

Remedial Investigation Report

1153-69 West Fayette Street
City of Syracuse, Onondaga County, New York
BCP Site No. C734164

Prepared for:

1153 Owner LLC PO Box 515 Syracuse, New York 13205

April 2025 Revised August 2025

Remedial Investigation Report

1153-69 West Fayette Street
City of Syracuse, Onondaga County, New York
BCP Site No. C734164

Prepared for:

1153 Owner LLC PO Box 515 Syracuse, New York 13205

Prepared by:

C&S Engineers, Inc. 499 Col. Eileen Collins Boulevard Syracuse, New York 13212

I, H. Nevin Bradford, III, certify that I am currently a NYS Registered Professional Engineer and that this Remedial Investigation Report was prepared in accordance with applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10).

H. Nevin Bradford, III

y Veni Bradford

State of New York Professional Engineer No. 086008

April 30, 2025 (Revised August 7, 2025)

negistration expires. 04.31.202

TABLE OF CONTENTS

	<u>Puge</u>
ACRONYMS	
EXECUTIVE SUMMARY	111
1.0 INTRODUCTION	1
2.0 PROJECT BACKGROUND	2
2.1. Site Description	2
2.2. Site History	2
2.3. Previous Investigations	5
2.4. Remedial Investigation Objectives, Scope, and Rationale	8
3.0 METHODOLOGY	
3.1. Buried Utilities Evaluation	10
3.2. Soil Characterization	10
3.2.1. Surface Soil Sample Collection	10
3.2.2. Boring Advancement	11
3.3. Soil Vapor / Air Sampling	
3.3.1. Indoor Air Sampling	15
3.3.2. Sub-Slab Soil Gas Sampling	15
3.3.3. Crawl Space Air Sampling	16
3.3.4. Soil Vapor Implant Installation	16
3.3.5. Ambient Air Sampling3.3.6. Sample Canister Deployment and Retrieval	17
	17 18
3.4. Management of Investigation Derived Waste	
3.5. Air Monitoring3.5.1. Work Zone Air Monitoring	19 19
3.5.2. Community Air Monitoring	19
3.6. Quality Assurance / Quality Control / Data Usability	
3.7. Deviations from the Remedial Investigation Work Plan (RI	
4.0 FINDINGS	23
4.1. Geology and Hydrogeology	
4.1.1. Site Geology	23
4.1.2. Site Hydrogeology	23
4.2. Field Observations	24
4.3. Buried Utilities Evaluation	
4.4. Analytical Results	25

4.4.1.	Surface Soil	26
4.4.2.	Subsurface Soil	27
4.4.3.	Groundwater	30
4.4.4.	Sub-Slab Soil Vapor	32
4.5.	Community Air Monitoring Results	35
4.6.	Green Remediation Evaluation	35
5.0	CONTAMINANT ASSESSMENT	
5.1.	Nature, Extent, and Source of Contamination	37
5.1.1.	Surface Soil	37
5.1.2.	Subsurface Soil	37
5.1.3.	Groundwater	39
5.1.4.	Soil Vapor	41
5.2.	Contaminant Fate and Transport	41
5.3.	Evaluation of Potential Receptors	43
5.4.	Potential Exposure Pathways	43
5.4.1.	Surface Soil	43
5.4.2.	Subsurface Soil / HFM	44
5.4.3.	Groundwater	44
5.4.4.	Soil Vapor	44
5.4.5.	Exposure Assessment Summary	45
5.5.	Qualitative Human and Fish / Wildlife Resources Exposure Assessment	45
6.0	REFERENCES	47
TABL	ES WITHIN REPORT	
Table	2-1: Historical Site Owners and Occupants	3
Table	3-1: Groundwater Sampling Analysis	14
	4-1: Groundwater Elevations	
Table	4-2: Surface Soil Summary of Exceedances	26
	4-3: RI Sample Totals	
	4-4: General Site-Wide Borings – HFM Summary of Exceedances	
	4-5: General Site-Wide Borings – Native Soil Summary of Exceedances	
	4-6: Spill No. 23-00933 Area Soil Summary of Exceedances	
	4-7: NYSDOH Decision Matrices Results	
	4-8: Passive Soil Gas Sampling Results	
	5-1: Detected Contaminants in Surface Soil	
	5-2: Detected Contaminants in Sub-Surface HFM	
	5-3: Detected Contaminants in Sub-Surface Native Soil	
	5-4: Detected Contaminants in Sub-Surface Native Soil	
	5-5: Detected Contaminants in Groundwater	
, abic	5. Detected Contaminants in Groundwater	

FIGURES

Figure 1 Site Location Map
Figure 2 Site Layout Map
Figure 3 Past Site Uses Map

Figure 4 Geophysical Survey Results

Figure 5 Fill Depths

Figure 6 Remedial Investigation Sampling Locations

Figure 7 Surface Soil Sampling Locations **Figure 8a** Site-Wide Soil Boring Locations

Figure 8b Petroleum Delineation Soil Boring Locations **Figure 9a** Groundwater Monitoring Well Locations

Figure 9b Groundwater Elevation Contours – December 2024 **Figure 9c** Groundwater Elevation Contours – February 2025

Figure 10a SVI Sampling Locations

Figure 10b Passive Soil Gas Sampling Locations

TABLES

Table 1Remedial Investigation Sample LogTable 2Surface Soil Data Summary

Table 3 Sub-Surface Soil Data Summary
 Table 4 Groundwater Data Summary
 Table 5 Soil Vapor Data Summary

Table 6 Passive Soil Gas Sampler Data Summary

APPENDICES

Appendix A Geophysical Survey Report

Appendix B Soil Boring Logs

Appendix C
Appendix D
Groundwater Monitoring Well Construction Logs
Groundwater Development and Sampling Logs
Building Questionnaire and Product Inventory

Appendix F Soil Vapor Implant Construction Logs

Appendix G Community Air Monitoring Plan **Appendix H** Data Usability Summary Report

Appendix I Passive Soil Gas Sampler Analytical Report **Appendix J** NYSDEC Green Remediation Metrics Form A

Appendix K Health and Safety Plan

ACRONYMS

AAR – Alternatives Analysis Report

AGI – Amplified Geochemical Imaging LLC

AGV - Air Guideline Value

AMSL – Above Mean Sea Level

ASP – Analytical Services Protocol

ASTM – American Society for Testing and Materials

AWQS – Ambient Water Quality Standards

BCA – Brownfield Cleanup Agreement

BCP – Brownfield Cleanup Program

BGS – Below Ground Surface

BMP - Best Management Practice

C&S – C&S Engineers, Inc.

CAMP – Community Air Monitoring Plan

DER – Division of Environmental Remediation

DNAPL - Dense Non-Aqueous Phase Liquid

DUSR – Data Usability and Summary Report

ECL – Environmental Conservation Law

EDDI – Electronic Data Deliverable

ELAP – Environmental Laboratory Accreditation Program

ESA – Environmental Site Assessment

FER - Final Engineering Report

GPS – Global Positioning System

HASP – Health and Safety Plan

HFM – Historic Fill Material

ICP - Inductively Coupled Plasma

IDW - Investigation Derived Waste

IRM - Interim Remedial Measure

LCS – Laboratory Control Sample

MDL – Method Detection Limit

MS / MSD - Matrix Spike / Matrix Spike Duplicate

NAPL - Non-Aqueous Phase Liquid

NADV – North American Vertical Datum

ND - Not Detected

NYCRR – New York Codes, Rules, and Regulations

NYSNHP – New York State Natural Heritage

Program

NYSDEC – New York State Department of

Environmental Conservation

NYSDOH – New York State Department of Health

OCWA – Onondaga County Water Authority

Pace - Pace Analytical Services LLC

PAH – Polycyclic Aromatic Hydrocarbon

PCB – Polychlorinated Biphenyl

PCE – Tetrachloroethene

PFAS – Per- and Polyfluoroalkyl Substances

PFOA – Perfluorooctanoic acid

PFOS – Perfluorooctanesulfonic acid

PID - Photo-Ionization Detector

PM - Particulate Matter

PPB – Parts Per Billion

PPE – Personal Protective Equipment

PPM – Parts Per Million

PPT – Parts Per Trillion

PBS – Public Safety Building

PVC – Polyvinyl Chloride

QA / QC - Quality Assurance / Quality Control

REC – Recognized Environmental Condition

RI – Remedial Investigation

RIWP – Remedial Investigation Work Plan

SCG – Standards, Criteria, and Guidance Values

SCO – Soil Cleanup Objective

SIM – Select Ion Monitoring

Site - 1153-69 West Fayette Street, Syracuse, New York

SVE – Soil Vapor Extraction

SVI – Soil Vapor Intrusion

SVOC – Semi Volatile Organic Compound

TAL – Target Analyte List

TCE – Trichloroethene

TCL – Target Compound List

TIC – Tentatively Identified Compound

TOGS – Technical and Operational Guidance Series

TREC – TREC Environmental Inc.

USEPA – United States Environmental Protection Agency

UST – Underground Storage Tank

VOC – Volatile Organic Compound

Volunteer - 1153 Owner LLC

μg/m³ – Micrograms per Cubic Meter

EXECUTIVE SUMMARY

This document presents the Remedial Investigation (RI) Report for Brownfield Cleanup Program Site No. C734164 located at 1153-69 West Fayette Street, Syracuse, Onondaga County, New York (the "Site"). This document reports on the data and findings resulting from implementation of the New York State Department of Environmental Conservation (NYSDEC)-approved Remedial Investigation Work Plan (RIWP). The project details are summarized below:

Contaminant Source and Constituents

Contamination exceeding soil cleanup objectives (SCOs) is generally associated with historic fill material (HFM) located on the Site. Constituents in the HFM at concentrations that exceed the Commercial Use SCOs are generally semi-volatile organic compounds (SVOCs) and metals. SVOCs, metals, and per- and polyfluoroalkyl substances (PFAS) are also present in Site groundwater at concentrations that exceed NYSDEC Technical and Operation Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards (AWQS) and NYSDEC PFAS guidance standards. In addition, sub-slab soil vapor in the northwest portion of the single-story building is impacted by carbon tetrachloride.

Extent of Contamination

Soil contamination is primarily limited to the HFM located across the Site. The HFM is located immediately below existing surfaces and is underlain by native soils. The Site contains HFM with observed thickness of seven to 14 feet below ground surface (bgs). The observed HFM is shallowest on the west and south sides of the Site and deepest in the center and the northeast corner of the Site. SVOC contamination is most prominent along the western perimeter of the Site. It is believed that the contaminant sources are related to the historical urban and commercial uses of the property, historical coal handling practices in the vicinity of the coal silo and former rail spur, and the unregulated deposition of HFM that occurred over time.

Groundwater is located across the Site at approximately 5.5 to 13 feet bgs. The groundwater across the Site contains various SVOCs at relatively low concentrations, but above corresponding groundwater standards and guidance values. Based on the data gathered during the RI, it appears that SVOCs in the groundwater are related to the presence of HFM across the Site. Low-level PFAS contaminated groundwater is located on the northwestern and southeastern portion of the Site. The likely reason for the presence of PFAS is not currently understood. Existing groundwater gradient data indicates a northwesterly flow direction. The groundwater gradient at the Site is moderate, averaging 0.0125 feet per foot.

Carbon tetrachloride contaminated soil vapor is present in the northwestern portion of the single-story building. The impacted area is limited to approximately 500 square feet. Carbon tetrachloride was not identified in nearby sub-surface soil or groundwater.

Proposed Site Redevelopment

The anticipated post remediation use of the Site would be commercial in nature. The project will consist of the rehabilitation and reuse of the existing buildings on the 2.65-acre parcel. Upon completion, the building will serve as the new Syracuse Public Safety Building (PSB). The goal is to construct new, modern space that will allow the Syracuse Police Department and Syracuse Fire Department to hire new employees; using this space as a recruiting tool. The redeveloped Site will be a mix of office space, training space, storage space, and public engagement areas. The project will include the replacement of all windows (similar to their historic original style), demolition / abatement activities, replacement of all mechanical, plumbing, and fire suppression systems, and updated finishes / sitework. The project will provide over 100,000 square feet of space for the Syracuse Police Department and Syracuse Fire Department along with 147 parking stalls. The majority of the finished Site will be covered with buildings, asphalt parking, concrete ramps, and sidewalks and a much smaller portion will be green space.

Remedial Investigation

To characterize site conditions and identify the appropriate remedy for the Site, a RI was implemented. The RI included the collection and analysis of 60 soil samples, two rounds of groundwater sampling from seven wells (14 total samples), and two soil vapor intrusion (SVI) assessments (33 total samples).

Based on the RI, contaminants of concern are generally in the HFM across the Site and include SVOCs and metals. The variation in analyte concentrations in the soils that contain HFM indicates that the source of contamination in soil samples containing HFM is the HFM itself and no apparent discrete source is located on-site or off-site, except as noted below:

 Visual and olfactory evidence of petroleum impacts were noted along the western perimeter of the Site. Concentrations of polycyclic aromatic hydrocarbons (PAHs) exceeded Commercial Use SCOs at SB-106 and SB-112, however, a soil delineation in this area confirmed that PAH exceedances in sub-surface soil were limited to the HFM at SB-106 and SB-112. The petroleum impacts appeared to be weathered / degraded.

SVOC concentrations in groundwater only slightly exceeded Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards (AWQS) and were generally only detected during the first round of sampling. Six different PAHs were detected in excess of the TOGS limits. In each case, the concentrations were a fraction of a part per billion (ppb) (maximum of 0.23 ppb and majority below 0.1 ppb) and the corresponding TOGS limit is very low (either 0.002 ppb or non-detect). There were also sporadic exceedances of phenol, hexachlorobenzene, and bis(2-ethylhexyl)phthalate. Total copper, mercury, and lead exceeded the TOGS limit in one well during the first round of sampling but the respective dissolved concentrations did not exceed the TOGS limits. Similarly, dissolved antimony exceeded the TOGS limit in one well during the first round of sampling only. Groundwater PFAS concentrations in the northwestern and southeastern portions of the Site exceeded applicable perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid

(PFOA) standards. The likely reason for the presence PFAS is not currently understood. However, the Site is situated hydraulically downgradient of multiple former industrial complexes that were involved in machine manufacturing, car part manufacturing, and mill construction operations since the early 1900s throughout the 1960s / 70s. Existing groundwater gradient data indicates a northwesterly groundwater flow direction.

Soil vapor samples were collected from underneath the concrete floor in the northwestern portion of the single-story building, which was a 1950s addition to the building. Sample results indicate that the carbon tetrachloride impacts are limited to an approximate 500 square foot area and that mitigation is required according to the New York State Department of Health (NYSDOH) Decision Matrix A. Carbon tetrachloride was not detected in nearby soil borings or groundwater monitoring wells, indicating that the impacts are limited to soil vapor. A soil vapor extraction (SVE) system is currently being designed and will be installed as an Interim Remedial Measure (IRM) to reduce or eliminate the carbon tetrachloride impacts in soil vapor. If the IRM activities are not successful in eliminating the vapor-phase source, implementation of a long-term engineering control (i.e., vapor mitigation system) would be required.

Conclusions

Based on the work described in this document:

- Excess soil excavated or re-graded to meet proposed grades will be reused onsite to the extent practicable or managed at an off-site solid waste facility.
- A SVE system will be implemented as an IRM to reduce or eliminate carbon tetrachloride impacts in soil vapor.

Based on the results of this investigation, the proposed level of cleanup is Track 4.

1.0 INTRODUCTION

C&S Engineers, Inc. (C&S) has prepared this Remedial Investigation (RI) Report behalf of the Volunteers for Brownfield Cleanup Program (BCP) Site No. C734164, 1153 Owner LLC, (hereafter known as "Volunteer"), for the 1153-69 West Fayette Street BCP Site located at 1153-69 West Fayette Street in the City of Syracuse, Onondaga County, New York (the "Site"). On January 9, 2024 (Revised January 26, 2024), 1153 Owner LLC, as a BCP Volunteer, submitted a BCP Application to investigate and remediate the Site. The Brownfield Cleanup Agreement (BCA) was executed on June 21, 2024.

A Phase I Environmental Site Assessment (ESA) was completed by C&S in April 2023. The Phase I ESA identified multiple Recognized Environmental Conditions (RECs) relating to the former manufacturing operations on the Site and adjacent land use. A Phase II ESA was conducted by C&S in June 2023 to further investigate the RECs identified in the Phase I ESA. The Phase II ESA included the advancement of eight soil borings, the installation of three temporary groundwater monitoring wells, and the collection and analysis of five subsurface soil samples and three groundwater samples for volatile organic compounds (VOCs), semi volatile organic compounds (SVOCs), and total metals. A follow-up surface soil investigation was conducted by C&S in September 2023 to obtain additional analytical data in support of the BCP application. The investigation included the collection of four surface soil samples for analysis of VOCs, SVOCs, polychlorinated biphenyls (PCBs), pesticides / herbicides, and metals. The previous environmental investigations are discussed further in **Section 2.3**

In July 2024 (revised November 2024), C&S prepared a Remedial Investigation Work Plan (RIWP) to describe the proposed approach to more thoroughly assess site contaminant conditions. The RIWP was approved by the Department on December 10, 2024. The subsequent RI included a geophysical survey, soil and groundwater evaluations, and a soil vapor intrusion (SVI) assessment.

2.0 PROJECT BACKGROUND

2.1. Site Description

The Site is located at 1153-69 West Fayette Street in the City of Syracuse, Onondaga County, New York. The Site includes one tax parcel, Tax ID No. 099.-03-02.1, and is approximately 2.65 acres in size. The Site is developed with a 92,113 square foot, six-story building with an adjoining 11,060 square foot single-story building addition. The buildings were historically used for manufacturing purposes but have most recently been used as mixed office space, storage space, and commercial space. An oil house (located on the west side of the building) and an exterior coal silo (located on the south side of the building) were identified on historic maps. The oil house has since been replaced with the western addition to the building and the coal silo remains on the Site. The buildings are currently vacant. The six-story building is in good condition. The single-story building is in deteriorating condition and requires rehabilitation to ensure safe future Site use.

The Site is located on the west side of the City of Syracuse. Harbor Brook flows through the Site within a box culvert located beneath the eastern portion of the Site. Onondaga Creek is 0.76 miles east of the Site and Onondaga Lake is 1.25 miles northwest. The Site is bounded to the north by West Fayette Street followed by forested land, Syracuse City School District Supply Center, and a rail line, to the south by commercial stores and George Fowler High School, to the west by residences and the George Fowler High School baseball diamond, and to the east by the Lofts at 1117 BCP Site (C734160) and commercial stores. Properties surrounding the Site are a mix of residential, commercial, and industrial in nature.

Figure 1 shows the location of the Site and **Figure 2** shows the Project Area and Site Boundaries.

2.2. Site History

The Site was once occupied by residential houses, a machine shop, and a lumber shed from at least 1892. Around 1911, the Site began operating as the Kemp & Burpee Manufacturing Company, a large manufacturing facility that produced manure spreaders. These operations included a machine shop, a forge shop, and several painting shops on and near the eastern side of the Site. Between 1916 and 1946, the Site operated as the Brown-Lipe Gear Company, manufacturer of bicycle and automobile gears. Around 1920, the six-story industrial building with a single-story addition that exists today was constructed on the western portion of the Site. From 1943 to 1950, the Site was taken over by the United States government during World War II to manufacture trucks and tank clutches for the United States Army. Sometime between 1938 and 1951, all industrial buildings on the Site except for the existing buildings were demolished and replaced with a parking lot. Between 1956 and 1960, a single-story addition was added to the western side of the buildings. The eastern portion of the Site operated as a parking lot. The industrial facility operated as the Morris Distributing Company (wholesale electrical supplies) between approximately 1951 and 1988. This operation was equipped with an oil house that was located on the west side of the original structure, in an area that is now occupied by the western

addition. A coal silo was also present outside the south side of the building dating to at least 1951. The coal storage structure still remains on the Site. In the 1990s, the facility housed a variety of industrial and commercial companies including Command Services (computer sales and services), Tegmen (electronic circuit manufacturer), Selco Graphics (printing), and PEACE Inc (non-profit organization). Since the early 2000s, a variety of commercial tenants have occupied the facility. The buildings are currently vacant. The past site uses are portrayed on **Figure 3**.

Table 2-1 summarizes the historical and current owners and occupants of the Site based on city directories obtained during the April 2023 Phase I ESA and a title search obtained for the BCP Application.

Table 2-1: Historical Site Owners and Occupants

Years	Owner	Occupants		
Prior to 1889	Morris Run Coal Company			
1889 – 1890	Straight Line Engine Company			
1890 – 1907	Charles E. Lipe			
1907	Brown-L	Brown-Lipe Gear Co.		
1907 – 1916	Kemp & Burpee Manufac	cturing Company of Syracuse		
1916 – 1930	Brown-L	ipe Gear Co.		
1941 – 1943	W.C.	Lipe Inc.		
1943 – 1946	Brown-Lipe	Gear Company		
1946 – 1950	United Sta	tes of America		
1950	Shelmar (Company Inc.		
1952		y & Machine Corporation		
1054 1002	Martin Development Corp	Morris Distributing Co.		
1954 – 1983	(1952 – 1967)	Morris Electronics of Syracuse Inc.		
1988	Shelmar Company Inc.	Fayette Distributing Co.		
1900	(1967 – 1989)	Green PJ Advertising Co.		
		Command Services		
1993		Tegmen Corporation		
		Selco Graphics Inc.		
		PEACE Inc.		
		Command Services Corporation		
1998	Magi Group Development	New Justice Services		
	(1989 – 2006)	PEACE Inc.		
		Ikon Office Solutions Inc.		
		Local Service Employees International		
2003		MBM of Syracuse		
		New Justice SVC		
		PEACE Inc.		

Years	Owner	Occupants	
2008		Big Brothers Big Sisters Head Start Program MBM of Syracuse Mopro Mobility & Health Products New Justice SVC Service Employees International Union Syracuse City School District Syracuse Teacher Center	
2011	Middle Neck Road LLC (2006 – 2013)	Big Brothers Big Sisters Command Services Corp Head Start Program MBM of Syracuse Mopro Mobility & Health Products New Justice SVC PEACE Inc. Service Employees International Union Syracuse Soapworks LLC Syracuse Teacher Center	
2014	F&P Construction	n & Management LLC	
2016		Environmental Solutions MBM Business Systems Inc. Mopro Mobility & Health Products New Justice SVC PEACE Inc. Stacey White Solutions Syracuse Soapworks LLC Syracuse Teacher Center	
2020	John Noviasky and Cosmo Fanizzi III (2014 – 2021)	Environmental Solutions Knitty Gritty Yarns MBM Business Systems Inc. Mopro Mobility & Health Products New Justice SVC PEACE Inc. Stacey White Solutions Syracuse City School District Syracuse Teacher Center	

Years	Owner	Occupants
2022	The Cosmopolitan 1153, LLC (2021-2023)	Big Awesome BBQ Environmental Solutions Knitty Gritty Yarns MBM Business Systems Inc. Mopro Mobility Healthcare New Justice SVC PEACE Inc. Stacey White Solutions Syracuse City School District Syracuse Soapworks LLC
2023 – Present	Owner 1153 LLC	Vacant

The Volunteer purchased the Site in June 2023.

2.3. Previous Investigations

Environmental information currently exists via the completion of the following reports:

- Phase I ESA completed by C&S in April 2023
- Phase II ESA completed by C&S in June 2023
- Surface Soil Investigation completed by C&S in September 2023 (no report, table and figure only)

The following summarizes those efforts.

Phase I ESA, C&S - April 2023

The Phase I ESA revealed the following RECs associated with the Site:

- Former manufacturing operations (including machine shop operation related to manure spreader manufacturing and electronics manufacturing); presence of an oil house near the southwest side of the building on historic maps from 1951 and 1953; rail spurs and rail activity across southern portion of the Site; and generation of hazardous waste between 1986 and 1994.
- Site reconnaissance identified two very large boilers on the south side of the barn. The
 boilers are not currently operational but historically burned coal which was likely stored in
 the outdoor silo. Large-scale storage of coal and/or the on-site disposal of coal ash, which
 was historically a common practice at coal-burning facilities, could have contaminated the
 soil and groundwater on the Site.
- Multiple adjacent and adjoining sites:
 - o 220 South Geddes Street Former drycleaner

- 1117 West Fayette Street Former manufacturing facility
- 1171 West Fayette Street Former rail line round house
- 200 South Geddes Street Former and current manufacturing facility
- o 208 South Geddes Street Former manufacturing facility and machine shop
- o 216 218 South Geddes Street Former engine manufacturing facility
- 300 South Geddes Street Former manufacturing facility
- 201, 209, 301 South Geddes Street Former and current gasoline stations, auto repair shops, and auto sales shops

Phase II ESA, C&S - June 2023

The Phase II ESA was completed to obtain an overview of the environmental and subsurface conditions and further investigate the RECS identified in the Phase I ESA. The investigation was performed consistent with American Society for Testing and Materials (ASTM) E1903-19 *Standard Practice for Environmental Site Assessments: Phase II Environmental Site Assessment Process.* It was not the intent of the investigation to delineate potential impacts from historical Site uses. Soil samples were distributed vertically and horizontally to gather a broad level of information from across the Site. The investigation included the following:

- A subsurface investigation, which included the advancement of eight soil borings and installation of three temporary groundwater monitoring wells.
- The collection of five subsurface soil samples for the analysis of Part 375 VOCs, Part 375 SVOCs, and total metals (including mercury, hexavalent chromium, and total cyanide).
- The collection of three groundwater samples for the analysis of Target Compound List (TCL) VOCs, TCL SVOCs, and Target Analyte List (TAL) metals (including mercury).

The principal contaminants identified during the Phase II ESA were VOCs, SVOCs (primarily PAHs), and metals, as follows:

• Visual and olfactory evidence of petroleum impacts were observed at two soil borings (in proximity to the coal silo and former oil house). Based on these observations, a spill was reported to New York State Department of Environmental Conservation (NYSDEC), resulting in the assignment of Spill Number 23-00933 to the Site. Numerous VOCs, including many benzene derivatives, xylenes, and toluene were detected in four of the five soil samples; however, the concentrations did not exceed their respective Unrestricted Use or Commercial Use Soil Cleanup Objectives (SCOs). While VOCs were not detected in the groundwater sample collected from this area, many of the analyte detection limits exceeded their respective groundwater standard. These elevated detection limits may have been due to matrix interferences resulting from the presence of other, non-target petroleum constituents related to degraded petroleum products in this area.

- Numerous SVOCs were detected at concentrations greater than laboratory detection limits in soil across the Site. SVOC concentrations in one of the five soil samples exceeded Unrestricted and Commercial Use SCOs (in close proximity to the former oil house). These compounds are typically associated with petroleum products (diesel, fuel oil, waste/motor oil), coal, and burned organic material (i.e., coal, wood). The presence of historic fill material (HFM) encountered across the entire investigation area may be contributing to the presence of these SVOCs. Groundwater analytical results indicated the presence of numerous SVOCs across the Site, with concentrations exceeding New York Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards (AWQS). These concentrations may be a result of elevated turbidity, rather than from dissolved-phase compounds.
- Numerous metals were detected at concentrations greater than Unrestricted Use SCOs in soil across the Site. Arsenic concentrations exceeded Commercial Use SCOs. The presence of HFM encountered across the entire investigation area may be contributing to the presence of these metals. Groundwater analytical results indicated the presence of numerous metals across the Site, with concentrations exceeding TOGS 1.1.1 AWQS. These concentrations may also be a result of elevated turbidity.

<u>Surface Soil Investigation, C&S – September 2023</u>

The Surface Soil Investigation was completed by C&S to obtain additional analytical data in support of the BCP application. The investigation included the collection of four surface soil samples in the vicinity of the former oil house, coal silo, former rail spurs, and former powerhouse. The samples were submitted for the analysis of Part 375 VOCs, Part 375 SVOCs, PCBs, Part 375 pesticides / herbicides, and Part 375 metals (including mercury, hexavalent chromium, and total cyanide).

The principal contaminants identified in surface soil at the Site are SVOCs, organochlorine pesticides, PCBs, and metals, as follows:

 Numerous SVOCs were detected at concentrations greater than laboratory detection limits in surface soil across the Site. SVOC concentrations in all four soil samples exceeded Unrestricted and / or Commercial Use SCOs. SVOC concentrations were more prevalent along the western side of the Site, with the highest concentrations observed in the vicinity of the former oil house. These compounds are typically associated with petroleum products (diesel, fuel oil, waste/motor oil), coal, and burned organic material (i.e., coal, wood). The presence of HFM, the historical operation of an oil house and coal powered boilers, historic rail activities, and the former coal storage may be contributing to the presence of these SVOCs.

- 4,4'-DDT (an organochlorine pesticide) was detected at concentrations greater than Unrestricted Use SCOs along the western side of the Site. The historical operation of rail spurs on this side of the Site may be contributing to the presence of 4,4'-DDT.
- PCBs were detected at concentrations greater than Unrestricted Use SCOs along the western side of the Site. Historical manufacturing operations may be contributing to the presence of PCBs.
- Numerous metals were detected at concentrations greater than Unrestricted SCOs in soil
 across the Site. Arsenic, copper, and mercury concentrations exceeded Commercial Use
 SCOs along the western side of the Site. The presence of HFM encountered across the
 entire investigation area may be contributing to the presence of these metals.

2.4. Remedial Investigation Objectives, Scope, and Rationale

The objectives of the RI were to evaluate contaminant impacts to soil, groundwater, and soil vapor to inform and evaluate appropriate remedial actions necessary to redevelop the Site. The investigation work included evaluating the magnitude and extent of contaminant impacts, conducting a qualitative exposure assessment for actual or potential exposures to contaminants at the Site and / or emanating from the Site, and producing data that will support the development of an acceptable RI Report and Alternatives Analysis Report (AAR).

The RI scope of work was based on information previously gathered regarding historical operations conducted at the Site, the results of previous investigations / characterizations, and the project objectives. The RI included the following:

- Buried Utilities Evaluation This task consisted of using various geophysical screening methods to determine if buried features, such as dry wells, underground storage tanks (USTs), vaults, etc. were present on the exterior of the Site. The results of the geophysical survey are shown on Figure 4.
- Soil Evaluation This task consisted of assessing the Site's surface soil, HFM, and underlying native soil:
 - a) Surface soils were characterized to assess the nature and extent of contamination in areas that are proposed to be pervious (e.g. grass and landscaped areas, or other areas not covered by pavement).
 - b) HFM was characterized to identify the extent and extent of contamination within the fill. Soil borings were advanced on the exterior of the Site, as well as under the existing single-story building. Soil borings were not advanced under the existing six-story building as the structure has a crawl space spanning the entire footprint.

A map showing the depths of HFM across the Site is provided as **Figure 5**. Note that the depths are reflective of conditions during the RI.

- c) Underlying native soils were characterized to determine the depth of impacts from the overlying HFM and / or Site operations. Soil borings were advanced on the exterior of the Site, as well as under the existing single-story building.
- d) The soils in the vicinity of the former oil house and coal silo (i.e., Spill No. 23-00933) were characterized to determine the horizontal and vertical extent of petroleum impacts in soil.
- Groundwater Evaluation Groundwater monitoring wells were installed on Site to assess groundwater quality and determine groundwater flow.
- SVI Assessment Sub-slab and indoor air samples were collected from the existing onestory building. Crawl space air and indoor air samples were collected from the existing sixstory building. Soil vapor implants were installed throughout the Site exterior to assess the potential for off-site migration. An outdoor air sample was collected from an upwind ambient location for comparison purposes.
 - a) Based on the results of the initial SVI assessment, an additional assessment was conducted using passive soil gas samplers to identify the source of carbon tetrachloride in soil vapor and delineate the extent of impacts.

The locations of all RI sampling locations are shown on **Figure 6.** The RI activities were completed consistent with NYSDEC Part 375-6 and NYSDEC Division of Environmental Remediation: Technical Guidance for Site Investigation and Remediation dated May 2010 (DER-10) and the RIWP submitted to NYSDEC in July 2024 (revised November 2024) and subsequently approved by NYSDEC on December 10, 2024. The RI activities also employed Best Management Practices (BMPs) to reduce the environmental footprint of the work, consistent with the guidance contained in DEC Program Policy DER-31: Green Remediation dated January 20, 2011 (DER-31).

3.0 METHODOLOGY

The RI intended to characterize site conditions through a geophysical survey, the advancement of soil borings, the installation of groundwater monitoring wells, the installation of soil vapor implants, and the collection and analysis of soil, groundwater, and soil vapor / air samples.

3.1. Buried Utilities Evaluation

On November 22, 2024, TREC Environmental Inc. (TREC) conducted a geophysical survey across the Site. The survey included the use of ground-penetrating radar technologies to locate and record the locations of utilities and anomalies. The survey was completed using a Mala Easy Locator HDR and SPX RD 7000. The survey line spacing used was determined based on the particular unit in use at the time. The purpose of the evaluation was to identify the locations of public / private utilities, as well as to identify buried features, such as dry wells, USTs, vaults, etc. The geophysical survey report is provided in **Appendix A**.

3.2. Soil Characterization

3.2.1. Surface Soil Sample Collection

Surface soil samples were collected across the Site. Twelve surface soil samples were collected from six locations spatially distributed across the Site in areas not currently or proposed to be "capped" by asphalt or buildings. Surface soil samples were collected at the locations shown on **Figure 7**.

Two samples were collected from each location using a decontaminated, stainless-steel spoon or spatula. The samples were collected from 0 to 2 inches below the vegetative cover and from 6 to 12 inches below ground surface (bgs). All non-disposable sampling equipment was decontaminated between sample locations to avoid potential cross contamination of samples.

Surface soils were screened in the field for visible impairment (e.g. staining), olfactory indications of impairment, and / or indication of detectable VOCs with a 10.6 eV photo-ionization detector (PID). Such evidence is collectively referred to as "evidence of impairment" and the results were recorded on a soil sample log.

The surface soil samples were analyzed for the following analyte list:

- TCL VOCs (including 1,4-dioxane) + 10 Tentatively Identified Compounds (TICs)
- TCL SVOCs + 20 TICs
- TCL pesticides
- Herbicides
- TCL PCBs
- TAL metals, including total mercury and cyanide
- Hexavalent chromium

Per-and Polyfluoroalkyl Substances (PFAS)

A surface soil sample log is provided in **Table 1**.

3.2.2. Boring Advancement

Soil borings were advanced across the Site to facilitate the sampling of HFM and native material. Soil borings were positioned to ensure representative coverage of the Site. Soil boring locations are shown on **Figure 8a** and **Figure 8b**. These include 17 exterior soil borings (SB-101 through SB-104, SB-109 through SB-118, SB-112A, SB-112B, and SB-112C) and seven soil borings (SB-105 through SB-108, SB-106A, SB-106B, and SB106C) beneath the existing single-story building. The borings were advanced between November 25 and 26, 2024 based on the locations in the approved RIWP:

- 18 of the 24 soil borings were advanced to collect analytical data from the HFM and native material across the Site. The samples collected from these borings were analyzed for a comprehensive list of contaminants, described in further detail below.
- 6 of the 24 soil borings were advanced to delineate the petroleum impacts observed in the vicinity of the former oil house and coal silo during the Phase II ESA (i.e., Spill No. 23-00933). The samples collected from these borings were analyzed for a shorter list of petroleum contaminants, described in further detail below.

Each soil boring was advanced into native material, up to 20 feet bgs. Borings were advanced to assess the full depth of HFM or other contamination of impacted soils. Exploration locations were located with a hand-held global positioning system (GPS) device or via tie-measurements from existing Site features.

From the borings, HFM and native soil samples were collected to document Site conditions. Soil sample collection was biased towards material horizons that exhibited gross characteristics, discoloration, and / or odors / vapors, if present.

A direct-push drilling rig was used to advance the borings. Each boring location was continuously sampled in five-foot intervals using a two-inch diameter by five-foot long steel sampling tube (Geoprobe Systems'® Macro-Core® MC5 sampler) fitted with a disposable clear polyvinyl chloride (PVC) liner. All non-disposable sampling equipment was decontaminated between runs and between drill locations to avoid potential cross contamination of samples.

Soils from the PVC liners were screened in the field for visible impairment (e.g. staining), olfactory indications of impairment, evidence of non-aqueous phase liquids (NAPLs), and / or indication of detectable VOCs over 10 parts per million (ppm) with a 10.6 eV PID.

Soil boring logs were prepared and include soil description / lithology, PID readings, relevant observations, etc. The boring logs are provided in **Appendix B**.

3.2.2.1. Site-Wide Borings – HFM Sampling

18 of the 24 soil borings were advanced to collect Site-wide analytical data. HFM samples were collected from these soil borings based on evidence of impairment and to provide characterization across the Site. One sample was collected from each boring where HFM was encountered. The HFM samples were collected and analyzed for the following:

- Total Petroleum Hydrocarbons
- TCL VOCs (including 1,4-dioxane) + 10 TICs
- TCL SVOCs + 20 TICs
- TCL pesticides
- Herbicides
- TCL PCBs
- TAL metals, including total mercury and cyanide
- Hexavalent chromium
- PFAS

A subsurface soil sample log is provided in **Table 1**.

3.2.2.Site-Wide Borings – Native Soil Sampling

18 of the 24 soil borings were advanced to collect Site-wide analytical data. Native soil was visually assessed in these soil borings from its upper extent to at least 15 feet bgs. To assess the impact of HFM and / or Site operations on the underlying native soil, soil samples were collected from the top of native material. The soil samples were collected and analyzed for:

- TCL VOCs (including 1,4-dioxane) + 10 TICs
- TCL SVOCs + 20 TICs
- TCL pesticides
- Herbicides
- TCL PCBs
- TAL metals, including total mercury and cyanide
- Hexavalent chromium
- PFAS

A subsurface soil sample log is provided in **Table 1**.

3.2.2.3. Spill No. 23-00933 Area Soil Sampling

Six of the 24 soil borings were reserved to delineate the petroleum impacts encountered during the Phase II ESA in the vicinity of the former oil house and coal silo. Soil was visually assessed in the vicinity of the former oil house and coal silo (i.e., Spill No. 23-00933) from its upper extent to at least two feet below the area of impact. To delineate possible impacts in the HFM / native soil,

a total of 12 soil samples were reserved for collection and analysis from this area (one HFM and one native soil sample from each boring). The soil samples were analyzed for the following:

- TCL VOCs (excluding 1,4-dioxane) + 10 TICs
- TCL SVOCs + 20 TICs

A subsurface soil sample log is provided in **Table 1**.

3.2.2.4. Groundwater Characterization

To characterize groundwater conditions at the Site, seven groundwater monitoring wells (designated MW-101 through MW-107) were installed, as shown in **Figure 9a**, **Figure 9b**, and **Figure 9c**. The wells were installed between December 2 and 6, 2024 based on the locations in the approved RIWP.

A rotary drill was used to advance 4-1/4-inch hollow stem augers. The augers and drilling rods were decontaminated prior to use via high pressure sprayer. Between each well location, decontamination procedures were repeated.

The overburden wells were constructed to intersect the top of the water table. Each well was completed with 10 to 15 feet of 2-inch Schedule 40 well screen with 0.010-inch slots, connected to an appropriate length of Schedule 40 PVC well riser to complete the well. The annulus was sand packed with quartz sand to approximately two feet above the screened section, and one to two feet of bentonite chips or pellets were installed above the sand. The remaining annulus was grouted to ground surface with bentonite-cement grout. Each well was completed with a flushmount protective casing. Well construction logs are provided in **Appendix C**.

At least 24 hours following installation, the monitoring wells were developed through the removal of up to ten well volumes using a peristaltic pump. The pump effluent (i.e., evacuated water) was monitored for pH, temperature, dissolved oxygen, conductivity, oxidation / reduction potential, and turbidity to document stabilization of water quality.

Seven days following development, groundwater sampling was conducted using low-low purging and sampling techniques. Before purging the well, static water levels were measured using an electric water level sounder capable of measuring to the 0.01-foot accuracy. Peristaltic pumps using manufacturer-specified tubing were used for purging and sampling groundwater. Sampling protocol and equipment complied with the most current version of NYSDEC's "Groundwater Sampling for Emerging Contaminants" guidance. In addition, calibration, purging and sampling procedures were performed as specified by the United States Environmental Protection Agency (USEPA)¹ guidance for low-flow sampling. Decontamination was conducted after each well was

¹ USEPA Low Stress (low-flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells, September 19, 2017.

sampled to reduce the likelihood of cross contamination. Calibration times, purging volumes, water levels and field measurements were recorded on field logs, provided in **Appendix D**.

The first round of groundwater sampling was completed between December 12 and 13, 2024. The second round of groundwater sampling was completed between February 11 and 12, 2025. Analysis for the wells varied as shown in **Table 3-1**:

PFAS. **TCL TCL** TAL TCL TCL Hex Well No. **VOCs SVOCs Herbicides** Cyanide Round metals 1,4-**Pesticides PCBs Chromium** + TICs + TICs +mercury dioxane MW-101 Χ Χ Χ Χ MW-101 2 Χ Χ Χ Χ Χ MW-102 Χ Χ Χ Χ Χ 2 Χ MW-102 Χ Χ Χ MW-103 1 Χ Χ Χ Χ Χ 2 MW-103 Χ Χ Χ Χ Χ Χ Χ Χ MW-104 1 Χ Χ Χ Χ Χ Χ Χ Χ Χ MW-104 2 Χ Χ Χ Χ MW-105 Χ Χ Χ Χ Χ 1 MW-105 2 Χ Χ Χ Χ MW-106 1 Χ Χ Χ Χ Χ Χ MW-106 2 Χ Χ Χ MW-107 Χ Χ Χ Χ 1 Χ MW-107 Χ Χ Χ Χ

Table 3-1: Groundwater Sampling Analysis

Notes:

- Based on the RIWP, pesticides, herbicides, cyanide, and hexavalent chromium were analyzed for one sample per round for MW-101 through MW-107. These analytes were analyzed at MW-104 during Round 1 and MW-103 during Round 2.
- Based on the RIWP and the results of the first round of sampling, PFAS analysis was only required at MW-101 and MW-107 during the second round of sampling. 1,4-dioxane analysis was not required at any of the wells during the second round of sampling.

Drilling decontamination, development, and purge fluids were collected, containerized, and staged for subsequent disposal, consistent with DER-10.

A groundwater sample log is provided in **Table 1**.

3.3. Soil Vapor / Air Sampling

Soil vapor / air sampling was performed to determine if there is potential SVI into the Site buildings and if there is potential for soil vapor to migrate off-site. The sampling was performed consistent with the New York State Department of Health (NYSDOH) *Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York*, October 2006 with updates. Soil vapor intrusion sampling was performed in the existing six-story building, single-story building, and throughout the Site exterior. Two collocated crawl space air and indoor air samples were collected in the six-story building while three collocated sub-slab soil gas and indoor air samples were collected in

the single-story building. Seven soil vapor implants were positioned near the periphery of the Site to assess the potential for on-site or off-site migration. Soil vapor intrusion sampling locations are shown on **Figure 10a**.

Based on the results of the initial SVI assessment, an additional assessment was conducted using passive soil gas samplers to identify the source and distribution of carbon tetrachloride in soil vapor and delineate the extent of impacts. Fifteen additional sub-slab soil vapor samples were collected as a part of this assessment. The additional passive soil gas sampling locations are shown on **Figure 10b**.

3.3.1. Indoor Air Sampling

Indoor air samples were collected using a SummaTM canisters (6-Liter capacity) equipped with critical orifice flow regulation devices calibrated to allow an air sample to be collected over a 24-hour sampling period. Care was taken to deploy the canisters away from the direct influence of any forced air emanating from air conditioning units, central air conditioning vents, furnaces or heaters. No such units were operational at the time of sampling. Both buildings were partially occupied by general contractors throughout the sampling period; however, the buildings were in a closed condition for majority of the sampling event, with the periodic opening and immediate closing of doors.

A building questionnaire and product inventory were prepared and are provided in **Appendix E**. Both buildings were determined to not be airtight, with many cracks and openings observed in the walls and roofs. The floors were generally in good condition. Numerous products were stored in the buildings at the time of sampling; however, care was taken to deploy the canisters away from the notable products.

3.3.2. Sub-Slab Soil Gas Sampling

Sub-slab sampling points were installed to collect soil gas immediately below the slab foundation of the single-story building. The sub-slab samples were co-located with a corresponding indoor air sample to allow comparison of sub-slab and nearby indoor air concentrations. Sub-slab gas samples were collected using a 6-Liter Summa™ canister fitted with a flow orifice pre-calibrated to collect a 6-Liter sample over a 24-hour period. The locations of the sampling points are shown on Figure 10A.

The sub-slab vapor points were installed by advancing a small diameter hole (approximately 3/8-inches in diameter) through the floor slab to determine thickness. The holes were drilled using a hammer drill. The holes extended through the slab and terminated at the interface with underlying material (i.e., gravel base or soil). A length of vinyl tubing was placed into the hole to extend to the bottom of the slab. The cored slab annulus was sealed with clay placed around the tubing.

To ensure there was no connection between the sub-slab and indoor air, helium short-circuit testing was performed at each sampling point. The helium was introduced into a dome placed

over the sealed tubing. The dome was sealed to the concrete floor with modeling clay. The helium detector capable of reading down to 1 to 2 percent helium was connected to the sample tubing to measure helium concentrations in the sub-slab environment. The detection of helium in the sub-slab air would indicate communication between the air inside the dome and the sub-slab, revealing a leak in the seal around the tubing. If helium was detected by the meter, the clay seal around the tubing was reconfigured and the tracer test was repeated until such time as an adequate seal was observed.

Prior to sub-slab soil gas sample collection, the sample tubing was purged at a rate not exceeding 200 ml/min to remove the volume of air in the tube. This process was intended to ensure that the concentrations detected in the air sample within the canister were representative of soil gas concentrations and not diluted by ambient indoor air.

3.3.3. Crawl Space Air Sampling

The six-story building is situated over a crawl space with an exposed earth floor. Crawl space sampling points were installed to collect air in the crawl space, immediately below the ground floor of the six-story building. The crawl space air samples were co-located with a corresponding indoor air sample to allow comparison of crawl space air and nearby indoor air concentrations.. Crawl space air samples were collected using a 6-Liter Summa™ canister fitted with a flow orifice pre-calibrated to collect a 6-Liter sample over a 24-hour period. The locations of the sampling points are shown on Figure 10A.

The crawl space sampling points were installed by advancing a small diameter hole (approximately 3/8-inches in diameter) through the ground floor to determine thickness. The holes were drilled using a hammer drill. The hole extended through the slab and terminated in the crawl space. A length of vinyl tubing was placed into the hole to extend approximately two feet into the crawl space. The cored slab annulus was sealed with clay placed around the tubing.

To ensure there was no connection between the crawl space and indoor air, helium short-circuit testing was performed at each sampling point, consistent with the methods employed for the sub-slab soil gas samples described in **Section 3.3.2**.

3.3.4. Soil Vapor Implant Installation

Soil vapor sampling was conducted near the property periphery in each direction to evaluate whether evidence of VOC migration via pore space in unsaturated soil was entering the property from off-site locations or leaving the property and potentially impacting adjacent properties and structures. To accomplish this sampling, seven semi-permanent soil vapor implants were installed.

The soil vapor implants were installed using direct-push methods. Continuous soil sampling was conducted at each location using Geoprobe® Systems' Macro-Core® soil samplers, to create a nominal 2.25-inch diameter borehole. The direct-push borings were terminated at the target depth of the vapor implant placement. As consistent with NYSDOH guidance, the vapor implants

were positioned so as to allow collection of vapor samples at depths comparable to the depths of nearby foundation footings (normally +/- five feet in depth), or at least 12 inches above the water table, if groundwater is present at a depth less than six feet bgs. The groundwater depth was determined based upon static water levels recorded in nearby wells.

Following creation of the borehole, the vapor implants were placed at the target sampling depth. For purposes of this Site, the borings were advanced to a depth of five feet bgs (since groundwater was not observed less than 6 feet bgs) and the vapor implants were installed at a depth of 4.25 to 4.75 feet below grade. Each implant consisted of a six-inch long vapor implant with stainless steel mesh / screen. Polyethylene tubing was affixed to the top of the stainless-steel screen and extended to the ground surface. The borehole annulus below, surrounding, and to twelve inches above the top of the screen was filled with clean glass beads to create an inert, porous vapor sampling zone. The remainder of the borehole annulus was filled with a bentonite slurry to minimize outdoor air from entering the sampling zone. Each vapor implant was completed with a flush-mount protective casing. Vapor implant construction logs are provided in **Appendix F**.

3.3.5. Ambient Air Sampling

One ambient air sample was collected in the same manner as the indoor air samples. The sampling device was located upwind of the structure and was placed approximately three to five feet off the ground for sample collection purposes. The outdoor air sample was collected using a Summa canister equipped with a laboratory calibrated regulator over a 24-hour period.

3.3.6. Sample Canister Deployment and Retrieval

For all sub-slab vapor, crawlspace air, soil vapor, and indoor and outdoor air sampling described above, sample canisters were deployed and retrieved as described below:

- Air sample canisters were labeled with a unique sample designation number. The sample number and location were recorded on the field log.
- The canister vacuum was measured using an integrated vacuum gauge immediately prior
 to canister deployment and recorded on the field log. The critical orifice flow controller
 was installed, as supplied by the laboratory, on the canister; the canister was opened fully
 at the beginning of sample collection period; and the start time was recorded.
- The canister vacuum was measured and recorded immediately prior to canister retrieval at the end of the sample period. Once the vacuum was measured, the canister valve was closed fully at the end of the sample period by disconnecting the regulator from the canister (after 24-hours) and the end time was recorded.
- The canisters were returned to their sampling boxes for safe storage and shipping. Field data was verified as correctly entered into field books prior to shipment and the canisters were shipped to the laboratory under a chain-of-custody.

• Each sample was analyzed for VOCs via USEPA Compendium Method TO-15. Five indoor air compounds (trichloroethene, cis-1,2-dichloroethane, 1,1-dichloroethane, carbon tetrachloride, and vinyl chloride) were analyzed using USEPA Method TO-15 Select Ion Monitoring (SIM) to achieve low level laboratory reporting limits of 0.20 micrograms per cubic meter (μg/m³) or less.

A soil vapor / air sampling log is provided in **Table 1**.

3.3.7. Passive Soil Gas Sampler Deployment and Retrieval

For the additional assessment of sub-slab carbon tetrachloride concentrations detected below the northwest section of the single-story structure, passive soil gas samplers were deployed and retrieved as described below:

- Sub-slab passive sampling points were installed to collect soil gas approximately 36-inches below the slab. Sub-slab soil gas samples were collected using Amplified Geochemical Imaging LLC (AGI) Passive Samplers. The samplers contain a proprietary adsorbent that collects VOCs present in soil gas over a 7-day period.
- The sub-slab passive sampling points were installed by advancing a small diameter hole (approximately 3/4-inch in diameter) through the floor slab using a hammer drill. The hole extended through the slab and terminated at 36-inches bgs.
- An appropriate length of string was used to reach the sample depth of 36-inches. The string was affixed to the AGI Passive Sampler on one end and a cork on the other end.
- AGI Passive Samplers were labeled with a unique serial number. The serial number and location were recorded on the field log before the sampler was deployed.
- An insertion rod was used to insert the AGI Passive Sampler to the sample depth of 36-inches. Once the insertion rod was removed, the cork was used to seal the hole in the slab.
 The start time was recorded on the field log.
- Following the recommended exposure period of 7 days, the cork and AGI Passive Sampler were removed. The end time was recorded on the field log.
- The sampler was wiped down with a clean paper towel and the serial number and location
 were verified as entered into field logs. The sampler was placed in the appropriate vial with
 the corresponding serial number and closed with a custody seal. The vials were returned
 to their sampling boxes for safe storage and shipping. The vials were shipped to the
 laboratory under a chain-of-custody.
- Each sample was analyzed for carbon tetrachloride via a modified USEPA Method 8260.

A passive soil gas sampling log is provided in **Table 1**.

3.4. Management of Investigation Derived Waste

Investigation-derived wastes (IDW) (i.e., grossly contaminated soil cuttings and purge water) were containerized or stockpiled and staged on-site. Soil cuttings with no apparent staining, odors, or elevated PID readings were used to backfill boring holes. Soil cuttings from monitoring well installation were placed on and covered with polyethylene sheets. Purged groundwater was placed in steel 55-gallon drums with closed tops. Drums were properly labeled and sealed and will be characterized as necessary for disposal.

Discarded personal protective equipment (PPE), paper towels, plastic bags, disposable sampling equipment (i.e., groundwater development and sample tubing, bailers), and other general refuse was placed in sealed plastic garbage bags and disposed of as municipal solid waste.

All IDW was collected and managed in accordance with DER-10. The stockpiled soil will be reused during remedial construction to the extent practicable or characterized and disposed of properly off-site. Containerized water will be characterized and disposed of properly at an off-site facility.

3.5. Air Monitoring

3.5.1. Work Zone Air Monitoring

Air monitoring was conducted in the work zone for on-site health and safety. Air monitoring was conducted during active invasive activities periods, such as test boring advancement and well installation. The monitoring included VOC screening.

VOC concentrations were monitored throughout the day using a PID. The monitor was calibrated each day. The action threshold was 5 ppm above background VOCs during a 15-minute average. Exceedances of the action threshold were not observed throughout the duration of the invasive activities.

3.5.2. Community Air Monitoring

Community air monitoring was conducted to ensure that airborne contaminants were not leaving the project site and affecting adjacent, downwind areas. Air monitoring was conducted during active invasive activities periods, such as test boring advancement and well installation. The monitoring included dust and VOC screening.

VOC concentrations were monitored using a PID and particulate matter (PM)-10 concentrations were monitored using a real-time particulate monitor (DustTrak) at upwind and downwind locations, depending on the work area and wind direction. The monitors were moved throughout the day as needed, as winds shifted direction. The monitors were calibrated each day. The action threshold established in the Community Air Monitoring Plan (CAMP) was 5 ppm above

background for VOCs and $100 \,\mu\text{g/m}^3$ above background for PM-10, during a 15-minute average. The specifics of the air monitoring procedures and criteria are detailed in the CAMP, provided in **Appendix G.**

Daily CAMP reports were provided to NYSDEC and NYSDOH project managers. The reports consisted of figures showing work zones and monitoring stations and CAMP data. Exceedances of the action thresholds were not observed throughout the duration of the invasive activities, as detailed in the daily CAMP reports.

3.6. Quality Assurance / Quality Control / Data Usability

Quality Assurance / Quality Control (QA/QC) samples were collected based on the following minimum number of samples per media type as defined in the RIWP:

- Soil samples
 - Blind duplicate 5% (3 total)
 - Matrix Spike / Matrix Spike Duplicate (MS / MSD) 5% (3 total)
- Groundwater samples
 - Trip blank 1 per shipment / round (4 total)
 - o Field blank 1 per PFAS sampling event (2 total)
 - Blind Duplicate 5% (1 per round, 2 total)
 - \circ MS / MSD 5% (1 per round, 2 total)

A total of 60 soil samples were collected during the RI activities, and 9 QA/QC samples were taken (3 blind duplicates, 3 MS, and 3 MSD), meeting the 5% criteria. Over two groundwater sampling events, a total of 14 groundwater samples were taken with an additional 12 QA / QC samples (2 blind duplicates, 2 MS, 2 MSD, 2 field blanks, and 4 trip blanks), also meeting the 5% criteria.

Pace Analytical Services LLC (Pace), a laboratory maintaining accreditation under the NYSDOH Environmental Laboratory Approval Program (ELAP), performed the analytical testing. The laboratory results for the samples were reported in an ASP Category B deliverables package to facilitate validation of the data, and a third-party validator, Data Validation Services, reviewed the laboratory data and prepared a Data Usability and Summary Report (DUSR). The validator evaluated the analytical results for the field samples and QA / QC samples and compared the findings to USEPA guidance to determine the accuracy and validity of the results. The DUSR was prepared by Data Validation Services, as required by DER-10 Section 2.2 and as reflected in the RIWP. The DUSR is included as **Appendix H.** The following items were reviewed:

- Laboratory Narrative Discussion
- Custody Documentation
- Holding Times
- Surrogate Standard Recoveries
- Matrix Spike Recoveries. Duplicate Recoveries

- Blind Field Duplicate Correlations
- Preparation/calibration Blanks
- Laboratory Control Samples (LCSs)
- Calibration/Low Level Standards
- Inductively Coupled Plasma (ICP) Serial Dilution
- Instrument method detection limits (MDLs)
- Sample Result Verification

Details regarding RI activities will be included in the Final Engineering Report. All analytical data was submitted to the NYSDEC via EQuIS[™] on March 5, 2025 and was in the approved electronic data deliverable (EDD) format.

3.7. Deviations from the Remedial Investigation Work Plan (RIWP)

C&S submitted a final RIWP to the Department in November 2024. The RIWP was approved by the Department on December 10, 2024. Deviations from the RIWP are outlined below:

- Surface soil sample SS-103 was shifted approximately 12 feet south due to a layer of asphalt directly beneath the surface soil in the area.
- Soil boring SB-101 was shifted approximately 10 feet east to avoid the underground natural gas line.
- Soil boring SB-102 was shifted approximately 10 feet southwest to avoid the underground Harbor Brook culvert.
- Soil boring SB-111 was shifted approximately 10 feet southeast to avoid buried debris. The debris is believed to be associated with a former building foundation.
- Soil boring SB-112B was shifted approximately 8 feet south to avoid the coal silo.
- Soil borings SB-114, SB-115, SB-116, and SB-118 were shifted due to limited accessibility (i.e., thick vegetation, wooden slabs, piles of debris). SB-114 was shifted approximately 10 feet to the north, SB-115 was shifted approximately 20 feet to the north, SB-116 was shifted approximately 8 feet to the northwest, and SB-118 was shifted approximately 15 feet to the west.
- The indoor soil borings (SB-105, SB-106, SB-106A, SB-106B, SB-106C, SB-107, and SB-108) were shifted in the field due to accessibility (i.e., coal boilers, kiln, stored equipment / materials). Majority of the borings were shifted approximately 10 feet and none were shifted more than 15 feet in any direction.
- Monitoring well MW-101 was shifted approximately 10 feet east to avoid the underground natural gas line.

- Monitoring well MW-102 was shifted approximately 20 feet east to avoid the underground Harbor Brook culvert.
- Monitoring well MW-106 was shifted approximately 25 feet southeast due to limited accessibility from large wooden slabs.
- Monitoring well MW-107 was shifted approximately 45 feet north due to a layer of concrete present 5 feet bgs in the area surrounding the proposed location.
- Sub-slab vapor point SSV-102 / IA-102 was shifted approximately 12 feet west to avoid the kiln.
- Crawl space air sample CS-104 / IA-104 was shifted approximately 15 feet west to avoid damaging laminate flooring.
- Soil vapor point SV-107 was shifted approximately 9 feet east due to accessibility (i.e., thick vegetation).
- Outdoor air sample OA-101 was shifted to the northwest corner of the Site based on wind direction on the day of sampling.
- Based on the results of the initial SVI assessment, an additional assessment was conducted
 using passive soil gas samplers to identify the source of carbon tetrachloride in soil vapor
 and delineate the extent of impacts.

As shown in the **Figures**, the RI included a high density of soil borings, monitoring wells, and soil vapor implants, and a significant number of sampling locations. The deviations from the RIWP did not negatively impact the outcome of the RI.

4.0 FINDINGS

4.1. Geology and Hydrogeology

4.1.1. Site Geology

The Site contains HFM with observed thickness of approximately seven to 14 feet bgs. The observed HFM is shallowest on the west and south sides of the Site and deepest in the center and the northeast corner of the Site. Per Title 6 of the New York Codes, Rules, and Regulations (6 NYCRR) Part 375, HFM is defined as: non-indigenous or non-native material, historically deposited or disposed in the general area of, or on, a site to create useable land by filling water bodies, wetlands or topographic depressions, which is in no way connected with the subsequent operations at the location of the emplacement, and which was contaminated prior to emplacement. The HFM contains brick, coal, cinder, ash, wood, and slag. A map showing the depths of HFM across the site as shown in **Figure 5**.

Native soil is located below the HFM and consists of dark brown fine to coarse sand and silty clay.

4.1.2. Site Hydrogeology

Groundwater is present within the HFM at depths between 5.5 and 13 feet bgs across the Site. The Site is located at approximately 398 feet above mean sea level (AMSL) and slopes downward slightly to the southwest. Harbor Brook flows through the Site within a box culvert located beneath the eastern portion of the Site. Harbor Brook continues on a general northwesterly route, ultimately draining onto Onondaga Lake. Onondaga Creek is 0.76 miles east of the Site and Onondaga Lake is 1.25 miles northwest.

The City of Syracuse is served by a municipal water supply. Water processed in the Onondaga County Water Authority (OCWA) potable water plants for the City of Syracuse undergoes varying levels of treatment to ensure that drinking water meets NYSDEC and USEPA standards. Groundwater in the City of Syracuse is prohibited from being used for public drinking water supply.

Table 4-1 presents water level measurements and **Figure 9b** and **Figure 9c** presents groundwater contours at the site. Groundwater contours were generally the same across the two sampling events and indicate a generally northwesterly flow direction. The groundwater elevation at MW-106 appeared to be anomalous compared to the other six wells, therefore, the data point was excluded during groundwater contour generation to maintain the accuracy of the groundwater flow interpretation. On average, the groundwater table was approximately 0.64 feet higher in December as compared to February, due to February being a drier month than December. The average groundwater gradient was 0.012 feet per foot in December and 0.013 feet per foot in February.

7.96

384.76

Well No.	Ground Elevation (ft AMSL)	Depth (ft BGS)	Elevation (ft AMSL)	Depth (ft BGS)	Elevation (ft AMSL)
Date		December 12, 2024		February	11, 2025
MW-101	391.02	9.64	381.38	10.38	380.64
MW-102	388.91	5.70	383.21	6.11	382.80
MW-103	392.82	11.01	381.81	11.79	381.03
MW-104	392.38	8.19	384.19	8.80	383.58
MW-105	392.91	7.46	385.45	8.27	384.64
MW-106	392.49	12.17	380.32	12.53	379.96

Table 4-1: Groundwater Elevations

Notes:

• Level run survey performed by C&S on December 12, 2024 using a benchmark present at the Site. The benchmark was located on National Grid Pole 47 and was at an elevation of 394.81 ft AMSL.

385.56

7.16

Elevations tied to North American Vertical Datum (NAVD) 88.

392.72

• All units in feet.

MW-107

- BGS Below ground surface
- AMSL Above mean sea level

4.2. Field Observations

Throughout the majority of the Site, the native soil and HFM material did not exhibit evidence of petroleum or chemical contamination, such as staining, odors, or elevated PID measurements. However, several of borings within and immediately surrounding the building footprint exhibited a hydrogen sulfide odor generally associated with an organic / peat layer. These soils had PID measurements ranging from 0.0 ppm to 49.4 ppm. These elevated PID readings are likely attributable to the presence of hydrogen sulfide.

Similar to the Phase II ESA, evidence of petroleum contamination was encountered along the western Site boundary in the vicinity of SB-106, SB-112, and SB-113. These locations are in close proximity to significant historical operations including the coal silo, former oil house, and former rail spur. As described in **Section 3.2.2**, six additional borings were advanced around SB-106 and SB-112 to delineate the observed petroleum impacts. The following was observed:

- Petroleum odor and staining was observed at SB-106C from 10 to 12 feet bgs. PID measurements ranged from 15.2 to 99.4 ppm. No evidence of petroleum impacts were observed at SB-106, SB-106A, or SB-106B.
- Petroleum odor and staining was observed at SB-112, SB-112A, and SB-112C from 10 to 15 feet bgs. PID measurements ranged from 45.0 to 58.7 ppm. A slight petroleum odor was also observed at SB-112B and SB-113 with PID measurements ranging from 45.8 to 60.1 ppm. Wood fragments that are suspected to be associated with wooden rail ties were observed around 15 feet bgs in all of these borings.

4.3. Buried Utilities Evaluation

As a result of the study, the following noteworthy subsurface features were identified:

- Multiple public and private utilities were identified including communication lines, gas lines, sewer lines, and electric lines.
- The Harbor Brook culvert was identified running north / south through the center of the Site.
- One suspect debris area was identified on the east side of the Site. This area likely contains
 debris from the demolition of previous buildings. SB-111 was advanced directly adjacent
 to the debris area. HFM including coal, cinder, brick, and ash was identified from
 immediately below the ground surface to 8 feet bgs. However, this HFM was consistent
 with the HFM observed across the entire Site.
- One suspect concrete area was identified in the southwest corner of the Site.

The utilities and features identified are shown on Figure 4.

4.4. Analytical Results

The following sections summarize and discuss the analytical results generated during the RI. Soil, groundwater, and soil vapor and air samples were collected for chemical analysis to determine the magnitude and extent of potential contamination occurring in various media at the Site. A summary of the RI sampling program, including the number and type of QA/QC samples, is presented in **Table 1**. For discussion purposes, the data were compared with the Standards, Criteria, and Guidance values (SCGs) applicable to each medium sampled, and included:

- Soil: NYSDEC's 6NYCRR Part 375 Environmental Remediation Programs: Part 375-6.8: Unrestricted and Commercial Use SCOs.
- Groundwater: NYSDEC's June 1998 Ambient Water Quality Standards and Guidance Values in TOGS 1.1.1.
- Air: NYSDOH's October 2006 Final Guidance for Evaluating Soil vapor Intrusion in the State
 of New York, updated February 2024.

Consistent with NYSDEC guidelines, the Analytical Services Protocol (ASP) Category B deliverables are not presented as appendices to the RI Report. The data has been transmitted electronically to the NYSDEC in a format consistent with the EDD Manual. The associated DUSR is provided in **Appendix H**. The passive soil gas sampler analytical report is provided in **Appendix I**.

4.4.1. Surface Soil

A total of 12 surface soil samples were collected across the Site in areas that are not proposed to be "capped" by pavement or buildings. The analytical results are summarized in **Table 2** and **Figure 7** shows the sampling locations and results. **Table 4-2** below summarizes the analytes that exceeded the SCOs in surface soil, including the lowest and highest exceedance concentrations.

Table 4-2: Surface Soil Summary of Exceedances

		•••	Lup	61.4		
Austral		es with	UR	CM	Low	High
Analyte		ctions e SCOs	SCO (nnm)	SCO (nnm)	Concentration	Concentration
	UR	CM	(ppm)	(ppm)	(ppm)	(ppm)
VOCs	UK	CIVI				
Acetone	1	I	0.05	500	4.1	4.1
SVOCs		<u> </u>	0.03	300	1.1	1.1
3/4-Methylphenol	3	I	0.33	500	0.33	1.2
Benzo(a)anthracene	3	7	1	5.6	1.1	99
Benzo(a)pyrene		10	1	1	1.2	75
Benzo(b)fluoranthene	4	7	1	5.6	1.2	100
Benzo(k)fluoranthene	7		0.8	56	1.6	38
Chrysene	9	1	1	56	1.3	100
Dibenzo(a,h)anthracene		7	0.33	0.56	1.4	7.6
Dibenzofuran	1		7	350	8.9	8.9
Fluoranthene	2		100	500	140	190
Indeno(1,2,3-cd)pyrene	4	7	0.5	5.6	0.56	30
Naphthalene	1		12	500	12	12
Phenanthrene	1		100	500	160	160
Phenol	1		0.33	500	0.34	0.34
Pyrene	1		100	500	150	150
PCBs	•					
Total PCBs	8		0.1	1	0.139	0.713
Herbicides						
No herbicides were detected a	at concentra	tions tha	t exceede	ed SCOs.		
Pesticides						
4,4'-DDT	3		0.0033	47	0.00795	0.0325
Metals						
Arsenic	2	3	13	16	13.5	34.3
Barium	1		350	400	372	372
Copper	6	2	50	270	58.7	688
Lead	10		63	1000	67.5	860
Mercury	6		0.18	2.8	0.194	1.73
Nickel	2		30	310	34	34.9
Selenium	1		3.9	3.9	4.81	4.81
Zinc	8		109	10000	116	799

Analyte		es with ctions SCOs	UR SCO (ppm)	CM SCO (ppm)	Low Concentration (ppm)	High Concentration (ppm)
	UR	CM				
PFAS						
Perfluorooctanesulfonic acid ¹	7		0.88	440	1.41	2.53

^{1.} PFAS guidance values and concentrations are displayed in parts per billion (ppb).

4.4.2. Subsurface Soil

RI soil sampling totals for subsurface soils are included in **Table 4-3**.

Table 4-3: RI Sample Totals

Location	No. of HFM Samples	No. of Native Samples
RI General Site Wide Borings	18	18
Spill No. 23-00933 Area	6	6

Table 3 summarizes the analytical results and **Figure 8a** and **Figure 8b** show the sampling locations and results.

4.4.2.1. General Site-Wide Borings – HFM Sampling

A total of 18 HFM samples were collected from the 18 general site-wide borings (four interior borings and 14 exterior borings), as shown on **Figure 8a**. Each sample was analyzed for the list of analytes outlined in **Section 3.2.2.1**.

Table 4-4 below summarizes the analytes that exceeded the SCOs, including the lowest and highest exceedance concentrations. **Table 3** summarizes the analytical results.

Table 4-4: General Site-Wide Borings – HFM Summary of Exceedances

Analyte	Dete	es with ctions e SCOs	UR SCO (ppm)	CM SCO (ppm)	Low Concentration (ppm)	High Concentration (ppm)
	UR	CM				
VOCs						
2-Butanone	1		0.12	500	0.19	0.19
Acetone	1		0.05	500	0.77	0.77
SVOCs						
Benzo(a)anthracene	7	3	1	5.6	1.4	27
Benzo(a)pyrene		10	1	1	1.5	24
Benzo(b)fluoranthene	5	5	1	5.6	1.7	31
Benzo(k)fluoranthene	8		0.8	56	1.6	4.2

UR = Unrestricted Use SCOs, CM = Commercial Use SCOs

Analyte	Dete	es with ctions e SCOs	UR SCO (ppm)	CM SCO (ppm)	Low Concentration (ppm)	High Concentration (ppm)		
	UR	CM						
Chrysene	10		1	56	1.1	26		
Dibenzo(a,h)anthracene	1	7	0.33	0.56	0.52	3.3		
Indeno(1,2,3-cd)pyrene	9	3	0.5	5.6	0.53	14		
PCBs								
Total PCBs	2		0.1	1	0.112	0.303		
Herbicides								
No herbicides were detected at co	oncentrat	ions that	exceeded	SCOs.				
Pesticides								
4,4'-DDT	1		0.0033	47	0.00422	0.00422		
Metals								
Arsenic	3	9	13	16	13.9	75.2		
Barium	1		350	400	367	367		
Cadmium	1		2.5	9.3	5.17	5.17		
Copper	9	2	50	270	52.3	302		
Lead	11	2	63	1000	70	2630		
Mercury	6	2	0.18	2.8	0.408	15.7		
Nickel	3		30	310	32.8	55.2		
Zinc	8		109	10000	117	450		
PFAS								
No PFAS were detected at concentrations that exceeded SCOs								

UR = Unrestricted Use SCOs, CM = Commercial Use SCOs

4.4.2.2.General Site-Wide Borings – Native Soil Sampling

A total of 18 native soil samples were collected from the 18 general site-wide borings (four interior borings and 14 exterior borings), as shown on **Figure 8a**. Each sample was analyzed for the list of analytes outlined in **Section 3.2.2.2**.

Table 4-5 below summarizes the analytes that exceeded the SCOs, including the lowest and highest exceedance concentrations. **Table 3** summarizes the analytical results.

Table 4-5: General Site-Wide Borings – Native Soil Summary of Exceedances

Analyte	Sample Detection	tions	UR SCO (ppm)	CM SCO (ppm)	Low Concentration (ppm)	High Concentration (ppm)
	UR	CM				
VOCs						
Acetone	4		0.05	500	0.063	0.31
SVOCs						
Dibenzo(a,h)anthracene		1	0.33	0.56	0.65	0.65

Analyte	Dete	es with ctions SCOs	UR SCO (ppm)	CM SCO (ppm)	Low Concentration (ppm)	High Concentration (ppm)
	UR	СМ				
Indeno(1,2,3-cd)pyrene	1		0.5	5.6	1.6	1.6
PCBs						
Total PCBs	1		0.1	1	0.161	0.161
Herbicides						
No herbicides were detected at co	oncentrat	ions that	exceeded	d SCOs.		
Pesticides						
No pesticides were detected at co	ncentrat	ions that	exceedec	SCOs.		
Metals						
Arsenic		4	13	16	19.5	27.7
Copper	5	1	50	270	53.1	308
Lead	5	1	63	1000	91.1	1500
Mercury	3	2	0.18	2.8	0.585	3.67
Nickel	4		30	310	30.1	64.6
Selenium	2		3.9	1500	4.44	9.31
Zinc	2		109	10000	149	173
PFAS						
No PFAS were detected at concentrations that exceeded SCOs						

Arsenic, copper, lead, mercury, and zinc concentrations at SB-110 were below Unrestricted Use SCOs in the parent sample and above Unrestricted or Commercial Use SCOs in the associated duplicate sample (DUP-02).

UR = Unrestricted Use SCOs, CM = Commercial Use SCOs

4.4.2.3.Spill No. 23-00933 Area Soil Sampling

A total of 12 native soil samples were collected from the 6 Spill No. 23-00933 soil borings (three interior borings and three exterior borings), as shown on **Figure 8b**. Each sample was analyzed for TCL VOCs + TICs and TCL SVOCs + TICs.

Table 4-6 below summarizes the analytes that exceeded the SCOs, including the lowest and highest exceedance concentrations. **Table 3** summarizes the analytical results.

Table 4-6: Spill No. 23-00933 Area Soil Summary of Exceedances

Analyte	Sample Detection	tions	UR SCO (ppm)	CM SCO (ppm)	Low Concentration (ppm)	High Concentration (ppm)
	UR	CM				
VOCs						
Acetone	1		0.05	500	0.1	0.1
SVOCs						
Benzo(a)anthracene	1		1	5.6	1.1	1.1
Benzo(a)pyrene		1	1	1	1.1	1.1
Benzo(b)fluoranthene	2		1	5.6	1.3	1.3

Chrysene	1	1	56	1.1	1.1
Indeno(1,2,3-cd)pyrene	3	0.5	5.6	0.62	1.3

UR = Unrestricted Use SCOs, CM = Commercial Use SCOs

4.4.3. Groundwater

Two groundwater sampling events took place on December 12 and 13, 2024 and February 11 and 12, 2025. Groundwater samples were collected from seven groundwater monitoring wells installed during the RI. As previously detailed in **Table 3-1**, the groundwater samples were analyzed for a combination of TCL VOCs + TICs, TCL SVOCs + TICs, TCL pesticides, herbicides, TCL PCBs, TAL metals (total and dissolved), total and dissolved cyanide, total and dissolved hexavalent chromium, PFAS, and 1,4-dioxane.

Table 4 summarizes the analytical results for the groundwater samples, and the locations of monitoring wells are shown on **Figure 9a, Figure 9b**, and **Figure 9c**.

VOCs

VOCs were not detected at concentrations greater than laboratory detection limits during the first or second round of groundwater sampling.

SVOCs

Benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, and indeno(1,2,3-cd)pyrene concentrations exceeded TOGS standards at MW-101, MW-103, and MW-106 during the first round of sampling but were below laboratory detection limits during the second round of sampling. Similarly, the concentration of benzo(b)fluoranthene exceeded the TOGS standard at MW-105 during the first round of sampling but was below laboratory detection limits during the second round of sampling. Each of these contaminants are subject to very low TOGS standards, either 0.002 parts per billion (ppb) or non-detect. At MW-103, MW-105, and MW-106, the above contaminants were detected at concentrations of 0.1 ppb or less. At MW-101, the above contaminants were detected at concentrations ranging from 0.14 to 0.23 ppb during the first round of sampling but were below 0.1 ppb during the second round of sampling.

Phenol and hexachlorobenzene concentrations slightly exceeded TOGS standards at MW-101 during the first round of sampling but were below laboratory detection limits during the second round of sampling.

The concentration of bis(2-ethylhexyl)phthalate exceeded TOGS standards at MW-105 and MW-106 during the second round of sampling but was below laboratory detection limits during the first round of sampling. The concentration at MW-105 slightly exceeded the TOGS standard and the concentration at MW-106 exceeded the TOGS standard by one order of magnitude.

Pesticides

Pesticides were not detected at concentrations greater than laboratory detection limits during either round of groundwater sampling.

Herbicides

Herbicides were not detected at concentrations greater than laboratory detection limits during either round of groundwater sampling.

PCBs

PCBs were not detected at concentrations greater than laboratory detection limits during either round of groundwater sampling.

<u>Metals</u>

Total copper, total lead, and total mercury concentrations exceeded TOGS standards at MW-105 during the first round of sampling only. The dissolved antimony concentration exceeded the TOGS standard at MW-107 during the first round of sampling only. The concentrations of copper, mercury, and antimony only slightly exceeded standards whereas the concentration of lead was 14 times higher than the standard.

The groundwater also contained naturally occurring minerals including iron, magnesium, manganese, and sodium at concentrations exceeding recognized AWQSs. These minerals are common in groundwater across New York State and likely reflect regional conditions. The concentrations of each f these are as follows:

- Total iron concentrations exceeded TOGS standards at all wells except MW-106 during the
 first round of sampling and at all wells during the second round of sampling. Dissolved
 iron concentrations exceeded TOGS standards at MW-102, MW-103, and MW-104 during
 both rounds of sampling and MW-101 during the second round of sampling.
- Total magnesium concentrations exceeded TOGS standards at MW-101, MW-103, and MW-106 during both rounds of sampling and at MW-105 during the first round of sampling. Dissolved magnesium concentrations exceeded TOGS standards at MW-101, MW-103, and MW-106 during both rounds of sampling.
- Total manganese concentrations exceeded TOGS standards at all wells except MW-107 during the first round of sampling and at MW-101, MW-102, MW-104, and MW-106 during the second round of sampling. Dissolved manganese concentrations exceeded TOGS standards at MW-101, MW-102, MW-104, and MW-106 during both rounds of sampling.

• Total and dissolved sodium concentrations exceeded TOGS standards at all wells during both rounds of sampling.

PFAS

PFAS data was compared to the following guidance values:

- Perfluorooctanoic acid (PFOA) 6.7 parts per trillion (ppt)
- Perfluorooctanesulfonic acid (PFOS) 2.7 ppt

As a result of comparing the groundwater data to these values, the following was noted:

- The PFOA concentration exceeded NYSDEC standards at MW-107 during both rounds of sampling. The concentrations ranged from 6.9 to 7.78 ppt.
- The PFOS concentration exceeded NYSDEC standards at MW-101 during both rounds of sampling. The concentrations ranged from 3.3 to 3.66 ppt.

4.4.4. Sub-Slab Soil Vapor

Three sub-slab soil vapor samples, two crawl space air samples, five indoor air samples, seven soil vapor samples, and one outdoor air sample were collected. Three collocated sub-slab / indoor air samples were collected from the single-story building while two collocated crawl space air / indoor air samples were collected from the six-story building. The seven soil vapor samples were collected from soil vapor implants positioned near the periphery of the Site to assess the potential for onsite or off-site migration. The outdoor air sample was collected at an exterior up-wind location.

Based on the results of the initial SVI assessment, an additional assessment was conducted using passive soil gas samplers to identify the source of carbon tetrachloride in soil vapor and delineate the extent of impacts. Fifteen additional sub-slab soil vapor samples were collected as a part of this assessment.

4.4.4.1. Initial SVI Assessment

The NYSDOH document: Guidance for Evaluating Soil Vapor Intrusion in the State of New York, dated October 2006 (as amended), states that soil vapor sampling results should be reviewed as a whole, in combination with the results of other environmental sampling, to identify trends and variations in the data. It also indicates that, to put perspective on the data, soil vapor results should be compared to background outdoor air levels, site-related outdoor and indoor air sampling results, and the NYSDOH's guidelines for VOCs in air. NYSDOH has a very limited list of compounds with air guideline values (AGV) that pertain to indoor air:

- Methylene Chloride 60 μg/m³
- Tetrachloroethene (PCE) 30 μg/m³

• Trichloroethene (TCE) - 2 μg/m³

NYSDEC and NYSDOH do not currently have standards, criteria or guidance values for concentrations of other commonly found compounds in soil vapor or indoor air, other than those listed above. There are also no criteria which require that the detection of VOC in soil vapor automatically trigger action or no further action, and there are no available databases of background levels of VOC in soil vapor. The detection of VOC in sub-slab vapor samples does not necessarily indicate that a vapor intrusion condition exists.

As such, SVI risk is evaluated on a case-by-case basis, taking into account various factors, such as:

- Human health risks (i.e., cancer and non-cancer health effects) associated with exposure to the volatile chemical in air;
- Background concentrations of the volatile chemical in air;
- Analytical capabilities currently available; and
- Attenuation factors (i.e., the ratio of indoor air to sub-slab vapor concentrations).

There were no compounds detected in the indoor air that exceed a corresponding NYSDOH AGV.

To provide a framework to aid in determining appropriate actions in response to SVI risk, NYSDOH has developed decision matrices to be used as a risk management tool for data assessment. They are designed to be applied on a case-by-case basis, for identifying actions that should be taken to address current and potential exposures related to SVI. These decision matrices were developed to apply to specific volatile chemicals of interest, but are also intended to be generic, and, as such, may be modified based on site-specific conditions and contaminants.

Table 4-7 indicates what actions, if any, are needed, based on the results.

Table 4-7: NYSDOH Decision Matrices Results

Analyte	Decision Matrix	Result
Carbon Tetrachloride		Mitigate (at SSV-103)
1,1-Dichloroethene	Α	No further action
Cis-1,2-Dichloroethene	A	No further action
Trichloroethene		No further action
Methylene Chloride		No further action
Tetrachloroethene	В	No further action
1,1,1-Trichloroethane		No further action
Vinyl Chloride	С	No further action
Benzene		No further action
Ethylbenzene		No further action
Cyclohexane	D	No further action
2,2,4-Trimethylpentane		No further action
1,2,4-Trimethylbenzene		No further action

Analyte	Decision Matrix	Result
1,3,5-Trimethylbenzene		No further action
o-Xylene		No further action
p/m-Xylene		No further action
Heptane	E	No further action
Hexane		No further action
Toluene	F	No further action

No further action: No additional actions are recommended to address human exposure.

<u>Mitigate:</u> NYSDOH recommends mitigation to minimize current or potential exposures associated with SVI. The most common mitigation methods are sealing preferential pathways in conjunction with installing a sub-slab depressurization system and changing the pressurization of the building in conjunction with monitoring. The type, or combination of types, of mitigation is determined on a specific building basis, taking into account building construction and operating conditions. Mitigation is considered a temporary measure implemented to address exposures related to SVI until contaminated environmental media are remediated.

The concentration of carbon tetrachloride observed at SSV-103 was 667 μ g/m³ while the concentration at IA-103 was 0.472 μ g/m³, warranting mitigation based on NYSDOH Decision Matrix A. The concentration observed at SSV-103 was substantially higher than any other subslab location. However, the concentration observed at IA-103 was comparable to other indoor air locations and the ambient air sample.

Based on this information, a retest was conducted at SSV-103 to confirm the concentration observed. An additional sub-slab vapor sample was collected 2-3 feet east of the original SSV-103 location. Although the concentration of carbon tetrachloride was substantially lower than the original test (90.6 μ g/m³), the concentration was still high enough to warrant mitigation based on NYSDOH Decision Matrix A.

Table 5 summarizes the initial SVI assessment results. **Figure 10a** shows the sample locations.

4.4.4.2.Additional SVI Assessment

Carbon tetrachloride was not identified in nearby sub-surface soil (SB-105) or groundwater; therefore, an additional SVI assessment was conducted using passive soil gas samplers to identify the source of carbon tetrachloride in soil vapor and delineate the extent of impacts. The table below summarizes the results of the passive soil gas sampling.

Table 4-8: Passive Soil Gas Sampling Results

Sample Location	Distance from SSV-103 (ft)	Direction from SSV-103	Carbon Tetrachloride Concentration (µg/m³)
PSG-101	7.5	81° E	ND
PSG-102	7.5	154° SE	ND
PSG-103	7.5	260° W	197
PSG-104	7.5	338° N	2230
PSG-105	12	28° NE	82.6
PSG-106	15	112° E	ND

Sample Location	Distance from SSV-103 (ft)	Direction from SSV-103	Carbon Tetrachloride Concentration (µg/m³)
PSG-107	15	199° S	ND
PSG-108	14	294° NW	166
PSG-109	22.5	77° E	ND
PSG-110	22.5	146° SE	ND
PSG-111	16.5	251° W	ND
PSG-112	22.5	331° NW	618
PSG-113	30	110° E	ND
PSG-114	26.5	193° S	ND
PSG-115	24	306° NW	ND

Concentrations above detection limits are bold.

ND = Not detected above the laboratory detection limit of 75 μ g/m³.

The results of the additional SVI assessment indicate that the source of carbon tetrachloride is concentrated around PSG-104, which was located 7.5 feet north of SSV-103. PSG-104 had a carbon tetrachloride concentration of 2,230 μ g/m³ and PSG-112, which was located 22.5 feet northwest of SSV-103, had a concentration of 618 μ g/m³. Carbon tetrachloride concentrations immediately west of SSV-103 ranged from 166 to 197 μ g/m³ but were non-detect further to the west. Carbon tetrachloride was not detected at sampling locations to the east and south.

Table 6 summarizes the additional SVI assessment results. **Figure 10b** shows the sample locations.

4.5. Community Air Monitoring Results

C&S performed air monitoring at all times when ground intrusive activities were being conducted as per the RIWP and CAMP (**Appendix G**). The action levels for VOCs and PM-10 (dust) were not exceeded during the course of the investigation.

Throughout the duration of the RI, Daily CAMP reports were submitted to NYSDEC and NYSDOH. Air monitoring logs were included in these reports.

4.6. Green Remediation Evaluation

Best Management Practices (BMPs) were implemented throughout the RI to best achieve the green remediation concepts described within NYSDEC DER-31. The following BMPs were identified in the RIWP for implementation:

- **Minimize Mobilizations** All of the RI drilling activities were completed within one mobilization to avoid transporting the GeoProbe / equipment trailer to and from Site multiple times.
- **No Idling of Equipment** All equipment (GeoProbe, cars, trucks, etc.) was shut down when not in use.

- On-site Waste Recycling Soil cuttings that did not exhibit evidence of contamination
 were put back in place. Soil cuttings generated during monitoring well installation were
 stockpiled on and covered with poly sheeting and will be re-used during remedial
 construction if waste characterization results allow. Approximately 1.5 tons of soil cuttings
 were generated from the monitoring well installation.
- **Soil Stockpiles** Soil piles were covered with tarps or plastic sheeting in a manner that allows for the reuse of the covers in the future, if required.
- **Waste Storage Containers** Cleaned, reclaimed 55-gallon drums were used for the collection and storage of purged groundwater. Approximately 100 gallons of purge water was generated during the RI. The water will be characterized and disposed of at an off-site facility.
- **Sustainable Laboratory Practices** C&S utilized a lab shipping service, rather than shipping samples independently to the lab. C&S submitted samples to Pace, which implements the following sustainable practices:
 - o Recycles paper products and shipping materials.
 - o Uses energy-efficient lighting and other equipment.
 - o Maintains a paperless reporting and invoicing program.
 - o Minimizes waste through use of EPA-approved microscale methods.
- Monitoring Equipment Rechargeable Battery-Powered Equipment such as CAMP equipment (PIDs, DustTraks, Tharmis Antenna), and any other battery-operated equipment was charged at the Site to avoid additional mobilizations back to the C&S facility each day.

All Site activities related to the BMPs described above were recorded and tracked on a C&S Green Remediation BMP Tracker. The total quantities were recorded and are summarized in NYSDEC Form A, provided in **Appendix J**.

5.0 CONTAMINANT ASSESSMENT

Chrysene Dibenzo(a,h)anthracene Indeno(1,2,3-cd)pyrene

5.1. Nature, Extent, and Source of Contamination

5.1.1. Surface Soil

VOCs

None

The six surface soil sample locations were spatially distributed across the Site in areas not "capped" by asphalt or buildings. Two samples were collected from each location; from 0 to 2 inches below the vegetative cover and from 6 to 12 inches bgs. **Table 4-2** summarizes the contaminants that exceeded the SCOs in this soil, including the lowest and highest exceedance concentrations. **Table 2** provides analytical results compared to SCOs for each sample and **Figure 7** show the sampling locations and results. **Table 5-1** identifies the contaminants detected in soil above Commercial Use SCOs.

SVOCs PCBs Herbicides Pesticides Metals PFAS

Benzo(a)anthracene Benzo(a)pyrene
Benzo(b)fluoranthene

PCBs Herbicides Pesticides Metals PFAS

None None Copper

None Copper

Table 5-1: Detected Contaminants in Surface Soil

The majority of the Site is covered with impervious material (asphalt parking surface or building). Uncovered soils are vegetated and located along the western and southern perimeter of the Site. Surface soils consist of HFM, a heterogeneous mixture for various materials including sand, brick, ash, coal, and cinders. After the redevelopment of the Site, the majority of exterior areas are expected to be covered with impervious material.

It is believed that the contaminant sources are related to the historical urban and commercial uses of the property, historical coal handling practices in the vicinity of the coal silo and former rail spur, and the unregulated deposition of HFM that occurred over time prior to the BCP Volunteer owning the Site. The surface soil contamination is most prominent along the western perimeter of the Site, in the vicinity of the former oil house, coal silo, and rail spurs.

5.1.2. Subsurface Soil

5.1.2.1. HFM

A total of 18 general site wide soil borings (14 exterior and 4 interior) were advanced and 18 soil samples were collected from the upper portion of the boring containing HFM. The samples were collected from each boring at depths ranging from 0 to 10 feet bgs.

Table 4-4 summarizes the contaminants that exceeded the SCOs in this soil, including the lowest and highest exceedance concentrations. **Table 3** provides analytical results compared to SCOs for each sample and **Figures 8a** show the sampling locations and results. **Table 5-2** identifies the contaminants detected in the soil above Commercial Use SCOs.

Table 5-2: Detected Contaminants in Sub-Surface HFM

VOCs	SVOCs	PCBs	Herbicides	Pesticides	Metals	PFAS
None	Benzo(a)anthracene	None	None	None	Arsenic	None
	Benzo(a)pyrene				Copper	
	Benzo(b)fluoranthene				Lead	
	Dibenzo(a,h)anthracene				Mercury	
	Indeno(1,2,3-cd)pyrene				,	

Soils were noted to consist of HFM, a heterogeneous mixture for various materials including sand, brick, coal, cinder, ash, wood, and slag. The site-wide HFM samples were spatially distributed across the Site. HFM is located across the Site, immediately below existing surfaces. Generally, the HFM thickness is eight to ten feet bgs. However, the HFM in the center and the northeast corner of the Site is as deep as 13 feet bgs. The variation in analyte concentrations in the soils across the Site that contain HFM indicates that the source of contamination in these soil samples is the HFM material and no apparent discrete source is located on-site or off-site. Elevated concentrations of mercury, lead, and copper were limited to the east side of Harbor Brook and may be associated with former industrial operations. The east side of the Site was historically used for machining, forging, and painting while the southeast side of the Site was historically used as a power and boiler house.

5.1.2.2. Native Soil

A total of 18 general site wide soil borings (14 exterior and 4 interior) were advanced and 18 soil samples were collected from the lower portion of the boring native soil. The samples were collected from each boring at depths ranging from 7 to 20 feet bgs.

Table 4-5Table 4-4 summarizes the contaminants that exceeded the SCOs in this soil, including the lowest and highest exceedance concentrations. **Table 3** provides analytical results compared to SCOs for each sample and **Figures 8a** show the sampling locations and results. **Table 5-3** identifies the contaminants detected in the soil above Commercial Use SCOs.

Table 5-3: Detected Contaminants in Sub-Surface Native Soil

VOCs	SVOCs	PCBs	Herbicides	Pesticides	Metals	PFAS
None	Dibenzo(a,h)anthracene	None	None	None	Arsenic	None
					Copper	
					Lead	
					Mercury	

Soils were noted to consist of dark brown fine to coarse sand and silty clay. The singular PAH exceedance in native soil only marginally exceeded the Commercial Use SCO. Arsenic exceedances were sporadic across the Site in native soil, whereas copper, mercury, and lead exceedances were limited to the east side of Harbor Brook, in the vicinity of the former machining, forging, and painting operations. The borings where metals exceeded Commercial Use SCOs in native soil had detections of the same metals in the HFM, indicating the HFM may be the source of contamination. The metal exceedances in native soil only moderately exceeded the Commercial Use SCOs, with all exceedances being less than two times the SCO.

5.1.2.3. Spill No. 23-00933 Area

Six soil borings were advanced in the vicinity of the former oil house and coal silo, where petroleum impacts were encountered during the Phase II ESA. Two soil samples were collected from each boring, including one sample of the HFM and one sample of the native soil. The HFM samples were collected from one to nine feet bgs and the native soil samples were collected from eight to 15 feet bgs.

Table 4-6Table 4-4 summarizes the contaminants that exceeded the SCOs in this soil, including the lowest and highest exceedance concentrations. **Table 3** provides analytical results compared to SCOs for each sample and **Figure 8b** shows the sampling locations and results. **Table 5-4** identifies the contaminants detected in the soil above Commercial Use SCOs.

Table 5-4: Detected Contaminants in Sub-Surface Native Soil

VOCs	SVOCs	PCBs	Herbicides	Pesticides	Metals	PFAS
None	Benzo(a)pyrene	None	None	None	None	None

A singular exceedance of benzo(a)pyrene was identified at SB-106B from one to five feet bgs. The concentration of 1.1 ppm only marginally exceeded the Commercial Use SCO of 1 ppm. Therefore, PAH exceedances in sub-surface soil were limited to SB-106 and SB-112. Furthermore, the petroleum impacts in SB-106 and SB-112 appeared to be weathered / degraded.

5.1.3. Groundwater

Two rounds of groundwater sampling were conducted for the seven groundwater monitoring wells. Metals were analyzed for both total and dissolved metals. Groundwater samples for dissolved metals analysis were not field filtered but instead filtered by the laboratory.

Section 4.4.3 summarizes the contaminants that exceeded TOGS standards. **Table 4** provides analytical results compared to TOGS standards for each sample and **Figures 9a, 9b,** and **9c** show the sampling locations and results. **Table 5-5** identifies the contaminants detected in the groundwater above TOGS standards.

VOCs	SVOCs	PCBs	Herbicides	Pesticides	Metals	PFAS
None	Bis(2-ethylhexyl)phthalate	None	None	None	Antimony ¹	PFOS
	Phenol				Copper ²	PFOA
	Benzo(a)anthracene				Iron ³	
	Benzo(a)pyrene				Lead ²	
	Benzo(b)fluoranthene				Magnesium ³	
	Benzo(k)fluoranthene				Manganese ³	
	Chrysene				Mercury ²	
	Hexachlorobenzene				Sodium ³	
	Indeno(1,2,3-cd)pyrene					

Table 5-5: Detected Contaminants in Groundwater

- 1. Dissolved antimony exceeded TOGS standards but total antimony did not.
- 2. Total copper, lead, and mercury exceeded TOGS standards but dissolved concentrations did not.
- 3. Both total and dissolved iron, magnesium, manganese, and sodium exceeded TOGS standards.

PAH groundwater contamination exists across the Site with exceedances observed in MW-101, MW-103, MW-105, and MW-106 during the first round of sampling but not during the second round of sampling. Six different PAHs were detected in excess of the TOGS limits. In each case, the concentrations were a fraction of a ppb (maximum of 0.23 ppb and majority below 0.1 ppb) and the corresponding TOGS limit is very low (either 0.002 or non-detect).

A singular exceedance of phenol and hexachlorobenzene was observed at MW-101 during the first round of sampling and the concentrations only slightly exceeded the TOGS limit. Singular exceedances of bis(2-ethylhexyl)phthalate were observed at MW-105 and MW-106 during the second round of sampling. The concentration at MW-105 was two times higher than the TOGS limit and the concentration at MW-106 was four times higher than the TOGS limit. However, bis(2-ethylhexyl)phthalate was not detected at either of these wells during the first round of sampling.

Total copper, mercury, and lead exceeded TOGS limit in MW-105 during the first round of sampling only. Similarly, dissolved antimony exceeded the TOGS limit in MW-10 during the first round of sampling only. Iron, magnesium, manganese, and sodium detections are typically related to "hard water." These metals are naturally occurring and in this setting are likely unrelated to site activities.

During the first round of sampling, the concentration of PFOS was 3.3 ppt in MW-101 (exceeding the limit of 2.7 ppt) and the concentration of PFOA was 7.78 ppt in MW-107 (exceeding the limit of 6.7 ppt). During the second round of sampling, the concentration of PFOS was 3.66 ppt at MW-101 and the concentration of PFOA was 6.9 ppt at MW-107. PFAS was not detected in the equipment blank during the first round of sampling. PFAS was detected in the equipment blank during the second round of sampling but did not exceed the standards.

MW-101 is located in the northwest corner of the Site and MW-107 is located in the southeast corner of the Site. The likely reason for the presence PFAS is not currently understood. However, the Site is situated hydraulically downgradient of multiple former industrial complexes that were

involved in machine manufacturing, car part manufacturing, and mill construction operations since the early 1900s throughout the 1960s / 70s. Existing groundwater gradient data indicates a northwesterly groundwater flow direction. It is also worth noting that PFAS was detected at similar concentrations at the adjacent Lofts at 1117 BCP Site (C734160) which may suggest a regional condition rather than an on-site source.

5.1.4. Soil Vapor

Carbon tetrachloride required mitigation according to NYSDOH Decision Matrix A in the vicinity of SSV-103. The results of the initial and additional SVI assessment indicated that concentrations of carbon tetrachloride in sub-slab vapor ranged from 82.6 to 2230 $\mu g/m^3$, with the highest concentration occurring at PSG-104. The accompanying indoor air sample from this area had a carbon tetrachloride concentration of 0.472 $\mu g/m^3$, which was comparable to other indoor air locations and the ambient air sample. The impacts appear to be limited to an approximate 500 square foot area beneath the single-story building slab.

As discussed in previous sections, carbon tetrachloride was not detected in nearby sub-surface soil or groundwater. SB-105 was advanced approximately four feet southwest of PSG-104 and carbon tetrachloride was not detected in the HFM or native soil sample.

5.2. Contaminant Fate and Transport

The probable fate and transport of contaminants detected on the Site is a function of the properties of the individual contaminants and available pathways for the contaminants to migrate. The Site is currently unoccupied during the redevelopment of the former industrial building to a commercial structure. The degree to which, as well as the route by which, contaminants migrate is dependent on the physical characteristics of the site and the type and distribution of contaminants. The following sections discuss the probable fate and transport of contaminants in the different types of media at the Site.

Contaminants of concern are associated with HFM on the Site. Constituents primarily include SVOCs and metals, generally in shallow soil. Additionally, SVOCs, metals, and PFAS are present groundwater. Carbon tetrachloride is present in sub-slab vapor and indoor air in a limited portion of the single-story building.

Carbon tetrachloride is present in sub-slab vapor and indoor air in a limited portion of the single-story building. Carbon tetrachloride is not strongly sorbed to soil and can readily transport through soil into saturated zones. Due to its chemical properties, a portion of the carbon tetrachloride will dissolve in water, while the rest will continue to move downward through the water column until a low permeability layer is encountered. In the case of a long-term / continuous source, such as a continual release from a buried tank or piping system, carbon tetrachloride is likely to continue downward until it is restricted by a confining layer where it will accumulate to a measurable thickness (dense non-aqueous phase liquid [DNAPL]). The review of historical documentation and generation of analytical data from the RI does not support the likelihood of

DNAPL within the groundwater underlying the Site. As discussed in previous sections, carbon tetrachloride was not detected in nearby sub-surface soil or groundwater. The presence of carbon tetrachloride in soil vapor may be associated with an isolated release / spill that occurred in the general vicinity of PSG-104.

The PAHs detected are characterized by low water solubilities and, therefore, have a tendency to adsorb onto soil particles. Because of their low vapor pressures, compounds with five or more aromatic rings, which include a majority of the detected PAHs, will exist mainly adsorbed to airborne particulate matter, such as fly ash and soot. Those with four or fewer rings, such as benzo(a)anthracene, may occur both in the vapor phase and adsorbed to particles. The detected compounds have relatively low vapor pressures and are expected to remain in a solid or liquid state and undergo degradation via naturally occurring attenuation processes (i.e., microbial degradation). Due to the low solubility, these contaminants are not expected to significantly impact groundwater quality or migrate substantially into the subsurface. This is supported by the low concentrations of these compounds in the on-site groundwater.

Heavy metals, such antimony, arsenic, copper, lead, and mercury, are non-biodegradable pollutants that are generally transported through anthropogenic activities. In contaminated soils, they tend to persist for many years in the surface layers of soil. In aquatic systems, heavy metals may become blocked as sinks in bottom sediments, where they may remain for many years. Metals can be remobilized in water if the pH falls increasing heavy metal solubility increases. Due to the low solubility, these contaminants are not expected to impact groundwater quality or migrate substantially into the subsurface. This is supported by the anomalous exceedances of these compounds in the on-site groundwater and the lack of these dissolved phase compounds in the on-site groundwater. Other metals were present in the groundwater that did exceed groundwater guidance values; these include naturally occurring metals such as iron, magnesium, manganese, and sodium. The metals detected at concentrations above the groundwater standards and guidance values appear to be representative of local groundwater quality. Metals do not readily break down and will persist in the environment.

PFAS includes a large group of compounds that vary in molecular weight, structures, and functional groups. They typically repel oil and water, resist extreme temperatures, and reduce friction. Most PFAS detected in the environment, including PFOS and PFOA, have a hydrophobic and lipophobic tail while the head is polar and hydrophilic. As a result, these compounds are relatively mobile in groundwater while also associating with the organic carbon fraction in soil or sediment. PFAS transport processes include advection, dispersion, diffusion, atmospheric deposition, and leaching. Many PFAS form films at the air-water interface which influences aerosol-based transport, deposition, vadose zone transport, and aqueous phase transport. At high concentrations, some PFAS can form micelles which could enhance or reduce adsorption in the environment. Most PFAS are resistant to biotic and abiotic degradation. PFOS and PFOA were detected in groundwater at concentrations that exceed applicable standards along the western portion of the Site. PFOS and PFOA are mobile, persistent, bioaccumulate, and are not known to degrade in the environment.

5.3. Evaluation of Potential Receptors

The Site is located in a dense urban portion of the City of Syracuse that is utilized for a mix of industrial, commercial, and residential purposes. The Site is bounded to the north by West Fayette Street followed by forested land, Syracuse City School District Supply Center, and a rail line, to the south by commercial stores and George Fowler High School, to the west by residences and the George Fowler High School baseball diamond, and to the east by the Lofts at 1117 BCP Site (C734160) and commercial stores.

The Site and surrounding area is serviced by the municipal water supply system from OCWA. Groundwater is prohibited from being utilized for drinking water in the City of Syracuse. Local groundwater is not potable due to elevated concentrations of dissolved inorganics (salts, aluminum, iron, etc.).

The Site is developed with a 92,113 square foot six-story building with an adjoining 11,060 square foot single-story building, constructed in 1920. The Site is approximately 2.65 acres and includes the adjoining buildings, a large parking lot to the east, a small parking lot to the west, and limited green space along the western and southern boundaries. The buildings are currently vacant. The six-story building is in good condition and the single-story building is in deteriorating condition. Redevelopment of the industrial building to a commercial complex is planned. Access to the Site is currently restricted by perimeter fencing along the Site boundaries. However, access to trespassers is possible if they should climb the fence.

Under current conditions, potential human receptors include persons trespassing on the Site; persons living and working in the area surrounding the Site; and persons involved in utility work on and adjacent to the Site. In addition, potential environmental receptors include wildlife living on and migrating through the Site (e.g., rodents, birds, etc.).

The planned future use of the Site is for a commercial development. The redevelopment of the Site will need to be controlled through the implementation of engineering and institutional controls due to Track 4 Commercial cleanup.

5.4. Potential Exposure Pathways

5.4.1. Surface Soil

Under the current use, persons living and working in the vicinity of the Site and / or persons trespassing on the Site could be exposed to SVOCs and metals in the surface soil via inhalation of airborne particles, incidental ingestion of, or dermal contact with the contaminated media. However, there is very limited exposed surface soil on the Site as majority of the Site is covered by an asphalt parking lot.

Construction workers, site visitors and persons living, working and traveling through the area near the project site could be exposed to the SVOCs and metals in the surface soil during excavation

of the contaminated soil in connection with site redevelopment. Potential exposure routes for these receptors include inhalation of contaminated dust and incidental ingestion of, and / or dermal contact with the contaminated soil / HFM. However, the use of appropriate personal protective equipment, dust suppression techniques and personal/air monitoring, and the development and implementation of a Health and Safety Plan (HASP – **Appendix K**) would minimize the risk of exposure during this stage of the project.

Under current conditions an exposure pathway exists, however, this could be mitigated through engineering controls (i.e., site cover system) and institutional controls (i.e., Site Management Plan, Deed Restrictions) under the post-remediation scenario.

5.4.2. Subsurface Soil / HFM

The presence of elevated concentrations of SVOCs and metals in subsurface soil / HFM is not interpreted to represent a human or environmental exposure risk because no complete exposure pathways were identified under the current use scenario for the Site. This is a function of the subsurface disposition of the contamination, which effectively minimizes the potential for the incidental ingestion of, or dermal contact with the contaminated media. These factors also reduce the potential for the emission of vapors and particulates that could pose an exposure risk via inhalation. This applies to persons living, working and traveling through the area surrounding the Site, as well as persons visiting, working or trespassing on the Site.

During excavation of the contaminated soil / HFM in connection with site redevelopment activities, environmental receptors, construction workers, site visitors and persons living, working and traveling through the project site could be exposed to SVOCs and metals in the subsurface soil / HFM. Potential exposure routes for these receptors include inhalation of contaminated dust and incidental ingestion of and / or dermal contact with the contaminated soil / HFM. However, the use of appropriate personal protective equipment, dust suppression techniques and personal / air monitoring, and the development of a HASP would minimize the risk of exposure during this stage of the project.

5.4.3. Groundwater

Groundwater is not considered a relevant mechanism for exposure due to the municipal water servicing the Site and requirement for an Environmental Easement that will restrict the use of groundwater.

In addition, groundwater in the City of Syracuse is prohibited from being used for public drinking water supply. Local groundwater is not potable due to elevated concentrations of dissolved inorganics (salts, aluminum, iron, etc.).

5.4.4. Soil Vapor

Soil vapor under the slab and in the indoor air of the northwestern portion of the single-story

building was identified to have carbon tetrachloride impacts. The observed concentrations require mitigation per NYSDOH. As such, the vapor intrusion pathway is relevant under current conditions.

5.4.5. Exposure Assessment Summary

The human health exposure assessment identified exposure scenarios for the Site.

- Exposed soil / HFM during construction presents a potential route of exposure to construction or remediation workers via contact, fugitive dust and surface water. Upon completion of planned construction activities, the Site will be covered by buildings, paved parking lots, as well as some landscaped areas. The proposed structures / features will prevent direct human exposure to any materials that may be left in-place.
- A potential route of exposure includes soil vapor to human receptors via inhalation inside the building. This will be addressed by:
 - Installation of a soil vapor extraction (SVE) system to reduce or eliminate the carbon tetrachloride impacts in soil vapor. The SVE system will be implemented as an Interim Remedial Measure (IRM) during construction, before the Decision Document is issued. The SVE system design documents will be provided in a subsequent IRM Work Plan. If the IRM activities are not successful in eliminating the vapor-phase source, implementation of a long-term engineering control (i.e., vapor mitigation system) would be required.
- Groundwater is not considered a relevant mechanism for exposure due to the municipal
 water servicing the Site and requirement for an Environmental Easement that will restrict
 the use of groundwater. Groundwater in the City of Syracuse is prohibited from being
 utilized as a source of drinking water. In addition, the depth of the groundwater (5.5 to 13
 feet bgs) reasonably precludes human contact.

5.5. Qualitative Human and Fish / Wildlife Resources Exposure Assessment

The Site is proposed to be used as a commercial building complex in an urban area with limited wildlife exposure. There are limited ecological resources (grass, trees, water) to provide habitat or food for wildlife. Humans living or working near or on the Site could be exposed to contamination in the surface soils. However, this could be mitigated through engineering controls and institutional controls under the post-remediation scenario. The Site and surrounding properties are served by a public water system operated by the City of Syracuse, and there is no known use of groundwater in the local area.

Due to the reasons listed above, contaminated groundwater is not considered a relevant mechanism for exposure on the Site. Soil vapor intrusion is considered a relevant mechanism for exposure on the Site, however, the proposed remedy for the Site includes a SVE system IRM.

The Site and surrounding area consists of densely developed urban land in the City of Syracuse.

A review of information concerning endangered and threatened species in Onondaga County, available via the NYSDEC Environmental Resource Mapper, indicated that rare plants and rare animals are located approximately 0.15 miles from the Site (Silverjaw Minnow). Wildlife that could potentially be present at the Site was determined using the NYSDEC Nature Explorer. The information in New York Nature Explorer was prepared by NYSDEC using the data currently available. In addition, the species and locations reported by the online tool are not a definitive statement about the presence or absence of all plants and animals, including rare or state-listed species, and of all significant natural communities. According to the NYSDEC Nature Explorer, this generalized area may contain straight-leaved pondweed (Potamogeton strictifolius). According to the New York State Natural Heritage Program (NYNHP), straight-leaved pondweed is typically found in shallow water habitats in natural and artificial lakes, as well as alkaline waterbodies and slow-moving streams. As the Site does not contain suitable waterbodies, no impact is anticipated to occur to these species. The Site is not located in or substantially contiguous to a Critical Environmental Area designated pursuant to Article 8 or the Environmental Conservation Law (ECL) and 6 NYCRR 617, nor are any state or federally designated wetlands located on or adjacent to the project site.

Based upon the information summarized above, there are no ecological resources present on or in the vicinity of the Site and, consequently, no fish and wildlife resource impacts have been identified.

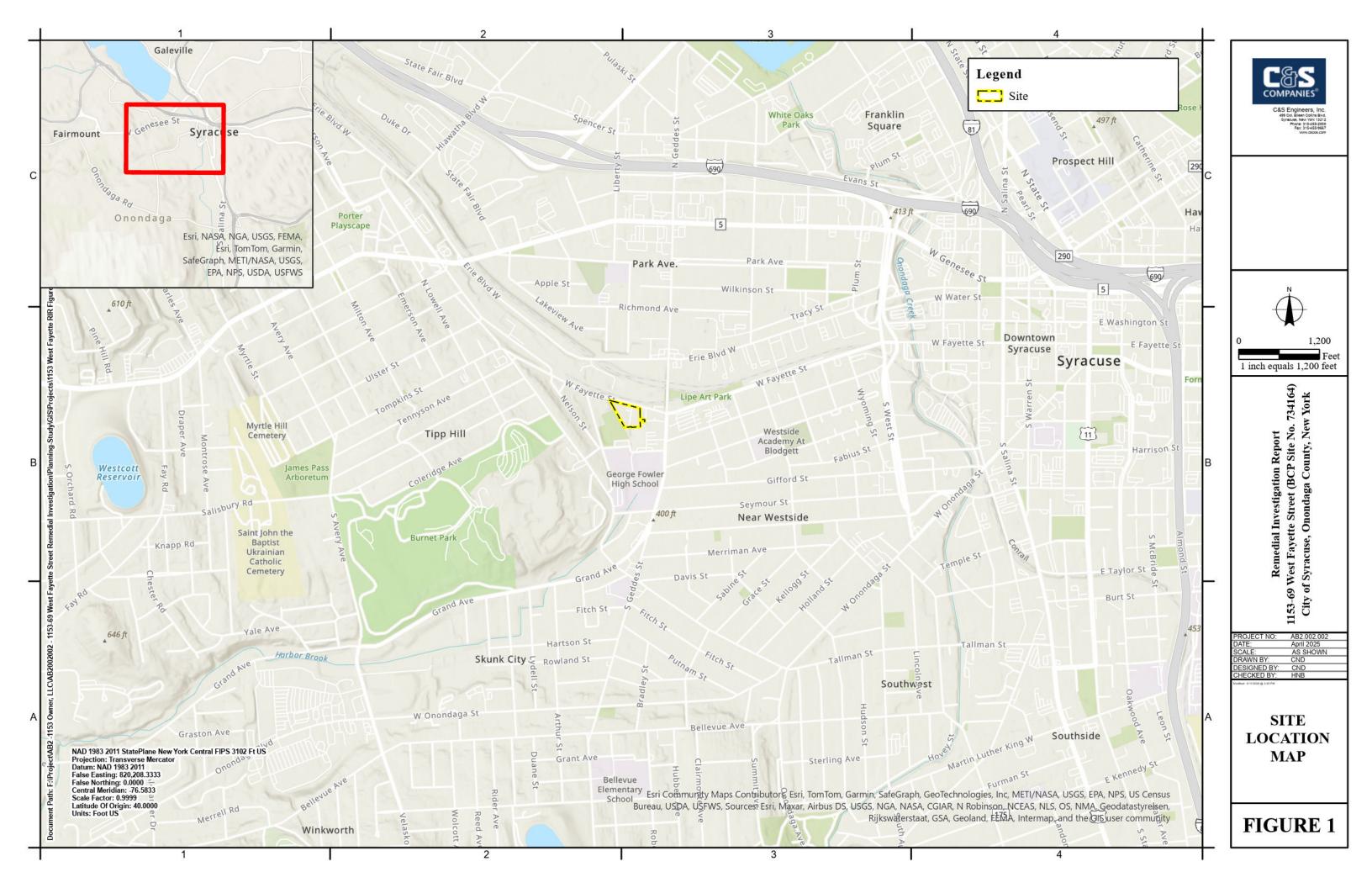
6.0 REFERENCES

C&S Engineers, Inc., Remedial Investigation Work Plan, 1153-69 West Fayette Street, City of Syracuse, Onondaga County, New York, BCP Site No. C734164, July 2024 (Revised November 2024).

C&S Engineers, Inc., Phase I Environmental Site Assessment, 1153 West Fayette Street, City of Syracuse, New York, April 2023.

C&S Engineers, Inc., Phase II Environmental Site Assessment, 1153 West Fayette Street, City of Syracuse, New York, June 2023.

New York Codes, Rules, and Regulations, Title 6 (6 NYCRR), Chapter IV, Subpart 375-6: *Remedial Program Soil Cleanup Objectives*.

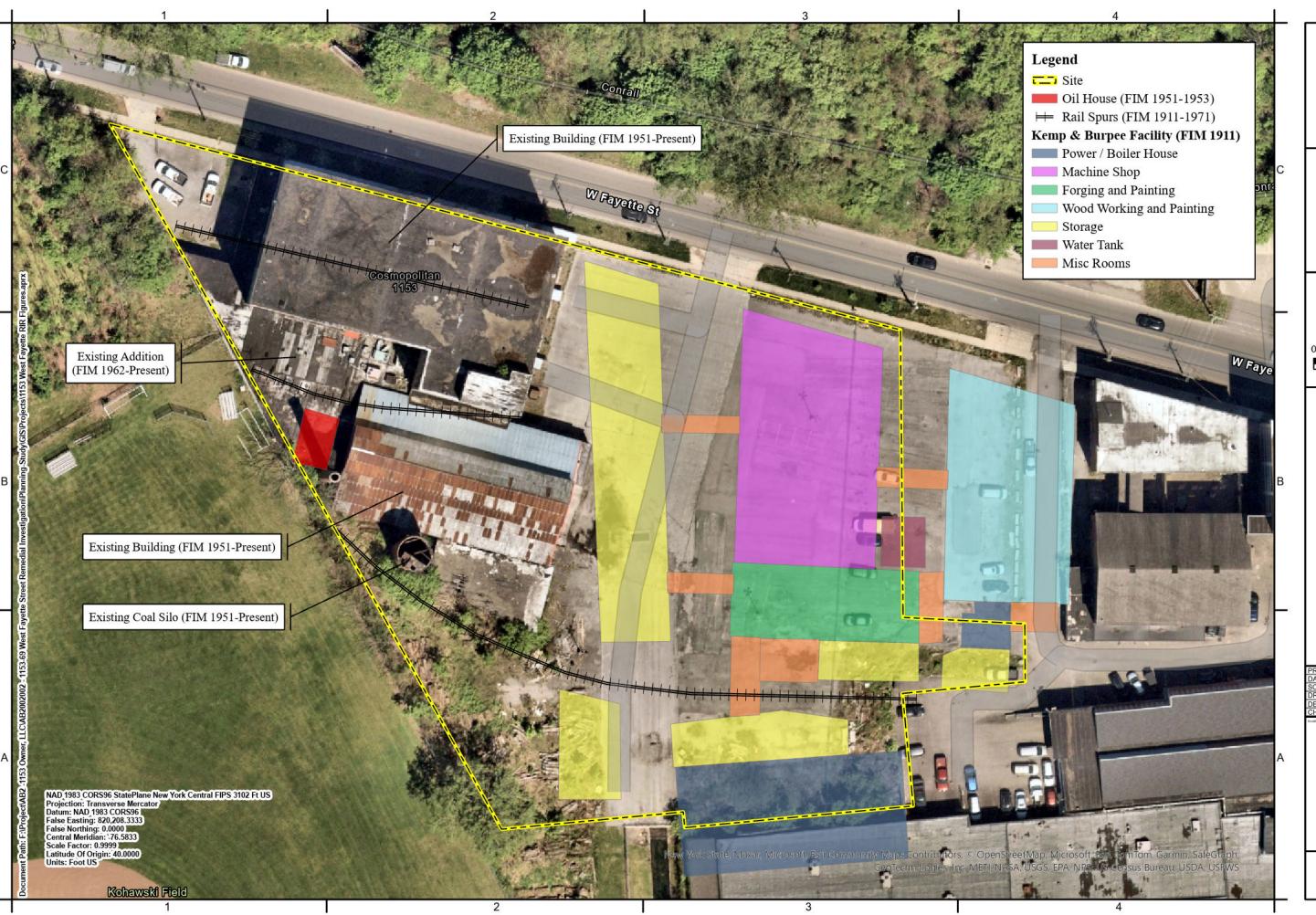

Technical and Operational Guidance Series (TOGS) 1.1.1, *Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations*, New York State Department of Environmental Conservation, June 1998.

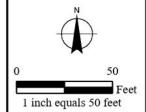
Guidance for Evaluating Soil Vapor Intrusion in the State of New York, New York State Department of Health, October 2006 (Revised February 2024).

DEC Program Policy DER-10, *Technical Guidance for Site Investigation and Remediation*, New York State Department of Environmental Conservation, May 2010.

DEC Program Policy DER-31, *Green Remediation*, New York State Department of Environmental Conservation, August 11, 2010.

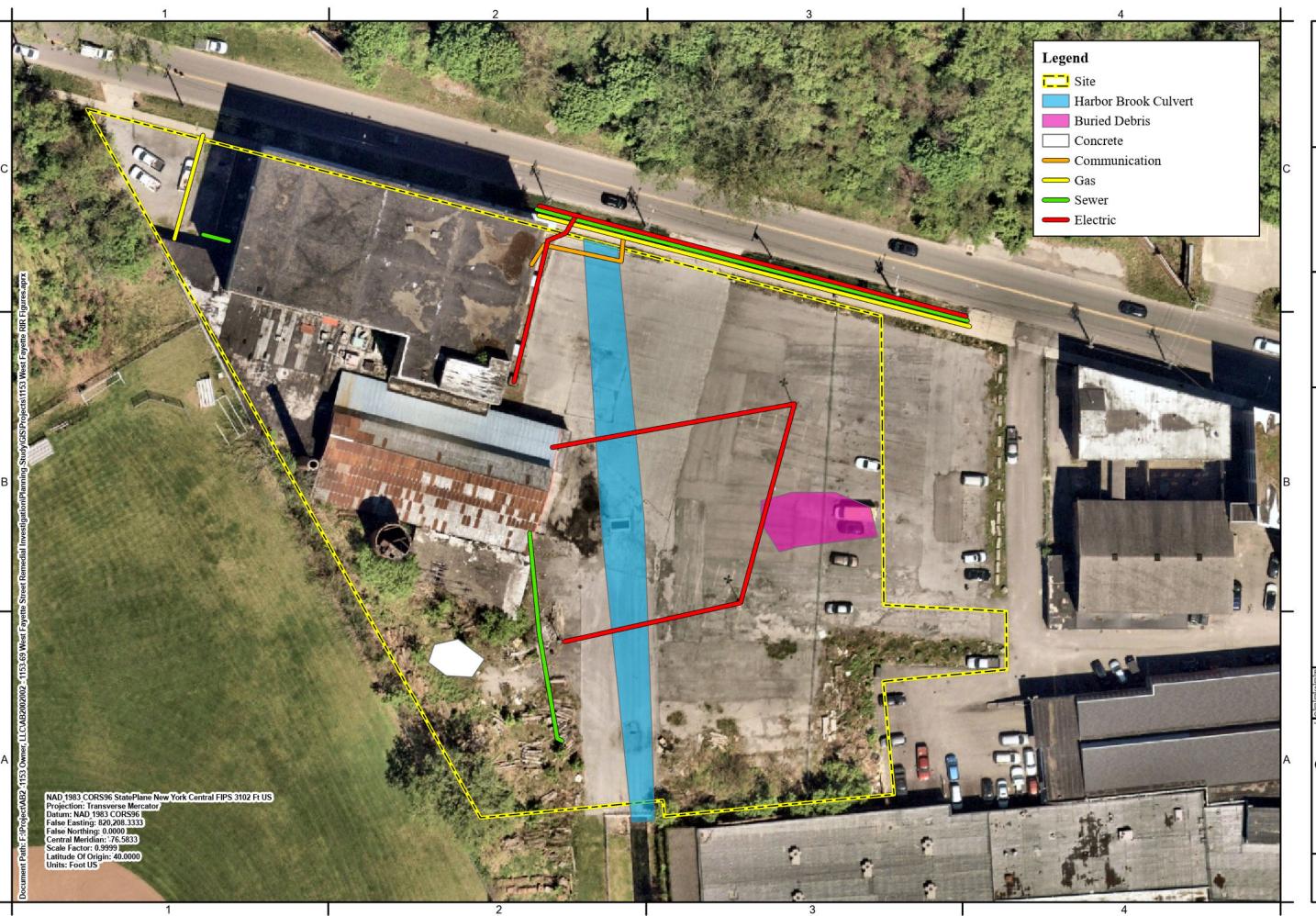
Figures

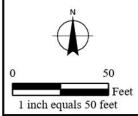



Remedial Investigation Report 1153-69 West Fayette Street (BCP Site No. 734164) City of Syracuse, Onondaga County, New York

PROJECT NO:	AB2.002.002
DATE:	April 2025
SCALE:	AS SHOWN
DRAWN BY:	CND
DESIGNED BY:	CND
CHECKED BY:	HNB
ModRed: 4/15/2025 (N.D.46 PM	

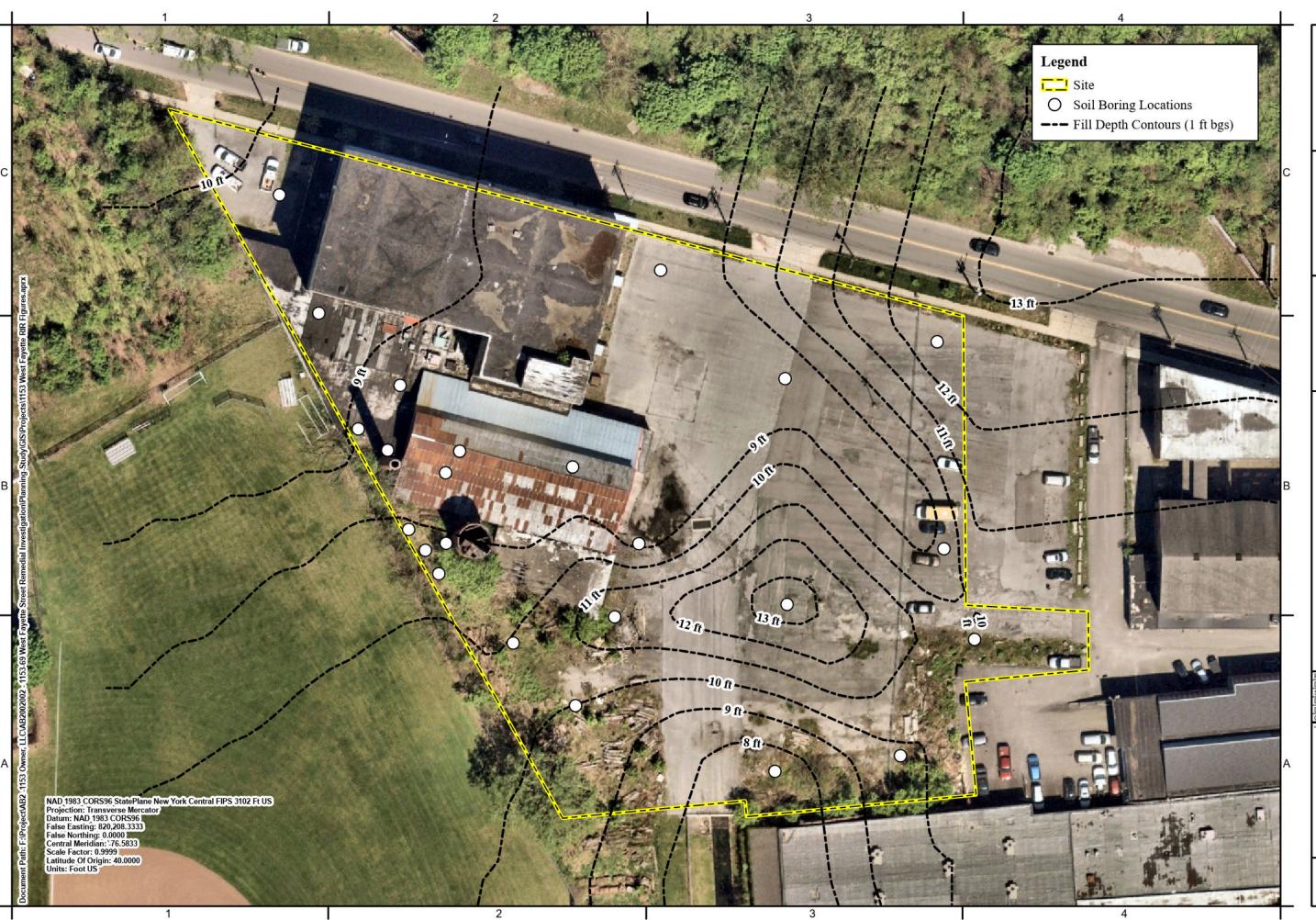
SITE MAP

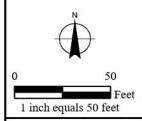



Remedial Investigation Report 1153-69 West Fayette Street (BCP Site No. 73416 City of Syracuse, Onondaga County, New York

N	
PROJECT NO:	AB2.002.002
DATE:	April 2025
SCALE:	AS SHOWN
DRAWN BY:	CND
DESIGNED BY:	CND
CHECKED BY:	HNB
Martine: 4/11/2025 08 2 48 294	

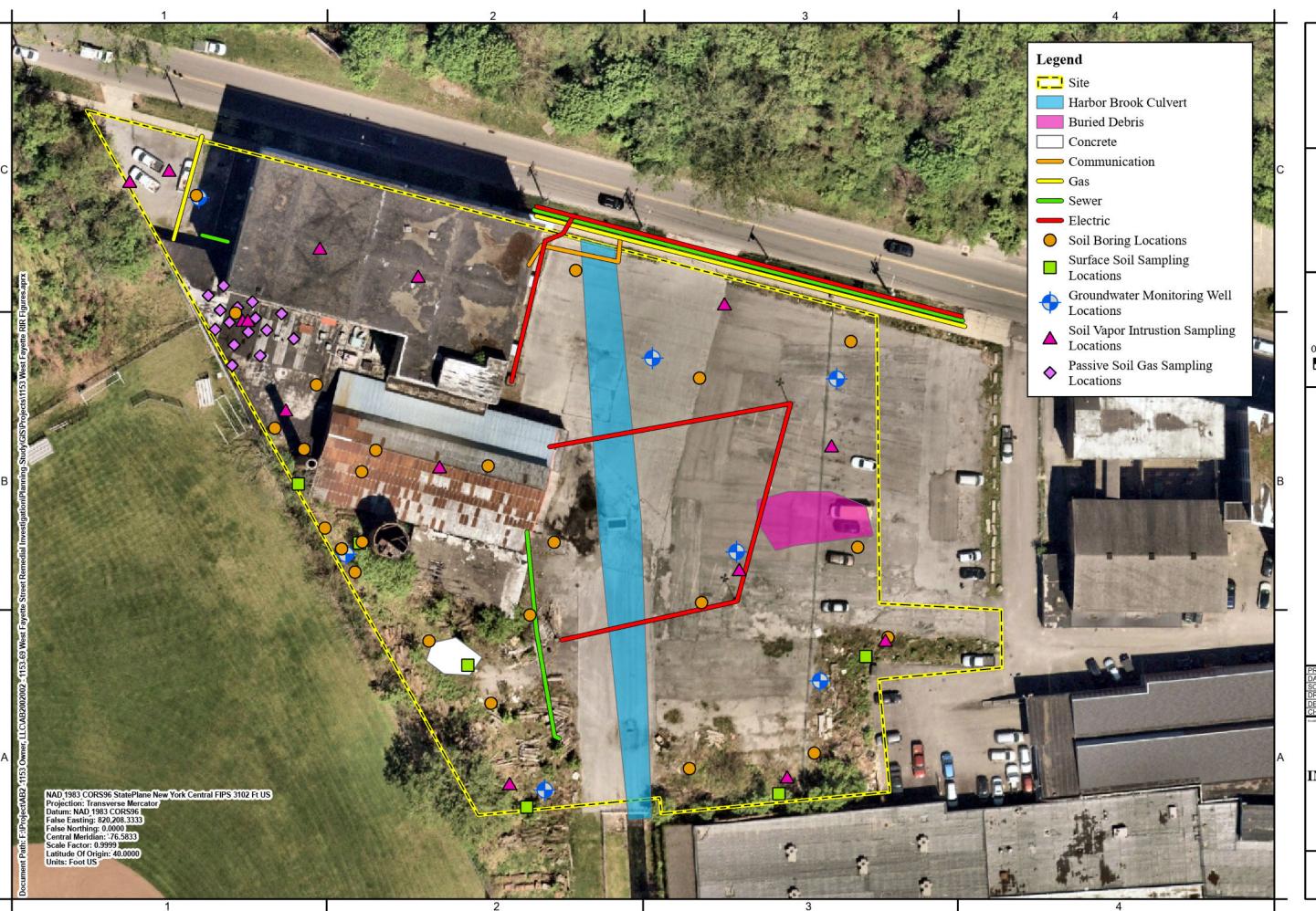
PAST SITE USES MAP

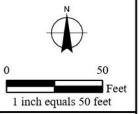



Remedial Investigation Report 1153-69 West Fayette Street (BCP Site No. 734164) City of Syracuse, Onondaga County, New York

N	
PROJECT NO:	AB2.002.002
DATE:	April 2025
SCALE:	AS SHOWN
DRAWN BY:	CND
DESIGNED BY:	CND
CHECKED BY:	HNB
Martine: 4/11/2025 08 2 48 294	

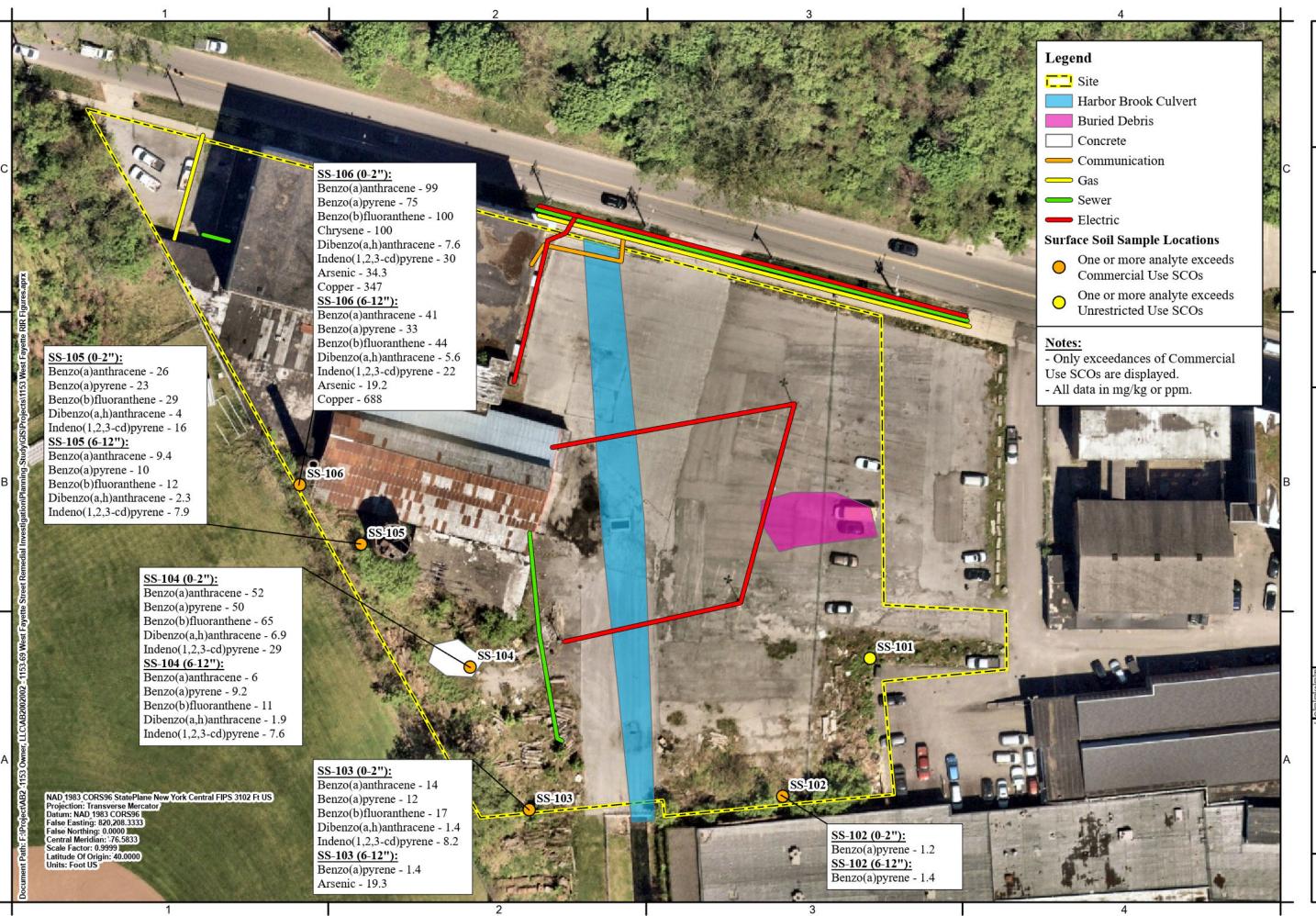
GEOPHYSICAL SURVEY RESULTS

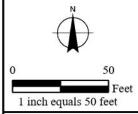



Remedial Investigation Report 1153-69 West Fayette Street (BCP Site No. 734164) City of Syracuse, Onondaga County, New York

PROJECT NO:	AB2.002.002
DATE:	April 2025
SCALE:	AS SHOWN
DRAWN BY:	CND
DESIGNED BY:	CND
CHECKED BY:	HNB
ModRed: 4/15/2025 # 3:49 PM	

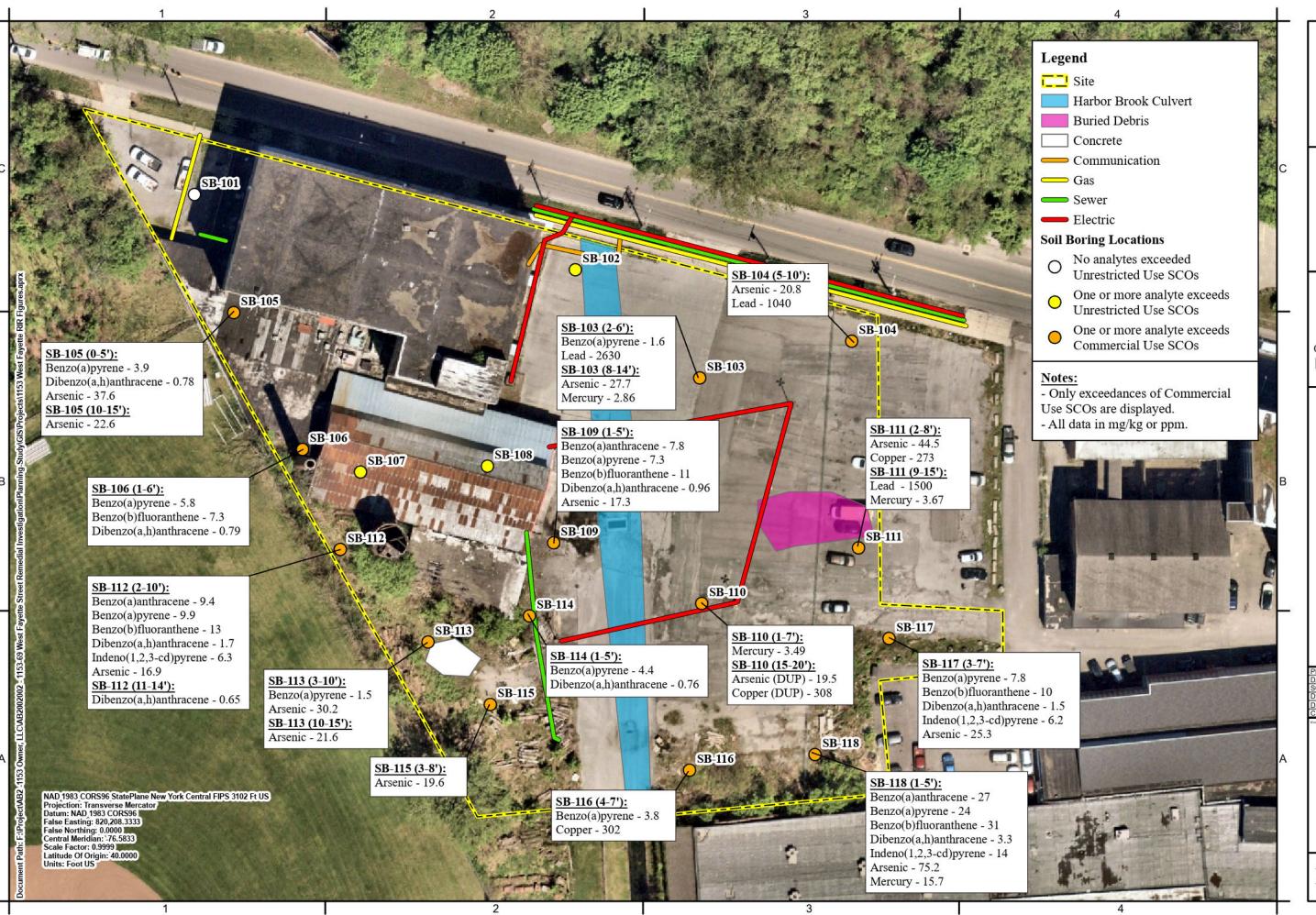
FILL DEPTHS

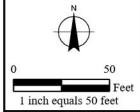



Remedial Investigation Report 1153-69 West Fayette Street (BCP Site No. 734 City of Syracuse, Onondaga County, New Y

H	
PROJECT NO:	AB2.002.002
DATE:	April 2025
SCALE:	AS SHOWN
DRAWN BY:	CND
DESIGNED BY:	CND
CHECKED BY:	HNB
ModRed: 4/11/2025 (8.3:50 PM	

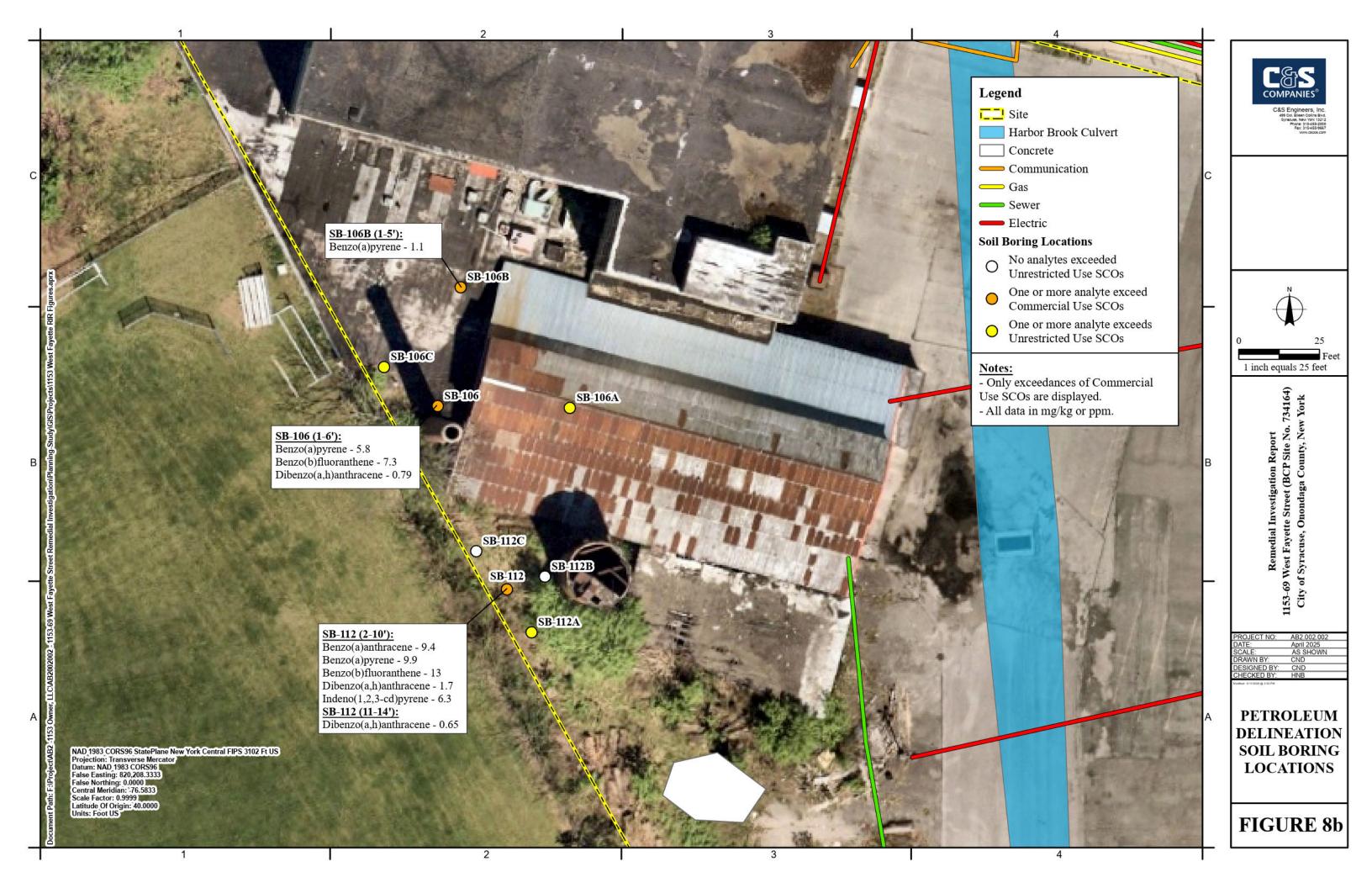
REMEDIAL INVESTIGATION SAMPLING LOCATIONS

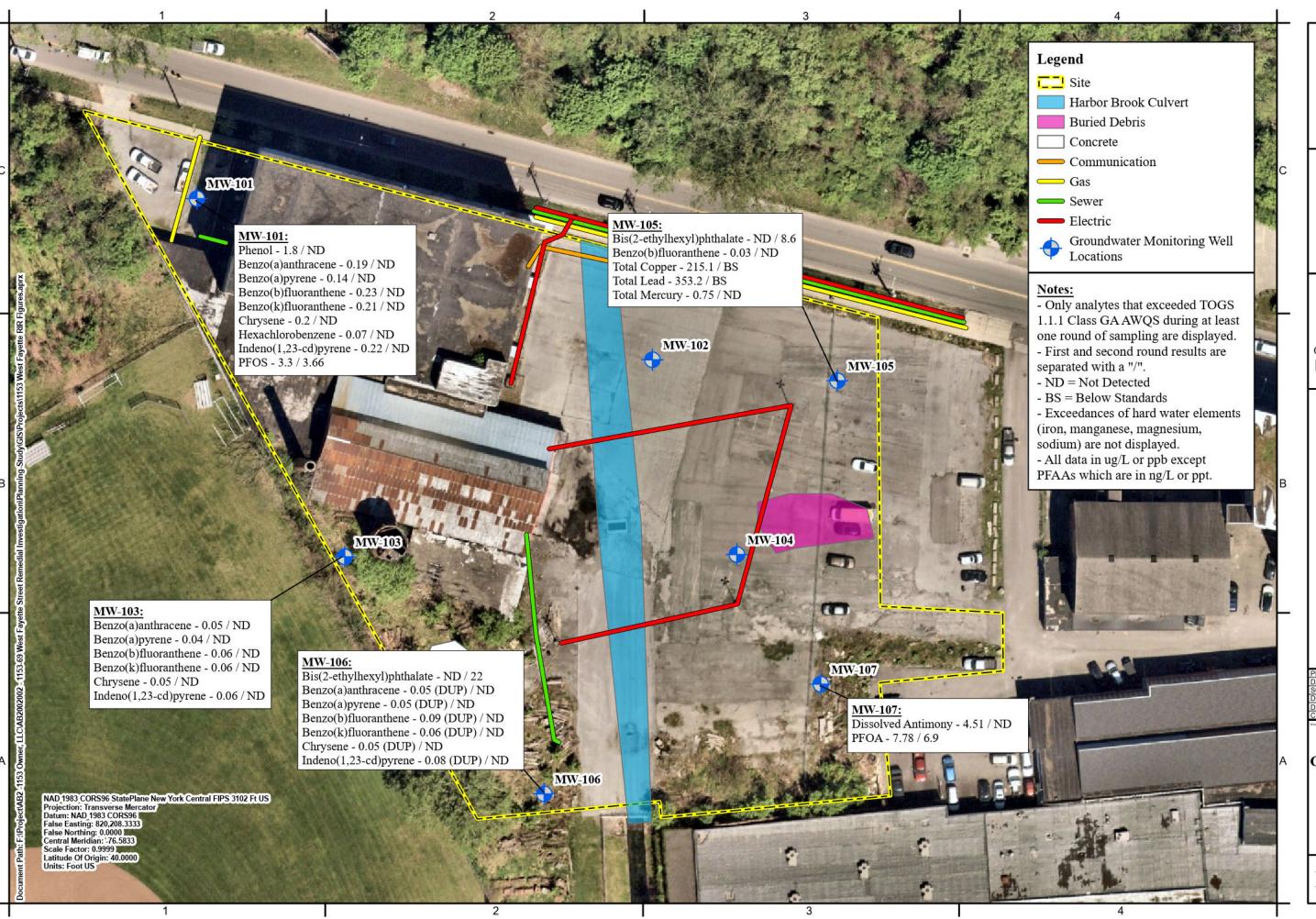



Remedial Investigation Report 1153-69 West Fayette Street (BCP Site No. 7341 City of Syracuse, Onondaga County, New Yo

H	
PROJECT NO:	AB2.002.002
DATE:	April 2025
SCALE:	AS SHOWN
DRAWN BY:	CND
DESIGNED BY:	CND
CHECKED BY:	HNB
ModRed: 4/11/2025 (N.D.51 PM	

SURFACE SOIL SAMPLING LOCATIONS




Remedial Investigation Report 1153-69 West Fayette Street (BCP Site No. 73416 City of Syracuse, Onondaga County, New Yorl

81	
PROJECT NO:	AB2.002.002
DATE:	April 2025
SCALE:	AS SHOWN
DRAWN BY:	CND
DESIGNED BY:	CND
CHECKED BY:	HNB
Name of Address of Salary	

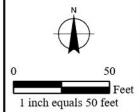
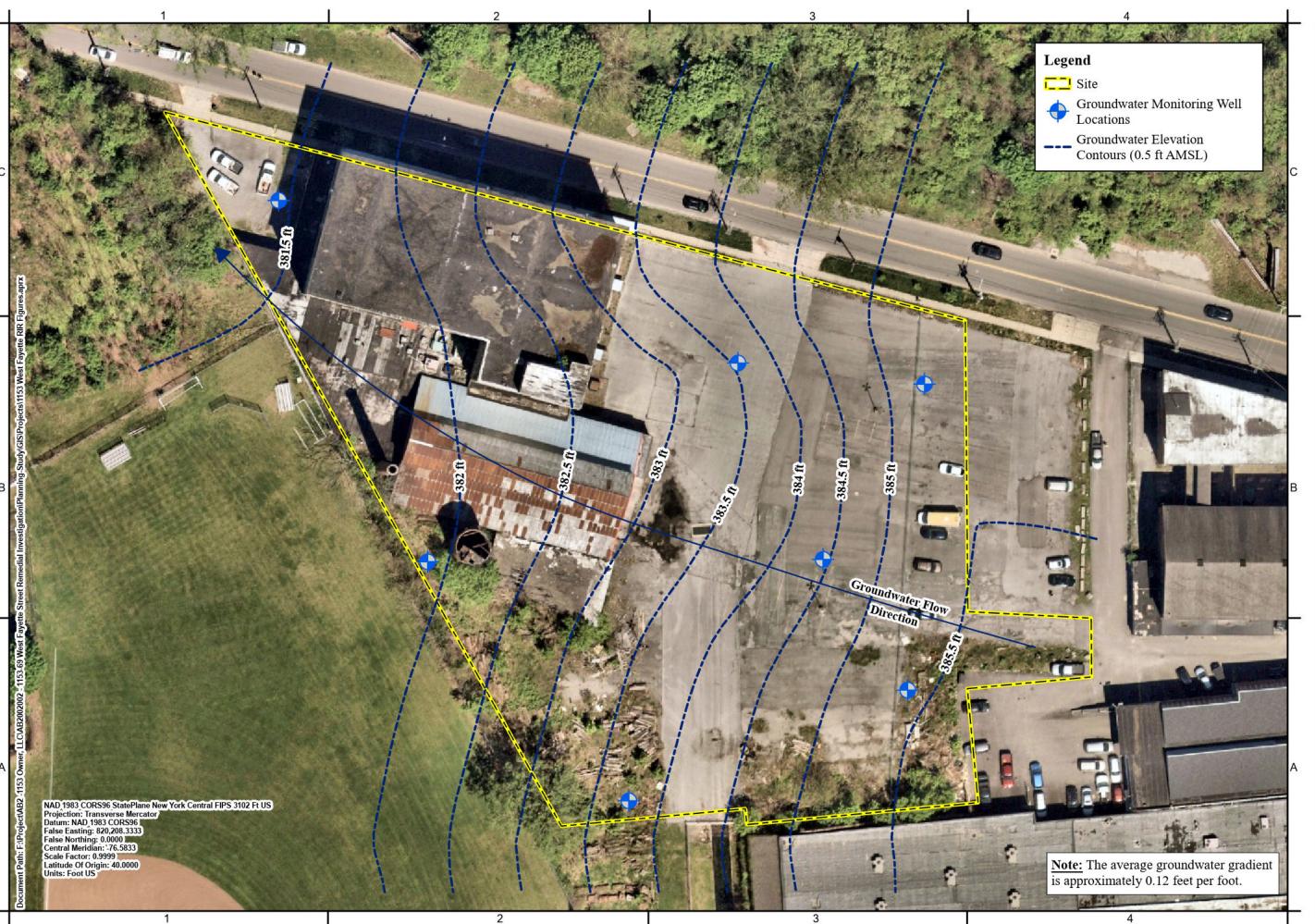
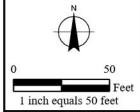

SITE-WIDE SOIL BORING LOCATIONS

FIGURE 8a

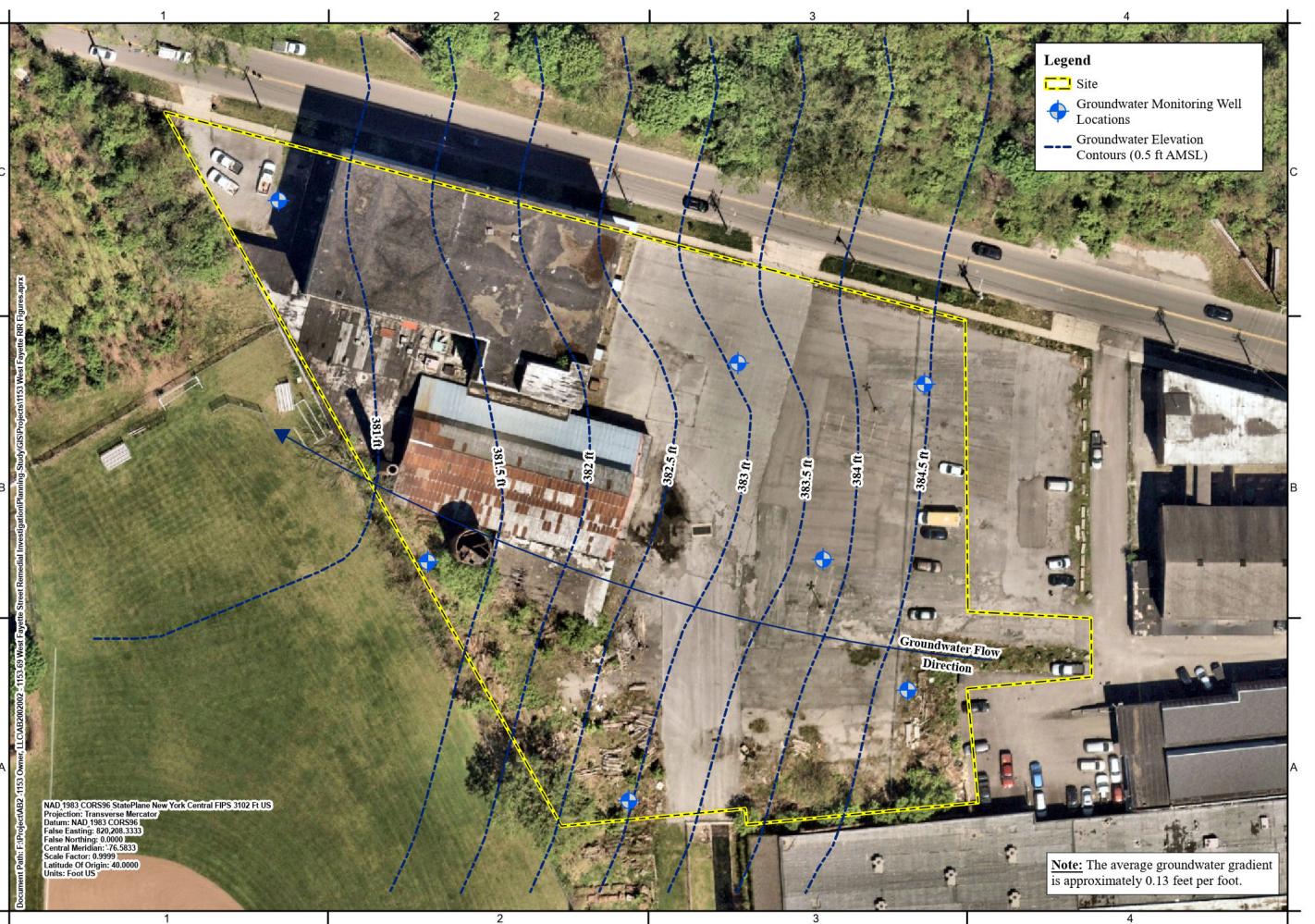


Remedial Investigation Report 1153-69 West Fayette Street (BCP Site No. 7341) City of Syracuse, Onondaga County, New Yor'

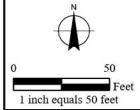

21	
PROJECT NO:	AB2.002.002
DATE:	April 2025
SCALE:	AS SHOWN
DRAWN BY:	CND
DESIGNED BY:	CND
CHECKED BY:	HNB
ModRed: 4/11/2025 (E. 3.53 PM	

GROUNDWATER MONITORING WELL LOCATIONS

FIGURE 9a

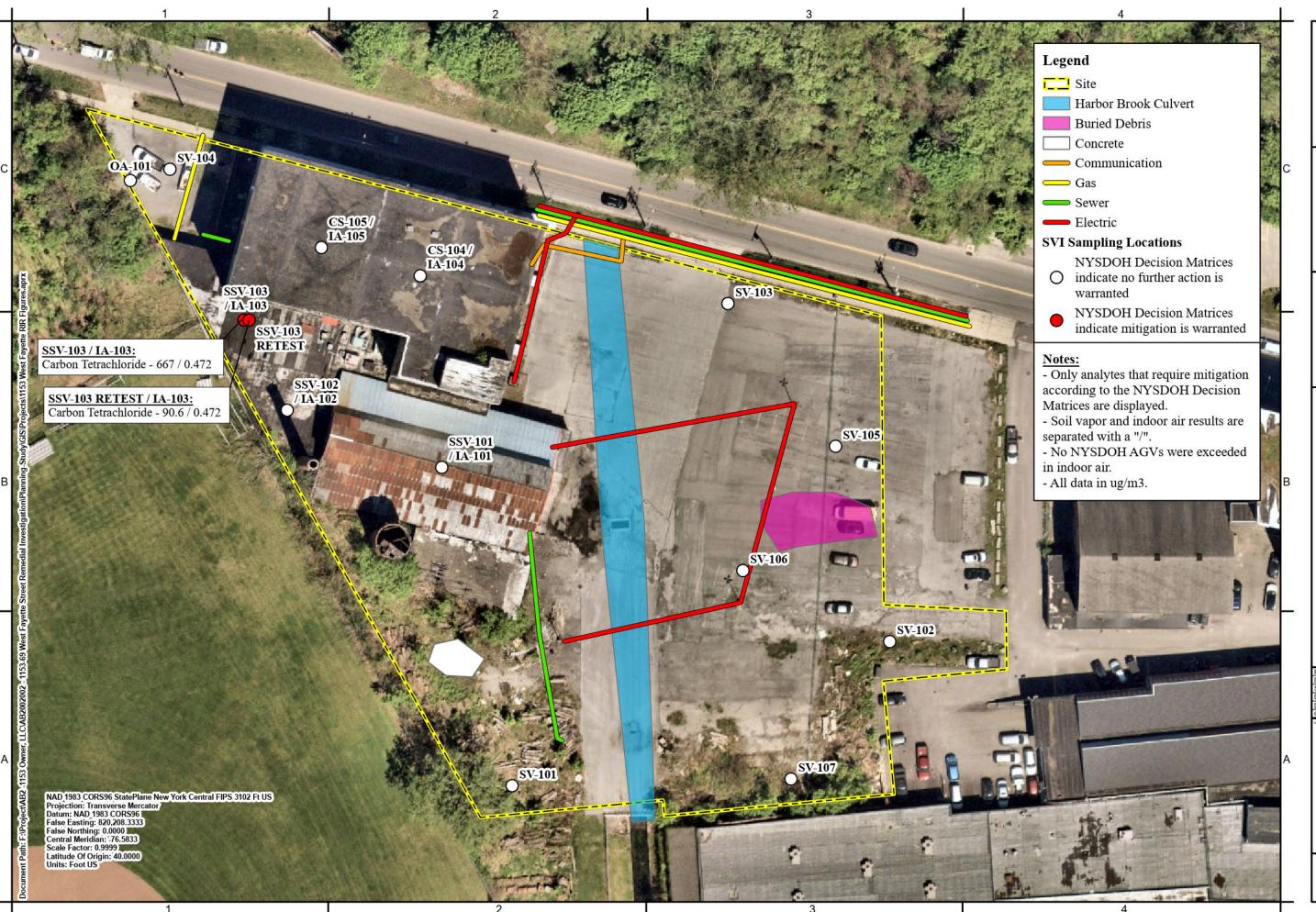


Remedial Investigation Report 1153-69 West Fayette Street (BCP Site No. 734164) City of Syracuse, Onondaga County, New York

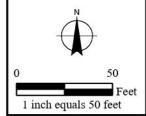

81	
PROJECT NO:	AB2.002.002
DATE:	April 2025
SCALE:	AS SHOWN
DRAWN BY:	CND
DESIGNED BY:	CND
CHECKED BY:	HNB
Market Control to Section	

GROUNDWATER
ELEVATION
CONTOURS DECEMBER 2024

FIGURE 9b

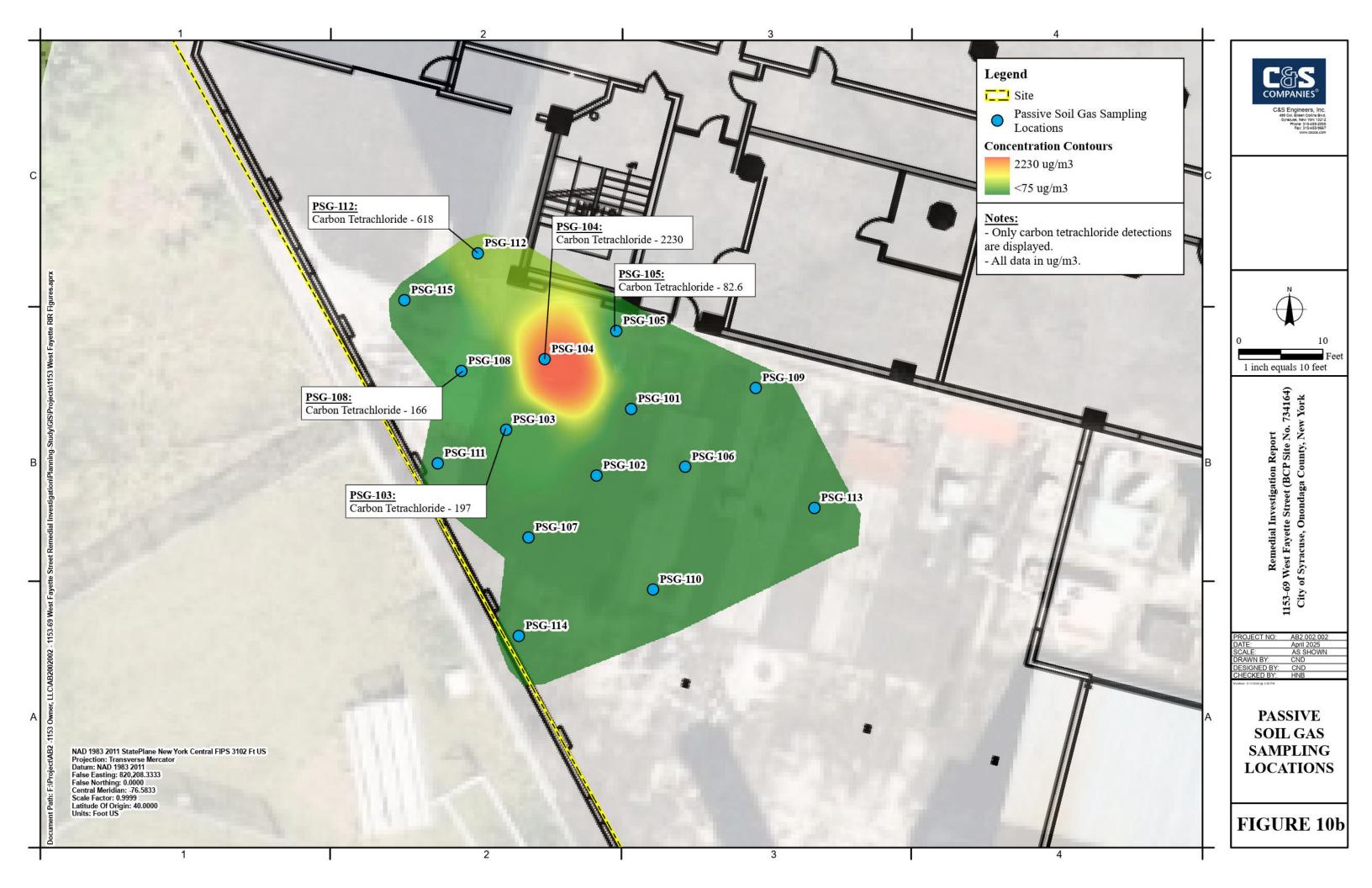


Remedial Investigation Report 1153-69 West Fayette Street (BCP Site No. 734164) City of Syracuse, Onondaga County, New York


N	
PROJECT NO:	AB2.002.002
DATE:	April 2025
SCALE:	AS SHOWN
DRAWN BY:	CND
DESIGNED BY:	CND
CHECKED BY:	HNB
Marchael Additional as a sales	•

GROUNDWATER ELEVATION CONTOURS -FEBRUARY 2025

FIGURE 9c


Remedial Investigation Report 1153-69 West Fayette Street (BCP Site No. 73410 City of Syracuse, Onondaga County, New Yorl

3	
PROJECT NO:	AB2.002.002
DATE:	April 2025
SCALE:	AS SHOWN
DRAWN BY:	CND
DESIGNED BY:	CND
CHECKED BY:	HNB

led: 4/11/2025 @ 3:56 PM

SVI SAMPLING LOCATIONS

FIGURE 10a

Tables

								TCL Volatile	TCL Semi													TO-15 / TO-15			$\overline{}$	
Lab Report					Sample	Depth	Total	Organic	Volatile Organic	TCL		TCL	TAL Total	TAL Dissolved		Dissolved	Total	Dissolved	Per- and		Total	SIM Volatile	Carbon		ı	
Number	Sample ID	Date	Time	Matrix	Туре	(ft)		Compounds +	Compounds + 20		Herbicides	_	Metals (incl.	Metals	Total Cyanide	Cyanide	Hexavalent	Hexavalent	Polyfluoroalkyl	1,4-Dioxane	Petroleum	Organic	Tetrachloride	MS	MSD	DUP
					.,,,,	(,		10 TICs	TICs			Biphenyls	Mercury)	(incl. Mercury)		",	Chromium	Chromium	Substances		Hydrocarbons	Compounds			i	
	SS-102 0-2"	11/22/2024	11:30	SOIL	SS	0-2"	Х	Х	Х	Х	Х	Х	Х		Х		Х		Х	Х						
	SS-102 6-12"	11/22/2024	11:45	SOIL	SS	6-12"	Х	Х	Х	Х	Х	Х	Х		Х		Х		Х	Х					i i	-
L2469246	SS-104 0-2"	11/22/2024	12:15	SOIL	SS	0-2"	Х	Х	Х	Χ	X	Х	Х		Х		Х		Х	Х						
L2409240	SS-104 6-12"	11/22/2024	12:45	SOIL	SS	6-12"	Х	X	X	Χ	Х	Х	Х		Х		Х		X	Х						X
	SS-103 0-2"	11/22/2024	13:30	SOIL	SS	0-2"	Х	Х	X	Χ	X	Х	Х		Х		Х		X	X						
	SS-103 6-12"	11/22/2024	14:00	SOIL	SS	6-12"	Х	Х	Х	Χ	Х	Х	Х		Х		Х		X	Х				Χ	Х	
	SB-108 FILL	11/25/2024	09:50	SOIL	SB	0.5-8	Х	Х	Х	Х	Х	Х	X		Х		Х		Х	Х	Х					
	SB-108 NATIVE	11/25/2024	09:55	SOIL	SB	8-15	Х	Х	Х	Х	Х	Х	Х		Х		Х		Х	Х						
	SB-107 FILL	11/25/2024	10:30	SOIL	SB	1-6	Х	Х	Х	Х	Х	Х	X		Х		Х		Х	Х	Х					
	SB-107 NATIVE	11/25/2024	10:50	SOIL	SB	8-10	Х	Х	Х	Х	Х	Х	X		Х		Х		Х	Х						
	SB-106A FILL	11/25/2024	11:00	SOIL	SB	1-5	Х	Х	Х																	
	SB-106A NATIVE	11/25/2024	11:10	SOIL	SB	8-10	Х	Х	Х																	
	SB-106 FILL	11/25/2024	11:25	SOIL	SB	1-6	Х	Х	X	Х	Х	Х	Х		Х		Х		Х	Х	Х					
	SB-106 NATIVE	11/25/2024	11:30	SOIL	SB	9-15	Х	Х	X	Χ	Х	Х	X		Х		Х		X	X						
	SB-106C FILL	11/25/2024	11:45	SOIL	SB	1-5	Х	Х	X																	
	SB-106C NATIVE	11/25/2024	11:50	SOIL	SB	10-12	Х	Х	X																	
	SB-106B FILL	11/25/2024	12:10	SOIL	SB	1-5	Х	Х	Х																	
L2469590	SB-106B NATIVE	11/25/2024	12:15	SOIL	SB	10-12	Х	Х	X																	
	SB-105 FILL	11/25/2024	12:25	SOIL	SB	0-5	Х	Х	X	Χ	Х	Х	X		Х		Х		X	X	X					
	SB-105 NATIVE	11/25/2024	12:30	SOIL	SB	10-15	Х	Х	X	Х	Х	X	Х		Х		Х		X	Х						
	SB-102 FILL	11/25/2024	13:10	SOIL	SB	3-8	Х	Х	Х	Х	Х	X	Х		Х		Х		Х	Х	X					
	SB-102 NATIVE	11/25/2024	13:20	SOIL	SB	10-20	Х	Х	Х	Х	Х	X	Х		Х		Х		Х	Х						
	SB-103 FILL	11/25/2024	13:45	SOIL	SB	2-6	Х	Х	X	Χ	Х	Х	X		Х		Х		X	X	X					
	SB-103 NATIVE	11/25/2024	13:35	SOIL	SB	8-14	Х	Х	X	Χ	Х	Х	X		Х		Х		X	X						
	SB-109 FILL	11/25/2024	13:55	SOIL	SB	1-5	Х	Х	X	Χ	Х	Х	X		Х		Х		X	X	X					
	SB-109 NATIVE	11/25/2024	14:05	SOIL	SB	7-10	Х	Х	X	Χ	Х	Х	Х		Х		X		X	X						
	SB-110 FILL	11/25/2024	14:10	SOIL	SB	1-7	Х	X	X	Χ	X	Х	Х		Х		Х		X	X	X				<u>. </u>	
	SB-110 NATIVE	11/25/2024	14:30	SOIL	SB	15-20	Х	Х	X	Χ	Х	Х	Х		Х		X		X	X					i	Χ
	SB-114 FILL	11/25/2024	14:50	SOIL	SB	1-5	Х	Х	X	Χ	X	X	X		Х		X		X	X	X				<u>. </u>	
	SB-114 NATIVE	11/25/2024	14:55	SOIL	SB	12-20	Х	Х	X	Χ	X	X	X		Х		X		X	X					<u>. </u>	
	SB-115 FILL	11/26/2024	08:05	SOIL	SB	3-8	Х	Х	Х	Χ	Х	X	Х		X		Х		Х	Х	X					
	SB-115 NATIVE	11/26/2024	08:15	SOIL	SB	13-20	Х	Х	X	Х	Х	Х	Х		Х		Х		Х	Х				Х	Х	
	SB-113 FILL	11/26/2024	08:40	SOIL	SB	3-10	Х	Х	X	Х	Х	Х	Х		Х		Х		X	Х	X					
	SB-113 NATIVE	11/26/2024	09:10	SOIL	SB	10-15	Х	Х	X	Х	Х	Х	Х		Х		Х		Х	Х						
	SB-112 FILL	11/26/2024	09:30	SOIL	SB	2-10	Х	Х	X	Χ	Х	Х	X		Х		Х		X	X	X			Х	Х	
	SB-112 NATIVE	11/26/2024	09:35	SOIL	SB	11-14	Х	Х	X	Х	Х	Х	Х		Х		Х		X	X						
	SB-112A FILL	11/26/2024	10:10	SOIL	SB	6-8	Х	Х	X																	
	SB-112A NATIVE	11/26/2024	10:15	SOIL	SB	10-13	Х	Х	X																	
	SB-112B FILL	11/26/2024	10:35	SOIL	SB	7-9	Х	Х	X																	
	SB-112B NATIVE	11/26/2024	10:40	SOIL	SB	11-13	Х	Х	X																	
	SB-112C FILL	11/26/2024	11:05	SOIL	SB	7-9	+	Х	X							ļ									\longrightarrow	
L2469906	SB-112C NATIVE	11/26/2024	11:00	SOIL	SB	11-15	1	Х	X							ļ	_								\longrightarrow	
22.33300	SB-116 FILL	11/26/2024	11:25	SOIL	SB	4-7	Х	Х	X	Х	Х	X	Х		Х		Х		Х	Х	Х					
	SB-116 NATIVE	11/26/2024	11:30	SOIL	SB	7-10		Х	X	Х	Х	X	Х		Х	ļ	Х		Х	Х						
	SB-104 FILL	11/26/2024	12:00	SOIL	SB	5-10	Х	Х	X	Х	Х	X	Х		Х		Х		Х	Х	Х					
	SB-104 NATIVE	11/26/2024	12:05	SOIL	SB	15-20	Х	Х	X	Х	Х	X	Х		Х	ļ	Х		Х	X					\longrightarrow	
	SB-111 FILL	11/26/2024	12:30	SOIL	SB	2-8	Х	Х	X	Х	Х	Х	Х		Х		Х		X	Х	Х					Х
	SB-111 NATIVE	11/26/2024	12:35	SOIL	SB	9-15	Х	Х	X	Х	Х	Х	Х		Х	ļ	Х		Х	X					\longrightarrow	
	SB-117 FILL	11/26/2024	12:50	SOIL	SB	3-7	Х	Х	X	Х	Х	Х	Х		Х	ļ	Х		Х	Х	Х				\longrightarrow	
	SB-117 NATIVE	11/26/2024	12:55	SOIL	SB	12-15		Х	X	Х	Х	Х	Х		Х	ļ	Х		X	X					\longrightarrow	
	SB-118 FILL	11/26/2024	13:15	SOIL	SB	1-5	_	Х	X	Х	Х	Х	Х		Х		Х		X	X	Х					
	SB-118 NATIVE	11/26/2024	13:25	SOIL	SB	10-14		X	X	X	X	X	X		Х	ļ	X		X	X					\longrightarrow	
	SB-101 FILL	11/26/2024	14:25	SOIL	SB	4-10	Х	Х	Х	Х	Х	Х	Х		Х		Х		Х	X	Х					
	SB-101 NATIVE	11/26/2024	14:35	SOIL	SB	12-15		X	X	X	X	X	X		X	ļ	X		X	X						
	SS-105 0-2"	12/2/2024	09:30	SOIL	SS	0-2"	+	X	X	X	X	X	X		X	1	X		X	X					\longrightarrow	
	SS-105 6-12"	12/2/2024	09:45	SOIL	SS	6-12"	X	X	X	X	X	X	X		X	1	X		X	X						
L2470407	SS-106 0-2"	12/2/2024	10:00	SOIL	SS	0-2"	X	X	X	X	X	X	X	1	X	 	X	1	X	X	1		1			
	SS-106 6-12"	12/2/2024	10:15	SOIL	SS	6-12"	X	X	X	X	X	X	X		X	1	X		X	X						
	SS-101 0-2"	12/2/2024	11:15	SOIL	SS	0-2"	X	X	X	X	X	X	X	1	X	 	X	1	X	X	1		1			-
	SS-101 6-12"	12/2/2024	11:30	SOIL	SS	6-12"	Х	Х	Х	Х	Х	Х	Х		Х	l	Х		X	X						

Lab Report Number	Sample ID							TCL Volatile	TCL Semi																
		Date	Time	Matrix	Sample Type	Depth (ft)	Total Solids	Organic Compounds +	Volatile Organic TCL Compounds + 20 Pesticides	Herbicides	TCL Polychlorinated Biphenyls	TAL Total Metals (incl. Mercury)	TAL Dissolved Metals (incl. Mercury)	Total Cyanide	Dissolved Cyanide	Total Hexavalent Chromium	Dissolved Hexavalent Chromium	Per- and Polyfluoroalkyl Substances	1,4-Dioxane	Total Petroleum Hydrocarbons	TO-15 / TO-15 SIM Volatile Organic	Carbon Tetrachloride	MS	MSD	DUP
<u> </u>	SSV-101	12/4/2024	09:00	SOIL VAPOR	SSV	8"		10 TICs	TICs				-								Compounds X			 	
1	IA-101	12/4/2024	09:00	INDOOR AIR	IA	-															X			 	
	SSV-102	12/4/2024	09:10	SOIL VAPOR	SSV	8"															X				
	IA-102	12/4/2024	09:10	INDOOR AIR	IA	-															Х				
	SSV-103	12/4/2024	09:20	SOIL VAPOR	SSV	8"															Х				
	IA-103	12/4/2024	09:20	INDOOR AIR	IA	-															Х				
	CS-104	12/4/2024	10:05	INDOOR AIR	CS	2															Х			<u> </u>	
	IA-104	12/4/2024	10:05	INDOOR AIR	IA	-															X			<u> </u>	
L2471075	CS-105 IA-105	12/4/2024 12/4/2024	10:15 10:15	INDOOR AIR INDOOR AIR	CS IA	-															X			 	
	SV-101	12/4/2024	11:20	SOIL VAPOR	SV	5															X			 	
 	SV-101	12/4/2024	11:40	SOIL VAPOR	SV	5															X			 	
l F	SV-103	12/4/2024	11:05	SOIL VAPOR	SV	5															X				
	SV-104	12/4/2024	11:50	SOIL VAPOR	SV	5															Х				
	SV-105	12/4/2024	11:30	SOIL VAPOR	SV	5															Х				
L	SV-106	12/4/2024	10:55	SOIL VAPOR	SV	5															Х			<u> </u>	
	SV-107	12/4/2024	11:10	SOIL VAPOR	SV	5															Х			 '	
	OA-101	12/4/2024	11:55	OUTDOOR AIR	OA	-		,,		.,	.,		.,	.,	.,	.,		.,			Х			<u> </u>	
-	MW-104 ROUND 1	12/12/2024	12:10	WATER	W	20	1	X	X X	Х	X	X	X	Х	Х	Х	Х	X	X					 	i
L2473175	MW-102 ROUND 1 EQUIPMENT BLANK	12/12/2024 12/12/2024	14:11 13:45	WATER WATER	W	20	1	Χ	Х		X	Х	Х					X	Х					 	
	TRIP BLANK	12/12/2024	-	WATER	W	-		Х										^						 	
	MW-106 ROUND 1	12/13/2024	08:25	WATER	W	20		X	Х		Х	Х	Х					Х	Х				Χ	Х	Х
	MW-103 ROUND 1	12/13/2024	10:40	WATER	W	20		X	X		X	X	X					X	X						
	MW-107 ROUND 1	12/13/2024	12:15	WATER	W	20		X	X		X	X	X					X	Х					 	
L2473569	MW-105 ROUND 1	12/13/2024	13:08	WATER	W	20		X	X		X	X	X					X	Х						
	MW-101 ROUND 1	12/13/2024	14:10	WATER	W	14		X	X		X	X	X					X	X						
	TRIP BLANK	12/13/2024	-	WATER	W	-		X	Α		^		Α					~	Λ						
L2502298	SSV-103 RETEST	1/14/2025	12:15	SOIL VAPOR	SSV	8"															Х				
LESGEESG	MW-105 ROUND 2	2/11/2025	12:45	WATER	W	20		Х	Х		Х	Х	Х										Χ	Х	Х
	MW-104 ROUND 2	2/11/2025	14:20	WATER	W	20		X	X		X	X	X												
L2507633	MW-106 ROUND 2	2/11/2025	15:25	WATER	W	20		X	X		X	X	X												
	MW-102 ROUND 2	2/11/2025	16:15	WATER	W	20		X	X		X	X	X											 	
	TRIP BLANK	2/11/2025	-	WATER	W	-		Х																	
	MW-107 ROUND 2	2/12/2025	13:30	WATER	W	20		Х	Х		Х	Х	Х					Х							
	MW-103 ROUND 2	2/12/2025	14:45	WATER	W	20		Х	X X	Х	Х	Х	Х	Х	Х	Х									
L2507955	MW-101 ROUND 2	2/12/2025	16:20	WATER	W	14		Х	Х		Х	Х	Х					Х							
	EQUIPMENT BLANK	2/12/2025	-	WATER	W	-												Х							
	TRIP BLANK	2/12/2025	-	WATER	W	-	İ	Х																	
	PSG-113	2/19/2025	8:20	SOIL VAPOR	SSV	3	İ															Х			
	PSG-114	2/19/2025	8:25	SOIL VAPOR	SSV	3																Х			
	PSG-115	2/19/2025	8:30	SOIL VAPOR	SSV	3																Х			
	PSG-109	2/19/2025	8:33	SOIL VAPOR	SSV	3																Χ			
	PSG-110	2/19/2025	8:36	SOIL VAPOR	SSV	3																Х			1
	PSG-111	2/19/2025	8:40	SOIL VAPOR	SSV	3																Х			
	PSG-112	2/19/2025	8:45	SOIL VAPOR	SSV	3																Χ			
ENV	PSG-106	2/19/2025	8:48	SOIL VAPOR	SSV	3																Χ			
T02529	PSG-107	2/19/2025	8:52	SOIL VAPOR	SSV	3																Х			
	PSG-104	2/19/2025	8:55	SOIL VAPOR	SSV	3																Х			
	PSG-108	2/19/2025	8:58	SOIL VAPOR	SSV	3																Х			
	PSG-105	2/19/2025	9:00	SOIL VAPOR	SSV	3																Х			I
	PSG-101	2/19/2025	9:03	SOIL VAPOR	SSV	3																Х			I
	PSG-102	2/19/2025	9:05	SOIL VAPOR	SSV	3																Х			I
	PSG-103	2/19/2025	9:08	SOIL VAPOR	SSV	3																Х			I
	TRIP BLANK	2/19/2025	-	SOIL VAPOR	SSV	3	İ															Х			

. .

- Pace Analytical performed the analysis for all lab reports with the exception of ENV T02529 which was performed by Amplified Geochemical Imaging, LLC (AGI).
- Sample type is surface soil (SS), soil boring (SB), sub-slab vapor (SSV), indoor air (IA), crawl space air (CS), soil vapor (SV), or water (W).
- TCL = Target Compound List
- TICs = Tentatively Identified Compounds
- TAL = Target Analyte List
- SIM = Select Ion Monitoring
- MS = Matrix Spike
- MSD = Matrix Spike Duplicate
- DUP = Field Duplicate

Table 2 Remedial Investigation Report Surface Soil Data Summary

LOCATION				SS-101	SS-1	01	SS-10	02	SS-10	2	SS-1	03	SS-10	03	SS-104		SS-104	SS-	-105	SS-10	05	SS-10	6	SS-106	DUP-01	(SS-104)
SAMPLING DATE				12/2/2024	12/2/2	2024	11/22/2	2024	11/22/2	024	11/22/	2024	11/22/2	2024	11/22/2024	1	1/22/2024	12/2	/2024	12/2/2	2024	12/2/20)24	12/2/2024	11/22	2/2024
LAB SAMPLE ID				L2470407-05	L24704	07-06	L246924	16-01	L246924	6-02	L24692	46-03	L246924	16-04	L2469246-0	5 Li	2469246-06	L2470	407-01	L247040	07-02	L247040	7-03	L2470407-04	L2469	9246-07
SAMPLE TYPE				SOIL	SOI		SOI		SOIL		SOI		SOII		SOIL		SOIL	SC		SOI		SOIL		SOIL		OIL
SAMPLE DEPTH (in.)			_	0-2	6-1	2	0-2	!	6-12		0-2	2	6-12	2	0-2		6-12	0)-2	6-12	2	0-2		6-12	6-	-12
Analyte	Unrestricted Use SCO	Commercial Use SCO	Protection of Groundwater	Results Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results Q	ial Res	ults Qua	Results	Qual	Results	Qual	Results	Qual	Results Qu	al Results	G Qual
Volatile Organics by EPA 5035																										
1,1,1-Trichloroethane	0.68	500	0.68	0.00065 U	0.00061	U	0.00087	U	0.00071	U	0.001	U	0.0008	U	0.00077	J 0.00		0.00089	U	0.00072	U	0.001	U	0.00085 L		
1,1,2,2-Tetrachloroethane				0.00065 U	0.00061	U	0.00087	U	0.00071	U	0.001	U	0.0008	U	0.00077	0.00		0.00089	U	0.00072	U	0.001	U	0.00085 L		
1,1,2-Trichloroethane	0.27	240	0.27	0.0013 U	0.0012	U	0.0017	U	0.0014	U	0.0021	U	0.0016	U	0.0015 U		015 U	0.0018	U	0.0014	U	0.002	U	0.0017 L		U
1,1-Dichloroethane 1,1-Dichloroethene	0.27	240 500	0.27 0.33	0.0013 U 0.0013 U	0.0012 0.0012	U	0.0017 0.0017	U	0.0014 0.0014	U	0.0021 0.0021	U	0.0016 0.0016	U	0.0015 U		015 U 015 U	0.0018	U	0.0014 0.0014	U	0.002 0.002	U	0.0017 U		U
1,2,4-Trichlorobenzene	0.55	300	0.55	0.0013 U	0.0012	II	0.0017	U	0.0014	U	0.0021	U	0.0016	U	0.0013		031 U	0.0016	U	0.0014	U	0.002	U	0.0017 C		U
1,2,4-Trimethylbenzene	3.6	190	3.6	0.0026 U	0.0024	U	0.0035	U	0.0028	U	0.0042	U	0.0032	U	0.0031		031 R	0.0036	U	0.0029	U	0.004	U	0.0034 L		R
1,2-Dibromo-3-chloropropane	3.0	.50	5.0	0.0039 U	0.0036	Ü	0.0052	Ü	0.0043	U	0.0062	Ü	0.0048	U	0.0046		046 U	0.0054	Ü	0.0043	Ü	0.006	Ü	0.0051 L		U
1,2-Dibromoethane				0.0013 U	0.0012	U	0.0017	U	0.0014	U	0.0021	U	0.0016	U	0.0015 U		015 U	0.0018	U	0.0014	U	0.002	U	0.0017 L		U
1,2-Dichlorobenzene	1.1	500	1.1	0.0026 U	0.0024	U	0.0035	U	0.0028	U	0.0042	U	0.0032	U	0.0031	J 0.0	031 U	0.0036	U	0.0029	U	0.004	U	0.0034 L	0.0021	U
1,2-Dichloroethane	0.02	30	0.02	0.0013 U	0.0012	U	0.0017	U	0.0014	U	0.0021	U	0.0016	U	0.0015 U	J 0.0	015 U	0.0018	U	0.0014	U	0.002	U	0.0017 L	0.0011	U
1,2-Dichloropropane				0.0013 U	0.0012	U	0.0017	U	0.0014	U	0.0021	U	0.0016	U	0.0015 I		015 U	0.0018	U	0.0014	U	0.002	U	0.0017 L		U
1,3,5-Trimethylbenzene	8.4	190	8.4	0.0026 U	0.0024	U	0.0035	U	0.0028	U	0.0042	U	0.0032	U	0.0031		031 R	0.0036	U	0.0029	U	0.004	U	0.0034 L		R
1,3-Dichlorobenzene	2.4	280	2.4	0.0026 U	0.0024	U	0.0035	U	0.0028	U	0.0042	U	0.0032	U	0.0031		031 U	0.0036	U	0.0029	U	0.004	U	0.0034 L		U
1,4-Dichlorobenzene	1.8	130	1.8	0.0026 U	0.0024	U	0.0035	U	0.0028	U	0.0042	U	0.0032	U	0.0031		031 U	0.0036	U	0.0029	U	0.004	U	0.0034 L		U
2-Butanone	0.12	500	0.12	0.013 U 0.013 U	0.012	U	0.017 0.017	U	0.014 0.014	U	0.021 0.021	U	0.016 0.016	U	0.015 U)15 U	0.018	U	0.014 0.014	U	0.02	U	0.017 U		U
2-Hexanone 4-Methyl-2-pentanone	1		+	0.013 U	0.012	U	0.017	U	0.014	U	0.021	U	0.016	U	0.015 U)15 U	0.018	U	0.014	U	0.02	U	0.017 U		U
Acetone	0.05	500	0.05	0.013 U	0.012	0	0.017	U	0.014	U	0.021	U	0.016	U	1.9		04	0.016	i i	0.014	U	0.02	U	0.017 C		U
Benzene	0.06	44	0.06	0.00065 U	0.00061	U	0.00087	U	0.00071	U	0.001	U	0.0008	U	0.00077	0.00		0.00089	U	0.00072	U	0.001	Ü	0.00085 L		
Bromodichloromethane				0.00065 U	0.00061	U	0.00087	U	0.00071	U	0.001	U	0.0008	Ū	0.00077		0077 U	0.00089	_	0.00072	U	0.001	U	0.00085 L		
Bromoform				0.0052 U	0.0048	U	0.007	U	0.0057	U	0.0083	U	0.0064	U	0.0061 U	J 0.0	062 U	0.0072	U	0.0057	U	0.008	U	0.0068 L	0.0043	U
Bromomethane				0.0026 U	0.0024	U	0.0035	U	0.0028	U	0.0042	U	0.0032	U	0.0031 I	J 0.0	031 U	0.0036	U	0.0029	U	0.004	U	0.0034 L	0.0021	U
Carbon disulfide				0.013 U	0.012	U	0.017	U	0.014	U	0.021	U	0.016	U	0.015 I	J 0.0)15 U	0.018	U	0.014	U	0.02	U	0.017 L	0.011	U
Carbon tetrachloride	0.76	22	0.76	0.0013 U	0.0012	U	0.0017	U	0.0014	U	0.0021	U	0.0016	U	0.0015 U		015 U	0.0018	U	0.0014	U	0.002	U	0.0017 L		U
Chlorobenzene	1.1	500	1.1	0.00065 U	0.00061	U	0.00087	U	0.00071	U	0.001	U	0.0008	U	0.00077		0077 U	0.00089	U	0.00072	U	0.001	U	0.00085 L		
Chloroethane	0.27	250	0.27	0.0026 U	0.0024	U	0.0035	U	0.0028	U	0.0042	U	0.0032	U	0.0031			0.0036	U	0.0029	U	0.004	U	0.0034 L		U
Chloroform	0.37	350	0.37	0.0019 U	0.0018	U	0.0026	U	0.0021	U	0.0031	U	0.0024	U	0.0023	0.0		0.0027	U	0.0021	U	0.003	U	0.0026 L		U
Chloromethane cis-1,2-Dichloroethene	0.25	500	0.25	0.0052 U 0.0013 U	0.0048 0.0012	U	0.007 0.0017	U	0.0057 0.0014	U	0.0083 0.0021	U	0.0064 0.0016	U	0.0061 U		062 U 015 U	0.0072	U	0.0057 0.0014	U	0.008	U	0.0068 U		U
cis-1,3-Dichloropropene	0.23	300	0.23	0.00065 U	0.00012	U	0.00017	U	0.0014	U	0.0021	U	0.0010	U	0.0013		013 U	0.00089		0.00072	U	0.002	U	0.00017 C		
Cyclohexane				0.013 U	0.012	U	0.017	U	0.014	U	0.021	U	0.016	U	0.015)15 R	0.018	Ü	0.014	Ü	0.02	Ü	0.017 L		R
Dibromochloromethane				0.0013 U	0.0012	U	0.0017	U	0.0014	U	0.0021	U	0.0016	U	0.0015 U		015 U	0.0018	U	0.0014	U	0.002	U	0.0017 L		U
Dichlorodifluoromethane				0.013 U	0.012	U	0.017	U	0.014	U	0.021	U	0.016	U	0.015 I	J 0.0)15 U	0.018	U	0.014	U	0.02	U	0.017 L	0.011	U
Ethylbenzene	1	390	1	0.0013 U	0.0012	U	0.0017	U	0.0014	U	0.0021	U	0.0016	U	0.0015 U	J 0.0	015 R	0.0018	U	0.0014	U	0.002	U	0.0017 L	0.0011	R
Freon-113				0.0052 U	0.0048	U	0.007	U	0.0057	U	0.0083	U	0.0064	U	0.0061 I	J 0.0		0.0072	U	0.0057	U	0.008	U	0.0068 L		U
Isopropylbenzene				0.0013 U	0.0012	U	0.0017	U	0.0014	U	0.0021	U	0.0016	U	0.0015		015 R	0.0018	U	0.0014	U	0.002	U	0.0017 L		R
Methyl Acetate				0.0052 U	0.0048	U	0.007	U	0.0057	U	0.0083	U	0.0064	U	0.0061		062 U	0.0072	U	0.0057	U	0.008	U	0.0068 L		
Methyl cyclohexane Methyl tort butyl other	0.93	500	0.93	0.0052 U 0.0026 U	0.0048 0.0024	U	0.007 0.0035	U	0.0057 0.0028	U	0.0083 0.0042	U	0.0064 0.0032	U	0.0061 U		062 R 031 U	0.0072		0.0057 0.0029	U	0.008	U	0.0068 U		
Methyl tert butyl ether Methylene chloride	0.93	500	0.93	0.0026 U	0.0024	11	0.0035	U []	0.0028	U II	0.0042	U	0.0032	U	0.0031		031 U	0.0036	II	0.0029	U	0.004	U	0.0034 C		_
n-Butylbenzene	12	500	12	0.0063 U	0.0001	U	0.0087	IJ	0.0071	U	0.0021	U	0.008	U	0.0077		017 U	0.0089	II	0.0072	U	0.002	U	0.0083 C		U
n-Propylbenzene	3.9	500	3.9	0.0013 U	0.0012	U	0.0017	U	0.0014	U	0.0021	U	0.0016	U	0.0015		015 U	0.0018	U	0.0014	U	0.002	U	0.0017 L		U
Naphthalene	12	500	12	0.0052 U	0.0048	U	0.007	U	0.0057	U	0.0083	U	0.0064	U	0.0061		062 R	0.0023	j	0.0057	U	0.008	U	0.0068 L		
o-Xylene	0.26	500	1.6	0.0013 U	0.0012	U	0.0017	U	0.0014	U	0.0021	U	0.0016	U	0.0015 U		015 R	0.0018		0.0014	U	0.002	U	0.0017 L		_
p-lsopropyltoluene				0.0013 U	0.0012	U	0.0023		0.0014	U	0.0021	U	0.0016	U	0.0015 I	J 0.0	015 U	0.0018	U	0.0014	U	0.002	U	0.0017 L	0.0011	U
p/m-Xylene	0.26	500	1.6	0.0026 U	0.0024	U	0.0035		0.0028	U	0.0042	U	0.0032	U	0.0031		031 R	0.0036	_	0.0029	U	0.004	U	0.0034 L		
sec-Butylbenzene	11	500	11	0.0013 U	0.0012	U	0.0017	U	0.0014	U	0.0021	U	0.0016	U	0.0015		015 R	0.0018	U	0.0014	U	0.002	U	0.0017 L		
Styrene	F 0	500		0.0013 U	0.0012	U	0.0017	U	0.0014	U	0.0021	U	0.0016	U	0.0015		015 U	0.0018		0.0014	U	0.002	U	0.0017 L		
tert-Butylbenzene	5.9	500	5.9	0.0026 U	0.0024	U	0.0035	U	0.0028	U	0.0042	U	0.0032	U	0.0031		031 U	0.0036		0.0029	U	0.004	U	0.0034 L		
Tetrachloroethene	1.3 0.7	150 500	1.3 0.7	0.00065 U 0.0013 U	0.00061 0.0012	U	0.00087 0.0017	U	0.00071 0.0014	U	0.001 0.0021	U	0.0008 0.0016	U	0.00077 U		0077 U 015 R	0.00089		0.00072 0.0014	U	0.001	U	0.00085 U		
Toluene trans-1,2-Dichloroethene	0.7	500	0.7	0.0013 U 0.0019 U	0.0012	U	0.0017	U	0.0014	U	0.0021	U	0.0016	U	0.0014 0.0023 U		015 R 023 U	0.0018		0.0014	U	0.002	U	0.0017 U		
trans-1,3-Dichloropenee	0.19	300	0.19	0.0019 U	0.0018	11	0.0026	U	0.0021	U	0.0031	U	0.0024	U	0.0023 U		015 U	0.0027		0.0021	U	0.003	U	0.0026 C		_
Trichloroethene	0.47	200	0.47	0.00065 U	0.00012	U	0.00017	U	0.00071	U	0.0021	U	0.0018	U	0.0013		013 U	0.00089		0.0014	U	0.002	U	0.00017 C		_
Trichlorofluoromethane	0.77		J.77	0.0052 U	0.00001	Ü	0.0007	U	0.0057	U	0.0083	U	0.0064	U	0.0061		062 U	0.00003		0.0057	U	0.008	Ü	0.0068 L		
Vinyl chloride	0.02	13	0.02	0.0032 U	0.0012	U	0.0017	U	0.0014	U	0.0021	U	0.0016	U	0.0015		015 U	0.0018		0.0014	U	0.002	U	0.0017 L		
Total TIC Compounds				0.0146 J	0.0143		1.19	J	0.0011	U	0.112	J	0	U	0 1		0 U	0		0.00298	J	0	U	0 L		U
· · · · · · · · · · · · · · · · · · ·	•										•					-		•							•	

LOCATION SAMPLING DATE				SS-101 12/2/202	24	SS-10 12/2/2	024	SS-10 11/22/2	024	SS-10 11/22/2	2024	SS-103 11/22/20)24	SS-10 11/22/2	024	SS-1 11/22/	2024	SS-104 11/22/20	024	SS-10 12/2/2	2024	SS-1 12/2/2	2024	SS-1 12/2/2	2024	SS-100 12/2/20)24	DUP-01 (SS 11/22/20	024
LAB SAMPLE ID				L2470407		L247040		L246924		L246924		L2469246	5-03	L246924		L246924		L2469246		L247040		L24704		L247040		L2470407		L2469246	
SAMPLE TYPE				SOIL 0-2		SOII 6-12		SOIL 0-2		SOIL 6-12		SOIL 0-2		SOIL 6-12		SOI 0-2		SOIL 6-12		SOI 0-2		SO 6-1		SOI 0-2		SOIL		SOIL 6-12	
SAMPLE DEPTH (in.)	Hanastri et a d	Cammanaial	Ducto etion of	0-2		0-12	2	0-2		0-12	2	0-2	-	0-12		0-2		0-12		0-2		0-1	2	0-2	<u> </u>	6-12		0-12	
Analyte	Unrestricted Use SCO	Commercial Use SCO	Protection of Groundwater	Results	Qual F	Results	Qual	Results	Qual	Results	Qual	Results	Qual R	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual
Volatile Organics by EPA 5035 High	USE SCO	USE 3CO	Groundwater			<u> </u>	<u> </u>												l l				l l			<u> </u>	<u> </u>		
1,1,1-Trichloroethane	0.68	500	0.68	-	-	-	-	-	-	-	-	-	-	-	-	0.028	U	-	-	-	-		- 1	-	- 1	-	-	0.022	U
1,1,2,2-Tetrachloroethane				-	-	-	-	-	-	-	-	-	-	-	-	0.028	U	-	-	-	-	-	-	-	-	-	-	0.022	U
1,1,2-Trichloroethane				-	-	-	-	-	-	-	-	-	-	-	-	0.056	U	-	-	-	-	-	-	-	-	-	-	0.045	U
1,1-Dichloroethane	0.27	240	0.27	-	-	-	-	-	-	-	-	-	-	-	-	0.056	U	-	-	-	-	-	-	-	-	-	-	0.045	U
1,1-Dichloroethene	0.33	500	0.33	-			-	-	-	-	-	-	-	-	-	0.056	U	-	-	-	-	-	-	-	-	-	-	0.045	U
1,2,4-Trichlorobenzene				-		-		-	-	-	-	-	-	-	-	0.11	U	-	-	-	-	-	-	-	-	-	-	0.089	U
1,2,4-Trimethylbenzene	3.6	190	3.6	-	-	-	-	-	-	-	-	-	-	-	-	0.11	U	-	-	-	-	-	-	-	-	-	-	0.067	R
1,2-Dibromo-3-chloropropane				-			-	-	-	-	-	-	-	-	-	0.17	U	-	-	-	-	-	-	-	-	-	-	0.13	U
1,2-Dibromoethane		500		-	-	-	-	-	-	-	-	-	-	-	-	0.056	U	-	-	-	-	-	-	-	-	-	-	0.045	U
1,2-Dichlorobenzene	1.1	500	1.1	-	-	-	-	-	-	-	-	-	-	-	-	0.11	U	-	-	-	-	-	-	-	-	-	-	0.089	U
1,2-Dichloroethane 1,2-Dichloropropane	0.02	30	0.02	-	-	-	-	-	-	-	-	-	-	-	-	0.056 0.056	U	-	-	-	-	-	-	-	-	-	-	0.045 0.045	U
1,3,5-Trimethylbenzene	8.4	190	8.4	-	-	-	-	-	_	-	-	-	-	-	-	0.056	U	-	-	-	-		 	-	-	-	-	0.045	R
1,3-Dichlorobenzene	2.4	280	2.4	-	-	-	_	-	_	-	-	-	_	-	-	0.11	U	-	-	-	-			-	-	_	_	0.024	U
1,4-Dichlorobenzene	1.8	130	1.8	-	-	-	-	-	-	-	-	-	-	-	-	0.11	U	-	-	-	-	-	_	-	-	-	-	0.089	U
2-Butanone	0.12	500	0.12	-	-	-	-	-	-	-	-	-	-	-	-	0.56	U	-	-	-	-	-	- 1	-	-	-	-	0.45	U
2-Hexanone			32	-	-	-	-	-	-	-	-	-	-	-	- 1	0.56	U	-	-	-	-	-	-	-	-	-	-	0.45	U
4-Methyl-2-pentanone				-	-	-	-	-	-	-	-	-	-	-	-	0.56	U	-	-	-	-	-	-	-	-	-	-	0.45	U
Acetone	0.05	500	0.05	-	-	-	-	-	-	-	-	-	-	-	-	4.1		-	-	-	-	-	-	-	-	-	-	0.45	U
Benzene	0.06	44	0.06	-	-	-	-	-	-	-	-	-	-	-	-	0.028	U	-	-	-	-	-	-	-	-	-	-	0.017	R
Bromodichloromethane				-	-	-	-	-	-	-	-	-	-	-	-	0.028	U	-	-	-	-	-	-	-	-	-	-	0.022	U
Bromoform				-		-	-	-	-	-	-	-	-	-	-	0.22	U	-	-	-	-	-	-	-	-	-	-	0.18	UJ
Bromomethane				-	-	-	-	-	-	-	-	-	-	-	-	0.11	U	-	-	-	-	-	-	-	-	-	-	0.089	U
Carbon disulfide	0.76		0.75	-	-		-	-	-	-	-	-	-	-	-	0.56	U	-	-	-	-	-	-	-	-	-	-	0.45	U
Carbon tetrachloride	0.76	22	0.76	-	-	-	-	-	-	-	-	-	-	-	-	0.056	U	-	-	-	-	-	-	-	-	-	-	0.045	U
Chlorosthana	1.1	500	1.1	-	-	-	-	-	-	-	-	-	-	-	-	0.028 0.11	U	-	-	-	-	-	-	-	-	-	-	0.022	U
Chloroform	0.37	350	0.37	-	-	-	-	-	-	-	-	-	-	-	-	0.083	U	-	-	-	-	-	-	-	-	-	-	0.069	U
Chloromethane	0.57	330	0.51	_	-	_	-	_	-	_	_	-	-	-	-	0.003	U	-	-	_	-	-	-		-	-	-	0.007	U
cis-1,2-Dichloroethene	0.25	500	0.25	_	-	-	-	-	-	-	-	-	-	-	-	0.056	Ü	-	-	-	-	-	-	-	-	-	-	0.045	U
cis-1,3-Dichloropropene				-	-	-	-	-	-	-	-	-	-	-	-	0.028	U	-	-	-	-	-	-	-	-	-	-	0.022	U
Cyclohexane				-	-	-	-	-	-	-	-	-	-	-	-	0.56	U	-	-	-	-	-	-	-	-	-	-	0.075	R
Dibromochloromethane				-	-	-	-	-	-	-	-	-	-	-	-	0.056	U	-	-	-	-	-	-	-	-	-	-	0.045	U
Dichlorodifluoromethane				-	-	-	-	-	-	-	-	-	-	-	-	0.56	U	-	-	-	-	-	-	-	-	-	-	0.45	U
Ethylbenzene	1	390	1	-	-	-	-	-	-	-	-	-	-	-	-	0.056	U	-	-	-	-	-	-	-	-	-	-	0.022	R
Freon-113				-	-	-	-	-	-	-	-	-	-	-	-	0.22	U	-	-	-	-	-	-	-	-	-	-	0.18	U
Isopropylbenzene				-	-	-	-	-	-	-	-	-	-	-	-	0.056	U	-	-	-	-	-	-	-	-	-	-	0.0087	R
Methyl Acetate				-	-	-	-	-	-	-	-	-	-	-	-	0.54		-	-	-	-	-	-	-	-	-	-	0.18	U
Methyl cyclohexane	0.02	F00	0.02	-	-	-	-	-	-	-	-	-	-	-	-	0.091	J	-	-	-	-	-	-	-	-	-	-	0.21 0.089	R U
Methyl tert butyl ether Methylene chloride	0.93 0.05	500 500	0.93 0.05	-	-	-	-	-	-	-	-		-	-		0.11	U	-	-	-	-	-	-	-	 +	-	-	0.089	U
n-Butylbenzene	12	500	12	-	-	-	-	-	-	-		-	-	-		0.26	U	-	-	_	-			_	- +	-	-	0.22	U
n-Propylbenzene	3.9	500	3.9	-	-	-	-	-	-	-	-	-	-	-	-	0.056	U	-	-	-	-	-	_	-	-	-	-	0.045	U
Naphthalene	12	500	12	-	-	-	-	-	-	-	-	-	-	-	-	0.14	J	-	-	-	-	-	-	-	-	-	-	0.75	R
o-Xylene	0.26	500	1.6	-	-	-	-	-	-	-	-	-	-	-	-	0.016	J	-	-	-	-	-	-	-	-	-	-	0.068	R
p-Isopropyltoluene				-	-	-	-	-	-	-	-	-	-	-	-	0.056	U	-	-	-	-	-	-	-	-	-	-	0.045	U
p/m-Xylene	0.26	500	1.6	-		-	-	-	-	-		-	-	-	-	0.11	U	-	-	-	-	-	-	-	-	-	-	0.12	R
sec-Butylbenzene	11	500	11	-	-	-	-	-	-	-	-	-	-	-	-	0.056	U	-	-	-	-	-	-	-	-	-	-	0.0072	R
Styrene				-	-	-	-	-	-	-	-	-	-	-	-	0.056	U	-	-	-	-	-	- 1	-	-	-	-	0.045	U
tert-Butylbenzene	5.9	500	5.9	-	-	-	-	-	-	-	-	-	-	-	-	0.11	U	-	-	-	-	-	-	-	-	-	-	0.089	U
Tetrachloroethene	1.3	150	1.3	-	-	-	-	-	-	-	-	-	-	-	-	0.028	U	-	-	-	-	-	-	-	-	-	-	0.022	U
Toluene	0.7	500	0.7	-		-	-	-	-	-		-	-	-		0.082		-	-	-	-	-	-	-	-	-	-	0.12	R
trans-1,2-Dichloroethene	0.19	500	0.19	-	-	-	-	-	-	-	-	-	-	-	-	0.083	U	-	-	-	-	-	-	-	-	-	-	0.067	U
trans-1,3-Dichloropropene	0.47	200	0.47	-	-	-	-	-	-	-	-	-	-	-	-	0.056	U	-	-	-	-	-	-	-	-	-	-	0.045	U
Trichloroethene Trichlorofluoromethana	0.47	200	0.47	-	-	-	-	-	-	-	-	-	-	-	-	0.028	U	-	-	-	-		-	-	-		-	0.022	U
Trichlorofluoromethane Vinyl chloride	0.02	13	0.02	-	-	-	-	-	-	-	-	-	-	-	-	0.22	U	-	-	-	-	-	-	-	-	-	-	0.18 0.045	
Total TIC Compounds	0.02	15	0.02	-	-	-	-	-	-	-	-	-	-	-	-:-	0.056	U	-	-	-	-	-	-	-	-	-	-	0.045	J
Total Tie Compounds		I	1	-	-	-	-	-	-	-	-	-	-	-	-	U	J	-	-	-	-			-		-	-	U. 17	,

LOCATION SAMPLING DATE LAB SAMPLE ID				SS-1 12/2/2 L24704	2024	SS-10 12/2/2 L247040	024	SS-10 11/22/2	2024	SS-10 11/22/2	2024	SS-10 11/22/2 L246924	2024	SS-10 11/22/2	2024	SS-1 11/22/ L24692	2024	SS-10 11/22/2 L246924	2024	SS-10 12/2/2 L247040	024	SS-1 12/2/2 L24704	2024	SS-1 12/2/2 L24704	2024	SS-10 12/2/20 L2470407)24	DUP-01 (SS 11/22/20 L2469240	024
SAMPLE TYPE				SOI		SOI		L246924 SOI		L246924 SOIL		L246924 SOI		L246924 SOI		L24692 SO		SOII		SOI		SOI		L24704 SOI		SOIL		SOIL	
SAMPLE DEPTH (in.)				0-2		6-1		0-2		6-12		0-2		6-12		0-2		6-12		0-2		6-1		0-2		6-12		6-12	
	Unrestricted	Commercia	Protection of	Results	Qual	Results		Results	Oual	Results		Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Oual	Results	Qual	Results	Qual	Results	Qual		Qual
Analyte	Use SCO	Use SCO	Groundwater	Results	Quai	Results	Qual	Results	Qual	Results	Qual	Results	Quai	Results	Quai	Results	Quai	Results	Quai	Results	Qual	Results	Quai	Results	Quai	Results	Quai	Results	Quai
Semivolatile Organics by GC/MS 1,2,4,5-Tetrachlorobenzene	1 1			0.18	U	0.18	U	2.2	U	2	U	0.22	U	0.21	U	2	U	0.21	U	1.9	U	1.9	U	1	U	1.9	U	0.19	U
1,4-Dioxane	0.1	130	0.1	0.028	U	0.028	U	0.33	U	0.3	U	0.033	U	0.032	U	0.3	U	0.031	U	0.29	U	0.29	U	0.15	U	0.28	U	0.029	U
2,3,4,6-Tetrachlorophenol				0.18	U	0.18	U	2.2	U	2	U	0.22	U	0.21	U	2	U	0.21	U	1.9	U	1.9	U	1	U	1.9	U	0.19	U
2,4,5-Trichlorophenol				0.18	U	0.18	U	2.2	U	2	U	0.22	U	0.21	U	2	U	0.21	U	1.9	U	1.9	U	1	U	1.9	U	0.19	U
2,4,6-Trichlorophenol				0.11	U	0.11	U	1.3	U	1.2	U	0.13	U	0.13	U	1.2	U	0.12	U	1.2	U	1.2	U	0.61	U	1.1	U	0.12	U
2,4-Dichlorophenol				0.16 0.18	U	0.16 0.18	U	2	U	1.8	U	0.2	U	0.19 0.21	U	1.8	U	0.18 0.12	J	1.7	U	1.7	U	0.91	U	1.7	U	0.17 0.13	J
2,4-Dimethylphenol 2,4-Dinitrophenol	+			0.18	U	0.18	U	2.2 10	U	9.7	U	0.22	U	1	U	9.6	U	0.12	U	1.9 9.3	U	1.9 9.3	U	4.9	U	1.9	U	0.13	U
2,4-Dinitrotoluene				0.18	U	0.18	U	2.2	U	2	U	0.22	U	0.21	U	2	U	0.21	U	1.9	U	1.9	Ü	1	Ü	1.9	U	0.19	U
2,6-Dinitrotoluene				0.18	U	0.18	U	2.2	U	2	U	0.22	U	0.21	U	2	U	0.21	U	1.9	U	1.9	U	1	U	1.9	U	0.19	U
2-Chloronaphthalene				0.18	U	0.18	U	2.2	U	2	U	0.22	U	0.21	U	2	U	0.21	U	1.9	U	1.9	U	1	U	1.9	U	0.19	U
2-Chlorophenol				0.18	U	0.18	U	2.2	U	2	U	0.22	U	0.21	U	2	U	0.21	U	1.9	U	1.9	U	11	U	1.9	U	0.19	U
2-Methylphopol	0.22	F00	0.22	0.048	J	0.022	J	2.6	U	2.4	U	0.22	- 11	0.46	- , -	2.2	J	5.8		2.3 1.9	- 11	1.7	J	4.3	11	3.5	- 11	5.5	_
2-Methylphenol 2-Nitroaniline	0.33	500	0.33	0.18 0.18	U	0.18 0.18	U	2.2	U	2	U	0.22 0.22	U	0.21 0.21	U	2	U	0.11 0.21	J	1.9	U	1.9 1.9	U	1	U	1.9 1.9	U	0.14 0.19	J U
2-Nitrophenol	1		1	0.16	U	0.10	U	4.8	U	4.4	U	0.48	U	0.46	U	4.3	U	0.21	U	4.2	U	4.2	U	2.2	U	4.1	U	0.19	U
3,3'-Dichlorobenzidine				0.18	U	0.18	U	2.2	U	2	U	0.22	U	0.21	R	2	U	0.21	U	1.9	U	1.9	U	1	U	1.9	U	0.19	U
3-Methylphenol/4-Methylphenol	0.33	500	0.33	0.26	U	0.26	U	3.2	U	2.9	U	0.096	J	0.036	J	2.9	U	0.33		2.8	U	0.3	J	0.54	J	1.2	J	0.46	
3-Nitroaniline				0.18	U	0.18	U	2.2	U	2	U	0.22	U	0.21	U	2	U	0.21	U	1.9	U	1.9	U	1	U	1.9	U	0.19	U
4,6-Dinitro-o-cresol			_	0.48 0.18	U	0.48	U	5.7 2.2	U	5.2	U	0.57 0.22	U	0.56 0.21	U	5.2	U	0.54 0.21	U	5 1.9	U	5 1.9	U	2.6	U	4.9 1.9	U	0.5 0.19	U
4-Bromophenyl phenyl ether 4-Chloroaniline	1		1	0.18	U	0.18	U	2.2	U III	2	U	0.22	U	0.21	R	2	UJ	0.21	UJ	1.9	U	1.9	II	1	U	1.9	U	0.19	UJ
4-Chlorophenyl phenyl ether	1			0.18	U	0.18	U	2.2	U	2	U	0.22	U	0.21	U	2	U	0.21	U	1.9	U	1.9	U	1	U	1.9	U	0.19	U
4-Nitroaniline				0.18	U	0.18	U	2.2	U	2	U	0.22	U	0.21	U	2	U	0.21	U	1.9	U	1.9	U	1	U	1.9	U	0.19	U
4-Nitrophenol				0.26	U	0.26	U	3.1	U	2.8	U	0.31	U	0.3	U	2.8	U	0.29	U	2.7	U	2.7	U	1.4	U	2.6	U	0.27	U
Acenaphthene	20	500	98	0.029	J	0.03	J	1.8	U	1.6	U	2.8		0.052	J	7.2		0.63		4		1.1	J	16		9.4		0.6	
Acetaphanana	100	500	107	0.16	U	0.072	J U	1.8 2.2	U	1.6	U	0.58 0.069		0.46 0.1		4.3	- 11	9.4 1.3	J	3.7 0.31		13 0.67		2.6 0.14		4 1.9		16 1.4	J
Acetophenone Anthracene	100	500	1000	0.18 0.16	U	0.18 0.12	U	1.3	U	1.2	U	6	J	0.1	J	21	U	5.9		10	,	5.4	,	22	,	1.9	U	7.4	
Atrazine	100	300	1000	0.15	U	0.15	U	1.8	U	1.6	U	0.18	U	0.17	U	1.6	U	0.16	U	1.5	U	1.5	U	0.81	U	1.5	U	0.15	U
Benzaldehyde				0.24	U	0.24	U	2.9	U	2.7	U	0.29	U	0.28	U	2.6	U	0.27	U	2.6	U	0.65	J	1.3	U	2.5	U	0.25	U
Benzo(a)anthracene	1	5.6	1	0.66		0.5		1.1	J	1.3		14		1.5		52		6		26		9.4		99		41		6.3	
Benzo(a)pyrene	1	1	22	0.79		0.53		1.2	J	1.4	J	12		1.4		50		9.2	E	23		10		75		33		9.6	
Benzo(b)fluoranthene	100	5.6 500	1.7 1000	1.2 0.62		0.7 0.41		1.8 1.1	J	1.8 1.1	J	17 8.6		1.9 0.87	J	65 30		7.4	-	17		9.4		31		22		11	-
Benzo(ghi)perylene Benzo(k)fluoranthene	0.8	56	1.7	0.82		0.41		0.55	J	0.64	<u>,</u>	2.5		0.57		18		1.9	,	17		4.5		38		16		1.6	,
Biphenyl	0.0	30		0.42	U	0.42	U	5	U	4.6	U	0.27	J	0.06	J	0.45	J	0.66		0.42	J	0.26	J	1.2	J	0.9	J	0.64	
Bis(2-chloroethoxy)methane				0.2	U	0.2	U	2.4	U	2.2	U	0.24	U	0.23	U	2.2	U	0.22	U	2.1	U	2.1	U	1.1	U	2	U	0.21	U
Bis(2-chloroethyl)ether				0.16	U	0.16	U	2	U	1.8	U	0.2	U	0.19	U	1.8	U	0.18	U	1.7	U	1.7	U	0.91	U	1.7	U	0.17	U
Bis(2-chloroisopropyl)ether				0.22	U	0.22	U	2.6	U	2.4	U	0.26	U	0.26	U	2.4	U	0.25	U	2.3	U	2.3	U	1.2	U	2.2	U	0.23	U
Bis(2-ethylhexyl)phthalate Butyl benzyl phthalate				0.18 0.18	U	0.18 0.18	U	2.2	U	11	U	0.22 0.22	U	0.21 0.21	U	2	U	0.21 0.21	U	1.9 1.9	U	1.9 1.9	U	1	U	1.9 1.9	U	0.19	U
Caprolactam				0.18	U	0.18	U	2.2	U	2	U	0.22	U	0.21	U	2	U	0.21	U	1.9	U	1.9	U	1	U	1.9	U	0.19	U
Carbazole				0.076	J	0.06	J	2.2	U	2	Ü	3.2	Ū	0.085	J	8.5		0.78	Ū	5.8	Ū	1.3	J	15		11		0.82	
Chrysene	1	56	1	0.75		0.53		1.3		1.4		13		1.4		52		6.4		27		9.5		100		41		6	
Di-n-butylphthalate				0.18	U	0.18	U	2.2	U	2	U	0.22	U	0.21	U	2	U	0.21	U	1.9	U	1.9	U	1	U	1.9	U	0.19	U
Di-n-octylphthalate	0.33	0.50	1000	0.18	U	0.18	U	2.2	U	2	U	0.22	U	0.21	U	2	U	0.21	U	1.9	U	1.9	U	1	U	1.9	U	0.19	U
Dibenzo(a,h)anthracene Dibenzofuran	0.33	0.56 350	1000 210	0.13 0.029	J	0.092 0.021	J	1.3 2.2	U	0.3	J U	1.4 1.9		0.23 0.15	J	6.9 3.8		1.9 1.2		2.6		2.3 0.79		7.6 8.9		5.6 5.9		0.96	
Diethyl phthalate	,	330	210	0.029	U	0.021	U	2.2	U	2	U	0.22	U	0.13	U	2	U	0.21	U	1.9	U	1.9	U	1	U	1.9	U	0.19	U
Dimethyl phthalate	1			0.18	U	0.18	Ü	2.2	U	2	U	0.22	U	0.21	U	2	U	0.21	U	1.9	U	1.9	U	1	U	1.9	U	0.19	U
Fluoranthene	100	500	1000	1.1		0.9		1.9		2.2		32		2		140		7.7		43		13		190		65		6.3	
Fluorene	30	500	386	0.037	J	0.032	J	2.2	U	2	U	2.9		0.087	J	7.2		1.3		3.7		1.8	J	13		8.5		1.6	
Hexachlorobenzene	0.33	6	3.2	0.11	U	0.11	U	1.3	U	1.2	U	0.13	U	0.13	U	1.2	U	0.12	U	1.2	U	1.2	U	0.61	U	1.1	U	0.12	U
Hexachlorobutadiene Hexachlorocyclopentadiene	1		+	0.18 0.53	U	0.18 0.52	U	2.2 6.3	U	2 5.8	U	0.22 0.63	U	0.21 0.61	U	5.7	U	0.21 0.59	U	1.9 5.5	U	1.9 5.5	U	2.9	U	1.9 5.4	U	0.19 0.55	U
Hexachloroethane	+		+	0.55	U	0.52	U	1.8	U	1.6	U	0.63	U	0.61	U	1.6	U	0.59	U	1.5	U	1.5	U	0.81	U	1.5	U	0.55	U
Indeno(1,2,3-cd)pyrene	0.5	5.6	8.2	0.56	-	0.38	-	0.85	J	0.96		8.2	-	0.92	-	29		7.6	-	16		7.9	_	30		22		8.7	_
Isophorone				0.16	U	0.16	U	2	U	1.8	U	0.2	U	0.19	U	1.8	U	0.18	U	1.7	U	1.7	U	0.91	U	1.7	U	0.17	U
n-Nitrosodi-n-propylamine				0.18	U	0.18	U	2.2	U	2	U	0.22	U	0.21	U	2	U	0.21	U	1.9	U	1.9	U	1	U	1.9	U	0.19	U
Naphthalene	12	500	12	0.064	J	0.04	J	2.2	U	2	U	1.9		0.45	- ,	2.7		9	- 11	3.2	- 11	2.5		7.6		5.4		0.15	11
NDPA/DPA Nitrobenzene				0.15 0.16	U	0.15 0.16	U	1.8	U	1.6 1.8	U	0.18 0.2	U	0.17 0.19	U	1.6	U	0.16 0.18	U	1.5 1.7	U	1.5 1.7	U	0.81	U	1.5 1.7	U	0.15 0.17	U
p-Chloro-m-cresol	+		+	0.18	U	0.18	U	2.2	U	2	U	0.22	U	0.19	U	2	U	0.16	U	1.7	U	1.7	U	1	U	1.7	U	0.17	U
Pentachlorophenol	0.8	6.7	0.8	0.15	U	0.15	U	1.8	U	1.6	U	0.18	U	0.17	U	1.6	U	0.16	U	1.5	Ü	1.5	U	0.81	U	1.5	U	0.15	U
Phenanthrene	100	500	1000	0.46		0.47		0.75	J	1.1	J	24		1		66		5.9		36		8.5		160		57		4.7	
Phenol	0.33	500	0.33	0.18	U	0.18	U	2.2	U	2	U	0.06	J	0.21	U	2	U	0.25		1.9	U	1.9	U	0.18	J	1.9	U	0.34	
Pyrene Total TIC Compounds	100	500	1000	0.94	 	0.78		1.7	- 11	1.9	- 11	25		1.8		75 10E		8 20 E		36 102		13		150		55 160		7.6	
Total TIC Compounds Polychlorinated Biphenyls by GC	1	<u> </u>	_1	0.902	J	0.563	J	0	U	0	U	48.4	J	6.73	J	185	J	30.5	J	102	J	56.6	J	196	J	168	J	34.9	J
i orychiorinateu pipiienyis by GC				1																									

LOCATION SAMPLING DATE LAB SAMPLE ID				SS-10 12/2/2 L247040	024	SS-10 12/2/20 L247040	024	SS-10 11/22/20 L2469246	024	SS-10 11/22/2 L246924	2024	SS-10 11/22/2 L246924	2024	SS-1 11/22/ L24692	2024	SS-1 11/22/ L24692	/2024	SS-10 11/22/2 L246924	024	SS-10 12/2/2 L247040	024	SS-1 12/2/2 L24704	2024	SS-1 12/2/2 L24704	2024	SS-10 12/2/2 L247040	024	DUP-01 (SS 11/22/20 L2469246	024
SAMPLE TYPE				SOII		SOIL		SOIL		SOI		SOI		SOI		SO		SOII		SOII		SOI		SO		SOII		SOIL	
SAMPLE DEPTH (in.)				0-2	!	6-12	2	0-2		6-12	2	0-2		6-1	2	0-2	2	6-12	2	0-2		6-1	2	0-2	2	6-12	2	6-12	
Analyte	Unrestricted Use SCO	Commercial Use SCO	Protection of Groundwater	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual
Aroclor 1016	0.1	1	3.2	0.0538		0.0523	U	0.0642	U	0.0594	U	0.065	U	0.0647	U	0.0602	U	0.0623	U	0.0585	U	0.0543	U	0.0612	U	0.0554		0.0546	U
Aroclor 1221 Aroclor 1232	0.1 0.1	1 1	3.2 3.2	0.0538 0.0538		0.0523	U	0.0642 0.0642	U	0.0594 0.0594	U	0.065 0.065	U	0.0647 0.0647	U	0.0602 0.0602	U	0.0623 0.0623	U	0.0585 0.0585	U	0.0543	U	0.0612 0.0612	U	0.0554 0.0554	U	0.0546 0.0546	U
Aroclor 1232 Aroclor 1242	0.1	1	3.2	0.0538		0.0523	U	0.0642	U	0.0594	U	0.065	U	0.0647	U	0.0602	U	0.0623	U	0.0585	U	0.0543	U	0.0612	U	0.0554	U	0.0546	U
Aroclor 1248	0.1	1	3.2	0.0538		0.0523	U	0.0642	U	0.0594	Ü	0.065	U	0.0647	Ü	0.0602	Ü	0.0623	U	0.0585	U	0.0543	Ü	0.0612	U	0.0554	Ü	0.0546	U
Aroclor 1254	0.1	1	3.2	0.0538	U	0.0523	U	0.0642	U	0.0594	U	0.065	U	0.0647	U	0.0602	U	0.0623	U	0.0585	U	0.0543	U	0.0612	U	0.0554	U	0.0546	U
Aroclor 1260	0.1	1	3.2	0.027		0.0175	J	0.0586	J	0.0628		0.244		0.198	J	0.241		0.271		0.347		0.0714		0.151		0.133		0.255	
Aroclor 1262	0.1	1	3.2	0.0538		0.0523	U	0.0642	U	0.0594	U	0.065	U	0.0647	U	0.0602	U	0.0623	U	0.0585	U	0.0543	U	0.0612	U	0.0554	U	0.0546	U
Aroclor 1268 PCBs, Total	0.1 0.1	1 1	3.2 3.2	0.0221 0.0491		0.0126 0.0301	J	0.0288 0.0874	J	0.0308 0.0936	J	0.065 0.244	U	0.0647 0.198	U	0.225 0.466		0.0623 0.271	U	0.366 0.713		0.0677 0.139		0.147 0.298		0.126 0.259		0.0546 0.255	U
Chlorinated Herbicides by GC	0.1		3.2	0.0451	•	0.0301		0.0074	,	0.0550		0.244		0.150		0.400		0.271		0.713		0.133		0.230		0.233		0.233	
2,4,5-T				0.187	U	0.184	U	0.218	U	0.201	U	0.225	U	0.214	U	0.203	U	0.206	U	0.192	U	0.192	U	0.207	U	0.187	U	0.188	U
2,4,5-TP (Silvex)	3.8	500	3.8	0.187		0.184	U	0.218	U	0.201	U	0.225	U	0.214	U	0.203	U	0.206	U	0.192	U	0.192	U	0.207	U	0.187	U	0.188	U
2,4-D				0.187	U	0.184	U	0.218	U	0.201	U	0.225	U	0.214	U	0.203	U	0.206	U	0.192	U	0.192	U	0.207	U	0.187	U	0.188	U
Organochlorine Pesticides by GC 4.4'-DDD	0.0033	92	14	0.0018	U	0.00179	11 1	0.00211	U	0.00184	U	0.0021	U	0.00198	U	0.00184	U	0.00196	U	0.00181	U	0.00183	U	0.00193	U	0.00177	U	0.00184	U
4,4'-DDE	0.0033	62	17	0.0018		0.00179	IJ	0.00211	J	0.00184	U	0.0021	U	0.00198	U	0.00184	U	0.00196	U	0.00181		0.00183	U	0.00193	U	0.00177		0.00184	U
4,4'-DDT	0.0033	47	136	0.0018		0.00179	U	0.00102	J	0.00184	U	0.00749	U	0.00150	NJ	0.00184	U	0.00196	U	0.0325	J	0.00795	J	0.00193	U	0.00177		0.00184	U
Aldrin	0.005	0.68	0.19	0.0018		0.00179	U	0.00211	U	0.00184	U	0.0021	U	0.00198	U	0.00184	U	0.00196	U	0.00181	U	0.00183	U	0.00193	U	0.00177		0.00184	U
Alpha-BHC	0.02	3.4	0.02	0.000748		0.000744	U	0.000879	U	0.000765	U	0.000874	U	0.000825	U	0.000767	U	0.000818	U	0.000753		0.000762	U	0.000804	U	0.000739		0.000767	U
Beta-BHC	0.036	3	0.09	0.0018		0.00179	U	0.00211	U	0.00184	U	0.0021	U	0.00198	U	0.00184	U	0.00196	U	0.00181	U	0.00183	U	0.00193	U	0.00177		0.00184	U
Chlordane	0.004	24	2.0	0.015		0.0149	U	0.0176	U	0.0153 0.00229	U	0.0175	U	0.0165	U	0.0153	U	0.0164	U	0.015	U	0.0152	U	0.0161	U	0.0148	U	0.0153	U
cis-Chlordane Delta-BHC	0.094 0.04	500	2.9 0.25	0.00224 0.0018		0.00223 0.00179	U II	0.00264 0.00211	U	0.00229	U	0.00262 0.0021	U	0.00248 0.00198	U	0.0023 0.00184	U	0.00245 0.00196	U	0.00226 0.00181	U	0.00229 0.00183	U	0.00241 0.00193	U	0.00222 0.00177	U	0.0023 0.00184	U
Dieldrin	0.005	1.4	0.1	0.0010		0.00173	U	0.00211	U	0.00104	U	0.0021	U	0.00136	U	0.00104	U	0.00130	U	0.00101	U	0.00103	U	0.00133	U	0.00177		0.00104	U
Endosulfan I	2.4	200	102	0.0018		0.00179	U	0.00211	U	0.00184	U	0.0021	U	0.00198	U	0.00184	U	0.00196	U	0.00181	U	0.00183	U	0.00193	U	0.00177		0.00184	U
Endosulfan II	2.4	200	102	0.0018	U	0.00179	U	0.00211	U	0.00184	U	0.0021	U	0.00198	U	0.00184	U	0.00196	U	0.00181	U	0.00183	U	0.00193	U	0.00177	U	0.00184	U
Endosulfan sulfate	2.4	200	1000	0.000748		0.000744	U	0.000879	U	0.000765	U	0.000874		0.000825	U	0.000767	U	0.000818	U	0.000753		0.000762	U	0.000804	U	0.000739		0.000767	U
Endrin	0.014	89	0.06	0.000748		0.000744	U	0.000879	U	0.000765	U	0.000874		0.000825	U	0.000767	U	0.000818				0.000762	U	0.000804	U	0.000739		0.000767	U
Endrin aldehyde Endrin ketone				0.00224 0.0018		0.00223 0.00179	U	0.00264 0.00211	U	0.00229 0.00184	U	0.00262	U	0.00248 0.00198	U	0.0023 0.00184	U	0.00245 0.00196	U	0.00226 0.00181	U	0.00229 0.00183	U	0.00241	U	0.00222 0.00177		0.0023 0.00184	U
Heptachlor	0.042	15	0.38	0.0018		0.00179	U	0.00211	U	0.000184	U	0.0021	U	0.00198	U	0.00184	U	0.00196	U	0.000903		0.000183	U	0.00193	U	0.00177	U	0.00184	U
Heptachlor epoxide	0.042		0.50	0.00337		0.00335	U	0.00396	U	0.00344	U	0.00393	U	0.00331	Ü	0.00345	Ü	0.00368	U	0.00339	U	0.00343	U	0.00362	U	0.00332	_	0.00345	U
Lindane	0.1	9.2	0.1	0.000748		0.000744	U	0.000879	U	0.000765	U	0.000874	U	0.000825	U	0.000767	U	0.000818	U	0.000753	U	0.000762	U	0.000804	U	0.000739		0.000767	U
Methoxychlor				0.00337	U	0.00335	U	0.00396	U	0.00344	U	0.00393	U	0.00371	U	0.00345	U	0.00368	U	0.00339	U	0.00343	U	0.00362	U	0.00332	U	0.00345	U
Toxaphene				0.0337		0.0335	U	0.0396	U	0.0344	U	0.0393	U	0.0371	U	0.0345	U	0.0368	U	0.0339	U	0.0343	U	0.0362	U	0.0332	U		U
trans-Chlordane				0.00224	U	0.00223	U	0.00264	U	0.00229	U	0.00262	U	0.00248	U	0.0023	U	0.00245	U	0.00226	U	0.00229	U	0.00241	U	0.00222	U	0.0023	U
Total Metals Aluminum, Total				3450		6060		1390		1270		5780		4340		2460		1570		4480		3020	1	16200		5100		2130	
Antimony, Total				21.5	U	11.2	U	10.4	U	1.05	J	5.35	U	1.5	J	1.68	J	12.4	U	1.4	J	3.24	J	2.7	J	3.44	J	0.93	J
Arsenic, Total	13	16	16	4.03	j	4.28		4.16		3.59		9.36		19.3	J	13.5		10.7		13.8		9.57		34.3		19.2	-	9.65	
Barium, Total	350	400	820	63.1		103		33.9		32.6		152		209	J	101		70.3		118		76.9		281		372		79.9	
Beryllium, Total	7.2	590	47	0.203	J	0.283	J	0.154	J	0.111	J	0.7		0.718		0.301	J	0.23	J	0.557		0.398	J	2.29		0.492		0.279	J
Cadmium, Total	2.5	9.3	7.5	4.3	U	2.24	U	2.08	U	1.91	U	1.07	U	0.214	J	1.94	U	2.49	U	1.06		0.54	J	1.75	-	1.65		0.919	U
Calcium, Total Chromium. Hexavalent	1	400	19	0.904	UJ	0.901	UJ	1 80000	U	143000 0.974	U	69500 0.271	J	1.04	U	0.98	U	210000 1.02	R U	86300 0.941	UJ	0.939	UJ	39800 0.996	UJ	32600 0.913	UJ	0.929	U
Chromium, Total	'	700	13	12.5	0,	13.4	0,1	11.5		9.35	3	12.4	-	16.1	J	22.1	-	10.1	J	22.8	U)	13.4	0)	22.3	0)	26.8	0,1	11.4	
Cobalt, Total				5.42	J	6.92		3.43	J	2.14	J	5.37		5.57		5.15		3	J	6.66	<u> </u>	7.16		5.94		7.74		4.09	$\overline{}$
Copper, Total	50	270	1720	24.2		35.6		21		18.3		137		111		58.7		77.9		117		121		347		688		69.5	
Cyanide, Total	27	27	40	1	U	1	U	0.3	J	0.42	J	1.3	U	0.82	J	1.2	U	4	R	0.66	J	0.43	J	2.7		11		22	R
Iron, Total	62	1000	450	9330		13900		6970		6140		8830		21700		19700		16700		19600		16800		31400		32300		17900	
Lead, Total Magnesium, Total	63	1000	450	75.7 12900		55 21800		50.9 13500		92.3 34300		67.5 6400		145 5370	J	153 47500		74.3 4590	-	150 4890		89 5890		607 6440		860 5710		67.6 2260	
Manganese, Total	1600	10000	2000	257		360		196		150		119		151	J	222		126	•	226		195		406		387		114	
Mercury, Total	0.18	2.8	0.73	0.069	J	0.09		0.159		0.114		0.136		0.16		0.266		0.194		0.388		0.309		1.73		0.528		0.128	$\overline{}$
Nickel, Total	30	310	130	19.1		34		8.94		7.22		12.8		20.8		13.6		14		16.8		15.8		20.9		34.9		14.4	
Potassium, Total		_		414	J	566		316	J	299	J	560		511		334	J	168	J	467		330		935		535		192	J
Selenium, Total	3.9	1500	4	8.59	U	4.47	U	4.17	U	3.83	U	1.71	J	0.926	J	0.639	J	1.03	J	1.21	J	0.85	J	4.81		2.07		0.378	J
Silver, Total	2	1500	8.3	2.15	U	1.12	U	1.04	U	0.957	U	0.535	U	0.502	U	0.97	U	1.24	U	0.268	J	0.311	J	0.517	<u> </u>	0.452	J	0.459	U
Sodium, Total Thallium, Total				121 8.59	J U	113 4.47	J U	123 4.17	J	137 3.83	J	231 0.559	J	113 0.661	J	135 0.66	J	108 4.97	J	134 1.84	J U	50.7 1.81	J U	190 1.96	J U	216 1.82	U	60.3 1.84	J
Vanadium, Total				17.3	U	14.2	U	23.4	U	9.68	U	22.3	,	20	,	17.4	,	8.74	U	17.1	U	13	U	17.5	0	21.7	U	9.1	
Zinc, Total	109	10000	2480	92.3		126		95.3		97.8		116		158	J	228		80.2		609		472		799		711		72.8	-
9			100																										

LOCATION			SS-101	S	5-101	SS-10)2	SS-10)2	SS-10	3	SS-10)3	SS-10)4	SS-10)4	SS-1	05	SS-1	05	SS-1	106	SS-	106	DUP-01 (SS-104)
SAMPLING DATE			12/2/2024	12/	2/2024	11/22/2	2024	11/22/2	2024	11/22/2	024	11/22/2	2024	11/22/2	2024	11/22/2	024	12/2/2	2024	12/2/2	2024	12/2/2	2024	12/2/	2024	11/22/	
LAB SAMPLE ID			L2470407-05	L247	0407-06	L246924	6-01	L246924	6-02	L2469240	5-03	L246924	6-04	L246924	6-05	L246924	6-06	L24704	07-01	L247040	07-02	L24704		L24704	407-04	L24692	46-07
SAMPLE TYPE			SOIL		OIL	SOII	L	SOIL	_	SOIL		SOIL	L	SOII	L	SOII	_	SOI	L	SOI	IL	SO	IL	SC)IL	SOI	IL .
SAMPLE DEPTH (in.)			0-2		j-12	0-2		6-12	2	0-2		6-12	2	0-2		6-12	2	0-2	2	6-1	2	0-2	2	6-	12	6-1	2
Unres	tricted	Commercial Protection	of																						T		
Analyte	sco	Use SCO Groundwat	Results Oua	Result	S Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual
Perfluorinated Alkyl Acids by EPA 1633					<u> </u>	1				1	L	L		J	l.				l		1		1	<u>l</u>			
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid (11Cl-PF3OUdS)			0.778 U	0.782	U	0.796	U	0.787	U	0.79	U	0.787	U	0.793	U	0.785	U	0.798	U	0.793	U	0.798	U	0.791	U	0.789	U
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)			0.778 U	0.782	U	0.796	U	0.787	U	0.79	U	0.787	U	0.793	U	0.785	U	0.798	U	0.793	U	0.798	U	0.791	U	0.789	U
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)			0.778 U	0.782	U	0.796	U	0.787	U	0.79	U	0.787	U	0.793	U	0.785	U	0.798	U	0.793	U	0.798	U	0.791	U	0.789	U
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)			0.778 U	0.782	U	0.796	U	0.787	U	0.79	U	0.787	U	0.793	U	0.785	U	0.798	U	0.793	U	0.798	U	0.791	U	0.789	U
2H,2H,3H,3H-Perfluorooctanoic Acid (5:3FTCA)			4.86 U	4.89	U	4.97	U	4.92	U	4.94	U	4.92	U	4.96	U	4.91	U	4.98	U	4.96	U	4.99	U	4.95	U	4.93	U
3-Perfluoroheptyl Propanoic Acid (7:3FTCA)			4.86 U	4.89	U	4.97	U	4.92	U	4.94	U	4.92	U	4.96	U	4.91	U	4.98	U	4.96	U	4.99	U	4.95	U	4.93	U
3-Perfluoropropyl Propanoic Acid (3:3FTCA)			0.972 U	0.978	U	0.994	U	0.984	U	0.988	U	0.984	U	0.991	U	0.982	U	0.997	U	0.991	U	0.998	U	0.989	U	0.986	U
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)			0.778 U	0.782	U	0.796	U	0.787	U	0.79	U	0.787	U	0.793	U	0.785	U	0.798	U	0.793	U	0.798	U	0.791	U	0.789	U
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid (9Cl-PF3ONS)			0.778 U	0.782	U	0.796	U	0.787	U	0.79	U	0.787	U	0.793	U	0.785	U	0.798	U	0.793	U	0.798	U	0.791	U	0.789	U
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)			0.778 U	_	U	0.796	U	0.787	U	0.79	U	0.787	U	0.793	U	0.785	U	0.798	U	0.793	U	0.798	U	0.791	U	0.789	U
N-Ethyl Perfluorooctane Sulfonamide (NEtFOSA)			0.194 U	0.196	U	0.199	U	0.197	U	0.198	U	0.197	U	0.198	U	0.196	U	0.199	U	0.198	U	0.2	U	0.198	U	0.197	U
N-Ethyl Perfluorooctanesulfonamido Ethanol (NEtFOSE)			1.94 U	1.96	U	1.99	U	1.97	U	1.98	U	1.97	U	1.98	U	1.96	U	1.99	U	1.98	U	2	U	1.98	U	1.97	U
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)			0.194 U	0.196	U	0.33		0.073	J	0.198	U	0.197	U	0.198	U	0.196	U	0.199	U	0.198	U	0.136	J	0.198	U	0.197	U
N-Methyl Perfluorooctane Sulfonamide (NMeFOSA)			0.194 U	0.196	U	0.199	U	0.197	U	0.198	U	0.197	U	0.198	U	0.196	U	0.199	U	0.198	U	0.2	U	0.198	U	0.197	U
N-Methyl Perfluorooctanesulfonamido Ethanol (NMeFOSE)			1.94 U	1.96	U	1.99	U	1.97	U	1.98	U	1.97	U	1.98	U	1.96	U	1.99	U	1.98	U	2	U	1.98	U	1.97	U
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)			0.194 U	0.196	U	0.199	U	0.197	U	0.198	U	0.197	U	0.198	U	0.196	U	0.199	U	0.198	U	0.2	U	0.198	U	0.197	U
Nonafluoro-3,6-Dioxaheptanoic Acid (NFDHA)			0.389 U	0.391	U	0.398	U	0.394	U	0.395	U	0.393	U	0.396	U	0.393	U	0.399	U	0.396	U	0.399	U	0.396	U	0.394	U
Perfluoro(2-Ethoxyethane)Sulfonic Acid (PFEESA)			0.389 U	0.391	U	0.398	U	0.394	U	0.395	U	0.393	U	0.396	U	0.393	U	0.399	U	0.396	U	0.399	U	0.396	U	0.394	U
Perfluoro-3-Methoxypropanoic Acid (PFMPA)			0.389 U	0.391	U	0.398	U	0.394	U	0.395	U	0.393	U	0.396	U	0.393	U	0.399	U	0.396	U	0.399	U	0.396	U	0.394	U
Perfluoro-4-Methoxybutanoic Acid (PFMBA)			0.389 U	0.391	U	0.398	U	0.394	U	0.395	U	0.393	U	0.396	U	0.393	U	0.399	U	0.396	U	0.399	U	0.396	U	0.394	U
Perfluorobutanesulfonic Acid (PFBS)			0.194 U	0.196	U	0.199	U	0.197	U	0.198	U	0.197	U	0.198	U	0.196	U	0.199	U	0.198	U	0.2	U	0.034	J	0.197	U
Perfluorobutanoic Acid (PFBA)			0.045 J	0.108	J	0.332	J	0.378	J	0.177	J	0.12	J	0.114	J	0.072	J	0.141	J	0.116	J	0.255	J	0.195	J	0.058	J
Perfluorodecanesulfonic Acid (PFDS)			0.194 U	0.196	U	0.044	J	0.104	J	0.198	U	0.197	U	0.198	U	0.196	U	0.199	U	0.198	U	0.045	J	0.198	U	0.197	U
Perfluorodecanoic Acid (PFDA)			0.047 J	0.109	J	0.243		0.26		0.063	J	0.197	U	0.161	J	0.037	J	0.082	J	0.048	J	0.315		0.091	J	0.197	U
Perfluorododecanesulfonic Acid (PFDoS)			0.194 U	0.196	U	0.199	U	0.197	U	0.198	U	0.197	U	0.198	U	0.196	U	0.199	U	0.198	U	0.2	U	0.198	U	0.197	U
Perfluorododecanoic Acid (PFDoA)			0.051 J	0.07	J	0.176	J	0.143	J	0.026	J	0.197	U	0.072	J	0.196	U	0.032	J	0.198	U	0.156	J	0.047	J	0.197	U
Perfluoroheptanesulfonic Acid (PFHpS)			0.194 U	0.196	U	0.199	U	0.197	U	0.198	U	0.197	U	0.198	U	0.196	U	0.199	U	0.198	U	0.2	U	0.198	U	0.197	U
Perfluoroheptanoic Acid (PFHpA)			0.025 J	0.12	J	0.069	J	0.135	J	0.054	J	0.059	J	0.056	J	0.056	J	0.034	J	0.05	J	0.1	J	0.146	J	0.055	J
Perfluorohexanesulfonic Acid (PFHxS)			0.194 U	0.196	U	0.199	U	0.197	U	0.198	U	0.197	U	0.198	U	0.196	U	0.052	J	0.047	J	0.029	J	0.025	J	0.197	U
Perfluorohexanoic Acid (PFHxA)			0.03 EMP	0.101	J	0.086	J	0.15	J	0.047	J	0.046	J	0.04	J	0.041	EMPC	0.043	J	0.057	J	0.083	J	0.154	J	0.053	J
Perfluorononanesulfonic Acid (PFNS)			0.194 U	0.196	U	0.199	U	0.197	U	0.198	U	0.197	U	0.198	U	0.196	U	0.199	U	0.198	U	0.2	U	0.198	U	0.197	U
Perfluorononanoic Acid (PFNA)			0.032 J	0.067	J	0.172	J	0.25		0.075	J	0.057	J	0.152	J	0.133	J	0.093	J	0.087	J	0.315		0.152	J	0.084	J
Perfluorooctanesulfonamide (PFOSA)			0.194 U	0.196	U	0.199	U	0.197	U	0.198	U	0.197	U	0.198	U	0.196	U	0.199	U	0.198	U	0.026	EMPC	0.198	U	0.197	U
Perfluorooctanesulfonic Acid (PFOS) 0	.88	440 1	0.143 J	0.78		1.41		1.91		0.425		0.246		1.89		2.53		1.93		1.75		2.06		0.877		1.93	
Perfluorooctanoic Acid (PFOA) 0	.66	500 0.8	0.031 J	0.104	J	0.195	J	0.448		0.057	J	0.16	J	0.109	J	0.199		0.077	J	0.116	J	0.383		0.41		0.162	J
Perfluoropentanesulfonic Acid (PFPeS)			0.194 U	0.196	U	0.199	U	0.197	U	0.198	U	0.197	U	0.198	U	0.196	U	0.199	U	0.198	U	0.2	U	0.198	U	0.197	U
Perfluoropentanoic Acid (PFPeA)			0.389 U	0.174	J	0.098	J	0.167	J	0.395	U	0.046	J	0.051	J	0.056	J	0.046	J	0.041	J	0.108	J	0.119	J	0.046	J
Perfluorotetradecanoic Acid (PFTeDA)			0.025 J	0.035	J	0.076	J	0.065	J	0.198	U	0.197	U	0.026	EMPC	0.196	U	0.199	U	0.198	U	0.069	J	0.198	U	0.197	U
Perfluorotridecanoic Acid (PFTrDA)			0.019 J	0.024	J	0.095	J	0.091	J	0.198	U	0.197	U	0.039	J	0.196	U	0.022	J	0.198	U	0.085	J	0.027	J	0.197	U
Perfluoroundecanoic Acid (PFUnA)			0.03 J	0.068	J	0.211		0.243		0.042	j	0.197	U	0.116	j	0.196	U	0.059	J	0.019	J	0.223	1	0.061	j	0.197	Ü

- All values are reported in milligrams per kilogram (mg/kg) / parts per million (ppm) except PFAAs which are reported in micrograms per kilogram (µg/kg) / parts per billion (ppb).
 Analytical results compared to New York 6 NYCRR Part 375 Soil Cleanup Objectives (SCOs).
- Bolded text indicates analyte detected at concentrations greater than laboratory detection limits.
- Highlighted cell Indicates analyte exceeds the respective standard/guideline value.
- Red text indicates analyte exceeds the Protection of Groundwater SCO.
- Blue qualifiers were applied based on a third party data usability review. - Grey highlighted cell indicates the laboratory detection limit exceeds the respective standard/guideline value.
- "U" indicates the analyte was not detected at the reported detection limit for the sample.
- "UJ" indicates the analyte was analyzed for, but was not detected. The associated reported quantitation limit is approximate and may be inaccurate or imprecise.
- "NJ" indicates the detection is tentative in identification and estimated in value. Although there is presumptive evidence of the analyte, the result should be used with caution as a potential false positive and/or elevated quantitative value.
- "J" indicates estimated value.
- "E" indicates the concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- "EMPC" indicates the results do not meet all criteria for a confirmed identification. The quantitative value represents the Estimated Maximum Possible Concentration of the analyte in the sample.
- "R" indicates The data are unusable. The sample results are rejected due to serious deficiencies in meeting Quality Control limits. The analyte may or may not be present.

LOCATION				SB-101	FILL	SB-101 NATIVE	SB-102 FILL	SB-102 NA	TIVE	SB-103	FILL	SB-103 NATIVE	SB-104	FILL S	B-104 NAT	IVE SE	-105 FILL	SB-105 N	IATIVE	SB-10	6 FILL	SB-106	NATIVE	SB-106A	FILL	SB-106A NATIVE
SAMPLING DATE				11/26/	2024	11/26/2024	11/25/2024	11/25/20	024	11/25/2	2024	11/25/2024	11/26/2	2024	11/26/202	4 11	/25/2024	11/25/2	2024	11/25	/2024	11/25	5/2024	11/25/2	024	11/25/2024
LAB SAMPLE ID				L24699	06-01	L2469906-02	L2469590-01	L2469590	-02	L246959	90-03	L2469590-04	L246990	06-03	L2469906-)4 L2-	169590-05	L246959	90-06	L2469	590-07	L2469	590-08	L246959	0-09	L2469590-10
SAMPLE TYPE				SO	L	SOIL	SOIL	SOIL		SOII	L	SOIL	SOI	L	SOIL		SOIL	SOII	L	SC	OIL	SC	OIL	SOIL	-	SOIL
SAMPLE DEPTH (ft.)				4-1	0	12-15	3-8	10-20		2-6	5	8-14	5-10	0	15-20		0-5	10-1	15	1	-6	9-	-15	1-5		8-10
Analyte	restricted Use SCO	Commercial Use SCO	Protection of Groundwater	Results	Qual	Results Qual	Results Qual	Results 0	Qual Re	esults	Qual	Results Qual	Results	Qual R	esults Q	ual Resu	lts Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results Qual
Volatile Organics by EPA 5035						•			•								•								•	
1,1,1-Trichloroethane	0.68	500	0.68	0.0012	U	0.0012 U	0.00061 U	0.00091		00058	U	0.00051 U	0.00098			J 0.000		0.0033	U	0.001	U	0.00077	U	0.0012	U	0.00055 U
1,1,2,2-Tetrachloroethane				0.0012	U	0.0012 U	0.00061 U	0.00091		00058	U	0.00051 U	0.00098			J 0.000		0.0033		0.001	U	0.00077	U	0.0012	U	0.00055 U
1,1,2-Trichloroethane	0.27	2.40	0.27	0.0023		0.0025 U	0.0012 U	0.0018		.0012	U	0.001 U	0.002			J 0.00		0.0066		0.0021	U	0.0015	U	0.0024	U	0.0011 U
1,1-Dichloroethane 1,1-Dichloroethene	0.27	240 500	0.27 0.33	0.0023	U	0.0025 U 0.0025 U	0.0012 U 0.0012 U	0.0018		.0012	U	0.001 U 0.001 U	0.002			J 0.00 J 0.00		0.0066		0.0021	U	0.0015	U	0.0024 0.0024	U	0.0011 U 0.0011 U
1.2.4-Trichlorobenzene	0.55	300	0.55	0.0023	U	0.0023 U	0.0012 U	0.0016		.0012	U	0.001 U	0.002			J 0.00		0.0000		0.0042	U	0.0013	U	0.0024	U	0.0022 U
1,2,4-Trimethylbenzene	3.6	190	3.6	0.0047	U	0.005 U	0.0024 U	0.0036		.0023	U	0.002 U	0.0039			J 0.00		0.013		0.0042	Ü	0.0031	U	0.0048	R	0.0022 U
1,2-Dibromo-3-chloropropane				0.007	U	0.0075 U	0.0037 U	0.0054		.0034	U	0.003 U	0.0059			J 0.00		0.02		0.0063	U	0.0046	U	0.0071	U	0.0033 U
1,2-Dibromoethane				0.0023	U	0.0025 U	0.0012 U	0.0018	U 0.	.0012	U	0.001 U	0.002	U 0	.0012	J 0.00	17 U	0.0066	U	0.0021	U	0.0015	U	0.0024	U	0.0011 U
1,2-Dichlorobenzene	1.1	500	1.1	0.0047	U	0.005 U	0.0024 U	0.0036	U 0.	.0023	U	0.002 U	0.0039	U 0	.0023	J 0.00	34 U	0.013	U	0.0042	U	0.0031	U	0.0048	U	0.0022 U
1,2-Dichloroethane	0.02	30	0.02	0.0023	U	0.0025 U	0.0012 U	0.0018		.0012	U	0.001 U	0.002	U 0	.0012	J 0.00		0.0066		0.0021	U	0.0015	U	0.0024	U	0.0011 U
1,2-Dichloropropane				0.0023		0.0025 U	0.0012 U	0.0018		.0012	U	0.001 U	0.002			J 0.00		0.0066		0.0021	U	0.0015	U	0.0024	U	0.0011 U
1,3,5-Trimethylbenzene	8.4	190	8.4	0.0047	U	0.005 U	0.0024 U	0.0036		.0023	U	0.002 U	0.0039			J 0.00		0.013	U	0.0042	U	0.0031	U	0.0048	R	0.0022 U
1,3-Dichlorobenzene	2.4	280	2.4	0.0047	U	0.005 U	0.0024 U	0.0036		.0023	U	0.002 U	0.0039			J 0.00		0.013		0.0042	U	0.0031	U	0.0048	U	0.0022 U
1,4-Dichlorobenzene 2-Butanone	1.8 0.12	130 500	1.8 0.12	0.0047 0.023	U	0.005 U 0.008 J	0.0024 U 0.012 U	0.0036 0.018		0.0023	U	0.002 U 0.01 U	0.0039			J 0.00 J 0.01		0.013 0.066		0.0042	U	0.0031	U	0.0048 0.024	U	0.0022 U 0.011 U
2-Hexanone	0.12	500	0.12	0.023	U	0.008 J	0.012 U	0.018		0.012	U	0.01 U	0.02			J 0.01		0.066		0.021	U	0.015	U	0.024	U	0.011 U
4-Methyl-2-pentanone				0.023	U	0.025 U	0.012 U	0.018		0.012	U	0.01 U	0.02			J 0.01		0.066		0.021	U	0.015	U	0.024	U	0.011 U
Acetone	0.05	500	0.05	0.023	U	0.048	0.012 U	0.018		0.012	U	0.01	0.02		.0062	J 0.01		0.066		0.021	Ü	0.039		0.024	Ü	0.011 U
Benzene	0.06	44	0.06	0.0012	U	0.0012 U	0.00061 U	0.00091		00058	U	0.0041	0.00098			J 0.000	85 U	0.0033	U	0.001	U	0.00077	U	0.0012	U	0.00055 U
Bromodichloromethane				0.0012	U	0.0012 U	0.00061 U	0.00091	U 0.0	00058	U	0.00051 U	0.00098	U 0.	00058	J 0.000	85 U	0.0033	U	0.001	U	0.00077	U	0.0012	U	0.00055 U
Bromoform				0.0094	U	0.01 U	0.0049 U	0.0073	U 0.	.0046	U	0.004 U	0.0079	U 0	.0046	J 0.00	58 U	0.026	UJ	0.0084	U	0.0061	U	0.0095	U	0.0044 U
Bromomethane				0.0047	U	0.005 U	0.0024 U	0.0036		.0023	U	0.002 U	0.0039			J 0.00		0.013		0.0042	U	0.0031	U	0.0048	U	0.0022 U
Carbon disulfide				0.023	U	0.016 J	0.012 U	0.018		0.012	U	0.01 U	0.02			J 0.01		0.066		0.021	U	0.0085	J	0.024	U	0.011 U
Carbon tetrachloride	0.76	22	0.76	0.0023	U	0.0025 U	0.0012 U	0.0018		.0012	U	0.001 U	0.002			J 0.00		0.0066		0.0021	U	0.0015	U	0.0024	U	0.0011 U
Chlorobenzene	1.1	500	1.1	0.0012 0.0047	U	0.0012 U 0.005 U	0.00061 U 0.0024 U	0.00091		.0023	U	0.00051 U 0.002 U	0.00098			J 0.000 J 0.00		0.0033	U	0.001	U	0.00077	U	0.0012 0.0048	U	0.00055 U 0.0022 U
Chloroethane Chloroform	0.37	350	0.37	0.0047		0.005 U 0.0038 U	0.0024 U	0.0036		.0023	U	0.002 U	0.0039			J 0.00		0.013		0.0042	U	0.0031	U	0.0046	U	0.0022 U 0.0016 U
Chloromethane	0.57	330	0.51	0.0094	U	0.01 U	0.0049 U	0.0027		.0046	U	0.0013 U	0.003			J 0.00		0.026		0.0032	U	0.0023	U	0.0095	U	0.0044 U
cis-1,2-Dichloroethene	0.25	500	0.25	0.0023	U	0.0025 U	0.0012 U	0.0018		.0012	U	0.001 U	0.002			J 0.00		0.0066		0.0021	U	0.0015	U	0.0024	Ü	0.0011 U
cis-1,3-Dichloropropene				0.0012	U	0.0012 U	0.00061 U	0.00091	U 0.0	00058	U	0.00051 U	0.00098	U 0.	00058	J 0.000	85 U	0.0033	U	0.001	U	0.00077	U	0.0012	U	0.00055 U
Cyclohexane				0.023	U	0.025 U	0.012 U	0.018	U 0	0.012	U	0.01 U	0.02	U (0.012	J 0.01	7 U	0.066	U	0.021	U	0.015	U	0.024	R	0.00069 J
Dibromochloromethane				0.0023	U	0.0025 U	0.0012 U	0.0018	U 0.	.0012	U	0.001 U	0.002	U 0	.0012	J 0.00	17 U	0.0066	U	0.0021	U	0.0015	U	0.0024	U	0.0011 U
Dichlorodifluoromethane				0.023	U	0.025 U	0.012 U	0.018		0.012	U	0.01 U	0.02			J 0.01		0.066		0.021	U	0.015	U	0.024	U	0.011 U
Ethylbenzene	1	390	1	0.0023	U	0.0025 U	0.0012 U	0.0018		.0012	U	0.001 U	0.002		.00.12	J 0.00		0.0066		0.0021	U	0.0015	U	0.0024	R	0.0011 U
Freon-113		1		0.0094	U	0.01 U	0.0049 U	0.0073		.0046	U	0.004 U	0.0079			J 0.00		0.026		0.0084	U	0.0061	U	0.0095	U	0.0044 U
Isopropylbenzene				0.0023	U	0.0025 U 0.01 U	0.0012 U 0.0049 U	0.0018		.0012	U	0.001 U 0.004 U	0.002			J 0.00		0.0066	U	0.0021	U	0.0015	U	0.0024	U	0.0011 U 0.0044 U
Methyl Acetate Methyl cyclohexane				0.0094	U	0.01 U 0.01 U	0.0049 U 0.0049 U	0.0073		.0046	U	0.004 U	0.0079			J 0.00 U 0.00		0.026 0.026		0.0084	U	0.0061	U	0.0095	R	0.0044 U 0.0044 U
Methyl tert butyl ether	0.93	500	0.93	0.0034	U	0.005 U	0.0024 U	0.0073		.0023	U	0.004 U	0.0079			J 0.00		0.020		0.0042	U	0.0031	U	0.0033	U	0.0022 U
Methylene chloride	0.05	500	0.05	0.012	U	0.012 U	0.0061 U	0.0091		.0058	U	0.0051 U	0.0098		.0058	J 0.00		0.033	U	0.01	U	0.0077	U	0.012	U	0.0055 U
n-Butylbenzene	12	500	12	0.0023	U	0.0025 U	0.0012 U	0.0018		.0012	U	0.001 U	0.002			J 0.00		0.0066	U	0.0021	U	0.0015	U	0.0024	U	0.0011 U
n-Propylbenzene	3.9	500	3.9	0.0023	U	0.0025 U	0.0012 U	0.0018	U 0.	.0012	U	0.001 U	0.002	U 0	.0012	J 0.00	17 U	0.0066	U	0.0021	U	0.0015	U	0.0024	U	0.0011 U
Naphthalene	12	500	12	0.0094	U	0.01 U	0.0049 U			.0046	U	0.004 U				J 0.00		0.026		0.0084	U	0.0061	U	0.0095	R	0.0044 U
o-Xylene	0.26	500	1.6	0.0023		0.0025 U	0.0012 U			.0012	U		0.002			J 0.00		0.0066		0.0021		0.0015		0.0024		0.0011 U
p-Isopropyltoluene	0.00	500	1.6	0.0023		0.0025 U	0.0012 U			.0012	U		0.002			J 0.00		0.0066		0.0021		0.0015	U	0.0024	U	0.0011 U
p/m-Xylene sec-Butylbenzene	0.26	500 500	1.6 11	0.0047 0.0023	U	0.005 U 0.0025 U	0.0024 U 0.0012 U	0.0036		.0023	U	0.002 U 0.001 U	0.0039			J 0.00 J 0.00		0.013		0.0042	U	0.0031	U	0.0048 0.0024	K	0.0022 U 0.0011 U
Styrene Styrene	1.1	300	11	0.0023		0.0025 U	0.0012 U 0.0012 U			.0012	U	0.001 U				J 0.00 J 0.00		0.0066		0.0021	U	0.0015	·	0.0024	U	0.0011 U
tert-Butylbenzene	5.9	500	5.9	0.0023		0.0023 U	0.0012 U			.0012	U		0.002			J 0.00				0.0042	U	0.0013	U	0.0024	U	0.0022 U
Tetrachloroethene	1.3	150	1.3	0.0012		0.0012 U	0.00061 U	0.00091		00058	U	0.00051 U	+			J 0.000		0.0033		0.001	U	0.00077	Ü	0.0012		0.00055 U
Toluene	0.7	500	0.7	0.0023		0.0025 U	0.0012 U	+ + + + + + + + + + + + + + + + + + + +		.0012	U	0.001 U				J 0.00		0.0066		0.0021	U	0.0015	U	0.0024	U	0.0011 U
trans-1,2-Dichloroethene	0.19	500	0.19	0.0035		0.0038 U	0.0018 U	1		.0017	U		0.003			J 0.00		0.01	U	0.0032	U	0.0023	U	0.0036	U	0.0016 U
trans-1,3-Dichloropropene				0.0023		0.0025 U	0.0012 U	0.0018		.0012	U	0.001 U	0.002			J 0.00		0.0066	U	0.0021	U	0.0015		0.0024	U	0.0011 U
Trichloroethene	0.47	200	0.47	0.0012		0.0012 U	0.00061 U			00058	U		0.00098			J 0.000		0.0033		0.001	U	0.00077	U	0.0012		0.00055 U
Trichlorofluoromethane				0.0094	U	0.01 U	0.0049 U			.0046	U	0.004 U				J 0.00		0.026		0.0084	U	0.0061	U	0.0095		0.0044 U
Vinyl chloride	0.02	13	0.02	0.0023		0.0025 U	0.0012 U			.0012	U	0.001 U	0.002			J 0.00		0.0066		0.0021	U	0.0015	U	0.0024		0.0011 U
Total TIC Compounds				0	U	0.00615 J	0 U	0	U	0	U	0 U	0.0108	J	0	J 0	U	0	U	0	U	0.0146	J	0.0326	J	0.0167 J

Marche M	LOCATION				SB-10	1 FILL	SB-101	NATIVE	SB-10	02 FILL	SB-102	NATIVE	SB-10	03 FILL	SB-103	NATIVE	SB-10)4 FILL	SB-104	NATIVE	SB-10	5 FILL	SB-105	NATIVE	SB-1	06 FILL	SB-106	NATIVE	SB-106	A FILL	SB-106A	NATIVE
Signature State	SAMPLING DATE				11/26	/2024	11/26	6/2024	11/2	5/2024	11/2	5/2024	11/2	5/2024	11/25	5/2024	11/26	5/2024	11/26	/2024	11/25	/2024	11/25	5/2024	11/2	5/2024	11/25	5/2024	11/25,	/2024	11/25	2024
Secondary Seco	LAB SAMPLE ID						L2469	906-02																			L2469	590-08	L24695	90-09		
March Marc	SAMPLE TYPE				SO	DIL	S	OIL	S	OIL	S	OIL	S	OIL	SC	OIL	SC	OIL	SC	OIL	SC	DIL	SC	OIL	S	OIL	SC	OIL	so	IL	so	(L
Segretary Market Segretary Segretary Market Segretary Mar	SAMPLE DEPTH (ft.)				4-	10	12	2-15	3	3-8	10	0-20	2	2-6	8-	-14	5-	·10	15-	-20	0-	-5	10)-15	1	1-6	9-	·15	1-	5	8-	0
1. Selection of the content of the	Analyte				Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual
1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	Volatile Organics by EPA 5035 High						- U	1	1	1	· I	L	I.	- U	I.	I.	ı		1	ı	1			1		1	1		l l			
Company Comp	1,1,1-Trichloroethane	0.68	500	0.68	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.036	U	-	-
13 Selection 32	1,1,2,2-Tetrachloroethane				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		U	-	-
Class Clas					-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		U	-	-
Constructions							-	-	-	-	<u> </u>	-	-	-	-		-	-	-	-			-	-	-	-		-				
10.00000000000000000000000000000000000	·	0.33	500	0.33	_		 		-		-		-	-				-								-		-				
2 Distance		2.6	100	2.6			1		-		-	+	-	1												_				U	-	
Trigger Trig	7	3.6	190	3.6	+ +				-	-	1	+	-	-				-						+			-	-		R		
Topographic 11 200 11 1 1 1 1 1 1 1 1					_		-	-	-		 	+	-	-	1	1	1	-						+				-			-	
2 District School 1	, ·	1 1	500	1 1	1			-	+ -		+	+	-	+ -					_		-			+ -			-					
2 Definition					_		1	 	 			+	<u> </u>	 				 	_			-		 	1	+		-				
13-10mp/parente	·	0.02	1 30	5.52	+		-	-	-	-	-	-	-	<u> </u>	-		-	-	-	-		-	-	-	-		-	-				
Seminophore 2-4 386 2-4		8.4	190	8.4	1	-	-	-	-	-	+	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-		R		-
ACCIDITATION 13 130 12 13 130 12 13 130 12 13 130 12 13 130					-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		U	-	-
Content	1,4-Dichlorobenzene	1.8	_	1.8			-		-	_	-	-	-	-		-	_	-	_	-	_	-			-	-	-	-	0.15	U	-	-
Summary Summ	2-Butanone	0.12	500	0.12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.73	U	-	-
According Company Co					-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		U	-	-
### Section ##					-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	
Branch distribution							-	-	-	-	1	-	-	-	-		-	-	-	-	_	-	-	-	-	-	-	-			-	
Freedom		0.06	44	0.06			-	-	-	-		-	-	-	-		-	-	-	-		-	-	-	-	-	-	-				
Semont-share							-		-			-	-	-	<u> </u>		-	-	_	-			-	+	-			-				
Carton descriptions 10							-		-		 	-	-	-			-	-					-					-				
Garbon testeshories 11 500 11 1					_		1		-		+	+	-	-				-	-					+		+		_			-	
Chicotenese 11 900 11		0.76	22	0.76	+ +				-		1				1			-										_				
Chlorestrane 1							 	1	-		<u> </u>		_	-			-	-								-		-				
Chromedware			1		_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-
6312-Dichloropeme	Chloroform	0.37	350	0.37	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.11	U	-	-
Co.1.3 Disconnections	Chloromethane				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.29	U	-	-
Cycleseane	cis-1,2-Dichloroethene	0.25	500	0.25	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.073	U	-	-
Distributions	cis-1,3-Dichloropropene				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		U	-	-
Dichlorediffuromenthane	·				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		R	-	-
Eftypheracene					1		-	+	-			+	-	-	1	1	1	-	+	1		-		+		+	+	-				
Froon-13 Seprops/Describe Seprops/Descri			300	1	1		-	-	-		+	+	-	-			-	-	-		-	-		-			-	-		U		
Suppropriement	,		390	<u> </u>			-	-	-		-	-	-	<u> </u>			-	-	-			-	-	-	1	+		-		K		
Methyl Acetate Methyl Legislation Methyl Color Methyl Legislation		+	+	+		-	_	-	-	-	-	-	<u> </u>	-		-	-	-	-			-	-	-			-					
Methy (spickeane) Methy (spickeane) Methy (spickeane) Methy (spickeane) Methy (spickeane) Methy (spickeane) 12 500 0.05 500 0.05	1 11				+ +		-	_	-		+			-				_	_	_			_	_	_		_	_			-	-
Methyle terbuly letter 0.93 500 0.93				1	_		-	-	-	-	+	-	-	-			-	-	-			-	-	-	-		-	-		R	-	
Methylenzene 12 500 0.05		0.93	500	0.93	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-		U	-	
n-Propylebazene 3.9 500 3.9		0.05	_		_	-		<u> </u>	-	<u> </u>		-										-	-			-			0.36	U	-	
Naphthalene	n-Butylbenzene	12			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		U	-	-
c-Xylene 0.26 500 1.6 -					-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		U	-	-
p-isopropyltoluene							-	-	-	-		-	-	-	-		-	-		-			-		1		-	-		R	-	-
p/m-Xylene 0.26 500 1.6 -	·	0.26	500	1.6			 	-	-				-	-	-			-	-	-			-		-	_		-				-
sec-Butylbenzene 11 500 11 -				1.5			1		-					-				-	-	-						-		-		U		-
Styrene 5.9 500 5.9 5.0 5.0					_		 	1	-		-		-	-				-						1		-		-		R		-
tert-Butylbenzene 5.9 500 5.9 - <td>, , , , , , , , , , , , , , , , , , ,</td> <td>11</td> <td>500</td> <td>11</td> <td>+</td> <td></td> <td>+</td> <td></td> <td>+</td> <td>1</td> <td></td> <td>-</td> <td></td> <td>+</td> <td></td> <td>1</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td>-</td> <td></td>	, , , , , , , , , , , , , , , , , , ,	11	500	11	+		+		+	1		-		+											1		1				-	
Tetrachioroethene 1.3 150 1.3	•	ΕO	EOO	E 0	_				-		+		1													+						
Toluene 0.7 500 0.7							<u> </u>	1	+ -			+		+ -				 						1				 				
trans-1,2-Dichloroethene 0.19 500 0.19 -							+		+ -		-			+				-								_		-				
trans-1,3-Dichloropropene -<					+		+	 	 	1		<u> </u>	<u> </u>	 				 	_	-			-	 	-			-				
Trichloroethene 0.47 200 0.47 -	· · · · · · · · · · · · · · · · · · ·	0.13	300		+		1	-	-	1		-	-	-			-	-	-	-			-	-	-			-				-
Trichlorofluoromethane		0.47	200	0.47	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-
Vinyl chloride 0.02 13 0.02					-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-
Total TIC Compounds		0.02	13	0.02			-		-	_	-	-	-	-		-	_	-	_	-	_	-			-	-	-	-		U	-	-
	Total TIC Compounds				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	U	-	-

LOCATION				SB-101	1 FILL	SB-101 I	NATIVE	SB-10	2 FILL	SB-102	2 NATIVE	SB-103 FILL	. SB-1	03 NATIVE	SB-104 F	ILL SI	-104 NATI\	/E SE	B-105 FILL	SB-105	NATIVE	SB-10	6 FILL	SB-106	NATIVE	SB-106A FILL	SB-106A NATIVE
SAMPLING DATE				11/26/	/2024	11/26/	/2024	11/25	5/2024	11/2	5/2024	11/25/2024	11	/25/2024	11/26/20	024	11/26/2024	11	1/25/2024	11/25	5/2024	11/25	/2024	11/25	/2024	11/25/2024	11/25/2024
LAB SAMPLE ID				L24699		L24699			590-01		9590-02	L2469590-03		169590-04	L2469906		2469906-04		469590-05		9590-06		590-07	L24695		L2469590-09	L2469590-10
SAMPLE TYPE				so	IL	so	IL	SC	OIL	5	OIL	SOIL		SOIL	SOIL		SOIL		SOIL	S	OIL	SC	DIL	SC	DIL	SOIL	SOIL
SAMPLE DEPTH (ft.)				4-1	10	12-	15	3	-8	1	0-20	2-6		8-14	5-10		15-20		0-5	10)-15	1-	-6	9-	15	1-5	8-10
Analyte	Unrestricted Use SCO	Commercial Use SCO	Protection of Groundwater	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results Qua	al Resu	lts Qual	Results	Qual Re	sults Qua	al Resu	ılts Qual	Results	Qual	Results	Qual	Results	Qual	Results Qua	Results Qual
Semivolatile Organics by GC/MS									•																		
1,2,4,5-Tetrachlorobenzene		100		0.19	U	0.32	U	0.2	U	0.26	U	0.2 U			0.26		.21 U	0.1		0.62	U	0.18	U	0.23	U	0.18 U	0.18 U
1,4-Dioxane	0.1	130	0.1	0.029	U	0.048	U	0.03	U	0.039	U	0.031 U			0.039		032 U	0.02		0.093	U	0.028	U	0.035	U	0.027 U	0.027 U
2,3,4,6-Tetrachlorophenol	1			0.19 0.19	U	0.32	U	0.2	U	0.26	U	0.2 U 0.2 U			0.26 0.26		.21 U	0.1		0.62	U	0.18 0.18	U	0.23	U	0.18 U 0.18 U	0.18 U 0.18 U
2,4,6-Trichlorophenol				0.19	U	0.32	U	0.12	U	0.26	U	0.12 U	0.13		0.26		.13 U	0.1		0.02	U	0.18	U	0.23	U	0.18 U	0.18 U
2,4-Dichlorophenol				0.17	U	0.29	U	0.12	U	0.24	Ü	0.12 U			0.23		.19 U	0.1		0.56	Ü	0.17	U	0.21	U	0.16 U	0.16 U
2,4-Dimethylphenol				0.19	U	0.32	U	0.2	U	0.26	U	0.2 U			0.26		.21 U	0.1		0.62	U	0.18	U	0.23	U	0.18 U	0.18 U
2,4-Dinitrophenol				0.93	U	1.6	U	0.98	U	1.2	U	0.99 U			1.2	U	1 U	0.9		3	U	0.89	Ū	1.1	U	0.87 U	0.88 U
2,4-Dinitrotoluene				0.19	U	0.32	U	0.2	U	0.26	U	0.2 U	0.19	U	0.26	U C	.21 U	0.1	9 U	0.62	U	0.18	U	0.23	U	0.18 U	0.18 U
2,6-Dinitrotoluene				0.19	U	0.32	U	0.2	U	0.26	U	0.2 U	0.19) U	0.26	U C	.21 U	0.1	9 U	0.62	U	0.18	U	0.23	U	0.18 U	0.18 U
2-Chloronaphthalene				0.19	U	0.32	U	0.2	U	0.26	U	0.2 U			0.26	U C	.21 U	0.1	9 U	0.62	U	0.18	U	0.23	U	0.18 U	0.18 U
2-Chlorophenol				0.19	U	0.32	U	0.2	U	0.26	U	0.2 U	0.19		0.26		.21 U	0.1		0.62	U	0.18	U	0.23	U	0.18 U	0.18 U
2-Methylnaphthalene				0.034	J	0.39	U	0.046	J	0.31	U	0.027 J			0.31		.26 U			0.75	U	0.17	J	0.28	U	0.44	0.092 J
2-Methylphenol	0.33	500	0.33	0.19	U	0.32	U	0.2	U	0.26	U	0.2 U			0.26		.21 U	0.1		0.62	U	0.18	U	0.23	U	0.18 U	0.18 U
2-Nitrophonel				0.19 0.42	U	0.32	U	0.2	U	0.26 0.56	U	0.2 U 0.44 U			0.26 0.56		.21 U	0.1		0.62	U	0.18	U	0.23	U	0.18 U	0.18 U 0.4 U
2-Nitrophenol 3,3'-Dichlorobenzidine	+	1		0.42	U	0.7	U	0.44	U	0.56	U	0.44 U 0.2 U			0.56		.46 U .21 U	0.4		1.3 0.62	U	0.4 0.18	U	0.5	U	0.39 U 0.18 U	0.4 U 0.18 U
3-Methylphenol/4-Methylphenol	0.33	500	0.33	0.19	U	0.32	U	0.29	U	0.26	U	0.2 U	0.19		0.26		.21 U	0.1		0.62	U	0.18	U	0.23	U	0.18 U	0.18 U
3-Nitroaniline	0.55	300	0.55	0.28	U	0.40	U	0.29	U	0.36	U	0.034 J			0.37		.31 U	0.2		0.62	U	0.27	U	0.34	U	0.18 U	0.18 U
4,6-Dinitro-o-cresol	1	1		0.13	U	0.84	U	0.53	U	0.68	U	0.53 U			0.68		.56 U	0.4		1.6	U	0.48	U	0.61	U	0.47 U	0.48 U
4-Bromophenyl phenyl ether				0.19	U	0.32	U	0.2	U	0.26	U	0.2 U	0.19		0.26		.21 U	0.1		0.62	U	0.18	U	0.23	U	0.18 U	0.18 U
4-Chloroaniline				0.19	U	0.32	U	0.2	U	0.26	U	0.2 U	0.19) U	0.26	U C	.21 U	0.1	9 U	0.62	U	0.18	U	0.23	U	0.18 U	0.18 U
4-Chlorophenyl phenyl ether				0.19	U	0.32	U	0.2	U	0.26	U	0.2 U	0.19) U	0.26	U C	.21 U	0.1	9 U	0.62	U	0.18	U	0.23	U	0.18 U	0.18 U
4-Nitroaniline				0.19	U	0.32	U	0.2	U	0.26	U	0.2 U	0.19	U	0.26	U C	.21 U	0.1	9 U	0.62	U	0.18	U	0.23	U	0.18 U	0.18 U
4-Nitrophenol				0.27	U	0.45	U	0.28	U	0.36	U	0.29 U	0.26		0.36).3 U	0.2		0.87	U	0.26	U	0.33	U	0.25 U	0.26 U
Acenaphthene	20	500	98	0.15	U	0.26	U	0.029	J	0.21	U	0.036 J			0.03		.17 U	0.09		0.5	U	0.03	J	0.19	U	0.14 U	0.18
Acenaphthylene	100	500	107	0.15	U	0.26	U	0.037	J	0.21	U	0.23	0.16		0.21		.17 U	0.0		0.098	J	0.28		0.19	U	0.14 U	0.17
Acetophenone	100	F00	1000	0.19	U	0.32	U	0.2 0.08	U	0.26	U	0.2 U	0.19		0.26		.21 U	0.1 1. 1		0.62	U	0.18 0.46	U	0.23 0.14	U	0.18 U 0.036 J	0.18 U
Anthracene	100	500	1000	0.12 0.15	U	0.19	U	0.08	J	0.16	U	0.4 0.16 U	0.15		0.069 0.21		.13 U .17 U	0.1		0.5	U	0.46	- 11	0.14	U		
Atrazine Benzaldehyde				0.15	U	0.26	U	0.16	U	0.21	U	0.16 U			0.21		.17 U			0.5	J	0.13	U	0.19	U	0.14 U 0.24 U	0.15 U 0.24 U
Benzo(a)anthracene	1	5.6	1	0.05	J	0.22	ı	0.27	0	0.16	U	1.4	0.41		0.11		.13 U	4		0.082	j	3.9	U	0.14	U	0.099 J	1.1
Benzo(a)pyrene	1	1	22	0.059	J	0.26	Ū	0.32		0.21	U	1.6	0.36		0.097		.17 U	3.9		0.5	U	5.8		0.19	Ü	0.096 J	0.95
Benzo(b)fluoranthene	1	5.6	1.7	0.078	J	0.062	J	0.38		0.16	U	1.7	0.42		0.12		.13 U	4.6		0.12	j	7.3		0.14	U	0.12	1.3
Benzo(ghi)perylene	100	500	1000	0.073	J	0.048	J	0.24		0.21	U	1.1	0.21	1	0.086	J (.17 U	2.7	7	0.091	J	5.8		0.19	U	0.12 J	0.58
Benzo(k)fluoranthene	0.8	56	1.7	0.12	U	0.19	U	0.13		0.16	U	0.73	0.14	4	0.044	J (.13 U	1.6	6	0.37	U	2		0.14	U	0.045 J	0.35
Biphenyl				0.44	U	0.74	U	0.46	U	0.6	U	0.47 U	0.42		0.59		.49 U	0.02		1.4	U	0.025	J	0.53	U	0.042 J	0.032 J
Bis(2-chloroethoxy)methane				0.21	U	0.35	U	0.22	U	0.28	U	0.22 U			0.28		.23 U			0.67	U	0.2	U	0.25	U	0.2 U	0.2 U
Bis(2-chloroethyl)ether				0.17	U	0.29	U	0.18	U	0.24	U	0.18 U			0.23		.19 U	0.1		0.56	U	0.17	U	0.21	U	0.16 U	0.16 U
Bis(2-chloroisopropyl)ether	1	1		0.23	U	0.39	U	0.24	U	0.31	U	0.25 U	0.2.		0.31		.26 U	0.2		0.75	U	0.22	U	0.28	U	0.22 U	0.22 U
Bis(2-ethylhexyl)phthalate				0.19 0.19	U	0.32	U	0.2	U	0.26	U	0.2 U 0.2 U			0.26 0.26		.21 U	0.1		0.62	U	0.18 0.18	U	0.23	U	0.18 U 0.18 U	0.18 U 0.18 U
Butyl benzyl phthalate Caprolactam	+	1		0.19	U	0.32	U	0.2	U	0.26	U	0.2 U			0.26		.21 U	0.1		0.62	U	0.18	U	0.23	II	0.18 U	0.18 U
Carbazole				0.19	U	0.32	U	0.053	J	0.26	Ü	0.15 J					.21 U			0.62	U	0.23	0	0.23	U	0.023 J	0.39
Chrysene	1	56	1	0.067		0.043	J	0.033	-	0.16	Ü	1.1	0.36				.13 U			0.086	Ĵ	3.4		0.14	U	0.14	1.1
Di-n-butylphthalate				0.19	U	0.32	U	0.2	U	0.26	U	0.2 U					.21 U			0.62	U	0.18	U	0.23	U	0.18 U	0.18 U
Di-n-octylphthalate				0.19	U	0.32	U	0.2	U	0.26	U	0.2 U			0.26		.21 U			0.62	U	0.18	U	0.23	U	0.18 U	0.18 U
Dibenzo(a,h)anthracene	0.33	0.56	1000	0.12	U	0.19	U	0.049	J	0.16	U	0.22	0.04		0.16	U C	.13 U	0.7	78	0.37	U	0.79		0.14	U	0.11 U	0.18
Dibenzofuran	7	350	210	0.19	U	0.32	U	0.033	J	0.26	U	0.069 J					.21 U			0.62	U	0.11	J	0.23	U	0.14 J	0.22
Diethyl phthalate	1			0.19	U	0.32	U	0.2	U	0.26	U	0.2 U			0.26		.21 U			0.62	U	0.18	U	0.23	U	0.18 U	0.18 U
Dimethyl phthalate	105		100-	0.19	U	0.32	U	0.2	U	0.26	U	0.2 U					.21 U			0.62	U	0.18	U	0.23	U	0.18 U	0.18 U
Fluoranthene	100	500	1000	0.076	J	0.071	J	0.59	 	0.16	U	2	0.95		0.25		.13 U			0.37	U	3.6		0.14	U	0.1 J	2.8
Fluorene	30 0.33	500	386	0.19 0.12	U	0.32	U	0.039 0.12	J	0.26 0.16	U	0.091 J 0.12 U					.21 U			0.62	U	0.08 0.11	J U	0.23 0.14	U	0.026 J 0.11 U	0.35 0.11 U
Hexachlorobenzene Hexachlorobutadiene	0.55	0	3.2	0.12	U	0.19	U	0.12	U	0.16	U	0.12 U					.13 U .21 U			0.62	U	0.11	U	0.14	U	0.11 U 0.18 U	0.11 U
Hexachlorocyclopentadiene				0.15	UJ	0.92	UJ	0.58	U	0.20	U	0.59 U			0.20		.61 UJ			1.8	U	0.18	U	0.67	U	0.18 U	0.16 U
Hexachloroethane				0.33	U	0.32	U	0.36	U	0.73	U	0.16 U					.17 U			0.5	U	0.33	U	0.19	U	0.14 U	0.32 U
Indeno(1,2,3-cd)pyrene	0.5	5.6	8.2	0.051	J	0.26	U	0.2		0.21	U	1	0.2				.17 U			0.5	Ü	5.2		0.19	U	0.078 J	0.62
Isophorone				0.17	U	0.29	U	0.18	U	0.24	U	0.18 U			0.23		.19 U			0.56	U	0.17	U	0.21	U	0.16 U	0.16 U
n-Nitrosodi-n-propylamine				0.19	U	0.32	U	0.2	U	0.26	U	0.2 U	0.19) U	0.26	U C	.21 U	0.1	9 U	0.62	U	0.18	U	0.23	U	0.18 U	0.18 U
Naphthalene	12	500	12	0.036	J	0.039	J	0.067	J	0.26	U	0.13 J					.21 U			0.11	J	0.13	J	0.23	U	0.19	0.29
NDPA/DPA		1		0.15	U	0.26	U	0.16	U	0.21	U	0.16 U					.17 U			0.5	U	0.15	U	0.19	U	0.14 U	0.15 U
Nitrobenzene	1			0.17	U	0.29	U	0.18	U	0.24	U	0.18 U					.19 U			0.56	U	0.17	U	0.21	U	0.16 U	0.16 U
p-Chloro-m-cresol	2.0		2.2	0.19	U	0.32	U	0.2	U	0.26	U	0.2 U					.21 U			0.62	U	0.18	U	0.23	U	0.18 U	0.18 U
Pentachlorophenol	0.8	6.7	0.8	0.15	U	0.26	U	0.16	U	0.21	U	0.16 U			0.21		.17 U			0.5	U	0.15	U	0.19	U	0.14 UJ	0.15 UJ
Phenal	100	500	1000	0.087	J	0.084	J	0.51		0.16	U	0.89	0.94		0.24		.13 U			0.37	U	1.8	- 11	0.14	U	0.4	0.19
Phenol	0.33	500 500	0.33 1000	0.19 0.07	J	0.32 0.067	U	0.2 0.53	U	0.26 0.16	U	0.041 J 1.8	0.03		0.26 0.2		.21 U			0.62 0.092	J	0.18 3.7	U	0.23 0.14	U	0.18 U 0.11	0.18 U
Pyrene Total TIC Compounds	100	300	1000	0.07	U	33.5	J	0.33	J	5.01	U J	4.34 J	2.34		0.2		.13 U			11	,	21.7	1	9.52	ı	6.62 J	4.03 J
Petroleum Hydrocarbon Quantitation	_1	1	1		5	55.5	,	0.20		3.01		1 7.57 5	2.3	· •	0.77	-	<u> </u>							5.52	,	0.02	7.00
TPH (C10-C36)				28.6	J	-	-	71		-	-	333	-	-	71.6			31	8	-	-	128		-	-		
<u> </u>	i	1	•		-			·	i												1						

LOCATION				SB-101 FILL	SB-101	NATIVE	SB-102	FILL	SB-102	NATIVE	SB-10	3 FILL	SB-103 I	NATIVE	SB-10	4 FILL	SB-104	NATIVE	SB-105	FILL	SB-105	NATIVE	SB-10	06 FILL	SB-106	NATIVE	SB-106A	FILL S	SB-106A N	IATIVE
SAMPLING DATE				11/26/2024	11/26	6/2024	11/25/	2024	11/25	/2024	11/25	/2024	11/25/	/2024	11/26	/2024	11/26	/2024	11/25/	2024	11/25	/2024	11/2	5/2024	11/25	/2024	11/25/2	2024	11/25/2	2024
LAB SAMPLE ID				L2469906-01		906-02	L24695			590-02		590-03	L24695		L24699			906-04	L24695			590-06		590-07	L24695		L246959		L246959	
SAMPLE TYPE SAMPLE DEPTH (ft.)				SOIL 4-10	SC	OIL -15	SOI 3-8			OIL -20		OIL -6	SO 8-1		50 5-			OIL -20	SO:		SC	OIL -15		OIL I-6	50 9-		SOII 1-5		SOIL 8-10	
	Unrestricted	Commercial	Protection of	4-10	12.	-15 	3-0	•	10-	-20		-6 	0-1	14	3-	10		-20	U-:	,	10-	-15	'	1-6	9-	15	1-3			
Analyte	Use SCO	Use SCO	Groundwater	Results Qua	l Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual F	Results	Qual
Polychlorinated Biphenyls by GC						,						,																		
Aroclor 1016	0.1	1	3.2	0.0546 U	0.0971	U	0.0566	U	0.0752	U	0.0587	U	0.056	U	0.0753	U	0.061	U	0.0532	U	0.174	U	0.0541	U	0.0678	U	-	-	-	-
Aroclor 1221 Aroclor 1232	0.1	1	3.2 3.2	0.0546 U 0.0546 U		U	0.0566 0.0566	U	0.0752 0.0752	U	0.0587 0.0587	U	0.056 0.056	U	0.0753 0.0753	U	0.061	U	0.0532 0.0532	U	0.174 0.174	U	0.0541 0.0541	U	0.0678 0.0678	U	-	-	-	-
Aroclor 1242	0.1	1	3.2	0.0546 U		U	0.0566	U	0.0752	U	0.0587	U	0.056	U	0.0753	U	0.061	U	0.0532	U	0.174	U	0.0541	U	0.0678	U	-	-	-	-
Aroclor 1248	0.1	1	3.2	0.0546 U		Ü	0.0566	U	0.0752	U	0.0587	Ü	0.056	U	0.0753	U	0.061	Ü	0.0532	U	0.174	U	0.0541	U	0.0678	U	-	-	-	-
Aroclor 1254	0.1	1	3.2	0.0137 J	0.0971	U	0.0566	U	0.0752	U	0.0587	U	0.056	U	0.0753	U	0.061	U	0.0532	U	0.174	U	0.0541	U	0.0678	U	-	-	-	-
Aroclor 1260	0.1	1	3.2	0.0546 U		U	0.0566	U	0.0752	U	0.0587	U	0.056	U	0.0753	U	0.061	U	0.0532	U	0.174	U	0.0541	U	0.0678	U	-	-	-	-
Aroclor 1262	0.1	1	3.2	0.0546 U		U	0.0566	U	0.0752	U	0.0587	U	0.056	U	0.0753	U	0.061	U	0.0532	U	0.174	U	0.0541	U	0.0678	U	-	-		-
Aroclor 1268	0.1	1	3.2	0.00994 JIF		J	0.0566	U	0.0752	U	0.0587	U	0.056	U	0.0753	U	0.061	U	0.0532	U	0.174	U	0.0541	U	0.0678	U	-	-	-	-
PCBs, Total Chlorinated Herbicides by GC	0.1	1	3.2	0.0236 J	0.018	J	0.0566	U	0.0752	U	0.0587	U	0.056	U	0.0753	U	0.061	U	0.0532	U	0.174	U	0.0541	U	0.0678	U	-	-		
2,4,5-T				0.194 U	0.322	U	0.201	U	0.262	U	0.206	U	0.19	U	0.254	U	0.211	U	0.187	U	0.619	U	0.182	U	0.233	U	-	-		-
2,4,5-TP (Silvex)	3.8	500	3.8	0.194 U		U	0.201	U	0.262	U	0.206	U	0.19	U	0.254	U	0.211	U	0.187	U	0.619	U	0.182	U	0.233	U	-	-	-	-
2,4-D				0.194 U	0.322	U	0.201	U	0.262	U	0.206	U	0.19	U	0.254	U	0.211	U	0.187	U	0.619	U	0.182	U	0.233	U	-	-	-	-
Organochlorine Pesticides by GC				·																										
4,4'-DDD	0.0033	92	14	0.00186 U		U	0.00194		0.00248		0.00194		0.00176	U	0.00239	U	0.00198	U	0.00172		0.00576	U	0.00172	U	0.00221	U	-	-		-
4,4'-DDE 4,4'-DDT	0.0033	62 47	17 136	0.00186 U 0.00186 U		U	0.00194 0.00194	U	0.00248	U	0.00194 0.00194		0.00176 0.00176	U	0.00239	U	0.00198	U	0.00172 0.00172	U	0.00576	U	0.00172	U	0.00221	U	-	-	-	-
Aldrin	0.0033	0.68	0.19	0.00186 U		U	0.00194	U	0.00248	U	0.00194		0.00176	U	0.00239	U	0.00198	U	0.00172	U	0.00576	U	0.00172	U	0.00221	U	-	-	-	-
Alpha-BHC	0.003	3.4	0.02	0.00078 U			0.00081		0.00240	U	0.00081	U	0.00073	U	0.00099	U	0.00083	U	0.00172	U	0.0024	U	0.00072	U	0.000221	U	-	-	-	-
Beta-BHC	0.036	3	0.09	0.00186 U		Ü	0.00194	U	0.00248		0.00194	Ü	0.00176	U	0.00239	U	0.00198	Ü	0.00172	U	0.00576	Ü	0.00172	U	0.00221	U	-	-	-	_
Chlordane				0.0155 U	0.0257	U	0.0162	U	0.0207	U	0.0162	U	0.0147	U	0.0199	U	0.0165	U	0.0143	U	0.048	U	0.0143	U	0.0184	U	-	-	-	-
cis-Chlordane	0.094	24	2.9	0.00233 U		U	0.00243	U	0.0031	U	0.00243	U	0.0022	U	0.00298	U	0.00248	U	0.00215	U	0.0072	U	0.00215	U	0.00276	U	-	-	-	-
Delta-BHC	0.04	500	0.25	0.00186 U		U	0.00194	U	0.00248		0.00194		0.00176	U	0.00239	U	0.00198	U	0.00172	U	0.00576	U	0.00172	U	0.00221	U	-	-	-	-
Dieldrin	0.005	1.4	0.1	0.00117 U		U	0.00121	U	0.00155	U	0.00122	U	0.0011	U	0.00149	U	0.00124	U	0.00107	U	0.0036	U	0.00107	U	0.00138	U	-	-		-
Endosulfan I Endosulfan II	2.4	200	102 102	0.00186 U 0.00186 U		U	0.00194	U	0.00248	U	0.00194		0.00176 0.00176	U	0.00239	U	0.00198	U	0.00172 0.00172	U	0.00576	U	0.00172	U	0.00221	U		-		
Endosulfan sulfate	2.4	200	1000	0.00078 U		U	0.00194	U	0.00248	U	0.00194	U	0.00170	U	0.00233	U	0.00138	U	0.00172	U	0.00376	U	0.00172	U	0.00221	U	_	-		
Endrin	0.014	89	0.06	0.00078 U		Ü	0.00081	Ü	0.00104	U	0.00081	Ü	0.00073	U	0.00099	U	0.00083	Ü	0.00072	Ü	0.0024	Ü	0.00072	U	0.00092	Ü	-	-	-	-
Endrin aldehyde				0.00233 U		U	0.00243	U	0.0031	U	0.00243	U	0.0022	U	0.00298	U	0.00248	U	0.00215	U	0.0072	U	0.00215	U	0.00276	U	-	-	-	-
Endrin ketone				0.00186 U	0.00308	U	0.00194	U	0.00248	U	0.00194	U	0.00176	U	0.00239	U	0.00198	U	0.00172	U	0.00576	U	0.00172	U	0.00221	U	-	-	-	-
Heptachlor	0.042	15	0.38	0.00093 U		U	0.00097	U	0.00124	U	0.00097	U	0.00088	U	0.00119	U	0.00099	U	0.00086	U	0.00288	U	0.00086	U	0.0011	U	-	-	-	-
Heptachlor epoxide				0.0035 U		U	0.00364	U	0.00466	U	0.00365	U	0.0033	U	0.00447	U	0.00372	U	0.00322	U	0.0108	U	0.00322	U	0.00414	U	-	-	-	-
Lindane Methoxychlor	0.1	9.2	0.1	0.00078 U 0.0035 U		U	0.00081	U	0.00104	U	0.00081	U	0.00073	U	0.00099	U	0.00083	U	0.00072	U	0.0024	U	0.00072	U	0.00092	U	-	-		-
Toxaphene				0.0035 U 0.035 U		U	0.00364	U	0.0466	U	0.00365	U	0.0033	U	0.00447	U	0.00372	U	0.00322	U	0.0108	U	0.00322	U	0.00414	U	-	-	-	-
trans-Chlordane				0.00233 U			0.00243	U	0.0031		0.00243		0.0022	U	0.00298	U	0.00248	U	0.00215	U	0.0072	U	0.00215	U	0.00276	U	-	-	-	-
Total Metals		-	<u>l</u>					•												•				,						
Aluminum, Total				6980	8410		5590		1230		4790		4490		1700		2820		1750		4270		2530		743		-	-	-	-
Antimony, Total				0.753 J		U	1.36	J	12.5	U	1.8	J	15.4		6.18	J	5.1	U	7.53	J	4.48	J	0.411	J	5.52	U	-	-	-	-
Arsenic, Total	13	16	16	9.39	4.96		11.8		0.892	J	10.9		27.7		20.8		3.01		37.6		22.6		13.9		1.56		-	-	-	-
Barium, Total Beryllium, Total	350 7.2	400	820 47	32 0.525	40.4 0.477		67.7	-	57.7 1.25	11	48.6	—	58.3		55.4		14.8		61.3	-	56.8		67.2	<u> </u>	9.28		-	-	-	-
Cadmium, Total	2.5	590 9.3	7.5	0.525 0.917 U		U	0.399 0.959	J	2.51		0.496 0.103		0.316 0.17	J	0.198 0.512	J	0.149 1.02	J U	0.661 4.41	U	0.633 3.03	U	0.388 0.863	U	0.124 1.1	U	-	-		-
Calcium, Total		5.5	7.5	2000	23000	⊢ Ŭ	45200		237000		3590		18100	-	7790	•	58800	⊢ Ŭ	5180	J	57900		4020		11900	_	-	-	-	-
Chromium, Hexavalent	400	19	1	0.938 U		J	0.984	U	1.26	U	1.01	U	0.922	U	1.25	U	1.03	U	0.905	U	3.04	U	0.29	U	1.14	U	-	-	-	-
Chromium, Total				18.1	13.8		16.5		2.54		9.95		19.1		6.81		5.31		22.8		46.3		114		5.45		-	-	-	-
Cobalt, Total				11.1	6.77		8.96		0.993	J	5.65		7.09		7.41		3.25		13.4		9.32		5.59		2.24		-	-	-	-
Copper, Total	50	270	1720	38	23.2		44.4		3.71		40.3		124		65.5		11		83.4		73.4		30.8	L	20.8		-	-	-	
Cyanide, Total	27	40	27	0.4 J		U	1.1	U	1.5	U	1.2	U	0.33	J	0.32	J	1.2	U	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	U	3.7	U	1 22400	U	1.3	U	-	-	-	-
Iron, Total Lead, Total	63	1000	450	31500 22.5	18600 16.5		36300 278		2720 2.49	J	21400		53700 363		90300		7920 3.84	J	70 70		91100 49.8		32400 38.5		33500 8.97		-	-	-	
Magnesium, Total	US	1000	430	2510	6070		7920		2960	,	641		3470		591		11300	,	581		49.8		356		630		-	-	-	
Manganese, Total	1600	10000	2000	733	428		353		347		90.6		420		416		206		965		505		137	1	69.2		-	-	-	-
Mercury, Total	0.18	2.8	0.73	0.065 J		J	0.654		0.126	U	0.408		2.86		0.133		0.085	U	0.082	U	0.244	U	0.078	U	0.093	U	-	-	-	-
Nickel, Total	30	310	130	23.2	19.4		23.4		5.41	J	15.6		15.6		14.8		8.52		19.5		22		14.1		3.41		-	-	-	-
Potassium, Total				664	690		825		265	J	666		532		240	J	340		146	J	478	J	377		54.5	J	-	-	-	
Selenium, Total	3.9	1500	4	1.83 U			1.92	U	0.917	J	1.01	J	0.446	J	1.41	J	0.35	J	8.82	U	4.44	J	0.905	J	2.21	U	-	-	-	
Silver, Total Sodium, Total	2	1500	8.3	0.459 U 141 J		U	0.479 236	U	1.25 346	J	0.498 238	U	0.516 216		1.21 93	J	0.51 98.2	U J	2.2 160	U J	1.51 1060	U	0.432 271	U	0.552 399	U	-	-	-	-
Thallium, Total	+	+		0.378 J		U	1.92	U	5.02	U	1.99	U	1.79	U	4.83	U	2.04	U	8.82	U	6.05	U	1.73	U	2.21	U	-	-	-	-
Vanadium, Total	1			31.1	19.1	_ <u> </u>	24.2		2.17	J	16.5	_ <u> </u>	15.4	J	15.4		8.03	⊢ Ŭ	74		51.7		12.3	-	17.2		-	-	-	-
Zinc, Total	109	10000	2480	39.6	39.4		108		14.9		44.4		92.4		102		17.3		55.9		83		24.9		11.9		-	-	-	-

LOCATION				SB-10	1 FILL	SB-101	NATIVE	SB-102 F	ILL	SB-102 N	IATIVE	SB-10	3 FILL	SB-103	NATIVE	SB-104	4 FILL	SB-104 NATIVE	SB-105 FILL	SB-10	5 NATIVE	SB-1	06 FILL	SB-106	NATIVE	SB-10	06A FILL	SB-106A NATIVE
SAMPLING DATE				11/26	/2024	11/26	/2024	11/25/20	024	11/25/2	2024	11/25	/2024	11/25	/2024	11/26/	/2024	11/26/2024	11/25/2024	11/2	25/2024	11/2	5/2024	11/25	/2024	11/2	5/2024	11/25/2024
LAB SAMPLE ID				L2469	906-01	L24699	06-02	L2469590	0-01	L246959	90-02	L2469	590-03	L2469	590-04	L24699	906-03	L2469906-04	L2469590-05	L246	9590-06	L2469	9590-07	L24695	590-08	L2469	9590-09	L2469590-10
SAMPLE TYPE				SC	OIL	SC	IL	SOIL		SOII	L	SC	DIL	SC	DIL	SO	IL	SOIL	SOIL	5	SOIL	S	OIL	SC	DIL	S	OIL	SOIL
SAMPLE DEPTH (ft.)				4-	·10	12-	15	3-8		10-2	20	2-	-6	8-	14	5-1	10	15-20	0-5	1	0-15		1-6	9-	15	1	1-5	8-10
Analyte	Unrestricted Use SCO	Commercial Use SCO	Protection of Groundwater	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results Qual	Results Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results Qual
Perfluorinated Alkyl Acids by EPA 1633																												
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid (11Cl-PF3OUdS)				0.795	U	0.794	U	0.794	U	0.797	U	0.794	U	0.792	U	0.792	U	0.788 U	0.78 U	1.22	U	0.797	U	0.786	U	-	-	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)				0.795	U	0.794	U	0.794	U	0.797	U	0.794	U	0.792	J	0.792	U	0.788 U	0.78 U	1.22	U	0.797	U	0.786	U	-	- '	
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)				0.795	U	0.794	U	0.794	U	0.797	U	0.794	U	0.792	J	0.792	U	0.788 U	0.78 U	1.22	U	0.797	U	0.786	U	-	-	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)				0.795	U	0.794	U	0.794	U	0.797	U	0.794	U	0.792	U	0.792	U	0.788 U	0.78 U	1.22	U	0.797	U	0.786	U	-	-	
2H,2H,3H,3H-Perfluorooctanoic Acid (5:3FTCA)				4.97	U	4.96	U	4.96	U	4.98	U	4.96	U	4.95	U	4.95	U	4.92 U	4.88 U	7.6	U	4.98	U	4.91	U	-	-	
3-Perfluoroheptyl Propanoic Acid (7:3FTCA)				4.97	U	4.96	U	4.96	U	4.98	U	4.96	U	4.95	U	4.95	U	4.92 U	4.88 U	7.6	U	4.98	U	4.91	U	-	- '	
3-Perfluoropropyl Propanoic Acid (3:3FTCA)				0.994	U	0.992	U	0.992	U	0.996	U	0.993	U	0.99	U	0.99	U	0.984 U	0.975 U	1.52	U	0.996	U	0.982	U	-	-	
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)				0.795	U	0.794	U	0.794	U	0.797	U	0.794	U	0.792	U	0.792	U	0.788 U	0.78 U	1.22	U	0.797	U	0.786	U	-	-	
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid (9CI-PF3ONS)				0.795	U	0.794	U	0.794	U	0.797	U	0.794	U	0.792	U	0.792	U	0.788 U	0.78 U	1.22	U	0.797	U	0.786	U	-	-	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)				0.795	U	0.794	U	0.794	U	0.797	U	0.794	U	0.792	U	0.792	U	0.788 U	0.78 U	1.22	U	0.797	U	0.786	U	-	-	
N-Ethyl Perfluorooctane Sulfonamide (NEtFOSA)				0.199	U	0.198	U	0.198	U	0.199	U	0.198	U	0.198	U	0.198	U	0.197 U	0.195 U	0.304	U	0.199	U	0.196	U	-	-	
N-Ethyl Perfluorooctanesulfonamido Ethanol (NEtFOSE)				1.99	U	1.98	U	1.98	U	1.99	U	1.98	U	1.98	U	1.98	U	1.97 U	1.95 U	3.04	U	1.99	U	1.96	U	-	-	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)				0.199	U	0.198	U	0.198	U	0.199	U	0.198	U	0.198	U	0.198	U	0.197 U	0.195 U	0.304	U	0.199	U	0.196	U	-	-	
N-Methyl Perfluorooctane Sulfonamide (NMeFOSA)				0.199	U	0.198	U	0.198	U	0.199	U	0.198	U	0.198	U	0.198	U	0.197 U	0.195 U	0.304	U	0.199	U	0.196	U	-	-	
N-Methyl Perfluorooctanesulfonamido Ethanol (NMeFOSE)				1.99	U	1.98	U	1.98	U	1.99	U	1.98	U	1.98	U	1.98	U	1.97 U	1.95 U	3.04	U	1.99	U	1.96	U	-	T -	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)				0.199	U	0.198	U	0.198	U	0.199	U	0.198	U	0.198	U	0.198	U	0.197 U	0.195 U	0.304	U	0.199	U	0.196	U	-	T -	
Nonafluoro-3,6-Dioxaheptanoic Acid (NFDHA)				0.397	U	0.397	U	0.397	U	0.398	U	0.397	U	0.396	U	0.396	U	0.394 U	0.39 U	0.608	U	0.398	U	0.393	U	-	T -	
Perfluoro(2-Ethoxyethane)Sulfonic Acid (PFEESA)				0.397	U	0.397	U	0.397	U	0.398	U	0.397	U	0.396	U	0.396	U	0.394 U	0.39 U	0.608	U	0.398	U	0.393	U	-	T -	
Perfluoro-3-Methoxypropanoic Acid (PFMPA)				0.397	U	0.397	U	0.397	U	0.398	U	0.397	U	0.396	U	0.396	U	0.394 U	0.39 U	0.608	U	0.398	U	0.393	U	-	-	
Perfluoro-4-Methoxybutanoic Acid (PFMBA)				0.397	U	0.397	U	0.397	U	0.398	U	0.397	U	0.396	U	0.396	U	0.394 U	0.39 U	0.608	U	0.398	U	0.393	U	-	-	
Perfluorobutanesulfonic Acid (PFBS)				0.199	U	0.198	U	0.198	U	0.199	U	0.198	U	0.198	U	0.198	U	0.197 U	0.195 U	0.304		0.199	U	0.196	U	-		
Perfluorobutanoic Acid (PFBA)				0.795	U	0.794	U	0.077	J	0.797	U	0.794	U	0.792	U	0.792	U	0.788 U	0.78 U	1.22	U	0.797	U	0.786	U	-		
Perfluorodecanesulfonic Acid (PFDS)				0.199	U	0.198	U	0.198	U	0.199	U	0.198	U	0.198	U	0.198	U	0.197 U	0.195 U	0.304	U	0.199	U	0.196	U	-	<u></u>	
Perfluorodecanoic Acid (PFDA)				0.199	U	0.198	Ü	0.198	U	0.199	Ü	0.198	Ü	0.198	Ü	0.198	Ü	0.197 U	0.195 U	0.304	Ü	0.199	Ü	0.196	U	-	-	
Perfluorododecanesulfonic Acid (PFDoS)				0.199	U	0.198	Ü	0.198	U	0.199	Ü	0.198	Ü	0.198	Ü	0.198	Ü	0.197 U	0.195 U	0.304		0.199	Ü	0.196	U	-	-	
Perfluorododecanoic Acid (PFDoA)				0.199	U	0.198	Ü	0.198	U	0.199	Ü	0.198	Ü	0.198	Ü	0.198	Ü	0.197 U	0.195 U	0.304	Ü	0.199	Ü	0.196	U	-	-	
Perfluoroheptanesulfonic Acid (PFHpS)				0.199	U	0.198	U	0.198	Ū	0.199	U	0.198	Ü	0.198	U	0.198	U	0.197 U	0.195 U	0.304	U	0.199	Ü	0.196	U	-		
Perfluoroheptanoic Acid (PFHpA)				0.199	Ü	0.198	U	0.046	j	0.199	U	0.198	Ü	0.027	j	0.198	U	0.197 U	0.195 U	0.304	U	0.199	Ü	0.196	U	-	-	
Perfluorohexanesulfonic Acid (PFHxS)				0.199	U	0.198	U	0.198	U	0.199	Ū	0.198	Ü	0.198	U	0.198	U	0.197 U	0.195 U	0.304		0.199	Ū	0.023	J	-	┼-	
Perfluorohexanoic Acid (PFHxA)				0.199	U	0.198	U	0.17	j	0.199	U	0.198	Ü	0.198	Ü	0.198	U	0.197 U	0.195 U	0.304	Ü	0.199	U	0.196	U	-	+-	
Perfluorononanesulfonic Acid (PFNS)				0.199	Ü	0.198	U	0.198	U	0.199	Ü	0.198	Ü	0.198	U	0.198	U	0.197 U	0.195 U	0.304	U	0.199	Ü	0.196	U	_	+	
Perfluorononanoic Acid (PFNA)				0.199	U	0.198	U	0.198	U	0.199	U	0.198	U	0.198	U	0.198	U	0.197 U	0.195 U	0.304		0.199	Ü	0.196	U		<u> </u>	
Perfluorooctanesulfonamide (PFOSA)				0.199	Ü	0.198	U	0.198	U	0.199	U	0.198	II	0.198	U	0.198	U	0.197 U	0.195 U	0.304	U	0.199	Ü	0.196	U		+-	
Perfluorooctanesulfonic Acid (PFOS)	0.88	440	1	0.096	Ĭ	0.198	U	0.092	j	0.199	U	0.198	II	0.101	J	0.198	II	0.197 U	0.052 J	0.304	U	0.199	U	0.204	-	_	 - '	
Perfluorooctanics Acid (PFOA)	0.66	500	0.8	0.090	J	0.198	U	0.032	-	0.199	U	0.198	U	0.05	J	0.198	U	0.197 U	0.195 U	0.304	U	0.199	J	0.026	J	_	+'	
Perfluoropentanesulfonic Acid (PFPeS)	0.00	500	0.0	0.199	U	0.198	U	0.198	U	0.199	U	0.198	U	0.198	U	0.198	U	0.197 U	0.195 U	0.304		0.199	U	0.196	U		+'	
Perfluoropentanic Acid (PFPeA)	<u> </u>		<u> </u>	0.199	U	0.190	U	0.195	J	0.199	U	0.190	11	0.196	U	0.396	U	0.197 U	0.193 U	0.608		0.199	U	0.190	U	_	+'	
Perfluorotetradecanoic Acid (PFTeDA)	1		1	0.397	U	0.397	U	0.193	U	0.398	U	0.397	II	0.390	U	0.390	U	0.197 U	0.195 U	0.304	U	0.199	U	0.393	IJ	<u> </u>	<u>+</u> '	
Perfluorotridecanoic Acid (PFTrDA)				0.199	U	0.198	U	0.198	U	0.199	U	0.198	U	0.198	U	0.198	U	0.197 U	0.193 U	0.304	U	0.199	U	0.196	IJ		-	
Perfluoroundecanoic Acid (PFUnA)	+		 	0.199	U	0.198	IJ	0.198	U	0.199	U	0.198	U	0.198	U	0.198	U	0.197 U	0.195 U	0.304		0.199	U	0.196	IJ	H	-	
remuoroundecanoic Acid (PPONA)				0.199	U	0.196	U	0.190	U	0.199	U	0.190	U	0.196	U	0.190	U	0.197 U	0.195 U	0.504	U	0.199	U	0.190	U	-		-

- $All \ values \ are \ reported \ in \ milligrams \ per \ kilogram \ (mg/kg) \ / \ parts \ per \ million \ (ppm) \ except \ PFAAs \ which \ are \ reported \ in \ micrograms$
- per kilogram ($\mu g/kg$) / parts per billion (ppb).
- Analytical results compared to New York 6 NYCRR Part 375 Soil Cleanup Objectives (SCOs).
- Bolded text indicates analyte detected at concentrations greater than laboratory detection limits.
 Highlighted cell Indicates analyte exceeds the respective standard/guideline value.
- **Red text** indicates analyte exceeds Protection of Groundwater SCO.
- Blue qualifiers were applied based on a third party data usability review.
- Grey highlighted cell indicates the laboratory detection limit exceeds the respective standard/guideline value.
- "U" indicates the analyte was not detected at the reported detection limit for the sample.
- "UJ" indicates the analyte was analyzed for, but was not detected. The associated reported quantitation limit is approximate and may be inaccurate or imprecise.
- "J" indicates estimated value.
- "J+" indicates the analyte was positively identified; the associated numerical value is an estimated quantity that may be biased high.
- "I" indicates the lower value for the two columns has been reported due to obvious interference.
- "P" indicates the RPD between the results for the two columns exceeds the method-specified criteria.
- "EMPC" indicates the results do not meet all criteria for a confirmed identification. The quantitative value represents the Estimated Maximum Possible Concentration of the analyte in the sample.
- "R" indicates the data are unusable. The sample results are rejected due to serious deficiencies in meeting Quality Control limits. The analyte may or may not be present.

LOCATION				SB-106	B FILL	SB-106B NATIV	E SB-106C	FILL S	SB-106C N/	ATIVE	SB-107	FILL	SB-107 NATIV	SB-108	8 FILL	SB-108 N	ATIVE	SB-109 FILI	SB-	109 NATIVI	E SB-1	10 FILL	SB-110	NATIVE	SB-111 F	ILL	SB-111 NATIVE
SAMPLING DATE				11/25	/2024	11/25/2024	11/25/2	024	11/25/20	024	11/25/2	2024	11/25/2024	11/25/	/2024	11/25/2	2024	11/25/2024	1	1/25/2024	11/2	25/2024	11/2	5/2024	11/26/20	024	11/26/2024
LAB SAMPLE ID				L24695	90-11	L2469590-12	L2469590	0-13	L2469590)-14	L246959	90-17	L2469590-18	L24695	90-15	L246959	90-16	L2469590-1		469590-20	_	9590-21	L2469	590-22	L2469906	5-05	L2469906-06
SAMPLE TYPE				SO	IL	SOIL	SOIL		SOIL		SOI	L	SOIL	so	IL	SOI	L	SOIL		SOIL		OIL	S	OIL	SOIL		SOIL
SAMPLE DEPTH (ft.)				1-	5	10-12	1-5		10-12		1-6	5	8-10	0.5	-8	8-1	5	1-5		7-10		1-7	15	-20	2-8		9-15
Analyte	Unrestricted Use SCO	Commercial Use SCO	Protection of Groundwater	Results	Qual	Results Qual	Results	Qual	Results	Qual F	Results	Qual	Results Qua	Results	Qual	Results	Qual	Results Qu	al Resu	ılts Qua	l Results	Qual	Results	Qual	Results	Qual	Results Qual
Volatile Organics by EPA 5035																		,		·				1	•		
1,1,1-Trichloroethane	0.68	500	0.68	0.00074	U	0.00082 U	0.0011	U	0.0018	U	0.0005	U	0.0015 U	0.00066	U	0.0026	U	0.00069 L	0.00	17 U	0.00056	5 U	0.00098	U	0.00075	U	0.00064 U
1,1,2,2-Tetrachloroethane				0.00074	U	0.00082 U	0.0011		0.0018		0.0005	U	0.0015 U	0.00066	U	0.0026	U	0.00069 U			0.00056	5 U	0.00098	U	0.00075	U	0.00064 U
1,1,2-Trichloroethane				0.0015		0.0016 U	0.0022		0.0037		0.001	U	0.003 U		U	0.0052	U	0.0014 U			0.0011	U	0.002	U	0.0015	U	0.0013 U
1,1-Dichloroethane	0.27	240	0.27	0.0015	U	0.0016 U	0.0022		0.0037		0.001	U	0.003 U	0.0013	U	0.0052	U	0.0014 U			0.0011	U	0.002	U	0.0015	U	0.0013 U
1,1-Dichloroethene	0.33	500	0.33	0.0015 0.003	U	0.0016 U	0.0022		0.0037		0.001	U	0.003 U 0.006 U	0.0013	U	0.0052	U	0.0014 U			0.0011	U	0.002	U	0.0015	U	0.0013 U 0.0025 U
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	3.6	190	3.6	0.003	U	0.0033 U 0.0033 U	0.0044		0.0074		0.002	U	0.006 U 0.006 U	0.0026 0.0026	U	0.01	U	0.0028 U			0.0022	U	0.0039	U	0.003	U	0.0025 U 0.0025 U
1,2-Dibromo-3-chloropropane	3.0	190	3.0	0.003	U	0.0033 U	0.0044		0.0074		0.002	U	0.009 U	0.0020	IJ	0.015	U	0.0020 U	_		0.0022	U	0.0059	II	0.003	U	0.0023 U
1,2-Dibromoethane				0.0015	U	0.0045 U	0.0022		0.0037		0.003	U	0.003 U		U	0.0052	U	0.0042 U	_		0.0034	U	0.0033	U		U	0.0030 U
1,2-Dichlorobenzene	1.1	500	1.1	0.003	Ü	0.0033 U	0.0044		0.0074		0.002	Ū	0.006 U	0.0026	Ü	0.01	Ū	0.0028 U	_		0.0022	Ü	0.0039	Ü	0.003	U	0.0025 U
1,2-Dichloroethane	0.02	30	0.02	0.0015	U	0.0016 U	0.0022	U	0.0037	U	0.001	U	0.003 U	0.0013	U	0.0052	U	0.0014 U	0.00	34 U	0.0011	U	0.002	U	0.0015	U	0.0013 U
1,2-Dichloropropane				0.0015	U	0.0016 U	0.0022	U	0.0037	U	0.001	U	0.003 U	0.0013	U	0.0052	U	0.0014 U	0.00	34 U	0.0011	U	0.002	U	0.0015	U	0.0013 U
1,3,5-Trimethylbenzene	8.4	190	8.4	0.003	R	0.0033 U	0.0044		0.0074		0.002	U	0.006 U	0.0026	U	0.01	U	0.0028 U			0.0022	U	0.0039	U	0.003	U	0.0025 U
1,3-Dichlorobenzene	2.4	280	2.4	0.003	U	0.0033 U	0.0044		0.0074		0.002	U	0.006 U	0.0026	U	0.01	U	0.0028 U			0.0022	U	0.0039	U	0.003	U	0.0025 U
1,4-Dichlorobenzene	1.8	130	1.8	0.003	U	0.0033 U	0.0044		0.0074		0.002	U	0.006 U	0.0026	U	0.01	U	0.0028 U			0.0022	U	0.0039	U		U	0.0025 U
2-Butanone	0.12	500	0.12	0.015	U	0.016 U	0.022		0.025		0.01	U	0.008 J	0.013	U	0.052	U	0.014 U			0.011	U	0.0044	J ,.		U	0.013 U
2-Hexanone				0.015 0.015	U	0.016 U	0.022	U	0.037	U	0.01	U	0.03 U 0.03 U	0.013	U	0.052 0.052	U	0.014 U			0.011	U	0.02	U		U	0.013 U 0.013 U
4-Methyl-2-pentanone Acetone	0.05	500	0.05	0.015	U	0.016 U 0.044	0.022	U	0.037	U	0.01	U	0.03	0.013	U •	0.052	U	0.014 U	0.03		0.011	U	0.02 0.02	U	0.015	U	0.013 U 0.0064 J
Benzene	0.06	44	0.06	0.00074	U	0.00082 U	0.022	_	0.005		0.0005	U	0.0015 U	0.00066	U	0.0026	U	0.00069 U			0.00056	5 U	0.00098	U	0.00075	U	0.0004 U
Bromodichloromethane	0.00		0.00	0.00074	U	0.00082 U	0.0011		0.0018		0.0005	U	0.0015 U	0.00066	U	0.0026	U	0.00069 U			0.00056	5 U	0.00098	U	0.00075	U	0.00064 U
Bromoform				0.0059	U	0.0066 U	0.0087	U	0.015		0.004	U	0.012 UJ	0.0053	U	0.021	U	0.0055 U			0.0045	U	0.0078	U	0.006	U	0.0051 U
Bromomethane				0.003	U	0.0033 U	0.0044	U	0.0074	U	0.002	U	0.006 U	0.0026	U	0.01	U	0.0028 U	0.00	69 U	0.0022	U	0.0039	U	0.003	U	0.0025 U
Carbon disulfide				0.015	U	0.016 U	0.022	U	0.037	U	0.01	U	0.018 J	0.013	U	0.038	J	0.014 U	0.03	34 U	0.011	U	0.011	J	0.015	U	0.013 U
Carbon tetrachloride	0.76	22	0.76	0.0015	U	0.0016 U	0.0022	U	0.0037	U	0.001	U	0.003 U	0.0013	U	0.0052	U	0.0014 U	0.00	34 U	0.0011	U	0.002	U	0.0015	U	0.0013 U
Chlorobenzene	1.1	500	1.1	0.00074	U	0.00082 U	0.0011		0.0018		0.0005	U	0.0015 U	0.00066	U	0.0026	U	0.00069 U			0.00056	5 U	0.00098	U	0.00075	U	0.00064 U
Chloroethane		250	0.07	0.003	U	0.0033 U	0.0044		0.0074		0.002	U	0.006 U		U	0.01	U	0.0028 U			0.0022	U	0.0039	U		U	0.0025 U
Chloroform	0.37	350	0.37	0.0022		0.0025 U	0.0033		0.0056		0.0015	U	0.0045 U	0.002	U	0.0077	U	0.0021 U			0.0017	U	0.0029	U	0.0022	U	0.0019 U
Chloromethane cis-1,2-Dichloroethene	0.25	500	0.25	0.0059 0.0015	U	0.0066 U 0.0016 U	0.0087	U	0.015		0.004	U	0.012 U 0.003 U	0.0053	U	0.021	U	0.0055 U			0.0045	U	0.0078	U	0.006 0.0015	U	0.0051 U 0.0013 U
cis-1,3-Dichloropropene	0.23	300	0.23	0.0013	U	0.0016 U	0.0022		0.0037		0.0001	U	0.003 U	0.00013	IJ	0.0032	U	0.0014 C	_		0.00011	5 U	0.002	U			0.0013 U
Cyclohexane				0.00074	R	0.016 U	0.022		0.0018		0.0003	U	0.0013 U	0.0000	U	0.0020		0.0009 J	0.00		0.0003	U	0.00036	U	0.00073	U	0.013 U
Dibromochloromethane				0.0015	U	0.0016 U	0.0022		0.0037		0.001	Ü	0.003 U	0.0013	Ü	0.0052	U	0.0014 U	_		0.0011	Ü	0.002	Ü		Ü	0.0013 U
Dichlorodifluoromethane				0.015	U	0.016 U	0.022		0.037		0.01	U	0.03 U	0.013	U	0.052	U	0.014 U	_		0.011	Ü	0.02	U		U	0.013 U
Ethylbenzene	1	390	1	0.0015	R	0.0016 U	0.0022	U (0.00062	J	0.001	U	0.003 U	0.0013	U	0.0052	U	0.0014 U	0.00	34 U	0.0011	U	0.002	U	0.0015	U	0.0013 U
Freon-113				0.0059	U	0.0066 U	0.0087	U	0.015	U	0.004	U	0.012 U	0.0053	U	0.021	U	0.0055 U	0.0	14 U	0.0045	U	0.0078	U	0.006	U	0.0051 U
Isopropylbenzene				0.0015	U	0.0016 U	0.0022	U	0.0037		0.001	U	0.003 U	0.0013	U	0.0052	U	0.0014 U			0.0011	U	0.002	U	0.0015	U	0.0013 U
Methyl Acetate	.			0.0059	U	0.0066 U	0.0087	U	0.015		0.004	U	0.012 U	0.0053	U	0.021	U	0.0055 U			0.0045	U	0.0078	U	0.006	U	0.0051 U
Methyl cyclohexane	0.03	F00	0.00	0.0059	R	0.0066 U	0.0087		0.015		0.004	U	0.012 U	0.0053	U	0.021	U	0.0013 J	0.0		0.0045	U	0.0078	U		U	0.0051 U
Methyl tert butyl ether	0.93 0.05	500 500	0.93 0.05	0.003 0.0074	U	0.0033 U 0.0082 U	0.0044	U	0.0074		0.002	U	0.006 U 0.015 U	0.0026 0.0066	U	0.01 0.026	U	0.0028 U			0.0022	U	0.0039	U	0.003 0.0075	U	0.0025 U 0.0064 U
Methylene chloride n-Butylbenzene	12	500	12	0.0074	U	0.0082 U	0.011		0.018		0.005	U	0.013 U	0.0066	IJ	0.026	U	0.0069 C	_		0.0056	U	0.0098	U	0.0075	U	0.0064 U
n-Propylbenzene	3.9	500	3.9	0.0015	IJ	0.0016 U	0.0022		0.0037		0.001	U	0.003 U	0.0013	U	0.0052	IJ	0.0014 U		_		U	0.002	U		U	0.0013 U
Naphthalene	12	500	12	0.0059	R	0.0066 U	0.0087		0.015		0.004	U	0.012 U		U	0.0032	U	0.0055 U					0.0078	Ü			0.0051 U
o-Xylene	0.26	500	1.6	0.0015	R	0.0016 U					0.001	U		0.0013	U	0.0052		0.0014 U						U			0.0013 U
p-Isopropyltoluene	<u> </u>			0.0015		0.0016 U	0.0022		0.0037		0.001	U		0.0013	U	0.0052	U	0.0014 U			_	_		U			0.0013 U
p/m-Xylene	0.26	500	1.6	0.003	R	0.0033 U	0.0044	U	0.0074	U	0.002	U	0.006 U	0.0026	U	0.01	U	0.0028 U	0.00	69 U	0.0022	U	0.0039	U	0.003	U	0.0025 U
sec-Butylbenzene	11	500	11	0.0015	U		0.0022		0.0037		0.001	U	0.003 U		U	0.0052	U	0.0014 U			0.0011	U	0.002	U	0.0015		0.0013 U
Styrene	1			0.0015		0.0016 U			0.0037		0.001	U		0.0013	U	0.0052	U	0.0014 U				U	0.002	U			0.0013 U
tert-Butylbenzene	5.9	500	5.9	0.003		0.0033 U	0.0044				0.002	U		0.0026	U	0.01	U	0.0028 U				_	0.0039	U			0.0025 U
Tetrachloroethene	1.3	150	1.3	0.00074			0.0011		0.0018		0.0005	U		0.00066	U	0.0026	U	0.00069 U						U			0.00064 U
Toluene	0.7	500	0.7	0.0015		0.0016 U					0.001	U		0.0013	U	0.0052	U	0.0014 U				U		U			0.0013 U
trans-1,2-Dichloroethene trans-1,3-Dichloropropene	0.19	500	0.19	0.0022 0.0015		0.0025 U 0.0016 U	0.0033 0.0022		0.0056 0.0037		0.0015	U	0.0045 U 0.003 U	0.002 0.0013	U	0.0077 0.0052	U	0.0021 U			0.0017	_	0.0029	U			0.0019 U 0.0013 U
Trichloroethene	0.47	200	0.47	0.0015		0.0016 U	0.0022		0.0037		0.0001	U		0.0013	U	0.0052	U	0.0014 U				_		U II			0.0013 U
Trichlorofluoromethane	0.47	200	0.47	0.00074		0.0062 U	0.0011		0.0018		0.0003	U	0.0013 U		U	0.0026	U	0.00055 U				_		U			0.0004 U
Vinyl chloride	0.02	13	0.02	0.0033		0.0016 U	0.0022		0.0037		0.004	U	0.003 U		U	0.0052	U	0.0033 C				U		U			0.0031 U
Total TIC Compounds	1			0.0214		0.00368 J					0.0121	J	0 U		U	0	U	0 U			_	Ü	0	Ü		J	0 U
		1	1	<u> </u>		1 - 200000	, V.V.	- 1		- '		-	y I O		· ·	, l	-	· C								-	ŭ Ü

LOCATION				SB-106	B FILL	SB-106B	NATIVE	SB-106	6C FILL	SB-1060	C NATIVE	SB-107 FILL	L	SB-107 NATIVE	SI	B-108 FILL	SB-108	NATIVE	SB-10	9 FILL	SB-109	NATIVE	SB-11	10 FILL	SB-110	NATIVE	SB-111	I FILL	SB-111 NATIVE
SAMPLING DATE				11/25/	/2024	11/25/	/2024	11/25	/2024	11/2	5/2024	11/25/2024	4	11/25/2024	11	1/25/2024	11/25	/2024	11/25	5/2024	11/25	5/2024	11/2	5/2024	11/25	/2024	11/26/	/2024	11/26/2024
LAB SAMPLE ID				L24695		L24695			590-13		9590-14	L2469590-1		L2469590-18		469590-15		590-16		590-19		590-20		590-21	L2469		L24699		L2469906-06
SAMPLE TYPE				SO	IL	SO	IL	SC	OIL	S	OIL	SOIL		SOIL		SOIL	SC	OIL	SC	OIL	SC	OIL	S	OIL	SC	OIL	SO	íL	SOIL
SAMPLE DEPTH (ft.)				1-	5	10-	12	1	-5	10	0-12	1-6		8-10		0.5-8	8-	15	1	-5	7-	-10	1	-7	15	-20	2-8	8	9-15
Analyte	Unrestricted Use SCO	Commercial Use SCO	Protection of Groundwater	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results Qu	ıal I	Results Qual	Resu	ults Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results Qual
Volatile Organics by EPA 5035 High						· ·		ı	ı	1	· L			l l		l .		ı	ı					1			l.		
1,1,1-Trichloroethane	0.68	500	0.68	0.036	U	-	-	-	-	-	-		-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	
1,1,2,2-Tetrachloroethane				0.036	U	-	-	-	-	-	-		-		-	-		-	-	-		-	-		-	-	-	-	
1,1,2-Trichloroethane				0.073	U	-	-	-	-	-	-		-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	
1,1-Dichloroethane	0.27	240	0.27	0.073	U	-	-	-	-	-	-		-		-	-		-	-	-		-	-	-	-	-	-	-	
1,1-Dichloroethene	0.33	500	0.33	0.073	U	-	-	-	-	-	-		-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	3.6	100	2.6	0.14 0.069	U	-	-	-	-	-	-		-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	
, ,	3.0	190	3.6	0.069	R U	-	-	-	-	-	-		-		_		-	-	-	_	-	-	-	-	-	-	-	-	
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane			1	0.22	U	-		-	-	-	-				_		-	-	-	-	-	-	-	-	-	-	-		
1,2-Dichlorobenzene	1.1	500	1.1	0.073	U	-			_	-	-		_		_	- -	 	-	-	-		_	-	-	_		-	_	
1,2-Dichloroethane	0.02	30	0.02	0.073	U	-	_	_	_	-	_		_		_		-	_	-	-	-	-	-	_	_	_	-	-	
1,2-Dichloropropane	3.52		5.52	0.073	U	-	_	-	-	-	-		- +		-	-	-	-	-	-	-	-	-	-	-	_	-		
1,3,5-Trimethylbenzene	8.4	190	8.4	0.034	R	-	-	-	-	-	-		-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	
1,3-Dichlorobenzene	2.4	280	2.4	0.14	U	-	-	-	-	-	-		-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	
1,4-Dichlorobenzene	1.8	130	1.8	0.14	U		_		_	-	_					-	_	_	-	_		_	_	-				-	
2-Butanone	0.12	500	0.12	0.73	U	-	-	-	-	-	-		-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	
2-Hexanone				0.73	U	-	-	-	-	-	-		-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	
4-Methyl-2-pentanone				0.73	U	-		-	-	-	-		-		-	-		-	-	-		-	-	-	-	-	-	-	
Acetone	0.05	500	0.05	0.73	U	-	-	-	-	-	-		-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Benzene	0.06	44	0.06	0.036	U	-	-	-	-	-	-		-		-	-		-	-	-		-	-	-	-	-	-	-	
Bromodichloromethane				0.036	U	-	-	-	-	-	-		-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Bromoform				0.29	U	-	-	-	-	-	-		_		-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Bromomethane Carbon disulfide				0.14 0.73	U	-		-	-	-	-		-				-	-	-		-	-	-	-	-	-	-	-	
Carbon tetrachloride	0.76	22	0.76	0.73	U	-		-	_	-	-		_		_		1 -	_	-	-		-	-	-	_	_	-		
Chlorobenzene	1.1	500	1.1	0.036	U	-	-	-	_	-	_		_		_	_	-	-	-	-	-	-	-	-	_	_	-	-	
Chloroethane		300		0.14	U	-	-	-	-	-	-		_		-	_	-	-	-	-	-	-	-	-	-	-	-	-	
Chloroform	0.37	350	0.37	0.11	U	-	-	-	-	-	-		-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Chloromethane				0.29	U	-	-	-	-	-	-		-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	
cis-1,2-Dichloroethene	0.25	500	0.25	0.073	U	-	-	-	-	-	-		-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	
cis-1,3-Dichloropropene				0.036	U	-	-	-	-	-	-		-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Cyclohexane				0.22	R	-		-	-	-	-		-		-	-		-	-	-		-	-	-	-	-	-	-	
Dibromochloromethane				0.073	U	-	-	-	-	-	-		-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Dichlorodifluoromethane				0.73	U	-	-	-	-	-	-		-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Ethylbenzene	1	390	1	0.073	R	-	-	-	-	-	-		-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Freon-113				0.29	U	-	-	-	-	-	-		_		-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Isopropylbenzene Methyl Acetate				0.073 0.29	U	-		-	-	-			-		-	-	-	-	-	-	-	-	-	-	_	-	-	-	
Methyl Acetate Methyl cyclohexane	+			0.29	R	-		-	-	-	-				_		+	-	-			-	-	-	-	-		-	
Methyl tert butyl ether	0.93	500	0.93	0.14	U	-	-	-	-	-	-	_ _	-		-	-	-	-	-	-	-	-	-	-	-	-	-		
Methylene chloride	0.05	500	0.05	0.36	U	-	-	-	-	-	-		-		-	-	-	-	-	-	-	-	-	-	-	-	-		
n-Butylbenzene	12	500	12	0.073	U	-	-	-	-	-	-		-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	
n-Propylbenzene	3.9	500	3.9	0.073	U	-	-	-	-	-	-		-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Naphthalene	12	500	12	0.087	R	-	-		-	-	-				-		-	-	-	-	-	-	-	-	-	_	- 1	-	
o-Xylene	0.26	500	1.6	0.054	R	-	-	-	-	-	-		-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	
p-lsopropyltoluene				0.073	U	-	-	-	-	-	-		- [-	-	-	-	-	-	-	-	-	-	-	-	-	-	
p/m-Xylene	0.26	500	1.6	0.071	R	-	-	-	-	-	-		-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	
sec-Butylbenzene	11	500	11	0.073	U	-	-	-	-	-	-		-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Styrene		F00	F. 2	0.073	U	-		-	-	-	-				-	-	-	-	-	-	-	-	-	-	-	-	-	-	
tert-Butylbenzene	5.9	500	5.9	0.14	U	-	-	-	-	-	-		-		-		-	-	-	-	-	-	-	-	-	-	-	-	
Tetrachloroethene	1.3	150	1.3	0.036	U	-	-	-	-	-	-				_		-	-	-	-	-	-	-	-	-	-	-	-	
Toluene trans-1,2-Dichloroethene	0.7 0.19	500 500	0.7 0.19	0.073 0.11	U	-		-	-	-	-		-		_		-	-	-	-	-	-	-	-	-	-	-	-	
trans-1,3-Dichloropropene	0.19	300	0.19	0.11	U	-		-	-	-			-		-		+ -	-	-	-	-		-	-	-	-	-	-	
Trichloroethene	0.47	200	0.47	0.073	U	-		 	-	-					_		+ -	-	-	-	-		-	-	-	-		-	
Trichlorofluoromethane	0.47	200	0.47	0.036	U	-		<u> </u>	-	-	-		_ +		-		+ -	-	-	-	-	-	-	-	-	-	_	-	
Vinyl chloride	0.02	13	0.02	0.073	U	-	_	-	-	-	-				-		-	-	-	-	-	-	-	-	-	-	-	-	
Total TIC Compounds				0	U	-	-	-	-	-	-		-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	
<u> </u>	•	•	•						•		•							•		•									

Control of Control o	LOCATION				SB-106I	B FILL S	SB-106B N	NATIVE	SB-106	6C FILL	SB-106	C NATIVE	SB-107 I	FILL	SB-107 NA	TIVE	SB-108 FIL	L SB-10	08 NATIVE	SB-1	09 FILL	SB-109	NATIVE	SB-11	0 FILL	SB-110	NATIVE	SB-111 F	ill	SB-111 NATIVE
Company of the comp	SAMPLING DATE				11/25/	2024	11/25/2	2024	11/25	/2024	11/2	5/2024	11/25/2	024	11/25/20)24	11/25/202	4 11/	25/2024	11/2	25/2024	11/25	5/2024	11/25	/2024	11/25	/2024	11/26/20	024	11/26/2024
Control Cont																														L2469906-06
Tender Service	SAMPLE TYPE												1															1		SOIL
Part	SAMPLE DEPTH (ft.)				1-5	5	10-1	12	1.	-5	10	0-12	1-6		8-10		0.5-8		8-15		1-5	7-	-10	1	-7	15	-20	2-8		9-15
Continue	Analyte				Results	Qual F	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results C	Qual	Results Q	ıal Result	ts Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results Qual
Life Section	Semivolatile Organics by GC/MS										•	•		•			•		•			•				•	•			
Control Cont	1 1 1							U	0.19	U		U	1	U	0.34	U	0.19				U		U	0.2	U		U		U	
Controlled Con		0.1	130	0.1				U						U		U							U				U			
Company Comp	·					_								U													~	1		
2. 1. 1. 1. 1. 1. 1. 1.														U														1		
Control Cont				1									1	U													~			
Control Cont	· ·			-															_											
Control Cont				+								_									_									
Second																					_									
Company Comp	·																				_									
Company Comp	·																		_											
Section Sect						U		U	0.19	U	0.4	U		U		U					U	0.41	U		U	0.3	U			
Processor Proc	2-Methylnaphthalene				0.41		0.049	J	0.29		0.19	J	0.83		0.083	J	0.15	0.75	U	1.5		0.5	U	0.24	U	0.35	U	1.2	U	0.26 U
Standard	2-Methylphenol	0.33	500	0.33	0.19	U	0.22	U	0.19	U	0.4	U	0.19	U	0.34	U	0.19	0.63	U	0.045	J	0.41	U	0.2	U	0.3	U	0.98	U	0.22 U
Californium of the property														U																
Description of the property of	•		1	1																					_					
Continue	·	2.22	500	0.33									1								_									
Control Cont	71	0.33	500	0.33												_							-						_	
Educated preservement 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			+	1							U.4	_									_				_					
A STATE ST			+	1							0.4		1	U					_											
Control Cont	. , , ,	+	+	1									1	U														1		
Chimicardes													1	U																
Contemporal																			_								~			
December Column										U			1	U		U			U				U						U	
Perceit 1 10 10 100		20	500	98		U	0.18	U	0.15	U	0.052	J	1	U	0.27	U	0.16	J 0.5	U				U		U	0.24	U	0.79	U	0.17 U
Ambrisone 10 200 2	Acenaphthylene	100	500	107	0.12	J	0.055	J	0.15	U	0.32	U	0.044	J	0.27	U	0.16	J 0.5	U	0.93		0.33	U	0.16	U	0.24	U	0.79	U	0.17 U
Persone	Acetophenone				0.19	U	0.22	U	0.028	J	0.4	U	0.068	J	0.34	U	0.031	0.63	U	0.046	J	0.41	U	0.2	U	0.3	U	0.98	U	0.22 U
Exemplay	Anthracene	100	500	1000	0.058	J	0.045	J	0.12	U	0.27		0.04	J		U	0.12	J 0.38	U	5.8		0.25	U	0.055	J		J	0.23	J	
ExercisionNetere								U				U	1	U		U			U				U		U		U			
Servicing/renewhere	,							U		J			1	J					_	0.059	J	_			U				U	
Execution/Devision 1 5 17 3.1 0.998 J 0.28 0.2 J 0.67 0.61 J 0.12 0.58 U 37 0.15 J 0.55 J 0.55 J 0.55 J 0.07			5.6	1				J												7.8									<u></u>	
Exemple Support 193 203 193 14 0.000 1.4 0	1.112		1 5.0					J								J											J	1		
Execution/Internations 0.3 5 17 0.4 0.697 J 0.27 J 0.24 U 0.23 J 0.5 U 0.28 J 0.597 J 0.39 U 0.24 U 0.25 J 0.25 U 0.26 U 0.27 U 0.27 U 0.26 U 0.27																,						_					J	1	. +	
Spring 0,033								,								J				_		_			,					
Bull 2 chromothymethree 0,2 U 0,24 U 0,21 U 0,44 U 0,21 U 0,27 U 0,37 U 0,27 U 0,58 U 0,21 U 0,44 U 0,22 U 0,32 U 1,11 U 0,24 U 0,22 U 0,22 U 0,44 U 0,27 U 0,35 U 0,27 U 0,35 U 0,27 U 0,35 U 0,22 U 0,44 U 0,27 U 0,35 U 0,22 U 0,44 U 0,27 U 0,44 U 0,27 U 0,44 U 0,27 U 0,44 U 0,27 U 0,44 U 0,27 U 0,44 U 0,27 U 0,44 U 0,27 U 0,44 U 0,27 U 0,44		0.0	30	1.7		-		II.						-		II			_		1				J.		II			
BSZ-Chlorosportphether	1 /					U				-				U											_		U			
Each Princingerenge/fetter Control 2 U 0.05 U 0.0	` ',											_		Ū		U			_		_		U				U			
Buyl bergy phrhalate					0.22	U	0.26	U	0.23	U	0.49	U	0.23	U		U	0.23	J 0.75	U	0.24	U		U	0.24	U		U	1.2	U	0.26 U
Caprolation	Bis(2-ethylhexyl)phthalate				0.19	U	0.22	U	0.19	U	0.4	U	0.19	U	0.34	U	0.19	J 0.63	U	0.2	U	0.41	U	0.2	U	0.3	U	0.98	U	0.22 U
Carbasole 0.026	Butyl benzyl phthalate				0.19	U	0.22	U	0.19	U	0.4	U	0.19	U	0.34	U	0.19	J 0.63	U	0.2	U	0.41	U	0.2	U	0.3	U	0.98	U	0.22 U
Chypene	*							U				U		U							U		U		U		U			
Dire-happinhalate			ļ	<u> </u>						U				J						_					J			1		
Direct/pitchhalter	·	1	56	1 1								_																1		
Dibaracial/junthracene 0.33 0.56 1000 0.18 0.13 U 0.038 J 0.24 U 0.074 J 0.2 U 0.12 U 0.38 U 0.96 0.25 U 0.025 J 0.18 U 0.59 U 0.12 U 0.008 J 0.01 U 0.02 U 0.03 U 0	7:		1	1																								1		
Disentify inhibition 7		0.33	0.56	1000									1																	
Delty phthalte		7												,						1000			+							
Dimetry phthalate 0.19			330	210								_		U					_		U		+							
Fluorentene 100 500 1000 0.38	• •		1	1									1																	
Fluorene 30 500 386 0.19 U 0.022 J 0.19 U 0.04 U 0.029 J 0.34 U 0.19 U 0.63 U 3.7 0.41 U 0.2 U 0.036 J 0.98 U 0.024 U 0.18 U 0.19 U 0.48 U 0.19 U 0.41 U 0.28 U 0.18 U 0.19 U 0.41 U 0.18 U 0.18 U 0.18 U 0.18 U 0.19 U 0.41 U 0.19 U 0.41 U 0.19 U 0.41 U 0.18 U 0.19 U 0.44 U 0.19	7.1	100	500	1000				-													 									
Hexachlorobenzene 0.33 6 3.2 0.11 U 0.13 U 0.12 U 0.13 U 0.12 U 0.15 U 0.14 U 0.15								J		U		U		J											U		J		U	
Hexachlorocyclopentadiene 0.53	Hexachlorobenzene	0.33	6					U	0.12	U		U		U		U				_	U		U		U		U			
Hexachloroethane 0.15	Hexachlorobutadiene							U		U		U		U		U		0.63	U		U		U		U		U		U	
Indeno(1,2,3-cd)pyrene 0.5 5.6 8.2 1.3 0.056 J 0.21 0.15 J 0.53 0.075 J 0.1 J 0.55 U 3.9 0.33 U 0.1 J 0.064 J 0.27 J 0.052	, ,																		_		_									
Sophorone Soph				1						U				U							U	_								
N-Nitrosodi-n-propylamine 12 500 12 0.2 0.034 J 0.15 J 0.	112	0.5	5.6	8.2								_		-											_					
Naphthalene 12 500 12 0.2 0.034 J 0.15 J 0.15 J 0.15 J 0.41 0.064 J 0.094 J 0.63 U 1.6 0.41 U 0.03 J 0.3 U 0.98 U 0.048 NDPA/DPA 0.15 U 0.15 U 0.15 U 0.15 U 0.15 U 0.15 U 0.15 U 0.15 U 0.15 U 0.16 U 0.5 U 0.16 U 0.33 U 0.16 U 0.24 U 0.79 U 0.17 Nitrobenzene 0.17 U 0.2 U 0.17 U 0.30 U 0.17 U 0.31 U 0.17 U 0.31 U 0.17 U 0.31 U 0.17 U 0.31 U 0.18 U 0.22 U 0.19 U 0.4 U 0.19 U 0.34 U 0.19 U 0.34 U 0.19 U 0.34 U 0.19 U 0.34 U 0.19 U 0.34 U 0.19 U 0.34 U 0.19 U 0.34 U 0.15 U 0.22 U 0.17 Nitrobenzene 0.8 6.7 0.8 0.15 UJ 0.18 UJ 0.15 U 0.22 U 0.19 U 0.4 U 0.19 U 0.34 U 0.19 U 0.63 U 0.16 U 0.33 U 0.16 U 0.2 U 0.3 U 0.16 U 0.2 U 0.3 U 0.17 Nitrobenzene 0.8 6.7 0.8 0.15 UJ 0.18 UJ 0.15 U 0.22 U 0.19 U 0.4 U 0.19 U 0.34 U 0.19 U 0.63 U 0.2 U 0.16 U 0.3 U 0.16 U 0.2 U 0.3 U 0.79 U 0.17 Nitrobenzene 0.8 6.7 0.8 0.15 UJ 0.18 UJ 0.15 U 0.22 U 0.19 U 0.4 U 0.19 U 0.34 U 0.19 U 0.63 U 0.16 U 0.33 U 0.16 U 0.2 U 0.3 U 0.79 U 0.17 Nitrobenzene 0.8 6.7 0.8 0.15 UJ 0.18 UJ 0.15 U 0.22 U 0.19 U 0.4 U 0.19 U 0.50 U 0.16 U 0.5 U 0.16 U 0.3 U 0.16 U 0.2 U 0.3 U 0.79 U 0.17 Nitrobenzene 0.8 6.7 0.8 0.15 UJ 0.18 UJ 0.15 U 0.22 U 0.19 U 0.22 U 0.19 U 0.27 U 0.16 U 0.5 U 0.16 U 0.3 U 0.16 U 0.2 U 0.3 U 0.79 U 0.17 Nitrobenzene 0.8 6.7 0.8 0.15 UJ 0.18 UJ 0.15 U 0.2 U 0.19 U 0.2 U 0.3 U 0.15 U 0.2 U 0.	'		1	1																	_									
NDPA/DPA 0.15	1 17	12	F00	12										U					_		U				U					
Nitrobenzene	1	12	500	12										11					_		11				J 11					
P-Chloro-m-cresol 0.19	·		+	+																					_			1		
Pentachlorophenol 0.8 6.7 0.8 0.15 U 0.18 U 0.15 U 0.15 U 0.32 U 0.15 U 0.27 U 0.16 U 0.5 U 0.16 U 0.33 U 0.16 U 0.24 U 0.79 U 0.17			1	†								_									_		_							
Phenanthrene 100 500 1000 0.35 0.13 0.28 0.23 J 0.56 0.14 J 0.11 J 0.38 U 21 0.25 U 0.24 0.37 0.97 J 0.13 U 0.14 U 0.15 U 0.15 U 0.25		0.8	6.7	0.8				UJ				_															UJ			
Phenol 0.33 500 0.33 0.19 U 0.22 U 0.19 U 0.4 U 0.19 U 0.34 U 0.19 U 0.63 U 0.16 J 0.41 U 0.2 U 0.3 U 0.98 U 0.22 U 0.99 U 0.22 U 0.99 U 0.22 U 0.99 U 0.22 U 0.99 U 0.24 U 0.99 U 0.25	·													-		-					+ -								J	
Pyrene 100 500 1000 0.44 0.14 0.21 0.27 0.55 0.13 J 0.08 U 17 0.041 J 0.29 0.28 0.97 J 0.16 Total TIC Compounds 5.33 J 0.916 J 4.59 J 37.4 J 7.19 J 0.0 U 8.74 J 20.5 J 6.04 J 0 U 0.334 J 0 U 2.79 Petroleum Hydrocarbon Quantitation								U		U				U		U					J				U		U		U	
Total TIC Compounds 5.33 J 0.916 J 4.59 J 37.4 J 7.19 J 0 U 0 U 8.74 J 20.5 J 6.04 J 0 U 0.334 J 0 U 2.79 Petroleum Hydrocarbon Quantitation																-													J	
	·					J	0.916	J	4.59	J	37.4	J		J		U				20.5	J		J		U		J		U	
TPH (C10-C36)	Petroleum Hydrocarbon Quantitation																													
	TPH (C10-C36)				-	-	-	-	-	-	-	-	249		-	-	540	-	-	445		-	-	166		-	-	582	J	

LOCATION				SB-106	B FILL	SB-106E	NATIVE	SB-10	6C FILL	SB-106	C NATIVE	SB-1	07 FILL	SB-107	NATIVE	SB-10	8 FILL	SB-108	NATIVE	SB-109	9 FILL	SB-109	NATIVE	SB-11	IO FILL	SB-110 N	NATIVE	SB-111	FILL SB-	-111 NATIVE	Ε
SAMPLING DATE				11/25	/2024	11/25	5/2024	11/25	5/2024	11/2	5/2024	11/2	5/2024	11/25	/2024	11/25	/2024	11/25	5/2024	11/25	/2024	11/25	/2024	11/25	5/2024	11/25/	/2024	11/26/2	2024 1	11/26/2024	-
LAB SAMPLE ID				L24695			590-12		590-13		9590-14		9590-17		590-18	L2469			590-16	L24695			590-20		590-21	L24695		L246990		2469906-06	
SAMPLE TYPE				so			OIL		DIL		OIL		OIL		OIL 10	SC			OIL 15	so		SC			OIL	SO		SOI		SOIL	_
SAMPLE DEPTH (ft.)	Unrestricted	Commercial	Protection of	1-	.5	10	-12 	1	-5 	10)-12 	1	1-6	8-	10	0.5	5-8 	8-	15	1-	5	/-	10	1	-7	15-2	-20	2-8		9-15	-
Analyte	Use SCO	Use SCO	Groundwater	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual Res	ults Qual	4
Polychlorinated Biphenyls by GC																															
Aroclor 1016	0.1	1	3.2	-	-	-	-	-	-	-	-	0.056	U	0.101	U	0.0575	U	0.189	U	0.0568	U	0.118	U	0.0561	U	0.0861	U	0.0565	U 0.06		
Aroclor 1221	0.1	1	3.2	-	-	-	-	-	-	-	-	0.056	U	0.101	U	0.0575	U	0.189	U	0.0568	U	0.118	U	0.0561	U	0.0861	U	0.0565	U 0.06		
Aroclor 1232 Aroclor 1242	0.1	1 1	3.2 3.2	-	-	-	-	-	-	-	+	0.056	U	0.101 0.101	U	0.0575	U	0.189	U	0.0568	U	0.118 0.118	U	0.0561	U	0.0861 0.0861	U	0.0565 0.0565	U 0.06		
Aroclor 1242 Aroclor 1248	0.1	1 1	3.2	-		-	_	-	-	-	-	0.056	U	0.101	U	0.0575	U	0.189	U	0.0568	U	0.118	U	0.0561	U	0.0861	U	0.0565	U 0.06		
Aroclor 1254	0.1	1	3.2	-	-	-	-	-	-	-	-	0.056	Ü	0.101	U	0.0575	U	0.189	U	0.0568	U	0.118	U	0.0561	U	0.0861	U	0.0565	U 0.06		
Aroclor 1260	0.1	1	3.2	-	-	-	-	-	-	-	-	0.056	U	0.101	U	0.0575	U	0.189	U	0.0196	J	0.118	U	0.0561	U	0.0861	U	0.0565	U 0.06	612 U	
Aroclor 1262	0.1	1	3.2	-	-	-	-	-	-	-	-	0.056	U	0.101	U	0.0575	U	0.189	U	0.0568	U	0.118	U	0.0561	U	0.0861	U	0.0565	U 0.06	612 U	
Aroclor 1268	0.1	1	3.2	-	-	-	-	-	-	-	-	0.056	U	0.101	U	0.0575	U	0.189	U	0.0568	U	0.118	U	0.0561	U	0.0861		0.00654	J 0.06		_
PCBs, Total	0.1	1	3.2	-	-	-	-	-	-	-	-	0.056	U	0.101	U	0.0575	U	0.189	U	0.0196	J	0.118	U	0.0561	U	0.0861	U	0.00654	J 0.06	612 U	
Chlorinated Herbicides by GC 2,4,5-T		1	1	_		1	1			T -		0.19	U	0.335	U	0.192	U	0.625	U	0.199	U	0.411	U	0.196	U	0.298	U	0.194	U 0.2	217 U	\neg
2,4,5-TP (Silvex)	3.8	500	3.8	-		_	_	+ -	-	_	-	0.19	U	0.335	U	0.192	U	0.625	U	0.199	U	0.411	II	0.196	U	0.298	U	0.194	U 0.2		_
2.4-D	5.0	300	5.0	-	-	-	-	-	-	-	-	0.19	U	0.335	U	0.192	U	0.625	U	0.199	U	0.411	U	0.196	U	0.298	U	0.194	U 0.2		
Organochlorine Pesticides by GC	<u>.</u>					J							<u> </u>					1						1							_
4,4'-DDD	0.0033	92	14	-	-	-				-		0.00177	U	0.00322	U	0.00188	U	0.00606	U	0.00187	U	0.00394	U	0.00191	U	0.00272	U	0.00183	U 0.00)211 U	
4,4'-DDE	0.0033	62	17	-	-	-	-	-	-	-	-	0.00177	U	0.00322	U	0.00188	U	0.00606	U	0.00187	U	0.00394	U	0.00191	U	0.00272	U	0.00183	U 0.00		
4,4'-DDT	0.0033	47	136	-	-	-	-	-	-	-	-	0.00177	U	0.00322	U	0.00188	U	0.00606	U	0.00187	U	0.00394	U	0.00191	U	0.00272		0.00183	U 0.00		
Aldrin	0.005	0.68	0.19	-	-	-	-	-	-	-	-	0.00177		0.00322	U	0.00188	U	0.00606	U	0.00187	U	0.00394	U	0.00191	U	0.00272		0.00183	U 0.00		_
Alpha-BHC	0.02	3.4	0.02	-	-	-	-	-	-	-	-	0.00074		0.00134	U	0.00078	U	0.00252	U	0.00078 0.00187	U	0.00164 0.00394	U	0.00079	U	0.00114		0.00076		0088 U 0211 U	
Beta-BHC Chlordane	0.036	3	0.09	-	-	-	-	-	-	-	+ -	0.00177		0.00322	U	0.00188	U	0.0505	U	0.00187	U	0.00394	U	0.00191	U	0.00272	U	0.00183	U 0.00		
cis-Chlordane	0.094	24	2.9	-	-	-	_	-	_	-	-	0.00222		0.0203	U	0.00235	U	0.00757	U	0.00234	U	0.00493	U	0.00238	U	0.0034		0.00228	U 0.00		
Delta-BHC	0.04	500	0.25	-	-	-	-	-	-	-	-	0.00177		0.00322	Ü	0.00188	Ü	0.00606	Ü	0.00187	U	0.00394	Ü	0.00191	U	0.00272		0.00183	U 0.00		
Dieldrin	0.005	1.4	0.1	-	-	-	-	-	-	-	-	0.00111	U	0.00201	U	0.00118	U	0.00378	U	0.00117	U	0.00246	U	0.00119	U	0.0017		0.00114	U 0.00		
Endosulfan I	2.4	200	102	-	-	-	-	-	-	-	-	0.00177	U	0.00322	U	0.00188	U	0.00606	U	0.00187	U	0.00394	U	0.00191	U	0.00272	U	0.00183	U 0.00)211 U	
Endosulfan II	2.4	200	102	-	-	-	-	-	-	-	-	0.00177		0.00322	U	0.00188	U	0.00606	U	0.00187	U	0.00394	U	0.00191		0.00272		0.00183	U 0.00		
Endosulfan sulfate	2.4	200	1000	-		-	-		-	-	-	0.00074		0.00134	U	0.00078	U	0.00252	U	0.00078	U	0.00164	U	0.00079	U	0.00114		0.00076	U 0.00		
Endrin	0.014	89	0.06	-	-	-	-	-	-	-	-	0.00074		0.00134	U	0.00078	U	0.00252	U	0.00078	U	0.00164	U	0.00079	U	0.00114		0.00076	U 0.00		
Endrin aldehyde Endrin ketone		-		-	-	-	-	-	-	-	-	0.00222		0.00403	U	0.00235	U	0.00757	U	0.00234	U	0.00493	U	0.00238	U	0.0034		0.00228	U 0.00		
Heptachlor	0.042	15	0.38	-			_	+ -	-	_	-	0.00177	II	0.00322	U	0.00188	U	0.00303	U	0.00187	U	0.00394	II	0.00191	U	0.00272		0.00183	U 0.00		
Heptachlor epoxide	0.042	1.5	0.50	-	-	-	-	-	-	-	-	0.00333	Ü	0.00604	Ü	0.00352	Ü	0.0114	U	0.00351	Ü	0.00739	U	0.00357	Ü	0.00511		0.00343	U 0.00		
Lindane	0.1	9.2	0.1	-	-	-	-	-	-	-	-	0.00074		0.00134	Ü	0.00078	U	0.00252	U	0.00078	U	0.00164	U	0.00079	U	0.00114		0.00076	U 0.00		
Methoxychlor				-	-	-	-	-	-	-	-	0.00333	U	0.00604	U	0.00352	U	0.0114	U	0.00351	U	0.00739	U	0.00357	U	0.00511	U	0.00343	U 0.00	0396 U	
Toxaphene				-	-	-	-	-	-	-	-	0.0333	U	0.0604	U	0.0352	U	0.114	U	0.0351	U	0.0739	U	0.0357	U	0.0511	U	0.0343	U 0.03		
trans-Chlordane				-	-	-	-	-	-	-	-	0.00222	U	0.00403	U	0.00235	U	0.00757	U	0.00234	U	0.00493	U	0.00238	U	0.0034	U	0.00228	U 0.00	0264 U	
Total Metals	_	1	1	1		1	1		1	1	1	2100	1	5020	ı	2600	1	10200	1	2000		2770		4410	1	0100	1	6530	1 20		_
Aluminum, Total Antimony. Total				-		-	-	-	-	-	+ -	4.62	U	5930 8.18	U	3600 1.6	J	1.74		2690 4.79	-	2770 19.4	U	4410 2.72	J	8100 6.97	U	6520 2.36	J 38		-
Arsenic, Total	13	16	16	- -	<u> </u>	-	-	+	-	-	+	15.6	U	2.24	0	12.6	,	5.49	,	17.3	,	1.14	J	6.83	,	3.27	U	44.5	8.2		\dashv
Barium, Total	350	400	820	-	-	-	-	-	-	-	-	31.8		33.3		213		90.8		83.2		71.7		70.2		66.9		210	J 99		-
Beryllium, Total	7.2	590	47	-	-	-	-	-	-	-	-	0.433	J	0.349	J	0.325	J	0.632	J	0.325	J	0.197	J	0.326	J	0.452	J	1.39	0.2		\exists
Cadmium, Total	2.5	9.3	7.5	-	-	-	-	-	-	-	-	0.924		1.64	U	0.911	U	3.02	U	0.663	J	3.89	U	0.475	J	0.153	J	2.24	J 1.0	02 U	
Calcium, Total				-	-	-	-	-	-	-	-	4830		26600		70800		146000		50700		227000		20800		16100	J	19000		700	
Chromium, Hexavalent	400	19	1	-	-	-	-	-	-	-	-	0.928	U	1.65	U	0.943	U	3.04	UJ	0.959	U	1.98	U	0.963	U	1.45	U	0.957	U 1.0		4
Chromium, Total Cobalt, Total	+	+		-	-	-	-	-	-	-	-	19.5 5.39		11.2 5.43		18.9 5.33		19.2 9.28	 	87.1 10.5		6.07 5.05		10.1 4.83		15.5 12.6	J	14.6 6.42	4.2	0.6	\dashv
Copper, Total	50	270	1720	-		-	-	-	-	-	-	17.4		16.2		140		25.2		120		11	,	175		15	,	273	J 53		\dashv
Cyanide, Total	27	40	27	-		-	-	+ -	-	-	+ -	0.52	J	2	U	0.42	J	3.6	U	0.27	J	2.3	U	1.1	U	1.7	U	1.1		.3 J	7
Iron, Total	1	1		-	-	-	-	-	-	-	-	24500		11200		33800		16500		102000	-	8430		15800		12300	-	13700	193		\exists
Lead, Total	63	1000	450	-	-	-	-	-	-	-	-	17.4		11		128		15.2		283		9.11	J	288		7.54			J 15	00	
Magnesium, Total				-	-	-	-	-	-	-	-	876		6480		2800		11600		3260		3460		4940		6910		2210	J 275		
Manganese, Total	1600	10000	2000	-	-	-	-	-	-	-	-	105		359		378		422		425		552		185		85.1		186	J 30		_
Mercury, Total	0.18	2.8	0.73	-	-	-	-	-	-	-	-	0.106	-	0.141	U			0.28	U	0.089		0.161	U	3.49		0.128	U		J 3.6	•-	4
Nickel, Total	30	310	130	-	-	-	-	-	-	-	-	12.1	1	18.1		44.8 608		39.9 1060		32.8	,	19.3		29.3 409		44		15.1	9.8		\dashv
Potassium, Total Selenium, Total	3.9	1500	4	-	-	-	-	-	-	-	+-	346 0.238	J	629 0.45	j	0.988	-	2.92	J	221 3.52	J	468 2.43	J	1.88	U	922 1.41	J	552 1.12	J 0.6		\dashv
Silver, Total	2	1500	8.3	-		-	-	+ -	-	-	+ :	0.462	U	0.43	U	0.455	U	1.51	U	2.3	U	1.94	U	0.47	U	0.697	U	0.689	0.5		_
Sodium, Total		1300	5.5	-		-	-	+ -	-	-	+ -	428		539		1640		664	_ <u> </u>	206	J	308	J	90.9	J	242	J	397	24		\dashv
Thallium, Total	1	1	1	-	-	-	-	-	-	-	-	1.85	U	3.27	U	0.347	J	6.04	U	9.18	U	7.77	U	1.88	U	2.79	U	0.787	J 2.0		\dashv
Vanadium, Total				-	-	-	-	-	-	-	-	15.3		10.8		15.8		16.4		30.9		4.01		18.6		11.9		23.6	14		┚
Zinc, Total	109	10000	2480	-	-	-	-	-	-	-	-	19.9		40.2		151		50.5		117		27.8		314		41.7		366	J 10)3	1

LOCATION				SB-10	6B FILL	SB-106B	NATIVE	SB-106C FIL	L SB	3-106C NA	ATIVE	SB-10	7 FILL	SB-107	NATIVE	SB-10	8 FILL	SB-108 NATIVE	SB-109 FILL	SB-109	9 NATIVE	SB-	110 FILL	SB-110	NATIVE	SB-11	11 FILL	SB-111 NA	TIVE
SAMPLING DATE				11/25	/2024	11/25	/2024	11/25/2024	4	11/25/20	024	11/25	/2024	11/25	5/2024	11/25	/2024	11/25/2024	11/25/2024	11/2	25/2024	11/2	25/2024	11/25	/2024	11/20	6/2024	11/26/20)24
LAB SAMPLE ID				L2469	590-11	L2469	590-12	L2469590-1	3 I	L2469590)-14	L2469	590-17	L2469	590-18	L2469	590-15	L2469590-16	L2469590-19	L246	9590-20	L246	59590-21	L2469	590-22	L2469	9906-05	L2469906	06-ز
SAMPLE TYPE				SC	OIL	SC	OIL	SOIL		SOIL		SC	DIL	SC	OIL	SC	DIL	SOIL	SOIL	5	SOIL	1	SOIL	SC	OIL	S	OIL	SOIL	
SAMPLE DEPTH (ft.)				1	-5	10	-12	1-5		10-12	ľ	1	-6	8-	·10	0.5	5-8	8-15	1-5	7	7-10		1-7	15	-20	2	2-8	9-15	
Analyte	Unrestricted Use SCO	Commercial Use SCO	Protection of Groundwater	Results	Qual	Results	Qual	Results Qu	al Re	esults	Qual	Results	Qual	Results	Qual	Results	Qual	Results Qual	Results Qual	Results	Qual	Result	s Qual	Results	Qual	Results	Qual	Results C	Qual
Perfluorinated Alkyl Acids by EPA 1633																													
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid (11Cl-PF3OUdS)				-	-	-	-			-	-	0.797	U	0.798	U	0.795	U	1.22 U	0.793 U	0.799	U	0.785	U	0.797	U	0.79	U	0.8	U
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)				-	-	-	-			-	-	0.797	U	0.798	U	0.795	U	1.22 U	0.793 U	0.799	U	0.785	U	0.797	U	0.79	U	0.8	U
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)				-	-	-	-			-	-	0.797	U	0.798	U	0.795	U	1.22 U	0.793 U	0.799	U	0.785	U	0.797	U	0.79	U	0.8	U
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)				-	-	-	-			-	-	0.797	U	0.798	U	0.795	U	1.22 U	0.793 U	0.799	U	0.785	U	0.797	U	0.79	U	0.8	U
2H,2H,3H,3H-Perfluorooctanoic Acid (5:3FTCA)				-	-	-	-			-	-	4.98	U	4.98	U	4.97	U	7.6 U	4.95 U	4.99	U	4.91	U	4.98	U	4.93	U	5	U
3-Perfluoroheptyl Propanoic Acid (7:3FTCA)				-	-	-	-			-	-	4.98	U	4.98	U	4.97	U	7.6 U	4.95 U	4.99	U	4.91	U	4.98	U	4.93	U	5	U
3-Perfluoropropyl Propanoic Acid (3:3FTCA)				-	-	-	-			-	-	0.997	U	0.997	U	0.994	U	1.52 U	0.991 U	0.999	U	0.982	U	0.996	U	0.987	U	1	U
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)				-		-	-			-	-	0.797	U	0.798	U	0.795	U	1.22 U	0.793 U	0.799	U	0.785	U	0.797	U	0.79	U	0.8	U
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid (9Cl-PF3ONS)				-	-	-	-			-	-	0.797	U	0.798	U	0.795	U	1.22 U	0.793 U	0.799	U	0.785	U	0.797	U	0.79	U	0.8	U
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)				-	-	-	-			-	-	0.797	U	0.798	U	0.795	U	1.22 U	0.793 U	0.799	U	0.785	U	0.797	U	0.79	U	0.8	U
N-Ethyl Perfluorooctane Sulfonamide (NEtFOSA)				-	-	-	-			-	-	0.199	U	0.199	U	0.199	U	0.304 U	0.198 U	0.2	U	0.196	U	0.199	U	0.197	U	0.2	U
N-Ethyl Perfluorooctanesulfonamido Ethanol (NEtFOSE)				-	-	-	-			-	-	1.99	U	1.99	U	1.99	U	3.04 U	1.98 U	2	U	1.96	U	1.99	U	1.97	U	2	U
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)				-	-	-	-			-	-	0.199	U	0.199	U	0.199	U	0.304 U	0.198 U	0.2	U	0.196	U	0.199	U	0.197	U	0.2	U
N-Methyl Perfluorooctane Sulfonamide (NMeFOSA)				-	-	-	-			-	-	0.199	U	0.199	U	0.199	U	0.304 U	0.198 U	0.2	U	0.196	U	0.199	U	0.197	U	0.2	U
N-Methyl Perfluorooctanesulfonamido Ethanol (NMeFOSE)				-	-	-	-			-	-	1.99	U	1.99	U	1.99	U	3.04 U	1.98 U	2	U	1.96	U	1.99	U	1.97	U	2	U
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)				-	-	-	-			-	-	0.199	U	0.199	U	0.199	U	0.304 U	0.198 U	0.2	U	0.196	U	0.199	U	0.197	U	0.2	U
Nonafluoro-3,6-Dioxaheptanoic Acid (NFDHA)				-	-	-	-			-	-	0.399	U	0.399	U	0.398	U	0.608 U	0.396 U	0.4	U	0.393	U	0.398	U	0.395	U	0.4	U
Perfluoro(2-Ethoxyethane)Sulfonic Acid (PFEESA)				-	-	-	-			-	-	0.399	U	0.399	U	0.398	U	0.608 U	0.396 U	0.4	U	0.393	U	0.398	U	0.395	U	0.4	U
Perfluoro-3-Methoxypropanoic Acid (PFMPA)				-	-	-	-			-	-	0.399	U	0.399	U	0.398	U	0.608 U	0.396 U	0.4	U	0.393	U	0.398	U	0.395	U	0.4	U
Perfluoro-4-Methoxybutanoic Acid (PFMBA)				-	-	-	-			-	-	0.399	U	0.399	U	0.398	U	0.608 U	0.396 U	0.4	U	0.393	U	0.398	U	0.395	U	0.4	U
Perfluorobutanesulfonic Acid (PFBS)				-	-	-	-			-	-	0.199	U	0.199	U	0.199	U	0.304 U	0.198 U	0.2	U	0.196	U	0.199	U	0.197	U	0.2	U
Perfluorobutanoic Acid (PFBA)				-	-	-	-			-	-	0.797	U	0.798	U	0.795	U	1.22 U	0.793 U	0.799	U	0.785	U	0.797	U	0.79	U	0.8	U
Perfluorodecanesulfonic Acid (PFDS)				-	-	-	-			-	-	0.199	U	0.199	U	0.199	U	0.304 U	0.198 U	0.2	U	0.196	U	0.199	U	0.197	U	0.2	U
Perfluorodecanoic Acid (PFDA)				-	-	-	-			-	-	0.199	U	0.199	U	0.199	U	0.304 U	0.198 U	0.2	U	0.196	U	0.199	U	0.197	U	0.2	U
Perfluorododecanesulfonic Acid (PFDoS)				-	-	-	-			-	-	0.199	U	0.199	U	0.199	U	0.304 U	0.198 U	0.2	U	0.196	U	0.199	U	0.197	U	0.2	U
Perfluorododecanoic Acid (PFDoA)				-	-	-	-			-	-	0.199	U	0.199	U	0.199	U	0.304 U	0.198 U	0.2	U	0.196	U	0.199	U	0.197	U	0.2	U
Perfluoroheptanesulfonic Acid (PFHpS)				-	-	-	-			-	-	0.199	U	0.199	U	0.199	U	0.304 U	0.198 U	0.2	U	0.196	U	0.199	U	0.197	U	0.2	U
Perfluoroheptanoic Acid (PFHpA)				-	-	-	-			-	-	0.199	U	0.199	U	0.199	U	0.304 U	0.038 J	0.2	U	0.024	J	0.199	U	0.197	U	0.2	U
Perfluorohexanesulfonic Acid (PFHxS)				-	-	-	-			-	-	0.034	J	0.199	U	0.199	U	0.304 U	0.198 U	0.2	U	0.196	U	0.199	U	0.197	U	0.2	U
Perfluorohexanoic Acid (PFHxA)				-	-	-	-			-	-	0.032	J	0.199	U	0.199	U	0.304 U	0.198 U	0.2	U	0.03	J	0.199	U	0.197	U	0.2	U
Perfluorononanesulfonic Acid (PFNS)				-	-	-	-			-	-	0.199	U	0.199	U	0.199	U	0.304 U	0.198 U	0.2	U	0.196	U	0.199	U	0.197	U	0.2	U
Perfluorononanoic Acid (PFNA)				-	-	-	-		.	-	-	0.199	U	0.199	U	0.199	U	0.304 U	0.056 J	0.2	U	0.196	U	0.199	U	0.197	U	0.2	U
Perfluorooctanesulfonamide (PFOSA)				-	-	-	-			-	-	0.199	U	0.199	U	0.199	U	0.304 U	0.198 U	0.2	U	0.196	U	0.199	U	0.197	U	0.2	U
Perfluorooctanesulfonic Acid (PFOS)	0.88	440	1	-	-	-	-			-	-	0.079	J	0.199	U	0.054	J	0.304 U	0.209	0.141	J	0.089	J	0.199	U	0.049	J	0.2	U
Perfluorooctanoic Acid (PFOA)	0.66	500	0.8	-	-	-	-			-	-	0.059	J	0.199	U	0.199	U	0.304 U	0.117 J	0.03	J	0.071	J	0.199	U	0.057	J	0.2	U
Perfluoropentanesulfonic Acid (PFPeS)				-	-	-	-			-	-	0.199	U	0.199	U	0.199	U	0.304 U	0.198 U	0.2	U	0.196	U	0.199	U	0.197	U	0.2	U
Perfluoropentanoic Acid (PFPeA)				-	-	-	-			-	-	0.399	U	0.399	U	0.398	U	0.608 U	0.396 U	0.4	U	0.393	U	0.398	U	0.395	U	0.4	U
Perfluorotetradecanoic Acid (PFTeDA)				-	-	-	-			-	-	0.199	U	0.199	U	0.199	U	0.304 U	0.198 U	0.2	U	0.196	U	0.199	U	0.197	U	0.2	U
Perfluorotridecanoic Acid (PFTrDA)				-	-	-	-			-	-	0.199	U	0.199	U	0.199	U	0.304 U	0.198 U	0.2	U	0.196		0.199	U	0.197	U		U
Perfluoroundecanoic Acid (PFUnA)				-	-	-	-			-	-	0.199	U	0.199	U	0.199	U	0.304 U	0.198 U	0.2	U	0.196		0.199	U	0.197	U		U

- $All \ values \ are \ reported \ in \ milligrams \ per \ kilogram \ (mg/kg) \ / \ parts \ per \ million \ (ppm) \ except \ PFAAs \ which \ are \ reported \ in \ micrograms$
- per kilogram (µg/kg) / parts per billion (ppb).
 Analytical results compared to New York 6 NYCRR Part 375 Soil Cleanup Objectives (SCOs).
- Bolded text indicates analyte detected at concentrations greater than laboratory detection limits.
- Highlighted cell Indicates analyte exceeds the respective standard/guideline value.
- Red text indicates analyte exceeds Protection of Groundwater SCO.
- Blue qualifiers were applied based on a third party data usability review.
- Grey highlighted cell indicates the laboratory detection limit exceeds the respective standard/guideline value.
- "U" indicates the analyte was not detected at the reported detection limit for the sample.
- "UJ" indicates the analyte was analyzed for, but was not detected. The associated reported quantitation limit is approximate and may be inaccurate or imprecise.
- "J" indicates estimated value.
- "J+" indicates the analyte was positively identified; the associated numerical value is an estimated quantity that may be biased high.
- "I" indicates the lower value for the two columns has been reported due to obvious interference.
- "P" indicates the RPD between the results for the two columns exceeds the method-specified criteria.
- "EMPC" indicates the results do not meet all criteria for a confirmed identification. The quantitative value represents the Estimated Maximum Possible Concentration of the analyte in the sample.
- "R" indicates the data are unusable. The sample results are rejected due to serious deficiencies in meeting Quality Control limits. The analyte may or may not be present.

LOCATION				SB-112	2 FILL	SB-112 NATIVE	SB-112A FILL	SB-112A NA	ATIVE	SB-112I	B FILL	SB-112B NATIVE	SB-1120	C FILL	SB-112C N	ATIVE	SB-113 FILL	SB-1	13 NATIVE	SB-1	14 FILL	SB-114	NATIVE	SB-115 F	ILL	SB-115 NATIVE
SAMPLING DATE				11/26/	2024	11/26/2024	11/26/2024	11/26/20	024	11/26/	2024	11/26/2024	11/26/2	2024	11/26/2	024	11/26/2024	11,	/26/2024	11/2	5/2024	11/2	5/2024	11/26/20	024	11/26/2024
LAB SAMPLE ID				L24699	06-07	L2469906-08	L2469906-09	L2469906-1	10 R1 I	L2469906	6-11 R1	L2469906-12 R1	L246990	06-13	L246990	6-14	L2469906-15	L24	69906-16	L246	9590-23	L2469	590-24	L2469906	6-17	L2469906-18
SAMPLE TYPE				SO		SOIL	SOIL	SOIL		SOI		SOIL	SOI		SOIL		SOIL		SOIL		OIL		OIL	SOIL		SOIL
SAMPLE DEPTH (ft.)				2-1	0	11-14	6-8	10-13	1	7-9	9	11-13	7-9)	11-15	5	3-10		10-15		1-5	12	2-20	3-8		13-20
Analyte	Unrestricted Use SCO	Commercial Use SCO	Protection of Groundwater	Results	Qual	Results Qual	Results Qual	Results	Qual F	Results	Qual	Results Qual	Results	Qual	Results	Qual	Results Qua	Resul	ts Qual	Results	Qual	Results	Qual	Results	Qual	Results Qual
Volatile Organics by EPA 5035														•	•		•	•		•	•					
1,1,1-Trichloroethane	0.68	500	0.68	0.001	U	0.00077 U	0.00094 U	0.00078		0.00095	UJ	0.00082 UJ	0.001		0.0006	U	0.00076 U	0.001		0.0024		0.00037	J	0.00084	U	0.00058 U
1,1,2,2-Tetrachloroethane				0.001	UJ	0.00077 U	0.00094 U	0.00078		0.00095	UJ	0.00082 UJ	0.001		0.0006	U	0.00076 U	0.001		0.00066		0.00053	U	0.00084	U	0.00058 U
1,1,2-Trichloroethane	0.27	240	0.27	0.0021		0.0015 U	0.0019 U	0.0016		0.0019	UJ	0.0016 UJ	0.0021		0.0012	U	0.0015 U	0.002		0.0013	U	0.0011	U	0.0017	U	0.0012 U
1,1-Dichloroethane 1,1-Dichloroethene	0.27	240 500	0.27 0.33	0.0021	U	0.0015 U 0.0015 U	0.0019 U 0.0019 U	0.0016		0.0019	UJ	0.0016 UJ 0.0016 UJ	0.0021		0.0012	U	0.0015 U 0.0015 UJ	0.002		0.0013	U	0.0011	U	0.0017 0.0017	UJ	0.0012 U 0.0012 UJ
1.2.4-Trichlorobenzene	0.55	300	0.55	0.0021	R	0.0013 U	0.0019 U	0.0010		0.0019	III	0.0010 UJ	0.0021		0.0012	U	0.0013 U	0.002		0.0013	U	0.0011	U	0.0017	U	0.0012 UJ
1,2,4-Trimethylbenzene	3.6	190	3.6	0.0042	R	0.0031 U	0.0038 U	0.0031		0.0038	UJ	0.0033 UJ	0.0042		0.003	J+	0.003 U	0.004		0.0027	Ü	0.0021	U	0.0034	Ü	0.0023 U
1,2-Dibromo-3-chloropropane				0.0063	UJ	0.0046 U	0.0056 U	0.0047	U (0.0057	UJ	0.0049 UJ	0.0063	U	0.0036	U	0.0046 U	0.006	59 U	0.004	U	0.0032	U	0.005	U	0.0035 U
1,2-Dibromoethane				0.0021	UJ	0.0015 U	0.0019 U	0.0016	U (0.0019	UJ	0.0016 UJ	0.0021	U	0.0012	U	0.0015 U	0.002	23 U	0.0013	U	0.0011	U	0.0017	U	0.0012 U
1,2-Dichlorobenzene	1.1	500	1.1	0.0042	R	0.0031 U	0.0038 U	0.0031	U (0.0038	UJ	0.0033 UJ	0.0042	U	0.0024	U	0.003 U	0.004	16 U	0.0027	U	0.0021	U	0.0034	U	0.0023 U
1,2-Dichloroethane	0.02	30	0.02	0.0021	UJ	0.0015 U	0.0019 U	0.0016		0.0019	UJ	0.0016 UJ	0.0021		0.0012	U	0.0015 U	0.002		0.0013	U	0.0011	U	0.0017	U	0.0012 U
1,2-Dichloropropane		400		0.0021		0.0015 U	0.0019 U	0.0016		0.0019	UJ	0.0016 UJ	0.0021		0.0012	U	0.0015 U	0.002		0.0013	U	0.0011	U	0.0017	U	0.0012 U
1,3,5-Trimethylbenzene	8.4	190	8.4	0.0042	UJ	0.0031 U	0.0038 U	0.0031		0.0038	UJ	0.0033 UJ 0.0033 UJ	0.0042		0.0004	J+	0.003 U	0.004		0.0027	U	0.0021	U	0.0034 0.0034	U	0.0023 U 0.0023 U
1,3-Dichlorobenzene 1,4-Dichlorobenzene	2.4 1.8	280 130	2.4 1.8	0.0042 0.0042	K P	0.0031 U 0.0031 U	0.0038 U 0.0038 U	0.0031		0.0038	UJ	0.0033 UJ	0.0042		0.0024	U	0.003 U	0.004		0.0027	U	0.0021	U	0.0034	U	0.0023 U 0.0023 U
2-Butanone	0.12	500	0.12	0.0042	U	0.0031 U	0.0036 U	0.0031		0.0036	UI	0.0033 UJ	0.0042		0.0024	U	0.003 U	0.004		0.0027	U	0.0021	U	0.0034	U	0.0023 U
2-Hexanone	5.12	300	0.12	0.021	UJ	0.015 U	0.019 U	0.016		0.019	UJ	0.016 UJ	0.021		0.012	U	0.015 U	0.02		0.013	U	0.011	U		U	0.012 U
4-Methyl-2-pentanone				0.021	U	0.015 U	0.019 U	0.016		0.019	UJ	0.016 UJ	0.021		0.012	U	0.015 U	0.02		0.013	U	0.011	U		Ü	0.012 U
Acetone	0.05	500	0.05	0.021	U	0.043 J+	0.019 U	0.026	J	0.019	UJ	0.019 J	0.021	U	0.012	J+	0.015 U	0.01	5 J+	0.013	U	0.011	U	0.04		0.016
Benzene	0.06	44	0.06	0.001	U	0.00077 U	0.00094 U	0.00078	UJ 0	0.00095	UJ	0.00082 UJ	0.001	U	0.0006	U	0.00076 U	0.001	2 U	0.00066	5 U	0.00053	U	0.0018		0.00058 U
Bromodichloromethane				0.001	UJ	0.00077 U	0.00094 U	0.00078		0.00095	UJ	0.00082 UJ	0.001		0.0006	U	0.00076 U	0.001		0.00066	5 U	0.00053	U	0.00084	U	0.00058 U
Bromoform				0.0084	UJ	0.0062 U	0.0075 U	0.0063		0.0076	UJ	0.0066 UJ	0.0084		0.0048	U	0.0061 U	0.009		0.0053	U	0.0043	U	0.0067	U	0.0046 U
Bromomethane				0.0042	U	0.0031 U	0.0038 U	0.0031		0.0038	UJ	0.0033 UJ	0.0042		0.0024	U	0.003 U	0.004		0.0027	U	0.0021	U	0.0034	U	0.0023 U
Carbon disulfide	0.76	22	0.76	0.021	U	0.015 U	0.019 U	0.016		0.019	UJ	0.016 UJ	0.021		0.012	U	0.015 UJ	0.02		0.013	U	0.011	U	0.017	UJ	0.012 UJ
Carbon tetrachloride Chlorobenzene	0.76	500	0.76 1.1	0.0021	U	0.0015 U 0.00077 U	0.0019 U 0.00094 U	0.0016		0.0019	III	0.0016 UJ 0.00082 UJ	0.00076 0.001		0.0012	U	0.0015 U 0.00076 U	0.002		0.0013	U 5 U	0.0011	U	0.0017 0.00084	U	0.0012 U 0.00058 U
Chloroethane	1.1	300	1.1	0.001	U	0.00077 U	0.0034 U	0.00076		0.0038	III	0.00032 UJ	0.001		0.0024	U	0.003 U	0.004		0.0007	U	0.00033	U	0.0004	U	0.0023 U
Chloroform	0.37	350	0.37	0.0031	UJ	0.0023 U	0.0028 U	0.0023		0.0028	UJ	0.0024 UJ	0.0031		0.0018	U	0.0023 U	0.003		0.002	U	0.0016	U	0.0025	Ü	0.0017 U
Chloromethane				0.0084	U	0.0062 U	0.0075 U	0.0063		0.0076	UJ	0.0066 UJ	0.0084		0.0048	U	0.0061 U	0.009		0.0053	U	0.0043	U	0.0067	U	0.0046 U
cis-1,2-Dichloroethene	0.25	500	0.25	0.0021	UJ	0.0015 U	0.0019 U	0.0016	UJ (0.0019	UJ	0.0016 UJ	0.0021	U	0.0012	U	0.0015 U	0.002	23 U	0.0013	U	0.0011	U	0.0017	U	0.0012 U
cis-1,3-Dichloropropene				0.001	UJ	0.00077 U	0.00094 U	0.00078	UJ 0	0.00095	UJ	0.00082 UJ	0.001	U	0.0006	U	0.00076 U	0.001	2 U	0.00066	5 U	0.00053	U	0.00084	U	0.00058 U
Cyclohexane				0.021	U	0.015 U	0.019 U	0.016		0.019	UJ	0.016 UJ	0.021		0.012	U	0.015 U	0.02		0.013	U	0.011	U	0.013	J	0.012 U
Dibromochloromethane				0.0021	UJ	0.0015 U	0.0019 U	0.0016		0.0019	UJ	0.0016 UJ	0.0021		0.0012	U	0.0015 U	0.002		0.0013	U	0.0011	U		U	0.0012 U
Dichlorodifluoromethane	1	200	1	0.021	U	0.015 U	0.019 U	0.016 0.00056		0.019	UJ	0.016 UJ	0.021		0.012 0.00061	U	0.015 U 0.0015 U	0.02		0.013	U	0.011	U	0.017 0.00093	U	0.012 U
Ethylbenzene Freon-113	1	390	1	0.0021	UJ U	0.0015 U 0.0062 U	0.0019 U 0.0075 U	0.0063		0.0019	UJ	0.0016 UJ 0.0066 UJ	0.0021		0.0048	U	0.0015 U 0.0061 UJ	0.002		0.0013	U	0.0011	U	0.00093	UJ	0.0012 U 0.0046 UJ
Isopropylbenzene				0.0004	UJ	0.0002 U	0.0073 U	0.0003		0.0070	III	0.0016 UJ	0.0004		0.0048	U	0.0001 U	0.003		0.0033	U	0.0043	II		j	0.0040 U
Methyl Acetate				0.0084	UJ	0.0062 U	0.0075 U	0.0063		0.0076	UJ	0.0066 UJ	0.0021		0.0048	Ü	0.0061 U	0.002		0.0053	Ü	0.0043	U	0.0067	U	0.0046 U
Methyl cyclohexane				0.0084	U	0.0062 U	0.0011 J	0.0044		0.0076	UJ	0.0066 UJ	0.0084		0.0048	U	0.0061 U	0.00		0.0053	Ü	0.0043	U	0.0067	U	0.0046 U
Methyl tert butyl ether	0.93	500	0.93	0.0042	U	0.0031 U	0.0038 U	0.0031	UJ (0.0038	UJ	0.0033 UJ	0.0042	U	0.0024	U	0.003 U	0.004	l6 U	0.0027	U	0.0021	U	0.0034	U	0.0023 U
Methylene chloride	0.05	500	0.05	0.01	UJ	0.0077 U	0.0094 U	0.0078		0.0095	UJ	0.0082 UJ	0.01		0.006	U	0.0076 U	0.017		0.0066	U	0.0053	U	0.0084	U	0.0058 U
n-Butylbenzene	12	500	12	0.0021	R	0.0015 U	0.0019 U	0.0016		0.0019	UJ	0.0016 UJ	0.0021		0.0051	J+	0.0015 U	0.004	_	0.0013	U	0.0011	U	0.0017	U	0.0012 U
n-Propylbenzene	3.9	500	3.9	0.0021	R	0.0015 U	0.0019 U			0.0019	UJ	0.0016 UJ	0.0021		0.0027	J+	0.0015 U	0.002		0.0013	_	0.0011	U		J	0.0012 U
Naphthalene	12	500	12	0.0084	R	0.0075 J+	0.0075 U			0.0076	UJ	0.0066 UJ			0.0033		0.0061 U	0.00		0.0053		0.0043	U			0.0046 U
o-Xylene p-Isopropyltoluene	0.26	500	1.6	0.0021 0.0021	UJ	0.0015 U 0.0015 U	0.0019 U 0.0019 U			0.0019	UJ	0.0016 UJ 0.0016 UJ	0.0021 0.0021		0.0012	U	0.0015 U 0.0015 U			0.0013	_					0.0012 U 0.0012 U
p/m-Xylene	0.26	500	1.6	0.0021	UJ	0.0013 U	0.0019 U			0.0019	III	0.0010 UJ			0.0012	U	0.0013 U	_		0.0013		0.0011	U			0.0012 U
sec-Butylbenzene	11	500	11	0.0042		0.00045 J+	0.0030 U	0.00		0.0019	UJ	0.0035 UJ	0.0042		0.0042	J+	0.003 U	0.00		0.0027	U	0.0021	U			0.0023 U
Styrene				0.0021	R	0.0015 U	0.0019 U			0.0019	UJ	0.0016 UJ	0.0021		0.0012		0.0015 U			0.0013		0.0011	U			0.0012 U
tert-Butylbenzene	5.9	500	5.9	0.0042	UJ	0.0019 J+	0.0038 U	0.029		0.0038	UJ	0.0033 UJ	0.0042			J+	0.003 U			0.0027	_	0.0021	U			0.0023 U
Tetrachloroethene	1.3	150	1.3	0.001	UJ	0.00077 U	0.00094 U	0.00078		0.00095	UJ	0.00082 UJ	0.001		0.0006	U	0.00076 U	0.001	_	0.0013		0.00057				0.00058 U
Toluene	0.7	500	0.7	0.0021	UJ	0.0015 U	0.0019 U	0.0016		0.0019	UJ	0.0016 UJ			0.0012	U	0.0015 U	_		0.0013	_		U			0.0012 U
trans-1,2-Dichloroethene	0.19	500	0.19	0.0031	UJ	0.0023 U	0.0028 UJ	0.0023		0.0028	UJ		0.0031		0.0018		0.0023 U	_	_	0.002	_		U			0.0017 U
trans-1,3-Dichloropropene	6 17	200	0 :-	0.0021	R	0.0015 U	0.0019 U	0.0016		0.0019	UJ	0.0016 UJ	0.0021		0.0012	U	0.0015 U	0.002		0.0013		0.0011	U			0.0012 U
Trichloroethene Trichloroethene	0.47	200	0.47	0.001			0.00094 U	0.00078		0.00095	UJ	0.00082 UJ			0.0006		0.00076 U			0.00066	_	0.00053	U			0.00058 U
Trichlorofluoromethane Vinyl chlorida	0.02	10	0.02	0.0084 0.0021		0.0062 U 0.0015 U	0.0075 U 0.0019 U	0.0063 0.0016		0.0076	UJ	0.0066 UJ 0.0016 UJ	0.0084 0.0021		0.0048	U	0.0061 UJ 0.0015 U			0.0053	_	0.0043	U	0.0067 0.0017		0.0046 UJ 0.0012 U
Vinyl chloride Total TIC Compounds	0.02	13	0.02	0.0021 0.00658		3.61 J	0.0019 U			0.0019	J)	0.0016 UJ 0.0415 J	0.0021		1.35	J	0.0015 U	0.002 3.45		0.0013	U	0.0011	U		J	0.0012 U
rotal ric compounds		1	i	U.UU036	,	J.01 J	U.U304 J	5.0	, (U.U400	J	U.U413 J	U.U3/	,	1.55	J	U U	5.45	, , ,	U	U	U	U	0.234	,	U

LOCATION				SB-11	2 FILL	SB-112	NATIVE	SB-112	2A FILL	SB-112/	A NATIVE	SB-11	2B FILL	SB-112B	NATIVE	SB-112	2C FILL	SB-112C	NATIVE	SB-11	3 FILL	SB-113	NATIVE	SB-11	14 FILL	SB-114	NATIVE	SB-11	5 FILL	SB-115 N	NATIVE
SAMPLING DATE				11/26	/2024	11/26	/2024	11/26	5/2024	11/2	6/2024	11/26	5/2024	11/26	/2024	11/26	5/2024	11/26	/2024	11/26	/2024	11/26	6/2024	11/25	5/2024	11/25	/2024	11/26	/2024	11/26/2	2024
LAB SAMPLE ID				L24699			906-08		906-09		06-10 R1		06-11 R1	L246990			906-13		906-14	L24699			906-16		590-23	L24695		L24699	-	L246990	
SAMPLE TYPE				SO		SC			OIL		OIL		OIL		OIL		OIL	SC		SO			OIL		OIL	SO		SC		SOI	
SAMPLE DEPTH (ft.)				2-	10	11-	-14	6	-8	10)-13	7	'-9	11-	-13	7	-9	11-	-15	3-	10	10)-15	1	-5	12-	-20	3-	·8	13-2	20
Analyte	Unrestricted Use SCO	Commercial Use SCO	Protection of Groundwater	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual
Volatile Organics by EPA 5035 High	030 000			1									1																		
1,1,1-Trichloroethane	0.68	500	0.68	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,2,2-Tetrachloroethane				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,2-Trichloroethane				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1-Dichloroethane	0.27	240	0.27	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1-Dichloroethene	0.33	500	0.33	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2,4-Trichlorobenzene	2.5	100	2.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
1,2,4-Trimethylbenzene	3.6	190	3.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dibromo-3-chloropropane				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
1,2-Dibromoethane 1,2-Dichlorobenzene	1.1	500	1.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichloroethane	0.02	30	0.02	-	-	-	_	-	-	-	_	-		-	-	-		-	-	_	_	-	-		-	-	-	-		-	-
1,2-Dichloropropane	0.02	30	0.02	_		_				-				_				_	_	_		_				_					_
1,3,5-Trimethylbenzene	8.4	190	8.4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-
1,3-Dichlorobenzene	2.4	280	2.4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
1,4-Dichlorobenzene	1.8	130	1.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2-Butanone	0.12	500	0.12	-	-	-	-		-	-	_			-	-	-			-	-		-		-	-	-	-	_		-	-
2-Hexanone				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4-Methyl-2-pentanone				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Acetone	0.05	500	0.05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzene	0.06	44	0.06	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
Bromodichloromethane				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bromoform				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bromomethane				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Carbon disulfide	0.76	22	0.76	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
Carbon tetrachloride Chlorobenzene	1.1	500	0.76 1.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
Chloroethane	1.1	300	1.1	-		-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-		-	-	-	-		-	-
Chloroform	0.37	350	0.37	_	-	-	-	-	-	-	-	-	_	-	-	-	-	_	-	-	-	-	-	_	-	-	-	-		-	_
Chloromethane	0.07	330	0.57	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-
cis-1,2-Dichloroethene	0.25	500	0.25	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
cis-1,3-Dichloropropene				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cyclohexane				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibromochloromethane				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dichlorodifluoromethane				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ethylbenzene	1	390	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
Freon-113				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Isopropylbenzene				-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
Methyl Acetate		+		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Methyl cyclohexane	0.93	500	0.93	-	-	-	-	 -	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
Methyl tert butyl ether Methylene chloride	0.93	500	0.93	-	-	-	-	 -	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-		-	-
n-Butylbenzene	12	500	12	-		-	-	+	-	-	-	-	-	-	-	-	<u> </u>	-	-	-	-	-	-		-	-	-	-	-	-	-
n-Propylbenzene	3.9	500	3.9	-		-		 	-	-	-	 		-			-	-	-	-		-	-		-	-	-	_		-	
Naphthalene	12	500	12	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
o-Xylene	0.26	500	1.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
p-Isopropyltoluene				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
p/m-Xylene	0.26	500	1.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
sec-Butylbenzene	11	500	11	-		-	-		-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-		-	-	-
Styrene				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
tert-Butylbenzene	5.9	500	5.9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Tetrachloroethene	1.3	150	1.3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Toluene	0.7	500	0.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
trans-1,2-Dichloroethene	0.19	500	0.19	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
trans-1,3-Dichloropropene	2.7	222	0 :-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-			
Trichloroethene	0.47	200	0.47	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Trichlorofluoromethane	0.02	12	0.02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Vinyl chloride Total TIC Compounds	0.02	13	0.02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total Tie Compounds		1	1	-	-	_	-	-	-	_	-	_		-	-	-	-	-	_	-	-	_	-	-	-	-	-	-			

LOCATION				SB-112	2 FILL	SB-112 I	NATIVE	SB-112	2A FILL	SB-112	A NATIVE	SB-112B	FILL	SB-112B NATIV	E SB-	-112C FILL	SB-1120	NATIVE	SB-11	3 FILL	SB-113	NATIVE	SB-11	14 FILL	SB-114	NATIVE	SB-115 I	FILL	SB-115 NATIVE
SAMPLING DATE				11/26	/2024	11/26	/2024	11/26	/2024	11/2	6/2024	11/26/2	024	11/26/2024	11	/26/2024	11/26	5/2024	11/26	/2024	11/26	/2024	11/25	5/2024	11/25	6/2024	11/26/2	024	11/26/2024
LAB SAMPLE ID				L24699		L24699			906-09		06-10 R1	L2469906-		L2469906-12 R		469906-13		906-14		906-15		906-16		590-23	L2469		L246990		L2469906-18
SAMPLE TYPE				so		so		SC			OIL	SOIL		SOIL		SOIL		OIL	SC		sc			OIL	SC		SOIL		SOIL
SAMPLE DEPTH (ft.)				2-1	10	11-	14	6	-8	10	0-13	7-9		11-13		7-9	11	-15	3-	10	10-	-15	1	-5	12	-20	3-8		13-20
Analyte	Unrestricted Use SCO	Commercial Use SCO	Protection of Groundwater	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results Qual	Resul	lts Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results Qual
Semivolatile Organics by GC/MS	_		_																										
1,2,4,5-Tetrachlorobenzene		120		0.92	U	0.21	U	0.18	U	0.22	U	0.18	U	0.22 U	0.22		0.18	U	0.19	U	0.24	U	0.21	U	0.2	U	0.19	U	0.21 U
1,4-Dioxane 2,3,4,6-Tetrachlorophenol	0.1	130	0.1	0.14 0.92	U	0.031	U	0.027 0.18	U	0.033	U	0.028 0.18	U	0.033 U 0.22 U	0.03		0.026	U	0.029	U	0.036	U	0.031	U	0.03	U	0.029	U	0.032 U 0.21 U
2,4,5-Trichlorophenol	+	+		0.92	U	0.21	U	0.18	U	0.22	U	0.18	U	0.22 U	0.22		0.18	U	0.19	U	0.24	U	0.21	U	0.2	U	0.19	U	0.21 U
2,4,6-Trichlorophenol				0.55	U	0.12	U	0.11	U	0.13	Ü	0.11	U	0.13 U	0.13		0.10	U	0.13	Ü	0.14	U	0.12	U	0.12	U	0.12	U	0.13 U
2,4-Dichlorophenol				0.83	U	0.18	U	0.16	U	0.2	U	0.17	U	0.2 U	0.2	U	0.16	U	0.17	U	0.22	U	0.19	U	0.18	U	0.17	U	0.19 U
2,4-Dimethylphenol				0.92	U	0.21	U	0.18	U	0.22	U	0.18	U	0.22 U	0.22	2 U	0.18	U	0.19	U	0.24	U	0.21	U	0.2	U	0.19	U	0.21 U
2,4-Dinitrophenol				4.4	R	0.99	U	0.87	U	1.1	U	0.89	U	1.1 U	1.1		0.84	U	0.92	U	1.2	U	1	U	0.97	U	0.92	U	1 R
2,4-Dinitrotoluene				0.92	U	0.21	U	0.18	U	0.22	U	0.18	U	0.22 U	0.22		0.18	U	0.19	U	0.24	U	0.21	U	0.2	U	0.19	U	0.21 U
2,6-Dinitrotoluene				0.92 0.92	U	0.21	U	0.18 0.02	U J	0.22	U	0.18 0.18	U	0.22 U 0.22 U	0.22		0.18 0.18	U	0.19 0.19	U	0.24	U	0.21	U	0.2	U	0.19 0.19	U	0.21 U 0.21 U
2-Chloronaphthalene 2-Chlorophenol	+	+		0.92	U	0.21	U	0.02	U	0.22	U	0.18	U II	0.22 U	0.22		0.18	U	0.19	U	0.24	U II	0.21	U	0.2	U	0.19	U	0.21 U
2-Methylnaphthalene				1.4		0.47		0.53	Ŭ	0.31		1.7		0.4	1.6		0.36		0.92		0.3		0.82	Ŭ	0.24	U	0.069	J	0.25 U
2-Methylphenol	0.33	500	0.33	0.92	U	0.21	U	0.18	U	0.22	U	0.18	U	0.22 U	0.22		0.18	U	0.19	U	0.24	U	0.21	U	0.2	U	0.19	U	0.21 U
2-Nitroaniline				0.92	U	0.21	U	0.18	U	0.22	U	0.18	U	0.22 U	0.22		0.18	U	0.19	U	0.24	U	0.21	U	0.2	U	0.19	U	0.21 U
2-Nitrophenol		<u> </u>		2	U	0.44	U	0.39	U	0.48	U	0.4	U	0.48 U	0.48		0.38	U	0.42	U	0.52	U	0.45	U	0.44	U	0.41	U	0.46 U
3,3'-Dichlorobenzidine	0.22	500	0.22	0.92	R	0.21	U	0.18	U	0.22	U	0.18	U	0.22 U	0.22		0.18	U	0.19	U	0.24	U	0.21	U	0.2	U	0.19	U	0.21 U
3-Methylphenol/4-Methylphenol 3-Nitroaniline	0.33	500	0.33	0.16 0.92	J	0.3	U	0.26 0.18	U	0.32	U	0.27 0.18	U	0.054 J 0.22 U	0.32		0.25 0.18	U	0.059 0.19	J	0.34	U	0.086 0.21	J U	0.29	U	0.28 0.19	U	0.3 U 0.21 U
4.6-Dinitro-o-cresol	1	1		2.4	R	0.21	U	0.18	U	0.22	U	0.18	U	0.22 U	0.22		0.18	U	0.19	U	0.24	U	0.21	U	0.52	U	0.19	U	0.55 U
4-Bromophenyl phenyl ether				0.92	U	0.21	U	0.18	U	0.22	Ü	0.18	U	0.22 U	0.22		0.18	U	0.19	Ü	0.24	U	0.21	U	0.2	U	0.19	U	0.21 U
4-Chloroaniline				0.92	R	0.21	U	0.18	U	0.22	U	0.18	U	0.22 U	0.22		0.18	U	0.19	U	0.24	U	0.21	U	0.2	U	0.19	U	0.21 U
4-Chlorophenyl phenyl ether				0.92	U	0.21	U	0.18	U	0.22	U	0.18	U	0.22 U	0.22	2 U	0.18	U	0.19	U	0.24	U	0.21	U	0.2	U	0.19	U	0.21 U
4-Nitroaniline				0.92	U	0.21	U	0.18	U	0.22	U	0.18	U	0.22 U	0.22		0.18	U	0.19	U	0.24	U	0.21	U	0.2	U	0.19	U	0.21 U
4-Nitrophenol	20	500	00	1.3	U	0.29	U	0.25	U	0.31	U	0.26	U	0.31 U	0.31		0.25	U	0.27	U	0.34	U	0.29	U	0.28	U	0.27	U	0.3 U
Acenaphthylana	20 100	500 500	98 107	0.61	J	0.34 0.52		0.14 0.14	U	0.18	U	0.15 0.029	U J	0.089 J 0.18 U	0.23 0.18		0.52 0.14	U	0.14 0.51	J	0.57 0.19	U	0.11 1.8	J	0.16 0.16	U	0.074	J	0.033 J 0.18
Acetophenone	100	300	107	0.66	- 1	0.32	U	0.14	U	0.18	U	0.029	J II	0.18 U	0.10		0.14	U	0.19	U	0.19	U II	0.16		0.16	U	0.27	U	0.18 0.21 U
Anthracene	100	500	1000	5		0.37		0.11	U	0.13	Ü	0.037	J	0.067 J	0.56		0.6	Ū	0.47		0.6		1.3		0.12	U	0.067		0.13 U
Atrazine				0.74	U	0.16	U	0.14	U	0.18	U	0.15	U	0.18 U	0.18		0.14	U	0.15	U	0.19	U	0.17	U	0.16	U	0.15	U	0.17 U
Benzaldehyde				0.8	J	0.27	U	0.24	U	0.29	U	0.24	U	0.29 U	0.3	U	0.23	U	0.25	U	0.32	U	0.28	U	0.26	U	0.25	U	0.28 U
Benzo(a)anthracene	1	5.6	1	9.4		0.14		0.12		0.33		0.26		0.12 J	0.11		0.095	J	1.6		0.21		3.6		0.12	U	0.19		0.13 U
Benzo(a)pyrene	1	1 5.6	22	9.9		0.47		0.21		0.56		0.28		0.062 J	0.07		0.12	J	1.5		0.17	J	4.4		0.16	U	0.43	\longrightarrow	0.17 U
Benzo(b)fluoranthene Benzo(ghi)perylene	100	5.6 500	1.7 1000	7.4		0.24 2.5		0.21 0.35		0.76 0.9		0.42 0.37		0.17 0.14 J	0.14		0.15 0.14		2.2 1.2		0.24 0.21		5.6 3.4		0.12 0.16	U	0.45 1.6	\longrightarrow	0.13 U 0.41
Benzo(k)fluoranthene	0.8	56	1.7	3.4		0.12		0.06	J	0.3		0.12		0.14 J	0.13		0.042	J	0.58		0.054	J	2		0.10	U	0.13	+	0.13 U
Biphenyl	0.0	30	1	0.17	J	0.13	J	0.06	J	0.04	J	0.17	J	0.14 J	0.22		0.11	J	0.12	J	0.55	U	0.082	J	0.46	Ü	0.44	U	0.48 U
Bis(2-chloroethoxy)methane				1	U	0.22	U	0.2	U	0.24	U	0.2	U	0.24 U	0.24	4 U	0.19	U	0.21	U	0.26	U	0.23	U	0.22	U	0.21	U	0.23 U
Bis(2-chloroethyl)ether				0.83	U	0.18	U	0.16	U	0.2	U	0.17	U	0.2 U	0.2		0.16	U	0.17	U	0.22	U	0.19	U	0.18	U	0.17	U	0.19 U
Bis(2-chloroisopropyl)ether				1.1	U	0.25	U	0.22	U	0.27	U	0.22	U	0.27 U	0.27		0.21	U	0.23	U	0.29	U	0.25	U	0.24	U	0.23	U	0.25 U
Bis(2-ethylhexyl)phthalate	1	1		0.92 0.92	U	0.21	U	0.18 0.18	U	0.22	U	0.18 0.18	U	0.22 U 0.22 U	0.22		0.18	U	0.19 0.19	U	0.24	U	0.21	U	0.2	U	0.19 0.19	U	0.21 U 0.21 U
Butyl benzyl phthalate Caprolactam		1		0.92	U	0.21	U	0.18	U	0.22	U	0.18	U	0.22 U	0.22		0.18	U	0.19	U	0.24	U	0.21	U	0.2	II	0.19	U	0.21 U
Carbazole				0.36	J	0.21	U	0.18	Ü	0.22	U	0.03	J	0.22 U			0.18	U	0.2		0.24	U	0.24	Ŭ	0.2	U	0.025	J	0.21 U
Chrysene	1	56	1	9.7		0.11	J	0.14		0.39		0.31		0.39	0.18		0.1		1.9		0.24		3.5		0.12	U	0.2	\rightarrow	0.13 U
Di-n-butylphthalate				0.92	U	0.21	U	0.18	U	0.22	U	0.18	U	0.22 U	0.22	2 U	0.18	U	0.19	U	0.24	U	0.21	U	0.2	U	0.19	U	0.21 U
Di-n-octylphthalate				0.92	U	0.21	U	0.18	U	0.22	U	0.18	U	0.22 U	0.22		0.18	U	0.19	U	0.24	U	0.21	U	0.2	U	0.19	U	0.21 U
Dibenzo(a,h)anthracene	0.33	0.56	1000	1.7	,	0.65	11	0.03	J	0.12		0.049	J	0.047 J	0.13		0.1	U	0.31		0.038	J	0.76		0.12	U	0.16	- →	0.13 U
Dibenzofuran Diethyl phthalate	/	350	210	0.49 0.92	J	0.21	U	0.13 0.18	J	0.093 0.22	J	0.36 0.18	U	0.07 J 0.22 U			0.16 0.18	J	0.24 0.19	U	0.15 0.24	J U	0.27 0.21	U	0.2	U	0.033 0.19	J U	0.21 U 0.21 U
Dimethyl phthalate	1	+	1	0.92	U	0.21	U	0.18	U	0.22	U	0.18	U	0.22 U			0.18	U	0.19	U	0.24	U	0.21	U	0.2	U	0.19	U	0.21 U
Fluoranthene	100	500	1000	9.5	-	0.24		0.14	<u> </u>	0.28	 	0.33	J	0.11 J	_		0.10		2.5		0.24	<u> </u>	4.7	<u> </u>	0.12	U	0.19	$\dot{-}$	0.13 U
Fluorene	30	500	386	1.6		0.21	U	0.029	J	0.03	J	0.049	J	0.19 J			0.2		0.14	J	0.4		0.24		0.2	U	0.19	U	0.21 U
Hexachlorobenzene	0.33	6	3.2	0.55	U	0.12	U	0.11	U	0.13	U	0.11	U	0.13 U			0.1	U	0.12	U	0.14	U	0.12	U	0.12	U	0.12	U	0.13 U
Hexachlorobutadiene		<u> </u>		0.92	U	0.21	U	0.18	U	0.22	U	0.18	U	0.22 U			0.18	U	0.19	U	0.24	U	0.21	U	0.2	U	0.19	U	0.21 U
Hexachlorocyclopentadiene	1	1	1	2.6	R	0.59	UJ	0.52	U	0.63	U	0.53	U	0.64 U			0.5	U	0.55	U	0.69	U	0.6	U	0.58	U	0.55	U	0.6 R
Hexachloroethane Indeno(1,2,3-cd)pyrene	0.5	5.6	8.2	0.74 6.3	U	0.16 1.6	U	0.14 0.23	U	0.18 0.7	U	0.15 0.29	U	0.18 U 0.038 J	_		0.14 0.11	J	0.15 1	U	0.19 0.14	J	0.17 3.3	U	0.16 0.16	U	0.15 0.8	U	0.17 U 0.15 J
Isophorone	0.5	5.0	0.2	0.83	U	0.18	U	0.23	U	0.7	U	0.29	U	0.036 J	0.08		0.11	U	0.17	U	0.14	U	0.19	U	0.18	U	0.17	U	0.15 J
n-Nitrosodi-n-propylamine	1	1		0.92	U	0.10	U	0.18	U	0.22	U	0.17	U	0.22 U			0.18	U	0.17	U	0.24	U	0.13	U	0.10	U	0.17	U	0.21 U
Naphthalene	12	500	12	2.9		0.45		0.29		0.18	j	0.88		0.23	1.1		0.38		0.73		0.14	Ĵ	1.1		0.2	U	0.062	J	0.21 U
NDPA/DPA				0.74	U	0.16	U	0.14	U	0.18	U	0.15	U	0.18 U	0.18		0.14	U	0.15	U	0.19	U	0.17	U	0.16	U	0.15	U	0.17 U
Nitrobenzene				0.83	U	0.18	U	0.16	U	0.2	U	0.17	U	0.2 U			0.16	U	0.17	U	0.22	U	0.19	U	0.18	U	0.17	U	0.19 U
p-Chloro-m-cresol		 	<u> </u>	0.92	U	0.21	U	0.18	U	0.22	U	0.18	U	0.22 U			0.18	U	0.19	U	0.24	U	0.21	U	0.2	U	0.19	U	0.21 U
Pentachlorophenol	0.8	6.7	0.8	0.74	U	0.16	U	0.14	U	0.18	U	0.15	U	0.18 U	0.18		0.14	U	0.15	U	0.19	U	0.17	U	0.16	U	0.063	J	0.17 U
Phenanthrene Phenol	100 0.33	500 500	1000 0.33	0.15	J	0.26 0.21	U	0.34 0.18	U	0.35 0.22	U	0.73 0.18	U	0.6 0.046 J	0.5		0.22 0.18	U	1.8 0.035	J	0.99 0.24	U	1.7 0.056	J	0.12	U	0.22 0.19	U	0.13 U 0.21 U
Pyrene	100	500	1000	14	,	0.21		0.17		0.22	 	0.16	J	0.16	0.65		0.18	-	2.4		0.24		4.8	<u> </u>	0.2	U	0.19		0.022 J
Total TIC Compounds	1	1	1	49.4	J	19.1	J	6.58	J	7.59	J	11.6	J	7.61 J	25.3		19.7	J	12.6	J	31.8	J	17.2	J	0	U	0.326	J	0 U
Petroleum Hydrocarbon Quantitation				1																									
TPH (C10-C36)				2740		-	_	-	-	-	-	-	-		-	-	-	-	337		-	-	890		-		26.8	J	

LOCATION				SB-112 FI	LL SB-1	12 NATIVE	SB-11	2A FILL	SB-112 <i>A</i>	NATIVE	SB-112	2B FILL	SB-112B	NATIVE	SB-112	C FILL	SB-112C	NATIVE	SB-11	3 FILL	SB-113	NATIVE	SB-11	4 FILL	SB-114 N	IATIVE	SB-115 I	FILL SB-1	15 NATIVE
SAMPLING DATE				11/26/20	24 11	/26/2024	11/26	5/2024	11/26	5/2024	11/26	5/2024	11/26/	/2024	11/26	/2024	11/26	/2024	11/26	6/2024	11/26	5/2024	11/25	6/2024	11/25/2	2024	11/26/2	024 11/	/26/2024
LAB SAMPLE ID				L2469906-	07 L24	69906-08		906-09		06-10 R1		06-11 R1	L246990		L24699			906-14		906-15		906-16		590-23	L246959		L246990		169906-18
SAMPLE TYPE SAMPLE DEPTH (ft.)				SOIL 2-10		SOIL 11-14		OIL i-8		OIL -13	SC	OIL '-9	SO 11-		SC	OIL -9	SC 11-		SC 3-			OIL)-15	SO	-5	SOII 12-2		SOIL 3-8		SOIL 13-20
· ·	Unrestricted	Commercial	Protection of	2-10		11-14	-	o 	10	- 13	,	-9 	11-	13	,	-9		15	3-	10	10	1-15	1	-5					
Analyte	Use SCO	Use SCO	Groundwater	Results C	ual Resu	ts Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual Resul	lts Qual
Polychlorinated Biphenyls by GC											•						,			,									
Aroclor 1016	0.1	1	3.2		U 0.06		-	-	-	-	-	-	-	-	-			-	0.0552	U	0.0699	U	0.0602		0.0598		0.0549	U 0.059	
Aroclor 1221	0.1	1	3.2		U 0.06		-	-	-	-	-	-	-	-	-	-	-	-	0.0552	U	0.0699	U	0.0602		0.0598		0.0549	U 0.059	
Aroclor 1232 Aroclor 1242	0.1	1	3.2 3.2		U 0.06°		-	-	-	-	-	-	-	-	-	-	-		0.0552 0.0552	U	0.0699	U	0.0602		0.0598		0.0549	U 0.059 U 0.059	
Aroclor 1248	0.1	† '	3.2		U 0.06		-	-	-	_	_	-	-	-	-	_	-		0.0552	U	0.0699	U	0.0602		0.0598		0.0549	U 0.059	
Aroclor 1254	0.1	1	3.2		U 0.008		-	-	-	-	-	-	-	-	-	-	-	-	0.0552	Ü	0.0699	Ü	0.0602		0.0598		0.00962	J 0.059	
Aroclor 1260	0.1	1	3.2	0.145	UJ 0.06	1 U	-	-	-	-	-	-	-	-	-	-	-	-	0.0552	U	0.0699	U	0.0859		0.0598		0.0549	U 0.059	
Aroclor 1262	0.1	1	3.2	0.0563	U 0.06	1 U	-	-	-	-	-	-	-	-	-	1	-	-	0.112		0.0699	U	0.0602	U	0.0598	U	0.0549	U 0.059	91 U
Aroclor 1268	0.1	1	3.2		U 0.02		-	-	-	-	-	-	-	-	-	-	-	-	0.0552	U	0.02	J	0.0602	U	0.0598		0.035	J 0.059	
PCBs, Total	0.1	1	3.2	0.145	0.03	7 J	-	-	-	-	-	-	-	-	-	-	-	-	0.112		0.02	J	0.0859		0.0598	U	0.0446	J 0.059	91 U
Chlorinated Herbicides by GC	T	T	T	0.10			+				1						1 1		0.10		1 004		0.000		0.204	1	0.100		<u> </u>
2,4,5-T 2,4,5-TP (Silvex)	3.8	500	3.8		U 0.20		-	-	-	-	-	-	-	-	-	-	-	-	0.19 0.19	U	0.24	U	0.209	U	0.201		0.193 0.193	U 0.208	
2,4-D	3.0	300	3.0		U 0.20		-	-	-	-	_	-	-	-	-		_		0.19	U	0.24	U	0.209	U	0.201		0.193	U 0.208	
Organochlorine Pesticides by GC	-1	ļ	1	5.15	- 0.20	- 1	1		ļ		!		ļļ	ļ					0.15	<u> </u>	J 0.27	— <u> </u>	5.255		0.201	<u> </u>	555	0.200	
4,4'-DDD	0.0033	92	14	0.00172	UJ 0.001	99 U	-	-	-	-	-	-	-		-	-	-	-	0.0018	U	0.00229	U	0.00194	U	0.0019	U (0.00186	U 0.002	2 U
4,4'-DDE	0.0033	62	17	0.00172	UJ 0.001				-		-		- 1	-	-	-	-		0.0018	U	0.00229	U	0.00194	U	0.0019		0.00186	U 0.002	
4,4'-DDT	0.0033	47	136		UJ 0.001		-	-	-	-	-	-	-	-	-	-	-	-	0.00422		0.00229		0.00194		0.0019		0.00186	U 0.002	
Aldrin	0.005	0.68	0.19		UJ 0.001		-	-	-	-	-	-	-	-	-	-		-	0.0018	U	0.00229	U	0.00194		0.0019		0.00186	U 0.002	
Alpha-BHC	0.02	3.4	0.02		UJ 0.000		-	-	-	-	-	-	-	-	-		-	-	0.00075	U	0.00096	U	0.00081		0.00079		0.00077	U 0.0008	
Beta-BHC	0.036	3	0.09		UJ 0.001		-	-	-	-	-	-	-	-	-	-	-		0.0018	U		U	0.00194		0.0019		0.00186	U 0.002	
Chlordane cis-Chlordane	0.094	24	2.9	0.0144 0.00216	UJ 0.016 UJ 0.002		-	-	-	-	-	-	-	-	-	-	-	-	0.00225	U	0.0191	U	0.0162		0.0158 0.00237		0.0155 0.00232	U 0.016	
Delta-BHC	0.04	500	0.25		UJ 0.002		-	-	-	-	-	-	-	-	-	-	-		0.00223	U	0.00287	U	0.00243		0.00237		0.00232	U 0.002	
Dieldrin	0.005	1.4	0.1		UJ 0.001		-	-	-	-	-	-	-	-	-	-	-	-	0.00113	Ü	0.00143	Ü	0.00131		0.0013		0.00116	U 0.0012	
Endosulfan I	2.4	200	102	0.00172	UJ 0.001		-	-	-	-	-	-	-	-	-	-	-	-	0.0018	Ü	0.00229	Ü	0.00194		0.0019		0.00186	U 0.002	
Endosulfan II	2.4	200	102		UJ 0.001		-	-	-	-	-	-	-	-	-	-	-	-	0.0018	U	0.00229	U	0.00194		0.0019		0.00186	U 0.002	
Endosulfan sulfate	2.4	200	1000	0.00072	UJ 0.000	33 U	-	-	-	-	-	-	-	-	-	ı	-	-	0.00075	U	0.00096	U	0.00081	U	0.00079	U (0.00077	U 0.0008	84 U
Endrin	0.014	89	0.06		UJ 0.000		-	-	-	-	-	-	-	-	-	-	-	-	0.00075	U	0.00096	U	0.00081		0.00079		0.00077	U 0.0008	
Endrin aldehyde					UJ 0.002		-	-	-	-	-	-	-	-	-	-		-	0.00225	U		U	0.00243		0.00237		0.00232	U 0.0025	
Endrin ketone	0.042	15	0.20	0.00172	UJ 0.001		-	-	-	-	-	-	-	-	-	-	-	-	0.0018	U	0.00229	U	0.00194		0.0019		0.00186	U 0.002	
Heptachlor Heptachlor epoxide	0.042	15	0.38		UJ 0.00 UJ 0.003		-	-	-	-	-	-	-	-	-	-	-		0.0009	U	0.00115	U	0.00097		0.00095		0.00093	U 0.001	
Lindane	0.1	9.2	0.1		UJ 0.000		-	-	-	-	_	-	-	-	-		_		0.00338	U	0.0043	U	0.00304		0.00336		0.00348	U 0.0008	
Methoxychlor	0.1	5.2	0.1	0.00323	UJ 0.003		-	-	-	-	-	-	-	-	-	-	-	-	0.00338	Ü	0.0043	Ü	0.00364		0.00356		0.00348	U 0.0037	
Toxaphene					UJ 0.037		-	-	-	-	-	-	-	-	-	-	-	-	0.0338	U	0.043	U	0.0364	U	0.0356		0.0348	U 0.037	
trans-Chlordane				0.00216	UJ 0.002	49 U	-	-	-	-	-	-	-	-	-	-	-	-	0.00225	U	0.00287	U	0.00243	U	0.00237	U (0.00232	U 0.0025	51 U
Total Metals	•																												
Aluminum, Total				4310	322		-	-	-	-	-	-	-	-	-	-	-	-	2700		3700		7330		8080		4420	1100	
Antimony, Total	12	16	16	0.449	J 9.78		-	-	-	-	-	-	-	-	-	-	-	-	0.922	J	5.37	J	4.77	U	7.9	U	0.466	J 5.03	
Arsenic, Total Barium, Total	13 350	16 400	16 820	76.6	7.14		-	-	-	-	-	-	-	-	-	-	-		30.2 90.4		21.6 74		3.27 64.1		2.94 88.3		19.6 146	5.13 87.4	
Beryllium, Total	7.2	590	820 47		J 0.41		+ -	 	-	 	-	 	-		-	-	 		0.314	ı	1.03	J	0.352	,	0.579	J	0.715	0.53	
Cadmium, Total	2.5	9.3	7.5	5.17	1.96		+ -	-	-	-	-	-	-	-	-	-	-	- -	0.905	U	2.88	U	0.953	U	1.58		0.713	J 1.01	
Calcium, Total		3.5	1.5	2340	1570		-	-	-	-	-	-	-	-	-	-	-	-	19300	<u> </u>	7870		66000		34500		15200	6380	
Chromium, Hexavalent	400	19	1		U 1.0		-	-	-	-	-	-	-	-	-	-	-	-	0.93	U	1.17	U	1.01	U	0.982		0.944	U 1.03	
Chromium, Total				6.49	19.9)	-	-	-	-	-	-	-	-	-	-	-	-	25.1		197		11.4		15.3		31	18	
Cobalt, Total				11	4.1		-	-	-	-	-	-	-	-	-		-	-	6.34		8.21		5.48		6.32		8.47	9.34	
Copper, Total	50	270	1720	21.1	46.2		-	-	-	-	-	-	-	-	-	-	-	-	52.3	_	81.8		16.3		22.7		89.7	20.8	
Cyanide, Total	27	40	27	1.3	1.2		-	-	-	-	-	-	-	-	-	-	-	-	0.36	J	1.4	U	0.28	J	1.2	U	0.4	J 1.2	
Iron, Total	62	1000	450	14900	2380		-	-	-	-	-	-	-	-	-	-	-	-	34400		124000		12600 9.27	-	12800 8.86		40100	2190	
Lead, Total Magnesium, Total	63	1000	450	6.92 1450	J 1400		-	-	-	-	-	-	-	-	-	-	-		91.1 2500		482 1450		18400		8750		105 2660	8.54 1770	
Manganese, Total	1600	10000	2000	370	262		-	-	-	-	-	-	-	-	-	-	-		224		1030	1	265		103		307	373	
Mercury, Total	0.18	2.8	0.73		U 0.64		-	-	-	-	-	-	-	-	-	-	-	-	0.089		0.097	U	0.082	U	0.162	U	0.096	0.1	
Nickel, Total	30	310	130	20.7	10.2		-	-	-	-	-	-	-	-	-	-	-	-	14.6		20		15.3		30.1		19.8	21.6	
Potassium, Total				519	376		-	-	-	-	-	-	-	-	-	•	-	-	626		337	J	864		905		379	1510	
Selenium, Total	3.9	1500	4	0.285	J 9.3		-	-	-	-	-	-	-	-	-	-	-	-	1.4	J	1.96	J	1.91	U	1.03		0.788	J 2.01	U
Silver, Total	2	1500	8.3		U 0.97		-	-	-	-	-	-	-	-	-	-	-	-	0.293	J	0.833	J	0.477	U	0.79		0.291	J 0.503	
Sodium, Total		_			J 123		-	-	-	-	-	-	-	-	-	-	-	-	114	J	317	J	186	J	293		87.4	J 279	
Thallium, Total	+	1			J 3.9		-	-	-	-	-	-	-	-	-	-	-	-	0.636	J	0.973	J	1.91	U	3.16	U	0.519	J 0.63	
Vanadium, Total Zinc, Total	109	10000	2400	12.1	29.7 63.7		-	-	-	-	-	-	-	-	-	-	-	-	22 86.2		221 54.2	1	12.9 28.4		12.7 41.2	-	19.6 89.6	25.5 45.7	
ZIIIC, TULAI	109	10000	2480	291	03.		-	-	-	-		-	-	-	-	-	-	-	00.2	L	34.2	<u> </u>	20.4		41.4		05.0	45./	

LOCATION				SB-11	2 FILL	SB-112	NATIVE	SB-112A FIL	L S	SB-112A NATIVE	SB-11	2B FILL	SB-112	B NATIVE	SB-11	2C FILL	SB-112C NATI	VE SB-113	3 FILL	SB-113	NATIVE	SB-1	14 FILL	SB-114	NATIVE	SB-11	15 FILL	SB-115 NA	ATIVE
SAMPLING DATE				11/26	/2024	11/20	6/2024	11/26/2024	4	11/26/2024	11/2	6/2024	11/2	6/2024	11/26	6/2024	11/26/2024	11/26/	2024	11/2	5/2024	11/2	25/2024	11/25	/2024	11/26	6/2024	11/26/20	J24
LAB SAMPLE ID				L2469	906-07	L2469	906-08	L2469906-09	9	L2469906-10 R1	L24699	06-11 R1	L24699	06-12 R1	L2469	9906-13	L2469906-1	L24699	06-15	L2469	906-16	L2469	9590-23	L24695	590-24	L2469	906-17	L2469906	18-د
SAMPLE TYPE				SC	OIL	S	OIL	SOIL		SOIL	S	OIL	S	OIL	S	OIL	SOIL	so	IL	S	OIL	S	OIL	SC)IL	S	OIL	SOIL	
SAMPLE DEPTH (ft.)				2-	·10	11	-14	6-8		10-13	7	7-9	1	1-13	7	7-9	11-15	3-1	0	10	-15	1	1-5	12-	-20	3	3-8	13-20	,
Analyte	Unrestricted Use SCO	Commercial Use SCO	Protection of Groundwater	Results	Qual	Results	Qual	Results Qu	ıal I	Results Qual	Results	Qual	Results	Qual	Results	Qual	Results Qu	l Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results (Qual
Perfluorinated Alkyl Acids by EPA 1633																													
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid (11Cl-PF3OUdS)				0.797	U	0.802	U		-		-	-	-	-	-	-		0.802	U	0.802	U	0.798	U	0.798	U	0.796	U	0.801	U
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)				0.797	U	0.802	U		-		-	-	-	-	-	-		0.802	U	0.802	U	0.798	U	0.798	U	0.796	U	0.801	U
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)				0.797	U	0.802	U		-		-	-	-	-	-	-		0.802	U	0.802	U	0.798	U	0.798	U	0.796	U	0.801	U
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)				0.797	U	0.802	U		-		-	-	-	-	-	-		0.802	U	0.802	U	0.798	U	0.798	U	0.796	U	0.801	U
2H,2H,3H,3H-Perfluorooctanoic Acid (5:3FTCA)				4.98	U	5.01	U				-	-	-	-	-	-		5.01	U	5.01	U	4.98	U	4.99	U	4.98	U	5	U
3-Perfluoroheptyl Propanoic Acid (7:3FTCA)				4.98	U	1.17	EMPC		-		-	-	-	-	-	-		5.01	U	5.01	U	4.98	U	4.99	U	4.98	U	5	U
3-Perfluoropropyl Propanoic Acid (3:3FTCA)				0.996	U	1	U				-	-	-	-	-	-		1	U	1	U	0.997	U	0.998	U	0.995	U	1	U
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)				0.797	U	0.802	U				-	-	-	-	-	-		0.802	U	0.802	U	0.798	U	0.798	U	0.796	U	0.801	U
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid (9Cl-PF3ONS)				0.797	U	0.802	U				-	-	-	-	-	-		0.802	U	0.802	U	0.798	U	0.798	U	0.796	U	0.801	U
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)				0.797	U	0.802	U				-	-	-	-	-	-		0.802	U	0.802	U	0.798	U	0.798	U	0.796	U	0.801	U
N-Ethyl Perfluorooctane Sulfonamide (NEtFOSA)				0.199	U	0.2	U				-	-	-	-	-	-		0.2	U	0.2	U	0.199	U	0.2	U	0.199	U	0.2	U
N-Ethyl Perfluorooctanesulfonamido Ethanol (NEtFOSE)				1.99	U	2	U				-	-	-	-	-	-		2	U	2	U	1.99	U	2	U	1.99	U	2	U
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)				0.199	U	0.2	U				-	-	-	-	-	-		0.2	U	0.2	U	0.199	U	0.2	U	0.199	U	0.2	U
N-Methyl Perfluorooctane Sulfonamide (NMeFOSA)				0.199	U	0.2	U				-	-	-	-	-	-		0.2	U	0.2	U	0.199	U	0.2	U	0.199	U	0.2	U
N-Methyl Perfluorooctanesulfonamido Ethanol (NMeFOSE)				1.99	U	2	U				-	-	-	-	-	-		2	U	2	U	1.99	U	2	U	1.99	U	2	U
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)				0.199	U	0.2	U				-	-	-	-	-	-		0.2	U	0.2	U	0.199	U	0.2	U	0.199	U	0.2	U
Nonafluoro-3,6-Dioxaheptanoic Acid (NFDHA)				0.398	U	0.401	U				-	-	-	-	-	-		0.401	U	0.401	U	0.399	U	0.399	U	0.398	U	0.4	U
Perfluoro(2-Ethoxyethane)Sulfonic Acid (PFEESA)				0.398	U	0.401	U				-	-	-	-	-	-		0.401	U	0.401	U	0.399	U	0.399	U	0.398	U	0.4	U
Perfluoro-3-Methoxypropanoic Acid (PFMPA)				0.398	U	0.401	U				-	-	-	-	-	-		0.401	U	0.401	U	0.399	U	0.399	U	0.398	U	0.4	U
Perfluoro-4-Methoxybutanoic Acid (PFMBA)				0.398	U	0.401	U				-	-	-	-	-	-		0.401	U	0.401	U	0.399	U	0.399	U	0.398	U	0.4	U
Perfluorobutanesulfonic Acid (PFBS)				0.199	U	0.2	U				-	-	-	-	-	-		0.2	U	0.2	U	0.199	U	0.2	U	0.199	U	0.2	U
Perfluorobutanoic Acid (PFBA)				0.053	J	0.802	U		-		-	-	-	-	-	-		0.033	J	0.802	U	0.058	J	0.798	U	0.057	J	0.801	U
Perfluorodecanesulfonic Acid (PFDS)				0.199	U	0.2	U				-	-	-	-	-	-		0.2	U	0.2	U	0.199	U	0.2	U	0.199	U	0.2	U
Perfluorodecanoic Acid (PFDA)				0.199	U	0.2	U		-		-	-	-	-	-	-		0.2	U	0.2	U	0.058	J	0.2	U	0.199	U	0.2	U
Perfluorododecanesulfonic Acid (PFDoS)				0.199	U	0.2	U		-		-	-	-	-	-	-		0.2	U	0.2	U	0.199	U	0.2	U	0.199	U	0.2	U
Perfluorododecanoic Acid (PFDoA)				0.199	U	0.2	U		-		-	-	-	-	-	-		0.2	U	0.2	U	0.199	U	0.2	U	0.199	U	0.2	U
Perfluoroheptanesulfonic Acid (PFHpS)				0.199	U	0.2	U				-	-	-	-	-	-		0.2	U	0.2	U	0.199	U	0.2	U	0.199	U	0.2	U
Perfluoroheptanoic Acid (PFHpA)				0.037	J	0.2	U				-	-	-	-	-	-		0.2	U	0.2	U	0.135	J	0.2	U	0.199	U	0.2	U
Perfluorohexanesulfonic Acid (PFHxS)				0.199	U	0.2	U				-	-	-	-	-	-		0.2	U	0.2	U	0.199	U	0.2	U	0.199	U	0.2	U
Perfluorohexanoic Acid (PFHxA)				0.048	J	0.2	U				-	-	-	-	-	-		0.017	J	0.2	U	0.113	J	0.2	U	0.199	U	0.2	U
Perfluorononanesulfonic Acid (PFNS)				0.199	U	0.2	U				-	-	-	-	-	-		0.2	U	0.2	U	0.199	U	0.2	U	0.199	U	0.2	U
Perfluorononanoic Acid (PFNA)				0.199	U	0.2	U				-	-	-	-	-	-		0.2	U	0.2	U	0.065	J	0.2	U	0.199	U	0.2	U
Perfluorooctanesulfonamide (PFOSA)				0.199	U	0.2	U				-	-	-	-	-	-		0.2	U	0.2	U	0.199	U	0.2	U	0.199	U	0.2	U
Perfluorooctanesulfonic Acid (PFOS)	0.88	440	1	0.157	J	0.051	J				-	-	-	-	-	-		0.073	J	0.2	U	0.251		0.032	J	0.199	U	0.2	U
Perfluorooctanoic Acid (PFOA)	0.66	500	0.8	0.095	J	0.2	U		[-	-	-	-	-	-		0.176	J	0.2	U	0.175	J	0.2	U	0.199	U	0.2	U
Perfluoropentanesulfonic Acid (PFPeS)				0.199	U	0.2	U				-	-	-	-	-	-		0.2	U	0.2	U	0.199	U	0.2	U	0.199	U	0.2	U
Perfluoropentanoic Acid (PFPeA)				0.398	U	0.401	U				-	-	-	-	-	-		0.401	U	0.401	U	0.21	J	0.399	U	0.398	U	0.4	U
Perfluorotetradecanoic Acid (PFTeDA)				0.199	U	0.2	U				-	-	-	-	-	-		0.2	U	0.2	U	0.199	U	0.2	U	0.199	U	0.2	U
Perfluorotridecanoic Acid (PFTrDA)				0.199	U	0.2	U		.		-	-	-	-	-	-		0.2	U	0.2	U	0.199	U	0.2	U	0.199	U	0.2	U
Perfluoroundecanoic Acid (PFUnA)				0.199	U	0.2	U				-	-	-	-	-	-		0.2	U	0.2	U	0.021	J	0.2	U	0.199	U	0.2	U

- All values are reported in milligrams per kilogram (mg/kg) / parts per million (ppm) except PFAAs which are reported in micrograms per kilogram (µg/kg) / parts per billion (ppb).
- Analytical results compared to New York 6 NYCRR Part 375 Soil Cleanup Objectives (SCOs).
- Bolded text indicates analyte detected at concentrations greater than laboratory detection limits.
- Highlighted cell Indicates analyte exceeds the respective standard/guideline value.
- Red text indicates analyte exceeds Protection of Groundwater SCO.
- Blue qualifiers were applied based on a third party data usability review.
- Grey highlighted cell indicates the laboratory detection limit exceeds the respective standard/guideline value.
- "U" indicates the analyte was not detected at the reported detection limit for the sample.
- "UJ" indicates the analyte was analyzed for, but was not detected. The associated reported quantitation limit is approximate and may be inaccurate or imprecise.
- "J" indicates estimated value.
- "J+" indicates the analyte was positively identified; the associated numerical value is an estimated quantity that may be biased high.
- "I" indicates the lower value for the two columns has been reported due to obvious interference.
- "P" indicates the RPD between the results for the two columns exceeds the method-specified criteria.
- "EMPC" indicates the results do not meet all criteria for a confirmed identification. The quantitative value represents the Estimated Maximum Possible Concentration of the analyte in the sample.
- "R" indicates the data are unusable. The sample results are rejected due to serious deficiencies in meeting Quality Control limits. The analyte may or may not be present.

Table 3 Remedial Investigation Report Sub-Surface Soil Data Summary

LOCATION				SB-11	6 FILL	SB-116 I	NATIVE	SB-11	7 FILL	SB-117	NATIVE	SB-11	8 FILL	SB-118	NATIVE	DUP-02 (•	DUP-03 (•-
SAMPLING DATE				11/26	/2024	11/26,	/2024	11/26	/2024	11/26		11/26	/2024	11/26		11/25/	2024	11/26/	
LAB SAMPLE ID				L24699		L24699		L24699		L24699		L24699			906-24	L24695		L24699	
SAMPLE TYPE				so		SO		SC		SO		SC		SC		so		SO	
SAMPLE DEPTH (ft.)				4-	7	7-1	10	3-	-7	12-	15	1-	-5	10	-14	15-2	20	2-8	8
Analyte	Unrestricted Use SCO	Commercial Use SCO	Protection of Groundwater	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual
Volatile Organics by EPA 5035									•										
1,1,1-Trichloroethane	0.68	500	0.68	0.00052	U	0.0029	U	0.00074	U	0.001	U	0.0015	U	0.00096	U	0.0013	U	0.00075	U
1,1,2,2-Tetrachloroethane				0.00052	U	0.0029	U	0.00074	U	0.001	U	0.0015	U	0.00096	U	0.0013	U	0.00075	U
1,1,2-Trichloroethane	0.27	240	0.27	0.001	U	0.0059	U	0.0015	U	0.002	U	0.003	U	0.0019	U	0.0025	U	0.0015	U
1,1-Dichloroethane 1,1-Dichloroethene	0.27 0.33	240 500	0.27	0.001	U	0.0059	U	0.0015	U	0.002	U	0.003	U	0.0019	U	0.0025	U	0.0015 0.0015	UJ
1,2,4-Trichloroetnene	0.55	300	0.55	0.001	U	0.0039	U	0.0013	U	0.002	U	0.0059	U	0.0019	U	0.0025	U	0.0013	U
1,2,4-Trimethylbenzene	3.6	190	3.6	0.0021	U	0.012	U	0.003	U	0.004	U	0.0059	U	0.0038	U	0.005	U	0.003	U
1,2-Dibromo-3-chloropropane	3.0	190	3.0	0.0021	U	0.012	U	0.003	U	0.004	U	0.0039	U	0.0057	U	0.003	U	0.003	U
1,2-Dibromoethane				0.0031	U	0.0059	U	0.0043	U	0.000	U	0.003	U	0.0037	U	0.0076	U	0.0043	U
1,2-Dichlorobenzene	1.1	500	1.1	0.0021	U	0.012	U	0.003	U	0.004	U	0.0059	U	0.0038	U	0.005	U	0.003	U
1,2-Dichloroethane	0.02	30	0.02	0.0021	U	0.0059	U	0.003	U	0.002	U	0.0033	U	0.0030	U	0.003	U	0.003	U
1,2-Dichloropropane				0.001	U	0.0059	U	0.0015	Ü	0.002	U	0.003	U	0.0019	U	0.0025	U	0.0015	U
1,3,5-Trimethylbenzene	8.4	190	8.4	0.0021	U	0.012	U	0.003	U	0.004	U	0.0059	U	0.0038	U	0.005	U	0.003	U
1,3-Dichlorobenzene	2.4	280	2.4	0.0021	U	0.012	U	0.003	U	0.004	U	0.0059	U	0.0038	U	0.005	U	0.003	U
1,4-Dichlorobenzene	1.8	130	1.8	0.0021	U	0.012	U	0.003	U	0.004	U	0.0059	U	0.0038	U	0.005	U	0.003	U
2-Butanone	0.12	500	0.12	0.01	U	0.059	U	0.015	U	0.066		0.19		0.019	U	0.025	U	0.015	U
2-Hexanone				0.01	U	0.059	U	0.015	U	0.02	U	0.03	U	0.019	U	0.025	U	0.015	U
4-Methyl-2-pentanone				0.01	U	0.059	U	0.015	U	0.02	U	0.03	U	0.019	U	0.025	U	0.015	U
Acetone	0.05	500	0.05	0.0091	J	0.11		0.015	U	0.31		0.77		0.019	U	0.019	J	0.015	U
Benzene	0.06	44	0.06	0.00052	U	0.0029	U	0.00074	U	0.001	U	0.0015	U	0.00096	U	0.0013	U	0.00075	U
Bromodichloromethane				0.00052	U	0.0029	U	0.00074	U	0.001	U	0.0015	U	0.00096	U	0.0013	U	0.00075	U
Bromoform				0.0041	U	0.024	U	0.0059	U	0.008	U	0.012	U	0.0076	U	0.01	U	0.006	U
Bromomethane				0.0021	U	0.012	U	0.003	U	0.004	U	0.0059	U	0.0038	U	0.005	U	0.003	U
Carbon disulfide	0.76	22	0.76	0.01	U	0.059	U	0.015	U	0.02	U	0.02 0.003	J	0.019	U	0.025	U	0.015	UJ
Carbon tetrachloride Chlorobenzene	0.76 1.1	500	1.1	0.001	U	0.0059	U	0.0015 0.00074	U	0.002 0.001	U	0.003	U	0.0019 0.00096	U	0.0025 0.0013	U	0.0015 0.00075	U
Chloroethane	1.1	300	1.1	0.00032	U	0.0023	U	0.00074	U	0.004	U	0.0013	U	0.0038	U	0.0013	U	0.00073	U
Chloroform	0.37	350	0.37	0.0016	U	0.0088	U	0.0022	U	0.003	U	0.0044	U	0.0029	U	0.0038	U	0.0022	U
Chloromethane	0.57	330	0.57	0.0041	U	0.024	U	0.0059	U	0.008	U	0.012	U	0.0076	U	0.01	U	0.006	U
cis-1,2-Dichloroethene	0.25	500	0.25	0.001	U	0.0059	U	0.0015	U	0.002	U	0.003	U	0.0019	U	0.0025	U	0.0015	U
cis-1,3-Dichloropropene				0.00052	U	0.0029	U	0.00074	U	0.001	U	0.0015	U	0.00096	U	0.0013	U	0.00075	U
Cyclohexane				0.01	U	0.059	U	0.015	U	0.02	U	0.03	U	0.019	U	0.025	U	0.015	U
Dibromochloromethane				0.001	U	0.0059	U	0.0015	U	0.002	U	0.003	U	0.0019	U	0.0025	U	0.0015	U
Dichlorodifluoromethane				0.01	U	0.059	U	0.015	U	0.02	U	0.03	U	0.019	U	0.025	U	0.015	U
Ethylbenzene	1	390	1	0.001	U	0.0059	U	0.0015	U	0.002	U	0.003	U	0.0019	U	0.0025	U	0.0015	U
Freon-113				0.0041	U	0.024	U	0.0059	U	0.008	U	0.012	U	0.0076	U	0.01	U	0.006	UJ
Isopropylbenzene				0.001	U	0.0059	U	0.0015	U	0.002	U	0.003	U	0.0019	U	0.0025	U	0.0015	U
Methyl Acetate				0.0041	U	0.024	U	0.0059	U	0.008	U	0.012	U	0.0076	U	0.01	U	0.006	U
Methyl cyclohexane	0.00	500	2.22	0.0041	U	0.024	U	0.0059	U	0.008	U	0.012	U	0.0076	U	0.01	U	0.006	U
Methyl tert butyl ether	0.93	500	0.93	0.0021	U	0.012	U	0.003	U	0.004	U	0.0059	U	0.0038	U	0.005	U	0.003	U
Methylene chloride	0.05	500 500	0.05	0.0052	U	0.029	U	0.0074	U	0.01	U	0.015	U	0.0096	U	0.013	U	0.0075	U
n-Butylbenzene	12 3.9	500 500	12 3.9	0.001 0.001	U	0.0059	U	0.0015 0.0015	U	0.002 0.002	U	0.003	U	0.0019	U	0.0025 0.0025	U	0.0015 0.0015	U
n-Propylbenzene Naphthalene	12	500	12	0.001	U	0.0059	U	0.0015	J	0.002	U	0.003	U	0.0019	U	0.0025	U	0.0015	U
o-Xylene	0.26	500	1.6	0.0041	U	0.024	U	0.0014	U	0.008	U	0.012	U	0.0076	U	0.0025	U	0.006	U
p-lsopropyltoluene	5.20	300	1.0	0.001	U	0.0059	U	0.0015	U	0.002	U	0.003	U	0.0019	U	0.0025	U	0.0015	U
p/m-Xylene	0.26	500	1.6	0.0021	U	0.012	U	0.0013	U	0.002	U	0.0059	U	0.0013	U	0.0023	U	0.0013	U
sec-Butylbenzene	11	500	11	0.001	U	0.0059	U	0.0015	U	0.002	U	0.003	U	0.0019	U	0.0025	U	0.003	U
Styrene				0.001	U	0.0059	U	0.0015	U	0.002	U	0.003	U	0.0019	U	0.0025	U	0.0015	U
tert-Butylbenzene	5.9	500	5.9	0.0021	U	0.012	U	0.003	U	0.004	U	0.0059	U	0.0038	U	0.005	U	0.003	U
Tetrachloroethene	1.3	150	1.3	0.00052	U	0.0029	U	0.00074	U	0.001	U	0.0015	U	0.00096	U	0.0013	U	0.00075	U
Toluene	0.7	500	0.7	0.001	U	0.0059	U	0.0015	U	0.002	U	0.003	U	0.0019	U	0.0025	U	0.0015	U
trans-1,2-Dichloroethene	0.19	500	0.19	0.0016	U	0.0088	U	0.0022	U	0.003	U	0.0044	U	0.0029	U	0.0038	U	0.0022	U
trans-1,3-Dichloropropene				0.001	U	0.0059	U	0.0015	U	0.002	U	0.003	U	0.0019	U	0.0025	U	0.0015	U
Trichloroethene	0.47	200	0.47	0.00052	U	0.0029	U	0.00074	U	0.001	U	0.0015	U	0.00096	U	0.0013	U	0.00075	U
Trichlorofluoromethane				0.0041	U	0.024	U	0.0059	U	0.008	U	0.012	U	0.0076	U	0.01	U	0.006	UJ
Vinyl chloride	0.02	13	0.02	0.001	U	0.0059	U	0.0015	U	0.002	U	0.003	U	0.0019	U	0.0025	U	0.0015	U
Total TIC Compounds			l .	0.00234	J	0.0478	J	0	U	0.0152	J	0.0435	J	0.0062	J	0.00535	J	0	U

Table 3 Remedial Investigation Report Sub-Surface Soil Data Summary

LOCATION				SB-11	6 FILL	SB-116	NATIVE	SB-11	7 FILL	SB-117	NATIVE	SB-11	8 FILL	SB-118	NATIVE		(SB-110		(SB-111
																NAT		FIL	
SAMPLING DATE				11/26		11/26			6/2024	11/26		11/26			/2024	11/25		11/26	
LAB SAMPLE ID					906-19	L24699			906-21	L24699			906-23		906-24		590-25		906-25
SAMPLE TYPE				SC		SC			OIL 7	SC			DIL .		DIL	SC			DIL
SAMPLE DEPTH (ft.)	Harrackel et al.		Durate etter ef	4-	-7	7-	10	3	-7	12-	·15	1	-5 I	10	-14	15-	-20	2-	-8
Analyte	Unrestricted Use SCO	Commercial Use SCO	Protection of Groundwater	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual
Volatile Organics by EPA 5035 High																			
1,1,1-Trichloroethane	0.68	500	0.68	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,2,2-Tetrachloroethane				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,2-Trichloroethane				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1-Dichloroethane	0.27	240	0.27	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1-Dichloroethene	0.33	500	0.33	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2,4-Trichlorobenzene	2.6	100	2.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2,4-Trimethylbenzene	3.6	190	3.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dibromo-3-chloropropane				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dibromoethane	1.1	500	1.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichlorobenzene	1.1	500	1.1	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-
1,2-Dichloroethane 1,2-Dichloropropane	0.02	30	0.02	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-
1,3,5-Trimethylbenzene	8.4	190	8.4	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-
1,3-Dichlorobenzene	2.4	280	2.4	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-
1,4-Dichlorobenzene	1.8	130	1.8	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-
2-Butanone	0.12	500	0.12	_	_	_	_	_	-	_	_	-	_	-	_	_	_	_	-
2-Hexanone	0.12	300	0.12	-	_	_	_	_	_	-	_	-	_	-	-	-	_	_	-
4-Methyl-2-pentanone				-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-
Acetone	0.05	500	0.05	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-
Benzene	0.06	44	0.06	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bromodichloromethane				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bromoform				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bromomethane				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Carbon disulfide				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Carbon tetrachloride	0.76	22	0.76	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chlorobenzene	1.1	500	1.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloroethane				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloroform	0.37	350	0.37	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloromethane				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
cis-1,2-Dichloroethene	0.25	500	0.25	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
cis-1,3-Dichloropropene				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cyclohexane				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibromochloromethane				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dichlorodifluoromethane	1	390	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ethylbenzene Freon-113	<u> </u>	390	ı	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-
Isopropylbenzene				_		-		_	_	_		_	-	-	-	_		-	-
Methyl Acetate				-		_		-	-	-		-	-	-	-	-		-	-
Methyl cyclohexane				_		_		_	_	_		-	_	-	_	_		-	-
Methyl tert butyl ether	0.93	500	0.93	-	-	_	-	_	-	-	-	-	_	-	_	_	-	-	-
Methylene chloride	0.05	500	0.05	-	_	-	_	-	_	-	_	-	-	-	-	-	_	-	-
n-Butylbenzene	12	500	12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
n-Propylbenzene	3.9	500	3.9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Naphthalene	12	500	12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
o-Xylene	0.26	500	1.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
p-lsopropyltoluene				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
p/m-Xylene	0.26	500	1.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
sec-Butylbenzene	11	500	11	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Styrene				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
tert-Butylbenzene	5.9	500	5.9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Tetrachloroethene	1.3	150	1.3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Toluene	0.7	500	0.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
trans-1,2-Dichloroethene	0.19	500	0.19	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
trans-1,3-Dichloropropene				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Trichloroethene	0.47	200	0.47	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Trichlorofluoromethane				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Vinyl chloride	0.02	13	0.02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total TIC Compounds]		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Table 3 Remedial Investigation Report Sub-Surface Soil Data Summary

LOCATION						SB-116	NATIVE	SB-117	7 FILL	SB-117	NATIVE	SB-11	8 FILL	SB-118	NATIVE	DUP-02 NAT		DUP-03 (-
SAMPLING DATE				11/26	/2024	11/26	/2024	11/26	/2024	11/26	5/2024	11/26	/2024	11/26	/2024	11/25		11/26/	
LAB SAMPLE ID				L24699			906-20	L24699			906-22	L24699			906-24	L2469!		L24699	
SAMPLE TYPE				so	IL	SC)IL	SO	IL	SC	OIL	SC	IL	SC	DIL	SC	IL	so)IL
SAMPLE DEPTH (ft.)				4-	7	7-	10	3-	·7	12	-15	1-	-5	10-	-14	15-	·20	2-	.8
Analyte	Unrestricted	Commercial	Protection of	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual
•	Use SCO	Use SCO	Groundwater	resures	Quui	resuits	Quui	resures	Quui	resures	Quui	results	Quui	itesuits	Quui	resures	Quui	Lesaits	Quui
Semivolatile Organics by GC/MS	1	1	ı	0.10		1.0	- 11	0.0		0.05		0.42	- 11	0.67		0.24		0.10	
1,2,4,5-Tetrachlorobenzene	0.1	120	0.1	0.18	U	1.8 0.27	U	0.2	U	0.65	U	0.43	U	0.67	U	0.34	U	0.19	U
1,4-Dioxane 2,3,4,6-Tetrachlorophenol	0.1	130	0.1	0.027 0.18	U	1.8	U	0.03	U	0.097 0.65	U	0.065	U	0.1	U	0.051	U	0.029 0.19	U
2,4,5-Trichlorophenol	<u> </u>			0.18	U	1.8	U	0.2	U	0.65	U	0.43	U	0.67	U	0.34	U	0.19	U
2,4,6-Trichlorophenol	 			0.16	U	1.0	U	0.12	U	0.83	U	0.43	U	0.67	U	0.34	U	0.19	U
2,4-Dichlorophenol	 			0.11	U	1.6	U	0.12	U	0.58	U	0.20	U	0.4	U	0.2	U	0.12	U
2,4-Dimethylphenol	 			0.18	U	1.8	U	0.10	U	0.65	U	0.43	U	0.67	U	0.34	U	0.17	U
2,4-Dinitrophenol				0.86	U	8.7	U	0.96	U	3.1	Ü	2.1	U	3.2	U	1.6	U	0.92	U
2,4-Dinitrotoluene				0.18	U	1.8	U	0.2	U	0.65	Ü	0.43	U	0.67	Ü	0.34	U	0.19	U
2,6-Dinitrotoluene				0.18	U	1.8	U	0.2	U	0.65	U	0.43	U	0.67	U	0.34	U	0.19	U
2-Chloronaphthalene				0.18	U	1.8	U	0.2	U	0.65	U	0.43	U	0.67	U	0.34	U	0.19	U
2-Chlorophenol				0.18	U	1.8	U	0.2	U	0.65	U	0.43	U	0.67	U	0.34	U	0.19	U
2-Methylnaphthalene				0.14	J	2.2	U	1.3		0.78	U	0.66		0.8	U	0.4	U	0.23	U
2-Methylphenol	0.33	500	0.33	0.18	U	1.8	U	0.2	U	0.65	U	0.43	U	0.67	U	0.34	U	0.19	U
2-Nitroaniline				0.18	U	1.8	U	0.2	U	0.65	U	0.43	U	0.67	U	0.34	U	0.19	U
2-Nitrophenol				0.39	U	3.9	U	0.43	U	1.4	U	0.94	U	1.4	U	0.73	U	0.42	U
3,3'-Dichlorobenzidine				0.18	U	1.8	U	0.2	U	0.65	U	0.43	U	0.67	U	0.34	U	0.19	U
3-Methylphenol/4-Methylphenol	0.33	500	0.33	0.05	J	2.6	U	0.12	J	0.93	U	0.26	J	0.96	U	0.48	U	0.28	U
3-Nitroaniline	<u> </u>			0.18	U	1.8	U	0.2	U	0.65	U	0.43	U	0.67	U	0.34	U	0.19	U
4,6-Dinitro-o-cresol				0.47	U	4.7	U	0.52	U	1.7	U	1.1	U	1.7	U	0.88	U	0.5	U
4-Bromophenyl phenyl ether	 '			0.18	U	1.8	U	0.2	U	0.65	U	0.43	U	0.67	U	0.34	U	0.19	U
4-Chloroaniline	 '			0.18	U	1.8	U	0.2	U	0.65	U	0.43	U	0.67	U	0.34	U	0.19	U
4-Chlorophenyl phenyl ether				0.18	U	1.8	U	0.2	U	0.65	U	0.43	U	0.67	U	0.34	U	0.19	U
4-Nitroaniline				0.18	U	1.8	U	0.2	U	0.65	U	0.43	U	0.67	U	0.34	U	0.19	U
4-Nitrophenol	20	500	00	0.25	U	2.5	U	0.28	U	0.9	U	0.61	U	0.94	U	0.47	U	0.27	U
Acenaphthulas	20 100	500 500	98 107	0.36 0.25		1.4 1.4	U	0.35 2.6		0.52	U	1.4 2.7		0.54 0.54	U	0.27 0.27	U	0.15 0.15	U
Acetaphanana	100	500	107	0.23	U	1.4	U	0.2	U	0.52	U	0.43	U	0.54	U	0.27	U	0.13	U
Acetophenone Anthracene	100	500	1000	1.4	- 0	1.0	U	2.1	- 0	0.83	U	7.8	0	0.67	U	0.34	J	0.19	U
Atrazine	100	300	1000	0.14	U	1.4	U	0.16	U	0.52	U	0.35	U	0.54	U	0.030	U	0.12	U
Benzaldehyde				0.11	J	2.4	U	0.16	U	0.85	U	0.57	U	0.88	U	0.44	U	0.15	U
Benzo(a)anthracene	1	5.6	1	4.4		1.1	U	5.1		0.39	Ü	27	Ü	0.12	J	0.12	J	0.075	J
Benzo(a)pyrene	1	1	22	3.8		1.4	U	7.8		0.52	Ü	24		0.54	U	0.094	J	0.066	j
Benzo(b)fluoranthene	1	5.6	1.7	4.7		1.1	U	10		0.39	U	31		0.11	J	0.098	J	0.094	j
Benzo(ghi)perylene	100	500	1000	2.3		1.4	U	6.8		0.52	U	14		0.54	U	0.049	J	0.075	J
Benzo(k)fluoranthene	0.8	56	1.7	1.1		1.1	U	2		0.39	U	4.2		0.4	U	0.2	U	0.12	U
Biphenyl				0.045	J	4.1	U	0.26	J	1.5	U	0.17	J	1.5	U	0.77	U	0.44	U
Bis(2-chloroethoxy)methane				0.19	U	2	U	0.22	U	0.7	U	0.47	U	0.72	U	0.36	U	0.21	U
Bis(2-chloroethyl)ether				0.16	U	1.6	U	0.18	U	0.58	U	0.39	U	0.6	U	0.3	U	0.17	U
Bis(2-chloroisopropyl)ether				0.22	U	2.2	U	0.24	U	0.78	U	0.52	U	8.0	U	0.4	U	0.23	U
Bis(2-ethylhexyl)phthalate				0.18	U	1.8	U	0.2	U	0.65	U	0.43	U	0.67	U	0.34	U	0.19	U
Butyl benzyl phthalate				0.18	U	1.8	U	0.2	U	0.65	U	0.43	U	0.67	U	0.34	U	0.19	U
Caprolactam				0.18	U	1.8	U	0.2	U	0.65	U	0.43	U	0.67	U	0.34	U	0.19	U
Carbazole				0.45		1.8	U	0.65		0.65	U	2.8		0.076	J	0.34	U	0.19	U
Chrysene	1	56	1	4		1.1	U	4.7		0.39	U	26		0.1	J	0.1	J	0.088	J
Di-n-butylphthalate				0.18	U	1.8	U	0.2	U	0.65	U	0.43	U	0.67	U	0.34	U	0.19	U
Di-n-octylphthalate	0.22	0.50	1000	0.18	U	1.8	U	0.2	U	0.65	U	0.43	U	0.67	U	0.34	U	0.19	U
Dibenzo(a,h)anthracene	0.33	0.56 350	1000 210	0.52 0.28		1.1	U	1.5		0.39	U	3.3		0.4	U	0.2	U	0.12	U
Dibenzofuran Diethyl phthalate		330	210	0.28	U	1.8	U	0.44 0.2	U	0.65 0.65	U	1.1 0.43	U	0.67	U	0.34	U	0.19 0.19	U
Dimethyl phthalate				0.18	U	1.8	U	0.2	U	0.65	U	0.43	U	0.67	U	0.34	U	0.19	U
Fluoranthene	100	500	1000	6.9	U	1.8	U	6.1	U	0.65	U	0.43 47	U	0.67	J	0.34	U	0.19	J
Fluorene	30	500	386	0.32		1.1	U	0.56		0.59	U	1.6		0.19	U	0.036	J	0.19	U
Hexachlorobenzene	0.33	6	3.2	0.32	U	1.0	U	0.12	U	0.83	U	0.26	U	0.67	U	0.030	U	0.19	U
Hexachlorobutadiene	0.55	J J	J.£	0.11	U	1.8	U	0.12	U	0.59	U	0.20	U	0.4	U	0.2	U	0.12	U
Hexachlorocyclopentadiene	 			0.10	UJ	5.2	U	0.57	U	1.8	U	1.2	U	1.9	U	0.96	U	0.13	U
Hexachloroethane				0.14	U	1.4	U	0.16	U	0.52	U	0.35	U	0.54	U	0.27	U	0.15	U
Indeno(1,2,3-cd)pyrene	0.5	5.6	8.2	2.1		1.4	U	6.2		0.52	U	14		0.54	U	0.27	U	0.041	J
Isophorone				0.16	U	1.6	U	0.18	U	0.58	U	0.39	U	0.6	U	0.3	U	0.17	U
n-Nitrosodi-n-propylamine				0.18	U	1.8	U	0.2	U	0.65	U	0.43	U	0.67	U	0.34	U	0.19	U
Naphthalene	12	500	12	0.33		1.8	U	2.8		0.65	U	1.8		0.67	U	0.34	U	0.19	U
NDPA/DPA				0.14	U	1.4	U	0.16	U	0.52	U	0.35	U	0.54	U	0.27	U	0.15	U
Nitrobenzene				0.16	U	1.6	U	0.18	U	0.58	U	0.39	U	0.6	U	0.3	U	0.17	U
p-Chloro-m-cresol				0.18	U	1.8	U	0.2	U	0.65	U	0.43	U	0.67	U	0.34	U	0.19	U
Pentachlorophenol	0.8	6.7	0.8	0.14	U	1.4	U	0.16	U	0.52	U	0.35	U	0.54	U	0.27	U	0.15	U
Phenanthrene	100	500	1000	5.9		1.1	U	4.2		0.39	U	35		0.15	J	0.24		0.085	J
Phenol	0.33	500	0.33	0.033	J	1.8	U	0.14	J	0.65	U	0.16	J	0.67	U	0.34	U	0.19	U
Pyrene	100	500	1000	6.8	-	1.1	U	5.8	-	0.39	U	48		0.2	J	0.2	·	0.097	J
Total TIC Compounds	<u></u>			17.8	J	33.6	J	25.6	J	4.13	J	46.2	J	11.8	J	1.72	J	0.233	J
Petroleum Hydrocarbon Quantitation		1	1	L							1			1					
TPH (C10-C36)	<u> </u>			311		-	-	893		-	-	3510		-	-	-	-	981	J

Table 3 Remedial Investigation Report Sub-Surface Soil Data Summary

LOCATION				SB-11	6 FILL	SB-116	NATIVE	SB-11	7 FILL	SB-117	NATIVE	SB-11	8 FILL	SB-118	NATIVE	DUP-02 (DUP-03 (•
SAMPLING DATE				11/26	/2024	11/26	/2024	11/26	/2024	11/26	/2024	11/26	/2024	11/26	/2024	11/25/		11/26/	
LAB SAMPLE ID				L24699		L24699			906-21		906-22		906-23		906-24	L24695		L24699	
SAMPLE TYPE				SO 4-		50 7-		SC 3-		SC			OIL -5	SC		SO 15-		SO 2-	
SAMPLE DEPTH (ft.)	Unrestricted	Commercial	Protection of	4-	• /	/-	10	3.	- <i>1</i>	12	-15	1	-5	10	-14	15-	20		•
Analyte	Use SCO	Use SCO	Groundwater	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual
Polychlorinated Biphenyls by GC													•		•				
Aroclor 1016	0.1	1	3.2	0.0529	U	0.188	U	0.0588	U	0.0684	U	0.128	U	0.0651	U	0.1	U	0.053	U
Aroclor 1221 Aroclor 1232	0.1	1	3.2 3.2	0.0529	U	0.188	U	0.0588	U	0.0684	U	0.128 0.128	U	0.0651	U	0.1	U	0.053	U
Aroclor 1242	0.1	1	3.2	0.0529 0.0529	U	0.188 0.188	U	0.0588 0.0588	U	0.0684 0.0684	U	0.128	U	0.0651	U	0.1	U	0.053	U
Aroclor 1248	0.1	1	3.2	0.0529	U	0.188	U	0.0588	U	0.0684	U	0.128	U	0.0651	U	0.1	U	0.053	U
Aroclor 1254	0.1	1	3.2	0.0529	U	0.188	U	0.0588	U	0.0684	U	0.128	U	0.0651	U	0.1	U	0.053	U
Aroclor 1260	0.1	1	3.2	0.0529	U	0.188	U	0.0464	J	0.0684	U	0.19		0.0651	U	0.1	U	0.053	U
Aroclor 1262	0.1	1	3.2	0.0529	U	0.188	U	0.0588	U	0.0684	U	0.128	U	0.0651	U	0.1	U	0.053	U
Aroclor 1268	0.1	1	3.2	0.0202	<u>J</u>	0.161	J	0.0419	J	0.023	J	0.113	J	0.0203	J	0.1	U	0.0179	J
PCBs, Total Chlorinated Herbicides by GC	0.1	1	3.2	0.0202	J	0.161	J	0.0883	J	0.023	J	0.303	J	0.0203	J	0.1	U	0.0179	J
2,4,5-T				0.177	U	0.627	U	0.202	U	0.23	U	0.435	U	0.22	U	0.337	U	0.188	U
2,4,5-TP (Silvex)	3.8	500	3.8	0.177	Ū	0.627	U	0.202	U	0.23	U	0.435	U	0.22	Ū	0.337	U	0.188	U
2,4-D				0.177	U	0.627	U	0.202	U	0.23	U	0.435	U	0.22	U	0.337	U	0.188	U
Organochlorine Pesticides by GC				<u> </u>															
4,4'-DDD	0.0033	92	14	0.00164	U	0.00609	U	0.00191	U	0.00222	U	0.0042	U	0.00215	U	0.00315	U	0.00183	U
4,4'-DDE 4,4'-DDT	0.0033	62 47	17 136	0.00164	U	0.00609	U	0.00191	U	0.00222	U	0.0042	U	0.00215	U	0.00315	U	0.00183	U
Aldrin	0.005	0.68	0.19	0.00164	U	0.00609	U	0.00191	U	0.00222	U	0.0042	U	0.00213	U	0.00313	U	0.00183	U
Alpha-BHC	0.02	3.4	0.02	0.00069	U	0.00254	U	0.0008	Ü	0.00093	U	0.00175	U	0.0009	Ü	0.00313	U	0.00076	U
Beta-BHC	0.036	3	0.09	0.00164	U	0.00609	U	0.00191	U	0.00222	U	0.0042	U	0.00215	U	0.00315	U	0.00183	U
Chlordane				0.0137	U	0.0508	U	0.0159	U	0.0185	U	0.035	U	0.0179	U	0.0262	U	0.0152	U
cis-Chlordane	0.094	24	2.9	0.00206	U	0.00762	U	0.00239	U	0.00278	U	0.00526	U	0.00269	U	0.00394	U	0.00229	U
Delta-BHC	0.04	500	0.25	0.00164	U	0.00609	U	0.00191	U	0.00222	U	0.0042	U	0.00215	U	0.00315	U	0.00183	U
Dieldrin Endosulfan I	0.005 2.4	1.4 200	0.1 102	0.00103	U	0.00381	U	0.00119	U	0.00139	U	0.00263	U	0.00134	U	0.00197	U	0.00114	U
Endosulfan II	2.4	200	102	0.00164	U	0.00609	U	0.00191	U	0.00222	U	0.0042	U	0.00215	U	0.00315	U	0.00183	U
Endosulfan sulfate	2.4	200	1000	0.00069	Ü	0.00254	U	0.0008	U	0.00093	U	0.00175	U	0.0009	U	0.00131	U	0.00076	U
Endrin	0.014	89	0.06	0.00069	U	0.00254	U	0.0008	U	0.00093	U	0.00175	U	0.0009	U	0.00131	U	0.00076	U
Endrin aldehyde				0.00206	U	0.00762	U	0.00239	U	0.00278	U	0.00526	U	0.00269	U	0.00394	U	0.00229	U
Endrin ketone	2.242	4.5		0.00164	U	0.00609	U	0.00191	U	0.00222	U	0.0042	U	0.00215	U	0.00315	U	0.00183	U
Heptachlor	0.042	15	0.38	0.00082	U	0.00305	U	0.00096 0.00358	U	0.00111	U	0.0021 0.00788	U	0.00108	U	0.00157	U	0.00092 0.00343	U
Heptachlor epoxide Lindane	0.1	9.2	0.1	0.00308	U	0.00254	U	0.00338	U	0.000417	U	0.00788	U	0.00404	U	0.0033	U	0.00343	U
Methoxychlor	0.1	3.2	0.1	0.00308	U	0.0114	U	0.00358	Ü	0.00417	U	0.00788	U	0.00404	Ü	0.0059	U	0.00343	U
Toxaphene				0.0308	U	0.114	U	0.0358	U	0.0417	U	0.0788	U	0.0404	U	0.059	U	0.0343	U
trans-Chlordane				0.00206	U	0.00762	U	0.00239	U	0.00278	U	0.00526	U	0.00269	U	0.00394	U	0.00229	U
Total Metals	1					T a + + a a T					1		1				1		
Aluminum, Total Antimony, Total				7820 1.49	J	24100	U	7460 2.29	J	5170 5.35	U	23400 20.1	U	6990 5.32	U	4520 4.95	U	5470 3.1	J
Arsenic, Total	13	16	16	1.49		12.1	0	25.23	,	7.13	U	75.2	U	2.81	U	19.5	U	9.1	,
Barium, Total	350	400	820	194		223		298		67.7		367		61.4		125		74.6	J
Beryllium, Total	7.2	590	47	0.437		1.38	J	0.64		0.283	J	1.37	J	0.428	J	0.505		0.413	J
Cadmium, Total	2.5	9.3	7.5	0.352	J	3	U	0.807	J	1.07	U	4.02	U	1.06	U	0.383	J	0.89	UJ
Calcium, Total				37600		138000		47800		96900		197000		8000		26700	J	61500	J
Chromium, Hexavalent Chromium. Total	400	19	1	0.871 23.6	U	3.08 44	U	0.976 39.6	U	1.13 9.51	U	2.1 74.6	U	1.08 13.4	U	1.65 74.8	U	0.774 10.4	J
Cobalt, Total				5.6		20.7		20.5		6.66		11.7		3.4		18.1	J	4.9	·
Copper, Total	50	270	1720	302		67.2		233		16.7		53.3		6.48		308	,	140	J
Cyanide, Total	27	40	27	0.29	J	3.6	U	3.7		1.3	U	2.6	U	1.3	U	1.9	U	0.29	J
Iron, Total				17100		41800		27700		10600		29200		13900		44800		16000	
Lead, Total	63	1000	450	316		103		398		18.4		309		10.7		286		293	J
Magnesium, Total	1600	10000	2022	6720		38200		5090		3620		23000		3560		6320		11100	J
Manganese, Total	1600 0.18	10000 2.8	2000 0.73	266		590		334		429 0.084		478 15.7		81.1 0.073		281		265 1.84	J
Mercury, Total Nickel, Total	0.18	310	130	1.07 13.5		0.704 64.6		0.666 55.2		18.6	J	15.7 28.2		22.2	,	0.585 23.2		1.84	
Potassium, Total	30	310	130	1090		2500		626		614		3930		705		483		631	
Selenium, Total	3.9	1500	4	0.741	J	3.62	J	2		1.47	J	1.17	J	2.4		1.59	J	0.457	J
Silver, Total	2	1500	8.3	0.419	U	1.5	U	0.378	J	0.535	U	2.01	U	0.532	U	0.495	U	0.445	U
Sodium, Total			<u> </u>	267		266	J	219		163	J	790	J	66.4	J	169	J	292	
Thallium, Total				0.408	J	6.01	U	0.512	J	2.14	U	1.69	J	2.13	U	1.98	U	0.351	J
Vanadium, Total	109	10000	2480	21		44.7		30.6		9.06 55.6		69.7		10.6 43		37.8 173		18.5	
Zinc, Total	109	10000	248U	290		149		450		0.00		326		45	ļ	173		240	

Table 3 Remedial Investigation Report Sub-Surface Soil Data Summary

LOCATION SAMPLING DATE				SB-11			NATIVE		7 FILL	SB-117		SB-118 F		SB-118		DUP-02 NAT	(SB-110 IVE)	FIL	LL)
SAMPLING DATE				11/26			/2024		/2024	11/26		11/26/2		11/26		11/25		11/26,	•
LAB SAMPLE ID					906-19		906-20		906-21	L24699		L246990	5-23	L24699		L24695		L24699	
SAMPLE TYPE				SC			DIL	SC	OIL	SO		SOIL		SC		SO		SO	
SAMPLE DEPTH (ft.)				4-	-7	7-	10	3	-7	12-	·15	1-5		10-	-14	15-	20	2-	.8
Analyte	Unrestricted Use SCO	Commercial Use SCO	Protection of Groundwater	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual
Perfluorinated Alkyl Acids by EPA 1633																			
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid (11Cl-PF3OUdS)				0.802	U	1.23	U	0.802	U	0.796	U	0.844	U	0.801	U	0.795	U	8.0	U
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)				0.802	J	1.23	U	0.802	U	0.796	U	0.844	C	0.801	U	0.795	U	8.0	U
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)				0.802	J	1.23	U	0.802	U	0.796	U	0.844	C	0.801	U	0.795	U	8.0	U
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)				0.802	J	1.23	U	0.802	U	0.796	U	0.844	C	0.801	U	0.795	U	8.0	U
2H,2H,3H,3H-Perfluorooctanoic Acid (5:3FTCA)				5.02	J	7.67	U	5.01	U	4.97	U	5.28	C	5	U	4.97	U	5	U
3-Perfluoroheptyl Propanoic Acid (7:3FTCA)				5.02	J	7.67	U	5.01	U	4.97	U	5.28	C	5	U	4.97	U	5	U
3-Perfluoropropyl Propanoic Acid (3:3FTCA)				1	U	1.53	U	1	U	0.995	U	1.06	C	1	U	0.994	U	1	U
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)				0.802	U	1.23	U	0.802	U	0.796	U	0.844	U	0.801	U	0.795	U	8.0	U
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid (9CI-PF3ONS)				0.802	U	1.23	U	0.802	U	0.796	U	0.844	U	0.801	U	0.795	U	8.0	U
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)				0.802	U	1.23	U	0.802	U	0.796	U	0.844	U	0.801	U	0.795	U	8.0	U
N-Ethyl Perfluorooctane Sulfonamide (NEtFOSA)				0.201	U	0.307	U	0.2	U	0.199	U	0.211	U	0.2	U	0.199	U	0.2	U
N-Ethyl Perfluorooctanesulfonamido Ethanol (NEtFOSE)				2.01	U	3.07	U	2	U	1.99	U	2.11	U	2	U	1.99	U	2	U
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)				0.201	U	0.307	U	0.2	U	0.199	U	0.211	U	0.2	U	0.199	U	0.2	U
N-Methyl Perfluorooctane Sulfonamide (NMeFOSA)				0.201	U	0.307	U	0.2	U	0.199	U	0.211	U	0.2	U	0.199	U	0.2	U
N-Methyl Perfluorooctanesulfonamido Ethanol (NMeFOSE)				2.01	U	3.07	U	2	U	1.99	U	2.11	U	2	U	1.99	U	2	U
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)				0.201	U	0.307	U	0.2	U	0.199	U	0.211	U	0.2	U	0.199	U	0.2	U
Nonafluoro-3,6-Dioxaheptanoic Acid (NFDHA)				0.401	U	0.613	U	0.401	U	0.398	U	0.422	U	0.4	U	0.398	U	0.4	U
Perfluoro(2-Ethoxyethane)Sulfonic Acid (PFEESA)				0.401	U	0.613	U	0.401	U	0.398	U	0.422	U	0.4	U	0.398	U	0.4	U
Perfluoro-3-Methoxypropanoic Acid (PFMPA)				0.401	U	0.613	U	0.401	U	0.398	U	0.422	U	0.4	U	0.398	U	0.4	U
Perfluoro-4-Methoxybutanoic Acid (PFMBA)				0.401	U	0.613	U	0.401	U	0.398	U	0.422	U	0.4	U	0.398	U	0.4	U
Perfluorobutanesulfonic Acid (PFBS)				0.201	U	0.307	U	0.2	U	0.199	U	0.211	U	0.2	U	0.199	U	0.2	U
Perfluorobutanoic Acid (PFBA)				0.802	U	1.23	U	0.038	J	0.796	U	0.041	J	0.801	U	0.795	U	0.8	U
Perfluorodecanesulfonic Acid (PFDS)				0.201	U	0.307	U	0.2	U	0.199	U	0.211	U	0.2	U	0.199	U	0.2	U
Perfluorodecanoic Acid (PFDA)				0.201	U	0.307	U	0.2	U	0.199	U	0.063	J	0.2	U	0.199	U	0.2	U
Perfluorododecanesulfonic Acid (PFDoS)				0.201	U	0.307	U	0.2	U	0.199	U	0.211	U	0.2	U	0.199	U	0.2	U
Perfluorododecanoic Acid (PFDoA)				0.201	U	0.307	U	0.2	U	0.199	U	0.211	U	0.2	U	0.199	U	0.2	U
Perfluoroheptanesulfonic Acid (PFHpS)				0.201	U	0.307	U	0.2	U	0.199	U	0.211	U	0.2	U	0.199	U	0.2	U
Perfluoroheptanoic Acid (PFHpA)				0.03	J	0.307	U	0.036	J	0.199	U	0.045	J	0.2	U	0.199	U	0.2	U
Perfluorohexanesulfonic Acid (PFHxS)				0.201	U	0.307	U	0.2	U	0.199	U	0.211	U	0.2	U	0.199	U	0.2	U
Perfluorohexanoic Acid (PFHxA)				0.03	J	0.307	U	0.047	J	0.026	J	0.063	J	0.2	U	0.199	U	0.2	U
Perfluorononanesulfonic Acid (PFNS)				0.201	U	0.307	U	0.2	U	0.199	U	0.211	U	0.2	U	0.199	U	0.2	U
Perfluorononanoic Acid (PFNA)				0.062	J	0.307	U	0.041	J	0.199	U	0.044	J	0.2	U	0.199	U	0.027	EMPC
Perfluorooctanesulfonamide (PFOSA)				0.201	U	0.307	U	0.2	U	0.199	U	0.211	U	0.2	U	0.199	U	0.2	U
Perfluorooctanesulfonic Acid (PFOS)	0.88	440	1	0.399		0.307	U	0.346		0.199	U	0.379		0.2	U	0.199	U	0.145	j
Perfluorooctanoic Acid (PFOA)	0.66	500	0.8	0.095	J	0.307	U	0.127	J	0.199	U	0.107	J	0.2	U	0.199	U	0.2	U
Perfluoropentanesulfonic Acid (PFPeS)				0.201	U	0.307	U	0.2	U	0.199	U	0.211	U	0.2	U	0.199	U	0.2	U
Perfluoropentanoic Acid (PFPeA)				0.401	U	0.613	U	0.041	J	0.398	U	0.071	J	0.4	U	0.398	U	0.4	U
Perfluorotetradecanoic Acid (PFTeDA)				0.201	U	0.307	U	0.2	U	0.199	U	0.211	U	0.2	U	0.199	U	0.2	U
Perfluorotridecanoic Acid (PFTrDA)		1	1	0.201	U	0.307	U	0.2	Ü	0.199	U	0.211	U	0.2	U	0.199	U	0.2	U
Perfluoroundecanoic Acid (PFUnA)		1	1	0.201	Ū	0.307	Ü	0.2	Ü	0.199	U	0.035	J	0.2	U	0.199	U	0.2	Ü

- All values are reported in milligrams per kilogram (mg/kg) / parts per million (ppm) except PFAAs which are reported in micrograms per kilogram (µg/kg) / parts per billion (ppb).
- Analytical results compared to New York 6 NYCRR Part 375 Soil Cleanup Objectives (SCOs).
- Bolded text indicates analyte detected at concentrations greater than laboratory detection limits.
- Highlighted cell Indicates analyte exceeds the respective standard/guideline value.
- Red text indicates analyte exceeds Protection of Groundwater SCO.
- Blue qualifiers were applied based on a third party data usability review.
- Grey highlighted cell indicates the laboratory detection limit exceeds the respective standard/guideline value.
- "U" indicates the analyte was not detected at the reported detection limit for the sample.
- "UJ" indicates the analyte was analyzed for, but was not detected. The associated reported quantitation limit is approximate and may be inaccurate or imprecise.
- "J" indicates estimated value.
- "J+" indicates the analyte was positively identified; the associated numerical value is an estimated quantity that may be biased high.
- "I" indicates the lower value for the two columns has been reported due to obvious interference.
- "P" indicates the RPD between the results for the two columns exceeds the method-specified criteria.
- "EMPC" indicates the results do not meet all criteria for a confirmed identification. The quantitative value represents the Estimated Maximum Possible Concentration of the analyte in the sample.
- "R" indicates the data are unusable. The sample results are rejected due to serious deficiencies in meeting Quality Control limits. The analyte may or may not be present.

LOCATION		MW-	101	MV	V-101	MW	/-102	MW	-102	MV	V-103	M\	V-103	MW-1	104	MW-104	MW	V-105	MW	-105	MW-10	5	MW-106	MW	-107	MV	N-107	DUP R	OUND 1	DUP RO	UND 2
LOCATION		ROUN	ND 1	ROU	JND 2	ROU	IND 1	ROU	ND 2	ROL	JND 1		JND 2	ROUN	ID 1	ROUND 2	ROL	JND 1	ROU	ND 2	ROUND	1	ROUND 2	ROU	ND 1	RO	UND 2	(MW-106	ROUND 1)	(MW-105 R	
SAMPLING DATE		12/13/	/2024	2/12	2/2025	12/12	2/2024		/2025	12/1	3/2024		2/2025	12/12/2	2024	2/11/2025	12/1	3/2024	2/11/		12/13/20	24	2/11/2025		3/2024	2/12	2/2025	12/13	3/2024	2/11/2	
LAB SAMPLE ID		L24735			7955-01		175-02		633-01		3569-02		7955-02	L247317		L2507633-02		3569-04	L25070		L2473569		L2507633-04		569-03		7955-03		569-06	L25076	
SAMPLE TYPE		WAT	ΓER		ATER	WA	ATER		TER		ATER	W	ATER	WAT	ER	WATER		ATER	WA	TER	WATE		WATER		TER	W	ATER	WA	ATER	WAT	
SAMPLE DEPTH (ft.)		14	4		14	- 2	20	2	20		20		20	20)	20		20	2	0	20		20	2	20		20	2	20	20	0
Analyte NY TOG	1 5	Results	Qual	Results	Qua	I Results	Qual	Results	Qual	Results	Qual	Result	Qual	Results	Qual	Results Qua	Results	Qual	Results	Qual	Results	ual R	esults Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual
Volatile Organics by GC/MS																															
1,1,1-Trichloroethane 5		2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5 U	2.5	U	2.5	U			2.5 U	2.5	U	2.5	U	2.5	U	2.5	U
1,1,2,2-Tetrachloroethane 5		0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5 U	0.5	U	0.5	U			0.5 U	0.5	U	0.5	U	0.5	U	0.5	U
1,1,2-Trichloroethane		1.5	U	1.5	U	1.5	U	1.5	U	1.5	U	1.5	U	1.5	U	1.5 U	1.5	U	1.5	U			1.5 U	1.5	U	1.5	U	1.5	U	1.5	U
1,1-Dichloroethane 5		2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5 U	2.5	U	2.5	U			2.5 U	2.5	U	2.5	U	2.5	U	2.5	U
1,1-Dichloroethene 5		0.5	U	0.5	UJ	0.5	U	0.5	U	0.5	U	0.5	UJ	0.5	U	0.5 U	0.5	U	0.5	U			0.5 U	0.5	U	0.5	UJ	0.5	U	0.5	U
1,2,4-Trichlorobenzene 5		2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5 U	2.5	U	2.5	U			2.5 U	2.5	U	2.5	U	2.5	U	2.5	U
1,2,4-Trimethylbenzene 5 1,2-Dibromo-3-chloropropane 0.04		2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5 U	2.5	U	2.5	U			2.5 U	2.5	U	2.5	U	2.5	U	2.5	
,		2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5 U	2.5	U	2.5	U		U	2.5 U	2.5	U	2.5	U	2.5	U	2.5	U
1,2-Dibromoethane 0.0006 1,2-Dichlorobenzene 3	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5 U	2.5	U	2.5	U		-	2 U 2.5 U	2.5	U	2.5	U	2.5	U	2.5	U
1,2-Dichloroethane 0.6	-+	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5 U	0.5	U	0.5	U			0.5 U	0.5	U	0.5	U	0.5	U	0.5	U
1,2-Dichloropropane 1		1	U	1	U	1	U	1	U	1	U	1	U	1	U	1 U	1	U	1	U		U	1 U	1	U	1	U	1	U	1	U
1,3,5-Trimethylbenzene 5		2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5 U	2.5	U	2.5	U			2.5 U	2.5	U	2.5	U	2.5	U	2.5	U
1,3-Dichlorobenzene 3		2.5	U	2.5	Ü	2.5	Ü	2.5	Ü	2.5	U	2.5	Ü	2.5	U	2.5 U	2.5	U	2.5	U			2.5 U	2.5	U	2.5	U	2.5	U	2.5	U
1,4-Dichlorobenzene 3		2.5	Ü	2.5	Ü	_	Ü	2.5	U	2.5	Ü	2.5	U	2.5	U	2.5 U		Ü	2.5	U			2.5 U	2.5	Ü	2.5	Ü	2.5	U	2.5	U
2-Butanone 50		5	U	5	U	5	Ü	5	U	5	U	5	U	5	U	5 U	5	Ü	5	U		U	5 U	5	U	5	U	5	U	5	U
2-Hexanone 50		5	U	5	U	5	U	5	U	5	U	5	U	5	U	5 U	5	U	5	U		U	5 U	5	U	5	U	5	U	5	U
4-Methyl-2-pentanone		5	U	5	U	5	U	5	U	5	U	5	U	5	U	5 U	5	U	5	U	5	U	5 U	5	U	5	U	5	U	5	U
Acetone 50		5	U	5	U	5	U	5	U	5	U	5	U	5	U	5 U	5	U	5	U	5	U	5 U	5	U	5	U	5	U	5	U
Benzene 1		0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5 U	0.5	U	0.5	U	0.5	U	0.5 U	0.5	U	0.5	U	0.5	U	0.5	U
Bromodichloromethane 50		0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5 U	0.5	U	0.5	U	0.5	U	0.5 U	0.5	U	0.5	U	0.5	U	0.5	U
Bromoform 50		2	U	2	U	2	U	2	U	2	U	2	U	2	U	2 U	2	U	2	U	2	U	2 U	2	U	2	U	2	U	2	U
Bromomethane 5		2.5	U	2.5	UJ	2.5	U	2.5	U	2.5	UJ	2.5	UJ	2.5	U	2.5 U	2.5	U	2.5	U	2.5	UJ	2.5 U	2.5	U	2.5	UJ	2.5	U	2.5	U
Carbon disulfide 60		5	U	5	U	5	U	5	U	5	U	5	U	5	U	5 U	5	U	5	U		U	5 U	5	U	5	U	5	U	5	U
Carbon tetrachloride 5		0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5 U	0.5	U	0.5	U			0.5 U	0.5	U	0.5	U	0.5	U	0.5	U
Chlorobenzene 5		2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5 U	2.5	U	2.5	U			2.5 U	2.5	U	2.5	U	2.5	U	2.5	U
Chloroethane 5		2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5 U	2.5	U	2.5	U			2.5 U	2.5	U	2.5	U	2.5	U	2.5	U
Chloroform 7		2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5 U	2.5	U	2.5	U			2.5 U	2.5	U	2.5	U	2.5	U	2.5 2.5	U
Chloromethane cis-1,2-Dichloroethene 5		2.5	U	2.5	U	2.5 2.5	U	2.5	U	2.5	UJ	2.5 2.5	U	2.5 2.5	U	2.5 U 2.5 U	2.5 2.5	U	2.5 2.5	U			2.5 U 2.5 U	2.5 2.5	U	2.5	U	2.5 2.5	UJ	2.5	U
cis-1,2-Dichloropropene 5 cis-1,3-Dichloropropene 0.4		0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5 U	0.5	U	0.5	U			0.5 U	0.5	U	0.5	U	0.5	U	0.5	U
Cyclohexane 0.4		10	UJ.	10	U	10	U	10	U	10	U	10	U	10	U	10 U		UI	10	U		U	10 U	10	III	10	U	10	UJ	10	U
Dibromochloromethane 50		0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5 U	0.5	U	0.5	U			0.5 U	0.5	U	0.5	U	0.5	U	0.5	U
Dichlorodifluoromethane 5		5	U	5	U	5	U	5	U	5	Ü	5	U	5	U	5 U	5	U	5	U		U	5 U	5	U	5	U	5	U	5	U
Ethylbenzene 5		2.5	U	2.5	Ü	2.5	U	2.5	Ü	2.5	Ū	2.5	Ü	2.5	U	2.5 U	2.5	U	2.5	U			2.5 U	2.5	Ū	2.5	Ü	2.5	U	2.5	U
Freon-113 5		2.5	Ü	2.5	Ü	2.5	Ü	2.5	U	2.5	Ü	2.5	U	2.5	U	2.5 U	2.5	Ü	2.5	U			2.5 U	2.5	Ü	2.5	Ü	2.5	U	2.5	U
Isopropylbenzene 5		2.5	U	2.5	U	2.5	Ü	2.5	U	2.5	U	2.5	U	2.5	U	2.5 U	2.5	Ü	2.5	U			2.5 U	2.5	U	2.5	U	2.5	U	2.5	U
Methyl Acetate		2	U	2	U	2	U	2	U	2	U	2	U	2	U	2 U	2	U	2	U		UJ	2 U	2	U	2	U	2	U	2	U
Methyl cyclohexane		10	U	10	U	10	U	10	U	10	U	10	U	10	U	10 U	10	U	10	U	10	U	10 U	10	U	10	U	10	U	10	U
Methyl tert butyl ether 10		2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5 U	2.5	U	2.5	U	2.5		2.5 U	2.5	U	2.5	U	2.5	U	2.5	U
Methylene chloride 5		2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5 U	2.5	U	2.5	U			2.5 U	2.5	U	2.5	U	2.5	U	2.5	U
n-Butylbenzene 5		2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5 U	2.5	U	2.5	U	2.5		2.5 U	2.5	U	2.5	U	2.5	U	2.5	U
n-Propylbenzene 5		2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5 U	2.5	U	2.5	U			2.5 U	2.5	U	2.5	U	2.5	U	2.5	U
Naphthalene 10		2.5	U	2.5	U	_	U	2.5	UJ	2.5	U	2.5	U	2.5	U	2.5 UJ	2.5	U	2.5	UJ			2.5 UJ	2.5	U	2.5	U	2.5	U	2.5	UJ
o-Xylene 5		2.5	U	2.5	U	_	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5 U		U	2.5	U			2.5 U	2.5	U	2.5	U	2.5	U	2.5	U
p-Isopropyltoluene 5		2.5	U	2.5	U	_	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5 U		U	2.5	U			2.5 U	2.5	U	2.5	U		U	2.5	U
p/m-Xylene 5		2.5	U	2.5	U	_	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5 U		U	2.5	U			2.5 U	2.5	U	2.5	U	2.5	U	2.5	U
sec-Butylbenzene 5		2.5	U	2.5	U		U	2.5	U	2.5	U	2.5	U	2.5 2.5	U	2.5 U		U	2.5	U			2.5 U 2.5 U	2.5 2.5	U	2.5	U	2.5	U	2.5	U
Styrene 5 tert-Butylbenzene 5	- 	2.5	U	2.5 2.5		_	U	2.5	U	2.5	U	2.5			U	2.5 U 2.5 U		-	2.5 2.5	U			2.5 U 2.5 U		U	2.5 2.5	U	2.5 2.5	U	2.5 2.5	U
tert-Butylbenzene 5 Tetrachloroethene 5		2.5 0.5	U	0.5	U	2.5 0.5	U	0.5	U	2.5 0.5	U	0.5	U	2.5 0.5	U	2.5 U 0.5 U		U	0.5	U			0.5 U	2.5 0.5	U	0.5	U	0.5	U	0.5	U
Toluene 5		2.5	U	2.5	U		U	2.5	U	2.5	U	2.5	U	2.5	U	2.5 U		U	2.5	U			2.5 U	2.5	U	2.5	U	2.5	U	2.5	U
trans-1,2-Dichloroethene 5	-+	2.5	U	2.5	U		U	2.5	U	2.5	U	2.5	U	2.5	U	2.5 U		U	2.5	U			2.5 U	2.5	U	2.5	U	2.5	U	2.5	U
trans-1,3-Dichloropropene 0.4		0.5	U	0.5	U		U	0.5	U	0.5	U	0.5	U	0.5	U	0.5 U		U	0.5	U			0.5 U	0.5	U	0.5	U	0.5	U	0.5	U
Trichloroethene 5		0.5	U	0.5	U	_	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5 U		U	0.5	U			0.5 U	0.5	U	0.5	U	0.5	U	0.5	U
Trichlorofluoromethane 5		2.5	U	2.5	U		U	2.5	U	2.5	U	2.5	U	2.5	U	2.5 U		U	2.5	U			2.5 U	2.5	U	2.5	U	2.5	U	2.5	U
Vinyl chloride 2		1	UJ	1	UJ	_	U	1	U	1	UJ	1	UJ	1	U	1 U		UJ	1	U		UJ	1 U	1	UJ	1	UJ	1	UJ	1	U
Total TIC Compounds	-	0	U	0	U		Ü	1.56	U	1.1	J	2.11		0	U	0 U		U	1.65	U			1.67 U	0	U	1.5		0	U	1.69	U
The second second		- 1		<u> </u>						<u> </u>					,	- 1			, ,												-

LOCATION		MW-10	01	MW-	-101	MW-102	MW-102	MW	7-103	MV	V-103	MW	/-104	MW	-104	MW-1	105	MW-105	M	W-106	MW-106	MW-1	107	MW-	107	DUP RC	OUND 1	DUP ROU	IND 2
		ROUND		ROUI		ROUND 1	ROUND 2	ROU			JND 2		IND 1	ROU		ROUN		ROUND 2		UND 1	ROUND 2	ROUN		ROUN		(MW-106 I		(MW-105 RC	
SAMPLING DATE LAB SAMPLE ID	-	12/13/20 L2473569		2/12/ L25079		12/12/2024 L2473175-02	2/11/2025 L2507633-01		3/2024 569-02		2/2025 7955-02		2/2024 175-01	2/11/ L2507		12/13/2 L247356		2/11/2025 L2507633-03		13/2024 3569-01	2/11/2025 L2507633-04	12/13/ L24735		2/12/ L25079		12/13 L2473	-	2/11/20 L250763	
SAMPLE TYPE		WATE		L23075		WATER	WATER		TER		ATER		ATER	WA		WAT		WATER		ATER	WATER	WAT		WA1		L24733		WATE	
SAMPLE DEPTH (ft.)		14			4	20	20		20		20		20		0	20		20		20	20	20		20		2		20	
Analyte	NY TOGS 1.1.1 AWQS	Results	Qual	Results	Qual	Results Qual	Results Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results Qua	l Result	s Qual	Results Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual
Semivolatile Organics by GC/MS				Į.	<u>l</u>	<u> </u>	<u> </u>			l.	l .	l	l		<u> </u>	1	Į.	I			1					Į.	l l	.	
1,2,4,5-Tetrachlorobenzene	5	10	U	10	U	10 U	10 U	10	U	10	U	10	U	10	U	10	U	10 U	10	U	10 U	10	U	10	U	10	U	10	U
2,3,4,6-Tetrachlorophenol		5	U	5	U	5 U	5 U	5	U	5	U	5	U	5	U	5	U	5 U	5	U	5 U	5	U	5	U	5	U	5	U
2,4,5-Trichlorophenol		5	U	5	U	5 U	5 U	5	U	5	U	5	U	5	U	5	U	5 U		U	5 U	5	U	5	U	5	U	5	U
2,4,6-Trichlorophenol	1	5	U	5	U	5 U	5 U	5	U	5	U	5	U	5	U	5	U	5 U		U	5 U	5	U	5	U	5	U	5	U
2,4-Dichlorophenol 2,4-Dimethylphenol	50	5	U	5	U	5 U	5 U	5	U	5	U	5	U	5	U	5	U	5 U		U	5 U	5	U	5	U	5	U	5	U
2,4-Dinitrophenol	10	20	U	20	U	20 U	20 U	20	U	20	U	20	U	20	U	20	U	20 U		U	20 U	20	U	20	U	20	U	20	U
2,4-Dinitrotoluene	5	5	U	5	U	5 U	5 U	5	U	5	U	5	U	5	U	5	U	5 U	_	U	5 U	5	U	5	U	5	U	5	U
2,6-Dinitrotoluene	5	5	U	5	U	5 U	5 U	5	U	5	U	5	U	5	U	5	U	5 U	5	U	5 U	5	U	5	U	5	U	5	U
2-Chlorophenol		2	U	2	U	2 U	2 U	2	U	2	U	2	U	2	U	2	U	2 U	2	U	2 U	2	U	2	U	2	U	2	U
2-Methylphenol		5	U	5	U	5 U	5 U	5	U	5	U	5	U	5	U	5	U	5 U		U	5 U	5	U	5	U	5	U	5	U
2-Nitroaniline	5	5	U	5	U	5 U	5 U	5	U	5	U	5	U	5	U	5	U	5 U		U	5 U	5	U	5	U	5	U	5	U
2-Nitrophenol 3,3'-Dichlorobenzidine	5	10 5	U	10 5	U	10 U	10 U	10	U	10	U	10	U	10 5	U	10	U	10 U		U	10 U	10	U	10 5	U	10 5	U	10	U
3-Methylphenol/4-Methylphenol	3	5	U	5	U	5 U	5 U	5	U	5	U	5	U	5	U	5	U	5 U		U	5 U	5	U	5	U	5	U	5	U
3-Nitroaniline	5	5	U	5	U	5 U	5 U	5	U	5	U	5	U	5	U	5	U	5 U		U	5 U	5	U	5	U	5	U	5	U
4,6-Dinitro-o-cresol		10	U	10	U	10 U	10 U	10	U	10	U	10	U	10	U	10	U	10 U		U	10 U	10	U	10	U	10	U	10	U
4-Bromophenyl phenyl ether		2	U	2	U	2 U	2 U	2	U	2	U	2	U	2	U	2	U	2 U		U	2 U	2	U	2	U	2	U	2	U
4-Chloroaniline	5	5	U	5	U	5 U	5 U	5	U	5	U	5	U	5	U	5	U	5 U		U	5 U	5	U	5	U	5	U	5	U
4-Chlorophenyl phenyl ether		2	U	2	U	2 U	2 U	2	U	2	U	2	U	2	U	2	U	2 U		U	2 U	2	U	2	U	2	U	2	U
4-Nitroaniline 4-Nitrophenol	5	5 10	U	5 10	U	5 U	5 U	10	U	10	U	10	U	5 10	U	10	U	5 U		U	5 U	10	U	5 10	U	5 10	U	10	U
Acetophenone		5	U	5	U	5 U	5 U	5	U	5	U	5	U	5	U	5	U	5 U		U	5 U	5	U	5	U	5	U	5	U
Atrazine	7.5	10	Ü	10	U	10 U	10 U	10	Ü	10	U	10	U	10	U	10	U	10 U		U	10 U	10	U	10	U	10	U	10	U
Benzaldehyde		5	U	5	U	5 U	5 U	5	U	5	U	5	U	5	U	5	U	5 U	5	U	5 U	5	U	5	U	5	U	5	U
Biphenyl		2	U	2	U	2 U	2 U	2	U	2	U	2	U	2	U	2	U	2 U	2	U	2 U	2	U	2	U	2	U	2	U
Bis(2-chloroethoxy)methane	5	5	U	5	U	5 U	5 U	5	U	5	U	5	U	5	U	5	U	5 U	5	U	5 U	5	U	5	U	5	U	5	U
Bis(2-chloroethyl)ether	1	2	U	2	U	2 U	2 U	2	U	2	U	2	U	2	U	2	U	2 U	2	U	2 U	2	U	2	U	2	U	2	U
Bis(2-chloroisopropyl)ether Bis(2-ethylhexyl)phthalate	5	3	UJ	2 1.4	J	2 U	2 UJ	1.4	UJ J	2 4.3	U	3	U	2	UJ	2	UJ U	8.6 J	3	UJ	2 UJ	3	UJ	3	U	3	UJ	2 2.9	J
Butyl benzyl phthalate	50	5	U	5	U	5 U	5 U	5	U	5	U	5	U	5	U	5	U	5 U		U	5 U	5	U	5	U	5	U	5	U
Caprolactam	30	10	U	10	U	10 U	10 U	10	Ü	10	U	10	Ü	10	U	10	Ü	10 U		Ü	10 U	10	U	10	U	10	U	10	U
Carbazole		2	U	2	U	2 U	2 U	2	U	2	U	2	U	2	U	2	U	2 U		U	2 U	2	U	2	U	2	U	2	U
Di-n-butylphthalate	50	5	U	3.4	J	5 U	5 U	5	U	1.9	J	5	U	5	U	5	U	5 U	5	U	5 U	5	U	1.3	J	5	U	5	U
Di-n-octylphthalate	50		U	5	U	5 U	5 U	5	U	5	U	5	U	5	U	5	U	5 U		U	5 U	5	U	5	U	5	U	5	U
Dibenzofuran	F0	-	U	2	U	2 U	2 U	2	U	2	U	2	U	2	U	2	U	2 U		U	2 U	2	U	2	U	2	U	2	U
Diethyl phthalate Dimethyl phthalate	50 50	5	U	5 5	U	5 U	5 U	5	U	5	U	5	U	5	U	5	U	5 U		U	5 U	5	U	5	U	5	U	5	U
Hexachlorocyclopentadiene	5	20	U	20	U	20 UJ	20 U	20	U	20	U	20	UJ	20	U	20	U	20 U		UJ	20 U	20	U	20	U	20	U	20	U
Isophorone	50	5	U	5	U	5 U	5 U	5	U	5	U	5	U	5	U	5	U	5 U		U	5 U	5	U	5	U	5	U	5	U
n-Nitrosodi-n-propylamine		5	U	5	U	5 U	5 U	5	U	5	U	5	U	5	U	5	U	5 U	5	U	5 U	5	U	5	U	5	U	5	U
NDPA/DPA	50	2	U	2	U	2 U	2 U	2	U	2	U	2	U	2	U	2	U	2 U		U	2 U	2	U	2	U	2	U	2	U
Nitrobenzene	0.4	2	U	2	U	2 U	2 U	2	U	2	U	2	U	2	U	2	U	2 U		U	2 U	2	U	2	U	2	U	2	U
p-Chloro-m-cresol Phenol	1		U J	2 5	U	2 U	2 U	5	U	5	U	5	U	5	U	0.82	U	2 U		U	2 U	5	U	5	U	5	U	5	U
Total TIC Compounds	'		10000	53.9	J	5 U 54.9 U	5 U	161	J	159	J	37.4	U	15.9	U	10.9	J	5 U			9.8 U	22.9	J	26.5	J	43.2	J	9.8	U
Semivolatile Organics by GC/MS-SIM			- 1													1	- 1								- 1				
1,4-Dioxane	0.35	0.139	U	-	-	0.15 U		0.144	U	-	-	0.144	U	-	-	0.139	U		0.144	U		0.15	U	-	-	0.144	U	-	-
2-Chloronaphthalene	10		U	0.2	U	0.2 U	0.2 U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2 U		U	0.2 U	0.2	U	0.2	U	0.2	U	0.2	U
2-Methylnaphthalene			U	0.1	U	0.1 U	0.1 U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1 U		U	0.1 U	0.1	U	0.1	U	0.1	U	0.1	U
Acenaphthulana	20		J	0.1	U	0.1 U	0.1 U	0.06	J	0.04	_	0.1	U	0.1	U	0.03	J	0.1 U		U	0.1 U	0.05	J	0.04	J	0.1	U	0.1	U
Acenaphthylene Anthracene	50		J	0.1	U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 0.06	J	0.1	U	0.1	U	0.1	U	0.1	U	0.1 U 0.1 U		U	0.1 U 0.1 U	0.1 0.04	J	0.1	U	0.1 0.1	U	0.1	U
Benzo(a)anthracene	0.002	0.19	,	0.1	U	0.1 U	0.1 U	0.05	J	0.1	U	0.1	U	0.1	U	0.1	U	0.1 U		U	0.1 U	0.04	U	0.1	U	0.05	J	0.1	U
Benzo(a)pyrene	0	0.14		0.1	U	0.1 U	0.1 U	0.04	J	0.1	U	0.1	U	0.1	U	0.1	U	0.1 U		U	0.1 U	0.1	U	0.1	U	0.05	J	0.1	U
Benzo(b)fluoranthene	0.002	0.23		0.1	U	0.1 U	0.1 U	0.06	J	0.1	U	0.1	U	0.1	U	0.03	J	0.1 U	_	U	0.1 U	0.1	U	0.1	U	0.09	J	0.1	U
Benzo(ghi)perylene		0.2		0.1	U	0.1 U	0.1 U	0.06	J	0.1	U	0.1	U	0.1	U	0.1	U	0.1 U		U	0.1 U	0.1	U	0.1	U	0.08	J	0.1	U
Benzo(k)fluoranthene	0.002	0.21		0.1	U	0.1 U	0.1 U	0.06	J	0.1	U	0.1	U	0.1	U	0.1	U	0.1 U		U	0.1 U	0.1	U	0.1	U	0.06	J	0.1	U
Chrysene Dihenzo(a h)anthracana	0.002	0.2		0.1	U	0.1 U	0.1 U	0.05		0.1	U	0.1	U	0.1	U	0.1	U	0.1 U		U	0.1 U	0.1	U	0.1	U	0.05		0.1	U
Dibenzo(a,h)anthracene Fluoranthene	50	0.23 0.15		0.1	U	0.1 U 0.05 J	0.1 U 0.06 J	0.06) J	0.1	U	0.1	U	0.1	U	0.1 0.05	J	0.1 U 0.1 U		U	0.1 U 0.1 U	0.1 0.04	J	0.1	U	0.07 0.08	J	0.1	U
Fluorene	50	0.15	J	0.1	U	0.03 J	0.00 J	0.03	, ,	0.1	U	0.1	U	0.1	U	0.03	J	0.1 U		U	0.1 U	0.04	,	0.1	U	0.08	U	0.1	U
Hexachlorobenzene	0.04		J-	0.8	U	0.8 UJ	0.8 U	0.8	UJ	0.8	U	0.8	UJ	0.8	U	0.8	UJ	0.8 U		UJ	0.8 U	0.03	J-	0.8	U	0.8	UJ	0.8	U
Hexachlorobutadiene	0.5		U	0.5	U	0.5 U	0.5 U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5 U		U	0.5 U	0.5	U	0.5	U	0.5	U	0.5	U
Hexachloroethane	5		U	0.8	U	0.8 U	0.8 U	0.8	U	0.8	U	0.8	U	0.8	U	0.8	U	0.8 U		U	0.8 U	0.8	U	0.8	U	0.8	U	0.8	U
Indeno(1,2,3-cd)pyrene	0.002	0.22		0.1	U	0.1 U	0.1 U	0.06	J	0.1	U	0.1	U	0.1	U	0.1	U	0.1 U		U	0.1 U		U	0.1	U		J	0.1	U
Naphthalene Pantablasanhanal	10		J	0.04	U	0.1 U	0.07 J	0.1	U	0.1	U	0.1	U	0.1	U	0.03	J	0.05 J		_	0.1 U	0.04	J	0.04	U	0.09	J	0.1	U
Pentachlorophenol Phonophyropo	1	-	U	0.8	U	0.8 U	0.06 U	0.12	J	0.8	U	0.13	J	0.8	U	0.11	J	0.07 U		U	0.8 U	0.13	J	0.8	U	0.8	U	0.8	U
Phenanthrene Pyrene	50 50	0.11 0.14		0.1	U	0.05 J 0.04 J	0.11 0.04 J	0.06	J	0.1	U	0.1	U	0.1	U	0.05 0.04	J	0.1 U 0.1 U		U	0.1 U 0.1 U	0.06 0.1	J U	0.1	U	0.1 0.06) J	0.1	U
i yiene	30	0.14		U.I	U	U.U-4 J	U.U-4 J	0.07		U. I	U	U. I		V. I	U	0.04	,	0.1	0.1	U	0.1	U. I	U	0.1	J	0.00	,	U. I	U

		MW	-101	MW	-101	MW	-102	MW	-102	MV	/-103	MV	V-103	MW	V-104	MW-104	М	W-105	MW	-105	MW-1	06	MW-106	М	W-107	М	W-107	DUP R	OUND 1	DUP RO	OUND 2
LOCATION		ROU	ND 1	ROU	ND 2	ROU	ND 1	ROU	ND 2	ROL	IND 1	ROI	JND 2	ROL	JND 1	ROUND 2	RC	UND 1	ROU	ND 2	ROUN	D 1	ROUND 2		UND 1	RC	UND 2	(MW-106	ROUND 1)	(MW-105	ROUND 2)
SAMPLING DATE		12/13		2/12/		12/12		2/11			3/2024		2/2025		2/2024	2/11/2025		13/2024	2/11		12/13/2		2/11/2025		13/2024		2/2025		3/2024	2/11/	
LAB SAMPLE ID		L2473	569-05	L25079	955-01	L2473	175-02	L2507	633-01	L2473	569-02	L250	7955-02	L2473	3175-01	L2507633-02	L247	73569-04	L2507	633-03	L247356	59-01	L2507633-04	L247	73569-03	L25	7955-03	L247	3569-06	L2507	633-05
SAMPLE TYPE		WA	TER	WA	TER	WA	TER	WA	TER	W	ATER	W	ATER	W	ATER	WATER	V	/ATER	WA	TER	WAT	ER	WATER	V	/ATER	V	/ATER	W	ATER	WA	TER
SAMPLE DEPTH (ft.)		1	4	1	4	2	20	2	20		20		20		20	20		20	2	20	20		20		20		20		20	2	0
Analyte	NY TOGS 1.1.1 AWQS	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results Qua	l Result	s Qual	Results	Qual	Results	Qual	Results Qua	l Result	s Qual	Resul	s Qual	Results	Qual	Results	Qual
Polychlorinated Biphenyls by GC																															
Aroclor 1016	0.09	0.071	U	0.071	U	0.071 U	0.071	U	0.071	U	0.071	U	0.071 U	0.071	U	0.071	U	0.071	U	0.071	U										
Aroclor 1221	0.09	0.071	U	0.071	U	0.071 U	0.071	U	0.071	U	0.071	U	0.071 U	0.071	U	0.071		0.071	U	0.071	U										
Aroclor 1232	0.09	0.071	U	0.071	U	0.071 U	0.071	U	0.071	U	0.071	U	0.071 U	0.071	U	0.071	U	0.071	U	0.071	U										
Aroclor 1242	0.09	0.071	U	0.071	U	0.071 U	0.071	U	0.071	U	0.071	U	0.071 U	0.071	U	0.071	U	0.071	U	0.071	U										
Aroclor 1248	0.09	0.071	U	0.071	U	0.071 U	0.071	U	0.071	U	0.071	U	0.071 U	0.071	U	0.071		0.071	U	0.071	U										
Aroclor 1254	0.09	0.071	U	0.071	U	0.071 U	0.071	U	0.071	U	0.071	U	0.071 U	0.071	U	0.071	U	0.071	U	0.071	U										
Aroclor 1260	0.09	0.071	U	0.071	U	0.071 U		_	0.071	U	0.071	U	0.071 U	0.071	U	0.071	U	0.071	U	0.071	U										
Aroclor 1262	0.09	0.071	U	0.071	U	0.071 U	0.071	U	0.071	U	0.071	U	0.071 U	0.071	U	0.071	U	0.071	U	0.071	U										
Aroclor 1268	0.09	0.071	U	0.071	U	0.071 U	0.071	U	0.071	U	0.071	U	0.071 U	0.071	U	0.071	U	0.071	U	0.071	U										
PCBs, Total		0.071	U	0.071	U	0.071 U	0.071	U	0.071	U	0.071	U	0.071 U	0.071	U	0.071	U	0.071	U	0.071	U										
Chlorinated Herbicides by GC	•		-		-'	-	-	•	="	-	-		-	•	•		-	·	•	<u>-</u>				-	·	•	•	•	•	•	
2,4,5-T	35	-	-	-		-	-	-	-	-	-	2	U	2	U		-	-	-	-	-	-		-	-	-	-	-	-	-	-
2,4,5-TP (Silvex)		-	-	-		-	-	-	-	-	-	2	U	2	U		-	-	-	-	-	-		-	-	-	-	-	-	-	-
2,4-D	50	-	-	-		-	-	-	-	-	-	10	U	10	U		-	-	-	-	-	-		-	-	-	-	-	-	-	-
Organochlorine Pesticides by GC	'			•	-	•		•	•			•	-	•		•		•	•	•	•		•	-	•		<u>.</u>	•	•	•	•
4,4'-DDD	0.3	-	-	-	-	-	-	-	-	-	-	0.029	U	0.029	U		-	-	-	-	-	-		-	-	-	-	-	-	-	-
4,4'-DDE	0.2	-	-	-	-	-	-	-	-	-	-	0.029	U	0.029	U		-	-	-	-	-	-		-	-	-	-	-	-	-	-
4,4'-DDT	0.2	-	-	-	-	-	-	-	-	-	-	0.029	U	0.029	U		-	-	-	-	-	-		-	-	-	-	-	-	-	-
Aldrin	0	-	-	-	-	-	-	-	-	-	-	0.014	U	0.014	U		-	-	-	-	-	-		-	-	-	-	-	-	-	-
Alpha-BHC	0.01	-	-	-	-	-	-	-	-	-	-	0.014	U	0.014	U		-	-	-	-	-	-		-	-	-	-	-	-	-	-
Beta-BHC	0.04	-	-	-	-	-	-	-	-	-	-	0.02	U	0.014	U		-	-	-	-	-	-		-	-	-	-	-	-	-	-
Chlordane	0.05	-	-	-	1	-	-	-	-	-	-	0.143	U	0.143	U		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
cis-Chlordane		-	-	-	1	-	-	-	-	-	-	0.02	U	0.014	U		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Delta-BHC	0.04	-	-	-	1	-	-	-	-	-	-	0.014	U	0.014	U		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dieldrin	0.004	-	-	-	1	-	-	-	-	-	-	0.029	U	0.029	U		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Endosulfan I		-	-	-		-	-	-	-	-	-	0.014	U	0.014	U		-	-	-	-	-	-		-	-	-	-	-	-	-	-
Endosulfan II		-	-	-		-	-	-	-	-	-	0.029	U	0.029	U		-	-	-	-	-	-		-	-	-	-	-	-	-	-
Endosulfan sulfate		-	-	-	-	-	-	-	-	-	-	0.029	U	0.029	U		-	-	-	-	-	-		-	-	-	-	-	-	-	-
Endrin	0	-	-	-	-	-	-	-	-	-	-	0.029	U	0.029	U		-	-	-	-	-	-		-	-	-	-	-	-	-	-
Endrin aldehyde	5	-	-	-		-	-	-	-	-	-	0.03	U	0.029	U		-	-	-	-	-	-		-	-	-	-	-	-	-	-
Endrin ketone	5	-	-	-	-	-	-	-	-	-	-	0.029	U	0.029	U		-	-	-	-	-	-		-	-	-	-	-	-	-	-
Heptachlor	0.04	-	-	-	-	-	-	-	-	-	-	0.014	U	0.014	U		-	-	-	-	-	-		-	-	-	-	-	-	-	-
Heptachlor epoxide	0.03	-	-	-	-	-	-	-	-	-	-	0.014	U	0.014	U			-	-	-	-	-			-	-	-	-	-	-	-
Lindane	0.05	-	-	-	-	-	-	-	-	-	-	0.014	U	0.014	U		-	-	-	-	-	-		-	-	-	-	-	-	-	-
Methoxychlor	35	-	-	-	-	-	-	-	-	-	-	0.143	U	0.143	U		-	-	-	-	-	-		-	-	-	-	-	-	-	-
Toxaphene	0.06	-	-	-	-	_		-		-	-	0.2	U	0.143	U		-	-	-	_	-	-		-	-	-	-	-	-	-	-
trans-Chlordane		-	-	-	-	-	-	-	-	-	-	0.02	U	0.014	U		-	-	-	-	-	-		-	-	-	-	-	-	-	-

		B.43A	. 101	B #NA/	101	B 43A	100	D. A.V.A.	102	B #NA	/ 103	BANA	100	8.434	. 104	NAVA 104		W 10F	B.ANA/	1 105	BASA/	106	NAVA 106	D ANA	V 107	D ANA	v 107	DUD D	OUND 1	DUP RO	NIND 2
LOCATION		ROU	/-101 IND 1	MW-		ROU	'-102 ND 1		/-102 ND 2		/-103 IND 1	ROU	/-103		/-104 JND 1	MW-104 ROUND 2		W-105 DUND 1		/-105 IND 2	ROU		MW-106 ROUND 2		V-107 JND 1		V-107 JND 2		ROUND 1)		ROUND 2)
SAMPLING DATE			3/2024	2/12/			2/2024	2/11			3/2024	2/12			2/2024	2/11/2025		13/2024	2/11/		12/13		2/11/2025		3/2024		2/2025		3/2024	2/11/	
LAB SAMPLE ID			569-05	L25079			175-02	L2507			569-02		955-02		175-01	L2507633-02		73569-04		633-03	L2473		L2507633-04		3569-03		7955-03		569-06	L2507	
SAMPLE TYPE		WA	ATER	WA			TER		TER	WA	TER		TER		ATER	WATER		VATER		TER		TER	WATER		ATER		ATER		TER	WA	
SAMPLE DEPTH (ft.)		1	14	14	4		20	2	20	2	20	2	20		20	20		20	2	20		:0	20		20	1	20	- 2	20	2	0
Analyte	NY TOGS 1.1.1 AWOS	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results Qua	al Resul	ts Qual	Results	Qual	Results	Qual	Results Qua	l Results	Qual	Results	Qual	Results	Qual	Results	Qual
Total Metals	I.I.I AWQ3		l .					l			l															1	1				
Aluminum, Total		109		3.93	J	255		11.3		12.7		10.4		269		58.7	2100	0	25.8		48.4		8.17 J	278		151		60.7		25.8	
Antimony, Total	3	4	U	4	U	4	U	4	U	4	U	4	U	4	U	4 U		U	4	U	4	U	4 U	4	U	40	U	4	U	4	U
Arsenic, Total	25	1.29		0.83		3.36	Ü	2.03		2.19		0.36	J	0.87		0.5	13.88		0.5	U	0.43	J	0.32 J	5.75		3.51	J	0.4	j	0.19	J
Barium, Total	1000	71.73		56.65		308.1		255.2		30.29		22.49		278.2		252.5	797.4		234.6		35.83		24.66	298.2		219		36.68		253.1	
Beryllium, Total	3	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5 U			0.5	U	0.5	U	0.5 U	0.5	U	5	U	0.5	U	0.5	U
Cadmium, Total	5	0.2	Ü	0.2	U	0.2	Ü	0.2	U	0.2	Ü	0.2	Ü	0.2	Ü	0.2 U		_	0.2	Ü	0.2	U	0.2 U	0.2	Ü	2	U	0.07	j	0.2	U
Calcium, Total		418000	-	415000		187000		174000		691000		520000		148000		158000	45400		150000		693000		664000	82400		216000		673000	<u> </u>	168000	-
Chromium, Total	50	2.57		0.69		1.44		0.55		1.23		0.49		0.81	J	0.37 J	45.98	_	0.62	<u> </u>	0.65	J	0.41 J	0.36	Ĺ	10	U	0.35	J	0.44	J
Chromium, Hexavalent, Total	50	-	_	-		1.44	_	-	-	-		17	, ,	17	J		- 43.90	,	-	-	-	,		0.50	,	-	-	-	,	0.44	-
	30		-		<u> </u>	0.55	<u> </u>	0.26	-	0.5	U		U	0.31)	0.5 U		. -	0.5	-	2.06	_	4.93	5	U	5	U	2.32	-	0.5	- U
Cobalt, Total	200	1.34	 	0.45	J				J	0.5		0.5		_	,					U		-							 		
Copper, Total	200	2.05	 	0.63	J	1.35		1	U	 	U		U	1.3		1 U			2.67	,	0.55	J	0.67 J		U	10	U	0.62	J	0.38	J
Cyanide, Total	200	- 2000	-	-	-	- 27700	-	- 24600	-	7120	-	5	U	5	U			-	-	-	- 453	-		- 2460	-	- 2720	-	454	-	7200	-
Iron, Total	300	3660		3380		27700		31600		7120		8170		16700		19200	6120		6910		152	J	321	2160		3730		151		7290	
Lead, Total	25	1.31		1	U	4.73		1	U	1	U	1	U	6.11		1.21	353.2	_	0.59	J	1	U	1 U			3.55	J	0.51	J	0.52	J
Magnesium, Total	35000	44800		50500		22100		23400		79600		62100		20200		23700	3950		19000		73800		78400	18200	_	17600		75800		19100	
Manganese, Total	300	371.9		362.9		580.8		619.1		307.6		278.7		328.1		364.9	1460	_	248.6		722.9	J	1283	90.68	J	213.8		763.6		259.7	
Mercury, Total	0.7	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2 U			0.2	U	0.2	U	0.2 U	0.19	J	0.2	U	0.2	U	0.2	U
Nickel, Total	100	2.12		0.99	J	1.4	J	2	U	0.64	J	2	U	1.26	J	2 U			2	U	3.46		3.11	20	U	20	U	3.2		2	U
Potassium, Total		5950		4890		18000		17300		6550		4640		14500		14100	1500	0	11600		6690	J-	4290	12700	J	12200		6750		12100	
Selenium, Total	10	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5 U	50	U	5	U	5	U	5 U	50	U	50	U	5	U	5	U
Silver, Total	50	0.4	U	0.4	U	0.4	U	0.4	U	0.4	U	0.4	U	0.4	U	0.4 U	4	U	0.4	U	0.4	U	0.4 U	4	U	4	U	0.4	U	0.4	U
Sodium, Total	20000	234000		209000		149000		147000		212000		168000		89600		95200	12500	0	115000		252000		236000	2640000	0	966000		248000		122000	
Thallium, Total	0.5	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1 U	10	U	1	U	0.18	J	1 U	1	U	10	U	1	U	1	U
Vanadium, Total		1.85	J	5	U	5	U	5	U	5	U	5	U	5	U	5 U	53.2		5	U	5	U	5 U	5	U	50	U	5	U	5	O
Zinc, Total	2000	10	U	5.14	J	5.53	J	10	U	10	U	10	U	3.59	J	10 U	406.	5	10	U	10	U	10 U	100	U	100	U	10	U	10	U
Dissolved Metals																-															
Aluminum, Dissolved		6.28	J	10	U	4.2	J	3.96	J	3.92	J	10	U	10	U	10 U	19.2		10	U	7.84	J	10 U	48.9	J	10	U	6.52	J	10	U
Antimony, Dissolved	3	0.63	J	4	U	4	U	4	U	4	U	4	U	4	U	4 U			4	U	1.35	J	4 U		J	4	U	4	U	4	U
Arsenic, Dissolved	25	0.45	J	0.8		1.28		0.51		1.01		0.41	J	0.35	j	0.18 J			0.22		0.32	J	0.32 J			1.83		0.3	J	0.5	U
Barium, Dissolved	1000	65.38		55.7		182.8		128.5		29.14		22.92		194.3		154.7	230.3		201.4		31.56		24.06	309.3		180		32.96		199.6	
Beryllium, Dissolved	3	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5 U		U	0.5	U	0.5	U	0.5 U		U	0.5	U	0.5	U	0.5	U
Cadmium, Dissolved	5	0.2	Ü	0.2	U	0.2	Ü	0.2	Ü	0.2	U	0.2	Ü	0.2	Ü	0.2 U			0.2	Ü	0.2	U	0.2 U		U	0.2	Ü	0.2	Ü	0.2	U
Calcium, Dissolved		340000	<u> </u>	421000		164000		178000	- Ŭ	545000		521000		144000		163000	13700		166000		687000		649000	162000		219000		550000	H J	173000	
Chromium, Dissolved	50	1	U	1	U	0.26	J	0.28	- 11	1	U	0.21	J	1	U	1 U		U	0.31	11	1	U	1 U	10	U	0.19	J	1	U	0.26	U
Chromium, Hexavalent, Dissolved	50	-	-	-	-	0.20	,	0.20	-	-	-	10	U	10	U	1 0		-	0.51	-	<u> </u>	-		10	-		-	-	-	-	-
Cobalt, Dissolved	30	1.17	 	0.43	<u> </u>	0.23	J	0.19	J	0.5	U	0.5	U	0.5	U	0.5 U	0.26	J	0.5	U	2.06	_	5	5	U	0.5	U	1.97	- -	0.5	U
	200		J	1	U	1	U	1	U	1	U	1	U	1	U	1 U			_	j	0.41		1 U		_	_	+	0.57	J	0.5	
Copper, Dissolved		0.42	J -	+ ' -	U	-	U	- '	U	+ '	-	F			_			J	0.4	,	U.4 I	J			U	0.44	J	+	,	- 1	U -
Cyanide, Dissolved	200	- 40 F		- 2150			-	- 2770	-	-	-	5 7040	U	5	U		- 02.4	+ -		-	03.4	-		- 252	-		-	124	-	-	
Iron, Dissolved	300	40.5	J	2150		8870		2770		2690		7040		6060		887	83.4	_	144	J	82.4		28.7 J		J	53		124		50	UJ
Lead, Dissolved	25	1	U	1 1	U	7	U	7	U	1	U	7	U	10000	U	1 U		U	10000	U	7	U	1 U	10	U	1 4=:5-	U	7	U	10111	U
Magnesium, Dissolved	35000	43100		47400		20900		22500		77300		62400		19900		22100	1620		18300	ļ	73900		71500	18400	_	17400	1	68700		19100	
Manganese, Dissolved	300	304		367.8		545.6		582.8		282.4		286.4		323.4		363	202.0		252.4		800.8		1200	135.6		218.2		596.5		271.4	
Mercury, Dissolved	0.7	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2 U		_	0.2	U	0.2	U	0.2 U		U	0.2	U	0.2	U	0.2	U
Nickel, Dissolved	100	1.74	J	0.92	J	2	U	0.88	J	2	U	2	U	2	U	2 U			2	U	2.97		3.18	20	U	2	U	2.85		2	U
Potassium, Dissolved		5270	ļ	4780		17600		17400		5540		4870		14600		15000	1160		12600]	5530		4250	18700	J	12400		4960		13100	
Selenium, Dissolved	10	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5 U	5	U	5	U	5	U	5 U	50	U	5	U	5	U	5	U
Silver, Dissolved	50	0.4	U	0.4	U	0.4	U	0.4	U	0.4	U	0.4	U	0.4	U	0.4 U	0.4	U	0.4	U	0.4	U	0.4 U	4	U	0.4	U	0.4	U	0.4	U
Sodium, Dissolved	20000	204000		211000		146000		148000		188000		176000		91400		98200	12300	0	120000		266000		236000	2560000	0	1040000)	221000		124000	
Thallium, Dissolved	0.5	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1 U	1	U	1	U	1	U	1 U	10	U	1	U	1	U	1	U
Vanadium, Dissolved		5	U	5	U	5	U	5	U	5	U	5	U	5	U	5 U	5	U	5	U	5	U	5 U	50	U	5	U	5	U	5	U
Zinc, Dissolved	2000	10	U	10	U	10	U	10	U	10	U	10	U	10	U	10 U	10	U	10	U	10	U	10 U	100	U	10	U	10	U	10	U
-																															

LOCATION		W-101		/-101		/-102	MW-1		MW-103		V-103		/-104	MW		MW-			/-105	MW		MW		MW-		MW	-	_	OUND 1	DUP RO	
		UND 1		ND 2		ND 1	ROUNI		ROUND 1		UND 2		IND 1	ROU		ROUI			IND 2	ROU		ROU		ROUI		ROU			ROUND 1)	,	,
SAMPLING DATE		13/2024		/2025		2/2024	2/11/2		12/13/2024		2/2025		2/2024	2/11			/2024		/2025		/2024	2/11,		12/13		2/12/			/2024		/2025
LAB SAMPLE ID		3569-05		955-01		175-02	L250763		L2473569-0		7955-02		175-01		633-02		569-04		633-03	L2473		L2507		L24735			955-03		569-06		633-05
SAMPLE TYPE		ATER		TER		TER	WATE		WATER		ATER		ATER	WA		WA			ATER	WA			TER	WA			TER		TER		ATER
SAMPLE DEPTH (ft.)		14		14		20	20		20		20	2	20	2	:0	2	:0	2	20	2	0	2	0	2	0	2	0	2	20	2	20
Analyte NY TOGS 1.1.1 AWQS	Result	s Qual	Results	Qual	Results	Qual	Results	Qual	Results Qu	al Result	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual
Perfluorinated Alkyl Acids by EPA 1633																															
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid (11CI-PF3OUdS)	6.31	U		U	6.08	U	-	-	6.38 U	-	-	6.16	U	-	-	6.27	U	-	-	6.37	U	-	-	6.23	U	6.1	U	6.23	U	-	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	6.31	U	6.14	U	6.08	U	-	-	6.38 U	-	-	6.16	U	-	-	6.27	U	-	-	6.37	U	-	-	6.23	U	6.1	U	6.23	U	-	-
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	6.31	U	6.14	U	6.08	U	-	-	6.38 U	-	-	6.16	U	-	-	6.27	U	-	-	6.37	U	-	-	6.23	U	6.1	U	6.23	U	-	-
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	6.31	U	6.14	U	6.08	U	-	-	6.38 U	-	-	6.16	U	-	-	6.27	U	-	-	6.37	U	-	-	6.23	U	6.1	U	6.23	U	-	-
2H,2H,3H,3H-Perfluorooctanoic Acid (5:3FTCA)	39.4	U	38.4	U	38	U	-	-	39.9 U	-	-	38.5	U	-	-	39.2	U	-	-	39.8	U	-	-	39	U	38.1	U	38.9	U	-	-
3-Perfluoroheptyl Propanoic Acid (7:3FTCA)	39.4	U	38.4	U	38	U	-	-	39.9 U	-	-	38.5	U	-	-	39.2	U	-	-	39.8	U	-	-	39	U	38.1	U	38.9	U	-	-
3-Perfluoropropyl Propanoic Acid (3:3FTCA)	7.88	U	7.68	U	7.59	U	-	-	7.98 U	-	-	7.7	U	-	-	7.83	U	-	-	7.96	U	-	-	7.79	U	7.63	U	7.79	U	-	-
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	6.31	U	6.14	U	6.08	U	-	-	6.38 U	-	-	6.16	U	-	-	6.27	U	-	-	6.37	U	-	-	6.23	U	6.1	U	6.23	U	-	-
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid (9Cl-PF3ONS)	6.31	U	6.14	U	6.08	U	-	-	6.38 U	-	-	6.16	U	-	-	6.27	J	-	-	6.37	U	-		6.23	U	6.1	U	6.23	U	-	-
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	6.31	U	6.14	U	6.08	U	-	-	6.38 U	-	-	6.16	U	-	-	6.27	J	-	-	6.37	U	-		6.23	U	6.1	U	6.23	U	-	-
N-Ethyl Perfluorooctane Sulfonamide (NEtFOSA)	1.58	U	1.54	U	1.52	U	-	-	1.6 U	-	-	1.54	U	-	-	1.57	J	-	-	1.59	U	-		1.56	U	1.52	U	1.56	U	-	-
N-Ethyl Perfluorooctanesulfonamido Ethanol (NEtFOSE)	15.8	U	15.4	U	15.2	U	-	-	16 U	-	-	15.4	U	-	-	15.7	J	-	-	15.9	U	-		15.6	U	15.2	U	15.6	U	-	-
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	1.58	U	1.54	U	1.52	U	-	-	1.6 U	-	-	1.54	U	-	-	1.57	U	-	-	1.59	U	-	-	1.56	U	1.52	U	1.56	U	-	-
N-Methyl Perfluorooctane Sulfonamide (NMeFOSA)	1.58	U	1.54	U	1.52	U	-	-	1.6 U	-	-	1.54	U	-	-	1.57	U	-	-	1.59	U	-	-	1.56	U	1.52	U	1.56	U	-	-
N-Methyl Perfluorooctanesulfonamido Ethanol (NMeFOSE)	15.8	U	15.4	U	15.2	U	-	-	16 U	-	-	15.4	U	-	-	15.7	U	-	-	15.9	U	-	-	15.6	U	15.2	U	15.6	U	-	-
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	1.58	U	1.54	U	1.52	U	-	-	1.6 U	-	-	1.54	U	-	-	1.57	U	-	-	1.59	U	-	-	1.56	U	1.52	U	1.56	U	-	-
Nonafluoro-3,6-Dioxaheptanoic Acid (NFDHA)	3.15	U	3.07	U	3.04	U	-	-	3.19 U	-	-	3.08	U	-	-	3.13	U	-	-	3.18	U	-	-	3.12	U	3.05	U	3.11	U	-	-
Perfluoro(2-Ethoxyethane)Sulfonic Acid (PFEESA)	3.15	U	3.07	U	3.04	U	-	-	3.19 U	-	-	3.08	U	-	-	3.13	U	-	-	3.18	U	-	-	3.12	U	3.05	U	3.11	U	-	-
Perfluoro-3-Methoxypropanoic Acid (PFMPA)	3.15	U	3.07	U	3.04	U	-	-	3.19 U	-	-	3.08	U	-	-	3.13	U	-	-	3.18	U	-	-	3.12	U	3.05	U	3.11	U	-	-
Perfluoro-4-Methoxybutanoic Acid (PFMBA)	3.15	U	3.07	U	3.04	U	-	-	3.19 U	-	-	3.08	U	-	-	3.13	U	-	-	3.18	U	-	-	3.12	U	3.05	U	3.11	U	-	-
Perfluorobutanesulfonic Acid (PFBS)	0.544	J	0.453	EMPC	1.57		-	-	0.455 J	-	-	1.08	J	-	-	1.05	J	-	-	1.59	U	-	-	4.85		4.42		1.56	U	-	-
Perfluorobutanoic Acid (PFBA)	1.44	J	6.14	U	2.2	J	-	-	2.73 J	-	-	1.38	J	-	-	1.15	J	-	-	0.804	J	-	-	5.69	J	5.66	J	0.522	J	-	-
Perfluorodecanesulfonic Acid (PFDS)	1.58	U	1.54	U	1.52	U	-	-	1.6 U	-	-	1.54	U	-	-	1.57	U	-	-	1.59	U	-	-	1.56	U	1.52	U	1.56	U	-	-
Perfluorodecanoic Acid (PFDA)	1.58	U	1.54	U	1.52	U	-	-	1.6 U	-	-	1.54	U	-	-	1.57	U	-	-	1.59	U	-	-	1.56	U	1.52	U	1.56	U	-	-
Perfluorododecanesulfonic Acid (PFDoS)	1.58	U	1.54	U	1.52	U	-	-	1.6 U	-	-	1.54	U	-	-	1.57	U	-	-	1.59	U	-	-	1.56	U	1.52	U	1.56	U	-	-
Perfluorododecanoic Acid (PFDoA)	1.58	U	1.54	U	1.52	U	-	-	1.6 U	-	-	1.54	U	-	-	1.57	U	-	-	1.59	U	-	-	1.56	U	1.52	U	1.56	U	-	-
Perfluoroheptanesulfonic Acid (PFHpS)	1.58	U	1.54	U	1.52	U	-	-	1.6 U	-	-	1.54	U	-	-	1.57	U	-	-	1.59	U	-	-	1.56	U	1.52	U	1.56	U	-	-
Perfluoroheptanoic Acid (PFHpA)	0.56	J	0.591	J	0.433	J	-	-	1.6 U	-	-	0.431	J	-	-	1.57	U	-	-	0.526	J	-	-	2.66		2.27		0.335	J	-	-
Perfluorohexanesulfonic Acid (PFHxS)	0.512	J	1.47	J	1.52	U	-	-	2.13	-	-	0.3	J	-	-	1.57	U	-	-	1.59	U	-	-	1.09	J	1.75		1.56	U	-	-
Perfluorohexanoic Acid (PFHxA)	0.875	EMPC	0.561	J	0.608	EMPC	-	-	1.6 U	-	-	0.601	J	-	-	1.57	U	-	-	1.5	J	-	-	4.72		3.07		1.51	J	-	-
Perfluorononanesulfonic Acid (PFNS)	1.58	U	1.54	U	1.52	U	-	-	1.6 U	-	-	1.54	U	-	-	1.57	U	-	-	1.59	U	-	-	1.56	U	1.52	U	1.56	U	-	-
Perfluorononanoic Acid (PFNA)	1.58	U	0.3	J	1.52	U	-	-	1.6 U	-	-	1.54	U	-	-	1.57	U	-	-	1.59	U	-	-	1.56	U	0.267	EMPC	1.56	U	-	-
Perfluorooctanesulfonamide (PFOSA)	1.58	U	1.54	U	1.52	U	-	-	1.6 U	-	-	1.54	U	-	-	1.57	U	-	-	1.59	U	-	-	1.56	U	1.52	U	1.56	U	-	-
Perfluorooctanesulfonic Acid (PFOS) 2.7	3.3		3.66		1.52	U	-	-	1.6 U	-	-	0.478	J	-	-	1.9		-	-	1.59	U	-	-	1.56	U	2.4	EMPC	1.56	U	-	-
Perfluorooctanoic Acid (PFOA) 6.7	2.42		4.55		1.83		-	-	1.6 U	-	-	1.26	J	-	-	0.564	J	-	-	0.629	J	-	-	7.78		6.9		0.459	J	-	-
Perfluoropentanesulfonic Acid (PFPeS)	1.58	U	1.54	U	0.645	EMPC	-	-	1.6 U	-	-	1.54	U	-	-	1.57	U	-	-	1.59	U	-	-	1.56	U	1.52	U	1.56	U	-	-
Perfluoropentanoic Acid (PFPeA)	1.29	J	3.07	U	1.26	J	-	-	3.19 U	-	-	0.408	J	-	-	0.713	J	-	-	3.18	U	-	-	6.49		4.72		3.11	U	-	-
Perfluorotetradecanoic Acid (PFTeDA)	1.58	U	1.54	U	1.52	U	1 - 1	-	1.6 U		-	1.54	U	-	-	1.57	U	-	-	1.59	U	-	-	1.56	U	1.52	U	1.56	U	-	-
Perfluorotridecanoic Acid (PFTrDA)	1.58	U	1.54	U	1.52	U	1 - 1	-	1.6 U	-	-	1.54	U	-	-	1.57	U	-	-	1.59	U	<u> </u>	-	1.56	U	1.52	U	1.56	U	-	-
Perfluoroundecanoic Acid (PFUnA)	1.58	U	1.54	U	1.52	U	-	-	1.6 U	-	-	1.54	U	-	-	1.57	U	-	-	1.59	U	-	-	1.56	U	1.52	U	1.56	U	-	-

- All values are reported in micrograms per liter ($\mu g/L$) / parts per billion (ppb) except
- PFAAs which are reported in nanograms per liter (ng/L) / parts per trillion (ppt).
 Analytical results compared to New York Technical and Operational Guidance Series
- (TOGS) 1.1.1 Ambient Water Quality Standards & Guidance Values Criteria per Standards & Guidance Values including all addenda through February 2023.
- **Bolded text** indicates analyte detected at concentrations greater than laboratory detection limits.
- Highlighted cell Indicates analyte exceeds the respective standard/guideline value.
- Blue qualifiers were applied based on a third party data usability review.
- Grey highlighted cell indicates the laboratory detection limit exceeds the respective standard/guideline value.
- "U" indicates the analyte was not detected at the reported detection limit for the sample.
- "UJ" indicates the analyte was analyzed for, but was not detected. The associated reported quantitation limit is approximate and may be inaccurate or imprecise.
- "J" indicates estimated value.
- "J-" indicates the analyte was positively identified; the associated numerical value is an estimated quantity that may be biased low.
- "EMPC" indicates the results do not meet all criteria for a confirmed identification. The quantitative value represents the Estimated Maximum Possible Concentration of the analyte in the sample.

Table 4 Remedial Investigation Report Groundwater Data Summary

	T	1										•	_
LOCATION		TRIP B	LANK	TRIP E	BLANK	TRIP B	LANK	TRIP E	BLANK	FIELD	BLANK	FIELD I	BLANK
SAMPLING DATE		12/12	/2024	12/13	/2024	2/11/	2025	2/12	/2025	12/12	/2024	2/12/	2025
LAB SAMPLE ID		L24731		L2473		L25076			955-05	L2473		L25079	
SAMPLE TYPE		WA ⁻	TER	WA	TER	WA	TER	WA	TER	WA	TER	WA	TER
SAMPLE DEPTH (ft.)	NY TOGS												
Analyte	1.1.1 AWQS	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual
Volatile Organics by GC/MS						1		ı					
1,1,1-Trichloroethane	5	2.5	U	2.5	U	2.5	U	2.5	U	-	-	-	-
1,1,2,2-Tetrachloroethane	5	0.5	U	0.5	U	0.5	U	0.5	U	-	-	-	-
1,1-Dichloroethane	1 5	1.5 2.5	U	1.5 2.5	U	1.5 2.5	U	1.5 2.5	U	-	-	-	-
1.1-Dichloroethane	5	0.5	U	0.5	U	0.5	U	0.5	UJ	-		-	-
1,2,4-Trichlorobenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	-	-	-	-
1,2,4-Trimethylbenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	-	-	-	-
1,2-Dibromo-3-chloropropane	0.04	2.5	U	2.5	U	2.5	U	2.5	U	-	-	-	-
1,2-Dibromoethane	0.0006	2	U	2	U	2	U	2	U		-	-	-
1,2-Dichlorobenzene 1,2-Dichloroethane	3	2.5	U	2.5 0.5	U	2.5 0.5	U	2.5 0.5	U	-	-	-	-
1,2-Dichloropernane	0.6	0.5	U	1	U	1	U	1	U	-	-	-	-
1,3,5-Trimethylbenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	-	-	_	_
1,3-Dichlorobenzene	3	2.5	U	2.5	U	2.5	U	2.5	U	-	-	-	-
1,4-Dichlorobenzene	3	2.5	U	2.5	U	2.5	U	2.5	U	-	-	-	-
2-Butanone	50	5	U	5	U	5	U	5	U	-	-	-	-
2-Hexanone	50	5	U	5	U	5	U	5	U	-	-	-	-
4-Methyl-2-pentanone	50	5 5	U	5	U	5 5	U	5 5	U	-	-	-	-
Acetone Benzene	1	0.5	U	0.5	U	0.5	U	0.5	U	-	-	-	-
Bromodichloromethane	50	0.5	U	0.5	U	0.5	U	0.5	U	-	_	_	_
Bromoform	50	2	U	2	U	2	U	2	U	-	-	-	-
Bromomethane	5	2.5	U	2.5	U	2.5	U	2.5	UJ	-	-	-	-
Carbon disulfide	60	5	U	5	U	5	U	5	U	-	-	-	-
Carbon tetrachloride	5	0.5	U	0.5	U	0.5	U	0.5	U	-	-	-	-
Chlorobenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	-	-	-	-
Chloroethane Chloroform	5 7	2.5 2.5	U	2.5 2.5	U	2.5 2.5	U	2.5 2.5	U	-	-	-	-
Chloromethane	,	2.5	U	2.5	UJ	2.5	U	2.5	U	-	-	-	-
cis-1,2-Dichloroethene	5	2.5	U	2.5	U	2.5	U	2.5	U	-	-	-	-
cis-1,3-Dichloropropene	0.4	0.5	U	0.5	U	0.5	U	0.5	U	-	-	-	-
Cyclohexane		10	U	10	UJ	10	U	10	U	-	-	-	-
Dibromochloromethane	50	0.5	U	0.5	U	0.5	U	0.5	U	-	-	-	-
Dichlorodifluoromethane	5	5	U	5	U	5	U	5	U	-	-	-	-
Ethylbenzene Freon-113	5	2.5 2.5	U	2.5 2.5	U	2.5 2.5	U	2.5 2.5	U	-	-	-	-
Isopropylbenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	-	-	-	-
Methyl Acetate		2	U	2	U	2	U	2	Ü	-	-	-	-
Methyl cyclohexane		10	U	10	U	10	U	10	U	-	-	-	-
Methyl tert butyl ether	10	2.5	U	2.5	U	2.5	U	2.5	U	-	-	-	-
Methylene chloride	5	2.5	U	2.5	U	2.5	U	2.5	U	-	-	-	-
n-Butylbenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	-	-	-	-
n-Propylbenzene	5 10	2.5	U	2.5	U	2.5 2.5	U	2.5 2.5	U	-	-	-	-
Naphthalene o-Xylene	5	2.5 2.5	U	2.5 2.5	U	2.5	U	2.5	U	-		-	-
p-Isopropyltoluene	5	2.5	U	2.5	U	2.5	U	2.5	U	-	-	-	-
p/m-Xylene	5	2.5	Ü	2.5	U	2.5	U	2.5	U	-	-	-	-
sec-Butylbenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	-	-	-	-
Styrene	5	2.5	U	2.5	U	2.5	U	2.5	U	-	-	-	-
tert-Butylbenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	-	-	-	-
Tetrachloroethene	5	0.5	U	0.5	U	0.5	U	0.5	U	-	-	-	-
Toluene trans-1,2-Dichloroethene	5 5	2.5 2.5	U	2.5	U	2.5 2.5	U	2.5 2.5	U	-	-	-	-
trans-1,2-Dichloropropene	0.4	0.5	U	0.5	U	0.5	U	0.5	U	-	-	-	-
Trichloroethene	5	0.5	U	0.5	U	0.5	U	0.5	U	-		-	-
Trichlorofluoromethane	5	2.5	Ü	2.5	U	2.5	U	2.5	U	-	-	-	-
Vinyl chloride	2	1	U	1	UJ	1	U	1	UJ	-	-	-	-
Total TIC Compounds		0	U	0	U	0	U	0	U		-	-	

Table 4 Remedial Investigation Report Groundwater Data Summary

LOCATION		TRIP B	LANK	TRIP E	BLANK	TRIP B	LANK	TRIP E	BLANK	FIELD I	BLANK	FIELD I	BLANK
SAMPLING DATE		12/12		12/13		2/11/		2/12/		12/12		2/12/	
LAB SAMPLE ID		L24731		L2473!		L25076		L25079		L24731		L25079	
SAMPLE TYPE		WA		WA		WA		WA		WA		WA	
SAMPLE DEPTH (ft.)													
Analyte	NY TOGS 1.1.1 AWQS	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual
Semivolatile Organics by GC/MS													
1,2,4,5-Tetrachlorobenzene	5	-	-	-	-	-	-	-	-	-	-	-	-
2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol		-	-	-	-	-	-	-	-	-	-	-	-
2,4,6-Trichlorophenol		-		-	-	-	-	-	-	-		-	-
2,4-Dichlorophenol	1	-	-	-	-	-	-	-	-	-	-	-	-
2,4-Dimethylphenol	50	-	-	-	-	-	-	-	-	-	-	-	-
2,4-Dinitrophenol	10	-	-	-	-	-	-	-	-	-	-	-	-
2,4-Dinitrotoluene	5	-	-	-	-	-	-	-	-	-	-	-	-
2,6-Dinitrotoluene	5	-		-	-	-	-	-	-	-	-	-	-
2-Chlorophenol 2-Methylphenol		-		-	-	-		-	-	-		-	-
2-Nitroaniline	5	-	-	-	-	-	-	-	-	-	-	-	-
2-Nitrophenol		-	-	-	-	-	-	-	-	-	-	-	-
3,3'-Dichlorobenzidine	5	-	-	-	1	-	-	-	ı	-	-	-	-
3-Methylphenol/4-Methylphenol		-	-	-	-	-	-	-	-	-	-	-	-
3-Nitroaniline	5	-	-	-	-	-	-	-	-	-	-	-	-
4,6-Dinitro-o-cresol 4-Bromophenyl phenyl ether		-		-	-	-	-	-	-	-	-	-	-
4-Chloroaniline	5	-		-	-	-		-	-	-		-	-
4-Chlorophenyl phenyl ether		-	-	-	-	-	-	-	-	-	-	-	-
4-Nitroaniline	5	-	-	-	-	-	-	-	-	-	-	-	-
4-Nitrophenol		-	-	-	-	-	-	-	-	-	-	-	-
Acetophenone		-	-	-	-	-	-	-	-	-	-	-	-
Atrazine	7.5	-	-	-	-	-	-	-	-	-	-	-	-
Benzaldehyde Biphenyl		-	-	-	-	-	-	-	-	-	-	-	-
Bis(2-chloroethoxy)methane	5	-		-	-	-		-	-	-		-	-
Bis(2-chloroethyl)ether	1	-	-	-	-	-	-	-	-	-	-	-	-
Bis(2-chloroisopropyl)ether	5	-	-	-	-	-	-	-	-	-	-	-	-
Bis(2-ethylhexyl)phthalate	5	-	-	-	-	-	-	-	-	-	-	-	-
Butyl benzyl phthalate	50	-	-	-	-	-	-	-	-	-	-	-	-
Carbazole		-	-	-	-	-	-	-	-	-	-	-	-
Di-n-butylphthalate	50	-		-	-	-		-	-	-		-	-
Di-n-octylphthalate	50	-	-	-	-	-	-	-	-	-	-	-	-
Dibenzofuran		-	-	-	-		-	-	-	-	-	-	-
Diethyl phthalate	50	-	-	-	í	-	-	-	1	-	-	-	-
Dimethyl phthalate	50	-	-	-	-	-	-	-	-	-	-	-	-
Hexachlorocyclopentadiene	5	-	-	-	-	-	-	-	-	-	-	-	-
Isophorone n-Nitrosodi-n-propylamine	50	-	-	-	-	-	-	-	-	-	-	-	-
NDPA/DPA	50	-		_	_	_	_	_	-	-	-	_	_
Nitrobenzene	0.4	-	-	-	-	-	-	-	-	-	-	-	-
p-Chloro-m-cresol		-	-	-	-	-	-	-	-	-	-	-	-
Phenol	1	-	-	-	-	-	-	-	-	-	-	-	-
Total TIC Compounds		-	-	-	-	-	-	-	-	-	-	-	-
Semivolatile Organics by GC/MS-SIM 1,4-Dioxane	0.25			1				1				-	
2-Chloronaphthalene	0.35 10	-	-	-	-	-	-	-	-	-	-	-	-
2-Methylnaphthalene	10	-	-	-	-	-	-	-	-	-	-	-	-
Acenaphthene	20	-	-	-	-	-	-	-	-	-	-	-	-
Acenaphthylene		-	-	-	-	-	-	-	-	-	-	-	-
Anthracene	50	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(a)anthracene	0.002	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(a)pyrene Benzo(b)fluoranthene	0.002	-	-	-	-	-	-	-	-	-		-	-
Benzo(ghi)perylene	0.002	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(k)fluoranthene	0.002	-	-	-	-	-	-	-	-	-	-	-	-
Chrysene	0.002	-	-	-	-	-	-	-	-	-	-	-	-
Dibenzo(a,h)anthracene		-	-	-	-	-	-	-	-	-	-	-	-
Fluoranthene	50	-	-	-	-	-	-	-	-	-	-	-	-
Fluorene	50	-	-	-	-	-	-	-	-	-	-	-	-
Hexachlorobenzene Hexachlorobutadiene	0.04 0.5	-	-	-	-	-	-	-	-	-	-	-	-
Hexachloroethane	5	-	-	-	-	-	-	-	-	-	-	-	-
Indeno(1,2,3-cd)pyrene	0.002	-	-	-	-	-	-	-	-	-	-	-	-
Naphthalene	10	-	-	-	-	-	-	-	-	-	-	-	-
Pentachlorophenol	1	-	-	-	-	-	-	-	-	-	-	-	-
Phenanthrene	50	-	-		-	-	-	-	-	-	-	-	-
Pyrene	50	-	-	-	-	-	-	-	-	-	-	-	-

Table 4 Remedial Investigation Report Groundwater Data Summary

LOCATION		TRIP B		TRIP E		TRIP E		TRIP E		FIELD		FIELD I	
SAMPLING DATE		12/12	/2024	12/13		2/11/			/2025	12/12		2/12/	
LAB SAMPLE ID		L2473		L2473			633-06		955-05	L2473		L25079	
SAMPLE TYPE		WA	TER	WA	TER	WA	TER	WA	TER	WA	TER	WA	TER
SAMPLE DEPTH (ft.)													
Analyte	NY TOGS 1.1.1 AWQS	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual
Polychlorinated Biphenyls by GC	•			•				•	•	•			
Aroclor 1016	0.09	-	-	-	-	-	-	-	-	-	-	-	-
Aroclor 1221	0.09	-	-	-	-	-	-	-	-	-	-	-	-
Aroclor 1232	0.09	-	-	-	-	-	-	-	-	-	-	-	-
Aroclor 1242	0.09	-	-	-	-	-	-	-	-	-	-	-	-
Aroclor 1248	0.09	-	-	-	-	-	-	-	-	-	-	-	-
Aroclor 1254	0.09	-	-	-	-	-	-	-	-	-	-	-	-
Aroclor 1260	0.09	-	-	-	-	-	-	-	-	-	-	-	-
Aroclor 1262	0.09	-	-	-	-	-	-	-	-	-	-	-	-
Aroclor 1268	0.09	-	-	-	-	-	-	-	-	-	-	-	-
PCBs, Total		-	-	-	-	-	-	-	-	-	-	-	-
Chlorinated Herbicides by GC	Į.							Į.					
2,4,5-T	35	-	-	-	-	-	-	-	-	-	-	-	-
2,4,5-TP (Silvex)		-	-	-	-	-	-	-	-	-	-	-	-
2,4-D	50	-	-	-	-	-	-	-	-	-	-	-	-
Organochlorine Pesticides by GC	Į.							Į.					
4,4'-DDD	0.3	-	-	-	-	-	-	-	-	-	-	-	-
4,4'-DDE	0.2	-	-	-	-	-	-	-	-	-	-	-	-
4,4'-DDT	0.2	-	-	-	-	-	-	-	-	-	-	-	-
Aldrin	0	-	-	-	-	-	-	-	-	-	-	-	-
Alpha-BHC	0.01	-	-	-	-	-	-	-	-	-	-	-	-
Beta-BHC	0.04	-	-	-	-	-	-	-	-	-	-	-	-
Chlordane	0.05	-	-	-	-	-	-	-	-	-	-	-	-
cis-Chlordane		-	-	-	-	-	-	-	-	-	-	-	-
Delta-BHC	0.04	-	-	-	-	-	-	-	-	-	-	-	-
Dieldrin	0.004	-	-	-	-	-	-	-	-	-	-	-	-
Endosulfan I		-	-	-	-	-	-	-	-	-	-	-	-
Endosulfan II		-	-	-	-	-	-	-	-	-	-	-	-
Endosulfan sulfate		-	-	-	-	-	-	-	-	-	-	-	-
Endrin	0	-	-	-	-	-	-	-	-	-	-	-	-
Endrin aldehyde	5	-	-	-	-	-	-	-	-	-	-	-	-
Endrin ketone	5	-	-	-	-	-	-	-	-	-	-	-	-
Heptachlor	0.04	-	_	-	-	-	-	-	-	-	_	-	-
Heptachlor epoxide	0.03	-	_	-	-	-	-	-	-	-	_	-	-
Lindane	0.05	-	_	-	-	_	-	-	_	-	_	-	-
Methoxychlor	35	-	_	-	-	_	-	-	_	-	_	-	-
Toxaphene	0.06	-	_	-	-	_	-	-	_	-	_	-	_
trans-Chlordane	0.00	-	_	_	-	_	-	_	_	_	_	_	_
dans chioragne	ļ							L					

Table 4 Remedial Investigation Report Groundwater Data Summary

	1	I		1		l		1		I			
LOCATION		TRIP	BLANK	TRIP	BLANK	TRIP	BLANK	TRIP	BLANK	FIELD	BLANK	FIELD I	BLANK
SAMPLING DATE		12/12	2/2024	12/13	/2024	2/11	/2025	2/12			/2024		/2025
LAB SAMPLE ID			175-04		569-07		633-06		955-05		175-03		955-04
SAMPLE TYPE		WA	TER	WA	TER	WA	TER	WA	TER	WA	TER	WA	TER
SAMPLE DEPTH (ft.)			•										•
Analyte	NY TOGS 1.1.1 AWQS	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual
Total Metals													
Aluminum, Total		-	-	-	-	-	-	-	-	-	-	-	-
Antimony, Total	3	-	-	-	-	-	-	-	-	-	-	-	-
Arsenic, Total	25	-	-	-	-	-	-	-	-	-	-	-	-
Barium, Total	1000	-	-	-	-	-	-	-	-	-	-	-	-
Beryllium, Total	3	-	-	-	-	-	-	-	-	-	-	-	-
Cadmium, Total	5	-	-	-	-	-	-	-	-	-	-	-	-
Calcium, Total		-	-	-	-	-	-	-	-	-	-	-	-
Chromium, Total	50	-	-	-	-	-	-	-	-	-	-	-	-
Chromium, Hexavalent, Total	50	-	-	-	-	-	-	-	-	-	-	-	-
Cobalt, Total		-	-	-	-	-	-	-	-	-	-	-	-
Copper, Total	200	-	-	-	-	-	-	-	-	-	-	-	-
Cyanide, Total	200	-	-	-	-	-	-	-	-	-	-	-	-
Iron, Total	300	-	-	-	-	-	-	-	-	-	-	-	
Lead, Total	25	-	-	-	-	-	-	-	-	-	-	-	-
Magnesium, Total	35000	-	-	-	-	-	-	-	-	-	-	-	-
Manganese, Total	300	-	-	-	-	-	-	-	-	-	-	-	-
Mercury, Total	0.7	-	-	-	-	-	-	-	-	-	-	-	-
Nickel, Total	100	-	-	-	-	-	-	-	-	-	-	-	-
Potassium, Total	- 10	-	-	-	-	-	-	-	-	-	-	-	-
Selenium, Total	10	-	-	-	-	-	-	-	-	-	-	-	-
Silver, Total	50	-	-	-	-	-	-	-	-	-	-		-
Sodium, Total	20000	-	-	-	-	-	-	-	-	-	-		-
Thallium, Total	0.5	-	-	-	-	-	-	-	-	-	-	-	-
Vanadium, Total	2000	-	-	-	-	-	-	-	-	-	-	-	-
Zinc, Total	2000	-	-	-	-	-	-	-	-	-	-	-	-
Dissolved Metals	1		ı		1	T			1				
Aluminum, Dissolved		-	-	-	-	-	-	-	-	-	-	-	-
Antimony, Dissolved	3	-	-	-	-	-	-	-	-	-	-	-	-
Arsenic, Dissolved	25	-	-	-	-	-	-	-	-	-	-	-	-
Barium, Dissolved	1000	-	-	-	-	-	-	-	-	-	-	-	-
Beryllium, Dissolved	3	-	-	-	-	-	-	-	-	-	-	-	-
Cadmium, Dissolved	5	-	-	-	-	-	-	-	-	-	-	-	-
Calcium, Dissolved Chromium, Dissolved	50	-	-	-	-	-	-	-	-	-	-	-	-
Chromium, Hexavalent, Dissolved	50	-	-	-		-	-	-	-	-	-	-	-
Cobalt, Dissolved	30	-	-	-	-	-	-	-	-	-	-	-	-
Copper, Dissolved	200	-	-	-	-	-	-	-		-	-	-	-
Cyanide, Dissolved	200	-	-	-	-	-	-	-	-	-	-	-	-
Iron, Dissolved	300	-	-	-	_	_	-	-	-	-	-	\vdash	_
Lead, Dissolved	25	-	-	-	-	-	-	-	-	-	-	-	-
Magnesium, Dissolved	35000	-	_	_	_	_	-	_	-	_	_	_	_
Manganese, Dissolved	300	-	-	-	_	_	-	-	_	-	-	_	-
Mercury, Dissolved	0.7	-	-	-	_	-	-	-	-	-	-	-	-
Nickel, Dissolved	100	-	-	-	-	-	-	-	-	-	-	-	-
Potassium, Dissolved	100	-	-	-	-	-	-	-	-	-	-	-	-
Selenium, Dissolved	10	-	-	-	-	-	-	-	-	-	-	_	-
Silver, Dissolved	50	-	-	-	-	-	-	-	-	-	-	-	-
Sodium, Dissolved	20000	-	-	-	-	-	-	-	-	-	-	_	-
Thallium, Dissolved	0.5	-	-	-	-	-	-	-	-	-	-	_	-
Vanadium, Dissolved	0.5	-	-	-	-	-	-	-	-	-	-	_	-
Zinc, Dissolved	2000	-	-	-	-	-	-	-	-	-	-	_	-
4													-

Table 4 Remedial Investigation Report Groundwater Data Summary

OGS	TRIP E 12/12 L2473 WA Results	/2024 175-04	TRIP E 12/13 L2473 WA Results	/2024	2/11/ L25076 WA Results	/2025 533-06	2/12/ L25079 WA Results	2025 955-05	12/12, L24731 WA	/2024 175-03	2/12/ L25079 WA	/2025 955-04 TER
	Results	175-04 TER Qual	WA Results	TER Qual	L2507(533-06 TER	L25079	955-05 TER	L24731 WA	175-03 TER	L25079 WA	955-04 TER
	Results	Qual	Results	TER Qual	WA	TER	WA	TER	WA	TER	WA	TER
	Results	Qual - -	Results	Qual								
	- - - -	- - -	-		Results	Qual	Results	Qual	Results	Qual	Results	
	- - - -	- - -	-		Results	Qual	Results	Qual	Results	Qual	Results	
		-										Qual
		-										
	-	-	-	-	-	-	-	-	6.19	U	7.11	U
	-			-	-	-	-	-	6.19	Ü	7.11	U
	-	-	-	-	-	-	-	-	6.19	Ü	7.11	U
			-	-	-	-	-	-	6.19	Ü	7.11	U
	-	-	-	-	-	-	-	-	38.7	Ü	44.4	U
		-	-	-	-	-	-	-	38.7	U	44.4	U
	-	-	-	-	-	-	-	-	7.74	U	8.89	U
	-	-	-	-	-	-	-	-	6.19	U	7.11	U
	-	-	-	-	-	-	-	-	6.19	U	7.11	U
	-	_	_	-	-		-		6.19	U	7.11	U
	-	_	-	-	-		-		1.55	U	1.78	U
	-	_	_	-	-		-		15.5	U	17.8	U
	-	_	-	-	-		-		1.55	U	1.78	U
	-	_	_	-	-		-	-	1.55	U	1.78	U
	-	-	-	-	-	-	-	-	15.5	Ū	17.8	U
	_		_	_	-		_		1.55	U	1.78	U
	_	_	_	_	-		-	-	3.1	U	3.55	U
				_								U
	_		_	_			_			-		U
	-	_	_	_	-	_	_	_				U
	_		_	_	-		_					U
			_									J
												U
												U
												U
												U
					_							U
												U
												U
												U
												U
												U
												U
7												J
				_								U
.,	_		_	_	-		_					U
												U
	_		_				_					U
	_						_				1.78	
	_		_		1				1 22			U
	2.7									- - - - - - - 3.1		

Notes:

- All values are reported in micrograms per liter ($\mu g/L$) / parts per billion (ppb) except
- PFAAs which are reported in nanograms per liter (ng/L) / parts per trillion (ppt).
 Analytical results compared to New York Technical and Operational Guidance Series
- (TOGS) 1.1.1 Ambient Water Quality Standards & Guidance Values Criteria per Standards
- & Guidance Values including all addenda through February 2023.
- **Bolded text** indicates analyte detected at concentrations greater than laboratory detection limits.
- Highlighted cell Indicates analyte exceeds the respective standard/guideline value.
- Blue qualifiers were applied based on a third party data usability review.
- Grey highlighted cell indicates the laboratory detection limit exceeds the respective standard/guideline value.
 "U" indicates the analyte was not detected at the reported detection limit for the
- "U" indicates the analyte was not detected at the reported detection limit for the sample.
- "U" indicates the analyte was analyzed for, but was not detected. The associated reported quantitation limit is approximate and may be inaccurate or imprecise.
- "J" indicates estimated value.
- "J-" indicates the analyte was positively identified; the associated numerical value is an estimated quantity that may be biased low.
- "EMPC" indicates the results do not meet all criteria for a confirmed identification. The quantitative value represents the Estimated Maximum Possible Concentration of the analyte in the sample.

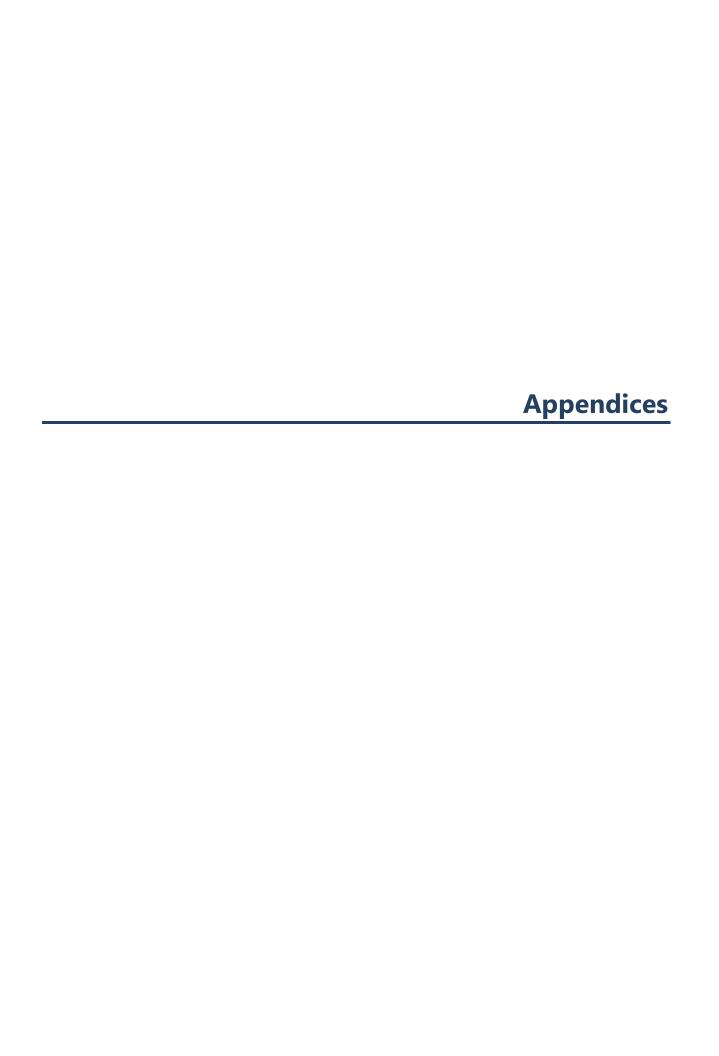
LOCATION				SSV	-101	IA-	101	SSV-102	IA-	102	SSV-	103	SSV-103	RETEST	IA-	103	CS-104	I.A	-104	CS-105	IA-105	SV-1	101	SV-102	SV-1	103	SV-1	04	SV-10	5	SV-1	06	SV-107	OA	-101
SAMPLING DATE				12/4/		12/4/		12/4/2024		/2024	12/4/2		1/14/			/2024	12/4/2024		4/2024	12/4/2024	12/4/2024	12/4/2		12/4/2024	12/4/2		12/4/2		12/4/20		12/4/2		12/4/2024		/2024
LAB SAMPLE ID				L24710 Sub-Sla		L24710		L2471075-03 Sub-Slab Soil		075-04	L24710 Sub-Sla		L25022 Sub-Sla			075-06	L2471075-07		1075-08	L2471075-09	L2471075-10	L24710		L2471075-12	L24710		L24710		L2471075		L24710		L2471075-17		075-18
SAMPLE TYPE				Var		Indoo	or Air	Vapor	Indo	or Air	Vap		Vap		Indo	or Air (rawl Space A	Air Ind	oor Air	Crawl Space Air	Indoor Air	Soil Va	apor	Soil Vapor	Soil V	apor	Soil Va	por	Soil Vap	or	Soil Va	apor	Soil Vapor	Outdo	or Air
Analyte	NYSDOH AGV	NYSDOH Matrix Indoor Air	NYSDOH Matrix Soil Vapor	Results	Qual	Results	Qual	Results Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results Qua	al Result	s Qua	Results Qual	Results Qual	Results	Qual	Results Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results Qual	Results	s Qual
Volatile Organics by TO-15		3	100	1.00	1	1.00	1 11 1	100 11	1.00	1 111 1	2.64		1.00		1.00	T 11 T	100 11	1.00	- I	1.00	1.00	1.00	1 1	1.00	1.00		1.00	- 11	1.00		1.00		1.00	T 1.00	
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane		3	100	1.09	UJ	1.09 1.37	U	1.09 U 1.37 U	1.09	UJ	3.64 4.58	U	1.09	U	1.09	U	1.09 U 1.37 U	1.09 1.37	U	1.09 U 1.37 U	1.09 U 1.37 U	1.09	U	1.09 U 1.37 U	1.09 1.37	U	1.09 1.37	U	1.09 1.37	U	1.09 1.37	UJ	1.09 U 1.37 U	1.09 1.37	U
1,1,2-Trichloroethane				1.09	UJ	1.09	U	1.09 U	1.09	UJ	3.64	U	1.09	U	1.09	U	1.09 U	1.09	U	1.09 U	1.09 U	1.09	U	1.09 U	1.09	U	1.09	U	1.09	U	1.09	UJ	1.09 U	1.09	U
1,1-Dichloroethene		0.2	6	0.793	UJ	0.793	U	0.793 U	0.793	UJ	2.64	U	0.793	U	0.793	U	0.793 U			0.793 U	0.793 U	0.793	U	0.793 U	0.793	U	0.793	U	0.793	U	0.793	UJ	0.793 U	0.793	
1,2,4-Trichlorobenzene 1,2.4-Trimethylbenzene		2	60	1.48 0.983	UJ	1.48 0.983	U	1.48 U 0.983 U	1.48 0.983	UJ	4.95 3.28	U	1.48 0.983	U	1.48 0.983	U	1.48 U 0.983 U	1.48 0.983		1.48 U 0.983 U	1.48 U 0.983 U	1.48 1.2	U	1.48 U 1.12	1.48 1.16	U	1.48 0.993	U	1.48 1.09	U	1.48 0.983	UJ	1.48 U 0.983 U	1.48 0.983	U
1,2-Dibromoethane			00	1.54	UJ	1.54	U	1.54 U	1.54	UJ	5.13	U	1.54	U	1.54	U	1.54 U	1.54	_	1.54 U	1.54 U	1.54	U	1.54 U	1.54	U	1.54	U	1.54	U	1.54	UJ	1.54 U	1.54	
1,2-Dichlorobenzene				1.2	UJ	1.2	U	1.2 U	1.2	UJ	4.01	U	1.2	U	1.2	U	1.2 U	1.2	U	1.2 U	1.2 U	1.2	U	1.2 U	1.2	U	1.2	U	1.2	U	1.2	UJ	1.2 U	1.2	U
1,2-Dichloroethane				0.809	UJ	0.809	U	0.809 U 0.924 U	0.809	UJ	2.7 3.08	U	0.809	U	0.809	U	0.809 U 0.924 U	0.809		0.809 U	0.809 U	0.809 0.924	U	0.809 U 0.924 U	0.809	U	0.809 0.924	U	0.809 0.924	U	0.809 0.924	UJ	0.809 U 0.924 U	0.809 0.924	
1,2-Dichloropropane 1,3,5-Trimethylbenzene		2	60	0.924	UJ	0.924	U	0.924 U	0.924	UJ	3.28	U	0.924	U	0.924	U	0.924 U	0.924		0.924 U 0.983 U	0.924 U 0.983 U	0.924	U	0.924 U	0.924	U	0.924	U	0.924	U	0.924	UJ	0.924 U	0.924	_
1,3-Butadiene		_		0.442	UJ	0.442	Ü	0.442 U	0.442	UJ	1.48	U	0.442	U	0.442	U	0.442 U	0.442		0.442 U	0.442 U	0.442	U	0.442 U	0.442	U	0.442	U	0.442	U	0.442	UJ	0.442 U	0.442	
1,3-Dichlorobenzene				1.2	UJ	1.2	U	1.2 U	1.2	UJ	4.01	U	1.2	U	1.2	U	1.2 U	1.2	U	1.2 U	1.2 U	1.29		1.32	1.28	L	1.2	U	1.33		1.41	J	1.2 U	1.2	U
1,4-Dichlorobenzene 1,4-Dioxane				1.2 0.721	UJ	1.2 0.721	U	1.2 U 0.721 U	1.2 0.721	UJ	4.01 2.4	U	1.2 0.721	U	1.2 0.721	U	1.2 U 0.721 U	1.2 0.721	U	1.2 U 0.721 U	1.2 U 0.721 U	1.2 0.721	U	1.2 U 0.721 U	1.2 0.721	U	1.2 0.721	U	1.2 0.721	U	1.2 0.721	UJ	1.2 U 0.721 U	1.2 0.721	U
2,2,4-Trimethylpentane		2	60	0.721	UJ	0.721	Ü	0.721 U	0.721	J	3.12	U	0.721	U	0.721	U	0.721 U	0.721		0.721 U	0.934 U	3.69	U	3.24	3.92	0	3.7	U	3.24	-	4.61	J	3.58	0.721	
2-Butanone				1.47	UJ	1.47	U	1.47 U	1.47	UJ	4.93	U	1.47	U	1.47	U	1.47 U		U	1.47 U	1.47 U	2.62		2.72	2.79		2.24		2.76		3.21	J	2.33	1.47	U
2-Hexanone				0.82	UJ	0.82	U	0.82 U	0.82	UJ	2.73	U	0.82	U	0.82	U	0.82 U	0.82	U	0.82 U	0.82 U	0.82	U	0.82 U	0.82	U	0.82	U	0.82	U	0.82	UJ	0.82 U	0.82	U
3-Chloropropene 4-Ethyltoluene				0.626	UJ	0.626	U	0.626 U 0.983 U	0.626	UJ	2.09 3.28	U	0.626	U	0.626	U	0.626 U 0.983 U	0.626		0.626 U 0.983 U	0.626 U 0.983 U	0.626 0.983	U	0.626 U 0.983 U	0.626 0.983	U	0.626 0.983	U	0.626 0.983	U	0.626 0.983	UJ	0.626 U 0.983 U	0.626 0.983	
4-Methyl-2-pentanone				2.05	UJ	2.05	U	2.05 U	2.05	UJ	6.84	U	2.05	U	2.05	U	2.05 U	2.05		2.05 U	2.05 U	2.05	U	2.05 U	2.05	U	2.05	U	2.05	U	2.05	UJ	2.05 U	2.05	U
Acetone				16.4	J	5.37		5.32	5.08	J	17.5		13		4.47		5.13	138		7.41	59.1	54.9		59.9	61.8		46.3		61.5		126	J	48.7	3.66	
Benzene		2	60	2.09	J	0.639	U	1.77	0.639	UJ	25.3		2.66		0.639	U	0.639 U	0.639		0.725	0.639 U	1.27		1.4	1.32		1.29		1.28		1.92	J	1.36	0.639	
Benzyl chloride Bromodichloromethane				1.04	UJ	1.04	U	1.04 U 1.34 U	1.04	UJ	3.45 4.47	U	1.04	U	1.04	U	1.04 U	1.04		1.04 U 1.34 U	1.04 U 1.34 U	1.04	IJ	1.04 U 1.34 U	1.04 1.34	U	1.04 1.34	IJ	1.04 1.34	U	1.04 1.34	UJ	1.04 U 1.34 U	1.04 1.34	U
Bromoform				2.07	UJ	2.07	U	2.07 U	2.07	UJ	6.9	U	2.07	Ü	2.07	U	2.07 U		Ü	2.07 U	2.07 U	2.07	Ü	2.07 U	2.07	Ü	2.07	U	2.07	U	2.07	UJ	2.07 U	2.07	U
Bromomethane				0.777	UJ	0.777	U	0.777 U	0.777	UJ	2.59	U	0.777	U	0.777	U	0.777 U	••••		0.777 U	0.777 U	0.777	U	0.777 U	0.777	U	0.777	U	0.777	U	0.777	UJ	0.777 U	0.777	U
Carbon disulfide				5.57	J	0.623	U	0.959	0.623	UJ	30.5	- 11	38.3		0.623	U	0.872	0.623		0.925	0.623 U	0.623	U	0.623 U	0.623	U	0.623	U	0.623	U	0.757	J	0.623 U	0.623	
Chlorobenzene Chloroethane				0.921	UJ	0.921 0.528	U	0.921 U 0.528 U	0.921 0.528	UJ	3.07 1.76	U	0.921	U	0.921	U	0.921 U 0.528 U	0.921		0.921 U 0.528 U	0.921 U 0.528 U	0.921 0.528	U	0.921 U 0.528 U	0.921 0.528	U	0.921 0.528	U	0.921 0.528	U	0.921 0.528	UJ	0.921 U 0.528 U	0.921 0.528	U
Chloroform				0.977	UJ	0.977	Ü	0.977 U	0.977	UJ	17.8		6.49		0.977	Ü	10.6	0.977		8.79	0.977 U	0.977	Ü	0.977 U	0.977	U	0.977	U	0.977	U	0.977	UJ	0.977 U	0.977	
Chloromethane				0.413	UJ	1.07		0.413 U	1.07	J	5.06		0.413	U	1.09		0.413 U	1.13		0.413 U	1.1	1.27		1.36	1.44		1.33		1.53		1.08	J	1.55	1.02	
cis-1,3-Dichloropropene Cyclohexane		2	60	0.908 10.7	UJ	0.908	U	0.908 U	0.908	UJ	3.03 157	U	0.908 66.1	U	0.908	U	0.908 U 0.688 U	0.908		0.908 U 0.688 U	0.908 U 0.688 U	0.908 1.35	U	0.908 U 1.25	0.908 1.41	U	0.908 1.36	U	0.908 1.16	U	0.908 1.85	UJ	0.908 U 1.34	0.908 0.688	
Dibromochloromethane			00	1.7	UJ	1.7	U	1.7 U	1.7	UJ	5.68	U	1.7	U	1.7	U	1.7 U	1.7	U	1.7 U	1.7 U	1.7	U	1.7 U	1.7	U	1.7	U	1.7	U	1.7	UJ	1.7 U	1.7	U
Dichlorodifluoromethane				2.35	J	2.52		2.9	2.56	J	3.39		2.8		2.63		2.68	2.62		2.75	2.67	2.31		2.48	1.97		2.38		2.34		2.02	J	2.59	2.41	
Ethanol				9.42 2.75	UJ	9.42 1.8	U	11.4 3.3	9.42	UJ	31.5 6.02	U	9.42 1.8	U	9.42	U	14.5 6.16	9.42	U	17.1 6.49	9.42 U 1.8 U	644 1.8	- 11	529 1.8 U	641	- 11	522 1.8	11	594 1.8	11	486 1.8	J	539 1.8 U	9.42	U
Ethyl Acetate Ethylbenzene		2	60	0.869	UJ	0.869	U	0.869 U	0.869	UJ	2.9	U	0.869	U	1.8 0.869	U	0.899	0.869	U	1.3	0.869 U	0.999	U	0.973	1.14	U	0.912	U	0.912	U	1.03	J	1.8 U 0.986	0.869	
Freon-113				1.53	UJ	1.53	Ü	1.53 U	1.53	UJ	5.11	U	1.53	Ü	1.53	Ü	1.53 U	1.53		1.53 U	1.53 U	1.53	U	1.53 U	1.53	U	1.53	U	1.53	U	1.53	UJ	1.53 U	1.53	U
Freon-114				1.4	UJ	1.4	U	1.4 U	1.4	UJ	4.66	U	1.4	U	1.4	U	1.4 U	1.4		1.4 U	1.4 U	1.4	U	1.4 U	1.4	U	1.4	U	1.4	U	1.4	UJ	1.4 U	1.4	U
Heptane		6	200	8.36 2.13	J	0.82 2.13	U	5.82 9.89	0.82 2.13	UJ	240 7.11	- 11	5.29 2.13	- 11	0.82 2.13	U	0.82 U 2.13 U	0.82 2.13	_	0.869 2.13 U	0.82 U 2.13 U	1.35 2.13	- 11	1.3 U	1.44 2.13	- 11	1.28 2.13	11	1.26 2.13	11	2.08 2.13	J	1.38 2.13 U	0.82 2.13	U
Hexachlorobutadiene Isopropanol			<u> </u>	34.7	J	2.13 2.53		46	2.13	J	40.3	U	15.3	U	2.13 1.52	'	85.5	1.23		97.8	1.23 U	30.2	U	17.7	30.5	J	2.13 25.1	U	2.13 24.8	J	2.13 15	J	23.5	1.23	U
Methyl tert butyl ether				0.721		0.721		0.721 U	0.721		2.4		0.721		0.721		0.721 U	0.721	U	0.721 U	0.721 U	0.721		0.721 U	0.721		0.721		0.721		0.721		0.721 U	0.721	U
Methylene chloride	60	3	100	1.74		1.74		1.74 U			5.8	U		U			1.74 U				1.74 U		U	1.74 U		U	1.74	U		U	1.74	UJ	1.74 U		U
n-Hexane o-Xylene		<u>6</u> 2	200 60	20.3 0.869		0.705 0.869		15.4 0.869 U	0.708 0.869		835 2.9	U	20.9 0.869	U	0.705 0.869		2.79 0.886	0.705		3.29 1.27	0.705 U 0.869 U			3.11 1.32	3.7 1.49		3.44 1.22		2.88 1.26	+	5.92 1.28	J	3.22 1.35		U
p/m-Xylene		6	200	1.74	_	1.74		2	1.74		5.78	U	1.74	U	1.74		3.17	1.74	_		1.74 U			3.31	3.89		3		3.07		3.32	Ĵ	3.33		U
Styrene				0.852	UJ	0.852	U	0.852 U		UJ	2.84	U	0.852	U	0.852		0.852 U			0.852 U	0.852 U		U	0.852 U	0.852	U	0.852	U	0.852	U	0.852	UJ	0.852 U		U
Tertiary butyl Alcohol	20	2	100	1.52	UJ	1.52	U	1.52 U	1.52	UJ	5.06	U	1.52	U	1.52	U	1.52 U			1.52 U	1.52 U			5.52	6.28		6.31	- 11	1.20		4.82	J	5.43		U
Tetrachloroethene Tetrahydrofuran	30	3	100	1.36 1.47	UJ	1.36 1.47	U	1.36 U 1.47 U	7.46	UI	4.52 4.93	U	1.36 1.47	U	1.36 1.47		1.36 U 1.47 U		_	14 1.47 U	1.36 U 1.47 U	_		1.36 U 1.47 U	4.29 1.47	U	1.36 1.47	U	1.36 1.47	U	1.36 1.47	UJ []]	1.36 U 1.47 U		U
Toluene		10	300	3.12		1.32		3.46	4.26		8.22		1.22		1.41		4.86	1.63		8.89	1.64	6.14		5.99	7.35		5.69		5.62		9.04	J	6.59		U
trans-1,2-Dichloroethene				0.793	_	0.793		0.793 U	0.793	UJ	2.64	U	0.793	U	0.793		0.793 U	0.793	U	0.793 U	0.793 U	0.793	_	0.793 U	0.793	U	0.793	U	0.793	U	0.793	UJ	0.793 U	0.793	_
trans-1,3-Dichloropropene Trichlorofluoromethane				0.908	UJ	0.908	U	0.908 U		UJ	3.03	U	0.908	U	0.908	U	0.908 U			0.908 U	0.908 U	0.908	U	0.908 U		U	0.908	U		U	0.908	UJ	0.908 U		U
Vinyl bromide				1.12 0.874		1.23 0.874	U	1.12 U 0.874 U			3.75 2.92	U	1.12 0.874	U	1.24 0.874	U	1.16 U	1.23 0.874		1.15 0.874 U	1.19 0.874 U	1.12 0.874		1.25 0.874 U	1.14 0.874	U	1.12 0.874	U		U	1.12 0.874	UJ	1.18 0.874 U	1.24 0.874	U
Volatile Organics by TO-15 S	SIM			5.57	0,	3.077			3.07-4				5.57		3.07-4			0.074			J.J. 1 0	5.07-7		3.57.	3.37		3.374		0.077	-	0.07				
1,1-Dichloroethane				0.081	UJ	0.081		0.081 U		UJ	0.27	U	0.081		0.081		0.081 U				0.081 U	0.00	U	0.081 U	0.081	U	0.081	U		U	0.081	UJ	0.081 U	0.081	
Carbon tetrachloride cis-1,2-Dichloroethene		0.2	6	0.365 0.079	111	0.434 0.079		0.415 0.079 U	0.409 0.079		667 0.264	U	90.6 0.079		0.472		0.554 0.079 U	0.428		0.591 0.079 U	0.434 0.079 U	0.302 0.079		0.283 0.079 U	0.296 0.079	U	0.277 0.079	11	0.308 0.079	U	0.226 0.079	J	0.321 0.079 U	0.409 0.079	
Naphthalene		2	6 60	0.079	_	0.079		0.079	0.079		0.264	U	0.079		0.079		0.079 0	0.079			0.079 0	0.079		0.079 U	0.079	U	0.079	U		U	0.079	UJ	0.079 U 0.262 U		U
Trichloroethene	2	0.2	6	0.226		0.107		0.333	0.107		0.358	U	0.107		0.107		0.828	0.107		0.726	0.107 U	0.107		0.107 U	0.107	U	0.107	U		U	0.107	UJ	0.107 U		U
Vinyl chloride		0.2	6	0.051	UJ	0.051	U	0.051 U	0.051	UJ	0.171	U	0.051	U	0.051	U	0.051 U	0.051	U	0.051 U	0.051 U	0.23		0.268	0.263		0.228		0.268		0.184	J	0.263	0.051	U

Notes:

- All values are reporting in micrograms per cubic meter (ug/m3)
 Analytical results compared to NYSDOH Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006 and NYSDOH Soil Vapor / Indoor Air Decision Matrices, May 2017. Only those analytes with accompanying NYSDOH guidance values are shown.
 Paired sample locations are SSV-101 / IA-101, SSV-102 / IA-102, SSV-103 / IA-103, CS-104 / IA-104, and CS-105 / IA-105.
- Highlighted yellow cell indicates the analyte exceeds the respective NYSDOH AGV.
- For analytes that exceed a Decision Matrix value, highlighted green cell indicates "No Further Action" and highlighted red cell indicates "Mitigate."
- Blue qualifiers were applied based on a third party data usability review.
- "U" indicates the analyte not detected at the reported detection limit for the sample.
 "UJ" indicates the analyte was analyzed for, but was not detected. The associated reported quantitation limit is approximate and may be inaccurate or imprecise.
- "J" indicates estimated value.

LOCATION				SSV-	103	SSV-103	RETEST	PSG-	101	PSG-	102	PSG-	103	PSG-	104	PSG-1	105	PSG-1	106	PSG-1	07	PSG-	108	PSG-10	9	PSG-110	PSG	-111	PSC	i-112	PSC	G-113	PSG	i-114	PSG-	15	TRIP E	3LANK
SAMPLING DATE				12/4/	2024	1/14/	2025	2/20/2	2025	2/20/	2025	2/20/2	025	2/20/2	2025	2/20/2	2025	2/20/2	2025	2/20/2	025	2/20/2	025	2/20/20	25 2	2/20/2025	2/20,	/2025	2/20	/2025	2/20)/2025	2/20	/2025	2/20/2	.025	2/20	/2025
LAB SAMPLE ID				L24710	75-05	L2502	298-01	2113	13	2113	314	2113	15	2113	10	2113	12	2113	808	2113	09	2113	08	211304	1	211305	211	306	21	1307	21	1289	211	1290	2112	91	211	
SAMPLE TYPE				Sub-Sla	ab Soil	Sub-SI	ab Soil	Sub-Sla	b Soil	Sub-Sla	b Soil	Sub-Sla	b Soil	Sub-Sla	b Soil	Sub-Slal	b Soil	Sub-Sla	b Soil	Sub-Slal	Soil	Sub-Sla	b Soil	Sub-Slab	Soil Su	b-Slab Soil	Sub-SI	ab Soil	Sub-S	lab Soil	Sub-S	lab Soil	Sub-Sl	ab Soil	Sub-Sla	Soil د	Sub-Sla	ab Soil
JAMI LE III L				Vap	oor	Va	or	Vap	or	Vap	or	Vap	or	Vap	or	Vapo	or	Vapo	or	Vapo	or	Vap	or	Vapor		Vapor	Va	oor	Va	por	Vē	apor	Va	por	Vap	r	Var	por
Analyte	NYSDOH AGV		NYSDOH Matrix	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual F	esults O	ual Res	sults Qual	Results	Qual	Result	Qual	Results	s Qual	Results	s Qual	Results	Qual	Results	Qual
,		Indoor Air	Soil Vapor		_		_		_		_		-		_		_				_		-			-		_		-		-		- '	'		1	_
Volatile Organics by TO-15	SIM																																					
Carbon tetrachloride		0.2	6	667		90.6		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-				-	-	-	-	-	-	-	-	-	-	-	-
Volatile Organics by Modif	ied USEPA Method	8260													•																							
Carbon tetrachloride		0.2	6	-	-	-	-	75.8	U	75.8	U	197		2230		82.6		75.7	U	75.7	U	166		75.5	U 7:	5.6 U	75.6	U	618		75.5	TU	75.5	U	75.5	U	75.6	U

- Notes:

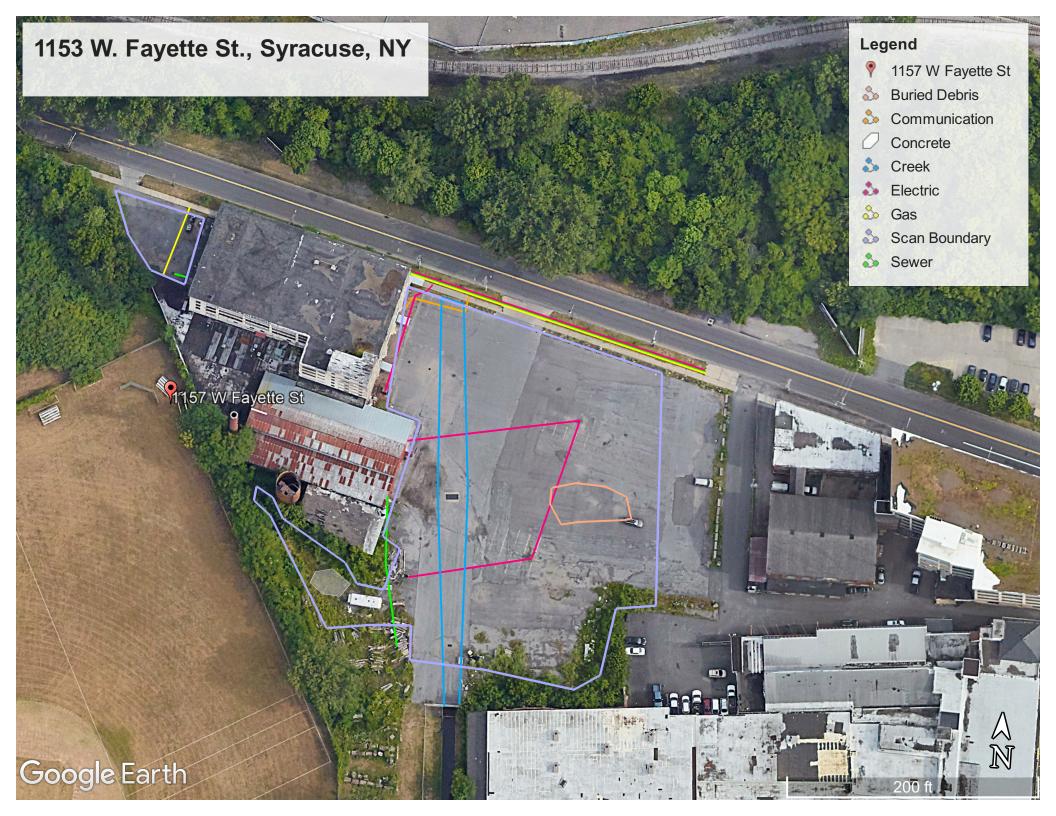

 All values are reporting in micrograms per cubic meter (ug/m3)

 Analytical results compared to NYSDOH Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006 and NYSDOH Soil Vapor / Indoor Air Decision Matrices, May 2017. Only those analytes with accompanying NYSDOH guidance values are shown.

 For analytes that exceed a Decision Matrix value, highlighted red cell indicates "Mitigate."

 Highlighted grey cell indicates the detection limit exceeded the respective NYSDOH guidance value.

 "U" indicates the analyte not detected at the reported detection limit for the sample.


Appendix A

Geophysical Survey Report

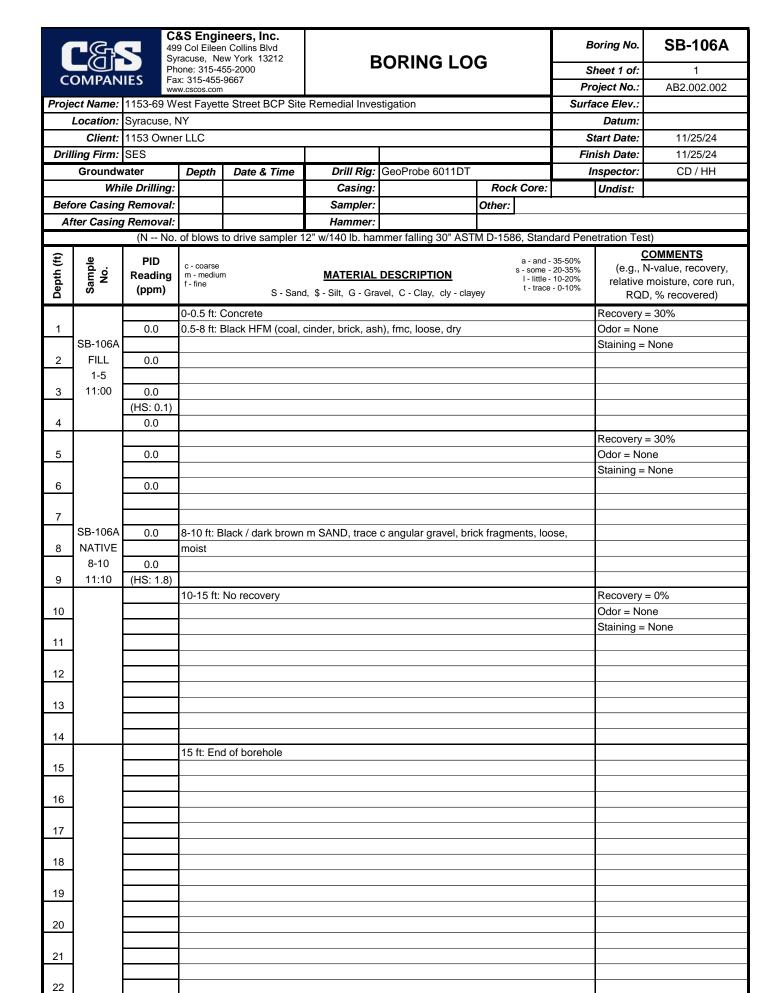
Technician: Jim Agar **Date:** 11/22/24 Site Address: 1153 West Fayette St, Syracuse, NY **Contact Person:** Claire Del Fatti Scope of Work: Scan described area for subsurface anomalies and clear areas of utilities for upcoming soil borings. Type of Service: ☐ Fault Detection **⊠Utility Location/GPR** ☐ Infrastructure Assessment ☐ Utility Mapping Type of Equipment Used: ☑ Mala Easy Locator HDR ☐ SPX RD 7000 Marking Used: **⊠** Paint □ Flags ☐ Chalk ☐ Updated Existing Maps □ Other Instructions from Onsite Contact: On-site personnel demonstrated the soil boring locations and the areas to be included in the gpr survey. **Notes:** The gpr scan consisted of pavement, interior concrete and areas of overgrown vegetation/debris. Areas of buried debris were observed in the central area of the parking lot. This area was east of the underground channeled creek and ran east to the fence line. A private electric line for light poles was located and marked in the field. Areas of partially buried concrete were observed south of the portion of the building with the silo. These features are shown on the accompanying map. Information Relayed on site: ⊠Verbal ☐ GPR Photos ☐ Digital Photos ☐ Hand drawn Map **Reporting Options:** ⊠Letter Report ☐ Comprehensive Report

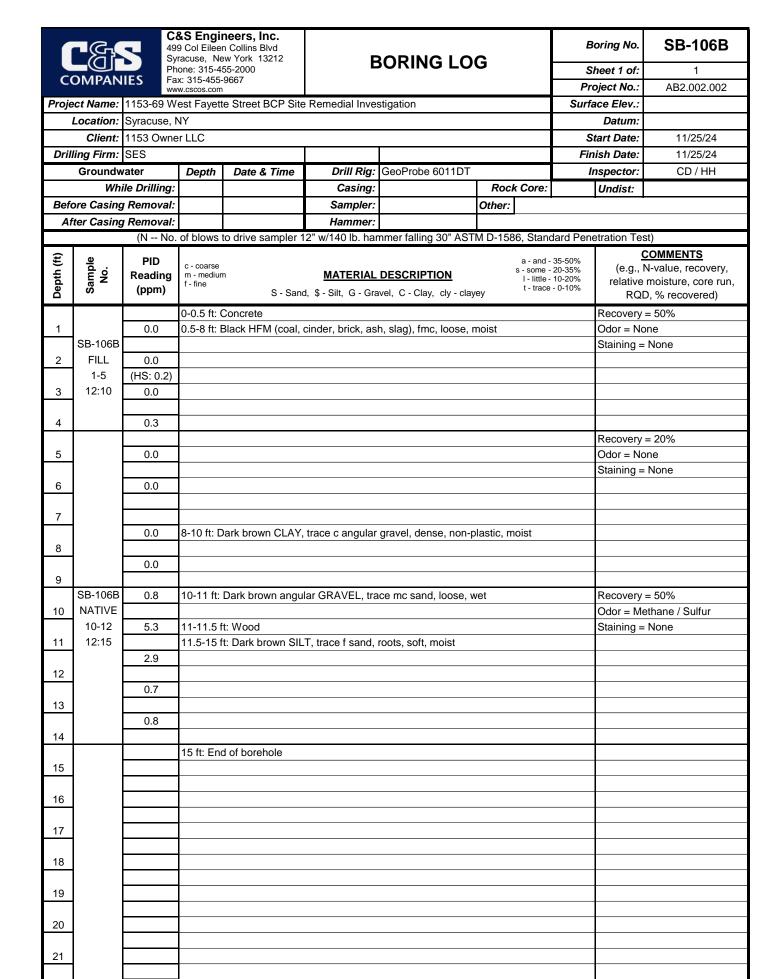
TREC will guarantee the accuracy of utility markings only when subsurface utility location methods are used which meet the ASCE's *Standard Guidelines for the Collection and Depiction of Existing Subsurface Utility Data CI/ASCE 38-02*, Quality Level A. This process exposes subsurface utility systems to confirm location, size and identity.

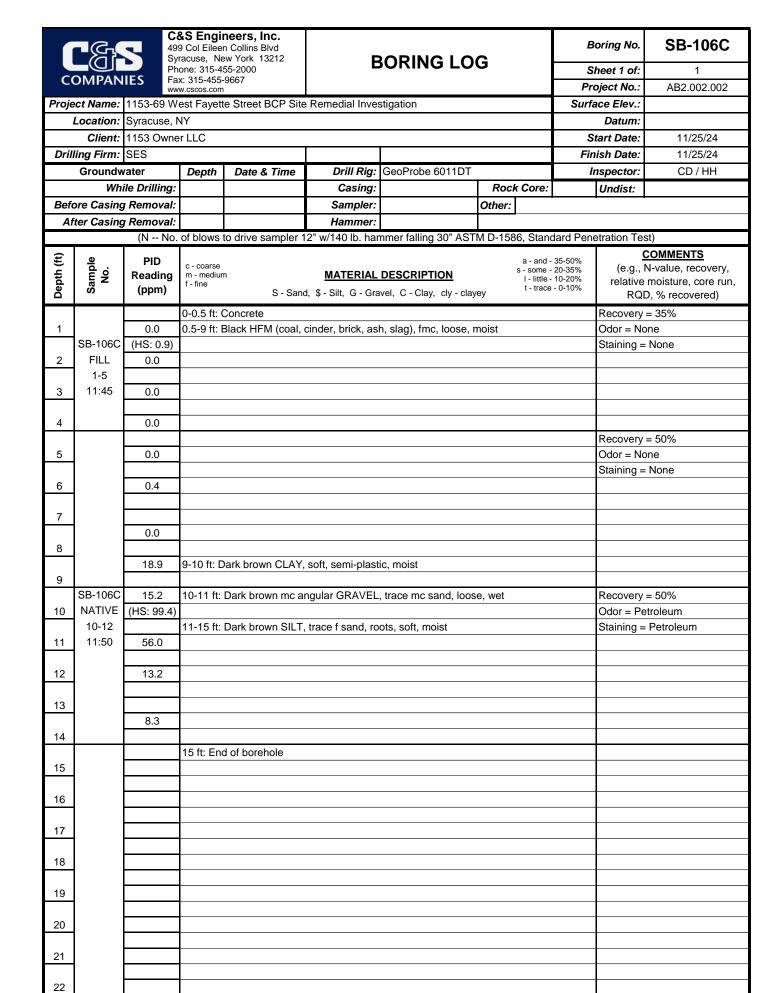
Appendix B

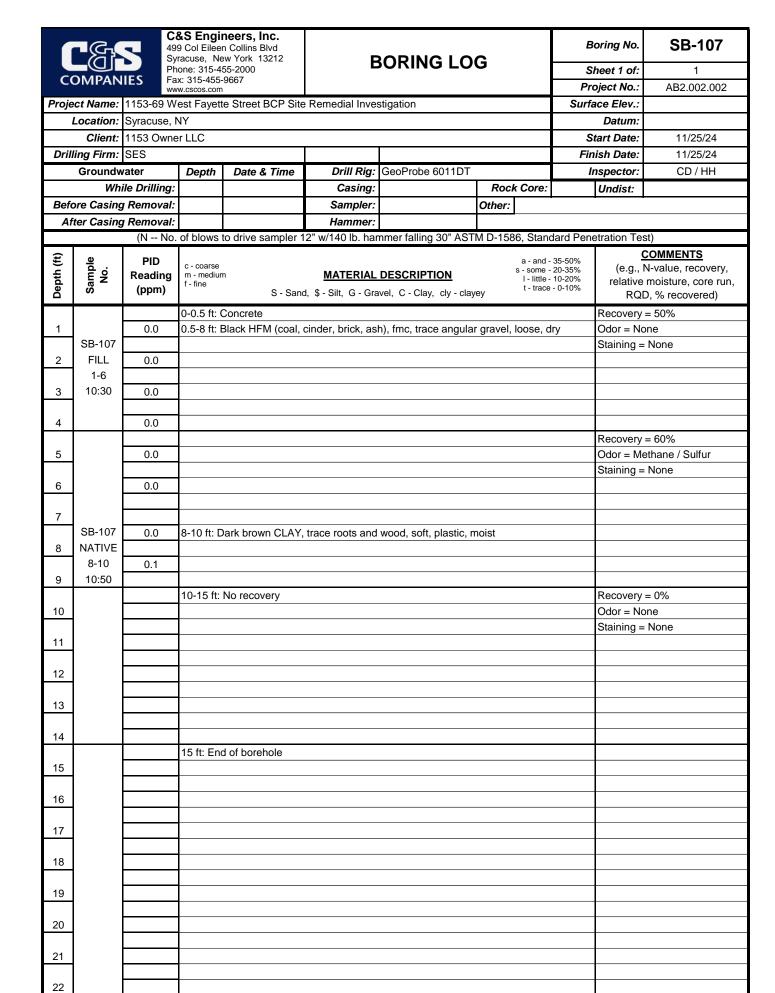
Soil Boring Logs

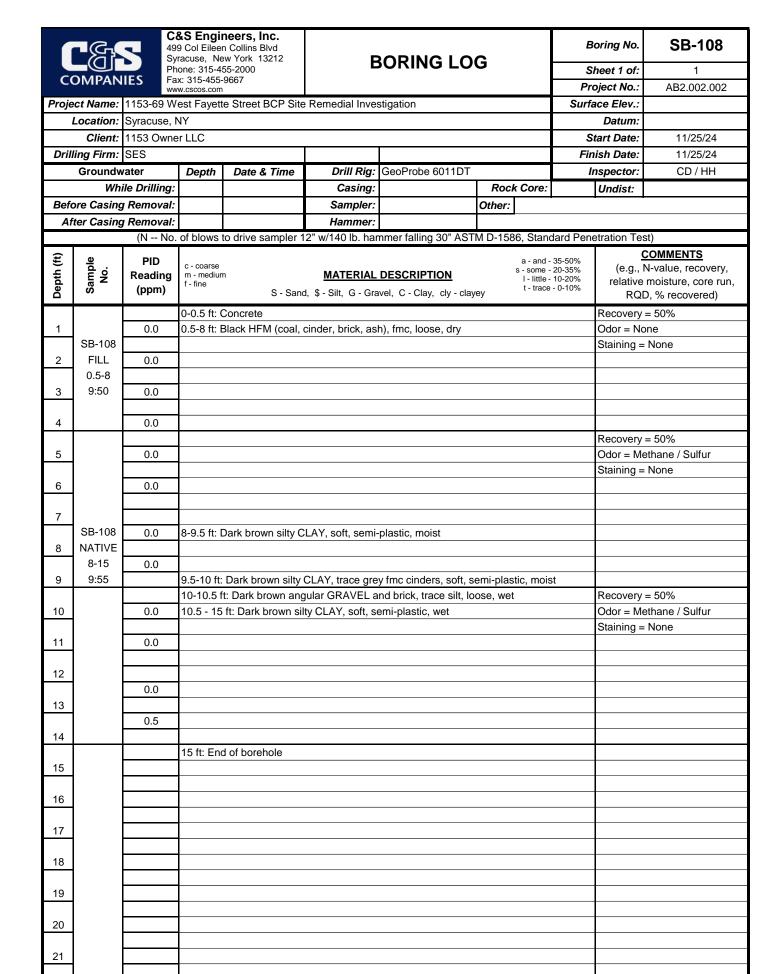
C	G.	49	9 Col Eilee	neers, Inc. n Collins Blvd ew York 13212		OPING LO	C	E	Boring No.	SB-101
COL	\bigcirc	Pi	none: 315-4	55-2000		SORING LO	G	5	Sheet 1 of:	1
CON	/PAN	IIES Fa	x: 315-455- w.cscos.com					Pi	oject No.:	AB2.002.002
oject N	lame:	1153-69 W	est Fayett	te Street BCP Site	e Remedial Inves	stigation		Surf	ace Elev.:	
Loca	ation:	Syracuse,	NY						Datum:	
С	Client:	1153 Owne	er LLC					9	Start Date:	11/26/24
rilling	Firm:	SES						Fi	nish Date:	11/26/24
Gr	roundv	vater	Depth	Date & Time	Drill Rig:	GeoProbe 6011DT			Inspector:	CD / HH
	Whi	le Drilling:			Casing:		Rock Col	e:	Undist:	
efore (Casing	Removal:			Sampler:		Other:	-		
After (Casing	Removal:			Hammer:					
		(N No	o. of blows	to drive sampler	12" w/140 lb. ha	mmer falling 30" AST	TM D-1586, S	tandard Pe		
Deptn (ft)	Sample No.	PID Reading (ppm)	c - coarse m - mediur f - fine			DESCRIPTION vel, C - Clay, cly - clay	s - soi I - li	nd - 35-50% ne - 20-35% tle - 10-20% ace - 0-10%	(e.g., N relative r	OMMENTS I-value, recovery moisture, core ru , % recovered)
				ack / grey topsoil	-				Recovery =	
1	ļ	0.0	1-4 ft: Br	own SILT, trace o	lay, fm sand, so	t, moist			Odor = Nor	
]		<u> </u>						Staining =	None
2		0.0	_						1	
	ļ	2.5	_							
3	}	0.0	4 40 # 5		aindar briel!	wood) fma lass	moiat			
4	}	0.0	4-10 II: B	PIACK TITIVI (COAI, C	Jinuer, Drick, ash	, wood), fmc, loose, i	IIIOIS(1	
	B-101	0.0							Recovery =	- 50%
	FILL	0.0	1						Odor = No	
	4-10	0.0	1						Staining =	
	14:25	0.0	1						3	
	ľ									
7										
		0.0								
8										
		0.0								
9			40.45.5	DI1 / CD ::=	1 100 = 1				 	000/
.	}	0.0	10-12 ft:	Black fm GRAVE	∟ and SILT, loos	e, saturated			Recovery =	
10	}	0.0	1						Odor = Nor Staining =	
11	}	0.0	1						Staining =	INUTIE
	B-101	0.0	12-20 ft·	Dark brown SII T	trace fm sand	race clay, little wood	soft wet			
	ATIVE		12-20 IL.	Daik DiOWII OIL I	, adde iiii sanu,	nace day, iitile wood	, 5011, WEI		1	
	2-15	0.0	1						1	
	14:35	•	1							
	ļ	4.7								
14										
									Recovery =	
15]	0.0	_						Odor = No	
.		2.5	_						Staining =	None
16	}	0.0	-						1	
17	}		-						1	
17	}	0.0	1						-	
18	ŀ	0.0	1						1	
· <u>·</u>	ŀ	0.0	1						1	
19	ŀ	0.0								
			20 ft: End	d of borehole						
20	ŀ		1							
	Ì									
21	ļ									
	ľ									
22										
	Ţ									


C	ري	499	9 Col Eilee	neers, Inc. n Collins Blvd ew York 13212					В	oring No.	SB-102
		Ph	one: 315-4	55-2000		SORING LO	G		S	heet 1 of:	1
COM	/IPAN		x: 315-455- w.cscos.com						Pro	oject No.:	AB2.002.002
Project N	lame:	1153-69 W	est Fayett	te Street BCP Site	Remedial Inves	stigation			Surfa	ace Elev.:	
Loca	ation:	Syracuse, N	NΥ							Datum:	
С	lient:	1153 Owne	r LLC						S	tart Date:	11/25/24
Drilling I	Firm:	SES							Fin	ish Date:	11/25/24
Gr	oundv	vater	Depth	Date & Time	Drill Rig:	GeoProbe 6011DT			li	nspector:	CD / HH
	Whi	le Drilling:			Casing:		Rock	Core:		Undist:	
Before C	Casing	Removal:			Sampler:		Other:				
After C	Casing	Removal:			Hammer:		<u> </u>				
		(N No	. of blows	to drive sampler	12" w/140 lb. ha	mmer falling 30" AS	TM D-158	36, Stan	dard Per	etration Te	est)
Depth (ft)	Sample No.	PID Reading (ppm)	c - coarse m - mediur f - fine	S - San	d, \$ - Silt, G - Gra	DESCRIPTION vel, C - Clay, cly - clay		a - and - s - some - I - little - t - trace	20-35% 10-20%	(e.g., relative RQI	COMMENTS N-value, recovery, moisture, core run, D, % recovered)
			0-3 ft: Gr	ey asphalt / subb	ase					Recovery	
1		0.0								Odor = No	
										Staining =	: None
2	B-102	0.0	2 0 ft- DI	ack HEM (coal, ci	ndor brick ach)	, fmc, loose, moist					
	FILL	0.0	3-0 II. Die	ack Hrivi (coai, ci	nder, brick, asri)	, ime, ioose, moisi					
	3-8	0.0									
	3:10	0.0									
										Recovery	= 50%
5		0.0								Odor = No	
										Staining =	: None
6		0.0									
7											
0	ŀ	0.0	8-10 ft: B	Black SILT and CL	-AY, roots, soft, p	olastic, moist					
8		0.0									
9		0.0									
	B-102		10-15 ft:	Dark brown SILT	and mc angular	GRAVEL, loose, sat	urated			Recovery	= 50%
	ATIVE	3.8				, , , , , , , , , , , , , , , , , , , ,					ethane / Sulfur
1	0-20									Staining =	
11 1	3:20										
										10-15 ft sl	eeve had very poor
12											pulled up another
										sleeve spa	anning from 10-20 ft
13											
4.4	ŀ										
14	ŀ		15-20 ft:	Dark brown CLA	V trace fleand s	oft, plastic, saturated	1				
15	ŀ	22.2	10-20 IL.	Daik DIOWII CLA	i, iiaut i sailu, S	ori, piasilo, saluralet	4				
	ŀ	(HS: 1.2)									
16	ļ	,/	1								
	ļ	6.2									
17	ľ										
				-							
18	Ţ	49.4									
]		ļ								
19			00 % =	1.66.							
20	}		20 ft: End	d of borehole							
20	}		1								
21	}		1								
<u> </u>	ŀ		 								
22	ŀ										
	ŀ										
	ŀ		1							ł — — — — —	


		4	99 Col Eilee	neers, Inc. n Collins Blvd ew York 13212		ORING LO	G		В	oring No.	SB-103
		P	hone: 315-4	55-2000		OKING LO	G		S	heet 1 of:	1
Ī	OMPAN	w	ax: 315-455- ww.cscos.com	1					Pro	oject No.:	AB2.002.002
				te Street BCP Site	Remedial Inve	stigation			Surfa	ace Elev.:	
L		Syracuse,								Datum:	
		1153 Own	er LLC							tart Date:	11/25/24
Drilli	ng Firm:		•							ish Date:	11/25/24
	Ground		Depth	Date & Time		GeoProbe 6011DT			I	nspector:	CD / HH
		ile Drilling			Casing:			Core:		Undist:	
		Removal			Sampler:		Other:				
Aft	er Casing	Removal		to drive campler	Hammer:	mmer falling 30" AS	TM D 150	6 Stan	dard Dar	otration To	act)
_		(14 14)	U. OI DIOWS	to drive sampler	12 W/140 ID. Ha	miller failing 50° AS	11VI D-130	o, Stari	uaiu Fei		COMMENTS
Depth (ft)	Sample No.	PID Reading (ppm)	c - coarse m - mediur f - fine			DESCRIPTION vel, C - Clay, cly - clay		a - and - s - some - l - little - t - trace	20-35% 10-20%	(e.g., relative	N-value, recovery, moisture, core run, D, % recovered)
			0-2 ft: Gr	ey asphalt / subb	ase					Recovery	
1	05 455	0.0	0			,				Odor = No	
_	SB-103	0.0	2-4 ft: Bla	ack HFM (coal, ci	nder, brick, ash)	, fmc, loose, moist				Staining =	None
2	FILL 2-6	0.0	1								
3	13:45	0.0									
Ů	1	0.0	4-5 ft: Br	own mc SAND, tr	ace gravel, trace	HFM, loose, moist					
4		0.0		•							
			5-8 ft: Da	ark brown HFM (c	oal, cinder, brick	, ash), fmc, loose, m	oist			Recovery	= 50%
5		0.0								Odor = No	-
										Staining =	None
6		0.0									
7											
	SB-103	0.0	8-9 ft: Da	ark brown SILT, tr	ace f sand. dens	se. moist					
8	NATIVE					,					
	8-14	1.4	9-10 ft: D	ark brown mc SA	ND, some angu	lar gravel, loose, wet	t				
9	13:35										
			10-13 ft:	Dark brown mc S	AND, some ang	ular gravel, loose, sa	aturated			Recovery	= 10%
10	1	0.0								Odor = No	
11										Staining =	None
- ' '	•										
12											
<u> </u>	1	0.0	13-15 ft:	Dark brown CLA	Y, trace f sand, s	oft, plastic, moist					
13											
					<u> </u>						
14			45 % =	1.66.							
15			15 ft: End	d of borehole							
15	1										
16											
	1		1								
17											
				·					·		
18			4								
40			1								
19	-		1								
20			1								
	1		1								
21			1								
	1										
22											


	3.5	499 Syr	OCOLEILE COLE	neers, Inc. n Collins Blvd ew York 13212	P	ORING LO	G			Boring No.	SB-104
СОМ	PANI		one: 315-4 x: 315-455-		_					heet 1 of:	1
		ww	w.cscos.com	l .						oject No.:	AB2.002.002
_				te Street BCP Site	Remedial Inves	stigation			Surf	ace Elev.:	
		Syracuse, N								Datum:	
		153 Owne	r LLC							tart Date:	11/26/24
Drilling F	irm: S	SES							Fir	nish Date:	11/26/24
Gro	undwa	ater	Depth	Date & Time	Drill Rig:	GeoProbe 6011DT			I.	nspector:	CD / HH
	While	Drilling:			Casing:		Rock	Core:		Undist:	
Before Ca	asing l	Removal:			Sampler:		Other:				
After Ca	asing l	Removal:			Hammer:						
		(N No.	. of blows	to drive sampler	12" w/140 lb. ha	mmer falling 30" AST	M D-158	6, Stan	dard Per	netration Te	st)
Depth (ft) Sample	No.	PID Reading (ppm)	c - coarse m - mediur f - fine			DESCRIPTION vel, C - Clay, cly - clay		a - and - - some - I - little - t - trace	20-35% 10-20%	(e.g., N relative	COMMENTS N-value, recovery, moisture, core run, D, % recovered)
	_			Grey asphalt / sub						Recovery	
1		0.0	0.5-4 ft: E	Black HFM (coal,	cinder, brick, asl	n, slag), fmc, loose, n	noist			Odor = No	
_	L	_								Staining =	None
2		0.0									
	L	0.0									
3		0.0	4545	own for CAND							
,	-	0.0	4-5 ft: Br	own fm SAND, loo	ose, moist						
4 SR	-104	0.0	E 0 4- DI	ack / brown LICE	(anal sinder be-	ok ook olog) fra li	.000 ===:	n+		Page :	- 200/
_	-104 LL	0.0	5-8 II: Bia	ack / brown HFIVI	(coai, cinder, bri	ck, ash, slag), fmc, lo	ose, moi	SI		Recovery :	
	10	0.0								Staining =	
	2:00	0.0								Stairing =	None
- 12		0.0									
7	H										
_	-	0.0	8-13 ft: B	Black / brown HFM	l (coal cinder b	rick, ash, slag), fmc, l	loose we	t			
8	H	0.0	0 10 11. 2	naon / brown in iv	r (oodi, oirider, b	nok, don, dag, mo, i	10000, 110				
	H	0.0									
9		0.0									
										Recovery	= 10%
10	F	0.0								Odor = No	
										Staining =	
11		0.0									
12											
		0.0	13-15 ft:	Dark brown SILT	and fm SAND, t	race clay, loose, wet					
13											
1		0.0									
14											
	-104		15-16 ft:	Grey CLAY, soft,	saturated					Recovery	
	TIVE	0.0								Odor = No	
	-20		16-20 ft:	Grey fm SAND, Id	ose, saturated					Staining =	None
16 12	::05	0.0									
_	L										
17	F	0.0									
40	F	0.0									
18	F	0.0									
10	F	0.0									
19			20 ft: E	d of borobolo							
20	-		ZUII. EN	d of borehole							
20	-										
21	-										
<u> </u>	-										
22	-										
	-										
	F									1	


	6		499 Col Eilee	neers, Inc. n Collins Blvd ew York 13212	-	ORING LO	G		В	oring No.	SB-105
			Phone: 315-4 Fax: 315-455-	55-2000		OKING LO	G		s	heet 1 of:	1
C	OMPAN		www.cscos.com						Pr	oject No.:	AB2.002.002
Projec	t Name:	1153-69	West Fayett	te Street BCP Site	Remedial Inves	stigation			Surf	ace Elev.:	
L	ocation:	Syracuse	, NY							Datum:	
	Client:	1153 Ow	ner LLC						S	tart Date:	11/25/24
Drillii	ng Firm:	SES							Fir	nish Date:	11/25/24
	Ground	water	Depth	Date & Time	Drill Rig:	GeoProbe 6011DT			1	nspector:	CD / HH
	Wh	ile Drilling			Casing:		Rock	Core:		Undist:	
Befor	re Casino	g Remova	ıl:		Sampler:		Other:				
		, Remova			Hammer:		1				
				to drive sampler		mmer falling 30" AST	M D-158	6, Stan	dard Per	netration Te	est)
Depth (ft)	Sample No.	PID Reading (ppm)	c - coarse m - mediur f - fine	n S - Sand	MATERIAL	DESCRIPTION vel, C - Clay, cly - clay	s	a - and - s - some - I - little - t - trace	35-50% 20-35% 10-20%	(e.g., l relative RQI	COMMENTS N-value, recovery, moisture, core run, D, % recovered)
			0-0.5 ft: (Recovery	
1	CD 405	0.0	0.5-4 ft: I	Black HFM (coal,	cınder, brick, asl	h, slag), fmc, loose, n	noist			Odor = No	
	SB-105	2.2								Staining =	none
2	FILL 0-5	0.0	7)							1	
•	0-5 12:25	(HS: 0.7)								
3	12.23	1.0	4 5 th Dr	own LICM (and a	inder briek ook	alaa) fma laasa m	oiot				
4		0.0	4-5 IL BI	own nrivi (coai, c	inder, brick, asn	, slag), fmc, loose, m	OISt				
4		0.0	E 0 #: Do	ork brown CLAV t	rooo foond troo	e mc angular gravel,	modium	donoo	moint	Recovery	_ F00/
5		0.0	3-6 II. Da	ark blown CLAT, t	iace i Sano, iiac	e nic angular gravel,	medium	uense,	moist	Odor = No	
3		0.0								Staining =	
6		0.0								Stairing –	NOTIC
		0.0									
7											
•		0.0	8-10 ft: E	Black HFM (coal),	fmc. loose, mois	st					
8				, , , , , , , , , , , , , , , , , , ,							
		0.0									
9											
	SB-105		10-11 ft:	Dark brown CLA	Y, soft, wet					Recovery	= 50%
10	NATIVE	0.0								Odor = Me	ethane / Sulfur
	10-15		11-15 ft:	Dark brown SILT	and CLAY, trace	e f sand, trace roots,	moist			Staining =	None
11	12:30	11.4									
		(HS: 0.3	3)								
12											
		19.0									
13											
		0.0									
14											
			15 ft: End	d of borehole						ļ	
15											
16											
17										1	
40			_								
18										-	
40										1	
19										-	
00										1	
20			_							1	
0.4			_							1	
21											
22			_								
22	I										

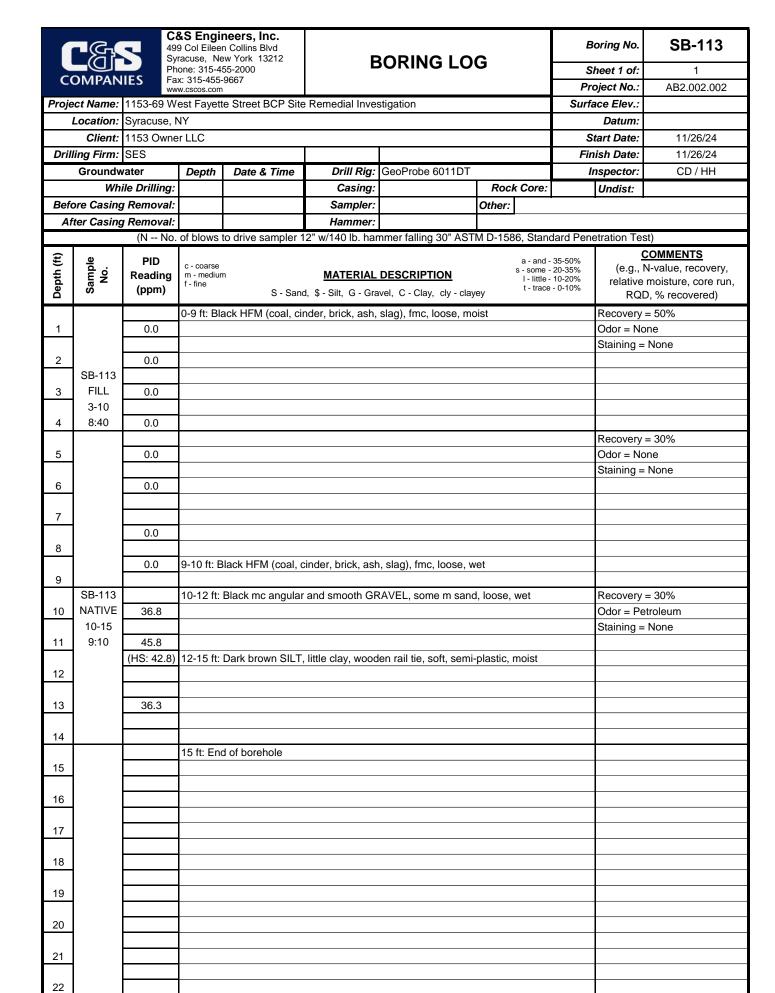

	- @[49 Sy	9 Col Eilee racuse, No	neers, Inc. en Collins Blvd ew York 13212	F	BORING LO	G		oring No.	SB-106
C	OMPAN		none: 315-4 ax: 315-455		_				heet 1 of:	1
		wv	ww.cscos.com		. D Pallian	- Cara Cara			oject No.:	AB2.002.002
_		Syracuse,		te Street BCP Site	e Remediai inve	sugation		Suria	ace Elev.: Datum:	
-		1153 Owne						9	tart Date:	11/25/24
Drilli	ng Firm:		51 LLO		1				ish Date:	11/25/24
	Ground		Depth	Date & Time	Drill Ria:	GeoProbe 6011DT			nspector:	CD / HH
		ile Drilling:			Casing:		Rock Core:		Undist:	
Befo		Removal:			Sampler:		Other:			
Aft	er Casing	g Removal:			Hammer:					
		(N No	o. of blows	to drive sampler	12" w/140 lb. ha	mmer falling 30" AST	M D-1586, Star	ndard Pen	etration Te	est)
Depth (ft)	Sample No.	PID Reading (ppm)	c - coarse m - mediui f - fine	S - San	·	DESCRIPTION vel, C - Clay, cly - claye	s - some - I - little -	35-50% 20-35% 10-20% - 0-10%	(e.g., relative RQI	COMMENTS N-value, recovery, moisture, core run, D, % recovered)
			-	Concrete					Recovery	
1	SB-106	0.0	0.5-5 ft:	Black HFM (coal,	cınder, brick, as	h, slag), fmc, loose, n	noist		Odor = No Staining =	
2	FILL	0.0							Staining =	: None
	1-6	0.0								
3	11:25	0.0								
	1									
4		0.0								
			5-6 ft: W	hite / yellow HFM	(ash and brick),	fmc, loose, moist			Recovery	
5		0.0	C O tt. DI	ant LICM (and a	ndor bride ook	alan) fron lance ma	int		Odor = No	
6		0.0	6-9 II: BI	ack HFIVI (coai, ci	nder, brick, asn,	slag), fmc, loose, mo	IST		Staining =	: None
	1	0.0								
7										
		0.0								
8	1									
9		0.0	9-15 ft: [Dark brown silty C	LAY, trace wood	l, soft, semi-plastic, m	oist			
9	SB-106								Recovery	= 25%
10	NATIVE								Odor = No	
	9-15								Staining =	: None
11	11:30	0.0								
40										
12	-	0.0								
13		0.0								
	1	0.0								
14										
4-			15 ft: En	d of borehole						
15	4									
16										
	1									
17										
18	-		-							
19										
13	†									
20										
]									
21	1									
22			 							
22	Ī	Ī	Ī						Ī	

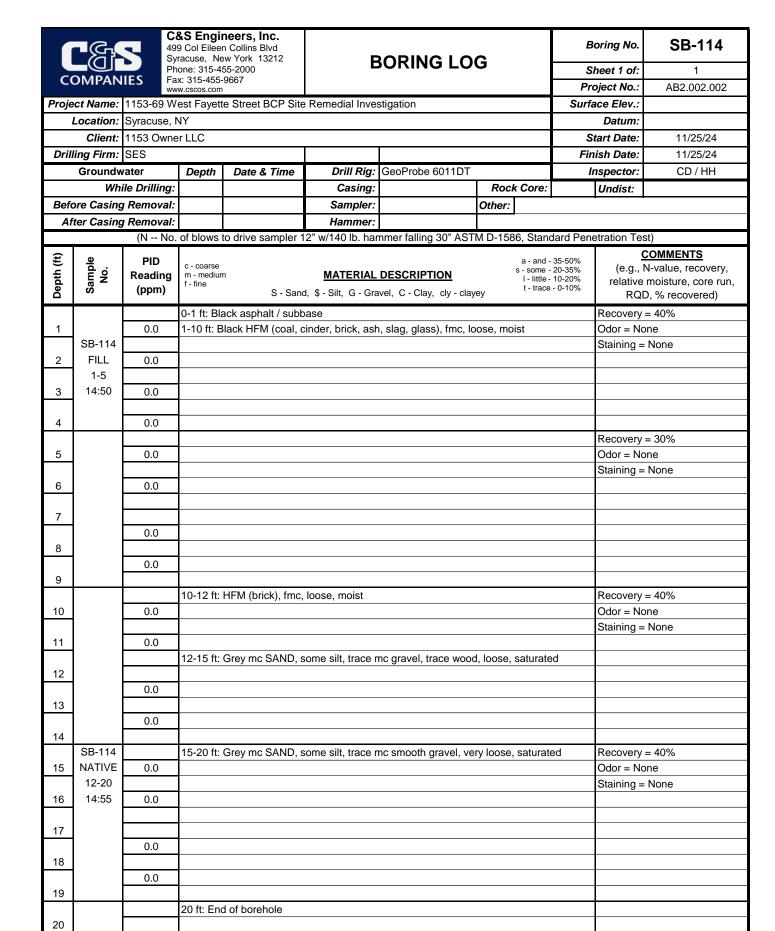
		49 Sy P	99 Col Eileer yracuse, Ne hone: 315-45		E	ORING LO	G		Boring No.	SB-10 9
	OMPAN	W	ax: 315-455- ww.cscos.com					Pr	oject No.:	AB2.002.00
_				e Street BCP Site	Remedial Inves	stigation		Surf	ace Elev.:	
	Location:	-							Datum:	
		1153 Own	er LLC		1				tart Date:	11/25/24
Drill	ing Firm:		1 1			0 0 1 00//07			nish Date:	11/25/24
	Groundw		Depth	Date & Time	Drill Rig:	GeoProbe 6011DT	D1 0		nspector:	CD/HH
Dofe	ore Casing	le Drilling:			Casing:		Rock Core: Other:		Undist:	
	ter Casing				Sampler: Hammer:		Other:			
AI	ter Casing			o drive sampler 1		nmer falling 30" ASTI	M D-1586, Stan	dard Pen	etration Tes	t)
	_		1	o divo dampior i	2 11/11/01/01/11/01	miler family 66 7.611				OMMENTS
E) u	ample No.	PID Reading	c - coarse m - medium		MATERIAL	DESCRIPTION	s - some	- 35-50% - 20-35%		I-value, recover
Deptn (rt)	Sample No.	(ppm)	f - fine				t troo	- 10-20% e - 0-10%		moisture, core r
ב	•	(PP)				vel, C - Clay, cly - clay	ey			, % recovered)
				ey asphalt / subb					Recovery =	
1	CD 400	0.0	1-5 ft: Bla	ack HFM (coal, ci	nder, brick, ash)	fmc, loose, moist			Odor = No	
,	SB-109 FILL	0.0	-						Staining =	ivone
2	1-5	0.0								
3	13:55	0.0	1							
_	10.00	0.0								
4		0.0	1							
		-	5-8 ft: Bla	ack HFM (coal, cir	nder, brick, ash)	fmc, loose, saturate	d		Recovery =	= 60%
5	ľ	0.0							+	thane / Sulfur
									Staining =	None
6		2.0	4							
_	SB-109		7-10 ft: D	ark brown SILT a	ind CLAY, trace	roots, soft, semi-plas	tic, moist			
7	NATIVE 7-10	0.5	-							
8	7-10 14:05	9.5								
J	17.00	0.0	+							
9	ŀ	0.0	1							
			10-12 ft: I	Brown fm SAND.	some mc angula	ar gravel, loose, wet			Recovery =	= 40%
10		0.0			<u></u>				Odor = No	
									Staining =	None
11		0.0								
			12-15 ft: l	Dark brown CLA	/, trace silt, dens	e, plastic, moist				
2		0.0								
13		0.0	+							
J		0.0								
4	ŀ	0.0	1							
			15 ft: End	d of borehole						
5			1							
	ľ									
16							·			·
17			4							
			-							
, U										
18										
	ŀ									
9	ļ									

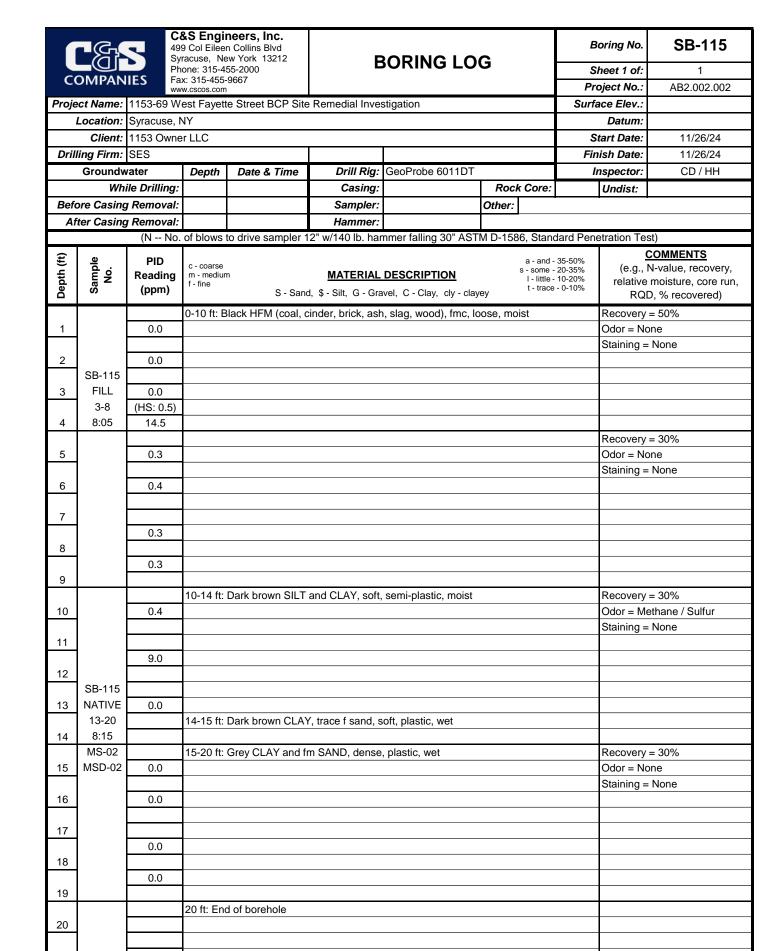
C	OMPAN	S 4 S P	99 Col Eileer		E	ORING LO	G		S	oring No. heet 1 of: oject No.:	SB-110 1 AB2.002.002	
Proie	ect Name:			e Street BCP Site	Remedial Inves	stigation				ace Elev.:	7.52.002.002	
	Location:		•	· · · · · · · · · · · · · · · · · · ·								
		1153 Own								Datum: 11/25/24		
Dril	ling Firm:		.0							ish Date:	11/25/24	
	Groundw		Depth	Depth Date & Time Drill Rig: GeoProbe 6011DT				nspector:	CD / HH			
		ile Drilling			Casing:		Rock	Core:		Undist:		
Bef	ore Casing				Sampler:		Other:			1		
	ter Casing				Hammer:							
				o drive sampler 1		nmer falling 30" AST	M D-158	6. Stand	dard Pen	etration Tes	st)	
Depth (ft)	Sample No.	PID Reading (ppm)	c - coarse	1	MATERIAL	DESCRIPTION Ivel, C - Clay, cly - clay		a - and - s - some - I - little -	35-50% 20-35%	(e.g., l relative	COMMENTS N-value, recovery, moisture, core run, D, % recovered)	
				ey asphalt / subba						Recovery		
1		0.0	1-7 ft: Bla	ack HFM (coal, cir	nder, brick, ash,	slag), fmc, loose, mo	oist			Odor = No		
_	SB-110									Staining =	None	
2	FILL	0.0										
3	1-7 14:10	0.0										
3	14.10	0.0										
4		0.0										
		0.0								Recovery	= 60%	
5		0.0								Odor = No		
										Staining =	None	
6		0.0										
7			7-10 ft: G	rey HFM (ash, co	al), fmc, loose,	saturated						
		0.0										
8												
9		0.0										
			10-14 ft:	Black HFM (coal,	cinder, brick, as	sh, slag), fmc, loose,	wet			Recovery	= 60%	
10		0.0								Odor = No	one	
										Staining =	None	
11		0.0										
12		0.0										
10		0.0								1		
13		2.0	1/1_15 f+·	Dark brown fm S/	\ND trace me e	and, trace roots, loos	o wot			-		
14		2.0	14-1011.	Dark blowli iiii SA	TIND, HALE HIGS	and, trace 100ts, 100s	oc, WEL			 		
	SB-110		15-16 ft ⁻	Dark brown SII T	some f sand ar	nd broken shells, loos	e, wet			Recovery	= 60%	
15	NATIVE	45.3		5 5			٥,٥١				ethane / Sulfur	
	15-20		16-18 ft:	Dark brown SILT,	trace clay, trace	e mc gravel, loose, sa	aturated			Staining =		
16	14:30	12.4			7 ,	<u> </u>						
	DUP-02	(HS: 0.3))									
17												
		17.5	18-20 ft:	Dark brown CLAY	, trace silt, dens	se, moist						
18												

20 ft: End of borehole

C	C. OMPAN	S IES F	499 Col Eileer Syracuse, Ne Phone: 315-45	AS Engineers, Inc. 1 Col Eileen Collins Blvd acuse, New York 13212 one: 315-455-2000 c: 315-455-9667 v.cscos.com BORING LOG						SB-111 : 1 : AB2.002.002
Proj€	ct Name:			e Street BCP Site	Remedial Inves	stigation		Surf	ace Elev.:	
	Location:	Syracuse	, NY						Datum:	
	Client:	1153 Owi	ner LLC						Start Date:	11/26/24
Dril	ling Firm:	SES						Fil	nish Date:	11/26/24
	Groundw		Depth	Date & Time	Drill Rig:	GeoProbe 6011DT			Inspector:	CD / HH
	Whi	le Drilling			Casing:		Rock Co	re:	Undist:	
Bef	ore Casing				Sampler:		Other:		1	
	ter Casing				Hammer:					
				o drive sampler 1		nmer falling 30" AST	M D-1586. S	Standard Per	etration Test)
Depth (ft)	Sample No.	PID Reading (ppm)	c - coarse m - medium f - fine		-	DESCRIPTION vel, C - Clay, cly - cla	s - s -	and - 35-50% ome - 20-35% little - 10-20% trace - 0-10%	(e.g., N relative n	OMMENTS -value, recovery noisture, core ru , % recovered)
			0-2 ft: Bla	ack HFM (coal, ci	nder, brick, ash)	, fmc, loose, moist			Recovery =	30%
1		0.0							Odor = Non	
	SB-111		2-3 ft: Bro	own SILT, little fm	n sand, dense, m	oist			Staining = N	None
2	FILL	0.0								
	2-8		3-8 ft: Bla	ck HFM (coal, ci	nder, brick, ash)	fmc, loose, moist				
3	12:30	0.0								
	DUP-03									
4		0.0							D	000/
_		0.0							Recovery = Odor = Non	
5		0.0							Staining = N	
6		0.0							Stairing – I	vone
		0.0								
7										
		0.0	8-9 ft: Bla	ack / brown CLAY	', little silt, soft, p	lastic, wet				
8						•				
		0.0	9-15 ft: B	lack / grey mc SA	ND and fm GRA	AVEL, loose, wet				
9										
	SB-111								Recovery =	20%
10	NATIVE	0.0							Odor = Non	
	9-15								Staining = N	None
11	12:35	0.0							 	
10									1	
12		0.0								
13		0.0							1	
13		0.0							1	
14		0.0							†	
· ·			15-17 ft: l	Black / grev mc S	AND and fm GR	AVEL, loose, satura	ated		Recovery =	100%
15		0.0				, , , , , , , , , , , , , , , , , , , ,	<u> </u>		Odor = Non	
									Staining = N	
16		0.0							<u> </u>	
			17-20 ft: I	Brown CLAY, trad	ce silt, trace woo	d, plastic, soft, wet				
17										
		0.0								
18										
18		0.0								

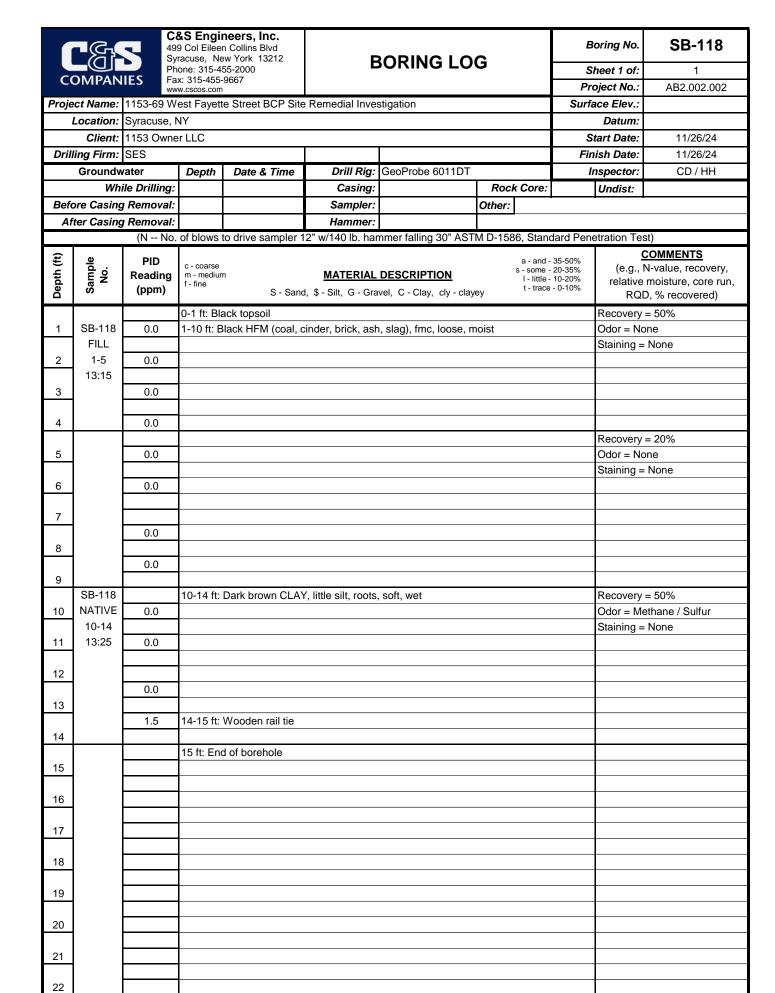

20 ft: End of borehole


C		5	499 Col Eilee	ew York 13212	E	BORING LO	G		oring No.	SB-112
COI	MPAN	IES	Fax: 315-455- www.cscos.com	-9667	oject No.:	AB2.002.002				
Project	t Name:	_		te Street BCP Site	Remedial Inve	stigation			ace Elev.:	
Lo	ocation:	Syracuse	e, NY						Datum:	
	Client:	1153 Ow	ner LLC					S	tart Date:	11/26/24
Drillin	g Firm:	SES						Fir	nish Date:	11/26/24
G	Groundw	ater	Depth	Date & Time	Drill Rig:	GeoProbe 6011DT		I	nspector:	CD/HH
		ile Drillin	-		Casing:		Rock Core:		Undist:	
	e Casing				Sampler:		Other:			
Afte	r Casing			to aluito a complete	Hammer:		M D 4500 Cto-	dand Dan	stastica To	- 1
_		(N N	No. of blows	to drive sampler 1	12" w/140 lb. har	mmer falling 30" AST	M D-1586, Stan	dard Pen		
Depth (ft)	Sample No.	PID Readin (ppm)	f fine		•	DESCRIPTION ovel, C - Clay, cly - clay	s - some I - little	- 35-50% - 20-35% - 10-20% e - 0-10%	(e.g., relative	COMMENTS N-value, recovery, moisture, core run, D, % recovered)
				ack topsoil, f SAN					Recovery	
1		0.0	1-10 ft: B	Black HFM (coal, o	cinder, brick, ash	n, slag), fmc, loose, r	noist		Odor = No	
	SB-112								Staining =	None
3	FILL 2-10 9:30	0.0								
	MS-03	0.0								
	MSD-03	0.0								
									Recovery	= 50%
5		0.0							Odor = No	
									Staining =	: None
6		0.0								
7										
		0.0								
8		0.0								
		0.0								
9										
			10-13 ft:	Black mc angular	and smooth GF	RAVEL, some m san	d, loose, wet		Recovery	
10		0.0							Odor = Pe	
	SB-112	(HS:4.5	5)						Staining =	: Petroleum
	NATIVE 11-14	0.0								
12	9:55									
	0.00	58.7	13-15 ft:	Dark brown SILT,	, little clay, soft,	semi-plastic, wooder	n rail tie, wet			
13		(HS: 9.			· · · · · · · · · · · · · · · · · · ·		·			
		46.2								
14										
			15 ft: End	d of borehole						
15										
16										
17										
18										
\dashv										
19										
20			_							
21										
									1	


			C&S Engi	neers, Inc.							00 4404	
			499 Col Eileer Syracuse, Ne	n Collins Blvd ew York 13212	F	ORING LO	G			oring No.	SB-112A	
C	OMPAN	IES	Phone: 315-45 Fax: 315-455-		_		•			heet 1 of:	1	
			www.cscos.com	ı						oject No.:	AB2.002.002	
				te Street BCP Site	Remedial Inves	stigation			Surf	ace Elev.:		
	Location:	1153 Ow								Datum:	44/00/04	
Dril	ling Firm:		vner LLC							tart Date:	11/26/24 11/26/24	
וווט	Groundw		Depth	Date & Time	Drill Bio:	CooProbo 6011DT				nspector:	CD / HH	
		ile Drillin		Date & Time	Drill Rig: GeoProbe 6011DT II Casing: Rock Core:			Undist:	CD/TIIT			
Bef			_		Sampler:		Rock Core:			Ondist.		
Before Casing Removal After Casing Removal					Hammer:		-	<u> </u>				
				to drive sampler 1		nmer falling 30" AST	M D-158	36, Stan	dard Pen	etration Te	st)	
ft)	Φ	PID				-			35-50%	1	COMMENTS	
th (f	Sample No.	Readin	c - coarse m - mediun	m	MATERIAL	DESCRIPTION		s - some -	20-35%		N-value, recovery,	
Depth (ft)	Sar	(ppm)	f fine	S - Sano	·	vel, C - Clay, cly - clay	ev		10-20% - 0-10%		moisture, core run, D, % recovered)	
_			0 1 ft: Di				-,					
1		0.0		ack topsoil, f SAN		, slag, cement, rock)	. fmc. lo	ose. mo	ist	Recovery Odor = No		
		0.0	1 1016.12	naok i ii ivi (ooai, c	macr, briok, asi	i, siag, coment, rook)	, 11110, 10	000, 1110	101	Staining =		
2		0.0								J		
3		1.8										
1 .			4 ft: Piec	es of possible cer	ment floor							
4		1.0								D	500/	
5		1.2								Recovery = 50% Odor = None		
	SB-112A	(HS: 1.4	4)							Staining =		
6	FILL	2.2	,							J		
	6-8											
7	10:10											
		0.5										
8	1	0.2										
9		0.2										
	SB-112A		10-13 ft:	Black mc angular	and smooth GF	RAVEL, some m sand	l, loose,	wet		Recovery	= 50%	
10	NATIVE	0.2		_						Odor = Pe		
	10-13									Staining =	: Petroleum	
11	10:15	45.0										
40		(HS: 22	.2)									
12	1	8.5	13-15 ft	Dark brown SILT	little clay soft	semi-plastic, wooden	rail tie	wet				
13		0.0	10 10 11.	Zan Siowii Oili	, Juy, Juit, i	John Pladerd, Wooderr				1		
	1	21.0										
14												
			15 ft: End	d of borehole								
15	4											
16												
16	1									1		
17										1		
	1											
18												
							·		<u> </u>			
19	1									1		
00										-		
20	-											
	Ī											

ſ				n Collins Blvd w York 13212		ORING LO	G			oring No.	SB-112B
CC	OMPAN	IFS	Phone: 315-45 Fax: 315-455-				G			heet 1 of:	1
			www.cscos.com		D P. I I					oject No.:	AB2.002.002
	ct Name: -ocation:			e Street BCP Site	Remediai inves	stigation			Surta	ace Elev.: Datum:	
		_	vner LLC						9	tart Date:	11/26/24
Drilli	ing Firm:		WICI LLO							ish Date:	11/26/24
	Groundw		Depth	Date & Time	Drill Rig:	GeoProbe 6011DT			1	nspector:	CD / HH
	Whi	ile Drillin	ıg:		Casing:		Roci	k Core:		Undist:	
	re Casing				Sampler:		Other:		-		
Aft	ter Casing			- Inc	Hammer:		M D 450	0.01	de al De c	. t C T .	- ()
_		(N I	NO. Of DIOWS 1	to drive sampler 1	2" W/140 lb. nar	nmer falling 30" AST	M D-158	6, Stan	aard Pen	1	COMMENTS
Depth (ft)	Sample No.	PID	c - coarse		MATERIAL	DECODIDETION		a - and - s - some -	35-50% 20-35%		N-value, recovery,
eptl	Samp No.	Readin (ppm)	f - fine			DESCRIPTION vel, C - Clay, cly - clay			10-20% - 0-10%		moisture, core run
	••	(PP)					еу				D, % recovered)
1		0.0		ack topsoil, f SAN		ose, moist slag), fmc, loose, mo	nist			Recovery Odor = No	
\dashv		0.0	1-5 II. Did	aon i ii ivi (obai, til	idoi, bilon, doll,	5.4g/, 1110, 10036, 1110	,,,,,,			Staining =	
2		0.3									
3		0.7	2)								
4		(HS:0.3	3)								
		· · ·								Recovery	= 50%
5		0.0								Odor = No	one
										Staining =	None
6	SB-112B	4.1									
7	FILL										
	7-9	0.0									
8	10:35										
_		0.0	9-11 ft: B	lack / brown SILT	, some fm sand	trace HFM, loose, n	noist			-	
9	SB-112B									Recovery	= 90%
	NATIVE	0.6									ight Petroleum
	11-13		11-13 ft:	Black mc angular	and smooth GR	AVEL, some m sand	l, loose,	saturate	ed	Staining =	: None
11	10:40	0.4									
12											
-12		8.4	13-15 ft:	Dark brown SILT,	little clay, soft, s	semi-plastic, wooden	rail tie,	wet			
13		(HS: 4.	0)			•					
		60.1									
14			4 <i>E</i> # End	d of borobolo							
15			15 IL. EIIC	d of borehole							
16											
17											
18											
19											
20											

		4	199 Col Eileer	neers, Inc. n Collins Blvd			_		В	oring No.	SB-112C
		F	Phone: 315-4		B	SORING LO	G		S	heet 1 of:	1
C	OMPAN	IES F	Fax: 315-455- www.cscos.com						Pro	oject No.:	AB2.002.002
Proje	ect Name:	1153-69 V	Nest Fayett	e Street BCP Site	e Remedial Inves	stigation			Surfa	ace Elev.:	
		Syracuse,			Datum:						
		1153 Owr	ner LLC		tart Date:	11/26/24					
Dril	ling Firm:		1.5	Data & Time	Della Condition of the Condition					ish Date:	11/26/24
	Groundw	ater ile Drilling	Depth	Date & Time	Drill Rig: Casing:	GeoProbe 6011DT Rock Core:			II.	nspector: Undist:	CD / HH
Bef	ore Casing				Sampler:		Other:	00/6.		Onaist.	
	fter Casing				Hammer:		-				
				to drive sampler 1	2" w/140 lb. har	nmer falling 30" AST	M D-158	6, Stand	dard Pen	etration Tes	st)
£	<u>e</u>	PID						a - and -	35-50%		COMMENTS
Depth (ft)	Sample No.	Reading	c - coarse m - mediun	n	MATERIAL	DESCRIPTION		s - some -	20-35%	, σ,	N-value, recovery, moisture, core run,
Dep	Sa	(ppm)	f - fine	S - Sand	d, \$ - Silt, G - Gra	vel, C - Clay, cly - clay	ey		- 0-10%		D, % recovered)
			0-1 ft: Bla	ack topsoil, f SAN	D, trace HFM, Ic	ose, moist				Recovery	= 50%
1]	0.0		•		slag), fmc, loose, mo	oist			Odor = No	ne
										Staining =	None
2		0.0									
3		0.0									
	1	0.0									
4		0.0									
										Recovery	
5		0.0								Odor = No	
6		0.0								Staining =	None
	SB-112C	0.0									
7	FILL										
	7-9	0.2									
8	11:05	(HS: 5.9)	_								
9		1.3	9-10 ft: B	llack / brown SILT	, some fm sand	, trace HFM, loose, n	noist				
9			10-11 ft:	Black / grey CLA	Y. trace silt. soft.	plastic, wet				Recovery	= 50%
10		0.2			,	p,				Odor = Pe	
	SB-112C		11-15 ft:	Black mc angular	and smooth GR	AVEL, some m sand	l, loose,	saturate	d	Staining =	Petroleum
11	NATIVE	4.1									
12	11-15 11:00	55.8									
12	11.00	(HS: 13.9	9)								
13		, , , , , ,	,								
]	38.5									
14				oden rail tie							
15			15 ft: End	d of borehole							
15	1										
16											
	1										
17]										
40			_								
18											
19											
	1		1								
20]										
	1		1	-	· · · · · · · · · · · · · · · · · · ·					I	



		~	C&S Engir 499 Col Eileer	n Collins Blvd				В	oring No.	SB-116
			Phone: 315-45		E	BORING LO	G	s	heet 1 of:	1
C	OMPAN	IES	Fax: 315-455- www.cscos.com	9667				Pr	oject No.:	AB2.002.002
				e Street BCP Site	Remedial Inve	stigation		Surfa	ace Elev.:	
	Location:								Datum:	
D::1		1153 Ow	ner LLC			T			tart Date:	11/26/24
Driii	<i>ing Firm:</i> Groundw		Depth	Data & Timo	Drill Pia:	GeoProbe 6011DT			nish Date: nspector:	11/26/24 CD / HH
		ile Drilling						Undist:	CD/TIIT	
Bef	ore Casing				Sampler:		Other:	<u>!</u>		
Αf	ter Casing	g Remova	al:		Hammer:					
		(N N	lo. of blows t	o drive sampler 1	2" w/140 lb. har	nmer falling 30" AST	M D-1586, Stan	dard Pen	etration Te	st)
(£)	ele .	PID	c - coarse					35-50%	_	COMMENTS
Depth (ft)	Sample No.	Reading	g m - mediun	ı	MATERIAL	DESCRIPTION		10-20%		N-value, recovery, moisture, core run,
De	Š	(ppm)	0	S - Sand	d, \$ - Silt, G - Gra	ivel, C - Clay, cly - clay	ey t - trace	- 0-10%		O, % recovered)
			0-1 ft: Bla	ack mc angular G	RAVEL, some fr	m sand, loose, moist			Recovery	= 40%
1		0.0	1-4 ft: Bri	ck / concrete deb	ris				Odor = No	
2		0.0							Staining =	None
		0.0								
3		0.0								
	SB-116		4-5 ft: Bla	ack HFM (coal, ci	nder, brick, ash,	slag), fmc, loose, mo	oist			
4	FILL	0.0								
_	4-7	0.0	5-7 ft: Bro	Recovery						
5	11:25	0.0							Odor = No Staining =	
6		0.0							Otalling =	None
	SB-116		7-10 ft: B	lack / brown SILT	, trace clay, son	ne roots, dense, sem	i-plastic, moist			
7	NATIVE									
•	7-10	0.0								
8	11:30	0.0								
9		0.0								
			10-11 ft:	Dark brown SILT,	little clay, trace	f sand, soft, wet			Recovery	= 80%
10		2.0							Odor = No	
			11-14 ft:	Grey CLAY, soft,	plastic, wet				Staining =	None
11		5.0								
12										
		5.7								
13										
		6.8	14-15 ft:	Dark brown SILT	and fm SAND, t	race clay, wood, wet			1	
14			15 ft: End	d of borehole					-	
15			15 IL ENC	a or poretiole						
16										
17									1	
18										
19										
20										

		C&S Engineers, Inc.		DOLINE	\\\\ \ TE	Ъ	<u> </u>					
	7	499 Col Eileen Collins Blvd	_	ROUND			,	Well No.	MW-101			
		Syracuse, NY 13212 Phone: 315-455-2000	OBS	ERVAT	ION W	ELL	P	roject No.:	AB2.002.002			
COMPAN	IIES	Fax: 315-455-9667 www.cscos.com	CON	ISTRUC	TION I	LOG		face Elev.:	<u> </u>			
Project Name:	1153-6	69 West Fayette Street BCP Si					1	Datum:				
Location:							,	Start Date:	12/5/24			
		Owner LLC					Fi	inish Date:	12/6/24			
Drilling Firm:	SES			<u> </u>				Inspector:	CD			
_		0'-0" Top Protective Ca	sing	Drill Rig:	GeoProbe 6			Casing:	Auger			
l I,		Top of Riser	I	Notes: (provide description of observation well location, method of construction, development method and any other information)								
i			I						r information)			
i		Ol Oll Organis Cuntons	I			-	south side o		well at 14 feet bgs			
	1	0'-0" Ground Surface	I				will still str					
		Surface Backfill Materi	ial	- Manhole i	nstalled on	12/6/24.						
1		Soil Cuttings	<u>a.</u>									
$\overline{\mathbb{X}}$		Bentonite Slurry	I									
		Cement/Bentonite	Grout									
[×]		X Concrete	I									
] —	I									
		4.25" Bore Hole Diamet	.er	_	_		_	_	_			
		2" Well Diameter										
l 🔀		Well Material										
		X PVC										
l [X]		Stainless Steel										
		1 —							1			
		Backfill Material	I	G	roundwat		ement Data		I			
l X		Soil Cuttings	I	l	l <u>.</u>	Depth to		Tide	I			
l Ö		X Bentonite Slurry Cement/Bentonite	0	Date	Time	Water	Elevation		I			
l 🌼		Concrete	Glout	12/6/2024	10:25	10.00	TBD	NA				
l 🦃		Concrete	I	<u> </u>		 	+		I			
l 🚫		Depth To:	I			 						
[×]		1' Top of Seal	I						I			
		Seal Material	1						I			
		X Bentonite Chips/Pe	ellets						I			
		Bentonite Slurry	I			<u> </u>			I			
		Cement/Bentonite	Grout			<u> </u>						
		2' Top of Filter P	in als			<u> </u>						
		2' Top of Filter P	аск			 						
		4' Top of Screen	ı									
			I									
		Screen Slot Size	I			<u> </u>						
		X 010 in	1	<u> </u>		 			I			
		015 in 020 in	I	ļ		<u> </u>						
		020 in	I				<u> </u>					
		020 III										
		Filter Material										
		00 Sand Pack										
		0 Sand Pack										
		X 1 Sand Pack										
		2 Sand Pack										
		3 Sand Pack										
		4 Sand Pack										
		14' Bottom of Scre										
		14' Bottom of Bor	e Hole									

	C&S Engineers, Inc.	GI	ROUND	WATE	R		Well No.	MW-102
	499 Col Eileen Collins Blvd Syracuse, NY 13212	OBS	ERVAT	ION W	ELL			
COMPANIES	Phone: 315-455-2000 Fax: 315-455-9667		STRUC				roject No.:	AB2.002.002
	www.cscos.com -69 West Fayette Street BCP Si				LUG	Sur	face Elev.:	
	cuse, NY	(e Kemeulai i	nvestigation			<u> </u> 	Datum: Start Date:	12/2/24
	Owner LLC						inish Date:	12/4/24
Drilling Firm: SES	<u> </u>		T	T			Inspector:	CD
	0'-0" Top Protective Ca	sing	Drill Rig:	GeoProbe (6011DT		Casing:	Auger
	Top of Riser	-	Notes:		escription of on the scription of one of the scription of			, method of er information)
		Grout Grout ellets Grout ack	Notes: - Soil cuttin - Manhole ii	(provide de construction igs put on p nstalled on	escription of onescription of onescription of onescription on the secretary on the secretary on the secretary on the secretary on the secretary on the secretary on the secretary on the secretary on the secretary on the secretary on the secretary on the secretary on the secretary on the secretary of the secretar	ent method a	well location and any other site. If the Site.	, method of

		C&S Engineers, Inc.	GI	ROUND	WATE	R		Well No.	MW-103
	7	499 Col Eileen Collins Blvd Syracuse, NY 13212	OBS	ERVAT	ION W	/ELL			
COMPANI	ES	Phone: 315-455-2000 Fax: 315-455-9667		STRUC				Project No.:	AB2.002.002
		www.cscos.com 9 West Fayette Street BCP Si				LUG	Sur	face Elev.:	
		se, NY	TE Kemeulai i	nvestigation				Datum: Start Date:	12/4/24
	•	Owner LLC						inish Date:	12/4/24
Drilling Firm: S				T	Ī			Inspector:	CD
		0'-0" Top Protective Ca	asing	Drill Rig:	GeoProbe (6011DT		Casing:	Auger
	$\overline{+}$	Top of Riser	-	Notes:			observation vent method a		, method of er information)
		Surface Backfill Materi Soil Cuttings Bentonite Slurry Cement/Bentonite X Concrete 4.25" Bore Hole Diamete Well Material X PVC Stainless Steel	Grout	- Manhole ii	nstalled on	12/6/24.	south side o		dings greater than 10
		5 (0)							
		Backfill Material		G	roundwat		ement Dat		
	Ŏ	Soil Cuttings X Bentonite Slurry		Data	Time	Depth to Water	Water Elevation	Tide Status	
	Ŷ	Cement/Bentonite	Grout	Date 12/6/2024	8:30	11.19	TBD	NA	
l 🕍		Concrete	Orout	I EI VI EVE	0.00	11.10	100	140	
			ļ		<u> </u>	†			
l 🔯		Depth To:	ļ						
l 🔀	\times	1' Top of Seal	ļ			T			
		Seal Material	ŀ						
		X Bentonite Chips/Pe	ellets		<u> </u>				
		Bentonite Slurry	I	<u> </u>	ļ	<u> </u>			
		Cement/Bentonite	Grout	<u> </u>	ļ	<u> </u>			
		01 T -4 534 D	. <u>.</u>			ļ		ļ	
		3' Top of Filter Pa	ack			<u> </u>	<u> </u>	 	
		5' Top of Screen		<u> </u>	<u> </u>	 			
		10h or 2016en	ļ			 		 	
		Screen Slot Size	ļ	 	<u> </u>	 			
		X 010 in	ļ						
		015 in	I						
		020 in	ļ				 		
		025 in	ļ	<u> </u>					ļ
		Filter Material 00 Sand Pack 0 Sand Pack 1 Sand Pack 2 Sand Pack 3 Sand Pack 4 Sand Pack 20' Bottom of Scree							
		20110110101	5 11010						

	C&S Engineers, Inc.	GF	ROUND	WATE	R		Well No.	MW-104
	499 Col Eileen Collins Blvd Syracuse, NY 13212	_	ERVAT					
COMPANIES	Phone: 315-455-2000 Fax: 315-455-9667			_			roject No.:	AB2.002.002
	www.cscos.com		STRUC	, HUN I	LUG	Sur	face Elev.:	
-	69 West Fayette Street BCP Siruse, NY	te Remediai i	Investigation			<u> </u>	Datum:	40/0/04
	Jse, NY Owner LLC						Start Date: inish Date:	12/2/24 12/4/24
Drilling Firm: SES	JWHEI LLG		T	Ī		-	Inspector:	12/4/24 CD
Dinning i iiii.	0'-0" Top Protective Ca	sina	Drill Rig:	GeoProbe 6	6011DT		Casing:	Auger
	Top of Riser	J9				observation v		•
l I	··•							er information)
								well would raise
	0'-0" Ground Surface		when the au installed the		pulled up. I	Retried on 1	2/2/24 and	successfully
	Ourfree Beakfill Motori				oly on the s	south side o	f the Site.	
	Surface Backfill Materi Soil Cuttings	<u>aı</u>		nstalled on				
	Bentonite Slurry							
	Cement/Bentonite	Grout						
	X Concrete							
	4.25" Bore Hole Diamete	er						
	2" Well Diameter							
	Well Material							
	XPVC							
	Stainless Steel							
		i				:5.		Í
	Backfill Material		G	roundwat		ement Data		
	Soil Cuttings X Bentonite Slurry		Date	Time	Depth to Water	Water Elevation	Tide Status	
	X Bentonite Slurry Cement/Bentonite	Grout	Date 12/3/2024	12:45	7.14	TBD	NA	
	Concrete	Ologi	TEIOIEUE .	12.40	7.1.4	100	11/-3	
	Depth To:							
	1' Top of Seal							
	Seal Material							
	X Bentonite Chips/Pe	llets						
	Bentonite Slurry	~ 1		<u> </u>				
	Cement/Bentonite	Grout	<u> </u>		<u> </u>			
	3' Top of Filter Pa	ack						
	100 0	aon						
	5' Top of Screen						_	
	Screen Slot Size			<u> </u>				
	X 010 in			<u> </u>				
	015 in							
	020 in 025 in	Ī		<u> </u>				
	020 iii							
	Filter Material							
	00 Sand Pack							
	0 Sand Pack							
	X 1 Sand Pack							
	2 Sand Pack							
	3 Sand Pack							
	4 Sand Pack							
	20' Bottom of Scre							
	20' Bottom of Bore	е ноге						

		C&S Engineers, Inc.		DOLINE	W/ A TE	Ъ			
	J	499 Col Eileen Collins Blvd	_	ROUND				Well No.	MW-105
		Syracuse, NY 13212 Phone: 315-455-2000	OBS	ERVAT	ION W	ELL	P	roject No.:	AB2.002.002
COMPAN	IIES	Fax: 315-455-9667 www.cscos.com	CON	ISTRUC	TION I	LOG		face Elev.:	
Project Name:	1153-6	69 West Fayette Street BCP Si	ite Remedial	Investigation				Datum:	
Location:		•					,	Start Date:	12/3/24
		Owner LLC					Fi	inish Date:	12/6/24
Drilling Firm:	SES							Inspector:	CD
		0'-0" Top Protective Ca	sing		GeoProbe (Casing:	Auger
l),		Top of Riser	I	Notes:			observation v		
			I						er information)
		-1	I	_		_			o time to install the is installed on
	 -	0'-0" Ground Surface	I	12/4/24.	Tile auger	5 Wele leit i	II piace and	lile wen wa	S Ilistalleu on
		Surface Backfill Materi	ial		gs put on p	ooly on the s	south side o	f the Site.	
'		Soil Cuttings	<u>iai</u>	- Manhole in	nstalled on	12/6/24.			
$\overline{\mathbb{X}}$		Bentonite Slurry	I						
		Cement/Bentonite	Grout						
		X Concrete							
		<u> </u>	I						
		4.25" Bore Hole Diamet	er						
		2" Well Diameter							
$[\times]$		Well Material							
		X PVC							
		Stainless Steel							
l 🔀] —							
		Backfill Material	I	G	roundwat		ement Data		I
		Soil Cuttings	I	l _ '	<u> </u>	Depth to		Tide	
l 👸		X Bentonite Slurry	~	Date	Time	Water	Elevation		I
		Cement/Bentonite Concrete	Grout	12/5/2024	9:45	6.35	TBD	NA	I
i Çi		Concrete	I			 	 		I
		Depth To:	1						I
		1' Top of Seal	I			†	† †		
1		Seal Material	I			<u> </u>			I
1		X Bentonite Chips/Pe	ellets						
1		Bentonite Slurry	I						I
1		Cement/Bentonite	Grout						
		<u> (=1)</u>	. <u>-</u>			<u> </u>			
		3' Top of Filter P	ack			 	-		
		5' Top of Screen				 	 		
		100 0. 00.00.	I						
		Screen Slot Size	I			†	<u> </u>		
		X 010 in	1						I
		015 in	I			<u> </u>			I
		020 in	I						I
		025 in							
		l							
		Filter Material							
		00 Sand Pack							
		0 Sand Pack X 1 Sand Pack							
		2 Sand Pack							
		3 Sand Pack							
		4 Sand Pack							
		20' Bottom of Scre	een						
		20' Bottom of Bor							
i —									

	C&S Engineers, Inc. 499 Col Eileen Collins Blvd	GI	ROUND	WATE	R		Well No.	MW-106
	Syracuse, NY 13212	OBS	ERVAT	10N W	/ELL			
COMPANIES	Phone: 315-455-2000 Fax: 315-455-9667		STRUC	_			Project No.:	AB2.002.002
	www.cscos.com -69 West Fayette Street BCP Si				LUG	Sur	face Elev.:	
	cuse, NY	le Kemeulai i	nvestigation			,	Datum: Start Date:	12/4/24
	Owner LLC						inish Date:	12/6/24
Drilling Firm: SES	<u> </u>			Ī			Inspector:	CD
	0'-0" Top Protective Ca	sing	Drill Rig:	GeoProbe	6011DT		Casing:	Auger
l 🗔	Top of Riser		Notes:		escription of on, development			method of rinformation)
	Top of Riser O'-O" Ground Surface Surface Backfill Material Soil Cuttings Bentonite Slurry Cement/Bentonite X Concrete 4.25" Bore Hole Diameter Well Material X PVC Stainless Steel Backfill Material Soil Cuttings X Bentonite Slurry Cement/Bentonite Concrete Depth To: 1' Top of Seal Seal Material X Bentonite Chips/Pe Bentonite Slurry Cement/Bentonite Concrete Top of Filter Paterial Top of Screen Screen Slot Size X 010 in 015 in 020 in 025 in Filter Material 00 Sand Pack 0 Sand Pack 1 Sand Pack 2 Sand Pack 2 Sand Pack 3 Sand Pack 4 Sand Pack 4 Sand Pack 9 Bottom of Screen Bottom of Screen Bottom of Screen Bottom of Screen Bottom of Screen Bottom of Screen Bottom of Screen Bottom of Screen	Grout er Grout ellets Grout ack	- Soil cuttin - Manhole ii	construction gs put on pnstalled on	n, developmooly on the s	ent method a south side o	and any othe of the Site. a Tide	

	C&S Engineers, Inc.	Gl	ROUND	WATE	R		Well No	MAN 407			
	499 Col Eileen Collins Blvd Syracuse, NY 13212		ERVAT				Well No.	MW-107			
COMPANIES	Phone: 315-455-2000 Fax: 315-455-9667			_			roject No.:	AB2.002.002			
	www.cscos.com		STRUC	HUN	LUG	Sur	face Elev.:				
	-69 West Fayette Street BCP Si	te Remedial I	Investigation				Datum:				
	cuse, NY						Start Date:	12/3/24			
	Owner LLC		T	T			inish Date:	12/4/24			
Drilling Firm: SES	OLOU Tara Branchina Ca	. .	Della Diene	O - a Draha	0044DT	Щ,	Inspector:	CD			
l , 	O'-0" Top Protective Ca	sing	Drill Rig:	GeoProbe			Casing:	Auger			
l I 1	Top of Riser		Notes: (provide description of observation well location, method of construction, development method and any other information)								
l			- Began installing on 11/27/24 but kept hitting concrete around 5 feet bgs.								
<i>i</i>	0'-0" Ground Surface							nce and shifted to the			
			north slight	•							
	Surface Backfill Materi	al				south side o	f the Site.				
	Soil Cuttings	_	- Manhole II	nstalled on	12/4/24.						
	Bentonite Slurry										
i [x] [x	Cement/Bentonite	Grout									
i [x] [x	X Concrete										
	4.25" Bore Hole Diamet	er									
	2" Well Diameter										
	Well Material										
	X PVC										
	Stainless Steel										
l [X] [×	Backfill Material		G	roundwat	er Measur	ement Data	a				
	Soil Cuttings				Depth to		Tide				
l [X] [X	X Bentonite Slurry		Date	Time	Water	Elevation	Status				
l [X] [X	Cement/Bentonite	Grout	12/4/2024	12:30	7.40	TBD	NA				
	Concrete				<u> </u>						
	<u>:</u>] —										
	Depth To:										
l 🗵 🗵	1' Top of Seal										
	Seal Material				<u> </u>						
	X Bentonite Chips/Pe	ellets									
	Bentonite Slurry				<u> </u>						
l	Cement/Bentonite	Grout			<u> </u>						
	. ,			<u> </u>	<u> </u>						
	3' Top of Filter Pa	ack			<u> </u>						
	Ton of Coroon				 	 					
	5' Top of Screen				 	 					
	Screen Slot Size				 	 					
	X 010 in				 	 					
	015 in				 	 					
	020 in				 	 					
	025 in				<u> </u>			i			
	023 III										
	Filter Material										
	00 Sand Pack										
	0 Sand Pack										
	X 1 Sand Pack										
	2 Sand Pack										
	3 Sand Pack										
	4 Sand Pack										
	20' Bottom of Scre	PΩN									
	20' Bottom of Bore										
	Bottom or Bore	CITOIC									

Well Sampling Field Data Sheet

Well Casing Unit Volume

(gal/l.f.)

2" = 0.17 3" = 0.38 11/4" = 0.08 4" = 0.66 6" = 1.5 8" = 2.6

Client Name: 1153 Owner LLC

1153-69 West Fayette Street BCP Site Remedial Investigation Site Name:

Project No.:

CD Field Staff:

WELL DATA

Date	12/6/2024	
Time	10:25	
Water meter utilized and date last calibrated		
Well Number	MW	-101
PID Reading (ppm)	0.0	
Diameter (inches)	2.0	
Total Sounded Depth (feet)	13.54	
Static Water Level (feet)	10.00	
H ₂ O Column (feet)	3.54	
Pump Intake (feet)	13.00	
Well Volume (gallons)	0.58	
Amount to Evacuate (gallons)	2.00	
Amount Evacuated (gallons)	4.00	

SAMPLE DATA

Sample Date		
Sample Time		
Sampler Initials		
Sample I.D.		
	-	
Dupe Collected?	☐ Yes ☐ No	ID:
MS Collected?	☐ Yes ☐ No	ID:
MSD Collected?	☐ Yes ☐ No	ID:
Trip Blank Collected?	☐ Yes ☐ No	ID:
EQ Blank Collected?	☐ Yes ☐ No	ID:
Comments No sampling, development on	ly	

FIELD READINGS

Date	Stabilization	12/6/2024						
Time	Criteria	10:50	10:55	11:00	11:05	11:10		
Volume Extracted	gallons	2	2.5	3	3.5	4		
Static Water Level (feet)	NA	10.01	10.01	10.01	10.01	10.01		
pH (Std. Units)	+/-0.1	6.78	6.75	6.74	6.75	6.74		
Conductivity (mS/cm)	3%	2.59	2.6	2.61	2.6	2.6		
Turbidity (NTU)	10%	166	117	38.2	38.3	14.5		
D.O. (mg/L)	10%	0.85	0.25	0.16	0.08	0.09		
Temperature (°C) (°F)	3%	13.07	13.4	13.51	13.39	13.54		
ORP ³ (mV)	+/-10 mv	13	16	18	18	16		
Appearance		С	С	С	С	С		
Free Product (Yes/No)		No	No	No	No	No		
Odor		None	None	None	None	None		

Date	Stabilization				
Time	Criteria				
Volume Extracted	gallons				
Static Water Level (feet)	NA				
pH (Std. Units)	+/-0.1				
Conductivity (mS/cm)	3%				
Turbidity (NTU)	10%				
D.O. (mg/L)	10%				
Temperature (°C) (°F)	3%				
ORP ³ (mV)	+/-10 mv				
Appearance					
Free Product (Yes/No)					
Odor					

C = Clear T = Turbid ST = Semi Turbid VT = Very Turbid

Comments

Initial Purge - 10:30

Minimal sediment built up at the bottom of the well, purging it out before connecting Horiba.

Well Sampling Field Data Sheet

Client Name: 1153 Owner LLC

1153-69 West Fayette Street BCP Site Remedial Investigation Site Name:

Project No.:

CD Field Staff:

Well Casing Unit Volume

(gal/l.f.)

2" = 0.17 3" = 0.38 11/4" = 0.08 4" = 0.66 6" = 1.5 8" = 2.6

WELL DATA

12/4/2024	
7:40	
MW	-102
0.0	
2.0	
19.98	
6.87	
13.11	
19.00	
2.14	
6.50	
6.80	
	7:40 MW 0.0 2.0 19.98 6.87 13.11 19.00 2.14 6.50

SAMPLE DATA

Sample Date		
Sample Time		
Sampler Initials		
Sample I.D.		
	•	
Dupe Collected?	☐ Yes ☐ No	ID:
MS Collected?	☐ Yes ☐ No	ID:
MSD Collected?	☐ Yes ☐ No	ID:
Trip Blank Collected?	☐ Yes ☐ No	ID:
EQ Blank Collected?	☐ Yes ☐ No	ID:
Comments No sampling, development or	nly	

FIELD READINGS

Date	Stabilization	12/4/2024							
Time	Criteria	8:00	8:05	8:10	8:15	8:20	8:25	8:30	8:35
Volume Extracted	gallons	2	2.6	3.2	3.8	4.4	5	5.6	6.2
Static Water Level (feet)	NA	6.99	7	7	7	7	7.01	7.02	7.02
pH (Std. Units)	+/-0.1	6.71	6.78	6.79	6.81	6.82	6.84	6.84	6.85
Conductivity (mS/cm)	3%	1.77	1.8	1.8	1.81	1.8	1.8	1.8	1.8
Turbidity (NTU)	10%	627	240	75.5	45.2	33.8	35.5	34.9	32.3
D.O. (mg/L)	10%	1.59	1.63	1.62	1.62	1.58	1.56	1.54	1.52
Temperature (°C) (°F)	3%	16.63	17.17	17.36	17.47	17.52	17.54	17.6	17.63
ORP ³ (mV)	+/-10 mv	-114	-123	-126	-129	-130	-131	-132	-132
Appearance		ST	С	С	С	С	С	С	С
Free Product (Yes/No)		No	No	No	No	No	No	No	No
Odor		None	None	None	None	None	None	None	None

Date	Stabilization	12/4/2024				
Time	Criteria	8:40				
Volume Extracted	gallons	6.8				
Static Water Level (feet)	NA	7.02				
pH (Std. Units)	+/-0.1	6.85				
Conductivity (mS/cm)	3%	1.8				
Turbidity (NTU)	10%	29.5				
D.O. (mg/L)	10%	1.46				
Temperature (°C) (°F)	3%	17.58				
ORP ³ (mV)	+/-10 mv	-133				
Appearance		С				
Free Product (Yes/No)		No	•			
Odor		None				

C = Clear T = Turbid ST = Semi Turbid VT = Very Turbid

Comments

Initial Purge - 7:50

Lots of sediment built up at the bottom of the well, purging it out before connecting Horiba.

Well Sampling Field Data Sheet

Well Casing Unit Volume

(gal/l.f.)

 $1\frac{1}{4}$ " = 0.08 2" = 0.17 3" = 0.38 4" = 0.66 6" = 1.5 8" = 2.6 Client Name: 1153 Owner LLC

Site Name: 1153-69 West Fayette Street BCP Site Remedial Investigation

Project No.: AB2.002.002

Field Staff: CD

WELL DATA

Date	12/6/2024	
Time	8:30	
Water meter utilized and date last calibrated		
Well Number	MW	-103
PID Reading (ppm)	14.9	
Diameter (inches)	2.0	
Total Sounded Depth (feet)	19.83	
Static Water Level (feet)	11.19	
H ₂ O Column (feet)	8.64	
Pump Intake (feet)	19.00	
Well Volume (gallons)	1.41	
Amount to Evacuate (gallons)	4.50	
Amount Evacuated (gallons)	4.50	

SAMPLE DATA

Sample Date		
Sample Time		
Sampler Initials		
Sample I.D.		
	•	
Dupe Collected?	☐ Yes ☐ No	ID:
MS Collected?	☐ Yes ☐ No	ID:
MSD Collected?	☐ Yes ☐ No	ID:
Trip Blank Collected?	☐ Yes ☐ No	ID:
EQ Blank Collected?	☐ Yes ☐ No	ID:
Comments No sampling, development onl	,	

FIELD READINGS

Date	Stabilization	12/6/2024	12/6/2024					
Time	Criteria	9:00	9:05	9:10	9:15	9:20	9:25	
Volume Extracted	gallons	2	2.5	3	3.5	4	4.5	
Static Water Level (feet)	NA	11.28	11.28	11.28	11.28	11.28	11.28	
pH (Std. Units)	+/-0.1	6.96	6.81	6.75	6.71	6.69	6.67	
Conductivity (mS/cm)	3%	3.65	3.43	3.37	3.26	3.22	3.17	
Turbidity (NTU)	10%	62.9	36.1	23.2	8.1	7.6	7.4	
D.O. (mg/L)	10%	0.73	0.35	0.16	0.15	0.16	0.15	
Temperature (°C) (°F)	3%	12.22	12.57	12.42	12.49	12.49	12.59	
ORP ³ (mV)	+/-10 mv	-74	-74	-74	-76	-77	-78	
Appearance		С	С	С	С	С	С	
Free Product (Yes/No)		Sheen	Sheen	Sheen	Sheen	Sheen	Sheen	
Odor		Petro	Petro	Petro	Petro	Petro	Petro	

Date	Stabilization				
Time	Criteria				
Volume Extracted	gallons				
Static Water Level (feet)	NA				
pH (Std. Units)	+/-0.1				
Conductivity (mS/cm)	3%				
Turbidity (NTU)	10%				
D.O. (mg/L)	10%				
Temperature (°C) (°F)	3%				
ORP ³ (mV)	+/-10 mv				
Appearance					
Free Product (Yes/No)					
Odor					

C = Clear T = Turbid ST = Semi Turbid VT = Very Turbid

Comments

Initial Purge - 8:40

Minimal sediment built up at the bottom of the well, purging it out before connecting Horiba.

Well Casing Unit Volume

(gal/l.f.)

 $1\frac{1}{4}$ " = 0.08 2" = 0.17 3" = 0.38 4" = 0.66 6" = 1.5 8" = 2.6

Well Sampling Field Data Sheet

Client Name: 1153 Owner LLC

Site Name: 1153-69 West Fayette Street BCP Site Remedial Investigation

Project No.: AB2.002.00

Field Staff: CD

WELL DATA

_ :	40/0/0004	40/0/0004
Date	12/3/2024	12/3/2024
Time	12:45	13:55
Water meter utilized and date last calibrated		
Well Number	MW	-104
PID Reading (ppm)	0.3	
Diameter (inches)	2.0	
Total Sounded Depth (feet)	17.40	19.41
Static Water Level (feet)	7.14	
H ₂ O Column (feet)	10.26	
Pump Intake (feet)	17.00	
Well Volume (gallons)	1.67	
Amount to Evacuate (gallons)	5.00	
Amount Evacuated (gallons)	6.00	

SAMPLE DATA

Sample Date		
Sample Time		
Sampler Initials		
Sample I.D.		
Dupe Collected?	☐ Yes ☐ No	ID:
MS Collected?	☐ Yes ☐ No	ID:
MSD Collected?	Yes No	ID:
Trip Blank Collected?	☐ Yes ☐ No	ID:
EQ Blank Collected?	☐ Yes ☐ No	ID:
Comments No sampling, development	only	

FIELD READINGS

Date	Stabilization	12/3/2024							
Time	Criteria	13:20	13:25	13:30	13:35	13:40	13:45	13:50	
Volume Extracted	gallons	3	3.5	4	4.5	5	5.5	6	
Static Water Level (feet)	NA	8.32	8.32	8.32	8.33	8.34	8.38	8.38	
pH (Std. Units)	+/-0.1	6.98	6.79	6.76	6.83	6.85	6.87	6.87	
Conductivity (mS/cm)	3%	1.47	1.43	1.42	1.43	1.42	1.43	1.43	
Turbidity (NTU)	10%	1000	1000	845	165	107	62.4	41.6	
D.O. (mg/L)	10%	1.94	1.11	0.56	0.83	0.69	0.69	0.68	
Temperature (°C) (°F)	3%	16.29	17.1	17.12	17.16	17.18	17.45	17.4	
ORP ³ (mV)	+/-10 mv	-101	-106	-111	-118	-120	-123	-123	
Appearance		Т	Т	ST	С	С	С	С	
Free Product (Yes/No)		No	No	No	No	No	No	No	
Odor		Methane	Methane	Methane	Methane	Methane	None	None	

Date	Stabilization				
Time	Criteria				
Volume Extracted	gallons				
Static Water Level (feet)	NA				
pH (Std. Units)	+/-0.1				
Conductivity (mS/cm)	3%				
Turbidity (NTU)	10%				
D.O. (mg/L)	10%				
Temperature (°C) (°F)	3%				
ORP ³ (mV)	+/-10 mv				
Appearance					
Free Product (Yes/No)					
Odor					

C = Clear T = Turbid ST = Semi Turbid VT = Very Turbid

Comments

Initial Purge - 12:55

Lots of sediment built up at the bottom of the well, purging it out before connecting Horiba.

All parameters stable, more than 3 well volumes purged, turbidity below 50 NTU. Development complete.

Following development, well depth was remeasured.

Well Sampling Field Data Sheet

Well Casing Unit Volume

(gal/l.f.)

11/4" = 0.08 2" = 0.17 3" = 0.38 4" = 0.66 6" = 1.5 8" = 2.6

Client Name: 1153 Owner LLC

1153-69 West Fayette Street BCP Site Remedial Investigation Site Name:

Project No.:

CD Field Staff:

WELL DATA

Date	12/5/2024	
Time	9:45	
Water meter utilized and date last calibrated		
Well Number	MW	-105
PID Reading (ppm)	0.0	
Diameter (inches)	2.0	
Total Sounded Depth (feet)	19.37	
Static Water Level (feet)	6.35	
H ₂ O Column (feet)	13.02	
Pump Intake (feet)	19.00	
Well Volume (gallons)	2.12	
Amount to Evacuate (gallons)	6.50	
Amount Evacuated (gallons)	6.50	

SAMPLE DATA

Sample Date		
Sample Time		
Sampler Initials		
Sample I.D.		
	•	
Dupe Collected?	☐ Yes ☐ No	ID:
MS Collected?	☐ Yes ☐ No	ID:
MSD Collected?	☐ Yes ☐ No	ID:
Trip Blank Collected?	☐ Yes ☐ No	ID:
EQ Blank Collected?	☐ Yes ☐ No	ID:
Comments No sampling, development o	only	

FIELD READINGS

Date	Stabilization	12/5/2024							
Time	Criteria	10:15	10:20	10:25	10:30	10:35	10:40	10:45	10:50
Volume Extracted	gallons	3	3.5	4	4.5	5	5.5	6	6.5
Static Water Level (feet)	NA	6.37	6.37	6.37	6.37	6.37	6.37	6.37	6.37
pH (Std. Units)	+/-0.1	6.88	6.96	6.97	6.99	6.99	6.98	6.99	6.99
Conductivity (mS/cm)	3%	1.4	1.3	1.29	1.28	1.29	1.29	1.29	1.29
Turbidity (NTU)	10%	586	354	345	407	162	87.6	47.7	40.7
D.O. (mg/L)	10%	1.62	0.49	0.38	0.45	0.44	0.35	0.31	0.27
Temperature (°C) (°F)	3%	16.44	17.94	17.18	17.12	17.1	17.16	17.21	17.24
ORP ³ (mV)	+/-10 mv	-55	-78	-84	-80	-83	-87	-90	-91
Appearance		ST	ST	ST	ST	С	С	С	С
Free Product (Yes/No)		No	No	No	No	No	No	No	No
Odor		None	None	None	None	None	None	None	None

Date	Stabilization				
Time	Criteria				
Volume Extracted	gallons				
Static Water Level (feet)	NA				
pH (Std. Units)	+/-0.1				
Conductivity (mS/cm)	3%				
Turbidity (NTU)	10%				
D.O. (mg/L)	10%				
Temperature (°C) (°F)	3%				
ORP ³ (mV)	+/-10 mv				
Appearance					
Free Product (Yes/No)					
Odor					

C = Clear T = Turbid ST = Semi Turbid VT = Very Turbid

Comments

Initial Purge - 9:50

Lots of sediment built up at the bottom of the well, purging it out before connecting Horiba.

Well Sampling Field Data Sheet

Well Casing Unit Volume

(gal/l.f.)

 $1\frac{1}{4}$ " = 0.08 2" = 0.17 3" = 0.38 4" = 0.66 6" = 1.5 8" = 2.6 Client Name: 1153 Owner LLC

Site Name: 1153-69 West Fayette Street BCP Site Remedial Investigation

Project No.: AB2.002.00

Field Staff: CD

WELL DATA

Date	12/6/2024	
Time	7:15	
Water meter utilized and date last calibrated		
Well Number	MW	-106
PID Reading (ppm)	0.0	
Diameter (inches)	2.0	
Total Sounded Depth (feet)	19.69	
Static Water Level (feet)	12.15	
H ₂ O Column (feet)	7.54	
Pump Intake (feet)	19.00	
Well Volume (gallons)	1.23	
Amount to Evacuate (gallons)	4.00	
Amount Evacuated (gallons)	4.00	

SAMPLE DATA

Sample Date		
Sample Time		
Sampler Initials		
Sample I.D.		
	•	
Dupe Collected?	☐ Yes ☐ No	ID:
MS Collected?	☐ Yes ☐ No	ID:
MSD Collected?	☐ Yes ☐ No	ID:
Trip Blank Collected?	☐ Yes ☐ No	ID:
EQ Blank Collected?	☐ Yes ☐ No	ID:
Comments No sampling, development o	nly	

FIELD READINGS

Date	Stabilization	12/6/2024						
Time	Criteria	7:45	7:50	7:55	8:00	8:05	8:10	
Volume Extracted	gallons	1.5	2	2.5	3	3.5	4	
Static Water Level (feet)	NA	12.24	12.25	12.25	12.25	12.25	12.25	
pH (Std. Units)	+/-0.1	6.93	6.89	6.89	6.9	6.9	6.9	
Conductivity (mS/cm)	3%	3.65	3.69	3.7	3.73	3.71	3.72	
Turbidity (NTU)	10%	1000	415	167	78.8	37.4	28.5	
D.O. (mg/L)	10%	4.05	2.7	1.8	1.57	1.51	1.5	
Temperature (°C) (°F)	3%	12.87	13.12	13.32	13.04	13.08	13.05	
ORP ³ (mV)	+/-10 mv	165	150	137	130	124	122	
Appearance		Т	ST	С	С	С	С	
Free Product (Yes/No)		No	No	No	No	No	No	
Odor		None	None	None	None	None	None	

Date	Stabilization				
Time	Criteria				
Volume Extracted	gallons				
Static Water Level (feet)	NA				
pH (Std. Units)	+/-0.1				
Conductivity (mS/cm)	3%				
Turbidity (NTU)	10%				
D.O. (mg/L)	10%				
Temperature (°C) (°F)	3%				
ORP ³ (mV)	+/-10 mv				
Appearance					
Free Product (Yes/No)					
Odor					

C = Clear T = Turbid ST = Semi Turbid VT = Very Turbid

Comments

Initial Purge - 7:30

Minimal sediment built up at the bottom of the well, purging it out before connecting Horiba.

Well Sampling Field Data Sheet

Well Casing Unit Volume

(gal/l.f.)

11/4" = 0.08 2" = 0.17 3" = 0.38 4" = 0.66 6" = 1.5 8" = 2.6

Client Name: 1153 Owner LLC

1153-69 West Fayette Street BCP Site Remedial Investigation Site Name:

Project No.:

Field Staff:

SAMPLE DATA

WELL I	DATA			SAMPL	E DATA
ate	12/4/2024	12/4/2024	Sample Date		
me	12:30	13:50	Sample Time		
ater meter utilized and date last alibrated			Sampler Initials		
ell Number	MW	-107	Sample I.D.		
D Reading (ppm)	0.0				
ameter (inches)	2.0		Dupe Collected?	☐ Yes ☐ No	ID:
otal Sounded Depth (feet)	19.49	19.66	MS Collected?	☐ Yes ☐ No	ID:
atic Water Level (feet)	7.40		MSD Collected?	☐ Yes ☐ No	ID:
2O Column (feet)	12.09		Trip Blank Collected?	☐ Yes ☐ No	ID:
ump Intake (feet)	19.00		EQ Blank Collected?	☐ Yes ☐ No	ID:
ell Volume (gallons)	1.97		Comments	t only	
mount to Evacuate (gallons)	6.00		No sampling, developmen	CONIY	
mount Evacuated (gallons)	7.00				

FIELD READINGS

Date	Stabilization	12/4/2024							
Time	Criteria	13:10	13:15	13:20	13:25	13:30	13:35	13:40	13:45
Volume Extracted	gallons	3.5	4	4.5	5	5.5	6	6.5	7
Static Water Level (feet)	NA	7.62	7.62	7.62	7.62	7.62	7.62	7.62	7.62
pH (Std. Units)	+/-0.1	7.21	7.31	7.34	7.36	7.38	7.43	7.43	7.43
Conductivity (mS/cm)	3%	14.1	14.6	14.7	14.8	14.8	14.8	14.9	14.9
Turbidity (NTU)	10%	1000	744	517	127	260	60.9	42.6	37.3
D.O. (mg/L)	10%	3.41	2.95	2.04	1.19	1.17	0.77	0.26	0.29
Temperature (°C) (°F)	3%	14.94	15.32	15.48	15.49	15.59	15.4	15.6	15.6
ORP ³ (mV)	+/-10 mv	-69	-92	-101	-107	-112	-114	-116	-118
Appearance		Т	ST	ST	С	С	С	С	С
Free Product (Yes/No)		No	No	No	No	No	No	No	No
Odor		None	None	None	None	None	None	None	None

Date	Stabilization				
Time	Criteria				
Volume Extracted	gallons				
Static Water Level (feet)	NA				
pH (Std. Units)	+/-0.1				
Conductivity (mS/cm)	3%				
Turbidity (NTU)	10%				
D.O. (mg/L)	10%				
Temperature (°C) (°F)	3%				
ORP ³ (mV)	+/-10 mv				
Appearance					
Free Product (Yes/No)					
Odor					

C = Clear T = Turbid ST = Semi Turbid VT = Very Turbid

Comments

Initial Purge - 12:45

Lots of sediment built up at the bottom of the well, purging it out before connecting Horiba.

All parameters stable, more than 3 well volumes purged, turbidity below 50 NTU. Development complete.

Following development, well depth was remeasured.

calibrated

Well Number PID Reading (ppm)

Diameter (inches)

Pump Intake (feet)

Well Volume (gallons)

Amount to Evacuate (gallons)

Amount Evacuated (gallons)

Total Sounded Depth (feet)

Static Water Level (feet)
H₂O Column (feet)

C&S Engineers, Inc. 499 Col Eileen Collins Blvd Syracuse, NY 13212 Phone: 315-455-2000 Fax: 315-455-9667 www.cscos.com

WELL DATA

12/13/2024

13:45

0.0

2.0 13.54

9.43

4.11

13.00 0.67

NA

1.25

MW-101

Well Casing Unit Volume

(gal/l.f.)

 $1\frac{1}{4}$ " = 0.08 2" = 0.17 3" = 0.38 4" = 0.66 6" = 1.5 8" = 2.6

Water meter utilized and date last

Well Sampling Field Data Sheet

Client Name: 1153 Owner LLC

Site Name: 1153-69 West Fayette Street BCP Site Remedial Investigation

Project No.: AB2.002.002

Field Staff: JT

SAMPLE DATA

	O/4011 E	LDAIA
Sample Date	12/13/2024	
Sample Time	14:10	
Sampler Initials	JT	
Sample I.D.	MW-101 RC	OUND 1
Dupe Collected?	☐ Yes ☑ No	ID:
MS Collected?	☐ Yes ☑ No	ID:
MSD Collected?	☐ Yes ☑ No	ID:
Trip Blank Collected?	✓ Yes ☐ No	ID: TRIP BLANK
EQ Blank Collected?	✓ Yes ☐ No	ID: FIELD BLANK
Comments Extra parameters not collec	cted at this well.	

FIELD READINGS

Date	Stabilization	12/13/2024					
Time	Criteria	13:55	14:00	14:05	14:08		
Volume Extracted	gallons	0.5	0.75	1	1.25		
Static Water Level (feet)	NA	9.39	9.4	9.41	9.41		
pH (Std. Units)	+/-0.1	6.52	6.45	6.41	6.39		
Conductivity (mS/cm)	3%	2.79	2.82	2.84	2.84		
Turbidity (NTU)	10%	2.6	0	0	9.7		
D.O. (mg/L)	10%	0.88	0.58	0.54	0.52		
Temperature (°C) (°F)	3%	12.28	12.11	12.05	11.99		
ORP ³ (mV)	+/-10 mv	-61	-61	-63	-64		
Appearance		ST	С	С	С		
Free Product (Yes/No)		No	No	No	No		
Odor		None	None	None	None		

Date	Stabilization				
Time	Criteria				
Volume Extracted	gallons				
Static Water Level (feet)	NA				
pH (Std. Units)	+/-0.1				
Conductivity (mS/cm)	3%				
Turbidity (NTU)	10%				
D.O. (mg/L)	10%				
Temperature (°C) (°F)	3%				
ORP ³ (mV)	+/-10 mv				
Appearance					
Free Product (Yes/No)					
Odor					

C = Clear T = Turbid ST = Semi Turbid VT = Very Turbid

Comments
Comments Initial Purge - 13:45

calibrated

Well Number PID Reading (ppm)

Diameter (inches)

Pump Intake (feet)

Well Volume (gallons)

Amount to Evacuate (gallons)

Amount Evacuated (gallons)

Total Sounded Depth (feet)

Static Water Level (feet)
H₂O Column (feet)

C&S Engineers, Inc. 499 Col Eileen Collins Blvd Syracuse, NY 13212 Phone: 315-455-2000 Fax: 315-455-9667 www.cscos.com

WELL DATA

12/12/2024

13:30

0.1

2.0 19.98

6.87

13.11

19.00 2.14

NA

2.75

MW-102

Well Casing Unit Volume

(gal/l.f.)

1½" = 0.08 2" = 0.17 3" = 0.38 4" = 0.66 6" = 1.5 8" = 2.6

Water meter utilized and date last

Well Sampling Field Data Sheet

Client Name: 1153 Owner LLC

Site Name: 1153-69 West Fayette Street BCP Site Remedial Investigation

Project No.: AB2.002.002

Field Staff: JT

SAMPLE DATA

Sample Date	12/12/2024						
Sample Date							
Sample Time	14:11						
Sampler Initials	JT	JT					
Sample I.D.	MW-102 RC	MW-102 ROUND 1					
Dupe Collected?	☐ Yes ☑ No	ID:					
MS Collected?	☐ Yes ☑ No	ID:					
MSD Collected?	☐ Yes ☑ No	ID:					
Trip Blank Collected?	✓ Yes ☐ No	ID:TRIP BLANK					
EQ Blank Collected?	✓ Yes ☐ No	ID: FIELD BLANK					
Comments Extra parameters not colle	cted at this well						
Extra parameters not colle	cted at this well.						

FIELD READINGS

Date	Stabilization	12/12/2024							
Time	Criteria	13:35	13:42	13:47	13:52	13:55	13:58	14:02	14:07
Volume Extracted	gallons	0.75	1	1.25	1.5	1.75	2	2.25	2.5
Static Water Level (feet)	NA	6.9	6.9	6.9	6.92	6.9	6.9	6.9	6.9
pH (Std. Units)	+/-0.1	6.09	6.09	6.1	6.11	6.12	6.12	6.13	6.14
Conductivity (mS/cm)	3%	1.97	2.02	2.05	2.03	1.99	1.98	2	2.04
Turbidity (NTU)	10%	186	132	90.9	56.9	44.4	36.7	36.4	33.6
D.O. (mg/L)	10%	0.61	0.51	0.47	0.46	0.43	0.38	0.43	0.41
Temperature (°C) (°F)	3%	13.8	13.99	14.24	14.22	14.28	14.32	14.25	14.19
ORP ³ (mV)	+/-10 mv	-107	-115	-119	-121	-124	-126	-128	-130
Appearance		ST	ST	ST	С	С	С	С	С
Free Product (Yes/No)		No	No	No	No	No	No	No	No
Odor		None	None	None	None	None	None	None	None

Date	Stabilization	12/4/2024				
Time	Criteria	14:10				
Volume Extracted	gallons	2.75				
Static Water Level (feet)	NA	6.9				
pH (Std. Units)	+/-0.1	6.15				
Conductivity (mS/cm)	3%	2.03				
Turbidity (NTU)	10%	28.9				
D.O. (mg/L)	10%	0.39				
Temperature (°C) (°F)	3%	14.2				
ORP ³ (mV)	+/-10 mv	-131				
Appearance		С				
Free Product (Yes/No)		No				
Odor		None				

C = Clear T = Turbid ST = Semi Turbid VT = Very Turbid

Comments

Initial Purge - 13:30

Well Number PID Reading (ppm)

Diameter (inches)

Pump Intake (feet)

Well Volume (gallons)

Amount to Evacuate (gallons)

Amount Evacuated (gallons)

Total Sounded Depth (feet)

Static Water Level (feet)
H₂O Column (feet)

C&S Engineers, Inc. 499 Col Eileen Collins Blvd Syracuse, NY 13212 Phone: 315-455-2000 Fax: 315-455-9667 www.cscos.com

WELL DATA

12/13/2024

9:45

1.5

2.0 19.83

10.55

9.28

19.00

1.51 NA

3.50

MW-103

Well Casing Unit Volume

(gal/l.f.)

 $1\frac{1}{4}$ " = 0.08 2" = 0.17 3" = 0.38 4" = 0.66 6" = 1.5 8" = 2.6

Water meter utilized and date last

Well Sampling Field Data Sheet

Client Name: 1153 Owner LLC

Site Name: 1153-69 West Fayette Street BCP Site Remedial Investigation

Project No.: AB2.002.002

Field Staff: JT

SAMPLE DATA

	SAIVIPL						
Sample Date	12/13/2024						
Sample Time	10:40	10:40					
Sampler Initials	JT	JT					
Sample I.D.	MW-103 RC	OUND 1					
Dupe Collected?	☐ Yes ☑ No	ID:					
MS Collected?	☐ Yes ☑ No	ID:					
MSD Collected?	☐ Yes ☑ No	ID:					
Trip Blank Collected?	✓ Yes ☐ No	ID: TRIP BLANK					
EQ Blank Collected?	✓ Yes ☐ No	ID: FIELD BLANK					

FIELD READINGS

Date	Stabilization	12/13/2024						
Time	Criteria	10:13	10:20	10:25	10:30	10:35	10:38	
Volume Extracted	gallons	1	1.75	2.25	2.75	3.25	3.5	
Static Water Level (feet)	NA	10.61	10.61	10.6	10.6	10.6	10.6	
pH (Std. Units)	+/-0.1	6.68	6.69	6.67	6.64	6.62	6.6	
Conductivity (mS/cm)	3%	3.88	3.91	3.92	3.89	3.88	3.88	
Turbidity (NTU)	10%	56.1	45.3	30.4	14.7	7.7	4.5	
D.O. (mg/L)	10%	0.72	0.61	0.54	0.47	0.45	0.43	
Temperature (°C) (°F)	3%	11.18	11.41	11.4	11.88	11.81	11.89	
ORP ³ (mV)	+/-10 mv	-248	-289	-300	-303	-304	-303	
Appearance		ST	ST	ST	ST	С	С	
Free Product (Yes/No)		No	No	No	No	No	No	
Odor		None	None	None	None	None	None	

Date	Stabilization				
Time	Criteria				
Volume Extracted	gallons				
Static Water Level (feet)	NA				
pH (Std. Units)	+/-0.1				
Conductivity (mS/cm)	3%				
Turbidity (NTU)	10%				
D.O. (mg/L)	10%				
Temperature (°C) (°F)	3%				
ORP ³ (mV)	+/-10 mv				
Appearance					
Free Product (Yes/No)					
Odor					

C = Clear T = Turbid ST = Semi Turbid VT = Very Turbid

C	on	٦r	nents
١.			_

Initial Purge - 9:45

Well Casing Unit Volume

(gal/l.f.)

 $1\frac{1}{4}$ " = 0.08 2" = 0.17 3" = 0.38 4" = 0.66 6" = 1.5 8" = 2.6

Well Sampling Field Data Sheet

Client Name: 1153 Owner LLC

Site Name: 1153-69 West Fayette Street BCP Site Remedial Investigation

Project No.: AB2.002.002

Field Staff: JT

WELL DATA SAMPLE DATA

Date	12/12/2024	
Time	11:05	
Water meter utilized and date last calibrated		
Well Number	MW	-104
PID Reading (ppm)	0.0	
Diameter (inches)	2.0	
Total Sounded Depth (feet)	19.41	
Static Water Level (feet)	7.68	
H ₂ O Column (feet)	11.73	
Pump Intake (feet)	17.00	
Well Volume (gallons)	1.91	
Amount to Evacuate (gallons)	NA	
Amount Evacuated (gallons)	5.50	

Sample Date	12/12/2024							
Sample Time	12:10	12:10						
Sampler Initials	JT	JT						
Sample I.D.	MW-104 R0	MW-104 ROUND 1						
Dupe Collected?	☐ Yes ☑ No	ID:						
MS Collected?	☐ Yes ☑ No	ID:						
MSD Collected?	☐ Yes ☑ No	ID:						
Trip Blank Collected?	✓ Yes 🗌 No	ID: TRIP BLANK						
EQ Blank Collected?	✓ Yes 🗌 No	ID: FIELD BLANK						
Comments Extra parameters collected	d at this well.							

FIELD READINGS

Date	Stabilization	12/12/2024							
Time	Criteria	11:12	11:16	11:21	11:26	11:31	11:36	11:42	11:47
Volume Extracted	gallons	0.5	0.75	1	1.5	2	2.5	3	3.5
Static Water Level (feet)	NA	8.16	8.22	8.24	8.27	8.27	8.31	8.3	8.36
pH (Std. Units)	+/-0.1	6.11	6.09	6.09	6.11	6.15	6.16	6.15	6.21
Conductivity (mS/cm)	3%	1.47	1.49	1.52	1.51	1.49	1.48	1.46	1.47
Turbidity (NTU)	10%	710	622	1000	1000	809	406	271	160
D.O. (mg/L)	10%	2.75	2.57	4.59	1.83	1.8	1.8	1.8	1.81
Temperature (°C) (°F)	3%	11.86	12.67	12.94	12.91	14.37	14.93	14.82	14.86
ORP ³ (mV)	+/-10 mv	-66	-76	-85	-89	-97	-100	-101	-102
Appearance		VT	VT	VT	VT	VT	Т	Т	Т
Free Product (Yes/No)		No	No	No	No	No	No	No	No
Odor		None	None	None	None	None	None	None	None

Date	Stabilization	12/12/2024					
Time	Criteria	11:52	11:58	12:05	12:10		
Volume Extracted	gallons	4	4.5	5	5.5		
Static Water Level (feet)	NA	8.34	8.37	8.41	8.4		
pH (Std. Units)	+/-0.1	6.21	6.2	6.24	6.24		
Conductivity (mS/cm)	3%	1.45	1.48	1.46	1.47		
Turbidity (NTU)	10%	133	135	122	109		
D.O. (mg/L)	10%	1.83	1.88	1.91	1.81		
Temperature (°C) (°F)	3%	14.71	14.77	14.82	14.94		
ORP ³ (mV)	+/-10 mv	-104	-104	-106	-106		
Appearance		Т	ST	ST	ST		
Free Product (Yes/No)		No	No	No	No		
Odor		None	None	None	None		

C = Clear T = Turbid ST = Semi Turbid VT = Very Turbid

Comments

Initial Purge - 11:05

Well Casing Unit Volume

(gal/l.f.)

1½" = 0.08 2" = 0.17 3" = 0.38 4" = 0.66 6" = 1.5 8" = 2.6

Well Sampling Field Data Sheet

Client Name: 1153 Owner LLC

Site Name: 1153-69 West Fayette Street BCP Site Remedial Investigation

Project No.: AB2.002.002

Field Staff: JT

WELL DATA

12/13/2024	
12:38	
MW	-105
0.0	
2.0	
19.37	
6.34	
13.03	
19.00	
2.13	
NA	
2.00	
	MW 0.0 2.0 19.37 6.34 13.03 19.00 2.13 NA

SAMPLE DATA

Sample Date	12/13/2024						
Sample Time	13:08						
Sampler Initials	JT	JT					
Sample I.D.	MW-105 RC	OUND 1					
Dupe Collected?	☐ Yes ☑ No	ID:					
MS Collected?	☐ Yes ☑ No	ID:					
MSD Collected?	☐ Yes ☑ No	ID:					
Trip Blank Collected?	✓ Yes ☐ No	ID: TRIP BLANK					
EQ Blank Collected?	✓ Yes ☐ No	ID: FIELD BLANK					
Comments Extra parameters not collecte	ed at this well.						

FIELD READINGS

Date	Stabilization	12/13/2024						
Time	Criteria	12:45	12:50	12:55	13:00	13:03	13:06	
Volume Extracted	gallons	0.5	0.75	1.25	1.5	1.75	2	
Static Water Level (feet)	NA	6.29	6.3	6.3	6.31	6.31	6.32	
pH (Std. Units)	+/-0.1	6.54	6.47	6.46	6.46	6.46	6.46	
Conductivity (mS/cm)	3%	1.5	1.46	1.45	1.45	1.45	1.45	
Turbidity (NTU)	10%	337	904	903	178	159	171	
D.O. (mg/L)	10%	0.35	0.28	0.25	0.25	0.25	0.24	
Temperature (°C) (°F)	3%	13.44	14.55	14.53	14.76	14.83	14.89	
ORP ³ (mV)	+/-10 mv	-127	-135	-140	-145	-147	-148	
Appearance		Brown	VT	VT	T	Т	Т	
Free Product (Yes/No)		No	No	No	No	No	No	
Odor		None	None	None	None	None	None	

Date	Stabilization				
Time	Criteria				
Volume Extracted	gallons				
Static Water Level (feet)	NA				
pH (Std. Units)	+/-0.1				
Conductivity (mS/cm)	3%				
Turbidity (NTU)	10%				
D.O. (mg/L)	10%				
Temperature (°C) (°F)	3%				
ORP ³ (mV)	+/-10 mv				
Appearance					
Free Product (Yes/No)					
Odor					

C = Clear T = Turbid ST = Semi Turbid VT = Very Turbid

Comments

Initial Purge - 12:38

Well Casing Unit Volume (gal/l.f.)

11/4" = 0.08 2" = 0.17 3" = 0.38 4" = 0.66 6" = 1.5 8" = 2.6

Well Sampling Field Data Sheet

Client Name: 1153 Owner LLC

1153-69 West Fayette Street BCP Site Remedial Investigation Site Name:

AB2.002.002 Project No.:

Field Staff: JT

SAMPLE DATA

WELL DATA				SAMPLE DATA					
ate	12/13/2024		Sample Date	12/13/2024					
ne	7:30		Sample Time	8:25					
ater meter utilized and date last librated			Sampler Initials	JT					
ell Number	MW-	-106	Sample I.D.	MW-106 RC	OUND 1				
D Reading (ppm)	0.0								
ameter (inches)	2.0		Dupe Collected?	✓ Yes ☐ No	ID: DUP ROUND 1				
tal Sounded Depth (feet)	19.69		MS Collected?	✓ Yes 🗌 No	ID: MS ROUND 1				
atic Water Level (feet)	11.76		MSD Collected?	☑ Yes ☐ No	ID: MSD ROUND 1				
O Column (feet)	7.93		Trip Blank Collected?	✓ Yes □ No	ID: TRIP BLANK				
ımp Intake (feet)	19.00		EQ Blank Collected?	✓ Yes 🗌 No	ID: FIELD BLANK				
ell Volume (gallons)	1.29		Comments						
nount to Evacuate (gallons)	NA		Extra parameters not colle	cted at this Well.					
nount Evacuated (gallons)	2.75								

FIELD READINGS

Date	Stabilization	12/13/2024							
Time	Criteria	7:50	7:56	8:01	8:07	8:13	8:18	8:23	
Volume Extracted	gallons	0.75	1	1.5	2	2.25	2.5	2.75	
Static Water Level (feet)	NA	11.88	11.86	11.85	11.85	11.85	11.85	11.85	
pH (Std. Units)	+/-0.1	6.49	6.34	6.31	6.3	6.29	6.29	6.29	
Conductivity (mS/cm)	3%	3.6	3.63	3.63	3.64	3.64	3.65	3.66	
Turbidity (NTU)	10%	251	168	127	87.5	61.7	44.5	35.7	
D.O. (mg/L)	10%	1.16	0.88	0.77	0.67	0.6	0.59	0.59	
Temperature (°C) (°F)	3%	12.34	11.76	11.79	12.03	12.11	12.07	12.06	
ORP ³ (mV)	+/-10 mv	97	96	95	94	92	91	90	
Appearance		Т	Т	ST	ST	ST	С	С	
Free Product (Yes/No)		No	No	No	No	No	No	No	
Odor		None	None	None	None	None	None	None	

Date	Stabilization				
Time	Criteria				
Volume Extracted	gallons				
Static Water Level (feet)	NA				
pH (Std. Units)	+/-0.1				
Conductivity (mS/cm)	3%				
Turbidity (NTU)	10%				
D.O. (mg/L)	10%				
Temperature (°C) (°F)	3%				
ORP ³ (mV)	+/-10 mv				
Appearance					
Free Product (Yes/No)					
Odor					

C = Clear T = Turbid ST = Semi Turbid VT = Very Turbid

Comments	
Initial Purge -	7:30

calibrated Well Number

PID Reading (ppm)

Diameter (inches)

Pump Intake (feet)

Well Volume (gallons)

Amount to Evacuate (gallons)

Amount Evacuated (gallons)

Total Sounded Depth (feet)

Static Water Level (feet)
H₂O Column (feet)

C&S Engineers, Inc. 499 Col Eileen Collins Blvd Syracuse, NY 13212 Phone: 315-455-2000 Fax: 315-455-9667 www.cscos.com

WELL DATA

12/13/2024

11:15

0.0

2.0 19.66

7.02

12.64

19.00 2.06

NA

3.65

MW-107

Well Casing Unit Volume

(gal/l.f.)

 $1\frac{1}{4}$ " = 0.08 2" = 0.17 3" = 0.38 4" = 0.66 6" = 1.5 8" = 2.6

Water meter utilized and date last

Well Sampling Field Data Sheet

Client Name: 1153 Owner LLC

Site Name: 1153-69 West Fayette Street BCP Site Remedial Investigation

Project No.: AB2.002.002

Field Staff: JT

SAMPLE DATA

	O/ 11111 =	
Sample Date	12/13/2024	
Sample Time	12:15	
Sampler Initials	JT	
Sample I.D.	MW-107 RC	OUND 1
Dupe Collected?	☐ Yes ☑ No	ID:
MS Collected?	☐ Yes ☑ No	ID:
MSD Collected?	☐ Yes ☑ No	ID:
Trip Blank Collected?	✓ Yes □ No	ID: TRIP BLANK
EQ Blank Collected?	✓ Yes 🗌 No	ID: FIELD BLANK
Comments Extra parameters not collec	ted at this well.	

FIELD READINGS

			I ILL		-				
Date	Stabilization	12/13/2024							
Time	Criteria	11:25	11:30	11:35	11:40	11:45	11:50	11:55	12:00
Volume Extracted	gallons	0.5	0.75	1.25	1.5	1.75	2	2.5	3
Static Water Level (feet)	NA	7.3	7.3	7.3	7.3	7.29	7.3	7.3	7.3
pH (Std. Units)	+/-0.1	6.71	6.7	6.92	7.08	7.16	7.05	7.02	7.17
Conductivity (mS/cm)	3%	16.3	15.7	13.4	12.6	12.3	13.3	12.8	13.55
Turbidity (NTU)	10%	216	184	105	54.9	32.7	36.5	30.3	27
D.O. (mg/L)	10%	0.56	0.49	0.46	0.44	0.4	0.35	0.34	0.35
Temperature (°C) (°F)	3%	12.55	12.73	12.91	13.11	13.27	13.19	13.23	13.49
ORP ³ (mV)	+/-10 mv	-206	-208	-229	-240	-244	-235	-234	-244
Appearance		ST	ST	ST	ST	ST	ST	ST	ST
Free Product (Yes/No)		No	No	No	No	No	No	No	No
Odor		None	None	None	None	None	None	None	None

Date	Stabilization	12/13/2024					
Time	Criteria	12:05	12:08	12:11	12:13		
Volume Extracted	gallons	3.25	3.35	3.5	3.65		
Static Water Level (feet)	NA	7.3	7.3	7.3	7.3		
pH (Std. Units)	+/-0.1	7.23	7.24	7.25	7.25		
Conductivity (mS/cm)	3%	12.4	12.4	12.4	12.4		
Turbidity (NTU)	10%	20	6.4	14.8	5.9		
D.O. (mg/L)	10%	0.34	0.34	0.33	0.32		
Temperature (°C) (°F)	3%	13.66	13.75	13.78	13.72		
ORP ³ (mV)	+/-10 mv	-248	-249	-249	-249		
Appearance		ST	ST	ST	ST		
Free Product (Yes/No)		No	No	No	No		
Odor		None	None	None	None		

C = Clear T = Turbid ST = Semi Turbid VT = Very Turbid

Comments

Initial Purge - 11:15

Well Casing Unit Volume

(gal/l.f.)

 $1\frac{1}{4}$ " = 0.08 2" = 0.17 3" = 0.38 4" = 0.66 6" = 1.5 8" = 2.6

Well Sampling Field Data Sheet

Client Name: 1153 Owner LLC

Site Name: 1153-69 West Fayette Street BCP Site Remedial Investigation

Project No.: AB2.002.002

Field Staff: CD

WELL DATA

Date	2/12/2025	
Time	15:25	
Water meter utilized and date last calibrated		
Well Number	MW	-101
PID Reading (ppm)	0.0	
Diameter (inches)	2.0	
Total Sounded Depth (feet)	13.54	
Static Water Level (feet)	10.17	
H ₂ O Column (feet)	3.37	
Pump Intake (feet)	13.00	
Well Volume (gallons)	0.55	
Amount to Evacuate (gallons)	NA	
Amount Evacuated (gallons)	4.50	

SAMPLE DATA

Sample Date	2/12/2025	2/12/2025					
Sample Time	14:20						
Sampler Initials	CD	CD					
Sample I.D.	MW-101 RC	OUND 2					
Dupe Collected?	☐ Yes ☑ No	ID:					
MS Collected?	☐ Yes ☑ No	ID:					
MSD Collected?	☐ Yes ☑ No	ID:					
Trip Blank Collected?	✓ Yes □ No	ID: TRIP BLANK					
EQ Blank Collected?	✓ Yes ☐ No	ID: FIELD BLANK					
Comments No 1,4-dioxane, collected Pl	FAS						

FIELD READINGS

Date	Stabilization	2/12/2025							
Time	Criteria	15:35	15:40	15:45	15:50	15:55	16:00	16:05	16:10
Volume Extracted	gallons	0.5	1	1.5	2	2.5	3	3.5	4
Static Water Level (feet)	NA	10.17	10.17	10.17	10.17	10.17	10.17	10.17	10.17
pH (Std. Units)	+/-0.1	7.33	7.17	7.13	7.12	7.09	7.07	7.06	7.05
Conductivity (mS/cm)	3%	2.86	2.96	2.97	2.96	2.95	2.95	2.94	2.94
Turbidity (NTU)	10%	54.4	16.3	11.5	9.3	7.8	4.8	1.9	1.3
D.O. (mg/L)	10%	9.57	8.25	7.27	6.87	6.2	5.81	4.47	4.45
Temperature (°C) (°F)	3%	9.03	10.23	10.28	10.27	10.47	10.34	10.37	10.4
ORP ³ (mV)	+/-10 mv	-156	-193	-194	-193	-193	-191	-187	-187
Appearance		С	С	С	С	С	С	С	С
Free Product (Yes/No)		No	No	No	No	No	No	No	No
Odor		None	None	None	None	None	None	None	None

Date	Stabilization	2/12/2025				
Time	Criteria	16:15				
Volume Extracted	gallons	4.5				
Static Water Level (feet)	NA	10.17				
pH (Std. Units)	+/-0.1	7.05				
Conductivity (mS/cm)	3%	2.94				
Turbidity (NTU)	10%	0.8				
D.O. (mg/L)	10%	4.35				
Temperature (°C) (°F)	3%	10.39				
ORP ³ (mV)	+/-10 mv	-186				
Appearance		С				
Free Product (Yes/No)		No				
Odor		None				

C = Clear T = Turbid ST = Semi Turbid VT = Very Turbid

Comments

All parameters stable, turbidity below 5. Collecting sample.

Well Casing Unit Volume

(gal/l.f.)

1½" = 0.08 2" = 0.17 3" = 0.38 4" = 0.66 6" = 1.5 8" = 2.6

Well Sampling Field Data Sheet

Client Name: 1153 Owner LLC

Site Name: 1153-69 West Fayette Street BCP Site Remedial Investigation

Project No.: AB2.002.002

Field Staff: CD

WELL DATA

	- ,	
Date	2/11/2025	
Time	9:35	
Water meter utilized and date last calibrated		
Well Number	MW	-102
PID Reading (ppm)	0.0	
Diameter (inches)	2.0	
Total Sounded Depth (feet)	19.98	
Static Water Level (feet)	7.28	
H ₂ O Column (feet)	12.70	
Pump Intake (feet)	18.00	
Well Volume (gallons)	2.07	
Amount to Evacuate (gallons)	NA	
Amount Evacuated (gallons)	3.00	

SAMPLE DATA

Sample Date	2/11/2025						
Sample Time	16:15	16:15					
Sampler Initials	CD	CD					
Sample I.D.	MW-102 RC	OUND 2					
	•						
Dupe Collected?	☐ Yes ☑ No	ID:					
MS Collected?	☐ Yes ☑ No	ID:					
MSD Collected?	☐ Yes ☑ No	ID:					
Trip Blank Collected?	✓ Yes □ No	ID: TRIP BLANK					
EQ Blank Collected?	☐ Yes ☑ No	ID:					
Comments No PFAS or 1,4-dioxane							

FIELD READINGS

Date	Stabilization	2/11/2025						
Time	Criteria	15:45	15:50	15:55	16:00	16:05	16:10	
Volume Extracted	gallons	0.5	1	1.5	2	2.5	3	
Static Water Level (feet)	NA	7.39	7.39	7.39	7.39	7.39	7.39	
pH (Std. Units)	+/-0.1	7.29	7.21	7.16	7.14	7.13	7.14	
Conductivity (mS/cm)	3%	1.84	1.76	1.75	1.74	1.74	1.74	
Turbidity (NTU)	10%	34.8	14.9	2.7	0	1.2	0	
D.O. (mg/L)	10%	1.62	0.53	0.35	0.28	0.28	0.27	
Temperature (°C) (°F)	3%	11.51	11.51	11.41	11.44	11.62	11.64	
ORP ³ (mV)	+/-10 mv	-111	-127	-131	-132	-134	-134	
Appearance		С	С	С	С	С	С	
Free Product (Yes/No)		No	No	No	No	No	No	
Odor		None	None	None	None	None	None	

Date	Stabilization				
Time	Criteria				
Volume Extracted	gallons				
Static Water Level (feet)	NA				
pH (Std. Units)	+/-0.1				
Conductivity (mS/cm)	3%				
Turbidity (NTU)	10%				
D.O. (mg/L)	10%				
Temperature (°C) (°F)	3%				
ORP ³ (mV)	+/-10 mv				
Appearance					
Free Product (Yes/No)					
Odor					

C = Clear T = Turbid ST = Semi Turbid VT = Very Turbid

Comments

All parameters stable, turbidity below 5. Collecting sample.

Well Casing Unit Volume

(gal/l.f.)

 $1\frac{1}{4}$ " = 0.08 2" = 0.17 3" = 0.38 4" = 0.66 6" = 1.5 8" = 2.6

Well Sampling Field Data Sheet

Client Name: 1153 Owner LLC

Site Name: 1153-69 West Fayette Street BCP Site Remedial Investigation

Project No.: AB2.002.002

Field Staff: CD

WELL DATA

Date	2/11/2025				
Time	10:00				
Water meter utilized and date last calibrated					
Well Number	MW-103				
PID Reading (ppm)	2.0				
Diameter (inches)	2.0				
Total Sounded Depth (feet)	19.83				
Static Water Level (feet)	11.33				
H ₂ O Column (feet)	8.50				
Pump Intake (feet)	18.00				
Well Volume (gallons)	1.39				
Amount to Evacuate (gallons)	NA				
Amount Evacuated (gallons)	4.50				

SAMPLE DATA

Sample Date	2/12/2025	2/12/2025					
Sample Time	14:45						
Sampler Initials	CD	CD					
Sample I.D.	MW-103 RC	MW-103 ROUND 2					
Dupe Collected?	☐ Yes ☑ No	ID:					
MS Collected?	☐ Yes ☑ No	ID:					
MSD Collected?	☐ Yes ☑ No	ID:					
Trip Blank Collected?	✓ Yes ☐ No	ID: TRIP BLANK					
EQ Blank Collected?	☐ Yes ☑ No	ID:					
Comments No PFAS or 1,4-dioxane Extra parameters collected	•						

FIELD READINGS

Date	Stabilization	2/12/2025							
Time	Criteria	14:00	14:05	14:10	14:15	14:20	14:25	14:30	14:35
Volume Extracted	gallons	0.5	1	1.5	2	2.5	3	3.5	4
Static Water Level (feet)	NA	11.48	11.5	11.51	11.52	11.5	11.5	11.5	11.5
pH (Std. Units)	+/-0.1	7.64	7.47	7.35	7.29	7.25	7.2	7.16	7.14
Conductivity (mS/cm)	3%	3.83	3.84	3.79	3.7	3.58	3.5	3.37	3.32
Turbidity (NTU)	10%	7.2	2.7	1.2	0.9	0.9	0	0.5	0.5
D.O. (mg/L)	10%	5.26	0.97	0.53	0.44	0.39	0.36	0.29	0.29
Temperature (°C) (°F)	3%	10.27	10.4	10.47	10.51	10.29	10.47	10.88	10.93
ORP ³ (mV)	+/-10 mv	-162	-211	-270	-275	-276	-278	-280	-281
Appearance		С	С	С	С	С	С	С	С
Free Product (Yes/No)		No	No	No	No	No	No	No	No
Odor		Sulfur	Sulfur	Sulfur	Sulfur	Sulfur	None	None	None

Date	Stabilization	2/12/2025				
Time	Criteria	14:40				
Volume Extracted	gallons	4.5				
Static Water Level (feet)	NA	11.5				
pH (Std. Units)	+/-0.1	7.11				
Conductivity (mS/cm)	3%	3.28				
Turbidity (NTU)	10%	0.5				
D.O. (mg/L)	10%	0.29				
Temperature (°C) (°F)	3%	10.84				
ORP ³ (mV)	+/-10 mv	-281				
Appearance		С				
Free Product (Yes/No)		No				
Odor		Sulfur				

C = Clear T = Turbid ST = Semi Turbid VT = Very Turbid

Comments

All parameters stable. Collecting sample.

Well Casing Unit Volume

(gal/l.f.)

1½" = 0.08 2" = 0.17 3" = 0.38 4" = 0.66 6" = 1.5 8" = 2.6

Well Sampling Field Data Sheet

Client Name: 1153 Owner LLC

Site Name: 1153-69 West Fayette Street BCP Site Remedial Investigation

Project No.: AB2.002.002

Field Staff: CD

WELL DATA

Date	2/11/2025	
Time	11:00	
Water meter utilized and date last calibrated		
Well Number	MW	-104
PID Reading (ppm)	0.0	
Diameter (inches)	2.0	
Total Sounded Depth (feet)	19.41	
Static Water Level (feet)	8.29	
H ₂ O Column (feet)	11.12	
Pump Intake (feet)	18.00	
Well Volume (gallons)	1.81	
Amount to Evacuate (gallons)	NA	
Amount Evacuated (gallons)	4.00	

SAMPLE DATA

Sample Date	2/11/2025	2/11/2025					
Sample Time	14:20	14:20					
Sampler Initials	CD	CD					
Sample I.D.	MW-104 RC	OUND 2					
Dupe Collected?	☐ Yes ☑ No	ID:					
MS Collected?	☐ Yes ☑ No	ID:					
MSD Collected?	☐ Yes ☑ No	ID:					
Trip Blank Collected?	✓ Yes □ No	ID: TRIP BLANK					
EQ Blank Collected?	☐ Yes ☑ No	ID:					
Comments No PFAS or 1,4-dioxane							

FIELD READINGS

Date	Stabilization	2/11/2025							
Time	Criteria	13:40	13:45	13:50	13:55	14:00	14:05	14:10	14:15
Volume Extracted	gallons	0.5	1	1.5	2	2.5	3	3.5	4
Static Water Level (feet)	NA	8.87	8.87	8.89	8.91	8.92	8.93	8.94	8.95
pH (Std. Units)	+/-0.1	7.26	7.16	7.14	7.13	7.13	7.13	7.13	7.13
Conductivity (mS/cm)	3%	1.33	1.33	1.34	1.34	1.36	1.35	1.35	1.35
Turbidity (NTU)	10%	79.9	78.8	39.5	23.2	17.8	14.5	12.4	9.7
D.O. (mg/L)	10%	4.65	3.15	2.74	3.26	2.72	2.02	1.98	1.86
Temperature (°C) (°F)	3%	13.35	13.34	13.35	13.31	13.37	13.27	13.22	13.33
ORP ³ (mV)	+/-10 mv	-108	-117	-121	-122	-124	-124	-123	-123
Appearance		С	С	С	С	С	С	С	С
Free Product (Yes/No)		No	No	No	No	No	No	No	No
Odor		None	None	None	None	None	None	None	None

Date	Stabilization				
Time	Criteria				
Volume Extracted	gallons				
Static Water Level (feet)	NA				
pH (Std. Units)	+/-0.1				
Conductivity (mS/cm)	3%				
Turbidity (NTU)	10%				
D.O. (mg/L)	10%				
Temperature (°C) (°F)	3%				
ORP ³ (mV)	+/-10 mv				
Appearance					
Free Product (Yes/No)					
Odor					

C = Clear T = Turbid ST = Semi Turbid VT = Very Turbid

Comments

All parameters stable, turbidity below 10. Collecting sample.

Well Casing Unit Volume

(gal/l.f.)

 $1\frac{1}{4}$ " = 0.08 2" = 0.17 3" = 0.38 4" = 0.66 6" = 1.5 8" = 2.6

Well Sampling Field Data Sheet

Client Name: 1153 Owner LLC

Site Name: 1153-69 West Fayette Street BCP Site Remedial Investigation

Project No.: AB2.002.002

Field Staff: CD

WELL DATA

Date	2/11/2025	
Time	10:30	
Water meter utilized and date last calibrated		
Well Number	MW	-105
PID Reading (ppm)	0.0	
Diameter (inches)	2.0	
Total Sounded Depth (feet)	19.37	
Static Water Level (feet)	7.15	
H ₂ O Column (feet)	12.22	
Pump Intake (feet)	18.00	
Well Volume (gallons)	1.99	
Amount to Evacuate (gallons)	NA	
Amount Evacuated (gallons)	5.00	

SAMPLE DATA

	0 , =						
Sample Date	2/11/2025						
Sample Time	12:45						
Sampler Initials	CD	CD					
Sample I.D.	MW-105 RC	OUND 2					
Dupe Collected?	✓ Yes ☐ No	ID: DUP ROUND 2					
MS Collected?	✓ Yes ☐ No	ID: MS ROUND 2					
MSD Collected?	☑ Yes ☐ No	ID: MSD ROUND 2					
Trip Blank Collected?	✓ Yes ☐ No	ID: TRIP BLANK					
EQ Blank Collected?	☐ Yes ☑ No	ID:					
Comments No PFAS or 1,4-dioxane							

FIELD READINGS

Date	Stabilization	2/11/2025							
Time	Criteria	11:55	12:00	12:05	12:10	12:15	12:20	12:25	12:30
Volume Extracted	gallons	0.5	1	1.5	2	2.5	3	3.5	4
Static Water Level (feet)	NA	7.15	7.15	7.15	7.15	7.15	7.15	7.15	7.15
pH (Std. Units)	+/-0.1	7.49	7.2	7.15	7.13	7.15	7.17	7.19	7.19
Conductivity (mS/cm)	3%	1.4	1.39	1.39	1.39	1.39	1.38	1.4	1.39
Turbidity (NTU)	10%	105	113	114	82.9	56.2	38.3	30.7	16.3
D.O. (mg/L)	10%	1.82	0.91	0.82	0.5	0.49	0.37	0.29	0.23
Temperature (°C) (°F)	3%	13.3	13.81	13.87	13.93	13.85	13.93	13.98	13.97
ORP ³ (mV)	+/-10 mv	-83	-90	-96	-100	-103	-106	-108	-109
Appearance		С	С	С	С	С	С	С	С
Free Product (Yes/No)		No	No	No	No	No	No	No	No
Odor		None	None	None	None	None	None	None	None

Date	Stabilization	2/11/2025				
Time	Criteria	12:35	12:40			
Volume Extracted	gallons	4.5	5			
Static Water Level (feet)	NA	7.15	7.15			
pH (Std. Units)	+/-0.1	7.19	7.2			
Conductivity (mS/cm)	3%	1.4	1.39			
Turbidity (NTU)	10%	7.7	4.9			
D.O. (mg/L)	10%	0.25	0.25			
Temperature (°C) (°F)	3%	13.98	13.97			
ORP ³ (mV)	+/-10 mv	-109	-110			
Appearance		С	С			
Free Product (Yes/No)		No	No			
Odor		None	None			

C = Clear T = Turbid ST = Semi Turbid VT = Very Turbid

Comments

All parameters stable, turbidity below 5. Collecting sample.

Well Casing Unit Volume

(gal/l.f.)

 $1\frac{1}{4}$ " = 0.08 2" = 0.17 3" = 0.38 4" = 0.66 6" = 1.5 8" = 2.6

Well Sampling Field Data Sheet

Client Name: 1153 Owner LLC

Site Name: 1153-69 West Fayette Street BCP Site Remedial Investigation

Project No.: AB2.002.002

Field Staff: CD

WELL DATA

Date	2/11/2025	
Time	9:25	
Water meter utilized and date last calibrated		
Well Number	MW	-106
PID Reading (ppm)	0.0	
Diameter (inches)	2.0	
Total Sounded Depth (feet)	19.69	
Static Water Level (feet)	12.12	
H ₂ O Column (feet)	7.57	
Pump Intake (feet)	18.00	
Well Volume (gallons)	1.24	
Amount to Evacuate (gallons)	NA	
Amount Evacuated (gallons)	5.25	

SAMPLE DATA

Sample Date	2/11/2025	2/11/2025					
Sample Time	15:25	15:25					
Sampler Initials	CD	CD					
Sample I.D.	MW-106 RC	OUND 2					
Dupe Collected?	☐ Yes ☑ No	ID:					
MS Collected?	☐ Yes ☑ No	ID:					
MSD Collected?	☐ Yes ☑ No	ID:					
Trip Blank Collected?	✓ Yes ☐ No	ID: TRIP BLANK					
EQ Blank Collected?	☐ Yes ☑ No	ID:					
Comments No PFAS or 1,4-dioxane							

FIELD READINGS

Date	Stabilization	2/11/2025							
Time	Criteria	14:40	14:45	14:50	14:55	15:00	15:05	15:10	15:15
Volume Extracted	gallons	0.5	1	1.5	2	2.5	3	3.5	4
Static Water Level (feet)	NA	12.19	12.19	12.2	12.2	12.2	12.2	12.2	12.2
pH (Std. Units)	+/-0.1	7.4	7.29	7.26	7.24	7.23	7.22	7.22	7.22
Conductivity (mS/cm)	3%	3.58	3.62	3.63	3.66	3.69	3.7	3.72	3.72
Turbidity (NTU)	10%	24.1	17.1	17.6	8.8	7.3	4.9	4.1	3.3
D.O. (mg/L)	10%	9.53	8.12	7.22	6.36	5.59	5.04	4.55	4.25
Temperature (°C) (°F)	3%	11.38	11.72	11.88	11.87	11.79	11.84	11.89	11.83
ORP ³ (mV)	+/-10 mv	41	44	39	40	44	45	47	48
Appearance		С	С	С	С	С	С	С	С
Free Product (Yes/No)		No	No	No	No	No	No	No	No
Odor		None	None	None	None	None	None	None	None

Date	Stabilization	2/11/2025					
Time	Criteria	15:18	15:21	15:24			
Volume Extracted	gallons	4.75	5	5.25			
Static Water Level (feet)	NA	12.2	12.2	12.2			
pH (Std. Units)	+/-0.1	7.21	7.22	7.22			
Conductivity (mS/cm)	3%	3.73	3.74	3.74			
Turbidity (NTU)	10%	2.5	2.6	1.9			
D.O. (mg/L)	10%	3.84	3.63	3.48			
Temperature (°C) (°F)	3%	11.95	11.88	11.84			
ORP ³ (mV)	+/-10 mv	49	51	52			
Appearance		С	С	С			
Free Product (Yes/No)		No	No	No			
Odor		None	None	None			

C = Clear T = Turbid ST = Semi Turbid VT = Very Turbid

Comments

All parameters stable, turbidity below 5. Collecting sample.

Well Casing Unit Volume

(gal/l.f.)

 $1\frac{1}{4}$ " = 0.08 2" = 0.17 3" = 0.38 4" = 0.66 6" = 1.5 8" = 2.6

Well Sampling Field Data Sheet

Client Name: 1153 Owner LLC

Site Name: 1153-69 West Fayette Street BCP Site Remedial Investigation

Project No.: AB2.002.002

Field Staff: CD

WELL DATA

Date	2/11/2025	
Time	10:35	
Water meter utilized and date last calibrated		
Well Number	MW	-107
PID Reading (ppm)	0.0	
Diameter (inches)	2.0	
Total Sounded Depth (feet)	19.66	
Static Water Level (feet)	7.82	
H ₂ O Column (feet)	11.84	
Pump Intake (feet)	18.00	
Well Volume (gallons)	1.93	
Amount to Evacuate (gallons)	NA	
Amount Evacuated (gallons)	6.50	
	•	

SAMPLE DATA

Sample Date	2/12/2025					
Sample Time	13:30	13:30				
Sampler Initials	CD					
Sample I.D.	MW-107 RC	OUND 2				
Dupe Collected?	☐ Yes ☑ No	ID:				
MS Collected?	☐ Yes ☑ No	ID:				
MSD Collected?	☐ Yes ☑ No	ID:				
Trip Blank Collected?	✓ Yes ☐ No	ID: TRIP BLANK				
EQ Blank Collected?	✓ Yes 🗌 No	ID: FIELD BLANK				
Comments No 1,4-dioxane, collected Pf	FAS					

FIELD READINGS

Date	Stabilization	2/12/2025							
Time	Criteria	12:25	12:30	12:35	12:40	12:45	12:50	12:55	13:00
Volume Extracted	gallons	0.5	1	1.5	2	2.5	3	3.5	4
Static Water Level (feet)	NA	7.92	7.93	7.96	7.98	7.98	7.98	7.98	7.99
pH (Std. Units)	+/-0.1	7.45	7.61	7.68	7.68	7.69	7.72	7.75	7.77
Conductivity (mS/cm)	3%	11.2	6.45	3.18	3.31	3.54	3.61	3.69	3.87
Turbidity (NTU)	10%	94.5	188	82.5	49.7	30.7	21.6	16.3	12.1
D.O. (mg/L)	10%	2.21	1.17	0.7	0.56	0.54	0.48	0.5	0.43
Temperature (°C) (°F)	3%	10.54	11.19	11.41	11.65	11.62	11.8	11.83	11.74
ORP ³ (mV)	+/-10 mv	-81	-102	-114	-120	-138	-145	-152	-156
Appearance		С	С	С	С	С	С	С	С
Free Product (Yes/No)		No	No	No	No	No	No	No	No
Odor		None	None	None	None	None	None	None	None

Date	Stabilization	2/12/2025						
Time	Criteria	13:05	13:10	13:15	13:20	13:25		
Volume Extracted	gallons	4.5	5	5.5	6	6.5		
Static Water Level (feet)	NA	7.99	7.99	7.99	7.99	7.99		
pH (Std. Units)	+/-0.1	7.79	7.81	7.84	7.8	7.81		
Conductivity (mS/cm)	3%	4.07	4.26	4.74	4.79	4.82		
Turbidity (NTU)	10%	7.7	5.3	24.5	24.2	24.3		
D.O. (mg/L)	10%	0.46	0.34	0.26	0.25	0.24		
Temperature (°C) (°F)	3%	11.69	11.79	11.65	11.74	11.89		
ORP ³ (mV)	+/-10 mv	-159	-162	-160	-161	-164		
Appearance		С	С	С	С	С		
Free Product (Yes/No)		No	No	No	No	No		
Odor		None	None	None	None	None		

C = Clear T = Turbid ST = Semi Turbid VT = Very Turbid

Comments

All parameters stable. Collecting sample.

Building Questionnaire and Product Inventory

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer's Name Claire Del Fatti Date/Time Prepared 12/3/24 @ 0730 Preparer's Affiliation CtS Engineers, Inc. Phone No. 315-455-2000
Purpose of Investigation Remedial Investigation for 1153-69 West Fayette Street BCP Site (No. C73416A)
1. OCCUPANT:
Interviewed: (Y) N
Last Name: <u>Walters</u> First Name: <u>Aaron</u> , <u>representing</u> Hueber-Breuer Construction Company, Inc. County: <u>Onondaga</u> (1153 Owner LL)
County: Onondaga (1153 Owner LL)
Home Phone: 16 - 7917 Office Phone: 315-476-7917
Number of Occupants/persons at this location & Age of Occupants Na Property is under renovation, not currently occupied. 2. OWNER OR LANDLORD: (Check if same as occupant X)
Interviewed: YIN N/a, See above
Last Name:First Name:
Address:
County:
Home Phone: Office Phone:
3. BUILDING CHARACTERISTICS Type of Building: (Circle appropriate response)
Residential School Commercial/Multi-use, Currently under Industrial Church Other: renovation

If the property is residential,	type? (Circle appropriat	te response) n/a, not residential								
Ranch Raised Ranch Cape Cod Duplex Modular	2-Family Split Level Contemporary Apartment House Log Home	3-Family Colonial Mobile Home Townhouses/Condos Other:								
If multiple units, how many?	n/a									
If the property is commercial										
Business Type(s) Unde	r renovation, f	Future Public Safety Building for Syracuse Police and Fire								
Does it include residences	(i.e., multi-use)? Y	If yes, how many? NO PONCE and THE								
4. AIRFLOW Use air current tubes or trace Airflow between floors	er smoke to evaluate ai	rflow patterns and qualitatively describe:								
n/a										
Airflow near source										
Outdoor air infiltration Many windows IS expected that the building, esp Infiltration into air ducts Air ducts are no		oles in ceilings and walls. It was air infiltration throughout attached barn.								

5	5. BASEMENT AND CONSTRUC	TION CHARA	ACTERISTICS (Main Blog	Circle all that ap	
	a. Above grade construction:	wood frame	(concrete	stone	brick Steel
		Main		Barn	3 (33)
	b. Basement type: Barn	full Bldg		(slab)	other
	c. Basement floor:	(concrete)	dirt Hain	stone	other
	d. Basement floor: Rain BIOQ	uncovered	covered	covered with _	
	e. Concrete floor:	unsealed	sealed	sealed with	
	f. Foundation walls:	poured	block	stone	other
	g. Foundation walls:	unsealed	sealed Mai	nsealed with(unknown
	h. The basement is:	wet	damp	dry	moldy
	i. The basement is:	finished	unfinished	partially finish	ed
	j. Sump present?	YN			
	•	not applicable			
]	Basement/Lowest level depth below	grade: 4	_(feet) In Cra	wispace,	barn is slab on grade
	dentify potential soil vapor entry po				
[Toors are generally in	good con	dition with	no crack	ina.
-	There are 2 access pair	nts to the	crawispace	e, one on t	the east side and
<u>(</u>	one on the west side o	f the 6-s	iory main!	building.	
	6. HEATING, VENTING and AIR	CONDITION	ING (Circle all th	at apply)	
	Гуре of heating system(s) used in thi	s building: (cir	cle all that apply	– note primary	y)
previous	Hot air circulation	Heat pump	Hot wa	ater baseboard	
1	Space Heaters	Stream radiat	ion Radiar	nt floor	on his there is no
	Electric baseboard	Wood stove	Outdo	or wood boiler	heat in the
,	The primary type of fuel used is: $ \bigwedge $	la, no hec	it currently		other n/a, there is no heat in the building currently
	Natural Gas Previousiu Electric	Fuel Oil Propane	Kerose Solar	ene	
	Wood	Coal pre			
]	Domestic hot water tank fueled by:	not curre	ently in use	, was na	tural gas powered
	Boiler/furnace located in: Basen			Luis .	Other n/a, not currently
	Air conditioning: Centra	al Air Wind	low units Open	Windows	None n/a, not currently in use
		4			inuse
		préviou	isty		

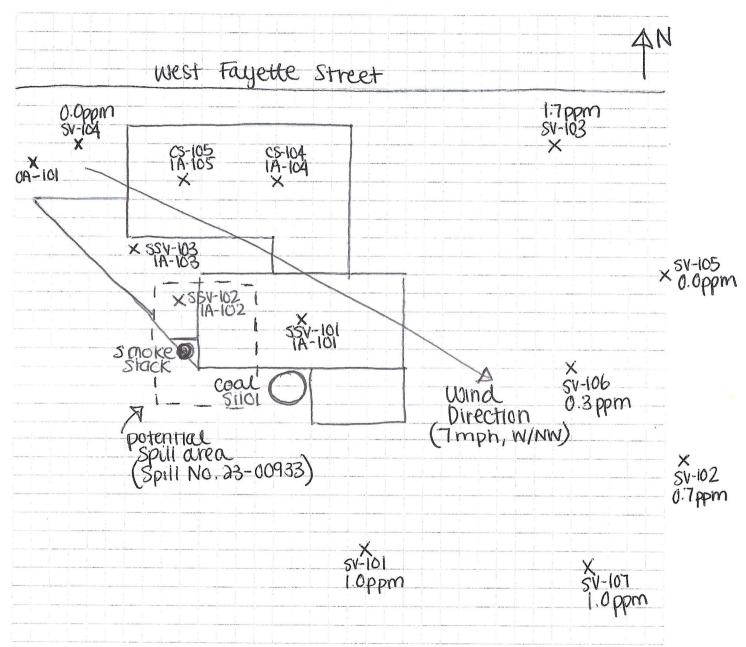
Are there air distribution ducts present?

Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

n/a-th	e ductwork is not currently	operational. The building has
	cant-for almost a year and	
7. OCCUP	ANCY	Main Blog Crainispace
Is basement	/lowest level occupied? Full-time Occa	sionally Seldom Almost Never 18 not Occupied,
Level	General Use of Each Floor (e.g., familyroo	la rn'ic
Basement	Crawispace	currently accupied.
1st Floor	Office/storage - currently	racant /
2 nd Floor	Office/storage-currently	ALL FLANCE AND
3 rd Floor	Office Storage - currently	1 04,40, 14,0,43,10,10,
4 th Floor – 6	oth Floor: Storage - current	1
8. FACTOR	RS THAT MAY INFLUENCE INDOOR AIR O	
a. Is there	an attached garage?	(Y)N - Attached Barn
b. Does th	e garage have a separate heating unit?	Y/N(NA) - Heating not in use
-	roleum-powered machines or vehicles n the garage (e.g., lawnmower, atv, car)	Y) N/NA Please specify for KIAH, RV, GeoProbe
d. Has the	building ever had a fire?	Y (N) When? Not to our knowledge
e. Is a ker	osene or unvented gas space heater present?	Y (N) Where?
f. Is there	a workshop or hobby/craft area?	(Y) N Where & Type? Former woodworking
g. Is there	smoking in the building?	YN Where & Type? Former woodworking Shop on West end of Y (N) How frequently? barn
h. Have cl	eaning products been used recently?	Y N When & Type?
i. Have co	smetic products been used recently?	Y(N) When & Type?

j. Has painting/staining been done in the last 6 months?	Y N Where & When?
k. Is there new carpet, drapes or other textiles?	Y (N) Where & When?
l. Have air fresheners been used recently?	Y (N) When & Type?
m. Is there a kitchen exhaust fan?	Y/N If yes, where vented? n/a, not operational
n. Is there a bathroom exhaust fan?	Y/N If yes, where vented? Ma, not operational
o. Is there a clothes dryer?	Y N If yes, is it vented outside? Y / N
p. Has there been a pesticide application?	Y (N) When & Type?
Are there odors in the building? If yes, please describe:	YN
Do any of the building occupants use solvents at work? (e.g., chemical manufacturing or laboratory, auto mechanic or a boiler mechanic, pesticide application, cosmetologist	YN NOT OCCUPIED uto body shop, painting, fuel oil delivery,
If yes, what types of solvents are used? \(\bigcap \alpha \)	
If yes, are their clothes washed at work?	YAN n/a
Do any of the building occupants regularly use or work at a response)	dry-cleaning service? (Circle appropriate
Yes, use dry-cleaning regularly (weekly) Yes, use dry-cleaning infrequently (monthly or less) Yes, work at a dry-cleaning service	No Not occupied
Is there a radon mitigation system for the building/structure Is the system active or passive? Active/Passive Michael Active Mic	e? Y N Date of Installation: N C
9. WATER AND SEWAGE	
Water Supply: Public Water Drilled Well Driver	n Well Dug Well Other:
Sewage Disposal: Public Sewer Septic Tank Leach	Field Dry Well Other:
10. RELOCATION INFORMATION (for oil spill residentia	
a. Provide reasons why relocation is recommended: $_$ $\!$,
b. Residents choose to: remain in home relocate to frie	ends/family relocate to hotel/motel Ma
c. Responsibility for costs associated with reimbursemen	nt explained? Y/N N/O
d. Relocation package provided and explained to resider	nts? YN N/Q

11. FLOOR PLANS


Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:						
Please	ease refer to attached drawing. here is a crawl space beneath the 6-story main building he attached barn is slab on grade. t Floor: ease refer to attached drawing.					
There the c	is a crai	ul space carn is s	beneat lab on a	n the 6- grade.	story m	ain building
The Table State Control of the Contr						
First Floor:		011001				
Picuse	refer to	attaiche	a araw	ing.		

12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

- Outdoor Air PID readings were all O. Oppm. Sub-surface PID readings are indicated on the drawing.

- Please see attached drawings for the NYSDEC/NYSDOH approved soil vapor sampling and monitoring well locations.

13. PRODUCT INVENTORY FORM

Make & Model of field instrument used: MiniRAE 3000+

List specific products found in the residence that have the potential to affect indoor air quality.

	Location	Product Description	Size (units)	Condition*	Chemical In	gredients	Field Instrument Reading (units)	Photo ** Y/N
0P 1	Jain Bldg	Joint Compound	5gal	U	see attached	photolog	0.0ppm	y
		The Banapovanet	1 gal	D		'	0.0ppm	Y
	4	Primer Spray	12 OZ	U	ALL DESIGNATION OF THE PROPERTY OF THE PROPERT		0.0ppm	Ý
	s side of Main Blog	Unknown Paint?	Residu	u U			0.0ppm	y
	N Side of Barn	Jx Butane Spray	5.5 cz	U			0.0ppm	4
		Spray Adhesive	lioz	N			O.Oppm	V
		Gear Oil	19t	U			O.Oppm	У
	d and the second	Bearing Grease	(boz	U			0.0 ppm	Y
	4	Workable Fixatif	11 OZ	U			0.0ppm	ÿ
	NN Corner of Barn	30x Paints/Stains	Igal	U			0.0 ppm	Ÿ
	4	3x Paints/Stains	2902	u			0.0ppm	У
		Enamel	8 OZ	y			0.000m	У
	Shall Price account of	Polyurethane	802	Ü			0.0 ppm	Y
		Spray Primer	1202	u	n .		0.0ppm	У
	The state of the s	Sealer	5gal	U			29 ppm	Y
	Qualitative and a second		5gal	U			0.0ppm	Y
-		2x Floor Adhesive	Igal	U			O. Oppm	Y
		2x Floor Polish	Igal	U			O. Oppm	Y
	4	Pink Fram Scap	1202	U	4		0.0ppm	Y

^{*} Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

^{**} Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

13. PRODUCT INVENTORY FORM

Make & Model of field instrument used: Minik	THE DUUUT
--	-----------

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (units)	Photo ** Y/N
NW Corner of Barn	Floor Stripper	Igal	U	see attached photolog	0. Oppm	У
	Comet	8oz	U		O. Oppm	У
	2x Primer Spray	1202	U		0.0 ppm	ý
	Foam Seglant	1602	U		0.0 ppm	У
	Spray Paint	1202	U		0.0ppm	У
Giftenes de constante de consta	Adhesive	4991	U		0.0 ppm	γ
RESIDENCE OF THE PARTY OF THE P	Waterproofer	4001	U		O. Oppm	У
National Printers and Printers	Polyurethane	lat	W		O.Oppm	У
Red)udenzioniste	Primer/Sedier	lat	U		0.0 ppm	Y
	Laquer Thinner	4 gal	U		0.0 ppm 6000 ppm w	then open
	Laquer Thinner	Igal	U		0.0 ppm	Y
Company of the Compan	Care Catalyst	lgal	U		0.0 ppm	Y
	2x Bin+Thinner	Igal	U		0.0ppm	У
	ax Gasoline Cans	2gal	u		0.0 ppm	У
	Used Oil	Igal	U		0.0ppm	Y
	2x Crack Filler	Igal	U		O.Oppm	У
	Floor Stripper	Igal	U		0.0ppm	Y
ang pangananan a	Muriadic Acid	Igal	U		0.0 ppm	Y
4	Adhesive	3,5ga	ll	4	0.0ppm	Y

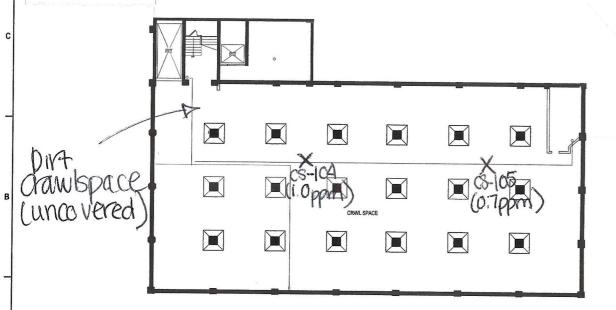
^{*} Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

^{**} Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

13. PRODUCT INVENTORY FORM

Make & Model of field instrument used:	MiniRAE	3000+	
--	---------	-------	--

List specific products found in the residence that have the potential to affect indoor air quality.

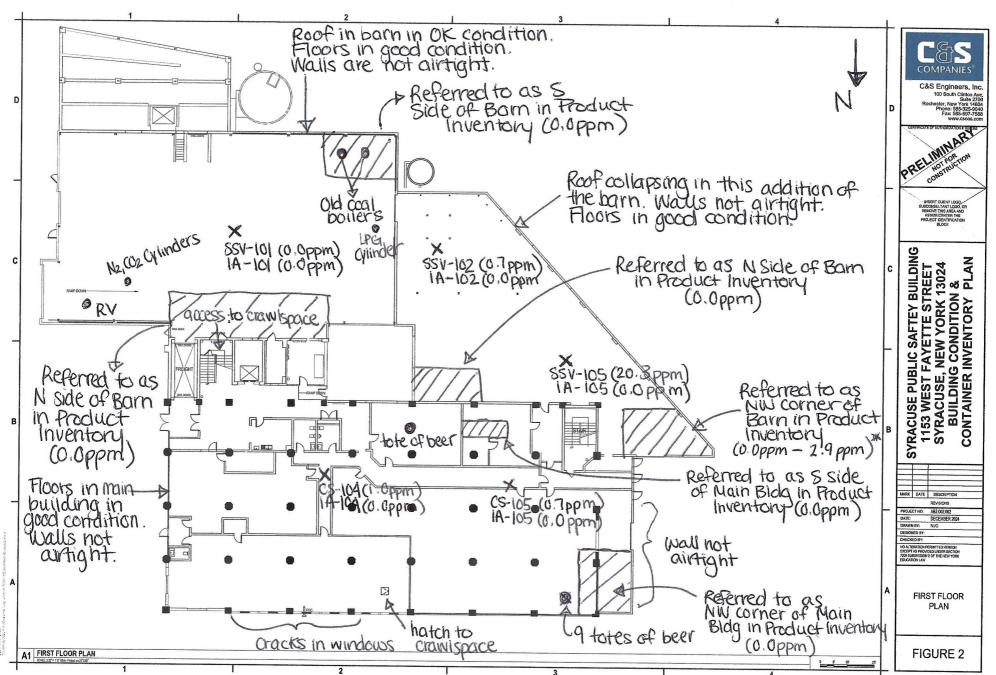

Location	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (units)	Photo ** Y/N
NW Comer of Barn	5x Unknown	5 gal	U	see attached photolog	O. Oppm	У
	ax Paint	5gal	U		0.0ppm	y
8 side	Propane Cylinder	401bs	U		0.0ppm	У
of Barn	2x Unknown	55 gal	U		0.0 ppm	ÿ
NEIDE		40 lbs	4		0.0ppm	Y
N Side of Barn	30x Paints/Stains	1 gal	Wou		0.0ppm	Ý
	Mineral Oil	55 gal	U		O, Oppm	У
4	9x CO2/N2 Cylinders	10-40	lbs U	+	0.0ppm	Y
	•				11	

^{*} Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

^{**} Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

Crawispace not physically explored due to safety concerns see next figure for in-depth notes regarding building condition.

COMPANIES

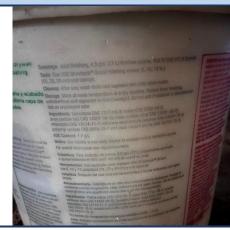

SYRACUSE PUBLIC SAFTEY BUILDING
1153 WEST FAYETTE STREET
SYRACUSE, NEW YORK 13024
BUILDING CONDITION &
CONTAINER INVENTORY PLAN

CRAWLSPACE FLOOR PLAN

FIGURE 1

Crawispace for 6-story main Building. No basement for the barn (slab on grade).

A1 CRAWLSPACE PLAN



16 5 gal bucket of lacquer thinner was 6000 ppm when opened but 0.0 ppm when sealed shot. The bucket was sealed during sampling.

Front of 5-gallon joint compound in northwest corner of main building.

Photo 2

Back of 5-gallon joint compound in northwest corner of main building.

Photo 3

Front of 1-gallon paint in northwest corner of main building (back not visible due to deterioration).

Photo 4

Front of 12-ounce primer spray in northwest corner of main building.

Photo 5

Back of 12-ounce primer spray in northwest corner of main building.

Photo 6

Residual painting supplies on the south side of the main building.

C&S Engineers, Inc. 499 Col. Eileen Collins Blvd. Syracuse, New York 13212

Photographic Log

1153-69 West Fayette Street BCP Site (C734164) Syracuse, NY Project #: AB2.002.002

Date: 12/3/2024

Front of two 5.5-ounce butane sprays on the north side of the barn.

Photo 8

Back of two 5.5-ounce butane sprays on the north side of the barn.

Photo 9

Front of 11-ounce spray adhesive on the north side of the barn.

Photo 10

Back of 11-ounce spray adhesive on the north side of the barn.

Photo 11

Front of 1-quart of gear oil on the north side of the barn.

Back of 1-quart of gear oil on the north side of the barn.

C&S Engineers, Inc. 499 Col. Eileen Collins Blvd. Syracuse, New York 13212 **Photographic Log** 1153-69 West Fayette

Street BCP Site (C734164) Syracuse, NY Project #: AB2.002.002

Date: 12/3/2024

Front of 16-ounce bearing grease on the north side of the barn.

Photo 14

Back of 16-ounce bearing grease on the north side of the barn.

Photo 15

Front of 11-ounce Workable Fixatif on the north side of the barn.

Photo 16

Back of 11-ounce Workable Fixatif on the north side of the barn.

Photo 17

Front of paints, stains, enamel, polyurethane, and primer in the northwest corner of the barn.

Photo 18

Back of paints, stains, enamel, polyurethane, and primer in the northwest corner of the barn.

C&S Engineers, Inc. 499 Col. Eileen Collins Blvd. Syracuse, New York 13212

Photographic Log

1153-69 West Fayette Street BCP Site (C734164) Syracuse, NY Project #: AB2.002.002

Date: 12/3/2024

Front of 5-gallon sealer in the northwest corner of the barn.

Photo 20

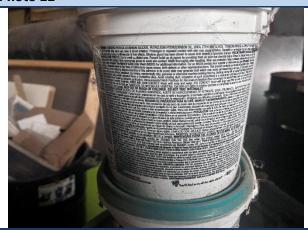

Back of 5-gallon sealer in the northwest corner of the barn.

Photo 21

Front of two 1-gallon floor adhesives in the northwest corner of the barn.

Photo 22

Back of two 1-gallon floor adhesives in the northwest corner of the barn.

Photo 23

Front of two 1-gallon floor polishes in the northwest corner of the barn.

Photo 24

Back of two 1-gallon floor polishes in the northwest corner of the barn.

C&S Engineers, Inc. 499 Col. Eileen Collins Blvd. Syracuse, New York 13212

Photographic Log

1153-69 West Fayette Street BCP Site (C734164) Syracuse, NY Project #: AB2.002.002

Date: 12/3/2024

Front of 42-ounce pink foam soap in the northwest corner of the barn.

Photo 26

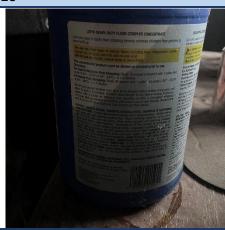

Back of 42-ounce pink foam soap in the northwest corner of the barn.

Photo 27

Front of 1-gallon floor stripper in the northwest corner of the barn.

Photo 28

Back of 1-gallon floor stripper in the northwest corner of the barn.

Photo 29

Front of 8-ounce Comet in the northwest corner of the barn.

Back of 8-ounce Comet in the northwest corner of the barn.

C&S Engineers, Inc. 499 Col. Eileen Collins Blvd. Syracuse, New York 13212

Photographic Log

1153-69 West Fayette Street BCP Site (C734164) Syracuse, NY Project #: AB2.002.002

Date: 12/3/2024

Front of two 12-ounce primer sprays in the northwest corner of the barn.

Photo 32

Back of two 12-ounce primer sprays in the northwest corner of the barn.

Photo 33

Front of 16-oz foam sealant and 12-oz spray paint in the northwest corner of the barn.

Photo 34

Back of 12-oz spray paint in the northwest corner of the barn.

Photo 35

Back of 16-oz foam sealant in the northwest corner of the barn.

Photo 36

Front of primer, sealer, and polyurethane in the northwest corner of the barn.

C&S Engineers, Inc. 499 Col. Eileen Collins Blvd. Syracuse, New York 13212

Photographic Log

1153-69 West Fayette Street BCP Site (C734164) Syracuse, NY Project #: AB2.002.002

Date: 12/3/2024

Front of 4-gallon adhesive and 4-gallon water proofer in the northwest corner of the barn.

Front of 4-gallon adhesive in the northwest corner of the barn.

Photo 39

Back of 4-gallon water proofer in the northwest corner of the barn.

Photo 40

Photo 42

Front of 4-gallon unlabeled bucket of lacquer thinner in the northwest corner of the barn.

Photo 41

Front of 1-gallon lacquer thinner in the northwest corner of the barn.

Back of 1-gallon lacquer thinner in the northwest corner of the barn.

C&S Engineers, Inc. 499 Col. Eileen Collins Blvd. Syracuse, New York 13212

Photographic Log

1153-69 West Fayette Street BCP Site (C734164) Syracuse, NY Project #: AB2.002.002

Date: 12/3/2024

Front of 4-gallon adhesive and 4-gallon water proofer in the northwest corner of the barn.

Photo 44

Front of 4-gallon adhesive in the northwest corner of the barn.

Photo 45

Front of 1-gallon paint thinners and 2-gallon gasoline cans in the northwest corner of the barn.

Photo 46

Front of 1-gallon of used motor oil in the northwest corner of the barn.

Photo 47

Front of crack filler, floor stripper, and muriadic acid in the northwest corner of the barn.

Photo 48

Front of 3.5-gallon adhesive, 5-gallon paints, and unknown contents in the northwest corner of the barn.

C&S Engineers, Inc. 499 Col. Eileen Collins Blvd. Syracuse, New York 13212

Photographic Log

1153-69 West Fayette Street BCP Site (C734164) Syracuse, NY Project #: AB2.002.002

Date: 12/3/2024

Front of 40-pund propane cylinder in the northwest corner of the barn.

Photo 50

Front of two 55-gallon drums with unknown contents and no labels on the south side of the barn.

Photo 51

Front of paints and stains on the north side of the barn.

Photo 52

Front of 55-gallon drum of mineral oil on the north side of the barn.

Photo 53

Higher quality photos can be accessed at the following OneDrive Link if needed:

<u>Product Inventory Photos</u>

Front of carbon dioxide and nitrogen gas cylinders on the north side of the barn.

C&S Engineers, Inc. 499 Col. Eileen Collins Blvd. Syracuse, New York 13212 Photographic Log 1153-69 West Fayette Street BCP Site (C734164) Syracuse, NY Project #: AB2.002.002

Date: 12/3/2024

Soil Vapor Implant Construction Logs

	C&S Engineers, Inc. 499 Col Eileen Collins Blvd	SOIL	VAPOR IMPLANT	Soil Vapor Implant No.:	SV-101
	Syracuse, NY 13212 Phone: 315-455-2000			Project No.:	AB2.002.002
COMPANIES	Fax: 315-455-9667 www.cscos.com	CON	STRUCTION LOG	Surface Elev.:	AD2.002.002
Project Name: 1153	-69 West Fayette Street Remed	lial Investigati	ion	Datum:	
Location: Syrac		aoogaa	<u> </u>	Start Date/Time:	12/2/24
Client: 1153				Finish Date/Time:	12/4/24
	ler Environmental Services	Drill Rig:	GeoProbe 6011DT	Inspector:	CD
g	0'-0" Top Protective Ca				
	(If used) 0'-0" Ground Surface	.eg	Depth to Groundwater (Based	on Nearby Borings)	
				on rearby bornigs)	
	Backfill Material Soil Cuttings Bentonite Slurry X Cement/Bentonite Concrete Depth To: 0'-0" Top of Seal Seal Material Bentonite Chips/Pe Bentonite Slurry X Cement/Bentonite 3.25' Top of Filter P 4.25' Top of Screen	Grout ellets Grout ack	Measure Length of Screen We 2.75" Length of Weight in I Vapor Implant Material 6" Length of Screen SS Implant Material	<u>ight</u>	
	O.375" Screen Diamet Screen Filter Material X Glass Beads	ter			
	4.75' Bottom of Scre	een			
	5' Bottom of Bor	e Hole			

	C&S Engineers, Inc. 499 Col Eileen Collins Blvd	SOIL	VAPOR IMPLANT	Soil Vapor Implant No.:	SV-102
	Syracuse, NY 13212 Phone: 315-455-2000			Project No.:	AB2.002.002
COMPANIES	Fax: 315-455-9667 www.cscos.com	CON	STRUCTION LOG	Surface Elev.:	AB2.002.002
Project Name: 1153-6	69 West Fayette Street Remed	lial Investigati	ion	Datum:	
Location: Syracu				Start Date/Time:	12/2/24
Client: 1153 (Finish Date/Time:	12/6/24
Drilling Firm: Sessle	er Environmental Services	Drill Rig:	GeoProbe 6011DT	Inspector:	CD
	0'-0" Top Protective Ca	sing			
	(If used)	-			
	0'-0" Ground Surface		Depth to Groundwater (Based	on Nearby Borings)	
	Backfill Material Soil Cuttings Bentonite Slurry X Cement/Bentonite Concrete Depth To: 0'-0" Top of Seal Seal Material Bentonite Chips/Pe Bentonite Slurry X Cement/Bentonite	Grout ellets Grout	Measure Length of Screen We 2.75" Length of Weight in I Vapor Implant Material 6" Length of Screen SS Implant Material		
	4.25' Top of Screen				
	0.375" Screen Diamet Screen Filter Material X Glass Beads	ter			
	4.75' Bottom of Scre	een			
	5' Bottom of Boro	e Hole			

	0005				
	C&S Engineers, Inc. 499 Col Eileen Collins Blvd	SOIL	VAPOR IMPLANT	Soil Vapor Implant No.:	SV-103
	Syracuse, NY 13212 Phone: 315-455-2000			Project No.:	AB2.002.002
COMPANIES	Fax: 315-455-9667 www.cscos.com	CON	STRUCTION LOG	Surface Elev.:	AB2.002.002
Project Name: 1153	-69 West Fayette Street Remed	lial Investigat	ion	Datum:	
Location: Syrac				Start Date/Time:	12/2/24
Client: 1153				Finish Date/Time:	12/4/24
Drilling Firm: Sess	ler Environmental Services	Drill Rig:	GeoProbe 6011DT	Inspector:	CD
	0'-0" Top Protective Ca	sing			
	(If used)	-	Double to Consumbation (Double	an Manda Barinaa	
	0'-0" Ground Surface		Depth to Groundwater (Based	on Nearby Borings)	
	Backfill Material Soil Cuttings Bentonite Slurry X Cement/Bentonite Concrete Depth To: 0'-0" Top of Seal Seal Material Bentonite Chips/PeBentonite Slurry X Cement/Bentonite 3.25' Top of Filter P 4.25' Top of Screen 0.375" Screen Diameter	Grout ellets Grout ack	Measure Length of Screen We 2.75" Length of Weight in I Vapor Implant Material 6" Length of Screen SS Implant Material	<u>ight</u>	
	Screen Filter Material X Glass Beads 4.75' Bottom of Screen	oon			
	5' Bottom of Bor				

	C&S Engineers, Inc. 499 Col Eileen Collins Blvd	SOIL	VAPOR IMPLANT	Soil Vapor Implant No.:	SV-104
	Syracuse, NY 13212 Phone: 315-455-2000			Project No.:	AB2.002.002
COMPANIES	Fax: 315-455-9667 www.cscos.com	CON	STRUCTION LOG	Surface Elev.:	AB2.002.002
Project Name: 1153-	69 West Fayette Street Remed	lial Investigat	ion	Datum:	
Location: Syrac				Start Date/Time:	12/2/24
Client: 1153				Finish Date/Time:	12/6/24
Drilling Firm: Sessi	er Environmental Services	Drill Rig:	GeoProbe 6011DT	Inspector:	CD
	0'-0" Top Protective Ca			<u> </u>	
	(If used)	3	Don'th to Cusum huston (Done d	on Moonhy Bosin on	
	0'-0" Ground Surface		Depth to Groundwater (Based	on Nearby Borings)	
	Backfill Material Soil Cuttings Bentonite Slurry X Cement/Bentonite Concrete Depth To: 0'-0" Top of Seal Seal Material Bentonite Chips/Pe Bentonite Slurry X Cement/Bentonite 3.25' Top of Filter P 4.25' Top of Screen 0.375" Screen Diameter	Grout ellets Grout	Measure Length of Screen We 2.75" Length of Weight in I Vapor Implant Material 6" Length of Screen SS Implant Material	<u>ight</u>	
	Screen Filter Material X Glass Beads 4.75' Bottom of Screen	oon			
	5' Bottom of Bor				

	-	C&S Engineers, Inc. 499 Col Eileen Collins Blvd	SOII	VAPOR IMPLANT	Soil Vapor Implant No.:	SV-105
		Syracuse, NY 13212 Phone: 315-455-2000				AB2.002.002
COMPAN	IIES	Fax: 315-455-9667 www.cscos.com	CON	STRUCTION LOG	Surface Elev.:	AB2.002.002
Project Name	1153-6	9 West Fayette Street Remed	ial Investigat	ion	Datum:	
Location:			iai ii iv ootigat		Start Date/Time:	12/2/24
		wner LLC			Finish Date/Time:	12/6/24
		r Environmental Services	Drill Rig:	GeoProbe 6011DT	Inspector:	CD
21g 1	0000.0.	0'-0" Top Protective Ca		333.1323.33.12.	mepeeteri	0.5
		(If used)	ionig			
		0'-0" Ground Surface		Depth to Groundwater (Ba 10' Feet Below Grad		
		2.75" Bore Hole Diamet	er	Measure Length of Screen		
×				2.75" Length of Weight		
×		Backfill Material Soil Cuttings Bentonite Slurry Cement/Bentonite Concrete	Grout	Vapor Implant Material 6" Length of Screen SS Implant Material	1	
		Depth To: O'-0" Top of Seal Seal Material Bentonite Chips/Pe Bentonite Slurry X Cement/Bentonite				
		3.25' Top of Filter P	ack			
		4.25' Top of Screen				
		0.375" Screen Diamet	er			
		Screen Filter Material X Glass Beads				
		4.75' Bottom of Scre	een			
		5' Bottom of Bor	e Hole			

	3	C&S Engineers, Inc. 499 Col Eileen Collins Blvd Syracuse, NY 13212	SOIL	VAPO	R IMPLANT	Soil Vapor Implant No.:	SV-106
COMPAN	UEG	Phone: 315-455-2000 Fax: 315-455-9667	CON	STRUC	CTION LOG	Project No.:	AB2.002.002
COMPAN	IIE2	www.cscos.com				Surface Elev.:	
		9 West Fayette Street Remed	ial Investigati	on		Datum:	
	Syracus					Start Date/Time:	11/27/24
		wner LLC		•		Finish Date/Time:	12/4/24
Drilling Firm:	Sessler	r Environmental Services	Drill Rig:	Ge	oProbe 6011DT	Inspector:	CD
		O'-0" Top Protective Ca (If used) O'-0" Ground Surface	sing	Depth to	Groundwater (Based Feet Below Grade	on Nearby Borings)	
		2.75" Bore Hole Diamet	er		Length of Screen We		
		Backfill Material Soil Cuttings Bentonite Slurry Cement/Bentonite Concrete Depth To: 0'-0" Top of Seal Seal Material Bentonite Chips/Pe Bentonite Slurry X Cement/Bentonite	ellets	Vapor Imp	olant Material Length of Screen Implant Material		
		3.25' Top of Filter Pa	ack				
		0.375" Screen Diamet	er				
		Screen Filter Material X Glass Beads					
		4.75' Bottom of Scre					
		5' Bottom of Bore	e Hole				

	7	C&S Engineers, Inc. 499 Col Eileen Collins Blvd	SOIL	VAPOR IMPLANT	Soil Vapor Implant No.:	SV-107
		Syracuse, NY 13212 Phone: 315-455-2000			Project No.:	AB2.002.002
COMPAN	IIES	Fax: 315-455-9667 www.cscos.com	CON	ISTRUCTION LOG	Surface Elev.:	AB2.002.002
Proiect Name:	1153-6	9 West Fayette Street Remed	ial Investigat	ion	Datum:	
Location:					Start Date/Time:	11/27/24
	-	wner LLC			Finish Date/Time:	12/4/24
Drilling Firm:	Sesslei	r Environmental Services	Drill Rig:	GeoProbe 6011DT	Inspector:	CD
	•	0'-0" Top Protective Ca			•	
		(If used)	J			
		0'-0" Ground Surface		Depth to Groundwater (Base	d on Nearby Borings)	
	X	2.75" Bore Hole Diamet	er	Feet Below Grade Measure Length of Screen W		
		Backfill Material		2.75" Length of Weight in	Inches	
		Soil Cuttings Bentonite Slurry Cement/Bentonite Concrete	Grout	Vapor Implant Material6"Length of ScreenSSImplant Material		
		Depth To: O'-O" Top of Seal Seal Material Bentonite Chips/Pe Bentonite Slurry Cement/Bentonite				
		3.25' Top of Filter P	ack			
		4.25' Top of Screen				
		0.375" Screen Diame	er			
		Screen Filter Material X Glass Beads				
		4.75' Bottom of Scro				
		DOTTOIN OF BOI	e noie			

Community Air Monitoring Plan

Community Air Monitoring Plan for 1153-69 West Fayette Street

1153-69 West Fayette Street City of Syracuse, Onondaga County, New York

BCP Site No. C734164

Prepared by:

C&S Engineers, Inc. 499 Col Eileen Collins Blvd. Syracuse, New York 13212

July 2024 Revised November 2024

Overview

A Community Air Monitoring Plan (CAMP) requires real-time monitoring for volatile organic compounds (VOCs) and particulates (i.e., dust) at the downwind perimeter of each designated work area when certain activities are in progress at contaminated sites. The CAMP is not intended for use in establishing action levels for worker respiratory protection. Rather, its intent is to provide a measure of protection for the downwind community (i.e., off-site receptors including residences and businesses and on-site workers not directly involved with the subject work activities) from potential airborne contaminant releases as a direct result of investigative and remedial work activities. The action levels specified herein require increased monitoring, corrective actions to abate emissions, and/or work shutdown. Additionally, the CAMP helps to confirm that work activities did not spread contamination off-site through the air.

Depending upon the nature of known or potential contaminants at each site, real-time air monitoring for VOCs and / or particulate levels at the perimeter of the exclusion zone or work area will be necessary.

Continuous monitoring will be required for all ground intrusive activities and during the demolition of contaminated or potentially contaminated structures. Ground intrusive activities include, but are not limited to, soil / waste excavation and handling, test pitting or trenching, and the installation of soil borings or monitoring wells.

Periodic monitoring for VOCs will be required during non-intrusive activities such as the collection of soil and sediment samples or the collection of groundwater samples from existing monitoring wells. "Periodic" monitoring during sample collection might reasonably consist of taking a reading upon arrival at a sample location, monitoring while opening a well cap or overturning soil, monitoring during well baling / purging, and taking a reading prior to leaving a sample location. In some instances, depending upon the proximity of potentially exposed individuals, continuous monitoring may be required during sampling activities. Examples of such situations include groundwater sampling at wells on the curb of a busy urban street, in the midst of a public park, or adjacent to a school or residence.

Daily CAMP reports will be provided to New York State Department of Environmental Conservation (NYSDEC) and New York State Department of Health (NYSDOH) project managers. The reports will consist of figures showing work zones and monitoring stations and downloaded CAMP data. The daily reports will summarize any CAMP exceedances and the corrective actions taken. Any CAMP exceedances will be reported to NYSDEC and NYSDOH project managers within one business day.

VOC Monitoring, Response Levels, and Actions

Volatile organic compounds (VOCs) must be monitored at the downwind perimeter of the immediate work area (i.e., the exclusion zone) on a continuous basis or as otherwise specified. Upwind concentrations should be measured at the start of each workday and periodically

Community Air Monitoring Plan

thereafter to establish background conditions, particularly if wind direction changes. The monitoring work should be performed using equipment appropriate to measure the types of contaminants known or suspected to be present. The equipment should be calibrated at least daily for the contaminant(s) of concern or for an appropriate surrogate, such as isobutylene. The equipment should be capable of calculating 15-minute running average concentrations, which will be compared to the levels specified below:

- 1. If the ambient air concentration of total organic vapors at the downwind perimeter of the work area or exclusion zone exceeds 5 parts per million (ppm) above background for the 15-minute average, work activities must be temporarily halted and monitoring continued. If the total organic vapor level readily decreases (per instantaneous readings) below 5 ppm over background, work activities can resume with continued monitoring.
- 2. If total organic vapor levels at the downwind perimeter of the work area or exclusion zone persist at levels in excess of 5 ppm over background but less than 25 ppm, work activities must be halted, the source of vapors identified, corrective actions taken to abate emissions, and monitoring continued. After these steps, work activities can resume provided that the total organic vapor level 200 feet downwind of the exclusion zone or half the distance to the nearest potential receptor or residential/commercial structure, whichever is less but in no case less than 20 feet, is below 5 ppm over background for the 15-minute average.
- 3. If the organic vapor level is above 25 ppm at the perimeter of the work area, activities must be shutdown.
- 4. All 15-minute readings must be recorded and be available for State (DEC and NYSDOH) personnel to review. Instantaneous readings, if any, used for decision purposes should also be recorded.

Particulate Monitoring, Response Levels, and Actions

Particulate concentrations should be monitored continuously at the upwind and downwind perimeters of the exclusion zone at temporary particulate monitoring stations. The particulate monitoring should be performed using real-time monitoring equipment capable of measuring particulate matter less than 10 micrometers in size (PM-10) and capable of integrating over a period of 15 minutes (or less) for comparison to the airborne particulate action level. The equipment must be equipped with an audible alarm to indicate exceedance of the action level. In addition, fugitive dust migration should be visually assessed during all work activities.

1. If the downwind PM-10 particulate level is 100 micrograms per cubic meter (µg/m³) greater than background (upwind perimeter) for the 15-minute period or if airborne dust is observed leaving the work area, then dust suppression techniques must be employed. Work may continue with dust suppression techniques provided that downwind PM-10

particulate levels do not exceed 150 $\mu g/m^3$ above the upwind level and provided that no visible dust is migrating from the work area.

- 2. If, after implementation of dust suppression techniques, downwind PM-10 particulate levels are greater than 150 $\mu g/m^3$ above the upwind level, work must be stopped and a re-evaluation of activities initiated. Work can resume provided that dust suppression measures and other controls are successful in reducing the downwind PM-10 particulate concentration to within 150 $\mu g/m^3$ of the upwind level and in preventing visible dust migration.
- 3. All readings must be recorded and be available for State (DEC and NYSDOH) personnel to review.

Fugitive Dust and Particulate Monitoring

A program for suppressing fugitive dust and particulate matter monitoring at hazardous waste sites is a responsibility on the remedial party performing the work. These procedures must be incorporated into appropriate intrusive work plans. The following fugitive dust suppression and particulate monitoring program should be employed at sites during construction and other intrusive activities which warrant its use:

- 1. Reasonable fugitive dust suppression techniques must be employed during all site activities which may generate fugitive dust.
- Particulate monitoring must be employed during the handling of waste or contaminated soil or when activities on site may generate fugitive dust from exposed waste or contaminated soil. Remedial activities may also include the excavation, grading, or placement of clean fill. These control measures should not be considered necessary for these activities.
- 3. Particulate monitoring must be performed using real-time particulate monitors and shall monitor particulate matter less than ten microns (PM10) with the following minimum performance standards:
 - a. Objects to be measured: Dust, mists or aerosols;
 - b. Measurement Ranges: 0.001 to 400 mg/m³ (1 to 400,000 μg/m³);
 - c. Precision (2-sigma) at constant temperature: +/- 10 g/m³ for one second averaging; and +/- 1.5 g/m³ for sixty second averaging;
 - d. Accuracy: +/- 5% of reading +/- precision (Referred to gravimetric calibration with SAE fine test dust (mmd= 2 to 3 m, g= 2.5, as aerosolized);
 - e. Resolution: 0.1% of reading or 1 g/m³, whichever is larger;
 - f. Particle Size Range of Maximum Response: 0.1-10;
 - g. Total Number of Data Points in Memory: 10,000;

Community Air Monitoring Plan

- h. Logged Data: Each data point with average concentration, time / date and data point number;
- Run Summary: overall average, maximum concentrations, time / date of maximum, total number of logged points, start time / date, total elapsed time (run duration), STEL concentration and time / date occurrence, averaging (logging) period, calibration factor, and tag number;
- j. Alarm Averaging Time (user selectable): real-time (1-60 seconds) or STEL (15 minutes), alarms required;
- k. Operating Time: 48 hours (fully charged NiCd battery); continuously with charger;
- l. Operating Temperature: -10 to 50°C (14 to 122°F); and
- m. Particulate levels will be monitored upwind and immediately downwind at the working site and integrated over a period not to exceed 15 minutes.
- 4. In order to ensure the validity of the fugitive dust measurements performed, there must be appropriate Quality Assurance / Quality Control (QA / QC). It is the responsibility of the remedial party to adequately supplement QA / QC Plans to include the following critical features: periodic instrument calibration, operator training, daily instrument performance (span) checks, and a record-keeping plan.
- 5. The action level will be established at 150 µg/m³ (15 minutes average). While conservative, this short-term interval will provide a real-time assessment of on-site air quality to assure both health and safety. If particulate levels are detected in excess of 150 µg/m³, the upwind background level must be confirmed immediately. If the working site particulate measurement is greater than 100 µg/m³ above the background level, additional dust suppression techniques must be implemented to reduce the generation of fugitive dust and corrective action taken to protect site personnel and reduce the potential for contaminant migration. Corrective measures may include increasing the level of personal protection for on-site personnel and implementing additional dust suppression techniques (see paragraph 7). Should the action level of 150 µg/m³ continue to be exceeded work must stop and DER must be notified as provided in the site design or remedial work plan. The notification shall include a description of the control measures implemented to prevent further exceedances.
- 6. It must be recognized that the generation of dust from waste or contaminated soil that migrates off-site, has the potential for transporting contaminants off-site. There may be situations when dust is being generated and leaving the site and the monitoring equipment does not measure PM-10 at or above the action level. Since this situation has the potential to allow for the migration of contaminants off-site, it is unacceptable. While it is not practical to quantify total suspended particulates on a real-time basis, it is appropriate to rely on visual observation. If dust is observed leaving the working site, additional dust suppression techniques must be employed.
- 7. The following techniques have been shown to be effective for the controlling of the generation and migration of dust during construction activities:

- a. Applying water on haul roads;
- b. Wetting equipment and excavation faces;
- c. Spraying water on buckets during excavation and dumping;
- d. Hauling materials in properly tarped or watertight containers;
- e. Restricting vehicle speeds to 10 miles per hour (mph);
- f. Covering excavated areas and material after excavation activity ceases; and
- g. Reducing the excavation size and/or number of excavations.

Experience has shown that the chance of exceeding the 150 μ g/m³ action level is remote when the above-mentioned techniques are used. When techniques involving water application are used, care must be taken not to use excess water, which can result in unacceptably wet conditions. Using atomizing sprays will prevent overly wet conditions, conserve water, and provide an effective means of suppressing the fugitive dust.

- 8. The evaluation of weather conditions is necessary for proper fugitive dust control. When extreme wind conditions make dust control ineffective, as a last resort remedial actions may need to be suspended. There may be situations that require fugitive dust suppression and particulate monitoring requirements with action levels more stringent than those provided above. Under some circumstances, the contaminant concentration and / or toxicity may require additional monitoring to protect site personnel and the public. Additional integrated sampling and chemical analysis of the dust may also be in order. This must be evaluated when a health and safety plan is developed and when appropriate suppression and monitoring requirements are established for protection of health and the environment.
- 9. CAMP action level exceedances and corrective actions will be reported to the Department within one business day.

Special Requirements:

In addition, or in combination with the above, the following special requirements apply for work within 20 feet of potentially exposed individuals or structures:

When work areas are within 20 feet of potentially exposed populations or occupied structures, the continuous monitoring locations for VOCs and particulates will reflect the nearest potentially exposed individuals and the location of ventilation system intakes for nearby structures. The use of engineering controls such as vapor / dust barriers, temporary negative-pressure enclosures, or special ventilation devices will be considered to prevent exposures related to the work activities and to control dust and odors. Consideration will be given to implementing the planned activities when potentially exposed populations are at a minimum, such as during weekends or evening hours in non-residential settings.

• If total VOC concentrations opposite the walls of occupied structures or next to intake vents exceed 1 ppm, monitoring will occur within the occupied structure(s). Depending upon the nature of contamination, chemical-specific colorimetric tubes of sufficient

Community Air Monitoring Plan

sensitivity may be necessary for comparing the exposure point concentrations with appropriate pre-determined response levels (response actions should also be pre-determined). Background readings in the occupied spaces must be taken prior to commencement of the planned work. Any unusual background readings should be discussed with NYSDOH prior to commencement of the work.

- If total particulate concentrations opposite the walls of occupied structures or next to intake vents exceed 150 µg/m³, work activities will be suspended until controls are implemented and are successful in reducing the total particulate concentration to 150 µg/m³ or less at the monitoring point.
- Depending upon the nature of contamination and remedial activities, other parameters (e.g., explosivity, oxygen, hydrogen sulfide, carbon monoxide) may also need to be monitored. Response levels and actions should be pre-determined, as necessary, for each site.

Unless a self-contained, negative-pressure enclosure with proper emission controls will encompass the work area, all individuals not directly involved with the planned work must be absent from the room in which the work will occur. Monitoring requirements are as stated above under "Special Requirements for Work within 20 Feet of Potentially Exposed Individuals or Structures" except that in this instance "nearby / occupied structures" would be adjacent occupied rooms. Additionally, the location of all exhaust vents in the room and their discharge points, as well as potential vapor pathways (openings, conduits, etc.) relative to adjoining rooms, shall be understood and the monitoring locations established accordingly. In these situations, exhaust fans or other engineering controls will be used to create negative air pressure within the work area during remedial activities. Additionally, the planned work will be implemented during hours (e.g. weekends or evenings) when building occupancy is at a minimum.

Appendix H

Data Usability Summary Report

Data Validation Services

120 Cobble Creek Road P. O. Box 208 North Creek, NY 12853 Phone (518) 251-4429 harry@frontiernet.net

May 30, 2025

Claire Del Fatti C&S Companies 499 Col. Eileen Collins Blvd. Syracuse, NY 13212

RE: Validation of the 1153-69 West Fayette Street Remedial Investigation
Brownfield Cleanup Program (BCP) Site Analytical Laboratory Data
Data Usability Summary Report (DUSR)
Pace/Alpha Analytical SDG Nos. L2469246, L2469590, L2469906, L2470407, L2471075, L2472298,
L2473175, L2473569, L2507633, and L2507955

Dear Ms. Del Fatti:

Review has been completed for the data packages generated by Pace/Alpha Analytical that pertain to samples collected between 11/22/24 and 02/12/25 at the 1153-69 West Fayette BCP site. Forty eight soil samples, three soil field duplicates, and one aqueous sample were processed for TCL and NYS 6 NYCRR Part 360 CP-51 (CP-51) volatile (VOA) analytes, TCL and 1,4-dioxane semivolatile (SVOA) analytes, TCL pesticides, TCL Aroclor PCBs, TCL herbicides, per- and polyfluoroalkyl substances (PFAS), TAL metals, total cyanide, and hexavalent chromium. Six aqueous samples and a field duplicate were processed for TCL and CP-51 volatiles, TCL and 1,4-dioxane semivolatiles, TCL Aroclor PCBs, PFAS, and TAL metals. Seven aqueous samples and a field duplicate were processed for TCL volatiles, TCL semivolatiles, TCL PCBs, and TAL metals. Two of these were also processed for PFAS, dissolved total cyanide, and dissolved hexavalent chromium, and one of them was also processed for pesticides and herbicides. Nine of the soil samples were also processed for Total Petroleum Hydrocarbons (TPH), and the aqueous samples were also processed for dissolved metals. Twelve soil samples were processed for TCL and CP-51 volatiles, TCL semivolatiles, and 1,4-dioxane. Nineteen 6 L air canisters were processed for volatile analytes. The analytical methodologies are those of the USEPA SW846, USEPA Draft Method 1633, and USEPA Method TO-15.

The data packages submitted by the laboratory contain full deliverables for validation, and this usability report is generated from review of the QC summary form information, with full review of sample raw data and limited review of associated QC raw data. The reported QC summary forms and sample raw data have been reviewed for application of validation qualifiers, with guidance from the USEPA national and regional validation documents and the specific requirements of the analytical methodology. The following items were reviewed:

- * Data Completeness
- * Case Narrative
- * Custody Documentation
- * Holding Times
- * Surrogate/Internal/Isotopic Dilution Standard Recoveries
- * Method/Preparation Blanks

- * Matrix Spike Recoveries/Duplicate Correlations
- * Blind Field Duplicate Correlations
- * Laboratory Control Sample (LCS)
- * Instrumental Tunes
- * Initial and Continuing Calibration Standards
- * Serial Dilution Evaluation
- * Method Compliance
- * Sample Result Verification

Those items listed above which show deficiencies are discussed within the text of this narrative. All of the other items were determined to be acceptable for the DUSR level review, as discussed in NYS DER-10 Appendix B Section 2.0 (c). Documentation of the outlying parameters cited in this report can be found in the laboratory data package.

In summary, the results for the samples are usable either as reported or with minor qualification or edit, with the exceptions of the following rejected data points, all apparently due to sample matrix:

- Twelve volatile analytes on five semivolatile analytes are rejected in SB_112 FILL due to matrix effects. Results for other samples with this matrix should be used with caution
- Two volatile analytes in one soil sample and two semivolatile analytes in each of two soil samples are rejected due to matrix effects
- Detected volatile analytes in two samples and one field duplicate are rejected due to inconsistent results
- Calcium and total cyanide in one sample and its field duplicate due to very poor correlations.

Data completeness, representativeness, reproducibility, and comparability are acceptable. Precision for certain of the soil matrices is poor, indicating potential non-homogeneity and/or matrix effects. No aqueous matrix accuracy evaluations were performed for pesticides and herbicides; field duplicate precision evaluations were performed for those analytical fractions.

Validation data qualifier definitions and client sample identifications are attached to this text. Also included in this report are the client EDDs with recommended qualifiers/edits applied in red.

Chain-of-Custody/Sample Receipt

The custody form for samples reported in SDG L2469590 requests the full analyte list for all samples; however, six of the samples were processed for volatile and semivolatile analytical fractions. This variance was not noted in the laboratory case narrative or on login forms.

No collection time was entered for one aqueous sample reported in L2507955; this was not noted on the laboratory login forms.

The interim laboratory receipt and/or relinquish entries were omitted or incomplete from some of the custody forms. The year was also omitted certain collection and interim relinquish dates.

The custody forms request 1,4-dioxane by SIM for aqueous and soil samples. Full scan was utilized for the soil samples.

Blind Field Duplicates

The blind field duplicate evaluations were performed on locations SS-104 6-12', SB-110 NATIVE, SB-111 FILL, MW-106 ROUND 1, and MW-105 ROUND 2. Non-homogeneity was observed in some of the analytical fractions in SS-104 6-12' and SB-111 FILL, as noted below.

The correlations for SS-104 6-12' were so poor for volatiles, calcium, and cyanide (order of magnitude), that results for the twelve detected volatile analytes, calcium, and cyanide have been rejected in that parent sample and its field duplicate DUP-01. The field duplicate was processed for volatiles at both low and medium levels, with grossly inconsistent results. Due to that variance, the reporting limits for the undetected analytes in that field duplicate are derived from the higher medium level.

The following other analytes show outlying correlations, and their results have been qualified as estimated in the indicated parent sample and its duplicate:

- Acenaphthylene, benzo(g,h,i)perylene, and magnesium in SS-104 6-12'
- Calcium and cobalt in SB-110 NATIVE
- Benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, chrysene, fluoranthene, phenanthrene, pyrene, TPH, mercury, arsenic, barium, cadmium, calcium, copper, lead, magnesium, manganese, and zinc in SB-111 FILL.
- bis(2-Ethylhexyl)phthalate, copper, and zinc in MW-105 ROUND 2

Volatile Analyses by EPA 8260D

Similarly to the field duplicate of SS-104 6-12', SB-106A FILL and SB-106B FILL were processed at low and medium levels, with vastly difference results for detection values. Therefore, results for 1,2,4-trimethylbenzene, 1,2,4-methylbenzene, cyclohexane, methyl cyclohexane, naphthalene, o-xylene, and m,p-xylene are rejected in those samples, and results for the medium level (with elevated reporting limits) are used for the other analytes in those samples.

Matrix spikes of SB-112 FILL show outlying recoveries for most analytes, with twelve of them showing recoveries below 10%. Results for those twelve analytes are rejected in the parent sample, and results for all except twenty of the analytes are qualified as estimated, with a low bias. Samples with similar matrix should be used with this matrix effect in consideration.

The matrix spikes were also performed on SS-103_6-12', SB_115 NATIVE, MW-106 ROUND 1, and MW-105 ROUND 2. Those for SS-103_6-12' produced recoveries below 10% for naphthalene and 1,2,4-trichlorobenzene, and results for those analytes in that parent sample are therefore rejected. Almost all of the other analyses exhibited low recoveries in those spikes, results for analytes not rejected in that sample are therefore qualified as estimated. The following additional analytes show outlying recoveries and duplicate correlations, results for which have been qualified as estimated in value in the indicated parent samples:

		Outlying %	Outlying
Parent Sample	<u>Analyte</u>	Recoveries	%RPD
SB-115 NATIVE	1,2,4-trichlorobenzene	60,69	
MW-106 ROUND 1	chloromethane	53,60	
	bromomethane	38	33
	methyl acetate	64,64	

SB-112B NATIVE and SB-112B FILL produced low recoveries for all internal standards on repeated analysis, indicating matrix effects; the latter also produced an elevated surrogate recovery. All volatile results for these two samples have been qualified as estimated in value.

SB-112A NATIVE produced low recovery for internal standard fluorobenzene and elevated recoveries for surrogate standards bromofluorobenzene and dibromofluoromethane. Results for analytes associated with that internal standard and all detected values have therefore been qualified as estimated in that sample. Matrix effects are evident in the raw data.

SB-112 NATIVE, SB-112C FILL, SB-112C NATIVE, and SB-113 NATIVE show elevated recoveries for a surrogate standard, and results for detected analytes in those samples are therefore qualified as estimated, with a high bias.

LCS recoveries are within validation guidelines, with the exceptions of the following, results for

which are qualified as estimated in the associated samples:

		Outlying %	Outlying
Associated Samples	<u>Analyte</u>	<u>Recoveries</u>	<u>%RPD</u>
SB-115 Native, SB-113	trichlorofluoromethane	68,62	
FILL, SB-115 FILL, and	1,1-dichloroethene	61,58	
DUP-03	carbon disulfide	58,57	
MW-107 ROUND 1,	chloromethane	59,49	
MW-105 ROUND 1,	cyclohexane	59	21
MW-101 ROUND 1,			
DUP ROUND 1, and			
TRIP BLANK			
MW-106 ROUND 1 and	chloromethane	50,42	
MW-103 ROUND 1			
Samples reported in	bromomethane	32,34	
SDG L2507955			

Calibration standards show responses within validation action levels, with the exceptions of the following, results for which are qualified as estimated in the associated samples:

- Bromoform (23%D) in SB-105 NATIVE, SB-107 NATIVE, and DUP-01 (LOW),
- trans-1,2-Dichloroethene (21%D) in SB-112A FILL, SB-112B NATIVE, and SB-112C FILL
- 1,1-Dichloroethene, carbon disulfide, freon-113 (37%D to 42%D) in SB-113 FILL, SB-115 FILL, SB-115 NATIVE, and DUP-03
- Chloromethane and vinyl chloride (24%D to 41%D) in MW-107 ROUND 1, MW-105 ROUND 1, MW-101 ROUND 1, DUP ROUND 1, and TRIP BLANK
- Chloromethane, vinyl chloride, and bromomethane (26%D to 59%D) in MW-106 ROUND 1 and MW-103 ROUND 1
- Naphthalene (24%D) in MW-102 ROUND 2, MW-104 ROUND 2, MW-105 ROUND 2, MW-106 ROUND 2, and DUP ROUND 2
- Vinyl chloride, bromomethane, and 1,1-dichloroethene (21%D to 68%D) in all samples reported in SDG L2507955

Holding times were met. Blanks show no contamination of target analytes.

TICs that are found in associated blanks and/or are analysis artifacts are removed from consideration as components of field samples.

TCL Semivolatile and 1,4-Dioxane Analyses by EPA8270E

2,4-Dinitrophenol and hexachlorocyclopentadiene failed to recover in the matrix spikes performed on SB-115 NATIVE, and 3,3'-dichlorobenzidine and 4-chloroaniline failed to recover above 10% in the matrix spikes of SS-103_6-12". Result for those analytes in the respective parent samples are therefore rejected and not usable.

Matrix spikes of SB-112 FILL were performed at fivefold dilution; results for 4-chloroaniline, 4-nitroaniline, 3,3'-dichlorobenzidine, hexachlorocyclopentadiene, and 4,6-dinitro-3-methylphenol are rejected in that parent sample due to lack of recovery in those matrix spikes.

Matrix spikes were also performed on MW-106 ROUND 1 and MW-105 ROUND 2. The following analytes also show outlying recoveries in matrix spikes, and have been qualified as estimated in the indicated as a second of the contract of the contra

in the indicated parent samples:

		Outlying %
Parent Sample	<u>Analyte</u>	<u>Recoveries</u>
SS-103_6-12"	hexachlorocyclopentadiene	15,15
_	benzo(b)fluoranthene	29,0
MW-106 ROUND 1	hexachlorocyclopentadiene	37,39

LCS recoveries are within validation guidelines, with the exceptions of the following, results for which are qualified as estimated in the associated samples:

		Outlying %
Associated Samples	<u>Analyte</u>	Recoveries
Samples reported in	4-chloroaniline	36,33
SDG L2469246		
MW-103 ROUND 1 and	hexachlorocyclopentadiene	24,32
MW-102 ROUND 1		
Samples reported in	hexachlorocyclopentadiene	32,27
SDG L2473569	2,4-dimethylphenol	28,63

The following detected results have been edited to non-detection due to presence in the associated method blank:

- pentachlorophenol in samples reported in SDG L2507633
- naphthalene in MW-107 ROUND2 and MW-101 ROUND 2

Calibration standards show responses within validation action levels, with the exceptions of the following, results for which are qualified as estimated in the associated samples:

- Hexachlorocyclopentadiene (58%D) in SS-103_0-2", SS-103_6-12", SS-104_0-2", SS-104_6-12", and SS-104_6-12"
- Pentachlorophenol (49%D) in SB-106A FILL, SB-106A NATIVE, SB-106B FILL, SB-106B NATIVE, SB-106C NATIVE, and SB-110 NATIVE
- Hexachlorocyclopentadiene (48%D) in SB-101 FILL, SB-101 NATIVE, SB-104 FILL, SB-104 NATIVE, SB-111 FILL, SB-111 NATIVE, SB-112 NATIVE, and SB-116 FILL
- Hexachlorobenzene (21%D) in all samples reported in SDGs L2473175 and L2473569
- bis(2-Chloroisopropyl)ether (42%D and 45%D) in MW-102 ROUND 2, MW-104 ROUND 2, MW-105 ROUND 2, MW-106 ROUND 2, and DUP ROUND 2 and in all samples reported in SDG L2473569

Holding times were met. Surrogate and internal standard recoveries are compliant.

TICs that are found in associated blanks and/or are analysis artifacts are removed from consideration as components of field samples.

TCL Pesticides, TCL Herbicides, and Aroclor PCB Analyses by USEPA 8081B, 8082A, and 8151A

Some of the detected pesticide results exhibit elevated dual column quantitative correlations, and are qualified to reflect the uncertainty in identification and/or quantitation. The values have been either qualified as estimated ("J"), qualified as tentative in identification and estimated in value ("NJ"), or edited to non-detection ("U"), depending on the degree of variance. In some instances, the adjusted reporting limits are elevated over the original method reporting limits.

Aroclor 1268 in SB-101 FILL produced an elevated dual column quantitative correlation and poor pattern match, and that result in that sample has been qualified as tentative in identification and estimated in value.

Matrix spikes performed for pesticides, herbicides, and Aroclors 1016/1260 on SS-103_6-12" and SB-112 FILL, for herbicides and pesticides on SB-15 NATIVE, and for Aroclors 1016/1260 on MW-106 ROUND 1 and MW-105 ROUND 2 show recoveries and correlations within validation guidelines, with the exceptions of the following, results for which are qualified as estimated in the associated samples:

		Outlying %
Parent Sample	<u>Analyte</u>	<u>Recoveries</u>
SS-103_6-12"	Aroclor 1260	23,28
SB-112 FILL	Aroclor 1260	28,26

SB-112 FILL produced interferences in a pesticide internal standard response that resulted in a very low calculated recovery value (due to algorithm) for surrogate standard DCB. Due to the matrix interferences, the pesticide results for that sample have been qualified as estimated. Other samples show interferences in the pesticide analyses that do not affect sample reported results.

Holding times were met. Blanks show no contamination of target analytes. Calibration standards show responses within validation action levels.

The pesticide raw data integration data are edited by the analyst prior to data package compilation, and validation review therefore relies on analyst interpretation.

PFAS by Modified EPA Draft Method 1633

Due to an elevated associated isotopic dilution standards recovery, the result for NEtFOSAA has been qualified as estimated in SS-102_6-12". The bias is expected to be minimal.

The following detections are qualified as being an estimated maximum possible concentration due to an outlying ion ratio:

- PFTeDA in SS-104 0-2"
- PFHxS in SS-104 6-12"
- 7:3 FTCA in SB-112 NATIVE
- PFNA in DUP-03
- PFOSA in SS-105 0-2"
- PFHxA in SS-101 0-2" and MW-101 ROUND 1
- PFHxA and PFPeS in MW-102 ROUND 1
- PFBS in MW-101 ROUND 2
- PFNA and PFOS in MW-107 ROUND 2

The matrix spikes of SS-103_6-12", SB-112 FILL, SB-115 NATIVE, and MW-101 ROUND 1 show recoveries and correlations within validation guidelines.

Calibration standard responses are within validation action guidelines. Blanks show no contamination affecting sample reported results.

Volatile Air Analyses by USEPA Method TO-15 - Full Scan and SIM

Results for SSV-01, SV-106, and IA-02 were received at ambient pressure with no residual vacuum. Results for those three samples are therefore qualified as estimated in value.

SSV-03 was recollected the following month. Results for certain of the chlorinated, aromatic, and simple hydrocarbons were very much higher in the initial canister than that of the resampling.

The laboratory duplicates of IA-05 and SSV-103 RETEST show good correlations.

Holding times were met. Internal standard recoveries are compliant. Calibration standards show responses within validation action levels.

LCS recoveries are within validation guidelines. Blanks show no contamination.

TPH Analyses by EPA8015D

The matrix spikes submitted for SB-112 FILL were not processed due to elevated sample concentrations and the required dilution. Not processing those spikes prohibited the precision evaluation.

Holding times were met. Surrogate standard and LCS recoveries were compliant. Calibration standards produce acceptable responses. Blanks show no contamination.

TAL Metals Analyses by EPA 6010, 6020D, 7470A, and 7471B

Matrix spikes/duplicate evaluations were performed for TAL metals on SS-103_6-12", SB-112 FILL, SB-115 NATIVE, and total and dissolved fractions of MW-106 ROUND 1 and MW-105 ROUND 2. They show recoveries and correlations within validation guidelines, with the exceptions of the following, results for which are qualified as estimated in the indicated parent samples:

		Outlying %
Parent Sample	<u>Element</u>	Recoveries
SS-103_6-12"	arsenic	65,72
	barium	52,52
	chromium	60,62
	lead	26,38
	manganese	75,24
	zinc	22,58
SB-112 FILL	magnesium	37,45
MW-106 ROUND 1 -Total	iron	127,127
	manganese	128,130

The ICP serial dilution evaluations of SS-103_6-12", MW-106 ROUND 1 -Total, SB-112 FILL, SB-115 NATIVE, and MW-105 ROUND 2 show corrections within validation guidelines, with the exception of that for potassium, (27%D) in MW-106 ROUND 1 -Total, the result for which has been qualified as estimated in that parent sample.

The low level detection of chromium in the dissolved fraction of samples reported in SDG L2507633 have been edited to reflect non-detection due to presence in the associated method blank.

Initial and continuing calibration standard responses fall within validation guidelines.

Total and dissolved fraction concentrations correlate well, with the exception of those for calcium, manganese, and potassium in MW-107 ROUND 1. Results for those three elements in both fractions of that sample are qualified as estimated in value.

Total Cyanide and Hexavalent Chromium Analyses by EPA 7196A, 7196B, and 9012

Review was conducted for method compliance, holding times, transcription, calculations, standard and blank acceptability, accuracy, and precision, etc., as applicable to each procedure.

The low level detection of hexavalent chromium in SB-106 FILL is edited to reflect non-detection due to presence in the associated method blank.

The matrix spikes of hexavalent chromium on SS-103_6-12", SB-108 NATIVE, SB-115 NATIVE, SB-108 NATIVE, SB-107 FILL, SB-112 FILL, SS-101 6-12", MW-104 ROUND 1, and MW-103 ROUND, and for total cyanide on SS-103_0-2", SS-103_6-12", SB-106 FILL, SB-106 NATIVE, SB-112 FILL, SB-115 NATIVE, MW-104 ROUND 1, and MW-103 ROUND 2 show the following outlying recoveries/correlations, and the results for that analyte are therefore qualified as estimated in the indicated parent samples:

			Outlying
		Outlying %	<u>%</u>
Parent Sample	<u>Analyte</u>	Recoveries	RPD's
SB-108 NATIVE	hexavalent chromium	71	
SB-115 NATIVE	hexavalent chromium	12,35	95

Due to outlying recovery for hexavalent chromium in the associated LCS (76%), the results for that analyte in the samples reported in SDG L2470407 have been qualified as estimated, with a low bias.

Total and dissolved fraction concentrations correlate well.

Please do not hesitate to contact me if questions or comments arise during your review of this report.

Very truly yours,

Judy Harry

Judy Harry

Attachments: Validation Data Qualifier Definitions

Sample Identifications

Qualified Laboratory EQuIS EDDs

VALIDATION DATA QUALIFIER DEFINITIONS

- U The analyte was analyzed for, but was not detected above the level of the associated reported quantitation limit.
- J The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte in the sample.
- J- The analyte was positively identified; the associated numerical value is an estimated quantity that may be biased low.
- J+ The analyte was positively identified; the associated numerical value is an estimated quantity that may be biased high.
- UJ The analyte was analyzed for, but was not detected. The associated reported quantitation limit is approximate and may be inaccurate or imprecise.
- NJ The detection is tentative in identification and estimated in value. Although there is presumptive evidence of the analyte, the result should be used with caution as a potential false positive and/or elevated quantitative value.
- R The data are unusable. The sample results are rejected due to serious deficiencies in meeting Quality Control limits. The analyte may or may not be present.
- EMPC The results do not meet all criteria for a confirmed identification.

 The quantitative value represents the Estimated Maximum Possible

 Concentration of the analyte in the sample.

Sample Identification Summary

1153-69W. FAYETTE ST RI

Project Number: AB2.002.002

Lab Number: Report Date: L2469246 12/16/24

Lab Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2469246-01	SS-102_0-2"	SOIL	SYRACUSE,NY	11/22/24 11:30	11/22/24
L2469246-02	SS-102_6-12"	SOIL	SYRACUSE,NY	11/22/24 11:45	11/22/24
L2469246-03	SS-103_0-2"	SOIL	SYRACUSE,NY	11/22/24 13:30	11/22/24
L2469246-04	SS-103_6-12"	SOIL	SYRACUSE,NY	11/22/24 14:00	11/22/24
L2469246-05	SS-104_0-2"	SOIL	SYRACUSE,NY	11/22/24 12:15	11/22/24
L2469246-06	SS-104_6-12"	SOIL	SYRACUSE,NY	11/22/24 12:45	11/22/24
L2469246-07	DUP-01	SOIL	SYRACUSE,NY	11/22/24 00:00	11/22/24

1153-69 W. FAYETTE ST. RI

Project Number: AB2.002.002

Lab Number: Report Date: L2469590 12/20/24

Lab Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2469590-01	SB-102 FILL	SOIL	SYRACUSE, NY	11/25/24 13:10	11/25/24
L2469590-02	SB-102 NATIVE	SOIL	SYRACUSE, NY	11/25/24 13:20	11/25/24
L2469590-03	SB-103 FILL	SOIL	SYRACUSE, NY	11/25/24 13:45	11/25/24
L2469590-04	SB-103 NATIVE	SOIL	SYRACUSE, NY	11/25/24 13:35	11/25/24
L2469590-05	SB-105 FILL	SOIL	SYRACUSE, NY	11/25/24 12:25	11/25/24
L2469590-06	SB-105 NATIVE	SOIL	SYRACUSE, NY	11/25/24 12:30	11/25/24
L2469590-07	SB-106 FILL	SOIL	SYRACUSE, NY	11/25/24 11:25	11/25/24
L2469590-08	SB-106 NATIVE	SOIL	SYRACUSE, NY	11/25/24 11:30	11/25/24
L2469590-09	SB-106A FILL	SOIL	SYRACUSE, NY	11/25/24 11:00	11/25/24
L2469590-10	SB-106A NATIVE	SOIL	SYRACUSE, NY	11/25/24 11:10	11/25/24
L2469590-11	SB-106B FILL	SOIL	SYRACUSE, NY	11/25/24 12:10	11/25/24
L2469590-12	SB-106B NATIVE	SOIL	SYRACUSE, NY	11/25/24 12:15	11/25/24
L2469590-13	SB-106C FILL	SOIL	SYRACUSE, NY	11/25/24 11:45	11/25/24
L2469590-14	SB-106C NATIVE	SOIL	SYRACUSE, NY	11/25/24 11:50	11/25/24
L2469590-15	SB-108 FILL	SOIL	SYRACUSE, NY	11/25/24 09:50	11/25/24
L2469590-16	SB-108 NATIVE	SOIL	SYRACUSE, NY	11/25/24 09:55	11/25/24
L2469590-17	SB-107 FILL	SOIL	SYRACUSE, NY	11/25/24 10:30	11/25/24
L2469590-18	SB-107 NATIVE	SOIL	SYRACUSE, NY	11/25/24 10:50	11/25/24
L2469590-19	SB-109 FILL	SOIL	SYRACUSE, NY	11/25/24 13:55	11/25/24
L2469590-20	SB-109 NATIVE	SOIL	SYRACUSE, NY	11/25/24 14:05	11/25/24
L2469590-21	SB-110 FILL	SOIL	SYRACUSE, NY	11/25/24 14:10	11/25/24
L2469590-22	SB-110 NATIVE	SOIL	SYRACUSE, NY	11/25/24 14:30	11/25/24
L2469590-23	SB-114 FILL	SOIL	SYRACUSE, NY	11/25/24 14:50	11/25/24
L246959024 19289	SB-114 NATIVE	SOIL	SYRACUSE, NY	11/25/24 14:55	11/25/24
					,

Lab Sample ID L2469590-25

Client ID DUP-02

Matrix SOIL Sample Location

SYRACUSE, NY

Collection Date/Time

11/25/24 00:00 1

11/25/24

Receive Date

1153-69 WEST FAYETTE STREET RI

Project Number: AB2.002.002

Lab Number: Report Date: L2469906 12/23/24

Lab Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2469906-01	SB-101 FILL	SOIL	SYRACUSE,NY	11/26/24 14:25	11/26/24
L2469906-02	SB-101 NATIVE	SOIL	SYRACUSE,NY	11/26/24 14:35	11/26/24
L2469906-03	SB-104 FILL	SOIL	SYRACUSE,NY	11/26/24 12:00	11/26/24
L2469906-04	SB-104 NATIVE	SOIL	SYRACUSE,NY	11/26/24 12:05	11/26/24
L2469906-05	SB-111 FILL	SOIL	SYRACUSE,NY	11/26/24 12:30	11/26/24
L2469906-06	SB-111 NATIVE	SOIL	SYRACUSE,NY	11/26/24 12:35	11/26/24
L2469906-07	SB-112 FILL	SOIL	SYRACUSE,NY	11/26/24 09:30	11/26/24
L2469906-08	SB-112 NATIVE	SOIL	SYRACUSE,NY	11/26/24 09:55	11/26/24
L2469906-09	SB-112A FILL	SOIL	SYRACUSE,NY	11/26/24 10:10	11/26/24
L2469906-10	SB-112A NATIVE	SOIL	SYRACUSE,NY	11/26/24 10:15	11/26/24
L2469906-11	SB-112B FILL	SOIL	SYRACUSE,NY	11/26/24 10:35	11/26/24
L2469906-12	SB-112B NATIVE	SOIL	SYRACUSE,NY	11/26/24 10:40	11/26/24
L2469906-13	SB-112C FILL	SOIL	SYRACUSE,NY	11/26/24 11:05	11/26/24
L2469906-14	SB-112C NATIVE	SOIL	SYRACUSE,NY	11/26/24 11:00	11/26/24
L2469906-15	SB-113 FILL	SOIL	SYRACUSE,NY	11/26/24 08:40	11/26/24
L2469906-16	SB-113 NATIVE	SOIL	SYRACUSE,NY	11/26/24 09:10	11/26/24
L2469906-17	SB-115 FILL	SOIL	SYRACUSE,NY	11/26/24 08:05	11/26/24
L2469906-18	SB-115 NATIVE	SOIL	SYRACUSE,NY	11/26/24 08:15	11/26/24
L2469906-19	SB-116 FILL	SOIL	SYRACUSE,NY	11/26/24 11:25	11/26/24
L2469906-20	SB-116 NATIVE	SOIL	SYRACUSE,NY	11/26/24 11:30	11/26/24
L2469906-21	SB-117 FILL	SOIL	SYRACUSE,NY	11/26/24 12:50	11/26/24
L2469906-22	SB-117 NATIVE	SOIL	SYRACUSE,NY	11/26/24 12:55	11/26/24
L2469906-23	SB-118 FILL	SOIL	SYRACUSE,NY	11/26/24 13:15	11/26/24
L2469906-24 1622	4 SB-118 NATIVE	SOIL	SYRACUSE,NY	11/26/24 13:25	11/26/24

Lab Sample ID L2469906-25

Client ID DUP-03

Matrix SOIL

Sample Location

SYRACUSE,NY

Collection Date/Time 11/26/24 00:00

Receive Date

11/26/24

Project Name: 1153-69 WEST FAYETTE STREET RI

Lab Number: L2470407 Project Number: AB2.002.002 Report Date: 12/17/24

Lab Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2470407-01	SS-105 0-2"	SOIL	SYRACUSE, NY	12/02/24 09:30	12/02/24
L2470407-02	SS-105 6-12"	SOIL	SYRACUSE, NY	12/02/24 09:45	12/02/24
L2470407-03	SS-106 0-2"	SOIL	SYRACUSE, NY	12/02/24 10:00	12/02/24
L2470407-04	SS-106 6-12"	SOIL	SYRACUSE, NY	12/02/24 10:15	12/02/24
L2470407-05	SS-101 0-2"	SOIL	SYRACUSE, NY	12/02/24 11:15	12/02/24
L2470407-06	SS-101 6-12"	SOIL	SYRACUSE, NY	12/02/24 11:30	12/02/24

Project Name: 1153-69 W. FAYETTE ST. RI

Project Number: AB2.002.002

Page 5 of 1210

Lab			Sample	Collection	
Sample ID	Client ID	Matrix	Location	Date/Time	Receive Date
L2471075-01	SSV-01	SOIL_VAPOR	SYRACUSE, NY	12/04/24 09:00	12/04/24
L2471075-02	IA-01	AIR	SYRACUSE, NY	12/04/24 09:00	12/04/24
L2471075-03	SSV-02	SOIL_VAPOR	SYRACUSE, NY	12/04/24 09:10	12/04/24
L2471075-04	IA-02	AIR	SYRACUSE, NY	12/04/24 09:10	12/04/24
L2471075-05	SSV-03	SOIL_VAPOR	SYRACUSE, NY	12/04/24 09:20	12/04/24
L2471075-06	IA-03	AIR	SYRACUSE, NY	12/04/24 09:20	12/04/24
L2471075-07	CS-04	AIR	SYRACUSE, NY	12/04/24 10:05	12/04/24
L2471075-08	IA-04	AIR	SYRACUSE, NY	12/04/24 10:05	12/04/24
L2471075-09	CS-05	AIR	SYRACUSE, NY	12/04/24 10:15	12/04/24
L2471075-10	IA-05	AIR	SYRACUSE, NY	12/04/24 10:15	12/04/24
L2471075-11	SV-101	SOIL_VAPOR	SYRACUSE, NY	12/04/24 11:20	12/04/24
L2471075-12	SV-102	SOIL_VAPOR	SYRACUSE, NY	12/04/24 11:40	12/04/24
L2471075-13	SV-103	SOIL_VAPOR	SYRACUSE, NY	12/04/24 11:05	12/04/24
L2471075-14	SV-104	SOIL_VAPOR	SYRACUSE, NY	12/04/24 11:50	12/04/24
L2471075-15	SV-105	SOIL_VAPOR	SYRACUSE, NY	12/04/24 11:30	12/04/24
L2471075-16	SV-106	SOIL_VAPOR	SYRACUSE, NY	12/04/24 10:55	12/04/24
L2471075-17	SV-107	SOIL_VAPOR	SYRACUSE, NY	12/04/24 11:10	12/04/24
L2471075-18	OA-101	AIR	SYRACUSE, NY	12/04/24 11:55	12/04/24

Lab Number:

Report Date:

L2471075

12/19/24

1153-69 W FAYETTE STREET RI

Project Number: AB2.002.002

Lab Number: Report Date:

L2473175 12/26/24

Lab Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2473175-01	MW-104 ROUND 1	WATER	SYRACUSE, NY	12/12/24 12:10	12/12/24
L2473175-02	MW-102 ROUND 1	WATER	SYRACUSE, NY	12/12/24 14:11	12/12/24
L2473175-03	FIELD BLANK	WATER	SYRACUSE, NY	12/12/24 13:45	12/12/24
L2473175-04	TRIP BLANK	WATER	SYRACUSE, NY	12/12/24 00:00	12/12/24

1153-69 W FAYETTE STREET RI

Project Number: AB2.002.002

Lab Number: Report Date: L2473569 01/07/25

Lab Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2473569-01	MW-106 ROUND 1	WATER	SYRACUSE, NY	12/13/24 08:25	12/13/24
L2473569-02	MW-103 ROUND 1	WATER	SYRACUSE, NY	12/13/24 10:40	12/13/24
L2473569-03	MW-107 ROUND 1	WATER	SYRACUSE, NY	12/13/24 12:15	12/13/24
L2473569-04	MW-105 ROUND 1	WATER	SYRACUSE, NY	12/13/24 13:08	12/13/24
L2473569-05	MW-101 ROUND 1	WATER	SYRACUSE, NY	12/13/24 14:10	12/13/24
L2473569-06	DUP ROUND 1	WATER	SYRACUSE, NY	12/13/24 00:00	12/13/24
L2473569-07	TRIP BLANK	WATER	SYRACUSE, NY	12/13/24 00:00	12/13/24

1153 W. FAYETTE ST. RI

Project Number: AB

AB2.002.002

Lab Number: Report Date: L2502298 01/29/25

Lab

Sample ID L2502298-01

Client ID

SSV-103 RETEST

Matrix

SOIL_VAPOR

Sample Location

Location SYRACUSE, NY Collection Date/Time

01/14/25 12:15

01/14/25

Receive Date

1153-69 W FAYETTE STREET RI

Project Number: AB2.

AB2.002.002

Lab Number: Report Date: L2507633 02/18/25

Lab Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2507633-01	MW-102 ROUND 2	WATER	SYRACUSE, NY	02/11/25 16:15	02/11/25
L2507633-02	MW-104 ROUND 2	WATER	SYRACUSE, NY	02/11/25 14:20	02/11/25
L2507633-03	MW-105 ROUND 2	WATER	SYRACUSE, NY	02/11/25 12:45	02/11/25
L2507633-04	MW-106 ROUND 2	WATER	SYRACUSE, NY	02/11/25 15:25	02/11/25
L2507633-05	DUP ROUND 2	WATER	SYRACUSE, NY	02/11/25 00:00	02/11/25
L2507633-06	TRIP BLANK	WATER	SYRACUSE, NY	02/11/25 00:00	02/11/25

1153-69 W FAYETTE STREET RI

Project Number:

AB2.002.002

Lab Number: Report Date:

L2507955 02/19/25

Lab			Sample	Collection	
Sample ID	Client ID	Matrix	Location	Date/Time	Receive Date
L2507955-01	MW-101 ROUND 2	WATER	SYRACUSE, NY	02/12/25 00:00	02/12/25
L2507955-02	MW-103 ROUND 2	WATER	SYRACUSE, NY	02/12/25 14:45	02/12/25
L2507955-03	MW-107 ROUND 2	WATER	SYRACUSE, NY	02/12/25 13:30	02/12/25
L2507955-04	FIELD BLANK	WATER	SYRACUSE, NY	02/12/25 00:00	02/12/25
L2507955-05	TRIP BLANK	WATER	SYRACUSE, NY	02/12/25 00:00	02/12/25

Passive Soil Gas Sampler Analytical Report

Laboratory Report

Site: 1153 West Fayette Street

Prepared for:

C&S Companies 499 Col. Eileen Collins Blvd Syracuse, NY 13212 USA

Prepared on: February 27, 2025

AGI Environmental Services - Laboratory Report

Project Summary and Objective

Amplified Geochemical Imaging, LLC (AGI) provided the AGI Environmental Survey used at:

1153 West Fayette Street

The service provided by AGI included delivery of the required quantity of AGI Universal Samplers, analysis by the method described below for the requested organic compounds, reporting of the data, and contour mapping (as needed).

This report includes results for only the samples noted under the Laboratory Sample Report section. If contour maps are part of the project deliverable, the maps will be prepared and issued under a separate report cover, upon receipt of a usable sitemap (electronic) and compound choices for contouring.

Written/submitted by:

Ray Fenstermacher, P.G.

Project Manager

Reviewed/approved by:

Scott Kirlin

Inside Sales/Assistant Project Manager

Analytical data approved by:

Kellie-Ann Kelly

Chemist

AGI Environmental Services - Laboratory Report

Quality Assurance Statement

The AGI Laboratory, at Amplified Geochemical Imaging's facility in Newark, DE USA, operates under the guidelines of its ISO Standard 17025 DoD ELAP accreditation, and its Quality Assurance Manual, Operating Procedures, and Methods (SOP-QA-0462).

For this project, the analytical method, results, and observations reported do not fall within the scope of AGI's ISO 17025:2017 accreditation.

Screening/Concentration Method

The AGI Universal Samplers are analyzed at AGI's fixed laboratory using thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) instrumentation following modified U.S. EPA Method 8260 (SPG-WI-0292) which includes the following:

- BFB Tuning Frequency: A BFB tune is analyzed at the start of each analytical run and after every 30 samples.
- · Initial Calibration: A minimum of a five point calibration curve is analyzed prior to the analysis of samples.
- Initial Calibration Verification (ICV): Following the calibration a second-source reference standard is analyzed to verify the accuracy of the calibration. Acceptance criteria for the ICV is +/- 30%.
- Linearity of Target Compounds: If the RSD of any target analyte is less than or equal to 25% then
 average response factor can be used for quantitation. If the RSD exceeds 25% for a target compound a
 regression equation can be used for quantitation.
- Continuing Calibration Verification: After every 10 samples, and at the end of each analytical batch, a mid-level second-source Reference Standard is analyzed. The acceptance criteria for all target analytes in the reference standards are +/- 50% of the true value.
- **Method Blank:** Analyzed prior to the analysis of field samples and every 30 samples.

Note: Analyte levels reported for the field-deployed AGI Universal Samplers that exceed trip and method blank levels, and/or the reporting limit, are more likely to have originated from on-site sources.

Media Sampled: SOIL GAS
Chemist - sample analysis: Earl Austin

Chemist - data processor: Kellie-Ann Kelly

Chemist - data review: Scott Kirlin

Method deviations: None

Please note that data file names ending with R are rerun samples using the second pair of sorbers, in which the original results were not reported. Data file names ending in D are duplicate analysis results for the second set of sorbers from the same sampler, and are reported.

AGI Environmental Services - Laboratory Report

Additional Report Information

- Comments
- Laboratory Sample Report
- Chain of Custody
- Installation and Retrieval Log
- Data Table(s) and Key
- Concentration Calculation Method Summary
- Total Ion Chromatograms

Project Specific Comments

All samplers were returned and analyzed including trip blank 211316.

Survey period ¹ Samplers were installed on February 12, 2025 and retrieved on February 19, 2025

for an exposure period of seven (7) days.

Tamper seal intact: Yes

Date received: 02/20/2025 10:25 am By: Scott Kirlin

COC returned: Yes

Comments: None

^{1 -} Installation start to end of retrieval, as reported. See installation and retrieval log for individual deployment and retrieval dates and times (i.e., sampler exposure time).

General Comments

Analytical QA/QC

Laboratory instrumentation consists of gas chromatographs equipped with mass selective detectors, coupled with automated thermal desorption units. Sample preparation involves cutting the tip off the bottom of the AGI Universal Sampler, and transferring one or more "sorbers" to a thermal desorption tube for analysis. The insertion/retrieval cord prevents soil, water and other interferences from coming in contact with the adsorbent. No further sample preparation is required. Any replicate sorbers not consumed in the initial analysis will be discarded fifteen (15) days from the date of the laboratory report.

Data are archived and stored in a secure manner as per AGI's Quality Assurance program (SOP-QA-0462).

Total petroleum hydrocarbons (TPH), gasoline-range petroleum hydrocarbons (GRPH), and/or diesel range petroleum hydrocarbons (DRPH), when reported, are calculated using the area under the peaks observed in m/z 55 and 57 selected ion chromatograms. Quantitation of the mass values was performed using the response factor for a specific alkane (present in the calibration standards). TPH values include the entire chromatogram and provide estimates for aliphatic hydrocarbon ranges of C4 to C20. GRPH and DRPH include only the relevant regions of the chromatograms and provide estimates for C4 to C10 and C10 to C20 aliphatic hydrocarbons, respectively.

Trip blanks were provided to document potential exposures that were not part of the signal of interest (e.g., impact during sampler shipment, installation and/or retrieval, and storage). The trip blanks are identically manufactured and packaged AGI Universal Samplers to those samplers deployed in the field. The trip blanks remain unopened during all phases of the project. Levels reported on the trip blanks may indicate potential impact to the samplers other than the contaminant source of interest.

Unresolved peak envelopes (UPEs) are represented as a series of compound peaks clustered together around a central gas chromatograph elution time in the total ion chromatogram. UPEs may be indicative of complex fluid mixtures. UPEs observed early in the chromatograms are considered to indicate presence of more volatile fluids, while UPEs observed later in the chromatogram may indicate the presence of less volatile fluids. Multiple UPEs may indicate the presence of multiple complex fluids.

Total ion chromatograms (TICs) are included in the Attachments. The six-digit serial number of each sampler is incorporated in the TIC identification (e.g., 123456.D represents AGI Universal Sample 123456).

General Comments

Soil Gas Sampling

For soil gas sampling, the AGI Environmental Survey reports mass levels migrating through the open pore spaces of the soil and diffusing through the sampler membrane for sorption by the engineered, hydrophobic adsorbents, housed within the membrane tube. During the migration of the soil gas away from the source to the AGI Universal Sampler, the vapors are subject to a variety of attenuation factors. The soil gas masses reported on the samplers compare favorably with the concentrations reported in the soil or groundwater (e.g., where soil gas levels are reported at greater levels to other sampled locations on the site, the matrix data should reveal the same pattern, and vice versa). However, due to a variety of factors, a perfect comparison between matrix data and soil gas levels can rarely be achieved.

Soil gas concentrations (μ g/m3) are calculated following the method described in the Additional Report Information section.

Soil gas signals reported by this method cannot be correlated specifically to soil adsorbed, groundwater, and /or free-phase contamination. The soil gas signal reported from each AGI Universal Sampler can evolve from all of these sources. Differentiation between soil and groundwater contamination can only be achieved with prior knowledge of the site history (i.e., the site is known to have groundwater contamination only).

Air Sampling

For indoor, outdoor, and crawlspace air sampling, the AGI Environmental Survey reports mass levels present in the air and diffusing through the sampler membrane for sorption by the engineered adsorbents housed within the membrane tube.

Air concentrations (µg/m3) are calculated following the method described in the Additional Report Information section.

Groundwater and Sediment Porewater Sampling

For groundwater and sediment porewater sampling, the AGI Environmental Survey reports the mass levels of compounds present in the water which, when coming in contact with the sampler membrane, partitions out of solution, and diffuses through the sampler membrane for sorption by the engineered adsorbents.

Water concentrations (μ g/L) are calculated using the quantified mass, exposure period and the compound specific uptake rate. The rates were measured under controlled experimental conditions. The uptake rates are corrected for water pressure (depth of the AGI Universal Sampler below the water table), water temperature and the aquifer flow rate. For sediment porewater, the uptake rate is corrected for the reduced volume of water in the sediment, by multiplying the uptake rate by the pore water fraction.

Laboratory Sample Report

AGI Sample ID	<u>Field ID</u>	Sample Type
211289	PSG-113	FIELD_SAMPLE
211290	PSG-114	FIELD_SAMPLE
211291	PSG-115	FIELD_SAMPLE
211304	PSG-109	FIELD_SAMPLE
211305	PSG-110	FIELD_SAMPLE
211306	PSG-111	FIELD_SAMPLE
211307	PSG-112	FIELD_SAMPLE
211308	PSG-106	FIELD_SAMPLE
211309	PSG-107	FIELD_SAMPLE
211310	PSG-104	FIELD_SAMPLE
211311	PSG-108	FIELD_SAMPLE
211312	PSG-105	FIELD_SAMPLE
211313	PSG-101	FIELD_SAMPLE
211314	PSG-102	FIELD_SAMPLE
211315	PSG-103	FIELD_SAMPLE
211316	TRIP BLANK	TRIP_BLANK

Total # Field Samples: 15 Total # Trip Blanks: 1

Page 7 of 35

210 Executive Drive Newark, Delaware 19702 USA ph: +1-302-266-2428 www.agisurveys.net

AGI Universal Passive Sampler Chain of Soil gas and/or Air Sampling	Custody	Production Order #: ENV T02529				
Customer Name: C&S Companies		Site Name: 1153 West Fayette Street				
Address: 499 Col. Eileen Collins Blvd. Syracuse, NY 13212 USA		Site Address: 1153-69 W Fayette St, Syracuse, Project Manager: Claire Del Fatti				
Serial # of Samplers Shipped 211289 - 211291 211304 - 211316	Total Samp Total Samp	ers for Installation 15 # of Trip Blanks 1 lers Shipped 16 Pieces lers Received 16 Pieces lers Installed 15 Pieces				
	Serial	# of Trip Blanks (Client Decides)				
# Tips Shipped:	21	1316				
Prepared By: Verified By: Eal Out The second of the se	-	Installation Method: (Circle those that apply) Slide Hammer Drill Auger Other				
Installation Performed By: Name: Claire Del Fatti Company: CtS Engineers, Inc.	_	Retrieval Performed By: Name: Claire Del Fatti Company: C+S Engineers, Inc.				
Installation Start Date / Time: 02/12/2025	09:00	Retrieval Start Date / Time: 02/19/2025 0800				
Installation Complete Date / Time: 02/12/2025	12:00	Retrieval Complete Date / Time: 02/19/2025 0930				
Total Samplers Retrieved:		Insertion Rod Sections Returned: 3				
Total Samplers Lost In Field:						
Total Unused Samplers Returned:						
Relinquished By:	Date/Time	Received By: C. ACO FOLICE Date/Time				
Company: AGI	-3:30PM	Company: C+S Engineers, Inc. 16:00				
Relinquished By: C. DO Fatti	Date/Time	Received By: Date/Time				
Company: C+S Engineers, Inc.	02/19/25	Company: 16.7 10:25An-				

210 Executive Drive, Suite 1 Newark, DE USA 19702-3335 ph: 302-266-2428 AGI Project No. ENV T02529

Site Name: 1153 West Fayette Street

Site Location: Syracuse, NY

Company Name: C&S Companies

Location: 499 Col. Eileen Collins Blvd, Syracuse, NY 13212

Samples collected by: CD / NC

AGI Soil Gas Sampling Installation & Retrieval Log

* Optional or as needed

	FIELD ID' (e.g., arbitrary, US TYPE of SAMPLE (Field, Trip INSTALLATION DATE & TIME RETRIEVAL DATE & TIME MM/DD/YY			RETRIEVAL DATE & TIME MM/DD/YYYY	OBSERVATIONS/COMMENTS* (e.g., sample depth, location description, missing, pulled from hole, evidence of liquid petroleum,	SAMPLE ENVIRONMENT* (e.g., grass,	
SAMPLER SERIAL NO.	MM/DD/YYYY		MM/DD/YYYY HH:MM (24 Hour) ex. 12/27/2000 13:00	HH:MM (24 Hour) ex. 12/30/2000 13:00	odor, water in hole, etc as needed)	bare soil, through slab)	
211289	PSG-113	FIELD_SAMPLE	2/12/25 9:20	2/19/25 8:20	PID = 0.4 ppm, 36 in bgs	Sub-Slab	
211290	PSG-114	FIELD_SAMPLE	2/12/25 9:25	2/19/25 8:25	PID = 0.0 ppm, 36 in bgs	Sub-Slab	
211291	PSG-115	FIELD_SAMPLE	2/12/25 9:35	2/19/25 8:30	PID = 0.0 ppm, 36 in bgs	Sub-Slab	
211304	PSG-109	FIELD_SAMPLE	2/12/25 9:45	2/19/25 8:33	PID = 0.3 ppm, 36 in bgs	Sub-Slab	
211305	PSG-110	FIELD_SAMPLE	2/12/25 9:55	2/19/25 8:36	PID = 0.0 ppm, 36 in bgs	Sub-Slab	
211306	PSG-111	FIELD_SAMPLE	2/12/25 10:05	2/19/25 8:40	PID = 0.0 ppm, 36 in bgs	Sub-Slab	
211307	PSG-112	FIELD_SAMPLE	2/12/25 10:20	2/19/25 8:45	PID = 0.0 ppm, 36 in bgs	Sub-Slab	
211308	PSG-106	FIELD_SAMPLE	2/12/25 10:35	2/19/25 8:48	PID = 3.6 ppm, 36 in bgs	Sub-Slab	
211309	PSG-107	FIELD_SAMPLE	2/12/25 10:40	2/19/25 8:52	PID = 0.0 ppm, 36 in bgs	Sub-Slab	
211310	PSG-104	FIELD_SAMPLE	2/12/25 10:50	2/19/25 8:55	PID = 0.0 ppm, 36 in bgs	Sub-Slab	
211311	PSG-108	FIELD_SAMPLE	2/12/25 11:05	2/19/25 8:58	PID = 0.0 ppm, 36 in bgs	Sub-Slab	
211312	PSG-105	FIELD_SAMPLE	2/12/25 11:20	2/19/25 9:00	PID = 0.0 ppm, 36 in bgs	Sub-Slab	
211313	PSG-101	FIELD_SAMPLE	2/12/25 11:25	2/19/25 9:03	PID = 0.3 ppm, 36 in bgs	Sub-Slab	
211314	PSG-102	FIELD_SAMPLE	2/12/25 11:35	2/19/25 9:05	PID = 0.2 ppm, 36 in bgs	Sub-Slab	
211315	PSG-103	FIELD_SAMPLE	2/12/25 11:40	2/19/25 9:08	PID = 0.0 ppm, 36 in bgs	Sub-Slab	
211316	TRIP BLANK	TRIP_BLANK	2/12/25 8:00	2/19/25 9:30	NA	NA	

AGI Soil Gas Sampling Installation & Retrieval Log

* Optional or as needed Please note that the soil is mostly comprised of historic fill material (coal, ash, cinders, brick, etc.)

	COMPLETE THIS SECTION FO						
SAMPLER SERIAL NO.	SOIL TYPE AT MODULE DEPTH (clay, loamy sand etc.)	TOTAL SOIL POROSITY AT MODULE DEPTH* (total volume of pores/total volume)	WATER FILLED SOIL POROSITY AT MODULE DEPTH* (volume of water/volume of pores)	PROJECTED COORDINATES X (EASTING)	PROJECTED COORDINATES Y (NORTHING)	COORDINATE SYSTEM* (e.g., UTM Zone, Stateplane, etc.)	COORDINATE DATUM* (e.g., WGS 84)
211289	SILT			929715.965160	1110123.08427	State Plane New York Central	NAD 1983 (2011)
211290	SILT			929680.798658	1110107.86612	State Plane New York Central	NAD 1983 (2011)
211291	SILT			929667.193685	1110147.79369	State Plane New York Central	NAD 1983 (2011)
211304	SILT			929708.982792	1110137.35645	State Plane New York Central	NAD 1983 (2011)
211305	SILT			929696.772975	1110113.38915	State Plane New York Central	NAD 1983 (2011)
211306	SILT			929671.158824	1110128.38991	State Plane New York Central	NAD 1983 (2011)
211307	SILT			929675.926552	1110153.36578	State Plane New York Central	NAD 1983 (2011)
211308	SILT			929700.592682	1110127.99289	State Plane New York Central	NAD 1983 (2011)
211309	SILT			929681.951234	1110119.57903	State Plane New York Central	NAD 1983 (2011)
211310	SILT			929683.875408	1110140.79054	State Plane New York Central	NAD 1983 (2011)
211311	SILT			929673.970238	1110139.38118	State Plane New York Central	NAD 1983 (2011)
211312	SILT			929692.393497	1110144.13242	State Plane New York Central	NAD 1983 (2011)
211313	SILT			929694.167497	1110134.86013	State Plane New York Central	NAD 1983 (2011)
211314	SILT			929690.047626	1110126.94593	State Plane New York Central	NAD 1983 (2011)
211315	SILT			929679.298908	1110132.38452	State Plane New York Central	NAD 1983 (2011)
211316				NA	NA	NA	NA

AMPLIFIED GEOCHEMICAL IMAGING, LLC 210 EXECUTIVE DRIVE, SUITE 1, NEWARK, DE 19702 C S COMPANIES STANDARD TARGET VOCs/SVOCs 1153 WEST FAYETTE STREET ORDER # T02529

DATAFILE	FIELD	DATE/ TIME	
NAME	ID	ANALYZED	CCl4, ug
RL =			0.10
MDL =			0.02
211289	PSG-113	2/21/25 6:53 PM	<0.10
211290	PSG-114	2/21/25 10:27 PM	<0.10
211291	PSG-115	2/21/25 6:26 PM	<0.10
211304	PSG-109	2/21/25 7:46 PM	<0.10
211305	PSG-110	2/21/25 11:21 PM	<0.10
211306	PSG-111	2/22/25 2:02 AM	<0.10
211307	PSG-112	2/22/25 12:15 AM	1.04
211308	PSG-106	2/21/25 7:20 PM	<0.10
211309	PSG-107	2/22/25 1:08 AM	<0.10
211310	PSG-104	2/21/25 8:13 PM	4.34
211311	PSG-108	2/22/25 12:41 AM	0.24
211312	PSG-105	2/21/25 10:54 PM	0.11
211313	PSG-101	2/21/25 10:00 PM	<0.10
211314	PSG-102	2/22/25 1:35 AM	<0.10
211315	PSG-103	2/21/25 11:48 PM	0.29
211316T	TRIP BLANK	2/21/25 5:59 PM	<0.10
cmBLK-1	METHOD BLANK	2/20/25 3:21 PM	<0.10
cmBLK-2	METHOD BLANK	2/22/25 5:36 AM	<0.10

AMPLIFIED GEOCHEMICAL IMAGING, LLC 210 EXECUTIVE DRIVE, SUITE 1, NEWARK, DE 19702 C S COMPANIES STANDARD TARGET VOCS/SVOCS ESTIMATED SOIL GAS CONCENTRATIONS 1153 WEST FAYETTE STREET ORDER # T02529

DATAFILE	FIELD	DATE/ TIME	DATE/ TIME	EXPOSURE	SOIL	DATE/ TIME	DATE/ TIME	
NAME	ID	INSTALLED	RETRIEVED	TIME (HRS)	TYPE	RECEIVED	ANALYZED	CCI4, ug/m^3
*RL =								75.6
*MDL =								19.2
211289	PSG-113	2/12/25 9:20	2/19/25 8:20	167.00	SILT	2/20/25 10:25	2/21/25 18:53	<75.5
211290	PSG-114	2/12/25 9:25	2/19/25 8:25	167.00	SILT	2/20/25 10:25	2/21/25 22:27	<75.5
211291	PSG-115	2/12/25 9:35	2/19/25 8:30	166.92	SILT	2/20/25 10:25	2/21/25 18:26	<75.5
211304	PSG-109	2/12/25 9:45	2/19/25 8:33	166.80	SILT	2/20/25 10:25	2/21/25 19:46	<75.5
211305	PSG-110	2/12/25 9:55	2/19/25 8:36	166.68	SILT	2/20/25 10:25	2/21/25 23:21	<75.6
211306	PSG-111	2/12/25 10:05	2/19/25 8:40	166.58	SILT	2/20/25 10:25	2/22/25 2:02	<75.6
211307	PSG-112	2/12/25 10:20	2/19/25 8:45	166.42	SILT	2/20/25 10:25	2/22/25 0:15	618
211308	PSG-106	2/12/25 10:35	2/19/25 8:48	166.22	SILT	2/20/25 10:25	2/21/25 19:20	<75.7
211309	PSG-107	2/12/25 10:40	2/19/25 8:52	166.20	SILT	2/20/25 10:25	2/22/25 1:08	<75.7
211310	PSG-104	2/12/25 10:50	2/19/25 8:55	166.08	SILT	2/20/25 10:25	2/21/25 20:13	2230
211311	PSG-108	2/12/25 11:05	2/19/25 8:58	165.88	SILT	2/20/25 10:25	2/22/25 0:41	166
211312	PSG-105	2/12/25 11:20	2/19/25 9:00	165.67	SILT	2/20/25 10:25	2/21/25 22:54	82.6
211313	PSG-101	2/12/25 11:25	2/19/25 9:03	165.63	SILT	2/20/25 10:25	2/21/25 22:00	<75.8
211314	PSG-102	2/12/25 11:35	2/19/25 9:05	165.50	SILT	2/20/25 10:25	2/22/25 1:35	<75.8
211315	PSG-103	2/12/25 11:40	2/19/25 9:08	165.47	SILT	2/20/25 10:25	2/21/25 23:48	197
211316T	TRIP BLANK					2/20/25 10:25	2/21/25 17:59	<75.6
cmBLK-1	METHOD BLANK						2/20/25 15:21	<75.6
cmBLK-2	METHOD BLANK						2/22/25 5:36	<75.6
*Poporting	limite vary with avec	scure time and so	oil type					
*Reporting limits vary with exposure time and soil type.								

KEY TO DATA TABLE

UNITS

μg micrograms, relative mass value

μg/m³ micrograms per cubic meter; estimated soil gas concentration

μg/L micrograms per Liter; calculated water concentration

DATA QUALIFIERS

> greater than; value exceeds calibration range, estimated value

less than; compound value is below the LOD and RL

J mass value below LOQ or RL, but above LOD, estimated mass value
E mass value exceeds upper calibration level, estimated mass value
Q one or more quality control parameters failed for the compound

ABBREVIATIONS

AVG RL average reporting limit; calculated based on individual field sample RLs

LOD limit of detection

LOQ limit of quantification

MDL method detection limit

RL reporting limit

1112TetCA 1,1,1,2-tetrachloroethane CIBENZ chlorobenzene

111TCA 1,1,1-trichloroethane ct12DCE cis- & trans-1,2-dichloroethene

1122TetCA1,1,2,2-tetrachloroethaneEtBENZethylbenzene112TCA1,1,2-trichloroethanempXYLm-, p-xylene

11DCA 1,1-dichloroethane MTBE methyl t-butyl ether

11DCE1,1-dichloroetheneNAPHnaphthalene124TMB1,2,4-trimethylbenzeneOCToctane12DCA1,2-dichloroethaneoXYLo-xylene

12DCB1,2-dichlorobenzenePCEtetrachloroethene135TMB1,3,5-trimethylbenzenePENTADECpentadecane13DCB1,3-dichlorobenzenePHENphenanthrene

14DCB 1,4-dichlorobenzene t12DCE trans-1,2-dichloroethene

2MeNAPH 2-methyl naphthalene TCE trichloroethene

BENZ benzene TMBs combined masses of 1,3,5-trimethylbenzene

BTEX combined masses of benzene, toluene, ethylbenzene, and and 1,2,4-trimethylbenzene

total xylenes (Gasoline Range Aromatics)

TOL toluene

C11,C13&C15 combined masses of undecane, tridecane, and TPH total petroleum hydrocarbons

pentadecane (C11+C13+C15) (Diesel Range Alkanes)

cis-1,2-dichloroethene

carbon tetrachloride

TRIDEC

undecane

undecane

vinyl chloride

CHC13 chloroform

c12DCE

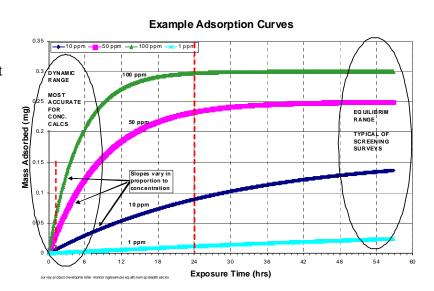
CCI4

SUMMARY OF SAMPLING RATE CALIBRATION FOR AGI SPG-0008 SAMPLER IN A GAS PHASE

PURPOSE:

The purpose of this document is to:

- 1. Summarize the test protocol,
- 2. Summarize the methodology for analysis of data,
- 3. Present general results for generating concentration calibration


of the AGI Sampler, SPG-0008, in a gas phase (air or soil gas) following AGI's "Standard practice for determining the sampling rate of passive diffusion samplers in various environmental media," SPG-SOP-0493. The work will be summarized in two parts: Part 1: air, Part 2: soil gas.

Principle of Operation of the AGI Sampler

The AGI Sampler is designed with solid adsorbents enclosed inside a tubular microporous PTFE membrane. When placed in soil or saturated soil, the pores and hydrophobic nature of the PTFE keep liquid water from entering the membrane. The membrane will not keep water vapor from entering but the adsorbents are very hydrophobic and testing of the SPG-0008 sampler has validated it to be unaffected by this moisture vapor. Compounds in air with vapor pressures above about 1 millionth of a mm of Hg will diffuse through the microporous membrane and be immediately captured on the solid adsorbent housed inside. The membrane porosity and dimensions are well controlled as is the mass of the adsorbent contained inside the sampler. The average pore diameter of the membrane is 1000 times larger that of the compounds of interest, meaning the membrane offers a minimal resistance. On the other hand, the membrane pore size is small enough that colloidal particles and microbes can not pass through the membrane. This keeps the adsorbent from getting contaminated and eliminates any need to add preservative or chill during storage or transportation.

When a sampler is exposed to compounds in air, mass from the volatile compound are collected on the solid adsorbent inside the microporous PTFE membrane. To the right is a generalized example of mass uptake with time for this sampler.

Notice the initial slope and ultimate equilibrium mass both increase with increasing concentrations. For shorter time the increase is virtually

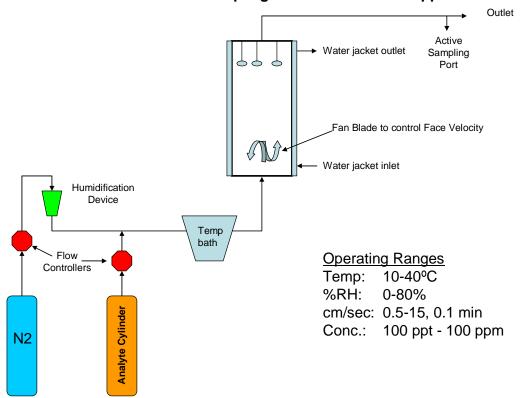
linear but as the mass increases toward the steady state, mass uptake slows and mass eventually reaches an asymptote. The initial range is referred to as the dynamic linear range while the later stage is referred to as the equilibrium range.

The sampling rate calibration for this passive sampler will apply to the linear and near-linear dynamic range, where accuracy and precision are best.

Temperature can affect both the diffusivity in air, which is part of the sampling rate but also the binding energy of the compound to the adsorbent. In general passive sampling devices are not highly affected by temperature although the effect will be more important for lower MW compounds. It is not uncommon to have an Arrhenius factor, -Ea/R of <1000, which means a 5°C temperature change will make less than a 5% change in sampling rate.

In soil, the matrix of particles and water creates a resistance to soil gas diffusion. Millington (Millington 1959) has modeled this resistance and developed a model to correct the diffusion for this added resistance based upon the porosity of the soil and the fraction of pores filled with water. This "Soil Effectiveness Factor" can lower the sampling rate in soil to 40% to 10% of that in free air. This will discussed further in Part 2.

PART 1: Calibration in Air


Part 1 summarizes the work in free air generating calibration data, evaluating the physical and chemical factors affecting the sampling rate, and measurement of the actual sampling rates or regression calibration equations needed to determine concentrations.

Sample Generation in Air

In this calibration work, gaseous mixtures of analytes at known concentrations were generated inside a 3 liter glass vessel by mixing flow from gaseous standard cylinders with nitrogen using electronic flow controllers. A diagram of the set up is shown below. Total flow through the vessel ranged from 2 to 50 liters/min with an aim, where possible, of using a flow 20 or more times the combined sampling rate of AGI® Sampler being tested.

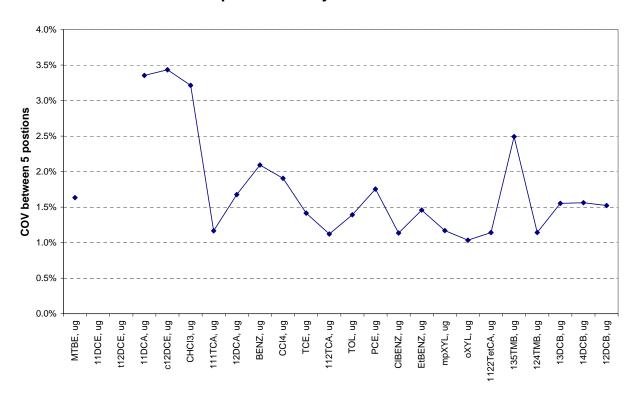
This gas mixture was temperature controlled by running it through a coil in a temperature controlled chiller. Similarly, the glass vessel was also temperature controlled by circulating the chiller fluid through the vessel jacket. A mercury thermometer in the vessel was used to determine the experiment temperature. The humidity level of the mixed gas was modified by passing the nitrogen portion of the gas mixture through a bubbler. Different humidity levels could be achieved by using water or saturated salt solutions in the bubbler that generate different relative humidities.

Passive Diffusion Sampling Rate Measurement Apparatus

Internal wind velocity was controlled using a propeller blade attached to a shaft and motor. RPM was measured to calculate air velocity based on propeller pitch and rpm.

Before each experiment, the system was run for minutes to hours to allow temperature, humidity, and compound density on the vessel walls to stabilize. When changing concentrations, a stabilization time, typically, 2-10 hours, was provided to allow the vessel walls to reach a new equilibrium with the analyte concentrations and wall temperature.

AGI sampler were hung inside the vessel at time zero. They were removed at various intervals to generate samples along with duplicates that showed mass increasing with exposure time. The sampler exposure time was selected to span minutes to hours and was generally reduced for high concentration tests to maintain uptake with time, in roughly the linear dynamic range. Sampler were removed and placed back into their original jars for analysis. They were analyzed by AGI's 8260C method (SPG-WI-0318 or SPG-WI-10028) in duplicate, which is based on EPA SW846 Method 8260C.


Vessel concentration was also measured during the tests using a TO-17 type of method. A MSA pump pulled about 1.5 L/hr of atmosphere from the chamber through two thermal desorption tubes in series, the first packed with Tenax-TA, and the second packed with a strong adsorbent carbon molecular sieve. Flow rate through the series of tubes was measured at the start and end of the pumping. Analysis of the thermal desorption tubes were performed by appropriate

analytical methods. Each Tenax-TA tube was analyzed by AGI's 8260C method (SPG-WI-0319 or SPG-WI-10028) and each carbonaceous tube by AGI's screening method (SPG-WI-0292). Typically only a small portion of the lower molecular weight compounds, such as DCA & DCE passed through the Tenax-TA tube to be captured on the carbon tube. Concentration was determined by

(sum of mass on both tubes)/(avg flow rate x hours) = ug/L

Up to five sampler can be placed simultaneously in the chamber. Testing confirmed good sample uniformity among the locations as shown by coefficients of variation generally below 3% in the chart below.

Good Sample Uniformity between 5 Positions

Most of the runs were performed using a TO-15 mix of compounds in a cylinder made up at nominally 1 ppm. Using nitrogen dilution, sampling rate measurements were done at concentrations from about 1 ppb to 50 ppb. Higher concentration cylinders can be used to generate concentrations in the ppm range if desired.

Sampling rate calibrations were run using multiple concentrations, typically 5-50 ppb and temperatures, typically 5°C to 35°C. Samples were run in duplicate. A total of 94 data points were generated using 23 compounds from AGI's standard compounds list. In addition, another 23 compounds were tested from those in the TO-15 mix. This is a living calibration and as additional data are generated, they may be qualified and added to this data set to improve the precision of the sampling rate calibration and broaden the compound list.

Key Variable Effects

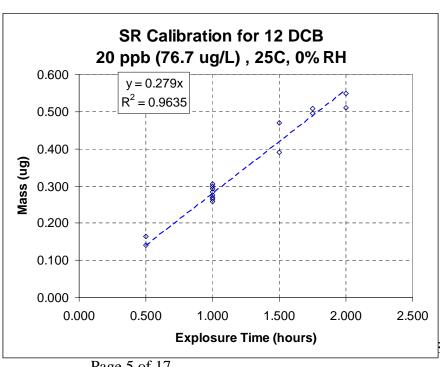
Based on theory, at short to moderate exposure times mass will increase roughly linearly proportional to exposure time, as well as, proportional to concentration. For passive samplers in air, temperature generally does not have a major effect on sampling rate. Even so, this work examined the impact of temperature because it could have a small effect on diffusivity in air and potentially adsorption strength for low MW compounds.

Except in indoor environments, air velocity is expected to be low and of inconsequential importance. The passive adsorbent is protected by wind stopping AGI membrane. Even so, we looked at velocity effects. Based on the hydrophobic nature of the adsorbents in SPG-0008 sampler, humidity is not expected to impact sampling rate.

Sampling rate has been found to be generally independent of concentration and time at mass values significantly below saturation. In the following sections we have characterized the sampling rate for each compound as affected by temperature and also developed calibrations using regression which account for the minor impact of time, and mass.

Concentration using Simple Sampling Rate Determination

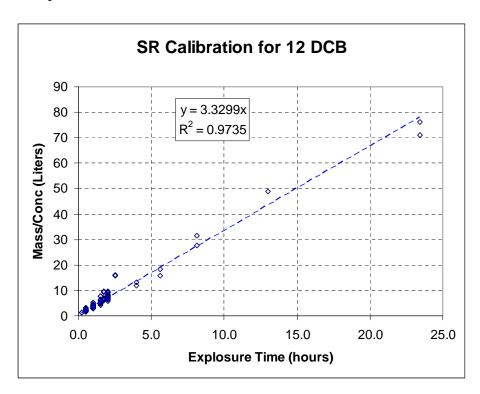
A simple way to determine concentration is to measure mass on the AGI sampler, divide by exposure time, and divide by sampling rate, SR.


Conc
$$[ug/L] = mass/time/SR$$
 (1)

The sampling rate can be determined via measurements of mass versus time at a known concentration and temperature according to the following modification of equation (1).

$$SR = mass/time/concentration$$
 (2)

Sampling rates in L/hr were determined by measuring the trend or regression mass uptake versus time and dividing by the concentration. Such a sampling rate can be measured at any concentration and temperature.


The chart to the right shows a plot of mass versus time at 12DCB in nitrogen at nominally 20 ppb or 76.7 ug/cu m and

Page 5 of 17

297K. This is actual data for one test run. The slope of 0.279 ug/hr divided by the concentration of 0.0767 ug/L yields a sampling rate, SR, of 3.64 L/hr.

The data could also be plotted as mass/Conc vs. time in which case the slope is the sampling rate directly as shown in the chart below. This allows the use of a larger data set incorporating multiple concentration tests.

Rigorous Concentration using Regression

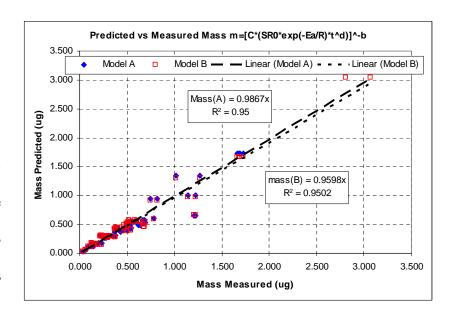
A preferred method for determining concentration that will yield improved accuracy over a wide range of concentrations, exposure times, and temperatures is to use all data in a regression analysis. This allows adjustments for the minor non-linear influences of mass and time as well as the effects of temperature. This is done by regressing equation (1) or a universal version of equation (1)

$$Conc = (mass)^b / (time)^{-d} / [SRo*exp(-Ea/R/T)]$$
(3)

The subtle non-linear effects of mass and time will be evident in the deviation of coefficients b and d from 1.0. This regression generates four constants b, d, SRo, and –Ea/R by regressing ln(conc) versus ln(mass), ln(time), 1/temp. These four constants can be used to determine concentration via the equation:

$$Conc = (mass)^b / (time)^{-d} / [SRo \times exp(-Ea/R(1/T))]$$
(4)

Where conc is in ug/L, mass is in ug, time in hours, T in degrees Kelvin.


Equation (4) can also be expressed at a reference temperature, Tr, such as 15°C by

Conc =
$$(\text{mass})^b / (\text{time})^{-d} / [\text{SRr x exp}(-\text{Ea/R}(1/\text{Tr}-1/\text{T}))]$$
 (5)

This allows sampling rates, SRr, at any reference temperature, Tr, and for any analyte to easily be compared. These values of SRr at 25°C 298.14°K can be found in Table A.

The chart to the right is a plot of the 12DCB predicted mass from the 4 constant regression compared to the measured mass. Agreement is excellent for the 95 data points.

Model A or the blue points are the 4 constant model, while Model B or the red squares are a 3 constant model ignoring temperature. Error for 12DCB is slightly lower for Model A and for lower MW compounds it is much better.

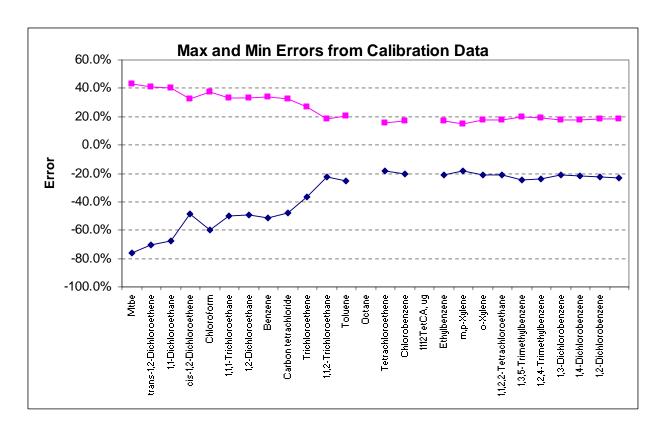
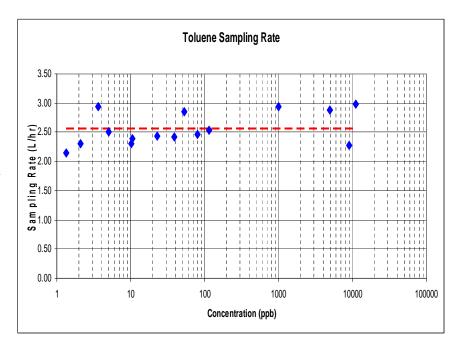

The 4 constant equation has been adopted for determining concentration in the gas phase.

Table B shows the tabulated summary of the 4 constants regression with Rsq values and error estimates for the 4 constants for each analyte. With the exception of MTBE and t12DCE the regression Rsq values are 0.9 or greater for each analyte. In general, temperature is more important for early eluting compounds where -Ea/R ranges from 2000 to 4000 while later eluting compounds (112TCA and above) are in the range of 500 to 1000 meaning they are less affected by temperature. Similarly, early eluting compounds have mass and time coefficients, b and d respectively, that deviate from 1.0.

Error Estimates

Table C shows the error in the mass values from the 8260C low sensitivity method (SPG-WI-318), which at a 95% confidence level is typically 10% - 15%. The error between the primary sample and the duplicate in the sampler is generally about 5% and shown in table D.


The standard error of the regression and standard errors of the constants can be found in table B. For each compound we have measured the error between the derived concentration and the actual concentration. This is tabulated in table D and shown below by compounds.

The maximum total error range is +/-20% for 112TCA and later eluting compounds. The maximum error range increases for compounds that elute earlier than 112TCA.

Effect of Concentration

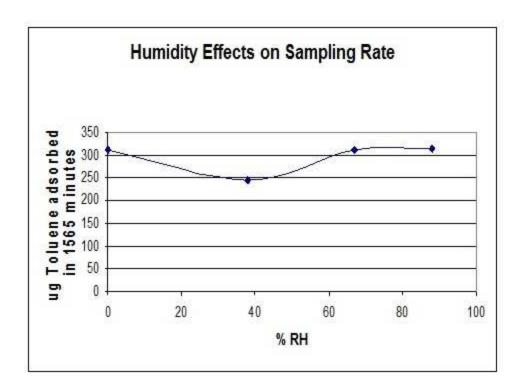
The measurement of sampling rate, SR, is effectively independent of concentration. The chart below shows statistically consistent sampling rate over four decades of concentration change for toluene. This has also been observed for other tested compounds.

Page 8 of 17

Sorbent Saturation

As mass increases on a solid sorbent and approaches saturation, reverse diffusion can occur causing the sampling rate to drop. Eventually the mass level will reach a maximum steady state value at any concentration. A rate of mass uptake with time that deviates significantly from linear, indicates that sorbent saturation could be an issue. When using equation (1), staying in the linear range to avoid the effects of adsorbent saturation is important. We recommend keeping the total mass on the sampler below 50 ug or flagging when this is exceeded.

The 4 constant regression accounts for some of the non linearity allowing good accuracy at higher mass levels. From the experimental data we have found this safe range can be extended potentially up to 100 ug.


Effect of Relative Humidity

The adsorbent system used in the SPG-0008 sampler is a proprietary multi-polymer system. It was tested compared to a carbon adsorbent in a RH chamber for weight gain and found to be effectively unaffected by moisture.

16.0% carbonaceous 14.0% 13.3% 12.0% 10.0% Weight % change of Adsorbent 8.0% 6.0% 4.0% 2.0% 0.0% -0.42% -2.0% -4.0% 10 20 30 40 60 70 80 90 0 50 100 %RH

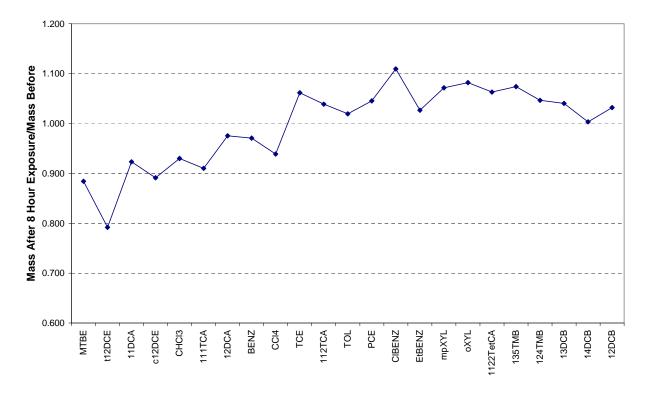
Moisture Adsorption Isotherm

Additionally, mass adsorption was relatively constant at relative humidity ranging from 0% to 95%.

Impact of Air Velocity

To examine the potential impact of air velocity on sampling rate, five samplers were exposed for varying times up to 2 hours at 20 ppb of TO-15 mixture.

The chart to the right shows the calculated sampling rates from zero to 0.87 m/sec velocity. There is no structured impact of velocity on sampling rate.



Impact of Open Sampler Jar

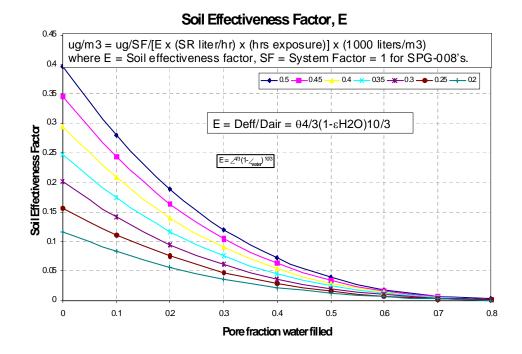
Typically returning the exposed sampler to its jar and tightening the lid will maintain the mass. A test was run to look at the unexpected consequence of leaving the sampler in fresh air for 7.5 hours after exposure to 20 ppm of TO-15 mixture for 1 hour. Three sampler were tested without ambient air exposure and two with exposure and their mass levels measured. The chart below shows most compounds masses after the 7.5 hour exposure to fresh air are within 10%. One compound, t12DCE, is more affected losing 20% in this time.

Ambient air exposure post sampling would typically be expected to be < 5 minutes, so based on this we do not expect this will cause significant errors in reported mass or concentration. Care should be taken not to pinch the sampler between the jar and lid, which could allow contamination into the sample or loss of lower molecular weight compounds.

Impact of 8 hour bench exposure

Part 2: Calibration in Soil

Part 2 describes the effect of soil on the sampling rate and concentration measurement.


In a porous media, such as soil, diffusion of the analyte in the soil gas to the sampler is restricted. More porous soils have less restriction. This restriction has been experimentally modeled by Millington (Millington, R, J., "Gas Diffusion in Porous Media", Science, (1959), Vol. 130, 100-102) and found to be represented by the equation below:

$$SR_{soil} = E(SR_{air}) \tag{6}$$

where E is the "Soil Effectiveness Factor" expressed a function of total soil porosity (θ) and water filled porosity (ϵ , volume of water/volume of pores) as:

$$E = \theta^{\left(\frac{4}{3}\right)} \left(1 - \varepsilon\right)^{\left(\frac{10}{3}\right)} \tag{7}$$

The chart to the right shows how E varies with soil porosity and fraction of pores filled with water.

Summary

The AGI Sampler can be used to determine the concentration of volatile and semi-volatile compounds in a gas phase. This requires knowing the exposure time and temperature and if in soil also requires values or estimates for soil porosity and the fraction of pores filled with water. Regressions of large amounts of data were used to generate a four constant equation to generate concentration values in air. Potential error in the concentration values is excellent typically less than 20% when used in gas phase sampling within the following conditions:

Condition	Acceptable Range
Temperature	0°C to 35°C
Velocity	0 to 0.9 m/sec
Relative Humidity	0 – 95%
Mass Level	0.01 – 50 ug

AGI Laboratory Report T02529

TABLE A AIR SAMPLING RATES STANDARD LIST

	SR @
	298.94
MTBE	1.10
t12DCE	1.08
11DCA	0.96
c12DCE	1.51
CHCI3	1.18
111TCA	0.75
12DCA	1.87
BENZ	1.91
CCI4	0.93
TCE	1.83
112TCA	2.40
TOL	2.54
OCT	
PCE	2.33
CIBENZ	3.05
1112TetCA	
EtBENZ	3.02
mpXYL	3.02
oXYL	3.10
1122TetCA	3.35
135TMB	3.19
124TMB	3.35
13DCB	3.97
14DCB	4.09
12DCB	3.93
Total mass	1.80

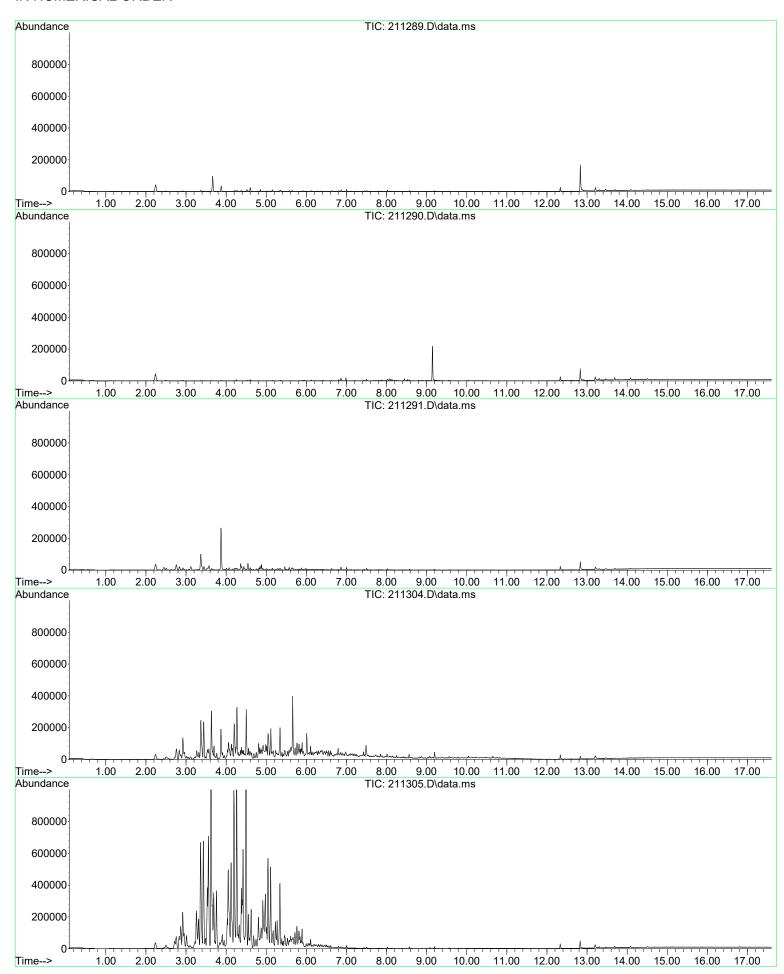
Values in L/hr, Total mass does not include Oct, 1112TetCA (23 compounds)

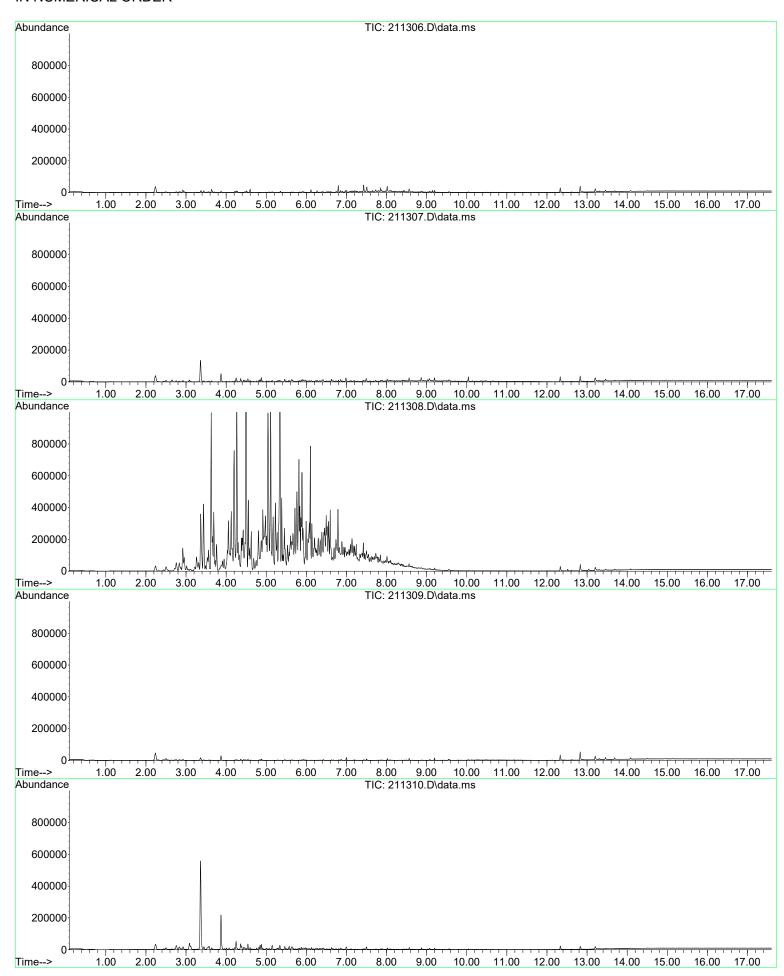
TABLE B

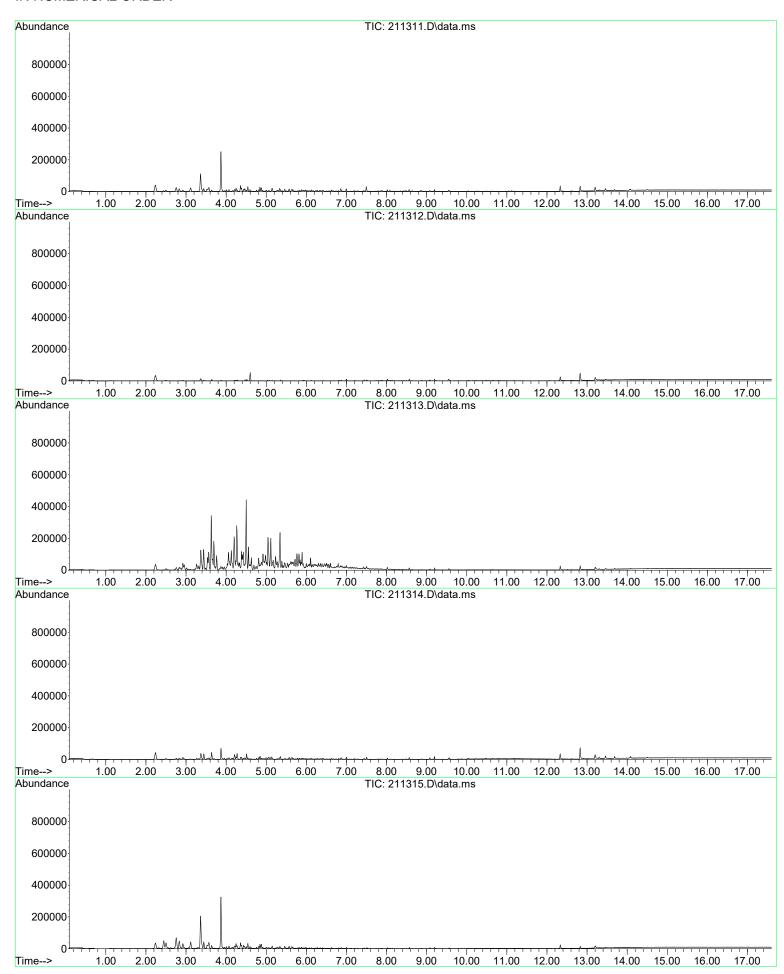
4 CONSTANT REGRESSION OUTPUT

	Adjusted	Standard			_		Std Error	Std Error	Std Error	Std Error
	Rsq	Error	In(SR0)	b	Ea/R	d	In(SR0)	b	Ea/R	d
MTBE	0.77	0.2684	6.1531	0.7137	-1862	-0.2973	1.1215	0.0421	309	0.0346
t12DCE	0.80	0.2498	14.2118	0.6315	-4261	-0.1411	1.2463	0.0358	343	0.0323
11DCA	0.91	0.2016	13.7734	0.8038	-4094	-0.2544	0.8973	0.0294	251	0.0258
c12DCE	0.89	0.2092	9.4567	0.7241	-2941	-0.2710	0.8774	0.0286	248	0.0267
CHCI3	0.91	0.2048	12.2405	0.8364	-3699	-0.3365	0.8737	0.0294	246	0.0261
111TCA	0.94	0.1701	8.3160	0.9176	-2393	-0.5136	0.6652	0.0257	189	0.0222
12DCA	0.92	0.1921	9.0559	0.8093	-2886	-0.4404	0.7728	0.0275	220	0.0248
BENZ	0.89	0.2178	7.6871	0.7990	-2485	-0.4583	0.8687	0.0326	247	0.0286
CCI4	0.91	0.2219	7.0239	0.8972	-2071	-0.5182	0.8597	0.0324	246	0.0289
TCE	0.94	0.1680	7.0333	0.8809	-2276	-0.5871	0.6541	0.0244	188	0.0224
112TCA	0.97	0.1401	3.0297	0.9933	-1165	-0.8405	0.5251	0.0205	153	0.0202
TOL	0.96	0.1468	2.9135	0.9448	-1147	-0.7896	0.5506	0.0220	160	0.0213
ОСТ										
PCE	0.97	0.1229	2.2557	0.9912	-925	-0.8337	0.4611	0.0183	134	0.0178
CIBENZ	0.97	0.1410	1.2078	0.9832	-693	-0.8819	0.5267	0.0210	153	0.0211
1112TetCA										
EtBENZ	0.96	0.1521	0.4685	0.9696	-469	-0.9107	0.5663	0.0226	165	0.0231
mpXYL	0.96	0.1505	0.7733	0.9883	-560	-0.9123	0.5594	0.0227	163	0.0229
oXYL	0.96	0.1554	0.5660	0.9495	-506	-0.8713	0.5776	0.0233	169	0.0234
1122TetCA	0.95	0.1715	0.5319	0.9793	-519	-0.9313	0.6375	0.0252	186	0.0262
135TMB	0.94	0.1783	1.1480	0.9370	-688	-0.8545	0.6646	0.0266	194	0.0266
124TMB	0.95	0.1702	1.4973	0.9590	-807	-0.8819	0.6368	0.0255	185	0.0257
13DCB	0.95	0.1641	0.9194	0.9644	-685	-0.8908	0.6115	0.0245	178	0.0250
14DCB	0.95	0.1619	1.4086	0.9556	-840	-0.8854	0.6030	0.0242	176	0.0246
12DCB	0.95	0.1713	0.9920	0.9620	-704	-0.9037	0.6388	0.0254	186	0.0261
Total mass	0.966	0.1302	3.4894	0.9213	-1215	-0.7716	0.4835	0.0195	142	0.0190

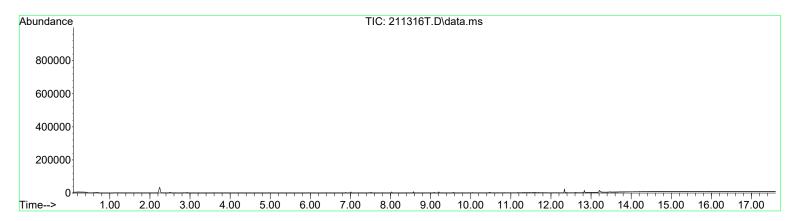
TABLE C 8260C MASS UNCERTAINTY


AGI 8260C Method for Mass using SPG-0008 Sampler


	99%	95%
	Uncertainty Range	Uncertainty Range
	+/-	+/-
MTBE	20%	14%
t12DCE	22%	15%
11DCA	18%	12%
c12DCE	18%	12%
CHCl3	16%	11%
111TCA	18%	12%
12DCA	20%	13%
BENZ	16%	10%
CCI4	19%	12%
TCE	15%	10%
112TCA	18%	12%
TOL	15%	10%
OCT	20%	13%
PCE	16%	11%
CIBENZ	18%	12%
1112TetCA	19%	13%
EtBENZ	18%	12%
mpXYL	18%	12%
oXYL	18%	12%
1122TetCA	23%	15%
135TMB	21%	14%
124TMB	20%	14%
13DCB	19%	13%
14DCB	19%	13%
12DCB	20%	14%
NAPH	21%	14%
2MeNAPH	25%	17%


TABLE D 4 CONSTANT AIR CONCENTRATION UNCERTAINTY

ERROR IN CONCENTRATION REPORTING (1)


ERROR IN CONCENTRATION RELIGION	Primary-		
	Duplicate	Minimum	Maximum
	Error	Error	Error
MEDE	4.00/	700/	400/
MTBE	4.3%	-76%	43%
t12DCE	10.4%	-70%	41%
11DCA	5.2%	-68%	40%
c12DCE	6.0%	-49%	33%
CHCl3	4.8%	-60%	37%
111TCA	5.4%	-50%	33%
12DCA	5.4%	-49%	33%
BENZ	4.4%	-52%	34%
CCI4	5.3%	-48%	32%
TCE	5.7%	-37%	27%
112TCA	5.9%	-23%	18%
TOL	5.3%	-26%	20%
OCT			
PCE	5.7%	-18%	15%
CIBENZ	3.9%	-20%	17%
1112TetCA			
EtBENZ	5.1%	-21%	17%
mpXYL	4.5%	-18%	15%
oXYL	4.7%	-21%	17%
1122TetCA	5.2%	-21%	18%
135TMB	8.0%	-25%	20%
124TMB	7.0%	-24%	19%
13DCB	6.7%	-21%	18%
14DCB	6.1%	-22%	18%
12DCB	7.4%	-22%	18%
Total Mass	4.3%	-23%	18%

TICS T02529 IN NUMERICAL ORDER

Delaware Office and AGI Laboratory:

210 Executive Drive, Suite 1 Newark, Delaware 19702-3335 USA

Phone: +1-302-266-2428 Fax: +1-302-266-2429

Corporate Office:

7112 W. Jefferson Avenue, Suite 106 Lakewood, CO 80235 USA

> Phone: +1-303-988-1968 Fax: +1-303-986-2898

www.agisurveys.net

©2025 Amplified Geochemical Imaging, LLC

NYSDEC Green Remediation Metrics Form A

Form A Summary of Green Remediation Metrics

Site Name: <u>1153-69 West Fayette Street</u> S	Site Code: <u>C743164</u> Operable Unit:
Address: 1153-69 West Fayette Street	City: <u>Syracuse</u>
State: New York Zip: 13204 County:	Onondaga
Reporting Period	
Contract Period From:To:	
Reporting Period From: November 2024 To: Febr	ruary 2025 Is this a Final Report? Yes ☐ No 🗵
Contact Information	
Preparer's Name: Claire Del Fatti	Phone No.: <u>315-455-2000</u>
Preparer's Affiliation: <u>C&S Engineers, Inc.</u>	Company Code:
Contract No.	

Materials & Waste Generation: Quantify the materials used or consumed and the management of waste generated on-site.

	Current Reporting Period (Include Units)	Total to Date (Include Units)
Materials Brought to the Site		
Topsoil		
• Fill		
Silt Fence		
Silt Logs		
Aggregate Base Course		
Geotextile		
Solidification Additives		
Activated carbon		
Other: PVC Casing / Screen	92 lbs	
Other: Portland Cement	1000 lbs	
Other: Sand	1330 lbs	
Other: Ready Mix Concrete	160 lbs	
Other:		
Other:		
Other:		
Total Wastes Generated On-Site		
Remedy Generated Waste		
Contractor Generated Waste	2.0 CY	
Other: Soil Cuttings	1.5 tons	
Other: Purge Water	100 gallons	
Other:		

Provide a description of any implemented waste reduction programs appropriate for this project in the space provided on the certification page.

Recycled and Bio-Based Content in Imported Products and Materials: Quantify all materials and products imported to the site, including cost of materials/dollar values. Provide total percentages of recycled and bio-based of products and materials.

List Products and Materials Below	Total \$ Value Provided	Total Percent of Recycled Content	Total Percent of Bio-based Content

Provide additional descriptions, as necessary, in the space provided on certification page.

Solid Waste Disposal and Diversion: Quantify all solid wastes generated, and indicate whether material was disposed or diverted for recycling or reuse.

Solid Waste Material	Date	Disposed or Diverted	Volume (Ton or CY)	Disposal/Recycling Facility Name	Comments (if not diverted, state why)
TSCA Contaminated Sediment					
Non-TSCA Contaminated Sediment					
Cleared Vegetation					
Spent Granular Activated Carbon					
Monitoring Well Removal Debris					
Other: General Refuse	Nov 2024- Feb 2025	Disposed	2.0 CY	Local Municipal Landfill	
Other:					
Other:			1 11 15		

Provide descriptions in the space provided on the certification page of all wastes that were redirected for recycling or reuse. Indicate full names and addresses of facilities.

Energy Usage: Quantify the amount of energy used on-site and portion of that voluntarily derived from renewable energy sources.

	Current Reporting Period (KWh)	Total to Date (KWh)
Total electricity usage	14.5	
Of that total amount, provide quantity:		
• Derived from renewable source (i.e., solar, wind)		
Other: Grid Electricity	14.5	

Provide descriptions in the space provided on the certification page of all reported energy use reduction programs appropriate to this project, including use of electricity derived from renewable sources.

Water Usage: Quantify the volume of water used on-site from difference sources.

	Current Reporting Period (Gallons)	Total to Date (Gallons)
Total quantity of water used on-site	100	
Of that total amount, provide the quantity ob	tained from:	
Public potable water supply	100	
Surface water		
On-site treated groundwater		
Reclaimed treated water		
Collected or diverted storm water		
Re-Injected groundwater		
Other:		
Other:		

Provide descriptions in the space provided on the certification page of any reported water use reduction programs applied. Please note if reused/injected groundwater is pre-treated.

Emissions: Quantify the distance traveled for delivery of supplies and removal of waste.

	Current Reporting Period (Miles)	Total to Date (Miles)
Off-site mobile fuel combustion	3950	
Other:		

Provide descriptions in the space provided on the certification page of practices such as use of local vendors within 150 miles of the site and on-site stationary fuel use reduction programs.

Quantify the number of hours that diesel and other equipment with the potential to emit hazardous air pollutants (HAPs) or greenhouse gas (GHG) emissions was operated on-site.

	Current Reporting Period (Hours)	Total to Date (Hours)
On-site diesel excavation/construction equipment usage	50	
Other on-site processes generating emissions		
Other: Gasoline Asphalt Saw	15	

Quantify the VOC emissions from active remediation systems on-site.

	Current Reporting Period (Ibs VOCs emitted)	Total to Date (lbs VOCs emitted)
Operating soil remediation equipment		
Operating groundwater remediation		
equipment		
Other:		

Provide descriptions in the space provided on the certification page of the type of equipment used, rating, emission control devices used and other means to reduce emissions.

Land and Ecosystem: Quantify the amount of land and/or ecosystems disturbed by construction and the area of land and/or ecosystems restored to a natural condition.

	Current Reporting Period (Acres)	Total to Date (Acres)
Total land area disturbed		
Total land area restored		
Increase in area for storm water infiltration (vs pre-disturbed conditions)		
Increase in area of native species plantings (vs pre-disturbed conditions)		
Other:		

Quantify the amount of land and/or ecosystems remediated.

	Current Reporting Period (Acres)	Total to Date (Acres)
Total area of land impacted by		
contamination		
Total area of land remediated to		
unrestricted use		
Total area of land remediated to other		
future site use		

Additional Comments on Green Remediation Programs Implemented: Provide descriptions in the space provided of other green remediation practices performed during the project.

Descriptions of green remediation programs reported above (Attach additional sheet if needed)

Materials and Products Imported:

PVC, cement, and sand imported for groundwater monitoring well construction. Concrete imported to patch holes made from interior borings.

Waste Generation:

Soil cuttings generated from groundwater monitoring well construction. Purge water generated from groundwater monitoring well development and sampling. Contractor generated waste included general refuse such as sampling equipment, sample liners, PPE, etc. Soil cuttings will be reused on-site under the anticipated cover system, if characterization allows.

Appendix K

Health and Safety Plan

Health and Safety Plan for 1153-69 West Fayette Street

1153-69 West Fayette Street City of Syracuse, Onondaga County, New York

BCP Site No. C734164

Prepared by:

C&S Engineers, Inc. 499 Col Eileen Collins Blvd. Syracuse, New York 13212

EMERGENCY PHONE NUMBERS

Emergency Service	.911
Police: Syracuse Police Department	.(315) 442-5200
<u>Fire</u> : Syracuse Fire Department	.(315) 453-5525
Hospital: Upstate: Emergency Room	.(315) 464-5611
Hospital: Crouse: Emergency Room	.(315) 470-7111
Department of Public Works	.(315) 448-2489
National Response Center	.(800) 424-8802
Poison Control Center	.(800) 222-1222
Center for Disease Control	.(800) 311-3435
NYSDEC Region 7 (Syracuse, New York)	.(315) 426-7551
C&S Engineers	.(315) 455-2000
Site Superintendent	***
Project Field Office Trailer	***

^{***} A site superintendent and field office trailer will not be onsite until remedial actions commence.

TABLE OF CONTENTS

		<u>Page</u>
Emergenc	y Phone Numbers	i
Section 1 -	– General Information	1
1.1	Responsibilities	1
1.2	Applicable Standards and Regulations References	
Section 2 -	– Health And Safety Personnel	
2.1	Project Manager (PM)	3
2.2	Health and Safety Manager	
2.3	Health and Safety Officer (HSO)	3
2.4	Emergency Coordinator	4
2.5	Site Workers	
Section 3 -	- Site Hazards Evaluation	5
3.1	Chemical Hazards	5
	3.1.1 Nature of Chemical Hazards	5
	3.1.2 Common Routes of Exposure	
3.2	Physical Hazards	
3.3	Environmental Hazards	
Section 4	– Training	10
4.1	Site-Specific Training	
4.2	Task-Specific Training	
4.3	Safety Briefings	
4.4	Daily Tailgate Safety Meeting	
Section 5 -	- Communications	11
5.1	Communications	
Section 6 -	- Personal Protective Equipment	12
6.1	Personal Protective Equipment – General	
6.2	Personal Protective Equipment – Site Specific	
Section 7 -	– Monitoring Procedures	14
7.1	Monitoring During Site Operations	14
	7.1.1 Surface Soil Operation	14
	7.1.2 Drilling / Test Pit Operations (Monitoring Well Installation and	
	Subsurface Borings)	
7.2	Action Levels	
7.3	Personal Monitoring Procedures	
	- Safety Considerations For Site Operations	
8.1	General	
8.2	Field Operations	
8.3	General Asbestos Safety	
	- Decontamination Procedures	
9.1	General Decontamination	
9.2	Contamination Avoidance	17

Health and Safety Plan

9.3	Reducing Contamination	.17
9.4	Equipment Decontamination	.17
Section 10 –	Disposal Procedures	.18
Section 11 –	Emergency Response Procedures	.19
11.1	Emergency Coordinator	.19
11.2	Evacuation	.19
11.3	Potential / Actual Fire or Explosion	.19
11.4	Environmental Incident (Spread or Release of Contamination)	.19
11.5	Personnel Injury	.20
11.6	Personnel Exposure	.20
11.7	Adverse Weather Conditions	.20
11.8	Incident Investigation and Reporting	.20

ATTACHMENTS

Attachment A – Map and Directions to Hospital

Attachment B – Guidance on Incident Investigation and Reporting

SECTION 1 — GENERAL INFORMATION

This Health and Safety Plan (HASP) addresses health and safety considerations for the activities that personnel employed by C&S Engineers, Inc., may be engaged in during site investigation and remedial activities at 1153-69 West Fayette Street in the City of Syracuse, Onondaga County, New York; hereby, referred to as (Site). This HASP will be implemented by the Health and Safety Officer (HSO) during site work. All personnel engaged in the Phase II Environmental Site Investigation are required to maintain current HAZWOPER training, including initial 40-hour training, on-the-job training, and consistent annual 8-hour refresher training, as per the requirements of 29 CFR 1910.120.

Compliance with this HASP is required of C&S personnel who enter this Site. The content of the HASP may change or undergo revision based upon additional information made available to the health, safety, and training (H&S) committee, monitoring results or changes in the technical scope of work. Any changes proposed must be reviewed by the H&S committee.

1.1 Responsibilities

Project Manager	Claire Del Fatti Phone: (315) 703-4233 Cell: (315) 949-1805
C&S Health and Safety Director	Mike Sherlock Phone: (315) 703-4210 Cell: (315) 420-3455
Site Health and Safety Officer	Nick Coulombe Phone: (315) 703-4284 Cell: (315) 720-8682
Emergency Coordinator	Nick Coulombe Phone: (315) 703-4284 Cell: (315) 720-8682

1.2 Applicable Standards and Regulations References

A. The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. Where a conflict or overlap among regulations and/or these specifications exist, the most stringent requirements shall apply. C&S's Project Manager will determine which requirements are most stringent.

1. AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI)

- a. ANSI Z89.1, Personnel Protective Equipment-Protective Headwear for Industrial Workers-Requirements (Latest Revision)
- b. ANSI Z87.1, Occupational and Educational Personal Eye and Face Protection Devices
- c. ANSI Z9.2, Fundamentals Governing the Design and Operation of Local Exhaust Systems
- d. ANSI Z88.2-80, Practices for Respiratory Protection

2. CODE OF FEDERAL REGULATIONS (CFR)

- a. 29 CFR Subpart D Walking-Working Surfaces
- b. 29 CFR 1910 Occupational Safety and Health Standards-All Sections
- c. 29 CFR 1926 Safety and Health Regulations for Construction-All Sections
- d. 40 CFR 50.6 National Primary and Secondary Ambient Air Quality Standards for Particulate Matter
- e. 40 CFR 61 National Emissions Standards for Hazardous Air Pollutants (NESHAPS)-Subpart A-General Provisions
- f. 49 CFR 172 Hazardous Material Table, Special Provisions, Hazardous Materials Communications, Emergency Response Information, and Training Requirements

3. NATIONAL INSTITUTE FOR OCCUPATIONAL SAFETY AND HEALTH (NIOSH)

- a. Publication Number 87-108 Respiratory Decision Logic
- b. NIOSH/OSHA Booklet 3142 Lead in Construction
- c. Occupational Safety and Health Guidance Manual for Hazardous Waste Site Activities (NIOSH Publication 85-115)

4. U.S. DEPARTMENT OF LABOR, OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION (OSHA)

- a. PUB 3126 Working with Lead in the Construction Industry
- b. 29 CFR 1910, Subpart I, Appendix B-Non-Mandatory Compliance Guidelines for Hazard Assessment and Personal Protective Equipment Selection

Section 2 – Health And Safety Personnel

The following information briefly describes the health and safety designations and general responsibilities for this Site.

2.1 Project Manager (PM)

The PM is responsible for the overall project including the implementation of the HASP. Specifically, this includes allocating adequate manpower, equipment, and time resources to conduct Site activities safely.

2.2 Health and Safety Manager

- Has the overall responsibility for coordinating and reporting health and safety activities and the health and safety of Site Workers.
- Must have completed, at a minimum, the OSHA 30-Hour Construction Safety Training, and either the 24-Hour training course for the Occasional Hazardous Waste Site Worker or the 40-Hour training course for the Hazardous Waste Operations Worker that meets OHSA 29 CFR 1910.
- Must have completed the 8-Hour site supervisor / manager's course for supervisors and managers having responsibilities for hazardous waste site operations and management.
- Directs and coordinates health and safety monitoring activities.
- Ensures that field teams utilize proper personal protective equipment (PPE).
- Conducts initial on-site specific training prior to Site Workers commencing work.
- Conducts and documents daily and periodic safety briefings.
- Ensures that field team members comply with this HASP.
- Immediately notifies the Project Manager of all accident / incidents.
- Determines upgrading or downgrading of PPE based on Site conditions and/or real time monitoring results.
- Ensures that monitoring instruments are calibrated daily or as the manufacturer's instructions determine.
- Provides daily summaries of field operations and progress to the Project Manager.
- Submits and maintains all documentation required in this HASP and any other pertinent health and safety documentation.

2.3 Health and Safety Officer (HSO)

- Must be designated by the Health and Safety Manager and at a minimum, have the OSHA 10-Hour Construction Safety Training.
- Must schedule and attend a Pre-Construction Safety Meeting with the Health and Safety Manager to discuss the Subcontractor Safety Requirements and must attend the Weekly Subcontractor Coordination Meeting.

- Responsible for ensuring subcontractors and their lower tier contractors comply with project safety requirements.
- Must make frequent and regular inspections of their work areas and activities and ensure hazards that are under their control are corrected immediately and all other hazards are reported to the Project Manager and Health and Safety Manager.
- Must report all work-related injuries, regardless of severity, to the Project Manager and the Health and Safety Manager within 24 hours after they occur.

2.4 Emergency Coordinator

- The Emergency Coordinator or his on-site designee will, in coordination with the Authority
 / Agency having Jurisdiction, implement the emergency response procedures outlined in
 Section 11 whenever conditions at the Site warrant such action.
- The Emergency Coordinator or his on-site designee will be responsible for assuring the evacuation, emergency treatment, emergency transport of C&S personnel as necessary, and notification of emergency response units (refer to phone listing in the beginning of this HASP) and the appropriate management staff.

2.5 Site Workers

- Report any unsafe or potentially hazardous conditions to the HSO and the Health and Safety Manager.
- Maintain knowledge of the information, instructions, and emergency response actions contained in the HASP.
- Comply with rules, regulations, and procedures as set forth in this HASP, including any revisions that are instituted.
- Prevent unauthorized personnel from entering work Site.

SECTION 3 – SITE HAZARDS EVALUATION

3.1 Chemical Hazards

3.1.1 Nature of Chemical Hazards

Based on the June 2023 Phase II Environmental Site Assessment (ESA) and the September 2023 Surface Soil Investigation, the known contaminants of concern include volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), metals, polychlorinated biphenyls (PCBs), pesticides, and herbicides. Various combinations of these contaminants are present in the surface soil, subsurface soil, and groundwater at the Site. The extent of the contamination in each media is unknown and will be further investigated during the Remedial Investigation (RI).

3.1.2 Common Routes of Exposure

The contaminants at the Site may enter the human body in a variety of ways. Based on the nature of site contaminants, the chemical routes of exposure anticipated from the remedial activities at this site include:

Route	Mechanism	Control
Absorption	Dermal (skin) contact with impacted soil on-site resulting in absorption of chemicals of concern through the skin and into the blood stream.	Proper use of PPE will minimize risks of exposure at the site.
Ingestion	Chemicals / materials of concern can come in direct contact with the mouth from soil or other contaminated areas (PPE, skin, tools, etc.) and enter the bloodstream through the stomach lining.	Proper care in handling PPE and tools, refraining from eating and drinking at the Site, and frequent hand washing with soap and water will minimize risks of exposure.
Inhalation	Volatile vapors and/or contaminants attached to dust and particulates can be entrained by wind and become airborne across the site and be subsequently inhaled through the nose and / or mouth. This exposure route is the most likely way for worker exposure to occur.	Conduct monitoring of air quality for VOCs in worker breathing zones. Employ methods that minimize the creation of dust and utilize dust suppression techniques to minimize dust and particulates. Respirators with appropriate filtration and organic adsorption cartridges should be available to on-site workers in case volatile compounds become a nuisance or health hazard.

3.2 Physical Hazards

Based upon the anticipated field activities, the following potential physical hazardous conditions may exist:

Category	Mechanism	Control
Mechanical Equipment	The use of typical mechanical equipment such as drill rigs and sampling vehicles can create a potential for crushing and pinching hazards due to movement and positioning of the equipment, movement of lever arms and hydraulics, and entanglement of clothing and appendages in exposed drives and tracks. Mechanical equipment can also create a potential for impact of steel tools, masts, and cables should equipment rigging fail, or other structural failures occur during hydraulic equipment operation.	Heavy equipment work must be conducted only by trained, experienced personnel. If possible, personnel must remain outside the turning radius of large, moving equipment. At a minimum, personnel must maintain visual contact with the equipment operator. When not operational, equipment must be set and locked so that it cannot be activated, released, dropped, etc. The mechanical equipment stated above represents typical equipment that is ordinarily used during this scope of work but is not meant to be an all-inclusive list. Similar precautions should be used around other mechanical equipment deployed to the Site that is not listed above.
Excavations and Trenches	The use of excavation/trenching such as removal of overburden soils, installation of utilities, and site grading operations can cause potential for suffocation, crushing, or other injury from falling material. Advancement of excavation and trenches can also create possible damage/failure of any installed underground utility services and create hazards. Other hazards created can included tripping, slipping, or falling. Entering an excavation or trench could have the possibility of an explosive, flammable, toxic, or oxygen-deficient atmosphere within the excavation or trench.	Ensure compliance with OSHA's construction standard for excavations (29 CFR 1926 Subpart P). Designate a Competent Person responsible for selecting and implementing the appropriate protective system(s), assuring appropriate means of access and egress for excavations greater than four (4) feet in depth, and for ensuring that potential atmospheric and physical hazards associated with any excavation / trenching activities are completed in accordance with Subpart P and other applicable OSHA Standards.
Noise	Work around large equipment often creates excessive noise. Noise can cause workers to be startled, annoyed, and/or distracted; as well as causing pain, physical damage to the ear, and temporary and/or permanent hearing loss; and can interfere with communication.	If workers are subjected to noise exceeding an 8-hour time-weighted average sound level of 85 dBA, hearing protection will be required with an appropriate noise reduction rating to comply with 29 CFR 1910.95 and to reduce noise levels below levels of concern.

Health and Safety Plan

Category	Mechanism	Control
Slips / Trips / Falls	Personnel may encounter slip, trip, and fall hazards associated with excavations, manways, and construction debris and materials. Precautionary measures should be taken by identifying and removing slip, trip, and fall hazards prior to commencing work.	In the event slip, trip, and fall hazards cannot be removed or minimized, site workers will be shown the location of the physical hazard and be asked to avoid it during work activities.
Fire / Explosion	The potential for fire and/or explosion emergencies is always present on the Site.	Field vehicles will be equipped with a fire extinguisher. Employees, contractors and workers must be trained in the proper use of fire suppression equipment. However, large fires that cannot be controlled with a fire extinguisher shall be handled by professionals. The proper authorities shall be notified in these instances, as well as the HSO and Health and Safety Manager.
Cold Exposure	Persons working in the outdoors in temperatures at or below freezing may be subject to frostbite. Extreme cold for a short time may cause injury to exposed body surfaces or result in a profound generalized cooling which can cause death. Areas of the body such as fingers, toes, and ears, are the most susceptible to cold stress. Ambient air temperature and wind velocity are two factors which influence the development of a cold weather injury. Local injury resulting from exposure to cold temperatures is known as "frostbite." There are several degrees of damage in which frostbite of the extremities can be categorized, as follows: o Frost nip or incipient frostbite is characterized by sudden bleaching or whitening of the skin. o Superficial frostbite occurs when the skin has a waxy or white appearance and is firm to the touch, but tissue beneath is resilient. o Deep frostbite is characterized by tissues that are cold, pale, and solid; this is an extremely serious injury.	Wear several layers of dry clothes so that you can vary the amount of clothing to match the conditions. If there is wind, wear a windbreaker, since wind increases the effects of cold air and in turn lowers your body's core temperature even faster. Don't get overheated. Sweat can dampen clothing and in turn lead to over-cooling. Keep hands, feet, ears, and face warm. These are the areas of the body where frostbite tends to strike first. Heart disease and the use of sedatives or excessive alcohol will make you more susceptible to cold stress. If you feel chilly or sleepy, or have pain in your extremities, go to a warm shelter to recover.

Health and Safety Plan

Category	Mechanism	Control
Heat Exposure / Stress	Heat stress can result from a number of contributing factors, including environmental conditions, clothing, and workload as well as the physical condition of the individual. Since heat stress is one of the most common injuries / symptoms associated with outdoor work conducted with direct solar load, and, in particular, because wearing PPE can increase the risk of developing heat stress, workers must be capable of recognizing the signs and symptoms of heat-related illnesses. Signs and symptoms of heat-related illnesses which all on-site personnel should be aware, include the following: O Heat rash may result from continuous	The following will steps will be taken to limit heat exposure: adjust schedules, take breaks, limit heavy work in protective clothing or in a hot environment may require more time resting than working. Schedule heavy work in the coolest part of the day. Have shaded rest shelters with chairs or benches. Drink Fluids. Sweating cools the body, but it also robs the body of fluid. Drink enough fluids to replace what you lose. You may not feel thirsty until you've become dehydrated. Drink regularly throughout the day. Don't wait until you're thirsty. Monitor for signs of potential heat exposure and stress through use of the "buddy"
	 exposure to heat or humid air. Heat cramps are caused by heavy sweating and may include muscle spasms and pain in the hands, feet, and abdomen. Heat exhaustion is indicated by pale, cool, and moist skin; heavy sweating; dizziness; nausea; and fainting. Heat stroke is indicated by red, hot, 	system', with frequent communication between site personnel. Take scheduled breaks and hydrate frequently throughout the day. Maintain an adequate supply of cold water and electrolyte containing drinks in support zone of site. In the event that personnel are observed to exhibit dizziness, disorientation, heat rash, slurred speech, dry mouth, heat cramps, or other symptoms of heat stress, discontinue work immediately and move affected person(s) to a location that is free from direct sunlight and provide fluids (preferably "Gatorade" or similar product that will replenish electrolytes). Monitor condition during to evaluate whether there is notable improvement in their condition.
	and unusually dry skin; lack of or reduced perspiration; nausea; dizziness and confusion; rapid pulse; and coma. Immediate action must be taken to cool the body before serious injury or death occurs.	
Utilities	Overhead and underground utilities may exist within the Work Area, which may expose workers to electrocution hazards, explosive hazards, and volatile vapors.	Dig Safely New York shall be contacted a minimum of three business days prior to initiating the field activities, to arrange for the identification and markout of buried utilities at the site. The contact number for Dig Safely New York is 1-800-962-7962. In the event of inadvertent damage to buried utilities, all work shall cease, and the situation shall be evaluated by the HSO.

3.3 Environmental Hazards

Based upon the anticipated field activities, the following potential environmental hazardous conditions may exist:

Category	Hazard	Control
Biological	Ticks, bees/wasps, mosquitos, spiders, snakes, rabid animals	There are no known species of poisonous spiders or snakes common to the area.
		Minimize potential exposure to by wearing wear long pants and safety shoes. Change clothing and carefully examine for evidence of insects and ticks upon undressing, immediately following return from the site.
		Avoid contact with any animals, either wild or domestic, that may be encountered while conducting the field activities, and notify the local office of the New York State Department of Health (NYSDOH) in the event that animals are observed to elicit strange behavior. In the event of contact with an animal
		that is behaving in a strange manner, the NYSDOH should be contacted immediately.
Biological	Poison Ivy, Poison Oak	Familiarize yourself with the characteristics and appearance of poison ivy and poison oak. Be cognizant of vegetation while conducting work activities. Minimize potential exposure to by wearing wear long pants and safety shoes. Change clothing immediately following return from the site.
Weather	Wet surfaces, lighting, high winds (falling objects, contaminated dust), hail, excessive heat, extreme cold, snow and ice.	Remain cognizant of weather conditions, forecasts, and changing weather conditions. Exercise extra caution during wet and inclement site conditions to minimize risk of slips and falls. Avoid work during periods of high winds to reduce risk of injury from falling objects and airborne contaminant migration. Cease work and monitor conditions in the event that lightning is observed or suspected in the area, or in the event that other weather conditions pose a health or safety hazard.

SECTION 4 – TRAINING

4.1 Site-Specific Training

Training will be provided that specifically addresses the activities, procedures, monitoring, and equipment for the Site operations prior to going on Site. Training will include familiarization with Site and facility layout, known and potential hazards, and emergency services at the Site, and details all provisions contained within this HASP. This training will also allow Site Workers to clarify anything they do not understand and to reinforce their responsibilities regarding safety and operations for their particular activity.

4.2 Task-Specific Training

For projects involving asbestos sampling, personnel will be trained to collect bulk asbestos samples using the requirements set forth in 40 CFR Part 763.92(a) (1) and (2) and 40 CFR Part. 763, Subpart. E, App. C. The training incorporates many sections of 40 CFR Part 763 but should focus on the sampling method listed in 40 CFR Part 763.86. The training includes inspection planning, bulk sampling, personal protection, and reporting. Personnel must demonstrate proficiency by identifying areas where asbestos may be found and properly collecting a bulk sample using proper methodology.

4.3 Safety Briefings

C&S project personnel will be given briefings by the HSO on a daily or as needed basis to further assist Site workers in conducting their activities safely. Pertinent information will be provided when new operations are to be conducted. Changes in work practices must be implemented due to new information made available, or if Site or environmental conditions change. Briefings will also be given to facilitate conformance with prescribed safety practices. When conformance with these practices is not occurring or if deficiencies are identified during safety audits, the project manager will be notified.

4.4 Daily Tailgate Safety Meeting

The HSO or the HSO designee will be responsible for conducting a daily tailgate safety meeting prior to start of any work activities. The contractor and workers will be responsible for attending daily tailgate safety meetings, as well as providing any additional insight into any possible hazards which might be anticipated or encountered throughout the day on the Site. The meeting will discuss any measures which will be implemented throughout the day to mitigate any hazards. The meetings are designed to create awareness of any hazards and their associated mitigation measures at the Site. If conditions at the Site change and new hazards are determined to be present, work will be stopped and an additional safety meeting will be conducted. The daily tailgate meetings discussions will be logged, as well as all who attended.

SECTION 5 – COMMUNICATIONS

5.1 Communications

A phone will be located on Site to be utilized by personnel conducting investigation. Cell phones will be the primary means of communicating with emergency support services/facilities.

SECTION 6 – PERSONAL PROTECTIVE EQUIPMENT

6.1 Personal Protective Equipment – General

The level of protection to be worn by field personnel will be defined and controlled by the HSO. Depending upon the type and levels of material present or anticipated at the site, varying degrees of protective equipment will be needed. If the possible hazards are unknown, a reasonable level of protection will be taken until sampling and monitoring results can ascertain potential risks. The levels of protection listed below are based on USEPA Guidelines. A list of the appropriate clothing for each level is also provided.

<u>Level A</u> protection must be worn when a reasonable determination has been made that the highest available level of respiratory, skin, eye, and mucous membrane protection is needed. It should be noted that while Level A provides maximum available protection, it does not protect against all possible hazards. Consideration of the heat stress that can arise from wearing Level A protection should also enter into the decision-making process. Level A protection includes:

- Open circuit, pressure-demand self-contained breathing apparatus (SCBA)
- Totally encapsulated chemical resistant suit
- Gloves, inner (surgical type)
- Gloves, outer, chemical protective
- Boots, chemical protective

<u>Level B</u> protection must be used when the highest level of respiratory protection is needed, but hazardous material exposure to the few unprotected areas of the body (e.g., the back of the neck) is unlikely. Level B protection includes:

- Open circuit, pressure-demand SCBA or pressure airline with escape air bottle
- Chemical protective clothing: Overalls and long sleeved jacket; disposal chemical resistant coveralls; coveralls; one or two piece chemical splash suit with hood
- Gloves, inner (surgical type)
- Gloves, outer, chemical protective
- Boots, chemical protective

<u>Level C</u> must be used when the required level of respiratory protection is known, or reasonably assumed to be, not greater than the level of protection afforded by air purifying respirators; and hazardous materials exposure to the few unprotected areas of the body (e.g. the back of the neck) is unlikely. Level C protection includes:

- Full or half face air-purifying respirator
- Chemical protective clothing: Overalls and long-sleeve jacket; disposable chemical resistant coveralls; coveralls; one- or two-piece chemical splash suit
- Gloves, inner (surgical type)

- Gloves, outer, chemical protective
- Boots, chemical protective

<u>Level D</u> is the basic work uniform. It cannot be worn on any site where respiratory or skin hazards exist. Level D protection includes:

- Safety boots/shoes
- Safety glasses
- Hard hat with optional face shield

Note that the use of SCBA and airline equipment is contingent upon the user receiving special training in the proper use and maintenance of such equipment.

6.2 Personal Protective Equipment – Site Specific

Level D with some modification will be required when working on this Site. In addition to the basic work uniform specified by Level D protection, Nitrile gloves will be required when contact with soil and/or groundwater is likely. Hearing protection will be worn when power equipment is used to perform subsurface work. An upgrade to a higher level (Level C) of protection may occur if determined necessary by the HSO.

SECTION 7 – MONITORING PROCEDURES

7.1 Monitoring During Site Operations

All Site environmental monitoring should be accompanied by periodic meteorological monitoring of appropriate climatic conditions.

7.1.1 Surface Soil Operation

Monitoring will be performed by the HSO or field personnel during the conduct of work. A photoionization detector (PID) equipped with a 10.6 eV lamp will be utilized to monitor for the presence of volatile organic vapors within the breathing zone, the surface soil holes, and subsurface samples upon their retrieval. The PID will be field checked for calibration accuracy three times per day (morning, lunch, and end of day.

7.1.2 Drilling / Test Pit Operations (Monitoring Well Installation and Subsurface Borings)

Monitoring will be performed by the HSO or drilling observer during the conduct of work. A PID equipped with a 10.6 eV lamp will be utilized to monitor for the presence of volatile organic vapors within the breathing zone, the borehole, and subsurface samples upon their retrieval. Drill cuttings and excavation spoils will also be monitored by use of the PID. The PID will be field checked for calibration accuracy three times per day (morning, lunch, and end of day. If subsurface conditions warrant, a combustible gas indicator (CGI) with oxygen alarm may also be used to monitor the borehole for the presence of combustible gases. Similar monitoring of fluids produced during well development will also be conducted.

7.2 Action Levels

If readings on the PID exceed 10 ppm for more than fifteen minutes consecutively, then personal protective equipment should be upgraded to Level C. The air purifying respirator used with Level C protective equipment must be equipped with organic vapor cartridges. If readings on the explosive gas meter are within a range of 10%-25% of the lower exposure limit (LEL) then continuous monitoring will be implemented. Readings above 25% of the LEL indicate the potential for an explosive condition. Sources of ignition should be removed and the Site should be evacuated.

7.3 Personal Monitoring Procedures

Personal monitoring shall be performed as a contingency measure in the event that VOC concentrations are consistently above the 10-ppm action level as detected by the PID. If the concentration of VOCs is above this action level, then amendments to the HASP must be made before work can continue at the Site.

Section 8 – Safety Considerations For Site Operations

8.1 General

Standard safe work practices that will be followed include:

- Do not climb over/under drums, or other obstacles.
- Do not work on the Site alone.
- Practice contamination avoidance, on and off-site.
- Plan activities ahead of time, and use caution when conducting concurrently running activities.
- No eating, drinking, chewing or smoking is permitted on the Site.
- Due to the unknown nature of waste placement at the Site, extreme caution should be practiced during excavation activities.
- Apply immediate first aid to any and all cuts, scratches, abrasions, etc.
- Be alert to your own physical condition. Watch your buddy for signs of fatigue, exposure, etc.
- A work/rest regimen will be initiated when ambient temperatures and protective clothing create a potential heat or cold stress situation.
- No work will be conducted without adequate natural light or without appropriate supervision.
- Task safety briefings will be held prior to onset of task work.
- Ignition of flammable liquids within or through improvised heating devices (barrels, etc.) or space heaters is forbidden.
- Entry into areas of spaces where toxic or explosive concentrations of gases or dust may exist without proper equipment is prohibited.
- Any injury or unusual health effect must be reported to the Site HSO.
- Prevent splashing or spilling of potentially contaminated materials.
- Use of contact lenses is prohibited while on site.
- Beards and other facial hair that would impair the effectiveness of respiratory protection are prohibited if respiratory protection is necessary.
- Field crew members should be familiar with the physical characteristics of investigations, including but not limited to:
 - Wind direction in relation to potential sources
 - Accessibility to co-workers, equipment, and vehicles
 - Communication
 - Hot zones (areas of known or suspected contamination)
 - Site access
 - Nearest water sources
- The number of personnel and equipment in potentially contaminated areas should be minimized consistent with site operations.

8.2 Field Operations

The HSO or designee will be present on-site during all intrusive work, e.g., drilling operations, excavations, trenching, and will provide monitoring to oversee that appropriate levels of protection and safety procedures are utilized by C&S Engineers, Inc., personnel. The use of salamanders or other equipment with an open flame is prohibited and the use of protective clothing, especially hard hats and boots, will be required during drilling or other heavy equipment operations.

8.3 General Asbestos Safety

Asbestos exposure is primarily an inhalation hazard. OSHA compliant respiratory protection should be worn if there is risk of asbestos becoming airborne. Personal Protective Equipment including protective clothing (suits/gloves, etc.) may be necessary to avoid contaminating the worker and/or the site.

Procedural Precautions - The sampler should be aware that disruption of asbestos-containing materials can create the potential for cross contamination when conducting bulk asbestos sampling.

The Sampler should take the following precautions to avoid cross contamination as well as disruption of material while sampling:

- The sampling tool must be cleaned with amended water after every sample is collected, or a different clean tool must be used.
- The sampler must avoid touching the material being sampled (utilize gloves).
- The area being sampled must be sufficiently wet before collecting the sample.
- The space left after sampling must be sealed with repair/patch material to reduce the chance of airborne exposure.

The object or material sampled should be minimally disturbed during the sampling process.

Section 9 – Decontamination Procedures

9.1 General Decontamination

Decontamination involves physically removing contaminants and / or converting them chemically into innocuous substances. Only general guidance can be given on methods and techniques for decontamination. Decontamination procedures are designed to:

- Remove contaminant(s).
- Avoid spreading the contamination off Site.
- Avoid exposing unprotected personnel off Site to contaminants.

9.2 Contamination Avoidance

Contamination avoidance is the first and best method for preventing spread of contamination from a hazardous site. Each person involved in site operations must practice the basic methods of contamination avoidance listed below. Additional precautions may be required in the HASP.

- Know the limitations of all protective equipment being used.
- Use the proper tools necessary to safely conduct the work.

9.3 Reducing Contamination

Specific methods that may reduce the chance of contamination are:

- Use of remote sampling techniques.
- Opening containers by non-manual means.
- Bagging monitoring instruments.
- Use of drum grapplers.
- Watering down dusty areas.

9.4 Equipment Decontamination

Equipment which will need to be decontaminated includes tools, monitoring equipment, and personal protective equipment. Items to be decontaminated will be brushed off, rinsed, and dropped into a plastic container supplied for that purpose. They will then be washed with a detergent solution and rinsed with clean water. Instrumentation that is contaminated during field operations will be carefully wiped down. Heavy equipment, if utilized for operations where it may be contaminated, will have prescribed decontamination procedures to prevent contaminant materials from potentially leaving the Site. On-site contractors, such as drillers or backhoe operators, will be responsible for decontaminating all construction equipment prior to demobilization.

SECTION 10 – DISPOSAL PROCEDURES

All discarded materials, waste materials, or other objects shall be handled in such a way as to reduce or eliminate the potential for spreading contamination, creating a sanitary hazard, or causing litter to be left on-site. All potentially contaminated materials, e.g., clothing, gloves, etc., will be bagged or drummed as necessary and segregated for proper disposal. All contaminated waste materials shall be disposed of as required by the provisions included in the contract and consistent with regulatory provisions. All non-contaminated materials shall be collected and bagged for appropriate disposal.

Investigation derived waste (IDW) that is free from physical indications of contamination such as odors, staining, and sheens will be placed back into the borehole of origin or in the case of well water allowed to infiltrate the Site surface. In cases where physical indications of contamination are evident, the affected media will be containerized per NYSDOT requirements pending proper disposal. Samples may be analyzed for toxicity characteristic leaching procedure (TCLP) VOCs, SVOCs, pesticides, herbicides, and metals; PCBs; pH (corrosivity), flash point (ignitability); reactivity; and paint filter (free liquids).

SECTION 11 – EMERGENCY RESPONSE PROCEDURES

As a result of the hazards at the Site, and the conditions under which operations are conducted, there is the possibility of emergency situations. This section establishes procedures for the implementation of an emergency plan.

11.1 Emergency Coordinator

Emergency Coordinator:...... Nick Coulombe....... Work Phone: (315) 703-4284

The Emergency Coordinator or his on-site designee will, in coordination with the Authority / Agency having Jurisdiction, implement the emergency response procedures whenever conditions at the site warrant such action. The Emergency Coordinator or his on-site designee will be responsible for assuring the evacuation, emergency treatment, emergency transport of C&S personnel or workers as necessary, and notification of emergency response units (**refer to phone listing** in the beginning of this HASP) and the appropriate management staff.

11.2 Evacuation

In the event of an emergency situation, such as fire, explosion, significant release of toxic gases, etc., all personnel will evacuate and assemble in a designated assembly area. The Emergency Coordinator or his on-site designee will have authority to contact outside services as required. Under no circumstances will incoming personnel or visitors be allowed to proceed into the area once the emergency signal has been given. The Emergency Coordinator or his on-site designee must see that access for emergency equipment is provided and that all ignition sources have been shut down once the emergency situation is established. Once the safety of all personnel is established, the Fire Department and other emergency response groups will be notified by telephone of the emergency.

11.3 Potential / Actual Fire or Explosion

Immediately evacuate the Site and notify local fire and police departments, and other appropriate emergency response groups, if LEL values are above 25% in the work zone or if an actual fire or explosion has taken place.

11.4 Environmental Incident (Spread or Release of Contamination)

Control or stop the spread of contamination if possible. Notify the Emergency Coordinator and the Project Manager. Other appropriate response groups will be notified as appropriate.

11.5 Personnel Injury

Emergency first aid shall be applied on-site as necessary. Then, decontaminate (en route if necessary) and transport the individual to nearest medical facility if needed. The ambulance/rescue squad shall be contacted for transport as necessary in an emergency. A map of directions to the nearest hospital is shown in **Attachment A**.

11.6 Personnel Exposure

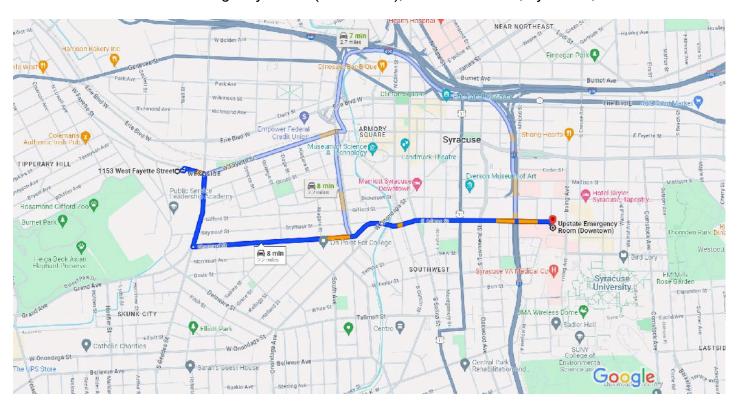
- *Skin Contact*: Use copious amounts of soap and water. Wash/rinse affected area thoroughly, and then provide appropriate medical attention. Eyes should be thoroughly rinsed with water for at least 15 minutes.
- *Inhalation*: Move to fresh air and/or, if necessary, decontaminate and transport to emergency medical facility.
- Ingestion: Decontaminate and transport to emergency medical facility.
- *Puncture Wound/Laceration*: Decontaminate, if possible, and transport to emergency medical facility.

11.7 Adverse Weather Conditions

In the event of adverse weather conditions, the HSO will determine if work can continue without sacrificing the health and safety of field workers.

11.8 Incident Investigation and Reporting

In the event of an incident, procedures discussed in the Medical Emergency / Incident Response Protocol, presented in **Attachment B** of this HASP, shall be followed.


Attachment A

MAP AND DIRECTIONS TO HOSPITAL

1153 W Fayette St, Syracuse, NY 13204 to Upstate Drive 2.2 miles, 8 min Emergency Room (Downtown), 750 E Adams St, Syracuse, NY 13210

Map data ©2024 Google 1000 ft **L**

1153 W Fayette St Syracuse, NY 13204

1	1.	Head east toward W Fayette St	
←	2.	Turn left toward W Fayette St	46 ft
\rightarrow	3.	Turn right onto W Fayette St	59 ft
\rightarrow	4.	Turn right onto S Geddes St	0.1 mi
←	5.	Turn left onto Shonnard St	0.3 mi
↑	6.	Continue onto W Adams St	0.9 mi
\rightarrow	7.	Turn right	0.8 mi
-	0	Destination will be on the right	75 ft

A 4400	hm	ant	D
Attac	nm	ent	Б

GUIDANCE ON INCIDENT INVESTIGATION AND REPORTING

Medical Emergency / Incident Response Protocol

Prepared by:

C&S Engineers, Inc. 499 Col Eileen Collins Blvd. Syracuse, New York 13212

SECTION 1 – PURPOSE

From time to time employees of C&S Engineers, Inc. will sustain an injury while working on the job. While every effort is being made to prevent this, in the event of an injury or illness on the job, the following procedures will be implemented. This format may also be utilized in the event of a property damage incident.

SECTION 2 - SCOPE

This guideline applies to all C&S Engineers, Inc. job sites and employees.

SECTION 3 – GUIDELINES

3.1 First Response Procedures

Upon notification or awareness of an incident/accident with injuries or illness the Emergency Coordinator or his On-Site Designee will:

- 1. Ensure that the injured employee is receiving immediate first aid and medical care.
- 2. Notify Emergency Services (911) if injuries are severe.
- 3. Stabilize the work area; ensure that no one else can be injured.
- 4. Notify the Project Manager at the earliest possible convenience.
- 5. Notify the Owner/Client at the earliest possible convenience.

To assist the Health and Safety Manager in the root cause analysis, the Emergency Coordinator or his On-Site Designee will also make an attempt to:

- 1. Obtain the names and phone numbers of witnesses.
- 2. Preserve the accident scene if possible for analysis.

3.2 Injury Management

1. If the patient is stable with non-life threatening injuries, the foreman will ensure the employee is transported to the emergency medical facility listed in Section 1 of the HASP. Directions to the nearest emergency medical facility are located in Attachment A of the HASP.

At no time will an injured employee drive themselves to medical care.

2. If the patient has serious or life threatening injuries, the emergency coordinator or his on- site designee will notify the emergency services for the area for treatment and transport to a hospital or emergency room. Serious injuries can be considered but not limited to head injuries, loss of consciousness, severe laceration or amputation, fractured bones, burns and eye injuries.

3. Following the treatment and care of the injured employee, the emergency coordinator or his on-site designee and the project manager will initiate the completion of the first injury report. The Health & Safety Manager will assist.

3.3 Project Manager

- 1. Upon notification of a personal injury or illness on the job site, will notify C&S Engineers, Inc, President and Corporate Legal and C&S Companies Health and Safety Manager.
- 2. Will report to the worksite to initiate the first injury report.
- 3. Will report to the treatment facility to check on the well being of the injured employee.
- 4. The project manager will ensure that the treatment facility is aware that this is a workers compensation case.
- 5. Will assist the Health and Safety Manager in the analysis of the incident.

3.4 Health & Safety Manager

- 1. Upon notification of the personal injury will determined if it is necessary to report to the treatment facility or the accident site, depending on the nature of the injuries and the circumstances of the accident.
- 2. Will report to the worksite to begin a root cause analysis investigation of the accident.
- 3. The investigation may include interview of witnesses, field crew, and project manager, the photographing of the scene, reconstruction of the accident scene, using test instruments and taking measurements. The Health and Safety Manager may draw diagrams from the information learned.
- 4. The Health and Safety Manager will work with the owner/client as necessary to investigate the accident.
- 5. The Health & Safety manager will ensure that the site is safe to resume work.
- 6. The Health & Safety Manager shall initiate the New York State Compensation form requirements (C-2) and forward a copy of the C-2 to the C & S Engineers, Inc. controller for transmittal to the Compensation Carrier within 8 hrs of notification of the incident or by the end of the next business day.
- 7. The Health and Safety manager, upon completion of the investigation, will provide the
- 8. Project Manager with a written investigative report (copy to the President)
- 9. The accident will be reviewed at the next Project Managers meeting with the intent to prevent further or similar events on other projects.
- 10. The Health & Safety Manager will assess the incident to determine OSHA record ability and make record if necessary on the OSHA 300 form, within five working days.

SECTION 4 - INCIDENT RESPONSE

4.1 Purpose

To prevent the occurrence of accidents on C&S Engineers, Inc., work sites and to establish a procedure for investigation and reporting of incidents occurring in, or related to C&S work activities.

4.2 Scope

Applies to all incidents related to C&S Engineers, Inc. work activities.

4.3 Definitions

<u>Accident</u> - An undesired event resulting in personal injury and/or property damage, and/or equipment failure.

Fatality - An injury or illness resulting in death of the individual.

<u>Incident</u> - Any occurrence which results in, or could potentially result in, the need for medical care or property damage. Such incidents shall include lost time accidents or illness, medical treatment cases, unplanned exposure to toxic materials or any other significant occurrence resulting in property damage or in "near misses."

<u>Incidence Rate</u> - the number of injuries, illnesses, or lost workdays related to a common exposure base of 100 full-time workers. The rate is calculated as:

N/EH x 200,000

N = number of injuries and illnesses or lost workday cases; EH = total hours worked by all associates during calendar year. 200,000 = base for 100 full-time equivalent workers (working 40 hours per week, 50 weeks per year).

<u>Injury</u> - An injury such as a cut, fracture, sprain, amputation, etc. which results from a work accident or from a single instantaneous event in the work environment.

<u>Lost Workday Case</u> - A lost workday case occurs when an injured or ill employee experiences days away from work beginning with the next scheduled work day. Lost workday cases do not occur unless the employee is affected beyond the day of injury or onset of illness.

<u>Recordable Illness</u> - An illness that results from the course of employment and must be entered on the OSHA 300 Log and Summary of Occupational Injuries and Illnesses. These illnesses require medical treatment and evaluation of work related injury. For example, dermatitis, bronchitis, irritation of eyes, nose, and throat can result from work and non-work related incidents.

<u>Recordable Injury</u> - An injury that results from the course of employment and must be entered on the OSHA 300 Log and Summary of Occupational Injuries and Illnesses. These injuries require medical treatment; may involve loss of consciousness; may result in restriction of work or motion or transfer to another job; or result in a fatality.

<u>Near Miss</u> - An incident which, if occurring at a different time or in a different personnel or equipment configuration, would have resulted in an incident.

4.4 Responsibilities

<u>Employees</u> - It shall be the responsibility of all C&S Engineers, Inc. employees to report all incidents as soon as possible to the HSC, regardless of the severity.

<u>Human Resources</u> - has overall responsibility for maintaining accident/ incident reporting and investigations according to current regulations and recording injuries/ illness on the OSHA 300 log, and posting the OSHA 300 log.

<u>Emergency Coordinator</u> - It is the responsibility of the Emergency Coordinator to investigate and prepare an appropriate report of all accidents, illnesses, and incidents occurring on or related to C&S Engineers, Inc. work. The Emergency Coordinator shall complete Attachment A within 24 hours of the incident occurrence.

<u>Health and Safety Manager (HSM)</u> - It is the responsibility of the HSM to investigate and prepare an appropriate report of all lost time injuries and illnesses and significant incidents occurring on or related to C&S Companies. The HSM shall maintain the OSHA 300 form.

<u>Project Managers (PM)</u> - It shall be the PM's responsibility to promptly correct any deficiencies in personnel, training, actions, or any site or equipment deficiencies that were determined to cause or contribute to the incident investigated.

SECTION 5 – GUIDELINES

5.1 Incident Investigation

The Project Manager will immediately investigate the circumstances surrounding the incident and will make recommendations to prevent recurrence. The HSM shall be immediately notified by telephone if a serious accident/ incident occurs. The incident shall be evaluated to determine whether it is OSHA recordable. If the incident is determined to be OSHA 300 recordable, it shall be entered on the OSHA 300 form.

The Project Manager with assistance from the HSM must submit to the office an incident report form pertaining to any incident resulting in injury or property damage.

5.2 Incident Report

The completed incident report must be completed by the Project Manager within 12 hours of the incident and distributed to the HSM, and Human Resources. This form shall be maintained by Human Resources for at least five years for all OSHA recordable cases. This form serves as an equivalent to the OSHA 101 form.

5.3 Incident Follow-up Report

The Incident Follow-Up Report (Attachment B) shall be distributed with the Incident Report within one week of the incident. Delay in filing this report shall be explained in a brief memorandum.

5.4 Reporting of Fatalities or Multiple Hospitalization Accidents

Fatalities or accidents resulting in the hospitalization of three or more employees must be reported to OSHA verbally or in writing within 8 hours. The report must contain 1) circumstances surrounding the accident(s), 2) the number of fatalities, and 3) the extent of any injuries.

5.5 OSHA 300A Summary Form

Recordable cases must be entered on the log within six workdays of receipt of the information that a recordable case has occurred. The OSHA log must be kept updated to within 45 calendar days.

OSHA 300 forms must be updated during the 5 year retention period, if there is a change in the extent or outcome of an injury or illness which affects an entry on a log. If a change is necessary, the original entry should be lined out and a corrected entry made on that log. New entries should be made for previously unrecorded cases that are discovered or for cases that initially weren't recorded but were found to be recordable after the end of the year. Log totals should also be modified to reflect these changes.

5.6 Posting

The log must be summarized at the end of the calendar year and the summary must be posted from February 1 through May 31.

5.7 OSHA 300A

Facilities selected by the Bureau of Labor Statistics (BLS) to participate in surveys of occupational injuries and illnesses will receive the OSHA 300A. The data from the annual summary on the OSHA 300 log should be transferred to the OSHA 300A, other requested information provided and the form returned as instructed by the BLS.

5.8 Access to OSHA Records

All OSHA records (accident reporting forms and OSHA 300 logs) should be available for inspection and copying by authorized Federal and State government officials.

Employees, former employees, and their representatives must be given access for inspection and copying to only the log, OSHA No. 300, for the establishment in which the employee currently works or formerly worked.

SECTION 6 – REFERENCES

29 CFR Part 1904

SECTION 7 – ATTACHMENTS

Attachment A - Incident Investigation Form
Attachment B - Incident Follow-Up Report

Attachment C - Establishing Recordability

ATTACHMENT A

INCIDENT INVESTIGATION FORM

Accident investigation should include:
Location:
Time of Day:
Accident Type:
Victim:
Nature of Injury:
Released Injury:
Hazardous Material:
Unsafe Acts:
Unsafe Conditions:
Policies, Decisions:
Personal Factors:
Environmental Factors:

ATTACHMENT B

INCIDENT FOLLOW-UP REPORT

Date	=
Foreman:	-
Date of Incident:	-
Site:	
Brief description of incident:	-
Outcome of incident:	
Physician's recommendations:	
,	-
Date the injured returned to work:	
	-
Project Manager Signature:	-
Date:	_

ATTACHMENT C

ATTACHMENT ESTABLISHING RECORDABILITY

1. Deciding whether to record a case and how to classify the case.

Determine whether a fatality, injury or illness is recordable.

A fatality is recordable if:

- Results from employment

An injury is recordable if:

- Results from employment and
- It requires medical treatment beyond first aid or
- Results in restricted work activity or job transfer, or
- Results in lost work day or
- Results in loss of consciousness

An illness is recordable if:

- It results from employment
- 2. Definition of "Resulting from Employment"

Resulting from employment is when the injury or illness results from an event or exposure in the work environment. The work environment is primarily composed of: 1) The employer's premises, and 2) other locations where associates are engaged in work-related activities or are present as a condition of their employment.

The employer's premises include company rest rooms, hallways, cafeterias, sidewalks and parking lots. Injuries occurring in these places are generally considered work related.

The employer's premises EXCLUDES employer controlled ball fields, tennis courts, golf courses, parks, swimming pools, gyms, and other similar recreational facilities, used by associates on a voluntary basis for their own benefit, primarily during off work hours.

Ordinary and customary commute, is not generally considered work related.

Employees injured or taken ill while engaged in consuming food, as part of a normal break or activity is not considered work related. Employees injured or taken ill as the result of smoking, consuming illegal drugs, alcohol or applying make-up are generally not considered work related. Employee injured by unauthorized horseplay is generally not considered work related, however, an employee injured as a result of a fight or other

workplace violence act, may be considered work related. Associates who travel on company business are considered to be engaged in work related activities all the time they spend in the interest of the company. This includes travel to and from customer contacts, and entertaining or being entertained for purpose of promoting or discussing business. Incidents occurring during normal living activities (eating, sleeping, recreation) or if the associate deviates from a reasonably direct route of travel are not considered OSHA recordable.

3. Distinction between Medical Treatment and First Aid.

First aid:

Any one-time treatment, and any follow up visit for the purpose of observation, of minor scratches, cuts, burns, splinters, etc., which do not ordinarily require medical care. Such one-time treatment, and follow up visit for the purpose of observation, is considered first aid even though provided by a physician or registered professional personnel.

Medical Treatment (recordable):

- a) Must be treated only by a physician or licensed medical personnel.
- b) Impairs bodily function (i.e. normal use of senses, limbs, etc.).
- c) Results in damage to physical structure of a non-superficial nature (fractures).
- d) Involves complications requiring follow up medical treatment.