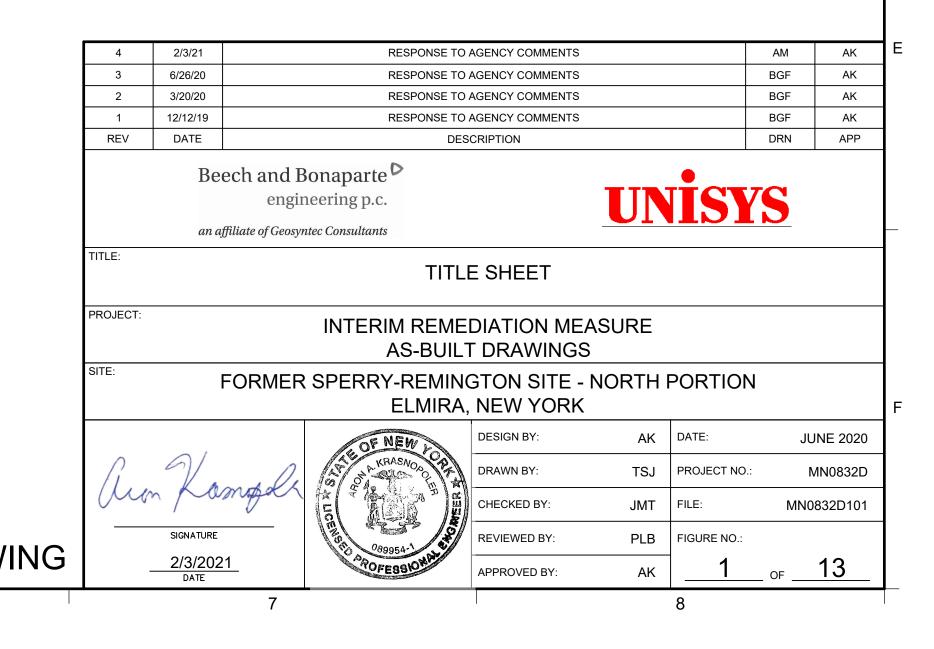


INTERIM REMEDIATION MEASURE #2 AS-BUILT DRAWINGS FORMER SPERRY-REMINGTON SITE - NORTH PORTION ELMIRA, NEW YORK


FEBRUARY 2019

DRAWING NO.	DRAWING TITLE
1	TITLE SHEET
2	AS-BUILT EXCAVATION PLAN
3	0-2 FEET EXCAVATION
4	2-4 FEET EXCAVATION
5	4-6 FEET EXCAVATION
6	6-8 FEET EXCAVATION
7	8-10 FEET EXCAVATION
8	10-12 FEET EXCAVATION
9	12-14 FEET EXCAVATION
10	INTERMEDIATE RESTORATION
11	AS-BUILT FINAL RESTORATION
12	WATER LINE RELOCATION
13	MATERIAL STAGING AREA

LOCATION MAP

DETAIL IDENTIFICATION LEGEND

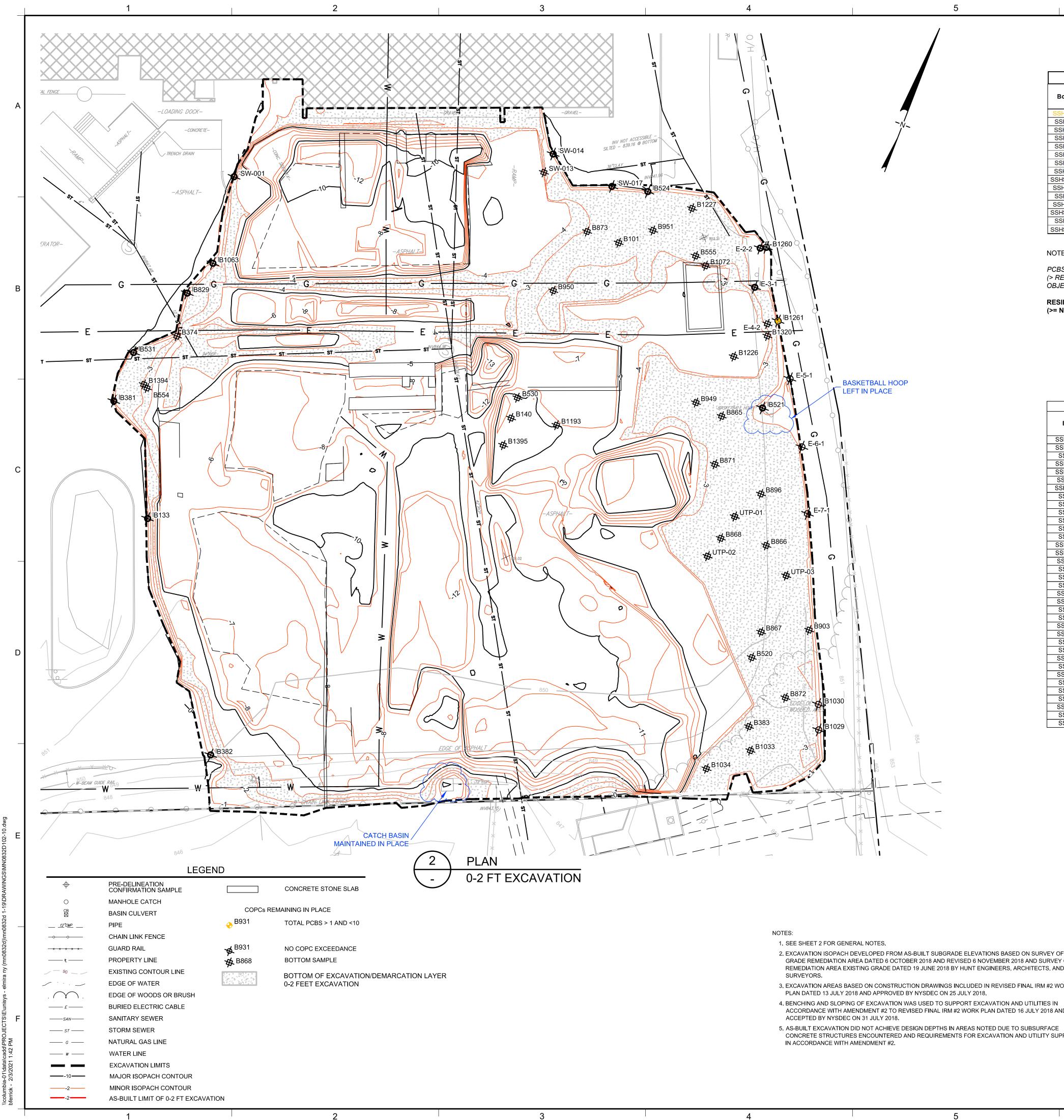
LEC	GEND
	SITE BUILDING
	BASIN CULVERT
12"CMP	PIPE
-0	CHAIN LINK FENCE
	WOODEN FENCE
የ	PROPERTY LINE
	EDGE OF WATER
<i>E</i>	BURIED ELECTRIC CABLE
	SANITARY SEWER
ST	STORM SEWER
G	NATURAL GAS LINE
<i>W</i>	WATER LINE
850	SUBGRADE CONTOUR (FT, MSL)
	ENCOUNTERED CONCRETE SLAB
	ENCOUNTERED CONCRETE WALL
(A)	CONCRETE ARTIFACT
⊲ ^{849.13}	ELEVATION OF CONCRETE (FT, MSL)

Concrete Artifact	Area (ft ²)	Height (ft)	Volume (ft ³)	Volume (yds ³)
А	52.23	7.0	365.61	13.54
В	48.22	7.0	337.54	12.50
С	43.82	7.0	306.74	11.36
D	97.68	4.0	390.72	14.47
Е	88.11	7.0	616.77	22.84
F	112.75	7.0	789.25	29.23
G	75.78	6.0	454.68	16.84
Н	72.04	4.0	288.16	10.67

Concrete Artifact	Area (ft ²)	Height (ft)	Volume (ft ³)	Volume (yds ³)
Ι	217.67	7.0	1523.69	56.43
J	186.56	7.0	1305.92	48.37
Κ	53.14	7.0	371.98	13.78
L	4.52	7.0	31.64	1.17
М	4.45	7.0	31.15	1.15
N	4.51	7.0	31.57	1.17

1. EXISTING TOPOGRAPHY IS FROM:

a. A TOPOGRAPHIC SURVEY OF ELMIRA HIGH SCHOOL BY HUNT ENGINEERS, ARCHITECTS, AND SURVEYORS IN SEPTEMBER 2016. VERTICAL CONTROL IS REFERENCED TO THE NORTH AMERICAN


VERTICAL DATUM OF 1988 (NAVD 88/GEOID 12A), HORIZONTAL CONTROL IS REFERENCED TO THE NORTH AMERICAN DATUM OF 1983 (NAD 83/NA 2011).

b. A TOPOGRAPHIC SURVEY OF FORMER REMINGTON RAND SITE BY WEILER ASSOCIATES, DATED 27 APRIL 2011.

2. AS-BUILT SUBGRADE ELEVATIONS BASED ON SURVEY OF SUB GRADE REMEDIATION AREA BY BY HUNT ENGINEERS, ARCHITECTS, AND SURVEYORS DATED 6 OCTOBER 2018 AND REVISED 6 NOVEMBER 2018.

			0	SCAL	20' 40	,			
4	2/3/21		RE		AGENCY COMMENTS			AM	AK
3	6/26/20		RE	SPONSE TO	AGENCY COMMENTS			BGF	AK
2	3/20/20		RE	SPONSE TO	AGENCY COMMENTS			BGF	AK
1	12/12/19		RE	SPONSE TO	AGENCY COMMENTS			BGF	AK
REV	DATE			DES	CRIPTION			DRN	APP
TITLE:	an affili	0	neering p.c. atec Consultants AS-BU	JILT EX	CAVATION F		ÍSY	<u>></u>	
PROJECT:					DIATION ME				
SITE:	FC	ORMER			GTON SITE - NEW YORK	_	PORTION		
			OFNE	W	DESIGN BY:	AK	DATE:	JL	JNE 2020
R	91	. Л.	AN NAS	NOACT REAL	DRAWN BY:	TSJ	PROJECT NO.:	I	MN0832D
Un	n plasm	roger	E The	TER C	CHECKED BY:	JMT	FILE:	MN)832D102
	SIGNATURE		1 08905.		REVIEWED BY:	PLB	FIGURE NO.:		
	DATE	-	PROFES	SIONA	APPROVED BY:	AK	2	_ OF	13
		7					8		

AS-BUILT DRAWING

Boring ID	Depth Interval (ft bgs)	PCB Concentrat (mg/kg)
SSHS-B1261	0-2	2.961
SSHS-B133	0-2	0.722
SSHS-E-2-2	1.4-1.4	0.5453
SSHS-B524	0-2	0.4393
SSHS-B381	0-2	0.428
SSHS-B531	0-2	0.2543
SSHS-B521	0-2	0.2316
SSHS-E-3-1	0.1-0.1	0.2219
SSHS-SW-001	0-2	0.2138
SSHS-B1260	0-2	0.1382
SSHS-B382	0-2	0.0204
SSHS-B1063	0-2	0.0197
SSHS-SW-017	0-2	< <mark>0.088</mark> 2
SSHS-B829	0-2	<0.0865
SSHS-SW-014	0-2	<0.0865

PCBS REMAINING IN PLACE SHOWN IN ITALICS (> RESTRICTED RESIDENTIAL SOIL CLEANUP OBJECTIVE OF 1 MG/KG (6 NYCRR PART 375))

RESIDUAL PCBS SHOWN IN BOLD (>= NYS HAZARDOUS WASTE (50MG/KG))

BOTTOM					
Boring ID	Depth Interval (mg/kg)	PC Concent (mg/			
SSHS-UTP-01	2-4	94.6			
SSHS-UTP-01	2-4	94.6			
SSHS-E-4-2	2-4	46.2			
SSHS-UTP-02	2-4	34.6			
SSHS-UTP-02	2-4	34.6			
SSHS-B1320	2-4	21.3			
SSHS-SW-013	2-4	4.40			
SSHS-B868	2-4	2.8			
SSHS-B950	2-4	2.3			
SSHS-B873	2-4	1.73			
SSHS-B865	2-4	0.99			
SSHS-B555	2-4	0.86			
SSHS-B530	2-4	0.69			
SSHS-UTP-03	2-4	0.62			
SSHS-UTP-03	2-4	0.62			
SSHS-B1033	2-4	0.47			
SSHS-B554	2-4	0.44			
SSHS-B374	2-4	0.3			
SSHS-B896	2-4	0.33			
SSHS-B1395	2-4	0.29			
SSHS-B1193	2-4	0.21			
SSHS-B867	2-4	0.19			
SSHS-B949	2-4	0.19			
SSHS-B1394	2-4	0.19			
SSHS-B1034	2-4	0.16			
SSHS-B866	2-4	0.16			
SSHS-B871	2-4	0.12			
SSHS-B1226	2-4	0.09			
SSHS-B951	2-4	0.09			
SSHS-B1072	2-4	0.0			
SSHS-B903	2-4	0.09			
SSHS-B872	2-4	0.07			
SSHS-B520	2-4	0.07			
SSHS-B1227	2-4	0.06			
SSHS-B383	2-4	0.0			
SSHS-B140	2-4	0			

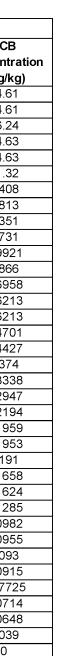
- 2. EXCAVATION ISOPACH DEVELOPED FROM AS-BUILT SUBGRADE ELEVATIONS BASED ON SURVEY OF SUB GRADE REMEDIATION AREA DATED 6 OCTOBER 2018 AND REVISED 6 NOVEMBER 2018 AND SURVEY OF REMEDIATION AREA EXISTING GRADE DATED 19 JUNE 2018 BY HUNT ENGINEERS, ARCHITECTS, AND
- 3. EXCAVATION AREAS BASED ON CONSTRUCTION DRAWINGS INCLUDED IN REVISED FINAL IRM #2 WORK
- ACCORDANCE WITH AMENDMENT #2 TO REVISED FINAL IRM #2 WORK PLAN DATED 16 JULY 2018 AND
- 5. AS-BUILT EXCAVATION DID NOT ACHIEVE DESIGN DEPTHS IN AREAS NOTED DUE TO SUBSURFACE CONCRETE STRUCTURES ENCOUNTERED AND REQUIREMENTS FOR EXCAVATION AND UTILITY SUPPORT

AS-BUILT DRAWING

ntration g)	

COPCs REMAINING (0-2 FT BGS)

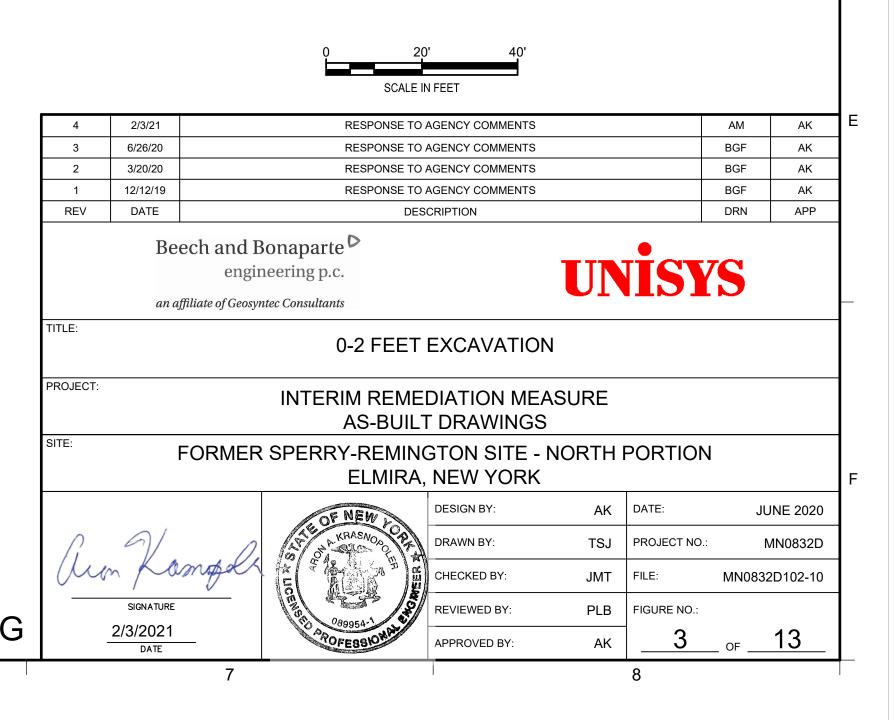
		Metals				
		Lead	Arsenic	Barium	Copper	Nickel
		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Restricted Residential Criteria		400	16	400	270	310
Metals 20x TCLP S	Screening (Lead = 1000 ppm)	1000	100	2000		
Boring ID	Depth Interval (ft bgs)					
SSHS-B1261	0-2	16J	6.4J	40	31	16
SSHS-B524	0-2	13	13	100	22	22
SSHS-E-5-1	1.4-1.4	240J	12	190	340	120
SSHS-E-7-1	1.5-1.5	340	16	180	1900	290
SSHS-B1029	0-2	120	18	150	260	290
SSHS-B1030	0-2	78	16	130	260	74
SSHS-B1260	0-2	20	5.3	68	21	18
SSHS-E-6-1	1-1	500	9.5	190	510=	140J

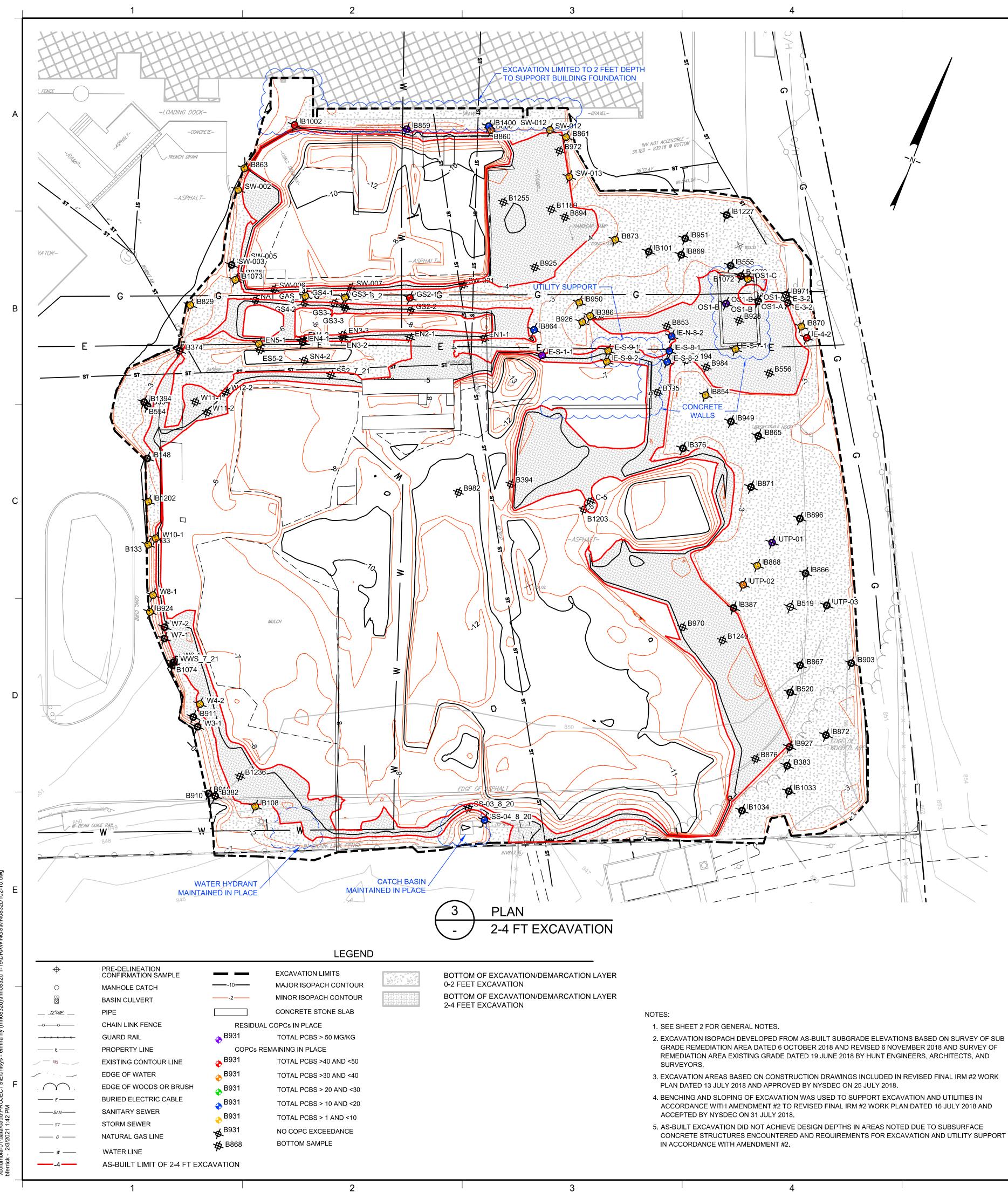

NOTES:

METALS REMAINING IN PLACE SHOWN IN ITALICS (> RESTRICTED RESIDENTIAL SOIL CLEANUP OBJECTIVE (6 NYCRR PART 375))

RESIDUAL METALS SHOWN IN BOLD

(>200X TCLP LEAD OR (> 20X TCLP FOR OTHER METALS)


TCLP – TOXICITY CHARACTERISTIC LEACHING PROCEDURE



D

TABLE NOTES:

1. THE IRM SOIL CLEANUP GOAL FOR 0 -2 FT BGS WAS 1 MG/KG.

- GRADE REMEDIATION AREA DATED 6 OCTOBER 2018 AND REVISED 6 NOVEMBER 2018 AND SURVEY OF

- CONCRETE STRUCTURES ENCOUNTERED AND REQUIREMENTS FOR EXCAVATION AND UTILITY SUPPORT

BoringID	Depth Interval (ft bgs)	PCB Concentration (mg/kg)
SSHS-E-S-1-1	3.4-3.4	259.8
SSHS-OS1-B	2-4	184.7
SSHS-B859 SSHS-UTP-01	2-4 2.4-2.4	97.81 94.61
SSHS-GS2-1	2.8-2.8	48.33
SSHS-E-4-2	2.5-2.5	46.24
SSHS-B1002	2-4	41.38
SSHS-UTP-02	2.5-2.5	34.63
SSHS-B860 SSHS-E-N-8-2	2-4 3.7-3.7	<u>31</u> 19.57
SSHS-E-S-8-1	2.3-2.3	17.72
SSHS-B1400	2-4	16.59
SSHS-B864	2-4	14.3
SSHS-E-S-8-2 SSHS-SS-04 8 20	3.8-3.8 2-4	13.46 12.45
SSHS-B854	2-4	8.151
SSHS-GS3-1	2.5-2.5	7.636
SSHS-E-S-9-1	2.3-2.3	7.171
SSHS-GS4-1	3.2-3.2	5.271
SSHS-B108 SSHS-B863	2-4 2-4	4.9 4.761
SSHS-SW-013	2-4	4.408
SSHS-B870	2-4	4.351
SSHS-E-S-7-1	2.9-2.9	4.262
SSHS-E-S-9-2	3.4-3.4	4.231
SSHS-W8-1 SSHS-SW-002	2.4-2.4 2-4	3.743 3.243
SSHS-SW-002 SSHS-EN5-1	3.2-3.2	3.243
SSHS-B133	2-4	2.82
SSHS-B868	2-4	2.813
SSHS-B924	2-4	2.481
SSHS-B386 SSHS-B926	2-4 2-4	2.39 2.371
SSHS-B950	2-4	2.351
SSHS-B1202	2-4	2.124
SSHS-B861	2-4	2.021
SSHS-SW-012	2-4	1.974
SSHS-B829 SSHS-B873	2-4 2-4	1.811 1.731
SSHS-W10-1	3.6-3.6	1.731
SSHS-W4-2	3.9-3.9	1.711
SSHS-OS1-C	2-4	1.053
SSHS-B1073 SSHS-B865	2-4 2-4	1.034 0.9921
SSHS-EN4-1	3.6-3.6	0.8809
SSHS-B555	2-4	0.866
SSHS-SW-003	2-4	0.786
SSHS-B148	2-4	0.772
SSHS-W7-2 SSHS-B971	3.9-3.9 2-4	0.6431
SSHS-UTP-03	2.5-2.5	0.6213
SSHS-WWS_7_21	2.7-2.7	0.5598
SSHS-B911	2-4	0.5336
SSHS-B1033	2-4	0.4701
SSHS-B554 SSHS-B869	2-4	0.4427
SSHS-B374	2-4	0.374
SSHS-B896	2-4	0.3338
SSHS-E-3-2	2.3-2.3	0.328
SSHS-B376	2-4	0.265
SSHS-B1074 SSHS-W3-1	2-4 2.5-2.5	0.2486
SSHS-W7-1	2.5-2.5	0.2109
SSHS-B867	2-4	0.1959
SSHS-B949	2-4	0.1953
SSHS-B1394	2-4	0.191
SSHS-B1034 SSHS-B866	2-4	0.1658
SSHS-B910	2-4	0.1311
SSHS-B871	2-4	0.1285
SSHS-B927	2-4	0.1138
SSHS-OS1-A	2-4	0.1028
SSHS-B872 SSHS-B520	2-4	0.07725
SSHS-B1227	2-4	0.0648
SSHS-B383	2-4	0.039
SSHS-B387	2-4	0.021
	2-4	<0.0955
SSHS-B951	~ 1	.0.000
SSHS-B1072	2-4	<0.093
and the first state and and and and	2-4 2-4 3-6	<0.093 <0.0915 <0

PCBS REMAINING IN PLACE SHOWN IN ITALICS (>SUBSURFACE CLEANUP GOAL OF 10MG/KG)

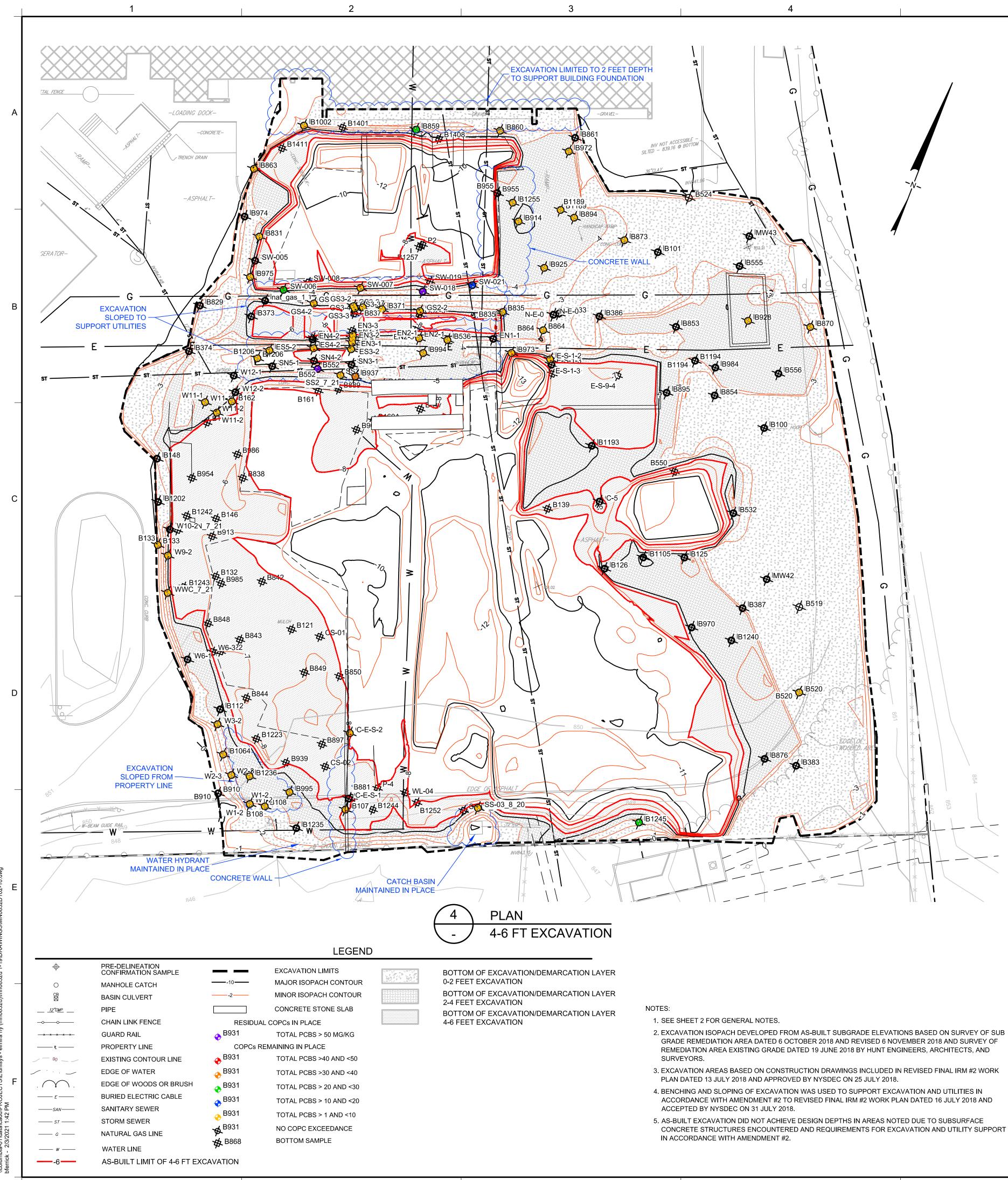
RESIDUAL PCBS SHOWN IN BOLD (>= NYS HAZARDOUS WASTE (50MG/KG))

COPCs REMAINING (2-4 FT BGS)

		Metals				
		Lead	Arsenic	Barium	Copper	Nickel
		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		0.39	0.39	7.9	0.99	1.6
Metals 20x TCLF	Screening (Lead = 1000 ppm	1000	100	2000		
Boring ID	Depth Interval (ft bgs)					
SSHS-B519	2-4	290	11	280	550	170
SSHS-B520	2-4	240	21	1500	230	470
SSHS-B524	2-4	61	11	89	74	58
SSHS-B555	2-4	3300J	9.7J	240J	48J-	63J
SSHS-OS1-A	2-4	610	25	370	98	45
SSHS-OS1-B	2-4	340	14	240	240	340
SSHS-OS1-C	2-4	17	7	94	23	22
SSHS-W3-1	2.5-2.5	8.6	5	58	23	14
SSHS-W10-1	3.6-3.6	90	6.9	71	74	86
SSHS-B101	3-6	120	17	140	70	16

NOTES:

RESIDUAL METALS SHOWN IN BOLD (>200X TCLP LEAD OR (> 20X TCLP FOR OTHER METALS)


TCLP – TOXICITY CHARACTERISTIC LEACHING PROCEDURE

воттом						
Boring ID	Depth Interval (ft bgs)	PCB Concentration (mg/kg)				
SSHS-B159	4-6	61.4				
SSHS-SW-006	4-6	28.21				
SSHS-SW-021	4-6	12.47				
SSHS-B1255	4-6	7.591				
SSHS-B894	4-6	6.861				
SSHS-SW-007	4-6	6.401				
SSHS-ES5-2	4-6	5.864				
SSHS-SS2_7_21	4-6	4.441				
SSHS-B394	4-6	4.26				
SSHS-EN3-2	4-6	4.104				
SSHS-GS2-2	4-6	3.481				
SSHS-SS-03_8_20	4-6	3.203				
SSHS-EN2-1	4-6	2.851				
SSHS-B1236	4-6	2.631				
SSHS-GS4-2	4-6	2.582				
SSHS-C-5	4-6	2.5				
SSHS-GS3-3	4-6	2.344				
SSHS-B1189	4-6	2.05				
SSHS-EN3-3	4-6	1.934				
SSHS-B925	4-6	1.711				
SSHS-W11-1	4-6	1.624				
SSHS-B928	4-6	1.561				
SSHS-B982	4-6	1.556				
SSHS-B972	4-6	1.343				
SSHS-W11-2	4-6	1.291				
SSHS-nat_gas_2	4-6	1.211				
SSHS-B975	4-6	1.124				
SSHS-GS3-2	4-6	1.077				
SSHS-SN4-2	4-6	0.9335				
SSHS-EN1-1	4-6	0.9123				
SSHS-W12-2	4-6	0.8738				
SSHS-SW-005	4-6	0.8536				
SSHS-B387	4-6	0.774				
SSHS-B970	4-6	0.7553				
SSHS-EN4-2	4-6	0.6294				
	4-6	0.4818				
SSHS-B895	4-6	0.3481				
SSHS-W6-1	4-6	0.2702				
SSHS-B984	4-6	0.2625				
SSHS-B1194	4-6	0.161				
SSHS-B876	4-6	0.1101				
SSHS-B1203	4-6	0.1099				
SSHS-B1240	4-6	0.0981				
SSHS-B853	4-6	0.0687				
SSHS-B556	4-6	0.0455				

NOTES:

1. THE IRM SOIL CLEANUP GOAL BELOW 2 FT BGS WAS 10 MG/KG.

			0 SC/	20' 40'				
4	2/3/21		RESPONSE TO	AGENCY COMMENTS			AM	AK
3	6/26/20		RESPONSE TO	AGENCY COMMENTS			BGF	AK
2	3/20/20		RESPONSE TO	AGENCY COMMENTS			BGF	AK
1	12/12/19		RESPONSE TO	AGENCY COMMENTS			BGF	AK
REV	DATE		DE	SCRIPTION			DRN	APP
TITLE:	an affil	0	neering p.c. ntec Consultants 2-4 FEET	EXCAVATION		İSY	3	
PROJECT:			INTERIM REME AS-BUIL	EDIATION MEA				
SITE:	F	ORMER	SPERRY-REMIN ELMIRA	GTON SITE - , NEW YORK	NORTH	PORTION		
			DE NEM	DESIGN BY:	AK	DATE:	JU	NE 2020
P	91	Λ	AT SHARNON THE	DRAWN BY:	TSJ	PROJECT NO.:	N	1N0832D
du	m Kas	næll	A HA	CHECKED BY:	JMT	FILE:	MN0832	D102-10
	SIGNATURE 2/3/2021		11 089054-1 S	REVIEWED BY:	PLB	FIGURE NO.:		
	DATE	-	POFESSIONA	APPROVED BY:	AK	4	OF	13
		7				8		

2

3

- CONCRETE STRUCTURES ENCOUNTERED AND REQUIREMENTS FOR EXCAVATION AND UTILITY SUPPORT

4

Boring ID	Depth Interval (ft bgs)	(mg/kg)
SSHS-B552 SSHS-B159	4-6 4-6	69.24 61.4
SSHS-SW-018	4-6	55.1
SSHS-B937 SSHS-SW-006	4-6 4-6	33.26 28.21
SSHS-B859	4-6	24.11
SSHS-B1245 SSHS-SW-021	4-6 4-6	21.21 12.47
SSHS-B1255	4-6	7.591
SSHS-B860 SSHS-B894	4-6 4-6	7.299 6.861
SSHS-B094 SSHS-SW-007	4-6	6.401
SSHS-ES5-2	5.3-5.3	5.864
SSHS-B371 SSHS-B107	4-6 4-6	5.22 5.2
SS2_7_21	4.5-4.5	4.441
SSHS-B873 SSHS-B835	4-6 4-6	4.261 4.251
SSHS-B162	4-6	4.12
SSHS-EN3-2 SSHS-B994	5.1-5.1 4-6	4.104 3.851
SSHS-B1064	4-6	3.611
SSHS-GS2-2	5.2-5.2	3.481
SSHS-B133 SSHS-B1002	4-6 4-6	3.34 3.261
SSHS-SS-03_8_20		3.203
SSHS-B837 SSHS-EN3-1	4-6 4.5-4.5	2.982 2.916
SSHS-EN2-1	4.6-4.6	2.851
SSHS-B1236	4-6	2.631
SSHS-GS4-2 SSHS-B995	4.7-4.7 4-6	2.582 2.445
SSHS-C-E-S-2	5.5-5.5	2.424
SSHS-GS3-3 SSHS-ES4-2	5.6-5.6 5.6-5.6	2.344 2.343
SSHS-B108	4-6	2.194
SSHS-B1189 W9-2	4-6 4.6-4.6	2.05 1.984
SSHS-B536	4.0-4.0 4-6	1.941
SSHS-EN3-3 WWC 7 21	5.9-5.9 4.5-4.5	1.934
WWC_7_21 W1-2	4.5-4.5 4.8-4.8	1.789 1.714
SSHS-B925	4-6	1.711
SSHS-B831 W11-1	4-6 4.2-4.2	1.661 1.624
SSHS-B870	4-6	1.561
SSHS-B928 SSHS-B914	4-6 4-6	1.561 1.521
SSHS-ES3-2	5.4-5.4	1.413
SSHS-B972 W3-2	4-6 4.3-4.3	1.343 1.314
SSHS-B864	4.5-4.5	1.314
SSHS-W11-2	5.1-5.1	1.291
SSHS-B1206 SSHS-E-S-1-2	4-6 5.1-5.1	1.157 1.151
SSHS-W2-3	5.5-5.5	1.126
SSHS-B975 SSHS-B973	4-6 4-6	1.124 1.1
SSHS-GS3-2	4.5-4.5	1.077
SSHS-B863 SSHS-B520	4-6 4-6	1.051 1.029
SSHS-B861	4-6	0.965
SSHS-B125 SSHS-SN4-2	4-6	0.939
SSHS-EN1-1	5.7-5.7 4.3-4.3	0.9335 0.9123
SSHS-W12-2	5.8-5.8	0.8738
SSHS-SW-005 SSHS-W12-1	4-6	0.8536
SSHS-B386	4-6	0.81
SSHS-B387 SSHS-B854	4-6 4-6	0.774 0.772
SSHS-B970	4-6	0.7553
SSHS-SN3-1	4.2-4.2	0.6423
SSHS-EN4-2 SSHS-B910	4.5-4.5 4-6	0.6294 0.6076
SSHS-B112	4-6	0.596
SSHS-B126 SSHS-B955	4-6 4-6	0.566 0.5552
SSHS-B532	4-6	0.5519
SSHS-B974 SSHS-nat_gas_1	4-6 5-5	0.5392
SSHS-B1233	4-6	0.4259
SSHS-E-S-1-3 SSHS-B373	5.5-5.5 4-6	0.418
SSHS-B373 SSHS-B1202	4-6 4-6	0.3606
SSHS-B895	4-6	0.3481
C-5 SSHS-N-E-0	0.5-6.5	0.3356 0.3356
W10-2	4.2-4.2	0.3231
W6-1 SSHS-B984	4.2-4.2 4-6	0.2702
SSHS-SN5-1	4.8-4.8	0.225
SSHS-B148 SSHS-B1235	4-6 4-6	0.197 0.163
SSHS-B1194	4-6	0.161
SSHS-B1193 SSHS-B829	4-6 4-6	0.1393 0.1363
SSHS-B555	4-6	0.1342
SSHS-C-E-S-1	5.9-5.9	0.1253
SSHS-B853 SSHS-B556	4-6 4-6	0.0687
SSHS-B100	4-6	0.025
SSHS-B374 SSHS-B876	4-6 4-6	0.008
SSHS-B1105	4-6	<0.11
SSHS-B1240 SSHS-B101	4-6 3-6	<0.0981 <0
SSHS-B101 SSHS-B383	3-6 4-6	<0
SSHS-MW42	5-6	<0
SSHS-MW42 SSHS-MW43	5-6	<0

AS-BUILT DRAWING

5

CC	COPCs REMAINING (4-6 FT BGS)								
ation				Me	tals				
					Ē				
			enic	ш	mir	per			
			Arsenic	Barium	Cadmium	Copper			
			mg/kg	mg/kg	mg/kg	mg/kg			
	Metals 20x TCLP Sc	reening (Lead = 1000 ppm	100	2000	20				
	Boring ID	Depth Interval (ft bgs)							
	SSHS-B101	3-6	17	140	<0.069J	70			
	SSHS-B100	4-6	7.8	58	<0.067J	<mark>4</mark> 5			
	SSHS-B519	4-6	5.4	120	18J	610F2			
	SSHS-B520	4-6	4.8	160	48	27			
	SSHS-B524	4-6	6.4	34	<0.1U	29			
	SSHS-B555	4-6	4.9	77	<0.13U	18			
	SSHS-W3-2	4.3-4.3	5	56	<0.045U	39			
	SSHS-N-E-0	4.7-4.7	6.9	780	<0.042U	340			
	SSHS-W1-2	4.8-4.8	9.8	120	<0.044U	<mark>60</mark>			

воттом						
Boring ID	Depth Interval (ft bgs)	PCB Concentration (mg/kg)				
SSHS-P2	6-8	107.5				
SSHS-B1257	6-8	63.92				
SSHS-B850	6-8	49.64				
SSHS-SW-019	6-8	48.7				
SSHS-B1252	6-8	43.52				
SSHS-B906	6-8	39.11				
SSHS-B897	6-8	34.58				
SSHS-B842	6-8	33.51				
SSHS-B1408	6-8	29.82				
SSHS-B859	6-8	29.01				
SSHS-B843	6-8	27.22				
SSHS-B847	6-8	25.86				
SSHS-B159	6-8	21.92				
SSHS-B844	6-8	18.04				
SSHS-CS-02	6-8	13.87				
SSHS-B160A	6-8	13.07				
SSHS-E-S-9-4	6-8	13.05				
SSHS-B889	6-8	12.05				
SSHS-SS-02 8 20	6-8	8.594				
SSHS-B849	6-8	7.356				
SSHS-B1401	6-8	7.191				
SSHS-B985	6-8	6.996				
SSHS-SW-008	6-8	6.321				
SSHS-B146	6-8	6.27				
SSHS-B913	6-8	5.856				
SSHS-B838	6-8	5.501				
SSHS-B132	6-8	5.48				
SSHS-CS-01	6-8	5.351				
SSHS-EN2-3	6-8	4.926				
SSHS-B122	6-8	3.93				
SSHS-B1411	6-8	3.711				
SSHS-B848	6-8	3.329				
SSHS-B550	6-8	3.058				
SSHS-B939	6-8	3.013				
SSHS-B881	6-8	2.684				
SSHS-GS2-3	6-8	2.004				
SSHS-B1242	6-8	1.974				
SSHS-B1242	6-8	1.53				
	6-8					
SSHS-B161		1.27				
SSHS-B552	6-8	1.252				
SSHS-WWN_7_21	6-8 6-8	1.251				
SSHS-B121		1.035				
SSHS-B1223	6-8	0.9947				
SSHS-B1243	6-8	0.9511				
SSHS-B954	6-8	0.9413				
SSHS-EN3-4	6-8	0.8463				
SSHS-W6-3	6-8	0.6294				
SSHS-B986	6-8	0.4889				
SSHS-E-S-1-4	6-8	0.4175				
SSHS-EN4-3	6-8	0.4108				
SSHS-GS3-4	6-8	0.4055				
SSHS-WL-04	6-8	0.2377				
SSHS-P-4	6-8	0.1655				
SSHS-B1244	6-8	0.1295				
SSHS-B550	6-8	0.0593				
SSHS-B107	6-8	0.015				
SSHS-B139	6-8	0				

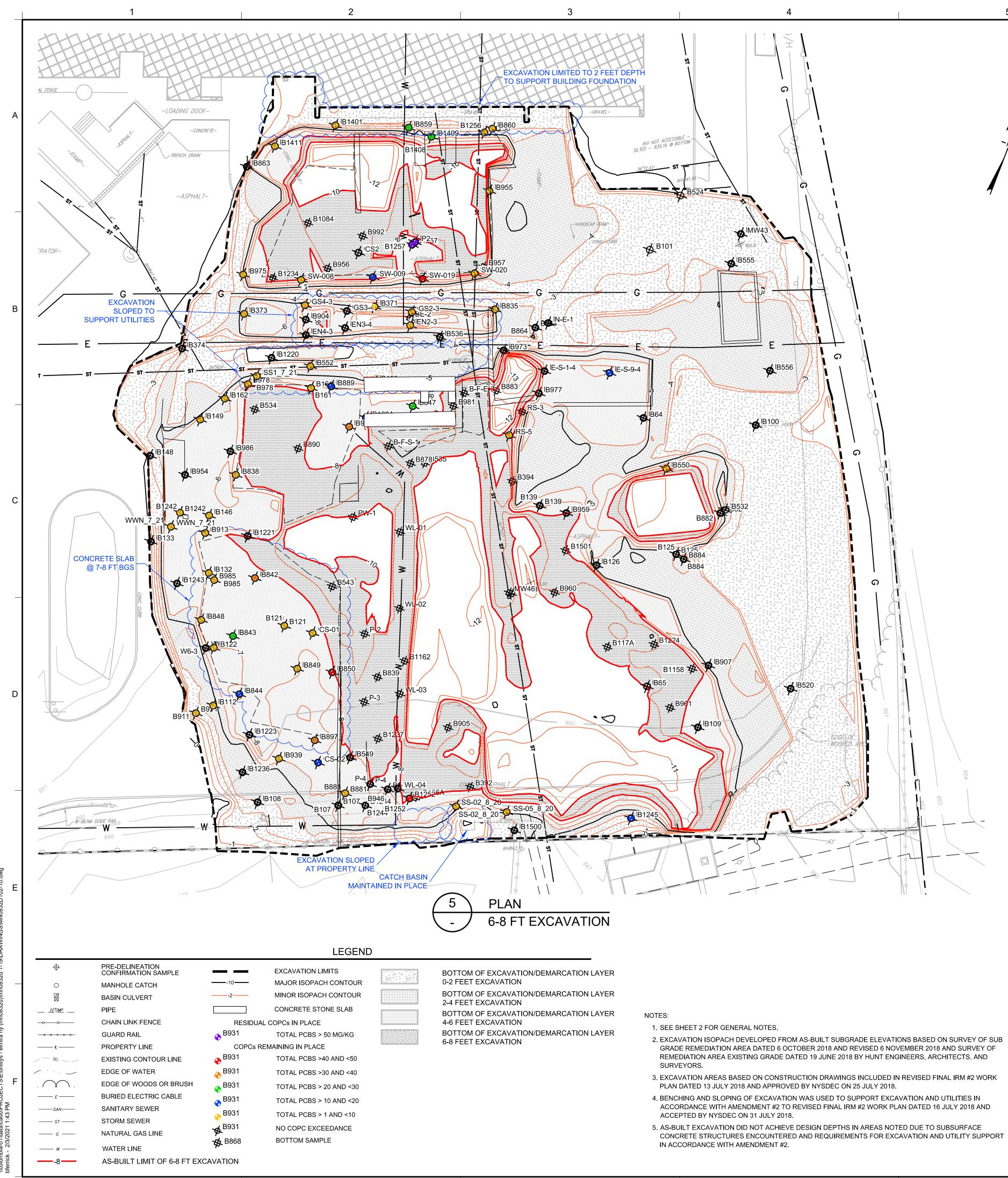
NOTES:

1. THE IRM SOIL CLEANUP GOAL BELOW 2 FT BGS WAS 10 MG/KG.

2. METALS RESULTS ARE SHOWN ONLY FOR METAL CONSTITUENTS WITH AT LEAST ONE EXCEEDANCE OF RESTRICTED RESIDENTIAL SOIL CLEANUP OBJECTIVES (6 NYCRR PART 375-6).

4			RESPONSE TO	ALE IN FEET AGENCY COMMENTS AGENCY COMMENTS			AM BGF	AK AK	E
2	3/20/20	3/20/20 RESPONSE TO AGENCY COMMENTS BGF AK							
1	12/12/19		RESPONSE TO	AGENCY COMMENTS			BGF	AK	_
RE	V DATE		DES	SCRIPTION			DRN	APP	_
TITLE:		engin	onaparte eering p.c. tec Consultants			ISY	S		
PROJE	CT:		INTERIM REME	EXCAVATION DIATION MEA T DRAWINGS	SURE				-
SITE:	FC	DRMER	SPERRY-REMIN ELMIRA	GTON SITE - I , NEW YORK	NORTH	PORTION			F
			OF NEW 1	DESIGN BY:	AK	DATE:	J	UNE 2020	
ß	9/	Ω.	ALL KRASNOS PA	DRAWN BY:	TSJ	PROJECT NO.:		MN0832D	
$(\mathcal{L}$	in fam	mal	A F A F A F A F A F A F A F A F A F A F	CHECKED BY:	JMT	FILE:	MN083	2D102-10	
\sim			TEL TEST S	REVIEWED BY:	PLB	FIGURE NO.:			
-	SIGNATURE 2/3/2021		POFESSIONAL			_			

NOTES:


RESIDUAL METALS SHOWN IN BOLD (>200X TCLP LEAD OR > 20X TCLP FOR OTHER METALS)

TCLP – TOXICITY CHARACTERISTIC LEACHING PROCEDURE

NOTES:

PCBS REMAINING IN PLACE SHOWN IN ITALICS (>SUBSURFACE CLEANUP GOAL OF 10MG/KG)

RESIDUAL PCBS SHOWN IN BOLD (>= NYS HAZARDOUS WASTE (50MG/KG))

3

	Donth Intonial	COPCs
Boring ID	Depth Interval (ft bgs)	PCB Concentratior (mg/kg)
SSHS-P2	7.7-7.7	107.5
SSHS-B1257 SSHS-B850	6-8 6-8	63.92 49.64
SSHS-SW-019	6-8	49.04
SSHS-B1252	6-8	43.52
SSHS-B906	6-8	39.11
SSHS-B897	6-8	34.58
SSHS-B842 SSHS-B1408	6-8 6-8	33.51 29.82
SSHS-B859	6-8	29.01
SSHS-B843	6-8	27.22
SSHS-B847	6-8	25.86
SSHS-B159 SSHS-B1245	6-8 6-8	21.92 19.64
SSHS-B844	6-8	18.04
SSHS-SW-009	6-8	17.13
SSHS-CS-02	6.4-6.4	13.87
SSHS-B160A SSHS-E-S-9-4	6-8 6.5-6.5	13.07 13.05
SSHS-B889	6-8	12.05
SSHS-B112	6-7	8.64
SSHS-SS-02_8_20	6-8	8.594
SSHS-SW-020 SSHS-B371	6-8 6-8	8.481 8.1
SSHS-B849	6-8	7.356
SSHS-B1401	6-8	7.191
SSHS-B985	6-8	6.996
SSHS-SW-008	6-8	6.321
SSHS-B146 SSHS-B835	6-8 6-8	6.27 6.091
SSHS-B913	6-8	5.856
SSHS-B838	6-8	5.501
SSHS-B132	6-7	5.48
SSHS-CS-01 SSHS-EN2-3	7.3-7.3 7.6-7.6	5.351 4.926
SSHS-EN2-3 SSHS-B162	6-8	4.926
SSHS-B122	6-7	3.93
SSHS-B860	6-8	3.859
SSHS-B1411 SSHS-B848	6-8 6-8	3.711 3.329
SSHS-B978	6-8	3.231
SSHS-B550	6-8	3.058
SSHS-B939	6-8	3.013
SSHS-B911 SSHS-B881	6-8 6-8	2.731 2.684
SSHS-SS1 7 21	6-6	2.581
SSHS-B955	6-8	2.561
SSHS-B373	6-8	2.54
SSHS-SS-05_8_20 SSHS-GS4-3	6-8 6-6	2.317
SSHS-GS2-3	6.6-6.6	2.315 2.05
SSHS-B1242	6-8	1.974
SSHS-B149	6-8	1.53
SSHS-B975 SSHS-RS-5	6-8 6.6-6.6	1.522 1.41
SSHS-B1409	6-8	1.389
SSHS-B161	6-8	1.27
SSHS-B552	6-8	1.252
SSHS-WWN_7_21 SSHS-B1256	6.5-6.5 6-6	1.251 1.122
SSHS-B121	6-7	1.035
SSHS-B1223	6-8	0.9947
SSHS-B1243	6-8	0.9511
SSHS-B954 SSHS-B863	6-8 6-8	0.9413 0.881
SSHS-B973	6-8	0.863
SSHS-EN3-4	6.9-6.9	0.8463
SSHS-B977	6-8	0.8425
SSHS-B1236 SSHS-B1220	6-8 6-8	0.7859 0.6512
SSHS-W6-3	6.2-6.2	0.6294
SSHS-N-E-1	6.7-6.7	0.5992
SSHS-B1221	6-8	0.5357
SSHS-B556 SSHS-B986	6-8 6-8	0.512 0.4889
SSHS-B549	6-8	0.4749
SSHS-B904	6-8	0.4637
SSHS-B108	6-8	0.44
SSHS-E-S-1-4 SSHS-EN4-3	6.2-6.2 6.1-6.1	0.4175 0.4108
SSHS-GS3-4	6.5-6.5	0.4055
SSHS-B864	6-8	0.3833
SSHS-B882 SSHS-B536	6-8 6-8	0.3524 0.3182
SSHS-B336 SSHS-B946	6-8	0.266
SSHS-WL-04	7.8-7.8	0.2377
SSHS-B374	6-8	0.234
SSHS-B884 SSHS-B1500	6-8 6-8	0.2051
SSHS-P-4	7.7-7.7	0.1655
SSHS-B959	6-8	0.152
SSHS-B64	6-9	0.13
SSHS-B1244 SSHS-B555	6-8 6-8	0.1295 0.04
SSHS-B000 SSHS-B107	6-8	0.04
SSHS-MW43	6-7	0.011
SSHS-B126	6-8	0.007
SSHS-B907	6-8	< 0.0954
SSHS-B532 SSHS-B520	6-8 6-8	<0.0636 <0.0612
SSHS-B550	6-8	<0.0593
SSHS-B100	6-10	<0
SSHS-B109	6-8	<0
SSHS-B125 SSHS-B133	6-8 6-8	<0 <0
0010-0100		
SSHS-B139	6-8	<0

AS-BUILT DRAWING

5

COPCs REMAINING (6-8 FT BGS)

		Me	tals
		Arsenic	Copper
		mg/kg	mg/kg
Metals 20x TCLP Scre	100		
Boring ID	Depth Interval (ft bgs)		
SSHS-SS-02_8_20	6-8	120	44
SSHS-SS-05_8_20	6-8	79	69
SSHS-B1408	6-8	9.5	110
SSHS-B1409	6-8	9.1	76
SSHS-B1500	6-8	33	20
SSHS-B524	6-8	3.9	13
SSHS-B555	6-8	5.8	21
SSHS-W6-3	6.2-6.2	7.5	85
SSHS-N-E-1	6.7-6.7	6.9	280
SSHS-P2	7.7-7.7	5.9	42
SSHS-B64	6-9	8.7	36
SSHS-B100	6-10	7.8	22
SSHS-EN3-4	5.9-5.9	9.8	37
SSHS-GS3-4	6.5-6.5	9.2	38

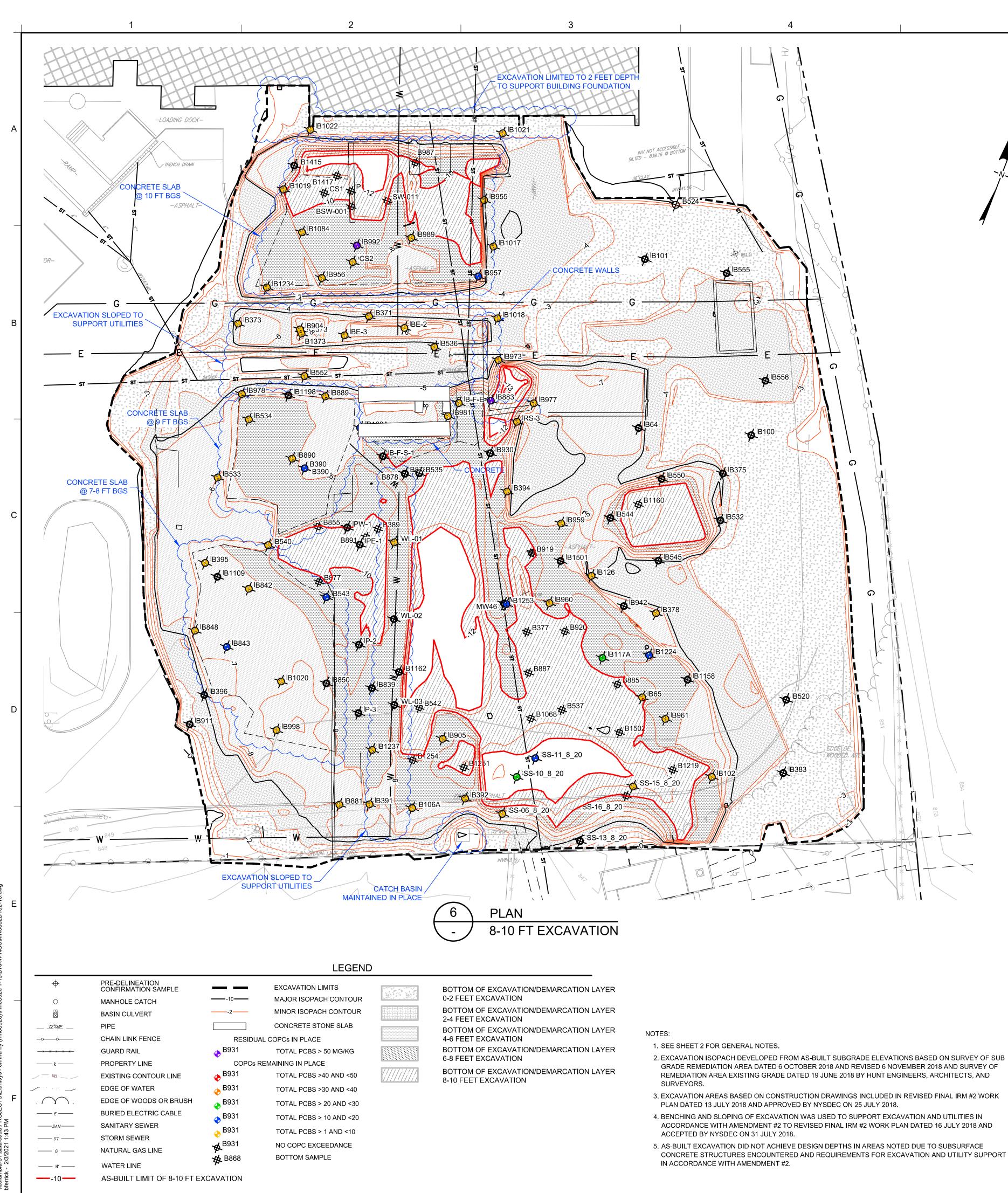
BOTTOM						
Boring ID	Depth Interval (ft bgs)	PCB Concentration (mg/kg)				
SSHS-B883	8-10	95.39				
SSHS-B992	8-10	59.72				
SSHS-B117A	8-10	22.14				
SSHS-B1253	8-10	15.11				
SSHS-B1224	8-10	14.73				
SSHS-B543	8-10	11.04				
SSHS-B957	8-10	10.02				
SSHS-B-F-E-3	8-10	7.661				
SSHS-BE-2	8-10	7.541				
SSHS-B534	8-10	5.99				
SSHS-B961	8-10	5.704				
SSHS-B905	8-10	5.561				
SSHS-B960	8-10	5.014				
SSHS-B106A	8-10	4.494				
SSHS-B956	8-10	4.429				
SSHS-B1234	8-10	3.939				
SSHS-B1237	8-10	3.551				
SSHS-B394	8-10	3.125				
SSHS-B890	8-10	3.081				
SSHS-CS2	8-10	2.859				
SSHS-B65	8-10	2.17				
SSHS-WL-01	8-10	1.571				
SSHS-B981	8-10	1.462				
SSHS-B392	8-10	1.395				
SSHS-B1084	8-10	1.187				
SSHS-RS-3	8-10	1.16				
SSHS-WL-03	8-10	0.9446				
SSHS-PW-1	8-10	0.8967				
SSHS-B-F-S-1	8-10	0.6749				
SSHS-B535	8-10	0.4948				
SSHS-P-3	8-10	0.4735				
SSHS-B1162	8-10	0.3838				
SSHS-B878	8-10	0.3644				
SSHS-P-2	8-10	0.2326				
SSHS-WL-02	8-10	0.2247				
SSHS-B839	8-10	0.117				
SSHS-B1158	8-10	0.1002				
SSHS-B1501	8-10	0.06945				
SSHS-MW46	8-10	0.0671				

NOTES:

RESIDUAL METALS SHOWN IN BOLD (>200X TCLP LEAD OR > 20X TCLP FOR OTHER METALS)

TCLP – TOXICITY CHARACTERISTIC LEACHING PROCEDURE

NOTES:


PCBS REMAINING IN PLACE SHOWN IN ITALICS (>SUBSURFACE CLEANUP GOAL OF 10MG/KG)

RESIDUAL PCBS SHOWN IN BOLD (>= NYS HAZARDOUS WASTE (50MG/KG))

NOTES:

1. THE IRM SOIL CLEANUP GOAL BELOW 2 FT BGS WAS 10 MG/KG.

4	0/0/04								A12
4	2/3/21				AGENCY COMMENTS			AM	AK
2	6/26/20 3/20/20				AGENCY COMMENTS			BGF BGF	AK
1	12/12/19				AGENCY COMMENTS			BGF	AK
REV	DATE				SCRIPTION			DRN	APP
ITLE:	an affili		eering p.c. tec Consultants 6-8	3 FFFT	EXCAVATION		IISY	5	
ROJECT:				REME	DIATION MEA	-			
ROJECT:	FC	ORMER	AS SPERRY-I	I REME S-BUIL REMIN			PORTION		
	FC	ORMER	AS SPERRY-I	I REME S-BUIL REMIN	DIATION MEA T DRAWINGS GTON SITE -		PORTION DATE:		JUNE 2020
	FC	DRMER	AS SPERRY-I	I REME S-BUIL REMIN	DIATION MEA T DRAWINGS GTON SITE - , NEW YORK	NORTH	1		JUNE 2020 MN0832D
	FC n Xar	DRMER	AS SPERRY-I	I REME S-BUIL REMIN	EDIATION MEA T DRAWINGS GTON SITE - , NEW YORK DESIGN BY:	NORTH	DATE:		
ITE: 	FC War SIGNATURE 2/32/3/2021	ORMER	AS SPERRY-I	REMIN	EDIATION MEA T DRAWINGS GTON SITE - , NEW YORK DESIGN BY: DRAWN BY:	NORTH AK TSJ	DATE: PROJECT NO.:		MN0832D

2

- 3. EXCAVATION AREAS BASED ON CONSTRUCTION DRAWINGS INCLUDED IN REVISED FINAL IRM #2 WORK
- 4. BENCHING AND SLOPING OF EXCAVATION WAS USED TO SUPPORT EXCAVATION AND UTILITIES IN ACCORDANCE WITH AMENDMENT #2 TO REVISED FINAL IRM #2 WORK PLAN DATED 16 JULY 2018 AND
- 5. AS-BUILT EXCAVATION DID NOT ACHIEVE DESIGN DEPTHS IN AREAS NOTED DUE TO SUBSURFACE CONCRETE STRUCTURES ENCOUNTERED AND REQUIREMENTS FOR EXCAVATION AND UTILITY SUPPORT

	C	OPCs REMAININ
Boring ID	Depth Interval (ft bgs)	PCB Concentration (mg/kg)
SSHS-B883 SSHS-B992	8-10 8-10	95.39 59.72
SSHS-SS-10_8_2		22.64
SSHS-B117A SSHS-B1253	8-10 8-10	22.14
SSHS-B1255	8-10	15.11 14.73
SSHS-B390	8-10	13.07
SSHS-B160A SSHS-SS-11_8_2	8-10 8-10	12.13 12.01
SSHS-B843	8-10	11.68
SSHS-B543	8-10	11.04
SSHS-B957 SSHS-B904	8-10 8-10	10.02 9.081
SSHS-B371	8-10	8.25
SSHS-B-F-E-3 SSHS-BE-2	8.8-8.8 8.2-8.2	7.661 7.541
SSHS-B881	8-10	6.451
SSHS-B102	8-10 8-10	6.28 6.15
SSHS-B378 SSHS-B989	8-10	6.134
SSHS-B534	8-10	5.99
SSHS-B842 SSHS-B961	8-10 8-10	5.942 5.704
SSHS-B905	8-10	5.561
SSHS-B126 SSHS-B960	8-10 8-10	5.02 5.014
SSHS-B300	8-10	4.811
SSHS-B106A	8-10	4.494
SSHS-B956 SSHS-B1234	8-10 8-10	4.429 3.939
SSHS-B1019	8-10	3.801
SSHS-B1237 SSHS-B978	8-10 8-10	3.551 3.191
SSHS-B533	8-10	3.161
SSHS-B394 SSHS-B889	8-10 8-10	3.125 3.11
SSHS-B890	8-10	3.081
SSHS-CS2	9.1-9.1	2.859
SSHS-B395 SSHS-B973	8-10 8-10	2.83 2.76
SSHS-B1373	8-10	2.545
SSHS-B1021 SSHS-B65	8-10 8-10	2.238 2.17
SSHS-B373	8-10	2.08
SSHS-B848 SSHS-B955	8-10 8-10	1.958 1.931
SSHS-B536	8-10	1.913
SSHS-B540 SSHS-B1020	8-10 8-10	1.885
SSHS-B1020 SSHS-B391	8-10	1.755 1.642
SSHS-WL-01	8.4-8.4	1.571
SSHS-B959 SSHS-B552	8-10 8-10	1.556 1.518
SSHS-BE-3	8.3-8.3	1.516
SSHS-B977 SSHS-B981	8-10 8-10	1.47 1.462
SSHS-SS-06_8_2	8-10	1.433
SSHS-B392 SSHS-B998	8-10 8-10	1.395 1.355
SSHS-B1017	8-10	1.351
SSHS-B1018 SSHS-B1084	8-10 8-10	1.32 1.187
SSHS-B1004 SSHS-RS-3	8.6-8.6	1.16
SSHS-SS-15_8_2	8-10	1.102
SSHS-WL-03 SSHS-PW-1	8.3-8.3 9.2-9.2	0.9446
SSHS-B550	8-10	0.8458
SSHS-B1415 SSHS-B520	8-10 8-10	0.8388
SSHS-B-F-S-1	9.7-9.7	0.6749
SSHS-B1198 SSHS-B556	8-10 8-10	0.6037 0.5785
SSHS-8556 SSHS-B101	8-10 8-10	0.5785
SSHS-B535	8-10	0.4948
SSHS-P-3 SSHS-B1162	8.5-8.5 8-10	0.4735
SSHS-B878	8-10	0.3644
SSHS-B396 SSHS-B850	8-10 8-10	0.362
SSHS-B532	8-10	0.2865
SSHS-PE-1 SSHS-P-2	9.3-9.3 8.8-8.8	0.2604
SSHS-P-2 SSHS-WL-02	8.6-8.6	0.2326
SSHS-B1109	8-10 8-10	0.1709
SSHS-B544 SSHS-B545	8-10 8-10	0.1452 0.1395
SSHS-B375	8-10	0.139
SSHS-B64 SSHS-B839	6-9 8-10	0.13 0.117
SSHS-B942	8-10	0.08225
SSHS-B1501 SSHS-B930	8-10 8-10	0.06945
SSHS-B555	8-10	0.0519
SSHS-SS-13_8_2 SSHS-B911	8-10 8-10	<0.1016 <0.1005
SSHS-B911 SSHS-B1158	8-10	<0.1005
SSHS-MW46 SSHS-B100	8-10 6-10	<0.0671 <0

AS-BUILT DRAWING

NOTES:

RESIDUAL METALS SHOWN IN BOLD (>200X TCLP LEAD OR > 20X TCLP FOR OTHER METALS)

TCLP – TOXICITY CHARACTERISTIC LEACHING PROCEDURE

PCBS REMAINING IN PLACE SHOWN IN ITALICS

(>SUBSURFACE CLEANUP GOAL OF 10MG/KG)

RESIDUAL PCBS SHOWN IN BOLD

(>= NYS HAZARDOUS WASTE (50MG/KG))

NOTES:

0110 000	10 10		00		
SHS-CS2	9.1-9.1		14		
BOTTOM					
Boring ID	Depth Interval (ft bgs)	PCB Concentration (mg/kg)			
SSHS-P1	10-12	168.7			
SSHS-B1417	10-12	40.82			
SSHS-SW-011	10-12	40.67			
SSHS-CS1	10-12	24.18			
SSHS-BSW-001	10-12	18.04			
SSHS-B920	10-12	7.293			
SSHS-B885	10-12	5.601			
SSHS-B987	10-12	4.261			
SSHS-B887	10-12	2.961			
SSHS-B1068	10-12	2.687			
SSHS-B919	10-12	2.281			

2.101

1.529

0.744

0.5337

0.3043 0.1635

1. THE IRM SOIL CLEANUP GOAL BELOW 2 FT BGS WAS 10 MG/KG.

2. METALS RESULTS ARE SHOWN ONLY FOR METAL CONSTITUENTS WITH AT LEAST ONE EXCEEDANCE OF RESTRICTED RESIDENTIAL SOIL CLEANUP OBJECTIVES (6 NYCRR PART 375-6). 20' 40'

			SCA	LE IN FEET				
4	2/3/21		RESPONSE TO	AGENCY COMMENTS			AM	AK
3	6/26/20		RESPONSE TO	AGENCY COMMENTS			BGF	AK
2	3/20/20		RESPONSE TO	AGENCY COMMENTS			BGF	AK
1	12/12/19		RESPONSE TO	AGENCY COMMENTS			BGF	AK
REV	DATE		DES	CRIPTION			DRN	APP
TITLE:		engin	Bonaparte P neering p.c. ntec Consultants 8-10 FEET	EXCAVATIO		İSY	S	
PROJECT: SITE:	FOR		INTERIM REME AS-BUIL	T DRAWINGS		PORTION		
			ELMIRA,	, NEW YORK				
			OF NEW LO	DESIGN BY:	AK	DATE:	J	UNE 2020
R	6/	0,	AN HARASNOS P	DRAWN BY:	TSJ	PROJECT NO .:		MN0832D
an	n pang	æn	ELER .	CHECKED BY:	JMT	FILE:	MN083	32D102-10
	SIGNATURE 2/3/2021	_	March ORODGA-1	REVIEWED BY:	PLB	FIGURE NO.:		
	DATE		POFESSIONA	APPROVED BY:	AK	7	_ OF	13
		7		Τ		8		

G (8-10 FT BGS)						
			Metal			
			Arsenic			
			mg/kg			
Metals 20x TCLP	Metals 20x TCLP Screening (Lead = 1000 ppm)					
Boring ID	Depth Inte	erval (ft bgs)				
SSHS-B64	6-9		8.7			
SSHS-B100	6-10		7.8			
SSHS-B101	8-10	8-10				
SSHS-B520	8-10	8-10				
SSHS-B524	8-10	8-10				
SSHS-B555	8-10		3.8			
SSHS-B65	8-10		63			
SSHS-CS2	9.1-9.1		14			
	воттом					
Boring ID	Depth Interva (ft bgs)	I PCB Concentratio (mg/kg)	on			
SSHS-P1	10-12	168.7				
SSHS-B1417	10-12	40.82				
SSHS-SW-011	10-12	40.67				
SSHS-CS1	10-12	24.18				

<u>10-12</u> 10-12

SSHS-B877

SSHS-B855

SSHS-B37710-12SSHS-B125410-12

 SSHS-B891
 10-12

 SSHS-B878
 10-12

 SSHS-B676
 10-12
 0.1033

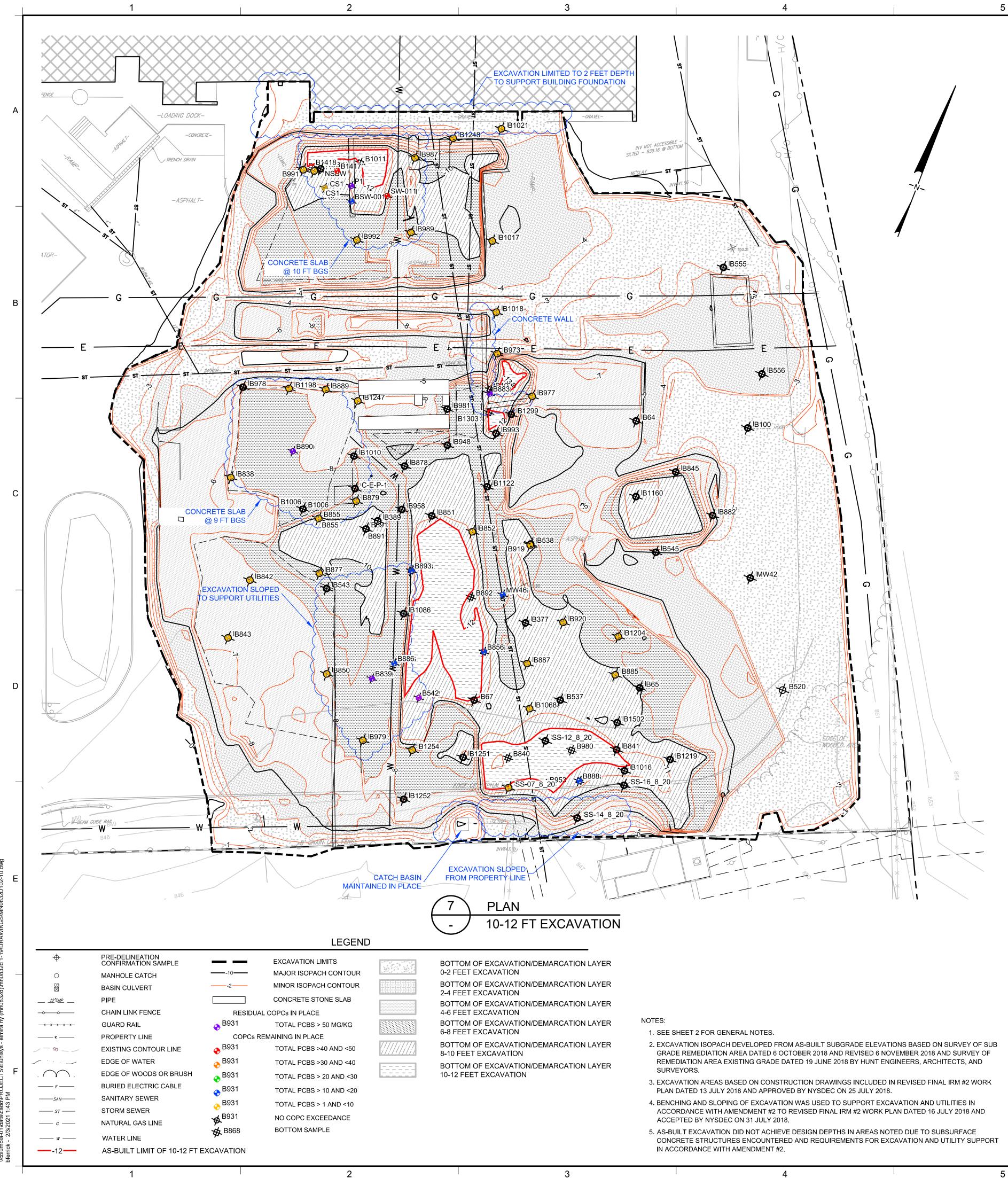
 SSHS-SS-16_8_20
 10-12
 0.1078

 SSHS-B1219
 10-12
 0.0958

 SSHS-B537
 10-12
 0.0765

 SSHS-B1502
 10-12
 0.06925

 SSHS-B538
 10-12
 0.0641


 SSHS-B300
 1012
 0.00041

 SSHS-B1160
 10-12
 0.06035

 SSHS-B542
 10-12
 0.0593

 SSHS-B389
 10-12
 0.0084

 SSHS-B1251
 10-12
 <0.1029</td>

_	
LAYER	
LAYER	
LAYER	
LAYER	NOTES: 1. SEE SHEET 2 FOR GENERAL NOTES.
LAYER LAYER	2. EXCAVATION ISOPACH DEVELOPED FROM AS-BUILT SUBGRADE ELEVATIONS BASED ON SURVEY OF GRADE REMEDIATION AREA DATED 6 OCTOBER 2018 AND REVISED 6 NOVEMBER 2018 AND SURVEY REMEDIATION AREA EXISTING GRADE DATED 19 JUNE 2018 BY HUNT ENGINEERS, ARCHITECTS, AND SURVEYORS.
	3. EXCAVATION AREAS BASED ON CONSTRUCTION DRAWINGS INCLUDED IN REVISED FINAL IRM #2 WC PLAN DATED 13 JULY 2018 AND APPROVED BY NYSDEC ON 25 JULY 2018.
	4. BENCHING AND SLOPING OF EXCAVATION WAS USED TO SUPPORT EXCAVATION AND UTILITIES IN ACCORDANCE WITH AMENDMENT #2 TO REVISED FINAL IRM #2 WORK PLAN DATED 16 JULY 2018 ANI ACCEPTED BY NYSDEC ON 31 JULY 2018.
	5. AS-BUILT EXCAVATION DID NOT ACHIEVE DESIGN DEPTHS IN AREAS NOTED DUE TO SUBSURFACE

Boring ID	Depth Interval (ft bgs)	PCB Concentratio (mg/kg)
SSHS-P1	10-12	168.7
SSHS-B890	10-12	118
SSHS-B883	10-12	62.84
SSHS-B839	10-12	52.62
SSHS-B1417	10-12	40.82
SSHS-SW-011	10-12	40.67
SSHS-CS1	10.3-10.3	24.18
SSHS-BSW-001	10-12	18.04
SSHS-B856	10-12 10-12	16.48
SSHS-B888 SSHS-B893	10-12	15.91 15.36
SSHS-MW46	10-12	12.81
SSHS-B886	10-12	11.82
SSHS-B842	10-12	9.529
SSHS-B843	10-12	8.284
SSHS-B850	10-12	7.943
SSHS-B979	10-12	7.377
SSHS-B920	10-12	7.293
SSHS-B991	10-12	6.336
SSHS-B838	10-12	6.191
SSHS-B977	10-12	5.763
SSHS-B885	10-12	5.601
SSHS-B1248	10-12	5.371
SSHS-B989	10-12	4.941
SSHS-B987	10-12	4.261
SSHS-B889	10-12	4.181
SSHS-B1247	10-12	4.042
SSHS-B1198	10-12	3.15
SSHS-B1021 SSHS-B1018	10-12 10-12	3.109 2.99
SSHS-B1010 SSHS-B887	10-12	2.99
SSHS-B1017	10-12	2.851
SSHS-B1068	10-12	2.687
SSHS-B992	10-12	2.623
SSHS-B1204	10-12	2.281
SSHS-B919	10-12	2.281
SSHS-B1018	10-12	2.143
SSHS-B852	10-12	2.106
SSHS-B877	10-12	2.101
SSHS-B879	10-12	1.945
SSHS-B855	10-12	1.529
SSHS-B973	10-12	1.466
SSHS-SS-07_8_20	10-12	1.384
SSHS-B1418	10-12	1.317
SSHS-B1254	10-12	1.2
SSHS-B1086	10-12	0.9543
SSHS-SS-12_8_20 SSHS-B377	10-12 10-12	0.8495
SSHS-B981	10-12	0.7215
SSHS-B851	10-12	0.6693
SSHS-NSBW	10-12	0.5887
SSHS-B978	10-12	0.5837
SSHS-B958	10-12	0.5551
SSHS-B993	10-12	0.544
SSHS-B1254	10-12	0.5337
SSHS-B556	10-12	0.306
SSHS-B891	10-12	0.3043
SSHS-B1299	10-12	0.2789
SSHS-B1006	10-12	0.1989
SSHS-B878	10-12	0.1635
SSHS-C-E-P-1	10.1-10.1	0.1624
SSHS-B1010	10-12	0.1258
SSHS-B882	10-12	0.1136
SSHS-B948	10-12	0.1052
SSHS-B841	10-12	0.1029
SSHS-SS-14_8_20	10-12	0.0786
SSHS-B1016 SSHS-B1502	10-12 10-12	0.07705
SSHS-B67	10-12	0.065
SSHS-MW42	10-12	0.0636
SSHS-B1160	10-12	0.06035
SSHS-B1252	10-12	0.059
		0.05345
SSHS-B1252	10-12	M
	10-12 10-12	0.03825
SSHS-B1252		
SSHS-B1252 SSHS-B555	10-12	0.03825
SSHS-B1252 SSHS-B555 SSHS-B389	10-12 10-12	0.03825 0.0084
SSHS-B1252 SSHS-B555 SSHS-B389 SSHS-SS-16_8_20	10-12 10-12 10-12	0.03825 0.0084 <0.1078
SSHS-B1252 SSHS-B555 SSHS-B389 SSHS-SS-16_8_20 SSHS-B1251	10-12 10-12 10-12 10-12	0.03825 0.0084 <0.1078 <0.1029
SSHS-B1252 SSHS-B555 SSHS-B389 SSHS-SS-16_8_20 SSHS-B1251 SSHS-B845	10-12 10-12 10-12 10-12 10-12	0.03825 0.0084 <0.1078 <0.1029 <0.1029
SSHS-B1252 SSHS-B555 SSHS-B389 SSHS-SS-16_8_20 SSHS-B1251 SSHS-B845 SSHS-B1219	10-12 10-12 10-12 10-12 10-12 10-12	0.03825 0.0084 <0.1078 <0.1029 <0.1029 <0.0958
SSHS-B1252 SSHS-B555 SSHS-B389 SSHS-SS-16_8_20 SSHS-B1251 SSHS-B1251 SSHS-B845 SSHS-B1219 SSHS-B1122	10-12 10-12 10-12 10-12 10-12 10-12 10-12	0.03825 0.0084 <0.1078 <0.1029 <0.1029 <0.0958 <0.0955
SSHS-B1252 SSHS-B555 SSHS-B389 SSHS-SS-16_8_20 SSHS-B1251 SSHS-B1251 SSHS-B1219 SSHS-B1219 SSHS-B1122 SSHS-B1249	10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12	0.03825 0.0084 <0.1078 <0.1029 <0.1029 <0.0958 <0.0955 <0.0929
SSHS-B1252 SSHS-B555 SSHS-B389 SSHS-SS-16_8_20 SSHS-B1251 SSHS-B845 SSHS-B1219 SSHS-B1219 SSHS-B1122 SSHS-B1249 SSHS-B537	10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12	0.03825 0.0084 <0.1078 <0.1029 <0.1029 <0.0958 <0.0955 <0.0929 <0.0765
SSHS-B1252 SSHS-B555 SSHS-B389 SSHS-SS-16_8_20 SSHS-B1251 SSHS-B1251 SSHS-B1219 SSHS-B1219 SSHS-B1122 SSHS-B1249 SSHS-B537 SSHS-B543	10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12	0.03825 0.0084 <0.1078 <0.1029 <0.1029 <0.0958 <0.0955 <0.0929 <0.0765 <0.0675
SSHS-B1252 SSHS-B555 SSHS-B389 SSHS-B389 SSHS-B1251 SSHS-B1251 SSHS-B1219 SSHS-B1219 SSHS-B122 SSHS-B1249 SSHS-B537 SSHS-B543 SSHS-B543 SSHS-B545 SSHS-B542	10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12	0.03825 0.0084 <0.1078 <0.1029 <0.0958 <0.0955 <0.0929 <0.0765 <0.0675 <0.0641 <0.0602 <0.0593
SSHS-B1252 SSHS-B555 SSHS-B389 SSHS-B389 SSHS-B1251 SSHS-B1251 SSHS-B1219 SSHS-B1219 SSHS-B122 SSHS-B1249 SSHS-B537 SSHS-B543 SSHS-B543 SSHS-B545 SSHS-B545 SSHS-B542 SSHS-B100	10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-13.5	0.03825 0.0084 <0.1078 <0.1029 <0.0958 <0.0955 <0.0929 <0.0765 <0.0675 <0.0641 <0.0602 <0.0593 <0
SSHS-B1252 SSHS-B555 SSHS-B389 SSHS-B389 SSHS-B1251 SSHS-B1251 SSHS-B1219 SSHS-B1219 SSHS-B122 SSHS-B1249 SSHS-B537 SSHS-B543 SSHS-B543 SSHS-B545 SSHS-B542	10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12 10-12	0.03825 0.0084 <0.1078 <0.1029 <0.0958 <0.0955 <0.0929 <0.0765 <0.0675 <0.0641 <0.0602 <0.0593

PCBS REMAINING IN PLACE SHOWN IN ITALICS (>SUBSURFACE CLEANUP GOAL OF 10MG/KG)

RESIDUAL PCBS SHOWN IN BOLD

(>= NYS HAZARDOUS WASTE (50MG/KG))

AS-BUILT DRAWING

6

COPCs REMAINING (10-12 FT BGS)

		Metals							
		Lead	Arsenic	Barium	Chromium (III+VI)	Copper	Mercury	Nickel	
		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	
Metals 20x TCLP	Screening (Lead = 1000 pr	1000	100	2000	100		4		
Borning ID	Depth Interval (ft bgs)								
SSHS-CS1	10.3-10.3	170	10	150	20	150	0.53	200	
SSHS-B100	10-13.5	13	<mark>8.2</mark>	81	15	15	<0.028J	19B	
SSHS-BSW-001	10-12	650	28	580	170	330	1.4	2000	
SSHS-NSBW	10-12	14	5.3	56	8.4	28	0.1	37	
SSHS-P1	10-12	210	10	400	17	780	8.8	34	
SSHS-B1251	10-12	15	30	110	18	<mark>68</mark>	0.038U	12	
SSHS-B1252	10-12	11	17	98	16	36	0.04U	15	
SSHS-B1254	10-12	23	<mark>16</mark>	<mark>59</mark>	16	80	<mark>0.094</mark> =	23	
SSHS-B1299	10-12	290	21	180	100	180	0.069	2000	
SSHS-B520	10-12	10	10	70	13	32	0.031J	27	
SSHS-B537	10-12	7.7	53	71	9.2	25	<0.008U	10	
SSHS-B542	10-12	2100	61	76	13	95	0.046	24	
SSHS-B64	10-12	12	9	72	14	15	<0.017J	19	
SSHS-B65	10-12	15	51	93	11B	22	<0.026J	8.8	
SSHS-B67	10-12	7.2	49	82	11B	41	<0.012U	8.7	

NOTES:

RESIDUAL METALS SHOWN IN BOLD (>200X TCLP LEAD OR > 20X TCLP FOR OTHER METALS)

TCLP – TOXICITY CHARACTERISTIC LEACHING PROCEDURE

воттом							
Boring ID	Depth Interval (ft bgs)	PCB Concentration (mg/kg)					
SSHS-B1008	12-14	36.37					
SSHS-B856	12-14	7.023					
SSHS-B893	12-14	5.085					
SSHS-B1011	12-14	3.571					
SSHS-B888	12-14	3.184					
SSHS-B840	12-14	2.557					
SSHS-B1303	12-14	2.313					
SSHS-B841	12-14	1.761					
SSHS-B892	12-14	1.586					
SSHS-B980	12-14	1.431					
SSHS-B973	12-14	0.7655					
SSHS-B953	12-14	0.6239					

NOTES:

1. THE IRM SOIL CLEANUP GOAL BELOW 2 FT BGS WAS 10 MG/KG.

4	2/3/21		RESF	PONSE TO	AGENCY COMMENTS			AM	AK
3	6/26/20		RESF	PONSE TO	AGENCY COMMENTS			BGF	AK
2	3/20/20		RESF	PONSE TO	AGENCY COMMENTS			BGF	AK
1	12/12/19		RESF		AGENCY COMMENTS			BGF	AK
REV	DATE			DES	CRIPTION			DRN	APP
TITLE:	an aj	engin ffiliate of Geosyn					ISY	S	
			10-12	2 FEEI	EXCAVATIC	אוע			
PROJECT:			INTERIM	REME	DIATION MEA	ASURE			
PROJECT: SITE:		FORMER	INTERIM I AS SPERRY-R	REME -BUILT		ASURE	PORTION		
		FORMER	INTERIM I AS SPERRY-R	REME -BUILT	DIATION MEA DRAWINGS GTON SITE -	ASURE	PORTION DATE:		UNE 2020
	N.	FORMER	INTERIM I AS SPERRY-R	REME -BUILT	DIATION MEA DRAWINGS GTON SITE - NEW YORK	ASURE NORTH		J	UNE 2020 MN0832D
	n Ka	FORMER	INTERIM I AS SPERRY-R	REME -BUILT	DIATION MEA DRAWINGS GTON SITE - NEW YORK DESIGN BY:	ASURE NORTH AK	DATE:	J	
	SIGNATURE 2/3/202	mæl	INTERIM I AS SPERRY-R	REME -BUILT	DIATION MEA DRAWINGS GTON SITE - NEW YORK DESIGN BY: DRAWN BY:	ASURE NORTH AK TSJ	DATE: PROJECT NO.:	J	MN0832D

AS-BUILT DRAWING

6

-	
LAYER	
LAYER	
LAYER	
LAYER	NOTES:
	1. SEE SHEET 2 FOR GENERAL NOTES.
LAYER	2. EXCAVATION ISOPACH DEVELOPED FROM AS-BUILT SUBGRADE ELEVATION GRADE REMEDIATION AREA DATED 6 OCTOBER 2018 AND REVISED 6 NOV
LAYER	REMEDIATION AREA EXISTING GRADE DATED 19 JUNE 2018 BY HUNT ENG SURVEYORS.
	3. EXCAVATION AREAS BASED ON CONSTRUCTION DRAWINGS INCLUDED IN PLAN DATED 13 JULY 2018 AND APPROVED BY NYSDEC ON 25 JULY 2018.
	4. BENCHING AND SLOPING OF EXCAVATION WAS USED TO SUPPORT EXCA ACCORDANCE WITH AMENDMENT #2 TO REVISED FINAL IRM #2 WORK PL/ ACCEPTED BY NYSDEC ON 31 JULY 2018.
	5. AS-BUILT EXCAVATION DID NOT ACHIEVE DESIGN DEPTHS IN AREAS NOT CONCRETE STRUCTURES ENCOUNTERED AND REQUIREMENTS FOR EXC

	C	OPCs REMAININ
Boring ID	Depth Interval (ft bgs)	PCB Concentration (mg/kg)
SSHS-B1007	12-14	40.82
SSHS-B1008	12-14	36.37
SSHS-B957	12-14	8.015
SSHS-B856	12-14	7.023
SSHS-B977	12-14	6.633
SSHS-B886	12-14	5.812
SSHS-B1010	12-14	5.653
SSHS-B893	12-14	5.085
SSHS-B1023b	12-14	5.034
SSHS-B889	12-14	4.451
SSHS-B917	12-14	4.178
SSHS-B978	12-14	3.841
SSHS-B1011	12-14	3.571
SSHS-B888	12-14	3.184
SSHS-B839	12-14	2.953
SSHS-B840	12-14	2.557
SSHS-B879	12-14	2.513
SSHS-B1303	12-14	2.313
SSHS-B556	12-14	1.86
SSHS-B841	12-14	1.761
SSHS-B892	12-14	1.586
SSHS-B980	12-14	1.431
SSHS-B1015	12-14	0.8129
SSHS-B973	12-14	0.7655
SSHS-B953	12-14	0.6239
SSHS-B838	12-14	0.582
SSHS-B981	12-14	0.354
SSHS-B1254	12-14	0.31
SSHS-B855	12-14	0.2202
SSHS-B1254	12-14	0.1634
SSHS-B1198	12-14	0.1068
SSHS-B555	12-14	0.09735
SSHS-B993	12-14	0.07355
SSHS-MW46	12-14	0.05025
SSHS-B1205	12-14	<0.1047
SSHS-B1104	12-14	<0.0951
SSHS-B100	10-13.5	<0
SSHS-B101	12-15.5	<0

NOTES:

PCBS REMAINING IN PLACE SHOWN IN ITALICS

(>SUBSURFACE CLEANUP GOAL OF 10MG/KG)

RESIDUAL PCBS SHOWN IN BOLD

(>= NYS HAZARDOUS WASTE (50MG/KG))

5

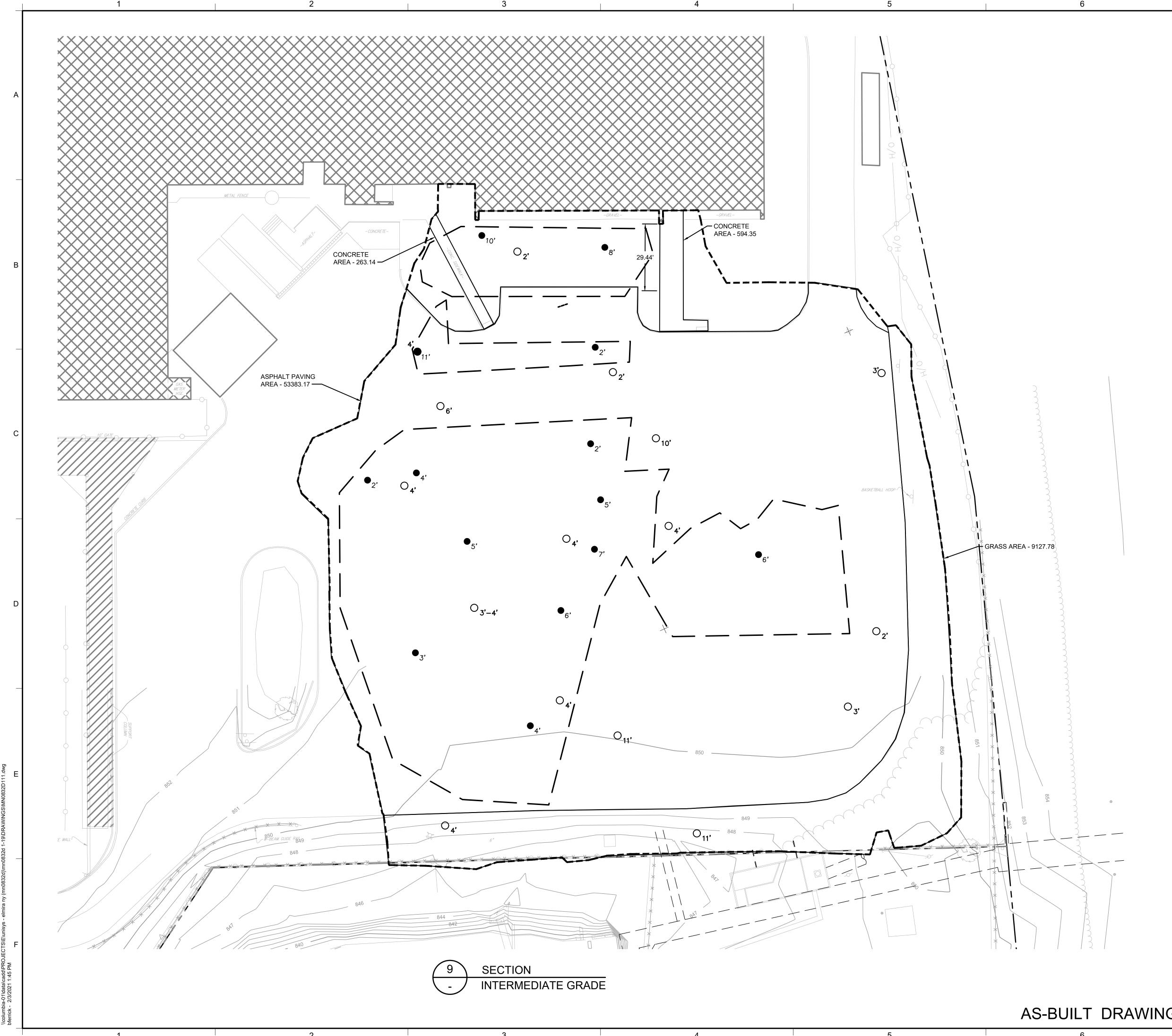
1	G (12-14 FT BGS)		
1			Metal
			Arsenic
			mg/kg
	Metals 20x TCLP S	creening (Lead = 1000 pr	100
	Sample ID	Depth Interval (ft bgs)	
	SSHS-B1254	12-14	28
	SSHS-B1303	12-14	9.1
	SSHS-B537	12-14	38
	SSHS-B542	12-14	57
	SSHS-B101	12-15.5	5.6
	SSHS-B100	10-13.5	8.2

NOTES:

RESIDUAL METALS SHOWN IN BOLD (>200X TCLP LEAD OR > 20X TCLP FOR OTHER METALS)

TCLP – TOXICITY CHARACTERISTIC LEACHING PROCEDURE

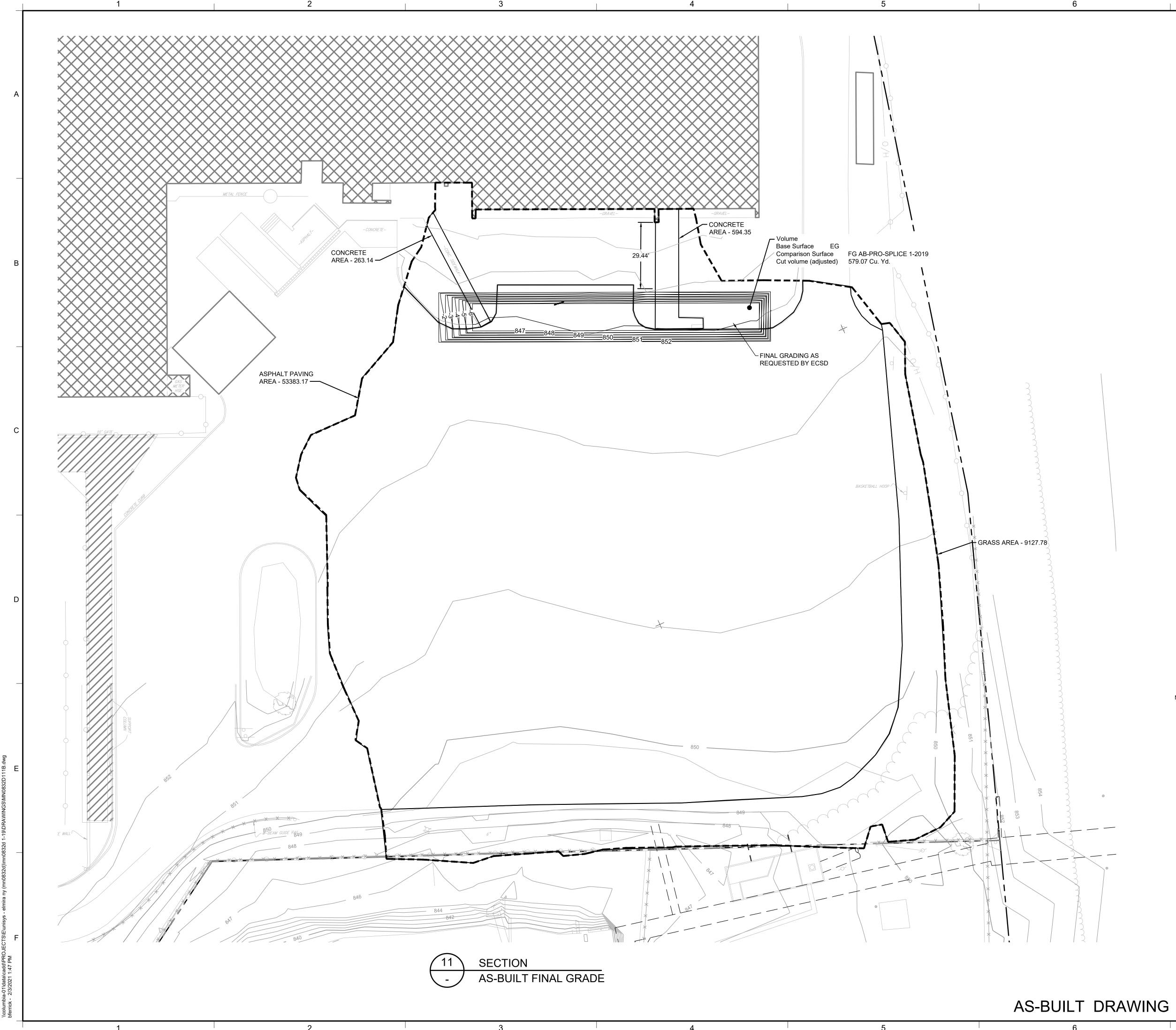
NOTES:


1. THE IRM SOIL CLEANUP GOAL BELOW 2 FT BGS WAS 10 MG/KG.

7

2. METALS RESULTS ARE SHOWN ONLY FOR METAL CONSTITUENTS WITH AT LEAST ONE EXCEEDANCE OF RESTRICTED RESIDENTIAL SOIL CLEANUP OBJECTIVES (6 NYCRR PART 375-6). 20' 40' 0

				20 40				
			SC	ALE IN FEET				
4	2/3/21		RESPONSE 1	TO AGENCY COMMENTS			AM	AK
3	6/26/20		RESPONSE 1	TO AGENCY COMMENTS			BGF	AK
2	3/20/20		RESPONSE 1	TO AGENCY COMMENTS			BGF	AK
1	12/12/19		RESPONSE 1	TO AGENCY COMMENTS			BGF	AK
REV	DATE		D	ESCRIPTION			DRN	APP
			eering p.c.		TIN	isy	S	
	an affiliate of	f Geosynte	ec Consultants					
TITLE:			12-14 FE	ET EXCAVATIO	N			
PROJECT:				EDIATION MEA	_			
SITE:	FORM	MER	SPERRY-REMII ELMIR/	NGTON SITE - I A, NEW YORK	NORTH	PORTION		
			OFNEW	DESIGN BY:	AK	DATE:	ال	UNE 2020
R	91	Δ.	AR KRASNODO P	DRAWN BY:	TSJ	PROJECT NO.:		MN0832D
Un	n pango	K	× ÷	CHECKED BY:	JMT	FILE:	MN083	2D102-10
	SIGNATURE	-	CHILL CROOKEAL	REVIEWED BY:	PLB	FIGURE NO.:		
	2/3/2021 DATE		POFESSION P	APPROVED BY:	AK	9	_ OF	13


8

				– MIN. 2 FOOT T	HICK IMPOR	RTED		
				SOIL COVER S				
DE	MARCATION	N LAYER EXTILE (NOT	E 3)-		<u> </u>	2 FEET EXCAVATION BENCHES	ACKFILL	
	(-)	AS-BUILT SOI	_ COVER S	YSTEM	<u></u> I		
		\smile						
HUNT E 2. EXTEN	ENGINEERS, A T OF REUSE XTILE FABRI	ARCHITECTS, BACKFILL IS E C WAS PLACE	D ON SURVEY OF REMEDIA AND SURVEYORS. BASED ON FIELD OBSERVA ED AT THE BOTTOM OF THE	TIONS.				
		EE133109.						
		EE13 3 10 9.	0	20' 40	•			
4	2/3/21	EE13 3 10 9.			•		AM	
4 3 2			RESPONSE TO		,		AM BGF BGF	AK
3	2/3/21 6/26/20	LE 13 3 10 9.	RESPONSE TO RESPONSE TO	AGENCY COMMENTS	•		BGF	AK AK
3 2	2/3/21 6/26/20 3/20/20	EE 13 3 10 9.	RESPONSE TO RESPONSE TO RESPONSE TO	AGENCY COMMENTS AGENCY COMMENTS AGENCY COMMENTS	,		BGF BGF	AK AK AK APF
3 2 1	2/3/21 6/26/20 3/20/20 12/12/19 DATE		RESPONSE TO RESPONSE TO RESPONSE TO DES	AGENCY COMMENTS AGENCY COMMENTS AGENCY COMMENTS AGENCY COMMENTS			BGF BGF DRN	AK AK AK
3 2 1	2/3/21 6/26/20 3/20/20 12/12/19 DATE	ech and B	RESPONSE TO RESPONSE TO RESPONSE TO	AGENCY COMMENTS AGENCY COMMENTS AGENCY COMMENTS AGENCY COMMENTS			BGF BGF DRN	AK AK AK
3 2 1	2/3/21 6/26/20 3/20/20 12/12/19 DATE Bee	ech and B engir	RESPONSE TO RESPONSE TO RESPONSE TO DES Conaparte	AGENCY COMMENTS AGENCY COMMENTS AGENCY COMMENTS AGENCY COMMENTS			BGF BGF DRN	AK AK AK
3 2 1	2/3/21 6/26/20 3/20/20 12/12/19 DATE Bee	ech and B engir	RESPONSE TO RESPONSE TO RESPONSE TO DES Conaparte C neering p.c.	AGENCY COMMENTS AGENCY COMMENTS AGENCY COMMENTS AGENCY COMMENTS CRIPTION	UN	isy	BGF BGF DRN	AK AK AK
3 2 1 REV	2/3/21 6/26/20 3/20/20 12/12/19 DATE Bee	ech and B engir	RESPONSE TO RESPONSE TO RESPONSE TO DES Conaparte Neering p.c. INTERMEDIAT	AGENCY COMMENTS AGENCY COMMENTS AGENCY COMMENTS AGENCY COMMENTS CRIPTION	UN TION	ISY	BGF BGF DRN	AK AK AK
3 2 1 REV	2/3/21 6/26/20 3/20/20 12/12/19 DATE Bee an af	ech and B engir filiate of Geosyr	RESPONSE TO RESPONSE TO RESPONSE TO DES Conaparte eering p.c. atec Consultants INTERIM REME AS-BUIL SPERRY-REMING	AGENCY COMMENTS AGENCY COMMENTS AGENCY COMMENTS AGENCY COMMENTS CRIPTION TE RESTORA DIATION ME	UN TION ASURE		BGF BGF DRN	AK AK AK
3 2 1 REV TITLE:	2/3/21 6/26/20 3/20/20 12/12/19 DATE Bee an af	ech and B engir filiate of Geosyr	RESPONSE TO RESPONSE TO RESPONSE TO DES Conaparte eering p.c. atec Consultants INTERIM REME AS-BUIL SPERRY-REMING	AGENCY COMMENTS AGENCY COMMENTS AGENCY COMMENTS AGENCY COMMENTS CRIPTION TE RESTORA DIATION ME DIATION ME DRAWINGS GTON SITE -	UN TION ASURE		BGF BGF DRN	AK AK APF
3 2 1 REV TITLE:	2/3/21 6/26/20 3/20/20 12/12/19 DATE Bee an af	ech and B engir filiate of Geosyr	RESPONSE TO RESPONSE TO RESPONSE TO DES Conaparte eering p.c. atec Consultants INTERIM REME AS-BUIL SPERRY-REMING	AGENCY COMMENTS AGENCY COMMENTS AGENCY COMMENTS AGENCY COMMENTS CRIPTION TE RESTORA DIATION MEA DIATION MEA DRAWINGS GTON SITE - NEW YORK DESIGN BY:	UN TION ASURE NORTH	PORTION DATE:	BGF BGF DRN	AK AK APF
3 2 1 REV TITLE:	2/3/21 6/26/20 3/20/20 12/12/19 DATE Bee an af	ech and B engir filiate of Geosyr	RESPONSE TO RESPONSE TO RESPONSE TO DES Conaparte neering p.c. atec Consultants INTERMEDIAT INTERIM REME AS-BUIL SPERRY-REMINO ELMIRA,	AGENCY COMMENTS AGENCY COMMENTS AGENCY COMMENTS AGENCY COMMENTS CRIPTION TE RESTORA DIATION MEA DIATION MEA DIATION MEA DIATION SITE - NEW YORK	UN TION ASURE NORTH	PORTION	BGF BGF DRN	АК АК АРР INE 202 ИN0832
3 2 1 REV TITLE:	2/3/21 6/26/20 3/20/20 12/12/19 DATE Bee an af	ech and B engir filiate of Geosyr	RESPONSE TO RESPONSE TO RESPONSE TO DES Conaparte neering p.c. atec Consultants INTERMEDIAT INTERIM REME AS-BUIL SPERRY-REMINO ELMIRA,	AGENCY COMMENTS AGENCY COMMENTS AGENCY COMMENTS AGENCY COMMENTS CRIPTION TE RESTORA DIATION MEA DIATION MEA DIATION MEA DRAWINGS GTON SITE - NEW YORK DESIGN BY: DRAWN BY:	UN TION ASURE NORTH AK TSJ	PORTION DATE: PROJECT NO.:	BGF BGF DRN	АК АК АРР INE 202 ИN0832
3 2 1 REV TITLE:	2/3/21 6/26/20 3/20/20 12/12/19 DATE Bee an af	ech and B engir filiate of Geosyr	RESPONSE TO RESPONSE TO RESPONSE TO DES Conaparte neering p.c. atec Consultants INTERMEDIAT INTERIM REME AS-BUIL SPERRY-REMINO ELMIRA,	AGENCY COMMENTS AGENCY COMMENTS AGENCY COMMENTS AGENCY COMMENTS CRIPTION TE RESTORA DIATION MEA DIATION MEA DRAWINGS GTON SITE - NEW YORK DESIGN BY: DRAWN BY: CHECKED BY:	UN TION ASURE NORTH AK TSJ JMT	PORTION DATE: PROJECT NO.: FILE:	BGF BGF DRN	AK AK AK

LEGEND MANHOLE CATCH \bigcirc $\ominus \blacksquare$ BASIN CULVERT ____12<u>"CMP__</u>___ PIPE CHAIN LINK FENCE -0----- $-\boxtimes$ WOODEN FENCE PROPERTY LINE ------ °C ------EXISTING CONTOUR LINE 90_____ / · · · _ EDGE OF WATER EDGE OF WOODS OR BRUSH BURIED ELECTRIC CABLE ——— E ——— SANITARY SEWER STORM SEWER _____ ST _____ NATURAL GAS LINE _____ G _____ WATER LINE _____ W _____ LIMITS OF REUSE BACKFILL ____ DEPTH TO REUSE BACKFILL 6' DEPTH OF IMPORTED BACKFILL 2'〇

7

LEC	GEND
0	MANHOLE CATCH
	BASIN CULVERT
12 <u>"CMP</u>	PIPE
-0	CHAIN LINK FENCE
	WOODEN FENCE
P	PROPERTY LINE
90	EXISTING CONTOUR LINE
	EDGE OF WATER
	EDGE OF WOODS OR BRUSH
——— E ———	BURIED ELECTRIC CABLE
	SANITARY SEWER
ST	STORM SEWER
G	NATURAL GAS LINE
<i>W</i>	WATER LINE
<u> </u>	FINAL GRADE CONTOUR

NOTES:

Um 1

SIGNATURE

2/3/2021

DATE

1. FINAL GRADE ELEVATIONS BASED ON SURVEY OF REMEDIATION AREA FINAL GRADE DATED 7 SEPTEMBER 2018 BY HUNT ENGINEERS, ARCHITECTS, AND SURVEYORS.

2. SEE DETAIL 11 ON SHEET 10 FOR DESCRIPTION OF AS-BUILT SOIL COVER SYSTEM.

3 GEOTEXTILE FABRIC WAS PLACED AT THE BOTTOM OF THE EXCAVATION WHERE DESIGN DEPTH WAS NOT

		0 20' 40'		
4	2/3/21	RESPONSET AGENCYCOMMENTS	AM	AK
3	6/26/20	RESPONSE TO AGENCY COMMENTS	BGF	AK
2	3/20/20	RESPONSE TO AGENCY COMMENTS	BGF	AK
1	12/12/19	RESPONSE TO AGENCY COMMENTS	BGF	AK
REV	DATE	DESCRIPTION	DRN	APP
TITLE:	an affiliate	e of Geosyntec Consultants	ÍSYS	
TITLE:	an affiliate	AS-BUILT FINAL RESTORATION		
	an affiliate	e of Geosyntec Consultants		
PROJECT:		AS-BUILT FINAL RESTORATION		
TITLE: PROJECT: SITE:		AS-BUILT FINAL RESTORATION INTERIM REMEDIATION MEASURE AS-BUILT DRAWINGS RMER SPERRY-REMINGTON SITE - NORTH PO ELMIRA, NEW YORK	ORTION	NE 2020

CHECKED BY:

REVIEWED BY:

APPROVED BY:

JMT

AK

FILE:

PLB FIGURE NO.:

MN0832D111B

<u>11</u> OF <u>13</u>

6

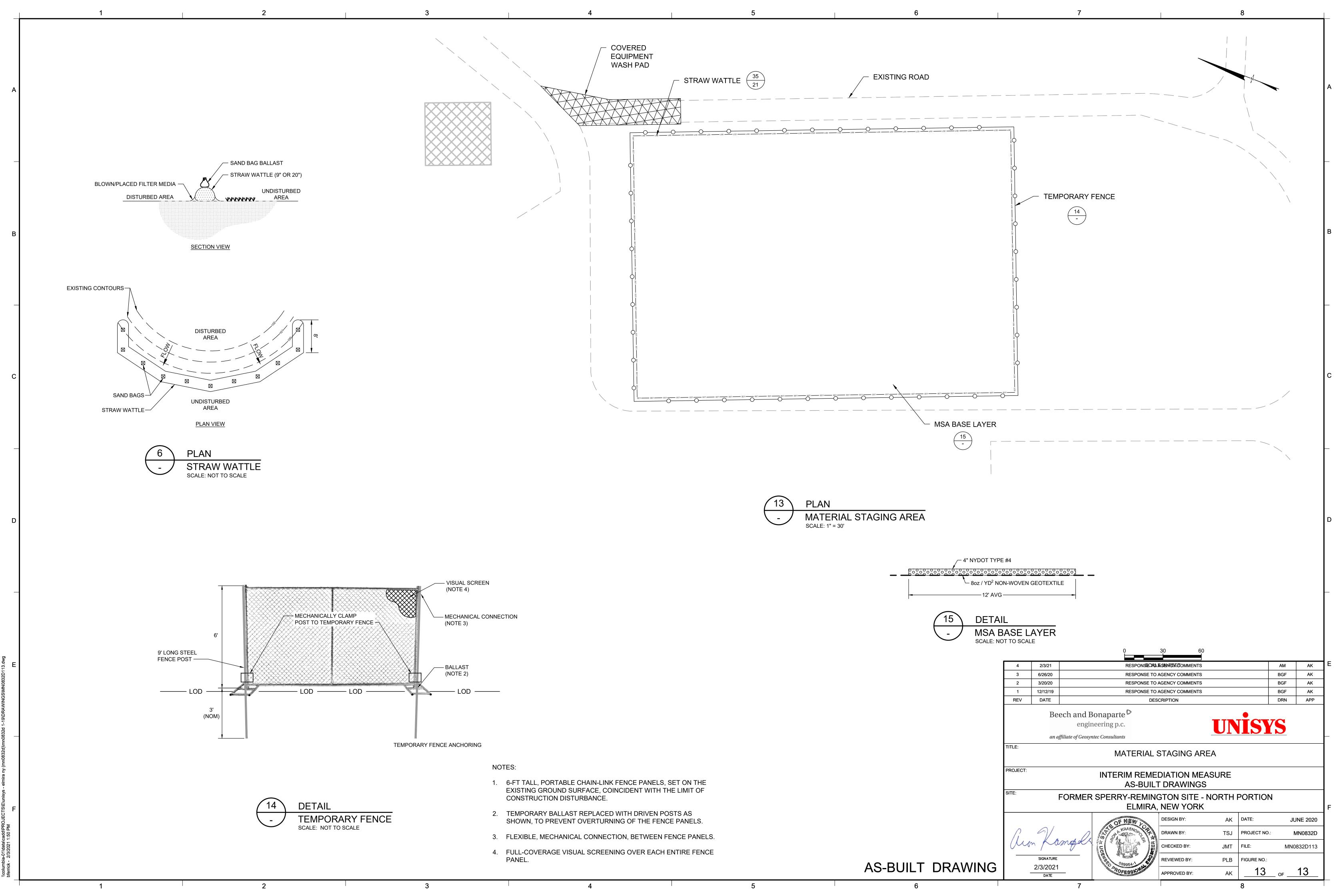
1

LEGEND				
0	MANHOLE CATCH			
	BASIN CULVERT			
<u>12"CMP</u>	PIPE			
-0	CHAIN LINK FENCE			
	WOODEN FENCE			
<u> </u>	PROPERTY LINE			
90	FORMER CONTOUR LINE			
	EDGE OF WATER			
	EDGE OF WOODS OR BRUSH			
U/E	BURIED ELECTRIC CABLE			
	SANITARY SEWER			
ST	STORM SEWER			
G	NATURAL GAS LINE			
<i>W</i>	WATER LINE			
<u> </u>	ENCOUNTERED CONCRETE WALL			
�	SAMPLE LOCATIONS			
\	WATER LINE SPOT ELEVATIONS			
'/////	REMOVED WATER UTILITIES			

Location		CS-01-19	CS-02-19	CS-03-19	CS-04-19	CS-05-19	CS-06-19
Sample Depth		5.5	6	5.5	5.5	8	5.5
(ft bgs)							
Total PCBs	mg/kg	4.104	0.6071	0.1602	1.625	3.115	1.835
Aluminum	mg/kg	7600	8000	7500	8500	8700	8600
Arsenic	mg/kg	6.3	7.2	5.2	7.3	16	11
Barium	mg/kg	52	75	60	83	84	81
Beryllium	mg/kg	0.32J	0.37J	0.26J	0.39J	0.38J	0.38J
Cadmium	mg/kg	<0.04U	<0.044U	<0.041U	<0.042U	<0.042U	<0.041U
Chromium (III+VI)	mg/kg	11	12	15	12	18	14
Copper	mg/kg	24	30	34	30	98	48
Lead	mg/kg	22	33	11	49	46	31
Manganese	mg/kg	360	390	530	390	430	450
Mercury	mg/kg	0.031J	0.14	0.016J	0.14	6.6	0.19
Nickel	mg/kg	21	24	16	20	250	79
Selenium	mg/kg	<0.56U	<0.63U	<0.58U	<0.59U	<0.59U	<0.58U
Silver	mg/kg	<0.12U	<0.13U	<0.12U	<0.12U	<0.12U	<0.12U
Zinc	mg/kg	64	73	58	90	87	70

SCALE IN FEET

NOTES:


1. EXISTING TOPOGRAPHY IS FROM:

a. A TOPOGRAPHIC SURVEY OF ELMIRA HIGH SCHOOL BY HUNT ENGINEERS, ARCHITECTS, AND SURVEYORS IN SEPTEMBER 2016. VERTICAL CONTROL IS REFERENCED TO THE NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD 88/GEOID 12A), HORIZONTAL CONTROL IS REFERENCED TO THE NORTH AMERICAN DATUM OF 1983 (NAD 83/NA 2011).

b. A TOPOGRAPHIC SURVEY OF FORMER REMINGTON RAND SITE BY WEILER ASSOCIATES, DATED 27 APRIL 2011.

2. WATER LINE RELOCATION WAS COMPLETED IN JUNE 2019. DETAILS ARE PRESENTED IN THE

4	2/3/21	RESPONSE T	O AGENCY COMMENTS			AM AK	
3	6/26/20	RESPONSE T	O AGENCY COMMENTS			BGF AK	
2	3/20/20	RESPONSE TO AGENCY COMMENTS BGF AK					
1	12/12/19	RESPONSE TO AGENCY COMMENTS BGF AK					
REV	DATE	DE	ESCRIPTION			DRN APP	
		Bonaparte D gineering p.c.		TIN	isy		
	an affiliate of Geo	syntec Consultants					
TITLE:		WATER LII	NE RELOCATIO	ON			
PROJECT:		INTERIM REMI AS-BUIL	EDIATION MEA				
SITE:	FORME	R SPERRY-REMIN ELMIRA	IGTON SITE - A, NEW YORK	NORTH	PORTION		
		E OF NEW YO	DESIGN BY:	AK	DATE:	JUNE 2020	
\cap	a/ 0	AN KRASNOD THE	DRAWN BY:	TSJ	PROJECT NO.:	MN0832D	
/ /	- Kampel		CHECKED BY:	JMT	FILE:	MN0832D112A	
an		A Sumol And		51.5	FIGURE NO.:		
Un	SIGNATURE	10 089954-1 1	REVIEWED BY:	PLB			

