Appendix E
WELL DEVELOPMENT AND
GROUNDWATER SAMPLING EVENT FIELD RECORDS

_ Date <u>5/31//3</u> 27 26 Date _____ Location ____ Project / Client Well Developenent Project / Client , 0735 W. Army dup 1415 Start pully MW-25, MV3+ Plow refer # : 198225 J ero 43/99138 from geologic 0755 Pupin at rate of 5.5 gpm 436 Justy a MW-123 Day 40 0805 reter start (a) pear gerth overled & as 4 Q 8104 gpm Of universal equipment. 440 Dandown a mw-35 is to 13,23 ft irate/tost Dondon @ nw-23 13,30 ++, 1600 MW-23 DTW: 13,30 tank mw-23 DTW: 13.27 University egulo 1704 Stop recovery + puppy MW-25. UFlow Inexto a 199140. Stype lup in a rw-23 1716 d 1276.23gnl, Begin Paky of , Geologic In Am 17 0835 DTW Ser My 200 DTB: 23,20 parten up. 5/16 1740 mn-22

Project / Client _______P__ Project / Client Initial flow neter flow 6947 nw-20:12,70 mu-22: 13.00 # 199141 Amblet PID rednys. 1015 T, wells from states arsite, MW-22 flow at (1:22=79PM PID after Begin pupis MW-ZO Clacked flowrite@11:26= 6.29 pa MW-22 WL afters gallons flow cate; 7,1 apm.
must pup 1291 gall recover. at 11:35 = 13.3' BTOCLY CH MW-20 WL at 11:36 = 12.78TIR Flow heter read ? 200432. MW-20 Water clear, noapparent Twedidity nooder 5850 Bean Puping MW-20. NW-22 very slightly turbil (ro color) Dr: tral DTO: 10.81 Ambrut PID: 0.5 Fold chacked at 11:43 TIOW metr. O Stopped remping at MW-20@ 1145 most pmp 1158 421. flow ate of 6,4 gpm 0855 Drawdow of mest 22 to Set uput HW-ZI, WL= 10.65 8TOPVC Beganpunping at 11:59 13.04 St Pomping rate = 8,5 gen Own on MW-20 to Recliecked 1 @ 1200 = 18/3 g pm 12.67 Et. WL@ 12:11 = 12.64 BTOPVC 0910 Pursping rate @ 12:16=8.79pm MW. 23. DTW: 10,77 MW-25: DTW: 10.93 Periodic PID Dat B kgd (0:2 ppm) M 12 - 21: 171W:10 180

30 Location FAHSF 5te Date 5/31 coul, Location _____ Date <u>\$\\$\</u> Project / Client ______ P 5 Project / Client ______ P 4 Checkel Turbidety against ter 750 gall(t) stillesturbil Sanoat 13:40 fler 825qall. NW-20 development continuel Checked holden tanks. (1/5/4) Stopped pumping @MW-21@1344 PID = ND en tank, Sampled at 12 25 Captere ~ 210 gallon. 1400 Begin Amon mw-30 200432 Studing Albas neter 200440 WA sample was slightly turbed (Light gray, slightly cloudy) Sampled again @ 12:39 - less cloudy reed by recover 1243 gal End How refore. 201685 PID in tonk = 0.0 ppm than rate: 10,2 ypn Purping rate at 12:40 = 8,2 lagon Fritish water love 1: 17.64 WLQ 12:42=12,50 Propuc Checked holdery tank @ 12.58 water level dendom: 17,8++ Empty holdin tok low of Water sample from hore is recovered water + styl Stal hupon blendy blong to K. Daraly twedid 1447 610 total pallous @ 114pm 530 75/610 = 8.1 g pm average (00 = 1000 meter says 10 8.26 g pm @ (1) b 1544 Pesine pupies chicked troipity: water is barely tirb: J-No coop. 1554 Checked end of hose I took at 13:20 (1:20 pm) withou still vois sheather turbed

32 Date __5/3 (Project/Client well Semplaturt Date 6/3/1 Project / Client _____ W. Hour ten from State Ø730 1645 Firsh recovery curter @ orsite; John Winks MW-30- FINE Flow Com Beologic assite. never seading 201675 gal. Begin selve at MW-29 t mw-30 hut mw-28 water banely turbid. 1730 Lowe site: 0850 Start recovery ton mab-29. Initial depth to water 12,00 ft DTB 27.80ft PID realy: 0,0 you flow (ste ? 8.50). Must recover 2563 gallan tow refer starte @ Ogal 0900 Short Recary from MW-28 must recourt 1243 gallas. DTB: 21.30 DTW: 7.80 Initial, flow news rooty. 201675 nost 99 10, 202918. flow rate 5.5 gp.n Pero o.0 pm

Location Fame 0,2 PID: 0.0 10m 0905 Water from MW= 259 very 133 Finished relovery @ mw-28. Final \$100 Water from MW-29 is 0917 Clew. Water from neter red my 202918. Fral Indidity, clear mw-28 is tubid. 121) really inside top PID really incide by 16:001 400 Finished recovery with of holding tank; 0,2pm Drawdown & mw-29: (2.00) @ mw-79. 0954 Recovered 2564 ag/, moon of mw-28:12.50ft Wates from inw-29 15 1010 that risbidity: class Clear- Water from mw 28 PID roay use bukid. 500 Bogin retodes y after is much less, tosio. Dandown detthy same. SERW @ MW 26. 1030 Water from both mells Must recover, 1291 gal. have little to no turbidity. Mow meter begin @0 Inital DTW: 9.70 DB:24.0 Draslown @ MW 29; 12,10 1147 Den 10 m / 78 1, 12,50 Inital PID really 8,0 Flow rate 5.6 ginh PTD : 8,0 pm Auchidity: mw-28: C/euc a May -27 ho cavery 1525 mw 29', Clear most recover 1073 gal Turbidity is none at both 1321 Initial flow neter sexty. reells Flow me mw-28: 5,0 apm Tous (ne on - 31.8.6 Mar must apt to 203991

36 Location Location Project / Client Project / Client Jup Paper 1 5.5 mw-24 Switch Cleck values halefully impore performes. 750 SSO MW 26 Flow rue: 5,6 apm mw 27 How rate i 6.0 3 mm @ mw 27 0.2 1809 recovery Initral WHL. C MW271 1020 -27 Decause tosbibity @ Mw27: 15.30 Drudom real 14: 203 Drivour @ mer 26: Tuch: O :ty from MW - 26: (lew 1815 mw-26 15 for MW-27; Clear goes offsite 1901 1640 () como dem MW-26 retoin & rev =>) Drawdown of Both 1718 1908 Sme, well are 5/1/4 recovery 10.0 p. 0.0

Pase 1 of 2

Site Name:

61 Commercial Street Rochester, NY 14614 (585) 475-1440

Monitoring	Well	Puraina	and	Sampling	Record
Monitoring	44611	ı uıgıng	and	Camping	1100014

		Monitori	ing won rai	ging and camp.			NINT.	w 1 ac
Site Name:	Former AMSF					Well ID:	HUX-1	141-15
Initial Depth to \	Water: <u>10 r35</u>	ft TOIC				Date:	6/20	113
Total Well D	Depth: 75,02	# TOIC			Purge	Start Time:	1400	<u>) </u>
Depth to F	Pump:	ft TOIC			Purge	e End Time:	154	
Initial Pump	Rate: \SO	mL/min			F	Pump Type:	Perista	alte
adjust	ed to:	mL/min at		minutes	We	ll Diameter:	2	inches
adjust	ed to:	mL/min at		minutes	W	/ell Volume:	2.3	gallons
	Purge Volume	рН	ORP	Conductivity	Temp.	DO	Turbidity	Water
Time	(gallons)	(s.u.)	(mV)	(mS/cm)	(°C)	(mg/L)	(NTU)	Level (ft)
1443	0.0	6.96	-1.0	2.12	17,5	0.24	3956	10.32
1408	0.2	6.93	17.9	2012	16.4	0.20	920	10-32
1413	0,5	0.93	7.1	2011	16.1	0,14	1206	10-32
1000	0.8	6.40	-18,0	2,14	16.3	0.15	1806	10.37
1/1/2		7 0	(0)		10			
11128	4.0-13	6.97	-315	2,13	le l	0.13	3800	10.26
1(132 -	1, 5	6.93	60	210	16.	0017	626	10,25
1439	10	697	35.3	7 13	189	0.10	2972	10.27
14 112	20	698	10.5	2,16	1/22	0.12	204	1027
1442	7.2-	693	-30.4	2.13	160	0.08	1200	10.27
1(182	7 2	6,017	=2(.3	7/3	16.1	0.07	1785	1027
1/1/50	2 7	6.47	-371	7.13	1600	0.06	158/1	M 27
1827	29	6.93	-325	2.13	15.7	007	1277	10.27
18AQ	3.	6,92	-39,4	2.12	1620	006	997	1022
15 17	3.3	6.92	- 40.6	2.13	16.1	0.06	773	10,27
Final Sa	ample Data:			*			, 20	7
	AMSF-MW	-15-0	1-0670	7A1 Z	I		I	
Sample Time:	1	. 10		2013				
	1040	Dun 2	MC/MCD2	Sampler(s):	K. Prus	00/11	1 Acont	nera
Analyses: ☑ TCL VOCs +	TICs	<u>Dup?</u> □	MS/MSD? □		0 100	74	J & ONV	9 / 9 7_
☐ TCL SVOCs +				Comments:	<u>O MU 3</u>	$\sim u $	6.0	
☐ PCBs	_			0 1415	(ie)	014	48-17	Mara
☐ TCL Pesticides☐ TAL Metals	5			W 1772	- CICO	<u>U 19</u>	10	up Q
☐ PPL Metals +								
☐ Select Metals (Cr, Cu, Pb, Ni & Zn							

Monitoring Well Purging and Sampling Record Well ID: AMST-MI Former AMSF Site Name: Date: 6/ Initial Depth to Water: 0.35ft TOIC Purge Start Time: Total Well Depth: 25,02 #TOIC Purge End Time: \5\(\mu\) Depth to Pump: 7.2 ft TOIC Pump Type: Der Stell C Initial Pump Rate: \50 mL/min minutes Well Diameter: inches adjusted to: mL/min at gallons Well Volume: mL/min at minutes adjusted to: **Turbidity** Water Conductivity DO **Purge Volume ORP** Temp. pН (NTU) Level (ft) (mS/cm) (°C) (mg/L) (gallons) (mV) (s.u.) 6.9 Final Sample Data: Sample ID(s): A M2 Sample Time:] Sampler(s): Analyses: Dup? MS/MSD? ☑ TCL VOCs + TICs Comments: O 151B - Cloudy -☐ TCL SVOCs + TICs ☐ PCBs ☐ TCL Pesticides ☐ TAL Metals ☐ PPL Metals + Al

П

☐ Select Metals Cr, Cu, Pb, Ni & Zn

Site Name:	Former AMSF	Monton	ing won a	ging and camp.		Well ID:	AMEF-1	141-9
		# TOIC				Date:	6/10	(200)
	Water: 7.63				5	•	17 1	
		ft TOIC			_	Start Time:	1515	1 100
Depth to F	Pump: 2-20	ft TOIC			Purge	e End Time:	108	5 1610
Initial Pump	Rate: 100	mL/min			F	Pump Type:		copins
adjust	ted to:	mL/min at		minutes	We	Il Diameter:	2	inches
adjust	ted to:	mL/min at		minutes	W	ell Volume:	2.75	gallons
	Purge Volume	рН	ORP	Conductivity	Temp.	DO	Turbidity	Water
Time	(gallons)	(s.u.)	(mV)	(mS/cm)	(°C)	(mg/L)	(NTU)	Level (ft)
1614	00	6.78	875	5.71	16.8	1.01	SUU	762
1514	07-	671	89.7	566	16:	6.73	124	7.70
15211	0 5	711	OCI	5.66	160	0.14	4.51	7.70
1578	07	6.72	B 11-	5 65	150	012	197	7.70
1500	1 1	(7/1	JA (5.05	100	0.11	cocil	77
1234	1,0	0, 14	16.4	5.00	10.7	0011	CO (18)	777
1539	1.6	643	74.3	5.73	159	0.69	7,48)	471
1844	1.5	6.17	44.0	5,79	160	0,69	4.00	4.74
1849	1.80	6,76	71.3	5.82	15.9	0.10	390	f. H
1554	201	6.74	69.8	5.84	6.0	0.04	321	7074
1554	2.11	6.73	67,8	5.88	16.0	0.04	US	4.73
, ,						1	1. /	
	1							
F: 10	L D (673	67.8	t 60.	16.0	00	11.51	77
	ample Data:	(4-11)	-0610-	100	100		17.01	
	AMSF-NW	-	20018					
Sample Time:	1605	-	*		V Do			2
Analyses:		Dup?	MS/MSD?	Sampler(s):	B. Prov			
☑ TCL VOCs +				Comments:	0, 150	4- (10	cs kler i	al 1
☐ PCBs	1100					1 C/CS		4
☐ TCL Pesticide	es			Prices	5 6 15	29 C/E	w W/	
☐ TAL Metals				P- 17101				
☐ PPL Metals + ☐ Select Metals	Al Cr, Cu, Pb, Ņi & Zn			Porticles				

Site Name:	Former AMSF				_	Well ID:	AMSF-	MW-95
Initial Depth to \	Water: <u>8-72</u>	ft TOIC				Date:	6/18	1203
	Depth: 25 .05				Purge	Start Time:	1310)
	Pump: ~ 22				Purge	e End Time:	1450	<u> </u>
	Rate: 00				F	Pump Type:	Geor	inf
adjust	ed to:	mL/min at		minutes	We	II Diameter:	2	inches
adjust	ed to:	mL/min at		minutes	W	ell Volume:	2.6	gallons
	Purge Volume	pΗ	ORP	Conductivity	Temp.	DO	Turbidity	Water
Time	(gallons)	(s.u.)	(mV)	(mS/cm)	(°C)	(mg/L)	(NTU)	Level (ft)
13.12	0.0	4.00	171.	4.38	16.6	061	129	8.73
13:17	0.3	6.97	164	4.45	6.0	0.20	8.17	8.73
13:22	0.5	7.00	1520	4.42	15.4	0.15	3.87	8.73
13:27	0.7	7.00	1455	4.35	16.0	0.13	2.46	8.73
1332	1.0	6,92	1421	3.87	16-0	0012	1.25	8.73
1337	1.2	693	141.6	3,80	160	0.11	092	873
1342	1.5	6.88	142.3	3,82	16.0	0.22	1,47	9.70
3/17	17	6.91	11104	300	16.1	(9.13	1.23	8-7
1357	2.0	6.92	1300	3 47	16.1	0-10	1,54	0.73
387	27	6.93	125	3 94	163	000	00/	33
1800	7 P	6.43	12(13	3017	16.11	000	130	D 23
1202	215	6.47	134,0	000	164	0.09	J. 0	613
ALVANOR - 100 AL								
First C	Deter	6.93	1242	3.91.	164	024	1.30	Q 73
	ample Data:	ac 1.1	0(-10	2 0/3	100			
Sample ID(s). Sample Time:	1415	: 75-W	-0618	2015				
Analyses:		Dup?	MS/MSD?	Sampler(s):	K. Pro	10/W	Arm	nstan
✓ TCL VOCs +	TICs			20	Kilm Ol3	10		
TCL SVOCs +	TICS 3 Amber	> 0						
TCL Pesticides	1			-some it	(:) (es	Preci Fa	ite	
III AL Metals								
☐ PPL Metals +	Al Cr, Cu, Pb, Ni & Zn					<u></u>		
	, = =, · =, · · · = · · ·	ld	land.					

☐ TAL Metals

☐ PPL Metals + Al

☐ Select Metals Cr, Cu, Pb, Ni & Zn

61 Commercial Street Rochester, NY 14614 (585) 475-1440

Monitoring Well Purging and Sampling Record Site Name: Former AMSF Initial Depth to Water: 5.40 Date: ft TOIC Purge Start Time: Total Well Depth: ft TOIC Depth to Pump: ~2 Purge End Time: ft TOIC Pump Type: Initial Pump Rate: USU mL/min Well Diameter: inches mL/min at minutes adjusted to: Well Volume:) gallons mL/min at minutes adjusted to: **Turbidity** Water DO Conductivity Temp. **ORP Purge Volume** pН Level (ft) (NTU) (°C) (mg/L) (mS/cm) (gallons) (s.u.) (mV) Time Final Sample Data: MW-10-W-06202013 Sample ID(s): A Sample Time: Sampler(s): himmo / as Arminsto MS/MSD? Analyses: Dup? ☑ TCL VOCs + TICs Comments: ☐ TCL SVOCs + TICs ☐ PCBs ☐ TCL Pesticides

			•	• • •	•			
Site Name:	Former AMSF	<u> </u>			-	Well ID:	AMSF-	uw-co
Initial Depth to	Water: 0.0=	TOIC		, conta		Date:	6/10	1/2013
Total Well D	Depth: 24,21	ft TOIC			Purge	Start Time:	0950	<u>``</u>
Depth to F	Pump: 222	ft TOIC	,		Purg	e End Time:	10	30
Initial Pump	Rate: 110	mL/min	and the second			Pump Type:	Geor	'ND_
adjust	ed to:	mL/min at		minutes	We	ell Diameter:	2	inches
adjust	ed to:	mL/min at	Agriculture Comment	minutes	W	/ell Volume:	2.3	gallons
	Purge Volume	рН	ORP	Conductivity	Temp.	DO	Turbidity	Water
Time	(gallons)	(s.u.)	(mV)	(mS/cm)	(°C)	(mg/L)	(NTU)	Level (ft)
0956	0.0	7.64	2.24.7	3,80	168	1.05	6.9	1000
1003	0.2	7.50	223.0	3.67	16.60	1.96	10.74	10.05
1008	0.5	7.49	721.4	3.62	16.6	1.95	7.60	605
1013	0 06	7.47	22/2	-3.61	16.6	1.47	7.00	10,05
1018	10	7.5	221.2	3.60	16.7	2008	565	100
			•					
A COLOR OF THE COL								

	<u> </u>							
Final Sa	ample Data:	751	21.2	3,60	16.7	2.08	565	10.05
Sample ID(s):	AMSF-MU	1-7:0-4	1-0619	(2013	•			
Sample Time:	1025							
Analyses:	·	Dup?	MS/MSD?	Sampler(s):	K. Plea	VOIA.	Fluse	>
☑ TCL VOCs + 1				• • • •	K. fred	(10		
□ TCL SVOCs + □ PCBs	TICs			Comments:	9956	- Cleu		
☐ TCL Pesticides	5							
□ TAL Metals □ PPL Metals + A	NI.							
	Al Cr, Cu, Pb, Ni & Zn				C.			

Monitoring Well Purging and Sampling Record Well ID: AMSF-MIR Former AMSF Site Name: Date: Initial Depth to Water: 9,90 ft TOIC Purge Start Time: 08 (Total Well Depth: LL. 2 4 TOIC Purge End Time: Depth to Pump: 2 19 ft TOIC Pump Type: 100 Stalt C Initial Pump Rate: (01) mL/min Well Diameter: inches mL/min at _____ minutes adjusted to: gallons Well Volume: mL/min at minutes adjusted to: Water **Turbidity** DO Conductivity **Purge Volume ORP** Temp. pН (NTU) Level (ft) (mS/cm) (°C) (mg/L)(gallons) (mV) (s.u.) Time Final Sample Data: Sample ID(s): AMSF-1/1U Sample Time: (Sampler(s): K. Promo / A. Waser

Comments: 0949 - Crew Dup? MS/MSD? Analyses: ☑ TCL VOCs + TICs ☐ TCL SVOCs + TICs ☐ PCBs ☐ TCL Pesticides ☐ TAL Metals ☐ PPL_Metals + Al Select Metals Cr, Cu, Pb, Ni & Zn

Site Name:	Former AMSF	Monitori	ng Well Pur	ging and Sampli	ng Record	Well ID:	AUSFN	14-22
	Water: 9.607	ft TOIC				Date:	6111	12013
•		ft TOIC	*		≺ Purge	Start Time:	105	<u> </u>
	1.0	ft TOIC				End Time:	11 08)
	Rate: 100	mL/min				· Pump Type:	DerSter	112
		.··· _ mL/min_at_		minutes		I Diameter:		inches
· ·	ed to:			minutes		ell Volume:	1	gallons
	Purge Volume	рН	ORP	Conductivity	Temp.	DO	Turbidity	Water
Time	(gallons)	(s.u.)	(mV)	(mS/cm)	(°C)	(mg/L)	(NTU)	Level (ft)
1,057	0.0	7.58	140	3,55	16.5	206	1,534	9.87
1102	0,1	7.20	Ver4.7	353	16.4	3.01	430	9.88
1197	05	7.90	idil	3 55	16.4	3.16	9.46	9,88
1112	0.7	7.77	1446	3,25	16.0	3.AZ	4.42	9.85
1117	10	178	1460	3.56	164	3.66	2.61	4.86
11:22		7,7	1173	3 76	1/2 ()	3.00	1 (17	926
VI Z	112	4101	OLF C	30 W	1047	2100	1271	(,0,0
	-							
						-5		
								i de la companya de l
Final S	ample Data:	7.27	19723	3.56	16.4	3,00	1.47	9.86
Sample ID(s):	A IA CT	MW-2	2W-C	26142013	>			
Sample Time:	1130	-	, -					
Analyses:		Dup?	MS/MSD?	Sampler(s):	K. Pres	10 /A	-, Freis	<u>5 c </u>
☑ TCL VOCs +				Comments:	01007	z_ TU/	bir	
☐ TCL SVOCs + ☐ PCBs	FILCS			_		1 - 1 - 1	, V	
☐ TCL Pesticide	es			<u> 0 1102-</u>	- Sugb	MY CK	9014	
☐ TAL Metals ☐ PPL Metals +	ΔΙ							
	Cr, Cu, Pb, Ni & Zn							

☐ TAL Metals

☐ PPL Metals + Al

☐ Select Metals Cr, Cu, Pb, Ni & Zn

61 Commercial Street Rochester, NY 14614 (585) 475-1440

Monitoring Well Purging and Sampling Record Well ID: A Site Name: Former AMSF Uft TOIC Date: Initial Depth to Water: Cf 9 14.6 (L.SO)TOIC Purge Start Time: Total Well Depth: Purge End Time: Depth to Pump: ~ つて _ft TOIC Initial Pump Rate: (\bigcirc) mL/min Pump Type: # Well Diameter: inches adjusted to: mL/min at minutes Well Volume: gallons mL/min at minutes adjusted to: **Turbidity** Water DO Conductivity **Purge Volume ORP** Temp. Hq (NTU) Level (ft) (mS/cm) (°C) (mg/L) (gallons) (s.u.) (mV) **Time** 17.9 Final Sample Data: Sample ID(s): A Sample Time: MS/MSD? Analyses: Dup? ☑ TCL VOCs + TICs Comments: 1234-Clea ☐ TCL SVOCs + TICs ☐ PCBs ☐ TCL Pesticides

Site Name:	Former AMSF					Well ID:	ANGEN	14-25
Initial Depth to	Water: 9.47	ft TOIC				Date:	6/14	113
	1	ft TOIC			Purae	Start Time:	13.76	2-1330
		•			_	e End Time:	16 14	7
Depth to F		ft TOIC			_			1 1 5
Initial Pump	Rate: 30	mL/min				Pump Type:	$\overline{}$	
adjus	ted to:	mL/min at		minutes	We	ell Diameter:	<u> </u>	inches
adjus	ted to:	mL/min at		minutes	٧	Vell Volume:	2.4	gallons
	Purge Volume	рН	ORP	Conductivity	Temp.	DO	Turbidity	Water
Time	(gallons)	(s.u.)	(mV)	(mS/cm)	(°C)	(mg/L)	(NTU)	Level (ft)
1376	00	7.24	1422	7.44	1/2.Cl	0,52	161	10.00
1201	0.2	771	1720	2 43	15 9	0.13	1260	100
13 46	0.5	726	101.3	7.80	18.0	0.11	1456	100
12-18 12-51	87	1.26	an2	7 6	150	010	1293	100
1356	1 1	777	631	2 8 5	100	0.09	1470	100
16101	1 (1	133	013	706	15.7	0 90	1030	100
1401	1 04	772	01.7	700	10/1	0.00	O CO	100
1406	1.0	4.62		2.88	12 5	0 11	657	10-0
1411	1.8	4,24	8 . 4	2.90	15:7	0,11	14-	100
1416	20	7.22	-838	2.43	15.7	0.13	121	100
1421	22	7.23	80.1	2.96	15.7	0-14	61.4	10,0
1426	2,5	7.23	85.4	2.96	15.7	0.10	46.7	100
1421	2.7	7.22	-83.7	2,95	15.8	0.09	24.8	W.0
1436	3.0	7.22	83.6	245	15.7	0.04	20.0	10.0
() ()								
Final S	ample Data:	7.22	83.6	2.95	15.F	0.00	20.0	10.0
Sample ID(s)			-W-C	6192013				
Sample Time		.00	*			/	A 7	
	 	- 5 0	NAC/NACDO	Cl(-)	K Pon	14	The	SU
Analyses: ☑ TCL VOCs +	TICe	<u>Dup?</u> □	MS/MSD? □	Sampler(s):	11/4	10/ 4		
TCL SVOCs +				Comments:	1336	- ac	oudy	
G P CBs					100		7	
☐ TCL Pesticide	es							
☐ TAL Metals								
☐ PPL Metals +								
□ Select Metals	Cr, Cu, Pb, Ni & Zn							

•		Monitori	ing Well Pur	ging and Sampl	ing Record			
Site Name:	Former AMSF					Well ID:	AMSF-1	1W-26
Initial Depth to V	Vater: <u>Q&F</u>	ft TOIC				Date:	6/20/	12013
Total Well D	epth 24.7	ft ^l TOIC			Purge	Start Time:)
	Pump: 22	ft TOIC			Purge	e End Time:	126	0
Initial Pump	Rate: i 00	mL/min			1	Pump Type:	Perista	45°C
		mL/min at		minutes	We	ell Diameter:	2	inches
adjust	ed to:	mL/min at		minutes	W	/ell Volume:	2.4	gallons
	Purge Volume	рН	ORP	Conductivity	Temp.	DO	Turbidity	Water
Time	(gallons)	(s.u.)	(mV)	(mS/cm)	(°C)	(mg/L)	(NTU)	Level (ft)
1157	0	7,10	187.0	4.15	15.8	0.66	67,2	9.87
1202	0,1	7.05	169.5	4,09	153	0.16	73. 7	9,87
1207	0.6	7.04	162.1	4,09	15.3	0.13	22,1	9,87
1212	0.9	707	1825	11.09	152	0.12	9,12	9.87
017	1.0	700	1867	4.02	152	£ .	4.18	9.87
1777	1 3	700	1554	4.08	15,2	l .	7.11	484
1000	1,-	Tas	1004	110 0	10: -	0175	11 6	1
Final Sa	ample Data:	7.05	155.4	4.08	15.2	0.12	3./1	9.87
Sample ID(s):	A	W-26	- W -0	62020(>	\			
Sample Time:			*					
Analyses:		Dup?	MS/MSD?	Sampler(s):	Kipper	0/10	J. Ala	ine tra
✓ TCL VOCs + T	TICs			Campion(c).	101	/ /		" 3 - /
☐ TCL SVOCs +	TICs			Comments:				
☐ PCBs								
☐ TCL Pesticides ☐ TAL Metals								<u></u>
PPL Metals +	Al							
· •	Cr, Cu, Pb, Ni & Zn							

	Former AMSF				•	Well ID:	AMSI	-NW2
Initial Depth to \	Water: <u>9,46</u>	ft TOIC				Date:	6/12	13
	Depth: <u>2 5.25</u>	ft TOIC			Purge	Start Time:	0826	,
Depth to F	Pump: 23	ft TOIC			Purge	e End Time:	093	30
Initial Pump	Rate: SO	mL/min			F	Pump Type:	Geof	insp
adjust	ed to:	mL/min at		minutes	We	ll Diameter:		inches
adjust	ed to:	mL/min at		minutes	· W	ell Volume:	2.5	gallons
	Purge Volume	рН	ORP	Conductivity	Temp.	DO	Turbidity	Water
Time	(gallons)	(s.u.)	(mV)	(mS/cm)	(°C)	(mg/L)	(NTU)	Level (ft)
0828	0	7,28	11.0	3,39	16.3	0-65	214214	4.42
0933	0.1	7.27	-10.5	3.28	15.7	0.28	80	4.48
0638	0,3	7.25	24.0	3,25	15.7	0.44	124	9.46
0843	0,5	7.26	69,2	3.25	15.6	0.73	643	947
2 48	0-7	7.26	68.3	3.24	15.6	000	428	4-47
0853	0.9	7.25	74.2	3.24	15.5	0.36	253	9,48
0358	1.0	7.26	76.9	3,24	15.5	0,20	7.46	948
0403	1.2	7.26	77.4	3.24	15.5	0.16	6.15	d.48
0908	1.5	7.27	79.9	3.24	15,5	0.16	4.63	4.48
0913	1,7	7.27	24.0	3.24	15.5	0.15	3.92	d.48
V								
							AND AND A COMPLETE OF THE PERSON OF THE PERS	
								(1) (15)
	ample Data:	7.27	84.0	3,24	15.5	0.15	3.92	4,48
Sample ID(s):	AMSF-MU	1-27-	W-06	182013				
	0920	_						
Analyses:		Dup?	MS/MSD?	Sampler(s):	& Promo	DW.	Nouns	Ky_
☑ TCL YOCs +				0	000	2	/	1000-0
	TICS X2 LAM bos			Comments:	6001	6 C10	taly///	10 CHEV
☐ PCBs ☐ TCL Pesticides	2			00843	s - Clev	~ /1/00	2de V	
☐ TAL Metals					- 19	110		
PPL Metals +	Al							
Select Metals	Cr, Cu, Pb, Ni &-Zn							
	KP							
	• •							

Monitoring Well Purging and Sampling Record Well ID: A Site Name: Former AMSF Initial Depth to Water: 8,32-ft TOIC Date: 6 Total Well Depth: 21.18 ft TOIC Purge Start Time: 🔿 Depth to Pump / 18 Purge End Time: ft TOIC Initial Pump Rate: 1, 90 mL/min Pump Type: 4 adjusted to: mL/min at minutes Well Diameter: inches gallons Well Volume: adjusted to: mL/min at minutes **Turbidity** Water Conductivity DO **Purge Volume ORP** рH Temp. (NTU) Level (ft) (gallons) (mS/cm) (°C) (mg/L)Time (s.u.) (mV) 120

Final Sample Data:	1.01	2105	1139 135 693 310 012
Sample ID(s): AMSF - MW	-26-1	U-0624	2013/MS/MSD)
Sample Time: OSUS		©	
Analyses: ☑ TCL VOCs + TICs	Dup? □	MS/MSD?	Sampler(s): Kilmo
TCL SVOCs + TICs			Comments: 0005-Cler 15042
CLACBS			1,-
O-FCL Pesticides			
TAL Metals	Ц	_	
□ PPL Metals + Al			
☐ Select Metals Cr, Cu, Pb, Ni & Zn			
			(

		Monitori	ing Well Pur	ging and Sampl	ing Record		A- A	_ 1	
Site Name:	Former AMSF					Well ID:	MUS	MW	3/
Initial Depth to \	Nater: 9.32	#TOIC				Date:	6/18	12013	> 1
Total Well D	Depth: 27,30	H TOIC			Purge	Start Time:	1043		-
Depth to F	Pump: 25	ft TOIC			Purge	e End Time:	1/4	5	_
Initial Pump	Rate: 100	mL/min 🚶			F	Pump Type:	GOOR	MP	_
	ed to: 10 KP	mL/min at	j	minutes	We	II Diameter:	2	inches	
adjust	-	mL/min at		minutes 3%	, W	/ell Volume: ທີ່/ບ	2.8	gallons	
	Purge Volume	рН	ORP	Conductivity	Temp.\	DO	Turbidity	Water	
Time	(gallons)	(s.u.)	(mV)	(mS/cm)	(°C)	(mg/L)	(NTU)	Level (ft)	4
9	0,0	7.27	23.7	3.33	16.2	0.66	830	4.32	lacksquare
1050	0.2	7,22	-14.8	3,36	16.0	0.19	11.31	9.35	
1055	0,5	7.21	108	3,49	160	0.18	4,09	9.35	_
7/100	0.7	770	9.4	3,55	160	0.24	7.72	9.69	36
1105	1.0	7.21	8.4	3.63	16-0	0.29	5,41	9.37	
1110	1,2	7,21	7.8	3,67	16.0	0.15	4.6	9.37].
1115	1.4	7,20	8.0	3,70	16.0	0.12	3.10	9.37	
1120	107	7,20	9,7	3,72	16,0	0.43	3,45	9,37	
1175	2.0	7.21	7.6	3.72	16.0	0.12	2.44	9.37	
1130	2.1	7.21	5.4	371	162	0.11	26	9.37	
1135	23	7.21	5.6	3,75	16.0	0.11	221	9.37	
								/	
Final S	ample Data:	7.21	56	3,75	16.0	0.11	221	9,37	_
Sample ID(s):	AMSF-MU)	-31-0	N -06	182013					
Sample Time:		-							
Analyses:		Dup?	MS/MSD?	Sampler(s):	K. Prus	O W	Amo	Sten	_
☑ TCL VOCs +					^			,	
☐ TCL SVOCs +	TICs			Comments	<u> </u>	5-clec	^		_ '
□ PCBs									
☐ TCL Pesticide	S								-
☐ TAL Metals		Ц							
☐ PPL Metals + ☐ Select Metals	Al Cr, Cu, Pb, Ni & Zn								-

puse 10+2

☐ TCL Pesticides

☐ PPL Metals + Al

☐ Select Metals Cr, Cu, Pb, Ni & Zn

☐ TAL Metals

61 Commercial Street Rochester, NY 14614 (585) 475-1440

Stantec	,								
		Monitor	ing Well Pur	ging and Sampl	ing Record				
Site Name:	Former AMSF					Well ID:	AMP.	- Bow-	>>
Initial Depth to V	Vater: <u>5.44</u>	ft TOIC				Date:	6/20	0/13	ř
Total Well D	epth: 17,42	_ft TOIC			Purge	Start Time:	<u>09 3</u>	<u> </u>	
Depth to P	ump: 2 15	ft TOIC			Purge	e End Time:	100	35	
Initial Pump	Rate: 150	mL/min			F	Pump Type:	GOR	mp	
adjuste	ed to:	mL/min at	ou e e	minutes	We	II Diameter:	2	inches	
adjusto	ed to:	mL/min at		minutes	W	ell Volume:	1.9	gallons	
	Purge Volume	рН	ORP	Conductivity	Temp.	DO	Turbidity	Water	
Time	(gallons)	(s.u.)	(mV)	(mS/cm)	(°C)	(mg/L)	(NTU)	Level (ft)	
0835	0.0	6.91	247.2	4.42	15,5	6.25	826	5.47	
00,40	02	6.80	2410	4.43	15,2	6.96	11.47	5.48	
0 840	Pause	N Pc	N88	due to	D PH 1	55405	s-chi	ched co	Cas
246	0.5	6.80	2468	4.51	156	602	B28	5.48	
25/	0.7	6,72	238.8	11.46	15.1	6.04	18.4	8.49	
256	1.0	6.72	2365	4.45	is i	6.10	12.1	8.49	
3901	1.2-/	6.72	2355	4.44	15,1	5.97	5.28	5.49	
1906	15/	6.72	2348	4.39	15, 2	-5.84	3,24	5.49	
0911	1.7	6.72	-233,8	4.31	15.2	5.61	2.45	5,49	
0916	2,0	6.73	233.1	9.26	15.4	238	2,45	5 49	
047/	2 2	6.75	231,2	4.16	52	5,24	152	5-49	
0920	2.5	6.75	224.7	4.09	153	5.16	2.22	5,49	
0431	2,8	6.75	227,4	3.97	15.1	4.82	1,71	5.51	
0936	3.1	6.75	227.1	3.79	15,1	4044	1,14	5.50	
MUL	3,2	6.76	266	3.71	154	4,40	1.70	5.50	
Final Sa	ample Data:	6.81	217,0	3.02	156	245	1.70	550	\bigcirc
Sample ID(s):	AMSF-MW.	-35-W	-06 202	03			(AP	DSeed	2
Sample Time:		_				,		fuse	
Analyses:	•	Dup?	MS/MSD?	Sampler(s):	Kikan	0/4	1. Alm	ins for	?
☑ TCL VOCs +1					0830	<i>b</i> .	12 + 67	es/cia	
☐ TCL SVOCs +	TICs				_		PORU	0>/C/Q	M
☐ PCBs☐ TCL Pesticides	3			0 0926	o- Cle	20			

Site Name: Former AMS	F				Well ID	Aus-u	V-35
Initial Depth to Water: 5 /	49 ft TOIC				Date:	6/20	0/13_
Total Well Depth: 17	/ 10			Purge	Start Time:	083	33
Depth to Pump: ~ 」C				Purge	e End Time:	103	5
Initial Pump Rate: 150	mL/min				Pump Type:	Perist	ultic
adjusted to:			minutes	We	ell Diameter:		inches
adjusted to:	mL/min at		minutes	V	/ell Volume:	1.9	gallons
Purge Volu	ume pH	ORP	Conductivity	Temp.	DO	Turbidity	Water
Time (gallons	s) (s.u.)	(mV)	(mS/cm)	(°C)	(mg/L)	(NTU)	Level (ft)
0946 35	0 6,77	225.7	3.63	155	3,94	1.72	8.80
0981 3.8	6,78	235.7	355	154	3,90	1,57	5.50
0456 4,0	6-79	723.8	3,46	155	3.81	163	62.2
00 41	6-79	222.8	3.41	155	3.75	1,32	5.51
1006 45	6,7E1	2215	3.28	154	35/	1.89	5.50
1011 47	G.74	2206	3,21	15.6	3.32	160	5,50
1016 80	- 80	2190	3,10	156	3/11	1,99	622
1021 518	9.20	2174	3,06	156	2.98	1.62	550
1025 16	691	217	3.07	15.6	2.95	1.26	5.51
1000 5.6	0.01			1		1 30	υ
					1		
Final Sample Data:	6.81	217.0	3.02	15.6	2.45	1.86	5.51
Sample ID(s)4M5F	MW-35	-w-00	202013	>			
Sample Time:	2				_		
Analyses: ☑ TCL VOCs + TICs ☐ TCL SVOCs + TICs ☐ PCBs ☐ TCL Pesticides ☐ TAL Metals	<u>Dup?</u>	MS/MSD?	Sampler(s): Comments:		no (W	Alm	55 (Es)
☐ PPL Metals + Al ☐ Select Metals Cr, Cu, Pb, Ni &	Zn 🗆						

		Monitori	ng Well Pur	ging and Sampli	ing Record		4		
Site Name:	Former AMSF					Well ID:	MW-15	>	
Initial Depth to V	Water: 13.68	ft TOIC				Date:	9/26/13	3	
Total Well D	Depth: <u>25.62</u>	ft TOIC			Purge	Start Time:	14.46		
Depth to F	Pump: \sim $\mathcal{L}3$	ft TOIC			Purge	End Time:	1531		
Initial Pump	Rate: 210	mL/min			Pump Type: peristante				
adjust	ed to:	mL/min at		minutes	Well Diameter: 2 inches				
adjust	ed to:	mL/min at		minutes	W	ell Volume:	1,81	gallons	
	Purge Volume	рН	ORP	Conductivity	Temp.	DO	Turbidity	Water	
Time	(gallons)	(s.u.)	(mV)	(mS/cm)	(°C)	(mg/L)	(NTU)	Level (ft)	
1446		7,49	· 423.7	2.66	17.7	1.91	77,4	13.70	
1451	0.5	7.13	13.5	2.61	17.5	0.53	30.0	13.71	
1456	0.6	7.12	237	2.61	17.5	0.44	11.88	13.72	
1501	1.1	7.00	10.8	2.66	17.6	0.33	7.31	13.71	
1506	1,4	7.09	3.1	2.72	17.5	0.29	l .55	13.71	
15:11	1.6	7.09	-0.9	2.73	17.6	0.25	4,22	13.71	
15:16	1.9	7.11	-4.7	2.74	17.6	0.22	4.75	13.70	
1521	2.2	7.10	-6.6	2.76	17.5	0.23	3.19	13.70	
1526	2.4	7.11	-g.q	2.76	17.5	0.22	3,39	13.70	
1531	2.7	7.11	-10.8	2.77	17.6	0.21	5.84	13.70	
Final S	ample Data:	7.11	-10.8	2.77 .	17.6	0.21	5.84	13.70	
Sample ID(s):	AMSF-MW-1s	-W-0921							
Sample Time:		•							
Analyses:		Dup?	MS/MSD?	Sampler(s):	LB+WA				
☑ TCL VOCs ⊁	TICS					1.1	101 Pat	<u></u>	
☐ PPL Metals				Comments:	Susperce	nea muse	ora, aya	<u></u>	
				brown in col	or; U	ar, no	oder Un	0.3 gal	
					*	•		0	

		Monitori	ng Well Pur	ging and Sampli	ing Record		,		
Site Name:	Former AMSF					Well ID:	mw-	<u> 3></u>	
Initial Depth to V	Water: 8 H	ft TOIC				Date:	9/26/13		
Total Well D	Depth: 17.42	# TOIC			Purge	Start Time:	12-05 (ste	p 1220 re-	start
Depth to P	Pump: ~ 15	ft TOIC			Purge	End Time:	14:13		15'40'
Initial Pump	Rate:	mL/min			F	ump Type:	pensta	utic_	
adjust	ed to:	mL/min at		minutes	Wel	l Diameter:	<u>' Z</u>	inches	
adjust	ed to:	mL/min at		minutes	W	ell Volume:	1.39	gallons	
	Purge Volume	рН	ORP	Conductivity	Temp.	DO	Turbidity	Water	
Time	(gallons)	(s.u.)	(mV)	(mS/cm)	(°C)	(mg/L)	(NTU)	Level (ft)	
1205		7.17	174.3	2.30	19.3	0.41	3.56	875	
1210	0.4	6.92	169.4	2.06	187	0.33	1.90	8.75	
1215	0.7	691	163.1	1.82	18.5	0.20	1,01	8.75	
1220	0.9	unable	to .	1.81		0.16			
L		read interfa	tepped a	1221				→	
1328	1.1	7.06	115.0	1.79	19.0	0.22	1.31	8.79	
1333	1.4	7.06	112.9	1,62	18.9	0.13	1.52	8.79	
1338	1.7	7.05	111.3	1.53	18.8	0.10	0,80	8.79	
1343	2.0	7.04	110.6	1.44	18.8	0.08	0.74	876	
1348	2.3	7.05	108.9	1.41	18.8	0.07	88,0	8.77	
1353	2.7	7.05	107.1	1.38	18.9	0.07	0.69	8.77	
1358	3.0	7.04	106.1	1.35	166	0.06	1.03	877	
1403	3.2	7.07	104.2	1.39	19.4	0.09	0.82	8,77	
14 08	3.4	7.06	104.2	1.38	19,4	0.09	0.71	877	
i 413	3.5	7.04	104.7	1.38	14,4	0.08	0.60	8.77	
Final Sa	ample Data:	7.04	104.7	1,38	19.4	P.08	0.60	8.77	
Sample ID(s):	AMSF-MW-35-	W-092613	3						
Sample Time:	1415	-							
Analyses:		Dup?	MS/MSD?	Sampler(s):	BOK	PNWA			
☑ TCL VOCs +	TILS			Comments:	Us o K	, no oo	Lor		-
					ŕ				
									•
									-

		Monitorii	ng Well Pur	ging and Sampii	ing Record		. 4	: 1
Site Name:	Former AMSF						<u> MW-</u>	
Initial Depth to	Water: 11.32	ft TOIC				Date:	9/27/1	3
Total Well [Depth: <u>24.80</u>	ft TOIC			Purge :	Start Time:	0812	
Depth to F	Pump: ~22	ft TOIC			Purge	End Time:	0922	
Initial Pump	Rate: 210	mL/min			P	ump Type:	peristal	ticpurp
	ted to:	mL/min at		minutes	Wel	Diameter:	' 2	inches
	ted to:			minutes	W	ell Volume:	13,48 LB ?	gallons
	Purge Volume	рН	ORP	Conductivity	Temp.	DO	Turbidity	Water
Time	(gallons)	(s.u.)	(mV)	(mS/cm)	(°C)	(mg/L)	(NTU)	Level (ft)
0812	_	6.75	238 2	4.48	16.1	1.38	20.6	11.43
0817	0.4	6.89	202.6	4.45	15.9	0.31	3.79	11.45
0822	0.7	6.91	180.1	4.45	16.1	0,43	3.30	11.49
0827	1.0	6.43	153.3	4.43	16.2	0.32	1.77	11.50
0832	1.2	6.43	132.3	4.42	16.3	0.26	1.82	11.50
0837	1.5	6.94	113.5	4.41	16.4	0,25	1.93	(1.50
0842	1.8	6.95	96.0	4.40	16.4	0.12	1.13	i1.50
()847	2.1	10.45	820	4.40	16.4	0.18	1.52	11.50
0852	2.3	6.96	74.6	4.39	16.5	0.16	0,80	11.50
0857	2-6	6.96	66.3	4.39	14.5	0.14	0.59	11.50
0902	2.8	6.96	59.0	4.38	16.5	0.13	0.60	11.50
0907	3.1	6.97	54.1	4.37	16-6	0.15	0.57	1150
0912	3.4	6.97	44.5	4.37	16.6	0.16	0,44	11.50
0917	37	6.97	46.1	4.36	16.6	0.69	0.43	
0922	4.0	6.97		4.35	16.6	0.10	0.41	11.50
	Sample Data:	6.97	43.0	4.35	16.6	0.18	0,41	11-50
): AMSF-MW-4-L	U-092713						
Sample Time	e: <u>1925</u>	nginal						
Analyses:		Dup?	MS/MSD?	Sampler(s):	: WALL	B		
☑ ȚCL VOCs →					: clear			
PPL Metals	+ A1			Comments	· _ (COC)	veo Our		

		Monitori	ng Well Pur	ging and Sampi	ing Recora			1
	Former AMSF					Well ID:	MW-f	
Initial Depth to \	Water: <u> 1.56 </u>	ft TOIC					9/26/1	
Total Well D	Depth: 25,20	ft TOIC						
Depth to F	Pump: <u>~23</u>	ft TOIC			Purge	End Time:	16:21	<u>,</u>
Initial Pump	Rate: <u>220</u>	mL/min			F	Pump Type:	peristal	NO
adjust	ed to: 170	mL/min at	15	minutes	We	ll Diameter:	_2	inches
adjust	ed to:	mL/min at		minutes	W	ell Volume:	13.64	gallons
	Purge Volume	рН	ORP	Conductivity	Temp.	DO	Turbidity	Water
Time	(gallons)	(s.u.)	(mV)	(mS/cm)	(°C)	(mg/L)	(NTU)	Level (ft)
1556		7.45	64.3	2.22	16.7	1.58	101.4	11.61
16.01	0,5	7.20	67.6	2.20	16.7	1.26	112	11.61
16-66	8.0	7.18	68.3	2.19	17.3	1.16	38,5	11.61
16-11	i.()	7.16	69.2	2.14	17.3	1.40	9.16	11.61
1616	1.3	7.16	69,2	2.15	17.4	1,29	1.47	11.61
16:24	1.5	7.15	70.1	2.17	17.2	1.33	1.24	11.66
-								
Final Sa	Iample Data:	7.15	70.1	2.17	17.2	1.33	1.24	11.61
	AMSF - MW -7 -	<u> </u>		<u> </u>				· · · · · ·
Sample Time:		. W" U1 0013	>			_		
Analyses:	·		MS/MSD?	Sampler(s):	WAb	<u>LB</u>	·	
☑ TCL VOCs + ´	TILS			Comments:	clear	no odo	V	
				A 5.64	· · · · · · · ·	1	+ /	e after ~1 pp
				Memme	int slugs of	p segime	my (nan	capter~11

		Monitori	ng Well Pur	ging and Sampli	ing Record				
	Former AMSF						MW-9		
Initial Depth to V	Water: Hat 18	ft TOIC				Date:	9/27/13		
		ft TOIC			Purge	Start Time:	0950		
	Pump: <u>~23</u>	ft TOIC			Purge	End Time:	1020	8	
Initial Pump	Rate: 190	mL/min			F	Pump Type:	peristal	HC_	
	ed to:			minutes	Well Diameter: inches				
adjust	ed to:	mL/min at		minutes	Well Volume: 1.99 gallons				
	Purge Volume	рН	ORP	Conductivity	Temp.	DO	Turbidity	Water	
Time	(gallons)	(s.u.)	(mV)	(mS/cm)	(°C)	(mg/L)	(NTU)	Level (ft)	
0950	~	7.38	103.4	3.42	16.8	0.90	9.37	12.63	
0955	0.4	7.03	95.2	3.39	16.6	0.16	3 63	12.63	
10 00	0.6	6.98	95.7	3.31	16:7	0.14	4.74	12-63	
10 05	0.8	6.94	98.4	3 28	16.9	0.14	2.57	12.63	
0101	1.1	6.94	99.8	3.27	17.0	0.12	2.20	12.63	
1015	1.3	6.93	100.9	3.26	17.0	0.12	1.25	12.63	
1020	1.5	6.93	102.0	3.27	17.1	0.11	0.92	12.63	
A									
		-							
Final S	ample Data:	6.93	102-0	3.27	17.1	0.11	0.92	12.63	
Sample ID(s):	AMSF-MW-95-W	092713							
Sample Time:	1025								
Analyses:		Dup?	MS/MSD?	Sampler(s):	WALL	В			
☑ TCL VOCs †	TICS			Commonts:	clear, n	a orlar			
☐ PPL Metals			L	Comments.	Coo , M	0 0000		7.50	

		Monitori	ng Well Pur	ging and Sampli	ing Record		Y 1	i/)
Site Name:	Former AMSF					Well ID:	NW- 9/26,	
Initial Depth to V	Vater: <u>7,8 / _</u>	ft TOIC						
Total Well D	- 71	ft TOIC 22	.16		Purge	Start Time:	074	<u> </u>
Depth to P	Pump: 2 \ 5	ft TOIC			Purge	End Time:	08 14	
Initial Pump	Rate: 160	mL/min			F	Pump Type:	Peris	tultic
		mL/min at		minutes		II Diameter:		
		mL/min at		minutes	W	ell Volume:	2.30	gallons
	Purge Volume	рН	ORP	Conductivity	Temp.	DO	Turbidity	Water
Time	(gallons)	(s.u.)	(mV)	(mS/cm)	(°C)	(mg/L)	(NTU)	Level (ft)
074	0.0	644	232.	2,43	137	0,92	29:7	7.81
01874	0,4	6.96	223.9	2,43	16.3	0:44	27.0	1.8/
07511	0.1	6.48	77 [8	2.35	16,2	0,26	36.7	7.8/
0754	0.4	6.40	200	2.300	16.4	0.22	22.4	7.81
0001	1 2	6.44	2180	2,24	160	0.18	10.74	7.81
0809	1 5	700	2/63	220	16.7-	017	5.45	7.8/
0001	17	6.94	2/5.1	2.70	11. >	0.16	105	781
0014	1. T	1 19	01311		100	0 0 1 10		
						0.36	(1) (1)	7.01
	ample Data:	6.99	215.1	1.20	16.2	0.16	4.05	7.81
Sample ID(s)	: MSF - M	W-10-(N-0926	13				
Sample Time	: <u>0820</u>	_		,		1	î o	+
Analyses:		Dup?	MS/MSD?	Sampler(s)	K. Pres	10 3	L.pes	.[
☑ TCL VOCs				Commante	: Cler	170 (9)	100	
☐ PPL Metals		L	Ц	Comments		<u> </u>	سيل المحال	

Site Name:	Former AMSF	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				Well ID:	AMSF-	<u>MW-20</u>	
	Water: 13-10	ft TOIC					9/25/1		
	Depth: 24.21				Purge	Start Time:			
	Pump: 19				Purge	End Time:	10:26		
	Rate: 110				F	ump Type:	peristalt	ic punip	
	ted to:			minutes	Wel	l Diameter:	2	inches	
adjus	ted to:	mL/min at		minutes	Well Volume: 1.68 gallons				
	Purge Volume	O.t	ORP	3 // Conductivity	Temp.	107. DO	Turbidity	Water	
Time	(gallons)	(s.u.)	(mV)	(mS/cm)	(°C)	(mg/L)	(NTU)	Level (ft)	
10:06		8.04	116.5	1.39	18.2	4.03	2.65	13,40	
10:11	0.2	7.83	118.1	1.38	18.0	3.52	1.50	13.72	
10:16	0.4	777	119.7	1.37	18.0	3.47	1.29	13.70	
10:21	0.5	7.76	121.1	1.36	18.0	3.46	0:73	13.70	
10:26	0.7	7.75	122.7	1.36	0.81	3.68	0.62	13.71	
		2.71							
		·							
Final S	Sample Data:	7.75	122.7	1.36 .	18.0	3.68	0.62	13.71	
L	: AMSF-MW-2U-		3						
Sample Time									
Analyses:	•	Dup?	MS/MSD?	Sampler(s):	WALL	В			
☑ TCL VOCs τ									
- PPL Metals	tai-			Comments:					

		Monitori	ng Well Pur	ging and Sampli	ing Record			1
Site Name:	Former AMSF					Well ID:	MW-2	
•	Vater: 13.102	ft TOIC				•	9/25/	13
Total Well D	epth: <u>22.22</u>	ft TOIC			Purge	Start Time:	1057	
	oump: 18				Purge	End Time:	1137	
	Rate: II0					ump Type:		panep
	ed to:			minutes	We	l Diameter:	2	inches
	ed to:	mL/min at	10	minutes	10 W	ell Volume:	1.38	gallons
	Purge Volume	pH	ORP	Conductivity	Temp.	DO	Turbidity	Water
Time	(gallons)	(s.u.)	(mV)	(mS/cm)	(°C)	(mg/L)	(NTU)	Level (ft)
1057		7.94	139.6	1.70	17.8	2.95	2.34	13.62
11:02	0.2	7.82	141.6	1.74	17.6	1.84	1.03	13.62
11:67	0.4	7.78	141.9	1.78	17.6	1.73	0.80	13.62
11:12	0.5	7.62	143.2	1,90	17.6	1,47	1.07	13.62
11:17	0.7	7.44	144.1	2.02	17.6	1.44	1.19	13.62
11:22	0.6	7,40	144.1	2.08	17.6	1.40	1.01	13.62
11:27	0.9	7.34	143.6	2.14	17.6	1.37	1,00	13.60
11 32	1.1	7.32	[43.2	2.18	17.6	1.35	0.79	13.60
11 37	1.2	7.29	142.8	2.20	17.6	1.33	0.62	13.60
Final S	ample Data:	7.29	142.8	2.20.	17.6	1.33	0.62	13.60
	: AMSF - MW - 21 -1	W-092513			·			
Sample Time		_						
Analyses:		Dup?	MS/MSD?	Sampler(s):	: WA L	B		
☑ TCL VOCs 1	TICS							
☐ PPL Metals				Comments:	•			

Drumit

Site Name:	Former AMSF	Wormon	ing Won I are	ging and Jampi	9	Well ID:	MW-2	12
	Water: 13.53	ft TOIC				Date:	9/25/10	3
		ft TOIC			Purge			
	·	ft TOIC			Purge	End Time:	1320	
		mL/min			F	Pump Type:	peristall	1 c pump (qu
	ed to:	mL/min at		minutes	We	I Diameter:	12_	inches
	ed to:	mL/min at		minutes	W	ell Volume:	1.53	gallons
	Purge Volume	0-1 pH	ORP	Conductivity	Temp.	DO	Turbidity	Water
Time	(gallons)	(s.u.)	(mV)	(mS/cm)	(°C)	(mg/L)	(NTU)	Level (ft)
1250		7.34	[* 1:0	2.37	17.7	3,06	0:78	13.51
1255	0,2	7,11	170,2	2.36	17,5	0.46	0.71	13,51
13:00	0.4	7.08	168.6	2.36	17.5	0.51	0.44	13.51
1305	0.5	7.08	167.0	2.36	17.5	0,46	0.45	13.51
1310	0.7	7.08	165.9	2.36	17.5	0.40	0.38	13,51
1315	0,6	7.09	164.4	2.36	17.5	0.37	6.41	13,51
1320	P. 0	7.04	163.1	2-36	17.5	0.36	0.41	13.51
	•							
Final S	ample Data:	7.09	163.1	2.36	17,5	0.36	0.41	13.51
	AMSF-MW-Z		513					
Sample Time:		-						
Analyses:		- Dup?	MS/MSD?	Sampler(s):	WA *	LB		
Analyses. ☑ TCL VOCs ↑	TICS						· · · · · · · · · · · · · · · · · · ·	
☐ PPL Metals				Comments:				
				ALC (1)				

Prumi7

		Monitor	ing weii Pur	ging and Sampii	ng Record			. –
Site Name:	Former AMSF					Well ID:	$\frac{MW-2}{9/25/13}$. 5
Initial Depth to	Water: 13 <i>5</i> 9	ft TOIC				Date:	9/25/13	3
Total Well (Depth: <u>24.50</u>	ft TOIC			Purge		15:32	
Depth to I	Pump: 19	ft TOIC			Purge	End Time:	1347	
	Rate: 140				F	Pump Type:	peristauti	c pump (geog
adjus	ted to:	mL/min at		minutes	We	II Diameter:	<u> </u>	inches
adjus	ted to:	mL/min at		minutes	W	'ell Volume:	1.75	gallons
	Purge Volume	рН	ORP	Conductivity	Temp.	DO	Turbidity	Water
Time	(gallons)	(s.u.)	(mV)	(mS/cm)	(°C)	(mg/L)	(NTU)	Level (ft)
15:32		7.35	144.0	2.15	19.4	2.16	4.42	13.61
15 37	0.2	7.15	146.6	2.16	18.9	2.00	0.83	13.62
15:42	0.4	7.14	147.0	2.16	18.9	1.84	0.77	13.62
15:47	0.6	7.12	147.2	2 .15	18.9	1,95	0.36	13.62
		ļ						
			1.17.7	1 1 1 4	i /2 a	1 95	(1.31	12/3
	Sample Data:	7.12	147.2	2.15.	18.9	1.95	0,36	13.62
	AMSF-MW-Z	3-W-092	513					
Sample Time	: <u>15: 50</u>	-				. 1		
Analyses:		<u>Dup?</u>	MS/MSD?	Sampler(s):	WAE	LIS		
☑ TCL VOCs ◀	r T.I.Us	· 🗆		Comments:				
LI I L WOUG			_					

Site Name:	Former AMSF	Monton	ng rron r a	9g			MW-2		
	Water: \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ft TOIC				Date:	9/25/	13	
	 Depth:				Purge Start Time: 1년:38				
Depth to Pump: 25.27		ft TOIC			Purge End Time: 15-09				
Initial Pump Rate: 110					Pump Type: pen startic pump liverpu				
adjusted to:				minutes	Wel	l Diameter:	2	inches	
adjusted to:				minutes 3/	Well Volume: 1.88 gallons				
	Purge Volume	рН	ORP	Conductivity	Temp.	DO	Turbidity	Water	
Time	(gallons)	(s.u.)	(mV)	(mS/cm)	(°C)	(mg/L)	(NTU)	Level (ft)	
14:38		7.36	141.8	2.26	18.5	1.20	3, 25	13,55	
14.43	0.3	7.04	139.2	2-23	17.3	0.24	2.64	13.55	
14:48	0.4	7.02	137,8	2.23	17.2	0.19	0.76	13,56	
14:53	0.5	6.98	136.9	2.22	17.2	0.16	0.96	13.56	
14-58	0.7	6.98	136.3	2.22	17.1	0.14	0.51	13,56	
15:03	0,8	6.97	135.4	2.21	17.1	0.14	0.73	13.56	
15-08	0.9	6.98	134.4	2.21	17.2	0.13	0.73	13.56	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	V								
Final S	ample Data:	6.98	134.4	2.21	17.2	0.13	0.73	13.56	
L	: AMSF-MW-25-1								
	131018 1510	_							
Analyses:		Dup?	MS/MSD?	Sampler(s):	WAL	LB			
MITCL VOCs + TICS									
☐ PPL Metals				Comments:					

Monitoring Well Purging and Sampling Record										
	Former AMSF		$\overline{}$			Well ID:	<u>MU-</u>	<u>ko</u>		
Initial Depth to \	Water: 12,47	ft TOIC	·		Date: <u>4/26//3</u>					
Total Well D	Depth: <u>24.71</u>	ft TOIC			Purge	Start Time:	0944			
Depth to Pump: 222		ft TOIC			•	e End Time:				
Initial Pump	Rate: DO	mL/min			i	oump Type:	ANST	マイトと_		
adjusted to:		mL/min at		minutes	We	II Diameter:	2	inches		
adjusted to:		mL/min at		minutes	W	/ell Volume:	1.46	gallons		
	Purge Volume	рН	ORP	Conductivity	Temp.	DO	Turbidity	Water		
Time	(gallons)	(s.u.)	(mV)	(mS/cm)	(°C)	(mg/L)	(NTU)	Level (ft)		
2445	0,0	7.36	153.4	2.80	16.8	0.69	36.8	12,48		
0950	0,3	7.02	152.7	2.80	16.3	0,24	8,50	12.49		
19955	0.6	6.98	1525	2.7.7	16.3	0,23	2.55	12.49		
1000	0.8	6.96	151.8	2.76	16.3	0,18	10/1	12.49		
1005	100	6.46	180.4	2,76	163	0.15	0,72	12.50		
1000	1.9	6.46	1504	2.76	16.3	0.12	0.68	12.50		
1015	16	6.46	1496	2,76	16.3	0.11	0,3	12.50		
1070	10 1 a	6.96	1(18.8	777	16.3	0.11	0.60	12.50		
1000	71.0	0,16	1400							
			1							
								·		
					. ~	() ; 1	0.10	12.50		
Final S	ample Data:	16.96	148.8	277	16.3	0.11	0.60	0 1		
Sample ID(s)	7 1 ,	W-26-	-W-04	2613(N3/	(u=0)	AMSF-		- W-0461		
Sample Time: 1025										
Analyses: Dup? MS/MSD? Sampler(s): K, Pront DL, Best										
TCL VOCs										
PPE Metals Comments: Cler, NO tUCO										

Monitoring \	Well Purging	and Sampling	Record
--------------	---------------------	--------------	--------

		Monitori	ng Well Pur	ging and Sampii	ng Record	\A/ - II ID.	11/1/-	77
•	Former AMSF					well in:	MW- 9/26/13	
	Vater: 3				_	Date:	4/26/13	
Total Well D)epth: <u>/ 5 · 25</u>	ft TOIC				Start Time:	09.46	
Depth to F	oump: 223	ft TOIC					09:11	
	-	mL/min			Р	ump Type:	perista	uic_
adjust	ed to:	mL/min at	08:50	minutes	Wel	l Diameter:		inches
adjust	ed to:	mL/min at		minutes	W	ell Volume:	1.96	gallons
	Purge Volume	рН	ORP	Conductivity	Temp.	DO	Turbidity	Water
Time	(gallons)	(s.u.)	(mV)	(mS/cm)	(°C)	(mg/L)	(NTU)	Level (ft)
08:46		7.7	1800	2.32	15.8	03.0	13.3	13.00
08:51	0.2	6.86	152.0	2.20	15.5	0.17	5.35	13.00
()856	0.5	6.90	146.9	2.16	15.6	0.14	1.25	13.00
10:01	0.8	6.93	140.7	2.16	157	0.13	0.68	13.00
00.00	1.1	694	136.9	7.16	15.7	0.14	0.66	13.00
69:11	1.5	6.94	134.3	2.15	15.7	0.41	0.60	13.00
<u> </u>			1,1,-					
		1 6/1	(24)	2.15.	15.7	0.14	0.60	13.00
	ample Data:	6.94	134.3	1 2:1-	1 /201	1 0 1 1	10	
	: AMSF-MW-Z	7-W-04	11015					
Sample Time	:				10.	v P		
Analyses:	TT(.	<u>Dup?</u> □	MS/MSD? □	Sampler(s):	<u>1000</u>	4		
☑ TCL VOCs * ☑ PPL Metals *				Comments	: Bol	no oder		
•	•				ŕ			
							· · · · · · · · · · · · · · · · · · ·	

		Wielliteri	ing tren i ai	ging and campi	ing record		14:17	C
	Former AMSF					Well ID:	MW-2	<u>&</u>
Initial Depth to \	Water: <u>11 63</u>	ft TOIC				Date:	9/27/13	
Total Well D	Depth: <u>21.18</u>	ft TOIC				Start Time:		
Depth to F	Pump: ~19	ft TOIC			Purge	End Time:	1135	
Initial Pump	Rate: 140	mL/min			P	ump Type:	peristat	ic
adjust	ed to:	mL/min at		minutes	Wel	l Diameter:	<u> 2</u>	inches
adjust	ed to:	mL/min at		minutes	W	ell Volume:	1.53	gallons
	Purge Volume	рН	ORP	Conductivity	Temp.	DO	Turbidity	Water
Time	(gallons)	(s.u.)	(mV)	(mS/cm)	(°C)	(mg/L)	(NTU)	Level (ft)
1050		7,55	121.1	1.97	15.6	3.25	8.98	11.65
1085	0.3	7.31	719.9	1.45	15.3	1.06	2.44	11.65
11:00	0.5	7.28	119.5	1.95	15.3	0.90	2.03	11.65
11:05	0.7	7.26	119.3	1.96	15.3	0.81	1.94	11.65
11:10	1.0	7.25	118.B	1.96	15.4	6.76	2.09	11.65
1145	1.2	7.24	119.0	1.97	15.4	0.72	3.28	11.65
11.20	1.4	7.24	118.5	1.97	15.5	0.62	1.59	11-65
11:25	1.6	7.24	1179	1.98	15.6	0.54	1.71	11.65
11-30	1.7	7.25	116.9	1.48	15.9	0.57	1.24	11.65
11 35	1.6	7.24	112.2	1,47	15,5	0.60	1.64	
					•			
			2.1.0					
	5							
Final S	ample Data:	7.24	118 2	1.97	15.5	0.60	1.64	11.65
	AMST-MW-28-							
Sample Time:								
Analyses:		Dup?	MS/MSD?	Sampler(s):	WAOL	B		
✓ TCL VOCs +	TIC5							
☐ PPL Metals					Clear, 1			
				asphalt paris	ng W/i La	1t ~15	15-11-31	<u> </u>
				, ,	J '	V		

		Monitori	ng Well Pur	ging and Sampli	ing Record			10
Site Name:	Former AMSF					Well ID:	MW-3	30
Initial Depth to V	Vater: <u>10</u> .78	ft TOIC				Date:	9/27/1	3
		ft TOIC			Purge S	Start Time:	15:42	
		ft TOIC			Purge	End Time:	16:02	
		mL/min			Р	ump Type:	perista	ltic
	ed to:	mL/min at		minutes	Wel	l Diameter:	<u>'2</u>	inches
	ed to:			minutes	We	ell Volume:	1.49	gallons
	Purge Volume	рН	ORP	Conductivity	Temp.	DO	Turbidity	Water
Time	(gallons)	(s.u.)	(mV)	(mS/cm)	(°C)	(mg/L)	(NTU)	Level (ft)
18:42	~	7.24	114.9	3.30	18.0	2.31	12.9	10.78
15:47	0.4	7.63	119.9	3.28	16.8	1.65	175	20.80
15:52	0.7	7.01	119.2	3.28	16.7	1.58	1.29	20.80
15:57	0.9	7.02	117.9	3.27	16.7	1.60	0.66	20.80
16:02	1,1	7.02	116.6	3.27	18.0	1.50	0.86	20.80
(6) 02								
		<u> </u>						
	4							
Final S	ample Data:	7.02	116.6	3.27	18.0	1.50	0.86	2080
	: AMSF-MW-30-		1 11 0 0					
Sample Time		<u>.</u> v						
	T T T T T T T T T T T T T T T T T T T	_ <u>Dup?</u>	MS/MSD?	Sampler(s)	· I Boh	JA		
Analyses: ☑ TCL VOCs ⁴	TILS				: LBoh : Clear, no	1.7		
☐ PPL Metals	-			Comments	: Clear, n	s other		

* tubing hayway down water column ... A Dright

		Monitori	ng Well Pur	ging and Sampli	ng Record	₩	¥-	
Site Name:	Former AMSF		einu -:	2.0			MW-31	
Initial Depth to V	Water: 12.93	ft TOIC	724 9/25: 1	3.09			9/25/13	
Total Well D	epth: <u>27.30</u>	ft TOIC			•	Start Time:		
Depth to F	Pump: <u>20</u>	ft TOIC				End Time:		
Initial Pump	Rate: <u>130</u>	mL/min			F	Pump Type:	peristant	ic pump (gp
adjust	ed to:	mL/min at		minutes		II Diameter:		
adjust	ed to:	mL/min at	10	minutes	W V	ell Volume:	2.27	gallons
	Purge Volume	pН	ORP	Conductivity	Temp.	DO	Turbidity	Water
Time	(gallons)	(s.u.)	(mV)	(mS/cm)	(°C)	(mg/L)		Level (ft)
08:26		6.46	52.3	2.43	17.1	1,34	1.69	13.09
08:31	0.2	7.04	25. i	2.76	16.9	0.30	0.90	13.16
08-36	0.4	7.03	38.7	2.47	16.9	0.28	0.88	13.10
08:41	0.6	7.02	37.8	2.39	16.8	0.33	0.98	13.11
08:46	0.7	7.03	36.7	2.34	16.8	0.25	0.89	13.11
08:51	0.0	7.03	35.5	2.33	16.8	0.17	1.02	13.11
08:56	1.0	7.03	33.7	2.32	16.8	0.15	0.86	13.12
09:01	1.1	7.05	31.8	2.33	16.8	0.14	1.08	13.12
09 = 06	1.2	7.00	30.1	2.33	16.8	0.13	0.71	13.12
<u> </u>								
	1.							
Final S	ample Data:	7.06	30.1	2.33	16.8	0.13	0.71	13.12
	: AMSF-MW-3	1		1				
Sample Time:		_, ,, ,,	23.5					
Analyses:		Dup?	MS/MSD?	Sampler(s):	WA + L	B		
Analyses: ☑ JCL VOCs +								
₽PL Metals⊁	Al			Comments:	sulur o	dor		

MW 2 WL & 41' 2930 - 1 pend 215/2 041-TB/MW-2 98041 3910 - Alle 1015/PC 021-TB/MU-1-1,820 341 XUN = 2,002 to show pad 0201 X1092 1,078 Sat MW-1-41-9.2 -2 auto 3 turbic 422/14 AVST 93al/Minute BOLC

4124/2014 Alliance project Tow on site @ 0700 Toe Henzel from Cologie algaly on site gettin up for development at 2" OU- (Will Court door well) Pemped 1100 gallons to fractizate Frac tank sompled to TDW, left ste Deited WW-2 sample to Passodizm @ 11:00

	Former AMSF					Well ID:	M	W-7
	/ater: 6.5	ft TOIC	lim last	m	_	Date:		14
			firm both		_	Start Time:	111)
	ump: 272	_ft TOIC			_	End Time:		
	Rate: <u>350</u>	_mL/min	,			ump Type:		
	ed to:	_mL/min at		minutes		Diameter:		inches
aajuste	ed to:	- -		minutes	T	ell Volume:		gallons
Time	Purge Volume (gallons)	pH (s.u.)	ORP (mV)	Conductivity	Temp. (ºC)	DO (mg/L)	Turbidity (NTU)	Water Level (ft)
1(12)	0.0	116	5.4	27063	10,57	0 14	PASIA	825
1475	0.0	7/12	-9,1	20015	12.93	016	102	8.35
1430	1,4	12014	-170	30 10.1	12.83	0.13	621	8 32
1435	1.7	7.13	-103	30050	DBO	010	37.1	0 33
KILLO	2.1	7,13	-17.6	3004.4	12.72	1).04	25-9	0.37
KLUS	2,5	7.14	-18.9	3005.5	12.57	0.04	210	QZU
-1-1								0.27
	imple Data:	7.14	-18.9	3005.5	12.57	0.09	21.8	8.34
	A MSF-1	<u>uw-7-</u>	W-0512	-14	1/ 0 _	b / () 4	
Sample Time:	1450			Sampler(s):	Kolleno	DLIE	e51_	
Anyalyses:		<u>Dub</u> §	WS/WSD\$	Equipment:	Secticu	1 niste	b00 (
Analyses: VOCs SVOCs	+TICs					1 101		
□ SVOCs □ PCBs							-0.0	
☐ Pesticide☐ TAL Meto				Comments:	WY	tern't	_ Wa	rse_
<u> </u>	aio.							

Page 1 of 2

61 Commercial Street Rochester, NY 14614 (585) 475-1440

Site Name:	Former AMSF					Well ID:	MV	V-9S
Depth to W	ater: 9.5 1	ft TOIC				Date:	51	13/14
Total Well De	epth: 25.10	ft TOIC			Purge	Start Time:	8:0	13
Depth to P	ump: ~23	ft TOIC			Purge	End Time:	9:5	B
Initial Pump I	Rate: <u>370</u>	mL/min			P	ump Type:	Blade	der
adjuste	ed to:	mL/min at		minutes	Well	Diameter:	2	inches
adjuste	ed to:			minutes 31.	We	ell Volume:	2.5	gallons
	Purge Volume	pH	ORP	Conductivity	Temp.	DOM	Turbidity	Water
Time	(gallons)	(s.u.)	(mV)	(Has/cm)	(°C)	(mg/L)	(NTU)	Level (ft)
8:03	0	6.94	45.8	3939.6	13.74	1.98	49.7	9.51
8:08	0.5	6.88	40.1	4100.9	12.33	2.24	73.9	9.53
8:13	ſ	6.88	40.3	3903.9	12-15	2-23	75.6	9.52
8:18	1.5	6.87	42-1	3820.9	11-92	2.07	43.8	9.52
8:23	2	6.86	42.6	4062.2	11.92	1.94	30.4	9.52
g : 28	2.5	6.96	43.6	4311-8	11-92	1.61	16.8	9.52
8:33	3	6.86	43.0	4520.4	11.87	1.43	15.5	9.52
8:38	3.5	6.86	42.5	4631.2	11.94	1.27	15.4	9.52
8:43	4	6.85	42.2	4754.0	11.96	1.14	19.2	9.52
8:48	4.5	6.85	42.2	4835.7	11.96	1.00	16.6	9.52
8: <i>5</i> 3	5	6.65	42.2	4916.8	11.93	0.96	16.4	9.52
8:58	5.5	6.85	41.9	4993.1	11.96	0.75	15.6	9.52
9:03	6	6.85	41.9	5010.7	12.03	0.65	12.2	9.52
9:08	6.5	6.85	41.7	5056.6	12.09	0.56	12.7	9.52
9:13	7	6.85	41.7	5072.4	11.94	0.50	11.7	9.52
Final Sa	mple Data:							
Sample ID(s):	AMSF-HW-95	-W-05131	у —	see next	page			7
Sample Time:	1006			Sampler(s):	KP/LB/	HG		
Anglyses: VOCs +	TICS	□ Dubš	MS/MSD? □	Equipment:	see field	notcbook		
SVOCs PCBs Pesticide TAL Meto	s			Comments: t	initially clear with then slightly clear after	cloudy '	aud panju	es, no odor

		Monitori	ng Well Pur	ging and Sampli	ng Record			
Site Name:	Former AMSF						MW-29	
Initial Depth to \	Water: <u>15.68</u>	ft TOIC				Date:	9/27/13	
	Depth: <u>27.65</u>				_	Start Time:	2	
	Pump: ~ 25				Purge	End Time:	1455	
	,	mL/min			F	ump Type:	peristant	<u> </u>
	ted to:	mL/min at		minutes	Wel	l Diameter:		inches
	ted to:			minutes	W	ell Volume:	1.92	gallons
	Purge Volume	рН	ORP	Conductivity	Temp.	DO	Turbidity	Water
Time	(gallons)	(s.u.)	(mV)	(mS/cm)	(°C)	(mg/L)	(NTU)	Level (ft)
1405	******	7.24	-1.6	2.76	17.3	0,99	IÊUE AU	15.69
1410	0.4	7.10	78.7	2.77	17.1	0.88	10.71	15.68
1415	0.7	7.07	89.3	2.77	17.2	0.82	6.24	15.66
1420	0.9	7.06	99.0	278	17.2	0.80	2.09	15.68
1425	0.2	7.06	101.0	2.79	17.1	0.78	3.83	15.68
1430	1,3	7.07	100.2	2.74	17.4	0.68	21.3	15.68
1435	1.5	7.09	63.8	2.80	17.7	0.66	41.5	15.68
1440	1.6	7.09	83.9	2-81	18.2	0.73	7.60	15.69
1445	1.7	7.08	96.3	2.80	18.0	0.72	4.57	15.69
1450	1,9	7.08	100.2	2.81	17.8	0.73	3.54	15.69
1455	2.0	7.67	103.2	2.74	17.9	0.73	1.82	15.69
1475								
Final S	I Sample Data:	7.07	103.2	2 79	17.9	0.73	1.82	15.69
	: AMSF-MW-29-W	<u> </u>		<u> </u>		<u> </u>		
Sample Time	a mark a							
		_ <u>Dup?</u>	MS/MSD?	Sampler(s):	LB + V	UA		
Analyses: ☑ TCL VOCs +	TICS							~ 110,
☐ PPL Metals				Comments:	murky	at first	; clear	aprir 00
					U			

Site Name:	Former AMSF					Well ID:	MW	/-9S
Depth to W	/ater: 9 ,51	ft TOIC				Date:	5/13	/14
		ft TOIC			Purge	Start Time:	8:0	3
	ump: ~23	ft TOIC			Purge	End Time:	9:5	58
		mL/min			P	ump Type:	Blade	der
		mL/min at		minutes	Well	Diameter:		inches
adjuste	ed to:	mL/min at		minutes	We	ell Volume:	2.5	gallons
	Purge Volume	рН	ORP	Conductivity	Temp.	DO	Turbidity	Water
Time	(gallons)	(s.u.)	(mV)	(m\$/cm)	(°C)	(mg/L)	(NTU)	Level (ff)
9:18	7.5	6.85	42.0	<i>5</i> 230.4	12.07	0.32	12.45	9.52
9:23	8	6.85	41.9	5257.9	12.19	0.28	11.33	9.52
9:28	8.5	6.85	42.1	5293.8	12.30	0.24	8.22	9.52
9:33	9	6.85	42.1	5296.1	12-24	0.21	7.65	9.52
9:38	9.5	6-85	42-1	5293.5	12-22	0.18	8.64	9-52
9:43	10	6.85	42.0	5330.2	12.21	0.16	6.53	9.52
9:48	10.5	6.85	42-1	5336.5	12-17	0.14	6.10	9.52
9:53	11	6-85	41.9	5334.5	12-12	0.13	6.47	9.52
9:58	11-5	685	41-9	5349.5	12.24	0.12	6.18	9.52
		·					ļ	
							ļ	
								- (2
Final Sc	ample Data:	6.85	41.9	6349.5	12.24	0.12	6.18	9.52
Sample ID(s)	: AMSF-MW-9	S-W-0513	<u>5</u> 14		4 -	١		
Sample Time:	:10:05	-	-	Sampler(s):	KP/LB/	146		
An∕alyses:		<u>Dub\$</u>	WS/WSD§	Fauipment:	see file	id notes	NooK	
VOCs 4	756			2900	- 7° 24.C	70(105		
□ SVOCs □ PCBs								
□ Pesticide				Comments:	sel pag	<u> </u>		
☐ TAL Met	als				1			

Site Name:	Former AMSF					Well ID:	MW	-13S
Depth to V	Vater: 9.40	ft TOIC				Date:	5/12	12014
	epth: 233	ft TOIC - 5	of Boto	m	Purge	Start Time:	1116)
	Pump: 20	ft TOIC			Purge	End Time:	1216	
Initial Pump	7100	mL/min			P	ump Type:	Budd	e/
adjust	ed to: 280	mL/min at	1120	minutes		Diameter:	"4	inches
adjust		_mL/min at		minutes	W€	ell Volume:	9.7	gallons
	Purge Volume	рН	ORP	Conductivity	Temp.	DO	Turbidity	Water
Time	(gallons)	(s.u.)	(mV)	(hs/cm)"	(°C)	(mg/L)	(NTU)	Level (ft)
116	08	7.24	929	2313,2	404	1.29	284	8,42
1121	0.5	7.13	-650	2866.7	12.90	1,70	45	8/2
1126	0.4	7.12	-84.4	2909.6	1268	1.65	120	847
1131		712	-73.9	2912.6	12,70	144	6.68	8.42
1126	(,4	711	-68.2	2926.5	12.70	1.26	6.70	842
1141	1,8	711	-65.5	2936.7	1259	1.10	Sizz	8.112
1146	2.1	7.12	-67.9	2951,3	1265	045	3.3	802
1151	2.5	7.12	-60.6	2943.7	1275	0254	2.75	86/2
1156	7.8	7.11	-571	7940 3	17.68	0,73	2,7	842
1701	3.6	1.17	-554	2900,0	12.76	0.64	265	842
1706	3.7/	7.12	-545	2938.1	12,901	0.06	1.70	8.42
120	3.5	7.12	-334	24355	DB7	0.05	1.77	842
12/10	384	7.11	-51.6	29 =46	13,00	0.025	1.50	8,0
VOW							1,20	
Final S	ample Data:	7.11	-51.6	2934.6	13.00	0.05	1.50	8.42
	: ANSF-MU	1-135		12_H			. ~	
Sample Time	: 1270	2	-	Sampler(s):	K for	20	LBO.	5/
Analysas:		<u>Dubŝ</u>	WS/WSD\$	Fauinment:	see fi	, , V-1d 1	boto he	221
Analyses: VOCs+	TIG			Equipmom.	sec.	41 1		
□ SVOCs	_							
□ PCBs□ Pesticid	es			Comments:	Sulfer a	940,	Ger a	$v_{/}$
□ TAL Met				1.36+ 6010		715	(1e,	0
				. —	· 41 4 11 1	(,)	,	
				1130				

Site Name:	Former AMSF			J J		Well ID:	MW	<i>I</i> -16I
Depth to W	rater: B-84	ft TOIC				Date:	5/12	/14
Total Well De	7 1 1 1	ft TOIC			Purge	Start Time:	1246	7
Depth to P	ump: ~ 41	ft TOIC			Purge	e End Time:	1326	
Initial Pump I	Rate: 50	mL/min			Р	ump Type:	birdde	W .
adjuste	ed to: 225	mL/min at	1253	minutes—		Diameter:	4	inches
adjuste	ed to:	mL/min at	•	minutes	We	ell Volume:	5.7	gallons
T:	Purge Volume	pН	ORP	Conductivity	Temp.	DO	Turbidity	Water
1240	(gallons)	(s.u.) 7 &	(mV) -166.1	(ms/cm)	(°C) 22.44	(mg/L) みん	(NTU) 4,05	Level (ft) 8.84
1251	0.2	6.96	-161.1	7215.3	15.43	0.75	16.8	8.84
	0.5	6.94	-132.9	7378.1	14.35	0.17	6.63	8.84
1256 1301	0.9	6.95	-123.8	74053	14.28	0,19	4.52	8.84
1306	1,1	6.94	-118.6	7412.6	14.15	0.15	2.34	8.84
1311	1,4	6.95	-115.8	7419.3	14.30	0,12	2.06	8.84
1316	1.8	6.95	-113.6	7416.2	14.20	0.10	1.55	8.84
1321	2.1	6.95	-112.3	7438.8	14.29	0.09	1.69	8.84
1326	2.5	6.95	-111,4	7415.4	14.40	0.08	1,23	8.84
		•	111					
	110							
Final Sa	mple Data:	6.95	-111.4	7415.4	14.40	0.08	1.33	8.84
Sample ID(s): Sample Time:	13:30	0I-W-0	151214	Sampler(s):	KP/U	3		
Analyses:	TICS		<u>MS/MSD</u> ? □	Equipment:	see fiel	ld noteb	we K	
□ PCBs□ Pesticide□ TAL Meto				Comments:			•	
				sulfur odor	(guting s	tranger /	15min a	yter
				purp start)	***************************************		
				•	/			

Site Name:	Former AMSF			gg aa vp		Well ID:	MV	V-23
	rater: 10.38	ft TOIC				Date:	5/13	5/14
	epth: 24.55				Purge	Start Time:		
	ump: ~22				Purge	End Time:	16:4	11
		mL/min			P	ump Type:	blado	Lev
	 ed to:	mL/min at		minutes		Diameter:		
	ed to:			minutes	We	ell Volume:	2.3	gallons
	Purge Volume	рН	ORP	Conductivity	Temp.	DO	Turbidity	Water
Time	(gallons)	(s.u.)	(mV)	(m\$/cm)	(°C)	(mg/L)	(NTU)	Level (ff)
16-21	0	7.22	28.6	5447.9	20.07	2.95	168	10.38
16:26	0.5	7.13	30-2	5844.7	17.45	1.24	23.5	10-38
16:31	0.8	7.12	30.9	5944.5	17-28	1.18	7.42	10.38
16:36	1.1	7.12	31.9	5983.3	17.21	1.21	5.39	10.38
16:41	1.5	7.11	32.7	6009.7	17,17	1.16	2-36	10.38
		•						
Final Sa	ımple Data:	7-11	32.7	6009.7	17-17	1.16	2.36	10.38
	AMSF-MW-		151314				<u> </u>	
	16:45			Sampler(s):	KP/LB/	16		
Analyses:		<u>Dup?</u>	WS/WSD\$	Fauinment:	see fie	ld norm	k.	
VOCs +	TICS			Equipment	<u> </u>	10703001	~	
□ SVOCs □ PCBs								
□ Pesticide				Comments:	dear, no	odov		
□ TAL Meto	als				,			

		Monitori	ng Well Purg	jing and Sampli	ng Record		VIII-7	
Site Name:		10				Well ID:	MW-3 5/13/14	1
	ater: 27 48 10.						,	
Total Well De	epth: <u>27.36</u>	ft TOIC				Start Time:		
Depth to Pu	ump: <u>~25</u>	ft TOIC				End Time:		•
Initial Pump F	Rate: <u>400</u>	mL/min	2		Pı	ump Type:	bladd	er
adjuste	d to: 210	mL/min at	2:019	minutes		Diameter:		
adjuste	d to:	mL/min at		minutes	W e	II Volume:	2.7	gations
	Purge Volume	рН	ORP	Conductivity	Temp.	DO	Turbidity	Water
Time	(gallons)	(s.u.)	(mV)	(m\$/cm)	(°C)	(mg/L)	(NTU)	Level (ff)
1:51 pm	0	7.46	-49.15	2805.2	18.26	2.97	84.5	10-19
1:56 pm	0-8	7.19	-55.0	2989.3	15-33	1.38	88.3	10.19
2:01 pm	1-1	7.19	~55.1	2984-6	15.29	1.36	56.3	10.20
2:06 pm	1.25	7.18	-57.5	2978-2	15-27	1.05	23.4	10.20
2:11 pm	1.5	7-18	-58.0	2979.2	15.22	0.93	20.5	10.20
2:16 pm	1.9	7.18	-58.9	2977.5	15.19	0.92	17.3	10.20
2:21 pm	2.15	7.18	-58.8	2978.8	15.17	0.80	15.7	10.20
2:26 pm	2.35	7.18	-58,8	2977.3	15-15	0.71	14.0	10.20
2:31 pm	2.75	7.18	-58.2	2976.7	15.14	0.66	11.18	10-20
2:36 pm	3.0	7,17	-59.3	2974.6	15.14	0.55	9,92	10-20
2=41 pm	3.3	7.17	-60.1	2976.5	15-14	0.44	7.23	10.20
2:46 pm	3.5	7.17	-59.0	2975.7	15.12	6. 4 2	6.13	10-20
2:51 pm	3.8	7.17	-58.4	2971.9	15-10	0.50	7.02	10.20
2:56 pm	4.0	7.17	-58.3	2970-7	15.12	0.54	5.06	10.20
3:01 pm	4.2	7.17	-59.0	2970-7	15.15	0.44	4.83	10.20
	mple Data:				->	see no	ext pag	e
Sample ID(s):	AMSF-MU-31	-W-0513	214			ì.c		
Sample Time:	15:45			Sampler(s):	UB/EV/H	16		
Analyses: VOCs SVOCs PCBs	r TICS		MS/MSD?	Equipment:	see fiel	d noteb		
□ Pesticide □ TAL Meta				Comments:	sufur sr	nell, clea	<i>×</i>	

Site Name:	Former AMSF					Well ID:	MW-3	31
Depth to W	/ater: 10.18	ft TOIC				Date:	5/13/	14
Total Well D	epth: 27-3	ft TOIC			Purge	Start Time:	1:51	om_
Depth to P	ump:~25	ft TOIC			Purge	e End Time:	3:41	pm
Initial Pump	Rate: <u>400</u>	_mL/min			Р	ump Type:	bladde	n .
adjuste	ed to: 210	_mL/min at	2:01PM	minutes	Well	Diameter:	2	inches
adjuste	ed to:	_mL/min at		minutes	We	ell Volume:	2.7	gallons
	Purge Volume	рН	ORP	Conductivity	Temp.	DO	Turbidity	Water
Time	(gallons)	(s.u.)	(mV)	(mS/cm)	(°C)	(mg/L)	(NTU)	Level (ff)
3:06 pm	4.4	7.17	-59.0	2968.6	15-11	0.37	4,51	10.20
3=11 pm	4.7	7.17	-59.2	2970.7	15-10	0.33	3-09	10.20
3=16 pm	5-0	7.17	-59.5	2965.2	15.10	0.26	2-82	10.20
3:21 pm	5.25	7.17	-58.9	2962.6	15-12	0.21	2.66	16.20
3:26 pm	5.55	7.17	-59.0	2961.3	15-10	0.20	1.94	10.20
3 > 31 pm	l – a -	7.17	-58.8	2963-6	15-10	0.17	1.92	10.20
3:36 pm	6-1	7.17	-58.4	2962-1	15-10	0-17	2.12	10.20
3:41 pm	6-4	7-17	-57.4	2954_1	15-10	0.16	1.88	16-20
	ımple Data:		-57.4	2954.1	15-10	0.16	1.88	10-20
	AMSF-Mn	1-31-W-0	51314					
Sample Time:	15:45			Sampler(s):	LB/ KP	/HG		
Analyses:		<u>Dup?</u>	WS/WSD\$	Fauinment:	see fiew	l notchisa	L	
VOCs +	FTICs			_90,0	300 1100			·
□ SVOCs □ PCBs								
□ Pesticide				Comments:	see page	1		
☐ TAL Meto	als				. ,			
								

Site Name:	Former AMSF				·	Well ID:	MV	V-32
Depth to W	/ater: 10.28	ft TOIC				Date:	05/13	5/14
Total Well D	epth: 22	ft TOIC			Purge	Start Time:	10:4	0
Depth to P	ump: <u>~20</u>	ft TOIC			Purge	End Time:	11: 3	25
Initial Pump	Rate: 300	mL/min				ump Type:		
adjuste	ed to: <u>[60</u>	mL/min at	10:45	minutes	Well	Diameter:	2	inches
adjuste	ed to:	mL/min at		_minutes	We	ell Volume:	1.9	gallons
***************************************	Purge Volume	pH	ORP	- 3 ⁶ / ₀ Conductivity	Temp.	10°% DO	Turbidity	Water
Time	(gallons)	(s.u.)	(mV)	(mS/cm)	(°C)	(mg/L)	(NTU)	Level (ff)
10:40	0	7.64	72.5	3591-8	19.69	4.03	32.7	10.28
10:45	0.4	7.24	39-9	4442.3	17.01	0.67	107.5	10-28
10:50	0.6	7.26	34.6	4421.4	17.08	0-65	89.7	10-28
10:55	0.8	7.27	32.6	4413.7	16.99	0.60	77.3	10.28
11:00	0.9	7.27	31.5	4403.4	16.94	0. 5 5	71.7	10.28
11:05	0.93	7.24	31.1	4316,9	16.89	0.51	58.4	10-28
11:10	0.97	7.24	30.6	4288.1	16.85	0.45	50.2	16-28
11:15	l l	7.25	30.0	4246.5	16-83	0.42	47.3	10.28
11:20	1.1	7.26	29.5	4217.6	16.82	0.40	37.1	10.28
11:25	1.2	7.26	29.2	4182.8	16.82	0.38	31.0	10-28
	ımple Data:	7.26		4182.8	16.82	0.38	31.0	10.28
	AMSF-MW-	32-W-051	314		vol			
Sample Time:	11:30			Sampler(s):	KP/LB/H	6		
<u>Analyses:</u>		<u>Dup?</u>	WS/WSD\$	Equipment:	see lie	ad note	book	
VOCs 4	TICS							
□ SVOCs □ PCBs								
☐ Pesticide☐ TAL Meto				Comments:	clear, ten	y slight chio	inard odo	<u> </u>
□ TAL Meta	SIN	П	П					

Site Name:	Former AMSF			,gp		Well ID:	MW	/ -33
	 ′ater:	ft TOIC			•	Date:	5/13/	 '14
	epth: 23.95				Purge	Start Time:	12:0	4
	ump: ~21						1230	_
	Rate: 2 <i>0</i> 0	•					blad	
adjuste	ed to:	mL/min at		minutes			2	
adjusted to:		mL/min atminutes			W€	ell Volume:	2.4	gallons
	Purge Volume	рH	ORP	Conductivity	Temp.	DO	Turbidity	Water
Time	(gallons)	(s.u.)	(mV)	(m\$/cm)	(°C)	(mg/L)	(NTU)	Level (ff) 8.80
12:04	0	7-22 7-20	-57.6	2828.4	21-35	1.60	1644 AU	
12:09	0.35	7.19	-55.8 -51.7	3052-6	14.37	0.26	1541 AU	8.80 8.80
12:14	0.6			3055.6	13.97	0.19	681 AU	
12=19	0.8	7.17	-49.6	3047.5	13.93	0.16	142 NTU	
12: 24	\$. ©	7.17	-47.6	3046.1	13.93	0.14	99.9 MZ	
1229	1.0	7.16	-47.2	3034.6	14.06	0.11	57 NTV	
1234	1.5	7.16	-46.1	303 5 .1	14.02	0.11	36.6MU	08.9
1239	1.8	7.15	-45,5	3031.7	13.81	0.10	21.700	8,86
d ·								
	The second secon							
	mple Data:			3031.7		0.10	21.7	8.80
Sample ID(s):	AMSF-MW-3	3-W-05	1314 3 A	MSF-MW-D	OP-W-0	61314		
Sample Time:			5125	Sampler(s):	KP/LB/1	HG		
Analyses:		Dupş	WS/WSD\$	Equipment:	ceo liel	d note	book	
VOCs +	TICs	<u> </u>	<u>v</u>		700 1100	<i>.</i>		
□ SVOCs □ PCBs					***************************************			
□ Pesticide				Comments:	starts mill	cy, clear	ing up	after
☐ TAL Meto	als			~ 25 minutes		,	J V	,
				- po provoce	2			

AMSF 190500647 0910 LiBest morte Geologic ansite (Scott - John) Objective : develop MW-84 (~ 1600 gal to : ~1,4to gar lost during coming Weather over cast, moderate wind, 60s to partly sunny (@ 09:15) WL=13.81' TOIC (pre-don't) (@ 0915) 2-500 gal tank 1-450gay tank 2~0955-1440 1-200gal tank).0955-18 -7-8 gal/min Husing a jet pump * @ 1038 nater is very clear (few suspended particles) -> took picture in glass container 1436 coulded waste water sample (grab) for analysis to discharge (dut water from MW-34) [14-15 - Tom Wens onsite to drap aff bottleset + also returned with le for sample cocler 1445 TW offsite to drap off wastervoller sample finished purge (~1,650 gas) install road box to set crange notting 1530 anund water joints o drums

Site Name: Former AMSF

Project Number: 190500647

Date: 6/25/2015

Names: HG/AG

Equipment: Water level meter

Weil ID	Water Level (TOIC ff)	Total Depth (TOIC ff)	Well Diameter (in)	Notes
AMSF-MW-85	5.58		2	
AMSF-MW-8D	16.65		2	
AMSF-RW-1	1.85		6	
AMSF-MW-10	6.10		2	
AMSF-MW-35	6.56		2	
AMSF-MW-3D	15. 77		2	
AMSF-4W-27			2	
AMSF-MW-28	9.03		2	
AMSF-MW-26	10.65		2	
AMSF-MW-4	9.10		2	
AMSF-MW-95	10.3		2	
AMSF-MW-31	10,99	·	2	<u> </u>
AMSF-MW-24	dry		2_	
AMSF-RW-2	8.59		6	cover has dropped
AMSF-MW-1S	11.34		2	To see
AMSF-MW-ID	22.55		2	
AMSF-MW-30	18. 29		2	

Well Volume Calculation 1 Inch = 0.041 2 Inch = 0.163 4 Inch = 0.653

Site Name: Former AMSF

Project Number: 190500647

Date: 6/25/2015

Names: HG/AG

Equipment: water level meter

Well ID	Water Level (TOIC ff)	Total Depth (TOIC ff)	Well Diameter (in)	Notes
AMSF-MW-21	11,54		2	
AMSF-MW-5D	25.12		2 2	
RW-4				Water present in catch basin above the top of the well casing
AMSF-MW-5S				J
RW-3				Water present in catch basin above the top of the well casing
AMSF-MW-33	9.60		2	
AMSF-MW-20	11.45		2_	
AMSF-MW-22	11.22		2	
AMSF-MW-23	11.27		2	
AMSF-MW-25	11.3		2	
AMSF-MW-29	13.21		2	
RW-5	11.23		6	
RW-6	12.35		6	
AMSF-MW-34	12.43		2	
ITT-SBW-16	16.91		4	
ITT-SBW-13	17,32		4	
1TT-18W-19	18.10		2	

Well Volume Calculation

1 inch = 0.041

2 Inch = 0.163

4 Inch = 0.653

Site Name: Former AMSF

Project Number: 190500647 2.5 Date: 6/25/2015

Names: HG/AG

Equipment: Water level meter

Well ID	Water Level (TOIC ft)	Total Depth (TOIC ft)	Well Diameter (in)	Notes
1TT-58W-14	16.61		4	
ITT-SBW-15	18.75		4	
ITT-58W-17	11.26		4	
ITT-SBW-18	14.42		4	
				,
				<u> </u>

Well Volume Calculation 1 Inch = 0.041 2 inch = 0.163 4 Inch = 0.653

Site Name: Former AMSF Project Number: 190500647

Date: 6/25/2015

Names: LiBist + L. Lyons Equipment: FAUISZS 100' Heron WLM

Well ID	Water Level (TOIC ff)	Total Depth (TOIC ff)	Well Diảmeter (in)	Notes
AMSF-MW-			4	
AMSF-MW-16	I 10.07		2	
AMSF-MW-	5I 8.65		2	
AMSF-MW-7	9.27		2	
msf-MW-12	s 8.94		4	
AMS-MW-119	2 54		Ц	
AMSF-MW-31	A 1		*/	
ITT-SBW-1	8.09		<u>ū</u>	
ITT SOW-				
ITT-MW			· · · · · · · · · · · · · · · · · · ·	
ITT-SBW			ų	
IJT-SPIN	8 7.12		J	Land not get the affice
ITT-D8W				Land not get plug aff- 12
ITT- 58W-1				
ITT - SBW-	9.32			
ITT-164-2	14 **		1	
ITT-SOW-1	10.20		¥	

Well Volume Calculation 1 inch = 0.041 2 inch = 0.163

4 inch = 0.653

Site Name: Former AMSF
Project Number: 190500647

Date: 6/25/2015

Names: Equipmment:

	1111		mile const.	
Well ID	Water Level (TOIC ff)	Total Depth (TOIC ft)	Well Diameter (in)	Notes
ITT-DBW-2	65.08		- 4	
ITT-SOW A	9.45	<u> </u>	944	
ITT-SBW-	9 10.08		2	
ITT-5BU			4	·
177-SBW-5	7.46		<u> </u>	
ITT-DBW-	0.98		2_	
TIT-MW-4	dy -> b	bm @ 7.94		
ITT-5PW-23	Japa		Ц	
	***************************************		YANG SANA	
			74.00	
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
			100	
	100			

Well Volume Calculation

1 Inch = 0.041

2 inch = 0.163

4 inch = 0.653

Site Name:	Former AMSF	, <u>, , , , , , , , , , , , , , , , , , </u>			-	Well ID:	<u>mw - 1</u>	15	
Depth to V	Vater: 10.34	ft TOIC W	/pump 1	0.35		Date:	6/29/	2015	
Total Well D	epth: <u>25.02</u>	ft TOIC			Purge Start Time: 0809				
Depth to F	Pump: <u>~23</u>	ft TOIC			Purge End Time: <u>()855</u>				
Initial Pump	Rate: <u>350</u>	mL/min			Pump Type: bladder				
adjuste	ed to: <u>280</u>	mL/min a	0814	Well	Diameter:	_2	inches		
adjuste	ed to:	_mL/min atminutes			We	ell Volume:	-2.3	gallons	
	Purge Volume	рН	ORP	Conductivity	Temp.	DO	Turbidity	Water	
Time	(gallons)	(s.u.)	(mV)	(mS/cm)	(°C)	(mg/L)	(NTU)	Level (ff)	
0810	0.0	7.28	-8.7	3.21	13.9	0.16	2221 AU	10.36	
0815	0.4	7.08	76.5	3.17	12.9	0.05	2084 AU	10.36	
0820	0.9	7.09	-83.3	3.09	12.8	0.67	1123 AU	10.36	
0825	1.2	7.10	-87.9	3.05	12.8	0.33	658 AU	10.36	
0830	1.5	7.11	- 90.3	3.04	12.7	0.26	75.0	10.36	
0835	1.8	7.11	-92.5	3.03	12.8	0.01	94.6	10.36	
0840	2.1	7.12	-94.2	3.03	12.7	0.17	63.5	10.36	
0845	2.4	7.12	-95.2	3.03	12.7	0.05	44.1	10.36	
0850	2.7	7-12	-96.1	3.03	12.7	0.05	36.7	10.36	
0855	3.0	7.12	-97.1	3.03	12.6	0.05	28.6	10.36	
					!				
Final \$a	mple Data:	7.12	-97.1	3-03	12.6	0-05	28.6	10.36	
Sample ID(s):	AMSF-MW-	15-W-0	62915						
ample Time:	0900			Sampler(s):	LB/AG				
Analyses:		<u>Dub\$</u>	WS/WSD\$	Equipment:					
X VOCs									
1,4-Dioxo SVOCs	ine								
□ PCBs				Comments:	brown, c	loudy,	no odor		
□ Pesticide□ TAL Meta						_			
			-	CIPA	ring aft	Tr 12	U-DU W	אים	
			_						

Site Name:	Former AMSF			•		Well ID:	AMSF-	MW-7
Depth to W	Vater: 9.61	ff TOIC v	V/pump 9	. 64			6/26/	
	epth: 25,25		, ,		Purge	Start Time:		
Depth to P	omp:_~23	ft TOIC				e End Time:		
Initial Pump	Rate: <u>230</u>	_mL/min				'ump Type:		
adjuste	ed to:	_mL/min_a	t	minutes	Wel	l Diameter:	2	inches
adjuste	ed to:	_mL/min a	†	minutes	We	ell Volume:	2.54	gallons
Time	Purge Volume (gallons)	pH (s.u.)	ORP (mV)	Conductivity (m\$/cm)	Temp. (°C)	DO (mg/L)	Turbidity (NTU)	Water Level (ft)
1242	0 - 0	7.84	-69.2	2.91	16.5	0.95	69-1	9.64
1247	0.25	7.29	-87.1	3.13	14.1	0.36	775AU	
1252	0.5	7.28	-87.6	3.14	13.9	0.21	155	9.65
1257	0.75	7.29	-88.7	3.14	13.8	0.18	126	9.65
1302	1.0	7.360	-90.3	3.13	13.7	0.19	50.6	9.65
1307	1.25	7.29	-92.8	3.13	13.7	0.34	27.7	9.65
1312	1.50	7.31	-95.3	3.13	13.7	0.16	21.0	9.66
1317	1.75	7.27	-96.3	3.13	13.60	0.12	16.5	9.66
1322	2.00	7.25	-96.5	3.12	13.60	0.12	11.9	9.66
1327	2-25	7.23	-96.6	3.12	13.8	0.11	12.3	9.67
	-							
	mple Data:	7.23	-96.6	3.12	13.8	0.11	12.3	9.67
	AMSF-MW-	7-W-06	2615					
Sample Time:	1330	·····		Sampler(s):				
Analyses: X VOCs X 1,4-Dioxa D SVOCs	ine	□ □ <u>D∩b</u> \$	MS/MSD?	Equipment:	YSI: FAOO <u>Lamotte: F</u> compresso bladder: F	A00413 V= FA02121		FA06775
PCBs Pesticide:				Comments:	cloudy a	nd orai	nge ,no	odor

		741011110	ning well ru	urging and Samp	ling Record			
Site Name:	Former AMSF				···	Well ID	_mw-	95
Depth to V	Water: 9.37	_ffTOIC W	/pump	9.38			: 6/29/	
Total Well [epth: <u>25.10</u>	_ft TOIC			Purge	Start Time	0937	
Depth to F	Pump: ~23	_ft TOIC				e End Time:		
Initial Pump	Rate: <u>~200</u>	_mL/min				oump Type:	_	er
adjust	ed to:	mL/min a	t	_minutes		l Diameter:		
adjust	ed to:	_mL/min_a	t	_minutes		ell Volume:		-
	Purge Volume	рН	ORP	Conductivity	Temp.	DO	Turbidity	Water
Time	(gallons)	(s.u.)	(mV)	(mS/cm)	(°C)	(mg/L)	(NTU)	Level (ff)
0938		7.19	45.5	6.40	14.3	1.76	1096	9.37
0943	0.4	6.96	0.3	7.09	13.6	0.41	56.1	9.38
0948	0.7	6.96	15.8	7.13	13.5	0.35	29.6	9.38
0953	0.9	6.96	22.3	7.12	13.5	0.38	15.1	9.38
0958	1.2	6.96	26.5	7.07	13.6	0.35	12.9	9.38
1003	1.5	6.98	28.7	6.92	13.6	0.31	11.1	9.38
1008	1.7	7.00	30.1	6.67	13.6	0.30	6.05	9.38
1013	1.9	7.00	31.0	6.56	13.6	0.27	3.51	9.38
1018	2.2	7.00	31.4	6.52	13.6	0.24	1.88	9.38
1023	2.4	6.98	32.9	6.50	13.6	0.23	1.31	9.38
1028	2.7	6.97	34.2	6.49	13.5	0.22	1.68	9.38
							1.00	
						÷		
Final Sa	mple Data:	6.97	34.2	_6.49	13.5	0.22	1.68	9.38
Sample ID(s):	AMSF-MW9S-	W-06291					1.00	1.00
Sample Time:	1040		(1,5)1.	Sampler(s):	LB/AG			
Analysas		D 0	. 10 /2 /0000				YSI: FA	00977
Analyses: VOCs		□ Dubŝ	ws/wsds	Equipment:	Heron WLM:	FA00775	bludderp	ump: FA01196
1,4-Dioxa	ne		Ø	۷	amotte: FI	100413	air comm	essor: FADZIZ
□ SVOCs □ PCBs							مرا مارد	
☐ Pesticides				Comments:	yenw- bi	wn, cl	every,	
☐ TAL Metal	ls			no odor				*****

Site Name:	Former AMSF				_	Well ID:	AMX-1	4W-13S	
Depth to W	Vater: <u>9.67</u>	ft TOIC w	1 pump 9.	73		Date:	6/26/	15	
	epth: <u>23.3</u>		•		Purge	Start Time:	1122		
Depth to P	ump: ~21	ft TOIC				End Time:			
Initial Pump	Rate: <u>280</u>	mL/min				ump Type:			
adjuste	ed to:	mL/min a	†	minutes	Well	Diameter:	4	inches	
adjuste	ed to:	mL/min a	<u> </u>	minutes	We	ell Volume:	8.86	gallons	
	Purge Volume	рН	ORP	Conductivity	Temp.	DO	Turbidity	Water	
Time	(gallons)	(s.u.)	(mV)	(mS/cm)	(°C)	(mg/L)	(NTU)	Level (ft)	
1123	0	7.52	-105.0	3.04	14-0	1.00	40.6	9.73	
1128	0.5	7.16	-74.0	3.34	13.5	0.02	8.52	9.73	
1133	0.8	7.14	-68.0	3.44	13.5	0-18	5.31	9.73	
11 38	1.2	7.10	-77.3	3.57	13.5	0.18	3.79	9.73	
1143	1.5	7.10	-79.9	3.61	13.6	0.24	4.54	9.73	
1148	1.75	7.11	-84.3	3. 58	13.6	0.17	3.77	9.73	
1153	2.1	7.11	-86.3	3.64	13.7	0.14	3.51	9.73	
1158	2.5	7.09	-88.6	3.65	13.7	0.13	2-59	9.73	
1203	2.75	7.16	-92.8	3 · 60	13.8	0.13	2.48	9.73	
Final Sa	mple Data:	7-16	-92.8	3.60	13.8	0.13	2.48	9.73	
Sample ID(s):	AMSF-HW-139	5-W-06	2615						
Sample Time:				Sampler(s):	HG/AG				
A modula a a		5	110/11000	.	YS1 = FA 00				
Analyses: VOCs		□ <u>Dub</u> §	MS/MSD\$	Equipment:	La Motte =	FA00413	WL=	FA00775	
1,4-Dioxane				-	compressor= FA02121 bladder = FA01196				
□ SVOCs □ PCBs				Comments:	vellowiowa	naa colox	so dor		
☐ Pesticide				0011111101110.	10.00/07	To color,	7 (0 0,00.		
□ TAL Meta	ls		-	**************************************	·				

Site Name:	Former AMSF					Well ID:	AMSF-M	W-16I
Depth to V	Vater: <u>10.38</u>	ft TOIC W	/pump 10.3	9		Date:	6/26	115
	epth: 44.2		, ,		Purge	Start Time:	1005	
Depth to P	omp: <u>~41</u>	ft TOIC				e End Time:		
Initial Pump	Rate: 160	_mL/min				omp Type:		r
adjuste	ed to:	mL/min a	†	minutes	Wel	l Diameter:	_2	inches
adjuste	ed to:	_mL/min a	† <u> </u>	minutes	We	ell Volume:	<u>5,51</u>	gallons
Time	Purge Volume	pH	ORP	Conductivity	Temp.	DO	Turbidity	1
1006	(gallons)	(s.u.) 8.00	(mV) - 98.8	(m\$/cm) 4.26	(°C) 15,8	(mg/L) 4.00	(NTU) 59.6	Level (ff) 10.38
1011	0.2	7.09	-96.7	6.04	15.4	1-09	10.2	10.38
1016	0.4	7.04	-94.6	6.43	15.2	0.52	1.86	10.38
1021	0.6	7.03	-94.1	6.55	15.2	0.36		10.38
1026	0.8	7.03	-95.6	6.57	15.1	0.44	0.91	10.38
1031	1.0	7.03	-99.1	6.58	14.9	0.35	0.36	10.38
1036	1.1	7,03	-98.8	6.57	14.9	0.26	0.33	10.38
1041	1.25	7.03	-101.5	6.59	14.9	0.25	0.58	10.38
1046	1,4	7,03	-103.1	6.60	15.0	0.25	0.29	10.39
•						V , _5		, ,
Final Sa	mple Data:	7.03	-103-1	6-60	15.0	0.25	0.29	10.39
	AMSF-MW-16I	-W-0626	15					
Sample Time:	1050			Sampler(s):	HG/AG			
Analyses:		Dupş	WS/WSD\$	Equipment:	LaHoHe: FAO	0413 YSI-	FA00977	WE FAME
Analyses: VOCs	un o							
▶ 1,4-Dioxa□ SVOCs	II I C			-	compressor: F	102121 , blac	lder: FAOI(76
□ PCBs□ Pesticide	c			Comments:	clear wim	a few br	our part	cwates
☐ TAL Meta			L					
			•					

Site Name:	Former AMSF				_	Well ID:	AMSF-	MW-20
Depth to V	Vater: 10.20	ft TOIC	10.22 W/p	ump	-	Date:	6/30/1	5
Total Well D	Pepth: 24. U			·	Purge	Start Time:	11:25	
Depth to F	Pump: ~22	ft TOIC				End Time:		
Initial Pump	Rate: <u>~260</u>	mL/min				ump Type:		ur 💮
adjuste	ed to:	mL/min a	<u> </u>	minutes		Diameter:		inches
adjuste	ed to:	mL/min a	t	minutes	We	ell Volume:	2.2	gallons
	Purge Volume	рН	ORP	Conductivity	Temp.	DO	Turbidity	Water
1125	(gallons)	(s.u.)	(mV)	uS(ms/cm)	<u>(°C)</u>	(mg/L)	(NTU)	Level (ff)
	86	7.48	140.3	4100	17.0	3.87	2105m	
1130	0,5	7.45	129.7	4402	16.6	3.05	104.6	10.22
1135	0.8	7.45	130.0	4364	16.5	3.04	63.2	10.22
1140	1.2	7,44	130.3	4278	16.5	2.95	37.3	10.22
JH518								
								····
Final Sa	mple Data:	7.44	130.3	4278	16.5	2,95	31.3	10.22
Sample ID(s):	AMSF-MW20-U	J-063015						
ample Time:	1145			Sampler(s):	L. Bes	l, A.G1	ose	
Apalyses:		Dupş	MS/MSD?	Equipment:				
VOCs				Equipment.				
1,4-Dioxa SVOCs	ne			-				
□ PCBs				Comments:	no odar	, clea		
□ Pesticides □ TAL Metal				-				
			-					

		Monito	ring Well Pu	rging and Samp	ling Record		1	
Site Name:	Former AMSF			•	_	Well ID:	AMSF-	MW-21
Depth to V	Vater: 10.09	_ff TOIC w	1/pump 1	0.10			6/3	
Total Well D	epth: 22.22	_ft TOIC			Éurge	Start Time:	,	7
Depth to F	Pump: <u>~20</u>	ft TOIC				e End Time:		
Initial Pump	Rate: <u>280</u>	_mL/min				Pump Type:		er
adjuste	ed to:	mL/min o	ıt	_minutes		l Diameter:		
adjuste	ed to:	_mL/min_c	ı†	minutes		ell Volume:		-
	Purge Volume	рН	ORP	Conductivity	Temp.	DO	Turbidity	Water
Time	(gallons)	(s.u.)	(mV)	(m\$/cm)	(°C)	۰ (mg/L)	(NTU)	Level (ff)
954	0.1	8.10	78.2	1506 us	16.8	5.65	186	10.12
959	0.5	8-11	39.4	1512 uS	16-5	5.62	112	10.11
1004	0.8	8.12	103.6	1499 MS	16.5	5.65	41.0	10.11
1009	1.2	8.12	97.4	1521 ns	16.5	5.42	31.4	10.11
1014	1.5	8.12	86.2	1530 us	16.4	5-49	22.4	10.11
1019	1.8	8-12	105.7	1533 us	16.4	5.56	15.3	10.11
1024	2.2	8.12	111.7	1536,45	16.4	5.51	11.8	10.11
1029	2.6	8.11	-16.9	1541 us	16.4	5-49	10.06	10.11
1034	3.0	8.11	- 19.1	1542 us	16.4	5.39	10.15	10-11
1039	3.4	8.11	-22-6	1541/15	16.4	5.51	7.35	10.11
				1			••	
Final Sar	mple Data:	8.11	-22.6	1541 JLS	16.4	5.51	7.35	10.11
Sample ID(s):_	AMSF-MW21	-W-063	015			L		
ample Time:_	1045			Sampler(s):_	AG/LB			
A naturar:		5 0	1.10 (1.10 = 0		·			
Analyses: KÍ VOCs		□ Dubŝ	MS/WSD\$	Equipment: _		***********		
1,4-Dioxar	ne					i, i		
□ SVOCs □ PCBs				Comments:	claudu	hmlun	0.6. 0	dor
Pesticides				Comments:_	ciovay,	DIDVVII	THU O	<u> </u>
☐ TAL Metals	S							

	Former AMSF				-	Well ID:	MW-23	2
Depth to V	Vater: 10 , 14	ft TOIC 10	15 W/pum	P			6/30/2	
Total Well D	epth: 23.10	ft TOIC	•		Purge	Start Time:	•	
Depth to F	Pump: ~21	ft TOIC			Purge	End Time:	1455	5
Initial Pump	Rate: <u>~280</u>	mL/min				ump Type:		
adjuste	ed to:	mL/min at		minutes	Well	Diameter:	_2_	inches
adjuste	ed to:	mL/min at		minutes	We	ell Volume:	2.1	gallons
	Purge Volume	рН	ORP	Conductivity	Temp.	DO	Turbidity	Water
Time	(gallons)	(s.u.)	(mV)	us (ms/cm)	(°C)	(mg/L)	(NTU)	Level (ft)
<u> 1350 </u>		7.18	115.1	3323	16.0	0.82	3183AU	10.16
1355	0.4	7.07	112.9	<i>3</i> 302	15.1	0.39	60.2	10.16
1400	0.8	7.06	20.2	3276	15.0	0.27	10.35	10.17
1405	f.)	7.06	27.6	32%	14.9	0.21	4.59	10.17
1410	1.5	7.06	67.5	3290	14.9	0.19	3.65	10.17
1415	1.8	7.06	72.5	3288	14.9	0.16	1.81	10.17
1420	2.2	7.06	728	3286	14.9	0.14	1.90	10.18
1425	2.5	7.06	73.2	3279	14.9	0.12	1.07	10.18
1430	2.8	7.06	72.8	3278	14.9	0.11	0.71	10.18
1435	3.2	7.06	42.0	3276	14.9	0.09	1.16	10.18
1440	35	7.06	76.8	3272	14.9	0.09	1.10	10.19
1445	3.8	7.06	92.2	3269	14.9	0.09	0.93	10.19
1450	4.1	+7.06	94.6	3269	14.9	0.08	0.84	10.17
1455	43	7.06	94.6	3268	14.9	0.08	0.76	10.18
Final Sa	mple Data:	7.06	94.6	3Z68	14.9	0.08	0.76	10.18
Sample ID(s):	AMSF-MW2Z-	W-0630	15		_			
ample Time:	15:05			Sampler(s):	L.Best	E, A.C	slose	
Analyses:		Dubs	MS/MSD?	Equipment:				
VOCs 1,4-Dioxa	ne.			-				
SVOCs	TIE .			-				10
□ PCBs	-			Comments:	asphaut-	ure/pet	ro oder	<u>us</u>
□ Pesticide:□ TAL Meta				claar	no odar	, ' '		
				- Curvi	J.0 000		***************************************	
AMSF-EQ!	UIPMENTBLA	NK-063	015 540					

	Former AMSF			gg cap.		Well ID:	MW-2	3
Depth to V	Vater: 10,14	ft TOIC	14 W/pur	np			10/30/2	
	epth: 24,50		, ,	•	Purge	Start Time:		
Depth to F	Pump: ~22	ft TOIC				End Time:		
Initial Pump	Rate: <u>290</u>	mL/min				ump Type:	•	·r
adjuste	ed to:	_mL/min_at		minutes		Diameter:		inches
adjuste	ed to:	mL/min at		minutes	We	ell Volume:	2.3	gallons
T: a	Purge Volume	pН	ORP	Conductivity	Temp.	DO	Turbidity	Water
Time	(gallons)	(s.u.)	(mV)	(m\$/cm)	(°C)	(mg/L)	(NTU)	Level (ff)
1244	0.	5.7.5		3955 MS	17.4	1.80	862 AV	
1249	0.5	7.15	107.2	3867us	17.0	0.71	70.1	10.14
1254	0.8	7-14		3893 us	17.0	0.75	29.6	10.14
1259	1.1	7.14	103.3	3923 uS	16.9	0.78	13.0	10.14
1204	1.5	7-14	99.4	3943MS	16.9	0.75	8-29	10-14
			ver					
							-	
								
							-	
		<i>a</i> .c	00.4	2012		0 11	9.40	A
	mple Data:	7.15	99.4	3943us/cm	10.9	0.75	8.29	10-14
ample ID(s): ample Time:	AMSF-MW2	3-W-00	3015	Caronlor/ol.	10110			
ample little.	1305			Sampler(s):	AG/LD			·····
Analyses:		Dubŝ	<u>MS/MSD</u> §	Equipment:				
VOCs 1,4-Dioxa	ine							
□ SVOCs				-	***************************************			
□ PCBs □ Pesticide:	c			Comments:	clear,	light b	nun	
☐ TAL Meta		Ш	ليا		suspen	ded so	nidsar	10
			•		•			
					odo) T		

		MOING	ing weir o	ging and sampi	ing kecola			
	Former AMSF		<u>-</u>		•	Well ID:	MW-2	26
Depth to V	Vater: <u>9.62</u>	_ft TOIC $m{q}$.61 w/pw	np		Date:	6/30/	2015
Total Well D	epth: 24.71	ft TOIC			Purge	Start Time:	0810)
Depth to P	Pump: ~22	ft TOIC			Purge	e End Time:	090	7
Initial Pump	Rate: <u>220</u>	mL/min			Р	'ump Type:	blada	er
adjuste	ed to:	mL/min at	nL/min at minutes			Diameter:	_	inches
adjuste	ed to:	mL/min at	<u> </u>	minutes	We	ell Volume:	2.4	gallons
	Purge Volume	рН	ORP	Conductivity	Temp.	DO	Turbidity	Water
Time	(gallons)	(s.u.)	(mV)	U) (ms/cm)	(°C)	(mg/L)	(NTU)	Level (ft)
0812		7.03	713	5630	15.9	1.34	1895AU	9.65
0817	0.4	6.99	84.1	5842	15.3	0.35	18.8	9.65
0822	0.7	7.00	87,5	5794	15.2	0.38	7.66	9.65
0827	1.1	7.01	88.1	5771	15.2	0.29	2.75	9.66
0832	1.3	7.01	87.0	<i>5</i> 759	15.2	0.23	1.78	9.65
0837	1.6	7.02	24.3	5749	15.2	0.18	1.35	9.65
0842	1,9	7.02	61.5	5739	15.2	0.17	1.11	9,65
0847	2 .3	7.02	56.0	5735	15.2	0.15	1.38	9.65
0852	2.6	7.02	64.5	5731	15.1	0.14	1.10	9.65
6857	2.9	7.02	68.2	5729	15.2	0.140.1	2 0.71	9.65
0902	3.2	7.02	64.1	5726	15.1	0.12	0.77	9.65
0907	3, 5	7.02	63.2	5725	15.2	0.11	0.65	9.65
094218	,							
		7.00						
Final Sa	mple Data:	7.02 18	63.2	5725	15.2	0.11	0.65	9.65
Sample ID(s):	AMSF-MW26-	W-0630			· · · · · · · · · · · · · · · · · · ·		L	
ample Time:				Sampler(s):	L.Best,	A. Glose		
Apalyses:		Dubŝ	MS/MSD?	Equipment:	new YS	I FAU20	20	
VOCs 1,4-Dioxa	ne			-				
□ SVOCs				-				
□ PCBs□ Pesticides	S			Comments:	dear,	no ode	<u>~</u>	
□ TAL Meta		J	LJ					
			-					

		Monito	oring Well Pu	rging and Samp	ling Record				
Site Name:	Former AMSF				_	Well ID:	_mw-2	9	
Depth to V	Water: <u>11,92</u>	_ft TOIC	w/ pump	11.93			6/29/1		
Total Well D	Depth: 27.63	_ft TOIC			Purge	Start Time:	•		
Depth to F	Pump: <u>~25</u>	_ft TOIC				e End Time:			
Initial Pump	Rate: 300	_mL/min			F	Pump Type:	bladde	r	
adjuste	ed to:	_mL/min_c	at	_minutes		I Diameter:		inches	
adjuste	ed to:	_mL/min_c	at	_minutes		Well Volume: 2.5 gallons			
	Purge Volume	рН	ORP	Conductivity	Temp.	DO	Turbidity	Water	
Time	(gallons)	(s.u.)	(mV)	(mS/cm)	(°C)	(mg/L)	(NTU)	Level (ft)	
1356	0.0	7.81	38.7	1.96	16.8	5.81	57.0	11.93	
1401	0.4	7.36	27.7	2.45	15.0	5.11	29. <i>4</i>	11.93	
1406	0.8	7.34	28.2	2.45	15.2	5.05	10.08	11.93	
1411	1,2	7.33	28.4	2.46	15.3	4.90	4.96	11.93	
1416	1.10	7.33	29.0	2.47	15.4	4.96	4.74	11.93	
1421	1.9	7.32	30.7	2.47	15.3	4.95	2.44	11.93	
1426	2.2	7.32	31.6	2:17	15.3	4.98	2.24	11.93	
		:							
					,				
Final Sar	mple Data:	7.32	31.6	2.47	15.3	4.98	2.24	11.93	
	Amsf - MW2c	1-W-06	29 15						
Sample Time: _	1430			Sampler(s):	LB/AG				
Analyses:		_	WS/WSD\$	Equipment:					
Analyses: VOCs 1,4-Dioxar SVOCs	ne								
				-		+ ligh	nt colore	² d	
□ PCBs□ Pesticides				Comments:	clear, c	dark's us	pended	solids	
☐ TAL Metals		ii	لــا		no od	or		ı	
						——————————————————————————————————————		/	
								/	

		741011110	ing wen i or	ging and samp	iing kecora			
	Former AMSF					Well ID:	MW-2	<u> </u>
Depth to V	Water: <u>10,00</u>	_ff TOIC N	mg/w 10.c	Ψ		Date:	6/29/	2015
Total Well D	epth: <u>27.30</u>	_ft TOIC			Purge	Start Time:		
Depth to F	Pump: <u>* 25</u>	_ft TOIC			Purge	e End Time:	1202	
Initial Pump	Rate: <u>250</u>	_mL/min			F	omp Type:	hladd	er
adjuste	ed to:	_mL/min a	t <u>.</u>	minutes		l Diarheter:	-	
adjuste 	adjusted to:mL/min_at		†	minutes	Well Volume: 2.8 galle			•
	Purge Volume	рН	ORP	Conductivity	Temp.	DO	Turbidity	Water
Time	(gallons)	(s.u.)	(mV)	(m\$/cm)	(°C)	(mg/L)	(NTU)	Level (ff)
1117	0.0	7.47		3.31	16.5	1.70	37.8	10.02
1122	0.4	7.17	-97.6	3.65	15.5	0.36	37.7	10.02
1127	0.7	7.15	-97.0	3.64	15.4	0.01	17.5	10.02
1132	1.0	7.14	-98.2	3.63	15.4	0.01	11.7	10.02
1137	1.3	7.14	-99.7	3.63	15.3	0.26	4.38	10.02
1142	1.6	7.14	-101.7	3.62	15.3	0.17	4.86	10.02
1147	1.9	7.14	-102.4	3.62	15.3	0.16	4.14	10.02
1152	2.1	7.14	-103.5	3.62	15.3	0.14	3-30	10.02
1157	2.4	7.15	-104:4	3.62	15.3	0.13	1.78	10.02
1202	2.7	7.15	-105.2	3-62	15.3	0.14		10.02
Final Sar	mple Data:	7.15	-105.2	3.62	15.3	0.14	1,63	10.02
	AMSF-MW31				- 062915	<u> </u>	(10)	10.00
ample Time:	1205/1210		7	Sampler(s):_				
Analyses:		Dupş	WS/WSD§	Equipment:				
VOCs		X		rdotpmem				
対 1,4-Dioxaı □ SVOCs	ne) \$		_				
□ PCBs				Comments:	Sulfur	odor s	liantlu	cloudy
PesticidesTAL Metal				-	······································	, , , , ,	yy	CIUVUY
in includial	3		_					

Site Name:	Former AMSF				•	Well ID:	AMSF-	-MW-32
Depth to W	Vater: 11.5	ft TOIC 1	N/pump 11.	.51			6/26/	
Total Well D	epth: <u>22</u>	ft TOIC	•		Purge	Start Time:	1358	•
Depth to P	tump: \sim 20	ft TOIC			Purge	e End Time:	144	0
Initial Pump	Rate: <u>290</u>	mL/min			Р	'ump Type:	blådde	r
adjuste	ed to:	mL/min a	†	minutes	Well	Diameter:	2	inches
adjuste	ed to:	mL/min a	†	minutes	We	ell Volume:	1.71	gallons
	Purge Volume	рН	ORP	Conductivity	Temp.	DO	Turbidity	Water
Time	(gallons)	(s.u.)	(mV)	(m\$/cm)	(°C)	(mg/L)	(NTU)	Level (ff)
1400	O	7.30	11.6	5.65	17.4	0.90	71.5	11.51
1405	0.5	7.10	-5-3	5.92	16-6	0.32	98.3	11.51
1410	0.8	7.09	-12.7	5.92	16.5	0.32	99.3	11.51
1415	1,25	7,11	-15.9	5.70	16.4	0.64	59.5	11.51
1420	1.6	7-12	-17.8	5.63	16.4	0.20	46.7	11.51
1425	1.85	7.12	-18.9	5.61	16.5	0.25	25,2	11.51
1430	2.25	7.11	-17.9	5.60	16.5	0.60	18.3	11.51
1435	2.5	7-11	-18.3	5.59	16.5	0.59	12.4	11.51
1440	2.95	7.11	-17.4	5.59	16.4	0.55	10.19	11.52
				·				
						,		
Final Sa	mple Data:	7-11	-17-4	5.59	16.4	0-55	10-19	11.52
	AMSF-MW-32	2-W-067	2615					
Sample Time:	1445			Sampler(s):			bladder	- FAO 1196
<u>Analyses:</u>		<u>Dup</u> ş	WS/WSD\$	Equipment:	451= F1009			•
VOCs				•	Coin pressor		WL = FA	30775
☑ 1,4-Dioxa ☐ SVOCs	ine			-	00(11 71 0 3 30 1	(710 21-1		
□ PCBs				Comments:	slightly c	loudy, no	, oder	
□ Pesticide □ TAL Meta					3 /	,		
			-					
			-					

Site Name:	Former AMSF				_	Well ID:	AMSF-M	W-33
Depth to V	Vater: 9.96	ft TOIC ₩	/pump 9.	97			6/26/20	
	epth: 23.95		• •		Purge	Start Time:		
Depth to P	² ump: <u>~ 2</u> ↓	ft TOIC				e End Time:		
Initial Pump	Rate: 100	mL/min			Р	ump Type:	biadd	er
adjuste	ed to: 190	mL/min a	1549	minutes			2	
adjuste	ed to:	mL/min a	<u> </u>	minutes	We	ell Volume:	2.28	gallons
	Purge Volume	рН	ORP	Conductivity	Temp.	DO	Turbidity	Water
Time	(gallons)	(s.u.)	(mV)	(m\$/cm)	(°C)	(mg/L)	(NTU)	Level (ff)
1516	0	7,40	-121.7	3.24	19.7	1.20	1758 AU	9.99
1521	0.25	7.30	-119.8	3.22	18.8	0.25	over range	9.99
1526	0.4	7.29	-118.2	3.20	19.0	0.18	over range	9.99
1531	0.5	7-26	-113.5	3. 19	18.5	0.19	3447 AU	9.99
1536	0.6	7.25	-109.1	3.17	18.5	0.28	1689 AU	9.99
1541	0.7	7.23	-106.2	3.17	18.2	0.20	989 AU	9.99
1546	8.0	7.24	-105.1	3.16	18.6	0.19	173 NTU	9.99
1551	1.0	7,27	-104.3	3.17	15.8	0.05	190	9.99
1556	1.25	7.28	-105.8	3.17	15-3	0.05	125	9.99
1601	1,5	7.29	-107.2	3.17	15.2	0.06	80.7	9.99
1606	1.75	7.29	-108.7	3.18	15.3	0,05	55	9.99
1611	1.9	7.28	-109.8	3.17	15,2	0.05	41.1	9.99
Final Sa	mple Data:	7.28	-109.8	3, 17	15-2	0.05	41-1	9.99
ample ID(s):	AMSF-MW	-33-n	1-062615					
ample Time:	1615		-	Sampler(s):_	H6/A6	TAMOUND		
<u> Analyses:</u>		Dupş	<u>MS/MSD§</u>	Fauinmont	13.41	NANGI ST		
Y VOCs				Equipment:_	bluader-F/	401196 , YSI	- MOO9 71	, WL PAOOT
¥ 1,4-Dioxa	ne			_	LaMOTTE-FAOI	5413 ; comp	ressor-pho2	1121
□ PCBs				Comments:	cloud:	10 nd ~~		
☐ Pesticides				···-	· · · · · · · · · · · · · · · · · · ·	in ones		
☐ TAL Metal	IS							

		Monitori	ing Well Pur	ging and Sampl	ing Record	,	9MSF- _MW-	. 1
	Former AMSF					Well ID:	MW-	34
Depth to W	/ater: 11.13	ft TOIC 🐧	14 w/pu	mp		Date:	6/2	9/15
	epth: <u>82.04</u>		, ,	•	Purge	Start Time:	- ,	
Depth to P	ump: <u>~30</u>	ft TOIC			Purge	e End Time:	1325	Ó
Initial Pump	Rate: <u>~ 300</u>	mL/min				'ump Type:		•
adjuste	ed to: <u>~220</u>	mL/min at	1258	minutes	Well	Diameter:	2	inches
adjuste	ed to:	mL/min at		minutes	We	ell Volume:	3.3	gallons
	Purge Volume	рН	ORP	Conductivity	Temp.	DO	Turbidity	Water
Time	(galions)	(s.u.)	(mV)	(m\$/cm)	(°C)	(mg/L)	(NTU)	Level (ff)
1255	-	7.51	-43.3	3.77	14.3	1,90	1040 AU	11.14
1300	0.4	7.31	-35.1	3.48	14.0	0.02	82.1	11.14
1305	0.8	7.30	-40.9	3.42	14.1	0.01	53.4	11.14
1310	1.2	7.34	-55.0	3,29	14.2	0.02	33.1	M.14
1315	1. 4	7.35	-63.0	3.23	13.9	2.12	20.4	11.14
1320	1.6	7.34	-63.7	3.21	14.0	2.22	11.2	11.14
1325	1,9	7.33	-61.4	3,21	13,9	2:312.2	+ 10.06	11.14
1330 B	>				-			
						······································		
	, main sour source		7.7					
Final Sa	mple Data:	7.33	-61.4	3.21	13.9	2.27	10.06	11.14
Sample ID(s):	AMSF-MW34	-W-062	915					
Sample Time:		34D		Sampler(s):	L.Best	/A.Glos	ie	
Analyses:		<u>Dub</u> §	WS/WSD\$	Equipment:				
VOCs				• •				
1,4-Dioxo□ SVOCs	ırı e			-		······································		
□ PCBs				Comments:	orange-br	own, cla	dy @ s	start;
☐ Pesticide☐ TAL Meta				Comments: _ Claving up	/ light an	unan tin	a 0 \ (a)	1200
	··-		•	charles ap	1 Migral OV	7	Trous '	000

Remedial Investigation, Former Alliance Metal Stamping & Fabrication Facility Site (BCP Site #828101) 12 Pixley Industrial Parkway, Gates, New York

		.5			V	Vater level n	neasurement	ls			
		June 1	7, 2013	Septembe	er 24, 2013	May 1	2, 2014	June 2	5, 2015	August	17, 2015
Well ID	Well Type	Depth to water (ft below TIC)*	Water Elevation (ft AMSL)								
AMSF-MW-1D	Deep	25.40	539.02	31.78	532.64	27.31	537.11	22.55	541.87	22.00	564.42
AMSF-MW-1S	Shallow	9.44	556.59	13.37	552.66	10.30	555.73	11.34	554.69	12.63	566.03
AMSF-MW-3D	Deep	14.52	546.41	17.16	543.77	15.08	545.85	15.77	545.16	16.33	560.93
AMSF-MW-3S	Shallow	4.61	556.48	8.35	552.74	5.44	555.65	6.56	554.53	7.61	561.09
AMSF-MW-4	Shallow	6.97	556.98	10.88	553.07	8.21	555.74	9.10	554.85	10.35	563.95
AMSF-MW-5D	Deep	23.62	547.38	26.60	544.40	24.34	546.66	25.12	545.88	25.80	571.00
AMSF-MW-5S	Shallow	ĕ 11	79		721 <u> </u>	ū.	(45)	Ā	*		-
AMSF-MW-7	Shallow	7.45	556.59	11.31	552.73	8.31	555.73	9.27	554.77	10.66	564.04
AMSF-MW-8D	Deep	1,7.00	545.30	18.32	543.98	16.45	545.85	16.65	545.65	17.61	562.30
AMSF-MW-8S	Shallow	3.86	558.46	6.97	555.35	4.67	557.65	5.58	556.74	6.63	562.32
AMSF-MW-9S	Shallow _	8.90	556.13	12.22	552.81	9.38	555.65	10.30	554.73	11.69	565.03
AMSF-MW-10	Shallow	4.21	556.92	7.46	553.67	5.33	555.80	6.10	555.03	6.92	561.13
AMSF-MW-11S	Shallow	6.70	556.54	10.70	552.54	7.59	555.65	8.54	554.70	9.98	563.24
AMSF-MW-12S	Shallow	7.05	556.52	11.00	552.57	7.88	555.69	8.94	554.63	10.35	563.57
AMSF-MW-13S	Shallow	7.52	556.55	11.49	552.58	8.42	555.65	9.38	554.69	10-103	564.07
AMSF-MW-15I	Intermediate	6.79	556.04	10.70	552.13	7.45	555.38	8.65	554.18	9.75	562.83
AMSF-MW-16I	Intermediate	8.19	556.07	12.12	552.14	8.84	555.42	10.07	554.19	11.20	564.26

L. Best o C. Yamington 0730 -11:15 GCC-RENTAL FAOTTES

no joing or ordering

Remedial Investigation, Former Alliance Metal Stamping & Fabrication Facility Site (BCP Site #828101) 12 Pixley Industrial Parkway, Gates, New York

		Water level measurements									
40		June 1	7, 2013	Septembe	er 24, 2013	May 1	2, 2014	June 2	5, 2015	August 17, 2015	
Well ID	Well Type	Depth to water (ft below TIC)*	Water Elevation (ft AMSL)								
AMSF-MW-20	Shallow	9.48	556.23	13.52	552.19	10.29	555.42	11.45	554.26	12.64	565.71
AMSF-MW-21	Shallow	9.34	556.27	13.45	552.16	10.14	555.47	[11.54	554.07	12.52	565.61
AMSF-MW-22	Shallow	9.26	556.33	13.32	552.27	10.09	555.50	11.22	554.37	12.26	565.59
AMSF-MW-23	Shallow	9.35	556.38	13.40	552.33	10.16	555.57	11.27	554.46	12.50	565.73
AMSF-MW-24	Overburden	5.70	557.37	dry		dry	7/	dry		dry	
AMSF-MW-25	Shallow	9.41	556.36	13.38	552.39	10.23	555.54	11.30	554.47	12.50	565.77
AMSF-MW-26	Shallow	9.44	556.14	12.13	553.45	9.83	555.75	10.65	554.93	11-50	565.58
AMSF-MW-27	Shallow 4	9.18	556.53	12.64	553.07	10.10	555.61	10.95	554.76	MIX	565.71
AMSF-MW-28	Shallow	7.07	556.39	11.19	552.27	7.89	555.57	9.03	554.43	10.23	563.46
AMSF-MW-29	Shallow	11.20	556.29	15.26	552.23	11.98	555.51	13.21	554.28	14.38	567.49
AMSF-MW-30	Shallow	16.30	556.34	20.37	552.27	17.11	555.53	18.29	554.35	19-58	572.64
AMSF-MW-31	Shallow	9.08	556.61	12.93	552.76	10.02	555.67	10.99	554.70	12.38	565.69
AMSF-MW-32	Shallow	12			ě	10.12	555.63	11.12	554.63	12.49	565.75
AMSF-MW-33	Shallow		*	200		8.64	555.68	9.60	554.72	00.11	564.32
AMSF-MW-34	Shallow	*	¥	121	2	100 m	*	12.43	554.13	13.59	566.56

Remedial Investigation, Former Alliance Metal Stamping & Fabrication Facility Site (BCP Site #828101) 12 Pixley Industria Parkway, Gates, New York

					٧	Vater level m	easurement	s	1 1 1 1 1		
		June 1	7, 2013	Septembe	er 24, 2013	May 1	2, 2014	June 2	5, 2015	August 1	17, 2015
Well ID	Weil Type	Depth to water (ft below TIC)*	Water Elevation (ft AMSL)								
RW-1	Recharge	1.49	556.90	4.33	554.06	38	*	1.85	556.54	3.60	558.39
RW-2	Recharge	0.92	562.35	2.30	560.97	7.60	555.67	8.59 ¹	See note 1	4.43	563.27
RW-3	Recharge	3.50	561.67	4.07	561.10	3.72	561.45	flooded ²		4.10	565.17
RW-4	Recharge	4.61	561.75	5.65	560.71	5.10	561.26	flooded ²		4.94	566.36
RW-5	Recharge	9.85	556.22	11.30	554.77	5.62	560.45	11.23	554.84	11:32	566.07
RW-6	Recharge		76	-2	(*)	-	::::	12.35	554.14	13.53	566.49
ITT-DBW-2	Deep				<u>(</u> @	2	74	65.08	499.94	62.30	565.02
ITT-DBW-5	Deep	7 200		91	7.00			10.98	553.50	12.22	564.48
ITT-DBW-8	Deep		-	-	-			9.40	553.71	9.32	563.11
ITT-IBW-19	Intermediate				-	7	5-8	18.10	554.14	19.22	572.24
111-1BW-19	Intermediate	-		(4)		:#X	-	10.59	554.18	11.76	564.77
- 2	Overburden		-		-	\$2	-	5.07	555.64	5.94	560.71
ITT-MW-4	Overburden	1/21	-			12%		dry		dy	563.36

Remedial Investigation, Former Alliance Metal Stamping & Fabrication Facility Site (BCP Site #8<mark>28101)</mark> 12 Pixley Industrial Parkway, Gates, New York

						Vater level n	neasuremen	ts			
-	14	June 1	7, 2013	Septemb	er 24, 2013	May 1	2, 2014	June 2	5, 2015	August	17, 2015
Well ID	Well Type	Depth to water (ft below TIC)*	Water Elevation (ft AMSL)	Depth to water (ft below TIC)*	Water Elevation (ft AMSL)	Depth to water (ft below TIC)*	Water Elevation (ft AMSL)	Depth to water (ft below TIC)*	Water Elevation (ft AMSL)	Depth to water (ft below TIC)*	Water Elevation (ft AMSL)
ITT-SBW-1А	Shallow	21	164	35	1		1=	9.45	554.74	10.99	564.19
ITT-SBW-2	Shallow	*	*	3 0		(9)	(€	10.20	554.76	11.07	564.96
I∏-SBW-4	Shallow	4: [20	97	12	i de	獲	4.77	555.82	5.70	560.59
ITT-SBW-5A	Shallow	3		#P L		- Y	i se	9.46	554.93	10.91	564.39
îTT-SBW-6	Shallow	7	18	-	14:	THE STATE OF	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9.00	554.74	10.46	563.74
ITT-SBW-7	Shallow	-	- 4g	3	36	1	199	9.32	554.84	347.10	1 564.16
I∏-SBW-8	Shallow		350		::::	M = 1	<u> </u>	7.12	555.32	7.97	562.44
ITT-SBW-9	Shallow	-	8	-	(rai			10.08	554.77	11.56	564.85
ITT-SBW-10	Shallow	-	100	æ	*		:*:	9.62	555.03	11.09	564.65
ITT-SBW-11	Shal <u>l</u> ow		28	-			523	~ 8.09	556.51	10.04	564.60
ITT-SBW-12	Stratiow	â		5		N .		8.94	585.48	9,90	564.37
ITT-SBW-13	Shallow		260	*	340	± 6	**	17.32	554.67	18.67	571.99
ITT-SBW-14	Shallow	-	26	÷	? ≥ r			16.61	554.64	18.02	571.25
ITT-SBW-15	Shallow		· 181		1.00 E	-		18.75	554.38	20.03	573.13
ITT-SBW-16	Shallow	-	(#)	4		ý =	E	16.91	554.83	18.35	571.74
ITT-SBW-17	Shallow	-	(3)		The P		*	11.26	556.97	12.18	568.23
ITT-SBW-18	Shallow	*	:=:	*			*	14.42	555.14	15.60	569.56
ITT-SBW-23	Shallow	9	- 2		- 3			9.02	554.71	12.22	- 563.73

		Monitorii	ng well rolg	ing and sampi	ng kecola	Mall ID.	AMSF-MU	1-1540
Site Name:	Former AMSF					10		
Depth to W	ater: <u>12.88</u>	ft TOIC					8,18,19	
Total Well De	epth: 25.02	ft TOIC					1057	
Depth to P	ump:_ <i>~23</i>	ft TOIC			-	End Time:	Α .	
Initial Pump I	Rate: \\SO	mL/min				ump Type:		
adjuste	ed to:	mL/min at			Well	Diameter:	200	inches
adjuste	ed to:	mL/min at			We	ell Volume:	_1.9	gallons
	Purge Volume	рН	ORP	Conductivity	Temp.	DO	Turbidity	Water
Time	(gallons)	(s.u.)	(mV)	(mS/cm)	(°C)	(mg/L)	(NTU)	Level (ft)
1028	112.	7.31	-27.3	2.96	18.6	1.39	E10 AU	12.91
1103	1.0	7.21	-42.4	3.23	15.4	0.34	1208 AV	12.91
1108	0.4	7.17	-44.3	3.25	15.1	0.29	796 AU	12.91
1113	0.6	7.15	-40.0	3.23	15.2	0.23	1153 AU	12-91
1118	09	7.13	-34.3	3.19	15.4	0.20	1075AU	17.91
1123	1.7	7.17	-43.0	3.20	15.2	0.18	108 AU	12.91
1128	1.3	719	-47.1	3.20	15.2	0.15	91.2	12.91
1133	1.4	7.19	-48.8	3.20	15.4	0-16	70.3	12.91
1138	16	7.19	-49.1	3.22	15.1	0-14	44.5	12.91
1143	114	7.20	-50.\	3.21	15.2	0.15	41,01	17.91
(1)	7.0	7.70	-50.0	3.71	15.7	0.14		12.91
	1-0-0	T. C.	-					
Fin al Ca	ample Data:	7.20	-50.1	3.21	15.2	0.15	41.9	12.91
Sample ID(s)	: AMSF-MW- 1S-			7.00	7			-
Sample Time			- :	Sampler(s)	: W9	LB		
					CVY			
Analyses: VOCs		□ Dubš	□ WS/MSD\$	Equipment	: 517			
1,4-Diox	ane							
□ SVOCs				Comments	Let wal	id lie	start.	5/26/
□ PCBs□ Pesticid	es			1.5	X-1 10		With the second	
☐ TAL Met				30/400)	ad a			
ž.	i e							

Site Name:	Former AMSF	74101111011		,g		Well ID:	AMSF-1	YW-7
Depth to W	ater: 10.90	ft TOIC					8/18/1	
	epth: 25.25				Purge		0955	
	ump: ~23					End Time:		
	Rate: ~250						bladde	×
	ed to:		•	minutes		Diameter:	•	inches
	ed to:			minutes			2.3	gallons
	Purge Volume	рН	ORP	Conductivity	Temp.	DO	Turbidity	Water
Time	(gallons)	(s.v.)	(mV)	(mS/cm)	(°C)	(mg/L)	(NTU)	Level (ft)
0955		7.31	-75.9	3.26	16.3	1.11	2347AV	10.92
1000	0.3	7.32	-869	3.27	14.6	0.27	1013 AV	10.93
1()05	0.6	7.27	-75.9	3.07	141.0	0.35	24.8	10.93
1010	0.9	7.23	-73.9	3.06	14,0	0.30	16.2	10.92
1015	1.5	7.21	-73.3	3.66	14.0	0.29	13.6	10.92
1020	2.0	7.22	-73.8	3.06	14.1	0.24	11.0	10.92
1025	2.2	7.23	-73.2	3.06	14.1	0.23	10.06	10.92
1030	2.3	7.24	-73.2	3.07	14.0	0.23	8.61	10.92
	1(4							
					18			
Final Sa	mple Data:	7.24	-73.2	3.07	14.0	0.23	8.61	10.92
Sample ID(s):	AMSF-MW-7-					Ţ.		2.
Sample Time:			- 3	Sampler(s):	LB, ()			
		D 2	1 4 C / 1 4 C D 2	ii E eu die vee e vets	Z40 0040	. 1	1. 12.55	**************************************
Analyses: VOCs		□ Dubŝ	MS/MSD? □	Equipment:	see purg	& Jam	JOY MMSK	-MW-761
1,4-Dioxo	ane				(
SVOCs PCBs				Comments:	clear, no	odor,	hen ligh	t-colored
□ Pesticide								
☐ TAL Meto	ais			(white-gray) -di	55010 W SI	ispenala	particu	٠.
				(2)				

		Monitorin	g Well Purg	ing and Samplir	ng Record	Well ID:	AMSF-MI	W-98_
Site Name:	Former AMSF					Date:	8/18/15	
Depth to We	GIOI.	ft TOIC			Purae	Start Time:	1221	
Total Well De		ft TOIC			Purae	End Time:	1252	
Depth to Pu	Jinp	ft TOIC			, uigo	ump Type:	bladd	ev
Initial Pump F	Rate: <u>\&O</u>	mL/min)	Diamotor:	2.	inches
adjuste	ed to:	mL/min at			Well	ell Volume:	2.1 19 LB	aallons
adjuste	ed to:	mL/min at		0	VV 6			Water
	Purge Volume	рН	ORP	Conductivity	Temp.	DO (ma/l)	Turbidity (NTU)	Level (ft)
Time	(gallons)	(s.u.)	(mV)	(mS/cm)	(°C)	(mg/L) 1.42	50.5	10.89
1277		7.28	44.8	5.10	20.5		45.8	10:89
1277	0 -1	7.15	40.2	5.22	14.6	0.48	1 1	10.89
1777	0.3	7.16	36.2	5.21	17.4	0.34	46.7	10-89
1237	0.6	7.13	37.7	5.15	17.2	0.32	16.8	11.89
1242	0.8	7.11	37.5	5.10	17.0	0.31	6.17	0.5
1747	1.1	7.11	38.0	5.03	17.1	0.30	4.16	11.89
1	1.3	7.11	36.3	4,98	16.9	0.31	1.32	11.89
1252	1.5							
		-						
			-					
			4					
			7. 7	4.98	16.9	0.31	1.32	11.89
Final	Sample Data:	[7.1]	36.3		10.1			
Sample ID((s): AMSF-MW-9	s-W-0818	315 (MS/N	ND)	s): <u>لگ</u> ا	Α.		
Sample Tim	ne: <u>1300</u>		-	- , .				920 N 00 100 N 100
		<u>Dub</u> §	MS/MSD	? Equipmer	nt: <u>sel p</u>	urge for	n for An	451F-MW-16
Analyses: VOCs			X			, ,		
1,4-Did	oxane		X		-			
SVOC PCBs	S			Commer	nts: <u>clea</u>	K, NO	oder_	
' Pestic	cides							
TAL M	letals .							

		MOIIIIOI	ing weir or	ging and sampi	ing Record			
Site Name:	Former AMSF				ē	Well ID:	AMSF-MW	1-1354
Depth to W	/ater: 10.94	ft TOIC				Date:	<u>8/18/15</u>	1
Total Well De	epth: 23.3	ft TOIC			Purge	Start Time:	0845	>
Depth to P	ump: ~21	ft TOIC			Purge	e End Time:	0930)
Initial Pump	Rate: 7 90	mL/min			P	ump Type:	bladd	er
adjuste	ed to: VCD	_mL/min_at	0855	minutes	Wel	Diameter:	4	inches
		mL/min at		minutes	We	ell Volume:	8.1	gallons
	Purge Volume	рН	ORP	Conductivity	Temp.	DO	Turbidity	Water
Time	(gallons)	(s.u.)	(mV)	(m\$/cm)	(°C)	(mg/L)	(NTU)	Level (ff)
0845		7.43	-122.5	2.85	15.1	2,45	1830	10.97
0950		7.24	-134.4	3.11	14.8	0.78	11.30	10.95
0855		7.23	-138.5	5.17	15.3	0.53	6.57	10-93
0900		7.72	-138.4	3.16	15.2	0.45	5.07	10.93
0905		7.21	-138.1	3.21	15.2	0.35	5,03	10.93
0910		7.21	-138.8	7.18	15.0	0.30	2.05	10.93
0915		7.20	-139.6	2-21	15.1	0.23	1.93	10.93
0920		7.20	-1371	3.23	19.1	0.18	1.54	10.93
0925		7.21	-132.7	3.20	15.0	0.18	1.25	10.93
0930		7.20	-136.6	7.20	15.0	0.17	1.04	10,93
0 00		,,,,	70.0				1.5	
						,		
Final Sa	ımple Data:	7.20	-136.6	7.20	15.0	0.17	1.04	10.93
	AMSF-MW-135-1		, ()0 0	1-10	1)(0	10.11	1.03	(D* \Z)
Sample Time:		00.00	- s	Sampler(s):	L.Best	. C. Yarri	ngton	
					C	<i>M</i> . N	V/ -	
Analyses: VOCs		<u> </u> <u> </u>	□ WS/WSD\$	Equipment:	Jane or	> /~(W-	107	
1,4-Dioxo	ane							
□ SVOCs				Commonte	CI-	1/1/1	- e.l. \	C
□ PCBs□ Pesticide	es			Comments:			lo lo red	suspende
☐ TAL Meto			-	particles; 5	light sul	from od	0~	
	*			11 9 0	13 9 31	ur 95		

C'I \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			ing weir or	ging and samp	ing Record			
	Former AMSF				-		AMSF-M	
	vater: <u>11.42</u>	_				Date:	8/18	/15
Total Well D	epth: <u>44,2</u>	ff TOIC			Purge	Start Time:	0740	٥
Depth to P	ump:_~42_	ff TOIC			Purge	e End Time:	0819	<u> </u>
Initial Pump	Rate: ~230	_mL/min			Р	ump Type:	blado	ler
adjuste	ed to:	_mL/min a	t	minutes	Well	Diameter:	_2_	inches
adjuste	ed to:	mL/min a	†	minutes	We	ell Volume:	5.2	gallons
	Purge Volume	рН	ORP.	Conductivity	Temp.	DO	Turbidity	Water
Time	(gallons)	(s.u.)	(mV)	(m\$/cm)	(°C)	(mg/L)	(NTU)	Level (ft)
(740		7.38	-127.1	4.29	15.0	3.82	8.18	11.43
0745	0.3	6.96	-161.3	6.52	14.1	0.44	2.35	11.45
0750	0.6	7.01	-162.6	6.79	13.9	0.36	1.12	11.45
0785	0.9	7.04	-162.8	6.79	13.8	0.28	0.75	11.43
1800	1.2	7.04	-164.9	6.81	13.8	0.21	1.14	11.43
0 805	1.5	7.05	-166.0	6.80	13.7	0.18	0.49	11.43
0810	1.8	7.05	-14.4	6 80	13.7	0.17	0.51	/1.43
0815	2.1	7.05	-167.8	6.80	13.6	0.17	0.43	11.43
					15.0	01.1	()(~1-3	3
						- u		-1. <i>in</i>
						2		
Final Sai	mple Data:	7.05	-167.8	6.80	13.6	0.17	0.43	11.43
	AMSF-MW-16			<i>(p.00</i>	75.0	0.11	0113	11.13
Sample Time:			-10	Sampler(s);	L. Best	C. Yar	rington	
•					VSI FA00373		FA02122	
Analyses: VOCs		<u>Dub\$</u>	WS/WSD\$	Equipment:	WLM FA0178		ader FAD	
1,4-Dioxa	ne				hastru EMNE	80 C.	Supreme EA	ma S
SVOCs					botteny FAOIE		ovessor FAC	
□ PCBs□ Pesticides	5			Comments:	Clear, SI	ight su	yur od	w
☐ TAL Metal		_	72			w.		

Site Name:	Former AMSF			J. J		Well ID:	AMSE MU	v-20
Depth to W	/ater: 12.99	ft TOIC				Date:	8/19/1	S
	epth: 24.21				Purge	Start Time:		
	ump: ~22	•				End Time:		
Initial Pump	Rate: ~220	mL/min			P	ump Type:	bladde	K
adjuste	ed to:	mL/min at	<u> </u>		Well	Diameter:	2	inches
adjuste	ed to:	mL/min at		•	We	ell Volume:	1.8	gallons
	Purge Volume	рH	ORP	Conductivity	Temp.	DO	Turbidity	Water
Time	(gallons)	(s.u.)	(mV)	(mS/cm)	(°C)	(mg/L)	(NTU)	Level (ft)
10:25	<u> </u>	7.56	482	3.10	18.0	3,79	759 AV	13.00
10:30	0.4	7.59	37.3	3.05	16.7	6.59	713 AV	13.00
10:35	0.8	7.67	32.8	3.03	16.6	7,32	606AV	13.00
10×40	1.1	7.68	32,4	3.05	16.6	7.60	152	13.60
10:45	1.3	7.68	31.9	3.07	16.5	7.41	153	- 13.00
10:50	1.6	7.65	32.5	3,10	16.6	7.20	118	13.00
10:55	1.9	7.65	329	3.13	16.6	7.15	83.7	13.00
11:00	2.2	7.65	33.6	3.15	16.6	7.27	65.0	13.00
11:05	2.4	7.58	44.7	3.16	16.5	7.66	<i>5</i> 5.5	13.00
11:10	2.7	7.58	58-1	3.17	16.6	7.65	49.1	13.00
11:15	3.0	7.60	60.1	3.17	16.6	7.51	33.1	13.00
11:20	3.2	7.59	64.6	3.18	16.5	7.64	26.0	13.00
•								
Final Sa	mple Data:	7.59	64.6	3.18	16.5	7.64	26.0	13.00
Sample ID(s):	AMSF-MW-20-U	1-081915						
Sample Time:	1125			Sampler(s):	UB, C			
Analyses: VOCs 1,4-Dioxo SVOCs PCBs			MS/MSD\$	Equipment:	seepurge.	form for	AMSF-MW.	-16I_
1,4-Dioxo	ane							
SVOCs PCBs				Comments:	clear 18	hybly	(leudu)	
☐ Pesticide☐ TAL Meto				•		NO 01	dor	
	лы					110 01	∧ • `	

Site Name:	Former AMSF			ging and camp		Well ID:	AMSF-N	W-21
Depth to V	Water: <u>12.87</u>	ft TOIC					8.19.15	
Total Well D	epth: <u>72.22</u>	ff TOIC			Purge	Start Time:	0938	
	Pump: ~21'				Purge	e End Time:	1000	
Initial Pump	Rate: 380	mL/min		•		'ump Type:		
	ed to: 500		+0941			I Diameter:		inches
	ed to:			•		ell Volume:		gallons
	Purge Volume	рН	ORP	Conductivity	Temp.	DO	Turbidity	Water
Time	(gallons)	(s.u.)	(mV)	(m\$/cm)	(°C)	(mg/L)	(NTU)	Level (ff)
0938		8.03	36.0	2.16	17.6	5,27	1696 AU	15.83
0943	P.0	7.95	16.4	2.16	16.2	4.41	128	12.87
0948	0.8	7.92	15.9	2.14	16.2	4.37	108.8	1287
0953	1.2	7.87	16.7	7.14	16.1	4.24	74.4	12.87
0958	1.4	7.81	15.4	2.13	16-1	4.12	48.0	12.87
1003	:							
							·	
				·				
Final Sa	mple Data:	7.81	15.4	2.13	16.1	4.12	49.0	12.87
iample ID(s):	M9F-MJ-21-W-C	18K12			b			
ample Time:	000/			Sampler(s):	Mark			
Analyses:		<u>Dup?</u>	MS/MSD?	Equipment:	CAA			
V OCs				Equiprilatin.	- Hill			·
X 1,4-Dioxa □ SVOCs	ne			-				
□ PCBs				Comments:	Clear, v	wodo w		
☐ Pesticides☐ TAL Metal				-				
_ ///////	1.5							

Site Name:	Former AMSF				_	Well ID:	AMSE-M	IW-2Z
Depth to V	Vater: <u>12.82</u>	ft TOIC					8.19.1	
Total Well D	epth: <u>23,10</u>	ft TOIC			Purge	Start Time:	1236	
Depth to P	oump: 22'	ft TOIC			Purge	e End Time:	1301	
Initial Pump	Rate: <u>~~~</u> 30	_mL/min		•		Pump Type:		/
adjuste	ed to:	_mL/min_at		_		l Diameter:	, , , , , , , , , , , , , , , , , , , ,	inches
adjuste	ed fo:	_mL/min at		_	W	ell Volume:	1.6	gallons
	Purge Volume	рН	ORP	Conductivity	Temp.	DO	Turbidity	Water
Time	(gallons)	(s.u.)	(mV)	(ms/cm) 3.24	(°C)	(mg/L)	(NTU)	Level (ff)
1241	0.4	7.20	105.6	3,24	17-0	2.61	91.7	12.85
		7.06	77.0		15.0	0.94	48.4 100 CI	15.86
1246	0,7	7.03	72.9	3.26	15.7	0.88	40.9	12.85
1251	1.0		69.7	3.26	15.6	0.74	28.1	17.85
1756	1:4	7.03	66:1	7.25	15.6		27.3	12.85
1301	1.8	7.03	65,+	3.25	12.9	0.80	20.5	12.65
							3.4	
							*	
_								
Final Sa	mple Data:	7.03	69,7	3,25	15.6	0.80	Z0.5	12.85
	AMSF-MW-ZZ.	W-0819	15			0	<u> </u>	
ample Time:				Sampler(s):	W & L	b		
<u>Analyses:</u>		<u>Dup?</u>	MS/MSD?	Equipment:	SAA			
X VOCs 1,4-Dioxa	ine				•			
SVOCs				-	1	١		
□ PCBs□ Pesticide	S			Comments:	Clear,	no oda	<u> </u>	
□ TAL Meta		_ _						

	•	Monitor	ing wenton	ging and sampi	ing kecola			
Site Name:	Former AMSF					Well ID:	AMSF-MI	w-23
Depth to V	Vater: <u>12.90</u>	ft TOIC		•		Date:	8/19/15	<u> </u>
Total Well D	epth: <u>24.50</u>	ft TOIC.			Purge	Start Time:	1145	
Depth to P	Pump: ~22	ft TOIC			Purge	End Time:	1210	
Initial Pump	Rate: ~300	mL/min			Р	ump Type:	bladder	
adjuste	ed to:	mL/min a	t	<u>:</u>		Diameter:		inches
adjuste	ed to:	mL/min a	†	; ;		ell Volume:		gallons
	Purge Volume	рН	ORP	Conductivity	Temp.	DO	Turbidity	Water
Time	(gallons)	(s.u.)	(mV)	(m\$/cm)	(℃)	(mg/L)	(NTU)	Level (ff)
1145		7.20	81.1	2.28	17.6	1.77	24.8	12.90
1150	0.4	7.17	64,4	2.36	16.7	1.23	10.56	12.90
1165	0.8	7.16	59.8	2.39	16.6	1.28	2.31	12.90
1200	1.2	7.15	57.0	2.40	16.6	1.18	1.61	12.90
1205	1.6	7.15	54.4	2.40	16.6	1.16	1.36	1290
1210	2.0	7.15	51.9	2.40	16.6	1.14	0.84	12.90
			-			-		
			,					
			-					,
Final Sa	mple Data:	7.15	51.9	2.40	16.6	1.14	0.84	12.90
ample ID(s):	AMSF-MW-23-V	U-081915						
ample Time:	1215			Sampler(s):	<u> </u>	<u> </u>		
\nalyses:		<u>Dup?</u>	WS/WSD\$	Fauinment:	CON MILLIA	ا محمد ا	ove MAACE	NAINLIGHT
VOCs				Equipment:	se punge	Day D	N MINON	1-10-10-
(1) 1,4-Dioxa □ SVOCs	ine				ε,			
□ PCBs				Comments:	clear.	no oder		
☐ Pesticide☐ TAL Meta				•	<u> </u>			
_ //L/VICIO			•					

		Monitori	ng Well Purg	ging and Sampli	ing Record		~	- •
Site Name:	Former AMSF	<u></u>			ı	Well ID:	AMSF-MW	<u>-26</u>
Depth to V	Vater: 12,00	ft TOIC				Date:	8.20-	15
Total Well D	epth: 24,71	ft TOIC			Purge	Start Time:	0743	
	- 01	ft TOIC			Purge	e End Time:	0813	
	Rate: 300	mL/min			P	'ump Type:	Bladder	
		mL/min at				Diameter:		inches
	ed to:	•		•	W	ell Volume:	2.0	gallons
	Purge Volume	рН	ORP	Conductivity	Temp.	DO	Turbidity	Water
Time	(gallons)	(s.u.)	(mV)	(mS/cm)	(°C)	(mg/L)	(NTU)	Level (ff)
0743		6.95	131.5	3.32	15.9	1.23	15.1	12.03
0748	0.2	7.23	101.6	3.62	14.6	0.31	7.1	12.03
0753	0-8	7.26	95.5	3.68	14.5	0,30	2.95	12.03
0758	1.2	7.29	4,38	3.67	14,5	0.25	1.43	12,03
0803	1.6	7.36	63.4	3.66	14.5	0.70	1.33	12,03
8080	1.9	731	79,1	3.66	14.5	0.19	P8.0	12.03
0813	2.3	732	74,8	3.65	14.5	0.1%	0.99	12.03
			/ (0				•	
					•			
Final Sc	ample Data:	7.32	74.8	3.65	14.5	0.18	0.99	12.03
Sample ID(s)	: AMSF-MW-Z6-	W-067019	2			1.0		
Sample Time	: <u>0815</u>		-	Sampler(s):	W &	<u> </u>		
		- 0		Equipment:				
Analyses: VOCs		□ <u>Dub\$</u>	□ MS/MSD§	Equipment:	2411			
1,4-Diox	ane						···	
□ SVOCs □ PCBs				Comments:	Clarial	Mily a	loved a	inche Lak
☐ Pesticide	es			, , 1	1	114-21 0	1000	
□ TAL Met	als			sollds, Lo	odor			

Site Name:	Former AMSF				_	Well ID	: AMSF-N	1W-29
Depth to V	Water: <u>14.71</u>	_ft TOIC					: 8/1 9/ 1:	
Total Well [Depth: <u>27.65</u>	_ff TOIC			Purge	Start Time		
Depth to F	Pump:_ <u>~25</u>	_ft TOIC				e End Time		
Initial Pump	Rate: ~300	_mL/min				Pump Type:		
adjust	ed to:	_mL/min_c	at	_		I Diameter:		inches
adjust	ed to:	_mL/min_c	ıt	_	W	ell Volume:	2.1	gallons
	Purge Volume	рН	ORP	Conductivity	Temp.	DO	Turbidity	Water
Time	(gallons)	(s.u.)	(mV)	(mS/cm)	(°C)	(mg/L)	(NTU)	Level (ft)
0835		7.32	45.1	2.37	16.6	3.66	660AU	14.72
0840	0.7	7.11	47.5	3.00	15.4	2.32	81.4	H.72
0845	1.2	7.10	44.2	2.98	15.4	2.09	29.1	14.72
0880	1.6	7.06	43.5	3.05	15.3	88.1	20.4	14.72
0855	1.9	7.07	42.5	3.08	15.3	1.84	10.03	14.72
0900	2.3	7.07	42.3	3.09	15.3	1.84	7.03	14.72
	mple Data:	7.07	42.3	3,09	15.3	1.84	7.03	14.72
	AMSF-MW-29-W	- 081915			0	a. 1		
ample Time:	0905			Sampler(s):_	UB,	<u> </u>		
<u> Analyses:</u>		<u>SquQ</u>	WS/WSD\$	Fauinment:	SOO MILLOR	o Jama	Inc MAC	C Mill stor
VOCs				Equipment: _	sa pury	e gan	100 HIVIS	F-14M-107
■ 1,4-Dioxa □ SVOCs	ne			_		!		
PCBs				Comments:_	cloudy wi	Ismau bl	ack parti	icles,
PesticidesTAL Metal				no odar;	closed	un alta	۔ (آایہ برو	
			-	110 0000	weren	~ ry ry (1	u ~ jun	mn

Site Name:	Former AMSF			99 aa o ap.:		Well ID:	AMSF-N	4W-31
Depth to W	/ater: 12.67	ft TOIC				Date:	8/19/	15
Total Well D	epth: 27.30	ft TOIC			Purge	Start Time:	, ,	
Depth to P	ump: ~25	ft TOIC		·		End Time:		
Initial Pump	Rate: ~250	mL/min			Р	ump Type:	bladd	QN .
adjuste	ed to:	mL/min a	t			Diameter:		inches
adjuste	ed to:	mL/min a	t			ell Volume:		gallons
	Purge Volume	рН	ORP	Conductivity	Temp.	DO	Turbidity	Water
Time	(gallons)	(s.u.)	(mV)	(mS/cm)	(°C)	(mg/L)	(NTU)	Level (ft)
1430		7.68	-127.3	2.85	17.7	2.16	NM	12.72
1435	0.4	7.42	-125.1	3.21	14.9	0.37	41.8	12.72
1440	0.7	7.38	-123.2	3.12	14,7	0.24	37.L	12.72
1445	1.1	7.32	-121,0	3.08	14.7	0/18	22.0	12.72
1450	1.3	7.31	-120.7	3.08	14.6	0.17	13.1	12.72
1455	1.6	7.31	-121.0	3.08	14.6	0.18	10.2	12.72
·		į.			·			
		\				·		
					·			
			١					
Final Sa	mple Data:	7.31	-121.0	3.08	14.6	0.18	10.2	12.72
Sample ID(s):	AMSF-MW-31-		15 AMSF-D	WP-W-081915	, 0	2.1		
Sample Time:		10		Sampler(s):	<u> </u>	<u>, ()</u>		
<u>Apalyses:</u>	1	Şaud	WS/WSD\$	Equipment:	COA MULAN	ا ا	AMIC-M	L LloT
X VOCs		X		Equipment.	se purge	Dan Ja	Maghala	W-1022
XI) 1,4-Dioxa □ SVOCs	ine	X) .		-				
□ PCBs				Comments:	sulur	odor, c	llar.	
□ Pesticide□ TAL Meta				Comments:	(sught)			
- INLINIOIU	ii3							

		MOHIO	ing well rold	ging and sampi	ing kecolu			
Site Name:	Former AMSF					Well ID:	AMSF-	MW-32 5
Depth to W	Vater: <u>12.88</u>	ft TOIC				Date:	8-19-1	5
Total Well D	epth: <u>ZZ</u>	ft TOIC			Purge	Start Time:		
Depth to P	ump: <u>Z\'</u>	ft TOIC			Purge	e End Time:	1350	
	Rate: <u>Z50</u>	mL/min			F	ump Type:	Bladder	
	ed to:	_	· \			Diameter:	•	inches
	ed to:	_		•		ell Volume:		gallons
	Purge Volume	рН	ORP	Conductivity	Temp.	DO	Turbidity	Water
Time	(gallons)	(s.u.)	(mV)	(mS/cm)	(°C)	(mg/L)	(NTU)	Level (ff)
1330		7.78	118.8	4.58	18.4	1.64	36.8	12.89
1335	0,2	7.06	76.0	9.60	16.3	0.43	36.	15-80
1340	0.6	7.06	68.3	4.60	16.0	0.42	15.7	12.89
1345	1.1	7.06	0.40	4.60	15.9	0,40	10.51	12.89
1350	1.3	7.06	61.1	4,59	15.9	0.39	10.78	12-89
							. 3	
,								
			i					
Final Sc	ımple Data:	7.06	61.1	4,59	15.9	0.39	10.28	12.89
· · · · · · · · · · · · · · · · · · ·	AMSF-MW-32-1				1 _			
Sample Time:	1355		•	Sampler(s):	Mals			
<u>Analyses:</u>		<u>SquD</u>	WS/WSD\$	Equipment:	GAA			
X VOCs				,- ,				
為 1,4-Dioxo ロ SVOCs	ane							
PCBs				Comments:	Clear, v	10 oder		
□ Pesticide □ TAL Meta					,			
L IALMOR	лıз							

		Monitorii	ng well ruig	jing and sampin	ng kecora		A POSSIBILITY	
Site Name:							AMSF-MW	
Depth to W	ater: <u> 2 </u>	ft TOIC					8/18/15	
	epth: <u>23.95</u>	ft TOIC				Start Time:		
Depth to Po	ump:_ ~22	ft TOIC			Purge	End Time:	1430	
	Rate: ~180	mL/min			Pi	ump Type:	bledder	
	 ed to:						2	
	 ed to:				We	ell Volume:	2.0	gallons
	Purge Volume	рН	ORP	Conductivity	Temp.	DO	Turbidity	Water
Time	(gallons)	(s.u.)	(mV)	(m\$/cm)	(°C)	(mg/L)	(NTU)	Level (ff)
1350	_	7.18	-99.2	3.02	16.3	0.76	2486 AU	11.20
1355	0.3	7.21	-82.3	3.09	15.3	0.27	2087 AU	11.23
1400	0.5	7.19	~79.1	3.08	15.0	0.22	878 AU	11.22
1405	0.8	7.21	-81.3	3.07	149	0.21	152	11.22
1410	1.0	7.23	-82.8	3.07	14.9	0.19	88.4	11.22
1415	1.2	7.23	-83.1	3.06	14.9	0.16	57.4	11.22
1420	1,4	7,23	-829	3.07	14.7	0.15	35.1	11.22
1425	1.6	7.24	-84.9	3.06	14.8	0.15	27.5	11.22
1100	1.0	1.01						
Final Sc	ample Data:	7.24	-84.9	3.06	14.8	0.15	27.5	11.22
	AMSF-MW-33-	***************************************				90 W		
Sample Time			_	Sampler(s)	:UB,	<u>cy</u>		
		5 0	14C / 14C D 2	Faurinmont	• 182421W 100201V03		ANICE-1	W)) = 16T
Analyses: VOCs		<u>Dup?</u>	□ WS/WSD\$	Edolbinem	see pur	h Jam 1	or AMSF-1	100 10-
1,4-Diox	ane							
□ SVOCs □ PCBs				Comments	clear,	sizghtu a	loud W.	no oder
Pesticid						1)	4	
☐ TAL Met	als							

		Monitor	mg wen i oi	ging and samp	ing Record			
Site Name:	Former AMSF				•	Well ID:	AMIF-MI	N-34
Depth to V	Vater: <u>13.89</u>	ft TOIC				Date:	8/19/	15
Total Well D	epth: 32.04	ft TOIC			Purge	Start Time:	0735	
Depth to F	Pump: \sim $31'$	ft TOIC			Purge	e End Time:	0810	
Initial Pump	Rate: \\0	mL/min			F	omp Type:	blidd	or
adjuste	ed to: 280	mL/min a	10748	_	Wel	l Diameter:	2	inches
adjust	ed to:	mL/min a	†		, W	ell Volume:	2.9	gallons
	Purge Volume	рН	ORP	Conductivity	Temp.	DO	Turbidity	Water
Time	(gallons)	(s.u.)	(mV)	(m\$/cm)	(°C)	(mg/L)	(NTU)	Level (ff)
0775		7.21	77.4	2.08	16.8	3.48	143	13.93
0740	0.2	6.79	55.3	2.91	16.5	0.93	Parae	13.93
0745	0.5	7.00	42.6	3.03	16.4	0.65	ll ri	13.93
0750	0.7	7.03	21.8	3.08	14.3	0.84	96.4	13.93
0753	1.2	7.05	17.1	3.10	14.2	0.73	25.8	13.93
0800	1.5	7.06	19.5	3.10	14.3	0.62	9.90	13.93
5805	1.7	7.09	12.1	3.10	14.2	0.59	7.31	13.93
0810	7.2	7.09	11.8	3.11	14.3	0.58	5.77	13.93
					-			
			٠.					
Final Sa	ımple Data:	7.09	11.8	3-11	14.3	0.58	5,77	13.93
iample ID(s):	AMSF-MW-34.	V-0819-	15		114.0			
ample Time:	0815		•	Sampler(s):	M& CB			
Analyses:		Dupş	WS/WSD3	Equipment:	SAA			
VOCs VOCs								
X 1,4-Dioxo □ SVOCs	ane							
□ PCBs				Comments:	ky cloudy	with Led	suspende	<u>d</u>
□ Pesticide□ TAL Meta				le solate of	+ 1	od an	ATO. N	9
	-		-	A MINES	1 Con	and O		
				odov				

Rage 1 of 2 page 1 ab 1

		Monitori	ing Well Pur	ging and Sampl	ing Record			4.
Site Name:	Former AMSF					Well ID:	RW-	2
Depth to W	ater: 10.40	ft TOIC				Date:	8/20	/15
Total Well De	epth: 14.7	ff TOIC			Purge	Start Time:		
Depth to P	ump: ~13	ft TOIC			Purge	End Time:	100)
Initial Pump (Rate: ~306	mL/min			Р	ump Type:	blidde	N
adjuste	ed to:	mL/min at	,		Well	Diameter:	_6	inches
adjuste	ed to:	mL/min at				ell Volume:		gallons
	Purge Volume	рН	ORP	Conductivity	Temp.	DO	Turbidity	Water
Time	(gallons)	(s.u.)	(mV)	(mS/cm)	(°C)	(mg/L)	(NTU)	Level (ft)
0844		7.85	43.4	0.381	18,7	1.80	12.3	10.Ub
0849	0.5	7.62	28.6	0.350	17.2	0.34	3.24	10.46
0854	0.8	7,59	30.0	0.352	17.1	0.28	2.08	10.46
0859	1.3	7.57	32.2	0.354	17.1	0.23	1.46	10.46
0904	1.7	7.50	33.7	0.368	17.0	0.20	1.78	10.46
9090	2.1	754	34.9	0.368	16.9	0.18	1.54	10:46
0914	2.5	7.53	35.7	0.387	16.9	0.16	1,37	10.46
0919	2.9	7.51	36.1	0,423	16.8	0.15	1.54	10.46
0924	3,3	7,45	37.9	0.579	16.7	0.13	1.37	10.46
0929	3.7	7.28	41.8	1.27	17.1	0.14	1.38	10.46
0934	4.1	7.23	38.4	2.68	0.71	0.15	1.05	10.46
0939	4.5	7.24	36.6	2.88	16.8	0.16	0.58	10.46
0944	4.9	7.25	35.2	3.01	16.8	0.16	0.57	10,46
0949	5.3	7.23	34.2	3.05	16.7	0.15	0.59	10.46
0954	5.7	7.24	33.4	3.08	16.8	0.15	0.62	10.46
Final Sa	mple Data:	7.24	33.4	3.08	16.8	0.15	0.62	10.46
Sample ID(s):	AMSF-RW-2-W-	-082015			_			
Sample Time:	10:00			Sampler(s):_	$\mathcal{L}\mathcal{B}$	<u>, CY</u>	,	
Analyses: VOCs 1,4-Dioxa	ne	Dup? □	<u>MS/MSD</u> ? □	Equipment:	see punge	form for	AMSF-M	W-16I
SVOCs PCBs Pesticides TAL Meta	s			Comments:	clear, n) odar		

8/20/15 @ 8/20/15 @ 11**3**5 AMSF-PILNEBURNE W-082015

Site Name:	Former AMSF				_	Well ID:	RW-3	
Depth to W	/ater: 12.57	ft TOIC				Date:	8/20/1	5
	epth: 15.60		it bottom		Purge	Start Time:		
	ump: ~ 14	•	,		Purge	e End Time:	1116	
Initial Pump	Rate: <u>300</u>	mL/min			Р	omp Type:	bleedde	ev
adjuste	ed to:	mL/min a	<u> </u>		Well	l Diameter:	6	inches
adjuste	ed to:	mL/min a	t		We	ell Volume:	~2.0	gallons
	Purge Volume	рН	ORP	Conductivity	Temp.	DO	Turbidity	Water
Time	(gallons)	(s.u.)	(mV)	(mS/cm)	(°C)	(mg/L)	(NTU)	Level (ff)
1026		7-84	67.9	1.79	17.6	2.17	13.7	12.53
1031	0.5	7.75	42.4	174	16.5	1.75	12-4	12.60
1036	0.7	7,72	45.3	1.75	16.4	1.45	11.4	12.60
1041	1.7	7.64	38.9	1,75	16.3	1.19	11.3	12.60
1046	1.5	7.63	27.4	1.76	16.3	1.11	11-31	12.60
1051	1.8	7.61	14.9	1,77	16.4	0.86	11.13	12.60
1056	23	7.63	.12.2	1.78	16.4	0.63	11.78	15.60
1101	2.5	7.64	-42,7	1.80	16.2	0.40	11,41	12.66
1/06	7.8	7.61	-73.4	1,90	16,3	0.20	8.78	1260
1111	3.1	7.52	-69.0	1.91	5.01	15.0	7.14	1260
1116	3.5	7,46	-67.3	1.95	16.2	0.22	5.24	12.60
Final Sa	imple Data:	7.48	-67.3	1.93	16.2	0.22	5,24	12.60
Sample ID(s):	AMSF-RW-3-1	7-08501	5		1.1 %	r P		
Sample Time:	1150		-	Sampler(s):	MAL	B		
Analyses:		<u>ŞquD</u>	MS/MSD?	Equipment:	SAA			
VOCs	,							
1,4-Dioxo	ane							
□ PCBs				Comments:	Some 12	at colore	d suspen	ded
☐ Pesticide				salida. Noi	TE: Hollow	veridue	Lund	on water
//L/WOR	A			i (α 、	\		2
				level plase	. been 1	~ < 440/0	~ <u> </u>	<u> 20 07</u>