

REPORT SUMMARIZING THE RESULTS OF A PHASE II REAL ESTATE INVESTIGATION AT 26 THROUGH 100 EVANS STREET CITY OF BATAVIA COUNTY OF GENESEE STATE OF NEW YORK

SUBMITTED TO

COUNTY OF GENESEE
MAIN AND COURT STREETS
BATAVIA, NEW YORK 14020

SUBMITTED BY

EARTH INVESTIGATIONS LTD. R-6576 EAST QUAKER STREET ORCHARD PARK, NEW YORK 14127

DATE COMPLETED

JUNE 14, 1990

TABLE OF CONTENTS

	PAGE NO.
LIST OF ATTACHMENTS	i
LIST OF FIGURES	i
LIST OF TABLES	i
I. INTRODUCTION	1
II. CERTIFICATION AND DISCLAIMER	1
III. SUMMARY OF WORK COMPLETED	1
IV. FINDINGS	5
V. OPTIONS AND RECOMMENDATIONS	13
LIST OF ATTACHMENTS	
ATTACHMENT 1 SOIL AND SEDIMENT LOGS	
ATTACHMENT 2 FIELD NOTES	
ATTACHMENT 3 COMPLETED CHAIN OF CUSTODY FORM	
ATTACHMENT 4 LABORATORY ANALYTICAL TEST RESULTS	
ATTACHMENT 5 USEPA CORRESPONDENCE	
LIST OF FIGURES	
FIGURE 1 BACKGROUND SAMPLING LOCATIONS	
FIGURE 2 SAMPLING LOCATIONS	
LIST OF TABLES	
TABLE IV-1 SUMMARY OF ANALYTICAL RESULTS - GROUNDWATER SAMPLES	9
TABLE IV-2 SUMMARY OF ANALYTICAL RESULTS - SOLIDS SAMPLES	10

I. INTRODUCTION

Based upon the results reported in Earth Investigations Ltd.'s (EIL) Phase I report completed on February 20, 1990, the County of Genesee (hereinafter referred to as the County) requested that EIL submit a proposal for the completion of a Phase II real estate investigation at 26 through 100 Evans Street, Batavia, New York. EIL submitted the aforementioned proposal on March 6, 1990 and it was accepted by the County Legislature on March 15, 1990.

Subsequent to receiving the County's authorization to proceed on March 26, 1990, EIL (and its laboratory subcontractor) completed all of the field, laboratory and office work necessary to complete the Phase II study. The purpose of this report, therefore, is to summarize EIL's findings and recommendations relative to the County's options with respect to the parcels investigated as an integral part of this study.

II. CERTIFICATION AND DISCLAIMER

EIL hereby certifies that it used, during its completion of this project, methods of investigation that are generally accepted by environmental engineers, scientists, and attorneys for the completion of Phase II real estate investigations. EIL has reported herein, to the best of its ability, the information provided by one past employee and federal agency personnel. EIL is in no way able to guarantee the accuracy or completeness of this information based upon the scope of work completed for this investigation. In addition, EIL presents its findings and makes its recommendations based upon the test results presented herein. These findings and recommendations have been generated based upon site conditions as they were found at the time of field investigation. Because field conditions can change at any time based upon the actions or inactions of nature, companies or individuals, EIL does not provide any findings or recommendations applying to or pertaining to the site after the final date of field sampling (May 3, 1990).

EIL has prepared this report for the exclusive use of the County. It is not intended to be utilized or relied upon by any other party.

III. SUMMARY OF WORK COMPLETED

As outlined in its proposal dated March 6, 1990, EIL completed the following items as an integral part of this investigation:

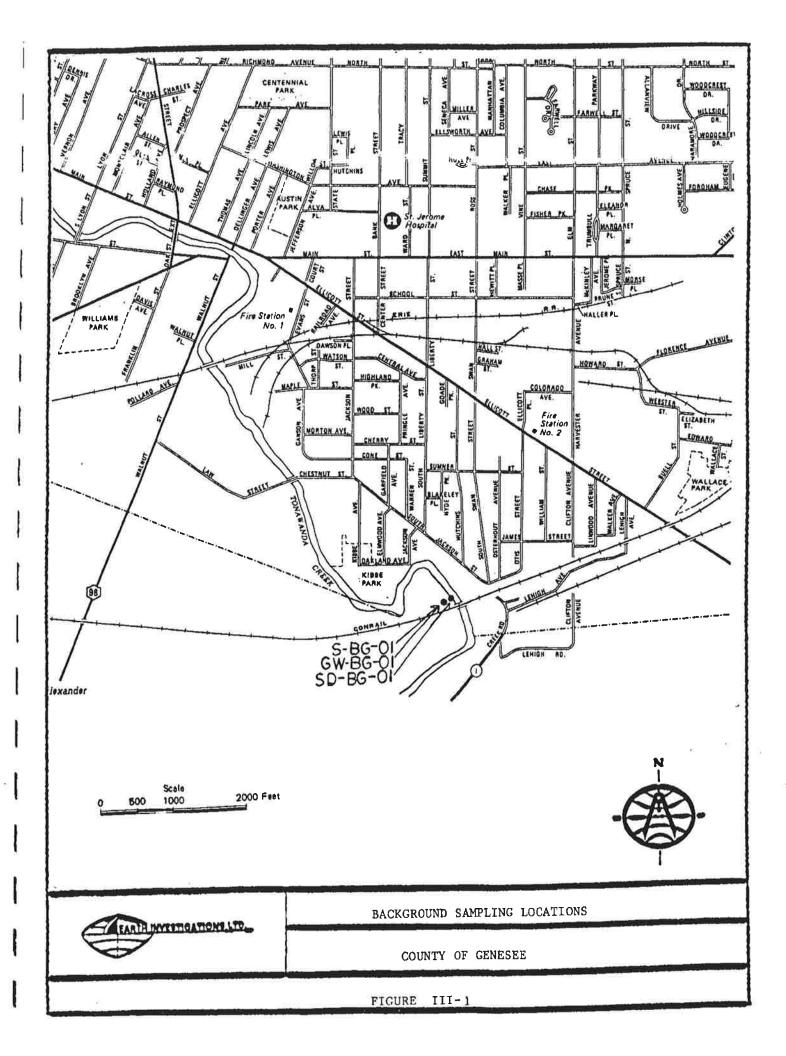
A: Background Locations

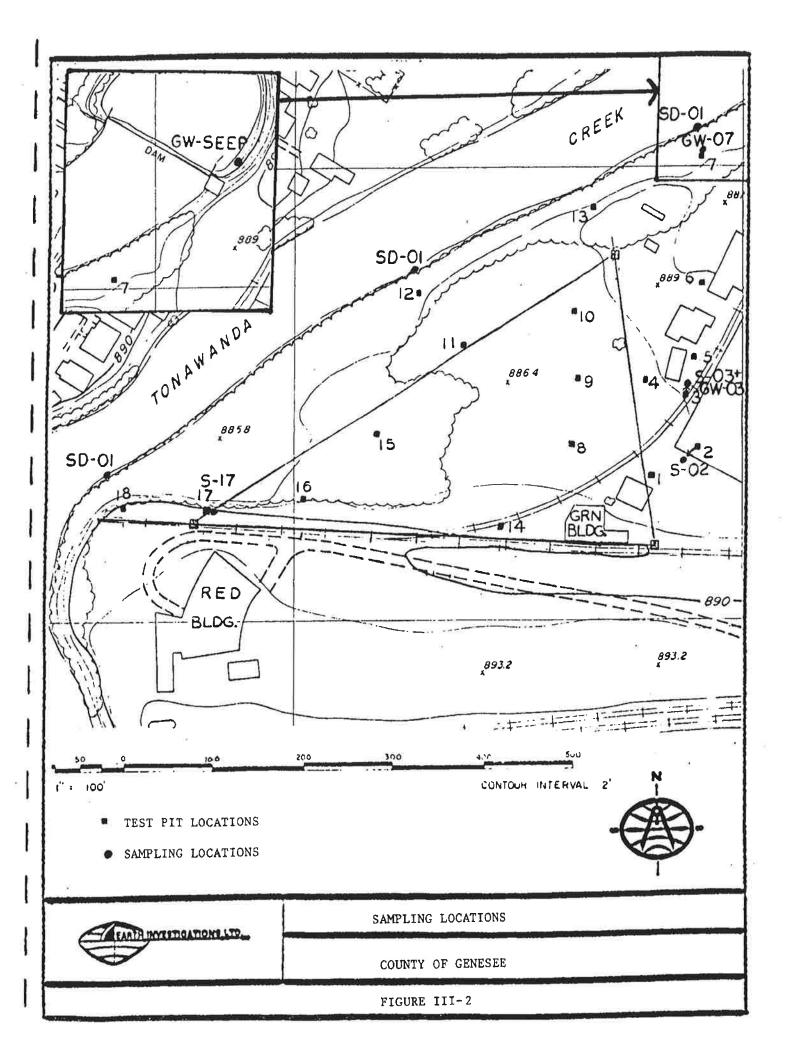
EIL reviewed several and selected one (1) background

location where creek sediment, soil, and groundwater samples were collected upstream of the Evans Street site on Tonawanda Creek for analytical testing and comparative purposes (i.e. background versus site contaminant concentrations). The sample locations are designated by small circles numbered SD-BG-01, S-BG-01, and GW-BG-01, respectively, on Figure III-1. Soil and sediment logs are provided herewith in Attachment 1. EIL's field notes are provided in Attachment 2.

B. Test Pits

In conjunction with County personnel, EIL excavated eighteen (18) test pits on-site and observed, identified and described the soil, fill and waste types present in each location. The descriptive logs are provided in Attachment 1. EIL's field notes are provided in Attachment 2.


Three (3) solid samples were collected from the test pit locations for analytical testing purposes, as shown on Figure III-2. These included one (1) waste sample designated by a small circle numbered S-02, and two (2) fill samples designated by small circles numbered S-03 and S-17. One (1) seep and two (2) groundwater samples, designated by small circles numbered GW-Seep, GW-03 and GW-07, respectively, were also collected.


All test pit locations were selected by EIL and surveyed in and placed on a site map by County personnel for sample location identification purposes.

C. Creek Sediments

EIL collected, observed, identified and described the creek sediments present along the bank of Tonawanda Creek in three (3) on-site locations. These are identified on Figure III-2 as sample location SD-01. Aliquots from each location were composited into a single sample for analytical testing purposes. Sediment logs are provided in Attachment 1. EIL's field notes are provided in Attachment 2.

All creek sediment sampling locations were selected and their approximate locations depicted on a site map by EIL personnel for sample location identification purposes.

D. Sample Preparation and Handling

All creek sediment, fill, waste and groundwater samples were prepared and handled by a soil scientist and an environmental scientist in accordance with chain-of-custody procedures and the currently-acceptable protocols and procedures outlined in the federal and state regulations. The completed chain-of-custody form is included in Attachment 3.

E. Excavation Monitoring

An OVM meter was utilized at each sampling location to facilitate the detection of organic vapors. The results of this monitoring are provided in Attachment 2.

F. Analytical Laboratory Testing

The samples collected during the completion of this study were tested for the each of the parameters outlined in EIL's proposal dated March 6, 1990. The laboratory analytical and QA/QC results are provided in Attachment 4.

IV. FINDINGS

EIL's findings will be discussed topically below. In short, the findings reported will include soil and fill descriptions and field observations, laboratory analytical test results, and project related discussions and correspondence.

A. Soil and Fill Descriptions and Field Observations

Logs and field notes prepared for this study are included for reference purposes in Attachments 1 and 2, respectively. EIL's findings with respect to soils and fill present on the site are described in general terms below.

1. Test Pits

Eighteen (18) test pits were excavated by the County with backhoes to permit EIL to characterize the fill present on the site. Each pit was dug until original soils were reached and identified.

The test pits ranged from 3.5 to 8.0 feet in depth. Fill was encountered at every test pit location, with a range in thickness of 0.8 to 7.0 feet. The average depth of fill site-wide was 2.89 feet. Groundwater was encountered at twelve (12) of the eighteen (18) locations between 3.2 and 7.8 feet

below the ground surface. The average depth to groundwater in these locations was 5.02 feet. Groundwater was not encountered in six (6) of the test pit locations. The depth to groundwater in these locations was something greater than 4.2 to 7.0 feet below the ground surface. It is important to mention that (i) fill may be shallower or deeper in areas not examined, and (ii) the aforementioned groundwater levels are likely average levels for the year and may actually be higher or lower during seasonal wet and dry periods, respectively.

The fill material was comprised of incinerated garbage (consisting of cinders, ash, broken glass and bottles, brick and brick fragments, metal fragments, asphalt, coal fragments, cloth, concrete, and one observed railroad rail) and sand, gravel, and a mixture of sand with little to some silt or silt with little clay. The original soil was sorted and deposited by water as reflected in the bedding and stratification of the described sediments. Typical of sand and silty sand sediments, the original soils on this site are subject to liquification with an increase in soil moisture content. This was observed during EIL's field observations in test pits numbered 1, 3, 8, 9, 10, 15 and 16. Stratified sand and gravel layers also present on-site may be subject to transport or movement into open trenches or excavations caused by water movement through these layers.

A significant area of surficial fill is present in a large area of the center parcel just along the northern boundary of the southern-most parcel. This fill material and the underlying original soil are assumed to have loose to very loose consistency (low density), which means that they will have very poor load-bearing capacity and will have to be replaced with select fill in any areas where construction is anticipated.

Pipes were encountered at test pit locations 2, 3 and 12. The pipe at location 2 contained a greenish, light tan, and dark brown silt-like sediment which was sampled to permit analysis. The pipe at location 3 contained only water which rushed out of the pipe when it was broken by the backhoe. The groundwater in this location had a visible sheen on its surface and a hydrogen sulfide-like odor was noticed during excavation. A slight hydrogen sulfide odor was noted in test pit

location 11, but no sheen was observed on the water surface. Location 3 was the only location where a reading of greater than 0 (zero) was measured by the OVM meter. The reading was 0.2 parts per million (ppm). As such, fill and groundwater samples were obtained for analysis at this location. The pipe at location 12 remained unbroken throughout excavation and no sample was collected at this location.

In addition to test pit location 3, a sheen was observed on the groundwater surface at test pit locations 7 and 12 and on the seep present north of the dam. As such, groundwater samples were collected at locations 3 and 7 for analysis.

In addition to the sludge-like sediment sample collected at location 2 and the fill sample collected at location 3, a fill sample was collected at test pit location 17. This sample location was selected because of the volume of black cinders and ash present in that area of the site.

Creek Sediments (On-Site)

The creek sediment samples collected on-site were obtained by a soil scientist using hand augers. Under a water depth ranging between 0.7 to 0.8 feet, three (3) sediment samples were collected to depths ranging between 1.2 to 1.3 feet below the water surface. As such, 0.5 feet of sediment sample was collected at each location. An aliquot of sample from locations 19, 20, and 21 were composited for analytical testing purposes.

The sediments were very soft dark gray silt. Decayed leaves were encountered at location 21. No fill or contamination was observed at any of the three (3) locations.

3. Background

Background soil and groundwater samples were collected at location 22 for analytical testing purposes. The soils at this location were the same type as most of those on the site and the strata ranged from extremely moist layers of silt and sandy silt, to wet layers of silty sand and finally sand. Groundwater was encountered at 2.5 feet below the ground surface and no fill or contamination was observed at this location.

The creek sediment samples were collected in the background area as well. Under a water depth of 0.8 feet, the sediment sample was collected to a depth of 1.3 feet below the water surface. As such, 0.5 feet of sediment sample was collected at this location (numbered 23) for analytical testing purposes.

The sediments were very soft dark gray silt. Decayed leaves were encountered at this location.

B. Laboratory Analytical Test Results

The results of the analytical testing completed for this project are provided in Attachment 4 and summarized in the following tables.

TABLE IV-1 SUMMARY OF ANALYTICAL RESULTS GROUNDWATER SAMPLES

		Groun	dwater		Ground-	
PARAMETERS		ON-SITE		Back- _Ground	water Standard	s Trip
_(in ppm)	GW-03	<u>GW-07</u>	GW-Seep	GW-BG-01	<u>(703.5)</u>	Blank
Aluminum	3.19	70.8	10.7	117	NL	
Arsenic	BQL	0.07	BQL	BQL	0.025	
Barium	1.11	0.17	1.90	0.02	1.00	
Cadmium	0.006	0.012	BQL	0.004	0.01	
Chromium	BQL	0.16	0.04	0.09	NL	
Copper	0.11	1.75	0.05	0.28	1.00	
Magnesium	6.96	166	42.9	302	35.0	
Lead	0.18	5.1	0.41	0.38	0.025	~~~
Nickel	BQL	0.24	BQL	0.41	NL	
Tin	0.13	BQL	BQL	BQL	NL	
Zinc	0.67	6.95	0.54	1.19	5.00	
Total Cyanide	0.003	0.006	0.005	BQL	0.20	
Phenols	BQL	0.04	0.01	BQL	0.001	
PCB's	BQL	BQL	BQL	BQL	0.0001	
Methylene Chloride	BQL	BQL	BQL	BQL	0.05	BQL
Carbon Tetra- chloride	BQL	BQL	BQL	BQL	0.005	BQL
Benzene	BQL	BQL	BQL	BQL	ND	BQL
Toluene	BQL	BQL	BQL	BQL	0.05	BQL
Xylene	BQL	BQL	BQL	BQL	0.05	BQL
Trichloro- ethylene	BQL	BQL	BQL	BQL	0.01	BQL
Notes: BOL	= Below Ou	antifiable	Limite	NT. = No T	imi+	

Notes: BQL = Below Quantifiable Limits NL = No Limit --- = Not Tested For ND = Non-detection ND = No

ND = Non-detectable

TABLE IV-2 SUMMARY OF ANALYTICAL RESULTS SOLID SAMPLES

PARAMETERS	<u></u>	On-Site	Soils	Dagleswaying		liments
(in ppm)	S-02	S-03	<u>S-17</u>	Background S-BG-01	On-Site E SD-01	SD-BG-01
Aluminum	658	12,200	7,850	20,600	10,000	8,950
Arsenic	BQL	5.6	10.2	BQL	4.1	4.0
Barium	67.9	44.1	97.5	163	75.5	BQL
Cadmium	BQL	BQL	BQL	BQL	BQL	BQL
Chromium	8,320	15.8	16.6	18.8	6.0	7.8
Copper	55,600	234	121	13.0	20.2	14.4
Magnesium	380	9,040	13,400	10,200	16,800	15,400
Lead	1,340	BQL	BQL	BQL	BQL	BQL
Nickel	13.6	29.1	20.7	28.0	17.1	21.3
Tin	349	28.3	46.7	12.3	BQL	95.7
Zinc	16,300	777	393	105	99.0	88.2
Total Cyanide	BQL	0.04	0.30	BQL	BQL	BQL
Phenols	1.0	0.14	0.95	BQL	BQL	0.97
PCB's	BQL	BQL	BQL	BQL	BQL	BQL
Methylene Chloride	BQL	BQL	BQL	BQL	BQL	BQL
Carbon Tetra- chloride	BQL	BQL	BQL	BQL	BQL	BQL
Benzene	BQL	BQL	BQL	BQL	BQL	BQL
Toluene	BQL	BQL	BQL	BQL	BQL	BQL
Xylene	BQL	BQL	BQL	BQL	BQL	BQL
Trichloro- ethylene	BQL	BQL	BQL =	BQL	BQL	BQL

1. Groundwater Samples

Table IV-1 provided above presents the results of analytical laboratory testing completed on the three (3) groundwater samples collected on-site, namely GW-Seep, GW-03, and GW-07, plus the sample trip blank provided in accordance with standard protocols and procedures. The New York State Department of Environmental Conservation's groundwater quality standards (6NYCRR 703.5) and the results of testing the background sample are provided as well for comparative purposes.

As shown in the aforementioned table, (i) all three (3) samples collected on-site and the background sample exceeded the groundwater standards for lead content, (ii) GW-03 and GW-Seep exceeded the limit for barium, (iii) GW-07, GW-Seep, and the background sample exceeded the limit for magnesium, and (iv) GW-07, the location that is assumed to be on the downgradient side of the site, exceeded the limits for arsenic, cadmium, copper, zinc, and phenols. It is common for groundwater to contain these parameters in industrial areas. The elevated concentrations of barium, copper, lead, and zinc, however, suggest that metals are leaching into the groundwater at or somewhere upgradient of the sample locations.

2. Table IV-2 provided above presents the result of analytical laboratory testing completed on the onsite and background solid samples and creek Based upon its experience with the sediments. testing of creek and river sediments, EIL does not believe that the creek sediment samples collected on-site demonstrate any real degree contamination. The solid samples collected in test pit locations 2, 3 and 17, however, contain noteworthy amounts of heavy metals. All three (3) locations contained copper and zinc at levels significantly higher than background and outside of the range that EIL has measured using background samples from other sites located in western New York. In addition, test pit location 2 contained chromium, copper, lead, tin and zinc in very high concentrations. High enough, in fact, location 2 could be deemed a "hot spot". testing has been completed to date to determine the leachability of these samples and the likelihood that they would or could have been the source of heavy metals present in the groundwater.

Because of the importance of the laboratory data, EIL requested that the laboratory double check its lab notes and calculations to confirm the accuracy of its report. The laboratory confirmed its data and believes the report to be completely accurate.

C. Project Related Discussions and Correspondence

1. United States Environmental Protection Agency

On May 10, 1990, EIL received a telephone call from Mr. Matty Stanislaus, an attorney with the United States Environmental Protection Agency's (USEPA) Office of Regional Counsel. In EIL's telephone conversation with Mr. Stanislaus and in the USEPA's follow up letter of May 15, 1990 (provided in Attachment 5), the Office of Regional Counsel advised EIL that they had no files related to the parcels under investigation or the past and current property owners, leasees, et cetera.

2. Past Employee

On April 30, 1990 EIL personnel spoke with Mr. Adam Pcionek, a former Doehler-Jarvis employee who worked for the company for a total of 46 years. This includes several years in which he served in a management capacity. In general, Mr. Pcionek felt that there is likely little to be concerned about with this site. He was aware of a very small spill of transformer oil by an outside contractor on the east side of the Evans Street building several years ago. He was unsure but felt that the spilled oil may have contained PCB's. Mr. Pcionek was invited at this time to join EIL on-site during the completion of the field work for Phase II in the event that any structures or contamination were discovered or he was able to recall any other items that may be of concern to the County.

On May 3, 1990, Mr. Pcionek joined EIL on-site during the excavation of the test pits. The location where he believed that the transformer oil had been spilled has since been excavated to allow for the installation of a new storm sewer. Because select fill is often used around sewer lines and some portion of the excavated material had to have been hauled off-site, Mr. Pcionek stated that it is unlikely that any residue from the alleged spill continues to exist on-site. This area is currently paved over with asphalt. When the waste-containing pipe was exposed, Mr. Pcionek was asked what the

pipe was used for. He suggested that it may be a yard drain which ran along the side of the building and discharged to the creek. Mr. Pcionek later stated that similar drains were present along each side of the building and were probably never removed. Mr. Pcionek was also aware of two (2) above-ground solvent storage tanks which were located on the west side of the building. These tanks were removed from the site when their use was discontinued.

V. OPTIONS AND RECOMMENDATIONS

The purpose of a Phase II real estate investigation is to determine, on a qualitative basis, whether or not a site is contaminated. Based upon the findings presented above, EIL would downgrade this site from one which "might be contaminated", as stated in its Phase I report referenced above, to one that is "known to be contaminated".

The County has at least three (3) options with respect to this site. These include:

A. Purchase the Site Without Any Further Testing

Because EIL believes, at least on a "qualitative" basis, that this site is contaminated, purchase of this property without further "quantitative" testing (as described below) would not be advisable. In EIL's opinion, the County would (i) not have completed sufficient investigation and testing to establish an adequate innocent purchaser defense in accordance with the guidelines provided by the USEPA under CERCLA (the Comprehensive Environmental Response, Compensation, and Liability Act), and (ii) potentially expose itself to significant site investigation and remediation costs if the contamination is later found to be site-wide and/or a significant enough threat to human health and the environment for the regulatory agencies to require corrective action.

B. Consider Purchasing the Site After Quantitative Testing

By definition, qualitative investigation and testing completed during Phase II studies determine the presence and general characteristics or components of the contamination present on a site. Once it has been determined that contamination is present, it is advisable to measure the contamination, via quantitative investigation and testing, to determine the actual volume of soil, fill, and groundwater that has been impacted by the contamination, or may yet be impacted due to

migration, complete a risk assessment, and determine the extent and cost of remediation that may be required by the applicable regulatory agencies.

If the County wishes to consider this site further, EIL recommends the completion of quantitative investigation and testing. A scope and budgetary estimate for this work have not been completed to date, but EIL is confident that any estimate prepared may include (i) the installation of multiple groundwater monitoring wells, (ii) the excavation, identification, observation, and description of any piping systems that can be located, (iii) the collection and testing of multiple soil, waste, fill, and groundwater samples, (iv) the preparation of reports and a risk assessment, if necessary, and (v) discussions and/or negotiations with the regulatory agencies. The cost of this work will likely be in the tens of thousands of dollars and a proposal can be generated upon request.

contamination discovered on-site to date, described previously, may well exist only in the locations where the samples were collected. case, corrective action would likely cost very little and the impact on the County's overall budget may be insignificant. On the other hand, it is conceivable that (i) the site is contributing to the contamination discovered in the groundwater, (ii) the large area of black cinder and ash fill may require removal and offsite disposal, and (iii) the concentrated waste found in the pipe located in test pit number 2 may be present in several pipes in and around the building foundation, in the pipes leading to the creek, and in soil, fill and groundwater surrounding the pipes in any locations where leaking may have occurred. In this case, corrective action could be very costly for the County in terms of time and hard dollars. Site remediations typically require several years to implement and cost hundreds of thousands of dollars or more to complete.

C. Consider Another Site

If the County determines that the options outlined above are environmentally or economically unacceptable, EIL recommends that the County consider a different site.

ATTACHMENT 1

Soil Investigations and Monitoring Well Installations
1091 Jamison Road & Flora NV 1050 & (716) 655 171

TEST PIT HOLENO 1-90)	1091 Jamison Road	g 1:10a, 19 1 1405		
PROJECT Envi	ronmental	assessment	LOCATION See		
2J89a/ J892 <u>Old</u>	Doeler-Jar	rvis parcel, Batavia, NY		e survey	
	TY OF GENE			5/2/90	COMPLETED5/2/90
DEPTH BI	LOWS ON AMPLER	DESCRIPTION & CLAS	SIFICATION		WATER TABLE & REMARKS
5		Extremely moist to black inciner sisting of cinder glass and unbroke and unbroken brid fragments, < 10% fill, compact in disturbed Wet distinctly moly (SILTY-SAND) who mostly subrounded coarse size sand, compact in place,	ated garbage ors, ash, broke en bottles, broke, and few me sand and grave place, loose ottled brown go with 15 to 30% gravel, fine little silt, soil materia	con- en coken etal l when 3.5 ravel-	Mostly incinerated garba to 3.5 feet over water sorted and deposited san with little gravel and silt to bottom of test pit.
10		readily liquifies thinly bedded, (S	M)	5.0	Water level at 3.9 feet below ground surface at
					completion with no apparent seepage at the fill/soil boundary. No sheen to water sur-
15		10 30			face, OVM reading 0 ppm.
		я.			
20					
		74-14-14-14-14-14-14-14-14-14-14-14-14-14			
N = NUMBER OF BLO	OWS TO DRIVE	SPOON	** WITH		PER BLOW

moon nim			1091 Jamison Road	▶ Elma, NY 14059 •	• (716) 655	-1717
TEST PIT	90			S	URF ELV _	
1 1100 201	vironment			LOCATION See SI	urvey	
2J89a/ <u>01</u> J892 —	d Doeler-	Jarvis p	arcel, Batavia, NY	(2/11)		
CLIENT _CO	UNIY OF G	ENESEE		DATE STARTED	5/2/90	COMPLETED
SAMPLE LESS	BLOWS ON SAMPLER 5 12 18	I N	DESCRIPTION & CLASS	IFICATION		WATER TABLE & REMARKS
	0 / 12 / 18 / 22		Moist mixed blac very gravelly (S to 60% gravel, f sand, compact, (G Extremely moist of gravelly (SILTY-S and 20 to 40% cir	AND) fill with of the to coarse significant with the second secon	40	Sand and gravel fill to 1.0 feet (3.9 feet in pipe excavation) over mixed sand with some gravel and cinders and ash to 3.0 feet over water sorted and deposited
5			ash, compact in p loose when distur Extremely moist f	place, cbed 3.0	2020	silt to bottom of test pit.
			mottled brown (Si compact, no appar soil structure, f fine size roots,	ent	5.0	
			Test pit excavate	d to 5.0 feet.		Water level at 4.8 feet below ground surface at completion.
10						No sheen and OVM reading of 0 ppm.
					2	A Same as 2.5 feet of fill.
15					8	Clay pipe wall thickness, 2", inside diameter is 12 inches. Pipe oriented east-west. Width of pipe
						excavation is 1.9 feet. Approximately 1/2 of pipe containing greenish, light tan and dark brown silt
						size sediments.
. 20						
N = NUMBER	OF BLOWS TO	DAIVE	spoon	RTIW"	Ib WT F/	ALLING " PER BLOW
eal	Donald V	W. Owens/	Soil Scientist		SHEET	0F

Soil Investigations and Monitoring Well Installations

1091 Jamison Road @ Elma, NY 14059 • (716) 655-1717

OLICAT	=	COL	HNT.	Y C	OF (GEN	SEE DATE STARTE	₀ <u>5/2/90</u>	COMPLETED5/2/90
OEPTH FEET	SAMPLE	0/6	BLG SA	MPL	ON ER	N	DESCRIPTION & CLASSIFICATION		WATER TABLE & REMARKS
5							Moist mixed and in layers to and dark gray gravelly and velly (SAND) fill with 20 to crushed angular gravel, fir coarse size sand, noticed for glass fragments, occasional 10 to 20% cinders and ash, in place Extremely moist to wet fair mottled brownish gray (SAND SILT), some very fine size loose, soil material tends liquify when disturbed, no soil structure, (ML) tendir wards (SM)	very gra- to 60% he to few l bricks, dense 2.8 htly DY- sand, to apparent	Mixed and layered most sand and gravel fill to 2.8 feet over water some and deposited silt with some very fine size sand to bottom of test pit.
10							Test pit excavated to 4.0 f	Seet.	Noticed 1.0 foot ID clapipe oriented north-south with top of pipe 3.5 feet below surface. Noticed petroleum odor when pit was excavated but soon volatized.
15.						F	9. 28		Water level at 3.3 feet below ground surface at completion with sheen on surface. OVM reading 0.2 ppm who
									pit was excavated.
20			-		-		9.80 S. 20 S		/

EARTH DIMENSIONS, INC.

little silt, and 10 to 35% cinders ash, with broken glass and brick fragments, dense Extremely moist distinctly mottled dark gray (SILT), compact, no apparent soil structure, common fine size roots, (ML) Extremely moist faintly mottled brown (SILT), compact, no apparent soil structure, few fine size roots, (ML) Test pit excavated to 4.5 feet. Noticed wet brown graw (SILTY-SAND) layer 4. to 4.5 foot depth on wall only. Water level at 4.4 fee below ground surface a completion.								Assessm		LOCATION See s		
DESCRIPTION & CLASSIFICATION Moist in layers gravelly (SILTY-SAND) fill with 20 to 40% gravel, little silt, and 10 to 35% cinders ash, with broken glass and brick fragments, dense Extremely moist distinctly mottled dark gray (SILT), compact, no apparent soil structure, common fine size roots, (ML) Extremely moist faintly mottled brown (SILT), compact, no apparent soil structure, few fine size roots, (ML) Test pit excavated to 4.5 feet. Noticed wet brown gravel, little silt a nonsoil fill to 1.9 a cover apparent origina topsoil to 2.4 feet of water sorted and deposit to bottom of testing the pit. 2.4 Extremely moist faintly mottled brown (SILT), compact, no apparent soil structure, few fine size roots, (ML) Test pit excavated to 4.5 feet. Noticed wet brown gravel, little silt a nonsoil fill to 1.9 a cover apparent origina topsoil to 2.4 feet of water sorted and deposit to bottom of testing to be apparent soil structure, few fine size roots, (ML) Water level at 4.4 feet below ground surface a completion. No sheen on water surform OVM reading 0 ppm.	J892								cel, Batavia, NY		2/90	COMPLETED5/2/90
Moist in layers gravelly (SILTY-SAND) fill with 20 to 40% gravel, little silt, and 10 to 35% cinders ash, with broken glass and brick fragments, dense Extremely moist distinctly mottled dark gray (SILT), compact, no apparent soil structure, common fine size roots, (ML) Extremely moist faintly mottled brown (SILT), compact, no apparent soil structure, few fine size roots, (ML) Test pit excavated to 4.5 feet. Noticed wet brown grave (SILTY-SAND) layer 4. to 4.5 foot depth on wall only. Water level at 4.4 feet below ground surface a completion. No sheen on water surform common fines in the province of the policy of the province	DEPTH FEET	SAMPLE NO.	0/6	BLG SA	OWS MPL	ON ER	7,		DESCRIPTION & CLAS	SIFICATION		WATER TABLE & REMARKS
wall only. Water level at 4.4 fee below ground surface a completion. No sheen on water surface of the completion of th									SAND) fill with little silt, and ash, with broken fragments, dense Extremely moist dark gray (SILT apparent soil sefine size roots Extremely moist brown (SILT), co soil structure, roots, (ML)	20 to 40% gravel 10 to 35% cinder glass and brick edistinctly mottle (), compact, no cructure, common (ML) faintly mottled compact, no apparent few fine size	1.9 ed 2.4	gravel, little silt and nonsoil fill to 1.9 feet over apparent original topsoil to 2.4 feet over water sorted and deposit silt to bottom of test pit. Noticed wet brown gravelly (SILTY-SAND) layer 4.3
	10								GE .			wall only. Water level at 4.4 feet below ground surface at completion. No sheen on water surface
	15								186			
20	20		1		1		_			- W- 1		

Soil Investigations and Monitoring Well Installations

1091 Jamison Road • Elma, NY 14059 • (716) 655-1717

TEST HOLE	PIT NO.	, 5-9	0		-						SURF	ELV	***************************************	
PROJE	ECT .	Env	iro	orim	ent	al	Assess	ment		LOCATION Se	ee surv	ey		
2J89 <i>a</i>	a/ :	01d	l Do	ele	er-	Ja	rvis pa	rcel, Batav	/ia, NY					
.1892		COL	NTY	? OI	FG	EN	ESEE		****	DATE STARTED	5/2/9	0	COMPLETED5/2,	/90
DEPTH FEET	SAMPLE	0/6	BLC SA	WS MPLI	ON ER	٧		DESCRIPTI	ION & CLASSIF	ICATION			WATER TABLE & R	EMARKS
5								SAND) fill fine to co silt, dens Dark gray Extremely brown (SIL fine size size sand,	with 15 carse size se in place asphalt, moist fa: TY-SAND) gravel, little set soil se	avelly (SI) to 40% grade sand, line ce, (SM,GM) hard intly mottl with 3 to fine to coasilt, compa	avel, ttle) led 5% arse	1.3 2.2	Sand with some little silt fi feet over asph feet over wate and deposited little silt, t to bottom of	ll to 1.3 alt to 2.2 r sorted sand with race gravel
						_	:	Test pit e	xcavated	to 4.2 fee	et.		No water at con	mpletion.
15													OVM reading, 0	ppm.
								-			-	=		D B1 O14
	N = NUMBER OF BLOWS TO DRIVE "SPOON "WITH Ib WT FALLING "PER BLOW eal LOGGEO BY Donald W. Owens/Soil Scientist SHEET OF 1													
LUG	ucv t	, -					17/04					SHEEL		

J892 CLIENT						-Ja GEN	s parcel, Batavia, NY E DATE STARTED 5/2	2/90	COMPLETED 5/2/90		
DEPTH FEET	AMPLE	0,	BLOWS ON SAMPLER				DESCRIPTION & CLASSIFICATION		WATER TABLE & REMARKS		
5.			/12	8	1 /24		Moist dark gray gravelly (SILTY-SAND) fill with 20 to 40% gravel, fine to coarse size sand, little silt, few broken brick fragments, one RR rail, dense, (SM,GM) Extremely moist dark gray SILT, compact, common fine size roots, (ML) Extremely moist distinctly mottle brown SILT, compact, no apparent soil structure, common fine size	20 to 40% gravel, ize sand, little silt over apparent topsoil to water sorted silt to both pit. 20 to 40% gravel, little silt over apparent topsoil to water sorted silt to both pit. 21 to 40% gravel, little silt over apparent topsoil to water sorted silt to both pit.			
HOATH AND							roots, (ML) Test pit excavated to 5.5 feet.	5.5	No water at completion OVM reading, 0 ppm.		
10											
							*				
15							* x				
20											

Soil Investigations and Monitoring Well Installations

1091 Jamison Road • Elma, NY 14059 • (716) 655-1717

TES								š	SURF ELV ::-		
						l assess			iee survey		
209	2					arvis pai NESEE	rcel, Batavia, NY	C	5/2/90	COMPLETED	5/2/90
DEPTH FEET	SAMPLE	0 6	BLO SAM	WS ON APLER	ı N		DESCRIPTION & CLAS	SIFICATION		WATER TAB	LE & REMARKS
5							Moist to 3.0 fe below, in 0.2 to layers dark grar SAND) fill with light tan (SAND dark gray to lie ated ash and cir and glass fragments, cloth, ar fragments, concr (SILT) fill, ver common fine to m to 6.0 feet, few below	1.0 foot the gravelly () 15 to 40% growth from size ght gray incomplete with more than the gray loose to decium size and fine si	sand, iner- etal rag- brick rk gray compact, roots	layers to water sor	nonsoil fill in 6.5 feet over ted and deposit- o bottom of test
10							Wet distinctly m SILT, loose weak structure, few f (ML)	blocky soi	il ots, 7.5	below grou completion	
15							20	451		of water. OVM reading	en to surface g 0 ppm.
. 20							· · · · · · · · · · · · · · · · · · ·			į.	
.		ne									
							"SPOON	"WITH=			
-~ togo	ED BY	-	0110	ALU Y	T. 1	-wells/30.	il Scientist		SHEET	OF ::	11

EARTH DIMENSIONS, INC.

TEST PIT	1091 Jamison Road • Elma, NY 1-i059 • (illations (716) 655-1717
HOLE NO	Cupe	ELV
PROJECT Environmenta	(OCATION Comments	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
J892 Old Doeler-J	arvis parcel, Batavia, NY	
CLIENT COUNTY OF GET	NESEE DATE STARTED 5/2/9	0 COMPLETED 5/2/90
BLOWS ON		COMPLETED
DEPTH SAMPLER FEET W 6 6 12 18 1 N	DESCRIPTION & CLASSIFICATION	WATER TABLE & REMARKS
	gray, rusty brown and dark gray incinerated, garbage consisting of ash and cinders, with glass and metal fragments, very loose Extremely moist faintly mottled brown (SANDY-SILT) with 5 to 15% fine size gravel, some fine to coarse size sand, loose, soil material tends to liquify when disturbed, no apparent soil structure, (SM) Wet brown (SAND), medium to coarse size sand, loose, sand readily flows in moving water, stratified, (SW)	to 0.8 feet over mostly cinders and ash to 3.0 feet over water sorted and deposited silt with some sand, trace to little gravel to 5.5 feet over water sorted and deposited sand to bottom of test pit.
W - NUMBER OF -		
N = NUMBER OF BLOWS TO DRIVE	SPOON WITH ID WT	FALLING PER BLOW
allogged By Donald W. Owen	2) 2011 2016ULIST	EET OF 1

Soil Investigations and Monitoring Well Installations

1091 Jamison Road • Elma, NY 14059 • (716) 655-1717

	OLE N			90			SURF. El	ELV
Р	AOJEC	т _	En	vir	onme	enta	l assessment LOCATION See sur	rvey
		a/	01	d D	oele	er=	arvis parcel, Batavia, NY	
	892 LIENT	_	CO	UNT	Y 01	GE	NESEE DATE STARTED5/2/91	<u>Ω</u> COMPLETED <u>5/2/90</u>
DI	EPTH EET	SAMPLE	0/6	BLO SAR	WS OF	4 N	DESCRIPTION & CLASSIFICATION	WATER TABLE & REMARKS
								Mixed soil and nonsoil fill to 1.0 foot over apparent original top- soil to 1.5 feet over water sorted and deposited silt to 4.0 feet over
	. 5						Extremely moist faintly mottled	water sorted and deposited very fine size sand with some silt to 6.0 feet over water sorted and depos-
							brown (SILT), compact, no apparent soil structure, few fine size roots,	ited sand to bottom of test pit.
	10						<pre>turbed, no apparent soil structure, (SM) grades downward to Wet brown (SAND) with 3 to 5% fine size gravel, very fine to medium size sand, little coarse size sand,</pre>	<u>6.0</u> 7.0
	15						Test pit excavated to 7.0 feet.	Water level at 6.0 feet below ground surface at completion.
								No sheen to water surface, OVM reading 0 ppm.
×.	20							<u>v</u>
		IUMB	BER (OF BL	ows	TO DI	NIVE " SPOON " WITH Ib	WT FALLING "PER BLOW
bls								SHEET OF

Soil Investigations and Monitoring Well Installations
1091 lamison Road • Elma, NY 14059 • (716) 655-1717

TEST PIT HOLE NO 10-90	SURF.	ELV				
PROJECT <u>Environmenta</u>	al assessment LOCATION See sur	rvey				
2J89a/ Old Doeler-	Jarvis parcel, Batavia, NY					
1807		00 COMPLETED <u>5/2/90</u>				
DEPTH BLOWS ON SAMPLER FEET V 0 6 12 18 24 N	DESCRIPTION & CLASSIFICATION	WATER TABLE & REMARKS				
5	Moist dark gray mostly incinerated garbage consisting of cinders, ash, glass, metal and broken brick fragments, mixed with 20 to 40% gravelly (SILTY-SAND) fill, loose Extremely moist dark gray (SILT), compact, few fine size roots, (ML) Extremely moist distinctly mottled brown (SILT), compact, soil tends to liquify when disturbed, weak prismatic soil structure, few fine size	2.5 sorted and deposited silt to 5.0 feet over water 3.5 sorted and deposited very fine size sand with some				
	roots, (ML) grades downward to Extremely moist distinctly mottled brown (SILTY-SAND), very fine size	<u>5.0</u>				
10	sand with some silt, compact, soil material readily liquifies when disturbed, no apparent soil structure, (SM)	5.5				
	Test pit excavated to 5.5 feet.	No water at completion,				
		OVM reading 0 ppm.				
15						
201 1 1 1 1						
	Owens/Soil Scientist	b WT FALLING PER BLOW SHEET OF				

	1091 Jamison Road • Elma, NY 14059 • (716)	655-1717
TEST PIT HOLE NO 11-90	SURF ELV	
PROJECT <u>Environmenta</u>	l assessment LOCATION <u>See surv</u>	ey
	arvis parcel, Batavia, NY	ii di raminina in
J892 CLIENT <u>COUNTY OF GET</u>	NESFE DATE STARTED 5/2/9	O COMPLETED
DEPTH SAMPLER SAMPLER	DESCRIPTION & CLASSIFICATION	WATER TABLE & REMARKS
	Extremely moist black gravelly (SILTY-SAND) fill with 15 to 40% gravel, fine to coarse size sand, little silt, very loose, many fine to coarse size roots,(SM,GM) Extremely moist becoming wet below	Sandy fill with some gravel, little silt to 0.8 feet over sand fill with some gravel to 2.2 feet over mostly incinerated garbage to 2.7
5	2.5 feet highly mottled light brown gravelly (SAND) fill with 20 to 40% gravel, fine to coarse size sand, (SW)	feet over silty alluvial sediment to bottom of test pit.
	incinerated garbage consisting of ash, cinders, glass, metal and broken brick fragments, loose, 2. Extremely moist black (CLAYEY-SILT),	.7
10	little clay, very soft, massive soil structure, few fine to medium size deteriorated roots, (ML) tending towards (ML-CL) Extremely moist gray (CLAYEY-SILT), little clay, soft, massive soil structure, few fine size deteriorated rooots, (ML) tending towards (ML- CL)	
	Wet distinctly mottled brownish gray (SILT), very loose, weak thinly bedded, (ML)	
15	Test pit excavated to 5.5 feet.	Water level at 5.0 feet below ground surface at completion.
20		No sheen to water surface, OVM reading 0 ppm. Slight Hydrogen Sulfide odor.
N = NUMBER OF BLOWS TO OR	IVE SPOON WITH Ib V 7. Owens/Soil Scientist S	NT FALLING " PER BLOW HEET 1 OF 1

1091 Jamison Roa		Elma, NY	14059	(716)	655-1717
------------------	--	----------	-------	-------	----------

TEST PIT HOLE NO 12-90	SURF E	ELV
PROJECT <u>Environmental</u>	assessment LOCATION See sur	vey
	urvis parcel, Batavia, NY	
J892 CLIENT COUNTY OF GEN	JESEE DATE STARTED 5/2/	90 COMPLETED5/2/90
LE BLOWS ON		
DEPTH SAMPLER SAMPLER	DESCRIPTION & CLASSIFICATION	WATER TABLE & REMARKS
5	Extramely moist black gravelly (SILTY-SAND) fill with 15 to 40% gravel, fine to coarse size sand, little silt, very loose, numerous fine to coarse size roots, (SM, GM) Extremely moist becoming wet below 3.0 feet distinctly mottled brown (SANDY-SILT), little fine size sand, compact, massive soil structure, few fine size roots, (ML)	Sandy fill with some gravel, little silt to 0.8 feet over coarse silty alluvial sediment to bottom of test pit. 0.8 3.5
	Text pit excavated to 3.5 feet.	Water level at 3.2 feet below ground surface at
10		completion. Slight sheen to water surface, OVM reading 0 ppm. Hit 1.0 foot ID clay pipe oriented east-west at 2.9 feet below ground
15		surface.
20		
	RIVE SPOON WITH I	

bs LOGGED BY Donald W. Owens/Soil Scientist

EARTH DIMENSIONS, INC.

Soil Investigations and Monitoring Well Installations

=		U		
1091 Jamison Road	•	Elma, NY	14059 •	(716) 655-1717

TEST	۰ p	īΤ				1091 Jamison Road ● Elma, NY 14059 ● C	16) 655	-1717
HOLE			13	-90		SURF	ELV =	
PROJE	CT :	En	vir	onne	nta.	assessment LOCATION See sur	cvey	
		Ωlα	1 D	oele	r-Já	rvis parcel, Batavia, NY		
J892 CLIENT		COL	INT	Y_OF	GEN	ESEE DATE STARTED 5/2,	/90	COMPLETED <u>5/2/90</u>
DEPTH	٦	Ţ		OWS O			T	
FEET	SAMPLE	0/6	_	12/18		DESCRIPTION & CLASSIFICATION		WATER TABLE & REMARKS
						Moist dark gray gravelly (SAND) fill with 15 to 40% gravel, fine to coarse size sand, very loose,		Sand with some gravel fill to 3.2 feet over apparent sandy fill with
					\perp	numerous fine to coarse size roots,		some silt and apparent
					1	loose, (SW,GW) Moist light brown gravelly (SAND)	0.3	cinders and ash to 7.0 feet over apparent allu-
	-					with 15 to 40% gravel, fine to coarse size sand, loose, common fine		vial sediment to bottom of test pit.
754					工	and medium size roots, (SW,GW)	3.2	or test pit.
5	-	-	-			Extremely moist black mixed (SILTY- SAND) fill, very fine size sand with		
					1	some silt, apparent silt and sand		
	-	-	-0		-	size ash and cinders, loose, few		
					<u> </u>	fine to coarse size roots, (apparent	7.0	
		-		+	+	Extremely moist to wet olive brown		
						(CLAYEY-SILT), soft, massive soil structure, common fine to medium		
10				-		\ \size roots, (ML-CL)	7.5	
10						Wet distinctly mottled brownish gray (CLAYEY-SILT), soft, massive	ĺ	
					-	\ soil structure, few fine size roots,		¥
			7.30		+	\((ML-CL)	8.0	· · · · · · · · · · · · · · · · · · ·
						Test pit excavated to 8.0 feet.		Water level at 7.8 feet
				士				below ground surface at completion.
		Ш	-			ä s		compaction:
15					-			No sheen to water surface, OVM reading 0 ppm.
					-	· ·		ovi reading o ppin.
					\vdash			
					ļ.,			
					-			
				-	+			//
. 20				1		12		**************************************
						2	n. 1847 5	0 000 00 000
N≠I	YUM I	DEH	ur B	LOWS	IU DH	IVE " SPOON " WITH	IU YY I 1º P	LLING = PER BLOW

SHEET _____ 0F ____ 1

Soil Investigations and Monitoring Well Installations
1091 Jamison Road • Elma, NY 11059 • (716) 655-1717

TEST HOLE N	PI9 _ 0	[14-	90	_		SURF	ELV _	
PROJEC	т_		Env	iro	วณต	ent	al assessment LOCATION See su	rvey	
2J89a/	_	(01d	D	el	er-	Jarvis parcel, Batavia, NY		
J892 CLIENT			COU	NT	7 0	F	ENESEE DATE STARTED5/	2/90	COMPLETED5/2/90
	l	r	01.4	2446			190	1	
OEPTH FEET	SAMPLE NO.	0/6	5A	MPL	ER	N	DESCRIPTION & CLASSIFICATION		WATER TABLE & REMARKS
					-		Moist black cinders and ash, very loose, common fine to coarse size roots	2.0	Cinders and ash to 2.0 feet over apparent water sorted and deposited
5							Extremely moist brown (SANDY-SILT) with little to some very fine size sand, loose, massive soil structure few fine to medium size roots, (ML) grades downward to Wet brown gravelly (SAND) with 15 to 35% mostly fine size subrounded gravel, fine to coarse size sand, loose, stratified, (SW)	5 <u>.</u> 5	coarse silt with little to some very fine size sand to 5.5 feet over water sorted and deposited sand with little gravel to bottom of test pit.
							Test pit excavated to 6.0 feet.		Water level at 5.1 feet below ground surface at completion.
10									No sheen on water surface, OVM reading 0 ppm.
15						P.			n
							*		
20									
							VE "SPOON "WITH		1 OF 1

TEST PIT HOLE WO 15-90. PROJECT Environmental assessment 100cminn See survey 20894 Old Doeler-Jarvis parcel, Batavia, NY 1899 COUNTY OF CEMESSE DATE STARTED 5/2/90 COMPLETE 5/2/90 DEFINE SO SAMPLER PRESE DESCRIPTION'S CLASSIFICATION Extremely moist black (SANDY-SILT) fill with little fine size sand with 30 to 40% glass and brick fragments, loose, common fine to coarse size roots, (ML) Extremely moist distinctly mottled brown (SANDY-SILT) with little very fine size sand, compact, soil material readily liquifies when disturbed, massive soil structure, (SM) Extremely moist becoming wet below 4.0 feet distinctly mottled brown (SILTY-SAND), very fine size sand, some silt, compact, soil material readily liquifies when disturbed, massive soil structure, (SM) Test pit excavated to 4.5 feet. Water level at 4.0 feet below ground surface at completion. No sheen on water surface. O'M reading 0 ppm.	: 1				Soil Investigations and Monitoring Well Insta		1717
PROJECT Environmental assessment 10CATION See survey. 2J89a/ Old Doeler-Jaryis parcel, Batavia, NY 1897 COUNTY OF GENESEE DATE STARTED 5/2/90 COMPLETE 5/2/90 DESCRIPTION & CLASSIFICATION WATER TABLE & REMARKS DESCRIPTION & CLASSIFICATION WATER TABLE & REMARKS DESCRIPTION & CLASSIFICATION WATER TABLE & REMARKS Extremely moist black (SANDY-SILT) fill with little fine size sand with 30 to 40% glass and brick fragments, loose, common fine to coarse size roots, (ML) Extremely moist distinctly mottled brown (SANDY-SILT) with little very fine size sand, compact, soil material read to laughfy when distributed, massive soil structure, (ML) grades downward to Extremely moist becoming wet below (SLITY-SAND), very fine size sand, some silt, compact, soil material readily liquifies when disturbed, massive soil structure, (SM) Test pit excavated to 4.5 feet. Water level at 4.0 feet below ground surface at completion. No sheen on water surface. CVM reading 0 ppm.			-90				
2J89a/ Old Doeler-Jarvis parcel, Batavia, NY 2B92 COUNTY OF GENESEE DATE STARTED 5/2/90 COMPLETED 5/2/90 DEPTH FET 3 SAMMER DESCRIPTION & CLASSIFICATION Extremely moist black (SANDY-SILT) fill with little fine size sand with 30 to 40% glass and brick fragments, loose, common fine to coarse size roots, (ML) Extremely moist distinctly mottled brown (SANDY-SILT) with little very fine size sand, compact, soil material tends to liquify when distributed, massive soil structure, (ML) Extremely moist becoming we below (3ILTY-SAND), very fine size sand, some silt to bottom of test pit. Test pit excavated to 4.5 feet. Water level at 4.0 feet below ground surface at completion. No sheen on water surface OVM reading 0 ppm.				enta			
COUNTY OF GENESEE DATE STARTED 5/2/90 COMPLETED 5/2/90							
Extremely moist black (SANDY-SILT) fill with little fine size sand with 30 to 40% glass and brick fragments, loose, common fine to coarse size roots, (ML) Extremely moist distinctly mottled brown (SANDY-SILT) with little very fine size sand, compact, soil material tends to liquify when distributed, massive soil structure, (ML) Extremely moist becoming wet below 4.0 feet distinctly mottled brown (SILTY-SAND), very fine size sand, some silt, compact, soil material readily liquifies when disturbed, massive soil structure, (SM) Test pit excavated to 4.5 feet. Extremely moist becoming wet below 4.0 feet distinctly mottled brown (SILTY-SAND), very fine size sand, some silt to bottom of test pit. Water level at 4.0 feet below ground surface at completion. No sheen on water surface OVM reading 0 ppm.						/2/90	COMPLETED5/2/90
Extremely moist black (SANDY-SILT) fill with little fine size sand with 30 to 40% glass and brick fragments, loose, common fine to coarse size roots, (ML) Extremely moist distinctly mottled brown (SANDY-SILT) with little very fine size sand, compact, soil material tends to liquify when distributed, massive soil structure, (ML) Extremely moist becoming wet below 4.0 feet distinctly mottled brown (SILTY-SAND), very fine size sand, some silt, compact, soil material readily liquifies when disturbed, massive soil structure, (SM) Test pit excavated to 4.5 feet. Extremely moist becoming wet below 4.0 feet distinctly mottled brown (SILTY-SAND), very fine size sand, some silt to bottom of test pit. Water level at 4.0 feet below ground surface at completion. No sheen on water surface OVM reading 0 ppm.	DEPTH FEET WYS	BL0 SA 0 6 12	OWS ON	- 	DESCRIPTION & CLASSIFICATION		WATER TABLE & REMARKS
Test pit excavated to 4.5 feet. Water level at 4.0 feet below ground surface at completion. No sheen on water surface OVM reading 0 ppm.					fill with little fine size sand with 30 to 40% glass and brick frag ments, loose, common fine to coarse size roots, (ML) Extremely moist distinctly mottled brown (SANDY-SILT) with little very fine size sand, compact, soil mater ial tends to liquify when distributed, massive soil structure, (ML) grades downward to Extremely moist becoming wet below 4.0 feet distinctly mottled brown (SILTY-SAND), very fine size sand, some silt, compact, soil material readily liquifies when disturbed,	3.0	with some glass and brick fragments, little sand to 1.9 feet over coarse silty alluvial sediment to 3.0 feet over water sorted and deposited very fine size sand with some silt to bottom of
	10					110	below ground surface at completion. No sheen on water surface.
20	15						d.
20							
	- 20		1.				

N = NUMBER	R OF BLOWS TO DE	RIVE	" SPOON	 "WITH	<u> </u>	b WT F	ALLING		_ " PER BLO	W
DSLOGGED BY	Donald W.	Owens/Soil	Scientist	 		SHEET	1_	OF	1	_

						1091 Jamison Road 🍨 El	ma, NY 14059	• (716)	055-1/1/
TEST HOLE N	PIT 0 _		16	5-90			ŀ	SURF ELV	
PROJEC	т_	Env	rirc	nme	ntal	ssessment	OCATIONSe	e surv	<u></u>
2J89a/		010	Do	ele	r-Jō	is parcel, Batavia, NY			· · · · · · · · · · · · · · · · · · ·
J892 CLIENT	_	COU	NTY	OF	GEN	EE C	ATE STARTED	5/2/90	COMPLETED5/2/90
DEPTH	PLE		BLO	WS O	٧	DESCRIPTION & CLASSIFICA	TION		WATER TABLE & REMARKS
FEET	SAM	0/6	5/2	WS O	4 N				4
						Moist black cinders a glass, metal fragment compact, numerous fin size roots	s and brick e to coarse	2.	Mostly cinders and ash to 2.2 feet over apparent water sorted and depos- ited coarse silt with some very fine size sand
5						Moist brown (SANDY-SI towards (SILTY-SAND), sive soil structure, coarse size roots, (M towards (SM)	compact, m common fine	as- to	to 4.0 feet over water sorted and deposited very fine size sand with some silt to bottom of test
						grades downwa Extremely moist black very fine size sand w compact, soil materia liquify when disturbe	:(SILTY-SAN ith some si 1 tends to	D),	
						Test pit excavated to	5.0 feet.		No water at completion.
10_								8	OVM reading 0 ppm.
15						<i>2</i> :			
20						5			
ps foci	GED	8Y ,	_Do	nal	d W.	wens/Soil Scientist		\$1	1EET OF 1

Soil Investigations and Monitoring Well Installations
1091 Jamison Road • Elma, NY 14059 • (716) 655-1717

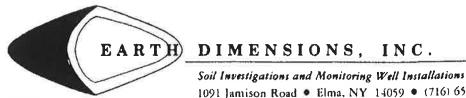
TEST PIC	17-90	-		SURF	ELV	V-400.031
PROJECT	_Environm	ental a	ssessment	LOCATIONSee_sur	vey	
	_Old_Doel	er-Jarv	ris parcel, Batavia, NY	(A 44 44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		
J892 CLIENT	COUNTY O	F GENESI	EE	DATE STARTED5/2	/90	COMPLETED 5/2/90
DEPTH FEET	BLOWS C	R	DESCRIPTION & CLASSIF	DESCRIPTION & CLASSIFICATION		
	Z 0 6 12 18	24 N	Moist mostly black of with glass, metal as fragments, very loose fine to coarse size Moist faintly mottle SAND), very fine size silt, loose, massive ture, few fine to me (SM)	nd broken brick se, numerous roots ed brown (SILTY- ze sand with some soil struc-	3.0	Mostly cinder and ash to 3.0 feet over water sorted and deposited very fine size sand with some silt to bottom of test pit.
5			Test pit excavated	to 7.0 feet.	1	No water at completion.
10						
15			a			
						ĸ
						.59

bs LOGGED BY Donald W. Owens/Soil Scientist

DIMENSIONS, INC.

Soil Investigations and Monitoring Well Installations 1091 Jamison Road • Elma, NY 14059 • (716) 655-1717

							COMPLETED 5/2/90
				_			· Marie · Mari
DEPTH GO SAMPLER DESCRIPTION & CLASSIFICATION					N	DESCRIPTION & CLASSIFICATION	WATER TABLE & REMARKS
						Moist dark brown (SANDY-SILT) fill with 5 to 15% gravel and occasional broken bricks, little fine size sand, very loose, numerous fine to coarse size sand Moist distinctly mottled brown mixed dark brown (CLAYEY-SILT) soil fill, stiff, massive soil structure, common fine to coarse size roots, (ML-CL) Moist faintly mottled brown (SILTY- SAND), very fine size sand with some silt, compact, massive soil structure, (SM) tending towards (ML)	Coarse silty soil fill with little sand and gravel to 1.5 feet over silty soil fill to 4.5 feet over water sorted deposited very fine si sand with some silt to bottom of test pit.
						Test pit excavated to 5.5 feet.	No water at completion
							OVM reading 0 ppm.
							1
				-115			
-	-						
	_	_		\dashv	\dashv		
-					\dashv		
-	_		-		_		
-		-	-		-		
-	-	-	\neg				
- 1			1	200			
	SAMPLE	SAAMPLE SAAMPLE	Old D COUNT	Old Doe, COUNTY (Old Doeler COUNTY OF BLOWS ON SAMPLER 0 6 12 18 24	Old Doeler-Jar COUNTY OF GENE BLOWS ON SAMPLER SAMPLER 0 6 12 18 24 N	Moist dark brown (SANDY-SILT) fill with 5 to 15% gravel and occasional broken bricks, little fine size sand, very loose, numerous fine to coarse size sand 1.5 Moist distinctly mottled brown mixed dark brown (CLAYEY-SILT) soil fill, stiff, massive soil structure, common fine to coarse size roots, (ML-CL) Moist faintly mottled brown (SILTY- SAND), very fine size sand with some silt, compact, massive soil structure, (SM) tending towards (ML) Test pit excavated to 5.5 feet.



bs LOGGED BY Donald W. Owens/Soil Scientist

Soil Investigations and Monitoring Well Installations

	at tall at these	_			\subseteq	/	1091 Jamison Road • Elma, NY 1				717	
HAND A	19	-90	_			!	SURF	ELV				
PROJEC	ro	nme	nta	al_	assessment LOCATION _	30 f	feet	downst	ream of TP 7-90, one foot			
2J89a	Do	ele	r-,	Jar	vis parcel, Batavia, NY	west of Tonawanda Creek bank DATE STARTED 5/3/90 COMPLETED 5/3/90						
J892 CLIENT					SEE DATE STARTE							
DEPTH FEET	SAMPLE NO.	8LOWS ON SAMPLER 0 6 12 18 8 24 N				N	DESCRIPTION & CLASSIFICATION			WATER TABLE & REMARKS		
1,000			214	18	729		Water			0.8	Sampled alluvial silt.	
							Wet dark gray (SILT), very (ML)	soft	Ε,	1.3		
							Boring completed at 1.3 fee	t.				
							"					
5												
											<u>3</u>	
							*			31		
10												
		-										
				-								
	-	7		\exists		_						
	_		4	4		-						
15					-	-						
	4			-	4							
	4		_							,		
					#							
					_							
20												
. 20			1	!	!			-				
N = NUMBER OF BLOWS TO DRIVE - "SPOON - "WITH Ib WT FALLING "PER BLOW												

SHEET _____ 0F ____ 1

HOLEN									_	SURF			
PROJEC	T	Env	/ir	onr	nen	tal	assessmer	nt					eek from TP 12
2J89a J892	/ -	Old	1_D	oe.	ler	-Ja	rvis parce	<u>el. Batavia, NY</u>					us I was
CLIENT		COI	MT	<u>Y_C</u>)F	GEN	ESEE	A APAGETY	DATE STARTED	5/3	/90	_ COMPLETE	5/3/90
DEPTH	SAMPLE NO.			OWS MPL	ON ER			DESCRIPTION & CLAS	SIFICATION	Ingride		WATER	TABLE & REMARKS
FEET	SAR	0/5	6/2	12/8	18/24	N		2000					- Washing A
								later			0.7	Sampl	ed alluvial s
								Vet dark gray (ML)	SILT), very s	oft,	1.2		
	-	_		-			В	Soring complete	d at 1.2 feet				
								3 (
	_	_	_	-									
		-		-									
5													
		-		-									
	_	_	_	_	-	-	<u>@</u>				Ÿ.		
	-												
10		-	_										
10		-		-		-							
	_			_	_	-							
		_				12.5					8		
÷		-			-								
		-		30.	-			23.					
15													
	-21	-		-									
						-					6		
				-772	_								
				-				20%			î Ç		
22.02		_	-			\Box							
. 20						!							

DIMENSIONS, INC.

Soil Investigations and Monitoring Well Installations
1091 Jamison Road • Elma, NY 14059 • (716) 655-1717

HAND A HOLEN	UGE	ER	21	-90	2_		20, 2 J2011 11022		SU	JRF ELV	- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10
PROJEC	т_	Env	zir	onn	nen.	tal	assessment	LOCATION	WNW	of TP 18-	-90, 0.5 feet west of
	2J89a/ Old Doeler-Jarvis parcel, Batavia, NY							-	bank		
J892							DATE START	ED	5/3/90	_COMPLETED5/3/90	
DEPTH FEET	BLOWS ON SAMPLER DESCRIPTION & CLASSIFI			ICATION			WATER TABLE & REMARKS				
							Water			0.8	Sampled alluvial silt.
							Wet dark gray (SILT leaves, very soft,) with de (ML)	cayed	1.3	
			i				Boring completed at	1.3 feet	•		
5											
10.											
									19		22
15.							(A		**		
. 20											
		BER	OF E	BLOV	vs t	0 DF		" WITH	_	Ib WT F/	ALLING " PER BLOW
							. Owens/Soil Scientist				

DIMENSIONS, INC.

Soil Investigations and Monitoring Well Installations
1091 Jamison Road • Elma, NY 14059 • (716) 655-1717

HOLE NO22		SURF ELV	The state of the s
PROJECT Enviro	onmental assessment	LOCATION _Approximately	150 feet north of RR,
	celer-Jarvis parcel, Batavia, NY	150 feet west	of river
J892 CLIENT <u>COUNTY</u>	OF GENESEE	DATE STARTED	COMPLETED 5/3/90
DEPTH BLOW SAMM	WS ON APPLER 2018 N DESCRIPTION & CLASSIF	FICATION	WATER TABLE & REMARKS
5	Extremely moist dan topsoil, very loose structure, numerous size roots, (ML) Extremely moist brown of apparent soil stopsome fine to coarse size apparent soil stopsome (SANDY-SILT) fine size sand, combedded, few fine	e, granular soil fine to coarse 1.0 wm (SILT), loose, ructure, common roots, (ML) ward to tinctly mottled with some very pact, weak thinly ze roots, (ML) ward to brown (SILTY-	Silty alluvial to 2.5 feet over coarse silt alluvial with some very fine size sand to 3.5 feet over water sorted and deposited very fine and fine size sand with little silt to 4.5 feet over water sorted and deposited sand to end of boring.
10	little silt, loose, readily liquifies we thinly bedded, (SM) grades down Wet brown (SAND), ve ium size sand, loose readily flows in mothinly bedded, (SP) (SW)	soil material hen disturbed, ward to 4.5 ery fine to med- e, soil material ving water,	182
15	Boring completed at	5.5 feet.	Water level at 2.5 feet below ground surface at completion.
20			
	.ows to DRIVE SPOON	" WITH Ib WT F	

bslogged 8v Donald W. Owens/Soil Scientist

HOLE N	0	2	3-9	0	_		SURF	ELV -	
PROJEC	т	En	vir	ומס	nen	tal	assessment LOCATION Approx	imately	150 feet downstream f
		010	1.0	oe.	ler	-Ja	rvis parcel, Batavia, NY Conrai	RR br	ridge, 0.5 feet east of
J892 CLIENT		CO	INI	Υ ()F	GEN	ESFE DATE STARTED 5	/3/90	COMPLETED5/3/90
DEPTH FEET	SAMPLE NO.	%	BLC SA	WS MPL	ON ER	N	DESCRIPTION & CLASSIFICATION		WATER TABLE & REMARKS
	Ĺ	<i>></i> °			_		Water	0.8	Sampled alluvial sil
							Wet dark gray (SILT) with decayed leaves, soft, (ML)	1.3	
							Boring completed at 1.3 feet.		
			-	-		-			
-									
5	-								
	-							Į.	
				_	_				
10	-		\vdash		\vdash				₩1
								į.	Pr
	-	_		-	-	-			
									27
				-		-			
							19		
15				_				į	
	_	_	-	-	_	-			
	-			-		<u>_</u>			
			-	-					
20									

SHEET ____ OF ____

ATTACHMENT 2

FIELD NOTES

This attachment is a brief summary of the logbook kept by Earth Investigations Ltd. personnel in which all field observations and measurements were recorded on a daily basis. The following pages summarize field log entries applicable to this project.

Earth Investigations Ltd. Phase II Real Estate Investigation Field Note Summary

Wednesday, May 2, 1990

- Weather clear, approx. 40-50 deg. F.
- Arrive 07:04 hours at site. Locations are already staked in and labelled as to the location.
- At 07:35 hours a search for the pipe discharge on the north side of the dam was made. A seep was found at the area where the pipe should be, perhaps the pipe has collapsed. The seep looks potentially contaminated with a film on the water surface. Seep will not be sampled at this time until verification is made.
- At 07:50 hours the backhoe arrives.
- Soil Sampling Location #1 (1-90)
 - 07:51 hours
 - mag 0 = MVO -
 - There is groundwater below the fill, no sheen on water, no odor.
- Soil Sampling Location #2 (2-90)
 - 08:15 hours
 - Location is moved approx. 5 feet toward Location #1 in order to get off of concrete slab.
 - mqq 0 = MVO -
 - Hit old drain pipe, pipe and some surrounding soil is greenish in color, no groundwater.
 - Soil sample is taken, soil pH = 7.5
- 3. Soil Sampling Location #3 (3-90)
 - 08:33 hours
 - Location is moved approx. 6 feet toward Location #5 to get away from concrete.
 - Hit part of old drain pipe.
 - Strong petroleum odor at first, then odor fades.
 - OVM = 0.2 ppm
 - Soil sample is taken, soil pH = 7.3
 - Groundwater sample is taken sample is very cloudy, brown in color, slight petroleum odor, film on surface of the water. Sample temp. 8 deg. C, specific conductivity = 3480 umhos, pH = 6.63.

- 4. Soil Sampling Location #5 (5-90)
 - 09:30 hours
 - Took backhoe much effort, much asphalt and concrete
 - mqq 0 = MVO
 - No groundwater
- 5. Soil Sampling Location #4 (4-90)
 - 09:47 hours
 - OVM = 0 ppm
 - Some groundwater after a while
- 6. Soil Sampling Location #6 (6-90)
 - 10:10 hours
 - OVM = 0 ppm
 - No groundwater
 - A piece of light rail removed from hole
- 7. Soil Sampling Location #7 (7-90)
 - 10:25 hours
 - Hole contains a lot of old cinders
 - mqq 0 = MVO
 - Groundwater sample is taken sample is cloudy, dark brown in color, no odor, slight sheen on the surface, sample temp. 13 deg. C., specific conductivity = 1380 umhos, pH = 6.67.
- 8. Soil Sampling Location #8 (8-90)
 - 11:00 hours
 - OVM = 0 ppm
 - Groundwater pouring into hole
 - Soil sample taken
- 9. Soil Sampling Location #9 (9~90)
 - 11:17 hours
 - Groundwater pouring into pit
 - OVM = 0 ppm
- 10. Soil Sampling Location #10 (10-90)
 - 11:40 hours
 - OVM 0 ppm
 - Soil sample taken

```
Soil Sampling Location #13 (13-90)
11.
          12:50 hours
          Hole moved about 20 feet away from creek because of large
          rocks
          mqq 0 = MVO
          Soil sample taken
12. Soil Sampling Location #11 (11-90)
          13:20 hours
          ovM ≈ 0 ppm
          Mild odor to soil
          Soil sample taken
13. Soil Sampling Location #12 (12-90)
          13:50 hours
          Hit old drainage pipe
          Groundwater with a slight sheen to it
          mqq 0 = MVO
14. Soil Sampling Location #15 (15-90)
          14:00 hours
          OVM = 0 ppm
          Very little groundwater
15. Soil Sampling Location #14 (14-90)
          14:20 hours
          mqq 0 = MVO
          No groundwater
          Soil sample taken
     Soil Sampling Location #16 (16-90)
16.
          14:35 hours
          mqq 0 = MVO
          No groundwater
17. Soil Sampling Location #17 (17-90)
          14:58 hours
          mqq 0 = MVO
          No groundwater
          Soil sample taken, soil pH = 7.6
18. Soil Sampling Location #18 (18-90)
          15:25 hours
          mqq 0 = MVO
```

Finished at site at 16:12 hours

Thursday, May 3, 1990

- Weather clear, approx. 40-50 deg. F
- Arrive 07:30 at site
- 19. Groundwater Sampling at Seep
 - Located just north of dam at edge of creek bank
 - OVM = 0 mm
 - Groundwater sample taken, sample is cloudy, brownish in color, slight sheen on surface, mild petroleum odor, sample temp. 6 deg. C, specific conductivity 1020 umhos, pH = 6.81
- 20. Creek Sediment Sampling (19-90, 20-90, 21-90)

Part 1 of 3 - Located on creek behind Soil Location #7

- 08:00 hours
- OVM = 0 ppm
- Dark muck encountered

Part 2 of 3 - Located on creek behind Soil Location #12

- 08:10 hours
- Dark muck encountered
- OVM 0 ppm

Part 3 of 3 - Located on creek behind Soil Location #18

- 08:15 hours
- \sim OVM = 0 ppm

Composited sediment pH = 7.7

- 21. Background Soil Sampling Location (22-90)
 - 09:00 hours
 - OVM = 0 ppm
 - After crossing railroad bridge over creek into background area, auger hole located about 150 feet from tracks and about 200 feet in from the creek.
 - Soil sample taken, soil pH = 7.0
 - Groundwater sample taken, sample cloudy, brownish in color, no odor, sample temp. 7 deg. C., specific conductivity = 460 umhos, pH = 6.55

22. Background Sediment Sampling Location (23-90)

- 09:27 hours
- OVM = 0 ppm
- Location approx. 150 feet from railroad bridge, straight out to creek from background soil location
- Soil pH = 7.4

ATTACHMENT 3

ALPHA ANALYTICAL CHAIN-OF-CUSTODY Train & Name Earth Investigations Ltd # 89-023 France 14. 89-023 Samples & Standaure George Stabel Sea. Humber 5+50=10+1, 6W= 60+6 Sample Number S-(02,08,17, 000), SD-(01, D6.01) Time VARLOUS ___ am DE Open field, real estate investigation cold, NaOH, HIVOX, il sediment, groundwater Freservetive Hs Poy. Sample Location_ Open Container Type 500 ml, von vials No. of Containers 31 remarks of aprovations Soil + Sediment in I liter wide mouth, Groundwater in I liter narrow mouth, I liter warrow morth, 500 ml metals, 500 ml planols, Date / / an ou Relinout shed Dato / .../..... Date / An Em Relanguished By Method of Shipment AUTO Shipped By ALP Sample Custodian M. ALLEADER (please print)

ATTACHMENT 4

-M-M-	nhm	M	ALPHA
W.V.	MMV	Wyyh	ANALYTICAL
			LABORATORIES INC

826 Pine Avenue Niagara Falls, New York 14301 (716) 284-8011

ELAP # 10961

SAMPLE INFORMATION

Job Number 1355.01-10 ODNY, Inc. Client

<u>Date</u> May 25, 1990

R-6576 East Quaker Street Orchard Park, NY 14127

Sample Site Earth Investigations, Limited <u>Chain of Custody</u> <u>Sample Disposition</u> Yes Hold 30 Days

FIELD INFORMATION

	Date			
Sample ID#	Sampled	Container	Volume	Preservative
S-02	5/2/90	Glass Jar (1)	950 ml	Ice-4 C
S-03	5/2/90	Glass Jar (1)	950 ml	Ice-4 C
S-17	5/2/90	Glass Jar (1)	950 ml	Ice-4 C
S-BG-01	5/3/90	Glass Jar (1)	950 ml	Ice-4 C
SD-01	5/3/90	Glass Jar (1)	950 ml	Ice-4 C
SD-BG-01	5/3/90	Glass Jar (1)	950 ml	Ice-4 C
GW-03	5/2/90	Glass Bottle (1) Glass Bottle (1) Glass Bottle (1) Glass Bottle (1) VOC Vials (2)	1 liter 1 liter 500 ml 500 ml 40 ml	ICe-4 C NaOH H ₃ PQ HNO ₃ Ice-4 C
GW-07	5/2/90	Glass Bottle (1) Glass Bottle (1) Glass Bottle (1) Glass Bottle (1) VOC Vials (2)	! liter 1 liter 500 ml 500 ml 40 ml	Ice-4 C NaOH H ₃ PQ HNO ₃ Ice-4 C
GW-Seep	5/2/90	Glass Bottle (1) Glass Bottle (1) Glass Bottle (1) Glass Bottle (1) VOC Vials (2)	l liter l liter 500 ml 500 ml 40 ml	Ice-4 C NaOH H ₃ PQ HNO ₃ Ice-4 C
GW-BG-01	5/2/90	Glass Bottle (1) Glass Bottle (1) Glass Bottle (1) Glass Bottle (1) VOC Vials (2)	1 liter 1 liter 500 ml = 500 ml 40 ml	Ice-4 C NaOH H,PQ ANO Ice-4 C

Sample shuttle also contained one (1) 40 ml VOC field blank.

Sample Information continued on next page

		ANALYTICAL REQUEST		
	Sample		Extraction	Analysis
Sample ID#	Matrix	Method Requested	Date	Date
S-02	SS	SW-846 6010	5/22/90	5/22/90
		SW-846 7060	5/23/90	5/23/90
		SW-846 8080	5/15/90	5/15/90
		SW-846 8240	5/14/90	5/14/90
		SM 412.8&D	5/18/90	5/18/90
		SM 510.A&C	5/23/90	5/23/90
5-03	SS	SW-846 6010	5/22/90	5/22/90
		SW-846 7060	5/23/90	5/23/90
		SW-846 8080	5/15/90	5/15/90
		SW-846 8240	5/14/90	5/14/90
		SM 412.B&D	5/18/90	5/18/90
		SM 510.A&C	5/23/90	5/23/90
S-17	SS	SW-846 6010	5/22/90	5/22/90
		SW-846 7060	5/23/90	5/23/90
		SW-846 8080	5/15/90	5/15/90
		SW-846 8240	5/14/90	5/14/90
		SM 412.B&D	5/18/90	5/18/90
		SM 510.A&C	5/23/90	5/23/90
S-BG-01	55	SW-846 6010	5/22/90	5/22/90
		SW-846 7060	5/23/90	5/23/90
		SW-846 8080	5/15/90	5/15/90
		SW-846 8240	5/14/90	5/14/90
		SM 412.B&D	5/18/90	5/18/90
		SM 510.A&C	5/23/90	5/23/90
00.01	G.D.			
SD-01	SD	SW-846 6010	5/22/90	5/22/90
		SW-846 7060	5/23/90	5/23/90
		SW-846 B0B0	5/15/90	5/15/90
		SW-846 8240	5/14/90	5/14/90
		SM 412.B&D	5/18/90	5/18/90
		SM 510.A&C	5/23/90	5/23/90
SD-BG-01	SD	SW-846 6010	5/22/90	5/22/90
		SW-846 7060	5/23/90	5/23/90
		SW-846 8080	5/15/90	5/15/90
		SW-846 8240	5/14/90	5/14/90
		SM 412.B&D	5/18/90	5/18/90
	ā:	SM 510.A&C	5/23/90	5/23/90
GW-03	WG	40 CFR Part 136 200.7	5/22/90	5/22/90
OK.		40 CFR Part 136 206.2	5/23/90	5/23/90
		40 CFR Part 136 213.2	5/25/90	5/25/90
		40 CFR Part 136 239.2	5/24/90	5/24/90
		SM 412.B&D	5/18/90	5/18/90
		SM 510.A&C	5/23/90	5/23/90
		40 CFR Part 136 608	5/15/90	5/15/90
		40 CFR Part 136 624	5/14/90	5/14/90

Sample Information continued on next page

ANALY	TICAL	REQUEST-cont.
-------	-------	---------------

	Sample		Extraction	Analysis
Sample ID#	Matrix	Method Requested	Date	Date
GW-07	WG	40 CFR Part 136 200.7	5/22/90	5/22/90
		40 CFR Part 136 206.2	5/23/90	5/23/90
		40 CFR Part 136 213.2	5/25/90	5/25/90
		40 CFR Part 136 239.2	5/24/90	5/24/90
		SM 412.B&D	5/18/90	5/18/90
		SM 510.A&C	5/23/90	5/23/90
		40 CFR Part 136 608	5/15/90	5/15/90
		40 CFR Part 136 624	5/14/90	5/14/90
GW-Seep	WG	40 CFR Part 136 200.7	5/22/90	5/22/90
		40 CFR Part 136 206.2	5/23/90	5/23/90
		40 CFR Part 136 213.2	5/25/90	5/25/90
		40 CFR Part 136 239.2	5/24/90	5/24/90
		SM 412.B&D	5/18/90	5/18/90
		SM 510.A&C	5/23/90	5/23/90
		40 CFR Part 136 608	5/15/90	5/15/90
		40 CFR Part 136 624	5/14/90	5/14/90
GW-BG-01	WG	40 CFR Part 136 200.7	5/22/90	5/22/90
2 56 01	74	40 CFR Part 136 206.2	5/23/90	5/23/90
		40 CFR Part 136 213.2	5/25/90	5/25/90
		40 CFR Part 136 239.2	5/24/90	5/24/90
		SM 412 B&D	5/18/90	5/18/90
		SM 510.A&C	5/23/90	5/23/90
		40 CFR Part 136 608	5/15/90	5/15/90
		40 CFR Part 136 624	5/14/90	5/14/90

LABORATORY ANALYSIS-TOTAL METALS

Date Reported: May 24, 1990
Date Sampled: May 2, 1990
Analysis by: Alpha Analytical, Inc. ELAP# 10961
Analysis for: ODNY, Inc.
AAL # 1355.01

Sample		Detection	Quantity
S-02	Parameter	Limit PPM	Detected PPM
	Aluminum	10	<u>658</u>
	Arsenic	2	< DL.
	Barium	4	67.9
	Cadmium	4	<dl< td=""></dl<>
	Chromium	4	8,320
	Copper	4	55,600
	Magnesium	10	08E
	Lead	10	1,340
	Nickel	10	13.6
	Tin	10	349
	Zinc	4	16,300

Method of Analysis SW-846 6010, 7060

ND=Not Detected

DL=Detection Limit

Released By: Mario R. Montesdeoca

Laboratory Director

ANALYTICAL REPORT-PCBs

Date Reported: May 25, 1990
Date Sampled: May 2, 1990
Analysis by: Alpha Analytical, Inc. ELAP# 10961
Analysis for: ODNY, Inc.

AAL # 1355.01

Sample		Detection	Quantity	
S-02	Parameter	Limit PPM	Detected PPM	
3 02	PCB-1016	.24	ND	
	PCB-1221	.24	ND	
	PCB-1232	.24	ND	
	PCB-1242	.24	QN	
	PCB-1248	.24	ND	
	PC8-1254	.24	< DL	
	PCB-1260	.24	ND	

Method of Analysis SW-846 8080

ND=Not Detected

DL=Detection Limit

Released by: Mario R. Mortindiota
Mario R. Montesdeoca Laboratory Director

ANALYTICAL REPORT-VOLATILE ORGANICS

Date Reported: May 25, 1990 Date Sampled: May 2, 1990

Analysis by: Alpha Analytical, Inc. ELAP# 10961 Analysis for: ODNY, Inc.

AAL # 1355.01

Sample ID # S-02	Parameter	Detection Limit PPM	Quantity Detected PPM
_	Methylene chloride	.18	ND
	Carbon tetrachloride	.22	ND
	Benzene	.18	ND
	Toluene	.15	ND
	Xylene	.21	ND
	Trichloroethylene	.21	ND

Surrogate Recoveries

1,2-Dichloroethane d4 Toluene d8 4-Bromofluorobenzene

91.6	
97.7	
91.6	

Method of Analysis SW-846 8240

ND=Not Detected

DL=Detection Limit

Released by: Mario R. Montesdesca
Mario R. Montesdesca Laboratory Director

LABORATORY ANALYSIS-TOTAL CYANIDE AND PHENOLS

Date Reported: May 24, 1990
Date Sampled: May 2, 1990
Analysis by: Alpha Analytical, Inc. ELAP# 10961
Analysis for: ODNY, Inc.

AAL # 1355.01

Sample ID # S-02	Parameter	Detection <u>Limit PPM</u>	Quantity Detected PPM
3-02	Total Cyanide	.04	<dl< td=""></dl<>
	Phenols	- 02	1.00

Method of Analysis SM 412.B&D, 510.A&C ND=Not Detected

DL=Detection Limit

Released By: __

Mario R. Montesdenca Laboratory Director

LABORATORY ANALYSIS-TOTAL METALS

Date Reported: May 24, 1990 Date Sampled: May 2, 1990

Analysis by: Alpha Analytical, Inc. ELAP# 10961 Analysis for: ODNY, Inc.

SO. CEL # 1AA

Sample ID # S-03	Parameter	Detection Limit PPM	Quantity Detected PPM
	Aluminum	10	12,200
	Arsenic	2	5.6
	Barium	4	44.1
	Cadmium	4	ND
	Chromium	4	15.8
	Copper	4	234
	Magnesium	10	9.040
	Lead	10	ND
	Nickel	10	29.1
	Tin	10	28.3
	Zinc	4	777

Method of Analysis 5W-846 6010, 7060

ND=Not Detected

DL=Detection Limit

Released By:__

Mario R. Mortesdesca Laboratory Director

ANALYTICAL REPORT-PCBs

Date Reported: May 25, 1990
Date Sampled: May 2, 1990
Analysis by: Alpha Analytical, Inc. ELAP# 10961
Analysis for: ODNY, Inc.
AAL # 1355.02

Sample		Detection	Quantity
# <u>dI</u> E0-2	Parameter	Limit PPM	Detected PPM
	PCB-1016	.24	ND ND
	PCB-1221	.24	ND
	PCB-1232	. 24	ND
	PC8-1242	.24	ND
	PCB-1248	.24	ND
	PCB-1254	. 24	ND
	PCB-1260	.24	D

Method of Analysis SW-846 8080

ND=Not Detected

DL=Detection Limit

Released by: Mario R. Montesdeoca Laboratory Director

ANALYTICAL REPORT-VOLATILE ORGANICS

Date Reported: May 25, 1990 Date Sampled: May 2, 1990

Analysis by: Alpha Analytical, Inc. ELAP# 10961 Analysis for: ODNY, Inc.

AAL # 1355.02

Sample ID # S-03	<u>Parameter</u>	Detection Limit PPM	Quantity Detected PPM
3 03	Methylene chloride	.18	ND
	Carbon tetrachloride	.22	ND
	Benzene	.18	ND
	Toluene	.15	ND
	Xylene	.21	ND
	Trichloroethylene	.21	ND

Surrogate Recoveries

1,2-Dichloroethane d4 Toluene d8 4-Bromofluorobenzene

	97.1	
1000000	95.3	
	94.4	

Method of Analysis SW-846 8240

ND=Not Detected

DL=Detection Limit

Released by: Mario R. Montesdeoca Mario R. Montesdeoca Laboratory Director

LABORATORY ANALYSIS-TOTAL CYANIDE AND PHENOLS

Date Reported: May 24, 1990
Date Sampled: May 2, 1990
Analysis by: Alpha Analytical, Inc. ELAP# 10961
Analysis for: ODNY, Inc.
AAL # 1355.02

Sample ID #	Parameter	Detection <u>Limit PPM</u>	Quantity Detected PPM
S-03	Total Cyanide	.04	0.04
	Phenols	.02	0.14

Method of Analysis SM 412.B&D, 510.A&C ND=Not Detected

DL=Detection Limit

A TOTAL OF THE PROPERTY OF THE

Released By: Mario R. Mortadeoca Mario R. Montesdeoca Laboratory Director

LABORATORY ANALYSIS-TOTAL METALS

Date Reported: May 24, 1990
Date Sampled: May 2, 1990
Analysis by: Alpha Analytical, Inc. ELAP# 10961
Analysis for: ODNY, Inc.
AAL # 1355.03

Sample			Detection	Quantity
<u>ID #</u> S-17	Parameter		Limit PPM	Detected PPM
	Aluminum		10	7,850
	Arsenic		2	10.2
	Barium		4	97.5
	Cadmium		4	ND
	Chromium	*	4	16.6
	Copper		4	121
	Magnesium		10	13,400
	Lead		10	ND
	Nickel		10	20.7
	Tin		10	46.7
	Zinc		4	393

Method of Analysis SW-846 6010, 7060

ND=Not Detected

DL=Detection Limit

Released By:

Mario R. Montesdeoca Laboratory Director

ANALYTICAL REPORT-PCBs

Date Reported: May 25, 1990
Date Sampled: May 2, 1990
Analysis by: Alpha Analytical, Inc. ELAP# 10961
Analysis for: ODNY, Inc.
AAL # 1355.03

Sample		Detection	Quantity
<u>ID #</u> S-17	Parameter	Limit PPM	Detected PPM
<u> </u>	PCB-1016	.24	ND
	PCB-1221	.24	ND
	PCB-1232	.24	ND
	PCB-1242	,24	ND
	PCB-1248	.24	ND
	PCB-1254	.24	ND
	PCB-1260	24	ND

Method of Analysis SW-846 8080

ND=Not Detected

DL=Detection Limit

Mario R. Montesdecca Laboratory Director

ANALYTICAL REPORT-VOLATILE ORGANICS

Date Reported: May 25, 1990
Date Sampled: May 2, 1990
Analysis by: Alpha Analytical, Inc. ELAP# 10961
Analysis for: DDNY, Inc.
AAL # 1355.03

Sample ID # S-17	Parameter	Detection <u>Limit PPM</u>	Quantity Detected PPM
S-17	Methylene chloride	.18	ND
	Carbon tetrachloride	.22	ND
	Benzene	.18	ND
	Toluene	.15	ND
	Xylene	.21	ND
	Trichloroethylene	.21	ND

Surrogate Recoveries

1,2-Dichloroethane d4 Toluene d8 4-Bromofluorobenzene

85,1	
94.9	
90.4	

Method of Analysis SW-846 8240

ND≂Not Detected

DL=Detection Limit

Released by:

Mario R. Montesdeoca Laboratory Director

LABORATORY ANALYSIS-TOTAL CYANIDE AND PHENOLS

Date Reported: May 24, 1990
Date Sampled: May 2, 1990
Analysis by: Alpha Analytical, Inc. ELAP# 10961
Analysis for: ODNY, Inc.

AAL # 1355.03

Sample ID # S-17	Parameter	Detection Limit PPM	Quantity Detected PPM
3 17	Total Cyanide	.04	0.30
	Phenols	.02	0.95

Method of Analysis SM 412.8&D, 510.A&C

ND=Not Detected

DL=Detection Limit

Released By: Minis R. Montindeoco Mario R. Montesdeoca Laboratory Director

LABORATORY ANALYSIS-TOTAL METALS

Date Reported: May 24, 1990 Date Sampled: May 3, 1990 Analysis by: Alpha Analytical, Inc. ELAP# 10961 Analysis for: ODNY, Inc.

AAL # 1355.04

Sample ID # S-BG-01	Parameter		Detection Limit PPM	Quantity Detected PPM
	Aluminum Arsenic Barium Cadmium Chromium Copper Magnesium Lead Nickel	la de la companya de	10 2 4 4	20,600 <dl 163 ND</dl
			4 10 10	18.8 13.0 10,200 ND
	Tin Zinc		10	28.0 12.3 105

Method of Analysis SW-846 6010, 7060

ND=Not Detected

DL=Detection Limit

Released By: Merio R. Montadion

Mario R. Montesdeoca Laboratory Director

ANALYTICAL REPORT-PCBs

Date Reported: May 25, 1990
Date Sampled: May 3, 1990
Analysis by: Alpha Analytical, Inc. ELAP# 10961
Analysis for: ODNY, Inc.

AAL # 1355.04

Sample <u>ID #</u> S-8G-01	Parameter	Detection Limit PPM	Quantity Detected PPM
	PCB-1016 PCB-1221 PCB-1232	.24	ND
			ND ND
PCB-1242 PCB-1248 PCB-1254 PCB-1260	.24	ND ND	
	24	ND	
	24	ND	
	.24	ND	

Method of Analysis SW-846 8080

ND=Not Detected

DL=Detection Limit

Released by:___

Mario R. Montesdeoca Laboratory Director

ANALYTICAL REPORT-VOLATILE ORGANICS

Date Reported: May 25, 1990
Date Sampled: May 3, 1990
Analysis by: Alpha Analytical, Inc. ELAP# 10961
Analysis for: ODNY, Inc.

AAL # 1355.04

Sample <u>ID #</u> S-BG-01	Parameter	Detection Limit PPM	Quantity Detected PPM
	Methylene chloride Carbon tetrachloride Benzene Toluene Xylene Trichloroethylene	.18 .22 .18 .15 .21	ND ND ND ND ND
Surrogate	e Recoveries		
	1,2-Dichloroethane d4 Toluene d8 4-Bromofluorobenzene		103 98.0

Method of Analysis SW-846 8240

ND=Not Detected

DL=Detection Limit

Released by:_

Mario R. Montesdevez Mario R. Montesdevez Laboratory Director

LABORATORY ANALYSIS-TOTAL CYANIDE AND PHENOLS

Date Reported: May 24, 1990
Date Sampled: May 3, 1990
Analysis by: Alpha Analytical, Inc. ELAP# 10961
Analysis for: ODNY, Inc.

AAL # 1355.04

Sample ID # S-BG-01	Parameter	Detection <u>Limit PPM</u>	Quantity Detected PPM
	Total Cyanide	04	<dl< td=""></dl<>
	Phenols	02	ND

Method of Analysis SM 412.8&D, 510.A&C

ND=Not Detected

DL=Detection Limit

Released By:__

Mario R. Mortesdeoca Laboratory Director

LABORATORY ANALYSIS-TOTAL METALS

Date Reported: May 24, 1990 Date Sampled: May 3, 1990

Analysis by: Alpha Analytical, Inc. ELAP# 10961 Analysis for: ODNY, Inc.

AAL # 1355.05

Sample		Detection	Quantity
<u>ID #</u> SD-01	Parameter	<u>Limit PPM</u>	Detected PPM
	Aluminum	10	10,000
	Arsenic	2	4.1
	Barium	4	75.5
	Cadmium	4	ND
	Chromium	4	6.0
	Copper	4	20.2
	Magnesium	10	16,800
	Lead	10	ND
	Nickel	10	17.1
	Tin	10	ND
	Zinc	4	99.0

Method of Analysis SW-846 6010, 7060

ND=Not Detected

DL=Detection Limit

Released By:_

the state of the s

Mario R. Montesdeoca Laboratory Director

ANALYTICAL REPORT-PCBs

Date Reported: May 25, 1990 Date Sampled: May 3, 1990

Analysis by: Alpha Analytical, Inc. ELAP# 10961 Analysis for: ODNY, Inc.

AAL # 1355.05

ter	Detection <u>Limit PPM</u>	Quantity Detected PPM
	24	ND
_ ·	24	ND
-: -	.24	ND
	24	ND
PCB-1248 PCB-1254 PCB-1260	.24	ND
	.24	ND
	.24	ND
	54	ter Limit PPM 16 .24 21 .24 32 .24 42 .24 48 .24 54

Method of Analysis SW-846 B080

ND=Not Detected

DL=Detection Limit

Released by:_

Minis R. Mortesdeca Mario R. Montesdeca Laboratory Director

ANALYTICAL REPORT-VOLATILE ORGANICS

Date Reported: May 25, 1990 Date Sampled: May 3, 1990 Analysis by: Alpha Analytical, Inc. ELAP# 10961 Analysis for: ODNY, Inc.

AAL # 1355.05

Sample	Daniel II Ann	Detection	Quantity Detected PPM
ID # SD-Ol	Parameter	<u>Limit PPM</u>	
	Methylene chloride		ND
	Carbon tetrachloride	.22	ND
	Benzene	.18	ND
	Toluene	.15	ND
	Xvlene	.21	ND
	Trichloroethylene	.21	ND
Surrogati	e Recoveries		
	1,2-Dichloroethane d4 Toluene d8 4-Bromofluorobenzene	*	98.6 101 93.8

Method of Analysis SW-846 8240

ND=Not Detected

DL=Detection Limit

Released by:

The street section of the second constitution of

Mario R. Montesdeoca Laboratory Director

Date Reported: May 24, 1990
Date Sampled: May 3, 1990
Analysis by: Alpha Analytical, Inc. ELAP# 10961
Analysis for: DDNY, Inc.

AAL # 1355.05

Sample Detection Quantity ID# Parameter Limit PPM Detected PPM SD-01 Total Cyanide .04 <DL Phenols .02 ND

Method of Analysis SM 412.B&D, 510.A&C

ND=Not Detected

DL=Detection Limit

Released By:

Date Reported: May 24, 1990
Date Sampled: May 3, 1990
Analysis by: Alpha Analytical, [nc. ELAP# 10961
Analysis for: DDNY, Inc.

AAL # 1355.06

Sample ID # SD-BG-01	Parameter	Detection <u>Limit PPM</u>	Quantity Detected PPM
	Aluminum	10	8,950
	Arsenic	2	4.0
	Barium	4	<dl< td=""></dl<>
	Cadmium	4	ND
	Chromium	4	7.8
	Copper	4	14.4
	Magnesium	10	15,400
	Lead	10	ND
	Nickel	10	21.3
	Tin	10	95.7
	Zinc	4	88.2

Method of Analysis SW-846 6010, 7060

ND=Not Detected

DL=Detection Limit

Released By:

Date Reported: May 25, 1990
Date Sampled: May 3, 1990
Analysis by: Alpha Analytical, Inc. ELAP# 10961
Analysis for: ODNY, Inc.

AAL # 1355.06

Sample ID # SD-BG-01	Parameter	Detection Limit PPM	Quantity Detected PPM
	PCB-1016	.24	ND
	PCB-1221	.24	ND
	PCB-1232	24	ND
	PCB-1242	.24	ND
	PCB-1248	24	ND
	PCB-1254	.24	ND
	PCB-1260	.24	ND

Method of Analysis SW-846 8080

ND=Not Detected

DL=Detection Limit

Released by:

Date Reported: May 25, 1990 Date Sampled: May 3, 1990

Analysis by: Alpha Analytical, Inc. ELAP# 10961 Analysis for: ODNY, Inc.

AAL # 1355.06

Sample ID # SD-BG-01	Parameter	Detection <u>Limit PPM</u>	Quantity Detected PPM
	Methylene chloride	18	ND
	Carbon tetrachloride	.22	ND
	Benzene	18	ND
	Toluene	15	ND
	Xylene	.21	ND
	Trichloroethylene	.21	ND
Surrogate	Recoveries		
	1,2-Dichloroethane d4		95.5

Method of Analysis SW-846 8240

ND=Not Detected

DL=Detection Limit

101 95.

Released by:

Mario R. Montesdecca Laboratory Director

Toluene d8 4-Bromofluorobenzene

Date Reported: May 24, 1990 Date Sampled: May 3, 1990 Analysis by: Alpha Analytical, Inc. ELAP# 10961 Analysis for: ODNY, Inc. AAL # 1355.06

Sample

ID # Parameter

SD-BG-01

Total Cyanide

Detection Quantity
Detected PPM

CDL

Phenols .02

0.97

Method of Analysis SM 412.8&D, 510.A&C

ND=Not Detected

DL=Detection Limit

Released By:

Date Reported: May 24, 1990
Date Sampled: May 2, 1990
Analysis by: Alpha Analytical, Inc. ELAP# 10961
Analysis for: ODNY, Inc.
AAL # 1355.07

Sample ID # GW-03	Parameter	Detection Limit PPM	Quantity Detected PPM
	Aluminum Arsenic Barium Cadmium Chromium Copper Magnesium Lead Nickel Tin Zinc	.05 .01 .02 .002 .02 .02 .05 .05 .05	3.19 ND 1.11 .006 <dl 0.11 6.96 0.18 <dl 0.13 0.67</dl </dl

Method of Analysis EPA 200.7, 206.2, 213.2, 239.2 ND=Not Detected

DL=Detection Limit

Released By:

Date Reported: May 25, 1990
Date Sampled: May 2, 1990
Analysis by: Alpha Analytical, Inc. ELAP# 10961
Analysis for: ODNY, Inc.

AAL # 1355.07

Sample <u>ID</u> # GW-03	Parameter	Detection Limit PPB	Quantity Detected PPB
	PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260	2.4 2.4 2.4 2.4 2.4 2.4 2.4	ND ND ND ND ND ND
			< DI

Method of Analysis EPA 608

ND=Not Detected

DL=Detection Limit

Released by:_

Date Reported: May 25, 1990
Date Sampled: May 2, 1990
Analysis by: Alpha Analytical, Inc. ELAP# 10961
Analysis for: ODNY, Inc.
AAL # 1355.07

Sample ID # GW-03	Parameter	Detection Limit PPB	Quantity Detected PPB
Surrogate	Methylene chloride Carbon tetrachloride Benzene Toluene Xylene Trichloroethylene Recoveries	1.8 2.2 1.8 1.5 2.1 2.1	ND ND ND ND ND ND
	1,2-Dichloroethane d4 Toluene d8 4-Bromofluorobenzene		113 102 105
Mathad of	A		

Method of Analysis EPA 624

ND=Not Detected DL=Detection Limit

Date Reported: May 24, 1990
Date Sampled: May 2, 1990
Analysis by: Alpha Analytical, Inc. ELAP# 10961
Analysis for: DDNY, Inc.
AAL # 1355.07

Sample

ID# Parameter GW-03

Detection Limit PPM

Quantity Detected PPM

Total Cyanide

.002

.003

Phenols

.01

ND

Method of Analysis SM 412.B&D, 510.A&C

ND=Not Detected

DL=Detection Limit

Released By:

Mario R. Montesdeoca Laboratory Director

31

Date Reported: May 24, 1990
Date Sampled: May 2, 1990
Analysis by: Alpha Analytical, Inc. ELAP# 10961
Analysis for: ODNY, Inc.

Sample ID # GW-07	Parameter	Detection Limit PPM	Quantity Detected PPM
9	Aluminum Arsenic Barium Cadmium Chromium Copper Magnesium Lead Nickel Tin Zinc	.05 .01 .02 .002 .02 .02 .50 .20 .05 .05	70.8 0.07 0.17 .012 0.16 1.75 166 5.1 0.24 ND 6.95

Method of Analysis EPA 200.7, 206.2, 213.2, 239.2

ND=Not Detected

DL=Detection Limit

Released By: Mario R Monteschesca
Mario R. Monteschesca Laboratory Director

Date Reported: May 25, 1990
Date Sampled: May 2, 1990
Analysis by: Alpha Analytical, Inc. ELAP# 10961
Analysis for: ODNY, Inc.

AAL # 1355.08

Sample ID # GW-07	Parameter	Detection Limit PPB	Quantity Detected PPB
*	PCB-1016	2.4	ND
	PCB-1221	2.4	<dl< td=""></dl<>
	PCB-1232	2.4	ND
	PCB-1242	2.4	ND
	PCB-1248	2.4	ND
	PCB-1254	2.4	ND
	PCB-1260	2.4	ND

Method of Analysis EPA 608

ND=Not Detected DL=Detection Limit

Released by:

Date Reported: May 25, 1990
Date Sampled: May 2, 1990
Analysis by: Alpha Analytical, Inc. ELAP# 10961
Analysis for: ODNY, Inc.
AAL # 1355.08

Sample ID # GW-07	Parameter	Detection Limit PPB	Quantity Detected PPB
	Methylene chloride Carbon tetrachloride Benzene Toluene Xylene Trichloroethylene	1.8 2.2 1.8 1.5 2.1 2.1	ND ND ND ND ND
Surrogat	e Recoveries		,
	1,2-Dichloroethane d4 Toluene d8		95.6

4-Bromofluorobenzene Method of Analysis EPA 624

ND=Not Detected

DL=Detection Limit

89.0

87.7

Released by:

Date Reported: May 24, 1990 Date Sampled: May 2, 1990

Analysis by: Alpha Analytical, Inc. ELAP# 10961 Analysis for: DDNY, Inc.

AAL # 1355.08

Sample

ID# Parameter GW-07

Detection Limit PPM

Quantity Detected PPM

Total Cyanide

.002

.006

Phenols

.01

0.04

Method of Analysis SM 412.8&D, 510.A&C

ND=Not Detected

DL=Detection Limit

Released By:_

Mario R. Montesdeoca Laboratory Director

35

Date Reported: May 24, 1990
Date Sampled: May 3, 1990
Analysis by: Alpha Analytical, Inc. ELAP# 10961
Analysis for: ODNY, Inc.

AAL # 1355.09

Sample <u>ID #</u> GW-Seep	Parameter	Detection Limit PPM	Quantity Detected PPM
	Aluminum Arsenic Barium Cadmium Chromium Copper Magnesium Lead Nickel Tin Zinc	.05 .01 .02 .002 .02 .02 .50 .02 .05 .05	10.7 ND 1.90 ND 0.04 0.05 42.9 0.41 ND ND

Method of Analysis ND=Not Detected EPA 200.7, 206.2, 213.2, 239.2

DL=Detection Limit

Released By: Mario R. Montesdeoca Laboratory Director

Date Reported: May 25, 1990
Date Sampled: May 3, 1990
Analysis by: Alpha Analytical, Inc. ELAP# 10961
Analysis for: ODNY, Inc.

AAL # 1355.09

Sample ID # GW-Seep	Parameter	Detection <u>Limit PPB</u>	Quantity Detected PPB
,	PCB-1016	2.4	ND.
	PCB-1221	2.4	ND
	PCB-1232	2.4	ND
	PCB-1242	2.4	ND
	PCB-1248	2.4	ND
	PCB-1254	2.4	ND
	PCB-1260	2.4	<dl< td=""></dl<>

Method of Analysis EPA 608

ND=Not Detected

DL=Detection Limit

Released by:

Date Reported: May 25, 1990
Date Sampled: May 3, 1990
Analysis by: Alpha Analytical, Inc. ELAP# 10961
Analysis for: ODNY, Inc.
AAL # 1355.09

Sample ID # GW-Seep	Parameter	Detection Limit PPB	Quantity Detected PPB
	Methylene chloride Carbon tetrachloride Benzene Toluene Xylene Trichloroethylene	1.8	ND ND ND
			ND ND

Surrogate Recoveries

1,2-Dichloroethane d4 Toluene d8 4-Bromofluorobenzene

Method of Analysis EPA 624

ND=Not Detected

DL=Detection Limit

Released by:

Date Reported: May 24, 1990 Date Sampled: May 3, 1990 Analysis by: Alpha Analytical, Inc. ELAP# 10961 Analysis for: DDNY, Inc. AAL # 1355.09

Sample

ID # GW-Seep

Parameter

Detection Limit PPM

Quantity Detected PPM

Total Cyanide

.002

.005

Phenois

.01

.01

Method of Analysis SM 412.B&D, 510.A&C

ND=Not Detected

DL=Detection Limit

Released By:

Date Reported: May 24, 1990
Date Sampled: May 3, 1990
Analysis by: Alpha Analytical, Inc. ELAP# 10961
Analysis for: ODNY, Inc.
AAL # 1355.10

Sample ID # GW-BG-01	<u>Parameter</u> Aluminum		Detection Limit PPM	Quantity Detected PPM
	Arsenic Barium	3	.05 .01 .02 .02 .02 .02 5.0 .02 .05	117 ND 0.02 .004 0.09 0.28 302 0.38 0.41 ND 1.19

Method of Analysis ND=Not Detected DL=Detection Limit EPA 200.7, 206.2, 213.2, 239.2

Released By:__

Mario R. Montesdeoca Laboratory Director

40

Date Reported: May 25, 1990
Date Sampled: May 3, 1990
Analysis by: Alpha Analytical, Inc. ELAP# 10961
Analysis for: ODNY, Inc.

AAL # 1355.10 -

Sample ID # GW-BG-01	Parameter	Detection Limit PPB	Quantity Detected PPB
	PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260	2.4 2.4 2.4 2.4 2.4 2.4 2.4	ND

Method of Analysis EPA 608

ND=Not Detected

DL=Detection Limit

Released by:

Date Reported: May 25, 1990
Date Sampled: May 3, 1990
Analysis by: Alpha Analytical, Inc. ELAP# 10961
Analysis for: ODNY, Inc.
AAL # 1355.10

Sample <u>ID #</u> GW-BG-0!	Parameter	Detection Limit PPB	Quantity Detected PPB
	Methylene chloride	1.8	ND
	Carbon tetrachloride	2.2	ND
	Benzene	1.8	ND
	Toluene	1.5	ND
	Xylene	2.1	ND
	Trichloroethylene	2.1	ND
Surrogate	Recoveries		
	1,2-Dichloroethane d4		94.3
	Toluene d8	:•	92.6
	4-Bromofluorobenzene		96.5

Method of Analysis EPA 624

ND=Not Detected

DL=Detection Limit

Released by:

Date Reported: May 24, 1990
Date Sampled: May 3, 1990
Analysis by: Alpha Analytical, Inc. ELAP# 10961
Analysis for: ODNY, Inc.
AAL # 1355.10

Sample ID # GW-BG-01	Parameter	Detection Limit PPM	Quantity Detected PPM
	Total Cyanide		<dl< td=""></dl<>
	Phenols	.01	ND

Method of Analysis SM 412.B&D, 510.A&C ND=Not Detected

DL=Detection Limit

Released By: _

Date Reported: May 25, 1990
Date Sampled: May 2, 1990
Analysis by: Alpha Analytical, Inc. ELAP# 10961
Analysis for: ODNY, Inc.

AAL # 1355.00

Detection	Quantity
Limit PPB	Detected PPB
1.8	ND ND
2.2	ND
1.8	ND
1.5	ND
2.1	ND
2.1	ND
	Limit PPB 1.8 2.2 1.8 1.5

1,2-Dichloroethane d4 Toluene d8 4-Bromofluorobenzene

Method of Analysis SW-846 8240

ND=Not Detected

DL=Detection Limit

Released by:

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION II JACOB K. JAVITS FEDERAL BUILDING NEW YORK, NEW YORK 10278

May 15, 1990

John H. Gratz Project Manager Earth Investigations Ltd. R-6576 East Quaker Street Orchard Park, New York 14127

Re: Freedom of Information Act Request
(2)RIN-2574-89 (regarding property located off Walnut St.,
City of Batavia, County of Genesee)

Dear Mr. Gratz:

This is in response to your above-referenced request for information under the Freedom of Information Act dated December 13, 1989. Please be advised that the Office of Regional Counsel has not located any documents which are responsive to this request. It is my understanding that other offices of this Agency may be responding to your inquiry under separate cover.

Sincerely,

Walter E. Mugdan

Deputy Regional Counsel

Office of Regional Counsel

Water & Pringer-166

cc: Region II Freedom of Information Office