

PERIODIC REVIEW REPORT (PRR) FORMER AXIOHM FACILITY 950 DANBY ROAD ITHACA, NEW YORK 14850 SITE NO.: C755012

Prepared For:

New York State Department of Environmental Conservation Attn: Ms. Karen Cahill, Project Manager 615 Erie Boulevard West Syracuse, New York 13204

Owner:

South Hill Business Campus, LLC. Attn: Mr. Andrew Sciarabba 950 Danby Road Ithaca, New York 14850

Prepared By:

GeoLogic NY, P.C. 37 Copeland Avenue P.O. Box 350 Homer, New York 13077

March 2023 GeoLogic Project No. 209164

TABLE OF CONTENTS

1		
	1.1 Site Summary	1
າ	SITE OVERVIEW	1
2	2.1 Site Location and Description	
	2.2 Site History	
	2.3 Nature and Extent of Contamination	
	2.4 Chronology of Site Remedial Program	
	2.5 Remedial Action Objectives (RAOs)	5
	2.5.1 Groundwater	
	2.5.2 Soil	
	2.5.3 Soil Vapor	
	2.6 Cleanup and Site Closure Criteria	6
3	INSTITUTIONAL AND ENGINEERING CONTROLS	7
J	3.1 Summary of Institutional Controls (ICs)	
	3.2 Summary of Engineering Controls (ECs)	
	3.2.1 Summary of ECs Operations During Reporting Period	
4		
4	4.1 Monitoring Plan Components	8
4	4.1 Monitoring Plan Components4.2 Summary of Monitoring Completed During Reporting Period	8 9
4	 4.1 Monitoring Plan Components 4.2 Summary of Monitoring Completed During Reporting Period	8 9 9
4	4.1 Monitoring Plan Components4.2 Summary of Monitoring Completed During Reporting Period	8 9 9
-	 4.1 Monitoring Plan Components	8 9 9 10
4 5	 4.1 Monitoring Plan Components	8 9 9 10 10
-	 4.1 Monitoring Plan Components	8 9 9 10 10 10
-	 4.1 Monitoring Plan Components	8 9 10 10 10 11
-	 4.1 Monitoring Plan Components	8 9 10 10 10 11 11 11
-	 4.1 Monitoring Plan Components	8 9 10 10 11 11 11 11
-	 4.1 Monitoring Plan Components	8 9 10 10 11 11 11 11
-	 4.1 Monitoring Plan Components	8 9 10 10 11 11 11 12 12
5	 4.1 Monitoring Plan Components	8 9 10 10 11 11 11 12 12
5	 4.1 Monitoring Plan Components	8 9 10 10 11 11 11 12 12 12 13
5	 4.1 Monitoring Plan Components	8 9 9 10 10 11 11 11 12 12 12 13

APPENDICES

APPENDIX A: Institutional and Engineering Controls Certification Form & Building Permits

APPENDIX B: Drawings

Drawing No. 1:	Site Location Plan;
Drawing No. 1A:	Tax Map Plan;
Drawing No. 2:	Monitoring Well Locations and Historic UST Locations;
Drawing No. 2A:	Fire Hydrant Replacement Location Plan;
Drawing No. 3:	September 2022 Overburden Groundwater Flow;
Drawing No. 4:	September 2022 Bedrock Groundwater Flow;
Drawing No. 5:	Groundwater Chlorinated VOC Concentrations.

APPENDIX C:	Tables
Table No. 1:	Groundwater Elevations & Field Observations: 2022 Annual Groundwater
	Sampling Event;
Table No. 2:	Summary of September 2022 Groundwater Analytical Results;
Table No. 3:	Summary of Groundwater VOC Analytical Results;
Table No. 4:	Summary of Geochemical Parameters.
Table No. 3:	Summary of September 2022 Groundwater Analytical Results; Summary of Groundwater VOC Analytical Results;

APPENDIX D: Charts

Charts No. 1 thru No. 3:	Overburden Wells: Summary of TCE, DCE and VC Concentrations;
Charts No. 4 thru No. 9:	Bedrock Wells: Summary of TCE, DCE and VC Concentrations.

- APPENDIX E: Groundwater Monitoring Well Sampling Records
- APPENDIX F: SSDS Inspection Forms
- APPENDIX G: Groundwater Analytical Results for September 2022
- APPENDIX H: Correspondence

1 INTRODUCTION

This report provides the basis for review and certification of the institutional controls and engineering controls (ICs/ECs) implemented at the Former Axiohm Facility, Site No. C755012 (Site). The Site is currently owned by South Hill Business Campus, LLC. (SHBC) and this report is prepared and submitted at the direction of SHBC, consistent with the Site's remedial program as approved by the New York State Department of Environmental Conservation (NYSDEC) and the New York State Department of Health (NYSDOH). The reporting period addressed in this report is February 15, 2022 to February 15, 2023. The completed IC/EC Certification Form is included in Appendix A.

1.1 Site Summary

Former manufacturing activities at the Site resulted in contamination of groundwater and soil vapor with chlorinated organic solvents, primarily Trichloroethene (TCE) and its decomposition products cis-1,2-Dichloroethene (DCE) and Vinyl Chloride (VC). The potential sources were identified as two, 9,000-gallon poured-concrete underground storage tanks (USTs) that formerly contained used solvents and one, 6,000-gallon steel UST that formerly contained virgin TCE. This contamination extended in the direction of groundwater flow from the southwest corner of the building towards the west/northwest into the lower parking lot area. Soil excavation and groundwater treatment utilizing in-situ chemical oxidation (ISCO) was completed at the Site in 2008. In addition, a Sub-Slab Depressurization System (SSDS) and a Positive Pressure Air Exchange System (PPAES) were installed to mitigate the possibility of Soil Vapor Intrusion (SVI). Remedial activities were completed at the Site in 2008. A Site Management Plan (SMP) that includes an Operation and Maintenance (O&M) Plan and a Soil Management Plan remain in place for the Site. The Certificate of Completion was issued by the NYSDEC on December 31, 2008. A second ISCO injection event was completed in 2012. Since 2012, various modifications have been made to the SSDS, PPAES and Post-Remediation Monitoring (PRM) program. These modifications are detailed below, in Section 2.4 and Section 3.2. Groundwater monitoring is ongoing.

2 SITE OVERVIEW

2.1 Site Location and Description

The Site is located at 950 Danby Road (a.k.a. NYS Route 96B), Town of Ithaca, County of Tompkins and State of New York (Drawing No. 1, Appendix B). The Brownfield Cleanup Program (BCP) portion of the Site is approximately 42.5 acres in size and currently consists of two Tax Parcels (39-1-1.1 and 39-1-1.22), which are depicted on Drawing No. 1A (Appendix B).

The Site is developed with a split-level two-story and four-story building occupying approximately 280,000 square feet. The building is utilized for office space, storage space and light manufacturing. A three-tiered parking area is located west of the building.

The properties surrounding the Site are predominately utilized for commercial/institutional purposes with limited residential uses. Predominately commercial sites are located north of the Site, the Ithaca College Campus is located east of the Site, some residences are located south of the Site and vacant/undeveloped land is located west of the Site.

2.2 Site History

The past uses of the Site have included undeveloped/agricultural and commercial/manufacturing. National Cash Register (NCR) purchased the Site from Ithaca College in the 1950's. NCR utilized the Site for manufacturing and printing purposes. Nine (9) known USTs were present on the Site associated with NCR's operations.

In or around 1992, AT&T Global Information Solutions began utilizing the Site for manufacturing and assembly associated with printers.

In or around 1994, Axiohm IPB, Inc. began utilizing the Site for office space, engineering, marketing, light manufacturing and a service center associated with printers. Axiohm closed in or around 2003.

SHBC purchased the Site in December 2004.

2.3 Nature and Extent of Contamination

SHBC submitted a BCP application to the NYSDEC in February of 2005 and a Brownfield Cleanup Agreement (BCA) was executed in October 2005. The BCA required SHBC to determine the nature and extent of the contamination from historic operations, and subsequently remediate the Site to support future commercial use.

A Remedial Investigation (RI) was completed at the Site in 2006 and 2007. A Remedial Investigation Report was submitted by S&W Redevelopment of North America, LLC (SWRNA) in January 2008 and was subsequently approved by the NYSDEC.

The RI indicated that former manufacturing activities in the southern portion of the building resulted in contamination of the groundwater and soil vapor with chlorinated organic solvents (TCE, DCE and VC). The potential contaminant sources were identified as two, 9,000-gallon poured-concrete USTs that formerly contained used solvents and one 6,000-gallon steel UST that formerly contained virgin TCE. The two, 9,000-gallon poured-concrete USTs are located at the southwest corner of the building and were abandoned in place. The 6,000-gallon steel UST was removed in 1986. The locations of these USTs are depicted on Drawing No. 2, Appendix B.

The RI indicated that the groundwater and soil vapor contamination extended in the direction of groundwater flow from the southwest corner of the building towards the west/northwest into the lower parking lot area.

2.4 Chronology of Site Remedial Program

The remedial activities completed at the Site are summarized below.

A Remedial Work Plan (RWP) and Remedial Design (RD) were submitted by SWRNA in March of 2008 and June of 2008 and were subsequently approved by the NYSDEC.

Engineering Controls (ECs) were implemented to mitigate potential SVI in accordance with a NYSDEC-approved Interim Remedial Measure (IRM), prepared by SWRNA and dated January 2007. The ECs included the installation of a SSDS and a PPAES in the lowest level of the building.

The SSDS was installed in the southern portion of the building's lowest level in 2007 and was subsequently expanded in 2008 to include several rooms adjoining the main building to the west. The PPAES was installed in the northern portion of the building in 2008. Both systems were designed to decrease the potential of SVI to occur by creating a positive indoor air pressure above the slab relative to below slab conditions.

The soil adjacent to the two, 9,000-gallon poured-concrete USTs (identified as a potential source area) was excavated and transported off-site for disposal at a permitted disposal facility. Excavation activities took place on March 31 and April 1, 2008. Approximately 14.6 tons of contaminated soil was removed and disposed of at The City of Auburn Landfill. Prior to backfilling, an injection well was installed in the excavation and potassium permanganate powder was placed at the bottom of the excavation to aide in the chemical oxidation of any residual contamination present.

The ISCO program was implemented to treat groundwater contamination by chemical oxidation processes. The 2008 ISCO was designed to destroy 100% of the TCE with a single injection of potassium permanganate solution, based on pilot testing conducted in March of 2008. Potassium permanganate solution was injected through horizontal injection trenches. The injection event started on June 26, 2008 and was completed on September 3, 2008. A total of 4,958 pounds of potassium permanganate solution.

In addition to the ECs, soil excavation and ISCO, Institutional Controls (ICs) were implemented at the Site to mitigate the potential for human and ecological exposure to groundwater. The ICs are described in Section 3.1.

Remedial activities were completed at the Site by SHBC, in accordance with the BCA, in 2008. A SMP was prepared by SWRNA on behalf of SHBC. The SMP includes an O&M Plan and also includes a Soil Management Plan for the Site. The SMP summarizes the ICs/ECs currently implemented and details the operations, maintenance and monitoring requirements associated with the NYSDEC-approved remedial action. The Certificate of Completion was issued by the NYSDEC on December 31, 2008.

Additional remedial measures were required by the NYSDEC in June 2011. GeoLogic prepared a design document for additional ISCO in September 2011. The NYSDEC and NYSDOH reviewed and commented on the design document. The design document was revised based on these comments and was subsequently approved in February 2012.

Additional ISCO injection commenced on May 21, 2012 and was completed on August 24, 2012. A total of 5,704 pounds of sodium permanganate was applied to the Site as 13,875 gallons of sodium permanganate solution. The injection event was summarized in GeoLogic's report entitled *2012 Additional ISCO*, dated December 2012.

Various modifications have been made to the SSDS, PPAES and PRM program since the Certificate of Completion was issued by the NYSDEC on December 31, 2008. Modifications have been made with NYSDEC/NYSDOH concurrence and if necessary, completed in accordance with NYSDEC/NYSDOH approved design documents. Modifications to the SSDS and PPAES are detailed in Section 3.2. Modifications to the PRM program are briefing summarized below:

- In March 2014, two bedrock wells (MW07-27BR and MW08-29BR) were removed from the PRM program. This modification was made based upon the historic lack of detecting Contaminants of Concern (COCs) or detecting low concentrations of COCs in the groundwater samples collected from these wells.
- In April 2015, the air sampling portion of the PRM program was discontinued. This modification was made based upon having sufficient data (results from 108 post-mitigation air samples) to evaluate post-mitigation conditions. The SSDS continues to be monitored and maintained in accordance with the SMP.
- In October 2015, GeoLogic submitted an updated Conceptual Site Model (CSM) for the Site to the NYSDEC. The updated CSM was approved by the NYSDEC and NYSDOH in November 2015.
- In November 2015, monitoring well MW06-23BR was added to the PRM program. GeoLogic revised the SMP to reflect the modifications to the PRM program and SVI mitigation systems made between April 2012 and November 2015. The revised SMP was approved by the NYSDEC and NYSDOH in November 2015.

In September 2016, GeoLogic submitted a Remedial System Optimization (RSO) Report for the Site. The goal of the RSO report was to evaluate the feasibility of additional remedial technologies to address the COCs remaining in groundwater at the Site. The RSO report recommended that a Monitored Natural Attenuation (MNA) program be implemented at the Site. The RSO report was approved, with conditions, by the NYSDEC and NYSDOH in October 2016.

In December 2016, overburden monitoring well MW-7 was abandoned and a new bedrock monitoring well, MW16-7BR was installed. This work was required by the NYSDEC's letter dated, October 26, 2016 in order to satisfy the conditional approval of GeoLogic's RSO Report. Groundwater samples were collected from MW16-7BR on a quarterly basis, for three quarters, and then included in the 2017 annual sampling. Quarterly sampling reports were submitted to the NYSDEC and NYSDOH after each sampling event.

In February 2017, the Site's SMP was updated to include the MNA plan, which is detailed in Section 4 of the February 2017 SMP.

In July 2017, the NYSDEC required modifications to the MNA plan. In September 2017, GeoLogic modified the MNA plan to include additional geochemical parameters. The field parameters recorded was expanded to include Dissolved Oxygen (DO), Oxidation Reduction Potential (ORP), pH and temperature. In addition to VOCs, the laboratory analysis was expanded to include Nitrate, Iron, Sulfate, Alkalinity and Chloride.

In October 2017, the NYSDEC required the Site's SMP be revised to reflect the September 2017 modifications to the MNA Plan. In April 2018, GeoLogic submitted a revised SMP to reflect these changes.

In May 2018, GeoLogic proposed adding Ethene to the laboratory analysis completed as part of the groundwater monitoring program for the Site. On May 24, 2018, the NYSDEC conditionally approved the modifications to the groundwater monitoring program. The NYSDEC also required the SMP to be revised to reflect the modifications and conditions listed in the letter of May 24th. In August 2018, GeoLogic submitted a revised SMP reflecting the requested changes.

In April 2020, GeoLogic recommended modifying the groundwater monitoring program to eliminate laboratory analysis of Alkalinity, Chloride, Ethene, Iron, Nitrate, and Sulfate. On June 15, 2020, the NYSDEC requested additional information. GeoLogic provided additional information in multiple response letters and e-mails between July 2020 and October 2020. On November 23, 2020, the NYSDEC approved modification of the groundwater monitoring program eliminating laboratory analysis of Alkalinity, Chloride, Iron, Nitrate, and Sulfate. Future groundwater samples will be analyzed for VOCs and ethene only.

In November 2020, an exploratory soil vapor extraction (SVE) well was installed in the south courtyard area at the Site. With the concurrence of the NYSDEC, the well was installed to aid in evaluating the effectiveness of SVE in the south courtyard area at the Site. In May 2021, a report was submitted to the NYSDEC and NYSDOH summarizing this work.

In July 2021, SVE was added to monitoring well MW16-7BR and to Injection Trench T-11. Piping was installed which connected MW16-7BR and T-11 to the trunk line of the existing SSDS. A bubbler system was also installed at MW16-7BR to facilitate the removal of VOCs from the groundwater. These modifications are depicted on Figure No. 4 (SMP Revision No. 5).

In September 2021, SMP Revision No. 5 was submitted to the DEC to reflect the addition of SVE to MW16-7BR and T-11 and the 2020 modification of the groundwater monitoring plan. These modifications were made with the concurrence of the NYSDEC and NYSDOH. The current Groundwater Monitoring Plan is described in Section 4 of SMP Revision No. 5.

2.5 Remedial Action Objectives (RAOs)

The Remedial Action Objectives (RAOs) that have been developed for the Site are based on considerations specific to the Site (e.g. Site use, detected constituents and potential exposure pathways). RAOs are identified to maintain and/or achieve conditions that are protective of public health and the environment. The RAOs that have been developed for the Site are consistent with the remedy selection process described in Technical Guidance for Site Investigation and Remediation, NYSDEC Program Policy DER-10 (DER-10, May 2010).

Based on the evaluation of the current environmental data and taking into consideration current and potential land use, and identification of the actual or potential public health and/or environmental exposure, the RAOs, for the Site are:

2.5.1 Groundwater

RAOs for Public Health Protection:

Prevent ingestion of groundwater with contaminant levels exceeding drinking water standards.

RAOs for Environmental Protection:

- Restore groundwater aquifer to pre-disposal/pre-release conditions, to the extent practicable.
- > Remove the source of ground or surface water contamination.

2.5.2 Soil

RAOs for Public Health Protection:

Prevent ingestion/direct contact with contaminated soil.

RAOs for Environmental Protection:

Prevent migration of contaminants that would result in groundwater or surface water contamination.

2.5.3 Soil Vapor

RAOs for Public Health Protection:

Mitigate impacts to public health resulting from existing, or the potential for, soil vapor intrusion into buildings at the Site.

2.6 Cleanup and Site Closure Criteria

The standards that apply to the Site are listed below.

- For groundwater, New York State groundwater quality standards (Class GA) as listed by the NYSDEC Division of Water Technical and Operational Guidance Series (TOGS 1.1.1) apply.¹ The current standard for TCE is 5 μg/L.
- For Soils, Brownfield Soil Cleanup Objectives (SCOs) for restricted commercial use as listed in 6 NYCRR Part 375-6.8(b) apply.¹
- For soil vapor, the objective is to reduce the potential for exposure via soil vapor intrusion pathways. The remedial objective is for indoor air quality to be as close to background as practicable, per The NYSDOH's *Guidance for Evaluating Soil Vapor Intrusion in the State of New York*, dated October 2006.¹

The specific goals identified in the RWP (SWRNA, March 2008) and RD (SWRNA, June 2008) for the Site are listed below:

- Remove, contain, or treat, to the extent practicable, potential on-site sources of contamination;¹
- Prevent, to the extent feasible, potential future off-site migration of on-site groundwater and/or soil vapor contamination;¹
- Eliminate, to the extent feasible, potential on-site environmental or public health exposures to on-site contamination that may remain in groundwater and/or soil vapor.¹

3 INSTITUTIONAL AND ENGINEERING CONTROLS

3.1 Summary of Institutional Controls (ICs)

ICs have been implemented at the Site to mitigate the potential for human and ecological exposure to soil and groundwater. The ICs are described below:

- An Environmental Easement pursuant to ECL 71-3605 was filed with the applicable government bodies.
- The use of groundwater is prohibited, except with prior approval by the NYSDEC and NYSDOH.
- The future use of the Site is restricted to commercial or industrial uses as defined in 6 NYCRR Part 375.
- The SMP, which includes both an O&M Plan and a Soil Management Plan for the Site, must be followed.

3.2 Summary of Engineering Controls (ECs)

ECs have been implemented at the Site to mitigate the potential for human exposure pathways related to SVI. The ECs are described below:

- A SSDS was installed in the southern portion of the building's lowest level in 2007 and was subsequently expanded in 2008 to include several rooms adjoining the main building to the west.
- A PPAES was installed in the northern portion of the building in 2008.

Both systems were designed to decrease the potential of SVI by creating a positive indoor air pressure above the floor slab relative to below the floor slab conditions.

Various modifications to the SSDS and PPAES have been completed since the Certificate of Completion was issued in 2008. All modifications have been made with NYSDEC/NYSDOH concurrence and, as necessary, completed in accordance with

NYSDEC/NYSDOH approved design documents. The modifications are summarized below:

- In January 2012, the SSDS and PPAES were modified to include the former Therm area within the SSDS. The use of the PPAES within the former Therm area was discontinued subsequent to expanding the SSDS. The 2012 modifications were completed in accordance with the NYSDEC-approved Design Document for Modification of SSDS and PPAES (GeoLogic, September 30, 2011) and the NYSDEC's comment letter, dated December 5, 2011. The SMP was revised in April 2012 to reflect these changes to the SSDS and PPAES.
- In April 2013, GeoLogic prepared a work plan for SVI sampling in the northern portion of the building. The NYSDEC and NYSDOH reviewed, commented on and subsequently approved the work plan. The SVI sampling was completed in May 2013. Based upon results of the SVI sampling, GeoLogic concluded that mitigation of the northern portion of the building was not warranted and the PPAES was shut down.
- In July 2021, SVE was added to monitoring well MW16-7BR and to Injection Trench T-11. Piping was installed which connected MW16-7BR and T-11 to the trunk line of the existing SSDS. A bubbler system was also installed at MW16-7BR to facilitate the removal of VOCs from the groundwater. These modifications are depicted on Figure No. 4 of SMP Revision No. 5.

3.2.1 Summary of ECs Operations During Reporting Period

On April 7, 2022, GeoLogic collected differential pressure measurements at the Site. The intent of this work was to satisfy the requirement of the NYSDEC and NYSDOH in the letter dated December 30, 2021, to determine if the SSDS is operating as designed and to measure continued effectiveness of the SSDS. The negative pressure observed at all locations exceeded the SSDS Performance Objective. The data collected demonstrated the continued effectiveness of the SSDS and demonstrated that the SSDS continues to operate as designed. The results were submitted to the NYSDEC in GeoLogic's letter dated May 2, 2022.

The SSDS has been monitored by maintenance staff, in accordance with the SMP. On October 12, 2022, the new motor for the SSDS fan was installed. Other routine maintenance has been performed on system components on an as needed basis. The SSDS Inspection Forms are attached in Appendix F.

4 MONITORING PLAN

4.1 Monitoring Plan Components

Monitoring at the Site consists of annual sampling of nine groundwater monitoring wells and is conducted to monitor the natural attenuation of the remaining groundwater contamination at the Site. The monitoring wells are categorized into two groups, overburden and bedrock. The nine wells included in the groundwater monitoring program are depicted on Drawing No. 2, Appendix B, and are summarized below:

<u>Overburden Wells</u>: MW-2 MW06-25OB IOW-4 Bedrock Wells: MW06-23BR MW06-24BR MW06-25BR MW16-7BR IOW-1 IOW-1 IOW-3

Data trends and supporting tables and charts are discussed in Section 5.

4.2 Summary of Monitoring Completed During Reporting Period

The following sampling has taken place during this reporting period:

- Annual groundwater sampling of nine monitoring wells was completed in September 2022. Subsequent to receipt, the laboratory analysis report was submitted to the NYSDEC and NYSDOH.
- On January 5, 2023, a non-working fire hydrant was removed by a Town of Ithaca contractor and replaced with a new fire hydrant. GeoLogic notified the NYSDEC of this work as soon as GeoLogic was aware of the work. The location of this hydrant is depicted on Drawing No. 2A, Appendix B. GeoLogic was on-site during excavation activities and screened the soils in accordance with the Site Management Plan. No field evidence of contamination was encountered. All photoionization detector (PID) readings were 0 parts per million (PPM).

Monitoring Deficiencies are summarized below in Section 4.3.

4.2.1 Summary of Groundwater Sampling

The depth to groundwater was measured in each well prior to collecting groundwater samples. It is noted that the depth to groundwater was measured at selected additional monitoring wells to supplement the data. These additional wells are listed on Table No. 1 (Appendix C). Based on recorded water levels, overburden and bedrock groundwater contour maps were prepared for September 2022 (Drawing No. 3 and Drawing No. 4 respectively, Appendix B).

The general direction of overburden and bedrock groundwater flow is to the westnorthwest, consistent with previous results and the regional surface topography. Similar to previous sampling events, Drawing No. 3 indicates a slight convergence of overburden groundwater flow towards the swale. This convergence is more pronounced in the upper bedrock zone, see Drawing No. 4, which is consistent with prior evidence that the swale acts as a local groundwater discharge zone for the Site.

Field observations, including groundwater elevations, for the 2022 annual sampling event are summarized in Table No. 1, located in Appendix C.

Dissolved Oxygen (DO), Oxidation Reduction Potential (ORP), conductivity, pH, temperature and turbidity were measured and recorded for each well during the

September 2022 groundwater sampling event and are summarized in Table No. 4, located in Appendix C. Groundwater Monitoring Well Sampling Records are included in Appendix E.

All groundwater samples were submitted to an independent Environmental Laboratory Approval Program (ELAP) certified laboratory for analysis. The groundwater samples collected during the September 2022 annual sampling event were analyzed for Volatile Organic Compounds (VOCs) on the target compound list (TCL) by EPA Method 8260 and Ethene by the AM20GAX method of analysis.

The groundwater analytical results for September 2022 are summarized in Table No. 2, Appendix C. The results were reviewed and compared to Class GA water quality standards and/or guidance values listed in the NYSDEC Division of Water Technical and Operation Guidance Series 1.1.1 (TOGS 1.1.1, June 1998). Chlorinated VOC concentrations detected in groundwater samples are depicted on Drawing No. 5, Appendix B. Historical VOC concentrations, including RI, pre-RI data (where such data is available), pre-remediation and post-remediation are summarized on Table No. 3, Appendix C.

The geochemical parameters are summarized in Table No. 4, located in Appendix C, and were evaluated in accordance with Section 4.2 of SMP. Data trends are discussed in Section 5 of this PRR.

The laboratory analysis report for the groundwater samples collected during the September 2022 sampling event is included in Appendix G.

4.3 Monitoring Deficiencies

During the September 2022 sampling event, the following deficiencies were noted:

• Overburden monitoring well MW06-25OB was dry and therefore, unable to be sampled. This is attributed to periodic seasonal variation of groundwater levels.

5 DATA TRENDS AND REMEDIAL EFFECTIVENESS

5.1 Data Summary

Data from the groundwater sampling events are summarized in the following tables and charts and are included in Appendix C and Appendix D. The Site contaminants of concern (COCs) are TCE, DCE and VC.

APPENDIX C: Tables

- Table No. 1: Groundwater Elevations & Field Observations: 2022 Annual Sampling Event;
- Table No. 2: Summary of September 2022 Groundwater Analytical Results;
- Table No. 3: Summary of Groundwater VOC Analytical Results;
- Table No. 4: Summary of Geochemical Parameters.

APPENDIX D: Charts

 Charts No. 1 through No. 9: Summary of TCE, DCE and VC Concentrations for Groundwater Monitoring Wells.

5.2 Groundwater Contaminants Data Trends

The monitoring wells are categorized into two groups (Overburden and Bedrock) and Charts No. 1 through No. 9 depict the TCE, DCE and VC concentrations for the nine monitoring wells. The overburden wells are summarized on Charts No. 1 through No. 3 and the bedrock wells are summarized on Charts No. 4 through No. 9.

5.2.1 Overburden Wells: Contaminant Data Trends

Three of the nine monitoring wells are overburden wells; they are listed below:

- MW-2 (Chart No. 1);
- MW06-25OB (Chart No. 2);
- IOW-4 (Chart No. 3).

As indicated in Chart No. 1, MW-2 demonstrates no increase in TCE concentration. As indicated in Chart No. 2, MW06-25OB demonstrates a decreasing TCE concentration trend line. As indicated in Chart No. 3, IOW-4 demonstrates no increase in TCE concentration.

5.2.2 Bedrock Wells: Contaminant Data Trends

Six of the nine monitoring wells are bedrock wells; they are listed below:

- MW06-23BR (Chart No. 4);
- MW06-24BR (Chart No. 5);
- MW06-25BR (Chart No. 6);
- MW16-7BR (Chart No. 7);
- IOW-1 (Chart No. 8);
- IOW-3 (Chart No. 9).

As indicated in Charts No. 4 through No. 9, all bedrock wells (except IOW-1) demonstrate decreasing TCE trend lines. The concentrations observed at well IOW-1 varies widely, by two orders of magnitude and is likely associated with temporal variations of groundwater flow through fractured bedrock.

MW06-23BR was added back to the monitoring program in November 2015. The TCE concentration continues to demonstrate a long-term decreasing TCE trend.

Well MW16-7BR was installed in December 2016 in the area of the former 6,000gallon UST that contained TCE. As indicated in Chart No. 7, the contaminant concentations continue to exhibit a steep downward trend.

5.3 Evaluation of Geochemical Data

The geochemical parameters collected as part of the Site's groundwater monitoring plan include Dissolved Oxygen (DO), ethene, Oxidation-Reduction Potential (ORP), pH, and temperature and are recorded on the Groundwater Monitoring Well Sampling Records (Appendix E and Table No. 4, Appendix C).

DO concentration is used to determine if aerobic or anaerobic degradation is likely to occur. DO concentrations greater than 5 mg/L indicate aerobic conditions.

 In 2022, all DO concentrations observed were less than the 5 mg/L threshold, except for MW16-7BR. The DO concentration at MW16-7BR was 8.41 mg/L and was artificially high due to the bubbler system installed in conjunction with the SVE at this well.

Ethene is one of the final products of chlorinated solvent reduction and is evaluated on a presence/absence basis. The presence of Ethene indicates degradation is occurring.

• In 2022, the Ethene concentrations observed ranged from non-detect (<1.0 microgram per liter (μ g/L)) at multiple wells to 6.6 μ g/L at MW-2. Ethene was detected at three wells, MW-2, MW06-23BR and IOW-3. The remaining wells were non-detect.

ORP measures the intensity or activity of the aquifer to mediate reactions of important elements in biological systems. <50 millivolts (mV) indicates a reductive pathway is possible.

• In 2022, the ORP readings observed ranged from 118.0 mV at MW06-24BR to 428.0 mV at IOW-3. No ORP readings less than the 50 mV threshold were observed in 2022.

pH is a general water quality parameter. Biological degradation processes are pH sensitive. A pH range between 5 and 9 is optimal for reductive pathways.

• In 2022, pH readings ranged from 6.98 at MW06-25BR to 8.91 at MW06-24BR. All pH readings were within the optimal range of 5 to 9 for reductive pathways.

Temperature can affect the rate at which biochemical processes occur. Temperatures greater than 20°C accelerate biochemical processes.

 In 2022, the groundwater temperatures ranged from 15.36°C at MW06-25BR to 28.62°C at IOW-4. A temperature above 20°C was observed at monitoring wells sampled except MW06-25BR.

5.4 Performance and Effectiveness of the ICs/ECs

The ICs implemented at the Site are detailed in Section 3.1. These ICs continue to be effective at mitigating the potential for exposure to remaining contamination in the Site's groundwater.

The ECs implemented at the Site are detailed in Section 3.2. The ECs continue to mitigate the potential for human exposure pathways related to SVI.

The SSDS has been monitored by building maintenance staff, in accordance with the SMP. Routine maintenance has been performed on system components on an as needed basis. The SSDS Inspection Forms are attached in Appendix F.

6 CONCLUSIONS and RECOMMENDATIONS

No change to the current groundwater monitoring program is recommended at this time. The next annual sampling event is scheduled for September 2023 after which recommendations for the sampling program and frequency will be submitted to the NYSDEC.

It is recommended that the PRR frequency be reduced from annually to once every five years.

7 REFERENCES

¹S&W Redevelopment of North America, LLC., *Final Engineering Report*, November 2008, page 7.

8 CERTIFICATION

Signed Institutional and Engineering Controls Certification Forms are included in Appendix A.

Prepared by,

GeoLogic NY, P.C.

Christopher T. Gabriel Project Manager

Forrest Earl, P.G. President / Principal Hydrogeologist

P\PROJECTS\2009\209164 - SHBC\REPORT\2023 Reports\2023 PRR\2023 Periodic Review Report for SHBC TEXT.DOC

APPENDIX A

INSTITUTIONAL AND ENGINEERING CONTROLS CERTIFICATION FORMS & BUILDING PERMITS

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit	Site Details	Box 1		
Sit	e Name Former Axiohm Facility			
City Co	e Address: 950 Danby Road Zip Code: 14850 //Town: Ithaca unty: Tompkins e Acreage: 42.530			
Re	porting Period: February 15, 2022 to February 15, 2023			
		YES	NO	
1.	Is the information above correct?	X		
	If NO, include handwritten above or on a separate sheet.			
2.	Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period?		X	
3.	Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))?		X	
4.	Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period?	X		
	If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form.			
5.	Is the site currently undergoing development?		X	
		Box 2		
		YES	NO	
6.	Is the current site use consistent with the use(s) listed below? Commercial and Industrial	X		
7.	Are all ICs in place and functioning as designed?			
AC	IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. A Corrective Measures Work Plan must be submitted along with this form to address these issues.			
Sig	nature of Owner, Remedial Party or Designated Representative Date			

		Box 2	Α
_		YES	NO
8.	Has any new information revealed that assumptions made in the Qualitative Exposure Assessment regarding offsite contamination are no longer valid?		X
	If you answered YES to question 8, include documentation or evidence that documentation has been previously submitted with this certification form.		
9.	Are the assumptions in the Qualitative Exposure Assessment still valid? (The Qualitative Exposure Assessment must be certified every five years)	X	
	If you answered NO to question 9, the Periodic Review Report must include an updated Qualitative Exposure Assessment based on the new assumptions.		
SITE	E NO. C755012	Bo	k 3
	Description of Institutional Controls		

Institutional Control Parcel Owner 39-1-1.1 South Hill Business Campus, LLC Site Management Plan O&M Plan Ground Water Use Restriction Soil Management Plan Landuse Restriction **Building Use Restriction** Institutional control are implemented for this site to restrict future use to commercial purposes, and prohibit the use of site groundwater without proper treatment, and prior approval of NYDEC and the NYSDOH. Engineering controls for this site eliminate the potential exposure pathway related to soil vapor intrusion. Engineering controls were implemented as an IRM that included installation of the sub-slab depressurization system (SSDS) in 2007 to mitigate potential soil vapor intrusion (SVI) in the southern portion of the building near the contaminant source. Sub-slab depressurization was also applied in 2008 to western rooms that jut-out from the main portion of the building, and an air exchange system was installed in 2008 to maintain positive indoor air pressure in the northern portion of the building outside the SSDS target area. In 2012, two additional vacuum points were installed in the northern end of the main building in order to extend the SSDS and the SMP was modified accordingly in April 2012. Based on soil vapor intrusion sampling conducted in May 2013, a Corrective Measures Work Plan was approved by the Department in April 2015 which allowed for termination of operation of the air exchange system in the northern portion of the building. The SSDS in the remainder of the building will operate continuously to mitigate potential exposure of building occupants to soil vapor contamination. The owner must also address the possibility that soil vapor intrusion may occur in the future as any new building are constructed at the site. Any new buildings within the BCP site boundary may also be fitted with SSDS's and/or positive pressure air exchange systems if required to mitigate potential future SVI, unless a soil vapor investigation was conducted which indicated SVI mitigation is not necessary, with written concurrence of NYSDEC/NYSDOH. ICs/ECs also includes a Soil Management Plan that summarizes the standards for management of subsurface soils/fill during any future intrusive work. 39-1-1.22 South Hill Business Campus, LLC Site Management Plan O&M Plan Ground Water Use Restriction Soil Management Plan Landuse Restriction Building Use Restriction Institutional control are implemented for this site to restrict future use to commercial purposes, and prohibit the use of site groundwater without proper treatment, and prior approval of NYDEC and the NYSDOH. Engineering controls for this site eliminate the potential exposure pathway related to soil vapor intrusion. Engineering controls were implemented as an IRM that included installation of the sub-slab depressurization system (SSDS) in 2007 to mitigate potential soil vapor intrusion (SVI) in the southern portion of the building near the contaminant source. Sub-slab depressurization was also applied in 2008 to western rooms that jut-out from the main portion of the building, and an air exchange system was installed in 2008 to maintain positive indoor air pressure in the northern portion of the building outside the SSDS target area. In 2012, two additional vacuum points were installed in the northern end of the main building in order to extend the SSDS and the SMP was modified accordingly in April 2012. Based on soil vapor intrusion sampling conducted in May 2013, a Corrective Measures Work Plan was approved by the Department in April 2015 which allowed for termination of operation of the air exchange system in the northern portion of the building. The SSDS in the remainder of the building will operate continuously to mitigate potential exposure of building occupants to soil vapor contamination. The owner must also address the possibility that soil vapor intrusion may occur in the future as any new building are constructed at the site. Any new buildings within the BCP site boundary may also be fitted with SSDS's and/or positive pressure air exchange systems if required to mitigate potential future SVI, unless a soil vapor investigation was conducted which indicated SVI mitigation is not necessary, with written concurrence of NYSDEC/NYSDOH. ICs/ECs also includes a Soil Management Plan that summarizes the standards for management of subsurface soils/fill during any future intrusive work.

Parcel 39-1-1.1 Engineering Control

Vapor Mitigation

39-1-1.22

L

Vapor Mitigation

			Box 5
	Periodic Review Report (PRR) Certification Statements		
1.	I certify by checking "YES" below that:		
	a) the Periodic Review report and all attachments were prepared under the direct reviewed by, the party making the Engineering Control certification;	ction of,	and
	b) to the best of my knowledge and belief, the work and conclusions described i are in accordance with the requirements of the site remedial program, and gener		
	engineering practices; and the information presented is accurate and compete.	YES	NO
		X	
2.	For each Engineering control listed in Box 4, I certify by checking "YES" below that all following statements are true:	of the	
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Dep	partmer	ıt;
	(b) nothing has occurred that would impair the ability of such Control, to protect the environment;	public h	ealth and
	(c) access to the site will continue to be provided to the Department, to evaluate remedy, including access to evaluate the continued maintenance of this Control;		
	(d) nothing has occurred that would constitute a violation or failure to comply wit Site Management Plan for this Control; and	h the	
	(e) if a financial assurance mechanism is required by the oversight document fo mechanism remains valid and sufficient for its intended purpose established in the		
		YES	NO
		X	
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.		
	A Corrective Measures Work Plan must be submitted along with this form to address th	nese iss	sues.
	Signature of Owner, Remedial Party or Designated Representative Date		

IC CERTIFICATIONS SITE NO. C755012

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

print name	at <u>Soorn Hill Bi</u> print business	address
am certifying as <u>Property</u>	MANAGER	(Owner or Remedial Party)
for the Site named in the Site Detail	s Section of this form.	
R. Ruciano		2.28.23

Signature of/Owner, Remedial Party, or Designated Representative Rendering Certification

Date

EC CERTIFICATIONS

Box 7

Qualified Environmental Professional Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Forrest Eurl, P.G. at PO Box 350, Homer, NY 13077 print name print business address am certifying as a Qualified Environmental Professional for the (Owner or Remedial Party) -23 Signature of Qualified Environmental Professional, for Date the Owner or Remedial Party, Rendering Certification LICENSE

TOWN OF ITHACA

215 N. Tioga Street, Ithaca, N.Y. 14850 www.town.ithaca.ny.us

CODE ENFORCEMENT DEPARTMENT Phone (607) 273-1783 codes@town.ithaca.ny.us

Permit No.: 2022-0105

Date of Permit: 3/3/2022 Expiration Date: 3/3/2023

This serves as the OFFICIAL BUILDING PERMIT issued to South Hill Business Campus, LLC to erect, move, demolish, or repair a building as indicated, in accordance with all Laws and Regulations applicable thereto. All work shall be performed in accordance with the construction documents submitted and accepted as part of the application. The Town of Ithaca Code Department MUST be notified immediately in the event of any changes occurring during construction.

Scope of work:

Demise larger space to create acupuncture office with electrical and plumbing; waiting area room 100, therapy rooms 101 and 102.

Project Address: 950 Danby Rd

Property Owner: South Hill Business Campus, LLC

Owner Address: 950 Danby Rd

Ithaca, NY 14850

Occupancy Class: B-BUSINESS Co

Construction Type:

Sprinkler: Yes

Tax Parcel #: 39.-1-1.1

Signature: Dana Magnuson

Code Enforcement Officer

THIS PERMIT MUST BE POSTED ONSITE PRIOR TO WORK COMMENCING. SUPPLEMENTAL NOTES AND PLANS PROVIDED WITH BUILDING PERMIT MUST BE ONSITE AND AVAILABLE DURING INSPECTIONS.

Comments: additional sheet(s) may be attached.

TOWN OF ITHACA

215 N. Tioga Street, Ithaca, N.Y. 14850 www.town.ithaca.ny.us

CODE ENFORCEMENT DEPARTMENT Phone (607) 273-1783 <u>codes@town.ithaca.ny.us</u>

Permit No.: 2022-0117

Date of Permit: 3/21/2022 Expiration Date: 3/21/2023

Tax Parcel #: 39.-1-1.22

Sprinkler: Yes

This serves as the OFFICIAL BUILDING PERMIT issued to **South Hill Business Campus LLC** to erect, move, demolish, or repair a building as indicated, in accordance with all Laws and Regulations applicable thereto. All work shall be performed in accordance with the construction documents submitted and accepted as part of the application. The Town of Ithaca Code Department MUST be notified immediately in the event of any changes occurring during construction.

Scope of work:

Demise Suite 310 into 4 Suites

Project Address: 950 Danby Rd

Property Owner: South Hill Business Campus LLC

Owner Address: Attn: Linda Luciano

Ithaca, NY 14850

Occupancy Class: B-BUSINESS Construction Type: II-A

Signature: Dana Magnuson

Code Enforcement Officer

THIS PERMIT MUST BE POSTED ONSITE PRIOR TO WORK COMMENCING. SUPPLEMENTAL NOTES AND PLANS PROVIDED WITH BUILDING PERMIT MUST BE ONSITE AND AVAILABLE DURING INSPECTIONS.

Comments: additional sheet(s) may be attached. Demise Suite 310 into 4 Suites

TOWN OF ITHACA

215 N. Tioga Street, Ithaca, N.Y. 14850 www.town.ithaca.ny.us

CODE ENFORCEMENT DEPARTMENT Phone (607) 273-1783 codes@town.ithaca.ny.us

Permit No.: 2022-0019

Date of Permit: 1/28/2022 Expiration Date: 1/28/2023

This serves as the OFFICIAL BUILDING PERMIT issued to South Hill Business Campus LLC to erect, move, demolish, or repair a building as indicated, in accordance with all Laws and Regulations applicable thereto. All work shall be performed in accordance with the construction documents submitted and accepted as part of the application. The Town of Ithaca Code Department MUST be notified immediately in the event of any changes occurring during construction.

Scope of work:

Demise larger space to accommodate new tenant - second floor addition -Performance Systems Development - Suite 201-P (2,152 sq. ')

Project Address: 950 Danby Rd

Property Owner: South Hill Business Campus LLC

Owner Address: Attn: Linda Luciano

Ithaca, NY 14850

Occupancy Class: B-BUSINESS Construction Type:

Sprinkler:Yes

Tax Parcel #: 39.-1-1.22

Signature: Dana Magnuson

Code Enforcement Officer

THIS PERMIT MUST BE POSTED ONSITE PRIOR TO WORK COMMENCING. SUPPLEMENTAL NOTES AND PLANS PROVIDED WITH BUILDING PERMIT MUST BE ONSITE AND AVAILABLE DURING INSPECTIONS.

Comments: additional sheet(s) may be attached.

7/27/22, 4:02 PM

BUILDING PERMIT TOWN OF ITHACA

215 N. Tioga Street, Ithaca, N.Y. 14850

www.town.ithaca.ny.us

CODE ENFORCEMENT DEPARTMENT

Phone (607) 273-1783

codes@town.ithaca.ny.us

Permit No. : BLD-22-124	Date of Permit: July 27, 2022	
	Expiration Date July 27, 2023	

This serves as the OFFICIAL BUILDING PERMIT issued to South Hill Business Campus, LLC to erect, move, demolish, or repair a building as indicated, in accordance with all Laws and Regulations applicable thereto. All work shall be performed in accordance with the construction documents submitted and accepted as part of the application. The Town of Ithaca Code Department MUST be notified immediately in the event of any changes occurring during construction.

Scope of Work:

Build wall to split space in suite 198.

Project Address: 950 Danby Rd Property Owner: South Hill Business Campus, LLC Owner Address: 950 Danby Rd, 80, 250, 0 Occupancy Class: (7)

cupancy Class

Construction Type: V-B

Sprinkler: Yes

Issued By:

Code Enforcement Officer

THIS PERMIT MUST BE POSTED ONSITE PRIOR TO WORK COMMENCING. SUPPLEMENTAL NOTES AND PLANS PROVIDED WITH BUILDING PERMITS MUST BE ONSITE AND AVAILABLE DURING INSPECTIONS.

BUILDING PERMIT TOWN OF ITHACA

215 N. Tioga Street, Ithaca, N.Y. 14850

www.town.ithaca.ny.us

CODE ENFORCEMENT DEPARTMENT

Phone (607) 273-1783

codes@town.ithaca.ny.us

Permit No. : BLD-22-189	Date of Permit: October 26, 2022
11111 140: : BED-22-183	Expiration Date October 26, 2023

This serves as the OFFICIAL BUILDING PERMIT issued to South Hill Business Campus LLC to erect, move, demolish, or repair a building as indicated, in accordance with all Laws and Regulations applicable thereto. All work shall be performed in accordance with the construction documents submitted and accepted as part of the application. The Town of Ithaca Code Department MUST be notified immediately in the event of any changes occurring during construction.

Scope of Work:

Installation of Pella 150 Series double hung window in second floor stairwell on south side of building (cbord employee entrance).

Project Address: 950 Danby Rd Property Owner: South Hill Business Campus LLC Owner Address: 950 Danby Rd, Ithaca, NY, 14850 Occupancy Class: Construction Type: II-B

Sprinkler: Yes

Issued By: Dana Magnuson Code Enforcement Officer

THIS PERMIT MUST BE POSTED ONSITE PRIOR TO WORK COMMENCING. SUPPLEMENTAL NOTES AND PLANS PROVIDED WITH BUILDING PERMITS MUST BE ONSITE AND AVAILABLE DURING INSPECTIONS.

about:blank

BUILDING PERMIT **TOWN OF ITHACA**

215 N. Tioga Street, Ithaca, N.Y. 14850

www.town.ithaca.nv.us

CODE ENFORCEMENT DEPARTMENT

Phone (607) 273-1783

codes@town.ithaca.nv.us

Permit No. : BLD-22-177	Date of Permit: October 11, 2022	
	Expiration Date October 11, 2023	

This serves as the OFFICIAL BUILDING PERMIT issued to South Hill Business Campus, LLC - contact Linda Luciano

to erect, move, demolish, or repair a building as indicated, in accordance with all Laws and Regulations applicable thereto. Ail work shall be performed in accordance with the construction documents submitted and accepted as part of the application. The Town of Ithaca Code Department MUST be notified immediately in the event of any changes occurring during construction.

Scope of Work:

Building new acupuncture office 202-DD.

Project Address: 950 Danby Rd Property Owner: South Hill Business Campus, LLC - contact Linda Luciano Owner Address: 950 Danby Road Danby Rd., Ithaca, New York, 14850 Occupancy Class: Business Construction Type: II-B

Sprinkler: Yes

Issued By: Dana Maanuson **Code Enforcement Officer**

THIS PERMIT MUST BE POSTED ONSITE PRIOR TO WORK COMMENCING. SUPPLEMENTAL NOTES AND PLANS PROVIDED WITH BUILDING PERMITS MUST BE ONSITE AND AVAILABLE DURING INSPECTIONS.

TOWN OF ITHACA

215 N. Tioga Street, Ithaca, N.Y. 14850 www.town.ithaca.ny.us

CODE ENFORCEMENT DEPARTMENT Phone (607) 273-1783 <u>codes@town.ithaca.ny.us</u>

Permit No.: 2021-0559

Date of Permit: 12/20/2021 Expiration Date: 12/20/2022

Tax Parcel #: 39.-1-1.22

Sprinkler: Yes

This serves as the OFFICIAL BUILDING PERMIT issued to **South Hill Business Campus LLC** to erect, move, demolish, or repair a building as indicated, in accordance with all Laws and Regulations applicable thereto. All work shall be performed in accordance with the construction documents submitted and accepted as part of the application. The Town of Ithaca Code Department MUST be notified immediately in the event of any changes occurring during construction.

Scope of work:

Renovation of main employee entry hallway (west side) and shipping room.

Project Address: 950 Danby Rd

Property Owner: South Hill Business Campus LLC

Owner Address: Attn: Linda Luciano

Ithaca, NY 14850

Occupancy Class: B-BUSINESS Construction Type:

Signature: Dana Magnuson Code Enforcement Officer

THIS PERMIT MUST BE POSTED ONSITE PRIOR TO WORK COMMENCING. SUPPLEMENTAL NOTES AND PLANS PROVIDED WITH BUILDING PERMIT MUST BE ONSITE AND AVAILABLE DURING INSPECTIONS.

Comments: additional sheet(s) may be attached.

215 N. Tioga Street, Ithaca, N.Y. 14850

www.town.ithaca.ny.us

CODE ENFORCEMENT DEPARTMENT

Phone (607) 273-1783

codes@town.ithaca.ny.us

Permit No. : BLD-22-222	Date of Permit: December 15, 2022
remit No DED-22-222	Expiration Date December 15, 2023

This serves as the OFFICIAL BUILDING PERMIT issued to South Hill Business Campus, LLC to erect, move, demolish, or repair a building as indicated, in accordance with all Laws and Regulations applicable thereto. All work shall be performed in accordance with the construction documents submitted and accepted as part of the application. The Town of Ithaca Code Department MUST be notified immediately in the event of any changes occurring during construction.

Scope of Work:

Mindwell Expansion -5 offices and lounge.

Project Address: 950 Danby Rd Property Owner: South Hill Business Campus, LLC Owner Address: 950 Danby Rd, Ithaca, NY, 14850 Occupancy Class: B - Business Construction Type: II-B

Sprinkler: Yes

Issued By: Dana Magnuson Code Enforcement Officer

THIS PERMIT MUST BE POSTED ONSITE PRIOR TO WORK COMMENCING. SUPPLEMENTAL NOTES AND PLANS PROVIDED WITH BUILDING PERMITS MUST BE ONSITE AND AVAILABLE DURING INSPECTIONS.

8/21/22 8:43 AM

BUILDING PERMIT TOWN OF ITHACA

215 N. Tioga Street, Ithaca, N.Y. 14850

AN OF ITAT

www.town.ithaca.ny.us

CODE ENFORCEMENT DEPARTMENT

Phone (607) 273-1783

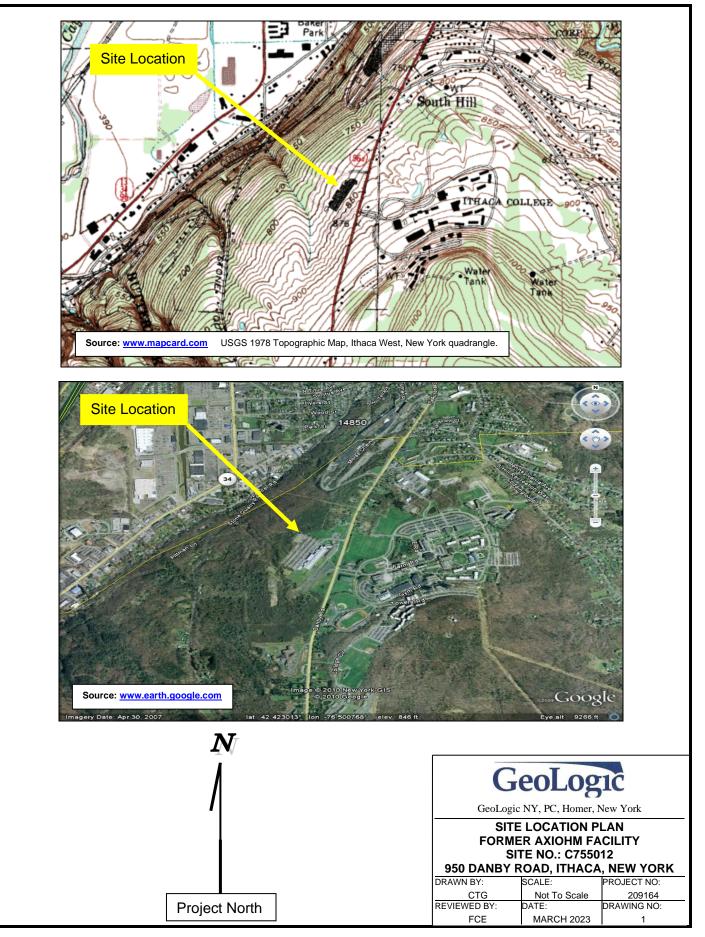
and the second	codes@town.ithaca.ny.us	
Permit No. : BLD-22-140	Date of Permit: August 22, 2022	
	Expiration Date August 22, 2023	

This serves as the OFFICIAL BUILDING PERMIT issued to South Hill Business Campus, LLC to erect, move demolish or repair a building as indicated in accordance with all Laws and Regulations applicable thereto. All work shall be performed in accordance with the construction documents submitted and accepted as part of the application. The Town of Ithaca Code Department MUST be notified immediately in the event of any changes occurring during construction.

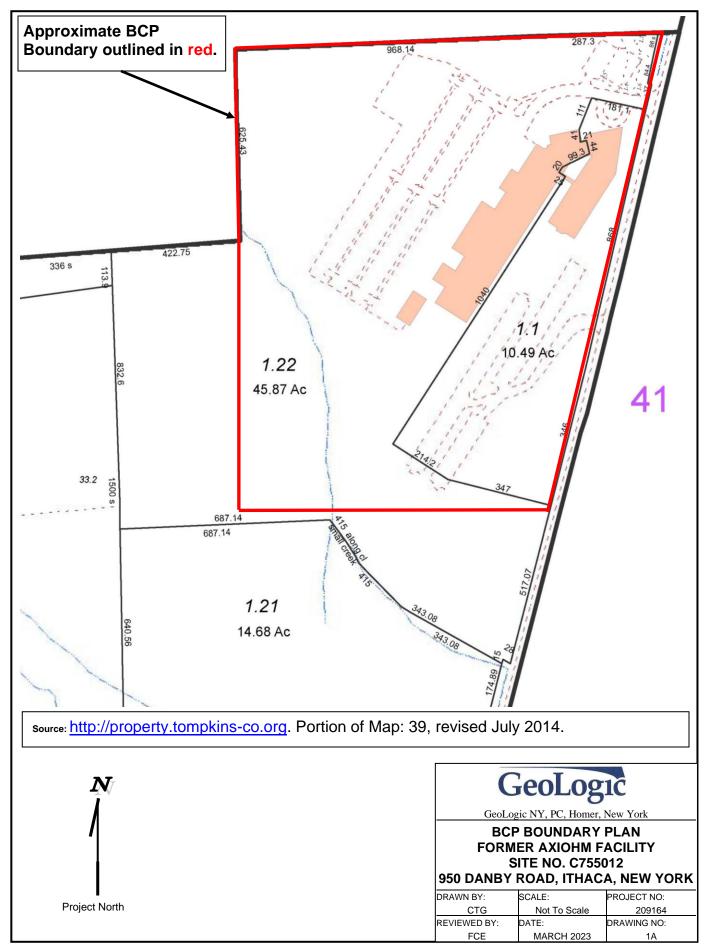
Scope of Work:

Alterations to existing suite 100-G to allow the addition of a kitchen show room.

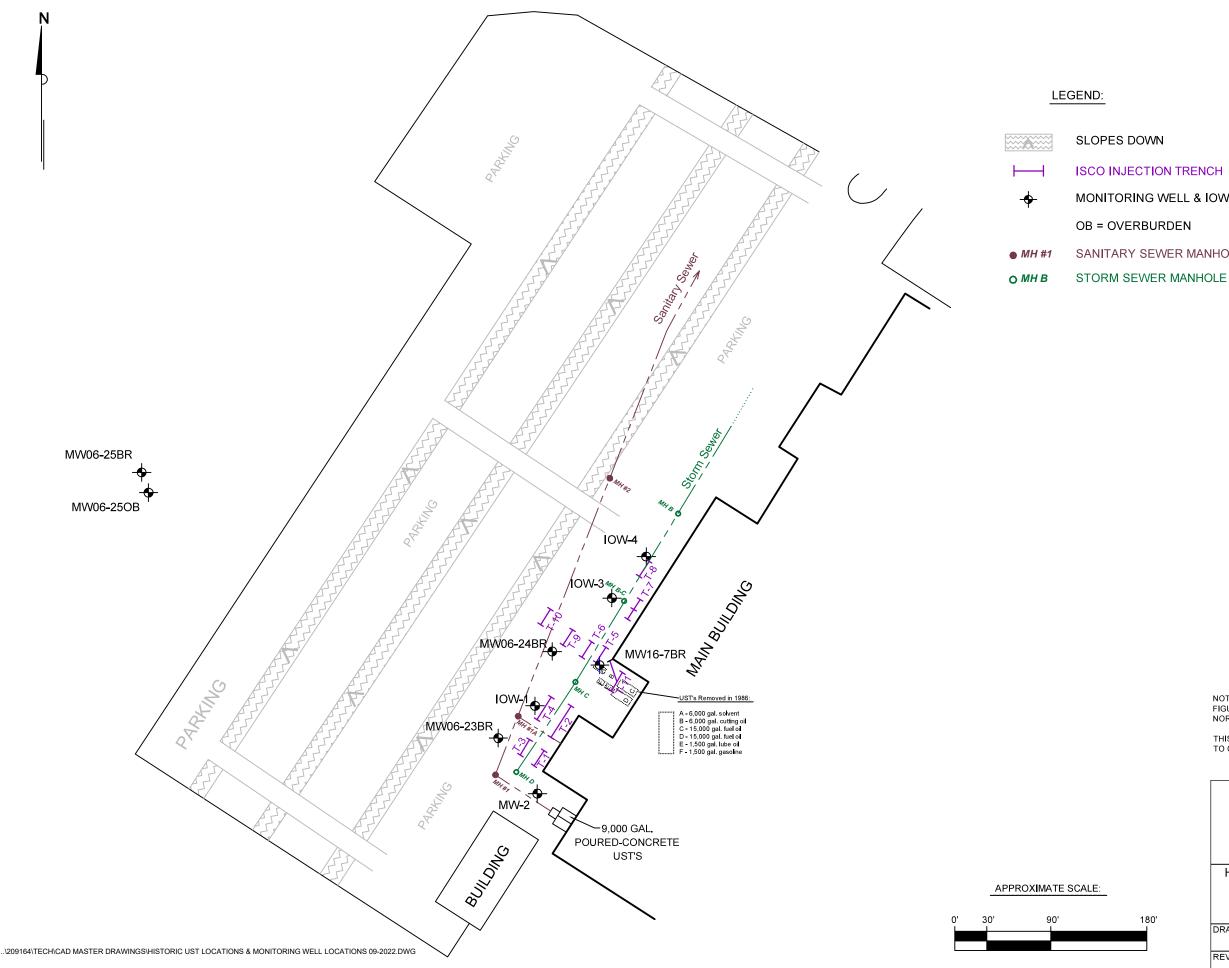
Project Address: 950 Danby Rd Property Owner: South Hill Business Campus. LLC Owner Address: 950 Danby Road Danby Rd. Ithaca. New York. i485: Occupancy Class: Construction Type: II-B


Sprinkler: Yes

Issued By Code Enforcement Office Dana Magnuson


THIS PERMIT MUST BE POSTED ONSITE PRIOR TO WORK COMMENCING, SUPPLEMENTAL NOTES AND PLANS PROVIDED WITH BUILDING PERMITS MUST BE ONSITE AND AVAILABLE DURING INSPECTIONS.

APPENDIX B


DRAWINGS

File:..P:\PROJECTS\2009\209164 - SHBC\REPORT\2020 Report\Drawing No. 1 Site Location.DOC

P:\PROJECTS\2009\209164 - SHBC\REPORT\2023 Reports\2023 PRR\Drawings\Drawing No. 1A BCP Boundary Plan.docx

ISCO INJECTION TRENCH

MONITORING WELL & IOW - INJECTION OBSERVATION WELL LOCATIONS

BR = BEDROCK

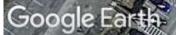
SANITARY SEWER MANHOLE

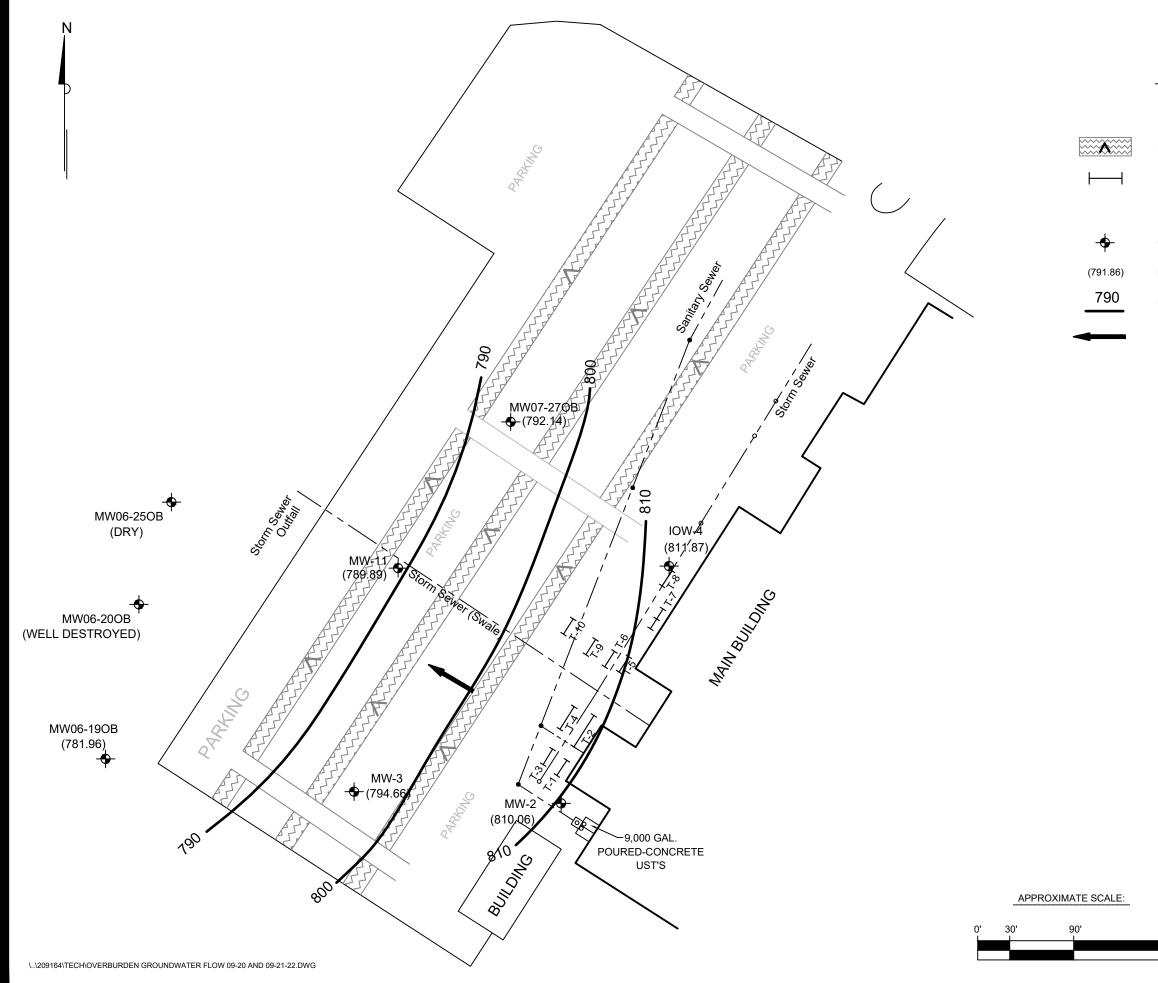
NOTE: DRAWING BASED ON POST-REMEDIATION MONITORING FIGURES 3, 4, 5, 6, PREPARED BY S&W REDEVELOPMENT OF NORTH AMERICA, LLC, DATED 10/2009.

THIS MAP DOES NOT CONSTITUTE A SURVEY AND IS ONLY INTENDED TO CONVEY APPROXIMATE SAMPLE LOCATIONS AND SITE FEATURES.

GeoLogic		
GeoLogic NY, P.C., Homer, New York		
HISTORIC UST LOCATIONS & MONITORING WELL		
LOCATIONS		
SITE NO. C755012, FORMER AXIOHM FACILITY		
950 DANBY ROAD, ITHACA, NEW YORK		
DRAWN BY:	SCALE:	PROJECT NO.:
CTG/SDW	AS SHOWN	209164
REVIEWED BY: FCE	DATE: SEPT. 2022	DRAWING NO.: 2

180'


Drawing No. 2A


Fire Hydrant Replacement Location Plan Site No. C755012 Former Axiohm Facility 950 Danby Road, Ithaca, NY

Location of Fire Hydrant

Colored Colored

200 ft

LEGEND:

SLOPES DOWN

180'

ISCO INJECTION TRENCH

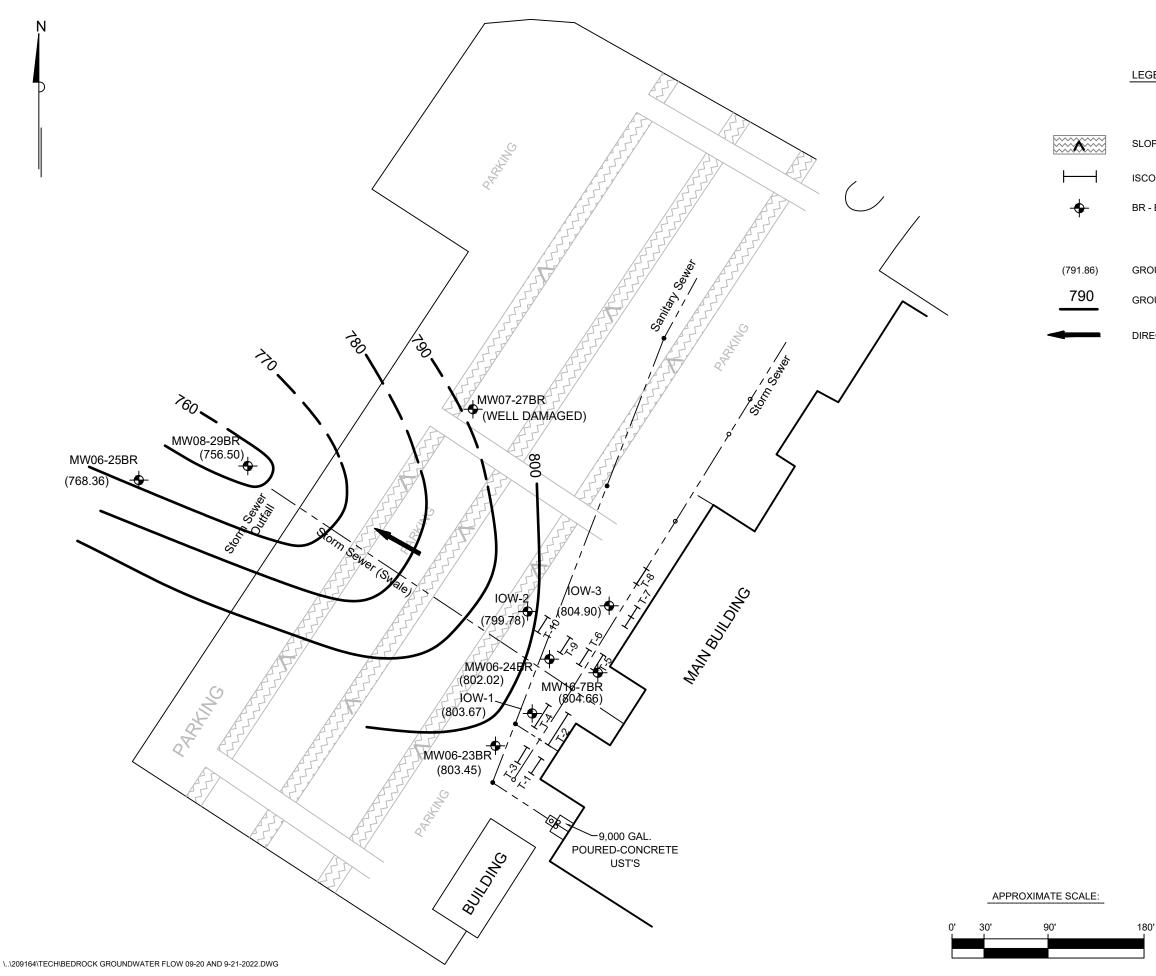
OB - OVERBURDEN WELL & IOW - INJECTION OBSERVATION WELL LOCATIONS

GROUNDWATER ELEVATION (FT.) FOR 09/20/2022 & 09/21/2022.

GROUNDWATER CONTOUR ELEVATION FOR 09/20/2022 & 09/21/2022.

DIRECTION OF GROUNDWATER FLOW

NOTE: DRAWING BASED ON POST-REMEDIATION MONITORING FIGURES 3, 4, 5, 6, PREPARED BY S&W REDEVELOPMENT OF NORTH AMERICA, LLC, DATED 10/2009.


THIS MAP DOES NOT CONSTITUTE A SURVEY AND IS ONLY INTENDED TO CONVEY APPROXIMATE SAMPLE LOCATIONS AND SITE FEATURES.

GeoLogic NY, P.C., Homer, New York

OVERBURDEN GROUNDWATER FLOW FOR 09/20/2022 & 09/21/2022 SITE NO. C755012 FORMER AXIOHM FACILITY 950 DANBY ROAD, ITHACA, NEW YORK

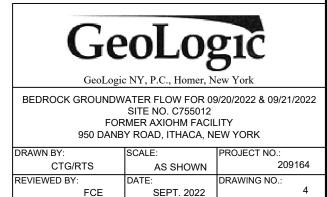
DRAWN I	BY:	SCALE:	PROJECT NO.:
	CTG/RTS	AS SHOWN	209164
REVIEWE	ED BY:	DATE:	DRAWING NO.:
	FCE	SEPT. 2022	3

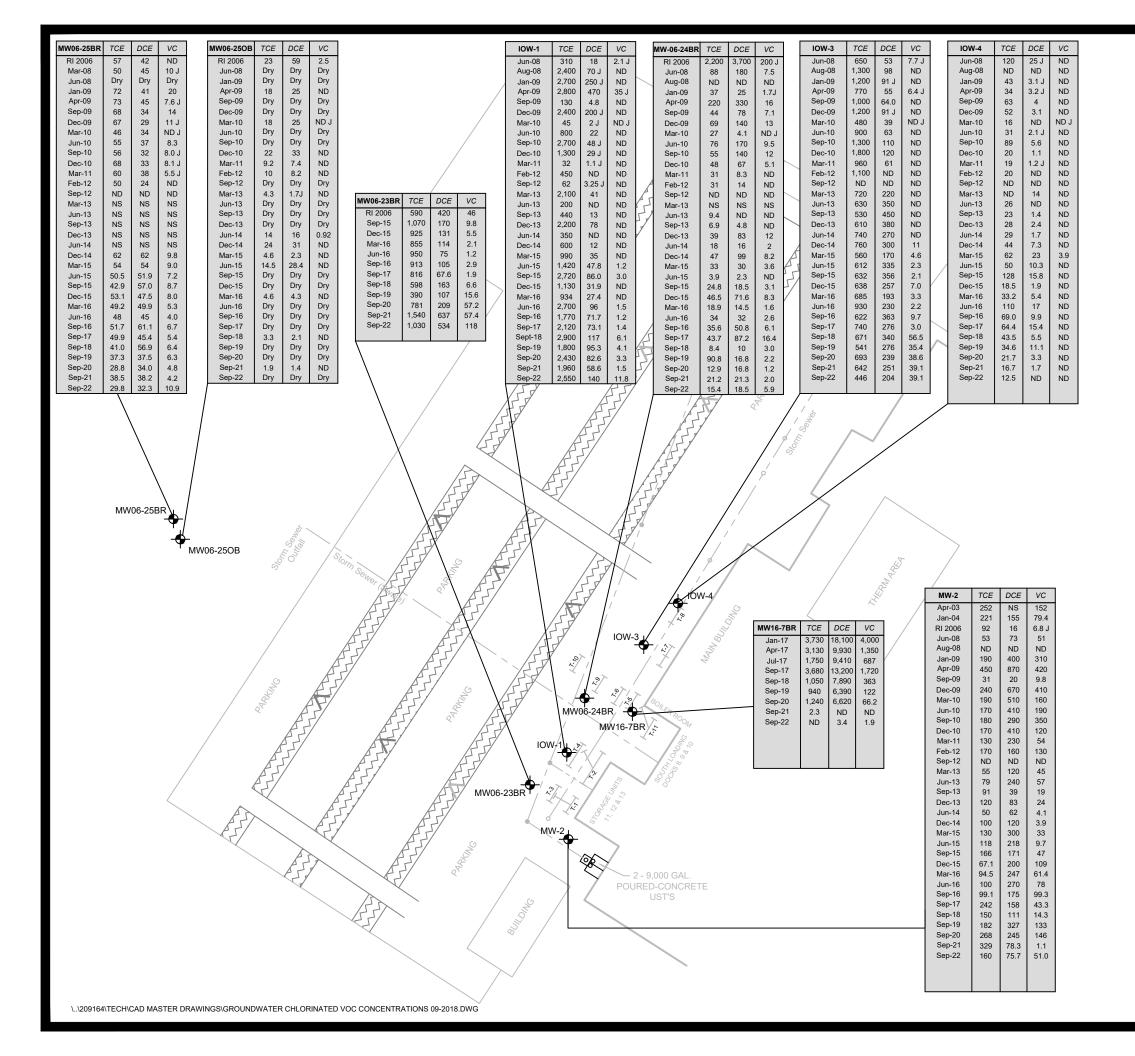
LEGEND:

SLOPES DOWN

ISCO INJECTION TRENCH

BR - BEDROCK WELL & IOW - INJECTION OBSERVATION WELL LOCATIONS


GROUNDWATER ELEVATION (FT.) FOR 09/20/2022 & 09/21/2022.


GROUNDWATER CONTOUR ELEVATION FOR 09/20/2022 & 09/21/2022.

DIRECTION OF GROUNDWATER FLOW

NOTE: DRAWING BASED ON POST-REMEDIATION MONITORING FIGURES 3, 4, 5, 6, PREPARED BY S&W REDEVELOPMENT OF NORTH AMERICA, LLC, DATED 10/2009.

THIS MAP DOES NOT CONSTITUTE A SURVEY AND IS ONLY INTENDED TO CONVEY APPROXIMATE SAMPLE LOCATIONS AND SITE FEATURES.

LEGEND:

REVIEWED BY

SANITARY SEWER MANHOLE COVER

SLOTTED STORM DRAIN COVER

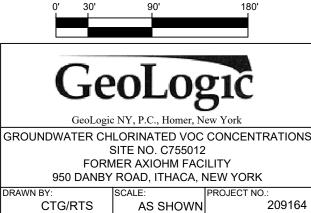
ISCO INJECTION TRENCH

SLOPES DOWN

MONITORING WELL (MW) & INJECTION OBSERVATION WELL (IOW) LOCATIONS

Well ID	TCE	DCE	VC
Sample Dates	` /	(cis-1,2-dichloroethene)	
	(ug/L)	(ug/L)	(ug/L)

ND = NOT DETECTED


NS = NOT ANALYZED (DCE, Apr-03) J = ESTIMATED VALUE

NOTE: AUGUST 2008 SAMPLES WERE COLLECTED DURING ISCO INJECTION. JANUARY AND APRIL 2009 SAMPLES ARE POST-ISCO. 2003 DATA (MW-2 AND MW-3) PROVIDED BY ENVIRONMENTAL PRODUCTS AND SERVICES, INC. 2004 DATA (MW-2, MW-3, AND MW-7) PROVIDED BY ERM.

NOTE: DRAWING BASED ON POST-REMEDIATION MONITORING FIGURES 3, 4, 5, 6, PREPARED BY S&W REDEVELOPMENT OF NORTH AMERICA, LLC, DATED 10/2009.

THIS MAP DOES NOT CONSTITUTE A SURVEY AND IS ONLY INTENDED TO CONVEY APPROXIMATE SAMPLE LOCATIONS AND SITE FEATURES.

APPROXIMATE SCALE:

SEPT. 2022

DATE

FCE

DRAWING NO .:

5

APPENDIX C

TABLES

	Septe	Groun ember 20 a	dwater Ele nd 21, 2022											
Well#	TOC ELEVATION	TOC DEPTH TO WATER (FT)	GW ELEVATION	TOC TOTAL DEPTH OF WELL (FT)	1 WELL VOLUME (GAL.)	APPROX. VOLUME PURGED (GAL.)	Notes							
MW-2	821.04	10.98	810.06	14.95	0.6	0.75	Cloudy and then clear. Duplicate collected.							
MW-3	808.96	14.30	794.66	20.10	0.9	NA	Water level only.							
MW-11	800.12	10.23	789.89	14.76	0.7	NA	Water level only.							
MW06-19OB	V06-19OB 783.57 1.61 781.96 9.87 1.3 NA Water level only. Water le													
MW06-20OB			V	Vell Destroyed	I - Direct Hi	t by Tree								
MW06-25OB	784.55	DRY	NA	10.36	NA	NA	Well dry.							
MW07-27OB	800.27	8.13	792.14	11.41	0.5	NA	Water level only.							
MW06-23BR	818.33	14.88	803.45	21.73	1.1	1.25	Very light grey and then clear. MS/MSD collected.							
MW06-24BR	818.42	16.40	802.02	21.70	0.8	0.875	Light brown and then cloudy.							
MW06-25BR	781.90	13.54	768.36	19.37	0.9	0.875	Clear.							
MW07-27BR	800.54	NA	NA	21.67	NA	NA	Well damaged, unable to gauge well.							
MW08-29BR	780.56	24.06	756.50	28.85	0.8	NA	Water level only.							
MW16-7BR	818.97	14.31	804.66	21.40	1.1	1.0	Clear.							
IOW-1	818.45	14.78	803.67	23.64	1.4	1.5	Very light orange/brown and then clear.							
IOW-2	817.90	18.12	799.78	25.25	1.1	NA	Water level only.							
IOW-3	818.47	13.57	804.90	18.20	0.7	0.75	Very light grey and then clear.							
IOW-4	818.33	6.46	811.87	8.80	0.4	0.5	Brown/orange then light brown/orange and then cloudy. Well dry at 0.5 gal. Well recharge for 10 minutes & then sample collected.							

Notes:

All elevations are feet above mean sea level.

Water levels measured with an electronic water level indicator to the nearest 0.01' & referenced to the top of the PVC well casing.

Wells purged and sampled utilizing low flow techniques with dedicated tubing and a peristaltic pump.

TOC = Top of Casing GW = Groundwater NA = N	ot Applicable NC = Not Co IV = Insufficient Volume
---	--

		Septer	nber 2	20 and 2	1, 2022	Annual G	rou	ndwater Sam	pling E	vent										
	CLASS GA	MW	-2	MW06	-23BR	MW06-24	BR	MW06-25OB	MW06	25BR	MW16	-7BR	ION	V-1	IOW	-3	IOV	V-4	Trip B	Blank
COMPOUND µg/L (ppb)	STANDARD	Sep-	-22	Sep	-22	Sep-22	2	Sep-22	Sep	-22	Sep	-22	Sep	-22	Sep-	22	Sep	-22	Sep	-22
Acetone	50	<10.0	ND	<10.0	ND	<10.0	٧D		<10.0	ND	<10.0	ND	<10.0	ND	<10.0	ND	<10.0	ND	<10.0	ND
Benzene	1	<1.0	ND	<1.0	ND	<1.0 N	٧D		<1.0	ND	<1.0	ND	<1.0	ND	<1.0	ND	<1.0	ND	<1.0	ND
Bromodichloromethane	50	<1.0	ND	<1.0	ND	<1.0 N	٧D		<1.0	ND	<1.0	ND	<1.0	ND	<1.0	ND	<1.0	ND	<1.0	ND
Bromoform	50	<4.0	ND	<4.0	ND	<4.0	ND		<4.0	ND	<4.0	ND	<4.0	ND	<4.0	ND	<4.0	ND	<4.0	ND
Bromomethane	5	<4.0	ND	<4.0	ND	<4.0	ND		<4.0	ND	<4.0	ND	<4.0	ND	<4.0	ND	<4.0	ND	<4.0	ND
Methyl Ethyl Ketone (aka 2-Butanone)	50	<10.0	ND	<10.0	ND	<10.0	ND		<10.0	ND	<10.0	ND	<10.0	ND	<10.0	ND	<10.0	ND	<10.0	ND
Carbon disulfide	60	<1.0	ND	<1.0	ND	<1.0 N	ND		<1.0	ND	<1.0	ND	<1.0	ND	<1.0	ND	<1.0	ND	<1.0	ND
Carbon tetrachloride	5	<1.0	ND	<1.0	ND	<1.0 N	ND		<1.0	ND	<1.0	ND	<1.0	ND	<1.0	ND	<1.0	ND	<1.0	ND
Chlorobenzene	5	<1.0	ND	<1.0	ND	<1.0	٧D		<1.0	ND	<1.0	ND	<1.0	ND	<1.0	ND	<1.0	ND	<1.0	ND
Chloroethane	5	<1.0	ND	<1.0	ND	<1.0	ND		<1.0	ND	<1.0	ND	<1.0	ND	<1.0	ND	<1.0	ND	<1.0	ND
Chloroform	7	<1.0	ND	<1.0	ND	<1.0	ND		<1.0	ND	<1.0	ND	<1.0	ND	<1.0	ND	<1.0	ND	<1.0	ND
Chloromethane	5	<1.0	ND	<1.0	ND	<1.0 N	ND		<1.0	ND	<1.0	ND	<1.0	ND	<1.0	ND	<1.0	ND	<1.0	ND
Dibromochloromethane	50	<1.0	ND	<1.0	ND	<1.0 N	ND		<1.0	ND	<1.0	ND	<1.0	ND	<1.0	ND	<1.0	ND	<1.0	ND
1,1-Dichloroethane	5	1.5		2.9		<1.0 N	٧D		18.5		<1.0	ND	1.2		1.4		<1.0	ND	<1.0	ND
1,2-Dichloroethane	0.6	<1.0	ND	<1.0	ND	<1.0 N	٧D		<1.0	ND	<1.0	ND	<1.0	ND	<1.0	ND	<1.0	ND	<1.0	ND
1,1-Dichloroethene	5	<1.0	ND	5.2		<1.0 N	٧D	Well Dry	7.2		<1.0	ND	1.5		3.3		<1.0	ND	<1.0	ND
1,2-Dichloropropane	1	<1.0	ND	<1.0	ND	<1.0 N	٧D	No Sample	<1.0	ND	<1.0	ND	<1.0	ND	<1.0	ND	<1.0	ND	<1.0	ND
cis-1,3-Dichloropropene	0.4	<1.0	ND	<1.0	ND	<1.0 N	٧D		<1.0	ND	<1.0	ND	<1.0	ND	<1.0	ND	<1.0	ND	<1.0	ND
trans-1,3-Dichloropropene	0.4	<1.0	ND	<1.0	ND	<1.0 N	٧D		<1.0	ND	<1.0	ND	<1.0	ND	<1.0	ND	<1.0	ND	<1.0	ND
Ethylbenzene	5	<1.0	ND	<1.0	ND	<1.0 N	٧D		<1.0	ND	<1.0	ND	<1.0	ND	<1.0	ND	<1.0	ND	<1.0	ND
2-Hexanone	50	<10.0	ND	<10.0	ND	<10.0 N	٧D		<10.0	ND	<10.0	ND	<10.0	ND	<10.0	ND	<10.0	ND	<10.0	ND
Methylene Chloride	5	<1.0	ND	<1.0	ND	<1.0 N	٧D		<1.0	ND	<1.0	ND	<1.0	ND	<1.0	ND	<1.0	ND	<1.0	ND
Methyl Isobutyl Ketone (aka 4-Methyl-2-pentanone)	5	<10.0	ND	<10.0	ND	<10.0 N	ND		<10.0	ND	<10.0	ND	<10.0	ND	<10.0	ND	<10.0	ND	<10.0	ND
Styrene	5	<1.0	ND	<1.0	ND	<1.0 N	ND		<1.0	ND	<1.0	ND	<1.0	ND	<1.0	ND	<1.0	ND	<1.0	ND
1,1,2,2-Tetrachloroethane	5	<1.0	ND	<1.0	ND	<1.0 N	٧D		<1.0	ND	<1.0	ND	<1.0	ND	<1.0	ND	<1.0	ND	<1.0	ND
Tetrachloroethene	5	<1.0	ND	<1.0	ND	<1.0 N	ND		<1.0	ND	<1.0	ND	<1.0	ND	<1.0	ND	<1.0	ND	<1.0	ND
Toluene	5	<1.0	ND	<1.0	ND	<1.0 N	ND		<1.0	ND	<1.0	ND	<1.0	ND	<1.0	ND	<1.0	ND	<1.0	ND
1,1,1-Trichloroethane	5	<1.0	ND	3.2		<1.0 N	ND		95.8		<1.0	ND	2.6		<1.0	ND	<1.0	ND	<1.0	ND
1,1,2-Trichloroethane	1	<1.0	ND	<1.0	ND	<1.0 N	ND		<1.0	ND	<1.0	ND	<1.0	ND	<1.0	ND	<1.0	ND	<1.0	ND
Trichloroethene (TCE)	5	160		1,030	M1	15.4			29.8		<1.0	ND	2,550		446		12.5		<1.0	ND
Vinyl Chloride (VC)	2	51.0	IH	118	IH	5.9	IH		10.9	IH	1.9	IH	11.8	IH	39.1	IH	<1.0	ND IH	<1.0	ND IH
Xylenes (Total)	5	<3.0	ND	<3.0	ND		ND		<3.0	ND	<3.0	ND	<3.0	ND	<3.0	ND	<3.0	ND	<3.0	ND
cis-1,2-Dichloroethene (DCE)	5	75.7		534		18.5			32.3		3.4		140		204		<1.0	ND	<1.0	ND
trans-1,2-Dichloroethene	5	4.5		7.3		1.0			<1.0	ND	<1.0	ND	2.4		3.8		<1.0	ND	<1.0	ND
Total VOCs (μg/L)*		292.7		1,700.6		40.8		No Sample	194.5		5.3		2,709.5		697.6		12.5		ND	
Ethene (µg/L)	Not Applicable	6.6		6.0		<1.0	ND	NS	<1.0	ND	<1.0	ND	<1.0	ND	1.9		<1.0	ND	Not Ana	alyzed
Notes: J - Estimated concentration, greater than the set Method Detection Lin * - Total VOCs does not include any compound(s) detected in the blan B - The analyte was found in an associated blank, as well as the samp NS - No Sample	nit (MDL) and less than the k sample(s).		^ - Instruction c - Calita ND - No	ument relate pration acce of detected	ed QC exc eptability c at or abov	ceeds the cont riteria exceede e the adjusted	rol lim ed for repoi	this analyte. Value ting limit.	estimated	l.	calibratic CH - The accepta IL - This a	on. The r continuir nce limit nalyte e	eported reaning calibrations. The result of	sults sho on for thi ults may econdary	y source ve uld be cons is compoun be biased h y source ver	sidered a d is outs high. ification	an estimate side of Pac criteria lov	ed value. ce Analyti w for the i	ical initial	
IV - Insufficient Volume	-				•	analyzed for,		ot detected.					•		uld be cons					

IV - Insufficient Volume Compound Above Standard

See analytical results for additional qualifiers and complete results.

M1- Matrix spike recovery exceeded QC limits. Back accepted based on LCS recovery.

Overburden Well

																			М	IW-2																
	CLASS GA																																			
COMPOUND µg/L (ppb)	STANDARD	Apr-03	Jan-04	RI 2006		riag oo		Apr-09	Sep-09	Dec-09	Mar-10				Mar-11	Feb-12	Sep-12	Mar-13	June-12	2 Sep-	13 Dec-13						Dec-15	Mar-16							Sep-21	Sep-22
Acetone	50	U	U	U		760 B	-	U	1.6 J	U	U	10 J	14 J	-	U		U	U	U		JU		J 5.4	<1 U										U <10 U		<10.0 ND
Benzene	1	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1 U		J <1 L	<1 U		-		U <1 L				<1 U	<1.0 ND
Bromodichloromethane	50	NS	NS	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1 U		J <1 L	-		-		U <1 L			U <1 U	_	
Bromoform	50	NS	NS	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1 U		J <1 L	-	-	-		U <1 L		-		-	
Bromomethane	5	NS	NS	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1 U	<1 l	J <1 L	<1 U	<1 U	<1 U	l <1 l	U <1 l	J <1 L	J <1	U <1 U	<1 U	<4.0 ND
Methyl Ethyl Ketone (MEK)	50	U	U	U	U	160	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1 U	<10 l	J <10 L	<10 U	<10 U	<1 U	<10	U <10 L	J <10 L	J <10	U <10 U	<10 U	<10.0 ND
(aka 2-Butanone)	00	NO	NO			11						U			-						-														4 11	
Carbon disulfide	60	NS NS	NS NS	U	U	U	U	U	U	U	U	0	U	U	U	U	U	U	U	U	0	U	U	<1 U		J <1 L	-	-	<1 U	-	U <1 U		-	U <1 U		
Carbon tetrachloride	5	-	-		U	U	U	•	U	Ū	U	0	0	v	U	U	U	UU	U	U	U	U	U	<1 U		J <1 L J <1 L	<1 U	<1 U		<1	U <1 U				<1 U	
Chlorobenzene	5	NS NS	NS NS	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	v	U	Ŭ		<1 U				-			U <1 U			-	_	<1.0 ND <1.0 ND
Chloroethane	-		115	U	U	-	U	-	U	U	-	0	0	0	0	-	-	-	-	U	0	U	U	<1 U		J <1 L	<1 U	<1 U	-	-	U <1 L			U <1 U		
Chloroform	7	U	U	U	U	12.0 J	_	U	U	U	U	0	U	U	0	U	U	U	U	U	0	U	U	<1 U		J <1 L	<1 U	<1 U	-	<1	U <1 L			-	<1 U	<1.0 ND
Chloromethane	5	NS	NS	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1 UC		J <1 L	<1 U	<1 U			U <1 U				<1 U	
Dibromochloromethane	50	U	0	U	U	U	U	0	U	U	U	0	0	0	U	U	U	Ŷ	U	U	U	U	U	<1 U		J <1 L	<1 U	<1 U	<1 U		U <1 l			U <1 U	<1 U	<1.0 ND
1,1-Dichloroethane	5	7.4		1.7 J	1.6 J	U	U	6.3 J	U	U	-	7.3 J	7.8 J	13 J	9.1 J	8.5 J	U	6	6.5	20	6.8	2.3	4.4	5.8	4.3	6.5	9.4	10.5	9.0 S	-	4.0	1.4	3.4	4.1	1.6 CH	-
1,2-Dichloroethane	0.6	NS	NS	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1 U			<1 U	<1 U	<1 U	<1	-	J <1 L	-		-	
1,1-Dichloroethene	5	NS	1.98	U	U	U	U	6.3 J	U	U	U	U	U	U	2.0 J	U	U	U	U	U	U	U	U	1.2	<1 l	J <1 L	1.1	1.3	<1 U	l <1 l	U <1 l			1.2	<1 U	<1.0 ND
1,2-Dichloropropane	1	NS	NS	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1 U	<1 l	J <1 L	<1 U	<1 U	<1 U	l <1 l	U <1 l	J <1 l	J <1	U <1 U	<1 U	<1.0 ND
cis-1,3-Dichloropropene	0.4	NS	NS	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1 U	<1 l	J <1 L	<1 U	<1 U	-	l <1 l	U <1 l	J <1 l	J <1	U <1 U	<1 U	
trans-1,3-Dichloropropene	0.4	NS	NS	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1 U	<1 l	J <1 L	<1 U	<1 U	<1 U	l <1 l	U <1 l	J <1 l	J <1		<1 U	<1.0 ND
Ethylbenzene	5	NS	NS	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1 U		J <1 L	<1 U			<1 I	U <1 L			U <1 U	<1 U	<1.0 ND
2-Hexanone	50	NS	NS	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1 U	-						U <10 l	-		U <10 U		
Methylene Chloride	5	NS	NS	U	U	8.3 JE	BU	6.8 J	BU	U	U	4.7 JI	B 9.0 JE	8 4.5 JB	2.6 JE	B U	U	U	U	U	U	U	U	<1 U	<1 l	J <1 L	<1 U	<1 U	<1 U	l <1 l	U <1 l	J <1 l	J <1	U <1 U	<1 U	<1.0 ND
methyl isobutyl ketone (aka 4-Methyl-2-pentanone)	5	NS	NS	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1 U	<10 l	J <10 L	<10 U	<10 U	<1 U	<10	U <10 L	J <10 L	J <10	U <10 U	<10 U	<10.0 ND
Styrene	5	NS	NS	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1 U	<1 l	J <1 L	<1 U	<1 U	<1 U	l <1 l	U <1 l	J <1 l	J <1	U <1 U	<1 U	<1.0 ND
1,1,2,2-Tetrachloroethane	5	NS	NS	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1 U	<1 l	J <1 L	<1 U	<1 U	<1 U	l <1 l	U <1 l	J <1 L	J <1	U <1 U	<1 U	<1.0 ND
Tetrachloroethene	5	NS	NS	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1 U	<1 l	J <1 L	<1 U	<1 U	<1 U	c <1 l	U <1 L	J <1 L	J <1	U <1 U	<1 U	<1.0 ND
Toluene	5	6.2	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	3.2	U	<1 U	<1 l	J <1 L	<1 U	<1 U	<1 U	<1	U <1 l	J <1 l	J <1	U <1 U	<1 U	<1.0 ND
1,1,1-Trichloroethane	5	U	1.73	U	U	U	U	U	1.5 J	U	UQ	U	U	U	U	U	U	U	U	4.8	U	U	1.2	1.2	<1 l	J 1.2 L	<1 U	<1 U	<1 U	l <1 l	U <1 L	J <1 L	J 1.8 (CH 2.1 CH	<1 U	<1.0 ND
1,1,2-Trichloroethane	1	NS	NS	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1 U	<1 l	J <1 L	<1 U	<1 U	<1 U	l <1 l	U <1 L	J <1 l	J <1	U <1 U	<1 U	<1.0 ND
Trichloroethene (TCE)	5	252	221	92	53	U	190	450	31	240	190	170	180	170	130	170	U	55	79	91	D 120	50	100	130	118	166	67.1	94.5	100	99.1	242	150	182	268	329 CH,I	_1 160
Vinyl Chloride (VC)	2	152	79.4	6.8 J	51	U	310	420	9.8	410	160 Q	190	350	120	54	130	U	45	57	19	24	* 4.1	3.9	33	9.7	47.0	109	61.4	78	99.3	43.3	14.3	133	146	1.1 CH	51.0 IH
Xylenes (Total)	5	NS	NS	U	U	U	U	U	U	U	U	U	U	U	U	U	Ŭ	U	U	U	U	U	U	<1 U	<3 l	J <3 L	<3 U	<3 U	<1 U	<3	U <3 L	J <3 L	J <3	U <3 U	<3 U	
cis-1,2-Dichloroethene (DCE)	5	NS	155	16	73	U	400	870	20	670	510	410	290	410	230	160	Ŭ	120	240	39	D 83	62	120	300 D	218	171	200	247	270 D	175	158	111	327	245	78.3 CH	75.7
trans-1,2-Dichloroethene	5	12.9		1.5 J	-	-		29	0.81	24 J	17	16 J		16 J	11	U U	Ŭ	6.6	9.6	9.9	3.9	32	5.3	41	9.2	6.7	14.3	13.2	11	6.8	7.2	4.6	14.2	12.2	4.3 CH.I	-
Total VOCs^ (µg/L)		430.5		118.0	181.9	12	914		63.11		877	793	857.8	729.0	436.1	468.5	U	232.6	392.1	196.7	237.7	133.3	240.2	512.2	359.2	398.4	400.9	427.9	468.0	388.4	454.5	281.3	662.7	678.6	414.3	292.7

Notes: ^ - Total VOC's does not include compounds detected in method blanks and trip blanks. MEK found in August 2008 and January 2009 samples is also excluded because ketones are known to be produced by the reaction of potassium permanganate with chlorinated organic compounds. NS - Compound not analyzed (2003 and 2004 sampling used smaller analyte list).

CH - The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased high.

L1 - Analyte recovery in the LCS was above QC limits. Results for this analyte in associated samples may be biased high.

J - Estimated concentration detected below quantitation limit.

B - The analyte found in an associated blank, as well as the sample.

* - LCS or LCSD exceeds the control limit.

U - Indicates the analyte was analyzed for but not detected.

D - Samples results are obtained from a dilution; the surrogate or matrix spike recoveries reported are calculated from diluted samples.

Q - Outlying QC recoveries were associated with this parameter.
 VOC - Above Standard.
 2003 Data (MW-2 and MW-3 provided by Environmental Products and Services, Inc. 2004 Data (MW-2, MW-3 and MW-7) provided by ERM. All data between 2004 and 2009 provided by S&W Redevelopment of North America, LLC.
 Samples collected in 2006 (RI) and March, April, and June 2008 are pre-ISCO injection. Samples collected in August 2008 are during ISCO injection.

Samples collected from January 2009 through February 2012 are post-2008 ISCO injection. Samples collected from September 2012 through the present are post-2012 ISCO injection.

Overburden Well																													
																MW06-25OB													
COMPOUND µg/L (ppb)	CLASS GA STANDARE	RI 2006	Jun-08	Jan-09	Apr-09	Sep-09	Dec-09	Mar-10	Jun-10	Sep-10	Dec-10	Mar-11	Feb-12	Sep-12	Mar-13	June-13, Sep-13 a Dec-13	& Jun-14	Dec-14	Mar-15	Jun-15	Sep-15 & Dec-15	Mar-16	Jun-16 & Sep-16	Sep-17	Sep-18	Sep-19	Sep-20	Sep-21	Sep-22
Acetone	50	5.7			U	-		U		-	U	U	U	-	48		14	8.1	3.7 U	13.5		<10 U			<10 U			<10 U	
Benzene	1	U			U			U			U	U	U		U		U	U	<1 U	<1 U		<1 U			<1 U			<1 U	
Bromodichloromethane	50	U			U			U			U	U	U		U		U	U	<1 U	<1 U		<1 U			<1 U			<1 U	
Bromoform	50	U			U			U			U	U	U		U		U	U	<1 U	<1 U		<1 U			<1 U			<1 U	
Bromomethane	5	U			U			U			U	U	U		U		U	U	<1 U	<1 U		<1 U			<1 U			<1 U	
Methyl Ethyl Ketone (MEK) (a.k.a. 2-Butanone)	50	U			U			UQ			U	U	U		U		U	1.8	<1 U	<10 U		<10 U			<10 U			<10 U	
Carbon disulfide	60	U			U			U			U	U	U		U		U	U	<1 U	<1 U		<1 U			<1 U			<1 U	
Carbon tetrachloride	5	U			U			U			U	U	U		U		U	U	<1 U	<1 U		4.1	1		<1 U			<1 U	
Chlorobenzene	5	U			U			U			U	U	U		U		U	U	<1 U	<1 U		<1 U	1		<1 U			<1 U	
Chloroethane	5	U			U			U			U	U	U		U		U	U	<1 U	<1 U		<1 U			<1 U			<1 U	
Chloroform	7	U			U			U			U	U	U		U		U	U	<1 U	<1 U		<1 U			<1 U			<1 U	
Chloromethane	5	U			U			U			U	U	U		U		16	U		<1 U		<1 U			<1 U			<1 U	
Dibromochloromethane	50	U			U			U			U	U	U		U		U	U	<1 U	<1 U		<1 U			<1 U			<1 U	
1,1-Dichloroethane	5	14	Insufficient	Insufficient	14	Insufficient	Insufficient	13	Insufficient	Insufficient	8.8 J	3.4 J	3.7	Insufficient	3.2	Insufficient	9.1	9.5	1.6	13	Insufficient	2.0	Insufficient	Insufficient	2.7	Insufficient	Insufficient	5.4 CH	Insufficient
1,2-Dichloroethane	0.6	U	Volume	Volume	U	Volume	Volume	U	Volume	Volume	U	U	U	Volume	U	Volume	U	U	<1 U	<1 U	Volume	<1 U	Volume	Volume	<1 U	Volume	Volume	<1 U	Volume
1,1-Dichloroethene	5	15	No	No	6.8	No	No	5.4	No	No	3.9 J	2.1 J	U	No	U	No	3.5	U	<1 U	2.6	No	<1	No	No	<1 U	No	No	<1 U	No
1,2-Dichloropropane	1	U	Sample	Sample	U	Sample	Sample	U	Sample	Sample	U	U	U	Sample	U	Sample	U	U	<1 U	<1 U	Sample	<1 U	Sample	Sample	<1 U	Sample	Sample	<1 U	Sample
cis-1,3-Dichloropropene	0.4	U			U			U			U	U	U		U		U	U	<1 U	<1 U		<1 U			<1 U			<1 U	
trans-1,3-Dichloropropene	0.4	U			U			U			U	U	U		U		U	U	<1 U	<1 U		<1 U			<1 U			<1 U	
Ethylbenzene	5.0	U			U			U			U	U	U		U		U	U	<1 U	<1 U		<1 U			<1 U			<1 U	
2-Hexanone	50	U			U			UQ			U	U	U		U		U	U		<10 U		<10 U			<10 U			<10 U	
Methylene Chloride	5	U			U			U			2.0 JB	U	U		U		U	U	<1 U	<1 U		<1 U			<1 U			<1 U	
methyl isobutyl ketone (a.k.a. 4-Methyl-2-pentanone)		U			U			UQ			U	U	U		U		U	U	<1 U	<10 U		<10 U			<10 U			<10 U	
Styrene	5	U			U			U			U	U	U		U		U	U	<1 U	<1 U		<1 U			<1 U			<1 U	
1,1,2,2-Tetrachloroethane	5	U			U			U			U	U	U		U		U	U	<1 U	<1 U		<1 U	1		<1 U			<1 U	
Tetrachloroethene	5	U			U			U			U	U	U		U		U	U	<1 U	<1 U		<1 U			<1 U			<1 U	
Toluene	5	U			U]		U			U	U	U		U		U	U	<1 U	<1 U]	<1 U]		<1 U			<1 U	
1,1,1-Trichloroethane	5	240			170			150			170	95	98		93		180	170	50	120		31.9			13.0			15.2 CH,L1	
1,1,2-Trichloroethane	1	U			U	I		U			U	U	U		U		U	U	<1 U	<1 U]	<1 U			<1 U			<1 U	
Trichloroethene (TCE)	5	23			18		1	18			22	9.2	10		4.3		14	24	4.6	14.5		4.6			3.3			1.9 CH,L1	
Vinyl Chloride (VC)	2	2.5			U	Ī		UQ			U	U	U		U		0.92	U	<1 U	<1 U		<1 U]		<1 U			<1 U]
Xylenes (Total)	5	U	l de la constante de		U	1		U			U	U	U	1	U	1	U	U	<1 U	<3 U		<3 U	1		<3 U			<3 U	1
cis-1,2-Dichloroethene (DCE)	5	59			25	1		25			33	7.4	8.2		1.7]	16	31	2.3	28.4		4.3			2.1			1.4 CH	
trans-1,2-Dichloroethene	5	12	·		U	T		U			U	U	U		U		U	U	<1 U	<1 U		<1 U			<1 U			<1 U	
Total VOCs^ (µg/L)		371.2	-	-	234	-	-	211	-	-	237.7	117.1	119.9	-	102.2	-	253.5	242.6	62.2	192.0	-	46.9	-	-	21.1	-	-	23.9	-

Notes:

^ - Total VOC's does not include compounds detected in method blanks and trip blanks. MEK found in August 2008 and January 2009 samples is also excluded because ketones are known to be produced by the reaction of potassium permanganate with chlorinated organic compounds. NS - Compound not analyzed (2003 and 2004 sampling used smaller analyte list).

CH - The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased high.

L1 - Analyte recovery in the LCS was above QC limits. Results for this analyte in associated samples may be biased high.

J - Estimated concentration detected below quantitation limit.

B - The analyte found in an associated blank, as well as the sample.

* - LCS or LCSD exceeds the control limit.

U - Indicates the analyte was analyzed for but not detected.

D - Samples results are obtained from a dilution; the surrogate or matrix spike recoveries reported are calculated from diluted samples.

Q - Outlying QC recoveries were associated with this parameter. VOC - Above Standard. 2003 Data (MW-2 and MW-3 provided by Environmental Products and Services, Inc. 2004 Data (MW-2, MW-3 and MW-7) provided by ERM. All data between 2004 and 2009 provided by S&W Redevelopment of North America, LLC.

Samples collected in 2006 (RI) and March, April, and June 2008 are pre-ISCO injection. Samples collected in August 2008 are during ISCO injection. Samples collected from January 2009 through February 2012 are post-2008 ISCO injection. Samples collected from September 2012 through the present are post-2012 ISCO injection.

0		٦																																
Overburden Well																																		
																		101	N-4															
COMPOUND µg/L (ppb)	CLASS GA STANDARD		Jun-08	Aug-08	Jan-09	Apr-09	Sep-09	Dec-09	Mar-10	Jun-10	Sep-10	Dec-10	Mar-11	Feb-12	Sep-12	Mar-13	Jun-13	Sep-13	Dec-13	Jun-14	Dec-14	Mar-1	i Jun-1	5 Sep-15	5 Dec-1	Mar-1	6 Jun-1	6 Sep-16	Sep-17	Sep-18	Sep-19	Sep-20	Sep-21	Sep-22
Acetone	50		45 JB	1.800 E	3 28 *	U	1.6	J 2.6 J	U	U	U	U	U	υQ	U Q	U	U	U	U	3.9	J 4.8	<1	J <10	U <10 l	J <10	J <10	J <10	U <10 U	48.9 B	<10 U	<10 U	<10 U	<10 U	<10.0 ND
Benzene	1		U	U	U	U	U	U	U	U	U	U	U	U	U	Ŭ	Ŭ	Ŭ	Ŭ	U	U		-											<1.0 ND
Bromodichloromethane	50		U	U	U	U	U	U	U	U	U	U	U	U	U	U	Ū	U	Ū	U	U	<1	J <1		J <1 I			U <1 U			<1 U	1		<1.0 ND
Bromoform	50		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1	J <1	U <1 (J <1 I	J <1	J <1	U <1 U	<1 U	<4.0 ND				
Bromomethane	5		U	U	2.4 J	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1	J <1	U <1 l	J <1 I	J 2.2	J <1	U <1 U	<1 U	<4.0 ND				
Methyl Ethyl Ketone (MEK) (a.k.a. 2-Butanone)	50		U	U	5.5 J	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1	J <10	U <10 l	J <10	J <10	J <1	U <10 U	<10 U	<10.0 ND				
Carbon disulfide	60		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1	J <1	U <1 L	J <1 I	J <1	J <1 l	Jc <1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1.0 ND
Carbon tetrachloride	5		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1	J <1	U <1 l	J <1 I	J <1	J <1	U <1 U	<1 U	<1.0 ND				
Chlorobenzene	5	1	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1	J <1	U <1 L	J <1 I	J <1	J <1	U <1 U	<1 U	<1.0 ND				
Chloroethane	5		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1	J <1	U <1 l	J <1 I	J <1	J <1 l	Jc <1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1.0 ND
Chloroform	7		U	10 、	JU	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1	J <1	U <1 l	J <1 I	J <1	J <1	U <1 U	<1 U	<1.0 ND				
Chloromethane	5		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1 L	IC <1	U <1 l	J <1 I	J <1	J <1	U <1 U	<1 U	<1.0 ND				
Dibromochloromethane	50		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1	J <1	U <1 l	J <1 I	J <1	J <1	U <1 U	<1 U	<1.0 ND				
1,1-Dichloroethane	5	Not Yet	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1	J <1	U <1 L	J <1 I	J <1	J <1 l	JS <1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1.0 ND
1,2-Dichloroethane	0.6	Installed	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1	J <1	U <1 l	J <1 I	J <1	J <1	U <1 U	<1 U	<1.0 ND				
1,1-Dichloroethene	5		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1	J <1	U <1 l	J <1 I	J <1	J <1	U <1 U	<1 U	<1.0 ND				
1,2-Dichloropropane	1		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1	J <1	U <1 l	J <1 I	J <1	J <1	U <1 U	<1 U	<1.0 ND				
cis-1,3-Dichloropropene	0.4		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1	J <1	U <1 l	J <1 I	J <1	J <1	U <1 U	<1 U	<1.0 ND				
trans-1,3-Dichloropropene	0.4		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1	J <1	U <1 l	J <1 I	J <1	J <1	U <1 U	<1 U	<1.0 ND				
Ethylbenzene	5.0		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1	J <1	U <1 l	J <1 I	J <1	J <1	U <1 U	<1 U	-	<1 U	-	-	<1.0 ND
2-Hexanone	50		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1	J <10	U <10 l	J <10 I	J <10	J <1	U <10 U	<10 U	<10.0 ND				
Methylene Chloride	5		3.9 JB	18 J	ΒU	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1	J <1	U <1 l	J <1 I	J <1	J <1	U <1 U	<1 U	<1 U	<1 U	1.2 U	<1 U	<1.0 ND
methyl isobutyl ketone			U	U	U	U	U	U	U	U	U	U	U	U U	υ	U	U	U	U	U	U	<1	J <10	U <10 I	J <10	1 <10	1 <1	U <10 U	<10 U	<10.0 ND				
(a.k.a. 4-Methyl-2-pentanone)			-	Ŭ	-		Ű	Ű	Ű	-	-	Ű	, e	Ŭ	Ű	•	-	-	Ũ	Ŭ	Ű													
Styrene	5		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U		J <1	-	J <1 I	-	-		_	-	_	-	-	<1.0 ND
1,1,2,2-Tetrachloroethane	5		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1		U <1 L			-	U <1 U	_		<1 U	1		<1.0 ND
Tetrachloroethene	5		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1	-	-	J <1	-	J <1 l		_	-	-	-	-	<1.0 ND
Toluene	5		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1	-	U <1 L	J <1	J <1		U <1 U	<1 U				-	<1.0 ND
1,1,1-Trichloroethane	5	-	U	U	U	U	U	U	UQ		U	U	U	U	U	U	U	U	U	U	U	<1		U <1 L				U <1 U	<1 U	<1 U	<1 U	-	-	<1.0 ND
1,1,2-Trichloroethane	1		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1		U <1 l		_	-	U <1 U		1. 0				<1.0 ND
Trichloroethene (TCE)	5	4	120	U	43	34	63	52	16	31	89	20	19	20	U	U	26	23	28	29	44	62	50	128	18.5	33.2	110	69.0	64.4	43.5	34.6		16.7 H1	-
Vinyl Chloride (VC)	2	4	U	U	U	U	U	U	UQ		U	U	U	U	U	U	U	U	U	U	U	3.9	<1		J <1 I	-	-		-	-	-	-	-	<1.0 ND IH
Xylenes (Total)	5		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1		U <3 l		_	J <1							<3.0 ND
cis-1,2-Dichloroethene (DCE)	5		25 J	U	3.1 J	3.2 J	4.0	J 3.1 J	U	2.3 J	5.6	1.1 J	1.2 J	U	U	14	U	1.4	2.4	1.7	7.3	23	10.3	15.8	1.9	5.4	17	9.9	15.4	5.5	11.1	3.3	1.7 H1	<1.0 ND
trans-1,2-Dichloroethene	5		U	U	U	U	U	U	U	U	U	U	U	U	U	ND	U	U	U	U	U	<1	J <1	U 1.1 l	J <1 I	J <1	J 1.8	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1.0 ND
Total VOCs^ (µg/L)		-	145	10	48.5	37.2	68.6	57.7	16	33.3	94.6	21.1	20.2	20.0	U	14.0	26.0	24.4	30.4	34.6	56.1	88.9	60.3	144.9	20.4	40.8	128.8	78.9	79.8	49.0	45.7	25.0	18.4	12.5

Notes: - Total VOC's does not include compounds detected in method blanks and trip blanks. MEK found in August 2008 and January 2009 samples is also excluded because ketones are known to be produced by the reaction of potassium permanganate with chlorinated organic compounds. NS - Compound not analyzed (2003 and 2004 sampling used smaller analyte list). H1 - Analysis conducted outside of EPA method holding time.

J - Estimated concentration detected below quantitation limit.

B - The analyte found in an associated blank, as well as the sample.

* - LCS or LCSD exceeds the control limit.

U - Indicates the analyte was analyzed for but not detected.

D - Samples results are obtained from a dilution; the surrogate or matrix spike recoveries reported are calculated from diluted samples.

Q - Outlying QC recoveries were associated with this parameter.

VOC - Above Standard.

2003 Data (MW-2 and MW-3 provided by Environmental Products and Services, Inc. 2004 Data (MW-2, MW-3 and MW-7) provided by ERM. All data between 2004 and 2009 provided by S&W Redevelopment of North America, LLC. Samples collected in 2006 (RI) and March, April, and June 2008 are pre-ISCO injection. Samples collected in August 2008 are during ISCO injection.

Samples collected from January 2009 through February 2012 are post-2008 ISCO injection. Samples collected from September 2012 through the present are post-2012 ISCO injection.

Table No. 3: Page 4 of 9 Bedrock Wells Summary of Groundwater VOC Analytical Results.

Bedrock Well																									
													Ν	NW06	6-23	BR									
COMPOUND µg/L (ppb)	CLASS GA STANDARD	RI 20	06	Sep-	-15	Dec	-15	Mar-	16	Jun	-16	Sep	-16	Sep	-17	Sep-	·18	S	ep-19	Sep	o-20	Se	ep-21	Sep-	22
Acetone	50	<10	U	<10	U	<10	U	<10	U	<10	U	<10	U	73.6	В	<10	U	<10	U	<10	U	<10	U	<10.0	ND
Benzene	1	<5	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1.0	ND
Bromodichloromethane	50	<5	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1.0	ND
Bromoform	50	<5	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<4.0	ND
Bromomethane	5	<5	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<4.0	ND
Methyl Ethyl Ketone (MEK) (a.k.a. 2-Butanone)	50	<10	U	<10	U	<10	U	<10	U	<1	U	<10	U	<10	U	<10	U	<10	U	<10	U	<10	U	<10.0	ND
Carbon disulfide	60	<5	U	<1	U	<1	U	<1	U	<1	Uc	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1.0	ND
Carbon tetrachloride	5	<5	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1.0	ND
Chlorobenzene	5	<5	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1.0	ND
Chloroethane	5	<5	U	<1	U	<1	U	<1	U	<1	Uc	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1.0	ND
Chloroform	7	<5	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1.0	ND
Chloromethane	5	<5	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1.0	ND
Dibromochloromethane	50	<5	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1.0	ND
1,1-Dichloroethane	5	<5	U	2.4		1.8		2.1		2.0	S	1.9		<1	U	1.8		2.0	MH	2.0		3.3	CH,MH	2.9	
1,2-Dichloroethane	0.6	<5	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1.0	ND
1,1-Dichloroethene	5	<5	U	2.3		1.8		1.4		<1	U	1.5		<1	U	1.3		<1	U	1.9		5.4	CH	5.2	
1,2-Dichloropropane	1	<5	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1.0	ND
cis-1,3-Dichloropropene	0.4	<5	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1.0	ND
trans-1,3-Dichloropropene	0.4	<5	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1.0	ND
Ethylbenzene	5	<5	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1.0	ND
2-Hexanone	50	<10	U	<10	U	<10	U	<10	U	<1	U	<10	U	<10	U	<10	U	<10	U	<10	U	<10	U	<10.0	ND
Methylene Chloride	5	<5	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	1.6		1.4		<1	U	<1.0	ND
methyl isobutyl ketone (a.k.a. 4-Methyl-2-pentanone)		<10	U	<10	U	<10	U	<10	U	<1	U	<10	U	<10	U	<10	U	<10	U	<10	U	<10	U	<10.0	ND
Styrene	5	<5	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1.0	ND
1,1,2,2-Tetrachloroethane	5	<5	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1.0	ND
Tetrachloroethene	5	<5	U	<1	U	<1	U	<1	U	<1	Uc	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1.0	ND
Toluene	5	<5	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1.0	ND
1,1,1-Trichloroethane	5	<5	U	6.0		6.4		4.6		4.3		5.8		4.8		3.7		4.3	CH,MH	4.3		4.5	CH,L1	3.2	
1,1,2-Trichloroethane	1	<5	U	<1	U		U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1.0	ND
Trichloroethene (TCE)	5	590		1,070		925		855		950		913		816		598		390		781			CH,L1		
Vinyl Chloride (VC)	2	46		9.8		5.5		2.1		1.2		2.9		1.9		6.6		15.6		57.2		57.4	CH,MH	-	IH
Xylenes (Total)	5	<5	U	1	U	<3	U	<3	U	<1	U	<3	U	<3	U	<3	U	<3	U	<3	U	<3	U	<3.0	
cis-1,2-Dichloroethene (DCE)	5	420	Ū	170	5	131	<u> </u>	114	5	75		105	-	67.6	-	163	-	107	MH		MH		CH,MH	534	
trans-1,2-Dichloroethene	5	<5	U			5.9		3.4		1.7		1.9		1.8		2.1		1.9		2.9		9.4	CH,L1	7.3	
Total VOCs^ (µg/L)		1,056.0		1,265	5.0	1,077	7.4	982.6		1,034	4.2	1,032	2.0	892.1		776.5		522.4		1,058	3.3	2,257.		1,700.6	3

Notes:

^ - Total VOC's does not include compounds detected in method blanks.

NA - Data not available.

J - Estimated concentration detected below quantitation limit.

U - Indicates the analyte was analyzed for but not detected.

B - The analyte found in an associated blank, as well as the sample.

H1 - Analysis conducted outside of EPA method holding time.

CH - The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased high. MH - Matrix spike recovery and/or matrix spike duplicate recovery was above laboratory limits. Results may be biased high.

L1 - Analyte recovery in the LCS was above QC limits. Results for this analyte in associated samples may be biased high.

VOC - Above Standard.

Samples collected in 2006 (RI) and March, April, and June 2008 are pre-ISCO injection. Samples collected from September 2012 through the present are post-2012 ISCO injection.

Bedrock We	ell -																																		
																			MW06-24	4BR															
COMPOUND	µg/L (ppb)	CLASS GA Standard	RI 2006	Jun-08	Aug-0	8 Jan-09	Apr-0	9 Sep	09 Dec-09	Mar-10	Jun-10	Sep-10	Dec-10	Mar-1	1 Feb-12	Sep-12	Mar-13	Jun-13	Sep-13	Dec-13	Jun-14	Dec-14	Mar-15	Jun-15	Sep-15	Dec-15	Mar-16	Jun-16	Sep-16	Sep-17	Sep-18	Sep-19	Sep-20	Sep-21	Sep-22
Acetone		50	U	U	18.0	ΒU	U	4.1	J 2.8	JU	U	U	U	U	U	U		11.0	9.2 J	U	3.1 J	3.6	<1 U	<10 U	<10 U	<10 U	<10 U	<10 U	<10 U	63.4 B	<10 U	<10	<10 U	<10 U	<10.0 ND
Benzene		1	U	U	U	U	U	U	U	U	U	U	U	U	U	U		U	U	U	U	U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1	<1 U	<1 U	<1.0 ND
Bromodichlorome	ethane	50	U	U	U	U	U	U	U	U	U	U	U	U	U	U		U	U	U	U	U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1	<1 U	<1 U	<1.0 ND
Bromoform		50	U	U	1.3	JU	U	U	U	U	U	U	U	U	U	U	1	U	U	U	U	U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1	<1 U	<1 U	<4.0 ND
Bromomethane		5	U	U	U	U	U	U	U	U	U	U	U	U	U	U		U	U	U	U	U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1	<1 U	<1 U	<4.0 ND
Methyl Ethyl Keto (a.k.a. 2-Butanon		50	U	U	U	U	U	U	U	UQ	U	U	U	U	U	U		2.9 J	2.6 J	U	U	U	<1 U	<10 U	<10 U	<10 U	<10 U	<1 U	<10 U	<10 U	<10 U	<10	<10 U	<10 U	<10.0 ND
Carbon disulfide	,	60	U	U	U	U	U	U	U	U	U	U	U	U	U	U		U	U	U	U	U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 Uc	<1 U	<1 U	<1 U	<1	<1 U	<1 U	<1.0 ND
Carbon tetrachlor	ride	5	U	U	U	U	U	U	U	U	U	U	U	U	U	U	1	U	U	U	U	U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1	<1 U	<1 U	<1.0 ND
Chlorobenzene		5	U	U	U	U	U	U	U	U	U	U	U	U	U	U		U	U	U	U	U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1	<1 U	<1 U	<1.0 ND
Chloroethane		5	U	U	U	U	U	U	U	U	U	U	U	U	U	U		U	U	U	U	U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 Uc	<1 U	<1 U	<1 U	<1	<1 U	<1 U	<1.0 ND
Chloroform		7	U	U	U	U	U	U	U	U	U	U	U	U	U	U		U	U	U	U	U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1	<1 U	<1 U	<1.0 ND
Chloromethane		5	U	U	U	U	U	U	U	U	U	U	U	U	U	U		U	U	U	16	U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1	<1 U	<1 U	<1.0 ND
Dibromochlorome	ethane	50	U	U	U	U	U	U	U	U	U	U	U	U	U	U		U	U	U	U	U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1	<1 U	<1 U	<1.0 ND
1,1-Dichloroethar	ne	5	U	U	U	U	U	U	U	U	U	U	U	U	U	U		U	U	U	U	U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 US	<1 U	<1 U	<1 U	<1	<1 U	<1 U	<1.0 ND
1,2-Dichloroethar	ne	0.6	U	U	U	U	U	U	U	U	U	U	U	U	U	U		U	U	U	U	U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1	<1 U	<1 U	<1.0 ND
1,1-Dichloroether	ne	5	U	U	U	U	U	U	U	U	U	U	U	U	U	U		U	U	U	U	U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U		<1 U	<1 U	<1.0 ND
1,2-Dichloropropa		1	U	U	U	U	U	U	U	U	U	U	U	U	U	U		U	U	U	U	U	-	<1 U	<1 U	<1 U		<1 U	<1 U	<1 U	<1 U		<1 U	-	<1.0 ND
cis-1,3-Dichloropi	ropene	0.4	U	U	U	U	U	U	U	U	U	U	U	U	U		No Sample	U	U	U	U	U		<1 U		<1 U	<1 U		<1 U	<1 U		<1	<1 U	-	<1.0 ND
trans-1,3-Dichloro	opropene	0.4	U	U	U	U	U	U	U	U	U	U	U	U	U	-	Collected	U	U	U	U	U	<1 U			<1 U	<1 U	-	<1 U	_			<1 U		<1.0 ND
Ethylbenzene		5.0	U	U	U	U	U	U	U	U	U	U	U	U	U	U	Permanganate	U	U	U	U	U	-	<1 U	-	<1 U		-	<1 U	<1 U	<1 U		<1 U	-	<1.0 ND
2-Hexanone		50	U	U	U	U	U	U	U	UQ	-	U	U	U	U	U	Present	U	U	U	U	U	-					-		<10 U		-	<10 U		<10.0 ND
Methylene Chlorid		5	U	U	U	U	1.7	JB U	U	U	U	U	U	U	U	U		U	U	U	U	U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	1.2	1.3	<1 U	<1.0 ND
methyl isobutyl ke (a.k.a. 4-Methyl-2			U	U	U	U	U	U	U	UQ	U	U	U	U	U	U		U	U	U	U	U	<1 U	<10 U	<10 U	<10 U	<10 U	<1 U	<10 U	<10 U			<10 U	<10 U	<10.0 ND
Styrene		5	U	U	U	U	U	U	U	U	U	U	U	U	U	U		U	U	U	U	U		<1 U		<1 U			<1 U	<1 U	<1.0 ND				
1,1,2,2-Tetrachlo	roethane	5	U	U	U	U	U	U	U	U	U	U	U	U	U	U		U	U	U	U	U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U			<1 U	<1 U	<1.0 ND
Tetrachloroethen	e	5	U	U	U	U	U	U	U	U	U	U	U	U	U	U		U	U	U	U	U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 Uc	<1 U	<1 U	<1 U	<1	<1 U	<1 U	<1.0 ND
Toluene		5	U	U	U	U	U	U	U	U	U	U	U	U	U	U		U	U	U	U	U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1	<1 U	<1 U	<1.0 ND
1,1,1-Trichloroeth	nane	5	U	U	U	U	U	U	U	U	U	U	U	U	U	U		U	U	U	U	U	1.4	<1 U	<1	<1 U	<1 U	-							
1,1,2-Trichloroeth	nane	1	U	U	U	U	U	U	U	U	1.6 J	U	U	U	U	U		U	U	U	U	U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	<1	<1 U	<1 U	<1.0 ND
Trichloroethene (TCE)	5	2,200	88	U	37	220	44	69	27	76	55	48	31	31	U]	9.4	6.9	39	18	47	33	3.9	24.8	46.5	18.9	34	35.6	43.7	8.4	90.8	12.9	21.2 CH,L'	1 15.4
Vinyl Chloride (V0	C)	2	200 J	7.5	U	2 .	J 16	7.1	J 13	UQ	9.5	12	5.1	U	U	U]	U	U	12	2	8.2	3.6	<1 U	3.1	8.3	1.6	2.6	6.1	16.4	3.0	2.2	1.2	2.0 CH	5.9 IH
Xylenes (Total)		5	U	U	U	U	U	U	U	U	U	U	U	U	U	U]	U	U	U	U	U	<1 U	<3 U	<3 U	<3 U	<3 U	<1 U	<3 U	<3 U	<3 U	<3	<3 U	<3 U	<3.0 ND
cis-1,2-Dichloroet	thene (DCE)	5	3,700	180	U	25	330	78	140	4.1	170	140	67	8.3	14	U	1	4.9	4.8	83	16	99	30	2.3	18.5	71.6	14.5	32	50.8	87.2	10.0	16.8	16.8	21.3 CH	18.5
trans-1,2-Dichloro	pethene	5	79 J	4 J	U	1 .	J 6	J 2	J 3.0 .	JU	3.7 J	2.9 J	1.5 .	JU	U	U	1	U	U	1.8	U	1.6	<1 U	<1 U	1.2	4.2	<1	<1 U	1.6	2.4	<1 U	<1	<1 U	<1 U	1.0
Total VOCs^ (µg/	(L)		6,179	279.6	1.3	64.8	571.7	135.2	227.8	31.1	260.8	209.9	121.6	39.3	45.0	U	NA	28.2	23.5	135.8	55.1	159.4	68.0	6.2	47.6	130.6	35.0	68.6	94.1	149.7	21.4	111.0	30.9	44.5	40.8

Notes: ^ - Total VOC's does not include compounds detected in method blanks. MEK found in August 2008 and January 2009 samples is also excluded because ketones are known to be produced by the reaction of potassium permanganate with chlorinated organic compounds. NS - Compound not analyzed (2003 and 2004 sampling used smaller analyte list). CH - The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased high.

CH - The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased high.

L1 - Analyte recovery in the LCS was above QC limits. Results for this analyte in associated samples may be biased high.

J - Estimated concentration detected below quantitation limit.

B - The analyte found in an associated blank, as well as the sample.

* - LCS or LCSD exceeds the control limit.

U - Indicates the analyte was analyzed for but not detected.

D - Samples results are obtained from a dilution; the surrogate or matrix spike recoveries reported are calculated from diluted samples. <u>Q</u> - Outlying QC recoveries were associated with this parameter.

VOC - Above Standard.

2003 Data (MW-2 and MW-3 provided by Environmental Products and Services, Inc. 2004 Data (MW-2, MW-3 and MW-7) provided by ERM. All data between 2004 and 2009 provided by S&W Redevelopment of North America, LLC.

Samples collected in 2006 (R) and March, April, and June 2008 are pre-ISCO injection. Samples collected in August 2008 are during ISCO injection.

Samples collected from January 2009 through February 2012 are post-2008 ISCO injection. Samples collected from September 2012 through the present are post-2012 ISCO injection.

Bedrock Well																																
																		MW06-25B	R													
COMPOUND µg/L (p	-	LASS GA ANDARD	RI 2006	Mar-08	Jun-08	Jan-09	Apr-09	9 Sep-	09 Dec-0	9 Mar-10	Jun-10	Sep-10	Dec-10	Mar-11	Feb-12	Sep-12	Mar, Jun, Sep & Dec-13	Jun-14	Dec-14	Mar-15	Jun-15	Sep-15	Dec-15	Mar-16	Jun-16	Sep-16	6 Sep-17	Sep-18	Sep-19	Sep-20	Sep-21	Sep-22
Acetone		50	U	U		U	U	4.5	JU	U	U	U	U	5.8 J	UQ	U			4.6	<1 U	<10 U	<10 U	<10 U	<10 U	<10 L	<10	U <10 U	J <10 U	<10 U	<10 U	<10 U	<10.0 ND
Benzene		1	U	U		U	U	U	U	U	U	U	U	U	U	U			U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 L	<1	U <1 U	J <1 U	<1 U	<1 U	<1 U	<1.0 ND
Bromodichloromethane		50	U	U		U	U	U	U	U	U	U	U	U	U	U			U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 L	<1	U <1 U	J <1 U	<1 U	<1 U	<1 U	<1.0 ND
Bromoform		50	U	U		U	U	U	U	U	U	U	U	U	U	U			U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 L	<1	U <1 U	J <1 U	<1 U	<1 U	<1 U	<4.0 ND
Bromomethane		5	U	U		U	U	U	U	U	U	U	U	U	U	U			U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 L	<1 l	U <1 U	J <1 U	<1 U	<1 U	<1 U	<4.0 ND
Methyl Ethyl Ketone (MEK) (a.k.a. 2-Butanone))	50	U	U		U	U	U	U	U	U	U	U	U	U	U			U	<1 U	<10 U	<10 U	<10 U	<10 U	<1 L	<10 (U <10 U	J <10 U	<10 U	<10 U	<10 U	<10.0 ND
Carbon disulfide		60	U	U		U	U	U	U	U	U	U	U	U	U	U			U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 L	<1 l	U <1 U	J <1 U	<1 U	<1 U	<1 U	<1.0 ND
Carbon tetrachloride		5	U	U		U	U	U	U	U	U	U	U	U	U	U			U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 L	<1 l	U <1 U	J <1 U	<1 U	<1 U	<1 U	<1.0 ND
Chlorobenzene		5	U	U		U	U	U	U	U	U	U	U	U	U	U			U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 L	<1	U <1 U	J <1 U	<1 U	<1 U	<1 U	<1.0 ND
Chloroethane		5	U	U		U	U	U	U	U	U	U	U	U	U	U			U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	c <1 l	U <1 U	J <1 U			<1 U	<1.0 ND
Chloroform		7	U	U		U	U	U	U	U	U	U	U	U	U	U			U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 L	<1 l	U <1 U	J <1 U	<1 U	<1 U	<1 U	<1.0 ND
Chloromethane		5	U	U		U	U	U	U	U	U	U	U	U	U	U			U	<1 UC	C <1 U	<1 U	<1 U	<1 U	<1 L	<1 l	U <1 L	J <1 U	<1 U	<1 U	<1 U	<1.0 ND
Dibromochloromethane		50	U	U		U	U	U	U	U	U	U	U	U	U	U			U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 L	<1 l	U <1 U	J <1 U	<1 U	<1 U	<1 U	<1.0 ND
1,1-Dichloroethane		5	30	28		38	24	35	29	17	29	27	31	23	23	24 J			26 J	25	22.6	19.7	18.6	22.4	20 S	21.5	17.2	17.7	16.1	14.9	19.9 CH	18.5
1,2-Dichloroethane		0.6	U	U		U	U	U	U	U	U	U	U	U	U	U			U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 L	<1	U <1 U	J <1 U	<1 U	<1 U	<1 U	<1.0 ND
1,1-Dichloroethene		5	15	20		25 .	J 22	26	22	10 J	18	17	20	23	U	U			13	15	10.9	8.1	9.3	13.6	6.8	10.2	8.3	6.8	7.5	5.2	7.2 CH	7.2
1,2-Dichloropropane		1	U	U	Insufficient	t U	U	U	U	U	U	U	U	U	U	U			U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 L	<1 l	U <1 L	J <1 U	<1 U	<1 U	<1 U	<1.0 ND
cis-1,3-Dichloropropene		0.4	U	U	Volume	U	U	U	U	U	U	U	U	U	U	U	No Sample	No Sample	U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 L	<1 l	U <1 U	J <1 U	<1 U	<1 U	<1 U	<1.0 ND
trans-1,3-Dichloropropene		0.4	U	U		U	U	U	U	U	U	U	U	U	U	U	Collected	Collected	U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 L	<1 l	U <1 U	J <1 U	<1 U	<1 U	<1 U	<1.0 ND
Ethylbenzene		5.0	U	U		U	U	U	U	U	U	U	U	U	U	U	Permanganate	Permanganate	U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 L	<1 l	U <1 L	J <1 U	<1 U	<1 U	<1 U	<1.0 ND
2-Hexanone		50	U	U		U	U	U	U	U	U	U	U	U	U	U	Present	Present	U	<1 U	<10 U	<10 U	<10 U	<10 U	<1 L	<10 l	U <10 U	J <10 U	<10 U	<10 U	<10 U	<10.0 ND
Methylene Chloride		5	U	2.6 JB		U	U	U	4.4	JU	U	U	2.2 JE	3 U	U	U			U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 L	<1 l	U <1 U	J <1 U	<1 U	1.1 U	<1 U	<1.0 ND
methyl isobutyl ketone (a.k.a. 4-Methyl-2-pentanor	ne)		U	U		U	U	U	U	U	U	U	U	U	U	U			U	<1 U	<10 U	<10 U	<10 U	<10 U	<1 L	<10 l	U <10 U	J <10 U	<10 U	<10 U	<10 U	<10.0 ND
Styrene		5	U	U		U	U	U	U	U	U	U	U	U	U	U			U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 L	<1 l	U <1 U	J <1 U	<1 U	<1 U	<1 U	<1.0 ND
1,1,2,2-Tetrachloroethane		5	U	U		U	U	U	U	U	U	U	U	U	U	U			U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 L	<1 l	U <1 U	-		<1 U	<1 U	<1.0 ND
Tetrachloroethene		5	U	U		U	U	U	U	U	U	U	U	U	U	U			U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 U	c <1 l	U <1 U	J <1 U	<1 U	<1 U	<1 U	<1.0 ND
Toluene		5	U	U		U	U	U	U	U	U	U	U	U	U	U			U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 L	<1 l	U <1 U	J <1 U	<1 U	<1 U	<1 U	<1.0 ND
1,1,1-Trichloroethane		5	U	270		420	280	290	290	180 Q	210	210	280	310	240	200			170	230 D	156 D	123	168	187	150	150	134	117	119 CH	I 83.2	116 CH,L1	1 95.8
1,1,2-Trichloroethane		1	240	U	l	U	U	U	U	U	U	U	U	U	U	U			U	<1 U	<1 U	<1 U	<1 U	<1 U	<1 L	<1	U <1 U	J <1 U	<1 U	<1 U	<1 U	<1.0 ND
Trichloroethene (TCE)		5	57	50		72	73	68	67	46	55	56	68	60	50	U			62	54	50.5	42.9	53.1	49.2	48	51.7	49.9	41.0	37.3	28.8	38.5 CH,L1	1 29.8
Vinyl Chloride (VC)		2	U	10 J		20	7.6 J	J 14.0	J 11	JUQ	8.3	8.0 J	8.1 J	5.5 J	U	U			9.8	9	7.2	8.7	8.0	5.3	4.0	6.7	5.4	6.4	6.3	4.8	4.2 CH	10.9 IH
Xylenes (Total)		5	U	U	Ĩ	U	U	U	U	U	U	U	U	U	U	U			U	<1 U	<3 U	<3 U	<3 U	<3 U	<1 L	<3 l	U <3 U	J <3 U	<3 U	<3 U	<3 U	<3.0 ND
cis-1,2-Dichloroethene (DC	CE)	5	42	45	l	41	45	34	29	34	37	32	33	38	24	U			62	54	51.9	57.0	47.5	49.9	45	61.1	45.4	56.9	37.5	34.0	38.2 CH	32.3
trans-1,2-Dichloroethene	ŕ	5	U	0.91 JM		U	U	U	U	U	U	U	U	U	U	U			1.4	1.4	1.4	1.5	2.8	1.8	<1 L	1.1	<1 L	J <1 U	<1 U	<1 U	<1 U	<1.0 ND
Total VOCs^ (µg/L)			384.0	423.9	NA	616.0	451.6	471.5	452.4	287	357.3	350	440.1	465.3	337.0	224	NA	NA	348.8	388.4	300.5	260.9	307.3	329.2	273.8	302.3	260.2	245.8	223.7	170.9	224.0	194.5

Notes: ^ - Total VOC's does not include compounds detected in method blanks. MEK found in August 2008 and January 2009 samples is also excluded because ketones are known to be produced by the reaction of potassium permanganate with chlorinated organic compounds. NS - Compound not analyzed (2003 and 2004 sampling used smaller analyte list). B - The analyte found in an associated blank, as well as the sample.

J - Estimated concentration detected below quantitation limit.

* - LCS or LCSD exceeds the control limit.

CH - The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased high.

L1 - Analyte recovery in the LCS was above QC limits. Results for this analyte in associated samples may be biased high.

U - Indicates the analyte was analyzed for but not detected.

D - Samples results are obtained from a dilution; the surrogate or matrix spike recoveries reported are calculated from diluted samples.

Q - Outlying QC recoveries were associated with this parameter.

VOC - Above Standard.

2003 Data (MW-2 and MW-3 provided by Environmental Products and Services, Inc. 2004 Data (MW-2, MW-3 and MW-7) provided by ERM. All data between 2004 and 2009 provided by S&W Redevelopment of North America, LLC. Samples collected in 2006 (RI) and March, April, and June 2008 are pre-ISCO injection.

Samples collected from January 2009 through February 2012 are post-2008 ISCO injection. Samples collected from September 2012 through the present are post-2012 ISCO injection.

Table No. 3: Page 7 of 9

Bedrock Wells Summary of Groundwater VOC Analytical Results.

Bedrock Well																			
										MW1	6-7	BR							
COMPOUND µg/L (ppb)	CLASS GA STANDARD	Jan-	17	Apr-	17	Jul-1	17	Sep-	·17	Sep-	18	Sep-	19	Sep-	20	Sep-	·21	Sep	o-22
Acetone	50	11.2		<10	U	54.4	В	52.1	В	<10		<10	U	<10	U	<10	U	<10.0	ND
Benzene	1	4.6		2.6		3.0		2.9		2.3		2.0		2.2		<1	U	<1.0	ND
Bromodichloromethane	50	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1.0	ND
Bromoform	50	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<4.0	ND
Bromomethane	5	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<4.0	ND
Methyl Ethyl Ketone (MEK) (a.k.a. 2-Butanone)	50	<10	U	<10	U	<10	U	<10	U	<10	U	<10	U	<10	U	<10	U	<10.0	ND
Carbon disulfide	60	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1.0	ND
Carbon tetrachloride	5	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1.0	ND
Chlorobenzene	5	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1.0	ND
Chloroethane	5	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1.0	ND
Chloroform	7	1.0		<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1.0	ND
Chloromethane	5	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1.0	ND
Dibromochloromethane	50	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1.0	ND
1,1-Dichloroethane	5	1.8		1.2		<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1.0	ND
1,2-Dichloroethane	0.6	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1.0	ND
1,1-Dichloroethene	5	54.6		28.2		19.4		45.2		12.1		3.9		3.5		<1	U	<1.0	ND
1,2-Dichloropropane	1	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1.0	ND
cis-1,3-Dichloropropene	0.4	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1.0	ND
trans-1,3-Dichloropropene	0.4	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1.0	ND
Ethylbenzene	5	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1.0	ND
2-Hexanone	50	<10	U	<10	U	<10	U	<10	U	<10	U	<10	U	<10	U	<10	U	<10.0	ND
Methylene Chloride	5	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1.0	ND
methyl isobutyl ketone (a.k.a. 4-Methyl-2-pentanone)		<10	U	<10	U	<10	U	<10	U	<10	U	<10	U	<10	U	<10	U	<10.0	ND
Styrene	5	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1.0	ND
1,1,2,2-Tetrachloroethane	5	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1.0	ND
Tetrachloroethene	5	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1.0	ND
Toluene	5	15.1		8.2		5.0		9.5		1.9		<1	U	<1	U	<1	U	<1.0	ND
1,1,1-Trichloroethane	5	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1.0	ND
1,1,2-Trichloroethane	1	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1	U	<1.0	ND
Trichloroethene (TCE)	5	3,730		3,130		1,750		3,680		1,050		940		1,240		2.3	H1	<1.0	ND
Vinyl Chloride (VC)	2	4,000		1,350		687		1,720		363		122		66.2		<1	U	1.9	IH
Xylenes (Total)	5	<3	U	, <3	U		U	<3	U	<3	U	<3	U	<3	U	<3	U	<3.0	ND
cis-1,2-Dichloroethene (DCE)	5	18,100		9,930		9,410		13,200		7,890		6,390		6,620		<1	U	3.4	
trans-1,2-Dichloroethene	5	639		350		305		415		204		133		141		<1	U	<1.0	ND
Total VOCs^ (μg/L)		26,557.	3	14,800	.2	12,179	.4	19,072	2.6	9,523.	3	7,590.9		8,072.9		2.3		5.3	

Notes:

^ - Total VOC's does not include compounds detected in method blanks.

NA - Data not available.

J - Estimated concentration detected below qua

B - The analyte found in an associated blank, as well as the sample.

U - Indicates the analyte was analyzed for but not detected. H1 - Analysis conducted outside of EPA method holding time.

VOC - Above Standard.

Bedrock Wel	I																																		
																			10	W-1															
COMPOUND	µg/L (ppb)	CLASS GA Standard	RI 2006	Jun-08	Aug-08	Jan-09	Apr-09	Sep-09	Dec-09	Mar-10	Jun-10	Sep-10	Dec-10	Mar-11	Feb-12	Sep-12	Mar-13	Jun-13	Sep-13	Dec-13	Jun-14	Dec-14	Mar-15	Jun-15	Sep-15	Dec-15	Mar-16	Jun-16	Sep-16	Sep	-17 Sep-18	Sep-19	Sep-20	Sep-21	Sep-22
Acetone		50		35.0 B	120 J	BU	U	6.1 J	U	U	U	U	U	U	UG	€ U	U	U	U	U	U	4.5	<1 L	J <10 U	<10 L	∣<10 U	<10 L	l <10 l	J <10 L	J 71.3	B <10 l	J <10 U	<10 U	<10 U	<10.0 ND
Benzene		1		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1 L	J <1 U	<1 L	l <1 U	<1 L	l <1 l	J <1 L	J <1	U <1 l	J <1 U	<1 U	<1 U	<1.0 ND
Bromodichloromet	thane	50		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1 L	J <1 U	<1 L	l <1 U	<1 L	l <1 l	J <1 L	J <1	U <1 l	J <1 U	<1 U	<1 U	<1.0 ND
Bromoform		50		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1 L	J <1 U	<1 L	l <1 U	<1 L	l <1 l	J <1 L	J <1	U <1 l	J <1 U	<1 U	<1 U	<4.0 ND
Bromomethane		5		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1 l	J <1 U	<1 L	l <1 U	<1 L	∣ <1 l	J <1 L	J <1	U <1 l	J <1 U	<1 U	<1 U	<4.0 ND
Methyl Ethyl Ketor (a.k.a. 2-Butanone		50		U	U	U	U	U	U	UQ	U	U	U	U	U	U	U	U	U	U	U	U	<1 L	J <10 U	<10 L	<10 U	<10 L	l <1 l	J <10 L	J <10	U <10 U	J <10 U	<10 U	<10 U	<10.0 ND
Carbon disulfide		60		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1 L	J <1 U	<1 L	∣<1 U	<1 L	∣ <1 U	c <1 L	J <1	U <1 l	J <1 U	<1 U	<1 U	<1.0 ND
Carbon tetrachlori	de	5		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1 L	J <1 U	<1 L	∣<1 U	<1 L	<1 l	J <1 L	J <1	U <1 l	J <1 U	<1 U	<1 U	<1.0 ND
Chlorobenzene		5		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1 L	J <1 U	<1 L	∣<1 U	<1 L	<1 l	J <1 L	J <1	U <1 l	J <1 U	<1 U	<1 U	<1.0 ND
Chloroethane		5		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1 L	J <1 U	<1 L	l <1 U	<1 L	∣ <1 U	c <1 l	J <1	U <1 l	J <1 U	<1 U	<1 U	<1.0 ND
Chloroform		7		U	U	U	U	1.5 J	U	U	U	U	U	U	U	U	U	U	U	U	U	U	1.3	<1 U	1.8	1.7	<1 L	1.5	1.5	1.3	B <1 l	J 1.1	1.3	<1 U	<1.0 ND
Chloromethane		5		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1 U	C <1 U	<1 L	l <1 U	<1 L	l <1 l	J <1 L	J <1	U <1 l	J <1 U	<1 U	<1 U	<1.0 ND
Dibromochlorome	thane	50		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1 L	J <1 U	<1 L	l <1 U	<1 L	l <1 l	J <1 L	J <1	U <1 l	J <1 U	<1 U	<1 U	<1.0 ND
1,1-Dichloroethan	e	5		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1 L	J <1 U	1.2	<1 U	<1 L	1.2 \$	S 1.1	<1	U 1.3	1.0 CH	1.1	1.1 H1	1.2
1,2-Dichloroethan	e	0.6		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1 L	J <1 U	<1 L	l <1 U	<1 L	l <1 l	J <1 L	J <1	U <1 l	J <1 U	<1 U	<1 U	<1.0 ND
1,1-Dichloroethen	e	5		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1 L	J <1 U	1.2	<1 U	<1 L	l <1 l	J <1 L	J <1	U 1.5	<1 U	1.0 U	<1 U	1.5
1,2-Dichloropropa	ne		Not Yet	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1 L	J <1 U	<1 L		<1 L	l <1 l	-	J <1	-	J <1 U	<1 U	<1 U	<1.0 ND
cis-1,3-Dichloropr	opene	0.4	Installed	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1 L	J <1 U	<1 L	l <1 U	<1 L	l <1 l		J <1		J <1 U	<1 U	<1 U	<1.0 ND
trans-1,3-Dichloro	propene	0.4		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1 L	J <1 U	<1 L	l <1 U	<1 L	l <1 l	J <1 L	J <1	U <1 l	J <1 U	<1 U	<1 U	<1.0 ND
Ethylbenzene		5.0		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1 L		<1 L		-	l <1 l	-	J <1	-		-	1 0	<1.0 ND
2-Hexanone		50		U	U	U	U	U	U	UQ	_	U	U	U	U	U	U	U	U	U	U	U	<1 L	J <10 U	<10 L	l <10 U	<10 L	<1 l	J <10 L	J <10	U <10 l			<10 U	<10.0 ND
Methylene Chlorid	le	5		6.4 J	34.0 J	BU	41.0 J	BU	54.0 J	U	10 JB	57 JB	15 JB	U	U	U	U	U	U	U	U	U	<1 L	J <1 U	<1 L	l <1 U	<1 ເ	<1 l	J <1 L	J <1	U <1 l	J 1.6	1.7	<1 U	<1.0 ND
methyl isobutyl ke (a.k.a. 4-Methyl-2-				U	U	U	U	U	U	UQ	U	U	U	U	U	U	U	U	U	U	U	U	<1 L	J <10 U	<10 L	<10 U	<10 L	l <1 l	J <10 L	J <10	U <10 U	J <10 U	<10 U	<10 U	<10.0 ND
Styrene		5		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1 L	J <1 U	<1 L	l <1 U	<1 L	l <1 l	J <1 L	J <1	U <1 l	J <1 U	<1 U	<1 U	<1.0 ND
1,1,2,2-Tetrachlor	oethane	5		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1 L	J <1 U	<1 L	l <1 U	<1 L	l <1 l	J <1 L	J <1	U <1 l	J <1 U	<1 U	<1 U	<1.0 ND
Tetrachloroethene	9	5		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1 L	J <1 U	<1 L	l <1 U	<1 L	l <1 U	c <1 L	J <1	U <1 l	J <1 U	<1 U	<1 U	<1.0 ND
Toluene		5		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1 L	J <1 U	<1 L	l <1 U	<1 L	l <1 l	J <1 L	J <1	U <1 l	J <1 U	<1 U	<1 U	<1.0 ND
1,1,1-Trichloroetha	ane	5		U	U	U	U	2.1 J	U	U	U	U	U	U	U	U	U	U	U	U	U	2.4	3.6	3.2	4.9	4.5	2.3	4.3	4.7	4.0	5.2	3.4 CH	3.9	3.8 H1,L1	1 2.6
1,1,2-Trichloroetha	ane	1		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1 L	J <1 U	<1 L	l <1 U	<1 L	l <1 l	J <1 L	J <1	U <1 l	J <1 U	<1 U	<1 U	<1.0 ND
Trichloroethene (T	TCE)	5		310	2,400	2,700	2,800	130	2,400	45	800	2,700	1,300	32	450	62	2,100	200	440 D	2,200	350	600 D	990 E	1,420	2,720	1,130	934	2,700	0 1,770	2,120	2,900	1,880	2,430	1,960 H1	2,550
Vinyl Chloride (VC	C)	2		2.1 J	U	U	35 J	BU	U	U Q	U	U	U	U	U	U	U	U	U	U	U	U	<1 L	J 1.2	3.0	<1 U	<1 L	1.5	1.2	1.4	6.1	4.1	3.3	1.5 H1	11.8 IH
Xylenes (Total)		5		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1 L	J <3 U	<3 L	∣<3 U	<3 L	l <1 l	J <3 L	J <3	U <3 l	J <3 U	<3 U	<3 U	<3.0 ND
cis-1,2-Dichloroet	hene (DCE)	5		18	70J	250 J	470	4.8 J	200 J	2 J	22 J	48 JB	29 JB	1.1 J	U	3.2 J	41	U	13	78	U	12	35	47.8	86.0	31.9	27.4	96	71.7	73.1	117	95.3	82.6	58.6 H1	140
trans-1,2-Dichloro	ethene	5		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1 L	J <1 U	2.4	1.4	<1 L	2.2	1.5	1.4	1.8	1.7	1.5	<1 U	2.4
Total VOCs^ (µg/L	_)		NA	337	2,470	2,950	3,305	145	2,654	47	822	2,748	1,329	33.1	450.0	65.2	2,141	200	453	2,278	350	618.9	1,029.9	1,472.2	2,820.5	1,169.5	963.7	2,806.7	1,851.7	2,201	.2 3,032.9	1,986.6	2,523.4	2,025.0	2,709.5

Notes: - Total VOC's does not include compounds detected in method blanks. MEK found in August 2008 and January 2009 samples is also excluded because ketones are known to be produced by the reaction of potassium permanganate with chlorinated organic compounds.

L1 - Analyte recovery in the LCS was above QC limits. Results for this analyte in associated samples may be biased high.

NS - Compound not analyzed (2003 and 2004 sampling used smaller analyte list).

J - Estimated concentration detected below quantitation limit.

B - The analyte found in an associated blank, as well as the sample.

* - LCS or LCSD exceeds the control limit.

U - Indicates the analyte was analyzed for but not detected.

D - Samples results are obtained from a dilution; the surrogate or matrix spike recoveries reported are calculated from diluted samples.

Q - Outlying QC recoveries were associated with this parameter.

2003 Data (MW-2 and MW-3 provided by Environmental Products and Services, Inc. 2004 Data (MW-2, MW-3 and MW-7) provided by ERM. All data between 2004 and 2009 provided by S&W Redevelopment of North America, LLC.

H1 - Analysis conducted outside of EPA method holding time.

Samples collected in 2006 (R) and March, April, and June 2008 are pre-ISCO injection. Samples collected in August 2008 are during ISCO injection.

Samples collected from January 2009 through February 2012 are post-2008 ISCO injection. Samples collected from September 2012 through the present are post-2012 ISCO injection.

Bedrock We	II																																		
																			IOW-	3															
COMPOUND	µg/L (ppb)	CLASS GA Standard	RI 2006	Jun-08	Aug-08	Jan-09	Apr-09	Sep-09	Dec-09	Mar-10	Jun-10	Sep-10	Dec-10	Mar-11	Feb-12	Sep-12	Mar-13	Jun-13	Sep-13	Dec-13	Jun-14	Dec-14	Mar-15	Jun-15	Sep-15	Dec-15	Mar-16	Jun-16	Sep-16	S Sep-17	Sep-18	Sep-19	Sep-20	Sep-21	Sep-22
Acetone		50		66.0 JB	68.0 JB	U	U	U	U	U	U	41 JB	U	U	UQ	U	U	U	U	U	U	4.2	<1 L	J <10 U	J <10 U	<10 U	<10 U	<10 U	J <10 l	J 48.8 B	<10 l	J <10 U	<10 U	<10 U	<10.0 ND
Benzene		1		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1 L	J <1 U	J <1 U	<1 U	<1 U	<1 U	J <1 l	J <1 U	<1 l	J <1 U	<1 U	<1 U	<1.0 ND
Bromodichlorome	thane	50		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1 L	J <1 U	J <1 U	<1 U	<1 U	<1 U	J <1 l	J <1 U	<1 l	J <1 U	<1 U	<1 U	<1.0 ND
Bromoform		50		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	-		J <1 U	<1 U	-	-	J <1 l	J <1 U	-	J <1 U	<1 U	<1 U	<4.0 ND
Bromomethane		5		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1 L	J <1 U	J <1 U	<1 U	<1 U	<1 U	J <1 l	J <1 U	<1 l	J <1 U	<1 U	<1 U	<4.0 ND
Methyl Ethyl Keto (a.k.a. 2-Butanone		50		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1 L	J <10 U	J <10 U	<10 U	<10 U	<1 U	J <10 l	J <10 U	<10 l	J <10 U	<10 U	<10 U	<10.0 ND
Carbon disulfide		60		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1 L	J <1 U	J <1 U	<1 U	<1 U	<1 U	c <1 l	J <1 U	<1 l	J <1 U	<1 U	<1 U	<1.0 ND
Carbon tetrachlori	ide	5		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1 L	J <1 U	J <1 U	<1 U	<1 U	<1 U	J <1 l	J <1 U	<1 L	J <1 U	<1 U	<1 U	<1.0 ND
Chlorobenzene		5		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1 L	J <1 U	J <1 U	<1 U	<1 U	<1 U	J <1 l	J <1 U	<1 l	J <1 U	<1 U	<1 U	<1.0 ND
Chloroethane		5		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1 L	J <1 U	J <1 U	<1 U	<1 U	<1 U	c <1 l	J <1 U	<1 l	J <1 U	<1 U	<1 U	<1.0 ND
Chloroform		7		U	10.0 J	U	U	U	U	U	U	U	U	U	86 J	U	U	U	U	U	U	U	<1 L	J <1 U	J <1 U	<1 U	<1 U	<1 U	J <1 l	J <1 U	<1 l	J <1 U	<1 U	<1 U	<1.0 ND
Chloromethane		5		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1 U	C <1 U	J <1 U	<1 U	<1 U	<1 U	J <1 l	J <1 U	<1 L	J <1 U	<1 U	<1 U	<1.0 ND
Dibromochlorome	thane	50		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1 L	J <1 U	J <1 U	<1 U	<1 U	<1 U	J <1 l	J <1 U	<1 L	J <1 U	<1 U	<1 U	<1.0 ND
1,1-Dichloroethan	е	5		3.3 J	U	U	U	U	U	U	U	U	U	U	U	3.1 J	U	U	U	U	U	2.2	2.4	2.7	2.3	1.9	1.8	2.3 S	5 2.1	<1 U	1.2	1.6	2.3	2.1 H1	1.4
1,2-Dichloroethan	е	0.6		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U		J <1 U	J <1 U	<1 U	<1 U		J <1 l	J <1 U	<1 l	J <1 U	<1 U	<1 U	<1.0 ND
1,1-Dichloroethen	e	5		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	2.6	4.7	3.4	4.2	3.1	3.2	4.0	4.1	4.5	3.3	3.9	4.6 H1	3.3
1,2-Dichloropropa	ine	1	Not Yet	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1 L	J <1 U	J <1 U	<1 U	<1 U	<1 U	J <1 l	J <1 U		J <1 U	<1 U	<1 U	<1.0 ND
cis-1,3-Dichloropr	opene	0.4	Installed	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1 L	J <1 U	J <1 U	<1 U	<1 U	<1 U	J <1 l	J <1 U	<1 l	J <1 U	<1 U	<1 U	<1.0 ND
trans-1,3-Dichloro	propene	0.4		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	-	J <1 U	J <1 U	<1 U	<1 U	<1 U	J <1 l	J <1 U	<1 l	J <1 U	<1 U	<1 U	<1.0 ND
Ethylbenzene		5.0		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1 L	J <1 U	J <1 U	<1 U	<1 U	<1 U	J <1 l	J <1 U	<1 l	J <1 U	<1 U	<1 U	<1.0 ND
2-Hexanone		50		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<1 L	J <10 U	J <10 U	<10 U	<10 U	<1 U	J <10 l	J <10 U	<10 l	J <10 U	<10 U	<10 U	<10.0 ND
Methylene Chloric	le	5		7.1 JB	18 JB	U	5.2 J	36.0 JB	U	U	10 JB	27 JB	48 JE	3 7.3 JB	U	U	U	U	U	U	U	U	<1 L	J <1 U	J <1 U	<1 U	<1 U	<1 U	J <1 l	J <1 U	<1 l	J 1.6	1.7	<1 U	<1.0 ND
methyl isobutyl ke				U.	U	U	U U	U	U	U	U U	u	U	U	U	U U	U U	U U	LU L	L U	U U	U	<1 L	1 <10 U	J <10 U	<10 U	<10 U	<1 U	1 <10 1	1 <10 11	<10 I	J <10 U	<10 U	<10 U	<10.0 ND
(a.k.a. 4-Methyl-2	-pentanone)				Ŭ	°.		Ŭ	Ű	Ű	Ŭ	Ű	Ű	, , , , , , , , , , , , , , , , , , ,	Ŭ		Ŭ	0		Ŭ.	Ŭ	Ű	_												
Styrene		5		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	-		J <1 U	-		-		J <1 U	-	J <1 U	<1 U	-	<1.0 ND
1,1,2,2-Tetrachlor		5		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U		J <1 U	J <1 U		-	<1 U	J <1 l		-	J <1 U	<1 U	-	<1.0 ND
Tetrachloroethene	9	5		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	-	J <1 U	-			-	c <1 l		-	J <1 U	_	-	<1.0 ND
Toluene		5		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U			J <1 U		-	-		J <1 U	-	J <1 U	-	_	<1.0 ND
1,1,1-Trichloroeth		5		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U		J <1 U			v	<1 U		J <1 U	-		<1 U		<1.0 ND
1,1,2-Trichloroeth		1		U	U	U	U	U	U	U	14 J	U	U	U	U	U	U	U	U	U	U	U		J <1 U	, <u>, ,</u> ,		Ű	_		-	-	J <1 U		<1 U	<1.0 ND
Trichloroethene (,	5		650	1,300	1,200	770	1,000	1200	480	900	1,300	1,800		1,100	U	720	630	530	610	740	760 D	560 E		632	638	685	930 D		740	671	541	693	642 H1	
Vinyl Chloride (VC	C)	2		7.7 J	U	U	6.4 J	U	U	U	U	U	U	U	U	U	U	U	U	U	U	11	4.6	2.3	2.1	7.0	3.3	2.2	9.7	3.0	56.5	35.4	38.6	39.1 H1,L	
Xylenes (Total)		5		U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	<3 L	J <3 U	J <3 U	<3 U	<3 U	-	J <3 l	J <3 U	<3 l	J <3 U	<3 U	<3 U	<3.0 ND
cis-1,2-Dichloroet	hene (DCE)	5		53	98	91.0 J	55	64.0 JB	91.0 J	39	63	110	120	61	U	U	220	350	450	380	270	300 D	170	335	356	257	193	230 D	363	276	340	276	239	251 H1	204
trans-1,2-Dichloro	ethene	5		2.9 J	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	2.8	3.4	5.6	7.0	8.8	4.6	4.0	3.9	4.4	4.0	3.7	3.6	4.2 H1	3.8
Total VOCs^ (µg/l	_)		NA	716.9	1,408	1,291	831	1,100	1,291	519	977	1,410	1,920	1,021	1,186	3.1	940	980	980	990	1,010	1,080.2	743.0	962.3	1,002.8	916.9	890.8	1,171.7	1,004.7	1,027.5	1,077.2	861.0	980.4	943.0	697.6

Notes: ^ - Total VOC's does not include compounds detected in method blanks. MEK found in August 2008 and January 2009 samples is also excluded because ketones are known to be produced by the reaction of potassium permanganate with chlorinated organic compounds.

L1 - Analyte recovery in the LCS was above QC limits. Results for this analyte in associated samples may be biased high.

NS - Compound not analyzed (2003 and 2004 sampling used smaller analyte list).

J - Estimated concentration detected below quantitation limit.

B - The analyte found in an associated blank, as well as the sample. * - LCS or LCSD exceeds the control limit.

U - Indicates the analyte was analyzed for but not detected.

D - Samples results are obtained from a dilution; the surrogate or matrix spike recoveries reported are calculated from diluted samples.

Q - Outlying QC recoveries were associated with this parameter.

VOC - Above Standard.

2003 Data (MW-2 and MW-3 provided by Environmental Products and Services, Inc. 2004 Data (MW-2, MW-3 and MW-7) provided by ERM. All data between 2004 and 2009 provided by S&W Redevelopment of North America, LLC. Samples collected in 2006 (RI) and March, April, and June 2008 are pre-ISCO injection. Samples collected in August 2008 are during ISCO injection. Samples collected from January 2009 through February 2012 are post-2008 ISCO injection. Samples collected from September 2012 through the present are post-2012 ISCO injection.

H1 - Analysis conducted outside of EPA method holding time.

		Temperature	Conductivity	DO		ORP	Turbidity	Ether	ne
Well#	Date	(°C)	(mS/cm)	(mg/L)	рН	(mV)	(NTU)	(µg/L	
	09/21/2017	16.69	0.963	2.73	7.09	238.3	(NS	_/
	06/26/2018	15.17	1.198	0.87	7.16	218.0	Turbidity added	2.8	
	09/27/2018	16.61	1.059	4.23	7.51	244.1	Sept. 2020	<1.0	
MW-2	09/17/2019	18.03	0.831	0.61	6.63	112.2		10.0	
	09/28/2020	21.40	1.254	1.16	7.19	236.4	1.25	15.0	
	09/20/2021 09/20/2022	19.5 20.54	1.532 1.47	1.55 0.00	7.05 7.27	212.2 408.0	1.02 0.0	<u><1.0</u> 6.6	
	09/20/2022	20.54 IV	I.47	0.00 IV	IV	408.0 IV	0.0	0.6 NS	
	06/26/2018	IV	IV	IV	IV	IV	Turbidity added	IV	
	09/26/2018	IV	IV	IV	IV	IV	Sept. 2020	<1.0	
MW06-25OB	09/17/2019	IV	IV	IV	IV	IV		IV	
	09/28/2020	IV	IV	IV	IV	IV	IV	<1.0	
	09/20/2021	17.3	0.448	1.33	6.13	85.5	354.3	<1.0	
	09/20/2022	IV	IV	IV	IV	IV	IV	IV	
	09/21/2017	20.92	5.922	2.25	6.79	140.2		NS	
	06/26/2018	19.11	11.460	1.45	6.53	199.1	Turbidity added	0.034	
IOW-4	09/27/2018	<u>21.19</u> 21.67	4.792 4.272	1.17 0.71	6.81	104.2	Sept. 2020	<u><1.0</u> 0.14	
1000-4	09/18/2019		<u>4.272</u> 5.424	0.71	7.69 8.14	96.0 202.3	11.28	<u> </u>	
	09/29/2020 09/21/2021	<u>19.50</u> 21.7	2.386	0.89	<u> </u>	101.2	48.42	<1.0	
	09/20/2022	28.62	2.93	0.00	8.36	366.0	190.0	<1.0	
	09/21/2017	16.92	1.069	2.24	7.30	155.9		<u></u> NS	—
	06/26/2018	16.25	2.124	1.69	6.87	235.4	Turbidity added	0.056	
	09/27/2018	16.66	1.660	2.29	7.09	260.0	Sept. 2020	<1.0	_
MW06-23BR	09/17/2019	18.09	1.352	1.22	6.62	136.1		0.53	
	09/28/2020	20.20	1.739	1.14	7.35	232.7	24.13	6.8	
	09/20/2021	19.1	1.763	0.49	7.22	256.5	16.44	3.8	
	09/20/2022	20.48	1.82	0.00	7.38	419.0	11.1	6.0	
	09/21/2017	17.88	3.999	3.80	7.35	130.8	Turbidity oddod	NS	
	06/27/2018 09/27/2018	16.16 18.15	0.721 4.839	5.11 0.78	8.05 7.75	145.3 -153.5	Turbidity added Sept. 2020	0.068 <1.0	
MW06-24BR	09/18/2019	18.10	6.982	5.78	7.51	113.4	3ept. 2020	0.36	
	09/29/2020	17.60	6.712	1.21	9.33	-30.8	9.68	1.0	
	09/21/2021	18.7	8.750	1.65	8.98	110.6	40.91	<1.0	
	09/21/2022	23.83	7.13	0.00	8.91	118.0	33.2	<1.0	
	09/21/2017	13.06	2.011	3.14	6.99	130.1		NS	
	06/26/2018	10.83	3.279	5.03	6.84	134.3	Turbidity added	0.23	
	09/26/2018	14.79	3.123	1.10	6.84	184.5	Sept. 2020	<1.0	
MW06-25BR	09/17/2019	12.18	2.479	1.36	5.74	137.1	0.00	0.48	
	09/28/2020	14.30	2.714	2.55	6.89	64.8	2.26	<1.0	
	09/20/2021 09/20/2022	14.0 15.36	3.041 2.62	2.61 0.00	6.89 6.98	107.2 303.0	2.68 0.0	<1.0 <1.0	
	09/20/2022	18.97	2.02	2.08	7.44	121.8	0.0	<u><1.0</u> NS	
	06/27/2018	16.93	2.740	0.61	7.34	139.5	Turbidity added	0.71	
	09/27/2018	18.89	3.172	0.99	7.34	-59.4	Sept. 2020	5.5	
MW16-7BR	09/18/2019	19.86	2.374	1.15	7.06	7.0	F	2.1	
	09/28/2020	21.40	2.945	0.83	7.21	156.1	6.94	2.0	
	09/21/2021	19.6	3.048	9.40	8.23	229.1	10.82	<1.0	
	09/21/2022	24.03	3.60	8.41	8.29	403.0	0.0	<1.0	
	09/21/2017	18.10	2.427	7.27	7.18	185.6		NS	
	06/26/2018	17.08	5.000	3.72	6.97	226.2	Turbidity added	0.12	
IOW-1	09/27/2018 09/18/2019	17.68 16.30	4.184 3.258	3.05 2.29	7.14	242.6	Sept. 2020	<1.0	
1011-1	09/18/2019	20.80	3.258	2.29	<u>6.95</u> 7.18	134.6 276.0	2.42	0.23 <1.0	
	09/21/2021	17.8	3.686	2.76	7.18	252.4	9.18	<1.0	
	09/20/2022	20.17	3.36	0.22	7.32	415.0	0.0	<1.0	
	09/21/2017	18.39	3.463	4.67	7.06	130.6		NS	
	06/26/2018	17.48	4.589	0.63	6.68	201.5	Turbidity added	2.0	
	09/27/2018	18.10	4.660	0.39	6.97	58.4	Sept. 2020	<1.0	
IOW-3	09/18/2019	19.20	4.070	0.27	6.73	92.0		0.83	
	09/29/2020	17.80	4.121	0.83	6.96	169.4	2.34	1.6	
	09/21/2021	18.8	5.364	0.28	6.87	309.1	1.12	1.5	
	09/21/2022 2022 Min.	24.52 15.36	6.68	0.00	7.05	428.0	0.1	1.9	
	2022 Min. 2022 Max.	15.36 28.62	1.470 7.130	0.00 9.40	6.98 8.91	118.00 428.00	0.00 190.00	<1.0 6.6	
	2022 Max. 2022 Avg.	28.62	3.701	9.40 1.08	8.91 7.70	428.00	29.30	6.6 4.83	
	Overall Min.	10.83	0.45	0.00	5.74	-153.50	0.0	<u>4.83</u> <1.0	
	Overall Max.	28.62	11.46	9.40	9.33	428.00	354.3	15.00	
	Overall Avg.	18.46	3.40	2.02	7.28	180.22	31.2	2.68	
									_

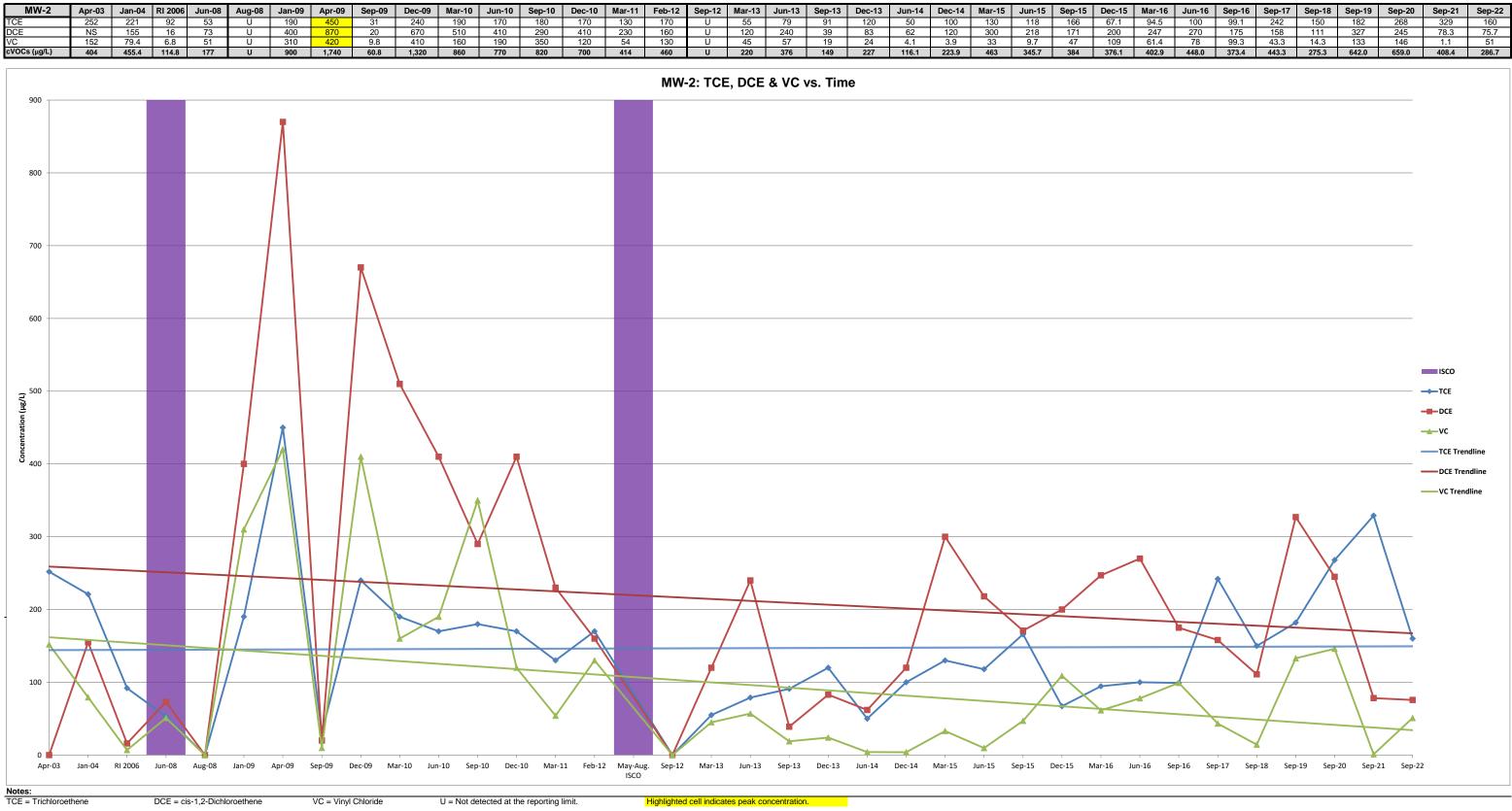
 J = Estimated concentration, greater than Method Detection Limit (MDL) and less than reporting limit (RL)/practical quantitation limit (PQL).

 IV = Insufficient Volum NS = Not Sampled
 U = Analyte was analyzed for but not detected
 NC = Not Co

 See analytical report for additional qualifiers and complete results.
 ND = Not detected at or above the adjusted reportign limit.

 September 2020 - Turbidity added to groundwater monitoring program.

 September 2021 - Alkalinity, Chloride, Iron, Nitrate and Sulfate removed from groundwater monitoring program.


NC = Not Collected

APPENDIX D


CHARTS

MW-2	Apr-03	Jan-04	RI 2006	Jun-08	Aug-08	Jan-09	Apr-09	Sep-09	Dec-09	Mar-10	Jun-10	Sep-10	Dec-10	Mar-11	Feb-12	Sep-12	Mar-13	Jun-13	Sep-13	Dec-13	Jun-14	Dec-14	Mar-15	Jun-15	Sep-15	Dec-15
TCE	252	221	92	53	U	190	450	31	240	190	170	180	170	130	170	U	55	79	91	120	50	100	130	118	166	67.1
DCE	NS	155	16	73	U	400	870	20	670	510	410	290	410	230	160	U	120	240	39	83	62	120	300	218	171	200
VC	152	79.4	6.8	51	U	310	420	9.8	410	160	190	350	120	54	130	U	45	57	19	24	4.1	3.9	33	9.7	47	109
cVOCs (µg/L)	404	455.4	114.8	177	U	900	1,740	60.8	1,320	860	770	820	700	414	460	U	220	376	149	227	116.1	223.9	463	345.7	384	376.1

MW06-25OB	RI 2006	Jun-08	Jan-09	Apr-09	Sep-09	Dec-09	Mar-10	Jun-10	Sep-10	Dec-10	Mar-11	Feb-12	Sep-12	Mar-13	Jun-13	Sep-13	Dec-13	Jun-14	Dec-14	Mar-15	Jun-15	Sep-15	Dec-15	Mar-16
TCE	23			18			18			22	9.2	10		4.3				14	24	4.6	14.5			4.6
DCE	59			25			25			33	7.4	8.2		1.7				16	31	2.3	28.4			4.3
VC	2.5			U			U			U	U	U		U				0.92	U	U	U			U
cVOCs (µg/L)	84.5	Dry	Dry	43.0	Dry	Dry	43.0	Dry	Dry	55.0	16.6	18.2	Dry	6.0	Dry	Dry	Dry	30.92	55.0	6.9	42.9	Dry	Dry	8.9

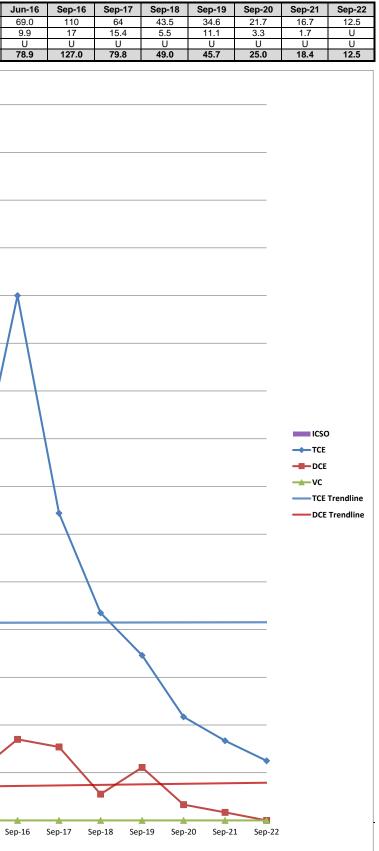
U = Not detected at the reporting limit.

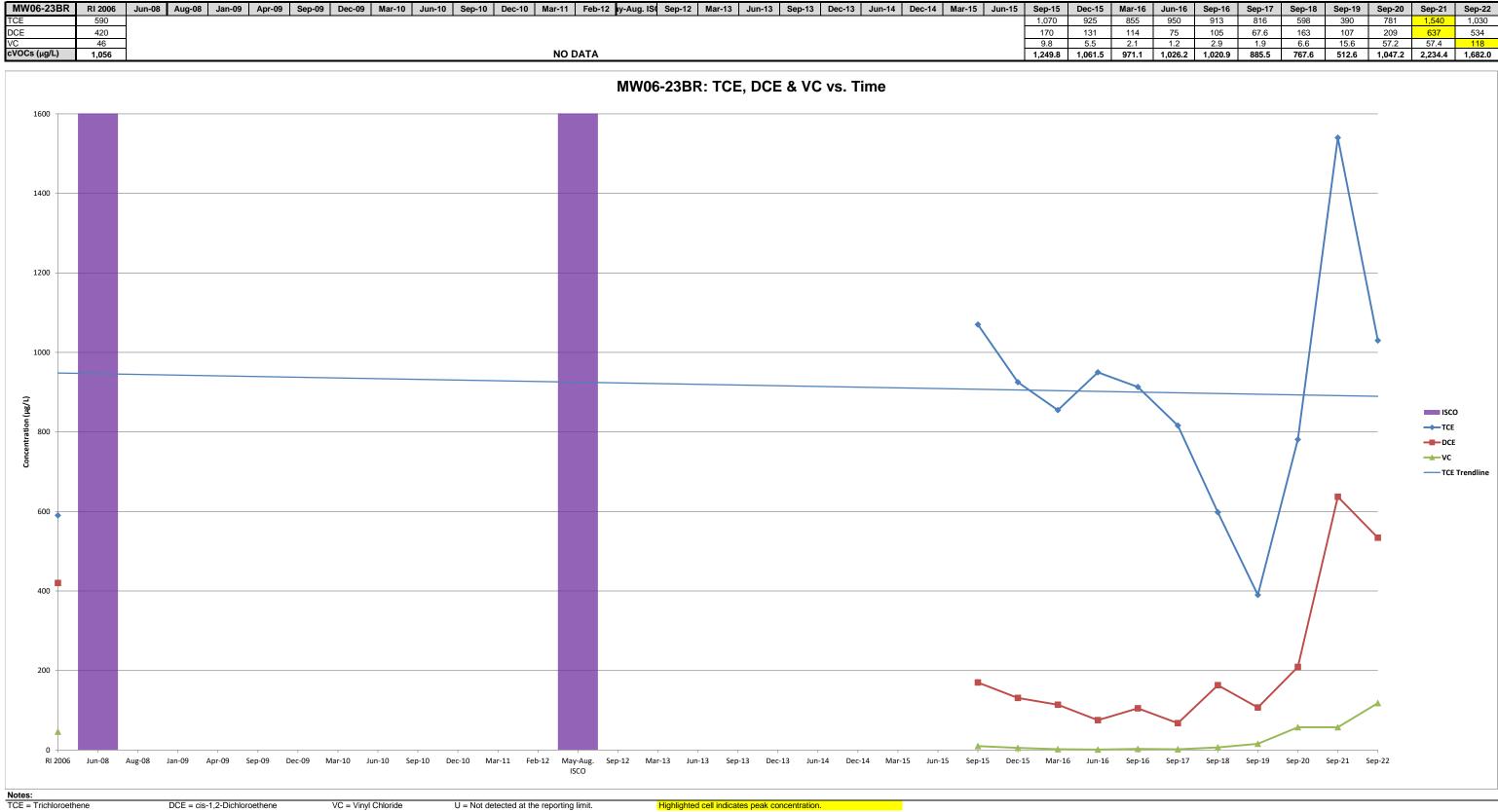
MW06-250B: TCE, DCE & VC vs. Time

P:\PROJECTS\2009/209164 - SHBC\TECH/2023 PRR Charts\ Chart No. 2 MW06-250B - cVOC, TOC, COD, pH, Eh & GW Elevation Table

DCE = cis-1,2-Dichloroethene

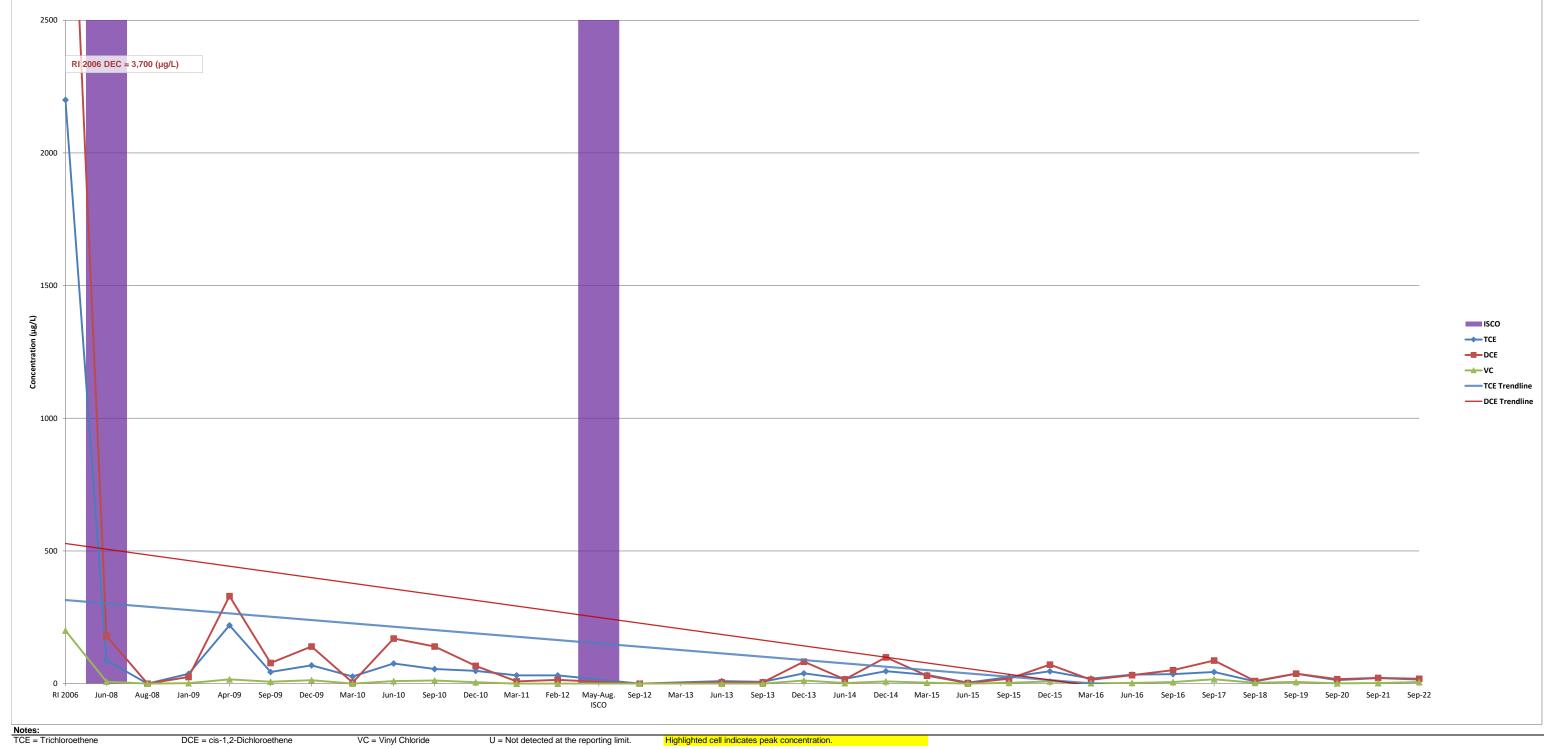
VC = Vinyl Chloride


Highlighted cell indicates peak concentration.



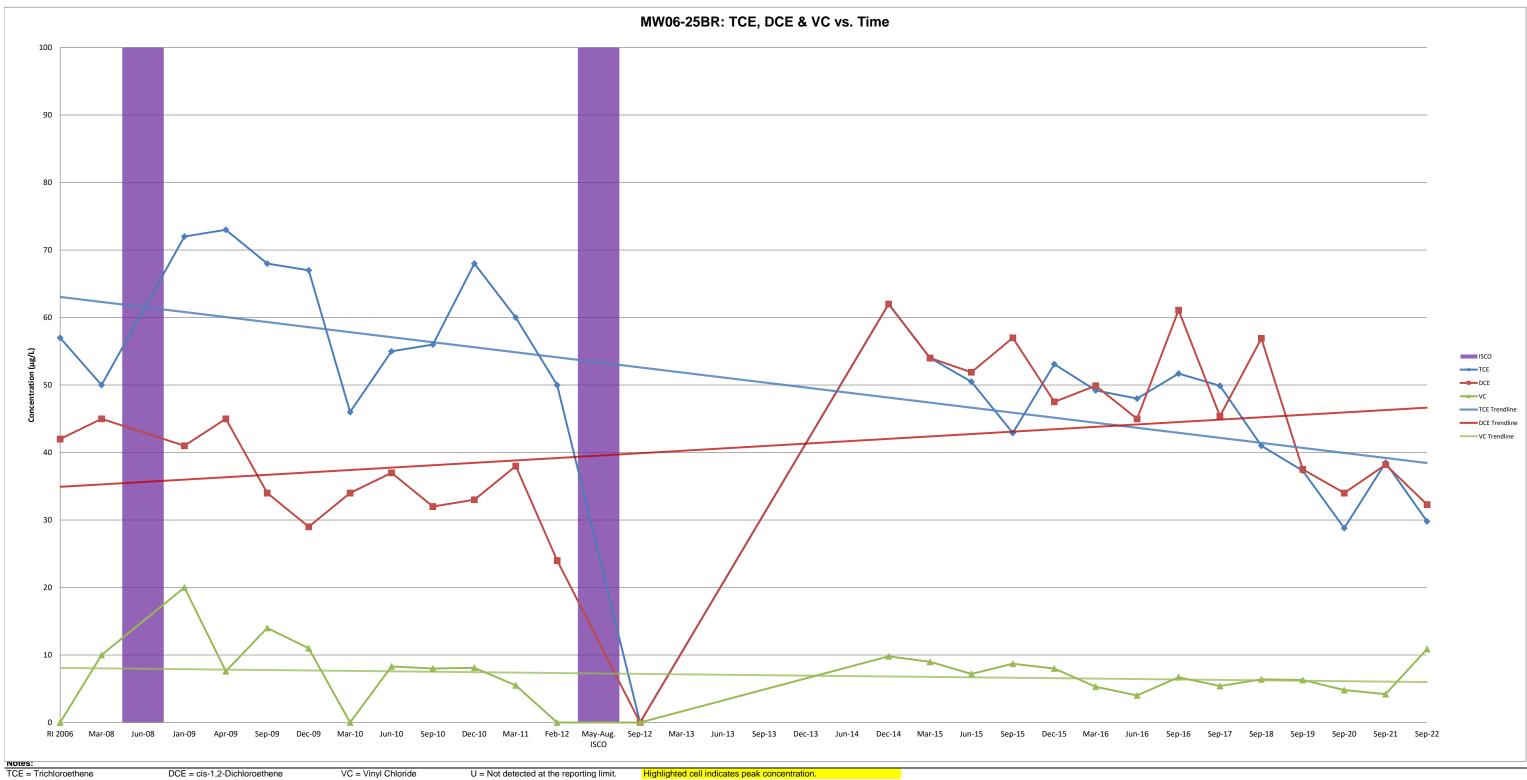
16	lun 40	Son 40	Cor 47	Cor 40	Son 40	Cor 20	Cor 04	Sor 22
- 16	Jun-16	Sep-16	Sep-17	Sep-18 3.3	Sep-19	Sep-20	Sep-21 1.9	Sep-22
6 3				3.3 2.1			1.9	
				U			U	
9	Dry	Dry	Dry	5.4	Dry	Dry	3.3	Dry
							ISCO)
							DCE	
							VC	
							ТСЕ	Trendline
								Trendline
							DCE	nenuine
_								
ep-16	Sep-17	Sep-18	Sep-19	Sep-20	Sep-21	Sep-22		
					-			

IOW-4					Sep-09	Dec-09	Mar-10	Jun-10	Sep-10				Sep-12	Mar-13		Sep-13	Dec-13	Jun-14	Dec-14	Mar-15		Sep-15	Dec-15	Mar-16	
TCE DCE VC	120 25	U	43 3.1	34 3.2	63 4	52 3.1	16 U	31 2.1	89 5.6	20 1.1	19 1.2	20 U	U U	U 14	26 U	23 1.4	28 2.4	29 1.7	44 7.3	62 23	50 10.3	128 15.8	18.5 1.9	33.2 5.4	-
VC cVOCs (μg/L	U .) 145	U U	U 46.1	U 37	0 67	U 55	U 16	U 33.1	U 94.6	U 21.1	0 20.2	U 20	U U	U 14	U 26	U 24.4	U 30.4	U 30.7	U 51.3	3.9 88.9	0 60.3	U 143.8	U 20.4	U 38.6	F
			•		•									•			•						•		_
														IOW-4	I: TCE,	DCE &	VC vs.	Time							
150																									
140																									
130																									
																					t				
120 —																									
110																					-+				
100 —																									_
																									/
90																									
50								↓																	
3/L)																									
80 – 80 – 10																									
Concentration (µg/L)																									
00 70																					1				
				*																					
60									+										/	\setminus					
																								/	
50								<u> </u>	+-															<u> </u>	
40			\wedge	<u> </u>		+-	$ \longrightarrow $		+									$ \longrightarrow $							
				/																					
30 —		\ /																					+		
30																		4					/		
																			ļ	L I					
20		+ -					/				-				1										
						•									/										
10		++-												$/ \chi$					/						
		<u> </u>											/	$ \rightarrow $								$\overline{}$			_
0		<u>v</u>													<u>\</u>				<					<u>+</u>	
	Jun-08	Aug-08 Ja	n-09 Apr	-09 Sep-	09 Dec-0	09 Mar-1	0 Jun-10) Sep-10) Dec-10) Mar-11	Feb-12	May-Aug ISCO	. Sep-12	Mar-13	Jun-13	Sep-13 D	ec-13 Ju	n-14 Dec	:-14 Mar-	-15 Jun-	15 Sep-1	5 Dec-15	Mar-16	Jun-16	S



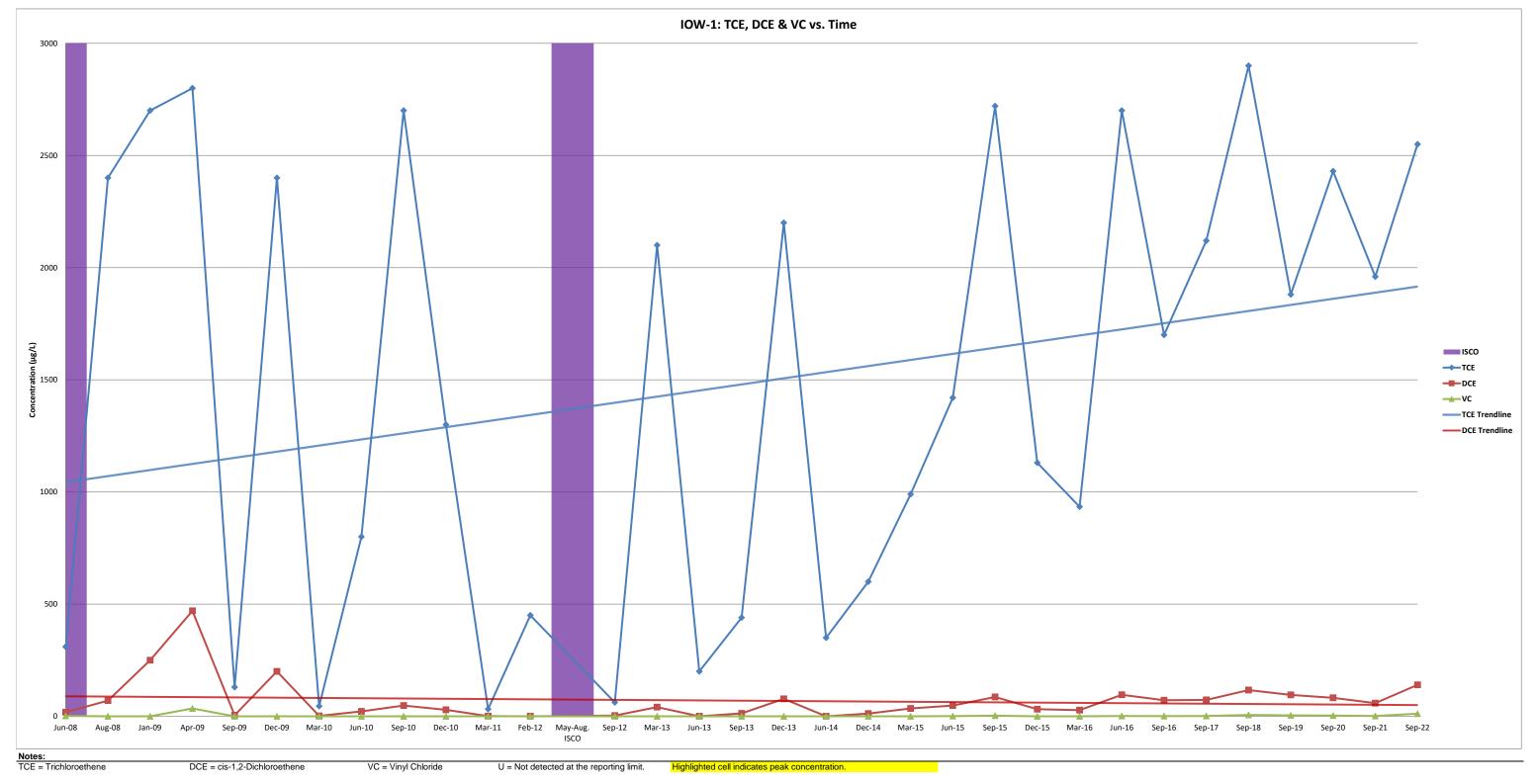
lar-16	Jun-16	Sep-16	Sep-17	Sep-18	Sep-19	Sep-20	Sep-21	Sep-22
855	950	913	816	598	390	781	1,540	1,030
114	75	105	67.6	163	107	209	637	534
2.1	1.2	2.9	1.9	6.6	15.6	57.2	57.4	118
971.1	1,026.2	1,020.9	885.5	767.6	512.6	1,047.2	2,234.4	1,682.0

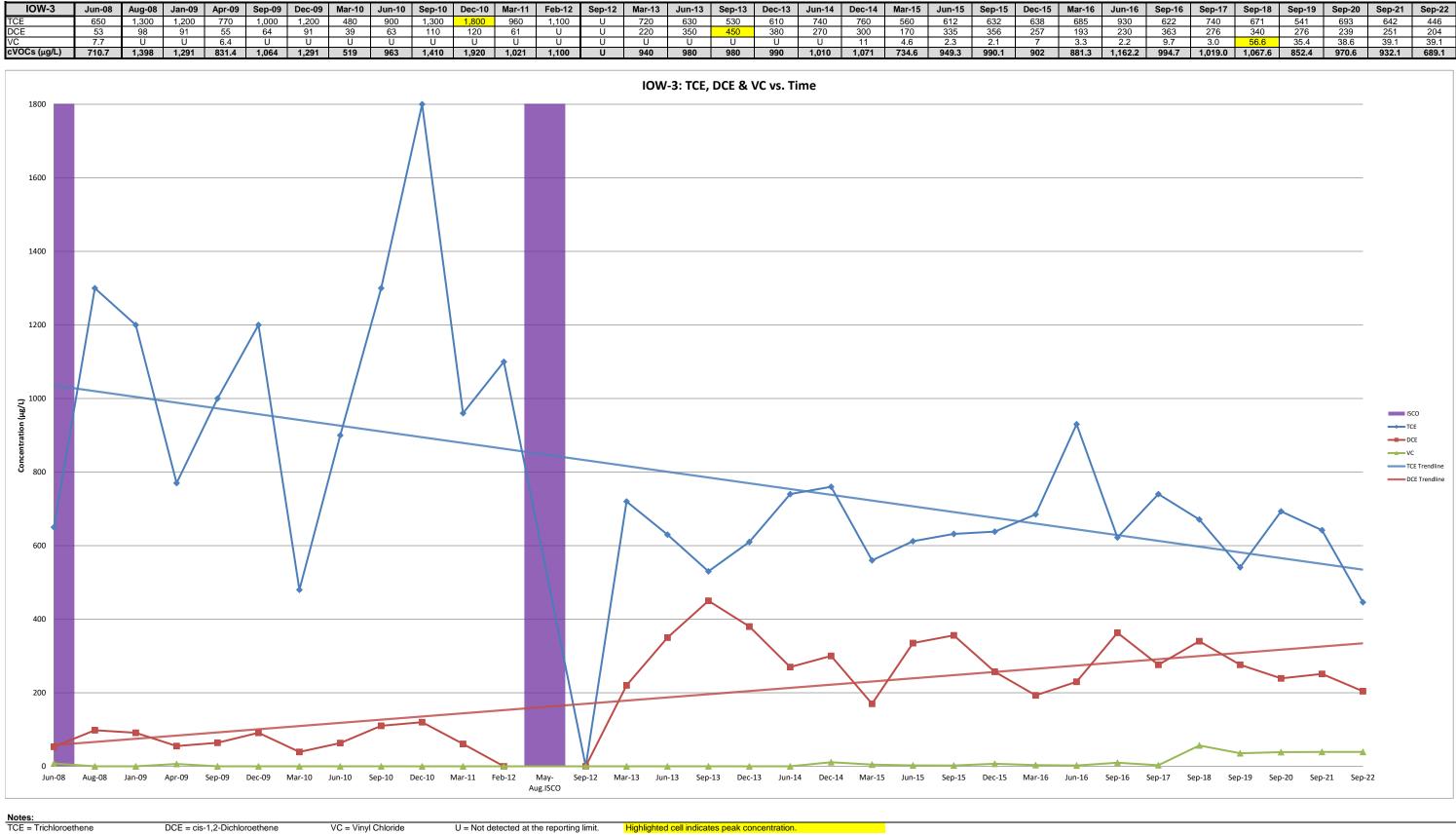
MW06-24BR	RI 2006	Jun-08	Aug-08	Jan-09	Apr-09	Sep-09	Dec-09	Mar-10	Jun-10	Sep-10	Dec-10	Mar-11	Feb-12	Sep-12	Mar-13	Jun-13	Sep-13	Dec-13	Jun-14	Dec-14	Mar-15	Jun-15	Sep-15	Dec-15	Mar-16	Jun-16	Sep-16	Sep-17	Sep-18	Sep-19	Sep-20	Sep-21	Sep-22
TCE	2,200	88	U	37	220	44	69	27	76	55	48	31	31	U		9.4	6.9	39	18	47	33	3.9	24.8	46.5	18.9	34	35.6	43.7	8.4	37.3	12.9	21.2	15.4
DCE	3,700	180	U	25	330	78	140	4.1	170	140	67	8.3	14	U		4.9	4.8	83	16	99	30	2.3	18.5	71.6	14.5	32	50.8	87.2	10.0	37.5	16.8	21.3	18.5
VC	200	7.5	U	1.7	16	7.1	13	U	9.5	12	5.1	U	U	U		U	U	12	2	8.2	3.6	U	3.1	8.3	1.6	2.6	6.1	16.4	3.0	6.3	1.2	2.0	5.9
cVOCs (µg/L)	6,100	275.5	U	63.7	566	129.1	222	31.1	255.5	207	120.1	39.3	45	U	NS	14.3	11.7	134	36	154.2	66.6	6.2	46.4	126.4	35.0	68.6	92.5	147.3	21.4	81.1	30.9	44.5	39.8




P:\PROJECTS\2009\209164 - SHBC\TECH\2023 PRR Charts\ Chart No. 5 MW06-24BR - cVOC, TOC, COD, pH, Eh & GW Elevation Table

MW06-25BR	RI 2006	Mar-08	Jun-08	Jan-09	Apr-09	Sep-09	Dec-09	Mar-10	Jun-10	Sep-10	Dec-10	Mar-11	Feb-12	Sep-12	Mar-13	Jun-13	Sep-13	Dec-13	Jun-14	Dec-14	Mar-15	Jun-15	Sep-15	Dec-15	Mar-16	Jun-16	Sep-16	Sep-17	Sep-18	Sep-19	Sep-20	Sep-21	Sep-22
TCE	57	50		72	73	68	67	46	55	56	68	60	50	U						62	54	50.5	42.9	53.1	49.2	48	51.7	49.9	41.0	37.3	28.8	38.5	29.8
DCE	42	45		41	45	34	29	34	37	32	33	38	24	U						62	54	51.9	57.0	47.5	49.9	45	61.1	45.4	56.9	37.5	34.0	38.2	32.3
VC	U	10		20	7.6	14	11	U	8.3	8	8.1	5.5	U	U						9.8	9	7.2	8.7	8.0	5.3	4.0	6.7	5.4	6.4	6.3	4.8	4.2	10.9
cVOCs (µg/L)	99	105	DRY	133	125.6	116	107	80	100.3	96	109.1	103.5	74	U	NSPP	NSPP	NSPP	NSPP	NSPP	133.8	117	109.6	108.6	108.6	104.4	97.0	119.5	100.7	104.3	81.1	67.6	80.9	73.0




Chart No. 8 IOW-1: Bedrock Well Summary of TCE, DCE and VC Concentrations in Groundwater

IOW-1	Jun-08	Aug-08	Jan-09	Apr-09	Sep-09	Dec-09	Mar-10	Jun-10	Sep-10	Dec-10	Mar-11	Feb-12	Sep-12	Mar-13	Jun-13	Sep-13	Dec-13	Jun-14	Dec-14	Mar-15	Jun-15	Sep-15	Dec-15	Mar-16	Jun-16	Sep-16	Sep-17	Sep-18	Sep-19	Sep-20	Sep-21	Sep-22
TCE	310	2,400	2,700	2,800	130	2,400	45	800	2,700	1,300	32	450	62	2,100	200	440	2,200	350	600	990	1,420	2,720	1,130	934	2,700	1,700	2,120	2,900	1,880	2,430	1,960	2,550
DCE	18	70	250	470	4.8	200	2	22	48	29	1.1	U	3.25	41	U	13	78	U	12	35	47.8	86.0	31.9	27.4	96.0	71.7	73.1	117	95	82.6	58.6	140
VC	2.1	U	U	35	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	1.2	3.0	U	U	1.5	1.2	1.4	6.1	4.1	3.3	1.5	11.8
cVOCs (μg/L)	330.1	2,470	2,950	3,305	134.8	2,600	47	822	2,748	1,329	33.1	450	65.25	2,141	200	453	2,278	350	612	1,025	1,469	2,809	1,161.9	961.4	2,797.5	1,772.9	2,194.5	3,023.1	1,979.4	2,515.9	2,020.1	2,701.8

IOW-3	Jun-08	Aug-08	Jan-09	Apr-09	Sep-09	Dec-09	Mar-10	Jun-10	Sep-10	Dec-10	Mar-11	Feb-12	Sep-12	Mar-13	Jun-13	Sep-13	Dec-13	Jun-14	Dec-14	Mar-15	Jun-15	Sep-15	Dec-15	Mar-16	Jun-1
TCE	650	1,300	1,200	770	1,000	1,200	480	900	1,300	1,800	960	1,100	U	720	630	530	610	740	760	560	612	632	638	685	930
DCE	53	98	91	55	64	91	39	63	110	120	61	U	U	220	350	450	380	270	300	170	335	356	257	193	230
VC	7.7	U	U	6.4	U	U	U	U	U	U	U	U	U	U	U	U	U	U	11	4.6	2.3	2.1	7	3.3	2.2
cVOCs (µg/L)	710.7	1,398	1,291	831.4	1,064	1,291	519	963	1,410	1,920	1,021	1,100	υ	940	980	980	990	1,010	1,071	734.6	949.3	990.1	902	881.3	1,162

APPENDIX E

GROUNDWATER MONITORING WELL SAMPLING RECORDS

PROJECT NO:	209164	
SITE:	Former Axioh	m Facility (Site No. C755012)
WELL:	MW-2	
SAMPLER:	GeoLogic NY,	PC: CG
DATE(S):	9/20/2022	

TOC Depth of Well (ft.)	14.95									
TOC Depth to GW (ft.)	10.98									
1 Well Volume (gal./fl.oz.)	0.6	/ 81.9								
Volume Purged (fl. oz.)	0	16	32	48	64	80	96			
Purging Method	Low-flo	w								
FIELD PARAMETERS:					Tir	ne				
	12:26	12:29	12:32	12:36	12:39	12:42	12:48			
Temperature (°C)	20.39	20.20	20.33	20.32	20.56	20.52	20.54			
Conductivity (mS/cm)	1.89	1.67	1.59	1.53	1.50	1.46	1.47			
Dissolved Oxygen (DO) (mg/L)	1.06	0.00	0.00	0.00	0.00	0.00	0.00			
рН	7.46	7.40	7.33	7.30	7.28	7.28	7.27			
Oxidation Reduction Potential (ORP) (mV)	350	375	388	399	403	407	408			
Turbidity (NTU)	0.3	0.0	0.0	0.0	0.0	0.0	0.0			
OBSERVATIONS										
Color	Clear	Clear	Clear	Clear	Clear	Clear	Clear			
Sheen or Odor	No	No	No	No	No	No	No			
LABORATORY ANALYSIS		ne by)GAX	VOC 826	s by 60B					QA	/QC
Time Sampled	12:54 12:49				Du	Jp.				

Comments (including field procedures):

TOC = Top of Casing GW = Groundwater NA = Not Applicable NC = Not Collected IV = Insufficient Volume Field parameters were measured using a Horbia U-52 with multi-parameter sonde and a flow cell.

Low-flow techniques used to purged and sampled well using dedicated polyethylene tubing and a peristaltic pump.

The field parameters were recorded during purging to establish equilibrium prior to sample collection.

Disposable gloves were worn by the sampler. Field parameter equipment was decontaminated between wells.

PROJECT NO:	209164
SITE:	Former Axiohm Facility (Site No. C755012)
WELL:	MW06-23BR
SAMPLER:	GeoLogic NY, PC: CG
DATE(S):	9/20/2022

TOC Depth of Well (ft.)	21.73									
TOC Depth to GW (ft.)	14.88									
1 Well Volume (gal.)	1.1									
Volume Purged (fl. oz.)	0	32	64	96	112	128	144	160		
Purging Method	Low-flo	w								
FIELD PARAMETERS:					Tir	ne				
	15:26	15:34	15:41	15:48	15:52	15:56	16:00	16:04		
Temperature (°C)	22.00	20.72	20.72	20.71	20.68	20.61	20.54	20.48		
Conductivity (mS/cm)	1.85	1.91	1.90	1.90	1.89	1.86	1.83	1.82		
Dissolved Oxygen (DO) (mg/L)	1.74	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
рН	7.39	7.36	7.36	7.36	7.36	7.37	7.38	7.38		
Oxidation Reduction Potential (ORP) (mV)	347	399	408	414	415	416	418	419		
Turbidity (NTU)	59.2	44.0	31.7	27.8	27.1	26.9	26.6	11.1		
OBSERVATIONS										
Color	Very Lt. Grey	Cloudy	Cloudy	Cloudy	Cloudy	Cloudy	Cloudy	Cloudy		
Sheen or Odor	No	No	No	No	No	No	No	No		
LABORATORY ANALYSIS		ne by)GAX	VOC 826						QA	QC
Time Sampled	16:07, 16:16- 16:05, 16:12- MS/N 16:18 16:14 MS/N						MDS			

Comments (including field procedures):

TOC = Top of Casing GW = Groundwater NA = Not Applicable NC = Not Collected IV = Insufficient Volume Field parameters were measured using a Horbia U-52 with multi-parameter sonde and a flow cell.

Low-flow techniques used to purged and sampled well using dedicated polyethylene tubing and a peristaltic pump.

The field parameters were recorded during purging to establish equilibrium prior to sample collection.

Disposable gloves were worn by the sampler. Field parameter equipment was decontaminated between wells.

PROJECT NO:	209164
SITE:	Former Axiohm Facility (Site No. C755012)
WELL:	MW06-24BR
SAMPLER:	GeoLogic NY, PC: CG
DATE(S):	9/21/2022

TOC Depth of Well (ft.)	21.70								
TOC Depth to GW (ft.)	16.4								
1 Well Volume (gal.)	0.85								
Volume Purged (fl. oz.)	0	32	48	64	80	96	112		
Purging Method	Low-flo	w							
FIELD PARAMETERS:					Tir	ne			
	9:47	9:54	9:58	10:02	10:06	10:10	10:15		
Temperature (°C)	24.80	24.13	24.25	24.36	23.60	23.41	23.83		
Conductivity (mS/cm)	11.40	11.30	10.90	9.38	8.00	7.27	7.13		
Dissolved Oxygen (DO) (mg/L)	0.92	0.00	0.00	0.00	0.00	0.00	0.00		
рН	7.57	8.53	9.19	9.06	8.95	8.98	8.91		
Oxidation Reduction Potential (ORP) (mV)	283	254	216	106	81	98	118		
Turbidity (NTU)	74.8	50.0	27.2	14.0	44.7	47.4	33.2		
OBSERVATIONS									
Color	Lt. Brown	Very Lt. Brown	Cloudy	Cloudy	Cloudy	Cloudy	Cloudy		
Sheen or Odor	No	No	No	No	No	No	No		
LABORATORY ANALYSIS	Ethene by VOCs by AM20GAX 8260B						QA	/QC	
Time Sampled	10:18 10:16							N	lo

Comments (including field procedures):

TOC = Top of Casing GW = Groundwater NA = Not Applicable NC = Not Collected IV = Insufficient Volume Field parameters were measured using a Horbia U-52 with multi-parameter sonde and a flow cell.

Low-flow techniques used to purged and sampled well using dedicated polyethylene tubing and a peristaltic pump.

The field parameters were recorded during purging to establish equilibrium prior to sample collection.

Disposable gloves were worn by the sampler. Field parameter equipment was decontaminated between wells.

NTU = Nephelometric Turbidity Units

Stopped pump after 96 fluid ounces for about 5 minutes due to increase in turbidity.

PROJECT NO:	209164
SITE:	Former Axiohm Facility (Site No. C755012)
WELL:	MW06-25OB
SAMPLER:	GeoLogic NY, PC: CG
DATE(S):	9/20/2022

TOC Depth of Well (ft.)	10.36									
TOC Depth to GW (ft.)	NA		Well Dry							
1 Well Volume (gal.)	NA									
Volume Purged (fl. oz.)	NA									
Purging Method	NA	NA								
FIELD PARAMETERS:					Ti	me				
FIELD FARAMETERS.										
Temperature (°C)										
Conductivity (mS/cm)										
Dissolved Oxygen (DO) (mg/L)					Wel					•
рН							y			
Oxidation Reduction Potential (ORP) (mV)										
Turbidity (NTU)										
OBSERVATIONS										
Color										
Sheen or Odor										
LABORATORY ANALYSIS		ne by DGAX	VOCs by 8260B			•			QA	/QC
Time Sampled	NA NA			IA					Ν	IA

Comments (including field procedures):

TOC = Top of Casing	GW = Groundwater	NA = Not Applicable	NC = Not Collected	IV = Insufficient Volume
Field parameters were	measured using a Hor	rbia U-52 with multi-par	ameter sonde and a fl	ow cell.

Low-flow techniques used to purged and sampled well using dedicated polyethylene tubing and a peristaltic pump.

The field parameters were recorded during purging to establish equilibrium prior to sample collection.

Disposable gloves were worn by the sampler. Field parameter equipment was decontaminated between wells.

PROJECT NO:	209164
SITE:	Former Axiohm Facility (Site No. C755012)
WELL:	MW06-25BR
SAMPLER:	GeoLogic NY, PC: CG
DATE(S):	9/20/2022

TOC Depth of Well (ft.)	19.37								
TOC Depth to GW (ft.)	13.54								
1 Well Volume (gal.)	0.9								
Volume Purged (fl. oz.)	0	32	48	64	80	96	112		
Purging Method	Low-flo	w							
FIELD PARAMETERS:					Tir	ne			
	10:50	10:57	11:01	11:05	11:09	11:13	11:16		
Temperature (°C)	16.91	15.40	15.35	15.30	15.30	15.32	15.36		
Conductivity (mS/cm)	2.56	2.58	2.59	2.61	2.62	2.62	2.62		
Dissolved Oxygen (DO) (mg/L)	1.02	0.00	0.00	0.00	0.00	0.00	0.00		
рН	7.63	7.20	7.11	7.05	7.01	6.99	6.98		
Oxidation Reduction Potential (ORP) (mV)	272	292	296	299	301	302	303		
Turbidity (NTU)	2.9	0.0	0.0	0.0	0.0	0.0	0.0		
OBSERVATIONS									
Color	Clear	Clear	Clear	Clear	Clear	Clear	Clear		
Sheen or Odor	No	No	No	No	No	No	No		
LABORATORY ANALYSIS	Ethene by VOCs by AM20GAX 8260B							QA	QC
Time Sampled	11	11:19 11:17					N	lo	

Comments (including field procedures):

TOC = Top of Casing GW = Groundwater NA = Not Applicable NC = Not Collected IV = Insufficient Volume Field parameters were measured using a Horbia U-52 with multi-parameter sonde and a flow cell.

Low-flow techniques used to purged and sampled well using dedicated polyethylene tubing and a peristaltic pump.

The field parameters were recorded during purging to establish equilibrium prior to sample collection.

Disposable gloves were worn by the sampler. Field parameter equipment was decontaminated between wells.

PROJECT NO:	209164
SITE:	Former Axiohm Facility (Site No. C755012)
WELL:	MW16-7BR
SAMPLER:	GeoLogic NY, PC: CG
DATE(S):	9/21/2022

TOC Depth of Well (ft.)	21.40									
TOC Depth to GW (ft.)	14.31									
1 Well Volume (gal.)	1.1									
Volume Purged (fl. Oz.)	0	32	64	80	96	112	128			
Purging Method	Low-flo	w								
FIELD PARAMETERS:		Time								
	10:50	10:58	11:06	11:10	11:14	11:18	11:22			
Temperature (°C)	26.45	24.84	23.83	24.09	23.80	24.00	24.03			
Conductivity (mS/cm)	3.33	3.47	3.55	3.54	3.57	3.57	3.60			
Dissolved Oxygen (DO) (mg/L)	5.92	8.34	8.59	8.41	8.56	8.44	8.41			
рН	8.78	8.46	8.37	8.34	8.32	8.30	8.29			
Oxidation Reduction Potential (ORP) (mV)	361	388	397	399	401	402	403			
Turbidity (NTU)	11.7	0.1	0.1	0.4	0.1	0.0	0.0			
OBSERVATIONS										
Color	Clear	Clear	Clear	Clear	Clear	Clear	Clear			
Sheen or Odor	No	No	No	No	No	No	No			
LABORATORY ANALYSIS	Ethene by AM20GAX		VOCs by 8260B						QA	/QC
Time Sampled	11	:25	11	:23					Ν	lo

Comments (including field procedures):

TOC = Top of Casing GW = Groundwater NA = Not Applicable NC = Not Collected IV = Insufficient Volume Field parameters were measured using a Horbia U-52 with multi-parameter sonde and a flow cell.

Low-flow techniques used to purged and sampled well using dedicated polyethylene tubing and a peristaltic pump.

The field parameters were recorded during purging to establish equilibrium prior to sample collection.

Disposable gloves were worn by the sampler. Field parameter equipment was decontaminated between wells.

PROJECT NO:	209164	
SITE:	Former Axioh	m Facility (Site No. C755012)
WELL:	IOW-1	
SAMPLER:	GeoLogic NY,	PC: CG
DATE(S):	9/20/2022	

TOC Depth of Well (ft.)	23.64									
TOC Depth to GW (ft.)	14.78									
1 Well Volume (gal.)	1.4									
Volume Purged (fl. oz.)	0	32	64	96	128	160	192			
Purging Method	Low-flo	Low-flow								
FIELD PARAMETERS:		Time								
	14:05	14:12	14:19	14:26	14:33	14:40	14:47			
Temperature (°C)	21.85	20.38	20.22	20.08	20.09	20.14	20.17			
Conductivity (mS/cm)	3.53	3.49	3.47	3.46	3.46	3.46	3.36			
Dissolved Oxygen (DO) (mg/L)	2.78	0.76	0.35	0.53	0.42	0.39	0.22			
рН	7.09	7.33	7.35	7.35	7.34	7.33	7.32			
Oxidation Reduction Potential (ORP) (mV)	355	393	406	413	417	415	415			
Turbidity (NTU)	12.5	8.9	7.8	7.6	7.2	0.0	0.0			
OBSERVATIONS										
Color	Very Lt. Orange	Cloudy	Cloudy	Cloudy	Cloudy	Clear	Clear			
Sheen or Odor	No	No	No	No	No	No	No			
LABORATORY ANALYSIS	Ethene by AM20GAX		VOCs by 8260B						QA	/QC
Time Sampled	14	:50	14	:48					Ν	lo

Comments (including field procedures):

TOC = Top of Casing GW = Groundwater NA = Not Applicable NC = Not Collected IV = Insufficient Volume Field parameters were measured using a Horbia U-52 with multi-parameter sonde and a flow cell.

Low-flow techniques used to purged and sampled well using dedicated polyethylene tubing and a peristaltic pump.

The field parameters were recorded during purging to establish equilibrium prior to sample collection.

Disposable gloves were worn by the sampler. Field parameter equipment was decontaminated between wells.

PROJECT NO:	209164	
SITE:	Former Axioh	m Facility (Site No. C755012)
WELL:	IOW-3	
SAMPLER:	GeoLogic NY,	PC: CG
DATE(S):	9/21/2022	

TOC Depth of Well (ft.)	18.20									
TOC Depth to GW (ft.)	13.57									
1 Well Volume (gal.)	0.7									
Volume Purged (fl. oz.)	0	16	32	48	64	80	96			
Purging Method	Low-flo	Low-flow								
FIELD PARAMETERS:		Time								
	12:51	12:55	12:59	13:03	13:07	13:11	13:15			
Temperature (°C)	25.85	25.30	24.76	24.57	24.48	24.49	24.52			
Conductivity (mS/cm)	6.57	6.18	6.88	6.89	6.84	6.76	6.68			
Dissolved Oxygen (DO) (mg/L)	0.18	0.00	0.00	0.00	0.00	0.00	0.00			
рН	7.43	7.12	7.08	7.06	7.05	7.05	7.05			
Oxidation Reduction Potential (ORP) (mV)	407	421	424	425	426	427	428			
Turbidity (NTU)	9.7	6.5	5.3	4.0	3.6	0.4	0.1			
OBSERVATIONS										
Color	Very Lt. Grey	Cloudy	Clear	Clear	Clear	Clear	Clear			
Sheen or Odor	No	No	No	No	No	No	No			
LABORATORY ANALYSIS	Ethene by AM20GAX		VOCs by 8260B						QA	QC
Time Sampled	13	:18	13	:16					N	lo

Comments (including field procedures):

TOC = Top of Casing GW = Groundwater NA = Not Applicable NC = Not Collected IV = Insufficient Volume Field parameters were measured using a Horbia U-52 with multi-parameter sonde and a flow cell.

Low-flow techniques used to purged and sampled well using dedicated polyethylene tubing and a peristaltic pump.

The field parameters were recorded during purging to establish equilibrium prior to sample collection.

Disposable gloves were worn by the sampler. Field parameter equipment was decontaminated between wells.

GROUNDWATER MONITORING WELL SAMPLING RECORD FIELD PARAMETERS & LABORATORY ANALYSIS

PROJECT NO:	209164	
SITE:	Former Axioh	m Facility (Site No. C755012)
WELL:	IOW-4	
SAMPLER:	GeoLogic NY,	PC: CG
DATE(S):	9/21/2022	

TOC Depth of Well (ft.)	8.8									
TOC Depth to GW (ft.)	6.46									
1 Well Volume (gal./fl.oz.)	0.37	/ 47.36								
Volume Purged (fl. oz.)	0	16	32	48	64	Purged	dry at ~6	65 fl. oz.		
Purging Method	Low-flo	w								
FIELD PARAMETERS:					Ti	me				
	13:49	13:53	13:57	14:01	14:05					
Temperature (°C)	28.71	28.66	28.57	28.66	28.62					
Conductivity (mS/cm)	2.52	2.92	3.23	3.05	2.93					
Dissolved Oxygen (DO) (mg/L)	0.23	0.00	0.00	0.00	0.00					
рН	7.84	8.14	8.27	8.34	8.36					
Oxidation Reduction Potential (ORP) (mV)	361	365	365	366	366					
Turbidity (NTU)	507	326	245	203	190					
OBSERVATIONS										
Color	Brown/ Orange	Brown/ Orange	Brown/ Orange	Lt. Br./ Orange	Lt. Br./ Orange					
Sheen or Odor	No	No	No	No	No					
LABORATORY ANALYSIS		ne by)GAX		s by 60B					QA	QC
Time Sampled	14	:19	14	:17					N	lo

Comments (including field procedures):

TOC = Top of Casing GW = Groundwater NA = Not Applicable NC = Not Collected IV = Insufficient Volume Field parameters were measured using a Horbia U-52 with multi-parameter sonde and a flow cell.

Low-flow techniques used to purged and sampled well using dedicated polyethylene tubing and a peristaltic pump.

The field parameters were recorded during purging to establish equilibrium prior to sample collection.

Disposable gloves were worn by the sampler. Field parameter equipment was decontaminated between wells.

NTU = Nephelometric Turbidity Units

Well purged dry at ~65 fluid ounces. Let recovery for about 10 minutes and then collect sample.

APPENDIX F

SSDS INSPECTION FORMS

Sub-Slab Depressurization System (SSDS) Inspection Checklist

Date 10/12/2022 Inspector Initials JM

GeoLogic

South Hill Business Campus, 950 Danby Road, Ithaca, NY

			II. Fan Inspection
	Suction riser (Column I.D.)	Pressure Reading (in WC)	1. Operational? Y_V_ N
		/	
	B17 -	- 105	2. Clear of obstructions? Y_V_ N
	B19 *	- 1=4	
	B21 "	-0.9	3. Repair needs? Y N/
	B23	-1.2	4. Observations/Comments:
	B27	- 0.6	4. Observations/Comments: Fan Motor Was replaced 10/12
	B29	- <u>0.2</u>	
	B31	- <u>0.4</u>	
*	C25	- <u>loż</u>	
	D9	- @ 0 3	5. Actions Taken:
	D18	105	
	D19 '	<u> </u>	
	D21	<u> </u>	
	D23	-0=5	6. Recommended Maintenance:
	D27	-0.7	
A at i t	D29 ·	- <u>0:;</u> -0:5	
Reattach *	F10 '		
	F17 '	-1.2	Do any of the pressure gages require repair or replacement?
	F19 •	- 1.4	$Y_{}$ N_V
	F21	0.9	If so, indicate locations, and actions taken:
	F23	-0.9	H-I 17 was broken, so I replaced
	F25	-0.5	
	F27	-0.4	it with a new one.
		- <u>O.4</u>	D-31 was hanging, so Fre-attached it
*	F31	- <u>0.4</u>	To the I beam.
*	G20	- <u>0.4</u> - <u>0.3</u>	
	G 26-27	-0.3	Additional Comments:
#	H15 =	- 1.0	
Brob *	H-I 17 -	- 101	
-	H23 •	-0.3	
	H29 -	-0:3	
	18 -	-0.2	

Sub-Slab Depressurization System (SSDS) Inspection Form Date 4-7-22 Inspector Initials__)M Site No. C755012: Former Axiohm Facility, 950 Danby Road, Ithaca, NY I. U-Tube Manometer Readings II. Fan Inspection **Extraction Riser Pressure** 1. Operational? Υľ (Column I.D.) Reading (in WC) N **B17** 2. Clear of obstructions? Y Ν B19 3. Repair needs? Y N **B21** B23 4. Observations/Comments: **B27** 1.0 B29 0.1 **B**31 C25 D9 5. Actions Taken: D18 D19 D21 D23 2.0 6. Recommended Maintenance: D27 0.8 D29 D31 F10 F17 Do any of the pressure gauges require repair or replacement? N F19 1.8 F21 If so, indicate locations, and actions taken: F23 Added fluid to a-Tabes as vecessary F25 F27 F29 F31 G20 Additional Comments: G 26-27 H15 0.14 H-I 17 H23 15 H29 0.4 118 .0 TIY

MW16-13 C . 2 P:\PROJECTS\2009\209164 - SHBC\TECH\Visual Inspection of SSDS & PPAES\SSDS Inspection Form 3-2018.doc

APPENDIX G

GROUNDWATER ANALYTICAL RESULTS FOR SEPTEMBER 2022

Pace Analytical Services, LLC 1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

October 10, 2022

GeoLogic NY, P.C. Geologic NY 37 Copeland Avenue Homer, NY 13077

RE: Project: 209164 Pace Project No.: 30524553

Dear GeoLogic NY, P.C.:

Enclosed are the analytical results for sample(s) received by the laboratory on September 23, 2022. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

Pace Analytical Gulf Coast

• Pace Analytical Services - Greensburg

(Greensburg, PA) - Revision 1 - This report replaces the 10/4/22 report. This project was revised on 10/10/22 in order to include results for the trip blank.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Statt Richmand

Skyler C. Richmond skyler.richmond@pacelabs.com (724)850-5600 Project Manager

Enclosures

Pace Analytical Services, LLC 1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

CERTIFICATIONS

Project: 209164 Pace Project No.: 30524553

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601 ANAB DOD-ELAP Rad Accreditation #: L2417 Alabama Certification #: 41590 Arizona Certification #: AZ0734 Arkansas Certification California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694 **Delaware Certification** EPA Region 4 DW Rad Florida/TNI Certification #: E87683 Georgia Certification #: C040 **Guam Certification** Florida: Cert E871149 SEKS WET Hawaii Certification Idaho Certification **Illinois Certification** Indiana Certification Iowa Certification #: 391 Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221 Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086 Maine Certification #: 2017020 Maryland Certification #: 308 Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991

Pace Analytical Gulf Coast

7979 Innovation Park Drive, Baton Rouge, LA 70820 Arkansas Certification #: 88-0655 DoD ELAP Certification #: 6429-01 Florida Certification #: E87854 Illinois Certification #: 004585 Kansas Certification #: E-10354 Louisiana/LELAP Certification #: 01955 North Carolina Certification #: 618 Missouri Certification #: 235 Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617 New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249 Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282 South Dakota Certification Tennessee Certification #: 02867 Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 460198 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

North Dakota Certification #: R-195 Oklahoma Certification #: 2019-101 South Carolina Certification #: 73006001 Texas Certification #: T104704178-19-11 USDA Soil Permit # P330-19-00209 Virginia Certification #: 460215 Washington Certification #: C929

SAMPLE SUMMARY

 Project:
 209164

 Pace Project No.:
 30524553

Lab ID	Sample ID	Matrix	Date Collected	Date Received
30524553001	MW-2	Water	09/20/22 12:54	09/23/22 09:45
30524553002	MW06-23BR	Water	09/20/22 16:07	09/23/22 09:45
30524553003	MW06-24BR	Water	09/21/22 10:18	09/23/22 09:45
30524553004	MW06-25BR	Water	09/21/22 11:19	09/23/22 09:45
30524553005	MW16-7BR	Water	09/21/22 11:25	09/23/22 09:45
30524553006	IOW-1	Water	09/20/22 14:50	09/23/22 09:45
30524553007	IOW-3	Water	09/21/22 13:18	09/23/22 09:45
30524553008	IOW-4	Water	09/21/22 14:19	09/23/22 09:45
30524553009	Dup.	Water	09/20/22 12:54	09/23/22 09:45
30524553010	MS-MW06-23BR	Water	09/20/22 16:18	09/23/22 09:45
30524553011	MSD-MW06-23BR	Water	09/20/22 16:18	09/23/22 09:45
30524553012	trip blank	Water	09/20/22 00:00	09/23/22 09:45

SAMPLE ANALYTE COUNT

Project:	209164
Pace Project No.:	30524553

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
30524553001		AM20GAX	LMB	1	GCLA
		EPA 8260C	JAS	71	PASI-PA
30524553002	MW06-23BR	AM20GAX	LMB	1	GCLA
		EPA 8260C	JAS	71	PASI-PA
30524553003	MW06-24BR	AM20GAX	LMB	1	GCLA
		EPA 8260C	JAS	71	PASI-PA
30524553004	MW06-25BR	AM20GAX	LMB	1	GCLA
		EPA 8260C	JAS	71	PASI-PA
30524553005	MW16-7BR	AM20GAX	LMB	1	GCLA
		EPA 8260C	JAS	71	PASI-PA
30524553006	IOW-1	AM20GAX	LMB	1	GCLA
		EPA 8260C	JAS	71	PASI-PA
30524553007	IOW-3	AM20GAX	LMB	1	GCLA
		EPA 8260C	JAS	71	PASI-PA
30524553008	IOW-4	AM20GAX	LMB	1	GCLA
		EPA 8260C	JAS	71	PASI-PA
30524553009	Dup.	AM20GAX	LMB	1	GCLA
		EPA 8260C	JAS	71	PASI-PA
30524553010	MS-MW06-23BR	AM20GAX	LMB	1	GCLA
		EPA 8260C	JAS	71	PASI-PA
30524553011	MSD-MW06-23BR	AM20GAX	LMB	1	GCLA
		EPA 8260C	JAS	71	PASI-PA
30524553012	trip blank	EPA 8260C	JAS	71	PASI-PA

GCLA = Pace Analytical Gulf Coast PASI-PA = Pace Analytical Services - Greensburg

 Project:
 209164

 Pace Project No.:
 30524553

Method:AM20GAXDescription:Indicator Gases Water LHCClient:GeoLogic NY, P.C.Date:October 10, 2022

General Information:

11 samples were analyzed for AM20GAX by Pace Analytical Gulf Coast. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: 209164 Pace Project No.: 30524553

Method:	EPA 8260C
Description:	8260C MSV
Client:	GeoLogic NY, P.C.
Date:	October 10, 2022

General Information:

12 samples were analyzed for EPA 8260C by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

QC Batch: 536605

IH: This analyte exceeded secondary source verification criteria high for the initial calibration. The reported results should be considered an estimated value.

- BLANK (Lab ID: 2603776)
 - Dichlorodifluoromethane
 - Vinyl chloride
- Dup. (Lab ID: 30524553009)
 - Dichlorodifluoromethane
 - Vinyl chloride
- IOW-1 (Lab ID: 30524553006)
 - Dichlorodifluoromethane
 - Vinyl chloride
- IOW-3 (Lab ID: 30524553007)
 - Dichlorodifluoromethane
 - Vinyl chloride
- IOW-4 (Lab ID: 30524553008)
 - Dichlorodifluoromethane
 - Vinyl chloride
- LCS (Lab ID: 2603777)
 - Dibromochloromethane
 - Vinyl chloride
- MS (Lab ID: 2603778)
 - Dichlorodifluoromethane
 - Vinyl chloride
- MS-MW06-23BR (Lab ID: 30524553010)
 - Dichlorodifluoromethane
 - Vinyl chloride
- MSD (Lab ID: 2603779)
 - Dichlorodifluoromethane
 - Vinyl chloride
- MSD-MW06-23BR (Lab ID: 30524553011)
 - Dichlorodifluoromethane
 - Vinyl chloride
- MW-2 (Lab ID: 30524553001)
 - Dichlorodifluoromethane

	EPA 8260C
Description:	8260C MSV
Client:	GeoLogic NY, P.C.
Date:	October 10, 2022
QC Batch: 53	6605
	nis analyte exceeded secondary source verification criteria high for the initial calibration. The reported results should be dered an estimated value.
CONSI	
• •	Vinyl chloride (Appl D): 20524552002)
• IV	IW06-23BR (Lab ID: 30524553002) • Dichlorodifluoromethane
	Vinyl chloride
• •	W06-24BR (Lab ID: 30524553003)
• IV	Dichlorodifluoromethane
	Vinyl chloride
• N	W06-25BR (Lab ID: 30524553004)
- IV	Dichlorodifluoromethane
	Vinyl chloride
• N	W16-7BR (Lab ID: 30524553005)
- 10	Dichlorodifluoromethane
	Vinyl chloride
• tr	ip blank (Lab ID: 30524553012)
- u	Dichlorodifluoromethane
	Vinyl chloride
Ш · ТК	is analyte exceeded secondary source verification criteria low for the initial calibration. The reported results should be
	dered an estimated value.
	LANK (Lab ID: 2603776)
_	• Bromomethane
	Carbon disulfide
• []	up. (Lab ID: 30524553009)
	• Bromomethane
	Carbon disulfide
• [0	DW-1 (Lab ID: 30524553006)
	• Bromomethane
	Carbon disulfide
• (0	DW-3 (Lab ID: 30524553007)
	• Bromomethane
	Carbon disulfide
• (DW-4 (Lab ID: 30524553008)
	• Acetone
	Bromomethane
	Carbon disulfide
• L	CS (Lab ID: 2603777)
	Bromomethane
	Carbon disulfide
• N	IS (Lab ID: 2603778)
	• Bromomethane
	Carbon disulfide
• N	IS-MW06-23BR (Lab ID: 30524553010)
	Bromomethane
	Carbon disulfide

 Project:
 209164

 Pace Project No.:
 30524553

Method:	EPA 8260C
Description:	8260C MSV
Client:	GeoLogic NY, P.C.
Date:	October 10, 2022

QC Batch: 536605

IL: This analyte exceeded secondary source verification criteria low for the initial calibration. The reported results should be considered an estimated value.

- MSD (Lab ID: 2603779)
 - Bromomethane
 - Carbon disulfide
- MSD-MW06-23BR (Lab ID: 30524553011)
 - Bromomethane
 - Carbon disulfide
- MW-2 (Lab ID: 30524553001)
 - Bromomethane
 - · Carbon disulfide
- MW06-23BR (Lab ID: 30524553002)
 - Bromomethane
 - · Carbon disulfide
- MW06-24BR (Lab ID: 30524553003)
 - Bromomethane
 - Carbon disulfide
- MW06-25BR (Lab ID: 30524553004)
 - Bromomethane
 - Carbon disulfide
- MW16-7BR (Lab ID: 30524553005)
 - Bromomethane
 - Carbon disulfide
- trip blank (Lab ID: 30524553012)
 - Bromomethane
 - Carbon disulfide

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

QC Batch: 536605

CH: The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased high.

- BLANK (Lab ID: 2603776)
 - Bromomethane
 - Dichlorodifluoromethane
- Dup. (Lab ID: 30524553009)
 - Bromomethane
 - Dichlorodifluoromethane
- IOW-1 (Lab ID: 30524553006)
 - Bromomethane
 - Dichlorodifluoromethane
- IOW-3 (Lab ID: 30524553007)
 - Bromomethane
 - Dichlorodifluoromethane
- IOW-4 (Lab ID: 30524553008)

 Project:
 209164

 Pace Project No.:
 30524553

Method:	EPA 8260C
Description:	
Client:	GeoLogic NY, P.C.
Date:	October 10, 2022
QC Batch: 53	6605
CH: 1	he continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased high.
	• Acetone
	Bromomethane
	Dichlorodifluoromethane
• L	CS (Lab ID: 2603777)
	Bromomethane
	Dibromochloromethane
• N	IS (Lab ID: 2603778)
	Bromomethane
	Dichlorodifluoromethane
• N	IS-MW06-23BR (Lab ID: 30524553010)
	• Bromomethane
	Dichlorodifluoromethane
• N	ISD (Lab ID: 2603779)
	• Bromomethane
	Dichlorodifluoromethane
• N	ISD-MW06-23BR (Lab ID: 30524553011)
	Bromomethane
	Dichlorodifluoromethane
• N	IW-2 (Lab ID: 30524553001)
	Bromomethane
	Dichlorodifluoromethane
• N	W06-23BR (Lab ID: 30524553002)
	Bromomethane
	Dichlorodifluoromethane
• N	W06-24BR (Lab ID: 30524553003)
- 10	Bromomethane
	Dichlorodifluoromethane
• N	W06-25BR (Lab ID: 30524553004)
- 10	Bromomethane
	Dichlorodifluoromethane
• N	W16-7BR (Lab ID: 30524553005)
- 10	Bromomethane
	Dichlorodifluoromethane
e tr	ip blank (Lab ID: 30524553012)
• (1	
	Bromomethane Dichlorodifluoromethane
	he continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased low.
• B	LANK (Lab ID: 2603776)
	• 2,2-Dichloropropane
	Vinyl acetate
• D	up. (Lab ID: 30524553009)
	• 2,2-Dichloropropane
• (DW-1 (Lab ID: 30524553006)
	• 2,2-Dichloropropane

• 2,2-Dichloropropane

Project: Pace Project	209164 No.: 30524553
Method: Description: Client: Date:	EPA 8260C 8260C MSV GeoLogic NY, P.C. October 10, 2022
QC Batch: 53	36605
CL: 1 • I • I • I • I • N • N • N • N	The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased low. OW-3 (Lab ID: 30524553007) • 2,2-Dichloropropane OW-4 (Lab ID: 30524553008) • 2,2-Dichloropropane CS (Lab ID: 2603777) • 2,2-Dichloropropane • Vinyl acetate XS (Lab ID: 2603778) • 2,2-Dichloropropane • Vinyl acetate XS-MW06-23BR (Lab ID: 30524553010) • 2,2-Dichloropropane Vinyl acetate XD-MW06-23BR (Lab ID: 30524553010) • 2,2-Dichloropropane Vinyl acetate XD-MW06-23BR (Lab ID: 30524553011) • 2,2-Dichloropropane Vinyl acetate XD-MW06-23BR (Lab ID: 30524553011) • 2,2-Dichloropropane Vinyl acetate VMV42 (Lab ID: 30524553001) • 2,2-Dichloropropane VW06-23BR (Lab ID: 30524553002) • 2,2-Dichloropropane VW06-23BR (Lab ID: 30524553002) • 2,2-Dichloropropane

- MW06-24BR (Lab ID: 30524553003)
 2,2-Dichloropropane
- MW06-25BR (Lab ID: 30524553004)
 - 2,2-Dichloropropane
- MW16-7BR (Lab ID: 30524553005)
 - 2,2-Dichloropropane
- trip blank (Lab ID: 30524553012)
 - 2,2-Dichloropropane
 - Vinyl acetate

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

 Project:
 209164

 Pace Project No.:
 30524553

Method:	EPA 8260C
Description:	8260C MSV
Client:	GeoLogic NY, P.C.
Date:	October 10, 2022

QC Batch: 536605

L2: Analyte recovery in the laboratory control sample (LCS) was below QC limits. Results for this analyte in associated samples may be biased low.

- LCS (Lab ID: 2603777)
 - Carbon disulfide
 - Dichlorodifluoromethane

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 536605

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 30524553002

- M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
 - MS (Lab ID: 2603778)
 - Trichloroethene

ML: Matrix spike recovery and/or matrix spike duplicate recovery was below laboratory control limits. Result may be biased low.

- MS (Lab ID: 2603778)
 - 2-Chloroethylvinyl ether
 - Dichlorodifluoromethane
- MSD (Lab ID: 2603779)
 - 2-Chloroethylvinyl ether
 - Dichlorodifluoromethane
- R1: RPD value was outside control limits.
 - MSD (Lab ID: 2603779)
 - Bromomethane

Additional Comments:

Analyte Comments:

QC Batch: 536605

1c: This analyte did not meet the recommended minimum RF in the ICAL.

- BLANK (Lab ID: 2603776)
 - Acetone
- Dup. (Lab ID: 30524553009)
 - Acetone
 - Bromomethane
- IOW-1 (Lab ID: 30524553006)
 - Acetone
- IOW-3 (Lab ID: 30524553007)
 - Acetone
 - Bromomethane
- IOW-4 (Lab ID: 30524553008)
 - Acetone
 - Bromomethane

PROJECT NARRATIVE

209164 No.: 30524553
EPA 8260C 8260C MSV GeoLogic NY, P.C. October 10, 2022
ments:
6605
his analyte did not meet the recommended minimum RF in the ICAL. CS (Lab ID: 2603777) • Acetone • Bromomethane MS (Lab ID: 2603778) • Acetone • Bromomethane MS-MW06-23BR (Lab ID: 30524553010) • Acetone • Bromomethane MSD (Lab ID: 2603779) • Acetone • Bromomethane MSD-MW06-23BR (Lab ID: 30524553011) • Acetone • Bromomethane MV-2 (Lab ID: 30524553001) • Acetone • Bromomethane MW06-23BR (Lab ID: 30524553002) • Acetone • Bromomethane MW06-24BR (Lab ID: 30524553003) • Acetone • Bromomethane MW06-25BR (Lab ID: 30524553004) • Acetone • Bromomethane
1W16-7BR (Lab ID: 30524553005) • Acetone

- Acetone
- Bromomethane
- trip blank (Lab ID: 30524553012)
 - Acetone

This data package has been reviewed for quality and completeness and is approved for release.

Project:	209164
Pace Project No.:	305245

Sample: MW-2	Lab ID: 30524553001 Collected: 09/20/22 12:54 Received: 09/23/22 09:45 Matrix: Wate							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Indicator Gases Water LHC	Analytical Mether	nod: AM20G	AX					
	Pace Analytica	I Gulf Coast	t					
Ethene	6.6	ug/L	1.0	1		09/29/22 07:12	74-85-1	
8260C MSV	Analytical Mether	nod: EPA 82	60C					
	Pace Analytica							
	-		-	4		00/00/00 44.45	coo oo c	
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		09/30/22 14:45		
1,1,1-Trichloroethane	ND	ug/L	1.0	1		09/30/22 14:45		
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		09/30/22 14:45		
1,1,2-Trichloroethane	ND	ug/L	1.0	1		09/30/22 14:45		
1,1-Dichloroethane	1.5	ug/L	1.0	1		09/30/22 14:45		
1,1-Dichloroethene	ND	ug/L	1.0	1		09/30/22 14:45		
1,1-Dichloropropene	ND	ug/L	1.0	1 1		09/30/22 14:45 09/30/22 14:45		
1,2,3-Trichlorobenzene	ND	ug/L	4.0					
1,2,4-Trichlorobenzene	ND	ug/L	4.0	1		09/30/22 14:45		
1,2,4-Trimethylbenzene	ND	ug/L	1.0	1		09/30/22 14:45		
1,2-Dibromo-3-chloropropane	ND	ug/L	5.0	1		09/30/22 14:45		
1,2-Dibromoethane (EDB)	ND	ug/L	1.0	1		09/30/22 14:45		
1,2-Dichlorobenzene	ND	ug/L	1.0	1		09/30/22 14:45		
1,2-Dichloroethane	ND	ug/L	1.0	1		09/30/22 14:45		
1,2-Dichloropropane	ND	ug/L	1.0	1		09/30/22 14:45		
1,3,5-Trimethylbenzene	ND	ug/L	1.0	1		09/30/22 14:45		
1,3-Dichlorobenzene	ND	ug/L	1.0	1		09/30/22 14:45		
1,3-Dichloropropane	ND	ug/L	1.0	1		09/30/22 14:45		
1,4-Dichlorobenzene	ND	ug/L	1.0	1		09/30/22 14:45		
2,2-Dichloropropane	ND	ug/L	1.0	1		09/30/22 14:45		CL
2-Butanone (MEK)	ND	ug/L	10.0	1		09/30/22 14:45		
2-Chloroethylvinyl ether	ND	ug/L	2.0	1		09/30/22 14:45		c2
2-Chlorotoluene	ND	ug/L	1.0	1		09/30/22 14:45		
2-Hexanone	ND	ug/L	10.0	1		09/30/22 14:45		
4-Chlorotoluene	ND	ug/L	1.0	1		09/30/22 14:45		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	10.0	1		09/30/22 14:45		
Acetone	ND	ug/L	10.0	1		09/30/22 14:45		1c
Benzene	ND	ug/L	1.0	1		09/30/22 14:45		
Bromobenzene	ND	ug/L	1.0	1		09/30/22 14:45		
Bromochloromethane	ND	ug/L	1.0	1		09/30/22 14:45		
Bromodichloromethane	ND	ug/L	1.0	1		09/30/22 14:45		
Bromoform	ND	ug/L	4.0	1		09/30/22 14:45		
Bromomethane	ND	ug/L	4.0	1		09/30/22 14:45		1c,CH,II
Carbon disulfide	ND	ug/L	1.0	1		09/30/22 14:45		IL,L2
Carbon tetrachloride	ND	ug/L	1.0	1		09/30/22 14:45		
Chlorobenzene	ND	ug/L	1.0	1		09/30/22 14:45		
Chloroethane	ND	ug/L	1.0	1		09/30/22 14:45		
Chloroform	ND	ug/L	1.0	1		09/30/22 14:45		
Chloromethane	ND	ug/L	1.0	1		09/30/22 14:45		
Dibromochloromethane	ND	ug/L	1.0	1		09/30/22 14:45	124-48-1	
Dibromomethane	ND	ug/L	1.0	1		09/30/22 14:45	74-95-3	
Dichlorodifluoromethane	ND	ug/L	1.0	1		09/30/22 14:45	75-71-8	CH,IH,L

Project: 209164

Pace Project No.: 30524553

Sample: MW-2	Lab ID: 305	24553001	Collected: 09/20/2	2 12:54	Received: 0	9/23/22 09:45 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C MSV	Analytical Meth	nod: EPA 82	260C					
	Pace Analytica	I Services -	Greensburg					
Ethylbenzene	ND	ug/L	1.0	1		09/30/22 14:45	100-41-4	
Hexachloro-1,3-butadiene	ND	ug/L	4.0	1		09/30/22 14:45	87-68-3	
Isopropylbenzene (Cumene)	ND	ug/L	1.0	1		09/30/22 14:45	98-82-8	
Methyl-tert-butyl ether	ND	ug/L	1.0	1		09/30/22 14:45	1634-04-4	
Methylene Chloride	ND	ug/L	1.0	1		09/30/22 14:45	75-09-2	
Naphthalene	ND	ug/L	4.0	1		09/30/22 14:45	91-20-3	
Styrene	ND	ug/L	1.0	1		09/30/22 14:45	100-42-5	
Tetrachloroethene	ND	ug/L	1.0	1		09/30/22 14:45	127-18-4	
Toluene	ND	ug/L	1.0	1		09/30/22 14:45	108-88-3	
Trichloroethene	160	ug/L	1.0	1		09/30/22 14:45	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		09/30/22 14:45	75-69-4	
Vinyl acetate	ND	ug/L	1.0	1		09/30/22 14:45	108-05-4	
Vinyl chloride	51.0	ug/L	1.0	1		09/30/22 14:45	75-01-4	IH
Xylene (Total)	ND	ug/L	3.0	1		09/30/22 14:45	1330-20-7	
cis-1,2-Dichloroethene	75.7	ug/L	1.0	1		09/30/22 14:45	156-59-2	
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		09/30/22 14:45	10061-01-5	
m&p-Xylene	ND	ug/L	2.0	1		09/30/22 14:45	179601-23-1	
n-Butylbenzene	ND	ug/L	1.0	1		09/30/22 14:45	104-51-8	
n-Propylbenzene	ND	ug/L	1.0	1		09/30/22 14:45	103-65-1	
o-Xylene	ND	ug/L	1.0	1		09/30/22 14:45	95-47-6	
p-Isopropyltoluene	ND	ug/L	1.0	1		09/30/22 14:45	99-87-6	
sec-Butylbenzene	ND	ug/L	1.0	1		09/30/22 14:45	135-98-8	
tert-Butylbenzene	ND	ug/L	1.0	1		09/30/22 14:45	98-06-6	
trans-1,2-Dichloroethene	4.5	ug/L	1.0	1		09/30/22 14:45	156-60-5	
trans-1,3-Dichloropropene	ND	ug/L	1.0	1		09/30/22 14:45	10061-02-6	
Surrogates		Ū						
4-Bromofluorobenzene (S)	102	%.	70-130	1		09/30/22 14:45	460-00-4	
1,2-Dichloroethane-d4 (S)	100	%.	70-130	1		09/30/22 14:45	17060-07-0	
Toluene-d8 (S)	96	%.	70-130	1		09/30/22 14:45	2037-26-5	
Dibromofluoromethane (S)	103	%.	70-130	1		09/30/22 14:45	1868-53-7	

Project: 209164

Pace Project No.: 30524553

Sample: MW06-23BR	Lab ID: 305	24553002	Collected: 09/20/2	22 16:07	Received: 0	9/23/22 09:45 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Indicator Gases Water LHC	Analytical Meth	nod: AM20G/	ΑX					
	Pace Analytica	I Gulf Coast						
Ethene	6.0	ug/L	1.0	1		09/29/22 07:23	74-85-1	
8260C MSV	Analytical Meth	nod: EPA 826	50C					
	Pace Analytica							
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		09/30/22 17:08	630-20-6	
1,1,1-Trichloroethane	3.2	ug/L	1.0	1		09/30/22 17:08		
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		09/30/22 17:08		
1,1,2-Trichloroethane	ND	ug/L	1.0	1		09/30/22 17:08		
1,1-Dichloroethane	2.9	ug/L	1.0	1		09/30/22 17:08		
1,1-Dichloroethene	5.2	ug/L	1.0	1		09/30/22 17:08		
1,1-Dichloropropene	ND	ug/L	1.0	1		09/30/22 17:08		
1,2,3-Trichlorobenzene	ND	ug/L	4.0	1		09/30/22 17:08		
1,2,4-Trichlorobenzene	ND	ug/L	4.0	1		09/30/22 17:08		
1,2,4-Trimethylbenzene	ND	ug/L	1.0	1		09/30/22 17:08		
1,2-Dibromo-3-chloropropane	ND	ug/L	5.0	1		09/30/22 17:08		
1,2-Dibromoethane (EDB)	ND	ug/L	1.0	1		09/30/22 17:08		
1,2-Dichlorobenzene	ND	ug/L	1.0	1		09/30/22 17:08		
1,2-Dichloroethane	ND	ug/L	1.0	1		09/30/22 17:08		
1,2-Dichloropropane	ND	ug/L	1.0	1		09/30/22 17:08		
1,3,5-Trimethylbenzene	ND	ug/L	1.0	1		09/30/22 17:08		
1,3-Dichlorobenzene	ND	ug/L	1.0	1		09/30/22 17:08		
1,3-Dichloropropane	ND	ug/∟ ug/L	1.0	1		09/30/22 17:08		
1,4-Dichlorobenzene	ND	ug/L	1.0	1		09/30/22 17:08		
2,2-Dichloropropane	ND	ug/∟ ug/L	1.0	1		09/30/22 17:08		CL
	ND	-	10.0	1		09/30/22 17:08		0L
2-Butanone (MEK) 2-Chloroethylvinyl ether	ND	ug/L	2.0	1		09/30/22 17:08		ML o2
2-Chlorotoluene	ND	ug/L	2.0	1		09/30/22 17:08		ML,c2
		ug/L		1				
2-Hexanone	ND	ug/L	10.0			09/30/22 17:08		
4-Chlorotoluene	ND	ug/L	1.0	1		09/30/22 17:08		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	10.0	1		09/30/22 17:08		4
Acetone	ND	ug/L	10.0	1		09/30/22 17:08		1c
Benzene	ND	ug/L	1.0	1		09/30/22 17:08		
Bromobenzene	ND	ug/L	1.0	1		09/30/22 17:08		
Bromochloromethane	ND	ug/L	1.0	1		09/30/22 17:08		
Bromodichloromethane	ND	ug/L	1.0	1		09/30/22 17:08		
Bromoform	ND	ug/L	4.0	1		09/30/22 17:08		4. 011
Bromomethane	ND	ug/L	4.0	1		09/30/22 17:08	74-83-9	1c,CH, IL,R1
Carbon disulfide	ND	ug/L	1.0	1		09/30/22 17:08	75-15-0	IL,L2
Carbon tetrachloride	ND	ug/L	1.0	1		09/30/22 17:08		
Chlorobenzene	ND	ug/L	1.0	1		09/30/22 17:08		
Chloroethane	ND	ug/L	1.0	1		09/30/22 17:08		
Chloroform	ND	ug/L	1.0	1		09/30/22 17:08		
Chloromethane	ND	ug/L	1.0	1		09/30/22 17:08		
Dibromochloromethane	ND	ug/L	1.0	1		09/30/22 17:08		
Dibromomethane	ND	ug/L	1.0	1		09/30/22 17:08		

Project: 209164

Pace Project No.: 30524553

Sample: MW06-23BR	Lab ID: 305	24553002	Collected: 09/20/2	2 16:07	Received: 0	9/23/22 09:45 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C MSV	Analytical Meth	nod: EPA 82	260C					
	Pace Analytica	I Services -	Greensburg					
Dichlorodifluoromethane	ND	ug/L	1.0	1		09/30/22 17:08	75-71-8	CH,IH, L2,ML
Ethylbenzene	ND	ug/L	1.0	1		09/30/22 17:08	100-41-4	,
Hexachloro-1,3-butadiene	ND	ug/L	4.0	1		09/30/22 17:08	87-68-3	
Isopropylbenzene (Cumene)	ND	ug/L	1.0	1		09/30/22 17:08	98-82-8	
Methyl-tert-butyl ether	ND	ug/L	1.0	1		09/30/22 17:08	1634-04-4	
Methylene Chloride	ND	ug/L	1.0	1		09/30/22 17:08	75-09-2	
Naphthalene	ND	ug/L	4.0	1		09/30/22 17:08	91-20-3	
Styrene	ND	ug/L	1.0	1		09/30/22 17:08	100-42-5	
Tetrachloroethene	ND	ug/L	1.0	1		09/30/22 17:08	127-18-4	
Toluene	ND	ug/L	1.0	1		09/30/22 17:08	108-88-3	
Trichloroethene	1030	ug/L	10.0	10		09/30/22 17:32	79-01-6	M1
Trichlorofluoromethane	ND	ug/L	1.0	1		09/30/22 17:08	75-69-4	
Vinyl acetate	ND	ug/L	1.0	1		09/30/22 17:08	108-05-4	CL
Vinyl chloride	118	ug/L	1.0	1		09/30/22 17:08	75-01-4	IH
Xylene (Total)	ND	ug/L	3.0	1		09/30/22 17:08	1330-20-7	
cis-1,2-Dichloroethene	534	ug/L	10.0	10		09/30/22 17:32	156-59-2	
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		09/30/22 17:08	10061-01-5	
m&p-Xylene	ND	ug/L	2.0	1		09/30/22 17:08	179601-23-1	
n-Butylbenzene	ND	ug/L	1.0	1		09/30/22 17:08	104-51-8	
n-Propylbenzene	ND	ug/L	1.0	1		09/30/22 17:08	103-65-1	
o-Xylene	ND	ug/L	1.0	1		09/30/22 17:08	95-47-6	
p-Isopropyltoluene	ND	ug/L	1.0	1		09/30/22 17:08	99-87-6	
sec-Butylbenzene	ND	ug/L	1.0	1		09/30/22 17:08	135-98-8	
tert-Butylbenzene	ND	ug/L	1.0	1		09/30/22 17:08	98-06-6	
trans-1,2-Dichloroethene	7.3	ug/L	1.0	1		09/30/22 17:08	156-60-5	
trans-1,3-Dichloropropene	ND	ug/L	1.0	1		09/30/22 17:08	10061-02-6	
Surrogates		-						
4-Bromofluorobenzene (S)	101	%.	70-130	1		09/30/22 17:08	460-00-4	
1,2-Dichloroethane-d4 (S)	102	%.	70-130	1		09/30/22 17:08	17060-07-0	
Toluene-d8 (S)	99	%.	70-130	1		09/30/22 17:08	2037-26-5	
Dibromofluoromethane (S)	107	%.	70-130	1		09/30/22 17:08	1868-53-7	

Project: 209164

Pace Project No.: 30524553

Sample: MW06-24BR	Lab ID: 305	24553003	Collected: 09/21/2	22 10:18	Received: 0	Received: 09/23/22 09:45 Matrix: Water				
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual		
Indicator Gases Water LHC	Analytical Mether	nod: AM20G	AX							
	Pace Analytica	I Gulf Coast								
Ethene	ND	ug/L	1.0	1		09/29/22 07:35	74-85-1			
8260C MSV	Analytical Mether	nod: FPA 82	60C							
	Pace Analytica									
	,		0	_						
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		09/30/22 15:09				
1,1,1-Trichloroethane	ND	ug/L	1.0	1		09/30/22 15:09				
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		09/30/22 15:09				
1,1,2-Trichloroethane	ND	ug/L	1.0	1		09/30/22 15:09				
1,1-Dichloroethane	ND	ug/L	1.0	1		09/30/22 15:09				
1,1-Dichloroethene	ND	ug/L	1.0	1		09/30/22 15:09				
1,1-Dichloropropene	ND	ug/L	1.0	1		09/30/22 15:09				
1,2,3-Trichlorobenzene	ND	ug/L	4.0	1		09/30/22 15:09				
1,2,4-Trichlorobenzene	ND	ug/L	4.0	1		09/30/22 15:09				
1,2,4-Trimethylbenzene	ND	ug/L	1.0	1		09/30/22 15:09				
1,2-Dibromo-3-chloropropane	ND	ug/L	5.0	1		09/30/22 15:09				
1,2-Dibromoethane (EDB)	ND	ug/L	1.0	1		09/30/22 15:09				
1,2-Dichlorobenzene	ND	ug/L	1.0	1		09/30/22 15:09				
1,2-Dichloroethane	ND	ug/L	1.0	1		09/30/22 15:09	107-06-2			
1,2-Dichloropropane	ND	ug/L	1.0	1		09/30/22 15:09	78-87-5			
1,3,5-Trimethylbenzene	ND	ug/L	1.0	1		09/30/22 15:09	108-67-8			
1,3-Dichlorobenzene	ND	ug/L	1.0	1		09/30/22 15:09	541-73-1			
1,3-Dichloropropane	ND	ug/L	1.0	1		09/30/22 15:09	142-28-9			
1,4-Dichlorobenzene	ND	ug/L	1.0	1		09/30/22 15:09	106-46-7			
2,2-Dichloropropane	ND	ug/L	1.0	1		09/30/22 15:09	594-20-7	CL		
2-Butanone (MEK)	ND	ug/L	10.0	1		09/30/22 15:09	78-93-3			
2-Chloroethylvinyl ether	ND	ug/L	2.0	1		09/30/22 15:09	110-75-8	c2		
2-Chlorotoluene	ND	ug/L	1.0	1		09/30/22 15:09	95-49-8			
2-Hexanone	ND	ug/L	10.0	1		09/30/22 15:09	591-78-6			
4-Chlorotoluene	ND	ug/L	1.0	1		09/30/22 15:09	106-43-4			
4-Methyl-2-pentanone (MIBK)	ND	ug/L	10.0	1		09/30/22 15:09	108-10-1			
Acetone	ND	ug/L	10.0	1		09/30/22 15:09	67-64-1	1c		
Benzene	ND	ug/L	1.0	1		09/30/22 15:09	71-43-2			
Bromobenzene	ND	ug/L	1.0	1		09/30/22 15:09				
Bromochloromethane	ND	ug/L	1.0	1		09/30/22 15:09				
Bromodichloromethane	ND	ug/L	1.0	1		09/30/22 15:09				
Bromoform	ND	ug/L	4.0	1		09/30/22 15:09				
Bromomethane	ND	ug/L	4.0	1		09/30/22 15:09		1c,CH,IL		
Carbon disulfide	ND	ug/L	1.0	1		09/30/22 15:09		IL,L2		
Carbon tetrachloride	ND	ug/L	1.0	1		09/30/22 15:09		,		
Chlorobenzene	ND	ug/L	1.0	1		09/30/22 15:09				
Chloroethane	ND	ug/L	1.0	1		09/30/22 15:09				
Chloroform	ND	ug/L	1.0	1		09/30/22 15:09				
Chloromethane	ND	ug/L	1.0	1		09/30/22 15:09				
Dibromochloromethane		-				09/30/22 15:09				
	ND	ug/L	1.0	1						
Dibromomethane	ND	ug/L	1.0	1		09/30/22 15:09		011111		
Dichlorodifluoromethane	ND	ug/L	1.0	1		09/30/22 15:09	0-11-8	CH,IH,L2		

Project: 209164

Pace Project No.: 30524553

Sample: MW06-24BR	Lab ID: 3052	24553003	Collected: 09/21/2	2 10:18	Received: 09	/23/22 09:45 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C MSV	Analytical Meth	nod: EPA 82	260C					
	Pace Analytica	I Services -	Greensburg					
Ethylbenzene	ND	ug/L	1.0	1		09/30/22 15:09	100-41-4	
Hexachloro-1,3-butadiene	ND	ug/L	4.0	1		09/30/22 15:09	87-68-3	
Isopropylbenzene (Cumene)	ND	ug/L	1.0	1		09/30/22 15:09	98-82-8	
Methyl-tert-butyl ether	ND	ug/L	1.0	1		09/30/22 15:09	1634-04-4	
Methylene Chloride	ND	ug/L	1.0	1		09/30/22 15:09	75-09-2	
Naphthalene	ND	ug/L	4.0	1		09/30/22 15:09	91-20-3	
Styrene	ND	ug/L	1.0	1		09/30/22 15:09	100-42-5	
Tetrachloroethene	ND	ug/L	1.0	1		09/30/22 15:09	127-18-4	
Toluene	ND	ug/L	1.0	1		09/30/22 15:09	108-88-3	
Trichloroethene	15.4	ug/L	1.0	1		09/30/22 15:09	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		09/30/22 15:09	75-69-4	
Vinyl acetate	ND	ug/L	1.0	1		09/30/22 15:09	108-05-4	
Vinyl chloride	5.9	ug/L	1.0	1		09/30/22 15:09	75-01-4	IH
Xylene (Total)	ND	ug/L	3.0	1		09/30/22 15:09	1330-20-7	
cis-1,2-Dichloroethene	18.5	ug/L	1.0	1		09/30/22 15:09	156-59-2	
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		09/30/22 15:09	10061-01-5	
m&p-Xylene	ND	ug/L	2.0	1		09/30/22 15:09	179601-23-1	
n-Butylbenzene	ND	ug/L	1.0	1		09/30/22 15:09	104-51-8	
n-Propylbenzene	ND	ug/L	1.0	1		09/30/22 15:09	103-65-1	
o-Xylene	ND	ug/L	1.0	1		09/30/22 15:09	95-47-6	
p-Isopropyltoluene	ND	ug/L	1.0	1		09/30/22 15:09	99-87-6	
sec-Butylbenzene	ND	ug/L	1.0	1		09/30/22 15:09	135-98-8	
tert-Butylbenzene	ND	ug/L	1.0	1		09/30/22 15:09	98-06-6	
trans-1,2-Dichloroethene	1.0	ug/L	1.0	1		09/30/22 15:09	156-60-5	
trans-1,3-Dichloropropene	ND	ug/L	1.0	1		09/30/22 15:09	10061-02-6	
Surrogates		U						
4-Bromofluorobenzene (S)	100	%.	70-130	1		09/30/22 15:09	460-00-4	
1,2-Dichloroethane-d4 (S)	107	%.	70-130	1		09/30/22 15:09	17060-07-0	
Toluene-d8 (S)	98	%.	70-130	1		09/30/22 15:09	2037-26-5	
Dibromofluoromethane (S)	105	%.	70-130	1		09/30/22 15:09	1868-53-7	

Project: 209164

Pace Project No.: 30524553

Sample: MW06-25BR	Lab ID: 30524553004 Collected: 09/21/22 11:19 Received: 09/23/22 09:45 Matrix: Wat						latrix: Water	۶r	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual	
Indicator Gases Water LHC	Analytical Meth	nod: AM20G	AX						
	Pace Analytica	I Gulf Coast	t						
Ethene	ND	ug/L	1.0	1		09/29/22 07:46	74-85-1		
8260C MSV	Analytical Meth	nod: FPA 82	60C						
	Pace Analytica								
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		09/30/22 15:33	630-20-6		
1,1,1-Trichloroethane	95.8	ug/L	1.0	1		09/30/22 15:33			
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		09/30/22 15:33			
1,1,2-Trichloroethane	ND	ug/L	1.0	1		09/30/22 15:33			
1,1-Dichloroethane	18.5	ug/L	1.0	1		09/30/22 15:33			
1,1-Dichloroethene	7.2	ug/L	1.0	1		09/30/22 15:33			
1,1-Dichloropropene	ND	ug/L	1.0	1		09/30/22 15:33			
	ND	-	4.0	1		09/30/22 15:33			
1,2,3-Trichlorobenzene		ug/L		1					
1,2,4-Trichlorobenzene	ND	ug/L	4.0			09/30/22 15:33			
1,2,4-Trimethylbenzene	ND	ug/L	1.0	1		09/30/22 15:33			
1,2-Dibromo-3-chloropropane	ND	ug/L	5.0	1		09/30/22 15:33			
1,2-Dibromoethane (EDB)	ND	ug/L	1.0	1		09/30/22 15:33			
1,2-Dichlorobenzene	ND	ug/L	1.0	1		09/30/22 15:33			
1,2-Dichloroethane	ND	ug/L	1.0	1		09/30/22 15:33			
1,2-Dichloropropane	ND	ug/L	1.0	1		09/30/22 15:33			
1,3,5-Trimethylbenzene	ND	ug/L	1.0	1		09/30/22 15:33			
1,3-Dichlorobenzene	ND	ug/L	1.0	1		09/30/22 15:33			
1,3-Dichloropropane	ND	ug/L	1.0	1		09/30/22 15:33			
1,4-Dichlorobenzene	ND	ug/L	1.0	1		09/30/22 15:33	106-46-7		
2,2-Dichloropropane	ND	ug/L	1.0	1		09/30/22 15:33	594-20-7	CL	
2-Butanone (MEK)	ND	ug/L	10.0	1		09/30/22 15:33	78-93-3		
2-Chloroethylvinyl ether	ND	ug/L	2.0	1		09/30/22 15:33	110-75-8	c2	
2-Chlorotoluene	ND	ug/L	1.0	1		09/30/22 15:33	95-49-8		
2-Hexanone	ND	ug/L	10.0	1		09/30/22 15:33	591-78-6		
4-Chlorotoluene	ND	ug/L	1.0	1		09/30/22 15:33	106-43-4		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	10.0	1		09/30/22 15:33	108-10-1		
Acetone	ND	ug/L	10.0	1		09/30/22 15:33	67-64-1	1c	
Benzene	ND	ug/L	1.0	1		09/30/22 15:33	71-43-2		
Bromobenzene	ND	ug/L	1.0	1		09/30/22 15:33	108-86-1		
Bromochloromethane	ND	ug/L	1.0	1		09/30/22 15:33	74-97-5		
Bromodichloromethane	ND	ug/L	1.0	1		09/30/22 15:33			
Bromoform	ND	ug/L	4.0	1		09/30/22 15:33			
Bromomethane	ND	ug/L	4.0	1		09/30/22 15:33		1c,CH,II	
Carbon disulfide	ND	ug/L	1.0	1		09/30/22 15:33		IL,L2	
Carbon tetrachloride	ND	ug/L	1.0	1		09/30/22 15:33		·_,	
Chlorobenzene	ND	ug/L	1.0	1		09/30/22 15:33			
Chloroethane	ND	ug/L	1.0	1		09/30/22 15:33			
Chloroform	ND	ug/L	1.0	1		09/30/22 15:33			
Chloromethane	ND	ug/L	1.0	1		09/30/22 15:33			
Dibromochloromethane	ND	-	1.0	1		09/30/22 15:33			
Dibromochloromethane	ND	ug/L ug/L	1.0	1		09/30/22 15:33			

Project: 209164

Pace Project No.: 30524553

Sample: MW06-25BR	Lab ID: 3052	24553004	Collected: 09/21/2	2 11:19	Received: 09	0/23/22 09:45 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C MSV	Analytical Meth	od: EPA 82	260C					
	Pace Analytica	I Services -	Greensburg					
Ethylbenzene	ND	ug/L	1.0	1		09/30/22 15:33	100-41-4	
Hexachloro-1,3-butadiene	ND	ug/L	4.0	1		09/30/22 15:33	87-68-3	
Isopropylbenzene (Cumene)	ND	ug/L	1.0	1		09/30/22 15:33	98-82-8	
Methyl-tert-butyl ether	ND	ug/L	1.0	1		09/30/22 15:33	1634-04-4	
Methylene Chloride	ND	ug/L	1.0	1		09/30/22 15:33	75-09-2	
Naphthalene	ND	ug/L	4.0	1		09/30/22 15:33	91-20-3	
Styrene	ND	ug/L	1.0	1		09/30/22 15:33	100-42-5	
Tetrachloroethene	ND	ug/L	1.0	1		09/30/22 15:33	127-18-4	
Toluene	ND	ug/L	1.0	1		09/30/22 15:33	108-88-3	
Trichloroethene	29.8	ug/L	1.0	1		09/30/22 15:33	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		09/30/22 15:33	75-69-4	
Vinyl acetate	ND	ug/L	1.0	1		09/30/22 15:33	108-05-4	
Vinyl chloride	10.9	ug/L	1.0	1		09/30/22 15:33	75-01-4	IH
Xylene (Total)	ND	ug/L	3.0	1		09/30/22 15:33	1330-20-7	
cis-1,2-Dichloroethene	32.3	ug/L	1.0	1		09/30/22 15:33	156-59-2	
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		09/30/22 15:33	10061-01-5	
m&p-Xylene	ND	ug/L	2.0	1		09/30/22 15:33	179601-23-1	
n-Butylbenzene	ND	ug/L	1.0	1		09/30/22 15:33	104-51-8	
n-Propylbenzene	ND	ug/L	1.0	1		09/30/22 15:33	103-65-1	
o-Xylene	ND	ug/L	1.0	1		09/30/22 15:33	95-47-6	
p-Isopropyltoluene	ND	ug/L	1.0	1		09/30/22 15:33	99-87-6	
sec-Butylbenzene	ND	ug/L	1.0	1		09/30/22 15:33	135-98-8	
tert-Butylbenzene	ND	ug/L	1.0	1		09/30/22 15:33	98-06-6	
trans-1,2-Dichloroethene	ND	ug/L	1.0	1		09/30/22 15:33	156-60-5	
trans-1,3-Dichloropropene	ND	ug/L	1.0	1		09/30/22 15:33	10061-02-6	
Surrogates		0						
4-Bromofluorobenzene (S)	102	%.	70-130	1		09/30/22 15:33	460-00-4	
1,2-Dichloroethane-d4 (S)	106	%.	70-130	1		09/30/22 15:33	17060-07-0	
Toluene-d8 (S)	99	%.	70-130	1		09/30/22 15:33	2037-26-5	
Dibromofluoromethane (S)	105	%.	70-130	1		09/30/22 15:33	1868-53-7	

Project: 209164

Pace Project No.: 30524553

Sample: MW16-7BR	Lab ID: 305	24553005	Collected: 09/21/2	22 11:25	Received: 0	9/23/22 09:45 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Indicator Gases Water LHC	Analytical Meth	nod: AM20G	AX					
	Pace Analytica	I Gulf Coast						
Ethene	ND	ug/L	1.0	1		09/29/22 07:57	74-85-1	
8260C MSV	Analytical Meth	nod: FPA 82	60C					
	Pace Analytica							
	,		0					
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		09/30/22 15:56		
1,1,1-Trichloroethane	ND	ug/L	1.0	1		09/30/22 15:56		
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		09/30/22 15:56		
1,1,2-Trichloroethane	ND	ug/L	1.0	1		09/30/22 15:56		
1,1-Dichloroethane	ND	ug/L	1.0	1		09/30/22 15:56		
1,1-Dichloroethene	ND	ug/L	1.0	1		09/30/22 15:56		
1,1-Dichloropropene	ND	ug/L	1.0	1		09/30/22 15:56		
1,2,3-Trichlorobenzene	ND	ug/L	4.0	1		09/30/22 15:56		
1,2,4-Trichlorobenzene	ND	ug/L	4.0	1		09/30/22 15:56		
1,2,4-Trimethylbenzene	ND	ug/L	1.0	1		09/30/22 15:56		
1,2-Dibromo-3-chloropropane	ND	ug/L	5.0	1		09/30/22 15:56		
1,2-Dibromoethane (EDB)	ND	ug/L	1.0	1		09/30/22 15:56		
1,2-Dichlorobenzene	ND	ug/L	1.0	1		09/30/22 15:56		
1,2-Dichloroethane	ND	ug/L	1.0	1		09/30/22 15:56	107-06-2	
1,2-Dichloropropane	ND	ug/L	1.0	1		09/30/22 15:56	78-87-5	
1,3,5-Trimethylbenzene	ND	ug/L	1.0	1		09/30/22 15:56	108-67-8	
1,3-Dichlorobenzene	ND	ug/L	1.0	1		09/30/22 15:56	541-73-1	
1,3-Dichloropropane	ND	ug/L	1.0	1		09/30/22 15:56	142-28-9	
1,4-Dichlorobenzene	ND	ug/L	1.0	1		09/30/22 15:56	106-46-7	
2,2-Dichloropropane	ND	ug/L	1.0	1		09/30/22 15:56	594-20-7	CL
2-Butanone (MEK)	ND	ug/L	10.0	1		09/30/22 15:56	78-93-3	
2-Chloroethylvinyl ether	ND	ug/L	2.0	1		09/30/22 15:56	110-75-8	c2
2-Chlorotoluene	ND	ug/L	1.0	1		09/30/22 15:56	95-49-8	
2-Hexanone	ND	ug/L	10.0	1		09/30/22 15:56	591-78-6	
4-Chlorotoluene	ND	ug/L	1.0	1		09/30/22 15:56	106-43-4	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	10.0	1		09/30/22 15:56	108-10-1	
Acetone	ND	ug/L	10.0	1		09/30/22 15:56	67-64-1	1c
Benzene	ND	ug/L	1.0	1		09/30/22 15:56	71-43-2	
Bromobenzene	ND	ug/L	1.0	1		09/30/22 15:56		
Bromochloromethane	ND	ug/L	1.0	1		09/30/22 15:56		
Bromodichloromethane	ND	ug/L	1.0	1		09/30/22 15:56		
Bromoform	ND	ug/L	4.0	1		09/30/22 15:56		
Bromomethane	ND	ug/L	4.0	1		09/30/22 15:56		1c,CH,II
Carbon disulfide	ND	ug/L	1.0	1		09/30/22 15:56		IL,L2
Carbon tetrachloride	ND	ug/L	1.0	1		09/30/22 15:56		
Chlorobenzene	ND	ug/L	1.0	1		09/30/22 15:56		
Chloroethane	ND	ug/L	1.0	1		09/30/22 15:56		
Chloroform	ND	ug/L	1.0	1		09/30/22 15:56		
Chloromethane	ND	-		1		09/30/22 15:56		
Dibromochloromethane		ug/L	1.0			09/30/22 15:56		
Dibromochioromethane	ND ND	ug/L ug/L	1.0 1.0	1 1		09/30/22 15:56		
		11(1/1					14-47-5	

Project: 209164

Pace Project No.: 30524553

Pace Analytical Services - Greensburg Ethylbenzene ND ug/L 1.0 1 09/30/22 15:56 100-41-4 dexachtoro-1,3-butadiene ND ug/L 4.0 1 09/30/22 15:56 87-68-3 sopropylbenzene (Cumene) ND ug/L 1.0 1 09/30/22 15:56 88-82-8 Methyl-tert-butyl ether ND ug/L 1.0 1 09/30/22 15:56 1634-04-4 Adethylene Chloride ND ug/L 1.0 1 09/30/22 15:56 1634-04-4 Vaphthalene ND ug/L 1.0 1 09/30/22 15:56 107-42-5 Vaphthalene ND ug/L 1.0 1 09/30/22 15:56 108-42-5 Forkhoroethene ND ug/L 1.0 1 09/30/22 15:56 168-83-3 Tirchloroethene ND ug/L 1.0 1 09/30/22 15:56 168-4 Jinyl acloride 1.9 ug/L 1.0 1 09/30/22 15:56 156-1-4 IH	Sample: MW16-7BR	Lab ID: 305	24553005	Collected: 09/21/2	2 11:25	Received: 09	9/23/22 09:45 M	latrix: Water	
Pace Analytical Services - Greensburg Ethylbenzene ND ug/L 1.0 1 09/30/22 15:56 100-41-4 dexachtoro-1,3-butadiene ND ug/L 4.0 1 09/30/22 15:56 87-68-3 sopropylbenzene (Cumene) ND ug/L 1.0 1 09/30/22 15:56 88-82-8 Methyl-tert-butyl ether ND ug/L 1.0 1 09/30/22 15:56 1634-04-4 Adethylene Chloride ND ug/L 1.0 1 09/30/22 15:56 1634-04-4 Vaphthalene ND ug/L 1.0 1 09/30/22 15:56 107-42-5 Vaphthalene ND ug/L 1.0 1 09/30/22 15:56 108-42-5 Forkhoroethene ND ug/L 1.0 1 09/30/22 15:56 168-83-3 Tirchloroethene ND ug/L 1.0 1 09/30/22 15:56 168-4 Jinyl acloride 1.9 ug/L 1.0 1 09/30/22 15:56 156-1-4 IH	Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
b u <thu< th=""> u u u</thu<>	8260C MSV	Analytical Meth	nod: EPA 82	260C					
Hexachloro-1,3-butadiene ND ug/L 4.0 1 09/30/22 15:56 87-68-3 sopropylbenzene (Cumene) ND ug/L 1.0 1 09/30/22 15:56 98-82-8 welthyl-tert-butyl ether ND ug/L 1.0 1 09/30/22 15:56 75-09-2 Welthylene Chloride ND ug/L 4.0 1 09/30/22 15:56 91-20-3 Styrene ND ug/L 1.0 1 09/30/22 15:56 12-0-3 Styrene ND ug/L 1.0 1 09/30/22 15:56 12-18-4 Fetrachloroethene ND ug/L 1.0 1 09/30/22 15:56 75-09-4 Finchloroethene ND ug/L 1.0 1 09/30/22 15:56 75-09-4 Finyl acetate ND ug/L 1.0 1 09/30/22 15:56 180-05-4 Finyl chorde 1.9 ug/L 1.0 1 09/30/22 15:56 180-05-4 Finyl acetate ND ug/L 1.0 1 <td></td> <td>Pace Analytica</td> <td>I Services -</td> <td>Greensburg</td> <td></td> <td></td> <td></td> <td></td> <td></td>		Pace Analytica	I Services -	Greensburg					
ND ug/L 1.0 1 09/30/22 15:5 98-82-8 dethyl-tert-butyl ether ND ug/L 1.0 1 09/30/22 15:56 1634-04-4 dethylene Chloride ND ug/L 1.0 1 09/30/22 15:56 1634-04-4 dethylene Chloride ND ug/L 4.0 1 09/30/22 15:56 17-08-2 dethylene Chloride ND ug/L 1.0 1 09/30/22 15:56 120-3 Styrene ND ug/L 1.0 1 09/30/22 15:56 127-18-4 Foluene ND ug/L 1.0 1 09/30/22 15:56 92-01-6 Frichloroethene ND ug/L 1.0 1 09/30/22 15:56 180-44 finyl acetate ND ug/L 1.0 1 09/30/22 15:56 180-44 finyl acetate ND ug/L 1.0 1 09/30/22 15:56 133-02-7 sis-1,2-Dichloroethene 3.4 ug/L 1.0 1 09/30/22 15:56	Ethylbenzene	ND	ug/L	1.0	1		09/30/22 15:56	100-41-4	
Methyl-tert-butyl ether ND ug/L 1.0 1 09/30/22 15:56 1634-04-4 Methylene Chloride ND ug/L 1.0 1 09/30/22 15:56 75-09-2 Vaphthalene ND ug/L 1.0 1 09/30/22 15:56 10-42-5 Styrene ND ug/L 1.0 1 09/30/22 15:56 108-48-3 Tichloroethene ND ug/L 1.0 1 09/30/22 15:56 108-88-3 Tichloroethene ND ug/L 1.0 1 09/30/22 15:56 75-09-4 Tichlorofuoromethane ND ug/L 1.0 1 09/30/22 15:56 108-05-4 Tichlorofuoromethane ND ug/L 1.0 1 09/30/22 15:56 130-20-7 Sighene (Total) ND ug/L 3.0 1 09/30/22 15:56 130-20-7 Sighene (Total) ND ug/L 1.0 1 09/30/22 15:56 130-20-7 Sighene (Total) ND ug/L 1.0 1<	Hexachloro-1,3-butadiene	ND	ug/L	4.0	1		09/30/22 15:56	87-68-3	
Methylene Chloride ND ug/L 1.0 1 09/30/22 15:56 75-09-2 Vaphthalene ND ug/L 4.0 1 09/30/22 15:56 91-20-3 Styrene ND ug/L 1.0 1 09/30/22 15:56 100-42-5 Eferachloroethene ND ug/L 1.0 1 09/30/22 15:56 127-18-4 Foluene ND ug/L 1.0 1 09/30/22 15:56 75-69-4 Trichloroethene ND ug/L 1.0 1 09/30/22 15:56 138-76-76 Trichlorofluoromethane ND ug/L 1.0 1 09/30/22 15:56 138-70-7 rinyl chloride 1.9 ug/L 1.0 1 09/30/22 15:56 130-20-7 iss-1,2-Dichloroethene 3.4 ug/L 1.0 1 09/30/22 15:56 130-20-7 iss-1,2-Dichloroethene 3.4 ug/L 1.0 1 09/30/22	Isopropylbenzene (Cumene)	ND	ug/L	1.0	1		09/30/22 15:56	98-82-8	
Naphthalene ND ug/L 4.0 1 09/30/22 15:56 91-20-3 Styrene ND ug/L 1.0 1 09/30/22 15:56 100-42-5 Tetrachloroethene ND ug/L 1.0 1 09/30/22 15:56 102-42-5 Fichloroethene ND ug/L 1.0 1 09/30/22 15:56 75-01-4 Trichloroethene ND ug/L 1.0 1 09/30/22 15:56 75-09-4 Trichloroethene ND ug/L 1.0 1 09/30/22 15:56 75-09-4 Vinyl acetate ND ug/L 1.0 1 09/30/22 15:56 75-01-4 IH Sytene (Total) ND ug/L 1.0 1 09/30/22 15:56 1330-20-7 isis 1.3-Dichloroptene 3.4 ug/L 1.0 1 09/30/22 15:56 165-59-2 isis 1.3-Dichloroptene ND ug/L 1.0 1 09/30/22 15:56 1061-01-5 nsb_2-Xylene ND ug/L 1.0	Methyl-tert-butyl ether	ND	ug/L	1.0	1		09/30/22 15:56	1634-04-4	
ND ug/L 1.0 1 09/30/22 15:56 100-42-5 Tetrachloroethene ND ug/L 1.0 1 09/30/22 15:56 127-18-4 Foluene ND ug/L 1.0 1 09/30/22 15:56 172-18-4 Foluene ND ug/L 1.0 1 09/30/22 15:56 79-01-6 Trichlorofluoromethane ND ug/L 1.0 1 09/30/22 15:56 75-69-4 /inyl choride 1.9 ug/L 1.0 1 09/30/22 15:56 108-05-4 /inyl choride 1.9 ug/L 1.0 1 09/30/22 15:56 108-05-4 /inyl choride 1.9 ug/L 1.0 1 09/30/22 15:56 165-59-2 sis-1,2-Dichloroethene 3.4 ug/L 1.0 1 09/30/22 15:56 106-10-1-5 isis-1,2-Dichloroethene ND ug/L 1.0 1 09/30/22 15:56 106-1	Methylene Chloride	ND	ug/L	1.0	1		09/30/22 15:56	75-09-2	
Viscous Viscous <t< td=""><td>Naphthalene</td><td>ND</td><td>ug/L</td><td>4.0</td><td>1</td><td></td><td>09/30/22 15:56</td><td>91-20-3</td><td></td></t<>	Naphthalene	ND	ug/L	4.0	1		09/30/22 15:56	91-20-3	
ND ug/L 1 09/30/22 15:56 108-88-3 Trichloroethene ND ug/L 1.0 1 09/30/22 15:56 79-01-6 Trichlorofluoromethane ND ug/L 1.0 1 09/30/22 15:56 75-69-4 Vinyl acetate ND ug/L 1.0 1 09/30/22 15:56 75-01-4 IH Kylene (Total) ND ug/L 1.0 1 09/30/22 15:56 75-01-4 IH Kylene (Total) ND ug/L 1.0 1 09/30/22 15:56 1330-20-7 cis-1,2-Dichloroethene 3.4 ug/L 1.0 1 09/30/22 15:56 1061-01-5 isis-1,3-Dichloropropene ND ug/L 1.0 1 09/30/22 15:56 10061-01-5 hebrybenzene ND ug/L 1.0 1 09/30/22 15:56 10061-01-5 hebrybenzene ND ug/L 1.0 1 09/30/22 15:56 1061-01-5 hebrybenzene ND ug/L 1.0 1	Styrene	ND	ug/L	1.0	1		09/30/22 15:56	100-42-5	
Trichloroethene ND ug/L 1.0 1 09/30/22 15:56 79-01-6 Trichlorofluoromethane ND ug/L 1.0 1 09/30/22 15:56 75-69-4 Irinyl acetate ND ug/L 1.0 1 09/30/22 15:56 108-05-4 Irinyl acetate ND ug/L 1.0 1 09/30/22 15:56 1330-20-7 Vigene (Total) ND ug/L 3.0 1 09/30/22 15:56 1330-20-7 viss-1,3-Dichloroethene 3.4 ug/L 1.0 1 09/30/22 15:56 10061-01-5 viss-1,3-Dichloroptopene ND ug/L 1.0 1 09/30/22 15:56 10061-01-5 viss-1,3-Dichloroptopene ND ug/L 1.0 1 09/30/22 15:56 103-65-1 viss-1,3-Dichloroptopene ND ug/L 1.0 1 09/30/22 15:56 103-65-1 viss-1,3-Dichloroptopene ND ug/L 1.0 1 09/30/22 15:56 103-65-1 viss-1,3-Dichloroptopene ND	Tetrachloroethene	ND	ug/L	1.0	1		09/30/22 15:56	127-18-4	
ND ug/L 1.0 1 09/30/22 15:56 75-69-4 /inyl acetate ND ug/L 1.0 1 09/30/22 15:56 108-05-4 /inyl acetate ND ug/L 1.0 1 09/30/22 15:56 75-01-4 IH (inyl chloride 1.9 ug/L 3.0 1 09/30/22 15:56 75-01-4 IH (ylene (Total) ND ug/L 3.0 1 09/30/22 15:56 1330-20-7 sis-1,2-Dichloropthene 3.4 ug/L 1.0 1 09/30/22 15:56 156-59-2 sis-1,3-Dichloropthene ND ug/L 1.0 1 09/30/22 15:56 179601-23-1 n-Batylbenzene ND ug/L 1.0 1 09/30/22 15:56 104-51-8 h-Propylbenzene ND ug/L 1.0 1 09/30/22 15:56 104-51-8 h-Sylene ND ug/L 1.0 1 09/30/22 15:56 104-51-8 h-Sylene ND ug/L 1.0 1 <td>Toluene</td> <td>ND</td> <td>ug/L</td> <td>1.0</td> <td>1</td> <td></td> <td>09/30/22 15:56</td> <td>108-88-3</td> <td></td>	Toluene	ND	ug/L	1.0	1		09/30/22 15:56	108-88-3	
Vinyl acetateNDug/L1.0109/30/22 15:56108-05-4(inyl choride1.9ug/L1.0109/30/22 15:5675-01-4IH(ylene (Total)NDug/L3.0109/30/22 15:561330-20-7isis-1,2-Dichloroethene3.4ug/L1.0109/30/22 15:56156-59-2isis-1,3-DichloropropeneNDug/L1.0109/30/22 15:5610061-01-5n&p-XyleneNDug/L2.0109/30/22 15:56179601-23-1-ButylbenzeneNDug/L1.0109/30/22 15:56104-51-8-PropylbenzeneNDug/L1.0109/30/22 15:56104-56-1-SyleneNDug/L1.0109/30/22 15:5695-47-6-SolsopropyltolueneNDug/L1.0109/30/22 15:5699-87-6-Sec-ButylbenzeneNDug/L1.0109/30/22 15:5699-87-6-Sec-ButylbenzeneNDug/L1.0109/30/22 15:5698-06-6-SarrogatesNDug/L1.0109/30/22 15:56106-05-5-Sarrogates	Trichloroethene	ND	ug/L	1.0	1		09/30/22 15:56	79-01-6	
Vinyl acetateNDug/L1.0109/30/22 15:56108-05-4Vinyl chloride1.9ug/L1.0109/30/22 15:5675-01-4IHKylene (Total)NDug/L3.0109/30/22 15:561330-20-7itis -1,2-Dichloroethene3.4ug/L1.0109/30/22 15:56156-59-2itis -1,3-DichloropropeneNDug/L1.0109/30/22 15:5610061-01-5n&p-XyleneNDug/L2.0109/30/22 15:56104-51-8-PropylbenzeneNDug/L1.0109/30/22 15:56104-51-8-PropylbenzeneNDug/L1.0109/30/22 15:56103-65-1-SyleneNDug/L1.0109/30/22 15:56103-65-1-SyleneNDug/L1.0109/30/22 15:56103-65-1-SyleneNDug/L1.0109/30/22 15:56156-98-8-Sec-ButylbenzeneNDug/L1.0109/30/22 15:56135-98-8-Sec-ButylbenzeneNDug/L1.0109/30/22 15:56156-60-5-Sec-ButylbenzeneNDug/L1.0109/30/22 15:56166-60-5-Sec-ButylbenzeneNDug/L1.0109/30/22 15:56166-60-5-Sec-ButylbenzeneNDug/L1.0109/30/22 15:56166-60-5-Sec-ButylbenzeneNDug/L1.0109/30/22 15:56166-60-5	Trichlorofluoromethane	ND	-	1.0	1		09/30/22 15:56	75-69-4	
Kylene (Total)NDug/L3.0109/30/22 15:561330-20-7cis-1,2-Dichloroethene3.4ug/L1.0109/30/22 15:56156-59-2cis-1,3-DichloropropeneNDug/L1.0109/30/22 15:5610061-01-5n&p-XyleneNDug/L2.0109/30/22 15:56179601-23-1n-ButylbenzeneNDug/L1.0109/30/22 15:56104-51-8n-PropylbenzeneNDug/L1.0109/30/22 15:56103-65-1n-PropylbenzeneNDug/L1.0109/30/22 15:5695-47-6n-StyleneNDug/L1.0109/30/22 15:5695-47-6n-StyleneNDug/L1.0109/30/22 15:5699-87-6n-StyleneNDug/L1.0109/30/22 15:56135-98-8n-StyleneNDug/L1.0109/30/22 15:56135-98-8n-StyleneNDug/L1.0109/30/22 15:56135-98-8n-StyleneNDug/L1.0109/30/22 15:56156-60-5nas-1,2-DichloroetheneNDug/L1.0109/30/22 15:56156-60-5SurrogatesNDug/L1.0109/30/22 15:561061-02-6SurrogatesNDug/L1.0109/30/22 15:56460-00-41,2-Dichloroethane-d4 (S)105%.70-130109/30/22 15:561766-07-016/uene-d8 (S)<	Vinyl acetate	ND	-	1.0	1		09/30/22 15:56	108-05-4	
Kylene (Total)NDug/L3.0109/30/22 15:561330-20-7cis-1,2-Dichloroethene3.4ug/L1.0109/30/22 15:56156-59-2cis-1,3-DichloropropeneNDug/L1.0109/30/22 15:5610061-01-5n&p-XyleneNDug/L2.0109/30/22 15:56179601-23-1n-ButylbenzeneNDug/L1.0109/30/22 15:56104-51-8n-PropylbenzeneNDug/L1.0109/30/22 15:56103-65-1n-PropylbenzeneNDug/L1.0109/30/22 15:5695-47-6n-StyleneNDug/L1.0109/30/22 15:5695-47-6n-StyleneNDug/L1.0109/30/22 15:5699-87-6n-StyleneNDug/L1.0109/30/22 15:56135-98-8n-StyleneNDug/L1.0109/30/22 15:56135-98-8n-StyleneNDug/L1.0109/30/22 15:56135-98-8n-StyleneNDug/L1.0109/30/22 15:56156-60-5nas-1,2-DichloroetheneNDug/L1.0109/30/22 15:56156-60-5SurrogatesNDug/L1.0109/30/22 15:561061-02-6SurrogatesNDug/L1.0109/30/22 15:56460-00-41,2-Dichloroethane-d4 (S)105%.70-130109/30/22 15:561766-07-016/uene-d8 (S)<	Vinyl chloride	1.9	ug/L	1.0	1		09/30/22 15:56	75-01-4	IH
3.4ug/L1.0109/30/22 15:56156-59-2cis-1,3-DichloropropeneNDug/L1.0109/30/22 15:5610061-01-5m&p-XyleneNDug/L2.0109/30/22 15:56179601-23-1n-ButylbenzeneNDug/L1.0109/30/22 15:56104-51-8n-PropylbenzeneNDug/L1.0109/30/22 15:56103-65-1o-YyleneNDug/L1.0109/30/22 15:5695-47-6o-SyleneNDug/L1.0109/30/22 15:5699-87-6o-SyleneNDug/L1.0109/30/22 15:56135-98-8o-SyleneNDug/L1.0109/30/22 15:56135-98-8o-SyleneNDug/L1.0109/30/22 15:56135-98-8o-SyleneNDug/L1.0109/30/22 15:56135-98-8o-SyleneNDug/L1.0109/30/22 15:56156-60-5o-SyleneNDug/L1.0109/30/22 15:561061-02-6o-SyleneNDug/L1.0109/30/22 15:56460-00-4o-SyleneNDug/L1.0109/30/22 15:56460-00-4o-SyleneNDug/L1.0109/30/22 15:56460-00-4o-SyleneNDug/L1.0109/30/22 15:56460-00-4o-SyleneNDug/L1.0109/30/22 15:56460-00-7-0 <t< td=""><td>Xylene (Total)</td><td>ND</td><td></td><td>3.0</td><td>1</td><td></td><td>09/30/22 15:56</td><td>1330-20-7</td><td></td></t<>	Xylene (Total)	ND		3.0	1		09/30/22 15:56	1330-20-7	
NDug/L1.0109/30/22 15:5610061-01-5m&p-XyleneNDug/L2.0109/30/22 15:56179601-23-1n-ButylbenzeneNDug/L1.0109/30/22 15:56104-51-8n-PropylbenzeneNDug/L1.0109/30/22 15:56103-65-1o-XyleneNDug/L1.0109/30/22 15:5695-47-6o-SyleneNDug/L1.0109/30/22 15:5699-87-6o-sec-ButylbenzeneNDug/L1.0109/30/22 15:56135-98-8eer-ButylbenzeneNDug/L1.0109/30/22 15:56135-98-8ert-ButylbenzeneNDug/L1.0109/30/22 15:56156-60-5rans-1,2-DichloroetheneNDug/L1.0109/30/22 15:561061-02-6SurrogatesNDug/L1.0109/30/22 15:5610061-02-6SurrogatesNDug/L1.0109/30/22 15:5610061-02-6SurrogatesNDug/L1.0109/30/22 15:56460-00-41,2-Dichloroethane-d4 (S)105%.70-130109/30/22 15:5617060-07-0Foluene-d8 (S)98%.70-130109/30/22 15:562037-26-5	cis-1,2-Dichloroethene	3.4	-	1.0	1		09/30/22 15:56	156-59-2	
NBug/L2.0109/30/22 15:56179601-23-1n-ButylbenzeneNDug/L1.0109/30/22 15:56104-51-8n-PropylbenzeneNDug/L1.0109/30/22 15:5695-47-6o-XyleneNDug/L1.0109/30/22 15:5695-47-6o-SyleneNDug/L1.0109/30/22 15:5699-87-6o-SyleneNDug/L1.0109/30/22 15:5699-87-6o-Sec-ButylbenzeneNDug/L1.0109/30/22 15:56135-98-8ert-ButylbenzeneNDug/L1.0109/30/22 15:5698-06-6rans-1,2-DichloroetheneNDug/L1.0109/30/22 15:56156-60-5rans-1,3-DichloropropeneNDug/L1.0109/30/22 15:5610061-02-6SurrogatesNDug/L1.0109/30/22 15:56460-00-41,2-Dichloroethane-d4 (S)105%.70-130109/30/22 15:56460-00-7-0Foluene-d8 (S)98%.70-130109/30/22 15:562037-26-5	cis-1,3-Dichloropropene	ND	-	1.0	1		09/30/22 15:56	10061-01-5	
NDug/L1.0109/30/22 15:56104-51-8h-PropylbenzeneNDug/L1.0109/30/22 15:56103-65-1b-XyleneNDug/L1.0109/30/22 15:5695-47-6b-SopropyltolueneNDug/L1.0109/30/22 15:5699-87-6b-Sec-ButylbenzeneNDug/L1.0109/30/22 15:5698-86etr-ButylbenzeneNDug/L1.0109/30/22 15:5698-06-6rans-1,2-DichloroetheneNDug/L1.0109/30/22 15:56156-60-5rans-1,3-DichloroptopeneNDug/L1.0109/30/22 15:5610061-02-6SurrogatesH-Bromofluorobenzene (S)101%.70-130109/30/22 15:56460-00-41,2-Dichloroethane-d4 (S)105%.70-130109/30/22 15:5617060-07-0Foluene-d8 (S)98%.70-130109/30/22 15:562037-26-5	m&p-Xylene	ND	-	2.0	1		09/30/22 15:56	179601-23-1	
h-Propylbenzene ND ug/L 1.0 1 09/30/22 15:56 103-65-1 b-Xylene ND ug/L 1.0 1 09/30/22 15:56 95-47-6 b-Isopropyltoluene ND ug/L 1.0 1 09/30/22 15:56 99-87-6 b-Isopropyltoluene ND ug/L 1.0 1 09/30/22 15:56 135-98-8 b-Isopropyltoluene ND ug/L 1.0 1 09/30/22 15:56 135-98-8 b-Isopropyltoluene ND ug/L 1.0 1 09/30/22 15:56 98-06-6 cer.Butylbenzene ND ug/L 1.0 1 09/30/22 15:56 156-60-5 rans-1,2-Dichloroethene ND ug/L 1.0 1 09/30/22 15:56 10061-02-6 Surrogates	n-Butylbenzene	ND	-	1.0	1		09/30/22 15:56	104-51-8	
ND ug/L 1.0 1 09/30/22 15:56 95-47-6 o-Isopropyltoluene ND ug/L 1.0 1 09/30/22 15:56 99-87-6 o-Isopropyltoluene ND ug/L 1.0 1 09/30/22 15:56 135-98-8 sec-Butylbenzene ND ug/L 1.0 1 09/30/22 15:56 98-06-6 ert-Butylbenzene ND ug/L 1.0 1 09/30/22 15:56 98-06-6 rans-1,2-Dichloroethene ND ug/L 1.0 1 09/30/22 15:56 156-60-5 rans-1,3-Dichloropropene ND ug/L 1.0 1 09/30/22 15:56 10061-02-6 Surrogates	-	ND	-	1.0	1		09/30/22 15:56	103-65-1	
ND ug/L 1.0 1 09/30/22 15:56 99-87-6 sec-Butylbenzene ND ug/L 1.0 1 09/30/22 15:56 135-98-8 ert-Butylbenzene ND ug/L 1.0 1 09/30/22 15:56 98-06-6 rans-1,2-Dichloroethene ND ug/L 1.0 1 09/30/22 15:56 156-60-5 rans-1,3-Dichloroptopene ND ug/L 1.0 1 09/30/22 15:56 10061-02-6 Surrogates	o-Xylene	ND	-	1.0	1		09/30/22 15:56	95-47-6	
ND ug/L 1.0 1 09/30/22 15:56 135-98-8 ert-Butylbenzene ND ug/L 1.0 1 09/30/22 15:56 98-06-6 rans-1,2-Dichloroethene ND ug/L 1.0 1 09/30/22 15:56 156-60-5 rans-1,3-Dichloropropene ND ug/L 1.0 1 09/30/22 15:56 10061-02-6 Surrogates V V NO NO NO NO OP/SO/22 15:56 460-00-4 1,2-Dichloroethane-d4 (S) 101 %. 70-130 1 09/30/22 15:56 460-00-4 1,2-Dichloroethane-d4 (S) 105 %. 70-130 1 09/30/22 15:56 17060-07-0 Foluene-d8 (S) 98 %. 70-130 1 09/30/22 15:56 2037-26-5	p-lsopropyltoluene	ND		1.0	1		09/30/22 15:56	99-87-6	
ND ug/L 1.0 1 09/30/22 15:56 156-60-5 rans-1,3-Dichloropropene ND ug/L 1.0 1 09/30/22 15:56 10061-02-6 Surrogates	sec-Butylbenzene	ND		1.0	1		09/30/22 15:56	135-98-8	
ND ug/L 1.0 1 09/30/22 15:56 156-60-5 rans-1,3-Dichloropropene ND ug/L 1.0 1 09/30/22 15:56 10061-02-6 Surrogates - <td< td=""><td>tert-Butylbenzene</td><td>ND</td><td>ug/L</td><td>1.0</td><td>1</td><td></td><td>09/30/22 15:56</td><td>98-06-6</td><td></td></td<>	tert-Butylbenzene	ND	ug/L	1.0	1		09/30/22 15:56	98-06-6	
ND ug/L 1.0 1 09/30/22 15:56 10061-02-6 Surrogates 101 %. 70-130 1 09/30/22 15:56 460-00-4 I-Bromofluorobenzene (S) 101 %. 70-130 1 09/30/22 15:56 460-00-4 I,2-Dichloroethane-d4 (S) 105 %. 70-130 1 09/30/22 15:56 17060-07-0 Foluene-d8 (S) 98 %. 70-130 1 09/30/22 15:56 2037-26-5	trans-1,2-Dichloroethene	ND	-	1.0	1		09/30/22 15:56	156-60-5	
Surrogates 101 %. 70-130 1 09/30/22 15:56 460-00-4 I-Bromofluorobenzene (S) 105 %. 70-130 1 09/30/22 15:56 17060-07-0 I_2-Dichloroethane-d4 (S) 98 %. 70-130 1 09/30/22 15:56 2037-26-5	trans-1,3-Dichloropropene	ND		1.0	1		09/30/22 15:56	10061-02-6	
Instrume Instrum Instrum Instrum In	Surrogates		0						
Foluene-d8 (S) 98 %. 70-130 1 09/30/22 15:56 2037-26-5	4-Bromofluorobenzene (S)	101	%.	70-130	1		09/30/22 15:56	460-00-4	
	1,2-Dichloroethane-d4 (S)	105	%.	70-130	1		09/30/22 15:56	17060-07-0	
Dibromofluoromethane (S) 104 %. 70-130 1 09/30/22 15:56 1868-53-7	Toluene-d8 (S)	98	%.	70-130	1		09/30/22 15:56	2037-26-5	
	Dibromofluoromethane (S)	104	%.	70-130	1		09/30/22 15:56	1868-53-7	

Pro	ject:		209164
-	_		

Pace Project No .:	30524553
--------------------	----------

Sample: IOW-1	Lab ID: 305	24553006	Collected: 09/20/2	22 14:50	Received: 0	9/23/22 09:45 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Indicator Gases Water LHC	Analytical Meth	nod: AM20G	AX					
	Pace Analytica	I Gulf Coast	t					
Ethene	ND	ug/L	1.0	1		09/29/22 08:08	74-85-1	
8260C MSV	Analytical Meth	nod: EPA 82	60C					
	Pace Analytica							
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		09/30/22 17:56	630 20 6	
1,1,1-Trichloroethane	2.6	ug/L	1.0	1		09/30/22 17:56		
1,1,2,2-Tetrachloroethane	2.6 ND	ug/L	1.0	1		09/30/22 17:56		
	ND	-		1		09/30/22 17:56		
1,1,2-Trichloroethane		ug/L	1.0	1				
1,1-Dichloroethane	1.2	ug/L	1.0			09/30/22 17:56		
1,1-Dichloroethene	1.5	ug/L	1.0	1		09/30/22 17:56		
1,1-Dichloropropene	ND	ug/L	1.0	1		09/30/22 17:56		
1,2,3-Trichlorobenzene	ND	ug/L	4.0	1		09/30/22 17:56		
1,2,4-Trichlorobenzene	ND	ug/L	4.0	1		09/30/22 17:56		
1,2,4-Trimethylbenzene	ND	ug/L	1.0	1		09/30/22 17:56		
1,2-Dibromo-3-chloropropane	ND	ug/L	5.0	1		09/30/22 17:56		
1,2-Dibromoethane (EDB)	ND	ug/L	1.0	1		09/30/22 17:56		
1,2-Dichlorobenzene	ND	ug/L	1.0	1		09/30/22 17:56	95-50-1	
1,2-Dichloroethane	ND	ug/L	1.0	1		09/30/22 17:56	107-06-2	
1,2-Dichloropropane	ND	ug/L	1.0	1		09/30/22 17:56	78-87-5	
1,3,5-Trimethylbenzene	ND	ug/L	1.0	1		09/30/22 17:56	108-67-8	
1,3-Dichlorobenzene	ND	ug/L	1.0	1		09/30/22 17:56	541-73-1	
1,3-Dichloropropane	ND	ug/L	1.0	1		09/30/22 17:56	142-28-9	
1,4-Dichlorobenzene	ND	ug/L	1.0	1		09/30/22 17:56	106-46-7	
2,2-Dichloropropane	ND	ug/L	1.0	1		09/30/22 17:56	594-20-7	CL
2-Butanone (MEK)	ND	ug/L	10.0	1		09/30/22 17:56	78-93-3	
2-Chloroethylvinyl ether	ND	ug/L	2.0	1		09/30/22 17:56	110-75-8	c2
2-Chlorotoluene	ND	ug/L	1.0	1		09/30/22 17:56	95-49-8	
2-Hexanone	ND	ug/L	10.0	1		09/30/22 17:56		
4-Chlorotoluene	ND	ug/L	1.0	1		09/30/22 17:56		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	10.0	1		09/30/22 17:56		
Acetone	ND	ug/L	10.0	1		09/30/22 17:56		1c
Benzene	ND	ug/L	1.0	1		09/30/22 17:56		10
Bromobenzene	ND	ug/L	1.0	1		09/30/22 17:56		
Bromochloromethane	ND	ug/L	1.0	1		09/30/22 17:56		
Bromodichloromethane	ND	ug/L	1.0	1		09/30/22 17:56		
Bromoform	ND	-		1		09/30/22 17:56		
		ug/L	4.0					
Bromomethane	ND	ug/L	4.0	1		09/30/22 17:56		CH,IL
Carbon disulfide	ND	ug/L	1.0	1		09/30/22 17:56		IL,L2
Carbon tetrachloride	ND	ug/L	1.0	1		09/30/22 17:56		
Chlorobenzene	ND	ug/L	1.0	1		09/30/22 17:56		
Chloroethane	ND	ug/L	1.0	1		09/30/22 17:56		
Chloroform	ND	ug/L	1.0	1		09/30/22 17:56		
Chloromethane	ND	ug/L	1.0	1		09/30/22 17:56		
Dibromochloromethane	ND	ug/L	1.0	1		09/30/22 17:56		
Dibromomethane	ND	ug/L	1.0	1		09/30/22 17:56		
Dichlorodifluoromethane	ND	ug/L	1.0	1		09/30/22 17:56	75-71-8	CH,IH,L

Project: 209164

Pace Project No.: 30524553

Sample: IOW-1	Lab ID: 3052	24553006	Collected: 09/20/2	2 14:50	Received: 0	9/23/22 09:45 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C MSV	Analytical Meth	nod: EPA 82	260C					
	Pace Analytica	I Services -	Greensburg					
Ethylbenzene	ND	ug/L	1.0	1		09/30/22 17:56	100-41-4	
Hexachloro-1,3-butadiene	ND	ug/L	4.0	1		09/30/22 17:56	87-68-3	
Isopropylbenzene (Cumene)	ND	ug/L	1.0	1		09/30/22 17:56	98-82-8	
Methyl-tert-butyl ether	ND	ug/L	1.0	1		09/30/22 17:56	1634-04-4	
Methylene Chloride	ND	ug/L	1.0	1		09/30/22 17:56	75-09-2	
Naphthalene	ND	ug/L	4.0	1		09/30/22 17:56	91-20-3	
Styrene	ND	ug/L	1.0	1		09/30/22 17:56	100-42-5	
Tetrachloroethene	ND	ug/L	1.0	1		09/30/22 17:56	127-18-4	
Toluene	ND	ug/L	1.0	1		09/30/22 17:56	108-88-3	
Trichloroethene	2550	ug/L	50.0	50		09/30/22 18:20	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		09/30/22 17:56	75-69-4	
Vinyl acetate	ND	ug/L	1.0	1		09/30/22 17:56	108-05-4	
Vinyl chloride	11.8	ug/L	1.0	1		09/30/22 17:56	75-01-4	IH
Xylene (Total)	ND	ug/L	3.0	1		09/30/22 17:56	1330-20-7	
cis-1,2-Dichloroethene	140	ug/L	1.0	1		09/30/22 17:56	156-59-2	
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		09/30/22 17:56	10061-01-5	
m&p-Xylene	ND	ug/L	2.0	1		09/30/22 17:56	179601-23-1	
n-Butylbenzene	ND	ug/L	1.0	1		09/30/22 17:56	104-51-8	
n-Propylbenzene	ND	ug/L	1.0	1		09/30/22 17:56	103-65-1	
o-Xylene	ND	ug/L	1.0	1		09/30/22 17:56	95-47-6	
p-lsopropyltoluene	ND	ug/L	1.0	1		09/30/22 17:56	99-87-6	
sec-Butylbenzene	ND	ug/L	1.0	1		09/30/22 17:56	135-98-8	
tert-Butylbenzene	ND	ug/L	1.0	1		09/30/22 17:56	98-06-6	
trans-1,2-Dichloroethene	2.4	ug/L	1.0	1		09/30/22 17:56	156-60-5	
trans-1,3-Dichloropropene	ND	ug/L	1.0	1		09/30/22 17:56	10061-02-6	
Surrogates		0	-				-	
4-Bromofluorobenzene (S)	102	%.	70-130	1		09/30/22 17:56	460-00-4	
1,2-Dichloroethane-d4 (S)	105	%.	70-130	1		09/30/22 17:56	17060-07-0	
Toluene-d8 (S)	99	%.	70-130	1		09/30/22 17:56	2037-26-5	
Dibromofluoromethane (S)	103	%.	70-130	1		09/30/22 17:56	1868-53-7	

Pro	ject:		209164
-	_		

Pace Project No .:	30524553
--------------------	----------

Sample: IOW-3	Lab ID: 305	24553007	Collected: 09/21/2	22 13:18	Received: 0	9/23/22 09:45 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Indicator Gases Water LHC	Analytical Met	hod: AM20G	AX					
	Pace Analytica	al Gulf Coas	t					
Ethene	1.9	ug/L	1.0	1		09/29/22 08:20	74-85-1	
8260C MSV	Analytical Met	hod: EPA 82	260C					
	Pace Analytica							
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		09/30/22 18:44	630-20-6	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		09/30/22 18:44		
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		09/30/22 18:44		
1,1,2-Trichloroethane	ND	ug/L	1.0	1		09/30/22 18:44		
1,1-Dichloroethane	1.4	ug/L	1.0	1		09/30/22 18:44		
1,1-Dichloroethene	3.3	ug/L	1.0	1		09/30/22 18:44		
		-		1				
1,1-Dichloropropene	ND	ug/L	1.0			09/30/22 18:44		
1,2,3-Trichlorobenzene	ND	ug/L	4.0	1		09/30/22 18:44		
1,2,4-Trichlorobenzene	ND	ug/L	4.0	1		09/30/22 18:44		
1,2,4-Trimethylbenzene	ND	ug/L	1.0	1		09/30/22 18:44		
1,2-Dibromo-3-chloropropane	ND	ug/L	5.0	1		09/30/22 18:44		
1,2-Dibromoethane (EDB)	ND	ug/L	1.0	1		09/30/22 18:44		
1,2-Dichlorobenzene	ND	ug/L	1.0	1		09/30/22 18:44		
1,2-Dichloroethane	ND	ug/L	1.0	1		09/30/22 18:44		
1,2-Dichloropropane	ND	ug/L	1.0	1		09/30/22 18:44	78-87-5	
1,3,5-Trimethylbenzene	ND	ug/L	1.0	1		09/30/22 18:44	108-67-8	
1,3-Dichlorobenzene	ND	ug/L	1.0	1		09/30/22 18:44	541-73-1	
1,3-Dichloropropane	ND	ug/L	1.0	1		09/30/22 18:44	142-28-9	
1,4-Dichlorobenzene	ND	ug/L	1.0	1		09/30/22 18:44	106-46-7	
2,2-Dichloropropane	ND	ug/L	1.0	1		09/30/22 18:44	594-20-7	CL
2-Butanone (MEK)	ND	ug/L	10.0	1		09/30/22 18:44	78-93-3	
2-Chloroethylvinyl ether	ND	ug/L	2.0	1		09/30/22 18:44	110-75-8	c2
2-Chlorotoluene	ND	ug/L	1.0	1		09/30/22 18:44		
2-Hexanone	ND	ug/L	10.0	1		09/30/22 18:44		
4-Chlorotoluene	ND	ug/L	1.0	1		09/30/22 18:44		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	10.0	1		09/30/22 18:44		
Acetone	ND	ug/L	10.0	1		09/30/22 18:44		1c
Benzene	ND	ug/L	1.0	1		09/30/22 18:44		10
Bromobenzene	ND	-	1.0	1		09/30/22 18:44		
	ND	ug/L						
Bromochloromethane		ug/L	1.0	1		09/30/22 18:44		
Bromodichloromethane	ND	ug/L	1.0	1		09/30/22 18:44		
Bromoform	ND	ug/L	4.0	1		09/30/22 18:44		
Bromomethane	ND	ug/L	4.0	1		09/30/22 18:44		1c,CH,II
Carbon disulfide	ND	ug/L	1.0	1		09/30/22 18:44		IL,L2
Carbon tetrachloride	ND	ug/L	1.0	1		09/30/22 18:44		
Chlorobenzene	ND	ug/L	1.0	1		09/30/22 18:44		
Chloroethane	ND	ug/L	1.0	1		09/30/22 18:44		
Chloroform	ND	ug/L	1.0	1		09/30/22 18:44		
Chloromethane	ND	ug/L	1.0	1		09/30/22 18:44	74-87-3	
Dibromochloromethane	ND	ug/L	1.0	1		09/30/22 18:44	124-48-1	
Dibromomethane	ND	ug/L	1.0	1		09/30/22 18:44	74-95-3	
Dichlorodifluoromethane	ND	ug/L	1.0	1		09/30/22 18:44	75-71-8	CH,IH,L

Project: 209164

Pace Project No.: 30524553

Sample: IOW-3	Lab ID: 305	24553007	Collected: 09/21/2	2 13:18	Received: 09	9/23/22 09:45 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C MSV	Analytical Met	hod: EPA 82	260C					
	Pace Analytica	al Services -	Greensburg					
Ethylbenzene	ND	ug/L	1.0	1		09/30/22 18:44	100-41-4	
Hexachloro-1,3-butadiene	ND	ug/L	4.0	1		09/30/22 18:44	87-68-3	
Isopropylbenzene (Cumene)	ND	ug/L	1.0	1		09/30/22 18:44	98-82-8	
Methyl-tert-butyl ether	ND	ug/L	1.0	1		09/30/22 18:44	1634-04-4	
Methylene Chloride	ND	ug/L	1.0	1		09/30/22 18:44	75-09-2	
Naphthalene	ND	ug/L	4.0	1		09/30/22 18:44	91-20-3	
Styrene	ND	ug/L	1.0	1		09/30/22 18:44	100-42-5	
Tetrachloroethene	ND	ug/L	1.0	1		09/30/22 18:44	127-18-4	
Toluene	ND	ug/L	1.0	1		09/30/22 18:44	108-88-3	
Trichloroethene	446	ug/L	10.0	10		09/30/22 19:08	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		09/30/22 18:44	75-69-4	
Vinyl acetate	ND	ug/L	1.0	1		09/30/22 18:44	108-05-4	
Vinyl chloride	39.1	ug/L	1.0	1		09/30/22 18:44	75-01-4	IH
Xylene (Total)	ND	ug/L	3.0	1		09/30/22 18:44	1330-20-7	
cis-1,2-Dichloroethene	204	ug/L	1.0	1		09/30/22 18:44	156-59-2	
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		09/30/22 18:44	10061-01-5	
m&p-Xylene	ND	ug/L	2.0	1		09/30/22 18:44	179601-23-1	
n-Butylbenzene	ND	ug/L	1.0	1		09/30/22 18:44	104-51-8	
n-Propylbenzene	ND	ug/L	1.0	1		09/30/22 18:44	103-65-1	
o-Xylene	ND	ug/L	1.0	1		09/30/22 18:44	95-47-6	
p-lsopropyltoluene	ND	ug/L	1.0	1		09/30/22 18:44	99-87-6	
sec-Butylbenzene	ND	ug/L	1.0	1		09/30/22 18:44	135-98-8	
tert-Butylbenzene	ND	ug/L	1.0	1		09/30/22 18:44	98-06-6	
trans-1,2-Dichloroethene	3.8	ug/L	1.0	1		09/30/22 18:44	156-60-5	
trans-1,3-Dichloropropene	ND	ug/L	1.0	1		09/30/22 18:44	10061-02-6	
Surrogates		U U						
4-Bromofluorobenzene (S)	100	%.	70-130	1		09/30/22 18:44	460-00-4	
1,2-Dichloroethane-d4 (S)	105	%.	70-130	1		09/30/22 18:44	17060-07-0	
Toluene-d8 (S)	100	%.	70-130	1		09/30/22 18:44	2037-26-5	
Dibromofluoromethane (S)	106	%.	70-130	1		09/30/22 18:44	1868-53-7	

Project:	209164
Pace Project No.:	305245

Pace Project No.: 30524553	Pace Pro	ject No.:	30524553
----------------------------	----------	-----------	----------

Sample: IOW-4	Lab ID: 305	24553008	Collected: 09/21/2	22 14:19	Received: 0	9/23/22 09:45 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Indicator Gases Water LHC	Analytical Met	hod: AM20G	AX					
	Pace Analytica	al Gulf Coast	t					
Ethene	ND	ug/L	1.0	1		09/29/22 09:36	74-85-1	
8260C MSV	Analytical Met	hod: EPA 82	60C					
	Pace Analytica							
			0			00/00/00 40 04		
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		09/30/22 16:21		
1,1,1-Trichloroethane	ND	ug/L	1.0	1		09/30/22 16:21		
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		09/30/22 16:21		
1,1,2-Trichloroethane	ND	ug/L	1.0	1		09/30/22 16:21		
1,1-Dichloroethane	ND	ug/L	1.0	1		09/30/22 16:21		
1,1-Dichloroethene	ND	ug/L	1.0	1		09/30/22 16:21		
1,1-Dichloropropene	ND	ug/L	1.0	1		09/30/22 16:21		
1,2,3-Trichlorobenzene	ND	ug/L	4.0	1		09/30/22 16:21		
1,2,4-Trichlorobenzene	ND	ug/L	4.0	1		09/30/22 16:21	120-82-1	
1,2,4-Trimethylbenzene	ND	ug/L	1.0	1		09/30/22 16:21	95-63-6	
1,2-Dibromo-3-chloropropane	ND	ug/L	5.0	1		09/30/22 16:21	96-12-8	
1,2-Dibromoethane (EDB)	ND	ug/L	1.0	1		09/30/22 16:21	106-93-4	
1,2-Dichlorobenzene	ND	ug/L	1.0	1		09/30/22 16:21	95-50-1	
1,2-Dichloroethane	ND	ug/L	1.0	1		09/30/22 16:21	107-06-2	
1,2-Dichloropropane	ND	ug/L	1.0	1		09/30/22 16:21	78-87-5	
1,3,5-Trimethylbenzene	ND	ug/L	1.0	1		09/30/22 16:21	108-67-8	
1,3-Dichlorobenzene	ND	ug/L	1.0	1		09/30/22 16:21	541-73-1	
1,3-Dichloropropane	ND	ug/L	1.0	1		09/30/22 16:21	142-28-9	
1,4-Dichlorobenzene	ND	ug/L	1.0	1		09/30/22 16:21		
2,2-Dichloropropane	ND	ug/L	1.0	1		09/30/22 16:21		CL
2-Butanone (MEK)	ND	ug/L	10.0	1		09/30/22 16:21		
2-Chloroethylvinyl ether	ND	ug/L	2.0	1		09/30/22 16:21		c2
2-Chlorotoluene	ND	ug/L	1.0	1		09/30/22 16:21		02
2-Hexanone	ND	ug/L	10.0	1		09/30/22 16:21		
4-Chlorotoluene	ND	ug/L	1.0	1		09/30/22 16:21		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	10.0	1		09/30/22 16:21		
Acetone	ND	-	10.0	1				1c,CH,IL
Benzene	ND	ug/L	1.0	1		09/30/22 16:21		10,0H,IL
		ug/L				09/30/22 16:21		
Bromobenzene	ND	ug/L	1.0	1		09/30/22 16:21		
Bromochloromethane	ND	ug/L	1.0	1		09/30/22 16:21		
Bromodichloromethane	ND	ug/L	1.0	1		09/30/22 16:21		
Bromoform	ND	ug/L	4.0	1		09/30/22 16:21		
Bromomethane	ND	ug/L	4.0	1		09/30/22 16:21		1c,CH,IL
Carbon disulfide	ND	ug/L	1.0	1		09/30/22 16:21		IL,L2
Carbon tetrachloride	ND	ug/L	1.0	1		09/30/22 16:21		
Chlorobenzene	ND	ug/L	1.0	1		09/30/22 16:21		
Chloroethane	ND	ug/L	1.0	1		09/30/22 16:21		
Chloroform	ND	ug/L	1.0	1		09/30/22 16:21	67-66-3	
Chloromethane	ND	ug/L	1.0	1		09/30/22 16:21	74-87-3	
Dibromochloromethane	ND	ug/L	1.0	1		09/30/22 16:21	124-48-1	
Dibromomethane	ND	ug/L	1.0	1		09/30/22 16:21	74-95-3	
Dichlorodifluoromethane	ND	ug/L	1.0	1		09/30/22 16:21	75-71-8	CH,IH,L2

Project: 209164

Pace Project No.: 30524553

Sample: IOW-4	Lab ID: 305	24553008	Collected: 09/21/2	2 14:19	Received: 0	9/23/22 09:45 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C MSV	Analytical Meth	nod: EPA 82	260C					
	Pace Analytica	I Services -	Greensburg					
Ethylbenzene	ND	ug/L	1.0	1		09/30/22 16:21	100-41-4	
Hexachloro-1,3-butadiene	ND	ug/L	4.0	1		09/30/22 16:21	87-68-3	
Isopropylbenzene (Cumene)	ND	ug/L	1.0	1		09/30/22 16:21	98-82-8	
Methyl-tert-butyl ether	ND	ug/L	1.0	1		09/30/22 16:21	1634-04-4	
Methylene Chloride	ND	ug/L	1.0	1		09/30/22 16:21	75-09-2	
Naphthalene	ND	ug/L	4.0	1		09/30/22 16:21	91-20-3	
Styrene	ND	ug/L	1.0	1		09/30/22 16:21	100-42-5	
Tetrachloroethene	ND	ug/L	1.0	1		09/30/22 16:21	127-18-4	
Toluene	ND	ug/L	1.0	1		09/30/22 16:21	108-88-3	
Trichloroethene	12.5	ug/L	1.0	1		09/30/22 16:21	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		09/30/22 16:21	75-69-4	
Vinyl acetate	ND	ug/L	1.0	1		09/30/22 16:21	108-05-4	
Vinyl chloride	ND	ug/L	1.0	1		09/30/22 16:21	75-01-4	IH
Xylene (Total)	ND	ug/L	3.0	1		09/30/22 16:21	1330-20-7	
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		09/30/22 16:21	156-59-2	
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		09/30/22 16:21	10061-01-5	
m&p-Xylene	ND	ug/L	2.0	1		09/30/22 16:21	179601-23-1	
n-Butylbenzene	ND	ug/L	1.0	1		09/30/22 16:21	104-51-8	
n-Propylbenzene	ND	ug/L	1.0	1		09/30/22 16:21	103-65-1	
o-Xylene	ND	ug/L	1.0	1		09/30/22 16:21	95-47-6	
p-Isopropyltoluene	ND	ug/L	1.0	1		09/30/22 16:21	99-87-6	
sec-Butylbenzene	ND	ug/L	1.0	1		09/30/22 16:21	135-98-8	
tert-Butylbenzene	ND	ug/L	1.0	1		09/30/22 16:21	98-06-6	
trans-1,2-Dichloroethene	ND	ug/L	1.0	1		09/30/22 16:21	156-60-5	
trans-1,3-Dichloropropene	ND	ug/L	1.0	1		09/30/22 16:21	10061-02-6	
Surrogates		•						
4-Bromofluorobenzene (S)	103	%.	70-130	1		09/30/22 16:21	460-00-4	
1,2-Dichloroethane-d4 (S)	104	%.	70-130	1		09/30/22 16:21	17060-07-0	
Toluene-d8 (S)	97	%.	70-130	1		09/30/22 16:21	2037-26-5	
Dibromofluoromethane (S)	104	%.	70-130	1		09/30/22 16:21	1868-53-7	

Project: 209164

Pace Project No.: 30524553

Sample: Dup.	Lab ID: 305	24553009	Collected: 09/20/2	22 12:54	Received: 0	9/23/22 09:45 N	Matrix: Water		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual	
Indicator Gases Water LHC	Analytical Method: AM20GAX								
	Pace Analytic	al Gulf Coast							
Ethene	5.9	ug/L	1.0	1		09/29/22 09:15	74-85-1		
8260C MSV	Analytical Met	hod: EPA 82	60C						
	Pace Analytical Services - Greensburg								
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		09/30/22 16:44	630-20-6		
1,1,1-Trichloroethane	ND	ug/L	1.0	1		09/30/22 16:44			
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		09/30/22 16:44			
1,1,2-Trichloroethane	ND	ug/L	1.0	1		09/30/22 16:44			
1,1-Dichloroethane	1.4	-	1.0	1		09/30/22 16:44			
1,1-Dichloroethene	ND	ug/L	1.0	1		09/30/22 16:44			
,		ug/L		1					
1,1-Dichloropropene	ND	ug/L	1.0			09/30/22 16:44			
1,2,3-Trichlorobenzene	ND	ug/L	4.0	1		09/30/22 16:44			
1,2,4-Trichlorobenzene	ND	ug/L	4.0	1		09/30/22 16:44			
1,2,4-Trimethylbenzene	ND	ug/L	1.0	1		09/30/22 16:44			
1,2-Dibromo-3-chloropropane	ND	ug/L	5.0	1		09/30/22 16:44			
1,2-Dibromoethane (EDB)	ND	ug/L	1.0	1		09/30/22 16:44			
1,2-Dichlorobenzene	ND	ug/L	1.0	1		09/30/22 16:44			
1,2-Dichloroethane	ND	ug/L	1.0	1		09/30/22 16:44			
1,2-Dichloropropane	ND	ug/L	1.0	1		09/30/22 16:44	78-87-5		
1,3,5-Trimethylbenzene	ND	ug/L	1.0	1		09/30/22 16:44	108-67-8		
1,3-Dichlorobenzene	ND	ug/L	1.0	1		09/30/22 16:44	541-73-1		
1,3-Dichloropropane	ND	ug/L	1.0	1		09/30/22 16:44	142-28-9		
1,4-Dichlorobenzene	ND	ug/L	1.0	1		09/30/22 16:44	106-46-7		
2,2-Dichloropropane	ND	ug/L	1.0	1		09/30/22 16:44	594-20-7	CL	
2-Butanone (MEK)	ND	ug/L	10.0	1		09/30/22 16:44	78-93-3		
2-Chloroethylvinyl ether	ND	ug/L	2.0	1		09/30/22 16:44	110-75-8	c2	
2-Chlorotoluene	ND	ug/L	1.0	1		09/30/22 16:44	95-49-8		
2-Hexanone	ND	ug/L	10.0	1		09/30/22 16:44	591-78-6		
4-Chlorotoluene	ND	ug/L	1.0	1		09/30/22 16:44	106-43-4		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	10.0	1		09/30/22 16:44	108-10-1		
Acetone	ND	ug/L	10.0	1		09/30/22 16:44	67-64-1	1c	
Benzene	ND	ug/L	1.0	1		09/30/22 16:44	71-43-2		
Bromobenzene	ND	ug/L	1.0	1		09/30/22 16:44			
Bromochloromethane	ND	ug/L	1.0	1		09/30/22 16:44			
Bromodichloromethane	ND	ug/L	1.0	1		09/30/22 16:44			
Bromoform	ND	ug/L	4.0	1		09/30/22 16:44			
Bromomethane	ND	ug/L	4.0	1		09/30/22 16:44		1c,CH,II	
Carbon disulfide	ND	ug/L	1.0	1		09/30/22 16:44		IL,L2	
Carbon tetrachloride	ND	ug/∟ ug/L	1.0	1		09/30/22 16:44		16,62	
Chlorobenzene	ND	ug/L ug/L	1.0	1		09/30/22 16:44			
		-				09/30/22 16:44			
Chloroethane Chloroform	ND	ug/L	1.0	1					
	ND	ug/L	1.0	1		09/30/22 16:44			
Chloromethane	ND	ug/L	1.0	1		09/30/22 16:44			
Dibromochloromethane	ND	ug/L	1.0	1		09/30/22 16:44			
Dibromomethane	ND	ug/L	1.0	1		09/30/22 16:44			
Dichlorodifluoromethane	ND	ug/L	1.0	1		09/30/22 16:44	75-71-8	CH,IH,L	

Project: 209164

Pace Project No.: 30524553

Sample: Dup.	Lab ID: 3052	24553009	Collected: 09/20/2	2 12:54	Received: 09	0/23/22 09:45 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C MSV	Analytical Meth	od: EPA 82	60C					
	Pace Analytica	I Services -	Greensburg					
Ethylbenzene	ND	ug/L	1.0	1		09/30/22 16:44	100-41-4	
Hexachloro-1,3-butadiene	ND	ug/L	4.0	1		09/30/22 16:44	87-68-3	
Isopropylbenzene (Cumene)	ND	ug/L	1.0	1		09/30/22 16:44	98-82-8	
Methyl-tert-butyl ether	ND	ug/L	1.0	1		09/30/22 16:44	1634-04-4	
Methylene Chloride	ND	ug/L	1.0	1		09/30/22 16:44	75-09-2	
Naphthalene	ND	ug/L	4.0	1		09/30/22 16:44	91-20-3	
Styrene	ND	ug/L	1.0	1		09/30/22 16:44	100-42-5	
Tetrachloroethene	ND	ug/L	1.0	1		09/30/22 16:44	127-18-4	
Toluene	ND	ug/L	1.0	1		09/30/22 16:44	108-88-3	
Trichloroethene	164	ug/L	1.0	1		09/30/22 16:44	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		09/30/22 16:44	75-69-4	
Vinyl acetate	ND	ug/L	1.0	1		09/30/22 16:44	108-05-4	
Vinyl chloride	54.3	ug/L	1.0	1		09/30/22 16:44	75-01-4	IH
Xylene (Total)	ND	ug/L	3.0	1		09/30/22 16:44	1330-20-7	
cis-1,2-Dichloroethene	77.5	ug/L	1.0	1		09/30/22 16:44	156-59-2	
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		09/30/22 16:44	10061-01-5	
m&p-Xylene	ND	ug/L	2.0	1		09/30/22 16:44	179601-23-1	
n-Butylbenzene	ND	ug/L	1.0	1		09/30/22 16:44	104-51-8	
n-Propylbenzene	ND	ug/L	1.0	1		09/30/22 16:44	103-65-1	
o-Xylene	ND	ug/L	1.0	1		09/30/22 16:44	95-47-6	
p-lsopropyltoluene	ND	ug/L	1.0	1		09/30/22 16:44	99-87-6	
sec-Butylbenzene	ND	ug/L	1.0	1		09/30/22 16:44	135-98-8	
tert-Butylbenzene	ND	ug/L	1.0	1		09/30/22 16:44	98-06-6	
trans-1,2-Dichloroethene	4.6	ug/L	1.0	1		09/30/22 16:44	156-60-5	
trans-1,3-Dichloropropene	ND	ug/L	1.0	1		09/30/22 16:44	10061-02-6	
Surrogates		0						
4-Bromofluorobenzene (S)	99	%.	70-130	1		09/30/22 16:44	460-00-4	
1,2-Dichloroethane-d4 (S)	101	%.	70-130	1		09/30/22 16:44	17060-07-0	
Toluene-d8 (S)	97	%.	70-130	1		09/30/22 16:44	2037-26-5	
Dibromofluoromethane (S)	105	%.	70-130	1		09/30/22 16:44	1868-53-7	

Project: 209164

Pace Project No.: 30524553

Sample: MS-MW06-23BR	Lab ID: 30524553010 Co		Collected: 09/20/2	llected: 09/20/22 16:18		9/23/22 09:45 N	45 Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Indicator Gases Water LHC	Analytical Meth	nod: AM20G	AX					
	Pace Analytica	I Gulf Coast						
Ethene	92	ug/L	1.0	1		09/29/22 09:47	74-85-1	
8260C MSV	Analytical Meth	nod: FPA 82	60C					
	Pace Analytica							
			Ū			00/00/00 40 00		
1,1,1,2-Tetrachloroethane	17.2	ug/L	1.0	1		09/30/22 19:32		
1,1,1-Trichloroethane	21.2	ug/L	1.0	1		09/30/22 19:32		
1,1,2,2-Tetrachloroethane	21.3	ug/L	1.0	1		09/30/22 19:32		
1,1,2-Trichloroethane	20.0	ug/L	1.0	1		09/30/22 19:32		
1,1-Dichloroethane	22.3	ug/L	1.0	1		09/30/22 19:32		
1,1-Dichloroethene	24.6	ug/L	1.0	1		09/30/22 19:32		
1,1-Dichloropropene	16.7	ug/L	1.0	1		09/30/22 19:32	563-58-6	
1,2,3-Trichlorobenzene	18.4	ug/L	4.0	1		09/30/22 19:32	87-61-6	
1,2,4-Trichlorobenzene	17.2	ug/L	4.0	1		09/30/22 19:32	120-82-1	
1,2,4-Trimethylbenzene	17.4	ug/L	1.0	1		09/30/22 19:32	95-63-6	
1,2-Dibromo-3-chloropropane	17.9	ug/L	5.0	1		09/30/22 19:32	96-12-8	
1,2-Dibromoethane (EDB)	18.8	ug/L	1.0	1		09/30/22 19:32	106-93-4	
1,2-Dichlorobenzene	18.9	ug/L	1.0	1		09/30/22 19:32	95-50-1	
1,2-Dichloroethane	19.0	ug/L	1.0	1		09/30/22 19:32	107-06-2	
1,2-Dichloropropane	19.8	ug/L	1.0	1		09/30/22 19:32		
1,3,5-Trimethylbenzene	18.2	ug/L	1.0	1		09/30/22 19:32		
1,3-Dichlorobenzene	19.2	ug/L	1.0	1		09/30/22 19:32		
1,3-Dichloropropane	17.4	ug/L	1.0	1		09/30/22 19:32		
1,4-Dichlorobenzene	18.7	ug/L	1.0	1		09/30/22 19:32		
2,2-Dichloropropane	14.7	ug/L	1.0	1		09/30/22 19:32		CL
		-		1				0L
2-Butanone (MEK)	21.9	ug/L	10.0			09/30/22 19:32		-0
2-Chloroethylvinyl ether	ND	ug/L	2.0	1		09/30/22 19:32		c2
2-Chlorotoluene	18.7	ug/L	1.0	1		09/30/22 19:32		
2-Hexanone	19.4	ug/L	10.0	1		09/30/22 19:32		
4-Chlorotoluene	18.3	ug/L	1.0	1		09/30/22 19:32		
4-Methyl-2-pentanone (MIBK)	20.8	ug/L	10.0	1		09/30/22 19:32		
Acetone	21.2	ug/L	10.0	1		09/30/22 19:32		1c
Benzene	19.0	ug/L	1.0	1		09/30/22 19:32		
Bromobenzene	17.6	ug/L	1.0	1		09/30/22 19:32	108-86-1	
Bromochloromethane	19.0	ug/L	1.0	1		09/30/22 19:32	74-97-5	
Bromodichloromethane	19.4	ug/L	1.0	1		09/30/22 19:32	75-27-4	
Bromoform	16.6	ug/L	4.0	1		09/30/22 19:32	75-25-2	
Bromomethane	15.3	ug/L	4.0	1		09/30/22 19:32	74-83-9	1c,CH,IL
Carbon disulfide	20.9	ug/L	1.0	1		09/30/22 19:32	75-15-0	IL,L2
Carbon tetrachloride	16.0	ug/L	1.0	1		09/30/22 19:32	56-23-5	
Chlorobenzene	19.6	ug/L	1.0	1		09/30/22 19:32	108-90-7	
Chloroethane	19.7	ug/L	1.0	1		09/30/22 19:32		
Chloroform	18.1	ug/L	1.0	1		09/30/22 19:32		
Chloromethane	14.2	ug/L	1.0	1		09/30/22 19:32		
Dibromochloromethane	18.0	ug/L	1.0	1		09/30/22 19:32		
Dibromomethane	18.8	ug/L	1.0	1		09/30/22 19:32		
DIDIOITIOITIELITATE	10.0	ug/L	1.0	1		03/30/22 13.32	14-90-0	

Project: 209164

Pace Project No.: 30524553

Sample: MS-MW06-23BR	Lab ID: 3052	24553010	Collected: 09/20/2	2 16:18	Received: 0	9/23/22 09:45 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C MSV	Analytical Meth	od: EPA 82	260C					
	Pace Analytica	I Services -	Greensburg					
Ethylbenzene	18.1	ug/L	1.0	1		09/30/22 19:32	100-41-4	
Hexachloro-1,3-butadiene	15.4	ug/L	4.0	1		09/30/22 19:32	87-68-3	
Isopropylbenzene (Cumene)	20.5	ug/L	1.0	1		09/30/22 19:32	98-82-8	
Methyl-tert-butyl ether	17.4	ug/L	1.0	1		09/30/22 19:32	1634-04-4	
Methylene Chloride	20.8	ug/L	1.0	1		09/30/22 19:32	75-09-2	
Naphthalene	16.0	ug/L	4.0	1		09/30/22 19:32	91-20-3	
Styrene	18.3	ug/L	1.0	1		09/30/22 19:32	100-42-5	
Tetrachloroethene	18.7	ug/L	1.0	1		09/30/22 19:32	127-18-4	
Toluene	17.8	ug/L	1.0	1		09/30/22 19:32	108-88-3	
Trichloroethene	976	ug/L	10.0	10		09/30/22 19:56	79-01-6	
Trichlorofluoromethane	19.0	ug/L	1.0	1		09/30/22 19:32	75-69-4	
Vinyl acetate	15.8	ug/L	1.0	1		09/30/22 19:32	108-05-4	
Vinyl chloride	123	ug/L	1.0	1		09/30/22 19:32	75-01-4	IH
Xylene (Total)	54.2	ug/L	3.0	1		09/30/22 19:32	1330-20-7	
cis-1,2-Dichloroethene	627	ug/L	10.0	10		09/30/22 19:56	156-59-2	
cis-1,3-Dichloropropene	16.6	ug/L	1.0	1		09/30/22 19:32	10061-01-5	
m&p-Xylene	36.6	ug/L	2.0	1		09/30/22 19:32	179601-23-1	
n-Butylbenzene	16.8	ug/L	1.0	1		09/30/22 19:32	104-51-8	
n-Propylbenzene	18.3	ug/L	1.0	1		09/30/22 19:32	103-65-1	
o-Xylene	17.6	ug/L	1.0	1		09/30/22 19:32	95-47-6	
p-Isopropyltoluene	17.9	ug/L	1.0	1		09/30/22 19:32	99-87-6	
sec-Butylbenzene	18.9	ug/L	1.0	1		09/30/22 19:32	135-98-8	
tert-Butylbenzene	18.3	ug/L	1.0	1		09/30/22 19:32	98-06-6	
trans-1,2-Dichloroethene	25.6	ug/L	1.0	1		09/30/22 19:32	156-60-5	
trans-1,3-Dichloropropene	16.3	ug/L	1.0	1		09/30/22 19:32	10061-02-6	
Surrogates		Ũ						
4-Bromofluorobenzene (S)	99	%.	70-130	1		09/30/22 19:32	460-00-4	
1,2-Dichloroethane-d4 (S)	97	%.	70-130	1		09/30/22 19:32	17060-07-0	
Toluene-d8 (S)	98	%.	70-130	1		09/30/22 19:32	2037-26-5	
Dibromofluoromethane (S)	103	%.	70-130	1		09/30/22 19:32	1868-53-7	

Project: 209164

Pace Project No.: 30524553

Sample: MSD-MW06-23BR	Lab ID: 305	24553011	Collected: 09/20/2	22 16:18	Received: 0	9/23/22 09:45 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Indicator Gases Water LHC	Analytical Meth	nod: AM20G	AX					
	Pace Analytica	I Gulf Coast	t					
Ethene	100	ug/L	1.0	1		09/29/22 09:58	74-85-1	
8260C MSV	Analytical Meth	nod: EPA 82	260C					
	Pace Analytica							
4.4.4.0 Totro chlana othan a	,		0	4		00/00/00 00.00	coo oo c	
1,1,1,2-Tetrachloroethane	17.9	ug/L	1.0	1		09/30/22 20:20		
1,1,1-Trichloroethane	23.4	ug/L	1.0	1		09/30/22 20:20 09/30/22 20:20		
1,1,2,2-Tetrachloroethane	22.1	ug/L	1.0	1				
1,1,2-Trichloroethane	20.0	ug/L	1.0	1		09/30/22 20:20		
1,1-Dichloroethane	24.3	ug/L	1.0	1		09/30/22 20:20		
1,1-Dichloroethene	26.2	ug/L	1.0	1		09/30/22 20:20		
1,1-Dichloropropene	18.1	ug/L	1.0	1		09/30/22 20:20		
1,2,3-Trichlorobenzene	19.2	ug/L	4.0	1		09/30/22 20:20		
1,2,4-Trichlorobenzene	18.7	ug/L	4.0	1		09/30/22 20:20		
1,2,4-Trimethylbenzene	18.9	ug/L	1.0	1		09/30/22 20:20		
1,2-Dibromo-3-chloropropane	18.4	ug/L	5.0	1		09/30/22 20:20		
1,2-Dibromoethane (EDB)	19.2	ug/L	1.0	1		09/30/22 20:20		
1,2-Dichlorobenzene	19.5	ug/L	1.0	1		09/30/22 20:20		
1,2-Dichloroethane	18.8	ug/L	1.0	1		09/30/22 20:20		
1,2-Dichloropropane	20.6	ug/L	1.0	1		09/30/22 20:20		
1,3,5-Trimethylbenzene	19.1	ug/L	1.0	1		09/30/22 20:20		
1,3-Dichlorobenzene	20.1	ug/L	1.0	1		09/30/22 20:20		
1,3-Dichloropropane	18.3	ug/L	1.0	1		09/30/22 20:20		
1,4-Dichlorobenzene	19.9	ug/L	1.0	1		09/30/22 20:20		
2,2-Dichloropropane	14.5	ug/L	1.0	1		09/30/22 20:20		CL
2-Butanone (MEK)	22.0	ug/L	10.0	1		09/30/22 20:20		
2-Chloroethylvinyl ether	ND	ug/L	2.0	1		09/30/22 20:20		c2
2-Chlorotoluene	19.9	ug/L	1.0	1		09/30/22 20:20		
2-Hexanone	20.7	ug/L	10.0	1		09/30/22 20:20		
4-Chlorotoluene	19.5	ug/L	1.0	1		09/30/22 20:20		
4-Methyl-2-pentanone (MIBK)	21.2	ug/L	10.0	1		09/30/22 20:20		
Acetone	22.1	ug/L	10.0	1		09/30/22 20:20		1c
Benzene	20.3	ug/L	1.0	1		09/30/22 20:20		
Bromobenzene	18.6	ug/L	1.0	1		09/30/22 20:20	108-86-1	
Bromochloromethane	20.2	ug/L	1.0	1		09/30/22 20:20	74-97-5	
Bromodichloromethane	19.4	ug/L	1.0	1		09/30/22 20:20	75-27-4	
Bromoform	17.6	ug/L	4.0	1		09/30/22 20:20	75-25-2	
Bromomethane	23.2	ug/L	4.0	1		09/30/22 20:20	74-83-9	1c,CH,IL
Carbon disulfide	19.6	ug/L	1.0	1		09/30/22 20:20	75-15-0	IL,L2
Carbon tetrachloride	17.0	ug/L	1.0	1		09/30/22 20:20		
Chlorobenzene	20.6	ug/L	1.0	1		09/30/22 20:20	108-90-7	
Chloroethane	19.7	ug/L	1.0	1		09/30/22 20:20		
Chloroform	19.0	ug/L	1.0	1		09/30/22 20:20	67-66-3	
Chloromethane	15.1	ug/L	1.0	1		09/30/22 20:20	74-87-3	
Dibromochloromethane	19.0	ug/L	1.0	1		09/30/22 20:20	124-48-1	
Dibromomethane	18.9	ug/L	1.0	1		09/30/22 20:20	74-95-3	
Dichlorodifluoromethane	5.8	ug/L	1.0	1		09/30/22 20:20	75-71-8	CH,IH,L2

Project: 209164

Pace Project No.: 30524553

Sample: MSD-MW06-23BR	Lab ID: 305	24553011	Collected: 09/20/2	2 16:18	Received: 09/23	/22 09:45 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C MSV	Analytical Met	hod: EPA 82	260C					
	Pace Analytica	al Services -	Greensburg					
Ethylbenzene	19.8	ug/L	1.0	1	09	/30/22 20:20	100-41-4	
Hexachloro-1,3-butadiene	15.7	ug/L	4.0	1	09	/30/22 20:20	87-68-3	
Isopropylbenzene (Cumene)	21.9	ug/L	1.0	1	09	/30/22 20:20	98-82-8	
Methyl-tert-butyl ether	17.7	ug/L	1.0	1	09	/30/22 20:20	1634-04-4	
Methylene Chloride	21.8	ug/L	1.0	1	09	/30/22 20:20	75-09-2	
Naphthalene	17.0	ug/L	4.0	1	09	/30/22 20:20	91-20-3	
Styrene	19.5	ug/L	1.0	1	09	/30/22 20:20	100-42-5	
Tetrachloroethene	19.8	ug/L	1.0	1	09	/30/22 20:20	127-18-4	
Toluene	18.8	ug/L	1.0	1	09	/30/22 20:20	108-88-3	
Trichloroethene	1090	ug/L	10.0	10	09	/30/22 20:44	79-01-6	
Trichlorofluoromethane	19.1	ug/L	1.0	1	09	/30/22 20:20	75-69-4	
Vinyl acetate	15.5	ug/L	1.0	1	09	/30/22 20:20	108-05-4	
Vinyl chloride	150	ug/L	1.0	1	09	/30/22 20:20	75-01-4	IH
Xylene (Total)	58.0	ug/L	3.0	1	09	/30/22 20:20	1330-20-7	
cis-1,2-Dichloroethene	696	ug/L	10.0	10	09	/30/22 20:44	156-59-2	
cis-1,3-Dichloropropene	17.2	ug/L	1.0	1	09	/30/22 20:20	10061-01-5	
m&p-Xylene	39.2	ug/L	2.0	1	09	/30/22 20:20	179601-23-1	
n-Butylbenzene	17.9	ug/L	1.0	1	09	/30/22 20:20	104-51-8	
n-Propylbenzene	19.4	ug/L	1.0	1	09	/30/22 20:20	103-65-1	
o-Xylene	18.8	ug/L	1.0	1	09	/30/22 20:20	95-47-6	
p-lsopropyltoluene	18.7	ug/L	1.0	1	09	/30/22 20:20	99-87-6	
sec-Butylbenzene	19.9	ug/L	1.0	1	09	/30/22 20:20	135-98-8	
tert-Butylbenzene	19.4	ug/L	1.0	1	09	/30/22 20:20	98-06-6	
trans-1,2-Dichloroethene	27.4	ug/L	1.0	1	09	/30/22 20:20	156-60-5	
trans-1,3-Dichloropropene	17.0	ug/L	1.0	1	09	/30/22 20:20	10061-02-6	
Surrogates		•						
4-Bromofluorobenzene (S)	98	%.	70-130	1	09	/30/22 20:20	460-00-4	
1,2-Dichloroethane-d4 (S)	98	%.	70-130	1	09	/30/22 20:20	17060-07-0	
Toluene-d8 (S)	100	%.	70-130	1	09	/30/22 20:20	2037-26-5	
Dibromofluoromethane (S)	100	%.	70-130	1	09	/30/22 20:20	1868-53-7	

Project: 209164

Pace Project No.: 30524553

Sample: trip blank	Lab ID: 3052	24553012	Collected: 09/20/2	22 00:00	Received: 0	9/23/22 09:45 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C MSV	Analytical Meth	nod: EPA 82	260C					
	Pace Analytica	I Services -	Greensburg					
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		09/30/22 13:09	630-20-6	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		09/30/22 13:09	71-55-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		09/30/22 13:09	79-34-5	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		09/30/22 13:09	79-00-5	
1,1-Dichloroethane	ND	ug/L	1.0	1		09/30/22 13:09	75-34-3	
1,1-Dichloroethene	ND	ug/L	1.0	1		09/30/22 13:09	75-35-4	
1,1-Dichloropropene	ND	ug/L	1.0	1		09/30/22 13:09	563-58-6	
1,2,3-Trichlorobenzene	ND	ug/L	4.0	1		09/30/22 13:09	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	4.0	1		09/30/22 13:09	120-82-1	
1,2,4-Trimethylbenzene	ND	ug/L	1.0	1		09/30/22 13:09	95-63-6	
1,2-Dibromo-3-chloropropane	ND	ug/L	5.0	1		09/30/22 13:09	96-12-8	
1,2-Dibromoethane (EDB)	ND	ug/L	1.0	1		09/30/22 13:09	106-93-4	
1,2-Dichlorobenzene	ND	ug/L	1.0	1		09/30/22 13:09	95-50-1	
1,2-Dichloroethane	ND	ug/L	1.0	1		09/30/22 13:09		
1,2-Dichloropropane	ND	ug/L	1.0	1		09/30/22 13:09		
1,3,5-Trimethylbenzene	ND	ug/L	1.0	1		09/30/22 13:09		
1,3-Dichlorobenzene	ND	ug/L	1.0	1		09/30/22 13:09		
1,3-Dichloropropane	ND	ug/L	1.0	1		09/30/22 13:09		
1,4-Dichlorobenzene	ND	ug/L	1.0	1		09/30/22 13:09		
2,2-Dichloropropane	ND	ug/L	1.0	1		09/30/22 13:09		CL
2-Butanone (MEK)	ND	ug/L	10.0	1		09/30/22 13:09		
2-Chloroethylvinyl ether	ND	ug/L	2.0	1		09/30/22 13:09		c2
2-Chlorotoluene	ND	ug/L	1.0	1		09/30/22 13:09		
2-Hexanone	ND	ug/L	10.0	1		09/30/22 13:09		
4-Chlorotoluene	ND	ug/L	1.0	1		09/30/22 13:09		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	10.0	1		09/30/22 13:09		
Acetone	ND	ug/L	10.0	1		09/30/22 13:09		1c
Benzene	ND	ug/L	1.0	1		09/30/22 13:09		
Bromobenzene	ND	ug/L	1.0	1		09/30/22 13:09		
Bromochloromethane	ND	ug/L	1.0	1		09/30/22 13:09		
Bromodichloromethane	ND	ug/L	1.0	1		09/30/22 13:09		
Bromoform	ND	ug/L	4.0	1		09/30/22 13:09		
Bromomethane	ND	ug/L	4.0	1		09/30/22 13:09		CH,IL
Carbon disulfide	ND	ug/L	1.0	1		09/30/22 13:09		IL
Carbon tetrachloride	ND	ug/L	1.0	1		09/30/22 13:09		1
Chlorobenzene	ND	ug/L	1.0	1		09/30/22 13:09		
Chloroethane	ND	ug/L	1.0	1		09/30/22 13:09		
Chloroform	ND	ug/L	1.0	1		09/30/22 13:09		
Chloromethane	ND	ug/L	1.0	1		09/30/22 13:09		
Dibromochloromethane	ND	ug/L	1.0	1		09/30/22 13:09		
Dibromomethane	ND	ug/L	1.0	1		09/30/22 13:09		
Dichlorodifluoromethane	ND	ug/L ug/L	1.0	1		09/30/22 13:09		CH,IH
Ethylbenzene	ND	ug/L ug/L	1.0	1		09/30/22 13:09		011,111
Hexachloro-1,3-butadiene	ND	ug/L ug/L	4.0	1		09/30/22 13:09		
Isopropylbenzene (Cumene)	ND	0		1		09/30/22 13:09		
Methyl-tert-butyl ether	ND	ug/L ug/L	1.0 1.0	1		09/30/22 13:09		

Project: 209164

Pace Project No.: 30524553

Sample: trip blank	Lab ID: 3052	24553012	Collected: 09/20/2	22 00:00	Received: 0	9/23/22 09:45 N	Matrix: Water		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual	
8260C MSV	Analytical Meth	nod: EPA 82	260C						
	Pace Analytica	I Services -	Greensburg						
Methylene Chloride	ND	ug/L	1.0	1		09/30/22 13:09	75-09-2		
Naphthalene	ND	ug/L	4.0	1		09/30/22 13:09	91-20-3		
Styrene	ND	ug/L	1.0	1		09/30/22 13:09	100-42-5		
Tetrachloroethene	ND	ug/L	1.0	1		09/30/22 13:09	127-18-4		
Toluene	ND	ug/L	1.0	1		09/30/22 13:09	108-88-3		
Trichloroethene	ND	ug/L	1.0	1		09/30/22 13:09	79-01-6		
Trichlorofluoromethane	ND	ug/L	1.0	1		09/30/22 13:09	75-69-4		
Vinyl acetate	ND	ug/L	1.0	1		09/30/22 13:09	108-05-4	CL	
Vinyl chloride	ND	ug/L	1.0	1		09/30/22 13:09	75-01-4	IH	
Xylene (Total)	ND	ug/L	3.0	1		09/30/22 13:09	1330-20-7		
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		09/30/22 13:09	156-59-2		
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		09/30/22 13:09	10061-01-5		
m&p-Xylene	ND	ug/L	2.0	1		09/30/22 13:09	179601-23-1		
n-Butylbenzene	ND	ug/L	1.0	1		09/30/22 13:09	104-51-8		
n-Propylbenzene	ND	ug/L	1.0	1		09/30/22 13:09	103-65-1		
o-Xylene	ND	ug/L	1.0	1		09/30/22 13:09	95-47-6		
p-lsopropyltoluene	ND	ug/L	1.0	1		09/30/22 13:09	99-87-6		
sec-Butylbenzene	ND	ug/L	1.0	1		09/30/22 13:09	135-98-8		
tert-Butylbenzene	ND	ug/L	1.0	1		09/30/22 13:09	98-06-6		
trans-1,2-Dichloroethene	ND	ug/L	1.0	1		09/30/22 13:09	156-60-5		
trans-1,3-Dichloropropene	ND	ug/L	1.0	1		09/30/22 13:09	10061-02-6		
Surrogates		-							
4-Bromofluorobenzene (S)	101	%.	70-130	1		09/30/22 13:09	460-00-4		
1,2-Dichloroethane-d4 (S)	107	%.	70-130	1		09/30/22 13:09	17060-07-0		
Toluene-d8 (S)	97	%.	70-130	1		09/30/22 13:09	2037-26-5		
Dibromofluoromethane (S)	105	%.	70-130	1		09/30/22 13:09	1868-53-7		

Project:	20916	4							
Pace Project No.:	30524	553							
QC Batch:	5366	05		Analysis Met	hod.	FP	A 8260C		
QC Batch Method:		8260C		Analysis Des			60C MSV		
QC Batch Method.	LFA	02000		-	scription.			inne Orenekune	
		20504552004	20524552002	Laboratory:	0504550004			vices - Greensburg	
Associated Lab Sar	mples:			30524553003, 3 30524553010, 3				4553006, 30524553007,	
			,			,			
METHOD BLANK:				Matrix:					
Associated Lab Sar	mples:			30524553003, 3 30524553010, 3				4553006, 30524553007,	
				Blank	Reporting				
Para	meter		Units	Result	Limit		Analyzed	Qualifiers	
1,1,1,2-Tetrachloroe	ethane		ug/L	ND	1	.0	09/30/22 12:21		
1,1,1-Trichloroetha	ne		ug/L	ND	1	0.	09/30/22 12:21		
1,1,2,2-Tetrachloroe	ethane		ug/L	ND	1	0.1	09/30/22 12:21		
1,1,2-Trichloroetha	ne		ug/L	ND	1	0.1	09/30/22 12:21		
1,1-Dichloroethane			ug/L	ND	1	0.1	09/30/22 12:21		
1.1-Dichloroethene			ug/L	ND	1	0.1	09/30/22 12:21		
1,1-Dichloropropen	e		ug/L	ND		0.1	09/30/22 12:21		
1,2,3-Trichlorobenz			ug/L	ND		1.0	09/30/22 12:21		
1,2,4-Trichlorobenz			ug/L	ND		1.0	09/30/22 12:21		
1,2,4-Trimethylbenz			ug/L	ND		1.0	09/30/22 12:21		
1,2-Dibromo-3-chlo		ne	ug/L	ND		5.0	09/30/22 12:21		
1,2-Dibromoethane			ug/L	ND		1.0	09/30/22 12:21		
1,2-Dichlorobenzer	` '		ug/L	ND		1.0	09/30/22 12:21		
1,2-Dichloroethane			ug/L	ND		1.0	09/30/22 12:21		
1,2-Dichloropropan			ug/L	ND		1.0	09/30/22 12:21		
1,3,5-Trimethylbenz			ug/L	ND		1.0	09/30/22 12:21		
1,3-Dichlorobenzer			ug/L	ND		1.0	09/30/22 12:21		
1,3-Dichloropropan			ug/L	ND		1.0	09/30/22 12:21		
1,4-Dichlorobenzer			ug/L	ND		1.0	09/30/22 12:21		
2,2-Dichloropropan			ug/L	ND		1.0	09/30/22 12:21	CL	
	e		-	ND).0	09/30/22 12:21	0L	
2-Butanone (MEK)	ther		ug/L						
2-Chloroethylvinyl	enter		ug/L	ND		2.0	09/30/22 12:21		
2-Chlorotoluene			ug/L	ND ND		0.1	09/30/22 12:21 09/30/22 12:21		
2-Hexanone			ug/L			0.0	09/30/22 12:21		
4-Chlorotoluene		K)	ug/L	ND		0.1			
4-Methyl-2-pentanc		vrv)	ug/L	ND		0.0	09/30/22 12:21	10	
Acetone			ug/L	ND		0.0		1c	
Benzene			ug/L	ND			09/30/22 12:21		
Bromobenzene	~~		ug/L	ND		0.1	09/30/22 12:21		
Bromochlorometha			ug/L	ND		0.1	09/30/22 12:21		
Bromodichlorometh	ane		ug/L	ND		0.1	09/30/22 12:21		
Bromoform			ug/L	ND		1.0	09/30/22 12:21		
Bromomethane			ug/L	ND		1.0	09/30/22 12:21	CH,IL	
Carbon disulfide	-		ug/L	ND		0.1	09/30/22 12:21	IL	
Carbon tetrachlorid	е		ug/L	ND		0.1	09/30/22 12:21		
Chlorobenzene			ug/L	ND		0.1	09/30/22 12:21		
Chloroethane			ug/L	ND		0.1	09/30/22 12:21		
Chloroform			ug/L	ND		0.1	09/30/22 12:21		
Chloromethane			ug/L	ND	1	.0	09/30/22 12:21		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

 Project:
 209164

 Pace Project No.:
 30524553

METHOD BLANK: 260377	6	Matrix:	Water		
Associated Lab Samples:	30524553001, 30524553002, 3 30524553008, 30524553009, 3				24553006, 3052455300
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
cis-1,2-Dichloroethene	ug/L	ND	1.0	09/30/22 12:21	
cis-1,3-Dichloropropene	ug/L	ND	1.0	09/30/22 12:21	
Dibromochloromethane	ug/L	ND	1.0	09/30/22 12:21	
Dibromomethane	ug/L	ND	1.0	09/30/22 12:21	
Dichlorodifluoromethane	ug/L	ND	1.0	09/30/22 12:21	CH,IH
Ethylbenzene	ug/L	ND	1.0	09/30/22 12:21	
Hexachloro-1,3-butadiene	ug/L	ND	4.0	09/30/22 12:21	
Isopropylbenzene (Cumene)	ug/L	ND	1.0	09/30/22 12:21	
m&p-Xylene	ug/L	ND	2.0	09/30/22 12:21	
Methyl-tert-butyl ether	ug/L	ND	1.0	09/30/22 12:21	
Methylene Chloride	ug/L	ND	1.0	09/30/22 12:21	
n-Butylbenzene	ug/L	ND	1.0	09/30/22 12:21	
n-Propylbenzene	ug/L	ND	1.0	09/30/22 12:21	
Naphthalene	ug/L	ND	4.0	09/30/22 12:21	
o-Xylene	ug/L	ND	1.0	09/30/22 12:21	
p-Isopropyltoluene	ug/L	ND	1.0	09/30/22 12:21	
and Butulhanzana			1.0	00/00/00 40.04	

in ropyisonzono	ug/ L	110	1.0	00/00/22 12.21		
Naphthalene	ug/L	ND	4.0	09/30/22 12:21		
o-Xylene	ug/L	ND	1.0	09/30/22 12:21		
p-Isopropyltoluene	ug/L	ND	1.0	09/30/22 12:21		
sec-Butylbenzene	ug/L	ND	1.0	09/30/22 12:21		
Styrene	ug/L	ND	1.0	09/30/22 12:21		
tert-Butylbenzene	ug/L	ND	1.0	09/30/22 12:21		
Tetrachloroethene	ug/L	ND	1.0	09/30/22 12:21		
Toluene	ug/L	ND	1.0	09/30/22 12:21		
trans-1,2-Dichloroethene	ug/L	ND	1.0	09/30/22 12:21		
trans-1,3-Dichloropropene	ug/L	ND	1.0	09/30/22 12:21		
Trichloroethene	ug/L	ND	1.0	09/30/22 12:21		
Trichlorofluoromethane	ug/L	ND	1.0	09/30/22 12:21		
Vinyl acetate	ug/L	ND	1.0	09/30/22 12:21	CL	
Vinyl chloride	ug/L	ND	1.0	09/30/22 12:21	IH	
Xylene (Total)	ug/L	ND	3.0	09/30/22 12:21		
1,2-Dichloroethane-d4 (S)	%.	102	70-130	09/30/22 12:21		
4-Bromofluorobenzene (S)	%.	101	70-130	09/30/22 12:21		
Dibromofluoromethane (S)	%.	105	70-130	09/30/22 12:21		
Toluene-d8 (S)	%.	99	70-130	09/30/22 12:21		

LABORATORY CONTROL SAMPLE: 2603777

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	20	20.3	101	70-130	
1,1,1-Trichloroethane	ug/L	20	22.5	112	70-130	
1,1,2,2-Tetrachloroethane	ug/L	20	22.1	110	70-130	
1,1,2-Trichloroethane	ug/L	20	21.6	108	70-130	
1,1-Dichloroethane	ug/L	20	22.8	114	70-130	
1,1-Dichloroethene	ug/L	20	22.5	112	45-130	
1,1-Dichloropropene	ug/L	20	20.1	101	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

 Project:
 209164

 Pace Project No.:
 30524553

LABORATORY CONTROL SAMPLE:	2603777					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2,3-Trichlorobenzene	ug/L	20	21.1	106	56-145	
1,2,4-Trichlorobenzene	ug/L	20	19.9	100	61-151	
1,2,4-Trimethylbenzene	ug/L	20	20.7	103	70-130	
1,2-Dibromo-3-chloropropane	ug/L	20	20.2	101	64-130	
1,2-Dibromoethane (EDB)	ug/L	20	20.3	102	70-130	
1,2-Dichlorobenzene	ug/L	20	21.6	108	70-130	
1,2-Dichloroethane	ug/L	20	21.1	105	64-130	
1,2-Dichloropropane	ug/L	20	21.5	107	70-130	
1,3,5-Trimethylbenzene	ug/L	20	20.6	103	70-130	
1,3-Dichlorobenzene	ug/L	20	21.7	108	70-130	
1,3-Dichloropropane	ug/L	20	20.0	100	70-130	
1,4-Dichlorobenzene	ug/L	20	20.9	105	70-130	
2,2-Dichloropropane	ug/L	20	12.3	62	53-149	CL
2-Butanone (MEK)	ug/L	20	20.7	104	55-143	
2-Chloroethylvinyl ether	ug/L	20	22.4	112	48-137	
2-Chlorotoluene	ug/L	20	21.6	108	70-130	
2-Hexanone	ug/L	20	20.1	101	56-138	
4-Chlorotoluene	ug/L	20	21.3	107	70-130	
4-Methyl-2-pentanone (MIBK)	ug/L	20	19.7	99	62-136	
Acetone	ug/L	20	20.9	104	10-175	10
Benzene	ug/L	20	20.5	104	70-130	
Bromobenzene	ug/L	20	20.1	100	70-130	
Bromochloromethane	ug/L	20	20.1	110	70-130	
Bromodichloromethane	ug/L	20	21.3	109	70-130	
Bromoform	ug/L	20	21.8	109	58-130	
Bromomethane	ug/L	20	19.3	97		1c,CH,IL
Carbon disulfide	ug/L	20	4.2	21	46-156	
Carbon tetrachloride	-	20	20.0	100	70-130	IL,LZ
Chlorobenzene	ug/L	20 20	20.0	100	70-130	
Chloroethane	ug/L ug/L	20	22.3 16.8	84	36-168	
Chloroform	ug/L	20	20.2	101	70-130	
Chloromethane		20	12.1	61	43-134	
cis-1,2-Dichloroethene	ug/L	20 20	20.6	103	70-130	
cis-1,3-Dichloropropene	ug/L	20 20	20.6 18.1	90	70-130	
Dibromochloromethane	ug/L ug/L	20	20.6	90 103	70-130	
Dibromomethane		20	20.0	103	70-130	CH, III
Dichlorodifluoromethane	ug/L			31	46-169	1.2
	ug/L	20 20	6.2 21.5		46-169 63-135	LZ
Ethylbenzene	ug/L			107		
Hexachloro-1,3-butadiene	ug/L	20	18.3 24.1	91 121	55-133	
Isopropylbenzene (Cumene)	ug/L	20	24.1	121	70-130	
m&p-Xylene	ug/L	40	43.6	109	70-130	
Methyl-tert-butyl ether	ug/L	20	16.6	83	63-130	
Methylene Chloride	ug/L	20	23.2	116	70-130	
n-Butylbenzene	ug/L	20	18.5	92	70-130	
n-Propylbenzene	ug/L	20	21.2	106	70-130	
Naphthalene	ug/L	20	19.7	99	30-166	
o-Xylene	ug/L	20	20.8	104	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

 Project:
 209164

 Pace Project No.:
 30524553

LABORATORY CONTROL SAMPLE: 2603777

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Falameter				% Rec		Quaimers
p-Isopropyltoluene	ug/L	20	20.5	102	70-130	
sec-Butylbenzene	ug/L	20	21.9	110	70-130	
tyrene	ug/L	20	22.0	110	70-130	
rt-Butylbenzene	ug/L	20	21.9	109	70-130	
etrachloroethene	ug/L	20	21.5	107	70-130	
oluene	ug/L	20	21.0	105	70-130	
ans-1,2-Dichloroethene	ug/L	20	21.9	109	70-130	
ans-1,3-Dichloropropene	ug/L	20	18.3	92	70-130	
chloroethene	ug/L	20	22.1	111	70-130	
chlorofluoromethane	ug/L	20	19.1	95	49-149	
nyl acetate	ug/L	20	11.4	57	50-140 (CL
nyl chloride	ug/L	20	14.0	70	56-132 I	н
/lene (Total)	ug/L	60	64.4	107	70-130	
2-Dichloroethane-d4 (S)	%.			96	70-130	
Bromofluorobenzene (S)	%.			103	70-130	
ibromofluoromethane (S)	%.			100	70-130	
oluene-d8 (S)	%.			100	70-130	

MATRIX SPIKE & MATRIX SP	IKE DUPLIC	CATE: 2603	778		2603779							
			MS	MSD								
	3	0524553002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,1,1,2-Tetrachloroethane	ug/L	ND	20	20	17.2	17.9	86	89	49-130	4	30	
1,1,1-Trichloroethane	ug/L	3.2	20	20	21.2	23.4	90	101	34-164	10	30	
1,1,2,2-Tetrachloroethane	ug/L	ND	20	20	21.3	22.1	107	111	49-142	4	30	
1,1,2-Trichloroethane	ug/L	ND	20	20	20.0	20.0	100	100	46-143	0	30	
1,1-Dichloroethane	ug/L	2.9	20	20	22.3	24.3	97	107	10-130	9	30	
1,1-Dichloroethene	ug/L	5.2	20	20	24.6	26.2	97	105	30-132	6	30	
1,1-Dichloropropene	ug/L	ND	20	20	16.7	18.1	83	90	43-130	8	30	
1,2,3-Trichlorobenzene	ug/L	ND	20	20	18.4	19.2	92	96	33-130	4	30	
1,2,4-Trichlorobenzene	ug/L	ND	20	20	17.2	18.7	86	94	36-130	8	30	
1,2,4-Trimethylbenzene	ug/L	ND	20	20	17.4	18.9	87	94	45-139	8	30	
1,2-Dibromo-3- chloropropane	ug/L	ND	20	20	17.9	18.4	89	92	45-130	3	30	
1,2-Dibromoethane (EDB)	ug/L	ND	20	20	18.8	19.2	94	96	50-132	2	30	
1,2-Dichlorobenzene	ug/L	ND	20	20	18.9	19.5	95	98	50-130	3	30	
1,2-Dichloroethane	ug/L	ND	20	20	19.0	18.8	95	94	49-135	1	30	
1,2-Dichloropropane	ug/L	ND	20	20	19.8	20.6	99	103	44-149	4	30	
1,3,5-Trimethylbenzene	ug/L	ND	20	20	18.2	19.1	91	95	45-134	5	30	
1,3-Dichlorobenzene	ug/L	ND	20	20	19.2	20.1	96	100	54-130	5	30	
1,3-Dichloropropane	ug/L	ND	20	20	17.4	18.3	87	91	42-130	5	30	
1,4-Dichlorobenzene	ug/L	ND	20	20	18.7	19.9	94	100	49-130	6	30	
2,2-Dichloropropane	ug/L	ND	20	20	14.7	14.5	73	73	40-130	1	30	CL
2-Butanone (MEK)	ug/L	ND	20	20	21.9	22.0	109	110	38-156	1	30	
2-Chloroethylvinyl ether	ug/L	ND	20	20	ND	ND	0	0	10-130		30	ML

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:	209164
Pace Project No.:	30524553

MSD MAX 2-Chiorotoluene ugil, ND 20 18.7 19.9 9.9 11.13 6 30 2-Chiorotoluene ugil, ND 20 20 18.4 2.0.7 97 10.3 99 41.130 6 30 4-Chiorotoluene ugil, ND 20 20 12.2 22.1 104 106 41.159 2 30 - MBKS MSD 20 20 12.0 2.0.3 35 101 17.16 8 30 - Bromochioromethane ugil, ND 20 20 18.6 8 33 - - 10 14.444 6 30 - - 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1	MATRIX SPIKE & MATRIX SP	PIKE DUPL	ICATE: 2603	778		2603779							
Parameter Unis Result Conc. Result Result<				MS	MSD								
2-Chiorotoluene ug/L ND 20 18.7 19.9 93 99 41-130 6 30 2-Hexanone ug/L ND 20 20 19.4 20.7 97 103 39-162 6 30 4-Chorotoluene ug/L ND 20 20 20.8 21.2 104 106 41-159 2 30 Acetone ug/L ND 20 20 2.8 21.2 104 106 41-159 2 30 Bromobenzene ug/L ND 20 20 17.6 18.6 89 32.2-14.1 6 30 Bromochromethane ug/L ND 20 20 16.6 17.6 83 88 46.140 6 30 Bromochromethane ug/L ND 20 20 16.6 17.6 83 88 46.140 6 30 L L L L L L L			30524553002	Spike	Spike	MS	MSD			% Rec			
2-Hexanone ugL ND 20 20 19.4 207 97 103 39-162 6 30 4-Chlorotaluane ugL ND 20 20 18.3 19.5 91 97 41-130 6 30 (MBK)	Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
4-Chiorolulene ugL ND 20 20 18.3 19.5 91 97 41-130 6 30 MIRK/n ND 20 20.0 21.2 21.1 106 41-159 2 30 Acetione ugL ND 20 20.0 21.2 22.1 97 101 27.130 4 30 10 Benzene ugL ND 20 20 17.6 18.6 83 32.2141 6 30 Bromochicinormethane ugL ND 20 20 19.4 19.4 19.4 97 97 50-139 0 30 Bromorbitino ugL ND 20 20 19.3 23.2 76 116 10-130 41 30 10.1 10.130 41 30 10.1 10.130 41 30 10.1 10.130 41 30 10.1 10.130 41 30 10.1 10.130 41 </td <td>2-Chlorotoluene</td> <td>ug/L</td> <td>ND</td> <td>20</td> <td>20</td> <td>18.7</td> <td>19.9</td> <td>93</td> <td>99</td> <td>41-130</td> <td>6</td> <td>30</td> <td></td>	2-Chlorotoluene	ug/L	ND	20	20	18.7	19.9	93	99	41-130	6	30	
4-Methyl-2pentanone ug/L ND 20 20 20.8 21.2 104 106 4.1159 2 30 Acatono ug/L ND 20 20 21.2 22.1 101 17.130 4 30 10 Barcane ug/L ND 20 20 17.6 18.6 88 93 22.141 6 30 Bromocholrormethane ug/L ND 20 20 17.6 18.6 88 93 22.141 6 30 Bromocholrormethane ug/L ND 20 20 16.6 17.6 101 47.413 6 30 10.1 10.13 61 10.1 10.13 61 10.1 11.1 10.1 10.1 10.1 10.1 10.1 10.1	2-Hexanone	ug/L	ND	20	20	19.4	20.7	97	103	39-162	6	30	
(MIBK) Acetone ug/L ND 20 212 22.1 97 101 27.130 4 30 1c Benzene ug/L ND 20 20 19.0 20.2 95 101 17.162 7 30 Bromochoromethane ug/L ND 20 20 19.0 20.2 95 101 44.143 6 30 Bromochicomethane ug/L ND 20 20 19.4 19.4 97 97 50.139 0 30 Bromochicomethane ug/L ND 20 20 15.3 23.2 76 116 10.130 41 30 1C.H.R.R Carbon terrachoride ug/L ND 20 20 19.6 20.6 98 103 52.133 5 30 1L.R.R Carbon terrachoride ug/L ND 20 20 18.1 19.0 90 46.17.1 50 30 11.6.17.6 30 62.13.2.0.16.16.17.0 30 30 10.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	4-Chlorotoluene	ug/L	ND	20	20	18.3	19.5	91	97	41-130	6	30	
Àcetone ugL ND 20 20 21,2 22,1 97 101 27-130 4 30 1c Bernacene ugL ND 20 100 17.6 18.6 88 93 22-11 6 30 Bromochloromethane ugL ND 20 20 19,4 19,4 97 50-139 0 0 Bromochloromethane ugL ND 20 20 16.6 17.6 83 88 36-134 6 30 Bromochloromethane ugL ND 20 20 16.6 17.6 83 88 36-134 6 30 10.7.1 11.6 10-30 41 30 10.7.1 11.6 10-30 91 30 10.7.1 11.6 10-30 91 30 10.7.1 11.6 10-30 91 90 94 46-131 5 30 10.7.1 11.6 10-15 10 30 10.7.1 11.6		ug/L	ND	20	20	20.8	21.2	104	106	41-159	2	30	
Benzene und ND 20 20 19.0 20.3 95 101 17.162 7 30 Bromobenzene ug/L ND 20 20 17.6 18.6 803 32.111 6 30 Bromochiormethane ug/L ND 20 20 19.0 20.2 95 101 41.13 6 30 Bromochiormethane ug/L ND 20 20 16.6 17.6 83 88 36.4 6 30 L 1.0	· · ·												
Bromocharzene und UL ND 20 20 17.6 18.6 88 93 22-141 6 30 Bromochhoromethane ug/L ND 20 20 19.4 19.4 97 50-13 0.0 30 Bromodichloromethane ug/L ND 20 16.6 17.6 83 88 36-134 6 30 Bromodichloromethane ug/L ND 20 20.9 16.6 17.0 80 85 46-140 6 30 16.C/H L L ND 20 20.9 16.0 17.0 80 85 46-140 6 30 Chicothorethane ug/L ND 20 19.6 20.8 18.1 19.0 99 16-17.5 30 0 16 17.2 83 86 42.137 3 30 0 10 10 10 10 10 10 10 10 10 10 10 10		-											1c
Bromochloromethane ug/L ND 20 20 19.0 20.2 95 101 44.143 6 30 Bromodichloromethane ug/L ND 20 16.6 17.6 83 88 86.134 6 30 Bromoorn ug/L ND 20 20 15.3 23.2 76 116 10-130 41 30 76.C,CH, L,L,R,T Carbon disulfide ug/L ND 20 20 16.0 17.0 80 65 46.140 6 30 Chiorobenzene ug/L ND 20 20 19.7 19.7 99 99 15.175 0 30 Chiorobernane ug/L ND 20 20 14.2 15.1 71 75 28.152 6 30 Chiorobernane ug/L ND 20 20 18.0 19.0 90 54 42.137 3 30 Dibromochloromethane ug/L		-											
Bromodichloromethane ug/L ND 20 20 19.4 19.4 97 97 50-139 0 30 Bromodichlorom ug/L ND 20 20 16.6 17.6 83 88 36-134 6 30 Bromomethane ug/L ND 20 20 15.3 23.2 76 116 30 17 30 1c.CH, LR1 Carbon disulfide ug/L ND 20 20 16.0 17.0 80 85 46-140 6 30 L Carbon disulfide ug/L ND 20 20 18.1 19.0 90 99 15-175 0 30 Chloromethane ug/L ND 20 18.1 19.0 90 94 46-131 53 30 Chloromethane ug/L ND 20 20 18.1 19.0 90 95 42-132 5 30 Dibromomethane ug/L		-											
Bromotorm Bromothane ug/L ND 20 20 16.6 17.6 83 88 66.134 6 30 Carbon tisufide ug/L ND 20 20 15.3 23.2 76 116 10.130 41 30 1c.CH, IL,R1 Carbon tisufide ug/L ND 20 20 16.0 17.0 80 85 46.140 6 30 Chiorobenzene ug/L ND 20 20 19.7 19.7 99 15.175 0 30 Chiorobentane ug/L ND 20 20 14.2 15.1 71 75 28.152 6 30 0 Chiorobentane ug/L ND 20 20 16.6 17.2 83 86 42:137 3 30 Dibromothhane ug/L ND 20 20 18.8 18.9 94 95 41:13 30 CH.HA, 150 77 7		-											
Bromomethane ug/L ND 20 20 15.3 23.2 76 116 10.130 41 30 10.L,R1 Carbon disulfide ug/L ND 20 20 16.0 17.0 80 85 46.140 6 30 1L Carbon disulfide ug/L ND 20 20 18.6 20.6 80 103 52-133 5 30 Chlorobenzene ug/L ND 20 20 18.1 19.0 90 94 46-131 5 30 Chloromethane ug/L ND 20 20 18.1 19.0 90 94 46-131 5 30 Chloromethane ug/L ND 20 20 18.6 17.2 83 86 42:137 3 30 Dibromochtane ug/L ND 20 20 18.1 18.9 94 95 41.130 1 30 Dibromochtane <td></td>													
LR1 LR1 Carbon disulfide ug/L ND 20 20 19.6 17.0 80 85 46.140 6 30 Carbon tetrachloride ug/L ND 20 20 16.0 17.0 80 85 46.140 6 30 Chiorobenzene ug/L ND 20 20 19.7 19.7 99 99 15.17 0 30 Chiorobenane ug/L ND 20 20 18.1 19.0 90 94 46.131 5 30 Chiorobentane ug/L ND 20 20 16.6 17.2 83 86 42.137 3 30 Dibromochloropropene ug/L ND 20 20 18.8 18.9 94 95 41.130 1 30 Dibromochloromethane ug/L ND 20 20 18.1 19.8 91 95 51.13 1 30													10 04
Carbon tetrachloride ug/L ND 20 20 16.0 17.0 80 85 46-140 6 30 Chlorobenzene ug/L ND 20 20 19.6 20.6 98 103 52-133 5 30 Chlorobenzene ug/L ND 20 20 18.1 19.0 90 94 46-131 5 30 Chloromethane ug/L ND 20 20 14.2 15.1 71 75 28-152 6 30 cis-1,2-Dichloropthene ug/L ND 20 20 16.6 17.2 83 86 42-137 3 30 Dibromorethane ug/L ND 20 20 18.8 18.9 94 95 51-132 9 30 OH,IH,IM,ML Dibromorethane ug/L ND 20 20 15.4 17.7 78 29/130 2 30 Ch/I,IH,ML ML MD	Bromometnane	ug/L	ND	20	20	15.3	23.2	76	116	10-130	41	30	
Chlorobenzene ug/L ND 20 20 19.6 20.6 98 103 52-133 5 30 Chloroderhane ug/L ND 20 19.7 19.7 99 99 15.175 0 30 Chloroderhane ug/L ND 20 18.1 19.0 99 94 46-131 5 30 Chlorodmethane ug/L ND 20 20 14.2 15.1 71 75 28.152 6 30 cis-1,3-Dichloropropene ug/L ND 20 20 18.0 19.0 90 95 41.130 1 30 Dibromochhane ug/L ND 20 20 18.8 18.9 94 95 41.130 1 30 Dibromochhane ug/L ND 20 20 15.4 15.7 77 78 29 30 Ibromochighuszene ug/L ND 20 20.5 21	Carbon disulfide	ug/L	ND	20	20	20.9	19.6	103	97	59-138	6	30	
Chloroethane ug/L ND 20 20 19.7 19.7 99 99 15-175 0 30 Chlorootform ug/L ND 20 20 18.1 19.0 90 94 46-131 5 30 Chlorootform ug/L 534 200 200 16.2 15.1 71 75 28-152 6 30 cis-1,2-Dichloroethane ug/L ND 20 20 18.0 19.0 90 95 42-132 5 30 Dibromochtomethane ug/L ND 20 20 18.0 19.0 90 95 41-130 1 30 Dichoroothormethane ug/L ND 20 20 18.1 19.8 91 95 41-33 5 30 Dichoroothormethane ug/L ND 20 20 15.4 15.7 77 78 29.13 20 30 Etrybenzene ug/L	Carbon tetrachloride	ug/L	ND	20	20	16.0	17.0	80	85	46-140	6	30	
Chloroform ug/L ND 20 20 18.1 19.0 90 94 46-131 5 30 Chloromethane ug/L ND 20 20 14.2 15.1 71 75 28-152 6 30 cis-1,2-Dichloroptopene ug/L ND 20 20 16.6 17.2 83 86 42-137 3 30 Dibromochloromethane ug/L ND 20 20 18.8 19.0 90 95 42-132 5 30 Dibromochloromethane ug/L ND 20 20 18.8 18.9 94 95 41-130 1 30 Dibromothane ug/L ND 20 20 5.7 7.8 29 30 CH,IH, ML Ethylbenzene ug/L ND 20 20 15.4 15.7 77 78 29-130 2 30 Isopropylbenzene ug/L ND 20	Chlorobenzene	ug/L	ND	20	20	19.6	20.6	98	103	52-133	5	30	
Chloromethane ug/L ND 20 20 14.2 15.1 71 75 28-152 6 30 cis-1,2-Dichloroethene ug/L ND 200 627 696 46 81 10-175 10 30 cis-1,3-Dichloroethene ug/L ND 20 20 18.6 17.2 83 86 42-137 3 30 Dibromochloromethane ug/L ND 20 20 18.8 18.9 94 95 41-130 1 30 Dichlorodifluoromethane ug/L ND 20 20 18.1 19.8 91 99 51-132 9 30 Hexachloro-1,3-butadiene ug/L ND 20 20 16.4 15.7 77 78 29-130 2 30 Isopropylbenzene ug/L ND 20 20 21.5 21.9 110 54-147 7 30 Methyl-tert-butyl ether ug/L <	Chloroethane	ug/L	ND	20	20	19.7	19.7	99	99	15-175	0	30	
cis-1,2-Dichloroethene ug/L 534 200 200 627 696 46 81 10-175 10 30 cis-1,3-Dichloropropene ug/L ND 20 20 16.6 17.2 83 86 42-137 3 30 Dibromothame ug/L ND 20 20 18.0 19.0 90 95 42-132 5 30 Dibromothane ug/L ND 20 20 18.8 18.9 94 95 41-130 1 30 Dichorodifluoromethane ug/L ND 20 20 15.7 5.8 28 29 35-170 2 30 CH,IH, ML Ethylbenzene ug/L ND 20 20 15.4 15.7 77 78 29-130 2 30 Methylene ug/L ND 20 20 17.4 17.7 87 88 24-147 2 30 Methylene	Chloroform	ug/L	ND	20	20	18.1	19.0	90	94	46-131	5	30	
cis-1,3-Dichloropropene ug/L ND 20 20 16.6 17.2 83 86 42-137 3 30 Dibromochloromethane ug/L ND 20 20 18.0 19.0 90 95 42-132 5 30 Dibromomethane ug/L ND 20 20 18.8 18.9 94 95 41-130 1 30 Dibromomethane ug/L ND 20 20 18.1 19.8 91 99 51-132 9 30 CH,IH, ML Hexachloro-1,3-butatiene ug/L ND 20 20 15.4 15.7 77 78 29-130 2 30 Isopropylbenzene ug/L ND 20 20.5 21.9 102 110 54-147 7 30 Methylene Chloride ug/L ND 20 20.8 21.8 104 109 35-150 5 30 n-Butylbenzene ug/L	Chloromethane	ug/L	ND	20	20	14.2	15.1	71	75	28-152	6		
Dibromochloromethane ug/L ND 20 20 18.0 19.0 90 95 42-132 5 30 Dibromomethane ug/L ND 20 20 18.8 18.9 94 95 41-130 1 30 Dichlorodifluoromethane ug/L ND 20 20 5.7 5.8 28 29 35-170 2 30 CH,IH, ML Ethylbenzene ug/L ND 20 20 15.4 15.7 77 78 29-130 2 30 Isopropylbenzene ug/L ND 20 20 20.5 21.9 102 110 54-147 7 30 Methyl-tert-butyl ether ug/L ND 20 20 17.4 17.7 87 88 24-144 2 30 Nethylbenzene ug/L ND 20 20 16.8 17.9 84 89 30-13 30 4 30 30	cis-1,2-Dichloroethene				200	627			81		10		
Dibromomethane ug/L ND 20 20 18.8 18.9 94 95 41-130 1 30 Dichlorodifluoromethane ug/L ND 20 20 5.7 5.8 28 29 35.170 2 30 CH,IH, ML Ethylbenzene ug/L ND 20 20 15.4 15.7 77 78 29.130 2 30 Isopropylbenzene ug/L ND 20 20.5 21.9 102 10 54.147 7 30 Methyl-tert-butyl ether ug/L ND 20 20 17.4 17.7 87 88 24.144 2 30 Methyl-tert-butyl ether ug/L ND 20 20 17.4 17.7 87 88 24.144 2 30 NP-ptylbenzene ug/L ND 20 20.8 21.8 104 109 35.150 5 30 NP-ptylbenzene ug/L		ug/L			20	16.6			86		3		
Dichlorodifluoromethane ug/L ND 20 20 5.7 5.8 28 29 35-170 2 30 CH,IH, ML Ethylbenzene ug/L ND 20 20 18.1 19.8 91 99 51-132 9 30 Isopropylbenzene ug/L ND 20 20 15.4 15.7 77 78 29-130 2 30 Isopropylbenzene ug/L ND 20 20.5 21.9 102 110 54-147 7 30 Methyl-tert-butyl ether ug/L ND 20 20 17.4 17.7 87 88 24-144 2 30 Methyl-tert-butyl ether ug/L ND 20 20 16.8 17.9 84 89 30-138 6 30 n-Butylbenzene ug/L ND 20 20 16.8 17.9 84 89 30-138 6 30 o-Xylene u	Dibromochloromethane	ug/L				18.0	19.0		95	42-132	5		
ML ML MD 20 20 18.1 19.8 91 99 51-132 9 30 Hexachloro-1,3-butadiene ug/L ND 20 20 15.4 15.7 77 78 29-130 2 30 Isopropylbenzene ug/L ND 20 20.5 21.9 102 110 54-147 7 30 m&p-Xylene ug/L ND 40 36.6 39.2 92 98 51-130 7 30 Methyl-tert-butyl ether ug/L ND 20 20 17.4 17.7 87 88 24-144 2 30 Methyl-tert-butyl ether ug/L ND 20 20 16.8 17.9 84 89 30-138 6 30 n-Propylbenzene ug/L ND 20 20 16.0 17.0 80 85 13-168 6 30 o-Xylene ug/L ND 20	Dibromomethane	-			20				95				
Ethylbenzeneug/LND202018.119.8919951-132930Hexachloro-1,3-butadieneug/LND202015.415.7777829-130230Isopropylbenzeneug/LND2020.521.910211054.147730m&p-Xyleneug/LND404036.639.2929851-130730Methyl-tert-butyl etherug/LND202017.417.7878824.144230n-Butylbenzeneug/LND202020.821.810410935.150530n-Butylbenzeneug/LND202016.817.9848930-138630n-Propylbenzeneug/LND202016.017.0808513-168630n-Propylbenzeneug/LND202016.017.0808513-168630o-Xyleneug/LND202016.017.0808513-168630o-Xyleneug/LND202018.319.491974330sec-Butylbenzeneug/LND202018.319.5929848-138630tert-Butylbenzeneug/LND202018.319.491	Dichlorodifluoromethane	ug/L	ND	20	20	5.7	5.8	28	29	35-170	2	30	
Isopropylbenzene (Curmene)ug/LND202020.521.910211054-147730m&p-Xyleneug/LND404036.639.2929851-130730Methyl-ter-butyl etherug/LND202017.417.7878824-144230Methylene Chlorideug/LND202020.821.810410935-150530n-Butylbenzeneug/LND202016.817.9848930-138630n-Propylbenzeneug/LND202016.017.0808513-168630o-Xyleneug/LND202017.618.8889451-130730p-lsopropyltolueneug/LND202017.918.7909437-139430sec-Butylbenzeneug/LND202018.319.99410047-137630styreneug/LND202018.319.5929848-138630tert-Butylbenzeneug/LND202018.319.5929848-138630tert-Butylbenzeneug/LND202018.319.4919746-141630tert-Butylbenzeneug/LND20	Ethylbenzene	ug/L	ND	20	20	18.1	19.8	91	99	51-132	9	30	
(Cumene) m&p-Xylene ug/L ND 40 40 36.6 39.2 92 98 51.130 7 30 Methyl-tert-butyl ether ug/L ND 20 20 17.4 17.7 87 88 24.144 2 30 Methyl-tert-butyl ether ug/L ND 20 20 20.8 21.8 104 109 35.150 5 30 n-Butylbenzene ug/L ND 20 20 16.8 17.9 84 89 30-138 6 30 Naphthalene ug/L ND 20 20 16.0 17.0 80 85 13.168 6 30 o-Xylene ug/L ND 20 20 16.0 17.0 80 85 13.168 6 30 o-Xylene ug/L ND 20 20 17.6 18.8 88 94 51-130 7 30 p-Isopropyltoluene ug/L ND 20 20 18.3 19.5 92 98 48-138	Hexachloro-1,3-butadiene	ug/L	ND	20	20	15.4	15.7	77	78	29-130	2	30	
Methyl-tert-butyl etherug/LND202017.417.7878824-144230Methylene Chlorideug/LND202020.821.810410935-150530n-Butylbenzeneug/LND202016.817.9848930-138630n-Propylbenzeneug/LND202018.319.4919743-140630Naphthaleneug/LND202016.017.0808513-168630o-Xyleneug/LND202017.618.8889451-130730p-lsopropyltolueneug/LND202017.918.7909437-139430sec-Butylbenzeneug/LND202018.319.5929848-138630Styreneug/LND202018.319.5929848-138630tert-Butylbenzeneug/LND202018.319.4919746-141630Tetrachloroetheneug/LND202018.719.8939910-175530Tolueneug/LND202017.818.8899452-131630Tetrachloroetheneug/LND202017.8	,	ug/L	ND	20	20	20.5	21.9	102	110	54-147	7	30	
Methylene Chlorideug/LND202020.821.810410935-150530n-Butylbenzeneug/LND202016.817.9848930-138630n-Propylbenzeneug/LND202018.319.4919743-140630Naphthaleneug/LND202016.017.0808513-168630o-Xyleneug/LND202017.618.8889451-130730p-lsopropyltolueneug/LND202017.918.7909437-139430sec-Butylbenzeneug/LND202018.319.5929848-138630tert-Butylbenzeneug/LND202018.319.4919746-141630tert-Butylbenzeneug/LND202018.319.4919746-141630Tetrachloroetheneug/LND202018.319.4919746-141630Tolueneug/LND202018.719.8939910-175530Tolueneug/LND202018.719.8939910-175530trans-1,2-Dichloroetheneug/LND202016.3 <td>m&p-Xylene</td> <td>ug/L</td> <td>ND</td> <td>40</td> <td>40</td> <td>36.6</td> <td>39.2</td> <td>92</td> <td>98</td> <td>51-130</td> <td>7</td> <td>30</td> <td></td>	m&p-Xylene	ug/L	ND	40	40	36.6	39.2	92	98	51-130	7	30	
n-Butylbenzeneug/LND202016.817.9848930-138630n-Propylbenzeneug/LND202018.319.4919743-140630Naphthaleneug/LND202016.017.0808513-168630o-Xyleneug/LND202017.618.8889451-130730p-lsopropyltolueneug/LND202017.918.7909437-139430sec-Butylbenzeneug/LND202018.319.99410047-137630Styreneug/LND202018.319.5929848-138630tert-Butylbenzeneug/LND202018.319.4919746-141630Tetrachloroetheneug/LND202018.319.4919746-141630Tolueneug/LND202018.719.8939910-175530Tolueneug/LND202018.719.8939452-131630trans-1,2-Dichloroetheneug/LND202017.818.8899452-131630trans-1,3-Dichloropropeneug/LND202016.3 <td< td=""><td>Methyl-tert-butyl ether</td><td>ug/L</td><td>ND</td><td>20</td><td>20</td><td>17.4</td><td>17.7</td><td>87</td><td>88</td><td>24-144</td><td>2</td><td>30</td><td></td></td<>	Methyl-tert-butyl ether	ug/L	ND	20	20	17.4	17.7	87	88	24-144	2	30	
n-Propylbenzeneug/LND202018.319.4919743-140630Naphthaleneug/LND202016.017.0808513-168630o-Xyleneug/LND202017.618.8889451-130730p-lsopropyltolueneug/LND202017.918.7909437-139430sec-Butylbenzeneug/LND202018.919.99410047-137630Styreneug/LND202018.319.5929848-138630tert-Butylbenzeneug/LND202018.319.4919746-141630Tetrachloroetheneug/LND202018.319.4919746-141630Tolueneug/LND202018.719.8939910-175530Tolueneug/LND202017.818.8899452-131630trans-1,2-Dichloroetheneug/LND202016.317.0818545-132430Trichloroetheneug/LND202016.317.0818545-132430Trichloroetheneug/LND202016.317.0 <td>Methylene Chloride</td> <td></td> <td>ND</td> <td>20</td> <td>20</td> <td>20.8</td> <td>21.8</td> <td>104</td> <td>109</td> <td>35-150</td> <td>5</td> <td>30</td> <td></td>	Methylene Chloride		ND	20	20	20.8	21.8	104	109	35-150	5	30	
Naphthaleneug/LND202016.017.0808513-168630o-Xyleneug/LND202017.618.8889451-130730p-lsopropyltolueneug/LND202017.918.7909437-139430sec-Butylbenzeneug/LND202018.919.99410047-137630Styreneug/LND202018.319.5929848-138630tert-Butylbenzeneug/LND202018.319.4919746-141630Tetrachloroetheneug/LND202018.719.8939910-175530Tolueneug/LND202017.818.8899452-131630trans-1,2-Dichloroetheneug/LND202016.317.0818545-132430trans-1,3-Dichloroptopeneug/LND202016.317.0818545-132430Trichloroetheneug/LND202016.317.0818545-132430Trichloroetheneug/LND202016.317.0818545-132430Trichloroetheneug/LND202016.	n-Butylbenzene	ug/L	ND	20	20	16.8	17.9	84	89	30-138	6	30	
o-Xyleneug/LND202017.618.8889451-130730p-lsopropyltolueneug/LND202017.918.7909437-139430sec-Butylbenzeneug/LND202018.919.99410047-137630Styreneug/LND202018.319.5929848-138630tert-Butylbenzeneug/LND202018.319.4919746-141630Tetrachloroetheneug/LND202018.719.8939910-175530Tolueneug/LND202017.818.8899452-131630trans-1,2-Dichloroetheneug/L7.3202025.627.49110040-135730trans-1,3-Dichloroptopeneug/LND202016.317.0818545-132430Trichloroetheneug/L10302002009761090-292910-1751130M1Trichlorofluoromethaneug/LND202019.019.1959634-163130	n-Propylbenzene	ug/L	ND	20	20	18.3	19.4	91	97	43-140	6	30	
p-isoropyltolueneug/LND202017.918.7909437-139430sec-Butylbenzeneug/LND202018.919.99410047-137630Styreneug/LND202018.319.5929848-138630tert-Butylbenzeneug/LND202018.319.4919746-141630Tetrachloroetheneug/LND202018.719.8939910-175530Tolueneug/LND202017.818.8899452-131630trans-1,2-Dichloroetheneug/L7.3202025.627.49110040-135730trans-1,3-Dichloroptopeneug/LND202016.317.0818545-132430Trichloroetheneug/L10302002009761090-292910-1751130M1Trichlorofluoromethaneug/LND202019.019.1959634-163130	Naphthalene	ug/L	ND	20	20	16.0	17.0	80	85	13-168	6	30	
sec-Butylbenzeneug/LND202018.919.99410047-137630Styreneug/LND202018.319.5929848-138630tert-Butylbenzeneug/LND202018.319.4919746-141630Tetrachloroetheneug/LND202018.719.8939910-175530Tolueneug/LND202017.818.8899452-131630trans-1,2-Dichloroetheneug/L7.3202025.627.49110040-135730trans-1,3-Dichloroptopeneug/LND202016.317.0818545-132430Trichloroetheneug/L10302002009761090-292910-1751130M1Trichlorofluoromethaneug/LND202019.019.1959634-163130	o-Xylene	ug/L	ND	20	20	17.6	18.8	88	94	51-130	7	30	
Styreneug/LND202018.319.5929848-138630tert-Butylbenzeneug/LND202018.319.4919746-141630Tetrachloroetheneug/LND202018.719.8939910-175530Tolueneug/LND202017.818.8899452-131630trans-1,2-Dichloroetheneug/L7.3202025.627.49110040-135730trans-1,3-Dichloropropeneug/LND202016.317.0818545-132430Trichloroetheneug/L10302002009761090-292910-1751130M1Trichlorofluoromethaneug/LND202019.019.1959634-163130	p-Isopropyltoluene		ND	20	20	17.9	18.7	90	94	37-139	4		
tert-Butylbenzeneug/LND202018.319.4919746-141630Tetrachloroetheneug/LND202018.719.8939910-175530Tolueneug/LND202017.818.8899452-131630trans-1,2-Dichloroetheneug/L7.3202025.627.49110040-135730trans-1,3-Dichloropropeneug/LND202016.317.0818545-132430Trichloroetheneug/L10302002009761090-292910-1751130M1Trichlorofluoromethaneug/LND202019.019.1959634-163130	sec-Butylbenzene			20	20			94	100	47-137	6	30	
Tetrachloroetheneug/LND202018.719.8939910-175530Tolueneug/LND202017.818.8899452-131630trans-1,2-Dichloroetheneug/L7.3202025.627.49110040-135730trans-1,3-Dichloropropeneug/LND202016.317.0818545-132430Trichloroetheneug/L10302002009761090-292910-1751130M1Trichlorofluoromethaneug/LND202019.019.1959634-163130	Styrene					18.3	19.5				6	30	
Tolueneug/LND202017.818.8899452-131630trans-1,2-Dichloroetheneug/L7.3202025.627.49110040-135730trans-1,3-Dichloropropeneug/LND202016.317.0818545-132430Trichloroetheneug/L10302002009761090-292910-1751130M1Trichlorofluoromethaneug/LND202019.019.1959634-163130	-												
trans-1,2-Dichloroetheneug/L7.3202025.627.49110040-135730trans-1,3-Dichloropropeneug/LND202016.317.0818545-132430Trichloroetheneug/L10302002009761090-292910-1751130M1Trichlorofluoromethaneug/LND202019.019.1959634-163130													
trans-1,3-Dichloropropeneug/LND202016.317.0818545-132430Trichloroetheneug/L10302002009761090-292910-1751130M1Trichlorofluoromethaneug/LND202019.019.1959634-163130													
Trichloroethene ug/L 1030 200 200 976 1090 -29 29 10-175 11 30 M1 Trichlorofluoromethane ug/L ND 20 20 19.0 19.1 95 96 34-163 1 30	-												
Trichlorofluoromethane ug/L ND 20 20 19.0 19.1 95 96 34-163 1 30													
													M1
Vinyl acetate ug/L ND 20 20 15.8 15.5 79 77 36-130 2 30 CL		-											
	Vinyl acetate	ug/L	ND	20	20	15.8	15.5	79	77	36-130	2	30	CL

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

 Project:
 209164

 Pace Project No.:
 30524553

MATRIX SPIKE & MATRIX SP	PIKE DUPL	ICATE: 2603			2603779							
Parameter	Units	30524553002 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Vinyl chloride	ug/L	118	20	20	123	150	24	161	10-175	20	30	IH
Xylene (Total)	ug/L	ND	60	60	54.2	58.0	90	97	51-130	7	30	
1,2-Dichloroethane-d4 (S)	%.						97	98	70-130			
4-Bromofluorobenzene (S)	%.						99	98	70-130			
Dibromofluoromethane (S)	%.						103	100	70-130			
Toluene-d8 (S)	%.						98	100	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

 Project:
 209164

 Pace Project No.:
 30524553

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

- 1c This analyte did not meet the recommended minimum RF in the ICAL.
- CH The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased high.
- CL The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased low.
- IH This analyte exceeded secondary source verification criteria high for the initial calibration. The reported results should be considered an estimated value.
- IL This analyte exceeded secondary source verification criteria low for the initial calibration. The reported results should be considered an estimated value.
- L2 Analyte recovery in the laboratory control sample (LCS) was below QC limits. Results for this analyte in associated samples may be biased low.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- ML Matrix spike recovery and/or matrix spike duplicate recovery was below laboratory control limits. Result may be biased low.
- R1 RPD value was outside control limits.
- c2 Acid preservation may not be appropriate for the analysis of 2-Chloroethylvinyl ether.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:	209164
Pace Project No.:	30524553

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
30524553001	MW-2	AM20GAX	750764		
30524553002	MW06-23BR	AM20GAX	750764		
30524553003	MW06-24BR	AM20GAX	750764		
30524553004	MW06-25BR	AM20GAX	750764		
30524553005	MW16-7BR	AM20GAX	750764		
30524553006	IOW-1	AM20GAX	750764		
30524553007	IOW-3	AM20GAX	750764		
30524553008	IOW-4	AM20GAX	750764		
30524553009	Dup.	AM20GAX	750764		
30524553010	MS-MW06-23BR	AM20GAX	750764		
30524553011	MSD-MW06-23BR	AM20GAX	750764		
30524553001	MW-2	EPA 8260C	536605		
30524553002	MW06-23BR	EPA 8260C	536605		
30524553003	MW06-24BR	EPA 8260C	536605		
30524553004	MW06-25BR	EPA 8260C	536605		
30524553005	MW16-7BR	EPA 8260C	536605		
30524553006	IOW-1	EPA 8260C	536605		
30524553007	IOW-3	EPA 8260C	536605		
30524553008	IOW-4	EPA 8260C	536605		
30524553009	Dup.	EPA 8260C	536605		
30524553010	MS-MW06-23BR	EPA 8260C	536605		
30524553011	MSD-MW06-23BR	EPA 8260C	536605		
30524553012	trip blank	EPA 8260C	536605		

Pace Analytical

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Company: GeoLogic NY, P.C. Report To: GeoLo Address: P.O. Box 350 Homer, New York 13077 Email To: geologicny@geologic.net Phone: 607-749-5000 Fax: 607-749-5063 Project Name: 20 Required Due Data/TAT: Standard - 5 Day Project Name: 20 Required Client Information Matrix Codes With With With With With With With With	Report To: GeoLogic NY, P.C. Copy To:		Attention:							
350 Copy To: ew York 13077 Copy To: ew York 13077 Project Name: Fax: 607-749-5063 Project Name: Standard -5Day Project Name: Difference of the standard -5Day Project Name: Standard -5Day Project Name: Markin Martix Codes Internet Name: Standard -5Day Project Name: Standard -5Day Project Name: Standard -5Day Project Name: Standard -5D			Attention:							
ew York 13077 W@geologic.net Purchase Order) Purchase Order) Purchase Order) Purchase Order) Project Number: Standard - 5 Day Project Number: Project Number: Proj			Company Name:	GeoLogic NY, P.C.	P.C.	REGULATORY AGENCY	NCY			
V@geologic.net Fax: 607-749-5063 Project Name: standard -50ay Matrix Codes Matrix Codes Matrix Codes Nation Matrix Codes Matrix Codes Nation Matrix Codes Nation Nati			Address:				GROUND WATER	VTER	DRINKING WATER	VATER
Fax: 607-749-5063 Project Name: Standard - 5 Day Project Name: Standard - 5 Day Project Name: Standard - 5 Day Project Name: Marking Codes Marking Codes <	40.:		Pace Quote Reference:			L UST L R	RCRA	L	OTHER	
Standard - 5 Day Project Number: mation Valid Matrix Codes mation Marrix Codes Marrier N Valid Matrix Codes Name Name DLE D MR N NHE N NHE N NHE N	209164		-	Courtney Fenk		Site Location				500 100 100
Valid Matrix Codes MATRIX Codes MATRIX CODE DRINGROWATER DW WATER WW WATER WW WATER WW NATER WW PRODUCT P CULOLO SL OLLOLO SL OLLO SL OL	209164		Pace Profile #;			STATE:	NA			
Valid Matrix Codes MATRIX 200E PRANKANG WATER WA WATER WA WATER WA WATER WA SOLUSOLD 2. OLLOOLD 2. OLLOOLD 2. OLLOOLD 2. AR AR AR AR AR AR					Requested	Requested Analysis Filtered (Y/N)	N) [
DRIVISIATER DW WASTER WT WASTER WY PRODUCT P SCILSOLD SL OIL OIL OIL OIL AR AR AR AR AR AR AR AR	COLLECTED	G		Preservatives	<u>†</u> N/A					
WIPE WP AIR AR OTHER OT THER OT	СОС=О ВАЯЭ Г Вомо Вомо Вомо Вомо Вомо Вомо Вомо Во	OLLECTION ENDIGRAB	S		PA 8260			(/// /) 8		
	DAH TMF C	A H H H H H H H H H H H H H H H H H H H	H ₂ SO ₄ Unpreserved # OF CONTRINER:	or Mathanol Na ₂ S ₂ O ₃ HCI HNO ₃	Other Trip Blank - TSF Trip BLANK Trip BLANK Trip BLANK			Residual Chlorin	Pace Project No./ Lab I.D	./ Lab I.I
MW-2	 	2 12:49-12:54	6	8						00
OB WAN UNY 1	and and a second and									
-	U	09/20/22 16:05-16:07	9	3	3 × ×					000
MW06-24BR	9	09/21/22 10:16-10:18	6	3	3					0 0
5 MW06-25BR	9	09/20/22 11:17-11:19	ø		× × ×					ğ
МW16-7BR	g	09/21/22 11:23-11:25	9	m	× × ×					00
IOW-1 WT	ტ	09/20/22 14:48-14:50	9	3	3					3
8 IOW-3 WT	IJ	09/21/22 13:16-13:18	9	3	3 ×					ĉ
9 IOW-4 WT	IJ	09/21/22 14:17-14:19	9		3 3					5
10 Dup. WT	IJ	09/20/22 12:49-12:54	9	3	3					200
11 MS - MV06-23BR WT	IJ	09/20/22 16:12-16:18	9	3	×××					20
12 MSD - MV06-23BR	IJ	09/20/22 16:12-16:18	9	3	3 × ×)
	RELINGUISHED BY / AFFILIATION	DATE		ACCEP	ACCEPTED BY / AFFILIATION	DATE		SAN	SAMPLE CONDITIONS	SNS
Trip Blank by Pace for Q.C. Only NO CHARGE **	Charles () GeoLogic NY PC	CEC (6/3) /32	8755	Crobilic	- Exer	1012 N.S	N			
	eologiz Poyer	6/20/6	10 01	J.	n. Pplé	10101 20/b	2			
)	•		510	- Www	Pro 224076	194			
				JUV	L.	Shild and the	7	タイ	7	~
	SAMPLER	SAMPLER NAME AND SIGNATURE	RE				0. 1	uo p	(N/A pajeas) Iutsict
	PRIN	PRINT Name of SAMPLER:	C. T.	GABRIEL OF GeoLogic M	, P.C.		ui qm	ievie: IY) ei) yalo	səlq
	SIG	SIGNATURE of SAMPLER		shel	DATE Signed	Celalbo	 9T	эЯ	ເດິ ຊຣນປິ	ms2

Pittsburgh Lab Sample Condit	ion ^I	Upoi	n Re	eceipt
Pace Analytical Client Name:	_6	<u>n</u> ee	alóc	gic IV Project #
Courier: P Fed Ex UPS USPS Client	. П.	Comm	ercial	Pace Other Label 9
Tracking #: 7760 1134 0564	, LJ '	Comm	GIGIAI	LIMS Login VPINC
Custody Seal on Cooler/Box Present:	<u> </u>	-	Seals	
Cooler Temperature Observed Temp 5.	(° C	Corr	Blue None rection Factor: <u>0.</u> Final Temp: <u>(</u> 9°C
Temp should be above freezing to 6°C		-	COIL	
Comments:	Yes	No	N/A	$100 \sqrt{01}$ contents: $\frac{9}{23}$
Chain of Custody Present:	\leq			1.
Chain of Custody Filled Out:				2.
Chain of Custody Relinquished:		<u> </u>		3.
Sampler Name & Signature on COC:		1		4.
Sample Labels match COC:				-4dded as sample Got OIN.
-Includes date/time/ID Matrix:	<u>\</u>		.	-90000 as sample got oir.
Samples Arrived within Hold Time:	\leq	ļ.,		6.
Short Hold Time Analysis (<72hr remaining):	ļ			7.
Rush Turn Around Time Requested:		ļ		8. 5DAY RUSH
Sufficient Volume:]		9.
Correct Containers Used:	\leq]		10.
-Pace Containers Used:		ļ		
Containers Intact:	\leq	ļ		11.
Orthophosphate field filtered	 			12.
Hex Cr Aqueous sample field filtered				13
Organic Samples checked for dechlorination:				14.
Filtered volume received for Dissolved tests	ļ			15.
All containers have been checked for preservation. exceptions: VOA coliform, TOC, O&G, Phenolics, Non-aqueous matrix	Radon), ,		16.
All containers meet method preservation	\square	1		Initial when 3 Date/time of
requirements.	<u> </u>			completed U preservation
				preservative
Headspace in VOA Vials (>6mm):				17.
Trip Blank Present:	\leq	ļ		18.
Trip Blank Custody Seals Present	\leq	[
Rad Samples Screened < 0.5 mrem/hr				Initial when completed: 95 Date: SN: SN:
Client Notification/ Resolution:			<u> </u>	
Person Contacted:			Date/	/Time:Contacted By: GG a data a
Comments/ Resolution:				
				N 3
				õi
\square A check in this box indicates that addi				on has been stored in ereports.
Certification Office (i.e. out of hold, incorrect preservative	, out of	temp, i	ncorrec	

Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers) *PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

	ſ	•	—	1	T	T	1		1	1	1		T	7		Г	1			Г	-	T	<u> </u>	1			
	AGGE	3										Þ															
	СРГС																										
	мекп																										
	MGFU																										
~	лорк																e Solid					liquid					
5	U69V													-	U.	öre	Votatile	Swab	Bag			snoont					
2/1	Tedv														Plastic / Misc	5g Encore	Kit for Volatile Solid	Wipe/Swab	Ziploc Bag	Water	Solid	Non-aqueous liquid	Wipe				
9	Нерл	3)					 			-	⊳				Γ				<u></u>							
nple Container Count A.M.C. OS days Profile Number 61	BUDD														tic	EZI	VOAK	_	ZPLC	WT	ۍ ۲	٥٢	WΡ				
s e Nu	S690														as												
Profil	กะฯย														ם			lfate									
ler C	SE48																ner	120mL Coliform Na Thiosulfate		3 4		250mL plastic unpreserved		4	ocume plastic unpreserved		
De la	врзи															itainer	Subitai	rm Na	03	C H2SC	ONH O	s unpre	NAOF	c H2SC	aidim o		
S & Co	вьзс															n Cub	allon O	Colifo	tic HN	plastic	plastic	plastic	plastic	plastic	Didour		
Ri Jale	BP2U		•													1 Gallo	1/2 G	120mL	1L plastic HNO3	250mL plastic H2SO4	250mL plastic HNO3	250mL	250ml plastic NAOH	500mL plastic H2SO4			
-Sar Jr V	8248															GCUB 1 Gallon Cubitainer	12GN 1/2 Gallon Cubitainer		BP1N BP1N	BP3S	BP3N	BP3U		BP2S			
Pace Greensburg Lab -Sample Container Count Power 109 TUTN たいMC のら dous Profile	UI98														[0	-	071	<u> </u>	<u>и ш</u>	<u> </u>				1		
l GC	ыча																										
nsbu))	กรอย															04		iosul			ved	erve					
iree	บเอย															al H2S		Na Th	2	Ned	Ipresei	npres	rved				
Pace Gre	TZDA															VOA vi)A vial	<u>)</u> A vial	JA VIAI le iar	prese	lass ur	glass	Iprese				
Pe	กรอง															mber	lear VC	ear VC	ber wir	e jar ui	clear g	amber	e jar uı				
	UEÐA															40mL amber VOA vial H2SO4	40mL clear VOA vial	40mL clear VOA vial Na Thiosul	4umL clear VUA VIal HCI 4oz amber wide iar	4oz wide jar unpreserved	500mL clear glass unpreserved	500mL amber glass unpreserve	8oz wide jar unpreserved			30/22	
	SEDA																		UGFU 4		BG2U 5		WGKU 8		ന	09/30/22	
	กรอง														Glass	ă				Š	B	Ă	Š			ate:	5
			_												G		ved	sulfate			ate			eved	24		ž
Analytical "	тгэа														•	03	Inprsei	la Thic	4		hiosulf	erved	12S04	uprese	N.	2	PM: CF1 Due
$\frac{1}{0}$	819A															rith HN	glass ı	glass I	s H2S(s HCI	s Na T	unpres	glass J	glass (G	5	GEO
Analy	нгэа															ע פטר ו	amber	amber	r Juy er alas	er glas	er glas	glass	amber	amber			PM: CF1
Pace Analytical	Matrix	ł	_											Container Codes		Gallon Jug with HNO3	100mL amber glass unprserved	100mL amber glass Na Thiosulfate	L amber class H2SO4	L amber glass HCI	1L amber glass Na Thiosulfate	1L clear glass unpreserved	250mL amber glass H2SO4	250mL amber glass unpreserved		Z	i Ha
	Sample Line Item	,	2	3	4	5	9	7	8	6	10	11	12	tainer												P	age 47
Site	Sar Fe Li				*	-1	_		-•		1	-	~	Con		Nro	AG5U	AG51	AG1S	AG1H	AG1T	BG1U	AG3S	AG3U			

47 of 47

FNV-FRM-GRUR-0073 ถก วจกละวกวก

APPENDIX H

CORRESPONDENCE

Christopher Gabriel

From: Sent: To: Cc: Subject: Cahill, Karen A (DEC) <karen.cahill@dec.ny.gov> Wednesday, June 1, 2022 5:09 PM Christopher Gabriel; Forrest Earl Priscott, Gary W (DEC); Forrest Earl RE: Axiohm Site Discussion

Chris,

Thank you for organizing the meeting today and preparing the site summary. Based on your presentation, and after further discussion, we have determine that quarterly sampling will not be required as specified in our April 25, 2022 PRR conditional approval letter. Concentration trends will be re-evaluated once analytical results are available from the 2022 annual monitoring event.

Kind Regards, Karen A. Cahill Environmental Engineer, Division of Environmental Remediation

New York State Department of Environmental Conservation 615 Erie Blvd. West, Syracuse, NY 13204-2400

P: (315) 426-7432 M: (315)289-6788 <u>karen.cahill@dec.ny.gov</u>

www.dec.ny.gov | 5 |

From: Christopher Gabriel <chrisg@geologic.net>
Sent: Wednesday, June 1, 2022 12:49 PM
To: Cahill, Karen A (DEC) <karen.cahill@dec.ny.gov>
Cc: Priscott, Gary W (DEC) <gary.priscott@dec.ny.gov>; forrest@geologic.net
Subject: RE: Axiohm Site Discussion

ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails.

All:

Attached please find the slide deck and charts for today's discussion. Thank you, Chris.

Christopher T. Gabriel **GeoLogic NY, PC** P.O. Box 350 Homer, New York 13077 Phone: 607-749-5000 Fax: 607-749-5063

> From: Cahill, Karen A (DEC) <<u>karen.cahill@dec.ny.gov</u>> Sent: Thursday, May 26, 2022 10:50 AM

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation, Region 7 615 Erie Boulevard West, Syracuse, NY 13204-2400 P: (315) 426-7519, (315) 426-7551 | F: (315) 426-2653 www.dec.ny.gov

April 25, 2022

Andrew Sciarabba South Hill Business Campus 950 Danby Road, Suite 104 Ithaca, NY 14850

Re: Former Axiohm Facility, Site No. C755012 Periodic Review Report, March 16, 2022

Dear Andrew Sciarabba:

The New York State Department of Environmental Conservation (Department) and the New York State Department of Health have reviewed the above-referenced PRR covering the reporting period from February 15, 2021 to February 15, 2022 and find it acceptable with the following conditions:

Our April 19, 2019 and June 15, 2020 conditional approval letters for the 2018 and 2019 PRRs indicated that additional remedial measures must be evaluated for the site given the asymptotic or increasing concentrations trends in several wells.

With the exception of the expected spike in chlorinated VOC (cVOC) concentrations following the two ISCO injection events in 2008 and 2012, sampling results for several of the monitoring wells demonstrate flat or increasing concentration trends since the first injection event in June 2008 (or since routine monitoring began). The table below includes a summary of these results along with the results from the most recent groundwater sampling round.

Monitoring Well	Date	Results (µg/L) ³	Sept 2021 (µg/L) ³
MW-2 (OB)	June 2008	182	414
MW06-25BR	March 2008 ¹	424	224
IOW-1	June 2008	337	2,025
IOW-3	June 2008	717	943
MW06-23BR	September 2015	1,265	2,257
MW16-7BR	September 2020 ²	8,073	2.3

1 - well was dry in June 2008

2 - sampling round prior to installation of SVE

3 – total CVOCs

Andrew Sciarabba Page 2 April 25, 2022

MW16-7BR:

Based on results of the September 2021 sampling round, the soil vapor extraction (SVE) system installed at this well and at trench T-11 in July 2021 appears to be effective in reducing cVOCs in groundwater in the vicinity of this well. However, please ensure that the bubbler system and connection to the SSDS blower are shut down for a minimum of 24 hours prior to sampling to allow sufficient time for the aquifer to come to equilibrium.

Overall Effectiveness of the Remedy:

Given the above information regarding the groundwater concentration trends in the other site wells, the frequency of groundwater monitoring must be increased to quarterly for the next year to assess the effectiveness of the SVE system in reducing site-wide cVOCs.

In order to stay consistent with the current monitoring schedule (e.g., annually in September), the first quarterly sampling round can be conducted in late May or early June.

Please feel free to contact me if you have any questions.

Respectfully,

Karen A. Cahill Project Manager Division of Environmental Remediation

ec: L. Luciano, SHBC C. Gabriel, Geologic G. Priscott, DEC A. Perretta, DOH