TABLE OF CONTENTS

Brownfield Cleanup Program Application East Adams Redevelopment – Phase Three Area Syracuse, New York

Brownfield Cleanup Program Application

Attachment A – Section I – Property Information

Attachment B – Section II – Project Description

Attachment C – Section III – Ecological Concerns

Attachment D – Section IV – Land Use Factors

Attachment E – Section V – Current and Historical Owner and Operator Information

Attachment F – Section VI – Property's Environmental History

Attachment G – Section VII – Requestor Information

Attachment H – Section X – Requestor Eligibility

Attachment I – Section XII – Site Contact List

Department of BROWNFIELD CLEANUP PROGRAM (BCP) Environmental APPLICATION FORM

SUBMITTAL INSTRUCTIONS:

- 1. Compile the application package in the following manner:
 - a. one file in non-fillable PDF which includes a Table of Contents, the application form, and supplemental information (excluding the previous environmental reports and work plans, if applicable);
 - b. one individual file (PDF) of each previous environmental report; and,
 - c. one file (PDF) of each work plan being submitted with the application, if applicable.
- 2. *OPTIONAL: Compress all files (PDFs) into one zipped/compressed folder
- 3. Submit the application to the Site Control Section either via NYSDEC dropbox or ground mail, as described below.

Please select only ONE submittal method – do NOT submit both via dropbox and ground mail.

- a. VIA SITE CONTROL DROPBOX:
 - Request an invitation to upload files to the Site Control submittal dropbox.
 - In the "Title" field, please include the following: "New BCP Application *Proposed Site Name*".
 - After uploading files, an automated email will be sent to the submitter's email address with a link to verify the status of the submission. Please do not send a separate email to confirm receipt.
 - Application packages submitted through third-party file transfer services will not be accepted.
- b. VIA GROUND MAIL:
 - Save the application file(s) and cover letter to an external storage device (e.g., thumb drive, flash drive). Do NOT include paper copies of the application or attachments.
 - Mail the external storage device to the following address:

Chief, Site Control Section Division of Environmental Remediation 625 Broadway, 12th Floor Albany, NY 12233-7020

SITE NAME: East Adams Redevelopment - Phase Three Area						
Is this an application to amend an existing BCA with a major modification? Please refer to the application instructions for further guidance related to BCA amendments.						
	~	~				
If yes, provide existing site number:	O Yes	No				
Is this a revised submission of an incomplete application?						
	○ Voo	O No				
If yes, provide existing site number: <u>C734169</u>	Yes	O NO				

BROWNFIELD CLEANUP PROGRAM (BCP) APPLICATION FORM

BCP App Rev 16.1 – March 2025

SECT	ON I: Property Information	Inc	luded in Atta	achm	ent A	\			
PROP	OSED SITE NAME East A	Adams Rede	evelopme	ent ·	- Pł	nase ⁻	Three A	Area	
ADDR	ESS/LOCATION 200 Cha	avez Terrac	е						
CITY/	rown Syracuse				ZIP	CODE 1	3202		
MUNIC	CIPALITY (LIST ALL IF MORE	E THAN ONE) Sy	racuse	•					
COUN	™Onondaga				SITE	E SIZE (A	CRES)3.	.1	
LATIT	UDE		LONGITUD	E					
	0 ("		0					"
43	02	27.4	-76		08		48.7		
Provide tax map information for all tax parcels included within the proposed site boundary below. If a portion of any lot is to be included, please indicate as such by inserting "p/o" in front of the lot number in the appropriate box below, and only include the acreage for that portion of the tax parcel in the corresponding acreage column. ATTACH REQUIRED TAX MAPS PER THE APPLICATION INSTRUCTIONS.							ne ponding		
	Parcel Add	dress		Sect	ion	Block	Lot	Acrea	age
	200 Chavez	Terrace		095		80	p/o 01.0	3.	1
									_
1.	Do the proposed site boundaring in no, please attach an accurate description.						bounds	Y C	N
2.	Is the required property map (Application will not be proce	-		nclude	ed wi	th the app	olication?	•	0
3.	Is the property within a design 21(b)(6)? (See <u>DEC's websit</u> . If yes, identify census tract: <u>Percentage</u> of property in En	<u>te</u> for more informa 42	tion)	_				00/	0
	Percentage of property in En	i-zone (check one).	. 0% (1-4	9% (<u> </u>	1% 100	J%	
4.	Is the project located within a See application instructions f	_	•					•	
5.	Is the project located within a Area (BOA)? See application	•	,		,	ownfield	Opportunit	y C	•
6.	Is this application one of mul development spans more that If yes, identify names of propapplications:	an 25 acres (see ad	dditional crite	ria in	applio	cation ins	tructions)?		

SECTI	ON I: Property Information (continued)	Included in Attachment A		Y	N			
7.	Is the contamination from groundwater or soil the site subject to the present application?	I vapor solely emanating from	property other than	\bigcirc	•			
8.	Has the property previously been remediated Title 5 of ECL Article 56, or Article 12 of Naviol If yes, attach relevant supporting documentate	gation Law?	of ECL Article 27,	0	•			
9.	9. Are there any lands under water?							
10	If yes, these lands should be clearly delineated on the site map. 10. Has the property been the subject of or included in a previous BCP application?							
	If yes, please provide the DEC site number: _			\cup	ledow			
11.	Is the site currently listed on the Registry of Ir 3, or 4) or identified as a Potential Site (Class If yes, please provide the DEC site number:		oosal Sites (Class 2,	0	•			
12.	Are there any easements or existing rights-of areas? If yes, identify each here and attach a		ediation in these	0	•			
	Easement/Right-of-Way Holder	<u>Description</u>						
13.	List of permits issued by the DEC or USEPA attach appropriate information):	relating to the proposed site (o	describe below or	0	•			
	Type Issuing Agency	<u>Description</u>						
14.	Property Description and Environmental Asse instructions for the proper format of each name Environmental Assessment narratives include	rative requested. Are the Prop	application erty Description and	•	0			
	Questions 15 through 17 below pertain ON	LY to proposed sites located	d within the five cou	untie	S			
	ising New York City. Is the Requestor seeking a determination tha	t the site is eligible for tangible	property tax	Υ	N			
	credits? If yes, Requestor must answer the Suppleme Property Credits Located in New York City Ol		0	0	0			
16.	Is the Requestor now, or will the Requestor in property is Upside Down?	n the future, seek a determinat	ion that the	\bigcirc	0			
17.	If you have answered YES to Question 16 ab the property, as of the date of application, pre property is not contaminated, included with the	epared under the hypothetical		0	0			
applica	If a tangible property tax credit determination nt may seek this determination at any time be mendment Application, except for sites seeking	efore issuance of a Certificate	of Completion by usi		ıe			
Reque	changes to Section I are required prior to a stor, must be submitted with the application of each Requestor:		page, initialed by ea	ich				

SECTION II: Project Description	Included in Att	achment B		
1. The project will be starting	at: • Investigation	Remediati	on	
If the project is proposed to start a (RIR) must be included, resulting in Remedial Action Work Plan (RAW Investigation and Remediation for	n a 30-day public comme P) are also included (see	nt period. If an Alternatives <u>DER-10, Technical Guida</u>	s Analysis and nee for Site	rt
2. If a final RIR is included, do	pes it meet the requirement		(2)?	
Yes	○ No	● N/A	_	
3. Have any draft work plans	been submitted with the a	pplication (select all that a	ipply)?	
RIWP	RAWP	☐ IRM	✓ No	
 Please provide a short des remedial program is to beg issued. Is this information attached 	in, and the date by which			
Beginning January 1, 2024, all wor Sustainable Remediation (GSR) are design documents will need to be	rk plans and reports subm nd DER-31 (see <u>DER-31,</u>	nitted for the BCP shall add Green Remediation). Wor		ıd
 Please provide a description incorporated throughout the Remedial Design/Remedian Is this information attached 	e remedial phases of the laction, and Site Manage	project including Remedial	I Investigation,	
If the project is proposed to screening or vulnerability a				ange
SECTION III: Ecological Concern	Included in Attac	hment C		
1. Are there fish, wildlife, or e	cological resources within	a ½-mile radius of the site	9? Y ●	N
Is there a potential path for resources?	contamination to potentia	ally impact fish, wildlife or e	ecological	•
3. Is/are there a/any Contami	nant(s) of Ecological Con	cern?	0	•
If any of the conditions above exist outlined in DER-10 Section 3.10.1 or as part of the Remedial Investig	, is required. The applicar		•	l
4. Is a Fish and Wildlife Reso	urces Impact Analysis Pa	rt I included with this appli	cation?	•

SECTION IV: Land Use Factors	Included in Att	tachment D				
1. What is the property's current municipal zoning designation? MX-2: Neighborhood Center District						
2. What uses are allowed by the	property's current zor	ning (select all that app	ly)?			
Residential Commercia	al 🚺 Industrial					
3. Current use (select all that app	ly):					
Residential 🗸 Commercia	al Industrial	Recreational	Vacant			
4. Please provide a summary of o	•		•	Υ	N	
identifying possible contaminar the date by which the site beca	•	erations or uses have o	ceased, provide			
Is this summary included with t	the application?					
Reasonably anticipated post-re	emediation use (chec	k all that apply):				
Residential Commercia	al Industrial					
If residential, does it qualify as			n/a O	\cup	\odot	
6. Please provide a statement de	tailing the specific pro	oposed post-remediation	n use.			
Is this summary attached? 7. Is the proposed post-remediati	on use a renewable e	energy facility?			$\frac{\circ}{\circ}$	
See application instructions for		•		$ \bigcirc $	\odot	
8. Do current and/or recent devel	opment patterns sup	port the proposed use?			\bigcirc	
Is the proposed use consistent Please provide a brief explana		•	Assany	(•)	\bigcirc	
10. Is the proposed use consistent						
local waterfront revitalization p	•	-		$oldsymbol{igo}$	\bigcirc	
Please provide a brief explana	tion. Include additiona	al documentation if nec	essary.			
SECTION V: Current and Historical	Property Owner and	d Operator Information	n Included in Atta	chmer	nt E	
CURRENT OWNER Syracuse Housing	Authority					
CONTACT NAME William J. Simmons						
ADDRESS 516 Burt Street						
CITY Syracuse		STATE New York	ZIP CODE 1320	2		
PHONE (315) 470-4216	EMAIL wsimmons@sy	yrhousing.org				
OWNERSHIP START DATE 10/27/198	6					
CURRENT OPERATOR Syracuse House	sing Authority					
CONTACT NAME Same as Current Own	ner					
ADDRESS						
CITY		STATE	ZIP CODE			
PHONE	EMAIL	1	1			
OPERATION START DATE						

SECTION VI: Property's Environmental History

Included in Attachment F

All applications **must include** an Investigation Report (per ECL 27-1407(1)). The report must be sufficient to establish that contamination of environmental media exists on the site above applicable Standards, Criteria and Guidance (SCGs) based on the reasonably anticipated use of the site property and that the site requires remediation. To the extent that existing information/studies/reports are available to the requestor, please attach the following (*please submit information requested in this section in electronic format ONLY*):

- 1. **Reports:** an example of an Investigation Report is a Phase II Environmental Site Assessment report prepared in accordance with the latest American Society for Testing and Materials standard (<u>ASTM E1903</u>). Please submit a separate electronic copy of each report in Portable Document Format (PDF). Please do NOT submit paper copies of ANY supporting documents.
- 2. SAMPLING DATA: Indicate (by selecting the options below) known contaminants and the media which are known to have been affected. Data summary tables should be included as an attachment, with laboratory reports referenced and included.

CONTAMINANT CATEGORY	SOIL	GROUNDWATER	SOIL GAS
Petroleum	✓		✓
Chlorinated Solvents			✓
Other VOCs			
SVOCs	✓		
Metals	✓	✓	
Pesticides			
PCBs			
PFAS			
1,4-dioxane			
Other – indicated below			

^{*}Please describe other known contaminants and the media affected:

- 3. For each impacted medium above, include a site drawing indicating:
 - Sample location
 - Date of sampling event
 - Key contaminants and concentration detected
 - For soil, highlight exceedances of reasonably anticipated use
 - For groundwater, highlight exceedances of 6 NYCRR part 703.5
 - For soil gas/soil vapor/indoor air, refer to the NYS Department of Health matrix and highlight exceedances that require mitigation

These drawings are to be representative of all data being relied upon to determine if the site requires remediation under the BCP. Drawings should be no larger than 11"x17" and should only be provided electronically. These drawings should be prepared in accordance with any guidance provided.

Are the requ	ired drawings inclu	ded	d with this application	?	● YE	S	ONO
4. Indicate Past Land Uses (check all that apply):							
Coal Ga	Manufacturing	✓	Manufacturing		Agricultural Co-Op		Dry Cleaner
Salvage	Yard		Bulk Plant		Pipeline	/	Service Station
Landfill			Tannery		Electroplating		Unknown

Other: Drilling company with a machine shop, polish shop, milling facility, coal bins, iron storage, oil shed, and petroleum bulk storage, a brick and glass forge shop, used car sales lot, artificial flower and decorations manufacturer, auto yard, and a junk house.

SECTION VII: Requestor Information		Included	in Attachment G			
NAME East Adams Phase III, L.P).					
ADDRESS 100 North Broadway,	Ste. 100					
CITY/TOWN St Louis			STATE MO	ZIP CODE 63102		
PHONE (314) 335-2926	EMAIL Ally	son.Carp	enter@McCorma	ckBaron.com		
					Υ	N
Is the requestor authorized to	conduct bu	siness in N	lew York State (NYS	S)?	•	0
2. If the requestor is a Corporation, LLC, LLP or other entity requiring authorization from the NYS DOS to conduct business in NYS, the requestor's name must appear, exactly as given above, in the NYS Department of State's Corporation & Business Entity Database. A print-out of entity information from the database must be submitted with this application to document that the requestor is authorized to conduct business in NYS. Is this attached?						0
If the requestor is an LLC, a I separate attachment. Is this a	attached?			N/A 🔍	0	0
 Individuals that will be certifying the requirements of Section of Remediation and Article 145 be certifying documents mee Documents that are not proceed. 	1.5 of <u>DER-1</u> of New York t these requi	0: Technic State Edu irements?	<u>cal Guidance for Site</u> Ication Law. Do all in	Investigation and Individuals that will	•	0

SECTION VIII: Requestor Contact Information						
REQUESTOR'S REPRESENTATIVE Allyson Carpenter						
ADDRESS 100 North Broadway, Ste. 100						
CITY St. Loius		STATEMO	ZIP CODE 63102			
PHONE (314) 335-2926	EMAIL Allyson.Carpenter@McCormackBaron.com					
REQUESTOR'S CONSULTANT (CO	NTACT NAME)Briar	n Gochenaur				
COMPANY Langan Engineering, Env	vironmental, Survey	ing, Landscape Archite	cture and Geology, D.P.C.			
ADDRESS 368 Ninth Avenue, 8th	Floor					
CITY New York		STATENY	ZIP CODE 10001			
PHONE (212) 479-5444	EMAIL bgochenau	ır@langan.com				
REQUESTOR'S ATTORNEY (CONTA	ACT NAME) Thoma	s F. Walsh				
COMPANY Barclay Damon, LLP						
ADDRESS 2000 Five Star Bank Pl	aza, 100 Chestnut	Street				
CITY Rochester		STATENY	ZIP CODE 14604			
PHONE 585-455-1474	EMAILTWalsh@b	EMAILTWalsh@barclaydamon.com				

SECTION IX: Program Fee							
Upon submission of an executed Brownfield Cleanup Agreement to the Department, the requestor is required to pay a non-refundable program fee of \$50,000. Requestors may apply for a fee waiver wis supporting documentation.							
		Υ	N				
Is the requestor applying for a fee waiver?		0	•				
If yes, appropriate documentation must be provided with the application. See application instructions for additional information.							
Is the appropriate documentation included with this application?	N/A	0	\bigcirc				

SECTION X: Requestor Eligibility	Included in Attachment H			
If answering "yes" to any of the following documentation as an attachment.	questions, please provide appr	opriate explanation and/or		
Are any enforcement actions per	nding against the requestor rega	ording this site?	Y	N •
Is the requestor subject to an exi of contamination at the site?	sting order for the investigation,	removal or remediation	Ŏ	<u>•</u>
 Is the requestor subject to an out Any questions regarding whether with the Spill Fund Administrator. 	r a party is subject to a spill clair		0	•
4. Has the requestor been determine in violation of (i) any provision of any regulation implementing Title or Federal government?	the ECL Article 27; (ii) any orde	r or determination; (iii)	0	•
Has the requestor previously been name, address, assigned DEC si information regarding the denied	ite number, the reason for denia		0	•
6. Has the requestor been found in intentionally tortious act involving of contaminants?			0	•
7. Has the requestor been convicted treating, disposing or transporting fraud, bribery, perjury, theft or off in Article 195 of the Penal Law) u	g or contaminants; or (ii) that inv fense against public administrat	volved a violent felony, ion (as that term is used	0	•
8. Has the requestor knowingly fals within the jurisdiction of DEC, or statement in connection with any	submitted a false statement or r	made use of a false	0	•
9. Is the requestor an individual or e committed an act or failed to act, denial of a BCP application?	entity of the type set forth in ECI	_ 27-1407.9(f) that	0	•
10. Was the requestor's participation terminated by DEC or by a court order?			0	•
11. Are there any unregistered bulk s	storage tanks on-site which requ	uire registration?	\bigcirc	•

SECTION	X: Rec	uestor	Eliaibility	, ((continued)	
0_00.1	71. 1100	accto.	9		(oontinaoa)	4

Included in Attachment H

12. The requestor must certify that he/she/they is/are either a participant or volunteer in accordance with ECL 27-1405(1) by checking one of the boxes below:

PARTICIPANT

A requestor who either (1) was the owner of the siteat the time of the disposal of hazardous waste or discharge of petroleum, or (2) is otherwise a person responsible for the contamination, unless the liability arises solely as a result of ownership, operation of, or involvement with the site subsequent to the disposal of hazardous waste or discharge of petroleum.

VOLUNTEER

A requestor other than a participant, including a requestor whose liability arises solely as a result of ownership, operation of or involvement with the site subsequent to the disposal of hazardous waste or discharge of petroleum.

NOTE: By selecting this option, a requestor whose liability arises solely as a result of ownership, operation of or involvement with the site certifies that he/she has exercised appropriate care with respect to the hazardous waste found at the facility by taking reasonable steps to: (i) stop any continuing discharge; (ii) prevent any threatened future release; and, (iii) prevent or limit human, environmental or natural resource exposure to any previously released hazardous waste.

If a requestor whose liability arises solely as a result of ownership, operation of, or involvement with the site, submit a statement describing why you should be considered a volunteer – be specific as to the appropriate care taken.

13. If the requestor is volunteer attache	s a volunteer, is a stat ed?	ement de	escribing why the r	equestor	should be o	considered a
Yes	No	○N/A				
14. Requestor relation	nship to the property	(check o	ne; if multiple appl	icants, ch	eck all that	apply):
Previous Owner	Current Owner	Pot	ential/Future Purc	haser	✔ Other:	Developer
If the requestor is not the provided. Proof must sh throughout the BCP proj	now that the requestor	will have	e access to the pro	perty befo	ore signing	the BCA and
Is this proof attac	ched?	Yes	No	\bigcirc I	N/A	
Note: A purchase contra	act or lease agreemer	it does no	ot suffice as proof	of site acc	cess.	

SECTI	ON XI: Property Eligibility Information							
1.	Is/was the property, or any portion of the property, listed on the National Priorities List? If yes, please provide additional information.	Y	N					
	ii yee, predee previde additional illimentialieni							
2.	Is/was the property, or any portion of the property, listed on the NYS Registry of Inactive Hazardous Waste Disposal Site pursuant to ECL 27-1305?							
	If yes, please provide the DEC site number: Class:							
3.	Is/was the property subject to a permit under ECL Article 27, Title 9, other than an Interim Status facility?	0	•					
	If yes, please provide: Permit Type: EPA ID Number:							
	LI A ID Number.							
	Date Permit Issued: Permit Expiration Date:							
4.	If the answer to question 2 or 3 above is YES, is the site owned by a volunteer as defined under ECL 27-1405(1)(b), or under contract to be transferred to a volunteer?							
	If yes, attach any available information related to previous owners or operators of the facility or property and their financial viability, including any bankruptcy filings and							
	corporate dissolution documents.							
	N/A •	\bigcirc	\cup					
5.	Is the property subject to a cleanup order under Navigation Law Article 12 or ECL Article 17 Title 10?	\bigcirc	•					
	If yes, please provide the order number:							
6.	Is the property subject to a state or federal enforcement action related to hazardous waste							
	or petroleum?							
	If yes, please provide additional information as an attachment.							

SECTION XII: Site Contact List

Included in Attachment I

To be considered complete, the application must include the Brownfield Site Contact List in accordance with *DER-23: Citizen Participation Handbook for Remedial Programs*. Please attach, at a minimum, the names and mailing addresses of the following:

- The chief executive officer and planning board chairperson of each county, city, town and village in which the property is located.
- Residents, owners, and occupants of the property and adjacent properties.
- Local news media from which the community typically obtains information.
- The public water supplier which services the area in which the property is located.
- Any person who has requested to be placed on the contact list.
- The administrator of any school or day care facility located on or near the property.
- The location of a document repository for the project (e.g., local library). If the site is located in a city with a population of one million or more, add the appropriate community board as an additional document repository. In addition, attach a copy of an acknowledgement from each repository indicating that it agrees to act as the document repository for the site.
- For sites located in the five counties comprising New York City, the Director of the Mayor's Office of Environmental Remediation.

SECTION XII: Statement of Certif	ication and Signat	ures
(By requestor who is an individual)		
Agreement (BCA) within 60 days of set forth in the <u>DER-32</u> , <u>Brownfield</u> of a conflict between the general te BCA, the terms in the site-specific I this form and its attachments is true	f the date of DEC's a Cleanup Program A rms and conditions BCA shall control. Fi and complete to the	and agree: (1) to execute a Brownfield Cleanup approval letter; (2) to the general terms and conditions applications and Agreements; and (3) that in the event of participation and terms contained in a site-specific arther, I hereby affirm that information provided on the best of my knowledge and belief. I am aware that ass A misdemeanor pursuant to section 210.45 of the
Date:	Signature:	
Print Name:		
I hereby affirm that I amGP, Inc., the am authorized by that entity to mak and all subsequent documents; that direction. If this application is appropriate Cleanup Agreement (BCA) within 6 conditions set forth in the _DER-32, in the event of a conflict between the site-specific BCA, the terms in the sprovided on this form and its attach	nt of East Adams Phase 3 General Partner (title te this application and the this application was breed, I hereby acknowled days of the date of the december o	e) of (entity); that I d execute a Brownfield Cleanup Agreement (BCA) is prepared by me or under my supervision and wledge and agree: (1) to execute a Brownfield if DEC's approval letter; (2) to the general terms and *Program Applications and Agreements*; and (3) that it conditions of participation and terms contained in a sall control. Further, I hereby affirm that information implete to the best of my knowledge and belief. I am the ble as a Class A misdemeanor pursuant to section
Date:09/09/2025	Signature:	Mulila
Print Name: Michael Saunders		

PLEASE REFER TO THE APPLICATION COVER PAGE AND BCP APPLICATION INSTRUCTIONS FOR DETAILS OF PAPERLESS DIGITAL SUBMISSION REQUIREMENTS.

FOR SITES SEEKING TANGIBLE PROPERTY CREDITS IN NEW YORK CITY ONLY

Sufficient information to demonstrate that the site meets one or more of the criteria identified in ECL 27-1407(1-a) must be submitted if requestor is seeking this determination.

BCP App Rev 16.1

•	the questions below and provide additional information and/or required. Please refer to the application instructions.	Υ	N
1. Is the prope	rty located in Bronx, Kings, New York, Queens or Richmond County?	\bigcirc	\bigcirc
	stor seeking a determination that the site is eligible for the tangible property onent of the brownfield redevelopment tax credit?	\bigcirc	\bigcirc
3. Is at least 5 Tax Law 21	0% of the site area located within an environmental zone pursuant to NYS (b)(6)?	\bigcirc	\bigcirc
4. Is the prope	rty upside down or underutilized as defined below?		
	Upside down	0	\bigcirc
	Underutilized	\bigcirc	0

From ECL 27-1405(31):

"Upside down" shall mean a property where the projected and incurred cost of the investigation and remediation which is protective for the anticipated use of the property equals or exceeds seventy-five percent of its independent appraised value, as of the date of submission of the application for participation in the brownfield cleanup program, developed under the hypothetical condition that the property is not contaminated.

From 6 NYCRR 375-3.2(I) as of August 12, 2016 (Please note: Eligibility determination for the underutilized category can only be made at the time of application): 375-3.2:

- (I) "Underutilized" means, as of the date of application, real property on which no more than fifty percent of the permissible floor area of the building or buildings is certified by the applicant to have been used under the applicable base zoning for at least three years prior to the application, which zoning has been in effect for at least three years; and
 - (1) the proposed use is at least 75 percent for industrial uses; or
 - (2) at which:
 - (i) the proposed use is at least 75 percent for commercial or commercial and industrial uses:
 - (ii) the proposed development could not take place without substantial government assistance, as certified by the municipality in which the site is located; and
 - (iii) one or more of the following conditions exists, as certified by the applicant:
 - (a) property tax payments have been in arrears for at least five years immediately prior to the application;
 - (b) a building is presently condemned, or presently exhibits documented structural deficiencies, as certified by a professional engineer, which present a public health or safety hazard; or
 - (c) there are no structures.

"Substantial government assistance" shall mean a substantial loan, grant, land purchase subsidy, land purchase cost exemption or waiver, or tax credit, or some combination thereof, from a governmental entity.

FOR SITES SEEKING TANGIBLE PROPERTY CREDITS IN NEW YORK CITY ONLY (continued)

5. If you are seeking a formal determination as to whether your project is eligible for Tangible Property Tax Credits based in whole or in part on its status as an affordable housing project (defined below), you must attach the regulatory agreement with the appropriate housing agency (typically, these would be with the New York City Department of Housing, Preservation and Development; the New York State Housing Trust Fund Corporation; the New York State Department of Housing and Community Renewal; or the New York State Housing Finance Agency, though other entities may be acceptable pending Department review).

Check appropriate box below:

Project is an Affordable Housing Project – regulatory agreement attached
Project is planned as Affordable Housing, but agreement is not yet available
This is not an Affordable Housing Project

From 6 NYCRR 375-3.2(a) as of August 12, 2016:

- (a) "Affordable housing project" means, for purposes of this part, title fourteen of article twenty-seven of the environmental conservation law and section twenty-one of the tax law only, a project that is developed for residential use or mixed residential use that must include affordable residential rental units and/or affordable home ownership units.
 - (1) Affordable residential rental projects under this subdivision must be subject to a federal, state, or local government housing agency's affordable housing program, or a local government's regulatory agreement or legally binding restriction, which defines (i) a percentage of the residential rental units in the affordable housing project to be dedicated to (ii) tenants at a defined maximum percentage of the area median income based on the occupants' household's annual gross income.
 - (2) Affordable home ownership projects under this subdivision must be subject to a federal, state, or local government housing agency's affordable housing program, or a local government's regulatory agreement or legally binding restriction, which sets affordable units aside for homeowners at a defined maximum percentage of the area median income.
 - (3) "Area median income" means, for purposes of this subdivision, the area median income for the primary metropolitan statistical area, or for the county if located outside a metropolitan statistical area, as determined by the United States department of housing and urban development, or its successor, for a family of four, as adjusted for family size.

FOR SITES SEEKING TANGIBLE PROPERTY CREDITS IN NEW YORK CITY ONLY (continued)
6. Is the site a planned renewable energy facility site as defined below?
Yes – planned renewable energy facility site with documentation
Pending – planned renewable energy facility awaiting documentation *Selecting this option will result in a "pending" status. The appropriate documentation will need to be provided to the Department and the Brownfield Cleanup Agreement will need to be amended prior to issuance of the CoC in order for a positive determination to be made.
No – not a planned renewable energy facility site
If yes, please provide any documentation available to demonstrate that the property is planned to be developed as a renewable energy facility site.
From ECL 27-1405(33) as of April 9, 2022:
"Renewable energy facility site" shall mean real property (a) this is used for a renewable energy system, as defined in section sixty-six-p of the public service law; or (b) any co-located system storing energy generated from such a renewable energy system prior to delivering it to the bulk transmission, subtransmission, or distribution system.
From Public Service Law Article 4 Section 66-p as of April 23, 2021:
(b) "renewable energy systems" means systems that generate electricity or thermal energy through use of the following technologies: solar thermal, photovoltaics, on land and offshore wind, hydroelectric, geothermal electric, geothermal ground source heat, tidal energy, wave energy, ocean thermal, and fuel cells which do not utilize a fossil fuel resource in the process of generating electricity.
7. Is the site located within a disadvantaged community, within a designated Brownfield Opportunity Area, and plans to meet the conformance determinations pursuant to subdivision ten of section nine-hundred-seventy-r of the general municipal law?
Yes - *Selecting this option will result in a "pending" status, as a BOA conformance determination has not yet been made. Proof of conformance will need to be provided to the Department and the Brownfield Cleanup Agreement will need to be amended prior to issuance of the CoC in order for a positive determination to be made.
○ No
From ECL 75-0111 as of April 9, 2022:
(5) "Disadvantaged communities" means communities that bear the burdens of negative public health effects, environmental pollution, impacts of climate change, and possess certain socioeconomic criteria, or comprise high-concentrations of low- and moderate-income households, as identified pursuant to section 75-0111 of this article.

ATTACHMENT A SECTION I: PROPERTY INFORMATION

Item 1 – Metes and Bounds Description

The 3.1-acre proposed New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program (BCP) site is located at 200 Chavez Terrace in Syracuse, Onondaga County, New York. The site is identified as part of Onondaga County Tax Parcel ID 095.-08.-01.0. A copy of the metes and bounds description is provided in this attachment.

GIS Information (degrees/minutes/seconds):

• Latitude: 43°02'27.4"

Longitude: -76°08'48.7"

<u>Item 2 – Property Maps</u>

Figure A-1: Site Location Map is the required United States Geological Survey 7.5-minute quadrangle map showing the location of the proposed BCP property.

Figure A-2: Site Plan provides a property base map that shows map scale, north arrow orientation, date, and location of the property with respect to adjacent streets and roadways.

Figure A-3: Adjacent Property and Surrounding Land Use Map provides a property base map that shows proposed brownfield property boundary lines, with adjacent property owners clearly identified, and surrounding land uses.

Figure A-4: Tax Block and Lot Map provides the tax parcel information.

Figure A-5: Environmental Zone Map provides a property base map showing the proposed brownfield property boundary lines with an overlay of the New York State (NYS) Environmental Zones (En-Zone).

Figure A-6: Disadvantaged Communities Map provides a property base map showing the proposed brownfield property boundary lines with an overlay of the New York State Disadvantaged Community Boundaries based on census tracts identified.

Item 3 – Environmental Zone

According to the NYSDEC boundaries for the NYS En-Zone, 100 percent of the site is located within Onondaga County Census Tract 42, a designated En-Zone. The site is located within a census tract that has a poverty rate of 71% and an unemployment rate of 29.8%; this data

satisfies En-Zone criteria pursuant to Tax Law 21(b)(6). Figure A-5 shows the property boundary within the En-Zone.

<u>Item 14 - Property Description Narrative</u>

Location

The site is located at 200 Chavez Terrace within an urban, mixed-use area in the City of Syracuse, New York. The site is about 3.1 acres and is identified as part of Onondaga County Tax Parcel ID 095.-08.-01.0. A copy of the site survey is provided in this attachment. The site is bound by multi-family residential housing to the north, South Townsend Street followed by residential buildings to the east, multi-family residential housing to the south, and South State Street followed by a public park to the west. The site is currently owned by the Syracuse Housing Authority (SHA) and operates as multi-family residential housing with 25 residential units. The site is improved with six two-story residential townhouse apartments consisting of two six-unit apartment buildings, two four-unit apartment buildings, one three-unit apartment building, and one two-unit apartment building. The remainder of the site comprises asphalt-paved parking lots, landscaped areas and concrete-paved sidewalks. The main entrance is located on South State Street, along the western side of the site. The area surrounding the site consists of residential, commercial, institutional, and industrial properties, and public parks.

Site Features

According to the 2019 United States Geological Survey (USGS) 7.5-minute quadrangle topographic map for Syracuse East, the elevation of the site is about 400 feet¹ above mean sea level (amsl). The topography of the site is generally flat with the surrounding area gently sloping downward toward the west and the Onondaga Creek, which is located approximately 2,000 feet west of the site.

Current Zoning and Land Use

According to the Rezone Syracuse ordinance and City of Syracuse Zoning Map, the site is located within an MX-2: Neighborhood Center District. The MX-2: Neighborhood Center zoning district is generally characterized as pedestrian-friendly, transit-supportive mix of medium to higher density residential uses and non-residential uses that offer goods and services to surrounding neighborhoods. The surrounding properties are zoned for MX-2: Neighborhood Center Districts, MX-3: Mixed-Use Transition, MX-4: Urban Core, R2: Low Density Residential, R5: High Density

¹ Elevations in this report refer to North American Vertical Datum of 1988 (NAVD88), which is about 1.1 feet above mean sea level at Sandy Hook, New Jersey.

Brownfield Cleanup Program Application
East Adams Redevelopment – Phase Three Area
200 Chavez Terrace
Section 095, Block 08, p/o Lot 01.0
Syracuse, New York

Residential, LI: Light Industrial and Employment, and OS: Open Space. A copy of the zoning map is included in Attachment D.

Land use within a half-mile radius is urban and includes residential, commercial, institutional/public services, industrial, vacant land, and public parks. The nearest ecological receptor is the Onondaga Creek, located approximately 2,000 feet west of the site.

At present, the site is improved with six two-story multi-family residential buildings, asphalt-paved parking lots, landscaped areas and concrete-paved sidewalks.

Past Use of the Site

Historical documents indicate that the site has been used for various residential, commercial, and industrial purposes since as early as 1892, including the "Syracuse Twist Drill Co." which consisted of a machine shop, milling facility, polish shop, coal bins, iron storage, an oil shed, and petroleum bulk storage (1892 to 1971), a brick and glass forge shop (1910 to 1971), a used car sales lot (1939 to 1959), an auto yard (1951 to 1961), an artificial flowers and decorations manufacturer (1961), and a junk house (1951 to 1961). The site was redeveloped for residential use in 1978 with seven residential buildings. The Syracuse Housing Authority purchased the site in 1986 and by 1990, the site was developed into its present-day configuration of six two-story residential buildings.

Site Geology and Hydrogeology

According to the U.S. Department of Agriculture's (USDA) Natural Resources Conservation Service (NRCS) Soil Survey Geographic (SSURGO) data for the site, soils at the site are comprised primarily of urban land. Urban land is described as excavated, filled, and made land.

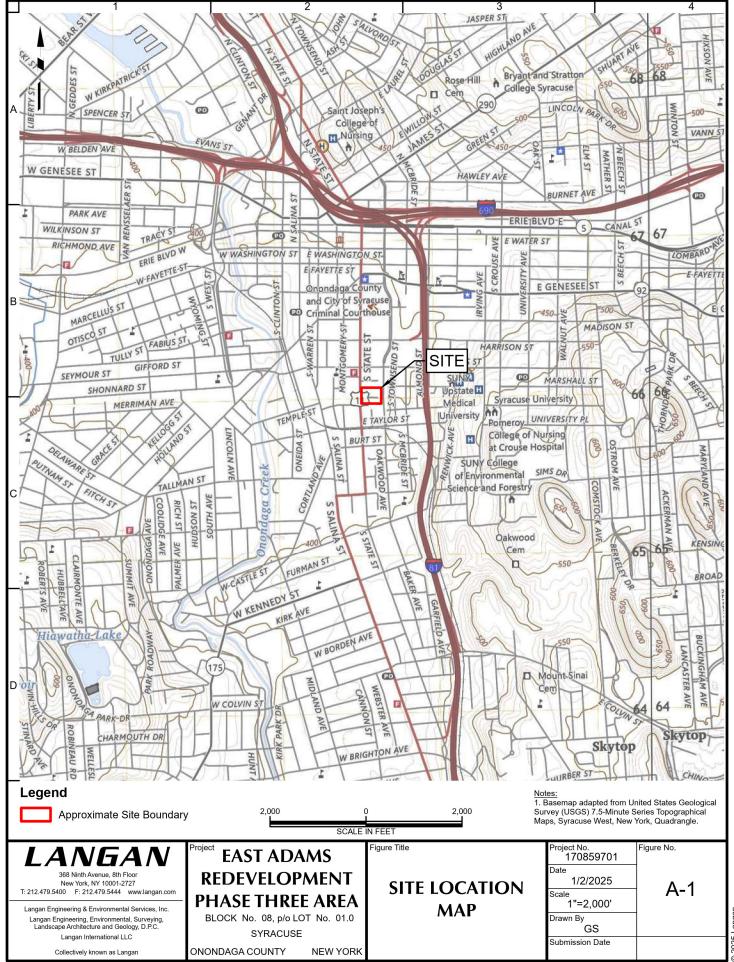
According to the October 7, 2024 Phase II Environmental Site Investigation (ESI) Report prepared by Langan, soil at the site consists of uncontrolled fill and is predominantly comprised of tan to brown fine-grained sand with varying amounts of silt, gravel, and clay that extends from grade surface to approximately 8 feet below grade surface (bgs). This layer is underlain by gray, tan, and brown, clay with varying amounts of silt and fine sand. Bedrock was not encountered during the Phase II ESI. Based on review of the USGS "Geologic Map of New York, Finger Lakes Sheet (Fisher, Isachsen, Rickard, dated March 1970)", the site is underlain by bedrock of the Syracuse Foundation, consisting of dolostone, shale, gypsum and salt.

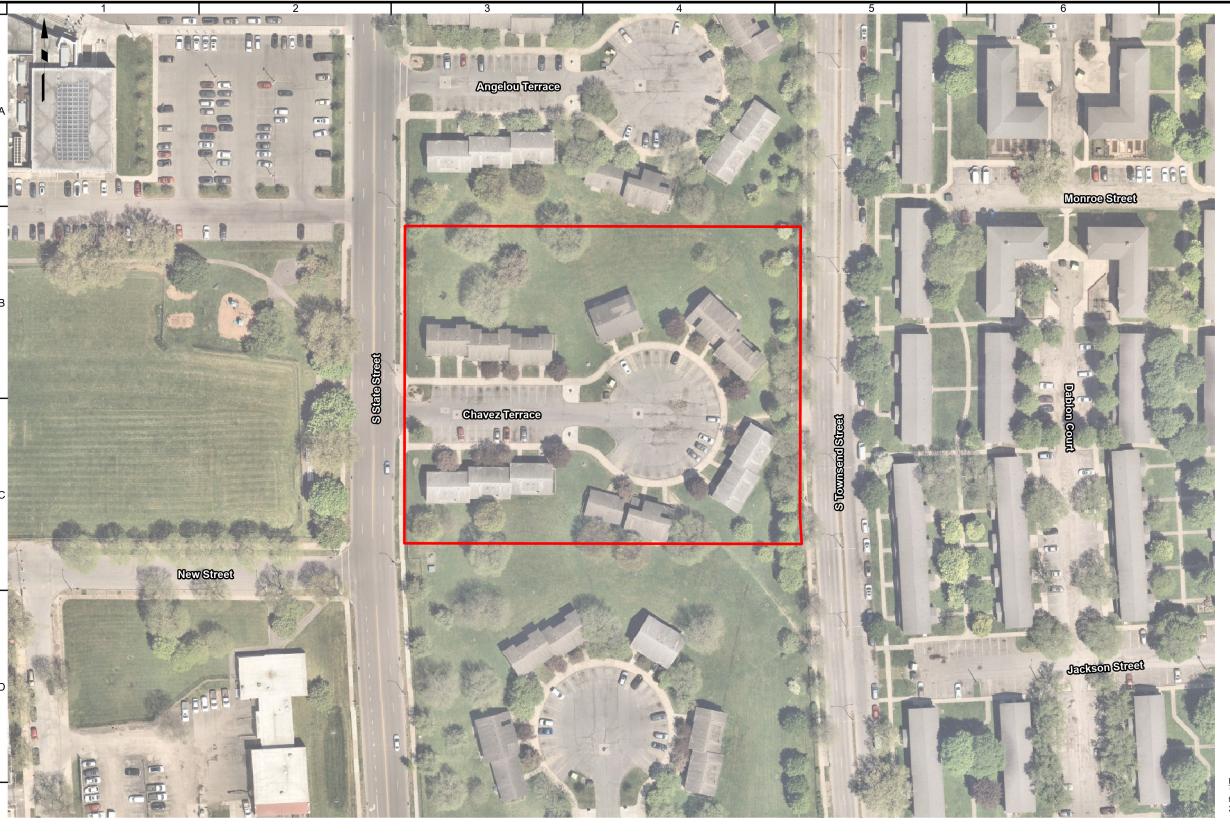
Groundwater was observed at depths ranging from about 6 to 10 feet bgs during the Phase II ESI conducted by Langan. The inferred regional groundwater flow direction for the area surrounding the site is to the west towards Onondaga Creek.

Brownfield Cleanup Program Application
East Adams Redevelopment – Phase Three Area
200 Chavez Terrace
Section 095, Block 08, p/o Lot 01.0
Syracuse, New York

Environmental Assessment

According to the Phase II ESI conducted by Langan, the primary contaminants of concern include semivolatile organic compounds (SVOC), primarily polycyclic aromatic hydrocarbons (PAH), and metals in soil, metals in groundwater, and petroleum-related and chlorinated volatile organic compounds (VOC) in soil vapor. Further detail regarding documented soil, groundwater and soil vapor contamination is provided below.


Soil: SVOCs and metals were detected at concentrations exceeding Title 6 of the New York Codes, Rules and Regulations (NYCRR) Part 375 Unrestricted Use (UU) and/or Restricted Use Restricted-Residential (RURR) Soil Cleanup Objectives (SCO). Visual, olfactory, and/or instrumental evidence of petroleum-like impacts (maximum photoionization detector [PID] readings of 119 parts per million [ppm]) was observed in one boring between about 7 and 8 feet bgs in the south-central part of the site.


Groundwater: Total and dissolved metals were detected in groundwater at concentrations above the NYSDEC Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards (AWQS) and Guidance Values for Drinking Water (Class GA) (collectively referred to as "SGVs").

Soil Vapor: Petroleum-related and chlorinated VOCs were detected in soil vapor samples across the site. Of the eight chlorinated volatile organic compounds (CVOC) and thirteen petroleum-related VOCs that were evaluated under the New York State Department of Health (NYSDOH) Soil Vapor Guidance for Evaluating Soil Vapor Intrusion Decision Matrices (Decision Matrices), 1,1,1-trichloroethane (1,1,1-TCA), 1,2,4-trimethlybenzene (1,2,4-TMB), 2,2,4-trimethlypentane (2,2,4-TMP), benzene, carbon tetrachloride, cyclohexane, n-heptane, n-hexane, methylene chloride, toluene, trichloroethene (TCE) and vinyl chloride were detected in the soil vapor samples. Indoor air samples were not collected; however, the NYSDOH Decision Matrices can still provide guidance based on soil vapor concentrations as they relate to ranges of possible indoor air concentrations. When soil vapor concentrations are evaluated against the minimum mitigation threshold concentrations using the NYSDOH Decision Matrices, potential recommendations range between "no further action" to "mitigate" for occupied structures, with mitigation being recommended for TCE, benzene, hexane and cyclohexane.

The source of VOCs, SVOCs, and metals identified in site soil and soil vapor is likely attributed to historical use and operation of the site including a drilling company with a machine shop, forge shop, milling facility, coal bins, a transformer house, petroleum bulk storage, and an oil house, used car sales, an auto yard, manufacturing and warehousing facilities, an auto repair shop; and a junk house. Metals identified in groundwater are consistent with regional groundwater quality and are not indicative of a release. Based on the concentrations of petroleum-related VOCs and

CVOCs in soil vapor, it is likely that additional on-site sources of soil and groundwater contamination are present and will be identified once the more thorough Remedial Investigation is completed.

Legend

Approximate Site Boundary

Notes:

1. Aerial imagery provided through Langan's subscription to NearMap.com,

flown 5/7/2024.

2. Tax parcel data provided by Onondaga County and New York State GIS.

WARNING: It is a violation of the NYS Education Law Article 145 for any person, unless acting under the direction of a licensed professional engineer, land surveyor or geologist, to alter this item in any way.

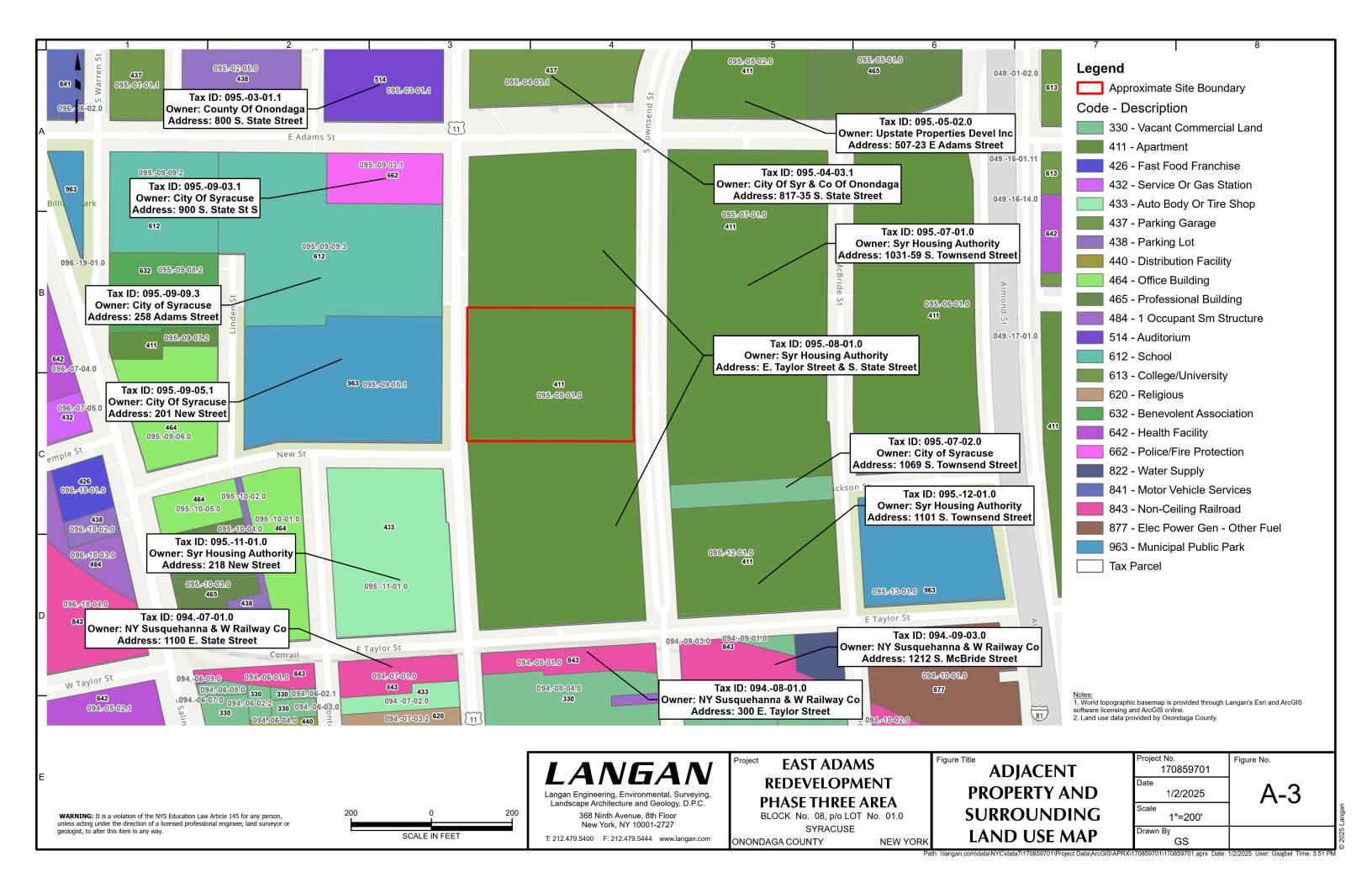
LANGAN

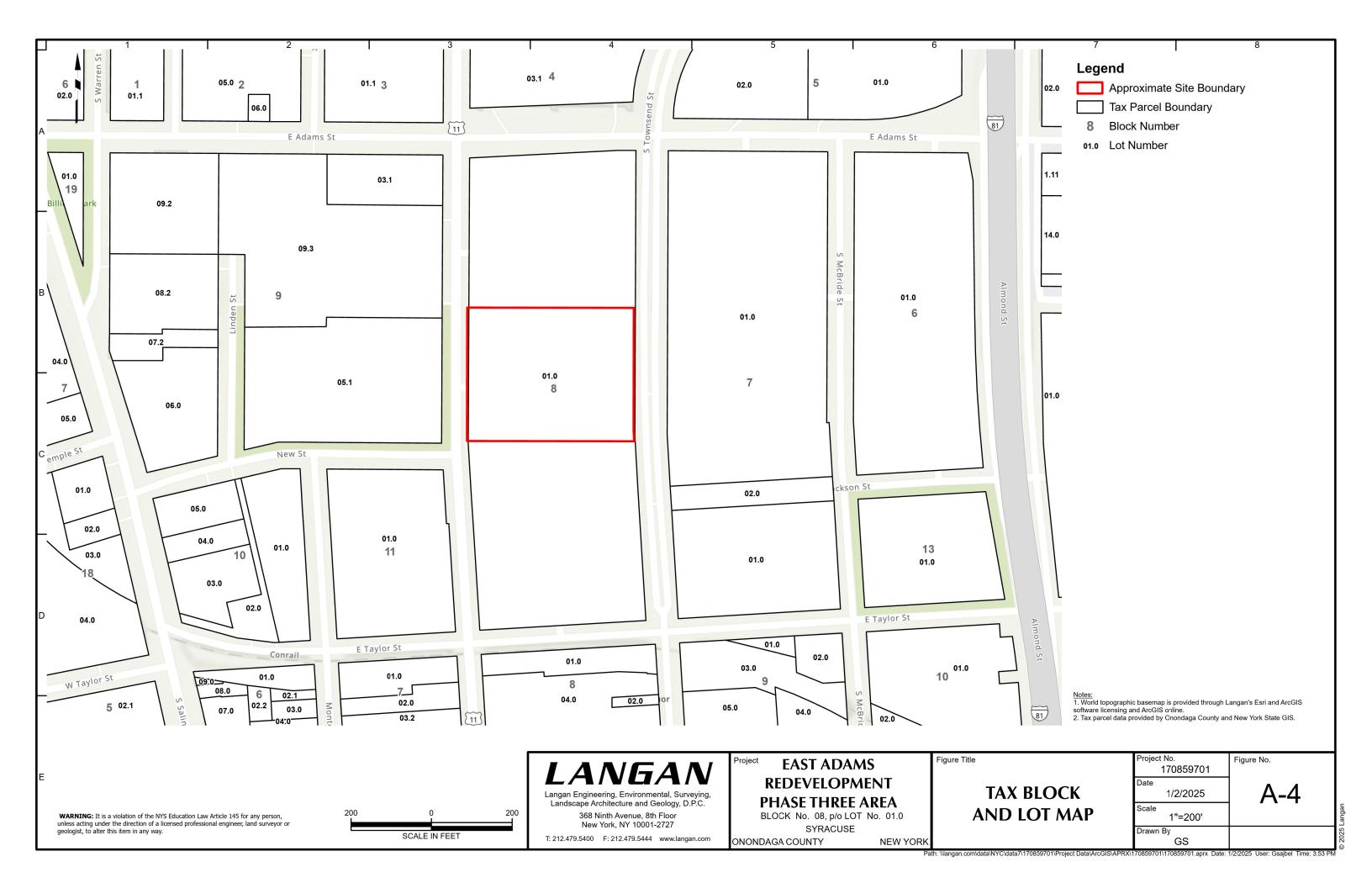
Langan Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C. 368 Ninth Avenue, 8th Floor New York, NY 10001-2727

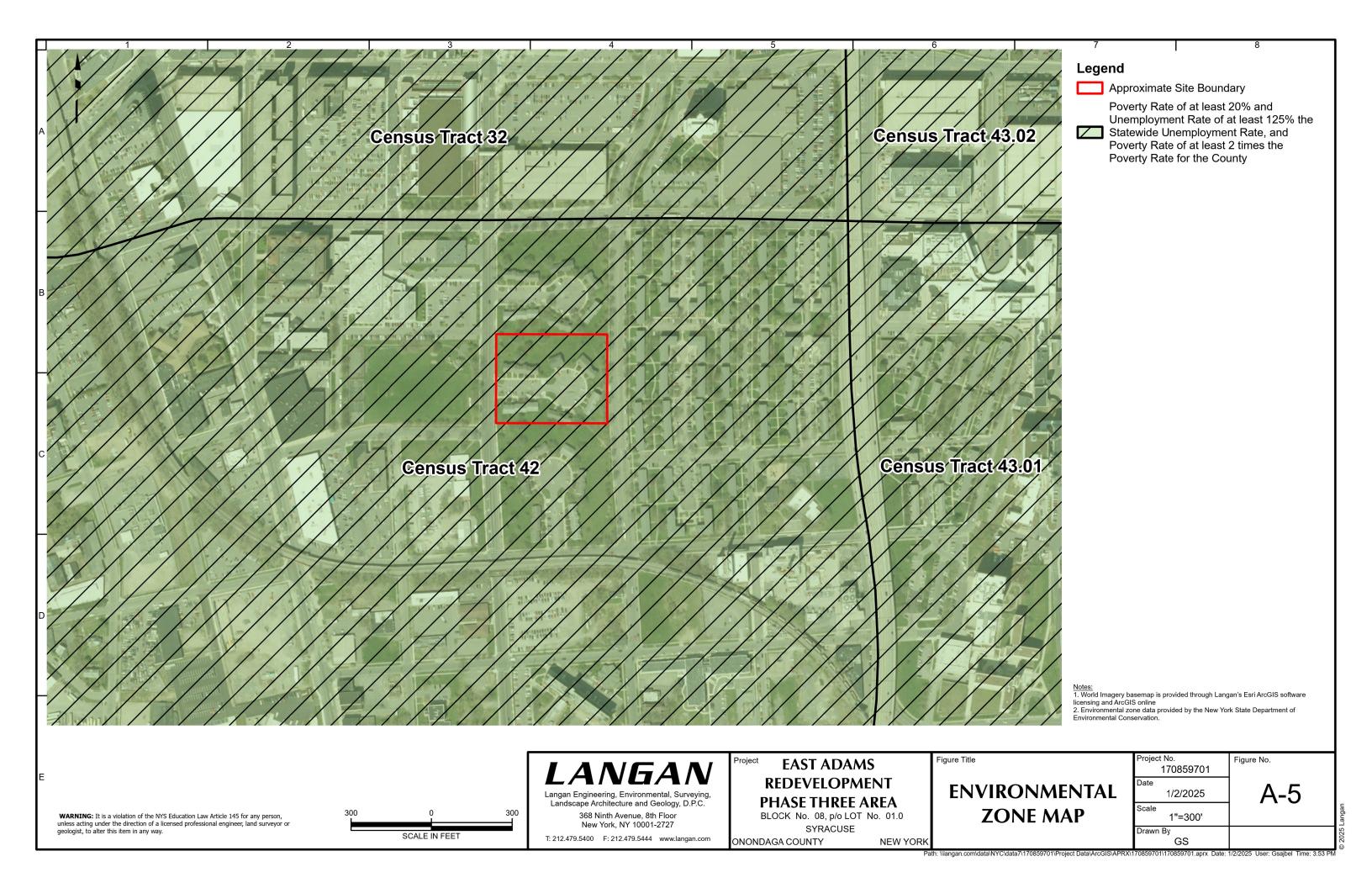
T: 212.479.5400 F: 212.479.5444 www.langan.com

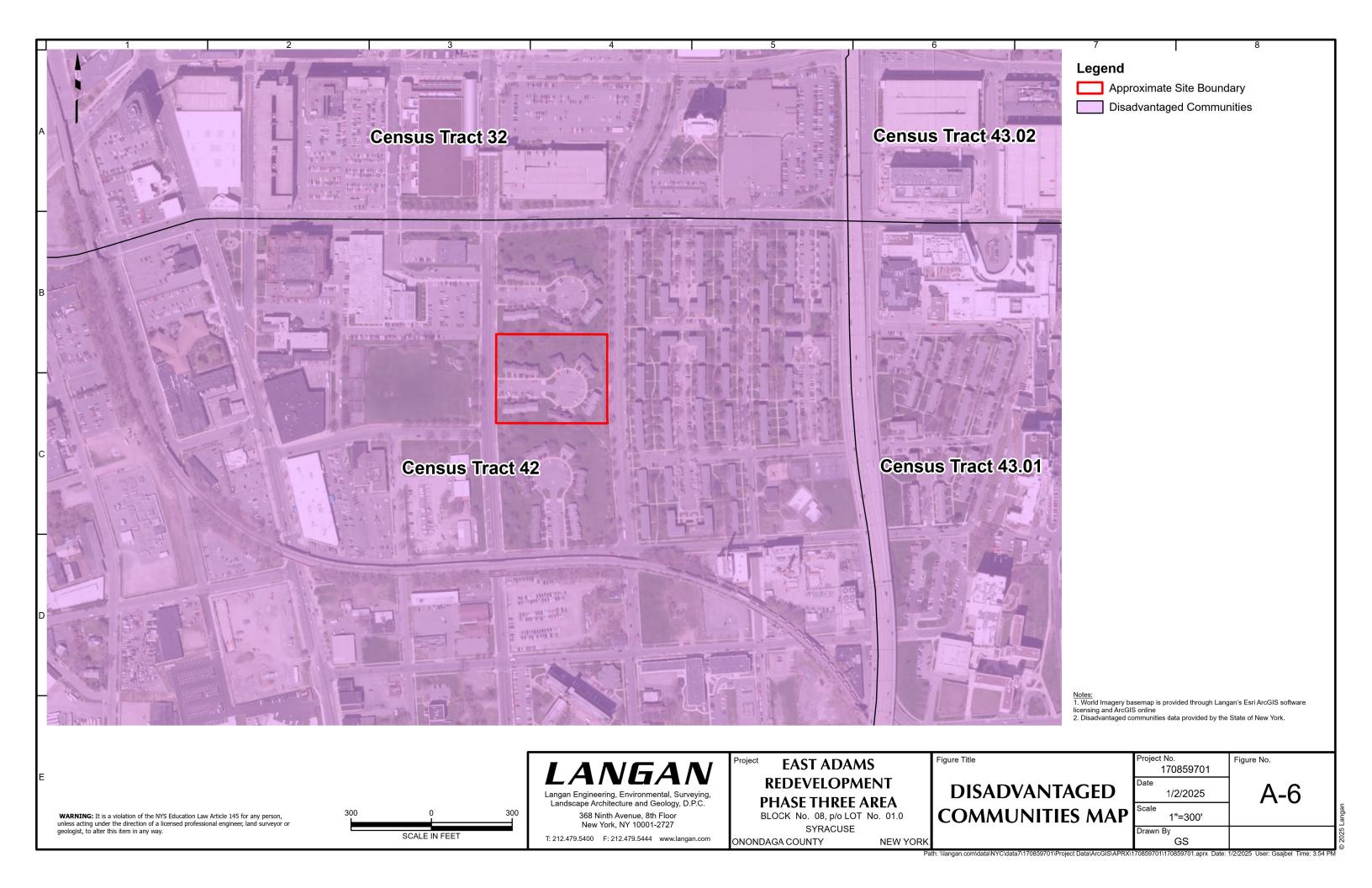
EAST ADAMS REDEVELOPMENT PHASE THREE AREA

BLOCK No. 08, p/o LOT No. 01.0 SYRACUSE


ONONDAGA COUNTY **NEW YORK**

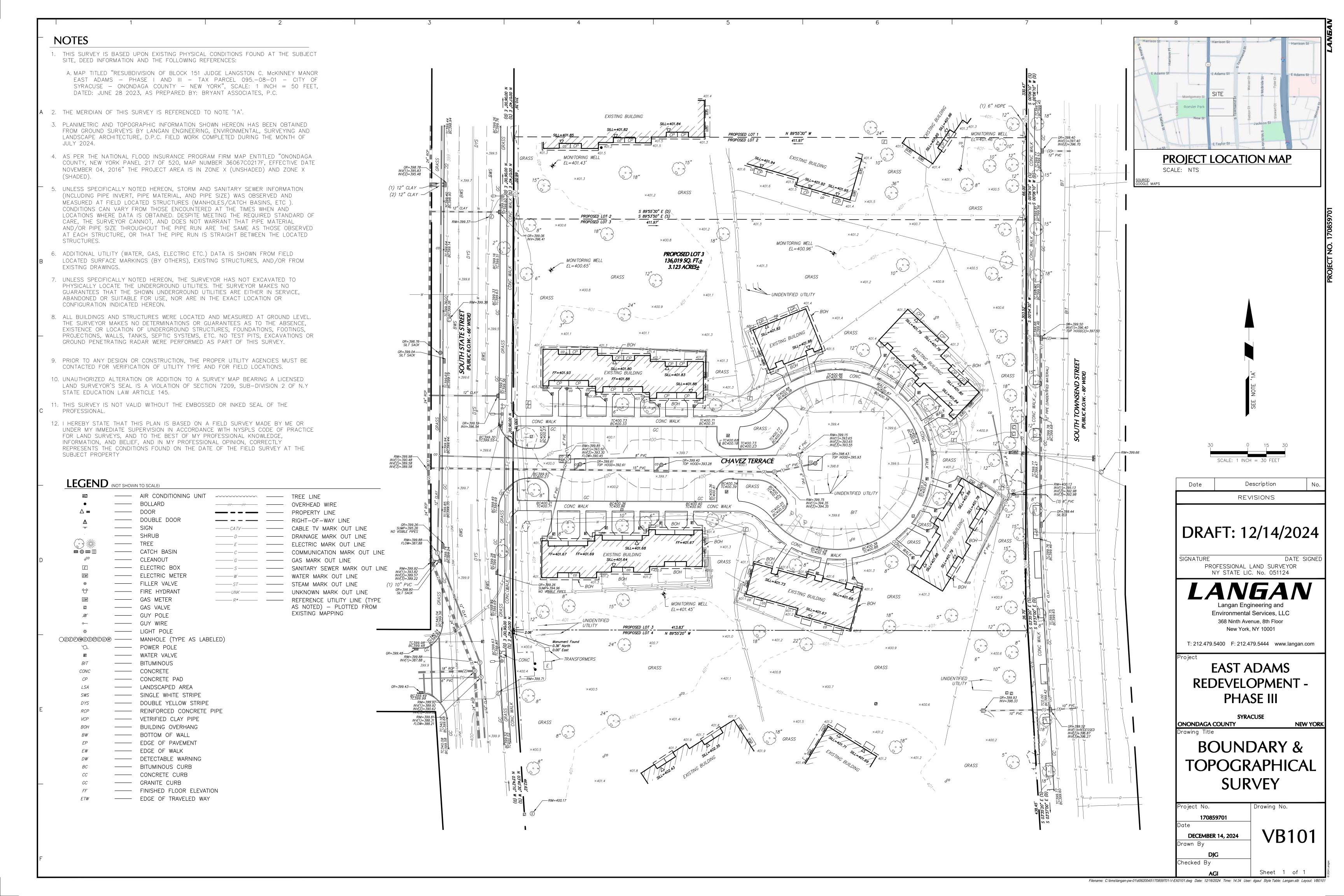

SITE	: PL	.AN


Figure Title


Project No. 170859701	Figure No.
Date 1/2/2025	A-2
Scale 1"=100'	, , _
Drawn By GS	

Path: \langan.com\data\NYC\data7\170859701\Project Data\ArcGIS\APRX\170859701\170859701.aprx Date: 1/2/2025 User: Gsajbel Time: 3:57 PM

30 January 2025 170859701


WRITTEN DESCRIPTION FOR PROPOSED LOT 3 IN THE CITY OF SYRACUSE ONONDAGA COUNTY, NEW YORK

All that certain piece or parcel of land situate, lying and being in the City of Syracuse, County of Onondaga and State of New York and being bounded and described as follows:

COMMENCING from a point at the northwesterly corner of lands now or formerly owned by the Syracuse Housing Authority, also being the southerly line of East Adams Street (variable width) and the easterly line of South State Street (66 feet wide), as witnessed from a monument with a course of North 81°31′01″ West, a distance of 1.21 feet and running southerly along the easterly line of South State Street the following two courses:

- A. South 00°07'40" West, a distance of 310.39 feet to a point; thence
- B. South 00°07'40" West, a distance of 66.00 feet to a point on the northwesterly corner of the proposed lot 3, as shown on a drawing by Langan titled "East Adams Redevelopment Phase III, Syracuse, Onondaga County, New York, Boundary & Topographical Survey", Project No. 170859701, Drawing No. VB101, dated December 14, 2024 and being the POINT or PLACE of BEGINNING; thence
- 1. Running easterly through the previously said owner's lands along the proposed division line for lots 2 and 3, a course of South 89°53'50" East, a distance of 411.97 feet to a point on the westerly line of South Townsend Street; thence
- 2. Running southern along the westerly line of South Townsend Street, a course of South 00°06'10" West, a distance of 303.52 feet to a point; thence
- 3. Continuing southerly along previously said westerly line, a course of South 03°35'20" East, a distance of 26.70 feet to a point on the southeasterly corner of the proposed lot 3 on the previously said drawing; thence
- 4. Running westerly through the previously said owner's lands along the proposed division line for lots 3 and 4, a course of North 89°53'50" West, a distance of 413.83 feet to a point on the easterly line of South State Street; thence
- 5. Running northerly along the easterly line of South State Street, a course of North 00°07'40" East, a distance of 330.16 feet to the POINT or PLACE of BEGINNING.

Encompassing an area of 136,062 square feet or 3.12355 acres, more or less.

ATTACHMENT B SECTION II: PROJECT DESCRIPTION

Item 4 - Purpose and Scope of the Project

The purpose of the project is to remediate and redevelop the about 3.1-acre contaminated site. The site is currently improved with six two-story residential townhouse apartments consisting of two six-unit apartment buildings, two four-unit apartment buildings, one three-unit apartment building, and one two-unit apartment building. The remainder of the subject property comprises asphalt-paved parking lots, landscaped areas and concrete-paved sidewalks. The proposed redevelopment includes demolition of the existing structures and development of the site into 100% affordable multi-story residential apartments.

Remediation would be performed concurrently with the proposed redevelopment and in accordance with an approved Remedial Action Work Plan (RAWP) and Construction Health and Safety Plan (CHASP), including a Community Air Monitoring Plan (CAMP).

If accepted into the Brownfield Cleanup Program (BCP), the remedial program would begin with the submission of a Remedial Investigation Work Plan (RIWP) to the New York State Department of Environmental Conservation (NYSDEC) for review. Findings of the investigation outlined in the RIWP will be documented in a Remedial Investigation Report (RIR). Future remediation plans to address the identified impacts will be detailed in the RAWP, which will be implemented concurrently with the contemplated development. The RIR and RAWP will be prepared in accordance with NYSDEC guidelines. An estimated timeline of anticipated BCP milestones is provided in the following schedule:

Estimated Project Schedule

Estimated Project Schedule		20	24					2	2025	,								2	2020	6						20	27	
		2	EC.	Z	m	AR S	۲ ک	¥ =	3 =	1 5	Ы	Б	کا ہ	2 2	e.	AR	کر اغ	Α	<u> </u>	ا آ	3 6.	Б	2 3	ع ا	<u> </u>	AR	<u>۲</u>	JUN
ltem	Action	ž		7	Ш	\geq	₹ 2	≥ =	5 5	₹ ₹	SE	Ŏ	žŻ	2 3		Σ	₹ 2	≥ =	키=	₹ ₹	S	Ŏ	ž	בֿן בֿ	う世	Σ	¥.	≅∣≾
1	Preparation and Submission of BCP Application																									-		
2	NYSDEC Determination of BCP Application for Completeness																									-		
3	Address NYSDEC Comments to BCP Application																				Т							
4	30-Day Public Comment Period for BCP Application																											
5	Execute BCA																											
6	Preparation and Submission of CPP and RIWP																									-		
7	NYSDEC/NYSDOH Review of RIWP and 30-day public comment																											
8	Implementation of Remedial Investigation and RIR Preparation																											
9	RAWP Preparation																											
10	NYSDEC & NYSDOH Review of RIR and RAWP, including 45-day public comment																											
11	NYSDEC Approval of RAWP and Issuance of Decision Document																											
12	Implementation of RAWP with Engineering Oversight					Т	Т										Т									00000000		
13	Preparation of an Environmental Easement, FER, and SMP (if required)																											
14	NYSDEC & NYSDOH Review of FER (and SMP, if required)									T																		
15	NYSDEC Issues COC																				T					0		

Notes:

- a) This is an estimated schedule; all items are subject to change.
- b) BCP = Brownfield Cleanup Program
- c) NYSDEC = New York State Department of Environmental Conservation
- d) BCA = Brownfield Cleanup Agreement
- e) NYSDOH = New York State Department of Health
- f) CPP = Citizen Participation Plan
- g) RIWP = Remedial Investigation Work Plan
- h) RIR = Remedial Investigation Report
- i) RAWP = Remedial Action Work Plan
- j) FER = Final Engineering Report
- k) SMP = Site Management Plan
- I) COC = Certificate of Completion

Item 5 – Green and Sustainable Remediation

Green remediation principles and techniques will be implemented to the extent feasible in the design, implementation, and site management of the remedy as per the NYSDEC DER-31 Green Remediation Policy (DER-31). The following green remediation/sustainability concepts will be considered and/or implemented, to the extent feasible, during investigations, remedial design and action, and site management:

- Increase energy efficiency/minimize total energy use and direct and indirect CO₂/greenhouse gas (GHG) emissions to the atmosphere
- Reduce emissions of air pollutants
- Minimize habitat disturbance and create or enhance habitat or usable land
- Conserve natural resources such as soil and water; promote the sequestration of carbon through reforestation or afforestation
- Minimize fresh water consumption and maximize water reuse during daily operations and treatment processes
- Prevent long-term erosion, surface runoff, and off-site water quality impacts, and prevent unintended soil compaction
- Minimize waste or implement beneficial use of materials that would otherwise be considered a waste
- Minimize equipment and truck idling and use sustainably produced biofuels to reduce discharge of pollutants and GHGs to the atmosphere
- Utilize clean diesel (new or retrofitted) equipment to reduce emissions to the atmosphere
- Minimize truck travel for disposal to save energy, reduce emissions, and reduce localized noise, vibration, and wear and tear on roads
- Minimize use of heavy equipment to save energy and reduce emissions

ATTACHMENT C SECTION III: ECOLOGICAL CONCERNS

Item 4 – Fish and Wildlife Resources Impact Analysis

The Onondaga Creek is located approximately 0.35 miles west of the site and is considered an ecological resource. Based on the site's location in proximity to an ecological resource, the New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation (DER) Technical Guidance for Site Investigation and Remediation (DER-10), dated May 2010, was evaluated to determine if an on-site and off-site Fish and Wildlife Resources Impact Analysis (FWRIA) was required. Based on the requirements stipulated in Section 3.10 and Appendix 3C of DER-10, a FWRIA is not required because contamination at the site does not have the potential to impact any on- or off-site habitat of endangered species or other fish and wildlife.

ATTACHMENT D SECTION IV: LAND USE FACTORS

Items 1 and 2 - Current Zoning

According to the Rezone Syracuse ordinance and City of Syracuse Zoning Map, the site is located within an MX-2: Neighborhood Center District. The MX-2: Neighborhood Center zoning district is generally characterized as pedestrian-friendly, transit-supportive mix of medium to higher density residential uses and non-residential uses that offer goods and services to surrounding neighborhoods. The proposed use is consistent with the current zoning. A copy of the zoning map is included in this attachment.

Item 4 - Current Use

The site encompasses an area of about 3.1 acres and currently operates as a multi-family townhouse apartment complex with 25 residential units, known as Chavez Terrace, owned by the Syracuse Housing Authority (SHA). The site is improved with six two-story residential townhouse apartments consisting of two six-unit apartment buildings, two four-unit apartment buildings, one three-unit apartment building, and one two-unit apartment building. The remainder of the site comprises asphalt-paved parking lots, landscaped areas and concrete-paved sidewalks. The main entrance is located on South State Street, along the western side of the site. The area surrounding the site consists of residential, commercial, institutional, and industrial properties, and public parks. The site is bound by multi-family residential housing to the north, South Townsend Street followed by residential buildings to the east, multi-family residential housing to the south, and South State Street followed by a public park to the west.

The site was historically developed with various residential, commercial, and industrial purposes including the "Syracuse Twist Drill Co." which consisted of a machine shop, milling facility, polish shop, coal bins, iron storage, an oil shed, and petroleum bulk storage (1892 to 1971), a brick and glass forge shop (1910 to 1971), a used car sales lot (1939 to 1959), an auto yard (1951 to 1961), an artificial flowers and decorations manufacturer (1961), and a junk house (1951 to 1961). The site was redeveloped for residential use in 1978 with seven residential buildings. The SHA purchased the site in 1986 and by 1990, the site was developed into its present-day configuration of six two-story residential buildings.

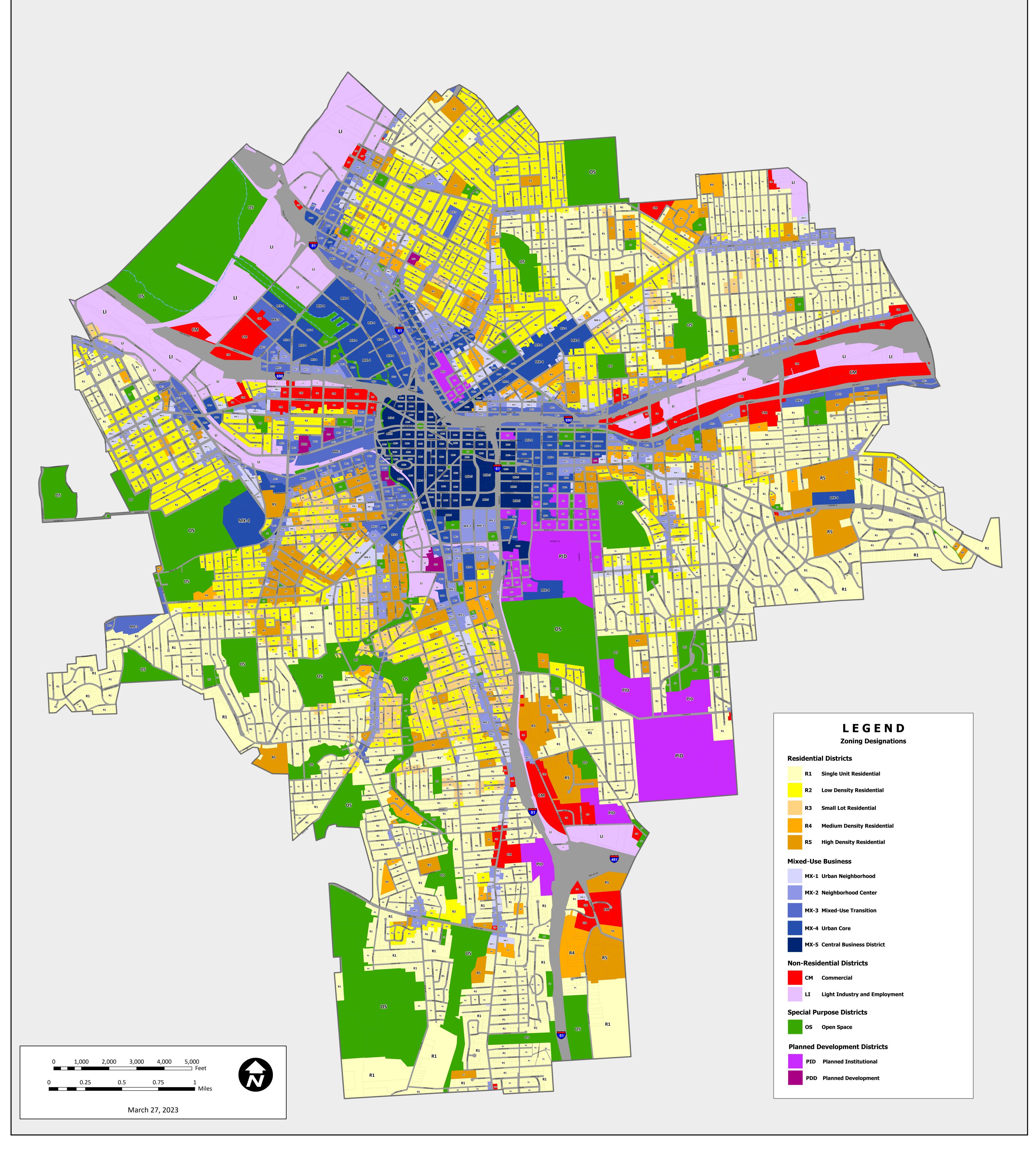
Brownfield Cleanup Program Application
East Adams Redevelopment – Phase Three Area
200 Chavez Terrace
Section 095, Block 08, p/o Lot 01.0
Syracuse, New York

<u>Item 6 - Intended Use Post Remediation</u>

Current redevelopment plans include the demolition of the existing structures and development of multi-story residential buildings. A total of 100% of the residential units will be designated as affordable housing. Post-remediation use would be consistent with the current zoning.

Item 9 - Consistency with Applicable Zoning Laws/Maps

This project responds to and is consistent with the goals of the Syracuse Common Council Rezone Syracuse ordinance implemented on July 1, 2023. The Rezone Syracuse ordinance was developed to protect the public health, safety, and welfare of the City of Syracuse and to implement policies from the City of Syracuse Comprehensive Plan. The site is located in an MX-2: Neighborhood Center District, which is characterized as pedestrian-friendly, transit-supportive mix of medium to higher density residential uses and non-residential uses that offer goods and services to surrounding neighborhoods.


<u>Item 10 - Comprehensive Plans</u>

The City of Syracuse Comprehensive Plan 2025 was adopted in 2005, with updates to the plan in 2012 (City of Syracuse Comprehensive Plan 2040). The comprehensive plan aims to encourage, promote, and support a business-friendly environment, provide for sustainable urban economic growth and economic opportunities for Syracuse residents, to offer exceptional quality of life for residents and visitors, to cultivate and capitalize on the area's unique character while supporting well designed real estate developments that enhance neighborhoods, lively public spaces, well-maintained infrastructure, and dynamic neighborhoods that are linked by well-planned transportation, all within an exciting, safe, and clean environment.

This project responds to and is consistent with the goals of the City of Syracuse Comprehensive Plan 2040.

ATTACHMENT E SECTION V: CURRENT AND HISTORICAL PROPERTY OWNER AND OPERATOR INFORMATION

Current Site Owner(s)

The proposed Brownfield Cleanup Program (BCP) site is located at 200 Chavez Terrace and is identified as part of Onondaga County Tax Parcel ID 095.-08.-01.0. The Requestor is not the owner of the site. Contact information for the current owner, Syracuse Housing Authority, is provided below. The Requestor is developing the property on behalf of the current site owner. A letter from Syracuse Housing Authority indicating that they have granted site access to the Requestor throughout the BCP is provided in Attachment G.

Property Owner and Contact Information

Syracuse Housing Authority Attn: William J. Simmons 516 Burt Street Syracuse, New York 13202 (315) 470-4216

Current Operator

Same as the property owner.

Previous Site Owners

Title records were reviewed at the County Clerk office and indicated that Syracuse Housing Authority purchased the site from Housing and Urban Development on October 31, 1986.

Previous Site Operators

Based on reviews of historical records including Sanborn Fire Insurance Maps and city directories, the following table summarizes previous site operators:

Operator Name/Site Use	Relationship to Property	Address and Phone Number	Relationship to Applicant
Residential	Occupant (1892 to Present)	913 – 923 South State Street (Phone Numbers Unknown)	None
Syracuse Twist Drill Co.	Occupant (1892 to 1971)	913 – 923 South State Street (Phone Number Unknown)	None
Artificial Flowers & Decorations Manufacturing	Occupant (1961)	913 – 923 South State Street (Phone Number Unknown)	None

Operator Name/Site Use	Relationship to Property	Address and Phone Number	Relationship to Applicant
Warehouses	Occupant (1961)	913 – 923 South State Street (Phone Number Unknown)	None
Junk House	Occupant (1951 to 1961)	913 – 923 South State Street (Phone Number Unknown)	None
Nichols Washer Parts & Service Inc Repairs	Occupant (1951 to 1961)	913 – 923 South State Street (Phone Number Unknown)	None
Hayman's Used Car Co.	Occupant (1939 to 1959)	913 – 923 South State Street (Phone Number Unknown)	None

References:

1. October 2024 Phase I Environmental Site Assessment for East Adams Phase Three Area, prepared by Langan Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C. (Langan)

ATTACHMENT F SECTION VI: PROPERTY'S ENVIRONMENTAL HISTORY

The about 3.1-acre site is located at 200 Chavez Terrace in Syracuse, Onondaga County, New York and is identified as part of Onondaga County Tax Parcel ID 095.-08.-01.0. Based on the historic uses of the site and the presence of corresponding contaminants at concentrations exceeding the applicable criteria for the reasonably anticipated future use of the site (restricted-residential) as multi-family affordable housing, the site is eligible for the New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program (BCP).

Item 1 - Previous Reports

The following environmental reports were prepared for the site prior to the Requestor's application:

- October 7, 2024 Phase I Environmental Site Assessment (ESA) for East Adams Street Redevelopment – Phase Three Area, Syracuse, New York, prepared by Langan Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C (Langan).
- October 7, 2024 Phase II Environmental Site Investigation (ESI) for East Adams Street Redevelopment Phase Three Area, prepared by Langan

Environmental reports and sampling events are summarized below and included with this attachment.

October 7, 2024 Phase I ESA for East Adams Street Redevelopment – Phase Three Area, Syracuse, New York, prepared by Langan

Langan prepared a Phase I ESA in October 2024 for McCormack Baron Salazar Development, Inc. (MBSDI). The Phase I ESA identified the following Recognized Environmental Conditions (REC):

- Historical use of the site including a drilling company with a machine shop, milling facility, forge shop, milling facility, coal bins, a transformer house, underground storage tanks (UST), and an oil house, used car sales, an auto yard, manufacturing and warehousing facilities, an auto repair shop, and a junk house from at least 1892 until 1971.
- Historical operations on the south-adjoining property including a gasoline station in the 1950s and a junk yard from the 1910s through the 1960s. The property was listed in the NY Spills database under NYSDEC Spill No. 2400040, which was reported on April 2, 2024 after soil and groundwater impacted with benzene, toluene, ethylbenzene, and xylenes

(BTEX) were identified during a subsurface investigation. Cleanup is pending, and the spill remains open.

October 7, 2024 Phase II Environmental Site Assessment for East Adams Street Redevelopment - Phase Three Area, prepared by Langan

Langan conducted a Phase II subsurface investigation for the East Adams Redevelopment Phase Three Area site between September 16 and 25, 2024. The investigation consisted of a geophysical survey, advancement of 9 soil borings, installation of 3 permanent groundwater monitoring wells and 4 soil vapor points, and collection of 18 soil samples, 3 groundwater samples, and 4 soil vapor samples, plus quality assurance/quality control (QA/QC) samples.

Soil samples were analyzed for one or more of the following: NYSDEC Part 375 list and target compound list (TCL) volatile organic compounds (VOC), semivolatile organic compounds (SVOC), polychlorinated biphenyls (PCB), pesticides, total analyte list (TAL) metals including trivalent and hexavalent chromium and total cyanide. Groundwater samples were analyzed for NYSDEC Part 375 list and TCL VOCs, SVOCs, PCBs, pesticides, and total and dissolved TAL metals. Soil vapor samples were analyzed for VOCs via United States Environmental Protection Agency (USEPA) Method Toxic Organics (TO)-15. Field observations and laboratory analytical results are summarized below:

- <u>Site Geology and Hydrogeology</u>: Soil at the site consists of uncontrolled fill and is predominantly comprised of tan to brown fine-grained sand with varying amounts of silt, gravel, and clay that extends from grade surface to approximately 8 feet below grade surface (bgs). This layer is underlain by gray, tan, and brown clay with varying amounts of silt and fine sand. Groundwater was observed between approximately 6.12 to 9.68 feet bgs in monitoring wells across the site.
- Soil: Petroleum-like impacts (i.e., staining, odors, and photoionization detector [PID] readings up to 119 parts per million [ppm]) were observed in one soil boring (SB07) located in the south-central part of the site at depths ranging from 7 to 8 feet bgs. SVOCs and metals were detected in soil at concentrations exceeding the NYSDEC Title 6 of the New York Codes, Rules and Regulations (NYCRR) Part 375 Unrestricted Use (UU) and/or Restricted Use Restricted-Residential (RURR) Soil Cleanup Objectives (SCO) at SB01, SB08, and SB09.
- <u>Groundwater</u>: Total and dissolved metals were reported in groundwater above the NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards (AWQS) and Guidance Values for Class GA water (collectively referred to as SGVs).

• Soil Vapor: Petroleum-related VOCs and chlorinated volatile organic compounds (CVOC) were detected in soil vapor samples across the site. Total VOCs detected in soil vapor samples ranged between 2,626.58 micrograms per cubic meter (μg/m³) in SV05 to 7,768.05 μg/m³ in SV02. Total BTEX compounds detected in soil vapor samples ranged between 59.5 μg/m³ in SV04 to 153.1 μg/m³ in SV02. Of the eight CVOCs and thirteen petroleum-related VOCs that were evaluated under the New York State Department of Health (NYSDOH) Soil Vapor Guidance for Evaluating Soil Vapor Intrusion Decision Matrices (Decision Matrices), 1,1,1-trichloroethane (1,1,1-TCA), 1,2,4-trimethlybenzene (1,2,4-TMB), 2,2,4-trimethlypentane (2,2,4-TMP), benzene, carbon tetrachloride, cyclohexane, n-heptane, n-hexane, methylene chloride, toluene, trichloroethene (TCE) and vinyl chloride were detected in the soil vapor samples.

The associated laboratory analytical reports, soil boring logs, and soil vapor sampling logs from the investigation are included in the October 2024 Phase II ESI report, which is included as an attachment. Sample locations and results are provided in the accompanying site drawings and tables.

<u>Item 2 – Sampling Data</u>

Based on the previous reports discussed in Item 1, the following summary was prepared to identify analytes detected above applicable regulatory standards for each media tested. The referenced reports and available laboratory data packages for the investigations are included in this attachment.

Soil:

Soil sample analytical results were compared to the UU and RURR SCOs. As depicted in Table F-1 and on Figure F-1, the following contaminants were detected at concentrations above the UU and/or RURR SCOs. RURR exceedances are shown in bold and maximum detections are shown in parentheses.

SVOCs

- Benzo(a)anthracene (3.5 milligram per kilogram [mg/kg])
- Benzo(a)pyrene (3.2 mg/kg)
- Benzo(b)fluoranthene (4 mg/kg)
- Benzoic acid (1.2 mg/kg)
- Chrysene (3.3 mg/kg)
- Dibenzo(a,h)anthracene (0.45 mg/kg)
- Indeno(1,2,3-c,d)pyrene (2 mg/kg)

Metals

Trivalent chromium (88.1 mg/kg)

September 2025

Page 4

- Copper (72.6 mg/kg)
- Lead (502 mg/kg)
- Mercury (1.84 mg/kg)
- Nickel (36 mg/kg)
- Silver (14.8 mg/kg)
- Zinc (162 mg/kg)

Groundwater:

Groundwater sample analytical results were compared to the SGVs. Contaminants that were detected at concentrations above the NYSDEC SGVs are depicted in Table F-2 and on Figure F-2 and are summarized below. Maximum detected concentrations are shown in parentheses.

Total Metals

- Iron (458 microgram per liter [μg/L])
- Magnesium (40,100 μg/L)
- Manganese (828.4 μg/L)
- Sodium (322,000 μg/L)

Dissolved Metals

- Magnesium (41,000 μg/L)
- Manganese (911.6 μg/L)
- Sodium (336,000 μg/L)

Soil Vapor:

Soil vapor sample analytical results were compared to the NYSDOH Decision Matrices Minimum Concentrations that require monitoring or mitigation. Petroleum-related and chlorinated VOCs were detected in soil vapor at concentrations ranging from 2,626.58 μ g/m³ in SV05 to 7,768.05 μ g/m³ in SV02. Total BTEX compounds detected in soil vapor samples ranged between 59.5 μ g/m³ in SV04 to 153.1 μ g/m³ in SV02. When evaluating the soil vapor sample analytical results against the minimum mitigation threshold concentrations in the NYSDOH Decision Matrices, mitigation is potentially recommended for benzene, cyclohexane, hexane, and TCE.

Soil vapor sample locations and reported concentrations are depicted in Table F-3 and on Figure F-3.

Item 3 - Site Drawings

Figure F-1: Soil Sample Analytical Results Map including soil sample locations advanced during the Phase II ESI completed by Langan. Analytical results exceeding the UU SCOs are bolded and analytical results exceeding the RURR SCOs are shaded.

Figure F-2: Groundwater Sample Analytical Results Map including sample locations advanced during the Phase II ESI completed by Langan. Analytical results exceeding the SGVs are bolded and shaded.

Figure F-3: Soil Vapor Sample Results Map including sample locations advanced during the Phase II ESI completed by Langan. Analytical results exceeding the NYSDOH Decision Matrices Minimum Concentrations are bolded and shaded.

<u>Item 4 – Past Uses of the Site</u>

Syracuse, New York

Historical documents indicate that the site has been used for various residential, commercial, and industrial purposes since as early as 1892. In addition to residential buildings, the site included a commercial facility listed as the "Syracuse Twist Drill Co." which contained a forge shop and machine shop, a carpenter shop, an oil house, and an underground oil tank circa 1892. By 1910, the drilling company was expanded to include a milling department, coal bins, iron storage and two USTs identified as 'crude oil tanks; 8,000 & 5,000-gallons' located in the south-central part of the site. Several modifications were made to the site buildings to accommodate more commercial operations between the 1950s and early 1960s, including a transformer house, used car sales, an auto yard, artificial flowers and decorations manufacturing facility, a brick and glass forge shop, warehouses, and a junk house. Potentially hazardous concentrations of metals such as lead were identified in site soil and are likely related to former metals operations associated with the drilling company. Metals identified in groundwater are consistent with regional groundwater quality and are not indicative of a release. SVOCs were identified in soil at the site and may be associated with former site operations such as the forge shop and the auto-repair. Petroleum-related VOCs are also located in soil vapor across the site and likely associated with former auto-repair operations and petroleum bulk storage. CVOC-related impacts to soil vapor beneath the site may be related to former industrial processes at the site such as artificial flower manufacturing. Based on the concentrations of petroleum-related VOCs and CVOCs in soil vapor, it is likely that additional on-site sources of soil and groundwater contamination are present and will be identified once the more thorough Remedial Investigation is completed.

The site was redeveloped for residential use in 1978 with seven residential buildings. By 1990, the site was developed into its present-day configuration of six two-story residential buildings.

		NYSDEC Part 375	NYSDEC Part 375	Location	SB01 SB01 1-2	SB01 SB01 4-5	SB02 SB02 1-2	SB02 SB02 6-7	SB04 SB04 0-1	SB04 SB04 8-9	SB05 SB05 1-2	SB05 SB05 7-8	SB06 SB06 1-2	SB06 SB06 5-6	SB07 SB07 1-2	SB07	SB08 SB08 1-2	SB08 SB08 8-9	SB09 SB09 1-2	SB09 SB09 7-8	SB10 SB10 1-2	SB10 SB10 8-9
Analyte	CAS	Unrestricted Use	Restricted Use	Sample Name Sample Date	09/16/2024	09/16/2024	09/19/2024	09/19/2024	09/17/2024	09/17/2024	09/17/2024	09/17/2024	09/18/2024	09/18/2024	09/19/2024	09/19/2024	09/19/2024	09/19/2024	09/16/2024	09/16/2024	09/18/2024	09/18/2024
,	Number	SCOs	Restricted- Residential SCOs	Sample Depth	1-2	4-5	1-2	6-7	0-1	8-9	1-2	7-8	1-2	5-6	1-2	7-8	1-2	8-9	1-2	7-8	1-2	8-9
V 1 : 1 0 1 0 1			Residential 300s	Unit	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
Volatile Organic Compounds 1,1,1,2-Tetrachloroethane	630-20-6	NS	NS	mg/kg	NA	<0.0005 U	NA	<0.0005 U	NA	<0.0005 U	NA	<0.00044 U	NA	<0.0005 U	NA	<0.033 U	NA	<0.00046 U	NA	<0.00053 U	NA	<0.0004811
1,1,1-Trichloroethane	71-55-6	0.68	100	mg/kg	NA	<0.0005 U	NA	<0.0005 U	NA	<0.0005 U	NA	<0.00044 U	NA	<0.0005 U	NA	<0.033 U	NA	<0.00046 U	NA	<0.00053 U	NA	<0.00048 U
1,1,2,2-Tetrachloroethane	79-34-5	NS	NS	mg/kg	NA	<0.0005 U	NA	<0.0005 U	NA	<0.0005 U	NA	<0.00044 U	NA	<0.0005 U	NA.		NA	<0.00046 U	NA	<0.00053 U	NA	<0.00048 U
1,1,2-Trichloroethane 1.1-Dichloroethane	79-00-5 75-34-3	NS 0.27	NS 26	mg/kg mg/ka	NA NA	<0.00099 U <0.00099 U	NA NA	<0.001 U <0.001 U	NA NA		NA NA	<0.00088 U <0.00088 U	NA NA	<0.001 U <0.001 U	NA NA	<0.066 U <0.066 U	NA NA		NA NA	<0.001 U <0.001 U	NA NA	<0.00096 U <0.00096 U
1,1-Dichloroethene	75-35-4	0.33	100	mg/kg	NA	<0.00099 U	NA.	<0.001 U	NA	<0.001 U	NA	<0.00088 U	NA.	<0.001 U	NA.	<0.066 U	NA	<0.00092 U	NA	<0.001 U	NA	<0.00096 U
1,1-Dichloropropene	563-58-6	NS	NS	mg/kg	NA	<0.0005 U	NA	<0.0005 U	NA	<0.0005 U	NA	<0.00044 U	N.A.	<0.0005 U	NA.	<0.033 U	NA	<0.00046 U	NA	<0.00053 U	NA	<0.00048 U
1,2,3-Trichlorobenzene	87-61-6 96-18-4	NS NS	NS	mg/kg	NA NA		NA NA		NA NA		NA NA	<0.0018 U	NA NA		NA NA		NA NA	<0.0018 U	NA NA		NA NA	<0.0019 U
1,2,3-Trichloropropane 1,2,4,5-Tetramethylbenzene	95-18-4	NS NS	NS NS	mg/kg ma/ka	NA NA	<0.002 U <0.002 U	NA NA	<0.002 U <0.002 U	NA NA	<0.002 U <0.002 U	NA NA	<0.0018 U <0.0018 U	NA NA	<0.002 U <0.002 U	NA NA	0.76	NA NA	<0.0018 U <0.0018 U	NA NA	<0.0021 U <0.0021 U	NA NA	<0.0019 U <0.0019 U
1,2,4-Trichlorobenzene	120-82-1	NS	NS	mg/kg	NA	<0.002 U	NA	<0.002 U	N.A.	<0.002 U	NA	<0.0018 U	N.A.	<0.002 U	NA.		N.A.	<0.0018 U	NA	<0.0021 U	NA	<0.0019 U
1,2,4-Trimethylbenzene	95-63-6	3.6	52	mg/kg	NA	<0.002 U	NA	<0.002 U	NA	<0.002 U	NA	<0.0018 U	NA	<0.002 U	N.A.	<0.13 U	NA	<0.0018 U	NA	<0.0021 U	NA	<0.0019 U
1,2-Dibromo-3-Chloropropane 1.2-Dibromoethane (Ethylene Dibromide)	96-12-8 106-93-4	NS NS	NS NS	mg/kg mg/kg	NA NA	<0.003 U <0.00099 U	NA NA	<0.003 U <0.001 U	NA NA	<0.003 U <0.001 U	NA NA	<0.0026 U <0.00088 U	NA NA	<0.003 U <0.001 U	NA NA	<0.2 U <0.066 U	NA NA	<0.0028 U <0.00092 U	NA NA	<0.0032 U <0.001 U	NA NA	<0.0029 U <0.00096 U
1,2-Dibromoetriane (Etnylene Dibromide) 1.2-Dichlorobenzene	95-50-1	11	100	mg/kg	NA NA		NA NA		NA NA		NA NA		NA.		NA.		NA NA		NA NA		NA.	
1,2-Dichloroethane	107-06-2	0.02	3.1	mg/kg	NA	<0.00099 U	NA	<0.001 U	NA	<0.001 U	NA	<0.00088 U	N.A.	<0.001 U	NA.	<0.066 U	N.A.	<0.00092 U	NA	<0.001 U	NA	<0.00096 U
1,2-Dichloropropane	78-87-5	NS	NS	mg/kg	NA	<0.00099 U	NA	<0.001 U	NA	<0.001 U	NA	<0.00088 U	N.A.	<0.001 U	NA.	<0.066 U	NA	<0.00092 U	NA	<0.001 U	NA.	<0.00096 U
1,3,5-Trimethylbenzene (Mesitylene) 1.3-Dichlorobenzene	108-67-8 541-73-1	8.4 2.4	52 49	mg/kg mg/kg	NA NA	<0.002 U <0.002 U	NA NA	<0.002 U <0.002 U	NA NA	<0.002 U <0.002 U	NA NA	<0.0018 U <0.0018 U	NΑ	<0.002 U <0.002 U	NA NA		NA NA	<0.0018 U <0.0018 U	NA NA	<0.0021 U <0.0021 U	NA NA	<0.0019 U <0.0019 U
1,3-Dichloropropane	142-28-9	NS NS	NS NS	mg/kg	NA.		NA.		NA.		NA.	<0.0018 U	NA NA		NA.		NA NA	<0.0018 U	NA.	<0.0021 U	NA.	<0.0019 U
1,4-Dichlorobenzene	106-46-7	1.8	13	mg/kg	NA.	<0.002 U	NA.	<0.002 U	NA	<0.002 U	NA	<0.0018 U	NA	<0.002 U	NA.	<0.13 U	NA	<0.0018 U	NA	<0.0021 U	NA.	<0.0019 U
1,4-Diethyl Benzene	105-05-5	NS	NS	mg/kg	NA	<0.002 U	NA	<0.002 U	NA	<0.002 U	NA	<0.0018 U	NA	<0.002 U	NA	0.069 J	NA	<0.0018 U	NA	<0.0021 U	NA.	<0.0019 U
1,4-Dioxane (P-Dioxane) 2.2-Dichloropropane	123-91-1 594-20-7	0.1 NS	13 NS	mg/kg mg/kg	NA NA	<0.08 U <0.002 U	NA NA	<0.08 U	NA NA	<0.08 U <0.002 U	NA NA		NA NA	<0.08 U	NA NA		NA NA	<0.074 U <0.0018 U	NA NA	<0.084 U <0.0021 U	NA NA	
2-Chlorotoluene	95-49-8	NS	NS NS	mg/kg	NA.		NA.		NA		NA	<0.0018 U	NA		NA.		NA	<0.0018 U	NA	<0.0021 U	NA	<0.0019 U
2-Hexanone (MBK)	591-78-6	NS	NS	mg/kg	NA	<0.0099 U	NA	<0.01 U	NA	<0.01 U	NA	<0.0088 U	N.A.	<0.01 U	NA.	<0.66 U	NA	<0.0092 U	NA	<0.01 U	NA	<0.0096 U
4-Chlorotoluene	106-43-4 622-96-8	NS NS	NS NS	mg/kg	NA NA	<0.002 U <0.002 U	NA NA	<0.002 U <0.002 U	NA NA	<0.002 U <0.002 U	NA NA	<0.0018 U <0.0018 U	NA NA	<0.002 U <0.002 U	NA NA		NA NA	<0.0018 U <0.0018 U	NA NA	<0.0021 U <0.0021 U	NA NA	<0.0019 U <0.0019 U
4-Ethyltoluene Acetone	67-64-1	0.05	NS 100	mg/kg ma/ka	NΑ		NA NA		NA NA	0.002 0	NΑ	0.0053 J	NA NA		NA NA		NΑ		NA NA		NΑ	<0.0019 U
Acrylonitrile	107-13-1	NS NS	NS	mg/kg	NA	<0.004 U	NA	<0.004 U	NA	<0.004 U	NA	<0.0035 U	NA.	<0.004 U	NA.	<0.26 U	NA	<0.0037 U	NA	<0.0042 U	NA	<0.0038 U
Benzene	71-43-2	0.06	4.8	mg/kg	NA	<0.0005 U	NA	<0.0005 U	NA	<0.0005 U	NA	<0.00044 U	NA	<0.0005 U	N.A.	<0.033 U	NA	0.00069	NA	<0.00053 U	NA	<0.00048 U
Bromobenzene Bromochloromethane	108-86-1 74-97-5	NS NS	NS NS	mg/kg ma/ka	NA NA	<0.002 U <0.002 U	NA NA	<0.002 U <0.002 U	NA NA	<0.002 U <0.002 U	NA NA	<0.0018 U <0.0018 U	NA NA	<0.002 U <0.002 U	NA NA		NA NA	<0.0018 U <0.0018 U	NA NA	<0.0021 U <0.0021 U	NA NA	<0.0019 U <0.0019 U
Bromodichloromethane	75-27-4	NS	NS	mg/kg	NA		NA		NA		NA		NA.		NA.		NA.		NA		NA	
Bromoform	75-25-2	NS	NS	mg/kg	NA	<0.004 U	NA	<0.004 U	NA	<0.004 U	NA	<0.0035 U	NA	<0.004 U	NA	<0.26 U	NA	<0.0037 U	NA	<0.0042 U	NA.	<0.0038 U
Bromomethane Carbon Disulfide	74-83-9 75-15-0	NS NS	NS NS	mg/kg	NA NA		NA NA		NA NA		NA NA	<0.0018 U <0.0088 U	NA NA		NA NA		NA NA	<0.0018 U <0.0092 U	NA NA		NA NA	<0.0019 U <0.0096 U
Carbon Disuride Carbon Tetrachloride	75-15-U 56-23-5	NS 0.76	NS 2.4	mg/kg mg/kg	NA NA		NA NA		NA NA		NA NA		NA NA		NA NA	<0.066 U	NA NA		NA NA		NA NA	<0.0096 U
Chlorobenzene	108-90-7	1.1	100	mg/kg	NA	<0.0005 U	NA	<0.0005 U	NA	<0.0005 U	NA	<0.00044 U	N.A.	<0.0005 U	NA.		N.A.	<0.00046 U	NA		NA	<0.00048 U
Chloroethane	75-00-3	NS	NS	mg/kg	NA	<0.002 U	NA	<0.002 U	NA	<0.002 U	NA	<0.0018 U	NA.	<0.002 U	NA	<0.13 U	NA	<0.0018 U	NA	<0.0021 U	NA.	<0.0019 U
Chloroform Chloromethane	67-66-3 74-87-3	0.37 NS	49 NS	mg/kg mg/kg	NA NA	<0.0015 U <0.004 U	NA NA	<0.0015 U <0.004 U	NA NA	<0.0015 U <0.004 U	NA NA	<0.0013 U <0.0035 U	NA NA	<0.0015 U <0.004 U	NA NA	<0.099 U <0.26 U	NA NA	<0.0014 U <0.0037 U	NA NA	<0.0016 U <0.0042 U	NA NA	<0.0014 U <0.0038 U
Cis-1.2-Dichloroethene	156-59-2	0.25	100	ma/ka	NA.		NA NA	<0.004 U	NA.	<0.004 U	NA.		NA.	<0.004 U	NA.	<0.066 U	NA NA		NA NA	<0.0042 U	NA.	<0.00096 U
Cis-1,3-Dichloropropene	10061-01-5	NS	NS	mg/kg	NA	<0.0005 U	NA	<0.0005 U	NA	<0.0005 U	NA	<0.00044 U	NA.	<0.0005 U	NA	<0.033 U	NA	<0.00046 U	NA	<0.00053 U	NA.	<0.00048 U
Cymene	99-87-6	NS	NS	mg/kg	NA	<0.00099 U	NA		NA		NA	<0.00088 U	NA		NA.	<0.066 U	NA		NA		NA	<0.00096 U
Dibromochloromethane Dibromomethane	124-48-1 74-95-3	NS NS	NS NS	mg/kg ma/ka	NA NA	<0.00099 U <0.002 U	NA NA	<0.001 U <0.002 U	NA NA	<0.001 U <0.002 U	NA NA	<0.00088 U <0.0018 U	NA NA	<0.001 U <0.002 U	NA NA	<0.066 U	NA NA	<0.00092 U <0.0018 U	NA NA	<0.001 U <0.0021 U	NA NA	<0.00096 U <0.0019 U
Dichlorodifluoromethane	75-71-8	NS	NS	mg/kg	NA	<0.002 U	NA	<0.01 U	NA	<0.01 U	NA	<0.0088 U	NA.	<0.01 U	NA.	<0.66 U	NA	<0.0092 U	NA	<0.01 U	NA	<0.0096 U
Diethyl Ether (Ethyl Ether)	60-29-7	NS	NS	mg/kg	NA	<0.002 U	NA	<0.002 U	NA	<0.002 U	NA	<0.0018 U	NA.	<0.002 U	NA	<0.13 U	NA	<0.0018 U	NA	<0.0021 U	NA.	<0.0019 U
Ethylbenzene Hexachlorobutadiene	100-41-4 87-68-3	1 NS	41 NS	mg/kg mg/kg	NA NA	<0.00099 U <0.004 U	NA NA	<0.001 U <0.004 U	NA NA		NA NA	<0.00088 U <0.0035 U	NA NA	<0.001 U <0.004 U	NA NA	<0.066 U <0.26 U	NA NA	<0.00092 U <0.0037 U	NA NA	<0.001 U <0.0042 U	NA NA	<0.00096 U <0.0038 U
Isopropylbenzene (Cumene)	98-82-8	NS NS	NS NS	mg/kg	NA.	<0.004 U	NA.	<0.004 U	NA.	<0.004 U	NA.		NA NA	<0.004 U	NA.	0.024 J	NA NA		NA.	<0.0042 U	NA.	<0.0036 U
M,P-Xylene	179601-23-1	NS	NS	mg/kg	NA.	<0.002 U	NA	<0.002 U	NA	<0.002 U	NA	<0.0018 U	NA	<0.002 U	NA.	<0.13 U	NA	<0.0018 U	NA	<0.0021 U	NA.	<0.0019 U
Methyl Ethyl Ketone (2-Butanone)	78-93-3	0.12	100 NS	mg/kg	NA	<0.0099 U	NA		NA		NA	<0.0088 U	NA		NA	<0.66 U	NA NA	<0.0092 U	NA		NA.	<0.0096 U
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone Methylene Chloride	108-10-1 75-09-2	NS 0.05	NS 100	mg/kg mg/kg	NA NA	<0.0099 U <0.005 U	NA NA		NA NA		NA NA	<0.0088 U <0.0044 U	NA NA		NA NA	<0.66 U <0.33 U	NA NA	<0.0092 U <0.0046 U	NA NA		NA NA	<0.0096 U <0.0048 U
Naphthalene	91-20-3	12	100	mg/kg	NA	<0.004 U	NA	<0.004 U	NA	<0.004 U	NA	<0.0035 U	N.A.	<0.004 U	NA.	0.14 J	N.A.	<0.0037 U	NA	<0.0042 U	NA	<0.0038 U
n-Butylbenzene	104-51-8	12	100	mg/kg	NA	<0.00099 U	NA	<0.001 U	NA	<0.001 U	NA	<0.00088 U	NA.	<0.001 U	NA	0.035 J	NA	<0.00092 U	NA	<0.001 U	NA.	<0.00096 U
n-Propylbenzene o-Xvlene (1.2-Dimethylbenzene)	103-65-1 95-47-6	3.9 NS	100 NS	mg/kg ma/ka	NA NA	<0.00099 U <0.00099 U	NA NA		NA NA		NA NA	<0.00088 U <0.00088 U	NA NA		NA NA	0.015 J	NA NA		NA NA		NA NA	<0.00096 U <0.00096 U
o-xylene (1,2-Dimethylbenzene) Sec-Butylbenzene	135-98-8	11	100	mg/kg mg/kg	NA NA		NA NA	<0.001 U	NA NA	<0.001 U	NA NA		NA NA	<0.001 U	NA NA	0.13	NA NA		NA NA	<0.001 U	NA NA	<0.00096 U
Styrene	100-42-5	NS	NS	mg/kg	NA	<0.00099 U	NA	<0.001 U	N.A.	<0.001 U	NA	<0.00088 U	NA	<0.001 U	NA	<0.066 U	NA	<0.00092 U	NA	<0.001 U	NA	<0.00096 U
T-Butylbenzene	98-06-6	5.9	100	mg/kg	NA	<0.002 U	NA	<0.002 U	NA	<0.002 U	NA	<0.0018 U	NA	<0.002 U	NA		NA	<0.0018 U	NA	<0.0021 U	NA.	<0.0019 U
Tert-Butyl Methyl Ether Tetrachloroethene (PCE)	1634-04-4 127-18-4	0.93	100 19	mg/kg mg/kg	NA NA	<0.002 U <0.0005 U	NA NA	<0.002 U <0.0005 U	NA NA	<0.002 U <0.0005 U	NA NA	<0.0018 U <0.00044 U	NA NA	<0.002 U <0.0005 U	NA NA		NA NA	<0.0018 U <0.00046 U	NA NA	<0.0021 U <0.00053 U	NA NA	<0.0019 U <0.00048 U
Toluene	108-88-3	0.7	100	mg/kg	NA.	<0.00099 U	NA.	<0.0008 U	NA.	<0.001 U	NA.	<0.00044 U	NA NA	<0.0008 U	NA.	<0.033 U	NA NA		NA.	<0.001 U	NA.	<0.00046 U
Total 1,2-Dichloroethene (Cis and Trans)	540-59-0	NS	NS	mg/kg	NA.	<0.00099 U	NA	<0.001 U	NA	<0.001 U	NA	<0.00088 U	NA	<0.001 U	NA.	<0.0011 U	NA	<0.00092 U	NA	<0.001 U	NA.	<0.00096 U
Total Xylenes	1330-20-7	0.26	100	mg/kg	NA NA	<0.00099 U	NA	<0.001 U	NA	<0.001 U	NA	<0.00088 U	NA NA	<0.001 U	NA NA	<0.0011 U	NA	<0.00092 U <0.00046 U	NA NA	<0.001 U <0.00053 U	NA.	<0.00096 U
Total, 1,3-Dichloropropene (Cis And Trans) Trans-1,2-Dichloroethene	542-75-6 156-60-5	NS 0.19	NS 100	mg/kg ma/ka	NA NA	<0.0005 U <0.0015 U	NA NA	<0.0005 U <0.0015 U	NA NA	<0.0005 U <0.0015 U	NA NA	<0.00044 U <0.0013 U	NA NA	<0.0005 U <0.0015 U	NA NA	<0.00056 U <0.099 U	NA NA	<0.00046 U	NA NA		NA NA	<0.00048 U <0.0014 U
Trans-1,3-Dichloropropene	10061-02-6	NS	NS	mg/kg	NA.	<0.00099 U	NA.	<0.001 U	NA	<0.001 U	NA	<0.0018 U	NA	<0.001 U	NA.	<0.066 U	NA	<0.00092 U	NA	<0.001 U	NA	<0.00096 U
Trans-1,4-Dichloro-2-Butene	110-57-6	NS	NS	mg/kg	NA.	<0.005 U	NA	<0.005 U	NA	<0.005 U	NA	<0.0044 U	NA	<0.005 U	NA.	<0.33 U	NA	<0.0046 U	NA	<0.0053 U	NA.	<0.0048 U
Trichloroethene (TCE)	79-01-6	0.47	21	mg/kg	NA NA	<0.0005 U	NA.	<0.0005 U	NA	<0.0005 U	NA	<0.00044 U	NA NA	<0.0005 U	NA.	<0.033 U	NA	<0.00046 U	NA.	<0.00053 U	NA.	<0.00048 U
Trichlorofluoromethane Vinyl Acetate	75-69-4 108-05-4	NS NS	NS NS	mg/kg mg/kg	NA NA	<0.004 U <0.0099 U	NA NA	<0.004 U <0.01 U	NA NA	<0.004 U <0.01 U	NA NA	<0.0035 U <0.0088 U	NA NA	<0.004 U <0.01 U	NA NA	<0.26 U	NA NA	<0.0037 U <0.0092 U	NA NA	<0.0042 U <0.01 U	NA NA	<0.0038 U <0.0096 U
Vinyl Chloride	75-01-4	0.02	0.9	ma/ka		<0.00099 U		<0.001 U		<0.01 U		<0.00088 U		<0.010		<0.066 U		<0.00092 U		<0.01 U		<0.0036 U

			NYSDEC Part 375	Location	SB01	SB01	SB02	SB02	SB04	SB04	SB05	SB05	SB06	SB06	SB07	SB07	SB08	SB08	SB09	SB09	SB10	SB10
Analyte	CAS	NYSDEC Part 375 Unrestricted Use	Restricted Use	Sample Name Sample Date	SB01_1-2 09/16/2024	SB01_4-5	SB02_1-2	SB02_6-7 09/19/2024	SB04_0-1	SB04_8-9	SB05_1-2 09/17/2024	SB05_7-8 09/17/2024	SB06_1-2	SB06_5-6	SB07_1-2 09/19/2024	SB07_7-8	SB08_1-2 09/19/2024	SB08_8-9	SB09_1-2 09/16/2024	SB09_7-8 09/16/2024	SB10_1-2 09/18/2024	SB10_8-9 09/18/2024
Analyte	Number	SCOs	Restricted-	Sample Date Sample Depth	1-2	09/16/2024	09/19/2024	6-7	09/17/2024	09/17/2024 8-9	1-2	7-8	09/18/2024	09/18/2024 5-6	1-2	09/19/2024 7-8	1-2	09/19/2024 8-9	1-2	7-8	1-2	8-9
		3005	Residential SCOs	Unit	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
Semi-Volatile Organic Compounds				7																		
1,2,4,5-Tetrachlorobenzene	95-94-3	NS	NS	mg/kg	<0.18 U	<0.22 U	<0.19 U	<0.2 U	<0.2 U	<0.19 U	<0.19 U	<0.2 U	<0.18 U	<0.2 U	<0.17 U	<0.22 U	<0.17 U	<0.18 U	<0.18 U	<0.2 U	<0.18 U	<0.21 U
1,2,4-Trichlorobenzene	120-82-1	NS	NS	mg/kg	<0.18 U	<0.22 U	<0.19 U	<0.2 U	<0.2 U	<0.19 U	<0.19 U	<0.2 U	<0.18 U	<0.2 U	<0.17 U	<0.22 U	<0.17 U	<0.18 U	<0.18 U	<0.2 U	<0.18 U	<0.21 U
1,2-Dichlorobenzene	95-50-1	1.1	100	mg/kg	<0.18 U		<0.19 U	<0.2 U	<0.2 U	<0.19 U	<0.19 U	<0.2 U	<0.18 U	<0.2 U	<0.17 U		<0.17 U	<0.18 U	<0.18 U	<0.2 U	<0.18 U	
1,3-Dichlorobenzene	541-73-1 106-46-7	2.4	49 13	mg/kg	<0.18 U		<0.19 U	<0.2 U	<0.2 U	<0.19 U	<0.19 U	<0.2 U	<0.18 U	<0.2 U				<0.18 U	<0.18 U	<0.2 U	<0.18 U	
1,4-Dichlorobenzene 1,4-Dioxane (P-Dioxane)	123-91-1	1.8 0.1	13	mg/kg mg/kg	<0.18 U <0.027 U		<0.19 U <0.028 U			<0.19 U <0.028 U	<0.19 U <0.029 U		<0.18 U <0.027 U					<0.18 U <0.027 U	<0.18 U <0.028 U		<0.18 U <0.026 U	
2,4,5-Trichlorophenol	95-95-4	NS	NS	mg/kg	<0.18 U	<0.22 U	<0.19 U	<0.2 U	<0.2 U	<0.19 U	<0.19 U	<0.2 U	<0.18 U	<0.2 U	<0.0200	<0.22 U	<0.0200	<0.18 U	<0.020 0	<0.2 U	<0.18 U	<0.032 U
2,4,6-Trichlorophenol	88-06-2	NS	NS	mg/kg	<0.11 U		<0.11 U			<0.11 U			<0.11 U		<0.1 U		<0.1 U	<0.11 U	<0.11 U		<0.1 U	
2,4-Dichlorophenol	120-83-2	NS	NS	mg/kg	<0.16 U			<0.18 U	<0.18 U			<0.18 U	<0.16 U	<0.18 U	<0.16 U	<0.19 U	<0.15 U	<0.16 U		<0.18 U	<0.16 U	<0.19 U
2,4-Dimethylphenol	105-67-9	NS	NS	mg/kg	<0.18 U	<0.22 U	<0.19 U	<0.2 U	<0.2 U	<0.19 U	<0.19 U	<0.2 U	<0.18 U	<0.2 U	<0.17 U	<0.22 U	<0.17 U	<0.18 U	<0.18 U	<0.2 U	<0.18 U	<0.21 U
2,4-Dinitrophenol	51-28-5	NS	NS	mg/kg	<0.88 U	<1.1 U	<0.91 U	<0.98 U	<0.95 U	<0.9 U	<0.93 U	<0.95 U	<0.86 U	<0.96 U	<0.84 U	<1 U	<0.82 U	<0.86 U	<0.89 U	<0.95 U	<0.84 U	<1 U
2,4-Dinitrotoluene	121-14-2	NS	NS	mg/kg	<0.18 U		<0.19 U			<0.19 U	<0.19 U		<0.18 U					<0.18 U	<0.18 U		<0.18 U	
2,6-Dinitrotoluene 2-Chloronaphthalene	606-20-2 91-58-7	NS NS	NS NS	mg/kg	<0.18 U		<0.19 U			<0.19 U	<0.19 U <0.19 U		<0.18 U					<0.18 U	<0.18 U		<0.18 U	
2-Chlorophenol	95-57-8	NS NS	NS NS	mg/kg mg/kg																		
2-Methylnaphthalene	91-57-6	NS NS	NS	mg/kg	<0.22 U	<0.27 U	<0.23 U	<0.24 U	<0.24 U	<0.22 U	<0.23 U	<0.24 U	<0.21 U	<0.24 U	<0.21 U	<0.26 U	<0.21 U	0.077 J	0.4	<0.24 U	<0.21 U	<0.25 U
2-Methylphenol (o-Cresol)	95-48-7	0.33	100	mg/kg	<0.18 U		<0.19 U			<0.19 U	<0.19 U		<0.18 U					<0.18 U	<0.18 U		<0.18 U	
2-Nitroaniline	88-74-4	NS	NS	mg/kg	<0.18 U	<0.22 U	<0.19 U	<0.2 U	<0.2 U	<0.19 U	<0.19 U	<0.2 U	<0.18 U	<0.2 U	<0.17 U	<0.22 U	<0.17 U	<0.18 U	<0.18 U	<0.2 U	<0.18 U	<0.21 U
2-Nitrophenol	88-75-5	NS	NS	mg/kg	<0.4 U	<0.48 U	<0.41 U	<0.44 U	<0.43 U	<0.41 U	<0.42 U	<0.43 U	<0.39 U	<0.43 U	<0.38 U	<0.46 U	<0.37 U	<0.39 U	<0.4 U	<0.43 U	<0.38 U	<0.46 U
3 & 4 Methylphenol (m&p Cresol)	65794-96-9	0.33	100	mg/kg	<0.26 U			<0.29 U	<0.28 U		<0.28 U	<0.28 U	<0.26 U	<0.29 U	<0.25 U		<0.25 U	<0.26 U	0.04 J	<0.28 U	<0.25 U	<0.3 U
3,3'-Dichlorobenzidine 3-Nitroaniline	91-94-1 99-09-2	NS	NS NS	mg/kg	<0.18 U		<0.19 U	<0.2 U	<0.2 U	<0.19 U	<0.19 U	<0.2 U	<0.18 U	<0.2 U				<0.18 U	<0.18 U	<0.2 U	<0.18 U	
4,6-Dinitro-2-Methylphenol	534-52-1	NS NS	NS NS	mg/kg mg/kg	<0.18 U		<0.19 U <0.5 U			<0.19 U <0.49 U	<0.19 U		<0.18 U <0.46 U					<0.18 U <0.47 U	<0.18 U <0.48 U		<0.18 U <0.46 U	
4-Bromophenyl Phenyl Ether	101-55-3	NS NS	NS NS	mg/kg	<0.18 U								<0.18 U		<0.17 U		<0.45 U		<0.18 U		<0.46 U	<0.21 U
4-Chloro-3-Methylphenol	59-50-7	NS	NS	mg/kg	<0.18 U	<0.22 U	<0.19 U	<0.2 U	<0.2 U	<0.19 U	<0.19 U	<0.2 U	<0.18 U	<0.2 U	<0.17 U	<0.22 U	<0.17 U	<0.18 U	<0.18 U	<0.2 U	<0.18 U	<0.21 U
4-Chloroaniline	106-47-8	NS	NS	mg/kg	<0.18 U		<0.19 U			<0.19 U	<0.19 U		<0.18 U		<0.17 U		<0.17 U	<0.18 U	<0.18 U		<0.18 U	<0.21 U
4-Chlorophenyl Phenyl Ether	7005-72-3	NS	NS	mg/kg	<0.18 U		<0.19 U			<0.19 U	<0.19 U		<0.18 U					<0.18 U	<0.18 U		<0.18 U	
4-Nitroaniline	100-01-6	NS	NS	mg/kg	<0.18 U	<0.22 U	<0.19 U	<0.2 U	<0.2 U	<0.19 U	<0.19 U	<0.2 U	<0.18 U	<0.2 U	<0.17 U	<0.22 U	<0.17 U	<0.18 U	<0.18 U	<0.2 U	<0.18 U	<0.21 U
4-Nitrophenol	100-02-7	NS	NS	mg/kg	<0.26 U	<0.31 U	<0.27 U	<0.28 U	<0.28 U	<0.26 U	<0.27 U	<0.28 U	<0.25 U	<0.28 U	<0.24 U	<0.3 U	<0.24 U	<0.25 U	<0.26 U	<0.28 U	<0.25 U	<0.3 U
Acenaphthene	83-32-9	20	100	mg/kg	<0.15 U	<0.18 U	<0.15 U	<0.16 U	<0.16 U	<0.15 U	<0.16 U	<0.16 U	<0.14 U	<0.16 U	<0.14 U		<0.14 U	0.54	0.81	<0.16 U	0.019 J	
Acenaphthylene Acetophenone	208-96-8 98-86-2	100 NS	100 NS	mg/kg	<0.15 U <0.18 U	<0.18 U <0.22 U	<0.15 U <0.19 U	<0.16 U <0.2 U	<0.16 U <0.2 U	<0.15 U <0.19 U	<0.16 U <0.19 U	<0.16 U <0.2 U	<0.14 U <0.18 U	<0.16 U <0.2 U	<0.14 U <0.17 U		<0.14 U <0.17 U	0.51 <0.18 U	0.43 <0.18 U	<0.16 U <0.2 U	0.056 J	<0.17 U <0.21 U
Anthracene	120-12-7	100	100	mg/kg mg/kg			<0.19 U			<0.19 U <0.11 U	<0.19 U		<0.18 U <0.11 U			0.045 J		<0.18 U	21		0.072 J	
Benzo(a)anthracene	56-55-3	1	1	mg/kg	0.13										0.064 J	0.057 J	0.082 J	2.2	3.5		0.0723	0.042 J
Benzo(a)pyrene	50-32-8	i	i	mg/kg	0.14 J	<0.18 U		<0.16 U	<0.16 U		<0.16 U	<0.16 U	<0.14 U	<0.16 U	0.062 J	<0.17 U	0.092 J	1.6	3.2	<0.16 U	0.22	<0.17 U
Benzo(b)fluoranthene	205-99-2	1	1	mg/kg	0.17										0.08 J	0.04 J	0.12	1.6	4		0.29	0.049 J
Benzo(g,h,i)Perylene	191-24-2	100	100	mg/kg	0.086 J	<0.18 U	<0.15 U	<0.16 U	<0.16 U	<0.15 U	<0.16 U	<0.16 U	<0.14 U	<0.16 U	0.049 J	0.036 J	0.055 J	0.78	2	<0.16 U	0.15	0.028 J
Benzo(k)fluoranthene	207-08-9	0.8	3.9	mg/kg	0.056 J	<0.13 U	<0.11 U	<0.12 U	<0.12 U	<0.11 U	<0.12 U	<0.12 U	<0.11 U	<0.12 U	<0.1 U	<0.13 U	0.034 J	0.44	1.2	<0.12 U	0.1	<0.13 U
Benzoic Acid	65-85-0	NS	NS	mg/kg	<0.59 U		<0.62 U	<0.66 U	<0.64 U	<0.61 U	<0.63 U	<0.64 U	<0.58 U		<0.56 U		<0.56 U	<0.58 U	<0.6 U	<0.64 U		<0.68 U
Benzyl Alcohol	100-51-6 85-68-7	NS	NS NS	mg/kg	<0.18 U		<0.19 U			<0.19 U	<0.19 U <0.19 U	<0.2 U	<0.18 U					<0.18 U	<0.18 U	<0.2 U	<0.18 U	
Benzyl Butyl Phthalate Biphenyl (Diphenyl)	92-52-4	NS NS	NS NS	mg/kg mg/kg			<0.19 U			<0.19 U	<0.19 U		<0.18 U		<0.17 U			<0.18 U	0.11 J		<0.18 U	
Bis(2-chloroethoxy) methane	111-91-1	NS	NS	mg/kg			<0.2 U	<0.22 U	<0.21 U	<0.2 U	<0.440	< 0.21 U	<0.19 U	<0.22 U	<0.1911			<0.410	<0.2 U	<0.21 U	<0.19 U	
Bis(2-chloroethyl) ether (2-chloroethyl ether)	111-44-4	NS	NS	mg/kg	<0.16 U		<0.17 U	<0.18 U	<0.18 U	<0.17 U	<0.17 U	<0.18 U	<0.16 U	<0.18 U	<0.16 U	<0.19 U		<0.16 U	<0.17 U	<0.18 U	<0.16 U	<0.19 U
Bis(2-chloroisopropyl) ether	108-60-1	NS	NS	mg/kg				< 0.24 U	<0.24 U			< 0.24 U		<0.24 U		<0.26 U				<0.24 U		< 0.25 U
Bis(2-ethylhexyl) phthalate	117-81-7	NS	NS	mg/kg	<0.18 U	<0.22 U	<0.19 U	<0.2 U	<0.2 U	<0.19 U	<0.19 U	<0.2 U	<0.18 U	<0.2 U	<0.17 U	<0.22 U	<0.17 U	<0.18 U	<0.18 U	<0.2 U	0.079 J	<0.21 U
Carbazole	86-74-8	NS	NS	mg/kg	<0.18 U		<0.19 U	<0.2 U	<0.2 U	<0.19 U	<0.19 U	<0.2 U	<0.18 U	<0.2 U	<0.17 U			0.068 J	1.1	<0.2 U	0.031 J	
Chrysene	218-01-9	1	3.9	mg/kg	0.14										0.069 J	0.083 J	0.076 J	2	3.3		0.24	0.04 J
Dibenz(a,h)anthracene Dibenzofuran	53-70-3 132-64-9	0.33	0.33	mg/kg mg/kg	0.022 J								<0.11 U <0.18 U					0.2	0.45 0.84		0.039 J 0.017 J	
Dibutyl phthalate	84-74-2	NS	NS NS	mg/kg	<0.18 U								<0.18 U		<0.17 U			<0.18 U	<0.18 U		<0.18 U	
Diethyl phthalate	84-66-2	NS	NS	mg/kg	<0.18 U	<0.22 U	<0.19 U	<0.2 U	<0.2 U	<0.19 U	<0.19 U	<0.2 U	<0.18 U	<0.2 U	<0.17 U	<0.22 U	<0.17 U	<0.18 U	<0.18 U	<0.2 U	<0.18 U	<0.21 U
Dimethyl phthalate	131-11-3	NS	NS	mg/kg	<0.18 U		<0.19 U			<0.19 U	<0.19 U		<0.18 U					<0.18 U	<0.18 U		<0.18 U	
Dioctyl phthalate	117-84-0	NS	NS	mg/kg	<0.18 U		<0.19 U			<0.19 U	<0.19 U		<0.18 U					<0.18 U	<0.18 U		<0.18 U	
Fluoranthene	206-44-0	100	100	mg/kg	0.26	<0.13 U	<0.11 U	<0.12 U	0.034 J	<0.11 U	<0.12 U	<0.12 U	<0.11 U	<0.12 U	0.11	0.066 J	0.14	5.6	9.4	<0.12 U	0.52	0.076 J
Fluorene	86-73-7	30	100	mg/kg	<0.18 U		<0.19 U	<0.2 U	<0.2 U	<0.19 U	<0.19 U	<0.2 U	<0.18 U	<0.2 U	<0.17 U	0.037 J	<0.17 U	0.85	1.3	<0.2 U	0.025 J	
Hexachlorobenzene	118-74-1	0.33	1.2	mg/kg	<0.11 U								<0.11 U					<0.11 U	<0.11 U		<0.1 U	
Hexachlorobutadiene	87-68-3	NS	NS NC	mg/kg	<0.18 U		<0.19 U			<0.19 U	<0.19 U		<0.18 U					<0.18 U	<0.18 U		<0.18 U	<0.21 U
Hexachlorocyclopentadiene Hexachloroethane	77-47-4 67-72-1	NS NS	NS NS	mg/kg mg/kg		<0.64 U <0.18 U	<0.54 U <0.15 U	<0.58 U <0.16 U	<0.57 U <0.16 U	<0.54 U <0.15 U	<0.56 U <0.16 U	<0.56 U <0.16 U	<0.51 U <0.14 U	<0.57 U <0.16 U	<0.5 U <0.14 U	<0.62 U <0.17 U	<0.49 U <0.14 U	<0.51 U		<0.56 U <0.16 U	<0.5 U <0.14 U	<0.6 U <0.17 U
Indeno(1.2.3-cd)pyrene	193-39-5	0.5	0.5	mg/kg	0.08 J			<0.16 U	<0.16 U			<0.16 U	<0.14 U	<0.16 U	0.041 J	<0.17 U	0.057 J	0.74	2	<0.16 U	0.15	
Isophorone	78-59-1	NS	NS	mg/kg	<0.16 U		<0.17 U	<0.18 U	<0.18 U	<0.17 U	<0.17 U	<0.18 U	<0.14 U	<0.18 U	<0.16 U	<0.17 U	<0.15 U	<0.16 U	<0.17 U	<0.18 U	<0.16 U	<0.17 U
Naphthalene	91-20-3	12	100	mg/kg	<0.18 U		<0.19 U			<0.19 U	<0.19 U		<0.18 U					0.11 J	1.4		0.022 J	
Nitrobenzene	98-95-3	NS	NS	mg/kg	<0.16 U	<0.2 U	<0.17 U	<0.18 U	<0.18 U	<0.17 U	<0.17 U	<0.18 U	<0.16 U	<0.18 U	<0.16 U	<0.19 U	<0.15 U	<0.16 U	<0.17 U	<0.18 U	<0.16 U	<0.19 U
n-Nitrosodi-N-Propylamine	621-64-7	NS	NS	mg/kg	<0.18 U	<0.22 U	<0.19 U	<0.2 U	<0.2 U	<0.19 U	<0.19 U	<0.2 U	<0.18 U	<0.2 U	<0.17 U	<0.22 U	<0.17 U	<0.18 U	<0.18 U	<0.2 U	<0.18 U	<0.21 U
n-Nitrosodiphenylamine	86-30-6	NS	NS	mg/kg	<0.15 U	<0.18 U	<0.15 U	<0.16 U	<0.16 U	<0.15 U	<0.16 U	<0.16 U	<0.14 U	<0.16 U	<0.14 U	<0.17 U	<0.14 U	<0.14 U	<0.15 U	<0.16 U	<0.14 U	<0.17 U
Pentachlorophenol	87-86-5	0.8	6.7	mg/kg	<0.15 U	<0.18 U		<0.16 U	<0.16 U		<0.16 U	<0.16 U	<0.14 U	<0.16 U	<0.14 U	<0.17 U	<0.14 U	<0.14 U	<0.15 U	<0.16 U	<0.14 U	<0.17 U
Phenanthrene Phonol	85-01-8 109.0E.2	100	100	mg/kg	0.13 <0.18 U				0.028 J				<0.11 U <0.18 U		0.041 J	0.042 J	0.078 J	4.3 <0.18 U	10		0.26	0.042 J
Phenol Pyrene	108-95-2 129-00-0	0.33	100	mg/kg mg/kg	<0.18 U 0.22		<0.19 U		< 0.2 U 0.032 J	<0.19 U <0.11 U	<0.19 U		<0.18 U		<0.17 U 0.092 J	<0.22 U 0.098 J	<0.17 U 0.12	<0.18 U 5.4	0.035 J		<0.18 U 0.43	<0.21 U 0.068 J
i yrono	120-00-0	100	100	myrky																		

Part					Lesseles	SB01	SB01	SB02	SB02	SB04	SB04	SB05	SB05	SB06	SB06	SB07	SB07	SB08	SB08	SB09	SB09	SB10	SB10
Part			NYSDEC Part 375	NYSDEC Part 375	Location Sample Name																		
Windows Wind	Analyte																						
	-	Number	SCOs																				
4.4 Septiment (1998) 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	Posticidos		1	nesiaenaai 0003	Unit	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
## SECOL 17-96-9 2003		72-54-8	0.0033	13	ma/ka	NA	<0.00214 U	NA	<0.00192 U	NA	<0.00178 U	NA	<0.00188 U	NA	<0.00188 U	NA	<0.00199 U	NA	<0.0017 U	NA	<0.00184 U	NA	<0.00199 U
4.4 COUNT 1975	4.4'-DDE					NA						NA		NA		NA		NA					0.000692 J
All part Control March	4,4'-DDT		0.0033	7.9		N.A.	<0.00214 U	N.A.	<0.00192 U	NA.	<0.00178 U	N.A.	<0.00188 U	NA	<0.00188 U	NA	<0.00199 U	NA	<0.0017 U	NA	<0.00184 U	NA	
Miss Control Miss	Aldrin			0.097	mg/kg			N.A.				N.A.	<0.00188 U	NA								NA.	
Algo Control	Alpha BHC (Alpha Hexachlorocyclohexane)																						
See Bis Configuration (1982) (
See Section of Section 1																							
Content plane and parments 1974 165 165 161																							
See Bee Mere Presentency Channes of Control 1988 9 0.64 100 mere 1989 10																							
Description Control					ma/ka									NA									
Second Page	Dieldrin		0.005			N.A.	<0.00134 U	NA.	<0.0012 U	NA	<0.00112 U	NA.	<0.00117 U	NA	<0.00118 U	NA	<0.00124 U	NA	< 0.00106 U	NA	< 0.00115 U	NA	<0.00124 U
Second Activity 1987 1988 188	Endosulfan Sulfate				mg/kg				<0.000799 U				<0.000782 U						<0.000708 U		<0.000767 U		
September Sept	Endrin																						
German Refunding (Figure 1974) Figure 1974 Figure 19	Endrin Aldehyde																						
Germen Germen (Germen) 5103-74-2 NS myllg NA colorate (Fermina) 5103-74-2 NS myllg NA colorate (Fermina) NA co																							
Marchestories 78-448 O.042 2.1 mg/mg MA																							
Marchelpfospies 1024873 NS NS mg/mg NA																							
Methodyside 72-455 NS NS mg/sg NA <0.0001U																							
Together 1987 1997 1997 1997 1997 1997 1997 1997	Methoxychlor					NA		NA	<0.0036 U			NA		NA		NA						NA	
Fig. 1986 1897-1912 NS NS mg/lg 1A	Toxaphene	8001-35-2	NS	NS		N.A.	<0.0401 U	N.A.	< 0.036 U	NA.	<0.0335 U	N.A.		NA		NA	< 0.0374 U	NA	< 0.0319 U	NA	< 0.0345 U	NA	< 0.0374 U
Figh 121 May 100 1222 11 1104-262 NS NS mg/ng 1A 1A 1A 1A 0.0079 1 A 1A 1A 1A 1A 1A 1A	Polychlorinated Biphenyl																						
Fig. 122 Absolute 1222 111411-18-8 NS																							
Figs 1-324 [Archord 1242] Figs 3-369-21-9 NS NS mg/ng NA																							
Fig. 1328 [Angle 1248] NS NS mys mys NS NS NS mys N																							
PGB-1584 (Angoer) 1254 11097-89-1 NS NS NS marks NS mar																							
PGB-1820 (Anceto 1260)											NA			NA		NA				NA	NA		
PGB-1886 (Moreot 1288) 1110-144 NS NS mg/rg NA	PCB-1260 (Aroclor 1260)						NA				NA			NA		NA	NA		NA	NA	NA		
Total PCBs 1393-98 0.1 1 mg/mg NA NA NA 000570 NA	PCB-1262 (Aroclor 1262)				mg/kg																		
Marinum 7429905 NS NS marks 4340 0599 4 4340 4480 4480 4420 4480 4420 4450 4470 4280 1820 5870 5180 6300 4200 6700 7380 6250 6340 9.700 Antimory 7440382 13 16 marks 4340 0599 4 4340 4480 4480 4480 4480 4470 4280 1820 4870 4270 4280 4270 4280 4270 4280 4270 4280 4270 4280 4270 4280 4270 4280 4280 4280 4280 4280 4280 4280 428	PCB-1268 (Aroclor 1268)																						
Alumhum		1336-36-3	0.1	1	mg/kg	N.A.	NA	NA	<0.0579 U	NA	NA	N.A.	NA	NA	NA.	NA	NA	NA	NA.	NA	NA.	NA	N.A.
Amenic 7440-980 NS NS mg/m e434 U 659 J e434 U 659 e434 U 648 U 642 U 645 U 647 U 641 U 647 U 641 U 647 U 648 U 647 U 64		7400 00 5	NO	NO		7 700	44.500	44000	0.000	0.010	4.500	40.000	5.000	11000	5.030	E 400	0.000	4.000	0.700	7.000	0.050	0.010	0.700
Arsenic																							
Barlum 7440-93 350 400 mg/kg 73.3 172 102 16.8 70.8 106 80.9 150 631 135 81.6 106 25.4 110 70.2 120 109 54.2																							
Beryllium	Barium																						
Calcium Part	Beryllium								0.196 J		0.208 J		0.266 J	0.53		0.325 J	0.292 J		0.411 J		0.287 J		
Chromium, Troisi	Cadmium	7440-43-9	2.5	4.3	mg/kg	<0.867 U	0.144 J	<0.868 U	< 0.932 U	<0.937 U	<0.885 U	0.126 J	< 0.945 U	0.123 J	<0.95 U	<1.64 U	<5.15 U		<1.63 U	<0.883 U	<0.932 U	<1.67 U	<1.93 U
Chromium, Total Table Ta			NS																				
Chromity 1606683-1 30 180 mg/kg 19 182 209 6.86 142 7.58 269 9.84 21 9.13 88.1 118 32.7 112 19.7 9.76 14.4 16.3	Chromium, Hexavalent		1																				
Cobair C																							
Copper 7440-96-8 SQ 270																							
Incomplete March																							
$ \begin{bmatrix} lead \\ 743 \\ 956 \\ 4 \\ NS \end{bmatrix} = \begin{pmatrix} 3 \\ 400 \\ 10 \\ mgh_{G} \\ 91 \\ 10 \\ $																							
Manganese 7439-965 1600 2000 mg/kg 330 483 165 210 348 206 516 469 149 254 221 338 216 378 300 317 342 544 344 345																							
	Magnesium	7439-95-4	NS	NS	mg/kg	26,300	9,330	5,690	13,100	15,900	18,200	7,320	21,600	5,790	18,900	27,200	59,000	22,100	38,100	12,900	23,000	28,000	57,900
Notesi	Manganese	7439-96-5	1600		mg/kg	330		165	210		206	516	469		254	221	338	216	378	300	317	342	
Polassium Polass	Mercury																						
Selenium 7782-492 3.9 180 mg/kg 0.282 J 1.07 J <1.78 U <1.88 U <1.77 U <1.82 U <1.89 U <1.77 U <2.51 U <2.27 U <0.251 J <2.27 U <3.21 U <3.27 U <3.21 U <3.27 U <3																							
Sher 7440224 2 180 mg/kg 0.472 14.8 0.454 0.456 0.452 0.																							
Sodium 7440-286 NS NS mg/kg 82.1 45.3 567 157 117 88 62 65.2 812 38 79.3 152 120 243 604 45.7 62.1 108 199.1 Thailium 7440-280 NS NS mg/kg 4.73 0.389 4.74 0.488 0 4.88 0																							
Thallium 7440-280 NS NS mg/kg <173 0.389 J <1/34 0.488 0 <187 U <177 U <182 U <189 U <174 U <189 U <174 U <19 U <227 U <103 U <327 U <123 U <327 U <176 U <188 U <37 U <178 U <187 U <178 U <189 U <174 U <189 U <174 U <189 U <187 U <189 U <174 U <189 U <187 U <189 U <1																							
Vanadium 7440-62-2 NS NS mg/kg 24.8 20.6 21.5 9.19 20.8 9.24 29.9 11 17.9 11 158 13.5 87.4 13.7 32.1 11.9 18.1 15 Zinc 7440-66-6 109 10000 mg/kg 56.3 162 70.4 20.6 114 22.4 67.9 25.4 42.1 22.1 34.8 46.5 27.3 36.8 60.2 28.3 98.3 32.2 General Chemistry																							
Z_{loc} 7440-666 109 10000 $m_0^{0}k_9$ 583 162 70.4 20.6 114 22.4 67.9 25.4 42.1 22.1 34.8 46.5 27.3 36.8 60.2 28.3 98.3 32.2 General Chemistry																							
General Chemistry	Zinc																						
Total Suspended Solids TSS NS NS Percent 89.8 72.8 86.9 80.7 82.1 86.2 84.2 83 91 82.2 93.6 76.2 95.8 91.7 88 83 93.4 78.2	General Chemistry																						
	Total Suspended Solids	TSS	NS	NS	Percent	89.8	72.8	86.9	80.7	82.1	86.2	84.2	83	91	82.2	93.6	76.2	95.8	91.7	88	83	93.4	78.2

East Adams Redevelopment - Phase Three Area Syracuse, New York Langan Project No.: 170859701

Notes:

CAS - Chemical Abstract Service NS - No standard

mg/kg - milligram per kilogram

NA - Not analyzed

RL - Reporting limit

<RL - Not detected

Soil sample analytical results are compared to the New York State Department of Environmental Conservation (NYSDEC) Title 6 of the Official Compilation of New York Codes, Rules, and Regulations (NYCRR) Part 375 Unrestricted Use and Restricted Use Restricted-Residential Soil Cleanup Objectives (SCO).

Criterion comparisons for 3- & 4-methylphenol (m&p cresol) are provided for reference. Promulgated SCOs are for 3-methylphenol (m-cresol) and 4-methylphenol (p-cresol).

Qualifiers:

- I The lower value for the two columns has been reported due to obvious interference.
- J The analyte was detected above the method detection limit (MDL), but below the RL; therefore, the result is an estimated concentration.
- P The relative percent difference (RPD) between the results for the two columns exceeds the method-specified criteria.
- U The analyte was analyzed for, but was not detected at a level greater than or equal to the RL; the value shown in the table is the RL.

Exceedance Summary:

- 10 Result exceeds Unrestricted Use SCOs
- 10 Result exceeds Restricted Use Restricted-Residential SCOs

			Location	MW01	MW02	MW04
	CAS	NYSDEC	Sample Name	MW01_092524		MW04 092524
Analyte	Number	SGVs	Sample Date	09/25/2024	09/25/2024	09/25/2024
			Unit	Result	Result	Result
Volatile Organic Compounds	000 00 0			0.511	0.5.11	0.5.11
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	630-20-6 71-55-6	5 5	ug/l ug/l	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U
1,1,2,2-Tetrachloroethane	79-34-5	5	ug/l	<2.5 U	<2.5 U	<2.5 U
1,1,2-Trichloroethane	79-00-5	1	ug/l	<1.5 U	<1.5 U	<1.5 U
1,1-Dichloroethane	75-34-3	5	ug/l	<2.5 U	<2.5 U	<2.5 U
1,1-Dichloroethene	75-35-4	5	ug/l	<0.5 U	<0.5 U	<0.5 U
1,1-Dichloropropene	563-58-6	5	ug/l	<2.5 U	<2.5 U	<2.5 U
1,2,3-Trichlorobenzene	87-61-6	5	ug/l	<2.5 U	<2.5 U	<2.5 U
1,2,3-Trichloropropane	96-18-4	0.04	ug/l	<2.5 U	<2.5 U	<2.5 U
1,2,4,5-Tetramethylbenzene	95-93-2	5	ug/l	<2 U	<2 U	<2 U
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	120-82-1 95-63-6	5 5	ug/l ug/l	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U
1,2-Dibromo-3-Chloropropane	96-12-8	0.04	ug/l	<2.5 U	<2.5 U	<2.5 U
1,2-Dibromoethane (Ethylene Dibromide)	106-93-4	0.0006	ug/l	<2 U	<2 U	<2 U
1,2-Dichlorobenzene	95-50-1	3	ug/l	<2.5 U	<2.5 U	<2.5 U
1,2-Dichloroethane	107-06-2	0.6	ug/l	<0.5 U	<0.5 U	<0.5 U
1,2-Dichloropropane	78-87-5	1	ug/l	<1 U	<1 U	<1 U
1,3,5-Trimethylbenzene (Mesitylene)	108-67-8	5	ug/l	<2.5 U	<2.5 U	<2.5 U
1,3-Dichlorobenzene	541-73-1	3	ug/l	<2.5 U	<2.5 U	<2.5 U
1,3-Dichloropropane	142-28-9	5	ug/l	<2.5 U	<2.5 U	<2.5 U
1,4-Dichlorobenzene 1,4-Diethyl Benzene	106-46-7 105-05-5	3 NS	ug/l ug/l	<2.5 U <2 U	<2.5 U <2 U	<2.5 U <2 U
1,4-Dioxane (P-Dioxane)	123-91-1	0.35	ug/l	<250 U	<250 U	<250 U
2,2-Dichloropropane	594-20-7	5	ug/l	<2.5 U	<2.5 U	<2.5 U
2-Chlorotoluene	95-49-8	5	ug/l	<2.5 U	<2.5 U	<2.5 U
2-Hexanone (MBK)	591-78-6	50	ug/l	<5 U	<5 U	<5 U
4-Chlorotoluene	106-43-4	5	ug/l	<2.5 U	<2.5 U	<2.5 U
4-Ethyltoluene	622-96-8	NS	ug/l	<2 U	<2 U	<2 U
Acetone	67-64-1	50	ug/l	<5 U	4.5 J	<5 U
Acrylonitrile Benzene	107-13-1 71-43-2	5 1	ug/l	<5 U <0.5 U	<5 U <0.5 U	<5 U <0.5 U
Bromobenzene	108-86-1	і 5	ug/l ug/l	<0.5 U	<0.5 U	<0.5 U
Bromochloromethane	74-97-5	5	ug/l	<2.5 U	<2.5 U	<2.5 U
Bromodichloromethane	75-27-4	50	ug/l	<0.5 U	<0.5 U	<0.5 U
Bromoform	75-25-2	50	ug/l	<2 U	<2 U	<2 U
Bromomethane	74-83-9	5	ug/l	<2.5 U	<2.5 U	<2.5 U
Carbon Disulfide	75-15-0	60	ug/l	<5 U	<5 U	<5 U
Carbon Tetrachloride	56-23-5	5	ug/l	<0.5 U	<0.5 U	<0.5 U
Chlorobenzene Chloroethane	108-90-7	5 5	ug/l	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U
Chloroform	75-00-3 67-66-3	7	ug/l ug/l	<2.5 U	<2.5 U	<2.5 U
Chloromethane	74-87-3	5	ug/l	<2.5 U	<2.5 U	<2.5 U
Cis-1,2-Dichloroethene	156-59-2	5	ug/l	<2.5 U	<2.5 U	<2.5 U
Cis-1,3-Dichloropropene	10061-01-5	0.4	ug/l	<0.5 U	<0.5 U	<0.5 U
Cymene	99-87-6	5	ug/l	<2.5 U	<2.5 U	<2.5 U
Dibromochloromethane	124-48-1	50	ug/l	<0.5 U	<0.5 U	<0.5 U
Dibromomethane	74-95-3	5	ug/l	<5 U	<5 U	<5 U
Dichlorodifluoromethane	75-71-8	5	ug/l	<5 U	<5 U	<5 U
Diethyl Ether (Ethyl Ether) Ethylbenzene	60-29-7 100-41-4	NS 5	ug/l	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U
Isopropylbenzene (Cumene)	98-82-8	5	ug/l ug/l	<2.5 U	<2.5 U	<2.5 U
M,P-Xylene	179601-23-1	5	ug/l	<2.5 U	<2.5 U	<2.5 U
Methyl Ethyl Ketone (2-Butanone)	78-93-3	50	ug/l	<5 U	<5 U	<5 U
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	108-10-1	NS	ug/l	<5 U	<5 U	<5 U
Methylene Chloride	75-09-2	5	ug/l	<2.5 U	<2.5 U	<2.5 U
n-Butylbenzene	104-51-8	5	ug/l	<2.5 U	<2.5 U	<2.5 U
n-Propylbenzene	103-65-1	5	ug/l	<2.5 U	<2.5 U	<2.5 U
o-Xylene (1,2-Dimethylbenzene)	95-47-6	5	ug/l	<2.5 U	<2.5 U	<2.5 U
Sec-Butylbenzene Styrene	135-98-8 100-42-5	5 5	ug/l	<2.5 U <2.5 U	<2.5 U <2.5 U	<2.5 U <2.5 U
T-Butylbenzene	98-06-6	5	ug/l ug/l	<2.5 U	<2.5 U	<2.5 U
Tert-Butyl Methyl Ether	1634-04-4	10	ug/l	<2.5 U	0.34 J	<2.5 U
Tetrachloroethene (PCE)	127-18-4	5	ug/l	<0.5 U	<0.5 U	<0.5 U
Toluene	108-88-3	5	ug/l	<2.5 U	<2.5 U	<2.5 U
Total 1,2-Dichloroethene (Cis and Trans)	540-59-0	NS	ug/l	<2.5 U	<2.5 U	<2.5 U
Total Xylenes	1330-20-7	5	ug/l	<2.5 U	<2.5 U	<2.5 U
Total, 1,3-Dichloropropene (Cis And Trans)	542-75-6	0.4	ug/l	<0.5 U	<0.5 U	<0.5 U
Trans-1,2-Dichloroethene	156-60-5	5	ug/l	<2.5 U	<2.5 U	<2.5 U
Trans-1,3-Dichloropropene Trans-1,4-Dichloro-2-Butene	10061-02-6 110-57-6	0.4 5	ug/l ug/l	<0.5 U <2.5 U	<0.5 U <2.5 U	<0.5 U <2.5 U
Trichloroethene (TCE)	79-01-6	5	ug/l	<0.5 U	<0.5 U	<2.5 U
Trichlorofluoromethane	75-69-4	5	ug/l	<2.5 U	<2.5 U	<2.5 U
Vinyl Acetate	108-05-4	NS	ug/l	<5 U	<5 U	<5 U
Vinyl Chloride	75-01-4	2	ug/l	<1 U	<1 U	<1 U

	1		Lagartica	NA)A/O1	NAVA (0.0	N 40 A /O 4
	CAS	NYSDEC	Location Sample Name	MW01 MW01_092524	MW02 MW02 092524	MW04 MW04_092524
Analyte	Number	SGVs	Sample Date	09/25/2024	09/25/2024	09/25/2024
		00.0	Unit	Result	Result	Result
Semi-Volatile Organic Compounds						
1,2,4,5-Tetrachlorobenzene	95-94-3	5	ug/l	<10 U	<10 U	<10 U
1,2,4-Trichlorobenzene	120-82-1	5	ug/l	<5 U	<5 U	<5 U
1,2-Dichlorobenzene	95-50-1	3	ug/l	<2 U	<2 U	<2 U
1,3-Dichlorobenzene 1,4-Dichlorobenzene	541-73-1 106-46-7	3 3	ug/l	<2 U <2 U	<2 U <2 U	<2 U <2 U
2,4,5-Trichlorophenol	95-95-4	NS	ug/l ug/l	<2 U <5 U	<2 U	<2 U
2,4,6-Trichlorophenol	88-06-2	NS	ug/l	<5 U	<5 U	<5 U
2,4-Dichlorophenol	120-83-2	1	ug/l	<5 U	<5 U	<5 U
2,4-Dimethylphenol	105-67-9	1	ug/l	<5 U	<5 U	<5 U
2,4-Dinitrophenol	51-28-5	1	ug/l	<20 U	<20 U	<20 U
2,4-Dinitrotoluene	121-14-2	5	ug/l	<5 U	<5 U	<5 U
2,6-Dinitrotoluene	606-20-2	5	ug/l	<5 U	<5 U	<5 U
2-Chloronaphthalene	91-58-7	10	ug/l	<0.2 U	<0.2 U	<0.2 U
2-Chlorophenol	95-57-8	NS	ug/l	<2 U	<2 U	<2 U
2-Methylnaphthalene 2-Methylphenol (o-Cresol)	91-57-6 95-48-7	NS NS	ug/l	<0.1 U <5 U	<0.1 U <5 U	<0.1 U <5 U
2-Nitroaniline	95-46-7 88-74-4	5	ug/l ug/l	<5 U	<5 U	<5 U
2-Nitrophenol	88-75-5	NS	ug/l	<10 U	<10 U	<10 U
3 & 4 Methylphenol (m&p Cresol)	65794-96-9	NS	ug/l	<5 U	<5 U	<5 U
3,3'-Dichlorobenzidine	91-94-1	5	ug/l	<5 U	<5 U	<5 U
3-Nitroaniline	99-09-2	5	ug/l	<5 U	<5 U	<5 U
4,6-Dinitro-2-Methylphenol	534-52-1	NS	ug/l	<10 U	<10 U	<10 U
4-Bromophenyl Phenyl Ether	101-55-3	NS	ug/l	<2 U	<2 U	<2 U
4-Chloro-3-Methylphenol	59-50-7	NS	ug/l	<2 U	<2 U	<2 U
4-Chloroaniline	106-47-8	5	ug/l	<5 U	<5 U	<5 U
4-Chlorophenyl Phenyl Ether 4-Nitroaniline	7005-72-3	NS 5	ug/l	<2 U <5 U	<2 U <5 U	<2 U <5 U
4-Nitroaniline 4-Nitrophenol	100-01-6 100-02-7	ns Ns	ug/l ug/l	<5 U	<5 U	<5 U <10 U
Acenaphthene	83-32-9	20	ug/l	<0.1 U	<0.1 U	<0.1 U
Acenaphthylene	208-96-8	NS	ug/l	<0.1 U	<0.1 U	<0.1 U
Acetophenone	98-86-2	NS	ug/l	<5 U	<5 U	<5 U
Anthracene	120-12-7	50	ug/l	<0.1 U	<0.1 U	<0.1 U
Benzo(a)anthracene	56-55-3	0.002	ug/l	<0.1 U	<0.1 U	<0.1 U
Benzo(a)pyrene	50-32-8	0	ug/l	<0.1 U	<0.1 U	<0.1 U
Benzo(b)fluoranthene	205-99-2	0.002	ug/l	<0.1 U	<0.1 U	<0.1 U
Benzo(g,h,i)Perylene Benzo(k)fluoranthene	191-24-2 207-08-9	NS 0.002	ug/l	<0.1 U <0.1 U	<0.1 U <0.1 U	<0.1 U <0.1 U
Benzoic Acid	65-85-0	0.002 NS	ug/l ug/l	<50 U	<50 U	<50 U
Benzyl Alcohol	100-51-6	NS	ug/l	<2 U	<2 U	<2 U
Benzyl Butyl Phthalate	85-68-7	50	ug/l	<5 U	<5 U	<5 U
Biphenyl (Diphenyl)	92-52-4	5	ug/l	<2 U	<2 U	<2 U
Bis(2-chloroethoxy) methane	111-91-1	5	ug/l	<5 U	<5 U	<5 U
Bis(2-chloroethyl) ether (2-chloroethyl ether)	111-44-4	1	ug/l	<2 U	<2 U	<2 U
Bis(2-chloroisopropyl) ether	108-60-1	5	ug/l	<2 U	<2 U	<2 U
Bis(2-ethylhexyl) phthalate	117-81-7	5	ug/l	<3 U	<3 U	<3 U
Carbazole	86-74-8	NS 0.002	ug/l	<2 U <0.1 U	<2 U <0.1 U	<2 U <0.1 U
Chrysene Dibenz(a,h)anthracene	218-01-9 53-70-3	0.002 NS	ug/l ug/l	<0.1 U	<0.1 U	<0.1 U
Dibenzofuran	132-64-9	NS	ug/l	<2 U	<2 U	<2 U
Dibutyl phthalate	84-74-2	50	ug/l	2.8 J	<5 U	<5 U
Diethyl phthalate	84-66-2	50	ug/l	<5 U	<5 U	<5 U
Dimethyl phthalate	131-11-3	50	ug/l	<5 U	<5 U	<5 U
Dioctyl phthalate	117-84-0	50	ug/l	<5 U	<5 U	<5 U
Fluoranthene	206-44-0	50	ug/l	<0.1 U	<0.1 U	<0.1 U
Fluorene	86-73-7	50	ug/l	<0.1 U	<0.1 U	<0.1 U
Hexachlorobenzene	118-74-1	0.04	ug/l	<0.8 U	<0.8 U	<0.8 U
Hexachlorobutadiene Hexachlorocyclopentadiene	87-68-3 77-47-4	0.5 5	ug/l ug/l	<0.5 U <20 U	<0.5 U <20 U	<0.5 U <20 U
Hexachloroethane	67-72-1	5	ug/l	<0.8 U	<0.8 U	<0.8 U
Indeno(1,2,3-cd)pyrene	193-39-5	0.002	ug/l	<0.1 U	<0.1 U	<0.1 U
Isophorone	78-59-1	50	ug/l	<5 U	<5 U	<5 U
Naphthalene	91-20-3	10	ug/l	0.1 J	<0.1 U	<0.1 U
Nitrobenzene	98-95-3	0.4	ug/l	<2 U	<2 U	<2 U
n-Nitrosodi-N-Propylamine	621-64-7	NS	ug/l	<5 U	<5 U	<5 U
n-Nitrosodiphenylamine	86-30-6	50	ug/l	<2 U	<2 U	<2 U
Pentachlorophenol	87-86-5	1	ug/l	<0.8 U	<0.8 U	<0.8 U
Phenanthrene Phenol	85-01-8 108-95-2	50 1	ug/l ug/l	<0.1 U <5 U	<0.1 U <5 U	<0.1 U <5 U
Pyrene	129-00-0	50	ug/l	<0.1 U	<0.1 U	<0.1 U
i yrene	123-00-0	υU	ug/I	<∪.IU	<u.1 th="" u<=""><th><u.iu< th=""></u.iu<></th></u.1>	<u.iu< th=""></u.iu<>

			Location	MW01	MW02	MW04
Analyte	CAS	NYSDEC	Sample Name	MW01_092524	MW02_092524	MW04_092524
Allalyte	Number	SGVs	Sample Date	09/25/2024	09/25/2024	09/25/2024
Pesticides			Unit	Result	Result	Result
4,4'-DDD	72-54-8	0.3	ug/l	<0.029 U	<0.029 U	<0.029 U
4,4'-DDE	72-55-9	0.2	ug/l	<0.029 U	<0.029 U	<0.029 U
4,4'-DDT Aldrin	50-29-3	0.2	ug/l	<0.029 U	<0.029 U	<0.029 U
Alpha BHC (Alpha Hexachlorocyclohexane)	309-00-2 319-84-6	0 0.01	ug/l ug/l	<0.014 U <0.014 U	<0.014 U <0.014 U	<0.014 U <0.014 U
Alpha Chlordane	5103-71-9	NS	ug/l	<0.014 U	<0.014 U	<0.014 U
Alpha Endosulfan	959-98-8	NS	ug/l	<0.014 U	<0.014 U	<0.014 U
Beta Bhc (Beta Hexachlorocyclohexane)	319-85-7	0.04	ug/l	<0.014 U	<0.014 U	<0.014 U
Beta Endosulfan	33213-65-9	NS	ug/l	<0.029 U	<0.029 U	<0.029 U
Chlordane (alpha and gamma)	57-74-9	0.05	ug/l	<0.143 U	<0.143 U	<0.143 U
Delta Bhc (Delta Hexachlorocyclohexane)	319-86-8	0.04	ug/l	<0.014 U	<0.014 U	<0.014 U
Dieldrin Endosulfan Sulfate	60-57-1 1031-07-8	0.004 NS	ug/l ug/l	<0.029 U <0.029 U	<0.029 U <0.029 U	<0.029 U <0.029 U
Endosulian Sullate Endrin	72-20-8	0	ug/l	<0.029 U	<0.029 U	<0.029 U
Endrin Aldehyde	7421-93-4	5	ug/l	<0.029 U	<0.029 U	<0.029 U
Endrin Ketone	53494-70-5	5	ug/l	<0.029 U	<0.029 U	<0.029 U
Gamma Bhc (Lindane)	58-89-9	0.05	ug/l	<0.014 U	<0.014 U	<0.014 U
Gamma Chlordane (Trans)	5103-74-2	NS	ug/l	<0.014 U	<0.014 U	<0.014 U
Heptachlor	76-44-8	0.04	ug/l	<0.014 U	<0.014 U	<0.014 U
Heptachlor Epoxide	1024-57-3	0.03	ug/l	<0.014 U	<0.014 U	<0.014 U
Methoxychlor Toxaphene	72-43-5 8001-35-2	35 0.06	ug/l	<0.143 U <0.143 U	<0.143 U <0.143 U	<0.143 U <0.143 U
Polychlorinated Biphenyl	000 1-30-Z	0.00	ug/l	<0.145 U	₹U.143 U	₹0.140 U
PCB-1016 (Aroclor 1016)	12674-11-2	NS	ug/l	<0.071 U	<0.071 U	<0.071 U
PCB-1221 (Aroclor 1221)	11104-28-2	NS	ug/l	<0.071 U	<0.071 U	<0.071 U
PCB-1232 (Aroclor 1232)	11141-16-5	NS	ug/l	<0.071 U	<0.071 U	<0.071 U
PCB-1242 (Aroclor 1242)	53469-21-9	NS	ug/l	<0.071 U	<0.071 U	<0.071 U
PCB-1248 (Aroclor 1248)	12672-29-6	NS	ug/l	<0.071 U	<0.071 U	<0.071 U
PCB-1254 (Aroclor 1254) PCB-1260 (Aroclor 1260)	11097-69-1 11096-82-5	NS NS	ug/l	<0.071 U <0.071 U	<0.071 U <0.071 U	<0.071 U <0.071 U
PCB-1260 (Aroclor 1260)	37324-23-5	NS	ug/l ug/l	<0.071 U	<0.071 U	<0.071 U
PCB-1268 (Aroclor 1268)	11100-14-4	NS	ug/l	<0.071 U	<0.071 U	<0.071 U
Total PCBs	1336-36-3	0.09	ug/l	<0.071 U	<0.071 U	<0.071 U
Metals - Dissolved						
Aluminum	7429-90-5	NS	ug/l	4.39 J	5.77 J	6.2 J
Antimony Arsenic	7440-36-0 7440-38-2	3 25	ug/l	<4 ∪ 2.39	<4 U 2.17	<4 U 0.25 J
Barium	7440-36-2	1000	ug/l ug/l	86.63	136.8	102
Beryllium	7440-41-7	3	ug/l	<0.5 U	<0.5 U	<0.5 U
Cadmium	7440-43-9	5	ug/l	<0.2 U	<0.2 U	<0.2 U
Calcium	7440-70-2	NS	ug/l	130,000	219,000	112,000
Chromium, Total	7440-47-3	50	ug/l	<1 U	<1 U	<1 U
Cobalt	7440-48-4	NS	ug/l	0.54	1.57	0.39 J
Copper Iron	7440-50-8	200 300	ug/l	0.76 J <50 U	0.88 J <50 U	1.89 <50 U
Lead	7439-89-6 7439-92-1	25	ug/l ug/l	<1 U	<50 U	<1 U
Magnesium	7439-95-4	35000	ug/l	24,700	41,000	21,600
Manganese	7439-96-5	300	ug/l	413.7	911.6	188
Mercury	7439-97-6	0.7	ug/l	0.2	0.14 J	<0.2 U
Nickel	7440-02-0	100	ug/l	0.77 J	3.49	1.01 J
Potassium	7440-09-7	NS	ug/l	3,360	1,970	10,900
Selenium	7782-49-2	10	ug/l	<5 U	<5 U	2.24 J
Silver Sodium	7440-22-4 7440-23-5	50 20000	ug/l ug/l	<0.4 U 37,000	<0.4 U 336,000	<0.4 U 9,500
Thallium	7440-28-0	0.5	ug/l	<1 U	<1 U	<1 U
Vanadium	7440-62-2	NS	ug/l	<5 U	<5 U	<5 U
Zinc	7440-66-6	2000	ug/l	<10 U	<10 U	<10 U
Metals - Total						
Aluminum	7429-90-5	NS	ug/l	6.32 J	6.99 J	38.3
Antimony Arsenic	7440-36-0 7440-38-2	3 25	ug/l ug/l	<4 ∪ 2.85	<4 U 1.88	<4 U 0.25 J
Barium	7440-36-2	1000	ug/l	93.54	133.9	102.2
Beryllium	7440-41-7	3	ug/l	<0.5 U	<0.5 U	<0.5 U
Cadmium	7440-43-9	5	ug/l	<0.2 U	<0.2 U	<0.2 U
Calcium	7440-70-2	NS	ug/l	133,000	221,000	114,000
Chromium, Hexavalent	18540-29-9	50	ug/l	<10 U	<10 U	<10 U
Chromium, Total	7440-47-3	NS	ug/l	0.27 J	0.54 J	0.27 J
Chromium, Trivalent Cobalt	16065-83-1	NS	ug/l	<10 U 0.5	<10 U	<10 U
Copper	7440-48-4 7440-50-8	NS 200	ug/l ug/l	0.5 0.67 J	1.44 0.97 J	0.41 J 1.72
Iron	7440-50-6	300	ug/l	458	57.5	77.2
Lead	7439-92-1	25	ug/l	<1 U	<1 U	<1 U
Magnesium	7439-95-4	35000	ug/l	24,200	40,100	21,300
Manganese	7439-96-5	300	ug/l	394	828.4	182.2
Mercury	7439-97-6	0.7	ug/l	<0.2 U	<0.2 U	<0.2 U
Nickel Potossium	7440-02-0	100	ug/l	0.84 J	3.3	1.04 J
Potassium Selenium	7440-09-7 7782-49-2	NS 10	ug/l	3,470 <5 U	2,220 <5 U	10,900 2.55 J
Silver	7782-49-2 7440-22-4	50	ug/l ug/l	<0.4 U	<5 U <0.4 U	<0.4 U
Sodium	7440-22-4	20000	ug/l	38,300	322,000	9,270
Thallium	7440-28-0	0.5	ug/l	<1 U	<1 U	<1 U
Vanadium	7440-62-2	NS	ug/l	<5 U	<5 U	<5 U
Zinc	7440-66-6	2000	ug/l	<10 U	<10 U	<10 U

East Adams Redevelopment Phase Three Area Syracuse, New York Langan Project No.: 170859701

Notes:

CAS - Chemical Abstract Service NS - No standard ug/l - microgram per liter NA - Not analyzed

RL - Reporting limit

<RL - Not detected

Groundwater sample analytical results are compared to the New York State Department of Environmental Conservation (NYSDEC) Title 6 Codes, Rules, and Regulations (NYCRR) Part 703.5 and the NYSDEC Technical and Operation Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values for Class GA Water and published addenda (herein collectively referenced as "NYSDEC SGVs").

Qualifiers:

- J The analyte was detected above the method detection limit (MDL), but below the RL; therefore, the result is an estimated concentration.
- U The analyte was analyzed for, but was not detected at a level greater than or equal to the RL; the value shown in the table is the RL.

Exceedance Summary:

- Result exceeds NYSDEC SGVs

		NVCDOU D::	Location	AA01	SV01	SV02	SV04	SV05
	CAS	NYSDOH Decision	Sample Name	AA01_091924	SV01_091924	SV02_091924	SV04_091924	SV05_091924
Analyte	Number	Matrices Minimum	Sample Date	09/19/2024	09/19/2024	09/19/2024	09/19/2024	09/19/2024
		Concentrations	Sample Type Unit	AA Result	SV Result	SV Result	SV Result	SV Result
Volatile Organic Compounds			Unit	nesuit	nesuit	nesuit	nesuit	nesuit
1,1,1-Trichloroethane	71-55-6	100	ug/m3	<1.09 U	6.17	37.2	18.3	14.8
1,1,2,2-Tetrachloroethane	79-34-5	NS	ug/m3	<1.37 U	<1.5 U	<12.6 U	<6.87 U	<7 U
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	NS	ug/m3	<1.53 U	<1.68 U	<14 U	<7.66 U	<7.82 U
1,1,2-Trichloroethane	79-00-5	NS	ug/m3	<1.09 U	<1.19 U	<9.98 U	<5.46 U	<5.57 U
1,1-Dichloroethane	75-34-3	NS	ug/m3	<0.809 U	<0.886 U	<7.41 U	<4.05 U	<4.13 U
1,1-Dichloroethene	75-35-4	6	ug/m3	<0.793 U	<0.868 U	<7.26 U	<3.96 U	<4.04 U
1,2,4-Trichlorobenzene	120-82-1	NS	ug/m3	<1.48 U	<1.63 U	<13.6 U	<7.42 U	<7.57 U
1,2,4-Trimethylbenzene	95-63-6	60	ug/m3	<0.983 U	1.15	<9 U	<4.92 U	<5.01 U
1,2-Dibromoethane (Ethylene Dibromide)	106-93-4	NS	ug/m3	<1.54 U	<1.68 U	<14.1 U	<7.69 U	<7.84 U
1,2-Dichlorobenzene	95-50-1	NS	ug/m3	<1.2 U	<1.32 U	<11 U	<6.01 U	<6.13 U
1,2-Dichloroethane	107-06-2	NS	ug/m3	<0.809 U	6.44	<7.41 U	<4.05 U	<4.13 U
1,2-Dichloropropane	78-87-5	NS	ug/m3	<0.924 U	<1.01 U	<8.46 U	<4.62 U	<4.71 U
1,2-Dichlorotetrafluoroethane	76-14-2	NS	ug/m3	<1.4 U	<1.53 U	<12.8 U	<6.99 U	<7.13 U
1,3,5-Trimethylbenzene (Mesitylene)	108-67-8	60	ug/m3	<0.983 U	<1.08 U	<9 U	<4.92 U	<5.01 U
1,3-Butadiene	106-99-0	NS	ug/m3	<0.442 U	6.28	<4.05 U	3.54	<2.26 U
1,3-Dichlorobenzene	541-73-1	NS	ug/m3	<1.2 U	3.92	18	17.6	12.1
1,4-Dichlorobenzene	106-46-7	NS	ug/m3	<1.2 U	<1.32 U	<11 U	<6.01 U	<6.13 U
1,4-Dioxane (P-Dioxane)	123-91-1	NS	ug/m3	<0.721 U	1.41	<6.59 U	<3.6 U	<3.68 U
2,2,4-Trimethylpentane	540-84-1	60 NS	ug/m3	<0.934 U	8.73	<8.55 U	<4.67 U	11.3
2-Hexanone (MBK)	591-78-6	NS NS	ug/m3	<0.82 U	3.31	8.77	<4.1 U <4.92 U	18.6
4-Ethyltoluene Acetone	622-96-8 67-64-1	NS NS	ug/m3	<0.983 U 11.5	<1.08 U 1.360	<9 U 943	359	<5.01 U 387
Allyl Chloride (3-Chloropropene)	107-05-1	NS NS	ug/m3 ug/m3	<0.626 U	<0.685 U	<5.73 U	<3.13 U	<3.19 U
Benzene	71-43-2	60	ug/m3	<0.639 U	101	112	42.2	85
Benzyl Chloride	100-44-7	NS	ug/m3	<1.04 U	<1.13 U	<9.48 U	<5.18 U	<5.28 U
Bromodichloromethane	75-27-4	NS	ug/m3	<1.34 U	<1.47 U	<12.3 U	<6.7 U	<6.83 U
Bromoethene	593-60-2	NS	ug/m3	<0.874 U	<0.958 U	<8 U	<4.37 U	<4.46 U
Bromoform	75-25-2	NS	ug/m3	<2.07 U	<2.26 U	<18.9 U	<10.3 U	<10.5 U
Bromomethane	74-83-9	NS	ug/m3	<0.777 U	<0.85 U	<7.11 U	<3.88 U	<3.96 U
Carbon Disulfide	75-15-0	NS	ug/m3	<0.623 U	51.1	23.5	8.38	31.5
Carbon Tetrachloride	56-23-5	6	ug/m3	<1.26 U	1.55	<11.5 U	<6.29 U	<6.42 U
Chlorobenzene	108-90-7	NS	ug/m3	<0.921 U	<1.01 U	<8.43 U	<4.61 U	<4.7 U
Chloroethane	75-00-3	NS	ug/m3	<0.528 U	3.8	<4.83 U	<2.64 U	<2.69 U
Chloroform	67-66-3	NS	ug/m3	<0.977 U	1.6	<8.94 U	5.96	<4.98 U
Chloromethane	74-87-3	NS	ug/m3	1.1	6.9	<3.78 U	2.35	<2.11 U
Cis-1,2-Dichloroethene	156-59-2	6	ug/m3	<0.793 U	<0.868 U	<7.26 U	<3.96 U	<4.04 U
Cis-1,3-Dichloropropene	10061-01-5	NS	ug/m3	<0.908 U	<0.994 U	<8.31 U	<4.54 U	<4.63 U
Cyclohexane	110-82-7	60	ug/m3	<0.688 U	11.8	100	<3.44 U	10.5
Dibromochloromethane	124-48-1	NS	ug/m3	<1.7 U	<1.87 U	<15.6 U	<8.52 U	<8.69 U
Dichlorodifluoromethane	75-71-8	NS	ug/m3	2.37	2.15	<9.05 U	5.24	7.27
Ethanol	64-17-5	NS	ug/m3	<9.42 U	475	782	454	332
Ethyl Acetate	141-78-6	NS	ug/m3	<1.8 U	<1.97 U	<16.5 U	<9.01 U	<9.15 U
Ethylbenzene	100-41-4	60 NS	ug/m3	<0.869 U	<0.951 U	<7.95 U	<4.34 U	<4.43 U
Hexachlorobutadiene Isopropanol	87-68-3 67-63-0	NS NS	ug/m3 ug/m3	<2.13 U 3.02	<2.34 U 2,230	<19.5 U 1,410	<10.7 U 2,030	<10.9 U 855
M,P-Xylene	179601-23-1	200		<1.74 U	<1.9 U	<15.9 U	<8.69 U	<8.82 U
м,Р-хујеће Methyl Ethyl Ketone (2-Butanone)	78-93-3	NS	ug/m3 ug/m3	<1.74 U	3,300	1,180	221	631
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	108-10-1	NS NS	ug/m3	<2.05 U	19.6	<18.8 U	17.5	13.5
Methylene Chloride	75-09-2	100	ug/m3	<1.74 U	2.35	<15.9 U	<8.69 U	<8.82 U
Naphthalene	91-20-3	60	ug/m3	<1.05 U	<1.15 U	<9.6 U	<5.24 U	<5.35 U
n-Heptane	142-82-5	200	ug/m3	<0.82 U	8.2	116	<4.1 U	7.21
n-Hexane	110-54-3	200	ug/m3	0.726	45.8	352	10.1	88.5
p-Xylene (1,2-Dimethylbenzene)	95-47-6	60	ug/m3	<0.869 U	<0.951 U	<7.95 U	<4.34 U	<4.43 U
Styrene	100-42-5	NS	ug/m3	<0.852 U	1.67	<7.79 U	<4.26 U	<4.34 U
Fert-Butyl Alcohol	75-65-0	NS	ug/m3	<1.52 U	79.1	114	54	58.8
Tert-Butyl Methyl Ether	1634-04-4	NS	ug/m3	<0.721 U	<0.79 U	<6.6 U	<3.61 U	<3.68 U
Tetrachloroethene (PCE)	127-18-4	100	ug/m3	<1.36 U	<1.49 U	<12.4 U	<6.78 U	<6.92 U
Tetrahydrofuran	109-99-9	NS	ug/m3	<1.47 U	2.04	<13.5 U	<7.37 U	<7.49 U
Toluene	108-88-3	300	ug/m3	1.56	24	41.1	17.3	46.4
Trans-1,2-Dichloroethene	156-60-5	NS	ug/m3	<0.793 U	<0.868 U	<7.26 U	<3.96 U	<4.04 U
Trans-1,3-Dichloropropene	10061-02-6	NS	ug/m3	<0.908 U	<0.994 U	<8.31 U	<4.54 U	<4.63 U
Trichloroethene (TCE)	79-01-6	6	ug/m3	<1.07 U	1.66	<9.83 U	<5.37 U	16.1
Trichlorofluoromethane	75-69-4	NS	ug/m3	1.28	<1.23 U	<10.3 U	<5.62 U	<5.73 U
Vinyl Chloride	75-01-4	6	ug/m3	<0.511 U	1.32	<4.68 U	<2.56 U	<2.61 U

East Adams Redevelopment Phase Three Area Syracuse, New York Langan Project No.: 170859701

Notes:

AA - Ambient Air

SV - Soil Vapor

CAS - Chemical Abstract Service

NS - No standard

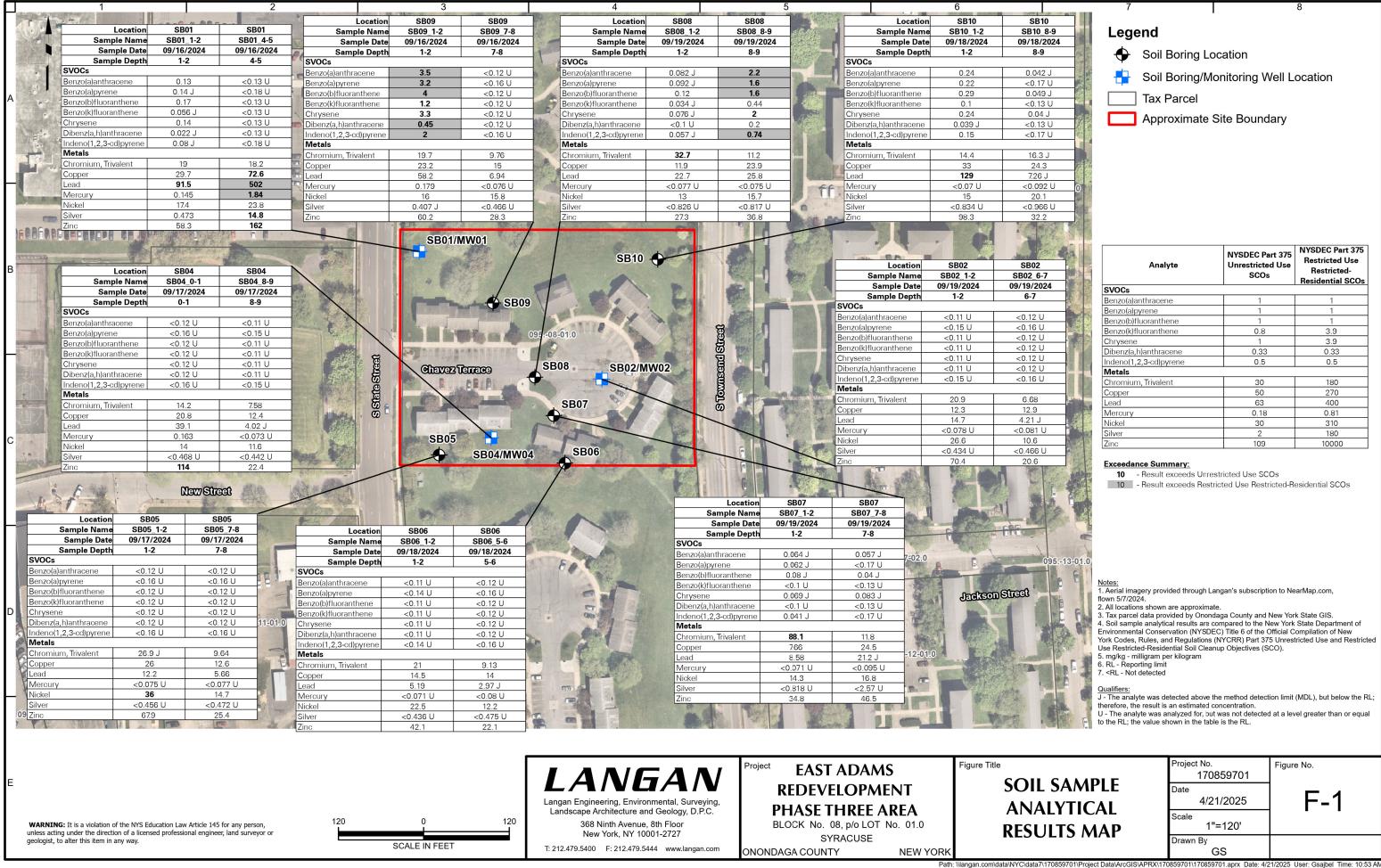
ug/m3 - microgram per cubic meter

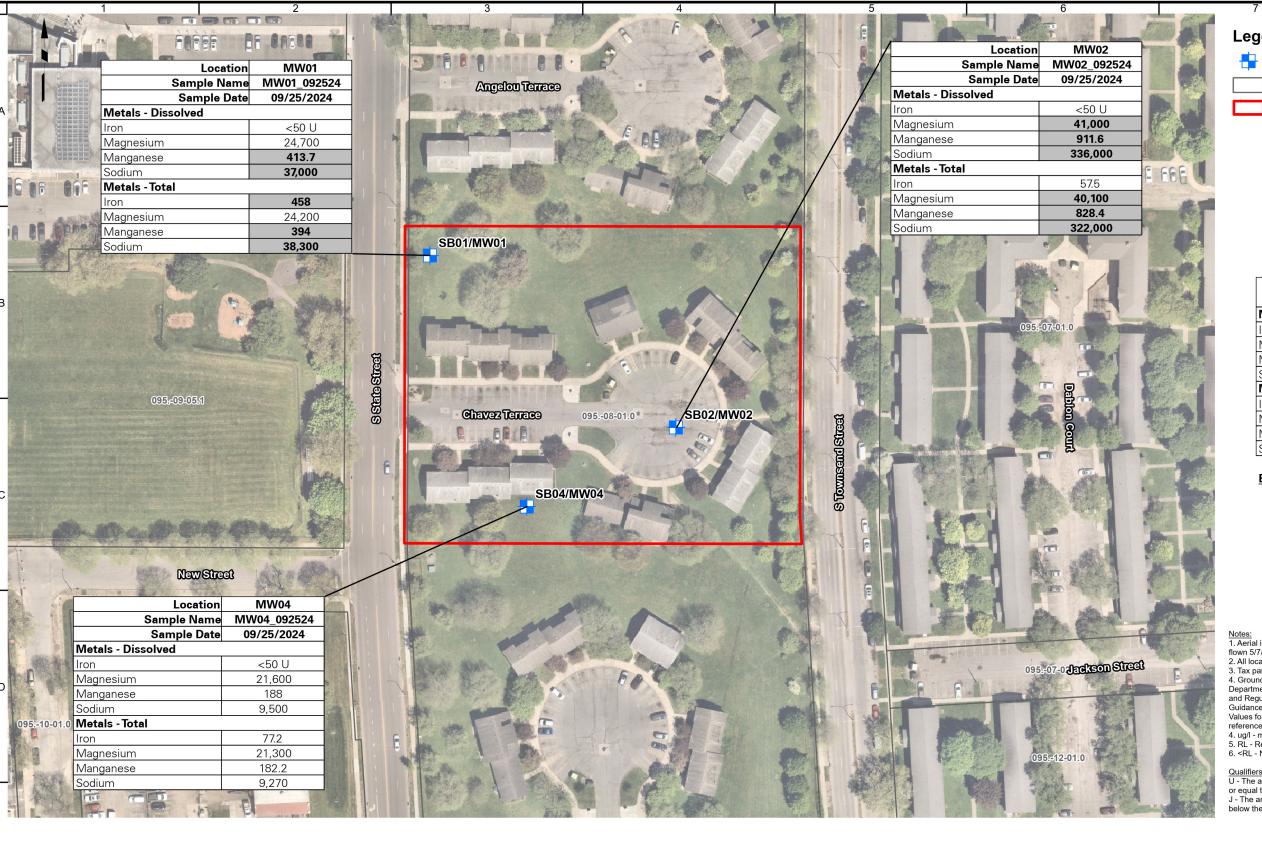
NA - Not analyzed

RL - Reporting limit

<RL - Not detected

Soil vapor sample analytical results are compared to the minimum soil vapor concentrations at which mitigation is recommended as set forth in the New York State Department of Health (NYSDOH) October 2006 Guidance for Evaluating Soil Vapor Intrusion in the State of New York Decision Matrices for Sub-Slab Vapor and Indoor Air and subsequent updates (2017 and February 2024).


Ambient air sample analytical results are shown for reference only.


Qualifiers:

U - The analyte was analyzed for, but was not detected at a level greater than or equal to the RL; the value shown in the table is the RL.

Exceedance Summary:

10 - NYSDOH Decision Matrices Minimum Concentrations

Legend

Soil Boring/Monitoring Well Location

Tax Parcel

Approximate Site Boundary

Analyte	NYSDEC SGVs
Metals - Dissolved	
Iron	300
Magnesium	35000
Manganese	300
Sodium	20000
Metals - Total	
Iron	300
Magnesium	35000
Manganese	300
Sodium	20000

Exceedance Summary:

10 - Result exceeds NYSDEC SGVs

Notes:

1. Aerial imagery provided through Langan's subscription to NearMap.com, flown 5/7/2024.

2. All locations shown are approximate.
3. Tax parcel data provided by Cnondaga County and New York State GIS.
4. Groundwater sample analytical results are compared to the New York State Department of Environmental Conservation (NYSDEC) Title 6 Codes, Rules, and Regulations (NYCRR) Part 703.5 and the NYSDEC Technical and Operation Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values for Class GA Water and published addenda (herein collectively referenced as "NYSDEC SGVs").

4. ug/l - microgram per liter 5. RL - Reporting limit

6. <RL - Not detected

U - The analyte was analyzed for, but was not detected at a level greater than or equal to the RL; the value shown in the table is the RL.

J - The analyte was detected above the method detection limit (MDL), but below the RL; therefore, the result is an estimated concentration

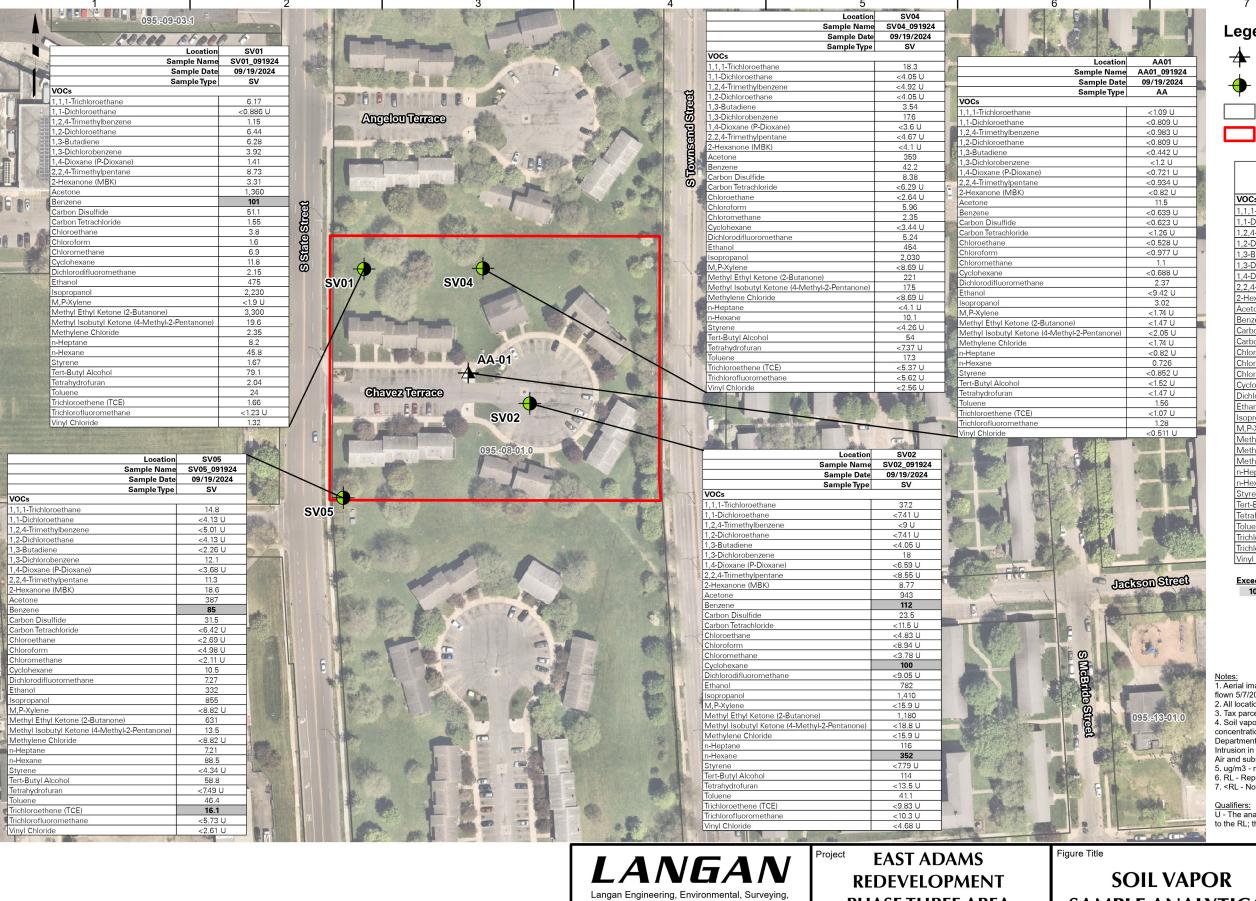
WARNING: It is a violation of the NYS Education Law Article 145 for any person, unless acting under the direction of a licensed professional engineer, land surveyor or geologist, to alter this item in any way.

LANGAN

Langan Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C. 368 Ninth Avenue, 8th Floor New York, NY 10001-2727

T: 212.479.5400 F: 212.479.5444 www.langan.com

EAST ADAMS REDEVELOPMENT PHASE THREE AREA


BLOCK No. 08, p/o LOT No. 01.0 SYRACUSE

NEW YORK

ONONDAGA COUNTY

GROUNDWATER SAMPLE ANALYTICAL RESULTS MAP

Project No. 170859701	Figure No.
Date 4/21/2025	F-2
Scale 1"=100'	. –
Drawn By GS	

Legend

Ambient Air Sample Location

Soil Vapor Sample Location

Approximate Site Boundary

	NYSDOH Decision
Analyte	Matrices Minimum
	Concentrations
VOCs	
1,1,1-Trichloroethane	100
1,1-Dichloroethane	NS
1,2,4-Trimethylbenzene	60
1,2-Dichloroethane	NS
1,3-Butadiene	NS
1,3-Dichlorobenzene	NS
1,4-Dioxane (P-Dioxane)	NS
2,2,4-Trimethylpentane	60
2-Hexanone (MBK)	NS
Acetone	NS
Benzene	60
Carbon Disulfide	NS
Carbon Tetrachloride	6
Chloroethane	NS
Chloroform	NS
Chloromethane	NS
Cyclohexane	60
Dichlorodifluoromethane	NS
Ethanol	NS
Isopropanol	NS
M,P-Xylene	200
Methyl Ethyl Ketone (2-Butanone)	NS
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	NS
Methylene Chloride	100
n-Heptane	200
n-Hexane	200
Styrene	NS
Tert-Butyl Alcohol	NS
Tetrahydrofuran	NS
Toluene	300
Trichloroethene (TCE)	6
Trichlorofluoromethane	NS
Vinyl Chloride	6

Exceedance Summary:

10 - NYSDOH Decision Matrices Minimum Concentrations

Notes:
1. Aerial imagery provided through Langan's subscription to NearMap.com, flown 5/7/2024.

2. All locations shown are approximate.

3. Tax parcel data provided by Onondaga County and New York State GIS. 4. Soil vapor sample analytical results are compared to the minimum soil vapor concentrations at which mitigation is recommended as set forth in the New York State Department of Health (NYSDOH) October 2006 Guidance for Evaluating Soil Vapor Intrusion in the State of New York Decision Matrices for Sub-Slab Vapor and Indoor Air and subsequent updates (2017 and February 2024). 5. ug/m3 - microgram per cubic meter

6. RL - Reporting limit

7. <RL - Not detected

 $\underline{\text{Qualifiers:}} \\ \text{U - The analyte was analyzed for, but was not detected at a level greater than or equal}$ to the RL; the value shown in the table is the RL.

Landscape Architecture and Geology, D.P.C.

368 Ninth Avenue, 8th Floor New York, NY 10001-2727

SCALE IN FEET

WARNING: It is a violation of the NYS Education Law Article 145 for any person,

geologist, to alter this item in any way.

unless acting under the direction of a licensed professional engineer, land surveyor or

T: 212.479.5400 F: 212.479.5444 www.langan.com

PHASE THREE AREA

BLOCK No. 08, p/o LOT No. 01.0

NEW YORK

SYRACUSE ONONDAGA COUNTY

SAMPLE ANALYTICAL RESULTS MAP

Project No. 170859701	Figure No.
Date 4/21/2025	F-3
Scale 1"=120'	
Drawn By GS	

ATTACHMENT G SECTION VII: REQUESTOR INFORMATION

The Requestor, East Adams Phase III, L.P., is a New York limited partnership and the developer of the proposed Brownfield Cleanup Program (BCP) property located at 200 Chavez Terrace and identified as part of Onondaga County Tax Parcel ID Section 095, Block 08, Lot 01.0 (herein referred to as "the site"). A copy of the New York State Department of State Division of Corporations entity information for East Adams Phase III, L.P. (herein referred to as the "Requestor") is included with this attachment.

The Requestor is not the current owner of the site; however, the Requestor was contracted by the current site owner, Syracuse Housing Authority, to develop the property. There is no other relationship between the Requestor's corporate members and the current owner besides the above.

The Requestor certifies it is a Volunteer. A letter from Syracuse Housing Authority indicating that they have granted site access to the Requestor throughout the course of the BCP is attached.

Registered Agent Name and Address

Department of State Division of Corporations

Entity Information

Return to Results

Return to Search

Entity Details ENTITY NAME: EAST ADAMS PHASE III, L.P. DOS ID: 6688838 **FOREIGN LEGAL NAME: FICTITIOUS NAME: ENTITY TYPE: DOMESTIC LIMITED PARTNERSHIP DURATION DATE/LATEST DATE OF DISSOLUTION: 12/31/2123** SECTIONOF LAW: LIMITED PARTNERSHIP - 121-201 PARTNERSHIP LAW - PARTNERSHIP LAW **ENTITY STATUS: ACTIVE** DATE OF INITIAL DOS FILING: 01/04/2023 **REASON FOR STATUS: EFFECTIVE DATE INITIAL FILING: 01/04/2023 INACTIVE DATE: FOREIGN FORMATION DATE:** STATEMENT STATUS: **COUNTY: ONONDAGA NEXT STATEMENT DUE DATE:** JURISDICTION: NEW YORK, UNITED STATES NFP CATEGORY: ENTITY DISPLAY Service of Process on the Secretary of State as Agent The Post Office address to which the Secretary of State shall mail a copy of any process against the corporation served upon the Secretary of State by personal delivery: Name: C/O C T CORPORATION SYSTEM Address: 28 LIBERTY STREET, NEW YORK, NY, UNITED STATES, 10005 Electronic Service of Process on the Secretary of State as agent: Not Permitted Chief Executive Officer's Name and Address Name: Address: Principal Executive Office Address Address:

Name:			
Address:			
Entity Primary Location N	ame and Address		
Name:			
Address:			
Farmcorpflag			
Is The Entity A Farm Co	orporation: NO		
Stock Information			
Share Value	Number Of Shares	Value Per Share	

AgenciesApp DirectoryCountiesEventsProgramsServices

East Adams Phase III, L.P. 100 North Broadway, Ste. 100 St. Louis, MO 63102

December 3, 2024

William Simmons Syracuse Housing Authority (SHA) 516 Burt Street Syracuse, NY 13202

Re: Site Access for Brownfield Cleanup Program Work

East Adams Redevelopment - Phase Three Area

200 Chavez Terrace Syracuse, New York

Dear Mr. Simmons:

As you are aware, East Adams Phase III, L.P. will be submitting an application to the Brownfield Cleanup Program (BCP) for the East Adams Redevelopment – Phase Three Area located at 200 Chavez Terrace in Syracuse, New York ("the site"). The site is currently owned by SHA. As the BCP applicant, we are required to seek access from the current property owner for acceptance into the BCP. In order to file the application, we need written permission from you to access the site throughout the BCP Project. Additionally, the selected remedy may require the imposition of an environmental easement. By execution of this site access agreement letter, you are hereby allowing site access for this purpose, and agreeing to the imposition of an environmental easement if deemed necessary.

Sincerely, Michael Saunders

Michael Saunders, Vice President

East Adams Phase III, L.P.

As owner of the site, I agree to allow East Adams Phase III, L.P. and its contractors, to access the above referenced property currently owned by SHA to perform the required BCP investigation work, remediation, and to place an easement of the site if determined to be necessary.

William Simmons, Executive Director

Willer & Sim

Syracuse Housing Authority

ATTACHMENT H SECTION X: REQUESTOR ELIGIBILITY INFORMATION

Requestor Eligibility Statement

East Adams Phase III, L.P. is properly designated as a Volunteer because its liability arises solely from the recent involvement as a potential developer and long-term lessee of the property. There is no indication of any contribution to or exacerbation of site conditions during the time of Requestors involvement with the site.

The Requestor has taken appropriate care with respect to current site conditions, to prevent any threatened future release, and to prevent or limit human, environmental or natural resource exposures to any previously released contamination. As such, the Requestor qualifies as a Volunteer in the Brownfield Cleanup Program and is prepared to undertake all necessary remediation required to address the identified site contamination.

The Requestor is not the current owner of the site; however, the Requestor was contracted by the current site owner, Syracuse Housing Authority, to develop the property. There is no other relationship between the Requestor's corporate members and the current owner besides the above. A letter from Syracuse Housing Authority indicating that they have granted site access to the Requestor is included in Attachment G.

ATTACHMENT I SECTION XII: CONTACT LIST INFORMATION

<u>Item 1 – Chief Executive Officer and Zoning Board</u>

Chief Executive Officer

Ben Walsh, Mayor City Hall 233 East Washington Street Suite 201 Syracuse, NY 13202 (315) 448-8005

Syracuse Zoning Administration

One Park Place 300 South State Street Suite 700 Syracuse, NY 13202 (315) 448-8640

Onondaga County Executive

J. Ryan McMahon II, County Executive John H. Mulroy Civic Center 14th Floor Syracuse, NY 13202 (315) 435-3516

Onondaga County Department of Planning

Troy W. Waffner, Planning Director
Onondaga County Department of Planning
Carnegie Building
335 Montgomery Street
1st Floor
Syracuse, NY 13202
(315) 435-2611

Item 2 - Residents, Owners, and Occupants, of the Property and Adjacent Properties

Residents, owners, and occupants of the site and properties adjacent to the site

The site is owned by Syracuse Housing Authority and occupied by various residential tenants.

The following is a list of adjacent property owners:

Syracuse Housing Authority

100-192 Angelou Terrace, 1031-59 South

Townsend Street, 199-101 Latimer Terrace,

and 218 New Street Syracuse, NY 13202

Syracuse, New York

City of Syracuse

201 New Street and 258 Adams Street

Syracuse, NY 13202

City of Syracuse and County of Onondaga

817-35 South State Street Syracuse, NY 13202 NY Susquehanna & W Railway Co

300 East Taylor Street Syracuse, NY 13202

Item 3 - Local News Media

Local news media from which the community typically obtains information.

WSYR – TV 5904 Bridge Street East Syracuse, NY 13057 (315) 446-9900 Syracuse Post-Standard 220 South Warren Street Syracuse, NY 13202 (315) 470-0032

<u>Item 4 - Public Water Supply</u>

City of Syracuse Water Department Water Administration/Engineering Offices 101 North Beech Street Syracuse, NY 13210 (315) 473-2608

<u>Item 5 – Request for Contact</u>

We are not aware of any requests for inclusion on the contact list.

<u>Item 6 – Schools and Day Care Facilities</u>

There are no schools or day care facilities located on the site. The following are schools or day care facilities located within ½ mile of the site:

Institute of Technology at Syracuse Central (about 0.1 miles northwest of the site) Samantha Maddox, Principal 258 East Adams Street Syracuse, NY 13202 (315) 435-4300

SUNY Upstate Childcare Center (about 0.2 miles west of the site) Ernest J. Mason, Director 650 South Salina Street Syracuse, NY 13202 (315) 464-4438

Dr. King Pre-K and Elementary School (about 0.4 miles southeast of the site) Kuricheses Alexander, Principal 416 E Raynor Ave Syracuse, NY 13202 (315) 435-4580 Cab Horse Commons Day Care Center (about 0.2 miles west of the site) Chandra Smith, Director 667 South Salina Street Syracuse, NY 13202 (315) 479-1113

Salvation Army Day Care Center (about 0.2 miles west of the site) Chandra Smith, Director 667 South Salina Street Syracuse, NY 13202 (315) 479-1305

Johnson Vocational Center
The Syracuse City School District
(about 0.4 miles northeast of the site)
John Dittmann, Jr., Principal
573 East Genesee Street
Syracuse, NY 13202
(315) 435-4499

Item 7 – Document Repository

A letter was sent to and received from the following source acknowledging and agreeing to act as a document repository for documents generated under the Brownfield Cleanup Program:

Onondaga County Public Libraries: Central Library

Rene Battelle, Branch Manager 447 South Salina Street Syracuse, NY 13205 (315) 435-1900

reference@onlib.org

Brownfield Cleanup Program Application East Adams Redevelopment – Phase Three Area 200 Chavez Terrace Section 095, Block 08, p/o Lot 01.0 Syracuse, New York September 2025 Page 4

<u>Hours</u>

 Monday:
 8:30 AM - 5:00 PM

 Tuesday - Wednesday:
 8:30 AM - 7:30 PM

 Thursday - Friday:
 8:30 AM - 5:00 PM

 Saturday:
 9:00 AM - 5:00 PM

A letter from the library acknowledging that it agrees to act as a document repository for the project is included in this attachment.

Technical Excellence Practical Experience Client Responsiveness

November 20, 2024

Onondaga County Public Libraries: Central Library 447 South Salina Street Syracuse, New York 13205 (315) 435-1900

Re: Brownfield Cleanup Program Application

East Adams Phase III, L.P. 200 Chavez Terrace Syracuse, NY 13202

To Whom it May Concern:

We represent East Adams Phase III, L.P. in their anticipated New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program (BCP) application for the above-referenced site at 200 Chavez Terrace in Syracuse, New York. It is a NYSDEC requirement that we supply them with a letter certifying that the local library is willing and able to serve as a public repository for all documents pertaining to the cleanup of this property. Please sign below if you are able to certify that your library would be willing and able to act as the public repository for this BCP project.

Sincerely,

Langan Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C.

Ali Reach

Senior Staff Geologist

Yes, Onondaga County Public Library: Central Library is willing and able to act as a public repository on behalf of East Adams Phase III, L.P. in their cleanup of 200 Chavez Terrace under the NYSDEC BCP.

(Name)

11/20/24 (Date)

(Title)