0.74		ug/m3	1	8/9/2022 5:15:00 AM
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	8/9/2022 5:15:00 AM
1,2-Dichlorobenzene	< 0.90	0.90		ug/m3	1	8/9/2022 5:15:00 AM
1,2-Dichloroethane	< 0.61	0.61		ug/m3	1	8/9/2022 5:15:00 AM
1,2-Dichloropropane	< 0.69	0.69		ug/m3	1	8/9/2022 5:15:00 AM
1,3,5-Trimethylbenzene	1.6	0.74		ug/m3	1	8/9/2022 5:15:00 AM
1,3-butadiene	< 0.33	0.33		ug/m3	1	8/9/2022 5:15:00 AM
1,3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	8/9/2022 5:15:00 AM
1,4-Dichlorobenzene	< 0.90	0.90		ug/m3	1	8/9/2022 5:15:00 AM
1,4-Dioxane	< 1.1	1.1		ug/m3	1	8/9/2022 5:15:00 AM
2,2,4-trimethylpentane	3.7	0.70		ug/m3	1	8/9/2022 5:15:00 AM
4-ethyltoluene	1.3	0.74		ug/m3	1	8/9/2022 5:15:00 AM
Acetone	39	7.1		ug/m3	10	8/9/2022 3:33:00 PM
Allyl chloride	< 0.47	0.47		ug/m3	1	8/9/2022 5:15:00 AM
Benzene	3.8	0.48		ug/m3	1	8/9/2022 5:15:00 AM
Benzyl chloride	< 0.86	0.86		ug/m3	1	8/9/2022 5:15:00 AM
Bromodichloromethane	< 1.0	1.0		ug/m3	1	8/9/2022 5:15:00 AM
Bromoform	< 1.6	1.6		ug/m3	1	8/9/2022 5:15:00 AM
Bromomethane	< 0.58	0.58		ug/m3	1	8/9/2022 5:15:00 AM
Carbon disulfide	0.44	0.47	J	ug/m3	1	8/9/2022 5:15:00 AM
Carbon tetrachloride	0.57	0.19		ug/m3	1	8/9/2022 5:15:00 AM
Chlorobenzene	< 0.69	0.69		ug/m3	1	8/9/2022 5:15:00 AM
Chloroethane	< 0.40	0.40		ug/m3	1	8/9/2022 5:15:00 AM
Chloroform	< 0.73	0.73		ug/m3	1	8/9/2022 5:15:00 AM
Chloromethane	< 0.31	0.31		ug/m3	1	8/9/2022 5:15:00 AM
cis-1,2-Dichloroethene	< 0.16	0.16		ug/m3	1	8/9/2022 5:15:00 AM
cis-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	8/9/2022 5:15:00 AM
Cyclohexane	5.8	0.52		ug/m3	1	8/9/2022 5:15:00 AM
Dibromochloromethane	< 1.3	1.3		ug/m3	1	8/9/2022 5:15:00 AM
Ethyl acetate	1.4	0.54		ug/m3	1	8/9/2022 5:15:00 AM
Ethylbenzene	2.6	0.65		ug/m3	1	8/9/2022 5:15:00 AM
Freon 11	1.7	0.84		ug/m3	1	8/9/2022 5:15:00 AM
Freon 113	< 1.1	1.1		ug/m3	1	8/9/2022 5:15:00 AM
Freon 114	< 1.0	1.0		ug/m3	1	8/9/2022 5:15:00 AM

Qualifiers:

SC Sub-Contracted

Page 7 of 14

[.] Results reported are not blank corrected

DL Detection Limit

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

CLIENT: C & S Engineers, Inc.

S Engineers, Inc.

Client Sample ID: IA-2

Lab Order:C2208008Tag Number:1174,398Project:1117 West Fayette Street Phase IICollection Date:8/1/2022

Lab ID: C2208008-004A **Matrix:** AIR

Analyses	Result	DL	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	C-DCE-1,1DCE	TO-15				Analyst: RJP
Freon 12	3.0	0.74		ug/m3	1	8/9/2022 5:15:00 AM
Heptane	5.3	0.61		ug/m3	1	8/9/2022 5:15:00 AM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	8/9/2022 5:15:00 AM
Hexane	16	5.3		ug/m3	10	8/9/2022 3:33:00 PM
Isopropyl alcohol	12	3.7		ug/m3	10	8/9/2022 3:33:00 PM
m&p-Xylene	9.9	1.3		ug/m3	1	8/9/2022 5:15:00 AM
Methyl Butyl Ketone	0.66	1.2	J	ug/m3	1	8/9/2022 5:15:00 AM
Methyl Ethyl Ketone	7.7	8.8	J	ug/m3	10	8/9/2022 3:33:00 PM
Methyl Isobutyl Ketone	0.70	1.2	J	ug/m3	1	8/9/2022 5:15:00 AM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	8/9/2022 5:15:00 AM
Methylene chloride	2.5	0.52		ug/m3	1	8/9/2022 5:15:00 AM
o-Xylene	3.6	0.65		ug/m3	1	8/9/2022 5:15:00 AM
Propylene	< 0.26	0.26		ug/m3	1	8/9/2022 5:15:00 AM
Styrene	0.72	0.64		ug/m3	1	8/9/2022 5:15:00 AM
Tetrachloroethylene	< 1.0	1.0		ug/m3	1	8/9/2022 5:15:00 AM
Tetrahydrofuran	12	4.4		ug/m3	10	8/9/2022 3:33:00 PM
Toluene	18	5.7		ug/m3	10	8/9/2022 3:33:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	8/9/2022 5:15:00 AM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	8/9/2022 5:15:00 AM
Trichloroethene	0.48	0.16		ug/m3	1	8/9/2022 5:15:00 AM
Vinyl acetate	< 0.53	0.53		ug/m3	1	8/9/2022 5:15:00 AM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	8/9/2022 5:15:00 AM
Vinyl chloride	< 0.10	0.10		ug/m3	1	8/9/2022 5:15:00 AM

Qualifiers:

. Results reported are not blank corrected

DL Detection Limit

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

Date: 10-Aug-22

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

SC Sub-Contracted

Page 8 of 14

CLIENT: C & S Engineers, Inc.

C2208008

Project: 1117 West Fayette Street Phase II

Lab ID: C2208008-005A

Lab Order:

Date: 10-Aug-22

Client Sample ID: SS-3

Tag Number: 164,438

Collection Date: 8/1/2022

Matrix: AIR

Analyses	Result	DL	Qual	Units	DF	Date Analyzed
IUG/M3 BY METHOD TO15		то	-15			Analyst: RJ l
1,1,1-Trichloroethane	< 0.82	0.82		ug/m3	1	8/9/2022 2:03:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	1	8/9/2022 2:03:00 PM
1,1,2-Trichloroethane	< 0.82	0.82	1	ug/m3	1	8/9/2022 2:03:00 PM
1,1-Dichloroethane	< 0.61	0.61	1	ug/m3	1	8/9/2022 2:03:00 PM
1,1-Dichloroethene	< 0.59	0.59	1	ug/m3	1	8/9/2022 2:03:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1		ug/m3	1	8/9/2022 2:03:00 PM
1,2,4-Trimethylbenzene	7.2	0.74		ug/m3	1	8/9/2022 2:03:00 PM
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	8/9/2022 2:03:00 PM
1,2-Dichlorobenzene	< 0.90	0.90		ug/m3	1	8/9/2022 2:03:00 PM
1,2-Dichloroethane	< 0.61	0.61	1	ug/m3	1	8/9/2022 2:03:00 PM
1,2-Dichloropropane	< 0.69	0.69	1	ug/m3	1	8/9/2022 2:03:00 PM
1,3,5-Trimethylbenzene	3.6	0.74	1	ug/m3	1	8/9/2022 2:03:00 PM
1,3-butadiene	< 0.33	0.33		ug/m3	1	8/9/2022 2:03:00 PM
1,3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	8/9/2022 2:03:00 PM
1,4-Dichlorobenzene	< 0.90	0.90		ug/m3	1	8/9/2022 2:03:00 PM
1,4-Dioxane	< 1.1	1.1		ug/m3	1	8/9/2022 2:03:00 PM
2,2,4-trimethylpentane	0.75	0.70		ug/m3	1	8/9/2022 2:03:00 PM
4-ethyltoluene	2.9	0.74		ug/m3	1	8/9/2022 2:03:00 PM
Acetone	300	64		ug/m3	90	8/9/2022 9:24:00 PM
Allyl chloride	< 0.47	0.47		ug/m3	1	8/9/2022 2:03:00 PM
Benzene	2.8	0.48		ug/m3	1	8/9/2022 2:03:00 PM
Benzyl chloride	< 0.86	0.86		ug/m3	1	8/9/2022 2:03:00 PM
Bromodichloromethane	< 1.0	1.0		ug/m3	1	8/9/2022 2:03:00 PM
Bromoform	< 1.6	1.6		ug/m3	1	8/9/2022 2:03:00 PM
Bromomethane	< 0.58	0.58		ug/m3	1	8/9/2022 2:03:00 PM
Carbon disulfide	34	4.4		ug/m3	9	8/9/2022 8:41:00 PM
Carbon tetrachloride	0.82	0.94		ug/m3	1	8/9/2022 2:03:00 PM
Chlorobenzene	< 0.69	0.69	1	ug/m3	1	8/9/2022 2:03:00 PM
Chloroethane	< 0.40	0.40	1	ug/m3	1	8/9/2022 2:03:00 PM
Chloroform	1.0	0.73	1	ug/m3	1	8/9/2022 2:03:00 PM
Chloromethane	0.91	0.31		ug/m3	1	8/9/2022 2:03:00 PM
cis-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	8/9/2022 2:03:00 PM
cis-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	8/9/2022 2:03:00 PM
Cyclohexane	5.8	0.52		ug/m3	1	8/9/2022 2:03:00 PM
Dibromochloromethane	< 1.3	1.3		ug/m3	1	8/9/2022 2:03:00 PM
Ethyl acetate	6.5	0.54		ug/m3	1	8/9/2022 2:03:00 PM
Ethylbenzene	7.4	0.65		ug/m3	1	8/9/2022 2:03:00 PM
Freon 11	2.4	0.84		ug/m3	1	8/9/2022 2:03:00 PM
Freon 113	< 1.1	1.1		ug/m3	1	8/9/2022 2:03:00 PM
Freon 114	< 1.0	1.0		ug/m3	1	8/9/2022 2:03:00 PM

Qualifiers:

- . Results reported are not blank corrected
- DL Detection Limit
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

SC Sub-Contracted

Page 9 of 14

CLIENT: C & S Engineers, Inc.

Engineers, Inc. Client Sample ID: SS-3

Lab Order:C2208008Tag Number:164,438Project:1117 West Fayette Street Phase IICollection Date:8/1/2022

Lab ID: C2208008-005A **Matrix:** AIR

Analyses	Result	DL Q	ual Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-1	5		Analyst: RJP
Freon 12	2.8	0.74	ug/m3	1	8/9/2022 2:03:00 PM
Heptane	15	5.7	ug/m3	9	8/9/2022 8:41:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.6	ug/m3	1	8/9/2022 2:03:00 PM
Hexane	60	4.9	ug/m3	9	8/9/2022 8:41:00 PM
Isopropyl alcohol	49	34	ug/m3	90	8/9/2022 9:24:00 PM
m&p-Xylene	13	1.3	ug/m3	1	8/9/2022 2:03:00 PM
Methyl Butyl Ketone	< 1.2	1.2	ug/m3	1	8/9/2022 2:03:00 PM
Methyl Ethyl Ketone	15	8.0	ug/m3	9	8/9/2022 8:41:00 PM
Methyl Isobutyl Ketone	4.7	1.2	ug/m3	1	8/9/2022 2:03:00 PM
Methyl tert-butyl ether	9.4	5.0	ug/m3	9	8/9/2022 8:41:00 PM
Methylene chloride	3.3	0.52	ug/m3	1	8/9/2022 2:03:00 PM
o-Xylene	6.0	0.65	ug/m3	1	8/9/2022 2:03:00 PM
Propylene	< 0.26	0.26	ug/m3	1	8/9/2022 2:03:00 PM
Styrene	8.4	0.64	ug/m3	1	8/9/2022 2:03:00 PM
Tetrachloroethylene	< 1.0	1.0	ug/m3	1	8/9/2022 2:03:00 PM
Tetrahydrofuran	< 0.44	0.44	ug/m3	1	8/9/2022 2:03:00 PM
Toluene	16	5.3	ug/m3	9	8/9/2022 8:41:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	8/9/2022 2:03:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	8/9/2022 2:03:00 PM
Trichloroethene	< 0.81	0.81	ug/m3	1	8/9/2022 2:03:00 PM
Vinyl acetate	< 0.53	0.53	ug/m3	1	8/9/2022 2:03:00 PM
Vinyl Bromide	< 0.66	0.66	ug/m3	1	8/9/2022 2:03:00 PM
Vinyl chloride	< 0.38	0.38	ug/m3	1	8/9/2022 2:03:00 PM

Qualifiers:

. Results reported are not blank corrected

DL Detection Limit

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

Date: 10-Aug-22

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Sub-Contracted

Page 10 of 14

Centek/SanAir Labs Page 32 of 36

CLIENT: C & S Engineers, Inc.

C2208008

Project: 1117 West Fayette Street Phase II

Lab ID: C2208008-006A

Lab Order:

Date: 10-Aug-22

Client Sample ID: IA-3

Tag Number: 358,433

Collection Date: 8/1/2022

Matrix: AIR

Analyses	Result	DL	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-V	C-DCE-1,1DCE	TO	-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82		ug/m3	1	8/9/2022 6:00:00 AM
1,1,2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	1	8/9/2022 6:00:00 AM
1,1,2-Trichloroethane	< 0.82	0.82		ug/m3	1	8/9/2022 6:00:00 AM
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	8/9/2022 6:00:00 AM
1,1-Dichloroethene	< 0.16	0.16		ug/m3	1	8/9/2022 6:00:00 AM
1,2,4-Trichlorobenzene	< 1.1	1.1		ug/m3	1	8/9/2022 6:00:00 AM
1,2,4-Trimethylbenzene	4.1	0.74		ug/m3	1	8/9/2022 6:00:00 AM
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	8/9/2022 6:00:00 AM
1,2-Dichlorobenzene	< 0.90	0.90		ug/m3	1	8/9/2022 6:00:00 AM
1,2-Dichloroethane	< 0.61	0.61		ug/m3	1	8/9/2022 6:00:00 AM
1,2-Dichloropropane	< 0.69	0.69		ug/m3	1	8/9/2022 6:00:00 AM
1,3,5-Trimethylbenzene	1.8	0.74		ug/m3	1	8/9/2022 6:00:00 AM
1,3-butadiene	< 0.33	0.33		ug/m3	1	8/9/2022 6:00:00 AM
1,3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	8/9/2022 6:00:00 AM
1,4-Dichlorobenzene	< 0.90	0.90		ug/m3	1	8/9/2022 6:00:00 AM
1,4-Dioxane	< 1.1	1.1		ug/m3	1	8/9/2022 6:00:00 AM
2,2,4-trimethylpentane	3.9	0.70		ug/m3	1	8/9/2022 6:00:00 AM
4-ethyltoluene	1.6	0.74		ug/m3	1	8/9/2022 6:00:00 AM
Acetone	44	7.1		ug/m3	10	8/9/2022 4:17:00 PM
Allyl chloride	< 0.47	0.47		ug/m3	1	8/9/2022 6:00:00 AM
Benzene	4.4	0.48		ug/m3	1	8/9/2022 6:00:00 AM
Benzyl chloride	< 0.86	0.86		ug/m3	1	8/9/2022 6:00:00 AM
Bromodichloromethane	< 1.0	1.0		ug/m3	1	8/9/2022 6:00:00 AM
Bromoform	< 1.6	1.6		ug/m3	1	8/9/2022 6:00:00 AM
Bromomethane	< 0.58	0.58		ug/m3	1	8/9/2022 6:00:00 AM
Carbon disulfide	0.44	0.47	J	ug/m3	1	8/9/2022 6:00:00 AM
Carbon tetrachloride	0.57	0.19		ug/m3	1	8/9/2022 6:00:00 AM
Chlorobenzene	< 0.69	0.69		ug/m3	1	8/9/2022 6:00:00 AM
Chloroethane	< 0.40	0.40		ug/m3	1	8/9/2022 6:00:00 AM
Chloroform	< 0.73	0.73		ug/m3	1	8/9/2022 6:00:00 AM
Chloromethane	< 0.31	0.31		ug/m3	1	8/9/2022 6:00:00 AM
cis-1,2-Dichloroethene	< 0.16	0.16		ug/m3	1	8/9/2022 6:00:00 AM
cis-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	8/9/2022 6:00:00 AM
Cyclohexane	6.4	0.52		ug/m3	1	8/9/2022 6:00:00 AM
Dibromochloromethane	< 1.3	1.3		ug/m3	1	8/9/2022 6:00:00 AM
Ethyl acetate	2.1	0.54		ug/m3	1	8/9/2022 6:00:00 AM
Ethylbenzene	3.3	0.65		ug/m3	1	8/9/2022 6:00:00 AM
Freon 11	1.7	0.84		ug/m3	1	8/9/2022 6:00:00 AM
Freon 113	< 1.1	1.1		ug/m3	1	8/9/2022 6:00:00 AM
Freon 114	< 1.0	1.0		ug/m3	1	8/9/2022 6:00:00 AM

Qualifiers:

- . Results reported are not blank corrected
- DL Detection Limit
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

SC Sub-Contracted

Page 11 of 14

CLIENT: C & S Engineers, Inc. **Client Sample ID:** IA-3

Lab Order: C2208008

Lab ID:

Tag Number: 358,433 **Collection Date:** 8/1/2022

Project: 1117 West Fayette Street Phase II C2208008-006A

Matrix: AIR

Date: 10-Aug-22

1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE Freon 12 2.8 Heptane 6.1 Hexachloro-1,3-butadiene < 1.6 Hexane 18 Isopropyl alcohol 13 m&p-Xylene 12 Methyl Butyl Ketone 0.53 Methyl Ethyl Ketone 9.4 Methyl Isobutyl Ketone 0.78 Mathyl Act by	TO- ′	15			
Heptane 6.1 Hexachloro-1,3-butadiene < 1.6	0.74				Analyst: RJP
Hexachloro-1,3-butadiene < 1.6			ug/m3	1	8/9/2022 6:00:00 AM
Hexane 18 Isopropyl alcohol 13 m&p-Xylene 12 Methyl Butyl Ketone 0.53 Methyl Ethyl Ketone 9.4 Methyl Isobutyl Ketone 0.78	0.61		ug/m3	1	8/9/2022 6:00:00 AM
Isopropyl alcohol 13 m&p-Xylene 12 Methyl Butyl Ketone 0.53 Methyl Ethyl Ketone 9.4 Methyl Isobutyl Ketone 0.78	1.6		ug/m3	1	8/9/2022 6:00:00 AM
m&p-Xylene12Methyl Butyl Ketone0.53Methyl Ethyl Ketone9.4Methyl Isobutyl Ketone0.78	5.3		ug/m3	10	8/9/2022 4:17:00 PM
Methyl Butyl Ketone 0.53 Methyl Ethyl Ketone 9.4 Methyl Isobutyl Ketone 0.78	3.7		ug/m3	10	8/9/2022 4:17:00 PM
Methyl Ethyl Ketone 9.4 Methyl Isobutyl Ketone 0.78	1.3		ug/m3	1	8/9/2022 6:00:00 AM
Methyl Isobutyl Ketone 0.78	1.2	J	ug/m3	1	8/9/2022 6:00:00 AM
	8.8		ug/m3	10	8/9/2022 4:17:00 PM
Mathed tant hosted athera	1.2	J	ug/m3	1	8/9/2022 6:00:00 AM
Methyl tert-butyl ether < 0.54	0.54		ug/m3	1	8/9/2022 6:00:00 AM
Methylene chloride 1.6	0.52		ug/m3	1	8/9/2022 6:00:00 AM
o-Xylene 4.3	0.65		ug/m3	1	8/9/2022 6:00:00 AM
Propylene < 0.26	0.26		ug/m3	1	8/9/2022 6:00:00 AM
Styrene 0.98	0.64		ug/m3	1	8/9/2022 6:00:00 AM
Tetrachloroethylene < 1.0	1.0		ug/m3	1	8/9/2022 6:00:00 AM
Tetrahydrofuran 15	4.4		ug/m3	10	8/9/2022 4:17:00 PM
Toluene 22	5.7		ug/m3	10	8/9/2022 4:17:00 PM
trans-1,2-Dichloroethene < 0.59	0.59		ug/m3	1	8/9/2022 6:00:00 AM
trans-1,3-Dichloropropene < 0.68	0.68		ug/m3	1	8/9/2022 6:00:00 AM
Trichloroethene 0.38	0.16		ug/m3	1	8/9/2022 6:00:00 AM
Vinyl acetate < 0.53	0.53		ug/m3	1	8/9/2022 6:00:00 AM
Vinyl Bromide < 0.66	0.66		11a/m2	4	8/9/2022 6:00:00 AM
Vinyl chloride < 0.10			ug/m3	1	0/9/2022 0:00:00 AIVI

Qualifiers:

Results reported are not blank corrected

DL Detection Limit

Н Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

Spike Recovery outside accepted recovery limits

В Analyte detected in the associated Method Blank

Е Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Sub-Contracted

Page 12 of 14

Centek/SanAir Labs Page 34 of 36

CLIENT: C & S Engineers, Inc.

Client Sample ID: OA-1

Lab Order: C2208008

Tag Number: 475,396

Project: 1117 West Fayette Street Phase II

Collection Date: 8/1/2022

Date: 10-Aug-22

Lab ID: C2208008-007A

Matrix: AIR

Analyses	Result	DL	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-V	C-DCE-1,1DCE	то	-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82		ug/m3	1	8/9/2022 6:44:00 AM
1,1,2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	1	8/9/2022 6:44:00 AM
1,1,2-Trichloroethane	< 0.82	0.82		ug/m3	1	8/9/2022 6:44:00 AM
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	8/9/2022 6:44:00 AM
1,1-Dichloroethene	< 0.16	0.16		ug/m3	1	8/9/2022 6:44:00 AM
1,2,4-Trichlorobenzene	< 1.1	1.1		ug/m3	1	8/9/2022 6:44:00 AM
1,2,4-Trimethylbenzene	0.79	0.74		ug/m3	1	8/9/2022 6:44:00 AM
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	8/9/2022 6:44:00 AM
1,2-Dichlorobenzene	< 0.90	0.90		ug/m3	1	8/9/2022 6:44:00 AM
1,2-Dichloroethane	< 0.61	0.61		ug/m3	1	8/9/2022 6:44:00 AM
1,2-Dichloropropane	< 0.69	0.69		ug/m3	1	8/9/2022 6:44:00 AM
1,3,5-Trimethylbenzene	< 0.74	0.74		ug/m3	1	8/9/2022 6:44:00 AM
1,3-butadiene	< 0.33	0.33		ug/m3	1	8/9/2022 6:44:00 AM
1,3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	8/9/2022 6:44:00 AM
1,4-Dichlorobenzene	< 0.90	0.90		ug/m3	1	8/9/2022 6:44:00 AM
1,4-Dioxane	< 1.1	1.1		ug/m3	1	8/9/2022 6:44:00 AM
2,2,4-trimethylpentane	< 0.70	0.70		ug/m3	1	8/9/2022 6:44:00 AM
4-ethyltoluene	< 0.74	0.74		ug/m3	1	8/9/2022 6:44:00 AM
Acetone	21	7.1		ug/m3	10	8/9/2022 5:00:00 PM
Allyl chloride	< 0.47	0.47		ug/m3	1	8/9/2022 6:44:00 AM
Benzene	0.38	0.48	J	ug/m3	1	8/9/2022 6:44:00 AM
Benzyl chloride	< 0.86	0.86		ug/m3	1	8/9/2022 6:44:00 AM
Bromodichloromethane	< 1.0	1.0		ug/m3	1	8/9/2022 6:44:00 AM
Bromoform	< 1.6	1.6		ug/m3	1	8/9/2022 6:44:00 AM
Bromomethane	< 0.58	0.58		ug/m3	1	8/9/2022 6:44:00 AM
Carbon disulfide	0.34	0.47	J	ug/m3	1	8/9/2022 6:44:00 AM
Carbon tetrachloride	0.57	0.19		ug/m3	1	8/9/2022 6:44:00 AM
Chlorobenzene	< 0.69	0.69		ug/m3	1	8/9/2022 6:44:00 AM
Chloroethane	< 0.40	0.40		ug/m3	1	8/9/2022 6:44:00 AM
Chloroform	< 0.73	0.73		ug/m3	1	8/9/2022 6:44:00 AM
Chloromethane	1.2	0.31		ug/m3	1	8/9/2022 6:44:00 AM
cis-1,2-Dichloroethene	< 0.16	0.16		ug/m3	1	8/9/2022 6:44:00 AM
cis-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	8/9/2022 6:44:00 AM
Cyclohexane	0.48	0.52	J	ug/m3	1	8/9/2022 6:44:00 AM
Dibromochloromethane	< 1.3	1.3	-	ug/m3	1	8/9/2022 6:44:00 AM
Ethyl acetate	1.3	0.54		ug/m3	1	8/9/2022 6:44:00 AM
Ethylbenzene	< 0.65	0.65		ug/m3	1	8/9/2022 6:44:00 AM
Freon 11	1.8	0.84		ug/m3	1	8/9/2022 6:44:00 AM
Freon 113	< 1.1	1.1		ug/m3	1	8/9/2022 6:44:00 AM
Freon 114	< 1.0	1.0		ug/m3	1	8/9/2022 6:44:00 AM

Qualifiers:

C Sub-Contracted Pag

Page 13 of 14

[.] Results reported are not blank corrected

DL Detection Limit

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

CLIENT: C & S Engineers, Inc. Client Sample ID: OA-1

C2208008 Lab Order:

Lab ID:

Tag Number: 475,396

Project: 1117 West Fayette Street Phase II C2208008-007A

Collection Date: 8/1/2022 Matrix: AIR

Date: 10-Aug-22

Qual Units Analyses Result DL DF **Date Analyzed** 1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE **TO-15** Analyst: RJP Freon 12 2.8 0.74 ug/m3 1 8/9/2022 6:44:00 AM 0.94 Heptane 0.61 ug/m3 1 8/9/2022 6:44:00 AM Hexachloro-1,3-butadiene < 1.6 1.6 ug/m3 1 8/9/2022 6:44:00 AM Hexane 1.1 0.53 ug/m3 1 8/9/2022 6:44:00 AM Isopropyl alcohol 3.2 0.37 ug/m3 1 8/9/2022 6:44:00 AM m&p-Xylene 0.82 1.3 ug/m3 8/9/2022 6:44:00 AM 0.45 1.2 J ug/m3 Methyl Butyl Ketone 1 8/9/2022 6:44:00 AM Methyl Ethyl Ketone 1.7 0.88 ug/m3 8/9/2022 6:44:00 AM ug/m3 1 Methyl Isobutyl Ketone < 1.2 1.2 8/9/2022 6:44:00 AM < 0.54 0.54 ug/m3 Methyl tert-butyl ether 1 8/9/2022 6:44:00 AM Methylene chloride 3.0 0.52 ug/m3 1 8/9/2022 6:44:00 AM o-Xylene < 0.65 0.65 ug/m3 8/9/2022 6:44:00 AM Propylene < 0.26 0.26 ug/m3 8/9/2022 6:44:00 AM Styrene < 0.64 0.64 ug/m3 8/9/2022 6:44:00 AM 1 Tetrachloroethylene < 1.0 1.0 ug/m3 1 8/9/2022 6:44:00 AM Tetrahydrofuran < 0.44 0.44 ug/m3 1 8/9/2022 6:44:00 AM Toluene 1.8 0.57 ug/m3 1 8/9/2022 6:44:00 AM trans-1,2-Dichloroethene < 0.59 0.59 ug/m3 1 8/9/2022 6:44:00 AM trans-1,3-Dichloropropene < 0.68 0.68 ug/m3 8/9/2022 6:44:00 AM 0.16 Trichloroethene 0.32 ug/m3 8/9/2022 6:44:00 AM Vinyl acetate < 0.53 0.53 ug/m3 8/9/2022 6:44:00 AM Vinyl Bromide < 0.66 0.66 ug/m3 1 8/9/2022 6:44:00 AM Vinyl chloride < 0.10 0.10 ug/m3 8/9/2022 6:44:00 AM

Qualifiers:

Results reported are not blank corrected

DL**Detection Limit**

Η Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

Spike Recovery outside accepted recovery limits

В Analyte detected in the associated Method Blank

Е Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

SC Sub-Contracted Page 14 of 14

Centek/SanAir Labs

Page 36 of 36

ANALYTICAL REPORT

Lab Number: L2241428

Client: C&S Companies

499 Col. Eileen Collins Blvd.

Syracuse, NY 13212

ATTN: Matthew Walker Phone: (315) 455-2000

Project Name: 1117 WEST FAYETTE STREET PHASE

Project Number: Z62.001.001

Report Date: 08/22/22

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 1117 WEST FAYETTE STREET PHASE

Project Number: Z62.001.001

 Lab Number:
 L2241428

 Report Date:
 08/22/22

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2241428-01	MW-1	WATER	SYRACUSE, NY	08/02/22 13:20	08/02/22
L2241428-02	MW-2	WATER	SYRACUSE, NY	08/02/22 13:40	08/02/22
L2241428-03	SB-10 (7.5-9)	SOIL	SYRACUSE, NY	08/02/22 15:45	08/02/22
L2241428-04	SB-06 (1-5)	SOIL	SYRACUSE, NY	08/02/22 15:50	08/02/22
L2241428-05	SB-04 (1-3.5)	SOIL	SYRACUSE, NY	08/02/22 15:50	08/02/22
L2241428-06	SB-01 (12.5-15)	SOIL	SYRACUSE, NY	08/02/22 16:00	08/02/22

Project Name:1117 WEST FAYETTE STREET PHASELab Number:L2241428Project Number:Z62.001.001Report Date:08/22/22

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:1117 WEST FAYETTE STREET PHASELab Number:L2241428Project Number:Z62.001.001Report Date:08/22/22

Case Narrative (continued)

Report Submission

August 22, 2022: This final report includes the results of all requested analyses.

August 22, 2022: This is a preliminary report.

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

L2241428-01: The pH was greater than two; however, the sample was analyzed within the method required holding time.

Semivolatile Organics

L2241428-03D: The sample has elevated detection limits due to the dilution required by the sample matrix. The surrogate recoveries for the WG1671850-1 Method Blank, associated with L2241428-02, are below the acceptance criteria for 2-fluorophenol (0%), phenol-d6 (0%), nitrobenzene-d5 (0%) and 2-fluorophenol (0%). The associated samples are non-detect and have acceptable surrogate recoveries; therefore, no further actions were taken.

Semivolatile Organics by SIM

The WG1672733-1 Method Blank, associated with L2241428-01 and -02, has a concentration above the reporting limit for Phenanthrene. Since the associated sample concentrations are either greater than 10x the blank concentration or non-detect to the RL for this target analyte, no corrective action is required. Any results detected below the reporting limit are qualified with a "B".

Total Metals

L2241428-01 and -02: The sample has elevated detection limits for all elements due to the prep dilution required by the sample matrix.

Project Name:1117 WEST FAYETTE STREET PHASELab Number:L2241428Project Number:Z62.001.001Report Date:08/22/22

Case Narrative (continued)

L2241428-04, -05, and -06: The sample has elevated detection limits due to the dilution required by matrix interferences encountered during analysis.

Cyanide, Total

The WG1672740-2/-3 LCS/LCSD recoveries for cyanide, total (75%/66%), associated with L2241428-03 through -06, are outside our in-house acceptance criteria, but within the vendor-certified acceptance limits. The results of the original analyses are reported.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 08/22/22

Melissa Sturgis Melissa Sturgis

ORGANICS

VOLATILES

L2241428

08/22/22

Project Name: 1117 WEST FAYETTE STREET PHASE

Project Number: Z62.001.001

SAMPLE RESULTS

Lab Number:

Report Date:

Lab ID: L2241428-01 Date Collected: 08/02/22 13:20

Client ID: MW-1

Date Received: 08/02/22 Field Prep: Sample Location: SYRACUSE, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 08/08/22 22:25

Analyst: MV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	0.76		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

L2241428

08/22/22

Project Name: 1117 WEST FAYETTE STREET PHASE

Project Number: Z62.001.001

L2241428-01

SYRACUSE, NY

MW-1

SAMPLE RESULTS

Date Collected: 08/02/22 13:20

Date Received: 08/02/22

Lab Number:

Report Date:

Field Prep: Not Specified

Sample Location:

Lab ID:

Client ID:

Sample Depth: Parameter Result Qualifier Units RL MDL **Dilution Factor**

Parameter	Result	Qualifier	Units	KL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	2.3	J	ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
n-Butylbenzene	ND		ug/l	2.5	0.70	1	
sec-Butylbenzene	ND		ug/l	2.5	0.70	1	
tert-Butylbenzene	ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1	
Naphthalene	ND		ug/l	2.5	0.70	1	
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
Methyl Acetate	ND		ug/l	2.0	0.23	1	
Cyclohexane	ND		ug/l	10	0.27	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Methyl cyclohexane	ND		ug/l	10	0.40	1	
monty, cyclotroxuno	ND		ug/i	10	0.40	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	120	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	101	70-130	
Dibromofluoromethane	101	70-130	

L2241428

08/02/22 13:40

Not Specified

08/02/22

Project Name: 1117 WEST FAYETTE STREET PHASE

Project Number: Z62.001.001

SAMPLE RESULTS

Popert Data:

Lab Number:

Date Collected:

Date Received:

Field Prep:

Report Date: 08/22/22

Lab ID: L2241428-02 Client ID: MW-2

Sample Location: SYRACUSE, NY

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 08/08/22 22:46

Analyst: MV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

L2241428

08/22/22

Project Name: 1117 WEST FAYETTE STREET PHASE

L2241428-02

SYRACUSE, NY

MW-2

Project Number: Z62.001.001

SAMPLE RESULTS

Date Collected: 08/02/22 13:40

Date Received: 08/02/22
Field Prep: Not Specified

Lab Number:

Report Date:

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	orough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	5.7		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	118		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	101		70-130	
Dibromofluoromethane	104		70-130	

L2241428

08/22/22

Project Name: 1117 WEST FAYETTE STREET PHASE

Project Number: Z62.001.001

SAMPLE RESULTS

Lab Number:

Report Date:

L2241428-03 Date Collected: 08/02/22 15:45

Client ID: Date Received: 08/02/22 SB-10 (7.5-9) Field Prep: Sample Location: SYRACUSE, NY Not Specified

Sample Depth:

Lab ID:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 08/09/22 09:40

Analyst: AJK 84% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low	- Westborough Lab					
Methylene chloride	ND		ug/kg	5.9	2.7	1
1,1-Dichloroethane	ND		ug/kg	1.2	0.17	1
Chloroform	ND		ug/kg	1.8	0.16	1
Carbon tetrachloride	ND		ug/kg	1.2	0.27	1
Tetrachloroethene	0.61		ug/kg	0.59	0.23	1
Chlorobenzene	ND		ug/kg	0.59	0.15	1
1,2-Dichloroethane	ND		ug/kg	1.2	0.30	1
1,1,1-Trichloroethane	ND		ug/kg	0.59	0.20	1
Benzene	ND		ug/kg	0.59	0.20	1
Toluene	ND		ug/kg	1.2	0.64	1
Ethylbenzene	0.39	J	ug/kg	1.2	0.17	1
Vinyl chloride	ND		ug/kg	1.2	0.40	1
1,1-Dichloroethene	ND		ug/kg	1.2	0.28	1
trans-1,2-Dichloroethene	ND		ug/kg	1.8	0.16	1
Trichloroethene	0.27	J	ug/kg	0.59	0.16	1
1,2-Dichlorobenzene	ND		ug/kg	2.4	0.17	1
1,3-Dichlorobenzene	ND		ug/kg	2.4	0.18	1
1,4-Dichlorobenzene	ND		ug/kg	2.4	0.20	1
Methyl tert butyl ether	ND		ug/kg	2.4	0.24	1
p/m-Xylene	ND		ug/kg	2.4	0.66	1
o-Xylene	ND		ug/kg	1.2	0.34	1
cis-1,2-Dichloroethene	ND		ug/kg	1.2	0.21	1
Acetone	57		ug/kg	12	5.7	1
2-Butanone	12		ug/kg	12	2.6	1
n-Butylbenzene	0.72	J	ug/kg	1.2	0.20	1
sec-Butylbenzene	0.63	J	ug/kg	1.2	0.17	1
tert-Butylbenzene	ND		ug/kg	2.4	0.14	1
n-Propylbenzene	0.37	J	ug/kg	1.2	0.20	1

08/22/22

Project Name: Lab Number: 1117 WEST FAYETTE STREET PHASE L2241428

Project Number: Z62.001.001

L2241428-03

SAMPLE RESULTS

Date Collected: 08/02/22 15:45

Report Date:

Client ID: Date Received: 08/02/22 SB-10 (7.5-9) Not Specified

Sample Location: SYRACUSE, NY Field Prep:

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Lov	w - Westborough Lab					
1,3,5-Trimethylbenzene	ND		ug/kg	2.4	0.23	1
1,2,4-Trimethylbenzene	ND		ug/kg	2.4	0.39	1
1,4-Dioxane	ND		ug/kg	94	42.	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	93	70-130	
Toluene-d8	105	70-130	
4-Bromofluorobenzene	118	70-130	
Dibromofluoromethane	96	70-130	

L2241428

Project Name: 1117 WEST FAYETTE STREET PHASE

Project Number: Z62.001.001

SAMPLE RESULTS

Report Date: 08/22/22

Lab Number:

Lab ID: L2241428-04 Date Collected: 08/02/22 15:50

Client ID: SB-06 (1-5) Date Received: 08/02/22 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 08/09/22 10:06

Analyst: AJK Percent Solids: 85%

Volatile Organics by EPA 5035 Low - Westborough Lab Methylene chloride ND ug/kg 4.7 2.2 1 1,1-Dichloroethane ND ug/kg 0.95 0.14 1 Chloroform ND ug/kg 0.95 0.12 1 Carbon tetrachloride ND ug/kg 0.95 0.22 1 Carbon tetrachloroethane ND ug/kg 0.47 0.18 1 Chlorobenzene ND ug/kg 0.47 0.12 1 1,2-Dichloroethane ND ug/kg 0.47 0.16 1 1,1-Trichloroethane ND ug/kg 0.47 0.16 1 1,1-Trichloroethane ND ug/kg 0.47 0.16 1 Ethylbenzene ND ug/kg 0.95 0.51 1 Uniformity Christiane ND ug/kg 0.95 0.32 1 1,1-Dichloroethane ND ug/kg 0.95 0.32 1 1,1-Dichlor	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,1-Dichloroethane ND ug/kg 0.95 0.14 1 Chloroform ND ug/kg 1.4 0.13 1 Carbon tetrachloride ND ug/kg 0.95 0.22 1 Tetrachloroethane ND ug/kg 0.47 0.18 1 Chlorobenzene ND ug/kg 0.47 0.12 1 L-2Dichloroethane ND ug/kg 0.47 0.16 1 1,1,1-Trichloroethane ND ug/kg 0.47 0.16 1 1,1,1-Trichloroethane ND ug/kg 0.47 0.16 1 Enzene ND ug/kg 0.95 0.51 1 Toluane ND ug/kg 0.95 0.51 1 Ethylbenzene ND ug/kg 0.95 0.51 1 Vinyl chloride ND ug/kg 0.95 0.22 1 1,1-Dichloroethene ND ug/kg 0.95 0.22 1	Volatile Organics by EPA 5035 Low -	Westborough Lab					
Chloroform ND ug/kg 1.4 0.13 1 Carbon tetrachloride ND ug/kg 0.95 0.22 1 Tetrachloroethene ND ug/kg 0.47 0.18 1 Chlorobenzene ND ug/kg 0.47 0.12 1 1,2-Dichloroethane ND ug/kg 0.95 0.24 1 1,1,1-Trichloresthane ND ug/kg 0.47 0.16 1 Benzene ND ug/kg 0.47 0.16 1 Toluene ND ug/kg 0.47 0.16 1 Ethylbenzene ND ug/kg 0.95 0.51 1 Ethylbenzene ND ug/kg 0.95 0.51 1 Unityl chloride ND ug/kg 0.95 0.32 1 Litz-bichloroethene ND ug/kg 0.95 0.22 1 Litz-bichloroethene ND ug/kg 0.47 0.13 1 </td <td>Methylene chloride</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>4.7</td> <td>2.2</td> <td>1</td>	Methylene chloride	ND		ug/kg	4.7	2.2	1
Carbon tetrachloride ND ug/kg 0.95 0.22 1 Tetrachloroethene ND ug/kg 0.47 0.18 1 Chlorobenzene ND ug/kg 0.47 0.12 1 1,1-1-Trichloroethane ND ug/kg 0.95 0.24 1 1,1,1-Trichloroethane ND ug/kg 0.47 0.16 1 Benzene ND ug/kg 0.47 0.16 1 Benzene ND ug/kg 0.47 0.16 1 Toluene ND ug/kg 0.95 0.51 1 Ethylbenzene ND ug/kg 0.95 0.51 1 Ethyloroethene ND ug/kg 0.95 0.32 1 1,1-Dichloroethene ND ug/kg 0.95 0.22 1 trans-1,2-Dichloroethene ND ug/kg 0.47 0.13 1 Trichloroethene ND ug/kg 0.47 0.13 1	1,1-Dichloroethane	ND		ug/kg	0.95	0.14	1
Tetrachloroethene ND ug/kg 0.47 0.18 1 Chlorobenzene ND ug/kg 0.47 0.12 1 1,2-Dichloroethane ND ug/kg 0.95 0.24 1 1,1,1-Trichloroethane ND ug/kg 0.47 0.16 1 Benzene ND ug/kg 0.95 0.51 1 Toluene ND ug/kg 0.95 0.51 1 Ethylbenzene ND ug/kg 0.95 0.13 1 Vinyl chloride ND ug/kg 0.95 0.32 1 1,1-Dichloroethene ND ug/kg 0.95 0.22 1 1,1-Dichloroethene ND ug/kg 0.95 0.22 1 1,1-Dichloroethene ND ug/kg 0.47 0.13 1 Trichloroethene ND ug/kg 0.47 0.13 1 1,2-Dichloroethene ND ug/kg 1.9 0.14 1	Chloroform	ND		ug/kg	1.4	0.13	1
Chlorobenzene ND ug/kg 0.47 0.12 1 1,2-Dichloroethane ND ug/kg 0.95 0.24 1 1,1,1-Trichloroethane ND ug/kg 0.47 0.16 1 Benzene ND ug/kg 0.47 0.16 1 Toluene ND ug/kg 0.95 0.51 1 Ethylbenzene ND ug/kg 0.95 0.51 1 Vinyl chloride ND ug/kg 0.95 0.32 1 Vinyl chloride ND ug/kg 0.95 0.32 1 1,1-Dichloroethene ND ug/kg 0.95 0.32 1 1,1-Dichloroethene ND ug/kg 0.95 0.22 1 1,1-Dichloroethene ND ug/kg 0.95 0.22 1 1,1-Dichloroethene ND ug/kg 0.95 0.23 1 1,2-Dichloroethene ND ug/kg 1.9 0.14 1	Carbon tetrachloride	ND		ug/kg	0.95	0.22	1
1,2-Dichloroethane ND ug/kg 0.95 0.24 1 1,1,1-Trichloroethane ND ug/kg 0.47 0.16 1 Benzene ND ug/kg 0.47 0.16 1 Toluene ND ug/kg 0.95 0.51 1 Ethylbenzene ND ug/kg 0.95 0.13 1 Vinyl chloride ND ug/kg 0.95 0.32 1 1,1-Dichloroethene ND ug/kg 0.95 0.32 1 1,1-Dichloroethene ND ug/kg 0.95 0.32 1 1,1-Dichloroethene ND ug/kg 0.95 0.22 1 1,1-Dichloroethene ND ug/kg 0.47 0.13 1 1,2-Dichloroethene ND ug/kg 1.9 0.14 1 1,2-Dichloroethene ND ug/kg 1.9 0.16 1 1,3-Dichloroethene ND ug/kg 1.9 0.16	Tetrachloroethene	ND		ug/kg	0.47	0.18	1
1.1.1-Trichloroethane ND ug/kg 0.47 0.16 1 Benzene ND ug/kg 0.47 0.16 1 Toluene ND ug/kg 0.95 0.51 1 Ethylbenzene ND ug/kg 0.95 0.13 1 Vinyl chloride ND ug/kg 0.95 0.32 1 1,1-Dichloroethene ND ug/kg 0.95 0.32 1 1,1-Dichloroethene ND ug/kg 0.95 0.22 1 trans-1,2-Dichloroethene ND ug/kg 1.4 0.13 1 Trichloroethene ND ug/kg 0.47 0.13 1 1,2-Dichloroethene ND ug/kg 1.9 0.14 1 1,3-Dichloroethene ND ug/kg 1.9 0.14 1 1,4-Dichloroethene ND ug/kg 1.9 0.16 1 Methyl tert butyl ether ND ug/kg 0.95 0.28	Chlorobenzene	ND		ug/kg	0.47	0.12	1
Benzene ND ug/kg 0.47 0.16 1 Toluene ND ug/kg 0.95 0.51 1 Eithylbenzene ND ug/kg 0.95 0.13 1 Vinyl chloride ND ug/kg 0.95 0.32 1 1,1-Dichloroethene ND ug/kg 0.95 0.22 1 trans-1,2-Dichloroethene ND ug/kg 1.4 0.13 1 Trichloroethene ND ug/kg 0.95 0.22 1 Trichloroethene ND ug/kg 1.4 0.13 1 Trichloroethene ND ug/kg 0.47 0.13 1 1,2-Dichloroethene ND ug/kg 1.9 0.14 1 1,3-Dichloroethene ND ug/kg 1.9 0.16 1 1,4-Dichloroethene ND ug/kg 1.9 0.16 1 Methyl tert butyl ether ND ug/kg 0.95 0.28 1<	1,2-Dichloroethane	ND		ug/kg	0.95	0.24	1
Toluene ND ug/kg 0.95 0.51 1 Ethylbenzene ND ug/kg 0.95 0.13 1 Vinyl chloride ND ug/kg 0.95 0.32 1 1,1-Dichloroethene ND ug/kg 0.95 0.22 1 1,1-Dichloroethene ND ug/kg 1.4 0.13 1 Trichloroethene ND ug/kg 0.47 0.13 1 1,2-Dichlorobenzene ND ug/kg 1.9 0.14 1 1,3-Dichlorobenzene ND ug/kg 1.9 0.14 1 1,4-Dichlorobenzene ND ug/kg 1.9 0.16 1 Methyl tert butyl ether ND ug/kg 1.9 0.16 1 Methyl tert butyl ether ND ug/kg 0.95 0.28 1 o-Xylene ND ug/kg 0.95 0.16 1 Acetone ND ug/kg 0.95 0.16 1 <td>1,1,1-Trichloroethane</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>0.47</td> <td>0.16</td> <td>1</td>	1,1,1-Trichloroethane	ND		ug/kg	0.47	0.16	1
Ethylbenzene ND ug/kg 0.95 0.13 1 Vinyl chloride ND ug/kg 0.95 0.32 1 1,1-Dichloroethene ND ug/kg 0.95 0.22 1 trans-1,2-Dichloroethene ND ug/kg 1.4 0.13 1 Trichloroethene ND ug/kg 0.47 0.13 1 1,2-Dichlorobenzene ND ug/kg 1.9 0.14 1 1,3-Dichlorobenzene ND ug/kg 1.9 0.14 1 1,4-Dichlorobenzene ND ug/kg 1.9 0.16 1 Methyl tert butyl ether ND ug/kg 1.9 0.16 1 Methyl tert butyl ether ND ug/kg 0.95 0.28 1 o-Xylene ND ug/kg 0.95 0.28 1 cis-1,2-Dichloroethene ND ug/kg 0.95 0.16 1 Acetone ND ug/kg 9.5 2.1 <td>Benzene</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>0.47</td> <td>0.16</td> <td>1</td>	Benzene	ND		ug/kg	0.47	0.16	1
Vinyl chloride ND ug/kg 0.95 0.32 1 1,1-Dichloroethene ND ug/kg 0.95 0.22 1 trans-1,2-Dichloroethene ND ug/kg 1.4 0.13 1 Trichloroethene ND ug/kg 0.47 0.13 1 1,2-Dichlorobenzene ND ug/kg 1.9 0.14 1 1,3-Dichlorobenzene ND ug/kg 1.9 0.14 1 1,4-Dichlorobenzene ND ug/kg 1.9 0.16 1 Methyl tert butyl ether ND ug/kg 1.9 0.16 1 Methyl tert butyl ether ND ug/kg 1.9 0.16 1 o-Xylene ND ug/kg 0.95 0.28 1 o-Xylene ND ug/kg 0.95 0.28 1 cis-1,2-Dichloroethene ND ug/kg 9.5 2.1 1 Acetone ND ug/kg 9.5 2.1	Toluene	ND		ug/kg	0.95	0.51	1
1,1-Dichloroethene ND ug/kg 0.95 0.22 1 trans-1,2-Dichloroethene ND ug/kg 1.4 0.13 1 Trichloroethene ND ug/kg 0.47 0.13 1 1,2-Dichlorobenzene ND ug/kg 1.9 0.14 1 1,3-Dichlorobenzene ND ug/kg 1.9 0.16 1 1,4-Dichlorobenzene ND ug/kg 1.9 0.16 1 Methyl tert butyl ether ND ug/kg 1.9 0.16 1 Methyl tert butyl ether ND ug/kg 1.9 0.53 1 o-Xylene ND ug/kg 0.95 0.28 1 o-Xylene ND ug/kg 0.95 0.28 1 cis-1,2-Dichloroethene ND ug/kg 0.95 0.16 1 Acetone ND ug/kg 9.5 2.1 1 2-Butanone ND ug/kg 0.95 0.16 1 n-Butylbenzene ND ug/kg 0.95 0.16	Ethylbenzene	ND		ug/kg	0.95	0.13	1
trans-1,2-Dichloroethene ND ug/kg 1.4 0.13 1 Trichloroethene ND ug/kg 0.47 0.13 1 1,2-Dichlorobenzene ND ug/kg 1.9 0.14 1 1,3-Dichlorobenzene ND ug/kg 1.9 0.14 1 1,4-Dichlorobenzene ND ug/kg 1.9 0.16 1 1,4-Dichlorobenzene ND ug/kg 1.9 0.16 1 Methyl tert butyl ether ND ug/kg 1.9 0.19 1 p/m-Xylene ND ug/kg 1.9 0.53 1 o-Xylene ND ug/kg 0.95 0.28 1 cis-1,2-Dichloroethene ND ug/kg 0.95 0.28 1 cis-1,2-Dichloroethene ND ug/kg 0.95 0.16 1 Acetone ND ug/kg 9.5 4.6 1 2-Butanone ND ug/kg 9.5 2.1 1 n-Butylbenzene ND ug/kg 0.95 0.16 1 sec-Butylbenzene ND ug/kg 0.95 0.16 1 tert-Butylbenzene ND ug/kg 0.95 0.14 1 tert-Butylbenzene ND ug/kg 0.95 0.14 1	Vinyl chloride	ND		ug/kg	0.95	0.32	1
Trichloroethene ND ug/kg 0.47 0.13 1 1,2-Dichlorobenzene ND ug/kg 1.9 0.14 1 1,3-Dichlorobenzene ND ug/kg 1.9 0.16 1 1,4-Dichlorobenzene ND ug/kg 1.9 0.16 1 Methyl tert butyl ether ND ug/kg 1.9 0.19 1 p/m-Xylene ND ug/kg 1.9 0.53 1 o-Xylene ND ug/kg 0.95 0.28 1 cis-1,2-Dichloroethene ND ug/kg 0.95 0.16 1 Acetone ND ug/kg 9.5 4.6 1 2-Butanone ND ug/kg 9.5 2.1 1 n-Butylbenzene ND ug/kg 0.95 0.16 1 sec-Butylbenzene ND ug/kg 0.95 0.14 1 tert-Butylbenzene ND ug/kg 1.9 0.11 1 </td <td>1,1-Dichloroethene</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>0.95</td> <td>0.22</td> <td>1</td>	1,1-Dichloroethene	ND		ug/kg	0.95	0.22	1
1,2-Dichlorobenzene ND ug/kg 1.9 0.14 1 1,3-Dichlorobenzene ND ug/kg 1.9 0.14 1 1,4-Dichlorobenzene ND ug/kg 1.9 0.16 1 Methyl tert butyl ether ND ug/kg 1.9 0.19 1 p/m-Xylene ND ug/kg 1.9 0.53 1 o-Xylene ND ug/kg 0.95 0.28 1 cis-1,2-Dichloroethene ND ug/kg 0.95 0.16 1 Acetone ND ug/kg 9.5 4.6 1 2-Butanone ND ug/kg 9.5 2.1 1 n-Butylbenzene ND ug/kg 0.95 0.16 1 sec-Butylbenzene ND ug/kg 0.95 0.16 1 tert-Butylbenzene ND ug/kg 0.95 0.14 1	trans-1,2-Dichloroethene	ND		ug/kg	1.4	0.13	1
1,3-Dichlorobenzene ND ug/kg 1.9 0.14 1 1,4-Dichlorobenzene ND ug/kg 1.9 0.16 1 Methyl tert butyl ether ND ug/kg 1.9 0.19 1 p/m-Xylene ND ug/kg 1.9 0.53 1 o-Xylene ND ug/kg 0.95 0.28 1 cis-1,2-Dichloroethene ND ug/kg 0.95 0.16 1 Acetone ND ug/kg 9.5 4.6 1 2-Butanone ND ug/kg 9.5 2.1 1 n-Butylbenzene ND ug/kg 0.95 0.16 1 sec-Butylbenzene ND ug/kg 0.95 0.16 1 tert-Butylbenzene ND ug/kg 0.95 0.14 1	Trichloroethene	ND		ug/kg	0.47	0.13	1
1,4-Dichlorobenzene ND ug/kg 1.9 0.16 1 Methyl tert butyl ether ND ug/kg 1.9 0.19 1 p/m-Xylene ND ug/kg 1.9 0.53 1 o-Xylene ND ug/kg 0.95 0.28 1 cis-1,2-Dichloroethene ND ug/kg 0.95 0.16 1 Acetone ND ug/kg 9.5 4.6 1 2-Butanone ND ug/kg 9.5 2.1 1 n-Butylbenzene ND ug/kg 0.95 0.16 1 sec-Butylbenzene ND ug/kg 0.95 0.14 1 tert-Butylbenzene ND ug/kg 1.9 0.11 1	1,2-Dichlorobenzene	ND		ug/kg	1.9	0.14	1
Methyl tert butyl ether ND ug/kg 1.9 0.19 1 p/m-Xylene ND ug/kg 1.9 0.53 1 o-Xylene ND ug/kg 0.95 0.28 1 cis-1,2-Dichloroethene ND ug/kg 0.95 0.16 1 Acetone ND ug/kg 9.5 4.6 1 2-Butanone ND ug/kg 9.5 2.1 1 n-Butylbenzene ND ug/kg 0.95 0.16 1 sec-Butylbenzene ND ug/kg 0.95 0.14 1 tert-Butylbenzene ND ug/kg 1.9 0.11 1	1,3-Dichlorobenzene	ND		ug/kg	1.9	0.14	1
p/m-Xylene ND ug/kg 1.9 0.53 1 o-Xylene ND ug/kg 0.95 0.28 1 cis-1,2-Dichloroethene ND ug/kg 0.95 0.16 1 Acetone ND ug/kg 9.5 4.6 1 2-Butanone ND ug/kg 9.5 2.1 1 n-Butylbenzene ND ug/kg 0.95 0.16 1 sec-Butylbenzene ND ug/kg 0.95 0.14 1 tert-Butylbenzene ND ug/kg 1.9 0.11 1	1,4-Dichlorobenzene	ND		ug/kg	1.9	0.16	1
o-Xylene ND ug/kg 0.95 0.28 1 cis-1,2-Dichloroethene ND ug/kg 0.95 0.16 1 Acetone ND ug/kg 9.5 4.6 1 2-Butanone ND ug/kg 9.5 2.1 1 n-Butylbenzene ND ug/kg 0.95 0.16 1 sec-Butylbenzene ND ug/kg 0.95 0.14 1 tert-Butylbenzene ND ug/kg 1.9 0.11 1	Methyl tert butyl ether	ND		ug/kg	1.9	0.19	1
cis-1,2-Dichloroethene ND ug/kg 0.95 0.16 1 Acetone ND ug/kg 9.5 4.6 1 2-Butanone ND ug/kg 9.5 2.1 1 n-Butylbenzene ND ug/kg 0.95 0.16 1 sec-Butylbenzene ND ug/kg 0.95 0.14 1 tert-Butylbenzene ND ug/kg 1.9 0.11 1	p/m-Xylene	ND		ug/kg	1.9	0.53	1
Acetone ND ug/kg 9.5 4.6 1 2-Butanone ND ug/kg 9.5 2.1 1 n-Butylbenzene ND ug/kg 0.95 0.16 1 sec-Butylbenzene ND ug/kg 0.95 0.14 1 tert-Butylbenzene ND ug/kg 1.9 0.11 1	o-Xylene	ND		ug/kg	0.95	0.28	1
2-Butanone ND ug/kg 9.5 2.1 1 n-Butylbenzene ND ug/kg 0.95 0.16 1 sec-Butylbenzene ND ug/kg 0.95 0.14 1 tert-Butylbenzene ND ug/kg 1.9 0.11 1	cis-1,2-Dichloroethene	ND		ug/kg	0.95	0.16	1
n-Butylbenzene ND ug/kg 0.95 0.16 1 sec-Butylbenzene ND ug/kg 0.95 0.14 1 tert-Butylbenzene ND ug/kg 1.9 0.11 1	Acetone	ND		ug/kg	9.5	4.6	1
sec-Butylbenzene ND ug/kg 0.95 0.14 1 tert-Butylbenzene ND ug/kg 1.9 0.11 1	2-Butanone	ND		ug/kg	9.5	2.1	1
tert-Butylbenzene ND ug/kg 1.9 0.11 1	n-Butylbenzene	ND		ug/kg	0.95	0.16	1
	sec-Butylbenzene	ND		ug/kg	0.95	0.14	1
n-Propylhenzene ND ug/kg 0.95 0.16 1	tert-Butylbenzene	ND		ug/kg	1.9	0.11	1
ug/kg 0.55 0.16 1	n-Propylbenzene	ND		ug/kg	0.95	0.16	1

08/22/22

Project Name: Lab Number: 1117 WEST FAYETTE STREET PHASE L2241428

Project Number: Z62.001.001

SAMPLE RESULTS

Date Collected: 08/02/22 15:50

Report Date:

Lab ID: L2241428-04 Client ID: Date Received: 08/02/22 SB-06 (1-5)

Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Lo	w - Westborough Lab					
1,3,5-Trimethylbenzene	ND		ug/kg	1.9	0.18	1
1,2,4-Trimethylbenzene	ND		ug/kg	1.9	0.32	1
1,4-Dioxane	ND		ug/kg	76	33.	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	92	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	94	70-130	
Dibromofluoromethane	101	70-130	

L2241428

08/22/22

Project Name: 1117 WEST FAYETTE STREET PHASE

L2241428-05

SB-04 (1-3.5)

SYRACUSE, NY

Project Number: Z62.001.001

SAMPLE RESULTS

Date Collected: 08/02/22 15:50

Lab Number:

Report Date:

Date Received: 08/02/22 Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 08/09/22 10:32

Analyst: AJK 78% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low	- Westborough Lab					
Methylene chloride	ND		ug/kg	5.7	2.6	1
1,1-Dichloroethane	ND		ug/kg	1.1	0.16	1
Chloroform	ND		ug/kg	1.7	0.16	1
Carbon tetrachloride	ND		ug/kg	1.1	0.26	1
Tetrachloroethene	ND		ug/kg	0.57	0.22	1
Chlorobenzene	ND		ug/kg	0.57	0.14	1
1,2-Dichloroethane	ND		ug/kg	1.1	0.29	1
1,1,1-Trichloroethane	ND		ug/kg	0.57	0.19	1
Benzene	ND		ug/kg	0.57	0.19	1
Toluene	ND		ug/kg	1.1	0.62	1
Ethylbenzene	ND		ug/kg	1.1	0.16	1
Vinyl chloride	ND		ug/kg	1.1	0.38	1
1,1-Dichloroethene	ND		ug/kg	1.1	0.27	1
trans-1,2-Dichloroethene	ND		ug/kg	1.7	0.16	1
Trichloroethene	ND		ug/kg	0.57	0.16	1
1,2-Dichlorobenzene	ND		ug/kg	2.3	0.16	1
1,3-Dichlorobenzene	ND		ug/kg	2.3	0.17	1
1,4-Dichlorobenzene	ND		ug/kg	2.3	0.19	1
Methyl tert butyl ether	ND		ug/kg	2.3	0.23	1
p/m-Xylene	ND		ug/kg	2.3	0.63	1
o-Xylene	ND		ug/kg	1.1	0.33	1
cis-1,2-Dichloroethene	ND		ug/kg	1.1	0.20	1
Acetone	ND		ug/kg	11	5.4	1
2-Butanone	ND		ug/kg	11	2.5	1
n-Butylbenzene	ND		ug/kg	1.1	0.19	1
sec-Butylbenzene	ND		ug/kg	1.1	0.16	1
tert-Butylbenzene	ND		ug/kg	2.3	0.13	1
n-Propylbenzene	ND		ug/kg	1.1	0.19	1

08/22/22

Project Name: 1117 WEST FAYETTE STREET PHASE Lab Number: L2241428

Project Number: Z62.001.001

L2241428-05

SAMPLE RESULTS

Date Collected: 08/02/22 15:50

Report Date:

Client ID: SB-04 (1-3.5) Date Received: 08/02/22 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Lo	w - Westborough Lab					
1,3,5-Trimethylbenzene	ND		ug/kg	2.3	0.22	1
1,2,4-Trimethylbenzene	ND		ug/kg	2.3	0.38	1
1,4-Dioxane	ND		ua/ka	91	40.	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	91	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	99	70-130	

L2241428

08/22/22

Project Name: 1117 WEST FAYETTE STREET PHASE

L2241428-06

SB-01 (12.5-15)

SYRACUSE, NY

Project Number: Z62.001.001

SAMPLE RESULTS

Data Callantada 00/00/00 46:00

Lab Number:

Report Date:

Date Collected: 08/02/22 16:00
Date Received: 08/02/22

Field Prep: 08/02/22

Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 08/09/22 10:59

Analyst: AJK Percent Solids: 87%

1,1-Dichloroethane ND ug/kg 0.97 0.14 1 Chloroform 0.24 J ug/kg 1.5 0.14 1 Carbon tetrachloride ND ug/kg 0.97 0.22 1 Tetrachloroethane ND ug/kg 0.49 0.19 1 Chlorobenzene ND ug/kg 0.49 0.12 1 1,2-Dichloroethane ND ug/kg 0.97 0.25 1 1,1-1-Trichloroethane ND ug/kg 0.49 0.16 1 Benzene ND ug/kg 0.49 0.16 1 Toluene ND ug/kg 0.97 0.53 1 Ethylbenzane ND ug/kg 0.97 0.53 1 Ethylbenzane ND ug/kg 0.97 0.14 1 1,1-Dichlorotentene ND ug/kg 0.97 0.23 1 1,1-Dichlorotentene ND ug/kg 0.99 0.13	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,1-Dichloroethane ND ug/kg 0.97 0.14 1 Chloroform 0.24 J ug/kg 1.5 0.14 1 Carbon tetrachloride ND ug/kg 0.97 0.22 1 Tetrachloroethene ND ug/kg 0.49 0.19 1 Chlorobenzene ND ug/kg 0.49 0.12 1 1,2-Dichloroethane ND ug/kg 0.97 0.25 1 1,1-1-Trichloroethane ND ug/kg 0.49 0.16 1 1,1-1-Trichloroethane ND ug/kg 0.49 0.16 1 Benzene ND ug/kg 0.97 0.53 1 Toluone ND ug/kg 0.97 0.53 1 Ethylbenzene ND ug/kg 0.97 0.14 1 Vinyl chloride ND ug/kg 0.97 0.23 1 trans-1,2-Dichloroethene ND ug/kg 0.97 0.	Volatile Organics by EPA 5035 Low	- Westborough Lab					
Chloroform 0.24 J ug/kg 1.5 0.14 1 Carbon tetrachloride ND ug/kg 0.97 0.22 1 Tetrachloroethene ND ug/kg 0.49 0.19 1 Chlorobenzene ND ug/kg 0.49 0.12 1 Chlorobenzene ND ug/kg 0.97 0.25 1 1,2-Dichloroethane ND ug/kg 0.49 0.16 1 Benzene ND ug/kg 0.49 0.16 1 Toluene ND ug/kg 0.97 0.53 1 Ethylbenzene ND ug/kg 0.97 0.53 1 Ethylbenzene ND ug/kg 0.97 0.33 1 1,1-Dichlorothene ND ug/kg 0.97 0.33 1 1,1-Dichlorothene ND ug/kg 0.97 0.13 1 1,2-Dichlorothene ND ug/kg 1.9 0.14 1 </td <td>Methylene chloride</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>4.9</td> <td>2.2</td> <td>1</td>	Methylene chloride	ND		ug/kg	4.9	2.2	1
Carbon tetrachloride ND ug/kg 0.97 0.22 1 Tetrachloroethene ND ug/kg 0.49 0.19 1 Chlorobenzene ND ug/kg 0.49 0.12 1 1,1,1-Trichloroethane ND ug/kg 0.97 0.25 1 1,1,1-Trichloroethane ND ug/kg 0.49 0.16 1 Benzene ND ug/kg 0.49 0.16 1 Toluene ND ug/kg 0.49 0.16 1 Eithylbenzene ND ug/kg 0.97 0.53 1 Eithylbenzene ND ug/kg 0.97 0.14 1 Vinyl chloride ND ug/kg 0.97 0.33 1 1,1-Dichloroethene ND ug/kg 0.97 0.23 1 1,1-Dichloroethene ND ug/kg 1.5 0.13 1 Trichloroethene ND ug/kg 1.9 0.14 1	1,1-Dichloroethane	ND		ug/kg	0.97	0.14	1
Tetrachloroethene ND ug/kg 0.49 0.19 1 Chlorobenzene ND ug/kg 0.49 0.12 1 L,2-Dichloroethane ND ug/kg 0.97 0.25 1 1,1,1-Trichloroethane ND ug/kg 0.49 0.16 1 Benzene ND ug/kg 0.99 0.53 1 Toluene ND ug/kg 0.97 0.53 1 Ethylbenzene ND ug/kg 0.97 0.53 1 Ethylbenzene ND ug/kg 0.97 0.14 1 Vinyl chloride ND ug/kg 0.97 0.33 1 1,1-Dichloroethene ND ug/kg 0.97 0.23 1 1,1-Dichloroethene ND ug/kg 0.97 0.23 1 Trichloroethene ND ug/kg 0.97 0.13 1 Trichloroethene ND ug/kg 1.9 0.14 1	Chloroform	0.24	J	ug/kg	1.5	0.14	1
Chlorobenzene ND ug/kg 0.49 0.12 1 1,2-Dichloroethane ND ug/kg 0.97 0.25 1 1,1,1-Trichloroethane ND ug/kg 0.49 0.16 1 Benzene ND ug/kg 0.49 0.16 1 Toluene ND ug/kg 0.97 0.53 1 Ethylbenzene ND ug/kg 0.97 0.53 1 Vinyl chloride ND ug/kg 0.97 0.33 1 1,1-Dichloroethene ND ug/kg 0.97 0.23 1 1,1-Dichloroethene ND ug/kg 0.97 0.23 1 Trichloroethene ND ug/kg 0.97 0.23 1 Trichloroethene ND ug/kg 0.99 0.13 1 1,2-Dichloroethene ND ug/kg 1.9 0.14 1 1,2-Dichloroethene ND ug/kg 1.9 0.14 1	Carbon tetrachloride	ND		ug/kg	0.97	0.22	1
1,2-Dichloroethane ND ug/kg 0.97 0.25 1 1,1,1-Trichloroethane ND ug/kg 0.49 0.16 1 Benzene ND ug/kg 0.49 0.16 1 Toluene ND ug/kg 0.97 0.53 1 Ethylbenzene ND ug/kg 0.97 0.14 1 Vinyl chloride ND ug/kg 0.97 0.33 1 1,1-Dichloroethene ND ug/kg 0.97 0.23 1 1,1-Dichloroethene ND ug/kg 0.97 0.23 1 1,1-Dichloroethene ND ug/kg 0.97 0.23 1 Trichloroethene ND ug/kg 0.97 0.23 1 Trichloroethene ND ug/kg 0.49 0.13 1 1,2-Dichloroethene ND ug/kg 1.9 0.14 1 1,3-Dichloroethene ND ug/kg 1.9 0.17 1 <td>Tetrachloroethene</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>0.49</td> <td>0.19</td> <td>1</td>	Tetrachloroethene	ND		ug/kg	0.49	0.19	1
1,1,1-Trichloroethane	Chlorobenzene	ND		ug/kg	0.49	0.12	1
Benzene ND ug/kg 0.49 0.16 1 Toluene ND ug/kg 0.97 0.53 1 Ethylbenzene ND ug/kg 0.97 0.14 1 Vinyl chloride ND ug/kg 0.97 0.33 1 1,1-Dichloroethene ND ug/kg 0.97 0.23 1 trans-1,2-Dichloroethene ND ug/kg 1.5 0.13 1 Trichloroethene 0.42 J ug/kg 0.49 0.13 1 Trichloroethene ND ug/kg 1.9 0.14 1 1,2-Dichloroethene ND ug/kg 1.9 0.14 1 1,3-Dichloroethene ND ug/kg 1.9 0.14 1 1,4-Dichloroethene ND ug/kg 1.9 0.17 1 Methyl tert butyl ether ND ug/kg 1.9 0.54 1 0-Xylene ND ug/kg 0.97 0.28	1,2-Dichloroethane	ND		ug/kg	0.97	0.25	1
Toluene ND ug/kg 0.97 0.53 1 Ethylbenzene ND ug/kg 0.97 0.14 1 Vinyl chloride ND ug/kg 0.97 0.33 1 1,1-Dichloroethene ND ug/kg 0.97 0.23 1 trans-1,2-Dichloroethene ND ug/kg 1.5 0.13 1 Trichloroethene ND ug/kg 1.5 0.13 1 1,2-Dichloroethene ND ug/kg 1.9 0.14 1 1,3-Dichlorobenzene ND ug/kg 1.9 0.14 1 1,3-Dichlorobenzene ND ug/kg 1.9 0.14 1 1,4-Dichlorobenzene ND ug/kg 1.9 0.17 1 Methyl tert butyl ether ND ug/kg 1.9 0.54 1 o-Xylene ND ug/kg 0.97 0.28 1 cis-1,2-Dichloroethene ND ug/kg 0.97 0.17 1 Acetone ND ug/kg 0.97 0.16 1 Sec-Butylbenzene ND ug/kg 0.97 0.16 1 sec-Butylbenzene ND ug/kg 0.97 0.14 1 tert-Butylbenzene ND ug/kg 0.97 0.14 1	1,1,1-Trichloroethane	ND		ug/kg	0.49	0.16	1
Ethylbenzene ND ug/kg 0.97 0.14 1 Vinyl chloride ND ug/kg 0.97 0.33 1 1,1-Dichloroethene ND ug/kg 0.97 0.23 1 trans-1,2-Dichloroethene ND ug/kg 1.5 0.13 1 Trichloroethene 0.42 J ug/kg 1.9 0.13 1 1,2-Dichlorobenzene ND ug/kg 1.9 0.14 1 1,3-Dichlorobenzene ND ug/kg 1.9 0.14 1 1,4-Dichlorobenzene ND ug/kg 1.9 0.17 1 Methyl tert butyl ether ND ug/kg 1.9 0.20 1 p/m-Xylene ND ug/kg 0.97 0.28 1 o-Xylene ND ug/kg 0.97 0.17 1 Acetone ND ug/kg 9.7 2.2 1 n-Butylbenzene ND ug/kg 0.97 0.16	Benzene	ND		ug/kg	0.49	0.16	1
Vinyl chloride ND ug/kg 0.97 0.33 1 1,1-Dichloroethene ND ug/kg 0.97 0.23 1 trans-1,2-Dichloroethene ND ug/kg 1.5 0.13 1 Trichloroethene 0.42 J ug/kg 0.49 0.13 1 1,2-Dichlorobenzene ND ug/kg 1.9 0.14 1 1,3-Dichlorobenzene ND ug/kg 1.9 0.14 1 1,4-Dichlorobenzene ND ug/kg 1.9 0.17 1 Methyl tert butyl ether ND ug/kg 1.9 0.20 1 p/m-Xylene ND ug/kg 1.9 0.54 1 o-Xylene ND ug/kg 0.97 0.28 1 cis-1,2-Dichloroethene ND ug/kg 0.97 0.17 1 Acetone ND ug/kg 9.7 4.7 1 2-Butanone ND ug/kg 0.97 0.1	Toluene	ND		ug/kg	0.97	0.53	1
1,1-Dichloroethene ND ug/kg 0.97 0.23 1 trans-1,2-Dichloroethene ND ug/kg 1.5 0.13 1 Trichloroethene 0.42 J ug/kg 0.49 0.13 1 1,2-Dichlorobenzene ND ug/kg 1.9 0.14 1 1,3-Dichlorobenzene ND ug/kg 1.9 0.14 1 1,4-Dichlorobenzene ND ug/kg 1.9 0.17 1 Methyl tert butyl ether ND ug/kg 1.9 0.20 1 p/m-Xylene ND ug/kg 1.9 0.54 1 o-Xylene ND ug/kg 0.97 0.28 1 cis-1,2-Dichloroethene ND ug/kg 0.97 0.17 1 Acetone ND ug/kg 9.7 4.7 1 2-Butanone ND ug/kg 9.7 2.2 1 n-Butylbenzene ND ug/kg 0.97 0.16<	Ethylbenzene	ND		ug/kg	0.97	0.14	1
trans-1,2-Dichloroethene ND ug/kg 1.5 0.13 1 Trichloroethene 0.42 J ug/kg 0.49 0.13 1 1,2-Dichlorobenzene ND ug/kg 1.9 0.14 1 1,3-Dichlorobenzene ND ug/kg 1.9 0.14 1 1,4-Dichlorobenzene ND ug/kg 1.9 0.17 1 Methyl tert butyl ether ND ug/kg 1.9 0.20 1 Methyl tert butyl ether ND ug/kg 1.9 0.54 1 o-Xylene ND ug/kg 0.97 0.28 1 o-Xylene ND ug/kg 0.97 0.28 1 cis-1,2-Dichloroethene ND ug/kg 0.97 0.17 1 Acetone ND ug/kg 9.7 4.7 1 2-Butanone ND ug/kg 0.97 0.16 1 n-Butylbenzene ND ug/kg 0.97	Vinyl chloride	ND		ug/kg	0.97	0.33	1
Trichloroethene 0.42 J ug/kg 0.49 0.13 1 1,2-Dichlorobenzene ND ug/kg 1.9 0.14 1 1,3-Dichlorobenzene ND ug/kg 1.9 0.17 1 1,4-Dichlorobenzene ND ug/kg 1.9 0.20 1 Methyl tert butyl ether ND ug/kg 1.9 0.54 1 p/m-Xylene ND ug/kg 0.97 0.28 1 o-Xylene ND ug/kg 0.97 0.17 1 cis-1,2-Dichloroethene ND ug/kg 0.97 0.17 1 Acetone ND ug/kg 9.7 4.7 1 2-Butanone ND ug/kg 9.7 2.2 1 n-Butylbenzene ND ug/kg 0.97 0.16 1 sec-Butylbenzene ND ug/kg 0.97 0.14 1 tert-Butylbenzene ND ug/kg 0.97 0.14	1,1-Dichloroethene	ND		ug/kg	0.97	0.23	1
1,2-Dichlorobenzene ND ug/kg 1.9 0.14 1 1,3-Dichlorobenzene ND ug/kg 1.9 0.14 1 1,4-Dichlorobenzene ND ug/kg 1.9 0.17 1 Methyl tert butyl ether ND ug/kg 1.9 0.20 1 p/m-Xylene ND ug/kg 1.9 0.54 1 o-Xylene ND ug/kg 0.97 0.28 1 cis-1,2-Dichloroethene ND ug/kg 0.97 0.17 1 Acetone ND ug/kg 9.7 4.7 1 2-Butanone ND ug/kg 9.7 2.2 1 n-Butylbenzene ND ug/kg 0.97 0.16 1 sec-Butylbenzene ND ug/kg 0.97 0.14 1 tert-Butylbenzene ND ug/kg 0.97 0.14 1	trans-1,2-Dichloroethene	ND		ug/kg	1.5	0.13	1
1,3-Dichlorobenzene ND ug/kg 1.9 0.14 1 1,4-Dichlorobenzene ND ug/kg 1.9 0.17 1 Methyl tert butyl ether ND ug/kg 1.9 0.20 1 p/m-Xylene ND ug/kg 1.9 0.54 1 o-Xylene ND ug/kg 0.97 0.28 1 cis-1,2-Dichloroethene ND ug/kg 0.97 0.17 1 Acetone ND ug/kg 9.7 4.7 1 2-Butanone ND ug/kg 9.7 2.2 1 n-Butylbenzene ND ug/kg 0.97 0.16 1 sec-Butylbenzene ND ug/kg 0.97 0.14 1 tert-Butylbenzene ND ug/kg 1.9 0.11 1	Trichloroethene	0.42	J	ug/kg	0.49	0.13	1
1,4-Dichlorobenzene ND ug/kg 1.9 0.17 1 Methyl tert butyl ether ND ug/kg 1.9 0.20 1 p/m-Xylene ND ug/kg 1.9 0.54 1 o-Xylene ND ug/kg 0.97 0.28 1 cis-1,2-Dichloroethene ND ug/kg 0.97 0.17 1 Acetone ND ug/kg 9.7 4.7 1 2-Butanone ND ug/kg 9.7 2.2 1 n-Butylbenzene ND ug/kg 0.97 0.16 1 sec-Butylbenzene ND ug/kg 0.97 0.14 1 tert-Butylbenzene ND ug/kg 1.9 0.11 1	1,2-Dichlorobenzene	ND		ug/kg	1.9	0.14	1
Methyl tert butyl ether ND ug/kg 1.9 0.20 1 p/m-Xylene ND ug/kg 1.9 0.54 1 o-Xylene ND ug/kg 0.97 0.28 1 cis-1,2-Dichloroethene ND ug/kg 0.97 0.17 1 Acetone ND ug/kg 9.7 4.7 1 2-Butanone ND ug/kg 9.7 2.2 1 n-Butylbenzene ND ug/kg 0.97 0.16 1 sec-Butylbenzene ND ug/kg 0.97 0.14 1 tert-Butylbenzene ND ug/kg 1.9 0.11 1	1,3-Dichlorobenzene	ND		ug/kg	1.9	0.14	1
p/m-Xylene ND ug/kg 1.9 0.54 1 o-Xylene ND ug/kg 0.97 0.28 1 cis-1,2-Dichloroethene ND ug/kg 0.97 0.17 1 Acetone ND ug/kg 9.7 4.7 1 2-Butanone ND ug/kg 9.7 2.2 1 n-Butylbenzene ND ug/kg 0.97 0.16 1 sec-Butylbenzene ND ug/kg 0.97 0.14 1 tert-Butylbenzene ND ug/kg 1.9 0.11 1	1,4-Dichlorobenzene	ND		ug/kg	1.9	0.17	1
o-Xylene ND ug/kg 0.97 0.28 1 cis-1,2-Dichloroethene ND ug/kg 0.97 0.17 1 Acetone ND ug/kg 9.7 4.7 1 2-Butanone ND ug/kg 9.7 2.2 1 n-Butylbenzene ND ug/kg 0.97 0.16 1 sec-Butylbenzene ND ug/kg 0.97 0.14 1 tert-Butylbenzene ND ug/kg 1.9 0.11 1	Methyl tert butyl ether	ND		ug/kg	1.9	0.20	1
cis-1,2-Dichloroethene ND ug/kg 0.97 0.17 1 Acetone ND ug/kg 9.7 4.7 1 2-Butanone ND ug/kg 9.7 2.2 1 n-Butylbenzene ND ug/kg 0.97 0.16 1 sec-Butylbenzene ND ug/kg 0.97 0.14 1 tert-Butylbenzene ND ug/kg 1.9 0.11 1	p/m-Xylene	ND		ug/kg	1.9	0.54	1
Acetone ND ug/kg 9.7 4.7 1 2-Butanone ND ug/kg 9.7 2.2 1 n-Butylbenzene ND ug/kg 0.97 0.16 1 sec-Butylbenzene ND ug/kg 0.97 0.14 1 tert-Butylbenzene ND ug/kg 1.9 0.11 1	o-Xylene	ND		ug/kg	0.97	0.28	1
2-Butanone ND ug/kg 9.7 2.2 1 n-Butylbenzene ND ug/kg 0.97 0.16 1 sec-Butylbenzene ND ug/kg 0.97 0.14 1 tert-Butylbenzene ND ug/kg 1.9 0.11 1	cis-1,2-Dichloroethene	ND		ug/kg	0.97	0.17	1
n-Butylbenzene ND ug/kg 0.97 0.16 1 sec-Butylbenzene ND ug/kg 0.97 0.14 1 tert-Butylbenzene ND ug/kg 1.9 0.11 1	Acetone	ND		ug/kg	9.7	4.7	1
sec-Butylbenzene ND ug/kg 0.97 0.14 1 tert-Butylbenzene ND ug/kg 1.9 0.11 1	2-Butanone	ND		ug/kg	9.7	2.2	1
tert-Butylbenzene ND ug/kg 1.9 0.11 1	n-Butylbenzene	ND		ug/kg	0.97	0.16	1
• •	sec-Butylbenzene	ND		ug/kg	0.97	0.14	1
n-Propylbenzene ND ug/kg 0.97 0.17 1	tert-Butylbenzene	ND		ug/kg	1.9	0.11	1
	n-Propylbenzene	ND		ug/kg	0.97	0.17	1

08/22/22

Project Name: 1117 WEST FAYETTE STREET PHASE Lab Number: L2241428

Project Number: Z62.001.001

L2241428-06

SAMPLE RESULTS

Date Collected: 08/02/22 16:00

Report Date:

Client ID: SB-01 (12.5-15) Date Received: 08/02/22 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Lo	w - Westborough Lab					
1,3,5-Trimethylbenzene	ND		ug/kg	1.9	0.19	1
1,2,4-Trimethylbenzene	ND		ug/kg	1.9	0.32	1
1,4-Dioxane	ND		ug/kg	78	34.	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	92	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	94	70-130	
Dibromofluoromethane	100	70-130	

L2241428

Project Name: 1117 WEST FAYETTE STREET PHASE **Lab Number:**

Project Number: Z62.001.001 **Report Date:** 08/22/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/08/22 19:07

Analyst: KJD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-02 Batch:	WG1673578-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

L2241428

Lab Number:

Project Name: 1117 WEST FAYETTE STREET PHASE

Project Number: Report Date: Z62.001.001 08/22/22

Method Blank Analysis Batch Quality Control

1,8260C

08/08/22 19:07

Analyst: KJD

Analytical Method:

Analytical Date:

arameter	Result	Qualifier Units	s RL	MDL
olatile Organics by GC/MS -	Westborough Lab	for sample(s):	01-02 Batch:	WG1673578-5
1,4-Dichlorobenzene	ND	ug/	2.5	0.70
Methyl tert butyl ether	ND	ug/	2.5	0.70
p/m-Xylene	ND	ug/	2.5	0.70
o-Xylene	ND	ug/	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/	2.5	0.70
Styrene	ND	ug/	2.5	0.70
Dichlorodifluoromethane	ND	ug/	5.0	1.0
Acetone	ND	ug/	5.0	1.5
Carbon disulfide	ND	ug/	5.0	1.0
2-Butanone	ND	ug/	5.0	1.9
4-Methyl-2-pentanone	ND	ug/	5.0	1.0
2-Hexanone	ND	ug/	5.0	1.0
1,2-Dibromoethane	ND	ug/	2.0	0.65
n-Butylbenzene	ND	ug/	2.5	0.70
sec-Butylbenzene	ND	ug/	2.5	0.70
tert-Butylbenzene	ND	ug/	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/	2.5	0.70
Isopropylbenzene	ND	ug/	2.5	0.70
p-Isopropyltoluene	ND	ug/	2.5	0.70
Naphthalene	ND	ug/	2.5	0.70
n-Propylbenzene	ND	ug/	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/	2.5	0.70
Methyl Acetate	ND	ug/	2.0	0.23
Cyclohexane	ND	ug/	10	0.27
Freon-113	ND	ug/	2.5	0.70
Methyl cyclohexane	ND	ug/	10	0.40

Project Name: 1117 WEST FAYETTE STREET PHASE Lab Number: L2241428

Project Number: Z62.001.001 **Report Date:** 08/22/22

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/08/22 19:07

Analyst: KJD

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01-02 Batch: WG1673578-5

		Acceptance		
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	122		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	99		70-130	
Dibromofluoromethane	108		70-130	

L2241428

Project Name: 1117 WEST FAYETTE STREET PHASE **Lab Number:**

Project Number: Z62.001.001 **Report Date:** 08/22/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/09/22 08:47

Analyst: MKS

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	· Westborough Lab	for sample(s):	03-06 Batch:	WG1673701-5
Methylene chloride	ND	ug/kç	5.0	2.3
1,1-Dichloroethane	ND	ug/ko	1.0	0.14
Chloroform	ND	ug/ko	g 1.5	0.14
Carbon tetrachloride	ND	ug/ko	1.0	0.23
Tetrachloroethene	ND	ug/ko	0.50	0.20
Chlorobenzene	ND	ug/ko	0.50	0.13
1,2-Dichloroethane	ND	ug/ko	1.0	0.26
1,1,1-Trichloroethane	ND	ug/ko	0.50	0.17
Benzene	ND	ug/ko	0.50	0.17
Toluene	ND	ug/ko	1.0	0.54
Ethylbenzene	ND	ug/ko	1.0	0.14
Vinyl chloride	ND	ug/ko	1.0	0.34
1,1-Dichloroethene	ND	ug/ko	1.0	0.24
trans-1,2-Dichloroethene	ND	ug/ko	1.5	0.14
Trichloroethene	ND	ug/ko	0.50	0.14
1,2-Dichlorobenzene	ND	ug/ko	2.0	0.14
1,3-Dichlorobenzene	ND	ug/ko	2.0	0.15
1,4-Dichlorobenzene	ND	ug/ko	2.0	0.17
Methyl tert butyl ether	ND	ug/ko	2.0	0.20
p/m-Xylene	ND	ug/ko	2.0	0.56
o-Xylene	ND	ug/ko	1.0	0.29
cis-1,2-Dichloroethene	ND	ug/ko	1.0	0.18
Acetone	ND	ug/ko	g 10	4.8
2-Butanone	ND	ug/ko	g 10	2.2
n-Butylbenzene	ND	ug/ko	1.0	0.17
sec-Butylbenzene	ND	ug/ko	1.0	0.15
tert-Butylbenzene	ND	ug/ko	2.0	0.12
n-Propylbenzene	ND	ug/ko	1.0	0.17
1,3,5-Trimethylbenzene	ND	ug/kç	2.0	0.19

Project Name: 1117 WEST FAYETTE STREET PHASE Lab Number: L2241428

Project Number: Z62.001.001 **Report Date:** 08/22/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/09/22 08:47

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS - West	borough Lat	o for sample	e(s): 03-06	Batch:	WG1673701-5	
1,2,4-Trimethylbenzene	ND		ug/kg	2.0	0.33	
1,4-Dioxane	ND		ug/kg	80	35.	

	Acceptance Acceptance						
Surrogate	%Recovery Qualifie	er Criteria					
1,2-Dichloroethane-d4	94	70-130					
Toluene-d8	96	70-130					
4-Bromofluorobenzene	92	70-130					
Dibromofluoromethane	101	70-130					

Project Name: 1117 WEST FAYETTE STREET PHASE

Project Number: Z62.001.001

Lab Number: L2241428

Parameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-02 Batch:	WG1673578-3	WG1673578-4			
Methylene chloride	98		99		70-130	1	20	
1,1-Dichloroethane	100		110		70-130	10	20	
Chloroform	100		100		70-130	0	20	
Carbon tetrachloride	88		89		63-132	1	20	
1,2-Dichloropropane	100		100		70-130	0	20	
Dibromochloromethane	89		85		63-130	5	20	
1,1,2-Trichloroethane	110		100		70-130	10	20	
Tetrachloroethene	110		100		70-130	10	20	
Chlorobenzene	100		96		75-130	4	20	
Trichlorofluoromethane	120		120		62-150	0	20	
1,2-Dichloroethane	110		120		70-130	9	20	
1,1,1-Trichloroethane	98		99		67-130	1	20	
Bromodichloromethane	90		90		67-130	0	20	
trans-1,3-Dichloropropene	89		83		70-130	7	20	
cis-1,3-Dichloropropene	83		83		70-130	0	20	
Bromoform	88		76		54-136	15	20	
1,1,2,2-Tetrachloroethane	120		100		67-130	18	20	
Benzene	100		100		70-130	0	20	
Toluene	100		94		70-130	6	20	
Ethylbenzene	100		94		70-130	6	20	
Chloromethane	100		110		64-130	10	20	
Bromomethane	78		82		39-139	5	20	
Vinyl chloride	120		130		55-140	8	20	

Project Name: 1117 WEST FAYETTE STREET PHASE

Project Number: Z62.001.001

Lab Number: L2241428

Parameter	LCS %Recovery	Qual	LCSD %Recover	y Qual	%Recovery Limits	RPD	RPD Qual Limits
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-02 Batch:	: WG1673578-3	WG1673578-4		
Chloroethane	120		140	Q	55-138	15	20
1,1-Dichloroethene	110		110		61-145	0	20
trans-1,2-Dichloroethene	100		100		70-130	0	20
Trichloroethene	100		100		70-130	0	20
1,2-Dichlorobenzene	110		94		70-130	16	20
1,3-Dichlorobenzene	110		95		70-130	15	20
1,4-Dichlorobenzene	110		94		70-130	16	20
Methyl tert butyl ether	100		110		63-130	10	20
p/m-Xylene	105		95		70-130	10	20
o-Xylene	100		95		70-130	5	20
cis-1,2-Dichloroethene	100		99		70-130	1	20
Styrene	105		95		70-130	10	20
Dichlorodifluoromethane	170	Q	170	Q	36-147	0	20
Acetone	150	Q	160	Q	58-148	6	20
Carbon disulfide	110		110		51-130	0	20
2-Butanone	130		140	Q	63-138	7	20
4-Methyl-2-pentanone	110		100		59-130	10	20
2-Hexanone	100		98		57-130	2	20
1,2-Dibromoethane	100		100		70-130	0	20
n-Butylbenzene	110		96		53-136	14	20
sec-Butylbenzene	110		95		70-130	15	20
tert-Butylbenzene	110		92		70-130	18	20
1,2-Dibromo-3-chloropropane	84		80		41-144	5	20

Project Name: 1117 WEST FAYETTE STREET PHASE

Project Number: Z62.001.001

Lab Number: L2241428

Parameter	LCS %Recovery	Qual		LCSD Recovery		%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-02	Batch:	WG1673578-3	WG1673578-4			
Isopropylbenzene	110			92		70-130	18		20
p-Isopropyltoluene	110			92		70-130	18		20
Naphthalene	100			90		70-130	11		20
n-Propylbenzene	110			93		69-130	17		20
1,2,4-Trichlorobenzene	100			91		70-130	9		20
1,3,5-Trimethylbenzene	110			92		64-130	18		20
1,2,4-Trimethylbenzene	110			91		70-130	19		20
Methyl Acetate	120			130		70-130	8		20
Cyclohexane	120			120		70-130	0		20
Freon-113	130			130		70-130	0		20
Methyl cyclohexane	100			97		70-130	3		20

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	115	123	70-130
Toluene-d8	100	97	70-130
4-Bromofluorobenzene	104	96	70-130
Dibromofluoromethane	99	104	70-130

Project Name: 1117 WEST FAYETTE STREET PHASE

Project Number: Z62.001.001

Lab Number: L2241428

Parameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	RPD Qual Limits	<u>; </u>
Volatile Organics by GC/MS - Westb	orough Lab Associated	sample(s):	03-06 Batch:	WG1673701-3	WG1673701-4			
Methylene chloride	79		77		70-130	3	30	
1,1-Dichloroethane	79		78		70-130	1	30	
Chloroform	68	Q	66	Q	70-130	3	30	
Carbon tetrachloride	86		85		70-130	1	30	
Tetrachloroethene	99		95		70-130	4	30	
Chlorobenzene	88		86		70-130	2	30	
1,2-Dichloroethane	76		74		70-130	3	30	
1,1,1-Trichloroethane	79		77		70-130	3	30	
Benzene	87		85		70-130	2	30	
Toluene	90		87		70-130	3	30	
Ethylbenzene	84		83		70-130	1	30	
Vinyl chloride	85		82		67-130	4	30	
1,1-Dichloroethene	77		75		65-135	3	30	
trans-1,2-Dichloroethene	77		77		70-130	0	30	
Trichloroethene	91		88		70-130	3	30	
1,2-Dichlorobenzene	88		85		70-130	3	30	
1,3-Dichlorobenzene	89		86		70-130	3	30	
1,4-Dichlorobenzene	88		86		70-130	2	30	
Methyl tert butyl ether	93		93		66-130	0	30	
p/m-Xylene	88		86		70-130	2	30	
o-Xylene	88		84		70-130	5	30	
cis-1,2-Dichloroethene	74		72		70-130	3	30	
Acetone	79		77		54-140	3	30	

Project Name: 1117 WEST FAYETTE STREET PHASE

Project Number: Z62.001.001

Lab Number: L2241428

arameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by GC/MS - Westborough I	_ab Associated	sample(s):	03-06 Batch:	WG1673701-3	WG1673701-4				
2-Butanone	80		75		70-130	6		30	
n-Butylbenzene	86		82		70-130	5		30	
sec-Butylbenzene	87		85		70-130	2		30	
tert-Butylbenzene	90		88		70-130	2		30	
n-Propylbenzene	91		88		70-130	3		30	
1,3,5-Trimethylbenzene	87		84		70-130	4		30	
1,2,4-Trimethylbenzene	85		83		70-130	2		30	
1,4-Dioxane	87		84		65-136	4		30	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	78	78	70-130
Toluene-d8	103	102	70-130
4-Bromofluorobenzene	101	101	70-130
Dibromofluoromethane	83	82	70-130

SEMIVOLATILES

L2241428

08/22/22

Project Name: 1117 WEST FAYETTE STREET PHASE

L2241428-01

SYRACUSE, NY

MW-1

Project Number: Z62.001.001

SAMPLE RESULTS

Lab Number:

Report Date:

Date Collected: 08/02/22 13:20

Date Received: 08/02/22 Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water Analytical Method: 1,8270D Analytical Date: 08/12/22 16:19

Analyst: JG Extraction Method: EPA 3510C **Extraction Date:** 08/05/22 16:36

Semivolatile Organics by GC/MS - Westbook Bis(2-chloroethyl)ether 3,3'-Dichlorobenzidine 2,4-Dinitrotoluene	ND ND ND		ug/l	2.0		
3,3'-Dichlorobenzidine	ND		ug/l	2.0		
					0.50	1
2.4 Dinitrataluana	ND		ug/l	5.0	1.6	1
2,4-Dinitrotoluene			ug/l	5.0	1.2	1
2,6-Dinitrotoluene	ND		ug/l	5.0	0.93	1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.49	1
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.38	1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.53	1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.50	1
Hexachlorocyclopentadiene	ND		ug/l	20	0.69	1
Isophorone	ND		ug/l	5.0	1.2	1
Nitrobenzene	ND		ug/l	2.0	0.77	1
NDPA/DPA	ND		ug/l	2.0	0.42	1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.64	1
Bis(2-ethylhexyl)phthalate	1.7	J	ug/l	3.0	1.5	1
Butyl benzyl phthalate	2.1	J	ug/l	5.0	1.2	1
Di-n-butylphthalate	0.45	J	ug/l	5.0	0.39	1
Di-n-octylphthalate	ND		ug/l	5.0	1.3	1
Diethyl phthalate	0.43	J	ug/l	5.0	0.38	1
Dimethyl phthalate	ND		ug/l	5.0	1.8	1
Biphenyl	ND		ug/l	2.0	0.46	1
4-Chloroaniline	ND		ug/l	5.0	1.1	1
2-Nitroaniline	ND		ug/l	5.0	0.50	1
3-Nitroaniline	ND		ug/l	5.0	0.81	1
4-Nitroaniline	ND		ug/l	5.0	0.80	1
Dibenzofuran	ND		ug/l	2.0	0.50	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.44	1
Acetophenone	ND		ug/l	5.0	0.53	1
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.61	1

08/22/22

Project Name: Lab Number: 1117 WEST FAYETTE STREET PHASE L2241428

Project Number: Z62.001.001

L2241428-01

SYRACUSE, NY

MW-1

SAMPLE RESULTS

08/02/22 13:20

Date Collected:

Report Date:

Date Received: 08/02/22 Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor					
Semivolatile Organics by GC/MS - W	Semivolatile Organics by GC/MS - Westborough Lab										
p-Chloro-m-cresol	ND		ug/l	2.0	0.35	1					
2-Chlorophenol	ND		ug/l	2.0	0.48	1					
2,4-Dichlorophenol	ND		ug/l	5.0	0.41	1					
2,4-Dimethylphenol	ND		ug/l	5.0	1.8	1					
2-Nitrophenol	ND		ug/l	10	0.85	1					
4-Nitrophenol	ND		ug/l	10	0.67	1					
2,4-Dinitrophenol	ND		ug/l	20	6.6	1					
4,6-Dinitro-o-cresol	ND		ug/l	10	1.8	1					
Phenol	ND		ug/l	5.0	0.57	1					
2-Methylphenol	ND		ug/l	5.0	0.49	1					
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	0.48	1					
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.77	1					
Carbazole	ND		ug/l	2.0	0.49	1					
Atrazine	ND		ug/l	10	0.76	1					
Benzaldehyde	ND		ug/l	5.0	0.53	1					
Caprolactam	ND		ug/l	10	3.3	1					
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	0.84	1					

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	34	21-120
Phenol-d6	30	10-120
Nitrobenzene-d5	52	23-120
2-Fluorobiphenyl	46	15-120
2,4,6-Tribromophenol	37	10-120
4-Terphenyl-d14	51	41-149

L2241428

08/22/22

Project Name: Lab Number: 1117 WEST FAYETTE STREET PHASE

Project Number: Z62.001.001

SAMPLE RESULTS

Date Collected: 08/02/22 13:20

Report Date:

Lab ID: L2241428-01

Date Received: 08/02/22 Client ID: MW-1

Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: 08/08/22 23:35 Analytical Method: 1,8270D-SIM Analytical Date: 08/10/22 14:24

Analyst: JJW

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM - \	Nestborough La	ab				
Acenaphthene	0.05	J	ug/l	0.10	0.01	1
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1
Fluoranthene	0.04	J	ug/l	0.10	0.02	1
Hexachlorobutadiene	ND		ug/l	0.50	0.05	1
Naphthalene	ND		ug/l	0.10	0.05	1
Benzo(a)anthracene	0.04	J	ug/l	0.10	0.02	1
Benzo(a)pyrene	0.02	J	ug/l	0.10	0.02	1
Benzo(b)fluoranthene	0.03	J	ug/l	0.10	0.01	1
Benzo(k)fluoranthene	0.01	J	ug/l	0.10	0.01	1
Chrysene	0.02	J	ug/l	0.10	0.01	1
Acenaphthylene	ND		ug/l	0.10	0.01	1
Anthracene	0.02	J	ug/l	0.10	0.01	1
Benzo(ghi)perylene	0.02	J	ug/l	0.10	0.01	1
Fluorene	0.03	J	ug/l	0.10	0.01	1
Phenanthrene	0.10	J	ug/l	0.10	0.02	1
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	1
Indeno(1,2,3-cd)pyrene	0.02	J	ug/l	0.10	0.01	1
Pyrene	0.03	J	ug/l	0.10	0.02	1
2-Methylnaphthalene	0.02	J	ug/l	0.10	0.02	1
Pentachlorophenol	ND		ug/l	0.80	0.01	1
Hexachlorobenzene	ND		ug/l	0.80	0.01	1
Hexachloroethane	ND		ug/l	0.80	0.06	1

08/22/22

Project Name: Lab Number: 1117 WEST FAYETTE STREET PHASE L2241428

Project Number: Z62.001.001

SAMPLE RESULTS

Date Collected: 08/02/22 13:20

Report Date:

Lab ID: L2241428-01 Date Received: Client ID: 08/02/22 MW-1

Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Result Qualifier Units RL MDL **Dilution Factor** Parameter

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	71	21-120
Phenol-d6	65	10-120
Nitrobenzene-d5	92	23-120
2-Fluorobiphenyl	84	15-120
2,4,6-Tribromophenol	95	10-120
4-Terphenyl-d14	61	41-149

L2241428

08/22/22

Project Name: 1117 WEST FAYETTE STREET PHASE

L2241428-02

SYRACUSE, NY

MW-2

Project Number: Z62.001.001

SAMPLE RESULTS

Date Collected: 08/02/22 13:40

Lab Number:

Report Date:

Date Received: 08/02/22

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Analytical Method: 1,8270D Analytical Date: 08/09/22 13:19

Analyst: CMM

Extraction Method: EPA 3510C Water **Extraction Date:** 08/05/22 15:14

3,3*Dichlorobenzidine ND ug/l 5.0 1.6 1 2,4*Dinitrotoluene ND ug/l 5.0 1.2 1 2,6*Dinitrotoluene ND ug/l 5.0 0.93 1 4*Chlorophenyl phenyl ether ND ug/l 2.0 0.49 1 4*Chlorophenyl phenyl ether ND ug/l 2.0 0.53 1 Bis(2-chlorosthosy)methane ND ug/l 5.0 0.50 1 Hexachlorocyclopentadiene ND ug/l 5.0 0.50 1 Hexachlorocyclopentadiene ND ug/l 5.0 0.69 1 Isophorone ND ug/l 5.0 0.69 1 Nitrobenzene ND ug/l 5.0 0.69 1 NITrobenzene ND ug/l 2.0 0.42 1 N-NITrobenzene ND ug/l 5.0 0.64 1 N-Paltrosodiphensylphthalate ND ug/l 5.0	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
ND	Semivolatile Organics by GC/MS - W	estborough Lab					
ND	Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.50	1
2,6-Dinitrotoluene ND ug/l 5.0 0.93 1 4-Chlorophenyl phenyl ether ND ug/l 2.0 0.49 1 4-Bromophenyl phenyl ether ND ug/l 2.0 0.38 1 Bis(2-chlorospropyl phenyl ether ND ug/l 2.0 0.53 1 Bis(2-chlorospropyl ether ND ug/l 5.0 0.50 1 Bis(2-chlorospropylether ND ug/l 5.0 0.50 1 Hexachlorocyclopentadiene ND ug/l 5.0 0.69 1 Isophorone ND ug/l 5.0 0.50 1 NITO ug/l 5.0 0.69 1 NITO ug/l 2.0 0.77 1 NDPA/DPA ND ug/l 5.0 0.64 1 NDPA/DPA ND ug/l 5.0 0.64 1 Bisic/2-chlyflexyllphthalate ND ug/l 5.0 0.64 1	3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.6	1
4-Chlorophenyl phenyl ether ND ug/l 2.0 0.49 1 4-Bromophenyl phenyl ether ND ug/l 2.0 0.38 1 Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.53 1 Bis(2-chloroisopropyl)ether ND ug/l 5.0 0.50 1 Bis(2-chloroisopropyl)ether ND ug/l 5.0 0.69 1 Bis(2-chloroisopropyl)ether ND ug/l 5.0 0.69 1 Bis(2-chloroisopropyl)ether ND ug/l 5.0 0.69 1 Bis(2-chloroisopropyl)ether ND ug/l 5.0 0.77 1 Bis(2-chloroisopropyl)ether ND ug/l 5.0 0.77 1 Bis(2-chloroisopropyl)ether ND ug/l 5.0 0.64 1 Bis(2-chloroisopropyl)ether ND ug/l 5.0 0.64 1 Bis(2-chloroisopropyl)ether ND ug/l 5.0 0.64 1 Bis(2-chloroisopropyl)ether ND ug/l 5.0 0.39 1 Di-n-Nitrosodin-propylamine ND ug/l 5.0 0.39 1 Di-n-Ditylphthalate ND ug/l 5.0 0.39 1 Di-n-Ditylphthalate ND ug/l 5.0 0.38 1 Di-n-butylphthalate ND ug/l 5.0 0.38 1 Di-n-butylphthalate ND ug/l 5.0 0.38 1 Di-n-Ctylphthalate ND ug/l 5.0 0.38 1 Dimetryl phthalate ND ug/l 5.0 0.64 1 A-Chloroaniline ND ug/l 5.0 0.50 1.1 1 Bis(2-chlorosiniline ND ug/l 5.0 0.50 1 Bis(2-chlorosiniline ND ug/l 5.0 0.80 1 Bis(2-chlorosiniline ND ug/l 5.0 0.50 1	2,4-Dinitrotoluene	ND		ug/l	5.0	1.2	1
4-Bromophenyl phenyl ether ND ug/l 2.0 0.38 1 Bis(2-chloroispropyl)ether ND ug/l 2.0 0.53 1 Bis(2-chloroispropyl)ether ND ug/l 5.0 0.50 1 Hexachlorocyclopentadiene ND ug/l 5.0 0.69 1 Isophorone ND ug/l 5.0 0.77 1 Isophorone ND ug/l 2.0 0.69 1 Nitrobenzene ND ug/l 2.0 0.77 1 Nitrobenzene ND ug/l 2.0 0.77 1 NIPA/DPA ND ug/l 2.0 0.77 1 INDPA/DPA ND ug/l 2.0 0.64 1 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.39 1 Din-butyl phthalate ND ug/l 5.0 0.39 1 Din-butyl phthalate ND ug/l 5.0 0.38 1 Din-butyl phthalate ND ug/l 5.0 0.38 1 Din-butyl phthalate ND ug/l 5.0 0.38 1 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.38 1 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.38 1 Din-butylphthalate ND ug/l 5.0 0.38 1 Din-butylphthalate ND ug/l 5.0 0.38 1 Din-cotylphthalate ND ug/l 5.0 0.38 1 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.60 1 Bis(2-ethylexyl)phthalate ND ug/l 5.0 0.60 1	2,6-Dinitrotoluene	ND		ug/l	5.0	0.93	1
Bis(2-chloroisopropyl)ether ND	4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.49	1
Bis(2-chloroethoxy)methane ND ug/l 5.0 0.50 1	4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.38	1
Hexachlorocyclopentadiene ND ug/l 20 0.69 1	Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.53	1
ND	Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.50	1
Nitrobenzene ND ug/l 2.0 0.77 1 NDPA/DPA ND ug/l 2.0 0.42 1 n-Nitrosodi-n-propylamine ND ug/l 5.0 0.64 1 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 1.5 1 Butyl benzyl phthalate ND ug/l 5.0 1.2 1 Di-n-butylphthalate ND ug/l 5.0 1.2 1 Di-n-butylphthalate ND ug/l 5.0 1.3 1 Di-n-octylphthalate ND ug/l 5.0 0.39 1 Di-n-octylphthalate ND ug/l 5.0 1.3 1 Diethyl phthalate ND ug/l 5.0 1.3 1 Diethyl phthalate ND ug/l 5.0 1.8 1 Dimethyl phthalate ND ug/l 5.0 1.8 1 Dimethyl phthalate ND ug/l 5.0 1.8 1 Dimethyl phthalate ND ug/l 5.0 1.8 1 Sighenyl ND ug/l 5.0 1.8 1 Sighenyl ND ug/l 5.0 0.46 1 Sighenyl ND ug/l 5.0 0.50 1 Silticonilline ND ug/l 5.0 0.50 1 Silticonilline ND ug/l 5.0 0.81 1 Silticonilline ND ug/l 5.0 0.81 1 Silticonilline ND ug/l 5.0 0.80 1	Hexachlorocyclopentadiene	ND		ug/l	20	0.69	1
NDPA/DPA ND	Isophorone	ND		ug/l	5.0	1.2	1
ND	Nitrobenzene	ND		ug/l	2.0	0.77	1
Bis(2-ethylhexyl)phthalate	NDPA/DPA	ND		ug/l	2.0	0.42	1
Butyl benzyl phthalate ND ug/l 5.0 1.2 1	n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.64	1
Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-cotylphthalate ND ug/l 5.0 1.3 1 Diethyl phthalate 0.43 J ug/l 5.0 0.38 1 Dimethyl phthalate ND ug/l 5.0 0.38 1 Biphenyl ND ug/l 5.0 0.46 1 4-Chloroaniline ND ug/l 5.0 0.46 1 2-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 5.0 0.53 1 Acetophenone ND ug/l 5.0 0.53 1	Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	1.5	1
Di-n-octylphthalate	Butyl benzyl phthalate	ND		ug/l	5.0	1.2	1
Diethyl phthalate 0.43 J ug/l 5.0 0.38 1 Dimethyl phthalate ND ug/l 5.0 1.8 1 Biphenyl ND ug/l 2.0 0.46 1 4-Chloroaniline ND ug/l 5.0 1.1 1 2-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.50 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	Di-n-butylphthalate	ND		ug/l	5.0	0.39	1
Dimethyl phthalate ND ug/l 5.0 1.8 1	Di-n-octylphthalate	ND		ug/l	5.0	1.3	1
ND ug/l 2.0 0.46 1	Diethyl phthalate	0.43	J	ug/l	5.0	0.38	1
4-Chloroaniline ND ug/l 5.0 1.1 1 2-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	Dimethyl phthalate	ND		ug/l	5.0	1.8	1
2-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	Biphenyl	ND		ug/l	2.0	0.46	1
3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	4-Chloroaniline	ND		ug/l	5.0	1.1	1
4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	2-Nitroaniline	ND		ug/l	5.0	0.50	1
Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	3-Nitroaniline	ND		ug/l	5.0	0.81	1
1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	4-Nitroaniline	ND		ug/l	5.0	0.80	1
Acetophenone ND ug/l 5.0 0.53 1	Dibenzofuran	ND		ug/l	2.0	0.50	1
v	1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.44	1
2,4,6-Trichlorophenol ND ug/l 5.0 0.61 1	Acetophenone	ND		ug/l	5.0	0.53	1
	2,4,6-Trichlorophenol	ND		ug/l	5.0	0.61	1

08/22/22

Project Name: Lab Number: 1117 WEST FAYETTE STREET PHASE L2241428

Project Number: Z62.001.001

L2241428-02

SYRACUSE, NY

MW-2

SAMPLE RESULTS

Date Collected: 08/02/22 13:40

Date Received: 08/02/22

Report Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - V	Vestborough Lab						
p-Chloro-m-cresol	ND		ug/l	2.0	0.35	1	
2-Chlorophenol	ND		ug/l	2.0	0.48	1	
2,4-Dichlorophenol	ND		ug/l	5.0	0.41	1	
2,4-Dimethylphenol	ND		ug/l	5.0	1.8	1	
2-Nitrophenol	ND		ug/l	10	0.85	1	
4-Nitrophenol	ND		ug/l	10	0.67	1	
2,4-Dinitrophenol	ND		ug/l	20	6.6	1	
4,6-Dinitro-o-cresol	ND		ug/l	10	1.8	1	
Phenol	ND		ug/l	5.0	0.57	1	
2-Methylphenol	ND		ug/l	5.0	0.49	1	
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	0.48	1	
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.77	1	
Carbazole	ND		ug/l	2.0	0.49	1	
Atrazine	ND		ug/l	10	0.76	1	
Benzaldehyde	ND		ug/l	5.0	0.53	1	
Caprolactam	ND		ug/l	10	3.3	1	
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	0.84	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	70	21-120
Phenol-d6	62	10-120
Nitrobenzene-d5	78	23-120
2-Fluorobiphenyl	79	15-120
2,4,6-Tribromophenol	96	10-120
4-Terphenyl-d14	92	41-149

L2241428

08/22/22

Project Name: Lab Number: 1117 WEST FAYETTE STREET PHASE

Project Number: Z62.001.001

SAMPLE RESULTS

Date Collected: 08/02/22 13:40

Report Date:

Lab ID: L2241428-02 Date Received: 08/02/22 Client ID: MW-2

Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water

08/08/22 23:35 **Extraction Date:** Analytical Method: 1,8270D-SIM Analytical Date: 08/10/22 14:40

Analyst: JJW

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM - V	Vestborough La	ab				
Acenaphthene	ND		ug/l	0.10	0.01	1
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1
Fluoranthene	0.02			0.10	0.02	1
		J	ug/l			
Hexachlorobutadiene	ND		ug/l	0.50	0.05	
Naphthalene	ND		ug/l	0.10	0.05	1
Benzo(a)anthracene	0.04	J	ug/l	0.10	0.02	1
Benzo(a)pyrene	0.02	J	ug/l	0.10	0.02	1
Benzo(b)fluoranthene	0.03	J	ug/l	0.10	0.01	1
Benzo(k)fluoranthene	0.01	J	ug/l	0.10	0.01	1
Chrysene	0.01	J	ug/l	0.10	0.01	1
Acenaphthylene	ND		ug/l	0.10	0.01	1
Anthracene	ND		ug/l	0.10	0.01	1
Benzo(ghi)perylene	0.02	J	ug/l	0.10	0.01	1
Fluorene	ND		ug/l	0.10	0.01	1
Phenanthrene	ND		ug/l	0.10	0.02	1
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	1
Indeno(1,2,3-cd)pyrene	0.02	J	ug/l	0.10	0.01	1
Pyrene	ND		ug/l	0.10	0.02	1
2-Methylnaphthalene	ND		ug/l	0.10	0.02	1
Pentachlorophenol	ND		ug/l	0.80	0.01	1
Hexachlorobenzene	ND		ug/l	0.80	0.01	1
Hexachloroethane	ND		ug/l	0.80	0.06	1

Project Name: Lab Number: 1117 WEST FAYETTE STREET PHASE L2241428

Project Number: Z62.001.001

Report Date: 08/22/22

SAMPLE RESULTS

Lab ID: Date Collected: 08/02/22 13:40 L2241428-02

Date Received: Client ID: 08/02/22 MW-2 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Result Qualifier Units RL MDL **Dilution Factor** Parameter

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	68	21-120
Phenol-d6	61	10-120
Nitrobenzene-d5	80	23-120
2-Fluorobiphenyl	73	15-120
2,4,6-Tribromophenol	91	10-120
4-Terphenyl-d14	52	41-149

L2241428

08/22/22

08/04/22 03:56

Project Name: 1117 WEST FAYETTE STREET PHASE

L2241428-03

SB-10 (7.5-9) SYRACUSE, NY D

Project Number: Z62.001.001

SAMPLE RESULTS

Date Collected: 08/02/22 15:45

Date Received: 08/02/22

Extraction Method: EPA 3546

Lab Number:

Report Date:

Extraction Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Soil
Analytical Method: 1,8270D
Analytical Date: 08/17/22 16:01

Analyst: WR Percent Solids: 84%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Wes	stborough Lab					
Acenaphthene	ND		ug/kg	780	100	5
Hexachlorobenzene	ND		ug/kg	580	110	5
Fluoranthene	590		ug/kg	580	110	5
Naphthalene	ND		ug/kg	970	120	5
Benzo(a)anthracene	990		ug/kg	580	110	5
Benzo(a)pyrene	270	J	ug/kg	780	240	5
Benzo(b)fluoranthene	380	J	ug/kg	580	160	5
Benzo(k)fluoranthene	ND		ug/kg	580	160	5
Chrysene	1200		ug/kg	580	100	5
Acenaphthylene	ND		ug/kg	780	150	5
Anthracene	220	J	ug/kg	580	190	5
Benzo(ghi)perylene	140	J	ug/kg	780	110	5
Fluorene	110	J	ug/kg	970	94.	5
Phenanthrene	290	J	ug/kg	580	120	5
Dibenzo(a,h)anthracene	ND		ug/kg	580	110	5
Indeno(1,2,3-cd)pyrene	170	J	ug/kg	780	140	5
Pyrene	950		ug/kg	580	96.	5
Dibenzofuran	ND		ug/kg	970	92.	5
Pentachlorophenol	ND		ug/kg	780	210	5
Phenol	ND		ug/kg	970	150	5
2-Methylphenol	ND		ug/kg	970	150	5
3-Methylphenol/4-Methylphenol	ND		ug/kg	1400	150	5

08/02/22 15:45

Project Name: Lab Number: 1117 WEST FAYETTE STREET PHASE L2241428

Project Number: Z62.001.001

SAMPLE RESULTS

Report Date: 08/22/22

Date Collected:

Lab ID: D L2241428-03

Date Received: Client ID: 08/02/22 SB-10 (7.5-9) ${\sf SYRACUSE}, {\sf NY}$ Sample Location: Field Prep: Not Specified

Sample Depth:

Result Qualifier Units RL MDL **Dilution Factor** Parameter

Semivolatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	66	25-120
Phenol-d6	72	10-120
Nitrobenzene-d5	72	23-120
2-Fluorobiphenyl	79	30-120
2,4,6-Tribromophenol	73	10-136
4-Terphenyl-d14	81	18-120

L2241428

08/22/22

Project Name: 1117 WEST FAYETTE STREET PHASE

Project Number: Z62.001.001

SAMPLE RESULTS

Date Collected: 08/02/22 15:50

Lab Number:

Report Date:

Lab ID: L2241428-04 Date Received: Client ID: 08/02/22 SB-06 (1-5) Not Specified

SYRACUSE, NY Sample Location: Field Prep:

Sample Depth:

Extraction Method: EPA 3546 Matrix: Soil **Extraction Date:** 08/04/22 03:56

Analytical Method: 1,8270D Analytical Date: 08/17/22 14:49

Analyst: IM 85% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Wes	tborough Lab					
Acenaphthene	31	J	ug/kg	160	20.	1
Hexachlorobenzene	ND		ug/kg	120	22.	1
Fluoranthene	620		ug/kg	120	22.	1
Naphthalene	50	J	ug/kg	200	24.	1
Benzo(a)anthracene	370		ug/kg	120	22.	1
Benzo(a)pyrene	400		ug/kg	160	48.	1
Benzo(b)fluoranthene	440		ug/kg	120	33.	1
Benzo(k)fluoranthene	180		ug/kg	120	31.	1
Chrysene	400		ug/kg	120	20.	1
Acenaphthylene	46	J	ug/kg	160	30.	1
Anthracene	100	J	ug/kg	120	38.	1
Benzo(ghi)perylene	240		ug/kg	160	23.	1
Fluorene	34	J	ug/kg	200	19.	1
Phenanthrene	430		ug/kg	120	24.	1
Dibenzo(a,h)anthracene	54	J	ug/kg	120	23.	1
Indeno(1,2,3-cd)pyrene	280		ug/kg	160	27.	1
Pyrene	570		ug/kg	120	19.	1
Dibenzofuran	31	J	ug/kg	200	18.	1
Pentachlorophenol	ND		ug/kg	160	43.	1
Phenol	ND		ug/kg	200	30.	1
2-Methylphenol	ND		ug/kg	200	30.	1
3-Methylphenol/4-Methylphenol	ND		ug/kg	280	31.	1

08/22/22

Project Name: Lab Number: 1117 WEST FAYETTE STREET PHASE L2241428

Project Number: Z62.001.001

SAMPLE RESULTS

Date Collected: 08/02/22 15:50

Report Date:

Lab ID: L2241428-04 Date Received: Client ID: 08/02/22 SB-06 (1-5) Sample Location:

 ${\sf SYRACUSE}, {\sf NY}$ Field Prep: Not Specified

Sample Depth:

Result Qualifier Units RL MDL **Dilution Factor** Parameter

Semivolatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	66	25-120
Phenol-d6	68	10-120
Nitrobenzene-d5	62	23-120
2-Fluorobiphenyl	80	30-120
2,4,6-Tribromophenol	73	10-136
4-Terphenyl-d14	75	18-120

L2241428

08/22/22

Project Name: 1117 WEST FAYETTE STREET PHASE

L2241428-05

SB-04 (1-3.5)

SYRACUSE, NY

Project Number: Z62.001.001

SAMPLE RESULTS

08/02/22 15:50

Date Collected: Date Received: 08/02/22

Lab Number:

Report Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Soil Analytical Method: 1,8270D Analytical Date: 08/17/22 15:13

Analyst: IM 78% Percent Solids:

Extraction Method: EPA 3546 **Extraction Date:** 08/04/22 03:56

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westbo	rough Lab					
Acenaphthene	54	J	ug/kg	170	22.	1
Hexachlorobenzene	ND		ug/kg	120	23.	1
Fluoranthene	1400		ug/kg	120	24.	1
Naphthalene	85	J	ug/kg	210	25.	1
Benzo(a)anthracene	820		ug/kg	120	24.	1
Benzo(a)pyrene	650		ug/kg	170	51.	1
Benzo(b)fluoranthene	740		ug/kg	120	35.	1
Benzo(k)fluoranthene	220		ug/kg	120	33.	1
Chrysene	870		ug/kg	120	22.	1
Acenaphthylene	ND		ug/kg	170	32.	1
Anthracene	190		ug/kg	120	41.	1
Benzo(ghi)perylene	390		ug/kg	170	24.	1
Fluorene	54	J	ug/kg	210	20.	1
Phenanthrene	1100		ug/kg	120	25.	1
Dibenzo(a,h)anthracene	88	J	ug/kg	120	24.	1
Indeno(1,2,3-cd)pyrene	410		ug/kg	170	29.	1
Pyrene	1600		ug/kg	120	21.	1
Dibenzofuran	39	J	ug/kg	210	20.	1
Pentachlorophenol	ND		ug/kg	170	46.	1
Phenol	ND		ug/kg	210	32.	1
2-Methylphenol	ND		ug/kg	210	32.	1
3-Methylphenol/4-Methylphenol	ND		ug/kg	300	33.	1

08/22/22

Report Date:

Project Name: 1117 WEST FAYETTE STREET PHASE Lab Number: L2241428

Project Number: Z62.001.001

SAMPLE RESULTS

Lab ID: L2241428-05 Date Collected: 08/02/22 15:50

Client ID: SB-04 (1-3.5) Date Received: 08/02/22 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	69	25-120
Phenol-d6	74	10-120
Nitrobenzene-d5	74	23-120
2-Fluorobiphenyl	79	30-120
2,4,6-Tribromophenol	83	10-136
4-Terphenyl-d14	72	18-120

L2241428

08/22/22

Project Name: 1117 WEST FAYETTE STREET PHASE

L2241428-06

SB-01 (12.5-15)

SYRACUSE, NY

Project Number: Z62.001.001

SAMPLE RESULTS

08/02/22 16:00

Date Collected:

Lab Number:

Report Date:

Date Received: 08/02/22 Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Soil Analytical Method: 1,8270D Analytical Date: 08/17/22 15:37

Analyst: IM 87% Percent Solids:

Extraction Method: EPA 3546 **Extraction Date:** 08/04/22 03:56

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westbo	rough Lab					
Acenaphthene	ND		ug/kg	150	20.	1
Hexachlorobenzene	ND		ug/kg	110	21.	1
Fluoranthene	ND		ug/kg	110	22.	1
Naphthalene	ND		ug/kg	190	23.	1
Benzo(a)anthracene	ND		ug/kg	110	21.	1
Benzo(a)pyrene	ND		ug/kg	150	46.	1
Benzo(b)fluoranthene	ND		ug/kg	110	32.	1
Benzo(k)fluoranthene	ND		ug/kg	110	30.	1
Chrysene	ND		ug/kg	110	20.	1
Acenaphthylene	ND		ug/kg	150	29.	1
Anthracene	ND		ug/kg	110	37.	1
Benzo(ghi)perylene	ND		ug/kg	150	22.	1
Fluorene	ND		ug/kg	190	18.	1
Phenanthrene	ND		ug/kg	110	23.	1
Dibenzo(a,h)anthracene	ND		ug/kg	110	22.	1
Indeno(1,2,3-cd)pyrene	ND		ug/kg	150	26.	1
Pyrene	ND		ug/kg	110	19.	1
Dibenzofuran	ND		ug/kg	190	18.	1
Pentachlorophenol	ND		ug/kg	150	42.	1
Phenol	ND		ug/kg	190	29.	1
2-Methylphenol	ND		ug/kg	190	29.	1
3-Methylphenol/4-Methylphenol	ND		ug/kg	270	30.	1

08/22/22

Project Name: 1117 WEST FAYETTE STREET PHASE Lab Number: L2241428

Project Number: Z62.001.001

SAMPLE RESULTS

Date Collected: 08/02/22 16:00

Report Date:

Client ID: SB-01 (12.5-15) Date Received: 08/02/22 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS - Westborough Lab

L2241428-06

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	62	25-120
Phenol-d6	69	10-120
Nitrobenzene-d5	55	23-120
2-Fluorobiphenyl	66	30-120
2,4,6-Tribromophenol	62	10-136
4-Terphenyl-d14	61	18-120

L2241428

Lab Number:

Project Name: 1117 WEST FAYETTE STREET PHASE

Project Number: Report Date: Z62.001.001 08/22/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Extraction Method: EPA 3546 Analytical Date: 08/08/22 16:59 08/04/22 03:56 **Extraction Date:**

Analyst: CMM

Parameter	Result	Qualifier	Units	RL		MDL	
Semivolatile Organics by GC/MS	S - Westborough	Lab for	sample(s):	03-06	Batch:	WG1671017-1	
Acenaphthene	ND		ug/kg	130		17.	
Hexachlorobenzene	ND		ug/kg	98		18.	
Fluoranthene	ND		ug/kg	98		19.	
Naphthalene	ND		ug/kg	160		20.	
Benzo(a)anthracene	ND		ug/kg	98		18.	
Benzo(a)pyrene	ND		ug/kg	130		40.	
Benzo(b)fluoranthene	ND		ug/kg	98		28.	
Benzo(k)fluoranthene	ND		ug/kg	98		26.	
Chrysene	ND		ug/kg	98		17.	
Acenaphthylene	ND		ug/kg	130		25.	
Anthracene	ND		ug/kg	98		32.	
Benzo(ghi)perylene	ND		ug/kg	130		19.	
Fluorene	ND		ug/kg	160		16.	
Phenanthrene	ND		ug/kg	98		20.	
Dibenzo(a,h)anthracene	ND		ug/kg	98		19.	
Indeno(1,2,3-cd)pyrene	ND		ug/kg	130		23.	
Pyrene	ND		ug/kg	98		16.	
Dibenzofuran	ND		ug/kg	160		15.	
Pentachlorophenol	ND		ug/kg	130		36.	
Phenol	ND		ug/kg	160		25.	
2-Methylphenol	ND		ug/kg	160		25.	
3-Methylphenol/4-Methylphenol	ND		ug/kg	240		26.	

Project Name: 1117 WEST FAYETTE STREET PHASE Lab Number: L2241428

Project Number: Z62.001.001 **Report Date:** 08/22/22

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270D Extraction Method: EPA 3546

Analytical Date: 08/08/22 16:59 Extraction Date: 08/04/22 03:56

Analyst: CMM

Parameter Result Qualifier Units RL MDL

Semivolatile Organics by GC/MS - Westborough Lab for sample(s): 03-06 Batch: WG1671017-1

Surrogate	%Recovery Qualifie	Acceptance er Criteria
2-Fluorophenol	90	25-120
Phenol-d6	94	10-120
Nitrobenzene-d5	105	23-120
2-Fluorobiphenyl	87	30-120
2,4,6-Tribromophenol	109	10-136
4-Terphenyl-d14	93	18-120

L2241428

Lab Number:

Project Name: 1117 WEST FAYETTE STREET PHASE

Project Number: Z62.001.001 **Report Date:** 08/22/22

Method Blank Analysis
Batch Quality Control

Batch Quality Control

1,8270D

08/12/22 15:01

Analyst: SZ

Analytical Method:

Analytical Date:

Extraction Method: EPA 3510C Extraction Date: 08/05/22 14:09

arameter	Result	Qualifier	Units	RL	MDL
emivolatile Organics by GC/M	IS - Westboroug	h Lab for s	ample(s):	01 Batch	: WG1671829-1
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.50
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.6
2,4-Dinitrotoluene	ND		ug/l	5.0	1.2
2,6-Dinitrotoluene	ND		ug/l	5.0	0.93
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.49
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.38
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.53
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.50
Hexachlorocyclopentadiene	ND		ug/l	20	0.69
Isophorone	ND		ug/l	5.0	1.2
Nitrobenzene	ND		ug/l	2.0	0.77
NDPA/DPA	ND		ug/l	2.0	0.42
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.64
Bis(2-ethylhexyl)phthalate	1.6	J	ug/l	3.0	1.5
Butyl benzyl phthalate	2.1	J	ug/l	5.0	1.2
Di-n-butylphthalate	ND		ug/l	5.0	0.39
Di-n-octylphthalate	ND		ug/l	5.0	1.3
Diethyl phthalate	ND		ug/l	5.0	0.38
Dimethyl phthalate	ND		ug/l	5.0	1.8
Biphenyl	ND		ug/l	2.0	0.46
4-Chloroaniline	ND		ug/l	5.0	1.1
2-Nitroaniline	ND		ug/l	5.0	0.50
3-Nitroaniline	ND		ug/l	5.0	0.81
4-Nitroaniline	ND		ug/l	5.0	0.80
Dibenzofuran	ND		ug/l	2.0	0.50
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.44
Acetophenone	ND		ug/l	5.0	0.53
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.61
p-Chloro-m-cresol	ND		ug/l	2.0	0.35

L2241428

Lab Number:

Project Name: 1117 WEST FAYETTE STREET PHASE

08/22/22

Report Date: **Project Number:** Z62.001.001

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 08/12/22 15:01

Analyst: SZ

Extraction Method: EPA 3510C 08/05/22 14:09 **Extraction Date:**

arameter	Result	Qualifier	Units		RL	MDL
Semivolatile Organics by GC/MS	S - Westborough	Lab for s	ample(s):	01	Batch:	WG1671829-1
2-Chlorophenol	ND		ug/l		2.0	0.48
2,4-Dichlorophenol	ND		ug/l		5.0	0.41
2,4-Dimethylphenol	ND		ug/l		5.0	1.8
2-Nitrophenol	ND		ug/l		10	0.85
4-Nitrophenol	ND		ug/l		10	0.67
2,4-Dinitrophenol	ND		ug/l		20	6.6
4,6-Dinitro-o-cresol	ND		ug/l		10	1.8
Phenol	ND		ug/l		5.0	0.57
2-Methylphenol	ND		ug/l		5.0	0.49
3-Methylphenol/4-Methylphenol	ND		ug/l		5.0	0.48
2,4,5-Trichlorophenol	ND		ug/l		5.0	0.77
Carbazole	ND		ug/l		2.0	0.49
Atrazine	ND		ug/l		10	0.76
Benzaldehyde	ND		ug/l		5.0	0.53
Caprolactam	ND		ug/l		10	3.3
2,3,4,6-Tetrachlorophenol	ND		ug/l		5.0	0.84

Surrogate	%Recovery Qua	Acceptance lifier Criteria
2-Fluorophenol	47	21-120
Phenol-d6	47	10-120
Nitrobenzene-d5	81	23-120
2-Fluorobiphenyl	72	15-120
2,4,6-Tribromophenol	61	10-120
4-Terphenyl-d14	92	41-149

Project Name: 1117 WEST FAYETTE STREET PHASE

Project Number: Z62.001.001 Lab Number: L2241428

Report Date: 08/22/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D

Analyst:

Extraction Method: EPA 3510C Analytical Date: 08/09/22 12:56 08/05/22 15:14 **Extraction Date:** CMM

arameter	Result	Qualifier	Units		RL	MDL	
emivolatile Organics by GC/M	S - Westborougl	h Lab for sa	mple(s):	02	Batch:	WG1671850	-1
Bis(2-chloroethyl)ether	ND		ug/l		2.0	0.50	
3,3'-Dichlorobenzidine	ND		ug/l		5.0	1.6	
2,4-Dinitrotoluene	ND		ug/l		5.0	1.2	
2,6-Dinitrotoluene	ND		ug/l		5.0	0.93	
4-Chlorophenyl phenyl ether	ND		ug/l		2.0	0.49	
4-Bromophenyl phenyl ether	ND		ug/l		2.0	0.38	
Bis(2-chloroisopropyl)ether	ND		ug/l		2.0	0.53	
Bis(2-chloroethoxy)methane	ND		ug/l		5.0	0.50	
Hexachlorocyclopentadiene	ND		ug/l		20	0.69	
Isophorone	ND		ug/l		5.0	1.2	
Nitrobenzene	ND		ug/l		2.0	0.77	
NDPA/DPA	ND		ug/l		2.0	0.42	
n-Nitrosodi-n-propylamine	ND		ug/l		5.0	0.64	
Bis(2-ethylhexyl)phthalate	ND		ug/l		3.0	1.5	
Butyl benzyl phthalate	ND		ug/l		5.0	1.2	
Di-n-butylphthalate	ND		ug/l		5.0	0.39	
Di-n-octylphthalate	ND		ug/l		5.0	1.3	
Diethyl phthalate	ND		ug/l		5.0	0.38	
Dimethyl phthalate	ND		ug/l		5.0	1.8	
Biphenyl	ND		ug/l		2.0	0.46	
4-Chloroaniline	ND		ug/l		5.0	1.1	
2-Nitroaniline	ND		ug/l		5.0	0.50	
3-Nitroaniline	ND		ug/l		5.0	0.81	
4-Nitroaniline	ND		ug/l		5.0	0.80	
Dibenzofuran	ND		ug/l		2.0	0.50	
1,2,4,5-Tetrachlorobenzene	ND		ug/l		10	0.44	
Acetophenone	ND		ug/l		5.0	0.53	
2,4,6-Trichlorophenol	ND		ug/l		5.0	0.61	
p-Chloro-m-cresol	ND		ug/l		2.0	0.35	

L2241428

Lab Number:

Project Name: 1117 WEST FAYETTE STREET PHASE

Project Number: Report Date: Z62.001.001 08/22/22

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8270D	Extraction Method:	EPA 3510C
Analytical Date:	08/09/22 12:56	Extraction Date:	08/05/22 15:14
Analyst:	CMM		

Parameter	Result	Qualifier	Units		RL	MDL	
Semivolatile Organics by GC/MS -	Westborough	Lab for s	ample(s):	02	Batch:	WG1671850-1	
2-Chlorophenol	ND		ug/l		2.0	0.48	
2,4-Dichlorophenol	ND		ug/l		5.0	0.41	
2,4-Dimethylphenol	ND		ug/l		5.0	1.8	
2-Nitrophenol	ND		ug/l		10	0.85	
4-Nitrophenol	ND		ug/l		10	0.67	
2,4-Dinitrophenol	ND		ug/l		20	6.6	
4,6-Dinitro-o-cresol	ND		ug/l		10	1.8	
Phenol	ND		ug/l		5.0	0.57	
2-Methylphenol	ND		ug/l		5.0	0.49	
3-Methylphenol/4-Methylphenol	ND		ug/l		5.0	0.48	
2,4,5-Trichlorophenol	ND		ug/l		5.0	0.77	
Carbazole	ND		ug/l		2.0	0.49	
Atrazine	ND		ug/l		10	0.76	
Benzaldehyde	ND		ug/l		5.0	0.53	
Caprolactam	ND		ug/l		10	3.3	
2,3,4,6-Tetrachlorophenol	ND		ug/l		5.0	0.84	

_			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
2-Fluorophenol	0	Q	21-120	
Phenol-d6	0	Q	10-120	
Nitrobenzene-d5	0	Q	23-120	
2-Fluorobiphenyl	0	Q	15-120	
2,4,6-Tribromophenol	40		10-120	
4-Terphenyl-d14	83		41-149	

L2241428

Lab Number:

Project Name: 1117 WEST FAYETTE STREET PHASE

Project Number: Report Date: Z62.001.001 08/22/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D-SIM Analytical Date:

Analyst:

Extraction Method: EPA 3510C 08/09/22 11:56 08/08/22 23:35 **Extraction Date:** JJW

Parameter	Result	Qualifier	Units	RL	MDL	
Semivolatile Organics by GC/MS-S	SIM - Westbo	rough Lab	for sample	e(s): 01-02	Batch: Wo	G1672733-1
Acenaphthene	ND		ug/l	0.10	0.01	
2-Chloronaphthalene	ND		ug/l	0.20	0.02	
Fluoranthene	0.08	J	ug/l	0.10	0.02	
Hexachlorobutadiene	ND		ug/l	0.50	0.05	
Naphthalene	ND		ug/l	0.10	0.05	
Benzo(a)anthracene	0.05	J	ug/l	0.10	0.02	
Benzo(a)pyrene	0.03	J	ug/l	0.10	0.02	
Benzo(b)fluoranthene	0.06	J	ug/l	0.10	0.01	
Benzo(k)fluoranthene	0.02	J	ug/l	0.10	0.01	
Chrysene	0.05	J	ug/l	0.10	0.01	
Acenaphthylene	ND		ug/l	0.10	0.01	
Anthracene	0.03	J	ug/l	0.10	0.01	
Benzo(ghi)perylene	0.03	J	ug/l	0.10	0.01	
Fluorene	ND		ug/l	0.10	0.01	
Phenanthrene	0.10		ug/l	0.10	0.02	
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	
Indeno(1,2,3-cd)pyrene	0.04	J	ug/l	0.10	0.01	
Pyrene	0.07	J	ug/l	0.10	0.02	
2-Methylnaphthalene	ND		ug/l	0.10	0.02	
Pentachlorophenol	ND		ug/l	0.80	0.01	
Hexachlorobenzene	ND		ug/l	0.80	0.01	
Hexachloroethane	ND		ug/l	0.80	0.06	

Serial_No:08222216:01

Project Name: 1117 WEST FAYETTE STREET PHASE Lab Number: L2241428

Project Number: Z62.001.001 **Report Date:** 08/22/22

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270D-SIM Extraction Method: EPA 3510C
Analytical Date: 08/09/22 11:56 Extraction Date: 08/08/22 23:35

Analyst: JJW

Parameter Result Qualifier Units RL MDL

Semivolatile Organics by GC/MS-SIM - Westborough Lab for sample(s): 01-02 Batch: WG1672733-1

Surrogate	%Recovery Qua	Acceptance Ilifier Criteria
2-Fluorophenol	58	21-120
Phenol-d6	52	10-120
Nitrobenzene-d5	70	23-120
2-Fluorobiphenyl	57	15-120
2,4,6-Tribromophenol	69	10-120
4-Terphenyl-d14	60	41-149

Project Name: 1117 WEST FAYETTE STREET PHASE

Project Number: Z62.001.001

Lab Number: L2241428

ırameter	LCS %Recovery	Qual	LCSE %Recov		9 Qual	%Recovery Limits	RPD	Qual	RPD Limits
emivolatile Organics by GC/MS - Westbord	ough Lab Associa	ated sample(s):	03-06	Batch:	WG167101	7-2 WG1671	017-3		
Acenaphthene	81		76			31-137	6		50
Hexachlorobenzene	91		84			40-140	8		50
Fluoranthene	89		84			40-140	6		50
Naphthalene	77		77			40-140	0		50
Benzo(a)anthracene	83		76			40-140	9		50
Benzo(a)pyrene	87		80			40-140	8		50
Benzo(b)fluoranthene	87		78			40-140	11		50
Benzo(k)fluoranthene	84		78			40-140	7		50
Chrysene	81		74			40-140	9		50
Acenaphthylene	88		83			40-140	6		50
Anthracene	85		79			40-140	7		50
Benzo(ghi)perylene	86		80			40-140	7		50
Fluorene	87		81			40-140	7		50
Phenanthrene	82		76			40-140	8		50
Dibenzo(a,h)anthracene	84		78			40-140	7		50
Indeno(1,2,3-cd)pyrene	98		90			40-140	9		50
Pyrene	88		82			35-142	7		50
Dibenzofuran	81		76			40-140	6		50
Pentachlorophenol	93		98			17-109	5		50
Phenol	77		75			26-90	3		50
2-Methylphenol	85		83			30-130.	2		50
3-Methylphenol/4-Methylphenol	89		83			30-130	7		50

1117 WEST FAYETTE STREET PHASE

Lab Number:

L2241428

Project Number:

Project Name:

Z62.001.001

Report Date:

08/22/22

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 03-06 Batch: WG1671017-2 WG1671017-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	86	85	25-120
Phenol-d6	89	86	10-120
Nitrobenzene-d5	103	99	23-120
2-Fluorobiphenyl	85	80	30-120
2,4,6-Tribromophenol	118	110	10-136
4-Terphenyl-d14	92	87	18-120

Project Name: 1117 WEST FAYETTE STREET PHASE

Project Number: Z62.001.001

Lab Number: L2241428

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Semivolatile Organics by GC/MS - Westboro	ugh Lab Assoc	ated sample(s):	01 Batch:	WG1671829-2	2 WG1671829-3			
Bis(2-chloroethyl)ether	78		75		40-140	4	30	
3,3'-Dichlorobenzidine	69		85		40-140	21	30	
2,4-Dinitrotoluene	105		109		48-143	4	30	
2,6-Dinitrotoluene	99		103		40-140	4	30	
4-Chlorophenyl phenyl ether	84		90		40-140	7	30	
4-Bromophenyl phenyl ether	96		100		40-140	4	30	
Bis(2-chloroisopropyl)ether	62		61		40-140	2	30	
Bis(2-chloroethoxy)methane	81		80		40-140	1	30	
Hexachlorocyclopentadiene	62		64		40-140	3	30	
Isophorone	79		78		40-140	1	30	
Nitrobenzene	88		88		40-140	0	30	
NDPA/DPA	85		91		40-140	7	30	
n-Nitrosodi-n-propylamine	80		80		29-132	0	30	
Bis(2-ethylhexyl)phthalate	90		96		40-140	6	30	
Butyl benzyl phthalate	102		109		40-140	7	30	
Di-n-butylphthalate	86		90		40-140	5	30	
Di-n-octylphthalate	91		99		40-140	8	30	
Diethyl phthalate	90		94		40-140	4	30	
Dimethyl phthalate	87		89		40-140	2	30	
Biphenyl	81		84		40-140	4	30	
4-Chloroaniline	61		67		40-140	9	30	
2-Nitroaniline	106		107		52-143	1	30	
3-Nitroaniline	84		94		25-145	11	30	

Project Name: 1117 WEST FAYETTE STREET PHASE

Project Number: Z62.001.001

Lab Number: L2241428

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Westbor	ough Lab Associ	ated sample(s):	01 Batch:	WG1671829-2	2 WG1671829-3		
4-Nitroaniline	89		101		51-143	13	30
Dibenzofuran	78		84		40-140	7	30
1,2,4,5-Tetrachlorobenzene	77		77		2-134	0	30
Acetophenone	83		84		39-129	1	30
2,4,6-Trichlorophenol	91		92		30-130	1	30
p-Chloro-m-cresol	87		92		23-97	6	30
2-Chlorophenol	80		82		27-123	2	30
2,4-Dichlorophenol	89		88		30-130	1	30
2,4-Dimethylphenol	68		58		30-130	16	30
2-Nitrophenol	116		116		30-130	0	30
4-Nitrophenol	79		86	Q	10-80	8	30
2,4-Dinitrophenol	106		118		20-130	11	30
4,6-Dinitro-o-cresol	120		134		20-164	11	30
Phenol	63		64		12-110	2	30
2-Methylphenol	78		79		30-130	1	30
3-Methylphenol/4-Methylphenol	86		88		30-130	2	30
2,4,5-Trichlorophenol	92		95		30-130	3	30
Carbazole	82		93		55-144	13	30
Atrazine	119		121		40-140	2	30
Benzaldehyde	100		99		40-140	1	30
Caprolactam	43		45		10-130	5	30
2,3,4,6-Tetrachlorophenol	93		97		40-140	4	30

Project Name: 1117 WEST FAYETTE STREET PHASE

Lab Number: L2241428

Project Number: Z62.001.001 Report Date:

08/22/22

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1671829-2 WG1671829-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	72	71	21-120
Phenol-d6	63	65	10-120
Nitrobenzene-d5	93	93	23-120
2-Fluorobiphenyl	81	83	15-120
2,4,6-Tribromophenol	105	109	10-120
4-Terphenyl-d14	91	95	41-149

Project Name: 1117 WEST FAYETTE STREET PHASE

Project Number: Z62.001.001

Lab Number: L2241428

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
semivolatile Organics by GC/MS - Westbo	orough Lab Associ	ated sample(s):	02 Batch:	WG1671850-2	2 WG1671850-3		
Bis(2-chloroethyl)ether	68		61		40-140	11	30
3,3'-Dichlorobenzidine	70		66		40-140	6	30
2,4-Dinitrotoluene	79		68		48-143	15	30
2,6-Dinitrotoluene	72		68		40-140	6	30
4-Chlorophenyl phenyl ether	79		71		40-140	11	30
4-Bromophenyl phenyl ether	84		75		40-140	11	30
Bis(2-chloroisopropyl)ether	69		61		40-140	12	30
Bis(2-chloroethoxy)methane	71		65		40-140	9	30
Hexachlorocyclopentadiene	59		52		40-140	13	30
Isophorone	73		64		40-140	13	30
Nitrobenzene	75		65		40-140	14	30
NDPA/DPA	80		73		40-140	9	30
n-Nitrosodi-n-propylamine	76		66		29-132	14	30
Bis(2-ethylhexyl)phthalate	94		87		40-140	8	30
Butyl benzyl phthalate	85		78		40-140	9	30
Di-n-butylphthalate	84		76		40-140	10	30
Di-n-octylphthalate	99		89		40-140	11	30
Diethyl phthalate	86		78		40-140	10	30
Dimethyl phthalate	73		66		40-140	10	30
Biphenyl	74		67		40-140	10	30
4-Chloroaniline	78		67		40-140	15	30
2-Nitroaniline	78		68		52-143	14	30
3-Nitroaniline	76		65		25-145	16	30

Project Name: 1117 WEST FAYETTE STREET PHASE

Project Number: Z62.001.001

Lab Number: L2241428

ırameter	LCS %Recovery Qual	LCSD %Recovery	%Recov Qual Limits	•		RPD Limits
emivolatile Organics by GC/MS - Westbo	orough Lab Associated sample(s): 02 Batch:	WG1671850-2 WG16	71850-3		
4-Nitroaniline	75	71	51-143	5		30
Dibenzofuran	80	71	40-140	12		30
1,2,4,5-Tetrachlorobenzene	78	69	2-134	12		30
Acetophenone	76	67	39-129	13		30
2,4,6-Trichlorophenol	79	70	30-130	12		30
p-Chloro-m-cresol	80	71	23-97	12		30
2-Chlorophenol	76	67	27-123	13		30
2,4-Dichlorophenol	81	72	30-130	12		30
2,4-Dimethylphenol	50	59	30-130	17		30
2-Nitrophenol	76	65	30-130	16		30
4-Nitrophenol	75	64	10-80	16		30
2,4-Dinitrophenol	78	35	20-130	76	Q	30
4,6-Dinitro-o-cresol	75	46	20-164	48	Q	30
Phenol	56	48	12-110	15		30
2-Methylphenol	72	64	30-130	12		30
3-Methylphenol/4-Methylphenol	72	68	30-130	6		30
2,4,5-Trichlorophenol	83	73	30-130	13		30
Carbazole	80	74	55-144	8		30
Atrazine	94	84	40-140	11		30
Benzaldehyde	92	82	40-140	11		30
Caprolactam	43	38	10-130	12		30
2,3,4,6-Tetrachlorophenol	82	60	40-140	31	Q	30

1117 WEST FAYETTE STREET PHASE

Lab Number: L2241428

Project Number: Z62.001.001

Project Name:

Report Date:

08/22/22

	LCS		LCSD		%Recovery			RPD
Parameter	%Recoverv	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 02 Batch: WG1671850-2 WG1671850-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	74	64	21-120
Phenol-d6	63	54	10-120
Nitrobenzene-d5	83	73	23-120
2-Fluorobiphenyl	81	72	15-120
2,4,6-Tribromophenol	104	97	10-120
4-Terphenyl-d14	83	78	41-149

Project Name: 1117 WEST FAYETTE STREET PHASE

Project Number: Z62.001.001

Lab Number: L2241428

arameter	LCS %Recovery		LCSD Recovery	Qual	%Recove Limits	ry RPD	Qual	RPD Limits
emivolatile Organics by GC/MS-SIM - W	/estborough Lab A	ssociated sample(s): 01-02	Batch:	WG1672733-2	WG1672733-3		
Acenaphthene	80		56		40-140	35		40
2-Chloronaphthalene	70		52		40-140	30		40
Fluoranthene	65		44		40-140	39		40
Hexachlorobutadiene	82		63		40-140	26		40
Naphthalene	74		55		40-140	29		40
Benzo(a)anthracene	85		58		40-140	38		40
Benzo(a)pyrene	75		51		40-140	38		40
Benzo(b)fluoranthene	92		58		40-140	45	Q	40
Benzo(k)fluoranthene	83		59		40-140	34		40
Chrysene	87		57		40-140	42	Q	40
Acenaphthylene	65		47		40-140	32		40
Anthracene	78		53		40-140	38		40
Benzo(ghi)perylene	87		60		40-140	37		40
Fluorene	78		54		40-140	36		40
Phenanthrene	79		53		40-140	39		40
Dibenzo(a,h)anthracene	88		62		40-140	35		40
Indeno(1,2,3-cd)pyrene	93		64		40-140	37		40
Pyrene	64		43		40-140	39		40
2-Methylnaphthalene	72		53		40-140	30		40
Pentachlorophenol	64		40		40-140	46	Q	40
Hexachlorobenzene	98		67		40-140	38		40
Hexachloroethane	74		56		40-140	28		40

Project Name: 1117 WEST FAYETTE STREET PHASE

Lab Number:

L2241428

Project Number: Z62.001.001

zaton quanty contro

Report Date:

08/22/22

LCS LCSD %Recovery RPD
Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01-02 Batch: WG1672733-2 WG1672733-3

Surrogate	LCS %Recovery Qu	LCSD al %Recovery	Qual	Acceptance Criteria
2-Fluorophenol	69	51		21-120
Phenol-d6	60	44		10-120
Nitrobenzene-d5	80	58		23-120
2-Fluorobiphenyl	72	53		15-120
2,4,6-Tribromophenol	102	70		10-120
4-Terphenyl-d14	56	38	Q	41-149

METALS

L2241428

08/22/22

08/02/22 13:20

Lab Number:

Date Collected:

Project Name: 1117 WEST FAYETTE STREET PHASE

Report Date:

Project Number: Z62.001.001

SAMPLE RESULTS

Lab ID: L2241428-01

Client ID: MW-1

Date Received: 08/02/22 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Aluminum, Total	258.		mg/l	0.250	0.0818	1	08/04/22 02:44	08/04/22 20:15	EPA 3005A	1,6020B	WP
Antimony, Total	ND		mg/l	0.1000	0.01072	1	08/04/22 02:44	08/04/22 20:15	EPA 3005A	1,6020B	WP
Arsenic, Total	0.06890		mg/l	0.01250	0.00412	1	08/04/22 02:44	08/04/22 20:15	EPA 3005A	1,6020B	WP
Barium, Total	3.549		mg/l	0.01250	0.00432	1	08/04/22 02:44	08/04/22 20:15	EPA 3005A	1,6020B	WP
Beryllium, Total	0.01576		mg/l	0.01250	0.00267	1	08/04/22 02:44	08/04/22 20:15	EPA 3005A	1,6020B	WP
Cadmium, Total	0.00620		mg/l	0.00500	0.00149	1	08/04/22 02:44	08/04/22 20:15	EPA 3005A	1,6020B	WP
Calcium, Total	2840		mg/l	2.50	0.985	1	08/04/22 02:44	08/04/22 20:15	EPA 3005A	1,6020B	WP
Chromium, Total	0.5887		mg/l	0.02500	0.00445	1	08/04/22 02:44	08/04/22 20:15	EPA 3005A	1,6020B	WP
Cobalt, Total	0.5293		mg/l	0.01250	0.00407	1	08/04/22 02:44	08/04/22 20:15	EPA 3005A	1,6020B	WP
Copper, Total	1.101		mg/l	0.02500	0.00960	1	08/04/22 02:44	08/04/22 20:15	EPA 3005A	1,6020B	WP
Iron, Total	588.		mg/l	1.25	0.478	1	08/04/22 02:44	08/04/22 20:15	EPA 3005A	1,6020B	WP
Lead, Total	2.003		mg/l	0.02500	0.00857	1	08/04/22 02:44	08/04/22 20:15	EPA 3005A	1,6020B	WP
Magnesium, Total	924.		mg/l	1.75	0.605	1	08/04/22 02:44	08/04/22 20:15	EPA 3005A	1,6020B	WP
Manganese, Total	30.58		mg/l	0.02500	0.01100	1	08/04/22 02:44	08/04/22 20:15	EPA 3005A	1,6020B	WP
Mercury, Total	0.00585		mg/l	0.00200	0.00091	1	08/04/22 06:05	08/04/22 21:33	EPA 7470A	1,7470A	DMB
Nickel, Total	1.048		mg/l	0.05000	0.01390	1	08/04/22 02:44	08/04/22 20:15	EPA 3005A	1,6020B	WP
Potassium, Total	45.4		mg/l	2.50	0.772	1	08/04/22 02:44	08/04/22 20:15	EPA 3005A	1,6020B	WP
Selenium, Total	ND		mg/l	0.125	0.0432	1	08/04/22 02:44	08/04/22 20:15	EPA 3005A	1,6020B	WP
Silver, Total	ND		mg/l	0.01000	0.00407	1	08/04/22 02:44	08/04/22 20:15	EPA 3005A	1,6020B	WP
Sodium, Total	172.		mg/l	2.50	0.732	1	08/04/22 02:44	08/04/22 20:15	EPA 3005A	1,6020B	WP
Thallium, Total	0.01006	J	mg/l	0.02500	0.00357	1	08/04/22 02:44	08/04/22 20:15	EPA 3005A	1,6020B	WP
Vanadium, Total	0.4151		mg/l	0.1250	0.03925	1	08/04/22 02:44	08/04/22 20:15	EPA 3005A	1,6020B	WP
Zinc, Total	2.258		mg/l	0.2500	0.08525	1	08/04/22 02:44	08/04/22 20:15	EPA 3005A	1,6020B	WP

Project Name: 1117 WEST FAYETTE STREET PHASE

Project Number: Z62.001.001 Lab Number: **Report Date:**

L2241428 08/22/22

SAMPLE RESULTS

Date Collected:

08/02/22 13:40

Client ID:

L2241428-02

Date Received:

MW-2

08/02/22

Sample Location:

SYRACUSE, NY

Field Prep:

Not Specified

Sample Depth:

Matrix:

Lab ID:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Aluminum, Total	679.		mg/l	0.500	0.164	1	08/04/22 02:44	08/04/22 20:20	EPA 3005A	1,6020B	WP
Antimony, Total	ND		mg/l	0.2000	0.02145	1	08/04/22 02:44	08/04/22 20:20	EPA 3005A	1,6020B	WP
Arsenic, Total	0.2959		mg/l	0.02500	0.00825	1	08/04/22 02:44	08/04/22 20:20	EPA 3005A	1,6020B	WP
Barium, Total	5.871		mg/l	0.02500	0.00865	1	08/04/22 02:44	08/04/22 20:20	EPA 3005A	1,6020B	WP
Beryllium, Total	0.03877		mg/l	0.02500	0.00535	1	08/04/22 02:44	08/04/22 20:20	EPA 3005A	1,6020B	WP
Cadmium, Total	0.01550		mg/l	0.01000	0.00299	1	08/04/22 02:44	08/04/22 20:20	EPA 3005A	1,6020B	WP
Calcium, Total	984.		mg/l	5.00	1.97	1	08/04/22 02:44	08/04/22 20:20	EPA 3005A	1,6020B	WP
Chromium, Total	0.9964		mg/l	0.05000	0.00890	1	08/04/22 02:44	08/04/22 20:20	EPA 3005A	1,6020B	WP
Cobalt, Total	0.5782		mg/l	0.02500	0.00815	1	08/04/22 02:44	08/04/22 20:20	EPA 3005A	1,6020B	WP
Copper, Total	2.380		mg/l	0.05000	0.01920	1	08/04/22 02:44	08/04/22 20:20	EPA 3005A	1,6020B	WP
Iron, Total	1050		mg/l	2.50	0.955	1	08/04/22 02:44	08/04/22 20:20	EPA 3005A	1,6020B	WP
Lead, Total	4.180		mg/l	0.05000	0.01715	1	08/04/22 02:44	08/04/22 20:20	EPA 3005A	1,6020B	WP
Magnesium, Total	396.		mg/l	3.50	1.21	1	08/04/22 02:44	08/04/22 20:20	EPA 3005A	1,6020B	WP
Manganese, Total	30.17		mg/l	0.05000	0.02200	1	08/04/22 02:44	08/04/22 20:20	EPA 3005A	1,6020B	WP
Mercury, Total	0.01812		mg/l	0.00500	0.00228	1	08/04/22 06:05	08/04/22 21:36	EPA 7470A	1,7470A	DMB
Nickel, Total	1.322		mg/l	0.1000	0.02780	1	08/04/22 02:44	08/04/22 20:20	EPA 3005A	1,6020B	WP
Potassium, Total	80.2		mg/l	5.00	1.54	1	08/04/22 02:44	08/04/22 20:20	EPA 3005A	1,6020B	WP
Selenium, Total	ND		mg/l	0.250	0.0865	1	08/04/22 02:44	08/04/22 20:20	EPA 3005A	1,6020B	WP
Silver, Total	ND		mg/l	0.02000	0.00815	1	08/04/22 02:44	08/04/22 20:20	EPA 3005A	1,6020B	WP
Sodium, Total	42.1		mg/l	5.00	1.46	1	08/04/22 02:44	08/04/22 20:20	EPA 3005A	1,6020B	WP
Thallium, Total	0.01007	J	mg/l	0.05000	0.00715	1	08/04/22 02:44	08/04/22 20:20	EPA 3005A	1,6020B	WP
Vanadium, Total	1.156		mg/l	0.2500	0.07850	1	08/04/22 02:44	08/04/22 20:20	EPA 3005A	1,6020B	WP
Zinc, Total	6.368		mg/l	0.5000	0.1705	1	08/04/22 02:44	08/04/22 20:20	EPA 3005A	1,6020B	WP

Project Number: Z62.001.001 **Report Date:** 08/22/22

SAMPLE RESULTS

 Lab ID:
 L2241428-03
 Date Collected:
 08/02/22 15:45

 Client ID:
 SB-10 (7.5-9)
 Date Received:
 08/02/22

 Sample Location:
 SYRACUSE, NY
 Field Prep:
 Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 84%

Dilution Date Date Prep Analytical Method Qualifier Factor **Prepared** Analyzed Method **Parameter** Result Units RL MDL Analyst Total Metals - Mansfield Lab Arsenic, Total 5.68 mg/kg 0.458 0.095 1 08/03/22 23:42 08/08/22 13:23 EPA 3050B 1,6010D JF 47.4 0.458 0.080 1 08/03/22 23:42 08/08/22 13:23 EPA 3050B 1,6010D JF Barium, Total mg/kg J 1 JF Beryllium, Total 0.217 mg/kg 0.229 0.015 08/03/22 23:42 08/08/22 13:23 EPA 3050B 1,6010D J Cadmium, Total 0.318 mg/kg 0.458 0.045 1 08/03/22 23:42 08/08/22 13:23 EPA 3050B 1,6010D JF 22.1 0.458 08/03/22 23:42 08/08/22 13:23 EPA 3050B 1,6010D JF Chromium, Total mg/kg 0.044 1 JF 54.9 1 08/03/22 23:42 08/08/22 13:23 EPA 3050B 1,6010D Copper, Total mg/kg 0.458 0.118 Lead, Total 108 mg/kg 2.29 0.123 1 08/03/22 23:42 08/08/22 13:23 EPA 3050B 1,6010D JF 239 1 1,6010D JF Manganese, Total 0.458 0.073 08/03/22 23:42 08/08/22 13:23 EPA 3050B mg/kg 1 Mercury, Total 0.220 08/04/22 00:40 08/05/22 11:25 EPA 7471B 1,7471B DMB mg/kg 0.076 0.049 1,6010D Nickel, Total 154 mg/kg 1.14 0.111 1 08/03/22 23:42 08/08/22 13:23 EPA 3050B JF ND 1,6010D JF Selenium, Total 0.915 0.118 1 08/03/22 23:42 08/08/22 13:23 EPA 3050B mg/kg ND 08/03/22 23:42 08/08/22 13:23 EPA 3050B 1,6010D JF Silver, Total mg/kg 0.458 0.130 1 1,6010D Zinc, Total 89.3 mg/kg 2.29 0.134 1 08/03/22 23:42 08/08/22 18:11 EPA 3050B EW General Chemistry - Mansfield Lab Chromium, Trivalent 22 mg/kg 0.95 0.95 1 08/22/22 09:10 NA 107,-

Project Number: Z62.001.001 **Report Date:** 08/22/22

SAMPLE RESULTS

 Lab ID:
 L2241428-04
 Date Collected:
 08/02/22 15:50

 Client ID:
 SB-06 (1-5)
 Date Received:
 08/02/22

 Sample Location:
 SYRACUSE, NY
 Field Prep:
 Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 85%

r crocm conds.						Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Man	sfield Lab										
Arsenic, Total	7.16		mg/kg	0.914	0.190	2	08/03/22 23:42	2 08/08/22 18:16	EPA 3050B	1,6010D	EW
Barium, Total	50.1		mg/kg	0.914	0.159	2	08/03/22 23:42	2 08/08/22 18:16	EPA 3050B	1,6010D	EW
Beryllium, Total	0.302	J	mg/kg	0.457	0.030	2	08/03/22 23:42	2 08/08/22 18:16	EPA 3050B	1,6010D	EW
Cadmium, Total	0.558	J	mg/kg	0.914	0.090	2	08/03/22 23:42	2 08/08/22 18:16	EPA 3050B	1,6010D	EW
Chromium, Total	10.1		mg/kg	0.914	0.088	2	08/03/22 23:42	2 08/08/22 18:16	EPA 3050B	1,6010D	EW
Copper, Total	37.7		mg/kg	0.914	0.236	2	08/03/22 23:42	2 08/08/22 18:16	EPA 3050B	1,6010D	EW
Lead, Total	78.4		mg/kg	4.57	0.245	2	08/03/22 23:42	2 08/08/22 18:16	EPA 3050B	1,6010D	EW
Manganese, Total	251		mg/kg	0.914	0.145	2	08/03/22 23:42	2 08/08/22 18:16	EPA 3050B	1,6010D	EW
Mercury, Total	0.549		mg/kg	0.083	0.054	1	08/04/22 00:40	08/05/22 11:28	EPA 7471B	1,7471B	DMB
Nickel, Total	11.0		mg/kg	2.29	0.221	2	08/03/22 23:42	2 08/08/22 18:16	EPA 3050B	1,6010D	EW
Selenium, Total	1.38	J	mg/kg	1.83	0.236	2	08/03/22 23:42	2 08/08/22 18:16	EPA 3050B	1,6010D	EW
Silver, Total	ND		mg/kg	0.914	0.259	2	08/03/22 23:42	2 08/08/22 18:16	EPA 3050B	1,6010D	EW
Zinc, Total	67.0		mg/kg	4.57	0.268	2	08/03/22 23:42	2 08/08/22 18:16	EPA 3050B	1,6010D	EW
General Chemistry	- Mansfie	ld Lab									
Chromium, Trivalent	10		mg/kg	0.94	0.94	1		08/22/22 09:10	NA	107,-	

Project Number: Z62.001.001 **Report Date:** 08/22/22

SAMPLE RESULTS

 Lab ID:
 L2241428-05
 Date Collected:
 08/02/22 15:50

 Client ID:
 SB-04 (1-3.5)
 Date Received:
 08/02/22

 Sample Location:
 SYRACUSE, NY
 Field Prep:
 Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 78%

Dilution Date Date Prep Analytical Method Qualifier Factor **Prepared** Analyzed Method **Parameter** Result Units RL MDL Analyst Total Metals - Mansfield Lab Arsenic, Total 9.56 mg/kg 0.492 0.102 1 08/03/22 23:42 08/08/22 13:30 EPA 3050B 1,6010D JF 88.2 0.492 0.086 1 08/03/22 23:42 08/08/22 13:30 EPA 3050B 1,6010D JF Barium, Total mg/kg 1 JF Beryllium, Total 0.342 mg/kg 0.246 0.016 08/03/22 23:42 08/08/22 13:30 EPA 3050B 1,6010D Cadmium, Total 0.614 mg/kg 0.492 0.048 1 08/03/22 23:42 08/08/22 13:30 EPA 3050B 1,6010D JF 20.3 0.492 08/03/22 23:42 08/08/22 13:30 EPA 3050B 1,6010D JF Chromium, Total mg/kg 0.047 1 JF 42.4 0.127 1 08/03/22 23:42 08/08/22 13:30 EPA 3050B 1,6010D Copper, Total mg/kg 0.492 Lead, Total 4720 mg/kg 2.46 0.132 1 08/03/22 23:42 08/08/22 13:30 EPA 3050B 1,6010D JF 200 0.078 1 1,6010D JF Manganese, Total 0.492 08/03/22 23:42 08/08/22 13:30 EPA 3050B mg/kg 1 Mercury, Total 0.292 0.061 08/04/22 00:40 08/05/22 11:31 EPA 7471B 1,7471B DMB mg/kg 0.093 1,6010D Nickel, Total 16.3 mg/kg 1.23 0.119 1 08/03/22 23:42 08/08/22 13:30 EPA 3050B JF 1.00 1,6010D JF Selenium, Total 0.984 0.127 1 08/03/22 23:42 08/08/22 13:30 EPA 3050B mg/kg ND 08/03/22 23:42 08/08/22 13:30 EPA 3050B 1,6010D JF Silver, Total mg/kg 0.492 0.139 1 2 1,6010D Zinc, Total 50.7 mg/kg 4.92 0.288 08/03/22 23:42 08/08/22 18:20 EPA 3050B EW General Chemistry - Mansfield Lab Chromium, Trivalent 20 mg/kg 1.0 1.0 1 08/22/22 09:10 NA 107,-

Project Number: Z62.001.001 **Report Date:** 08/22/22

SAMPLE RESULTS

 Lab ID:
 L2241428-06
 Date Collected:
 08/02/22 16:00

 Client ID:
 SB-01 (12.5-15)
 Date Received:
 08/02/22

 Sample Location:
 SYRACUSE, NY
 Field Prep:
 Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 87%

r ercent Solius.	0.70					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Mans	sfield Lab										
Arsenic, Total	2.42		mg/kg	0.445	0.093	1	08/03/22 23:42	2 08/08/22 13:33	EPA 3050B	1,6010D	JF
Barium, Total	12.1		mg/kg	0.445	0.077	1	08/03/22 23:42	2 08/08/22 13:33	EPA 3050B	1,6010D	JF
Beryllium, Total	0.126	J	mg/kg	0.222	0.015	1	08/03/22 23:42	2 08/08/22 13:33	EPA 3050B	1,6010D	JF
Cadmium, Total	0.104	J	mg/kg	0.445	0.044	1	08/03/22 23:42	2 08/08/22 13:33	EPA 3050B	1,6010D	JF
Chromium, Total	5.58		mg/kg	0.445	0.043	1	08/03/22 23:42	2 08/08/22 13:33	EPA 3050B	1,6010D	JF
Copper, Total	9.72		mg/kg	0.445	0.115	1	08/03/22 23:42	2 08/08/22 13:33	EPA 3050B	1,6010D	JF
Lead, Total	3.29		mg/kg	2.22	0.119	1	08/03/22 23:42	2 08/08/22 13:33	EPA 3050B	1,6010D	JF
Manganese, Total	176		mg/kg	0.445	0.071	1	08/03/22 23:42	2 08/08/22 13:33	EPA 3050B	1,6010D	JF
Mercury, Total	ND		mg/kg	0.077	0.050	1	08/04/22 00:40	08/05/22 11:35	EPA 7471B	1,7471B	DMB
Nickel, Total	7.56		mg/kg	1.11	0.108	1	08/03/22 23:42	2 08/08/22 13:33	EPA 3050B	1,6010D	JF
Selenium, Total	ND		mg/kg	0.889	0.115	1	08/03/22 23:42	2 08/08/22 13:33	EPA 3050B	1,6010D	JF
Silver, Total	ND		mg/kg	0.445	0.126	1	08/03/22 23:42	2 08/08/22 13:33	EPA 3050B	1,6010D	JF
Zinc, Total	20.3		mg/kg	11.1	0.651	5	08/03/22 23:42	2 08/08/22 18:25	EPA 3050B	1,6010D	EW
General Chemistry	- Mansfie	ld Lab									
Chromium, Trivalent	5.6		mg/kg	0.92	0.92	1		08/22/22 09:10	NA	107,-	

Serial_No:08222216:01

Project Name: 1117 WEST FAYETTE STREET PHASE

Project Number: Z62.001.001

Lab Number:

L2241428

Report Date: 08/22/22

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfi	ield Lab for sample(s):	03-06 E	Batch: W	G16709	23-1				
Arsenic, Total	ND	mg/kg	0.400	0.083	1	08/03/22 23:42	08/08/22 12:14	1,6010D	JF
Barium, Total	ND	mg/kg	0.400	0.070	1	08/03/22 23:42	08/08/22 12:14	1,6010D	JF
Beryllium, Total	ND	mg/kg	0.200	0.013	1	08/03/22 23:42	08/08/22 12:14	1,6010D	JF
Cadmium, Total	ND	mg/kg	0.400	0.039	1	08/03/22 23:42	08/08/22 12:14	1,6010D	JF
Chromium, Total	ND	mg/kg	0.400	0.038	1	08/03/22 23:42	08/08/22 12:14	1,6010D	JF
Copper, Total	ND	mg/kg	0.400	0.103	1	08/03/22 23:42	08/08/22 12:14	1,6010D	JF
Lead, Total	ND	mg/kg	2.00	0.107	1	08/03/22 23:42	08/08/22 12:14	1,6010D	JF
Manganese, Total	ND	mg/kg	0.400	0.064	1	08/03/22 23:42	08/08/22 12:14	1,6010D	JF
Nickel, Total	ND	mg/kg	1.00	0.097	1	08/03/22 23:42	08/08/22 12:14	1,6010D	JF
Selenium, Total	ND	mg/kg	0.800	0.103	1	08/03/22 23:42	08/08/22 12:14	1,6010D	JF
Silver, Total	ND	mg/kg	0.400	0.113	1	08/03/22 23:42	08/08/22 12:14	1,6010D	JF
Zinc, Total	ND	mg/kg	2.00	0.117	1	08/03/22 23:42	08/08/22 12:14	1,6010D	JF

Prep Information

Digestion Method: EPA 3050B

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mans	sfield Lab for sample(s):	03-06 B	atch: W	G16709	31-1				
Mercury, Total	ND	mg/kg	0.083	0.054	1	08/04/22 00:40	08/05/22 10:35	5 1,7471B	DMB

Prep Information

Digestion Method: EPA 7471B

Parameter	Result Q	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for sai	mple(s):	01-02 E	Batch: WC	316709	88-1				
Aluminum, Total	ND		mg/l	0.0100	0.00327	1	08/04/22 02:44	08/04/22 18:11	1,6020B	WP
Antimony, Total	ND		mg/l	0.00400	0.00042	2 1	08/04/22 02:44	08/04/22 18:11	1,6020B	WP
Arsenic, Total	0.00020	J	mg/l	0.00050	0.00016	5 1	08/04/22 02:44	08/04/22 18:11	1,6020B	WP
Barium, Total	ND		mg/l	0.00050	0.00017	1	08/04/22 02:44	08/04/22 18:11	1,6020B	WP

Serial_No:08222216:01

L2241428

Project Name: 1117 WEST FAYETTE STREET PHASE **Lab Number**:

Project Number: Z62.001.001 **Report Date:** 08/22/22

Method Blank Analysis Batch Quality Control

Beryllium, Total	ND	mg/l	0.00050	0.00010	1	08/04/22 02:44	08/04/22 18:11	1,6020B	WP
Cadmium, Total	ND	mg/l	0.00020	0.00005	1	08/04/22 02:44	08/04/22 18:11	1,6020B	WP
Calcium, Total	ND	mg/l	0.100	0.0394	1	08/04/22 02:44	08/04/22 18:11	1,6020B	WP
Chromium, Total	ND	mg/l	0.00100	0.00017	1	08/04/22 02:44	08/04/22 18:11	1,6020B	WP
Cobalt, Total	ND	mg/l	0.00050	0.00016	1	08/04/22 02:44	08/04/22 18:11	1,6020B	WP
Copper, Total	ND	mg/l	0.00100	0.00038	1	08/04/22 02:44	08/04/22 18:11	1,6020B	WP
Iron, Total	ND	mg/l	0.0500	0.0191	1	08/04/22 02:44	08/04/22 18:11	1,6020B	WP
Lead, Total	ND	mg/l	0.00100	0.00034	1	08/04/22 02:44	08/04/22 18:11	1,6020B	WP
Magnesium, Total	ND	mg/l	0.0700	0.0242	1	08/04/22 02:44	08/04/22 18:11	1,6020B	WP
Manganese, Total	ND	mg/l	0.00100	0.00044	1	08/04/22 02:44	08/04/22 18:11	1,6020B	WP
Nickel, Total	ND	mg/l	0.00200	0.00055	1	08/04/22 02:44	08/04/22 18:11	1,6020B	WP
Potassium, Total	ND	mg/l	0.100	0.0309	1	08/04/22 02:44	08/04/22 18:11	1,6020B	WP
Selenium, Total	ND	mg/l	0.00500	0.00173	1	08/04/22 02:44	08/04/22 18:11	1,6020B	WP
Silver, Total	ND	mg/l	0.00040	0.00016	1	08/04/22 02:44	08/04/22 18:11	1,6020B	WP
Sodium, Total	ND	mg/l	0.100	0.0293	1	08/04/22 02:44	08/04/22 18:11	1,6020B	WP
Thallium, Total	ND	mg/l	0.00100	0.00014	1	08/04/22 02:44	08/04/22 18:11	1,6020B	WP
Vanadium, Total	ND	mg/l	0.00500	0.00157	1	08/04/22 02:44	08/04/22 18:11	1,6020B	WP
Zinc, Total	ND	mg/l	0.01000	0.00341	1	08/04/22 02:44	08/04/22 18:11	1,6020B	WP

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	Analyst
Total Metals - Ma	insfield Lab for sample(s):	01-02 E	Batch: WO	3167099	91-1				
Mercury, Total	ND	mg/l	0.00020	0.00009) 1	08/04/22 06:05	08/04/22 20:43	3 1,7470A	DMB

Prep Information

Digestion Method: EPA 7470A

Project Name: 1117 WEST FAYETTE STREET PHASE

Project Number: Z62.001.001

Lab Number: L2241428

Parameter	LCS %Recovery	Qual	LCSD %Recover	У Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	(s): 03-06 Ba	tch: WG167	70923-2 SR	M Lot Number:	: D113-540			
Arsenic, Total	88		-		70-130	-		
Barium, Total	78		-		75-125	-		
Beryllium, Total	79		-		75-125	-		
Cadmium, Total	80		-		75-125	-		
Chromium, Total	84		-		70-130	-		
Copper, Total	85		-		75-125	-		
Lead, Total	81		-		72-128	-		
Manganese, Total	80		-		77-123	-		
Nickel, Total	81		-		70-130	-		
Selenium, Total	91		-		66-134	-		
Silver, Total	85		-		70-131	-		
Zinc, Total	82		-		70-130	-		
otal Metals - Mansfield Lab Associated sample	(s): 03-06 Ba	tch: WG167	70931-2 SR	M Lot Number:	: D113-540			
Mercury, Total	89		-		60-140	-		

Project Name: 1117 WEST FAYETTE STREET PHASE

Project Number: Z62.001.001

Lab Number: L2241428

arameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
otal Metals - Mansfield Lab Associated samp	ple(s): 01-02 Batch: W	G1670988-2			
Aluminum, Total	114	-	80-120	-	
Antimony, Total	85	-	80-120	-	
Arsenic, Total	104	-	80-120	-	
Barium, Total	106	-	80-120	-	
Beryllium, Total	110	-	80-120	-	
Cadmium, Total	107	-	80-120	-	
Calcium, Total	106	-	80-120	-	
Chromium, Total	101	-	80-120	-	
Cobalt, Total	98	-	80-120	-	
Copper, Total	97	-	80-120	-	
Iron, Total	104	-	80-120	-	
Lead, Total	104	-	80-120	-	
Magnesium, Total	109	-	80-120	-	
Manganese, Total	107	-	80-120	-	
Nickel, Total	99	-	80-120	-	
Potassium, Total	106	-	80-120	-	
Selenium, Total	105	-	80-120	-	
Silver, Total	109	-	80-120	-	
Sodium, Total	108	-	80-120	-	
Thallium, Total	106	-	80-120	-	
Vanadium, Total	104	-	80-120	-	

Project Name: 1117 WEST FAYETTE STREET PHASE

Project Number: Z62.001.001

Lab Number: L2241428

Parameter	LCS %Recove	-		ecovery imits RI	PD RPD Limits	
Total Metals - Mansfield Lab Associated sam	ple(s): 01-02	Batch: WG1670988-2				
Zinc, Total	99		- 80)-120 -		
Total Metals - Mansfield Lab Associated sam	ple(s): 01-02	Batch: WG1670991-2				
Mercury, Total	96		- 80)-120 -		

Matrix Spike Analysis Batch Quality Control

Project Name: 1117 WEST FAYETTE STREET PHASE

Project Number: Z62.001.001

Lab Number: L2241428

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery Qu	Recovery al Limits	RPD Qual	RPD Limits
otal Metals - Mansfield	Lab Associated sam	nple(s): 03-06	QC Bat	ch ID: WG167	0923-3	QC Sam	nple: L2241263-01	Client ID: MS	S Sample	
Arsenic, Total	ND	10.4	7.27	70	Q	-	-	75-125	-	20
Barium, Total	3.14	174	171	96		-	-	75-125	-	20
Beryllium, Total	ND	4.35	4.24	97		-	-	75-125	-	20
Cadmium, Total	ND	4.61	2.79	60	Q	-	-	75-125	-	20
Chromium, Total	ND	17.4	14.7	84		-	-	75-125	-	20
Copper, Total	10.3	21.8	25.7	71	Q	-	-	75-125	-	20
Lead, Total	0.417J	46.1	31.8	69	Q	-	-	75-125	-	20
Manganese, Total	5.29	43.5	56.3	117		-	-	75-125	-	20
Nickel, Total	0.560J	43.5	33.9	78		-	-	75-125	-	20
Selenium, Total	ND	10.4	7.52	72	Q	-	-	75-125	-	20
Silver, Total	ND	26.1	13.9	53	Q	-	-	75-125	-	20
Zinc, Total	9.00	43.5	34.7	59	Q	-	-	75-125	-	20
otal Metals - Mansfield	Lab Associated sam	nple(s): 03-06	QC Bat	ch ID: WG167	0931-3	QC Sam	nple: L2241263-01	Client ID: MS	S Sample	
Mercury, Total	ND	1.48	0.866	58	Q	-	-	80-120	-	20

Matrix Spike Analysis Batch Quality Control

Project Name: 1117 WEST FAYETTE STREET PHASE

Project Number: Z62.001.001

Lab Number: L2241428

arameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield L	ab Associated san	nple(s): 01-02	QC Bat	tch ID: WG1670988-3	QC Sam	nple: L2241354-01	Client ID: MS	Sample	
Aluminum, Total	0.542	2	2.66	106	-	-	75-125	-	20
Antimony, Total	0.00144J	0.5	0.6160	123	-	-	75-125	-	20
Arsenic, Total	0.01084	0.12	0.1312	100	-	-	75-125	-	20
Barium, Total	0.1221	2	2.205	104	-	-	75-125	-	20
Beryllium, Total	ND	0.05	0.04932	99	-	-	75-125	-	20
Cadmium, Total	0.00008J	0.053	0.05538	104	-	-	75-125	-	20
Calcium, Total	107	10	119	120	-	-	75-125	-	20
Chromium, Total	0.00099J	0.2	0.1965	98	-	-	75-125	-	20
Cobalt, Total	0.00070	0.5	0.4789	96	-	-	75-125	-	20
Copper, Total	0.00278	0.25	0.2500	99	-	-	75-125	-	20
Iron, Total	31.8	1	32.0	20 Q	-	-	75-125	-	20
Lead, Total	0.00209	0.53	0.5383	101	-	-	75-125	-	20
Magnesium, Total	10.6	10	21.8	112	-	-	75-125	-	20
Manganese, Total	3.391	0.5	3.878	97	-	-	75-125	-	20
Nickel, Total	0.00119J	0.5	0.4861	97	-	-	75-125	-	20
Potassium, Total	3.23	10	13.0	98	-	-	75-125	-	20
Selenium, Total	ND	0.12	0.117	98	-	-	75-125	-	20
Silver, Total	ND	0.05	0.05309	106	-	-	75-125	-	20
Sodium, Total	6.15	10	16.6	104	-	-	75-125	-	20
Thallium, Total	ND	0.12	0.1208	101	-	-	75-125	-	20
Vanadium, Total	ND	0.5	0.5002	100	-	-	75-125	-	20

Matrix Spike Analysis Batch Quality Control

Project Name: 1117 WEST FAYETTE STREET PHASE

Project Number: Z62.001.001

Lab Number:

L2241428

Report Date:

08/22/22

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab	Associated sam	ple(s): 01-02	QC Ba	tch ID: WG1670988-3	QC Sam	ple: L2241354-01	Client ID: MS	S Sample	
Zinc, Total	0.00803J	0.5	0.4898	98	-	-	75-125	-	20
Total Metals - Mansfield Lab	Associated sam	ple(s): 01-02	QC Ba	tch ID: WG1670991-3	QC Sam	ple: L2241023-02	Client ID: MS	S Sample	
Mercury, Total	ND	0.005	0.00467	94	-	-	75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: 1117 WEST FAYETTE STREET PHASE

Project Number: Z62.001.001

Lab Number:

L2241428

Report Date:

08/22/22

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 03-	06 QC Batch ID:	WG1670923-4 QC Sample:	L2241263-01	Client ID:	DUP Sampl	е
Arsenic, Total	ND	ND	mg/kg	NC		20
Barium, Total	3.14	3.46	mg/kg	10		20
Beryllium, Total	ND	ND	mg/kg	NC		20
Cadmium, Total	ND	ND	mg/kg	NC		20
Chromium, Total	ND	ND	mg/kg	NC		20
Copper, Total	10.3	10.0	mg/kg	3		20
Lead, Total	0.417J	0.384J	mg/kg	NC		20
Manganese, Total	5.29	15.2	mg/kg	97	Q	20
Nickel, Total	0.560J	0.417J	mg/kg	NC		20
Selenium, Total	ND	ND	mg/kg	NC		20
Silver, Total	ND	ND	mg/kg	NC		20
Zinc, Total	9.00	9.77	mg/kg	8		20
otal Metals - Mansfield Lab Associated sample(s): 03-	06 QC Batch ID:	WG1670931-4 QC Sample:	L2241263-01	Client ID:	DUP Sampl	е
Mercury, Total	ND	ND	mg/kg	NC		20

Lab Duplicate Analysis Batch Quality Control

Project Name: 1117 WEST FAYETTE STREET PHASE

Project Number: Z62.001.001

Lab Number: L2241428

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
otal Metals - Mansfield Lab Associated sample(s): 01	-02 QC Batch ID: WG	1670988-4 QC Sample:	L2241354-01	Client ID:	DUP Sample
Aluminum, Total	0.542	0.511	mg/l	6	20
Antimony, Total	0.00144J	0.00269J	mg/l	NC	20
Arsenic, Total	0.01084	0.01103	mg/l	2	20
Barium, Total	0.1221	0.1201	mg/l	2	20
Beryllium, Total	ND	ND	mg/l	NC	20
Cadmium, Total	0.00008J	0.00008J	mg/l	NC	20
Chromium, Total	0.00099J	0.00099J	mg/l	NC	20
Cobalt, Total	0.00070	0.00069	mg/l	3	20
Copper, Total	0.00278	0.00260	mg/l	7	20
Iron, Total	31.8	32.1	mg/l	1	20
Lead, Total	0.00209	0.00205	mg/l	2	20
Manganese, Total	3.391	3.445	mg/l	2	20
Nickel, Total	0.00119J	0.00118J	mg/l	NC	20
Potassium, Total	3.23	3.26	mg/l	1	20
Selenium, Total	ND	ND	mg/l	NC	20
Silver, Total	ND	ND	mg/l	NC	20
Sodium, Total	6.15	6.39	mg/l	4	20
Thallium, Total	ND	0.00018J	mg/l	NC	20
Vanadium, Total	ND	ND	mg/l	NC	20

Lab Duplicate Analysis

Batch Quality Control

Project Name: 1117 WEST FAYETTE STREET PHASE

Project Number: Z62.001.001

Lab Number:

L2241428

Report Date:

08/22/22

<u>Parameter</u>		Native Sample	Duplicat	e Sample	Units	RPD	RPI) Limits
Total Metals - Mansfield Lab	Associated sample(s): 01-02	QC Batch ID:	WG1670988-4	QC Sample:	L2241354-01	Client ID:	DUP Sample	
Zinc, Total		0.00803J	0.00808J		mg/l	NC		20
Total Metals - Mansfield Lab	Associated sample(s): 01-02	QC Batch ID:	WG1670991-4	QC Sample:	L2241023-02	Client ID:	DUP Sample	
Mercury, Total		ND	Ν	ND	mg/l	NC		20

INORGANICS & MISCELLANEOUS

Serial_No:08222216:01

Project Name: 1117 WEST FAYETTE STREET PHASE Lab Number: L2241428

Project Number: Z62.001.001 **Report Date:** 08/22/22

SAMPLE RESULTS

Lab ID: L2241428-03 Date Collected: 08/02/22 15:45

Client ID: SB-10 (7.5-9) Date Received: 08/02/22 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	tborough La	o								
Solids, Total	83.9		%	0.100	NA	1	-	08/03/22 19:21	121,2540G	MF
Cyanide, Total	15		mg/kg	1.1	0.24	1	08/09/22 03:45	08/09/22 10:50	1,9010C/9012B	CS
Chromium, Hexavalent	ND		mg/kg	0.954	0.191	1	08/17/22 13:30	08/22/22 09:10	1,7196A	MC

Serial_No:08222216:01

Project Name: 1117 WEST FAYETTE STREET PHASE Lab Number: L2241428

Project Number: Z62.001.001 **Report Date:** 08/22/22

SAMPLE RESULTS

 Lab ID:
 L2241428-04
 Date Collected:
 08/02/22 15:50

 Client ID:
 SB-06 (1-5)
 Date Received:
 08/02/22

Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lal)								
Solids, Total	84.9		%	0.100	NA	1	-	08/03/22 19:21	121,2540G	MF
Cyanide, Total	ND		mg/kg	1.1	0.24	1	08/09/22 03:45	08/09/22 10:51	1,9010C/9012B	CS
Chromium, Hexavalent	ND		mg/kg	0.942	0.188	1	08/17/22 13:30	08/22/22 09:10	1,7196A	MC

Project Name: 1117 WEST FAYETTE STREET PHASE Lab Number: L2241428

Project Number: Z62.001.001 **Report Date:** 08/22/22

SAMPLE RESULTS

Lab ID: L2241428-05 Date Collected: 08/02/22 15:50

Client ID: SB-04 (1-3.5) Date Received: 08/02/22 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough Lab									
Solids, Total	77.8		%	0.100	NA	1	-	08/03/22 19:21	121,2540G	MF
Cyanide, Total	ND		mg/kg	1.2	0.26	1	08/09/22 03:45	08/09/22 10:52	1,9010C/9012B	CS
Chromium, Hexavalent	ND		mg/kg	1.03	0.206	1	08/17/22 13:30	08/22/22 09:10	1,7196A	MC

Project Name: 1117 WEST FAYETTE STREET PHASE Lab Number: L2241428

Project Number: Z62.001.001 **Report Date:** 08/22/22

SAMPLE RESULTS

 Lab ID:
 L2241428-06
 Date Collected:
 08/02/22 16:00

 Client ID:
 SB-01 (12.5-15)
 Date Received:
 08/02/22

Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lab)								
Solids, Total	86.9		%	0.100	NA	1	-	08/03/22 19:21	121,2540G	MF
Cyanide, Total	ND		mg/kg	1.1	0.23	1	08/09/22 03:45	08/09/22 10:53	1,9010C/9012B	CS
Chromium, Hexavalent	ND		mg/kg	0.920	0.184	1	08/17/22 13:30	08/22/22 09:10	1,7196A	MC

L2241428

Project Name: 1117 WEST FAYETTE STREET PHASE **Lab Number:**

Project Number: Z62.001.001 **Report Date:** 08/22/22

Method	Blank	Analysis
Batch	Quality	Control

Parameter	Result Qualifie	er Units	RL	MDL	Factor	Prepared	Analyzed	Method	Analyst
General Chemistry - W	estborough Lab for s	ample(s): 03	8-06 Ba	tch: W0	31672740- ⁻	1			
Cyanide, Total	ND	mg/kg	0.92	0.20	1	08/09/22 03:45	08/09/22 10:38	1,9010C/9012	B CS
General Chemistry - W	estborough Lab for s	ample(s): 03	8-06 Ba	tch: Wo	31676311-	1			
Chromium, Hexavalent	ND	mg/kg	0.800	0.160	1	08/17/22 13:30	08/22/22 09:10	1,7196A	МС

Lab Control Sample Analysis Batch Quality Control

Project Name: 1117 WEST FAYETTE STREET PHASE

Lab Number: L2241428

Project Number: Z62.001.001 Report Date: 08/22/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
General Chemistry - Westborough Lab A	ssociated sample(s):	03-06	Batch: WG1672	740-2 WG	G1672740-3				
Cyanide, Total	75	Q	66	Q	80-120	28		35	
General Chemistry - Westborough Lab A	ssociated sample(s):	03-06	Batch: WG1676	311-2					
Chromium, Hexavalent	98		-		80-120	-		20	

Matrix Spike Analysis Batch Quality Control

Project Name: 1117 WEST FAYETTE STREET PHASE

Project Number: Z62.001.001

Lab Number:

L2241428

Report Date:

08/22/22

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recove Qual Limit	•	RPD Qual Limits	s
General Chemistry - Westbor Sample	rough Lab Asso	ciated samp	le(s): 03-06	QC Batch I	D: WG1	672740-4	WG1672740-5	QC Sample:	L2241109-	01 Client ID:	: MS
Cyanide, Total	ND	10	9.6	92		11	100	75-125	14	35	
General Chemistry - Westbor	rough Lab Asso	ciated samp	le(s): 03-06	QC Batch I	D: WG1	676311-4	QC Sample: I	L2241428-03	Client ID:	SB-10 (7.5-9))
Chromium, Hexavalent	ND	1400	1260	90		-	-	75-125	; -	20	

Lab Duplicate Analysis

Batch Quality Control

Project Name: 1117 WEST FAYETTE STREET PHASE

Project Number: Z62.001.001

Lab Number:

L2241428

Report Date:

08/22/22

Parameter	Native Sam	ple D	uplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 03-06	QC Batch ID:	WG1670919-1	QC Sample:	L2240239-01	Client ID:	DUP Sample
Solids, Total	85.7		86.0	%	0		20
General Chemistry - Westborough Lab	Associated sample(s): 03-06	QC Batch ID:	WG1676311-6	QC Sample:	L2241428-03	Client ID:	SB-10 (7.5-9)
Chromium, Hexavalent	ND		ND	mg/kg	NC		20

Serial_No:08222216:01 *Lab Number:* L2241428

Project Name: 1117 WEST FAYETTE STREET PHASE

Project Number: Z62.001.001

Report Date: 08/22/22

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2241428-01A	Vial HCl preserved	Α	NA		4.9	Υ	Absent		NYTCL-8260-R2(14)
L2241428-01B	Vial HCl preserved	Α	NA		4.9	Υ	Absent		NYTCL-8260-R2(14)
L2241428-01C	Vial HCl preserved	Α	NA		4.9	Υ	Absent		NYTCL-8260-R2(14)
L2241428-01D	Plastic 250ml HNO3 preserved	A	<2	<2	4.9	Y	Absent		BA-6020T(180),TL-6020T(180),FE-6020T(180),SE-6020T(180),CA-6020T(180),CR-6020T(180),K-6020T(180),NI-6020T(180),ZN-6020T(180),CU-6020T(180),NA-6020T(180),PB-6020T(180),MN-6020T(180),BE-6020T(180),AS-6020T(180),V-6020T(180),SB-6020T(180),AL-6020T(180),AG-6020T(180),AC-6020T(180),CD-6020T(180),CO-6020T(180),CD-6020T(180),CO-6020T(180)
L2241428-01E	Amber 250ml unpreserved	Α	7	7	4.9	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L2241428-01F	Amber 250ml unpreserved	Α	7	7	4.9	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L2241428-02A	Vial HCl preserved	Α	NA		4.9	Υ	Absent		NYTCL-8260-R2(14)
L2241428-02B	Vial HCl preserved	Α	NA		4.9	Υ	Absent		NYTCL-8260-R2(14)
L2241428-02C	Vial HCl preserved	Α	NA		4.9	Υ	Absent		NYTCL-8260-R2(14)
L2241428-02D	Plastic 250ml HNO3 preserved	A	<2	<2	4.9	Y	Absent		FE-6020T(180),TL-6020T(180),BA-6020T(180),SE-6020T(180),CR-6020T(180),K-6020T(180),NI-6020T(180),CA-6020T(180),CU-6020T(180),ZN-6020T(180),NA-6020T(180),PB-6020T(180),AS-6020T(180),SB-6020T(180),AS-6020T(180),SB-6020T(180),HG-T(28),MG-6020T(180),AL-6020T(180),AG-6020T(180),CD-6020T(180),CO-6020T(180),CO-6020T(180),CO-6020T(180)
L2241428-02E	Amber 250ml unpreserved	Α	7	7	4.9	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L2241428-02F	Amber 250ml unpreserved	Α	7	7	4.9	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L2241428-03A	Vial MeOH preserved	Α	NA		4.9	Υ	Absent		NYTCL-8260HLW-R2(14)
L2241428-03B	Vial water preserved	Α	NA		4.9	Υ	Absent	03-AUG-22 12:34	NYTCL-8260HLW-R2(14)

Lab Number: L2241428

Report Date: 08/22/22

Project Name: 1117 WEST FAYETTE STREET PHASE

Project Number: Z62.001.001

Container Info	Container Information		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рH		Pres	Seal	Date/Time	Analysis(*)
L2241428-03C	Vial water preserved	Α	NA		4.9	Υ	Absent	03-AUG-22 12:34	NYTCL-8260HLW-R2(14)
L2241428-03D	Plastic 2oz unpreserved for TS	Α	NA		4.9	Υ	Absent		TS(7)
L2241428-03E	Metals Only-Glass 60mL/2oz unpreserved	А	NA		4.9	Y	Absent		BE-TI(180),AS-TI(180),BA-TI(180),AG- TI(180),NI-TI(180),CR-TI(180),PB-TI(180),SE- TI(180),ZN-TI(180),CU-TI(180),HG-T(28),MN- TI(180),CD-TI(180)
L2241428-03F	Glass 120ml/4oz unpreserved	Α	NA		4.9	Υ	Absent		TCN-9010(14),NYTCL-8270(14),HEXCR-7196(30)
L2241428-04A	Vial MeOH preserved	Α	NA		4.9	Υ	Absent		NYTCL-8260HLW-R2(14)
L2241428-04B	Vial water preserved	Α	NA		4.9	Υ	Absent	03-AUG-22 12:34	NYTCL-8260HLW-R2(14)
L2241428-04C	Vial water preserved	Α	NA		4.9	Υ	Absent	03-AUG-22 12:34	NYTCL-8260HLW-R2(14)
L2241428-04D	Plastic 2oz unpreserved for TS	Α	NA		4.9	Υ	Absent		TS(7)
L2241428-04E	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		4.9	Υ	Absent		BE-TI(180),BA-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI-TI(180),ZN-TI(180),CU- TI(180),SE-TI(180),PB-TI(180),HG-T(28),MN- TI(180),CD-TI(180)
L2241428-04F	Glass 120ml/4oz unpreserved	Α	NA		4.9	Υ	Absent		TCN-9010(14),NYTCL-8270(14),HEXCR-7196(30)
L2241428-05A	Vial MeOH preserved	Α	NA		4.9	Υ	Absent		NYTCL-8260HLW-R2(14)
L2241428-05B	Vial water preserved	Α	NA		4.9	Υ	Absent	03-AUG-22 12:34	NYTCL-8260HLW-R2(14)
L2241428-05C	Vial water preserved	Α	NA		4.9	Υ	Absent	03-AUG-22 12:34	NYTCL-8260HLW-R2(14)
L2241428-05D	Plastic 2oz unpreserved for TS	Α	NA		4.9	Υ	Absent		TS(7)
L2241428-05E	Metals Only-Glass 60mL/2oz unpreserved	A	NA		4.9	Υ	Absent		BE-TI(180),AS-TI(180),BA-TI(180),AG- TI(180),NI-TI(180),CR-TI(180),PB-TI(180),SE- TI(180),ZN-TI(180),CU-TI(180),HG-T(28),MN- TI(180),CD-TI(180)
L2241428-05F	Glass 120ml/4oz unpreserved	Α	NA		4.9	Y	Absent		NYTCL-8270(14),TCN-9010(14),HEXCR-7196(30)
L2241428-06A	Vial MeOH preserved	Α	NA		4.9	Υ	Absent		NYTCL-8260HLW-R2(14)
L2241428-06B	Vial water preserved	Α	NA		4.9	Υ	Absent	03-AUG-22 12:34	NYTCL-8260HLW-R2(14)
L2241428-06C	Vial water preserved	Α	NA		4.9	Υ	Absent	03-AUG-22 12:34	NYTCL-8260HLW-R2(14)
L2241428-06D	Plastic 2oz unpreserved for TS	Α	NA		4.9	Υ	Absent		TS(7)
L2241428-06E	Metals Only-Glass 60mL/2oz unpreserved	A	NA		4.9	Y	Absent		BE-TI(180),BA-TI(180),AS-TI(180),AG- TI(180),NI-TI(180),CR-TI(180),PB-TI(180),SE- TI(180),CU-TI(180),ZN-TI(180),MN-TI(180),HG- T(28),CD-TI(180)

Lab Number: L2241428

Project Name: 1117 WEST FAYETTE STREET PHASE Project Number: Z62.001.001

Report Date: 08/22/22

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2241428-06F	Glass 120ml/4oz unpreserved	Α	NA		4.9	Y	Absent		NYTCL-8270(14),TCN-9010(14),HEXCR-7196(30)

Project Name: 1117 WEST FAYETTE STREET PHASE Lab Number: L2241428

Project Number: Z62.001.001 Report Date: 08/22/22

GLOSSARY

Acronyms

LOQ

MS

RL

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for
which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated
using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.

Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:1117 WEST FAYETTE STREET PHASELab Number:L2241428Project Number:Z62.001.001Report Date:08/22/22

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benzo(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Project Name:1117 WEST FAYETTE STREET PHASELab Number:L2241428Project Number:Z62.001.001Report Date:08/22/22

Data Qualifiers

Identified Compounds (TICs).

- $\label{eq:main_eq} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits.
 (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name:1117 WEST FAYETTE STREET PHASELab Number:L2241428Project Number:Z62.001.001Report Date:08/22/22

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

ID No.:17873

Revision 19

Alpha Analytical, Inc.
Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Published Date: 4/2/2021 1:14:23 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene

4-Ethyltoluene.

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics.

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. **EPA 200.8:** Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. **EPA 245.1** Hg. **EPA 522, EPA 537.1.**

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form Pre-Qualtrax Document ID: 08-113

Дена	NEW YORK CHAIN OF CUSTODY	Albany, NY 12205: 14 Walke	Mahwah, NJ 07430: 35 Whitney Rd, Suite 5 Albany, NY 12205: 14 Walker Way Fonawanda, NY 14150: 275 Cooper Ave, Suite 105			e of \		Date	Rec't		8/3/	122		ALPHA Job# L2241428	
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information					Deliv	erable	s					Billing Information	
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project Name: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	west Frageth	Street Pl	NUSCIA ESI	A		ASP-	A			ASP-E	3	Same as Client Info	
FAX. 300-030-3183	FAA: 300-022-3288	Project Location: Sur	acre , NT					EQui	S (1 F	ile)		EQuis	(4 File)	PO#	
Client Information		Project # Z62.02						Othe	r						
Client: CHS Enquice	ers	(Use Project name as					Regu	ılatory	Requ	ireme	nt	100	T. 6	Disposal Site Information	10 9
Address: 499 Col. F	Eleen Collins Blud.	Project Manager: Mo	H walker					NY TO	ogs			NY Par	t 375	Please identify below location	of
Syramse, Nº 133	713	ALPHAQuote #:					10	AWQ	Standa	ırds		NY CP	-51	applicable disposal facilities.	
Phone: 316 LIKE 2		Turn-Around Time			-		口	NY R	estricte	dUse		Other		Disposal Facility:	
Fax:		Standa	ard 🗸	Due Date:			١Ē	NY U	nrestric	ted Use	8			□ NJ □ NY	
Email: mawalwers	Ciscos, com		h (only if pre approved) # of Days:							Dischar	rge.			Other:	
	been previously analyz	ed by Alpha	Alpha 🗌								eff.	_		Sample Filtration	T
	ic requirements/comm				-	LYSIS				5		Done	- 0		
Please specify Meta	ls or TAL.		-		*)		TCL VOCS	Svocs	TAL Metals	Part 375 VOCS	+ 375 SVOCS	+ 375 Metals		Lab to do Preservation Lab to do (Please Specify below)	a I B o t
ALPHA Lab ID	0-	I- ID	Colle	ection	Sample	Sampler's	15	72	F	2 tra	Part	003		10 00 700 100 500	t
(Lab Use Only)	58	ample ID	Date	Time	Matrix	Initials	1	1		1	*		4	Sample Specific Comments	e
41428-01	MW-1		8/2/22	13:20	UPW	ACD	X	V	X						6
-02	MW-2		8/2/22	13:40	NPW	AO	X	×	文				=		6
-03	58-10 (7.5	(-9)	812122	15:45	Sal	FOD				X	V	X	\neg		600
-04	58-06(1-		8/2/20	15:50	Soil	HCD				X	V	X			6 2
-0.5	5B-04 (1-		8/2/22	15:50	Soil	ACD			7	X	×	(X)			60
-06	53-01/12		8/2/22	16:00	Sal	ACD				X	X	X	\rightarrow		60
	30 0.(1)		Gravit C	160.00	301	7,0				_	_				6 29
Preservative Code:	Container Code P = Plastic A = Amber Glass	Westboro: Certification Mansfield: Certification			Cor	ntainer Type	V	A	P	VIP	A	A	+	Please print clearly, legi and completely. Sample	
C = HNO ₃ O = H ₂ SO ₄ E = NaOH	V = Vial G = Glass B = Bacteria Cup		1.30 mr.30 10		,	Preservative	В	A	C	Floo		Α		not be logged in and turnaround time clock w start until any ambiguitie	ill not
= MeOH 6 = NaHSO ₄ 1 = Na ₂ S ₂ O ₃ 7/E = Zn Ac/NaOH 6 = Other orm No: 01-25 HC (rev. 3	C = Cube O = Other E = Encore D = BOD Bottle	Anthony DiGiovani adhyd 8/2/2/16:30 5				Seine AAL	-	tore		L	08/0	Date/ 02/22 02/22 02/22	1630	resolved. BY EXECUTING THIS COC, THE CLIEN HAS READ AND AGRE TO BE BOUND BY ALP TERMS & CONDITIONS (See reverse side.)	NG IT EES PHA'S

ANALYTICAL REPORT

Lab Number: L2248271

Client: C&S Companies

499 Col. Eileen Collins Blvd.

Syracuse, NY 13212

ATTN: Matthew Walker Phone: (315) 455-2000

Project Name: 1117 WEST FAYETTE STREET SUPPL

Project Number: Z62.001.002

Report Date: 09/09/22

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0141), DoD (L2474), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NJ (MA015), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-17-00150), USFWS (Permit #206964).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name: 1117 WEST FAYETTE STREET SUPPL

Project Number: Z62.001.002

Lab Number: L2248271 **Report Date:** 09/09/22

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2248271-01	SB-07A(1.5-2)	SOIL	SYRACUSE, NY	09/06/22 10:45	09/06/22
L2248271-02	SB-02A(0.5-5)	SOIL	SYRACUSE, NY	09/06/22 11:30	09/06/22
L2248271-03	SB-03A(1-3.5)	SOIL	SYRACUSE, NY	09/06/22 12:30	09/06/22
L2248271-04	SB-10A(1-1.5)	SOIL	SYRACUSE, NY	09/06/22 13:55	09/06/22
L2248271-05	SB-04A(0.5-1.5)	SOIL	SYRACUSE, NY	09/06/22 14:25	09/06/22
L2248271-06	SB-05A(1-3)	SOIL	SYRACUSE, NY	09/06/22 15:20	09/06/22

Project Name:1117 WEST FAYETTE STREET SUPPLLab Number:L2248271Project Number:Z62.001.002Report Date:09/09/22

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name: 1117 WEST FAYETTE STREET SUPPL Lab Number: L2248271

Project Number: Z62.001.002 Report Date: 09/09/22

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Total Metals

L2248271-06: The sample has elevated detection limits for all elements, with the exception of mercury, due to the dilution required by matrix interferences encountered during analysis.

The WG1684393-3 MS recoveries, performed on L2248271-01, are outside the acceptance criteria for barium (62%), beryllium (74%), and selenium (74%). A post digestion spike was performed and was within acceptance criteria.

The WG1684393-3 MS recovery, performed on L2248271-01, is outside the acceptance criteria for cadmium (54%). A post digestion spike was performed and yielded an unacceptable recovery of 66%. The serial dilution recovery was not applicable; therefore, this element fails the matrix test and the result reported in the native sample should be considered estimated.

The WG1684393-3 MS recoveries, performed on L2248271-01, are outside the acceptance criteria for chromium (63%), nickel (134%), and zinc (43%). A post digestion spike was performed and yielded unacceptable recoveries for chromium (69%), nickel (56%), and zinc (58%). The serial dilution recoveries were not acceptable; therefore, these elements fail the matrix test and the results reported in the native sample should be considered estimated.

The WG1684393-3 MS recoveries for copper (142%) and manganese (184%), performed on L2248271-01, do not apply because the sample concentrations are greater than four times the spike amounts added.

The WG1684394-3 MS recovery for mercury (43%), performed on L2248271-01, does not apply because the sample concentration is greater than four times the spike amount added.

The WG1684393-4 Laboratory Duplicate RPDs for lead (35%) and nickel (30%), performed on L2248271-01, are outside the acceptance criteria. The elevated RPDs have been attributed to the non-homogeneous nature of the native sample.

The WG1684393-6 serial dilution analysis, associated with L2248271-01, had a %D above the acceptance

Project Name: 1117 WEST FAYETTE STREET SUPPL Lab Number: L2248271
Project Number: Z62.001.002 Report Date: 09/09/22

Case Narrative (continued)

criteria for barium (37%), chromium (44%), copper (27%), lead (40%), manganese (42%), nickel (38%), and zinc (41%).

Cyanide, Total

The WG1684680-2/-3 LCS/LCSD recoveries for cyanide, total (68%/79%), associated with L2248271-01 through -06, are outside our in-house acceptance criteria, but within the vendor-certified acceptance limits. The results of the original analyses are reported.

The WG1684680-4/-5 MS/MSD recoveries for cyanide, total (0%/0%), performed on L2248271-01, do not apply because the sample concentration is greater than four times the spike amount added.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 09/09/22

600, Sew on Kelly Stenstrom

ORGANICS

SEMIVOLATILES

L2248271

09/09/22

Project Name: 1117 WEST FAYETTE STREET SUPPL

Project Number: Z62.001.002

JG

82%

SAMPLE RESULTS

Lab Number:

Report Date:

Date Collected: L2248271-01 09/06/22 10:45 SB-07A(1.5-2) Date Received: 09/06/22

Client ID: Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Percent Solids:

Lab ID:

Analyst:

Extraction Method: EPA 3546 Matrix: Soil **Extraction Date:** 09/08/22 23:12 Analytical Method: 1.8270D

Analytical Date: 09/09/22 16:04

Qualifier Result Units RL MDL **Dilution Factor Parameter** Semivolatile Organics by GC/MS - Westborough Lab Acenaphthene ND ug/kg 160 21. 1 Hexachlorobenzene ND ug/kg 120 22. Fluoranthene 310 ug/kg 120 23. 1 24 J 1 Naphthalene ug/kg 200 24. Benzo(a)anthracene 160 ug/kg 120 22. 1 280 Benzo(a)pyrene ug/kg 160 48. 1 Benzo(b)fluoranthene 300 120 34. 1 ug/kg Benzo(k)fluoranthene 96 J 120 32. 1 ug/kg 170 1 Chrysene ug/kg 120 21. Acenaphthylene 42 J 160 31. 1 ug/kg J Anthracene 58 120 39. 1 ug/kg Benzo(ghi)perylene 160 160 23. 1 ug/kg ND 200 19. 1 Fluorene ug/kg 230 Phenanthrene ug/kg 120 24. 1 Dibenzo(a,h)anthracene 32 J 120 23. 1 ug/kg Indeno(1,2,3-cd)pyrene 160 160 28. 1 ug/kg Pyrene 250 120 20. ug/kg 1 Dibenzofuran ND 200 1 19. ug/kg Pentachlorophenol ND 160 44. 1 ug/kg 1 Phenol ND 200 30. ug/kg 2-Methylphenol ND 200 31. 1 ug/kg 3-Methylphenol/4-Methylphenol ND ug/kg 290 31. 1

09/09/22

Project Name: Lab Number: 1117 WEST FAYETTE STREET SUPPL L2248271

Project Number: Z62.001.002

SAMPLE RESULTS

Date Collected: 09/06/22 10:45

Report Date:

Lab ID: L2248271-01 Date Received: Client ID: 09/06/22 SB-07A(1.5-2)

Sample Location: Field Prep: SYRACUSE, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Semivolatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	41	25-120
Phenol-d6	48	10-120
Nitrobenzene-d5	44	23-120
2-Fluorobiphenyl	60	30-120
2,4,6-Tribromophenol	45	10-136
4-Terphenyl-d14	43	18-120

L2248271

09/09/22

09/08/22 23:12

Project Name: 1117 WEST FAYETTE STREET SUPPL

Project Number: Z62.001.002

SAMPLE RESULTS

09/06/22 11:30

Lab Number:

Report Date:

Lab ID: L2248271-02 Date Collected: SB-02A(0.5-5) Date Received: Client ID: 09/06/22 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3546 Matrix: Soil **Extraction Date:** Analytical Method: 1,8270D Analytical Date: 09/09/22 16:27

Analyst: JG 84% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westbo	rough Lab					
Acenaphthene	35	J	ug/kg	160	20.	1
Hexachlorobenzene	ND		ug/kg	120	22.	1
Fluoranthene	1200		ug/kg	120	22.	1
Naphthalene	210		ug/kg	190	24.	1
Benzo(a)anthracene	580		ug/kg	120	22.	1
Benzo(a)pyrene	650		ug/kg	160	47.	1
Benzo(b)fluoranthene	750		ug/kg	120	33.	1
Benzo(k)fluoranthene	220		ug/kg	120	31.	1
Chrysene	580		ug/kg	120	20.	1
Acenaphthylene	55	J	ug/kg	160	30.	1
Anthracene	210		ug/kg	120	38.	1
Benzo(ghi)perylene	330		ug/kg	160	23.	1
Fluorene	40	J	ug/kg	190	19.	1
Phenanthrene	780		ug/kg	120	24.	1
Dibenzo(a,h)anthracene	74	J	ug/kg	120	22.	1
Indeno(1,2,3-cd)pyrene	370		ug/kg	160	27.	1
Pyrene	1000		ug/kg	120	19.	1
Dibenzofuran	61	J	ug/kg	190	18.	1
Pentachlorophenol	ND		ug/kg	160	43.	1
Phenol	ND		ug/kg	190	29.	1
2-Methylphenol	ND		ug/kg	190	30.	1
3-Methylphenol/4-Methylphenol	ND		ug/kg	280	30.	1

09/09/22

Project Name: 1117 WEST FAYETTE STREET SUPPL Lab Number: L2248271

Project Number: Z62.001.002

SAMPLE RESULTS

Date Collected: 09/06/22 11:30

Report Date:

Client ID: SB-02A(0.5-5) Date Received: 09/06/22 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS - Westborough Lab

L2248271-02

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	47	25-120
Phenol-d6	44	10-120
Nitrobenzene-d5	47	23-120
2-Fluorobiphenyl	74	30-120
2,4,6-Tribromophenol	57	10-136
4-Terphenyl-d14	66	18-120

L2248271

09/09/22

Project Name: 1117 WEST FAYETTE STREET SUPPL

L2248271-03

SB-03A(1-3.5)

SYRACUSE, NY

Project Number: Z62.001.002

SAMPLE RESULTS

Date Collected: 09/06/22 12:30

Date Received: 09/06/22

Lab Number:

Report Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Soil
Analytical Method: 1,8270D
Analytical Date: 09/09/22 15:10

Analyst: WR Percent Solids: ^{79%} Extraction Method: EPA 3546
Extraction Date: 09/08/22 23:12

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - W	estborough Lab					
Acenaphthene	98	J	ug/kg	170	22.	1
Hexachlorobenzene	ND		ug/kg	120	23.	1
Fluoranthene	980		ug/kg	120	24.	1
Naphthalene	66	J	ug/kg	210	25.	1
Benzo(a)anthracene	370		ug/kg	120	24.	1
Benzo(a)pyrene	470		ug/kg	170	51.	1
Benzo(b)fluoranthene	580		ug/kg	120	35.	1
Benzo(k)fluoranthene	190		ug/kg	120	33.	1
Chrysene	380		ug/kg	120	22.	1
Acenaphthylene	ND		ug/kg	170	32.	1
Anthracene	200		ug/kg	120	41.	1
Benzo(ghi)perylene	290		ug/kg	170	24.	1
Fluorene	100	J	ug/kg	210	20.	1
Phenanthrene	1000		ug/kg	120	25.	1
Dibenzo(a,h)anthracene	57	J	ug/kg	120	24.	1
Indeno(1,2,3-cd)pyrene	320		ug/kg	170	29.	1
Pyrene	800		ug/kg	120	21.	1
Dibenzofuran	97	J	ug/kg	210	20.	1
Pentachlorophenol	ND		ug/kg	170	46.	1
Phenol	ND		ug/kg	210	32.	1
2-Methylphenol	ND		ug/kg	210	32.	1
3-Methylphenol/4-Methylphenol	ND		ug/kg	300	33.	1

Project Name: Lab Number: 1117 WEST FAYETTE STREET SUPPL L2248271

Project Number: Z62.001.002

Report Date: 09/09/22

SAMPLE RESULTS

Lab ID: Date Collected: 09/06/22 12:30 L2248271-03

Date Received: Client ID: 09/06/22 SB-03A(1-3.5) Sample Location: Field Prep: SYRACUSE, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Semivolatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	33	25-120
Phenol-d6	33	10-120
Nitrobenzene-d5	43	23-120
2-Fluorobiphenyl	39	30-120
2,4,6-Tribromophenol	51	10-136
4-Terphenyl-d14	36	18-120

L2248271

09/09/22

Project Name: 1117 WEST FAYETTE STREET SUPPL

L2248271-04

SB-10A(1-1.5)

SYRACUSE, NY

Project Number: Z62.001.002

SAMPLE RESULTS

Date Collected: 09/06/22 13:55

Date Received: 09/06/22

Lab Number:

Report Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Soil
Analytical Method: 1,8270D
Analytical Date: 09/09/22 15:34

Analyst: WR Percent Solids: 92% Extraction Method: EPA 3546
Extraction Date: 09/08/22 23:12

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - We	estborough Lab					
Acenaphthene	48	J	ug/kg	140	18.	1
Hexachlorobenzene	ND		ug/kg	110	20.	1
Fluoranthene	1500		ug/kg	110	20.	1
Naphthalene	90	J	ug/kg	180	22.	1
Benzo(a)anthracene	800		ug/kg	110	20.	1
Benzo(a)pyrene	790		ug/kg	140	43.	1
Benzo(b)fluoranthene	1100		ug/kg	110	30.	1
Benzo(k)fluoranthene	290		ug/kg	110	28.	1
Chrysene	790		ug/kg	110	18.	1
Acenaphthylene	100	J	ug/kg	140	27.	1
Anthracene	180		ug/kg	110	35.	1
Benzo(ghi)perylene	540		ug/kg	140	21.	1
Fluorene	51	J	ug/kg	180	17.	1
Phenanthrene	780		ug/kg	110	22.	1
Dibenzo(a,h)anthracene	100	J	ug/kg	110	20.	1
Indeno(1,2,3-cd)pyrene	610		ug/kg	140	25.	1
Pyrene	1400		ug/kg	110	18.	1
Dibenzofuran	53	J	ug/kg	180	17.	1
Pentachlorophenol	ND		ug/kg	140	39.	1
Phenol	ND		ug/kg	180	27.	1
2-Methylphenol	ND		ug/kg	180	28.	1
3-Methylphenol/4-Methylphenol	ND		ug/kg	260	28.	1

09/09/22

Project Name: Lab Number: 1117 WEST FAYETTE STREET SUPPL L2248271

Project Number: Z62.001.002

SAMPLE RESULTS

Report Date:

Lab ID: L2248271-04 Date Collected: 09/06/22 13:55

Date Received: Client ID: 09/06/22 SB-10A(1-1.5) Sample Location: Field Prep: SYRACUSE, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Semivolatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	51	25-120
Phenol-d6	52	10-120
Nitrobenzene-d5	66	23-120
2-Fluorobiphenyl	57	30-120
2,4,6-Tribromophenol	73	10-136
4-Terphenyl-d14	48	18-120

L2248271

09/09/22

Project Name: 1117 WEST FAYETTE STREET SUPPL

L2248271-05

SB-04A(0.5-1.5)

SYRACUSE, NY

Project Number: Z62.001.002

SAMPLE RESULTS

Date Collected: 09/06/22 14:25

Lab Number:

Report Date:

Date Received: 09/06/22 Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Soil
Analytical Method: 1,8270D
Analytical Date: 09/09/22 15:58

Analyst: JG Percent Solids: 79% Extraction Method: EPA 3546
Extraction Date: 09/08/22 23:12

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westbord	ough Lab					
Acenaphthene	51	J	ug/kg	170	22.	1
Hexachlorobenzene	ND		ug/kg	130	24.	1
Fluoranthene	510		ug/kg	130	24.	1
Naphthalene	260		ug/kg	210	26.	1
Benzo(a)anthracene	270		ug/kg	130	24.	1
Benzo(a)pyrene	230		ug/kg	170	51.	1
Benzo(b)fluoranthene	290		ug/kg	130	35.	1
Benzo(k)fluoranthene	77	J	ug/kg	130	34.	1
Chrysene	280		ug/kg	130	22.	1
Acenaphthylene	ND		ug/kg	170	32.	1
Anthracene	100	J	ug/kg	130	41.	1
Benzo(ghi)perylene	150	J	ug/kg	170	25.	1
Fluorene	54	J	ug/kg	210	20.	1
Phenanthrene	670		ug/kg	130	26.	1
Dibenzo(a,h)anthracene	31	J	ug/kg	130	24.	1
Indeno(1,2,3-cd)pyrene	160	J	ug/kg	170	29.	1
Pyrene	520		ug/kg	130	21.	1
Dibenzofuran	140	J	ug/kg	210	20.	1
Pentachlorophenol	ND		ug/kg	170	46.	1
Phenol	ND		ug/kg	210	32.	1
2-Methylphenol	ND		ug/kg	210	32.	1
3-Methylphenol/4-Methylphenol	ND		ug/kg	300	33.	1

09/09/22

Project Name: 1117 WEST FAYETTE STREET SUPPL Lab Number: L2248271

Project Number: Z62.001.002

L2248271-05

SAMPLE RESULTS

Date Collected: 09/06/22 14:25

Report Date:

Client ID: SB-04A(0.5-1.5) Date Received: 09/06/22 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	58	25-120
Phenol-d6	56	10-120
Nitrobenzene-d5	81	23-120
2-Fluorobiphenyl	65	30-120
2,4,6-Tribromophenol	77	10-136
4-Terphenyl-d14	51	18-120

L2248271

09/09/22

Project Name: 1117 WEST FAYETTE STREET SUPPL

SYRACUSE, NY

09/09/22 17:52

Project Number: Z62.001.002

SAMPLE RESULTS

Lab ID: L2248271-06 Date Collected: 09/06/22 15:20 Date Received: Client ID: SB-05A(1-3) 09/06/22

Field Prep: Not Specified

Lab Number:

Report Date:

Sample Depth:

Analytical Date:

Sample Location:

Extraction Method: EPA 3546 Matrix: Soil **Extraction Date:** 09/08/22 23:12 Analytical Method: 1,8270D

Analyst: JG 85% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westbor	ough Lab					
Acenaphthene	24	J	ug/kg	150	20.	1
Hexachlorobenzene	ND		ug/kg	120	22.	1
Fluoranthene	930		ug/kg	120	22.	1
Naphthalene	90	J	ug/kg	190	24.	1
Benzo(a)anthracene	520		ug/kg	120	22.	1
Benzo(a)pyrene	490		ug/kg	150	47.	1
Benzo(b)fluoranthene	600		ug/kg	120	32.	1
Benzo(k)fluoranthene	180		ug/kg	120	31.	1
Chrysene	530		ug/kg	120	20.	1
Acenaphthylene	59	J	ug/kg	150	30.	1
Anthracene	120		ug/kg	120	38.	1
Benzo(ghi)perylene	340		ug/kg	150	23.	1
Fluorene	30	J	ug/kg	190	19.	1
Phenanthrene	530		ug/kg	120	24.	1
Dibenzo(a,h)anthracene	76	J	ug/kg	120	22.	1
Indeno(1,2,3-cd)pyrene	380		ug/kg	150	27.	1
Pyrene	870		ug/kg	120	19.	1
Dibenzofuran	35	J	ug/kg	190	18.	1
Pentachlorophenol	ND		ug/kg	150	42.	1
Phenol	ND		ug/kg	190	29.	1
2-Methylphenol	ND		ug/kg	190	30.	1
3-Methylphenol/4-Methylphenol	ND		ug/kg	280	30.	1

Project Name: Lab Number: 1117 WEST FAYETTE STREET SUPPL L2248271

Project Number: Z62.001.002

SAMPLE RESULTS

Date Collected: 09/06/22 15:20

Report Date:

Lab ID: L2248271-06 Date Received: Client ID: 09/06/22 SB-05A(1-3)

 ${\sf SYRACUSE}, {\sf NY}$ Sample Location: Field Prep: Not Specified

09/09/22

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Semivolatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	66	25-120
Phenol-d6	66	10-120
Nitrobenzene-d5	94	23-120
2-Fluorobiphenyl	68	30-120
2,4,6-Tribromophenol	79	10-136
4-Terphenyl-d14	65	18-120

L2248271

Lab Number:

Project Name: 1117 WEST FAYETTE STREET SUPPL

Project Number: Z62.001.002 **Report Date:** 09/09/22

roject Number: 262.001.002 Report Date:

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 09/08/22 11:05

Analyst: IM

Extraction Method: EPA 3546
Extraction Date: 09/08/22 01:35

arameter	Result	Qualifier	Units	RL		MDL
emivolatile Organics by GC/M	S - Westborough	Lab for s	ample(s):	01-06	Batch:	WG1684704-1
Acenaphthene	ND		ug/kg	130		17.
Hexachlorobenzene	ND		ug/kg	99		18.
Fluoranthene	ND		ug/kg	99		19.
Naphthalene	ND		ug/kg	160		20.
Benzo(a)anthracene	ND		ug/kg	99		18.
Benzo(a)pyrene	ND		ug/kg	130		40.
Benzo(b)fluoranthene	ND		ug/kg	99		28.
Benzo(k)fluoranthene	ND		ug/kg	99		26.
Chrysene	ND		ug/kg	99		17.
Acenaphthylene	ND		ug/kg	130		25.
Anthracene	ND		ug/kg	99		32.
Benzo(ghi)perylene	ND		ug/kg	130		19.
Fluorene	ND		ug/kg	160		16.
Phenanthrene	ND		ug/kg	99		20.
Dibenzo(a,h)anthracene	ND		ug/kg	99		19.
Indeno(1,2,3-cd)pyrene	ND		ug/kg	130		23.
Pyrene	ND		ug/kg	99		16.
Dibenzofuran	ND		ug/kg	160		16.
Pentachlorophenol	ND		ug/kg	130		36.
Phenol	ND		ug/kg	160		25.
2-Methylphenol	ND		ug/kg	160		26.
3-Methylphenol/4-Methylphenol	ND		ug/kg	240		26.

L2248271

Project Name: 1117 WEST FAYETTE STREET SUPPL Lab Number:

Project Number: Z62.001.002 **Report Date:** 09/09/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Extraction Method: EPA 3546

Analytical Date: 09/08/22 11:05 Extraction Date: 09/08/22 01:35

Analyst: IM

ParameterResultQualifierUnitsRLMDLSemivolatile Organics by GC/MS - Westborough Lab for sample(s):01-06Batch:WG1684704-1

Acceptance Surrogate %Recovery Qualifier Criteria 2-Fluorophenol 109 25-120 Phenol-d6 109 10-120 Nitrobenzene-d5 23-120 99 2-Fluorobiphenyl 95 30-120 2,4,6-Tribromophenol 96 10-136 4-Terphenyl-d14 106 18-120

Lab Control Sample Analysis Batch Quality Control

Project Name: 1117 WEST FAYETTE STREET SUPPL

Project Number: Z62.001.002

Lab Number: L2248271

Report Date: 09/09/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	, Q		Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westl	borough Lab Associ	ated sample(s):	01-06 Ba	itch: W	/G1684704-:	2 WG16847	704-3		
Acenaphthene	86		91			31-137	6		50
Hexachlorobenzene	89		93			40-140	4		50
Fluoranthene	90		95			40-140	5		50
Naphthalene	83		90			40-140	8		50
Benzo(a)anthracene	85		90			40-140	6		50
Benzo(a)pyrene	91		96			40-140	5		50
Benzo(b)fluoranthene	93		97			40-140	4		50
Benzo(k)fluoranthene	88		92			40-140	4		50
Chrysene	87		92			40-140	6		50
Acenaphthylene	86		92			40-140	7		50
Anthracene	92		97			40-140	5		50
Benzo(ghi)perylene	89		94			40-140	5		50
Fluorene	88		92			40-140	4		50
Phenanthrene	88		93			40-140	6		50
Dibenzo(a,h)anthracene	88		93			40-140	6		50
Indeno(1,2,3-cd)pyrene	97		102			40-140	5		50
Pyrene	91		96			35-142	5		50
Dibenzofuran	87		93			40-140	7		50
Pentachlorophenol	72		75			17-109	4		50
Phenol	94	Q	101		Q	26-90	7		50
2-Methylphenol	90		97		;	30-130.	7		50
3-Methylphenol/4-Methylphenol	100		107			30-130	7		50

Lab Control Sample Analysis Batch Quality Control

Project Name: 1117 WEST FAYETTE STREET SUPPL

Lab Number:

L2248271

Project Number: Z62.001.002

Report Date:

09/09/22

	LCS		LCSD		%Recovery			RPD
Parameter	%Recoverv	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-06 Batch: WG1684704-2 WG1684704-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	91	97	25-120
Phenol-d6	92	99	10-120
Nitrobenzene-d5	84	91	23-120
2-Fluorobiphenyl	82	87	30-120
2,4,6-Tribromophenol	87	88	10-136
4-Terphenyl-d14	89	92	18-120

METALS

Field Prep:

L2248271

Not Specified

Project Name: 1117 WEST FAYETTE STREET SUPPL Lab Number:

SAMPLE RESULTS

 Lab ID:
 L2248271-01
 Date Collected:
 09/06/22 10:45

 Client ID:
 SB-07A(1.5-2)
 Date Received:
 09/06/22

Sample Depth:

Sample Location:

Matrix: Soil Percent Solids: 82%

SYRACUSE, NY

Prep Dilution Date Date Analytical Method Qualifier Factor **Prepared** Analyzed Method **Parameter** Result Units RL MDL Analyst Total Metals - Mansfield Lab Arsenic, Total 8.57 mg/kg 0.485 0.101 1 09/07/22 19:55 09/09/22 08:22 EPA 3050B 1,6010D NΒ 79.5 0.485 0.084 1 09/07/22 19:55 09/09/22 08:22 EPA 3050B 1,6010D NB Barium, Total mg/kg J 1 Beryllium, Total 0.150 mg/kg 0.243 0.016 09/07/22 19:55 09/09/22 08:22 EPA 3050B 1,6010D NΒ Cadmium, Total 1.41 mg/kg 0.485 0.048 1 09/07/22 19:55 09/09/22 08:22 EPA 3050B 1,6010D NΒ Chromium, Total 13.9 0.485 0.047 09/07/22 19:55 09/09/22 08:22 EPA 3050B 1,6010D mg/kg 1 NΒ Copper, Total 148 0.125 1 09/07/22 19:55 09/09/22 08:22 EPA 3050B 1,6010D NΒ mg/kg 0.485 Lead, Total 150 mg/kg 2.43 0.130 1 09/07/22 19:55 09/09/22 08:22 EPA 3050B 1,6010D NB 231 1 1,6010D NΒ Manganese, Total mg/kg 0.485 0.077 09/07/22 19:55 09/09/22 08:22 EPA 3050B Mercury, Total 10 09/07/22 20:58 09/08/22 10:38 EPA 7471B 1,7471B DMB 11.6 mg/kg 0.855 0.558 09/07/22 19:55 09/09/22 08:22 EPA 3050B 1,6010D Nickel, Total 73.8 mg/kg 1.21 0.117 1 NB J 1,6010D NB Selenium, Total 0.480 0.970 0.125 1 09/07/22 19:55 09/09/22 08:22 EPA 3050B mg/kg ND 1 09/07/22 19:55 09/09/22 08:22 EPA 3050B 1,6010D Silver, Total mg/kg 0.485 0.137 NB 1,6010D Zinc, Total 62.0 mg/kg 2.43 0.142 1 09/07/22 19:55 09/09/22 08:22 EPA 3050B NB

Project Name: 1117 WEST FAYETTE STREET SUPPL **Lab Number:**

Project Number: Z62.001.002

Report Date:

L2248271

09/09/22

SAMPLE RESULTS

L2248271-02

Date Collected:

09/06/22 11:30

Client ID: SB-02A(0.5-5)
Sample Location: SYRACUSE, NY

Date Received: 09/06/22 Field Prep: Not Specified

09/07/22 19:55 09/09/22 08:07 EPA 3050B

Sample Depth:

Matrix:

Zinc, Total

Lab ID:

Soil

602

mg/kg

2.26

0.133

1

IX: 501

Percent Solids:	84%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Mans	ofiold Lob										
Total Metals - Mails	sileiu Lab										
Arsenic, Total	10.8		mg/kg	0.453	0.094	1	09/07/22 19:55	5 09/09/22 08:07	EPA 3050B	1,6010D	NB
Barium, Total	372		mg/kg	0.453	0.079	1	09/07/22 19:55	5 09/09/22 08:07	EPA 3050B	1,6010D	NB
Beryllium, Total	0.430		mg/kg	0.226	0.015	1	09/07/22 19:55	5 09/09/22 08:07	EPA 3050B	1,6010D	NB
Cadmium, Total	1.98		mg/kg	0.453	0.044	1	09/07/22 19:55	5 09/09/22 08:07	EPA 3050B	1,6010D	NB
Chromium, Total	13.1		mg/kg	0.453	0.043	1	09/07/22 19:55	5 09/09/22 08:07	EPA 3050B	1,6010D	NB
Copper, Total	106		mg/kg	0.453	0.117	1	09/07/22 19:55	5 09/09/22 08:07	EPA 3050B	1,6010D	NB
Lead, Total	383		mg/kg	2.26	0.121	1	09/07/22 19:55	5 09/09/22 08:07	EPA 3050B	1,6010D	NB
Manganese, Total	291		mg/kg	0.453	0.072	1	09/07/22 19:55	5 09/09/22 08:07	EPA 3050B	1,6010D	NB
Mercury, Total	0.623		mg/kg	0.083	0.054	1	09/07/22 20:58	3 09/08/22 10:21	EPA 7471B	1,7471B	DMB
Nickel, Total	10.1		mg/kg	1.13	0.110	1	09/07/22 19:55	5 09/09/22 08:07	EPA 3050B	1,6010D	NB
Selenium, Total	0.158	J	mg/kg	0.905	0.117	1	09/07/22 19:55	5 09/09/22 08:07	EPA 3050B	1,6010D	NB
Silver, Total	0.226	J	mg/kg	0.453	0.128	1	09/07/22 19:55	5 09/09/22 08:07	EPA 3050B	1,6010D	NB

1,6010D

NB

Project Name: 1117 WEST FAYETTE STREET SUPPL Lab Number: L2248271

SAMPLE RESULTS

Lab ID:L2248271-03Date Collected:09/06/22 12:30Client ID:SB-03A(1-3.5)Date Received:09/06/22Sample Location:SYRACUSE, NYField Prep:Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 79%

Prep Dilution Date Date Analytical Method Qualifier Factor **Prepared** Analyzed Method **Parameter** Result Units RL MDL Analyst Total Metals - Mansfield Lab Arsenic, Total 8.13 mg/kg 0.490 0.102 1 09/07/22 19:55 09/09/22 08:12 EPA 3050B 1,6010D NΒ 462 0.490 0.085 1 09/07/22 19:55 09/09/22 08:12 EPA 3050B 1,6010D NB Barium, Total mg/kg 1 Beryllium, Total 0.353 mg/kg 0.245 0.016 09/07/22 19:55 09/09/22 08:12 EPA 3050B 1,6010D NΒ Cadmium, Total 1.02 mg/kg 0.490 0.048 1 09/07/22 19:55 09/09/22 08:12 EPA 3050B 1,6010D NΒ Chromium, Total 15.5 0.490 0.047 09/07/22 19:55 09/09/22 08:12 EPA 3050B 1,6010D mg/kg 1 NΒ Copper, Total 51.5 0.126 1 09/07/22 19:55 09/09/22 08:12 EPA 3050B 1,6010D NΒ mg/kg 0.490 Lead, Total 360 mg/kg 2.45 0.131 1 09/07/22 19:55 09/09/22 08:12 EPA 3050B 1,6010D NB 0.078 1 1,6010D NΒ Manganese, Total 290 mg/kg 0.490 09/07/22 19:55 09/09/22 08:12 EPA 3050B 1 Mercury, Total 2.32 0.056 09/07/22 20:58 09/08/22 10:25 EPA 7471B 1,7471B DMB mg/kg 0.086 09/07/22 19:55 09/09/22 08:12 EPA 3050B 1,6010D Nickel, Total 12.8 mg/kg 1.22 0.118 1 NB 0.274 J 1,6010D NB Selenium, Total 0.980 0.126 1 09/07/22 19:55 09/09/22 08:12 EPA 3050B mg/kg ND 1 09/07/22 19:55 09/09/22 08:12 EPA 3050B 1,6010D Silver, Total mg/kg 0.490 0.139 NB 1,6010D Zinc, Total 373 mg/kg 2.45 0.144 1 09/07/22 19:55 09/09/22 08:12 EPA 3050B NB

Project Name: 1117 WEST FAYETTE STREET SUPPL Lab Number: L2248271

SAMPLE RESULTS

Lab ID:L2248271-04Date Collected:09/06/22 13:55Client ID:SB-10A(1-1.5)Date Received:09/06/22Sample Location:SYRACUSE, NYField Prep:Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 92%

Prep Dilution Date Date Analytical Method Qualifier Factor **Prepared** Analyzed Method **Parameter** Result Units RL MDL Analyst Total Metals - Mansfield Lab Arsenic, Total 7.23 mg/kg 0.431 0.090 1 09/07/22 19:55 09/09/22 08:17 EPA 3050B 1,6010D NΒ 85.1 0.431 0.075 1 09/07/22 19:55 09/09/22 08:17 EPA 3050B 1,6010D NB Barium, Total mg/kg 1 Beryllium, Total 0.215 mg/kg 0.215 0.014 09/07/22 19:55 09/09/22 08:17 EPA 3050B 1,6010D NΒ Cadmium, Total 1.85 mg/kg 0.431 0.042 1 09/07/22 19:55 09/09/22 08:17 EPA 3050B 1,6010D NΒ Chromium, Total 12.9 0.431 0.041 09/07/22 19:55 09/09/22 08:17 EPA 3050B 1,6010D mg/kg 1 NΒ Copper, Total 436 0.111 1 09/07/22 19:55 09/09/22 08:17 EPA 3050B 1,6010D NΒ mg/kg 0.431 Lead, Total 95.2 mg/kg 2.15 0.115 1 09/07/22 19:55 09/09/22 08:17 EPA 3050B 1,6010D NB 278 0.069 1 1,6010D NΒ Manganese, Total mg/kg 0.431 09/07/22 19:55 09/09/22 08:17 EPA 3050B 1 Mercury, Total 0.568 0.050 09/07/22 20:58 09/08/22 10:28 EPA 7471B 1,7471B DMB mg/kg 0.077 20.6 1,6010D Nickel, Total mg/kg 1.08 0.104 1 09/07/22 19:55 09/09/22 08:17 EPA 3050B NB 0.306 J 1,6010D NB Selenium, Total 0.862 0.111 1 09/07/22 19:55 09/09/22 08:17 EPA 3050B mg/kg ND 1 09/07/22 19:55 09/09/22 08:17 EPA 3050B 1,6010D Silver, Total mg/kg 0.431 0.122 NB 1,6010D Zinc, Total 377 mg/kg 2.15 0.126 1 09/07/22 19:55 09/09/22 08:17 EPA 3050B NB

L2248271

Project Name: 1117 WEST FAYETTE STREET SUPPL Lab Number:

SAMPLE RESULTS

 Lab ID:
 L2248271-05
 Date Collected:
 09/06/22 14:25

 Client ID:
 SB-04A(0.5-1.5)
 Date Received:
 09/06/22

 Sample Location:
 SYRACUSE, NY
 Field Prep:
 Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 79%

Prep Dilution Date Date Analytical Method Qualifier Factor **Prepared** Analyzed Method **Parameter** Result Units RL MDL Analyst Total Metals - Mansfield Lab Arsenic, Total 6.81 mg/kg 0.486 0.101 1 09/07/22 19:55 09/09/22 09:15 EPA 3050B 1,6010D NΒ 53.6 0.486 0.085 1 09/07/22 19:55 09/09/22 09:15 EPA 3050B 1,6010D NB Barium, Total mg/kg 1 Beryllium, Total 0.374 mg/kg 0.243 0.016 09/07/22 19:55 09/09/22 09:15 EPA 3050B 1,6010D NΒ Cadmium, Total 0.505 mg/kg 0.486 0.048 1 09/07/22 19:55 09/09/22 09:15 EPA 3050B 1,6010D NΒ 17.0 0.486 0.047 09/07/22 19:55 09/09/22 09:15 EPA 3050B 1,6010D Chromium, Total mg/kg 1 NΒ Copper, Total 24.0 0.125 1 09/07/22 19:55 09/09/22 09:15 EPA 3050B 1,6010D NΒ mg/kg 0.486 Lead, Total 43.1 mg/kg 2.43 0.130 1 09/07/22 19:55 09/09/22 09:15 EPA 3050B 1,6010D NB 0.077 1 1,6010D NΒ Manganese, Total 72.6 0.486 09/07/22 19:55 09/09/22 09:15 EPA 3050B mg/kg 1 Mercury, Total 0.060 09/07/22 20:58 09/08/22 10:31 EPA 7471B 1,7471B DMB 0.149 mg/kg 0.092 1,6010D Nickel, Total 8.13 mg/kg 1.21 0.118 1 09/07/22 19:55 09/09/22 09:15 EPA 3050B NB 0.170 J 1,6010D NB Selenium, Total 0.971 0.125 1 09/07/22 19:55 09/09/22 09:15 EPA 3050B mg/kg ND 1 09/07/22 19:55 09/09/22 09:15 EPA 3050B 1,6010D Silver, Total mg/kg 0.486 0.137 NB 1,6010D Zinc, Total 40.9 mg/kg 2.43 0.142 1 09/07/22 19:55 09/09/22 09:15 EPA 3050B NB

Project Name: 1117 WEST FAYETTE STREET SUPPL Lab Number: L2248271

Project Number: Z62.001.002 **Report Date:** 09/09/22

SAMPLE RESULTS

Lab ID:L2248271-06Date Collected:09/06/22 15:20Client ID:SB-05A(1-3)Date Received:09/06/22Sample Location:SYRACUSE, NYField Prep:Not Specified

Sample Depth:

Matrix: Soil
Percent Solids: 85%

0370					Dilution	Date	Date	Prep	Analytical	
Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
field Lab										
8.86		mg/kg	0.919	0.191	2	09/07/22 19:55	09/09/22 15:22	EPA 3050B	1,6010D	MC
96.1		mg/kg	0.919	0.160	2	09/07/22 19:55	09/09/22 15:22	EPA 3050B	1,6010D	MC
0.331	J	mg/kg	0.459	0.030	2	09/07/22 19:55	09/09/22 15:22	EPA 3050B	1,6010D	MC
1.45		mg/kg	0.919	0.090	2	09/07/22 19:55	09/09/22 15:22	EPA 3050B	1,6010D	MC
13.5		mg/kg	0.919	0.088	2	09/07/22 19:55	09/09/22 15:22	EPA 3050B	1,6010D	MC
67.0		mg/kg	0.919	0.237	2	09/07/22 19:55	09/09/22 15:22	EPA 3050B	1,6010D	MC
193		mg/kg	4.59	0.246	2	09/07/22 19:55	09/09/22 15:22	EPA 3050B	1,6010D	MC
273		mg/kg	0.919	0.146	2	09/07/22 19:55	09/09/22 15:22	EPA 3050B	1,6010D	MC
0.638		mg/kg	0.077	0.050	1	09/07/22 20:58	09/08/22 10:34	EPA 7471B	1,7471B	DMB
11.9		mg/kg	2.30	0.222	2	09/07/22 19:55	09/09/22 15:22	EPA 3050B	1,6010D	MC
ND		mg/kg	1.84	0.237	2	09/07/22 19:55	09/09/22 15:22	EPA 3050B	1,6010D	MC
ND		mg/kg	0.919	0.260	2	09/07/22 19:55	09/09/22 15:22	EPA 3050B	1,6010D	МС
156		mg/kg	4.59	0.269	2	09/07/22 19:55	09/09/22 15:22	EPA 3050B	1,6010D	МС
	Result 8.86 96.1 0.331 1.45 13.5 67.0 193 273 0.638 11.9 ND	Result Qualifier sfield Lab 8.86 96.1 0.331 J 1.45 13.5 67.0 193 273 0.638 11.9 ND ND ND	Result Qualifier Units field Lab 8.86 mg/kg 96.1 mg/kg 0.331 J mg/kg 1.45 mg/kg 13.5 mg/kg 67.0 mg/kg 193 mg/kg 273 mg/kg 0.638 mg/kg 11.9 mg/kg ND mg/kg ND mg/kg	Result Qualifier Units RL field Lab 8.86 mg/kg 0.919 96.1 mg/kg 0.919 0.331 J mg/kg 0.459 1.45 mg/kg 0.919 13.5 mg/kg 0.919 67.0 mg/kg 0.919 193 mg/kg 4.59 273 mg/kg 0.919 0.638 mg/kg 0.077 11.9 mg/kg 2.30 ND mg/kg 0.919	Result Qualifier Units RL MDL sfield Lab mg/kg 0.919 0.191 96.1 mg/kg 0.919 0.160 0.331 J mg/kg 0.459 0.030 1.45 mg/kg 0.919 0.090 13.5 mg/kg 0.919 0.088 67.0 mg/kg 0.919 0.237 193 mg/kg 4.59 0.246 273 mg/kg 0.919 0.146 0.638 mg/kg 0.077 0.050 11.9 mg/kg 2.30 0.222 ND mg/kg 0.919 0.260	Result Qualifier Units RL MDL Dilution Factor sfield Lab 8.86 mg/kg 0.919 0.191 2 96.1 mg/kg 0.919 0.160 2 0.331 J mg/kg 0.459 0.030 2 1.45 mg/kg 0.919 0.090 2 13.5 mg/kg 0.919 0.088 2 67.0 mg/kg 0.919 0.237 2 193 mg/kg 4.59 0.246 2 273 mg/kg 0.919 0.146 2 0.638 mg/kg 0.077 0.050 1 11.9 mg/kg 2.30 0.222 2 ND mg/kg 0.919 0.260 2	Result Qualifier Units RL MDL Dilution Factor Date Prepared sfield Lab 8.86 mg/kg 0.919 0.191 2 09/07/22 19:55 96.1 mg/kg 0.919 0.160 2 09/07/22 19:55 0.331 J mg/kg 0.9459 0.030 2 09/07/22 19:55 1.45 mg/kg 0.919 0.090 2 09/07/22 19:55 13.5 mg/kg 0.919 0.088 2 09/07/22 19:55 67.0 mg/kg 0.919 0.237 2 09/07/22 19:55 193 mg/kg 4.59 0.246 2 09/07/22 19:55 273 mg/kg 0.919 0.146 2 09/07/22 19:55 0.638 mg/kg 0.077 0.050 1 09/07/22 19:55 ND mg/kg 1.84 0.237 2 09/07/22 19:55 ND mg/kg 0.919 0.260 2 09/07/22 19:55	Result Qualifier Units RL MDL Dilution Factor Date Prepared Date Analyzed 8.86 mg/kg 0.919 0.191 2 09/07/22 19:55 09/09/22 15:22 96.1 mg/kg 0.919 0.160 2 09/07/22 19:55 09/09/22 15:22 0.331 J mg/kg 0.459 0.030 2 09/07/22 19:55 09/09/22 15:22 1.45 mg/kg 0.919 0.090 2 09/07/22 19:55 09/09/22 15:22 13.5 mg/kg 0.919 0.088 2 09/07/22 19:55 09/09/22 15:22 67.0 mg/kg 0.919 0.237 2 09/07/22 19:55 09/09/22 15:22 193 mg/kg 4.59 0.246 2 09/07/22 19:55 09/09/22 15:22 273 mg/kg 0.919 0.146 2 09/07/22 19:55 09/09/22 15:22 0.638 mg/kg 0.077 0.050 1 09/07/22 19:55 09/09/22 15:22 ND mg/kg 1.84 0.237 2 09/07/22 19:55 09/09/22 15:22 ND <td< td=""><td>Result Qualifier Units RL MDL Dilution Factor Date Prepared Date Analyzed Prep Method Analyzed Method</td><td>Result Qualifier Units RL MDL Factor Factor Factor Date Prepared Date Analyzed Prep Method Analytical Method ffield Lab 8.86 mg/kg 0.919 0.191 2 09/07/22 19:55 09/09/22 15:22 EPA 3050B 1,6010D 96.1 mg/kg 0.919 0.160 2 09/07/22 19:55 09/09/22 15:22 EPA 3050B 1,6010D 0.331 J mg/kg 0.459 0.030 2 09/07/22 19:55 09/09/22 15:22 EPA 3050B 1,6010D 1.45 mg/kg 0.919 0.090 2 09/07/22 19:55 09/09/22 15:22 EPA 3050B 1,6010D 67.0 mg/kg 0.919 0.237 2 09/07/22 19:55 09/09/22 15:22 EPA 3050B 1,6010D 193 mg/kg 4.59 0.246 2 09/07/22 19:55 09/09/22 15:22 EPA 3050B 1,6010D 273 mg/kg 0.919 0.146 2 09/07/22 19:55 09/09/22 15:22 EPA 3050B 1,6010D 0.638 mg/kg 0.077</td></td<>	Result Qualifier Units RL MDL Dilution Factor Date Prepared Date Analyzed Prep Method Analyzed Method	Result Qualifier Units RL MDL Factor Factor Factor Date Prepared Date Analyzed Prep Method Analytical Method ffield Lab 8.86 mg/kg 0.919 0.191 2 09/07/22 19:55 09/09/22 15:22 EPA 3050B 1,6010D 96.1 mg/kg 0.919 0.160 2 09/07/22 19:55 09/09/22 15:22 EPA 3050B 1,6010D 0.331 J mg/kg 0.459 0.030 2 09/07/22 19:55 09/09/22 15:22 EPA 3050B 1,6010D 1.45 mg/kg 0.919 0.090 2 09/07/22 19:55 09/09/22 15:22 EPA 3050B 1,6010D 67.0 mg/kg 0.919 0.237 2 09/07/22 19:55 09/09/22 15:22 EPA 3050B 1,6010D 193 mg/kg 4.59 0.246 2 09/07/22 19:55 09/09/22 15:22 EPA 3050B 1,6010D 273 mg/kg 0.919 0.146 2 09/07/22 19:55 09/09/22 15:22 EPA 3050B 1,6010D 0.638 mg/kg 0.077

Project Name: 1117 WEST FAYETTE STREET SUPPL

Project Number: Z62.001.002

Lab Number:

L2248271

Report Date: 09/09/22

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfi	ield Lab for sample(s):	01-06 E	Batch: W	G16843	93-1				
Arsenic, Total	ND	mg/kg	0.400	0.083	1	09/07/22 19:55	09/09/22 07:57	1,6010D	NB
Barium, Total	ND	mg/kg	0.400	0.070	1	09/07/22 19:55	09/09/22 07:57	1,6010D	NB
Beryllium, Total	ND	mg/kg	0.200	0.013	1	09/07/22 19:55	09/09/22 07:57	1,6010D	NB
Cadmium, Total	ND	mg/kg	0.400	0.039	1	09/07/22 19:55	09/09/22 07:57	1,6010D	NB
Chromium, Total	ND	mg/kg	0.400	0.038	1	09/07/22 19:55	09/09/22 07:57	1,6010D	NB
Copper, Total	ND	mg/kg	0.400	0.103	1	09/07/22 19:55	09/09/22 07:57	1,6010D	NB
Lead, Total	ND	mg/kg	2.00	0.107	1	09/07/22 19:55	09/09/22 07:57	1,6010D	NB
Manganese, Total	ND	mg/kg	0.400	0.064	1	09/07/22 19:55	09/09/22 07:57	1,6010D	NB
Nickel, Total	ND	mg/kg	1.00	0.097	1	09/07/22 19:55	09/09/22 07:57	1,6010D	NB
Selenium, Total	ND	mg/kg	0.800	0.103	1	09/07/22 19:55	09/09/22 07:57	1,6010D	NB
Silver, Total	ND	mg/kg	0.400	0.113	1	09/07/22 19:55	09/09/22 07:57	1,6010D	NB
Zinc, Total	ND	mg/kg	2.00	0.117	1	09/07/22 19:55	09/09/22 07:57	1,6010D	NB

Prep Information

Digestion Method: EPA 3050B

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Man	sfield Lab for sample(s):	01-06 B	atch: Wo	G16843	94-1				
Mercury, Total	ND	mg/kg	0.083	0.054	1	09/07/22 20:58	09/08/22 08:47	7 1,7471B	DMB

Prep Information

Digestion Method: EPA 7471B

Lab Control Sample Analysis Batch Quality Control

Project Name: 1117 WEST FAYETTE STREET SUPPL

Project Number: Z62.001.002

Lab Number: L2248271

Report Date: 09/09/22

Parameter	LCS %Recovery	Qual	LCSD %Recove	ry Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	(s): 01-06 Ba	atch: WG168	34393-2 SF	M Lot Number	: D113-540			
Arsenic, Total	83		-		70-130	-		
Barium, Total	79		-		75-125	-		
Beryllium, Total	85		-		75-125	-		
Cadmium, Total	80		-		75-125	-		
Chromium, Total	78		-		70-130	-		
Copper, Total	80		-		75-125	-		
Lead, Total	78		-		72-128	-		
Manganese, Total	79		-		77-123	-		
Nickel, Total	78		-		70-130	-		
Selenium, Total	81		-		66-134	-		
Silver, Total	76		-		70-131	-		
Zinc, Total	79		-		70-130	-		
otal Metals - Mansfield Lab Associated sample	(s): 01-06 Ba	atch: WG168	34394-2 SF	RM Lot Number:	: D113-540			
Mercury, Total	86		-		60-140	-		

Matrix Spike Analysis Batch Quality Control

Project Name: 1117 WEST FAYETTE STREET SUPPL

Project Number: Z62.001.002

Lab Number: L2248271

Report Date: 09/09/22

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery Qu	Recovery al Limits	RPD Qual	RPD Limits
otal Metals - Mansfield La	ab Associated sam	ple(s): 01-06	QC Bate	ch ID: WG168	4393-3	QC Sam	nple: L2248271-01	Client ID: SB	-07A(1.5-2)	
Arsenic, Total	8.57	11.5	17.9	81		-	-	75-125	-	20
Barium, Total	79.5	192	198	62	Q	-	-	75-125	-	20
Beryllium, Total	0.150J	4.79	3.53	74	Q	-	-	75-125	-	20
Cadmium, Total	1.41	5.08	4.18	54	Q	-	-	75-125	-	20
Chromium, Total	13.9	19.2	26.0	63	Q	-	-	75-125	-	20
Copper, Total	148	23.9	182	142	Q	-	-	75-125	-	20
Lead, Total	150	50.8	190	79		-	-	75-125	-	20
Manganese, Total	231	47.9	319	184	Q	-	-	75-125	-	20
Nickel, Total	73.8	47.9	138	134	Q	-	-	75-125	-	20
Selenium, Total	0.480J	11.5	8.55	74	Q	-	-	75-125	-	20
Silver, Total	ND	28.7	22.1	77		-	-	75-125	-	20
Zinc, Total	62.0	47.9	82.4	43	Q	-	-	75-125	-	20
otal Metals - Mansfield La	ab Associated sam	ple(s): 01-06	QC Bate	ch ID: WG168	4394-3	QC Sam	nple: L2248271-01	Client ID: SB	-07A(1.5-2)	
Mercury, Total	11.6	1.61	12.3	43	Q	-	-	80-120	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: 1117 WEST FAYETTE STREET SUPPL

Project Number: Z62.001.002

Lab Number:

L2248271

Report Date:

09/09/22

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
otal Metals - Mansfield Lab Associated sample(s): 01-0	6 QC Batch ID:	WG1684393-4 QC Sample:	L2248271-01	Client ID:	SB-07A(1.5	-2)
Arsenic, Total	8.57	8.15	mg/kg	5		20
Barium, Total	79.5	69.9	mg/kg	13		20
Beryllium, Total	0.150J	0.175J	mg/kg	NC		20
Cadmium, Total	1.41	1.43	mg/kg	1		20
Chromium, Total	13.9	16.3	mg/kg	16		20
Copper, Total	148	158	mg/kg	7		20
Lead, Total	150	214	mg/kg	35	Q	20
Manganese, Total	231	255	mg/kg	10		20
Nickel, Total	73.8	100	mg/kg	30	Q	20
Selenium, Total	0.480J	0.483J	mg/kg	NC		20
Silver, Total	ND	ND	mg/kg	NC		20
Zinc, Total	62.0	59.4	mg/kg	4		20
otal Metals - Mansfield Lab Associated sample(s): 01-0	6 QC Batch ID:	WG1684394-4 QC Sample:	L2248271-01	Client ID:	SB-07A(1.5	-2)
Mercury, Total	11.6	12.4	mg/kg	7		20

Project Name: 1117 WEST FAYETTE STREET SUPPL

Project Number: Z62.001.002

Lab Serial Dilution
Analysis
Batch Quality Control

Lab Number:

L2248271 09/09/22

Quality Control Report Date:

arameter	Native Sample	Serial Dilution	Units	% D	Qual	RPD Limits
otal Metals - Mansfield Lab Associated sample(s): 01-0	6 QC Batch ID:	WG1684393-6 QC Sample:	L2248271-01	Client ID:	SB-07A(1.	5-2)
Barium, Total	79.5	109	mg/kg	37	Q	20
Chromium, Total	13.9	20.0	mg/kg	44	Q	20
Copper, Total	148	188	mg/kg	27	Q	20
Lead, Total	150	210	mg/kg	40	Q	20
Manganese, Total	231	329	mg/kg	42	Q	20
Nickel, Total	73.8	102	mg/kg	38	Q	20
Zinc, Total	62.0	87.6	mg/kg	41	Q	20

INORGANICS & MISCELLANEOUS

Project Name: 1117 WEST FAYETTE STREET SUPPL Lab Number: L2248271

SAMPLE RESULTS

 Lab ID:
 L2248271-01
 Date Collected:
 09/06/22 10:45

 Client ID:
 SB-07A(1.5-2)
 Date Received:
 09/06/22

 Sample Location:
 SYRACUSE, NY
 Field Prep:
 Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab)								
Solids, Total	82.1		%	0.100	NA	1	-	09/07/22 11:39	121,2540G	RI
Cyanide, Total	140		mg/kg	24	5.1	20	09/08/22 04:40	09/08/22 14:04	1,9010C/9012B	CS

Project Name: 1117 WEST FAYETTE STREET SUPPL Lab Number: L2248271

SAMPLE RESULTS

 Lab ID:
 L2248271-02
 Date Collected:
 09/06/22 11:30

 Client ID:
 SB-02A(0.5-5)
 Date Received:
 09/06/22

 Sample Location:
 SYRACUSE, NY
 Field Prep:
 Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab)								
Solids, Total	83.5		%	0.100	NA	1	-	09/07/22 11:39	121,2540G	RI
Cyanide, Total	ND		mg/kg	1.2	0.25	1	09/08/22 04:40	09/08/22 14:07	1,9010C/9012B	CS

Project Name: 1117 WEST FAYETTE STREET SUPPL Lab Number: L2248271

SAMPLE RESULTS

 Lab ID:
 L2248271-03
 Date Collected:
 09/06/22 12:30

 Client ID:
 SB-03A(1-3.5)
 Date Received:
 09/06/22

 Sample Location:
 SYRACUSE, NY
 Field Prep:
 Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lal)								
Solids, Total	79.1		%	0.100	NA	1	-	09/07/22 11:39	121,2540G	RI
Cyanide, Total	ND		mg/kg	1.2	0.25	1	09/08/22 04:40	09/08/22 13:25	1,9010C/9012B	CS

Project Name: 1117 WEST FAYETTE STREET SUPPL Lab Number: L2248271

SAMPLE RESULTS

Lab ID: L2248271-04 Date Collected: 09/06/22 13:55

Client ID: SB-10A(1-1.5) Date Received: 09/06/22 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	t Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough La	ab								
Solids, Total	91.6		%	0.100	NA	1	-	09/07/22 11:39	121,2540G	RI
Cyanide, Total	0.61	J	mg/kg	1.0	0.22	1	09/08/22 04:40	09/08/22 13:26	1,9010C/9012B	CS

Project Name: 1117 WEST FAYETTE STREET SUPPL Lab Number: L2248271

SAMPLE RESULTS

Lab ID: L2248271-05 Date Collected: 09/06/22 14:25

Client ID: SB-04A(0.5-1.5) Date Received: 09/06/22 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	t Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough La	ab								
Solids, Total	78.6		%	0.100	NA	1	-	09/07/22 11:39	121,2540G	RI
Cyanide, Total	0.90	J	mg/kg	1.2	0.25	1	09/08/22 04:40	09/08/22 13:37	1,9010C/9012B	CS

Project Name: 1117 WEST FAYETTE STREET SUPPL Lab Number: L2248271

SAMPLE RESULTS

 Lab ID:
 L2248271-06
 Date Collected:
 09/06/22 15:20

 Client ID:
 SB-05A(1-3)
 Date Received:
 09/06/22

Client ID: SB-05A(1-3) Date Received: 09/06/22 Sample Location: SYRACUSE, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough La	b								
Solids, Total	85.1		%	0.100	NA	1	-	09/07/22 11:39	121,2540G	RI
Cyanide, Total	0.35	J	mg/kg	1.1	0.23	1	09/08/22 04:40	09/08/22 13:38	1,9010C/9012B	CS

Project Name: 1117 WEST FAYETTE STREET SUPPL Lab Number: L2248271

> Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab for sam	ple(s): 01	-06 Ba	tch: Wo	G1684680-1	l			
Cyanide, Total	ND	mg/kg	0.99	0.21	1	09/08/22 04:40	09/08/22 13:11	1,9010C/901	2B CS

Lab Control Sample Analysis Batch Quality Control

Project Name: 1117 WEST FAYETTE STREET SUPPL

Lab Number: L2248271

Project Number: Z62.001.002 Report Date:

09/09/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual R	RPD Limits
General Chemistry - Westborough Lab As	ssociated sample(s): 01-06	Batch: WG1684	680-2 WC	G1684680-3			
Cyanide, Total	68	Q	79	Q	80-120	10		35

Matrix Spike Analysis Batch Quality Control

Project Name: 1117 WEST FAYETTE STREET SUPPL

Project Number: Z62.001.002

Lab Number:

L2248271

Report Date:

09/09/22

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	RPD Qual Limits
General Chemistry - Westboroug SB-07A(1.5-2)	gh Lab Asso	ociated samp	le(s): 01-06	QC Batch II	D: WG1	684680-4	WG1684680-5	QC S	Sample: L22	248271-0 ⁻	1 Client ID:
Cyanide, Total	140	11	77	0	Q	93	0	Q	75-125	19	35

Lab Duplicate Analysis

Batch Quality Control

Project Name: 1117 WEST FAYETTE STREET SUPPL

Lab Number: L2248271

Project Number: Z62.001.002

Report Date: 09/09/22

Parameter	Native Sam	ple D	uplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-06	QC Batch ID:	WG1684403-1	QC Sample:	L2248203-14	Client ID:	DUP Sample
Solids, Total	83.6		83.4	%	0		20

Project Name: 1117 WEST FAYETTE STREET SUPPL

Project Number: Z62.001.002

Lab Number: L2248271
Report Date: 09/09/22

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler Custody Seal

A Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	•	Pres	Seal	Date/Time	Analysis(*)
L2248271-01A	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		3.9	Y	Absent		BE-TI(180),BA-TI(180),AS-TI(180),AG- TI(180),NI-TI(180),CR-TI(180),ZN-TI(180),SE- TI(180),CU-TI(180),PB-TI(180),HG-T(28),MN- TI(180),CD-TI(180)
L2248271-01B	Glass 120ml/4oz unpreserved	Α	NA		3.9	Y	Absent		TCN-9010(14),NYTCL-8270(14),TS(7),HEXCR-7196(30)
L2248271-02A	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		3.9	Y	Absent		BE-TI(180),AS-TI(180),BA-TI(180),AG- TI(180),CR-TI(180),NI-TI(180),CU-TI(180),PB- TI(180),SE-TI(180),ZN-TI(180),MN-TI(180),HG- T(28),CD-TI(180)
L2248271-02B	Glass 120ml/4oz unpreserved	Α	NA		3.9	Υ	Absent		NYTCL-8270(14),TCN-9010(14),TS(7),HEXCR-7196(30)
L2248271-03A	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		3.9	Υ	Absent		BE-TI(180),AS-TI(180),BA-TI(180),AG- TI(180),CR-TI(180),NI-TI(180),CU-TI(180),ZN- TI(180),SE-TI(180),PB-TI(180),HG-T(28),MN- TI(180),CD-TI(180)
L2248271-03B	Glass 120ml/4oz unpreserved	Α	NA		3.9	Υ	Absent		TCN-9010(14),NYTCL-8270(14),TS(7),HEXCR-7196(30)
L2248271-04A	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		3.9	Υ	Absent		BE-TI(180),AS-TI(180),BA-TI(180),AG- TI(180),NI-TI(180),CR-TI(180),PB-TI(180),ZN- TI(180),SE-TI(180),CU-TI(180),MN-TI(180),HG- T(28),CD-TI(180)
L2248271-04B	Glass 120ml/4oz unpreserved	Α	NA		3.9	Υ	Absent		TCN-9010(14),NYTCL-8270(14),TS(7),HEXCR-7196(30)
L2248271-05A	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		3.9	Y	Absent		BE-TI(180),AS-TI(180),BA-TI(180),AG- TI(180),NI-TI(180),CR-TI(180),PB-TI(180),ZN- TI(180),CU-TI(180),SE-TI(180),MN-TI(180),HG- T(28),CD-TI(180)
L2248271-05B	Glass 120ml/4oz unpreserved	Α	NA		3.9	Y	Absent		TCN-9010(14),NYTCL-8270(14),TS(7),HEXCR-7196(30)
L2248271-06A	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		3.9	Y	Absent		BE-TI(180),AS-TI(180),BA-TI(180),AG- TI(180),CR-TI(180),NI-TI(180),CU-TI(180),ZN- TI(180),SE-TI(180),PB-TI(180),MN-TI(180),HG- T(28),CD-TI(180)
L2248271-06B	Glass 120ml/4oz unpreserved	Α	NA		3.9	Υ	Absent		TCN-9010(14),NYTCL-8270(14),TS(7),HEXCR-7196(30)

Project Name: Lab Number: 1117 WEST FAYETTE STREET SUPPL L2248271 **Project Number:** Z62.001.002 **Report Date:** 09/09/22

GLOSSARY

Acronyms

EMPC

LOD

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

> - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name: 1117 WEST FAYETTE STREET SUPPL Lab Number: L2248271
Project Number: Z62.001.002 Report Date: 09/09/22

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Project Name: 1117 WEST FAYETTE STREET SUPPL Lab Number: L2248271
Project Number: Z62.001.002 Report Date: 09/09/22

Data Qualifiers

Identified Compounds (TICs).

- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits.
 (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name: 1117 WEST FAYETTE STREET SUPPL Lab Number: L2248271
Project Number: Z62.001.002 Report Date: 09/09/22

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 19

Published Date: 4/2/2021 1:14:23 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

Page 52 of 53

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Дірна	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitne Albany, NY 12205: 14 Walker Tonawanda, NY 14150: 275 Co	Way	05	Pag	e of \		Date in	Rec'd C	1/7	12:	2	ALPHA JOB# L2248271	
Westborough, MA 01581	Mansfield, MA 02048	Project Information	THE RESERVE		No.	Control of the		erable	1-31531			anness and		
8 Walkup Dr. TEL: 508-898-9220	320 Forbes Blvd TEL: 508-822-9300		Lat C A	/\ \ \ / ·		0	Deliv	ASP-			LACD	D	Billing Information	
FAX: 508-898-9193	FAX: 508-822-3288	Project Location: S	er rayette	Street Supp	emerical	Morell	1 1			H	ASP.		Same as Client Info	
Client Information		Project Location: Sura	use, NY				1 1		S (1 File)	L	EQUI	S (4 File)	PO#	
Client: (45 Evancer		Project # Z62.001	-					Othe	(01) - 1 - 1					
Address: 499 Ca. El		(Use Project name as P					Regu	-	Requirem	ent	200		Disposal Site Information	
		Project Manager: Ma	it walker				1 11	NYTO	SIII Elwerous	느		art 375	Please identify below location of	
Syrause, NY 13		ALPHAQuote #:					ᆝ닏		Standards		NY C	P-51	applicable disposal facilities.	
Phone: 316 415 20		Turn-Around Time				2011			estricted Us		Other		Disposal Facility:	
Fax:		Standard Standard		Due Date:					restricted L				NJ NY	
Email: mawalker@		Rush (only if pre approved	1) [# of Days:	2		NYC Sewer Discharge						Other:	
These samples have bee Other project specific r							_	LYSIS					Sample Filtration	T
Please specify Metals o		ienis.					375 8005	375					Done Lab to do Preservation Lab to do (Please Specify below)	t a B o
ALPHA Lab ID	20	male ID	Colle	ection	Sample	Sampler's	00	Park						t
(Lab Use Only)	38	mple ID	Date	Time	Matrix	Initials	100	7					Sample Specific Comments	
48271 -01	SB-09A(1.	5-2)	9/6/22	10:45	Soil	Aco	X	X						2
-67	SE-02A(0	5-5)	9/6/22	11:30	Soul	ACD	X	乂		1				2
703	5B-03A(1.		9/6/22	12:30	50:1	AD	×	X		1				
-oy	SB-10A(1-		9/6/22	13:35	Sail	HOD	X	X	_	+		_		3
75	5B-04A(0.5-1.5)	916122	14:25	Sail	HOD	X	X	_	+		_		2
-06	58-05911		9/6/22	15:20	Soul	ACD	1	~	-	+	-			2
	- WG - 5 1(.		7/6/20	75-60		No	,-	~						2
A = None P	ontainer Code = Plastic	Westboro: Certification N			Con	tainer Type	A	A	\top		Н		Please print clearly, legibly	
C = HNO ₃ V D = H ₂ SO ₄ G E = NaOH B	= Amber Glass = Vial = Glass = Bacteria Cup	Mansfield: Certification N		Р	reservative	A	A					and completely. Samples on not be logged in and turnaround time clock will n start until any ambiguities a	not	
G = NaHSO ₄ O H = Na ₂ S ₂ O ₃ E: VE = Zn Ac/NaOH	= Cube = Other = Encore = BOD Bottle	Relinquished B Anthony DiGrown (9/6/22/16:15 Secu			Receiv	Step	L	Date/Time			resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES		
O = Other Form No: 01-25 HC (rev. 30-S	ept-2013)	Ch. John		09/06/22 1741 ALL			~	//		- 9/7/22 0020			TO BE BOUND BY ALPHA TERMS & CONDITIONS. (See reverse side.)	rs