

Phase II Environmental Site Assessment

1153 West Fayette Street City of Syracuse, Onondaga County, New York

> Prepared for: 1153 Owner LLC 449 – 453 South Salina Street Syracuse, New York 13202

> > June 2023

EXEC	UTIVE SUMMARY1
1. I	NTRODUCTION
1.1.	PURPOSE OF INVESTIGATION
1.2.	SCOPE OF WORK
1.3.	LIMITATIONS AND EXCEPTIONS
1.4.	SPECIAL TERMS AND CONDITIONS
2. 5	ITE DESCRIPTION
<u></u>	
2.1.	SITE AND SURROUNDING CHARACTERISTICS
2.2.	CURRENT PROPERTY USE
2.3.	SITE HISTORY
2.4.	CURRENT USE OF ADJOINING SITES
2.5.	SITE SURFACE SOIL CONDITION
2.6.	SITE GEOLOGICAL CONDITIONS
2.7.	SURFACE WATER AND GROUNDWATER CONDITIONS
<u>3.</u> F	PHASE II ENVIRONMENTAL SITE ASSESSMENT METHODOLOGIES
<u></u> -	
3.1.	INVESTIGATION SCOPE AND OBJECTIVES
3.2.	SITE INVESTIGATION METHODS
3.2.1.	
3.2.1.	
3.2.1.	2. Field Screening
3.2.1.	-
3.2.2	•
3.2.2	1. Well Construction
	2. Well Development and Sampling
4. I	NVESTIGATION FINDINGS
4.1.	SITE GEOLOGY
4.2.	SITE HYDROLOGY
4.3.	SOIL FIELD SCREENING RESULTS
4.4.	GROUNDWATER FIELD SCREENING RESULTS
4.5.	SPILL REPORTING
4.6.	LABORATORY ANALYTICAL DATA SUMMARY
4.6.1.	

<u>5.</u>	CONCLUSIONS AND RECOMMENDATIONS	18
5.1.	RECOMMENDATIONS	19
6 .	REFERENCES	20

ENVIRONMENTAL PROFESSIONAL STATEMENT AND QUALIFICATIONS...... 21

FIGURES

Figure 1	Project Location Map
Figure 2	Soil Sampling Map
Figure 3	Groundwater Sampling Map

TABLES

Table 1	Soil Analytical Data Summary
Table 2	Groundwater Analytical Data Summary

APPENDICES

- Appendix A Soil Boring Logs
- Appendix B Well Sampling Logs
- Appendix C Laboratory Analytical Reports

EXECUTIVE SUMMARY

At the request of the 1153 Owner LLC, C&S Engineers, Inc. (C&S) has prepared this Phase II Environmental Site Assessment (Phase II ESA or Investigation) Report for a 2.65 acre portion of the Commercial Property located at 1153 West Fayette Street in the City of Syracuse, Onondaga County, New York (Site)¹. The location of the Site is shown on **Figure 1**.

The findings of this Phase II ESA indicate the following:

- The soil lithology across the Site generally consisted of fill material comprised of a heterogenous mix of brick, coal, ash, tar, and / or cinders to depths of 2 to 11 feet bgs. This fill material was generally underlain by natural deposits comprised of fine to coarse sand and clay and / or silt. Groundwater was generally encountered at depths of 9 to 14 feet bgs. Bedrock was not encountered.
- Soil analytical results indicated the presence of acetone in BH-06 at concentrations exceeding exceeding Unrestricted Use SCOs. Acetone is a common laboratory contaminant. Low levels of VOCs including many benzene derivatives, xylenes, and toluene were detected in samples from BH-04, BH-06, BH-08, and BH-10 at concentrations below Unrestricted Use soil cleanup objectives.
- Soil analytical results indicated the presence of numerous SVOCs in the soil sample collected from BH-08, with concentrations exceeding Unrestricted and Commercial Use SCOs. These compounds are typically associated with petroleum products (diesel, fuel oil, waste/motor oil), coal, and burned organic material (i.e., wood). The presence of historic fill material encountered across the entire investigation area may be contributing to the presence of these SVOCs.
- Soil analytical results indicated the presence of numerous heavy metals across the Site, with concentrations exceeding Unrestricted Use SCOs. Arsenic concentrations across the Site exceeded Commercial Use SCOs.
- While VOCs were not detected in the groundwater sample collected from TW-03, where evidence of petroleum impacts were observed, many of the analyte detection limits exceeded their respective groundwater standard. These elevated detection limits may be due to matrix interferences resulting from the presence of other, non-target petroleum constituents related to degraded petroleum products in this area.

¹ The 0.25 acre portion of the tax parcel excluded from the Site is in the process of being subdivided and sold to the neighbouring property owner.

- Groundwater analytical results indicated the presence of numerous SVOCs across the Site, with concentrations exceeding New York TOGS Ambient Water Quality Standards criteria. These concentrations may be a result of elevated turbidity and suspended sediments within the groundwater at the time of sampling.
- Groundwater analytical results indicated the presence of numerous heavy metals across the Site, with concentrations exceeding New York TOGS Ambient Water Quality Standards criteria. These concentrations may be a result of elevated turbidity and suspended sediments within the groundwater at the time of sampling.

1. Introduction

At the request of 1153 Owner LLC, C&S Engineers, Inc. (C&S) has prepared this Phase II Environmental Site Assessment (Phase II ESA or Investigation) Report of a portion of the commercial property identified as Onondaga County Tax ID No. 099.-03-02.0 (hereby, referred to as Site)². The 2.65-acre property is located at 1153 West Fayette Street, in the City of Syracuse, Onondaga County, New York. The scope of services for the Phase II ESA was based on our April 7, 2023 proposal. The location of the Site is shown on **Figure 1**.

1.1. Purpose of Investigation

The purpose of the investigation was to investigate whether subsurface conditions at the Site have been impacted by historic activities performed on the property or at adjacent, up-gradient properties. Several recognized environmental conditions (RECs) were identified during a Phase I Environmental Site Assessment (Phase I ESA) which was completed for the Site in April 2023 by C&S.

The Phase I ESA identified the following RECs associated with the Site:

- Former manufacturing operations (including machine shop operation related to manure spreader manufacturing and electronics manufacturing); presence of an oil house near the southwest side of the building on historic maps from 1951 and 1953; rail spurs and rail activity across southern portion of the Site; and generation of hazardous waste between 1986 and 1994.
- Site reconnaissance identified two very large boilers on the south side of the barn. The boilers are not currently operational but used to run off coal which was potentially stored in the outdoor silo. Large-scale storage of coal and/or the onsite disposal of coal ash, which was historically a common practice at coal-burning facilities, could have contaminated the soil and groundwater on the Site.
- Multiple adjacent and adjoining sites:
 - o 220 South Geddes Street Former drycleaner
 - o 1117 West Fayette Street Former manufacturing facility
 - \circ 1171 West Fayette Street Former rail line round house
 - o 200 South Geddes Street Former and current manufacturing facility
 - \circ 208 South Geddes Street Former manufacturing facility and machine shop
 - o 216 218 South Geddes Street Former engine manufacturing facility
 - o 300 South Geddes Street Former manufacturing facility
 - 201, 209, 301 South Geddes Street Former and current gasoline stations, auto repair shops, and auto sales shops

² The 0.25 acre portion of the tax parcel excluded from the Site is in the process of being subdivided and sold to the neighbouring property owner.

1.2. Scope of Work

The investigation was performed generally consistent with American Society of Testing and Materials (ASTM) E 1903-19 Standard Guide for Environmental Site Assessments: Phase II Environmental Site Assessment Process, unless noted otherwise in **Section 1.3** of this report.

The Phase II Investigation included the following tasks:

- Subsurface investigation of the geologic and hydrogeologic conditions of the Site through the advancement of eight soil borings to depths of 15 feet below ground surface (bgs).
- Collection and laboratory analysis of five soil samples for the following analyses:
 - New York State Department of Environmnetal Conservation (NYSDEC)
 Part 375 Volatile Organic Compounds (VOCs) by United States
 Environmental Protection Agency (USEPA) Method 8260
 - NYSDEC Part 375 Semi-Volatile Organic Compounds (SVOCs) by USEPA Method 8270
 - NYSDEC Part 375 Total Metals (including mercury, hexavalent chromium, and total cyanide) by USEPA Method 6010/6020
- Installation of three temporary monitoring wells at select locations across the Site, selected based on field observations and historic site activities, to allow for collection of overburden groundwater samples.
- Collection and laboratory analysis of three overburden groundwater samples for the following analyses:
 - USEPA Target Compound List (TCL) VOCs by USEPA Method 8260
 - USEPA TCL SVOCs by USEPA Method 8270
 - Target Analyte List (TAL) Total Metals (including mercury) by USEPA Method 6010/6020

This Investigation was intended to provide further information on the Site's environmental condition to render a professional opinion on the suspected presence or absence of petroleum or chemical impacts.

1.3. Limitations and Exceptions

C&S has performed this Investigation consistent with the contract scope of services, using reasonable efforts to identify areas of potential liability associated with environmental concerns identified at the Site. This investigation was performed in accordance with the generally accepted practices of other consultants undertaking similar studies in the same geographical area. C&S has exercised the same care and skill

generally exercised by other consultants in similar circumstances and conditions. Our findings and conclusions must not be considered scientific certainties, but rather as our professional opinion concerning the significance of the limited sampling data gathered during the course of the Phase II subsurface environmental site assessment. No expressed or implied warranty is made. Specifically, C&S cannot represent that the site contains no hazardous material, oil, or other latent condition beyond that investigated/sampled by C&S at the time of subsurface site investigation.

1.4. Special Terms and Conditions

This Phase II ESA report has been prepared on the behalf and for the exclusive use of 1153 Owner LLC. This report and its findings shall not, in whole or in part, be provided to or used by any other party without prior written consent of 1153 Owner LLC **and** C&S.

2. Site Description

The following sections include a description of the location, site characteristics, and land use of the Site and the area surrounding the Site.

2.1. Site and Surrounding Characteristics

The Site is approximately 2.5 acres, identified as a portion of the City of Syracuse tax parcel 099.-03-02.0, and is reportedly owned by The Cosmopolitan 1153, LLC. The property is located at 1153 West Fayette Street in the City of Syracuse, Onondaga County, New York. The Site is occupied by a 92,113 square foot six-story building with an adjoining 11,060 square foot single-story building. The buildings were historically used for manufacturing purposes but have most recently been used as mixed office space, storage space, and commercial space. The eastern portion of the Site contains an asphalt parking lot. The Site is generally flat. Harbor Brook flows in a northernly direction through the Site within a box culvert located beneath the parking lot. The Site and surrounding properties are served by the Onondaga County water and sanitary sewer systems, and supplied with electric and natural gas service by National Grid.

A Site location map depicting the general Site location is attached as **Figure 1**. The limits of the Site, general Site conditions, and sample locations are depicted on **Figure 2** and **Figure 3**.

2.2. Current Property Use

The Site is currently developed with an active commercial building and associated parking lot. The building and property are occupied by multiple commercial tenants.

2.3. Site History

The Site was occupied by residential houses, a machine shop, and a lumber shed from at least 1892. Around 1911, the Site began operating as the Kemp & Burpee Manufacturing Company, a large manufacturing facility that produced manure spreaders. These operations included a machine shop, a forge shop, and several painting shops on and near the eastern side of the Site. In the mid-1900s (sometime between 1938 and 1951), the Kemp & Burpee manufacturing facility was demolished and the six-story industrial building with a single-story addition that exists today was constructed on the western portion of the Site. Between 1956 and 1960, a single-story addition was added to the western side of the buildings. The eastern portion of the Site operated as a parking lot. The industrial facility operated as the Morris Distributing Company (wholesale electrical supplies) between approximately 1951 and 1988. This operation was equipped with an oil house that was located on the west side of the original structure, in an area that is now occupied by the western addition. A coal silo was also present outside the south side of the building to at least 1951. The coal storage structure still remains on the Site. In the 1990s, the facility housed a variety of industrial and commercial

companies including Command Services (computer sales and services), Tegmen (electronic circuit manufacturer), Selco Graphics (printing), and PEACE Inc (non-profit organization). Since the early 2000s, a variety of commercial tenants have occupied the facility.

2.4. Current Use of Adjoining Sites

The Site is located in an industrial / commercial setting. The list below describes the properties / features / roads immediately surrounding the Site:

Direction	Feature(s)
North	West Fayette Street, Forested Land, Syracuse City School
	District Supply Center (Industrial), Rail Line (Industrial)
East	Former Industrial Building, Commercial Stores
South	Commercial Stores, George Fowler High School
West	Residences, George Fowler High School Baseball Diamond

2.5. Site Surface Soil Condition

According to the United States Department of Agriculture (USDA) Natural Resource Conservation Service (NRCS) Web Soil Survey, the soil present beneath the Site is characterized as Urban Land. This classification refers to areas in which soil characteristics have been altered due to urban activity.

2.6. Site Geological Conditions

Bedrock geologic information was obtained from the Geologic Map of New York-Finger Lakes Sheet (1970, Lawrence V. Rickard and Donald W. Fisher). The bedrock beneath the Site is the Syracuse Formation of the Upper Silurian period. The primary rock type is dolostone and the secondary rock type is shale.

2.7. Surface Water and Groundwater Conditions

Harbor Brook flows through the Site within a box culvert located beneath the parking lot. Harbor Brook originates in the Town of Onondaga, approximately 3.5 miles southwest of the Site. The Brook meanders on a general northwesterly course through the Town of Onondaga and through the southwestern section of the City of Syracuse. Portions of the Brook are present as open channels, while other portions flow within enclosed, subsurface conduits. After passing beneath the Site, the Brook meanders through the City of Syracuse until it empties into the southeast corner of Onondaga Lake at a point approximately 1.25 miles northwest of the Site.

The Site is also located 0.76 miles west of Onondaga Creek and 1.25 miles southeast of Onondaga Lake. Groundwater in the area is assumed to move generally to the north in the direction of Harbor Brook's flow. Groundwater flow specific to the Site is unknown

and may be different from the regional flow. Potential influences include local drainage features, seasonal groundwater level fluctuations, subsurface geology, surface topography, and / or other local site features.

3. Phase II Environmental Site Assessment Methodologies

C&S conducted field activities for the Phase II ESA on April 24, 2023.

3.1. Investigation Scope and Objectives

The initial Phase II ESA subsurface investigation consisted of the following tasks:

- Prior to initiating the subsurface investigation activities, C & S' drilling subcontractor, Matrix Environmental Technologies, Inc. (Matrix) notified Dig Safely New York, to arrange for identification and marking of buried utilities at the Site.
- The investigation performed at the property consisted of the advancement of eight soil borings (identified as BH-03 through BH-10) and the installation of three temporary groundwater monitoring wells (identified as TW-02 through TW-04). Soil borings were dispersed across the site for equal representation while also focusing on areas of interest identified in the Phase I ESA. Areas of interest included the former machine shop, painting shop, and power house on the eastern portion of the Site, the coal silo directly south of the building, the obsolete coal boilers inside the single-story building, and the former oil house on the western side of the single-story building. The approximate locations of the soil borings and temporary wells are shown on Figure 2 and Figure 3, respectively.
- The borings were advanced by direct-push sampling methodologies. Continuous soil sampling was conducted at each boring location using Geoprobe® Systems' Macro-Core® acetate lined soil samplers. The borings were advanced to depths of 15 feet bgs to ensure the depth was sufficient to encounter the groundwater table and to encounter native soil deposits.
- The soil samples recovered from the borings were classified with respect to predominant soil types, texture, and relative moisture content; examined for staining or obvious odors suggestive of impact by petroleum products; and field screened with a portable photo-ionization detector (PID) equipped with a 10.6eV lamp, to document whether VOCs are released from the soil. The PID screening was performed by headspace analysis methods, by placing a representative portion of the soil sample into a re-sealable plastic bag, and monitoring the airspace surrounding the soil within the bag as the soil is agitated to promote the release of VOC.
- Samples of soil were retained from select borings for laboratory analysis to document concentrations of Part 375 VOCs, SVOCs, and total metals (including mercury, hexavalent chromium, and total cyanide).

- The location and depth of soil sample collection for laboratory analysis were based upon field observations and professional judgment at that time. In general, samples were collected based on the presence of historic fill material (HFM), visual / olfactory evidence of contamination, elevated PID readings, and spatial distribution across the Site.
- Three of the eight borings were converted into temporary groundwater monitoring wells. Each temporary monitoring well was completed with ten feet of one-inch Schedule 40 PVC well screen with 0.010-inch slots, connected to an appropriate length of flush-thread, Schedule 40 PVC well riser to complete the well. The well screen was placed to intercept the existing water table at each of the three locations. The temporary groundwater monitoring well locations are depicted on Figure 3.
- The temporary wells were evacuated and overburden groundwater samples were collected for laboratory analysis to document concentrations of TCL VOCs and SVOCs and TAL total metals (including mercury).

3.2. Site Investigation Methods

During the completion of the Phase II ESA and Supplemental Subsurface Investigation the following tasks and methodologies were used.

3.2.1. Soil Sampling Methods

Continuous soil sampling was performed at each of the soil borings by direct-push methodologies, using Geoprobe® Systems' equipped with Macro-Core® Soil Samplers. The Macro-Core samplers consist of steel barrels having an inside diameter of 1.75 inches and a length of five feet. Single-use clear acetate liners were inserted into the sampling barrels prior to advancement, and the resultant soil cores were collected in the acetate liners as the samplers were advanced. **Figure 2** shows the boring locations.

3.2.1.1. Soil Classification

The soil samples collected from the borings were field-classified with respect to predominant soil types and texture and relative moisture content, based on manual and visual field observations, and examined for staining and/or obvious indicators of petroleum impact. The observed soil lithologies and pertinent observations are documented on the Boring Logs contained in **Appendix A**.

3.2.1.2. Field Screening

The soil samples from each boring were screened by headspace analysis methods, using a portable PID (MiniRae Model 3000) equipped with a 10.6 eV lamp. The PID was calibrated to a 100 part-per-million (ppm) isobutylene/air calibration gas mixture. The headspace screening was performed by placing a representative portion of the collected

soil samples into re-sealable plastic bags ("Zip-lock" bags), and subsequently screening the air surrounding the soil within the bags with the portable PID as the containerized soil was agitated. The screening was intended to determine the relative concentration of VOCs that are released from the respective soil sample into the airspace of the bag. The PID screening results recorded for each boring was noted on the Boring Logs contained in **Appendix A**.

3.2.1.3. Soil Sample Collection

Soil samples were collected from select borings for laboratory analysis, to document concentrations of Part 375 VOCs, SVOCs, and total metals (including mercury, hexavalent chromium, and total cyanide). The laboratory analyses were performed in accordance with USEPA Method 8260 VOCs, USEPA Method 8270 SVOCs, and USEPA Method 6010/6020 (Total Metals, including mercury, hexavalent chromium, and total cyanide).

The soil sampling locations, depths, and PID headspace screening values are summarized in the following table:

Boring I.D.	Depth (ft)	PID Result (ppm)	Analysis	Note
BH-04	8 – 10	16.2	VOCs, SVOCs, Metals	Groundwater Interface
BH-06	11 – 14	100.0	VOCs, SVOCs, Metals	Petroleum Impacted
BH-07	5 – 9	70.5	VOCs, SVOCs, Metals	HFM, Petroleum Impacted
BH-08	0 – 5	42.1	VOCs, SVOCs, Metals	HFM
BH-10	5 – 9	1.9	VOCs, SVOCs, Metals	HFM

Notes:

ppm – parts per million

- HFM – Historic Fill Material

3.2.2. Groundwater Monitoring Well Installation

C&S observed the drilling and installation of three one-inch temporary groundwater monitoring wells. The well locations are depicted on **Figure 3**. Drilling was conducted by advancing an approximate 2.5-inch diameter Macro-Core® sampler with a track-mounted Geoprobe®. Non-disposable sampling equipment was decontaminated between runs and between drill locations to avoid potential cross contamination of samples. Groundwater was present at approximately 7.5 to 12 feet bgs.

3.2.2.1. Well Construction

Three temporary monitory groundwater wells were installed within an approximate 2.5inch diameter borehole, resulting from the completion of the boring by the drilling rig. The screened interval consisted of one-inch diameter 0.01-inch slotted PVC, positioned to intersect the groundwater table. Due to their temporary nature, the screened interval was not packed with sand and the upper extent of the wells were not sealed with

bentonite. These wells were sampled on the day of installation. Groundwater was present at approximately 7.5 to 12 feet bgs.

Well No.	Statice Water Level (ft bgs)	Total Sounded Depth (ft bgs)	Screened Interval (ft bgs)
TW-02	7.50	15.19	5.19 – 15.19
TW-03	11.88	15.18	5.18 – 15.18
TW-04	7.95	15.20	5.20 – 15.20

The following table provides the depths of the wells.

3.2.2.2. Well Development and Sampling

Due to the temporary nature of the wells, complete well development was not attempted. However, approximately ten well volumes were removed from TW-02 and TW-03 prior to sampling in order to promote the infiltration of new groundwater through the well screen. Although ten well volumes were not removed from TW-04, the well was purged dry and left to recharge before sampling. The groundwater was observed to be very turbid. No odor was observed at TW-02 or TW-04. A petroleum odor and sheen was observed at TW-03.

Concurrent with sampling, water quality parameters were measured with a Horiba U-52-2 water meter at TW-02. Water quality measurements were not collected at TW-03 or TW-04 due to the petroleum contamination observed in TW-03 and the limited well recharge in TW-04. The well sampling logs are provided in **Appendix B**.

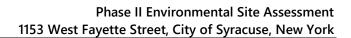
The samples were placed into glassware provided by the laboratory and put on ice in a cooler. A total of three groundwater samples were collected by C&S on April 24, 2023 and submitted for TCL VOCs, TCL SVOCs, and TAL Total Metals (including mercury). The samples were analyzed by Alpha Analytical of Westborough, Massachusetts.

4. Investigation Findings

The findings of the Phase II ESA investigation are further discussed in the sections below.

4.1. Site Geology

The soil lithology across the site generally consisted of fill material comprised of a heterogenous mix of brick, coal, ash, tar, and / or cinders to depths of 2 to 11 feet bgs. This fill material was generally underlain by natural deposits comprised of fine to coarse sand and clay and / or silt. Groundwater was generally encountered at depths of 7.5 to 12 feet bgs. Bedrock was not encountered. The soils from borings were classified in the following simplified category:


Description	Eastern Side of Site Depth (feet bgs)	Western Side of Site Depth (feet bgs)
Asphalt and / or concrete	0 – 1	0 – 1
HFM including brick, coal, ash, tar, and / or cinder	1 – 6	1 – 9
Black coarse sand		9 – 12
Black / brown / gray fine to coarse sand	6 – 10	
Black / dark brown / gray clay and silty sand (peat and / or marl)	10 – 15	12 – 15

The specific lithology observed at each boring is documented on the corresponding boring logs included in **Appendix A**.

4.2. Site Hydrology

A groundwater survey was not included in the Phase II ESA scope. The following table provides the groundwater depths observed at the time of groundwater sampling from the temporary wells. Based on the topography of the Site and the northward flow of Harbor Brook, it is believed the groundwater at the Site likely flows to the north.

Well No.	Depth to Water (ft bgs)
TW-02	7.50
TW-03	11.88
TW-04	7.95

4.3. Soil Field Screening Results

HFM was observed in each of the eight soil borings to varying depths. HFM observations are documents on the boring logs contained in **Appendix A**. HFM observations are summarized in the table below:

Soil Boring		Boring Depth (feet bgs)														
ID	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
BH-03		Х	Х	Х	Х	Х										
BH-04		Х	Х													
BH-05		Х	Х	Х	Х	Х	Х	Х	Х							
BH-06		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х				
BH-07	Х	Х	Х	Х	Х	Х	Х	Х	Х							
BH-08	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х					
BH-09		Х	Х	Х	Х	Х	Х	Х	Х							
BH-10		Х	Х	Х	Х	Х	Х	Х	Х	Х						

Notes:

- HFM generally consisted of coal, brick, ash, tar, and / or cinder.

- Red text indicates a soil sample was submitted for laboratory analysis at this interval.

The specific PID screening value recorded for each distinct interval of each boring is documented on the boring logs contained in **Appendix A**. The PID field screening analysis (in ppm) is summarized in the table below:

Soil Boring	Boring Depth (feet bgs)																
ID	ID 0 1 2 3 4 5		6	7	8	9 10		11	12	13	14	15					
BH-03	-			1.2			0	.3		ND				0.2			
BH-04	-	0	.7		0.9			-		16	5.2	0.4			0.9		
BH-05	-			0.5			0.9				1.5						
BH-06			2	.3			6.1				- 100.0				5.7		
BH-07			5	.1			70.5					6.7					
BH-08	42.1						10.0				1.2						
BH-09	-	1.4					1.6				2.0			0	.7		
BH-10	-		0.7					1	.9		1	.9		1.8		1.5	

Notes:

- PID readings were collected utilizing a MiniRae 3000 PID equipped with a 10.6 eV lamp.

- The PID screening is performed as a method of determining general presence or absence of VOCs in soil, and to provide a basis for selecting samples for laboratory analysis. The readings obtained provide only an indication of the relative levels of VOCs in the soil, and are not considered to be a direct quantification of actual soil VOC concentration.

- "-" denotes screening was not completed to above-listed depth or insufficient recovery.

- Readings are reported as parts per million (ppm).

- Red text indicates a soil sample was submitted for laboratory analysis at this interval.

ND – Not detected

Visual / olfactory observations of petroleum impacts were observed in BH-06 from 11 to 14 feet bgs and in BH-07 from 8 to 9 feet bgs. These intervals exhibited a petroleum odor, visible staining, and PID readings of 100 parts per million (ppm) at BH-06 and 70.5 ppm at BH-07. Samples were collected from both of these intervals.

4.4. Groundwater Field Screening Results

Concurrent with groundwater sampling, water quality parameters were measured with a Horiba U-52-2 water meter and headspace readings were collected with a PID. The well sampling logs are provided in **Appendix B.** The PID field screening analysis (in ppm) is summarized in the table below:

Well No.	PID Screening Result (ppm)
TW-02	2.3
TW-03	47.6
TW-04	9.8

Visual / olfactory observations of petroleum impacts were observed in TW-03. The groundwater purged from the well had a petroleum odor, visible sheen, and headspace PID readings of 47.6 ppm.

4.5. Spill Reporting

Due to the soil and groundwater field screening results discussed above, 1153 Owner LLC was advised to report these findings to the NYSDEC Spill Hotline. The Site was subsequently assigned Spill No. 23-00933 due to impacts observed during the completion of this Investigation.

4.6. Laboratory Analytical Data Summary

As discussed above, subsurface soil and groundwater samples were collected and analyzed. The analytical data is further summarized below.

4.6.1. Soil Analytical Data

6 NYCRR Part 375-6, Remediation Program Soil Cleanup Objectives (SCO), effective December 14, 2006, includes SCOs that are based on protection of human health, groundwater, and ecological resources. The SCOs are based on the actual or intended site use. The Unrestricted Use SCOs are considered to be representative of pre-release conditions unless an impact to ecological resources has been identified. The Commercial Use SCOs apply to businesses with the primary purpose of buying, selling or trading of merchandise or services.

Given the proposed property use as a commercial space, the soil analytical data has been compared to Unrestricted Use and Commercial Use SCOs. A summary table comparing the analytical data to the selected SCOs is provided in **Table 1**. The completed laboratory reports can be found in **Appendix C**.

Comparison of the subsurface soil analytical data to the selected SCOs indicates:

VOCs:

Acetone was identified in the soil sample collected from BH-06 at a concentration exceeding the respective Unrestricted Use SCO; however, the concentration did not exceed the Commercial Use SCO. Acetone is a common laboratory contaminant.

Numerous VOCs including many benzene derivatives, xylenes, and toluene were setected in soil samples collected from BH-04, BH-06, BH-07, BH-08, and / or BH-10. However, they did not exceed their respective Unrestricted Use or Commercial Use SCOs.

SVOCs:

Concentrations of numerous SVOCs including benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene were identified in the soil sample collected from BH-08. The identified concentrations exceeded their respective Unrestricted Use SCO and select concentrations exceeded their respective Commercial Use SCO.

Numerous other SVOCs were detected in soil samples but did not exceed their respective SCOs.

Metals:

Concentrations of numerous metals including arsenic, copper, lead, mercury, selenium, and zinc were identified in soil samples collected from BH-04, BH-06, BH-07, BH-08, and / or BH-10. The identified concentrations exceeded their respective Unrestricted Use SCO. Arsenic concentrations in all soil borings exceeded their respective Commercial Use SCO.

4.6.2. Groundwater Analytical Data

Technical and Operational Guidance Series 1.1.1 (TOGS 1.1.1) presents NYSDEC Division of Water ambient water quality standards and guidance values and groundwater effluent limitations. The authority for these values is derived from Article 17 of the Environmental Conservation Law and 6 NYCRR Parts 700-706, Water Quality Regulations. The groundwater analytical data generated from this Investigation was compared to TOGS 1.1.1 Part I ambient standards and guidance values. Part II of the document describes and lists groundwater effluent limitations. A summary table comparing the analytical data to the selected groundwater standards is provided in **Table 2**. The completed laboratory reports can be found in **Appendix C**.

Comparison of the groundwater analytical data to the TOGs 1.1.1 Class GA Ambient Water Quality Standards indicates:

VOCs:

Acetone was identified in the groundwater sample collected from TW-04; however, the concentration did not exceed the respective groundwater standard.

While VOCs were not detected in the groundwater sample collected from TW-03, where evidence of petroleum impacts were observed, many of the analyte detection limits exceeded their respective groundwater standard. These elevated detection limits may be due to matrix interferences resulting from the presence of other, non-target petroleum constituents related to degraded petroleum products in this area.

SVOCs:

Concentrations of numerous SVOCs including benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, and indeno(1,2,3-cd)pyrene were identified in groundwater samples collected from all wells. The identified concentrations exceeded their respective groundwater standards. These concentrations may be a result of elevated turbidity and suspended sediments within the groundwater at the time of sampling.

Numerous other SVOCs were detected in groundwater samples but did not exceed their respective groundwater standards.

Metals:

Concentrations of numerous metals including antimony, arsenic, beryllium, cadmium, chromium, iron, lead, magnesium, manganese, mercury, nickel, selenium, sodium, and zinc were identified in groundwater samples collected from one or more of the three temporary wells. The identified concentrations exceeded their respective groundwater standards. These concentrations may be a result of elevated turbidity and suspended sediments within the groundwater at the time of sampling.

5. Conclusions and Recommendations

The findings of this Phase II ESA indicate the following:

- The soil lithology across the Site generally consisted of fill material comprised of a heterogenous mix of brick, coal, ash, tar, and / or cinders to depths of 2 to 11 feet bgs. This fill material was generally underlain by natural deposits comprised of fine to coarse sand and clay and / or silt. Groundwater was generally encountered at depths of 9 to 14 feet bgs. Bedrock was not encountered.
- Soil analytical results indicated the presence of acetone in BH-06 at concentrations exceeding exceeding Unrestricted Use SCOs. Acetone is a common laboratory contaminant. Low levels of VOCs including many benzene derivatives, xylenes, and toluene were detected in samples from BH-04, BH-06, BH-08, and BH-10 at concentrations below Unrestricted Use soil cleanup objectives.
- Soil analytical results indicated the presence of numerous SVOCs in the soil sample collected from BH-08, with concentrations exceeding Unrestricted and Commercial Use SCOs. These compounds are typically associated with petroleum products (diesel, fuel oil, waste/motor oil), coal, and burned organic material (i.e., wood). The presence of historic fill material encountered across the entire investigation area may be contributing to the presence of these SVOCs.
- Soil analytical results indicated the presence of numerous heavy metals across the Site, with concentrations exceeding Unrestricted Use SCOs. Arsenic concentrations across the Site exceeded Commercial Use SCOs.
- While VOCs were not detected in the groundwater sample collected from TW-03, where evidence of petroleum impacts were observed, many of the analyte detection limits exceeded their respective groundwater standard. These elevated detection limits may be due to matrix interferences resulting from the presence of other, non-target petroleum constituents related to degraded petroleum products in this area.
- Groundwater analytical results indicated the presence of numerous SVOCs across the Site, with concentrations exceeding New York TOGS Ambient Water Quality Standards criteria. These concentrations may be a result of elevated turbidity and suspended sediments within the groundwater at the time of sampling.
- Groundwater analytical results indicated the presence of numerous heavy metals across the Site, with concentrations exceeding New York TOGS Ambient Water Quality Standards criteria. These concentrations may be a result of elevated

turbidity and suspended sediments within the groundwater at the time of sampling.

5.1. Recommendations

The identifications of many benzene derivatives, xylenes, and toluene within the soil and / or groundwater beneath the parking lot (former painting and machine shop operations) and in the vicinity of the coal silo and former oil house indicates that there may be impacts from the historical industrial activities at the Site. Certain heavy metals and SVOCs, likely associated with historic fill placements and / or historic industrial activities, have been identified in fill across the site and in groundwater and associated fine sediments beneath the site. Any future on-site construction or intrusive excavation activities should ensure that these materials are properly handled and managed, and future use of the site should take into consideration potential contact / exposure risks to on-site occupants.

The conditions encountered in borings BH-06 and BH-07 and TW-03 indicate that residual petroleum contamination is present in the general vicinity of the former oil house. This discovery has resulted in the issuance of NYSDEC Spill Number 23-00933 to the site. Further investigation of conditions in this area would be necessary to define the lateral and vertical extents of such impacts, and to determine if any remedial activities are required to satisfy regulatory concerns.

It is recommended that this report be provided to the regional office of the NYSDEC and the site conditions and potential need for further action be discussed with that office.

6. References

American Society of Testing Materials (ASTM) E1903-19, *Standard Guide for Environmental Site Assessments: Phase II Environmental Site Assessment Process.*

Geologic Map of New York State, Finger Lakes, compiled by L.V. Richard and Donald W. Fisher, New York State Museum and Science Service, 1979.

Soil Survey of Onondaga County, New York, Sheet 29, United States Department of Agriculture (USDA) Natural Resource Conservation Service (NRCS) Web Soil Survey dated 1977.

f:\project\ab2 - 1153 owner llc\ab2001002 - 1153 west fayette phase ii\planning-study\reports\phase ii esa\1153 west fayette street - phase ii esa report - final - r1.docx

Environmental Professional Statement and Qualifications

To the best of our professional knowledge and belief, the undersigned meet the definition of "environmental professional" as defined in §312.10 of 40 CFR 312. We have the specific qualifications based on education, training, and experience to assess the nature, history, and setting of the Site. We have developed and performed all appropriate inquiries in conformance with the standards and practices set forth in 40 CFR Part 312.

Author's Signature:

C.K

Claire Del Fatti Environmental Engineer

June 30, 2023

Project Manager's Signature:


Menni Brad

H. Nevin Bradford, III, P.E. Senior Principal June 30, 2023

FIGURES

enzo(a)pyrene 50-32-8 1 1 enzo(b)fluoranthene 205-99-2 1 5.6 enzo(k)fluoranthene 207-08-9 0.8 56 nrysene 218-01-9 1 56 bibenzo(a,h)anthracene 53-70-3 0.33 0.56 deno(1,2,3-cd)pyrene 193-39-5 0.5 5.6 Total Metals rsenic, Total 7440-38-2 13 16 opper, Total 7440-50-8 50 270 read, Total 7439-92-1 63 1000 ercury, Total 7439-97-6 0.18 2.8 ickel, Total 7440-02-0 30 310 elenium, Total 7782-49-2 3.9 1500 nc, Total 7440-66-6 109 10000	Tromium, Trivalent Semia Semia Semia Semia Se	General Chemistr 16065-83-1 emivolatile Organics by 56-55-3 50-32-8 205-99-2 207-08-9 218-01-9
Image: Semivalatile Organics by GC/MS semivalatile Organics by GC/MS rzo(a)pyrene 50:32:4 1 </th <th>Semiv nzo(a)anthracene nzo(b)fluoranthene nzo(b)fluoranthene nzo(k)fluoranthene przo(a,h)anthracene leno(1,2,3-cd)pyrene senic, Total pper, Total d, Total encury, Total cc, Total encury, Total encur</th> <th>16065-83-1 emivolatile Organics by 56-55-3 50-32-8 205-99-2 207-08-9 218-01-9</th>	Semiv nzo(a)anthracene nzo(b)fluoranthene nzo(b)fluoranthene nzo(k)fluoranthene przo(a,h)anthracene leno(1,2,3-cd)pyrene senic, Total pper, Total d, Total encury, Total cc, Total encury, Total encur	16065-83-1 emivolatile Organics by 56-55-3 50-32-8 205-99-2 207-08-9 218-01-9
Encolambracene 56-55-3 1 5.6 enzo(a)pyrene 50-32-8 1 1 enzo(b)fluoranthene 205-99-2 1 5.6 enzo(b)fluoranthene 205-99-2 1 5.6 interaclo/fluoranthene 205-99-2 1 5.6 interaclo/fluoranthene 218-01-9 1 5.6 interaclo/fluoranthene 53-70-3 0.33 0.55 interaclo/fluoranthene 53-70-3 0.33 0.56 interaclo/fluoranthene 5.6 13 16 interaclo/fluoranthene 5.6 13 1000 interaclo/fluoranthene 5.6 13 1000 interaclo/fluoranthene 5.6 1000 2.8 interaclo/fluoranthene 5.6 1000 2.8 interaclo/fluoranthene 5.6 1000 10000 interaclo/fluoranthene 5.2 3.9 1500 interaclo/fluoranthene 5.2 1.2 1.2 1.2 interaclo/fluoranthene 5.2	nzo(a)anthracene nzo(a)pyrene nzo(b)fluoranthene mzo(k)fluoranthene mysene benzo(a,h)anthracene deno(1,2,3-cd)pyrene senic, Total ckel, Tota	56-55-3 50-32-8 205-99-2 207-08-9 218-01-9
Encodepyrene 50-32-8 1 1 encodb/fluoranthene 205-99-2 1 5.6 encodb/fluoranthene 207-08-9 0.8 56 httpscne 218-01-9 1 56 htercolo/fluoranthene 207-08-9 0.8 56 htercolo/fluoranthene 207-08-9 0.8 56 htercolo/fluoranthene 218-01-9 1 56 htercolo/fluoranthene 218-01-9 1 56 htercolo/fluoranthene 193-39-5 0.5 5.6 trial 7440-38-2 13 16 encury, Total 7440-38-2 3.9 1500 idckel, Total 7440-02-0 30 310 elenium, Total 7782-49-2 3.9 1500 volatile Organics by EPA 5035 Cetone 67-64-1 0.05 500 volatile Organics by GC/MS SamPLE DEPTH (ft,) 0 Analyte Results Benzo(a)prime 5.2 Benzo(a)prime 5.2 Benzo(a)prime 5.2 </td <td>nzo(a)pyrene nzo(b)fluoranthene nzo(b)fluoranthene nzo(b)fluoranthene mysene benzo(a,h)anthracene deno(1,2,3-cd)pyrene senic, Total opper, Total ad, Total ercury, Total ckel, Total retone</td> <td>50-32-8 205-99-2 207-08-9 218-01-9</td>	nzo(a)pyrene nzo(b)fluoranthene nzo(b)fluoranthene nzo(b)fluoranthene mysene benzo(a,h)anthracene deno(1,2,3-cd)pyrene senic, Total opper, Total ad, Total ercury, Total ckel, Total retone	50-32-8 205-99-2 207-08-9 218-01-9
Location BH-08 SAMPLE Type 0.8 Output 13 Total 7440-38-2 Total 7440-50-3 Total 7440-60-6 Total 7440-60-6 Total 7440-60-6 Total 7440-60-6 Total 7440-60-7 SAMPLE Type Solid SAMPLE Type Solid Sample Detrif (ft, 0 -1 0.10 Sample Detrif (ft, 0 -1 0.23 Sample Detrif (ft, 0 -1 0.23 Sample Detrif (ft, 0 -1 0.23	nzo(b)fluoranthene nzo(k)fluoranthene inysene benzo(a,h)anthracene deno(1,2,3-cd)pyrene senic, Total opper, Total ad, Total recury, Total ckel, Total tenium, Total tetone	205-99-2 207-08-9 218-01-9
Dysene 218-01-9 1 56 biberuzo(a,h)anthracene 53-70-3 0.33 0.56 Total Metals Tread Metals Tread Metals resnic, Total 7440-50-8 50 270 ead, Total 7439-92-1 63 1000 efferuny, Total 7439-97-6 0.18 2.8 icr, Total 7440-02-0 30 310 elenium, Total 7782-49-2 3.9 1500 rectore 67-64-1 0.05 500 Volatile Organics by EPA 5035 tectore 67-64-1 0.05 500 SAMPLE TYPE S00 SAMPLE TYPE S00 SAMPLE TYPE S00 SAMPLE DEPTH (ft) 0.5 5.2 Benzo(a)anthracene 2.2 6 Benzo(a)anthracene 2.4 Disact(a)fluoranthene 5.2 Benzo(a)fluoranthene 5.2 Benzo(a)fluoranthene 5.2 Benzo(a)fluoranthene	rysene benzo(a,h)anthracene deno(1,2,3-cd)pyrene senic, Total opper, Total ad, Total ercury, Total ckel, Total ckel, Total ckel, Total rectone	218-01-9
Diberco(a)a)anthracene 53-70-3 0.33 0.56 Total Metals Transmit, Total 7440-30-2 13 16 opper, Total 7440-30-2 13 16 1000 denot(1,2,3-cd)pyrene 193-39-5 0.5 5.6 1000 rsenic, Total 7440-30-2 13 16 1000 depend, Total 7440-50-8 50 270 0.18 2.8 dickel, Total 7440-50-8 1000 100000 10000 10000 <t< td=""><td>benzo(a,h)anthracene deno(1,2,3-cd)pyrene senic, Total opper, Total ad, Total ercury, Total ckel, Total tenium, Total retone</td><td></td></t<>	benzo(a,h)anthracene deno(1,2,3-cd)pyrene senic, Total opper, Total ad, Total ercury, Total ckel, Total tenium, Total retone	
Total Metals rssenic, Total 7440-38-2 13 16 gread, Total 7440-38-2 13 16 recury, Total 7440-39-2-1 63 1000 Aercury, Total 7439-97-6 0.18 2.8 inc, Total 7439-97-6 0.18 2.8 inc, Total 7439-97-6 0.18 2.8 inc, Total 7430-02-0 30 310 elenium, Total 7782-49-2 3.9 1500 inc, Total 7440-66-6 10.05 500 Volatile Organics by EPA 5035 Cetone 67-64-1 0.05 500 SAMPLING DATE 4/24/2 LAS SAMPLID L0232207 SAMPLING DATE 4/24/2 Las SAMPLE ID L332207 SAMPLING DATE 500 500 500 Sample Dipticologianthracene 5.2 Benzo(a)purene 5.2 Benzo(a)purene 5.2 Benzo(a)purene 6.3 Indeno(1,2,3-cd)pyrene 6.3 1 Indeno(1,2,3-cd)p	senic, Total crcury, Total ad, Total ercury, Total ckel, Total tenium, Total ckel, Total Vola	53-70-3
Open-Total 7440-38-2 13 16 Copper, Total 7440-50-8 50 270 Additional 7439-97-6 0.18 2.8 Additional 7439-97-6 0.18 2.8 Additional 7440-62-0 30 310 Additional 7440-62-0 30 310 Additional 7440-62-0 30 310 Inclainal 7440-62-0 30 310 Inclainal 7440-62-0 30 310 Inclainal 7424-66-6 109 10000 Volatile Organics by EPA 5035 Cectone 67-64-1 0.05 500 SAMPLE TPE South E DEPTH (ft) 0.05 500 SAMPLE DEPTH (ft) 0.52 Benzo(a)anthracene 2.26 Benzo(a)anthracene 2.26 Benzo(a)mithracene 0.82 Indeno(1,2,3-cd)pyrene 6.3 1 74.3 Dibenzo(a, Manthracene 0.82 1 Ansenic, Total 22.5 SAMPLING DATE LAB SAM	pyper, Total ad, Total ercury, Total ckel, Total denium, Total nc, Total retone pym-Typi - dem Burg Ber Ber Ber Ber Ber Ber Chr Dib Indu Arss Lea	193-39-5
Composition Control 7440-50-8 50 270 read, Total 7433-92-1 63 1000 1000 recruy, Total 7433-92-1 63 1000 310 elenium, Total 7782-49-2 3.9 1500 1500 rectury, Total 7782-49-2 3.9 1500 10000 Volatile Organics by EPA 5035 cetone 67-64-1 0.05 500 SAMPLING DATE 4/24/2 LAB SAMPLE ID L322207 SAMPLE TYPE SOII SAMPLE DEPTH (ft) 0.05 500 SAMPLE DEPTH (ft) 0.5 52 Benzo(a)anthracene 5.2 Benzo(a)anthracene 5.2 Benzo(a)anthracene 5.2 Benzo(a)Invanthene 7.8 Chrysene 2.4 Dibenzo(a,h)anthracene 0.82 100 Dibenzo(a,h)anthracene 0.42 100 SAMPLE DEPTH (ft,I) 8 3 Arsenic, Total 723 Cotal Metals 4 4 3 Chrysene SAMPLE DEPTH (ft,I) Analyte </td <td>pyper, Total ad, Total ercury, Total ckel, Total denium, Total nc, Total retone pym-Typi - dem Burg Ber Ber Ber Ber Ber Ber Chr Dib Indu Arss Lea</td> <td></td>	pyper, Total ad, Total ercury, Total ckel, Total denium, Total nc, Total retone pym-Typi - dem Burg Ber Ber Ber Ber Ber Ber Chr Dib Indu Arss Lea	
Aercury, Total 7439-97-6 0,18 2.8 Arcury, Total 7440-02-0 30 310 Bernum, Total 7782-49-2 3.9 1500 Control 7440-66-6 109 10000 Volatile Organics by EPA 5035 tectore 67-64-1 0.05 500 SAMPLE DEPTH (ft.) 0.5 500 SAMPLE DEPTH (ft.) 0.2 SAMPLE DEPTH (ft.) 0.2 SAMPLE DEPTH (ft.) 0.2 SAMPLE DEPTH (ft.) 0.2 SAMPLE DEPTH (ft.) 0.5 Analyte Results Benzo(a)purene 5.2 Benzo(a)purene 5.2 Benzo(b)fluoranthene 1.8 Chrysene 2.4 Dibenzo(a,h)anthracene 0.63 Total Metals Arsenic, Total 22.5 Lead, Total 22.5 Lead, Total 22.5 Lead, Total 22.5 <t< td=""><td>Provide the set of the</td><td>7440-50-8</td></t<>	Provide the set of the	7440-50-8
Understand 7440-02-0 30 310 ickel, Total 7782-49-2 3.9 1500 ice, Total 7782-49-2 3.9 10000 Volatile Organics by EPA 5035 00000 00000 cetone 67-64-1 0.05 500 icetone 67-64-1 0.05 500 SAMPLING DATE 4/24/20 53MPLE TYPE Solid SAMPLE DETTYPE Solid Solid 500 SAMPLE DETTYPE Solid Solid Solid 500 SAMPLE OFFICE Colodanthracene 2.6 Benzo(a)anthracene 2.6 Benzo(b)fluoranthene 5.2 Benzo(c) a)fluoranthene 5.2 Colocanton Sample	ckel, Total lenium, Total nc, Total Vola retone Vola tetone Ana Ber Ber Chr Dib Ind Arss Lea Notes: 1. All values are re	
DUPUTURE Total 7782-49-2 3.9 1500 inc, Total 7440-66-6 109 10000 Volatile Organics by EPA 5035 tectore 67-64-1 0.05 500 Notes: LOCATION BH-08. SAMPLE to PEA 5035 tectore 67-64-1 0.05 500 Sample to PEA 5035 Sample to PEA 100.05 500 Sample	Notes: 1. All values are reference 1. All values are reference 1. All values are reference Notes: 1. All values are r	
Volatile Organics by EPA 5035 Cectone 67-64-1 0.05 500 Image: Colspan="2">Image: Colspan="2" Image: Co	vola retorie Tertori Tertori Tertorie Tertorie Tertorie Tertorie Ter	7782-49-2
Image: Control of the second of the	Pretone Territorie Pretone	
Image: contract of the system Image: contract of the system Image: contract of the system Image: contract of the system Image: contract of the system Image: contract of the system Image: contract of the system Image: contract of the system Image: contract of the system Image: contract of the system Image: contract of the system Image: contract of the system Image: contract of the system Image: contract of the system Image: contract of the system Image: contract of the system Image: contract of the system Image: contract of the system Image: contract of the system Image: contract of the system Image: contract of the system Image: contract of the system Image: contract of the system Image: contract of the system Image: contract of the system Image: contract of the system Image: contract of the system Image: contract of the system Image: contract of the system Image: contract of the system Image: contract of the system Image: contract of the system Image: contract of the system Image: contract of the system Image: contract of the system Image: contract of the system	Anal Berr Berr Dib Indi Arss Lea Notes: 1. All values are re	
SAMPLING DATE 4/24/2 LAB SAMPLE TYPE SO SAMPLE TYPE SO SAMPLE DEPTH (ft.) 0- Analyte Results Semivolatile Organics by GC/MS Benzo(a)pyrene Benzo(a)pyrene 5.2 Benzo(a)pyrene 5.2 Benzo(a)pyrene 2.4 Dibenzo(a)h)anthracene 0.82 Indeno(1,2,3-cd)pyrene 6.3 Total Metals Arsenic, Total Arsenic, Total 22.5 Lead, Total 74.3 Notes: 1 1. All values are reported in mg/kg unless otherwise in reported in reported in mg/kg unless otherwise in reported in repor	Bern Bern Bern Bern Christer Strate Lasse	State of the second
SAMPLING DATE 4/24/ LAB SAMPLE TYPE SO SAMPLE TYPE SO SAMPLE DEPTH (ft.) 0 - Analyte Results Semivolatile Organics by GC/MS Benzo(a)anthracene 5.2 Benzo(a)pyrene 5.2 Benzo(a)pyrene 6.3 Chrysene 2.4 Dibenzo(a,h)anthracene 0.82 Indeno(1,2,3-cd)pyrene 6.3 Total Metals Arsenic, Total Arsenic, Total 22.5 Lead, Total 74.3 SAMPLE DEPTH (ft.) Analyte Notes: 1. 1. All values are reported in mg/kg unless otherwise in 2. Shaded values indicate the analyte exceeds the resp Definitions: J - Estimated Concentration SCO - Soil Cleanup Objective mg/kg - Milligrams per kilogram	Bern Bern Dib Ind Arss Lea Notes: 1. All values are re	
SAMPLING DATE 4/24 LAB SAMPLE ID L2322 SAMPLE TYPE S SAMPLE DEPTH (ft.) 0 Analyte Results Semivolatile Organics by GC/W Benzo(a)anthracene 2.6 Benzo(b)fluoranthene 5.2 Benzo(b)fluoranthene 5.2 Benzo(b)fluoranthene 1.8 Chrysene 2.4 Dibenzo(a,h)anthracene 0.82 Indeno(1,2,3-cd)pyrene 6.3 Arsenic, Total 22.5 Lead, Total 74.3 Malyte Total Metals Arsenic, Total 22.5 Lead, Total 74.3 Total Metals Arsenic, Total Copper, Total Copper, Total Copper, Total Copper, Total Copper, Total Copper, Total Copper, Total Copper, Total Copper, Total Copper, Total Copper, Total Copper, Total Copper, Total Copper, Total Copper, Total Shaded values are reported in mg/kg unless otherwise it 2. Shaded values indicate the analyte exceeds the ress Definitions: J - Estimated Concentration SCO - Soil Cleanup Objective mg/kg - Milligrams	Bern Bern Chrim Dib Indu Arssi Lea Notes: 1. All values are re	
SAMPLING DATE 4/24/2 LAB SAMPLE TYPE SOI SAMPLE DEPTH (ft:) 0 - 1 Analyte Results Semivolatile Organics by GC/MS Benzo(a)anthracene 2.6 Benzo(a)anthracene 2.6 Benzo(a)pyrene 5.2 Benzo(a)pyrene 2.4 Dibenzo(a)nthracene 0.82 Indeno(1,2,3-cd)pyrene 6.3 Total Metals Arsenic, Total Arsenic, Total 22.5 Lead, Total 74.3	Bern Bern Bern Bern Bern Bern Bern Bern	
SAMPLING DATE 4/24/24 LAB SAMPLE TYPE SOIL SAMPLE DEPTH (ft) 0 - 5 Analyte Results Semivolatile Organics by GC/MS Benzo(a)anthracene 2.6 Benzo(a)anthracene 2.6 Benzo(a)anthracene 2.6 Benzo(a)anthracene 2.4 Dibenzo(a)hloranthene 1.8 Chrysene 2.4 Dibenzo(a)hloranthene 0.82 Indeno(1,2,3-cd)pyrene 6.3 Total Metals Arsenic, Total Arsenic, Total 22.5 Lead, Total 74.3	Bern Bern Bern Bern Bern Bern Bern Bern	
LAB SAMPLE ID L232207 SAMPLE TYPE SOIL SAMPLE DEPTH (ft.) 0 - 5 Analyte Results Semivolatile Organics by GC/MS Benzo(a)anthracene Benzo(a)anthracene 2.6 Benzo(a)pyrene 5.2 Benzo(a)fluoranthene 1.8 Chrysene 2.4 Dibenzo(a,h)anthracene 0.82 Indeno(1,2,3-cd)pyrene 6.3 Analyte Results Arsenic, Total 22 Copper, Total 25 Copper, Total 25 Lead, Total 21	Bern Bern Bern Bern Bern Bern Bern Bern	LC
SAMPLE TYPE SOIL SAMPLE DEPTH (ft.) 0 - 5 Analyte Results Semivolatile Organics by GC/MS Benzo(a)anthracene 2.6 Benzo(a)pyrene 5.2 Benzo(a)pyrene 5.2 Benzo(a)pyrene 5.2 Benzo(a)pyrene 2.4 Dibenzo(a,h)anthracene 0.82 Indeno(1,2,3-cd)pyrene 6.3 Total Metals Arsenic, Total Arsenic, Total 22.4,3 Lead, Total 74.3 Indeno(1,2,3-cd)pyrene 6.3 Mayte Results Arsenic, Total 22.5 Copper, Total 28 Copper, Total 28 <td>Bern Bern Bern Bern Bern Bern Bern Bern</td> <td>SAMPLI</td>	Bern Bern Bern Bern Bern Bern Bern Bern	SAMPLI
SAMPLE DEPTH (ft.) 0 - 5 Analyte Results Semivolatile Organics by GC/MS Benzo(a)anthracene 2.6 Benzo(a)anthracene 5.2 Benzo(k)fluoranthene 5.2 Benzo(k)fluoranthene 5.2 Benzo(k)fluoranthene 5.2 Benzo(k)fluoranthene 6.3 Indeno(1,2,3-cd)pyrene 7.3 Ind	Bern Bern Bern Bern Bern Bern Bern Bern	
Semivolatile Organics by GC/MS Benzo(a)anthracene 2.6 Benzo(a)anthracene 5.2 Benzo(b)fluoranthene 5.2 Benzo(f)fluoranthene 5.2 Benzo(f)fluoranthene 5.2 Benzo(f)fluoranthene 1.8 Chrysene 2.4 Dibenzo(a,h)anthracene 0.82 Indeno(1,2,3-cd)pyrene 6.3 Total Metals Arsenic, Total Arsenic, Total 22.5 Lead, Total 74.3 Indeno(1,2,3-cd)pyrene 6.3 Total Metals Arsenic, Total Arsenic, Total 22.5 Lead, Total 74.3	Bern Bern Bern Bern Bern Bern Bern Bern	
Benzo(a)anthracene 2.6 Benzo(a)pyrene 5.2 Benzo(k)fluoranthene 5.2 Benzo(k)fluoranthene 1.8 Chrysene 2.4 Dibenzo(a,h)anthracene 0.82 Indeno(1,2,3-cd)pyrene 6.3 Total Metals Arsenic, Total Arsenic, Total 22.5 Lead, Total 74.3	Structure LICARE2001022 - 1153 West Fayette Phase Inplanning-Study(GIS)Projects/Figure 2 - 5001 Structure	Analyte
Benzo(a)pyrene 5.2 Benzo(b)fluoranthene 5.2 Benzo(b)fluoranthene 1.8 Chrysene 2.4 Dibenzo(a,h)anthracene 0.82 Indeno(1,2,3-cd)pyrene 6.3 Total Metals Arsenic, Total Arsenic, Total 22.5 Lead, Total 74.3	Structure LICARE2001022 - 1153 West Fayette Phase Inplanning-Study(GIS)Projects/Figure 2 - 5001 Structure	
Benzo(b)fluoranthene 5.2 Benzo(k)fluoranthene 1.8 Chrysene 2.4 Dibenzo(a,h)anthracene 0.82 Indeno(1,2,3-cd)pyrene 6.3 Arsenic, Total 22.5 Lead, Total 74.3 Indeno(1,2,3-cd)pyrene 6.3 Arsenic, Total 22.5 Lead, Total 74.3	1123 Owner: LICARE2001022 - 1133 West Fayette Phase Intellaruning-Study(GIS)Projects/Figure 2 - Soi Bear Bear Chr. Dip Indi Aris Fai East Chr. Dip Indi Aris Fas East Chr. Dip Indi Aris Fas East Chr. Dip Indi Chr. Dip Indi Chr. Dip Indi Chr.	
Chrysene 2.4 Dibenzo(a,h)anthracene 0.82 Indeno(1,2,3-cd)pyrene 6.3 Total Metals Arsenic, Total Arsenic, Total 22.5 Lead, Total 74.3 Indeno(1,2,3-cd)pyrene 6.3 Indeno(1,2,3-cd)pyrene 7.4.3 Indeno(1,2,3-cd)pyrene 7.4.3 Indeno(1,2,3-cd)pyrene 8.3 Indeno(1,2,3-cd)pyrene 8.3 Indeno(1,2,3-cd)pyrene 8.3 Indeno(1,2,3-cd)pyrene 8.3 Indeno(1,2,3-cd)pyrene 8.3 Indeno(1,2,3-cd)pyrene 8.3 Indeno(1,2,3-cd)pyrene 8.3 <tr< td=""><td>Notes: 1. All values are re-</td><td></td></tr<>	Notes: 1. All values are re-	
Dibenzo(a,h)anthracene 0.82 Indeno(1,2,3-cd)pyrene 6.3 Total Metals Arsenic, Total Arsenic, Total 22.5 Lead, Total 74.3 Indeno(1,2,3-cd)pyrene 6.3 Indeno(1,2,3-cd)pyrene 74.3 Indeno(1,2,3-cd)pyrene 74.3 Indeno(1,2,3-cd)pyrene 74.3 Indeno(1,2,3-cd)pyrene 74.3 Indeno(1,2,3-cd)pyrene 8 SAMPLE TYPE SAMPLE TYPE SAMPLE TYPE SAMPLE TYPE SAMPLE TYPE SAMPLE TYPE Samption 70.1 Indeno(1,2,3-cd) 70.2 Indeno(1,2,3-cd) 70.2 Indeno(1	Notes: 1. All values are re-	
Indeno(1,2,3-cd)pyrene 6.3 Total Metals Arsenic, Total Arsenic, Total 22.5 Lead, Total 74.3 Image: Comparison of the second s	Notes: 1. All values are re-	
Total Metals Arsenic, Total 22.5 Lead, Total 74.3 Image: Comparison of the system of the sy	Arrs: Lea Notes: 1. All values are re	
Lead, Total 74.3 LocAtion SAMPLing Date LAB SAMPLE ID SAMPLE TYPE SAMPLE DEPTH (ft.) Analyte Analyte Res Total Metals Arsenic, Total Zinc, Total 52 Zinc, Total 52 Zinc, Total 52 Definitions: J - Estimated Concentration SCO - Soil Cleanup Objective mg/kg - Milligrams per kilogram	Votes: 1. All values are re	
Image: Solution of the system of the syst	Notes: 1. All values are re-	
SAMPLING DATE LAB SAMPLE ID SAMPLE TYPE SAMPLE DEPTH (ft.) Analyte Res Total Metals Arsenic, Total Zinc, Total Zinc, Total Shaded values are reported in mg/kg unless otherwise ind Shaded values indicate the analyte exceeds the respet Definitions: J - Estimated Concentration SCO - Soil Cleanup Objective mg/kg - Milligrams per kilogram	1. All values are re	Lead, Total
SAMPLING DATE LAB SAMPLE ID SAMPLE TYPE SAMPLE DEPTH (ft.) Analyte Res Total Metals Arsenic, Total Zinc, Total Zinc, Total Shaded values are reported in mg/kg unless otherwise ind Shaded values indicate the analyte exceeds the respet Definitions: J - Estimated Concentration SCO - Soil Cleanup Objective mg/kg - Milligrams per kilogram	1. All values are re	a management
SAMPLING DATE LAB SAMPLE ID SAMPLE TYPE SAMPLE DEPTH (ft.) Analyte Res Total Metals Arsenic, Total Zinc, Total Zinc, Total Shaded values are reported in mg/kg unless otherwise ind Shaded values indicate the analyte exceeds the respet Definitions: J - Estimated Concentration SCO - Soil Cleanup Objective mg/kg - Milligrams per kilogram	1. All values are re	11 - Tild R
LAB SAMPLE ID SAMPLE TYPE SAMPLE DEPTH (ft.) Analyte Res Total Metals Arsenic, Total 25 Copper, Total 58 Lead, Total 21 Zinc, Total 21 Notes: 1. All values are reported in mg/kg unless otherwise ind 2. Shaded values indicate the analyte exceeds the respe Definitions: J - Estimated Concentration SCO - Soil Cleanup Objective mg/kg - Milligrams per kilogram	1. All values are re	100
SAMPLE TYPE SAMPLE DEPTH (ft.) Analyte Res Total Metals Arsenic, Total 25 Copper, Total 58 Lead, Total 52 Zinc, Total 52 Zinc, Total 21 Notes: 1. All values are reported in mg/kg unless otherwise ind 2. Shaded values indicate the analyte exceeds the respe Definitions: J - Estimated Concentration SCO - Soil Cleanup Objective mg/kg - Milligrams per kilogram	1. All values are re	and the second
SAMPLE DEPTH (ft.) Analyte Res Total Metals Arsenic, Total 25 Copper, Total 54 Lead, Total 54 Zinc, Total 54 Zinc, Total 21 Notes: 1. All values are reported in mg/kg unless otherwise ind 2. Shaded values indicate the analyte exceeds the respe Definitions: J - Estimated Concentration SCO - Soil Cleanup Objective mg/kg - Milligrams per kilogram	1. All values are re	California -
Total Metals Arsenic, Total 25 Copper, Total 56 Lead, Total 51 Zinc, Total 51 Zinc, Total 21 Notes: 1. All values are reported in mg/kg unless otherwise ind 2. Shaded values indicate the analyte exceeds the respetence Definitions: J - Estimated Concentration SCO - Soil Cleanup Objective mg/kg - Milligrams per kilogram	1. All values are re	SA
Arsenic, Total 255 Copper, Total 558 Lead, Total 551 Zinc, Total 211 Notes: 1. All values are reported in mg/kg unless otherwise ind 2. Shaded values indicate the analyte exceeds the respet Definitions: J - Estimated Concentration SCO - Soil Cleanup Objective mg/kg - Milligrams per kilogram	1. All values are re	Analyte
Copper, Total 58 Lead, Total 51 Zinc, Total 51 Zinc, Total 21 Notes: 1 All values are reported in mg/kg unless otherwise ind 2. Shaded values indicate the analyte exceeds the respetence Definitions: J - Estimated Concentration SCO - Soil Cleanup Objective mg/kg - Milligrams per kilogram	1. All values are re	Arsenic Total
Lead, Total 51 Zinc, Total 21 Zinc, Total 21 Notes: 1. All values are reported in mg/kg unless otherwise ind 2. Shaded values indicate the analyte exceeds the respe Definitions: J - Estimated Concentration SCO - Soil Cleanup Objective mg/kg - Milligrams per kilogram	1. All values are re	
Notes: 1. All values are reported in mg/kg unless otherwise ind 2. Shaded values indicate the analyte exceeds the respe Definitions: J - Estimated Concentration SCO - Soil Cleanup Objective mg/kg - Milligrams per kilogram	1. All values are re	Lead, Total
 1. All values are reported in mg/kg unless otherwise ind 2. Shaded values indicate the analyte exceeds the respe Definitions: J - Estimated Concentration SCO - Soil Cleanup Objective mg/kg - Milligrams per kilogram 	1. All values are re	Zinc, Total
 1. All values are reported in mg/kg unless otherwise ind 2. Shaded values indicate the analyte exceeds the respe Definitions: J - Estimated Concentration SCO - Soil Cleanup Objective mg/kg - Milligrams per kilogram 	1. All values are re	*
 1. All values are reported in mg/kg unless otherwise ind 2. Shaded values indicate the analyte exceeds the respe Definitions: J - Estimated Concentration SCO - Soil Cleanup Objective mg/kg - Milligrams per kilogram 	1. All values are re	K. Carlow
 1. All values are reported in mg/kg unless otherwise ind 2. Shaded values indicate the analyte exceeds the respe Definitions: J - Estimated Concentration SCO - Soil Cleanup Objective mg/kg - Milligrams per kilogram 	1. All values are re	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1. All values are reported in mg/kg unless otherwise ind 2. Shaded values indicate the analyte exceeds the respe Definitions: J - Estimated Concentration SCO - Soil Cleanup Objective mg/kg - Milligrams per kilogram 	1. All values are re	
 1. All values are reported in mg/kg unless otherwise ind 2. Shaded values indicate the analyte exceeds the respe Definitions: J - Estimated Concentration SCO - Soil Cleanup Objective mg/kg - Milligrams per kilogram 	1. All values are re	
 1. All values are reported in mg/kg unless otherwise ind 2. Shaded values indicate the analyte exceeds the respe Definitions: J - Estimated Concentration SCO - Soil Cleanup Objective mg/kg - Milligrams per kilogram 	1. All values are re	
 1. All values are reported in mg/kg unless otherwise ind 2. Shaded values indicate the analyte exceeds the respe Definitions: J - Estimated Concentration SCO - Soil Cleanup Objective mg/kg - Milligrams per kilogram 	1. All values are re	
 2. Shaded values indicate the analyte exceeds the respe Definitions: J - Estimated Concentration SCO - Soil Cleanup Objective mg/kg - Milligrams per kilogram 	1. All values are re	
 2. Shaded values indicate the analyte exceeds the respe Definitions: J - Estimated Concentration SCO - Soil Cleanup Objective mg/kg - Milligrams per kilogram 		
J - Estimated Concentration SCO - Soil Cleanup Objective mg/kg - Milligrams per kilogram	2. Shaded values	re reported in mg/l
J - Estimated Concentration SCO - Soil Cleanup Objective mg/kg - Milligrams per kilogram	2	re reported in mg/l ues indicate the and
SCO - Soil Cleanup Objective mg/kg - Milligrams per kilogram	2	re reported in mg/l ues indicate the and
mg/kg - Milligrams per kilogram		re reported in mg/l ues indicate the and
mg/kg - Milligrams per kilogram ft - Feet	ទ្ធ SCO - Soil Cleanu	ues indicate the and
8 ft - Feet	mg/kg - Milligran	ues indicate the and Concentration eanup Objective
	ft - Feet	ues indicate the and Concentration eanup Objective

	Analyte	CasNum	NY-TOGS- AWQS
	Semivolatile Orga	nics by GC/MS-SIM	
	Benzo(a)anthracene	56-55-3	0.002
	Benzo(a)pyrene	50-32-8	0
	Benzo(b)fluoranthene	205-99-2	0.002
	Benzo(k)fluoranthene	207-08-9	0.002
	Chrysene	218-01-9	0.002
	Indeno(1,2,3-cd)pyrene	193-39-5	0.002
	Total	Metals	
	Antimony, Total	7440-36-0	3
	Arsenic, Total	7440-38-2	25
~	Beryllium, Total	7440-41-7	3
С	Cadmium, Total	7440-43-9	5
	Chromium, Total	7440-47-3	50
	Iron, Total	7439-89-6	300
	Lead, Total	7439-92-1	25
	Magnesium, Total	7439-95-4	35000
	Manganese, Total	7439-96-5	300
	Mercury, Total	7439-97-6	0.7
	Nickel, Total	7440-02-0	100
	Potassium, Total	7440-09-7	
	Selenium, Total	7782-49-2	10
	Sodium, Total	7440-23-5	20000
	Thallium, Total	7440-28-0	0.5
	Zinc, Total	7440-66-6	2000

	and the second se	and the second se				
LOCATION	TW	-04				
SAMPLING DATE	4/24/2023					
LAB SAMPLE ID	L2322083-04					
SAMPLE TYPE	E WATER					
SAMPLE DEPTH (ft.)	.) 15					
Analyte	Results	Qualifier				
Semivolatile Orga	nics by GC/MS-SIM					
Benzo(a)anthracene	0.06	J				
Benzo(a)pyrene	0.08	J				
Benzo(b)fluoranthene	0.12					
Benzo(k)fluoranthene	0.03	J				
Chrysene	0.07	J				
Indeno(1,2,3-cd)pyrene	0.08	J				
Total	Metals					
Cadmium, Total	5.36					
Chromium, Total	69.25					
Iron, Total	24100					
Lead, Total	204.3					
Magnesium, Total	73900					
Manganese, Total	2851					
Sodium, Total	277000					

5.3

1575

TW-02

1. All values are reported in ug/L unless otherwise indicated.

LOCATION

SAMPLING DATE

LAB SAMPLE ID

SAMPLE TYPE

SAMPLE DEPTH (ft.

alyte

nrysene

nzo(a)anthracene izo(a)pyrene

nzo(b)fluoranthene

enzo(k)fluoranthene

deno(1,2,3-cd)pyrene

timony, Total

rsenic, Total

eryllium, Total

on. Total

ead, Total

ickel, Total

elenium, Total

odium, Total

inc. Total

romium, Total

langanese, Total

TW-03

4/24/2023

L2322083-03

WATER

15

Qualifier

Results

2.1

2.4 0.95

1.6

2

5.52

68.4

5.87

54.26

226000

2688

1790

102.8

24.6

44600

3527

Total Metals

Organics by GC/MS-SIM 1.5

2. Shaded values indicate the analyte exceeds the respective standard/guideline value.

Definitions:

- Estimated Concentration AWQS - Ambient Water Quality Standards ug/L - Micrograms per liter ft - Feet

TW-03

3

Analyte

hrysene

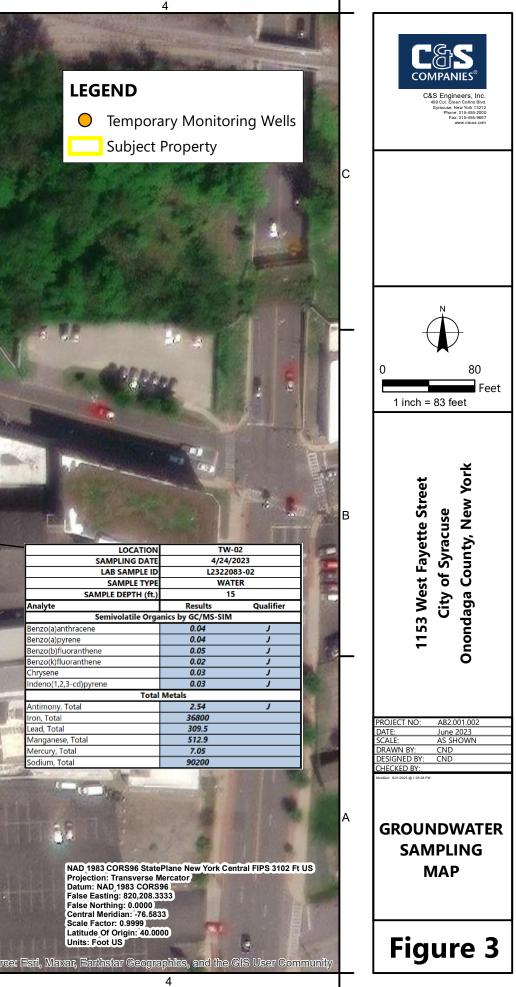
on, Total

Lead, Total

enzo(a)anthracene

enzo(b)fluoranthene

nzo(k)fluoranthene


enzo(a)pyrene

ntimony, Total

Manganese, Total

lercury, Total

odium, Total

TABLES

Table 1

Soil Analytical Data Summary Phase II ESA 1153 West Fayette Street Syracuse, New York

			LOCATION MPLING DATE AB SAMPLE ID	4/24	4 8-10 /2023 073-02	4/24,	5 11-14 /2023 073-03	BH-07 4/24/2 L23220	2023	4/24	08 0-5 /2023 073-05		0 5-9 /2023 073-06
			SAMPLE TYPE		DIL		DIL	SO			DIL	SC	
			LE DEPTH (ft.)	8 -	10	11	- 14	5 -	9	0	- 5	5 ·	- 9
Analyte	CasNum	Unrestricted Use SCO	Commercial Use SCO	Results	Qualifier	Results	Qualifier	Results	Qualifier	Results	Qualifier	Results	Qualifier
	General Chemistry 18540-29-9	1	400	1.03	U	1.01	U	General C	hemistry U	0.07	U	0.022	U
Chromium, Hexavalent Chromium, Trivalent	16065-83-1	30	1500	21.1	U	1.01 26.7	U	0.998 25.9	0	0.87 23.6	U	0.932 14.1	0
Cyanide, Total	57-12-5	27	27	1.2	U	1.2	U	1.2	U	0.24	J	1.1	U
Solids, Total	NONE			77.60%		79.50%		80.20%		91.90%		85.80%	
Semivo	latile Organics by G	iC/MS					Sem	ivolatile Orga	anics by GC	C/MS			
1,4-Dioxane	123-91-1	0.1	130	0.032	U	0.092	U	0.031	U	0.027	U	0.028	U
2-Methylphenol	95-48-7	0.33	500	0.21	U	0.62	U	0.2	U	0.18	U	0.19	U
3-Methylphenol/4-Methylphen		0.33	500	0.3	U	0.89	U	0.29	U	0.26	U	0.27	U
Acenaphthene Acenaphthylene	83-32-9 208-96-8	20 100	500 500	0.15 0.17	j U	0.64 0.49	U	0.054 0.16	j U	0.046 0.29	J	0.15	U U
Anthracene	120-12-7	100	500	0.17	0	0.49	U	0.10 0.12	0	0.23		0.13	U
Benzo(a)anthracene	56-55-3	1	5.6	0.39		0.37 0.16	J	0.23		2.6		0.12	0
Benzo(a)pyrene	50-32-8	1	1	0.36		0.16	J	0.23		5.2		0.11	J
Benzo(b)fluoranthene	205-99-2	1	5.6	0.35		0.2	J	0.26		5.2		0.13	
Benzo(ghi)perylene	191-24-2	100	500	0.19		0.21	J	0.17		6.2		0.075	J
Benzo(k)fluoranthene	207-08-9	0.8	56	0.15		0.37	U	0.1	J	1.8		0.047	J
Chrysene	218-01-9	1	56	0.36		0.25	J	0.31	_	2.4		0.16	
Dibenzo(a,h)anthracene	53-70-3	0.33	0.56	0.044	<u> </u>	0.37	U	0.041	ر ب	0.82		0.024	J
Dibenzofuran	132-64-9 206-44-0	7 100	350 500	0.066 0.86	J	0.62 0.36	U J	0.12 0.38	J	0.24 2.6		0.19 0.13	U
Fluoranthene	86-73-7	30	500	0.86	J	0.62	J	0.38	J	0.1	J	0.13	J
Fluorene Hexachlorobenzene	118-74-1	0.33	6	0.12	 U	0.62	U	0.15	J	0.11	J	0.032	J
Indeno(1,2,3-cd)pyrene	193-39-5	0.5	5.6	0.13 0.21	0	0.37 0.16	J	0.12 0.16	0	6.3	0	0.067	J
Naphthalene	91-20-3	12	500	0.045	J	0.87	-	0.25		0.43		0.039	J
Pentachlorophenol	87-86-5	0.8	6.7	0.17	U	0.49	U	0.16	U	0.14	U	0.15	U
Phenanthrene	85-01-8	100	500	0.95		0.56		0.5		1.7		0.22	
Phenol	108-95-2	0.33	500	0.21	U	0.62	U	0.2	U	0.18	U	0.19	U
Pyrene	129-00-0	100	500	0.76		0.49		0.37		2.7		0.12	
	Total Metals							Total N	letals				
Arsenic, Total	7440-38-2	13	16	17.2		38.4		29.8		22.5		20.2	
Barium, Total Beryllium, Total	7440-39-3 7440-41-7	350 7.2	400 590	28.6 0.316		32.5 1.38		69 0.511		54.9 0.384		30.9 0.538	
Cadmium, Total	7440-41-7	2.5	9.3	0.316		0.816	J	1.72		0.384		0.235	J
Chromium, Total	7440-47-3	2.5	5.5	21.1		26.7		25.9		23.6		14.1	
Copper, Total	7440-50-8	50	270	107		29.1		58.5		41.5		26.8	
Lead, Total	7439-92-1	63	1000	90.7		204		556		74.3		64.9	
Manganese, Total	7439-96-5	1600	10000	660		727		577		467		514	
Mercury, Total	7439-97-6	0.18	2.8	1.87		0.059	J	0.088		0.066	J	0.342	
Nickel, Total	7440-02-0	30	310	28.2		11.7		17.4		15.9		14	
Selenium, Total	7782-49-2	3.9	1500	4.85		1.29	J	1.44		1.35		0.617	J
Silver, Total Zinc, Total	7440-22-4 7440-66-6	2 109	1500 10000	1.22 192	U	1.25 206	U	0.482 211	U	0.434 39.6	U	0.446 42.9	U
	le Organics by EPA !		10000	192		200	Vo	atile Organic	s by EPA 5			42.9	
1,1,1-Trichloroethane	71-55-6	0.68	500	0.00064	U	0.00084	U	0.00076	U	0.00069	U	0.0018	U
1,1-Dichloroethane	75-34-3	0.27	240	0.0013	U	0.0017	U	0.0015	U	0.0014	U	0.0035	U
1,1-Dichloroethene	75-35-4	0.33	500	0.0013	U	0.0017	U	0.0015	U	0.0014	U	0.0035	U
1,2,4-Trimethylbenzene	95-63-6	3.6	190	0.0013	J	0.0028	J	0.003	U	0.0028	U	0.0071	U
1,2-Dichlorobenzene	95-50-1	1.1	500	0.0026	U	0.0034	U	0.003	U	0.0028	U	0.0071	U
1,2-Dichloroethane	107-06-2	0.02	30	0.0013	U	0.0017	U	0.0015	U	0.0014	U	0.0035	U
1,3,5-Trimethylbenzene	108-67-8	8.4	190	0.00037	j U	0.00053	j U	0.003	UU	0.0028	UU	0.0071	U U
1,3-Dichlorobenzene 1,4-Dichlorobenzene	541-73-1 106-46-7	2.4 1.8	280 130	0.0026	U U	0.0034	U	0.003	U	0.0028	U	0.0071	U
1,4-Dioxane	123-91-1	0.1	130	0.0020	U	0.0034	U	0.003	U	0.0028	U	0.28	U
2-Butanone		0.12	500	0.013	U	0.025	Ŭ	0.015	U	0.014	U	0.0078	J
Acetone	78-93-3	0.12	500	0.013	U	0.11		0.015	U	0.012	J	0.041	
	78-93-3 67-64-1	0.12	300										U
Benzene	67-64-1 71-43-2	0.05 0.06	44	0.0027		0.015		0.00076	U	0.0022		0.0018	-
Carbon tetrachloride	67-64-1 71-43-2 56-23-5	0.05 0.06 0.76	44 22	0.0027 0.0013	U	0.0017	U	0.0015	U	0.0014	U	0.0035	U
Carbon tetrachloride Chlorobenzene	67-64-1 71-43-2 56-23-5 108-90-7	0.05 0.06 0.76 1.1	44 22 500	0.0027 0.0013 0.00064	U	0.0017 0.00084	U	0.0015 0.00076	UUU	0.0014 0.00069	U	0.0035 0.0018	U U
Carbon tetrachloride Chlorobenzene Chloroform	67-64-1 71-43-2 56-23-5 108-90-7 67-66-3	0.05 0.06 0.76 1.1 0.37	44 22 500 350	0.0027 0.0013 0.00064 0.0019	UUU	0.0017 0.00084 0.0025	UUU	0.0015 0.00076 0.0023	U U U	0.0014 0.00069 0.0021	UUU	0.0035 0.0018 0.0053	U U U
Carbon tetrachloride Chlorobenzene Chloroform cis-1,2-Dichloroethene	67-64-1 71-43-2 56-23-5 108-90-7 67-66-3 156-59-2	0.05 0.06 0.76 1.1 0.37 0.25	44 22 500 350 500	0.0027 0.0013 0.00064 0.0019 0.0013	U	0.0017 0.00084 0.0025 0.0017	U	0.0015 0.00076 0.0023 0.0015	U U U U	0.0014 0.00069 0.0021 0.0014	U U U	0.0035 0.0018 0.0053 0.0035	U U U U
Carbon tetrachloride Chlorobenzene Chloroform cis-1,2-Dichloroethene Ethylbenzene	67-64-1 71-43-2 56-23-5 108-90-7 67-66-3 156-59-2 100-41-4	0.05 0.06 0.76 1.1 0.37 0.25 1	44 22 500 350 500 390	0.0027 0.0013 0.00064 0.0019 0.0013 0.0085	U U U	0.0017 0.00084 0.0025 0.0017 0.012	U U U	0.0015 0.00076 0.0023 0.0015 0.0015	U U U U U U	0.0014 0.00069 0.0021 0.0014 0.00066	U U U J	0.0035 0.0018 0.0053 0.0035 0.00088	U U U U J
Carbon tetrachloride Chlorobenzene Chloroform cis-1,2-Dichloroethene Ethylbenzene Methyl tert butyl ether	67-64-1 71-43-2 56-23-5 108-90-7 67-66-3 156-59-2 100-41-4 1634-04-4	0.05 0.06 0.76 1.1 0.37 0.25 1 0.93	44 22 500 350 500	0.0027 0.0013 0.00064 0.0019 0.0013	UUU	0.0017 0.00084 0.0025 0.0017 0.012 0.0034	UUU	0.0015 0.00076 0.0023 0.0015	U U U U	0.0014 0.00069 0.0021 0.0014 0.00066 0.0028	U U U	0.0035 0.0018 0.0053 0.0035	U U U U
Carbon tetrachloride Chlorobenzene Chloroform cis-1,2-Dichloroethene Ethylbenzene	67-64-1 71-43-2 56-23-5 108-90-7 67-66-3 156-59-2 100-41-4	0.05 0.06 0.76 1.1 0.37 0.25 1	44 22 500 350 500 390 500	0.0027 0.0013 0.00064 0.0019 0.0013 0.0085 0.0026	U U U U	0.0017 0.00084 0.0025 0.0017 0.012	U U U U	0.0015 0.00076 0.0023 0.0015 0.0015 0.003	U U U U U U U	0.0014 0.00069 0.0021 0.0014 0.00066	U U U J U	0.0035 0.0018 0.0053 0.0035 0.00088 0.0071	U U U U J U
Carbon tetrachloride Chlorobenzene Chloroform cis-1,2-Dichloroethene Ethylbenzene Methyl tert butyl ether Methylene chloride	67-64-1 71-43-2 56-23-5 108-90-7 67-66-3 156-59-2 100-41-4 1634-04-4 75-09-2	0.05 0.06 0.76 1.1 0.37 0.25 1 0.93 0.05	44 22 500 350 500 390 500 500	0.0027 0.0013 0.00064 0.0019 0.0013 0.0085 0.0026 0.0064	U U U U	0.0017 0.00084 0.0025 0.0017 0.012 0.0034 0.0084	U U U U	0.0015 0.00076 0.0023 0.0015 0.0015 0.003 0.0076	U U U U U U U U U	0.0014 0.00069 0.0021 0.0014 0.00066 0.0028 0.0069	U U U J U U	0.0035 0.0018 0.0053 0.0035 0.00088 0.0071 0.018	U U U U J U U
Carbon tetrachloride Chlorobenzene Chloroform cis-1,2-Dichloroethene Ethylbenzene Methyl tert butyl ether Methylene chloride n-Butylbenzene	67-64-1 71-43-2 56-23-5 108-90-7 67-66-3 156-59-2 100-41-4 1634-04-4 75-09-2 104-51-8 103-65-1 95-47-6	0.05 0.06 0.76 1.1 0.37 0.25 1 0.93 0.05 12	44 22 500 350 500 390 500 500 500	0.0027 0.0013 0.00064 0.0019 0.0013 0.0085 0.0026 0.0064 0.0064 0.0018 0.0047 0.0034	U U U U	0.0017 0.00084 0.0025 0.0017 0.0034 0.0084 0.0035 0.0046 0.0054	U U U U	0.0015 0.00076 0.0023 0.0015 0.0015 0.003 0.0076 0.0015 0.0015 0.0015	U U U U U U U U U	0.0014 0.00069 0.0021 0.0014 0.0028 0.0028 0.0069 0.0014 0.0014 0.0014	U U U U U U U U U U U U	0.0035 0.0018 0.0053 0.0035 0.0035 0.0071 0.018 0.0035 0.0035 0.0035	U U U U U U U U U U U U
Carbon tetrachloride Chlorobenzene Chloroform cis-1,2-Dichloroethene Ethylbenzene Methyl tert butyl ether Methylene chloride n-Butylbenzene n-Propylbenzene o-Xylene p/m-Xylene	67-64-1 71-43-2 56-23-5 108-90-7 67-66-3 156-59-2 100-41-4 1634-04-4 75-09-2 104-51-8 103-65-1 95-47-6 179601-23-1	0.05 0.06 0.76 1.1 0.37 0.25 1 0.93 0.05 12 3.9	44 22 500 350 500 390 500 500 500 500	0.0027 0.0013 0.00064 0.0019 0.0013 0.0085 0.0026 0.0064 0.0018 0.0047 0.0034 0.0057	U U U U U	0.0017 0.00084 0.0025 0.0017 0.0034 0.0084 0.0035 0.0046 0.0054 0.0085	U U U U	0.0015 0.00076 0.0023 0.0015 0.0015 0.003 0.0076 0.0015 0.0015 0.0015 0.0015 0.003	U U U U U U U U U U U U U	0.0014 0.00069 0.0021 0.0014 0.0028 0.0069 0.0014 0.0014 0.0014 0.0014	U U U U U U U U U U U U U U	0.0035 0.0018 0.0053 0.0035 0.0035 0.0071 0.018 0.0035 0.0035 0.0035 0.0035	U U U U U U U U U U U U U U U
Carbon tetrachloride Chlorobenzene Chloroform cis-1,2-Dichloroethene Ethylbenzene Methyl tert butyl ether Methylene chloride n-Butylbenzene n-Propylbenzene o-Xylene p/m-Xylene sec-Butylbenzene	67-64-1 71-43-2 56-23-5 108-90-7 67-66-3 156-59-2 100-41-4 1634-04-4 75-09-2 104-51-8 103-65-1 95-47-6 179601-23-1 135-98-8	0.05 0.06 0.76 1.1 0.37 0.25 1 0.93 0.05 12 3.9 	44 22 500 350 500 500 500 500 500 500 500	0.0027 0.0013 0.00064 0.0019 0.0013 0.0085 0.0026 0.0064 0.0018 0.0047 0.0034 0.0057 0.00095	U U U U U J	0.0017 0.00084 0.0025 0.0017 0.012 0.0034 0.0084 0.0035 0.0046 0.0054 0.0085 0.0028	U U U U	0.0015 0.00076 0.0023 0.0015 0.0015 0.003 0.0076 0.0015 0.0015 0.0015 0.003 0.003	U U U U U U U U U U U U U U U	0.0014 0.00069 0.0021 0.0014 0.0028 0.0069 0.0014 0.0014 0.0014 0.0014 0.0028 0.0014	U U U U U U U U U U U U U U U U	0.0035 0.0018 0.0053 0.0035 0.0035 0.0071 0.018 0.0035 0.0035 0.0035 0.0035 0.0071 0.0035	U U U U U U U U U U U U U U U U
Carbon tetrachloride Chlorobenzene Chloroform cis-1,2-Dichloroethene Ethylbenzene Methyl tert butyl ether Methylene chloride n-Butylbenzene n-Propylbenzene o-Xylene p/m-Xylene sec-Butylbenzene tert-Butylbenzene	67-64-1 71-43-2 56-23-5 108-90-7 67-66-3 156-59-2 100-41-4 1634-04-4 75-09-2 104-51-8 103-65-1 95-47-6 179601-23-1 135-98-8 98-06-6	0.05 0.06 0.76 1.1 0.37 0.25 1 0.93 0.05 12 3.9 	44 22 500 350 500 500 500 500 500 500 500 500	0.0027 0.0013 0.00064 0.0019 0.0013 0.0085 0.0026 0.0064 0.0018 0.0047 0.0034 0.0057 0.00095 0.0026	U U U U U U U	0.0017 0.00084 0.0025 0.0017 0.012 0.0034 0.0084 0.0035 0.0046 0.0054 0.0054 0.0028 0.0028		0.0015 0.00076 0.0023 0.0015 0.003 0.0076 0.0015 0.0015 0.0015 0.0015 0.003 0.0015 0.003	U U U U U U U U U U U U U U U	0.0014 0.00069 0.0021 0.0014 0.0028 0.0069 0.0014 0.0014 0.0014 0.0014 0.0028 0.0014 0.0028	U U U U U U U U U U U U U U U U U	0.0035 0.0018 0.0053 0.0035 0.0035 0.0071 0.018 0.0035 0.0035 0.0035 0.0035 0.0071 0.0035 0.0071	U U U U U U U U U U U U U U U U U
Carbon tetrachloride Chlorobenzene Chloroform cis-1,2-Dichloroethene Ethylbenzene Methyl tert butyl ether Methylene chloride n-Butylbenzene n-Propylbenzene o-Xylene p/m-Xylene sec-Butylbenzene tert-Butylbenzene Tetrachloroethene	67-64-1 71-43-2 56-23-5 108-90-7 67-66-3 156-59-2 100-41-4 1634-04-4 75-09-2 104-51-8 103-65-1 95-47-6 179601-23-1 135-98-8 98-06-6 127-18-4	0.05 0.06 0.76 1.1 0.37 0.25 1 0.93 0.05 12 3.9 12 3.9 11 5.9 1.3	44 22 500 350 500 500 500 500 500 500 500 500	0.0027 0.0013 0.00064 0.0019 0.0013 0.0085 0.0026 0.0064 0.0018 0.0047 0.0034 0.0057 0.0026 0.0026 0.00064	U U U U U J	0.0017 0.00084 0.0025 0.0017 0.012 0.0034 0.0084 0.0035 0.0046 0.0054 0.0054 0.0028 0.0028 0.0051 0.00084	U U U U	0.0015 0.00076 0.0023 0.0015 0.003 0.0076 0.0015 0.0015 0.0015 0.0015 0.003 0.003 0.003 0.003	U U U U U U U U U U U U U U U U U	0.0014 0.00069 0.0021 0.0014 0.0028 0.0069 0.0014 0.0014 0.0014 0.0014 0.0028 0.0014 0.0028 0.0014 0.0028	U U U U U U U U U U U U U U U U	0.0035 0.0018 0.0053 0.0035 0.0035 0.0071 0.018 0.0035 0.0035 0.0035 0.0035 0.0071 0.0035 0.0071 0.0035	U U U U U U U U U U U U U U U U U U U
Carbon tetrachloride Chlorobenzene Chloroform cis-1,2-Dichloroethene Ethylbenzene Methyl tert butyl ether Methylene chloride n-Butylbenzene n-Propylbenzene o-Xylene p/m-Xylene sec-Butylbenzene tert-Butylbenzene Tetrachloroethene Toluene	67-64-1 71-43-2 56-23-5 108-90-7 67-66-3 156-59-2 100-41-4 1634-04-4 75-09-2 104-51-8 103-65-1 95-47-6 179601-23-1 135-98-8 98-06-6 127-18-4 108-88-3	0.05 0.06 0.76 1.1 0.37 0.25 1 0.93 0.05 12 3.9 12 3.9 11 5.9 1.3 0.7	44 22 500 350 500 500 500 500 500 500 500 500	0.0027 0.0013 0.00064 0.0019 0.0013 0.0085 0.0026 0.0064 0.0047 0.0034 0.0057 0.0025 0.0026 0.0026 0.00064 0.0087	U U U U U U U U U U U	0.0017 0.00084 0.0025 0.0017 0.012 0.0034 0.0084 0.0035 0.0046 0.0054 0.0054 0.0028 0.0028 0.0051 0.00084 0.024	U U U U U U	0.0015 0.00076 0.0023 0.0015 0.003 0.0076 0.0015 0.0015 0.0015 0.003	U U U U U U U U U U U U U U U U U U U	0.0014 0.00069 0.0021 0.0014 0.0028 0.0069 0.0014 0.0014 0.0014 0.0014 0.0028 0.0014 0.0028 0.0014 0.0028 0.00069 0.0016	U U U U U U U U U U U U U U U U U U U	0.0035 0.0018 0.0053 0.0035 0.0035 0.0071 0.018 0.0035 0.0035 0.0035 0.0035 0.0071 0.0035 0.0071 0.0018 0.0035	U U U U U U U U U U U U U U U U U U U
Carbon tetrachloride Chlorobenzene Chloroform cis-1,2-Dichloroethene Ethylbenzene Methyl tert butyl ether Methylene chloride n-Butylbenzene n-Propylbenzene o-Xylene p/m-Xylene sec-Butylbenzene tert-Butylbenzene Tetrachloroethene	67-64-1 71-43-2 56-23-5 108-90-7 67-66-3 156-59-2 100-41-4 1634-04-4 75-09-2 104-51-8 103-65-1 95-47-6 179601-23-1 135-98-8 98-06-6 127-18-4	0.05 0.06 0.76 1.1 0.37 0.25 1 0.93 0.05 12 3.9 12 3.9 11 5.9 1.3	44 22 500 350 500 500 500 500 500 500 500 500	0.0027 0.0013 0.00064 0.0019 0.0013 0.0085 0.0026 0.0064 0.0018 0.0047 0.0034 0.0057 0.0026 0.0026 0.00064	U U U U U U U	0.0017 0.00084 0.0025 0.0017 0.012 0.0034 0.0084 0.0035 0.0046 0.0054 0.0054 0.0028 0.0028 0.0051 0.00084		0.0015 0.00076 0.0023 0.0015 0.003 0.0076 0.0015 0.0015 0.0015 0.0015 0.003 0.003 0.003 0.003	U U U U U U U U U U U U U U U U U	0.0014 0.00069 0.0021 0.0014 0.0028 0.0069 0.0014 0.0014 0.0014 0.0014 0.0028 0.0014 0.0028 0.0014 0.0028	U U U U U U U U U U U U U U U U U	0.0035 0.0018 0.0053 0.0035 0.0035 0.0071 0.018 0.0035 0.0035 0.0035 0.0035 0.0071 0.0035 0.0071 0.0035	U U U U U U U U U U U U U U U U U U U

Notes:

All values are reported in mg/kg unless otherwise indicated.

Definitions:

Unrestricted Use SCO	- New York NYCRR Part 375 New York Unrestricted use Criteria Criteria per 6 NYCRR Part 375 Environmental Remediation Programs, effective December 14, 2006.
Commercial Use SCO	- New York NYCRR Part 375 Commercial Criteria, New York Restricted use Criteria per 6 NYCRR Part 375 Environmental Remediation Programs, effective December 14, 2006.
Bolded & Italicized	- Indicates analyte detected at concentrations greater than laboratory detection limits.
Color Highlighted	- Indicates analyte exceeds the respective standard/guideline value.
Gray Highlighted	- Indicates the laboratory detection limit exceeds the respective standard/guideline value.
U	- Not detected at the reported detection limit for the sample.
J	- Estimated value.
mg/kg	- Milligrams per kilogram
ft	- Feet
SCO	- Soil cleanup objective

Table 2

Groundwater Analytical Data Summary Phase II ESA 1153 West Fayette Street Syracuse, New York

		LOCATION SAMPLING DATE LAB SAMPLE ID SAMPLE TYPE SAMPLE DEPTH (ft.)	TW-02 4/24/2023 L2322083-02 WATER 15		4/24 L2322 W/	/-03 /2023 083-03 \TER 15	TW-04 4/24/2023 L2322083-04 WATER 15	
Analyte	CasNum	NY-TOGS-AWQS	Results	Qualifier	Results	Qualifier	Results	Qualifier
	atile Organics by GC/MS	-				ganics by GC/MS		
1,2,4,5-Tetrachlorobenzene 2,3,4,6-Tetrachlorophenol	95-94-3 58-90-2	5	<u>10</u> 5	U U	10 5	UU	<u>10</u> 5	U U
2,4,5-Trichlorophenol	95-95-4		5	U	5	U	5	U
2,4,6-Trichlorophenol	88-06-2		5	U	5	U	5	U
2,4-Dichlorophenol	120-83-2	1	5	U	5	U	5	U
2,4-Dimethylphenol	105-67-9	50	5	U	5	U	5	U
2,4-Dinitrophenol	51-28-5	10	20	U	20	U	20	U
2,4-Dinitrotoluene	121-14-2	5	5	U	5	U	5	U
2,6-Dinitrotoluene	606-20-2 95-57-8	5	5	U U	5	UU	5	U U
2-Chlorophenol 2-Methylphenol	95-48-7		5	U	5	U	5	U
2-Nitroaniline	88-74-4	5	5	U	5	U	5	U
2-Nitrophenol	88-75-5	3	10	U	10	U	10	U
3,3'-Dichlorobenzidine	91-94-1	5	5	U	5	U	5	U
3-Methylphenol/4-Methylphenol	108-39-4/106-44-5		5	U	5	U	5	U
3-Nitroaniline	99-09-2	5	5	U	5	U	5	U
4,6-Dinitro-o-cresol	534-52-1		10	U	10	U	10	U
4-Bromophenyl phenyl ether	101-55-3	5	2	U	2	U	2	<u> </u>
4-Chloroaniline	106-47-8 7005-72-3	5	5	U U	5	UU	5	U U
4-Chlorophenyl phenyl ether 4-Nitroaniline	100-01-6	5	5	U U	5	U	5	U
4-Nitrophenol	100-01-8	5	10	U	10	U	10	U
Acetophenone	98-86-2		5	U	5	U	5	U
Atrazine	1912-24-9	7.5	10	U	10	U	10	U
Benzaldehyde	100-52-7		5	U	5	U	5	U
Biphenyl	92-52-4		2	U	2	U	2	U
Bis(2-chloroethoxy)methane	111-91-1	5	5	U	5	U	5	U
Bis(2-chloroethyl)ether	111-44-4	1	2	U	2	U	2	U
Bis(2-chloroisopropyl)ether	108-60-1	5	2	U	2	U	2	U
Bis(2-ethylhexyl)phthalate Butyl benzyl phthalate	117-81-7 85-68-7	5 50	3	U U	3	UU	3	U U
Caprolactam	105-60-2	50	10	U U	10	U	5 10	U
Carbazole	86-74-8		2	U	2	U	2	U
Di-n-butylphthalate	84-74-2	50	5	U	5	U	5	U
Di-n-octylphthalate	117-84-0	50	5	U	5	U	5	U
Dibenzofuran	132-64-9		2	U	2	U	2	U
Diethyl phthalate	84-66-2	50	5	U	5	U	5	U
Dimethyl phthalate	131-11-3	50	5	U	5	U	5	U
Hexachlorocyclopentadiene	77-47-4	5	20	U	20	U	20	U
Isophorone	78-59-1	50	5	U	5	U	5	U
n-Nitrosodi-n-propylamine NDPA/DPA	621-64-7 86-30-6	50	5 2	U U	5	UU	5	U U
Nitrobenzene	98-95-3	0.4	2	U	2	U	2	U
p-Chloro-m-cresol	59-50-7	0.4	2	U	2	U	2	U
Phenol	108-95-2	1	5	U	5	U	5	U
Semivolati	le Organics by GC/MS-SIM			Ser	nivolatile Orga	nics by GC/MS-S	SIM	
2-Chloronaphthalene	91-58-7	10	0.2	U	0.2	U	0.2	U
2-Methylnaphthalene	91-57-6		0.1	U	0.1	U	0.13	
Acenaphthene	83-32-9	20	0.02	J	4.1		0.02	J
Acenaphthylene	208-96-8	50	0.1	U U	0.1	UU	0.1	U U
Anthracene Benzo(a)anthracene	120-12-7 56-55-3	0.002	0.1 0.04	J	0.1 1.5	0	0.1 0.06	
Benzo(a)pyrene	50-32-8	0.002	0.04		2.1		0.08	
Benzo(b)fluoranthene	205-99-2	0.002	0.05	 	2.4		0.12	-
Benzo(ghi)perylene	191-24-2		0.03	J	2.3		0.09	J
Benzo(k)fluoranthene	207-08-9	0.002	0.02	J	0.95		0.03	J
Chrysene	218-01-9	0.002	0.03	J	1.6		0.07	J
Dibenzo(a,h)anthracene	53-70-3		0.1	U	0.29		0.1	U
Fluoranthene	206-44-0	50	0.08	J	3.9		0.16	
Fluorene	86-73-7	50	0.1	UU	0.1	UU	0.1	U U
Hexachlorobenzene Hexachlorobutadiene	118-74-1 87-68-3	0.04	0.8	U U	0.8	UU	0.8	U
Hexachloroethane	67-72-1	5	0.5	U	0.5	U	0.8	U
Indeno(1,2,3-cd)pyrene	193-39-5	0.002	0.03	J	2	~	0.08	J
Naphthalene	91-20-3	10	0.1	U	0.1	U	0.08	J
Pentachlorophenol	87-86-5	1	0.8	U	0.8	U	0.8	U
Phenanthrene	85-01-8	50	0.06	J	0.1	U	0.13	
Pyrene	129-00-0	50	0.07	J	4.9		0.13	
	Total Metals					Metals		
Aluminum, Total	7429-90-5		4550		15300		6990	
Antimony, Total	7440-36-0	3	2.54	J	5.52		25.23	
Arsenic, Total	7440-38-2	25	8.88		68.4		18.09	
Barium, Total Beryllium, Total	7440-39-3 7440-41-7	1000 3	176.5 0.34	J	305.2 5.87		151.7 1.3	1
Cadmium, Total	7440-41-7	5	0.34	5	2.18		5.36	J
Calcium, Total	7440-43-9	5	181000		208000	f	1240000	
Chromium, Total	7440-47-3	50	19.25		54.26		69.25	
Cobalt, Total	7440-48-4		5.54		35.17		15.06	
Copper, Total	7440-50-8	200	121		126.8		24.18	
Iron, Total	7439-89-6	300	36800		226000		24100	
Lead, Total	7439-92-1	25	309.5		2688		204.3	
Magnesium, Total	7439-95-4	35000	13100		30700		73900	
Manganese, Total	7439-96-5	300	512.9		1790	,	2851	
Mercury, Total	7439-97-6	0.7	7.05		0.14	J	0.19	J
Nickel, Total Potassium, Total	7440-02-0 7440-09-7	100	30.85 7670		102.8 5800		40.68 8000	
Potassium, Total Selenium, Total	7440-09-7 7782-49-2	10	2.38	J	5800 24.6		25	U
Selenium, Total Silver, Total	7440-22-4	50	2.38	5	0.56		25	U
Sodium, Total	7440-22-4	20000	90200		44600		277000	U
Thallium, Total	7440-28-0	0.5	1	U	0.25	J	5	U
Vanadium, Total	7440-62-2		29.6		178.3		18.91	J
Zinc, Total	7440-66-6	2000	521.9		3527		856.9	

Table 2

Groundwater Analytical Data Summary Phase II ESA 1153 West Fayette Street Syracuse, New York

		LOCATION SAMPLING DATE LAB SAMPLE ID SAMPLE TYPE	TW-02 4/24/2023 L2322083-02 WATER		4/24 L2322	V-03 /2023 083-03 ATER	TW-04 4/24/2023 L2322083-04 WATER		
		SAMPLE DEPTH (ft.)		15		15	1	15	
Analyte	CasNum	NY-TOGS-AWQS	Results	Qualifier	Results	Qualifier	Results	Qualifier	
Volatile	e Organics by GC/MS				Volatile Orga	nics by GC/MS			
1,1,1-Trichloroethane	71-55-6	5	2.5	U	10	U	2.5	U	
1,1,2,2-Tetrachloroethane	79-34-5	5	0.5	U	2	U	0.5	U	
1,1,2-Trichloroethane	79-00-5	1	1.5	U	6	U	1.5	U	
1,1-Dichloroethane	75-34-3	5	2.5	U	10	U	2.5	U	
1,1-Dichloroethene	75-35-4	5	0.5	U	2	U	0.5	U	
1,2,4-Trichlorobenzene	120-82-1	5	2.5	U	10	U	2.5	U	
1,2,4-Trimethylbenzene	95-63-6	5	2.5	U	10	U	2.5	U	
1,2-Dibromo-3-chloropropane	96-12-8	0.04	2.5	U	10	U	2.5	U	
1,2-Dibromoethane	106-93-4	0.0006	2	U	8	U	2	U	
1,2-Dichlorobenzene	95-50-1	3	2.5	U	10 2	UU	2.5 0.5	U	
1,2-Dichloroethane 1,2-Dichloropropane	107-06-2 78-87-5	0.6	0.5	U U	4	U	0.5	U U	
1,2-Dichloropropane 1,3,5-Trimethylbenzene	108-67-8	5	2.5	U	4	U	2.5	U	
1,3,5-Trimethylbenzene 1,3-Dichlorobenzene	541-73-1	3	2.5	U U	10	U	2.5	U U	
1,3-Dichlorobenzene	106-46-7	3	2.5	U	10	U	2.5	U	
2-Butanone	78-93-3	50	5	U	20	U	2.5	U	
2-Hexanone	591-78-6	50	5	U	20	U	5	U	
4-Methyl-2-pentanone	108-10-1	50	5	U	20	U	5	U	
Acetone	67-64-1	50	5	U	20	U	3.1	<u> </u>	
Benzene	71-43-2	1	0.5	U	2	U	0.5	U	
Bromodichloromethane	75-27-4	50	0.5	U	2	U	0.5	U	
Bromoform	75-25-2	50	2	U	8	U	2	U	
Bromomethane	74-83-9	5	2.5	U	10	U	2.5	U	
Carbon disulfide	75-15-0	60	5	U	20	U	5	U	
Carbon tetrachloride	56-23-5	5	0.5	U	2	U	0.5	U	
Chlorobenzene	108-90-7	5	2.5	U	10	U	2.5	U	
Chloroethane	75-00-3	5	2.5	U	10	U	2.5	U	
Chloroform	67-66-3	7	2.5	U	10	U	2.5	U	
Chloromethane	74-87-3		2.5	U	10	U	2.5	U	
cis-1,2-Dichloroethene	156-59-2	5	2.5	U	10	U	2.5	U	
cis-1,3-Dichloropropene	10061-01-5	0.4	0.5	U	2	U	0.5	U	
Cyclohexane	110-82-7		10	U	40	U	10	U	
Dibromochloromethane	124-48-1	50	0.5	U	2	U	0.5	U	
Dichlorodifluoromethane	75-71-8	5	5	U	20	U	5	U	
Ethylbenzene	100-41-4	5	2.5	U	10	U	2.5	U	
Freon-113	76-13-1	5	2.5	U U	10 10	UU	2.5 2.5	U U	
Isopropylbenzene	98-82-8 79-20-9	5	2.5	U U	8	U		U U	
Methyl Acetate Methyl cyclohexane	108-87-2		2 10	U	40	U	2 10	U U	
Methyl tert butyl ether	1634-04-4	10	2.5	U	10	U	2.5	U	
Methylene chloride	75-09-2	5	2.5	U	10	U	2.5	U	
n-Butylbenzene	104-51-8	5	2.5	U	10	U	2.5	U	
n-Propylbenzene	103-65-1	5	2.5	U	10	U	2.5	U	
Naphthalene	91-20-3	10	2.5	U	10	U	2.5	U	
o-Xylene	95-47-6	5	2.5	U	10	U	2.5	U	
p-Isopropyltoluene	99-87-6	5	2.5	U	10	U	2.5	U	
p/m-Xylene	179601-23-1	5	2.5	U	10	U	2.5	U	
sec-Butylbenzene	135-98-8	5	2.5	U	10	U	2.5	U	
Styrene	100-42-5	5	2.5	U	10	U	2.5	U	
tert-Butylbenzene	98-06-6	5	2.5	U	10	U	2.5	U	
Tetrachloroethene	127-18-4	5	0.5	U	2	U	0.5	U	
Toluene	108-88-3	5	2.5	U	10	U	2.5	U	
trans-1,2-Dichloroethene	156-60-5	5	2.5	U	10	U	2.5	U	
trans-1,3-Dichloropropene	10061-02-6	0.4	0.5	U	2	U	0.5	U	
Trichloroethene	79-01-6	5	0.5	U	2	U	0.5	U	
Trichlorofluoromethane	75-69-4	5	2.5	U	10	U	2.5	U	
Vinyl chloride	75-01-4	2	1	U	4	U	1	U	

Notes:

All values are reported in $\mu\text{g/L}$ unless otherwise indicated.

Definitions:

NY-TOGS-AWQS **Bolded & Italicized** Color Highlighted Gray Highlighted U

- New York TOGS 111 Ambient Water Quality Standards criteria reflects all addendum to criteria through June 2004.

- Indicates analyte detected at concentrations greater than laboratory detection limits.

- Indicates analyte exceeds the respective standard/guideline value.

Indicates the laboratory detection limit exceeds the respective standard/guideline value.Not detected at the reported detection limit for the sample.

J - Estimated value. µg/L ft - Micrograms per liter - Feet

APPENDICES

Appendix A Soil Boring Logs

			5	199 Col Eilee Syracuse, Ne Phone: 315-4		E	BORING LO	G	<u> </u>	Boring No. Sheet 1 of:	BH-03		
			V	Fax: 315-455-9667					oject No.:	AB2.001.002			
					Street Phase II ES	A				ace Elev.:			
			Syracuse							Datum:	BH-03		
		_	1153 Owr						S	tart Date:	4/24/23		
				vironmenta					Fir	nish Date:	4/24/23		
		_	water	Depth	Date & Time	Drill Rig:			1	nspector:	C. Del Fatti		
Defe			ile Drilling			Casing:		Rock Core:		Undist:			
	-		Removal			Sampler:		Other: Star	t time	21100	DS		
After Casing Removal: Hammer: Item (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard Penetration Test)													
£	4	L			to unve sampler	12 W/140 ID. 11a	Initial Initial States	W D-1566, Stan	dard Per	1	and the second		
Depth (ft)	Blows on series C - coarse m - medium f - fine MATERIAL DESCRIPTION a - and - 35-50% s - some - 20-35% l - little - 10-20% l - lit					20-35% 10-20%	(e.g., relative	<u>COMMENTS</u> N-value, recovery, moisture, core run D, % recovered)					
				0-0.8	ft: asphc	ut				0-SF	F :		
1				0.5-	-5.ft: his	tonic fill	matenial, c ray, red, no	oal, brick	c, tar,	50%.1	ecovery		
2					asn	, black,g	ray, red, no	odor	, ,	opena	ir = 0.05pm pace = 1.2ppr		
-				-						heads 10-SA	pace=1.2ppr		
3										0-244)		
4				Nº	1. daude l		1.00						
5				5-++	+: dark br	own, silt	y sand (fine)), poorly	poorly 5-10ft:				
-				1	graded	l, moist, 1	no odor			50% 10	covery		
6										honder	r = 0.0 ppm		
				7-8	Ft: gravly	white con	tice sand wit	h little me	dium	IS-70+	ace-visppi		
7					gravel,	well-grad	use sand with ed, no odor, and, trace o odor, moi erface	moist	quart	heads	pace = 0. Opr		
				8-9F	t: Jarang	e, Pmcs	and, trace	Pm grau	el,	(7-9F	1		
8				act.	Well-g	raded, n	o odor, moi	st J			,		
9				9-10-	Pt. black	arer infi	arse sand w	ill a propa a	milal				
			-		Well-a	Paded s	aturated no	adar J	iavel,	10-15	A.		
10				10-15	Ft: blac	c.mc.sc	and, trace	fine arac	101.	301.0	COVENI		
					Well-	graded,	aturated, no and, trace saturated,	no odor		opena	r = 0.00nm		
11		╽┟				0. 1	4)			headsp	11 = 0.0ppm 11 = 0.0ppm ace = 0.2pp t)		
12				-						(10-154	ť)''		
											,		
13													
				10.0.									
14				15ft		1 · ·							
15		F		Dore	nole term	ination	and the second se			an a			
		╎┟											
16													
17													
18		-											
19		F											
20													
21													
22		F											
23		┝											
23													

			5 49 Sy Ph	9 Col Eilee		E	BORING LO	G		Boring No. Sheet 1 of:	BH-04
			ww	w.cscos.com	۱.	•			PI	oject No.:	AB2.001.002
Proje	ct Nar	ne:	1153 West	Fayette S	Street Phase II ES	A				ace Elev.:	
	ocati	on:	Syracuse, I	٧Y						Datum:	BH-04
	Clie	nt:	1153 Owne	er LLC					S	tart Date:	4/24/23
Drill	ing Fir	m:	Matrix Envi	ronmenta	I .					nish Date:	4/24/23
	Grou	Indv	water	Depth	Date & Time	Drill Rig:				nspector:	C. Del Fatti
		Whi	ile Drilling:			Casing:		Rock Core:		Undist:	o. Berr atti
Befo	re Cas	sing	Removal:			Sampler:		Other: Stav		me = 10	920
			Removal:			Hammer:			1 1 1 1	11C-10	000
			(N No	. of blows	to drive sampler		mmer falling 30" AST	M D-1586, Stan	dard Per	netration Te	(st)
£	0	-	Blows on								COMMENTS
Depth (ft)	Sample No.	Symbol	Sampler per 6"	c - coarse m - medium f - fine	S - Sanc	d, \$ - Silt, G - Grav	DESCRIPTION vel, C - Clay, cly - claye			(e.g., l relative RQI	N-value, recovery, moisture, core run, D, % recovered)
1 2 3	-			0-0.5 0.5-2 2-8f	ft: histo	nic fill me	atenál, ash, a red., no da hf gray, fm ne (fm), wel	coal, trace or c sand, s I-graded,	brick, some	leadsi (0-2-	recovery IT = 0. Oppm acc = 0. 7 ppm 7) pace = 0. 9 ppm
4							-			5-10-	-+:
5										ODen c	recovery ur=0.0ppm
7							0.0100.0			(8-10-	PULCE-10. LODW
8			,	8-10-	ft: black,	fmc sand	with trace (gravel (Fin	y),		
9	A S-2			9ft:	groundw	ited no o ater inte	oh, well-gr dor sface	much,			
10	¥			10-12	LPt: black White	c, fmc sai	nd and grav ugnout, well	1-graded	,	10-15 50%	ft: ecovery
11				12-15						10-12	ecovery pace = 0:4ppm ft) pace = 0.9ppm ft)
12					orga poor	nics (woo	ack silty so od?), trace d, moist, oro	gravel (m	nc),	(12-15-	Pace - 0. Ippn Pt)
13 14					1	10	, , , , ,	/			
14				15ft	: borehole	e termino	ation		Canada a construction of the second		ng pang mananakan kana kana kana kana kana kana
16				TW-2	Installed		,				
17											
18											
19	' (A					4					
20											
21						,		\		•	
22											
23										-	

1

			4	99 Col Eilee	neers, Inc. n Collins Blvd w York 13212			•	E	Boring No.	BH-05
c	OMP		P	hone: 315-4 ax: 315-455	55-2000		BORING LO	G	S	heet 1 of:	1
			w	ww.cscos.com	1		F				AB2.001.002
			Syracuse,		Street Phase II ES	A			Surf	ace Elev.:	
			1153 Own							Datum:	BH - 05
Drilli			Matrix Env	and the second second						tart Date: hish Date:	4/24/23
	and the second second second	-	water	Depth	Date & Time	Drill Rig:				nspector:	C. Del Fatti
	1	Whi	ile Drilling:			Casing:		Rock Core:		Undist:	O. Der ratti
	ofore Casing Removal: Sampler: Other: Sturt Hin										0
Aft	Hammer: Hammer: (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard Pe										
	1		(N No	D. Of blows	to drive sampler	12" w/140 lb. hai	mmer falling 30" AST	M D-1586, Stan	idard Per		
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	m - medium f - fine	S - Sanc	d, \$-Silt, G-Gra	DESCRIPTION vel, C - Clay, cly - claye		20-35% 10-20% - 0-10%	(e.g., l relative ROI	COMMENTS N-value, recovery, moisture, core run, D, % recovered)
1				0-0.0	off aspha	It fill ma	tenal, bnck red, beige, i	lasta ana	1 have	0-Sft	FACALOLOL
				10:0 4	Cinde	er block.	red beige	no odor	<u>1, 14r,</u>	ODED A	ir=0 0000
2					0111010	, , , , , , , , , , , , , , , , , , , ,	ich, e cryc.,			headsi	ir = 0.0ppm occ = 0.5ppm
3										(0-5f	F)
4										F (0)	
5				6-851	-: crushed	ctone ave	u lubito d			5-10F1 60 7	recovery
6				0 011	- (Tushicy	sione, gro	y/white, d	ry.		heads	recoveny nr = 0.0ppm nace = 0.9ppm
7				8-105					A	12-10	Ff)
8				0~107	smoot	h, black	gravel, ang well-grad	ded, wet	1		
9				10 ft.	aroundu	vater int	exfore			In-Ist	
10				10-15	satur	gray/br	own, clay	high pla	sticity	60% v	recovery r=1,200m
<u>11</u> 12					petro	leum od	ganicodors	ed (poten-	hally	Heads (10-15	t: r=1,2ppm pa@=1.5ppm ft)
13					read	ung), (p	heat and mo	url)	.1		
14											
15			Constant and a second second	15-ft:	borehole.	terminat	ton				
16											
17											
18											
19		F									
20		F									
21		E									
22		E									
23											

		3	- 49	99 Col Eilee	neers, Inc. en Collins Blvd				E	Boring No.	·BH-06
			Pł	none: 315-4	ew York 13212 55-2000	E	BORING LO	G		heet 1 of:	P11-06
C	OMP	AN		ax: 315-455 ww.cscos.com						oject No.:	AB2.001.002
Proje	ct Nan	1e:	1153 West	Fayette S	Street Phase II ES	Α				ace Elev.:	AB2.001.002
-	ocatio	on:	Syracuse,	NY						Datum:	817-06
	Clie	nt:	1153 Owne	er LLC					S	tart Date:	4/24/23
Drilli	ng Fir	m:	Matrix Env	ironmenta	I				Fir	nish Date:	4/24/23
	Grou			Depth	Date & Time	Drill Rig:			I	nspector:	C. Del Fatti
			le Drilling:			Casing:		Rock Core:		Undist:	
		_	Removal: Removal:			Sampler:		Other: Stav	t tin	1e= 120	00
	er cas	ing	Contract and the second data in the	of blows	to drive sampler	Hammer:	mmer falling 30" AST	MD 1596 Ston	dard Day	-trafics To	-4)
¢					to unve sampler	12 W/14010.11a	miller failing 50 AST	IVI D-1500, Stan	dard Per	and the second se	
th (f	Sample No.	gu	Blows on Sampler	c - coarse m - mediur	n	MATERIAL	DESCRIPTION	a - and - s - some -		_	N-value, recovery,
Depth (ft)	Sample No.	Syn	per 6"	f - fine			DESCRIPTION vel, C - Clay, cly - claye	I - little -		relative	moisture, core run,
		H		0.00	Chi kasar		vel, C - Clay, Cly - Claye	ey		RQ	D, % recovered)
1				0.5-	LS.Ft on	PSUDA DIA	loam, mace	organics	S	0-SH	
	1				woo	a. stron	a creosote a	ador	ULINCY	ADPD AL	K = 3.8 para
2				1.5-1	+ hist	onic fill	material	priman	lu	rail tit	2 = 115.200m
~					IFt coal	and co	al ash, bi	ack,	1	heads	pace=2.3pon
3					cheo	sote odoi	cobserved,	trace br	ick	CO-Sf	+: +: +: 1 60 7 recover 1 60 7 recover +: 2 = 115 . 2 ppm pace = 2. 3 ppm +)
4											
										5-10	ft:
5										90%	recovery 21'r=2.0ppm pace=6.1ppn
6		╎┟								open	air=a, oppm
		╎┝								heads	pace=6. ppn
7							199-2			0-10-	F) //
								and the second sec			
8		╎┝				-		5. 			
9								No. 11			
										10-15-	Ft:
10		╽┟		1101.			Para			50%	recovery
11	A			11++:	groundw	ater inte	place	C = 01-0	101	open a	ir = 28.6 Spm
				11-144	T. DIUCK	ning coo	rface the sand and acted, presu ng petroleu	A the gra	Nel,	neodst	ir=28.68pm pace=i00.0ppr +) oce=5.7ppm +)
12	5-3				Satura	ted, Stio	ng petroleu	modor	-1)	headso	CICP = 5.700m
13	Ĩ	-					JI			(14-15-	AS III
				4-15-	H' la ha un	eilli car	a plannin me	APAL-DE		-	~
14	\forall	F		110	Mediu	h plastici	hi motet	aranher a	ind/		
					slighto	retholeum	odor (peat)	guine o	un		
15	6. maarine	+		15ft:	borewole	terminat	ty, moest by, moest odor (peat)				
16		┝			3 installed						
17					sque II - C	·					
18		F									
19		F									
20		$\left \right $									
21		F		,							
22		E									
23		\vdash									

		22	49	9 Col Eilee	neers, Inc. n Collins Blvd ew York 13212			•	E	Boring No.	BH-(07
C	ONAL		Ph	ione: 315-4 x: 315-455-	55-2000		BORING LO	G	s	heet 1 of:	1	
a seal			ww	w.cscos.com					Pr	oject No.:	AB2.00	1.002
		_		and the second se	treet Phase II ES	A			Surf	ace Elev.:		
			Syracuse, I 1153 Owne			te second a second s				Datum:		side)
Drilli			Matrix Envi							itart Date: hish Date:	4/24/	
	State of the second		water	Depth	Date & Time	Drill Rig:				nspector:	C. Del	
		Wł	ile Drilling:			Casing:		Rock Core:		Undist:		
		-	g Removal:			Sampler:		Other: Stal	A tin	1e=132	30	
Aft	er Ca	sin	g Removal:	ofblown	to drive complex.	Hammer:						
		Τ			to drive sampler	12 W/140 ID. na	mmer falling 30" AST	M D-1586, Star	idard Per	and the second sec	the second s	
۲. ۳	Sample No.	Svmbol	Blows on Sampler	c - coarse m - medium			DESCRIPTION	a - and - s - some -	35-50% 20-35%		COMMENTS N-value, reco	
Depth (ft)	San	SVI	per 6"	f - fine			vel, C - Clay, cly - claye		10-20% - 0-10%		moisture, co	
		+		0-8.					ach	RQ	D, % recover	ed)
1				0.0	tar. c	inder bi	aterial, br ack, gray, re	d. creos	ote	401.1	(Prover	V
					odor	moist	- grage			open o	11r=0.1	appm.
2										heads	r = 0.0	lppm
3					~					10-54	t)	
	1											
4	A									5-10-	Ft:	
5										40%	recoven u'r = 6, 1 race = 4	4
6	5-4									open (ur=6,	ppm
										(5-9F	F) 7	0,5 ppn
7				8-91	ft: black,	coarse so	ind and fm	c gravel	1		/	
9	4				bul, pe	troleum	ind and fm pacted, shini odors	y, presum	rably			
10				R-1.	AFT: dark poon	brown, cl y graded	ayey sand h , moist, slig	igh plasti	city.	10-19	ft. eroven	
11					'odov	1 (peat)				MEGUS	ne-b	2ppm itppm
12										(9-15	(1 ++)	
13				10 - 1			0					
14				14-151 14-151	groundwi 7: dark I	ater interiorente	nface nd white, ci	ay, high				
15	Érenne	_		15ft:	borebole	ic anals	ly graded slight petrol	safurat	c Cpee	ut and	(marl)	
16					4 install							
17												
18 19												
20												
21												
22				•								
23												÷.

С	S 49 Sy Ph NIES Fa	9 Col Eileer	9667	E	ORING LO	G	Boring No Sheet 1 of Project No	DH-08
Project Name:	and the second se		treet Phase II ES	A			Surface Elev.	
	Syracuse, I						Datum:	
	1153 Owne					Start Date:	4/24/23	
Drilling Firm:	Matrix Envi	ronmental					Finish Date:	
Ground		Depth	Date & Time	Drill Rig:				
	ile Drilling:	Dopan	Dute di Time	Casing:		Rock Core:	Inspector:	C. Del Fatti
Before Casing				Sampler:			Undist:	A C
After Casing			~ ~ ~	Hammer:		Other: Star	Hime = 13	45
		of blows	to drive sampler		nmer falling 30" AST	MD 1596 Ston	dard Dopotration T	in at)
Depth (ft) Sample No. Symbol		c - coarse m - medium f - fine	S - Sand	MATERIAL d, \$-Silt, G-Gra	DESCRIPTION vel, C - Clay, cly - claye	a - and - s - some - l - little - t - trace	35-50% 20-35% (e.g., 10-20% relative - 0-10% RG	COMMENTS N-value, recovery, e moisture, core run, ID, % recovered)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			groundu	and tar and tar plack, red and tar plack, red and tar plack, red plack, red p	enal, coal, a enunks of c , and beige ufface eige, clayey peode , f (peot and h	sh, brick, o al creas , me oder , and oder sand hic	0-5- ote 407 open c Neads (0-59 0-59	$\frac{PF:}{Pace=PPM}$ $\frac{PACe=PPM}{Pace=PPM}$ $\frac{PPM}{AZ.Ip}$ $\frac{PF:}{Pace=I0.0pm}$ $\frac{PF:}{Pace=I0.0pm}$ $\frac{PF:}{Pace=I0.0pm}$ $\frac{PF:}{PCOVEN}$
19 20 21								

Project Name: 1153 West Fayette Street Phase II ESA Surface Elev.: Location: Syracuse, NY Datum: BH-C Client: 1153 Owner LLC Start Date: 4/24 Drilling Firm: Matrix Environmental Inspector: C. Del While Drilling: Casing: Rock Core: Undist: Before Casing Removal: After Casing Removal: Sampler: Other: Shift Tume = 1430 After Casing Removal: Matrix Environmental Commental While Drilling: Casing: Rock Core: Undist: Before Casing Removal: Matrix Environmental Sampler: Other: Shift Tume = 1430 After Casing Removal: Matemoval: Matemoval: Sampler: Other: Shift Tume : Commental # Bilows on Sampler Matemoval: Matemoval: Matemoval: Commental # Bilows on Sampler Matemate Matemoveling Cocore Matemate Colspan: Cocolspan	09
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	51.002
Dritting Firm: Matrix Environmental Dritt Rig: Rink Date: 474 Groundwater Depth Det 6 Time Dritt Rig: Rock Core: Undist: 474 Before Casing Removal: Sampler: Other: Staft + time 14930 After Casing Removal: Mammer: Other: Staft + time -1430 (N – No of blows to drive sampler 12 wir40 lb. harmer falling 30 ASTM D:1566, Standard Penetration Test) 9 9 9 9 0.00846 -00846	29
GroundwaterDepth <td>4/23</td>	4/23
While Drilling: One of the order and the order of the order order of the order of the order order of	
Before Casing Removal: Sampler: Other: Start There H30 After Casing Removal: (N - No. of blows to drive sampler 12 widdle hammer falling 30" ASTM D-1586, Standard Penetration Test) COMMENTS (N - No. of blows to drive sampler 12 widdle hammer falling 30" ASTM D-1586, Standard Penetration Test) COMMENTS (B) (S - No. of blows to drive sampler 12 widdle hammer falling 30" ASTM D-1586, Standard Penetration Test) COMMENTS (B) (S - No. of blows to drive sampler 12 widdle hammer falling 30" ASTM D-1586, Standard Penetration Test) COMMENTS (B) (S - No. of blows to drive sampler 12 widdle hammer falling 30" ASTM D-1586, Standard Penetration Test) COMMENTS (B) (S - No. of blows to drive sampler 12 widdle hammer falling 30" ASTM D-1586, Standard Penetration Test) COMMENTS (B) (S - No. of blows to drive sampler 12 widdle hammer falling 30" ASTM D-1586, Standard Penetration Test) COMMENTS (B) (S - No. of blows to drive sampler 12 widdle hammer falling 30" ASTM D-1586, Standard Penetration Test) COMMENTS (B) (S - No. of blows to drive sampler 12 widdle hammer falling 30" ASTM D-1586, Standard Penetration Cost, Teolog ASTM D-1586, Standard D-1586, Standard Penetration Cost, Teolog ASTM D-1586, Standard	l Fatti
After Casing Removal: Hammer: Control of the sampler 12' wird lb. hammer failing 30' ASTM D-1586, Standard Peretration Test) Image: Standard	
(N = No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586. Standard Penetration Test) $(S = 0) = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	covery, core run,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ia <i>0</i>
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Sppm 4 ppm
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
6 Image: construct of the c	rý
$ \begin{array}{c cccccccccccccccccccccccccccccccccc$	ppm
$ \begin{array}{c cccccccccccccccccccccccccccccccccc$	i o ppn
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.Oom
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$11 \qquad 12 \qquad 0 \text{ pen air = 0,} \\ 12 \qquad 0 \text{ pen air = 0,} \\ 13 \qquad 13 \qquad 13 13 13 13 13 13 $	
12 13-15At: brown clay and fine sitty sand, med 13 plasticity, boonly graded, no odor 14 (peat) 15 ISFT: borehole termination 16 Image: sitty sand fill of the sitter sitter sand fill of the sitter sand fill of t	N
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Oppm Ditppm
14 (pea+) 15 (sft: borehole termination 16	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
17	
18 Image: Constraint of the second of the	
18 19 10 10	
20	
22	

			S S P NIES Fa	99 Col Eilee	-9667	E	BORING LO	G		Boring No. Sheet 1 of:	BH-10
Proje	ct Nai	ne:			Street Phase II ES	SA				roject No.: face Elev.:	AB2.001.002
			Syracuse,		And an		1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		Suri	Datum:	RH-10
	Clie	ent:	1153 Owne	er LLC					-	Start Date:	<u>BH-10</u> 4/24/23
Drill	ing Fi	rm:	Matrix Env	ironmenta	1					nish Date:	4/24/23
	Grou	Indv	water	Depth	Date & Time	Drill Rig:				nspector:	C. Del Fatti
		Wh	ile Drilling:			Casing:		Rock Core;		Undist:	O. Der ratti
			g Removal:			Sampler:		Other: Star	+ tin	ne = 15	00
Aft	er Ca	sing	Removal:			Hammer:					
			(N No	o of blows	to drive sampler	12" w/140 lb. ha	mmer falling 30" AST	M D-1586, Stan	dard Per	netration Te	est)
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - medium f - fine			DESCRIPTION vel, C - Clay, cly - claye	a - and - s - some - l - little - t - trace	20-35% 10-20%	(e.g., l relative	COMMENTS N-value, recovery, moisture, core run, D, % recovered)
1 2 3	-			0-17f 1-9f	: Asphalt : histon brick, c ho odo	c fill ma cinder, bl r, moist	<u>ack, brown</u>	1, ash, t , trace re	ar, d,	0-5+ 70% 102000 102000 102000 102000 102000 102000	t: ecovery ir = 0.0ppm pace = 0.7ppm 2
4											
_5						\$°.				5-10-F1 50/· r	ecovery ir=0.eppm
6								2		ppen a	n = 0.000 m
_	5-6									(5-9	Ft)
7	1										
9	\forall			9-11ft	- brown -	fine sand	and clay, i	ned plastic	ity,		
10				10ft:	groundu	ater infi	erface	,	,	10-15 307. r	ft:
11				11-14	ft: coarse	sandar mooth.r	nd fmc gro Diack, satu	Wel, angu	uar	open a	ecovery ir=3.0ppm
12	R.	10 N			0005					heads	ace=1.8ppm
13					-						
14		E		14-15	ft: dank bi moist	novon, cla	yey sand, h	top plast	ncity,	(14 - 19)	pace=1,Sppm At)
15		_		15Ft:	higher	PID rec le term	ading (3.0	ppm)(peat)	
16		F									
17		F									
18		F		w .							
19		F									
20											
21											
22		F									
23											

*

- - - arre-

Appendix B Well Sampling Logs

C&S Engineers, Inc. 499 Col Eileen Collins Blvd Syracuse, NY 13212 Phone: 315-455-2000 Fax: 315-455-9667 www.cscos.com

Well Casing Unit Volume (gal/l.f.) 1¼" = 0.08 2" = 0.17 3" = 0.38 4" = 0.66 6" = 1.5 8" = 2.6

Well Sampling Field Data Sheet

Client Name:	1153 Owner LLC	
Site Name:	1153 West Fayette Street Phase II ESA	
Project No.:	AB2.001.002	
Field Staff:	C. Del Fatti, N. Coulombe	

WELL DATA

Date	4/24/23	
Water meter utilized and date last calibrated		· · · · · · · · · · · · · · · · · · ·
Well Number	TW-02 (BH-04)	
Diameter (inches)		
Total Sounded Depth (feet)	15,19	
Static Water Level (feet)	7,50	
H ₂ O Column (feet)	7.69	
Pump Intake (feet)		
Well Volume (gallons)	0.31	
Amount to Evacuate (gallons)	Bad	
Amount Evacuated (gallons)	3 cal	

FIELD READINGS

Data		112/101	8					
Date	Stabilization	4/24/2	2	 			<u> </u>	
Time	Criteria	1453					·	
Volume Extracted	gallons	Zgal						
Static Water Level (feet)	NA	7.50						
pH (Std. Units)	+/-0.1	6.91						
Conductivity (mS/cm)	3%	1.26						
Turbidity (NTU)	10%	10001						
D.O. (mg/L)	10%	3.37						
Temperature (°C) (°F)	3%	11.58						
ORP ³ (mV)	+/-10 mv	-41						
Appearance		VT						
Free Product (Yes/No)		NO						
Odor		none						
Comments	() Head		2.3pm	SAMPLET SAMPU	D Q 148 E 10= TN	53 N-02		

C = Clear T = Turbid ST = Semi Turbid VT = Very Turbid

C&S Engineers, Inc. 499 Col Eileen Collins Blvd Syracuse, NY 13212 Phone: 315-455-2000 Fax: 315-455-9667 www.cscos.com

Well Casing Unit Volume (gal/l.f.) 1¼" = 0.08 2" = 0.17 3" = 0.38 4" = 0.66 6" = 1.5 8" = 2.6

Well Sampling Field Data Sheet

Client Name:	1153 Owner LLC
Site Name:	1153 West Fayette Street Phase II ESA
Project No.:	AB2.001.002
Field Staff:	C. Del Fatti, N. Coulombe

WELL DATA

Date	4/	24/23				
Water meter utilized and date last calibrated	4					
Well Number	TV	1-03	(BH-06)			
Diameter (inches)		1	,			
Total Sounded Depth (feet)	15	. 18				
Static Water Level (feet)		. 88				
H ₂ O Column (feet)		5.3				
Pump Intake (feet)	•					
Well Volume (gallons)	0	.13				
Amount to Evacuate (gallons)	1	Sopl				
Amount Evacuated (gallons)	1 1.	50				

FIELD READINGS

Date	Stabilization	9/29/2	3					
Time	Criteria	1605						
Volume Extracted	gallons	1.5						
Static Water Level (feet)	NA	γ						
pH (Std. Units)	+/-0.1							
Conductivity (mS/cm)	3%		no rea	dinast	taken 1	blc.		
Turbidity (NTU)	10%	4		um sh		lind-		
D.O. (mg/L)	10%		Didn +	want	to dam	age		
Temperature (°C) (°F)	3%		equip	ment.		U		
ORP ³ (mV)	+/-10 mv	Ŭ						
Appearance		VT						
Free Product (Yes/No)	1000	YES						
Odor		YES						
Comments	heads	pace =	47.6 p	>M	SANPU	ED@16 E 10 - 7	205 W-03	

C = Clear T = Turbid ST = Semi Turbid VT = Very Turbid

C&S Engineers, Inc. 499 Col Eileen Collins Blvd Syracuse, NY 13212 Phone: 315-455-5000 Fax: 315-455-9667 www.cscos.com

Well Casing Unit Volume						
(gal/l.f.)						
1¼" = 0.08	2" = 0.17	3" = 0.38				
4" = 0.66	6" = 1.5	8" = 2.6				

Well Sampling Field Data Sheet

Client Name:	1153 Owner LLC
Site Name:	1153 West Fayette Street Phase II ESA
Project No.:	AB2.001.002
Field Staff:	C.Del Fatti, N. Coulombe

WELL DATA

Date	4/24/23	
Water meter utilized and date last calibrated		
Well Number	ThI-04 (BH-07)	
Diameter (inches)		
Total Sounded Depth (feet)	(5.20	
Static Water Level (feet)	7,95	
H ₂ O Column (feet)	7.25	
Pump Intake (feet)		
Well Volume (gallons)	0.3 gal	
Amount to Evacuate (gallons)	3gal	
Amount Evacuated (gallons)	19al - ran dry	

FIELD READINGS

Date	Stabilization	4/24/2	3						
Time	Criteria	1700							
Volume Extracted	gallons	Igal	- Well	wentd	M				
Static Water Level (feet)	NA	\sim			0				
pH (Std. Units)	+/-0.1								
Conductivity (mS/cm)	3%		no rea	dinas	due to				
Turbidity (NTU)	10%	3	10mit	ed wa	ter				
D.O. (mg/L)	10%								
Temperature (°C) (°F)	3%								
ORP ³ (mV)	+/-10 mv								
Appearance	1.52.4	VT							
Free Product (Yes/No)		nó							
Odor		none							
Comments	hea	dspace	e=9.8p	pm	SAMPL	ED @ 71E 10=	1700 = TW-0	4	

C = Clear T = Turbid ST = Semi Turbid VT = Very Turbid

Appendix C Laboratory Analytical Reports

ANALYTICAL REPORT

Lab Number:	L2322083
Client:	C&S Companies 499 Col. Eileen Collins Blvd. Syracuse, NY 13212
ATTN:	Claire Del Fatti
Phone: Project Name:	(315) 703-4233 1153 WEST FAYETTE ST., PHASE I
Project Number:	AB2.001.002
Report Date:	05/01/23

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name:1153 WEST FAYETTE ST., PHASE IProject Number:AB2.001.002

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2322083-01	TW-01	WATER	SYRACUSE, NY	04/24/23 13:28	04/24/23
L2322083-02	TW-02	WATER	SYRACUSE, NY	04/24/23 14:53	04/24/23
L2322083-03	TW-03	WATER	SYRACUSE, NY	04/24/23 16:05	04/24/23
L2322083-04	TW-04	WATER	SYRACUSE, NY	04/24/23 17:00	04/24/23

Project Name: 1153 WEST FAYETTE ST., PHASE I Project Number: AB2.001.002

Lab Number: L2322083 Report Date: 05/01/23

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name: 1153 WEST FAYETTE ST., PHASE I Project Number: AB2.001.002
 Lab Number:
 L2322083

 Report Date:
 05/01/23

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

L2322083-04: The sample was received above the appropriate pH for the Total Metals analysis. The laboratory added additional HNO3 to a pH <2.

Volatile Organics

L2322083-01: The pH was greater than two; however, the sample was analyzed within the method required holding time.

L2322083-03D: The sample has elevated detection limits due to the dilution required by the sample matrix (sheen).

Total Metals

L2322083-04: The sample has elevated detection limits for all elements, with the exception of mercury, due to the dilution required by the sample matrix.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Jufani Morrissey - Tiffani Morrissey

Title: Technical Director/Representative

Date: 05/01/23

ORGANICS

VOLATILES

		Serial_N	0:05012314:04
1153 WEST FAYETTE ST	., PHASE I	Lab Number:	L2322083
AB2.001.002		Report Date:	05/01/23
	SAMPLE RESULTS		
L2322083-02		Date Collected:	04/24/23 14:53
TW-02		Date Received:	04/24/23
SYRACUSE, NY		Field Prep:	Not Specified
Water			
1,8260D			
04/27/23 02:51			
MJV			
	AB2.001.002 L2322083-02 TW-02 SYRACUSE, NY Water 1,8260D 04/27/23 02:51	SAMPLE RESULTS L2322083-02 TW-02 SYRACUSE, NY Water 1,8260D 04/27/23 02:51	1153 WEST FAYETTE ST., PHASE I Lab Number: AB2.001.002 Report Date: SAMPLE RESULTS Date Collected: L2322083-02 Date Collected: TW-02 Date Received: SYRACUSE, NY Field Prep: Water 1,8260D 04/27/23 02:51 Collected:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
Methylene chloride	ND		ug/l	2.5	0.70	1		
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1		
Chloroform	ND		ug/l	2.5	0.70	1		
Carbon tetrachloride	ND		ug/l	0.50	0.13	1		
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1		
Dibromochloromethane	ND		ug/l	0.50	0.15	1		
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1		
Tetrachloroethene	ND		ug/l	0.50	0.18	1		
Chlorobenzene	ND		ug/l	2.5	0.70	1		
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1		
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1		
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1		
Bromodichloromethane	ND		ug/l	0.50	0.19	1		
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1		
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1		
Bromoform	ND		ug/l	2.0	0.65	1		
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1		
Benzene	ND		ug/l	0.50	0.16	1		
Toluene	ND		ug/l	2.5	0.70	1		
Ethylbenzene	ND		ug/l	2.5	0.70	1		
Chloromethane	ND		ug/l	2.5	0.70	1		
Bromomethane	ND		ug/l	2.5	0.70	1		
Vinyl chloride	ND		ug/l	1.0	0.07	1		
Chloroethane	ND		ug/l	2.5	0.70	1		
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1		
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1		
Trichloroethene	ND		ug/l	0.50	0.18	1		
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1		

Serial_No:05012314:04 **Project Name:** 1153 WEST FAYETTE ST., PHASE I Lab Number: L2322083 **Project Number: Report Date:** AB2.001.002 05/01/23 SAMPLE RESULTS Lab ID: L2322083-02 Date Collected: 04/24/23 14:53 Client ID: TW-02 Date Received: 04/24/23 Sample Location: SYRACUSE, NY Field Prep: Not Specified Sample Depth: Qualifier MDL Result Units RL **Dilution Factor** Parameter Volatile Organics by GC/MS - Westborough Lab 1,3-Dichlorobenzene ND 2.5 0.70 1 ug/l 1,4-Dichlorobenzene ND ug/l 2.5 0.70 1 Methyl tert butyl ether ND ug/l 2.5 0.70 1

2.5

2.5

2.5

2.5

5.0

5.0

5.0

5.0

5.0

5.0

2.0

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.0

10

2.5

10

ug/l

0.70

0.70

0.70

0.70

1.0

1.5

1.0

1.9

1.0

1.0

0.65

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.70

0.23

0.27

0.70

0.40

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

ND

Surrogate	% Recovery	Qualifier	Acceptance Criteria
1,2-Dichloroethane-d4	106		70-130
Toluene-d8	99		70-130
4-Bromofluorobenzene	98		70-130
Dibromofluoromethane	110		70-130

p/m-Xylene

cis-1,2-Dichloroethene

Dichlorodifluoromethane

o-Xylene

Styrene

Acetone

Carbon disulfide

4-Methyl-2-pentanone

1,2-Dibromoethane

n-Butylbenzene

sec-Butylbenzene

tert-Butylbenzene

Isopropylbenzene

p-Isopropyltoluene

n-Propylbenzene

Methyl Acetate

Cyclohexane

Methyl cyclohexane

Freon-113

1,2,4-Trichlorobenzene

1,3,5-Trimethylbenzene

1,2,4-Trimethylbenzene

Naphthalene

1,2-Dibromo-3-chloropropane

2-Butanone

2-Hexanone

				Serial_N	0:05012314:04
Project Name:	1153 WEST FAYET	TE ST.,	PHASE I	Lab Number:	L2322083
Project Number:	AB2.001.002		SAMPLE RESULTS	Report Date:	05/01/23
Lab ID: Client ID: Sample Location:	L2322083-03 TW-03 SYRACUSE, NY	D		Date Collected: Date Received: Field Prep:	04/24/23 16:05 04/24/23 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260D 04/27/23 03:34 MJV				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	10	2.8	4
1,1-Dichloroethane	ND		ug/l	10	2.8	4
Chloroform	ND		ug/l	10	2.8	4
Carbon tetrachloride	ND		ug/l	2.0	0.54	4
1,2-Dichloropropane	ND		ug/l	4.0	0.55	4
Dibromochloromethane	ND		ug/l	2.0	0.60	4
1,1,2-Trichloroethane	ND		ug/l	6.0	2.0	4
Tetrachloroethene	ND		ug/l	2.0	0.72	4
Chlorobenzene	ND		ug/l	10	2.8	4
Trichlorofluoromethane	ND		ug/l	10	2.8	4
1,2-Dichloroethane	ND		ug/l	2.0	0.53	4
1,1,1-Trichloroethane	ND		ug/l	10	2.8	4
Bromodichloromethane	ND		ug/l	2.0	0.77	4
trans-1,3-Dichloropropene	ND		ug/l	2.0	0.66	4
cis-1,3-Dichloropropene	ND		ug/l	2.0	0.58	4
Bromoform	ND		ug/l	8.0	2.6	4
1,1,2,2-Tetrachloroethane	ND		ug/l	2.0	0.67	4
Benzene	ND		ug/l	2.0	0.64	4
Toluene	ND		ug/l	10	2.8	4
Ethylbenzene	ND		ug/l	10	2.8	4
Chloromethane	ND		ug/l	10	2.8	4
Bromomethane	ND		ug/l	10	2.8	4
Vinyl chloride	ND		ug/l	4.0	0.28	4
Chloroethane	ND		ug/l	10	2.8	4
1,1-Dichloroethene	ND		ug/l	2.0	0.68	4
trans-1,2-Dichloroethene	ND		ug/l	10	2.8	4
Trichloroethene	ND		ug/l	2.0	0.70	4
1,2-Dichlorobenzene	ND		ug/l	10	2.8	4

					:	Serial_No	0:05012314:04	
Project Name:	1153 WEST FAYET	TE ST., PHASE	ΞI		Lab Nu	mber:	L2322083	
Project Number:	AB2.001.002				Report	Date:	05/01/23	
-		SAMP		6	-			
Lab ID: Client ID: Sample Location:	L2322083-03 TW-03 SYRACUSE, NY	D			Date Col Date Re Field Pre	ceived:	04/24/23 16:05 04/24/23 Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westborou	gh Lab						
1,3-Dichlorobenzene		ND			10	2.8	4	
1,3-Dichlorobenzene		ND		ug/l	10	2.8	4 4	
Methyl tert butyl ether		ND		ug/l ug/l	10	2.8	4	
p/m-Xylene		ND		ug/l	10	2.8	4	
o-Xylene		ND		ug/l	10	2.8	4	
cis-1,2-Dichloroethene		ND		ug/l	10	2.8	4	
Styrene		ND		ug/l	10	2.8	4	
Dichlorodifluoromethane		ND		ug/l	20	4.0	4	
Acetone		ND		ug/l	20	5.8	4	
Carbon disulfide		ND		ug/l	20	4.0	4	
2-Butanone		ND		ug/l	20	7.8	4	
4-Methyl-2-pentanone		ND		ug/l	20	4.0	4	
2-Hexanone		ND		ug/l	20	4.0	4	
1,2-Dibromoethane		ND		ug/l	8.0	2.6	4	
n-Butylbenzene		ND		ug/l	10	2.8	4	
sec-Butylbenzene		ND		ug/l	10	2.8	4	
tert-Butylbenzene		ND		ug/l	10	2.8	4	
1,2-Dibromo-3-chloroprop	bane	ND		ug/l	10	2.8	4	
Isopropylbenzene		ND		ug/l	10	2.8	4	
p-Isopropyltoluene		ND		ug/l	10	2.8	4	
Naphthalene		ND		ug/l	10	2.8	4	
n-Propylbenzene		ND		ug/l	10	2.8	4	
1,2,4-Trichlorobenzene		ND		ug/l	10	2.8	4	
1,3,5-Trimethylbenzene		ND		ug/l	10	2.8	4	

Cyclohexane	ND	ug/l	40	1.1	4
Freon-113	ND	ug/l	10	2.8	4
ethyl cyclohexane ND		ug/l	40	1.6	4
Surrogate		% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4		111		70-130	
Toluene-d8		98		70-130	
4-Bromofluorobenzene		97		70-130	

10

8.0

ug/l

ug/l

115

2.8

0.94

ND

ND

70-130

4

4

1,2,4-Trimethylbenzene

Dibromofluoromethane

Methyl Acetate

			Serial_No	0:05012314:04
Project Name:	1153 WEST FAYETTE ST., PHASE	1	Lab Number:	L2322083
Project Number:	AB2.001.002		Report Date:	05/01/23
	SAMPI	E RESULTS		
Lab ID:	L2322083-04		Date Collected:	04/24/23 17:00
Client ID:	TW-04		Date Received:	04/24/23
Sample Location:	SYRACUSE, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water			
Analytical Method:	1,8260D			
Analytical Date:	04/27/23 03:13			
Analyst:	MJV			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

					:	Serial_No	:05012314:04	
Project Name:	1153 WEST FAYETT	E ST., PHASE	ΞI		Lab Nu	imber:	L2322083	
Project Number:	AB2.001.002				Report	Date:	05/01/23	
		SAMP		S			00/01/20	
Lab ID: Client ID: Sample Location:	L2322083-04 TW-04 SYRACUSE, NY				Date Col Date Ree Field Pre	ceived:	04/24/23 17:00 04/24/23 Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	oy GC/MS - Westboroug	h Lab						
-								
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1	
p/m-Xylene		ND		ug/l	2.5	0.70	1	
o-Xylene		ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1	
Styrene		ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1	
Acetone		3.1	J	ug/l	5.0	1.5	1	
Carbon disulfide		ND		ug/l	5.0	1.0	1	
2-Butanone		ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1	
2-Hexanone		ND		ug/l	5.0	1.0	1	
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1	
n-Butylbenzene		ND		ug/l	2.5	0.70	1	
sec-Butylbenzene		ND		ug/l	2.5	0.70	1	
tert-Butylbenzene		ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloropro	pane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene		ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene		ND		ug/l	2.5	0.70	1	
Naphthalene		ND		ug/l	2.5	0.70	1	
n-Propylbenzene		ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene		ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene		ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene		ND		ug/l	2.5	0.70	1	
Methyl Acetate		ND		ug/l	2.0	0.23	1	
Cyclohexane		ND		ug/l	10	0.27	1	
Freon-113		ND		ug/l	2.5	0.70	1	
					-			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	113		70-130	
Toluene-d8	97		70-130	
4-Bromofluorobenzene	96		70-130	
Dibromofluoromethane	116		70-130	

ug/l

10

0.40

ND

1

Methyl cyclohexane

Project Name: 1153 WEST FAYETTE ST., PHASE I

Project Number: AB2.001.002

Lab Number: L2322083 **Report Date:** 05/01/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 04/26/23 19:59 Analyst: TMS

arameter	Result G	ualifier Units	RL	MDL
olatile Organics by GC/MS - V	Vestborough Lab fo	or sample(s): 01-04	Batch:	WG1771889-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Name: 1153 WEST FAYETTE ST., PHASE I

Project Number: AB2.001.002

Lab Number: L2322083 **Report Date:** 05/01/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 04/26/23 19:59 Analyst: TMS

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - V	Vestborough Lab	for sample(s): 01-04	Batch:	WG1771889-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
1,2-Dibromoethane	ND	ug/l	2.0	0.65
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

L2322083 05/01/23

Project Name:	1153 WEST FAYETTE ST., PHASE I	Lab Number:
Project Number:	AB2.001.002	Report Date:

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260DAnalytical Date:04/26/23 19:59Analyst:TMS

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS - Wes	tborough La	ab for sample	e(s): 01-04	Batch:	WG1771889-5	

		Acceptance		
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	109		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	99		70-130	
Dibromofluoromethane	114		70-130	

Lab Control Sample Analysis Batch Quality Control

Project Name: 1153 WEST FAYETTE ST., PHASE I

Project Number: AB2.001.002

rameter	LCS %Recovery Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
platile Organics by GC/MS - Westboroug	h Lab Associated sample(s): 01-04 Batch:	WG1771889-3 WG1771889-4	1	
Methylene chloride	95	100	70-130	5	20
1,1-Dichloroethane	97	100	70-130	3	20
Chloroform	97	100	70-130	3	20
Carbon tetrachloride	110	110	63-132	0	20
1,2-Dichloropropane	94	99	70-130	5	20
Dibromochloromethane	92	95	63-130	3	20
1,1,2-Trichloroethane	93	94	70-130	1	20
Tetrachloroethene	100	100	70-130	0	20
Chlorobenzene	95	98	75-130	3	20
Trichlorofluoromethane	110	120	62-150	9	20
1,2-Dichloroethane	96	100	70-130	4	20
1,1,1-Trichloroethane	100	110	67-130	10	20
Bromodichloromethane	92	98	67-130	6	20
trans-1,3-Dichloropropene	89	91	70-130	2	20
cis-1,3-Dichloropropene	88	91	70-130	3	20
Bromoform	86	89	54-136	3	20
1,1,2,2-Tetrachloroethane	86	90	67-130	5	20
Benzene	96	98	70-130	2	20
Toluene	95	98	70-130	3	20
Ethylbenzene	94	98	70-130	4	20
Chloromethane	100	100	64-130	0	20
Bromomethane	76	88	39-139	15	20
Vinyl chloride	97	99	55-140	2	20

Lab Control Sample Analysis Batch Quality Control

Project Name: 1153 WEST FAYETTE ST., PHASE I

Project Number: AB2.001.002

arameter	LCS %Recovery	Qual	LCSI %Recov		%Recovery Limits	RPD	Qual	RPD Limits
platile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-04 Bat	ch: WG177188	9-3 WG1771889-4			
Chloroethane	100		100		55-138	0		20
1,1-Dichloroethene	100		100		61-145	0		20
trans-1,2-Dichloroethene	100		100		70-130	0		20
Trichloroethene	99		100		70-130	1		20
1,2-Dichlorobenzene	93		96		70-130	3		20
1,3-Dichlorobenzene	97		99		70-130	2		20
1,4-Dichlorobenzene	95		96		70-130	1		20
Methyl tert butyl ether	89		98		63-130	10		20
p/m-Xylene	100		105		70-130	5		20
o-Xylene	100		100		70-130	0		20
cis-1,2-Dichloroethene	96		100		70-130	4		20
Styrene	100		100		70-130	0		20
Dichlorodifluoromethane	96		99		36-147	3		20
Acetone	120		110		58-148	9		20
Carbon disulfide	100		100		51-130	0		20
2-Butanone	96		100		63-138	4		20
4-Methyl-2-pentanone	77		86		59-130	11		20
2-Hexanone	80		88		57-130	10		20
1,2-Dibromoethane	93		96		70-130	3		20
n-Butylbenzene	92		92		53-136	0		20
sec-Butylbenzene	90		92		70-130	2		20
tert-Butylbenzene	92		94		70-130	2		20
1,2-Dibromo-3-chloropropane	83		89		41-144	7		20

Lab Control Sample Analysis Batch Quality Control

Project Name: 1153 WEST FAYETTE ST., PHASE I

Project Number: AB2.001.002

Parameter	LCS %Recovery	Qual	LCSD %Recover	ry Qual	%Recovery Limits	RPD	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-04 Batch	: WG1771889-3	WG1771889-4		
Isopropylbenzene	90		94		70-130	4	20
p-Isopropyltoluene	86		89		70-130	3	20
Naphthalene	74		79		70-130	7	20
n-Propylbenzene	92		95		69-130	3	20
1,2,4-Trichlorobenzene	86		90		70-130	5	20
1,3,5-Trimethylbenzene	95		98		64-130	3	20
1,2,4-Trimethylbenzene	88		90		70-130	2	20
Methyl Acetate	92		96		70-130	4	20
Cyclohexane	96		100		70-130	4	20
Freon-113	100		110		70-130	10	20
Methyl cyclohexane	90		92		70-130	2	20

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qu	al %Recovery Qual	Criteria
1,2-Dichloroethane-d4	102	103	70-130
Toluene-d8	101	101	70-130
4-Bromofluorobenzene	94	94	70-130
Dibromofluoromethane	103	105	70-130

SEMIVOLATILES

		Serial_N	o:05012314:04
Project Name:	1153 WEST FAYETTE ST., PHASE I	Lab Number:	L2322083
Project Number:	AB2.001.002	Report Date:	05/01/23
	SAMPLE	RESULTS	
Lab ID:	L2322083-02	Date Collected:	04/24/23 14:53
Client ID:	TW-02	Date Received:	04/24/23
Sample Location:	SYRACUSE, NY	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Water	Extraction Metho	d: EPA 3510C
Analytical Method:	1,8270E	Extraction Date:	04/28/23 23:40
Analytical Date:	04/30/23 17:58		
Analyst:	MG		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Westborough Lab					
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.50	1
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.6	1
2,4-Dinitrotoluene	ND		ug/l	5.0	1.2	1
2,6-Dinitrotoluene	ND		ug/l	5.0	0.93	1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.49	1
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.38	1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.53	1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.50	1
Hexachlorocyclopentadiene	ND		ug/l	20	0.69	1
Isophorone	ND		ug/l	5.0	1.2	1
Nitrobenzene	ND		ug/l	2.0	0.77	1
NDPA/DPA	ND		ug/l	2.0	0.42	1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.64	1
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	1.5	1
Butyl benzyl phthalate	ND		ug/l	5.0	1.2	1
Di-n-butylphthalate	ND		ug/l	5.0	0.39	1
Di-n-octylphthalate	ND		ug/l	5.0	1.3	1
Diethyl phthalate	ND		ug/l	5.0	0.38	1
Dimethyl phthalate	ND		ug/l	5.0	1.8	1
Biphenyl	ND		ug/l	2.0	0.46	1
4-Chloroaniline	ND		ug/l	5.0	1.1	1
2-Nitroaniline	ND		ug/l	5.0	0.50	1
3-Nitroaniline	ND		ug/l	5.0	0.81	1
4-Nitroaniline	ND		ug/l	5.0	0.80	1
Dibenzofuran	ND		ug/l	2.0	0.50	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.44	1
Acetophenone	ND		ug/l	5.0	0.53	1
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.61	1

Project Name:	1153 WEST FAYETTE ST., P	PHASE I	Lab Number:	L2322083
Project Number:	AB2.001.002		Report Date:	05/01/23
	S	AMPLE RESULTS		
Lab ID:	L2322083-02		Date Collected:	04/24/23 14:53
Client ID:	TW-02		Date Received:	04/24/23
Sample Location:	SYRACUSE, NY		Field Prep:	Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS -	Semivolatile Organics by GC/MS - Westborough Lab							
p-Chloro-m-cresol	ND		ug/l	2.0	0.35	1		
2-Chlorophenol	ND		ug/l	2.0	0.48	1		
2,4-Dichlorophenol	ND		ug/l	5.0	0.41	1		
2,4-Dimethylphenol	ND		ug/l	5.0	1.8	1		
2-Nitrophenol	ND		ug/l	10	0.85	1		
4-Nitrophenol	ND		ug/l	10	0.67	1		
2,4-Dinitrophenol	ND		ug/l	20	6.6	1		
4,6-Dinitro-o-cresol	ND		ug/l	10	1.8	1		
Phenol	ND		ug/l	5.0	0.57	1		
2-Methylphenol	ND		ug/l	5.0	0.49	1		
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	0.48	1		
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.77	1		
Carbazole	ND		ug/l	2.0	0.49	1		
Atrazine	ND		ug/l	10	0.76	1		
Benzaldehyde	ND		ug/l	5.0	0.53	1		
Caprolactam	ND		ug/l	10	3.3	1		
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	0.84	1		

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	45	21-120
Phenol-d6	47	10-120
Nitrobenzene-d5	79	23-120
2-Fluorobiphenyl	69	15-120
2,4,6-Tribromophenol	50	10-120
4-Terphenyl-d14	69	41-149

Serial_No:05012314:04

		Serial_No:05012314:04
Project Name:	1153 WEST FAYETTE ST., PHASE I	Lab Number: L2322083
Project Number:	AB2.001.002	Report Date: 05/01/23
	SAMPLE RESULT	TS
Lab ID:	L2322083-02	Date Collected: 04/24/23 14:53
Client ID:	TW-02	Date Received: 04/24/23
Sample Location:	SYRACUSE, NY	Field Prep: Not Specified
Sample Depth:		
Matrix:	Water	Extraction Method: EPA 3510C
Analytical Method:	1,8270E-SIM	Extraction Date: 04/28/23 23:42
Analytical Date:	04/30/23 14:05	
Analyst:	AH	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS-SIM - Westborough Lab								
Acenaphthene	0.02	J	ug/l	0.10	0.01	1		
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1		
Fluoranthene	0.08	J	ug/l	0.10	0.02	1		
Hexachlorobutadiene	ND		ug/l	0.50	0.05	1		
Naphthalene	ND		ug/l	0.10	0.05	1		
Benzo(a)anthracene	0.04	J	ug/l	0.10	0.02	1		
Benzo(a)pyrene	0.04	J	ug/l	0.10	0.02	1		
Benzo(b)fluoranthene	0.05	J	ug/l	0.10	0.01	1		
Benzo(k)fluoranthene	0.02	J	ug/l	0.10	0.01	1		
Chrysene	0.03	J	ug/l	0.10	0.01	1		
Acenaphthylene	ND		ug/l	0.10	0.01	1		
Anthracene	ND		ug/l	0.10	0.01	1		
Benzo(ghi)perylene	0.03	J	ug/l	0.10	0.01	1		
Fluorene	ND		ug/l	0.10	0.01	1		
Phenanthrene	0.06	J	ug/l	0.10	0.02	1		
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	1		
Indeno(1,2,3-cd)pyrene	0.03	J	ug/l	0.10	0.01	1		
Pyrene	0.07	J	ug/l	0.10	0.02	1		
2-Methylnaphthalene	ND		ug/l	0.10	0.02	1		
Pentachlorophenol	ND		ug/l	0.80	0.01	1		
Hexachlorobenzene	ND		ug/l	0.80	0.01	1		
Hexachloroethane	ND		ug/l	0.80	0.06	1		

Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Sample Depth:							
Sample Location:	SYRACUSE, NY				Field Pre	p:	Not Specified
Client ID:	TW-02				Date Rec	eived:	04/24/23
Lab ID:	L2322083-02				Date Coll	ected:	04/24/23 14:53
		SAMP		6			
Project Number:	AB2.001.002				Report	Date:	05/01/23
Project Name:	1153 WEST FAYETTE	ST., PHASE	ΞI		Lab Nu	mber:	L2322083
					S	Serial_No	0:05012314:04

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	50	21-120
Phenol-d6	51	10-120
Nitrobenzene-d5	83	23-120
2-Fluorobiphenyl	75	15-120
2,4,6-Tribromophenol	66	10-120
4-Terphenyl-d14	76	41-149

		Serial_No:05012314:04		
Project Name:	1153 WEST FAYETTE ST., PHASE I	Lab Number: L2322083		
Project Number:	AB2.001.002	Report Date: 05/01/23		
	SAMPLE RESULTS			
Lab ID:	L2322083-03	Date Collected: 04/24/23 16:05		
Client ID:	TW-03	Date Received: 04/24/23		
Sample Location:	SYRACUSE, NY	Field Prep: Not Specified		
Sample Depth:				
Matrix:	Water	Extraction Method: EPA 3510C		
Analytical Method:	1,8270E	Extraction Date: 04/28/23 23:40		
Analytical Date:	04/30/23 18:24			
Analyst:	MG			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS - Westborough Lab									
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.50	1			
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.6	1			
2,4-Dinitrotoluene	ND		ug/l	5.0	1.2	1			
2,6-Dinitrotoluene	ND		ug/l	5.0	0.93	1			
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.49	1			
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.38	1			
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.53	1			
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.50	1			
Hexachlorocyclopentadiene	ND		ug/l	20	0.69	1			
Isophorone	ND		ug/l	5.0	1.2	1			
Nitrobenzene	ND		ug/l	2.0	0.77	1			
NDPA/DPA	ND		ug/l	2.0	0.42	1			
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.64	1			
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	1.5	1			
Butyl benzyl phthalate	ND		ug/l	5.0	1.2	1			
Di-n-butylphthalate	ND		ug/l	5.0	0.39	1			
Di-n-octylphthalate	ND		ug/l	5.0	1.3	1			
Diethyl phthalate	ND		ug/l	5.0	0.38	1			
Dimethyl phthalate	ND		ug/l	5.0	1.8	1			
Biphenyl	ND		ug/l	2.0	0.46	1			
4-Chloroaniline	ND		ug/l	5.0	1.1	1			
2-Nitroaniline	ND		ug/l	5.0	0.50	1			
3-Nitroaniline	ND		ug/l	5.0	0.81	1			
4-Nitroaniline	ND		ug/l	5.0	0.80	1			
Dibenzofuran	ND		ug/l	2.0	0.50	1			
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.44	1			
Acetophenone	ND		ug/l	5.0	0.53	1			
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.61	1			

Project Name:	1153 WEST FAYETTE ST.,	PHASE I	Lab Number:	L2322083
Project Number:	AB2.001.002		Report Date:	05/01/23
		SAMPLE RESULTS		
Lab ID:	L2322083-03		Date Collected:	04/24/23 16:05
Client ID:	TW-03		Date Received:	04/24/23
Sample Location:	SYRACUSE, NY		Field Prep:	Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS -	Semivolatile Organics by GC/MS - Westborough Lab						
p-Chloro-m-cresol	ND		ug/l	2.0	0.35	1	
2-Chlorophenol	ND		ug/l	2.0	0.48	1	
2,4-Dichlorophenol	ND		ug/l	5.0	0.41	1	
2,4-Dimethylphenol	ND		ug/l	5.0	1.8	1	
2-Nitrophenol	ND		ug/l	10	0.85	1	
4-Nitrophenol	ND		ug/l	10	0.67	1	
2,4-Dinitrophenol	ND		ug/l	20	6.6	1	
4,6-Dinitro-o-cresol	ND		ug/l	10	1.8	1	
Phenol	ND		ug/l	5.0	0.57	1	
2-Methylphenol	ND		ug/l	5.0	0.49	1	
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	0.48	1	
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.77	1	
Carbazole	ND		ug/l	2.0	0.49	1	
Atrazine	ND		ug/l	10	0.76	1	
Benzaldehyde	ND		ug/l	5.0	0.53	1	
Caprolactam	ND		ug/l	10	3.3	1	
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	0.84	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	66	21-120	
Phenol-d6	52	10-120	
Nitrobenzene-d5	115	23-120	
2-Fluorobiphenyl	74	15-120	
2,4,6-Tribromophenol	109	10-120	
4-Terphenyl-d14	67	41-149	

Serial_No:05012314:04

		Serial_No:05012314:04
Project Name:	1153 WEST FAYETTE ST., PHASE I	Lab Number: L2322083
Project Number:	AB2.001.002	Report Date: 05/01/23
	SAMPLE RESULTS	
Lab ID:	L2322083-03	Date Collected: 04/24/23 16:05
Client ID:	TW-03	Date Received: 04/24/23
Sample Location:	SYRACUSE, NY	Field Prep: Not Specified
Sample Depth:		
Matrix:	Water	Extraction Method: EPA 3510C
Analytical Method:	1,8270E-SIM	Extraction Date: 04/28/23 23:42
Analytical Date:	04/30/23 14:21	
Analyst:	АН	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM - Westborough Lab						
Acenaphthene	4.1		ug/l	0.10	0.01	1
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1
Fluoranthene	3.9		ug/l	0.10	0.02	1
Hexachlorobutadiene	ND		ug/l	0.50	0.05	1
Naphthalene	ND		ug/l	0.10	0.05	1
Benzo(a)anthracene	1.5		ug/l	0.10	0.02	1
Benzo(a)pyrene	2.1		ug/l	0.10	0.02	1
Benzo(b)fluoranthene	2.4		ug/l	0.10	0.01	1
Benzo(k)fluoranthene	0.95		ug/l	0.10	0.01	1
Chrysene	1.6		ug/l	0.10	0.01	1
Acenaphthylene	ND		ug/l	0.10	0.01	1
Anthracene	ND		ug/l	0.10	0.01	1
Benzo(ghi)perylene	2.3		ug/l	0.10	0.01	1
Fluorene	ND		ug/l	0.10	0.01	1
Phenanthrene	ND		ug/l	0.10	0.02	1
Dibenzo(a,h)anthracene	0.29		ug/l	0.10	0.01	1
Indeno(1,2,3-cd)pyrene	2.0		ug/l	0.10	0.01	1
Pyrene	4.9		ug/l	0.10	0.02	1
2-Methylnaphthalene	ND		ug/l	0.10	0.02	1
Pentachlorophenol	ND		ug/l	0.80	0.01	1
Hexachlorobenzene	ND		ug/l	0.80	0.01	1
Hexachloroethane	ND		ug/l	0.80	0.06	1

Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Sample Depth:							
Sample Location:	SYRACUSE, NY				Field Prep:		Not Specified
Client ID:	TW-03				Date Receiv	/ed:	04/24/23
Lab ID:	L2322083-03				Date Collec	ted:	04/24/23 16:05
		SAMP		3			
Project Number:	AB2.001.002				Report Da	ite:	05/01/23
Project Name:	1153 WEST FAYETTE	ST., PHASE	ΞI		Lab Numb	per:	L2322083
					Ser	ial_No	0:05012314:04

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria
2-Fluorophenol	60		21-120
Phenol-d6	55		10-120
Nitrobenzene-d5	143	Q	23-120
2-Fluorobiphenyl	80		15-120
2,4,6-Tribromophenol	100		10-120
4-Terphenyl-d14	66		41-149

		Serial_No:05012314:04
Project Name:	1153 WEST FAYETTE ST., PHASE I	Lab Number: L2322083
Project Number:	AB2.001.002	Report Date: 05/01/23
	SAMPLE RESULTS	
Lab ID:	L2322083-04	Date Collected: 04/24/23 17:00
Client ID:	TW-04	Date Received: 04/24/23
Sample Location:	SYRACUSE, NY	Field Prep: Not Specified
Sample Depth:		
Matrix:	Water	Extraction Method: EPA 3510C
Analytical Method:	1,8270E	Extraction Date: 04/28/23 23:40
Analytical Date:	04/30/23 18:50	
Analyst:	MG	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Westborough Lab					
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.50	1
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.6	1
2,4-Dinitrotoluene	ND		ug/l	5.0	1.2	1
2,6-Dinitrotoluene	ND		ug/l	5.0	0.93	1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.49	1
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.38	1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.53	1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.50	1
Hexachlorocyclopentadiene	ND		ug/l	20	0.69	1
Isophorone	ND		ug/l	5.0	1.2	1
Nitrobenzene	ND		ug/l	2.0	0.77	1
NDPA/DPA	ND		ug/l	2.0	0.42	1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.64	1
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	1.5	1
Butyl benzyl phthalate	ND		ug/l	5.0	1.2	1
Di-n-butylphthalate	ND		ug/l	5.0	0.39	1
Di-n-octylphthalate	ND		ug/l	5.0	1.3	1
Diethyl phthalate	ND		ug/l	5.0	0.38	1
Dimethyl phthalate	ND		ug/l	5.0	1.8	1
Biphenyl	ND		ug/l	2.0	0.46	1
4-Chloroaniline	ND		ug/l	5.0	1.1	1
2-Nitroaniline	ND		ug/l	5.0	0.50	1
3-Nitroaniline	ND		ug/l	5.0	0.81	1
4-Nitroaniline	ND		ug/l	5.0	0.80	1
Dibenzofuran	ND		ug/l	2.0	0.50	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.44	1
Acetophenone	ND		ug/l	5.0	0.53	1
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.61	1

Project Name:	1153 WEST FAYETTE ST., PHASE I	Lab Number:	L2322083
Project Number:	AB2.001.002	Report Date:	05/01/23
	SAMPLE RESULTS		
Lab ID:	L2322083-04	Date Collected:	04/24/23 17:00
Client ID:	TW-04	Date Received:	04/24/23
Sample Location:	SYRACUSE, NY	Field Prep:	Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Westborough Lab					
p-Chloro-m-cresol	ND		ug/l	2.0	0.35	1
2-Chlorophenol	ND		ug/l	2.0	0.48	1
2,4-Dichlorophenol	ND		ug/l	5.0	0.41	1
2,4-Dimethylphenol	ND		ug/l	5.0	1.8	1
2-Nitrophenol	ND		ug/l	10	0.85	1
4-Nitrophenol	ND		ug/l	10	0.67	1
2,4-Dinitrophenol	ND		ug/l	20	6.6	1
4,6-Dinitro-o-cresol	ND		ug/l	10	1.8	1
Phenol	ND		ug/l	5.0	0.57	1
2-Methylphenol	ND		ug/l	5.0	0.49	1
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	0.48	1
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.77	1
Carbazole	ND		ug/l	2.0	0.49	1
Atrazine	ND		ug/l	10	0.76	1
Benzaldehyde	ND		ug/l	5.0	0.53	1
Caprolactam	ND		ug/l	10	3.3	1
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	0.84	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	42	21-120
Phenol-d6	41	10-120
Nitrobenzene-d5	64	23-120
2-Fluorobiphenyl	55	15-120
2,4,6-Tribromophenol	40	10-120
4-Terphenyl-d14	49	41-149

Serial_No:05012314:04

		Serial_No:05012314:04
Project Name:	1153 WEST FAYETTE ST., PHASE I	Lab Number: L2322083
Project Number:	AB2.001.002	Report Date: 05/01/23
	SAMPLE RESUL	TS
Lab ID:	L2322083-04	Date Collected: 04/24/23 17:00
Client ID:	TW-04	Date Received: 04/24/23
Sample Location:	SYRACUSE, NY	Field Prep: Not Specified
Sample Depth:		
Matrix:	Water	Extraction Method: EPA 3510C
Analytical Method:	1,8270E-SIM	Extraction Date: 04/28/23 23:42
Analytical Date:	04/30/23 14:38	
Analyst:	AH	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS-SIM - Westborough Lab									
Acenaphthene	0.02	J	ug/l	0.10	0.01	1			
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1			
Fluoranthene	0.16		ug/l	0.10	0.02	1			
Hexachlorobutadiene	ND		ug/l	0.50	0.05	1			
Naphthalene	0.08	J	ug/l	0.10	0.05	1			
Benzo(a)anthracene	0.06	J	ug/l	0.10	0.02	1			
Benzo(a)pyrene	0.08	J	ug/l	0.10	0.02	1			
Benzo(b)fluoranthene	0.12		ug/l	0.10	0.01	1			
Benzo(k)fluoranthene	0.03	J	ug/l	0.10	0.01	1			
Chrysene	0.07	J	ug/l	0.10	0.01	1			
Acenaphthylene	ND		ug/l	0.10	0.01	1			
Anthracene	ND		ug/l	0.10	0.01	1			
Benzo(ghi)perylene	0.09	J	ug/l	0.10	0.01	1			
Fluorene	ND		ug/l	0.10	0.01	1			
Phenanthrene	0.13		ug/l	0.10	0.02	1			
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	1			
Indeno(1,2,3-cd)pyrene	0.08	J	ug/l	0.10	0.01	1			
Pyrene	0.13		ug/l	0.10	0.02	1			
2-Methylnaphthalene	0.13		ug/l	0.10	0.02	1			
Pentachlorophenol	ND		ug/l	0.80	0.01	1			
Hexachlorobenzene	ND		ug/l	0.80	0.01	1			
Hexachloroethane	ND		ug/l	0.80	0.06	1			

Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Sample Depth:							
Sample Location:	SYRACUSE, NY				Field Pre	p:	Not Specified
Client ID:	TW-04				Date Rec	eived:	04/24/23
Lab ID:	L2322083-04				Date Coll	ected:	04/24/23 17:00
		SAMP		6			
Project Number:	AB2.001.002				Report	Date:	05/01/23
Project Name:	1153 WEST FAYETTE	ST., PHASE	ΞI		Lab Nu	mber:	L2322083
	Serial_No:05012314:04						

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	44	21-120
Phenol-d6	42	10-120
Nitrobenzene-d5	66	23-120
2-Fluorobiphenyl	62	15-120
2,4,6-Tribromophenol	54	10-120
4-Terphenyl-d14	53	41-149

Project Name:	1153 WEST FAYETTE ST., PHASE I	Lab Number:	L2322083
Project Number:	AB2.001.002	Report Date:	05/01/23

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8270E	Extraction Method:	EPA 3510C
Analytical Date:	04/30/23 11:09	Extraction Date:	04/28/23 23:40
Analyst:	SZ		

arameter	Result	Qualifier Units	RL		MDL
emivolatile Organics by GC/MS	- Westborough	Lab for sample(s):	01-04	Batch:	WG1772642-1
Bis(2-chloroethyl)ether	ND	ug/l	2.0		0.50
3,3'-Dichlorobenzidine	ND	ug/l	5.0		1.6
2,4-Dinitrotoluene	ND	ug/l	5.0		1.2
2,6-Dinitrotoluene	ND	ug/l	5.0		0.93
4-Chlorophenyl phenyl ether	ND	ug/l	2.0		0.49
4-Bromophenyl phenyl ether	ND	ug/l	2.0		0.38
Bis(2-chloroisopropyl)ether	ND	ug/l	2.0		0.53
Bis(2-chloroethoxy)methane	ND	ug/l	5.0		0.50
Hexachlorocyclopentadiene	ND	ug/l	20		0.69
Isophorone	ND	ug/l	5.0		1.2
Nitrobenzene	ND	ug/l	2.0		0.77
NDPA/DPA	ND	ug/l	2.0		0.42
n-Nitrosodi-n-propylamine	ND	ug/l	5.0		0.64
Bis(2-ethylhexyl)phthalate	ND	ug/l	3.0		1.5
Butyl benzyl phthalate	ND	ug/l	5.0		1.2
Di-n-butylphthalate	ND	ug/l	5.0		0.39
Di-n-octylphthalate	ND	ug/l	5.0		1.3
Diethyl phthalate	ND	ug/l	5.0		0.38
Dimethyl phthalate	ND	ug/l	5.0		1.8
Biphenyl	ND	ug/l	2.0		0.46
4-Chloroaniline	ND	ug/l	5.0		1.1
2-Nitroaniline	ND	ug/l	5.0		0.50
3-Nitroaniline	ND	ug/l	5.0		0.81
4-Nitroaniline	ND	ug/l	5.0		0.80
Dibenzofuran	ND	ug/l	2.0		0.50
1,2,4,5-Tetrachlorobenzene	ND	ug/l	10		0.44
Acetophenone	ND	ug/l	5.0		0.53
2,4,6-Trichlorophenol	ND	ug/l	5.0		0.61
p-Chloro-m-cresol	ND	ug/l	2.0		0.35

Project Name:	1153 WEST FAYETTE ST., PHASE I	Lab Number:	L2322083
Project Number:	AB2.001.002	Report Date:	05/01/23
	Made a Dissil Assolution		

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8270E	Extraction Method:	EPA 3510C
Analytical Date:	04/30/23 11:09	Extraction Date:	04/28/23 23:40
Analyst:	SZ		

arameter	Result	Qualifier	Units	RL		MDL
emivolatile Organics by GC/MS	- Westboroug	h Lab for s	ample(s):	01-04	Batch:	WG1772642-1
2-Chlorophenol	ND		ug/l	2.0		0.48
2,4-Dichlorophenol	ND		ug/l	5.0		0.41
2,4-Dimethylphenol	ND		ug/l	5.0		1.8
2-Nitrophenol	ND		ug/l	10		0.85
4-Nitrophenol	ND		ug/l	10		0.67
2,4-Dinitrophenol	ND		ug/l	20		6.6
4,6-Dinitro-o-cresol	ND		ug/l	10		1.8
Phenol	ND		ug/l	5.0		0.57
2-Methylphenol	ND		ug/l	5.0		0.49
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0		0.48
2,4,5-Trichlorophenol	ND		ug/l	5.0		0.77
Carbazole	ND		ug/l	2.0		0.49
Atrazine	ND		ug/l	10		0.76
Benzaldehyde	ND		ug/l	5.0		0.53
Caprolactam	ND		ug/l	10		3.3
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0		0.84

%Recovery Qualif	ier Criteria
46	21-120
40	10-120
71	23-120
60	15-120
41	10-120
61	41-149
	40 71 60 41

Project Name:	1153 WEST FAYETTE ST., PHASE I	Lab Number:	L2322083
Project Number:	AB2.001.002	Report Date:	05/01/23

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8270E-SIM	Extraction Method:	EPA 3510C
Analytical Date:	04/30/23 08:51	Extraction Date:	04/28/23 23:42
Analyst:	AH		

arameter	Result	Qualifier	Units	RL	MDL	
emivolatile Organics by GC/MS	S-SIM - Westbo	rough Lab	for sample(s):	01-04	Batch:	WG1772643-1
Acenaphthene	ND		ug/l	0.10	0.01	
2-Chloronaphthalene	ND		ug/l	0.20	0.02	
Fluoranthene	ND		ug/l	0.10	0.02	
Hexachlorobutadiene	ND		ug/l	0.50	0.05	
Naphthalene	ND		ug/l	0.10	0.05	
Benzo(a)anthracene	ND		ug/l	0.10	0.02	
Benzo(a)pyrene	ND		ug/l	0.10	0.02	
Benzo(b)fluoranthene	ND		ug/l	0.10	0.01	
Benzo(k)fluoranthene	ND		ug/l	0.10	0.01	
Chrysene	ND		ug/l	0.10	0.01	
Acenaphthylene	ND		ug/l	0.10	0.01	
Anthracene	ND		ug/l	0.10	0.01	
Benzo(ghi)perylene	ND		ug/l	0.10	0.01	
Fluorene	ND		ug/l	0.10	0.01	
Phenanthrene	ND		ug/l	0.10	0.02	
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01	
Pyrene	ND		ug/l	0.10	0.02	
2-Methylnaphthalene	ND		ug/l	0.10	0.02	
Pentachlorophenol	ND		ug/l	0.80	0.01	
Hexachlorobenzene	ND		ug/l	0.80	0.01	
Hexachloroethane	ND		ug/l	0.80	0.06	

Project Name:	1153 WEST FAYETTE ST., PHASE I	Lab Number:	L2322083
Project Number:	AB2.001.002	Report Date:	05/01/23
	Method Blank Analysis Batch Quality Control		

Method Blank Analysis	5
Batch Quality Control	

Analytical Method:	1,8270E-SIM	Extraction Method:	EPA 3510C
Analytical Date:	04/30/23 08:51	Extraction Date:	04/28/23 23:42
Analyst:	АН		

Parameter	Result	Qualifier	Units	RL	MDL	
Semivolatile Organics by GC/MS-S	IM - Westb	orough Lab	for sample	e(s): 01-04	Batch: WG1772643-1	

Surrogate	%Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	54	21-120
Phenol-d6	48	10-120
Nitrobenzene-d5	83	23-120
2-Fluorobiphenyl	74	15-120
2,4,6-Tribromophenol	66	10-120
4-Terphenyl-d14	85	41-149

Project Name: 1153 WEST FAYETTE ST., PHASE I

Project Number: AB2.001.002

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - West	borough Lab Associated	d sample(s): 01-04 Batc	n: WG1772642-2 WG177264	12-3	
Bis(2-chloroethyl)ether	60	54	40-140	11	30
3,3'-Dichlorobenzidine	48	47	40-140	2	30
2,4-Dinitrotoluene	74	65	48-143	13	30
2,6-Dinitrotoluene	67	61	40-140	9	30
4-Chlorophenyl phenyl ether	58	49	40-140	17	30
4-Bromophenyl phenyl ether	55	47	40-140	16	30
Bis(2-chloroisopropyl)ether	66	59	40-140	11	30
Bis(2-chloroethoxy)methane	63	56	40-140	12	30
Hexachlorocyclopentadiene	52	50	40-140	4	30
Isophorone	62	55	40-140	12	30
Nitrobenzene	67	60	40-140	11	30
NDPA/DPA	56	49	40-140	13	30
n-Nitrosodi-n-propylamine	62	55	29-132	12	30
Bis(2-ethylhexyl)phthalate	74	69	40-140	7	30
Butyl benzyl phthalate	98	89	40-140	10	30
Di-n-butylphthalate	75	66	40-140	13	30
Di-n-octylphthalate	79	72	40-140	9	30
Diethyl phthalate	68	57	40-140	18	30
Dimethyl phthalate	66	58	40-140	13	30
Biphenyl	55	49	40-140	12	30
4-Chloroaniline	55	47	40-140	16	30
2-Nitroaniline	82	70	52-143	16	30
3-Nitroaniline	61	57	25-145	7	30

Project Name: 1153 WEST FAYETTE ST., PHASE I

Project Number: AB2.001.002

rameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
emivolatile Organics by GC/MS - We	estborough Lab Associ	ated sample(s)	: 01-04 Batch	n: WG1772	2642-2 WG177264	42-3	
4-Nitroaniline	64		58		51-143	10	30
Dibenzofuran	59		51		40-140	15	30
1,2,4,5-Tetrachlorobenzene	51		45		2-134	13	30
Acetophenone	59		53		39-129	11	30
2,4,6-Trichlorophenol	70		61		30-130	14	30
p-Chloro-m-cresol	69		60		23-97	14	30
2-Chlorophenol	64		56		27-123	13	30
2,4-Dichlorophenol	66		57		30-130	15	30
2,4-Dimethylphenol	28	Q	25	Q	30-130	11	30
2-Nitrophenol	93		82		30-130	13	30
4-Nitrophenol	64		53		10-80	19	30
2,4-Dinitrophenol	77		74		20-130	4	30
4,6-Dinitro-o-cresol	96		87		20-164	10	30
Phenol	45		40		12-110	12	30
2-Methylphenol	52		48		30-130	8	30
3-Methylphenol/4-Methylphenol	63		57		30-130	10	30
2,4,5-Trichlorophenol	69		61		30-130	12	30
Carbazole	63		56		55-144	12	30
Atrazine	89		77		40-140	14	30
Benzaldehyde	61		57		40-140	7	30
Caprolactam	42		35		10-130	18	30
2,3,4,6-Tetrachlorophenol	68		63		40-140	8	30

Project Name:	1153 WEST FAYETTE ST., PHASE I
FIUJEUL Maine.	TISS WEST ATELLE ST., FRASET

Project Number: AB2.001.002

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Semivolatile Organics by GC/MS - Westb	orough Lab Associa	ted sample(s	s): 01-04 Batch	: WG177	2642-2 WG17726	642-3			

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	52	48	21-120
Phenol-d6	44	40	10-120
Nitrobenzene-d5	66	61	23-120
2-Fluorobiphenyl	56	50	15-120
2,4,6-Tribromophenol	70	56	10-120
4-Terphenyl-d14	57	51	41-149

Project Name: 1153 WEST FAYETTE ST., PHASE I

Project Number: AB2.001.002 Lab Number: L2322083 Report Date: 05/01/23

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits				
Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01-04 Batch: WG1772643-2 WG1772643-3									
Acenaphthene	60	51	40-140	16	40				
2-Chloronaphthalene	59	51	40-140	15	40				
Fluoranthene	63	54	40-140	15	40				
Hexachlorobutadiene	54	47	40-140	14	40				
Naphthalene	55	49	40-140	12	40				
Benzo(a)anthracene	64	54	40-140	17	40				
Benzo(a)pyrene	67	56	40-140	18	40				
Benzo(b)fluoranthene	68	55	40-140	21	40				
Benzo(k)fluoranthene	69	58	40-140	17	40				
Chrysene	62	53	40-140	16	40				
Acenaphthylene	61	53	40-140	14	40				
Anthracene	62	53	40-140	16	40				
Benzo(ghi)perylene	62	55	40-140	12	40				
Fluorene	62	54	40-140	14	40				
Phenanthrene	58	50	40-140	15	40				
Dibenzo(a,h)anthracene	64	56	40-140	13	40				
Indeno(1,2,3-cd)pyrene	58	49	40-140	17	40				
Pyrene	62	53	40-140	16	40				
2-Methylnaphthalene	58	52	40-140	11	40				
Pentachlorophenol	71	66	40-140	7	40				
Hexachlorobenzene	63	54	40-140	15	40				
Hexachloroethane	57	52	40-140	9	40				

Project Name: 1153 WEST FAYETTE ST., PHASE I

Project Number: AB2.001.002

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Semivolatile Organics by GC/MS	S-SIM - Westborough Lab As	sociated sa	ample(s): 01-04	Batch: WC	G1772643-2 WG1	772643-3			

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	53	47	21-120
Phenol-d6	46	41	10-120
Nitrobenzene-d5	68	61	23-120
2-Fluorobiphenyl	57	50	15-120
2,4,6-Tribromophenol	76	69	10-120
4-Terphenyl-d14	60	53	41-149

METALS

L2322083

Project Name:	1153 WEST FAYETTE ST., PHASE I
---------------	--------------------------------

Project Number: AB2.001.002

Water

SA

Lab ID: L2322083-02 Client ID: TW-02 Sample Location: SYRACUSE, NY

Sample Depth:

Matrix:

	Report Date:	05/01/23
AMPLE RESULTS		
	Date Collected:	04/24/23 14:53
	Date Received:	04/24/23
	Field Prep:	Not Specified

Lab Number:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mansf	ield Lab										
Aluminum, Total	4.55		mg/l	0.0100	0.00327	1	04/26/23 13:00	04/26/23 21:09	EPA 3005A	1,6020B	NTB
Antimony, Total	0.00254	J	mg/l	0.00400	0.00042	1	04/26/23 13:00	04/26/23 21:09	EPA 3005A	1,6020B	NTB
Arsenic, Total	0.00888		mg/l	0.00050	0.00016	1	04/26/23 13:00	04/26/23 21:09	EPA 3005A	1,6020B	NTB
Barium, Total	0.1765		mg/l	0.00050	0.00017	1	04/26/23 13:00	04/26/23 21:09	EPA 3005A	1,6020B	NTB
Beryllium, Total	0.00034	J	mg/l	0.00050	0.00010	1	04/26/23 13:00	04/26/23 21:09	EPA 3005A	1,6020B	NTB
Cadmium, Total	0.00053		mg/l	0.00020	0.00005	1	04/26/23 13:00	04/26/23 21:09	EPA 3005A	1,6020B	NTB
Calcium, Total	181.		mg/l	0.100	0.0394	1	04/26/23 13:00	04/26/23 21:09	EPA 3005A	1,6020B	NTB
Chromium, Total	0.01925		mg/l	0.00100	0.00017	1	04/26/23 13:00	04/26/23 21:09	EPA 3005A	1,6020B	NTB
Cobalt, Total	0.00554		mg/l	0.00050	0.00016	1	04/26/23 13:00	04/26/23 21:09	EPA 3005A	1,6020B	NTB
Copper, Total	0.1210		mg/l	0.00100	0.00038	1	04/26/23 13:00	04/26/23 21:09	EPA 3005A	1,6020B	NTB
Iron, Total	36.8		mg/l	0.0500	0.0191	1	04/26/23 13:00	04/26/23 21:09	EPA 3005A	1,6020B	NTB
Lead, Total	0.3095		mg/l	0.00100	0.00034	1	04/26/23 13:00	04/26/23 21:09	EPA 3005A	1,6020B	NTB
Magnesium, Total	13.1		mg/l	0.0700	0.0242	1	04/26/23 13:00	04/26/23 21:09	EPA 3005A	1,6020B	NTB
Manganese, Total	0.5129		mg/l	0.00100	0.00044	1	04/26/23 13:00	04/26/23 21:09	EPA 3005A	1,6020B	NTB
Mercury, Total	0.00705		mg/l	0.00020	0.00009	1	04/26/23 14:17	04/28/23 18:51	EPA 7470A	1,7470A	DMB
Nickel, Total	0.03085		mg/l	0.00200	0.00055	1	04/26/23 13:00	04/26/23 21:09	EPA 3005A	1,6020B	NTB
Potassium, Total	7.67		mg/l	0.100	0.0309	1	04/26/23 13:00	04/26/23 21:09	EPA 3005A	1,6020B	NTB
Selenium, Total	0.00238	J	mg/l	0.00500	0.00173	1	04/26/23 13:00	04/26/23 21:09	EPA 3005A	1,6020B	NTB
Silver, Total	0.00117		mg/l	0.00040	0.00016	1	04/26/23 13:00	04/26/23 21:09	EPA 3005A	1,6020B	NTB
Sodium, Total	90.2		mg/l	0.100	0.0293	1	04/26/23 13:00	04/26/23 21:09	EPA 3005A	1,6020B	NTB
Thallium, Total	ND		mg/l	0.00100	0.00014	1	04/26/23 13:00	04/26/23 21:09	EPA 3005A	1,6020B	NTB
Vanadium, Total	0.02960		mg/l	0.00500	0.00157	1	04/26/23 13:00	04/26/23 21:09	EPA 3005A	1,6020B	NTB
Zinc, Total	0.5219		mg/l	0.01000	0.00341	1	04/26/23 13:00	04/26/23 21:09	EPA 3005A	1,6020B	NTB

L2322083

Project Name: 1153 WEST FAYETTE ST., PHASE I	
--	--

Project Number: AB2.001.002

Water

SAMP

Lab ID: L2322083-03 Client ID: TW-03 Sample Location: SYRACUSE, NY

Sample Depth:

Matrix:

	Report Date:	05/01/23
PLE RESULTS		
	Date Collected:	04/24/23 16:05
	Date Received:	04/24/23
	Field Prep:	Not Specified

Lab Number:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Aluminum, Total	15.3		mg/l	0.0100	0.00327	1	04/26/23 13:00	04/26/23 21:14	EPA 3005A	1,6020B	NTB
Antimony, Total	0.00552		mg/l	0.00400	0.00042	1	04/26/23 13:00	04/26/23 21:14	EPA 3005A	1,6020B	NTB
Arsenic, Total	0.06840		mg/l	0.00050	0.00016	1	04/26/23 13:00	04/26/23 21:14	EPA 3005A	1,6020B	NTB
Barium, Total	0.3052		mg/l	0.00050	0.00017	1	04/26/23 13:00) 04/26/23 21:14	EPA 3005A	1,6020B	NTB
Beryllium, Total	0.00587		mg/l	0.00050	0.00010	1	04/26/23 13:00) 04/26/23 21:14	EPA 3005A	1,6020B	NTB
Cadmium, Total	0.00218		mg/l	0.00020	0.00005	1	04/26/23 13:00) 04/26/23 21:14	EPA 3005A	1,6020B	NTB
Calcium, Total	208.		mg/l	0.100	0.0394	1	04/26/23 13:00) 04/26/23 21:14	EPA 3005A	1,6020B	NTB
Chromium, Total	0.05426		mg/l	0.00100	0.00017	1	04/26/23 13:00) 04/26/23 21:14	EPA 3005A	1,6020B	NTB
Cobalt, Total	0.03517		mg/l	0.00050	0.00016	1	04/26/23 13:00) 04/26/23 21:14	EPA 3005A	1,6020B	NTB
Copper, Total	0.1268		mg/l	0.00100	0.00038	1	04/26/23 13:00) 04/26/23 21:14	EPA 3005A	1,6020B	NTB
Iron, Total	226.		mg/l	0.0500	0.0191	1	04/26/23 13:00) 04/26/23 21:14	EPA 3005A	1,6020B	NTB
Lead, Total	2.688		mg/l	0.00100	0.00034	1	04/26/23 13:00) 04/26/23 21:14	EPA 3005A	1,6020B	NTB
Magnesium, Total	30.7		mg/l	0.0700	0.0242	1	04/26/23 13:00) 04/26/23 21:14	EPA 3005A	1,6020B	NTB
Manganese, Total	1.790		mg/l	0.00100	0.00044	1	04/26/23 13:00) 04/26/23 21:14	EPA 3005A	1,6020B	NTB
Mercury, Total	0.00014	J	mg/l	0.00020	0.00009	1	04/26/23 14:1	7 04/28/23 18:54	EPA 7470A	1,7470A	DMB
Nickel, Total	0.1028		mg/l	0.00200	0.00055	1	04/26/23 13:00) 04/26/23 21:14	EPA 3005A	1,6020B	NTB
Potassium, Total	5.80		mg/l	0.100	0.0309	1	04/26/23 13:00) 04/26/23 21:14	EPA 3005A	1,6020B	NTB
Selenium, Total	0.0246		mg/l	0.00500	0.00173	1	04/26/23 13:00) 04/26/23 21:14	EPA 3005A	1,6020B	NTB
Silver, Total	0.00056		mg/l	0.00040	0.00016	1	04/26/23 13:00) 04/26/23 21:14	EPA 3005A	1,6020B	NTB
Sodium, Total	44.6		mg/l	0.100	0.0293	1	04/26/23 13:00) 04/26/23 21:14	EPA 3005A	1,6020B	NTB
Thallium, Total	0.00025	J	mg/l	0.00100	0.00014	1	04/26/23 13:00) 04/26/23 21:14	EPA 3005A	1,6020B	NTB
Vanadium, Total	0.1783		mg/l	0.00500	0.00157	1	04/26/23 13:00	04/26/23 21:14	EPA 3005A	1,6020B	NTB
Zinc, Total	3.527		mg/l	0.01000	0.00341	1	04/26/23 13:00) 04/26/23 21:14	EPA 3005A	1,6020B	NTB

L2322083

TIOJECT Manie. TISS WEST FATELLE ST., FHASET	Project Name:	1153 WEST FAYETTE ST., PHASE I
--	---------------	--------------------------------

Project Number: AB2.001.002

Water

SAMP

Lab ID: L2322083-04 Client ID: TW-04 Sample Location: SYRACUSE, NY

Sample Depth:

Matrix:

	Report Date:	05/01/23
PLE RESULTS		
	Date Collected:	04/24/23 17:00
	Date Received:	04/24/23
	Field Prep:	Not Specified

Lab Number:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mar	sfield Lab										
Aluminum, Total	6.99		mg/l	0.0500	0.0164	5	04/26/23 13:00) 04/26/23 21:19	EPA 3005A	1,6020B	NTB
Antimony, Total	0.02523		mg/l	0.02000	0.00214	5	04/26/23 13:00) 04/26/23 21:19	EPA 3005A	1,6020B	NTB
Arsenic, Total	0.01809		mg/l	0.00250	0.00082	5	04/26/23 13:00) 04/26/23 21:19	EPA 3005A	1,6020B	NTB
Barium, Total	0.1517		mg/l	0.00250	0.00086	5	04/26/23 13:00	04/26/23 21:19	EPA 3005A	1,6020B	NTB
Beryllium, Total	0.00130	J	mg/l	0.00250	0.00053	5	04/26/23 13:00	04/26/23 21:19	EPA 3005A	1,6020B	NTB
Cadmium, Total	0.00536		mg/l	0.00100	0.00029	5	04/26/23 13:00) 04/26/23 21:19	EPA 3005A	1,6020B	NTB
Calcium, Total	1240		mg/l	0.500	0.197	5	04/26/23 13:00) 04/26/23 21:19	EPA 3005A	1,6020B	NTB
Chromium, Total	0.06925		mg/l	0.00500	0.00089	5	04/26/23 13:00) 04/26/23 21:19	EPA 3005A	1,6020B	NTB
Cobalt, Total	0.01506		mg/l	0.00250	0.00081	5	04/26/23 13:00) 04/26/23 21:19	EPA 3005A	1,6020B	NTB
Copper, Total	0.02418		mg/l	0.00500	0.00192	5	04/26/23 13:00) 04/26/23 21:19	EPA 3005A	1,6020B	NTB
Iron, Total	24.1		mg/l	0.250	0.0955	5	04/26/23 13:00) 04/26/23 21:19	EPA 3005A	1,6020B	NTB
Lead, Total	0.2043		mg/l	0.00500	0.00171	5	04/26/23 13:00) 04/26/23 21:19	EPA 3005A	1,6020B	NTB
Magnesium, Total	73.9		mg/l	0.350	0.121	5	04/26/23 13:00) 04/26/23 21:19	EPA 3005A	1,6020B	NTB
Manganese, Total	2.851		mg/l	0.00500	0.00220	5	04/26/23 13:00) 04/26/23 21:19	EPA 3005A	1,6020B	NTB
Mercury, Total	0.00019	J	mg/l	0.00020	0.00009	1	04/26/23 14:17	7 04/28/23 18:57	EPA 7470A	1,7470A	DMB
Nickel, Total	0.04068		mg/l	0.01000	0.00278	5	04/26/23 13:00) 04/26/23 21:19	EPA 3005A	1,6020B	NTB
Potassium, Total	8.00		mg/l	0.500	0.154	5	04/26/23 13:00) 04/26/23 21:19	EPA 3005A	1,6020B	NTB
Selenium, Total	ND		mg/l	0.0250	0.00865	5	04/26/23 13:00) 04/26/23 21:19	EPA 3005A	1,6020B	NTB
Silver, Total	ND		mg/l	0.00200	0.00081	5	04/26/23 13:00) 04/26/23 21:19	EPA 3005A	1,6020B	NTB
Sodium, Total	277.		mg/l	0.500	0.146	5	04/26/23 13:00) 04/26/23 21:19	EPA 3005A	1,6020B	NTB
Thallium, Total	ND		mg/l	0.00500	0.00071	5	04/26/23 13:00) 04/26/23 21:19	EPA 3005A	1,6020B	NTB
Vanadium, Total	0.01891	J	mg/l	0.02500	0.00785	5	04/26/23 13:00) 04/26/23 21:19	EPA 3005A	1,6020B	NTB
Zinc, Total	0.8569		mg/l	0.05000	0.01705	5	04/26/23 13:00) 04/26/23 21:19	EPA 3005A	1,6020B	NTB

Project Name: 1153 WEST FAYETTE ST., PHASE I

Project Number: AB2.001.002

 Lab Number:
 L2322083

 Report Date:
 05/01/23

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for sample(s):	01-04 l	Batch: WO	G177138	3-1				
Aluminum, Total	ND	mg/l	0.0100	0.00327	1	04/26/23 13:00	04/26/23 19:26	1,6020B	NTB
Antimony, Total	ND	mg/l	0.00400	0.00042	1	04/26/23 13:00	04/26/23 19:26	1,6020B	NTB
Arsenic, Total	ND	mg/l	0.00050	0.00016	1	04/26/23 13:00	04/26/23 19:26	1,6020B	NTB
Barium, Total	ND	mg/l	0.00050	0.00017	1	04/26/23 13:00	04/26/23 19:26	1,6020B	NTB
Beryllium, Total	ND	mg/l	0.00050	0.00010	1	04/26/23 13:00	04/26/23 19:26	1,6020B	NTB
Cadmium, Total	ND	mg/l	0.00020	0.00005	1	04/26/23 13:00	04/26/23 19:26	1,6020B	NTB
Calcium, Total	ND	mg/l	0.100	0.0394	1	04/26/23 13:00	04/26/23 19:26	1,6020B	NTB
Chromium, Total	ND	mg/l	0.00100	0.00017	1	04/26/23 13:00	04/26/23 19:26	1,6020B	NTB
Cobalt, Total	ND	mg/l	0.00050	0.00016	1	04/26/23 13:00	04/26/23 19:26	1,6020B	NTB
Copper, Total	ND	mg/l	0.00100	0.00038	1	04/26/23 13:00	04/26/23 19:26	1,6020B	NTB
Iron, Total	ND	mg/l	0.0500	0.0191	1	04/26/23 13:00	04/26/23 19:26	1,6020B	NTB
Lead, Total	ND	mg/l	0.00100	0.00034	1	04/26/23 13:00	04/26/23 19:26	1,6020B	NTB
Magnesium, Total	ND	mg/l	0.0700	0.0242	1	04/26/23 13:00	04/26/23 19:26	1,6020B	NTB
Manganese, Total	ND	mg/l	0.00100	0.00044	1	04/26/23 13:00	04/26/23 19:26	1,6020B	NTB
Nickel, Total	ND	mg/l	0.00200	0.00055	1	04/26/23 13:00	04/26/23 19:26	1,6020B	NTB
Potassium, Total	ND	mg/l	0.100	0.0309	1	04/26/23 13:00	04/26/23 19:26	1,6020B	NTB
Selenium, Total	ND	mg/l	0.00500	0.00173	1	04/26/23 13:00	04/26/23 19:26	1,6020B	NTB
Silver, Total	ND	mg/l	0.00040	0.00016	1	04/26/23 13:00	04/26/23 19:26	1,6020B	NTB
Sodium, Total	ND	mg/l	0.100	0.0293	1	04/26/23 13:00	04/26/23 19:26	1,6020B	NTB
Thallium, Total	ND	mg/l	0.00100	0.00014	1	04/26/23 13:00	04/26/23 19:26	1,6020B	NTB
Vanadium, Total	ND	mg/l	0.00500	0.00157	1	04/26/23 13:00	04/26/23 19:26	1,6020B	NTB
Zinc, Total	ND	mg/l	0.01000	0.00341	1	04/26/23 13:00	04/26/23 19:26	1,6020B	NTB

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	Analyst
Total Metals - Mansfield	d Lab for sample(s):	01-04	Batch: WC	G17713	89-1				
Mercury, Total	ND	mg/l	0.00020	0.0000	9 1	04/26/23 14:17	04/28/23 18:08	3 1,7470A	DMB

Project Name: 1153 WEST FAYETTE ST., PHASE I

Project Number: AB2.001.002

 Lab Number:
 L2322083

 Report Date:
 05/01/23

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 7470A

Lab Number: L2322083 Report Date: 05/01/23

Project Number: AB2.001.002

1153 WEST FAYETTE ST., PHASE I

Project Name:

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01-04 Bate	ch: WG1771383-2				
Aluminum, Total	102	-	80-120	-		
Antimony, Total	89	-	80-120	-		
Arsenic, Total	104	-	80-120	-		
Barium, Total	102		80-120	-		
Beryllium, Total	103	-	80-120	-		
Cadmium, Total	107	-	80-120	-		
Calcium, Total	104	-	80-120	-		
Chromium, Total	102	-	80-120	-		
Cobalt, Total	104	-	80-120	-		
Copper, Total	106	-	80-120	-		
Iron, Total	104	-	80-120	-		
Lead, Total	102	-	80-120	-		
Magnesium, Total	100	-	80-120	-		
Manganese, Total	104	-	80-120	-		
Nickel, Total	102	-	80-120	-		
Potassium, Total	108	-	80-120	-		
Selenium, Total	102	-	80-120	-		
Silver, Total	106	-	80-120	-		
Sodium, Total	118	-	80-120	-		
Thallium, Total	103	-	80-120	-		
Vanadium, Total	103	-	80-120	-		

Lab Control Sample Analysis

Project Name:	1153 WEST FAYETTE	E ST., PHASE I	Batch Quality Co	-	Lab Number:	L2322083
Project Number:	AB2.001.002				Report Date:	05/01/23
- ,		LCS	LCSD	%Recovery		
Parameter		%Recovery	%Recovery	Limits	RPD	RPD Limits
	eld Lab Associated sample		%Recovery G1771383-2	Limits	RPD	RPD Limits
	eld Lab Associated sample			Limits 80-120	RPD	RPD Limits

|--|

Matrix Spike Analysis Batch Quality Control

Project Name: 1153 WEST FAYETTE ST., PHASE I

Project Number: AB2.001.002

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		ecovery Limits	RPD (Qual	RPD Limits
Total Metals - Mansfield Lab	Associated sam	nple(s): 01-04	QC Ba	tch ID: WG177	1383-3	QC Sam	nple: L2321177-	03 Clier	nt ID: MS	Sample)	
Aluminum, Total	0.151	2	2.07	96		-	-		75-125	-		20
Antimony, Total	0.0005J	0.5	0.4795	96		-	-		75-125	-		20
Arsenic, Total	0.0015	0.12	0.1242	102		-	-		75-125	-		20
Barium, Total	0.0104	2	1.965	98		-	-		75-125	-		20
Beryllium, Total	ND	0.05	0.05036	101		-	-		75-125	-		20
Cadmium, Total	ND	0.053	0.05449	103		-	-		75-125	-		20
Calcium, Total	26.6	10	36.3	97		-	-		75-125	-		20
Chromium, Total	0.0010J	0.2	0.1929	96		-	-		75-125	-		20
Cobalt, Total	0.0002J	0.5	0.4914	98		-	-		75-125	-		20
Copper, Total	0.0012	0.25	0.2547	101		-	-		75-125	-		20
Iron, Total	0.188	1	1.19	100		-	-		75-125	-		20
Lead, Total	ND	0.53	0.5321	100		-	-		75-125	-		20
Magnesium, Total	3.04	10	12.5	95		-	-		75-125	-		20
Manganese, Total	0.0469	0.5	0.5381	98		-	-		75-125	-		20
Nickel, Total	0.0012J	0.5	0.4913	98		-	-		75-125	-		20
Potassium, Total	2.30	10	12.4	101		-	-		75-125	-		20
Selenium, Total	ND	0.12	0.127	106		-	-		75-125	-		20
Silver, Total	ND	0.05	0.05153	103		-	-		75-125	-		20
Sodium, Total	82.9	10	91.2	83		-	-		75-125	-		20
Thallium, Total	ND	0.12	0.1186	99		-	-		75-125	-		20
Vanadium, Total	ND	0.5	0.4806	96		-	-		75-125	-		20

Matrix Spike Analysis

Project Name:	1153 WEST FAYETTE ST., PHASE I	Batch Quality Control	Lab Number:	L2322083
Project Number:	AB2.001.002		Report Date:	05/01/23

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield	Lab Associated sam	nple(s): 01-04	QC Ba	tch ID: WG1771383-3	QC San	nple: L2321177-03	Client ID: MS	Sample	
Zinc, Total	0.0043J	0.5	0.4927	98	-	-	75-125	-	20
Total Metals - Mansfield	Lab Associated sam	nple(s): 01-04	QC Ba	tch ID: WG1771389-3	QC San	nple: L2322042-01	Client ID: MS	Sample	
Mercury, Total	ND	0.005	0.00541	108	-	-	75-125	-	20

Project Name:	1153 WEST FAYETTE ST.	, PHASE I	Lab Duplicate Anal Batch Quality Control			ab Number:	
Project Number:	AB2.001.002				Re	eport Date:	05/01/23
Parameter		Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield	Lab Associated sample(s): (01-04 QC Batch ID:	WG1771389-4 QC Sample	: L2322042-01	Client ID:	DUP Sam	ple

i otar motalo		QU Daton ID.	WOT/ 1000 4	Que oumpie.	22022042 01	Onoric iD.	Der Gumpie	
Maroum, Tota						NC		20
Mercury, Tota	al	ND		ND	mg/l	INC.		20

Sample Receipt and Container Information

YES

Were project specific reporting limits specified?

Cooler Information

Cooler	Custody Seal
А	Absent
В	Absent

Container Information			Initial		Temp			Frozen			
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)		
L2322083-01A	Vial HCI preserved	В	NA		5.6	Y	Absent		NYTCL-8260(14)		
L2322083-01B	Vial HCI preserved	В	NA		5.6	Y	Absent		NYTCL-8260(14)		
L2322083-01C	Vial HCl preserved	В	NA		5.6	Y	Absent		NYTCL-8260(14)		
L2322083-01D	Plastic 250ml HNO3 preserved	В	<2	<2	5.6	Υ	Absent		TL-6020T(180),BA-6020T(180),FE- 6020T(180),SE-6020T(180),NI-6020T(180),CR- 6020T(180),K-6020T(180),CA-6020T(180),ZN- 6020T(180),PB-6020T(180),CU- 6020T(180),PB-6020T(180),MN- 6020T(180),BE-6020T(180),AS- 6020T(180),V-6020T(180),AL-6020T(180),MG- 6020T(180),HG-T(28),AG-6020T(180),CD- 6020T(180),CO-6020T(180)		
L2322083-01E	Amber 250ml unpreserved	В	7	7	5.6	Y	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)		
L2322083-01F	Amber 250ml unpreserved	В	7	7	5.6	Y	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)		
L2322083-02A	Vial HCI preserved	В	NA		5.6	Y	Absent		NYTCL-8260(14)		
L2322083-02B	Vial HCI preserved	В	NA		5.6	Y	Absent		NYTCL-8260(14)		
L2322083-02C	Vial HCI preserved	В	NA		5.6	Y	Absent		NYTCL-8260(14)		
L2322083-02D	Plastic 250ml HNO3 preserved	В	<2	<2	5.6	Y	Absent		BA-6020T(180),TL-6020T(180),SE- 6020T(180),FE-6020T(180),CR-6020T(180),CA- 6020T(180),NI-6020T(180),K-6020T(180),CU- 6020T(180),ZN-6020T(180),NA-6020T(180),PB- 6020T(180),BE-6020T(180),MN- 6020T(180),AB-6020T(180),AS-6020T(180),V- 6020T(180),CD-6020T(180),AG- 6020T(180),HG-T(28),CO-6020T(180)		
L2322083-02E	Amber 250ml unpreserved	В	7	7	5.6	Y	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)		
L2322083-02F	Amber 250ml unpreserved	В	7	7	5.6	Y	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)		
L2322083-03A	Vial HCl preserved	В	NA		5.6	Y	Absent		NYTCL-8260(14)		
L2322083-03B	Vial HCl preserved	В	NA		5.6	Y	Absent		NYTCL-8260(14)		

Project Name: 1153 WEST FAYETTE ST., PHASE I Project Number: AB2.001.002

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2322083-03C	Vial HCI preserved	В	NA		5.6	Y	Absent		NYTCL-8260(14)
L2322083-03D	Plastic 250ml HNO3 preserved	В	<2	<2	5.6	Υ	Absent		TL-6020T(180),BA-6020T(180),FE- 6020T(180),SE-6020T(180),CR- 6020T(180),CA-6020T(180),K-6020T(180),NI- 6020T(180),CU-6020T(180),PB-6020T(180),BE- 6020T(180),AN-6020T(180),SB- 6020T(180),AS-6020T(180),V-6020T(180),CD- 6020T(180),AL-6020T(180),HG-T(28),AG- 6020T(180),MG-6020T(180),CO-6020T(180)
L2322083-03E	Amber 250ml unpreserved	В	7	7	5.6	Y	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L2322083-03F	Amber 250ml unpreserved	В	7	7	5.6	Y	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L2322083-04A	Vial HCl preserved	В	NA		5.6	Y	Absent		NYTCL-8260(14)
L2322083-04B	Vial HCI preserved	В	NA		5.6	Y	Absent		NYTCL-8260(14)
L2322083-04C	Vial HCI preserved	В	NA		5.6	Y	Absent		NYTCL-8260(14)
L2322083-04D	Plastic 250ml HNO3 preserved	В	6	<2	5.6	Ν	Absent		TL-6020T(180),FE-6020T(180),BA- 6020T(180),SE-6020T(180),K-6020T(180),NI- 6020T(180),CA-6020T(180),CR- 6020T(180),ZN-6020T(180),CU- 6020T(180),NA-6020T(180),PB-6020T(180),BE- 6020T(180),AN-6020T(180),SB- 6020T(180),AS-6020T(180),V-6020T(180),CD- 6020T(180),AG-6020T(180),NG- 6020T(180),HG-T(28),AG-6020T(180),CO- 6020T(180),
L2322083-04E	Amber 250ml unpreserved	В	7	7	5.6	Y	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L2322083-04F	Amber 250ml unpreserved	В	7	7	5.6	Y	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)

Project Name: 1153 WEST FAYETTE ST., PHASE I

Project Number: AB2.001.002

Lab Number: L2322083

Report Date: 05/01/23

GLOSSARY

Acronyms

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations or moisture content, where applicable. (DoD report formats only.) EDJ. - Stimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration. EPA - Environmental Protection Sample ratio: Refer to LCS. EPA - Environmental Protection Agency. LCSD - Laboratory Control Sample ratio: Refer to LCS. LFB - Laboratory Control Sample ratio: Refer to LCS. LOD - Unit of Detection: This value represents the level to which a target analyte can elivable be detected for a specific analyte in a specific match sy as specific match sy as specific match sy as specific match sy as a specific analyte or a metria. LOQ - Limit of Detection: The value at which an instrument can accurately measure an analyte at a specific ancentration. The LOQ includes any adjustments from dilutions, concentrations are reported as estimated	Acronyms	
 FJJ. Stamated Detection Limit: This value represents the level to which target analyte concentrations are propred as estimated adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of P4Hs using Solid-Phase Microconcentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of P4Hs using Solid-Phase Microconcentrations (RUL). The EDL includes any adjustment from dilutions, concentration that results from the signal present at the retention time of an analyte with the ison smeet al of the identification citeria accept the ion abudance ratio criteria. An EMPC is a worst-case estimate of the concentration. EFARC E. Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes. LGSD - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes. LOP - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes. LOP - Limit of Detection: This value represents the level to which a target analyte concentrations or mositure content, where applicable. (DoD report formats only). LOQ - Limit of Detection: This value represents the level to which a target analyte concentration or mositure content, where applicable. (DoD report formats only). Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or mositure content, where applicable. (DoD report formats only). Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or mositure content, where applicable. (DoD report forma	DL	those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments
analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.EPA- Environmental Protection Agency.LCS- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.LCSD- Laboratory Control Sample Duplicate: Refer to LCS.LFB- Laboratory Control Time Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.LOQ- Limit of Detection. This value represents the level to which a target analyte can reliably be detected for a specific canalyte in a specific matrix by a specific matrix of the attributes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only)LOQ- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only)MDL- Method Detection Limit: This value represents the level to which target analyte to a specifie damount of matrix sample for values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.MDL- Method Detection Limit: This value represents the level to which target analyte to a specified amount of matrix sample or which an independent estimate of target analyte concentration in a valuable. For Method 332.0, the spike recovery is cal	EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis
LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes. LCSD - Laboratory Control Sample: Daylicate: Kefr to LCS. LFB - Laboratory Control Sample Daylicate: Kefr to LCS. LOD - Limit of Detection: This value represents the level to which a larget analyte car reliably be detected for a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.) LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.) LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.) MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations or moisture content, where applicable. (DoD report formats only.) MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations or moisture content, where applicable. MDI - Method Detection Limit: This value repre	EMPC	analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case
analytes of a material containing known and verified amounts of analytes. In the second stander of the secon	EPA	- Environmental Protection Agency.
 LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes. LOD - Limit of Detection: This value prepresents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.) LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.) MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations are quantified below the report analyte to a specific amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the naive concentration including estimated values. MS • Matrix Spike Sample Duplicate: Refer to MS. NA • Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit. NDPA/DPA • N-Nitrosodiphenylamine/Diphenylamine. NN • Not Ignitable. No Reputsit: Ter	LCS	
 analyses of a material containing known and verified amounts of analytes. LOD Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific natification: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.) Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.) Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.) MDL Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations or moisture content, where applicable. Mot RL. Spike Sample: A sample prepared by adding a known mass of target analyte to a specific damount of matrix sample for which an independent estimate of 1 arget analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration on otizer content, where applicable. Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit. Not Ignitable. Not Ignitable. No Results: Term is utilized for the	LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
 specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.) LOQ Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.) Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.) MDL Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimated values. MSD Matrix Spike Sample Duplicate: Refer to MS. NA Not Applicable. NOPA/DPA Not Equitable. The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ inguisticate: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit. Not Equitable. No Asolphenylamine/Diphenylamine. NI Not Equitable. No Results: Term is utilized for the analysis of Atterberg Limits in soil. NR elative Percent Difference: The results from matrix and/or matrix apike duplicates are primarily designed to assess the precision of analytical re	LFB	
LOQIncludes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)MDLMDLMethod Detection Limit. This value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)MDLMethod Detection Limit. This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.MSMatrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.MSDMatrix Spike Sample Populcate: Refer to MS.NA.Not Applicable.NDPA/DPA.Non-Plastic: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.NPA.Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.NR.No Results: Term is utilized when No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.RL.Reporting Limit: The value at which an i	LOD	specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,
LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)MDL• Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.MS• Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.MSD• Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.MSD• Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for reporting unit.NA• Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.NI• Not Ignitable.NR• Not Results: Term is utilized when No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.RL• Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable. <t< td=""><td>LOQ</td><td>LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats</td></t<>	LOQ	LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats
values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.MSMatrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.MSDMatrix Spike Sample Duplicate: Refer to MS.NANot Applicable.NCNot Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.NDPA/DPAN-Nitrosodiphenylamine/Diphenylamine.NINot Ignitable.NPNon-Plastic: Term is utilized when No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.RLReporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.RPDRelative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.SRMStandard Reference Rample for Automy or certified value that is of the same or similar matrix as the associated field samples.		LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats
 which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values. MSD - Matrix Spike Sample Duplicate: Refer to MS. NA - Not Applicable. NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit. NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine. NI - Not Ignitable. NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil. NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests. RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable. RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report. SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples. STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315. TEF - Toxic Equivalent: The walues assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD. TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing	MDL	values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any
NA- Not Applicable.NC- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.NDPA/DPA- N-Nitrosodiphenylamine/Diphenylamine.NI- Not Ignitable.NP- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.NR- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.RL- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.RPD- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.SRM- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.STLP- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.TEF- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.TEQ- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.TIC- Tentatively Identified Compound: A compound that has been	MS	which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated
NCNt Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.NDPA/DPAN-Nitrosodiphenylamine/Diphenylamine.NI- Not Ignitable.NPNon-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.NR- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.RL- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.RPD- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.SRM- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.STLP- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.TEF- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.TEQ- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.TIC- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the targ	MSD	- Matrix Spike Sample Duplicate: Refer to MS.
reporting unit.NDPA/DPAN-Nitrosodiphenylamine/Diphenylamine.NI- Not Ignitable.NP- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.NR- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.RL- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.RPD- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.SRM- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.STLP- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.TEF- Toxic Equivalent; The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.TIC- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound	NA	- Not Applicable.
NI - Not Ignitable. NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil. NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests. RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable. RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report. SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples. STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315. TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD. TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values. TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target	NC	
 NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil. NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests. RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable. RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report. SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples. STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315. TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD. TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values. TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound 	NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
 NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests. RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable. RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report. SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples. STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315. TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD. TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values. TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound 	NI	- Not Ignitable.
Organic TIC only requests. RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable. RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report. SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples. STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315. TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD. TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values. TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound	NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
 includes any adjustments from dilutions, concentrations or moisture content, where applicable. RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report. SRM Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples. STLP Semi-dynamic Tank Leaching Procedure per EPA Method 1315. TEF Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD. TEQ Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values. TIC Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound 	NR	
precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.SRM- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.STLP- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.TEF- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.TEQ- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.TIC- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound	RL	
associated field samples. STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315. TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD. TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values. TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound	RPD	precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the
 TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD. TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values. TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound 	SRM	
 TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values. TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound 	STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
and then summing the resulting values. TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound	TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
	TEQ	
-	TIC	

Report Format: DU Report with 'J' Qualifiers

Project Name: 1153 WEST FAYETTE ST., PHASE I

Project Number: AB2.001.002

Lab Number:	L2322083
Report Date:	05/01/23

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(a)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **F** The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

¹

Project Name: 1153 WEST FAYETTE ST., PHASE I

Project Number: AB2.001.002

Lab Number: L2322083

Report Date: 05/01/23

Data Qualifiers

Identified Compounds (TICs).

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Project Name:1153 WEST FAYETTE ST., PHASE IProject Number:AB2.001.002

 Lab Number:
 L2322083

 Report Date:
 05/01/23

REFERENCES

1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D/8270E: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. **SM4500**: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS EPA 8082A: <u>NPW</u>: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics, EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs **EPA 625.1**: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045**: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B**

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitne Albany, NY 12205: 14 Walker Tonawanda, NY 14150: 275 C	Way	105	Pag	ge of (Rec'd Lab	OL	1125	5123	ALPHA Job #	3
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information	1 2 1 1 2	ALES		N. 8. 1.	Deli	verabl	es			No. No. To	Billing Information	
TEL: 508-898-9220	TEL: 508-822-9300	Project Name: (153 (Nest Fay	lette st l	phase 1	1 ESA		ASF	-A	Ē	ASP	-В	Same as Client Info	
FAX: 508-898-9193	FAX: 508-822-3288	Project Location: SV /						EQU	IS (1 Fil	e) [EQui	IS (4 File)	PO#	
Client Information		Project # AB2. 00	1.002					Othe	ar	50 - 00 5		20		
Client: C3S Engi	neers	(Use Project name as P	the second s	1			Reg	ulator	Requir	ement	1		Disposal Site Information	
Address: 499 Col	- Fileen Collins	Project Manager: CLC		Fatti		01	- Contraction of the local division of the l	NYT		. I	NY Pa	art 375	Please identify below location	of.
Blud, Syracuse,	NY 13212	ALPHAQuote #:	nic per	TOIL .			16		Standard	ts [NYC		applicable disposal facilities.	01
Phone:		Turn-Around Time	- William Street	And and a state of the second	a Contract	-		100123	estricted	8 E	Other		Disposal Facility:	*******
Fax:		Standar	d M	Due Date					nrestricte					
Email: CO CI Fatti (Desces.com	Rush (only if pre approved		# of Days				1000	Sewer Di				Other.	
These samples have be				in or buyo			ANA	LYSIS		ania Da	_		Sample Filtration	T
Other project specific							-	1		-	-			- 0
	•						N1-0628	Total Ita, metals	0				Done	1 a
							2	E I	50				Preservation	1
Please specify Metals	or TAL.						- 28	18	00				Lab to do	в
Total metal							- ĭ,	0	11				(Planca Specify below)	0
ALPHA Lab ID	s, ionacing		Cell	laction		1.20	12	E	12				(Please Specify below)	t t
(Lab Use Only)	Sa	mple ID		lection	Sample Matrix	Sampler's Initials	NYTCI	18	12				n/a	-11
	- In Al		Date	Time		A SCOTT STORE	<						Sample Specific Comments	
	TW-0		04/24/23		water	CDINB	X	X	X	_	-			6
	TW-02			1453			X	X	X	_				6
	TW-03			1605			X	x	X	_				6
-04	TW-04		+	1700	t	*	X	X	X					6
										_				
												-		
	Container Code P = Plastic	Westboro: Certification N	o: MA935		Con	tainer Type	Δ	D	.1				Please print clearly, legib	yk
I = HCI	A = Amber Glass	Mansfield: Certification No	o: MA015		001	itanici iypo	H	P					and completely. Samples	
RENER	V = Vial G = Glass					reservative	n	0	2				not be logged in and turnaround time clock wil	Inat
	B = Bacteria Cup				5	reservative	A	G	B				start until any ambiguities	0.01.000
moorr	C = Cube D = Other	Relinquished E	By:	Date/T	Time	1 1	Receiv	ed By			Date/	Time	resolved. BY EXECUTIN	IG
= Na ₂ S ₂ O ₁ E	E = Encore	CIOPFatti (C.De	the second se	04/24/23	3 1820	IN	-	-	_	4/2	5/23	0110	THIS COC, THE CLIENT	
/E = Zn Ac/NaOH	D = BOD Bottle		1										HAS READ AND AGREE TO BE BOUND BY ALPH	
= Other													TERMS & CONDITIONS	
orm No: 01-25 HC (rev. 30- age 66 of 66	Sept-2013)					0							(See reverse side.)	

lĒ

ANALYTICAL REPORT

Lab Number:	L2322073
Client:	C&S Companies
	499 Col. Eileen Collins Blvd.
	Syracuse, NY 13212
ATTN:	Claire Del Fatti
Phone:	(315) 703-4233
Project Name:	1153 WEST FAYETTE ST PHASE II
Project Number:	AB2.001.002
Report Date:	05/08/23

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name:1153 WEST FAYETTE ST PHASE IIProject Number:AB2.001.002

 Lab Number:
 L2322073

 Report Date:
 05/08/23

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2322073-01	BH-01 0-5	SOIL	SYRACUSE, NY	04/24/23 09:00	04/24/23
L2322073-02	BH-04 8-10	SOIL	SYRACUSE, NY	04/24/23 10:30	04/24/23
L2322073-03	BH-06 11-14	SOIL	SYRACUSE, NY	04/24/23 12:00	04/24/23
L2322073-04	BH-07 5-9	SOIL	SYRACUSE, NY	04/24/23 13:30	04/24/23
L2322073-05	BH-08 0-5	SOIL	SYRACUSE, NY	04/24/23 13:45	04/24/23
L2322073-06	BH-10 5-9	SOIL	SYRACUSE, NY	04/24/23 15:00	04/24/23

Project Name: 1153 WEST FAYETTE ST PHASE II Project Number: AB2.001.002

 Lab Number:
 L2322073

 Report Date:
 05/08/23

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name: 1153 WEST FAYETTE ST PHASE II Project Number: AB2.001.002

 Lab Number:
 L2322073

 Report Date:
 05/08/23

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

L2322073-03: The surrogate recovery is outside the acceptance criteria for 4-bromofluorobenzene (177%); however, the sample was not re-analyzed due to coelution with an obvious interference. A copy of the chromatogram is included as an attachment to this report.

L2322073-06: The acetone result should be considered estimated due to co-elution with a non-target compound.

Semivolatile Organics

L2322073-03: The sample has elevated detection limits due to the limited sample volume utilized during extraction, as required by the sample matrix.

Total Metals

L2322073-01, -02, -04, -05, and -06: The sample has an elevated detection limit for Silver, due to the dilution required by the sample matrix.

L2322073-03: The sample has an elevated detection limits for all elements, with the exception of mercury, due to the dilution required by the sample matrix.

Cyanide, Total

The WG1774590-3 LCSD recovery for cyanide, total (79%), associated with L2322073-01, is outside our inhouse acceptance criteria, but within the vendor-certified acceptance limits. The results of the original analyses are reported.

The WG1774905-2/-3 LCS/LCSD recoveries for cyanide, total (74%/35%), associated with L2322073-02 through -06, are outside our in-house acceptance criteria, but within the vendor-certified acceptance limits.

Project Name: 1153 WEST FAYETTE ST PHASE II Project Number: AB2.001.002

 Lab Number:
 L2322073

 Report Date:
 05/08/23

Case Narrative (continued)

The results of the original analyses are reported. The LCS/LCSD RPD is above the acceptance criteria for cyanide, total (70%).

Hexavalent Chromium

The WG1772040-2 LCS recovery for chromium, hexavalent (79%), associated with L2322073-01 through -06, is outside our in-house acceptance criteria, but within the vendor-certified acceptance limits. The results of the original analyses are reported.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Jufani Morrissey - Tiffani Morrissey

Title: Technical Director/Representative

Date: 05/08/23

ORGANICS

VOLATILES

		Serial_No:05082316:50	
Project Name:	1153 WEST FAYETTE ST PHASE II	Lab Number: L2322073	
Project Number:	AB2.001.002	Report Date: 05/08/23	
	SAMPLE RESULTS		
Lab ID:	L2322073-02	Date Collected: 04/24/23 10:30	
Client ID:	BH-04 8-10	Date Received: 04/24/23	
Sample Location:	SYRACUSE, NY	Field Prep: Not Specified	
Sample Depth:			
Matrix:	Soil		
Analytical Method:	1,8260D		
Analytical Date:	05/04/23 21:27		
Analyst:	JIC		
Percent Solids:	78%		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Volatile Organics by EPA 5035 L	/olatile Organics by EPA 5035 Low - Westborough Lab									
Methylene chloride	ND		ug/kg	6.4	2.9	1				
1,1-Dichloroethane	ND		ug/kg	1.3	0.19	1				
Chloroform	ND		ug/kg	1.9	0.18	1				
Carbon tetrachloride	ND		ug/kg	1.3	0.30	1				
Tetrachloroethene	ND		ug/kg	0.64	0.25	1				
Chlorobenzene	ND		ug/kg	0.64	0.16	1				
1,2-Dichloroethane	ND		ug/kg	1.3	0.33	1				
1,1,1-Trichloroethane	ND		ug/kg	0.64	0.21	1				
Benzene	2.7		ug/kg	0.64	0.21	1				
Toluene	8.7		ug/kg	1.3	0.70	1				
Ethylbenzene	8.5		ug/kg	1.3	0.18	1				
Vinyl chloride	ND		ug/kg	1.3	0.43	1				
1,1-Dichloroethene	ND		ug/kg	1.3	0.31	1				
trans-1,2-Dichloroethene	ND		ug/kg	1.9	0.18	1				
Trichloroethene	ND		ug/kg	0.64	0.18	1				
1,2-Dichlorobenzene	ND		ug/kg	2.6	0.18	1				
1,3-Dichlorobenzene	ND		ug/kg	2.6	0.19	1				
1,4-Dichlorobenzene	ND		ug/kg	2.6	0.22	1				
Methyl tert butyl ether	ND		ug/kg	2.6	0.26	1				
p/m-Xylene	5.7		ug/kg	2.6	0.72	1				
o-Xylene	3.4		ug/kg	1.3	0.37	1				
cis-1,2-Dichloroethene	ND		ug/kg	1.3	0.22	1				
Acetone	ND		ug/kg	13	6.2	1				
2-Butanone	ND		ug/kg	13	2.8	1				
n-Butylbenzene	1.8		ug/kg	1.3	0.21	1				
sec-Butylbenzene	0.95	J	ug/kg	1.3	0.19	1				
tert-Butylbenzene	ND		ug/kg	2.6	0.15	1				
n-Propylbenzene	4.7		ug/kg	1.3	0.22	1				

						rial_No	0:05082316:50
Project Name:	1153 WEST FAYETTE	ST PHASE	II		Lab Num	ber:	L2322073
Project Number:	AB2.001.002				Report D	ate:	05/08/23
		SAMP	LE RESULT	S			
Lab ID:	L2322073-02				Date Collec	cted:	04/24/23 10:30
Client ID:	BH-04 8-10				Date Recei	ved:	04/24/23
Sample Location:	SYRACUSE, NY				Field Prep:		Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y EPA 5035 Low - West	borough Lab					
1,3,5-Trimethylbenzene		0.37	J	ug/kg	2.6	0.25	1
1,2,4-Trimethylbenzene		1.3	J	ug/kg	2.6	0.43	1
1,4-Dioxane		ND		ug/kg	100	45.	1
Surrogate				% Recovery	Qualifier		ceptance Criteria
1,2-Dichloroethane	e-d4			103			70-130

125 88

70-130

70-130

4-Bromofluorobenzene

Dibromofluoromethane

			Serial_N	p:05082316:50
Project Name:	1153 WEST FAYETTE ST F	PHASE II	Lab Number:	L2322073
Project Number:	AB2.001.002		Report Date:	05/08/23
		SAMPLE RESULTS		
Lab ID:	L2322073-03		Date Collected:	04/24/23 12:00
Client ID:	BH-06 11-14		Date Received:	04/24/23
Sample Location:	SYRACUSE, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil			
Analytical Method:	1,8260D			
Analytical Date:	05/04/23 21:47			
Analyst:	JIC			

80%

Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 L	ow - Westborough Lab					
Methylene chloride	ND		ug/kg	8.4	3.8	1
1,1-Dichloroethane	ND		ug/kg	1.7	0.24	1
Chloroform	ND		ug/kg	2.5	0.24	1
Carbon tetrachloride	ND		ug/kg	1.7	0.39	1
Tetrachloroethene	ND		ug/kg	0.84	0.33	1
Chlorobenzene	ND		ug/kg	0.84	0.21	1
1,2-Dichloroethane	ND		ug/kg	1.7	0.43	1
1,1,1-Trichloroethane	ND		ug/kg	0.84	0.28	1
Benzene	15		ug/kg	0.84	0.28	1
Toluene	24		ug/kg	1.7	0.91	1
Ethylbenzene	12		ug/kg	1.7	0.24	1
Vinyl chloride	ND		ug/kg	1.7	0.56	1
1,1-Dichloroethene	ND		ug/kg	1.7	0.40	1
trans-1,2-Dichloroethene	ND		ug/kg	2.5	0.23	1
Trichloroethene	ND		ug/kg	0.84	0.23	1
1,2-Dichlorobenzene	ND		ug/kg	3.4	0.24	1
1,3-Dichlorobenzene	ND		ug/kg	3.4	0.25	1
1,4-Dichlorobenzene	ND		ug/kg	3.4	0.29	1
Methyl tert butyl ether	ND		ug/kg	3.4	0.34	1
p/m-Xylene	8.5		ug/kg	3.4	0.94	1
o-Xylene	5.4		ug/kg	1.7	0.49	1
cis-1,2-Dichloroethene	ND		ug/kg	1.7	0.29	1
Acetone	110		ug/kg	17	8.1	1
2-Butanone	25		ug/kg	17	3.7	1
n-Butylbenzene	3.5		ug/kg	1.7	0.28	1
sec-Butylbenzene	2.8		ug/kg	1.7	0.24	1
tert-Butylbenzene	5.1		ug/kg	3.4	0.20	1
n-Propylbenzene	4.6		ug/kg	1.7	0.29	1

						rial_No	0:05082316:50
Project Name:	1153 WEST FAYETTE	ST PHASE	II		Lab Num	ber:	L2322073
Project Number:	AB2.001.002				Report D	ate:	05/08/23
		SAMP	LE RESULT	S			
Lab ID:	L2322073-03				Date Colle	cted:	04/24/23 12:00
Client ID:	BH-06 11-14				Date Rece	ived:	04/24/23
Sample Location:	SYRACUSE, NY				Field Prep:		Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y EPA 5035 Low - West	porough Lab					
1,3,5-Trimethylbenzene		0.53	J	ug/kg	3.4	0.32	1
1,2,4-Trimethylbenzene		2.8	J	ug/kg	3.4	0.56	1
1,4-Dioxane		ND		ug/kg	130	59.	1
Surrogate				% Recovery	Qualifier		ceptance Criteria
1,2-Dichloroethane	e-d4			120			70-130
Toluene-d8				106			70-130

177

99

70-130

70-130

Q

4-Bromofluorobenzene

Dibromofluoromethane

		Serial_N	o:05082316:50
Project Name:	1153 WEST FAYETTE ST PHASE II	Lab Number:	L2322073
Project Number:	AB2.001.002	Report Date:	05/08/23
	SAMPLE RESULTS		
Lab ID:	L2322073-04	Date Collected:	04/24/23 13:30
Client ID:	BH-07 5-9	Date Received:	04/24/23
Sample Location:	SYRACUSE, NY	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Soil		
Analytical Method:	1,8260D		
Analytical Date:	05/03/23 18:09		
Analyst:	JIC		
Percent Solids:	80%		

Parameter	Result	Qualifier U	nits RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 L	ow - Westborough Lab				
Methylene chloride	ND	ua	/kg 7.6	3.5	1
1,1-Dichloroethane	ND		/kg 1.5		1
Chloroform	ND		/kg 2.3		1
Carbon tetrachloride	ND		/kg 1.5		1
Tetrachloroethene	ND		/kg 0.7		1
Chlorobenzene	ND		/kg 0.7	6 0.19	1
1,2-Dichloroethane	ND		/kg 1.5	0.39	1
1,1,1-Trichloroethane	ND		/kg 0.7	6 0.25	1
Benzene	ND		/kg 0.7	6 0.25	1
Toluene	ND		/kg 1.5	0.82	1
Ethylbenzene	ND	ug	/kg 1.5	0.21	1
Vinyl chloride	ND	ug	/kg 1.5	0.51	1
1,1-Dichloroethene	ND	ug	/kg 1.5	0.36	1
trans-1,2-Dichloroethene	ND	ug	/kg 2.3	0.21	1
Trichloroethene	ND	ug	/kg 0.7	6 0.21	1
1,2-Dichlorobenzene	ND	ug	/kg 3.0	0.22	1
1,3-Dichlorobenzene	ND	ug	/kg 3.0	0.22	1
1,4-Dichlorobenzene	ND	ug	/kg 3.0	0.26	1
Methyl tert butyl ether	ND	ug	/kg 3.0	0.30	1
p/m-Xylene	ND	ug	/kg 3.0	0.85	1
o-Xylene	ND	ug	/kg 1.5	0.44	1
cis-1,2-Dichloroethene	ND	ug	/kg 1.5	0.27	1
Acetone	ND	ug	/kg 15	7.3	1
2-Butanone	ND	ug	/kg 15	3.4	1
n-Butylbenzene	ND	ug	/kg 1.5	0.25	1
sec-Butylbenzene	ND	ug	/kg 1.5	0.22	1
tert-Butylbenzene	ND	ug	/kg 3.0	0.18	1
n-Propylbenzene	ND	ug	/kg 1.5	0.26	1

						rial_No	0:05082316:50
Project Name:	1153 WEST FAYETTE	ST PHASE	II		Lab Num	ber:	L2322073
Project Number:	AB2.001.002				Report D	ate:	05/08/23
		SAMPI	LE RESULT	S			
Lab ID:	L2322073-04				Date Collec	cted:	04/24/23 13:30
Client ID:	BH-07 5-9				Date Recei	ved:	04/24/23
Sample Location:	SYRACUSE, NY				Field Prep:		Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y EPA 5035 Low - West	borough Lab					
1,3,5-Trimethylbenzene		ND		ug/kg	3.0	0.29	1
1,2,4-Trimethylbenzene		ND		ug/kg	3.0	0.51	1
1,4-Dioxane		ND		ug/kg	120	53.	1
Surrogate				% Recovery	Qualifier		ceptance Criteria
1,2-Dichloroethane	e-d4			106			70-130
Toluene-d8				102			70-130

107

99

70-130

70-130

4-Bromofluorobenzene Dibromofluoromethane

		Serial_No:05082316:50
Project Name:	1153 WEST FAYETTE ST PHASE II	Lab Number: L2322073
Project Number:	AB2.001.002	Report Date: 05/08/23
	SAMPLE RESULTS	
Lab ID:	L2322073-05	Date Collected: 04/24/23 13:45
Client ID:	BH-08 0-5	Date Received: 04/24/23
Sample Location:	SYRACUSE, NY	Field Prep: Not Specified
Sample Depth:		
Matrix:	Soil	
Analytical Method:	1,8260D	
Analytical Date:	05/03/23 18:35	
Analyst:	JIC	

92%

Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
/olatile Organics by EPA 5035 Low - Westborough Lab									
Methylene chloride	ND		ug/kg	6.9	3.2	1			
1,1-Dichloroethane	ND		ug/kg	1.4	0.20	1			
Chloroform	ND		ug/kg	2.1	0.19	1			
Carbon tetrachloride	ND		ug/kg	1.4	0.32	1			
Tetrachloroethene	ND		ug/kg	0.69	0.27	1			
Chlorobenzene	ND		ug/kg	0.69	0.18	1			
1,2-Dichloroethane	ND		ug/kg	1.4	0.36	1			
1,1,1-Trichloroethane	ND		ug/kg	0.69	0.23	1			
Benzene	2.2		ug/kg	0.69	0.23	1			
Toluene	1.6		ug/kg	1.4	0.75	1			
Ethylbenzene	0.66	J	ug/kg	1.4	0.20	1			
Vinyl chloride	ND		ug/kg	1.4	0.46	1			
1,1-Dichloroethene	ND		ug/kg	1.4	0.33	1			
trans-1,2-Dichloroethene	ND		ug/kg	2.1	0.19	1			
Trichloroethene	ND		ug/kg	0.69	0.19	1			
1,2-Dichlorobenzene	ND		ug/kg	2.8	0.20	1			
1,3-Dichlorobenzene	ND		ug/kg	2.8	0.20	1			
1,4-Dichlorobenzene	ND		ug/kg	2.8	0.24	1			
Methyl tert butyl ether	ND		ug/kg	2.8	0.28	1			
p/m-Xylene	ND		ug/kg	2.8	0.78	1			
o-Xylene	ND		ug/kg	1.4	0.40	1			
cis-1,2-Dichloroethene	ND		ug/kg	1.4	0.24	1			
Acetone	12	J	ug/kg	14	6.7	1			
2-Butanone	ND		ug/kg	14	3.1	1			
n-Butylbenzene	ND		ug/kg	1.4	0.23	1			
sec-Butylbenzene	ND		ug/kg	1.4	0.20	1			
tert-Butylbenzene	ND		ug/kg	2.8	0.16	1			
n-Propylbenzene	ND		ug/kg	1.4	0.24	1			

			Serial_No:05082316:50				
Project Name:	1153 WEST FAYETTE	ST PHASE	II		Lab Num	ber:	L2322073
Project Number:	AB2.001.002			Report Date:			05/08/23
		SAMPI	E RESULT	S			
Lab ID:	L2322073-05				Date Colle	cted:	04/24/23 13:45
Client ID:	BH-08 0-5				Date Recei	ived:	04/24/23
Sample Location:	SYRACUSE, NY				Field Prep:		Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y EPA 5035 Low - West	borough Lab					
1,3,5-Trimethylbenzene		ND		ug/kg	2.8	0.27	1
1,2,4-Trimethylbenzene		ND		ug/kg	2.8	0.46	1
1,4-Dioxane		ND		ug/kg	110	48.	1
Surrogate				% Recovery	Qualifier		ceptance Criteria
1,2-Dichloroethane	e-d4			107			70-130
Toluene-d8				102			70-130

106 101

70-130

70-130

4-Bromofluorobenzene

Dibromofluoromethane

		Serial_No:05082316:50
Project Name:	1153 WEST FAYETTE ST PHASE II	Lab Number: L2322073
Project Number:	AB2.001.002	Report Date: 05/08/23
	SAMPLE RESULTS	
Lab ID:	L2322073-06	Date Collected: 04/24/23 15:00
Client ID:	BH-10 5-9	Date Received: 04/24/23
Sample Location:	SYRACUSE, NY	Field Prep: Not Specified
Sample Depth:		
Matrix:	Soil	
Analytical Method:	1,8260D	
Analytical Date:	05/03/23 17:44	
Analyst:	JIC	
Percent Solids:	86%	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 L	ow - Westborough Lab					
Methylene chloride	ND		ug/kg	18	8.1	1
1,1-Dichloroethane	ND		ug/kg	3.5	0.51	1
Chloroform	ND		ug/kg	5.3	0.49	1
Carbon tetrachloride	ND		ug/kg	3.5	0.81	1
Tetrachloroethene	ND		ug/kg	1.8	0.69	1
Chlorobenzene	ND		ug/kg	1.8	0.45	1
1,2-Dichloroethane	ND		ug/kg	3.5	0.91	1
1,1,1-Trichloroethane	ND		ug/kg	1.8	0.59	1
Benzene	ND		ug/kg	1.8	0.59	1
Toluene	ND		ug/kg	3.5	1.9	1
Ethylbenzene	0.88	J	ug/kg	3.5	0.50	1
Vinyl chloride	ND		ug/kg	3.5	1.2	1
1,1-Dichloroethene	ND		ug/kg	3.5	0.84	1
trans-1,2-Dichloroethene	ND		ug/kg	5.3	0.48	1
Trichloroethene	ND		ug/kg	1.8	0.48	1
1,2-Dichlorobenzene	ND		ug/kg	7.1	0.51	1
1,3-Dichlorobenzene	ND		ug/kg	7.1	0.52	1
1,4-Dichlorobenzene	ND		ug/kg	7.1	0.60	1
Methyl tert butyl ether	ND		ug/kg	7.1	0.71	1
p/m-Xylene	ND		ug/kg	7.1	2.0	1
o-Xylene	ND		ug/kg	3.5	1.0	1
cis-1,2-Dichloroethene	ND		ug/kg	3.5	0.62	1
Acetone	41		ug/kg	35	17.	1
2-Butanone	7.8	J	ug/kg	35	7.8	1
n-Butylbenzene	ND		ug/kg	3.5	0.59	1
sec-Butylbenzene	ND		ug/kg	3.5	0.52	1
tert-Butylbenzene	ND		ug/kg	7.1	0.42	1
n-Propylbenzene	ND		ug/kg	3.5	0.60	1

			Serial_No:05082316:50				
Project Name:	1153 WEST FAYETTE	ST PHASE	II		Lab Num	ber:	L2322073
Project Number:	AB2.001.002				Report D	ate:	05/08/23
		SAMPL	E RESULT	S			
Lab ID:	L2322073-06				Date Colle	cted:	04/24/23 15:00
Client ID:	BH-10 5-9				Date Rece	ived:	04/24/23
Sample Location:	SYRACUSE, NY				Field Prep:		Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y EPA 5035 Low - West	borough Lab					
1,3,5-Trimethylbenzene		ND		ug/kg	7.1	0.68	1
1,2,4-Trimethylbenzene		ND		ug/kg	7.1	1.2	1
1,4-Dioxane		ND		ug/kg	280	120	1
Surrogate				% Recovery	Qualifier		ceptance Criteria
1,2-Dichloroethane	-d4			106			70-130
Toluene-d8				104			70-130

115 101

70-130

70-130

4-Bromofluorobenzene

Dibromofluoromethane

Project Name: 1153 WEST FAYETTE ST PHASE II

Project Number: AB2.001.002

 Lab Number:
 L2322073

 Report Date:
 05/08/23

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260DAnalytical Date:05/03/23 16:52Analyst:LAC

Parameter	Result	Qualifier	Units	RL	MDL	
olatile Organics by EPA 5035	Low - Westboro	ough Lab fo	or sample(s):	01,04-06	Batch:	WG1774811-5
Methylene chloride	ND		ug/kg	5.0	2.3	
1,1-Dichloroethane	ND		ug/kg	1.0	0.14	
Chloroform	ND		ug/kg	1.5	0.14	
Carbon tetrachloride	ND		ug/kg	1.0	0.23	
Tetrachloroethene	ND		ug/kg	0.50	0.20	
Chlorobenzene	ND		ug/kg	0.50	0.13	
1,2-Dichloroethane	ND		ug/kg	1.0	0.26	
1,1,1-Trichloroethane	ND		ug/kg	0.50	0.17	
Benzene	ND		ug/kg	0.50	0.17	
Toluene	ND		ug/kg	1.0	0.54	
Ethylbenzene	ND		ug/kg	1.0	0.14	
Vinyl chloride	ND		ug/kg	1.0	0.34	
1,1-Dichloroethene	ND		ug/kg	1.0	0.24	
trans-1,2-Dichloroethene	ND		ug/kg	1.5	0.14	
Trichloroethene	ND		ug/kg	0.50	0.14	
1,2-Dichlorobenzene	ND		ug/kg	2.0	0.14	
1,3-Dichlorobenzene	ND		ug/kg	2.0	0.15	
1,4-Dichlorobenzene	ND		ug/kg	2.0	0.17	
Methyl tert butyl ether	ND		ug/kg	2.0	0.20	
p/m-Xylene	ND		ug/kg	2.0	0.56	
o-Xylene	ND		ug/kg	1.0	0.29	
cis-1,2-Dichloroethene	ND		ug/kg	1.0	0.18	
Acetone	ND		ug/kg	10	4.8	
2-Butanone	ND		ug/kg	10	2.2	
n-Butylbenzene	ND		ug/kg	1.0	0.17	
sec-Butylbenzene	ND		ug/kg	1.0	0.15	
tert-Butylbenzene	ND		ug/kg	2.0	0.12	
n-Propylbenzene	ND		ug/kg	1.0	0.17	
1,3,5-Trimethylbenzene	ND		ug/kg	2.0	0.19	

L2322073

05/08/23

Lab Number:

Report Date:

Project Name: 1153 WEST FAYETTE ST PHASE II

Project Number: AB2.001.002

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260DAnalytical Date:05/03/23 16:52Analyst:LAC

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by EPA 5035	5 Low - Westbord	ough Lab fo	or sample(s):	01,04-06	Batch:	WG1774811-5
1,2,4-Trimethylbenzene	ND		ug/kg	2.0	0.33	
1,4-Dioxane	ND		ug/kg	80	35.	

		A	Acceptance
Surrogate	%Recovery	Qualifier	Criteria
1,2-Dichloroethane-d4	104		70-130
Toluene-d8	101		70-130
4-Bromofluorobenzene	98		70-130
Dibromofluoromethane	95		70-130

Project Name: 1153 WEST FAYETTE ST PHASE II

Project Number: AB2.001.002

 Lab Number:
 L2322073

 Report Date:
 05/08/23

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260DAnalytical Date:05/04/23 16:31Analyst:LAC

arameter	Result	Qualifier	Units	RL	Μ	IDL
olatile Organics by EPA 5035 Lov	v - Westboro	ugh Lab fo	r sample(s):	02-03	Batch:	WG1775264-5
Methylene chloride	ND		ug/kg	5.0		2.3
1,1-Dichloroethane	ND		ug/kg	1.0	().14
Chloroform	ND		ug/kg	1.5	(0.14
Carbon tetrachloride	ND		ug/kg	1.0	().23
Tetrachloroethene	ND		ug/kg	0.50	().20
Chlorobenzene	ND		ug/kg	0.50	().13
1,2-Dichloroethane	ND		ug/kg	1.0	().26
1,1,1-Trichloroethane	ND		ug/kg	0.50	().17
Benzene	ND		ug/kg	0.50	().17
Toluene	ND		ug/kg	1.0	().54
Ethylbenzene	ND		ug/kg	1.0	().14
Vinyl chloride	ND		ug/kg	1.0	().34
1,1-Dichloroethene	ND		ug/kg	1.0	().24
trans-1,2-Dichloroethene	ND		ug/kg	1.5	().14
Trichloroethene	ND		ug/kg	0.50	().14
1,2-Dichlorobenzene	ND		ug/kg	2.0	().14
1,3-Dichlorobenzene	ND		ug/kg	2.0	().15
1,4-Dichlorobenzene	ND		ug/kg	2.0	().17
Methyl tert butyl ether	ND		ug/kg	2.0	().20
p/m-Xylene	ND		ug/kg	2.0	().56
o-Xylene	ND		ug/kg	1.0	().29
cis-1,2-Dichloroethene	ND		ug/kg	1.0	().18
Acetone	ND		ug/kg	10		4.8
2-Butanone	ND		ug/kg	10		2.2
n-Butylbenzene	ND		ug/kg	1.0	().17
sec-Butylbenzene	ND		ug/kg	1.0	().15
tert-Butylbenzene	ND		ug/kg	2.0	().12
n-Propylbenzene	ND		ug/kg	1.0	().17
1,3,5-Trimethylbenzene	ND		ug/kg	2.0	(0.19

L2322073

05/08/23

Lab Number:

Report Date:

Project Name: 1153 WEST FAYETTE ST PHASE II

Project Number: AB2.001.002

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260DAnalytical Date:05/04/23 16:31Analyst:LAC

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Organics by EPA 5035 L	ow - Westbor	ough Lab for	sample(s):	02-03	Batch: WG1775264-5
1,2,4-Trimethylbenzene	ND		ug/kg	2.0	0.33
1,4-Dioxane	ND		ug/kg	80	35.

			Acceptance
Surrogate	%Recovery	Qualifier	Criteria
1,2-Dichloroethane-d4	126		70-130
Toluene-d8	97		70-130
4-Bromofluorobenzene	102		70-130
Dibromofluoromethane	104		70-130

Lab Control Sample Analysis Batch Quality Control

Project Number: AB2.001.002 Lab Number: L2322073 Report Date: 05/08/23

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPI Qual Limi	
/olatile Organics by EPA 5035 Low - We	estborough Lab Asso	ociated sample	(s): 01,04-06	Batch: W	/G1774811-3 WG1	774811-4		
Methylene chloride	81		82		70-130	1	30	
1,1-Dichloroethane	89		89		70-130	0	30	
Chloroform	91		91		70-130	0	30	
Carbon tetrachloride	92		90		70-130	2	30	
Tetrachloroethene	92		91		70-130	1	30	
Chlorobenzene	90		89		70-130	1	30	
1,2-Dichloroethane	93		93		70-130	0	30	
1,1,1-Trichloroethane	93		93		70-130	0	30	
Benzene	87		86		70-130	1	30	
Toluene	86		85		70-130	1	30	
Ethylbenzene	91		89		70-130	2	30	
Vinyl chloride	77		78		67-130	1	30	
1,1-Dichloroethene	85		85		65-135	0	30	
trans-1,2-Dichloroethene	86		86		70-130	0	30	
Trichloroethene	92		93		70-130	1	30	
1,2-Dichlorobenzene	90		91		70-130	1	30	
1,3-Dichlorobenzene	88		88		70-130	0	30	
1,4-Dichlorobenzene	89		89		70-130	0	30	
Methyl tert butyl ether	89		91		66-130	2	30	
p/m-Xylene	90		88		70-130	2	30	
o-Xylene	91		89		70-130	2	30	
cis-1,2-Dichloroethene	88		89		70-130	1	30	
Acetone	79		88		54-140	11	30	

Lab Control Sample Analysis Batch Quality Control

Project Name: 1153 WEST FAYETTE ST PHASE II

Project Number: AB2.001.002 Lab Number: L2322073 Report Date: 05/08/23

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by EPA 5035 Low - Westbo	rough Lab Asso	ociated sample	(s): 01,04-06	Batch: W	/G1774811-3 W	G1774811-4		
2-Butanone	82		90		70-130	9		30
n-Butylbenzene	92		89		70-130	3		30
sec-Butylbenzene	91		90		70-130	1		30
tert-Butylbenzene	91		90		70-130	1		30
n-Propylbenzene	91		90		70-130	1		30
1,3,5-Trimethylbenzene	91		91		70-130	0		30
1,2,4-Trimethylbenzene	91		90		70-130	1		30
1,4-Dioxane	89		95		65-136	7		30

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qua	I %Recovery Qual	Criteria
1,2-Dichloroethane-d4	103	104	70-130
Toluene-d8	101	101	70-130
4-Bromofluorobenzene	100	101	70-130
Dibromofluoromethane	98	99	70-130

Lab Control Sample Analysis

Batch Quality Control

Project Name: 1153 WEST FAYETTE ST PHASE II

Project Number: AB2.001.002

Lab Number: L2322073 Report Date: 05/08/23

LCSD LCS %Recovery RPD %Recovery %Recovery Limits RPD Limits Parameter Qual Qual Qual Volatile Organics by EPA 5035 Low - Westborough Lab Associated sample(s): 02-03 Batch: WG1775264-3 WG1775264-4 Methylene chloride 97 30 90 70-130 7 112 1,1-Dichloroethane 104 70-130 7 30 Chloroform 104 109 70-130 30 5 Carbon tetrachloride 88 95 70-130 30 8 82 86 70-130 30 Tetrachloroethene 5 Chlorobenzene 91 96 70-130 5 30 115 123 70-130 30 1.2-Dichloroethane 7 1,1,1-Trichloroethane 98 104 70-130 6 30 Benzene 100 106 70-130 6 30 Toluene 87 92 70-130 6 30 Ethylbenzene 91 96 70-130 5 30 Vinyl chloride 97 103 67-130 6 30 1,1-Dichloroethene 87 90 65-135 3 30 trans-1,2-Dichloroethene 98 70-130 30 91 7 Trichloroethene 95 104 70-130 9 30 1,2-Dichlorobenzene 92 96 70-130 4 30 1,3-Dichlorobenzene 88 92 70-130 30 4 94 70-130 30 1,4-Dichlorobenzene 88 7 66-130 30 Methyl tert butyl ether 118 125 6 p/m-Xylene 91 96 70-130 5 30 o-Xylene 93 99 70-130 6 30 cis-1,2-Dichloroethene 96 102 70-130 6 30 Q Q Acetone 143 149 54-140 4 30

Lab Control Sample Analysis Batch Quality Control

Project Name: 1153 WEST FAYETTE ST PHASE II

Project Number: AB2.001.002

 Lab Number:
 L2322073

 Report Date:
 05/08/23

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics by EPA 5035 Low - Westbo	rough Lab Asso	ociated sample	(s): 02-03 Ba	atch: WG1	775264-3 WG177	75264-4		
2-Butanone	105		109		70-130	4		30
n-Butylbenzene	93		99		70-130	6		30
sec-Butylbenzene	87		92		70-130	6		30
tert-Butylbenzene	85		90		70-130	6		30
n-Propylbenzene	91		96		70-130	5		30
1,3,5-Trimethylbenzene	91		95		70-130	4		30
1,2,4-Trimethylbenzene	92		98		70-130	6		30
1,4-Dioxane	88		93		65-136	6		30

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qual	%Recovery Qual	Criteria
1,2-Dichloroethane-d4	121	124	70-130
Toluene-d8	98	98	70-130
4-Bromofluorobenzene	101	100	70-130
Dibromofluoromethane	108	108	70-130

SEMIVOLATILES

		Serial_No:05082316:50
Project Name:	1153 WEST FAYETTE ST PHASE II	Lab Number: L2322073
Project Number:	AB2.001.002	Report Date: 05/08/23
	SAMPLE RESULTS	
Lab ID:	L2322073-02	Date Collected: 04/24/23 10:30
Client ID:	BH-04 8-10	Date Received: 04/24/23
Sample Location:	SYRACUSE, NY	Field Prep: Not Specified
Sample Depth:		
Matrix:	Soil	Extraction Method: EPA 3546
Analytical Method:	1,8270E	Extraction Date: 05/04/23 22:16
Analytical Date:	05/06/23 19:29	
Analyst:	MG	
Percent Solids:	78%	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS - Westborough Lab								
Acenaphthene	150	J	ug/kg	170	22.	1		
Hexachlorobenzene	ND		ug/kg	130	24.	1		
Fluoranthene	860		ug/kg	130	24.	1		
Naphthalene	45	J	ug/kg	210	26.	1		
Benzo(a)anthracene	390		ug/kg	130	24.	1		
Benzo(a)pyrene	360		ug/kg	170	51.	1		
Benzo(b)fluoranthene	350		ug/kg	130	35.	1		
Benzo(k)fluoranthene	150		ug/kg	130	34.	1		
Chrysene	360		ug/kg	130	22.	1		
Acenaphthylene	ND		ug/kg	170	32.	1		
Anthracene	260		ug/kg	130	41.	1		
Benzo(ghi)perylene	190		ug/kg	170	25.	1		
Fluorene	120	J	ug/kg	210	20.	1		
Phenanthrene	950		ug/kg	130	26.	1		
Dibenzo(a,h)anthracene	44	J	ug/kg	130	24.	1		
Indeno(1,2,3-cd)pyrene	210		ug/kg	170	29.	1		
Pyrene	760		ug/kg	130	21.	1		
Dibenzofuran	66	J	ug/kg	210	20.	1		
Pentachlorophenol	ND		ug/kg	170	46.	1		
Phenol	ND		ug/kg	210	32.	1		
2-Methylphenol	ND		ug/kg	210	32.	1		
3-Methylphenol/4-Methylphenol	ND		ug/kg	300	33.	1		
1,4-Dioxane	ND		ug/kg	32	9.7	1		

					Serial_No:05082316:50			
Project Name:	1153 WEST FAYETTE	ST PHASE	II		Lab Nur	nber:	L2322073	
Project Number:	AB2.001.002				Report	Date:	05/08/23	
		SAMP	LE RESULTS	5				
Lab ID:	L2322073-02				Date Coll	ected:	04/24/23 10:30	
Client ID:	BH-04 8-10				Date Rec	eived:	04/24/23	
Sample Location:	SYRACUSE, NY				Field Prep	D:	Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	69	25-120
Phenol-d6	68	10-120
Nitrobenzene-d5	61	23-120
2-Fluorobiphenyl	63	30-120
2,4,6-Tribromophenol	82	10-136
4-Terphenyl-d14	45	18-120

		Serial_No:05082316:50
Project Name:	1153 WEST FAYETTE ST PHASE II	Lab Number: L2322073
Project Number:	AB2.001.002	Report Date: 05/08/23
	SAMPLE RESULTS	
Lab ID:	L2322073-03	Date Collected: 04/24/23 12:00
Client ID:	BH-06 11-14	Date Received: 04/24/23
Sample Location:	SYRACUSE, NY	Field Prep: Not Specified
Sample Depth:		
Matrix:	Soil	Extraction Method: EPA 3546
Analytical Method:	1,8270E	Extraction Date: 05/04/23 22:16
Analytical Date:	05/06/23 19:53	
Analyst:	MG	
Percent Solids:	80%	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS - Westborough Lab								
Acenaphthene	640		ug/kg	490	64.	1		
Hexachlorobenzene	ND		ug/kg	370	69.	1		
Fluoranthene	360	J	ug/kg	370	71.	1		
Naphthalene	870		ug/kg	620	75.	1		
Benzo(a)anthracene	160	J	ug/kg	370	69.	1		
Benzo(a)pyrene	160	J	ug/kg	490	150	1		
Benzo(b)fluoranthene	200	J	ug/kg	370	100	1		
Benzo(k)fluoranthene	ND		ug/kg	370	98.	1		
Chrysene	250	J	ug/kg	370	64.	1		
Acenaphthylene	ND		ug/kg	490	95.	1		
Anthracene	ND		ug/kg	370	120	1		
Benzo(ghi)perylene	210	J	ug/kg	490	72.	1		
Fluorene	ND		ug/kg	620	60.	1		
Phenanthrene	560		ug/kg	370	75.	1		
Dibenzo(a,h)anthracene	ND		ug/kg	370	71.	1		
Indeno(1,2,3-cd)pyrene	160	J	ug/kg	490	86.	1		
Pyrene	490		ug/kg	370	61.	1		
Dibenzofuran	ND		ug/kg	620	58.	1		
Pentachlorophenol	ND		ug/kg	490	140	1		
Phenol	ND		ug/kg	620	93.	1		
2-Methylphenol	ND		ug/kg	620	95.	1		
3-Methylphenol/4-Methylphenol	ND		ug/kg	890	96.	1		
1,4-Dioxane	ND		ug/kg	92	28.	1		

					Serial_No:05082316:50			
Project Name:	1153 WEST FAYETTE	ST PHASE	II		Lab Nur	nber:	L2322073	
Project Number:	AB2.001.002				Report I	Date:	05/08/23	
		SAMP	LE RESULTS	5				
Lab ID:	L2322073-03				Date Colle	ected:	04/24/23 12:00	
Client ID:	BH-06 11-14				Date Reco	eived:	04/24/23	
Sample Location:	SYRACUSE, NY				Field Prep):	Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	100	25-120
Phenol-d6	95	10-120
Nitrobenzene-d5	91	23-120
2-Fluorobiphenyl	77	30-120
2,4,6-Tribromophenol	103	10-136
4-Terphenyl-d14	82	18-120

		Serial_No	:05082316:50
Project Name:	1153 WEST FAYETTE ST PHASE II	Lab Number:	L2322073
Project Number:	AB2.001.002	Report Date:	05/08/23
	SAMPLE RESULTS		
Lab ID:	L2322073-04	Date Collected:	04/24/23 13:30
Client ID:	BH-07 5-9	Date Received:	04/24/23
Sample Location:	SYRACUSE, NY	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Soil	Extraction Method	l: EPA 3546
Analytical Method: Analytical Date: Analyst: Percent Solids:	1,8270E 05/06/23 20:17 MG ^{80%}	Extraction Date:	05/04/23 22:16

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Westborough Lab					
Acenaphthene	54	J	ug/kg	160	21.	1
Hexachlorobenzene	ND		ug/kg	120	23.	1
Fluoranthene	380		ug/kg	120	23.	1
Naphthalene	250		ug/kg	200	25.	1
Benzo(a)anthracene	230		ug/kg	120	23.	1
Benzo(a)pyrene	230		ug/kg	160	50.	1
Benzo(b)fluoranthene	260		ug/kg	120	34.	1
Benzo(k)fluoranthene	100	J	ug/kg	120	33.	1
Chrysene	310		ug/kg	120	21.	1
Acenaphthylene	ND		ug/kg	160	32.	1
Anthracene	120		ug/kg	120	40.	1
Benzo(ghi)perylene	170		ug/kg	160	24.	1
Fluorene	150	J	ug/kg	200	20.	1
Phenanthrene	500		ug/kg	120	25.	1
Dibenzo(a,h)anthracene	41	J	ug/kg	120	24.	1
Indeno(1,2,3-cd)pyrene	160		ug/kg	160	28.	1
Pyrene	370		ug/kg	120	20.	1
Dibenzofuran	120	J	ug/kg	200	19.	1
Pentachlorophenol	ND		ug/kg	160	45.	1
Phenol	ND		ug/kg	200	31.	1
2-Methylphenol	ND		ug/kg	200	32.	1
3-Methylphenol/4-Methylphenol	ND		ug/kg	290	32.	1
1,4-Dioxane	ND		ug/kg	31	9.4	1

					Serial_No:05082316:50			
Project Name:	1153 WEST FAYETTE	ST PHASE	II		Lab Nur	nber:	L2322073	
Project Number:	AB2.001.002				Report	Date:	05/08/23	
		SAMPI	E RESULTS	5				
Lab ID:	L2322073-04				Date Coll	ected:	04/24/23 13:30	
Client ID:	BH-07 5-9				Date Rec	eived:	04/24/23	
Sample Location:	SYRACUSE, NY				Field Prep	0:	Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	68	25-120
Phenol-d6	69	10-120
Nitrobenzene-d5	78	23-120
2-Fluorobiphenyl	71	30-120
2,4,6-Tribromophenol	94	10-136
4-Terphenyl-d14	73	18-120

		Serial_No	0:05082316:50
Project Name:	1153 WEST FAYETTE ST PHASE II	Lab Number:	L2322073
Project Number:	AB2.001.002	Report Date:	05/08/23
	SAMPLE RESULTS		
Lab ID:	L2322073-05	Date Collected:	04/24/23 13:45
Client ID:	BH-08 0-5	Date Received:	04/24/23
Sample Location:	SYRACUSE, NY	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Soil	Extraction Method	l: EPA 3546
Analytical Method: Analytical Date: Analyst: Percent Solids:	1,8270E 05/06/23 20:41 MG 92%	Extraction Date:	05/04/23 22:16

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Westborough Lab					
Acenaphthene	46	J	ug/kg	140	18.	1
Hexachlorobenzene	ND		ug/kg	110	20.	1
Fluoranthene	2600		ug/kg	110	20.	1
Naphthalene	430		ug/kg	180	22.	1
Benzo(a)anthracene	2600		ug/kg	110	20.	1
Benzo(a)pyrene	5200		ug/kg	140	43.	1
Benzo(b)fluoranthene	5200		ug/kg	110	30.	1
Benzo(k)fluoranthene	1800		ug/kg	110	28.	1
Chrysene	2400		ug/kg	110	18.	1
Acenaphthylene	290		ug/kg	140	27.	1
Anthracene	420		ug/kg	110	35.	1
Benzo(ghi)perylene	6200		ug/kg	140	21.	1
Fluorene	100	J	ug/kg	180	17.	1
Phenanthrene	1700		ug/kg	110	22.	1
Dibenzo(a,h)anthracene	820		ug/kg	110	20.	1
Indeno(1,2,3-cd)pyrene	6300		ug/kg	140	25.	1
Pyrene	2700		ug/kg	110	18.	1
Dibenzofuran	240		ug/kg	180	17.	1
Pentachlorophenol	ND		ug/kg	140	39.	1
Phenol	ND		ug/kg	180	27.	1
2-Methylphenol	ND		ug/kg	180	28.	1
3-Methylphenol/4-Methylphenol	ND		ug/kg	260	28.	1
1,4-Dioxane	ND		ug/kg	27	8.2	1

Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Sample Depth:							
Sample Location:	SYRACUSE, NY				Field Prep:		Not Specified
Client ID:	BH-08 0-5				Date Recei	ived:	04/24/23
Lab ID:	L2322073-05				Date Collec	cted:	04/24/23 13:45
		SAMP	LE RESULTS	5			
Project Number:	AB2.001.002				Report D	ate:	05/08/23
Project Name:	1153 WEST FAYETTE	ST PHASE	II		Lab Num	ber:	L2322073
					Se	rial_No	0:05082316:50

% Recovery	Qualifier	Acceptance Criteria	
84		25-120	
82		10-120	
91		23-120	
90		30-120	
100		10-136	
80		18-120	
	84 82 91 90 100	84 82 91 90 100	% Recovery Qualifier Criteria 84 25-120 82 10-120 91 23-120 90 30-120 100 10-136

		Serial_No:05082316:50	
Project Name:	1153 WEST FAYETTE ST PHASE II	Lab Number: L2322073	
Project Number:	AB2.001.002	Report Date: 05/08/23	
	SAMPLE RESULTS		
Lab ID:	L2322073-06	Date Collected: 04/24/23 15:00	1
Client ID:	BH-10 5-9	Date Received: 04/24/23	
Sample Location:	SYRACUSE, NY	Field Prep: Not Specified	
Sample Depth:			
Matrix:	Soil	Extraction Method: EPA 3546	
Analytical Method: Analytical Date:	1,8270E 05/06/23 21:05	Extraction Date: 05/04/23 22:16	1
Analyst:	MG		
Percent Solids:	86%		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Westborough Lab					
Acenaphthene	ND		ug/kg	150	20.	1
Hexachlorobenzene	ND		ug/kg	110	21.	1
Fluoranthene	130		ug/kg	110	22.	1
Naphthalene	39	J	ug/kg	190	23.	1
Benzo(a)anthracene	120		ug/kg	110	21.	1
Benzo(a)pyrene	110	J	ug/kg	150	46.	1
Benzo(b)fluoranthene	130		ug/kg	110	32.	1
Benzo(k)fluoranthene	47	J	ug/kg	110	30.	1
Chrysene	160		ug/kg	110	20.	1
Acenaphthylene	ND		ug/kg	150	29.	1
Anthracene	ND		ug/kg	110	37.	1
Benzo(ghi)perylene	75	J	ug/kg	150	22.	1
Fluorene	32	J	ug/kg	190	18.	1
Phenanthrene	220		ug/kg	110	23.	1
Dibenzo(a,h)anthracene	24	J	ug/kg	110	22.	1
Indeno(1,2,3-cd)pyrene	67	J	ug/kg	150	26.	1
Pyrene	120		ug/kg	110	19.	1
Dibenzofuran	ND		ug/kg	190	18.	1
Pentachlorophenol	ND		ug/kg	150	42.	1
Phenol	ND		ug/kg	190	29.	1
2-Methylphenol	ND		ug/kg	190	29.	1
3-Methylphenol/4-Methylphenol	ND		ug/kg	270	30.	1
1,4-Dioxane	ND		ug/kg	28	8.7	1

Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Sample Depth:							
Sample Location:	SYRACUSE, NY				Field Prep:		Not Specified
Client ID:	BH-10 5-9				Date Recei	ived:	04/24/23
Lab ID:	L2322073-06				Date Collec	cted:	04/24/23 15:00
		SAMP		5			
Project Number:	AB2.001.002				Report D	ate:	05/08/23
Project Name:	1153 WEST FAYETTE	ST PHASE	II		Lab Num	ber:	L2322073
					Se	rial_No	0:05082316:50

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	67	25-120
Phenol-d6	69	10-120
Nitrobenzene-d5	73	23-120
2-Fluorobiphenyl	74	30-120
2,4,6-Tribromophenol	79	10-136
4-Terphenyl-d14	69	18-120

L2322073

05/08/23

Project Name:	1153 WEST FAYETTE ST PHASE II	Lab Number:
Project Number:	AB2.001.002	Report Date:

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: Analyst: 1,8270E 05/04/23 22:19 CMM Extraction Method: EPA 3546 Extraction Date: 05/04/23 11:36

arameter	Result	Qualifier Uni	ts RL		MDL
emivolatile Organics by GC/M	S - Westborough	Lab for samp	le(s): 01-06	Batch:	WG1774755-1
Acenaphthene	ND	ug/	′kg 130		17.
Hexachlorobenzene	ND	ug/	'kg 99		18.
Fluoranthene	ND	ug/	'kg 99		19.
Naphthalene	ND	ug/	'kg 160		20.
Benzo(a)anthracene	ND	ug/	'kg 99		18.
Benzo(a)pyrene	ND	ug/	'kg 130		40.
Benzo(b)fluoranthene	ND	ug/	'kg 99		28.
Benzo(k)fluoranthene	ND	ug/	'kg 99		26.
Chrysene	ND	ug/	'kg 99		17.
Acenaphthylene	ND	ug/	'kg 130		25.
Anthracene	ND	ug/	'kg 99		32.
Benzo(ghi)perylene	ND	ug/	'kg 130		19.
Fluorene	ND	ug/	'kg 160		16.
Phenanthrene	ND	ug/	'kg 99		20.
Dibenzo(a,h)anthracene	ND	ug/	'kg 99		19.
Indeno(1,2,3-cd)pyrene	ND	ug/	'kg 130		23.
Pyrene	ND	ug/	'kg 99		16.
Dibenzofuran	ND	ug/	'kg 160		16.
Pentachlorophenol	ND	ug/	'kg 130		36.
Phenol	ND	ug/	'kg 160		25.
2-Methylphenol	ND	ug/	'kg 160		25.
3-Methylphenol/4-Methylphenol	ND	ug/	'kg 240		26.
1,4-Dioxane	ND	ug/	'kg 25		7.6

Project Name:	1153 WEST FAYETTE ST PHASE II	Lab Number:	L2322073
Project Number:	AB2.001.002	Report Date:	05/08/23
	Method Blank Analysis Batch Quality Control		

Method B	lank Ar	alysis
Batch Qu	uality Co	ntrol

Analytical Method:	1,8270E	Extraction Method:	EPA 3546
Analytical Date:	05/04/23 22:19	Extraction Date:	05/04/23 11:36
Analyst:	СММ		

Parameter	Result	Qualifier	Units	RL		MDL
Semivolatile Organics by GC/MS -	Westboroug	h Lab for s	ample(s):	01-06	Batch:	WG1774755-1

Surrogate	%Recovery Qu	Acceptance alifier Criteria
2-Fluorophenol	64	25-120
Phenol-d6	61	10-120
Nitrobenzene-d5	59	23-120
2-Fluorobiphenyl	64	30-120
2,4,6-Tribromophenol	81	10-136
4-Terphenyl-d14	72	18-120

Lab Control Sample Analysis Batch Quality Control

Project Name: 1153 WEST FAYETTE ST PHASE II

Project Number: AB2.001.002

 Lab Number:
 L2322073

 Report Date:
 05/08/23

rameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
mivolatile Organics by GC/MS - We	estborough Lab Associated	d sample(s): 01-06 Batc	h: WG1774755-2 WG17747	55-3	
Acenaphthene	79	88	31-137	11	50
Hexachlorobenzene	87	101	40-140	15	50
Fluoranthene	81	91	40-140	12	50
Naphthalene	78	85	40-140	9	50
Benzo(a)anthracene	75	84	40-140	11	50
Benzo(a)pyrene	83	94	40-140	12	50
Benzo(b)fluoranthene	74	86	40-140	15	50
Benzo(k)fluoranthene	87	97	40-140	11	50
Chrysene	80	88	40-140	10	50
Acenaphthylene	84	95	40-140	12	50
Anthracene	83	92	40-140	10	50
Benzo(ghi)perylene	77	88	40-140	13	50
Fluorene	83	92	40-140	10	50
Phenanthrene	80	89	40-140	11	50
Dibenzo(a,h)anthracene	78	88	40-140	12	50
Indeno(1,2,3-cd)pyrene	78	89	40-140	13	50
Pyrene	82	91	35-142	10	50
Dibenzofuran	82	93	40-140	13	50
Pentachlorophenol	91	106	17-109	15	50
Phenol	90	100	Q 26-90	11	50
2-Methylphenol	82	94	30-130.	14	50
3-Methylphenol/4-Methylphenol	80	91	30-130	13	50
1,4-Dioxane	52	53	40-140	2	50

Lab Control Sample Analysis Batch Quality Control

Project Name: 1153 WEST FAYETTE ST PHASE
--

Project Number: AB2.001.002

 Lab Number:
 L2322073

 Report Date:
 05/08/23

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Semivolatile Organics by GC/MS - West	borough Lab Associa	ted sample	(s): 01-06 Batch	: WG177	4755-2 WG17747	'55-3			

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	91	99	25-120
Phenol-d6	85	95	10-120
Nitrobenzene-d5	75	82	23-120
2-Fluorobiphenyl	79	88	30-120
2,4,6-Tribromophenol	101	114	10-136
4-Terphenyl-d14	85	96	18-120

METALS

Project Name:	1153 WEST FAYETTE ST PHASE II	Lab Number:	L2322073
Project Number:	AB2.001.002	Report Date:	05/08/23
	SAMPLE RESULTS		
Lab ID:	L2322073-02	Date Collected:	04/24/23 10:30
Client ID:	BH-04 8-10	Date Received:	04/24/23
Sample Location:	SYRACUSE, NY	Field Prep:	Not Specified

Matrix: Percent Solids:	Soil 78%										
Percent Solids. Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Arsenic, Total	17.2		mg/kg	0.490	0.102	1	05/03/23 20:43	05/08/23 10:50	EPA 3050B	1,6010D	NTB
Barium, Total	28.6		mg/kg	0.490	0.085	1	05/03/23 20:43	05/08/23 10:50	EPA 3050B	1,6010D	NTB
Beryllium, Total	0.316		mg/kg	0.245	0.016	1	05/03/23 20:43	05/08/23 10:50	EPA 3050B	1,6010D	NTB
Cadmium, Total	0.710		mg/kg	0.490	0.048	1	05/03/23 20:43	05/08/23 10:50	EPA 3050B	1,6010D	NTB
Chromium, Total	21.1		mg/kg	0.490	0.047	1	05/03/23 20:43	05/08/23 10:50	EPA 3050B	1,6010D	NTB
Copper, Total	107		mg/kg	0.490	0.126	1	05/03/23 20:43	05/08/23 10:50	EPA 3050B	1,6010D	NTB
Lead, Total	90.7		mg/kg	2.45	0.131	1	05/03/23 20:43	05/08/23 10:50	EPA 3050B	1,6010D	NTB
Manganese, Total	660		mg/kg	0.490	0.078	1	05/03/23 20:43	05/08/23 10:50	EPA 3050B	1,6010D	NTB
Mercury, Total	1.87		mg/kg	0.090	0.059	1	05/03/23 21:29	05/05/23 17:47	EPA 7471B	1,7471B	DMB
Nickel, Total	28.2		mg/kg	1.22	0.118	1	05/03/23 20:43	05/08/23 10:50	EPA 3050B	1,6010D	NTB
Selenium, Total	4.85		mg/kg	0.980	0.126	1	05/03/23 20:43	05/08/23 10:50	EPA 3050B	1,6010D	NTB
Silver, Total	ND		mg/kg	1.22	0.693	5	05/03/23 20:43	05/08/23 11:43	EPA 3050B	1,6010D	NTB
Zinc, Total	192		mg/kg	2.45	0.144	1	05/03/23 20:43	05/08/23 10:50	EPA 3050B	1,6010D	NTB
General Chemistry	- Mansfie	ld Lab									
Chromium, Trivalent	21.1		mg/kg	1.03	1.03	1		05/08/23 10:50	NA	107,-	

Sample Depth:

Project Name:	1153 WEST FAYETTE ST PHASE II	Lab Number:	L2322073
Project Number:	AB2.001.002	Report Date:	05/08/23
	SAMPLE RESULTS		
Lab ID:	L2322073-03	Date Collected:	04/24/23 12:00
Client ID:	BH-06 11-14	Date Received:	04/24/23
Sample Location:	SYRACUSE, NY	Field Prep:	Not Specified

Sample Depth:

Matrix: Percent Solids:

maanna	0011										
Percent Solids:	80%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Mans	field Lab										
Arsenic, Total	38.4		mg/kg	1.00	0.208	2	05/03/23 20:43	3 05/08/23 11:26	EPA 3050B	1,6010D	NTB
Barium, Total	32.5		mg/kg	1.00	0.174	2	05/03/23 20:43	3 05/08/23 11:26	EPA 3050B	1,6010D	NTB
Beryllium, Total	1.38		mg/kg	0.501	0.033	2	05/03/23 20:43	3 05/08/23 11:26	EPA 3050B	1,6010D	NTB
Cadmium, Total	0.816	J	mg/kg	1.00	0.098	2	05/03/23 20:43	3 05/08/23 11:26	EPA 3050B	1,6010D	NTB
Chromium, Total	26.7		mg/kg	1.00	0.096	2	05/03/23 20:43	3 05/08/23 11:26	EPA 3050B	1,6010D	NTB
Copper, Total	29.1		mg/kg	1.00	0.258	2	05/03/23 20:43	3 05/08/23 11:26	EPA 3050B	1,6010D	NTB
Lead, Total	204		mg/kg	5.01	0.268	2	05/03/23 20:43	3 05/08/23 11:26	EPA 3050B	1,6010D	NTB
Manganese, Total	727		mg/kg	1.00	0.159	2	05/03/23 20:43	3 05/08/23 11:26	EPA 3050B	1,6010D	NTB
Mercury, Total	0.059	J	mg/kg	0.088	0.057	1	05/03/23 21:29	05/05/23 17:50	EPA 7471B	1,7471B	DMB
Nickel, Total	11.7		mg/kg	2.50	0.242	2	05/03/23 20:43	3 05/08/23 11:26	EPA 3050B	1,6010D	NTB
Selenium, Total	1.29	J	mg/kg	2.00	0.258	2	05/03/23 20:43	3 05/08/23 11:26	EPA 3050B	1,6010D	NTB
Silver, Total	ND		mg/kg	1.25	0.708	5		3 05/08/23 11:46		1,6010D	NTB
Zinc, Total	206		mg/kg	5.01	0.293	2		3 05/08/23 11:26		1,6010D	NTB
General Chemistry		dlab			0.200	_	00,00,20 20.40	,		,	
General Chemistry											
Chromium, Trivalent	26.7		mg/kg	1.01	1.01	1		05/08/23 11:26	NA	107,-	

Project Name:	1153 WEST FAYETTE ST PHASE II	Lab Number:	L2322073
Project Number:	AB2.001.002	Report Date:	05/08/23
	SAMPLE RESULTS		
Lab ID:	L2322073-04	Date Collected:	04/24/23 13:30
Client ID:	BH-07 5-9	Date Received:	04/24/23
Sample Location:	SYRACUSE, NY	Field Prep:	Not Specified

Sample	Depth:
--------	--------

	•	
Matrix:		
Percer	t Solids	

80%					Dilution	Date	Date	Prop	Analytical	
Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analys
field Lab										
29.8		mg/kg	0.482	0.100	1	05/03/23 20:43	05/08/23 11:12	EPA 3050B	1,6010D	NTB
69.0		mg/kg	0.482	0.084	1	05/03/23 20:43	05/08/23 11:12	EPA 3050B	1,6010D	NTB
0.511		mg/kg	0.241	0.016	1	05/03/23 20:43	05/08/23 11:12	EPA 3050B	1,6010D	NTB
1.72		mg/kg	0.482	0.047	1	05/03/23 20:43	05/08/23 11:12	EPA 3050B	1,6010D	NTB
25.9		mg/kg	0.482	0.046	1	05/03/23 20:43	05/08/23 11:12	EPA 3050B	1,6010D	NTB
58.5		mg/kg	0.482	0.124	1	05/03/23 20:43	05/08/23 11:12	EPA 3050B	1,6010D	NTB
556		mg/kg	2.41	0.129	1	05/03/23 20:43	05/08/23 11:12	EPA 3050B	1,6010D	NTB
577		mg/kg	0.482	0.077	1	05/03/23 20:43	05/08/23 11:12	EPA 3050B	1,6010D	NTB
0.088		mg/kg	0.087	0.057	1	05/03/23 21:29	05/05/23 17:53	EPA 7471B	1,7471B	DMB
17.4		mg/kg	1.21	0.117	1	05/03/23 20:43	05/08/23 11:12	EPA 3050B	1,6010D	NTB
1.44		mg/kg	0.965	0.124	1	05/03/23 20:43	05/08/23 11:12	EPA 3050B	1,6010D	NTB
ND		mg/kg	0.482	0.273	2	05/03/23 20:43	05/08/23 11:29	EPA 3050B	1,6010D	NTB
211		mg/kg	2.41	0.141	1	05/03/23 20:43	05/08/23 11:12	EPA 3050B	1,6010D	NTB
- Mansfiel	d Lab									
25.9		mg/kg	0.998	0.998	1		05/08/23 11:12	NA	107,-	
	Result field Lab 29.8 69.0 0.511 1.72 25.9 58.5 556 577 0.088 17.4 1.44 ND 211 Mansfiel	Result Qualifier 29.8 - 69.0 - 0.511 - 1.72 - 25.9 - 58.5 - 577 - 0.088 - 1.7.4 - 1.44 - ND - 211 -	Result Qualifier Units ifield Lab mg/kg 29.8 mg/kg 69.0 mg/kg 69.0 mg/kg 0.511 mg/kg 1.72 mg/kg 25.9 mg/kg 58.5 mg/kg 577 mg/kg 0.088 mg/kg 1.74 mg/kg 1.44 mg/kg ND mg/kg 211 mg/kg	Result Qualifier Units RL field Lab mg/kg 0.482 69.0 mg/kg 0.482 0.511 mg/kg 0.241 1.72 mg/kg 0.482 25.9 mg/kg 0.482 58.5 mg/kg 0.482 556 mg/kg 0.482 0.088 mg/kg 0.482 1.74 mg/kg 0.482 1.44 mg/kg 0.965 ND mg/kg 0.482 211 mg/kg 0.482	Result Qualifier Units RL MDL field Lab mg/kg 0.482 0.100 69.0 mg/kg 0.482 0.084 0.511 mg/kg 0.241 0.016 1.72 mg/kg 0.482 0.047 25.9 mg/kg 0.482 0.046 58.5 mg/kg 0.482 0.046 556 mg/kg 0.482 0.047 557 mg/kg 0.482 0.046 577 mg/kg 0.482 0.077 0.088 mg/kg 0.482 0.077 1.74 mg/kg 0.085 0.124 ND mg/kg 0.482 0.273 211 m	Result Qualifier Units RL MDL Factor field Lab 1 1 1 1 29.8 mg/kg 0.482 0.100 1 69.0 mg/kg 0.482 0.084 1 0.511 mg/kg 0.241 0.016 1 1.72 mg/kg 0.482 0.047 1 25.9 mg/kg 0.482 0.046 1 58.5 mg/kg 0.482 0.046 1 556 mg/kg 0.482 0.047 1 577 mg/kg 0.482 0.077 1 0.088 mg/kg 0.087 0.057 1 1.44 mg/kg 0.965 0.124 1 ND mg/kg 0.482 0.273 2 211 mg/kg 0.482 0.273 2	Result Qualifier Units RL MDL Dilution Factor Date Prepared 29.8 mg/kg 0.482 0.100 1 05/03/23 20:43 69.0 mg/kg 0.482 0.084 1 05/03/23 20:43 0.511 mg/kg 0.241 0.016 1 05/03/23 20:43 0.511 mg/kg 0.241 0.016 1 05/03/23 20:43 1.72 mg/kg 0.482 0.047 1 05/03/23 20:43 25.9 mg/kg 0.482 0.046 1 05/03/23 20:43 58.5 mg/kg 0.482 0.046 1 05/03/23 20:43 556 mg/kg 0.482 0.124 1 05/03/23 20:43 0.088 mg/kg 0.087 0.057 1 05/03/23 20:43 1.44 mg/kg 0.965 0.124 1 05/03/23 20:43 1.44 mg/kg 0.965 0.124 1 05/03/23 20:43 1.44 mg/kg 0.482 </td <td>Result Qualifier Units RL MDL Factor Date Prepared Date Analyzed field Lab 29.8 mg/kg 0.482 0.100 1 05/03/23 20:43 05/08/23 11:12 69.0 mg/kg 0.482 0.084 1 05/03/23 20:43 05/08/23 11:12 0.511 mg/kg 0.241 0.016 1 05/03/23 20:43 05/08/23 11:12 1.72 mg/kg 0.482 0.047 1 05/03/23 20:43 05/08/23 11:12 25.9 mg/kg 0.482 0.046 1 05/03/23 20:43 05/08/23 11:12 58.5 mg/kg 0.482 0.046 1 05/03/23 20:43 05/08/23 11:12 576 mg/kg 0.482 0.124 1 05/03/23 20:43 05/08/23 11:12 577 mg/kg 0.482 0.077 1 05/03/23 20:43 05/08/23 11:12 0.088 mg/kg 0.087 0.057 1 05/03/23 20:43 05/08/23 11:12 1.44 mg/kg 0.965 0.124 1 05/03/23 20:43 05/08/23 11:12 <</td> <td>Result Qualifier Units RL MDL Factor Date Prepared Date Analyzed Prep Method field Lab mg/kg 0.482 0.100 1 05/03/23 20:43 05/08/23 11:12 EPA 3050B 69.0 mg/kg 0.482 0.084 1 05/03/23 20:43 05/08/23 11:12 EPA 3050B 0.511 mg/kg 0.241 0.016 1 05/03/23 20:43 05/08/23 11:12 EPA 3050B 0.511 mg/kg 0.241 0.016 1 05/03/23 20:43 05/08/23 11:12 EPA 3050B 0.511 mg/kg 0.482 0.047 1 05/03/23 20:43 05/08/23 11:12 EPA 3050B 1.72 mg/kg 0.482 0.047 1 05/03/23 20:43 05/08/23 11:12 EPA 3050B 58.5 mg/kg 0.482 0.047 1 05/03/23 20:43 05/08/23 11:12 EPA 3050B 577 mg/kg 0.482 0.077 1 05/03/23 20:43 05/08/23 11:12 EPA 3050B 0.088<!--</td--><td>Result Qualifier Units RL MDL Factor Date Prepared Date Analyzed Prep Method Analytical Method 29.8 mg/kg 0.482 0.100 1 05/03/23 20:43 05/08/23 11:12 EPA 3050B 1,6010D 69.0 mg/kg 0.482 0.084 1 05/03/23 20:43 05/08/23 11:12 EPA 3050B 1,6010D 0.511 mg/kg 0.241 0.016 1 05/03/23 20:43 05/08/23 11:12 EPA 3050B 1,6010D 0.511 mg/kg 0.241 0.016 1 05/03/23 20:43 05/08/23 11:12 EPA 3050B 1,6010D 1.72 mg/kg 0.482 0.047 1 05/03/23 20:43 05/08/23 11:12 EPA 3050B 1,6010D 5.5 mg/kg 0.482 0.047 1 05/03/23 20:43 05/08/23 11:12 EPA 3050B 1,6010D 556 mg/kg 0.482 0.077 1 05/03/23 20:43 05/08/23 11:12 EPA 3050B 1,6010D 0.088 mg/kg 0.867 1 05/03/23 20:43 05/08/23 11:12 EPA 3050</td></td>	Result Qualifier Units RL MDL Factor Date Prepared Date Analyzed field Lab 29.8 mg/kg 0.482 0.100 1 05/03/23 20:43 05/08/23 11:12 69.0 mg/kg 0.482 0.084 1 05/03/23 20:43 05/08/23 11:12 0.511 mg/kg 0.241 0.016 1 05/03/23 20:43 05/08/23 11:12 1.72 mg/kg 0.482 0.047 1 05/03/23 20:43 05/08/23 11:12 25.9 mg/kg 0.482 0.046 1 05/03/23 20:43 05/08/23 11:12 58.5 mg/kg 0.482 0.046 1 05/03/23 20:43 05/08/23 11:12 576 mg/kg 0.482 0.124 1 05/03/23 20:43 05/08/23 11:12 577 mg/kg 0.482 0.077 1 05/03/23 20:43 05/08/23 11:12 0.088 mg/kg 0.087 0.057 1 05/03/23 20:43 05/08/23 11:12 1.44 mg/kg 0.965 0.124 1 05/03/23 20:43 05/08/23 11:12 <	Result Qualifier Units RL MDL Factor Date Prepared Date Analyzed Prep Method field Lab mg/kg 0.482 0.100 1 05/03/23 20:43 05/08/23 11:12 EPA 3050B 69.0 mg/kg 0.482 0.084 1 05/03/23 20:43 05/08/23 11:12 EPA 3050B 0.511 mg/kg 0.241 0.016 1 05/03/23 20:43 05/08/23 11:12 EPA 3050B 0.511 mg/kg 0.241 0.016 1 05/03/23 20:43 05/08/23 11:12 EPA 3050B 0.511 mg/kg 0.482 0.047 1 05/03/23 20:43 05/08/23 11:12 EPA 3050B 1.72 mg/kg 0.482 0.047 1 05/03/23 20:43 05/08/23 11:12 EPA 3050B 58.5 mg/kg 0.482 0.047 1 05/03/23 20:43 05/08/23 11:12 EPA 3050B 577 mg/kg 0.482 0.077 1 05/03/23 20:43 05/08/23 11:12 EPA 3050B 0.088 </td <td>Result Qualifier Units RL MDL Factor Date Prepared Date Analyzed Prep Method Analytical Method 29.8 mg/kg 0.482 0.100 1 05/03/23 20:43 05/08/23 11:12 EPA 3050B 1,6010D 69.0 mg/kg 0.482 0.084 1 05/03/23 20:43 05/08/23 11:12 EPA 3050B 1,6010D 0.511 mg/kg 0.241 0.016 1 05/03/23 20:43 05/08/23 11:12 EPA 3050B 1,6010D 0.511 mg/kg 0.241 0.016 1 05/03/23 20:43 05/08/23 11:12 EPA 3050B 1,6010D 1.72 mg/kg 0.482 0.047 1 05/03/23 20:43 05/08/23 11:12 EPA 3050B 1,6010D 5.5 mg/kg 0.482 0.047 1 05/03/23 20:43 05/08/23 11:12 EPA 3050B 1,6010D 556 mg/kg 0.482 0.077 1 05/03/23 20:43 05/08/23 11:12 EPA 3050B 1,6010D 0.088 mg/kg 0.867 1 05/03/23 20:43 05/08/23 11:12 EPA 3050</td>	Result Qualifier Units RL MDL Factor Date Prepared Date Analyzed Prep Method Analytical Method 29.8 mg/kg 0.482 0.100 1 05/03/23 20:43 05/08/23 11:12 EPA 3050B 1,6010D 69.0 mg/kg 0.482 0.084 1 05/03/23 20:43 05/08/23 11:12 EPA 3050B 1,6010D 0.511 mg/kg 0.241 0.016 1 05/03/23 20:43 05/08/23 11:12 EPA 3050B 1,6010D 0.511 mg/kg 0.241 0.016 1 05/03/23 20:43 05/08/23 11:12 EPA 3050B 1,6010D 1.72 mg/kg 0.482 0.047 1 05/03/23 20:43 05/08/23 11:12 EPA 3050B 1,6010D 5.5 mg/kg 0.482 0.047 1 05/03/23 20:43 05/08/23 11:12 EPA 3050B 1,6010D 556 mg/kg 0.482 0.077 1 05/03/23 20:43 05/08/23 11:12 EPA 3050B 1,6010D 0.088 mg/kg 0.867 1 05/03/23 20:43 05/08/23 11:12 EPA 3050

Project Name:	1153 WEST FAYETTE ST PHASE II	Lab Number:	L2322073
Project Number:	AB2.001.002	Report Date:	05/08/23
	SAMPLE RESULTS		
Lab ID:	L2322073-05	Date Collected:	04/24/23 13:45
Client ID:	BH-08 0-5	Date Received:	04/24/23
Sample Location:	SYRACUSE, NY	Field Prep:	Not Specified

Sample Depth:

Matrix: Percent Solids:

92%					Dilution	Data	Data	Bron	Analytical	
Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analys
field Lab										
22.5		mg/kg	0.434	0.090	1	05/03/23 20:43	3 05/08/23 11:15	EPA 3050B	1,6010D	NTB
54.9		mg/kg	0.434	0.075	1	05/03/23 20:43	3 05/08/23 11:15	EPA 3050B	1,6010D	NTB
0.384		mg/kg	0.217	0.014	1	05/03/23 20:43	3 05/08/23 11:15	EPA 3050B	1,6010D	NTB
0.681		mg/kg	0.434	0.043	1	05/03/23 20:43	3 05/08/23 11:15	EPA 3050B	1,6010D	NTB
23.6		mg/kg	0.434	0.042	1	05/03/23 20:43	3 05/08/23 11:15	EPA 3050B	1,6010D	NTB
41.5		mg/kg	0.434	0.112	1	05/03/23 20:43	3 05/08/23 11:15	EPA 3050B	1,6010D	NTB
74.3		mg/kg	2.17	0.116	1	05/03/23 20:43	3 05/08/23 11:15	EPA 3050B	1,6010D	NTB
467		mg/kg	0.434	0.069	1	05/03/23 20:43	3 05/08/23 11:15	EPA 3050B	1,6010D	NTB
0.066	J	mg/kg	0.076	0.049	1	05/03/23 21:29	9 05/05/23 17:57	EPA 7471B	1,7471B	DMB
15.9		mg/kg	1.08	0.105	1	05/03/23 20:43	3 05/08/23 11:15	EPA 3050B	1,6010D	NTB
1.35		mg/kg	0.867	0.112	1	05/03/23 20:43	3 05/08/23 11:15	EPA 3050B	1,6010D	NTB
ND		mg/kg	0.434	0.245	2	05/03/23 20:43	3 05/08/23 11:49	EPA 3050B	1,6010D	NTB
39.6		mg/kg	2.17	0.127	1	05/03/23 20:43	3 05/08/23 11:15	EPA 3050B	1,6010D	NTB
- Mansfiel	d Lab									
23.6		mg/kg	0.870	0.870	1		05/08/23 11:15	NA	107,-	
	Result field Lab 22.5 54.9 0.384 0.681 23.6 41.5 74.3 467 0.066 15.9 1.35 ND 39.6 Mansfiel	Result Qualifier ield Lab 22.5 54.9 - 0.384 - 0.384 - 0.681 - 23.6 - 41.5 - 74.3 - 0.066 J 15.9 - 1.35 - ND 39.6 Mansfield Lab -	Result Qualifier Units field Lab mg/kg 22.5 mg/kg 54.9 mg/kg 0.384 mg/kg 0.681 mg/kg 23.6 mg/kg 41.5 mg/kg 467 mg/kg 0.066 J mg/kg 15.9 mg/kg 1.35 mg/kg 39.6 mg/kg	Result Qualifier Units RL field Lab mg/kg 0.434 54.9 mg/kg 0.434 0.384 mg/kg 0.217 0.681 mg/kg 0.434 23.6 mg/kg 0.434 74.3 mg/kg 0.434 0.066 J mg/kg 0.434 0.066 J mg/kg 0.434 1.35 mg/kg 0.434 1.08 39.6 mg/kg 2.17 1.08	Result Qualifier Units RL MDL field Lab mg/kg 0.434 0.090 54.9 mg/kg 0.434 0.075 0.384 mg/kg 0.217 0.014 0.681 mg/kg 0.434 0.0434 23.6 mg/kg 0.434 0.0434 41.5 mg/kg 0.434 0.0434 467 mg/kg 0.434 0.0142 467 mg/kg 0.434 0.0143 0.066 J mg/kg 0.434 0.0143 15.9 mg/kg 0.434 0.0143 15.9 mg/kg 0.434 0.0143 15.9 mg/kg 0.434 0.0143 1.35 mg/kg 0.867 0.112 ND mg/kg 0.434 0.245 39.6 mg/kg 2.17 0.127	Result Qualifier Units RL MDL Factor field Lab 22.5 mg/kg 0.434 0.090 1 54.9 mg/kg 0.434 0.075 1 0.384 mg/kg 0.217 0.014 1 0.681 mg/kg 0.434 0.043 1 23.6 mg/kg 0.434 0.042 1 41.5 mg/kg 0.434 0.042 1 74.3 mg/kg 0.434 0.069 1 0.066 J mg/kg 0.434 0.069 1 15.9 mg/kg 0.434 0.069 1 15.9 mg/kg 0.434 0.069 1 15.9 mg/kg 0.076 0.049 1 135 mg/kg 0.867 0.112 1 ND mg/kg 0.434 0.245 2 39.6 mg/kg 2.17 0.127 1	Result Qualifier Units RL MDL Dilution Factor Date Prepared 22.5 mg/kg 0.434 0.090 1 05/03/23 20:43 54.9 mg/kg 0.434 0.075 1 05/03/23 20:43 0.384 mg/kg 0.217 0.014 1 05/03/23 20:43 0.681 mg/kg 0.434 0.043 1 05/03/23 20:43 23.6 mg/kg 0.434 0.043 1 05/03/23 20:43 41.5 mg/kg 0.434 0.042 1 05/03/23 20:43 467 mg/kg 0.434 0.042 1 05/03/23 20:43 0.066 J mg/kg 0.434 0.049 1 05/03/23 20:43 15.9 mg/kg 0.434 0.069 1 05/03/23 20:43 1 1.35 mg/kg 0.434 0.069 1 05/03/23 20:43 1 1.35 mg/kg 0.434 0.245 2 05/03/23 20:43 1 <td>Result Qualifier Units RL MDL Factor Date Prepared Date Analyzed field Lab 22.5 mg/kg 0.434 0.090 1 05/03/23 20:43 05/08/23 11:15 54.9 mg/kg 0.434 0.075 1 05/03/23 20:43 05/08/23 11:15 0.384 mg/kg 0.217 0.014 1 05/03/23 20:43 05/08/23 11:15 0.681 mg/kg 0.434 0.043 1 05/03/23 20:43 05/08/23 11:15 23.6 mg/kg 0.434 0.042 1 05/03/23 20:43 05/08/23 11:15 41.5 mg/kg 0.434 0.042 1 05/03/23 20:43 05/08/23 11:15 74.3 mg/kg 0.434 0.112 1 05/03/23 20:43 05/08/23 11:15 0.666 J mg/kg 0.434 0.069 1 05/03/23 20:43 05/08/23 11:15 1.35 mg/kg 0.076 0.049 1 05/03/23 20:43 05/08/23 11:15 1.35 mg/kg 0.867 0.112 1 05/03/23 20:43 05/08/23 11:15 <!--</td--><td>Result Qualifier Units RL MDL Factor Date Prepared Date Analyzed Prep Method field Lab </td><td>Result Qualifier Units RL MDL Factor Date Prepared Date Analyzed Prep Method Analytical Method 22.5 mg/kg 0.434 0.090 1 05/03/23 20:43 05/08/23 11:15 EPA 3050B 1,6010D 54.9 mg/kg 0.434 0.075 1 05/03/23 20:43 05/08/23 11:15 EPA 3050B 1,6010D 0.384 mg/kg 0.217 0.014 1 05/03/23 20:43 05/08/23 11:15 EPA 3050B 1,6010D 0.681 mg/kg 0.434 0.043 1 05/03/23 20:43 05/08/23 11:15 EPA 3050B 1,6010D 23.6 mg/kg 0.434 0.042 1 05/03/23 20:43 05/08/23 11:15 EPA 3050B 1,6010D 41.5 mg/kg 0.434 0.042 1 05/03/23 20:43 05/08/23 11:15 EPA 3050B 1,6010D 41.5 mg/kg 0.434 0.042 1 05/03/23 20:43 05/08/23 11:15 EPA 3050B 1,6010D 41.5 mg/kg 0.434 0.069 1 05/03/23 20:43 05/08/23 11:15<!--</td--></td></td>	Result Qualifier Units RL MDL Factor Date Prepared Date Analyzed field Lab 22.5 mg/kg 0.434 0.090 1 05/03/23 20:43 05/08/23 11:15 54.9 mg/kg 0.434 0.075 1 05/03/23 20:43 05/08/23 11:15 0.384 mg/kg 0.217 0.014 1 05/03/23 20:43 05/08/23 11:15 0.681 mg/kg 0.434 0.043 1 05/03/23 20:43 05/08/23 11:15 23.6 mg/kg 0.434 0.042 1 05/03/23 20:43 05/08/23 11:15 41.5 mg/kg 0.434 0.042 1 05/03/23 20:43 05/08/23 11:15 74.3 mg/kg 0.434 0.112 1 05/03/23 20:43 05/08/23 11:15 0.666 J mg/kg 0.434 0.069 1 05/03/23 20:43 05/08/23 11:15 1.35 mg/kg 0.076 0.049 1 05/03/23 20:43 05/08/23 11:15 1.35 mg/kg 0.867 0.112 1 05/03/23 20:43 05/08/23 11:15 </td <td>Result Qualifier Units RL MDL Factor Date Prepared Date Analyzed Prep Method field Lab </td> <td>Result Qualifier Units RL MDL Factor Date Prepared Date Analyzed Prep Method Analytical Method 22.5 mg/kg 0.434 0.090 1 05/03/23 20:43 05/08/23 11:15 EPA 3050B 1,6010D 54.9 mg/kg 0.434 0.075 1 05/03/23 20:43 05/08/23 11:15 EPA 3050B 1,6010D 0.384 mg/kg 0.217 0.014 1 05/03/23 20:43 05/08/23 11:15 EPA 3050B 1,6010D 0.681 mg/kg 0.434 0.043 1 05/03/23 20:43 05/08/23 11:15 EPA 3050B 1,6010D 23.6 mg/kg 0.434 0.042 1 05/03/23 20:43 05/08/23 11:15 EPA 3050B 1,6010D 41.5 mg/kg 0.434 0.042 1 05/03/23 20:43 05/08/23 11:15 EPA 3050B 1,6010D 41.5 mg/kg 0.434 0.042 1 05/03/23 20:43 05/08/23 11:15 EPA 3050B 1,6010D 41.5 mg/kg 0.434 0.069 1 05/03/23 20:43 05/08/23 11:15<!--</td--></td>	Result Qualifier Units RL MDL Factor Date Prepared Date Analyzed Prep Method field Lab	Result Qualifier Units RL MDL Factor Date Prepared Date Analyzed Prep Method Analytical Method 22.5 mg/kg 0.434 0.090 1 05/03/23 20:43 05/08/23 11:15 EPA 3050B 1,6010D 54.9 mg/kg 0.434 0.075 1 05/03/23 20:43 05/08/23 11:15 EPA 3050B 1,6010D 0.384 mg/kg 0.217 0.014 1 05/03/23 20:43 05/08/23 11:15 EPA 3050B 1,6010D 0.681 mg/kg 0.434 0.043 1 05/03/23 20:43 05/08/23 11:15 EPA 3050B 1,6010D 23.6 mg/kg 0.434 0.042 1 05/03/23 20:43 05/08/23 11:15 EPA 3050B 1,6010D 41.5 mg/kg 0.434 0.042 1 05/03/23 20:43 05/08/23 11:15 EPA 3050B 1,6010D 41.5 mg/kg 0.434 0.042 1 05/03/23 20:43 05/08/23 11:15 EPA 3050B 1,6010D 41.5 mg/kg 0.434 0.069 1 05/03/23 20:43 05/08/23 11:15 </td

Project Name:	1153 WEST FAYETTE ST PHASE II	Lab Number:	L2322073
Project Number:	AB2.001.002	Report Date:	05/08/23
	SAMPLE RESULTS		
Lab ID:	L2322073-06	Date Collected:	04/24/23 15:00
Client ID:	BH-10 5-9	Date Received:	04/24/23
Sample Location:	SYRACUSE, NY	Field Prep:	Not Specified

Sample Depth:

Matrix: Percent Solids:

86%					Dilution	Dete	Data	Dron	Applytical	
Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analys
field Lab										
20.2		mg/kg	0.446	0.093	1	05/03/23 20:43	3 05/08/23 11:18	EPA 3050B	1,6010D	NTB
30.9		mg/kg	0.446	0.078	1	05/03/23 20:43	3 05/08/23 11:18	EPA 3050B	1,6010D	NTB
0.538		mg/kg	0.223	0.015	1	05/03/23 20:43	3 05/08/23 11:18	EPA 3050B	1,6010D	NTB
0.235	J	mg/kg	0.446	0.044	1	05/03/23 20:43	3 05/08/23 11:18	EPA 3050B	1,6010D	NTB
14.1		mg/kg	0.446	0.043	1	05/03/23 20:43	3 05/08/23 11:18	EPA 3050B	1,6010D	NTB
26.8		mg/kg	0.446	0.115	1	05/03/23 20:43	3 05/08/23 11:18	EPA 3050B	1,6010D	NTB
64.9		mg/kg	2.23	0.119	1	05/03/23 20:43	3 05/08/23 11:18	EPA 3050B	1,6010D	NTB
514		mg/kg	0.446	0.071	1	05/03/23 20:43	3 05/08/23 11:18	EPA 3050B	1,6010D	NTB
0.342		mg/kg	0.077	0.050	1	05/03/23 21:29	9 05/05/23 18:00	EPA 7471B	1,7471B	DMB
14.0		mg/kg	1.11	0.108	1	05/03/23 20:43	3 05/08/23 11:18	EPA 3050B	1,6010D	NTB
0.617	J	mg/kg	0.892	0.115	1	05/03/23 20:43	3 05/08/23 11:18	EPA 3050B	1,6010D	NTB
ND		mg/kg	0.446	0.252	2	05/03/23 20:43	3 05/08/23 11:35	EPA 3050B	1,6010D	NTB
42.9		mg/kg	2.23	0.131	1	05/03/23 20:43	3 05/08/23 11:18	EPA 3050B	1,6010D	NTB
- Mansfiel	d Lab									
14.1		mg/kg	0.932	0.932	1		05/08/23 11:18	NA	107,-	
	Result field Lab 20.2 30.9 0.538 0.235 14.1 26.8 64.9 514 0.342 14.0 0.617 ND 42.9 Mansfiel	Result Qualifier 20.2 - 30.9 - 0.538 - 0.235 J 14.1 - 26.8 - 64.9 - 514 - 0.342 - 14.0 - 0.617 J ND - 42.9 -	Result Qualifier Units J0.2 mg/kg 30.9 mg/kg 0.538 mg/kg 0.235 J mg/kg 14.1 mg/kg 26.8 mg/kg 514 mg/kg 0.342 mg/kg 14.0 mg/kg 0.617 J mg/kg AD mg/kg mg/kg MD mg/kg mg/kg 42.9 mg/kg mg/kg	Result Qualifier Units RL field Lab mg/kg 0.446 30.9 mg/kg 0.446 30.9 mg/kg 0.223 0.538 mg/kg 0.223 0.235 J mg/kg 0.446 14.1 mg/kg 0.446 26.8 mg/kg 0.446 64.9 mg/kg 0.446 0.342 mg/kg 0.446 0.40 mg/kg 0.446 0.410 mg/kg 0.446 0.42 mg/kg 0.446 0.410 mg/kg 0.446 42.9 mg/kg 2.23	Result Qualifier Units RL MDL field Lab mg/kg 0.446 0.093 30.9 mg/kg 0.446 0.078 0.538 mg/kg 0.223 0.015 0.235 J mg/kg 0.446 0.044 14.1 mg/kg 0.446 0.044 14.1 mg/kg 0.446 0.043 26.8 mg/kg 0.446 0.015 64.9 mg/kg 0.446 0.071 514 mg/kg 0.446 0.071 0.342 mg/kg 0.446 0.071 0.342 mg/kg 0.446 0.071 0.342 mg/kg 0.446 0.071 0.342 mg/kg 0.446 0.252 14.0 mg/kg 0.892 0.115 ND mg/kg 0.446 0.252 42.9 mg/kg 0.446 0.252 42.9 mg/kg 0.446 0.252	Result Qualifier Units RL MDL Factor field Lab mg/kg 0.446 0.093 1 30.9 mg/kg 0.446 0.078 1 0.538 mg/kg 0.223 0.015 1 0.235 J mg/kg 0.446 0.043 1 14.1 mg/kg 0.446 0.043 1 26.8 mg/kg 0.446 0.043 1 64.9 mg/kg 0.446 0.071 1 514 mg/kg 0.446 0.071 1 0.342 mg/kg 0.077 0.050 1 14.0 mg/kg 0.892 0.115 1 0.617 J mg/kg 0.892 0.115 1 ND mg/kg 0.446 0.252 2 42.9 mg/kg 0.446 0.252 2 42.9 mg/kg 0.446 0.252 2	Result Qualifier Units RL MDL Dilution Factor Date Prepared 20.2 mg/kg 0.446 0.093 1 05/03/23 20:43 30.9 mg/kg 0.446 0.078 1 05/03/23 20:43 0.538 mg/kg 0.223 0.015 1 05/03/23 20:43 0.235 J mg/kg 0.446 0.044 1 05/03/23 20:43 14.1 mg/kg 0.446 0.044 1 05/03/23 20:43 26.8 mg/kg 0.446 0.043 1 05/03/23 20:43 64.9 mg/kg 0.446 0.0115 1 05/03/23 20:43 0.342 mg/kg 0.446 0.071 1 05/03/23 20:43 0.342 mg/kg 0.446 0.071 1 05/03/23 20:43 14.0 mg/kg 0.446 0.071 1 05/03/23 20:43 0.617 J mg/kg 0.892 0.115 1 05/03/23 20:43 0.617	Result Qualifier Units RL MDL Factor Date Prepared Date Analyzed field Lab	Result Qualifier Units RL MDL Factor Date Prepared Date Analyzed Prep Method field Lab	Result Qualifier Units RL MDL Factor Date Prepared Date Analyzed Prep Method Analytical Method 20.2 mg/kg 0.446 0.093 1 05/03/23 20:43 05/08/23 11:18 EPA 3050B 1,6010D 30.9 mg/kg 0.446 0.078 1 05/03/23 20:43 05/08/23 11:18 EPA 3050B 1,6010D 0.538 mg/kg 0.223 0.015 1 05/03/23 20:43 05/08/23 11:18 EPA 3050B 1,6010D 0.235 J mg/kg 0.446 0.043 1 05/03/23 20:43 05/08/23 11:18 EPA 3050B 1,6010D 14.1 mg/kg 0.446 0.043 1 05/03/23 20:43 05/08/23 11:18 EPA 3050B 1,6010D 26.8 mg/kg 0.446 0.015 1 05/03/23 20:43 05/08/23 11:18 EPA 3050B 1,6010D 64.9 mg/kg 0.446 0.071 1 05/03/23 20:43 05/08/23 11:18 EPA 3050B 1,6010D 0.342 mg/kg 0.446 0.071 1 05/03/23 20

Project Name:1153 WEST FAYETTE ST PHASE IIProject Number:AB2.001.002

 Lab Number:
 L2322073

 Report Date:
 05/08/23

Method Blank Analysis Batch Quality Control

Parameter	Result Q	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfiel	d Lab for sa	mple(s):	01-06 B	atch: W	G17743:	34-1				
Arsenic, Total	0.096	J	mg/kg	0.400	0.083	1	05/03/23 20:43	05/04/23 09:04	1,6010D	DHL
Barium, Total	ND		mg/kg	0.400	0.070	1	05/03/23 20:43	05/04/23 09:04	1,6010D	DHL
Beryllium, Total	ND		mg/kg	0.200	0.013	1	05/03/23 20:43	05/04/23 09:04	1,6010D	DHL
Cadmium, Total	ND		mg/kg	0.400	0.039	1	05/03/23 20:43	05/04/23 09:04	1,6010D	DHL
Chromium, Total	ND		mg/kg	0.400	0.038	1	05/03/23 20:43	05/04/23 09:04	1,6010D	DHL
Copper, Total	ND		mg/kg	0.400	0.103	1	05/03/23 20:43	05/04/23 09:04	1,6010D	DHL
Lead, Total	ND		mg/kg	2.00	0.107	1	05/03/23 20:43	05/04/23 09:04	1,6010D	DHL
Manganese, Total	ND		mg/kg	0.400	0.064	1	05/03/23 20:43	05/04/23 09:04	1,6010D	DHL
Nickel, Total	ND		mg/kg	1.00	0.097	1	05/03/23 20:43	05/04/23 09:04	1,6010D	DHL
Selenium, Total	ND		mg/kg	0.800	0.103	1	05/03/23 20:43	05/04/23 09:04	1,6010D	DHL
Silver, Total	ND		mg/kg	0.200	0.113	1	05/03/23 20:43	05/04/23 09:04	1,6010D	DHL
Zinc, Total	ND		mg/kg	2.00	0.117	1	05/03/23 20:43	05/04/23 09:04	1,6010D	DHL

Prep Information

Digestion Method: EPA 3050B

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared		Analytical Method	
Total Metals - Mans	field Lab for sample(s):	01-06 B	atch: W	G17743	36-1				
Mercury, Total	ND	mg/kg	0.083	0.054	1	05/03/23 21:29	05/04/23 09:54	1,7471B	DMB

Prep Information

Digestion Method: EPA 7471B

Lab Control Sample Analysis Batch Quality Control

Project Name: 1153 WEST FAYETTE ST PHASE II

Project Number: AB2.001.002

Lab Number: L2322073 Report Date: 05/08/23

arameter	LCS %Recove	ery Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
otal Metals - Mansfield Lab A	Associated sample(s): 01-06	Batch: WG17	74334-2 SRM L	ot Number:	D119-540			
Arsenic, Total	105		-		83-117	-		
Barium, Total	101		-		82-118	-		
Beryllium, Total	99		-		83-117	-		
Cadmium, Total	111		-		82-117	-		
Chromium, Total	104		-		82-119	-		
Copper, Total	101		-		84-116	-		
Lead, Total	107		-		82-118	-		
Manganese, Total	101		-		82-118	-		
Nickel, Total	108		-		82-117	-		
Selenium, Total	108		-		79-121	-		
Silver, Total	102		-		80-120	-		
Zinc, Total	104		-		80-120	-		
tal Metals - Mansfield Lab	Associated sample(s): 01-06	Batch: WG17	74336-2 SRM L	ot Number:	D119-540			
Mercury, Total	110				73-127	-		

Matrix Spike Analysis Batch Quality Control

Project Name: 1153 WEST FAYETTE ST PHASE II

Project Number: AB2.001.002

Lab Number: L2322073 Report Date: 05/08/23

MS MS MSD RPD Native MS MSD Recovery Sample Added %Recovery Found Limits Found Limits Qual %Recovery Qual **RPD** Qual Parameter Total Metals - Mansfield Lab Associated sample(s): 01-06 QC Batch ID: WG1774334-3 QC Sample: L2324006-09 Client ID: MS Sample Arsenic. Total 1.05 12.1 18.6 145 Q 75-125 20 -Barium. Total 78.2 202 261 91 75-125 20 ---Beryllium, Total ND 5.04 3.34 Q 75-125 20 66 ---Cadmium, Total 0.247J 5.34 7.23 Q 75-125 20 135 --_ Chromium, Total 95.8 20.2 113 85 -75-125 20 --Q Copper, Total 22.3 25.2 55.0 75-125 20 130 ---Lead, Total 2.40J 53.4 71.9 Q 75-125 20 134 ---Manganese, Total 302 50.4 358 111 75-125 20 ---Nickel, Total 47.4 50.4 112 128 Q 75-125 20 _ -_ Q Selenium, Total ND 12.1 16.6 137 --75-125 20 -Q Silver, Total ND 5.04 2.15 43 75-125 20 ---59.4 50.4 126 Q 75-125 20 Zinc, Total 132 --_ Total Metals - Mansfield Lab Associated sample(s): 01-06 QC Batch ID: WG1774336-3 QC Sample: L2324004-01 Client ID: MS Sample ND 1.55 80-120 20 Mercury, Total 1.57 98 _

Project Name: Project Number:	1153 WEST FAYETTE ST PHA AB2.001.002	ASE II	Lab Duplic Batch Qu	cate Analy	sis		ab Number: eport Date:	L2322073 05/08/23
Parameter		Native Sample	Duplica	ate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield	Lab Associated sample(s): 01-0	06 QC Batch ID:	WG1774334-4	QC Sample:	L2324006-09	Client ID:	DUP Samp	ble
Chromium, Total		95.8		107	mg/kg	11		20
Total Metals - Mansfield	Lab Associated sample(s): 01-0	06 QC Batch ID:	WG1774336-4	QC Sample:	L2324004-01	Client ID:	DUP Samp	ble

Mercury, Total	ND	ND	mg/kg	NC	20

Project Name: Project Number:	1153 WEST FAYETTE ST P AB2.001.002	HASE II	Lab Seri An Batch Qu		b Number: port Date:	L2322073 05/08/23		
Parameter		Native Sample	Seria	Dilution	Units	% D	Qual	RPD Limits
Total Metals - Mansfield	Lab Associated sample(s): 07	I-06 QC Batch ID:	WG1774334-6	QC Sample:	L2324006-09	Client ID:	DUP Sam	ble
Chromium, Total		95.8		105	mg/kg	10		20

INORGANICS & MISCELLANEOUS

05/04/23 21:00 05/05/23 10:21

04/27/23 13:00 04/28/23 21:20

121,2540G

1,9010C/9012B

1,7196A

ROI

JER

WMT

arameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analys
Sample Depth: Matrix:	Soil									
Sample Location:	BH-04 8-10 SYRACUSE, NY						Field P	Not Specified		
Lab ID: Client ID:	L2322073-02							collected:	04/24/23 10:30 04/24/23	
				SAMPLE	RESUL	rs				
Project Name: Project Number:	1153 WEST AB2.001.002		E ST PI	HASE II		umber: t Date:	L2322073 05/08/23			

0.100

1.2

1.03

NA

0.26

0.206

1

1

1

-

%

mg/kg

mg/kg

Solids, Total

Cyanide, Total

Chromium, Hexavalent

77.6

ND

05/04/23 21:00 05/05/23 10:22

04/27/23 13:00 04/28/23 21:20

121,2540G

1,9010C/9012B

1,7196A

ROI

JER

WMT

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analys
Sample Depth: Matrix:	Soil					Dilution	Dete	Ε.		
Client ID: Sample Location:	BH-06 11-14 SYRACUSE, NY							eceived:	04/24/23 12:00 04/24/23 Not Specified	
Lab ID:	L2322073-0	13		SAMPLE	RESUL	rs	Date C	ollected:	04/24/23 12:00	
Project Name: Project Number:	1153 WEST AB2.001.00	E ST Pł	IASE II	Lab Nı Repor	umber: t Date:	L2322073 05/08/23				

0.100

1.2

1.01

NA

0.25

0.201

1

1

1

-

%

mg/kg

mg/kg

Solids, Total

Cyanide, Total

Chromium, Hexavalent

79.5

ND

05/04/23 21:00 05/05/23 10:23

04/27/23 13:00 04/28/23 21:20

121,2540G

1,9010C/9012B

1,7196A

ROI

JER

WMT

arameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analys
Sample Depth: Matrix:	Soil					Dilution	Dete			
Lab ID: Client ID: Sample Location:	L2322073-04 BH-07 5-9 SYRACUSE, NY							Collected: Received: Prep:	04/24/23 13:30 04/24/23 Not Specified	
				SAMPLE	RESUL	rs				
Project Name: Project Number:	1153 WEST FAYETTE ST PHASE II AB2.001.002							umber: t Date:	L2322073 05/08/23	

0.100

1.2

0.998

NA

0.26

0.200

1

1

1

-

%

mg/kg

mg/kg

Solids, Total

Cyanide, Total

Chromium, Hexavalent

80.2

ND

05/04/23 21:00 05/05/23 10:24

04/27/23 13:00 04/28/23 21:20

121,2540G

1,9010C/9012B

1,7196A

ROI

JER

WMT

arameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analys
Sample Depth: Matrix:	Soil					Dilution	Dete			
Lab ID: Client ID: Sample Location:	L2322073-05 BH-08 0-5 SYRACUSE, NY							Collected: Received: Prep:	04/24/23 13:45 04/24/23 Not Specified	
				SAMPLE	RESUL	rs				
Project Name: Project Number:	1153 WEST FAYETTE ST PHASE II AB2.001.002							umber: t Date:	L2322073 05/08/23	

0.100

1.0

0.870

NA

0.22

0.174

1

1

1

-

%

mg/kg

mg/kg

J

Solids, Total

Cyanide, Total

Chromium, Hexavalent

91.9

0.24

Project Name: Project Number:	1153 WEST FAYETTE ST PI AB2.001.002	HASE II		Lab Number: Report Date:	L2322073 05/08/23
		SAMPLE RESULT	S		
Lab ID: Client ID: Sample Location:	L2322073-06 BH-10 5-9 SYRACUSE, NY			Date Collected: Date Received: Field Prep:	04/24/23 15:00 04/24/23 Not Specified
Sample Depth: Matrix:	Soil		Dilution	Date Date	Analytical
Parameter	Result Qualifier Units	RL MDL	Factor I	Prepared Analyzed	l Method Analyst

General Chemistry - We	estborough Lab								
Solids, Total	85.8	%	0.100	NA	1	-	04/25/23 10:53	121,2540G	ROI
Cyanide, Total	ND	mg/kg	1.1	0.24	1	05/04/23 21:00	05/05/23 10:27	1,9010C/9012B	JER
Chromium, Hexavalent	ND	mg/kg	0.932	0.186	1	04/27/23 13:00	04/28/23 21:20	1,7196A	WMT

Project Name:1153 WEST FAYETTE ST PHASE IIProject Number:AB2.001.002

 Lab Number:
 L2322073

 Report Date:
 05/08/23

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifie	r Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab for sa	mple(s): 01	-06 Bat	tch: WC	G1772040-	1			
Chromium, Hexavalent	ND	mg/kg	0.800	0.160	1	04/27/23 13:00	04/28/23 21:20	1,7196A	WMT
General Chemistry - W	estborough Lab for sa	mple(s): 01	Batch:	WG17	74590-1				
Cyanide, Total	ND	mg/kg	0.92	0.20	1	05/04/23 11:20	05/04/23 16:02	1,9010C/9012	B JER
General Chemistry - W	estborough Lab for sa	mple(s): 02	-06 Bat	tch: WC	G1774905-	1			
Cyanide, Total	ND	mg/kg	0.87	0.18	1	05/04/23 21:00	05/05/23 10:12	1,9010C/9012	B JER

Lab Control Sample Analysis Batch Quality Control

Project Name: 1153 WEST FAYETTE ST PHASE II

Project Number: AB2.001.002

 Lab Number:
 L2322073

 Report Date:
 05/08/23

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Ass	ociated sample(s)): 01-06	Batch: WG17720)40-2				
Chromium, Hexavalent	79	Q	-		80-120	-		20
General Chemistry - Westborough Lab Ass	ociated sample(s)): 01 Ba	atch: WG1774590	-2 WG17	74590-3			
Cyanide, Total	84		79	Q	80-120	6		35
General Chemistry - Westborough Lab Ass	ociated sample(s)): 02-06	Batch: WG17749	905-2 WG	61774905-3			
Cyanide, Total	74	Q	35	Q	80-120	70	Q	35

Matrix Spike Analysis

Project Name:	1153 WEST FAYETTE ST PHASE II	Batch Quality Control	Lab Number:	L2322073
Project Number:	AB2.001.002		Report Date:	05/08/23

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD	RPD Qual Limits
General Chemistry - Westboro	ough Lab Assoc	ciated samp	ole(s): 01-06	QC Batch II	D: WG1	772040-4	QC Sample:	L23220	73-06 Cli	ent ID:	BH-10 5-9
Chromium, Hexavalent	ND	1280	1060	83		-	-		75-125	-	20
General Chemistry - Westboro Sample	ough Lab Assoc	ciated samp	ole(s): 01 C	C Batch ID: V	WG1774	1590-4 WG	i1774590-5 Q	C Samp	ole: L23233	326-12	Client ID: MS
Cyanide, Total	ND	10	ND	0	Q	ND	0	Q	75-125	NC	35
General Chemistry - Westboro Sample	ough Lab Assoc	ciated samp	ble(s): 02-06	QC Batch II	D: WG1	774905-4	WG1774905-5	QC Sa	ample: L23	21590-0	04 Client ID: N
Cyanide, Total	ND	11	11	98		9.7	89		75-125	13	35

Project Name:1153 WEST FAYETTE ST PHASE IIProject Number:AB2.001.002

Lab Duplicate Analysis Batch Quality Control

 Lab Number:
 L2322073

 Report Date:
 05/08/23

Parameter	Native Sampl	le Duplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Asso	ociated sample(s): 01-06	QC Batch ID: WG1770745-1	QC Sample:	L2318286-03	Client ID:	DUP Sample
Solids, Total	80.6	79.9	%	1		20
General Chemistry - Westborough Lab Asso	ociated sample(s): 01-06	QC Batch ID: WG1772040-6	QC Sample:	L2322073-06	Client ID:	BH-10 5-9
Chromium, Hexavalent	ND	ND	mg/kg	NC		20

Sample Receipt and Container Information

YES

Were project specific reporting limits specified?

Cooler Information

Cooler	Custody Seal
А	Absent
В	Absent

Container Info	ontainer Information Initial Final Temp Frozen								
Container ID	Container Type	Cooler	рН	pН		Pres	Seal	Date/Time	Analysis(*)
L2322073-01A	Vial MeOH preserved	А	NA		3.2	Y	Absent		NYTCL-8260HLW-R2(14)
L2322073-01B	Vial water preserved	А	NA		3.2	Y	Absent	25-APR-23 05:02	NYTCL-8260HLW-R2(14)
L2322073-01C	Vial water preserved	А	NA		3.2	Y	Absent	25-APR-23 05:02	NYTCL-8260HLW-R2(14)
L2322073-01D	Plastic 120ml unpreserved	A	NA		3.2	Y	Absent		TS(7)
L2322073-01E	Metals Only-Glass 60mL/2oz unpreserved	A	NA		3.2	Y	Absent		BE-TI(180),AS-TI(180),BA-TI(180),AG- TI(180),NI-TI(180),CR-TI(180),SE-TI(180),ZN- TI(180),CU-TI(180),PB-TI(180),MN-TI(180),HG- T(28),CD-TI(180)
L2322073-01F	Glass 120ml/4oz unpreserved	А	NA		3.2	Y	Absent		NYTCL-8270(14),TCN-9010(14),HEXCR- 7196(30)
L2322073-01G	Glass 120ml/4oz unpreserved	А	NA		3.2	Y	Absent		NYTCL-8270(14),TCN-9010(14),HEXCR- 7196(30)
L2322073-02A	Vial MeOH preserved	А	NA		3.2	Y	Absent		NYTCL-8260HLW-R2(14)
L2322073-02B	Vial water preserved	А	NA		3.2	Y	Absent	25-APR-23 05:02	NYTCL-8260HLW-R2(14)
L2322073-02C	Vial water preserved	А	NA		3.2	Y	Absent	25-APR-23 05:02	NYTCL-8260HLW-R2(14)
L2322073-02D	Plastic 120ml unpreserved	А	NA		3.2	Y	Absent		TS(7)
L2322073-02E	Metals Only-Glass 60mL/2oz unpreserved	A	NA		3.2	Y	Absent		BE-TI(180),AS-TI(180),BA-TI(180),AG- TI(180),NI-TI(180),CR-TI(180),SE-TI(180),CU- TI(180),ZN-TI(180),PB-TI(180),MN-TI(180),HG- T(28),CD-TI(180)
L2322073-02F	Glass 120ml/4oz unpreserved	A	NA		3.2	Y	Absent		NYTCL-8270(14),TCN-9010(14),HEXCR- 7196(30)
L2322073-02G	Glass 120ml/4oz unpreserved	А	NA		3.2	Y	Absent		NYTCL-8270(14),TCN-9010(14),HEXCR- 7196(30)
L2322073-03A	Vial MeOH preserved	А	NA		3.2	Y	Absent		NYTCL-8260HLW-R2(14)
L2322073-03B	Vial water preserved	А	NA		3.2	Y	Absent	25-APR-23 05:02	NYTCL-8260HLW-R2(14)
L2322073-03C	Vial water preserved	А	NA		3.2	Y	Absent	25-APR-23 05:02	NYTCL-8260HLW-R2(14)
L2322073-03D	Plastic 120ml unpreserved	А	NA		3.2	Y	Absent		TS(7)

Project Name: 1153 WEST FAYETTE ST PHASE II Project Number: AB2.001.002

Container Info	Container Information		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН		Pres	Seal	Date/Time	Analysis(*)
L2322073-03E	Metals Only-Glass 60mL/2oz unpreserved	A	NA		3.2	Y	Absent		BE-TI(180),BA-TI(180),AS-TI(180),AG- TI(180),NI-TI(180),CR-TI(180),CU-TI(180),PB- TI(180),SE-TI(180),ZN-TI(180),HG-T(28),MN- TI(180),CD-TI(180)
L2322073-03F	Glass 120ml/4oz unpreserved	А	NA		3.2	Y	Absent		NYTCL-8270(14),TCN-9010(14),HEXCR- 7196(30)
L2322073-03G	Glass 120ml/4oz unpreserved	A	NA		3.2	Y	Absent		NYTCL-8270(14),TCN-9010(14),HEXCR- 7196(30)
L2322073-04A	Vial MeOH preserved	А	NA		3.2	Y	Absent		NYTCL-8260HLW-R2(14)
L2322073-04B	Vial water preserved	А	NA		3.2	Y	Absent	25-APR-23 05:02	NYTCL-8260HLW-R2(14)
L2322073-04C	Vial water preserved	А	NA		3.2	Y	Absent	25-APR-23 05:02	NYTCL-8260HLW-R2(14)
L2322073-04D	Plastic 120ml unpreserved	А	NA		3.2	Y	Absent		TS(7)
L2322073-04E	Metals Only-Glass 60mL/2oz unpreserved	A	NA		3.2	Y	Absent		BE-TI(180),AS-TI(180),BA-TI(180),AG- TI(180),CR-TI(180),NI-TI(180),SE-TI(180),CU- TI(180),ZN-TI(180),PB-TI(180),MN-TI(180),HG- T(28),CD-TI(180)
L2322073-04F	Glass 120ml/4oz unpreserved	А	NA		3.2	Y	Absent		NYTCL-8270(14),TCN-9010(14),HEXCR- 7196(30)
L2322073-04G	Glass 120ml/4oz unpreserved	А	NA		3.2	Y	Absent		NYTCL-8270(14),TCN-9010(14),HEXCR- 7196(30)
L2322073-05A	Vial MeOH preserved	А	NA		3.2	Y	Absent		NYTCL-8260HLW-R2(14)
L2322073-05B	Vial water preserved	А	NA		3.2	Y	Absent	25-APR-23 05:02	NYTCL-8260HLW-R2(14)
L2322073-05C	Vial water preserved	А	NA		3.2	Y	Absent	25-APR-23 05:02	NYTCL-8260HLW-R2(14)
L2322073-05D	Plastic 120ml unpreserved	А	NA		3.2	Y	Absent		TS(7)
L2322073-05E	Metals Only-Glass 60mL/2oz unpreserved	A	NA		3.2	Y	Absent		BE-TI(180),BA-TI(180),AS-TI(180),AG- TI(180),NI-TI(180),CR-TI(180),SE-TI(180),CU- TI(180),PB-TI(180),ZN-TI(180),MN-TI(180),HG- T(28),CD-TI(180)
L2322073-05F	Glass 120ml/4oz unpreserved	А	NA		3.2	Y	Absent		NYTCL-8270(14),TCN-9010(14),HEXCR- 7196(30)
L2322073-05G	Glass 120ml/4oz unpreserved	А	NA		3.2	Y	Absent		NYTCL-8270(14),TCN-9010(14),HEXCR- 7196(30)
L2322073-06A	Vial MeOH preserved	А	NA		3.2	Y	Absent		NYTCL-8260HLW-R2(14)
L2322073-06B	Vial water preserved	А	NA		3.2	Y	Absent	25-APR-23 05:02	NYTCL-8260HLW-R2(14)
L2322073-06C	Vial water preserved	А	NA		3.2	Y	Absent	25-APR-23 05:02	NYTCL-8260HLW-R2(14)
L2322073-06D	Plastic 120ml unpreserved	А	NA		3.2	Y	Absent		TS(7)

Project Name: 1153 WEST FAYETTE ST PHASE II Project Number: AB2.001.002

Serial_No:05082316:50 *Lab Number:* L2322073 *Report Date:* 05/08/23

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2322073-06E	Metals Only-Glass 60mL/2oz unpreserved	А	NA		3.2	Y	Absent		BE-TI(180),BA-TI(180),AS-TI(180),AG- TI(180),NI-TI(180),CR-TI(180),CU-TI(180),PB- TI(180),ZN-TI(180),SE-TI(180),MN-TI(180),HG- T(28),CD-TI(180)
L2322073-06F	Glass 120ml/4oz unpreserved	A	NA		3.2	Y	Absent		NYTCL-8270(14),TCN-9010(14),HEXCR- 7196(30)
L2322073-06G	Glass 120ml/4oz unpreserved	А	NA		3.2	Y	Absent		NYTCL-8270(14),TCN-9010(14),HEXCR- 7196(30)

Project Name: 1153 WEST FAYETTE ST PHASE II

Project Number: AB2.001.002

Lab Number: L2322073

Report Date: 05/08/23

GLOSSARY

Acronyms

Acronyms	
DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	 Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name: 1153 WEST FAYETTE ST PHASE II

Project Number: AB2.001.002

Lab Number: L2322073 Report Date: 05/08/23

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(a)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **F** The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

¹

Project Name: 1153 WEST FAYETTE ST PHASE II

Project Number: AB2.001.002

Lab Number: L2322073

Report Date: 05/08/23

Data Qualifiers

Identified Compounds (TICs).

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Project Name:1153 WEST FAYETTE ST PHASE IIProject Number:AB2.001.002

 Lab Number:
 L2322073

 Report Date:
 05/08/23

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D/8270E: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. **SM4500**: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: <u>NPW</u>: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics, EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II,

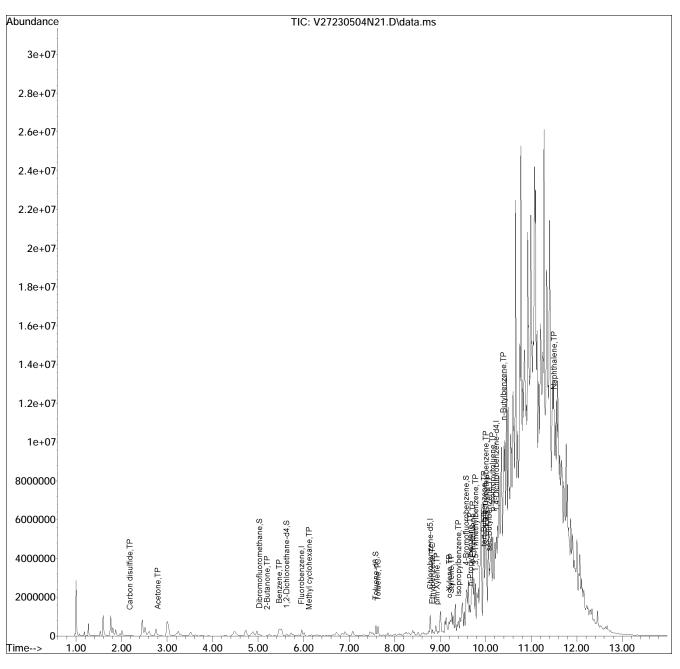
EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs **EPA 625.1**: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045**: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.


Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B**

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

	NEW YORK CHAIN OF CUSTODY	sy Rd, Suite 5 Way ooper Ave, Suite 105			Page			Rec' Lab	'd C	141:	ALPHA JOB # L2322073				
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd					Deliverables							Billing Information		
TEL: 508-898-9220	TEL: 508-822-9300	Project Name: 1153	Nest Fau	iette st	Phase	ILESA		ASP	-A			ASP	-B	Same as Client Info	
FAX: 508-898-9193	FAX: 508-822-3288	Project Location: SV17	icuse. N	Y] EQu	IS (1 F	File)		EQu	IS (4 File)	PO#	
Client Information		Project # AB2,001,002						Othe	r						
Clipter 499 Col El	roject #)					ulatory	Requ	uireme	nt	Disposal Site Information					
Addass: C 3 S ETK		A.	ire Del Fatti					NYT	and second	of Science	X	Please identify below location of			
Syracuse, N	ne per	e partiti					Standa	ards	NY CP-51			applicable disposal facilities.			
Phone:	1 10212	ALPHAQuote #: Turn-Around Time	Contraction of the	State State State				NYR			H	Other		Disposal Facility:	
Fax:		The second								ted Us	-	NJ NY Other:			
Email: Cdelfatti (ALCON COM	Standard Due Date: Rush (only if pre approved) # of Days:						Sec. 1							
								-		Discha	rge				
	been previously analyze	the second se					-	LYSIS	1	-				Sample Filtration	- 0
other project specifi	ic requirements/comm	ients:					23		2		NY TCL-82 60 HUW	UNH 097		Done	t
							P		metals		E	HO		Lab to do	a
								3	ne l		R	3		Lab to do	
Please specify Metal					~		NVTCL	Chrom	H9,		00	00			B
Part 375 M	ietals (incl.	Ha and Hex C	hrom a	nd TCN			2	3	Ŧ	1	5	1-		(Please Specify below)	t
ALPHA Lab ID	C.	mple ID	Ćoli	ection	Sample	Sampler's	1CN	tex	[cfa]	10	5	NYTCL		na	t
(Lab Use Only)	34	Inpie ID	Date	Time	Matrix	Initials	ĬĔ	Ť	12	15	Z	Z		Sample Specific Comments	e
27073-01	BH-01 0-5		0A/2A/23	0900	Soil	CD/NC	X	X	X	X	X	X		1	7
-07	BH-04 8-10)	1	1030	1	1	X	X	X	X	X	X			7
-03	North Statement			1200			X	1V	X	X	X	X			7
-04				1330			X	1	V	X	X	X			7
-05				1345			1	1¢	V	1	X	5			7
-010			Ŧ	1500			10	5	0	5	12	X			7
00	101 10 5 1		4	1200		1	A	X	-	X		X			T
										-	<u> </u>	-	_		+-
							-			_	-				+
							<u> </u>					-			+
Preservative Code:	Container Code		Postor a mora												
A = None	P = Plastic	Westboro: Certification N	o: MA935		Con	tainer Type	A		n	P	\mathbf{V}	1		Please print clearly, legibl	ly
B = HCI	b: MA015			Preservative		A	11	1	V T	V		and completely. Samples can not be logged in and turnaround time clock will not			
$C = HNO_3$ $D = H_2SO_4$										0					
E = NaOH	G = Glass B = Bacteria Cup					16361 Valive	A	A	A	A	Ŧ	0		start until any ambiguities	
= MeOH C = Cube Relinquished By: Date/Time							Received By:					Date	Time	resolved. BY EXECUTING	
$G = NaHSO_4$ $O = Other$ $H = NB_2S_2O_3$ $E = Encore$ $C. ACHOULU (C. De$						1820 ML		55				4/23	19:20	THIS COC, THE CLIENT	
K/E = Zn Ac/NaOH	D = BOD Bottle	0.10	AL Sowns storse 4/2423			16,50 Jam			11				7 18:36	 HAS READ AND AGREE TO BE BOUND BY ALPH 	
O = Other				10,51	1A										
Form No: 01-25 HC (rev. 3)	0-Sent-2013)					1		1			40	5/2		(See reverse side.)	
Form No: 01-25 HC (rev. 3) Page 77 of 78						L	_	_	_	-				1	

Quantitation Report (QT Reviewed) Data Path : I:\VOLATILES\VOA127\2023\230503N\ Data File : V27230504N21.D Acq On : 04 May 2023 09:47 pm : VOA127:JIC Operator Sample : L2322073-03,31,3.74,5,,B Misc : WG1775264, ICAL19866 ALS Vial : 21 Sample Multiplier: 1 Quant Time: May 05 09:58:54 2023 Quant Method : I:\VOLATILES\VOA127\2023\230503N\V127_230328A_8260.m Quant Title : VOLATILES BY GC/MS QLast Update : Wed Mar 29 09:51:44 2023 Response via : Initial Calibration Sub List : 8260-CurveSoil - Megamix plus Diox3N\V27230504N02.D•

V127_230328A_8260.m Fri May 05 11:55:14 2023