NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Division of Environmental Remediation, Region 8 6274 East Avon-Lima Road, Avon, NY 14414-9516 P: (585) 226-5353 | F: (585) 226-8139 www.dec.ny.gov #### Via E-mail May 28, 2020 Mr. Kevin Krueger, PE Unisys Corporation Corporate Environmental Affairs 3199 Pilot Knob Road Eagan, MN 55121 Re: Final (100%) Interim Remedial Measure #4 Work Plan Former Sperry Remington – North Portion Site #c808022 Elmira, Chemung County Dear Mr. Krueger: The New York State Department of Environmental Conservation (NYSDEC), in consultation with New York State Department of Health, has completed its review of the document entitled "Final (100%) Interim Remedial Measure #4 Work Plan", dated April 30, 2020 last revised May 19, 2020 for the Former Sperry Remington – North Portion Site #808022 and approve as modified: - 1. Time-integrated PCB air monitoring will occur continuously at upwind and downwind locations, in addition to the roof location, during all soil excavations and/or soil handling where the PCB concentrations above TSCA levels (50ppm). - 2. The community air monitoring plan will have an action level for the time-integrated PCB analysis of 110 nanograms per cubic meter. NYSDOH and NYSDEC (Agency) will be notified if PCB concentrations exceed this action level. - 3. Any changes in the air monitoring program must be approved by the Agency prior to implementation. - 4. Sheet 19 of 25 Replace the 'Tarp" liner at the TSCA accumulation area with a poly liner as proposed for installation under the TSCA haul road. - 5. Sheet 20 & 24 of 25 Include sumps at low spots in the TSCA haul road liner placement where runoff water can be collected for off-site disposal. - 6. Hours of operation impacting the public and neighboring properties is limited to 7 AM to 5 PM Monday through Friday and truck traffic limited to 35 trucks per day. Emergency, low impact / quiet prep and cleanup work may be conducted outside those hours without prior Agency authorization and community notification. - 7. COVID-19 response plan updates and schedules are received prior to the commencement of work. Please attach this letter to the front of the work plan for inclusion in the document repository. If you have questions, feel free to contact me at (585) 226-5480 or by email. Sincerely, Timothy Schneider, P.E. Professional Engineer 1 P. Brookner / A. Krasnopoler / E. Tollefsrud M. Cruden / D. Pratt S. Bogardus / J. Deming H. Austin / P. Sylvestri / J. Magliocca ### B&B Engineers & Geologists of new york, p.c. an affiliate of Geosyntec Consultants # FINAL (100%) INTERIM REMEDIAL MEASURE #4 WORK PLAN ## FORMER SPERRY REMINGTON SITE – NORTH PORTION 777 SOUTH MAIN STREET CITY OF ELMIRA, CHEMUNG COUNTY, NY NYSDEC PROJECT C808022 Prepared for New York State Department of Environmental Conservation Division of Environmental Remediation, Region 8 6274 East Avon-Lima Road Avon, New York 14414-9519 Prepared by Geosyntec Consultants, Inc. and Its Affiliate B&B Engineers & Geologists of New York, P.C. 10211 Wincopin Circle, 4th Floor Columbia, Maryland 21044 Project Number MN0832I Document Number MD20059 30 April 2020; Revised 19 May 2020 #### TABLE OF CONTENTS | | Cert | tification | vii | | | | | |----|------|--|-----|--|--|--|--| | 1. | | INTRODUCTION | | | | | | | | 1.1 | | | | | | | | | 1.2 | Previous Site Characterization and Remedial Activities | 2 | | | | | | | 1.3 | 1.3 Purpose | | | | | | | | 1.4 | Pre-Design Investigation | 5 | | | | | | | 1.5 | Report Organization | 6 | | | | | | 2. | SCC | SCOPE OF WORK | | | | | | | | 2.1 | | | | | | | | | 2.2 | Site Preparation | 7 | | | | | | | 2.3 | Demolition | 7 | | | | | | | 2.4 | Excavation and Soil Management | 8 | | | | | | | 2.5 | Stockpile Methods | 11 | | | | | | | 2.6 | Off-Site Disposal | 13 | | | | | | | | 2.6.1 Hazardous Waste | 13 | | | | | | | | 2.6.2 Non-hazardous waste | 13 | | | | | | | | 2.6.3 PCB Remediation Waste | 13 | | | | | | | | 2.6.4 Estimated Truck Traffic | 14 | | | | | | | 2.7 | Backfilling | 15 | | | | | | | 2.8 | Site Restoration | 15 | | | | | | 3. | PER | PERMITS AND TEMPORARY CONTROLS | | | | | | | | 3.1 | Permits and Notifications. | 17 | | | | | | | 3.2 | 3.2 Temporary Facilities | | | | | | | | 3.3 | 3.3 Soil and Sediment Erosion Control | | | | | | | | 3.4 | Water Management | 17 | | | | | | | 3.5 | Dust Control and Monitoring. | 18 | | | | | | | 3.6 | Temporary Use Restrictions | 20 | | | | | | 4. | HEA | ALTH AND SAFETY | 21 | | | | | | 5. | INS | TITUTIONAL CONTROLS | 21 | | | | | | 6. | SCF | HEDULE AND DELIVERABLES | 22 | | | | | | | 6.1 | Schedule | 22 | | | | | | | 6.2 | Deliverables | 23 | | | | | i #### LIST OF TABLES | Table 1 | Summary of PCB Results for Shallow Subsurface Soils (0.17 to 2 ft bgs) | |----------|---| | Table 2 | Summary of PCB Results for Subsurface Soils (2-14 ft bgs) | | Table 3 | Summary of PCB Results for Subsurface Soils (Below 14 ft bgs) | | Table 4 | Summary of Metal, SVOC and VOC Results for Surface and Shallow Subsurface Soils | | Table 5 | Summary of Metal Results for Subsurface Soils (Below 2 ft bgs) | | Table 6 | Summary of SVOC and VOC Results for Subsurface Soils (Below 2 ft bgs) | | Table 7A | Waste Characterization Results - TCLP | | Table7B | Waste Characterization Results - Total Constituents | | Table 8 | Step-Out and Step-Down Procedures | | Table 9 | TSCA Bottom Area Summary | | Table 10 | IRM Schedule | #### LIST OF FIGURES | Figure 1 | Site Location Map | |-----------|---| | Figure 2 | Site Map | | Figure 3 | Proposed Excavation – 0-2 ft bgs | | Figure 4 | Proposed Excavation – 2-4 ft bgs | | Figure 5 | Proposed Excavation – 4-6 ft bgs | | Figure 6 | Proposed Excavation – 6-8 ft bgs | | Figure 7 | Proposed Excavation – 8-10 ft bgs | | Figure 8 | Proposed Excavation – 10-12 ft bgs | | Figure 9 | Proposed Excavation – 12-14 ft bgs | | Figure 10 | Proposed Excavation – 14-16 ft bgs | | Figure 11 | Extent of Metals in Soil – 0-2 ft bgs | | Figure 12 | Extent of Metals in Soil – 2-4 ft bgs | | Figure 13 | Extent of Metals in Soil – 4-6 ft bgs | | Figure 14 | Extent of Metals in Soil – 6-8 ft bgs | | Figure 15 | Extent of Metals in Soil – 8-10 ft bgs | | Figure 16 | Extent of Metals in Soil – 10-12 ft bgs | | Figure 17 | Extent of Metals in Soil – 12-14 ft bgs | | Figure 18 | Extent of Metals in Soil – 14-16 ft bgs | | Figure 19 | Excavation Grading Plan | | Figure 20 | Boring Refusal and Historic Structures | | Figure 21 | Truck Haul Routes | | Figure 22 | CAMP Monitoring Locations | | Figure 23 | Temporary Evacuation Route | #### LIST OF APPENDICES | Appendix A | Construction Drawings | |------------|---| | Appendix B | Construction Specifications | | Appendix C | Support of Excavation Design Analysis | | Appendix D | Stormwater Modeling | | Appendix E | Quality Assurance Project Plan | | Appendix F | Well Boring Logs and Production Well Flow Test Results | | Appendix G | Soil/Dust Control and Monitoring Plan and NYSDOH Generic CAMP | | Appendix H | ECSD Correspondence | | Appendix I | Health and Safety Plan | #### LIST OF ACRONYMS | Acronym | Definition | |------------|---| | μ g/L | micrograms per liter | | $\mu g/m3$ | micrograms per cubic meter | | BCA | Brownfield Cleanup Agreement | | BCP | Brownfields Cleanup Program | | bgs | below ground surface | | CAMP | Community Air Monitoring Plan | | COPC | Contaminant of Potential Concern | | CPP | Community Participation Plan | | CQA | Construction Quality Assurance | | Cu YD | Cubic Yard | | E&S | Erosion and Sedimentation | | EC(s) | Engineering Controls | | ECSD | Elmira City School District | | EHS | Elmira High School | | ERC | Environmental Recovery Corporation | | EWB | Elmira Water Board | | FFC | Football Field Complex | | ft | Feet | | HASP | Health & Safety Plan | | IC (s) | Institutional Controls | | IRM | Interim Remedial Measure | | LOD | Limit of Disturbance | | mg/kg | milligrams per kilogram | | mph | miles per hour | | MSA | Material Staging Area | | NYCRR | New York Codes, Rules and Regulations | | NYSDEC | New York State Department of Environmental Conservation | | NYSDOH | New York State Department of Health | | Acronym | Definition | |---------|--| | NYSDOT | New York State Department of Transportation | | OSHA | Occupational safety and Health Administration | | PCB | Polychlorinated Biphenyl | | PDI | Pre-design Investigation | | PFAS | Perfluoroalkyl Substances | | PID | Photo Ionization Detector | | PM-10 | Particulate Matter that are less than ten (10) micrometers in size | | PUF | Poly-Urethane Foam | | QAPP | Quality Assurance Project Plan | | QEP | Qualified Environmental Professional | | RECON | Remedial Construction Services, L.P | | RI | Remedial Investigation | | RI | Remedial Investigation | | SC | Soil Characterization | | SCFM | Standard Cubic Feet per Minute | | SCO | Soil Cleanup Objective | | SDCMP | Soil/Dust Control and Monitoring Plan | | SMP | Site Management Plan | | SOE | Support of Excavation | | SOP(s) | Site Operations Plans | | STCC | Southern Tier Commerce Center | | SVOC(s) | Semi-volatile organic compounds | | SWPPP | Storm-Water Pollution Prevention Plan | | TCLP | Toxicity Characteristic Leaching Procedure | | TSCA | Toxic Substances Control Act | | USEPA | United States Environmental Protection Agency | | VOC(s) | Volatile organic compounds | | | | #### **Certification** I <u>Aron Krasnopoler</u> certify that I am currently a NYS registered professional engineer as defined in 6 NYCRR Part 375 and that this Final (100%) Interim Remedial Measures #4 Work Plan for the Former Sperry Remington
Site – North Portion dated 19 May 2020 was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10). Aron Krasnopoler, P.E. an Kample COENEW NO PROPERTY OF NEW NO. 5/19/2020 an affiliate of Geosyntec Consultants #### 1. INTRODUCTION #### 1.1 Background On behalf of Unisys Corporation (Unisys), Geosyntec Consultants, Inc. and its New York affiliate B&B Engineers & Geologists of New York, P.C. (collectively Geosyntec) are submitting this Interim Remedial Measure #4 (IRM #4) Work Plan for the Former Sperry Remington Site – North Portion (Site #c808022) (Site) in Elmira, New York. On 26 April 2016, Unisys applied to enter the Site into the New York State Department of Environmental Conservation (NYSDEC) Brownfields Cleanup Program (BCP) with the consent of Elmira City School District (ECSD). NYSDEC gave an initial determination that the BCP application was complete on 10 June 2016 and received public comments until 22 July 2016. The Brownfields Cleanup Agreement (BCA) for the Site was executed on 23 March 2017. Unisys is proposing an IRM at the Site in accordance with the BCA. Prior to the BCA, an Order on Consent and Administrative Settlement (Order) with the NYSDEC for the Site approved by NYSDEC on 7 July 2014. Unisys conducted Site Characterization (SC) activities at the Site in accordance with the Order, the Site Characterization Work Plan (SC Work Plan) dated 29 July 2014 (revised 27 October 2014) and subsequent addenda dated 22 May 2016, 8 January 2016, 9 August 2016, 3 February 2017, and 16 March 2017. The Site is located at the Elmira High School (EHS) property (formerly known as Southside High School), 777 South Main Street in Elmira, Chemung County, New York (see **Figure 1**). The EHS property is approximately thirty-four (34) acres and as shown on **Figure 2** is bounded by South Main Street to the west, the Southern Tier Commerce Center (STCC) to the south, the Consolidated Rail Corp. property to the east and vacant land to the north. Miller Pond is located approximately one thousand (1,000) feet to the east. EHS property has been the subject of multiple environmental investigations between 1998 and 2019. In 2003, New York State Department of Health (NYSDOH) completed a Health Consultation for Southside High School (now EHS) that recommended that ECSD develop a written soil management plan to "minimize potential public exposures to contaminated subsurface materials…" In June 2009, ECSD prepared an Environmental Management Plan (EMP) in response to a request from the State Education Department (SED) to formalize environmental management operations and practices at EHS. NYSDEC and NYSDOH provided technical assistance to SED in development and review of the EMP. The intent of the EMP is to advise construction personnel and the general community regarding the potential for exposure to Compounds of Potential Concern (COPC) that may be present in soil, groundwater and soil vapor on EHS property. In April 2019, Unisys submitted a draft interim Site Management Plan (SMP) for agency review to address institutional controls and engineering controls that have been implemented as interim measures until a Site remedy has been selected. NYSDEC approved the interim SMP on 20 December 2019. The interim SMP incorporates and replaces the EHS EMP. 1 #### 1.2 Previous Site Characterization and Remedial Activities In June 2013, NYSDEC identified potential areas of concern (PAOCs) at the EHS property based on information related to historical use of the EHS property and previous environmental investigations results. The SC Work Plan dated July 2014 and revised October 2014 was submitted to NYSDEC to collect data to document environmental conditions at the Site as it relates to PAOCs, and historical information. Implementation of the SC Work Plan was expedited in order to complete most field activities and obtain preliminary results prior to start of classes at EHS on 3 September 2014. Verification of previous analytical results in surface (zero to two [0-2] inches below ground surface [bgs]1) and shallow sub-surface (0.17 to two [2] feet bgs) soils were conducted in July 2014 in order to confirm that COPCs did not pose an unacceptable level of risk to human health and the environment prior to the start of classes. NYSDEC and NYSDOH provided oversight and review during field activities. Preliminary, un-validated analytical results for polychlorinated biphenyls (PCBs) and semi-volatile organic compounds (SVOCs) in surface soils were submitted to NYSDEC and NYSDOH on 31 July 2014. Additional surface, shallow subsurface and subsurface (greater than 2 feet bgs) soil investigations, groundwater investigation and former combined storm sewer inspections for Site Characterization were conducted at the Site between August and October 2014. The SC Data Report was submitted to NYSDEC on 6 February 2015 following data validation completion on 10 November 2014. The SC Data Report identified PCBs, polycyclic aromatic hydrocarbons (PAHs), and metals as COPCs at the Site based on comparison to Restricted Residential Soil Cleanup Objectives² (SCOs). A meeting to discuss analytical results for PCBs in soils was held on 17 March 2015 among ECSD, NYSDOH, NYSDEC and Unisys. NYSDOH and NYSDEC presented results of an evaluation that included PCB analytical data from samples collected from zero to two (0-2) feet bgs between 2000 and 2014 and vegetative cover conditions with respect to preventing potential exposures to shallow soils. According to NYSDOH, 2014 surface soil data were consistent with surface soil data previously collected by NYSDEC/NYSDOH and do not alter conclusions or recommendations presented in the 2003 Health Consultation prepared by NYSDOH. The 2003 Health Consultation also stated that well-established and maintained grass cover minimizes human exposures to soil by limiting direct contact with the soil. As a precaution, a temporary short-term response action (STRA) was undertaken by Unisys to evaluate cover systems in areas where PCBs exceed one (1) milligram per kilogram (mg/kg) in surface or shallow subsurface soils at the EHS and additional protective measures were implemented to prevent potential exposure to shallow soils in unpaved areas. A report on STRA activities was submitted to NYSDEC on 15 May 2015. The SC Data report included recommendations for additional delineation of PCBs in soils from select areas of the Site. SC Work Plan Addendum #1 was submitted to NYSDEC on 22 May 2015 with responses to NYSDEC comments on 2 July 2015. Field activities for SC Work Plan Addendum #1 were conducted between 13 July and 7 August 2015. Subsurface soil borings were ¹ Below ground surface is interpreted as below vegetative cover. ² 6 NYCRR Subpart 375 an affiliate of Geosyntec Consultants installed to delineate the horizontal and vertical extent of PCBs in subsurface soils. A summary of field activities and analytical results for SC Work Plan Addendum #1 were presented in SC Work Plan Addendum #2 dated 8 January 2016 along with plans for additional delineation of PCBs in soils and evaluation of potential PCB migration in groundwater. Field activities for SC Work Plan Addendum #2 were conducted between 29 February and 24 March 2016. A summary of field activities and analytical results for SC Work Plan Addendum #2 were provided in SC Work Plan #3 dated 9 August 2016 along with plans for additional delineation of COPCs in soils and evaluation of potential PCB migration in groundwater. Other SC activities addressed 2 June 2015 comments from NYSDEC on the SC Data Report requesting evaluation of intermediate groundwater east of the gymnasium, characterization of volatile organic compounds (VOCs) in groundwater in the vicinity of the F-Wing and catch basin inspection and sampling. Field activities for SC Work Plan Addendum #3 were conducted between 22 August and 28 September 2016. A summary of field activities and analytical results for SC Work Plan Addendum #3 were in SC Work Plan #4 dated 3 February 2017 along with plans for additional delineation of PCBs in soils. Field activities for SC Work Plan Addendum #4 were conducted between 6 and 16 February 2017. Review of data received indicated the need for additional data collection to complete a design of the IRM#1 that was conducted at the Site in summer 2017. Plans for additional delineation of PCBs in soils were submitted as SC Work Plan Addendum #5 on 16 March 2017. Field activities for SC Work Plan Addendum #5 were conducted between 20 and 24 March 2017 and with modifications between 10 and 13 April 2017 and 15 and 23 May 2017. A SC Report was submitted to NYSDEC on 17 May 2017 that described SC and remedial activities conducted to date. NYSDEC provided comments on the SC Report in August 2018 and a revised SC Report was submitted to NYSDEC on 28 March 2019. IRM #1 was conducted between 19 June and 8 September 2017 for removal of PCB-impacted soils in the vicinity of the EHS Tennis Courts (North Excavation) and Main Parking Lot (South Excavation) in accordance with the IRM (#1) Work Plan dated 11 July 2017 and approved by NYSDEC on 10 August 2017. IRM construction in the South Excavation was limited to excavation to four (4) feet below ground surface (ft bgs) in the main parking lot and to two (2) ft bgs in areas to the east due to the schedule for ECSD capital improvements in 2017. A soil cover system consisting of two (2) feet of imported fill approved by NYSDEC for restricted residential use was installed (**Figure 3**). Excavated soils approved by NYSDEC for reuse were used for backfill below the soil cover system. Amendment #1 to IRM #1 Work Plan dated 11 August 2017 presented plans for surface soil removal in the southwest portion of the football field and high jump pit area for the purpose of minimizing potential exposure to PCBs in those areas. Activities
associated with the football field and high jump pit area were completed in September 2017. IRM #1 activities are documented in a Construction Completion Report (CCR) submitted to NYSDEC on 30 April 2018, and revised on 28 February 2019. IRM #2 was conducted between 22 June and 25 October 2018 for removal of PCB-impacted soils in the vicinity of the EHS Rear Parking Lot in accordance with the Revised Final IRM #2 Work Plan dated 13 July 2018 and approved by NYSDEC on 25 July 2018 and incorporated Amendment an affiliate of Geosyntec Consultants #1 dated 3 July 2018, Amendment #2 dated 17 July 2018, and Amendment #3 dated 18 January 2019. IRM #2 activities are documented in a CCR submitted to NYSDEC on 15 March 2019. IRM #3 was conducted between 28 June and 14 October 2019 to continue soil removal in the IRM #1 South Excavation in accordance with the Revised Final 2019 IRM Work Plan dated 18 June 2019 and incorporated Amendment #1 dated 9 July 2019 and Amendment #2 dated 16 August 2019. NYSDEC gave conditional approval of the 2019 IRM Work Plan on 13 June 2019 and for construction drawings and plans on 17 June 2019. IRM #3 activities are documented in a CCR submitted to NYSDEC on 14 February 2020. #### 1.3 Purpose The purpose of IRM #4 is to conduct soil removal in the IRM #1 South Excavation adjacent to the EHS building in anticipation of remedial activities and capital improvement in the EHS Football Field Complex (FFC) anticipated in the beginning of Fall 2020 and Spring 2021, respectively. Unisys has identified Site soils with concentrations of total PCBs and metals that may be considered hazardous waste. A non-emergency IRM for soil removal is applicable to mitigate environmental or human exposures prior to capital improvement construction. Soil removal will be conducted with following cleanup goals: - COPC concentrations in soils greater than or equal to Restricted Residential SCOs at depths less than two (2) feet bgs; - Total PCB concentrations greater than or equal to ten (10) mg/kg at depths between two (2) feet bgs and fourteen (14) ft bgs - Total PCB concentrations greater than or equal to 3.2 mg/kg within the vadose zone and below the water table.³, where PCB have been detected above groundwater standards i.e. below fourteen (14) ft bgs; - Metal⁴ concentrations greater than twenty (20) times the equivalent toxicity characteristic of hazardous waste with exception of lead; and - Lead concentrations greater than 200 times the equivalent lead toxicity characteristic, i.e. 1,000 mg/kg⁵. This IRM Work Plan presents a scope of work that includes excavation, soil management, backfilling, off-Site transport and disposal and site restoration. The IRM Work Plan also addresses ³ Depth to water was measured at 16.1 ft bgs at monitoring well MW-15S in September 2016 with a groundwater elevation of 839.62 feet above mean sea level (ft msl). ⁴ Resource Recovery and Conservation Act (RCRA) list of eight (8) metals (RCRA 8 metals) for which toxicity characteristics are based on toxicity characteristic leach procedure (TCLP) results: arsenic, barium, cadmium, chromium, lead, mercury, selenium and silver. ⁵ Based on NYSDEC experience, lead concentrations of 1,000 mg/kg or greater are more indicative of soils having toxicity characteristics of hazardous waste. an affiliate of Geosyntec Consultants temporary construction facilities, controls, health and safety, and confirmation sampling in accordance with NYSDEC *Technical Guidance for Site Investigation and Remediation* (DER-10). #### 1.4 Pre-Design Investigation The purpose of completing Pre-Design Investigation (PDI) activities is to provide sufficient data to complete design of IRM #4. PDI data supplemented previously collected data associated with IRM #1 and Remedial Investigation (RI) of the Site as a whole. The IRM #1 South Excavation was characterized during SC activities between July 2014 and May 2017. Additional investigations for the FFC were conducted between July 2018 and May 2019. Unisys conducted RI and PDI activities at the FFC area of the Site in July 2018 (RI), August 2018 (PDI) October/November 2018 (PDI Amendment #2) and April/May 2019 (PDI Amendment #3) in accordance with the BCA. These activities were conducted in accordance with the FFC RI / PDI Activities Work Plan dated 17 July 2018, FFC PDI Activities Work Plan Amendment dated 23 August 2018, FFC PDI Activities Work Plan Amendment #3 dated 17 May 2019 and FFC PDI Activities Work Plan Amendment #4 dated 8 October 2019. Results for PCB analyses of shallow subsurface soil samples from are summarized on **Table 1** and compared to the Restricted Residential SCO of one (1) mg/kg. Results for PCB analyses of subsurface soil samples from between two (2) and fourteen (14) feet bgs are summarized on **Table 2** and compared to a screening value of ten (10) mg/kg for delineation. Total PCB concentrations are also compared to the limit of fifty (50) mg/kg for PCB remediation wastes as defined in 40 CFR §761.3 Toxic Substances Control Act (TSCA). TSCA limits are considered in PCB delineation for identification of those soils that may be classified as hazardous waste containing PCBs as defined in 6 NYCRR Part 371.4 (e). Soils from zero (0) to two (2) feet bgs were removed during IRM #1 and replaced with imported fill as a soil cover system (**Figure 3**). During IRM #3, PCBs were detected in post-excavation sidewall samples in shallow subsurface soils between two (2) inches and two (2) feet bgs outside of the soil cover system. **Figures 4** to **9** present the extent of total PCBs in subsurface soils at two-foot (2 ft) intervals to a total depth of fourteen (14) feet bgs. PCBs were detected in monitoring well MW-15S in September 2016 above the groundwater quality standard of 0.09 micrograms per liter (μ g/L) with total and dissolved total PCB concentrations of 0.48 and 0.59 μ g/L, respectively. Analytical results from subsurface soil samples from between fourteen (14) feet bgs and the water table depth of approximately sixteen (16) ft bgs⁶ are summarized on **Table 3.** Total PCB concentrations in soil are compared to the Protection of Groundwater SCO for total PCBs of 3.2 mg/kg for delineation and to the TSCA limit of fifty (50) mg/kg. **Figure 10** presents the extent of total PCBs in subsurface soils between fourteen (14) and sixteen (16) ft bgs. ⁶ Depth to water as measured at monitoring well MW-15S in September 2016 an affiliate of Geosyntec Consultants PDI activities included soil characterization for other COPCs including metals, SVOCs and VOCs. Analytical results for metals, SVOCs, and VOCs in surface and shallow subsurface soils including are presented on **Table 4** and compared to Restricted Residential SCOs. Analytical results for metals from subsurface soil samples from below two (2) bgs are summarized on **Table 5** and are compared to a screening values for potentially hazardous waste. **Figures 11** to **18** present the extent of metals in subsurface soils at two-foot (2 ft) intervals to a total depth of sixteen (16) feet bgs. Lead was detected above the proposed cleanup goal of 1,000 mg/kg within the IRM #4 area. Detections of other RCRA 8 metals were also above the proposed cleanup goals. Analytical results for SVOCs and VOCs from subsurface samples from below two (2) feet bgs are summarized in **Table 6**. The concentrations of total PAHs do not exceed 100 mg/kg in any sample within the IRM #4 area. #### 1.5 Report Organization The remainder of this report is organized into the following sections: - Section 2 Scope of Work; - Section 3 Permits and Temporary Controls; - Section 4 Health and Safety; - Section 5 Institutional Controls; and - Section 6 Schedule and Deliverables. #### 2. SCOPE OF WORK The IRM scope of work is presented in the Construction Drawings (**Appendix A**) and Construction Specifications (**Appendix B**). The following sections summarize key elements of the work. #### 2.1 **Pre-Construction Meeting** Prior to invasive construction activities, a pre-construction meeting will be held with NYSDEC and ECSD to review the scope of work. Existing conditions will be documented during a site inspection in order to establish conditions for site restoration. #### 2.2 Site Preparation Upon mobilization, the IRM contractor will establish temporary facilities and controls including temporary fencing and erosion and sedimentation (E&S) controls. A Material Staging Area (MSA) to stockpile soils for potential reuse or off-Site transport and non-hazardous disposal and a TSCA Accumulation Area to accumulate hazardous waste for off-Site transport and disposal will be constructed in the North Athletic Field (NAF) as shown on Sheet 3 of the Construction Drawings (**Appendix A**). Temporary haul roads will be constructed between the excavation and the stockpile areas. Portions of the temporary haul road will be constructed on the adjacent Norfolk Southern Railway Company (NSRC) property pending amendment of the current Environmental Right of Entry (EROE)⁷. Concrete pavement within the limit of excavation as shown on the Construction Drawings (**Appendix A**) will be demolished prior to excavation and staged in the MSA for off-Site disposal with non-hazardous soils pending facility approval. #### 2.3 Demolition The EHS Grandstands including the restrooms located beneath the bleachers and the press box located on top of the bleachers will be demolished in order to provide access to complete the FFC PDI in that area. The IRM contractor will conduct a hazardous materials survey and prepare a demolition plan. The demolition plan will include 1) disconnection of utilities, 2) site access and temporary controls; 3) demolition; 4) salvage; 5) disposal; and 6) cleanup. The hazardous material survey will be used to identify hazardous materials (e.g., asbestos, PCBs) that may be present in construction debris for appropriate segregation prior to disposal. A pre-demolition meeting will be
held with ECSD and NYSDEC to review demolition procedures. After the completion of demolition, the EHS Grandstand area will be investigated as part of the FFC PDI to determine the nature and extent of COPCs. COPCs present at concentrations above screening criteria will be addressed in a future IRM. ⁷ NSRC granted Unisys EROE for BCP RI activities on 5 February 2019. Unisys will seek to amend the existing EROE to include IRM activities. an affiliate of Geosyntec Consultants #### 2.4 Excavation and Soil Management Soils will be excavated to meet cleanup goals presented in Section 1.3. Site Characterization and PDI data have been used to determine the limits of excavation to achieve those cleanup goals and the limits of PCB remediation waste within the excavation in two-foot intervals as shown on **Figures 3** to **10**. An overall excavation grading plan is presented in **Figure 19**. Excavation depths of four (4) feet or greater will be achieved using excavation side slopes of two (2) horizontal to one (1) vertical (2H:1V) where feasible. The total excavation volume is approximately 6,500 cubic yards. Temporary support of excavation (SOE) consisting of soldier piles and lagging, or Engineer-approved alternative, will be installed to support existing infrastructure including the EHS building foundation and storm sewer lines as shown on the Construction Drawings in **Appendix A**. SOE design analysis is provided in **Appendix C**. Additional SOE will be provided by struts to be installed between the solider pile walls to be installed between the north side of the EHS A-Wing and the storm sewer and tiebacks to be installed with the soldier pile wall to be installed on the west side of the EHS A-Wing. Subsurface utilities within the excavation including electric, water, data communication and storm sewer will be removed and replaced in-kind during backfill. No active utilities will be permanently abandoned. Water, electric and data communication services to the EHS building will be maintained during IRM construction in coordination with ECSD. This will include providing a temporary water service connection between the existing water line on the east side of the EHS building and the water meter located in the EHS A-Wing as shown on the Construction Drawings (**Appendix A**). Submersible pumps will be installed in upstream catch basins to collect storm water and discharge it to downstream catch basins as shown on the Construction Drawings in order to maintain stormwater management during construction. Pumping requirements are based on modeling of stormwater drainage (**Appendix D**). Horizontal and vertical extents of waste excavations and the location, type, and dimensions of existing underground utilities prior to demolition will be surveyed by a NYS licensed surveyor to document as-built conditions. Excavation will require the removal of soil cover consisting of NYSDEC-approved imported soil above a demarcation layer. Previously imported soil from above the demarcation will removed and stockpiled for reuse without characterization. Soils outside of and below the soil cover system will be managed in two-foot intervals as shown on **Figure 3** to **10**: • Layback soils outside of the extent of the soil cover system or areas being excavated to achieve IRM cleanup will be stockpiled in the MSA for chemical testing for potential reuse as backfill between two (2) and fourteen (14) ft bgs. Soils that overlay PCB remediation waste will be staged on poly sheeting within the work area for testing prior to transport to the MSA. PCB analyses will be expedited (i.e. 1-day turnaround time). If total PCBs are less than fifty (50) mg/kg, NYSDEC approval will be requested to transfer those overlay soils to the MSA; an affiliate of Geosyntec Consultants - Soils with total PCB concentrations greater than ten (10) mg/kg and less than fifty (50) mg/kg will be stockpiled in the MSA pending waste profile approval for transport and off-Site disposal as non-hazardous waste. - Soils from within the limits of PCB remediation waste (greater than or equal to fifty (50) mg/kg) will be temporarily stored in a TSCA Accumulation Area prior to loading in the TSCA Loading Area for off-site disposal as hazardous waste; and - Soils from at or near the water table with total PCB concentrations greater than 3.2 mg/kg and less than fifty (50) mg/kg will be managed as PCB remediation waste and will be accumulated in a TSCA Accumulation Area prior to loading in the TSCA Loading Area for off-site disposal. Soils identified for disposal have been sampled for waste characterization with analyses for pH, cyanide, sulfide, flash point, toxicity characteristic leaching procedure (TCLP) VOCs, SVOCs, herbicides and pesticides, and metals. Waste characterization sample locations are shown on **Figures 11** to **18**. **Tables 7A** and **7B** presents a summary of waste characterization results for TCLP and total analyses respectively. Waste characterization data will be used to develop profiles for those soils that will be submitted to the receiving facility for approval prior to IRM construction. Temporary transit roads will be constructed over non-TSCA areas for TSCA equipment to move between TSCA excavation areas and the TSCA accumulation area and vice versa. The native soil horizon will be documented during these excavations. Confirmation sampling of excavation side walls and bottom will be conducted as the excavation proceeds in accordance with Section 5.4 (b) of DER-10 as follows: - one sample from the bottom of each sidewall for every thirty (30) linear feet of sidewall; and - one sample from the excavation bottom for every nine hundred (900) square feet of bottom area. Sidewall samples will be collected at two-foot (2-ft) intervals consistent with soil management as shown on the Construction Drawings. If a depth cannot be reached, then a sidewall sample will be collected for the excavation depth achieved. Confirmation samples will be submitted to the fixed laboratory for expedited (i.e. 1-day turnaround time) analyses for PCBs and target analyte list (TAL) metals in accordance with the Quality Assurance Project Plan (QAPP) included as **Appendix E**. Unvalidated data will be available for NYSDEC review approximately three (3) days after sample collection. Upon receipt of unvalidated data, analytical results will be compared to the IRM cleanup goals. Procedures for excavation step-out and step-down based on unvalidated confirmation sampling results are presented in **Table 8**. Decisions regarding step-out or step-down of the excavation will be made in consultation with NYSDEC and ECSD. It is the intent of IRM #4 to complete soil removal on the western and southern limits of excavation in order to avoid future disturbance of the areas adjacent to the EHS main entrance and the EHS A-Wing. Therefore, step-out of the excavation may an affiliate of Geosyntec Consultants be limited in other areas in order to complete IRM #4 on schedule and return the work area to ECSD for the 2020-21 school year. Documentation samples will be collected from sidewalls adjacent to the EHS building. As shown on **Figures 3** to **10** and **Figures 11** to **18**, IRM #4 does not include areas with detections of PCBs and metals above IRM cleanup goals to the north of the work area. Those areas will be addressed in a future IRM. Areas where confirmation and documentation samples will be collected are shown on **Figure 19**. For areas where the temporary SOE is required, documentation samples will be collected from the exposed excavation sidewall before lagging is placed on the soldier pile wall. Proposed confirmation and documentation samples are identified in blue on the Construction Drawings (**Appendix A**). Confirmation and documentation sample locations will be biased to areas with the highest concentrations of COPCs. NYSDEC will approve final sample locations and may request additional samples. As shown on **Figures 3** to **10**, pre-delineation data have been used to determine the limit of PCB remediation waste, i.e. TSCA excavations. Confirmation TSCA sidewall and bottom samples will be collected where pre-delineation data do not follow DER-10 Section 5.4(b) requirements. **Table 10** presents the area of TSCA bottom areas shown on **Figures 3** to **10**, the required number of bottom samples to meet DER-10 requirements of one (1) sampler per 900 square feet, the number of pre-delineation samples within the TSCA bottom area with a minimum sample recovery of 50%, and the number of confirmation TSCA bottom samples required. Confirmation TSCA sidewall samples will be collected where the distance between pre-delineation samples used to determine the TSCA sidewall within the excavation is greater than thirty (30) feet. Pre-delineation and proposed TSCA sidewall and bottom samples are identified in orange on the Construction Drawings (**Appendix A**). It is anticipated that ground water may be encountered at or around sixteen (16) ft bgs. Groundwater entering the excavation will be managed using methods described in Section 3.4. Previous well installations have encountered a glacial outwash layer has been encountered between sixteen (16) and thirty-six (36) ft bgs during previous soil investigations and installation of monitoring well MW-15D and EHS production well. Boring logs are provided in **Appendix F**. Flow tests of the EHS production wells in 2000 provided in **Appendix F** reported production of 570 and 602 gallons per minute (gpm) with 1.96 and 2.63 feet of drawdown, respectively. If bottom sample results at the water table exceed the cleanup goal of 3.2 mg/kg total PCBs, the necessity for stepping down the excavation would be evaluated based on: - Unvalidated bottom sample results; - Pre-design soil analytical data from "deep" excavations (near water table); - Lithology (e.g. gravel, cobbles vs. sand, silt); and - Infiltration rate as an indicator of
transmissivity. If further excavation below the water table is required, ground water will be managed using water management methods described in Section 3.4. Glacial outwash conditions may limit the feasibility of dewatering for further excavation at depth within schedule. Drawdown during dewatering will be observed for four (4) hours to assess its effectiveness. If the observed drawdown is ineffective to allow deeper excavation to proceed, NYSDEC will be advised that the technical practicality of dewatering is considered low and that deeper excavation should be halted. Additional confirmation samples may be collected based on visual or olfactory observations or field screening during excavation. A qualified environmental professional (QEP) will request analyses of those samples for COPCs (not limited to PCBs) in accordance with the QAPP (**Appendix E**) and in consultation with NYSDEC. All confirmation data will be submitted to NYSDEC's EquIS database in accordance with NYSDEC requirements. Confirmation sample location and elevation will be surveyed by a NYS licensed surveyor to document as-built conditions. Boring refusal was encountered at various locations during SC and PDI activities as shown on **Figure 20**. This refusal may be due to rubble or historic subsurface structures shown on **Figure 20**. NYSDEC will be notified immediately of any previously unidentified subsurface structures encountered within the excavation. Unidentified structures encountered will be characterized to determine active function, contents and integrity for removal. Structure type, location and elevation will be surveyed by a NYS licensed surveyor. Structures will be demolished and removed if feasible and debris will be stockpiled and characterized for off-Site disposal based the surrounding soils in which they are encountered. Structures encountered in hazardous or PCB remediation waste will be cleaned and sampled for disposal as non-hazardous waste, if appropriate. If removal is not feasible during IRM #4 construction, such structures shall be left in place and documentation samples will be collected from around the structure. Documentation samples will be analyzed for PCBs, TAL metals, SVOCs and VOCs and sample locations will be surveyed by a NYS licensed surveyor to document as-built conditions. #### 2.5 Stockpile Methods Upon excavation, excavated soils will be stockpiled in the following categories based on potential for reuse or waste category including: - Imported fill approved by NYSDEC for use as soil cover above a demarcation layer (approximately 3,200 CY); - Soils previously approved by NYSDEC for reuse as backfill below a demarcation layer (approximately 3,700 CY); - Uncharacterized soils with the potential for reuse as backfill below two (2) ft bgs in accordance with Section 5.4 of DER-10; - Soils with total PCB concentrations greater than ten (10) mg/kg and less than fifty (50) mg/kg that will be transported off-Site for disposal as non-hazardous waste (approximately 1,550 CY); and - Soils with total PCB concentrations greater than or equal to fifty (50) mg/kg that will be transported off-Site for disposal as hazardous waste (approximately 900 CY); and an affiliate of Geosyntec Consultants • Soils from near the water table with total PCB concentrations greater than or equal 3.2 mg/kg and less than fifty (50) mg/kg that will be transported off-Site for disposal as PCB remediation waste (approximately 350 CY). NYSDEC approved the use of imported fill as soil cover above a demarcation layer and reuse of excavated soil as below a demarcation layer in accordance with the IRM (#1) Work Plan in 2017 and the Revised Final 2019 (IRM #3) Work Plan in 2019. The horizontal and vertical extent of those soils is documented in the IRM #1 and IRM #3 CCRs. NYSDEC-approved imported fill and reuse backfill encountered during excavation will be stockpiled separately within the MSA to be constructed in the NAF as shown on the Construction Drawings (**Appendix A**) for reuse without testing. Soil from the excavation including layback that will be potentially reused as backfill below two (2) ft bgs. Soil will be stockpiled in the MSA in windrows and characterized for approval for reuse at a maximum frequency of approximately one hundred (100) cubic yards in volume. The MSA will be accessed by a temporary haul road to be constructed on NSRC property so haul trucks will not need to access South Main Street except for off-Site transport and disposal. Existing conditions at the stockpile area and along the temporary haul road will be documented by photographs prior to and after completion of construction. Each newly placed soil stockpile to be used for backfilling below two (2) ft bgs as part of the IRM will be inspected by the QEP for visual or olfactory impacts, solid waste, bricks or debris and screened with a photoionization detector (PID) for elevated VOC vapor levels. Soils will be sampled for analyses for PCBs, metals, SVOCs, and VOCs at the frequency presented in Table 5.4 (e) 10 of DER-10 in accordance with the QAPP. Soils that exhibit visual or olfactory impacts or that exhibited elevated PID readings will be segregated for additional testing at the direction of the QEP prior to re-use as backfill. Stockpiles with observed solid waste or debris will be segregated for potential off-Site disposal. Stockpiles with observed bricks, concrete, or other inert materials will be evaluated for use in structural backfill. Unvalidated analytical results will be submitted to NYSDEC with a request to reuse as backfill below the soil cover system and at least two (2) feet above the water table. Upon approval by NYSDEC for reuse, windrows may be consolidated with other soils approved by NYSDEC for reuse. Soils with total PCB concentrations greater than ten (10) mg/kg and less than fifty (50) mg/kg will be managed as non-hazardous waste to be transported off-Site for disposal at an appropriate treatment storage and/or disposal facility. Non-hazardous soils accepted for disposal will stockpiled in the MSA and then loaded for transport from there to the receiving facility. If further characterization of soils is required by the receiving facility for waste profile approval, those soils will be segregated within the MSA for waste characterization sampling and staged for off-Site transport and disposal. Soils identified for disposal as hazardous waste or PCB remediation waste will be accumulated in a TSCA Accumulation Area prior to loading in the TSCA Loading Area for off-site disposal. The TSCA Accumulation Area as shown on Sheet 3 of the Construction Drawings (**Appendix A**) will be located in a secure portion of the NAF. The TSCA accumulation area will be defined by an affiliate of Geosyntec Consultants concrete blocks, as shown on Sheet 19 of the Construction Drawings (**Appendix A**). This will allow for TSCA material to be stockpiled within the area and create a separation between the TSCA accumulation stockpile and the TSCA loading area that will mitigate dust migration outside the area. All soil stockpiles (i.e. TSCA, non-hazardous and potential re-use) will be covered with poly sheeting and secured at the end of each workday and during heavy rain events. #### 2.6 Off-Site Disposal #### 2.6.1 Hazardous Waste Soils with total PCB concentrations greater than or equal to fifty (50) mg/kg will be classified as PCB remediation waste under TSCA and as hazardous waste containing PCBs as defined in 6 NYCRR Part 371.4 (e). Soils classified as hazardous waste will be accumulated in the TSCA Accumulation Area prior to loading in the TSCA Loading Area for off-site disposal. Trucks will be loaded in the TSCA Loading Area for transport of hazardous waste for off-Site disposal at an appropriate treatment storage and/or disposal facility. Each shipment will have the required manifest, labeling and placarding in accordance with Federal and state laws and regulations. It is estimated that approximately 900 CY (1,100 tons) of soil will be removed as hazardous waste. #### 2.6.2 Non-hazardous waste Soils identified for disposal as non-hazardous waste will be stockpiled in non-hazardous soil stockpile area for off-Site transport and disposal Stockpiles will be maintained and secured so that soils do not migrate from staging and stockpile locations. In the event, that soils have not been pre-characterized for disposal, composite samples will be collected for analyses for waste characteristics at a frequency consistent with the requirements of the receiving facility. Trucks will be loaded in the non-hazardous soil stockpile area for transport for off-Site disposal at an appropriate treatment storage and/or disposal facility. Each shipment will have the required manifest, labeling and placarding in accordance with Federal and state laws and regulations. It is estimated that approximately 900 CY (1,720 tons) of soil will be removed as non-hazardous waste. #### 2.6.3 PCB Remediation Waste Soils with total PCB concentrations greater than or equal to 3.2 mg/kg from at or near the water table will be classified as PCB remediation waste under TSCA. Soils classified as PCB remediation waste will be accumulated in the TSCA Accumulation Area prior to loading in the TSCA Loading Area for off-site disposal. Trucks will be loaded in the TSCA Loading Area for transport of hazardous waste for off-Site disposal at an appropriate treatment storage and/or disposal facility. Each shipment will have the required manifest, labeling and placarding in accordance with Federal and state laws and regulations. It is estimated that approximately 350 CY (665 tons) of PCB remediation waste will be disposed (hazardous and non-hazardous an affiliate of Geosyntec Consultants #### 2.6.4 Estimated Truck Traffic Based on proposed soil volumes to be transported between the Site and the MSA, necessary on-Site truck traffic has been estimated as follows: - Transport of non-hazardous soil to the MSA
via the temporary haul road for stockpiling for potential reuse or non-hazardous disposal: 450 cubic yards per day (20 to 22 loads per day); - Transport of soils approved for reuse from the MSA for use as excavation backfill via the temporary haul road: 450 cubic yards per day (20 to 22 loads per day); and - It is unlikely that excavation and backfilling operations will be concurrent, so truck traffic to and from the MSA will not exceed 22 loads per day. Necessary truck traffic on public roads for off-Site disposal has been estimated as follows: - Transport of hazardous waste/PCB remediation waste on public roads for off-Site disposal: 200 to 250 tons per day (10 to 12 loads per day); - Transport of non-hazardous soil on public roads for off-Site disposal: 400 to 440 tons per day (18 to 20 loads per day); and - Transport on public roads for off-Site disposal (hazardous waste/PCB remediation waste and non-hazardous soil) will not exceed 35 loads per day without prior notification of NYSDEC. Each vehicle will be inspected prior to shipment. Each vehicle will be lined and covered, and the tailgate secured. The wheels, sides and underbody will be decontaminated prior to departure from the Site as described in the Construction Specifications (**Appendix B**). The planned on-Site journey management plan for the material which will be handled during the IRM will be discussed with the City of Elmira Traffic Engineering Department. All trucks hauling impacted soils on the public roadway will have a valid NYS Part 364 Waste Transporter Permit. Proposed haul routes are presented on **Figure 21**. Routes have been selected to avoid planned road construction in Elmira during the IRM, difficult traffic areas as well as to utilize routes with the most marked pedestrian crossings to ensure maximum safety. It is anticipated that off-Site transport for disposal will occur when school is not in session, therefore truck traffic will not take place during student arrival/departure times. Over the road haul trucks which will transport hazardous waste, PCB remediation waste and non-hazardous waste will enter and exit the MSA via the temporary haul road to South Main Street. Off-road haul trucks which will transport soils between the Site and the MSA will use the temporary haul road to enter and exit the excavation as presented on **Figure 21**. All trucks leaving the Site for off-Site disposal will travel north on South Main Street, cross the Chemung River and travel east on East Water Street to the interchange with Interstate 86. an affiliate of Geosyntec Consultants #### 2.7 **Backfilling** Excavations will be backfilled to final grades as shown on the Construction Drawings (Appendix A). Prior to backfilling, the extent of the excavation will be surveyed and a demarcation layer, consisting of orange snow fencing material, white geotextile or equivalent material, will be placed in the excavation to provide a visual reference of the limit of fill material for future excavations. Backfilling will begin after achievement of cleanup goals has been demonstrated by unvalidated confirmation sampling results or after documentation samples have been collected in areas where COPCs will left in place. NYSDEC approval will be obtained prior to backfilling any portion of the excavation. During backfilling, demolished utilities will be replaced in-kind as necessary with respect to planned capital improvements in the FFC. Previously unidentified subsurface structures encountered within the excavation shall be left in place if removal will impact the schedule for completion of the IRM and return of control of the project area to ECSD prior to the beginning of the 2020-21 school year. Some SOE elements will remain in place with the acceptance of ECSD. Lagging and tiebacks installed during excavation adjacent to the west side of the EHS A-Wing will be removed but the solider piles will remain in place. Soldier piles installed adjacent to the storm sewer and the north side of the EHS A-Wing as well as the struts installed between them and lagging installed adjacent to the storm sewer will remain in place for use as SOE during a future IRM in the FFC. Final grades, the location, type, and dimension of restored underground utilities, the location and dimension of soldier piles, struts, lagging, and the location of demarcation layers will be surveyed by a NYS licensed surveyor to document as-built conditions. Backfill material will include soils previously approved by NYSDEC for use as soil cover, imported fill, soils previously approved by NYSDEC for reuse below soil cover and excavated soils stockpiled for potential reuse. Soils stockpiled for reuse will meet the requirements of Section 5.4 of DER-10 for use below a soil cover system over a demarcation layer. Reuse soils will not be used for backfilling within one (1) foot of the seasonal high-water table or above two (2) ft bgs. Imported fill to be used above two (2) ft bgs will be certified to meet the requirements of Section 5.4 of DER-10 for unrestricted use as fill for soil cover system including emerging contaminants. An additional demarcation layer will be place between stockpile soiled reused for backfill and imported fill used for the soil cover system. #### 2.8 Site Restoration After completion of backfilling, the work area will be restored to original conditions including replacement of concrete sidewalks and fences. Unpaved areas will be restored with a minimum of four (4) inches of topsoil and reseeded or sod installed based on original conditions. Typical sections are presented in the Construction Drawings (**Appendix A**). Areas within the construction limits (e.g. staging areas, haul roads) or other areas potentially impacted by dust from the IRM excavation will cleaned and decontaminated following construction. Post-use conditions will be documented by verification sampling. Restored conditions within the construction limits will be documented by photographs. Unisys will an affiliate of Geosyntec Consultants coordinate with ECSD to determine the final requirements for Site restoration. The MSA and the temporary haul roads to be constructed on NSRC property will be maintained after completion of IRM #4 for use during future remedial construction. #### 3. PERMITS AND TEMPORARY CONTROLS #### 3.1 Permits and Notifications A storm water construction permit is required as the area of disturbance from construction activities for the IRM is expected to be greater than one acre. To meet the requirements of the General Permit, a Stormwater Pollution Prevention Plan (SWPPP) will be prepared and submitted to NYSDEC for review and approval. Unisys will notify the United States Environmental Protection Agency (EPA) of PCB waste activities by filing EPA Form 7710–53 in accordance with 40 CFR §761.205. #### 3.2 Temporary Facilities During IRM construction, temporary facilities on the EHS property will be constructed for accumulation and loading of hazardous waste and PCB remediation waste. Other on-Site temporary facilities will include construction trailers and frac tanks. Temporary haul roads on the adjacent NSRC property to the east will be constructed for transport of soils between the Site and the MSA. Temporary facilities on the EHS and NSRC properties are shown on the construction drawings presented in **Appendix A**. A temporary water line will be installed to maintain the connection between the existing water line and the EHS building. The service connection located at the EHS service entrance will be maintained during IRM construction while the service connection located at the entrance to the EHS main parking lot will be closed. Water service including the fire loop will be restored during backfilling and Site restoration in coordination with ECSD and the Elmira Water Board. #### 3.3 Soil and Sediment Erosion Control A SWPPP will document selection, design, installation, implementation and maintenance of control measures and practices that will be used to minimize the discharge of pollutants in storm water and prevent a violation of water quality standards. Soil and sediment erosion controls will be established within the limit of disturbance as shown on the construction drawings presented in **Appendix A** to control runoff during construction and prevent sediment from entering the existing storm sewer system. Erosion and sediment controls will be in accordance with the "New York State Standards and Specification for Erosion and Sediment Control" (NYSDEC, 2016) and will be inspected weekly during active construction with additional inspections following rain events. #### 3.4 Water Management Storm water contacting potential PCB impacted soils (contact water) will be segregated from storm water entering areas cleaned of PCB impacted soils (non-contact water). Contact and non-contact water shall remain separated at all times. Contact water generated within the excavation will be minimized and managed to the extent practical. Grading shall be performed as necessary to divert an affiliate of Geosyntec Consultants surface water runoff from entering excavation areas and all stockpiles will be tightly covered. Diversion control berms and temporary drainage channels shall be constructed as needed and maintained Standing water remaining after storm events will be removed from the excavation in a timely manner using vacuum trucks and/or dewatering sumps. Any contact water generated will be conveyed overland via hose to frac tanks staged on-Site. Liquids will be pumped through a filter skid prior to entering the storage tanks as PCBs are typically not readily water soluble and therefore running these liquids through filter bags prior to storage will help to reduce the potential TSCA waste from the project site. Once a tank nears capacity, waste characterization samples will be collected for waste profiling and off-Site disposal. As excavation proceeds to the final depth near the water table,
ground water may be encountered. Excavation below the water table may be required by the Engineer and NYSDEC to achieve cleanup goals. Moist or wet soils will be placed on poly sheeting on the slope and any excess water will decant back into the bottom of the excavation. After those soils have sufficiently drained, they will be transported to the TSCA Accumulation Area for stockpiling and loadout. Any residual moisture will be contained within the TSCA Accumulation Area, collected in the sump for that area and transferred to a frac tank for off-Site treatment and disposal. In the case of moderate ground water infiltration, sumps will be constructed at the base of the excavation. Pumps with sufficient lift and a pumping capacity of up to fifteen (15) gpm will transfer water collected in the sumps to an adjacent frac tank for off-Site disposal. Approximately 20,000 gallons of capacity is reserved for excavation dewatering activities. A contingency plan for additional capacity will be provided within one day based on actual conditions encountered if this capacity will be exceeded. Drawdown during initial dewatering will be observed for four (4) hours to assess its effectiveness. If the observed drawdown is ineffective to allow deeper excavation to proceed, NYSDEC will be advised that the technical practicality of dewatering is considered low and that dewatering operations should be halted. #### 3.5 **Dust Control and Monitoring** Dust control and monitoring shall be conducted throughout the Site during all phases of work in accordance with the Soil/Dust Control and Monitoring Plan (SDCMP, **Appendix G**). The SDCMP has been developed to be consistent with NYSDOH's Generic Community Air Monitoring Plan (CAMP, **Appendix G**). The QEP will be responsible for the implementation of the dust monitoring, control and mitigation measures. Dust control shall be conducted to prevent the presence of visible dust as determined by visual observation and continuous dust monitoring. Visible dust shall not leave the exclusion zone. Dust control measures shall be applied periodically throughout each workday. Dust control may be conducted by sprinkling with water until the surface is wet; restricting vehicle speeds, covering excavation areas and stockpile areas; and reducing the excavation size and/or number of excavations. Additional dust control measures will be considered during intrusive activities within an affiliate of Geosyntec Consultants twenty (20) feet of potentially exposed populations or occupied structures including dust barriers and special ventilation devices. Continuous air monitoring for PCBs will be conducted in accordance with the SDCMP (**Appendix G**). The air monitoring program will include two different types of ambient air quality measurements (1) real-time dust monitoring using direct reading instruments, and (2) time-integrated air sampling and fixed laboratory PCB analyses. Continuous real-time particulate monitoring will be conducted at the upwind and downwind perimeter of the exclusion zone(s) using portable monitors. A minimum of one (1) upwind and four (4) downwind locations shall be monitored. The four (4) downwind locations shall be equally distributed along the perimeter of the work area(s). Work areas are areas where ground intrusive activities and/or soil handling is occurring. During work activities within twenty (20) feet of potentially exposed populations or occupied structures, continuous monitoring locations will be selected based on the nearest potentially exposed individual and the location of ventilation system intakes for nearby structures. Proposed air monitoring locations are presented on **Figure 22**. Air monitoring locations will be adjusted, as necessary, based on changes in wind direction. Air monitoring shall be conducted during excavation, grading, placement of clean fill, or other activities which may generate fugitive dust. Action levels for dust and PCBs in ambient air are presented in the SDCMP. If an action level for dust is reached, Site operations will be stopped and dust control measures in the working area will be implemented. Mitigation measures for dust may include increasing the level of personal protection for on-Site personnel, increasing water spraying, or stopping work. If dust suppression techniques being utilized at the Site do not lower particulates to an acceptable level, work will be suspended until appropriate corrective measures are approved by the QEP to remedy the situation. Time-integrated sampling will be used to provide chemical-specific data for the assessment of potential impacts. One (1) upwind and two (2) downwind real-time monitoring locations will be used for time-integrated sampling for PCBs during excavation of PCB-impacted soils. Timeintegrated samples for PCB analyses will be completed under expedited three-day (3-day) laboratory turnaround times. These time-integrated samples will be used for assessing the potential for off-Site exposures. Time integrated samples will be collected during work hours (excluding lunch and break time) from each sampling location using high-volume air samplers for each day of the first week of PCB-impacted soil excavation activities. After one week of PCBimpacted soil excavation, the need for daily time-integrated sampling for PCBs will be reevaluated. If results from the first week of sampling indicate that PCB concentrations are consistent with background or are below comparison criteria, the PCB sampling frequency reduced to one day per week. The schedule for time-average PCB sampling may be adjusted due to weather conditions during the first week of sampling. Additional samples may be collected during excavations in areas with the highest total PCB concentrations (i.e. total PCB concentrations greater than 50 mg/kg). If any PCB concentration exceeds the PCB action level, NYSDEC and NYSDOH will be notified immediately and work practices will be re-evaluated, and changes will be implemented, as appropriate. an affiliate of Geosyntec Consultants Daily Construction Inspection Reports (Daily Reports) will be sent the NYSDEC and the NYSDOH the following day. Daily Reports summarizing work completed Friday through Sunday will be submitted no later than the following Monday. CAMP data will be attached the Daily Report. #### 3.6 Vibration Monitoring and Building Survey Vibration monitoring will be required during excavation. A building condition survey will be performed to assess the pre- and post-construction conditions of the EHS building. The building condition survey and vibration monitoring shall be performed in accordance with the requirements of the Construction Specifications (**Appendix B**). Written approval for building condition surveys and vibration monitoring will be obtained from ECSD and provided to NYSDEC prior to construction. #### 3.7 Temporary Use Restrictions There will be temporary use restrictions of the EHS property during IRM construction to ensure safe access during construction work. ECSD will have limited operations at EHS during the summer. No student activities will be occurring, and only a limited number of the full-year staff will be working on-Site. All individuals accessing the building will do so through the main parking lot and entrance, thereby avoiding all remedial work being performed. Public access, such as new enrollments, will be accommodated through the main entrance. No staff or visitor will have access to the work areas. The doors on the north and west side of the EHS A Wing will be locked to prevent access to the work area. Access to those areas of the A-Wing will be limited so this temporary restriction will not impact emergency evacuation procedures. Access to the FFC and the NAF will be restricted by temporary fencing. A temporary rally point will be constructed in parking lot adjacent to the basketball courts. In the event of an evacuation or evacuation drill, all IRM activities will be halted until ECSD gives permission for them to resume. The temporary evacuation route from the EHS building to the temporary rally point is shown on **Figure 23**. ECSD concurrence with these temporary use restrictions of the EHS property will be provided under separate cover. ECSD has provided comments on this IRM #4 Work Plan and the construction documents. Those comments and a schedule for responses are provided in **Appendix H.** an affiliate of Geosyntec Consultants #### 4. HEALTH AND SAFETY All Site activities will be performed in such a manner as to ensure the safety and health of all personnel and the surrounding community. All Site activities shall be conducted in accordance with all pertinent general industry (29 CFR 1910) and construction (29 CFR 1926) Occupational Health and Safety Administration (OSHA) standards, as well as any other applicable New York State and municipal codes or ordinances. All Site activities will comply with those requirements set forth in OSHA's final rule entitled Hazardous Waste Operation and Emergency Response (HAZWOPER), 29 CFR 1910.120, Subpart H. To ensure that all Site activities are in compliance, each contractor will prepare a Health and Safety Plan (HASP) in accordance with the aforementioned regulations. Each HASP shall conform to the requirements of 29 CFR 1910.120 and all applicable state, federal, local, and other health and safety requirements and safe construction practices not specifically identified in these requirements. A Site-specific HASP has been prepared for IRM tasks (**Appendix I**). A contingency for chemical specific PCB monitoring would be developed in the event the State determines that it is necessary. The IRM Contractor will provide a "competent person" per 29 CFR 1926 Subpart P – Excavations on-Site during excavations. The qualifications of the designated "competent person" will be provided to NYSDEC prior to IRM construction. The IRM contractor will be the "controlling contractor" for IRM activities and will be
responsible for implementing a COVID-19 Action Plan. A COVID-19 Action Plan was submitted to NYSDEC and NYSDOH on 14 April 2020 and will be updated as necessary, and for IRM 4 construction. #### 5. INSTITUTIONAL CONTROLS Institutional controls (ICs) will be implemented at the Site in accordance with the interim SMP approved by NYSDEC on 20 December 2019. The interim SMP will be updated following IRM completion to include details of cover systems which are part of the IRM to ensure that ongoing site management at the Site remains protective. The interim SMP includes quarterly inspections of permanent cover systems (e.g., pavements, vegetated areas, and building floor slabs) and temporary cover systems (e.g., mulch beds). Photographic documentation and recommendations for corrective action will be provided in quarterly Site Inspection Reports and the annual Periodic Review Report. Unisys and ECSD will coordinate cover maintenance and corrective action in accordance with the interim SMP. ECSD has agreed to accept an Environmental Easement on the property since the IRM will include a cover system (**Appendix H**). The necessity for an Environmental Easement requiring compliance with the SMP will be evaluated when a final remedy for the Site has been completed and a final SMP has been prepared. #### 6. SCHEDULE AND DELIVERABLES #### 6.1 Schedule The proposed schedule for the IRM is presented in **Table 10**. The following are milestone dates applicable to this IRM: - 14 February 2020 Pre-Final (95%) IRM #4 Work Plan Submittal; - 30 April 2020 Final (100%) IRM #4 Work Plan Submittal - 30 April 2020 IRM Contractor Work Plan Submittal - 19 May 2020 Revised Final (100%) IRM #4 Work Plan Submittal - 21 May 2020 Revised IRM Contractor Work Plan Submittal - 1 June 2020 Mobilization of IRM contractor to the Site, weather permitting; - 1 June 2020 Survey of existing conditions - 10 June 2020 MSA and temporary haul road construction; - 30 June 2020 Soldier pile installation; - 30 June 2020 –Excavation Start: - 11 August 2020 Excavation Completion; - 20 August 2020 –Backfill Completion; - 28 August 2020 Site restoration at EHS Completion; - 3 September 2020 Completion of transport of soil stockpiles for off-Site disposal; and - 4 September 2020 Demobilization. The proposed schedule is based on excavation of up to 600 cubic yards per day. Based on construction of previous IRMs at the Site, the schedule includes contingency for delays of up to three (3) days due to weather. Anticipated working hours are Monday through Friday during daylight hours. Work on weekends may be required to meet schedule milestones. an affiliate of Geosyntec Consultants #### 6.2 <u>Deliverables</u> A construction completion report (CCR) will be prepared in accordance with Section 5.8 of DER-10 to document the implementation of the IRM. The CCR will include a description of IRM construction activities, as-built drawings, daily field reports, analytical data reports, and disposal manifests. The CCR will be delivered to NYSDEC within ninety (90) days of completing transport of soil stockpiles for off-Site disposal, site restoration, and demobilization. an affiliate of Geosyntec Consultants #### 7. CONTINGENCY PLANNING The proposed schedule for IRM #4 presented in Section 6 has been prepared with the assumption that school will not be in session at EHS during IRM #4 construction. Temporary fencing, dust control, community air monitoring, vibration monitoring and noise monitoring will be implemented as described above to protect the health, safety and security of the EHS community during IRM #4. In the event that school will be in session during Summer 2020, enhanced safety and security measures will be implemented at EHS and enhanced communications will be provided to ECSD and the EHS community as follows: - Enhanced Site Safety and Security - o Site contractor personnel will have personnel ID badges. - o Traffic patterns will be coordinated with ECSD to avoid high traffic periods for staff and students arriving and leaving EHS. - Enhanced Communication - Weekly activity reports to ECSD with a summary of work completed and projected activities for the following week - o Reporting of CAMP results to publicly available website. - Daily reporting of real-time dust monitoring results - Reporting of PCB analytical results for time-averaged air samples as they become available from the fixed laboratory. - o Update Frequently Asked Questions (FAQs) handout available on NYSDEC web page: http://www.dec.ny.gov/chemical/102390.html Implementation of contingency planning measures, if necessary, will be detailed at least two (2) weeks in advance of Summer 2020 open session in the Community Liaison Plan linked to the NYSDEC website. ### TABLE 1 Summary of PCB Results for Subsurface Soils (0-2 ft bgs) IRM4 Former Sperry Remington Site - North Potion | | | | Form | er Sperry Remington Si | | | | | | | | | | | | |------------------------|-------------------------|-----------------------------|-------------|------------------------|------------|---------------------------|----------------|----------------|----------------|---------------|----------------|---------------|---------------|----------------|--| | | | | | Elmira, New Yo | ork | | | | | | | | | | | | | | | | | | Polychlorinated Biphenyls | | | | | | | | | | | | | | | | Total PCBs | Arochlor 1016 | A rochlor 1221 | A rochlor 1232 | A rochlor 1242 | Arochlor 1248 | A rochlor 1254 | Arochlor 1260 | Arochlor 1268 | A rochlor 1262 | | | | | | | | mg/kg | | EQL | | | | | | 0.0036 | 0.0044 | 0.0041 | 0.0024 | 0.004 | 0.0051 | 0.0048 | 0.0022 | 0.0054 | | | Restricted Residential | | | | | 1 | | | | | | | | | | | | NYS Hazardous Waste | | | | | 50 | | | | | | | | | | | | Location | Sample Name | Sample Depth Range (ft bgs) | Sample Date | Lab Report Number | | | | | | | | | | | | | SSHS-B267 | SSHS-B267-SUB-0-2 | 0-2 | 7/30/2015 | 180-46426-1 | 0.0701 | <0.0036U | <0.0044U | <0.0061U | <0.0044U | 0.029J | 0.032J | 0.0091J | <0.0035U | <0.0065U | | | SSHS-B334 | SSHS-B334-SUB-0-2 | 0-2 | 3/3/2016 | 180-52706-1 | 0.784 | <0.008U | <0.013U | <0.0044U | <0.0065U | 0.54J | 0.2J | 0.044J | <0.0033U | <0.0054U | | | SSHS-B651 | SSHS-651-SUB-0-2 | 0-2 | 2/14/2017 | 180-63507-1 | 2.14 | <0.0096U | <0.0094U | <0.0072U | <0.014U | 1.5J | 0.54J | 0.1J | <0.0055U | <0.013U | | | SSHS-B702 | SSHS-B702-SUB-0-2 | 0-2 | 3/21/2017 | 180-64494-1 | 0.6011 | <0.0098U | <0.0095U | <0.0073U | <0.015U | 0.41 | 0.12 | 0.041 | <0.0056U | <0.013U | | | SSHS-B703 | SSHS-B703-SUB-0-2 | 0-2 | 3/23/2017 | 180-64584-1 | 0.2574 | <0.011U | <0.011U | <0.0083U | <0.017U | 0.15 | 0.058 | 0.015J | <0.0064U | <0.015U | | | SSHS-IRM3-B100-BOT2 | SSHS-IRM3-B100 BOT BOT | 1.4-1.4 | 8/1/2019 | 180-93547-2 | < 0.0458 | <0.0062U | <0.0068U | | <0.0028U | <0.0046U | <0.0058U | <0.0055U | <0.0026U | <0.0068U | | | SSHS-IRM3-S001 | SSHS-IRM3-S001-07-10-19 | 0.1-0.1 | 7/10/2019 | 180-92467-1 | < 0.0405 | <0.0055U | <0.006U | <0.0042U | <0.0025U | <0.0041U | <0.0051U | <0.0048U | <0.0023U | <0.006U | | | SSHS-IRM3-S002 | SSHS-IRM3-S002-07-09-19 | 0.3-0.3 | 7/9/2019 | 180-92395-1 | < 0.0402 | <0.0055U | <0.006U | <0.0041U | <0.0025U | <0.004U | <0.0051U | <0.0048U | <0.0023U | <0.0059U | | | SSHS-IRM3-S003 | SSHS-IRM3-S003-07-09-19 | 0.2-0.2 | 7/9/2019 | 180-92395-1 | < 0.0422 | <0.0058U | <0.0063U | <0.0043U | <0.0026U | <0.0043U | <0.0053U | <0.005U | <0.0024U | <0.0062U | | | SSHS-IRM3-S020 | SSHS-IRM3-S020-07-10-19 | 0-0 | 7/10/2019 | 180-92462-1 | 0.922 | <0.0058U | <0.0064U | <0.0044U | <0.0026U | 0.54J | 0.28J | 0.088J | <0.0024U | <0.0063U | | | SSHS-IRM3-S020A | SSHS-IRM3-S020A-C | 1.7-1.7 | 7/29/2019 | 180-93352-1 | 0.2711 | <0.0063U | <0.0069U | <0.0047U | <0.0028U | 0.12J | 0.098J | 0.038J | <0.0026U | <0.0068U | | | SSHS-IRM3-S021A | SSHS-IRM3-S021A-C | 1.8-1.8 | 7/29/2019 | 180-93352-1 | 0.0504 | <0.0063U | <0.0069U | <0.0047U | <0.0028U | <0.0047U | 0.022J | 0.011J | <0.0026U | <0.0068U | | | SSHS-IRM3-S022A | SSHS-IRM3-S022A-C | 1.9-1.9 | 7/29/2019 | 180-93352-1 | 0.0904 | <0.0069U | <0.0075U | <0.0051U | <0.0031U | 0.045J | 0.026J | <0.006U | <0.0028U | <0.0074U | | | SSHS-IRM3-S023AA | SSHS-IRM3-S023AA-C | 0.8-0.8 | 8/1/2019 | 180-93547-2 | 0.09375 | <0.0062U | <0.0067U | <0.0046U | <0.0028U | 0.043J | 0.024J | 0.012J | <0.0025U | <0.0067U | | | SSHS-IRM3-S023AB | SSHS-IRM3-S023AB-C | 1.3-1.3 | 8/1/2019 | 180-93547-2 | 0.7138 | <0.0058U | <0.0063U | <0.0043U | <0.0026U | 0.44J | 0.19J | 0.07J | <0.0024U | <0.0062U | | | SSHS-IRM3-S023A-BOT | SSHS-IRM3-S023A BOT-C | 1.5-1.5 | 8/1/2019 | 180-93547-2 | 0.388 | <0.0054U | <0.0059U | <0.0041U | <0.0024U | 0.24J | 0.1J | 0.035J | <0.0022U | <0.0059U | | | SSHS-IRM3-S023AC | SSHS-IRM3-S023AC-C | 0.8-0.8 | 8/1/2019 | 180-93547-2 | 0.4697 | <0.0061U | <0.0067U | <0.0046U | <0.0028U | 0.29J | 0.12J | 0.045J | <0.0025U | <0.0066U | | | SSHS-IRM3-S023AD | SSHS-IRM3-S023AD-C | 0.6-0.6 | 8/1/2019 | 180-93547-2 | 2.494 | <0.0059U | <0.0064U | <0.0044U | <0.0027U | 1.8J | 0.53J | 0.15J | <0.0024U | <0.0064U | | | SSHS-IRM3-S024A | SSHS-IRM3-S024A-C | 1.4-1.4 | 7/29/2019 | 180-93352-1 | < 0.0415 | <0.0057U | <0.0062U | <0.0042U | <0.0026U | <0.0042U | <0.0052U | <0.005U | <0.0023U | <0.0061U | | | SSHS-IRM3-S025 | SSHS-IRM3-S025-07-09-19 | 0.6-0.6 | 7/9/2019 | 180-92395-1 | < 0.0404 | <0.0055U | <0.006U | <0.0041U | <0.0025U | <0.0041U | <0.0051U | <0.0048U | <0.0023U | <0.006U | | | SSHS-IRM3-S026 | SSHS-IRM3-S026-07-09-19 | 0.2-0.2 | 7/9/2019 | 180-92395-1 | < 0.0404 | <0.0055U | <0.006U | <0.0041U | <0.0025U | <0.0041U | <0.0051U | <0.0048U | <0.0023U | <0.006U | | | SSHS-IRM3-S027 | SSHS-IRM3-S027-07-10-19 | 0.4-0.4 | 7/10/2019 | 180-92467-1 | < 0.0428 | <0.0059U | <0.0064U | <0.0044U | <0.0026U | <0.0043U | <0.0054U | <0.0051U | <0.0024U | <0.0063U | | | SSHS-IRM3-S028 | SSHS-IRM3-S028-07-10-19 | 0.1-0.1 | 7/10/2019 | 180-92467-1 | < 0.0419 | <0.0057U | <0.0062U | <0.0043U | <0.0026U | <0.0042U | <0.0053U |
<0.005U | <0.0024U | <0.0062U | | | SSHS-IRM3-S028d | SSHS-IRM3-S028-D | 0.4-0.4 | 8/5/2019 | 180-93684-3 | 2.544 | <0.0057U | <0.0062U | <0.0043U | <0.0026U | 1.7 | 0.66 | 0.17 | | <0.0062U | | | SSHS-IRM3-S029 | SSHS-IRM3-S029-D | 0.6-0.6 | 8/5/2019 | 180-93684-3 | 14.14 | <0.056U | <0.061U | <0.042U | <0.025U | 9.5 | 3.7 | 0.81 | <0.023U | <0.06U | | | SSHS-IRM3-S044 | SSHS-IRM3-S044-C | 1.5-1.5 | 7/12/2019 | 180-92615-1 | 2.024 | <0.006U | <0.0065U | <0.0045U | <0.0027U | 1.3J | 0.54J | 0.17J | <0.0025U | <0.0065U | | | SSHS-IRM3-S048 | SSHS-IRM3-S048-D | 0.1-0.1 | 7/12/2019 | 180-92616-1 | 2.333 | <0.0056U | <0.0061U | <0.0042U | <0.0025U | 1.6 | 0.6 | 0.12 | <0.0023U | <0.0061U | | | SSHS-IRM3-S052 | SSHS-IRM3-S052-D | 1.6-1.6 | 7/15/2019 | 180-92661-1 | 33.33 | <0.056U | <0.061U | <0.042U | <0.025U | 20 | 9.5 | 3.7 | <0.023U | <0.06U | | | SSHS-SE SIDEWALL 1 | SE SIDEWALL 1 | 0-2 | 7/24/2017 | 180-68518-1 | 0.04975 | <0.0098U | <0.0096U | <0.0073U | <0.015U | <0.0089U | 0.0091J | <0.012U | <0.0057U | <0.013U | | SSHS-RS SIDEWALL 1 SE SIDEWALL 1 0-2 7/24/2017 180-68518-1 Nates: J - estimated value U - non-detect mg/sg - milligram per kilogram fit bgs - feet below ground surface fit MSL - feet above mean sea level PCBs - polychlorinated biphenyls SCO - Soil Cleanup Objective PCB or Metals concentrations detected above Restricted-Residential Soil Cleanup Objectives (6 NYCRR Part 375) are presented in light gray. PCB concentrations detected above New York State hazardous waste threshold (6 NYCRR Part 371.4 (e)) are presented in dark grey MN0832/Table 1 - IRM4 PCB Results (0.17-2) Page 1 of 1 # TABLE 2 Summary of PCB Results for Subsurface Soils (2-14 ft bgs) IRM 4 Former Sperty Remington Site - North Portion Elmira, New York | | | | | | Total PCBs | Arochlor 1016 | Arochlor 1221 | Arochlor 1232 | Arochlor 1242 | Arochlor 1248 | Arochlor 1254 | krochlor 1260 | Arochlor 1268 | Arochlor 1262 | |--|--|------------------------------|--|--|-------------------------------|---|---|---------------------------------------|--|----------------------------------|---------------------------------|---------------------------------------|---|----------------------------| | QL. | | | | | mg/kg | mg/kg
0.0037 | mg/kg
0.0046 | mg/kg
0.0041 | mg/kg
0.0024 | mg/kg
0.0041 | mg/kg
0.0045 | mg/kg
0.004 | mg/kg
0.0022 | mg/kg
0.005 | | Subsurface Soil N S a ar ou | | Sample Depth Range (ft bgs) | Sample Date | Lab Report Number | 10
50 | | | | | | | | | | | SSHS-B2238
SSHS-B2238 | SSHS-B2238-SUB-10-12
SSHS-B2238-SUB-12-14 | 10-12
12-14 | 7/23/2018
7/23/2018 | 180-80091-1
180-80091-1 | 1578
1410 | <3U
<3U | <6U
<5.9U | <5.5U
<5.4U | <5.6U
<5.4U | 1100
1000 | 440
370 | 22
25 | <4.5U
<4.4U | <6.5L | | SSHS-B2239
SSHS-B2239
SSHS-B2240 | SSHS-B2239-SUB-4-6
SSHS-B2239-SUB-6-8
SSHS-B2240-SUB-12-14 | 4-6
6-8
12-14 | 7/23/2018
7/23/2018
7/23/2018 | 180-80091-3
180-80091-3
180-80091-2 | 0.9931
4.141
0.0898 | <0.0061U
<0.006U,F1
<0.0061U | <0.012U
<0.012U
<0.012U | <0.011U
<0.011U
<0.011U | <0.011U
<0.011U
<0.011U | 0.66
2.8
0.042 | 0.25
1.1
0.014J | 0.052
0.21
<0.0054U | <0.0091U
<0.009U
<0.0091U | <0.013
<0.013
<0.013 | | SSHS-B2240
SSHS-B262
SSHS-B2629 | SSHS-B2240-SUB-8-10
SSHS-B262-SUB-6-8
SSHS-B2629-SUB-10-12 | 8-14
6-8
10-12 | 7/23/2018
7/29/2015
4/25/2019 | 180-80091-2
180-46367-1
180-89522-1 | 0.589
0.0237
13.73 | <0.006U
<0.0037U
<0.029U | <0.012U
<0.0046U
<0.032U | <0.011U
<0.0063U
<0.022U | <0.011U
<0.0046U
<0.013U | 0.4
0.016J
9.4J | 0.14
0.0077J
3.3J | 0.018J,p
<0.004U
0.96J | <0.009U
<0.0037U
<0.012U | <0.013
<0.006
<0.031 | | SHS-B2629
SHS-B2629
SHS-B2629 | SSHS-B2629-SUB-2-4
SSHS-B2629-SUB-4-6
SSHS-B2629-SUB-6-8 | 2-4
4-6
6-8 | 4/25/2019
4/25/2019
4/25/2019 | 180-89522-1
180-89522-1
180-89522-1 | 1.082
4.684
7.245 | <0.006U
<0.0059U
<0.0061U | <0.0065U
<0.0064U
<0.0066U | | <0.0027U
<0.0026U
<0.0027U | 0.76J
3.5J
5.2J | 0.24J
0.89J
1.5J | 0.068J
0.28J
0.53J | <0.0025U
<0.0024U
<0.0025U | <0.006
<0.006
<0.006 | | SSHS-B2629
SSHS-B2634
SSHS-B2634 | SSHS-B2629-SUB-8-10
SSHS-B2634-SUB-12-14
SSHS-B2634-SUB-6-8 | 8-10
12-14
6-8 | 4/25/2019
4/24/2019
4/24/2019 | 180-89522-1
180-89408-1
180-89408-2 | 2.484
6.344
20.78 | <0.0058U
<0.0059U
<0.06U | <0.0064U
<0.0064U
<0.066U | <0.0044U
<0.0044U
<0.045U | <0.0026U
<0.0027U
<0.027U | 1.8J
4.8J
15J | 0.51J
1.3J
4.7J | 0.16J
0.23J
0.94J | <0.0024U
<0.0024U
<0.025U | <0.006
<0.006 | | SHS-B2637
SHS-B2637
SHS-B2637 | SSHS-B2637-SUB-12-14
SSHS-B2637-SUB-2-4
SSHS-B2637-SUB-4-6 | 12-14
2-4
4-6 | 4/24/2019
4/24/2019
4/24/2019 | 180-89408-1
180-89408-1
180-89408-2 | 12.63
22.57
121.8 | <0.031U
<0.059U
<0.6U | <0.034U
<0.065U
<0.65U | <0.023U
<0.045U
<0.45U | <0.014U
<0.027U
<0.27U | 9J
16J
88J | 2.9J
5.5J
28J | 0.66J
0.93J
4.4J | <0.013U
<0.025U
<0.25U | <0.03
<0.06 | | SHS-B2637
SHS-B2660
SHS-B2660 | SSHS-B2637-SUB-8-10
SSHS-B2660-SUB-2-4
SSHS-B2660-SUB-4-6 | 8-10
2-4
4-6 | 4/24/2019
4/25/2019
4/25/2019 | 180-89408-2
180-89522-2
180-89522-1 | 37.58
0.6586
0.2458 | <0.12U
<0.0057U
<0.0063U | <0.13U
<0.0062U
<0.0069U | <0.086U
<0.0042U
<0.0047U | <0.052U
<0.0026U
<0.0028U | 27J
0.45J
0.17J | 8.4J
0.15J
0.058J | 1.9J
0.045J
<0.0055U | <0.048U
<0.0023U
<0.0026U | <0.000 | | SHS-B2661
SHS-B2661
SHS-B2674 | SSHS-B2661-SUB-10-12
SSHS-B2661-SUB-4-6
SSHS-B2674-SUB-6-8 | 10-12
4-6
6-8 | 4/25/2019
4/25/2019
4/25/2019 | 180-89522-1
180-89522-2
180-89522-1 | 86.83
15.77
0.3975 | <0.3U
<0.032U
<0.0062U | <0.33U
<0.034U
<0.0067U | <0.23U
<0.024U | <0.14U
<0.014U
<0.0028U | 65J
11J
0.28J | 19J
3.9J
0.1J | 2.1J
0.79J
<0.0054U | <0.13U
<0.013U
<0.0026U | <0.03
<0.00 | | SHS-B2679
SHS-B2679
SHS-B2679 | SSHS-B2679-SUB-10-12
SSHS-B2679-SUB-4-6
SSHS-B2679-SUB-8-10 | 10-12
4-6
8-10 | 4/24/2019
4/24/2019
4/24/2019 | 180-89408-2
180-89408-2
180-89408-2 | 119.9
489.9
110.3 | <0.29U
<1.2U
<0.61U | <0.31U
<1.3U
<0.66U | <0.22U
<0.88U
<0.46U | <0.13U
<0.53U
<0.27U | 87J
360J
80J | 28J
110J
25J | 4.2J
17J
3.8J | <0.12U
<0.49U
<0.25U | <0.31
<1.3 | | SHS-B268
SHS-B268
SHS-B268 | SSHS-B268-SUB-2-4
SSHS-B268-SUB-4-6
SSHS-B268-SUB-6-8 | 2-4
4-6
6-8 | 7/29/2015
7/29/2015
7/29/2015 | 180-46367-1
180-46367-1
180-46367-1 | 11.55
0.942
<0 | <0.037U
<0.004U
<0.0039U | <0.045U
<0.0048U
<0.0047U | <0.063U
<0.0067U | <0.046U
<0.0049U
<0.0048U | 10J
0.63J
<0.0047U | 1.1J
0.28J
<0.0045U | 0.45J
0.032J
<0.0041U | <0.036U
<0.0039U
<0.0038U | <0.00 | | SHS-B2682
SHS-B2683
SHS-B2684 | SSHS-B2682-SUB-2-4
SSHS-B2683-SUB-12-14
SSHS-B2684-SUB-12-14 | 2-4
12-14
12-12 | 4/25/2019
4/27/2019
4/26/2019 | 180-89522-2
180-89523-1
180-89521-1 | 3095
<0.0439
0.4972 | <6.1U
<0.006U
<0.0061U | <6.7U
<0.0065U
<0.0066U | <4.6U
<0.0045U | <2.8U
<0.0027U
<0.0027U | 2400J
<0.0044U
0.34J | 590J
<0.0055U
0.14J | 90J
<0.0053U
<0.0053U | <2.5U
<0.0025U
<0.0025U | <6.6
<0.000 | | SHS-B269
SHS-B2724
SHS-B2724 | SSHS-B269-SUB-2-3
SSHS-B2724-SUB-12-14
SSHS-B2724-SUB-12-14 | 2-3
12-14 | 7/17/2015
4/24/2019
4/24/2019 | 180-89321-1
180-89408-1
180-89408-2
180-89408-2 | 11.17
0.1664
5.904 | <0.019U
<0.0058U
<0.0058U | <0.0063U
<0.0063U | <0.031U
<0.0043U | <0.023U
<0.0026U
<0.0026U | 7.3J
0.11J | 3.3J
0.04J
1.8J | 0.57J
<0.0051U
0.29J | <0.018U
<0.0024U
<0.0024U | <0.000
<0.000
<0.000 | | SHS-B2724
SHS-B2724 | SSHS-B2724-SUB-4-6
SSHS-B2724-SUB-6-8 | 2-4
4-6
6-8 | 4/24/2019
4/24/2019 | 180-89408-2
180-89408-2 | 15.33
18.49 | <0.06U
<0.06U | <0.065U
<0.065U | <0.045U
<0.045U | <0.027U
<0.027U | 3.8J
11J
13J | 3.6J
4.6J | 0.59J
0.75J | <0.025U
<0.025U | <0.06 | | SHS-B273
SHS-B273
SHS-B2758 | SSHS-B273-SUB-4-6
SSHS-B273-SUB-6-8
SSHS-B2758-SUB-12-14 | 4-6
6-8
12-14 | 7/29/2015
7/29/2015
4/26/2019 | 180-46367-1
180-46367-1
180-89521-1 | 25.7
0.183
0.0451 | <0.075U
<0.0039U
<0.0061U | <0.092U
<0.0048U
<0.0066U | <0.13U
<0.0066U
<0.0045U | <0.093U
<0.0048U
<0.0027U | 0.084J
0.014J | 6.4J
0.099J
0.014J | 1.3J
<0.019U
<0.0053U | <0.074U
<0.0039U
<0.0025U | <0.10
<0.00
<0.00 | | SHS-B2763
SHS-B2766
SHS-B2959 | SSHS-B2763-SUB-4-6
SSHS-B2766-SUB-6-8
SSHS-B2959-SUB-10-12 | 4-6
6-8
10-12 | 4/26/2019
4/23/2019
11/7/2019 | 180-89521-2
180-89344-2
180-98520-1 | 0.1806
9.621
3.624 | <0.0062U
<0.03U
<0.0059U | <0.0068U
<0.033U
<0.0065U | <0.0047U
<0.022U
<0.0045U | <0.0028U
<0.013U
<0.0027U | 0.16
7.1J
2.7J | <0.0058U
2.1J
0.72J | <0.0055U
0.35J
0.19J | <0.0026U
<0.012U
<0.0025U | <0.00
<0.03 | | SHS-B2960
SHS-B2962
SHS-B2977 | SSHS-B2960-SUB-10-12
SSHS-B2962-SUB-12-14
SSHS-B2977-SUB-10-12 |
10-12
12-14
10-12 | 11/7/2019
11/6/2019
11/7/2019 | 180-98520-1
180-98355-3
180-98520-1 | 14,060
0.0323
13.48 | <0.0058U
<0.061U | <0.0063U
<0.066U | <0.0043U
<0.046U | <27U
<0.0026U
<0.027U | 11,000J
0.0065J
10J | 2200J
0.0095J
2.6J | 720J
<0.005U
0.73J | <25U
<0.0024U
<0.025U | <0.00
<0.06 | | SHS-B2977
SHS-B321
SHS-B327 | SSHS-B2977-SUB-12-14
SSHS-B321-SUB-4-6
SSHS-B327-SUB-2-4 | 12-14
4-6
2-4 | 11/7/2019
3/3/2016
3/3/2016 | 180-98520-1
180-52706-1
180-52706-1 | 2.755
33,930
1.121 | <0.0062U
<43U
<0.0086U | <0.0068U
<69U
<0.014U | <0.0047U
<24U
<0.0047U | <0.0028U
<35U
<0.007U | 2J
22,000J
0.81J | 0.59J
5100J
0.28J | 0.15J
720J
0.031J | <0.0026U
<18U
<0.0035U | <0.00
<29
<0.00 | | SHS-B327
SHS-B328
SHS-B328 | SSHS-B327-SUB-4-6
SSHS-B328-SUB-2-4
SSHS-B328-SUB-4-6 | 4-6
2-4
4-6 | 3/3/2016
3/3/2016
3/3/2016 | 180-52706-1
180-52706-1
180-52706-1 | 0.249
159.9
1.86 | <0.0091U
<0.41U
<0.0088U | <0.014U
<0.65U
<0.014U | <0.005U
<0.23U
<0.0048U | <0.0074U
<0.33U
<0.0071U | 0.19J
64J
1.2J | 0.059J
25J
0.59J | <0.0068U
4.2J
0.07J | <0.0037U
<0.17U
<0.0036U | <0.00
<0.2
<0.00 | | SHS-B337
SHS-B338
SHS-B338 | SSHS-B337-SUB-8-10
SSHS-B338-SUB-6-8
SSHS-B338-SUB-8-10 | 8-10
6-8
8-10 | 3/9/2016
3/9/2016
3/9/2016 | 180-52876-1
180-52876-1
180-52876-1 | 0.09
21.11
2.76 | <0.0082U
<0.087U
<0.0083U | <0.013U
<0.14U
<0.013U | <0.0045U
<0.048U
<0.0045U | <0.0066U
<0.07U
<0.0067U | 0.064J
15J
1.8J | 0.026J
5.7J
0.86J | <0.0061U
0.41J
0.1J | <0.0033U
<0.036U
<0.0034U | <0.00
<0.05
<0.00 | | SHS-B339
SHS-B438
SHS-B438 | SSHS-B339-SUB-2-4
SSHS-B438-SUB-2-4
SSHS-B438-SUB-4-6 | 2-4
2-4
4-6 | 3/9/2016
8/26/2016
8/26/2016 | 180-52876-1
180-58029-3
180-58029-3 | 9.17
72.01
37.04 | <0.042U
<0.16U
<0.082U | <0.066U
<0.26U
<0.13U | <0.023U
<0.09U
<0.045U | <0.034U
<0.13U
<0.066U | 6.6J
53J
26J | 2.4J
17J
9.9J | 0.17J
1.6J
0.93J | <0.017U
<0.067U
<0.034U | <0.02
<0.1
<0.05 | | SHS-B438
SHS-B438
SHS-B439 | SSHS-B438-SUB-6-8
SSHS-B438-SUB-8-10
SSHS-B439-SUB-2-4 | 6-8
8-10
2-4 | 8/26/2016
8/26/2016
8/26/2016 | 180-58029-3
180-58029-2
180-58029-3 | 37.01
233.6
58.11 | <0.084U
<0.82U
<0.16U | <0.13U
<1.3U
<0.26U | <0.046U
<0.45U
<0.089U | <0.068U
<0.66U
<0.13U | 26J
170J
39J | 10J
56J
17J | 0.8J
5.5J
1.7J | <0.034U
<0.34U
<0.066U | <0.05
<0.5
<0.1 | | SHS-B439
SHS-B439
SHS-B443 | SSHS-B439-SUB-6-8
SSHS-B439-SUB-8-10
SSHS-B443-SUB-2-4 | 6-8
8-10
2-4 | 9/15/2016
9/15/2016
9/14/2016 | 180-58722-1
180-58722-2
180-58722-1 | 376.2
146.9
294.1 | <0.86U
<0.85U
<0.83U,F1 | <1.4U
<1.3U
<1.3U | <0.47U
<0.46U
<0.45U | <0.7U
<0.68U
<0.67U | 270J
110J
210J | 89J
31J
72J | 15J
3.8J
10J | <0.35U
<0.35U
<0.34U | <0.5
<0.5 | | SHS-B443
SHS-B443
SHS-B443 | SSHS-B443-SUB-4-6
SSHS-B443-SUB-6-8
SSHS-B443-SUB-8-10 | 4-6
6-8
8-10 | 9/14/2016
9/14/2016
9/15/2016 | 180-58722-1
180-58722-1
180-58722-1
180-58722-2 | 2071
102.6
273.7 | <4.1U
<0.42U
<0.84U | <6.5U
<0.67U
<1.3U | <2.3U
<0.23U
<0.46U | <3.3U
<0.34U
<0.68U | 1500J
74J | 510J
24J
65J | 51J
3.5J
6.6J | <1.7U
<0.17U
<0.34U | <0.28 | | SHS-B444
SHS-B444
SHS-B444 | SSHS-B444-SUB-2-4
SSHS-B444-SUB-4-6
SSHS-B444-SUB-6-8 | 2-4
4-6 | 8/26/2016
8/26/2016 | 180-58029-1
180-58029-1 | 53.61
8.941
23.27 | <0.17UJ
<0.0085U
<0.087UJ | <0.26U
<0.013U | <0.09U
<0.0046U
<0.047U | <0.13U
<0.0068U
<0.07U | 200J
37J
5.5J
<0.044U | 14J
2.7J
23 | 2.2J
0.72J | <0.067U
<0.0035U | <0.10 | | SHS-B444
SHS-B461 | SSHS-B444-SUB-8-10
SSHS-B461-SUB-2-3
SSHS-B462-SUB-2-3 | 6-8
8-10
2-3
2-3 | 8/26/2016
8/26/2016
8/31/2016 | 180-58029-1
180-58029-2
180-58236-1
180-58236-1 | 33.81
8.733 | <0.085U
<0.041U | <0.14U
<0.13U
<0.064U | <0.046U
<0.022U | <0.068U
<0.033U | 24J
6.6J
38J | 8.2J
1.7J
13J | <0.065U,F1,F
1.4J
0.33J
1.9J | <0.035U
<0.034U
<0.017U
<0.035U | <0.05
<0.05
<0.02 | | SHS-B462
SHS-B463
SHS-B467 | SSHS-B462-SUB-2-3
SSHS-B463-SUB-2-3
SSHS-B467-SUB-2-4
SSHS-B467-SUB-4-6 | 2-3
2-4 | 8/31/2016
8/31/2016
8/29/2016 | 180-58236-1
180-58133-1 | 53.11
15.69
3776 | <0.085U
<0.042U
<4.2U
<0.41U | <0.13U
<0.066U
<6.6U | <0.047U
<0.023U
<2.3U
<0.22U | <0.069U
<0.034U
<3.4U
<0.33U | 11J
2800J
220J | 3.9J
900J | 0.68J
65J
5.3J | <0.033U
<0.017U
<1.7U
<0.17U | <0.05
<0.02
<2.5 | | SSHS-B467
SSHS-B467
SSHS-B468 | SSHS-B467-SUB-6-8
SSHS-B468-SUB-2-4 | 4-6
6-8
2-4 | 8/29/2016
8/29/2016
8/24/2016 | 180-58133-2
180-58133-2
180-57932-1 | 309.3
0.0514
110.7 | <0.008U
<0.41U | <0.64U
<0.013U
<0.65U | <0.0044U
<0.23U | <0.0064U
<0.33U | 0.025
82J | 83J
<0.0064U
24J | <0.006U
3.7J | <0.0032U
<0.17U | <0.23
<0.00
<0.23 | | SHS-B468
SHS-B476
SHS-B477 | SSHS-B468-SUB-4-6
SSHS-B476-SUB-6-8
SSHS-B477-SUB-2-4 | 4-6
6-8
2-4 | 8/24/2016
8/29/2016
8/29/2016 | 180-57932-1
180-58133-1
180-58133-1 | 2.689
<0.058
3.761 | <0.0086U,F1
<0.0082U
<0.0084U | <0.014U
<0.013U
<0.013U | <0.0047U
<0.0045U
<0.0046U | <0.0069U
<0.0066U
<0.0068U | 2J
<0.0042U
2.5J | 0.58J
<0.0066U
1.1J | 0.087J
<0.0061U
0.14J | <0.0035U
<0.0033U
<0.0034U | <0.00: | | SHS-B477
SHS-B477
SHS-B479 | SSHS-B477-SUB-4-6
SSHS-B477-SUB-6-8
SSHS-B479-SUB-10-12 | 4-6
6-8
10-12 | 8/29/2016
8/29/2016
8/29/2016 | 180-58133-1
180-58133-2
180-58133-1 | 95.14
136.8
<0.0583 | <0.41U
<0.43U
<0.0082U | <0.65U
<0.67U
<0.013U | <0.23U
<0.23U
<0.0045U | <0.33U
<0.34U
<0.0066U | 67J
98J
<0.0042U | 25J
35J
<0.0066U | 2.1J
2.7J
<0.0062U | <0.17U
<0.17U
<0.0034U | <0.29
<0.00 | | SHS-B619
SHS-B619
SHS-B619 | SSHS-B619-SUB-10-12
SSHS-B619-SUB-2-4
SSHS-B619-SUB-4-6 | 10-12
2-4
4-6 | 2/14/2017
2/14/2017
2/14/2017 | 180-63507-1
180-63507-1
180-63507-1 | <0
2.52
1.026 | <0.0098U
<0.0096U
<0.0097U | <0.0095U
<0.0094U
<0.0094U | | <0.015U
<0.014U
<0.014U | <0.0088U
1.8J
0.71J | <0.0081U
0.61J
0.27J | <0.012U
0.11J
0.046J | <0.0056U
<0.0055U
<0.0055U | <0.01
<0.01
<0.01 | | SHS-B619
SHS-B619
SHS-B620 | SSHS-B619-SUB-6-8
SSHS-B619-SUB-8-10
SSHS-B620-SUB-10-12 | 6-8
8-10
10-12 | 2/14/2017
2/14/2017
2/13/2017 | 180-63507-1
180-63507-1
180-63507-1 | 0.125
0.607
0.017 | <0.0096U
<0.0096U
<0.0093U | <0.0094U
<0.0094U
<0.009U | <0.0072U | <0.014U
<0.014U
<0.014U | 0.082J
0.42J
0.017 | 0.043J
0.16J
<0.0077U | <0.012U
0.027J
<0.012U | <0.0055U
<0.0055U
<0.0053U | <0.01
<0.01
<0.01 | | SHS-B620
SHS-B620
SHS-B620 | SSHS-B620-SUB-2-4
SSHS-B620-SUB-4-6
SSHS-B620-SUB-6-8 | 2-4
4-6
6-8 | 2/13/2017
2/13/2017
2/13/2017 | 180-63507-1
180-63507-1
180-63507-1 | 30.8
13.2
2.33 | <0.097U
<0.1U
<0.01U | <0.095U
<0.099U
<0.0098U | <0.073U
<0.076U
<0.0075U | <0.15U
<0.15U
<0.015U | 9.2J
1.6J | 8.2J
3.4J
0.58J | 0.6J
0.15J | <0.056U
<0.059U
<0.0058U | <0.1
<0.1
<0.01 | | SHS-B620
SHS-B621
SHS-B621 | SSHS-B620-SUB-8-10
SSHS-B621-SUB-10-12
SSHS-B621-SUB-12-14 | 8-10
10-12
12-14 | 2/13/2017
2/13/2017
2/13/2017 | 180-63507-1
180-63507-1
180-63507-2 | 0.826
0.3041 | <0.0099U
<0.0097U
<0.0098U | <0.0096U
<0.0094U
<0.0095U | <0.0072U | <0.015U
<0.014U
<0.015U | 3.4J
0.62J
0.18 | 0.17J
0.088 | 0.23J
0.036J
<0.012U | <0.0057U
<0.0056U
<0.0056U | <0.01
<0.01
<0.01 | | SHS-B621
SHS-B621
SHS-B622 | SSHS-B621-SUB-6-8
SSHS-B621-SUB-8-10
SSHS-B622-SUB-10-12 | 6-8
8-10
10-12 | 2/13/2017
2/13/2017
2/16/2017 | 180-63507-1
180-63507-1
180-63593-1 | 0.0354
0.434
0.0929 | <0.0097U
<0.0098U
<0.0093U | <0.0095U
<0.0096U
<0.0091U | <0.0073U | <0.015U
<0.015U
<0.014U | 0.026J
0.31J
0.042J | 0.0094J
0.099J
0.016J | <0.012U
0.025J
<0.012U | <0.0056U
<0.0056U
<0.0054U | <0.01
<0.01
<0.01 | | SHS-B622
SHS-B622
SHS-B622 | SSHS-B622-SUB-4-6
SSHS-B622-SUB-6-8
SSHS-B622-SUB-8-10 | 4-6
6-8
8-10 | 2/16/2017
2/16/2017
2/16/2017 | 180-63593-1
180-63593-2
180-63593-2 | 23.08
2.73
6.949 | <0.097U
<0.0097U
<0.0095U | <0.095U
<0.0095U
<0.0093U | | <0.15U
<0.015U
<0.014U | 17J
1.7
4.7 | 4.9J
0.87
2.1 | 0.88J
0.13
0.12 | <0.056U
<0.0056U
<0.0055U | <0.01
<0.01 | | SHS-B623
SHS-B632A
SHS-B632A | SSHS-B623-SUB-10-12
SSHS-B632A-SUB-10-12
SSHS-B632A-SUB-12-14 | 10-12
10-12
12-14 | 2/16/2017
7/11/2017
7/11/2017 | 180-63593-1
180-68095-1
180-68095-1 | <0.0869
<0.0891
<0.0889 | <0.0095U
<0.0098U
<0.0097U | <0.0093U
<0.0095U
<0.0095U | <0.0071U
<0.0073U
<0.0073U | <0.014U
<0.015U
<0.015U | <0.0086U
<0.0088U
<0.0088U | <0.0079U
<0.0081U
<0.008U | <0.012U
<0.012U
<0.012U | <0.0055U
<0.0056U
<0.0056U | <0.01
<0.01 | | SHS-B632B
SHS-B645
SHS-B645 | SSHS-B632B-SUB-10-12
SSHS-B645-SUB-10-12
SSHS-B645-SUB-12-14 | 10-12
10-12
12-14 | 7/13/2017
2/13/2017
2/13/2017 |
180-68203-1
180-63507-1
180-63507-2 | 9.39
6.299 | <0.0093U
<0.046U
<0.0094U | <0.0091U
<0.045U
<0.0092U | <0.0069U
<0.035U
<0.007U | <0.014U
<0.069U
<0.014U | 0.01J
5.8J
4.2 | <0.0077U
2.7J
1.7 | <0.012U
0.89J
0.37 | <0.0053U
<0.027U
<0.0054U | <0.01
<0.06
<0.01 | | SHS-B646
SHS-B646
SHS-B650 | SSHS-B646-SUB-10-12
SSHS-B646-SUB-12-14
SSHS-B650-SUB-10-12 | 10-12
12-14
10-12 | 2/13/2017
2/13/2017
2/14/2017 | 180-63507-1
180-63507-2
180-63507-1 | 0.099
337.7
0.039 | <0.0096U
<4.8U
<0.0099U | <0.0093U
<4.7U
<0.0097U | <0.0071U
<3.6U
<0.0074U | <0.014U
<7.1U
<0.015U | 0.081J
220
0.023J | 0.018J
90
0.016J | <0.012U
13
<0.012U | <0.0055U
<2.7U
<0.0057U | <0.01
<6.4
<0.01 | | SHS-B650
SHS-B650
SHS-B650 | SSHS-B650-SUB-12-14
SSHS-B650-SUB-2-4
SSHS-B650-SUB-4-6 | 12-14
2-4
4-6 | 2/14/2017
2/14/2017
2/14/2017 | 180-63507-2
180-63507-1
180-63507-1 | 1.816
16.67
2.92 | <0.0094U
<0.098U
<0.0097U | <0.0092U
<0.095U
<0.0095U | <0.007U
<0.073U
<0.0072U | <0.014U
<0.15U
<0.015U | 1.3
12J
2J | 0.4
3.9J
0.78J | 0.087
0.77J
0.14J | <0.0054U
<0.056U
<0.0056U | <0.01
<0.1
<0.01 | | SHS-B650
SHS-B650
SHS-B651 | SSHS-B650-SUB-6-8
SSHS-B650-SUB-8-10
SSHS-651-SUB-2-4 | 6-8
8-10
2-4 | 2/14/2017
2/14/2017
2/14/2017
2/14/2017 | 180-63507-1
180-63507-1
180-63507-1 | 20.99
1.936
0.606 | <0.0097U
<0.0099U
<0.0095U | <0.1U
<0.0097U
<0.0093U | <0.0072U
<0.0074U
<0.0071U | <0.015U
<0.015U
<0.014U | 15J
1.4J
0.39J | 5.1J
0.45J
0.18J | 0.89J
0.086J
0.036J | <0.0050U
<0.0057U
<0.0055U | <0.0 | | SHS-B651
SHS-B651 | SSHS-B651-SUB-10-12
SSHS-B651-SUB-12-14
SSHS-B651-SUB-4-6 | 10-12
12-14
4-6 | 2/14/2017
2/14/2017 | 180-63507-1
180-63507-2 | <0
0.1038 | <0.0093U
<0.0093U
<0.0094U | <0.0091U
<0.0091U | <0.0079U
<0.0069U | <0.014U
<0.014U
<0.014U | <0.0095U
0.05 | <0.0087U
0.019 | <0.013U
<0.012U | <0.0053U
<0.0053U
<0.0054U | <0.01 | | SHS-B651
SHS-B651
SHS-B651 | SSHS-B651-SUB-6-8
SSHS-B651-SUB-8-10 | 6-8
8-10 | 2/14/2017
2/14/2017
2/14/2017 | 180-63507-1
180-63507-1
180-63507-1 | 0.64
<0
0.979 | <0.011U
<0.01U | <0.011U
<0.01U | <0.007U
<0.0081U
<0.0078U | <0.016U
<0.016U | 0.42J
<0.0098U
0.64J | 0.19J
<0.009U
0.29J | 0.03J
<0.014U
0.049J | <0.0063U
<0.006U | <0.01
<0.01
<0.01 | | SHS-B652
SHS-B652
SHS-B652 | SSHS-B652-SUB-10-12
SSHS-B652-SUB-12-14
SSHS-B652-SUB-2-4 | 10-12
12-14
2-4 | 2/14/2017
2/14/2017
2/14/2017 | 180-63507-1
180-63507-2
180-63507-1 | 0.075
19.53
5.83 | <0.0091U
<0.094U
<0.0096U | <0.0089U
<0.092U
<0.0094U | <0.0068U
<0.07U
<0.0072U | <0.014U
<0.14U
<0.014U | 0.056J
15
4.5J | 0.019J
3.6
1.1J | <0.011U
0.64
0.23J | <0.0052U
<0.054U
<0.0055U | <0.01
<0.1
<0.01 | | SHS-B652
SHS-B652
SHS-B652 | SSHS-B652-SUB-4-6
SSHS-B652-SUB-6-8
SSHS-B652-SUB-8-10 | 4-6
6-8
8-10 | 2/14/2017
2/14/2017
2/14/2017 | 180-63507-1
180-63507-1
180-63507-1 | 195.7
101.6
108.7 | <1U
<0.99U
<0.97U | <0.98U
<0.96U
<0.95U | <0.75U
<0.74U
<0.72U | <1.5U
<1.5U
<1.5U | 150J
77J
84J | 39J
21J
21J | 6.7J
3.6J
3.7J | <0.58U
<0.57U
<0.56U | <1.3
<1.3 | | SHS-B653
SHS-B653
SHS-B653 | SSHS-B653-SUB-10-12
SSHS-B653-SUB-12-14
SSHS-B653-SUB-4-6 | 10-12
12-14
4-6 | 2/14/2017
2/14/2017
2/14/2017 | 180-63507-1
180-63507-2
180-63507-1 | 7.4
5.439
13.22 | <0.1U
<0.0096U
<0.099U | <0.1U
<0.0094U
<0.097U | <0.076U
<0.0072U
<0.074U | <0.15U
<0.014U
<0.15U | 5.6J
4.1
9.9J | 1.5J
1.1
2.8J | 0.3J
0.21
0.52J | <0.059U
<0.0055U
<0.057U | <0.1
<0.0
<0.1 | | SHS-B653
SHS-B653
SHS-B654 | SSHS-B653-SUB-6-8
SSHS-B653-SUB-8-10
SSHS-B654-SUB-10-12 | 6-8
8-10
10-12 | 2/14/2017
2/14/2017
2/16/2017 | 180-63507-1
180-63507-1
180-63593-1 | 23.67
11.91
0.0666 | <0.1U
<0.1U
<0.0094U | <0.099U
<0.098U
<0.0092U | <0.076U
<0.075U
<0.007U | <0.15U
<0.15U
<0.014U | 17J
8.9J
0.022J | 5.9J
2.5J
0.0096J | 0.77J
0.51J
<0.012U | <0.058U
<0.058U
<0.0054U | <0.14 | | SHS-B654
SHS-B654
SHS-B655 | SSHS-B654-SUB-4-6
SSHS-B654-SUB-8-10
SSHS-B655-SUB-4-6 | 4-6
8-10
4-6 | 2/16/2017
2/16/2017
2/13/2017 | 180-63593-1
180-63593-1
180-63597-1 | 0.9814
0.2439
7.26 | <0.0099U
<0.0099U
<0.048U | <0.0097U
<0.0097U
<0.0097U
<0.047U | <0.0074U | <0.015U
<0.015U
<0.072U | 0.68J
0.15J
5J | 0.23J
0.057J
1.9J | 0.041J
<0.013U
0.36J | <0.0057U
<0.0057U
<0.028U | <0.01
<0.01
<0.06 | | SHS-B655
SHS-B655 | SSHS-B655-SUB-6-8
SSHS-B655-SUB-8-10 | 6-8
8-10 | 2/13/2017
2/13/2017 | 180-63507-1
180-63507-2 | 0.025
7.1 | <0.01U
<0.0099U | <0.01U
<0.0097U | <0.0077U
<0.0074U | <0.016U
<0.015U | 0.025
4.1 | <0.0086U
2.4 | <0.013U
0.57 | <0.006U
<0.0057U | < 0.01 | | SHS-B656
SHS-B659
SHS-B661 | SSHS-B656-SUB-12-14
SSHS-B659-SUB-12-14
SSHS-B661-SUB-4-6 | 12-14
12-14
4-6
2-4 | 2/14/2017
2/16/2017
2/13/2017
2/15/2017 | 180-63593-1
180-63593-1
180-63507-1
180-63517-1 | 0.618
0.8962
3.44 | <0.0095U
<0.0095U
<0.011U
<0.0098U | <0.0093U
<0.0093U
<0.01U
<0.0095U | <0.0071U
<0.0079U | <0.014U
<0.014U
<0.016U
<0.015U | 0.45J
0.58J
2.4J
4.1J | 0.15J
0.26J
0.82J
1.6J | 0.018J
0.027J
0.22J
0.27J | <0.0055U
<0.0055U
<0.006U
<0.0056U | <0.01 | # TABLE 2 Summary of PCB Results for Subsurface Soils (2-14 ft bgs) IRM 4 Former Sperry Remington Site - North Portion Elmira, New York | | | | | | w. | 910 | 22.1 | 1232 | 1242 | CBs | 25.4 | 1260 | 268 | 262 | |----------------------------------|--|-------------------------------------|-------------------------------------|---|-----------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------|------------------------------|-------------------------------|----------------------------------|-------------------------| | | | | | | Total PCBs | Arochlor 1016 | Arochlor 122 | trocklor 1. | trocklor I. | trochlor I. | Vrochlor 1254 | rocklor 1 | Arochior 1268 | Arochior 1262 | | QL | | | | | mg/kg | mg/kg
0.0037 | mg/kg
0.0046 | mg/kg
0.0041 | mg/kg
0.0024 | mg/kg
0.0041 | mg/kg
0.0045 | mg/kg
0.004 | mg/kg
0.0022 | mg/kg
0.005 | | ubsurface Soil C | riteria
aterial | | | | 10
50 | 0.0037 | 0.0040 | 0.0041 | 0.0024 | 0.00+1 | 0.0043 | 0.004 | 0.0022 | 0.003- | | Location | Sample Name | Sample Depth Range (ft bgs) | Sample Date | Lab Report Number | | | | | | | | | | | | SHS-B666
SHS-B669
SHS-B669 | SSHS-B666-SUB-8-10
SSHS-B669-SUB-10-12
SSHS-B669-SUB-12-14 | 8-10
10-12
12-14 | 2/13/2017
2/13/2017
2/13/2017 | 180-63507-1
180-63507-1
180-63507-2 | 1.627
0.605
34.2 | <0.0097U
<0.009U
<0.098U | <0.0094U
<0.0088U
<0.096U | <0.0072U
<0.0067U
<0.073U | <0.014U
<0.013U
<0.15U | 1.2J
0.49J
22 | 0.36J
0.093J
9.9 | 0.067J
0.022J | <0.0055U
<0.0052U
<0.056U | | | SHS-B673
SHS-B673 | SSHS-B673-SUB-10-12
SSHS-B673-SUB-8-10 | 12-14
10-12
8-10 | 2/16/2017
2/16/2017 | 180-63593-1
180-63593-1 | 0.0919 | <0.098U
<0.0093U
<0.01U | <0.0091U
<0.0098U | <0.007U | <0.014U
<0.015U | 0.046J
0.35J | 0.011J
0.096J | <0.012U
<0.013U | <0.0054U
<0.0058U | <0.013 | | SHS-B685
SHS-B685 | SSHS-B685-SUB-10-12
SSHS-B685-SUB-12-14 | 10-12
12-14 | 3/23/2017
3/23/2017 | 180-64584-1
180-64584-1 | <0.0908 | <0.0099U
<0.0099U | <0.0097U
<0.0097U | <0.0074U | <0.015U
<0.015U | <0.0089U
0.4 | <0.0082U
0.12 | <0.013U
0.021 | <0.0057U
<0.0057U | <0.01 | | SHS-B686
SHS-B686 | SSHS-B686-SUB-10-12
SSHS-B686-SUB-12-14 | 10-12
12-14 | 3/22/2017
3/22/2017 | 180-64526-3
180-64526-1 | 0.06015
0.7658 | <0.0095U
<0.0093U,F2,F1 | <0.0093U
<0.009U | | <0.014U
<0.014U | 0.021 | <0.0079U
0.15 | <0.012U
0.027F2 | <0.0055U
<0.0053U | < 0.013 | | SHS-B686A
SHS-B687 | SSHS-B686A-SUB-10-12
SSHS-B687-SUB-10-12 | 10-12
10-12 | 7/10/2017
3/22/2017 | 180-68038-1
180-64526-3 | 4.94
<0.0865 | <0.0099U
<0.0095U | <0.0096U
<0.0092U | <0.0071U | <0.015U
<0.014U | 3.5J
<0.0085U | 1.3J
<0.0078U | 0.11J
<0.012U | <0.0057U
<0.0054U | < 0.013 | | SHS-B688
SHS-B689
SHS-B689 | SSHS-B688-SUB-2-4
SSHS-B689-SUB-2-4
SSHS-B689-SUB-4-6 | 2-4
2-4
4-6 | 3/21/2017
3/23/2017
3/23/2017 | 180-64494-1
180-64584-1
180-64584-1 | 2.959
0.4281
0.0833 | <0.0096U
<0.01U
<0.0099U | <0.0094U
<0.0098U
<0.0096U | | <0.014U
<0.015U
<0.015U | 0.27
0.026 | 0.5
0.1
0.014J | 0.13
0.027
0.013J | <0.0055U
<0.0058U
<0.0057U | <0.01
<0.01
<0.01 | | SHS-B693
SHS-B693 | SSHS-B693-SUB-10-12
SSHS-B693-SUB-8-10 | 10-12
8-10 | 3/23/2017
3/23/2017
3/23/2017 | 180-64584-3
180-64584-3 | <0.086 | <0.0094U
<0.0094U | <0.0091U
<0.0092U | | <0.014U
<0.014U | <0.0084U
0.041 | <0.0077U
0.019 | <0.013U
<0.012U | <0.0054U
<0.0054U | < 0.01 | | SHS-B695
SHS-B700 | SSHS-B695-SUB-8-10
SSHS-B700-SUB-10-12 | 8-10
10-12 | 3/23/2017
3/22/2017 | 180-64584-1
180-64526-1 | 0.09435
<0.0931 |
<0.0096U
<0.01U | <0.0094U
<0.01U | <0.0072U
<0.0076U | <0.014U
<0.015U | 0.046
<0.0092U | 0.013J
<0.0084U | <0.012U
<0.013U | <0.0055U
<0.0059U | <0.01 | | SHS-B700
SHS-B700 | SSHS-B700-SUB-12-14
SSHS-B700-SUB-6-8 | 12-14
6-8 | 3/22/2017
3/22/2017 | 180-64526-1
180-64526-2 | 0.5133
0.0595 | <0.01U
<0.0092U | <0.01U
<0.0089U | <0.0077U
<0.0068U | <0.015U
<0.014U | 0.34
0.017 | 0.11
0.0084J | 0.032
<0.012U | <0.0059U
<0.0053U | <0.01 | | SHS-B701
SHS-B701
SHS-B701 | SSHS-B701-SUB-10-12
SSHS-B701-SUB-12-14
SSHS-B701-SUB-8-10 | 10-12
12-14
8-10 | 3/23/2017
3/23/2017
3/23/2017 | 180-64584-1
180-64584-1
180-64584-2 | <0.091
0.2999
0.1881 | <0.01U
<0.0093U
<0.0097U | <0.0097U
<0.0091U
<0.0095U | | <0.015U
<0.014U
<0.015U | <0.009U
0.2
0.11 | <0.0082U
0.058
0.042 | <0.013U
0.013J
<0.012U | <0.0057U
<0.0054U
<0.0056U | | | SHS-B702
SHS-B703 | SSHS-B701-SUB-8-10
SSHS-B702-SUB-2-4
SSHS-B703-SUB-2-4 | 2-4
2-4 | 3/23/2017
3/21/2017
3/23/2017 | 180-64584-2
180-64494-1
180-64584-1 | 0.1234
0.366 | <0.0097U
<0.0096U
<0.0097U | <0.0094U
<0.0095U | | <0.015U
<0.015U | 0.063 | 0.042
0.025
0.12 | <0.012U
<0.012U
0.036 | <0.0055U
<0.0056U | <0.01 | | SHS-B706
SHS-B708 | SSHS-B706-SUB-10-12
SSHS-B708-SUB-8-10 | 10-12
8-10 | 3/22/2017
3/21/2017 | 180-64526-1
180-64494-1 | 0.124
0.1555 | <0.0097U
<0.01U | <0.0095U
<0.0098U | <0.0072U
<0.0075U | <0.015U
<0.015U | 0.048 | 0.022
0.022p | 0.024
<0.013U | <0.0056U
<0.0057U | <0.01 | | SHS-B709
SHS-B710 | SSHS-B709-SUB-6-8
SSHS-B710-SUB-6-8 | 6-8
6-8 | 3/22/2017
3/23/2017 | 180-64526-2
180-64584-2 | 0.0721
<0.0863 | <0.0095U
<0.0094U | <0.0092U
<0.0092U | | <0.014U
<0.014U | 0.026
<0.0085U | 0.011J
<0.0078U | <0.012U
<0.012U | <0.0054U
<0.0054U | <0.01 | | SHS-B711
SHS-B714
SHS-B715 | SSHS-B711-SUB-6-8
SSHS-B714-SUB-12-14
SSHS-B715-SUB-12-14 | 6-8
12-14
12-14 | 3/23/2017
3/22/2017
3/22/2017 | 180-64584-2
180-64526-2
180-64526-2 | 1.349
0.2343
0.2673 | <0.01U
<0.01U
<0.0099U | <0.0099U
<0.01U
<0.0096U | <0.0075U
<0.0077U
<0.0074U | <0.015U
<0.015U
<0.015U | 0.86
0.14
0.18 | 0.38
0.049
0.045 | 0.078
0.014J
0.012J | <0.0058U
<0.0059U
<0.0057U | <0.01
<0.01
<0.01 | | SHS-B738
SHS-B739 | SSHS-B713-SUB-12-14
SSHS-B738-SUB-6-8
SSHS-B739-SUB-4-6 | 6-8
4-6 | 4/13/2017
4/12/2017 | 180-65226-1
180-65174-2 | 0.2673 | <0.0099U
<0.0095U
<0.01U | <0.0098U
<0.0092U
<0.01U | | <0.015U
<0.015U | 0.021 | <0.0078U | <0.012U
<0.012U
0.15 | <0.0054U
<0.0059U | <0.01 | | SHS-B739
SHS-B742 | SSHS-B739-SUB-6-8
SSHS-B742-SUB-10-12 | 6-8
10-12 | 4/12/2017
4/12/2017 | 180-65174-1
180-65174-1 | <0.0892
<0.0892 | <0.0098U
<0.0098U | <0.0096U
<0.0096U | <0.0073U | <0.015U
<0.015U | <0.0088U | <0.0081U
<0.0081U | <0.012U
<0.012U | <0.0056U | < 0.01 | | SHS-B742
SHS-B742A | SSHS-B742-SUB-12-14
SSHS-B742A-SUB-10-12 | 12-14
10-12 | 4/12/2017
7/13/2017 | 180-65174-1
180-68203-1 | 4.101
0.0669 | <0.01U
<0.0094U | <0.01U
<0.0092U | <0.0077U
<0.007U | <0.015U
<0.014U | 3.1
0.022 | 0.84
0.0099J | 0.13
<0.012U | <0.0059U
<0.0054U | | | SHS-B743
SHS-B744 | SSHS-B743-SUB-6-8
SSHS-B744-SUB-2-4 | 6-8
2-4 | 4/13/2017
4/13/2017 | 180-65226-1
180-65226-1 | 0.0559
0.341 | <0.0094U
<0.0094U | <0.0092U
<0.0091U | <0.007U
<0.007U | <0.014U
<0.014U | 0.017J
0.18 | <0.0078U
0.1 | <0.012U
0.032 | <0.0054U
<0.0054U | | | SHS-B787
SHS-B8
SHS-B812 | SSHS-B787-SUB-8-10
B23484
SSHS-B812-SUB-12-14 | 8-10
4-5
12-14 | 5/15/2017
5/11/2000
5/15/2017 | 180-66369-1 | 0.9361
3.47
13.13 | <0.0095U
<0.037U
<0.095U | <0.0092U
<0.037U
<0.093U | <0.0071U
<0.037U
<0.071U | <0.014U
<0.037U
<0.14U | 0.62
3.3D
9.6 | 0.25
<0.037U
2.6 | 0.037
0.17
0.64 | <0.0054U
-
<0.055U | <0.01 | | SHS-B812 | SSHS-B812-SUB-8-10
SSHS-IRM3-B001-C | 8-10
6.3-6.3 | 5/15/2017
8/5/2019 | 180-66369-1
180-93683-2 | 0.75 | <0.0094U
<0.0057U | <0.0092U
<0.0063U | <0.007U | <0.014U
<0.0026U | 0.55
2.3J | 0.15
0.85J | 0.021
0.24J | <0.0054U
<0.0024U | < 0.01 | | SHS-IRM3-B002 | SSHS-IRM3-B002-C
SSHS-IRM3-B003-C | 5.7-5.7
5.7-5.7 | 7/31/2019
8/5/2019 | 180-93493-1
180-93683-2 | 0.4163
3.344 | <0.0064U
<0.0058U | <0.0069U
<0.0063U | <0.0048U
<0.0043U | <0.0029U
<0.0026U | 0.23J
2.1J | 0.14J
0.92J | 0.031J
0.31J | <0.0026U
<0.0024U | <0.000 | | SHS-IRM3-B007 | SSHS-IRM3-B004-C
SSHS-IRM3-B007-C | 6.1-6.1
6.9-6.9 | 8/5/2019
8/2/2019 | 180-93683-2
180-93640-1 | 1.833
7.015 | <0.0056U
<0.057U | <0.0061U
<0.062U | <0.042U | <0.0025U
<0.025U | 1.2J
5.1J | 0.47J
1.4J | 0.15J
0.38J | <0.0023U
<0.023U | < 0.06 | | SHS-IRM3-B013 | SSHS-IRM3-B010
SSHS-IRM3-B013-C
SSHS-IRM3-B020-C | 10.1-10.1
12-12
13.3-13.3 | 7/19/2019
8/5/2019
8/5/2019 | 180-92988-1
180-93683-2
180-93683-2 | 1.222 | <0.0058U
<0.0056U
<0.0056U | <0.0063U | | <0.0026U
<0.0025U
<0.0025U | <0.0043UJ
0.84J
1.1J | 0.014J
0.28J
0.39J | <0.0051U
0.089J
0.098J | <0.0024U
<0.0023U
<0.0023U | | | SHS-IRM3-B021 | SSHS-IRM3-B021-C
SSHS-IRM3-B028-07-09-19 | 13.3-13.3
13.7-13.7
2.7-2.7 | 8/5/2019
8/5/2019
7/9/2019 | 180-93683-2
180-93683-1
180-92392-1 | 1.601
0.5567
0.0624 | <0.0057U
<0.0059U | <0.0061U
<0.0062U
<0.0064U | <0.0042U
<0.0043U
<0.0044U | <0.0026U
<0.0026U | 0.38J
0.03J | 0.13J
0.013J | 0.033J
0.0054J | <0.0024U
<0.0024U | <0.006 | | SHS-IRM3-B101 | SSHS-IRM3-B101-C
SSHS-IRM3-B108-C | 2.2-2.2
12-12 | 7/29/2019
8/2/2019 | 180-93352-1
180-93640-1 | 0.1029
0.5137 | <0.0062U
<0.0061U | <0.0068U
<0.0067U | <0.0047U | <0.0028U
<0.0028U | 0.052J
0.37J | 0.024J
0.1J | 0.012J
0.029J | <0.0026U
<0.0025U | <0.006 | | SHS-IRM3-B110 | SSHS-IRM3-B109-C
SSHS-IRM3-B110-C | 12.1-12.1
9.9-9.9 | 8/2/2019
8/2/2019 | 180-93640-1
180-93640-1 | 12.12
0.09095 | <0.056U
<0.006U | <0.061U
<0.0065U | <0.042U
<0.0045U | <0.025U
<0.0027U | 8.9J
0.054J | 2.4J
0.02J | 0.69J
<0.0052U | <0.023U
<0.0025U | <0.06 | | SHS-IRM3-PIPE | SSHS-IRM3-B111-C
SSHS-IRM3-PIPE13-C
SSHS-IRM3-PIPE21-C | 6.9-6.9
4.4-4.4
6.1-6.1 | 8/2/2019
8/2/2019
8/2/2019 | 180-93640-1
180-93641-1
180-93641-1 | 11.42
0.05355
21.94 | <0.055U
<0.006U
<0.06U | <0.06U
<0.0066U
<0.065U | <0.041U
<0.0045U
<0.045U | <0.025U
<0.0027U
<0.027U | 8.2J
0.028
14 | 2.4J
0.0085J
5.7 | 0.69J
<0.0053U
2.1 | <0.023U
<0.0025U
<0.025U | <0.06
<0.006 | | SHS-IRM3-S043 | SSHS-IRM3-S043-C
SSHS-IRM3-S045-C | 4.1-4.1
3.4-3.4 | 7/12/2019
7/22/2019 | 180-93641-1
180-92615-1
180-93060-1 | 0.1757 | <0.0062U
<0.0064U | <0.0068U
<0.007U | | <0.0028U
<0.0029U | 0.098J
0.54J | 0.06J
0.28J | <0.0055U
0.1J | <0.0025U
<0.0026U
<0.0027U | <0.000 | | SHS-IRM3-S046
SHS-IRM3-S047 | SSHS-IRM3-S046-D
SSHS-IRM3-S047-D | 2.4-2.4
2.6-2.6 | 7/15/2019
7/15/2019 | 180-92661-1
180-92661-1 | 0.6424
0.3747 | <0.0056U
<0.0057U | <0.0061U
<0.0062U | <0.0042U
<0.0043U | <0.0025U
<0.0026U | 0.39 | 0.19 | 0.049
0.031 | <0.0023U
<0.0024U | <0.006 | | SHS-IRM3-S049 | SSHS-IRM3-S049-D
SSHS-IRM3-S049F-D | 2.7-2.7
2.9-2.9 | 7/12/2019
8/8/2019 | 180-92616-1
180-93896-2 | 24.54
75.34 | <0.06U
<0.31U | <0.065U
<0.33U | <0.045U
<0.23U | <0.027U
<0.14U | 16
49J | 7.3
21J | 1.1
4.6J | <0.025U
<0.13U | <0.06 | | SHS-IRM3-S051 | SSHS-IRM3-S050-D
SSHS-IRM3-S051-D
SSHS-IRM3-S053-D | 2.9-2.9
1.1-1.1
3.2-3.2 | 8/5/2019
8/5/2019
7/11/2019 | 180-93684-2
180-93684-3
180-92542-1 | 2.484
0.02545
11.69 | <0.0058U
<0.0055U
<0.062U | <0.0063U
<0.006U
<0.067U | <0.0043U
<0.0041U
<0.046U | <0.0026U
<0.0025U
<0.028U | 1.6
0.0073J
7.8 | 0.7
<0.0051U
3.1 | 0.17
<0.0048U
0.64 | <0.0024U
<0.0023U
<0.025U | | | SHS-IRM3-S054 | SSHS-IRM3-S054-D
SSHS-IRM3-S071-C | 3.2-3.2
3.7-3.7
4.6-4.6 | 7/11/2019
7/16/2019 | 180-92542-1
180-92515-1 | 0.1139 | <0.0056U
<0.0058U | <0.0061U
<0.0063U | <0.0042U | <0.0025U
<0.0026U | 0.079
0.0069J | 0.019
<0.0054U | <0.0049U
<0.0051U | <0.0023U | | | SHS-IRM3-S072
SHS-IRM3-S073 | SSHS-IRM3-S072-C
SSHS-IRM3-S073-D | 4.1-4.1
4.3-4.3 | 7/16/2019
8/5/2019 | 180-92715-1
180-93684-2 | 0.4114
22.93 | <0.006U
<0.056U | <0.0065U
<0.061U | <0.0045U
<0.042U | <0.0027U
<0.025U | 0.3J
16 | 0.073J
5.9 | 0.024J
0.9 | <0.0025U
<0.023U | <0.06 | | SHS-IRM3-S073 | SSHS-IRM3-S073A-C
SSHS-IRM3-S073B-D | 3.9-3.9
5.4-5.4 | 8/5/2019
7/16/2019 | 180-93683-2
180-92717-1 | 34.03
<0.0445 | <0.056U
<0.0061U | <0.061U
<0.0066U | <0.042U
<0.0046U | <0.025U
<0.0027U | 26J
<0.0045U | 6.2J
<0.0056U | 1.7J
<0.0053U | <0.023U
<0.0025U | <0.06 | | SHS-IRM3-S074 | SSHS-IRM3-S073BF-D
SSHS-IRM3-S074-D
SSHS-IRM3-S075-D | 4-4
5.3-5.3
5.5-5.5 | 8/8/2019
8/5/2019
8/5/2019 | 180-93896-2
180-93684-2
180-93684-2 | 1.712
17.12
1.025 | <0.0058U
<0.056U
<0.0063U | <0.0064U
<0.061U
<0.0069U | <0.0044U
<0.042U
<0.0048U | <0.0026U
<0.025U
<0.0029U | 1.2J
11
0.42 | 0.42J
5.1
0.38 | 0.078J
0.89
0.21 | <0.0024U
<0.023U
<0.0026U | <0.006 | | | SSHS-IRM3-S076-D
SSHS-IRM3-S077-D | 5.1-5.1
3.3-3.3 | 8/5/2019
8/5/2019 | 180-93684-2
180-93684-3 | 10.82
6.613 |
<0.057U
<0.0055U,FI | <0.062U
<0.006U | <0.043U
<0.0042U | <0.026U
<0.0025U | 7 3.7 | 3 2.2 | 0.68 | <0.024U
<0.0023U | < 0.06 | | SHS-IRM3-S079 | SSHS-IRM3-S078-D
SSHS-IRM3-S079-D | 4.4-4.4
4.8-4.8 | 8/5/2019
8/5/2019 | 180-93684-3
180-93684-3 | 425.4
2.755 | <0.59U
<0.0062U | <0.65U
<0.0067U | <0.44U
<0.0046U | <0.27U
<0.0028U | 300
1.6 | 100
0.91 | 24
0.23 | <0.25U
<0.0026U | <0.64 | | SHS-IRM3-S095 | SSHS-IRM3-S094-C
SSHS-IRM3-S095-C
SSHS-IRM3-S097-C | 6.4-6.4
8.1-8.1 | 8/1/2019
8/2/2019
8/2/2019 | 180-93547-1
180-93640-2
180-93640-1 | <0.0424
0.2494
1.249 | <0.0058U
<0.0056U
<0.0055U | <0.0063U
<0.0061U
<0.006U | <0.0043U
<0.0042U
<0.0041U | <0.0026U
<0.0025U
<0.0025U | <0.0043J
0.15J
0.78J | <0.0053J
0.067J
0.36J | <0.0051J
0.019J
0.096J | <0.0024U
<0.0023U
<0.0023U | <0.006
<0.005 | | SHS-IRM3-S098 | SSHS-IRM3-S097-C
SSHS-IRM3-S098-C
SSHS-IRM3-S099-D | 7.6-7.6
9-9
5.9-5.9 | 8/2/2019
8/2/2019
8/5/2019 | 180-93640-1
180-93640-2
180-93684-2 | 0.5184
49.46 | <0.0056U
<0.11U | <0.006U
<0.0061U
<0.12U | <0.0041U
<0.0042U
<0.083U | <0.0025U
<0.0025U
<0.05U | 0.78J
0.34J
35 | 0.36J
0.13J
12 | 0.035J
2.2 | <0.0023U
<0.046U | <0.00 | | SHS-IRM3-S100 | SSHS-IRM3-S100-D
SSHS-IRM3-S101-D | 7.9-7.9
5.4-5.4 | 8/5/2019
8/5/2019 | 180-93684-2
180-93684-3 | 0.2714 | <0.0056U
<0.29U | <0.0061U
<0.32U | <0.0042U
<0.22U | <0.0025U
<0.13U | 0.15 | 0.091 | 0.017 | <0.0023U | <0.000 | | SHS-IRM3-S103 | SSHS-IRM3-S102-D
SSHS-IRM3-S103-D | 6.4-6.4
6.9-6.9 | 8/5/2019
8/5/2019 | 180-93684-3
180-93684-1 | 428.5
18.96 | <0.61U
<0.057U,F1 | <0.67U
<0.062U | <0.46U
<0.043U | <0.28U
<0.026U | 300
13 | 110
4.9 | 17
0.92F1,F2 | <0.25U
<0.024U | <0.66 | | SHS-IRM3-S111 | SSHS-IRM3-S104-D
SSHS-IRM3-S111-C
SSHS-IRM3-S118-C | 5.7-5.7
9.8-9.8
8-8 | 8/5/2019
7/24/2019
8/1/2019 | 180-93684-1
180-93173-1
180-93547-1 | 25.34
<0.0426
<0.0455 | <0.058U
<0.0058U
<0.0062U | <0.064U
<0.0063U
<0.0068U | | <0.026U
<0.0026U
<0.0028U | 13
<0.0043U
<0.0046J | 8.8
<0.0054U
<0.0057J | 3.4
<0.0051U
<0.0054J | <0.024U
<0.0024U
<0.0026U | | | SHS-IRM3-S120 | SSHS-IRM3-S118-C
SSHS-IRM3-S120-C
SSHS-IRM3-S121-C | 10.5-10.5
9.5-9.5 | 8/5/2019
8/5/2019 | 180-93683-2
180-93683-2 | 0.6107 | <0.0057U
<0.0057U | <0.0062U
<0.0062U | <0.0043U | <0.0026U
<0.0026U | 0.33J
<0.0042U | 0.2J
<0.0052U | 0.067J
<0.005U | <0.0024U
<0.0023U | <0.000 | | SHS-IRM3-S122
SHS-IRM3-S123 | SSHS-IRM3-S122-D
SSHS-IRM3-S123-D | 10-10
10.6-10.6 | 8/5/2019
8/5/2019 | 180-93684-2
180-93684-2 | 22.53
2.533 | <0.056U
<0.0055U | <0.061U
<0.006U | <0.042U
<0.0041U | <0.025U
<0.0025U | 14 | 7.3 | 1.1
0.15 | <0.023U
<0.0023U | <0.00 | | SHS-IRM3-S125
SHS-IRM3-S126 | SSHS-IRM3-S125-D
SSHS-IRM3-S126-D | 9.9-9.9
9.7-9.7 | 8/5/2019
8/5/2019 | 180-93684-2
180-93684-2 | 503.4
0.1208 | <0.59U
<0.0058U | <0.64U
<0.0063U | <0.44U
<0.0044U | <0.26U
<0.0026U | 310
0.068 | 150
0.03 | 42
0.0089J | <0.24U
<0.0024U | <0.6 | | SHS-IRM3-S133 | SSHS-IRM3-S127-D
SSHS-IRM3-S133-C
SSHS-IRM3-S135-C | 8.6-8.6
10.8-10.8
11.4-11.4 | 8/5/2019
8/5/2019
7/26/2019 | 180-93684-2
180-93683-1
180-93321-1 | 0.04385
0.1992
0.1607 | <0.0057U
<0.0055U
<0.0059U | <0.0062U
<0.006U
<0.0064U | <0.0041U | <0.0026U
<0.0025U
<0.0027U | 0.025
0.12J
0.096J | <0.0053U
0.051J
0.048J | <0.005U
0.015J
<0.0052U | <0.0024U
<0.0023U
<0.0024U | < 0.00 | | SHS-IRM3-S143 | SSHS-IRM3-S143-C
SSHS-IRM3-S144-C | 11.4-11.4
11.9-11.9
11.9-11.9 | 8/5/2019
8/5/2019 | 180-93521-1
180-93683-2
180-93683-2 | 0.1607
0.2037
5.193 | <0.0059U
<0.0057U
<0.0054U | <0.0064U
<0.0062U
<0.0059U | | <0.0027U
<0.0026U
<0.0024U | 0.096J
0.13J
3.1J | 0.048J
0.046J
1.6J | <0.0052U
0.014J
0.48J | <0.0024U
<0.0024U
<0.0022U | <0.006 | | SHS-IRM3-S145 | SSHS-IRM3-S145-D
SSHS-IRM3-S146-D | 11.9-11.9
11.8-11.8
12.7-12.7 | 8/5/2019
8/5/2019 | 180-93684-2
180-93684-2 | 0.05555 | <0.0055U
<0.0059U | <0.006U
<0.0064U | <0.0041U | <0.0025U
<0.0026U | 0.027 | 0.013J
0.48 | <0.0048U
0.11 | <0.0023U
<0.0024U | < 0.005 | | SHS-IRM3-S147
SHS-IRM3-S148 | SSHS-IRM3-S147-D
SSHS-IRM3-S148-D | 13.1-13.1
11.8-11.8 | 8/5/2019
8/5/2019 | 180-93684-2
180-93684-1 | 1.924
0.05935 | <0.0057U
<0.0061U | <0.0062U
<0.0067U | <0.0043U
<0.0046U | <0.0026U
<0.0028U | 1.3
0.026 | 0.5
0.016J | 0.11
<0.0054U | <0.0024U
<0.0025U | <0.00 | | SHS-IRM3-S154 | SSHS-IRM3-S149-D
SSHS-IRM3-S154-C | 13.2-13.2
12.1-12.1 | 8/5/2019
8/5/2019 | 180-93684-1
180-93683-1 | <0.0435
0.3669 | <0.0059U
<0.0058U | <0.0065U
<0.0063U | <0.0044U | <0.0027U
<0.0026U | <0.0044U
0.23J | <0.0055U
0.096J | <0.0052U,F2
0.027J | <0.0025U
<0.0024U | <0.000 | | SHS-IRM3-S162 | SSHS-IRM3-S161-C
SSHS-IRM3-S162-C
SSHS-IRM3-S164-C | 13.3-13.3
13-13
13.5-13.5 | 8/5/2019
8/5/2019
8/5/2019 | 180-93683-2
180-93683-2
180-93683-2 | 0.02715
0.0358
5.404 | <0.0056U
<0.0063U
<0.0058U | <0.0061U
<0.0069U
<0.0063U | <0.0047U | <0.0025U
<0.0029U
<0.0026U | 0.0087J
0.015J
3.6J | <0.0052U
<0.0058U
1.4J | <0.0049U
<0.0055U
0.39J | <0.0023U
<0.0026U
<0.0024U | <0.000 | | SHS-IRM3-S165 | SSHS-IRM3-S165-D
SSHS-IRM3-S168-D | 13.5-13.5
12.5-12.5
13.1-13.1 | 8/5/2019
8/5/2019
7/26/2019 | 180-93684-1
180-93321-1 | <0.0409
108.7 | <0.0058U
<0.0056U
<0.58U | <0.0063U
<0.0061U
<0.64U | | <0.0026U
<0.0025U
<0.26U | <0.0041U
71J | <0.0052U
31J | <0.0049U
5.3J | <0.0024U
<0.0023U
<0.24U | | | SHS-IRM3-S171
SHS-IRM3-S173 | SSHS-IRM3-S171-D
SSHS-IRM3-S173-D | 11.9-11.9
13.1-13.1 | 8/5/2019
8/5/2019 | 180-93684-1
180-93684-3 | 1.22 | <0.0059U
<0.0058U | <0.0064U
<0.0063U | <0.0044U | <0.0026U
<0.0026U | 0.74 | 0.37 | 0.096
0.012J | <0.0024U
<0.0024U | <0.006 | | | SSHS-IRM3-S203-D
SSHS-RIM3-S124-D | 5-5
9-9 | 8/5/2019
8/5/2019 | 180-93684-3
180-93684-2 | 3.784
0.2538 | <0.0058U
<0.0057U | <0.0063U | <0.0043U
<0.0043U | <0.0026U
<0.0026U | 2.4 | 1.1
0.083 | 0.27
0.017J | <0.0024U
<0.0024U | | Notes. J. estimated. J. estimated. J. estimated. Fi. MS. ander MSD recovery is catalide acceptable limits Fi. MS. ander MSD recovery is catalide acceptable limits may be supported by the conformation of th ### TABLE 3 Summary of PCB Results for Subsurface Soils (<14 ft bgs) IRM 4 Former Sperry Remington Site - North Portion Elmira, New York | | | | | | T | | | | | PCBs | | | | | |--|--|------------------------|------------------------|----------------------------|-------------------|----------------------|----------------------|----------------------|----------------------|-------------------|--------------------|----------------------|----------------------|----------------------| | | | | | | - | | | 1 | 1 | ress | 1 | 1 | 1 | | | | | | | | Total PCBs | Arochlor 1016 | Arochlor 1221 | Arochlor 1232 | Arochlor 1242 | Arochlor 1248 | Arochlor 1254 | Arochlor 1260 | Arochlor 1268 | Arochlor 1262 | | | | | | | mg/kg | EQL | | | | | | 0.0055 | 0.006 | 0.0041 | 0.0025 | 0.0041 | 0.0052 | 0.0049 | 0.0023 | 0.0059 | | Subsurface Soil Criter
NYS Hazardous Mate | | | | | 3.2
50 | | | | | | | | | - | | IV I S Hazardous Mate | i idi | Sample Depth Range | | | 50 | | | | | | | | | | | Location | Sample Name | (ft bgs) | Sample Date | Lab Report Number | | | | | | | | | | | | SSHS-B2629 | SSHS-B2629-SUB-14-16 | 14-16 | 4/25/2019 | 180-89522-1 | 4.064 | <0.0059U | <0.0064U | <0.0044U | <0.0026U | 2.9J | 0.86J | 0.29J | <0.0024U | <0.0063U | | SSHS-B2679
SSHS-B2760A | SSHS-B2679-SUB-14-16
SSHS-B2760-SUB-16-18 | 14-16
16-18 | 4/24/2019
5/18/2019 | 180-89408-2
180-90319-3 | 28.83 | <0.058U
<0.0062U | <0.064U
<0.0067U | <0.044U
<0.0046U | <0.026U
<0.0028U | 21J
0.025 | 6.7J
<0.0057U | 0.99J
<0.0054U | <0.024U
<0.0026U | <0.063U
<0.0067U | | SSHS-B2/60A
SSHS-B2811 | SSHS-B2/60-SUB-16-18
SSHS-B2811-SUB-14-16 | 14-16 | 5/18/2019 | 180-90319-3 | 0.2694 | <0.0062U
<0.0058U | <0.0067U
<0.0063U | <0.0046U | <0.0028U
<0.0026U | 0.025
0.18J | <0.0057U
0.073J | <0.0054U
<0.0051U | <0.0026U
<0.0024U | <0.0067U | | SSHS-B2811
SSHS-B2812 | SSHS-B2811-SUB-14-16
SSHS-B2812-SUB-14-16 | 14-16 | 5/18/2019 | 180-90319-3 | < 0.0463 | <0.0058U
<0.0063U | <0.0063U | <0.0043U | <0.0026U
<0.0029U | <0.0047U | <0.0058U | <0.0051U
<0.0055U | <0.0024U
<0.0026U | <0.0063U | | SSHS-B2813 | SSHS-B2813-SUB-14-16 | 14-16 | 5/18/2019 | 180-90319-3 | < 0.0438 | <0.006U | <0.0065U | <0.0047U | <0.0027U | <0.0047U | <0.0055U | <0.0053U | <0.0025U | <0.0065U | | SSHS-B2814 | SSHS-B2814-SUB-14-16 | 14-16 | 5/18/2019 | 180-90319-3 | 2.146 | <0.0065U | <0.0071U | <0.0049U | <0.0027U | 1.3J | 0.57J | 0.26J | <0.0027U | <0.007U | | SSHS-B2817 | SSHS-B2817-SUB-14-16 | 14-16 | 5/18/2019 | 180-90319-3 | < 0.0437 | <0.006U | <0.0071U | <0.0045U | <0.0027U | <0.0044U | <0.0055U | <0.0052U | <0.0027U | <0.007U | | SSHS-B621 | SSHS-B621-SUB-14-16 | 14-16 | 2/13/2017 | 180-63507-2 | 0.0923 | <0.0099U | <0.0096U | <0.0074U | <0.015U | 0.029 | 0.027 | <0.012U | <0.0057U | <0.0004C | | SSHS-B631 | SSHS-B631-SUB-14-16 | 14-16 | 2/16/2017 | 180-63593-2 | < 0.0827 | <0.0091U | <0.0089U | <0.0068U | <0.014U | <0.0082U | <0.0075U | <0.011U | <0.0052U | <0.012U | | SSHS-B645 | SSHS-B645-SUB-14-16 | 14-16 | 2/13/2017 |
180-63507-2 | 0.1133 | <0.0096U | <0.0093U | <0.0071U | <0.014U | 0.046 | 0.032 | <0.012U | <0.0055U | <0.013U | | SSHS-B646 | SSHS-B646-SUB-14-16 | 14-16 | 2/13/2017 | 180-63507-2 | 0.9963 | <0.0095U | <0.0093U | <0.0071U | 0.96 | <0.0085U | <0.0078U | <0.012U | <0.0054U | <0.013U | | SSHS-B650 | SSHS-B650-SUB-14-16 | 14-16 | 2/14/2017 | 180-63507-2 | < 0.087 | <0.0096U | <0.0093U | <0.0071U | <0.014U | <0.0086U | <0.0079U | <0.012U | <0.0055U | <0.013U | | SSHS-B651 | SSHS-B651-SUB-14-16 | 14-16 | 2/14/2017 | 180-63507-2 | < 0.0823 | <0.009U | <0.0088U | <0.0067U | <0.014U | <0.0081U | <0.0075U | <0.011U | <0.0052U | <0.012U | | SSHS-B652 | SSHS-B652-SUB-14-16 | 14-16 | 2/14/2017 | 180-63507-2 | 0.4841 | <0.0092U | <0.0089U | <0.0068U | <0.014U | 0.33 | 0.12 | <0.012U | <0.0053U | <0.012U | | SSHS-B653 | SSHS-B653-SUB-14-16 | 14-16 | 2/14/2017 | 180-63507-2 | 0.3888 | <0.0093U | <0.0091U | <0.0069U | <0.014U | 0.28 | 0.074 | <0.012U | <0.0053U | <0.013U | | SSHS-B659 | SSHS-B659-SUB-14-16 | 14-16 | 2/16/2017 | 180-63593-2 | 0.05395 | <0.0095U | <0.0093U | <0.0071U | <0.014U | 0.0094J | 0.0094J | <0.012U | <0.0054U | <0.013U | | SSHS-B669 | SSHS-B669-SUB-14-16 | 14-16 | 2/13/2017 | 180-63507-2 | 0.3742 | <0.0095U | <0.0093U | <0.0071U | <0.014U | 0.22 | 0.11 | 0.015J | <0.0055U | <0.013U | | SSHS-B685 | SSHS-B685-SUB-14-16 | 14-16 | 3/23/2017 | 180-64584-2 | < 0.0888 | <0.0097U | <0.0095U | <0.0073U | <0.015U | <0.0087U | <0.008U | <0.012U | <0.0056U | <0.013U | | SSHS-B685A | SSHS-B685A-SUB-14-16 | 14-16 | 7/12/2017 | 180-68139-1 | 7.072 | <0.01U | <0.01U | <0.0077U | <0.016U | 4.8 | 2 | 0.24 | <0.006U | <0.014U | | SSHS-B717 | SSHS-B717-SUB-14-16 | 14-16 | 3/23/2017 | 180-64584-2 | < 0.0891 | <0.0098U | <0.0095U | <0.0073U | <0.015U | <0.0088U | <0.0081U | <0.012U | <0.0056U | <0.013U | | SSHS-B717A | SSHS-B717A-SUB-14-16 | 14-16 | 7/12/2017 | 180-68139-1 | 0.068 | <0.01U | <0.0097U | <0.0074U | <0.015U | 0.027 | <0.0082U | <0.013U | <0.0057U | <0.013U | | SSHS-B723 | SSHS-B723-SUB-16-18 | 16-18 | 4/13/2017 | 180-65226-1 | 16.99 | <0.096U | <0.093U | <0.071U | <0.14U | 11 | 4.7 | 1 | <0.055U | <0.13U | | SSHS-B723 | SSHS-B723-SUB-18-20 | 18-20 | 4/13/2017 | 180-65226-1 | 0.293 | <0.0097U | <0.0095U | <0.0072U | <0.015U | 0.19 | 0.06 | 0.013J | <0.0056U | <0.013U | | SSHS-IRM3-B014 | SSHS-IRM3-B014-C | 14-14 | 8/5/2019 | 180-93683-2 | 1.222 | <0.0055U | <0.006U | <0.0041U | <0.0025U | 0.84J | 0.28J | 0.089J | <0.0023U | <0.0059U | | SSHS-IRM3-B015 | SSHS-IRM3-B015-C | 14.6-14.6 | 7/26/2019 | 180-93321-1 | 2.494 | <0.0059U | <0.0064U | <0.0044U | <0.0026U | 1.7J | 0.64J | 0.14J | <0.0024U | <0.0063U | | SSHS-IRM3-B016 | SSHS-IRM3-B016-C | 14.7-14.7 | 7/26/2019 | 180-93321-1 | 2.694 | <0.006U | <0.0066U | <0.0045U | <0.0027U | 1.8J | 0.7J | 0.18J | <0.0025U | <0.0065U | | SSHS-IRM3-B024
SSHS-IRM3-B025 | SSHS-IRM3-B024-C
SSHS-IRM3-B025-C | 15.8-15.8
15.7-15.7 | 7/30/2019
7/29/2019 | 180-93419-1
180-93352-1 | 0.3597
<0.0469 | <0.007U
<0.0064U | <0.0076U
<0.007U | <0.0052U
<0.0048U | <0.0031U
<0.0029U | 0.23J
<0.0047U | 0.09J
<0.0059U | 0.023J
<0.0056U | <0.0029U
<0.0027U | <0.0075U
<0.0069U | | SSHS-IRM3-B025
SSHS-IRM3-B026 | SSHS-IRM3-B025-C
SSHS-IRM3-B026-C | 15.7-15.7 | 7/29/2019 | 180-93321-1 | 1.346 | <0.0064U
<0.0066U | <0.007U | <0.0048U | <0.0029U | <0.0047U | <0.0059U
0.39J | <0.0056U
0.15J | <0.0027U | <0.0069U
<0.0071U | | SSHS-IRM3-B027 | SSHS-IRM3-B027-C | 15.7-15.7 | 7/26/2019 | 180-93321-1 | 2.655 | <0.0063U | <0.0072U | <0.0049U | <0.003U | 1.8J | 0.66J | 0.13J | <0.0027U | <0.0071U | | SSHS-IRM3-B027 | SSHS-IRM3-B102-C | 15.8-15.8 | 8/1/2019 | 180-93547-1 | 18.35 | <0.06U | <0.066U | <0.0047U | <0.027U | 13J | 4.4J | 0.18J | <0.0020U | <0.065U | | SSHS-IRM3-B103 | SSHS-IRM3-B103-C | 15.9-15.9 | 8/1/2019 | 180-93547-1 | 49.97 | <0.32U | <0.35U | <0.24U | <0.15U | 35J | 12J | 2.2J | <0.13U | <0.35U | | SSHS-IRM3-MH1A | MHI A | 16-16 | 7/30/2019 | 180-93419-1 | 0.0804 | <0.0058U | <0.0063U | <0.0043U | <0.0026U | 0.043J | 0.021J | <0.0051U | <0.0024U | <0.0063U | | SSHS-IRM3-MH1B | MHI B | 16-16 | 7/30/2019 | 180-93419-1 | 0.2939 | <0.0058U | <0.0063U | <0.0044U | <0.0026U | 0.19J | 0.073J | 0.017J | <0.0024U | <0.0063U | | SSHS-IRM3-MH1C | MH1 C | 16-16 | 7/30/2019 | 180-93419-1 | 0.17 | <0.0058U | <0.0064U | <0.0044U | <0.0026U | 0.091J | 0.049J | 0.016J | <0.0024U | <0.0063U | | SSHS-IRM3-MH1DA | SSHS-IRM3-MH1DA-C | 15.8-15.8 | 8/2/2019 | 180-93640-2 | 0.3618 | <0.0058U | <0.0063U | <0.0043U | <0.0026U | 0.23J | 0.096J | 0.022J | <0.0024U | <0.0062U | | SSHS-IRM3-S156 | SSHS-IRM3-S156-C | 14.4-14.4 | 8/5/2019 | 180-93683-1 | 0.7688 | <0.0057U | <0.0063U | <0.0043U | <0.0026U | 0.51J | 0.2J | 0.045J | <0.0024U | <0.0062U | | SSHS-IRM3-S156A | SSHS-IRM3-S156A-C | 14.1-14.1 | 8/5/2019 | 180-93683-1 | 0.2507 | <0.0057U | <0.0062U | <0.0043U | <0.0026U | 0.16J | 0.065J | 0.012J | <0.0024U | <0.0062U | | SSHS-IRM3-S156B | SSHS-IRM3-S156B-C | 14.3-14.3 | 8/5/2019 | 180-93683-2 | 1.112 | <0.0059U | <0.0064U | <0.0044U | <0.0027U | 0.74J | 0.29J | 0.068J | <0.0024U | <0.0064U | | SSHS-IRM3-S156C | SSHS-IRM3-S156C-C | 15.1-15.1 | 7/26/2019 | 180-93321-1 | 0.1035 | <0.0058U | <0.0063U | <0.0044U | <0.0026U | 0.06J | 0.027J | <0.0051U | <0.0024U | <0.0063U | | SSHS-IRM3-S163 | SSHS-IRM3-S163-C | 14.6-14.6 | 8/5/2019 | 180-93683-2 | 0.09405 | <0.0057U | <0.0062U | <0.0042U | <0.0026U | 0.055J | 0.023J | <0.005U | <0.0023U | <0.0061U | | SSHS-IRM3-S166 | SSHS-IRM3-S166-D | 14.6-14.6 | 8/5/2019 | 180-93684-1 | 0.1678 | <0.0058U | <0.0063U | <0.0043U | <0.0026U | 0.079 | 0.055 | 0.02 | <0.0024U | <0.0062U | | SSHS-IRM3-S167 | SSHS-IRM3-S167-D | 14.2-14.2 | 8/5/2019 | 180-93684-1 | < 0.041 | <0.0056U | <0.0061U | <0.0042U | <0.0025U | <0.0041U | <0.0052U | <0.0049U | <0.0023U | <0.0061U | | SSHS-IRM3-S177 | SSHS-IRM3-S177-C | 14.9-14.9 | 7/29/2019 | 180-93352-1 | < 0.0438 | <0.006U | <0.0065U | <0.0045U | <0.0027U | <0.0044U | <0.0055U | <0.0052U | <0.0025U | <0.0065U | | SSHS-IRM3-S177A | SSHS-IRM3-S177A-C | 14.5-14.5 | 7/30/2019 | 180-93419-1 | 0.086 | <0.006U | <0.0065U | <0.0045U | <0.0027U | 0.044J | 0.025J | <0.0053U | <0.0025U | <0.0065U | | SSHS-IRM3-S178 | SSHS-IRM3-S178-C | 15-15 | 7/30/2019 | 180-93419-1 | 1.987 | <0.0059U | <0.0064U | <0.0044U | <0.0027U | 1.3J | 0.58J | 0.093J | <0.0024U | <0.0064U | | SSHS-IRM3-S179 | SSHS-IRM3-S179-D | 15.4-15.4 | 7/29/2019 | 180-93353-1 | 0.0492 | <0.0057U | <0.0062U | <0.0043U | <0.0026U | 0.023 | 0.01J | <0.005U | <0.0024U | <0.0062U | | SSHS-IRM3-S179A | SSHS-IRM3-S179A-C | 15.1-15.1 | 7/30/2019 | 180-93419-1 | < 0.0459 | <0.0063U | <0.0068U | <0.0047U | <0.0028U | <0.0046UJ | <0.0058UJ | <0.0055UJ | <0.0026U | <0.0068U | | SSHS-IRM3-S187 | SSHS-IRM3-S187-C | 14.9-14.9 | 7/26/2019 | 180-93321-1 | 0.2163 | <0.0056U | <0.006U | <0.0042U | <0.0025U | 0.14J | 0.046J | 0.017J | <0.0023U | <0.006U | | SSHS-IRM3-S188 | SSHS-IRM3-S188-C | 14.2-14.2 | 7/26/2019 | 180-93321-1 | 0.3128 | <0.0057U | <0.0063U | <0.0043U | <0.0026U | 0.2J | 0.078J | 0.021J | <0.0024U | <0.0062U | | SSHS-IRM3-S201 | SSHS-IRM3-S201-C | 14.5-14.5 | 8/1/2019 | 180-93547-1 | 5.804 | <0.0058U | <0.0063U | <0.0043U | <0.0026U | 4.1J | 1.4J | 0.29J | <0.0024U | <0.0063U | | SSHS-IRM3-S202 | SSHS-IRM3-S202-C | 14.3-14.3 | 8/1/2019 | 180-93547-1 | 24 | <0.29U | <0.32U | <0.22U | <0.13U | 15J | 7.2J | 1.1J | <0.12U | <0.32U | ### Table 4 Summary of IRM 4 Metals in Shallow Subsurface (0.17-2 ft bgs) IRM 4 ### Former Sperry Remington Site - North Portion Elmira, NY | | | | | | | | | | | | | | | | | etals | | | | | | | | | | | | |------------------------------|-------------------------|--------------------------------|----------------------------|-------------|----------------------|----------|-----------|---------|--------|-----------|---------|----------|------------|--------|--------|---------|-------|----------|----------|-----------|--------|-----------|----------|---------|----------|---------|-------| | | | | | | | | | | | | | | ^ | Aluminum | Antimon | Arsenic | Barium | Ber Ilium | Ca mium | Calcium | Chromium (| Cobalt | Copper | ron | Lea | agnesium | anganese | ercur | Nic el | Potassium | Selenium | Sil er | Thallium | ana ium | inc | | | | | | | | mg/kg | EQL | | | | | | 18 | 0.3 | 0.9 | 18 | 0.36 | 0.038 | 490 | 0.45 | 4.5 | 2.2 | 9 | 0.9 | 450 | 1.3 | 0.008 | 3.6 | 450 | 0.51 | 0.094 | 0.22 | 4.5 | 1.8 | | Restricted - Residential SCO |) | | | | | | | 16 | 400 | 72 | 4.3 | | 110 | | 270 | | 400 | | 2000 | 0.81 | 310 | | 180 | 180 | | | 10000 | | Location | Sample Name | Sample Depth
Range (ft bgs) | Sample le ation
(ft SL) | Sample Date | Lab Report
Number | SSHS-B2238 | SSHS-B2238-SUB-0.17-2 | 0.17-2 | | 7/23/2018 | 180-80091-1 | 6600 | <0.36U | 4.2 | 42 | 0.26J | 0.09J | 80,000 | 8.9 | 5.7 | 20 | 15,000 | 7 | 15,000 | 350 | <0.008U | 16 | 640 | <0.55U | <0.11U | <0.22U | 10 | 59 | | SSHS-B2238 | SSHS-B2238-SUB-SS | 0-0.17 | | 7/23/2018 | 180-80091-4 | 8500 | <0.39U | 5.1 | 58 | 0.34J | 0.083J | 21,000 | 11 | 6.9 | 21 | 17,000 | 18 | 4600 | 340 | 0.019J | 17 | 710 | <0.6U | <0.12U | <0.24U | 12 | 56 | | SSHS-B2746 | SSHS-B2746-SUB-0.17-2 | 0.17-2 | 760.18 | 4/22/2019 | 180-89294-1 | <10,000U | <0.41U | 6.7 | 120 | 0.53 | 1.1 | 4100 | 13 | 9.3 | 16 | 20,000 | 15 | 3000 | 560 | 0.05 | 22 | 980 | <0.62U | <0.13U | <0.39U | 14 | 64 | | SSHS-B2748 | SSHS-B2748-SUB-0.17-2 | 0.17-2 | 741.35 | 4/23/2019 | 180-89344-1 | 7200 | <0.38UJ | 7.8 | 110 | 0.39J | 0.16J | 16,000J- | | | 140J- | 29,000 | 68 | 5800J- | 510 | 0.032J | 150J- | 920 | 0.74J | <0.12U | <0.36U | 12 | 72 | | SSHS-B2749 | SSHS-B2749-SUB-0.17-2 | 0.17-2 | 747.84 | 4/23/2019 | 180-89344-1 | 7700 | 0.44J | 6.5 | 140 | 0.38J | 0.26J | 10,000J | 12 | 6.7 | 42J- | 19,000 | 63J- | 3600 | 420 | 0.045 | 33 | 800 | <0.57U | <0.12U | <0.35U | 13 | 87J | | SSHS-B2750 |
SSHS-B2750-SUB-0.17-2 | 0.17-2 | 743.49 | 4/23/2019 | 180-89344-1 | 9100 | 0.48J | 7.4 | 110 | 0.43J | 0.12J | 4600 | 14 | 7.6 | 38 | 21,000 | 39 | 2600 | 470 | 0.05 | 28 | 910 | <0.62U | <0.13U | <0.39U | 15 | 67 | | SSHS-IRM3-B100-BOT2 | SSHS-IRM3-B100 BOT BOT | 1.4-1.4 | 853.56 | 8/1/2019 | 180-93547-2 | 12,000 | 0.53J | 5.7 | 84 | 0.46 | <0.038U | 1300 | 13 | 6.7 | 14 | 19,000 | 9.4 | 2500 | 280 | <0.018U | 18 | 570 | <0.54U | <0.11U | <0.34U | | 55J | | SSHS-IRM3-S001 | SSHS-IRM3-S001-07-10-19 | 0.1-0.1 | 855.58 | 7/10/2019 | 180-92467-1 | 8300 | <0.35U | 6.1 | 72 | 0.33J | 0.11J | 30,000 | -11 | 7.1 | 20 | 17,000 | 14 | 7600 | 370 | <0.015U | 17 | 750 | 0.6J | <0.11U | <0.33U | 12 | 55 | | SSHS-IRM3-S002 | SSHS-IRM3-S002-07-09-19 | 0.3-0.3 | 855.70 | 7/9/2019 | 180-92395-1 | 6800 | <0.36U,F1 | 4.6 | 51 | 0.28J | 0.17J | 70,000 | 8.9 | 5.9 | 24 | 16,000 | 7.6 | 12,000 | 400 | <0.014U | 17 | 680 | IJ | <0.11U | <0.34U | 10 | 71F1 | | SSHS-IRM3-S003 | SSHS-IRM3-S003-07-09-19 | 0.2-0.2 | 855.90 | 7/9/2019 | 180-92395-1 | 9100 | 0.38J | 5.9 | 59 | 0.36J | 0.13J | 26,000 | 12 | 7.5 | 21 | 19,000 | 15 | 5800 | 370 | <0.016U | 18 | 590 | 0.83J | <0.11U | <0.35U | 13 | 58 | | SSHS-IRM3-S020 | SSHS-IRM3-S020-07-10-19 | 0-0 | 854.99 | 7/10/2019 | 180-92462-1 | 8600 | 0.83J | 7.9 | 140 | 0.41J | 0.25J | 13,000 | 22 | 7.7 | 55 | 22,000 | 71 | 3900 | 500 | 0.047 | 38 | 880 | 0.89J | <0.11U | <0.34U | 15 | 91 | | SSHS-IRM3-S020A | SSHS-IRM3-S020A-C | 1.7-1.7 | 853.32 | 7/29/2019 | 180-93352-1 | 8500 | 0.66J | 8.1 | 150 | 0.38J | 0.15J | 9400 | 16 | 6.9 | 57 | 21,000 | 100 | 3200 | 440 | 0.036 | 40 | 740 | <0.56U | <0.12U | <0.35U | 14 | 81 | | SSHS-IRM3-S021A | SSHS-IRM3-S021A-C | 1.8-1.8 | 853.15 | 7/29/2019 | 180-93352-1 | 10,000 | 0.49J | 7.1 | 110 | 0.51 | 0.12J | 2500 | 14 | 8.7 | 18 | 20,000 | 21 | 2800 | 590 | 0.022J | 21 | 1200 | <0.62U | <0.13U | <0.39U | 14 | 56 | | SSHS-IRM3-S022A | SSHS-IRM3-S022A-C | 1.9-1.9 | 853.11 | 7/29/2019 | 180-93352-1 | 12,000 | <0.45U | 7.4 | 120 | 0.57 | 0.5J | 4300 | 15 | 9.8 | 16 | 22,000 | 14 | 3500 | 530 | 0.02J | 23 | 1700 | <0.68U | <0.14U | <0.42U | 16 | 61 | | SSHS-IRM3-S023AA | SSHS-IRM3-S023AA-C | 0.8-0.8 | 854.41 | 8/1/2019 | 180-93547-2 | 10,000 | 0.55J | 7.4 | 110 | 0.54 | 0.18J | 2000 | 13 | | 16 | 19,000 | 17 | 2800 | 520 | 0.025J | 23 | 890 | <0.56U | <0.11U | <0.35U | 14 | 61J | | SSHS-IRM3-S023AB | SSHS-IRM3-S023AB-C | 1.3-1.3 | 853.84 | 8/1/2019 | 180-93547-2 | 9300 | 0.59J | 7.2 | 100 | 0.48 | 0.46J | 5000 | 12 | | 20 | 18,000 | 20 | 3000 | 640 | 0.02J | 22 | 670 | <0.51U | <0.1U | <0.32U | 14 | 58J | | SSHS-IRM3-S023A-BOT | SSHS-IRM3-S023A BOT-C | 1.5-1.5 | 853.64 | 8/1/2019 | 180-93547-2 | 9100 | 0.68J | 7.4 | 86 | 0.42 | 0.1J | 6200 | 12 | 7.7 | 24 | 20,000 | 25 | 2800 | 650 | 0.019J | 21 | 650 | <0.51U | <0.1U | <0.32U | 15 | 82J | | SSHS-IRM3-S023AC | SSHS-IRM3-S023AC-C | 0.8-0.8 | 854.35 | 8/1/2019 | 180-93547-2 | 10,000 | 0.55J | 7.1 | 120 | 0.54 | 0.18J | 3200 | 13 | 9.5 | 15 | 19,000 | 16 | 2900 | 550 | 0.022J | 22 | 900 | <0.57U | <0.12U | <0.36U | 14 | 58J | | SSHS-IRM3-S023AD | SSHS-IRM3-S023AD-C | 0.6-0.6 | 854.42 | 8/1/2019 | 180-93547-2 | 9700 | 0.5J | 6.7 | 130 | 0.49 | 0.18J | 6300 | 13 | 9 | 20 | 19,000 | 24 | 3500 | 520 | 0.12 | 25 | 800 | <0.52U | <0.11U | <0.33U | 14 | 67J | | SSHS-IRM3-S024A | SSHS-IRM3-S024A-C | 1.4-1.4 | 853.89 | 7/29/2019 | 180-93352-1 | 7200 | <0.3U | 4.1 | 46 | 0.28J | 0.13J | 59,000 | 9.4 | 5.9 | 23 | 15,000 | 6.3 | 6400 | 370 | < 0.014 U | 17 | 680 | 1 | <0.094U | <0.29U | 11 | 66 | | SSHS-IRM3-S025 | SSHS-IRM3-S025-07-09-19 | 0.6-0.6 | 854.64 | 7/9/2019 | 180-92395-1 | 7300 | <0.36U | 4.7 | 53 | 0.3J | 0.15J | 57,000 | 9.8 | 6.8 | 22 | 16,000 | 9.2 | 8500 | 380 | <0.015U | 18 | 630 | 1.3 | <0.11U | <0.34U | 11 | 65 | | SSHS-IRM3-S026 | SSHS-IRM3-S026-07-09-19 | 0.2-0.2 | 855.29 | 7/9/2019 | 180-92395-1 | 7700 | <0.35U | 5.2 | 56 | 0.3J | 0.15J | 51,000 | 10 | | 22 | 16,000 | 13 | 9200 | 400 | <0.014U | 17 | 650 | | <0.11U | <0.33U | 11 | 65 | | SSHS-IRM3-S027 | SSHS-IRM3-S027-07-10-19 | 0.4-0.4 | 855.25 | 7/10/2019 | 180-92467-1 | 8700 | 0.47J | 6.1 | 63 | 0.35J | 0.12J | 35,000 | 12 | | 23 | 18,000 | 79 | 6200 | 400 | <0.015U | 19 | 710 | 0.74J | <0.12U | <0.35U | 13 | 64 | | SSHS-IRM3-S028 | SSHS-IRM3-S028-07-10-19 | 0.1-0.1 | 855.32 | 7/10/2019 | 180-92467-1 | 7000 | <0.37U | 4.7 | 53 | 0.27J | 0.13J | 76,000 | 9.6 | 6.5 | 24 | 16,000 | 9 | 22,000 | 360 | <0.015U | 17 | 740 | 1.1 | <0.12U | <0.35U | -11 | 65 | | SSHS-IRM3-S028d | SSHS-IRM3-S028-D | 0.4-0.4 | 855.08 | 8/5/2019 | 180-93684-3 | 8800B | 0.43J | 6.1 | 61 | 0.37J | 0.14J | 41,000 | | | 26 | 19,000B | 14 | 8200 | 440B | <0.015U | 19 | 840 | 0.89J | <0.11U | <0.32U | 13 | 69 | | SSHS-IRM3-S029 | SSHS-IRM3-S029-D | 0.6-0.6 | 855.00 | 8/5/2019 | 180-93684-3 | 9200B | 0.6J | 6.7 | 75 | 0.38J | 0.14J | 30,000 | 12B | 7.5 | 30 | 20,000B | 24 | 12,000 | 420B | 0.025J | 22 | 880 | 0.74J | <0.11U | <0.33U | 14 | 78 | | SSHS-IRM3-S044 | SSHS-IRM3-S044-C | 1.5-1.5 | 853.53 | 7/12/2019 | 180-92615-1 | 8600 | <0.36U | 5.9 | | 0.36J | 0.48J | 22,000 | 10 | | 58 | 16,000 | 25 | 4900 | 410 | 0.02J | 20 | 960 | 0.63J | <0.11U | <0.34U | 12 | 62 | | SSHS-IRM3-S048 | SSHS-IRM3-S048-D | 0.1-0.1 | 855.23 | 7/12/2019 | 180-92616-1 | 6500 | <0.37U | 5.6 | 120 | 0.28J | 0.18J | 83,000 | 8.4 | 5.5 | 24 | 16,000 | 24 | 19,000 | 380 | 0.018J | 16 | 830 | 1.4 | <0.12U | <0.35U | 11 | 60 | | SSHS-IRM3-S052 | SSHS-IRM3-S052-D | 1.6-1.6 | 854.07 | 7/15/2019 | 180-92661-1 | 7800 | 1.7 | 7.3 | 120 | 0.36J | 0.16J | 21,000 | 20 | 8.2 | 270 | 25,000 | 150 | 3000 | 420 | 0.025J | 170 | 690 | 0.82J | <0.11U | <0.35U | 14 | 99 | Notes: EQ.1. Estimated Quantitation Limit mg/kg - milligram per kilogram ft bgs - fett below ground surface ft MSL - feet abouve mean sea level U - Non-detect U - Non-detect J - estimated value B - analyte found in method blank TCLP - To icity Characteristic Leaching Procedure F1 - MS and/or MSD Procevery to outside acceptable limits Concentrations detected above 20 TCLP (200 for Lead) are shown in dark gray MN0832/Table 4 - IRM4 Metals Results (0.17-2) Page 1 of 1 ## Table 5 Summary of IRM 4 Metals in Subsurface (2-16 ft bgs) IRM 4 Former Sperry Remington Site - North Portion Elmira, NY | | | | | | | | | | | | | | | | eti | ıls | | | | | | | | | | | |------------------------|--|----------------|------------------------|----------------------------|--------------|------------------|----------|------------|----------------|----------------|--------------------|--------------|--------------|------------|------------------|-------------|----------------|------------|-------------------|----------|------------|------------------|------------------|---------------------|---------|------| | | | | | | Muminum | Antimon | Amenic | karium | ber Ham | W minum | Jakium | Stromium () | Cohalt | Opper | ron | ra
va | agnesium | anganese | erair | Ge el | otassium | edeni um | ill er | hallium | ans ium | in | | | | | | | mg/kg mg/s | | QL | reening (Lead 1000 ppm) | | | | 18 | 0.31 | 0.9 | 18
2000 | 0.36 | 0.042 | 450 | 0.45
100 | 4.5 | 2.2 | 9 | 0.9 | 450 | 1.3 | 0.0081 | 3.6 | 450 | 0.46 | 0.095 | 0.22 | 4.5 | 1.8 | | otection of Ground | d-water SCO | | | | | | 16 | 820 | 47 | 7.5 | + | 19 | | 1720 | | 450 | | 2000 | 0.73 | 130 | | 4 | 8.3 | | | 248 | | Location | | Sample Depth | | Lab Report | Sample Name | Range (ft bgs) | Sample Date | Number | SHS-B2238
SHS-B2238 | SSHS-B2238-SUB-10-12
SSHS-B2238-SUB-12-14 | 10-12 | 7/23/2018 | 180-80091-1
180-80091-1 | 6400 | <1.9U | 5.4 | 460
120 | 0.27J
0.24J | 1.1
0.31J | 17,000
25,000 | 12 | 5.2J
5.1J | 81
32 | 30,000
15,000 | 2100 | 2800
5400 | 380
460 | 0.031J | 29 | 570
700 | <0.58U | <0.12U | <0.24U
<0.23H | 13 | 120 | | SHS-B2238
SHS.R2238 | SSHS-B2238-SUB-12-14
SSHS-R2238-SUR-2-4 | 2.4 | 7/23/2018 | 180-80091-1 | 7600F2 | <0.38U | 6.3F2.F1 | 110F2 F1 | | 0.31J
0.22J | 25,000
28,000F2 | 13F2.F1 | 6.3F2.F1 | 55P2 F1 | 21.000F2 | 33
140F1 | 5000F2 F1 | 570F2 | 0.00810 | 62F2.F1 | 670F2 F1 | <0.57U | <0.12U | <0.23U
c0.23U F1 | 13F2.F1 | 1008 | | SHS.R2238 | SSHS.R2238.SUR.4.6 | 4.6 | 7/23/2018 | 180-80091-1 | 8000°2 | c0.370,F2,F1 | 7.9 | 220 | 0.323,F2,F1 | 0.223 | 17 000 | 13F2,F1 | 7.2 | 78 | 23,000F2 | 75 | 3700
3700 | 550
550 | 0.0213 | 35 | 730 | <0.56H | c0.11U | <0.23U,F1 | 13F2,F1 | 166 | | SHS-B2238 | SSHS-B2238-SUB-6-8 | 6-8 | 7/23/2018 | 180-80091-1 | 6900 | <0.38U | 6.7 | 320 | 0.3J | 1.3 | 44,000 | 17 | 6.5 | 130 | 19,000 | 100 | 5800 | 430 | 0.021J | 61 | 780 | <0.57U | <0.11U | <0.23U | 13 | 24 | | SHS-B2238 | SSHS-B2238-SUB-8-10 | 8-10 | 7/23/2018 | 180-80091-1 | 6500 | <0.39U | 7.2 | 250 | 0.32J | 0.79 | 24,000 | 13 | 6.3 | 81 | 21,000 | 190 | 4600 | 380 | 0.027J | 44 | 640 | <0.59U | <0.12U | <0.24U | 12 | 18 | | SHS-B2239 | SSHS-B2239-SUB-10-12 | 10-12 | 7/23/2018 | 180-80091-3 | 8600 | <0.37U | 5.7 | 140 | 0.3J | 0.13J | 25,000 | 13 | 7.3 | 44 | 22,000 | 33 | 5600 | 560 | 0.0087J | 25 | 580 | <0.56U | <0.11U | <0.23U | 13 | 98 | | SHS-B2239 | SSHS-B2239-SUB-12-14 | 12-14 | 7/23/2018 | 180-80091-3 | 7100 | <0.38U | 5.3 | 110 | 0.26J | 0.09J | 41,000 | 11 | 5.8 | 38 | 18,000 | 29 | 7600 | 420 | <0.0088U | 26 | 630 | <0.57U | <0.12U | <0.23U | 12 | 70 | | SHS-B2239 | SSHS-B2239-SUB-4-6 | 4-6 | 7/23/2018 | 180-80091-3 | 7100 | 1.9 | 9.9 | 950 | 0.33J | 0.35J | 73,000 | 29 | 7.7 | 220 | 26,000 | 320 | 3900 | 480 | 0.05 | 110 | 710 | 0.69J | <0.12U | <0.23U | 14 | 210 | | SHS-B2239 | SSHS-B2239-SUB-6-8 | 6-8 | 7/23/2018 | 180-80091-3 | 7300 | 0.73J | 6.7 | 620F1 | 0.32J | 0.21J | 22,000F1,F2 | 18F1 | - 6 | 130 | 22,000F2 | 150F1,F2 | 4100F1,F2 | 390 | 0.037J | 56F1 | 610 | 0.74J | <0.11U | <0.23U | 13 | 1500 | | SHS-B2239 | SSHS-B2239-SUB-8-10 | 8-10 | 7/23/2018 | 180-80091-3 | 8000 | <0.39U | 5.9 |
170 | 0.31J | 0.11J | 18,000 | 25 | 7.8 | 53 | 21,000 | 38 | 4300 | 650 | 0.024J | 47 | 650 | <0.58U | <0.12U | <0.24U | 13 | 98 | | SHS-B2240 | SSHS-B2240-SUB-10-12 | 10-12 | 7/23/2018 | 14 | 5700 | <0.36U | 4.5 | 39 | 0.24J | 0.083J | 47,000 | 9.3 | 5.2J | 23 | 14,000 | 9.7 | 9600 | 310 | <0.0085U | 15 | 670 | <0.55U | <0.11U | <0.22U | 10 | 59 | | SHS-B2240 | SSHS-B2240-SUB-12-14 | 12-14 | 7/23/2018 | 180-80091-2 | 6100 | <0.37U | 5.8 | 42 | 0.3J | 0.08J | 1900 | 7.8 | 5.5 | 20 | 16,000 | 10 | 1800 | 530 | 0.014J | 14 | 640 | <0.56U | <0.11U | <0.23U | 11 | 58 | | SHS-B2240
SHS-B2240 | SSHS-B2240-SUB-2-4
SSHS-R2240-SUB-4-6 | 2-4 | 7/23/2018 | 180-80091-2 | 4300
8600 | <0.37U | 5.3 | 65
73 | 0.3J | 0.16J | 150,000 | 7.6 | 5.5 | 29
64F1 | 12,000 | 37 | 4700
2600 | 360
440 | 0.023J | 19 | 740 | 0.88J | <0.11U | <0.23U | 8.7 | 4 | | SHS-B2240
SHS-B2240 | SSHS-B2240-SUB-4-6
SSHS-B2240-SUB-6-8 | 4-6
6-8 | 7/23/2018 | 180-80091-2 | 6100 | <0.39U,F1 | 6 6 3 | 130 | 0.4J
0.35J | 0.045J | 34.000 | 11 | 6.8 | 64F1
84 | 18,000 | 96 | 1900 | 440 | 0.018J | 20
46 | 570 | -0.58U | <0.12U | <0.24U | 17 | 8 | | SHS-B2240
SHS-B2240 | SSHS-B2240-SUB-6-8
SSHS-R2240-SUR-8-10 | 8.10 | 7/23/2018 | 180-80091-2 | 5900 | :0.39U | 5 | 54 | 0.353 | 0.163 | 6800 | 9.1 | 5.5 | 39 | 14,000 | 96 | 2200 | 370 | 0.0353 | 18 | 590 | -0.63
-0.55E | <0.12U | <0.24U | 10 | 5 | | SHS-B2242 | SSHS-B2242-SUB-2-4 | 2-4 | 7/23/2018 | 180-80091-3 | 7700 | <0.38U | 6.2 | 93 | 0.33J | 0.12J | 27.000 | 14 | 6.9 | 42 | 19,000 | 50 | 7800 | 350 | 0.027J | 44 | 690 | <0.57U | <0.12U | <0.23U | 14 | - 8 | | SHS-B2242 | SSHS-B2242-SUB-4-6 | 4-6 | 7/23/2018 | 180-80091-3 | 7700 | <0.38U | 7.9 | 200 | 0.41J | 0.25J | 27,000 | 22 | 7.8 | 75 | 29,000 | 110 | 4800 | 410 | 0.047 | 90 | 860 | 0.84J | <0.12U | <0.24U | 18 | 12 | | SHS-B2242 | SSHS-B2242-SUB-6-8 | 6-8 | 7/23/2018 | 180-80091-3 | 8300 | <0.39U | 7.2 | 220 | 0.41J | 0.35J | 37,000 | 19 | 6.7 | 88 | 24,000 | 130 | 4500 | 450 | 0.041 | 69 | 800 | <0.59U | <0.12U | <0.24U | 15 | 16 | | SHS-B2243 | SSHS-B2243-SUB-10-12 | 10-12 | 7/23/2018 | 180-80091-2 | 7100 | <0.39U | 6.3 | 100 | 0.33J | 0.17J | 17,000 | 14 | 7 | 38 | 19,000 | 30 | 4900 | 710 | 0.038 | 30 | 710 | <0.59U | <0.12U | <0.24U | 14 | 10 | | SHS-B2243 | SSHS-B2243-SUB-2-4 | 2-4 | 7/23/2018 | 180-80091-2 | 8200 | <0.38U | 7 | 180 | 0.39J | 0.18J | 31,000 | 13 | 6.9 | 89 | 19,000 | 68 | 3200 | 400 | 0.035J | 28 | 700 | <0.57U | <0.12U | <0.23U | 15 | 13 | | SHS-B2243 | SSHS-B2243-SUB-4-6 | 4-6 | 7/23/2018 | 180-80091-2 | 12,000 | <0.38U | 5 | 220 | 0.35J | 0.77 | 46,000 | 24 | 8.2 | 180 | 18,000 | 96 | 4500 | 480 | 0.04 | 28 | 710 | <0.58U | <0.12U | <0.24U | 15 | 22 | | SHS-B2243 | SSHS-B2243-SUB-6-8 | 6-8 | 7/23/2018 | 180-80091-2 | 9100 | <0.81U,F1 | 7.3F2,F1 | 300F2,F1 | | 0.37J,F2,F1 | 53,000 | 20F1 | 11F2,F1 | 110F2,F1 | 21,000F2 | 180F2,F1 | 4500F1 | 440 | 0.051F1 | 43F1 | 810 | 0.9J,F2,F1 | <0.13U,F2,F1 | <0.25U,F2,F1 | 15F2,F1 | 140F | | SHS-B2243
SHS-R2629 | SSHS-B2243-SUB-8-10 | 8-10 | 7/23/2018 | 180-80091-2 | 6200 | <0.4U | 3.3 | 110 | 0.28J | 1.2 | 58,000 | - 11 | 4.7J | 44 | 12,000 | 37 | 8500
2100 | 390 | 0.022J | 15 | 710 | <0.6U | <0.12U | <0.24U | 9.4 | 71 | | SHS-B2629
SHS-B2741 | SSHS-B2629-SUB-2-4
SSHS-B2741-SUB-10-12 | 2-4 | 4/25/2019
4/24/2019 | 180-89522-1
180-89408-1 | 6700 | 0.66J
0.57J | 6.4 | 160
250 | 0.35J
0.3J | 0.15J
0.15J | 8700
22,000 | 12 | 6.3 | 48
62 | 21,000 | 140 | 5300 | 480 | 0.1
0.031J | 38
63 | 600 | <0.56U
<0.58U | <0.11U
<0.12U | <0.35U
<0.36U | 13 | 7. | | SHS-B2742 | SSHS-B2742-SUB-10-12 | 10-12 | 4/25/2019 | 180-89522-1 | 6300 | <0.35U | 4.8 | 160 | 0.26J | 0.13J | 56,000 | 9.1 | 6.2 | 34 | 18,000 | 77 | 6500 | 480 | 0.033 | 28 | 590 | 1.1 | <0.11U | <0.33U | 10 | 57 | | SHS-B2743 | SSHS-B2743-SUB-10-12 | 10-12 | 4/24/2019 | 180-89408-1 | 7900 | 4.8J | 6.7 | 260 | 0.33J | 0.31J | 41,000 | 15 | 6.8 | 100 | 22,000 | 5700 | 9300 | 620 | 0.052 | 67 | 750 | 1.1 | <0.12U | <0.37U | 12 | 14 | | SHS-B2745 | SSHS-B2745-SUB-10-12 | 10-12 | 4/24/2019 | 180-89408-1 | 7600 | 0.46J | 6.2 | 150 | 0.34J | 0.16J | 42,000 | 14 | 7.1 | 85 | 18,000 | 280J | 8300 | 520 | 0.032J | 47 | 700 | 0.99J | <0.11U | <0.35U | 15 | 83 | | SHS-B2746 | SSHS-B2746-SUB-10-12 | 10-12 | 4/22/2019 | 180-89294-1 | <5300U | <0.36U | 4.6 | 67J | 0.24J | 0.15J | 87,000 | 7.6J | 5.1J | 21 | 14,000 | 12 | 9000 | 530 | 0.034 | 14 | 600 | <1.2U | <0.11U | <0.34U | 8.4 | 60 | | SHS-B2746 | SSHS-B2746-SUB-12-14 | 12-14 | 4/22/2019 | 180-89294-1 | <6300U | <0.36U | 5.8 | 82J | 0.26J | 0.21J | 18,000 | 9.8 | 5.8 | 22 | 18,000 | 16 | 4800 | 340 | 0.052 | 15 | 650 | 0.57J | <0.11U | <0.34U | 13 | 12 | | SHS-B2746 | SSHS-B2746-SUB-2-4 | 2-4 | 4/22/2019 | 180-89294-1 | <8000U | <0.37U | 5.8 | 240J | 0.37J | 0.14J | 7700 | 11 | 6.2 | 28 | 23,000 | 52 | 3000 | 680 | 0.049 | 19 | 650 | <0.55U | <0.11U | <0.34U | 13 | 90 | | SHS-B2746 | SSHS-B2746-SUB-4-6 | 4-6 | 4/22/2019 | 180-89294-1 | <8400U | <0.39U | 8.8 | 940J | 0.39J | 0.5J | 13,000 | 13 | 6.6 | 41 | 22,000 | 94 | 3100 | 510 | 0.081 | 28 | 750 | 0.59J | <0.12U | <0.37U | 15 | 16 | | SHS-B2746 | SSHS-B2746-SUB-6-8 | 6-8 | 4/22/2019 | 180-89294-1 | <:6000U | <0.36U | 4.2 | 110J | 0.24J | 1.5 | 3000 | 7.1J | 4J | 18 | 13,000 | 35 | 1500 | 390 | 0.048 | 11J | 380J | <0.55U | <0.11U | <0.34U | 8.6 | 120 | | SHS-B2746 | SSHS-B2746-SUB-8-10 | 8-10 | 4/22/2019 | 180-89294-1 | <7900U | <0.37U | 6.6 | 120J | 0.34J | 0.28J | 3900 | 13 | 7.3 | 24 | 19,000 | 45 | 2500 | 950 | 0.053 | 18 | 770 | <0.56U | <0.11U | <0.35U | 13 | 14 | | SHS-B2747
SHS-B2747 | SSHS-B2747-SUB-10-12
SSHS-B2747-SUB-12-14 | 10-12 | 4/23/2019
4/23/2019 | 180-89344-1
180-89344-1 | 8100
7200 | <0.38U
<0.39U | 5.2 | 85
67 | 0.36J
0.3J | 0.12J
0.11J | 18,000
46,000 | 11 | 6.3 | 40
22 | 21,000 | 37
17 | 6800
17,000 | 520
540 | 0.015J
<0.016U | 20 | 670
810 | 0.67J
0.83J | <0.12U
<0.12U | <0.36U
<0.37U | 12 | 75 | | SHS-B2747
SHS-B2747 | SSHS-B2747-SUB-12-14
SSHS-B2747-SUB-2-4 | 12-14 | 4/23/2019 | 180-89344-1 | 7200 | <0.39U | 7.9 | 110 | 0.3J
0.36J | 0.11J
0.12J | 46,000
26,000 | 13 | 6.2 | 44 | 20,000 | 17 | 7000 | 540
400 | <0.016U
0.025J | 26 | 730 | 0.83J
0.79J | <0.12U | <0.37U | 11 | 55 | | SHS-B2747
SHS-R2747 | SSHS-B2/4/-SUB-2-4
SSHS-R2747-SUR-6-8 | 6-8 | 4/23/2019 | 180-89344-1 | 7800 | c0.4U | 5.6 | 58 | 0.36J
0.29J | 0.123 | 19,000 | 10 | 5.8 | 30 | 18 000 | 22 | 2700 | 360 | 0.0253 | 17 | 600 | 0.793
c0.55II | <0.12U | <0.37U | 12 | 60 | | SHS-B2747 | SSHS-B2747-SUB-8-10 | 8-10 | 4/23/2019 | 180-89344-1 | 7500 | <0.37U | 5.8 | 68 | 0.29J | 0.091J | 5900 | 9.7 | 5.9 | 23 | 18,000 | 17 | 3700 | 550 | <0.019U | 16 | 700 | <0.58U | <0.11U | <0.36U | 12 | 73 | | SHS-B2748 | SSHS-B2748-SUB-10-12 | 10-12 | 4/23/2019 | 180-89344-1 | 7200 | <0.4U | 4.6 | 60 | 0.32J | 0.087J | 5400 | 9.4 | 6.1 | 17 | 17,000 | 9.5 | 3500 | 470 | 0.013J | 16 | 610 | <0.6U | <0.12U | <0.37U | 11 | 51 | | SHS-B2748 | SSHS-B2748-SUB-12-14 | 12-14 | 4/23/2019 | 180-89344-1 | 6700 | <0.37U | 6.1 | 56 | 0.3J | 0.075J | 13,000 | 9 | 5.5 | 22 | 17,000 | 10 | 5800 | 630 | <0.016U | 16 | 650 | <0.55U | <0.11U | <0.35U | 11 | 50 | | SHS-B2748 | SSHS-B2748-SUB-2-4 | 2-4 | 4/23/2019 | 180-89344-1 | 8900 | <0.4U | 4.7 | 210 | 0.4J | 0.13J | 11,000 | 12 | 5.8J | 27 | 18,000 | 630 | 4800 | 860 | 0.055 | 19 | 680 | <0.61U | <0.12U | <0.38U | 13 | 6 | | SHS-B2748 | SSHS-B2748-SUB-4-6 | 4-6 | 4/23/2019 | 180-89344-1 | 8300 | <0.37U | 6.2 | 81 | 0.35J | 0.093J | 6700 | 12 | 6.4 | 24 | 19,000 | 20 | 4400 | 400 | 0.017J | 17 | 650 | <0.55U | <0.11U | <0.34U | 14 | 5. | | SHS-B2748 | SSHS-B2748-SUB-6-8 | 6-8 | 4/23/2019 | 180-89344-1 | 8500 | <0.37U | 5.8 | 90 | 0.35J | 0.084J | 2500 | 12 | 6.7 | 28 | 20,000 | - 11 | 3100 | 540 | <0.015U | 17 | 610 | <0.56U | <0.11U | <0.35U | 13 | 5. | | SHS-B2748 | SSHS-B2748-SUB-8-10 | 8-10 | 4/23/2019 | 180-89344-1 | 10,000 | <0.52U | 7.7 | 100 | 0.45J | 0.12J | 29,000 | 13 | 7.9 | 30 | 24,000 | 18 | 19,000 | 850 | <0.024U | 23 | 900 | <0.79U | <0.16U | <0.49U | 15 | 73 | | HS-B2749 | SSHS-B2749-SUB-10-12 | 10-12 | 4/23/2019 | 180-89344-1 | 6200 | <0.39U | 5.6J | 60J | 0.24J | 0.1J | 36,000 | 8.5 | 5.9 | 22 | 16,000 | 160J | 11,000 | 640 | <0.015U | 15 | 720 | 0.59J | <0.12U | <0.37U | 11 | 53 | | HS-B2749 | SSHS-B2749-SUB-12-14
SSHS-B2749-SUB-2-4 | 12-14 | 4/23/2019
4/23/2019 | 180-89344-1
180-89344-1 | 7800 | <0.39U
0.46J | 5.8 | 88 | 0.31J | 0.11J | 26,000 | 11 | 6.7 | 24 | 17,000 | 17 | 6200
5500 | 510
400 | <0.015U
0.04J | 18 | 840
700 | 0.68J | <0.12U | <0.37U | 12 | 60 | | SHS-B2749
SHS-R2749 | SSHS-B2749-SUB-2-4
SSHS-R2749-SUR-4-6 | 2-4
4-6 | 4/23/2019 | 180-89344-1 | 7600
8400 | 0.46J | 5.4 | 150 | 0.31J
0.37I | 0.21J
0.16I | 32,000
18,000 | 9.9 | 6.1 | 42 | 17,000 | 160 | 5100 | 400
590 | 0.043 | 20 | 700
690 | 0.83J | <0.12U | <0.35U | 11 | 7 | | SHS-B2749
SHS-B2749 | SSHS-B2749-SUB-4-6
SSHS-B2749-SUB-6-8 | 4-6
6-8 | 4/23/2019 | 180-89344-1 | 8400 | -0.38J | 6.6 | 150 | 0.37J
0.37J | 0.16J
0.12J | 18,000 | 11 | 7.2 | 45 | 20,000 | 170 | 3400 | 590
460 | 0.035 | 23 | 700 | <0.57U | <0.12U | <0.36U | 13 | 7 | | SHS-B2749 | SSHS-B2749-SUB-8-10 | 8-10 | 4/23/2019 | 180-89344-1 | 6900 | <0.38U | 6 | 59 | 0.37J | 0.12J | 3300 | 12 | 6.3 | 26 | 18,000 | 170 | 2600 | 530 | 0.018J | 18 | 670 | 0.61J | <0.12U | <0.36U | 11 | 61 | | SHS-B2750 | SSHS-B2750-SUB-10-12 | 10-12 | 4/23/2019 | 180-89344-1 | 6900 | <0.38U | 4.4 | 43 | 0.26J | 0.081J | 29,000 | 8.9 | 6.8 | 21 | 17,000 | 7.3 | 12,000 | 400 | <0.013U | 16 | 650 | 0.64J | <0.12U | <0.36U | 12 | 5 | | SHS-B2750 | SSHS-B2750-SUB-12-14 | 12-14 | 4/23/2019 | 180-89344-1 | 7400 | <0.37U | 5.3 | 46 | 0.27J | 0.086J | 26,000 | 9.9 | 6 | 19 | 17,000 | 8.8 | 5800 | 410 | <0.012U | 15 | 700 | 0.88J | <0.12U | <0.35U | 11 | 5 | | SHS-B2750 |
SSHS-B2750-SUB-2-4 | 2-4 | 4/23/2019 | 180-89344-1 | 8100 | <0.37U | 6.2 | 130 | 0.47 | 0.07J | 2200 | - 11 | 5.4 | 21 | 20,000 | 17 | 1300 | 720 | 0.028J | 14 | 590 | 0.79J | <0.11U | <0.35U | 16 | 4 | | SHS-B2750 | SSHS-B2750-SUB-4-6 | 4-6 | 4/23/2019 | 180-89344-1 | 9400 | <0.39U | 5.6 | 86 | 0.4J | 0.058J | 1600 | 12 | 6.5 | 22 | 20,000 | 14 | 2100 | 610 | 0.019J | 15 | 600 | <0.59U | <0.12U | <0.37U | 16 | 50 | | SHS-B2750 | SSHS-B2750-SUB-6-8 | 6-8 | 4/23/2019 | 180-89344-1 | 10,000 | <0.39U | 7.2 | 69 | 0.44J | 0.061J | 1300 | 13 | 9.1 | 18 | 22,000 | 15 | 3000 | 390 | <0.018U | 20 | 910 | <0.59U | <0.12U | <0.37U | 16 | 61 | | SHS-B2750 | SSHS-B2750-SUB-8-10 | 8-10 | 4/23/2019 | 180-89344-1 | 8500 | <0.38U | 5.3 | 57 | 0.32J | 0.084J | 1000 | 10 | 6.7 | 25 | 19,000 | 16 | 2400 | 620 | <0.014U | 17 | 590 | <0.58U | <0.12U | <0.36U | 12 | 74 | | SHS-B2752 | SSHS-B2752-SUB-4-6 | 4.6 | 4/24/2019 | 180.89408.1 | 7200 | <0.41H | 7.6 | 82 | 0.37J | 0.11J | 8900 | 11 | 6.1 | 48 | 19 000 | 50 | 2400 | 400 | 0.048 | 25 | 570I | 0.731 | <0.13U | c0.38IT | 12 | 79 | # Table 5 Summary of IRM 4 Metals in Subsurface (2-16 ft bgs) IRM 4 Former Sperry Remington Site - North Portion Elmira, NY | | | | | | | | | | | | | | | | et | ols | | | | | | | | | | | |-----------------------------------|---|------------------------|------------------------|----------------------------|----------------|------------------|-------------|------------|-----------------|-----------------|------------------|------------|--------------|------------|------------------|-----------|---------------|------------|--------------------|----------|-------------|------------------|------------------|------------------|----------|---------------| | | | | | | | | | Т | T | T | T | T - | | | et | | T | | | | | T | T | | | $\overline{}$ | | | | | | | Aluminum | Antimon | Arsenic | Barium | Ber Hum | Ca mium | Calcium | Chromium (| Cobalt | Copper | ron | Lea | agnesium | апдате se | erair | Nie el | Potassium | Selenium | Sil er | Thallium | ana hun | Ĕ | | DOL | | | | | mg/kg | EQL | 1 / 1 1000 | | | | 18 | 0.31 | 0.9
100 | 2000 | 0.36 | 0.042 | 450 | 0.45 | 4.5 | 2.2 | 9 | 1000 | 450 | 1.3 | 0.0081 | 3.6 | 450 | 0.46 | 0.095 | 0.22 | 4.5 | 1.8 | | Protection of Ground | reening (Lead 1000 ppm) | | | | | | 16 | 820 | 47 | 7.5 | | 100 | | 1720 | | 450 | | 2000 | 0.73 | 130 | | 20 | 8.3 | | _ | 2480 | | | I | Sample Depth | Sample Date | Lab Report | Location | Sample Name | Range (ft bgs) | control and an area | Number | SSHS-B2753 | SSHS-B2753-SUB-10-12 | 10-12 | 4/23/2019 | 180-89344-1 | 8700 | 0.38J | 6.3 | 110 | 0.36J | 0.09J | 8500 | 12 | 7 | 24 | 21,000 | 53 | 3900 | 510 | <0.016U | 18 | 690 | <0.57U | <0.12U | <0.35U | 13 | 54 | | SSHS-B2753 | SSHS-B2753-SUB-12-14 | 12-14 | 4/23/2019 | 180-89344-1 | 6600 | <0.38U | 4.6 | 46 | 0.27J | 0.098J | 20,000 | 8.7 | 5.7 | 21 | 16,000 | 11 | 5000 | 440 | <0.015U | 15 | 680 | -:0.58U | <0.12U | <0.36U | 10 | 52 | | SSHS-B2753 | SSHS-B2753-SUB-6-8 | 6-8 | 4/23/2019 | 180-89344-1 | 8000 | <0.37U | 6 | 68 | 0.33J | 0.11J | 12,000 | 9.9 | 7 | 23 | 19,000 | 14 | 5000 | 640 | <0.014U | 18 | 680 | <0.57U | <0.12U | <0.35U | 12 | 63 | | SSHS-B2753
SSHS-B2767 | SSHS-B2753-SUB-8-10
SSHS-B2767-SUB-10-12 | 8-10
10-12 | 4/23/2019
4/23/2019 | 180-89344-1
180-89344-1 | 12,000
7700 | <0.47UJ | 7.4 | 130 | 0.46J
0.33J | 0.082J
0.11J | 3900J
18.000 | 16 | 9.5 | 37 | 30,000
19,000 | 31J
10 | 3900J
3800 | 540
470 | <0.018UJ | 24
18 | 830
760 | <0.71U | <0.15UJ | <0.44U
<0.35U | 17 | 69
70 | | SSHS-B2767 | SSHS-B2767-SUB-12-14 | 12-14 | 4/23/2019 | 180-89344-1 | 7000 | <0.38U | 5.3 | 65 | 0.33J | 0.13J | 56,000 | 10 | 6.2 | 25 | 18,000 | 14 | 10.000 | 490 | <0.017U | 34 | 700 | 1.2 | <0.12U | <0.35U | 11 | 64 | | SSHS-B2767 | SSHS-B2767-SUB-2-4 | 2-4 | 4/23/2019 | 180-89344-1 | 8600 | <0.37UJ | 5.8 | 85 | 0.36J | 0.12J | 27,000J | 15 | 7.1 | 27 | 19,000 | 30 | 6300J | 480 | 0.02J | 23 | 720 | 0.91J | <0.11U | <0.35U | 14 | 73J- | | SSHS-B2767 | SSHS-B2767-SUB-4-6 | 4-6 | 4/23/2019 | 180-89344-1 | 8300 | 5.6 | 8.2 | 320 | 0.35J | 0.41J | 39,000 | 17 | 7.8 | 35 | 24,000 | 230 | 4700 | 440 | 0.069 | 26 | 850 | 0.59J | <0.12U | <0.35U | 13 | 160 | | SSHS-B2767 | SSHS-B2767-SUB-6-8 | 6-8 | 4/23/2019 | 180-89344-1 | 8700 | <0.37U | 5.6 | 190 | 0.33J | 0.14J | 16,000 | 13 | 7.4 | 24 | 21,000 | 31 | 4400 | 920 | 0.038 | 20 | 820 | 0.65J | <0.12U | <0.35U | 13 | 76 | | SSHS-B2767 | SSHS-B2767-SUB-8-10 | 8-10 | 4/23/2019 | 180-89344-1 | 7800 | <0.39U | 5.7 | 100 | 0.3J | 0.11J | 11,000 | 11 | 6.2 | 24 | 18,000 | 21 | 4200 | 450 | 0.018J | 17 | 760 | <0.59U | <0.12U | <0.37U | 14 | 69 | | SSHS-B2960 | SSHS-B2960-SUB-10-12 | 10-12 | 11/7/2019 | 180-98520-1 | 7900 | 1.1 | 12 | 100 | 0.37J | 0.16J | 30,000 | 12J | 7 | 43 | 24,000 | 50 | 5700 | 490J | <0.024U | 16 | 740 | <0.51U | <0.1U | <0.32U | 19 | 94 | | SSHS-B2977 | SSHS-B2977-SUB-10-12 | 10-12 | 11/7/2019 | 180-98520-1 | 9800 | 0.77J | 7.6 | 130 | 0.44 | 0.075J | 9700 | 15J | 8.1 | 100 | 23,000 | 76 | 4900 | 550J | 0.024J | 39 | 840 | <0.51U | <0.1U | <0.32U | 17 | 86 | | SSHS-B2977 | SSHS-B2977-SUB-12-14 | 12-14 | 11/7/2019 | 180-98520-1 | 6900 | 0.47J | 6.7 | 75 | 0.29J | 0.099J | 54,000 | 10J | 6.2 | 56 | 15,000 | 31 | 6600 | 540J | <0.025U | 25 | 730 | <0.51U | <0.1U | <0.32U | 12 | 56 | | SSHS-B8 | B23484
SSHSJRM3JR001JC | 4-5 | 5/11/2000 | 100 02002 4 | 8300 | | 7.4 | 426
150 | <0.53U
0.39I | <0.53U
0.12I | 10.000 | 12.9 | 6.4 | 243 | 10.000 | 286 | - 0700 | - 100 | <0.05U | 202 | 580 | <0.53U | <1.1U | 0.0007 | - 10 | 145 | | SSHS-IRM3-B001
SSHS-IRM3-B002 | SSHS-IRM3-B001-C
SSHS-IRM3-B002-C | 6.3-6.3
5.7-5.7 | 8/5/2019
7/31/2019 | 180-93683-2
180-93493-1 | 11.000 | 0.66J | 7.9 | 110 | 0.391 | 0.12J
0.18J | 10,000 | 11 | 9.2 | 32
18 | 19,000 | 50
16 | 2700
3000 | 430
570 | <0.036U | 20 | 1300 | <0.53U
<0.65U | <0.11U
<0.13U | <0.33U
<0.41U | 13
16 | 75
61 | | SSHS-IRM3-B002 | SSHS-IRM3-B002-C | 5.7-5.7 | 8/5/2019 | 180-93683-2 | 8700 | <1.9UJ | 7.7 | 200 | 0.36J | 0.13J | 5100 | 13 | 6.5 | 36 | 21,000 | 2000J | 2600 | 340 | 0.049 | 22 | 620 | <0.57UJ | <0.12U | <0.35U | 14 | 83 | | SSHS-IRM3-B004 | SSHS-IRM3-B004-C | 6.1-6.1 | 8/5/2019 | 180-93683-2 | 11.000 | 0.36J | 7.1 | 75 | 0.41 | 0.078J | 1500 | 12 | 7.2 | 23 | 21,000 | 15 | 2800 | 370 | 0.015J | 17 | 620 | <0.53U | <0.11U | <0.33U | 16 | 58 | | SSHS-IRM3-B007 | SSHS.IRM3.R007.C | 6.9-6.9 | 8/2/2019 | 180-93640-1 | 8500 | 0.6J | 7.9 | 68 | 0.37J | 0.078J | 3400 | 10 | 7.3 | 28 | 20,000 | 22 | 2700 | 490 | <0.032U | 19 | 700 | <0.55U | <0.11U | <0.34U | 13 | 72 | | SSHS-IRM3-B010 | SSHS-IRM3-B010 | 10.1-10.1 | 7/19/2019 | 180-92988-1 | 6500 | <0.39U | 7.5 | 39 | 0.28J | 0.072J | 830 | 8.3 | 6.2 | 20 | 16,000 | 7.3 | 2000 | 400 | <0.014U | 15 | 750 | <0.6U | <0.12U | <0.37U | 10 | 52 | | SSHS-IRM3-B013 | SSHS-IRM3-B013-C | 12-12 | 8/5/2019 | 180-93683-2 | 6400 | <0.36U | 6 | 49 | 0.28J | 0.1J | 13,000 | 8.6 | 5.7 | 22 | 16,000 | 25 | 5300 | 410 | <0.014U | 15 | 660 | <0.55U | <0.11U | <0.34U | 11 | 58 | | SSHS-IRM3-B014 | SSHS-IRM3-B014-C | 14-14 | 8/5/2019 | 180-93683-2 | 6200 | 0.39J | 4.7 | 48 | 0.25J | 1.3 | 1400 | 7.9 | 5.9 | 21 | 15,000 | 12 | 2200 | 370 | <0.015U | 14 | 670 | <0.49U | <0.1U | <0.31U | 10 | 610 | | SSHS-IRM3-B015 | SSHS-IRM3-B015-C | 14.6-14.6 | 7/26/2019 | 180-93321-1 | 6300 | 0.48J | 7.5 | 190 | 0.28J | 0.11J | 3200 | 7.9 | 5.8 | 23 | 17,000 | 14 | 2600 | 640 | <0.016U | 15 | 710 | <0.59U | <0.12U | <0.36U | 12 | 68 | | SSHS-IRM3-B016 | SSHS-IRM3-B016-C | 14.7-14.7 | 7/26/2019 | 180-93321-1 | 6200 | 0.56J | 10 | 85 | 0.31J | 0.37J | 5600 | 8.7 | 8.3 | 26 | 20,000 | 12 | 2700 | 1900 | <0.015U | 22 | 820 | <0.55U | <0.11U | <0.34U | 13 | 160 | | SSHS-IRM3-B020 | SSHS-IRM3-B020-C | 13.3-13.3 | 8/5/2019 | 180-93683-2 | 7300 | 0.39J | 7.1 | 54 | 0.33J | 0.11J | 14,000 | 9.5 | 6.5 | 23 | 18,000 | 10 | 4100 | 440 | <0.031U | 17 | 940 | <0.55U | <0.11U | <0.34U | 13 | 66 | | SSHS-IRM3-B021
SSHS-IRM3-B024 | SSHS-IRM3-B021-C
SSHS-IRM3-B024-C | 13.7-13.7
15.8-15.8 | 8/5/2019
7/30/2019 | 180-93683-1 | 5800 | <0.36U
<0.42U | 6.2
7.3 | 58 | 0.29J
0.28J | 0.11J
0.1J | 5400
5500 | 7.7 | 6.2 | 22 | 17,000 | 9.3 | 4300
3700 | 680 | <0.014U | 15
14 | 780 | <0.55U
<0.64U | <0.11U
<0.13U | <0.34U
<0.4U | 11 | 63 | | SSHS-IRM3-B024
SSHS-IRM3-B025 | SSHS-IRM3-B024-C
SSHS-IRM3-B025-C | 15.8-15.8 | 7/30/2019 | 180-93419-1
180-93352-1 | 5800
6100 | <0.42U | 7.3
4.6J | 57 | 0.28J
0.24J | 0.1J
0.071J | 7700J | 7.7 | 5.8J
5.3J | 22
30J- | 15,000 | 10
6.6 | 3700
4800J | 520
380 | <0.018U | | 760
670J | <0.64U | <0.13U | <0.4U | 9.7 | 61 | | SSHS-IRM3-B025
SSHS-IRM3-B026 | SSHS-IRM3-B025-C
SSHS-IRM3-B026-C | 16.1-16.1 | 7/26/2019 | 180-9332-1 | 8200 | <0.38U | 5.6 | 69 | 0.24J
0.29J | 0.071J | 22,000 | 11 | 7.4 | 26 | 19,000 | 12 | 9700 | 590 | <0.017U | 13 | 1400 | <0.62U | <0.12U | <0.36U
<0.39U | 9.7 | 59J-
78 | | SSHS-IRM3-B027 | SSHS-IRM3-B027-C | 15.7-15.7 | 7/26/2019 | 180-93321-1 | 6700 | <0.4U | 5.7 | 81 | 0.3J | 0.11J | 36,000 | 9.3 | 5.73 | 26 | 15,000 | 17 | 6600 | 310 | c0.017U | 15 | 1100 | 0.84J | <0.12U | <0.39U | 12 | 72 | | SSHS-IRM3-B028 | SSHS-IRM3-B028-07-09-19 | 27,27 | 7/9/2019 | 180-92392-1 | 8200 | <0.36U | 5.8 | 65 | 0.36J | 0.12J | 14,000 | 11 | 7.7 | 28 | 18,000 | 32 | 4600 | 510 | c0.014U | 21 | 600 | <0.54U | <0.11U | <0.34U | 12 | 84 | | SSHS-IRM3-B101 | SSHS-IRM3-B101-C | 2.2-2.2 | 7/29/2019 | 180-93352-1 | 9000 | 0.8J | 7.3 | 100 | 0.4J | 0.16J | 12,000 | 15 | 6.9 | 63 | 20,000 | 83 | 2800 | 470 | 0.032J | 34 | 910 | 0.73J | <0.12U | <0.37U | 15 | 120J | | SSHS-IRM3-B102 | SSHS-IRM3-B102-C | 15.8-15.8 | 8/1/2019 | 180-93547-1 | 7800 | <0.34U | 6.4 | 100 | 0.35J
 0.16J | 140,000 | 11 | 8.5 | 20 | 15,000 | 7.5 | 6200 | 390 | <0.017U | 22 | 1200 | 1.8 | <0.1U | <0.32U | 12 | 43B | | SSHS-IRM3-B103 | SSHS-IRM3-B103-C | 15.9-15.9 | 8/1/2019 | 180-93547-1 | 6900 | <0.4U | 6.3 | 60 | 0.3J | 0.13J | 27,000 | 9 | 6.4 | 24 | 16,000 | 14 | 11,000 | 430 | <0.015U | 17 | 880 | 0.62J | <0.12U | <0.38U | 11 | 66B | | SSHS-IRM3-B108 | SSHS-IRM3-B108-C | 12-12 | 8/2/2019 | 180-93640-1 | 5800 | <0.4U | 7.7 | 40 | 0.27J | 0.14J | 17,000 | 8.5 | 6.1 | 22 | 17,000 | 8.3 | 4800 | 260 | <0.015U | 16 | 790 | 0.9J | <0.12U | <0.38U | 11 | 63 | | SSHS-IRM3-B109 | SSHS-IRM3-B109-C | 12.1-12.1 | 8/2/2019 | 180-93640-1 | 8100 | 0.54J | 9.7 | 95 | 0.36J | 0.37J | 6100 | - 11 | 7.8 | 35 | 21,000 | 28 | 3700 | 580 | <0.036U | 21 | 660 | <0.47U | <0.096U | <0.29U | 13 | 120 | | SSHS-IRM3-B110
SSHS-IRM3-R111 | SSHS-IRM3-B110-C
SSHS-IRM3-B111-C | 9.9-9.9 | 8/2/2019
8/2/2019 | 180-93640-1 | 7600 | <0.35U | 8 | 1000 | 0.35J | 0.12J
0.13I | 1600
5400 | 11 | 6.8
7.3 | 24 | 18,000 | 73 | 2700 | 490 | <0.015U | 18 | 760
630 | <0.52U | <0.11U | <0.33U | 13 | 130 | | SSHS-IRM3-B111
SSHS-IRM3-MH1A | SSHS-IRM3-B111-C
MH1 A | 6.9-6.9
16-16 | 8/2/2019
7/30/2019 | 180-93640-1
180-93419-1 | 8000
4600 | -0.42J | 7.1 | 170 | 0.35J
0.19J | 0.13J | 140,000 | 7.3 | 7.3
4.9J | 38 | 19,000
12,000 | 7.2 | 3800 | 390
310 | <0.034U
<0.012U | 12 | 630
450I | 0.53 | <0.099U | <0.3U | 7.3 | 77
50 | | SSHS-IRM3-MH1A | MHI A | 16-16 | 7/30/2019 | 180-93419-1 | 6600 | 0.350 | 5.3 | 42 | 0.193 | 0.133 | 23,000 | 9.2 | 6 | 24 | 16,000 | 11 | 9400 | 420 | <0.012U | 16 | 760 | ±0.5U | <0.11U | <0.33U | 1.3 | 58 | | SSHS-IRM3-MH1C | MH1 C | 16-16 | 7/30/2019 | 180-93419-1 | 5700 | <0.38U | 5.1 | 27 | 0.26J | 0.11 | 13,000 | 7.8 | 5.5J | 20 | 14,000 | 8.7 | 3500 | 310 | <0.015U | 15 | 640 | <0.58U | <0.12U | <0.31U | 9.4 | 50 | | | A SSHS-IRM3-MH1DA-C | 15.8-15.8 | 8/2/2019 | 180-93640-2 | 5300 | <0.38U | 4.4 | 29 | 0.22J | 0.11J | 28,000 | 7.1 | 4.8J | 17 | 13,000 | 7 | 5100 | 330 | <0.015U | 13 | 570 | 0.71J | <0.12U | <0.36U | 8.4 | 62 | | SSHS-IRM3-PIPE13 | SSHS-IRM3-PIPE13-C | 4.4-4.4 | 8/2/2019 | 180-93641-1 | 7800 | 0.75J,F1 | 5.1 | 180F1 | 0.37J | 0.072J | 2100F1 | 9.8 | 5.2J | 26F2,F1 | 18,000 | 58F2,F1 | 1600 | 520 | 0.019J | 16 | 570 | <0.57U | <0.12U | <0.36U | 15 | 52F1 | | SSHS-IRM3-PIPE21 | SSHS-IRM3-PIPE21-C | 6.1-6.1 | 8/2/2019 | 180-93641-1 | 8800 | 0.94J | 9.4 | 800 | 0.39J | 0.47J | 8100 | 17 | 7 | 130 | 25,000 | 140 | 2800 | 580 | 0.045 | 33 | 630 | <0.61U | <0.13U | <0.38U | 15 | 210 | | SSHS-IRM3-S043 | SSHS-IRM3-S043-C | 4.1-4.1 | 7/12/2019 | 180-92615-1 | 5000 | 1.3 | 14 | 110 | 0.43J | 0.094J | 3700 | 9.2 | 4.9J | 36 | 24,000 | 100 | 1200 | 270 | 0.052 | 16 | 610 | 1.3 | <0.12U | <0.36U | 18 | 44 | | SSHS-IRM3-S045 | SSHS-IRM3-S045-C | 3.4-3.4 | 7/22/2019 | 180-93060-1 | 8200 | 0.61J | 7.9 | 190 | 0.41J | 0.27J | 23,000J | - 11 | 7.8 | 38 | 19,000 | 52J- | 4700J- | 570 | 0.036J | 24 | 650 | 0.61J | <0.12U | <0.36U | 13 | 100J- | | SSHS-IRM3-S046 | SSHS-IRM3-S046-D | 2.4-2.4 | 7/15/2019 | 180-92661-1 | 9700 | 0.62J | 8.1 | 120 | 0.43 | 0.088J | 3500 | 13 | 8.6 | 27 | 20,000 | 37 | 2600 | 700 | 0.017J | 21 | 870 | <0.51U | <0.11U | <0.32U | 15 | 65 | | SSHS-IRM3-S047 | SSHS-IRM3-S047-D
SSHS-IRM3-S049-D | 2.6-2.6 | 7/15/2019 | 180-92661-1 | 8800
8700 | 0.68J,F1 | 7 | 83 | 0.38J | 0.11J | 16,000 | 12 | 7.6 | 29 | 20,000 | 30F2,F1 | 3800F1 | 500 | 0.017J,F2 | 21 | 780 | <0.57U | <0.12U | <0.36U | 15 | 72F1 | | SSHS-IRM3-S049
SSHS-IRM3-S049F | SSHS-IRM3-S049-D
SSHS-IRM3-S049F-D | 2.7-2.7 | 7/12/2019
8/8/2019 | 180-92616-1
180-93896-2 | 6600 | 0.42J
2.3J | 7.4 | 150
460 | 0.38J
0.31J | 0.18J
0.35J | 10,000
78,000 | 11 | 5.9 | 29
43 | 20,000 | 2200 | 3300
4100 | 500
360 | 0.049
0.025J | 22
34 | 750
770 | <0.56U | <0.12U | <0.35U
<0.31U | 15 | 110
130 | | SSHS-IRM3-S049F
SSHS-IRM3-S050 | SSHS-IRM3-S050-D | 2.9-2.9 | 8/8/2019 | 180-93684-2 | 8200 | 3.5 | 6.7 | 120 | 0.31J | 0.35J
0.17J | 28,000 | 16 | 7.3 | 140 | 23,000 | 300 | 5700 | 490 | 0.0253 | 60 | 780 | <0.58U | <0.1U | <0.31U | 14 | 130 | | SSHS-IRM3-S051 | SSHS-IRM3-S051-D | 2.5-2.5 | 8/5/2019 | 180-93684-3 | 7500B | <0.35U | 4.7 | 52 | 0.38J | 0.11J | 33,000 | 11B | 6.2 | 22 | 18,000B | 7.7 | 7100 | 350B | <0.014U | 17 | 720 | 0.63J | <0.11U | <0.33U | 11 | 64 | | SSHS-IRM3-S053 | SSHS-IRM3-S053-D | 3.2-3.2 | 7/11/2019 | 180-92542-1 | 8000 | <0.39U | 6.7 | 120 | 0.34J | 0.11J | 38,000 | 16 | 6.7 | 41 | 18,000 | 96 | 7700 | 450 | 0.027J | 52 | 820 | <0.59U | <0.11U | <0.37U | 13 | 84 | | SSHS-IRM3-S054 | SSHS-IRM3-S054-D | 3.7-3.7 | 7/11/2019 | 180-92542-1 | 8400 | 0.38J | 5.3 | 68 | 0.31J | 0.15J | 58,000 | 11 | 7.6 | 41 | 19,000 | 7.8 | 10,000 | 420 | 0.018J | 21 | 880 | 0.85J | <0.11U | <0.34U | 13 | 77 | | SSHS-IRM3-S071 | SSHS-IRM3-S071-C | 4.6-4.6 | 7/16/2019 | 180-92715-1 | 8300 | 0.36J | 7 | 39 | 0.3J | 0.097J | 1500 | 14 | 6.2 | 19 | 16,000 | 8.9 | 2200 | 270 | 0.017J | 15 | 370J | <0.53U | <0.11U | <0.33U | 11 | 80 | | SSHS-IRM3-S072 | SSHS-IRM3-S072-C | 4.1-4.1 | 7/16/2019 | 180-92715-1 | 7000 | 0.36J | 10 | 61 | 0.28J | 0.076J | 1800 | 7.7 | 5.4 | 37 | 16,000 | 9.5 | 2000 | 340 | 0.012J | 15 | 480J | <0.54U | <0.11U | <0.33U | 10 | 43 | | SSHS-IRM3-S073 | SSHS-IRM3-S073-D | 4.3-4.3 | 8/5/2019 | 180-93684-2 | 9200 | 0.45J | 8.4 | 160 | 0.38J | 0.27J | 7800 | 12 | 6.9 | 35 | 20,000 | 52 | 3000 | 550 | 0.034 | 25 | 720 | <0.53U | <0.11U | <0.33U | 15 | 180 | | SSHS-IRM3-S073A | SSHS-IRM3-S073A-C | 3.9-3.9 | 8/5/2019 | 180-93683-2 | 8200 | 0.95J | 10 | 740 | 0.37J | 0.47J | 21,000 | 18 | 7.5 | 60 | 24,000 | 460 | 2600 | 570 | 0.14 | 41 | 690 | 0.69J | <0.11U | <0.34U | 14 | 240 | | SSHS-IRM3-S073B | SSHS-IRM3-S073B-D | 5.4-5.4 | 7/16/2019 | 180-92717-1 | 11,000B | <0.4U | 5.4 | 94 | 0.43J | <0.042U | 460J | 11 | - 6 | 11 | 18,000 | 8 | 2100 | 290 | <0.016U | 14 | 510J | <0.6U | <0.12U | <0.37U | 16 | 51 | | | SSHS-IRM3-S073BF-D | 4-4 | 8/8/2019 | 180-93896-2 | 8800 | <0.37U | 6.9 | 130 | 0.39J | 0.13J | 17,000 | 12 | 6.6 | 28 | 18,000 | 56 | 3700 | 470 | 0.026J | 20 | 770 | 0.83J | <0.12U | <0.35U | 15 | 79 | | SSHS-IRM3-S074 | SSHS-IRM3-S074-D | 5.3-5.3 | 8/5/2019 | 180-93684-2 | 9600 | <0.37U | 7.1 | 210 | 0.4J | 0.23J | 12,000 | 13 | 7.1 | 30 | 21,000 | 59 | 4700 | 450 | 0.016J | 22 | 820 | <0.56U | <0.11U | <0.35U | 15 | 150 | # Table 5 Summary of IRM 4 Metals in Subsurface (2-16 ft bgs) IRM 4 Former Sperry Remington Site - North Portion Elmira, NY | | | | | | | | | | | | | | | | eto | | | | | | | | | | | | |-----------------------------------|---------------------------------------|------------------------|------------------------|----------------------------|-----------------|-----------------|---------------|----------------|---------------------|-----------------------|---------------------|----------------|-----------------|---------------|---------------------|-------------|-------------------|---------------|--------------------|----------|-----------------|------------------|---------------------|---------------------|---------------|---------------| | | | | | | | | | T | | | T | _ | | Π | eta | ils | | | | | | | | | | | | | | | | | huminum | ntimon | rsenic | arium | er llium | a mium | akium | hromium (| obalt | obber | uo | g | agnesium | auganese | ercur | च
ध. | otassium | denium | i e | hallium | ana ium | in | | | | | | | mg/kg | EQL | | | | | 18 | 0.31 | 0.9 | 18 | 0.36 | 0.042 | 450 | 0.45 | 4.5 | 2.2 | 9 | 0.9 | 450 | 1.3 | 0.0081 | 3.6 | 450 | 0.46 | 0.095 | 0.22 | 4.5 | 1.8 | | Metals 20 TCLP Screen | eening (Lead 1000 ppm) | | | | | | 100 | 2000
820 | 47 | 20 | | 100 | | | | 1000
450 | | 2000 | 0.73 | 130 | | 20 | 100 | | | | | Protection of Ground- | Water SCO | Sample Depth | | Lab Report | | | 16 | 820 | 4/ | 7.5 | | 19 | | 1720 | | 450 | | 2000 | 0.73 | 130 | | 4 | 8.3 | | _ | 2480 | | Location | Sample Name | Range (ft bgs) | Sample Date | Number | SSHS-IRM3-S075 | SSHS-IRM3-S075-D | 5.5-5.5 | 8/5/2019 | 180-93684-2 | 7500 | 5.5J | 43 | 6500 | 0.5 | 12 | 10,000 | 82 | 15 | 100 | 170,000 | 880 | 2200 | 890 | 0.19 | 210 | 760 | 1J | 0.19J | <0.38U | 21J | 4800 | | SSHS-IRM3-S076
SSHS-IRM3-S077 | SSHS-IRM3-S076-D
SSHS-IRM3-S077-D | 5.1-5.1 | 8/5/2019
8/5/2019 | 180-93684-2
180-93684-3 | 9900
9400B | 0.43J
0.81J | 6.7 | 64
110F1 | 0.4J
0.45 | 0.084J
0.17J | 22,000
31.000 | 13
16B | 8.3 | 31
36F1.F2 | 22,000
25,000B | 23
46F1 | 5200
5900F1 | 360
470B | <0.014U
0.036 | 23
43 | 960
870 | <0.53U | <0.11U
<0.11U | <0.33U
<0.34U | 14 | 63
77F1,F2 | | SSHS-IRM3-S078 | SSHS-IRM3-S078-D | 4,4-4,4 | 8/5/2019 | 180-93684-3 | 9500B | 2.1 | 9.9 | 120 | 0.45 | 0.21J | 6900 | 17B | 8.3 | 310 | 26,000B | 180 | 3100 | 470B | 0.038 | 130 | 790 | <0.53U | <0.11U | <0.33U | 16 | 150 | | SSHS-IRM3-S079 | SSHS-IRM3-S079-D | 4.8-4.8 | 8/5/2019 | 180-93684-3 | 10,000B | 2.8F1 | 15 | 230F1 | 0.51 | 0.26J | 12,000F1,F2 | 33B,F1,F2 | 9.2 | 120F1,F2 | 36,000B | 160F1,F2 | 2600 | 620B,F2 | 0.15F2,F1 | 23 | 840 | 1.7 | <0.12U | <0.37U | 22F1,F2 | 170F2 | | SSHS-IRM3-S094 | SSHS-IRM3-S094-C | 6.4-6.4 | 8/1/2019 | 180-93547-1 | 7200 | 0.45J | 6.5 | 63 | 0.29J | 0.079J | 820 | 8.5 | 6.7 | 22 | 17,000 | 13 | 2000 | 520 | <0.013U | 16 | 480J | <0.57U | <0.12U | <0.36U | 11 | 50B | | SSHS-IRM3-S095
SSHS-IRM3-S097 | SSHS-IRM3-S095-C
SSHS-IRM3-S097-C | 8.1-8.1
7.6-7.6 | 8/2/2019
8/2/2019 | 180-93640-2
180-93640-1 | 8100
7400 | <0.35U | 9.4 | 100
120I | 0.35J | 0.11J
0.14I | 2900
1700I | 11 | 7.2
6.3 | 27
37J | 19,000 | 22
23J | 2700 | 520 | 0.016J | 19 | 650
600I | <0.53U | <0.11U | <0.33U | 13
11J | 67 | | SSHS-IRM3-S097
SSHS-IRM3-S098 | SSHS-IRM3-S098-C | 9.9 | 8/2/2019 | 180-93640-1 | 8800 | 1.2 | 9.7 | 310 | 0.42J | 0.14J | 11.000 | 13 | 7.5 | 56 | 27,000 | 120 | 2400 | 570 |
0.033U | 32 | 710 | 0.69J | <0.12U | <0.36U
<0.37U | 17 | 79 | | SSHS-IRM3-S099 | SSHS-IRM3-S099-D | 5.9-5.9 | 8/5/2019 | 180-93684-2 | 9300 | 0.54J | 6 | 63 | 0.36J | 0.059J | 20,000 | 12 | 8 | 30 | 21,000 | 23 | 5100 | 360 | 0.015J | 21 | 820 | <0.51U | <0.1U | <0.32U | 13 | 59 | | SSHS-IRM3-S100 | SSHS-IRM3-S100-D | 7.9-7.9 | 8/5/2019 | 180-93684-2 | 10,000 | <0.36U | 6.9 | 51 | 0.34J | 0.048J | 1000 | 11 | 6.6 | 20 | 21,000 | 7.8 | 2800 | 230 | <0.014U | 17 | 730 | <0.55U | <0.11U | <0.34U | 14 | 58 | | SSHS-IRM3-S101
SSHS-IRM3-S102 | SSHS-IRM3-S101-D
SSHS-IRM3-S102-D | 5.4-5.4
6.4-6.4 | 8/5/2019
8/5/2019 | 180-93684-3
180-93684-3 | 8800B
9900B | 5.3
1.5 | 9.4 | 240
120 | 0.47 | 0.35J
0.19J | 7300
11.000 | 21B
17B | 9.6 | 260
80 | 36,000B
28,000B | 270
87 | 2500
3500 | 670B
430B | 0.076
0.027J | 110 | 830
800 | 1.2
0.62J | <0.12U
<0.11U | <0.36U
<0.35U | 19 | 210
120 | | SSHS-IRM3-S102
SSHS-IRM3-S103 | SSHS-IRM3-S102-D
SSHS-IRM3-S103-D | 6.4-6.4 | 8/5/2019
8/5/2019 | 180-93684-3 | 9900B
8300F2 | 0.89J.F2.F1 | 9.4
7F2.F1 | 120
44F2.F1 | 0.45
0.38J.F2.F1 | 0.19J
0.083J.F2.F1 | 11,000
2500F2.F1 | 17B
12F2.F1 | 9.5
7.8F2.F1 | 28F2.F1 | 28,000B
21,000F2 | 18F2.F1 | 3500
2300F2.F1 | 430B
370F2 | <0.027J | 130F2.F1 | 800
840F2.F1 | <0.55U.F1 | <0.11U
<0.11U.F1 | <0.35U
<0.34U.F1 | 17
14F2.F1 | 62F2.F1 | | SSHS-IRM3-S104 | SSHS-IRM3-S104-D | 5.7-5.7 | 8/5/2019 | 180-93684-1 | 10,000 | 1.7 | 10 | 240 | 0.5 | 0.32J | 7900 | 19 | 9.1 | 97 | 34,000 | 110 | 2600 | 480 | 0.07 | 56 | 1000 | <0.58U | <0.12U | <0.36U | 18 | 160 | | SSHS-IRM3-S111 | SSHS-IRM3-S111-C | 9.8-9.8 | 7/24/2019 | 180-93173-1 | 6400 | <0.35U | 7.3 | 36 | 0.29J | 0.084J | 1000 | 8.3 | 6.4 | 20 | 16,000 | 7.8 | 2100 | 350 | <0.014U | 16 | 620 | <0.53U | <0.11U | <0.33U | 10 | 53 | | SSHS-IRM3-S118 | SSHS-IRM3-S118-C | 8-8 | 8/1/2019 | 180-93547-1 | 8700 | 0.57J | 8.6 | 75 | 0.39J | 0.096J | 1600 | 11 | 8.3 | 23 | 21,000 | 11 | 2500 | 610 | 0.018J | 20 | 690 | <0.6U | <0.12U | <0.37U | 16 | 65B | | SSHS-IRM3-S120
SSHS-IRM3-S121 | SSHS-IRM3-S120-C
SSHS-IRM3-S121-C | 10.5-10.5 | 8/5/2019
8/5/2019 | 180-93683-2
180-93683-2 | 7800
7600 | 0.55J | 7.8
6.3 | 97
63 | 0.33J
0.33J | 0.11J
0.1J | 3000
25,000 | 9.2 | 6.4 | 29 | 19,000 | 24
7.9 | 2400
3900 | 580
410 | <0.038U
<0.012U | 19 | 650
770 | <0.56U
<0.57U | <0.11U
<0.12U | <0.35U
<0.35U | 13
12 | 67 | | SSHS-IRM3-S122 | SSHS-IRM3-S122-D | 10-10 | 8/5/2019 | 180-93684-2 | 9000 | <0.36U | 7.4 | 88 | 0.4J | 0.14J | 1600 | 11 | 8.4 | 27 | 20,000 | 14 | 2700 | 900 | <0.014U | 20 | 1100 | <0.55U | <0.11U | <0.34U | 15 | 72 | | SSHS-IRM3-S123 | SSHS-IRM3-S123-D | 10.6-10.6 | 8/5/2019 | 180-93684-2 | 9000 | 0.39J | 7.1 | 84 | 0.37J | 0.094J | 2400 | 11 | 7.6 | 25 | 21,000 | 21 | 2700 | 460 | <0.015U | 19 | 850 | <0.5U | <0.1U | <0.31U | 14 | 68 | | SSHS-IRM3-S125 | SSHS-IRM3-S125-D | 9.9-9.9 | 8/5/2019 | 180-93684-2 | 9500 | 1.3 | 8.5 | 65 | 0.45 | 0.089J | 5600 | 13 | 8.4 | 34 | 22,000 | 34 | 2800 | 460 | 0.018J | 23 | 830 | <0.58U | <0.12U | <0.36U | 16 | 83 | | SSHS-IRM3-S126
SSHS-IRM3-S127 | SSHS-IRM3-S126-D
SSHS-IRM3-S127-D | 9.7-9.7 | 8/5/2019
8/5/2019 | 180-93684-2
180-93684-2 | 6200
5700 | <0.38U | 5.9
4.8 | 33
27 | 0.3J
0.26I | 0.051J
0.095J | 2700 | 8.1
8.3 | 5.7 | 18
18 | 15,000 | 7.7 | 1800
2800 | 310
350 | <0.014U
<0.015U | 14 | 550
720 | <0.57U
<0.56U | <0.12U
<0.11U | <0.35U
<0.35U | 10
11 | 45 | | SSHS.IRM3.S133 | SSHS.IRM3.S133.C | 10.8-10.8 | 8/5/2019 | 180-93683-1 | 6400 | 0.48J | 7.9 | 40 | 0.29J | 0.093J | 1000 | 8.5 | 6.1 | 19 | 16,000 | 8 | 2200 | 440 | <0.013U | 15 | 720 | <0.54U | c0.11U | <0.33U | 11 | 53 | | SSHS-IRM3-S135 | SSHS-IRM3-S135-C | 11.4-11.4 | 7/26/2019 | 180-93321-1 | 6500 | 0.46J | 6.3 | 44 | 0.28J | 0.12J | 2400 | 8.3 | 6 | 22 | 17,000 | 7.9 | 2700 | 570 | <0.015U | 16 | 710 | <0.57U | <0.12U | <0.36U | 12 | 54 | | SSHS-IRM3-S143 | SSHS-IRM3-S143-C | 11.9-11.9 | 8/5/2019 | 180-93683-2 | 4700 | <0.33U | 4 | 110J | 0.19J | 0.16J | 8400 | 6.8 | 4.7J | 20 | 12,000 | 4.7 | 5700 | 1200J | <0.014U | 12J | 500 | <0.5U | <0.1U | <0.31U | 7.5 | 47J | | SSHS-IRM3-S144
SSHS-IRM3-S145 | SSHS-IRM3-S144-C
SSHS-IRM3-S145-D | 11.9-11.9 | 8/5/2019
8/5/2019 | 180-93683-2
180-93684-2 | 5600
4200 | <0.31U | 5.2 | 33
24 | 0.22J
0.18J | 0.12J
0.094J | 30,000
54,000 | 7.6
5.9 | 5.8
3.9J | 20
15 | 13,000 | 5.7 | 6500
3800 | 480
250 | <0.015U
<0.014U | 13
10 | 630 | <0.46U
0.73J | <0.095U
<0.1U | <0.29U
<0.31U | 9.5 | 48 | | SSHS-IRM3-S145
SSHS-IRM3-S146 | SSHS-IRM3-S145-D
SSHS-IRM3-S146-D | 12.7-12.7 | 8/5/2019 | 180-93684-2 | 10,000 | 0.38J | 6.7 | 54 | 0.18J | 0.094J | 1500 | 12 | 7.1 | 33 | 21.000 | 16 | 2700 | 380 | <0.014U | 19 | 710 | <0.56U | <0.11U | <0.31U | 8.5 | 59 | | SSHS-IRM3-S147 | SSHS-IRM3-S147-D | 13.1-13.1 | 8/5/2019 | 180-93684-2 | 6200 | <0.37U | 5.8 | 56 | 0.29J | 0.11J | 7600 | 8.2 | 5.9 | 23 | 16,000 | 7.9 | 5100 | 460 | <0.015U | 15 | 740 | <0.55U | <0.11U | <0.34U | 10 | 56 | | SSHS-IRM3-S148 | SSHS-IRM3-S148-D | 11.8-11.8 | 8/5/2019 | 180-93684-1 | 6200 | <0.4U | 8.3 | 64 | 0.35J | 0.13J | 1600 | 10 | 5.9 | 23 | 19,000 | - 11 | 2100 | 600 | <0.014U | 16 | 780 | <0.6U | <0.12U | <0.37U | 14 | 71 | | SSHS-IRM3-S149
SSHS-IRM3-S154 | SSHS-IRM3-S149-D
SSHS-IRM3-S154-C | 13.2-13.2 | 8/5/2019 | 180-93684-1 | 5600 | <0.37U | 5.6 | 59 | 0.27J | 0.14J | 1800 | 7.6 | 5.8 | 28 | 14,000 | 7.4 | 1900
7500 | 830 | <0.015U | 15 | 840
840 | <0.56U | <0.11U | <0.35U | 9.6 | 55F1 | | SSHS-IRM3-S154
SSHS-IRM3-S156 | SSHS-IRM3-S154-C
SSHS-IRM3-S156-C | 12.1-12.1 | 8/5/2019
8/5/2019 | 180-93683-1 | 7000
6700 | 0.37J
0.51J | 6.4
7.1 | 100 | 0.3J
0.32I | 0.12J | 11,000
7800 | 9.1 | 6.6 | 24 | 18,000 | 21 | 7500 | 640
490 | <0.014U | 16 | 840 | <0.55U | <0.11U | <0.34U | 14 | 64 | | SSHS-IRM3-S156A | SSHS-IRM3-S156A-C | 14.1-14.1 | 8/5/2019 | 180-93683-1 | 5900 | <0.34U | 5.7 | 39 | 0.25J | 0.079J | 12,000 | 7.2 | 5.1 | 19 | 14,000 | 13 | 4700 | 340 | <0.011U | 12 | 580 | <0.51U | <0.1U | <0.32U | 9.5 | 47 | | SSHS-IRM3-S156B | SSHS-IRM3-S156B-C | 14.3-14.3 | 8/5/2019 | 180-93683-2 | 6800 | <0.37U | 7.5 | 54 | 0.34J | 0.091J | 1900 | 9.2 | 6.6 | 21 | 17,000 | 12 | 2600 | 380 | <0.029U | 18 | 930 | <0.56U | <0.11U | <0.35U | 12 | 58 | | SSHS-IRM3-S156C | SSHS-IRM3-S156C-C
SSHS-IRM3-S161-C | 15.1-15.1 | 7/26/2019
8/5/2019 | 180-93321-1 | 6700 | <0.38U | 6.8 | 59
63 | 0.34J | 0.11J
0.13I | 4100 | 9 86 | 5.3 | 21 | 18,000 | 8.4 | 3500
5300 | 520
630 | <0.016U | 17 | 810 | <0.57U | <0.12U | <0.35U | 12 | 65
58 | | SSHS-IRM3-S161
SSHS-IRM3-S162 | SSHS-IRM3-S161-C
SSHS-IRM3-S162-C | 13.3-13.3 | 8/5/2019
8/5/2019 | 180-93683-2 | 6400 | <0.36U
<0.4U | 4.5 | 63 | 0.25J
0.3J | 0.13J
0.11J | 26,000 | 8.6 | 6.1 | 25 | 15,000 | 7.6 | 5300
4200 | 430 | <0.015U | 15 | 720
860 | <0.54U | <0.11U | <0.34U
<0.38U | 11 | 58 | | SSHS-IRM3-S163 | SSHS-IRM3-S163-C | 14.6-14.6 | 8/5/2019 | 180-93683-2 | 5500 | <0.37U | 5.3 | 39 | 0.23J | 0.089J | 14,000 | 7.3 | 5J | 19 | 14,000 | 6.5 | 4700 | 340 | <0.017U | 12 | 680 | <0.57U | <0.12U | <0.35U | 9.5 | 53 | | SSHS-IRM3-S164 | SSHS-IRM3-S164-C | 13.5-13.5 | 8/5/2019 | 180-93683-2 | 7100 | 0.38J | - 11 | 66 | 0.33J | 0.11J | 4500 | 9.4 | 6.7 | 28 | 18,000 | 14 | 3600 | 510 | <0.016U | 17 | 820 | <0.56U | <0.11U | <0.35U | 12 | 71 | | SSHS-IRM3-S165 | SSHS-IRM3-S165-D | 12.5-12.5 | 8/5/2019 | 180-93684-1 | 5000 | <0.34U | 5.4 | 47 | 0.23J | 0.1J | 31,000 | 6.8 | 5 | 22 | 14,000 | 7.1 | 3900 | 280 | <0.015U | 12 | 610 | <0.51U | <0.11U | <0.32U | 9.4 | 49 | | SSHS-IRM3-S166
SSHS-IRM3-S167 | SSHS-IRM3-S166-D
SSHS-IRM3-S167-D | 14.6-14.6
14.2-14.2 | 8/5/2019
8/5/2019 | 180-93684-1
180-93684-1 | 7000
5400 | <0.38U | 7.4 | 49 | 0.33J
0.24J | 0.11J
0.077J | 4000
21.000 | 6.9 | 7.2
4.7J | 28
19 | 20,000 | 11 | 3400
2800 | 480
230 | <0.015U
<0.015U | 17 | 730
690 | <0.57U | <0.12U
<0.11U | <0.35U
<0.33U | 9.7 | 67
56 | | SSHS-IRM3-S168 | SSHS-IRM3-S168-D | 13.1-13.1 | 7/26/2019 | 180-93321-1 | 8600 | 0.61J | 9.5 | 71 | 0.4J | 0.07/J | 4600 | 12 | 7.5 | 30 | 19,000 | 26 | 2600 | 520 | 0.016J | 19 | 860 | <0.6U | <0.11U | <0.37U | 15 | 62 | | SSHS-IRM3-S171 | SSHS-IRM3-S171-D | 11.9-11.9 | 8/5/2019 | 180-93684-1 | 6700 | 0.48J | 9.3 | 64 | 0.31J | 0.081J | 3400 | 9 | 6.3 | 20 | 17,000 | 10 | 2200 | 450 | <0.014U | 15 | 800 | <0.56U | <0.11U | <0.35U | 12 | 59 | | SSHS-IRM3-S173 | SSHS-IRM3-S173-D | 13.1-13.1 | 8/5/2019 | 180-93684-3 | 6500B | <0.38U | 5.9 | 45 | 0.29J | 0.085J | 2700 | 9.1B | 5.6 | 21 | 16,000B | 11 | 2600 | 420B | <0.015U | 14 | 670 | <0.58U | <0.12U | <0.36U | 11 | 54 | | SSHS-IRM3-S177
SSHS-IRM3-S177A | SSHS-IRM3-S177-C
SSHS-IRM3-S177A-C | 14.9-14.9 | 7/29/2019
7/30/2019 | 180-93352-1
180-93419-1 | 5100
5600 | <0.35U
0.43I | 4.3 | 40 | 0.21J
0.25J | 0.066J
0.074J | 1100
910 | 6.4
7.2 | 4.4J
5.4 | 21 | 13,000 | 5.7 | 1900
1800 | 330
450 | <0.012U
<0.013U | 11 | 660
550 | <0.53U | <0.11U | <0.33U
<0.31U | 7.9 | 49
51 | | SSHS-IRM3-S17/A
SSHS-IRM3-S178 | SSHS-IRM3-S17/A-C | 15-15 | 7/30/2019 | 180-93419-1 | 6700 | <0.35U | 6.9 | 58 | 0.25J | 0.074J
0.16J | 3600 | 8.8 | 6.3 | 23 | 17,000 | 12 | 3000 | 510 | <0.013U | 16 | 770 | <0.53U | <0.1U | <0.31U | 12 | 81 | | SSHS-IRM3-S179 | SSHS-IRM3-S179-D | 15.4-15.4 | 7/29/2019 | 180-93353-1 | 5400 | <0.33U | 5.1 | 61 | 0.23J | 0.078J | 12,000 | 7 | 4.8J | 20 | 14,000 | 7 | 3000 | 260 | <0.015U | 13 | 660 | <0.51U | <0.1U | <0.32U | 9.7 | 53 | | SSHS-IRM3-S179A | SSHS-IRM3-S179A-C | 15.1-15.1 | 7/30/2019 | 180-93419-1 | 5400 | <0.39UJ | 5.8J | 34J | 0.22J | 0.11J | 36,000 | 7.1 | 5.3J | 23 | 14,000 | 5.7J | 4600 | 350 | <0.014U | 13
| 660 | <0.59UJ | <0.12U | <0.37U | 9.9 | 72 | | SSHS-IRM3-S187
SSHS-IRM3-S188 | SSHS-IRM3-S187-C
SSHS-IRM3-S188-C | 14.9-14.9 | 7/26/2019 | 180-93321-1 | 5400 | <0.37U | 4.9 | 30 | 0.19J
0.24I | 0.097J | 35,000 | 7.4 | 4.9J
4.8I | 17 | 13,000 | 5.6
7.8 | 3600
5700 | 420
370 | <0.014U | 13 | 570
770 | 0.7J | <0.11U | <0.35U | 8.7 | 52 | | SSHS-IRM3-S188
SSHS-IRM3-S201 | SSHS-IRM3-S188-C
SSHS-IRM3-S201-C | 14.2-14.2 | 7/26/2019
8/1/2019 | 180-93321-1 | 6500 | <0.38U | 5.8 | 53 | 0.24J
0.28J | 0.11J
0.11J | 22,000
5300 | 7.1
8.2 | 6.5 | 19 | 12,000 | 7.8 | 5700
3600 | 370
560 | <0.015U | 13 | 770
640 | <0.58U | <0.12U | <0.36U | 8.8 | 57
65B | | SSHS-IRM3-S202 | SSHS-IRM3-S202-C | 14.3-14.3 | 8/1/2019 | 180-93547-1 | 8500 | 0.67J | 8 | 74 | 0.28J | 0.11J | 6500 | 11 | 7.9 | 29 | 19,000 | 32 | 2800 | 480 | <0.015U | 20 | 780 | <0.59U | <0.12U | <0.36U | 14 | 110B | | SSHS.JRM3,S203d | SSHS-IRM3-S203-D | 5-5 | 8/5/2019 | 180-93684-3 | 8500 | <0.37U | 7.4 | 110 | 0.37J | 0.29J | 34,000 | 14 | 6.9 | 94 | 20,000 | 59 | 12,000 | 410 | 0.033 | 59 | 810 | 0.61J | <0.12U | <0.35U | 14 | 180 | | SSHS-RIM3-S124 | | 9,9 | 8/5/2019 | 180.93684.2 | 7800 | <0.35H | 7.9 | 46 | 0.31 | 0.0461 | 910 | 9 | 5.9 | 17 | 18 000 | 9.2 | 2300 | 310 | <0.014H | 15 | 620 | <0.52H | <0.11U | =0.33II | 11 | 60 | ### B&B Engineers and Geologists of New York P.C. # Table 5 Summary of IRM 4 Metals in Subsurface (2-16 ft bgs) IRM 4 Former Sperry Remington Site - North Portion Elmira, NY | | | | | | | | | | | | | | eta | ıls | | | | | | | | | | | |-----------------------|------------------------|--|----------|---------|---------|--------|---------|---------|---------|--------------|--------|--------|-------|-------|----------|----------|--------|--------|-----------|----------|--------|----------|---------|-------| | | | | Aluminum | Antimon | Arsenic | Barium | Ber Hum | Ca mium | Calcium | Chromium () | Cobalt | Copper | ron | Lea | agnesium | anganese | ercur | Nie el | Potassium | Selenium | Sil er | Thallium | ana ium | ine | | | | | mg/kg | EQL | | | 18 | 0.31 | 0.9 | 18 | 0.36 | 0.042 | 450 | 0.45 | 4.5 | 2.2 | 9 | 0.9 | 450 | 1.3 | 0.0081 | 3.6 | 450 | 0.46 | 0.095 | 0.22 | 4.5 | 1.8 | | Metals 20 TCLP Scri | eening (Lead 1000 ppm) | | | | 100 | 2000 | | 20 | | 100 | | | | 1000 | | | 4 | | | 20 | 100 | | | | | Protection of Ground- | water SCO | | | | 16 | 820 | 47 | 7.5 | | 19 | | 1720 | | 450 | | 2000 | 0.73 | 130 | | 4 | 8.3 | | | 2480 | Notes: EQL. Estimated Quantitation Limit mg/kg - milligram per klogram ft hgs. See below ground surface ft MSL. for above me area keel U. Non-detect I. - estimated value me area keel U. To deep the seed of # TABLE 6 Summary of S OC and OC Results for Subsurface Soils (Below 2 ft bgs) IRM 4 Former Sperry Reminigator Site - North Portion Elmin, New York | | | | | | S Cs | | | | | | | | | | | | Cs | | | | | | | | | | |-----------------------|-----------------------|--------------------------------|-------------|----------------------|-----------------------|--|----------------------------|-------------------------------|------------------|-------------------|------------------|----------------------------------|-------------------------|-----------------------------------|--|------------------|--|---|---------------------|---|--|--|---|------------------|-----------------|--| | EQL
iubsurface SCI | | | | | Months (Sum of total) | 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 8/11 2.2 tetrachloroethane | mg/kg
11 2 trickhoroethane | mg/kg
0.00065 | mg/kg
0.000.01 | mg/kg
0.00062 | 8y8m
8y8m
112 khloreethane | 8k/8m
Dwindoresthere | mg/kg
gylgme
ichloropropane | Bromodyloromethane
Mg/kg
0.00047 | mg/kg
0.00061 | Elegania de la compositación compositaci | Carbon setmenhori e
mg/kg
0.00067 | Chlore Bromomethane | Chloroethane Chloroethane Chloroethane Chloroethane | The control of co | Chloromethane
Chloromethane
Mg/kg
0.00045 | e B e e e e e e e e e e e e e e e e e e | mg/kg
0.00029 | mg/kg
0.0022 | ### ################################## | | Location | Sample Name | Sample Depth
Range (ft bgs) | Sample Date | Lab Report
Number | SHS-B2238 | SSHS-B2238-SUB-0.17-2 | 0.17-2 | 7/23/2018 | 180-80091-1 | 0.07912 | <0.0004U | <0.00043U | <0.00065U | <0.00065U | <0.00081U | <0.00062U | <0.00039U | <0.00099U | <0.00049U | <0.00047U | <0.00061U | <0.00032U | <0.00067U | <0.00038U | <0.0009U | <0.00059U | <0.00045U | <0.00051U | <0.00029U | <0.0022U | <0.00046U | | SHS-B2238 | SSHS-B2238-SUB-12-14 | 12-14 | 7/23/2018 | 180-80091-1 | - | <0.0027U | <0.0032U | <0.0026U | <0.0019U | <0.0031U | <0.0033U | <0.0016U | <0.0043U | <0.0026U | <0.0021U | <0.0025U | <0.0028U | <0.0036U | <0.0026U | <0.0028U | <0.0023U | <0.0041U | <0.0017U | <0.0017U | <0.0025U | 0.002J | | | SSHS-B2238-SUB-SS | 0-0.17 | 7/23/2018 | 180-80091-4 | 1 | | - | - | - | - | - | - | - | - | - | - | - | - | - | | - | - | | - | - | - | | SHS-B2239 | SSHS-B2239-SUB-12-14 | 12-14 | 7/23/2018 | 180-80091-3 | - | <0.0027U | <0.0032U | <0.0026U | <0.0019U | <0.003U | <0.0033U | <0.0015U | <0.0042U | <0.0026U | <0.002U | <0.0025U | <0.0028U | <0.0035U | <0.0026U | <0.0028U | <0.0022U | <0.0041U | <0.0017U | <0.0017U | <0.0025U | <0.0016U | | SHS-B2240 | SSHS-B2240-SUB-12-14 | 12-14 | 7/23/2018 | 180-80091-2 | - | <0.0026U | <0.0031U | <0.0025U | <0.0019U | <0.003U | <0.0032U | <0.0015U | <0.0042U | <0.0026U | <0.002U | <0.0025U | <0.0028U | <0.0035U | <0.0025U | <0.0027U | <0.0022U | <0.0041U |
<0.0017U | <0.0017U | 0.0025J | <0.0016U | | SHS-B2746 | SSHS-B2746-SUB-0.17-2 | 0.17-2 | 4/22/2019 | 180-89294-1 | 0.281 | <0.0028U | <0.0034U | <0.0027U | <0.0021U | <0.0032U | <0.0035U | <0.0016U | <0.0045U | <0.0028U | <0.0022U | <0.0027U | <0.003U | <0.0038U | <0.0027U | <0.0029U | <0.0024U | <0.0044UJ | <0.0018U | <0.0018U | <0.0044U | <0.0017U | | | SSHS-B2746-SUB-10-12 | 10-12 | 4/22/2019 | 180-89294-1 | 0.212 | <0.0026U | <0.0031U | <0.0025U | <0.0019U | <0.003U | <0.0032U | <0.0015U | <0.0042U | <0.0026U | <0.002U | <0.0025U | <0.0027U | <0.0035U | <0.0025U | <0.0027U | <0.0022U | <0.004U | <0.0016U | <0.0017U | <0.004U | <0.0016U | | | SSHS-B2746-SUB-12-14 | 12-14 | 4/22/2019 | 180-89294-1 | 1.059 | <0.0026U | <0.0031U | <0.0025U | <0.0019U | <0.003U | <0.0032U | <0.0015U | <0.0042U | <0.0026U | <0.002U | <0.0025U | <0.0027U | <0.0035U | <0.0025U | <0.0027U | <0.0022U | <0.004UJ | <0.0017U | <0.0017U | <0.004U | <0.0016U | | | SSHS-B2746-SUB-2-4 | 2-4 | 4/22/2019 | 180-89294-1 | 0.831 | <0.0026U | <0.0031U | <0.0025U | <0.0019U | <0.003U | <0.0032U | <0.0015U | <0.0042U | <0.0026U | <0.002U | <0.0025U | <0.0027U | <0.0035U | <0.0025U | <0.0027U | <0.0022U | <0.0041UJ | <0.0017U | <0.0017U | <0.0041U | <0.0016U | | SHS-B2746 | SSHS-B2746-SUB-4-6 | 4-6 | 4/22/2019 | 180-89294-1 | 8.455 | <0.0027U | <0.0032U | <0.0026U | <0.0019U | <0.003U | <0.0033U | <0.0015U | <0.0042U | <0.0026U | <0.002U | <0.0025U | <0.0028U | <0.0035U | <0.0026U | <0.0027U | <0.0022U | <0.0041UJ | <0.0017U | <0.0017U | <0.0041U | <0.0016U | | | SSHS-B2746-SUB-6-8 | 6-8 | 4/22/2019 | 180-89294-1 | 2.271 | <0.0028U | <0.0033U | <0.0026U | <0.002U | <0.0031U | <0.0034U | <0.0016U | <0.0044U | <0.0027U | <0.0021U | <0.0026U | <0.0029U | <0.0036U | <0.0026U | <0.0028U | <0.0023U | <0.0042UJ | <0.0017U | <0.0018U | <0.0042U | <0.0016U | | | SSHS-B2746-SUB-8-10 | 8-10 | 4/22/2019 | 180-89294-1 | 1.025 | <0.0026U | <0.0031U | <0.0025U | <0.0019U | <0.003U | <0.0032U | <0.0015U | <0.0042U | <0.0026U | <0.002U | <0.0025U | <0.0028U | <0.0035U | <0.0025U | <0.0027U | <0.0022U | <0.0041UJ | <0.0017U | <0.0017U | <0.0041U | <0.0016U | | | SSHS-B2750-SUB-0.17-2 | 0.17-2 | 4/23/2019 | 180-89344-1 | 2.805 | <0.0029U | <0.0035U | <0.0028U | <0.0021U | <0.0033U | <0.0036U | <0.0017U | <0.0046U | <0.0029U | <0.0022U | <0.0027U | <0.003U | <0.0039U | <0.0028U | <0.003U | <0.0025U | <0.0045U | <0.0018U | <0.0019U | <0.0045U | <0.0017U | | SHS-B2750 | SSHS-B2750-SUB-10-12 | 10-12 | 4/23/2019 | 180-89344-1 | < 0.239 | <0.0026U | <0.0031U | <0.0025U | <0.0019U | <0.0029U | <0.0031U | <0.0015U | <0.0041U | <0.0025U | <0.002U | <0.0024U | <0.0027U | <0.0034U | <0.0025U | <0.0026U | <0.0022U | <0.0039U | <0.0016U | <0.0016U | <0.0039U | <0.0015U | | | SSHS-B2750-SUB-12-14 | 12-14 | 4/23/2019 | 180-89344-1 | <0.246 | <0.0026U | <0.0031U | <0.0025U | <0.0019U | <0.003U | <0.0032U | <0.0015U | <0.0042U | <0.0026U | <0.002U | <0.0025U | <0.0027U | <0.0035U | <0.0025U | <0.0027U | <0.0022U | <0.0041U | <0.0017U | <0.0017U | <0.004U | <0.0016U | | SHS-B2750 | SSHS-B2750-SUB-2-4 | 2-4 | 4/23/2019 | 180-89344-1 | 1.515 | <0.0027U | <0.0032U | <0.0026U | <0.002U | <0.0031U | <0.0033U | <0.0016U | <0.0043U | <0.0027U | <0.0021U | <0.0026U | <0.0028U | <0.0036U | <0.0026U | <0.0028U | <0.0023U | <0.0042U | <0.0017U | <0.0017U | <0.0042U | <0.0016U | | SHS-B2750 | SSHS-B2750-SUB-4-6 | 4-6 | 4/23/2019 | 180-89344-1 | 0.5335 | <0.0029U | <0.0035U | <0.0028U | <0.0021U | <0.0033U | <0.0036U | <0.0017U | <0.0046U | <0.0029U | <0.0022U | <0.0027U | <0.003U | <0.0039U | <0.0028U | <0.003U | <0.0025U | <0.0045U | <0.0018U | <0.0019U | <0.0045U | <0.0017U | | | SSHS-B2750-SUB-6-8 | 6-8 | 4/23/2019 | 180-89344-1 | <0.265 | <0.0029U | <0.0034U | <0.0028U | <0.0021U | <0.0033U | <0.0035U | <0.0017U | <0.0046U | <0.0028U | <0.0022U | <0.0027U | <0.003U | <0.0038U | <0.0028U | <0.003U | <0.0024U | <0.0044U | <0.0018U | <0.0018U | <0.0044U | <0.0017U | | | SSHS-B2750-SUB-8-10 | 8-10 | 4/23/2019 | 180-89344-1 | <0.25 | <0.0028U | <0.0033U | <0.0027U | <0.002U | <0.0032U | <0.0034U | <0.0016U | <0.0044U | <0.0027U | <0.0021U | <0.0026U | <0.0029U | <0.0037U | <0.0027U | <0.0029U | <0.0023U | <0.0043U | <0.0017U | <0.0018U | <0.0043U | <0.0017U | | | SSHS-B2763-SUB-10-12 | 10-12 | 4/26/2019 | 180-89521-1 | <0.237 | <0.0025U | <0.003U | <0.0024U | <0.0018U | <0.0028U | <0.0031U | <0.0014U | <0.004U | <0.0024U | <0.0019U | <0.0023U | <0.0026U | <0.0033U | <0.0024U | <0.0026U | <0.0021U | <0.0038U | <0.0016U | <0.0016U | <0.0038U | <0.0015U | | SHS-B2763 | SSHS-B2763-SUB-6-8 | 6-8 | 4/26/2019 | 180-89521-1 | < 0.274 | <0.0028U | <0.0034U | <0.0027U | <0.002U | <0.0032U | <0.0035U | <0.0016U | <0.0045U | <0.0028U | <0.0022U | <0.0027U | <0.0029U | <0.0037U | <0.0027U | <0.0029U | <0.0024U | <0.0044U | <0.0018U | <0.0018U | <0.0043U | <0.0017U | | SHS-B2763 | SSHS-B2763-SUB-8-10 | 8-10 | 4/26/2019 | 180-89521-1 | <0.256 | <0.0028U | <0.0033U | <0.0026U | <0.002U | <0.0031U | <0.0034U | <0.0016U | <0.0044U | <0.0027U | <0.0021U | <0.0026U | <0.0029U | <0.0036U | <0.0026U | <0.0028U | <0.0023U | <0.0042U | <0.0017U | <0.0018U | <0.0042U | <0.0016U | | SHS-B2977 | SSHS-B2977-SUB-10-12 | 10-12 | 11/7/2019 | 180-98520-1 | 2.046 | | | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | - | - | - | | SHS-B2977
SHS-B8 | SSHS-B2977-SUB-12-14 | 12-14 | 11/7/2019 | 180-98520-1 | 0.5415 | | | - | - | - | - | - | - | - | - | - | - | - | - | - | | - | | - | - | | | | R23484 | 4.5 | 5/11/2000 | | 0.042 | <0.0055TT | | | <0.0055II | <0.0055U | | =0.0055T1 | | | | | | <0.0055II | | | 0.0013J | | =0.0055TI | | =0.0055IT | 0.00221 | Notice EQL Estuated Quantitation Limit mykly - milligrams per kliepram fi lipa - fee hedour ground surface ii lipa - fee hedour ground surface ii lipa - fee hedour ground surface ii - Non-destee J - estimated value B - analyte found in method blank F1 - Ms andor MSD recovery is ourside acceptable limits S - GX - semi-volution organic compounds UJ - compound nor detected at an estimated value MN0832/Table 6 - IRM4 OC.S OC (2-14) Page 1 of 2 # TABLE 6 Summary of S OC and OC Results for Subsurface Soils (Below 2 ft bgs) IBM 4 Former Sperry Reminigaton Site - North Portion Elmira, New York | | | | | | 11 | | | | | | | | | | - 0 | | | | | | | | | | | | | |---------------------------|-----------------------|--------------------------------|-------------|----------------------|--|------------------------|-----------------------------------|------------------|-----------|--------------------------|-------------------|-------------------|---------------|------------------|----------------|------------------------|------------------------|--------------------|----------------|-------------------|----------------|-----------------------------|-----------|------------------|--------------|--------------------|----------------------| | 1 | | | | | | | | | | | | | | | Cs | _ | | | | | _ | | | | | | | | | | | | | militarie in de conce | Strans 1.2 kHoroethene | mg/kg
trans 1.3 ichloropropene | Stylen Ichlori e | mg/kg | My 12 4 trichleroben ene | 12 ichloroben ene | 13 ichloroben ene | Chloroben ene | 1.2 ibremeethane | B romomethan e | Dichloro ifhoromethane | Trichlorofluoromethane | solution liber ene | es 35
mg/kg | epone
cth th | 2 he anome (B) | Sylvau
eth 1.2 pentanone | ng/kg | Carbon is uffi e | C clothe ame | ah 1 km bat 1 chec | Sy Su ichloroben ene | | EQL | _ | | | | 0.00044 | 0.00062 | 0.00035 | 0.00087 | 0.00045 | 0.0006 | 0.00045 | 0.00073 | 0.00041 | 0.0004 | 0.0014 | 0.00041 | 0.001 | 0.00064 | 0.00057 | 0.00077 | 0.00083 | 0.0011 | 0.0029 | 0.0028 | 0.0011 | 0.00044 | 0.00047 | | Subsurface SC
Location | Sample Name | Sample Depth
Range (ft bgs) | Sample Date | Lab Report
Number | SSHS-B2238 | SSHS-B2238-SUB-0.17-2 | 0.17-2 | 7/23/2018 | 180-80091-1 | <0.00044U | <0.00062U | <0.00035U |
<0.00087U | <0.00045U | <0.0006U | <0.00045U | <0.00073U | <0.00041U | <0.0004U | <0.0014U | <0.00041U | <0.001U | <0.00064U | <0.00057U | <0.00077U | <0.00083U | <0.0011U | <0.011U | 0.0013J | 0.0044J | <0.00044U | <0.00047U | | SSHS-B2238 | | 12-14 | 7/23/2018 | 180-80091-1 | <0.0021U | <0.0027U | <0.0019U | <0.0039U | <0.0022U | <0.0017U | <0.0043U | <0.0017U | <0.0017U | <0.0029U | <0.0048U | <0.0031U | <0.0016U | <0.0025U | <0.0014U | <0.0031U | <0.0045U | <0.002U | 0.015J | <0.0032U | <0.0013U | <0.004U | <0.0011U | | SSHS-B2238 | | 0-0.17 | 7/23/2018 | 180-80091-4 | - | | - | - | - | | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | SSHS-B2239 | | 12-14 | 7/23/2018 | 180-80091-3 | <0.0021U | <0.0027U | <0.0018U | <0.0039U | <0.0022U | <0.0017U | <0.0043U | <0.0017U | <0.0017U | <0.0029U | <0.0048U | <0.0031U | <0.0015U | <0.0025U | <0.0014U | <0.0031U | <0.0045U | <0.002U | 0.013J | <0.0032U | | <0.0039U | <0.0011U | | SSHS-B2240 | | 12-14 | 7/23/2018 | 180-80091-2 | <0.0021U | <0.0027U | <0.0018U | <0.0039U | <0.0022U | <0.0017U | <0.0042U | <0.0017U | | | <0.0047U | | <0.0015U | <0.0024U | <0.0014U | <0.0031U | <0.0044U | <0.002U | 0.082 | <0.0032U | | <0.0039U | <0.0011U | | SSHS-B2746 | | 0.17-2 | 4/22/2019 | 180-89294-1 | <0.0023U | <0.0029U | <0.002U | <0.0042U | <0.004U | <0.0042U | <0.0023U | <0.0018U | <0.0018U | <0.0031U | <0.0051U | | <0.0017U | <0.0026U | <0.0015U | <0.0033U | <0.0047U | <0.0021U | <0.0036UJ | <0.0034U | | <0.0042U | <0.0012U | | SSHS-B2746 | SSHS-B2746-SUB-10-12 | 10-12 | 4/22/2019 | 180-89294-1 | <0.0021U | <0.0027U | <0.0018U | <0.0038U | <0.0037U | <0.0039U | <0.0021U | <0.0017U | <0.0016U | <0.0029U | <0.0047U | <0.0031U | <0.0015U | <0.0024U | <0.0014U | <0.003U | <0.0044U | <0.0019U | <0.0033U | <0.0031U | <0.0013U | <0.0039U | <0.0011U | | SSHS-B2746 | SSHS-B2746-SUB-12-14 | 12-14 | 4/22/2019 | 180-89294-1 | <0.0021U | <0.0027U | <0.0018U | <0.0038U | <0.0037U | <0.0039U | <0.0021U | <0.0017U | <0.0017U | <0.0029U | <0.0047U | <0.0031U | <0.0015U | <0.0024U | <0.0014U | <0.003U | <0.0044U | <0.0019U | <0.0033UJ | <0.0032U | <0.0013U | <0.0039U | <0.0011U | | SSHS-B2746 | SSHS-B2746-SUB-2-4 | 2-4 | 4/22/2019 | 180-89294-1 | <0.0021U | <0.0027U | <0.0018U | <0.0039U | <0.0037U | <0.0039U | <0.0021U | <0.0017U | <0.0017U | <0.0029U | <0.0047U | <0.0031U | <0.0015U | <0.0024U | <0.0014U | <0.003U | <0.0044U | <0.002U | <0.0033UJ | <0.0032U | <0.0013U | <0.0039U | <0.0011U | | SSHS-B2746 | | 4-6 | 4/22/2019 | 180-89294-1 | <0.0021U | <0.0027U | <0.0018U | <0.0039U | <0.0038U | <0.004U | <0.0021U | <0.0017U | <0.0017U | <0.0029U | <0.0048U | <0.0031U | <0.0015U | <0.0025U | <0.0014U | <0.0031U | <0.0045U | <0.002U | <0.0033UJ | <0.0032U | <0.0013U | <0.0039U | <0.0011U | | SSHS-B2746 | SSHS-B2746-SUB-6-8 | 6-8 | 4/22/2019 | 180-89294-1 | <0.0022U | <0.0028U | <0.0019U | <0.004U | <0.0039U | <0.0041U | <0.0022U | <0.0017U | <0.0017U | <0.003U | <0.0049U | <0.0032U | <0.0016U | <0.0025U | <0.0015U | <0.0032U | <0.0046U | <0.002U | <0.0035UJ | <0.0033U | <0.0013U | <0.004U | <0.0011U | | SSHS-B2746 | SSHS-B2746-SUB-8-10 | 8-10 | 4/22/2019 | 180-89294-1 | <0.0021U | <0.0027U | <0.0018U | <0.0039U | <0.0037U | <0.0039U | <0.0021U | <0.0017U | <0.0017U | <0.0029U | <0.0047U | <0.0031U | <0.0015U | <0.0024U | <0.0014U | <0.0031U | <0.0044U | <0.002U | <0.0033UJ | <0.0032U | <0.0013U | <0.0039U | <0.0011U | | SSHS-B2750 | SSHS-B2750-SUB-0.17-2 | 0.17-2 | 4/23/2019 | 180-89344-1 | <0.0023U | <0.003U | <0.002U | <0.0043U | <0.0041U | <0.0043U | <0.0023U | <0.0019U | <0.0018U | <0.0032U | <0.0052U | <0.0034U | <0.0017U | <0.0027U | <0.0016U | <0.0034U | <0.0049U | <0.0022U | <0.0037U | <0.0035U | <0.0014U | <0.0043U | <0.0012U | | SSHS-B2750 | SSHS-B2750-SUB-10-12 | 10-12 | 4/23/2019 | 180-89344-1 | <0.002U | <0.0026U | <0.0018U | <0.0038U | <0.0036U | <0.0038U | <0.002U | <0.0016U | <0.0016U | <0.0028U | <0.0046U | <0.003U | <0.0015U | <0.0024U | <0.0014U | <0.003U | <0.0043U | <0.0019U | <0.0032U | <0.0031U | <0.0013U | <0.0038U | <0.001U | | SSHS-B2750 | SSHS-B2750-SUB-12-14 | 12-14 | 4/23/2019 | 180-89344-1 | <0.0021U | <0.0027U | <0.0018U | <0.0039U | <0.0037U | <0.0039U | <0.0021U | <0.0017U | <0.0017U | <0.0029U | <0.0047U | <0.0031U | <0.0015U | <0.0024U | <0.0014U | <0.003U | <0.0044U | <0.002U | <0.0033U | <0.0032U | <0.0013U | <0.0039U | <0.0011U | | SSHS-B2750 | SSHS-B2750-SUB-2-4 | 2-4 | 4/23/2019 | 180-89344-1 | <0.0022U | <0.0027U | <0.0019U | <0.004U | <0.0038U | <0.004U | <0.0022U | <0.0017U | <0.0017U | <0.003U | <0.0049U | <0.0032U | <0.0016U | <0.0025U | <0.0014U | <0.0031U | <0.0045U | <0.002U | <0.0034U | <0.0033U | <0.0013U | <0.004U | <0.0011U | | SSHS-B2750 | SSHS-B2750-SUB-4-6 | 4-6 | 4/23/2019 | 180-89344-1 | <0.0023U | <0.0029U | <0.002U | <0.0043U | <0.0041U | <0.0043U | <0.0023U | <0.0019U | <0.0018U | <0.0032U | <0.0052U | <0.0034U | <0.0017U | <0.0027U | <0.0015U | <0.0034U | <0.0049U | <0.0022U | <0.0037U | <0.0035U | <0.0014U | <0.0043U | <0.0012U | | SSHS-B2750 | SSHS-B2750-SUB-6-8 | 6-8 | 4/23/2019 | 180-89344-1 | <0.0023U | <0.0029U | <0.002U | <0.0042U | <0.0041U | <0.0043U | <0.0023U | <0.0018U | <0.0018U | <0.0031U | <0.0052U | | <0.0017U | <0.0027U | <0.0015U | <0.0033U | <0.0048U | <0.0021U | <0.0036U | <0.0035U | <0.0014U | <0.0042U | <0.0012U | | SSHS-B2750 | | 8-10 | 4/23/2019 | 180-89344-1 | <0.0022U | <0.0028U | <0.0019U | <0.0041U | <0.0039U | <0.0041U | <0.0022U | <0.0018U | <0.0017U | <0.003U | <0.005U | <0.0032U | <0.0016U | <0.0026U | <0.0015U | <0.0032U | <0.0046U | <0.0021U | <0.0035U | | <0.0014U | <0.0041U | <0.0011U | | SSHS-B2763 | | 10-12 | 4/26/2019 | 180-89521-1 | <0.002U | <0.0025U | <0.0017U | <0.0036U | <0.0035U | <0.0037U | <0.002U | <0.0016U | <0.0016U | <0.0027U | <0.0045U | <0.0029U | <0.0014U | <0.0023U | <0.0013U | <0.0029U | <0.0042U | <0.0018U | <0.0031U | | <0.0012U | <0.0037U | <0.001U | | SSHS-B2763 | SSHS-B2763-SUB-6-8 | 6-8 | 4/26/2019 | 180-89521-1 | <0.0023U | <0.0029U | <0.002U | <0.0041U | <0.004U | <0.0042U | <0.0023U | <0.0018U | <0.0018U | <0.0031U | <0.0051U | <0.0033U | <0.0016U | <0.0026U | <0.0015U | <0.0033U | <0.0047U | <0.0021U | <0.0036U | <0.0034U | <0.0014U | <0.0042U | <0.0012U | | SSHS-B2763 | SSHS-B2763-SUB-8-10 | 8-10 | 4/26/2019 | 180-89521-1 | <0.0022U | <0.0028U | <0.0019U | <0.004U | <0.0039U | <0.0041U | <0.0022U | <0.0017U | <0.0017U | <0.003U | <0.0049U | <0.0032U | <0.0016U | <0.0025U | <0.0015U | <0.0032U | <0.0046U | <0.002U | <0.0035U | <0.0033U | <0.0013U | <0.004U | <0.0011U | | SSHS-B2977 | SSHS-B2977-SUB-10-12 | 10-12 | 11/7/2019 | 180-98520-1 | - | | - | - | - | | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | SSHS-B2977 | SSHS-B2977-SUB-12-14 | 12-14 | 11/7/2019 | 180-98520-1 | - | | - | - | - | | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | еспе ве | D22494 | 4.5 | 5/11/2000 | | 0.00291 | <0.0055IT | | ~0.0055T1 | | | -0.27H | -0.27H | 0.0055T1 | | | | | | | <0.011II | | | -0.022II | | | | -0.2711 | Notice EQL Estimated Quantitation Limit mykly - milligrams per kliepram fi liga - fee hedour ground surface it liga - fee hedour fee hed surface it liga - fee hedour fee hedour fee hedour it liga - fee hedour fee hedour it liga - fee hedour fee hedour it liga - i MN0832/Table 6 - IRM4 OC.S OC (2-14) Page 2 of 2 | | | | Sample Location | SSHS-B2621 | SSHS-B2625 | SSHS-B2634 | SSHS-B2637 | SSHS-B2637 | SSHS-B2649 | SSHS-B2660 | SSHS-B2661 | SSHS-B2672 | SSHS-B2673 | SSHS-B2675 | |----------------|-----------------------|------------|-------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | | | | Sample Depth (ft bgs | 2-4 | 2-4 | 6-8 | 4-6 | 8-10 | 2-4 | 2-4 | 4-6 | 2-4 | 2-4 | 4-6 | | | | | Sample Date | 5/15/2019 | 5/16/2019 | 4/24/2019 | 4/24/2019 | 4/24/2019 | 5/17/2019 | 4/25/2019 | 4/25/2019 | 5/19/2019 | 5/18/2019 | 5/17/2019 | | | | | RCRA To icity Characteristics | | | | | | | | | | | | | etho Name | | nits L | | | | | | | | | | | | | | | gamma-Chlordane | mg/L 0.002 | | <0.003U | | Endrin | g/L 0.091 | 20 | <0.091U | | g-BHC (Lindane) | g/L 0.12 | 400 | <0.12U | Pesticides and | Heptachlor | g/L 0.18 | 8 | <0.18U | Herbicides | Heptachlor epo ide | g/L 0.14 | | <0.14U | ricioiciacs | Metho ychlor | g/L 0.31 | 10000 | <0.31U <0.31UJ | <0.31UJ | <0.31UJ | | | To aphene | mg/L 0.02 | 0.5 | <0.02U | | 2,4,5-TP (Silve) | mg/L 0.001 | | <0.001U | | Hedonal | mg/L 0.004 | | <0.005U | | 1,4-dichlorobenzene | g/L 4.5 | 7500 | <4.5U | | 2,4,5-trichlorophenol | g/L 7.9 | 400000 | <7.9U | | 2,4,6-trichlorophenol | g/L 9.5 | 2000 | <9.5U | | 2,4-Dinitrotoluene | g/L 7.9 | 30130 | <7.9U | | 2-methylphenol | g/L 4 | 4200000 | <4U | S OCs | 4-methylphenol | mg/L 0.007 | 4200 | <0.008U | 3 Ocs | He achlorobenzene | g/L 5.5 | 30130 | <5.5U | | He achlorobutadiene | g/L 8.4 | 500 | <8.4U | | He achloroethane | g/L 4 | 3000 | <4U | | Nitrobenzene | g/L 12 | 2000 | <12U | | Pentachlorophenol | g/L 7.5 | 100000 | <7.5U | | Pyridine | g/L 8.2 | 35000 | <8.2U | | 1,1-dichloroethene | g/L 110 | 700 | <110U | | 1,2-dichloroethane | g/L 58 | 500 | <58U | | Methyl Ethyl etone | g/L 120 | 200000 | <120U | | Benzene | g/L 79 | 500 | <79U | OCs | Carbon tetrachloride | g/L 130 | 500 | <130U | ocs | Chlorobenzene | g/L 63 | 100000 | <63U | | Chloroform | g/L 85 | 6000 | <85U | | Trichloroethene | g/L 60 | 500 | <60U | | Tetrachloroethene | g/L 80 | 700 | <80U | | inyl chloride | g/L 150 | 200 | <150U | | Arsenic | mg/L 0.041 | 5 | <0.041U | | Barium | mg/L 2 | 100 | 2.9 | 0.73J | 2.8 | 3.2B | 1.9J | 0.69J | 0.76J | 2.5 | 3.3 | 2.4 | 2.2 | | | Cadmium | mg/L 0.001 | 1 | 0.027J | <0.003U | 0.004J | 0.004J | <0.003UJ | <0.003U | 0.54 | <0.5U | 0.007J | <0.003U | 0.007J | | Metals | Chromium (III I) | mg/L 0.007 | 5 | 0.018J | 0.034J | <0.008U | <0.008U | <0.008U | <0.008U | 0.022J | <0.008U | <0.008U | <0.008U |
<0.008U | | nielais | Lead | mg/L 0.029 | 5 | 0.88 | 0.038J | 1.8 | 1.2 | 0.64 | <0.029U | <0.029U | 0.53 | 8.8 | 29 | 0.11J | | | Selenium | mg/L 0.036 | 1 | <0.036U 0.038J | <0.036U | 0.036J | | | Silver | mg/L 0.008 | 5 | <0.009U | | Mercury | mg/L 0.000 | 65 0.2 | <0U | | | | Sample Location | SSHS-B2679 | SSHS-B2679 | SSHS-B2679 | SSHS-B2679 | SSHS-B2682 | SSHS-B2703 | SSHS-B2724 | SSHS-B2724 | SSHS-B2724 | SSHS-B2724 | SSHS-B2763 | |----------------|-----------------------|---------------|-------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | | | | Sample Depth (ft bgs) | 10-12 | 14-16 | 4-6 | 8-10 | 2-4 | 0.17-2 | 12-14 | 2-4 | 4-6 | 6-8 | 4-6 | | | | | Sample Date | | 4/24/2019 | 4/24/2019 | 4/24/2019 | 4/25/2019 | 5/19/2019 | 4/24/2019 | 4/24/2019 | 4/24/2019 | 4/24/2019 | 4/26/2019 | | | | | RCRA To icity Characteristics | | | | | | | | | | | | | etho Name | | nits L | | | | | | | | | | | | | | | gamma-Chlordane | mg/L 0.0029 | | <0.003U | | Endrin | g/L 0.091 | 20 | <0.091U | | g-BHC (Lindane) | g/L 0.12 | 400 | <0.12U | Pesticides and | Heptachlor | g/L 0.18 | 8 | <0.18U | Herbicides | Heptachlor epo ide | g/L 0.14 | | <0.14U | <0.14U | 0.32J | <0.14U | 0.46J | <0.14U | <0.14U | <0.14U | <0.14U | <0.14U | <0.14U | | | Metho ychlor | g/L 0.31 | 10000 | <0.31U | <0.31U | <0.31U | <0.31U | <0.31U | <0.31UJ | <0.31U | <0.31U | <0.31U | <0.31U | <0.31U | | | To aphene | mg/L 0.02 | 0.5 | <0.02U | | 2,4,5-TP (Silve) | mg/L 0.0011 | 1 | <0.001U | | Hedonal | mg/L 0.0045 | 10 | <0.005U | | 1,4-dichlorobenzene | g/L 4.5 | 7500 | <4.5U | | 2,4,5-trichlorophenol | g/L 7.9 | 400000 | <7.9U | | 2,4,6-trichlorophenol | g/L 9.5 | 2000 | <9.5U | | 2,4-Dinitrotoluene | g/L 7.9 | 30130 | <7.9U | | 2-methylphenol | g/L 4 | 4200000 | <4U | S OCs | 4-methylphenol | mg/L 0.0079 | 4200 | <0.008U | | He achlorobenzene | g/L 5.5 | 30130 | <5.5U | | He achlorobutadiene | g/L 8.4 | 500 | <8.4U | | He achloroethane | g/L 4 | 3000 | <4U | | Nitrobenzene | g/L 12 | 2000 | <12U | | Pentachlorophenol | g/L 7.5 | 100000 | <7.5U | | Pyridine | g/L 8.2 | 35000 | <8.2U | | 1,1-dichloroethene | g/L 110 | 700 | <110U | | 1,2-dichloroethane | g/L 58 | 500 | <58U | | Methyl Ethyl etone | g/L 120 | 200000 | <120U | | Benzene | g/L 79 | 500 | <79U | OCs | Carbon tetrachloride | g/L 130 | 500 | <130U | ocs | Chlorobenzene | g/L 63 | 100000 | <63U | | Chloroform | g/L 85 | 6000 | <85U | | Trichloroethene | g/L 60 | 500 | <60U | | Tetrachloroethene | g/L 80 | 700 | <80U | | inyl chloride | g/L 150 | 200 | <150U | | Arsenic | mg/L 0.041 | 5 | <0.041U <0.5U | <0.041U | <0.041U | <0.041U | | | Barium | mg/L 2 | 100 | 2.2 | 1J | 3.7 | 3.1 | 2.2 | 0.98J | 0.58J | 0.91J | 1J | 1.8J | 0.28J | | | Cadmium | mg/L 0.0016 | 1 | <0.003U | <0.003U | 0.005J | 0.003J | <0.5U | <0.003U | <0.003U | <0.003U | <0.003U | <0.003U | <0.5U | | Metals | Chromium (III I) | mg/L 0.0078 | 5 | <0.008U 0.01J | | niciais | Lead | mg/L 0.029 | 5 | 2.8 | 0.31J | 3.6 | 2.2 | 0.048J | <0.029U | <0.029U | <0.029U | <0.029U | 0.046J | <0.029U | | | Selenium | mg/L 0.036 | 1 | <0.036U | <0.036U | <0.036U | <0.036U | <0.036U | 0.041J | 0.053J | 0.041J | 0.036J | <0.036U | <0.036U | | | Silver | mg/L 0.0085 | 5 | <0.009U | <0.009U | <0.009U | <0.009U | <0.009UJ | <0.009U | <0.009U | <0.009U | <0.009U | <0.009U | <0.009U | | | Mercury | mg/L 0.000065 | 0.2 | <0U | Mercury | mg/L | 0.000065 | 0.2 | |- senimated value | U - non-detect | U - non-detect | U - non-detect | g/L - micrograms per liter | mg/L - milligrams per liter | mg/L - milligrams per liter | ft ps/L - detect | det | | | | Sample Location | SSHS_R2765A | ISSHS-B2765A | SSHS-B2766 | SSHS-B2908 | ISSHS-B2908 | SSHS-B2908 | SSHS-B2942 | SSHS-B2945 | SSHS-B2945 | ISSHS-B2945 | SSHS-B2945 | |----------------|-----------------------|---------------|-------------------------------|-------------|--------------|------------|------------|-------------|------------|------------|------------|------------|-------------|------------| | | | | Sample Depth (ft bgs) | | 12-14 | 6-8 | 2-4 | 4-6 | 6-8 | 4-6 | 10-12 | 2-4 | 4-6 | 6-8 | | | | | Sample Date | | 4/27/2019 | 4/23/2019 | 11/4/2019 | 11/4/2019 | 11/4/2019 | 11/5/2019 | 11/6/2019 | 11/6/2019 | 11/6/2019 | 11/6/2019 | | | | | RCRA To icity Characteristics | 4/2//2019 | 14272017 | 1472.017 | 11/4/2019 | 11/4/2017 | 11/4/2017 | 11/3/2017 | 11/02017 | 11/0/2017 | 11/02/01/ | 1170/2017 | etho Name | | nits L | | | | | | | | | | | | | | | gamma-Chlordane | mg/L 0.0029 | | <0.003U | <0.003U | <0.003U | - | - | - | - | - | - | - | - | | | Endrin | g/L 0.091 | 20 | <0.091U | <0.091U | <0.091U | - | - | - | - | - | - | - | - | | | g-BHC (Lindane) | g/L 0.12 | 400 | <0.12U | <0.12U | <0.12U | - | - | - | - | - | - | - | - | | Pesticides and | Heptachlor | g/L 0.18 | 8 | <0.18U | <0.18U | <0.18U | - | - | - | - | - | - | - | - | | Herbicides | Heptachlor epo ide | g/L 0.14 | | <0.14U | <0.14U | <0.14U | - | - | - | - | - | - | - | - | | | Metho ychlor | g/L 0.31 | 10000 | <0.31U | <0.31U | <0.31U | - | - | - | - | - | - | - | - | | | To aphene | mg/L 0.02 | 0.5 | <0.02U | <0.02U | <0.02U | - | - | - | - | - | - | - | - | | | 2,4,5-TP (Silve) | mg/L 0.0011 | 1 | <0.001U, | <0.001U, | <0.001U | - | - | - | - | - | - | - | - | | | Hedonal | mg/L 0.0045 | 10 | <0.005U, | <0.005U, | <0.005U | - | - | - | - | - | - | - | - | | | 1,4-dichlorobenzene | g/L 4.5 | 7500 | <4.5U | <4.5U | <4.5U | - | - | - | - | - | - | - | - | | | 2,4,5-trichlorophenol | g/L 7.9 | 400000 | <7.9U | <7.9U | <7.9U | - | - | - | - | - | - | - | - | | | 2,4,6-trichlorophenol | g/L 9.5 | 2000 | <9.5U | <9.5U | <9.5U | - | - | - | - | - | - | - | - | | | 2,4-Dinitrotoluene | g/L 7.9 | 30130 | <7.9U | <7.9U | <7.9U | - | - | - | - | - | - | - | - | | | 2-methylphenol | g/L 4 | 4200000 | <4U | <4U | <4U | - | - | - | - | - | - | - | - | | S OCs | 4-methylphenol | mg/L 0.0079 | 4200 | <0.008U | <0.008U | <0.008U | - | - | - | - | - | - | - | - | | 3 Ocs | He achlorobenzene | g/L 5.5 | 30130 | <5.5U | <5.5U | <5.5U | - | - | - | - | - | - | - | - | | | He achlorobutadiene | g/L 8.4 | 500 | <8.4U | <8.4U | <8.4U | - | - | - | - | - | - | - | - | | | He achloroethane | g/L 4 | 3000 | <4U | <4U | <4U | - | - | - | - | - | - | - | - | | | Nitrobenzene | g/L 12 | 2000 | <12U | <12U | <12U | - | - | - | - | - | - | - | - | | | Pentachlorophenol | g/L 7.5 | 100000 | <7.5U | <7.5U | <7.5U | - | - | - | - | - | - | - | - | | | Pyridine | g/L 8.2 | 35000 | <8.2U | <8.2U | <8.2U | - | - | - | - | - | - | - | - | | | 1,1-dichloroethene | g/L 110 | 700 | <110U | <110U | <110U | - | - | - | - | - | - | - | - | | | 1,2-dichloroethane | g/L 58 | 500 | <58U | <58U | <58U | - | - | - | - | - | - | - | - | | | Methyl Ethyl etone | g/L 120 | 200000 | <120U | <120U | <120U | - | - | - | - | - | - | - | - | | | Benzene | g/L 79 | 500 | <79U | <79U | <79U | - | - | - | - | - | - | - | - | | OCs | Carbon tetrachloride | g/L 130 | 500 | <130U | <130U | <130U | - | - | - | - | - | - | - | - | | ocs | Chlorobenzene | g/L 63 | 100000 | <63U | <63U | <63U | - | - | - | - | - | - | - | - | | | Chloroform | g/L 85 | 6000 | <85U | <85U | <85U | - | - | - | - | - | - | - | - | | | Trichloroethene | g/L 60 | 500 | <60U | <60U | <60U | - | - | - | - | - | - | - | - | | | Tetrachloroethene | g/L 80 | 700 | <80U | <80U | <80U | - | - | - | - | - | - | - | - | | | inyl chloride | g/L 150 | 200 | <150U | <150U | <150U | - | - | - | - | - | - | - | - | | | Arsenic | mg/L 0.041 | 5 | <0.041U | | Barium | mg/L 2 | 100 | 0.16J | 0.34J | 1.2J | 0.29J | 1J | 0.63J | 1.9J | 0.46J | 0.86J | 0.82J | 0.27J | | | Cadmium | mg/L 0.0016 | 1 | 0.27J,B | 0.24J,B | <0.003U | 34.3 | Chromium (III I) | mg/L 0.0078 | 5 | 0.019J | 0.012J | <0.008U | <0.008UJ | <0.008U | <0.008U | 0.012J | 0.13J | 1.3J | 0.096J | 0.12J | | Metals | | mg/L 0.029 | 5 | <0.029U | <0.029U | <0.029U | 0.052J | 7.5 | 0.33J | 0.066J | <0.029U | <0.029U | <0.029U | <0.029U | | | Selenium | mg/L 0.036 | 1 | <0.036U | | Silver | mg/L 0.0085 | 5 | <0.009U <0.009UJ | <0.009U | <0.009U | | | Mercury | mg/L 0.000065 | 0.2 | <0U. | <0U. | <0U | Mercury | mg/L | 0.000065 | 0.2 | |- senimated value | U - non-detect | U - non-detect | U - non-detect | g/L - micrograms per liter | mg/L - milligrams per liter | mg/L - milligrams per liter | ft ps/L - detect | det | | | | | Sample Location | | SSHS-B2946 | SSHS-B2947 | SSHS-B2948 | SSHS-B2949 | SSHS-B2950 | SSHS-B2951 | |----------------|-----------------------|------|----------|-------------------------------|-----------|------------|------------|------------|------------|------------|------------| | | | | | Sample Depth (ft bgs) | 8-10 | 4-6 | 4-6 | 6-8 | 6-8 | 8-10 | 8-10 | | | | | | Sample Date | 11/6/2019 | 11/6/2019 | 11/5/2019 | 11/6/2019 | 11/7/2019 | 11/5/2019 | 11/5/2019 | | | | | | RCRA To icity Characteristics | | | | | | | | | etho Name | ChemName | nits | L | 1 | | | | | | | | | | gamma-Chlordane | mg/L | 0.0029 | | | | | | | | | | | Endrin | g/L | 0.091 | 20 | - | - | - | - | | - | - | | | g-BHC (Lindane) | g/L | 0.12 | 400 | - | - | - | - | | - | - | | | Heptachlor | g/L | 0.18 | 8 | - | - | - | - | | - | - | | Pesticides and | Heptachlor epo ide | g/L | 0.14 | | - | | | | | | - | | Herbicides | Metho ychlor | | 0.31 | 10000 | - | | | | | | - | | | To aphene | | 0.02 | 0.5 | - | - | - | - | - | - | - | | | 2,4,5-TP (Silve) | | 0.0011 | 1 | - | | | | | | - | | | Hedonal | mg/L | 0.0045 | 10 | | | | - | | | - | | | 1,4-dichlorobenzene | g/L | 4.5 | 7500 | - | - | - | - | - | - | - | | | 2,4,5-trichlorophenol | | 7.9 | 400000 | - | | | | | | - | | | 2,4,6-trichlorophenol | g/L | 9.5 | 2000 | - | - | - | - | | - | - | | | 2,4-Dinitrotoluene | g/L | 7.9 | 30130 | - | - | - | - | | - | - | | | 2-methylphenol | | 4 | 4200000 | | | | - | | | - |
| | 4-methylphenol | | 0.0079 | 4200 | - | | | | | | - | | S OCs | He achlorobenzene | | 5.5 | 30130 | - | | | | | | - | | | He achlorobutadiene | | 8.4 | 500 | - | - | - | - | | - | - | | | He achloroethane | g/L | 4 | 3000 | - | - | - | - | | - | - | | | Nitrobenzene | g/L | 12 | 2000 | - | - | - | - | - | - | - | | | Pentachlorophenol | g/L | | 100000 | - | | | | | | - | | | Pyridine | g/L | 8.2 | 35000 | - | | | | | | - | | | 1,1-dichloroethene | g/L | 110 | 700 | - | - | | | | - | - | | | 1,2-dichloroethane | g/L | 58 | 500 | - | - | - | - | - | - | - | | | Methyl Ethyl etone | | 120 | 200000 | - | | | | | | - | | | Benzene | | 79 | 500 | - | | | | | | - | | | Carbon tetrachloride | | 130 | 500 | - | | | | | | - | | OCs | Chlorobenzene | g/L | 63 | 100000 | - | - | - | - | - | - | - | | | Chloroform | | 85 | 6000 | - | | | | | | - | | | Trichloroethene | g/L | 60 | 500 | - | | | | | | - | | | Tetrachloroethene | g/L | | 700 | - | | | | | | - | | | inyl chloride | g/L | | 200 | | | | | - | | - | | | Arsenic | mg/L | | 5 | <0.041U | | Barium | mg/L | 2 | 100 | 0.84J | 0.67J | 0.75J | 0.21J | 0.62J | 0.58J | 0.36J | | | Cadmium | | 0.0016 | 1 | <0.003U | 0.004J | <0.003U | <0.003U | <0.003U | <0.003U | <0.003U | | | Chromium (III I) | | 0.0078 | 5 | 0.17J | 0.008J | 0.008J | 0.011J | <0.008U | 0.027J | 0.012J | | Metals | Lead | | 0.029 | 5 | <0.029U | 0.23J | <0.029U | 0.2J | <0.029U | 0.032J | <0.029U | | | Selenium | | 0.036 | 1 | <0.036U | | Silver | | 0.0085 | 5 | <0.009U | | Mercury | | 0.000065 | 0.2 | <0U | <0U | <0U | OJ | 0 | <0U | <0U | | Auceldo Auceldo Auceldo Biphenyls Biphenyls Auceldo Au | nal PCBs
schlor 1016
schlor 1212
schlor 1232
schlor 1232
schlor 1242
schlor 1248
schlor 1254
schlor 1254
schlor 1268
schlor 1268
schlor 1268
schlor 1262
itability | mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg | Metals 20
Screening
1000 ppm
L
0.0057
0.0062
0.0042
0.0017
0.0026
0.017
0.0058 | Sample De Sample I TCLP NYS Hazardous Material (Lead | 23.67
<0.031U
<0.023U
<0.024U
<0.014U | SSHS-B2625
2-4
\$716/2019
5.635
-0.0061U
-0.0067U
-0.0046U | SSHS-B2634
6-8
4/24/2019
20.78
<0.06U | SSHS-B2637
4-6
4/24/2019
121.8
<0.6U | SSHS-B2637
8-10
4/24/2019
37.58 | SSHS-B2649
2-4
5/17/2019 | SSHS-B2660
2-4
4/25/2019 | SSHS-B2661
4-6
4/25/2019 | SSHS-B2672
2-4
5/19/2019 | SSHS-B2673
2-4
5/18/2019 | SSHS-B2675
4-6
5/17/2019 | SSHS-B2679
10-12
4/24/2019 | SSHS-B2679
14-16
4/24/2019 | SSHS-B2679
4-6
4/24/2019 | SSHS-B2679
8-10
4/24/2019 | |--|---|--|--|--|---|--|---|--|--|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|----------------------------------|----------------------------------|--------------------------------|---------------------------------| | Foal Pl Archie Berlim Berlim Berlim Berlim | nal PCBs
schlor 1016
schlor 1211
schlor 1232
schlor 1232
schlor 1242
schlor 1248
schlor 1254
schlor 1254
schlor 1268
schlor 1268
schlor 1268
schlor 1262
itability | mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg | Screening
1000 ppm
L
0.0057
0.0052
0.0042
0.0026
0.017
0.0058
0.0051 | TCLP NYS Hazardous Material (Lead | 23.67
<0.031U
<0.023U
<0.024U
<0.014U | \$.635
-0.0061U
-0.0067U
-0.0046U | 4/24/2019
20.78
<0.06U | 4/24/2019
121.8 | 4/24/2019 | 5/17/2019 | 4/25/2019 | 4/25/2019 | 5/19/2019 | 5/18/2019 | 5/17/2019 | 4/24/2019 | 4/24/2019 | 4/24/2019 | 4/24/2019 | | Foal Pl Archie Berlim Berlim Berlim Berlim | nal PCBs
schlor 1016
schlor 1211
schlor 1232
schlor 1232
schlor 1242
schlor 1248
schlor 1254
schlor 1254
schlor 1268
schlor 1268
schlor 1268
schlor 1262
itability | mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg | Screening
1000 ppm
L
0.0057
0.0052
0.0042
0.0026
0.017
0.0058
0.0051 | TCLP NYS Hazardous Material (Lead | 23.67
<0.031U
<0.034U
<0.023U
<0.014U | 5.635
<0.0061U
<0.0067U
<0.0046U | 20.78
<0.06U | 121.8 | 37.58 | | | | | | | | | | | | Foal Pl Archie Berlim Berlim Berlim Berlim | nal PCBs
schlor 1016
schlor 1211
schlor 1232
schlor 1232
schlor 1242
schlor 1248
schlor 1254
schlor 1254
schlor 1268
schlor 1268
schlor 1268
schlor 1262
itability | mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg | Screening
1000 ppm
L
0.0057
0.0052
0.0042
0.0026
0.017
0.0058
0.0051 | (Lead | <0.031U
<0.034U
<0.023U
<0.014U | <0.0061U
<0.0067U
<0.0046U | <0.06U | | | 35.69 | 0.000 | | | | | | | | | | Foal Pl Archie Berlim Berlim Berlim Berlim | nal PCBs
schlor 1016
schlor 1211
schlor 1232
schlor 1232
schlor 1242
schlor 1248
schlor 1254
schlor 1254
schlor 1268
schlor 1268
schlor 1268
schlor 1262
itability | mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg | L 0.0057 0.0062 0.0042 0.0026 0.0017 0.0058 0.0051 | | <0.031U
<0.034U
<0.023U
<0.014U | <0.0061U
<0.0067U
<0.0046U | <0.06U | | | 35.69 | 0.000 | | | | | | | | | | Foal Pl Archie Berlim Berlim Berlim Berlim | nal PCBs
schlor 1016
schlor 1211
schlor 1232
schlor 1232
schlor 1242
schlor 1248
schlor 1254
schlor 1254
schlor 1268
schlor 1268
schlor 1268
schlor 1262
itability | mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg | L
0.0057
0.0062
0.0042
0.0026
0.0017
0.0058 | | <0.031U
<0.034U
<0.023U
<0.014U | <0.0061U
<0.0067U
<0.0046U | <0.06U | | | 35.69 | 0.00 | | | | | | | | | | Foal Pl Archie Berlim Berlim Berlim Berlim | nal PCBs
schlor 1016
schlor 1211
schlor 1232
schlor 1232
schlor 1242
schlor 1248
schlor 1254
schlor 1254
schlor 1268
schlor 1268
schlor 1268
schlor 1262
itability | mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg | 0.0057
0.0062
0.0042
0.0026
0.017
0.0058
0.0051 | 50 | <0.031U
<0.034U
<0.023U
<0.014U | <0.0061U
<0.0067U
<0.0046U | <0.06U | | | 35.69 | 0.000 | | | | | | | | | | Foal Pl Archie Berlim Berlim Berlim Berlim | nal PCBs
schlor 1016
schlor 1211
schlor 1232
schlor 1232
schlor 1242
schlor 1248
schlor 1254
schlor 1254
schlor 1268
schlor 1268
schlor 1268
schlor 1262
itability | mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg | 0.0062
0.0042
0.0026
0.017
0.0058
0.0051 | 50 | <0.031U
<0.034U
<0.023U
<0.014U | <0.0061U
<0.0067U
<0.0046U | <0.06U | | | 35.69 | 0.0500 | | | | | | | | | | Polychlorinated Bighanyis Auschlio Austrino Austrino Austrino Austrino Barium Berytiiu | ochlor 1221
ochlor 1232
ochlor
1242
ochlor 1248
ochlor 1248
ochlor 1254
ochlor 1260
ochlor 1268
ochlor 1268
ochlor 1262
itability | mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg | 0.0062
0.0042
0.0026
0.017
0.0058
0.0051 | | <0.034U
<0.023U
<0.014U | <0.0067U
<0.0046U | | <0.6U | | | | 15.77 | 26.33 | 255.5 | 55.04 | 119.9 | 28.83 | | 110.3 | | Polychlorinated Bighenyls Auschlo Pil (Lai Alamin Autimo Ausense Barium Berytin | ochlor 1232
ochlor 1242
ochlor 1248
ochlor 1254
ochlor 1254
ochlor 1260
ochlor 1268
ochlor 1262
itability | mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg | 0.0042
0.0026
0.017
0.0058
0.0051 | | <0.023U
<0.014U | <0.0046U | <0.066U | | <0.12U | <0.12U | <0.0057U | <0.032U | <0.061U | <0.64U | <0.31U | <0.29U | <0.058U | <1.2U | <0.61U | | Polychlorinated Bighenyls Aucohlo Bighathi Autohlo Aucohlo Aucohlo Aucohlo Aucohlo Aucohlo Aucohlo Aucohlo Aucohlo Aucohlo Barium Barium Beryttin | ochlor 1242
ochlor 1248
ochlor 1254
ochlor 1260
ochlor 1268
ochlor 1262
itability | mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg | 0.0026
0.017
0.0058
0.0051 | | <0.014U | | | <0.65U | <0.13U | <0.13U | <0.0062U | <0.034U | <0.067U | <0.69U | <0.33U | <0.31U | <0.064U | <1.3U | <0.66U | | Biphenyls Aucchlo Aucchlo Aucchlo Aucchlo Aucchlo Aucchlo Aucchlo Ignitabi Miscellaneous Sulphid pH (Lal Alumina Autino Assenic Barium Beryttin | ochlor 1248
ochlor 1254
ochlor 1260
ochlor 1268
ochlor 1262
itability | mg/kg
mg/kg
mg/kg
mg/kg
mg/kg
mg/kg | 0.017
0.0058
0.0051 | | | | <0.045U | <0.45U | <0.086U | <0.092U | <0.0042U | <0.024U | <0.046U | <0.48U | <0.23U | <0.22U | <0.044U | <0.88U | <0.46U | | Aucchio Aucchio Aucchio Aucchio Aucchio Aucchio Aucchio Auchio Cyanide Sulpiaid Aluminio Autino Ausenic Bariam Berytiiu | ochlor 1254
ochlor 1260
ochlor 1268
ochlor 1262
itability | mg/kg
mg/kg
mg/kg
mg/kg | 0.0058 | | | <0.0028U | <0.027U | <0.27U | <0.052U | <0.055U | <0.0026U | <0.014U | <0.028U | <0.29U | <0.14U | <0.13U | <0.026U | <0.53U | <0.27U | | Arochio Arochio Arochio Arochio Arochio Ignitabi Ugantabi Sulphid pH (Lal Alumin Antimo Arsenio Barium Berytiu | ochlor 1260
ochlor 1268
ochlor 1262
itability | mg/kg
mg/kg
mg/kg | 0.0051 | | 153 | 3.5 | 153 | 88J | 273 | 26J | 0.453 | 113 | 213 | 200J | 413 | 873 | 21J | 360J | 80J | | Arochlo Arochlo Arochlo Ignitabi Miscellaneous Sulphid pH (Lal Alumini Antimo Arsenic Barium Berylliu | ochlor 1268
ochlor 1262
itability | mg/kg
mg/kg
mg/kg | | | 5.8J | 1.6 | 4.73 | 28J | 8.4J | 8.1J | 0.15J | 3.9J | 4.53 | 43J | 123 | 28J | 6.7J | 110J | 25J | | Arochio Ignitabi Miscellaneous Sulphid pH (Lal Alunimo Arsenic Barium Berylliu | ochlor 1262
itability | mg/kg | | | 2.8J | 0.52 | 0.94J | 4.4J | 1.9J | 1.3J | 0.045J | 0.79J | 0.68J | 113 | 1.3J | 4.23 | 0.99J | 173 | 3.8J | | Miscellaneous Ugnitabi Miscellaneous Sulphid pH (Lal Alamino Arsenic Barium Berylliu | itability | | 0.0023 | | <0.013U | <0.0025U | <0.025U | <0.25U | <0.048U | <0.051U | <0.0023U | <0.013U | <0.025U | <0.26U | <0.13U | <0.12U | <0.024U | <0.49U | <0.25U | | Miscellaneous Cyanide Sulphid pH (Lat Alumini Antimo Barium Berylliu | | | 0.0061 | | <0.034U | <0.0066U | <0.065U | <0.65U | <0.12U | <0.13U | <0.0061U | <0.034U | <0.066U | <0.69U | <0.33U | <0.31U | <0.063U | <1.3U | <0.66U | | Sulphid pH (Lal Alumin Antimoic Barium Berylliu | | F | | | 140 | 140 | 140 | 140 | 140 | 140 | 140 | 140 | 140 | 140 | 140 | 140 | 140 | 140 | 140 | | Sulphid
pH (Lal
Alumini
Antimo
Arsenic
Barium
Berylliu | | mg/kg | 0.28 | | 0.64 | 3.5 | 3.8 | 10J- | 5.7 | 4.7 | 1.3 | 2.4 | 1.6 | 12 | 1.6 | 2.6 | 1.4 | 3.1 | 2.6 | | Alumin
Antimor
Arsenic
Barium
Berylliu | | mg/kg | 12 | | <12UJ | 123 | 34 | 313 | 273 | 173 | 28J | 29J | 163 | 42 | 14J | 24J | 25J | 26J | 22J | | Antimor
Arsenic
Barium
Berylliu | (Lab) | pH Units | | | 7.91 | 10.8HF | 8.2J | 8.2J | 8.3J | 11.5J | 8.1J | 8.3J | 8J | 8.2J | 8.2J | 8.3J | 8.3J | 8.3J | 8.2J | | Arsenic
Barium
Berylliu | minum | mg/kg | | | | | | | | | | | | | | | | - | - | | Barium
Berylliu | timony | | 0.37 | | | - | - | - | | | - | | | | | | | - | - | | Berylliu | | | | 00 | | - | - | - | | | - | | | | | | | - | - | | | | | | 00 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | | | | 0.43 | | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | Cadmiu | | | | 0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | Calcium | | | 540 | | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | | romium (III I) | | | 00 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | Cobalt | | | 5.4 | | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | Copper | | | 2.7 | | - | | - | - | - | - | - | - | - | | - | - | | - | - | | Metals Lead | | mg/kg | 11 | | - | - | - | - | - | - | - | - | - | - | - | - | | - | - | | | | | | 00 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | Magnes | | | 540 | | - | - | - | - | | - | - | - | - | - | - | - | - | - | - | | Mangan | | | 4.3 | | - | - | - | - | | - | - | - | - | - | - | - | - | - | - | | Nickel | | | 4.3
540 | | - | - | - | - | | - | - | - | - | - | - | - | - | - | - | | Potassiu
Selenium | | | 0.58 | | - | | - | - | - | - | - | - | - | - | - | - | _ | - | | | Silver | | | | 0 | + :- | + :- | - : | - | - | - | | - 1 | - | - : | + : | - | | - | - | | Suiver | | | 540 | | | | | | | | - | | | | | | - | | | | | | | 0.35 | | - | - | - | - | - | - | - | - | | - | - | - | - | - | - | | | | | 5.4 | | - | - | - | - | - | - | - | - : | - | - | - | - | - | - | - | | anadre | allium | | 2.2 | | + :- | | - : | - | - | - | - | - | - | - | - | - | - | - | - | | Mercury | allium
nadium | mg/kg | | | - : | + :- | | - | - | 1 - | - | 1 - | | | | 1 - | | 1 - | - | | | | | | | | | | | SSHS-B2724 | SSHS-B2724 | | | | | SSHS-B2766 | |-----------------|------------------|----------|--------|--|------------------------|-----------|-----------|-----------|------------|------------|-----------|-----------|-------------|-----------|------------| | | | | | | Sample Depth | 2-4 | 0.17-2 | 12-14 | 2-4 | 4-6 | 6-8 | 4-6 | 10-12 | 12-14 | 6-8 | | | | | | | Sample Date | 4/25/2019 | 5/19/2019 | 4/24/2019 | 4/24/2019 | 4/24/2019 | 4/24/2019 | 4/26/2019 | 4/27/2019 | 4/27/2019 | 4/23/2019 | | | | | | Metals 20 TCLP
Screening (Lead
1000 ppm) | NYS Hazardous Material | | | | | | | | | | | | | ChemName | nits | L | | | | | | | | | | | | | | | Total PCBs | mg/kg | | | 50 | 3095 | 152 | 0.1664 | 5.904 | 15.33 | 18.49 | 0.1806 | 4.817 | 13.19 | 9.621 | | | Arochlor 1016 | mg/kg | 0.0057 | | | <6.1U | <0.31U | <0.0058U | <0.0058U | <0.06U | <0.06U | <0.0062U | <0.006U | <0.03U | <0.03L | | | Arochlor 1221 | mg/kg | 0.0062 | | | <6.7U | <0.34U | <0.0063U | <0.0063U | <0.065U | <0.065U | <0.0068U | <0.0065U | <0.033U | < 0.033 | | | Arochlor 1232 | mg/kg | 0.0042 | | | <4.6U | <0.23U | <0.0043U | <0.0043U | <0.045U | <0.045U | <0.0047U | <0.0045U | <0.023U | < 0.022 | | Polychlorinated | Arochlor 1242 | mg/kg | 0.0026 | | | <2.8U | <0.14U | <0.0026U | <0.0026U | <0.027U | <0.027U | <0.0028U | <0.0027U | <0.014U | < 0.0131 | | Biphenyls | Arochior 1248 | mgkg | 0.017 | | | 2400J | 1203 | 0.113 | 3.8J | 111 | 13J | 0.16 | 1.5 | 4.5 | 7.13 | | - 1 | Arochlor 1254 | mg/kg | 0.0058 | | | 590J | 24J | 0.043 | 1.8J | 3.6J | 4.63 | <0.0058U | 3.3 | 8.6 | 2.1J | | | Arochlor 1260 | mg/kg | 0.0051 | | | 903 | 7.33 | <0.0051U | 0.293 | 0.59J | 0.753 | <0.0055U | <0.0053U,F1 | <0.026U | 0.35J | | | Arochlor 1268 | mgkg | 0.0023 | | | <2.5U | <0.13U | <0.0024U | <0.0024U | <0.025U | <0.025U | <0.0026U | <0.0025U | <0.013U | < 0.0121 | | | Arochlor 1262 | mg/kg | 0.0061 | | | <6.6U | <0.33U | <0.0063U | <0.0062U | <0.065U | <0.065U | <0.0068U | <0.0065U | <0.033U | < 0.032 | | | Ignitability | F | | | | 140 | 140 | 140 | 140 | 140 | 140 | 140 | 140 | 140 | 140 | | Miscellaneous | Cyanide Total | mgkg | 0.28 | | | 12 | 0.84 | <0.28U | 0.96J | 1 | 2 | <0.3U | 1.5 | 1.4 | 3.4 | | | | | 12 | | | 40 | 37J- | 23J | 213 | 26J | 25J | 41 | 52 | 20J | 243 | | | | pH Units | 0.1 | | | 8.3J | 10.8J | 8.3J | 8.3J | 8.3J | 8.4J | 8J | 11.4HF | 11.1HF | 8.3J | | | Aluminum | mgkg | 22 | | | | | | - | | | | 7100 | 7500 | - | | | Antimony | mg/kg | 0.37 | | | | | | - | | - | - | 0.39J | <0.37U | - | | | | | 1.1 | 100 | | | | | | - | | | 8.3 | 6.4 | | | | Barium | mgkg | 22 | 2000 | | | | | - | | | | 67 | 94 | | | | Bervllium | meke | 0.43 | | | | - | | | | | | 0.36J | 0.3J | | | | Cadmium | meke | 0.54 | 20 | | | | | | - | | | 0.14J | 0.49J | | | | Calcium | meke | 540 | | | | | | | - | | | 7200 | 50,000 | | | | Chromium (III I) | mgkg | 0.54 | 100 | | | - | | | | | | 8 | 11 | - | | | | | 5.4 | | | | | | | - | | | 5.6J | 5.3J | | | | Copper | mg/kg | 2.7 | | | | | | | - | | | 29 | 35 | | | | | | 11 | | | - | | | - | | - | - | 17,000 | 20,000 | | | | | | 1.1 | 1000 | | | | | | | | | 59 | 100 | | | | | | 540 | | | | | | | - | | | 2000 | 4800 | | | | | | 1.6 | | | - | | | - | | - | - | 490 | 680 | - | | | | | 4.3 | | | - | | | - | | - | - | 16 | 26 | | | | | | 540 | | | | | | | | | | 740 | 640 | | | | | | 0.58 | 20 | | | | | | - | | | <0.58U | 0.923 | - | | | | | 0.11 | 100 | | | | | | | - | | <0.12U | <0.110 | | | | | | 540 | .00 | 1 | - : | | | | - | | | 901 | 1301 | - | | | | | 0.35 | | | - : | | | | - | | | z0.36I1 | <0.35U | - | | | | | 5.4 | | | - : | | - | - | | | | 12 | 12 | - | | | | | 2.2 | | 1 | - | | | | - | - | | 70 | 99 | - | | | | | 0.037 | 4 | | _ | - | | | | | | 0.0271 | 0.1 | - | ### TABLE 8 Step-Out and Step-Down Procedures ### Former Sperry Remington Site - North Portion Elmira, New York | Confirmation | Documentation Sampling | | |---------------------------------------
---|---| | Sidewall sample results e ceed IRM | Bottom sample results e ceed IRM | Sidewall sample results e ceed IRM | | cleanup objective | cleanup objective | cleanup objective | | E tend e cavation a ma imum of thirty | E cavate area additional two (2) feet and | Document COPCs left in place for future | | (30) feet and re-sample sidewall and | re-sample sidewall and bottom areas. ³ | removal | | bottom areas | * | | ### Notes The feasibility of e cavation below the water table will be evaluated based on lithology, transmissivity and field observations. If feasible, groundwater will be managed using water management methods presented in Section 3.4. ### TABLE 9 Bottom Excavation Areas and Samples ### Former Sperry Remington Site - North Portion Elmira, New York | | | Bottom | Bottom of | Propose Bottom Samples | | | | | | |-----------------|-------|-------------------|---------------------------------|---------------------------------|------------------|------------------|--|--|--| | igure
Number | Label | Depth
(ft bgs) | ca ation Area ¹ (S) | Re uire
Number of
Samples | isting
Sample | Samples
Nee e | | | | | 5 | 4-1 | 4 | 2,556 | 3 | 6 | 0 | | | | | 6 | 6-1 | 6 | 865 | 1 | 0 | 1 | | | | | 7 | 8-1 | 8 | 489 | 1 | 1 | 0 | | | | | 8 | 10-1 | 10 | 776 | 1 | 1 | 0 | | | | | 8 | 10-2 | 10 | 871 | 1 | 1 | 0 | | | | | 10 | 14-1 | 14 | 547 | 1 | 0 | 1 | | | | | 10 | 14-2 | 14 | 347 | 1 | 2 | 0 | | | | ### Notes SF - s uare feet ft bgs - feet below ground surface $MN0832B/Table \quad \ Proposed \ Bottom \ E \ \ cavation \ Areas \ and \ Pre-Delineation \ Bottom \ Wall \ Samples. \\ \textbf{\textit{MPS}} ge \ 1 \ of of$ $^{^{\}rm 1}$ Bottom of TSCA e cavation of each two-foot interval in areas where the two-foot interval below is not presumed to be a TSCA e cavation ### TABL 10 R Sche ule ### ormer Sperr Remington North Portion Imira Chemung Count Ne or | Tas Name | Duration | Start | inish | |---|----------|----------------|----------------| | IRM Strategy & Planning Meeting | 0 days | Tue 11/19/2019 | Tue 11/19/2019 | | R 4 or Plan an Design | 117 days | | | | Pre-Final (95) Work Plan and Design Preparation | 9 wks | Wed 12/18/2019 | Fri 2/14/2020 | | Pre-Final (95) Work Plan and Submittal | 0 days | Fri 2/14/2020 | Fri 2/14/2020 | | Agency and ECSD Review | 6 wks | Fri 2/14/2020 | Thu 3/26/2020 | | Agency Comments on Pre-Final (95) Submittal | 0 days | Thu 3/26/2020 | Thu 3/26/2020 | | Final (100) Work Plan and Design Preparation | 5 wks | Fri 3/27/2020 | Thu 4/30/2020 | | Final (100) Work Plan and Design Submittal | 0 days | Thu 4/30/2020 | Thu 4/30/2020 | | Contractor Work Plan | 2 wks | Fri 4/17/2020 | Thu 4/30/2020 | | ECSD Comments | 0 days | Thu 5/7/2020 | Thu 5/7/2020 | | Response Schedule to ECSD Comments | 0 days | Mon 5/11/2020 | Mon 5/11/2020 | | Agency Comments on Final (100) Submittal | 0 days | Wed 5/13/2020 | Wed 5/13/2020 | | Revised Final (100) Work Plan and Design Preparation | 4 days | Thu 5/14/2020 | Tue 5/19/2020 | | Revised Final (100) Work Plan and Design Submittal | 0 days | Tue 5/19/2020 | Tue 5/19/2020 | | Agency and ECSD Review | 1 wk | Wed 5/20/2020 | Thu 5/28/2020 | | Revised Contractor Work Plan Submittal | 0 days | Thu 5/21/2020 | Thu 5/21/2020 | | Temporary Rally Point Plan Submittal | 0 days | Thu 5/21/2020 | Thu 5/21/2020 | | Agency and ECSD Review | 4 days | Fri 5/22/2020 | Thu 5/28/2020 | | NYSDEC Approval and NTP | 0 days | Thu 5/28/2020 | Thu 5/28/2020 | | 2020 IRM Contractor Selection Process | 48 days | Wed 1/22/2020 | Fri 3/27/2020 | | R 4 Construction | 70 days | Mon 6/1/2020 | Fri 9/4/2020 | | Mobilization | 0 days | Mon 6/1/2020 | Mon 6/1/2020 | | E isting Conditions Survey/Utility Location/ | | | | | Grandstand Hazardous Material Survey | 8 days | Mon 6/1/2020 | Wed 6/10/2020 | | Install Temporary Fencing | 8 days | Wed 6/3/2020 | Fri 6/12/2020 | | Construct Temporary Facilities (haul roads, MSA) | 14 days | Wed 6/10/2020 | Mon 6/29/2020 | | Demolition Plan Submittal | 0 days | Fri 6/12/2020 | Fri 6/12/2020 | | Agency and ECSD Review of Demolition Plan | 2 wks | Mon 6/15/2020 | Fri 6/26/2020 | | Grandstand Demolition | 1 mon | Mon 7/6/2020 | Fri 7/31/2020 | | E cavation - West Side (Slope and Bench) | 8 days | Tue 6/30/2020 | Thu 7/9/2020 | | Install Soldier Piles | 9 days | Tue 6/30/2020 | Mon 7/13/2020 | | E cavation with SOE (Soldier Pile Walls) | 18 days | Mon 7/13/2020 | Thu 8/6/2020 | | Backfilling | 2 wks | Fri 8/7/2020 | Thu 8/20/2020 | | Site Restoration | 2 wks | Fri 8/14/2020 | Fri 8/28/2020 | | Demobilization | 0 days | Fri 9/4/2020 | Fri 9/4/2020 | | R 4 Construction Completion Report (CCR) | | | | | CCR Preparation | 3 mons | Fri 8/28/2020 | Fri 11/20/2020 | | CCR Submittal | 0 days | Fri 11/20/2020 | Fri 11/20/2020 | ## Appendix A Construction Drawings ## Appendix B Construction Specifications #### Appendix C Support of Excavation Design Analysis Appendix D Stormwater Modeling #### Appendix E Quality Assurance Project Plan # Appendix F Well Boring Logs and Production Well Flow Test Results # Appendix G Soil/Dust Control and Monitoring Plan and NYSDOH Generic CAMP ### Appendix H ECSD Correspondence ### Appendix I Health and Safety Plan