OZZIE CRISALLI

From: Robert Nigolian <rnigolian@earthsys.net>

Sent: Wednesday, September 14, 2022 1:54 PM

To: OZZIE CRISALLI

Subject: 301 Wolf & 1920 Park Street - Phase II ESA

Attachments: Fig Tree Properties_Phase II ESA_09.14.22.pdf

Hi Ozzie,

Sorry for the delay, attached is the Phase II Report. I received the final lab report this morning and just finished tabulating the results. It looks like the results are consistent with the shallow sampling results. PCBs and metals above unrestricted use soil standards. However, there were 3 samples that had metals (lead and cadmium) above restricted residential use standards. These samples were collected at a 3 foot depth. I am available to discuss until 4 PM today and available the rest of the week. Let me know if you have any questions.

Thanks, Rob

Robert S. Nigolian | Senior Project Manager | rnigolian@earthsys.net 6700 Old Collamer Rd. Suite 112 East Syracuse, New York 13057

315.231.5637 (O) 315.491.2091 (M)

PHASE II ENVIRONMENTAL SITE ASESSMENNT

Fig Tree Properties 301 Wolf Street & 1920 Park Sreet Syracuse, New York

Prepared For:
Fig Tree Properties, LLC
c/o Syracuse Realty Group, LLC
106 S. Main Street
N. Syracuse, New York 13212

Prepared By:
Earth Systems, Inc.
6700 Old Collamer Road
Suite 112
E. Syracuse, NY 13057
(315) 231-5637

September 14, 2022

Phase II Environmental Site Assessment

FIG TREE PROPERTIES 301 WOLF STREET & 1920 PARK STREET SYRACUSE, NEW YORK

This Phase II Environmental Site Assessment was conducted using industry standards by environmental professionals in accordance with established specific regulatory requirements and standards.

The findings, recommendations, and conclusions contained in this report are based solely upon Earth Systems Incorporated's (ES) assessment and are subject to the limitations set forth in this report at the time it was prepared. Use of and/or reliance upon this report shall be subject to the Terms and Conditions under which this report was provided to Fig Tree Properties, LLC and such use or reliance shall only be authorized by ES.

Prepared By:

Robert S. Nigolian

Sr. Project Manager

Reviewed By:

Shawn M. Ryan, P.G. Operations Manager

EXECUTIVE SUMMARY

Phase II Environmental Site Assessment Findings and Environmental Considerations

Earth Systems, Inc. (ES) was contracted by Fig Tree Properties, LLC (FTP) to conduct this Phase II Environmental Site Assessment (ESA) at the Subject Property located at 301 Wolf Street and 1920 Park Street, Syracuse, New York (the Subject Property). The purpose of this ESA was to assess recognized environmental conditions (REC) identified in a Phase I ESA completed by ES, dated July 29, 2012, at the Subject Property.

A total of ten (10) soil borings (SB-1 through SB-10) were advanced across the Subject Property under the supervision of an ES geologist. Overburden deposits observed during drilling activities consisted of hard fill from grade to 5 feet below ground surface (bgs) then dense silt to 19 feet bgs where sampler refusal was encountered. Groundwater was not encountered in any of the soil borings.

Field screening of the soil samples using a Photo-ionization detector (PID), indicated no volatile organic compound (VOC) concentrations above background levels in any of the soil samples.

At least one soil sample from each of the 10 soil borings was selected for laboratory analysis, based on field observations (PID readings) or soil boring completion depth. Since a PID reading was not recorded and groundwater was not encountered a soil sample from the completion depth was collected and analyzed for VOCs. A soil sample was collected and analyzed for semi-volatile organic compounds (SVOCs) from select soil boring locations (SB-1, SB-3, SB-5 and SB-8). The soil laboratory analytical results indicated VOCs or SVOCs were either non-detectable or below New York State Department of Environmental Conservation (NYSDEC) 6 NYCRR Part 375 Unrestricted Use Soil Cleanup Objectives (UUSCOs).

A soil sample was collected from a depth of 3 feet bgs from select borings and analyzed for Resource Conservation and Recovery Act (RCRA) metals and polychlorinated biphenyls (PCBs). The soil laboratory analytical results indicated soil samples collected from soil borings SB-7, SB-8, SB-9, and SB-10 had PCB concentrations above NYSDEC 6 NYCRR Part 375 UUCOs, however these concentrations were below NYSDEC 6 NYCRR Part 375 Residential Use Soil Cleanup Objectives (RUSCOs).

The soil laboratory analytical results indicated RCRA metal concentrations were above NYSDEC 6 NYCRR Part 375 UUSCOs in soil borings SB-2, SB-6, SB-7, SB-8, SB-9, and SB-10. Lead and/or cadmium concentrations in soil borings SB-8, SB-9, and SB-10 were also above the NYSDEC 6 Part 375 Restricted Residential Use Soil Cleanup Objectives.

Table of Contents

INTRODUCTION	
LIMITATIONS	.]
SITE DESCRIPTION	. 1
SITE EVALUATION METHODS	
Soil Boring Advancement	-
Soil Sampling and Analyses	
INVESTIGATIVE RESULTS	
Geology / Hydrogeology	
Soil Analysis Results	
	80
CONCLUSIONS	
	INTRODUCTION LIMITATIONS SITE DESCRIPTION SITE EVALUATION METHODS Remote Sensing Survey Soil Boring Advancement Soil Sampling and Analyses INVESTIGATIVE RESULTS Geology / Hydrogeology Soil Analysis Results CONCLUSIONS

List of Tables

Table 1 - Shallow Soil Analytical Summary (Churchill Sampling, July 2022)

Table 2 – Soil Analytical Summary

List of Figures

Figure 1 - Site Location Map

Figure 2 - Site Map with Soil Boring Locations

List of Appendices

Appendix A – Churchill Environmental, Inc – PCB/RCRA Sampling Report, July 11,2022

Appendix B – GPRS – Underground Utility Location Findings Maps

Appendix C - Subsurface Logs

Appendix D - Soil Analytical Laboratory Report

1.0 INTRODUCTION

Earth Systems, Inc. (ES) was contracted by Fig Tree Properties, LLC (FTP) to conduct a Phase II Environmental Site Assessment (ESA) of the Subject Property located at 301 Wolf Street and 1920 Park Street, Syracuse, Onondaga County, New York (Subject Property). The subject property consists of two separate parcels 301 Wolf Street (tax map ID # 002.-04-10.0) and 1920 Wolf Street (tax map ID # 002.-04-02.4) which combined total approximately 0.6-acres of commercial property that includes a four-story main commercial building on each property that are connected by an elevated corridor. The purpose of this ESA was to assess recognized environmental conditions (RECs) identified in a Phase I ESA completed by ES, dated July 29, 2022, at the Subject Property. The results and findings of the Phase II Environmental Site Assessment of the Subject Property is presented herein.

2.0 LIMITATIONS

This Phase II ESA report has been prepared for the sole use of FTP. ES assumes no responsibility or liability that may result from reliance on the contents of this report by other parties, if such reliance is without written authorization by FTP and ES. This document is not intended for purposes other than those expressly set forth herein, or for use by parties other than the client.

In preparing this report, ES has relied on information provided by certain third party individuals, consultants, and/or governmental officials and records. To the extent possible, efforts have been made to corroborate and confirm the validity of this information: however; it is not possible to warrant that this information is factual, accurate, and complete.

This ESA was prepared as a result of a contractual agreement that defined the approach and scope of services to be employed during the course of the investigation. The opinions and conclusions expressed in this study have been based on the results of these contracted services. The services provided by ES should not be construed to be a warranty or guarantee that no environmental impairments exist at the Subject Property, or that all environmental impairments have been uncovered. Findings within the ESA are based on information collected from observations made at the time of the investigation and from reasonably ascertainable information obtained from others.

Changes in the condition of the Subject Property may occur with time due to either natural processes or human activities. The findings presented in this report are based on site conditions observed at the time of the investigation. Also, ES has relied, in part, on good faith representations made to ES regarding known conditions at the Subject Property or adjoining properties. ES cannot be responsible for any errors or omissions in this investigation resulting from incomplete or inaccurate disclosures by the client or other contacts.

3.0 SITE DESCRIPTION

The site is comprised of two separate parcels 301 Wolf Street (tax map ID # 002.-04-10.0) and 1920 Wolf Street (tax map ID # 002.-04-02.4) which combined total approximately 0.6-acres of commercial property that includes a four-story main commercial building on each property that are connected by an elevated corridor. The 301 Wolf Street parcel is currently owned by Reggie Real Estate Inc. The 1920 Park Street parcel is currently owned by Sabacuse, LLC. The Subject Property is located on the northwest corner of the intersection of Wolf Street and Park Street. The Subject Property is located in area of mixed residential and commercial properties. The Site Location Map is attached as **Figure 1**, and a Site Map is included as **Figure 2**.

Referring to **Figure 1** (Site Location Map), the site is located at approximately 412 feet above mean sea level with topography in the area of the site sloping west towards Onondaga Lake.

The ES Phase I ESA revealed the following recognized environmental conditions as defined by ASTM, in connection with the site:

- The property has been used for the manufacturing of automobiles, and then auto parts between 1909 and the 1950s. Recent shallow soil sampling conducted by Churchill Environmental, Inc., (Churchill) identified the presence of metals above New York State Department of Environmental Conservation (NYSDEC) Soil Cleanup Objectives possibly from the historic use of this property for manufacturing.
- A filling station was located at 300 Wolf Street (across Wolf Street from the Subject Property) where Roma Tile & Marble Company is currently located. The filling station was in operation from at least 1950 through the mid-1980s. There could be undocumented historic spills, releases and or leaking underground storage tanks that could have adversely impacted the Subject Property.

The subsurface investigation described herein was conducted by ES to evaluate potential adverse impacts the recognized environmental conditions may have had on the Subject Property.

4.0 SITE EVALUATION METHODS

The Phase II ESA was performed in accordance with the ES proposal dated July 29, 2022. The scope of work performed by ES included advancement of ten (10) soil borings. Pre-clearing of all soil boring locations to a depth of 5 feet bgs was performed using non-destructive methods (hand augers or soft digging using compressed air and vacuum extraction). During advancement of the soil borings, soil samples were collected and submitted for laboratory analysis based on photoionization detector (PID) responses, visual observations or completion depth of the boring.

4.1 Remote Sensing Survey

Prior to the pre-clearing and soil boring advancement, all boring locations were cleared by GPRS, Inc. using ground penetrating radar (GPR) and electromagnetic (EM) sensing equipment to assess for the presences and location of underground utilities. Please refer to **Appendix B** for the GPRS Underground Utility Location Findings Maps.

4.2 Soil Boring Advancement

Prior to performing subsurface investigations, a geophysical survey as described in Section 4.1 was conducted by GPRS. Dig Safe NY was also notified, and they performed a utility mark out as required by law.

On August 22 - 23, 2022, ten (10) soil borings (SB-1 through SB-10) were advanced by Parratt-Wolff, Inc. using 2-inch inside diameter macro core soil samplers by direct push method under the supervision of an ES geologist. All borings were advanced to 12 feet bgs or macro core refusal, which occurred at a depth 19 feet bgs. The soil borings were advanced to investigate and delineate areas of the property identified in Churchill's PCBs/RCRA Soil Sampling Report, dated July 11, 2022 (presented in Appendix A) and downgradient of a former filling station adjacent to the Subject Property.

The approximate locations of the soil borings are depicted on the Site Map attached as Figure 2.

4.3 Soil Sampling and Analyses

During the advancement of each borehole, ES logged the sediment color, sediment type, moisture content, and soil headspace readings with a PID to determine the potential presence of VOCs in soil. The soil samples collected at 3 ft bgs, were obtained using a hand auger during the borehole pre-clearing. Continuous soil sampling beginning at 5 ft bgs was conducted using a two-inch inside diameter, four-foot long macro-core sampler with an acetate liner. Following the collection of a sample using the hand auger and macro-core sampler, the hand auger and sampler was scrubbed and washed using an Alconox solution and water, and double rinsed prior to reuse.

Each sample was scanned with a calibrated PID using a sealed-bag headspace method. Positive bias samples were retained for laboratory analyses from selected boreholes based on the highest PID reading, visual and/or olfactory observations. If no elevated PID responses, odors, or obvious evidence of impact were noted, a laboratory soil sample was collected from the soil/water table interface and/or the completion depth of the soil boring. A representative portion of soil from each sample was placed into a laboratory supplied sample container, labeled for identification and preserved with ice. Soil samples were submitted under chain-of-custody documentation to Pace Analytical Services, LLC of Greensburg, Pennsylvania (Pace) for laboratory analyses. Soil samples from soil borings SB-1 through SB-10 were collected and analyzed for VOCs by United States Environmental Protection Agency (USEPA) method 8260. Additionally, soil samples collected from select soil borings were sampled for SVOCs by USEPA method 8270, Resource Conservation and Recovery Act (RCRA) metals, and polychlorinated biphenyls (PCBs). SVOCs samples were collected from the completion depth of the boring and RCRA metals and PCB samples were collected from 3 feet bgs.

5.0 INVESTIGATIVE RESULTS

5.1 Geology / Hydrogeology

Overburden deposits observed during drilling activities consisted of hard fill from 0 to 5 feet bgs, then dense silt to the completion depth of each boring. Sampler refusal occurred at 19 feet bgs. Groundwater was not encountered in any of the soil borings. Detailed Subsurface Logs are included as **Appendix C**.

5.2 Soil Analysis Results

The macro-core samples collected during drilling activities were evaluated using a PID. The results of field screening performed indicated no VOC concentrations above background levels in any of the soil samples.

Soil samples collected from each of the 10 soil borings was selected for laboratory analysis, based on the previous shallow soil sampling results completed by Churchill, and boring complete depth. The laboratory analytical results of soil samples collected during drilling activities are summarized in **Table 1**.

The soil laboratory analytical results indicated VOCs or SVOCs were either non-detectable or below NYSDEC 6 NYCRR Part 375 Unrestricted Use Soil Cleanup Objectives (UUSCOs).

A soil sample was collected from a depth of 3 feet bgs from select borings and analyzed for RCRA metals and PCBs. The soil laboratory analytical results indicated soil samples collected from soil borings SB-7, SB-8, SB-9, and SB-10 had PCB concentrations above NYSDEC 6 NYCRR Part 375 UUCOs, however these concentrations

were below NYSDEC 6 NYCRR Part 375 Residential Use Soil Cleanup Objectives (RUSCOs). The soil laboratory analytical results indicated RCRA metal concentrations were above NYSDEC 6 NYCRR Part 375 UUSCOs in soil borings SB-2, SB-6, SB-7, SB-8, SB-9, and SB-10. Lead and/or cadmium concentrations in soil borings SB-8, SB-9, and SB-10 were also above the NYSDEC 6 Part 375 Restricted Residential Use Soil Cleanup Objectives.

The complete laboratory analytical report from Pace, along with the chain-of-custody has been attached as **Appendix D**.

6.0 CONCLUSIONS

Based on the findings of the Phase II ESA investigation at the Subject Property located at 301 Wolf Street and 1920 Park Street, Syracuse, Onondaga County, New York, ES presents the following conclusions:

- 1. Overburden deposits observed during drilling activities consisted of hard fill from 0 to 5 feet bgs then dense silt to at least 19 feet bgs, where sampler refusal was encountered. Groundwater was not encountered in any of the soil borings.
- 2. The results of field headspace screening procedures performed on soil indicated no VOC concentrations in any of the soil borings.
- 3. The soil laboratory analytical results indicated VOCs or SVOCs were either non-detectable or below New York State Department of Environmental Conservation (NYSDEC) 6 NYCRR Part 375 UUSCOs.
- 4. The soil laboratory analytical results indicated soil samples collected at 3 ft bgs from soil borings SB-7, SB-8, SB-9, and SB-10 had PCB concentrations above NYSDEC 6 NYCRR Part 375 UUCOs, however these concentrations were below NYSDEC 6 NYCRR Part 375 RUSCOs.
- 5. The soil laboratory analytical results indicated RCRA metal concentrations were above NYSDEC 6 NYCRR Part 375 UUSCOs in soil borings SB-2, SB-6, SB-7, SB-8, SB-9, and SB-10. Lead and/or cadmium concentrations in soil borings SB-8, SB-9, and SB-10 were also above the NYSDEC 6 Part 375 Restricted Residential Use Soil Cleanup Objectives.

FIGURES

PHASE II ENVIRONMENTAL SITE ASSESSMENT REPORT

Fig Tree Properties, LLC 301 Wolf Street & 1920 Park Street Syracuse, New York September 2022

Legend

SUBJECT PROPERTY BOUNDARY

FIGURE 2

SOIL BORING LOCATION MAP

FIG TREE PROPERTIES

301 Wolf St. / 1920 Park St. Syracuse, New York

Date: Drawn By:

Project #: SRP PI#:

09/09/2022 SR

TABLES

PHASE II ENVIRONMENTAL SITE ASSESSMENT REPORT

Fig Tree Properties, LLC 301 Wolf Street & 1920 Park Street Syracuse, New York September 2022

301 Wolf 1920 Park Street, Syracuse, NY Analytical Summary Table Fig Tree Properties, LLC

Sample ID	Units	6 NYCRR Part 375 Unrestricted Use Soil Cleanup Objectives	***	6 NYCRR Part 6 NYCRR Part 375 Residential 375 Restricted Use Soil Residential Use Cleanup Soil Cleanup Objectives	RCRA-8	RCRA-9	RCRA-10	RCRA-10 RCRA-11 RCRA-12	RCRA-12	RCRA-13	RCRA-14
RCRA Metals											
Arsenic	mg/kg	13	16	16	ND<2.7	ND<2.7	7.8	7.1	3.3	8.8	5.4
Barium	mg/kg	350	350	400	85.3	107	128	246	152	116	ND<46.6
Cadmium	mg/kg	2.5	2.5	4.3	ND<0.67	ND<0.67 ND<0.67	1.6	69.0	12	9.5	16.6
Chromium	mg/kg	NA	NA	NA	15.4	18.6	30.5	22	19.1	11.8	9.3
Lead	mg/kg	63	400	400	23.3	116	368	305	534	561	653
Selenium	mg/kg	3.9	180	1,500	ND<2.7	ND<2.7	ND<2.7	ND<2.5	ND<2.2	ND<2.6	ND<2.3
Silver	mg/kg	2	180	1,500	ND<2.7	ND<2.7	ND<2.7	ND<2.5	2.4	ND<2.6	3.1
Mercury	mg/kg	0.18	0.81	0.81	ND<0.041 0.071	0.071	0.36	0.58	0.65	1.5	0.49

mg/kg = milligrams per kilogram or parts per million Exceeds Unrestricted Use SCOs Exceeds Residential Use SCOs

Exceeds Restricted Residential Use SCOs

Elevated Chromium requires analysis for Hexalient and trivalient chromium Soil Samples collected on June 3, 2022 and reported by Chuchill Environmental July 11, 2022.

Client Sample ID:	6 NYCRR Pag	6 MYCRR Part 6 MYCRR Part 6 MYCRR Part	6 NYCRR Part	\$8·1	\$B-2	\$B-2	\$B-3	\$87 7	SB4	SB-5	\$B-5	SB-6	SB-6	SB-7	SB-7	SB-8	SB-8	88-9	SB-9	SB-10	SB-10
Sample Depth	Unrestricted	375 Residential	375 Restricted Residential Use	12.8	3.8	12.ft	12.8	3.ft	12 ft	3.8	12.11	3#	12.11	34	12#	3 ft	19 ft	3 ft	16 ft	3.8	16 R
Date Sampled:	Clearup Clearup	Cleanup	Boll Cleanup Objectives	8/23/2022	8/22/2022	8/23/2022	8/23/2022	8/22/2022	8/23/2022	8722/2022	8/23/2022	8/22/2022	8/23/2022	8/22/2022	8/23/2022	8/22/2022	8/22/2022	8/22/2022	8/22/2022	8/22/2022	8/22/2022
Matric: Units	its Objectives			Soil	Soil	Soil	Soli	Soil	Soll	Soil	Soil	Soil	Soil	Soil	Soil	Soll	Soil	Soll	Soil	Soil	Soil
dS Voletiles (SW846 8260C)																					
BySo	98	100,000	100,000	ND (39.6)		ND (78.2)	ND (77.6)		ND (56.8)		ND (61.3)		ND (68.6)		ND (81.3)		ND (69.3)		ND (97.3)		ND (127)
	1	2.900	4,800	ND (4,0)		ND (7.8)	ND (7.8)		ND (5.7)		ND (6.1)		ND (6.9)		ND (8.1)		ND (6.9)		ND (9.7)		ND (12.7)
romochloromethane ugikg	N N	¥ 1	¥ 5	ND (4.0)		ND (7.8)	ND (7.8)		ND (5.7)	-	ND (6.1)		ND (6.9)		ND (8.1)		(6.9) GN		ND (9.7)		ND (12.7)
	+	NA .	NA .	ND (4.0)		(0.7) ON	ND (7.8)	-	ND (5.7)		ND (6.1)		(6.9) CM		ND (8.1)		(6,9) (6,9)		ND (9.7)		ND (12.7)
	1	1	NA.	ND (4.0)		(0'7) ON	(0.1) UN		17°C) ON	-	(10°0')	-	(6,9) Uni		(1.0) (N.)	-	(6.9)		ND (9,4)		NO (12.4)
Disputation of the company of the co	W. Co.	TAN AND AND AND AND AND AND AND AND AND A	NA NA	ND (4.0)		(87) CM	ND (CB)		ND (5.7)		ND (6.1)		(6.9) CM		ND (8.1)		ND (6.9)		ND (9.7)		NO (12.7)
Southern (MEN)	+	100:000	100,000	(C.) (N.)		(13.5)	MUTTO ST	-	NO (11.4)		ND (12.3)		ND (13.1)		NO 1003)		(13.9)		(6,61) UN		NO (45.5)
	+	V.	NA.	(0.4) UN		(D'() (DN	(0.7) UN		ND (3.7)		ND (6.1)		(6.9) UN		ND (6.1)		(6'9) CN		ND (9.7)		ND (12.7)
oride	200	1,400	2,400	ND (4.0)		ND (7.8)	ND (7.8)		ND (5.7)		ND (6.1)		ND (6.9)		ND (8.1)		(6.9) dN		ND (9.7)		ND (12.7)
	+	100.000	100,000	ND (4.0)		NO (7.8)	ND (7.8)		ND (5.7)		ND (0.1)	-	(6:0) ON		ND (8.1)		ND (6.9)		ND (9.7)		NO (12.7)
Characteristic	+	10,000	40,000	ND (4.0)		NO (7.6)	ND (7.0)	-	NO (6.7)	-	ND (6.1)		ND (6.9)		ND (6.1)		ND (6.9)		ND (9.7)		ND (12.7)
Thomas Property	NA STORY	MA	NA.	ND SECTION	1	ND (7.8)	ND (7 B)	-	NO /67	-	ND GE ST	-	NO 16 OI	-	ND ce 41		ND (6.0)		NO (9.7)		ND 469 71
rothero	1	MA	NA.	ND (4.0)		ND (7.8)	ND (7.8)		NO (5.7)		ND 66 th		ND (6.9)		ND (8.1)		ND (6 9)		ND (9.7)		ND 412 71
	l	100 000	900 000	ND (4.0)		ND (7.8)	ND (7.8)		ND 6573		ND (6.1)		ND (6.9)		ND (8.1)		ND (69)		ND (9.7)		ND (12.7)
	H	17 000	49 000	ND (4.0)		ND (7.8)	ND (7.8)		ND 65.73		ND (6.1)		ND (6.9)		ND (8.1)		(6.9) QN		(7.6) QN		ND (12.7)
4-Dichlorobenzene	1,800	9.800	13.000	ND (4.0)		ND (7.8)	ND (7.8)		ND (5.7)		ND (6.1)		ND (6.9)		ND (8.1)		ND (6.9)		ND (9.7)		ND (12.7)
	H	19,000	26,000	ND (4.0)		ND (7.8)	(8'L) ON		ND (5.7)		ND (6.1)		ND (6.9)		ND (8.1)		(6.9) ON		ND (9.7)		ND (12.7)
2-Dichloroethane ugling	L	2,300	3,100	ND (4:0)		ND (7.8)	ND (7.8)		ND (5.7)		ND (6.1)		(6'9) QN		ND (8.1)		(6'9) QN		(2.6) QN		ND (12.7)
Total)		000'69	100,000	(6'2) QN		ND (15.6)	ND (15.5)		ND (11.4)		NO (12.3)		ND (13.7)		ND (16.3)		ND (13.9)		ND (19.5)		ND (25.3)
1-Dichloroethene ugikg		100,000	100,000	ND (4.0)		ND (7.8)	ND (7.8)		ND (5.7)		ND (6.1)		ND (6.9)		ND (8.1)		(6:9) QN		(2'6) QN		ND (12.7)
is-1,2-Dichloroethere ug/kg		99,000	100,000	ND (4.0)	(3.5)	ND (7.8)	ND (7.8)		ND (5.7)		ND (6.1)		(6.9) GM	×	ND (8.1)	- 25	(6.9) GN	0.50	ND (9.7)	2.5	ND (12.7)
ans-1,2-Dichloroethene ug/kg		100,000	100,000	ND (4.0)		ND (7.8)	ND (7.8)		ND (5.7)		ND (6.1)		ND (6.9)		ND (8.1)		(6.9) ON		ND (9.7)		ND (12.7)
	3 NA	NA	NA	ND (4.0)		ND (7.8)	ND (7.8)		ND (5.7)		ND (6.1)		(6.9) GN		ND (8.1)		(6:9) CIN		ND (9.7)		ND (12.7)
e-1,3-Dichloropropeno ug/kg	+	V.	AN	ND (4.0)		ND (7.8)	ND (7.8)		ND (5.7)		ND (6.1)		(6'9) QN	,	ND (8,1)		(6'9) QN		ND (9.7)		MD (12.7)
rans-1.3-Dichloropropene ugikg	+	NA	NA	ND (4,0)		ND (7.8)	ND (7.8)		ND (5.7)		NO (6.1)		ND (6.9)		(ND (8.1)		ND (6.9)		ND (9.7)		ND (12.7)
Bydn	1	30,000	41,000	ND (4.0)		ND (7.8)	ND (18.5)		ND (5.7)		ND (6.1)		ND (6.9)		ND (8.1)		ND (6.9)		ND (9.7)		ND (12.7)
- TOCONO DE LO DE	VIV.	VAN.	NA.	ND (4 0)		ND (7.8)	ND (7.8)		ND /5.73		ND (6.1)		ND (6.9)		ND (8.1)		(69) CN		ND49.73		ND (12.7)
	ļ	51,000	100,000	ND (4.0)		ND (7.8)	ND (7.8)		ND (5.7)		ND (6.1)		(6'9) QN		ND (8,1)		(6'9) CN		ND (9,7)		ND (12.7)
ne(MBK)	ļ	NA	VV	(6'Z) QN		ND (15.6)	ND (15.5)		ND (11.4)		ND (12.3)		ND (13.7)		ND (16.3)		ND (13.9)		ND (19.5)		ND (25.3)
		62,000	100,000	ND (4.0)		ND (7.8)	ND (7.8)		ND (5.7)		ND (6.1)		(6'9) QN		ND (8.1)		(6.9) QN		ND (9.7)		ND (12.7)
ByBn	-	100,000	100,000	ND (4.0)		ND (7.8)	ND (7.8)		ND (5.7)		ND (6.1)		(6.9) GN		ND (8.1)		(6.9) GN		ND (9.7)		ND (12.7)
Baylin		NA	NA	ND (4.0)		(8'2) QN	(8.7) dN		ND (5.7)	1000	ND (6.1)		(6'9) QN		ND (8.1)	- 00	(6'9) QN		(2'6) QN		ND (12.7)
1,2,2-Tetrachloroethane ug/kg	NA NA	NA	NA	ND (4,0)		ND (7,8)	ND (7.8)		ND (5.7)		ND (6.1)		(6'9) QN		ND (8.1)		(6'9) QN		ND (9.7)		ND (12.7)
etrachloroemene ugikg	1,300	9,500	19,000	ND (4,0)		ND (7.8)	ND (7.8)		ND (5.7)		ND (6.1)		(6.9) QM		ND (8.1)		(6.9) GM		(2'6) QN		ND (12.7)
6y6n		100,000	100.000	ND (4.0)		ND (7.8)	ND (7.8)		ND (5.7)		ND (6.1)		ND (6.9)		ND (8.1)		(6:9) QN		ND (9.7)		ND (12.7)
2.4-Trichlorobenzene ugfkg	3,600	47,000	52,000	ND (4.0)		ND (7.8)	ND (7.8)		ND (5.7)		ND (6.1)		ND (6.9)		ND (8.1)	3	ND (6.9)	7.82	ND (9.7)	0.40	ND (12.7)
1.1-Trichloroethane ugliig	089	100,000	100,000	ND (4.9)	,	(8'L) QN	ND (7,8)		ND (5.7)		ND (6.1)		(6.9) dN		ND (8.1)	-0	(6'9) ON		ND (9.7)	-	ND (12.7)
1,1,2-Trichloroethane uglig	NA	NA.	NA	ND (4.0)		ND (7.8)	ND (7.8)		ND (5.7)		ND (6.1)		(6.9) dN		ND (8.1)		(6'9) QN		ND (9.7)		ND (12.7)
richloroethene ugikg		10,000	21,000	ND (4.0)		ND (7.8)	ND (7.8)		ND (5.7)		ND (6.1)		(6'9) GN		ND (8.1)		(6'9) CN		13.8		ND (12.7)
,2,4-Trimethylbenzene ugikg		47,000	52.000	ND (4.0)		ND (7.8)	ND (7.8)		ND (5.7)		ND (6.1)		(6.9) QN		ND (8.1)		(6'9) QN		ND (9.7)		ND (12.7)
3,5-Trimethylbenzene ug lig	3 8,400	47,000	52,000	ND (4.0)		ND (7.8)	ND (7.8)		ND (5.7)		ND (6.1)		(6'9) QN		ND (8.1)		(6'9) QN		ND (9.7)		ND (12.7)
By 60		210	006	ND (4.0)		ND (7.8)	ND (7.8)		ND (5.7)		ND (6.1)		(6.9) QN		ND (8.1)		(6'9) QN		ND (9.7)		ND (12.7)
Eig din	3 260	100,000	100,000	ND (11.9)		ND (23.5)	ND (23.3)		ND (17.0)		ND (18.4)		ND (20.6)	,	ND (24.4)		ND (20.8)		ND (29.2)		ND (38.0)
ნუნი		100,000	100,000	(6'2) QN		ND (15.6)	ND (15.5)		ND (11.4)		ND (12.3)		ND (13.7)	,	ND (16.3)		ND (13.9)		ND (19.5)		ND (25.3)
Colors Colors	_	100,000	100,000	ND (4.0)		ND (7.8)	ND (7.8)		ND (5.7)		ND (6.1)		(6.9) QN		ND (8.1)	-	ND (6.9)		ND (9,7)		NO (12,7)

Client Sample ID:		6 NYCRR Part	6 NYCRR Part	6 NYCRR Part 8 NYCRR Part	\$8.1	\$B-2	SB-2	SB-3	SB4	\$8.4	\$8.5	\$8-5	\$B-6	9-85	SB-7	\$B-7	SB-8	\$B-8	88-9	SB-9	SB-10	SB-10
Sample Depth		Unrestricted	375 Residential Use Soil	375 Restricted Residential Use	12.ft	3.8	12.11	12 ft	3.8	12 ft	3#	12.11	3.ft	12.8	3#	12.6	3#	19 ft	3#	16 ft	3#	16 11
Date Sampled:		Cleanup	Cleanup	Soll Cleanage	8/23/2022	8/22/2022	8/23/2022	8/23/2022	8/22/2022	8/23/2022	8/22/2022	8/23/2022	8/22/2022	8/23/2022	8/22/2022	8/23/2022	8/22/2022	8/22/2022	8/22/2022	8/22/2022	8/22/2022	8/22/2022
Matrix	Units	Objectives	- Adams - Adam		Soil	Soil	Soil	Soil	Soil	Soll	Soil	Soll	Soll	Soil	Soil	Soil	Soll	Soil	Soll	Soil	Soli	Soll
GC Semi-volative (SW846 8082A)																		PROPERTY OF THE				
Arocker 1016	mgkg	1.0	-	-		ND (0.0188)									ND (0.0183)		ND (0.9184)		ND (0.0913)		ND (0.0181)	
Arodor 1221	mg/kg	0.1	-	-		ND (0.0188)	×				888			0.0	ND (0.0183)	3.00	ND (0.0184)	3,982	ND (0,0913)	0.50	ND (0.0181)	
Arodor 1232	mg/kg	0.1	-	1	,	ND (0.0188)									ND (0.0183)		ND (0.0184)		ND (0.0913)		ND (0.0181)	
Arodor 1242	mg/kg	0.1	-	-		ND (0.0376)									(99c0'0) GN		ND (0.0369)		ND (0.183)		ND (0.0362)	
Arodor 1248	mg/kg	0.1	-	-		ND (0.0188)									ND (0.0183)		ND (0,0184)		ND (0.0913)		ND (0,0181)	
Arodor 1254	mgkg	0.1	-	-		ND (0.0188)									0.253		0.246		0.465		0.181	
Arodor 1280	mg/kg	0.1	1	-		ND (0.0376)					3.83				ND (0.0366)		(69£0'0) GN		ND (0,183)		ND (0.0362)	×
Total PCBS	mg/kg	0.1	-	1		ND (0.0188)									0.253		0.248		0,456		0.191	
Metals Analysis		SCHOOL SHOP SHOW			Standard States		A STATE OF STATE OF															
Arsenic	mg/kg	13	16	16		2.8		,	3.2		1,5		2.2		1,9		9,3		11.2		9.2	,
Barkım	maka	350	350	400		206			36		100		88.8		38.5		199		205		116	,
Cadmium	Бубш	2.5	2,5	4,3		0.42			ND (0.14)		ND (0.13)		0,15		0.18		4.2		9		10,8	,
Chromium	6y6w	NA	NA	NA		979			5.7		9.7		45.9		9		34.2	1.0	23.3		18.4	
Lead	EN-Em	63	400	400		79.7			18.1		37.1		66.7		66.1		906		848		770	e e
Mercury	бубш	0.18	19'0	0.81		0.050			0.079		0.092		0,11	×	0.15	100	0.14	3.63	0,18		0.46	
Selonium	вубш	3.9	180	1,500		(95'0) QN			1.2		ND (0.53)		ND (0.51)		ND (0.54)		ND (0.55)		ND (0.53)		1.1	
Silvor	бубш	2	180	1,500		ND (0.56)			ND (0.55)		ND (0,53)		ND (0.51)		ND (0.54)		0.91		ND (0.53)		1	
General chemistry (5M2540G-2015)	(5)									SALES SERVICES												
Designation of the section	0	A14	MA	NA	2.1.4	433	12.4	120	16.8	19.8	17.6	18.9	113	181	90	16.9	10.3	11.8	10.1	16.3	0.3	16.4

Fedirectors:

(sp) - micrograms per Magema partin per Macin (1964)

(sp) - micrograms per Magema partin per micrograms per Magema partin per micrograms per Magema partin per micrograms per microgram (1964)

(sp) - micrograms per Magema partin per microgram (1964)

(sp) - micrograms per Magema per Magema per micrograms (1964)

(sp) - micrograms per Magema per Magema per micrograms per microgram

APPENDIX A CHURCHILL ENVIRONMENTAL, INC. – PCB/RCRA SAMPLING REPORT

PHASE II ENVIRONMENTAL SITE ASSESSMENT REPORT

Fig Tree Properties, LLC 301 Wolf Street & 1920 Park Street Syracuse, New York September 2022

822 State Fair Blvd., Syracuse, NY 13209 Phone: 315-428-1959 www.churchillenvironmental.com

Environmental, Health & Safety Consultants

July 11, 2022

G.F. Frost Construction Co. Inc. 5229 Foxhill Lane Camillus, NY 13031 Attn: Gary Frost

Re: PCB/RCRA Soil Sampling

Gary,

On June 3, 2022, Churchill Environmental performed Hazardous Soil Sampling for PCBs and RCRA-8s on the properties located at the Corner of Wolf St. and Park St., Syracuse, NY. Joe Nanno performed the PCB & RCRA sampling on these properties.

Sampling was performed in the grass lot behind 301 Wolf St., and 1920 Park St. in Syracuse, NY. The material in question was the soil behind these buildings. A total of fourteen (14) samples were taken from the soil; seven (7) samples were taken for PCBs & seven were taken for RCRAs in random locations at approximately 12" below grade. The EPA limit for PCBs in soil is 50 parts per million (ppm). Please see Table #1. These samples were sent to EMSL Analytical, Inc. in Cinnaminson, NJ. RCRAs, monitor eight different metallic elements. These heavy metals (EPA Limits) include; arsenic (5.0 ppm), barium (100.0 ppm), cadmium (1.0 ppm), chromium (5.0 ppm), lead (5.0 ppm), mercury (0.2 ppm), selenium (1.0 ppm), and silver (5.0 ppm). Please see Table #2. RCRAs were sent to Pace Analytical Services in Melville, NY. Please see the attached Lab Reports and map locations.

*Table #1

Sample #	Parameter	Result
PCB-3	Aroclor-1260	0.25 ppm
PCB-4	Aroclor-1254	0.18 ppm
PCB-5	Aroclor-1254	0.83 ppm
	Aroclor-1260	0.19 ppm
PCB-6	Aroclor-1254	0.13 ppm
	Aroclor-1260	0.12 ppm
PCB-7	Aroclor-1254	0.5 ppm
	Aroclor-1260	0.34 ppm

*Table #2

Sample #	Parameter	Result
RCRA-8	Arsenic	< 2.7 ppm
	Barium	85.3 ppm
	Cadmium	< 0.67 ppm
	Chromium	15.4 ppm
	Lead	23.3 ppm
	Mercury	< 0.041 ppm
	Selenium	< 2.7 ppm
	Silver	< 2.7 ppm

RCRA-9	Arsenic	< 2.7 ppm
	Barium	107 ppm
	Cadmium	< 0.67 ppm
	Chromium	18.6 ppm
	Lead	116 ppm
	Mercury	0.071 ppm
	Selenium	< 2.7 ppm
	Silver	< 2.7 ppm
RCRA-10	Arsenic	7.8 ppm
perhaps with the Section Address of the Section Sec	Barium	128 ppm
	Cadmium	1.6 ppm
	Chromium	30.5 ppm
	Lead	368 ppm
	Mercury	0.36 ppm
	Selenium	< 2.5 ppm
	Silver	< 2.5 ppm
RCRA-11	Arsenic	7.1 ppm
	Barium	246 ppm
	Cadmium	0.69 ppm
	Chromium	22.0 ppm
	Lead	305 ppm
	Mercury	0.58 ppm
	Selenium	< 2.5 ppm
	Silver	< 2.5 ppm
RCRA-12	Arsenic	3.3 ppm
	Barium	152 ppm
	Cadmium	12.0 ppm
	Chromium	19.1 ppm
	Lead	534 ppm
	Mercury	0.65 ppm
	Selenium	< 2.2 ppm
	Silver	2.4 ppm
RCRA-13	Arsenic	8.8 ppm
	Barium	116 ppm
	Cadmium	9.2 ppm
	Chromium	11.8 ppm
	Lead	561 ppm
	Mercury	1.5 ppm
	Selenium	< 2.6 ppm
	Silver	< 2.6 ppm
RCRA-14	Arsenic	5.4 ppm
	Barium	< 46.6 ppm
	Cadmium	16.6 ppm
	Chromium	9.3 ppm
	Lead	653 ppm
	Mercury	0.49 ppm
	ITREE CERRY	20 0 0 D D D XXX
	Selenium	< 2.3 ppm

200 Route 130 North, Cinnaminson, NJ 08077

Phone/Fax: (856) 303-2500 / (856) 858-4571

http://www.EMSL.com

EnvChemistry2@emsl.com

EMSL Order:

012208948

CustomerID: CustomerPO:

ProjectID:

CHUE80

Attn: Joe Nanno Churchill Environmental Inc. 822 State Fair Blvd

Syracuse, NY 13209

Phone: Fax:

(315) 428-1959 (315) 428-0432

Received:

6/8/2022 09:20 AM

Project: 22064 Wolf/Park St. Soil Sampling

		Analytical R	Results				
Client Sample Des	cription PCB-1 SW Corner		Collected:	6/3/2022 Lab	ID:	012208948-0	001
Method	Parameter	Result	RL Units	Prep Date & An	alyst	Analysi Date & Ana	
GC-SVOA							
3550C/8082A	Aroclor-1016	ND	53 μg/Kg	6/9/2022	AJ	6/10/2022 00:00	PM
3550C/8082A	Aroclor-1221	ND	53 μg/Kg	6/9/2022	AJ	6/10/2022 00:00	PM
3550C/8082A	Aroclor-1232	ND	53 μg/Kg	6/9/2022	AJ	6/10/2022 00:00	PM
3550C/8082A	Aroclor-1242	ND	53 μg/Kg	6/9/2022	AJ	6/10/2022 00:00	PM
3550C/8082A	Aroclor-1248	ND	53 μg/Kg	6/9/2022	AJ	6/10/2022 00:00	PM
3550C/8082A	Aroclor-1254	ND	53 μg/Kg	6/9/2022	AJ	6/10/2022 00:00	PM
3550C/8082A	Aroclor-1260	ND	53 μg/Kg	6/9/2022	AJ	6/10/2022 00:00	PM
3550C/8082A	Aroclor-1262	ND	53 μg/Kg	6/9/2022	AJ	6/10/2022 00:00	PM
3550C/8082A	Aroclor-1268	ND	53 μg/Kg	6/9/2022	AJ	6/10/2022 00:00	PM
WET							
SM 2540G	Total Solids	88	N/A %	6/10/2022	MQ	6/10/2022 00:00	MQ
Client Sample Des	cription PCB-2 West End		Collected:	6/3/2022 Lab	ID:	012208948-0	0002
Method	Parameter	Result	RL Units	Prep Date & An		Analysi Date & An	
GC-SVOA							
3550C/8082A	Aroclor-1016	ND	52 μg/Kg	6/9/2022	AJ	6/10/2022 00:00	PM
3550C/8082A	Aroclor-1221	ND	52 μg/Kg	6/9/2022	AJ	6/10/2022 00:00	PM
3550C/8082A	Aroclor-1232	ND	52 μg/Kg	6/9/2022	AJ	6/10/2022 00:00	PM
3550C/8082A	Aroclor-1242	ND	52 μg/Kg	6/9/2022	AJ	6/10/2022 00:00	PM
3550C/8082A	Aroclor-1248	ND	52 μg/Kg	6/9/2022	AJ	6/10/2022 00:00	PM
3550C/8082A	Aroclor-1254	ND	52 μg/Kg	6/9/2022	AJ	6/10/2022 00:00	PM

200 Route 130 North, Cinnaminson, NJ 08077

Phone/Fax: (856) 303-2500 / (856) 858-4571

http://www.EMSL.com EnvChemistry2@emsl.com

EMSL Order: CustomerID:

012208948

CHUE80

CustomerPO:
ProjectID:

Attn: Joe Nanno Churchill Environmental Inc. 822 State Fair Blvd Syracuse, NY 13209 Phone: Fax: (315) 428-1959 (315) 428-0432

Received:

6/8/2022 09:20 AM

Project: 22064 Wolf/Park St. Soil Sampling

		Analytical R	esults					
Client Sample Descriptio	n PCB-2 West End		Collected:	6/3/2022	Lab	D:	012208948-0	002
Method	Parameter	Result	RL Units		Prep Date & An		Analysi Date & Ana	
GC-SVOA								
3550C/8082A	Aroclor-1260	ND	52 μg/Kg		6/9/2022	AJ	6/10/2022 00:00	PM
3550C/8082A	Aroclor-1262	ND	52 μg/Kg		6/9/2022	AJ	6/10/2022 00:00	PM
3550C/8082A	Aroclor-1268	ND	52 μg/Kg		6/9/2022	AJ	6/10/2022 00:00	PM
WET								
SM 2540G	Total Solids	90	N/A %		6/10/2022	MQ	6/10/2022 00:00	MQ
Client Sample Descriptio	n PCB-3 NW Corner		Collected:	6/3/2022	Lat	D:	012208948-0	0003
Method	Parameter	Result	RL Units		Prep Date & An		Analysi Date & Ana	
GC-SVOA								
3550C/8082A	Aroclor-1016	ND	57 μg/Kg		6/9/2022	AJ	6/10/2022 00:00	PM
3550C/8082A	Aroclor-1221	ND	57 μg/Kg		6/9/2022	AJ	6/10/2022 00:00	PM
3550C/8082A	Aroclor-1232	ND	57 μg/Kg		6/9/2022	AJ	6/10/2022 00:00	PM
3550C/8082A	Aroclor-1242	ND	57 μg/Kg		6/9/2022	AJ	6/10/2022 00:00	PM
3550C/8082A	Aroclor-1248	ND	57 μg/Kg		6/9/2022	AJ	6/10/2022 00:00	PM
3550C/8082A	Aroclor-1254	ND	57 μg/Kg		6/9/2022	AJ	6/10/2022 00:00	PM
3550C/8082A	Aroclor-1260	250	57 μg/Kg		6/9/2022	AJ	6/10/2022 00:00	PM
3550C/8082A	Aroclor-1262	ND	57 μg/Kg		6/9/2022	AJ	6/10/2022 00:00	PM
3550C/8082A	Aroclor-1268	ND	57 μg/Kg		6/9/2022	AJ	6/10/2022 00:00	PM
WET								
SM 2540G	Total Solids	87	N/A %		6/10/2022	MQ	6/10/2022 00:00	MQ

200 Route 130 North, Cinnaminson, NJ 08077

Phone/Fax: (856) 303-2500 / (856) 858-4571

http://www.EMSL.com EnvChemistry2@emsl.com

EMSL Order: CustomerID:

012208948

CHUE80

CustomerPO: ProjectID:

Attn: Joe Nanno Churchill Environmental Inc. 822 State Fair Blvd Syracuse, NY 13209

Project: 22064 Wolf/Park St. Soil Sampling

Phone: Fax: (315) 428-1959 (315) 428-0432

Received:

6/8/2022 09:20 AM

		Analytical K	Coulto					
Client Sample Des	cription PCB-4 North End		Collected:	6/3/2022	Lai	b ID:	012208948-0	0004
Method	Parameter	Result	RL Units		Prep Date & Ar		Analysi Date & An	
GC-SVOA								
3550C/8082A	Aroclor-1016	ND	54 μg/Kg	6.	/9/2022	AJ	6/10/2022 00:00	PM
3550C/8082A	Aroclor-1221	ND	54 μg/Kg	6	/9/2022	AJ	6/10/2022 00:00	PM
3550C/8082A	Aroclor-1232	ND	54 μg/Kg	6	/9/2022	AJ	6/10/2022 00:00	PM
3550C/8082A	Aroclor-1242	ND	54 μg/Kg	6	/9/2022	AJ	6/10/2022 00:00	PM
3550C/8082A	Aroclor-1248	ND	54 μg/Kg	6	/9/2022	AJ	6/10/2022 00:00	PM
3550C/8082A	Aroclor-1254	180	54 μg/Kg	6	/9/2022	AJ	6/10/2022 00:00	PM
3550C/8082A	Aroclor-1260	ND	54 μg/Kg	6	/9/2022	AJ	6/10/2022 00:00	PM
3550C/8082A	Aroclor-1262	ND	54 μg/Kg	6	/9/2022	AJ	6/10/2022 00:00	PM
3550C/8082A	Aroclor-1268	ND	54 μg/Kg	6	/9/2022	AJ	6/10/2022 00:00	PM
WET								
SM 2540G	Total Solids	91	N/A %	6	/10/2022	MQ	6/10/2022 00:00	MQ
Client Sample Des	cription PCB-5 NE Corner		Collected:	6/3/2022	La	b ID:	012208948-0)005
Method	Parameter	Result	RL Units		Prep Date & Analyst		Analysi Date & An	
	,						•	
GC-SVOA 3550C/8082A	Aroclor-1016	ND	51 μg/Kg	6	/9/2022	AJ	6/10/2022 00:00	PM
3550C/8082A	Aroclor-1221	ND	51 µg/Kg	6	6/9/2022	AJ	6/10/2022 00:00	PM
3550C/8082A	Aroclor-1232	ND	51 μg/Kg	6	6/9/2022	AJ	6/10/2022 00:00	PM
3550C/8082A	Aroclor-1242	ND	51 μg/Kg	6	6/9/2022	AJ	6/10/2022 00:00	PM
3550C/8082A	Aroclor-1248	ND	51 μg/Kg	6	6/9/2022	AJ	6/10/2022 00:00	PM
3550C/8082A	Aroclor-1254	830	51 μg/Kg	6	6/9/2022	AJ	6/10/2022 00:00	PM

200 Route 130 North, Cinnaminson, NJ 08077

Phone/Fax: (856) 303-2500 / (856) 858-4571

 EMSL Order: CustomerID: 012208948

CHUE80

CustomerPO:

ProjectID:

Attn: Joe Nanno

Churchill Environmental Inc. 822 State Fair Blvd Syracuse, NY 13209 Phone: Fax: (315) 428-1959 (315) 428-0432

Received:

6/8/2022 09:20 AM

Project: 22064 Wolf/Park St. Soil Sampling

		Analytical R	esuits					
Client Sample Desc	1.5)		Collected:	6/3/2022	Lab	ID:	012208948-0	005
	NE Corner							
Method	Parameter	Result	RL Units	L	Prep Date & An	alyst	Analysi Date & Ana	
GC-SVOA								
3550C/8082A	Aroclor-1260	190	51 μg/Kg	6/9	9/2022	AJ	6/10/2022 00:00	PM
3550C/8082A	Aroclor-1262	ND	51 μg/Kg	6/9	9/2022	AJ	6/10/2022 00:00	PM
3550C/8082A	Aroclor-1268	ND	51 μg/Kg	6/9	9/2022	AJ	6/10/2022 00:00	PM
WET								
SM 2540G	Total Solids	94	N/A %	6/*	10/2022	MQ	6/10/2022 00:00	MQ
Client Sample Desc	eription PCB-6 East End		Collected:	6/3/2022	Lab	D:	012208948-0	0006
	East End				Prep		Analysi	e
Method	Parameter	Result	RL Units	L	Date & An		Date & An	
GC-SVOA								
3550C/8082A	Aroclor-1016	ND	53 μg/Kg	6/9	9/2022	AJ	6/10/2022 00:00	PM
3550C/8082A	Aroclor-1221	ND	53 μg/Kg	6/9	9/2022	AJ	6/10/2022 00:00	PM
3550C/8082A	Aroclor-1232	ND	53 μg/Kg	6/9	9/2022	AJ	6/10/2022 00:00	PM
3550C/8082A	Aroclor-1242	ND	53 μg/Kg	6/9	9/2022	AJ	6/10/2022 00:00	PM
3550C/8082A	Aroclor-1248	ND	53 μg/Kg	6/9	9/2022	AJ	6/10/2022 00:00	PM
3550C/8082A	Aroclor-1254	130	53 μg/Kg	6/9	9/2022	AJ	6/10/2022 00:00	PM
3550C/8082A	Aroclor-1260	120	53 μg/Kg	6/9	9/2022	AJ	6/10/2022 00:00	PM
3550C/8082A	Aroclor-1262	ND	53 μg/Kg	6/9	9/2022	AJ	6/10/2022 00:00	PM
3550C/8082A	Aroclor-1268	ND	53 μg/Kg	6/9	9/2022	AJ	6/10/2022 00:00	PM
WET								
SM 2540G	Total Solids	91	N/A %	6/	10/2022	MQ	6/10/2022 00:00	MQ

200 Route 130 North, Cinnaminson, NJ 08077

Phone/Fax: (856) 303-2500 / (856) 858-4571

http://www.EMSL.com EnvChemistry2@emsl.com EMSL Order:

012208948

CustomerID:

CHUE80

CustomerPO: ProjectID:

Attn: Joe Nanno Churchill Environmental Inc. 822 State Fair Blvd Syracuse, NY 13209

Phone: Fax:

(315) 428-1959 (315) 428-0432

Received:

6/8/2022 09:20 AM

Project: 22064 Wolf/Park St. Soil Sampling

		Allalytical N	esuits						
Client Sample Descri	ption PCB-7 SE Corner		Collected:	6/3/2022	Lat	D:	012208948-0	007	
Method	Parameter	Result	RL Units		Prep Date & An		Analysi Date & Ana		
GC-SVOA									
3550C/8082A	Aroclor-1016	ND	51 μg/Kg		6/9/2022	AJ	6/10/2022 00:00	PM	
3550C/8082A	Aroclor-1221	ND	51 μg/Kg		6/9/2022	AJ	6/10/2022 00:00	PM	
3550C/8082A	Aroclor-1232	ND	51 μg/Kg		6/9/2022	AJ	6/10/2022 00:00	PM	
3550C/8082A	Aroclor-1242	ND	51 μg/Kg	51 μg/Kg		AJ	6/10/2022 00:00	PM	
3550C/8082A	Aroclor-1248	ND	51 μg/Kg	51 μg/Kg 6		AJ	6/10/2022 00:00	PM	
3550C/8082A	Aroclor-1254	500	51 μg/Kg		6/9/2022 AJ		6/10/2022 00:00	PM	
3550C/8082A	Aroclor-1260	340	51 μg/Kg		6/9/2022	AJ	6/10/2022 00:00	PM	
3550C/8082A	Aroclor-1262	ND	51 μg/Kg		6/9/2022	AJ	6/10/2022 00:00	PM	
3550C/8082A	Aroclor-1268	ND	51 μg/Kg		6/9/2022	AJ	6/10/2022 00:00	PM	
WET									
SM 2540G	Total Solids	94	N/A %		6/10/2022	MQ	6/10/2022 00:00	MQ	
Client Sample Descrip	ption RCRA-1 SW Corner		Collected:	6/3/2022	Lal	b ID:	012208948-0	008	
Method	Parameter	Result	RL Units		Prep Date & Ar		Analysi Date & An		
SUBCONTRACT									
Subcontract-Pace Analytical Services	See Attached		N/A						
Client Sample Description RCRA-2 West End			Collected:	6/3/2022	2 Lab ID :		012208948-0	012208948-0009	
Method	Parameter	Result	RL Units		Prep Date & Ar		Analysis Date & Analyst		
SUBCONTRACT									
Subcontract-Pace Analytical Services	See Attached		N/A						

200 Route 130 North, Cinnaminson, NJ 08077 Phone/Fax: (856) 303-2500 / (856) 858-4571

http://www.EMSL.com

EnvChemistry2@emsl.com

EMSL Order:

ProjectID:

012208948

CustomerID: CustomerPO:

CHUE80

Attn: Joe Nanno

Churchill Environmental Inc. 822 State Fair Blvd Syracuse, NY 13209

Phone: Fax:

(315) 428-1959 (315) 428-0432

Received:

6/8/2022 09:20 AM

Project: 22064 Wolf/Park St. Soil Sampling

Analytical	Resul	ts
------------	-------	----

Client Sample Description	n RCRA-3 NW Corner			Collected:	6/3/2022	Lab ID:	012208948-0010
Method	Parameter	Result		RL Units		Prep Date & Analyst	Analysis Date & Analyst
SUBCONTRACT							
Subcontract-Pace Analytical Services	See Attached		-	N/A			
Client Sample Description	n RCRA-4 North End			Collected:	6/3/2022	Lab ID:	012208948-0011
Method	Parameter	Result		RL Units		Prep Date & Analyst	Analysis Date & Analyst
SUBCONTRACT							
Subcontract-Pace Analytical Services	See Attached			N/A			
Client Sample Description	n RCRA-5 NE Corner			Collected:	6/3/2022	Lab ID:	012208948-0012
Method	Parameter	Result		RL Units		Prep Date & Analyst	Analysis Date & Analyst
SUBCONTRACT							
Subcontract-Pace Analytical Services	See Attached			N/A			
Client Sample Description	n RCRA-6 East End			Collected:	6/3/2022	Lab ID:	012208948-0013
Method	Parameter	Result		RL Units		Prep Date & Analyst	Analysis Date & Analyst
SUBCONTRACT							
Subcontract-Pace Analytical Services	See Attached			N/A			
Client Sample Description	n RCRA-7 SE Corner			Collected:	6/3/2022	Lab ID:	012208948-0014
Method	Parameter	Result		RL Units		Prep Date & Analyst	Analysis Date & Analyst
SUBCONTRACT							
Subcontract-Pace Analytical Services	See Attached			N/A			

200 Route 130 North, Cinnaminson, NJ 08077 Phone/Fax: (856) 303-2500 / (856) 858-4571

http://www.EMSL.com EnvChemistry2@emsl.com

Definitions:

MDL - method detection limit

J - Result was below the reporting limit, but at or above the MDL
ND - indicates that the analyte was not detected at the reporting limit
RL - Reporting Limit (Analytical)
D - Dilution Sample required a dilution which was used to calculate final results

EMSL Order:

012208948

CustomerID:

CHUE80

CustomerPO:

ProjectID:

CERTIFICATIONS

Project:

012208948 6/3

Pace Project No.:

70217802

Pace Analytical Services Long Island

575 Broad Hollow Rd, Melville, NY 11747 Connecticut Certification #: PH-0435 Delaware Certification # NY 10478 Maryland Certification #: 208 Massachusetts Certification #: M-NY026 New Hampshire Certification #: 2987 New Jersey Certification #: NY158 New York Certification #: 10478 Primary Accrediting Body Pennsylvania Certification #: 68-00350 Rhode Island Certification #: LAO00340 Virginia Certification # 460302

SAMPLE SUMMARY

Project:

012208948 6/3

Pace Project No.: 70217802

Lab ID	Sample ID	Matrix	Date Collected	Date Received	
70217802001	012208948-0008	Solid	06/03/22 00:00	06/09/22 11:00	
70217802002	012208948-0009	Solid	06/03/22 00:00	06/09/22 11:00	
70217802003	012208948-0010	Solid	06/03/22 00:00	06/09/22 11:00	
70217802004	012208948-0011	Solid	06/03/22 00:00	06/09/22 11:00	
70217802005	012208948-0012	Solid	06/03/22 00:00	06/09/22 11:00	
70217802006	012208948-0013	Solid	06/03/22 00:00	06/09/22 11:00	
70217802007	012208948-0014	Solid	06/03/22 00:00	06/09/22 11:00	

SAMPLE ANALYTE COUNT

Project:

012208948 6/3

Pace Project No.:

70217802

Lab ID	Sample ID	Method	Analysts	Analytes Reported
70217802001	012208948-0008	EPA 6010D	CAM	7
		EPA 7471B	JJS	1
		ASTM D2216-05M	CEA	1
70217802002	012208948-0009	EPA 6010D	CAM	7
		EPA 7471B	JJS	1
		ASTM D2216-05M	CEA	1
70217802003	012208948-0010	EPA 6010D	CAM	7
		EPA 7471B	JJS	1
		ASTM D2216-05M	CEA	1
70217802004	012208948-0011	EPA 6010D	CAM	7
		EPA 7471B	JJS	1
		ASTM D2216-05M	CEA	1
70217802005	012208948-0012	EPA 6010D	CAM	7
		EPA 7471B	JJS	1
		ASTM D2216-05M	CEA	1
70217802006	012208948-0013	EPA 6010D	CAM	7
		EPA 7471B	JJS	1
		ASTM D2216-05M	CEA	1
70217802007	012208948-0014	EPA 6010D	CAM	7
		EPA 7471B	JJS	1
		ASTM D2216-05M	CEA	1

PACE-MV = Pace Analytical Services - Melville

REPORT OF LABORATORY ANALYSIS

SUMMARY OF DETECTION

Project:

012208948 6/3

Pace Project No.: 70217802

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units .	Report Limit	Analyzed	Qualifiers
70217802001	012208948-0008					
EPA 6010D	Barium	85.3	mg/kg	53.8	06/21/22 11:49	
EPA 6010D	Chromium	15.4	mg/kg	2.7	06/21/22 11:49	
EPA 6010D	Lead	23.3	mg/kg	1.3	06/21/22 11:49	
ASTM D2216-05M	Percent Moisture	8.9	%	0.10	06/15/22 15:37	
70217802002	012208948-0009					
EPA 6010D	Barium	107	mg/kg	53.4	06/21/22 11:52	
EPA 6010D	Chromium	18.6	mg/kg	2.7	06/21/22 11:52	
EPA 6010D	Lead	116	mg/kg	1.3	06/21/22 11:52	
EPA 7471B	Mercury	0.071	mg/kg	0.043	06/15/22 15:10	
ASTM D2216-05M	Percent Moisture	8.6	%	0.10	06/15/22 15:37	
70217802003	012208948-0010					
EPA 6010D	Arsenic	7.8	mg/kg	2.5	06/21/22 11:54	
EPA 6010D	Barium	128	mg/kg	49.1	06/21/22 11:54	
EPA 6010D	Cadmium	1.6	mg/kg	0.61	06/21/22 11:54	
EPA 6010D	Chromium	30.5	mg/kg	2.5	06/21/22 11:54	
EPA 6010D	Lead	368	mg/kg	1.2	06/21/22 11:54	
EPA 7471B	Mercury	0.36	mg/kg	0.042	06/15/22 15:11	
ASTM D2216-05M	Percent Moisture	10.8	%	0.10	06/15/22 15:37	
0217802004	012208948-0011					
EPA 6010D	Arsenic	7.1	mg/kg	2.5	06/21/22 11:57	
EPA 6010D	Barium	246	mg/kg	50.9	06/21/22 11:57	
EPA 6010D	Cadmium	0.69	mg/kg	0.64	06/21/22 11:57	
EPA 6010D	Chromium	22.0	mg/kg	2.5	06/21/22 11:57	
PA 6010D	Lead	305	mg/kg	1.3	06/21/22 11:57	
EPA 7471B	Mercury	0.58	mg/kg	0.040	06/15/22 15:13	
ASTM D2216-05M	Percent Moisture	10.4	%	0.10	06/15/22 15:37	
0217802005	012208948-0012					
EPA 6010D	Arsenic	3.3	mg/kg	2.2	06/21/22 11:59	
EPA 6010D	Barium	152	mg/kg	43.4	06/21/22 11:59	
EPA 6010D	Cadmium	12.0	mg/kg	0.54	06/21/22 11:59	
EPA 6010D	Chromium	19.1	mg/kg	2.2	06/21/22 11:59	
EPA 6010D	Lead	534	mg/kg	1.1	06/21/22 11:59	
EPA 6010D	Silver	2.4	mg/kg	2.2	06/21/22 11:59	
EPA 7471B	Mercury	0.65	mg/kg	0.037	06/16/22 10:30	
ASTM D2216-05M	Percent Moisture	4.6	%	0.10	06/15/22 15:37	
0217802006	012208948-0013					
EPA 6010D	Arsenic	8.8	mg/kg	2.6	06/21/22 12:01	
EPA 6010D	Barium	116	mg/kg	51.5	06/21/22 12:01	
EPA 6010D	Cadmium	9.2	mg/kg	0.64	06/21/22 12:01	
EPA 6010D	Chromium	11.8	mg/kg	2.6	06/21/22 12:01	
EPA 6010D	Lead	561	mg/kg	1.3	06/21/22 12:01	
EPA 7471B	Mercury	1.5	mg/kg	0.036	06/16/22 10:31	
	IVIOI OUI Y	1.0	ilig/ilig	0.000	00110122 10.01	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

SUMMARY OF DETECTION

Project:

012208948 6/3

Pace Project No.: 70217802

Lab Sample ID	Client Sample ID						
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers	
70217802007	012208948-0014						
EPA 6010D	Arsenic	5.4	mg/kg	2.3	06/21/22 12:08		
EPA 6010D	Cadmium	16.6	mg/kg	0.58	06/21/22 12:08		
EPA 6010D	Chromium	9.3	mg/kg	2.3	06/21/22 12:08		
EPA 6010D	Lead	653	mg/kg	1.2	06/21/22 12:08		
EPA 6010D	Silver	3.1	mg/kg	2.3	06/21/22 12:08		
EPA 7471B	Mercury	0.49	mg/kg	0.038	06/16/22 10:33		
ASTM D2216-05M	Percent Moisture	4.6	%	0.10	06/15/22 15:38		

Project:

012208948 6/3

Pace Project No.:

70217802

Sample: 012208948-0008

Lab ID: 70217802001

Collected: 06/03/22 00:00 Received: 06/09/22 11:00 Matrix: Solid

Date: 06/21/2022 04:32 PM

Results reported on a "dry we	eight" basis and are	e adjusted fo	or percent moi Report	sture, san	nple si	ize and any diluti	ons.		
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010D MET ICP	Analytical	Method: EPA	A 6010D Prepa	ration Met	hod: E	PA 3050B			
	Pace Anal	lytical Service	es - Melville						
Arsenic	<2.7	mg/kg	2.7	1.3	5	06/14/22 08:05	06/21/22 11:49	7440-38-2	
Barium	85.3	mg/kg	53.8	3.2	5	06/14/22 08:05	06/21/22 11:49	7440-39-3	
Cadmium	< 0.67	mg/kg	0.67	0.076	5	06/14/22 08:05	06/21/22 11:49	7440-43-9	
Chromium	15.4	mg/kg	2.7	1.1	5	06/14/22 08:05	06/21/22 11:49	7440-47-3	
Lead	23.3	mg/kg	1.3	0.69	5	06/14/22 08:05	06/21/22 11:49	7439-92-1	
Selenium	<2.7	mg/kg	2.7	1.6	5	06/14/22 08:05	06/21/22 11:49	7782-49-2	
Silver	<2.7	mg/kg	2.7	0.33	5	06/14/22 08:05	06/21/22 11:49	7440-22-4	
7471 Mercury	Analytical	Method: EPA	A7471B Prepa	ration Met	hod: E	PA 7471B			
	Pace Anal	ytical Service	es - Melville						
Mercury	<0.041	mg/kg	0.041	0.027	1	06/14/22 14:03	06/15/22 15:08	7439-97-6	
Percent Moisture	Analytical	Method: AS	ГМ D2216-05M		-	ti u			
	Pace Anal	lytical Service	es - Melville						
Percent Moisture	8.9	%	0.10	0.10	1		06/15/22 15:37		

Project:

012208948 6/3

Pace Project No.:

70217802

Sample: 012208948-0009

Date: 06/21/2022 04:32 PM

Lab ID: 70217802002

Collected: 06/03/22 00:00 Received: 06/09/22 11:00 Matrix: Solid

			Report			ze and any diluti			
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010D MET ICP	Analytical	Method: EPA	4 6010D Prepa	aration Met	hod: E	PA 3050B			
	Pace Anal	ytical Service	es - Melville						
Arsenic	<2.7	mg/kg	2.7	1.3	5	06/14/22 08:05	06/21/22 11:52	7440-38-2	
Barium	107	mg/kg	53.4	3.2	5	06/14/22 08:05	06/21/22 11:52	7440-39-3	
Cadmium	< 0.67	mg/kg	0.67	0.076	5	06/14/22 08:05	06/21/22 11:52	7440-43-9	
Chromium	18.6	mg/kg	2.7	1.1	5	06/14/22 08:05	06/21/22 11:52	7440-47-3	
_ead	116	mg/kg	1.3	0.69	5	06/14/22 08:05	06/21/22 11:52	7439-92-1	
Selenium	<2.7	mg/kg	2.7	1.6	5	06/14/22 08:05	06/21/22 11:52	7782-49-2	
Silver	<2.7	mg/kg	2.7	0.33	5	06/14/22 08:05	06/21/22 11:52	7440-22-4	
7471 Mercury	Analytical	Method: EPA	7471B Prepa	aration Met	hod: E	PA 7471B			
	Pace Anal	ytical Service	es - Melville						
Mercury	0.071	mg/kg	0.043	0.028	1	06/14/22 14:03	06/15/22 15:10	7439-97-6	
Percent Moisture	Analytical	Method: AS	TM D2216-05N	Л					
	Pace Anal	ytical Service	es - Melville						
Percent Moisture	8.6	%	0.10	0.10	1		06/15/22 15:37		

Project:

012208948 6/3

Pace Project No.:

6010D MET ICP

7471 Mercury

Percent Moisture

Percent Moisture

Date: 06/21/2022 04:32 PM

Mercury •

Arsenic Barium Cadmium Chromium Lead Selenium Silver 70217802

Sample: 012208948-0010

Parameters

Lab ID: 70217802003

Pace Analytical Services - Melville

0.10

0.10

10.8

Collected: 06/03/22 00:00

Received: 06/09/22 11:00

Matrix: Solid

06/15/22 15:37

Results reported on a "dry weight" basis and are adjusted for percent moisture

Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qu
Analytical	Method: EPA	6010D Prep	aration Met	hod: E	PA 3050B			
Pace Ana	lytical Service	es - Melville						
7.8	mg/kg	2.5	1.2	5	06/14/22 08:05	06/21/22 11:54	7440-38-2	
128	mg/kg	49.1	3.0	5	06/14/22 08:05	06/21/22 11:54	7440-39-3	
1.6	mg/kg	0.61	0.070	5	06/14/22 08:05	06/21/22 11:54	7440-43-9	
30.5	mg/kg	2.5	0.99	5	06/14/22 08:05	06/21/22 11:54	7440-47-3	
368	mg/kg	1.2	0.63	5	06/14/22 08:05	06/21/22 11:54	7439-92-1	
<2.5	mg/kg	2.5	1.4	5	06/14/22 08:05	06/21/22 11:54	7782-49-2	
<2.5	mg/kg	2.5	0.30	5	06/14/22 08:05	06/21/22 11:54	7440-22-4	
Analytical	Method: EPA	7471B Prep	aration Met	hod: E	PA 7471B			
5	lytical Service	272 Carl 100 Carlos			era tang ang ana atawa ay arang at ang yarang at 25 S			
0.36	mg/kg	0.042	0.027	1	06/14/22 14:03	06/15/22 15:11	7439-97-6	

REPORT OF LABORATORY ANALYSIS

Project:

012208948 6/3

Pace Project No.:

70217802

Sample: 012208948-0011

Lab ID: 70217802004

Collected: 06/03/22 00:00 Received: 06/09/22 11:00 Matrix: Solid

Date: 06/21/2022 04:32 PM

			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010D MET ICP	Analytical	Method: EPA	A 6010D Prepa	ration Met	hod: E	PA 3050B			
	Pace Anal	ytical Service	es - Melville						
Arsenic	7.1	mg/kg	2.5	1.2	5	06/14/22 08:05	06/21/22 11:57	7440-38-2	
Barium	246	mg/kg	50.9	3.1	5	06/14/22 08:05	06/21/22 11:57	7440-39-3	
Cadmium	0.69	mg/kg	0.64	0.072	5	06/14/22 08:05	06/21/22 11:57	7440-43-9	
Chromium	22.0	mg/kg	2.5	1.0	5	06/14/22 08:05	06/21/22 11:57	7440-47-3	
Lead	305	mg/kg	1.3	0.65	5	06/14/22 08:05	06/21/22 11:57	7439-92-1	
Selenium	<2.5	mg/kg	2.5	1.5	5	06/14/22 08:05	06/21/22 11:57	7782-49-2	
Silver	<2.5	mg/kg	2.5	0.32	5	06/14/22 08:05	06/21/22 11:57	7440-22-4	
7471 Mercury	Analytical	Method: EPA	7471B Prepa	ration Met	hod: E	PA 7471B			
	Pace Anal	ytical Service	es - Melville						
Mercury	0.58	mg/kg	0.040	0.026	1	06/14/22 14:03	06/15/22 15:13	7439-97-6	
Percent Moisture	Analytical	Method: AST	M D2216-05M						
	Pace Anal	ytical Service	es - Melville						
Percent Moisture	10.4	%	0.10	0.10	1		06/15/22 15:37		

ANALYTICAL RESULTS

Project:

012208948 6/3

Pace Project No.:

70217802

Sample: 012208948-0012

Date: 06/21/2022 04:32 PM

Lab ID: 70217802005

Collected: 06/03/22 00:00 Received: 06/09/22 11:00 Matrix: Solid

Results reported on a "dry weig	ght" basis and are	e adjusted fo		isture, san	nple si	ize and any diluti	ons.				
Parameters	Results	Units	Report Limit	MDL	DF Prepared		Analyzed	CAS No.	Qual		
6010D MET ICP	Analytical	Method: EPA	A 6010D Prepa	aration Met	hod: E	PA 3050B					
	Pace Anal										
Arsenic	3.3	mg/kg	2.2	1.0	5	06/14/22 08:05	06/21/22 11:59	7440-38-2			
Barium	152	mg/kg	43.4	2.6	5	06/14/22 08:05	06/21/22 11:59	7440-39-3			
Cadmium	12.0	mg/kg	0.54	0.062	5	06/14/22 08:05	06/21/22 11:59	7440-43-9			
Chromium	19.1	mg/kg	kg 2.2 0.88 5 06/14/22 08:05 06					9 7440-47-3			
Lead	534	mg/kg	1.1	0.56	5	06/14/22 08:05	06/21/22 11:59	7439-92-1			
Selenium	<2.2	mg/kg	2.2	1.3	5	06/14/22 08:05	06/21/22 11:59	7782-49-2			
Silver	2.4	mg/kg	2.2	0.27	5	06/14/22 08:05	06/21/22 11:59	7440-22-4			
7471 Mercury	Analytical	Method: EPA	A 7471B Prepa	aration Met	nod: El	PA 7471B					
	Pace Anal	ytical Service	es - Melville								
Mercury	0.65	mg/kg	0.037	0.024	1	06/14/22 14:03	06/16/22 10:30	7439-97-6			
Percent Moisture	Analytical	Method: AS	ΓM D2216-05M	1							
	Pace Analytical Services - Melville										
Percent Moisture	4.6	%	0.10	0.10	1		06/15/22 15:37				

ANALYTICAL RESULTS

Project:

012208948 6/3

Pace Project No.:

70217802

Sample: 012208948-0013

Date: 06/21/2022 04:32 PM

Lab ID: 70217802006

Collected: 06/03/22 00:00 Received: 06/09/22 11:00 Matrix: Solid

		•	Report	, , , , , , , , , , , , , , , , , , , ,		ize and any diluti			
Parameters	Results	Results Units Limit MDL DF Prepa		Prepared	Analyzed	CAS No.	Qual		
6010D MET ICP	Analytical	Method: EPA	46010D Prep	aration Met	hod: E	PA 3050B			
	Pace Anal	ytical Service	es - Melville						
Arsenic	8.8	mg/kg	2.6	1.2	5	06/14/22 08:05	06/21/22 12:01	7440-38-2	
Barium	116	mg/kg	51.5	3.1	5	06/14/22 08:05	06/21/22 12:01	7440-39-3	
Cadmium	9.2	mg/kg	0.64	0.073	5	06/14/22 08:05	06/21/22 12:01	7440-43-9	
Chromium	11.8	mg/kg	2.6	1.0	5	06/14/22 08:05	06/21/22 12:01	7440-47-3	
Lead	561	mg/kg	1.3	0.66	5	06/14/22 08:05	06/21/22 12:01	7439-92-1	
Selenium	<2.6	mg/kg	2.6	1.5	5	06/14/22 08:05	06/21/22 12:01	7782-49-2	
Silver	<2.6	mg/kg	2.6	0.32	5	06/14/22 08:05	06/21/22 12:01	7440-22-4	
7471 Mercury	Analytical	Method: EPA	7471B Prep	aration Met	nod: E	PA 7471B			
	Pace Anal	ytical Service	es - Melville						
Mercury	1.5	mg/kg	0.036	0.023	1	06/14/22 14:03	06/16/22 10:31	7439-97-6	
Percent Moisture	Analytical	Method: AST	M D2216-05N	И					
	Pace Anal	ytical Service	es - Melville						
Percent Moisture	8.4	%	0.10	0.10	1		06/15/22 15:38		

ANALYTICAL RESULTS

Project:

012208948 6/3

Pace Project No.:

70217802

Sample: 012208948-0014

Date: 06/21/2022 04:32 PM

Lab ID: 70217802007

Collected: 06/03/22 00:00 Received: 06/09/22 11:00 Matrix: Solid

Results reported on a "dry weig	ht" basis and are	adjusted fo		sture, san	nple si	ze and any diluti	ons.				
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual		
6010D MET ICP	Analytical	Method: EPA	A 6010D Prepa	ration Met	hod: E	PA 3050B					
	Pace Anal	ytical Service	es - Melville								
Arsenic	5.4	mg/kg	2.3	1.1	5	06/14/22 08:05	06/21/22 12:08	7440-38-2			
Barium	<46.6	mg/kg	46.6	2.8	5	06/14/22 08:05	06/21/22 12:08	7440-39-3			
Cadmium	16.6	mg/kg	0.58	0.066	5	06/14/22 08:05	06/21/22 12:08	7440-43-9			
Chromium	9.3	9.3 mg/kg 2.3 0.94 5 06/14/22 08:05				06/21/22 12:08	8 7440-47-3				
Lead	653	553 mg/kg 1.2 0.60 5 06/				06/14/22 08:05	06/21/22 12:08	7439-92-1			
Selenium	<2.3	mg/kg	2.3	1.4	5	06/14/22 08:05	06/21/22 12:08	7782-49-2			
Silver	3.1	mg/kg	2.3	0.29	5	06/14/22 08:05	06/21/22 12:08	7440-22-4			
7471 Mercury	Analytical	Method: EPA	7471B Prepa	ration Met	hod: El	PA 7471B					
	Pace Anal	ytical Service	es - Melville								
Mercury	0.49	mg/kg	0.038	0.024	1	06/14/22 14:03	06/16/22 10:33	7439-97-6			
Percent Moisture	Analytical	Method: AS	TM D2216-05M								
	Pace Anal	Pace Analytical Services - Melville									
Percent Moisture	4.6	%	0.10	0.10	1		06/15/22 15:38				

Project:

012208948 6/3

Pace Project No.:

70217802

QC Batch: QC Batch Method:

260663 EPA 7471B Analysis Method:

EPA 7471B

Analysis Description:

Matrix: Solid

7471 Mercury

Laboratory:

Pace Analytical Services - Melville

Associated Lab Samples:

70217802001, 70217802002, 70217802003, 70217802004

METHOD BLANK: 1316163 Associated Lab Samples:

70217802001, 70217802002, 70217802003, 70217802004

Blank Result Reporting

Units

Limit

MDL

Analyzed

Qualifiers

Mercury

mg/kg

< 0.039

0.039

0.025

06/15/22 14:32

LABORATORY CONTROL SAMPLE:

Parameter

Parameter

Parameter

Parameter

1316164

Spike Conc.

LCS Result

LCS % Rec % Rec Limits

Qualifiers

Mercury

Units mg/kg

0.19

0.040

0.31

90

MATRIX SPIKE SAMPLE:

1316165

Units

mg/kg

70217097004 Result

Spike Conc.

0.17

MS Result

MS % Rec

80-120

% Rec Limits

Qualifiers

SAMPLE DUPLICATE: 1316166

Date: 06/21/2022 04:32 PM

Units

70217097004 Result

Dup Result

RPD

Max RPD

137

Qualifiers

80-120 M1

Mercury

Mercury

mg/kg

0.040

< 0.040

0.2

20

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:

012208948 6/3

Pace Project No.:

70217802

QC Batch:

260665

Analysis Method:

EPA 7471B

QC Batch Method:

EPA 7471B

Analysis Description:

7471 Mercury

Laboratory:

Pace Analytical Services - Melville

Associated Lab Samples:

70217802005, 70217802006, 70217802007

METHOD BLANK:

1316168

Matrix: Solid

Associated Lab Samples:

70217802005, 70217802006, 70217802007

Units

mg/kg

Parameter

Bla

Blank Result Reporting Limit

MDL

99

1.4

0.024

Analyzed

Qualifiers

Mercury

< 0.037

0.037

06/16/22 10:19

LABORATORY CONTROL SAMPLE:

Parameter

Parameter

Parameter

1316169

Spike Conc. LCS Result LCS % Rec % Rec Limits

Qualifiers

Mercury

Units mg/kg

Units

mg/kg

0.2

0.20

0.64

80-120

MATRIX SPIKE SAMPLE:

1316170

70217629001

Result

Spike

Conc.

0.46

MS Result MS % Rec % Rec Limits

Qualifiers

SAMPLE DUPLICATE:

Date: 06/21/2022 04:32 PM

1316171

70217629001 Result Dup Result

DDI

Max RPD

164

20

Qualifiers

80-120 M1

Mercury

Mercury

Units mg/kg

0.64

Resui

0.68

RPD

____F

6

Qualifie

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:

012208948 6/3

Pace Project No.:

70217802

QC Batch:

260553

Analysis Method:

EPA 6010D

QC Batch Method:

EPA 3050B

Analysis Description:

Matrix: Solid

6010D MET

Associated Lab Samples:

Laboratory:

Pace Analytical Services - Melville

70217802001, 70217802002, 70217802003, 70217802004, 70217802005, 70217802006, 70217802007

METHOD BLANK: 1315547

Associated Lab Samples:

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Arsenic	mg/kg	<0.49	0.49	0.23	06/21/22 11:45	
Barium	mg/kg	<9.7	9.7	0.59	06/21/22 11:45	
Cadmium	mg/kg	< 0.12	0.12	0.014	06/21/22 11:45	
Chromium	mg/kg	< 0.49	0.49	0.20	06/21/22 11:45	
Lead	mg/kg	< 0.24	0.24	0.13	06/21/22 11:45	
Selenium	mg/kg	< 0.49	0.49	0.29	06/21/22 11:45	
Silver	mg/kg	< 0.49	0.49	0.060	06/21/22 11:45	

LABORATORY CONTROL SAMPLE:	1315548					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic	mg/kg	109	82.9	76	75-106	
Barium	mg/kg	364	316	87	77-110	
Cadmium	mg/kg	48.7	42.5	87	75-106	
Chromium	mg/kg	173	151	87	76-110	
Lead	mg/kg	101	88.9	88	81-115	
Selenium	mg/kg	104	86.9	84	71-110	a .
Silver	mg/kg	29.9	24.2	81	75-113	

MATRIX SPIKE SAMPLE:	1315550						
		70217924003	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic	mg/kg	5.9	31.8	41.3	111	75-125	
Barium	mg/kg	124	31.8	178	171	75-125	M1
Cadmium	mg/kg	0.28J	31.8	37.8	118	75-125	
Chromium	mg/kg	24.3	31.8	62.3	120	75-125	
Lead	mg/kg	8.4	31.8	48.3	125	75-125	
Selenium	mg/kg	<2.2	31.8	36.9	111	75-125	
Silver	mg/kg	1.4J	15.9	17.3	100	75-125	

SAMPLE DUPLICATE: 1315549		70217924003	Dup		Max	
Parameter	Units Result		Result	RPD	RPD	Qualifiers
Arsenic	mg/kg	5.9	<3.8		20	
Barium	mg/kg	124	117	6	20	
Cadmium	mg/kg	0.28J	< 0.96		20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

012208948 6/3

Pace Project No.: 70217802

SAMPLE DUPLICATE:

Date: 06/21/2022 04:32 PM

4	2	a	_	-	-

		70217924003	Dup		Max		
Parameter	Units	Result	Result	RPD	RPD	Qualifiers	
Chromium	mg/kg	24.3	24.7	1	20		
Lead	mg/kg	8.4	9.2	9	20		
Selenium	mg/kg	<2.2	<3.8		20		
Silver	mg/kg	1.4J	<3.8		20		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:

012208948 6/3

Pace Project No.:

QC Batch Method:

70217802

QC Batch:

260784

ASTM D2216-05M

Analysis Method:

ASTM D2216-05M

Analysis Description:

Dry Weight/Percent Moisture

Laboratory:

Pace Analytical Services - Melville

Associated Lab Samples: 70217802001, 70217802002, 70217802003, 70217802004, 70217802005, 70217802006, 70217802007

SAMPLE DUPLICATE: 1316818

Date: 06/21/2022 04:32 PM

		70218167001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Percent Moisture	%	29.3	26.7	9	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project:

012208948 6/3

Pace Project No.:

70217802

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 06/21/2022 04:32 PM

M1

Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:

012208948 6/3

Pace Project No.:

Date: 06/21/2022 04:32 PM

70217802

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
70217802001	012208948-0008	EPA 3050B	260553	EPA 6010D	260619
70217802002	012208948-0009	EPA 3050B	260553	EPA 6010D	260619
70217802003	012208948-0010	EPA 3050B	260553	EPA 6010D	260619
70217802004	012208948-0011	EPA 3050B	260553	EPA 6010D	260619
70217802005	012208948-0012	EPA 3050B	260553	EPA 6010D	260619
70217802006	012208948-0013	EPA 3050B	260553	EPA 6010D	260619
70217802007	012208948-0014	EPA 3050B	260553	EPA 6010D	260619
70217802001	012208948-0008	EPA 7471B	260663	EPA 7471B	260688
70217802002	012208948-0009	EPA 7471B	260663	EPA 7471B	260688
70217802003	012208948-0010	EPA 7471B	260663	EPA 7471B	260688
70217802004	012208948-0011	EPA 7471B	260663	EPA 7471B	260688
70217802005	012208948-0012	EPA 7471B	260665	EPA 7471B	260689
70217802006	012208948-0013	EPA 7471B	260665	EPA 7471B	260689
70217802007	012208948-0014	EPA 7471B	260665	EPA 7471B	260689
70217802001	012208948-0008	ASTM D2216-05M	260784		
70217802002	012208948-0009	ASTM D2216-05M	260784		
70217802003	012208948-0010	ASTM D2216-05M	260784		
70217802004	012208948-0011	ASTM D2216-05M	260784		
70217802005	012208948-0012	ASTM D2216-05M	260784		
70217802006	012208948-0013	ASTM D2216-05M	260784		
70217802007	012208948-0014	ASTM D2216-05M	260784		

EMSL Project # 012208948 Account Rep: CHUE80 Indicate State where samples were collected: NY			Dund Time - 10 Business Days	DITE 6		race-Long Island	575 Broadhollow Koad Melville, NY 11747			nipment: 6/6/22	List Method and Test Needed		RCRA 8 metals	X	×	×	×	X	X	×	A STATE Motors	Condition (voica		「口供・アロシュフロロン		100 July 100
of S.			Philorogen	E (4.1 AR44)				PROJECT NAME		Date of Sample Shipment: 6/6/22	Sampling		TIME	6/3	6/3	6/3	6/3	6/3	6/3	6/3		Date & Time Received	11:00	☐4. Disk Deliverable ☐5. Other	nd Ag)	
Chain of Custody / Analysis Request Form Print ALL Information. Incomplete chain of custody could result in the delay of analysis.				¥				18077	Fax: 856-854-2362		Preservative		ICE Na2S2O3 HNO3									Agency	Dec 4		s, Ba, Cd, Cr, Pb, Hg, Se and Ag	
Custody / Analy L Information.	OICE TO:			Analytical, Inc.	0 Route 130 North		minson	Zip: 08077		# of Samples in Shipment:1	Matrix		OTHER SLUDGE AIR SOIL	×	×	×	×	×	×	×		Received By Signature		C 3. Reduced Deliverables	As, Ba, Cd, Cr	
Chain of C Print ALI custody co	SEND INV	Namo. DO#.	Company	EMSL A		Audices. 20	City: Cinnaminson	State: NJ	Tel: 800-220-3675				WASTE WATER									Delivery Method	FedEx	☐2. Results and QC	A 8 metals (
b Service vJ 08077 6-5974		, DOM.	FO#:		,				Fax: 856-854-2362	om			Client Comp									Date & Time Deliv Released	6/6/22	ents: 11. Results Only	Please analyze for RCRA 8 metals (A	
EMSL Analytical, Inc. Environmental Chemistry Lab Service 200 Route 130 North, Cinnamisson, NJ 08077 TEL: (856) 858-4800 FAX: (856) 786-5974	OF DE DECIN TO TO.		ebbie Kreider	Company EAACI Analytical Inc	M. Alialy ucal, 120 M. att	Address: 200 Koute 150 North	City: Cinnaminson	Ctoto: N.1 Zip: 08077	03-2548 ext. 2548	0 7	Sampled by: (Signature)	0	Lab Sampie Number C	012208948-0008	012208948-0009	0100-848-0010	012208948-0011	012208948-0012	012208948-0013	012208948-0014		Released By Signature	Youn Politinal was	Please indicate reporting requirements: 11. Results Only	© mments: Please ana	
EME Envir 200 Re TEL: (DED	NE	Nam	Company	TINE I	Addr	City:	State	Tol	Em.	Sam)		,	2.	6	4	i,	6.	7.	96	Relea	3	Please	Page 21 of	22

95 /	Sa	ample	Conditio	on Upon Rece	LIO#: 70217802
/ Pace Analytical	Client N	Inma.		Projec	Due Date: 06/16/22
	Chencis	MS	/	riojec	FII. Bini
Couries to End Even Line In Liene Incline	Comm	orgial [ace Othe	31	CLIENT: EMSL-NJ
Courier: Fed Ex UPS USPS Client Tracking #: 2741 0376	574		ace Dine	.1	1
Custody Seal on Cooler/Box Present: Ne			tact. Myo	S No NA	Temperature Blank Present: ☐Yes No
Packing Material: Bubble Wrap Bubble					Type of Ice: Wet Blue Mone
-					
Thermometer Used: TH891 TH189			: + O.1		Samples on ice, cooling process has begun Date/Time 5035A kits placed in freezer
Cooler Temperature(°C):	Cooler	remperati	HE COLLECT	eu(c): 10, 2	pate/ time 50554 kits placed in Heezer
Temp should be above freezing to 6.0°C USDA Regulated Soil [\sum N/A, water sample)			Date and Initials of	person examining contents: AD 6/10/22
Did samples originate in a quarantine zone wi	ithin the U	Inited State	e AL AR CA		
NM, NY, OK, DR, SC, TN, TX, or VA [check map]?		s DNo	so, ric, ric, or	, 1 2, 0.1, 10, 0 4, 110, 110,	including Hawaii and Puerto Rico)? Tyes X No
If Yes to either question, fill out a Regulate			. (((((((((((((((((((nd include with SCUE	
1 Too to Entier question, thi but a Regulati	50 300 60	icomar (i	LI 0 010) 0	T	COMMENTS:
Chain of Custody Present:	Æ/Yes	□No		1	OOT ILITIE.
Chain of Custody Filled Out:	∠EYes			2.	
Chain of Custody Relinquished:	∠ Yes			3.	
Sampler Name & Signature on COC:	eryes		□N/A	4.	
Samples Arrived within Hold Time:	ElYes		LIN/A	5.	
		ØNo_		6.	
Short Hold Time Analysis (<72hr): Rush Turn Around Time Requested:	□Yes	-ENO		7.	
Sufficient Volume: (Triple volume provided for	□Yes			8.	
Correct Containers Used:	EVes .			9.	
-Pace Containers Used:				3.	
	□Yes	***************************************		10.	
Containers Intact:	ØYes □	□No	DN/A		ediment is visible in the dissolved container.
Filtered volume received for Dissolved tests	□Yes	□No	LAN/A	12.	ediment is visible in the dissolved container.
Sample Labels match COC:	.⊠Yes	□No		14	
-Includes date/time/ID, Matrix: SL WT		- Ma	DN/A	13. □ HNO ₃	□ H ₂ SO ₄ □ NaOH □ HCI
All containers needing preservation have beel checked?	u Dies	□No	LIN/A	15. [] 11103	Engova Endon Endo
pH paper Lot #					
All containers needing preservation are found	to be			Sample #	
in compliance with method recommendation					*
(HNO ₃ , H ₂ SO ₄ , HCl, NaOH>9 Sulfide,	□Yes	□No	ON/A		*
NAOH>12 Cyanide)					
Exceptions: VOA, Coliform, TOC/OOC, Oil and G	rease				
DRO/8015 (water).	10000,			Initial when complet	ted: Lot # of added Date/Time preservative
Per Method, VOA pH is checked after analysis					preservative: added:
Samples checked for dechlorination:	□Yes	□No	⊠N/A	14.	The state of the s
KI starch test strips Lot #	_,00	1			
Residual chlorine strips Lot #				Positive fo	r Res. Chlorine? Y N
SM 4500 CN samples checked for sulfide?	□Yes	□No	ÓN/A	15.	
Lead Acetate Strips Lot #	L100	22710	7 2	Positive fo	r Sulfide? Y N
Headspace in VOA Vials (>6mm):	□Yes	□No	ON/A	16.	
Trip Blank Present:	□Yes	□No	PN/A	17.	
Trip Blank Custody Seals Present	□Yes	□No	DN/A		
Pace Trip Blank Lot # (if applicable):			7		
Client Notification/ Resolution:				Field Data Required?	? Y / N
Person Contacted:				Date/Tin	
Comments/ Resolution:				merensons and the second	
		·····			

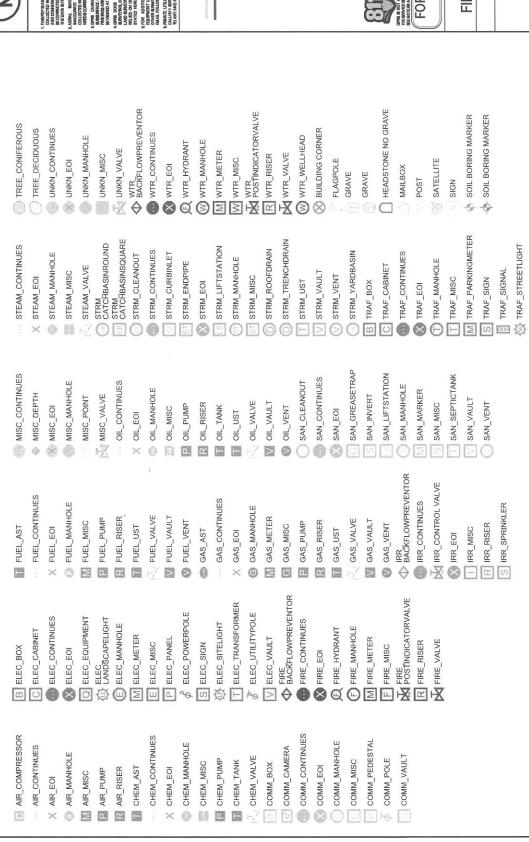
^{*} PM [Project Manager] review is documented electronically in LIMS.

If you have any questions regarding this report, please feel free to call our office.

Sincerely,

Joe Nanno

Project Manager


Churchill Environmental, Inc.

APPENDIX B GPRS – UTILITY LOCATIONS

PHASE II ENVIRONMENTAL SITE ASSESSMENT REPORT

Fig Tree Properties, LLC 301 Wolf Street & 1920 Park Street Syracuse, New York September 2022

APPENDIX C SUBSURFACE LOGS

PHASE II ENVIRONMENTAL SITE ASSESSMENT REPORT

Fig Tree Properties, LLC 301 Wolf Street & 1920 Park Street Syracuse, New York September 2022

PROJECT NUMBER 0000
PROJECT NAME Soil Boring Investigation
CLIENT Fig Tree Properties
ADDRESS 1920 Park Street/301 Wolf Street

DRILLING DATE 8/22/22-8/23/22 TOTAL DEPTH 12' DIAMETER 3" CASING NA SCREEN NA

COORDINATES 43.071735, -76.1649614
COORD SYS COMPLETION 8/23/22
SURFACE ELEVATION 380 Feet above sea level
WELL TOC NA

COMMENTS In front of building on Park Street

PID	Samples	Analysed	% Recovery	Depth (ft)	Graphic Log	Moisture	Material Description	
				-		D	ASPHALT: Hard	
				_ _1 			light brown SILTY SAND loose, dry	
0.0				-2 - - - - 3 -			Misc Hard Fill	
				- - - - 5		D	light gray SILT, dense, dry	
0.0				-6 - - -7				
				-8 - - - 9 -		D	light gray SILT, dense, dry	
0.0	VOC's and SVOC's			10				
	//SVOC's			- 12 - - - - - 13			Termination Depth at:12 ft	

PROJECT NUMBER 0000
PROJECT NAME Soil Boring Investigation
CLIENT Fig Tree Properties
ADDRESS 1920 Park Street/301 Wolf Street
LICENCE NO.

DRILLING DATE 8/22/22-8/23/22 TOTAL DEPTH 12' DIAMETER 3" CASING NA SCREEN NA

COORDINATES 43.071735, -76.1649614
COORD SYS COMPLETION 8/23/22
SURFACE ELEVATION 380 Feet above sea level
WELL TOC NA

COMMENTS In front of building on Park Street

Material Description Material Description Material Description Asphalt: Hard light brown Siltry SanD and m GRAVEL locse, dry Misc Hard Fill Misc Hard Fill D light gray Silt, dense, dry 1 1 1 1 1 1 1 1 1 1 1 1 1	0.0 Metals, PCB's \ \frac{\text{\tint{\text{\ti}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}								—
Ilight brown SILTY SAND and m GRAVEL loose, dry Misc Hard Fill A Bight gray SILT, dense, dry D Ilight gray SILT, dense, dry Bight gray SILT, dense, dry D D D D D D D D D D D D D	Right brown Sil.TY SAND and m GRAVEL A	PID	Analysed	% Recovery	Depth (ft)	Graphic Log	Moisture	Material Description	
0.0 Metals, PCB's M - 4 - 4 - 5 - 7 - 7 - 7 - 7 - 7 - 7 - 7	0.0 Metals, PCB's Misc Hard Fill D light gray SiLT, dense, dry 8 D light gray SiLT, dense, dry 8 D light gray SiLT, dense, dry 10 VOC's Misc Hard Fill Termination Depth at:12 ft				- - - - 1 -		D	light brown SILTY SAND and m GRAVEL	
0.0 light gray SIL1, dense, dry D light gray SIL1, dense, dry D light gray SILT, dense, dry	0.0 D light gray SIL1, dense, dry		JM.					Misc Hard Fill	
0.0 D light gray SILT, dense, dry	0.0 D light gray SILT, dense, dry						D	light gray SILT, dense, dry	
0.0	0.0 Voc's Termination Depth at:12 ft	0.0					D	light gray SILT, dense, dry	
	/voc's // Termination Depth at:12 ft	0.0			10				

PROJECT NUMBER 0000
PROJECT NAME Soil Boring Investigation
CLIENT Fig Tree Properties
ADDRESS 1920 Park Street/301 Wolf Street
LICENCE NO.

DRILLING DATE 8/22/22-8/23/22 TOTAL DEPTH 12' DIAMETER 3" CASING NA SCREEN NA COORDINATES 43.071735, -76.1649614
COORD SYS COMPLETION 8/23/22
SURFACE ELEVATION 380 Feet above sea level
WELL TOC NA

COMMENTS In front of building on Park Street

							СН	ECKE
PID	Samples	Analysed	% Recovery	Depth (ft)	Graphic Log	Moisture	Material Description	
				-		D	ASPHALT: Hard	
0.0				-1 -2 - -3			light brown SILTY SAND loose, dry Misc Hard Fill	
				5		D	light gray SILT, dense, dry	
0.0				-7 -7 8		D	light brown SILT, dense, dry	
0.0				- -9 - - - - -10				
voc's	and 's	M		- 11 - - - - - - 12 -			Termination Depth at:12 ft	
Disclaimer 1	This bore log	g is int	ended	- 13 - 13 d for e	nvironme	ental r	not geotechnical purposes.	

PROJECT NUMBER 0000
PROJECT NAME Soil Boring Investigation
CLIENT Fig Tree Properties
ADDRESS 1920 Park Street/301 Wolf Street
LICENCE NO.

DRILLING DATE 8/22/22-8/23/22 TOTAL DEPTH 12' DIAMETER 3" CASING NA SCREEN NA COORDINATES 43.071735, -76.1649614
COORD SYS COMPLETION 8/23/22
SURFACE ELEVATION 380 Feet above sea level
WELL TOC NA

COMMENTS behind building

							CH	- Rob Nigolian
PID	Samples	Analysed	% Recovery	Depth (ft)	Graphic Log	Moisture	Material Description	
0.0	<u>/</u> Metals	M		-1 -2 -3 -4 -4		×	light brown SILTY SAND loose, wet Misc Hard Fill	
0.0				-5 6 7 8		D	light brown SILT, dense, dry	
0.0	Aug.	M		-8 9 10 11		D	light gray SILT, dense, dry	
Diesi	/VOC's		londs	12 - 13	nviror -	ponta!	Termination Depth at:12 ft	
DISC	iaimer This bore log	is in	tende	a for e	nvironn	iental	not geotechnical purposes.	Pag

PROJECT NUMBER 0000
PROJECT NAME Soil Boring Investigation CLIENT Fig Tree Properties
ADDRESS 1920 Park Street/301 Wolf Street LICENCE NO.

DRILLING DATE 8/22/22-8/23/22 TOTAL DEPTH 12' DIAMETER 3" CASING NA SCREEN NA

COORDINATES 43.071735, -76.1649614 COORD SYS -COMPLETION 8/23/22 SURFACE ELEVATION 380 Feet above sea level WELL TOC NA

COMMENTS behind building

				,				СН	ECKED BY ROD NIGOLIAN
PID	Samples	Analysed	% Recovery	Depth (ft)		Graphic Log	Moisture	Material Description	
0.0	/Metals	M		-1 -2 -3 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4			W	Flight brown SILTY SAND loose, wet	
0.0				-5 6 7 7 8	500	<u> </u>	D	light gray SILT, dense, dry	*
0.0		0		- 9 - 10 - 11			D	light gray SILT, dense, dry	
Disci	/VOC's, SVOC's	/Y\	tendes	12 - 13	nvis	opm	ental :	Termination Depth at:12 ft	Page
DISCI	anner This bore log	is in	rende	u for e	IIVIF	onm	entali	ioi georecinicai purposes.	Page

PROJECT NUMBER 0000
PROJECT NAME Soil Boring Investigation
CLIENT Fig Tree Properties
ADDRESS 1920 Park Street/301 Wolf Street
LICENCE NO.

DRILLING DATE 8/22/22-8/23/22 TOTAL DEPTH 12' DIAMETER 3" CASING NA SCREEN NA

COORDINATES 43.071735, -76.1649614 COORD SYS -COMPLETION 8/23/22 SURFACE ELEVATION 380 Feet above sea level WELL TOC NA

COMMENTS behind building

PID	Samples	Analysed	% Recovery	Depth (ft)	Graphic Log	Moisture	Material Description
				-1		W	light brown SiLTY SAND loose, wet
0.0	/Metals	M		-3 -3 -4			Misc Hard Fill
0.0				- 5 - 6 - 7		D	light brown SILT, dense, dry
				8		D	light gray SILT, dense, dry
0.0	/voc's	M		- 10 - 11 - 11			
	/vocs	/*\		- 12 13			Termination Depth at:12 ft
Disc	laimer This bore log	is in	itende	d for e	nvironm	ental	not geotechnical purposes.

PROJECT NUMBER 0000
PROJECT NAME Soil Boring Investigation
CLIENT Fig Tree Properties
ADDRESS 1920 Park Street/301 Wolf Street
LICENCE NO.

DRILLING DATE 8/22/22-8/23/22 TOTAL DEPTH 12' DIAMETER 3" CASING NA SCREEN NA COORDINATES 43.071735, -76.1649614
COORD SYS COMPLETION 8/23/22
SURFACE ELEVATION 380 Feet above sea level
WELL TOC NA

COMMENTS behind building

								CHECKED BY Rob Nigolian
PID	Samples	Analysed	% Recovery	Depth (ft)	Graphic Log	Moisture	Material Description	
0.0	√Metals, PCB's	M		-1-2-3-3-4-		×	Tight brown SILTY SAND and m GRAVEL loose, wet Misc Hard Fill	
0.0				-5 -6 -7 -8		D	light gray SILT, dense, dry	
0.0	/voc·s	M		9 - 10 - 11 - 11				
Disc			tende	- 13	pyirong	nontral .	Termination Depth at:12 ft	

PROJECT NUMBER 0000
PROJECT NAME Soil Boring Investigation
CLIENT Fig Tree Properties
ADDRESS 1920 Park Street/301 Wolf Street
LICENCE NO.

DRILLING DATE 8/22/22-8/23/22 TOTAL DEPTH 19' DIAMETER 3" CASING NA SCREEN NA COORDINATES 43.071735, -76.1649614
COORD SYS COMPLETION 8/23/22
SURFACE ELEVATION 380 Feet above sea level
WELL TOC NA

COMMENTS Behind building

LOGGED BY JS CHECKED BY Rob Nigolian

							Office
PID	Samples	Analysed	% Recovery	Depth (ft)	Graphic Log	Moisture	Material Description
0.0	/Metals, PCB's	M		1 2 3		W	light brown SILTY SAND and m GRAVEL loose, wet Misc Hard Fill
0.0				6		D	light brown SILT, dense, Dry
0.0				10			light gray SILT, dense, dry
				110 111 111 1111 1111 1111 1111 1111 1111 1111			light gray SILT, dense, dry
	/voc's, svoc's \	M		18			Termination Depth at:19 ft

Disclaimer This bore log is intended for environmental not geotechnical purposes. produced by ESlog.ESdat.net on 25 Aug 2022

Page 1 of 1

PROJECT NUMBER 0000
PROJECT NAME Soil Boring Investigation
CLIENT Fig Tree Properties
ADDRESS 1920 Park Street/301 Wolf Street
LICENCE NO.

DRILLING DATE 8/22/22-8/23/22 TOTAL DEPTH 16' DIAMETER 3" CASING NA SCREEN NA

COORDINATES 43.071735, -76.1649614
COORD SYS COMPLETION 8/23/22
SURFACE ELEVATION 380 Feet above sea level
WELL TOC NA

COMMENTS Behind building

LOGGED BY JS CHECKED BY Rob Nigolian

PID	Samples	Analysed	% Recovery	Depth (ft)	Graphic Log	Moisture	Material Description
0.0	/Metals \	M		-1 -2 -3 -4 -		W	light brown SILTY SAND and m GRAVEL loose, wet Misc Hard Fill
0.0				-5 -6 -7 -7		D	light brown SILT, dense, dry
0.0				- 8 - 9 - 10 - 11		М	light brown SILT, loose, moist
0.0	Avora suggi			- 12 - 13 - 14 - 15		D	light gray SILT, dense, dry
	VOC's, SVOC's	/ Υ\		16 -		D	Termination Depth at:16 ft

Disclaimer This bore log is intended for environmental not geotechnical purposes. produced by ESlog,ESdat.net on 25 Aug 2022

PROJECT NUMBER 0000
PROJECT NAME Soil Boring Investigation
CLIENT Fig Tree Properties
ADDRESS 1920 Park Street/301 Wolf Street
LICENCE NO.

DRILLING DATE 8/22/22-8/23/22 TOTAL DEPTH 16' DIAMETER 3" CASING NA SCREEN NA COORDINATES 43.071735, -76.1649614
COORD SYS COMPLETION 8/23/22
SURFACE ELEVATION 380 Feet above sea level
WELL TOC NA

COMMENTS Behind building

PID	Samples	Analysed	% Recovery	Depth (ft)	Graphic Log		Material Description
0.0	/Metals, PCB's	M		-1 -2 -3	V		light brown SILTY SAND and m GRAVEL loose, wet Misc Hard Fill
0.0				6	D		light brown SILT, dense, Dry
0.0				-8 -9 -10 -11	D		light gray SILT, dense, Dry
	/voc's	M		- 12 - 13 - 14 - 15			light gray SILT, dense, dry
-	/VOC's	/Y\		16		-	Termination Depth at:16 ft

APPENDIX D LABORATORY ANALYTICAL REPORT

PHASE II ENVIRONMENTAL SITE ASSESSMENT REPORT

Fig Tree Properties, LLC 301 Wolf Street & 1920 Park Street Syracuse, New York September 2022

September 14, 2022

Mr. Robert Nigolian Earth Systems Environmental Engineering 6700 Old Collamer Road Suite 112 East Syracuse, NY 13057

Project: Fig Tree Properties, LLC

Pace Project No.: 30517559

Dear Mr. Nigolian:

Enclosed are the analytical results for sample(s) received by the laboratory on August 27, 2022. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- · Pace Analytical Services Long Island
- · Pace Analytical Services Greensburg

If you have any questions concerning this report, please feel free to contact me.

Amber D. Carr

amber.carr@pacelabs.com

Amber D. Can

(724)850-5600

Project Manager

Enclosures

