

Phase II Environmental Site Assessment

Location:

Midtown Plaza 18 East Cayuga Street & 83-87East First Street Oswego, New York 13126

Prepared for:

Mr. Louis Fournier SRE Midtown Garage Acquisitions LLC & SRE Midtown Acquisitions LLC 525 Plum Street Syracuse, New York 13204

LaBella Project No. 2181011

May 2018

Table of Contents

1.0 1.1		DUCTION
1.2	Limit	ations & Exceptions1
2.0 2.1		ROUND
2.2	Physi	ical Setting1
2.3	Site I	History & Land Use1
2.4	Adjad	cent Property Use2
2.5	Sumi	mary of Previous Studies2
3.0		TVE3
4.0 4.1		OF WORK
5.0 5.1		GS5 Geology and Hydrology5
5.2	Field	Screening Results6
5.3	Labo	ratory Analytical Results7
5	.3.1	Soil7
5	.3.2	Groundwater8
6.0 7.0 8.0	RECOM	USIONS9 IMENDATIONS9 URES OF ENVIRONMENTAL PROFESSIONALS
Figures	S	Figure 1 – Site Location Map Figure 2 – Testing Locations Figure 3 – Summary of Soil and Groundwater Data Above NYS Standards
Tables		Table 1 – Summary of Detected Volatiles in Soil Table 2 – Summary of Semivolatiles and Metals in Soil Table 3 – Summary of Detected Volatiles in Groundwater
Append Append		Field Logs Laboratory Reports

1.0 INTRODUCTION

LaBella Associates, D.P.C. ("LaBella") was retained by SRE Midtown Garage Acquisitions LLC & SRE Midtown Acquisitions LLC to conduct a Phase II Environmental Site Assessment (ESA) at the properties located at 18 East Cayuga Street (SBL #128.47-02-04) and 83-87 East First Street (SBL #128.47-02-05), City of Oswego, Oswego County, New York, hereinafter referred to as the "Site" (see Figure 1). The Site is also known as "Midtown Plaza". This Phase II ESA has been performed in conformance with the scope and limitations of ASTM Practice E 1903-11.

1.1 Special Terms & Conditions

The findings of this Phase II ESA are based on the scope of work and project objectives as stated in LaBella Proposal number P1801963 dated February 20, 2018.

1.2 Limitations & Exceptions

Work associated with this Phase II ESA was performed in accordance with generally accepted environmental engineering and environmental contracting practices for this region. LaBella Associates, D.P.C., makes no other warranty or representation, either expressed or implied, nor is one intended to be included as part of its services, proposals, contracts or reports.

In addition, LaBella cannot provide guarantees, certifications or warranties that the property is or is not free of environmental impairment or other regulated solid wastes. The Client shall be aware that the data and representative samples from any given soil sampling point or monitoring well may represent conditions that apply only at that particular location, and such conditions may not necessarily apply to the general Site as a whole.

2.0 BACKGROUND

2.1 Site Description & Features

The Site comprises approximately 2.0 acres of land and is developed with a two-story commercial building ("Site Building") and concrete parking lot. Concrete driveways, sidewalks and a courtyard surround the Site building. The Site building comprises approximately half of the property footprint.

LaBella understands that the property owner intends to demolish the existing building and redevelop the Site for a mixture of residential and commercial uses.

2.2 Physical Setting

The Site is located on 18 East Cayuga Street and 83-87 East First Street in the City of Oswego, Oswego County, New York within a predominately commercial area. Figure 1 depicts the Site location.

2.3 Site History & Land Use

According to the review of historical records and prior environmental assessments, the Site and surrounding properties appear to have been historically utilized for a mixture of residential, commercial and industrial purposes since at least the late 1800s. Refer to Section 2.5 for additional

information about environmentally relevant historical uses of the Site and surrounding properties.

The Site is currently developed with a commercial plaza which was constructed in 1966. The plaza is currently partially vacant but previously contained several commercial tenants and a two deck parking garage with the second deck at grade with East Second Street and the first deck at grade with East First Street. The second story of the parking garage was demolished in May 2015. Surrounding properties currently include various commercial properties to the north, east and south and a hotel and restaurant to the west. An automotive repair facility is also located to the east of the Site, beyond East Second Street.

2.4 Adjacent Property Use

The Site is bordered by the following properties:

Direction	Land Use
North	Commercial Buildings
South	Commercial Buildings
East	Commercial Buildings (including automotive repair)
West	Hotel and Restaurant

2.5 Summary of Previous Studies

LaBella recently reviewed a Phase II ESA completed by EMS Environmental (EMS), dated April 19, 2013 and a DRAFT Phase I ESA completed by EMS, dated February 9, 2018.

The Phase II ESA completed by EMS was limited in scope and included the advancement of eight (8) soil borings over an approximately 0.5-acre portion of the 2.00± acre property. EMS's soil boring locations are depicted on attached Figure 2. EMS's assessment included laboratory analysis of soil but *not* groundwater samples. Although laboratory analysis of soil samples did not identify targeted compounds above New York Codes, Rules and Regulations (NYCRR) Part 375-6.8(a) Unrestricted Use Soil Cleanup Objectives (SCOs), evidence of impairment was noted in the northwestern portion of the investigation area (i.e., SB-1); however, this area was not further investigated to determine if more severe impacts are present. Furthermore, the Phase II ESA did not assess areas of the Site in proximity to environmentally relevant historical operations such as an on-site gasoline filling station, automotive repair facilities, a machine shop and an adjacent dry cleaning facility.

The DRAFT Phase I ESA completed by EMS in February 2018 identified a Recognized Environmental Condition (REC) associated with the presence of the Site in the New York State Department of Environmental Conservation's (NYSDEC's) Inactive Hazardous Waste Disposal Site database as a non-registry, Class A, State Superfund Site. Based on EMS's report and LaBella's recent conversations with NYSDEC Region 7 staff, the Site was listed in the State Superfund Program solely based on the Site's presence in the Oswego Canal Corridor Brownfield Opportunity Area (BOA) and the potential for subsurface impacts to be present. Based on this REC, EMS recommended additional investigation be completed at the Site.

In addition to the assessments completed by EMS, LaBella was also previously involved in the 2011 nomination stage of the Oswego Canal Corridor BOA, in which the Site is located. LaBella's work with the BOA project included the review of historical records including Sanborn Fire Insurance mapping. This review identified the following environmentally relevant historical operations at the Site and surrounding properties. Refer to attached Figure 2 for approximate locations of environmentally relevant historical operations.

- Machine shop located on the northern portion of the Site, bordering East Cayuga Street, in at least 1960;
- Two (2) automotive repair shops and one (1) gasoline filling station in the northwestern quadrant of the Site in at least 1960;
- A photography facility in the southern portion of the Site, bordering Bridge Street, in at least 1960;
- Automotive repair shops currently and historically located to the northeast of the Site, across
 East Second Street.
- A gasoline filling station located to the northeast of the Site, across East Second Street, in at least 1960;
- An iron foundry (including a machine shop) located to the northeast of the Site, beyond the intersection of East Second Street and East Cayuga Street from the 1800s until at least 1960; and.
- A dry cleaning facility located to the southeast of the Site, across East Second Street, in at least 1960.

Based on these historical operations and the intended future redevelopment of the Site which will include earthwork construction in the vicinity of the environmentally relevant historical operations, LaBella performed this Phase II ESA to assess for subsurface impairment.

3.0 OBJECTIVE

The objective of this Phase II ESA was to conduct an evaluation of subsurface conditions to assess for the potential presence of subsurface impacts to soil and groundwater resulting from historical usage of the Site and adjacent properties.

4.0 SCOPE OF WORK

- 4.1 Direct Push Soil Boring Study
- 1. Prior to the initiation of subsurface work, an underground utility stake-out, via *Dig Safely New York*, was completed at the Site (ticket numbers 03148-542-123 and 03148-542-122) to locate utilities in the areas where the subsurface assessment would take place.
- 2. A permit to complete soil borings and install monitoring wells in the right-of-way (sidewalk) adjacent to the Site was obtained from the City of Oswego prior to implementation of the direct-push soil boring study.
- 3. A direct push soil boring and sampling program of the overburden at the Site was implemented at the Site on March 20, 2018 and March 21, 2018. Soil borings were advanced with a track-mounted Geoprobe® Systems Model 54-LT direct-push sampling system. The Geoprobe used a 4-ft MacroCore® sampler with disposable polyethylene sleeves. The MacroCore® sampling system was decontaminated between boring locations using an Alconox® and potable water solution. A total of thirteen (13) soil borings were advanced at the Site at this time to depths ranging from 2.5 to 16.0 feet below ground surface (ft-bgs).

Soil boring locations are depicted on Figure 2.

- 4. A geotechnical boring program of overburden and shallow bedrock was advanced at the Site on April 16 through April 20, 2018. Soil borings were advanced by Atlantic Testing Laboratories (ATL) with a track-mounted Geoprobe® Systems Model 7822 direct-push automatic drop hammer. A LaBella Geotechnical Engineering Evaluation completed for the Site will be submitted under separate cover. Geotechnical soil boring locations are depicted on Figure 2.
- 5. Soils from the borings were continuously assessed for visible impairment, olfactory indications of impairment, and/or indication of detectable volatile organic compounds (VOCs) with a MiniRae 3000® photo-ionization detector (PID). Positive indications from any of these screening methods are collectively referred to as "evidence of impairment." A Community Air Monitoring Program (CAMP) was established during subsurface work at the Site using a MiniRae 3000® PID and TSI DustTrak® Aerosol Monitor. All CAMP activity was completed in accordance with The New York State Department of Health (NYSDOH) Generic Community Air Monitoring Plan. No fugitive dust was observed at the Site during subsurface work. CAMP data will be kept on file at LaBella and is available upon request.
- 6. Four (4) soil borings were converted to temporary overburden groundwater monitoring wells. The wells were completed with 5-ft or 10-ft of 0.010-inch slotted well screen connected to an appropriate length of solid PVC well riser to complete the well. The annular area was sand packed with quartz sand to a nominal depth of 1-ft above the screen section. A 1-ft bentonite seal was placed above the sand pack to prohibit surface water intrusion. A flush-mounted high density polyethylene curb box was installed in each well advanced in the City of Oswego right-of-ways.
- 7. Soil samples were placed in a cooler on ice and sent under standard chain of custody procedures to Alpha Analytical Laboratory (Alpha) in Westborough, Massachusetts and ESC Lab Sciences (ESC) in Mt. Juliet, Tennessee. The following laboratory analyses were performed:

a. Soil

Sample ID	Exploration Location	Sample Depth (ft bgs)	Laboratory Analyses
LBA-SB-04	Planter proximate exterior staircase	2.0-3.7	
LBA-SB-06	Northwestern sidewalk between the Site Building and the parking lot	2.0-4.0	
B-1	Proximate southwest corner of Site Building	1.5-2.0	- USEPA CP-51
B-3	Parking lot proximate entrance/exit on East First Street	1.0-2.0	List SVOCs - RCRA Metals
B-4	Parking lot north of former photographic operations	8.0-8.5	- NONA Metais
P-2	Planter proximate southeast corner of Site Building	1.0-2.0	
P-3	Southeastern area of parking lot	1.0-3.0	
LBA-SB-02	Southeast of parking lot, proximate former dry cleaning operations	4.0-5.0	- USEPA TCL and CP-51 List
LBA-SB-08	Central hallway of Site Building	8.0-8.4	VOCs

Sample ID	Exploration Location	Sample Depth (ft bgs)	Laboratory Analyses
LBA-SB-10	Central west sidewalk next to Site Building	9.0-10.0	
LBA-SB-13	Northeast of Site Building, proximate current and former automotive repair	14.0-15.0	

Notes:

- USEPA Target Compound List (TCL) and New York State Department of Environmental Conservation (NYSDEC) Commissioner Policy (CP-51) list VOC analysis performed via USEPA Method 8260.
- 2. CP-51 List SVOC analysis performed via USEPA Method 8270.
- 3. Resource Conservation and Recovery Act (RCRA) Metals analysis performed via USEPA Method 6010/7470.

b. Groundwater

Sample ID	Exploration Location	Screened Interval (ft bgs)	Laboratory Analyses
MW-01	Southeast corner of the parking lot	1.2-6.2	
MW-02	Northwest corner of the parking lot	6.0-16.0	- USEPA TCL and
MW-03	Sidewalk to southwest of Main Building	6.3-11.3	CP-51 List VOCs
MW-04	Sidewalk to northeast Main Building	5.5-15.5	

5.0 FINDINGS

5.1 Site Geology and Hydrology

Thirteen (13) soil borings were advanced at the Site on March 20, 2018 and March 21, 2018, designated LBA-SB-01 through LBA-SB-13. The borings were advanced to equipment refusal. Terminal depths of the borings ranged from approximately 2.5 to 16.0-ft bgs.

Eight (8) geotechnical soil borings were advanced at the Site on April 16 through April 20, 2018, and were designated P-1 through P-4 and B-1 through B-4. Borings P-2 and B-2 were extended approximately 10-ft into the top of bedrock while the remaining geotechnical borings were advanced to top of bedrock or 10-ft into structurally competent soil. Bedrock encountered at the Site was a gray, slightly weathered Oswego sandstone. Rock quality designations (RQDs) in the top 5-ft of rock were calculated between 47% and 48% while RQDs in the 5-ft to 10-ft into rock interval were between 80% and 83%. Based on the results of the March 2018 soil boring program, additional environmental samples were obtained from select geotechnical borings. A LaBella Geotechnical Engineering Evaluation will be submitted under separate cover.

Of the 21 soil borings advanced at the Site, only two (2) were advanced within the Site building due to access limitations in certain tenant spaces. As such, subsurface conditions in the immediate vicinity of the former automotive repair facilities and gasoline filling station located on the northwestern portion of the Site could not be fully assessed. Borings advanced hydraulically downgradient of the former automotive repair facilities and gasoline filling station did encounter evidence of apparent petroleum impairment in the field (see below for more information).

Soils at the Site consisted generally of tightly packed red-brown to grey, fine to very coarse sand and lesser amounts of angular to sub-rounded, medium to coarse gravel. A surface layer of sand and gravel-based urban fill was commonly encountered Site-wide and included fragments of concrete, bricks, ash, glass, cinders and wood debris. The greatest thickness of urban fill material was generally observed in the courtyard immediately south of the Site building. A large deposit of apparent cinders and glass mixture was encountered in soil boring LBA-SB-06, proximate the southwest corner of the Site Building at a depth range of 2-ft to 6-ft bgs. Underlying the fill materials was dense, red to grey lodgement till with varying amounts of sands, silts and clays. Shallow refusal was met on dense tills on the western portion of the Site, proximate the former automotive repair facility. Apparent grey to black staining was observed in fill materials encountered in soil borings LBA-SB-04 and LBA-SB-07 at depth ranges of 1.7 to 3.7-ft bgs and 1.0 to 2.5-ft bgs. Grey petroleum staining was observed in apparent native soil encountered in soil boring LBA-SB-10 at a depth range of 9.2 to 12.9-ft bgs and in boring LBA-SB-13 at a depth of 14 to 15-ft bgs.

All soil cores were continuously assessed by a LaBella Environmental Geologist or Engineer for soil type and evidence of impairment. Elevated PID readings were observed in soil borings advanced in the vicinity of the on-Site former automotive repair/gasoline filling station and the southeastern adjacent former dry cleaner. Refer to Section 5.2 for additional information regarding field screening results.

Four (4) temporary overburden groundwater monitoring wells (designated as MW-01 through MW-04) were installed at the Site within soil borings LBA-SB-01, LBA-SB-05, LBA-SB-10, and LBA-SB-13 respectively. The wells were completed with 5.0-ft or 10.0-ft of 0.010-inch slotted screen below PVC risers, to respective depths of 6.2-ft bgs, 16.0-ft bgs, 11.3-ft bgs, and 15.5-ft bgs. The areas surrounding the wells were filled with quartz sand to a nominal depth of 1-ft above the screen section. A 1-ft bentonite seal was placed above the sand pack.

Groundwater was generally encountered in the wells between depths of 6.5-ft and 11.0-ft bgs, with deeper groundwater observed on the northern portion of the Site. Although a groundwater elevation study was not completed as part of this Phase II ESA, based on the presence of the Oswego River approximately 250-ft to the west-northwest and Lake Ontario approximately 0.5-miles to the northwest of the Site, groundwater flow at the Site is anticipated to be to the northwest.

Soil boring and monitoring well locations are shown on Figure 2. Copies of the Soil Boring and Monitoring Well Logs are included in Appendix 1.

5.2 Field Screening Results

The table below summarizes PID readings obtained at various depth intervals from the soil borings:

Test Boring/Well Summary and Soil PID Readings

Test Boring	Well		Sample Interval (depth in ft)							
ID	Number	0-2	2-4	4-6	6-8	8-10	10-12	12-14	14-16	16-20+
LBA-SB-01	MW-01	0.0	0.0	1.0			-	ı	Ī	
LBA-SB-02	ı	7.9	27.4*	6.06	1.7	5.0	-	ı	Ī	
LBA-SB-03	-	0.0	0.0	0.0	0.0	0.0		-		
LBA-SB-04	-	0.0	0.0*				-	-		
LBA-SB-05	MW-02	0.0	0.0	6.8	0.0	0.0	0.0	0.0	0.0	

Test Boring	Well			San	nple Inter	val (depth	in ft)			
ID	Number	0-2	2-4	4-6	6-8	8-10	10-12	12-14	14-16	16-20+
LBA-SB-06	-	0.0	0.0*	0.0	0.0	0.0	0.0			
LBA-SB-07	-	0.0						-		
LBA-SB-08	-	0.0	0.0	0.0	0.0	0.0*	-	-	-	-
LBA-SB-09	-	0.0	0.0	0.0	0.0		-	-		
LBA-SB-10	MW-03	0.0	0.4	0.0	0.0	0.0*	42.9	24.5		
LBA-SB-11	-	0.0	0.0	0.0	0.0		-	-		
LBA-SB-12	1	0.0	0.0	0.0	0.0	0.0	0.0	-	-	
LBA-SB-13	MW-04	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0*	-
B-1	ı				Not Ap	plicable				
B-2	ı	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
B-3	ı				Not Ap	plicable				
B-4	-				Not Ap	plicable				
P-1	-	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
P-2	-	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
P-3	1	Not Applicable								
P-4	-	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Notes:

- 1. All PID readings were collected utilizing a MiniRae 3000 PID and are expressed in parts per million (ppm).
- The PID screening is performed as a method of determining general presence or absence of VOCs in soil, and to
 provide a basis for selecting samples for laboratory analysis. The readings obtained provide only an indication of
 the relative levels of VOCs in the soil, and are not considered to be a direct quantification of actual soil VOC
 concentrations.
- 3. "-" denotes boring not completed to above-listed depth or insufficient recovery occurred at specified depth.
- 4. "*" denotes a soil sample was submitted for laboratory analysis from this interval.

5.3 Laboratory Analytical Results

5.3.1 Soil

A total of eleven (11) soil samples were selected for laboratory analysis, as summarized in the table in Section 4.0. Soil results were compared to NYCRR Part 375 Unrestricted Use Soil Cleanup Objectives (SCOs), Restricted Residential SCOs (based on anticipated future use of the Site) and Protection of Groundwater SCOs. Soil data are summarized below and on attached Figure 3 and Tables 1 and 2.

VOCs

VOCs were detected above laboratory method detection limits (MDLs) in all soil samples submitted for VOC analysis. However, two (2) VOCs, acetone and methylene chloride, were detected at concentrations exceeding Unrestricted Use and Protection of Groundwater SCOs from sample LBA-SB-10 (9-10 ft bgs). Additional VOCs detected in the remaining samples did not exceed applicable NYSDEC comparison criteria.

SVOCs

SVOCs were detected above laboratory MDLs in five (5) of six (6) soil samples submitted for analysis. Several SVOCs were identified in samples obtained from soil borings LBA-SB-04, B-3, B-4 and P-3 at concentrations above NYCRR Part 375-6.8(a) Unrestricted Use SCOs and Protection of Groundwater SCOs. Additionally, elevated concentrations of several SVOCs were

identified above NYCRR Part 375-6.8(b) Restricted Residential Use SCOs in the samples obtained from LBA-SB-04 (2.0 to 3.7-ft bgs), B-4 (8.0 to 8.5-ft bgs) and P-3 (1.0 to 3.0-ft bgs). In these "worst case" samples, two (2) semivolatiles, benzo(a)pyrene and dibenz(a,h)anthracene were identified in exceedance of NYCRR Part 375-6.8(b) Industrial Use SCOs.

Metals

Heavy metals were detected above laboratory MDLs in all soil samples submitted for analysis. Metals were identified in all samples at concentrations above NYCRR Part 375-6.8(a) Unrestricted Use SCOs, with the exception of P-2. Additionally, two (2) metals, mercury and lead, were identified above NYCRR Part 375-6.8(b) Restricted Residential Use SCOs in the samples obtained from LBA-SB-04 (2.0 to 3.7-ft bgs), B-4 (8.0 to 8.5-ft bgs), and P-3 (1.0 to 3.0-ft bgs). Lead and mercury were identified as high as 704 mg/kg and 3.64 mg/kg, respectively, in sample LBA-SB-04.

Soil data is further summarized in Tables 1 and 2. Laboratory reports are attached in Appendix 2.

5.3.2 Groundwater

A total of four (4) groundwater samples were selected for laboratory analysis, as summarized in the table in Section 4.0. Groundwater results were compared to NYCRR Part 703 Groundwater Quality Standards. Groundwater data is summarized below and on attached Figure 3 and in Table 3:

VOCs

VOCs were detected above laboratory MDLs in all groundwater samples submitted for analysis. Select VOCs were identified in exceedance of NYCRR Part 703 Groundwater Quality Standards in two (2) of the four (4) groundwater samples obtained from wells installed at the Site.

Specifically, samples obtained from wells MW-01 and MW-02 identified concentrations of chlorinated VOCs including tetrachlorethene (PCE), trichlorethene (TCE), cis-1,2-dichloroethene and vinyl chloride above NYCRR standards. PCE is commonly utilized in dry cleaning operations and the other chlorinated VOCs are typical breakdown products of PCE.

Total VOC concentrations were detected at 384.37 ug/L in well MW-01 (located in the southeastern corner of the Site) and 39.4 ug/L in well MW-02 (located in the western-central portion of the Site). A dry cleaning facility was formerly located adjacent to the southeast of the Site (refer to Figure 2).

Groundwater data is further summarized in Table 3. Laboratory reports are attached in Appendix 2.

6.0 CONCLUSIONS

LaBella Associates, D.P.C. ("LaBella") was retained by SRE Midtown Garage Acquisitions LLC & SRE Midtown Acquisitions LLC to conduct a Phase II ESA at the property located at Midtown Plaza, 18 East Cayuga Street and 83-87 East First Street, in the city of Oswego, Oswego County, New York. The ESA consisted of the advancement of 21 soil borings (including eight (8) geotechnical borings) and installation of four (4) temporary groundwater monitoring wells. This ESA was performed to evaluate the Site subsurface based on the historical uses of the Site and several surrounding properties.

- Chlorinated VOCs including PCE and breakdown constituents were identified in groundwater samples obtained from wells MW-01 and MW-02 at concentrations above NYS groundwater standards. These wells were installed on the southeastern and western-central portions of the Site, respectively. Total VOC concentrations in well MW-01 were an order of magnitude higher than those installed in MW-02. PCE is commonly utilized in dry cleaning operations and there was a dry cleaning facility located adjacent to the southeast of the Site in at least 1960 (refer to Figure 2). Based on the distribution of contamination and the apparent flow of groundwater to the northwest, towards the Oswego River and Lake Ontario, the CVOC impacts identified in groundwater appear to be migrating to (and across) the Site from the former adjacent dry cleaning facility.
- Several SVOCs and metals were detected at concentrations above NYCRR Part 375 Restricted Residential SCOs (and in several cases, above Industrial Use SCOs). The samples in which elevated concentrations of SVOCs and metals were detected generally contained a mixture of soil and urban fill including ash, cinders, etc. The highest levels of contamination were identified in the courtyard immediately south of the Site building and in the southeastern and southwestern portions of the Site parking lot. Note that additional soil borings were not able to be advanced immediately north of the courtyard due to access limitations in that portion of the Site building.
 - SVOCs detected at elevated concentrations generally included polyaromatic hydrocarbons (PAHs). Metals detected at elevated concentrations included arsenic, chromium, lead and mercury. Although samples were not analyzed via toxicity characteristic leaching procedure (TCLP), several compounds (including lead and mercury) were identified at concentrations high enough that leaching of these chemicals from the soil into groundwater could occur. Note that groundwater samples were not analyzed for metals or SVOCs as part of this Phase II ESA.
- Petroleum-related compounds (e.g., benzene, ethylbenzene, naphthalene, etc.) were identified at concentrations below NYCRR SCOs but above laboratory MDLs in several soil samples and one (1) groundwater sample collected at the Site. Furthermore, evidence of petroleum impairment (i.e., elevated PID readings, staining and/or odors) was observed in several soil borings, particularly along the periphery of the former automotive repair and gasoline filling station. The footprint of those historical facilities is currently within the footprint of the Site building and due to access limitations, subsurface conditions in that area could not be directly evaluated. Based on historical operations in this area of the Site, the potential for petroleum underground storage tanks (USTs) to have been utilized and the presence of low-level petroleum impacts in locations hydraulically down-gradient of this area, petroleum impacts above SCOs and groundwater standards and potentially orphan USTs could be present beneath the western portion of the Site building.

7.0 RECOMMENDATIONS

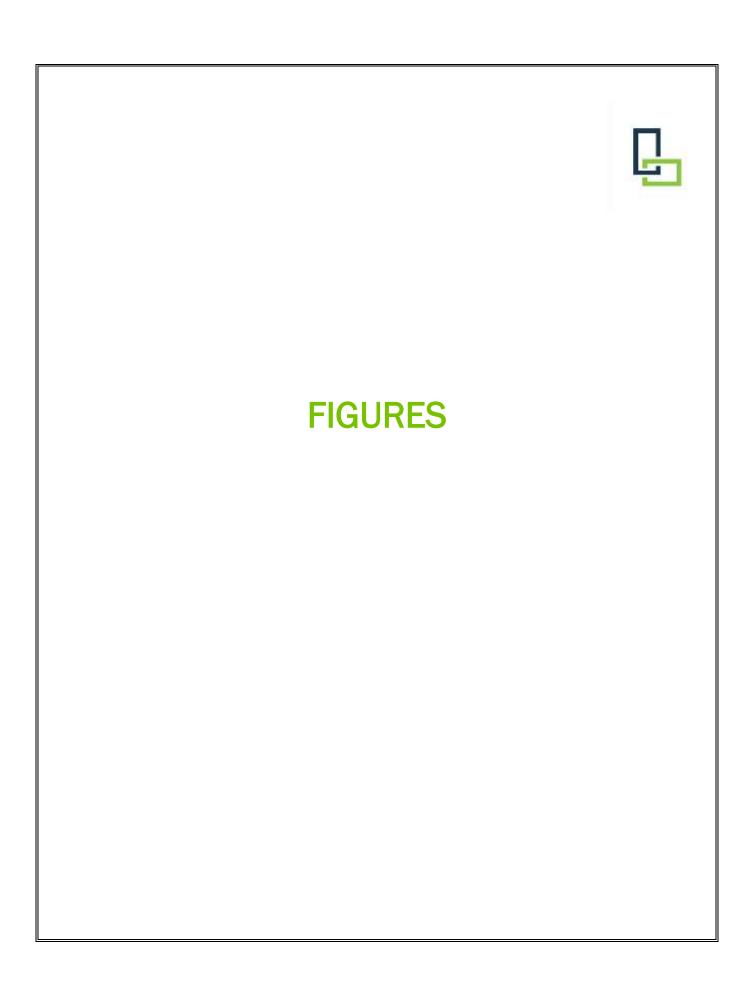
Based on the substantial concentrations of select heavy metals and PAHs in multiple locations at the Site, LaBella recommends remediation of this material be completed to prevent potential leaching and migration of these compounds into groundwater. Although human health exposure issues do not currently appear to exist based on the lack of use of groundwater for potable purposes in the City of Oswego, the close proximity of the Site to the Oswego River and Lake Ontario represents a potential risk to the environment.

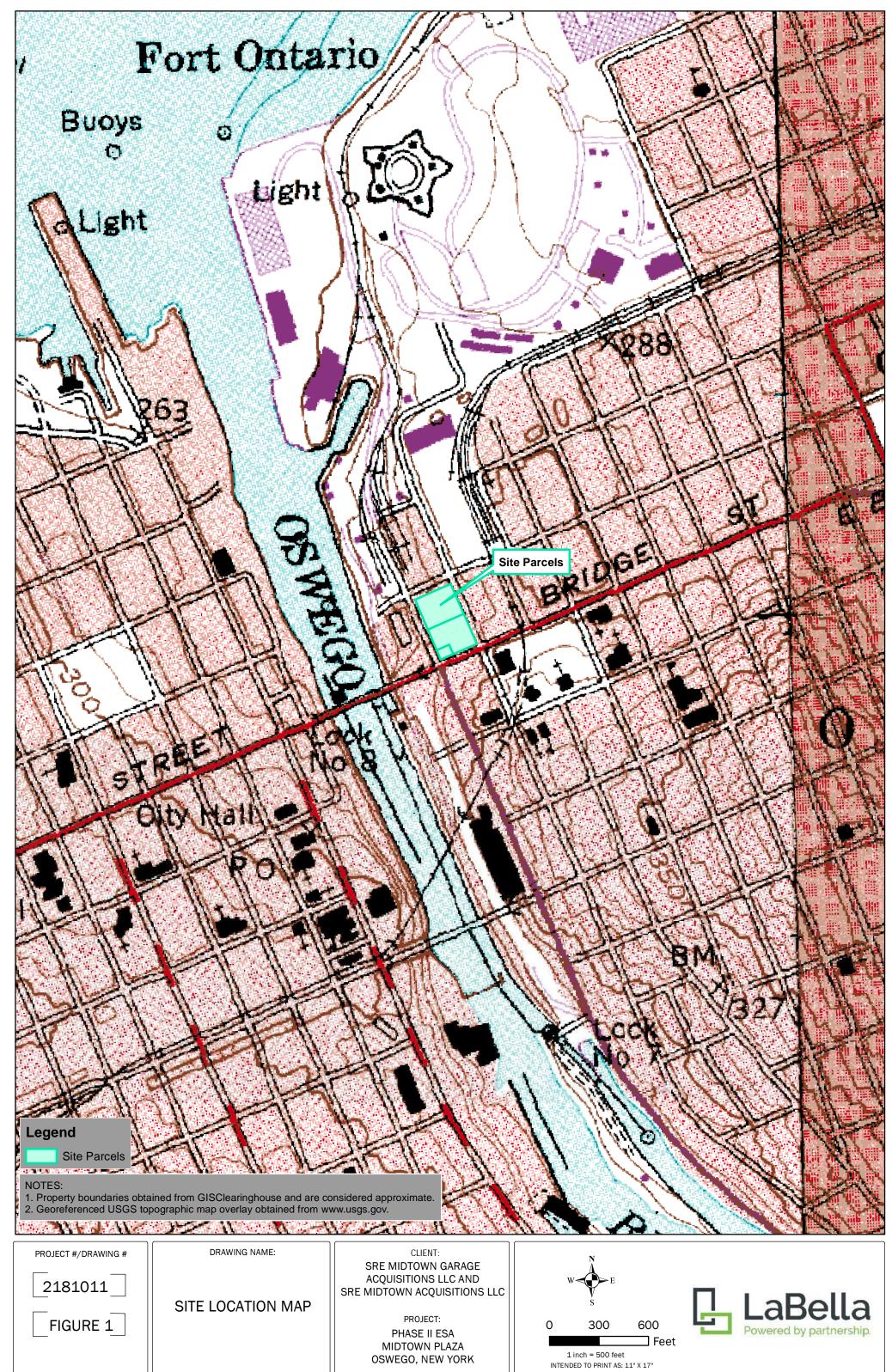
In addition to the remediation of the heavy metal and PAHs impacts, LaBella recommends additional investigation be completed at the Site to assess the following:

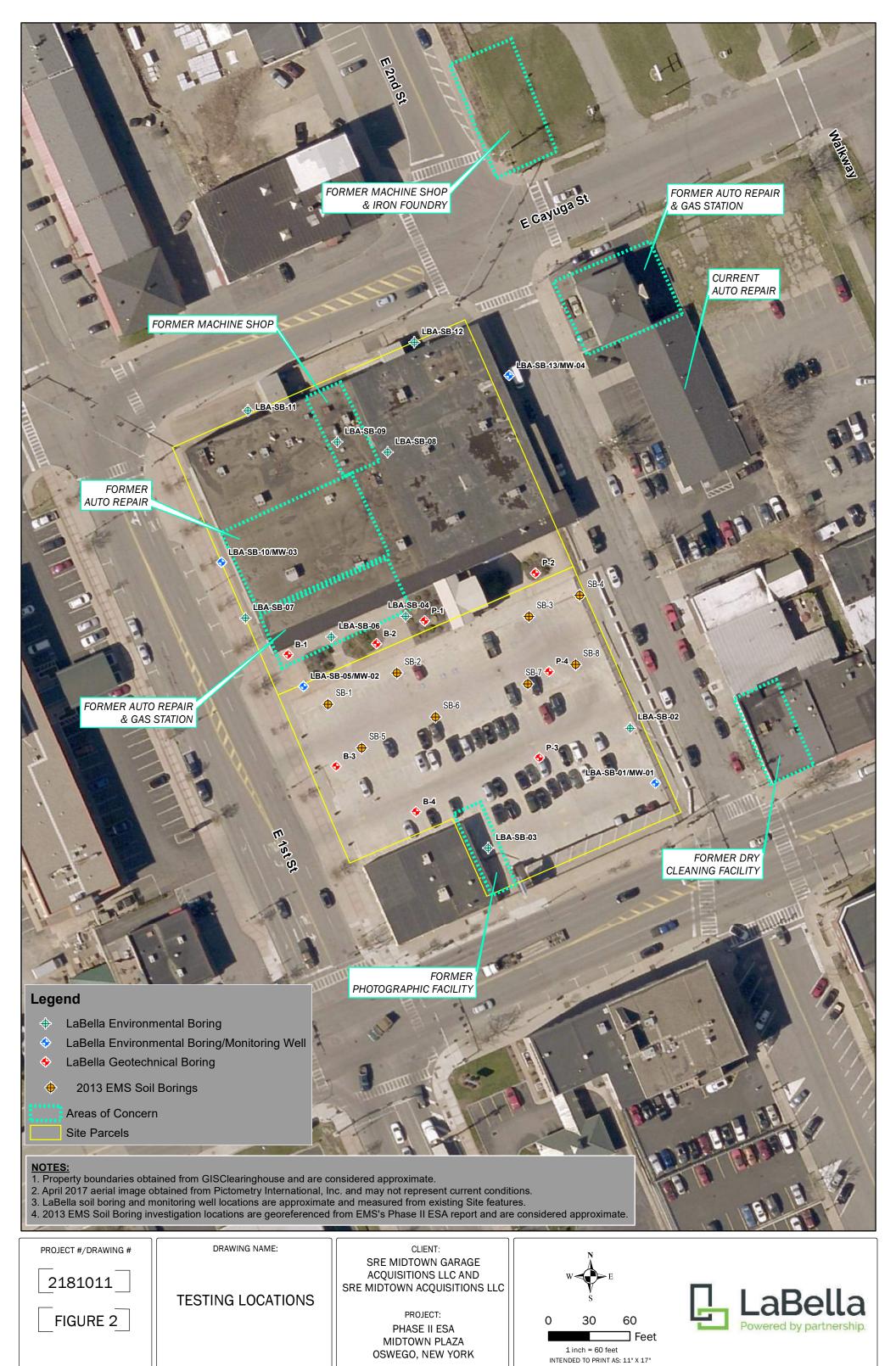
- Extent of heavy metal, PAH and petroleum impacts at the Site, including within the footprint
 of the Site building;
- Concentrations of heavy metal and PAH impacts in groundwater, particularly in areas where substantial soil impacts were identified;
- Extent of CVOC impacts which appear to be emanating from the southeastern adjacent property. These investigation tasks should include soil vapor intrusion testing within the Site building and potentially soil gas testing in the parking lot where the future building is anticipated to be constructed.

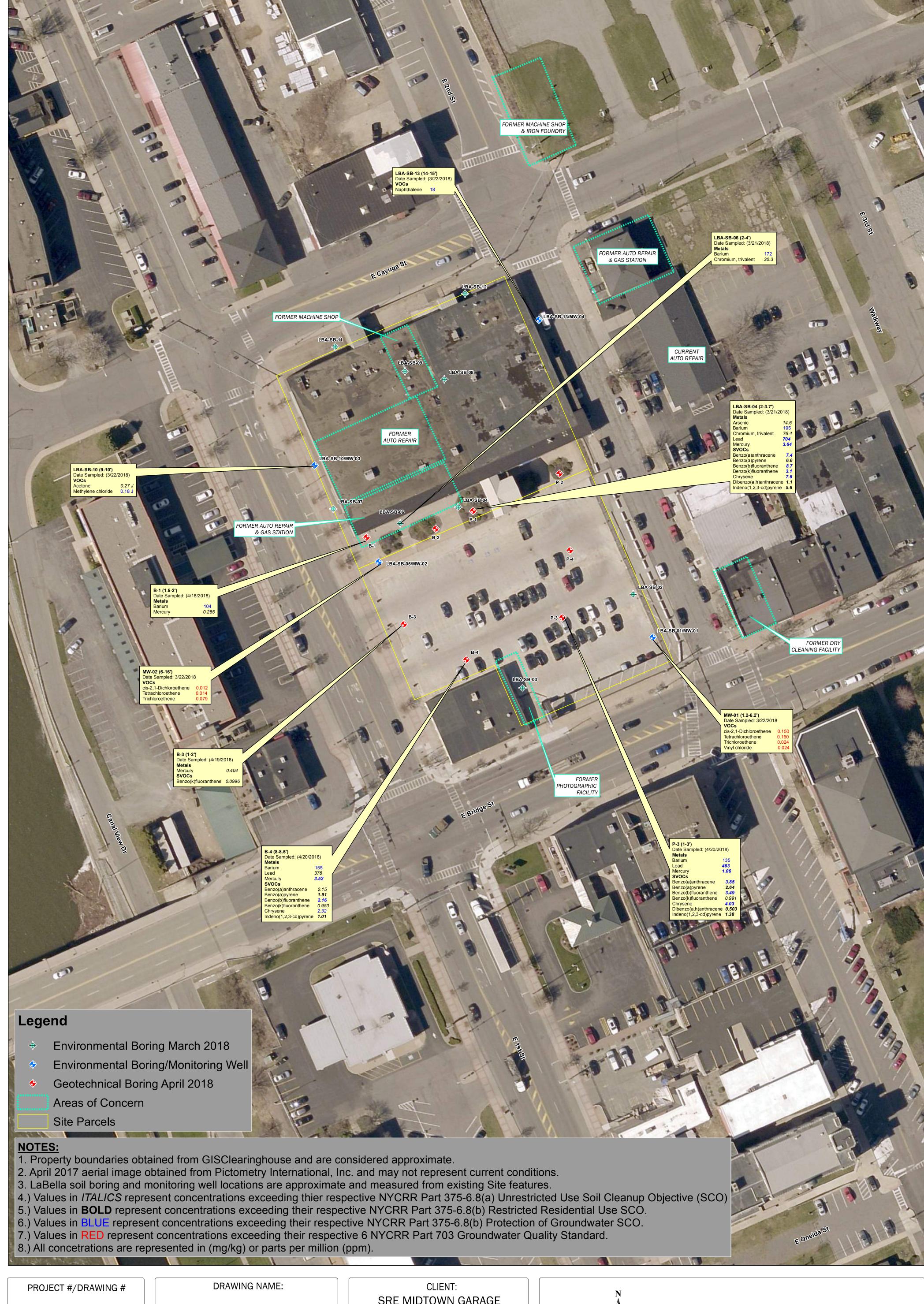
Based on the impacts identified at the Site and associated recommendations as well as the Site's presence on the NYSDEC's State Superfund Registry, LaBella also recommends that the NYSDEC be contacted to discuss the findings of this report as well as potential eligibility in the NYSDEC's Brownfield Cleanup Program (BCP).

A copy of all information collected during this assessment, including maps, notes, analytical data and other material will be kept on file at the offices of LaBella Associates, D.P.C. This information is available upon the request.


SIGNATURES OF ENVIRONMENTAL PROFESSIONALS


Report Prepared By:	Report Reviewed By:
Stewer Refer	J. 1.
Steven Rife Environmental Geologist	Jennifer Gillen, P.G. Project Manager


J:\SRE Midtown Garage\2181011 - 18 E Cayuga St 83-87 E 1st St Ph II\Reports\FINAL DRAFT v2 - Midtown Plaza PHII ESA.docx


8.0

Path: J:\SRE Midtown Garage\2181011 - 18 E Cayuga St 83-87 E 1st St Ph II\Drawings\Figure 2 - Testing Locations - 2181011_V2.mxd

2181011

FIGURE 3

SUMMARY OF SOIL & GROUNDWATER DATA ABOVE NYS STANDARDS SRE MIDTOWN GARAGE
ACQUISITIONS LLC AND
SRE MIDTOWN ACQUISITIONS LLC

PROJECT:
PHASE II ESA
MIDTOWN PLAZA
OSWEGO, NEW YORK

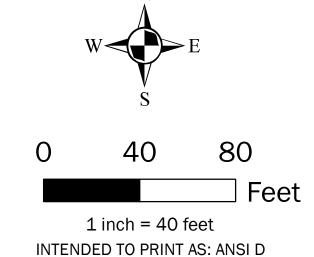


Table 1
Phase II Environmental Site Assessment
Midtown Plaza, 18 East Cayuga Street and 83-87 East First Street, Oswego, New York
Summary of Detected Volatiles in Soil

Sample ID:		NYCRR Part 375	NYCRR Part 375	LBA-SB-02	LBA-SB-08	LBA-SB-10	LBA-SB-13
Sample Depth:	NYCRR Part 375 Unrestricted Use SCOs	Restricted Residential	Protection of	4-5 ft bgs	8-8.4 ft bgs	9-10 ft bgs	14-15 ft bgs
Sample Date:		SCOs	Groundwater SCOs	3/21/2018	3/22/2018	3/22/2018	3/22/2018
Volatile Organic Compounds							
1,2,4-Trimethylbenzene	3.6	52	3.6	<0.0056	<0.00019	<0.0096	0.058 J
1,3,5-Trimethylbenzene	8.4	52	8.4	<0.0056	<0.00014	<0.0083	0.026 J
Acetone	0.05	100	0.5	0.0034 J	0.0029 J	0.27 J	<0.028
Benzene	0.06	4.8	0.06	0.0003 J	<0.00017	<0.01	<0.024
Bromomethane	NL	NL	NL	<0.0022	<0.0003	0.032 J	<0.042
cis -1,2-Dichloroethene	0.25	100	0.25	0.016	<0.0003	<0.018	<0.042
Ethylbenzene	1	41	1	<0.0011	<0.00015	<0.0088	0.04 J
Methylene chloride	0.05	100	0.05	<0.0018	<0.0015	0.18	<0.2
Naphthalene	NL	100	12	0.00016 J	<0.00012	0.14 J	18
p-lsopropyltoluene	NL	NL	NL	<0.0011	<0.00018	<0.01	0.037 J
sec-Butylbenzene	11	100	11	<0.0011	<0.00019	0.012 J	<0.027
Tetrachloroethene	1.3	19	1.3	0.038	<0.00027	<0.016	<0.037
Toluene	0.7	100	0.7	<0.00022	0.0002 J	<0.01	<0.024
Trichloroethene	0.47	21	0.47	0.029	<0.00027	<0.016	<0.037
Total VOCs	NL	NL	NL	0.0869	0.0031	0.6340	18.1610

NOTES:

All values displayed in milligrams per kilograms (mg/kg) or parts per million (ppm).

Bold type indicates the analyte was detected above laboratory MDLs.

Italic type indicates the detected concentration exceeds NYCRR Part 375-6.8(b) Protection of Groundwater Soil Cleanup Objective (SCO).

Yellow highlight indicates the detected concentration exceeds NYCRR Part 375-6.8(a) Unrestricted Use Soil Cleanup Objective (SCO).

Red font indicates the detected concentration exceeds NYCRR Part 375-6.8(b) Restricted Residential Soil Cleanup Objective (SCO).

VOCs analyzed by USEPA Method 8260.

J indicates estimated value.

NL indicates not listed.

"<" - Indicates compound was not detected above the indicated laboratory method detection limit (MDL).

Table 2
Phase II Environmental Site Assessment
Midtown Plaza, 18 East Cayuga Street and 83-87 East First Street, Oswego, New York
Summary of Semivolatiles and Metals in Soil

Sample ID:		NYCRR Part 375	NYCRR Part 375	LBA-SB-04	LBA-SB-06	B-1	B-3	B-4	P-2	P-3		
Sample Depth:	NYCRR Part 375 Unrestricted Use SCOs	Restricted Residential	Protection of	2-3.7 ft bgs	2-4 ft bgs	1.5-2 ft bgs	1-2 ft bgs	8-8.5 ft bgs	1-2 ft bgs	1-3 ft bgs		
Sample Date:		SC0s	Groundwater SCOs	3/21/2018	3/21/2018	4/18/2018	4/19/2018	4/20/2018	4/18/2018	4/20/2018		
Metals	etals											
Arsenic	13	16	16	14.6	2.98	<2.29	2.85	7.82	2.48	6.26		
Barium	350	400	47	195	1.72	104	42.6	155	38.7	135		
Cadmium	2.5	4.3	7.5	0.99	1.12	<0.572	<0.551	2.43	<0.554	<0.587		
Chromium, trivalent	30	180	NL	76.4	30.3	19.3	9.81	13.3	11.5	12.8		
Lead	63	400	450	704	1.14 J	27	14.5	376	9.99	463		
Mercury	0.18	0.81	0.73	3.64	0.041 J	0.285	0.404	3.52	0.0383 B	1.06		
Silver	2	180	8.3	0.448 J	<0.117	<1.14	<1.1	<1.22	<1.11	<1.17		
Semivolatile Organic Compounds												
Acenaphthene	20	100	98	0.32	<0.019	<0.00686 J5	0.0529	0.356	<0.00665	1.33		
Acenapthylene	100	100	107	2.1	<0.028	0.0109	0.0133	0.401	<0.00665	0.49		
Anthracene	100	100	1,000	2.3	<0.035	0.0227 J5	0.118	0.79	<0.00665	1.79		
Benzo(a)anthracene	1	1	1	7.4	<0.020	0.0505 J5	0.236	2.15	0.00852	3.85		
Benzo(a)pyrene	1	1	22	6.6	<0.044	0.0479 J5	0.197	1.91	0.00754	2.64		
Benzo(b)fluoranthene	1	1	1.7	8.7	<0.030	0.06 J5	0.22	2.16	0.01	3.49		
Benzo(g,h,i)perylene	100	100	1,000	5.1	<0.021	0.0331	0.125	1.04	<0.00665	1.46		
Benzo(k)fluoranthene	0.8	1	1.7	3.1	<0.029	0.0209	0.0996	0.953	<0.00665	0.991		
Chrysene	1	3.9	1	7.6	<0.019	0.0482 J5	0.207	2.32	0.0859	4.03		
Dibenz(a,h)anthracene	0.33	0.33	1,000	1.1	<0.021	0.0114	0.0319	0.291	<0.00665	0.503		
Fluoranthene	100	100	1,000	15	<0.021	0.102 J5	0.583	5.29	0.0198	8.87		
Fluorene	30	100	386	0.71	<0.017	0.00691 J5	0.0536	0.502	<0.00665	1.38		
Indeno(1,2,3-cd)pyrene	0.5	0.5	8.2	5.6	<0.025	0.0316	0.117	1.01	<0.00665	1.38		
Phenanthrene	100	100	1,000	8.3	<0.022	0.0689 J5	0.527	4.49	0.00736	11.4		
Pyrene	100	100	1,000	12	<0.018	0.083 J5	0.456	4.15	0.0154	6.88		

NOTES:

All values displayed in milligrams per kilograms (mg/kg) or parts per million (ppm).

Bold type indicates the analyte was detected above laboratory MDLs.

Italic type indicates the detected concentration exceeds NYCRR Part 375-6.8(b) Protection of Groundwater Soil Cleanup Objective (SCO).

Yellow highlight indicates the detected concentration exceeds NYCRR Part 375-6.8(a) Unrestricted Use Soil Cleanup Objective (SCO).

Red font indicates the detected concentration exceeds NYCRR Part 375-6.8(b) Restricted Residential Soil Cleanup Objective (SCO).

Metals analyzed by USEPA Method 6010/7471

SVOCs analyzed by USEPA Method 8270.

B indicates same analyte was found in the associated blank.

J indicates estimated value.

J5 indicates sample matrix interfered with the ability to make any accurate determination; spike value is high.

NL indicates not listed.

"<" - Indicates compound was not detected above the indicated laboratory method detection limit (MDL).

Table 3
Phase II Environmental Site Assessment
Midtown Plaza, 18 East Cayuga Street and 83-87 East First Street, Oswego, New York
Summary of Detected Volatiles in Groundwater

Sample ID:	NYCRR Part 703	MW-01	MW-02	MW-03	MW-04
Screened Interval:	Groundwater Quality	1.2-6.2 ft bgs	6-16 ft bgs	6.3-11.3 ft bgs	5.5-15.5 ft bgs
Sample Date:	Standards	3/21/2018	3/22/2018	3/22/2018	3/22/2018
Volatile Organic Compounds					
2-Butanone	NL	6.2 J	<1.9	<4.8	<1.9
2-Hexanone	50*	3.1 J	<1.0	<2.5	<1.0
Acetone	50*	14	4.3 J	11 J	2.6 J
Benzene	1	0.67 J	<0.16	<0.4	<0.16
cis-1,2-Dichloroethene	5	150	12	<1.8	<0.7
Tetrachloroethene	5	160	14	<0.45	<0.18
trans-1,2-Dichloroethene	5	2.4 J	<0.70	<1.8	<0.7
Trichloroethene	5	24	7.9	<0.44	<0.18
Vinyl chloride	2	24	1.2	<0.18	<0.7
VOC Totals	NL	384.37	39.4	11	2.6

NOTES:

All values displayed in micrograms per liter ($\mu g/L$) or parts per billion (ppb).

Bold type indicates the analyte was detected above laboratory MDLs.

Yellow highlight indicates the detected concentration exceeds NYCRR Part 703 Groundwater Quality Standard.

* indicates no Part 703 Standard, guidance value substituted.

VOCs analyzed by USEPA Method 8260.

J indicates estimated value.

NL indicates not listed.

[&]quot;<" - Indicates compound was not detected above the indicated laboratory method detection limit (MDL).

APPENDIX 1

Field Logs

Phase II Environmental Site Assessment Geoprobe® Overburden Soil Sampling Midtown Plaza, Oswego, New York

PROJECT

Client: SRE Midtown Garage, LLC and SRE Midtown Acquisitions, LLC

BORING: LBA-SB-01 SHEET

1 OF 13

JOB: 2181011 CHKD BY: SMR

DATE:

ENVIRONMENTAL ENGINEERING CONSULTANTS CONTRACTOR:

300 STATE STREET, ROCHESTER, NY

DRILLER:

LaBella Env. LLC

D. Hitchcock

GROUND SURFACE ELEVATION

END DATE: 3/20/18

TIME: DATUM: 8:30am TO

LABELLA REPRESENTATIVE: TYPE OF DRILL RIG: Geoprobe® 54-LT S. Rife

START DATE: 3/20/18

BORING LOCATION:

DRIVE SAMPLER TYPE: Macrocore

Southeast Corner of Site

WEATHER:

Partly Cloudy, 28°F

AUGER SIZE AND TYPE: NA

OVERBURDEN SAMPLING METHOD: Direct Push

INSIDE DIAMETER: ~1.8"

OTHER:

DEPTH (FEET BGS)		SAMPLE			PID FIELD	
PTH			STRATA		SCREEN	
DE	SAMPLE RECOVERY	SAMPLE NO. AND DEPTH	CHANGE (FEET BGS)	VISUAL CLASSIFICATION	(PPM)	REMARKS
0	(FEET)	DEPTH	BGS)	Concrete Core		
			0.7'	Brown C SAND, wet (from concrete coring)		
1			1.6'	,	0.0 ppm	Appears to be Native
2	0.7' - 4.0'/ 2.8'			Red-brown VC SAND and F to VC SR to R GRAVEL, moist, no odor	0.0 ppm	Appears to be Native
3					0.0 ppm	
4			4.0'		0.0 ppm	
5	4.0' - 6.0'/ 4.0'	LBA-SB-01 4' - 5'		Red-brown SANDY TILL, little SILT, little SA to R F to VC GRAVEL, dense, tightly-packed, no odor, damp/dry	1.0 ppm	
6		4-5		no odor, damp, dry	0.4 ppm	
				Refusal at 6.2 ft-bgs due to Dense tightly-packed red TILL		
7						
8						
9						
10						
11						
12						
12						
13						
14						
15						
16						
17						
18						
19						
20						
20	J			DEPTH (FT) NOTES:		

GENERAL NOTES

TIME

DATE

WATER LEVEL DATA

ELAPSED TIME

1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.

BOTTOM OF

CASING

NA

2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

BOTTOM OF

BORING

6.2'

BGS = Below Ground Surface and = 35 - 50% C = Coarse R = RoundedNA = Not Applicable some = 20 - 35% M = Medium A = Angular

little = 10 - 20% F = Fine SR = Subrounded trace = 1 - 10% VF = Very Fine SA = Subangular

GROUNDWATER

ENCOUNTERED

BORING: LBA-SB-01

Well installed (LBA-MW-01) to 6.2 ft-bgs; 5 ft-bgs SAND, 1 ft-bgs Bentonite

PROJECT

Phase II Environmental Site Assessment Geoprobe® Overburden Soil Sampling Midtown Plaza, Oswego, New York

BORING: LBA-SB-02 SHEET 2 OF 13 JOB: 2181011

CHKD BY: SMR

Client: SRE Midtown Garage, LLC and SRE Midtown Acquisitions, LLC DATE:

300 STATE STREET, ROCHESTER, NY ENVIRONMENTAL ENGINEERING CONSULTANTS

CONTRACTOR:

DRILLER:

LaBella Env. LLC BORING LOCATION:

0945 TO 1100

D. Hitchcock

GROUND SURFACE ELEVATION

DATUM: WEATHER:

TIME:

NA

BORING:

LBA-SB-02

LABELLA REPRESENTATIVE:

S. Rife

START DATE: 3/20/18 END DATE: 3/20/18 DRIVE SAMPLER TYPE: Macrocore

TYPE OF DRILL RIG: Geoprobe® 54-LT AUGER SIZE AND TYPE: NA

INSIDE DIAMETER: ~1.8"

OVERBURDEN SAMPLING METHOD: Direct Push

OTHER:

		TO THE STORE STORE				OTTIETA		
DEPTH (FEET BGS)		SAMPLE					PID FIELD	
H B			STRATA	†			SCREEN	
Ь	SAMPLE RECOVERY	SAMPLE NO. AND	CHANGE (FEET		VISUAL C	LASSIFICATION	(PPM)	REMARKS
	(FEET)	DEPTH	BGS)					
0					Con	crete Core	1.4 ppm	
1			0.42'		Brown VC SAND and F	R FILL GRAVEL, wet, no odor	5.3 ppm	
2	0.401.4.01.40.41		1.5'				7.9 ppm	
3	0.42' - 4.0' / 3.1'			Red SANDY	TILL, little M to C SA to	SR GRAVEL, tightly-packed, dense, damp	13.5 ppm	
4							27.4 ppm	
		LBA-SB-02, 4' - 5'	4.5'					
5		VOCs					6.6 ppm	
6	4' - 8' / 4.0'						1.7 ppm 0.0 ppm	
7					AA, very dense, li	ttle SILT, trace of CLAY		
8							0.8 ppm	
9	8' - 9.7' / 3.6'						5.0 ppm	
10					Refusa	at 9.7 ft-bgs		
11								
12								
13								
14								
15								
16								
17								
18								
19								
20	20							
	- 1			DEPTH (FT)		NOTES:	-	
	WATER LEV	EL DATA	BOTTOM OF	BOTTOM OF	GROUNDWATER			
DATE	TIME	ELAPSED TIME	CASING	BORING	ENCOUNTERED			

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

BGS = Below Ground Surface and = 35 - 50%C = Coarse R = RoundedNA = Not Applicable some = 20 - 35% M = Medium A = Angular

little = 10 - 20% F = Fine SR = Subrounded trace = 1 - 10% VF = Very Fine SA = Subangular

300 STATE STREET, ROCHESTER, NY

DRILLER:

Geoprobe® Overburden Soil Sampling Midtown Plaza, Oswego, New York Client: SRE Midtown Garage, LLC and SRE Midtown Acquisitions, LLC BORING: LBA-SB-03 SHEET 3 OF 13 JOB: 2181011 CHKD BY: SMR

DATE:

Footprint of former photographic prox. door

ENVIRONMENTAL ENGINEERING CONSULTANTS CONTRACTOR: LaBella Env. LLC

D. Hitchcock

BORING LOCATION: GROUND SURFACE ELEVATION

TIME: DATUM: NA

1100 TO 1215

LABELLA REPRESENTATIVE:

S. Rife

START DATE: 3/20/18

END DATE: 3/20/18 DRIVE SAMPLER TYPE: Macrocore

PROJECT

Phase II Environmental Site Assessment

WEATHER: Sunny, 34°F

TYPE OF DRILL RIG: Geoprobe® 54-LT

AUGER SIZE AND TYPE: NA

OVERBURDEN SAMPLING METHOD: Direct Push

INSIDE DIAMETER: ~1.8"

OTHER:

		a.merriobi bilocci		1		OTTIES.	1	
DEPTH (FEET BGS)		SAMPLE					PID FIELD	
HT BG			STRATA				SCREEN	
畄	SAMPLE RECOVERY	SAMPLE NO. AND	CHANGE (FEET		VISUAL C	LASSIFICATION	(PPM)	REMARKS
	(FEET)	DEPTH	BGS)				, ,	
0	` ′		0.57'		Conc	crete Slab		
							0.0 ppm	APPARENT FILL
1								
							0.0 ppm	
2	0.57'-4.0' / 1.8'							
	0.57 -4.0 / 1.8			Brown C SAN	ND and F to M R GRAVEL	. wet/moist, FILL: concrete chuncks, brick	0.0 ppm	
3		LBA-SB-03, 2'-4'			fragme	nts, no odor		
							0.0 ppm	
4								
							0.0 ppm	
5								
		LBA-SB-03, 5.5'-6.0'	5.3'				0.0 ppm	APPARENT NATIVE
6	4.0' - 8.0' / 4.0'	,						
l _	,						0.0 ppm	
7					\/O.D OANIE	>		
					VC Brown SAINL	O, saturated, no odor	0.0 ppm	
8			-				0.0 ppm	
9							о.о ррпі	
9							0.0 ppm	
10			10'				0.0 ppm	
10	8.0' - 12.0' / 4.0'		10				0.0 ppm	
11					AA, little SILT	, dense, saturated	о.о ррпп	
					,		0.0 ppm	
12							0.0 ppm	
					Boring Term	inated 12.0'-BGS		
13								
14								
15			1					
16								
17								
40								
18								
19								
19								
20								
	1	I		DEPTH (FT)		NOTES:	<u> </u>	
-			1					
	WATER LEVEL DATA		BOTTOM OF	BOTTOM OF	GROUNDWATER			

ENCOUNTERED

5.3'

VF = Very Fine

SA = Subangular

GENERAL NOTES

TIME

ELAPSED TIME

DATE

1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.

CASING

NA

trace = 1 - 10%

2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

BORING

12.0'

BGS = Below Ground Surface and = 35 - 50% C = CoarseR = RoundedNA = Not Applicable some = 20 - 35% M = Medium A = Angular little = 10 - 20% F = Fine SR = Subrounded

BORING: LBA-SB-03

No Well Installed

PROJECT

Phase II Environmental Site Assessment Geoprobe® Overburden Soil Sampling Midtown Plaza, Oswego, New York

BORING: LBA-SB-04 SHEET 4 OF 13 JOB:

2181011 CHKD BY: SMR

Client: SRE Midtown Garage, LLC and SRE Midtown Acquisitions, LLC DATE:

300 STATE STREET, ROCHESTER, NY ENVIRONMENTAL ENGINEERING CONSULTANTS

CONTRACTOR:

DRILLER:

LaBella Env. LLC D. Hitchcock

BORING LOCATION:

Planter proximate stairs/awning GROUND SURFACE ELEVATION

TIME: DATUM: 1300 TO

LABELLA REPRESENTATIVE:

S. Rife

START DATE: 3/20/18

END DATE: 3/20/18

WEATHER: Partly Cloudy, 28°

TYPE OF DRILL RIG: Geoprobe® 54-LT AUGER SIZE AND TYPE: NA

DRIVE SAMPLER TYPE: Macrocore INSIDE DIAMETER: ~1.8"

OTHER:

OVERBURDEN SAMPLING METHOD: Direct Push

DEPTH (FEET BGS)		SAMPLE				PID FIELD	
PTH BG			STRATA			SCREEN	
呂	SAMPLE RECOVERY (FEET)	SAMPLE NO. AND DEPTH	CHANGE (FEET BGS)	VISUAL C	LASSIFICATION	(PPM)	REMARKS
0	(ILLI)	DEFIII	0.2'	mul	ch, topsoil		
1				Brown VC SAND and M to C	SA GRAVEL, moist to wet, no odor	0.0 ppm	
2	0.0' - 4.0' / 2.6'		1.7'			0.0 ppm	APPARENT FILL
3	,	LBA-SB-04, 2.0'-3.7' (8oz)		Grey - black FILL SAND, trace of concre	e, brick fragments, ash, glass, moist, no odor	0.0 ppm	
		(002)				0.0 ppm	
4				Refus	sal 3.7' BGS		
5							
6							
7							
8							
9							
10							
11							
12							
13							
14							
15							
16							
17							
18							
19							
20							
	1			DEPTH (FT)	NOTES:		

WATER LEVEL DATA BOTTOM OF BOTTOM OF GROUNDWATER DATE Re-advanced boring approximately 4.0' east and encountered refusal at similar depth. TIME ELAPSED TIME ENCOUNTERED CASING **BORING** NA 3.7'

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

BGS = Below Ground Surface and = 35 - 50% C = Coarse R = RoundedNA = Not Applicable some = 20 - 35% M = Medium A = Angular little = 10 - 20% F = Fine SR = Subrounded

trace = 1 - 10%VF = Very Fine SA = Subangular

BORING: LBA-SB-04

300 STATE STREET, ROCHESTER, NY

ENVIRONMENTAL ENGINEERING CONSULTANTS

PROJECT

Phase II Environmental Site Assessment Geoprobe® Overburden Soil Sampling Midtown Plaza, Oswego, New York

JOB: CHKD BY:

BORING:

SHEET

5 OF 13 2181011

LBA-SB-05

SMR

Client: SRE Midtown Garage, LLC and SRE Midtown Acquisitions, LLC

DATE:

1430 TO 1530

TIME: DATUM:

NA

North of EMS "SB-1"

CONTRACTOR: LaBella Env. LLC DRILLER: D. Hitchcock

GROUND SURFACE ELEVATION

BORING LOCATION:

WEATHER:

LABELLA REPRESENTATIVE:

S. Rife

START DATE: 3/20/18 END DATE: 3/20/18 DRIVE SAMPLER TYPE: Macrocore

TYPE OF DRILL RIG: Geoprobe® 54-LT

INSIDE DIAMETER: ~1.8"

AUGER SIZE AND TYPE: NA

OTHER:

OVERBURDEN SAMPLING METHOD: Direct Push

(FEET		SAMPLE			PID FIELD	
DEPTH (FEET BGS)	SAMPLE RECOVERY (FEET)	SAMPLE NO. AND DEPTH	STRATA CHANGE (FEET BGS)	VISUAL CLASSIFICATION	SCREEN (PPM)	REMARKS
0	` '		0.42'	Concrete floor core		
1				VC SAND and FILL R GRAVEL, possible re-worked native, wet (from coring), no odor	0.0 ppm	FILL
2	0.42' - 4.0' / 1.5'				0.0 ppm	
3	,		2.5'		0.0 ppm	
4				Grey - dark brown C SAND and F to M SA GRAVEL, trace of FILL: wood debris, brick fragments	0.7 ppm 6.8 ppm	
5		LBA-SB-05: 5.0' - 6.0'		indgii on d	0.0 ppm	
6	4.0' - 8.0' / 2.8'	(2oz)			о.о ррпп	
7	4.0 - 8.0 / 2.8		7.0'		0.0 ppm	
'			7.0	VS SAND and UF SA GRAVEL, wet, no odor	0.0 ppm	
8			8.5'		0.0 ppm	APPARENT NATIVE
9			8.5		0.0 ppm	APPARENT NATIVE
10	8.0' - 12.0' / 4.0'			Grey SANDY TILL, wet / saturated, no odor	0.0 ppm	
11	0.0 12.0 / 4.0				0.0 ppm	
			11.5'		0.0 ppm	
12					0.0 ppm	
13						
14	12.0' - 16.0' / 4.0'			Brown SAND and F R GRAVEL, saturated, no odor	0.0 ppm	Water flows from Macro
	,,				0.0 ppm	core
15					0.0 ppm	
16				Boring Terminated at 16.0'	0.0 pp	
17						
18						
19						
20						
				DEPTH (FT) NOTES:		
11						

WATER LEVEL DATA BOTTOM OF BOTTOM OF GROUNDWATER DATE TIME ELAPSED TIME BORING ENCOUNTERED CASING NA 16.0' 7.0'

Installed well MW-02 in borehole to 16.0' BGS, 10' screen, 11' SAND, 1' Bentonite

BORING:

LBA-SB-05

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

BGS = Below Ground Surface and = 35 - 50% C = Coarse R = RoundedNA = Not Applicable some = 20 - 35% M = Medium A = Angular

little = 10 - 20% F = Fine SR = Subrounded trace = 1 - 10%VF = Very Fine SA = Subangular

300 STATE STREET, ROCHESTER, NY

ENVIRONMENTAL ENGINEERING CONSULTANTS

AUGER SIZE AND TYPE: NA

PROJECT

Phase II Environmental Site Assessment Geoprobe® Overburden Soil Sampling

Midtown Plaza, Oswego, New York Client: SRE Midtown Garage, LLC and SRE Midtown Acquisitions, LLC BORING: LBA-SB-06 SHEET 6 OF 13 JOB: 2181011

CHKD BY: SMR

BORING:

LBA-SB-06

DATE:

CONTRACTOR: LaBella Env. LLC BORING LOCATION: DRILLER: D. Hitchcock

GROUND SURFACE ELEVATION

TIME: 1615 TO DATUM: NA

LABELLA REPRESENTATIVE: S. Rife START DATE: 3/20/18 END DATE: 3/20/18 WEATHER:

TYPE OF DRILL RIG: Geoprobe® 54-LT

DRIVE SAMPLER TYPE: Macrocore

Proximate current dance studio entrance

INSIDE DIAMETER: ~1.8"

OVERBURDEN SAMPLING METHOD: Direct Push OTHER:

(FEET S)		SAMPLE					PID FIELD	
DEPTH (FEET BGS)	SAMPLE RECOVERY (FEET)	SAMPLE NO. AND DEPTH	STRATA CHANGE (FEET BGS)		VISUAL C	LASSIFICATION	SCREEN (PPM)	REMARKS
0					Cond	crete Core		
1			0.5'				0.0 ppm 0.0 ppm	
2	0.5' - 4.0' / 2.8'		2.0'				0.0 ррпп	
3	0.0 - 4.0 / 2.0	LBA-SB-06, 2.0' - 4.0' (8oz)					0.0 ppm	FILL
4				Black C	inders (80%), glass frag	ments (~20%), no odor, moist/damp	0.0 ppm	
5							0.0 ppm	
6			6.0'				0.0 ppm	
	4.0' - 8.0' / 3.4'		6.0		Brown MC to VC	C SAND, wet, no odor	0.0 ppm	
7							0.0 ppm	
8		LBA-SB-06, 8.0' - 9.0'	8.0'				0.0 ppm	
9		(2oz)			AA, and VF SR to	SA GRAVEL, saturated		APPARENT NATIVE
10	8.0' - 12.0' / 4.0'						0.0 ppm	
11			10.5'	Grey VC SAN	D and GRAVEL, tightly-pa	acked, apparent shale, dry/damp, no odor	0.0 ppm	
12					Boring Term	inated 12.0' BGS	0.0 ppm	
13								
14								
15								
16								
17								
18								
19								
20								
				DEPTH (FT)		NOTES:		
	WATER LEV	EL DATA	BOTTOM OF	BOTTOM OF	GROUNDWATER			
DATE	TIME	ELAPSED TIME	CASING	BORING	ENCOUNTERED			
-			NA	12.0'	6.0'			

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

BGS = Below Ground Surface and = 35 - 50% C = CoarseR = RoundedNA = Not Applicable some = 20 - 35% M = Medium A = Angular little = 10 - 20%

F = Fine SR = Subrounded trace = 1 - 10%VF = Very Fine SA = Subangular

PROJECT

Phase II Environmental Site Assessment Geoprobe® Overburden Soil Sampling Midtown Plaza, Oswego, New York

Client: SRE Midtown Garage, LLC and SRE Midtown Acquisitions, LLC

START DATE: 3/20/18

BORING: SHEET

LBA-SB-07 7 OF 13

JOB: CHKD BY:

2181011 SMR

DATE:

WEATHER:

300 STATE STREET, ROCHESTER, NY ENVIRONMENTAL ENGINEERING CONSULTANTS

DRILLER:

CONTRACTOR:

LABELLA REPRESENTATIVE:

TYPE OF DRILL RIG: Geoprobe® 54-LT

BORING LOCATION: LaBella Env. LLC D. Hitchcock GROUND SURFACE ELEVATION

S. Rife

TIME: TO DATUM: NA

END DATE: 3/20/18

DRIVE SAMPLER TYPE: Macrocore

INSIDE DIAMETER: ~1.8"

OTHER:

AUGER SIZE AND TYPE: NA OVERBURDEN SAMPLING METHOD: Direct Push

DEPTH (FEET BGS)		SAMPLE					PID FIELD	
PTH			STRATA				SCREEN	
呂	SAMPLE RECOVERY (FEET)	SAMPLE NO. AND DEPTH	CHANGE (FEET BGS)		VISUAL CI	LASSIFICATION	(PPM)	REMARKS
0	(/		0.4'			crete Core	0.0 ppm	
1			1.0'	VC SAND	and GRAVEL FILL, wet (from coring), no odor, brick fragments	0.0 ppm	
_	0.4' - 2.5' / 2.1'		1.0		AA trace of black	staining, moist, no odor	о.о ррпп	
2		LBA-SB-07: 2.0' - 2.5' (2oz)			74, trade of black.	stanning, moist, no odor	0.0 ppm	
3		(202)		Refusal at 2.5	5' BGS: Very tightly pack	ed VC SAND and R GRAVEL (Possible TILL)	О.О ррпп	
4								
5								
6								
7								
8								
9								
10								
11								
12								
13								
14								
15								
16								
17								
18								
19								
20								
				DEPTH (FT)		NOTES:		
	WATER LEV		BOTTOM OF	BOTTOM OF	GROUNDWATER			
DATE	TIME	ELAPSED TIME	CASING	BORING	ENCOUNTERED			
			NA	2.5'	NA			

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

BGS = Below Ground Surface NA = Not Applicable

and = 35 - 50% some = 20 - 35% little = 10 - 20%

trace = 1 - 10%

C = CoarseM = Medium F = Fine

VF = Very Fine

R = Rounded A = Angular SR = Subrounded SA = Subangular

BORING: LBA-SB-07

CONTRACTOR:

DRILLER:

LaBella Env. LLC

S. Rife

D. Hitchcock

PROJECT

Phase II Environmental Site Assessment Geoprobe® Overburden Soil Sampling Midtown Plaza, Oswego, New York

Client: SRE Midtown Garage, LLC and SRE Midtown Acquisitions, LLC

BORING: SHEET

LBA-SB-08 8 OF 13 2181011

CHKD BY: SMR

DATE:

JOB:

TIME: 0730 TO 0845

DATUM: WEATHER:

NA Sunny, 33°F

BORING:

LBA-SB-08

END DATE: 3/21/18 DRIVE SAMPLER TYPE: Macrocore

INSIDE DIAMETER: ~1.8"

Southeast Corner of Site

OTHER:

LABELLA REPRESENTATIVE: TYPE OF DRILL RIG: Geoprobe® 54-LT

AUGER SIZE AND TYPE: NA

OVERBURDEN SAMPLING METHOD: Direct Push

H (FEET GS) SAMPLE FIELD

3/21/18

BORING LOCATION:

START DATE:

GROUND SURFACE ELEVATION

TH BG			STRATA		SCREEN	
DEPTH BG	SAMPLE RECOVERY	SAMPLE NO. AND	CHANGE (FEET	VISUAL CLASSIFICATION	(PPM)	REMARKS
	(FEET)	DEPTH	BGS)			
0			0.4'	Concrete floor core	0.0	
1					0.0 ppm	
1				Apparent FILL SAND & GRAVEL, possible re-worked native, moist	0.0 ppm	
2	0.4' - 4.0' / 2.0'					
					0.0 ppm	
3			3.0'			
4					0.0 ppm	APPARENT NATIVE
4					0.0 ppm	AFFAILINI IVATIVE
5				Brown SAND and M to C SA to SR GRAVEL, moist/damp, no odor	ото рртт	
					0.0 ppm	
6	4.0' - 8.0' / 4.0'					
_					0.0 ppm	
7			7.0'	Brown VC SAND, F SA GRAVEL, saturated	0.0 ppm	
8		LAB-SB-08: 8.0' - 8.6'	8.0'	Red Sandy TILL, very dense, tightly-packed dry	О.О ррпп	
	8.0' - 8.4' / 1.6'	2.5 05 00.0.0	0.0	Refusal 8.4' BGS: Dense TILL		
9	,					
10						
11						
111						
12						
13						
14						
15						
13						
16						
17						

Ш	20							
					DEPTH (FT)		NOTES:	
	WATER LEVEL DATA		EL DATA	BOTTOM OF	BOTTOM OF	GROUNDWATER		
	DATE TIME ELAPSED TIME		CASING	BORING	ENCOUNTERED			
ſ			NA	8.4'	7.0'			

GENERAL NOTES

18 19

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

BGS = Below Ground Surface and = 35 - 50% C = Coarse R = RoundedNA = Not Applicable some = 20 - 35% M = Medium A = Angular little = 10 - 20%

F = Fine SR = Subrounded trace = 1 - 10%VF = Very Fine SA = Subangular

300 STATE STREET, ROCHESTER, NY

ENVIRONMENTAL ENGINEERING CONSULTANTS

AUGER SIZE AND TYPE: NA

PROJECT

Phase II Environmental Site Assessment Geoprobe® Overburden Soil Sampling Midtown Plaza, Oswego, New York

LBA-SB-09 9 OF 13 2181011

JOB: CHKD BY: SMR

DATE:

BORING:

SHEET

Client: SRE Midtown Garage, LLC and SRE Midtown Acquisitions, LLC

CONTRACTOR: LaBella Env. LLC BORING LOCATION: Interior center of Building

TIME: 0845 TO 0945 DATUM: NA

BORING:

LBA-SB-09

DRILLER: GROUND SURFACE ELEVATION D. Hitchcock S. Rife START DATE: 3/21/18

END DATE: 3/21/18 WEATHER:

LABELLA REPRESENTATIVE: TYPE OF DRILL RIG: Geoprobe® 54-LT

DRIVE SAMPLER TYPE: Macrocore

INSIDE DIAMETER: ~1.8"

OVERBURDEN SAMPLING METHOD: Direct Push OTHER:

DEPTH (FEET BGS)		SAMPLE					PID FIELD	
PTH BG			STRATA				SCREEN	
B	SAMPLE RECOVERY (FEET)	SAMPLE NO. AND DEPTH	CHANGE (FEET BGS)		VISUAL C	LASSIFICATION	(PPM)	REMARKS
0			0.67'		Concre	ete floor core	0.0 ppm	
1								
2			1.5'				0.0 ppm	
3	0.67' - 4.0' / 2.9'			Light b	rown - grey SILTY SAND	and F to C SA to A GRAVEL, lean, dry	0.0 ppm	
		LBA-SB-09: 3.0' - 4.0'					0.0 ppm	
4	_		4.0'				0.0 ppm	
5					AA, damp,	extremely dense	0.0 ppm	
6	4.0' - 7.9' / 4.0'						0.0 ppm	
7							0.0 ppm	
8					Refusal at 7.9	BGS: Very dense TILL		
9								
10								
11								
12								
13								
14								
15								
16								
17								
18								
19								
20	20							
				DEPTH (FT)	<u> </u>	NOTES:		
	WATER LEVEL DATA		BOTTOM OF	BOTTOM OF	GROUNDWATER			

GENERAL NOTES

TIME

ELAPSED TIME

DATE

1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.

CASING

NA

2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

BORING

7.9'

BGS = Below Ground Surface and = 35 - 50% C = CoarseR = RoundedNA = Not Applicable some = 20 - 35% M = Medium A = Angular

little = 10 - 20% F = Fine SR = Subrounded trace = 1 - 10% VF = Very Fine SA = Subangular

ENCOUNTERED

LABELLA REPRESENTATIVE:

Geoprobe® Overburden Soil Sampling Midtown Plaza, Oswego, New York

Client: SRE Midtown Garage, LLC and SRE Midtown Acquisitions, LLC

END DATE:

PROJECT

Phase II Environmental Site Assessment

BORING: SHEET

LBA-SB-10 10 OF 13

0945 TO

Sunny, 32°F

BORING:

LBA-SB-10

JOB: 2181011 CHKD BY: SMR

DATE:

WEATHER:

CONTRACTOR: LaBella Env. LLC BORING LOCATION: TIME: West of Site Building, proximately Former auto DRILLER: D. Hitchcock GROUND SURFACE ELEVATION DATUM: NA

START DATE: DRIVE SAMPLER TYPE: Macrocore TYPE OF DRILL RIG: Geoprobe® 54-LT

AUGER SIZE AND TYPE: NA INSIDE DIAMETER: ~1.8"

OVERBURDEN SAMPLING METHOD: Direct Push OTHER:

S. Rife

SAMPLE SAMPLE SAMPLE NO.AND CHANGE (PET NEATA VISUAL CLASSIFICATION SPECIAL PID FIELD SPECIAL PID FIELD SPECIAL PID FIELD PI		O TENBOTIBETT OF HITTE	III G III E I I I B I I COCI	4011			OTTIETU		
Concrete sidewalk core	(FEET S)		SAMPLE						
Concrete sidewalk core	TH BG			STRATA				SCREEN	
Concrete sidewalk core	딮	SAMPLE RECOVERY	SAMPLE NO. AND	CHANGE (FEET		VISUAL C	LASSIFICATION	(PPM)	REMARKS
Concrete sidewalk core								(,	
1	0	(- == -)				Concrete	sidewalk core		
1								0.0 ppm	
2	1							olo pp	
Brown to grey to black FILL SAND and M to C SA GRAVEL, trace of glacss, trace of brick fragments, trace of wood debris, damp 5.0' 1.	_							O Onnm	
10.55 - 4.07 2.77 12 - 12.07 2.97 13 12 - 12.07 1.57 16 17 18 19 20 19 18 19 20 19 18 19 20 19 19 19 19 19 19 19 1	2							оторр	
Bassator 3.0 - 4.0		0.55' - 4.0' / 2.7'			Brown to grey to			0.4 ppm	
4	3		LBA-SB-10: 3.0' - 4.0'			fragments, trace	of wood debris, damp		
5								0.0ppm	
5	4		(/						
5								0.0 ppm	
AA, moist, trace of cinders, trace of ash, VC concrete chunks	5			5.0'				1	
AA, moist, trace of cinders, trace of ash, VC concrete chunks								0.0ppm	
AA, moist, trace of cinders, trace of ash, VC concrete chunks O.0 ppm A2.9 ppm 20.4 ppm 11 12 12 12'-12.9' / 1.5' Refusal at 12.9' BGS OEPTH (FT) NOTES:	6	4.01.0.01./ 0.61							FILL
The content of the		4.0 - 8.0 / 2.6				maint trans of sinders t	trans of sah VC sanarata shunka	0.0 ppm	FILL
B	7		LBA-SB-10: 7.0' - 8.0'		AA,	moist, trace or cinders, i	trace or asir, vo concrete churiks		
9			(4oz)					0.0ppm	
9	8								
10 8.0'-12.0'/2.9' (4oz) 11								0.0 ppm	
10 8.0' - 12.0' / 2.9' Grey petro-stained VC SAND and VF SA GRAVEL, saturated, faint to mild decaxed petroleum odor 5.1 ppm 24.5 ppm 25.1 ppm	9			9.2'					
Grey petro-stained VC SAND and VF SA GRAVEL, saturated, faint to mild decaxed petroleum odor 12			(4oz)						
11	10	8.0' - 12.0' / 2.9'							
12 5.1 ppm 24.5 ppm 13 Refusal at 12.9' BGS 14 15 16 17 18 19 20 DEPTH (FT) NOTES:		,			Grey petro-sta			20.4 ppm	
12	11					petro	leum odor		
12'-12.9' / 1.5' 13 Refusal at 12.9' BGS 14 15 16 17 18 19 20 DEPTH (FT) NOTES:								5.1 ppm	
13 Refusal at 12.9' BGS 14 15 16 17 18 19 20 DEPTH (FT) NOTES:	12								
14	10	12' - 12.9' / 1.5'				5.4	. 40.01.000	24.5 ppm	
15 16 17 18 19 20 DEPTH (FT) NOTES:	13					Refusal	at 12.9' BGS		
15 16 17 18 19 20 DEPTH (FT) NOTES:	1.1								
16	14								
16	15								
17 18 19 20 DEPTH (FT) NOTES:	13								
17 18 19 20 DEPTH (FT) NOTES:	16								
18	10								
18	17								
19 20 DEPTH (FT) NOTES:	1								
19 20 DEPTH (FT) NOTES:	18								
20 DEPTH (FT) NOTES:									
20 DEPTH (FT) NOTES:	19								
DEPTH (FT) NOTES:									
DEPTH (FT) NOTES:	20								
WATER EVEL DATA POTTOM OF POTTOM OF COUNTY					DEPTH (FT) NOTES:		NOTES:	•	
		WATER LEV	FI DATA	BOTTOM OF	BOTTOM OF	GROUNDWATER			

				DEFIII (III)		INOTES.
	WATER LEV	EL DATA	BOTTOM OF	BOTTOM OF	GROUNDWATER	
DATE	TIME	ELAPSED TIME	CASING	BORING	ENCOUNTERED	Installed Well MW-03 to 11.3'. (Some collapse), 5.0' screen, 7.0' SAND, 1.0' Bentonite.
			NA	12.9'	~9.0'	

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

 ${\tt BGS = Below\ Ground\ Surface}$ and = 35 - 50% C = CoarseR = RoundedNA = Not Applicable some = 20 - 35% M = Medium A = Angular little = 10 - 20%

F = Fine SR = Subrounded trace = 1 - 10% VF = Very Fine SA = Subangular

PROJECT

Phase II Environmental Site Assessment
Geoprobe® Overburden Soil Sampling
Midtown Plaza, Oswego, New York

Client: SRE Midtown Garage, LLC and SRE Midtown Acquisitions, LLC

BORING: LBA-SB-11
SHEET 11 OF 13
JOB: 2181011

BORING:

LBA-SB-11

CHKD BY: SMR

DATE:

CONTRACTOR: LaBella Env. LLC BORING LOCATION: Proximate NW loading dock TIME: 1230 TO 1345 DRILLER: GROUND SURFACE ELEVATION DATUM: D. Hitchcock LABELLA REPRESENTATIVE: S. Rife START DATE: 3/21/18 END DATE: 3/21/18 WEATHER: Partly Cloudy, 28°F

TYPE OF DRILL RIG: Geoprobe® 54-LT

DRIVE SAMPLER TYPE: Macrocore

AUGER SIZE AND TYPE: NA INSIDE DIAMETER: ~1.8"

OVERBURDEN SAMPLING METHOD: Direct Push OTHER:

DEPTH (FEET BGS)		SAMPLE					PID FIELD	
PTH			STRATA				SCREEN	
DE	SAMPLE RECOVERY (FEET)	SAMPLE NO. AND DEPTH	CHANGE (FEET BGS)		VISUAL C	LASSIFICATION	(PPM)	REMARKS
0	, ,		0.6'		Cond	crete Core		ADDADENT EUL
1				F	TILL SAND and VF R GRA	VEL, wet (from coring), no odor	0.0 ppm	APPARENT FILL
2			1.3'				0.0 ppm	APPARENT NATIVE
3	0.6 - 4.0' / 2.9'			Light brown E to (C SAND and E to C SA G	RAVEL, dry, tightly-packed, very dense, no odor	0.0 ppm	
4		LBA-SB-11: 4.0' - 5.0'		Light stom to	0 071112 and 1 to 0 071 at	3.122, dr.), agrici, pasiloa, 18.9 dollos, 110 oddi.	0.0 ppm	
5		(4oz)	5.0'				0.0 ppm	
6	4.0' - 6.8' / 4.0'		0.0			0117	0.0 ppm	
	0.01.7.01.4.7				AA, TILL, little	e SILT, very dense	0.0 ppm	
7	6.8' - 7.6' / 1.7'						0.0 ppm	
8					Refusal 7.6' BGS:	: Dense/dry native TILL		VC GRAVEL in shoe
9								
10								
11								
12								
13								
14								
15								
16								
17								
18								
19								
20						T		
				DEPTH (FT)		NOTES:		
	WATER LEV	EL DATA	BOTTOM OF	BOTTOM OF	GROUNDWATER			

WATER LEVEL DATA BOTTOM OF BOTTOM OF GROUNDWATER DATE TIME ELAPSED TIME CASING BORING ENCOUNTERED NA 7.6' NA

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

BGS = Below Ground Surface and = $35 \cdot 50\%$ C = Coarse R = Rounded NA = Not Applicable some = $20 \cdot 35\%$ M = Medium A = Angular little = $10 \cdot 20\%$ F = Fine SR = Subrounded

trace = 1 - 10% VF = Very Fine SA = Subangular

PROJECT
Phase II Environmental Site Assessment

Geoprobe® Overburden Soil Sampling
Midtown Plaza, Oswego, New York

Client: SRE Midtown Garage, LLC and SRE Midtown Acquisitions, LLC

BORING: LBA-SB-12 SHEET 12 OF 13 JOB: 2181011

CHKD BY: SMR

DATE:

CONTRACTOR: LaBella Env. LLC BORING LOCATION: TIME: 1400 TO 1515 East loading dock, proximate former foundary DRILLER: D. Hitchcock GROUND SURFACE ELEVATION DATUM: LABELLA REPRESENTATIVE: S. Rife START DATE: 3/20/18 END DATE: 3/20/18 WEATHER: Partly Cloudy, 28°F

TYPE OF DRILL RIG: Geoprobe® 54-LT DRIVE SAMPLER TYPE: Macrocore

AUGER SIZE AND TYPE: NA INSIDE DIAMETER: ~1.8"

OVERBURDEN SAMPLING METHOD: Direct Push OTHER:

(FEET S)	SAMPLE						PID FIELD	
DEPTH (FEET BGS)	SAMPLE RECOVERY (FEET)	SAMPLE NO. AND DEPTH	STRATA CHANGE (FEET BGS)		VISUAL C	LASSIFICATION	SCREEN (PPM)	REMARKS
0					Crushed Asphalt,	sub-base GRAVEL, dry	0.0 ppm	
2	0.0' - 4.0' / 2.9'	LBA-SB-12 2.0' - 3.0' (4oz)	1.5' 3.2'		light brown-grey TILL: so	A GRAVEL, 10% concrete debris me SAND, some MC to VC SR GRAVEL, moist, ightly-packed	0.0 ppm 0.0 ppm 0.0 ppm	APPARENT NATIVE at 3.2'
4 5			4.0'		uchac, e	igney publicu	0.0 ppm 0.0 ppm	
6 7	4.0' - 8.0' / 1.5'				AA, satı	urated, loose	0.0 ppm	
8		LBA-SB-12: 8.0' - 9.0' (4oz)					0.0 ppm	
10 11	8.0' - 11.9' / 3.5'		10.0'		AA, satı	urated, loose	0.0 ppm 0.0 ppm	
12					Refusal at 11.9' Bo	GS: Apparent dense TILL	0.0 ppm	
13 14								
15								
16								
17 18								
19								
20								
				DEPTH (FT)		NOTES:		
	WATER LEV		BOTTOM OF	BOTTOM OF	GROUNDWATER			
DATE	TIME	ELAPSED TIME	CASING	BORING	ENCOUNTERED			
			NA	11.9'	4.0'			

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

BGS = Below Ground Surface and = $35 \cdot 50\%$ C = Coarse R = Rounded NA = Not Applicable some = $20 \cdot 35\%$ M = Medium A = Angular little = $10 \cdot 20\%$ F = Fine SR = Subrounded

trace = 1 - 10% VF = Very Fine SA = Subangular

BORING: LBA-SB-12

300 STATE STREET, ROCHESTER, NY

DRILLER:

ENVIRONMENTAL ENGINEERING CONSULTANTS

PROJECT

Phase II Environmental Site Assessment Geoprobe® Overburden Soil Sampling

Client: SRE Midtown Garage, LLC and SRE Midtown Acquisitions, LLC

Midtown Plaza, Oswego, New York

BORING: LBA-SB-13 SHEET 13 OF 13 JOB:

2181011 CHKD BY: SMR

DATE:

CONTRACTOR: LaBella Env. LLC BORING LOCATION: Across Street from Eastern auto shop GROUND SURFACE ELEVATION D. Hitchcock

TIME: 1515 TO 1615 DATUM:

LABELLA REPRESENTATIVE:

END DATE: 3/21/18

TYPE OF DRILL RIG: Geoprobe® 54-LT

S. Rife START DATE: 3/21/18

DRIVE SAMPLER TYPE: Macrocore

WEATHER: Sunny, 30°F

AUGER SIZE AND TYPE: NA

INSIDE DIAMETER: ~1.8"

OVERBURDEN SAMPLING METHOD: Direct Push OTHER:

(FEET	SAMPLE						PID FIELD	
DEPTH (FEET BGS)	SAMPLE RECOVERY (FEET)	SAMPLE NO. AND DEPTH	STRATA CHANGE (FEET BGS)		VISUAL C	LASSIFICATION	SCREEN (PPM)	REMARKS
0	(/				Cond	crete Core		
1			0.45'		FILL GRAVEL, little S	AND, damp, (from coring)	0.0 ppm 0.0 ppm	
2	0.45' - 4.0' / 1.5'		2.0'				оло ррии	
3	0.43 - 4.0 / 1.3						0.0 ppm	
4							0.0 ppm	
5		LBA-SB-13: 5.0' - 6.0'	4.5'				0.0 ppm	
		(4oz)					0.0 ppm	
6 7	4.0' - 8.0' / 2.7'	, ,		Gre	ey M to C SAND and SA t	o R GRAVEL, wet, loose, no odor	0.0 ppm	
'							0.0 ppm	
8							0.0	
9			9.5'				0.0 ppm 0.0 ppm	
10	8.0' - 12.0' / 1.8'		9.5					
11	,						0.0 ppm	
12					AA, dense, tight	ly - packed, saturated	0.0 ppm	
13							0.0 ppm	
13							0.0 ppm	
14	12.0' - 15.7' / 2.0'	LBA-SB-13: 14.0' -	14.0'	Blac		etro odors, wet, SAND and GRAVEI	0.0 ppm	For sample LBA-SB-13
15		15.0' (4oz)	15.0'		AA, v	very dense	0.0 ppm	there was a suspicious stan but no odor
16					Refusal	at 15.7' BGS	υ.υ μμπ	Stall but 110 outl
17								
18								
19								
20								
	- 1			DEPTH (FT)	1	NOTES:		
	WATER LEVEL DATA			BOTTOM OF	GROUNDWATER			

ENCOUNTERED

4.5'

VF = Very Fine

SA = Subangular

GENERAL NOTES

TIME

ELAPSED TIME

DATE

1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.

CASING NA

trace = 1 - 10%

2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

BORING

15.7'

BGS = Below Ground Surface and = 35 - 50% C = Coarse R = RoundedNA = Not Applicable some = 20 - 35% M = Medium A = Angular little = 10 - 20% F = Fine SR = Subrounded

BORING: LBA-SB-13

Installed well MW-04 to 15.5' BGS, 10.0' scree, 12.0' SAND, 1.0' Bentonite

Geotechnical Investigation Overburden Soil Augering/SPT Sampling East Lake Commons, Oswego, New York Client: SRE Midtown Acquisitions, LLC

SHEET 1 OF 1 JOB: 2181306.00 CHKD BY: TJZ

B-1

TO

BORING:

TIME:

CONTRACTOR: ATL BORING LOCATION: B-1

DRILLER: Zach GROUND SURFACE ELEVATION: NA DATUM: NA

LABELLA REPRESENTATIVE: Alex Brett START DATE: 4/18/2018 END DATE: 4/19/2018 WEATHER: 35° F, Cloudy

TEST BORING LOG

TYPE OF DRILL RIG:

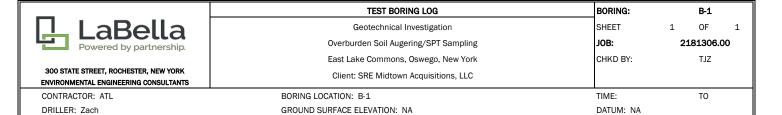
AUGER SIZE AND TYPE: 4 1/4" Hollow Stem

DRIVE SAMPLER TYPE: Split Spoon INSIDE DIAMETER: 1-3/8"

DEPT		SAMPLE DATA		VICUAL MATERIALS OF ACCIDINATION	DEMARKO
DEPTH (FT)	BLOW COUNTS	SAMPLE/RECOVERY	APPROXIMATE STRATA CHANGE	VISUAL MATERIALS CLASSIFICATION	REMARKS
0				CONCRETE SLAB (7")	
1	10 - 18		0.6' 1.0'	FILL: Gray Crusher Run Subbase STONE (5") FILL: Brown fine to coarse SAND, little Silt, little Gravel, little Brick, Asphalt, and Cinder fragments,	
	23 - 22	0.8' - 2.8'/ 19"	1.0	moist, dense	
2	27 - 26				
3	24 - 15	2.8' - 4.8'/ 16"			
4	14 - 50/2"	4.8' - 5.4'/ 6"	4.8'	FILL: Brown Gray GRAVEL, little fine to coarse Sand, trace silt, wet, very dense	
5					
6	23 - 23				
7	33 - 14	6.0' - 8.0'/ 12"			
8	20 - 9		8.0'	Brown SILT, little fine to medium Sand, little fine Gravel, trace clay, moist, medium dense (ML)	
9	6 - 14	8.0' - 10.0'/ 6"			
10	15 - 26			dense	
11	20 - 20	10.0' - 12.0'/ 22"			
12					
13					
14	32 - 39			color changes to gray, very dense	
15	48 - 65	14.0' - 16.0'/ 20"			
16					
17					
18					
19	9 - 17		19.0'	Red Brown fine to coarse SAND, some Silt, little Gravel, trace clay, very moist, dense (SM)	
20	14 - 13	19.0' - 21.0'/ 16"			
21	}				
				DEPTH (FT) NOTES:	
		EVEL DATA	BOTTOM OF	BOTTOM OF GROUNDWATER	
DATE	TIME	ELASPED TIME	CASING 29.0'	BORING ENCOUNTERED 29.2' 11.2'	

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE.


 3) ABBREVIATIONS: and = 35 - 50%

BGS = Below Ground Surface

some = 20 - 35% little = 10 - 20% trace = 1 - 10%

NA = Not Applicable

BORING: B-1

END DATE: 4/19/2018

WEATHER:

35° F, Cloudy

TYPE OF DRILL RIG: DRIVE SAMPLER TYPE: Split Spoon AUGER SIZE AND TYPE: 4 1/4" Hollow Stem INSIDE DIAMETER: 1-3/8"

START DATE: 4/18/2018

DEP1		SAMPLE DATA			
DEPTH (FT)	BLOW COUNTS	SAMPLE/RECOVERY	APPROXIMATE STRATA CHANGE	VISUAL MATERIALS CLASSIFICATION	REMARKS
22					
23					
24	10 - 10		24.0'	Brown fine to coarse sand, little fine Gravel, trace silt, wet, medium dense (SW)	
25	12 - 14	24.0' - 26.0'/ 18"			
26			_		
27					
28					
29	50/2"	29.0' - 29.2'/ 2"	29.0'	ROCK FRAGMENTS	
30	, -			Boring terminated upon apparent bedrock at 29.2'	
31					
32					
33					
34					
35					
36					
37					
38					
39					
40					
41					
42					
43				DEDTILLED. DIGITAL DESCRIPTION OF THE PROPERTY	
	WATER LEVEL DATA BOTTOM O			DEPTH (FT) NOTES: BOTTOM OF GROUNDWATER	
DATE				BORING ENCOUNTERED	

11.2'

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE.

 3) ABBREVIATIONS: and = 35 - 50%

29.2'

LABELLA REPRESENTATIVE: Alex Brett

some = 20 - 35%

BGS = Below Ground Surface NA = Not Applicable

little = 10 - 20% trace = 1 - 10%

29.0'

BORING:

B-1

Geotechnical Investigation Overburden Soil Augering/SPT Sampling East Lake Commons, Oswego, New York Client: SRE Midtown Acquisitions, LLC

BORING: B-2 SHEET 1 OF 2 JOB: 2181306.00 CHKD BY: TJZ

CONTRACTOR: ATL BORING LOCATION: B-2

GROUND SURFACE ELEVATION: NA

TIME: TO DATUM: NA

LABELLA REPRESENTATIVE: Alex Brett

START DATE: 4/17/2018 END DATE: 4/17/2018

TEST BORING LOG

WEATHER: 35° F, Cloudy

TYPE OF DRILL RIG:

DRILLER: Zach

AUGER SIZE AND TYPE: 4 1/4" Hollow Stem

DRIVE SAMPLER TYPE: Split Spoon

INSIDE DIAMETER: 1-3/8"

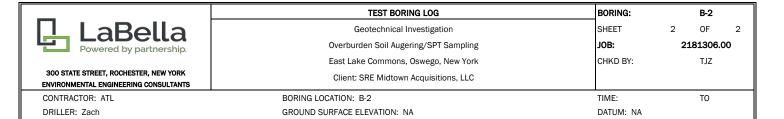
LA3Q	SAMPLE DATA				
DEPTH (FT)	BLOW COUNTS	SAMPLE/RECOVERY	APPROXIMATE STRATA CHANGE	VISUAL MATERIALS CLASSIFICATION	REMARKS
0	WH - WH			FILL: Dark brown SAND and SILT, little Gravel, trace organic material, moist, loose	
1	6 - 9	0 - 2.0'/ 18"			
2	15 - 13		2.0'	FILL: Brown fine to coarse SAND, some Silt, little Gravel, little Brick and Concrete fragments, trace	
3	5 - 5	2.0' - 4.0'/ 14"		cinders, moist, medium dense	
4	1 - WH		4.0'	FILL: Red BRICK Pieces, trace concrete fragments, wet, very loose	
5	WH - WH	4.0' - 6.0'/ 6"			
6	7 - 7		1	medium dense	
7	4 - 4	6.0' - 8.0'/ 0"			
8	6 - 6		1	grades to little Silt and Sand	
9	6 - 7	8.0' - 10.0'/ 6"			
10	14 - 25		10.0'	Brown fine to coarse SAND, some Silt, little Gravel, trace clay, moist, dense	
11	24 - 25	10.0' - 12.0'/ 12"			
12			=		
13					
14	25 - 28		-	very moist, very dense	
15	37 - 45	14.0' - 16.0'/ 20"			
16	•		1		
17					
18					
19	21 - 21		-	wet, dense	
20	19 - 20	19.0' - 21.0'/ 17"			
21					
		DATA	DOTTOM CT	DEPTH (FT) NOTES:	
DATE	TIME	EVEL DATA ELASPED TIME	BOTTOM OF CASING	BOTTOM OF GROUNDWATER BORING ENCOUNTERED	

8.1'

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE.

 3) ABBREVIATIONS: and = 35 - 50%


40.0'

some = 20 - 35% little = 10 - 20% trace = 1 - 10%

30.0'

BGS = Below Ground Surface NA = Not Applicable WH = Weight of Hammer

BORING:

START DATE: 4/17/2018

TYPE OF DRILL RIG: AUGER SIZE AND TYPE: 4 1/4" Hollow Stem

LABELLA REPRESENTATIVE: Alex Brett

DRIVE SAMPLER TYPE: Split Spoon INSIDE DIAMETER: 1-3/8"

WEATHER:

35° F, Cloudy

END DATE: 4/17/2018

DEPT		SAMPLE DATA			25.00
DЕРТН (FT)	BLOW COUNTS	SAMPLE/RECOVERY	APPROXIMATE STRATA CHANGE	VISUAL MATERIALS CLASSIFICATION	REMARKS
22					
23					
24	8 - 19		24.0'	Brown fine to coarse SAND, some Silt, wet, dense	
25	30 - 50/3"	24.0' - 25.8'/ 17"			
26					
27					
28					
29	50/1"	29.0' - 29.1'	 -		
30			30.0'	BEDROCK - Gray Slightly Weathered Oswego Sandstone	
31					Run #1 (30'-35') Recovery - 88%
32					RQD - 47%
33					
34					
35					
36					Run #2 (35'-40') Recovery - 98%
37					RQD - 83%
38					
39					
40				Boring terminated at 40.0'	\dashv
41					
42					
43					
			1	DEPTH (FT) NOTES:	<u> </u>
		EVEL DATA	BOTTOM OF	BOTTOM OF GROUNDWATER	
DATE	TIME	ELASPED TIME	CASING 30.0'	BORING ENCOUNTERED 40.0' 8.1'	

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE.

 3) ABBREVIATIONS: and = 35 - 50%

some = 20 - 35%

BGS = Below Ground Surface

little = 10 - 20% trace = 1 - 10%

NA = Not Applicable

BORING:

East Lake Commons, Oswego, New York Client: SRE Midtown Acquisitions, LLC

BORING: B-3 SHEET 1 OF 1 JOB: 2181306.00 CHKD BY: TJZ

CONTRACTOR: ATL BORING LOCATION: B-3 DRILLER: Zach

GROUND SURFACE ELEVATION: NA

START DATE: 4/19/2018

TEST BORING LOG

Geotechnical Investigation

Overburden Soil Augering/SPT Sampling

TIME: DATUM: NA

LABELLA REPRESENTATIVE: Steven Rife

WEATHER:

35° F, Cloudy

TO

TYPE OF DRILL RIG:

AUGER SIZE AND TYPE: 4 1/4" Hollow Stem

DRIVE SAMPLER TYPE: Split Spoon INSIDE DIAMETER: 1-3/8"

END DATE: 4/20/2018

DEP1	SAMPLE DATA				
DEPTH (FT)	BLOW COUNTS	SAMPLE/RECOVERY	APPROXIMATE STRATA CHANGE	VISUAL MATERIALS CLASSIFICATION	REMARKS
0				4" thick CONCRETE SLAB underlain by 2" of Gray Subbase STONE	
1	4 - 7		0.5'	FILL: Brown, fine to coarse SAND, some Silt, little Gravel, little brick, asphalt and cinder fragments, moist, medium dense	
2	8 - 10	0.5' - 2.5'/ 18"			
3	6 - 11	0.51. 4.51/40			
4	10 - 12	2.5' - 4.5'/ 18"			
5	7 - 9	4.5' - 6.5'/ 15"			
6	11 - 10	4.0 0.07 10			
7	13 - 19	65' 95'/10"	6.5'	Brown, fine to coarse SAND, some Silt, little Gravel, moist, dense (SM)	
8	19 - 17	6.5' - 8.5'/ 19"			
9	5 - 3		8.5'	Brown gray SILT, little fine Sand, trace to little clay, trace gravel, wet, loose (ML)	
10	5 - 19	8.5' - 10.5'/ 19"			
11	21 - 19		10.5'	Brown gray, fine to coarse SAND and GRAVEL, little Silt, wet, dense (SW)	
12	21 - 21	10.5' - 12.5'/ 10"			
13					
14	9 - 8		14.0'	Red Brown, fine to medium SAND, little to some Silt, trace gravel, wet, medium dense	
15	11 - 17	14.0' - 16.0'/ 15"		,	
16					
17					
18					
19	19 - 40				
20	50/4"	19.0' - 20.3'/ 12"		Rock Fragments in sampler shoe at termination	
21				Boring terminated upon apparent bedrock at 20.3 feet	
	WATER	EVEL DATA	DOTTOM CT	DEPTH (FT) NOTES:	
DATE	TIME	EVEL DATA ELASPED TIME	BOTTOM OF CASING	BOTTOM OF GROUNDWATER BORING ENCOUNTERED	

7.0'

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE.

 3) ABBREVIATIONS: and = 35 - 50%

20.3

some = 20 - 35% little = 10 - 20% trace = 1 - 10%

19.0'

BGS = Below Ground Surface

NA = Not Applicable

BORING:

East Lake Commons, Oswego, New York Client: SRE Midtown Acquisitions, LLC

BORING: B-4 SHEET 1 OF 1 JOB: 2181306.00 CHKD BY: TJZ

BORING LOCATION: B-4

TEST BORING LOG

Geotechnical Investigation

Overburden Soil Augering/SPT Sampling

GROUND SURFACE ELEVATION: NA

TIME: DATUM: NA TO

LABELLA REPRESENTATIVE: Steven Rife

START DATE: 4/20/2018

WEATHER:

30° F, Cloudy

TYPE OF DRILL RIG:

CONTRACTOR: ATL

DRILLER: Zach

AUGER SIZE AND TYPE: 4 1/4" Hollow Stem

DRIVE SAMPLER TYPE: Split Spoon

INSIDE DIAMETER: 1-3/8"

END DATE: 4/20/2018

DEPT	SAMPLE DATA				
DEPTH (FT)	BLOW COUNTS	SAMPLE/RECOVERY	APPROXIMATE STRATA CHANGE	VISUAL MATERIALS CLASSIFICATION	REMARKS
0				4" Thick CONCRETE SLAB underlain by 2" of Gray Subbase STONE	
	10 - 8		0.5'	FILL: Brown, fine to coarse SAND, some Silt, little Gravel, little Concrete and Brick fragments, trace	
1	10 - 14	0.5' - 2.5'/ 16"		cinders, moist, medium dense	
2	12 - 18				
3	16 - 24	2.5' - 4.5'/ 18"			
4	6 - 43		-		Difficult drilling noted from 5' to 6.5'
5		4.5' - 5.9'/ 14"			11011 5 to 6.5
6	50/5"				
7	6 - 9	C.E.L. O.E.I./ 4.011		very moist	
8	8 - 4	6.5' - 8.5'/ 12"			
9	2 - 4		8.5'	Brown SILT, little to some Clay, little fine Sand, little Gravel, moist, stiff	
	6 - 5	8.5' - 10.5'/ 22"			
10	6 - 6		<u> </u>		
11	13 - 25	10.5' - 12.5'/ 24"		very stiff	
12					
13					
14	36 - 30		-		
15	11 - 12	14.0' - 16.0'/ 15"		color changes to gray, hard	
16			-		
17					
18					
19	31 - 42		19.0'	Red Brown, fine to coarse SAND, some Silt, trace clay, trace gravel, moist, very dense	
20	42 - 50/5"	19.0' - 20.9'/ 22"			
21				Boring terminated at 20.9'	
<u> </u>				DEPTH (FT) NOTES:	<u> </u>
	WATER LE	EVEL DATA	BOTTOM OF	BOTTOM OF GROUNDWATER	

ENCOUNTERED

NA

GENERAL NOTES

TIME

DATE

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE.

 3) ABBREVIATIONS: and = 35 - 50% BGS = Beld

BORING

20.9'

ELASPED TIME

some = 20 - 35%

CASING

19.0'

BGS = Below Ground Surface

little = 10 - 20% trace = 1 - 10%

NA = Not Applicable

BORING:

Geotechnical Investigation Overburden Soil Augering/SPT Sampling East Lake Commons, Oswego, New York Client: SRE Midtown Acquisitions, LLC

TEST BORING LOG

BORING: P-1 SHEET 1 OF 1 JOB: 2181306.00 CHKD BY: TJZ

BORING LOCATION:

GROUND SURFACE ELEVATION: NA

TIME: DATUM: NA TO

LABELLA REPRESENTATIVE: Alex Brett

CONTRACTOR: ATL

DRILLER: Zach

START DATE: 4//2018

WEATHER:

35° F, Cloudy

TYPE OF DRILL RIG: CME 550X

AUGER SIZE AND TYPE: 4 1/4" Hollow Stem

DRIVE SAMPLER TYPE: Split Spoon INSIDE DIAMETER: 1-3/8"

END DATE: 4//2018

DEPT	SAMPLE DATA			WOULD MATERIAL OF ACCIDING TO	DEMARKO
DEPTH (FT)	BLOW COUNTS	SAMPLE/RECOVERY	APPROXIMATE STRATA CHANGE	VISUAL MATERIALS CLASSIFICATION	REMARKS
0	1-3			FILL: Brown fine SAND, little Silt, moist, loose	
1	4 - 3	0 - 2.0'/ 14"			
2	4 - 2		2.0'	FILL: Brown fine to coarse SAND, little Silt, little Gravel, little Concrete and Brick fragments, little	
3	2 - 4	2.0' - 4.0'/ 12"		Cinders, moist, loose	
4	1-2				
5	1-1	4.0' - 6.0'/ 3"	4.5'	Brown fine to coarse SAND and GRAVEL, little Silt, wet, very loose (SW)	
6	3 - 3				
7	4 - 2	6.0' - 8.0'/ 16"		loose	
8	4 - 13				
9	4 - 3	8.0' - 10.0'/ 20"		medium dense	
10	6 - 9				
11	10 - 9	10.0' - 12.0'/ 18"			
12					
13					
14					
15	19 - 20		15.0'	Brown fine to medium SAND, some Silt, trace gravel, moist, very dense (SM)	
16	50/6"	15.0' - 16.5'/ 12"			
17					
18					
19					
20	18 - 18			very moist	
21	50/5"	20.0' - 21.4'/ 14"		Boring terminated at 21.4' upon casing refusal	
	·			DEPTH (FT) NOTES:	
	WATER LE	EVEL DATA	BOTTOM OF	BOTTOM OF GROUNDWATER	

ENCOUNTERED

8.3

GENERAL NOTES

TIME

DATE

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE.

 3) ABBREVIATIONS: and = 35 - 50% BGS = Beld

BORING

21.4

ELASPED TIME

some = 20 - 35% little = 10 - 20%

trace = 1 - 10%

CASING

21.4'

BGS = Below Ground Surface

NA = Not Applicable

BORING:

P-1

Geotechnical Investigation Overburden Soil Augering/SPT Sampling East Lake Commons, Oswego, New York Client: SRE Midtown Acquisitions, LLC

TEST BORING LOG

BORING: P-2 SHEET 1 OF 1 JOB: 2181306.00 CHKD BY: TJZ

CONTRACTOR: ATL BORING LOCATION:

GROUND SURFACE ELEVATION: NA

TIME: TO DATUM: NA

30° F, Cloudy

LABELLA REPRESENTATIVE: Alex Brett

DRILLER: Zach

START DATE: 4/18/2018

WEATHER:

TYPE OF DRILL RIG: DRIVE SAMPLER TYPE: Split Spoon

INSIDE DIAMETER: 1-3/8"

END DATE: 4/18/2018

AUGER SIZE AND TYPE: 4 1/4" Hollow Stem

DEPI	SAMPLE DATA				
DEPTH (FT)	BLOW COUNTS	SAMPLE/RECOVERY	APPROXIMATE STRATA CHANGE	VISUAL MATERIALS CLASSIFICATION	REMARKS
0	WH - WH			FILL: Brown fine to coarse SAND, little Silt, little fine Gravel, trace organic material, moist, loose	
1	5 - 12	0 - 2.0'/ 24"			
2	17 - 16		2.0'	Brown fine to coarse SAND, some Silt, trace to little gravel, moist, dense	
3	16 - 15	2.0' - 4.0'/ 21"			
4	8 - 5			very moist, loose	
5	1 - 1	4.0' - 6.0'/ 24"			
6	1 - 10			wet, medium dense	
7	10 - 10	6.0' - 8.0'/ 24"			
8	21 - 50/3"	8.0' - 8.8'/ 6"		very dense	
9					
10	18 - 46				
11	47 - 39	10.0' - 12.0'/ 7"			
12					
13					
14	13 - 25	14.0' - 15.5'/ 8"	14.0'	Red brown SILT, some Clay, little fine Sand, little fine Gravel, moist , hard	
15	50/6"	14.0 - 15.57 6			
16					
17					
18					
19	50/5"	19.0' - 19.4'/ 5"	19.0'	Gray brown fine to coarse SAND, some Silt, little to some Gravel, trace to little clay, very moist, very	
20				dense	
21					
	WATER LE	EVEL DATA	BOTTOM OF	DEPTH (FT) NOTES: BOTTOM OF GROUNDWATER	
DATE	TIME	ELASPED TIME	CASING	BORING ENCOUNTERED	

9.4

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE.

 3) ABBREVIATIONS: and = 35 - 50%

34.0'

some = 20 - 35% little = 10 - 20% trace = 1 - 10%

23.2'

BGS = Below Ground Surface NA = Not Applicable WH = Weight of Hammer

BORING:

P-2

_	TEST BORING LOG	BORING: P-2					
LaBella	Geotechnical Investigation	SHEET	2	OF	2		
Powered by partnership.	Overburden Soil Augering/SPT Sampling	JOB:	2	2181306.00			
onoroa by paramoromp.	East Lake Commons, Oswego, New York	CHKD BY:		TJZ			
300 STATE STREET, ROCHESTER, NEW YORK ENVIRONMENTAL ENGINEERING CONSULTANTS	Client: SRE Midtown Acquisitions, LLC						
CONTRACTOR: ATL	BORING LOCATION:	TIME:		TO			
DRILLER: Zach	GROUND SURFACE ELEVATION: NA	DATUM: NA					
LABELLA REPRESENTATIVE: Alex Brett	START DATE: 4/18/2018 END DATE: 4/18/2018	WEATHER:		30° F, Clou	dy		

TYPE OF DRILL RIG: DRIVE SAMPLER TYPE: Split Spoon AUGER SIZE AND TYPE: 4 1/4" Hollow Stem INSIDE DIAMETER: 1-3/8"

DEPT		SAMPLE DATA			
DEPTH (FT)	BLOW COUNTS	SAMPLE/RECOVERY	APPROXIMATE STRATA CHANGE	VISUAL MATERIALS CLASSIFICATION	REMARKS
22					
23	50/2"	23.0 - 23.2'/ 0"			
24			24.0'	BEDROCK - Gray Slightly Weathered Oswego Sandstone	
25					Run #1 (24'-29') Recovery - 85%
26					RQD - 48%
27					
28					
29					
30					Run #2 (29'-34') Recovery - 100%
31					RQD - 80%
32					
33					
34				Boring terminated at 34'	
35				Bolling terminated at 64	
36					
37					
38					
39					
40					
41					
42					
43				DEPTH (FT) NOTES:	
	WATER LE	EVEL DATA	BOTTOM OF	BOTTOM OF GROUNDWATER	

GENERAL NOTES

TIME

DATE

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE.

 3) ABBREVIATIONS: and = 35 - 50% BGS = Belo

BORING

34.0'

ELASPED TIME

BGS = Below Ground Surface

ENCOUNTERED

9.4'

some = 20 - 35% little = 10 - 20% trace = 1 - 10%

CASING

23.2'

NA = Not Applicable

BORING: P-2

Geotechnical Investigation Overburden Soil Augering/SPT Sampling East Lake Commons, Oswego, New York Client: SRE Midtown Acquisitions, LLC

SHEET 1 OF 1 JOB: 2181306.00 CHKD BY: TJZ

TEST BORING LOG

TIME: DATUM: NA

BORING:

TO

P-3

DRILLER: Zach

CONTRACTOR: ATL

BORING LOCATION: GROUND SURFACE ELEVATION: NA

WEATHER: 30° F, Cloudy

LABELLA REPRESENTATIVE: Steven Rife

START DATE: 4/20/2018

END DATE: 4/20/2018

TYPE OF DRILL RIG:

AUGER SIZE AND TYPE: 4 1/4" Hollow Stem

DRIVE SAMPLER TYPE: Split Spoon INSIDE DIAMETER: 1-3/8"

DEPT	SAMPLE DATA				MOUA	I MATERIALO DI AGGISTATIONI	DEMARKO
DEPTH (FT)	BLOW COUNTS	SAMPLE/RECOVERY	APPROXIMATE STRATA CHANGE		VISUA	L MATERIALS CLASSIFICATION	REMARKS
0						y 4" of Gray Subbase STONE	
1	2 - 5		0.8'		wn fine to coarse SAI st, medium dense	ND, some Silt, little Gravel, little Concrete, Brick, and Cinder	
2	10 - 12	1.0' - 3.0'/ 14"					
3	5 - 8		3.0'	Brown fine to me	edium SAND, some Si	It, trace fine gravel, moist, medium dense (SM)	
4	4 - 4	3.0' - 5.0'/ 16"					
5	1 - 1		5.0'	Gray Brown SILT	, little fine Sand, trace	e clay, very moist, very loose (ML)	
6	1 - 6	5.0' - 7.0'/ 19"					
7	3 - 8		7.0'	Brown Gray fine	to coarse SAND, some	e Gravel, some Silt, trace clay, wet, medium dense (SW)	
8	6 - 6	7.0' - 9.0'/ 11"					
9	6 - 8						
10	10 - 13	9.0' - 11.0'/ 9"					
11	10 - 8		11.0'	Brown fine to me	edium SAND and SILT	, little fine Gravel, little Clay, moist, medium dense (SM-ML)	
12	8 - 12	11.0' - 13.0'/ 24"					
13							
14	2 - 11						
15	50/3"	14.0' - 15.3'/ 13"					
16				Tuesday and the same	17	01	
17					nents in spoon at 17. rminated upon roller b	or bit and spoon refusal upon apparent bedrock at 17 feet	
18							
19							
20							
21							
				DEPTH (FT)		NOTES:	
DATE		EVEL DATA	BOTTOM OF	BOTTOM OF	GROUNDWATER		
DATE	TIME	ELASPED TIME	CASING 15.8'	BORING 17.0'	ENCOUNTERED 7.7'		

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE.

 3) ABBREVIATIONS: and = 35 - 50%

some = 20 - 35% little = 10 - 20% trace = 1 - 10%

BGS = Below Ground Surface

NA = Not Applicable

BORING:

P-3

LABELLA REPRESENTATIVE: Steven Rife

Geotechnical Investigation Overburden Soil Augering/SPT Sampling East Lake Commons, Oswego, New York Client: SRE Midtown Acquisitions, LLC

SHEET 1 OF JOB: 2181306.00 CHKD BY: TJZ

START DATE: 4/20/2018

TEST BORING LOG

TIME: DATUM: NA

BORING:

TO

P-4

1

CONTRACTOR: Target Drilling DRILLER: Justin Loomis

BORING LOCATION: GROUND SURFACE ELEVATION: NA

END DATE: 4/20/2018

WEATHER: 35° F, Cloudy

TYPE OF DRILL RIG:

AUGER SIZE AND TYPE: 4 1/4" Hollow Stem

DRIVE SAMPLER TYPE: Split Spoon

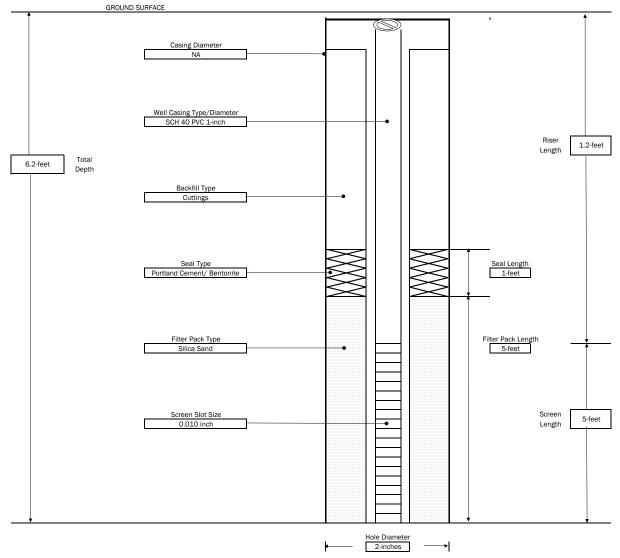
INSIDE DIAMETER: 1-3/8"

DEPT		SAMPLE DATA			VIIOUA	U MATERIALO OL MONEJONIONI	DEMARKO
DEPTH (FT)	BLOW COUNTS	SAMPLE/RECOVERY	APPROXIMATE STRATA CHANGE		VISUA	AL MATERIALS CLASSIFICATION	REMARKS
0				CONCRETE SLAB	3 (7")		
	4 0		0.6'	Gray Subbase ST			
1	1-3	1.0' - 3.0'/ 17"	1.0'	Brown SILT and	fine SAND, trace fine	gravel, very moist, wery moist, medium dense	
2	10 - 9	1.0 - 3.0/ 17					
3	11 - 9						
4	7 - 5	3.0' - 5.0'/ 14"					
5	WH - 1			wet, very loose			
6	WH - WH	5.0' - 7.0'/ 10"					
7	1-1		7.0'	Prown CILT little	e Clay, trace fine sand	wat van eeft	
		7.0' - 9.0'/ 20"	7.0	DIOWII SILI, IIII	e Clay, trace fille Salid	, wet, very soft	
8	1 - 1	,					
9	WH - WH		9.0'	Gray Brown to G	ray CLAY, some Silt, to	race fine sand, trace gravel, wet, very soft	
10	WH - WH	9.0' - 11.0'/ 24"					
11	WH - WH						
12	WH - WH	11.0' - 13.0'/ 24"					
13							
14							
15	35 - 50/4"		15.0'	Olive Brown High	nly Weathered Bedroo	rk (Fragments)	
	00 00/4	15.0' - 15.8'/ 8"	10.0	Onve Brown ringi	ny Weatherea Bearea	in (Hagiliana)	
16							
17							
18	50/1"	18.0' - 18.1'		Boring te	rminated at 18.1 feet	on apparent bedrock upon roller bit and spoon refusal	
19							
20							
21							
<u> </u>				DEPTH (FT)		NOTES:	<u> </u>
		EVEL DATA	BOTTOM OF	BOTTOM OF	GROUNDWATER		
DATE	TIME	ELASPED TIME	CASING	BORING	ENCOUNTERED		
			15.5'	18.1'	6.5'		

GENERAL NOTES

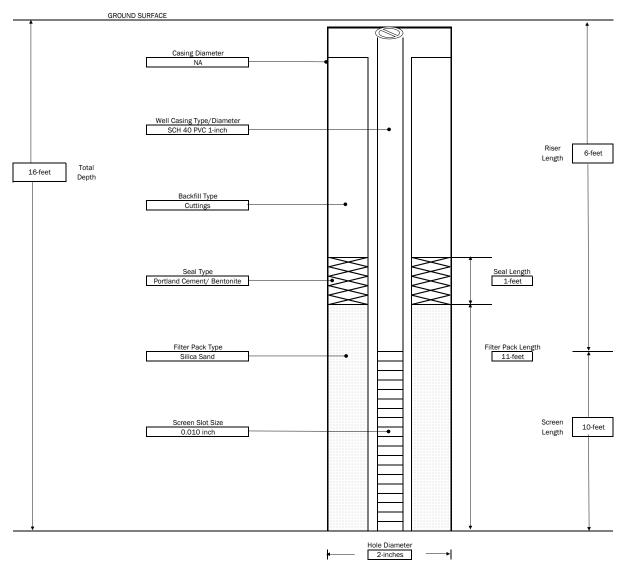
- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE.

 3) ABBREVIATIONS: and = 35 - 50%

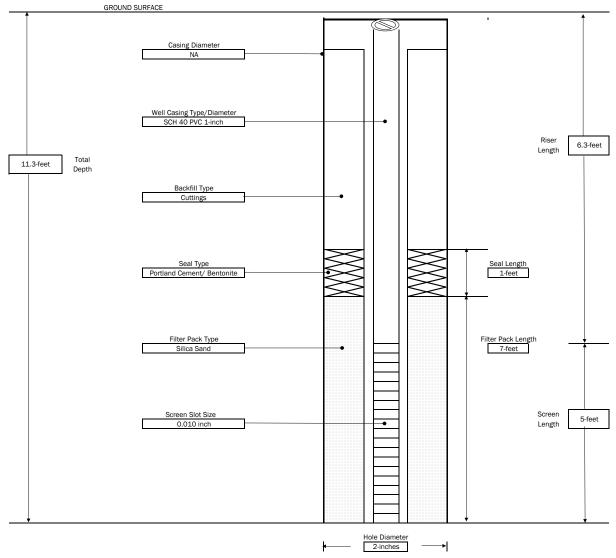

some = 20 - 35% little = 10 - 20% trace = 1 - 10%

BGS = Below Ground Surface NA = Not Applicable WH = Weight of Hammer

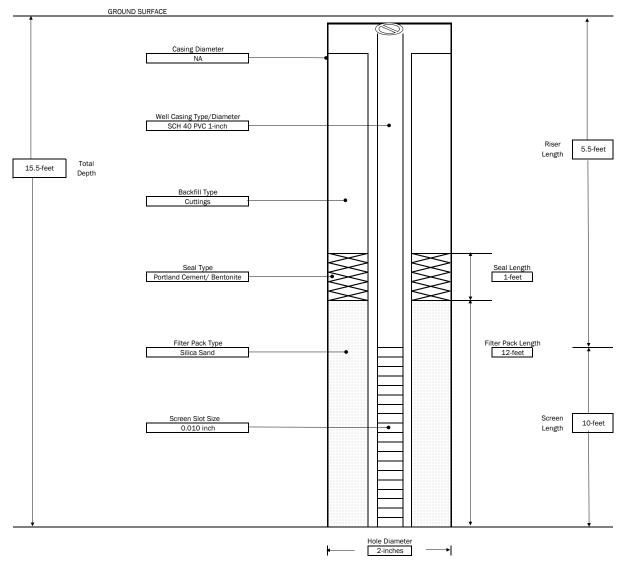
BORING:


P-4

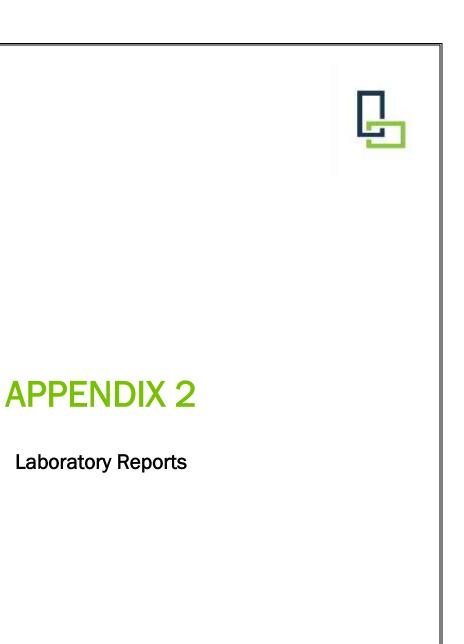
LaBella		PROJEC	Г			MONITORING WELL:	MW-01			
Powered by partnership. 300 STATE STREET, ROCHESTER, NEW YORK ENVIRONMENTAL ENGINEERING CONSULTANTS	18 East Cay		•			SHEET JOB #	1 OF 1 2181011			
CONTRACTOR: LaBella Envrionmental, LLC	BORING LO	OCATION: So	utheast corn	er of Site						
DRILLER: D. Hitchcock	GROUND S	SURFACE ELE	VATION:							
LABELLA REPRESENTATIVE: S. Rife	START DAT	E: 3/20/20	18		END DATE:	3/20/2018				
			WATER	LEVEL DATA						
TYPE OF DRILL RIG: Geoprobe 54-LT		DATE	TIME	WATER	CASING	REMARKS				
AUGER SIZE AND TYPE: NA										
OVERBURDEN SAMPLING METHOD: Direct Push										


- 1) NOT TO SCALE
 2) DEPTHS ARE APPROXIMATE
 3) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR
 4) BGS = BELOW GROUND SURFACE

LaBella		PROJECT MONITORING WELL:					MW-02	
Powered by partnership. 300 STATE STREET, ROCHESTER, NEW YORK ENVIRONMENTAL ENGINEERING CONSULTANTS	vironmental S aga Street, Os : SRE Midtow	wego, New			SHEET 1 0F 1 JOB # 2181011			
CONTRACTOR: LaBella Envrionmental, LLC DRILLER: D. Hitchcock		CATION: Sou		er of Site				
LABELLA REPRESENTATIVE: S. Rife		E: 3/20/201			END DATE:	3/20/2018		
			WATER	LEVEL DATA			1 OF 1	
TYPE OF DRILL RIG: Geoprobe 54-LT		DATE	TIME	WATER	CASING	REMARKS		
AUGER SIZE AND TYPE: NA								
OVERBURDEN SAMPLING METHOD: Direct Push								


- 1) NOT TO SCALE
 2) DEPTHS ARE APPROXIMATE
 3) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR
 4) BGS = BELOW GROUND SURFACE

LaBella		PROJECT						
Powered by partnership. 300 STATE STREET, ROCHESTER, NEW YORK ENVIRONMENTAL ENGINEERING CONSULTANTS	18 East Cay	Phase II Environmental Site Assessment 18 East Cayuga Street, Oswego, New York Client: SRE Midtown Garage					1 OF 1 2181011	
CONTRACTOR: LaBella Envrionmental, LLC	BORING LO	BORING LOCATION: Southeast corner of Site						
DRILLER: D. Hitchcock	GROUND S	URFACE ELE	VATION:					
LABELLA REPRESENTATIVE: S. Rife	START DAT	E: 3/21/20	18		END DATE:	3/21/2018		
			WATER	LEVEL DATA				
TYPE OF DRILL RIG: Geoprobe 54-LT		DATE	TIME	WATER	CASING	REMARKS		
AUGER SIZE AND TYPE: NA								
OVERBURDEN SAMPLING METHOD: Direct Push								



- 1) NOT TO SCALE
 2) DEPTHS ARE APPROXIMATE
 3) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR
 4) BGS = BELOW GROUND SURFACE

LaBella		PROJEC	Т			MONITORING WELL:	MW-04	
Powered by partnership. 300 STATE STREET, ROCHESTER, NEW YORK ENVIRONMENTAL ENGINEERING CONSULTANTS	18 East Cay	Site Assessm swego, New vn Garage			SHEET JOB #	1 OF 1 2181011		
CONTRACTOR: LaBella Envrionmental, LLC	BORING LO	BORING LOCATION: Southeast corner of Site						
DRILLER: D. Hitchcock	GROUND S	SURFACE ELE	VATION:					
LABELLA REPRESENTATIVE: S. Rife	START DAT	E: 3/21/20	18		END DATE:	3/21/2018		
			WATER	LEVEL DATA				
TYPE OF DRILL RIG: Geoprobe 54-LT		DATE	TIME	WATER	CASING	REMARKS		
AUGER SIZE AND TYPE: NA								
OVERBURDEN SAMPLING METHOD: Direct Push								

- 1) NOT TO SCALE
 2) DEPTHS ARE APPROXIMATE
 3) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR
 4) BGS = BELOW GROUND SURFACE

ANALYTICAL REPORT

Lab Number: L1810007

Client: LaBella Associates, P.C.

300 State Street

Suite 201

Rochester, NY 14614

ATTN: Jennifer Gillen
Phone: (585) 454-6110

Project Name: OSWEGO MIDTOWN

Project Number: 2181011 Report Date: 03/30/18

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: OSWEGO MIDTOWN

Project Number: 2181011

Lab Number: L1810007 **Report Date:** 03/30/18

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1810007-01	MW-01	WATER	OSWEGO, NY	03/22/18 14:45	03/23/18
L1810007-02	MW-02	WATER	OSWEGO, NY	03/22/18 15:05	03/23/18
L1810007-03	MW-03	WATER	OSWEGO, NY	03/22/18 15:20	03/23/18
L1810007-04	MW-04	WATER	OSWEGO, NY	03/22/18 16:55	03/23/18
L1810007-05	LBA-SB-02 4'-5'	SOIL	OSWEGO, NY	03/21/18 11:00	03/23/18
L1810007-06	LBA-SB-04 2'-3.7'	SOIL	OSWEGO, NY	03/21/18 00:00	03/23/18
L1810007-07	LBA-SB-06 2'-4'	SOIL	OSWEGO, NY	03/21/18 16:45	03/23/18
L1810007-08	LBA-SB-08 8'-8.4'	SOIL	OSWEGO, NY	03/22/18 08:45	03/23/18
L1810007-09	LBA-SB-10 9'-10'	SOIL	OSWEGO, NY	03/22/18 11:20	03/23/18
L1810007-10	LBA-SB-13 14'-15'	SOIL	OSWEGO, NY	03/22/18 16:30	03/23/18

L1810007

Lab Number:

Project Name: OSWEGO MIDTOWN

Project Number: 2181011 **Report Date:** 03/30/18

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please	contact	Client	Services	at 800.	-624-9220	with an	nv c	nuestions
i icasc	Contact	Ciletit	OCI VICES	at 000	-024-3220	with a	ıy c	fuestions.

L1810007

Lab Number:

Project Name: OSWEGO MIDTOWN

Project Number: 2181011 **Report Date:** 03/30/18

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

L1810007-01 and -03: The pH of the samples was greater than two; however, the samples were analyzed within the method required holding time.

L1810007-03: The sample has elevated detection limits due to the dilution required by the sample matrix (oily). L1810007-05, -08, -09 and -10: Any reported concentrations that are below 200 ug/kg may be biased low due to the sample not being collected according to 5035-L/5035A-L low-level specifications.

L1810007-09: The analysis of Volatile Organics was performed from a methanol extract due to the elevated concentrations of non-target compounds in the sample.

Total Metals

L1810007-07: The sample has an elevated detection limit for selenium due to the dilution required by matrix interferences encountered during analysis.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 03/30/18

Melissa Cripps Melissa Cripps

ORGANICS

VOLATILES

Project Name: OSWEGO MIDTOWN

Project Number: 2181011

SAMPLE RESULTS

Lab Number: L1810007

Report Date: 03/30/18

Lab ID: L1810007-01 D

Client ID: MW-01

Sample Location: OSWEGO, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 03/28/18 17:50

Analyst: MKS Date Collected: 03/22/18 14:45 Date Received: 03/23/18

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	stborough Lab						
Methylene chloride	ND		ug/l	5.0	1.4	2	
1,1-Dichloroethane	ND		ug/l	5.0	1.4	2	
Chloroform	ND		ug/l	5.0	1.4	2	
Carbon tetrachloride	ND		ug/l	1.0	0.27	2	
1,2-Dichloropropane	ND		ug/l	2.0	0.27	2	
Dibromochloromethane	ND		ug/l	1.0	0.30	2	
1,1,2-Trichloroethane	ND		ug/l	3.0	1.0	2	
Tetrachloroethene	160		ug/l	1.0	0.36	2	
Chlorobenzene	ND		ug/l	5.0	1.4	2	
Trichlorofluoromethane	ND		ug/l	5.0	1.4	2	
1,2-Dichloroethane	ND		ug/l	1.0	0.26	2	
1,1,1-Trichloroethane	ND		ug/l	5.0	1.4	2	
Bromodichloromethane	ND		ug/l	1.0	0.38	2	
trans-1,3-Dichloropropene	ND		ug/l	1.0	0.33	2	
cis-1,3-Dichloropropene	ND		ug/l	1.0	0.29	2	
Bromoform	ND		ug/l	4.0	1.3	2	
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0	0.33	2	
Benzene	0.67	J	ug/l	1.0	0.32	2	
Toluene	ND		ug/l	5.0	1.4	2	
Ethylbenzene	ND		ug/l	5.0	1.4	2	
Chloromethane	ND		ug/l	5.0	1.4	2	
Bromomethane	ND		ug/l	5.0	1.4	2	
Vinyl chloride	24		ug/l	2.0	0.14	2	
Chloroethane	ND		ug/l	5.0	1.4	2	
1,1-Dichloroethene	ND		ug/l	1.0	0.34	2	
trans-1,2-Dichloroethene	2.4	J	ug/l	5.0	1.4	2	
Trichloroethene	24		ug/l	1.0	0.35	2	
1,2-Dichlorobenzene	ND		ug/l	5.0	1.4	2	

Project Name: OSWEGO MIDTOWN Lab Number: L1810007

Project Number: 2181011 **Report Date:** 03/30/18

SAMPLE RESULTS

Lab ID: L1810007-01 D Date Collected: 03/22/18 14:45

Client ID: MW-01 Date Received: 03/23/18
Sample Location: OSWEGO, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	oorough Lab					
1,3-Dichlorobenzene	ND		ug/l	5.0	1.4	2
1,4-Dichlorobenzene	ND		ug/l	5.0	1.4	2
Methyl tert butyl ether	ND		ug/l	5.0	1.4	2
p/m-Xylene	ND		ug/l	5.0	1.4	2
o-Xylene	ND		ug/l	5.0	1.4	2
cis-1,2-Dichloroethene	150		ug/l	5.0	1.4	2
Styrene	ND		ug/l	5.0	1.4	2
Dichlorodifluoromethane	ND		ug/l	10	2.0	2
Acetone	14		ug/l	10	2.9	2
Carbon disulfide	ND		ug/l	10	2.0	2
2-Butanone	6.2	J	ug/l	10	3.9	2
4-Methyl-2-pentanone	ND		ug/l	10	2.0	2
2-Hexanone	3.1	J	ug/l	10	2.0	2
1,2-Dibromoethane	ND		ug/l	4.0	1.3	2
n-Butylbenzene	ND		ug/l	5.0	1.4	2
sec-Butylbenzene	ND		ug/l	5.0	1.4	2
tert-Butylbenzene	ND		ug/l	5.0	1.4	2
1,2-Dibromo-3-chloropropane	ND		ug/l	5.0	1.4	2
Isopropylbenzene	ND		ug/l	5.0	1.4	2
p-Isopropyltoluene	ND		ug/l	5.0	1.4	2
Naphthalene	ND		ug/l	5.0	1.4	2
n-Propylbenzene	ND		ug/l	5.0	1.4	2
1,2,4-Trichlorobenzene	ND		ug/l	5.0	1.4	2
1,3,5-Trimethylbenzene	ND		ug/l	5.0	1.4	2
1,2,4-Trimethylbenzene	ND		ug/l	5.0	1.4	2
Methyl Acetate	ND		ug/l	4.0	0.47	2
Cyclohexane	ND		ug/l	20	0.54	2
Freon-113	ND		ug/l	5.0	1.4	2
Methyl cyclohexane	ND		ug/l	20	0.79	2

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	100		70-130	
Toluene-d8	106		70-130	
4-Bromofluorobenzene	114		70-130	
Dibromofluoromethane	93		70-130	

03/22/18 15:05

Not Specified

03/23/18

Project Name: OSWEGO MIDTOWN

Project Number: 2181011

SAMPLE RESULTS

Lab Number: L1810007

Report Date: 03/30/18

Date Collected:

Date Received:

Field Prep:

2.0

0.50

0.50

2.5

2.5

2.5

2.5

1.0

2.5

0.50

2.5

0.50

2.5

ug/l

0.65

0.17

0.16

0.70

0.70

0.70

0.70

0.07

0.70

0.17

0.70

0.18

0.70

Lab ID: L1810007-02

Client ID: MW-02

Sample Location: OSWEGO, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 03/28/18 16:59

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	14		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
rans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	

ND

ND

ND

ND

ND

ND

ND

1.2

ND

ND

ND

7.9

ND

1

1

1

1 1

1

1

1

1

1

1

1

1

Bromoform

Benzene

Toluene

Ethylbenzene

Chloromethane

Bromomethane

Vinyl chloride

Chloroethane

Trichloroethene

1,1-Dichloroethene

1,2-Dichlorobenzene

trans-1,2-Dichloroethene

1,1,2,2-Tetrachloroethane

Project Name: OSWEGO MIDTOWN Lab Number: L1810007

Project Number: 2181011 **Report Date:** 03/30/18

SAMPLE RESULTS

Lab ID: L1810007-02 Date Collected: 03/22/18 15:05

Client ID: MW-02 Date Received: 03/23/18
Sample Location: OSWEGO, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	12		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	4.3	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	96	70-130	
Toluene-d8	104	70-130	
4-Bromofluorobenzene	115	70-130	
Dibromofluoromethane	92	70-130	

03/22/18 15:20

Project Name: OSWEGO MIDTOWN

Project Number: 2181011

SAMPLE RESULTS

Lab Number: L1810007

Report Date: 03/30/18

Lab ID: L1810007-03 D

Client ID: MW-03

Sample Location: OSWEGO, NY

Date Received: 03/23/18
Field Prep: Not Specified

Date Collected:

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 03/28/18 18:16

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/l	6.2	1.8	2.5
1,1-Dichloroethane	ND		ug/l	6.2	1.8	2.5
Chloroform	ND		ug/l	6.2	1.8	2.5
Carbon tetrachloride	ND		ug/l	1.2	0.34	2.5
1,2-Dichloropropane	ND		ug/l	2.5	0.34	2.5
Dibromochloromethane	ND		ug/l	1.2	0.37	2.5
1,1,2-Trichloroethane	ND		ug/l	3.8	1.2	2.5
Tetrachloroethene	ND		ug/l	1.2	0.45	2.5
Chlorobenzene	ND		ug/l	6.2	1.8	2.5
Trichlorofluoromethane	ND		ug/l	6.2	1.8	2.5
1,2-Dichloroethane	ND		ug/l	1.2	0.33	2.5
1,1,1-Trichloroethane	ND		ug/l	6.2	1.8	2.5
Bromodichloromethane	ND		ug/l	1.2	0.48	2.5
trans-1,3-Dichloropropene	ND		ug/l	1.2	0.41	2.5
cis-1,3-Dichloropropene	ND		ug/l	1.2	0.36	2.5
Bromoform	ND		ug/l	5.0	1.6	2.5
1,1,2,2-Tetrachloroethane	ND		ug/l	1.2	0.42	2.5
Benzene	ND		ug/l	1.2	0.40	2.5
Toluene	ND		ug/l	6.2	1.8	2.5
Ethylbenzene	ND		ug/l	6.2	1.8	2.5
Chloromethane	ND		ug/l	6.2	1.8	2.5
Bromomethane	ND		ug/l	6.2	1.8	2.5
Vinyl chloride	ND		ug/l	2.5	0.18	2.5
Chloroethane	ND		ug/l	6.2	1.8	2.5
1,1-Dichloroethene	ND		ug/l	1.2	0.42	2.5
trans-1,2-Dichloroethene	ND		ug/l	6.2	1.8	2.5
Trichloroethene	ND		ug/l	1.2	0.44	2.5
1,2-Dichlorobenzene	ND		ug/l	6.2	1.8	2.5

MDL

Dilution Factor

Project Name: OSWEGO MIDTOWN Lab Number: L1810007

Project Number: 2181011 Report Date: 03/30/18

SAMPLE RESULTS

Lab ID: L1810007-03 D Date Collected: 03/22/18 15:20

Client ID: MW-03 Date Received: 03/23/18 Sample Location: OSWEGO, NY Field Prep: Not Specified

Qualifier

Units

RL

Result

Sample Depth:

Parameter

raiaillelei	Nesuit	Qualifier	Ullits	INL.	MIDL	Dilution i actor	
Volatile Organics by GC/MS - We	stborough Lab						
1,3-Dichlorobenzene	ND		ug/l	6.2	1.8	2.5	
1,4-Dichlorobenzene	ND		ug/l	6.2	1.8	2.5	
Methyl tert butyl ether	ND		ug/l	6.2	1.8	2.5	
p/m-Xylene	ND		ug/l	6.2	1.8	2.5	
o-Xylene	ND		ug/l	6.2	1.8	2.5	
cis-1,2-Dichloroethene	ND		ug/l	6.2	1.8	2.5	
Styrene	ND		ug/l	6.2	1.8	2.5	
Dichlorodifluoromethane	ND		ug/l	12	2.5	2.5	
Acetone	11	J	ug/l	12	3.6	2.5	
Carbon disulfide	ND		ug/l	12	2.5	2.5	
2-Butanone	ND		ug/l	12	4.8	2.5	
4-Methyl-2-pentanone	ND		ug/l	12	2.5	2.5	
2-Hexanone	ND		ug/l	12	2.5	2.5	
1,2-Dibromoethane	ND		ug/l	5.0	1.6	2.5	
n-Butylbenzene	ND		ug/l	6.2	1.8	2.5	
sec-Butylbenzene	ND		ug/l	6.2	1.8	2.5	
tert-Butylbenzene	ND		ug/l	6.2	1.8	2.5	
1,2-Dibromo-3-chloropropane	ND		ug/l	6.2	1.8	2.5	
Isopropylbenzene	ND		ug/l	6.2	1.8	2.5	
p-Isopropyltoluene	ND		ug/l	6.2	1.8	2.5	
Naphthalene	ND		ug/l	6.2	1.8	2.5	
n-Propylbenzene	ND		ug/l	6.2	1.8	2.5	
1,2,4-Trichlorobenzene	ND		ug/l	6.2	1.8	2.5	
1,3,5-Trimethylbenzene	ND		ug/l	6.2	1.8	2.5	
1,2,4-Trimethylbenzene	ND		ug/l	6.2	1.8	2.5	
Methyl Acetate	ND		ug/l	5.0	0.58	2.5	
Cyclohexane	ND		ug/l	25	0.68	2.5	
Freon-113	ND		ug/l	6.2	1.8	2.5	
Methyl cyclohexane	ND		ug/l	25	0.99	2.5	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	96	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	119	70-130	
Dibromofluoromethane	91	70-130	

03/22/18 16:55

Not Specified

03/23/18

Project Name: OSWEGO MIDTOWN

Project Number: 2181011

SAMPLE RESULTS

Lab Number: L1810007

Report Date: 03/30/18

Date Collected:

Date Received:

Field Prep:

Lab ID: L1810007-04

Client ID: MW-04

Sample Location: OSWEGO, NY

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 03/28/18 17:25

Analyst: MKS

		Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: OSWEGO MIDTOWN Lab Number: L1810007

Project Number: 2181011 Report Date: 03/30/18

SAMPLE RESULTS

Lab ID: L1810007-04 Date Collected: 03/22/18 16:55

Client ID: MW-04 Date Received: 03/23/18 Sample Location: OSWEGO, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	rough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	2.6	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	98		70-130	
Toluene-d8	107		70-130	
4-Bromofluorobenzene	114		70-130	
Dibromofluoromethane	89		70-130	

03/21/18 11:00

Not Specified

03/23/18

Project Name: OSWEGO MIDTOWN

Project Number: 2181011

SAMPLE RESULTS

Lab Number: L1810007

Report Date: 03/30/18

Date Collected:

Date Received:

Field Prep:

Lab ID: L1810007-05

Client ID: LBA-SB-02 4'-5'

Sample Location: OSWEGO, NY

Sample Depth:

Matrix: Soil

Analytical Method: 1,8260C

Analytical Date: 03/28/18 16:07

Analyst: BD

89% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/kg	11	1.8	1
1,1-Dichloroethane	ND		ug/kg	1.7	0.30	1
Chloroform	ND		ug/kg	1.7	0.41	1
Carbon tetrachloride	ND		ug/kg	1.1	0.39	1
1,2-Dichloropropane	ND		ug/kg	3.9	0.26	1
Dibromochloromethane	ND		ug/kg	1.1	0.20	1
1,1,2-Trichloroethane	ND		ug/kg	1.7	0.35	1
Tetrachloroethene	38		ug/kg	1.1	0.34	1
Chlorobenzene	ND		ug/kg	1.1	0.39	1
Trichlorofluoromethane	ND		ug/kg	5.6	0.47	1
1,2-Dichloroethane	ND		ug/kg	1.1	0.28	1
1,1,1-Trichloroethane	ND		ug/kg	1.1	0.39	1
Bromodichloromethane	ND		ug/kg	1.1	0.34	1
trans-1,3-Dichloropropene	ND		ug/kg	1.1	0.23	1
cis-1,3-Dichloropropene	ND		ug/kg	1.1	0.26	1
Bromoform	ND		ug/kg	4.5	0.26	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	1.1	0.33	1
Benzene	0.30	J	ug/kg	1.1	0.22	1
Toluene	ND		ug/kg	1.7	0.22	1
Ethylbenzene	ND		ug/kg	1.1	0.19	1
Chloromethane	ND		ug/kg	5.6	0.49	1
Bromomethane	ND		ug/kg	2.2	0.38	1
Vinyl chloride	ND		ug/kg	2.2	0.35	1
Chloroethane	ND		ug/kg	2.2	0.35	1
1,1-Dichloroethene	ND		ug/kg	1.1	0.42	1
trans-1,2-Dichloroethene	ND		ug/kg	1.7	0.27	1
Trichloroethene	29		ug/kg	1.1	0.34	1
1,2-Dichlorobenzene	ND		ug/kg	5.6	0.20	1

Project Name: OSWEGO MIDTOWN Lab Number: L1810007

Project Number: 2181011 Report Date: 03/30/18

SAMPLE RESULTS

Lab ID: L1810007-05 Date Collected: 03/21/18 11:00

Client ID: LBA-SB-02 4'-5' Date Received: 03/23/18
Sample Location: OSWEGO, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	gh Lab					
1,3-Dichlorobenzene	ND		ug/kg	5.6	0.24	1
1,4-Dichlorobenzene	ND		ug/kg	5.6	0.20	1
Methyl tert butyl ether	ND		ug/kg	2.2	0.17	1
p/m-Xylene	ND		ug/kg	2.2	0.39	1
o-Xylene	ND		ug/kg	2.2	0.38	1
cis-1,2-Dichloroethene	16		ug/kg	1.1	0.38	1
Styrene	ND		ug/kg	2.2	0.45	1
Dichlorodifluoromethane	ND		ug/kg	11	0.56	1
Acetone	3.4	J	ug/kg	11	2.6	1
Carbon disulfide	ND		ug/kg	11	1.2	1
2-Butanone	ND		ug/kg	11	0.77	1
4-Methyl-2-pentanone	ND		ug/kg	11	0.27	1
2-Hexanone	ND		ug/kg	11	0.75	1
1,2-Dibromoethane	ND		ug/kg	4.5	0.22	1
n-Butylbenzene	ND		ug/kg	1.1	0.26	1
sec-Butylbenzene	ND		ug/kg	1.1	0.24	1
tert-Butylbenzene	ND		ug/kg	5.6	0.28	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	5.6	0.44	1
Isopropylbenzene	ND		ug/kg	1.1	0.22	1
p-Isopropyltoluene	ND		ug/kg	1.1	0.23	1
Naphthalene	0.16	J	ug/kg	5.6	0.15	1
n-Propylbenzene	ND		ug/kg	1.1	0.24	1
1,2,4-Trichlorobenzene	ND		ug/kg	5.6	0.24	1
1,3,5-Trimethylbenzene	ND		ug/kg	5.6	0.18	1
1,2,4-Trimethylbenzene	ND		ug/kg	5.6	0.21	1
Methyl Acetate	ND		ug/kg	22	0.52	1
Cyclohexane	ND		ug/kg	22	0.48	1
Freon-113	ND		ug/kg	22	0.58	1
Methyl cyclohexane	ND		ug/kg	4.5	0.27	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	110		70-130	
Toluene-d8	107		70-130	
4-Bromofluorobenzene	104		70-130	
Dibromofluoromethane	93		70-130	

Project Name: OSWEGO MIDTOWN

Project Number: 2181011

SAMPLE RESULTS

Lab Number: L1810007

Report Date: 03/30/18

Lab ID: L1810007-08

Client ID: LBA-SB-08 8'-8.4'

Sample Location: OSWEGO, NY

Sample Depth:

Matrix: Soil

Analytical Method: 1,8260C

Analytical Date: 03/27/18 12:07

Analyst: JC 92% Percent Solids:

Date Received: 03/23/18

Date Collected:

Field Prep: Not Specified

03/22/18 08:45

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	tborough Lab						
Methylene chloride	ND		ug/kg	8.9	1.5	1	
1,1-Dichloroethane	ND		ug/kg	1.3	0.24	1	
Chloroform	ND		ug/kg	1.3	0.33	1	
Carbon tetrachloride	ND		ug/kg	0.89	0.31	1	
1,2-Dichloropropane	ND		ug/kg	3.1	0.20	1	
Dibromochloromethane	ND		ug/kg	0.89	0.16	1	
1,1,2-Trichloroethane	ND		ug/kg	1.3	0.28	1	
Tetrachloroethene	ND		ug/kg	0.89	0.27	1	
Chlorobenzene	ND		ug/kg	0.89	0.31	1	
Trichlorofluoromethane	ND		ug/kg	4.4	0.37	1	
1,2-Dichloroethane	ND		ug/kg	0.89	0.22	1	
1,1,1-Trichloroethane	ND		ug/kg	0.89	0.31	1	
Bromodichloromethane	ND		ug/kg	0.89	0.27	1	
trans-1,3-Dichloropropene	ND		ug/kg	0.89	0.18	1	
cis-1,3-Dichloropropene	ND		ug/kg	0.89	0.20	1	
Bromoform	ND		ug/kg	3.6	0.21	1	
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.89	0.26	1	
Benzene	ND		ug/kg	0.89	0.17	1	
Toluene	0.20	J	ug/kg	1.3	0.17	1	
Ethylbenzene	ND		ug/kg	0.89	0.15	1	
Chloromethane	ND		ug/kg	4.4	0.39	1	
Bromomethane	ND		ug/kg	1.8	0.30	1	
Vinyl chloride	ND		ug/kg	1.8	0.28	1	
Chloroethane	ND		ug/kg	1.8	0.28	1	
1,1-Dichloroethene	ND		ug/kg	0.89	0.33	1	
trans-1,2-Dichloroethene	ND		ug/kg	1.3	0.21	1	
Trichloroethene	ND		ug/kg	0.89	0.27	1	
1,2-Dichlorobenzene	ND		ug/kg	4.4	0.16	1	

MDL

Dilution Factor

Project Name: OSWEGO MIDTOWN Lab Number: L1810007

Project Number: 2181011 Report Date: 03/30/18

SAMPLE RESULTS

Qualifier

Units

RL

Lab ID: Date Collected: 03/22/18 08:45

Client ID: LBA-SB-08 8'-8.4' Date Received: 03/23/18 Sample Location: OSWEGO, NY Field Prep: Not Specified

Result

Sample Depth:

Parameter

raiailletei	Kesuit	Qualifier	Ullita	IN.L	MIDL	Dilution i actor	
Volatile Organics by GC/MS - Wes	stborough Lab						
1,3-Dichlorobenzene	ND		ug/kg	4.4	0.19	1	
1,4-Dichlorobenzene	ND		ug/kg	4.4	0.16	1	
Methyl tert butyl ether	ND		ug/kg	1.8	0.14	1	
p/m-Xylene	ND		ug/kg	1.8	0.31	1	
o-Xylene	ND		ug/kg	1.8	0.30	1	
cis-1,2-Dichloroethene	ND		ug/kg	0.89	0.30	1	
Styrene	ND		ug/kg	1.8	0.36	1	
Dichlorodifluoromethane	ND		ug/kg	8.9	0.44	1	
Acetone	2.9	J	ug/kg	8.9	2.0	1	
Carbon disulfide	ND		ug/kg	8.9	0.98	1	
2-Butanone	ND		ug/kg	8.9	0.61	1	
4-Methyl-2-pentanone	ND		ug/kg	8.9	0.22	1	
2-Hexanone	ND		ug/kg	8.9	0.59	1	
1,2-Dibromoethane	ND		ug/kg	3.6	0.18	1	
n-Butylbenzene	ND		ug/kg	0.89	0.20	1	
sec-Butylbenzene	ND		ug/kg	0.89	0.19	1	
tert-Butylbenzene	ND		ug/kg	4.4	0.22	1	
1,2-Dibromo-3-chloropropane	ND		ug/kg	4.4	0.35	1	
Isopropylbenzene	ND		ug/kg	0.89	0.17	1	
p-Isopropyltoluene	ND		ug/kg	0.89	0.18	1	
Naphthalene	ND		ug/kg	4.4	0.12	1	
n-Propylbenzene	ND		ug/kg	0.89	0.19	1	
1,2,4-Trichlorobenzene	ND		ug/kg	4.4	0.19	1	
1,3,5-Trimethylbenzene	ND		ug/kg	4.4	0.14	1	
1,2,4-Trimethylbenzene	ND		ug/kg	4.4	0.16	1	
Methyl Acetate	ND		ug/kg	18	0.41	1	
Cyclohexane	ND		ug/kg	18	0.38	1	
Freon-113	ND		ug/kg	18	0.46	1	
Methyl cyclohexane	ND		ug/kg	3.6	0.21	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	107		70-130	
Toluene-d8	110		70-130	
4-Bromofluorobenzene	110		70-130	
Dibromofluoromethane	92		70-130	

Project Name: OSWEGO MIDTOWN

Project Number: 2181011

SAMPLE RESULTS

Lab Number: L1810007

Report Date: 03/30/18

Lab ID: L1810007-09 Date Collected: 03/22/18 11:20

Client ID: Date Received: 03/23/18 LBA-SB-10 9'-10' Field Prep: Sample Location: OSWEGO, NY Not Specified

Sample Depth:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 03/27/18 10:53

Analyst: JC 90% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - We	stborough Lab						
Methylene chloride	180	J	ug/kg	520	85.	1	
1,1-Dichloroethane	ND		ug/kg	77	14.	1	
Chloroform	ND		ug/kg	77	19.	1	
Carbon tetrachloride	ND		ug/kg	52	18.	1	
1,2-Dichloropropane	ND		ug/kg	180	12.	1	
Dibromochloromethane	ND		ug/kg	52	9.1	1	
1,1,2-Trichloroethane	ND		ug/kg	77	16.	1	
Tetrachloroethene	ND		ug/kg	52	16.	1	
Chlorobenzene	ND		ug/kg	52	18.	1	
Trichlorofluoromethane	ND		ug/kg	260	22.	1	
1,2-Dichloroethane	ND		ug/kg	52	13.	1	
1,1,1-Trichloroethane	ND		ug/kg	52	18.	1	
Bromodichloromethane	ND		ug/kg	52	16.	1	
trans-1,3-Dichloropropene	ND		ug/kg	52	11.	1	
cis-1,3-Dichloropropene	ND		ug/kg	52	12.	1	
Bromoform	ND		ug/kg	210	12.	1	
1,1,2,2-Tetrachloroethane	ND		ug/kg	52	15.	1	
Benzene	ND		ug/kg	52	10.	1	
Toluene	ND		ug/kg	77	10.	1	
Ethylbenzene	ND		ug/kg	52	8.8	1	
Chloromethane	ND		ug/kg	260	22.	1	
Bromomethane	32	J	ug/kg	100	17.	1	
Vinyl chloride	ND		ug/kg	100	16.	1	
Chloroethane	ND		ug/kg	100	16.	1	
1,1-Dichloroethene	ND		ug/kg	52	19.	1	
trans-1,2-Dichloroethene	ND		ug/kg	77	12.	1	
Trichloroethene	ND		ug/kg	52	16.	1	
1,2-Dichlorobenzene	ND		ug/kg	260	9.4	1	

Project Name: OSWEGO MIDTOWN Lab Number: L1810007

Project Number: 2181011 Report Date: 03/30/18

SAMPLE RESULTS

Lab ID: Date Collected: 03/22/18 11:20

Client ID: LBA-SB-10 9'-10' Date Received: 03/23/18
Sample Location: OSWEGO, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
1,3-Dichlorobenzene	ND		ug/kg	260	11.	1
1,4-Dichlorobenzene	ND		ug/kg	260	9.4	1
Methyl tert butyl ether	ND		ug/kg	100	7.9	1
p/m-Xylene	ND		ug/kg	100	18.	1
o-Xylene	ND		ug/kg	100	17.	1
cis-1,2-Dichloroethene	ND		ug/kg	52	18.	1
Styrene	ND		ug/kg	100	21.	1
Dichlorodifluoromethane	ND		ug/kg	520	26.	1
Acetone	270	J	ug/kg	520	120	1
Carbon disulfide	ND		ug/kg	520	57.	1
2-Butanone	ND		ug/kg	520	36.	1
4-Methyl-2-pentanone	ND		ug/kg	520	13.	1
2-Hexanone	ND		ug/kg	520	34.	1
1,2-Dibromoethane	ND		ug/kg	210	10.	1
n-Butylbenzene	ND		ug/kg	52	12.	1
sec-Butylbenzene	12	J	ug/kg	52	11.	1
tert-Butylbenzene	ND		ug/kg	260	13.	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	260	20.	1
Isopropylbenzene	ND		ug/kg	52	10.	1
p-Isopropyltoluene	ND		ug/kg	52	10.	1
Naphthalene	140	J	ug/kg	260	7.1	1
n-Propylbenzene	ND		ug/kg	52	11.	1
1,2,4-Trichlorobenzene	ND		ug/kg	260	11.	1
1,3,5-Trimethylbenzene	ND		ug/kg	260	8.3	1
1,2,4-Trimethylbenzene	ND		ug/kg	260	9.6	1
Methyl Acetate	ND		ug/kg	1000	24.	1
Cyclohexane	ND		ug/kg	1000	22.	1
Freon-113	ND		ug/kg	1000	26.	1
Methyl cyclohexane	ND		ug/kg	210	12.	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	101		70-130	
Toluene-d8	104		70-130	
4-Bromofluorobenzene	102		70-130	
Dibromofluoromethane	99		70-130	

Project Name: OSWEGO MIDTOWN

Project Number: 2181011

SAMPLE RESULTS

Lab Number: L1810007

Report Date: 03/30/18

Lab ID: L1810007-10 D

Client ID: LBA-SB-13 14'-15' Sample Location: OSWEGO, NY

Date Collected: 03/22/18 16:30 Date Received: 03/23/18 Field Prep: Not Specified

Sample Depth:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 03/29/18 09:02

Analyst: NLK 86% Percent Solids:

Volatile Organics by GC/MS - Westborough Methylene chloride										
Methylene chloride	ND			Volatile Organics by GC/MS - Westborough Lab						
victificite officiae	ND		ug/kg	1200	200	2.5				
1,1-Dichloroethane	ND		ug/kg	180	33.	2.5				
Chloroform	ND		ug/kg	180	46.	2.5				
Carbon tetrachloride	ND		ug/kg	120	42.	2.5				
1,2-Dichloropropane	ND		ug/kg	430	28.	2.5				
Dibromochloromethane	ND		ug/kg	120	22.	2.5				
1,1,2-Trichloroethane	ND		ug/kg	180	38.	2.5				
Tetrachloroethene	ND		ug/kg	120	37.	2.5				
Chlorobenzene	ND		ug/kg	120	43.	2.5				
Trichlorofluoromethane	ND		ug/kg	620	51.	2.5				
1,2-Dichloroethane	ND		ug/kg	120	30.	2.5				
1,1,1-Trichloroethane	ND		ug/kg	120	43.	2.5				
Bromodichloromethane	ND		ug/kg	120	38.	2.5				
trans-1,3-Dichloropropene	ND		ug/kg	120	26.	2.5				
cis-1,3-Dichloropropene	ND		ug/kg	120	28.	2.5				
Bromoform	ND		ug/kg	490	29.	2.5				
1,1,2,2-Tetrachloroethane	ND		ug/kg	120	37.	2.5				
Benzene	ND		ug/kg	120	24.	2.5				
Toluene	ND		ug/kg	180	24.	2.5				
Ethylbenzene	40	J	ug/kg	120	21.	2.5				
Chloromethane	ND		ug/kg	620	54.	2.5				
Bromomethane	ND		ug/kg	250	42.	2.5				
Vinyl chloride	ND		ug/kg	250	39.	2.5				
Chloroethane	ND		ug/kg	250	39.	2.5				
1,1-Dichloroethene	ND		ug/kg	120	46.	2.5				
trans-1,2-Dichloroethene	ND		ug/kg	180	30.	2.5				
Trichloroethene	ND		ug/kg	120	37.	2.5				
1,2-Dichlorobenzene	ND		ug/kg	620	22.	2.5				

MDL

Dilution Factor

Project Name: OSWEGO MIDTOWN Lab Number: L1810007

Project Number: 2181011 Report Date: 03/30/18

SAMPLE RESULTS

Lab ID: L1810007-10 D Date Collected: 03/22/18 16:30

Client ID: LBA-SB-13 14'-15' Date Received: 03/23/18
Sample Location: OSWEGO, NY Field Prep: Not Specified

Qualifier

Units

RL

Result

Sample Depth:

Parameter

raiaillelei	Kesuit	Qualifie	Ullita	IV.L	WIDE	Dilution i actor	
Volatile Organics by GC/MS - We	estborough Lab						
1,3-Dichlorobenzene	ND		ug/kg	620	27.	2.5	
1,4-Dichlorobenzene	ND		ug/kg	620	22.	2.5	
Methyl tert butyl ether	ND		ug/kg	250	19.	2.5	
p/m-Xylene	ND		ug/kg	250	43.	2.5	
o-Xylene	ND		ug/kg	250	42.	2.5	
cis-1,2-Dichloroethene	ND		ug/kg	120	42.	2.5	
Styrene	ND		ug/kg	250	49.	2.5	
Dichlorodifluoromethane	ND		ug/kg	1200	62.	2.5	
Acetone	ND		ug/kg	1200	280	2.5	
Carbon disulfide	ND		ug/kg	1200	140	2.5	
2-Butanone	ND		ug/kg	1200	85.	2.5	
4-Methyl-2-pentanone	ND		ug/kg	1200	30.	2.5	
2-Hexanone	ND		ug/kg	1200	82.	2.5	
1,2-Dibromoethane	ND		ug/kg	490	24.	2.5	
n-Butylbenzene	ND		ug/kg	120	28.	2.5	
sec-Butylbenzene	ND		ug/kg	120	27.	2.5	
tert-Butylbenzene	ND		ug/kg	620	30.	2.5	
1,2-Dibromo-3-chloropropane	ND		ug/kg	620	49.	2.5	
Isopropylbenzene	ND		ug/kg	120	24.	2.5	
p-Isopropyltoluene	37	J	ug/kg	120	25.	2.5	
Naphthalene	18000		ug/kg	620	17.	2.5	
n-Propylbenzene	ND		ug/kg	120	26.	2.5	
1,2,4-Trichlorobenzene	ND		ug/kg	620	26.	2.5	
1,3,5-Trimethylbenzene	26	J	ug/kg	620	20.	2.5	
1,2,4-Trimethylbenzene	58	J	ug/kg	620	23.	2.5	
Methyl Acetate	ND		ug/kg	2500	57.	2.5	
Cyclohexane	ND		ug/kg	2500	53.	2.5	
Freon-113	ND		ug/kg	2500	63.	2.5	
Methyl cyclohexane	ND		ug/kg	490	30.	2.5	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	100		70-130	
Toluene-d8	109		70-130	
4-Bromofluorobenzene	96		70-130	
Dibromofluoromethane	100		70-130	

Project Number: 2181011

Lab Number: L1810007

Report Date: 03/30/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 03/27/18 08:16

Analyst: NLK

Olatile Organics by 8260/5035 - Methylene chloride 1,1-Dichloroethane	Westborough ND ND ND	Lab for sa	mple(s):	09	Batch:	WG1100736-10
1,1-Dichloroethane	ND		ug/kg			
					500	82.
	ND		ug/kg		75	14.
Chloroform			ug/kg		75	18.
Carbon tetrachloride	ND		ug/kg		50	17.
1,2-Dichloropropane	ND		ug/kg		180	11.
Dibromochloromethane	ND		ug/kg		50	8.8
1,1,2-Trichloroethane	ND		ug/kg		75	16.
Tetrachloroethene	ND		ug/kg		50	15.
Chlorobenzene	ND		ug/kg		50	17.
Trichlorofluoromethane	ND		ug/kg		250	21.
1,2-Dichloroethane	ND		ug/kg		50	12.
1,1,1-Trichloroethane	ND		ug/kg		50	18.
Bromodichloromethane	ND		ug/kg		50	15.
trans-1,3-Dichloropropene	ND		ug/kg		50	10.
cis-1,3-Dichloropropene	ND		ug/kg		50	12.
Bromoform	ND		ug/kg		200	12.
1,1,2,2-Tetrachloroethane	ND		ug/kg		50	15.
Benzene	ND		ug/kg		50	9.6
Toluene	10	J	ug/kg		75	9.8
Ethylbenzene	ND		ug/kg		50	8.5
Chloromethane	ND		ug/kg		250	22.
Bromomethane	56	J	ug/kg		100	17.
Vinyl chloride	ND		ug/kg		100	16.
Chloroethane	ND		ug/kg		100	16.
1,1-Dichloroethene	ND		ug/kg		50	19.
trans-1,2-Dichloroethene	ND		ug/kg		75	12.
Trichloroethene	ND		ug/kg		50	15.
1,2-Dichlorobenzene	ND		ug/kg		250	9.1
1,3-Dichlorobenzene	ND		ug/kg		250	11.

Project Number: 2181011

Lab Number: L1810007

Report Date: 03/30/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 03/27/18 08:16

Analyst: NLK

Parameter	Result	Qualifier	Units		RL	MDL
olatile Organics by 8260/5035 -	Westborough	Lab for sa	mple(s):	09	Batch:	WG1100736-10
1,4-Dichlorobenzene	ND		ug/kg		250	9.1
Methyl tert butyl ether	ND		ug/kg		100	7.6
p/m-Xylene	ND		ug/kg		100	18.
o-Xylene	ND		ug/kg		100	17.
cis-1,2-Dichloroethene	ND		ug/kg		50	17.
Styrene	ND		ug/kg		100	20.
Dichlorodifluoromethane	ND		ug/kg		500	25.
Acetone	220	J	ug/kg		500	110
Carbon disulfide	ND		ug/kg		500	55.
2-Butanone	ND		ug/kg		500	34.
4-Methyl-2-pentanone	ND		ug/kg		500	12.
2-Hexanone	ND		ug/kg		500	33.
1,2-Dibromoethane	ND		ug/kg		200	10.
n-Butylbenzene	ND		ug/kg		50	11.
sec-Butylbenzene	ND		ug/kg		50	11.
tert-Butylbenzene	ND		ug/kg		250	12.
1,2-Dibromo-3-chloropropane	ND		ug/kg		250	20.
Isopropylbenzene	ND		ug/kg		50	9.7
p-Isopropyltoluene	ND		ug/kg		50	10.
Naphthalene	ND		ug/kg		250	6.9
n-Propylbenzene	ND		ug/kg		50	11.
1,2,4-Trichlorobenzene	ND		ug/kg		250	11.
1,3,5-Trimethylbenzene	ND		ug/kg		250	8.0
1,2,4-Trimethylbenzene	ND		ug/kg		250	9.3
Methyl Acetate	ND		ug/kg		1000	23.
Cyclohexane	ND		ug/kg		1000	22.
Freon-113	ND		ug/kg		1000	26.
Methyl cyclohexane	ND		ug/kg		200	12.

Project Number: 2181011 Lab Number:

L1810007

Report Date: 03/30/18

Method Blank Analysis Batch Quality Control

Analytical Method:

1,8260C

Analytical Date:

03/27/18 08:16

Analyst:

NLK

Parameter	Result	Qualifier	Units		RL	MDL	
Volatile Organics by 8260/5035	- Westborough	Lab for sai	mple(s):	09	Batch:	WG1100736-10	

Tentatively Identified Compounds			
Total TIC Compounds	224	J	ug/kg
Unknown	224	J	ug/kg

		Acceptance
Surrogate	%Recovery Quali	fier Criteria
1,2-Dichloroethane-d4	98	70-130
Toluene-d8	107	70-130
4-Bromofluorobenzene	101	70-130
Dibromofluoromethane	97	70-130

Project Number: 2181011

Lab Number: L1810007

Report Date: 03/30/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 03/27/18 08:25

Analyst: NLK

arameter	Result	Qualifier Units	RL	MDL	
olatile Organics by 8260/5035 -	Westborough	Lab for sample(s): 08 Batch	: WG1100992-5	
Methylene chloride	ND	ug/kg	10	1.6	
1,1-Dichloroethane	ND	ug/kg	1.5	0.27	
Chloroform	ND	ug/kg	1.5	0.37	
Carbon tetrachloride	ND	ug/kg	1.0	0.34	
1,2-Dichloropropane	ND	ug/kg	3.5	0.23	
Dibromochloromethane	ND	ug/kg	1.0	0.18	
1,1,2-Trichloroethane	ND	ug/kg	1.5	0.31	
Tetrachloroethene	ND	ug/kg	1.0	0.30	
Chlorobenzene	ND	ug/kg	1.0	0.35	
Trichlorofluoromethane	ND	ug/kg	5.0	0.42	
1,2-Dichloroethane	ND	ug/kg	1.0	0.25	
1,1,1-Trichloroethane	ND	ug/kg	1.0	0.35	
Bromodichloromethane	ND	ug/kg	1.0	0.31	
trans-1,3-Dichloropropene	ND	ug/kg	1.0	0.21	
cis-1,3-Dichloropropene	ND	ug/kg	1.0	0.23	
Bromoform	ND	ug/kg	4.0	0.24	
1,1,2,2-Tetrachloroethane	ND	ug/kg	1.0	0.30	
Benzene	ND	ug/kg	1.0	0.19	
Toluene	ND	ug/kg	1.5	0.20	
Ethylbenzene	ND	ug/kg	1.0	0.17	
Chloromethane	ND	ug/kg	5.0	0.44	
Bromomethane	ND	ug/kg	2.0	0.34	
Vinyl chloride	ND	ug/kg	2.0	0.32	
Chloroethane	ND	ug/kg	2.0	0.32	
1,1-Dichloroethene	ND	ug/kg	1.0	0.37	
trans-1,2-Dichloroethene	ND	ug/kg	1.5	0.24	
Trichloroethene	ND	ug/kg	1.0	0.30	
1,2-Dichlorobenzene	ND	ug/kg	5.0	0.18	
1,3-Dichlorobenzene	ND	ug/kg	5.0	0.22	

Project Number: 2181011

Lab Number: L1810007

Report Date: 03/30/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 03/27/18 08:25

Analyst: NLK

Parameter	Result	Qualifier	Units		RL	MDL
olatile Organics by 8260/5035 -	Westborough	Lab for sa	mple(s):	80	Batch:	WG1100992-5
1,4-Dichlorobenzene	ND		ug/kg		5.0	0.18
Methyl tert butyl ether	ND		ug/kg		2.0	0.15
p/m-Xylene	ND		ug/kg		2.0	0.35
o-Xylene	ND		ug/kg		2.0	0.34
cis-1,2-Dichloroethene	ND		ug/kg		1.0	0.34
Styrene	ND		ug/kg		2.0	0.40
Dichlorodifluoromethane	ND		ug/kg		10	0.50
Acetone	2.8	J	ug/kg		10	2.3
Carbon disulfide	ND		ug/kg		10	1.1
2-Butanone	ND		ug/kg		10	0.69
4-Methyl-2-pentanone	ND		ug/kg		10	0.24
2-Hexanone	ND		ug/kg		10	0.67
1,2-Dibromoethane	ND		ug/kg		4.0	0.20
n-Butylbenzene	ND		ug/kg		1.0	0.23
sec-Butylbenzene	ND		ug/kg		1.0	0.22
tert-Butylbenzene	ND		ug/kg		5.0	0.25
1,2-Dibromo-3-chloropropane	ND		ug/kg		5.0	0.40
Isopropylbenzene	ND		ug/kg		1.0	0.19
p-Isopropyltoluene	ND		ug/kg		1.0	0.20
Naphthalene	ND		ug/kg		5.0	0.14
n-Propylbenzene	ND		ug/kg		1.0	0.22
1,2,4-Trichlorobenzene	ND		ug/kg		5.0	0.22
1,3,5-Trimethylbenzene	ND		ug/kg		5.0	0.16
1,2,4-Trimethylbenzene	ND		ug/kg		5.0	0.19
Methyl Acetate	ND		ug/kg		20	0.46
Cyclohexane	ND		ug/kg		20	0.43
Freon-113	ND		ug/kg		20	0.51
Methyl cyclohexane	ND		ug/kg		4.0	0.24

L1810007

Project Name: OSWEGO MIDTOWN

Project Number: 2181011 Report Date: 03/30/18

Lab Number:

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 03/27/18 08:25

Analyst: NLK

Parameter	Result	Qualifier	Units		RL	MDL	
Volatile Organics by 8260/5035 -	Westborough	Lab for sa	mple(s):	08	Batch:	WG1100992-5	
Tentatively Identified Compounds							
Total TIC Compounds	2.82	J	ug	/kg			
Unknown	2.82	J	ug	/kg			

		Acceptance			
Surrogate	%Recovery	Qualifier	Criteria		
1,2-Dichloroethane-d4	104		70-130		
Toluene-d8	107		70-130		
4-Bromofluorobenzene	105		70-130		
Dibromofluoromethane	92		70-130		

Project Number: 2181011

Lab Number: L1810007

Report Date: 03/30/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 03/28/18 09:49

Analyst: PD

Parameter	Result	Qualifier Units	RL	MDL	
olatile Organics by GC/MS	- Westborough Lab	for sample(s): 0°	1-04 Batch:	WG1101340-5	
Methylene chloride	ND	ug/l	2.5	0.70	
1,1-Dichloroethane	ND	ug/l	2.5	0.70	
Chloroform	ND	ug/l	2.5	0.70	
Carbon tetrachloride	ND	ug/l	0.50	0.13	
1,2-Dichloropropane	ND	ug/l	1.0	0.14	
Dibromochloromethane	ND	ug/l	0.50	0.15	
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50	
Tetrachloroethene	ND	ug/l	0.50	0.18	
Chlorobenzene	ND	ug/l	2.5	0.70	
Trichlorofluoromethane	ND	ug/l	2.5	0.70	
1,2-Dichloroethane	ND	ug/l	0.50	0.13	
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70	
Bromodichloromethane	ND	ug/l	0.50	0.19	
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16	
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14	
Bromoform	ND	ug/l	2.0	0.65	
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17	
Benzene	ND	ug/l	0.50	0.16	
Toluene	ND	ug/l	2.5	0.70	
Ethylbenzene	ND	ug/l	2.5	0.70	
Chloromethane	ND	ug/l	2.5	0.70	
Bromomethane	ND	ug/l	2.5	0.70	
Vinyl chloride	ND	ug/l	1.0	0.07	
Chloroethane	ND	ug/l	2.5	0.70	
1,1-Dichloroethene	ND	ug/l	0.50	0.17	
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70	
Trichloroethene	ND	ug/l	0.50	0.18	
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70	
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70	

Project Number: 2181011

Lab Number: L1810007

Report Date: 03/30/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 03/28/18 09:49

Analyst: PD

Parameter	Result	Qualifier	Units		RL	MDL	
olatile Organics by GC/MS - Westl	oorough La	b for sampl	e(s): 01	-04	Batch:	WG1101340-5	
1,4-Dichlorobenzene	ND		ug/l		2.5	0.70	
Methyl tert butyl ether	ND		ug/l		2.5	0.70	
p/m-Xylene	ND		ug/l		2.5	0.70	
o-Xylene	ND		ug/l		2.5	0.70	
cis-1,2-Dichloroethene	ND		ug/l		2.5	0.70	
Styrene	ND		ug/l		2.5	0.70	
Dichlorodifluoromethane	ND		ug/l		5.0	1.0	
Acetone	ND		ug/l		5.0	1.5	
Carbon disulfide	ND		ug/l		5.0	1.0	
2-Butanone	ND		ug/l		5.0	1.9	
4-Methyl-2-pentanone	ND		ug/l		5.0	1.0	
2-Hexanone	ND		ug/l		5.0	1.0	
1,2-Dibromoethane	ND		ug/l		2.0	0.65	
n-Butylbenzene	ND		ug/l		2.5	0.70	
sec-Butylbenzene	ND		ug/l		2.5	0.70	
tert-Butylbenzene	ND		ug/l		2.5	0.70	
1,2-Dibromo-3-chloropropane	ND		ug/l		2.5	0.70	
Isopropylbenzene	ND		ug/l		2.5	0.70	
p-Isopropyltoluene	ND		ug/l		2.5	0.70	
Naphthalene	ND		ug/l		2.5	0.70	
n-Propylbenzene	ND		ug/l		2.5	0.70	
1,2,4-Trichlorobenzene	ND		ug/l		2.5	0.70	
1,3,5-Trimethylbenzene	ND		ug/l		2.5	0.70	
1,2,4-Trimethylbenzene	ND		ug/l		2.5	0.70	
Methyl Acetate	ND		ug/l		2.0	0.23	
Cyclohexane	ND		ug/l		10	0.27	
Freon-113	ND		ug/l		2.5	0.70	
Methyl cyclohexane	ND		ug/l		10	0.40	

Project Number: 2181011

Lab Number:

L1810007

Report Date:

03/30/18

Method Blank Analysis
Batch Quality Control

Analytical Method: 1
Analytical Date: 0

1,8260C 03/28/18 09:49

Analyst:

PD

Parameter	Result	Qualifier	Units	i	RL	MDL	
Volatile Organics by GC/MS - Westl	oorough Lab	for sample	e(s):	01-04	Batch:	WG1101340-5	

Tentatively Identified Compounds

No Tentatively Identified Compounds

ND

ug/l

	Acceptance
%Recovery	Qualifier Criteria
96	70-130
106	70-130
116	70-130
89	70-130
	96 106 116

Project Number: 2181011

Lab Number: L1810007

Report Date: 03/30/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 03/28/18 08:14

Analyst: NLK

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Organics by GC/MS	- Westborough Lat	o for samp	le(s): 05	Batch:	WG1101407-5
Methylene chloride	3.6	J	ug/kg	10	1.6
1,1-Dichloroethane	ND		ug/kg	1.5	0.27
Chloroform	ND		ug/kg	1.5	0.37
Carbon tetrachloride	ND		ug/kg	1.0	0.34
1,2-Dichloropropane	ND		ug/kg	3.5	0.23
Dibromochloromethane	ND		ug/kg	1.0	0.18
1,1,2-Trichloroethane	ND		ug/kg	1.5	0.31
Tetrachloroethene	ND		ug/kg	1.0	0.30
Chlorobenzene	ND		ug/kg	1.0	0.35
Trichlorofluoromethane	ND		ug/kg	5.0	0.42
1,2-Dichloroethane	ND		ug/kg	1.0	0.25
1,1,1-Trichloroethane	ND		ug/kg	1.0	0.35
Bromodichloromethane	ND		ug/kg	1.0	0.31
trans-1,3-Dichloropropene	ND		ug/kg	1.0	0.21
cis-1,3-Dichloropropene	ND		ug/kg	1.0	0.23
Bromoform	ND		ug/kg	4.0	0.24
1,1,2,2-Tetrachloroethane	ND		ug/kg	1.0	0.30
Benzene	ND		ug/kg	1.0	0.19
Toluene	ND		ug/kg	1.5	0.20
Ethylbenzene	ND		ug/kg	1.0	0.17
Chloromethane	ND		ug/kg	5.0	0.44
Bromomethane	ND		ug/kg	2.0	0.34
Vinyl chloride	ND		ug/kg	2.0	0.32
Chloroethane	ND		ug/kg	2.0	0.32
1,1-Dichloroethene	ND		ug/kg	1.0	0.37
trans-1,2-Dichloroethene	ND		ug/kg	1.5	0.24
Trichloroethene	ND		ug/kg	1.0	0.30
1,2-Dichlorobenzene	ND		ug/kg	5.0	0.18
1,3-Dichlorobenzene	ND		ug/kg	5.0	0.22

Project Number: 2181011

Lab Number: L1810007

Report Date: 03/30/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 03/28/18 08:14

Analyst: NLK

arameter	Result	Qualifier	Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for samp	e(s): 05	Batch:	WG1101407-5
1,4-Dichlorobenzene	ND		ug/kg	5.0	0.18
Methyl tert butyl ether	ND		ug/kg	2.0	0.15
p/m-Xylene	ND		ug/kg	2.0	0.35
o-Xylene	ND		ug/kg	2.0	0.34
cis-1,2-Dichloroethene	ND		ug/kg	1.0	0.34
Styrene	ND		ug/kg	2.0	0.40
Dichlorodifluoromethane	ND		ug/kg	10	0.50
Acetone	3.3	J	ug/kg	10	2.3
Carbon disulfide	ND		ug/kg	10	1.1
2-Butanone	ND		ug/kg	10	0.69
4-Methyl-2-pentanone	ND		ug/kg	10	0.24
2-Hexanone	ND		ug/kg	10	0.67
1,2-Dibromoethane	ND		ug/kg	4.0	0.20
n-Butylbenzene	ND		ug/kg	1.0	0.23
sec-Butylbenzene	ND		ug/kg	1.0	0.22
tert-Butylbenzene	ND		ug/kg	5.0	0.25
1,2-Dibromo-3-chloropropane	ND		ug/kg	5.0	0.40
Isopropylbenzene	ND		ug/kg	1.0	0.19
p-Isopropyltoluene	ND		ug/kg	1.0	0.20
Naphthalene	ND		ug/kg	5.0	0.14
n-Propylbenzene	ND		ug/kg	1.0	0.22
1,2,4-Trichlorobenzene	ND		ug/kg	5.0	0.22
1,3,5-Trimethylbenzene	ND		ug/kg	5.0	0.16
1,2,4-Trimethylbenzene	ND		ug/kg	5.0	0.19
Methyl Acetate	ND		ug/kg	20	0.46
Cyclohexane	ND		ug/kg	20	0.43
Freon-113	ND		ug/kg	20	0.51
Methyl cyclohexane	ND		ug/kg	4.0	0.24

L1810007

Project Name: OSWEGO MIDTOWN

Project Number: Report Date: 2181011 03/30/18

Lab Number:

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 03/28/18 08:14

Analyst: NLK

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS - West	borough La	b for sampl	e(s): 05	Batch: \	NG1101407-5	

		Acceptance	
Surrogate	%Recovery	Qualifier Criteria	
1.2-Dichloroethane-d4	102	70-130	
,			
Toluene-d8	108	70-130	
4-Bromofluorobenzene	107	70-130	
Dibromofluoromethane	91	70-130	

Project Number: 2181011

Lab Number: L1810007

Report Date: 03/30/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 03/29/18 08:10

Analyst: MV

Wolatile Organics by GC/MS - Westborough Lab for sample(s): 10 Batch: WG1101648-5 Methylene chloride 220 J ug/kg 500 82. 1,1-Dichloroethane ND ug/kg 75 14. Chloroform ND ug/kg 50 17. 1,2-Dichloropropane ND ug/kg 50 17. 1,2-Dichloropropane ND ug/kg 50 17. 1,2-Dichloropropane ND ug/kg 50 8.8 1,1,2-Trichlorothane ND ug/kg 50 8.8 1,1,2-Trichlorothane ND ug/kg 50 15. Chlorobenzene ND ug/kg 50 17. Trichlorofluoromethane ND ug/kg 50 17. Trichloroethane ND ug/kg 50 12. 1,1,1-Trichloroethane ND ug/kg 50 18. Bromodichloromethane ND ug/kg 50 15. trans-1,3-Dichloropropene ND <	Parameter	Result	Qualifier	Units	RL	MDL
1,1-Dichloroethane ND ug/kg 75 14. Chloroform ND ug/kg 75 18. Carbon tetrachloride ND ug/kg 50 17. 1,2-Dichloropropane ND ug/kg 50 17. 1,2-Dichloropropane ND ug/kg 50 8.8 1,1,2-Trichloroethane ND ug/kg 50 16. Tetrachloroethene ND ug/kg 50 15. Chlorobenzene ND ug/kg 50 17. Trichlorofluoromethane ND ug/kg 250 21. 1,2-Dichloroethane ND ug/kg 50 18. Bromodichloromethane ND ug/kg 50 18. Bromodichloropropene ND ug/kg 50 15. trans-1,3-Dichloropropene ND ug/kg 50 12. Bromoform ND ug/kg 50 15. Benzene ND ug/kg 50	olatile Organics by GC/MS	- Westborough Lat	o for samp	le(s): 10	Batch:	WG1101648-5
Chloroform ND ug/kg 75 18. Carbon tetrachloride ND ug/kg 50 17. 1,2-Dichloropropane ND ug/kg 180 11. Dibromochloromethane ND ug/kg 50 8.8 1,1,2-Trichloroethane ND ug/kg 50 16. Tetrachloroethane ND ug/kg 50 15. Chlorobenzene ND ug/kg 50 17. Trichlorofluoromethane ND ug/kg 50 17. Trichloroethane ND ug/kg 50 12. 1,1,1-Trichloroethane ND ug/kg 50 18. Bromodichloromethane ND ug/kg 50 18. trans-1,3-Dichloropropene ND ug/kg 50 16. trans-1,3-Dichloropropene ND ug/kg 50 12. Bromoform ND ug/kg 50 15. Bromoform ND ug/kg 5	Methylene chloride	220	J	ug/kg	500	82.
Carbon tetrachloride ND ug/kg 50 17. 1,2-Dichloropropane ND ug/kg 180 11. Dibromochloromethane ND ug/kg 50 8.8 1,1,2-Trichloroethane ND ug/kg 50 15. Tetrachloroethane ND ug/kg 50 15. Chlorobenzene ND ug/kg 50 17. Trichlorofluoromethane ND ug/kg 50 17. Trichloroethane ND ug/kg 50 12. 1,1-1-Trichloroethane ND ug/kg 50 18. Bromodichloromethane ND ug/kg 50 18. Bromodichloromethane ND ug/kg 50 15. trans-1,3-Dichloropropene ND ug/kg 50 12. Bromoform ND ug/kg 50 12. Bromoform ND ug/kg 50 15. Benzene ND ug/kg 50	1,1-Dichloroethane	ND		ug/kg	75	14.
1,2-Dichloropropane ND	Chloroform	ND		ug/kg	75	18.
Dibromochloromethane ND ug/kg 50 8.8 1,1,2-Trichloroethane ND ug/kg 75 16. Tetrachloroethane ND ug/kg 50 15. Chlorobenzene ND ug/kg 50 17. Trichlorofluoromethane ND ug/kg 50 21. 1,2-Dichloroethane ND ug/kg 50 12. 1,1,1-Trichloroethane ND ug/kg 50 18. Bromodichloromethane ND ug/kg 50 15. trans-1,3-Dichloropropene ND ug/kg 50 10. cis-1,3-Dichloropropene ND ug/kg 50 12. Bromoform ND ug/kg 50 12. In1,2,2-Tetrachloroethane ND ug/kg 50 15. Benzene ND ug/kg 50 9.6 Toluene ND ug/kg 50 9.6 Toluene ND ug/kg 50	Carbon tetrachloride	ND		ug/kg	50	17.
1,1,2-Trichloroethane ND ug/kg 75 16. Tetrachloroethene ND ug/kg 50 15. Chlorobenzene ND ug/kg 50 17. Trichlorofluoromethane ND ug/kg 50 21. 1,2-Dichloroethane ND ug/kg 50 12. 1,1,1-Trichloroethane ND ug/kg 50 18. Bromodichloromethane ND ug/kg 50 15. trans-1,3-Dichloropropene ND ug/kg 50 10. cis-1,3-Dichloropropene ND ug/kg 50 12. Bromoform ND ug/kg 50 12. Bromoform ND ug/kg 50 15. Benzene ND ug/kg 50 15. Benzene ND ug/kg 50 9.6 Toluene ND ug/kg 50 8.5 Chloromethane ND ug/kg 50 8.5 <td>1,2-Dichloropropane</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>180</td> <td>11.</td>	1,2-Dichloropropane	ND		ug/kg	180	11.
Tetrachloroethene ND ug/kg 50 15. Chlorobenzene ND ug/kg 50 17. Trichloroffluoromethane ND ug/kg 250 21. 1,2-Dichloroethane ND ug/kg 50 12. 1,1,1-Trichloroethane ND ug/kg 50 18. Bromodichloromethane ND ug/kg 50 15. trans-1,3-Dichloropropene ND ug/kg 50 10. cis-1,3-Dichloropropene ND ug/kg 50 12. Bromoform ND ug/kg 20 12. 1,1,2,2-Tetrachloroethane ND ug/kg 50 15. Benzene ND ug/kg 50 9.6 Toluene ND ug/kg 50 9.8 Ethylbenzene ND ug/kg 50 8.5 Chloromethane ND ug/kg 250 22. Bromomethane ND ug/kg 100	Dibromochloromethane	ND		ug/kg	50	8.8
Chlorobenzene ND ug/kg 50 17. Trichlorofluoromethane ND ug/kg 250 21. 1,2-Dichloroethane ND ug/kg 50 12. 1,1,1-Trichloroethane ND ug/kg 50 18. Bromodichloromethane ND ug/kg 50 15. trans-1,3-Dichloropropene ND ug/kg 50 10. cis-1,3-Dichloropropene ND ug/kg 50 12. Bromoform ND ug/kg 50 12. Bromoform ND ug/kg 50 15. Benzene ND ug/kg 50 15. Benzene ND ug/kg 50 9.6 Toluene ND ug/kg 50 9.8 Ethylbenzene ND ug/kg 50 8.5 Chloromethane ND ug/kg 100 17. Vinyl chloride ND ug/kg 100 16. <t< td=""><td>1,1,2-Trichloroethane</td><td>ND</td><td></td><td>ug/kg</td><td>75</td><td>16.</td></t<>	1,1,2-Trichloroethane	ND		ug/kg	75	16.
Trichlorofluoromethane ND ug/kg 250 21. 1,2-Dichloroethane ND ug/kg 50 12. 1,1,1-Trichloroethane ND ug/kg 50 18. Bromodichloromethane ND ug/kg 50 15. trans-1,3-Dichloropropene ND ug/kg 50 10. cis-1,3-Dichloropropene ND ug/kg 50 12. Bromoform ND ug/kg 50 15. Bromoform ND ug/kg 50 15. Benzene ND ug/kg 50 15. Benzene ND ug/kg 50 9.6 Toluene ND ug/kg 50 9.8 Ethylbenzene ND ug/kg 50 8.5 Chloromethane ND ug/kg 250 22. Bromomethane ND ug/kg 100 17. Vinyl chloride ND ug/kg 100 16. <t< td=""><td>Tetrachloroethene</td><td>ND</td><td></td><td>ug/kg</td><td>50</td><td>15.</td></t<>	Tetrachloroethene	ND		ug/kg	50	15.
1,2-Dichloroethane ND ug/kg 50 12. 1,1,1-Trichloroethane ND ug/kg 50 18. Bromodichloromethane ND ug/kg 50 15. trans-1,3-Dichloropropene ND ug/kg 50 10. cis-1,3-Dichloropropene ND ug/kg 50 12. Bromoform ND ug/kg 200 12. 1,1,2,2-Tetrachloroethane ND ug/kg 50 15. Benzene ND ug/kg 50 9.6 Toluene ND ug/kg 75 9.8 Ethylbenzene ND ug/kg 50 8.5 Chloromethane ND ug/kg 250 22. Bromomethane ND ug/kg 100 17. Vinyl chloride ND ug/kg 100 16. Chloroethane ND ug/kg 50 19. trans-1,2-Dichloroethene ND ug/kg 50 19	Chlorobenzene	ND		ug/kg	50	17.
1,1,1-Trichloroethane ND ug/kg 50 18. Bromodichloromethane ND ug/kg 50 15. trans-1,3-Dichloropropene ND ug/kg 50 10. cis-1,3-Dichloropropene ND ug/kg 50 12. Bromoform ND ug/kg 200 12. 1,1,2,2-Tetrachloroethane ND ug/kg 50 15. Benzene ND ug/kg 50 9.6 Toluene ND ug/kg 75 9.8 Ethylbenzene ND ug/kg 50 8.5 Chloromethane ND ug/kg 250 22. Bromomethane ND ug/kg 100 17. Vinyl chloride ND ug/kg 100 16. Chloroethane ND ug/kg 50 19. trans-1,2-Dichloroethene ND ug/kg 50 19. trichloroethene ND ug/kg 50 15. </td <td>Trichlorofluoromethane</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>250</td> <td>21.</td>	Trichlorofluoromethane	ND		ug/kg	250	21.
Bromodichloromethane ND ug/kg 50 15. trans-1,3-Dichloropropene ND ug/kg 50 10. cis-1,3-Dichloropropene ND ug/kg 50 12. Bromoform ND ug/kg 200 12. 1,1,2,2-Tetrachloroethane ND ug/kg 50 15. Benzene ND ug/kg 50 9.6 Toluene ND ug/kg 50 9.6 Toluene ND ug/kg 50 9.8 Ethylbenzene ND ug/kg 50 8.5 Chloromethane ND ug/kg 250 22. Bromomethane ND ug/kg 100 17. Vinyl chloride ND ug/kg 100 16. Chloroethane ND ug/kg 100 16. 1,1-Dichloroethene ND ug/kg 50 19. trans-1,2-Dichloroethene ND ug/kg 50 15. </td <td>1,2-Dichloroethane</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>50</td> <td>12.</td>	1,2-Dichloroethane	ND		ug/kg	50	12.
trans-1,3-Dichloropropene ND ug/kg 50 10. cis-1,3-Dichloropropene ND ug/kg 50 12. Bromoform ND ug/kg 200 12. 1,1,2,2-Tetrachloroethane ND ug/kg 50 15. Benzene ND ug/kg 50 9.6 Toluene ND ug/kg 75 9.8 Ethylbenzene ND ug/kg 50 8.5 Chloromethane ND ug/kg 250 22. Bromomethane ND ug/kg 100 17. Vinyl chloride ND ug/kg 100 16. Chloroethane ND ug/kg 100 16. 1,1-Dichloroethene ND ug/kg 50 19. trans-1,2-Dichloroethene ND ug/kg 50 15. Trichloroethene ND ug/kg 50 15. 1,2-Dichlorobenzene ND ug/kg 50 9.1	1,1,1-Trichloroethane	ND		ug/kg	50	18.
cis-1,3-Dichloropropene ND ug/kg 50 12. Bromoform ND ug/kg 200 12. 1,1,2,2-Tetrachloroethane ND ug/kg 50 15. Benzene ND ug/kg 50 9.6 Toluene ND ug/kg 75 9.8 Ethylbenzene ND ug/kg 50 8.5 Chloromethane ND ug/kg 250 22. Bromomethane ND ug/kg 100 17. Vinyl chloride ND ug/kg 100 16. Chloroethane ND ug/kg 100 16. 1,1-Dichloroethene ND ug/kg 50 19. trans-1,2-Dichloroethene ND ug/kg 75 12. Trichloroethene ND ug/kg 50 15. 1,2-Dichlorobenzene ND ug/kg 250 9.1	Bromodichloromethane	ND		ug/kg	50	15.
Bromoform ND ug/kg 200 12. 1,1,2,2-Tetrachloroethane ND ug/kg 50 15. Benzene ND ug/kg 50 9.6 Toluene ND ug/kg 75 9.8 Ethylbenzene ND ug/kg 50 8.5 Chloromethane ND ug/kg 250 22. Bromomethane ND ug/kg 100 17. Vinyl chloride ND ug/kg 100 16. Chloroethane ND ug/kg 100 16. 1,1-Dichloroethene ND ug/kg 50 19. trans-1,2-Dichloroethene ND ug/kg 50 15. Trichloroethene ND ug/kg 50 15. 1,2-Dichlorobenzene ND ug/kg 250 9.1	trans-1,3-Dichloropropene	ND		ug/kg	50	10.
1,1,2,2-Tetrachloroethane ND ug/kg 50 15. Benzene ND ug/kg 50 9.6 Toluene ND ug/kg 75 9.8 Ethylbenzene ND ug/kg 50 8.5 Chloromethane ND ug/kg 250 22. Bromomethane ND ug/kg 100 17. Vinyl chloride ND ug/kg 100 16. Chloroethane ND ug/kg 100 16. 1,1-Dichloroethene ND ug/kg 50 19. trans-1,2-Dichloroethene ND ug/kg 75 12. Trichloroethene ND ug/kg 50 15. 1,2-Dichlorobenzene ND ug/kg 250 9.1	cis-1,3-Dichloropropene	ND		ug/kg	50	12.
Benzene ND ug/kg 50 9.6 Toluene ND ug/kg 75 9.8 Ethylbenzene ND ug/kg 50 8.5 Chloromethane ND ug/kg 250 22. Bromomethane ND ug/kg 100 17. Vinyl chloride ND ug/kg 100 16. Chloroethane ND ug/kg 100 16. 1,1-Dichloroethene ND ug/kg 50 19. trans-1,2-Dichloroethene ND ug/kg 75 12. Trichloroethene ND ug/kg 50 15. 1,2-Dichlorobenzene ND ug/kg 250 9.1	Bromoform	ND		ug/kg	200	12.
Toluene ND ug/kg 75 9.8 Ethylbenzene ND ug/kg 50 8.5 Chloromethane ND ug/kg 250 22. Bromomethane ND ug/kg 100 17. Vinyl chloride ND ug/kg 100 16. Chloroethane ND ug/kg 100 16. 1,1-Dichloroethene ND ug/kg 50 19. trans-1,2-Dichloroethene ND ug/kg 75 12. Trichloroethene ND ug/kg 50 15. 1,2-Dichlorobenzene ND ug/kg 250 9.1	1,1,2,2-Tetrachloroethane	ND		ug/kg	50	15.
Ethylbenzene ND ug/kg 50 8.5 Chloromethane ND ug/kg 250 22. Bromomethane ND ug/kg 100 17. Vinyl chloride ND ug/kg 100 16. Chloroethane ND ug/kg 100 16. 1,1-Dichloroethene ND ug/kg 50 19. trans-1,2-Dichloroethene ND ug/kg 75 12. Trichloroethene ND ug/kg 50 15. 1,2-Dichlorobenzene ND ug/kg 250 9.1	Benzene	ND		ug/kg	50	9.6
Chloromethane ND ug/kg 250 22. Bromomethane ND ug/kg 100 17. Vinyl chloride ND ug/kg 100 16. Chloroethane ND ug/kg 100 16. 1,1-Dichloroethene ND ug/kg 50 19. trans-1,2-Dichloroethene ND ug/kg 75 12. Trichloroethene ND ug/kg 50 15. 1,2-Dichlorobenzene ND ug/kg 250 9.1	Toluene	ND		ug/kg	75	9.8
Bromomethane ND ug/kg 100 17. Vinyl chloride ND ug/kg 100 16. Chloroethane ND ug/kg 100 16. 1,1-Dichloroethene ND ug/kg 50 19. trans-1,2-Dichloroethene ND ug/kg 75 12. Trichloroethene ND ug/kg 50 15. 1,2-Dichlorobenzene ND ug/kg 250 9.1	Ethylbenzene	ND		ug/kg	50	8.5
Vinyl chloride ND ug/kg 100 16. Chloroethane ND ug/kg 100 16. 1,1-Dichloroethene ND ug/kg 50 19. trans-1,2-Dichloroethene ND ug/kg 75 12. Trichloroethene ND ug/kg 50 15. 1,2-Dichlorobenzene ND ug/kg 250 9.1	Chloromethane	ND		ug/kg	250	22.
Chloroethane ND ug/kg 100 16. 1,1-Dichloroethene ND ug/kg 50 19. trans-1,2-Dichloroethene ND ug/kg 75 12. Trichloroethene ND ug/kg 50 15. 1,2-Dichlorobenzene ND ug/kg 250 9.1	Bromomethane	ND		ug/kg	100	17.
1,1-Dichloroethene ND ug/kg 50 19. trans-1,2-Dichloroethene ND ug/kg 75 12. Trichloroethene ND ug/kg 50 15. 1,2-Dichlorobenzene ND ug/kg 250 9.1	Vinyl chloride	ND		ug/kg	100	16.
trans-1,2-Dichloroethene ND ug/kg 75 12. Trichloroethene ND ug/kg 50 15. 1,2-Dichlorobenzene ND ug/kg 250 9.1	Chloroethane	ND		ug/kg	100	16.
TrichloroetheneNDug/kg5015.1,2-DichlorobenzeneNDug/kg2509.1	1,1-Dichloroethene	ND		ug/kg	50	19.
1,2-Dichlorobenzene ND ug/kg 250 9.1	trans-1,2-Dichloroethene	ND		ug/kg	75	12.
	Trichloroethene	ND		ug/kg	50	15.
1.3-Dichlorobenzene ND ug/kg 250 11	1,2-Dichlorobenzene	ND		ug/kg	250	9.1
130 Storilo Supring 200 11.	1,3-Dichlorobenzene	ND		ug/kg	250	11.

Project Number: 2181011

Lab Number: L1810007

Report Date: 03/30/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 03/29/18 08:10

Analyst: MV

arameter	Result	Qualifier	Units	RL	MDL
olatile Organics by GC/MS	- Westborough La	b for samp	le(s): 10	Batch:	WG1101648-5
1,4-Dichlorobenzene	ND		ug/kg	250	9.1
Methyl tert butyl ether	ND		ug/kg	100	7.6
p/m-Xylene	ND		ug/kg	100	18.
o-Xylene	ND		ug/kg	100	17.
cis-1,2-Dichloroethene	ND		ug/kg	50	17.
Styrene	ND		ug/kg	100	20.
Dichlorodifluoromethane	ND		ug/kg	500	25.
Acetone	200	J	ug/kg	500	110
Carbon disulfide	ND		ug/kg	500	55.
2-Butanone	ND		ug/kg	500	34.
4-Methyl-2-pentanone	ND		ug/kg	500	12.
2-Hexanone	ND		ug/kg	500	33.
1,2-Dibromoethane	ND		ug/kg	200	10.
n-Butylbenzene	ND		ug/kg	50	11.
sec-Butylbenzene	ND		ug/kg	50	11.
tert-Butylbenzene	ND		ug/kg	250	12.
1,2-Dibromo-3-chloropropane	ND		ug/kg	250	20.
Isopropylbenzene	ND		ug/kg	50	9.7
p-Isopropyltoluene	ND		ug/kg	50	10.
Naphthalene	ND		ug/kg	250	6.9
n-Propylbenzene	ND		ug/kg	50	11.
1,2,4-Trichlorobenzene	ND		ug/kg	250	11.
1,3,5-Trimethylbenzene	ND		ug/kg	250	8.0
1,2,4-Trimethylbenzene	ND		ug/kg	250	9.3
Methyl Acetate	ND		ug/kg	1000	23.
Cyclohexane	ND		ug/kg	1000	22.
Freon-113	ND		ug/kg	1000	26.
Methyl cyclohexane	ND		ug/kg	200	12.

Project Name: OSWEGO MIDTOWN Lab Number: L1810007

Project Number: 2181011 **Report Date:** 03/30/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 03/29/18 08:10

Analyst: MV

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS - Wes				Batch:	WG1101648-5	

		Α	cceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	98		70-130	
Toluene-d8	108		70-130	
4-Bromofluorobenzene	98		70-130	
Dibromofluoromethane	97		70-130	

Project Name: OSWEGO MIDTOWN

Project Number: 2181011

Lab Number: L1810007

Parameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	RPD Qual Limits
/olatile Organics by 8260/5035 - Westborot	ugh Lab Associat	ed sample(s):	09 Batch:	WG1100736-8	WG1100736-9		
Methylene chloride	95		97		70-130	2	30
1,1-Dichloroethane	109		110		70-130	1	30
Chloroform	100		103		70-130	3	30
Carbon tetrachloride	107		110		70-130	3	30
1,2-Dichloropropane	105		109		70-130	4	30
Dibromochloromethane	111		116		70-130	4	30
1,1,2-Trichloroethane	104		111		70-130	7	30
Tetrachloroethene	122		120		70-130	2	30
Chlorobenzene	111		112		70-130	1	30
Trichlorofluoromethane	78		81		70-139	4	30
1,2-Dichloroethane	95		100		70-130	5	30
1,1,1-Trichloroethane	107		109		70-130	2	30
Bromodichloromethane	95		100		70-130	5	30
trans-1,3-Dichloropropene	109		112		70-130	3	30
cis-1,3-Dichloropropene	96		99		70-130	3	30
Bromoform	98		106		70-130	8	30
1,1,2,2-Tetrachloroethane	100		109		70-130	9	30
Benzene	100		102		70-130	2	30
Toluene	114		114		70-130	0	30
Ethylbenzene	109		110		70-130	1	30
Chloromethane	136	Q	136	Q	52-130	0	30
Bromomethane	91		98		57-147	7	30
Vinyl chloride	111		113		67-130	2	30

Project Name: OSWEGO MIDTOWN

Project Number: 2181011

Lab Number: L1810007

Parameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	RPD Qual Limits
olatile Organics by 8260/5035 - Westbo	orough Lab Associat	ed sample(s):	09 Batch:	WG1100736-8	WG1100736-9		
Chloroethane	87		94		50-151	8	30
1,1-Dichloroethene	102		99		65-135	3	30
trans-1,2-Dichloroethene	100		100		70-130	0	30
Trichloroethene	102		104		70-130	2	30
1,2-Dichlorobenzene	114		119		70-130	4	30
1,3-Dichlorobenzene	118		119		70-130	1	30
1,4-Dichlorobenzene	115		118		70-130	3	30
Methyl tert butyl ether	85		89		66-130	5	30
p/m-Xylene	110		109		70-130	1	30
o-Xylene	107		107		70-130	0	30
cis-1,2-Dichloroethene	96		100		70-130	4	30
Styrene	102		104		70-130	2	30
Dichlorodifluoromethane	97		95		30-146	2	30
Acetone	112		126		54-140	12	30
Carbon disulfide	95		94		59-130	1	30
2-Butanone	102		115		70-130	12	30
4-Methyl-2-pentanone	104		116		70-130	11	30
2-Hexanone	108		120		70-130	11	30
1,2-Dibromoethane	102		107		70-130	5	30
n-Butylbenzene	120		121		70-130	1	30
sec-Butylbenzene	119		120		70-130	1	30
tert-Butylbenzene	115		116		70-130	1	30
1,2-Dibromo-3-chloropropane	97		109		68-130	12	30

Project Name: OSWEGO MIDTOWN

Project Number: 2181011

Lab Number: L1810007

arameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by 8260/5035 - Wes	tborough Lab Associated	d sample(s):	09 Batch:	WG1100736-8	WG1100736-9				
Isopropylbenzene	108		111		70-130	3		30	
p-Isopropyltoluene	117		117		70-130	0		30	
Naphthalene	98		106		70-130	8		30	
n-Propylbenzene	111		112		70-130	1		30	
1,2,4-Trichlorobenzene	108		112		70-130	4		30	
1,3,5-Trimethylbenzene	112		114		70-130	2		30	
1,2,4-Trimethylbenzene	112		113		70-130	1		30	
Methyl Acetate	106		117		51-146	10		30	
Cyclohexane	113		115		59-142	2		30	
Freon-113	96		95		50-139	1		30	
Methyl cyclohexane	97		99		70-130	2		30	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	92	95	70-130
Toluene-d8	106	105	70-130
4-Bromofluorobenzene	93	96	70-130
Dibromofluoromethane	94	95	70-130

Project Name: OSWEGO MIDTOWN

Project Number: 2181011

Lab Number: L1810007

Parameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	RPD Qual Limits
olatile Organics by 8260/5035 - Westborou	ıgh Lab Associat	ted sample(s):	08 Batch:	WG1100992-3	WG1100992-4		
Methylene chloride	88		87		70-130	1	30
1,1-Dichloroethane	98		97		70-130	1	30
Chloroform	89		89		70-130	0	30
Carbon tetrachloride	98		96		70-130	2	30
1,2-Dichloropropane	97		98		70-130	1	30
Dibromochloromethane	96		97		70-130	1	30
1,1,2-Trichloroethane	106		107		70-130	1	30
Tetrachloroethene	97		96		70-130	1	30
Chlorobenzene	99		98		70-130	1	30
Trichlorofluoromethane	87		86		70-139	1	30
1,2-Dichloroethane	95		95		70-130	0	30
1,1,1-Trichloroethane	94		94		70-130	0	30
Bromodichloromethane	89		92		70-130	3	30
trans-1,3-Dichloropropene	92		95		70-130	3	30
cis-1,3-Dichloropropene	90		92		70-130	2	30
Bromoform	94		98		70-130	4	30
1,1,2,2-Tetrachloroethane	109		111		70-130	2	30
Benzene	91		91		70-130	0	30
Toluene	104		102		70-130	2	30
Ethylbenzene	104		102		70-130	2	30
Chloromethane	122		122		52-130	0	30
Bromomethane	88		87		57-147	1	30
Vinyl chloride	102		103		67-130	1	30

Project Name: OSWEGO MIDTOWN

Project Number: 2181011

Lab Number: L1810007

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by 8260/5035 - Westboroug	gh Lab Associa	ted sample(s):	08 Batch: W	G1100992-3	WG1100992-4				
Chloroethane	90		90		50-151	0		30	
1,1-Dichloroethene	88		84		65-135	5		30	
trans-1,2-Dichloroethene	90		89		70-130	1		30	
Trichloroethene	91		90		70-130	1		30	
1,2-Dichlorobenzene	103		103		70-130	0		30	
1,3-Dichlorobenzene	103		102		70-130	1		30	
1,4-Dichlorobenzene	100		100		70-130	0		30	
Methyl tert butyl ether	92		93		66-130	1		30	
p/m-Xylene	96		95		70-130	1		30	
o-Xylene	95		94		70-130	1		30	
cis-1,2-Dichloroethene	89		89		70-130	0		30	
Styrene	93		92		70-130	1		30	
Dichlorodifluoromethane	105		102		30-146	3		30	
Acetone	117		115		54-140	2		30	
Carbon disulfide	100		72		59-130	33	Q	30	
2-Butanone	109		97		70-130	12		30	
4-Methyl-2-pentanone	102		105		70-130	3		30	
2-Hexanone	101		106		70-130	5		30	
1,2-Dibromoethane	100		101		70-130	1		30	
n-Butylbenzene	112		111		70-130	1		30	
sec-Butylbenzene	112		110		70-130	2		30	
tert-Butylbenzene	110		108		70-130	2		30	
1,2-Dibromo-3-chloropropane	93		99		68-130	6		30	

Project Name: OSWEGO MIDTOWN

Project Number: 2181011

Lab Number: L1810007

arameter	LCS %Recovery	Qual	LC %Rec	_	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by 8260/5035 - Wes	stborough Lab Associate	d sample(s):	08 B	atch:	WG1100992-3	WG1100992-4				
Isopropylbenzene	112		1	11		70-130	1		30	
p-Isopropyltoluene	110		1	08		70-130	2		30	
Naphthalene	101		1	03		70-130	2		30	
n-Propylbenzene	113		1	12		70-130	1		30	
1,2,4-Trichlorobenzene	103		1	03		70-130	0		30	
1,3,5-Trimethylbenzene	109		1	08		70-130	1		30	
1,2,4-Trimethylbenzene	110		1	09		70-130	1		30	
Methyl Acetate	103		1	06		51-146	3		30	
Cyclohexane	105		1	04		59-142	1		30	
Freon-113	105		7	7		50-139	31	Q	30	
Methyl cyclohexane	92		9	91		70-130	1		30	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	103	105	70-130
Toluene-d8	108	108	70-130
4-Bromofluorobenzene	105	106	70-130
Dibromofluoromethane	91	91	70-130

Project Name: OSWEGO MIDTOWN

Project Number: 2181011

Lab Number: L1810007

Parameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	RPD Qual Limits	
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-04 Batch:	WG1101340-3	WG1101340-4			
Methylene chloride	81		82		70-130	1	20	
1,1-Dichloroethane	89		90		70-130	1	20	
Chloroform	84		84		70-130	0	20	
Carbon tetrachloride	99		99		63-132	0	20	
1,2-Dichloropropane	85		84		70-130	1	20	
Dibromochloromethane	82		82		63-130	0	20	
1,1,2-Trichloroethane	84		84		70-130	0	20	
Tetrachloroethene	90		88		70-130	2	20	
Chlorobenzene	87		85		75-130	2	20	
Trichlorofluoromethane	100		100		62-150	0	20	
1,2-Dichloroethane	82		82		70-130	0	20	
1,1,1-Trichloroethane	96		94		67-130	2	20	
Bromodichloromethane	81		83		67-130	2	20	
trans-1,3-Dichloropropene	94		93		70-130	1	20	
cis-1,3-Dichloropropene	84		85		70-130	1	20	
Bromoform	79		79		54-136	0	20	
1,1,2,2-Tetrachloroethane	86		90		67-130	5	20	
Benzene	87		87		70-130	0	20	
Toluene	90		90		70-130	0	20	
Ethylbenzene	95		94		70-130	1	20	
Chloromethane	94		94		64-130	0	20	
Bromomethane	51		51		39-139	0	20	
Vinyl chloride	98		97		55-140	1	20	

Project Name: OSWEGO MIDTOWN

Project Number: 2181011

Lab Number: L1810007

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-04 Batch: WG	G1101340-3 WG1101340-4		
Chloroethane	100		100	55-138	0	20
1,1-Dichloroethene	91		93	61-145	2	20
trans-1,2-Dichloroethene	89		88	70-130	1	20
Trichloroethene	83		84	70-130	1	20
1,2-Dichlorobenzene	83		82	70-130	1	20
1,3-Dichlorobenzene	87		87	70-130	0	20
1,4-Dichlorobenzene	85		86	70-130	1	20
Methyl tert butyl ether	85		87	63-130	2	20
p/m-Xylene	90		90	70-130	0	20
o-Xylene	90		90	70-130	0	20
cis-1,2-Dichloroethene	83		82	70-130	1	20
Styrene	85		85	70-130	0	20
Dichlorodifluoromethane	130		120	36-147	8	20
Acetone	100		110	58-148	10	20
Carbon disulfide	92		92	51-130	0	20
2-Butanone	91		86	63-138	6	20
4-Methyl-2-pentanone	83		84	59-130	1	20
2-Hexanone	92		92	57-130	0	20
1,2-Dibromoethane	83		83	70-130	0	20
n-Butylbenzene	120		120	53-136	0	20
sec-Butylbenzene	110		110	70-130	0	20
tert-Butylbenzene	88		89	70-130	1	20
1,2-Dibromo-3-chloropropane	77		81	41-144	5	20

Project Name: OSWEGO MIDTOWN

Project Number: 2181011

Lab Number: L1810007

Parameter	LCS %Recovery	Qual		LCSD Recovery		%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	01-04	Batch:	WG1101340-3	WG1101340-4			
Isopropylbenzene	100			100		70-130	0		20
p-Isopropyltoluene	110			110		70-130	0		20
Naphthalene	90			90		70-130	0		20
n-Propylbenzene	100			100		69-130	0		20
1,2,4-Trichlorobenzene	83			83		70-130	0		20
1,3,5-Trimethylbenzene	98			98		64-130	0		20
1,2,4-Trimethylbenzene	100			99		70-130	1		20
Methyl Acetate	82			82		70-130	0		20
Cyclohexane	98			97		70-130	1		20
Freon-113	99			98		70-130	1		20
Methyl cyclohexane	100			98		70-130	2		20

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	98	98	70-130
Toluene-d8	106	106	70-130
4-Bromofluorobenzene	110	111	70-130
Dibromofluoromethane	91	91	70-130

Project Name: OSWEGO MIDTOWN

Project Number: 2181011

Lab Number: L1810007

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 05	Batch: WG1	101407-3	WG1101407-4		
Methylene chloride	101		104		70-130	3	30
1,1-Dichloroethane	92		94		70-130	2	30
Chloroform	86		88		70-130	2	30
Carbon tetrachloride	86		93		70-130	8	30
1,2-Dichloropropane	94		95		70-130	1	30
Dibromochloromethane	91		96		70-130	5	30
1,1,2-Trichloroethane	105		106		70-130	1	30
Tetrachloroethene	96		97		70-130	1	30
Chlorobenzene	96		97		70-130	1	30
Trichlorofluoromethane	81		85		70-139	5	30
1,2-Dichloroethane	93		94		70-130	1	30
1,1,1-Trichloroethane	88		92		70-130	4	30
Bromodichloromethane	86		89		70-130	3	30
trans-1,3-Dichloropropene	84		91		70-130	8	30
cis-1,3-Dichloropropene	84		89		70-130	6	30
Bromoform	88		95		70-130	8	30
1,1,2,2-Tetrachloroethane	109		113		70-130	4	30
Benzene	87		89		70-130	2	30
Toluene	100		101		70-130	1	30
Ethylbenzene	99		101		70-130	2	30
Chloromethane	115		101		52-130	13	30
Bromomethane	82		79		57-147	4	30
Vinyl chloride	91		93		67-130	2	30

Project Name: OSWEGO MIDTOWN

Project Number: 2181011

Lab Number: L1810007

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	05 Batch: WG1	101407-3 WG1101407-4		
Chloroethane	81		82	50-151	1	30
1,1-Dichloroethene	80		83	65-135	4	30
trans-1,2-Dichloroethene	86		88	70-130	2	30
Trichloroethene	86		88	70-130	2	30
1,2-Dichlorobenzene	100		103	70-130	3	30
1,3-Dichlorobenzene	99		102	70-130	3	30
1,4-Dichlorobenzene	98		100	70-130	2	30
Methyl tert butyl ether	94		94	66-130	0	30
p/m-Xylene	92		94	70-130	2	30
o-Xylene	92		94	70-130	2	30
cis-1,2-Dichloroethene	87		88	70-130	1	30
Styrene	90		91	70-130	1	30
Dichlorodifluoromethane	101		101	30-146	0	30
Acetone	151	Q	127	54-140	17	30
Carbon disulfide	89		93	59-130	4	30
2-Butanone	112		104	70-130	7	30
4-Methyl-2-pentanone	106		108	70-130	2	30
2-Hexanone	110		112	70-130	2	30
1,2-Dibromoethane	101		102	70-130	1	30
n-Butylbenzene	108		111	70-130	3	30
sec-Butylbenzene	107		111	70-130	4	30
tert-Butylbenzene	106		109	70-130	3	30
1,2-Dibromo-3-chloropropane	93		98	68-130	5	30

Project Name: OSWEGO MIDTOWN

Project Number: 2181011

Lab Number: L1810007

arameter	LCS %Recovery	Qual	LCSD %Recove		%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by GC/MS - Wo	estborough Lab Associated	sample(s): 05	5 Batch:	WG1101407-3	WG1101407-4				
Isopropylbenzene	107		110		70-130	3		30	
p-Isopropyltoluene	106		108		70-130	2		30	
Naphthalene	102		105		70-130	3		30	
n-Propylbenzene	108		111		70-130	3		30	
1,2,4-Trichlorobenzene	100		100		70-130	0		30	
1,3,5-Trimethylbenzene	104		108		70-130	4		30	
1,2,4-Trimethylbenzene	106		110		70-130	4		30	
Methyl Acetate	109		110		51-146	1		30	
Cyclohexane	99		102		59-142	3		30	
Freon-113	96		100		50-139	4		30	
Methyl cyclohexane	89		92		70-130	3		30	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	102	101	70-130
Toluene-d8	108	107	70-130
4-Bromofluorobenzene	107	108	70-130
Dibromofluoromethane	91	91	70-130

Project Name: OSWEGO MIDTOWN

Project Number: 2181011

Lab Number: L1810007

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recov Qual Limits	-	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 1	0 Batch: WG1	101648-3 WG110164	18-4		
Methylene chloride	90		85	70-130	6	30	
1,1-Dichloroethane	102		98	70-130	4	30	
Chloroform	100		92	70-130	8	30	
Carbon tetrachloride	101		96	70-130	5	30	
1,2-Dichloropropane	105		103	70-130	2	30	
Dibromochloromethane	109		103	70-130	6	30	
1,1,2-Trichloroethane	104		100	70-130	4	30	
Tetrachloroethene	116		108	70-130	7	30	
Chlorobenzene	108		102	70-130	6	30	
Trichlorofluoromethane	85		86	70-139	1	30	
1,2-Dichloroethane	97		93	70-130	4	30	
1,1,1-Trichloroethane	101		97	70-130	4	30	
Bromodichloromethane	97		93	70-130	4	30	
trans-1,3-Dichloropropene	108		102	70-130	6	30	
cis-1,3-Dichloropropene	99		92	70-130	7	30	
Bromoform	97		90	70-130	7	30	
1,1,2,2-Tetrachloroethane	100		95	70-130	5	30	
Benzene	98		94	70-130	4	30	
Toluene	108		102	70-130	6	30	
Ethylbenzene	106		99	70-130	7	30	
Chloromethane	148	Q	126	52-130	16	30	
Bromomethane	112		102	57-147	9	30	
Vinyl chloride	128		124	67-130	3	30	

Project Name: OSWEGO MIDTOWN

Project Number: 2181011

Lab Number: L1810007

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 10	Batch: WG1	101648-3	WG1101648-4		
Chloroethane	98		97		50-151	1	30
1,1-Dichloroethene	89		87		65-135	2	30
trans-1,2-Dichloroethene	94		87		70-130	8	30
Trichloroethene	100		95		70-130	5	30
1,2-Dichlorobenzene	116		106		70-130	9	30
1,3-Dichlorobenzene	115		105		70-130	9	30
1,4-Dichlorobenzene	114		104		70-130	9	30
Methyl tert butyl ether	86		79		66-130	8	30
p/m-Xylene	107		100		70-130	7	30
o-Xylene	104		97		70-130	7	30
cis-1,2-Dichloroethene	93		89		70-130	4	30
Styrene	103		96		70-130	7	30
Dichlorodifluoromethane	106		88		30-146	19	30
Acetone	110		107		54-140	3	30
Carbon disulfide	84		82		59-130	2	30
2-Butanone	104		104		70-130	0	30
4-Methyl-2-pentanone	109		100		70-130	9	30
2-Hexanone	111		108		70-130	3	30
1,2-Dibromoethane	102		98		70-130	4	30
n-Butylbenzene	115		108		70-130	6	30
sec-Butylbenzene	112		106		70-130	6	30
tert-Butylbenzene	107		100		70-130	7	30
1,2-Dibromo-3-chloropropane	96		91		68-130	5	30

Project Name: OSWEGO MIDTOWN

Project Number: 2181011

Lab Number: L1810007

arameter	LCS %Recovery	Qual	LCSI %Recov		%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	10 Batch:	WG1101648-3	WG1101648-4				
Isopropylbenzene	100		96		70-130	4		30	
p-Isopropyltoluene	112		104		70-130	7		30	
Naphthalene	99		91		70-130	8		30	
n-Propylbenzene	103		98		70-130	5		30	
1,2,4-Trichlorobenzene	105		98		70-130	7		30	
1,3,5-Trimethylbenzene	108		100		70-130	8		30	
1,2,4-Trimethylbenzene	109		99		70-130	10		30	
Methyl Acetate	106		102		51-146	4		30	
Cyclohexane	104		104		59-142	0		30	
Freon-113	83		82		50-139	1		30	
Methyl cyclohexane	91		90		70-130	1		30	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	94	96	70-130
Toluene-d8	106	104	70-130
4-Bromofluorobenzene	92	91	70-130
Dibromofluoromethane	93	93	70-130

SEMIVOLATILES

Serial_No:03301815:02

L1810007

03/21/18 00:00

Project Name: OSWEGO MIDTOWN

Project Number: 2181011

SAMPLE RESULTS

03/30/18

Report Date:

Lab Number:

Date Collected:

Lab ID: L1810007-06 Client ID: LBA-SB-04 2'-3.7' Sample Location: OSWEGO, NY

Date Received: 03/23/18 Field Prep: Not Specified

Sample Depth:

Matrix: Soil Analytical Method: 1,8270D Analytical Date: 03/26/18 22:17

Analyst: ΕK 76% Percent Solids:

Extraction Method: EPA 3546 **Extraction Date:** 03/25/18 00:16

Result	Qualifier	Units	RL	MDL	Dilution Factor
borough Lab					
320		ug/kg	170	23.	1
17000	E	ug/kg	130	25.	1
7400		ug/kg	130	25.	1
8900	Е	ug/kg	170	53.	1
12000	E	ug/kg	130	37.	1
3100		ug/kg	130	35.	1
7600		ug/kg	130	23.	1
2100		ug/kg	170	34.	1
2300		ug/kg	130	43.	1
5100		ug/kg	170	26.	1
710		ug/kg	220	21.	1
9900	E	ug/kg	130	26.	1
1100		ug/kg	130	25.	1
5600		ug/kg	170	30.	1
14000	Е	ug/kg	130	22.	1
	320 17000 7400 8900 12000 3100 7600 2100 2300 5100 710 9900 1100 5600	320 17000 E 7400 8900 E 12000 E 3100 7600 2100 2300 5100 710 9900 E 1100 5600	320 ug/kg 17000 E ug/kg 7400 ug/kg 8900 E ug/kg 12000 E ug/kg 3100 ug/kg 7600 ug/kg 2100 ug/kg 2100 ug/kg 2100 ug/kg 2100 ug/kg 65100 ug/kg 710 ug/kg 9900 E ug/kg 1100 ug/kg	320 ug/kg 170 17000 E ug/kg 130 7400 ug/kg 130 8900 E ug/kg 170 12000 E ug/kg 130 3100 ug/kg 130 7600 ug/kg 130 2100 ug/kg 130 2100 ug/kg 170 2300 ug/kg 170 2300 ug/kg 170 710 ug/kg 170 710 ug/kg 130 1100 ug/kg 130 1100 ug/kg 130 1100 ug/kg 130	Borough Lab 320 ug/kg 170 23. 17000 E ug/kg 130 25. 7400 ug/kg 130 25. 8900 E ug/kg 170 53. 12000 E ug/kg 130 37. 3100 ug/kg 130 35. 7600 ug/kg 130 23. 2100 ug/kg 170 34. 2300 ug/kg 130 43. 5100 ug/kg 170 26. 710 ug/kg 220 21. 9900 E ug/kg 130 26. 1100 ug/kg 130 25. 5600 ug/kg 170 30.

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	79	23-120	
2-Fluorobiphenyl	77	30-120	
4-Terphenyl-d14	84	18-120	

Serial_No:03301815:02

Project Name: OSWEGO MIDTOWN Lab Number: L1810007

Project Number: 2181011 Report Date: 03/30/18

SAMPLE RESULTS

Lab ID: L1810007-06 D Date Collected: 03/21/18 00:00

Client ID: LBA-SB-04 2'-3.7' Date Received: 03/23/18
Sample Location: OSWEGO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 1,8270D Extraction Date: 03/25/18 00:16
Analytical Date: 03/30/18 00:31

Analyst: CB Percent Solids: 76%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/M	S - Westborough Lab					
Fluoranthene	15000		ug/kg	660	120	5
Benzo(a)pyrene	6600		ug/kg	870	270	5
Benzo(b)fluoranthene	8700		ug/kg	660	180	5
Phenanthrene	8300		ug/kg	660	130	5
Pyrene	12000		ug/kg	660	110	5

Serial_No:03301815:02

L1810007

Project Name: OSWEGO MIDTOWN

Project Number: 2181011

SAMPLE RESULTS

Report Date: 03/30/18

Lab Number:

Lab ID: L1810007-07 Client ID: LBA-SB-06 2'-4' Sample Location: OSWEGO, NY

Date Collected: 03/21/18 16:45 Date Received: 03/23/18 Field Prep: Not Specified

Sample Depth:

Matrix: Soil Analytical Method: 1,8270D Analytical Date: 03/26/18 17:53

Analyst: ΕK 91% Percent Solids:

Extraction Method: EPA 3546 **Extraction Date:** 03/25/18 00:16

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - West	borough Lab					
Acenaphthene	ND		ug/kg	140	19.	1
Fluoranthene	ND		ug/kg	110	21.	1
Benzo(a)anthracene	ND		ug/kg	110	20.	1
Benzo(a)pyrene	ND		ug/kg	140	44.	1
Benzo(b)fluoranthene	ND		ug/kg	110	30.	1
Benzo(k)fluoranthene	ND		ug/kg	110	29.	1
Chrysene	ND		ug/kg	110	19.	1
Acenaphthylene	ND		ug/kg	140	28.	1
Anthracene	ND		ug/kg	110	35.	1
Benzo(ghi)perylene	ND		ug/kg	140	21.	1
Fluorene	ND		ug/kg	180	17.	1
Phenanthrene	ND		ug/kg	110	22.	1
Dibenzo(a,h)anthracene	ND		ug/kg	110	21.	1
Indeno(1,2,3-cd)pyrene	ND		ug/kg	140	25.	1
Pyrene	ND		ug/kg	110	18.	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	77	23-120	
2-Fluorobiphenyl	78	30-120	
4-Terphenyl-d14	71	18-120	

Project Number: 2181011 Lab Number: L1810007

Report Date: 03/30/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 03/27/18 01:22

Analyst: RC Extraction Method: EPA 3546 **Extraction Date:** 03/25/18 00:16

arameter	Result	Qualifier	Units	RL		MDL
Semivolatile Organics by GC/MS -	Westboroug	h Lab for s	ample(s):	06-07	Batch:	WG1100284-1
Acenaphthene	ND		ug/kg	130		17.
Fluoranthene	ND		ug/kg	98		19.
Benzo(a)anthracene	ND		ug/kg	98		18.
Benzo(a)pyrene	ND		ug/kg	130		40.
Benzo(b)fluoranthene	ND		ug/kg	98		27.
Benzo(k)fluoranthene	ND		ug/kg	98		26.
Chrysene	ND		ug/kg	98		17.
Acenaphthylene	ND		ug/kg	130		25.
Anthracene	ND		ug/kg	98		32.
Benzo(ghi)perylene	ND		ug/kg	130		19.
Fluorene	ND		ug/kg	160		16.
Phenanthrene	ND		ug/kg	98		20.
Dibenzo(a,h)anthracene	ND		ug/kg	98		19.
Indeno(1,2,3-cd)pyrene	ND		ug/kg	130		23.
Pyrene	ND		ug/kg	98		16.

Tentatively Identified Compounds

No Tentatively Identified Compounds

ND

ug/kg

L1810007

Project Name: OSWEGO MIDTOWN

Project Number: 2181011 Report Date:

03/30/18

Lab Number:

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 03/27/18 01:22

Analyst: RC Extraction Method: EPA 3546 Extraction Date: 03/25/18 00:16

Result Qualifier Units RLMDL Parameter Semivolatile Organics by GC/MS - Westborough Lab for sample(s): 06-07 Batch: WG1100284-1

	Acceptance
%Recovery	Qualifier Criteria
92	25-120
98	10-120
84	23-120
87	30-120
91	10-136
93	18-120
	92 98 84 87 91

Lab Control Sample Analysis Batch Quality Control

Project Name: OSWEGO MIDTOWN

Project Number: 2181011

Lab Number: L1810007

Report Date: 03/30/18

arameter	LCS %Recovery	Qual	LCSD %Recove		%Recove Qual Limits		Qual	RPD Limits	
emivolatile Organics by GC/MS - Westboro	•			Batch:					
Acenaphthene	80		78		31-137	3		50	
Fluoranthene	87		82		40-140	6		50	
Benzo(a)anthracene	84		82		40-140	2		50	
Benzo(a)pyrene	92		92		40-140	0		50	
Benzo(b)fluoranthene	92		90		40-140	2		50	
Benzo(k)fluoranthene	87		85		40-140	2		50	
Chrysene	80		78		40-140	3		50	
Acenaphthylene	86		83		40-140	4		50	
Anthracene	84		82		40-140	2		50	
Benzo(ghi)perylene	87		87		40-140	0		50	
Fluorene	81		78		40-140	4		50	
Phenanthrene	80		77		40-140	4		50	
Dibenzo(a,h)anthracene	90		89		40-140	1		50	
Indeno(1,2,3-cd)pyrene	75		75		40-140	0		50	
Pyrene	84		78		35-142	7		50	

Surrogato	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
Surrogate	%Recovery Quar	%Recovery Quar	- Ciriona
2-Fluorophenol	91	84	25-120
Phenol-d6	95	87	10-120
Nitrobenzene-d5	83	77	23-120
2-Fluorobiphenyl	82	78	30-120
2,4,6-Tribromophenol	90	88	10-136
4-Terphenyl-d14	89	81	18-120
			ALPHA

METALS

Project Name: OSWEGO MIDTOWN Lab Number: L1810007

Project Number: 2181011 Report Date: 03/30/18

SAMPLE RESULTS

Lab ID:L1810007-06Date Collected:03/21/18 00:00Client ID:LBA-SB-04 2'-3.7'Date Received:03/23/18Sample Location:OSWEGO, NYField Prep:Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 76%

Percent Solids:	1070					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Man	sfield Lab										
Arsenic, Total	14.6		mg/kg	0.521	0.108	1	03/26/18 18:57	7 03/27/18 16:22	EPA 3050B	1,6010C	AB
Barium, Total	195		mg/kg	0.521	0.091	1	03/26/18 18:57	7 03/27/18 16:22	EPA 3050B	1,6010C	AB
Cadmium, Total	0.990		mg/kg	0.521	0.051	1	03/26/18 18:57	7 03/27/18 16:22	EPA 3050B	1,6010C	AB
Chromium, Total	76.4		mg/kg	0.521	0.050	1	03/26/18 18:57	7 03/27/18 16:22	EPA 3050B	1,6010C	AB
Lead, Total	704		mg/kg	2.60	0.140	1	03/26/18 18:57	7 03/27/18 16:22	EPA 3050B	1,6010C	AB
Mercury, Total	3.64		mg/kg	0.420	0.089	5	03/27/18 05:00	03/27/18 21:12	EPA 7471B	1,7471B	EA
Selenium, Total	ND		mg/kg	1.04	0.134	1	03/26/18 18:57	7 03/27/18 16:22	EPA 3050B	1,6010C	AB
Silver, Total	0.448	J	mg/kg	0.521	0.147	1	03/26/18 18:57	7 03/27/18 16:22	EPA 3050B	1,6010C	AB

Project Name: OSWEGO MIDTOWN Lab Number: L1810007

Project Number: 2181011 Report Date: 03/30/18

SAMPLE RESULTS

Lab ID:L1810007-07Date Collected:03/21/18 16:45Client ID:LBA-SB-06 2'-4'Date Received:03/23/18Sample Location:OSWEGO, NYField Prep:Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 91%

i cicciii ddias.	0.70					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Man	efiold Lab										
Total Metals - Mail	Sileiu Lab										
Arsenic, Total	2.98		mg/kg	0.413	0.086	1	03/26/18 18:57	03/27/18 16:26	EPA 3050B	1,6010C	AB
Barium, Total	172		mg/kg	0.413	0.072	1	03/26/18 18:57	03/27/18 16:26	EPA 3050B	1,6010C	AB
Cadmium, Total	1.12		mg/kg	0.413	0.041	1	03/26/18 18:57	03/27/18 16:26	EPA 3050B	1,6010C	AB
Chromium, Total	30.3		mg/kg	0.413	0.040	1	03/26/18 18:57	03/27/18 16:26	EPA 3050B	1,6010C	AB
Lead, Total	1.14	J	mg/kg	2.07	0.111	1	03/26/18 18:57	03/27/18 16:26	EPA 3050B	1,6010C	AB
Mercury, Total	0.041	J	mg/kg	0.069	0.015	1	03/27/18 05:00	03/27/18 17:57	EPA 7471B	1,7471B	EA
Selenium, Total	ND		mg/kg	4.13	0.533	5	03/26/18 18:57	03/27/18 17:25	EPA 3050B	1,6010C	AB
Silver, Total	ND		mg/kg	0.413	0.117	1	03/26/18 18:57	7 03/27/18 16:26	EPA 3050B	1,6010C	AB

Project Name: OSWEGO MIDTOWN

Project Number: 2181011

Lab Number:

L1810007

Report Date: 03/30/18

Method Blank Analysis Batch Quality Control

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for s	ample(s):	06-07 B	atch: Wo	G11006	11-1				
Arsenic, Total	0.100	J	mg/kg	0.400	0.083	1	03/26/18 18:57	03/27/18 14:05	1,6010C	PS
Barium, Total	ND		mg/kg	0.400	0.070	1	03/26/18 18:57	03/27/18 14:05	1,6010C	PS
Cadmium, Total	ND		mg/kg	0.400	0.039	1	03/26/18 18:57	03/27/18 14:05	1,6010C	PS
Chromium, Total	0.068	J	mg/kg	0.400	0.038	1	03/26/18 18:57	03/27/18 14:05	1,6010C	PS
Lead, Total	ND		mg/kg	2.00	0.107	1	03/26/18 18:57	03/27/18 14:05	1,6010C	PS
Selenium, Total	0.160	J	mg/kg	0.800	0.103	1	03/26/18 18:57	03/27/18 14:05	1,6010C	PS
Silver, Total	ND		mg/kg	0.400	0.113	1	03/26/18 18:57	03/27/18 14:05	1,6010C	PS

Prep Information

Digestion Method: EPA 3050B

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfi	eld Lab for sample(s):	06-07 B	atch: Wo	G11007	09-1				
Mercury, Total	ND	mg/kg	0.083	0.018	1	03/27/18 05:00	03/27/18 12:53	1,7471B	MG

Prep Information

Digestion Method: EPA 7471B

Lab Control Sample Analysis Batch Quality Control

Project Name: OSWEGO MIDTOWN

Project Number: 2181011

Lab Number: L1810007

Report Date: 03/30/18

Parameter	LCS %Recover	ry Qual	LCSD %Recover	y Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	(s): 06-07	Batch: WG110	00611-2 SR	M Lot Number:	D098-540			
Arsenic, Total	100		-		83-117	-		
Barium, Total	93		-		82-118	-		
Cadmium, Total	92		-		82-117	-		
Chromium, Total	93		-		83-119	-		
Lead, Total	94		-		82-117	-		
Selenium, Total	95		-		78-121	-		
Silver, Total	102		-		80-120	-		
Total Metals - Mansfield Lab Associated sample	(s): 06-07	Batch: WG110	00709-2 SR	M Lot Number:	D098-540			
Mercury, Total	105		-		50-149	-		

Matrix Spike Analysis Batch Quality Control

Project Name: OSWEGO MIDTOWN

Project Number: 2181011

Lab Number: L1810007

Report Date: 03/30/18

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery Qu	Recovery ual Limits	RPD Qual	RPD Limits
otal Metals - Mansfield La	b Associated san	nple(s): 06-07	QC Bat	ch ID: WG110	0611-3	QC San	nple: L1810083-01	Client ID: MS	Sample	
Arsenic, Total	2.57	10.8	10.8	76		-	-	75-125	-	20
Barium, Total	100.	180	202	57	Q	-	-	75-125	-	20
Cadmium, Total	0.623J	4.58	3.87	84		-	-	75-125	-	20
Chromium, Total	31.1	18	41.0	55	Q	-	-	75-125	-	20
Lead, Total	5.74	45.8	37.3	69	Q	-	-	75-125	-	20
Selenium, Total	ND	10.8	6.25	58	Q	-	-	75-125	-	20
Silver, Total	ND	26.9	21.1	78		-	-	75-125	-	20
otal Metals - Mansfield La	b Associated san	nple(s): 06-07	QC Bat	ch ID: WG110	0709-3	QC Sam	nple: L1809534-01	Client ID: MS	Sample	
Mercury, Total	0.020J	0.147	0.190	129	Q	-	-	80-120	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: OSWEGO MIDTOWN

Project Number: 2181011

Lab Number:

L1810007

Report Date:

03/30/18

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 06-0	7 QC Batch ID:	WG1100611-4 QC Sample:	L1810083-01	Client ID:	DUP Samp	le
Arsenic, Total	2.57	2.57	mg/kg	0		20
Barium, Total	100.	85.9	mg/kg	15		20
Cadmium, Total	0.623J	0.615J	mg/kg	NC		20
Chromium, Total	31.1	28.0	mg/kg	10		20
Lead, Total	5.74	5.90	mg/kg	3		20
Selenium, Total	ND	ND	mg/kg	NC		20
Silver, Total	ND	ND	mg/kg	NC		20
otal Metals - Mansfield Lab Associated sample(s): 06-0	7 QC Batch ID:	WG1100709-4 QC Sample:	L1809534-01	Client ID:	DUP Samp	le
Mercury, Total	0.020J	0.031J	mg/kg	NC		20

INORGANICS & MISCELLANEOUS

Project Name: OSWEGO MIDTOWN

Project Number: 2181011

Lab Number:

L1810007

Report Date: 03/30/18

SAMPLE RESULTS

Lab ID: L1810007-05

Client ID: LBA-SB-02 4'-5' Sample Location: OSWEGO, NY

Date Collected:

03/21/18 11:00

Date Received:

03/23/18

Field Prep:

Not Specified

Sample Depth:

Matrix: Soil

Parameter	Result C	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab									
Solids, Total	89.2		%	0.100	NA	1	-	03/24/18 10:58	121,2540G	RI

Project Name: OSWEGO MIDTOWN

L1810007 Project Number: 2181011 Report Date:

03/30/18

Lab Number:

SAMPLE RESULTS

Lab ID: Date Collected: L1810007-06 03/21/18 00:00 Client ID: LBA-SB-04 2'-3.7' Date Received: 03/23/18 Not Specified Sample Location: OSWEGO, NY Field Prep:

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - '	Westborough Lab)								
Solids, Total	76.2		%	0.100	NA	1	-	03/24/18 10:58	121,2540G	RI

Project Name: OSWEGO MIDTOWN

Lab Number:

L1810007

Project Number: 2181011

Report Date:

03/30/18

SAMPLE RESULTS

Lab ID: L1810007-07

Date Collected:

03/21/18 16:45

Client ID: LBA-SB-06 2'-4' Sample Location: OSWEGO, NY

Date Received: Field Prep:

03/23/18 Not Specified

Sample Depth:

Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab)								
Solids, Total	90.7		%	0.100	NA	1	-	03/24/18 10:58	121,2540G	RI

Project Name: OSWEGO MIDTOWN

Project Number: 2181011

Lab Number:

L1810007

Report Date:

03/30/18

SAMPLE RESULTS

Lab ID: L1810007-08

Client ID: LBA-SB-08 8'-8.4' Sample Location: OSWEGO, NY

Date Collected:

03/22/18 08:45

Date Received:

03/23/18

Field Prep:

Not Specified

Sample Depth:

Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lab)								
Solids, Total	92.1		%	0.100	NA	1	-	03/24/18 10:58	121,2540G	RI

Project Name: OSWEGO MIDTOWN

Project Number: 2181011

Lab Number:

L1810007

Report Date:

03/30/18

SAMPLE RESULTS

Lab ID: L1810007-09

Client ID: LBA-SB-10 9'-10' Sample Location: OSWEGO, NY

Date Collected:

03/22/18 11:20

Date Received: Field Prep:

03/23/18 Not Specified

Sample Depth:

Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	89.5		%	0.100	NA	1	-	03/24/18 10:58	121,2540G	RI

Project Name: OSWEGO MIDTOWN

Project Number: 2181011

Lab Number:

L1810007

Report Date: 03/30/18

SAMPLE RESULTS

Lab ID: L1810007-10

Client ID: LBA-SB-13 14'-15' Sample Location: OSWEGO, NY

Date Collected:

03/22/18 16:30

Date Received: Field Prep:

03/23/18 Not Specified

Sample Depth:

Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lat	ס								
Solids, Total	86.4		%	0.100	NA	1	-	03/24/18 10:58	121,2540G	RI

Lab Number:

Lab Duplicate Analysis
Batch Quality Control

Project Name: OSWEGO MIDTOWN

L1810007

03/30/18 Project Number: 2181011 Report Date:

Parameter	Native Sam	ple D	uplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 05-10	QC Batch ID:	WG1100209-1	QC Sample:	L1810007-07	Client ID:	LBA-SB-06 2'-4'
Solids, Total	90.7		92.1	%	2		20

Serial_No:03301815:02 *Lab Number:* L1810007

Project Name: OSWEGO MIDTOWN

Project Number: 2181011 Report Date: 03/30/18

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1810007-01A	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-R2(14)
L1810007-01B	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-R2(14)
L1810007-02A	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-R2(14)
L1810007-02B	Vial HCI preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-R2(14)
L1810007-03A	Vial HCI preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-R2(14)
L1810007-03B	Vial HCI preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-R2(14)
L1810007-04A	Vial HCI preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-R2(14)
L1810007-04B	Vial HCI preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-R2(14)
L1810007-05A	Glass 60mL/2oz unpreserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-R2(14),TS(7)
L1810007-05X	Vial MeOH preserved split	Α	NA		2.8	Υ	Absent		NYTCL-8260-R2(14)
L1810007-05Y	Vial Water preserved split	Α	NA		2.8	Υ	Absent	24-MAR-18 12:00	NYTCL-8260-R2(14)
L1810007-05Z	Vial Water preserved split	Α	NA		2.8	Υ	Absent	24-MAR-18 12:00	NYTCL-8260-R2(14)
L1810007-06A	Glass 60ml unpreserved split	Α	NA		2.8	Υ	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),HG-T(28),CD- TI(180)
L1810007-06B	Glass 250ml/8oz unpreserved	Α	NA		2.8	Υ	Absent		NYCP51-PAH(14),TS(7)
L1810007-07A	Glass 60ml unpreserved split	Α	NA		2.8	Y	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),HG-T(28),CD- TI(180)
L1810007-07B	Glass 250ml/8oz unpreserved	Α	NA		2.8	Υ	Absent		NYCP51-PAH(14),TS(7)
L1810007-08A	Glass 120ml/4oz unpreserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-R2(14),TS(7)
L1810007-08X	Vial MeOH preserved split	Α	NA		2.8	Υ	Absent		NYTCL-8260-R2(14)
L1810007-08Y	Vial Water preserved split	Α	NA		2.8	Υ	Absent	24-MAR-18 12:00	NYTCL-8260-R2(14)
L1810007-08Z	Vial Water preserved split	Α	NA		2.8	Υ	Absent	24-MAR-18 12:00	NYTCL-8260-R2(14)
L1810007-09A	Glass 120ml/4oz unpreserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-R2(14),TS(7)

Lab Number: L1810007

Report Date: 03/30/18

Project Name: OSWEGO MIDTOWN

Project Number: 2181011

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1810007-09X	Vial MeOH preserved split	Α	NA		2.8	Υ	Absent		NYTCL-8260-R2(14)
L1810007-09Y	Vial Water preserved split	Α	NA		2.8	Υ	Absent	24-MAR-18 12:00	NYTCL-8260-R2(14)
L1810007-09Z	Vial Water preserved split	Α	NA		2.8	Υ	Absent	24-MAR-18 12:00	NYTCL-8260-R2(14)
L1810007-10A	Glass 120ml/4oz unpreserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-R2(14),TS(7)
L1810007-10X	Vial MeOH preserved split	Α	NA		2.8	Υ	Absent		NYTCL-8260-R2(14)
L1810007-10Y	Vial Water preserved split	Α	NA		2.8	Υ	Absent	24-MAR-18 12:00	NYTCL-8260-R2(14)
L1810007-10Z	Vial Water preserved split	Α	NA		2.8	Υ	Absent	24-MAR-18 12:00	NYTCL-8260-R2(14)

Project Name: OSWEGO MIDTOWN Lab Number: L1810007

Project Number: 2181011 Report Date: 03/30/18

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: DU Report with 'J' Qualifiers

В

Project Name:OSWEGO MIDTOWNLab Number:L1810007Project Number:2181011Report Date:03/30/18

Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name:OSWEGO MIDTOWNLab Number:L1810007Project Number:2181011Report Date:03/30/18

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

ID No.:17873

Revision 11

Alpha Analytical, Inc.
Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Published Date: 1/8/2018 4:15:49 PM Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: <u>DW:</u> Bromide EPA 6860: <u>SCM:</u> Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Be, Cd, Cr, Cu, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form Pre-Qualtrax Document ID: 08-113

23	NEW YORK	Service Centers Mahwah, NJ 07430: 35 Whi	itaan Od Culta E		Page	1		Data	Rec'd	1		TE IN		22	
ALPHA	CHAIN OF	Albany, NY 12205: 14 Walk	ter Way		0	f			Lab	3124	112		ALPHA Job	5007	
Actividation	CUSTODY	Tonawanda, NY 14150: 275	5 Cooper Ave, Suite 1	05								S (IN A CT)	The second second	NAME OF TAXABLE PARTY.	001
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information					THE PERSON NAMED IN	erable	7511				Billing Inform	72111571	
TEL: 508-898-9220	TEL: 508-822-9300	Project Name:	Oswego Mid	town			-	ASP.		- 455	ASP.		Same a	s Client Info	
FAX: 508-898-9193	FAX: 508-822-3288	Project Location:	Oswego, NY					EQui	S (1 File	e) [EQu	S (4 File)	PO#		
Client Information		Project #	2181011					Othe	r				1		
Client: LaBella A	ssociates	(Use Project name as	s Project #)				Regu	ilatory	Require	ement			Disposal Site	Information	
Address: 300 State	Street	Project Manager:	Jennifer Gille	en				NYTO	OGS		NY P	art 375	Please identify	below location	of
Rochester, NY 14614		ALPHAQuote #:						AWQ	Standard	is [NYC	P-51	applicable disp	osal facilities.	
Phone: 585-295-6		Turn-Around Time				THE R		NYR	estricted	Use [Other		Disposal Facilit	y:	
Fax:		Stand	dard 🗹	Due Date:				NYU	nrestricte	d Use			□ NJ	□ NY	
	bellapc.com	Rush (only if pre appro	wed)	# of Days:				NYC :	Sewer Di	scharge			Other:		
	been previously analyz	ed by Alpha					ANA	LYSIS					Sample Filtr	ation	0
	c requirements/comm						2	١.			T		☐ Done		t
	· · · · · · · · · · · · · · · · · · ·						Vass	SVOCS	5				☐ Lab to de	0	a
							CP-SI	18	ETA				Preservation		-
Please specify Metal	s or TAL.						9	A,	X				☐ Lab to de	9	В
							1 4	S	- 33				(Please Spe	cify below)	t
ALPHA Lab ID	100	5 - 5 0 C C C C C C C C C C C C C C C C C C	Colle	ection	Sample	Sampler's	1	9	8						1
(Lab Use Only)	Sa	ample ID	Date	Time	Matrix	Initials	177	U	(X				Sample Specif	fic Comments	е
10007-01	MW-01		3/22/18	1445	GW	SR	X						(Z) VIAIS		
-02	MW-02		1	1505	1	SR	X		\Box				1		
~03	MW-03			/520		SR	X		\Box						\top
-04	MW-04		1	1655	1	SR	X			_			1		+
705	LBA-SB-0Z	41_61	3/20/18	1100	SS	SR	X		\vdash				(1) 20-2	105	
-06	LBA - 58-04		3/24/18	13260	SS	SR	1	X	X	-	1		(1) 8 04	5 (45	+
-07	48A-5B-0		3/24/18	16 45	55	SR		X	X	-	_		(1) 8-2		+
30-	48A-SB-08		3/22/18	942	SS	SR	V				+		(1) 408		+
	4BA-SB-10		3/22/18	1/20	22	SR	10	_	\vdash		+		(1) 402	_	+
-09	18A-5B-13	14'-15'	3/22/18	1630	SS	SR	1	_	\vdash	_	+		(1) 4.2		+
Preservative Code:	Container Code	Westboro: Certification		1000	33	3.1		_	\vdash	_	_		10,710	7	-
A = None	P = Plastic	Mansfield: Certification			Cor	tainer Type			1 1					nt clearly, legi	
B = HCI C = HNO ₃	A = Amber Glass V = Vial	Mansiero. Germicano	DIT ING. IMAG 15		_	-	-	_	\vdash	-	+		not be logg	etely. Sample	is can
D = H ₂ SO ₄	G = Glass				F	reservative								time clock w	ill not
E = NaOH	B = Bacteria Cup	0.1.11	(0)	Date	T	_	D	- d D	\vdash	_	Date	(Time	start until a	any ambiguitie	es are
F = MeOH G = NaHSO ₄	C = Cube O = Other	Relinquish	led By:	Date/		e at	Recei			-) -		/Time		BY EXECUTION	
H = Na ₂ S ₂ O ₃	E = Encore	1/2		3/23/1	1	2,00	App	AL	3/2			50		, THE CLIEN D AND AGRE	
K/E = Zn Ac/NaOH	D = BOD Bottle	Slatery AA	-L 3 23	18 13:57	0	1	-	7		3	124	11800	O BE BO	UND BY ALP	HA'S
O = Other		/						-		_				CONDITIONS	
Form No: 01-25 (rev. 30-5	Sept-2013)												- AND ASSESSMENT OF THE PARTY O		

ANALYTICAL REPORT May 03, 2018

LaBella Associates, P.C.

Sample Delivery Group: L988544

Samples Received: 04/25/2018

Project Number: 2181306

Midtown Plaza PHII ESA & Geotech Description:

Report To: Mr. Steven Rife

300 State Street, Suite 201

Rochester, NY 14614

Entire Report Reviewed By:

Hamill T. Alan Harvill

Technical Service Representative Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

18

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
B-11.5-2' L988544-01	5
B-3 1-2' L988544-02	6
B-4 8-8.5' L988544-03	7
P-2 1-2' L988544-04	8
P-3 1-3' L988544-05	9
Qc: Quality Control Summary	10
Total Solids by Method 2540 G-2011	10
Mercury by Method 7471B	12
Metals (ICP) by Method 6010C	13
Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM	14
GI: Glossary of Terms	16
Al: Accreditations & Locations	17

Sc: Sample Chain of Custody

SAMPLE SUMMARY

		NINT	\cap	$\backslash \backslash \backslash \backslash \square \square \square$
CINE	LAD.	IVAI	IUIV	WIDE

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

Metals (ICP) by Method 6010C

Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1103942	1	04/27/18 12:33	04/27/18 12:43	JD
Mercury by Method 7471B	WG1103775	1	04/26/18 20:11	04/27/18 13:36	ABL
Metals (ICP) by Method 6010C	WG1103731	1	04/26/18 21:29	04/28/18 04:46	TRB
Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM	WG1105374	1	05/01/18 15:05	05/02/18 06:36	DMG

WG1103731

WG1105374

WG1105374

1

1

20

04/26/18 21:29

05/01/18 15:05

05/01/18 15:05

Collected by

Collected by

S. Rife

S. Rife

04/28/18 04:43

05/02/18 08:27

05/02/18 10:18

04/18/18 09:30

Collected date/time

Collected date/time

04/20/18 13:00

TRB

DMG

DMG

Received date/time 04/25/18 08:45

Received date/time

04/25/18 08:45

P-3 1-3' L988544-05 Solid

Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1103942	1	04/27/18 12:33	04/27/18 12:43	JD
Mercury by Method 7471B	WG1103775	1	04/26/18 20:11	04/27/18 13:38	ABL
Metals (ICP) by Method 6010C	WG1103731	1	04/26/18 21:29	04/28/18 04:50	TRB
Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM	WG1105374	1	05/01/18 15:05	05/02/18 09:56	DMG
Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM	WG1105374	20	05/01/18 15:05	05/02/18 11:02	DMG

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All radiochemical sample results for solids are reported on a dry weight basis with the exception of tritium, carbon-14 and radon, unless wet weight was requested by the client. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

³Ss

⁴Cn

T. Alan Harvill

SAMPLE RESULTS - 01 L988544

ONE LAB. NATIONWIDE.

Collected date/time: 04/18/18 17:45

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	87.5		1	04/27/2018 12:55	WG1103941

Ss

Mercury by Method 7471B

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	ug/kg		ug/kg		date / time	
Mercury	285		22.9	1	04/27/2018 13:23	WG1103775

Metals (ICP) by Method 6010C

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	ug/kg		ug/kg		date / time	
Arsenic	ND		2290	1	04/28/2018 04:30	WG1103731
Barium	104000		572	1	04/28/2018 04:30	WG1103731
Cadmium	ND		572	1	04/28/2018 04:30	WG1103731
Chromium	19300		1140	1	04/28/2018 04:30	WG1103731
Lead	27000		572	1	04/28/2018 04:30	WG1103731
Selenium	ND		2290	1	04/28/2018 04:30	WG1103731
Silver	ND		1140	1	04/28/2018 04:30	WG1103731

Sc

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	ug/kg		ug/kg		date / time	
Anthracene	22.7	<u>J5</u>	6.86	1	05/02/2018 08:49	WG1105374
Acenaphthene	ND	<u>J5</u>	6.86	1	05/02/2018 08:49	WG1105374
Acenaphthylene	10.9		6.86	1	05/02/2018 08:49	WG1105374
Benzo(a)anthracene	50.5	<u>J5</u>	6.86	1	05/02/2018 08:49	WG1105374
Benzo(a)pyrene	47.9	<u>J5</u>	6.86	1	05/02/2018 08:49	WG1105374
Benzo(b)fluoranthene	61.7	<u>J5</u>	6.86	1	05/02/2018 08:49	WG1105374
Benzo(g,h,i)perylene	33.1		6.86	1	05/02/2018 08:49	WG1105374
Benzo(k)fluoranthene	20.9		6.86	1	05/02/2018 08:49	WG1105374
Chrysene	48.2	<u>J5</u>	6.86	1	05/02/2018 08:49	WG1105374
Dibenz(a,h)anthracene	11.4		6.86	1	05/02/2018 08:49	WG1105374
Fluoranthene	102	<u>J5</u>	6.86	1	05/02/2018 08:49	WG1105374
Fluorene	6.91	<u>J5</u>	6.86	1	05/02/2018 08:49	WG1105374
ndeno(1,2,3-cd)pyrene	31.6		6.86	1	05/02/2018 08:49	WG1105374
Naphthalene	ND		22.9	1	05/02/2018 08:49	WG1105374
Phenanthrene	68.9	<u>J5</u>	6.86	1	05/02/2018 08:49	WG1105374
Pyrene	83.0	<u>J5</u>	6.86	1	05/02/2018 08:49	WG1105374
I-Methylnaphthalene	ND		22.9	1	05/02/2018 08:49	WG1105374
2-Methylnaphthalene	ND		22.9	1	05/02/2018 08:49	WG1105374
2-Chloronaphthalene	ND		22.9	1	05/02/2018 08:49	WG1105374
(S) Nitrobenzene-d5	52.9		14.0-149		05/02/2018 08:49	WG1105374
(S) 2-Fluorobiphenyl	66.0		34.0-125		05/02/2018 08:49	WG1105374
(S) p-Terphenyl-d14	65.1		23.0-120		05/02/2018 08:49	WG1105374

ONE LAB. NATIONWIDE.

Collected date/time: 04/19/18 08:45

L988544

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	90.7		1	04/27/2018 12:55	WG1103941

Mercury by Method 7471B

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	ug/kg		ug/kg		date / time	
Mercury	404		22.0	1	04/27/2018 13:31	WG1103775

Cn

Metals (ICP) by Method 6010C

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	ug/kg		ug/kg		date / time	
Arsenic	2850		2200	1	04/28/2018 04:33	WG1103731
Barium	42600		551	1	04/28/2018 04:33	WG1103731
Cadmium	ND		551	1	04/28/2018 04:33	WG1103731
Chromium	9810		1100	1	04/28/2018 04:33	WG1103731
Lead	14500		551	1	04/28/2018 04:33	WG1103731
Selenium	ND		2200	1	04/28/2018 04:33	WG1103731
Silver	ND		1100	1	04/28/2018 04:33	WG1103731

GI 8

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	ug/kg		ug/kg		date / time	
Anthracene	118		6.61	1	05/02/2018 06:59	WG1105374
Acenaphthene	52.9		6.61	1	05/02/2018 06:59	WG1105374
Acenaphthylene	13.3		6.61	1	05/02/2018 06:59	WG1105374
Benzo(a)anthracene	236		6.61	1	05/02/2018 06:59	WG1105374
Benzo(a)pyrene	197		6.61	1	05/02/2018 06:59	WG1105374
Benzo(b)fluoranthene	218		6.61	1	05/02/2018 06:59	WG1105374
Benzo(g,h,i)perylene	125		6.61	1	05/02/2018 06:59	WG1105374
Benzo(k)fluoranthene	99.6		6.61	1	05/02/2018 06:59	WG1105374
Chrysene	207		6.61	1	05/02/2018 06:59	WG1105374
Dibenz(a,h)anthracene	31.9		6.61	1	05/02/2018 06:59	WG1105374
Fluoranthene	583		6.61	1	05/02/2018 06:59	WG1105374
Fluorene	53.6		6.61	1	05/02/2018 06:59	WG1105374
Indeno(1,2,3-cd)pyrene	117		6.61	1	05/02/2018 06:59	WG1105374
Naphthalene	43.0		22.0	1	05/02/2018 06:59	WG1105374
Phenanthrene	527		6.61	1	05/02/2018 06:59	WG1105374
Pyrene	456		6.61	1	05/02/2018 06:59	WG1105374
1-Methylnaphthalene	ND		22.0	1	05/02/2018 06:59	WG1105374
2-Methylnaphthalene	ND		22.0	1	05/02/2018 06:59	WG1105374
2-Chloronaphthalene	ND		22.0	1	05/02/2018 06:59	WG1105374
(S) Nitrobenzene-d5	49.8		14.0-149		05/02/2018 06:59	WG1105374
(S) 2-Fluorobiphenyl	53.4		34.0-125		05/02/2018 06:59	WG1105374
(S) p-Terphenyl-d14	54.8		23.0-120		05/02/2018 06:59	WG1105374

ONE LAB. NATIONWIDE.

Collected date/time: 04/20/18 12:15

L988544

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	82.2		1	04/27/2018 12:43	WG1103942

²Tc

Mercury by Method 7471B

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	ug/kg		ug/kg		date / time	
Mercury	3520		122	5	04/27/2018 14:33	WG1103775

Metals (ICP) by Method 6010C

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	ug/kg		ug/kg		date / time	
Arsenic	7820		2430	1	04/28/2018 04:43	WG1103731
Barium	155000		608	1	04/28/2018 04:43	WG1103731
Cadmium	2430		608	1	04/28/2018 04:43	WG1103731
Chromium	13300		1220	1	04/28/2018 04:43	WG1103731
Lead	376000		608	1	04/28/2018 04:43	WG1103731
Selenium	ND		2430	1	04/28/2018 04:43	WG1103731
Silver	ND		1220	1	04/28/2018 04:43	WG1103731

Cn

GI

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	ug/kg		ug/kg		date / time	
Anthracene	790		7.30	1	05/02/2018 08:27	WG1105374
Acenaphthene	356		7.30	1	05/02/2018 08:27	WG1105374
Acenaphthylene	401		7.30	1	05/02/2018 08:27	WG1105374
Benzo(a)anthracene	2150		7.30	1	05/02/2018 08:27	WG1105374
Benzo(a)pyrene	1910		7.30	1	05/02/2018 08:27	WG1105374
Benzo(b)fluoranthene	2160		7.30	1	05/02/2018 08:27	WG1105374
Benzo(g,h,i)perylene	1040		7.30	1	05/02/2018 08:27	WG1105374
Benzo(k)fluoranthene	953		7.30	1	05/02/2018 08:27	WG1105374
Chrysene	2320		7.30	1	05/02/2018 08:27	WG1105374
Dibenz(a,h)anthracene	291		7.30	1	05/02/2018 08:27	WG1105374
Fluoranthene	5290		146	20	05/02/2018 10:18	WG1105374
Fluorene	502		7.30	1	05/02/2018 08:27	WG1105374
Indeno(1,2,3-cd)pyrene	1010		7.30	1	05/02/2018 08:27	WG1105374
Naphthalene	697		24.3	1	05/02/2018 08:27	WG1105374
Phenanthrene	4490		7.30	1	05/02/2018 08:27	WG1105374
Pyrene	4150		7.30	1	05/02/2018 08:27	WG1105374
1-Methylnaphthalene	212		24.3	1	05/02/2018 08:27	WG1105374
2-Methylnaphthalene	238		24.3	1	05/02/2018 08:27	WG1105374
2-Chloronaphthalene	ND		24.3	1	05/02/2018 08:27	WG1105374
(S) Nitrobenzene-d5	112		14.0-149		05/02/2018 08:27	WG1105374
(S) Nitrobenzene-d5	114	<u>J7</u>	14.0-149		05/02/2018 10:18	WG1105374
(S) 2-Fluorobiphenyl	130	<u>J7</u>	34.0-125		05/02/2018 10:18	WG1105374
(S) 2-Fluorobiphenyl	125		34.0-125		05/02/2018 08:27	WG1105374
(S) p-Terphenyl-d14	134	<u>J7</u>	23.0-120		05/02/2018 10:18	WG1105374
(S) p-Terphenyl-d14	123	<u>J1</u>	23.0-120		05/02/2018 08:27	WG1105374

ONE LAB. NATIONWIDE.

Collected date/time: 04/18/18 09:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	90.2		1	04/27/2018 12:43	WG1103942

Ss

Cn

Mercury by Method 7471B

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	ug/kg		ug/kg		date / time	
Mercury	38.3	В	22.2	1	04/27/2018 13:36	WG1103775

Metals (ICP) by Method 6010C

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	ug/kg		ug/kg		date / time	
Arsenic	2480		2220	1	04/28/2018 04:46	WG1103731
Barium	38700		554	1	04/28/2018 04:46	WG1103731
Cadmium	ND		554	1	04/28/2018 04:46	WG1103731
Chromium	11500		1110	1	04/28/2018 04:46	WG1103731
Lead	9990		554	1	04/28/2018 04:46	WG1103731
Selenium	ND		2220	1	04/28/2018 04:46	WG1103731
Silver	ND		1110	1	04/28/2018 04:46	WG1103731

СQс

Gl

Sc

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	ug/kg		ug/kg		date / time	
Anthracene	ND		6.65	1	05/02/2018 06:36	WG1105374
Acenaphthene	ND		6.65	1	05/02/2018 06:36	WG1105374
Acenaphthylene	ND		6.65	1	05/02/2018 06:36	WG1105374
Benzo(a)anthracene	8.52		6.65	1	05/02/2018 06:36	WG1105374
Benzo(a)pyrene	7.54		6.65	1	05/02/2018 06:36	WG1105374
Benzo(b)fluoranthene	9.15		6.65	1	05/02/2018 06:36	WG1105374
Benzo(g,h,i)perylene	ND		6.65	1	05/02/2018 06:36	WG1105374
Benzo(k)fluoranthene	ND		6.65	1	05/02/2018 06:36	WG1105374
Chrysene	8.59		6.65	1	05/02/2018 06:36	WG1105374
Dibenz(a,h)anthracene	ND		6.65	1	05/02/2018 06:36	WG1105374
Fluoranthene	19.8		6.65	1	05/02/2018 06:36	WG1105374
Fluorene	ND		6.65	1	05/02/2018 06:36	WG1105374
Indeno(1,2,3-cd)pyrene	ND		6.65	1	05/02/2018 06:36	WG1105374
Naphthalene	ND		22.2	1	05/02/2018 06:36	WG1105374
Phenanthrene	7.36		6.65	1	05/02/2018 06:36	WG1105374
Pyrene	15.4		6.65	1	05/02/2018 06:36	WG1105374
1-Methylnaphthalene	ND		22.2	1	05/02/2018 06:36	WG1105374
2-Methylnaphthalene	ND		22.2	1	05/02/2018 06:36	WG1105374
2-Chloronaphthalene	ND		22.2	1	05/02/2018 06:36	WG1105374
(S) Nitrobenzene-d5	53.0		14.0-149		05/02/2018 06:36	WG1105374
(S) 2-Fluorobiphenyl	71.7		34.0-125		05/02/2018 06:36	WG1105374
(S) p-Terphenyl-d14	72.8		23.0-120		05/02/2018 06:36	WG1105374

ONE LAB. NATIONWIDE.

Collected date/time: 04/20/18 13:00

L988544

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	85.2		1	04/27/2018 12:43	WG1103942

²Tc

Mercury by Method 7471B

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	ug/kg		ug/kg		date / time	
Mercury	1060		23.5	1	04/27/2018 13:38	WG1103775

Cn

Metals (ICP) by Method 6010C

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	ug/kg		ug/kg		date / time	
Arsenic	6260		2350	1	04/28/2018 04:50	WG1103731
Barium	135000		587	1	04/28/2018 04:50	WG1103731
Cadmium	ND		587	1	04/28/2018 04:50	WG1103731
Chromium	12800		1170	1	04/28/2018 04:50	WG1103731
Lead	463000		587	1	04/28/2018 04:50	WG1103731
Selenium	ND		2350	1	04/28/2018 04:50	WG1103731
Silver	ND		1170	1	04/28/2018 04:50	WG1103731

GI 8

Intriacene 1790 7.04 1 05/02/2018 09:56 WG1105374 Cenaphthene 1330 7.04 1 05/02/2018 09:56 WG1105374 Cenaphthylene 490 7.04 1 05/02/2018 09:56 WG1105374 Cenaphthylene 3850 7.04 1 05/02/2018 09:56 WG1105374 Cenaphthylene 3850 7.04 1 05/02/2018 09:56 WG1105374 Cenaphthylene 3490 7.04 1 05/02/2018 09:56 WG1105374 Cenaphthylene 34030 7.04 1 05/02/2018 09:56 WG1105374 Cenaphthylene 34030 7.04 1 05/02/2018 09:56 WG1105374 Cenaphthylene 34030 7.04 1 05/02/2018 09:56 WG1105374 Cenaphthylene 3404 7.04 7.04 7.04 7.04 7.04 7.04 7.04 7		Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Cenaphthene	Analyte	ug/kg		ug/kg		date / time	
Cenaphthylene	Anthracene	1790		7.04	1	05/02/2018 09:56	WG1105374
enzo(a)anthracene 3850 7.04 1 05/02/2018 09:56 WG1105374 enzo(a)pyrene 2640 7.04 1 05/02/2018 09:56 WG1105374 enzo(b)fluoranthene 3490 7.04 1 05/02/2018 09:56 WG1105374 enzo(b)fluoranthene 1460 7.04 1 05/02/2018 09:56 WG1105374 enzo(a)hjperylene 14030 7.04 1 05/02/2018 09:56 WG1105374 enzo(a)hjperylene 1503 7.04 1 05/02/2018 09:56 WG1105374 enzo(a)hjperylene 1503 7.04 1 05/02/2018 09:56 WG1105374 enzonanthene 18870 141 20 05/02/2018 09:56 WG1105374 enzonanthene 1380 7.04 1 05/02/2018 09:56 WG1105374 enzonanthene 1380 7.04 1 05/02/2018 09:56 WG1105374 enzonanthene 1400 141 20 05/02/2018 09:56 WG1105374 enzonanthene 1400 141 20 05/02/2018 09:56 WG1105374 enzonanthene 1400 141 20 05/02/2018 09:56 WG1105374 enzonanthene 1883 23.5 1 05/02/2018 09:56 WG1105374 enzonanthene 1883 23.5 1 05/02/2018 09:56 WG1105374 enzonanthene 1882 23.0 120 WG1105374 enzonanthene 1882 23.0 120 WG1105	Acenaphthene	1330		7.04	1	05/02/2018 09:56	WG1105374
enzo(a)pyrene 2640 7.04 1 05/02/2018 09:56 WG1105374 enzo(b)fluoranthene 3490 7.04 1 05/02/2018 09:56 WG1105374 enzo(g,h,i)perylene 1460 7.04 1 05/02/2018 09:56 WG1105374 enzo(k)fluoranthene 991 7.04 1 05/02/2018 09:56 WG1105374 httpsene 4030 7.04 1 05/02/2018 09:56 WG1105374 ibenz(a,h)anthracene 503 7.04 1 05/02/2018 09:56 WG1105374 ibenz(a,h)anthracene 8870 141 20 05/02/2018 09:56 WG1105374 uorene 1380 7.04 1 05/02/2018 09:56 WG1105374 uorene 1380 7.04 1 05/02/2018 09:56 WG1105374 deno(1,2,3-cd)pyrene 1380 7.04 1 05/02/2018 09:56 WG1105374 aphthalene 541 23.5 1 05/02/2018 09:56 WG1105374 henanthrene 11400 141 20 05/02/2018 09:56 WG1105374 henanthrene 11400 141 20 05/02/2018 10:02 WG1105374 werene 6880 141 20 05/02/2018 11:02 WG1105374 Methylnaphthalene 383 23.5 1 05/02/2018 11:02 WG1105374 Methylnaphthalene 382 23.5 1 05/02/2018 11:02 WG1105374 Methylnaphthalene 382 23.5 1 05/02/2018 09:56 WG1105374 Methylnaphthalene 382 23.5 1 05/02/2018 09:56 WG1105374 Methylnaphthalene 382 23.5 1 05/02/2018 09:56 WG1105374 (S) Nitrobenzene-d5 66.6 J7 14.0-149 05/02/2018 09:56 WG1105374 (S) Nitrobenzene-d5 57.2 14.0-149 05/02/2018 09:56 WG1105374 (S) Nitrobenzene-d5 57.2 14.0-149 05/02/2018 09:56 WG1105374 (S) Verborzene-d5 57.2 14.0-149 05/02/2018 09:56 WG1105374 (S) S-Fluorobiphenyl 73.9 34.0-125 05/02/2018 09:56 WG1105374 (S) 2-Fluorobiphenyl 73.9 34.0-125 05/02/2018 09:56 WG1105374 (S) 2-Fluorobiphenyl 73.9 34.0-125 05/02/2018 09:56 WG1105374 (S) 2-Fluorobiphenyl 73.9 34.0-125 05/02/2018 09:56 WG1105374	Acenaphthylene	490		7.04	1	05/02/2018 09:56	WG1105374
enzo(b)filioranthene 3490 7.04 1 05/02/2018 09:56 WG1105374 enzo(g,h,i)perylene 1460 7.04 1 05/02/2018 09:56 WG1105374 enzo(k)fluoranthene 991 7.04 1 05/02/2018 09:56 WG1105374 hrysene 4030 7.04 1 05/02/2018 09:56 WG1105374 ibenz/(a,h)anthracene 503 7.04 1 05/02/2018 09:56 WG1105374 ibenz/(a,h)anthracene 8870 141 20 05/02/2018 09:56 WG1105374 uuoranthene 1380 7.04 1 05/02/2018 09:56 WG1105374 uuorene 1380 7.04 1 05/02/2018 09:56 WG1105374 uuorene 1380 7.04 1 05/02/2018 09:56 WG1105374 ideno(1,2,3-cd)pyrene 1380 7.04 1 05/02/2018 09:56 WG1105374 ideno(1,2,3-cd)pyrene 1380 7.04 1 05/02/2018 09:56 WG1105374 idenonthrene 14100 141 20 05/02/2018 09:56 WG1105374 inenanthrene 14100 141 20 05/02/2018 09:56 WG1105374 inenanthrene 1400 141 20 05/02/2018 09:56 WG1105374 inenanthrene 1882 23.5 1 05/02/2018 09:56 WG1105374 inenanthrene 383 23.5 1 05/02/2018 09:56 WG1105374 inenanthrene 382 23.5 1 05/02/2018 09:56 WG1105374 inenanthrene 382 23.5 1 05/02/2018 09:56 WG1105374 inenanthrene 382 383 32.5 1 05/02/2018 09:56 WG1105374 inenanthrene 382 383 340.125 05/02/2018 09:56 WG1105374 inenanthrene 382 340.125 05/02/2018 09:56 WG1105374 inenanthrene 383 340.125 05/02/2018 09:56 WG1105374	Benzo(a)anthracene	3850		7.04	1	05/02/2018 09:56	WG1105374
enzo(g,h,i)perylene 1460 7.04 1 05/02/2018 09:56 WG1105374 enzo(k)fluoranthene 991 7.04 1 05/02/2018 09:56 WG1105374 hrysene 4030 7.04 1 05/02/2018 09:56 WG1105374 ibenz(a,h)anthracene 503 7.04 1 05/02/2018 09:56 WG1105374 uoranthene 8870 141 20 05/02/2018 11:02 WG1105374 uorene 1380 7.04 1 05/02/2018 09:56 WG1105374 uorene 1380 7.04 1 05/02/2018 09:56 WG1105374 deno(1,2,3-cd)pyrene 1380 7.04 1 05/02/2018 09:56 WG1105374 aphthalene 541 23.5 1 05/02/2018 09:56 WG1105374 henanthrene 11400 141 20 05/02/2018 09:56 WG1105374 verene 6880 141 20 05/02/2018 11:02 WG1105374 wethylnaphthalene 383 23.5 1 05/02/2018 11:02 WG1105374 -Methylnaphthalene 382 23.5 1 05/02/2018 09:56 WG1105374 -Methylnaphthalene 382 23.5 1 05/02/2018 09:56 WG1105374 -Methylnaphthalene ND 23.5 1 05/02/2018 09:56 WG1105374 -Chloronaphthalene ND 23.5 1 05/02/2018 09:56 WG1105374 -(S) Nitrobenzene-d5 66.6 JT 14.0-149 05/02/2018 09:56 WG1105374 -(S) Nitrobenzene-d5 57.2 14.0-149 05/02/2018 09:56 WG1105374 -(S) V-Ferphenyl-d14 79.0 23.0-120 05/02/2018 09:56 WG1105374 -(S) 2-Fluorobiphenyl 73.9 34.0-125 05/02/2018 09:56 WG1105374 -(S) 2-Fluorobiphenyl 73.9 34.0-125 05/02/2018 09:56 WG1105374 -(S) 9-Terphenyl-d14 79.0 23.0-120 05/02/2018 09:56 WG1105374	Benzo(a)pyrene	2640		7.04	1	05/02/2018 09:56	WG1105374
enzo(k)fluoranthene 991 7.04 1 05/02/2018 09:56 WG1105374 hrysene 4030 7.04 1 05/02/2018 09:56 WG1105374 libenz(a,h)anthracene 503 7.04 1 05/02/2018 09:56 WG1105374 uuranthene 8870 141 20 05/02/2018 11:02 WG1105374 uurene 1380 7.04 1 05/02/2018 09:56 WG1105374 uurene 1380 7.04 1 05/02/2018 09:56 WG1105374 deno(1,2,3-cd)pyrene 1380 7.04 1 05/02/2018 09:56 WG1105374 aphthalene 541 23.5 1 05/02/2018 09:56 WG1105374 aphthalene 1400 141 20 05/02/2018 09:56 WG1105374 wrene 6880 141 20 05/02/2018 11:02 WG1105374 wrene 6880 141 20 05/02/2018 11:02 WG1105374 Methylnaphthalene 383 23.5 1 05/02/2018 09:56 WG1105374	Benzo(b)fluoranthene	3490		7.04	1	05/02/2018 09:56	WG1105374
hrysene 4030 7.04 1 05/02/2018 09:56 WG1105374 libenz(a,h)anthracene 503 7.04 1 05/02/2018 09:56 WG1105374 luoranthene 8870 141 20 05/02/2018 09:56 WG1105374 luorene 1380 7.04 1 05/02/2018 09:56 WG1105374 luorene 1380 7.04 1 05/02/2018 09:56 WG1105374 luorene 1380 7.04 1 05/02/2018 09:56 WG1105374 laphthalene 541 23.5 1 05/02/2018 09:56 WG1105374 lenenanthrene 11400 141 20 05/02/2018 09:56 WG1105374 lenenanthrene 11400 141 20 05/02/2018 11:02 WG1105374 lenenanthrene 383 23.5 1 05/02/2018 11:02 WG1105374 lenenanthrene 382 23.5 1 05/02/2018 09:56 WG1105374 lenenanthrene 382 3.5 1 05/02/2018 09:56 WG1105374	Benzo(g,h,i)perylene	1460		7.04	1	05/02/2018 09:56	WG1105374
141 1	Benzo(k)fluoranthene	991		7.04	1	05/02/2018 09:56	WG1105374
141 20	Chrysene	4030		7.04	1	05/02/2018 09:56	WG1105374
1380 7.04 1 05/02/2018 09:56 WG1105374 1380 7.04 1 05/02/2018 11:02 WG1105374 1380 7.04 1 05/02/2018 11:02 WG1105374 1380 7.04 7.04 7.05/02/2018 11:02 WG1105374 1380 7.04 7.04 7.05/02/2018 09:56 WG1105374 1380 7.04 7.04 7.05/02/2018 09:56 WG1105374 1380 7.04 7.04 7.05/02/2018 09:56 WG1105374 1380 7.04 7.05/02/2018 09:56 WG1105374 1380 7.04 7.05/02/2018 09:56 WG1105374 1380 7.04 7.05 7.05 7.05 7.05 7.05 1380 7.05 7.05 7.05 7.05 7.05 7.05 1380 7.05 7.05 7.05 7.05 7.05 1380 7.05 7.05 7.05 7.05 7.05 1380 7.05 7.05 7.05 7.05 1380 7.05 7.05 7.05 7.05 1380 7.05 7.05 7.05 7.05 1380 7.05 7.05 7.05 7.05 1380 7.05 7.05 7.05 7.05 1380 7.05 7.05 7.05 7.05 1380 7.05 7.05 7.05 7.05 1380 7.05 7.05 7.05 7.05 1380 7.05 7.05 7.05 7.05 1380 7.05 7.05 7.05 7.05 1380 7.05 7.05 7.05 7.05 1380 7.05 7.05 7.05 7.05 1380 7.05 7.05 7.05 1380 7.05 7.05 7.05 7.05 1380 7.05 7.05 7.05 1380 7.05 7.05 7.05 1380 7.05 7.05 7.05 1380 7.05 7.05 7.05 1380 7.05 7.05 7.05 1380 7.05 7.05 7.05 1380 7.05 7.05 7.05 1380 7.05 7.05 7.05 1380 7.05 7.05 7.05 1380 7.05 7.05 7.05 1380 7.05 7.05 7.05 1380 7.05	Dibenz(a,h)anthracene	503		7.04	1	05/02/2018 09:56	WG1105374
deno(1,2,3-cd)pyrene 1380	Fluoranthene	8870		141	20	05/02/2018 11:02	WG1105374
aphthalene 541 23.5 1 05/02/2018 09:56 WG1105374 henanthrene 11400 141 20 05/02/2018 11:02 WG1105374 yrene 6880 141 20 05/02/2018 11:02 WG1105374 Methylnaphthalene 383 23.5 1 05/02/2018 09:56 WG1105374 -Methylnaphthalene 382 23.5 1 05/02/2018 09:56 WG1105374 -Chloronaphthalene ND 23.5 1 05/02/2018 09:56 WG1105374 -(S) Nitrobenzene-d5 66.6 J7 14.0-149 05/02/2018 09:56 WG1105374 -(S) Nitrobenzene-d5 57.2 14.0-149 05/02/2018 09:56 WG1105374 -(S) 2-Fluorobiphenyl 92.4 J7 34.0-125 05/02/2018 11:02 WG1105374 -(S) 2-Fluorobiphenyl 73.9 34.0-125 05/02/2018 09:56 WG1105374	Fluorene	1380		7.04	1	05/02/2018 09:56	WG1105374
henanthrene 11400 141 20 05/02/2018 11:02 WG1105374 yrene 6880 141 20 05/02/2018 11:02 WG1105374 Methylnaphthalene 383 23.5 1 05/02/2018 09:56 WG1105374 -Methylnaphthalene 382 23.5 1 05/02/2018 09:56 WG1105374 -Chloronaphthalene ND 23.5 1 05/02/2018 09:56 WG1105374 (S) Nitrobenzene-d5 66.6 J7 14.0-149 05/02/2018 11:02 WG1105374 (S) Nitrobenzene-d5 57.2 14.0-149 05/02/2018 09:56 WG1105374 (S) 2-Fluorobiphenyl 92.4 J7 34.0-125 05/02/2018 11:02 WG1105374 (S) 2-Fluorobiphenyl 73.9 34.0-125 05/02/2018 11:02 WG1105374 (S) P-Terphenyl-d14 79.0 23.0-120 05/02/2018 09:56 WG1105374	Indeno(1,2,3-cd)pyrene	1380		7.04	1	05/02/2018 09:56	WG1105374
yrene 6880 141 20 05/02/2018 11:02 WG1105374 Methylnaphthalene 383 23.5 1 05/02/2018 09:56 WG1105374 -Methylnaphthalene 382 23.5 1 05/02/2018 09:56 WG1105374 -Chloronaphthalene ND 23.5 1 05/02/2018 09:56 WG1105374 -(S) Nitrobenzene-d5 66.6 J7 14.0-149 05/02/2018 11:02 WG1105374 -(S) Nitrobenzene-d5 57.2 14.0-149 05/02/2018 09:56 WG1105374 -(S) 2-Fluorobiphenyl 92.4 J7 34.0-125 05/02/2018 11:02 WG1105374 -(S) 2-Fluorobiphenyl 73.9 34.0-125 05/02/2018 09:56 WG1105374 -(S) 2-Fluorobiphenyl 79.0 23.0-120 05/02/2018 09:56 WG1105374	Naphthalene	541		23.5	1	05/02/2018 09:56	WG1105374
Methylnaphthalene 383 23.5 1 05/02/2018 09:56 WG1105374 Methylnaphthalene 382 23.5 1 05/02/2018 09:56 WG1105374 Chloronaphthalene ND 23.5 1 05/02/2018 09:56 WG1105374 (S) Nitrobenzene-d5 66.6 J7 14.0-149 05/02/2018 11:02 WG1105374 (S) 2-Fluorobiphenyl 92.4 J7 34.0-125 05/02/2018 11:02 WG1105374 (S) 2-Fluorobiphenyl 73.9 34.0-125 05/02/2018 09:56 WG1105374 (S) p-Terphenyl-d14 79.0 23.0-120 05/02/2018 09:56 WG1105374	Phenanthrene	11400		141	20	05/02/2018 11:02	WG1105374
Methylnaphthalene 382 23.5 1 05/02/2018 09:56 WG1105374 -Chloronaphthalene ND 23.5 1 05/02/2018 09:56 WG1105374 (S) Nitrobenzene-d5 66.6 J7 14.0-149 05/02/2018 11:02 WG1105374 (S) Nitrobenzene-d5 57.2 14.0-149 05/02/2018 09:56 WG1105374 (S) 2-Fluorobiphenyl 92.4 J7 34.0-125 05/02/2018 11:02 WG1105374 (S) 2-Fluorobiphenyl 73.9 34.0-125 05/02/2018 09:56 WG1105374 (S) p-Terphenyl-d14 79.0 23.0-120 05/02/2018 09:56 WG1105374	Pyrene	6880		141	20	05/02/2018 11:02	WG1105374
-Chloronaphthalene ND 23.5 1 05/02/2018 09:56 WG1105374 (S) Nitrobenzene-d5 66.6 J7 14.0-149 05/02/2018 11:02 WG1105374 (S) Nitrobenzene-d5 57.2 14.0-149 05/02/2018 09:56 WG1105374 (S) 2-Fluorobiphenyl 92.4 J7 34.0-125 05/02/2018 11:02 WG1105374 (S) 2-Fluorobiphenyl 73.9 34.0-125 05/02/2018 09:56 WG1105374 (S) p-Terphenyl-d14 79.0 23.0-120 05/02/2018 09:56 WG1105374	1-Methylnaphthalene	383		23.5	1	05/02/2018 09:56	WG1105374
(S) Nitrobenzene-d5 66.6 J7 14.0-149 05/02/2018 11:02 WG1105374 (S) Nitrobenzene-d5 57.2 14.0-149 05/02/2018 09:56 WG1105374 (S) 2-Fluorobiphenyl 92.4 J7 34.0-125 05/02/2018 11:02 WG1105374 (S) 2-Fluorobiphenyl 73.9 34.0-125 05/02/2018 09:56 WG1105374 (S) p-Terphenyl-d14 79.0 23.0-120 05/02/2018 09:56 WG1105374	2-Methylnaphthalene	382		23.5	1	05/02/2018 09:56	WG1105374
(S) Nitrobenzene-d5 57.2 14.0-149 05/02/2018 09:56 WG1105374 (S) 2-Fluorobiphenyl 92.4 J7 34.0-125 05/02/2018 11:02 WG1105374 (S) 2-Fluorobiphenyl 73.9 34.0-125 05/02/2018 09:56 WG1105374 (S) p-Terphenyl-d14 79.0 23.0-120 05/02/2018 09:56 WG1105374	2-Chloronaphthalene	ND		23.5	1	05/02/2018 09:56	WG1105374
(S) 2-Fluorobiphenyl 92.4 J7 34.0-125 05/02/2018 11:02 WG1105374 (S) 2-Fluorobiphenyl 73.9 34.0-125 05/02/2018 09:56 WG1105374 (S) p-Terphenyl-d14 79.0 23.0-120 05/02/2018 09:56 WG1105374	(S) Nitrobenzene-d5	66.6	<u>J7</u>	14.0-149		05/02/2018 11:02	WG1105374
(S) 2-Fluorobiphenyl 73.9 34.0-125 05/02/2018 09:56 WG1105374 (S) p-Terphenyl-d14 79.0 23.0-120 05/02/2018 09:56 WG1105374	(S) Nitrobenzene-d5	57.2		14.0-149		05/02/2018 09:56	WG1105374
(S) p-Terphenyl-d14 79.0 23.0-120 05/02/2018 09:56 WG1105374	(S) 2-Fluorobiphenyl	92.4	<u>J7</u>	34.0-125		05/02/2018 11:02	WG1105374
	(S) 2-Fluorobiphenyl	73.9		34.0-125		05/02/2018 09:56	WG1105374
(S) p-Terphenyl-d14 76.0 <u>J7</u> 23.0-120 05/02/2018 11:02 <u>WG1105374</u>	(S) p-Terphenyl-d14	79.0		23.0-120		05/02/2018 09:56	WG1105374
	(S) p-Terphenyl-d14	76.0	<u>J7</u>	23.0-120		05/02/2018 11:02	WG1105374

ONE LAB. NATIONWIDE.

Total Solids by Method 2540 G-2011

L988544-01,02

Method Blank (MB)

(MB) R3305781-1 04/27/18 12:55 MB Result MB Qualifier MB MDL Analyte %

MB RDL % %

Total Solids 0.00100

(OS) L988534-01 04/27/18 12:55 • (DUP) R3305781-3 04/27/18 12:55

	Original Resu	lt DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	76.8	74.6	1	2.98		5

Laboratory Control Sample (LCS)

(LCS) R3305781-2 04/27/18 12:55

PAGE:

10 of 19

Ss

[†]Cn

ONE LAB. NATIONWIDE.

Total Solids by Method 2540 G-2011

L988544-03,04,05

Method Blank (MB)

 (MB) R3305776-1
 04/27/18 12:43

 MB Result
 MB Qualifier
 MB MDL
 MB RDL

 Analyte
 %
 %

 Total Solids
 0.00100
 %

L988544-03 Original Sample (OS) • Duplicate (DUP)

(OS) L988544-03 04/27/18 12:43 • (DUP) R3305776-3 04/27/18 12:43

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	82.2	82.4	1	0.249		5

⁶Qc

Laboratory Control Sample (LCS)

(LCS) R3305776-2 04/27/18 12:43

(200) ((0000) / 0 2 0 1/2//	7.0 .2				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

ONE LAB. NATIONWIDE.

Mercury by Method 7471B

L988544-01,02,03,04,05

Method Blank (MB)

(MB) R3305354-1	04/27/18 13:15	
	MB Result	

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/kg		ug/kg	ug/kg
Mercury	4.81	J	2.80	20.0

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

,	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/kg	ug/kg	ug/kg	%	%	%			%	%	
Mercury	300	285	276	94.9	92.0	80.0-120			3.06	20	

L988544-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(C	75	11 988544-01	04/27/18 13:23 •	(MS	R3305354-4	04/27/18 13:25 •	(MSD) R3305354-5	04/27/18 13:28
10	\sim	/ 6300344 01	04/2//10 13.23	(111)	/ NOOOOOO -	0-1/2//10 13.23	(111)	/ NOOOOOO - O	0-1/2//10 13.20

(OS) L988544-01 04/27/18	13:23 • (IVIS) R3	3305354-4 04/	/2//18 13:25 • (1)	/ISD) R330535	4-5 04/2//18 1	3:28						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/kg	ug/kg	ug/kg	ug/kg	%	%		%			%	%
Mercury	343	285	597	679	91.1	115	1	75.0-125			12.8	20

ONE LAB. NATIONWIDE.

Metals (ICP) by Method 6010C

L988544-01,02,03,04,05

Method Blank (MB)

Silver

(MB) R3305467-1 04	/28/18 04:02					
	MB Result	MB Qualifier	MB MDL	MB RDL		
Analyte	ug/kg		ug/kg	ug/kg		
Arsenic	U		650	2000		
Barium	U		170	500		
Cadmium	U		70.0	500		
Chromium	U		140	1000		
Lead	U		190	500		
Selenium	U		740	2000		
Silver	U		280	1000		

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/kg	ug/kg	ug/kg	%	%	%			%	%	
Arsenic	100000	95700	90100	95.7	90.1	80.0-120			6.00	20	
Barium	100000	102000	95100	102	95.1	80.0-120			6.74	20	
Cadmium	100000	96900	90800	96.9	90.8	80.0-120			6.56	20	
Chromium	100000	97500	91500	97.5	91.5	80.0-120			6.35	20	
_ead	100000	96400	91000	96.4	91.0	80.0-120			5.78	20	
Selenium	100000	95200	89800	95.2	89.8	80.0-120			5.85	20	

80.0-120

L988642-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

17500

92.0

(OS) L988642-01 04/28/1	S) L988642-01 04/28/18 04:14 • (MS) R3305467-6 04/28/18 04:23 • (MSD) R3305467-7 04/28/18 04:26														
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits			
Analyte	ug/kg	ug/kg	ug/kg	ug/kg	%	%		%			%	%			
Arsenic	113000	ND	109000	98900	93.8	85.2	1	75.0-125			9.33	20			
Barium	113000	94100	187000	184000	82.0	79.7	1	75.0-125			1.40	20			
Cadmium	113000	ND	110000	101000	97.3	89.1	1	75.0-125			8.78	20			
Chromium	113000	32000	139000	129000	94.7	85.6	1	75.0-125			7.66	20			
Lead	113000	1870	117000	108000	102	94.0	1	75.0-125			7.79	20			
Selenium	113000	ND	107000	97200	94.0	85.7	1	75.0-125			9.19	20			
Silver	22700	ND	21000	19400	92.4	85.5	1	75.0-125			7.74	20			

20000

18400

87.7

4.75

20

ONE LAB. NATIONWIDE.

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

L988544-01,02,03,04,05

Method Blank (MB)

(MB) R3306239-3 05/0	2/18 03:38				1
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	ug/kg		ug/kg	ug/kg	² T
Anthracene	U		0.600	6.00	느
Acenaphthene	U		0.600	6.00	³S
Acenaphthylene	U		0.600	6.00	Ľ
Benzo(a)anthracene	U		0.600	6.00	4
Benzo(a)pyrene	U		0.600	6.00	⁴ C
Benzo(b)fluoranthene	U		0.600	6.00	느
Benzo(g,h,i)perylene	U		0.600	6.00	⁵ S
Benzo(k)fluoranthene	U		0.600	6.00	L
Chrysene	U		0.600	6.00	6
Dibenz(a,h)anthracene	U		0.600	6.00	6 C
Fluoranthene	U		0.600	6.00	
Fluorene	U		0.600	6.00	7 G
Indeno(1,2,3-cd)pyrene	U		0.600	6.00	L
Naphthalene	U		2.00	20.0	8
Phenanthrene	U		0.600	6.00	
Pyrene	U		0.600	6.00	
1-Methylnaphthalene	U		2.00	20.0	⁹ S
2-Methylnaphthalene	U		2.00	20.0	
2-Chloronaphthalene	U		2.00	20.0	
(S) Nitrobenzene-d5	56.3			14.0-149	
(S) 2-Fluorobiphenyl	75.9			34.0-125	
(S) p-Terphenyl-d14	76.9			23.0-120	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

LCS) R3306239-1 05/02/18 02:31 • (LCSD) R3306239-2 05/02/18 02:54													
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits			
Analyte	ug/kg	ug/kg	ug/kg	%	%	%			%	%			
Anthracene	80.0	67.9	66.7	84.9	83.4	50.0-125			1.83	20			
Acenaphthene	80.0	63.2	63.0	79.0	78.8	52.0-120			0.290	20			
Acenaphthylene	80.0	63.8	63.6	79.7	79.5	51.0-120			0.287	20			
Benzo(a)anthracene	80.0	62.0	60.6	77.5	75.8	46.0-121			2.25	20			
Benzo(a)pyrene	80.0	65.0	63.5	81.2	79.4	42.0-121			2.23	20			
Benzo(b)fluoranthene	80.0	65.0	63.2	81.3	79.0	42.0-123			2.81	20			
Benzo(g,h,i)perylene	80.0	67.3	66.4	84.2	83.0	43.0-128			1.47	20			
Benzo(k)fluoranthene	80.0	65.4	65.0	81.7	81.3	45.0-128			0.578	20			
Chrysene	80.0	65.3	64.1	81.6	80.1	48.0-127			1.90	20			
Dibenz(a,h)anthracene	80.0	67.6	66.2	84.5	82.7	43.0-132			2.17	20			
Fluoranthene	80.0	68.4	66.5	85.5	83.1	49.0-129			2.73	20			

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

L988544-01,02,03,04,05

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3306239-1 05/02/18 02:31 • (LCSD) R3306239-2 05/02/18 02:54

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/kg	ug/kg	ug/kg	%	%	%			%	%
Fluorene	80.0	64.6	63.6	80.8	79.5	50.0-120			1.56	20
Indeno(1,2,3-cd)pyrene	80.0	69.1	68.0	86.3	85.0	44.0-131			1.59	20
Naphthalene	80.0	61.6	61.8	77.0	77.3	50.0-120			0.323	20
Phenanthrene	80.0	63.7	62.6	79.7	78.3	48.0-120			1.79	20
Pyrene	80.0	64.2	62.9	80.2	78.6	48.0-135			2.05	20
1-Methylnaphthalene	80.0	63.3	63.7	79.1	79.6	52.0-122			0.609	20
2-Methylnaphthalene	80.0	60.2	60.3	75.3	75.4	52.0-120			0.128	20
2-Chloronaphthalene	80.0	63.2	63.2	79.0	79.0	50.0-120			0.000259	20
(S) Nitrobenzene-d5				70.6	67.0	14.0-149				
(S) 2-Fluorobiphenyl				85.1	81.6	34.0-125				
(S) p-Terphenyl-d14				80.1	76.3	23.0-120				

L988544-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L988544-01 05/02/18 08:49 • (MS) R3306239-4 05/02/18 09:11 • (MSD) R3306239-5 05/02/18 09:34

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/kg	ug/kg	ug/kg	ug/kg	%	%		%			%	%
Anthracene	91.4	22.7	200	198	193	192	1	20.0-136	<u>J5</u>	<u>J5</u>	0.581	24
Acenaphthene	91.4	ND	118	122	129	133	1	29.0-124	<u>J5</u>	<u>J5</u>	3.09	20
Acenaphthylene	91.4	10.9	65.9	84.2	60.1	80.2	1	35.0-120		<u>J3</u>	24.5	20
Benzo(a)anthracene	91.4	50.5	238	237	205	204	1	13.0-132	<u>J5</u>	<u>J5</u>	0.376	27
Benzo(a)pyrene	91.4	47.9	194	190	160	155	1	14.0-138	<u>J5</u>	<u>J5</u>	2.38	27
Benzo(b)fluoranthene	91.4	61.7	229	218	183	171	1	10.0-129	<u>J5</u>	<u>J5</u>	5.12	31
Benzo(g,h,i)perylene	91.4	33.1	131	127	107	103	1	10.0-133			3.19	30
Benzo(k)fluoranthene	91.4	20.9	105	146	92.2	137	1	15.0-131		<u>J3 J5</u>	32.3	27
Chrysene	91.4	48.2	219	215	187	183	1	15.0-137	<u>J5</u>	<u>J5</u>	1.72	25
Dibenz(a,h)anthracene	91.4	11.4	90.5	94.6	86.4	91.0	1	15.0-132			4.51	27
Fluoranthene	91.4	102	475	466	408	398	1	13.0-139	<u>J5</u>	<u>J5</u>	1.96	28
Fluorene	91.4	6.91	123	126	127	130	1	27.0-122	<u>J5</u>	<u>J5</u>	1.84	22
Indeno(1,2,3-cd)pyrene	91.4	31.6	136	133	114	111	1	11.0-133			2.58	29
Naphthalene	91.4	ND	94.9	89.6	91.3	85.6	1	18.0-136			5.68	21
Phenanthrene	91.4	68.9	527	518	501	491	1	15.0-133	<u>J5</u>	<u>J5</u>	1.71	25
Pyrene	91.4	83.0	374	373	319	318	1	11.0-146	<u>J5</u>	<u>J5</u>	0.276	29
1-Methylnaphthalene	91.4	ND	80.5	82.3	88.0	90.0	1	24.0-137			2.27	22
2-Methylnaphthalene	91.4	ND	80.7	80.0	79.4	78.6	1	23.0-136			0.900	22
2-Chloronaphthalene	91.4	ND	57.8	63.4	63.2	69.4	1	36.0-120			9.38	20
(S) Nitrobenzene-d5					56.1	62.8		14.0-149				
(S) 2-Fluorobiphenyl					67.2	<i>75.3</i>		34.0-125				
(S) p-Terphenyl-d14					63.1	70.7		23.0-120				

GLOSSARY OF TERMS

ONE LAB. NATIONWIDE.

Guide to Reading and Understanding Your Laboratory Report

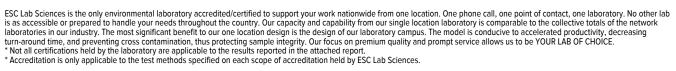
The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

Appleviations and	Delimitoris
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Descriptio	n
Qualifier	DESCRIPTION	J

В	The same analyte is found in the associated blank.
J	The identification of the analyte is acceptable; the reported value is an estimate.
J1	Surrogate recovery limits have been exceeded; values are outside upper control limits.
J3	The associated batch QC was outside the established quality control range for precision.
J5	The sample matrix interfered with the ability to make any accurate determination; spike value is high.
J7	Surrogate recovery cannot be used for control limit evaluation due to dilution.



ACCREDITATIONS & LOCATIONS

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
lowa	364
Kansas	E-10277
Kentucky ^{1 6}	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T 104704245-17-14
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	
A2LA - ISO 17025 5	1461.02	
Canada	1461.01	
EPA-Crypto	TN00003	

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

Company Name/Address:				Billing Information:				Analysis / Container / Preservative									Chain of Custody	Page 1 of 1
LaBella Associates, D.P.C.			Attn: AP@labellapc.com														#F	3
300 State Street, Suite 201 Rochester, New York 14614		20 10														YOUR LAB	OF CHOICE	
Report to:			Email To:														12065 Lebanon Rd Mount Juliet, TN 371	
srife; jgillen	a veri		srife; j	gillen		9						20		=			Phone: 615-758-585 Phone: 800-767-585 Fax: 615-758-5859	
Project Midtown Plaza I		Geotech		City/State Collected: Oswego NY										173			L# 9885	544
Phone: (585) 454-6110 Fax: NA	Client Project	#		Lab Project #													G1	
Collected by (print): S. Rife	Site/Facility ID	1 #		P.O. II			soc	SI									Acctnum: - Template:	
Collected by (signature)	Rush? (t	ab MUST Be		Da	Date Results Needed					1				Gipt of			Prelogin:	
Inmediately Packed on ice N Y	Same I Next B Two Ds Three	lay		(500000)	P_No ∠Yes ✓No _Yes	No.	CP-51 List SVOCs	RCRA Metals									TSR: PB: Shipped Via:	
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	CP	RC						Dec-11		3	Rem./Contaminan	Sample # (lab only
B-1 1.5-2'	Grab	SS	1.5-2	4/18/18	1745	1	X	×								. 14		4
B-3 1-2'	Grab	SS	1-2'	4/19/19		1	×	X										-VL
B-4 8-8.5'	Grab	SS	8-8.5		8 1215	1	×	X	1/1							2		-03
P-2 1-2'	Grab	SS	1-2'	- Indiana de la constanta de l	8 0930	1	X	X									T BIRL	704
P-3 1-3'	Grab	SS	1-3'	1	8 /300	1	X	X										-08
				14-1	0 1	1			811010			- 11						
						19						11/2						
						0												
				1														
		+		1								di .					and the same	
	224000000000000000000000000000000000000	WALLES CONTROL	-	AND A COMPANSANCES			Location		August 1	- Ald	Jacobana	Ter	nn					
* Matrix: SS - Soil GW - Groundwar	ter WW - Wastel	Water DW - I	Drinking Wa	ter OT - Other	436	16	928	930	Y .	pH .	J. 7.		er	an V	Н	old#		
Remarks:	Vi W 1/44	Feet and		Trans		-			_	Flow		A.1			- 00	ndition	n: (la	b use only)
Relinquisted by : (Signature)		U 2U	1/18	Time: Received by: (Signatu		de	X			Samples returned via: UPS								
Relinquished by : (Signature)	ľ	Date:	1.0	Time:	Received by: (Sig	nature)	尺		323	Temp		°C B	ottles.	eceived	Eile all	oc Sea	l Intact:Y	NNA
Relinquished by : (Signature)	() 	Date:		Time:	Received for lab	by Sign	E)			Date:	26	18	ime:	3	pł	H Check	ked: NO	F

CIENCES		
eipt Form		
SDG#	9885	44
Temperature:	5,5	70
NP	Yes	No
	17	
	1/	
	/	
		A COLOR
	eipt Form SDG# Temperature:	eipt Form SDG# 9885 Temperature: 5,5