Appendix K
COPIES OF SELECTED REPORTS AND DATA SUMMARIES RELATED TO
INVESTIGATION OF THE FORMER ITT ROCHESTER FORM MACHINE
FACILITY SITE

Table 2 from:

Monthly Status Report #111 – August 2013
Former ITT Rochester Form Machine Facility, Site # 8-28-112, Town of Gates,
Monroe County, Order on Consent: Index # B8-0614-02-05
O'Brien & Gere Engineers, Inc., September 10, 2013

Table 2

2013 Periodic Groundwater Monitoring **Groundwater Level Summary Table** Former ITT Rochester Form Machine Facility Site #8-28-112 Town of Gates, New York

					June 1	7, 2013
Well Number	Northing	Easting	Ground	Datum	Depth to	Groundwater
			Elevation	Elevation	Water	Elevation
			(ft amsl)	(ft amsl)	(ft b datum)	(ft amsl)
Monitoring Well - F			I	I	I	ı
ITT-DBW-2	1146108.962	1380537.767	565.4	565.02	98.65	466.37
ITT-DBW-5	1146106.697	1380362.713	564.7	564.48	0.05	564.43
ITT-DBW-8	1145716.494	1380543.446	563.4	563.11	10.05	553.06
ITT-IBW-20	1146078.0261	1380540.9246	565.1	564.77	8.71	556.06
ITT-MW-1	1145695.177	1380343.149	561.1	560.71	3.04	557.67
ITT-MW-4	1145917.14	1380390.764	563.7	563.36	6.51	556.85
ITT-SBW-1A	1146138.744	1380494.072	564.6	564.19	7.57	556.62
ITT-SBW-2	1146091.491	1380537.923	565.3	564.96	8.33	556.63
ITT-SBW-4	1145696.225	1380347.228	561.1	560.59	3.33	557.26
ITT-SBW-5A	1146106.42	1380387.515	564.6	564.39	7.70	556.69
ITT-SBW-6	1145891.447	1380569.518	564.2	563.74	7.14	556.60
ITT-SBW-7	1145993.44	1380564.979	564.6	564.16	7.56	556.60
ITT-SBW-8	1145709.069	1380543.598	562.9	562.44	5.57	556.87
ITT-SBW-9	1146063.342	1380482.136	565.2	564.85	8.22	556.63
ITT-SBW-10	1146052.223	1380392.675	565.0	564.65	7.89	556.76
ITT-SBW-11	1145839.791	1380505.247	564.9	564.60	7.82	556.78
ITT-SBW-12	1145818.059	1380417.461	564.9	564.37	7.39	556.98
ITT-SBW-23	1146048.3023	1380328.7497	564.2	563.73	7.11	556.62
Recharge Well	1145700.7	1200262.00	561.3	FC1 01	2.22	557.60
ITT-W-1 Monitoring Well - C	1145709.7 Cinemark Property	1380363.08	561.3	561.01	3.33	557.68
ITT-IBW-19	1146258.3762	1380560.0153	572.6	572.24	16.20	556.04
ITT-SBW-13	1146258.556	1380551.778	572.5	571.99	15.42	556.57
ITT-SBW-14	1146257.482	1380754.066	571.6	571.25	14.72	556.53
ITT-SBW-15	1146256.007	1380959.084	573.7	573.13	16.73	556.40
ITT-SBW-16	1146233.328	1380402.418	572.2	571.74	15.12	556.62
ITT-SBW-17	1146712.7050	1380918.0355	568.8	568.23	10.27	557.96
ITT-SBW-18	1146718.6576	1380645.5321	570.0	569.56	12.89	556.67
Monitoring Well - F	ormer AMSF Site					
AMSF-MW-1D	1146149.243	1380621.217	564.2	564.42	26.25	538.17
AMSF-MW-1S	1146148.052	1380610.116	563.8	566.02	9.44	556.58
AMSF-MW-3D ⁽¹⁾	1145735.729	1380951.165	561.4	560.93	14.58	546.35
AMSF-MW-3S	1145734.901	1380936.917	561.3	561.06	4.71	556.35
AMSF-MW-4 ⁽¹⁾	1145785.564	1380687.629	564.1	564.22	7.34	556.88
AMSF-MW-5D	1146162.0129	1380953.5248	568.0	571.00	23.68	547.32
AMSF-MW-7	1146093.6638	1380586.4304	563.2	563.97	7.39	556.58
AMSF-MW-8D	1145707.5507	1380601.3767	560.2	562.30	16.57	545.73
AMSF-MW-9S	1145894.677	1380676.075	565.3	565.00	8.44	556.56
AMSF-MW-10	1145712.942	1380819.872	561.4	561.07	4.60	556.47
AMSF-MW-11S	1146107.387	1380679.47	563.4	563.18	6.68	556.50
AMSF-MW-12S	1146100.019	1380648.446	564.0	563.53	6.99	556.54
AMSF-MW-13S	1146056.109	1380644.247	564.5	563.95	7.54	556.41
AMSF-MW-15I	1146049.609	1380601.054	563.1	562.83	6.71	556.12
AMSF-MW-16I	1146045.681	1380643.358	564.6	564.27	8.18	556.09
Recharge Wells	I					I
AMSF-RW-1	1145711.4316	1380591.7608	NA	558.34	0.08	558.26
AMSF-RW-2	1146101.519	1380620.204	563.4	563.28	0.92	562.36
AMSF-RW-3	1146132.417	1380800.672	565.2	565.05	3.52	561.53
AMSF-RW-4	1146148.027	1380948.432	566.4	566.36	4.69	561.67
AMSF-RW-5	1145949.849	1381087.204	565.4	565.46	9.85	555.61
Recarge Well - Dow						

RW-6 Notes:

Location and elevation surveys conducted on January 29, 2005, February 22, 2005, March 29, 2010, and December 11, 2011. Horizontal Datum - NAD83 New York State West State Plane (feet)

Vertical Datum - NAVD88 (Feet)

Modifications to the AMSF-RW-2 manhole were observed on 6/17/2005. Recharge well AMSF-RW-2 was resurveyed on 12/11/2011.

(1) - TOC elevations adjusted to reflect hand measured changes to PVC riser as a result of August 1, 2005 repairs. ITT-W-1 and AMSF-RW-1 through AMSF-RW-6 water level measurements are measured from the top of the manhole.

AMSF - Alliance Metal Stamping and Fabricating

RFM - Rochester Form Machine ft amsl - Feet above mean sea level ft b datum - Feet below datum elevation

NA - Not Appliacble

¥.,.,

ITT Corporation

1054 N. Tustin Avenue Anaheim, CA 92807 tel 914.304.1675 fax 914.304.1680

October 10, 2013

Mr. Frank Sowers, P.E. NYSDEC, Region 8 6274 East Avon-Lima Road Avon, NY 14414-9519

Re: Monthly Status Report #112 - September 2013

Former ITT Rochester Form Machine Facility Site #8-28-112 Town of Gates, Monroe County Order on Consent: Index # B8-0614-02-05

Dear Mr. Sowers:

This letter presents the monthly status report for the period ending September 30, 2013 for the Former ITT Rochester Form Machine Facility (#8-28-112) in the Town of Gates, New York. Status reports for the work performed at the Site are a requirement of the Order on Consent Index #B8-0614-02-05 between ITT and the New York State Department of Environmental Conservation (NYSDEC) dated August 19, 2003, with an effective date of August 29, 2003.

1. Work Performed:

- The Remedial Investigation Report (RIR) was submitted to NYSDEC on June 25, 2012. NYSDEC comments to the RIR were received on February 14, 2013. On March 27, 2013, NYSDEC informed ITT, via e-mail, that the New York State Department of Health (NYSDOH) had completed review of, and had no comments on, Appendix R of the RIR, Human Health Risk Assessment (HHRA). On April 17, 2013, NYSDEC provided final comments to the RIR. On May 13, 2013, ITT submitted a letter to NYSDEC indicating that ITT intends to modify the RIR to address NYSDEC comments and submit a revised RIR by October 9, 2013. During a phone conversation with the NYSDEC on September 17, 2013 and in a letter submitted to the NYSDEC on September 30, 2013, ITT requested an extension on the submission of the Remedial Investigation Report (RIR) to incorporate the utility tracing and surveying work conducted at the site the week of September 23, 2013, and to facilitate additional discussions with NYSDEC on comments and revisions to the RIR. As noted in the letter, ITT will propose a new due date for the revised RIR to the NYSDEC no later than October 30, 2013. NYSDEC approved this request in an email dated October 1, 2013.
- From September 23 through September 25, 2013 field efforts were completed to locate the subsurface utilities in association with the Utility Tracing and Surveying Work Plan as approved by the NYSDEC in a September 6, 2013 letter.

No additional field work was performed this period.

2. Results of Sampling, Testing and Other Data Received:

- On September 13, 2013, the data usability summary report associated with the 2013 Periodic Groundwater Monitoring analytical results was received from the data validator.
- No other results were received this period.

3. Deliverables completed and submitted:

- Monthly Status Report #111 for the period through August 31, 2013 was submitted on September 10, 2013.
- A validated analytical results summary table (Table 1) and data usability summary report (Attachment 1) for the periodic groundwater samples collected from June 18 to July 1, 2013 are provided as an attachment to this Monthly Status Report.
- No other deliverables were required for completion and/or submittal for the period ending September 30, 2013.

4. Upcoming Work Activities (10/1/13 through 10/31/13):

- Work on modifying the RIR to address NYSDEC comments.
- Complete the survey of utility mark outs associated with the utility tracing efforts completed on September 25, 2013.
- No other upcoming work activities are planned for the period between September 1, 2013 and September 31, 2013.

5. Percent complete and unresolved delays:

RI/FS Work Plan

 With the exception of the modifications noted below, 100% of the NYSDEC approved RI Work Plan (dated June 17, 2004) field activities have been completed to date.

Phase II RI Work Plan Addendum

100% of the RI Phase II field activities have been completed to date. Field activities have been completed in accordance with the following documents, approved by NYSDEC: Remedial Investigation (RI) Phase II Work Plan dated August 2007; RI Work Plan Addendum Proposed Modification dated January 7, 2008; RI Phase II Work Plan Addendum Proposed Modification 2 Revised dated September 4, 2009; and RI Phase II Work Plan Addendum Proposed Modification 3 dated February 12, 2010.

6. Work Plan Modifications:

 The information previously included in Work Plan Modifications has been deleted as of the May 2013 Monthly Status Report and can be found in previous status reports.

7. Citizens Participation Plan (CPP):

• There have been no recent activities by ITT in support of the CPP.

Please contact me at (914) 304-1675 if you have any questions regarding this information.

Sincerely,

Lisa A. Hall, P.E.

Technical Manager, Environmental Affairs

ITT Corporation

CC:

- J. Kenney NYSDOH
- J. Frazer Monroe County Department of Public Health
- D. Loew NYSDEC

Lisa A. Hall

- M. Peters Stockli Slevin & Peters, LLP
- G. Swenson O'Brien & Gere
- J. Danzinger Day Environmental

Table 1 DRAFT 2013 Periodic Groundwater Sampling Results Former ITT Rochester Form Machine Facility Site #8-28-112 Town of Gates, New York

					i dates, new fork					
	Location Code	AMSF-MW-1D	AMSF-MW-1S	AMSF-MW-3D	AMSF-MW-3S	AMSF-MW-5D	AMSF-MW-7	AMSF-MW-80	AMSF-MW-9S	AMSF-MW-10
	Sample Name	AMSF-MW-1D-062813	AMSF-MW-1S-062013	AMSF-MW-3D-062013	AMSF-MW-3S-062013	AMSF-MW-5D-062513	AMSF-MW-7-062813	AMSF-MW-8D-070113	AMSF-MW-9S-061813	AMSF-MW-10-062013
	Sample Type	N	N	N	N	N	N	N	N	N
	Sample Date	06/28/2013	06/20/2013	06/20/2013	. 06/20/2013	06/25/2013	06/28/2013	07/01/2013	06/18/2013	06/20/2013
Analyte	Criteria ¹				•					
Volatile Organic Compounds									***************************************	
1,1,1-Trichloroethane	5	2 U	120	5 U	3 J	200 J	830	5 U	540	3.3 J
1,1,2,2-Tetrachloroethane	NC	2 U	5 U	5 U	. 5 U	2 U	5 U	5 U	25 U	5 U
1,1,2-Trichloroethane	1	· 2 U	5 U	5 U	5 U	2 U	5 U	5 U	4,1 J	5 U
1,1-Dichloroethane	5	3.3	23	2.3 J	0.61 J	11	31	0.76 J	110	1.1 J
1,1-Dichloroethene	5	2 U	9	5 U	5 U	8	23	5 U	71	5 U
1,2-Dibromo-3-chloropropane (DBCP)	0.04	4 U	5 U	5 U	5 U	4 U	10 U	5 U	25 U	5 U
1,2-Dibromoethane (Ethylene Dibromide)	0.0006	2 U	5 U	5 U	5 U	2 U	5 U	5 U	25 U	5 U
1,2-Dichloroethane	0.6	2 U	5 U	5 U	5 U	2 U	5 U	5 U	25 U	5 U
1,2-Dichloropropane	1	2 U	5 U	5 U	5 U	2 U	5 U	5 U	25 U	5 U
2-Butanone (Methyl Ethyl Ketone)	50	100	10 U	10 U	10 U	10 U	25 U	10 U	50 U	10 U
2-Hexanone	50	3.4 J	10 U	10 U	10 U	10 U	25 U	10 U	50 U	10 U
4-Methyl-2-pentanone (Methyl Isobutyl Ketone)	NC	5 J	10 U	10 U	10 U	10 U	25 U	10 U	50 U	10 U
Acetone	50	140	10 U	10 U	10 U	10 U	25 U	10 UJ	50 U	10 U
Benzene	1	340	5 U	5 U	5 U	2 U	5 U	0.65 J	25 U	5 U
Bromodichloromethane	50	2 U	5 U	5 U	5 U	2 U	5 U	5 U	25 U	5 U
Bromoform	50	2 U	5 U	5 U	5 U	2 U	5 U	5 U	25 U	5 U
Bromomethane (Methyl Bromide)	5	2 UJ	5 UJ	5 U	5 U	2 UJ	5 UJ	5 U	25 U	5 UJ
Carbon Disulfide	60	7	10 U	10 U	10 U	2 U	11	0.66 J	50 U	10 U
Carbon Tetrachloride	5	2 U	5 U	5 U	5 U	2 U	5 U	5 U	25 U	5 U
Chlorobenzene	5	2 U	5 U	5 U	5 U	2 U	5 U	5 U	25 U	5 U
Chlorobromomethane	5	2 U	5 U	5 U	5 U	2 U	5 U	5 U	25 U	5 U
Chloroethane	5	2 U	0.51 J	0.27 J	5 U	2 U	8.3	5 U	4.1 J	5 U
Chloroform (Trichloromethane)	7	2 U	5 U	5 U	5 U	2 U	5 U	5 U	25 U	5 U
Chloromethane (Methyl Chloride)	5	2 U J	5 U	5 U	5 U	2 UJ	5 UJ	5 UJ	25 U	5 U
cis-1,2-Dichloroethene	NC	2 U	0.3 7 J	1.1 J	0.65 J	2 U	5 U	5 U	65	5 U
cis-1,3-Dichloropropene	0.4	2 U	5 U	5 U	.5 U	2 U	5 U	5 U	25 U	5 U
Dibromochloromethane	50	2 U	5 U	5 U	5 U	2 U	5 U	5 U	25 U	5 U
Ethylbenzene	5	17	5 U	5 U	5 U	2 U	5 U	5 U	25 U	5 U
Methylene chloride	5	2 U	5 U	5 U	5 U	2 U	5 U	5 U	25 U	5 U
o-Xylene	5	34	5 U	5 U	5 U	2 U	5 U	5 U	25 U	5 U
Styrene	5	2 U	5 U ·	5 U	5 U	2 U	5 U	5 U	25 U	5 U
Tetrachloroethene	5	2 U	5 U	0.32 J	99	2 J	5 U	5 U	99	26
Toluene	5	270	5 U	5 U	5 U	2 U	5 U	0.24 J	25 U	5 U
trans-1,2-Dichloroethene	5	2 U	5 U	5 U	5 U	2 U	5 U	5 U	25 U	5 U
trans-1,3-Dichloropropene	0.4	2 U	5 U	5 U	5 U	2 U	5 U	5 U	25 U	5 U
Trichloroethene	5	. 2 U	0.38 J	5 U	1.5 J	1.3 J	4 J	5 U	52	0.53 J
Trichlorofluoromethane (CFC-11)	5	2 U	5 U	5 U	5 U	2 U	5 U	5 U	25 U	5 U ·
Vinyl Chloride	2	2 U	0.92 J	0.49 J	5 U	2 U	5 U	5 U	25 U	5 U
Xylene (m,p)	5	80	5 U	5 U	5 U	4 U	10 U	0.361	25 U	5 U
Other Compounds						1		0.301	230	1
1,4-Dioxane	NC	3.3	2.1	0.2 U	0.34 NJ	6.3	6.6	0.2 U	230 ·	0.44
		Notes:				1 0.0	0.0	1	230	L

Notes:

BOLD - Exceedes New York State Department of Environmental Conservation, Technical and Operational Guidance Series (1.1.1), Class GA Standards and Guidance Values.

Sample type N = Normal, FD = Field Duplicate

¹ New York State Department of Environmental Conservation, Technical and Operational Guidance Series (1.1.1), Class GA Standards and Guidance Values, Revised June 1998. NC - No criteria exists

U - Not Detected at the Detection Limit shown, J - Estimated Value, NJ - Tentative in Identification and Estimated in Value

Table 1 DRAFT 2013 Periodic Groundwater Sampling Results Former ITT Rochester Form Machine Facility Site #8-28-112 Town of Gates, New York

				rown o	f Gates, New York					
	Location Code	AMSF-MW-11S	AMSF-MW-12S	AMSF-MW-13S	AMSF-MW-15I	AMSF-MW-16i	ITT-DBW-2	ITT-DBW-8	ITT-IBW-19	ITT-IBW-20
	Sample Name	AMSF-MW-11S-062613	AMSF-MW-12S-062713	AMSF-MW-13S-062713	AMSF-MW-15I-062613	AMSF-MW-16I-062713	ITT-DBW-2-062613	ITT-DBW-8-062613	ITT-IBW-19-061913	ITT-FD-2-062513
	Sample Type	N	N	N	N	N	N	N	N N	FD
	Sample Date	06/26/2013	06/27/2013	06/27/2013	06/26/2013	06/27/2013	06/26/2013	06/26/2013	06/19/2013	06/25/2013
Analyte	Criteria ¹								30,13,2013	00/23/2013
Volatile Organic Compounds				······································					<u> </u>	
1,1,1-Trichloroethane	5	220	280	1900	1900	4300	1 U	1 U	7.6	1900
1,1,2,2-Tetrachloroethane	NC	1 U	2 U	20 U	10 U	5 U	1 U	1 U	5 U	1 U
1,1,2-Trichloroethane	1	1 U	2 U	20 U	10 U	5 U	1 U	1 U	5 U	1 U
1,1-Dichloroethane	5	46	41	140	150	280	0.45 J	23	21	110
1,1-Dichloroethene	5	15	12	18 J	14	25	1 U	1 U	5 U	14
1,2-Dibromo-3-chloropropane (DBCP)	0.04	2 U	4 U	40 U	20 U	10 U	2 U	2 U	5 U	2 U
1,2-Dibromoethane (Ethylene Dibromide)	0.0006	1 U	2 U	20 U	10 U	5 U	1 U	1 U	5 U	. 1 U
1,2-Dichloroethane	0.6	1 U	2 U	20 U	10 U	5 U	1 U	10		
1,2-Dichloropropane	1	1 U	2 U	20 U	10 U	5 U	1U	1 U	5 U 5 U	1 U
2-Butanone (Methyl Ethyl Ketone)	50	5 U	10 U	100 U	50 U	25 U	3.9 J	21	10 U	1 U 5 U
2-Hexanone	50	5 U	10 U	100 U	50 U	25 U	5 U	5 U		
4-Methyl-2-pentanone (Methyl Isobutyl Ketone)	NC	5 U	10 U	100 U	50 U	25 U	5 U	5 U	10 U	5 U
Acetone	50	5 UJ	10 U	100 UJ	50 UJ	25 UJ	15	74 J	10 U	5 U
Benzene	1	1 U	2 U	20 U	10 U	5 U	85	170	10 U	5 UJ
Bromodichloromethane	50	1 U	2 U	20 U	10 U	5 U	1 U	170 1 U	5 U	1 U
Bromoform	50	1 U	2 U	20 U	10 U	5 U	1 U		5 U	1 U
Bromomethane (Methyl Bromide)	5	1 UJ	2 UJ	20 UJ	10 UJ	5 VJ	1 UJ	1 U 1 Uj	5 U	1 U
Carbon Disulfide	60	1 U	2 U	20 U	10 U	5 U	1 U		5 U	1 UJ
Carbon Tetrachloride	5	1 U	2 U	20 U	10 U	5 U	1 U	2.1	10 U	0.25 J
Chlorobenzene	5	1 U	2 U	20 U	10 U	5 U	1 U	1 U	5 U	1 U
Chlorobromomethane	5	1 U	2 U	20 U	10 U	5 U	1 U	1 U	5 U	1 U
Chloroethane	5	1.5	0.64 J	20 U	10 U	1.8 J	1 U	1 U	5 U	1 U
Chloroform (Trichloromethane)	7	1 U	0.82 J	8.2 J	10 U	5 U	1 U	1 U	0.43 J	1 U
Chloromethane (Methyl Chloride)	5	1 U	2 UJ	20 U	10 U	5 U	1 UJ	1 U	5 U	1 U
cis-1,2-Dichloroethene	NC	2.1	1.1 J	20 U	10 U	2.8 J	1 U	1 U	5 U	1 U
cis-1,3-Dichloropropene	0.4	1 U	2 U	20 U	10 U	5 U		1 U	0.48 J	1.2
Dibromochloromethane	50	1 U	2 U	20 U	10 U	5 U	1 U 1 U	1 U	5 U	1 U
Ethylbenzene	5	1 U	2 U	20 U	10 U	5 U		1 U	5 U	1 U
Methylene chloride	5	1 U	2 U	20 U	10 U	5 U	1.2	8	5 U	1 U
o-Xylene	5	1 U	2 U	20 U	10 U	5 U	1 U	1 U	5 U	1 U
Styrene	5	1 U	2 U	20 U	10 U	·	4.5	10	5 U	1 U
Tetrachloroethene	5	2.7	1 J	20 U	10 U	5 U 5 U	1 U	1 U	5 U	1 U
Toluene	5	1 U	2 U	20 U	10 U		1 U	10	5 U	1 U
trans-1,2-Dichloroethene	5	1 U	2 U	20 U	10 U	5 U	3	46	5 U	1 U
trans-1,3-Dichloropropene	0.4	1 Ú	2 U	20 U	10 U	5 U	10	1 U	5 U	1 U
Trichloroethene	5	3.8	2.4	15 J	8.8 J	5 U	1 U	1 U	5 U	1 U
Trichlorofluoromethane (CFC-11)	5	1 U	2.4 2 U	20 U	10 U	13	10	10	5 U	6.8
Vinyl Chloride	2	1.3	0.78 J	20 U	10 U	5 U	1 U	1 U	5 U	1 U
Xylene (m,p)	5	2 U	4 U	40 U	20 U	5 U	1 U	1 U	0.32 J	0.41 J
Other Compounds		20	1 +0	1 400	200	10 U	3.7	23	5 U	2 U
1,4-Dioxane	NC	27	9	17	3.9	1 2 A T		0.0		
		Notes:	<u> </u>	1/	3.9	2.9	0.2 U	0.2 U	2.7	1.9

Notes:

BOLD - Exceedes New York State Department of Environmental Conservation, Technical and Operational Guidance Series (1.1.1), Class GA Standards and Guidance Values.

Sample type N = Normal, FD = Field Duplicate

¹ New York State Department of Environmental Conservation, Technical and Operational Guidance Series (1.1.1), Class GA Standards and Guidance Values, Revised June 1998.

NC - No criteria exists

U - Not Detected at the Detection Limit shown, J - Estimated Value, NJ - Tentative in Identification and Estimated in Value

Table 1 DRAFT 2013 Periodic Groundwater Sampling Results Former ITT Rochester Form Machine Facility Site #8-28-112

Town of Gates, New York

	Location Code	ITT-IBW-20	ITT-SBW-2	ITT-SBW-4	ITT CDW/ FA	ITT CDM/ 7	ITT COW O	I ITT COM A	ITT CDW 40	ITT CDIA/ 43
	Sample Name	ITT-IBW-20-062513	ITT-SBW-2-062113		ITT-SBW-5A	ITT-SBW-7	ITT-SBW-8	ITT-SBW-9	ITT-SBW-10	ITT-SBW-12
	· · · · · · · · · · · · · · · · · · ·	N	N N	ITT-SBW-4-061813 N	ITT-SBW-5A-062513	ITT-SBW-7-062413	ITT-SBW-8-061913 N	ITT-SBW-9-062113	ITT-SBW-10-062713	ITT-SBW-12-062013
	Sample Type Sample Date	06/25/2013	06/21/2013	06/18/2013	06/25/2013	06/24/2013	06/19/2013	N 06/21/2013	N 06/27/2013	N 06/20/2013
Analyte	Criteria 1	00/23/2013	00/21/2013	00/16/2013	00/23/2013	00/24/2013	00/19/2013	00/21/2013	00/2//2013	00/20/2013
Volatile Organic Compounds	Criteria									
1,1,1-Trichloroethane	5	2200	760	5 U	30	1 U	5 U	250	110	3,4 J
1,1,2,2-Tetrachloroethane	NC NC	5 U	5 U	5 U	1 U	1 U	5 U			5 U
1.1.2-Trichloroethane	1	5 U	5 U	5 U	1 U	1 U	5 U	5 U 5 U	1 U 1 U	5 U
1,1-Dichloroethane	5	110	18	5 U	1.9	1.4	0.29 J	19	6.2	2.3 J
1.1-Dichloroethene	5	13	31	5 U	1.9	1.3	5 U	50	3.2	2.2 J
1,2-Dibromo-3-chloropropane (DBCP)	0.04	10 U	5 U	5 U	2 U	2 U	5 U	5 U	2 U	5 U
1,2-Dibromoethane (Ethylene Dibromide)	0.0006	5 U	5 U	5 U	1 U	1 U	5 U	5 U	1 U	5 U
1,2-Dichloroethane	0.6	5 U	5 U	5 U	10	1 U	5 U	5 U	1 U	5 U
1,2-Dichloropropane	1 1	5 U	5 U	5 U	1 U	1 U	5 U	5 U	1 U	5 U
2-Butanone (Methyl Ethyl Ketone)	50	25 U	10 U	10 U	5 U	5 U	10 U	10 U	5 U	10 U
2-Hexanone	50	25 U	10 U	10 U	5 U	5 U	10 U	10 U	5 U	10 U
4-Methyl-2-pentanone (Methyl Isobutyl Ketone)	NC NC	25 U	10 U	10 U	5 U	5 U	10 U	10 U	5 U	10 U
Acetone	50	25 UJ	10 U	10 U	5 UJ	5 U	10 U	1.9 J	5 U	10 U
Benzene	1	5 U	SU	5 U	10	1 U	5 U	5 U	1 U	5 U
Bromodichloromethane	50	5 U	5 U	5 U	10	1 U	5 U	5 U	1 U	5 U
Bromoform	50	5 U	5 U	5 U	10	1 U	5 U	5 U	1 U	5 U
Bromomethane (Methyl Bromide)	5	5 UJ	5 UJ	5 U	1 UJ	1 UJ	5 U	5 UJ	1 UJ	5 UJ
Carbon Disulfide	60	5 U	10 U	10 U	10	1 U	10 U	10 U	103	10 U
Carbon Tetrachloride	5	5 U	5 U	5 U	10	1 U	5 U	5 U	10	5 U
Chlorobenzene	5	5 U	5 U	5 U	10	1 U	5 U	5 U	1 U	5 U
Chlorobromomethane	5	5 U	5 U	5 U	10	1 U	5 U	5 U	1 U	5 U
Chloroethane	5	5 U	0.55 J	5 U	1U	1 U	5 U	5 U	1 U	5 U
Chloroform (Trichloromethane)	7	5 U	5 U	5 U	10	1 U	5 U	5 U	10	5 U
Chloromethane (Methyl Chloride)	5	5 U	5 U	5 U	10	1 U	5 U	5 U	1 UJ	5 U
cis-1,2-Dichloroethene	NC NC	5 U	0.59 J	5 U	10	1 U	5 U	0.61 J	0.64 J	5 U
cis-1,3-Dichloropropene	0.4	5 U	5 U	5 U	1 U	1 U	5 U	5 U	1 U	5 U
Dibromochloromethane	50	5 U	5 U	5 U	10	1 U	5 U	5 U	1 U	5 U
Ethylbenzene	5	5 U	5 U	5 U	1 U	1 U	5 U	5 U	1 U	5 U
Methylene chloride	5	5 U	5 U	5 U	10	1 U	5 U	5 U	1 U	5 U
o-Xylene	5	5 U	5 U	5 U	10	1 U	5 U	5 U	1 U	5 U
Styrene	5	5 U	5 U	5 U	1 U	1 U	5 U	5 U	1 U	5 U
Tetrachloroethene	5	5 U	5 U	5 U	1.2	1 U	5 U	10	5.1	0.34 J
Toluene	5	5 U	5 U	5 U	10	1 U	5 U	5 U	1 U	5 U
trans-1,2-Dichloroethene	5	5 U	5 U	5 U	10	1 U	5 U	5 U	1 U	5 U
trans-1,3-Dichloropropene	0.4	. 5 U	5 U	5 U	10	1 U	5 U	5 U	1 U	5 U
Trichloroethene	5	6.2	1.1)	5 U	0.48 J	1 U	5 U	5.3	2.1	0.24 J
Trichlorofluoromethane (CFC-11)	5	5 U	5 U	5 U	10	1 U	5 U	5 U	1 U	5.2 v s
Vinyl Chloride	2	5 U	1.4 J	5 U	10	1 U	5 U	5 U	10	5 U
Xylene (m,p)	5	10 U	5 U	5 U	2 U	2 U	5 U	5 U	2 U	5 U
Other Compounds	T			-				I		1
1,4-Dioxane	NC	2.3	7.5	0.2 U	0.52	0.69	0.2 U	17	. 3.9	0.75

Notes:

BOLD - Exceedes New York State Department of Environmental Conservation, Technical and Operational Guidance Series (1.1.1), Class GA Standards and Guidance Values. Sample type N = Normal, FD = Field Duplicate

¹ New York State Department of Environmental Conservation, Technical and Operational Guidance Series (1.1.1), Class GA Standards and Guidance Values, Revised June 1998. NC - No criteria exists

U - Not Detected at the Detection Limit shown, J - Estimated Value, NJ - Tentative in Identification and Estimated in Value

Table 1 DRAFT 2013 Periodic Groundwater Sampling Results Former ITT Rochester Form Machine Facility Site #8-28-112 Town of Gates, New York

Sam Sai Sai Sai Analyte Cri Volatile Organic Compounds 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dibromo-3-chloropropane (DBCP) 1,2-Dibromoethane (Ethylene Dibromide) 1,2-Dichloroethane 1,2-Dichloropropane	sation Code mple Name ample Type ample Date riteria 1 5 NC 1 5 5 0.04 0.0006 0.6	ITT-SBW-13 ITT-SBW-13-062413 N 06/24/2013 3.1 1 U 1 U 2.4 1 U 2 U	ITT-SBW-14 ITT-SBW-14-062113 N 06/21/2013 23 5 U 5 U 11 2.1 J	ITT-SBW-15 ITT-SBW-15-062413 N 06/24/2013 8.6 1 U 1 U	ITT-SBW-16 ITT-SBW-16-061913 N 06/19/2013	ITT-SBW-17 ITT-SBW-17-061813 N 06/18/2013	ITT-SBW-18 ITT-SBW-18-061813 N 06/18/2013	ITT-SBW-23 ITT-FD-1-061913 FD 06/19/2013	ITT-SBW-23 ITT-SBW-23-061913 N 06/19/2013
Sai Sai Analyte Cri Volatile Organic Compounds 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dibromo-3-chloropropane (DBCP) 1,2-Dibromoethane (Ethylene Dibromide) 1,2-Dichloroethane 1,2-Dichloropropane	ample Type ample Date riteria 1 5 NC 1 5 5 0.04 0.0006	N 06/24/2013 3.1 1 U 1 U 2.4 1 U 2 U	N 06/21/2013 23 5 U 5 U 11	N 06/24/2013 8.6 1 U	N 06/19/2013 0.92 J	N 06/18/2013	N	FD	N
Analyte Cri Volatile Organic Compounds 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dibromo-3-chloropropane (DBCP) 1,2-Dibromoethane (Ethylene Dibromide) 1,2-Dichloroethane 1,2-Dichloropropane	sample Date riteria 1 5 NC 1 5 5 0.04 0.0006	3.1 1 U 1 U 2.4 1 U 2 U	06/21/2013 23 5 U 5 U 11	06/24/2013 8.6 1 U	06/19/2013 0.92 J	06/18/2013			<u> </u>
Analyte Cri Volatile Organic Compounds 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dibromo-3-chloropropane (DBCP) 1,2-Dibromoethane (Ethylene Dibromide) 1,2-Dichloroethane 1,2-Dichloropropane	5 NC 1 5 5 0.04 0.0006	3.1 1 U 1 U 2.4 1 U 2 U	23 5 U 5 U	8.6 1 U	0.92 J		06/18/2013	06/19/2013	06/19/2013
Volatile Organic Compounds 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dibromo-3-chloropropane (DBCP) 1,2-Dibromoethane (Ethylene Dibromide) 1,2-Dichloroethane 1,2-Dichloropropane	5 NC 1 5 5 0.04	1 U 1 U 2.4 1 U 2 U	5 U 5 U 11	1 U		511			
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dibromo-3-chloropropane (DBCP) 1,2-Dibromoethane (Ethylene Dibromide) 1,2-Dichloroethane 1,2-Dichloropropane	NC 1 5 5 0.04 0.0006	1 U 1 U 2.4 1 U 2 U	5 U 5 U 11	1 U		511			
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dibromo-3-chloropropane (DBCP) 1,2-Dibromoethane (Ethylene Dibromide) 0,1,2-Dichloroethane 1,2-Dichloropropane	NC 1 5 5 0.04 0.0006	1 U 1 U 2.4 1 U 2 U	5 U 5 U 11	1 U		511			
1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dibromo-3-chloropropane (DBCP) 1,2-Dibromoethane (Ethylene Dibromide) 0,1,2-Dichloroethane 1,2-Dichloropropane	1 5 5 0.04 0.0006	1 U 2.4 1 U 2 U	5 U 11		F 11	J U	5 U	SU	5 U
1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dibromo-3-chloropropane (DBCP) (1,2-Dibromoethane (Ethylene Dibromide) 0. 1,2-Dichloroethane 1,2-Dichloropropane	5 5 0.04 0.0006	2.4 1 U 2 U	11	1 U	50	5 U	5 U	5 U	5 U
1,1-Dichloroethene 1,2-Dibromo-3-chloropropane (DBCP) 1,2-Dibromoethane (Ethylene Dibromide) 0,1,2-Dichloroethane 1,2-Dichloropropane	5 0.04 0.0006	1 U 2 U			5 U	5 U	5 U	5 U	5 U
1,2-Dibromo-3-chloropropane (DBCP) 1,2-Dibromoethane (Ethylene Dibromide) 0. 1,2-Dichloroethane 1,2-Dichloropropane	0.04	2 U	211	0.25 J	5 U	0.2 J	5 U	1.8 J	1.8 J
1,2-Dibromoethane (Ethylene Dibromide) 0. 1,2-Dichloroethane 1,2-Dichloropropane	0.0006			1 U	5 U	5 U	5 U	5 U	5 U
1,2-Dichloroethane 1,2-Dichloropropane		111	5 U	2 U	5 U	5 U	5 U	5 U	5 U
1,2-Dichloropropane	0.6	10	5 U	1 U	5 U	5 U	5 U	5 U	5 U
		1 U	5 U	1 U	5 U	5 U	5 U	5 U	5 U
	1	1 U	5 U	1 U	5 U	5 U	5 U	5 U	5 U
[2-butanone (Methyl Ethyl Retone)	50	5 U	10 U	5 U	10 U	10 U	10 U	10 U	10 U
2-Hexanone	50	5 U	10 U	5 U	10 U	10 U	10 U	10 U	10 U
4-Methyl-2-pentanone (Methyl isobutyl Ketone)	NC	5 U	10 U	5 U	10 U	10 U	10 U	10 U	10 U
	50	5 U	2.8 J	5 U	10 U	10 U	10 U	10 U	10 U
Benzene	1	1 U	5 U	1 U	5 U	5 U	5 U	5 U	5 U
Bromodichloromethane	50	1 U	5 U	1 U	5 U	5 U	5 U	5 U	5 U
Bromoform	50	1 U	5 U	1 U	5 U	5 U	5 U .	5 U	5 U
Bromomethane (Methyl Bromide)	5	1 UJ	5 UJ	1 UJ	5 U	5 U	5 U	5 U	5 U
Carbon Disulfide	60	1 U	10 U	1 U	10 U	10 U	10 U	10 U	10 U
Carbon Tetrachloride	5	1 U	5 U	1 U	5 U	5 U	5 U	5 U	5 U
Chlorobenzene	5	1 U	5 U	1 U	5 U	5 U	5 U	5 U	5 U
Chlorobromomethane	5	1 U	5 U	1 U	5 U	5 U	5 U	5 U	5 U
Chloroethane	5	1 U	0.55 J	1 U	5 U	5 U	5 U	0.35 J	0.24 J
Chloroform (Trichloromethane)	7	1 U	5 U	1 U	5 U	5 U	5 U	5 U	5 U
Chloromethane (Methyl Chloride)	5	1 U	5 U	10	5 U	5 U	5 U	5 U	5 U
cis-1,2-Dichloroethene	NC	0,34 J	0.35 J	1U	5 U	5 U	5 U	5 U	5 U
	0.4	1 U	5 U	1 U	5 U	5 U	5 V	5 U	5 U
	50	1 U	5 U	10	5 U	5 U	5 U	5 U	5 U
Ethylbenzene	5	1 U	5 U	10	5 U	5 U	5 U	5 U	5 U
	5	1 U	5 U	10	5 U	5 U	5 U	5 U	5 U
o-Xylene	5	1 U	5 U	1 U	5 U	5 U	5 U	5 U	5 U
Styrene	5	1 U	5 U	10	5 U	5 U	5 U	5 U	5 U
Tetrachloroethene	5	1 U	5 U	0.33 J	5 U	5 U	5 U	5 U	5 U
The state of the s	5	10	5 U	10	5 U	5 U	5 U	5 U	5 U
	5	1 U	5 U	10	5 U	5 U	5 U	5 U	5 U
	0.4	1 U	5 U	1 U	5 U	5 U	5 U	5 U	5 U
	5	1 U	5 U	1 U	5 U	5 U	5 U	5 U	5 U
Trichlorofluoromethane (CFC-11)	5	10	5 U	1 U	SU	5 U	5 U	5 U	5 U
Vinyl Chloride	2	0.71 J	0.84 J	10	5 U	5 U	5 U	0.56 J	0.65 J
Xylene (m,p)	5	2 U	5 U	2 U	5 U	5 U	5 U	5 U	0.65 J
Other Compounds			3 0			30		5 U	<u> </u>
	NC	0.71	2.4	0.2 U	0.2 U	0.2 U	0.2 U	0.3	0.31

Notes:

BOLD - Exceedes New York State Department of Environmental Conservation, Technical and Operational Guidance Series (1.1.1), Class GA Standards and Guidance Values. Sample type N = Normal, FD = Field Duplicate

¹ New York State Department of Environmental Conservation, Technical and Operational Guidance Series (1.1.1), Class GA Standards and Guidance Values, Revised June 1998. NC - No criteria exists

U - Not Detected at the Detection Limit shown, J - Estimated Value, NJ - Tentative in Identification and Estimated in Value

Data Validation Services

120 Cobble Creek Road P. O. Box 208 North Creek, NY 12853 Phone (518) 251-4429 harry@frontiernet.net

October 9, 2013

Paul Freyer O'Brien & Gere Engineers 333 West Washington St Syracuse, NY 13221

RE: Validation of the Former ITT Rochester Form Machine Facility 2013 Periodic Groundwater Sampling Analytical Data
Data Usability Summary Report (DUSR)
ALS Submission Nos. R1304470, R1304653, and R1304824

Dear Mr. Freyer:

Review has been completed for the data packages noted above, generated by ALS, that pertain to the samples collected between 06/18/13 and 07/01/13 at the ITT RFM site. Thirty-three aqueous samples and two field duplicates were analyzed for TCL volatiles by USEPA method 8260C and 1,4-dioxane by method 8270D.

Full data validation was performed in accordance with the project QAPP dated May 2004 and the addendum of August 2007, with use of the USEPA Region II Data Validation SOPs HW-22 and HW-24, and with consideration for the specific requirements of the analytical methodologies. The following items were reviewed:

- * Data Completeness
- * Case Narrative
- * Custody Documentation
- * Holding Times
- * Surrogate and Internal Standard Recoveries
- * Method Blank
- * Matrix Spike Recoveries/Duplicate Correlation
- * Laboratory Control Samples (LCS)
- * Instrument Performance
- * Initial and Continuing Calibration Standards
- * Method Compliance
- * Sample Result Verification

The data review includes evaluation of the specific items noted in The NYS DER-10 Appendix B section 2.0 (c). The items listed above that show deficiencies are discussed within the text of this narrative. The laboratory QC forms illustrating the excursions can be found within the laboratory data packages.

In summary, sample results are usable either as reported, or with minor qualification, with the exception that the results for 1,4-dioxane generated by the volatile analysis are rejected. However, the results for that analyte by the semivolatile procedure are usable, and project objectives are met.

The QAPP requirements precision, accuracy, representativeness, completeness, sensitivity, and comparability were met. There is no evidence of a significant matrix effect on analyte recoveries.

Copies of the client sample identifications and the laboratory case narratives are attached to this text, and should be reviewed in conjunction with this report. Also included with the submission are the qualified client Equis EDD deliverables.

Sample Receipt

The chain-of-custody and log in form for samples collected 06/21/13 show a laboratory receipt date of 06/21/13. The laboratory system has a receipt date of 06/22/13.

Although some of the cooler temperatures at sample receipt are slightly elevated, those associated samples were received within two hours of collection, and were in the process of cooling down.

Blind Field Duplicates

Field duplicates were collected at locations ITT-SBW-23-061913 and ITT-IBW-20-062513. Correlations fall within validation guidelines.

Volatile Analyses by EPA 8260C

The detections of 2-hexanone and 4-methyl-2-pentanone are edited to non-detection due to very poor mass spectral quality.

The matrix spike of ITT-SBW-18-061813 shows acceptable recoveries; the matrix spike duplicate exhibits nine analytes with slightly low recoveries (all >= 74%). No qualification of the parent sample data is indicated.

The matrix spikes of AMSF-MW-5D-062513 show low recoveries (41% to 72%) for chloromethane and 1,1,1-trichloroethane, and an elevated duplicate correlations (54%RPD) for the former. Results for those two compounds in the parent sample have been qualified as estimated in value.

The result for analytes initially reported with the laboratory "E" flag are derived from the dilution analyses of those samples, thus reflecting responses within the established linear range of the instruments.

Acetone and/or methylene chloride were detected in some of the trip, equipment, and method blanks. Those analytes were not detected in associated field samples, and results are unaffected.

The results for 1,4-dioxane that report no detection are not usable due to very poor response that is inherent in the 8260C methodology (RRF<0.01).

Other calibration standards showed acceptable responses, with the following exceptions, results for which are to be qualified as estimated in the indicated samples:

cyclohexane (21%D) in ITT-TB-061813, ITT-SBW-17-061813, ITT-SBW-18-061813, ITT-SBW-4-061813, AMSF-MW-9S-061813, ITT-IBW-19-061913, ITT-SBW-16-061913, ITT-SBW-8-061913, ITT-SBW-23-061913, ITT-FD-1-061913, ITT-TB-061913, ITT-TB-062013, ITT-EB-1-062013, AMSF-MW-3D-062013 and AMSF-MW-3S-062013

- bromomethane (31%D and 39%D) in ITT-TB-062113, AMSF-MW-1S-062013, AMSF-MW-10-062013, ITT-SBW-12-062013, ITT-SBW-14-062113, ITT-SBW-2-062113, ITT-SBW-9-062113, and ITT-TB-062813
- acetone and bromomethane (22%D to 28%D) in ITT-SBW-5A-062513, ITT-IBW-20-062513, ITT-FD-2-062513, ITT-DBW-8-062613, AMSF-MW-15I-062613, AMSF-MW-11S-062613, ITT-TB-062713, ITT-EB-2-062713, AMSF-MW-16I-062713 and AMSF-MW-13S-062713
- bromomethane and chloromethane (21%D to 33%D) in ITT-TB-062613, ITT-DBW-2-062613, ITT-SBW-10-062713, AMSF-MW-5D-062513, AMSF-MW-12S-062713, AMSF-MW-ID-062813, AMSF-MW-7-062813, and ITT-TB-070113
- acetone, methyl acetate and chloromethane (22%D to 27%D) in AMSF-MW-8D-070113

1,4-Dioxane by EPA 8270D

The detected results for 1,4-dioxane in ITT-SBW-17-061813, ITT-SBW-18-061813, ITT-SBW-16-061913, ITT-SBW-8-061913, and ITT-EB-1-062013 are considered external contamination due to presence in the associated method blank. Those detections have been edited to non-detection.

Due to poor mass spectral quality, the result for 1,4-dioxane in AMSF-MW-3S-062013 is qualified as tentative in identification and estimated in value.

Due to very poor mass spectral quality, the results for 1,4-dioxane in AMSF-MW-8D-070113 are edited to reflect non-detection.

Surrogate recoveries were within acceptance ranges, and internal standard responses are within the required range.

Matrix spikes of AMSF-MW-5D-062513 and AMSF-MW-8D-070113 fall within laboratory acceptance limits.

Calibration standards show acceptable responses.

Please do not hesitate to contact me if questions or comments arise during your review of this report.

Very truly yours,

Judy Harry

Att: Validation Qualifier Definitions

Client and Laboratory Sample Identifications

Laboratory Case Narratives

VALIDATION DATA QUALIFIER DEFINITIONS

- U The analyte was analyzed for, but was not detected above the level of the associated reported quantitation limit.
- J The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte in the sample.
- UJ The analyte was not detected. The associated reported quantitation limit is an estimate and may be inaccurate or imprecise.
- NJ The detection is tentative in identification and estimated in value. Although there is presumptive evidence of the analyte, the result should be used with caution as a potential false positive and/or elevated quantitative value.
- R The data are unusable. The analyte may or may not be present.
- EMPC The results do not meet all criteria for a confirmed identification.

 The quantitative value represents the Estimated Maximum Possible

 Concentration of the analyte in the sample.

CLIENT and LABORATORY SAMPLE IDs and LABORATORY CASE NARRATIVES

Page 1

ALS ASP/CLP Batching Form/Login Sheet

		Ι-	Τ		Γ	Γ	Γ	Γ-					П	٦		٦	Т	Т	\neg	7	1	
Silve	Remarks Sample Condition																					
1813	% Solids																					
3437818 to	PH (Solids)																					
Date Revised: Date Due: 749/13 ໆໃຊ້ເຈັເຄວະໄລຟາຣ Protocol: SW846 Shipping No.: SDG#: ITT-TB-061813	Date Received	6/18/13	6/18/13	6/18/13	6/18/13	6/18/13	6/19/13	6/19/13	6/19/13	6/19/13	6/19/13	6/19/13	6/20/13	6/20/13	6/20/13	6/20/13	6/20/13	6/20/13	6/20/13	6/22/13	6/22/13	6/22/13
	Date Sampled	6/18/13	6/18/13	6/18/13	6/18/13	6/18/13	6/19/13	6/19/13	6/19/13	6/19/13	6/19/13	6/19/13	6/20/13	6/20/13	6/20/13	6/20/13	6/20/13	6/20/13	6/20/13	6/21/13	6/21/13	6/21/13
mplete: Yes Requested: Yes 4/13 Seal: Present/Absent: Custody: Present/Absent	Requested Parameters	8260C	8260C, 8270D	8260C, 8270D	8260C, 8270D	8260C, 8270D	8260C, 8270D	8260C, 8270D	8260C, 8270D	8260C, 8270D	8260C, 8270D	8260C	8260C	8260C, 8270D	8260C, 8270D	8260C, 8270D	8260C, 8270D	8260C, 8270D	8260C, 8270D	8260C	8260C, 8270D	8260C 8270D
Batch Complete: Diskette Reques Date: 6/24/13 Custody Seal: Pr Chain of Custody	Matrix	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
R1304470 O'Brien & Gere Engineers, Incorpo JJAEGER ITT FH-019 RFM	Client/EPA ID	ITT-TB-061813			ITT-SBW-4-061813	AMSF-MW-9S-061813	ITT-IBW-19-061913	E	ITT-SBW-8-061913	E	ITT-FD-1-061913	ITT-TB-061913	ITT-TB-062013	ITT-EB-1-062013	Y	AMSF-MW-3S-062013	AMSF-MW-1S-062013	AMSF-MW-10-062013	ITT-SBW-12-062013	ITT-TB-062113	1TT-SBW-14-062113	TT-SRM22.062113
Client Proj #: Submission: R1304470 Client: O'Brien & (Client Rep: JJAEGER Project: ITT FH-D1	CAS Job #	R1304470-001	R1304470-002	R1304470-003QC	R1304470-005	R1304470-006	R1304470-007	R1304470-008	R1304470-009	R1304470-010	R1304470-011	R1304470-012	R1304470-013	R1304470-014	R1304470-015	R1304470-016	R1304470-017	R1304470-018	R1304470-019	R1304470-020	R1304470-021	D1304770.022

00004

Page 1

ALS ASP/CLP Batching Form/Login Sheet

	Ratch Complete:	SdX		Date Revised:			
R1304653 O'Brien & Gere Engineers, Incorpu	Date: 7/12/13	ted: No		Date Due: 7/23/13 Protocol: SW846	3/13 346		
	Custody Seal: Present/Absent Chain of Custody: Present/Abs	seal: Present/Absent: Sustody: Present/Absent:		Shipping No.: SDG #:	ITT-TB-062413	6	
Client/EPA ID	Matrix	Requested Parameters	Date Sampled	Date Received	pH (Solids) So	% Remarks Solids Sample Condition	lition
1TT-TB-062413	Water	8260C	6/24/13	6/26/13			
T-SBW-7-062413	Water	8260C, 8270D	6/24/13	6/26/13			
T-SBW-13-062413	Water	8260C, 8270D	6/24/13	6/26/13			
F-SBW-15-062413	Water	8260C, 8270D	6/24/13	6/26/13			
T-SBW-5A-062513	Water	8260C, 8270D	6/25/13	6/26/13			
F-IBW-20-062513	Water	8260C, 8270D	6/25/13	6/26/13			
T-IBW-20-062513	Water	8260C	6/25/13	6/26/13		`	
AMSF-MW-5D-062513	Water	8260C, 8270D	6/25/13	6/26/13			
TT-FD-2-062513	Water	8260C, 8270D	6/25/13	6/26/13			
T-FD-2-062513	Water	8260C	6/25/13	6/26/13			
T-TB-062613	Water	82600	6/26/13	6/26/13			
F-DBW-2-062613	Water	8260C, 8270D	6/26/13	6/26/13			
T-DBW-8-062613	Water	8260C, 8270D	6/26/13	6/26/13			
AMSF-MW-15I-062613	Water	8260C, 8270D	6/26/13	6/26/13			
AMSF-MW-11S-062613	Water	8260C, 8270D	6/26/13	6/26/13			
AMSF-MW-11S-062613	Water	8260C	6/26/13	6/26/13			
T-TB-062713	Water	\$260C	6/27/13	6/27/13			
T-EB-2-062713	Water	8260C, 8270D	6/27/13	6/27/13			
AMSF-MW-12S-062713	Water	8260C, 8270D	6/27/13	6/27/13			
AMSF-MW-16I-062713	Water	8260C, 8270D	6/27/13	6/27/13			
R1304653-017 R01 AMSF-MW-16I-062713	Water	8260C	6/27/13	6/27/13			
		ANTON SATING	CM7145	011111			

Water Water Water Water

6/27/13 6/28/13

6/27/13

6/28/13

8260C, 8270D 8260C, 8270D 8260C

Water

AMSF-MW-16I-062713 AMSF-MW-13S-062713 ITT-SBW-10-062713 ITT-TB-062813 AMSF-MW-1D-062813

R1304653-014 | R1304653-015 | R1304653-017 | R1304653-018 | R1304653-019 | R1304653-020 | R1304653-021 | R1304653-021 | R1304653-022 | R13046

Water

AMSF-MW-7-062813

8260C, 8270D 8260C, 8270D

CLP Batching Form

00004 4

Folder Comments:

ALS ASP/CLP Batching Form/Login Sheet

Clent Pro #:		Batch Complete: Yes	Date Revised:	
Submission:	Submission: R1304824	Diskette Requested: Yes	Date Due: 7/24/13	
Clent	O'Brien & Gere Engineers, Incorporation	Date: 7/12/13	Protacol: SW846	
ep:	JJAEGER	Custody Seal: Present/Absent:	Shipping No.:	
	ITT FH-019 RFM	Chain of Custody: Present/Absent:	SDG#:	

11 I FH-019 RFM Chain of Custody: Presenvabsem.	Chain of Custody: Present/A	: Fresenva	osent.		3DG #.			•
CAS Job#	Client/EPA ID	Matrix	Requested Parameters	Date Sampled	Date pri % Received (Solids) Solids	pH (Solids)	% Solids	Remarks Sample Condition
R1304824-001	R1304824-001 AMSF-MW-8D-070113	Water	8260C, 8270D	7/1/13	7/1/13			
D4204824 002	D4204804 002 117 TB 070442	Mafer	8260C	7/1/13	7/1/13			

CLP Batching Form

Folder Comments:

Printed 7/12/13 7:35

CASE NARRATIVE

Client:

O'Brien & Gere

Service Request:

R1304470

Project:

ITT FH-019 RFM

Project Number:

.....

Sample Matrix:

Water

Date Received:

6/18-22/13

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier IV deliverables. When appropriate to the method, method blank and LCS results have been reported with each analytical test.

Sample Receipt

Samples were collected on 6/18-21/13 and received at ALS on 6/18-22/13 at cooler temperature3 of 3.7-12.5°C in good condition except as noted on the cooler receipt and preservation check form.

Volatile Organics

Twenty three water samples were analyzed for a site specific list of Volatiles by methods 8260C from SW-846.

All Initial calibration criteria were met for all analytes. All Continuing Calibration Verification (CCV) standards were within 20% Difference (D) except Cyclohexane on the 06/27/13 CCV, Bromomethane, Isopropylbenzene and 1,2,4-Trichlorobenzene on the 06/28/13 CCV and Bromomethane on the 07/02/13 CCV. All positive detections for these compounds for samples associated with these CCV's should be considered as estimated.

All Tuning criteria and Internal Standard Areas were within QC limits.

All Laboratory Control Sample (LCS) recoveries were within limits except 1,1-Dichloroethene was outside limits high on the 05/09/13 LCS and has been flagged with an "*". No data was affected.

Site specific QC was performed on ITT-SBW-18-061813 and ITT-SBW-2-062113. Various Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries were outside limits and have been flagged with an "*". All RPD's were acceptable.

Various compounds for ITT-SBW-2-062113 and ITT-SBW-9-062113 have been flagged with an "E" as being outside the calibration range of the instrument. The samples were repeated at dilutions and both sets of data have been reported out.

All surrogate standard recoveries were within limits.

The Method blanks associated with these samples were free of contamination.

All samples were extracted and analyzed within recommended holding times.

No other analytical or QC problems were encountered.

Semivolatile Organics

Eighteen water samples were analyzed for 1,4-Dioxane by method 8270D from SW-846.

All initial and continuing calibration criteria were met for all analytes.

All Tuning criteria and Internal Standard Areas were within limits.

The LCS/LCSD recoveries and RPD's were acceptable

Site specific QC was performed on ITT-SBW-18-061813 and ITT-SBW-14-062113. All MS/MSD recoveries and RPD's were acceptable.

Service Request #R1304470 Page 2

All surrogate standard recoveries were within limits.

The Method blanks associated with these samples were free of contamination except the 06/24/13 blank had a low level detection for 1,4-Dioxane. All affected data has been flagged with a "B"..

All samples were analyzed within recommended holding times.

No other analytical or QC problems were encountered.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the details conditioned above. Release of the data contained in this data package has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

CASE NARRATIVE

Client:

O'Brien & Gere

Service Request:

R1304653

Project:

ITT FH-019 RFM

Project Number:

6/26-28/13

Sample Matrix:

Water

Date Received:

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier IV deliverables. When appropriate to the method, method blank and LCS results have been reported with each analytical test.

Sample Receipt

Samples were collected on 6/24-28/13 and received at ALS on 6/26-28/13 at cooler temperatures of 3.5-11.2°C in good condition except as noted on the cooler receipt and preservation check form.

Volatile Organics

Twenty two water samples were analyzed for a site specific list of Volatiles by methods 8260C from SW-846.

All Initial calibration criteria were met for all analytes. All Continuing Calibration Verification (CCV) standards were within 20% Difference (D) except Acetone and Bromomethane on the 07/02/13 CCV (Run #347532), Bromomethane on the 07/02/13 CCV (Run #347536) and Chloromethane and Bromomethane on the 07/03/13 CCV. All positive detections for these compounds for samples associated with these CCV's should be considered as estimated.

All Tuning criteria and Internal Standard Areas were within QC limits.

All Laboratory Control Sample (LCS) recoveries were within limits.

Site specific QC was performed on AMSF-MW-5D-062513. Various Matrix Spike/Matrix Spike (MS/MSD) recoveries and RPD's were outside limits and have been flagged with an "*".

Various compounds for ITT-IBW-20-062513, ITT-FD-2-062513, AMSF-MW-11S-062613 and AMSF-MW-16I-062713 have been flagged with an "E" as being outside the calibration range of the instrument. The samples were repeated at dilutions and both sets of data have been reported out.

All surrogate standard recoveries were within limits.

The Method blanks associated with these samples were free of contamination.

All samples were extracted and analyzed within recommended holding times.

No other analytical or QC problems were encountered.

Semivolatile Organics

Eighteen water samples were analyzed for 1,4-Dioxane by method 8270D from SW-846.

All initial and continuing calibration criteria were met for all analytes.

All Tuning criteria and Internal Standard Areas were within limits.

The LCS/LCSD recoveries and RPD's were acceptable

Site specific QC was performed on AMSF-MW-5D-062513. All MS/MSD recoveries and RPD's were acceptable.

Service Request #R1304653 Page 2

All surrogate standard recoveries were within limits.

The Method blanks associated with these samples were free of contamination.

All samples were analyzed within recommended holding times.

No other analytical or QC problems were encountered.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the details conditioned above. Release of the data contained in this data package has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

CASE NARRATIVE

Client:

O'Brien & Gere

Service Request:

R1304824

Project:

ITT FH-019 RFM

Project Number:

K 130462

Sample Matrix:

Water

Date Received:

7/01/13

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier IV deliverables. When appropriate to the method, method blank and LCS results have been reported with each analytical test.

Sample Receipt

Samples were collected on 7/01/13 and received at ALS on 7/01/13 at cooler temperatures of 5.9-10.1°C in good condition except as noted on the cooler receipt and preservation check form.

Volatile Organics

Two water samples were analyzed for a site specific list of Volatiles by methods 8260C from SW-846.

All Initial calibration criteria were met for all analytes. All Continuing Calibration Verification (CCV) standards were within 20% Difference (D) except Chloromethane and Bromomethane on the 07/10/13 CCV and Chloromethane, Acetone, Methyl acetate and 2-Butanone on the 07/11/13 CCV. All positive detections for these compounds for samples associated with these CCV's should be considered as estimated.

All Tuning criteria and Internal Standard Areas were within QC limits.

All Laboratory Control Sample (LCS) recoveries were within limits except 1,1-Dichloroethene was outside limits high on the 05/09/13 LCS and has been flagged with an "*". No data was affected.

Site specific QC was not requested on these samples.

All surrogate standard recoveries were within limits.

The Method blanks associated with these samples were free of contamination except the 07/10/11 blank had a low level detection for Acetone. All affected data has been flagged with a "B".

All samples were extracted and analyzed within recommended holding times.

No other analytical or QC problems were encountered.

Semivolatile Organics

One water sample was analyzed for 1,4-Dioxane by method 8270D from SW-846.

All initial and continuing calibration criteria were met for all analytes.

All Tuning criteria and Internal Standard Areas were within limits.

The LCS/LCSD recoveries and RPD's were acceptable

Site specific QC was performed on AMSF-MW-8D-071113. All MS/MSD recoveries and RPD's were acceptable.

Service Request #R1304824 Page 2

All surrogate standard recoveries were within limits.

· The Method blanks associated with these samples were free of contamination.

All samples were analyzed within recommended holding times.

No other analytical or QC problems were encountered.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the details conditioned above. Release of the data contained in this data package has been but to jized by the Laboratory Manager or his designee, as verified by the following signature.

March 19, 2014

Mr. Dennis P. Maguire

Maguire Family Properties, Inc. 770 Rock Beach Road Rochester, NY 14617

RE: 2013-2014 Vapor Intrusion Monitoring Sampling Results – December 5-6, 2013

FILE: 3356/35273

Dear Mr. Maguire:

The content of this letter has been reviewed by the New York State Department of Environmental Conservation (NYSDEC) and the New York State Department of Health (NYSDOH).

As you are aware, vapor intrusion sampling was conducted at your facility, the Former Alliance Metal Stamping & Fabrication (AMSF) facility, located at 12 Pixley Industrial Parkway, Town of Gates, New York, adjacent to the Former Rochester Form Machine (RFM) Facility. This sampling was conducted in accordance with the Interim Remedial Measures (IRM) Interim Site Management Plan (ISMP) dated August 2011 and approved by NYSDEC in a letter dated August 15, 2011, as well as the current access agreement between Maguire Family Properties, Inc. (MFP) and ITT Corporation (ITT).

This sampling event was the third annual vapor intrusion monitoring required by NYSDEC. The IRM ISMP specified the vapor intrusion monitoring locations and methods. Sampling was conducted in two tenant spaces (Bright Raven and former E-Z Movers spaces¹) in the northwest corner of the building on December 6, 2013. The sampling was conducted by O'Brien & Gere on behalf of ITT with oversight by NYSDEC and NYSDOH. This letter provides you with validated results of the sampling that was conducted at your facility.

As you are aware, previous sub-slab and indoor air sampling indicated that there were elevated levels of 1,1,1-trichloroethane (TCA) in sub-slab samples. Other compounds, such as trichloroethene (TCE) and tetrachloroethene (PCE) were also detected at the Former AMSF building. Because TCA has also been observed in sub-slab and indoor air sampling at the Former RFM Site, TCA has been considered to be an RFM-related compound². The results of this monitoring event were evaluated to assess potential vapor intrusion of TCA, TCE, PCE and associated breakdown compounds. As described in the NYSDEC-approved IRM ISMP, as part of the monitoring program ITT is required to collect samples and analyze for the following six target compounds:

TCA

1-1, dichloroethene (1,1-DCE),

PCE

cis-1,2-dichloroethene (cis-1,2-DCE),

TCE

1,1-dichloroethane (DCA)

In connection with your Remedial Investigation under the Brownfield Cleanup Program, your consultant, Tom Wells of Stantec, requested that in addition to analyzing for the six target compounds identified above, ITT instruct the lab to analyze the collected samples for the full list of compounds via USEPA Method TO-15. As described in an email from O'Brien & Gere to Stantec dated November 21, 2013, ITT agreed to provide the results of the expanded

¹ The tenant currently occupying the space formerly occupied by E-Z Movers is Edge Color Graphics. The text, figures, tables, and appendices still identify E-Z Movers as they were the tenant occupying the space at the time the IRM ISMP was approved.

² "RFM-related compounds" are those that have been found at the Former RFM site, but are not necessarily the result of a source at the Former RFM site.

³³³ West Washington Street, PO 4873, Syracuse, NY 13221-4873 | p 315-956-6100 | f 315-463-7554 | www.obg.com

Mr. Dennis P. Maguire March 19, 2014 Page 2

analysis; however, no further review of the data (*e.g.*, technical analysis, data validation) associated with the additional compounds will be provided. NYSDEC approved this process. Therefore, the evaluation provided below is specific to the results associated with the previously identified six target compounds. However, it was observed during validation that the lab initially misreported the results associated with cyclohexane in samples AMSF-05-SS-120613, AMSF-05-SSD-120613 and AMSF-06-SS-120613. These results were reported as detects but should have been reported as non-detects. We reviewed this error with the lab and they issued a revised laboratory report. The initial full analytical report was provided to Stantec via Federal Express on February 3, 2014 and the revised laboratory report was provided to Stantec via an FTP site on February 27, 2014.

The sampling of sub-slab soil vapor from under the building's concrete slab (sub-slab), from within the building (indoor air), and from outside and upwind of the building (ambient air) was conducted at the facility on December 6, 2013. Approximate sample locations are presented on Figure 1. The samples were analyzed by a laboratory certified by the NYSDOH and went through an independent validation process. ITT submitted all sampling results to the NYSDEC and NYSDOH as required by law.

Table 1, attached to this letter, presents a summary of the results for the six target compounds. All compounds included in the analysis, including those compounds excluded from this evaluation, are provided in the attached laboratory report. Concentrations of TCA were detected in the sub-slab samples collected during this sampling event at concentrations ranging from 190 micrograms per cubic meter ($\mu g/m^3$) to 22,000 $\mu g/m^3$. Indoor air concentrations for TCA ranged from 3.2 to 10 $\mu g/m^3$.

Table 2, attached to this letter, presents a summary of the results of vapor intrusion samples collected at the former E-Z Movers and Bright Raven tenant spaces since 2004. The following findings can be identified from the December 2013 sampling event:

- A slab inspection was conducted by O'Brien & Gere in December 2013 prior to initiation of sampling. The purpose of the slab inspection was to inspect previously identified cracks, identify new cracks, and seal cracks which appeared to penetrate the slab. The inspection indicated that there were no visible evidence of cracks at a depth which would penetrate the slab and therefore no visible soil vapor pathways across the slab.
- Sub-slab concentrations of TCA and PCE at sample location AMSF-24³ are higher than the concentrations measured from sample location AMSF-04 during the February 2013 sampling event but remain lower than the concentrations measured at sample location AMSF-04 during the March 2008 sampling event. Over the last six years, the sub-slab soil vapor concentrations of TCA and PCE in this area appear to be declining.
- Sub-slab concentration of TCA at sample location AMSF-05 is higher than the concentration measured from this location during the February 2013 sampling event but remains lower than the concentration measured at this location during the March 2008 sampling event.
- Sub-slab concentration of PCE at sample location AMSF-05 is similar to the concentration measured from this location during the March 2008 sampling event.
- Sub-slab concentration of TCA at sample location AMSF-06 is higher than the concentration detected from this same location during the December 2011 sampling event but is lower than the concentrations detected during the other sampling events.
- Sub-slab concentration of PCE at sample location AMSF-06 is similar to the concentration detected at this location during the December 2011 sampling event.

333 West Washington Street, PO 4873, Syracuse, NY 13221-4873 | p 315-956-6100 | f 315-463-7554 | www.obg.com

³ Sample location AMSF-24 (sub-slab) is located approximately 10 feet from AMSF-04 outside of an office wall. AMSF-24 (indoor air) is located within the office area. AMSF-04 is no longer accessible due to renovations in the office area. Based on the new configuration, no other suitable sub-slab sample locations are present in the office area.

Mr. Dennis P. Maguire March 19, 2014 Page 3

- Sub-slab concentrations of TCA and PCE at sample locations AMSF-07 and AMSF-22 are lower than concentrations detected at previous sampling events from these same locations.
- TCE indoor air levels found during the December 2013 sampling event continue to be below the NYSDOH air guideline value of $5 \mu g/m^3$.
- TCA and PCE indoor air levels continue to be well less than the NYSDOH air guideline value for PCE of 30⁴ μg/m³. TCA indoor air levels are also compared to this air guideline value as it is listed on the same NYSDOH decision matrix as PCE.
- No indoor products containing TCA or PCE were found in the Bright Raven and former E-Z Movers tenant spaces during the December 2013 chemical inventory.

It is our understanding that you will inform the occupants at this property of the sampling results to the extent required by applicable law.

Based on these December 2013 sample results, no additional action is required at this time, besides the annual vapor intrusion monitoring as described in the IRM ISMP. We will contact you this coming November to schedule another annual sampling event. In the meantime, if you have any questions or wish to discuss these results, please contact any of the people listed below:

Frank L. Sowers, P.E., NYSDEC Project Manager 585-226-5357

Julia Kenney, NYSDOH Project Manager 518-402-7860

John Frazer, Monroe County Department of Health 585-753-5476

Thank you for your cooperation during vapor intrusion sampling at your facility.

Very truly yours,

O'BRIEN &GERE ENGINEERS, INC.

I was of sylling.

Senior Vice President

ITT CORPORATION

Teresa P. Olmsted

Director, Environmental Affairs

feren Ohnston

Attachments: Figure 1 - Sample Locations

Table 1 - Summary of Vapor Intrusion Monitoring Results, 2013-2014 Heating Season

Table 2 - Summary of Vapor Intrusion Sampling Results, 2004-2014 at former E-Z Movers and

Bright Raven Tenant Spaces

Attachment 1 - Laboratory Report

cc: Frank Sowers, P.E. (NYSDEC)

Julia Kenney (NYSDOH)

John Frazer (MCDOPH)

John Felsen (MCDOPH)

Lisa Hall (ITT)

Michael Peters (Stockli Slevin & Peters LLP)

Jeff Danzinger (Day Environmental)

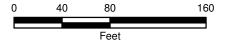
Paul D. Sylvestri (Harter Secrest & Emery LLP)

^{*} NYSDOH changed the air guideline value for PCE from 100 to 30 μ g/m³ in 2013.

Sample Locations

This document was developed in color. Reproduction in B/W may not represent the data as intended.

FIGURE 1



LEGEND

- SUB-SLAB/INDOOR AIR SAMPLE PAIR
- FORMER SAMPLE LOCATION (NOT SAMPLED)
- AMBIENT AIR SAMPLE

FORMER ITT ROCHESTER FORM MACHINE FACILITY TOWN OF GATES, NEW YORK SITE #8-28-112

VAPOR INTRUSION 2013-2014 HEATING SEASON MONITORING LOCATIONS (DECEMBER 2013)

FEBRUARY 2014 3356.35273

Summary of Vapor Intrusion Monitoring Results, 2013-2014 Heating Season

Table 1

Summary of Vapor Intrusion Monitoring Results 2013-2014 Heating Season Former AMSF Building

	Sample Location	AMSF-24 ¹ (form	ner E-Z Movers)	А	AMSF-AA-03			
	Sample ID	AMSF-24-SS-120613	AMSF-24-IA-120613	AMSF-05-SS-120613	AMSF-05-SSD-12/06/13	AMSF-05-IA-120613	AMSF-AA-120613	
	Sample Date	12/06/2013	12/06/2013	12/06/2013	12/06/2013	12/06/2013	12/06/2013	
Target Compounds	Sample Type	Sub-Slab	Indoor Air	Sul	b-Slab	Indoor Air	Ambient Air	
1,1,1-Trichloroethane (TCA)		1,800	3.2	22,000 J	17,000 J	4.7	0.22 U	
Tetrachloroethene (PCE)		300	3.7	2,800 J	2,100 J	4.4	0.27 U	
1,1-Dichloroethane (1,1-DCA)		8.1 U	0.81 U	340	260	0.81 U	0.16 U	
1,1-Dichloroethene (1,1-DCE)		7.9 U	0.79 U	860 J	650 J	0.79 U	0.16 U	
cis-1,2-Dichloroethene (cis-1,2-DCE)		7.9 U	0.79 U	85 U	81 U	0.79 U	0.16 U	
Trichloroethene (TCE)		11 U	0.21 U	160	120	0.21 U	0.21 U	

	Sample Location	AMSF-06 (B	right Raven)	AMSF-07 (Bright Raven)	AMSF-22 (Bright Raven)		
	Sample ID	AMSF-06-SS-120613	AMSF-06-IA-120613	AMSF-07-SS-120613	AMSF-07-IA-120613	AMSF-22-SS-120613	AMSF-22-IA-120613	
	Sample Date	12/06/2013	12/06/2013	12/06/2013	12/06/2013	12/06/2013	12/06/2013	
Target Compounds	Sample Type	Sub-Slab	Indoor Air	Sub-Slab	Indoor Air	Sub-Slab	Indoor Air	
1,1,1-Trichloroethane (TCA)		3,800	9.1	190	5.4	910	10	
Tetrachloroethene (PCE)		790	9.8	160	5.9	8,100	11	
1,1-Dichloroethane (1,1-DCA)		17 U	0.81 U	56	0.81 U	840	0.81 U	
1,1-Dichloroethene (1,1-DCE)		16 U	0.85	59	0.79 U	5,100	0.85	
cis-1,2-Dichloroethene (cis-1,2-DCE)		16 U	0.79 U	0.79 U	0.79 U	190	0.79 U	
Trichloroethene (TCE)		22 U	0.39	1.1 U	0.27	640	0.40	

Notes:

Results in table are reported in units of micrograms per cubic meter (ug/m³).

U - Compound not detected above the reporting limit (##).

##J - Compound detected but the reported value may not be accurate or precise. Qualified as approximate based on excursions from QA/QC criteria.

¹ Sample location AMSF-24 (sub-slab) is located approximately 10 feet from AMSF-04 outside of office wall. AMSF-24 (indoor air) is located within the office area. AMSF-04 is no longer accessible due to renovations in the office area. Based on new configuration, no other suitable sub-slab sample locations are present in the office area.

Summary of Vapor Intrusion Sampling Results, 2004-2014 at former E-Z Movers and Bright Raven Tenant Spaces

Table 2

Summary of Vapor Intrusion Sampling Results

2004-2014 at Former E-Z Movers and Bright Raven Former AMSF Building

	[Edge Color	Graphics (former I	E-Z Movers)							
			Office									
	Sample Location	AMSF-01	AMSF-01	AMSF-01	AMSF-01A	AMSF-02						
	Sample ID	AMSFSS1/2435	005835-SS	005834-IA1	007518-IA2	AMSFSS2/2546						
	IRM ISMP Monitoring Season	NA	NA	NA	NA	NA						
	Sample Date	08/20/2004	02/25/2005	02/25/2005	02/25/2005	08/20/2004						
Target Compounds	Sample Type	Sub-Slab	Sub-Slab	Indoor Air	Indoor Air	Sub-Slab						
1,1,1-Trichloroethane (TCA)		1,100 J	870	3.3 J	5.5	320 J						
Tetrachloroethene (PCE)		23 J	240	10 J	10	41 J						
1,1-Dichloroethane (1,1-DCA)		22 J	0.8 U	0.8 UJ	0.8 U	8.1 UJ						
1,1-Dichloroethene (1,1-DCE)		1,100 J	0.8 U	0.8 UJ	0.8 U	12 UJ						
cis-1,2-Dichloroethene (cis-1,2-DCE)		3.2 UJ	2.8	0.8 UJ	0.8 U	7.9 UJ						
Trichloroethene (TCE)		7 UJ	3.8	1.6 UJ	1.6 U	16 UJ						

							Edge Color Graphic	s (former E-Z Move	ers)					
			Office											
	Sample Location	AMSF-04	AMSF-04 AMSF-04 AMSF-04 AMSF-04 AMSF-04 (Dup) AMSF-04 AMSF-04 (Dup) AMSF-04 (Dup) AMSF-04 (Dup) AMSF-04 (Dup)											
	Sample ID	AMSF-04-SS-032808	AMSF-04-IA-032808	AMSF-04-SS-033111	AMSF-04-IA-033111	AMSF-04-SS-120611	AMSF-04-SSD-120611	AMSF-04-IA-120611	AMSF-04-SS-021913	AMSF-04-SSD-021913	AMSF-04-IA-021913	AMSF-24-SS-120613	AMSF-24-IA-120613	
	IRM ISMP Monitoring Season	NA	NA	2010-2011	2010-2011	2011-2012	2011-2012	2011-2012	2012-2013	2012-2013	2012-2013	2013-2014	2013-2014	
	Sample Date	03/28/2008	03/28/2008	03/31/2011	03/31/2011	12/06/2011	12/06/2011	12/06/2011	02/19/2013	02/19/2013	02/19/2013	12/06/2013	12/06/2013	
Target Compounds	Sample Type	Sub-Slab	Indoor Air	Sub-Slab	Indoor Air	Sub-Slab	Sub-Slab	Indoor Air	Sub-Slab	Sub-Slab	Indoor Air	Sub-Slab	Indoor Air	
1,1,1-Trichloroethane (TCA)		8,200	6.5	2,600	0.22 U	160	140	24	1,000 J	680 J	2.1	1,800	3.2	
Tetrachloroethene (PCE)		570	1.0	220	1.0	35	30	2.5	170 J	100 J	1.4 J	300	3.7	
1,1-Dichloroethane (1,1-DCA)		45	0.16 U	15 U	0.16 U	0.84	0.81 U	0.24 U	5.8	4.1	0.16 U	8.1 U	0.81 U	
1,1-Dichloroethene (1,1-DCE)		79	0.16 U	14 U	0.16 U	1.9	1.4	0.85	5.5	3.8	0.27	7.9 U	0.79 U	
cis-1,2-Dichloroethene (cis-1,2-DCE)		40 U	0.16 U	14 U	0.16 U	0.79 U	0.79 U	0.23 U	5.5 U	3.1 U	0.16 U	7.9 U	0.79 U	
Trichloroethene (TCE)		64	0.21 U	20 U	0.21 U	3.8 J	1.5 J	0.31 U	7.9	5.2	0.21 U	11 U	0.21 U	

						Edge Colo	or Graphics (former	E-Z Movers)	Edge Color Graphics (former E-Z Movers)										
			Warehouse																
	Sample Location	AMSF-05	AMSF-05 (Dup)	AMSF-05															
	Sample ID	AMSF-05-SS-032808	AMSF-05-IA-032808	AMSF-05-SS-033111	AMSF-05-IA-033111	AMSF-23-SS-120611	AMSF-23-IA-120611	AMSF-05-SS-021913	AMSF-05-IA-021913	AMSF-05-SS-120613	AMSF-05-SSD-12/06/13	AMSF-05-IA-120613							
	IRM ISMP Monitoring Season	NA	NA	2010-2011	2010-2011	2011-2012	2011-2012	2012-2013	2012-2013	2013-2014	2013-2014	2013-2014							
	Sample Date	03/28/2008	03/28/2008	03/31/2011	03/31/2011	12/06/2011	12/06/2011	02/19/2013	02/19/2013	12/06/2013	12/06/2013	12/06/2013							
Target Compounds	Sample Type	Sub-Slab	Indoor Air	Sub-Slab	Indoor Air	Sub-Slab	Indoor Air	Sub-Slab	Indoor Air	Sub-Slab	Sub-Slab (Dup)	Indoor Air							
1,1,1-Trichloroethane (TCA)		55,000	6.5	21,000	2.7	1,700	18.0	12,000	2.3	22,000 J	17,000 J	4.7							
Tetrachloroethene (PCE)		3,000	0.88	2,700	1.1	220.0	2.5	1,200	1.5 J	2,800 J	2,100 J	4.4							
1,1-Dichloroethane (1,1-DCA)		310	0.16 U	310	0.16 U	13	0.18	190	0.16 U	340	260	0.81 U							
1,1-Dichloroethene (1,1-DCE)		790	0.16 U	380	0.22	26	0.9	300	0.33	860 J	650 J	0.79 U							
cis-1,2-Dichloroethene (cis-1,2-DCE)		230 U	0.16 U	79 U	0.16 U	7.9 U	0.16 U	80 U	0.16 U	85 U	81 U	0.79 U							
Trichloroethene (TCE)		320 U	0.21 U	120	8.1	11 U	0.21 U	110 U	0.21 U	160	120	0.21 U							

Notes:

Results in table are reported in units of micrograms per cubic meter (ug/m²). Results from samples collected in 2004 and 2005 were reported by laboratory in units of parts per billion volume and were converted to units of ug/m3.

U - Compound not detected above the reporting limit (##).

##J - Compound detected but the reported value may not be accurate or precise. Qualified as approximate based on excursions from QA/QC criteria.

¹ Sample location AMSF-23 is located approximately 10 feet from AMSF-05 (AMSF-05 inaccessible during the December 2011 sampling due to location of storage units).

² Sample location AMSF-22 is located approximately 2 feet from AMSF-08. (AMSF-08 was inaccessible during the March 2011 sampling. During the December 2011 sampling, both locations were sampled.)

³ Sample location AMSF-24 (sub-slab) is located approximately 10 feet from AMSF-04 outside of office wall. AMSF-24 (indoor air) is located within the office area. AMSF-04 is no longer accessible due to renovations in the office area. Based on new configuration, no other suitable sub-slab sample locations are present in the office area.

Table 2

Summary of Vapor Intrusion Sampling Results

2004-2014 at Former E-Z Movers and Bright Raven Former AMSF Building

			Bright Raven										
			Western Portion of Slab										
	Sample Location	AMSF-06	AMSF-06	AMSF-06	AMSF-06	AMSF-06	AMSF-06	AMSF-06	AMSF-06	AMSF-06	AMSF-06		
	Sample ID	AMSF-06-SS-032808	AMSF-06-IA-032808	AMSF-06-SS-040111	AMSF-06-IA-040111	AMSF-06-SS-120611	AMSF-06-IA-120611	AMSF-06-SS-021913	AMSF-06-IA-021913	AMSF-06-SS-120613	AMSF-06-IA-120613		
	IRM ISMP Monitoring Season		NA	2010-2011	2010-2011	2011-2012	2011-2012	2012-2013	2012-2013	2013-2014	2013-2014		
	Sample Date	03/28/2008	03/28/2008	04/01/2011	04/01/2011	12/06/2011	12/06/2011	02/19/2013	02/19/2013	12/06/2013	12/06/2013		
Target Compounds	Sample Type	Sub-Slab	Indoor Air	Sub-Slab	Indoor Air	Sub-Slab	Indoor Air	Sub-Slab	Indoor Air	Sub-Slab	Indoor Air		
1,1,1-Trichloroethane (TCA)		3,900	2.0	6,500	3.3	370	17	4,900	7.9	3,800	9.1		
Tetrachloroethene (PCE)		620	1.3	670	0.93	94	4.5	590	3.0 J	790	9.8		
1,1-Dichloroethane (1,1-DCA)		21 U	0.16 U	28 U	0.40 U	1.6 U	0.37	32 U	0.19	17 U	0.81 U		
1,1-Dichloroethene (1,1-DCE)		21 U	0.31	28 U	0.40 U	2.6	1.7	31 U	0.49	16 U	0.85		
cis-1,2-Dichloroethene (cis-1,2-DCE)		21 U	0.16 U	28 U	0.40 U	1.6 U	0.16 U	31 U	0.16 U	16 U	0.79 U		
Trichloroethene (TCE)		28 U	0.21 U	37 U	38	2.2	0.34	42 U	0.26	22 U	0.39		

						Brigh	t Raven						
			Waiting Room										
	Sample Location	AMSF-07											
	Sample ID	AMSF-07-SS-032808	AMSF-07-IA-032808	AMSF-07-SS-040111	AMSF-07-IA-040111	AMSF-07-SS-120611	AMSF-07-IA-120611	AMSF-07-SS-021913	AMSF-07-IA-021913	AMSF-07-SS-120613	AMSF-07-IA-120613		
	IRM ISMP Monitoring Season		NA	2010-2011	2010-2011	2011-2012	2011-2012	2012-2013	2012-2013	2013-2014	2013-2014		
	Sample Date	03/28/2008	03/28/2008	04/01/2011	04/01/2011	12/06/2011	12/06/2011	02/19/2013	02/19/2013	12/06/2013	12/06/2013		
Target Compounds	Sample Type	Sub-Slab	Indoor Air										
1,1,1-Trichloroethane (TCA)		1,300	1.5	1,200	2.4	1,000	10	1,000	3.9	190	5.4		
Tetrachloroethene (PCE)		620	0.95	610	0.89	600	6.2	550	1.4 J	160	5.9		
1,1-Dichloroethane (1,1-DCA)		370	0.16 U	730	0.40 U	440	0.27	350	0.23	56	0.81 U		
1,1-Dichloroethene (1,1-DCE)		670	0.37	790	0.52	460	1.3	380	0.74	59	0.79 U		
cis-1,2-Dichloroethene (cis-1,2-DCE)		4.8 U	0.16 U	5.1 U	0.40 U	6.3 U	0.16 U	6.3 U	0.16 U	0.79 U	0.79 U		
Trichloroethene (TCE)		7.5	0.21 U	10	31	8.6 U	0.34	8.6 U	0.21 U	1.1 U	0.27		

							Bright Raven						
			Eastern Portion of Slab										
	Sample Location	AMSF-08	AMSF-08	AMSF-22 (08) ²	AMSF-22 (08) ²	AMSF-08	AMSF-22 (08) ²	AMSF-08	AMSF-22 (08) ²	AMSF-22 (08) ²	AMSF-22 (08) ²	AMSF-22 (08) ²	
	Sample ID	AMSF-08-SS-032808	AMSF-08-IA-032808	AMSF-22-SS-040111	AMSF-22-IA-040111	AMSF-08-SS-120611	AMSF-22-SS-120611	AMSF-08-IA-120611	AMSF-22-SS-021913	AMSF-22-IA-021913	AMSF-22-SS-120613	AMSF-22-IA-120613	
	IRM ISMP Monitoring Season		NA	2010-2011	2010-2011	2011-2012	2011-2012	2011-2012	2012-2013	2012-2013	2013-2014	2013-2014	
	Sample Date	03/28/2008	03/28/2008	04/01/2011	04/01/2011	12/06/2011	12/06/2011	12/06/2011	02/19/2013	02/19/2013	12/06/2013	12/06/2013	
Target Compounds	Sample Type	Sub-Slab	Indoor Air	Sub-Slab	Indoor Air	Sub-Slab	Sub-Slab	Indoor Air	Sub-Slab	Indoor Air	Sub-Slab	Indoor Air	
1,1,1-Trichloroethane (TCA)		1,100	2.1	6,200	4.2	530	2,900	19	1,300	3.6	910	10	
Tetrachloroethene (PCE)		7,500	1.4	26,000	0.87	5,300	18,000	5.7	11,000	2.2 J	8,100	11	
1,1-Dichloroethane (1,1-DCA)		1,100	0.16 U	6,100	0.40 U	590	2,300	0.47	1,400	0.16 U	840	0.81 U	
1,1-Dichloroethene (1,1-DCE)		13,000	0.19	35,000	0.42	4,900	13,000	1.8	10,000	0.50	5,100	0.85	
cis-1,2-Dichloroethene (cis-1,2-DCE)		190	0.16 U	460	0.40 U	90	420	0.16 U	230	0.16 U	190	0.79 U	
Trichloroethene (TCE)		590	0.21 U	2,100	45	340	1,400	0.40	800	0.21 U	640	0.40	

Notes:

Results in table are reported in units of micrograms per cubic meter (ug/m³). Results from samples collected in 2004 and 2005 were reported by laboratory in units of parts per billion volume and were converted to units of ug/m3.

U - Compound not detected above the reporting limit (##).

##J - Compound detected but the reported value may not be accurate or precise. Qualified as approximate based on excursions from QA/QC criteria.

¹ Sample location AMSF-23 is located approximately 10 feet from AMSF-05 (AMSF-05 inaccessible during the December 2011 sampling due to location of storage units).

² Sample location AMSF-22 is located approximately 2 feet from AMSF-08. (AMSF-08 was inaccessible during the March 2011 sampling. During the December 2011 sampling, both locations were sampled.)

³ Sample location AMSF-24 (sub-slab) is located approximately 10 feet from AMSF-04 outside of office wall. AMSF-24 (indoor air) is located within the office area. AMSF-04 is no longer accessible due to renovations in the office area. Based on new configuration, no other suitable sub-slab sample locations are present in the office area.

Laboratory Report

ANALYTICAL REPORT

Job Number: 200-20018-1

SDG Number: 200-20018

Job Description: Former AMSF

For:

O'Brien & Gere Inc of North America 333 West Washington St. PO BOX 4873 East Syracuse, NY 13221

Attention: Ms. Christy Rosenbarker

M.

Approved for release. Don C Dawicki Manager of Project Management 2/10/2014 5:10 PM

Don C Dawicki, Manager of Project Management 30 Community Drive, South Burlington, VT, 05403 (802)660-1990 don.dawicki@testamericainc.com 02/10/2014 Revision: 2

cc: Ms. Karen Storne

The test results in this report relate only to sample(s) as received by the laboratory. These test results were derived under a quality system that adheres to the requirements of NELAC. Pursuant to NELAC, this report may not be produced in full without written approval from the laboratory

CASE NARRATIVE

Client: O'Brien & Gere Inc of North America

Project: Former AMSF

Report Number: 200-20018-1 Revised

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

The samples were received on 12/11/2013; the samples arrived in good condition.

VOLATILE ORGANIC COMPOUNDS

Samples AMSF-07-IA-120613, AMSF-07-SS-120613, AMSF-22-IA-120613, AMSF-22-SS-120613, AMSF-05-IA-120613, AMSF-05-SS-120613, AMSF-05-SSD-120613, AMSF-06-IA-120613, AMSF-06-IA-120613, AMSF-24-IA-120613, AMSF

The indoor air samples referenced above were originally designated for analysis using the low level TO-15 method, as well as the routine level method; however, due to high concentrations of Acetone observed, the low level analysis could not be performed. Results from the routine level TO-15 analysis only have been presented.

In order to provide for the lowest possible reporting limits for the client specified chlorinated VOCs, the samples were analyzed with a little dilution as possible to maintain instrument integrity. Certain VOCs are reported with the "E" qualifier to indicate concentrations over the calibrated range of the instrumentation.

No difficulties were encountered during the VOC analysis.

All quality control parameters were within the acceptance limits.

LOW LEVEL VOLATILE ORGANIC COMPOUNDS

Sample AMSF-AA-120613 was analyzed for Low Level Volatile Organic Compounds in accordance with EPA Method TO-15. The samples were analyzed on 12/29/2013.

The laboratory control sample (LCS) for batch 66614 recovered outside control limits for the following analyte: Methylene Chloride. This analyte was biased high in the LCS and was not detected in the associated samples; therefore, the data have been reported.. Refer to the QC report for details.

No other difficulties were encountered during the Low Level VOC analysis.

All other quality control parameters were within the acceptance limits.

Revision Summary

The enclosed submittal has been revised to provide for the reporting of results in units of ug/m3 as well as ppbv.

The second revision associated with this submittal has been provided to provide for the removal of the detected concentrations for Cyclohexane, which upon review were found to be falsely identified. This affects samples AMSF-05-SS-120613, AMSF-05-SSD-120613, and AMSF-06-SS-120613.

SAMPLE SUMMARY

Client: O'Brien & Gere Inc of North America Job Number: 200-20018-1

Sdg Number: 200-20018

			Date/Time	Date/Time
Lab Sample ID	Client Sample ID	Client Matrix	Sampled	Received
200-20018-1	AMSF-07-IA-120613	Air	12/06/2013 0935	12/11/2013 1130
200-20018-2	AMSF-07-SS-120613	Air	12/06/2013 0957	12/11/2013 1130
200-20018-3	AMSF-22-IA-120613	Air	12/06/2013 1402	12/11/2013 1130
200-20018-4	AMSF-22-SS-120613	Air	12/06/2013 1410	12/11/2013 1130
200-20018-5	AMSF-05-IA-120613	Air	12/06/2013 1327	12/11/2013 1130
200-20018-6	AMSF-05-SS-120613	Air	12/06/2013 1441	12/11/2013 1130
200-20018-7	AMSF-05-SSD-120613	Air	12/06/2013 1441	12/11/2013 1130
200-20018-8	AMSF-06-IA-120613	Air	12/06/2013 1414	12/11/2013 1130
200-20018-9	AMSF-06-SS-120613	Air	12/06/2013 1414	12/11/2013 1130
200-20018-10	AMSF-24-IA-120613	Air	12/06/2013 1436	12/11/2013 1130
200-20018-11	AMSF-24-SS-120613	Air	12/06/2013 1433	12/11/2013 1130
200-20018-12	AMSF-AA-120613	Air	12/06/2013 1450	12/11/2013 1130
200-20018-10 200-20018-11	AMSF-24-IA-120613 AMSF-24-SS-120613	Air Air	12/06/2013 1436 12/06/2013 1433	12/11/2013 1130 12/11/2013 1130

Client: O'Brien & Gere Inc of North America

Lab Sample ID Client Sample ID Analyte	Result	Qualifier	Reporting Limit	Units	Method
200-20018-1 AMSF-07-IA-120613					
Chloromethane	0.60		0.50	ppb v/v	TO-15
Chloromethane	1.2		1.0	ug/m3	TO-15
Trichlorofluoromethane	1.8		0.20	ppb v/v	TO-15
Trichlorofluoromethane	9.9		1.1	ug/m3	TO-15
Acetone	300	E	5.0	ppb v/v	TO-15
Acetone	720	E	12	ug/m3	TO-15
n-Hexane	1.2		0.20	ppb v/v	TO-15
n-Hexane	4.3		0.70	ug/m3	TO-15
1,1,1-Trichloroethane	0.98		0.20	ppb v/v	TO-15
1,1,1-Trichloroethane	5.4		1.1	ug/m3	TO-15
Cyclohexane	0.75		0.20	ppb v/v	TO-15
Cyclohexane	2.6		0.69	ug/m3	TO-15
Carbon tetrachloride	0.067		0.040	ppb v/v	TO-15
Carbon tetrachloride	0.42		0.25	ug/m3	TO-15
Methyl Ethyl Ketone	14		0.50	ppb v/v	TO-15
Methyl Ethyl Ketone	43		1.5	ug/m3	TO-15
Benzene	0.80		0.20	ppb v/v	TO-15
Benzene	2.6		0.64	ug/m3	TO-15
n-Heptane	2.7		0.20	ppb v/v	TO-15
n-Heptane	11		0.82	ug/m3	TO-15
Trichloroethene	0.050		0.040	ppb v/v	TO-15
Trichloroethene	0.27		0.21	ug/m3	TO-15
Toluene	5.5		0.20	ppb v/v	TO-15
Toluene	21		0.75	ug/m3	TO-15
Tetrachloroethene	0.88		0.040	ppb v/v	TO-15
Tetrachloroethene	5.9		0.27	ug/m3	TO-15
Ethylbenzene	0.40		0.20	ppb v/v	TO-15
Ethylbenzene	1.7		0.87	ug/m3	TO-15
m-Xylene & p-Xylene	1.6		0.50	ppb v/v	TO-15
m-Xylene & p-Xylene	7.0		2.2	ug/m3	TO-15
o-Xylene	0.59		0.20	ppb v/v	TO-15
o-Xylene	2.5		0.87	ug/m3	TO-15

Client: O'Brien & Gere Inc of North America

Lab Sample ID Client Sample ID Analyte	Result	Qualifier	Reporting Limit	Units	Method
200-20018-2 AMSF-07-SS-120613					
Dichlorodifluoromethane	0.55		0.50	ppb v/v	TO-15
Dichlorodifluoromethane	2.7		2.5	ug/m3	TO-15
Chloromethane	0.50		0.50	ppb v/v	TO-15
Chloromethane	1.0		1.0	ug/m3	TO-15
Trichlorofluoromethane	1.8		0.20	ppb v/v	TO-15
Trichlorofluoromethane	10		1.1	ug/m3	TO-15
1,1-Dichloroethene	15		0.20	ppb v/v	TO-15
1,1-Dichloroethene	59		0.79	ug/m3	TO-15
Acetone	250	E	5.0	ppb v/v	TO-15
Acetone	600	E	12	ug/m3	TO-15
n-Hexane	1.1		0.20	ppb v/v	TO-15
n-Hexane	3.7		0.70	ug/m3	TO-15
1,1-Dichloroethane	14		0.20	ppb v/v	TO-15
1,1-Dichloroethane	56		0.81	ug/m3	TO-15
Carbon disulfide	0.81		0.50	ppb v/v	TO-15
Carbon disulfide	2.5		1.6	ug/m3	TO-15
Chloroform	0.30		0.20	ppb v/v	TO-15
Chloroform	1.5		0.98	ug/m3	TO-15
1,1,1-Trichloroethane	35		0.20	ppb v/v	TO-15
1,1,1-Trichloroethane	190		1.1	ug/m3	TO-15
Methyl Ethyl Ketone	11		0.50	ppb v/v	TO-15
Methyl Ethyl Ketone	33		1.5	ug/m3	TO-15
Benzene	0.76		0.20	ppb v/v	TO-15
Benzene	2.4		0.64	ug/m3	TO-15
n-Heptane	2.2		0.20	ppb v/v	TO-15
n-Heptane	9.2		0.82	ug/m3	TO-15
Toluene	5.1		0.20	ppb v/v	TO-15
Toluene	19		0.75	ug/m3	TO-15
Tetrachloroethene	24		0.20	ppb v/v	TO-15
Tetrachloroethene	160		1.4	ug/m3	TO-15
Ethylbenzene	100	Е	0.20	ppb v/v	TO-15
Ethylbenzene	430	E	0.87	ug/m3	TO-15
m-Xylene & p-Xylene	250	E	0.50	ppb v/v	TO-15
m-Xylene & p-Xylene	1100	E	2.2	ug/m3	TO-15
o-Xylene	160	E	0.20	ppb v/v	TO-15
o-Xylene	710	E	0.20	ug/m3	TO-15
	0.22	L	0.87	ppb v/v	TO-15
4-Ethyltoluene					
4-Ethyltoluene	1.1		0.98	ug/m3	TO-15

Client: O'Brien & Gere Inc of North America

Lab Sample ID Client Sample ID Analyte	Result	Qualifier	Reporting Limit	Units	Method
200-20018-3 AMSF-22-IA-120613					
Dichlorodifluoromethane	0.71		0.50	ppb v/v	TO-15
Dichlorodifluoromethane	3.5		2.5	ug/m3	TO-15
Chloromethane	0.65		0.50	ppb v/v	TO-15
Chloromethane	1.3		1.0	ug/m3	TO-15
Trichlorofluoromethane	3.6		0.20	ppb v/v	TO-15
Trichlorofluoromethane	20		1.1	ug/m3	TO-15
1,1-Dichloroethene	0.21		0.20	ppb v/v	TO-15
1,1-Dichloroethene	0.85		0.79	ug/m3	TO-15
Methylene Chloride	0.67		0.50	ppb v/v	TO-15
Methylene Chloride Methylene Chloride	2.3		1.7	ug/m3	TO-15
Acetone	570	Е	5.0	ppb v/v	TO-15
Acetone	1400	E	12		TO-15 TO-15
		E		ug/m3	
n-Hexane	4.9 17		0.20 0.70	ppb v/v	TO-15 TO-15
n-Hexane				ug/m3	
1,1,1-Trichloroethane	1.9		0.20	ppb v/v	TO-15
1,1,1-Trichloroethane	10		1.1	ug/m3	TO-15
Cyclohexane	2.9		0.20	ppb v/v	TO-15
Cyclohexane	10		0.69	ug/m3	TO-15
Carbon tetrachloride	0.065		0.040	ppb v/v	TO-15
Carbon tetrachloride	0.41		0.25	ug/m3	TO-15
Methyl Ethyl Ketone	31		0.50	ppb v/v	TO-15
Methyl Ethyl Ketone	91		1.5	ug/m3	TO-15
Benzene	1.7		0.20	ppb v/v	TO-15
Benzene	5.6		0.64	ug/m3	TO-15
n-Heptane	4.2		0.20	ppb v/v	TO-15
n-Heptane	17		0.82	ug/m3	TO-15
Trichloroethene	0.075		0.040	ppb v/v	TO-15
Trichloroethene	0.40		0.21	ug/m3	TO-15
Toluene	13		0.20	ppb v/v	TO-15
Toluene	48		0.75	ug/m3	TO-15
Tetrachloroethene	1.6		0.040	ppb v/v	TO-15
Tetrachloroethene	11		0.27	ug/m3	TO-15
Ethylbenzene	0.68		0.20	ppb v/v	TO-15
Ethylbenzene	2.9		0.87	ug/m3	TO-15
m-Xylene & p-Xylene	2.8		0.50	ppb v/v	TO-15
m-Xylene & p-Xylene	12		2.2	ug/m3	TO-15
o-Xylene	0.93		0.20	ppb v/v	TO-15
o-Xylene	4.0		0.87	ug/m3	TO-15
methyl isobutyl ketone	0.85		0.50	ppb v/v	TO-15
methyl isobutyl ketone	3.5		2.0	ug/m3	TO-15
4-Ethyltoluene	0.22		0.20	ppb v/v	TO-15
4-Ethyltoluene	1.1		0.98	ug/m3	TO-15
1,3,5-Trimethylbenzene	0.26		0.20	ppb v/v	TO-15
1,3,5-Trimethylbenzene	1.3		0.98	ug/m3	TO-15
Styrene	0.22		0.20	ppb v/v	TO-15
Styrene	0.92		0.85	ug/m3	TO-15
ewer				3	

Client: O'Brien & Gere Inc of North America

Job Number: 200-20018-1

Sdg Number: 200-20018

Lab Sample ID Client Sample ID Analyte	Result	Qualifier	Reporting Limit	Units	Method
200-20018-4 AMSF-22-SS-120613					
1,1-Dichloroethene	1300		9.0	ppb v/v	TO-15
1,1-Dichloroethene	5100		36	ug/m3	TO-15
1,1-Dichloroethane	210		9.0	ppb v/v	TO-15
1,1-Dichloroethane	840		37	ug/m3	TO-15
cis-1,2-Dichloroethene	47		9.0	ppb v/v	TO-15
cis-1,2-Dichloroethene	190		36	ug/m3	TO-15
1,1,1-Trichloroethane	170		9.0	ppb v/v	TO-15
1,1,1-Trichloroethane	910		49	ug/m3	TO-15
Trichloroethene	120		9.0	ppb v/v	TO-15
Trichloroethene	640		49	ug/m3	TO-15
1,1,2-Trichloroethane	100		9.0	ppb v/v	TO-15
1,1,2-Trichloroethane	550		49	ug/m3	TO-15
Tetrachloroethene	1200		9.0	ppb v/v	TO-15
Tetrachloroethene	8100		61	ug/m3	TO-15
Ethylbenzene	13		9.0	ppb v/v	TO-15
Ethylbenzene	54		39	ug/m3	TO-15
m-Xylene & p-Xylene	40		23	ppb v/v	TO-15
m-Xylene & p-Xylene	170		98	ug/m3	TO-15
o-Xylene	29		9.0	ppb v/v	TO-15
o-Xylene	130		39	ug/m3	TO-15

Client: O'Brien & Gere Inc of North America

Lab Sample ID Client Sample ID Analyte	Result	Qualifier	Reporting Limit	Units	Method
200-20018-5 AMSF-05-IA-12061	3				
Dichlorodifluoromethane	0.55		0.50	ppb v/v	TO-15
Dichlorodifluoromethane	2.7		2.5	ug/m3	TO-15
Chloromethane	4.1		0.50	ppb v/v	TO-15
Chloromethane	8.4		1.0	ug/m3	TO-15
Trichlorofluoromethane	3.1		0.20	ppb v/v	TO-15
Trichlorofluoromethane	17		1.1	ug/m3	TO-15
Acetone	310	E	5.0	ppb v/v	TO-15
Acetone	740	E	12	ug/m3	TO-15
n-Hexane	1.6		0.20	ppb v/v	TO-15
n-Hexane	5.6		0.70	ug/m3	TO-15
1,1,1-Trichloroethane	0.86		0.20	ppb v/v	TO-15
1,1,1-Trichloroethane	4.7		1.1	ug/m3	TO-15
Cyclohexane	1.0		0.20	ppb v/v	TO-15
Cyclohexane	3.4		0.69	ug/m3	TO-15
Carbon tetrachloride	0.081		0.040	ppb v/v	TO-15
Carbon tetrachloride	0.51		0.25	ug/m3	TO-15
Methyl Ethyl Ketone	15		0.50	ppb v/v	TO-15
Methyl Ethyl Ketone	45		1.5	ug/m3	TO-15
Benzene	0.79		0.20	ppb v/v	TO-15
Benzene	2.5		0.64	ug/m3	TO-15
n-Heptane	2.7		0.20	ppb v/v	TO-15
n-Heptane	11		0.82	ug/m3	TO-15
Toluene	8.9		0.20	ppb v/v	TO-15
Toluene	34		0.75	ug/m3	TO-15
Tetrachloroethene	0.65		0.040	ppb v/v	TO-15
Tetrachloroethene	4.4		0.27	ug/m3	TO-15
Ethylbenzene	0.39		0.20	ppb v/v	TO-15
Ethylbenzene	1.7		0.87	ug/m3	TO-15
m-Xylene & p-Xylene	1.4		0.50	ppb v/v	TO-15
m-Xylene & p-Xylene	6.3		2.2	ug/m3	TO-15
o-Xylene	0.47		0.20	ppb v/v	TO-15
o-Xylene	2.1		0.87	ug/m3	TO-15
methyl isobutyl ketone	0.70		0.50	ppb v/v	TO-15
methyl isobutyl ketone	2.9		2.0	ug/m3	TO-15
Styrene	0.27		0.20	ppb v/v	TO-15
Styrene	1.1		0.85	ug/m3	TO-15

Client: O'Brien & Gere Inc of North America

Lab Sample ID C Analyte	lient Sample ID	Result	Qualifier	Reporting Limit	Units	Method
200-20018-6	AMSF-05-SS-120613					
1,1-Dichloroethene		220		21	ppb v/v	TO-15
1,1-Dichloroethene		860		85	ug/m3	TO-15
1,1-Dichloroethane		84		21	ppb v/v	TO-15
1,1-Dichloroethane		340		87	ug/m3	TO-15
1,1,1-Trichloroethane		4100		21	ppb v/v	TO-15
1,1,1-Trichloroethane		22000		120	ug/m3	TO-15
Trichloroethene		30		21	ppb v/v	TO-15
Trichloroethene		160		110	ug/m3	TO-15
Tetrachloroethene		410		21	ppb v/v	TO-15
Tetrachloroethene		2800		150	ug/m3	TO-15
Ethylbenzene		3400		21	ppb v/v	TO-15
Ethylbenzene		15000		93	ug/m3	TO-15
m-Xylene & p-Xylene		13000	Е	54	ppb v/v	TO-15
m-Xylene & p-Xylene		55000	Е	230	ug/m3	TO-15
o-Xylene		5500	Е	21	ppb v/v	TO-15
o-Xylene		24000	E	93	ug/m3	TO-15
200-20018-7	AMSF-05-SSD-120613					
1,1-Dichloroethene	7	160		20	ppb v/v	TO-15
1.1-Dichloroethene		650		81	ug/m3	TO-15
1,1-Dichloroethane		63		20	ppb v/v	TO-15
1,1-Dichloroethane		260		83	ug/m3	TO-15
1,1,1-Trichloroethane		3100		20	ppb v/v	TO-15
1,1,1-Trichloroethane		17000		110	ug/m3	TO-15
Trichloroethene		22		20	ppb v/v	TO-15
Trichloroethene		120		110	ug/m3	TO-15
Tetrachloroethene		310		20	ppb v/v	TO-15
Tetrachloroethene		2100		140	ug/m3	TO-15
Ethylbenzene		2100		20	ppb v/v	TO-15
Ethylbenzene		9200		89	ug/m3	TO-15
m-Xylene & p-Xylene		8500	Е	51	ppb v/v	TO-15
m-Xylene & p-Xylene		37000	E	220	ug/m3	TO-15
o-Xylene		3700	_	20	ppb v/v	TO-15
o-Xylene		16000		89	ug/m3	TO-15
Styrene		150		20	ppb v/v	TO-15

Client: O'Brien & Gere Inc of North America

Lab Sample ID Client Sample ID Analyte	Result	Qualifier	Reporting Limit	Units	Method
200-20018-8 AMSF-06-IA-1206	613				
Dichlorodifluoromethane	0.69		0.50	ppb v/v	TO-15
Dichlorodifluoromethane	3.4		2.5	ug/m3	TO-15
Chloromethane	0.68		0.50	ppb v/v	TO-15
Chloromethane	1.4		1.0	ug/m3	TO-15
Trichlorofluoromethane	3.5		0.20	ppb v/v	TO-15
Trichlorofluoromethane	20		1.1	ug/m3	TO-15
1,1-Dichloroethene	0.21		0.20	ppb v/v	TO-15
1,1-Dichloroethene	0.85		0.79	ug/m3	TO-15
Methylene Chloride	0.66		0.50	ppb v/v	TO-15
Methylene Chloride	2.3		1.7	ug/m3	TO-15
Acetone	560	Е	5.0	ppb v/v	TO-15
Acetone	1300	E	12	ug/m3	TO-15
n-Hexane	4.6		0.20	ppb v/v	TO-15
n-Hexane	16		0.70	ug/m3	TO-15
1,1,1-Trichloroethane	1.7		0.20	ppb v/v	TO-15
1,1,1-Trichloroethane	9.1		1.1	ug/m3	TO-15
Cyclohexane	2.4		0.20	ppb v/v	TO-15
Cyclohexane	8.4		0.69	ug/m3	TO-15
Carbon tetrachloride	0.081		0.040	ppb v/v	TO-15
Carbon tetrachloride	0.51		0.25	ug/m3	TO-15
Methyl Ethyl Ketone	30		0.50	ppb v/v	TO-15
Methyl Ethyl Ketone	89		1.5	ug/m3	TO-15
Benzene	1.5		0.20	ppb v/v	TO-15
Benzene	4.8		0.64	ug/m3	TO-15
n-Heptane	3.8		0.04	ppb v/v	TO-15
n-Heptane	16		0.82	ug/m3	TO-15
Trichloroethene	0.073		0.040	ppb v/v	TO-15
Trichloroethene	0.39		0.040	ug/m3	TO-15
Toluene	11		0.21	_	TO-15
Toluene	42		0.20	ppb v/v	TO-15
Tetrachloroethene	1.4		0.75	ug/m3 ppb v/v	TO-15
	9.8				TO-15
Tetrachloroethene			0.27	ug/m3	
Ethylbenzene	0.62		0.20 0.87	ppb v/v	TO-15
Ethylbenzene	2.7			ug/m3	TO-15
m-Xylene & p-Xylene	2.5		0.50	ppb v/v	TO-15
m-Xylene & p-Xylene	11		2.2	ug/m3	TO-15
o-Xylene	0.86		0.20	ppb v/v	TO-15
o-Xylene	3.8		0.87	ug/m3	TO-15
methyl isobutyl ketone	0.74		0.50	ppb v/v	TO-15
methyl isobutyl ketone	3.0		2.0	ug/m3	TO-15
4-Ethyltoluene	0.20		0.20	ppb v/v	TO-15
4-Ethyltoluene	0.98		0.98	ug/m3	TO-15
1,3,5-Trimethylbenzene	0.23		0.20	ppb v/v	TO-15
1,3,5-Trimethylbenzene	1.1		0.98	ug/m3	TO-15
Styrene	0.20		0.20	ppb v/v	TO-15
Styrene	0.85		0.85	ug/m3	TO-15

Client: O'Brien & Gere Inc of North America

Job Number: 200-20018-1

Sdg Number: 200-20018

Lab Sample ID Client Sample ID Analyte	Result	Qualifier	Reporting Limit	Units	Method
-					
200-20018-9 AMSF-06-SS-120613					
Trichlorofluoromethane	19		4.1	ppb v/v	TO-15
Trichlorofluoromethane	110		23	ug/m3	TO-15
Carbon disulfide	24		10	ppb v/v	TO-15
Carbon disulfide	75		32	ug/m3	TO-15
1,1,1-Trichloroethane	690		4.1	ppb v/v	TO-15
1,1,1-Trichloroethane	3800		22	ug/m3	TO-15
Toluene	6.0		4.1	ppb v/v	TO-15
Toluene	23		15	ug/m3	TO-15
Tetrachloroethene	120		4.1	ppb v/v	TO-15
Tetrachloroethene	790		28	ug/m3	TO-15
Ethylbenzene	1500	E	4.1	ppb v/v	TO-15
Ethylbenzene	6300	E	18	ug/m3	TO-15
m-Xylene & p-Xylene	4200	E	10	ppb v/v	TO-15
m-Xylene & p-Xylene	18000	E	44	ug/m3	TO-15
o-Xylene	1500	E	4.1	ppb v/v	TO-15
o-Xylene	6500	Е	18	ug/m3	TO-15

Client: O'Brien & Gere Inc of North America

Lab Sample ID Client Sample ID Analyte	Result	Qualifier	Reporting Limit	Units	Method
			-		
200-20018-10 AMSF-24-IA-120613					
Chloromethane	0.54		0.50	ppb v/v	TO-15
Chloromethane	1.1		1.0	ug/m3	TO-15
Trichlorofluoromethane	2.2		0.20	ppb v/v	TO-15
Trichlorofluoromethane	12		1.1	ug/m3	TO-15
Methylene Chloride	0.74		0.50	ppb v/v	TO-15
Methylene Chloride	2.6		1.7	ug/m3	TO-15
Acetone	230	E	5.0	ppb v/v	TO-15
Acetone	550	E	12	ug/m3	TO-15
n-Hexane	1.2		0.20	ppb v/v	TO-15
n-Hexane	4.1		0.70	ug/m3	TO-15
1,1,1-Trichloroethane	0.59		0.20	ppb v/v	TO-15
1,1,1-Trichloroethane	3.2		1.1	ug/m3	TO-15
Cyclohexane	0.68		0.20	ppb v/v	TO-15
Cyclohexane	2.4		0.69	ug/m3	TO-15
Carbon tetrachloride	0.078		0.040	ppb v/v	TO-15
Carbon tetrachloride	0.49		0.25	ug/m3	TO-15
Methyl Ethyl Ketone	10		0.50	ppb v/v	TO-15
Methyl Ethyl Ketone	31		1.5	ug/m3	TO-15
Benzene	0.58		0.20	ppb v/v	TO-15
Benzene	1.8		0.64	ug/m3	TO-15
n-Heptane	1.9		0.20	ppb v/v	TO-15
n-Heptane	7.7		0.82	ug/m3	TO-15
Toluene	7.8		0.20	ppb v/v	TO-15
Toluene	29		0.75	ug/m3	TO-15
Tetrachloroethene	0.54		0.040	ppb v/v	TO-15
Tetrachloroethene	3.7		0.27	ug/m3	TO-15
Ethylbenzene	0.27		0.20	ppb v/v	TO-15
Ethylbenzene	1.2		0.87	ug/m3	TO-15
m-Xylene & p-Xylene	1.0		0.50	ppb v/v	TO-15
m-Xylene & p-Xylene	4.6		2.2	ug/m3	TO-15
o-Xylene	0.34		0.20	ppb v/v	TO-15
o-Xylene	1.5		0.87	ug/m3	TO-15

Client: O'Brien & Gere Inc of North America

Lab Sample ID Client Sample ID Analyte	Result	Qualifier	Reporting Limit	Units	Method	
200-20018-11 AMSF-24-SS-1206	613					
Trichlorofluoromethane	8.2		2.0	ppb v/v	TO-15	
Trichlorofluoromethane	46		11	ug/m3	TO-15	
n-Hexane	34		2.0	ppb v/v	TO-15	
n-Hexane	120		7.0	ug/m3	TO-15	
1,1,1-Trichloroethane	330		2.0	ppb v/v	TO-15	
1,1,1-Trichloroethane	1800		11	ug/m3	TO-15	
Cyclohexane	61		2.0	ppb v/v	TO-15	
Cyclohexane	210		6.9	ug/m3	TO-15	
Benzene	4.5		2.0	ppb v/v	TO-15	
Benzene	14		6.4	ug/m3	TO-15	
n-Heptane	37		2.0	ppb v/v	TO-15	
n-Heptane	150		8.2	ug/m3	TO-15	
Toluene	10		2.0	ppb v/v	TO-15	
Toluene	38		7.5	ug/m3	TO-15	
Tetrachloroethene	45		2.0	ppb v/v	TO-15	
Tetrachloroethene	300		14	ug/m3	TO-15	
Ethylbenzene	6.3		2.0	ppb v/v	TO-15	
Ethylbenzene	27		8.7	ug/m3	TO-15	
m-Xylene & p-Xylene	29		5.0	ppb v/v	TO-15	
m-Xylene & p-Xylene	130		22	ug/m3	TO-15	
o-Xylene	8.2		2.0	ppb v/v	TO-15	
o-Xylene	35		8.7	ug/m3	TO-15	
1,3,5-Trimethylbenzene	4.7		2.0	ppb v/v	TO-15	
1,3,5-Trimethylbenzene	23		9.8	ug/m3	TO-15	
200-20018-12 AMSF-AA-120613						
Chloromethane	0.58		0.50	ppb v/v	TO-15	
Chloromethane	1.2		1.0	ug/m3	TO-15	
Dichlorodifluoromethane	0.46		0.040	ppb v/v	TO15 LL	
Dichlorodifluoromethane	2.3		0.20	ug/m3	TO15 LL	
Trichlorofluoromethane	0.22		0.040	ppb v/v	TO15 LL	
Trichlorofluoromethane	1.3		0.22	ug/m3	TO15 LL	
Carbon tetrachloride	0.070		0.040	ppb v/v	TO15 LL	
Carbon tetrachloride	0.44		0.25	ug/m3	TO15 LL	
Benzene	0.11		0.040	ppb v/v	TO15 LL	
Benzene	0.34		0.13	ug/m3	TO15 LL	
Toluene	0.11		0.040	ppb v/v	TO15 LL	
Toluene	0.42		0.15	ug/m3	TO15 LL	

METHOD SUMMARY

Client: O'Brien & Gere Inc of North America

Job Number: 200-20018-1 Sdg Number: 200-20018

Description	Lab Location	Method	Preparation Method
Matrix: Air			
Volatile Organic Compounds in Ambient Air Collection via Summa Canister	TAL BUR TAL BUR	EPA TO-15	Summa Canister
Volatile Organic Compounds in Ambient Air, Low Concentration (GC/MS)	TAL BUR	EPA TO15 LL	
Collection via Summa Canister	TAL BUR		Summa Canister

Lab References:

TAL BUR = TestAmerica Burlington

Method References:

EPA = US Environmental Protection Agency

METHOD / ANALYST SUMMARY

Client: O'Brien & Gere Inc of North America Job Number: 200-20018-1

Sdg Number: 200-20018

Method	Analyst	Analyst ID
EPA TO-15	Desjardins, William R	WRD
EPA TO15 LL	Desjardins, William R	WRD

Client: O'Brien & Gere Inc of North America Job Number: 200-20018-1

Sdg Number: 200-20018

200 mL

Client Sample ID: AMSF-07-IA-120613

12/27/2013 2143

Prep Date:

Lab Sample ID: 200-20018-1 Date Sampled: 12/06/2013 0935

Client Matrix: Date Received: 12/11/2013 1130 Air

Injection Volume:

TO-15 Volatile	Organic Compound	e in Amhiant Air

Analysis Method:	TO-15	Analysis Batch:	200-66552	Instrument ID:	CHW.i
Prep Method:	Summa Canister	Prep Batch:	N/A	Lab File ID:	wakj13.d
Dilution:	1.0			Initial Weight/Volume:	200 mL
Analysis Date:	12/27/2013 2143			Final Weight/Volume:	200 mL

Analyte	Result (ppb v/v)	Qualifier	RL	RL
Dichlorodifluoromethane	0.50	U	0.50	0.50
1,2-Dichlorotetrafluoroethane	0.20	U	0.20	0.20
Vinyl chloride	0.040	U	0.040	0.040
1,3-Butadiene	0.20	U	0.20	0.20
Chloromethane	0.60		0.50	0.50
Bromomethane	0.20	U	0.20	0.20
Chloroethane	0.50	U	0.50	0.50
Bromoethene(Vinyl Bromide)	0.20	U	0.20	0.20
Trichlorofluoromethane	1.8		0.20	0.20
1,1-Dichloroethene	0.20	U	0.20	0.20
3-Chloropropene	0.50	U	0.50	0.50
Freon TF	0.20	U	0.20	0.20
Methylene Chloride	0.50	U	0.50	0.50
Methyl tert-butyl ether	0.20	U	0.20	0.20
Acetone	300	E	5.0	5.0
trans-1,2-Dichloroethene	0.20	U	0.20	0.20
n-Hexane	1.2		0.20	0.20
1,1-Dichloroethane	0.20	U	0.20	0.20
Carbon disulfide	0.50	U	0.50	0.50
cis-1,2-Dichloroethene	0.20	U	0.20	0.20
Chloroform	0.20	U	0.20	0.20
1,1,1-Trichloroethane	0.98		0.20	0.20
Cyclohexane	0.75		0.20	0.20
Carbon tetrachloride	0.067		0.040	0.040
Methyl Ethyl Ketone	14		0.50	0.50
Benzene	0.80		0.20	0.20
1,2-Dichloroethane	0.20	U	0.20	0.20
n-Heptane	2.7		0.20	0.20
Trichloroethene	0.050		0.040	0.040
1,2-Dichloropropane	0.20	U	0.20	0.20
Bromodichloromethane	0.20	U	0.20	0.20
cis-1,3-Dichloropropene	0.20	U	0.20	0.20
Toluene	5.5		0.20	0.20
trans-1,3-Dichloropropene	0.20	U	0.20	0.20
1,1,2-Trichloroethane	0.20	U	0.20	0.20
Tetrachloroethene	0.88		0.040	0.040
Dibromochloromethane	0.20	U	0.20	0.20
1,2-Dibromoethane	0.20	U	0.20	0.20
Ethylbenzene	0.40		0.20	0.20
1,4-Dioxane	5.0	U	5.0	5.0
m-Xylene & p-Xylene	1.6		0.50	0.50
o-Xylene	0.59		0.20	0.20
Bromoform	0.20	U	0.20	0.20
methyl isobutyl ketone	0.50	U	0.50	0.50
1,1,2,2-Tetrachloroethane	0.20	U	0.20	0.20
4-Ethyltoluene	0.20	U	0.20	0.20

Client: O'Brien & Gere Inc of North America Job Number: 200-20018-1

Sdg Number: 200-20018

Client Sample ID: AMSF-07-IA-120613

Lab Sample ID: 200-20018-1 Date Sampled: 12/06/2013 0935

Client Matrix: Date Received: 12/11/2013 1130 Air

		TO-15 Volatile Organic	Compounds i	n Ambient	Air		
Analysis Method:	TO-15	Analysis Batch:	200-66552	ı	nstrument ID:	CHW.i	
Prep Method:	Summa Canister	Prep Batch:	N/A	L	₋ab File ID:	wakj13.d	
Dilution:	1.0			ı	nitial Weight/Volume:	200 mL	
Analysis Date:	12/27/2013 2143				Final Weight/Volume:	200 mL	
Prep Date:	12/27/2013 2143				njection Volume:	200 mL	
-тер Басе.	12/21/2013 2143			'	njection volume.	200 IIIL	
Analyte		Result (p	pb v/v)	Qualifier	RL	RL	
,3,5-Trimethylbenz	zene	0.20		U	0.20	0.20	
Methyl Butyl Ketone	e (2-Hexanone)	0.50		U	0.50	0.50	
Chlorobenzene		0.20		U	0.20	0.20	
Styrene		0.20		U	0.20	0.20	
,3-Dichlorobenzen	е	0.20		U	0.20	0.20	
,4-Dichlorobenzen	е	0.20		U	0.20	0.20	
,2-Dichlorobenzen	е	0.20		U	0.20	0.20	
,2,4-Trichlorobenz	ene	0.50		U	0.50	0.50	
,2,3-Trichlorobenz	ene	0.20		U	0.20	0.20	
nalyte		Result (u	g/m3)	Qualifier	RL	RL	
Dichlorodifluoromet	hane	2.5		U	2.5	2.5	
,2-Dichlorotetraflue		1.4		U	1.4	1.4	
inyl chloride		0.10		U	0.10	0.10	
,3-Butadiene		0.44		U	0.44	0.44	
Chloromethane		1.2			1.0	1.0	
Bromomethane		0.78		U	0.78	0.78	
Chloroethane		1.3		U	1.3	1.3	
romoethene(Vinyl	Bromide)	0.87		U	0.87	0.87	
richlorofluorometh		9.9			1.1	1.1	
,1-Dichloroethene		0.79		U	0.79	0.79	
-Chloropropene		1.6		U	1.6	1.6	
reon TF		1.5		U	1.5	1.5	
Methylene Chloride		1.7		U	1.7	1.7	
lethyl tert-butyl eth	ner	0.72		U	0.72	0.72	
cetone		720		Е	12	12	
ans-1,2-Dichloroet	thene	0.79		U	0.79	0.79	
-Hexane		4.3			0.70	0.70	
,1-Dichloroethane		0.81		U	0.81	0.81	
arbon disulfide		1.6		U	1.6	1.6	
is-1,2-Dichloroethe	ene	0.79		U	0.79	0.79	
Chloroform		0.98		U	0.98	0.98	
,1,1-Trichloroethar	ne	5.4			1.1	1.1	
yclohexane		2.6			0.69	0.69	
arbon tetrachlorid	е	0.42			0.25	0.25	
lethyl Ethyl Ketone	e	43			1.5	1.5	
enzene		2.6			0.64	0.64	
,2-Dichloroethane		0.81		U	0.81	0.81	
-Heptane		11			0.82	0.82	
richloroethene		0.27			0.21	0.21	
,2-Dichloropropan	е	0.92		U	0.92	0.92	
romodichlorometh	ane	1.3		U	1.3	1.3	
is-1,3-Dichloroprop	oene	0.91		U	0.91	0.91	
oluene		21			0.75	0.75	
rans-1,3-Dichlorop	ropene	0.91		U	0.91	0.91	
,1,2-Trichloroethar	ne	1.1		U	1.1	1.1	

Client: O'Brien & Gere Inc of North America Job Number: 200-20018-1

Sdg Number: 200-20018

Client Sample ID: AMSF-07-IA-120613

Lab Sample ID: 200-20018-1 Date Sampled: 12/06/2013 0935

Client Matrix: Air Date Received: 12/11/2013 1130

TO-15 Volatile	Organic Compound	s in Ambient Air
----------------	------------------	------------------

Analysis Method: TO-15 Analysis Batch: CHW.i 200-66552 Instrument ID: Prep Method: Summa Canister Prep Batch: N/A Lab File ID: wakj13.d

Dilution: 1.0

200 mL Initial Weight/Volume: Final Waight/Val

Analysis Date: 12/27/2013 2143		Fina	I Weight/Volume:	200 mL		
Prep Date:	12/27/2013 2143		Injec	tion Volume:	200 mL	
Analyte		Result (ug/m3)	Qualifier	RL	RL	
Tetrachloroethene		5.9		0.27	0.27	
Dibromochloromet	thane	1.7	U	1.7	1.7	
1,2-Dibromoethan	e	1.5	U	1.5	1.5	
Ethylbenzene		1.7		0.87	0.87	
1,4-Dioxane		18	U	18	18	
m-Xylene & p-Xyle	ene	7.0		2.2	2.2	
o-Xylene		2.5		0.87	0.87	
Bromoform		2.1	U	2.1	2.1	
methyl isobutyl ket	tone	2.0	U	2.0	2.0	
1,1,2,2-Tetrachlor	oethane	1.4	U	1.4	1.4	
4-Ethyltoluene		0.98	U	0.98	0.98	
1,3,5-Trimethylber	nzene	0.98	U	0.98	0.98	
Methyl Butyl Ketor	ne (2-Hexanone)	2.0	U	2.0	2.0	
Chlorobenzene		0.92	U	0.92	0.92	
Styrene		0.85	U	0.85	0.85	
1,3-Dichlorobenze	ne	1.2	U	1.2	1.2	
1,4-Dichlorobenze	ne	1.2	U	1.2	1.2	
1,2-Dichlorobenze	ne	1.2	U	1.2	1.2	
1,2,4-Trichloroben	zene	3.7	U	3.7	3.7	
1,2,3-Trichloroben	zene	1.5	U	1.5	1.5	

Client: O'Brien & Gere Inc of North America Job Number: 200-20018-1

Sdg Number: 200-20018

Client Sample ID: AMSF-07-SS-120613

Lab Sample ID: 200-20018-2 Date Sampled: 12/06/2013 0957

Client Matrix: Date Received: 12/11/2013 1130 Air

TO-15 Volatile Organic Compounds in Ambient Air					
Analysis Method:	TO-15	Analysis Batch:	200-66552	Instrument ID:	CHW.i
Prep Method:	Summa Canister	Prep Batch:	N/A	Lab File ID:	wakj19.d
Dilution:	1.0			Initial Weight/Volume:	200 mL

Analysis Date: 12/28/2013 0246 Final Weight/Volume: 200 mL Prep Date: 12/28/2013 0246 Injection Volume: 200 mL

Analyte	Result (ppb v/v)	Qualifier	RL	RL
Dichlorodifluoromethane	0.55		0.50	0.50
1,2-Dichlorotetrafluoroethane	0.20	U	0.20	0.20
Vinyl chloride	0.20	U	0.20	0.20
1,3-Butadiene	0.20	U	0.20	0.20
Chloromethane	0.50		0.50	0.50
Bromomethane	0.20	U	0.20	0.20
Chloroethane	0.50	U	0.50	0.50
Bromoethene(Vinyl Bromide)	0.20	U	0.20	0.20
Trichlorofluoromethane	1.8		0.20	0.20
1,1-Dichloroethene	15		0.20	0.20
3-Chloropropene	0.50	U	0.50	0.50
Freon TF	0.20	U	0.20	0.20
Methylene Chloride	0.50	U	0.50	0.50
Methyl tert-butyl ether	0.20	U	0.20	0.20
Acetone	250	E	5.0	5.0
trans-1,2-Dichloroethene	0.20	U	0.20	0.20
n-Hexane	1.1		0.20	0.20
1,1-Dichloroethane	14		0.20	0.20
Carbon disulfide	0.81		0.50	0.50
cis-1,2-Dichloroethene	0.20	U	0.20	0.20
Chloroform	0.30		0.20	0.20
1,1,1-Trichloroethane	35		0.20	0.20
Cyclohexane	0.20	U	0.20	0.20
Carbon tetrachloride	0.20	U	0.20	0.20
Methyl Ethyl Ketone	11		0.50	0.50
Benzene	0.76		0.20	0.20
1,2-Dichloroethane	0.20	U	0.20	0.20
n-Heptane	2.2		0.20	0.20
Trichloroethene	0.20	U	0.20	0.20
1,2-Dichloropropane	0.20	U	0.20	0.20
Bromodichloromethane	0.20	U	0.20	0.20
cis-1,3-Dichloropropene	0.20	U	0.20	0.20
Toluene	5.1		0.20	0.20
trans-1,3-Dichloropropene	0.20	U	0.20	0.20
1,1,2-Trichloroethane	0.20	U	0.20	0.20
Tetrachloroethene	24		0.20	0.20
Dibromochloromethane	0.20	U	0.20	0.20
1,2-Dibromoethane	0.20	U	0.20	0.20
Ethylbenzene	100	E	0.20	0.20
1,4-Dioxane	5.0	U	5.0	5.0
m-Xylene & p-Xylene	250	E	0.50	0.50
o-Xylene	160	E	0.20	0.20
Bromoform	0.20	U	0.20	0.20
methyl isobutyl ketone	0.50	U	0.50	0.50
1,1,2,2-Tetrachloroethane	0.20	U	0.20	0.20
4-Ethyltoluene	0.22		0.20	0.20

Client: O'Brien & Gere Inc of North America Job Number: 200-20018-1

Sdg Number: 200-20018

Client Sample ID: AMSF-07-SS-120613

Lab Sample ID: 200-20018-2 Date Sampled: 12/06/2013 0957

Client Matrix: Date Received: 12/11/2013 1130 Air

		TO-15 Volatile Organic	Compounds ii	Allibleii	· All		
Analysis Method:	TO-15	Analysis Batch:	200-66552		Instrument ID:	CHW.i	
Prep Method:	Summa Canister	Prep Batch:	N/A	Lab File ID:		wakj19.d	
Dilution:	1.0				Initial Weight/Volume:	200 mL	
Analysis Date:	12/28/2013 0246				Final Weight/Volume:	200 mL	
Prep Date:	12/28/2013 0246				Injection Volume:	200 mL	
Analyte		Result (p	pb v/v)	Qualifier		RL	
1,3,5-Trimethylbenz		0.20		U	0.20	0.20	
Methyl Butyl Ketone	e (2-Hexanone)	0.50		U	0.50	0.50	
Chlorobenzene		0.20		U	0.20	0.20	
Styrene		0.20		U	0.20	0.20	
,3-Dichlorobenzen		0.20		U	0.20	0.20	
,4-Dichlorobenzen		0.20		U	0.20	0.20	
,2-Dichlorobenzen		0.20		U	0.20	0.20	
,2,4-Trichlorobenz		0.50		U	0.50	0.50	
,2,3-Trichlorobenz	rene	0.20		U	0.20	0.20	
nalyte		Result (u	g/m3)	Qualifier	RL	RL	
ichlorodifluoromet	:hane	2.7	- /		2.5	2.5	
,2-Dichlorotetraflu		1.4		U	1.4	1.4	
/inyl chloride		0.51		U	0.51	0.51	
,3-Butadiene		0.44		U	0.44	0.44	
Chloromethane		1.0			1.0	1.0	
Bromomethane		0.78		U	0.78	0.78	
Chloroethane		1.3		U	1.3	1.3	
Bromoethene(Vinyl	Bromide)	0.87		U	0.87	0.87	
richlorofluorometh		10			1.1	1.1	
,1-Dichloroethene		59			0.79	0.79	
-Chloropropene		1.6		U	1.6	1.6	
reon TF		1.5		U	1.5	1.5	
Methylene Chloride)	1.7		U	1.7	1.7	
Methyl tert-butyl eth	ner	0.72		U	0.72	0.72	
cetone		600		E	12	12	
ans-1,2-Dichloroet	thene	0.79		U	0.79	0.79	
-Hexane		3.7			0.70	0.70	
,1-Dichloroethane		56			0.81	0.81	
Carbon disulfide		2.5			1.6	1.6	
is-1,2-Dichloroethe	ene	0.79		U	0.79	0.79	
Chloroform		1.5			0.98	0.98	
,1,1-Trichloroethar	ne	190			1.1	1.1	
Cyclohexane		0.69		U	0.69	0.69	
Carbon tetrachloride		1.3		U	1.3	1.3	
ethyl Ethyl Ketone	Э	33			1.5	1.5	
Senzene		2.4			0.64	0.64	
,2-Dichloroethane		0.81		U	0.81	0.81	
-Heptane		9.2			0.82	0.82	
richloroethene		1.1		U	1.1	1.1	
,2-Dichloropropan	е	0.92		U	0.92	0.92	
Bromodichlorometh	ane	1.3		U	1.3	1.3	
is-1,3-Dichloroprop	pene	0.91		U	0.91	0.91	
oluene		19			0.75	0.75	
rans-1,3-Dichlorop		0.91		U	0.91	0.91	
,1,2-Trichloroethar	ne	1.1		U	1.1	1.1	

Client: O'Brien & Gere Inc of North America

Job Number: 200-20018-1

Sdg Number: 200-20018

Client Sample ID: AMSF-07-SS-120613

Lab Sample ID: 200-20018-2 Date Sampled: 12/06/2013 0957

Client Matrix: Air Date Received: 12/11/2013 1130

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 200-66552 Instrument ID: CHW.i Prep Method: Summa Canister Prep Batch: N/A Lab File ID: wakj19.d Dilution: 200 mL 1.0 Initial Weight/Volume:

 Analysis Date:
 12/28/2013 0246
 Final Weight/Volume:
 200 mL

 Prep Date:
 12/28/2013 0246
 Injection Volume:
 200 mL

Analyte	Result (ug/m3)	Qualifier	RL	RL
Tetrachloroethene	160		1.4	1.4
Dibromochloromethane	1.7	U	1.7	1.7
1,2-Dibromoethane	1.5	U	1.5	1.5
Ethylbenzene	430	E	0.87	0.87
1,4-Dioxane	18	U	18	18
m-Xylene & p-Xylene	1100	E	2.2	2.2
o-Xylene	710	E	0.87	0.87
Bromoform	2.1	U	2.1	2.1
methyl isobutyl ketone	2.0	U	2.0	2.0
1,1,2,2-Tetrachloroethane	1.4	U	1.4	1.4
4-Ethyltoluene	1.1		0.98	0.98
1,3,5-Trimethylbenzene	0.98	U	0.98	0.98
Methyl Butyl Ketone (2-Hexanone)	2.0	U	2.0	2.0
Chlorobenzene	0.92	U	0.92	0.92
Styrene	0.85	U	0.85	0.85
1,3-Dichlorobenzene	1.2	U	1.2	1.2
1,4-Dichlorobenzene	1.2	U	1.2	1.2
1,2-Dichlorobenzene	1.2	U	1.2	1.2
1,2,4-Trichlorobenzene	3.7	U	3.7	3.7
1,2,3-Trichlorobenzene	1.5	U	1.5	1.5

Client: O'Brien & Gere Inc of North America

Job Number: 200-20018-1

Sdg Number: 200-20018

Client Sample ID: AMSF-22-IA-120613

Lab Sample ID: 200-20018-3 Date Sampled: 12/06/2013 1402

Client Matrix: Air Date Received: 12/11/2013 1130

TO-15 Volatile	Organic Compo	unde in An	nhiant Air

Analysis Method: TO-15 CHW.i Analysis Batch: 200-66552 Instrument ID: Prep Method: Summa Canister Prep Batch: N/A Lab File ID: wakj14.d Dilution: Initial Weight/Volume: 200 mL 1.0

Analysis Date: 12/27/2013 2232 Final Weight/Volume: 200 mL Prep Date: 12/27/2013 2232 Injection Volume: 200 mL

Analyte	Result (ppb v/v)	Qualifier	RL	RL
Dichlorodifluoromethane	0.71		0.50	0.50
1,2-Dichlorotetrafluoroethane	0.20	U	0.20	0.20
Vinyl chloride	0.040	U	0.040	0.040
1,3-Butadiene	0.20	U	0.20	0.20
Chloromethane	0.65		0.50	0.50
Bromomethane	0.20	U	0.20	0.20
Chloroethane	0.50	U	0.50	0.50
Bromoethene(Vinyl Bromide)	0.20	U	0.20	0.20
Trichlorofluoromethane	3.6		0.20	0.20
1,1-Dichloroethene	0.21		0.20	0.20
3-Chloropropene	0.50	U	0.50	0.50
Freon TF	0.20	U	0.20	0.20
Methylene Chloride	0.67		0.50	0.50
Methyl tert-butyl ether	0.20	U	0.20	0.20
Acetone	570	E	5.0	5.0
trans-1,2-Dichloroethene	0.20	U	0.20	0.20
n-Hexane	4.9		0.20	0.20
1,1-Dichloroethane	0.20	U	0.20	0.20
Carbon disulfide	0.50	U	0.50	0.50
cis-1,2-Dichloroethene	0.20	U	0.20	0.20
Chloroform	0.20	U	0.20	0.20
1,1,1-Trichloroethane	1.9		0.20	0.20
Cyclohexane	2.9		0.20	0.20
Carbon tetrachloride	0.065		0.040	0.040
Methyl Ethyl Ketone	31		0.50	0.50
Benzene	1.7		0.20	0.20
1,2-Dichloroethane	0.20	U	0.20	0.20
n-Heptane	4.2		0.20	0.20
Trichloroethene	0.075		0.040	0.040
1,2-Dichloropropane	0.20	U	0.20	0.20
Bromodichloromethane	0.20	U	0.20	0.20
cis-1,3-Dichloropropene	0.20	U	0.20	0.20
Toluene	13		0.20	0.20
trans-1,3-Dichloropropene	0.20	U	0.20	0.20
1,1,2-Trichloroethane	0.20	U	0.20	0.20
Tetrachloroethene	1.6		0.040	0.040
Dibromochloromethane	0.20	U	0.20	0.20
1,2-Dibromoethane	0.20	U	0.20	0.20
Ethylbenzene	0.68		0.20	0.20
1,4-Dioxane	5.0	U	5.0	5.0
m-Xylene & p-Xylene	2.8		0.50	0.50
o-Xylene	0.93		0.20	0.20
Bromoform	0.20	U	0.20	0.20
methyl isobutyl ketone	0.85		0.50	0.50
1,1,2,2-Tetrachloroethane	0.20	U	0.20	0.20
4-Ethyltoluene	0.22		0.20	0.20

Client: O'Brien & Gere Inc of North America

Job Number: 200-20018-1

Sdg Number: 200-20018

Sag Number: 200-2

Client Sample ID: AMSF-22-IA-120613

Lab Sample ID: 200-20018-3 Date Sampled: 12/06/2013 1402

Client Matrix: Air Date Received: 12/11/2013 1130

Analysis Method:	TO-15	Analysis Batch:	200-66552	1.	nstrument ID:	CHW.i	
•	Summa Canister	•	200-66552 N/A	Lab File ID:			
Prep Method:		Prep Batch:	Initial Weight/Volume:		wakj14.d		
Dilution:	1.0					200 mL	
Analysis Date:	12/27/2013 2232				inal Weight/Volume:	200 mL	
Prep Date:	12/27/2013 2232			lı	njection Volume:	200 mL	
Analyte		Result (p	pb v/v)	Qualifier	RL	RL	
1,3,5-Trimethylbenz	zene	0.26			0.20	0.20	
Methyl Butyl Ketone	e (2-Hexanone)	0.50		U	0.50	0.50	
Chlorobenzene		0.20		U	0.20	0.20	
Styrene		0.22			0.20	0.20	
1,3-Dichlorobenzen	ne	0.20		U	0.20	0.20	
I,4-Dichlorobenzen	ne	0.20		U	0.20	0.20	
1,2-Dichlorobenzen	ne	0.20		U	0.20	0.20	
1,2,4-Trichlorobenz	rene	0.50		U	0.50	0.50	
,2,3-Trichlorobenz	zene	0.20		U	0.20	0.20	
Analyte		Result (u	g/m3)	Qualifier	RL	RL	
Dichlorodifluoromet	thane	3.5	·		2.5	2.5	
1,2-Dichlorotetraflu		1.4		U	1.4	1.4	
Vinyl chloride		0.10		U	0.10	0.10	
I,3-Butadiene		0.44		U	0.44	0.44	
Chloromethane		1.3			1.0	1.0	
Bromomethane		0.78		U	0.78	0.78	
Chloroethane		1.3		U	1.3	1.3	
Bromoethene(Vinyl	Bromide)	0.87		U	0.87	0.87	
Trichlorofluorometh		20			1.1	1.1	
1,1-Dichloroethene		0.85			0.79	0.79	
3-Chloropropene		1.6		U	1.6	1.6	
Freon TF		1.5		U	1.5	1.5	
Methylene Chloride	;	2.3			1.7	1.7	
Methyl tert-butyl eth		0.72		U	0.72	0.72	
Acetone		1400		E	12	12	
rans-1,2-Dichloroe	thene	0.79		U	0.79	0.79	
n-Hexane		17			0.70	0.70	
1,1-Dichloroethane		0.81		U	0.81	0.81	
Carbon disulfide		1.6		U	1.6	1.6	
cis-1,2-Dichloroethe	ene	0.79		U	0.79	0.79	
Chloroform		0.98		U	0.98	0.98	
I,1,1-Trichloroetha	ne	10			1.1	1.1	
Cyclohexane		10			0.69	0.69	
Carbon tetrachlorid	е	0.41			0.25	0.25	
Methyl Ethyl Ketone	е	91			1.5	1.5	
Benzene		5.6			0.64	0.64	
,2-Dichloroethane		0.81		U	0.81	0.81	
-Heptane		17			0.82	0.82	
Trichloroethene		0.40			0.21	0.21	
,2-Dichloropropan	е	0.92		U	0.92	0.92	
Bromodichlorometh		1.3		U	1.3	1.3	
cis-1,3-Dichloropro		0.91		U	0.91	0.91	
Γoluene		48			0.75	0.75	
rans-1,3-Dichlorop	ropene	0.91		U	0.91	0.91	
1,1,2-Trichloroetha		1.1		U	1.1	1.1	

Client: O'Brien & Gere Inc of North America Job Number: 200-20018-1

Sdg Number: 200-20018

Client Sample ID: AMSF-22-IA-120613

Lab Sample ID: 200-20018-3 Date Sampled: 12/06/2013 1402

Client Matrix: Air Date Received: 12/11/2013 1130

TO-15 Volatile	Organic Compound	s in Ambient Air
----------------	------------------	------------------

Analysis Method: TO-15 Analysis Batch: CHW.i 200-66552 Instrument ID: Prep Method: Summa Canister Prep Batch: N/A Lab File ID: wakj14.d

Dilution: 1.0

Initial Weight/Volume: 200 mL 12/27/2013 2232 Final Weight/Volume Analysis Date 200

Analysis Date: 12/27/2013 2232		Final	I Weight/Volume:	200 mL		
Prep Date:	12/27/2013 2232		Injec	tion Volume:	200 mL	
Analyte		Result (ug/m3)	Qualifier	RL	RL	
Tetrachloroethene		11		0.27	0.27	
Dibromochloromet	hane	1.7	U	1.7	1.7	
1,2-Dibromoethan	e	1.5	U	1.5	1.5	
Ethylbenzene		2.9		0.87	0.87	
1,4-Dioxane		18	U	18	18	
m-Xylene & p-Xyle	ene	12		2.2	2.2	
o-Xylene		4.0		0.87	0.87	
Bromoform		2.1	U	2.1	2.1	
methyl isobutyl ket	tone	3.5		2.0	2.0	
1,1,2,2-Tetrachlor	oethane	1.4	U	1.4	1.4	
4-Ethyltoluene		1.1		0.98	0.98	
1,3,5-Trimethylber	nzene	1.3		0.98	0.98	
Methyl Butyl Ketor	ne (2-Hexanone)	2.0	U	2.0	2.0	
Chlorobenzene		0.92	U	0.92	0.92	
Styrene		0.92		0.85	0.85	
1,3-Dichlorobenze	ne	1.2	U	1.2	1.2	
1,4-Dichlorobenze	ne	1.2	U	1.2	1.2	
1,2-Dichlorobenze	ne	1.2	U	1.2	1.2	
1,2,4-Trichloroben	zene	3.7	U	3.7	3.7	
1,2,3-Trichloroben	zene	1.5	U	1.5	1.5	

200 mL

Client: O'Brien & Gere Inc of North America

Job Number: 200-20018-1

Sdg Number: 200-20018

Client Sample ID: AMSF-22-SS-120613

12/28/2013 0334

Prep Date:

Lab Sample ID: 200-20018-4 Date Sampled: 12/06/2013 1410

Client Matrix: Air Date Received: 12/11/2013 1130

Injection Volume:

TO-15 Analysis Method: CHW.i Analysis Batch: 200-66552 Instrument ID: Prep Method: Summa Canister Prep Batch: N/A Lab File ID: wakj20.d Dilution: 45.2 Initial Weight/Volume: 28 mL Analysis Date: 12/28/2013 0334 Final Weight/Volume: 200 mL

Analyte Result (ppb v/v) Qualifier RL RL U 23 23 Dichlorodifluoromethane 23 U 9.0 1,2-Dichlorotetrafluoroethane 9.0 9.0 Vinyl chloride 9.0 U 9.0 9.0 9.0 U 9.0 9.0 1.3-Butadiene Chloromethane 23 U 23 23 Bromomethane U 9.0 9.0 9.0 U 23 23 23 Chloroethane Bromoethene(Vinyl Bromide) 9.0 U 9.0 9.0 Trichlorofluoromethane U 9.0 9.0 9.0 1,1-Dichloroethene 1300 9.0 9.0 23 U 23 23 3-Chloropropene U 9.0 9.0 Freon TF 9.0 Methylene Chloride 23 U 23 23 Methyl tert-butyl ether 9.0 U 9.0 9.0 Acetone 230 U 230 230 trans-1,2-Dichloroethene 9.0 U 9.0 9.0 n-Hexane 9.0 U 9.0 9.0 1,1-Dichloroethane 210 9.0 9.0 U Carbon disulfide 23 23 23 cis-1,2-Dichloroethene 47 9.0 9.0 Chloroform 9.0 U 9.0 9.0 9.0 1,1,1-Trichloroethane 170 9.0 U Cyclohexane 9.0 9.0 9.0 Carbon tetrachloride 9.0 U 9.0 9.0 23 U 23 23 Methyl Ethyl Ketone U Benzene 9.0 9.0 9.0 U 9.0 1,2-Dichloroethane 9.0 9.0 U n-Heptane 9.0 9.0 9.0 Trichloroethene 120 9.0 9.0 U 1,2-Dichloropropane 9.0 9.0 9.0 Bromodichloromethane U 9.0 9.0 9.0 cis-1,3-Dichloropropene 90 U 9.0 9.0 Toluene 9.0 U 9.0 9.0 trans-1,3-Dichloropropene 9.0 U 9.0 9.0 1,1,2-Trichloroethane 100 9.0 9.0 Tetrachloroethene 1200 9.0 9.0 U Dibromochloromethane 9.0 9.0 9.0 1,2-Dibromoethane 9.0 U 9.0 9.0 9.0 9.0 Ethylbenzene 13 1,4-Dioxane 230 U 230 230 m-Xylene & p-Xylene 40 23 23 o-Xylene 29 9.0 9.0 **Bromoform** 9.0 U 9.0 9.0 methyl isobutyl ketone 23 U 23 23 U 1,1,2,2-Tetrachloroethane 9.0 9.0 9.0

4-Ethyltoluene

U

9.0

9.0

9.0

Client: O'Brien & Gere Inc of North America Job Number: 200-20018-1

Sdg Number: 200-20018

Client Sample ID: AMSF-22-SS-120613

Lab Sample ID: 200-20018-4 Date Sampled: 12/06/2013 1410

Client Matrix: Date Received: 12/11/2013 1130 Air

		TO-15 Volatile Organic	Compounds i	n Ambien	t Air		
Analysis Method: Prep Method: Dilution: Analysis Date:	ethod: Summa Canister Prep Batch: N/A : 45.2		200-66552 N/A	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:		CHW.i wakj20.d 28 mL 200 mL	
Prep Date:	12/28/2013 0334				Injection Volume:	200 mL	
Analyte		Result (p	pb v/v)	Qualifier	RL	RL	
1,3,5-Trimethylbenz	zene	9.0	· · ·	U	9.0	9.0	
Methyl Butyl Ketone		23		U	23	23	
Chlorobenzene	,	9.0		U	9.0	9.0	
Styrene		9.0		U	9.0	9.0	
1,3-Dichlorobenzen	е	9.0		U	9.0	9.0	
,4-Dichlorobenzen	е	9.0		U	9.0	9.0	
I,2-Dichlorobenzen	е	9.0		U	9.0	9.0	
1,2,4-Trichlorobenz	ene	23		U	23	23	
1,2,3-Trichlorobenz	ene	9.0		U	9.0	9.0	
Analyte		Result (u	g/m3)	Qualifier	· RL	RL	
Dichlorodifluoromet	hane	110	- /	U	110	110	
1,2-Dichlorotetraflu		63		Ü	63	63	
/inyl chloride		23		U	23	23	
,3-Butadiene		20		U	20	20	
Chloromethane		47		U	47	47	
Bromomethane		35		Ū	35	35	
Chloroethane		60		Ü	60	60	
Bromoethene(Vinyl	Bromide)	40		U	40	40	
richlorofluorometh		51		Ü	51	51	
,1-Dichloroethene		5100			36	36	
3-Chloropropene		71		U	71	71	
Freon TF		69		U	69	69	
Methylene Chloride		79		U	79	79	
Methyl tert-butyl eth		33		U	33	33	
Acetone		540		U	540	540	
rans-1,2-Dichloroet	thene	36		U	36	36	
-Hexane	-	32		Ü	32	32	
1,1-Dichloroethane		840			37	37	
Carbon disulfide		70		U	70	70	
cis-1,2-Dichloroethe	ene	190			36	36	
Chloroform		44		U	44	44	
I,1,1-Trichloroethar	ne	910		-	49	49	
Cyclohexane		31		U	31	31	
Carbon tetrachlorid	е	57		Ü	57	57	
Methyl Ethyl Ketone		67		U	67	67	
Benzene		29		Ü	29	29	
,2-Dichloroethane		37		U	37	37	
n-Heptane		37		Ü	37	37	
richloroethene		640		-	49	49	
1,2-Dichloropropan	е	42		U	42	42	
Bromodichlorometh		61		U	61	61	
cis-1,3-Dichloroprop		41		Ü	41	41	
Foluene		34		Ü	34	34	
rans-1,3-Dichlorop	ropene	41		U	41	41	
1,1,2-Trichloroethar		550		_	49	49	

Client: O'Brien & Gere Inc of North America Job Number: 200-20018-1

Sdg Number: 200-20018

AMSF-22-SS-120613 Client Sample ID:

Lab Sample ID: 200-20018-4 Date Sampled: 12/06/2013 1410

Client Matrix: Air Date Received: 12/11/2013 1130

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 200-66552 Instrument ID: CHW.i Prep Method: Summa Canister Prep Batch: N/A Lab File ID: wakj20.d

Dilution: 45.2

28 mL Initial Weight/Volume: Analysis Date: 12/28/2013 0334 Final Weight/Volume: 200 mL

Prep Date:	12/28/2013 0334		Injec	tion Volume:	200 mL	
Analyte		Result (ug/m3)	Qualifier	RL	RL	
Tetrachloroethene		8100		61	61	
Dibromochlorometha	ane	77	U	77	77	
1,2-Dibromoethane		69	U	69	69	
Ethylbenzene		54		39	39	
1,4-Dioxane		810	U	810	810	
m-Xylene & p-Xylen	e	170		98	98	
o-Xylene		130		39	39	
Bromoform		93	U	93	93	
methyl isobutyl keto	ne	93	U	93	93	
1,1,2,2-Tetrachloroe	ethane	62	U	62	62	
4-Ethyltoluene		44	U	44	44	
1,3,5-Trimethylbenz	ene	44	U	44	44	
Methyl Butyl Ketone	(2-Hexanone)	93	U	93	93	
Chlorobenzene		42	U	42	42	
Styrene		39	U	39	39	
1,3-Dichlorobenzene	Э	54	U	54	54	
1,4-Dichlorobenzene	е	54	U	54	54	
1,2-Dichlorobenzene	е	54	U	54	54	
1,2,4-Trichlorobenze	ene	170	U	170	170	
1,2,3-Trichlorobenze	ene	67	U	67	67	

Client: O'Brien & Gere Inc of North America

Job Number: 200-20018-1

Sdg Number: 200-20018

Client Sample ID: AMSF-05-IA-120613

Lab Sample ID: 200-20018-5 Date Sampled: 12/06/2013 1327

Client Matrix: Air Date Received: 12/11/2013 1130

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 200-66552 CHW.i Analysis Batch: Instrument ID: Prep Method: Summa Canister Prep Batch: N/A Lab File ID: wakj15.d Dilution: Initial Weight/Volume: 200 mL 1.0

Analysis Date: 12/27/2013 2322 Final Weight/Volume: 200 mL
Prep Date: 12/27/2013 2322 Injection Volume: 200 mL

Analyte Res	sult (ppb v/v)	Qualifier	RL	RL
Dichlorodifluoromethane 0.55	5		0.50	0.50
1,2-Dichlorotetrafluoroethane 0.20) (J	0.20	0.20
Vinyl chloride 0.04	10 L	J	0.040	0.040
1,3-Butadiene 0.20) (J	0.20	0.20
Chloromethane 4.1			0.50	0.50
Bromomethane 0.20) (J	0.20	0.20
Chloroethane 0.50) (J	0.50	0.50
Bromoethene(Vinyl Bromide) 0.20) (J	0.20	0.20
Trichlorofluoromethane 3.1			0.20	0.20
1,1-Dichloroethene 0.20) (J	0.20	0.20
3-Chloropropene 0.50) (J	0.50	0.50
Freon TF 0.20) (J	0.20	0.20
Methylene Chloride 0.50) (J	0.50	0.50
Methyl tert-butyl ether 0.20) (J	0.20	0.20
Acetone 310	E		5.0	5.0
trans-1,2-Dichloroethene 0.20) (J	0.20	0.20
n-Hexane 1.6			0.20	0.20
1,1-Dichloroethane 0.20) (J	0.20	0.20
Carbon disulfide 0.50) (J	0.50	0.50
cis-1,2-Dichloroethene 0.20) (J	0.20	0.20
Chloroform 0.20) (J	0.20	0.20
1,1,1-Trichloroethane 0.86	3		0.20	0.20
Cyclohexane 1.0			0.20	0.20
Carbon tetrachloride 0.08	31		0.040	0.040
Methyl Ethyl Ketone 15			0.50	0.50
Benzene 0.79	9		0.20	0.20
1,2-Dichloroethane 0.20) (J	0.20	0.20
n-Heptane 2.7			0.20	0.20
Trichloroethene 0.04	10 L	J	0.040	0.040
1,2-Dichloropropane 0.20) (0.20
Bromodichloromethane 0.20) (J	0.20	0.20
cis-1,3-Dichloropropene 0.20) (0.20
Toluene 8.9				0.20
trans-1,3-Dichloropropene 0.20			0.20	0.20
1,1,2-Trichloroethane 0.20) (0.20
Tetrachloroethene 0.65			0.040	0.040
Dibromochloromethane 0.20) (0.20
1,2-Dibromoethane 0.20) (0.20
Ethylbenzene 0.39	9			0.20
1,4-Dioxane 5.0	L			5.0
m-Xylene & p-Xylene 1.4				0.50
o-Xylene 0.47				0.20
Bromoform 0.20		J	0.20	0.20
methyl isobutyl ketone 0.70				0.50
1,1,2,2-Tetrachloroethane 0.20				0.20
4-Ethyltoluene 0.20) (J	0.20	0.20

Client: O'Brien & Gere Inc of North America Job Number: 200-20018-1

Sdg Number: 200-20018

Client Sample ID: AMSF-05-IA-120613

Lab Sample ID: 200-20018-5 Date Sampled: 12/06/2013 1327

Client Matrix: Date Received: 12/11/2013 1130 Air

		TO-15 Volatile Organic	Compounds	II Allibieli	IL AII		
Analysis Method:	TO-15	Analysis Batch: 200-66552 Instrument ID:		Instrument ID:	CHW.i		
Prep Method:	Summa Canister	Prep Batch:	N/A		Lab File ID:	wakj15.d	
Dilution:	1.0				Initial Weight/Volume:	200 mL	
Analysis Date:	12/27/2013 2322				Final Weight/Volume:	200 mL	
Prep Date:	12/27/2013 2322				Injection Volume:	200 mL	
					,		
Analyte		Result (p	pb v/v)	Qualifier	· RL	RL	
,3,5-Trimethylbenz	zene	0.20		U	0.20	0.20	
lethyl Butyl Ketone	e (2-Hexanone)	0.50		U	0.50	0.50	
Chlorobenzene		0.20		U	0.20	0.20	
Styrene		0.27			0.20	0.20	
,3-Dichlorobenzen	е	0.20		U	0.20	0.20	
,4-Dichlorobenzen	е	0.20		U	0.20	0.20	
,2-Dichlorobenzen	е	0.20		U	0.20	0.20	
,2,4-Trichlorobenz	ene	0.50		U	0.50	0.50	
,2,3-Trichlorobenz	ene	0.20		U	0.20	0.20	
ınalyte		Result (u	a/m3)	Qualifier	· RL	RL	
inalyte Pichlorodifluoromet	hane	2.7	9/1110/	Qualifici	2.5	2.5	
,2-Dichlorotetraflu		1.4		U	1.4	2.5 1.4	
,z-Dichlorotetrandt /inyl chloride	or oct name	0.10		U	0.10	0.10	
,3-Butadiene		0.10		U	0.10	0.10	
,s-butadierie Chloromethane		8.4		J	1.0	1.0	
romomethane		8.4 0.78		U	0.78	0.78	
Chloroethane		1.3		U	1.3	1.3	
	Bromide)	0.87		U	0.87	1.3 0.87	
romoethene(Vinyl richlorofluorometh		0.87 17		U	0.87 1.1	0.87 1.1	
,1-Dichloroethene	alic	0.79		U	0.79	0.79	
		0.79 1.6		U	0.79 1.6	0.79 1.6	
-Chloropropene reon TF						1.5	
		1.5 1.7		U	1.5 1.7	1.5 1.7	
Methylene Chloride				U			
Methyl tert-butyl eth	I C I	0.72 740		U	0.72 12	0.72 12	
cetone	thana			E			
ans-1,2-Dichloroe	uieile	0.79		U	0.79 0.70	0.79	
-Hexane		5.6				0.70	
,1-Dichloroethane		0.81		U	0.81	0.81	
Carbon disulfide	200	1.6		U	1.6	1.6	
s-1,2-Dichloroethe	tile .	0.79		U	0.79	0.79	
hloroform	20	0.98		U	0.98	0.98	
,1,1-Trichloroethar	IE	4.7			1.1	1.1	
Syclohexane	•	3.4			0.69	0.69	
arbon tetrachlorid		0.51			0.25	0.25	
lethyl Ethyl Ketone	;	45			1.5	1.5	
enzene		2.5			0.64	0.64	
,2-Dichloroethane		0.81		U	0.81	0.81	
-Heptane		11			0.82	0.82	
richloroethene	_	0.21		U	0.21	0.21	
,2-Dichloropropan		0.92		U	0.92	0.92	
romodichlorometh		1.3		U	1.3	1.3	
is-1,3-Dichloroprop	pene	0.91		U	0.91	0.91	
oluene		34			0.75	0.75	
rans-1,3-Dichlorop		0.91		U	0.91	0.91	
,1,2-Trichloroethar	ne	1.1		U	1.1	1.1	

Client: O'Brien & Gere Inc of North America

Job Number: 200-20018-1

Sdg Number: 200-20018

Client Sample ID: AMSF-05-IA-120613

Lab Sample ID: 200-20018-5 Date Sampled: 12/06/2013 1327

Client Matrix: Air Date Received: 12/11/2013 1130

TO-15 CHW.i Analysis Method: Analysis Batch: 200-66552 Instrument ID: Prep Method: Summa Canister Prep Batch: N/A Lab File ID: wakj15.d Dilution: Initial Weight/Volume: 200 mL 1.0

 Analysis Date:
 12/27/2013 2322
 Final Weight/Volume:
 200 mL

 Prep Date:
 12/27/2013 2322
 Injection Volume:
 200 mL

1.5

Result (ug/m3) Qualifier Analyte RL RL Tetrachloroethene 4.4 0.27 0.27 Dibromochloromethane U 1.7 1.7 1.7 U 1,2-Dibromoethane 1.5 1.5 1.5 Ethylbenzene 1.7 0.87 0.87 U 1,4-Dioxane 18 18 18 2.2 m-Xylene & p-Xylene 6.3 2.2 0.87 0.87 o-Xylene 2.1 U Bromoform 2.1 2.1 2.1 methyl isobutyl ketone 2.9 2.0 2.0 U 1,1,2,2-Tetrachloroethane 1.4 1.4 1.4 4-Ethyltoluene 0.98 U 0.98 0.98 1,3,5-Trimethylbenzene U 0.98 0.98 0.98 Methyl Butyl Ketone (2-Hexanone) U 2.0 2.0 2.0 Chlorobenzene 0.92 U 0.92 0.92 Styrene 1.1 0.85 0.85 U 1,3-Dichlorobenzene 1.2 1.2 1.2 U 1.2 1,4-Dichlorobenzene 1.2 1.2 U 1.2 1.2 1,2-Dichlorobenzene 1.2 3.7 3.7 1,2,4-Trichlorobenzene 3.7 U

U

1.5

1.5

1,2,3-Trichlorobenzene

Client: O'Brien & Gere Inc of North America Job Number: 200-20018-1

Sdg Number: 200-20018

Client Sample ID: AMSF-05-SS-120613

Lab Sample ID: 200-20018-6 Date Sampled: 12/06/2013 1441

Client Matrix: Date Received: 12/11/2013 1130 Air

TO-15 Volatile	Organic	Compound	de in	Ambient Air	

Analysis Method:	TO-15	Analysis Batch:	200-66552	Instrument ID:	CHW.i
Prep Method:	Summa Canister	Prep Batch:	N/A	Lab File ID:	wakj21.d
Dilution:	107			Initial Weight/Volume:	30 mL
Analysis Date:	12/28/2013 0423			Final Weight/Volume:	200 mL

Injection Volume: Prep Date: 12/28/2013 0423 200 mL

Analyte	Result (ppb v/v)	Qualifier	RL	RL
Dichlorodifluoromethane	54	U	54	54
1,2-Dichlorotetrafluoroethane	21	U	21	21
Vinyl chloride	21	U	21	21
1,3-Butadiene	21	U	21	21
Chloromethane	54	U	54	54
Bromomethane	21	U	21	21
Chloroethane	54	U	54	54
Bromoethene(Vinyl Bromide)	21	U	21	21
Trichlorofluoromethane	21	U	21	21
1,1-Dichloroethene	220		21	21
3-Chloropropene	54	U	54	54
Freon TF	21	U	21	21
Methylene Chloride	54	U	54	54
Methyl tert-butyl ether	21	U	21	21
Acetone	540	U	540	540
trans-1,2-Dichloroethene	21	U	21	21
n-Hexane	21	U	21	21
1,1-Dichloroethane	84		21	21
Carbon disulfide	54	U	54	54
cis-1,2-Dichloroethene	21	U	21	21
Chloroform	21	U	21	21
1,1,1-Trichloroethane	4100		21	21
Cyclohexane	21	U	21	21
Carbon tetrachloride	21	U	21	21
Methyl Ethyl Ketone	54	U	54	54
Benzene	21	U	21	21
1,2-Dichloroethane	21	U	21	21
n-Heptane	21	U	21	21
Trichloroethene	30		21	21
1,2-Dichloropropane	21	U	21	21
Bromodichloromethane	21	U	21	21
cis-1,3-Dichloropropene	21	U	21	21
Toluene	21	U	21	21
trans-1,3-Dichloropropene	21	U	21	21
1,1,2-Trichloroethane	21	U	21	21
Tetrachloroethene	410		21	21
Dibromochloromethane	21	U	21	21
1,2-Dibromoethane	21	U	21	21
Ethylbenzene	3400		21	21
1,4-Dioxane	540	U	540	540
m-Xylene & p-Xylene	13000	E	54	54
o-Xylene	5500	E	21	21
Bromoform	21	U	21	21
methyl isobutyl ketone	54	U	54	54
1,1,2,2-Tetrachloroethane	21	U	21	21
4-Ethyltoluene	21	U	21	21

Client: O'Brien & Gere Inc of North America Job Number: 200-20018-1

Sdg Number: 200-20018

Client Sample ID: AMSF-05-SS-120613

Lab Sample ID: 200-20018-6 Date Sampled: 12/06/2013 1441

Client Matrix: Date Received: 12/11/2013 1130 Air

		TO-15 Volatile Organic	Compounds i	n Ambien	t Air	
Analysis Method:	TO-15	Analysis Batch: 200-66552 Instrume		Instrument ID:	CHW.i	
Prep Method:	Summa Canister	Prep Batch:	N/A		Lab File ID:	wakj21.d
Dilution:	107	•			Initial Weight/Volume:	30 mL
Analysis Date:	12/28/2013 0423				Final Weight/Volume:	200 mL
Prep Date:	12/28/2013 0423				Injection Volume:	200 mL
Top Bate.	12/20/2010 0420				injection volume.	200 IIIL
Analyte		Result (p	pb v/v)	Qualifier	RL	RL
1,3,5-Trimethylbenz	zene	21		U	21	21
Methyl Butyl Ketone	e (2-Hexanone)	54		U	54	54
Chlorobenzene		21		U	21	21
Styrene		21		U	21	21
,3-Dichlorobenzen	е	21		U	21	21
,4-Dichlorobenzen	е	21		U	21	21
,2-Dichlorobenzen	е	21		U	21	21
,2,4-Trichlorobenz	ene	54		U	54	54
,2,3-Trichlorobenz	ene	21		U	21	21
Analyte		Result (u	g/m3)	Qualifier	RL	RL
Dichlorodifluoromet	hane	260	- 	U	260	260
,2-Dichlorotetraflu		150		Ü	150	150
/inyl chloride		55		Ū	55	55
,3-Butadiene		47		Ü	47	47
Chloromethane		110		U	110	110
Bromomethane		83		U	83	83
Chloroethane		140		U	140	140
Bromoethene(Vinyl	Bromide)	94		U	94	94
richlorofluorometh		120		U	120	120
,1-Dichloroethene		860			85	85
-Chloropropene		170		U	170	170
reon TF		160		U	160	160
Methylene Chloride		190		U	190	190
nethyl tert-butyl eth	er	77		U	77	77
cetone		1300		U	1300	1300
ans-1,2-Dichloroe	thene	85		U	85	85
-Hexane		75		U	75	75
,1-Dichloroethane		340			87	87
Carbon disulfide		170		U	170	170
is-1,2-Dichloroethe	ene	85		U	85	85
Chloroform		100		U	100	100
,1,1-Trichloroethar	ne	22000			120	120
Cyclohexane		74		U	74	74
Carbon tetrachlorid		130		U	130	130
Methyl Ethyl Ketone)	160		U	160	160
enzene		68		U	68	68
,2-Dichloroethane		87		U	87	87
-Heptane		88		U	88	88
richloroethene		160			110	110
,2-Dichloropropan	е	99		U	99	99
Bromodichlorometh	ane	140		U	140	140
cis-1,3-Dichloroprop	oene	97		U	97	97
oluene		81		U	81	81
rans-1,3-Dichlorop		97		U	97	97
I,1,2-Trichloroethar	ne	120		U	120	120

Client: O'Brien & Gere Inc of North America Job Number: 200-20018-1

Sdg Number: 200-20018

Client Sample ID: AMSF-05-SS-120613

Lab Sample ID: 200-20018-6 Date Sampled: 12/06/2013 1441

Client Matrix: Air Date Received: 12/11/2013 1130

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 200-66552 Instrument ID: CHW.i Prep Method: Summa Canister Prep Batch: N/A Lab File ID: wakj21.d

Dilution: 107

Initial Weight/Volume: 30 mL Analysis Date: 12/28/2013 0423 Final Weight/Volume: 200 mL 12/28/2013 0423 Injection Volume: 200 ml Pren Date:

Prep Date: 12/28/2013 0423			200 mL	
Result (ug/m3)	Qualifier	RL	RL	
2800		150	150	
180	U	180	180	
160	U	160	160	
15000		93	93	
1900	U	1900	1900	
55000	E	230	230	
24000	E	93	93	
220	U	220	220	
220	U	220	220	
150	U	150	150	
110	U	110	110	
110	U	110	110	
220	U	220	220	
99	U	99	99	
91	U	91	91	
130	U	130	130	
130	U	130	130	
130	U	130	130	
400	U	400	400	
160	U	160	160	
	2800 180 160 15000 1900 55000 24000 220 220 150 110 110 220 99 91 130 130 130 400	Result (ug/m3) Qualifier 2800 180 U 160 U 15000 1900 U 55000 E 24000 E 220 U 220 U 150 U 110 U 110 U 220 U 99 U 91 U 130 U 130 U 130 U 400 U	2800	Result (ug/m3) Qualifier RL RL 2800 150 150 180 U 180 180 160 U 160 160 15000 93 93 1900 U 1900 1900 55000 E 230 230 24000 E 93 93 220 U 220 220 220 U 220 220 150 U 150 150 110 U 110 110 110 U 110 110 110 U 110 110 120 U 220 220 99 U 99 99 91 U 91 91 130 130 130 130 U 130 130 130 U 400 400

200 mL

Client: O'Brien & Gere Inc of North America

Job Number: 200-20018-1

Sdg Number: 200-20018

Client Sample ID: AMSF-05-SSD-120613

12/28/2013 0511

Prep Date:

Lab Sample ID: 200-20018-7 Date Sampled: 12/06/2013 1441

Client Matrix: Air Date Received: 12/11/2013 1130

TO-15 Volatile Organic Compounds in Ambient Air

Injection Volume:

Analysis Method: TO-15 Analysis Batch: 200-66552 Instrument ID: CHW.i Prep Method: Summa Canister Prep Batch: N/A Lab File ID: wakj22.d Dilution: Initial Weight/Volume: 28 mL 102 Analysis Date: 12/28/2013 0511 Final Weight/Volume: 200 mL

Analyte	Result (ppb v/v)	Qualifier	RL	RL
Dichlorodifluoromethane	51	U	51	51
1,2-Dichlorotetrafluoroethane	20	U	20	20
Vinyl chloride	20	U	20	20
1,3-Butadiene	20	U	20	20
Chloromethane	51	U	51	51
Bromomethane	20	U	20	20
Chloroethane	51	U	51	51
Bromoethene(Vinyl Bromide)	20	U	20	20
Trichlorofluoromethane	20	U	20	20
1,1-Dichloroethene	160		20	20
3-Chloropropene	51	U	51	51
Freon TF	20	U	20	20
Methylene Chloride	51	U	51	51
Methyl tert-butyl ether	20	U	20	20
Acetone	510	U	510	510
trans-1,2-Dichloroethene	20	U	20	20
n-Hexane	20	U	20	20
1,1-Dichloroethane	63		20	20
Carbon disulfide	51	U	51	51
cis-1,2-Dichloroethene	20	U	20	20
Chloroform	20	U	20	20
1,1,1-Trichloroethane	3100		20	20
Cyclohexane	20	U	20	20
Carbon tetrachloride	20	U	20	20
Methyl Ethyl Ketone	51	U	51	51
Benzene	20	U	20	20
1,2-Dichloroethane	20	U	20	20
n-Heptane	20	U	20	20
Trichloroethene	22		20	20
1,2-Dichloropropane	20	U	20	20
Bromodichloromethane	20	Ü	20	20
cis-1,3-Dichloropropene	20	Ü	20	20
Toluene	20	Ü	20	20
trans-1,3-Dichloropropene	20	Ü	20	20
1,1,2-Trichloroethane	20	Ü	20	20
Tetrachloroethene	310	-	20	20
Dibromochloromethane	20	U	20	20
1,2-Dibromoethane	20	Ü	20	20
Ethylbenzene	2100	-	20	20
1,4-Dioxane	510	U	510	510
m-Xylene & p-Xylene	8500	E	51	51
o-Xylene	3700	_	20	20
Bromoform	20	U	20	20
methyl isobutyl ketone	51	Ü	51	51
1,1,2,2-Tetrachloroethane	20	U	20	20
1, 1, 2, 2-1 Guacinoroguiane	20	U	20	20

4-Ethyltoluene

20

U

20

20

Client: O'Brien & Gere Inc of North America Job Number: 200-20018-1

Sdg Number: 200-20018

Client Sample ID: AMSF-05-SSD-120613

Lab Sample ID: 200-20018-7 Date Sampled: 12/06/2013 1441

Client Matrix: Date Received: 12/11/2013 1130 Air

		TO-15 Volatile Organic	Compounds i	n Ambient	Air		
Analysis Method:	TO-15	Analysis Batch:	200-66552	ı	nstrument ID:	CHW.i	
Prep Method:	Summa Canister	Prep Batch:	N/A	I	_ab File ID:	wakj22.d	
Dilution:	102	- p =	-		nitial Weight/Volume:	28 mL	
Analysis Date:	12/28/2013 0511				Final Weight/Volume:	200 mL	
Prep Date:	12/28/2013 0511						
тер Бате.	12/20/2013 0311			ı	njection Volume:	200 mL	
Analyte		Result (p	pb v/v)	Qualifier	RL	RL	
1,3,5-Trimethylbenz	zene	20		U	20	20	
Methyl Butyl Ketone	e (2-Hexanone)	51		U	51	51	
Chlorobenzene		20		U	20	20	
Styrene		150			20	20	
,3-Dichlorobenzen	е	20		U	20	20	
,4-Dichlorobenzen	е	20		U	20	20	
,2-Dichlorobenzen	е	20		U	20	20	
,2,4-Trichlorobenz	ene	51		U	51	51	
,2,3-Trichlorobenz	ene	20		U	20	20	
Analyte		Result (u	g/m3)	Qualifier	RL	RL	
Dichlorodifluoromet	hane	250	-	U	250	250	
,2-Dichlorotetraflu		140		U	140	140	
/inyl chloride		52		U	52	52	
,3-Butadiene		45		U	45	45	
Chloromethane		110		U	110	110	
Bromomethane		79		U	79	79	
Chloroethane		130		U	130	130	
romoethene(Vinyl	Bromide)	89		U	89	89	
richlorofluorometh		110		U	110	110	
,1-Dichloroethene		650			81	81	
-Chloropropene		160		U	160	160	
reon TF		160		U	160	160	
Methylene Chloride		180		U	180	180	
Methyl tert-butyl eth	ner	74		U	74	74	
cetone		1200		U	1200	1200	
ans-1,2-Dichloroe	thene	81		U	81	81	
n-Hexane		72		U	72	72	
,1-Dichloroethane		260			83	83	
Carbon disulfide		160		U	160	160	
sis-1,2-Dichloroethe	ene	81		U	81	81	
Chloroform		100		U	100	100	
,1,1-Trichloroethar	ne	17000			110	110	
Cyclohexane		70		U	70	70	
Carbon tetrachlorid	е	130		U	130	130	
lethyl Ethyl Ketone	e	150		U	150	150	
Benzene		65		U	65	65	
,2-Dichloroethane		83		U	83	83	
-Heptane		84		U	84	84	
richloroethene		120			110	110	
,2-Dichloropropan	е	94		U	94	94	
Bromodichlorometh	ane	140		U	140	140	
is-1,3-Dichloropro	oene	93		U	93	93	
oluene		77		U	77	77	
rans-1,3-Dichlorop	ropene	93		U	93	93	
,1,2-Trichloroethar	ne	110		U	110	110	

Client: O'Brien & Gere Inc of North America Job Number: 200-20018-1

Sdg Number: 200-20018

AMSF-05-SSD-120613 Client Sample ID:

Lab Sample ID: 200-20018-7 Date Sampled: 12/06/2013 1441

Client Matrix: Air Date Received: 12/11/2013 1130

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 200-66552 Instrument ID: CHW.i Prep Method: Summa Canister Prep Batch: N/A Lab File ID: wakj22.d

Dilution: 102

Initial Weight/Volume: 28 mL Analysis Date: 12/28/2013 0511 Final Weight/Volume: 200 mL

Prep Date: 12/28/2013	0511		Injection \	/olume: 200	mL
Analyte	F	Result (ug/m3)	Qualifier	RL	RL
Tetrachloroethene	2	100		140	140
Dibromochloromethane	1	70	U	170	170
1,2-Dibromoethane	1	60	U	160	160
Ethylbenzene	g	200		89	89
1,4-Dioxane	1	800	U	1800	1800
m-Xylene & p-Xylene	3	7000	E	220	220
o-Xylene	1	6000		89	89
Bromoform	2	10	U	210	210
methyl isobutyl ketone	2	10	U	210	210
1,1,2,2-Tetrachloroethane	1	40	U	140	140
4-Ethyltoluene	1	00	U	100	100
1,3,5-Trimethylbenzene	1	00	U	100	100
Methyl Butyl Ketone (2-Hexanone)	2	10	U	210	210
Chlorobenzene	g	14	U	94	94
Styrene	6	30		87	87
1,3-Dichlorobenzene	1	20	U	120	120
1,4-Dichlorobenzene	1	20	U	120	120
1,2-Dichlorobenzene	1	20	U	120	120
1,2,4-Trichlorobenzene	3	80	U	380	380
1,2,3-Trichlorobenzene	1	50	U	150	150

Client: O'Brien & Gere Inc of North America

Job Number: 200-20018-1

Sdg Number: 200-20018

Client Sample ID: AMSF-06-IA-120613

Lab Sample ID: 200-20018-8 Date Sampled: 12/06/2013 1414

Client Matrix: Air Date Received: 12/11/2013 1130

Analysis Method: TO-15 CHW.i Analysis Batch: 200-66552 Instrument ID: Prep Method: Summa Canister Prep Batch: N/A Lab File ID: wakj16.d Dilution: 200 mL 1.0 Initial Weight/Volume:

 Analysis Date:
 12/28/2013 0014
 Final Weight/Volume:
 200 mL

 Prep Date:
 12/28/2013 0014
 Injection Volume:
 200 mL

Analyte	Result (ppb v/v)	Qualifier	RL	RL
Dichlorodifluoromethane	0.69		0.50	0.50
1,2-Dichlorotetrafluoroethane	0.20	U	0.20	0.20
Vinyl chloride	0.040	U	0.040	0.040
1,3-Butadiene	0.20	U	0.20	0.20
Chloromethane	0.68		0.50	0.50
Bromomethane	0.20	U	0.20	0.20
Chloroethane	0.50	U	0.50	0.50
Bromoethene(Vinyl Bromide)	0.20	U	0.20	0.20
Trichlorofluoromethane	3.5		0.20	0.20
1,1-Dichloroethene	0.21		0.20	0.20
3-Chloropropene	0.50	U	0.50	0.50
Freon TF	0.20	U	0.20	0.20
Methylene Chloride	0.66		0.50	0.50
Methyl tert-butyl ether	0.20	U	0.20	0.20
Acetone	560	E	5.0	5.0
trans-1,2-Dichloroethene	0.20	U	0.20	0.20
n-Hexane	4.6		0.20	0.20
1,1-Dichloroethane	0.20	U	0.20	0.20
Carbon disulfide	0.50	U	0.50	0.50
cis-1,2-Dichloroethene	0.20	U	0.20	0.20
Chloroform	0.20	U	0.20	0.20
1,1,1-Trichloroethane	1.7		0.20	0.20
Cyclohexane	2.4		0.20	0.20
Carbon tetrachloride	0.081		0.040	0.040
Methyl Ethyl Ketone	30		0.50	0.50
Benzene	1.5		0.20	0.20
1,2-Dichloroethane	0.20	U	0.20	0.20
n-Heptane	3.8		0.20	0.20
Trichloroethene	0.073		0.040	0.040
1,2-Dichloropropane	0.20	U	0.20	0.20
Bromodichloromethane	0.20	U	0.20	0.20
cis-1,3-Dichloropropene	0.20	U	0.20	0.20
Toluene	11		0.20	0.20
trans-1,3-Dichloropropene	0.20	U	0.20	0.20
1,1,2-Trichloroethane	0.20	U	0.20	0.20
Tetrachloroethene	1.4		0.040	0.040
Dibromochloromethane	0.20	U	0.20	0.20
1,2-Dibromoethane	0.20	U	0.20	0.20
Ethylbenzene	0.62		0.20	0.20
1,4-Dioxane	5.0	U	5.0	5.0
m-Xylene & p-Xylene	2.5		0.50	0.50
o-Xylene	0.86		0.20	0.20
Bromoform	0.20	U	0.20	0.20
methyl isobutyl ketone	0.74		0.50	0.50
1,1,2,2-Tetrachloroethane	0.20	U	0.20	0.20
4-Ethyltoluene	0.20		0.20	0.20

Client: O'Brien & Gere Inc of North America

Job Number: 200-20018-1

Sdg Number: 200-20018

Client Sample ID: AMSF-06-IA-120613

Lab Sample ID: 200-20018-8 Date Sampled: 12/06/2013 1414

Client Matrix: Air Date Received: 12/11/2013 1130

		TO-15 Volatile Organic	Compounds	n Ambien	t All		
Analysis Method:	TO-15	Analysis Batch:	200-66552		Instrument ID:	CHW.i	
Prep Method:	Summa Canister	Prep Batch:	N/A		Lab File ID:	wakj16.d	
Dilution:	1.0				Initial Weight/Volume:	200 mL	
Analysis Date:	12/28/2013 0014				Final Weight/Volume:	200 mL	
Prep Date:	12/28/2013 0014				Injection Volume:	200 mL	
					,		
Analyte		Result (p	pb v/v)	Qualifier	RL	RL	
,3,5-Trimethylbenz	zene	0.23			0.20	0.20	
Methyl Butyl Ketone	e (2-Hexanone)	0.50		U	0.50	0.50	
Chlorobenzene		0.20		U	0.20	0.20	
Styrene		0.20			0.20	0.20	
,3-Dichlorobenzen	е	0.20		U	0.20	0.20	
,4-Dichlorobenzen	е	0.20		U	0.20	0.20	
,2-Dichlorobenzen	е	0.20		U	0.20	0.20	
,2,4-Trichlorobenz	ene	0.50		U	0.50	0.50	
,2,3-Trichlorobenz	ene	0.20		U	0.20	0.20	
ınalyte		Result (u	a/m3)	Qualifier	· RL	RL	
inalyte Pichlorodifluoromet	hane	3.4	g, 1110 <i>)</i>	Qualifiel	2.5	2.5	
,2-Dichlorotetraflu		1.4		U	2.5 1.4	2.5 1.4	
,z-Dicfilorotetrandt 'inyl chloride	or oct name	0.10		U	0.10	0.10	
,3-Butadiene		0.10		U	0.10	0.10	
Chloromethane		1.4		J	1.0	1.0	
Fromomethane		0.78		U	0.78	0.78	
Chloroethane		1.3		U	1.3	1.3	
Bromoethene(Vinyl	Bromide)	0.87		U	0.87	0.87	
richlorofluorometh		20		U	1.1	1.1	
,1-Dichloroethene	ane	0.85			0.79	0.79	
-Chloropropene		1.6		U	1.6	1.6	
reon TF		1.5		U	1.5	1.5	
reon TF lethylene Chloride		2.3		J	1.7	1.7	
fethylene Chlonde fethyl tert-butyl eth		0.72		U	0.72	0.72	
netriyi tert-butyi etr Acetone	101	1300		E	12	12	
	thana	0.79		U	0.79	0.79	
ans-1,2-Dichloroef -Hexane	uiciic	16		U	0.79	0.79	
,1-Dichloroethane		0.81		U	0.70	0.70	
, r-Dichioroethane Carbon disulfide		1.6		U	1.6	1.6	
is-1,2-Dichloroethe	ano	0.79			0.79	0.79	
is-1,2-Dichloroethe Chloroform	SI IC	0.79		U U	0.79	0.79	
,1,1-Trichloroethar	20	9.1		U	1.1	1.1	
	IC					0.69	
Syclohexane Sarbon tetrachlorid	^	8.4 0.51			0.69 0.25	0.69 0.25	
		89			1.5	0.25 1.5	
lethyl Ethyl Ketone enzene	-	4.8			0.64	0.64	
enzene ,2-Dichloroethane				11			
•		0.81		U	0.81	0.81	
-Heptane		16			0.82	0.82	
richloroethene	•	0.39			0.21	0.21	
,2-Dichloropropan		0.92		U	0.92	0.92	
romodichlorometh		1.3		U	1.3	1.3	
is-1,3-Dichloroprop	pene	0.91		U	0.91	0.91	
oluene		42			0.75	0.75	
rans-1,3-Dichlorop		0.91		U	0.91	0.91	
,1,2-Trichloroethar	ne	1.1		U	1.1	1.1	

Client: O'Brien & Gere Inc of North America Job Number: 200-20018-1

Sdg Number: 200-20018

Client Sample ID: AMSF-06-IA-120613

Lab Sample ID: 200-20018-8 Date Sampled: 12/06/2013 1414

Client Matrix: Air Date Received: 12/11/2013 1130

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 200-66552 Instrument ID: CHW.i Prep Method: Summa Canister Prep Batch: N/A Lab File ID: wakj16.d Dilution: 200 mL 1.0 Initial Weight/Volume:

Analysis Date: 12/28/2013 0014 Final Weight/Volume: 200 mL Prep Date: 12/28/2013 0014 Injection Volume: 200 mL

Analyte	Result (ug/m3)	Qualifier	RL	RL
Tetrachloroethene	9.8		0.27	0.27
Dibromochloromethane	1.7	U	1.7	1.7
1,2-Dibromoethane	1.5	U	1.5	1.5
Ethylbenzene	2.7		0.87	0.87
1,4-Dioxane	18	U	18	18
m-Xylene & p-Xylene	11		2.2	2.2
o-Xylene	3.8		0.87	0.87
Bromoform	2.1	U	2.1	2.1
methyl isobutyl ketone	3.0		2.0	2.0
1,1,2,2-Tetrachloroethane	1.4	U	1.4	1.4
4-Ethyltoluene	0.98		0.98	0.98
1,3,5-Trimethylbenzene	1.1		0.98	0.98
Methyl Butyl Ketone (2-Hexanone)	2.0	U	2.0	2.0
Chlorobenzene	0.92	U	0.92	0.92
Styrene	0.85		0.85	0.85
1,3-Dichlorobenzene	1.2	U	1.2	1.2
1,4-Dichlorobenzene	1.2	U	1.2	1.2
1,2-Dichlorobenzene	1.2	U	1.2	1.2
1,2,4-Trichlorobenzene	3.7	U	3.7	3.7
1,2,3-Trichlorobenzene	1.5	U	1.5	1.5

Client: O'Brien & Gere Inc of North America

Job Number: 200-20018-1

Sdg Number: 200-20018

Sag Number: 200-20

Client Sample ID: AMSF-06-SS-120613

Lab Sample ID: 200-20018-9 Date Sampled: 12/06/2013 1414

Client Matrix: Air Date Received: 12/11/2013 1130

		TO-15 Volatile Organic	Compounds in An	nbient Air
. 411.	TO 45	Analosis Datalos	000 00550	

Analysis Method: TO-15 Analysis Batch: 200-66552 Instrument ID: CHW.i
Prep Method: Summa Canister Prep Batch: N/A Lab File ID: wakj23.d

 Dilution:
 20.4
 Initial Weight/Volume:
 27 mL

 Analysis Date:
 12/28/2013 0559
 Final Weight/Volume:
 200 mL

Analysis Date: 12/28/2013 0559 Final Weight/Volume: 200 mL

Prep Date: 12/28/2013 0559 Injection Volume: 200 mL

Analyte	Result (ppb v/v)	Qualifier	RL	RL
Dichlorodifluoromethane	10	U	10	10
1,2-Dichlorotetrafluoroethane	4.1	U	4.1	4.1
Vinyl chloride	4.1	U	4.1	4.1
1,3-Butadiene	4.1	U	4.1	4.1
Chloromethane	10	U	10	10
Bromomethane	4.1	U	4.1	4.1
Chloroethane	10	U	10	10
Bromoethene(Vinyl Bromide)	4.1	U	4.1	4.1
Trichlorofluoromethane	19		4.1	4.1
1,1-Dichloroethene	4.1	U	4.1	4.1
3-Chloropropene	10	U	10	10
Freon TF	4.1	U	4.1	4.1
Methylene Chloride	10	U	10	10
Methyl tert-butyl ether	4.1	U	4.1	4.1
Acetone	100	U	100	100
trans-1,2-Dichloroethene	4.1	U	4.1	4.1
n-Hexane	4.1	U	4.1	4.1
1,1-Dichloroethane	4.1	U	4.1	4.1
Carbon disulfide	24		10	10
cis-1,2-Dichloroethene	4.1	U	4.1	4.1
Chloroform	4.1	U	4.1	4.1
1,1,1-Trichloroethane	690		4.1	4.1
Cyclohexane	4.1	U	4.1	4.1
Carbon tetrachloride	4.1	U	4.1	4.1
Methyl Ethyl Ketone	10	U	10	10
Benzene	4.1	U	4.1	4.1
1,2-Dichloroethane	4.1	U	4.1	4.1
n-Heptane	4.1	U	4.1	4.1
Trichloroethene	4.1	U	4.1	4.1
1,2-Dichloropropane	4.1	U	4.1	4.1
Bromodichloromethane	4.1	U	4.1	4.1
cis-1,3-Dichloropropene	4.1	U	4.1	4.1
Toluene	6.0		4.1	4.1
trans-1,3-Dichloropropene	4.1	U	4.1	4.1
1,1,2-Trichloroethane	4.1	U	4.1	4.1
Tetrachloroethene	120		4.1	4.1
Dibromochloromethane	4.1	U	4.1	4.1
1,2-Dibromoethane	4.1	U	4.1	4.1
Ethylbenzene	1500	E	4.1	4.1
1,4-Dioxane	100	U	100	100
m-Xylene & p-Xylene	4200	E	10	10
o-Xylene	1500	E	4.1	4.1
Bromoform	4.1	U	4.1	4.1
methyl isobutyl ketone	10	U	10	10
1,1,2,2-Tetrachloroethane	4.1	U	4.1	4.1
4-Ethyltoluene	4.1	U	4.1	4.1

Client: O'Brien & Gere Inc of North America

Job Number: 200-20018-1

Sdg Number: 200-20018

Client Sample ID: AMSF-06-SS-120613

Lab Sample ID: 200-20018-9 Date Sampled: 12/06/2013 1414

Client Matrix: Air Date Received: 12/11/2013 1130

		TO-15 Volatile Organic	Compounds in	Ambien	t Air	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	TO-15 Summa Canister 20.4 12/28/2013 0559 12/28/2013 0559	Analysis Batch: Prep Batch:	200-66552 N/A		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	CHW.i wakj23.d 27 mL 200 mL 200 mL
Analyte		Result (p	nh v/v)	Qualifier	RL	RL
1,3,5-Trimethylben	7000	4.1	pb (///)	U	4.1	4.1
Methyl Butyl Keton		10		U	10	10
Chlorobenzene	e (2-i lexalione)	4.1		U	4.1	4.1
Styrene		4.1		U	4.1	4.1
3,3-Dichlorobenzen	10	4.1		U	4.1	4.1
1,4-Dichlorobenzen		4.1		U	4.1	4.1
1,4-Dichlorobenzen 1,2-Dichlorobenzen		4.1		U	4.1	4.1
1,2,4-Trichlorobenzen		10		U	10	10
1,2,4-Trichlorobenz 1,2,3-Trichlorobenz		4.1		U	4.1	4.1
ı,∠,⊍-TIICHIOTODENZ	.GHG	4.1		J	4.1	4.1
Analyte		Result (u	g/m3)	Qualifier		RL
Dichlorodifluoromet	thane	50		U	50	50
1,2-Dichlorotetraflu	oroethane	29		U	29	29
/inyl chloride		10		U	10	10
1,3-Butadiene		9.0		U	9.0	9.0
Chloromethane		21		U	21	21
Bromomethane		16		U	16	16
Chloroethane		27		U	27	27
Bromoethene(Vinyl	Bromide)	18		U	18	18
Frichlorofluorometh	ane	110			23	23
1,1-Dichloroethene		16		U	16	16
3-Chloropropene		32		U	32	32
Freon TF		31		U	31	31
Methylene Chloride)	35		U	35	35
Methyl tert-butyl eth	ner	15		U	15	15
Acetone		240		U	240	240
rans-1,2-Dichloroe	thene	16		U	16	16
n-Hexane		14		U	14	14
1,1-Dichloroethane		17		U	17	17
Carbon disulfide		75			32	32
cis-1,2-Dichloroethe	ene	16		U	16	16
Chloroform		20		U	20	20
1,1,1-Trichloroetha	ne	3800			22	22
Cyclohexane		14		U	14	14
Carbon tetrachlorid	е	26		U	26	26
Methyl Ethyl Ketone	е	30		U	30	30
Benzene		13		U	13	13
,2-Dichloroethane		17		U	17	17
n-Heptane		17		U	17	17
Frichloroethene		22		U	22	22
1,2-Dichloropropan	e	19		U	19	19
Bromodichlorometh		27		U	27	27
cis-1,3-Dichloropro		19		U	19	19
Toluene	•	23			15	15
trans-1,3-Dichlorop	ropene	19		U	19	19
, э ор	ne	22		U	22	22

Client: O'Brien & Gere Inc of North America Job Number: 200-20018-1

Sdg Number: 200-20018

AMSF-06-SS-120613 Client Sample ID:

Lab Sample ID: 200-20018-9 Date Sampled: 12/06/2013 1414

Client Matrix: Air Date Received: 12/11/2013 1130

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 200-66552 Instrument ID: CHW.i Prep Method: Summa Canister Prep Batch: N/A Lab File ID: wakj23.d

Dilution: 20.4

Initial Weight/Volume: 27 mL Analysis Date: 12/28/2013 0559 Final Weight/Volume: 200 mL Prep Date: 12/28/2013 0559 Injection Volume: 200 mL

12/20/2010 0000		mjoc	injection volume.		
Analyte	Result (ug/m3)	Qualifier	RL	RL	
Tetrachloroethene	790		28	28	
Dibromochloromethane	35	U	35	35	
1,2-Dibromoethane	31	U	31	31	
Ethylbenzene	6300	E	18	18	
1,4-Dioxane	370	U	370	370	
m-Xylene & p-Xylene	18000	E	44	44	
o-Xylene	6500	E	18	18	
Bromoform	42	U	42	42	
methyl isobutyl ketone	42	U	42	42	
1,1,2,2-Tetrachloroethane	28	U	28	28	
4-Ethyltoluene	20	U	20	20	
1,3,5-Trimethylbenzene	20	U	20	20	
Methyl Butyl Ketone (2-Hexanone)	42	U	42	42	
Chlorobenzene	19	U	19	19	
Styrene	17	U	17	17	
1,3-Dichlorobenzene	25	U	25	25	
1,4-Dichlorobenzene	25	U	25	25	
1,2-Dichlorobenzene	25	U	25	25	
1,2,4-Trichlorobenzene	76	U	76	76	
1,2,3-Trichlorobenzene	30	U	30	30	

Client: O'Brien & Gere Inc of North America

Job Number: 200-20018-1

Sdg Number: 200-20018

Client Sample ID: AMSF-24-IA-120613

Lab Sample ID: 200-20018-10 Date Sampled: 12/06/2013 1436

Client Matrix: Air Date Received: 12/11/2013 1130

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method:	TO-15	Analysis Batch:	200-66552	Instrument ID:	CHW.i
Prep Method:	Summa Canister	Prep Batch:	N/A	Lab File ID:	wakj17.d
Dilution:	1.0			Initial Weight/Volume:	200 mL
A 1 : D 1	10/00/0010 0105			E: 1347 : 1487 I	000

Analysis Date: 12/28/2013 0105 Final Weight/Volume: 200 mL
Prep Date: 12/28/2013 0105 Injection Volume: 200 mL

Analyte	Result (ppb v/v)	Qualifier	RL	RL
Dichlorodifluoromethane	0.50	U	0.50	0.50
1,2-Dichlorotetrafluoroethane	0.20	U	0.20	0.20
Vinyl chloride	0.040	U	0.040	0.040
1,3-Butadiene	0.20	U	0.20	0.20
Chloromethane	0.54		0.50	0.50
Bromomethane	0.20	U	0.20	0.20
Chloroethane	0.50	U	0.50	0.50
Bromoethene(Vinyl Bromide)	0.20	U	0.20	0.20
Trichlorofluoromethane	2.2		0.20	0.20
1,1-Dichloroethene	0.20	U	0.20	0.20
3-Chloropropene	0.50	U	0.50	0.50
Freon TF	0.20	U	0.20	0.20
Methylene Chloride	0.74		0.50	0.50
Methyl tert-butyl ether	0.20	U	0.20	0.20
Acetone	230	E	5.0	5.0
trans-1,2-Dichloroethene	0.20	U	0.20	0.20
n-Hexane	1.2		0.20	0.20
1,1-Dichloroethane	0.20	U	0.20	0.20
Carbon disulfide	0.50	U	0.50	0.50
cis-1,2-Dichloroethene	0.20	U	0.20	0.20
Chloroform	0.20	U	0.20	0.20
1,1,1-Trichloroethane	0.59		0.20	0.20
Cyclohexane	0.68		0.20	0.20
Carbon tetrachloride	0.078		0.040	0.040
Methyl Ethyl Ketone	10		0.50	0.50
Benzene	0.58		0.20	0.20
1,2-Dichloroethane	0.20	U	0.20	0.20
n-Heptane	1.9		0.20	0.20
Trichloroethene	0.040	U	0.040	0.040
1,2-Dichloropropane	0.20	U	0.20	0.20
Bromodichloromethane	0.20	U	0.20	0.20
cis-1,3-Dichloropropene	0.20	U	0.20	0.20
Toluene	7.8		0.20	0.20
trans-1,3-Dichloropropene	0.20	U	0.20	0.20
1,1,2-Trichloroethane	0.20	U	0.20	0.20
Tetrachloroethene	0.54		0.040	0.040
Dibromochloromethane	0.20	U	0.20	0.20
1,2-Dibromoethane	0.20	U	0.20	0.20
Ethylbenzene	0.27		0.20	0.20
1,4-Dioxane	5.0	U	5.0	5.0
m-Xylene & p-Xylene	1.0	-	0.50	0.50
o-Xylene	0.34		0.20	0.20
Bromoform	0.20	U	0.20	0.20
methyl isobutyl ketone	0.50	Ü	0.50	0.50
1,1,2,2-Tetrachloroethane	0.20	Ü	0.20	0.20
4-Ethyltoluene	0.20	Ü	0.20	0.20
4 Ethylloldono	0.20	5	0.20	0.20

Client: O'Brien & Gere Inc of North America

Job Number: 200-20018-1

Sdg Number: 200-20018

Sdg Number: 200-20

Client Sample ID: AMSF-24-IA-120613

Lab Sample ID: 200-20018-10 Date Sampled: 12/06/2013 1436

Client Matrix: Air Date Received: 12/11/2013 1130

		TO-15 Volatile Organic	Compounds i	in Ambien	nt Air		
Analysis Method:	TO-15	Analysis Batch:	200-66552		Instrument ID:	CHW.i	
Prep Method:	Summa Canister	Prep Batch:	N/A		Lab File ID:	wakj17.d	
Dilution:	1.0				Initial Weight/Volume:	200 mL	
Analysis Date:	12/28/2013 0105				Final Weight/Volume:	200 mL	
Prep Date:	12/28/2013 0105				Injection Volume:	200 mL	
Top Bate.	12/20/2010 0100				injection volume.	200 1112	
Analyte		Result (p	pb v/v)	Qualifier	r RL	RL	
1,3,5-Trimethylbenz	zene	0.20		U	0.20	0.20	
Methyl Butyl Ketone	e (2-Hexanone)	0.50		U	0.50	0.50	
Chlorobenzene		0.20		U	0.20	0.20	
Styrene		0.20		U	0.20	0.20	
1,3-Dichlorobenzen	е	0.20		U	0.20	0.20	
I,4-Dichlorobenzen	е	0.20		U	0.20	0.20	
1,2-Dichlorobenzen	е	0.20		U	0.20	0.20	
1,2,4-Trichlorobenz	ene	0.50		U	0.50	0.50	
1,2,3-Trichlorobenz	ene	0.20		U	0.20	0.20	
Analyte		Result (u	g/m3)	Qualifier	r RL	RL	
Dichlorodifluoromet	hane	2.5		U	2.5	2.5	
1,2-Dichlorotetraflu	oroethane	1.4		U	1.4	1.4	
Vinyl chloride		0.10		U	0.10	0.10	
1,3-Butadiene		0.44		U	0.44	0.44	
Chloromethane		1.1			1.0	1.0	
Bromomethane		0.78		U	0.78	0.78	
Chloroethane		1.3		U	1.3	1.3	
Bromoethene(Vinyl	Bromide)	0.87		U	0.87	0.87	
Trichlorofluorometh		12			1.1	1.1	
1,1-Dichloroethene		0.79		U	0.79	0.79	
3-Chloropropene		1.6		U	1.6	1.6	
Freon TF		1.5		U	1.5	1.5	
Methylene Chloride		2.6			1.7	1.7	
Methyl tert-butyl eth	ner	0.72		U	0.72	0.72	
Acetone		550		E	12	12	
rans-1,2-Dichloroe	thene	0.79		U	0.79	0.79	
n-Hexane		4.1			0.70	0.70	
1,1-Dichloroethane		0.81		U	0.81	0.81	
Carbon disulfide		1.6		U	1.6	1.6	
cis-1,2-Dichloroethe	ene	0.79		U	0.79	0.79	
Chloroform		0.98		U	0.98	0.98	
1,1,1-Trichloroethar	ne	3.2			1.1	1.1	
Cyclohexane		2.4			0.69	0.69	
Carbon tetrachlorid	е	0.49			0.25	0.25	
Methyl Ethyl Ketone	e	31			1.5	1.5	
Benzene		1.8			0.64	0.64	
1,2-Dichloroethane		0.81		U	0.81	0.81	
n-Heptane		7.7			0.82	0.82	
Trichloroethene		0.21		U	0.21	0.21	
,2-Dichloropropan	е	0.92		U	0.92	0.92	
Bromodichlorometh	ane	1.3		U	1.3	1.3	
cis-1,3-Dichloropro	pene	0.91		U	0.91	0.91	
Toluene		29			0.75	0.75	
trans-1,3-Dichlorop	ropene	0.91		U	0.91	0.91	

1,1,2-Trichloroethane

1.1

U

1.1

1.1

Client: O'Brien & Gere Inc of North America Job Number: 200-20018-1

Sdg Number: 200-20018

Client Sample ID: AMSF-24-IA-120613

Lab Sample ID: 200-20018-10 Date Sampled: 12/06/2013 1436

Client Matrix: Air Date Received: 12/11/2013 1130

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 200-66552 Instrument ID: CHW.i Prep Method: Summa Canister Prep Batch: N/A Lab File ID: wakj17.d

Dilution: 1.0

Initial Weight/Volume: 200 mL 12/28/2013 0105 Final Weight/Volume Analysis Data 200

Analysis Date:	12/28/2013 0105		Final	I Weight/Volume:	200 mL	
Prep Date:	12/28/2013 0105		Injec	tion Volume:	200 mL	
Analyte		Result (ug/m3)	Qualifier	RL	RL	
Tetrachloroethene		3.7		0.27	0.27	
Dibromochloromet	thane	1.7	U	1.7	1.7	
1,2-Dibromoethan	e	1.5	U	1.5	1.5	
Ethylbenzene		1.2		0.87	0.87	
1,4-Dioxane		18	U	18	18	
m-Xylene & p-Xyle	ene	4.6		2.2	2.2	
o-Xylene		1.5		0.87	0.87	
Bromoform		2.1	U	2.1	2.1	
methyl isobutyl ket	tone	2.0	U	2.0	2.0	
1,1,2,2-Tetrachlord	oethane	1.4	U	1.4	1.4	
4-Ethyltoluene		0.98	U	0.98	0.98	
1,3,5-Trimethylber	nzene	0.98	U	0.98	0.98	
Methyl Butyl Ketor	ne (2-Hexanone)	2.0	U	2.0	2.0	
Chlorobenzene		0.92	U	0.92	0.92	
Styrene		0.85	U	0.85	0.85	
1,3-Dichlorobenze	ne	1.2	U	1.2	1.2	
1,4-Dichlorobenze	ne	1.2	U	1.2	1.2	
1,2-Dichlorobenze	ne	1.2	U	1.2	1.2	
1,2,4-Trichloroben	zene	3.7	U	3.7	3.7	
1,2,3-Trichloroben	zene	1.5	U	1.5	1.5	

Client: O'Brien & Gere Inc of North America

Job Number: 200-20018-1

Sdg Number: 200-20018

Client Sample ID: AMSF-24-SS-120613

Lab Sample ID: 200-20018-11 Date Sampled: 12/06/2013 1433

Client Matrix: Air Date Received: 12/11/2013 1130

Analysis Method:	TO-15	Analysis Batch:	200-66552	Instrument ID:	CHW.i
Prep Method:	Summa Canister	Prep Batch:	N/A	Lab File ID:	wakj24.d
Dilution:	10			Initial Weight/Volume:	20 mL

 Analysis Date:
 12/28/2013 0648
 Final Weight/Volume:
 200 mL

 Prep Date:
 12/28/2013 0648
 Injection Volume:
 200 mL

Analyte	Result (ppb v/v)	Qualifier	RL	RL
Dichlorodifluoromethane	5.0	U	5.0	5.0
1,2-Dichlorotetrafluoroethane	2.0	U	2.0	2.0
Vinyl chloride	2.0	U	2.0	2.0
1,3-Butadiene	2.0	U	2.0	2.0
Chloromethane	5.0	U	5.0	5.0
Bromomethane	2.0	U	2.0	2.0
Chloroethane	5.0	Ü	5.0	5.0
Bromoethene(Vinyl Bromide)	2.0	Ü	2.0	2.0
Trichlorofluoromethane	8.2	J	2.0	2.0
1,1-Dichloroethene	2.0	U	2.0	2.0
3-Chloropropene	5.0	Ü	5.0	5.0
Freon TF	2.0	U	2.0	2.0
Methylene Chloride	5.0	U	5.0	5.0
Methyl tert-butyl ether	2.0 50	U U	2.0 50	2.0 50
Acetone				
trans-1,2-Dichloroethene	2.0	U	2.0	2.0
n-Hexane	34		2.0	2.0
1,1-Dichloroethane	2.0	U	2.0	2.0
Carbon disulfide	5.0	U	5.0	5.0
cis-1,2-Dichloroethene	2.0	U	2.0	2.0
Chloroform	2.0	U	2.0	2.0
1,1,1-Trichloroethane	330		2.0	2.0
Cyclohexane	61		2.0	2.0
Carbon tetrachloride	2.0	U	2.0	2.0
Methyl Ethyl Ketone	5.0	U	5.0	5.0
Benzene	4.5		2.0	2.0
1,2-Dichloroethane	2.0	U	2.0	2.0
n-Heptane	37		2.0	2.0
Trichloroethene	2.0	U	2.0	2.0
1,2-Dichloropropane	2.0	U	2.0	2.0
Bromodichloromethane	2.0	U	2.0	2.0
cis-1,3-Dichloropropene	2.0	U	2.0	2.0
Toluene	10		2.0	2.0
trans-1,3-Dichloropropene	2.0	U	2.0	2.0
1,1,2-Trichloroethane	2.0	Ü	2.0	2.0
Tetrachloroethene	45	J	2.0	2.0
Dibromochloromethane	2.0	U	2.0	2.0
1,2-Dibromoethane	2.0	U	2.0	2.0
Ethylbenzene	6.3	U	2.0	2.0
•				
1,4-Dioxane	50	U	50 5.0	50
m-Xylene & p-Xylene	29		5.0	5.0
o-Xylene	8.2		2.0	2.0
Bromoform	2.0	U	2.0	2.0
methyl isobutyl ketone	5.0	U	5.0	5.0
1,1,2,2-Tetrachloroethane	2.0	U	2.0	2.0
4-Ethyltoluene	2.0	U	2.0	2.0

Client: O'Brien & Gere Inc of North America Job Number: 200-20018-1

Sdg Number: 200-20018

Client Sample ID: AMSF-24-SS-120613

Lab Sample ID: 200-20018-11 Date Sampled: 12/06/2013 1433

Client Matrix: Date Received: 12/11/2013 1130 Air

		TO-15 Volatile Organic	Compounds	n Ambien	LAII	
Analysis Method:	TO-15	Analysis Batch:	200-66552		Instrument ID:	CHW.i
Prep Method:	Summa Canister	Prep Batch:	N/A		Lab File ID:	wakj24.d
Dilution:	10				Initial Weight/Volume:	20 mL
Analysis Date:	12/28/2013 0648				Final Weight/Volume:	200 mL
Prep Date:	12/28/2013 0648				Injection Volume:	200 mL
Analyte		Result (p	pb v/v)	Qualifier	RL	RL
1,3,5-Trimethylbenz	zene	4.7			2.0	2.0
Methyl Butyl Ketone	e (2-Hexanone)	5.0		U	5.0	5.0
Chlorobenzene		2.0		U	2.0	2.0
Styrene		2.0		U	2.0	2.0
,3-Dichlorobenzen	е	2.0		U	2.0	2.0
,4-Dichlorobenzen		2.0		U	2.0	2.0
,2-Dichlorobenzen		2.0		U	2.0	2.0
,2,4-Trichlorobenz		5.0		U	5.0	5.0
,2,3-Trichlorobenz	ene	2.0		U	2.0	2.0
Analyte		Result (u	g/m3)	Qualifier	RL	RL
ichlorodifluoromet	hane	25	- 	U	25	25
,2-Dichlorotetraflu		14		Ü	14	14
/inyl chloride		5.1		Ü	5.1	5.1
,3-Butadiene		4.4		U	4.4	4.4
Chloromethane		10		U	10	10
Bromomethane		7.8		Ü	7.8	7.8
Chloroethane		13		Ü	13	13
Bromoethene(Vinyl	Bromide)	8.7		U	8.7	8.7
richlorofluorometh		46			11	11
,1-Dichloroethene		7.9		U	7.9	7.9
-Chloropropene		16		U	16	16
reon TF		15		U	15	15
Methylene Chloride		17		U	17	17
lethyl tert-butyl eth	ner	7.2		U	7.2	7.2
cetone		120		U	120	120
ans-1,2-Dichloroe	thene	7.9		U	7.9	7.9
-Hexane		120			7.0	7.0
,1-Dichloroethane		8.1		U	8.1	8.1
Carbon disulfide		16		U	16	16
is-1,2-Dichloroethe	ene	7.9		U	7.9	7.9
Chloroform		9.8		U	9.8	9.8
,1,1-Trichloroethar	ne	1800			11	11
Cyclohexane		210			6.9	6.9
arbon tetrachlorid		13		U	13	13
lethyl Ethyl Ketone	e	15		U	15	15
enzene		14			6.4	6.4
,2-Dichloroethane		8.1		U	8.1	8.1
-Heptane		150			8.2	8.2
richloroethene		11		U	11	11
,2-Dichloropropan		9.2		U	9.2	9.2
Bromodichlorometh		13		U	13	13
is-1,3-Dichloropro	pene	9.1		U	9.1	9.1
oluene		38			7.5	7.5
rans-1,3-Dichlorop		9.1		U	9.1	9.1
1,1,2-Trichloroethar	ne	11		U	11	11

Client: O'Brien & Gere Inc of North America Job Number: 200-20018-1

Sdg Number: 200-20018

15

AMSF-24-SS-120613 Client Sample ID:

Lab Sample ID: 200-20018-11 Date Sampled: 12/06/2013 1433

Client Matrix: Air Date Received: 12/11/2013 1130

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 200-66552 Instrument ID: CHW.i Prep Method: Summa Canister Prep Batch: N/A Lab File ID: wakj24.d

Dilution:

1,2,3-Trichlorobenzene

Initial Weight/Volume: 20 mL Analysis Date: 12/28/2013 0648 Final Weight/Volume: 200 mL Prep Date: 12/28/2013 0648 Injection Volume: 200 mL

15

		,			
Analyte	Result (ug/m3)	Qualifier	RL	RL	
Tetrachloroethene	300		14	14	
Dibromochloromethane	17	U	17	17	
1,2-Dibromoethane	15	U	15	15	
Ethylbenzene	27		8.7	8.7	
1,4-Dioxane	180	U	180	180	
m-Xylene & p-Xylene	130		22	22	
o-Xylene	35		8.7	8.7	
Bromoform	21	U	21	21	
methyl isobutyl ketone	20	U	20	20	
1,1,2,2-Tetrachloroethane	14	U	14	14	
4-Ethyltoluene	9.8	U	9.8	9.8	
1,3,5-Trimethylbenzene	23		9.8	9.8	
Methyl Butyl Ketone (2-Hexanone)	20	U	20	20	
Chlorobenzene	9.2	U	9.2	9.2	
Styrene	8.5	U	8.5	8.5	
1,3-Dichlorobenzene	12	U	12	12	
1,4-Dichlorobenzene	12	U	12	12	
1,2-Dichlorobenzene	12	U	12	12	
1,2,4-Trichlorobenzene	37	U	37	37	

U

15

Client: O'Brien & Gere Inc of North America

Job Number: 200-20018-1

Sdg Number: 200-20018

Client Sample ID: AMSF-AA-120613

Lab Sample ID: 200-20018-12 Date Sampled: 12/06/2013 1450

Client Matrix: Air Date Received: 12/11/2013 1130

		TO-15 Volatile Organic	Compounds i	n Ambien	t Air	
Analysis Method:	TO-15	Analysis Batch:	200-66552		Instrument ID:	CHW.i
Prep Method:	Summa Canister	Prep Batch:	N/A		Lab File ID:	wakj18.d
Dilution:	1.0				Initial Weight/Volume:	200 mL
Analysis Date:	12/28/2013 0156				Final Weight/Volume:	200 mL
Prep Date:	12/28/2013 0156				Injection Volume:	200 mL
Analyte		Result (p	pb v/v)	Qualifier	· RL	RL
Chloromethane		0.58			0.50	0.50
Freon TF		0.20		U	0.20	0.20
Acetone		5.0		U	5.0	5.0
Carbon disulfide		0.50		U	0.50	0.50
Methyl Ethyl Ketone	е	0.50		U	0.50	0.50
1,4-Dioxane		5.0		U	5.0	5.0
methyl isobutyl keto	one	0.50		U	0.50	0.50
Methyl Butyl Ketone	e (2-Hexanone)	0.50		U	0.50	0.50
Chlorobenzene		0.20		U	0.20	0.20
Styrene		0.20		U	0.20	0.20
1,3-Dichlorobenzen	e	0.20		U	0.20	0.20
1,4-Dichlorobenzen	ie	0.20		U	0.20	0.20
1,2-Dichlorobenzen	e	0.20		U	0.20	0.20
1,2,4-Trichlorobenz	ene	0.50		U	0.50	0.50
1,2,3-Trichlorobenz	ene	0.20		U	0.20	0.20
Analyte		Result (u	g/m3)	Qualifier		RL
Chloromethane		1.2			1.0	1.0
Freon TF		1.5		U	1.5	1.5
Acetone		12		U	12	12
Carbon disulfide		1.6		U	1.6	1.6
Methyl Ethyl Ketone	е	1.5		U	1.5	1.5
1,4-Dioxane		18		U	18	18
methyl isobutyl keto		2.0		U	2.0	2.0
Methyl Butyl Ketone	e (2-Hexanone)	2.0		U	2.0	2.0
Chlorobenzene		0.92		U	0.92	0.92
Styrene		0.85		U	0.85	0.85
1,3-Dichlorobenzen	ie	1.2		U	1.2	1.2
1,4-Dichlorobenzen	ie	1.2		U	1.2	1.2
1,2-Dichlorobenzen	e	1.2		U	1.2	1.2
1,2,4-Trichlorobenz	ene	3.7		U	3.7	3.7
1,2,3-Trichlorobenz	ene	1.5		U	1.5	1.5

Client: O'Brien & Gere Inc of North America

Job Number: 200-20018-1

Sdg Number: 200-20018

Client Sample ID: AMSF-AA-120613

Lab Sample ID: 200-20018-12 Date Sampled: 12/06/2013 1450

Client Matrix: Air Date Received: 12/11/2013 1130

	TO15 LL Volati	le Organic Compounds	in Ambient Ai	r, Low Con	centration (GC/MS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	TO15 LL Summa Canister 4.0 12/29/2013 1703 12/29/2013 1703	Analysis Batch: Prep Batch:	200-66614 N/A	L I F	nstrument ID: Lab File ID: Initial Weight/Volume: Initial Weight/Volume: Injection Volume:	E.i egad009.d 125 mL 500 mL 500 mL	
Analyte		Result (p	opb v/v)	Qualifier	RL	RL	
Dichlorodifluoromet	hane	0.46	,		0.040	0.040	
1,2-Dichlorotetrafluo	oroethane	0.040		U	0.040	0.040	
Vinyl chloride		0.080		U	0.080	0.080	
1,3-Butadiene		0.080		U	0.080	0.080	
Bromomethane		0.080		U	0.080	0.080	
Chloroethane		0.080		U	0.080	0.080	
Bromoethene(Vinyl	Bromide)	0.080		U	0.080	0.080	
Trichlorofluorometh	ane	0.22			0.040	0.040	
1,1-Dichloroethene		0.040		U	0.040	0.040	
3-Chloropropene		0.080		U	0.080	0.080	
Methylene Chloride		0.40		U *	0.40	0.40	
Methyl tert-butyl eth	ner	0.040		U	0.040	0.040	
trans-1,2-Dichloroet	thene	0.040		U	0.040	0.040	
n-Hexane		0.080		U	0.080	0.080	
1,1-Dichloroethane		0.040		U	0.040	0.040	
cis-1,2-Dichloroethe	ene	0.040		U	0.040	0.040	
Chloroform		0.040		U	0.040	0.040	
1,1,1-Trichloroethar	ne	0.040		U	0.040	0.040	
Cyclohexane		0.040		U	0.040	0.040	
Carbon tetrachloride	е	0.070			0.040	0.040	
Benzene		0.11			0.040	0.040	
1,2-Dichloroethane		0.080		U	0.080	0.080	
n-Heptane		0.040		U	0.040	0.040	
Trichloroethene		0.040		U	0.040	0.040	
1,2-Dichloropropand		0.080		U	0.080	0.080	
Bromodichlorometh		0.040		U	0.040	0.040	
cis-1,3-Dichloroprop	pene	0.040 0.11		U	0.040 0.040	0.040	
Toluene	ranana	0.040		11	0.040	0.040 0.040	
trans-1,3-Dichloropo 1,1,2-Trichloroethar		0.040		U U	0.040	0.040	
Tetrachloroethene	ie	0.040		U	0.040	0.040	
Dibromochlorometh	iana	0.040		U	0.040	0.040	
1,2-Dibromoethane		0.040		U	0.040	0.040	
Ethylbenzene		0.040		U	0.040	0.040	
o-Xylene		0.040		U	0.040	0.040	
Bromoform		0.040		U	0.040	0.040	
1,1,2,2-Tetrachloro	ethane	0.040		U	0.040	0.040	
4-Ethyltoluene	5.1.a.1.6	0.040		U	0.040	0.040	
1,3,5-Trimethylbenz	zene	0.080		U	0.080	0.080	
m-Xylene & p-Xyler		0.080		U	0.080	0.080	
Analyte		Result (u	ıg/m3)	Qualifier	RL	RL	
Dichlorodifluoromet	hane	2.3			0.20	0.20	
1,2-Dichlorotetraflu	oroethane	0.28		U	0.28	0.28	
Vinyl chloride		0.20		U	0.20	0.20	
1,3-Butadiene		0.18		U	0.18	0.18	

Client: O'Brien & Gere Inc of North America

Job Number: 200-20018-1

Sdg Number: 200-20018

Client Sample ID: AMSF-AA-120613

Lab Sample ID: 200-20018-12 Date Sampled: 12/06/2013 1450

Client Matrix: Air Date Received: 12/11/2013 1130

TO15 LL Volatile Organic Compounds in Ambient Air, Low Concentration (GC/MS)

Analysis Method: TO15 LL Analysis Batch: 200-66614 Instrument ID: E.i egad009.d Prep Method: Summa Canister Prep Batch: N/A Lab File ID: Dilution: 4.0 Initial Weight/Volume: 125 mL Analysis Date: 12/29/2013 1703 Final Weight/Volume: 500 mL Prep Date: 12/29/2013 1703 Injection Volume: 500 mL

Bromomethane Chloroethane Bromoethene(Vinyl Bromide) Trichlorofluoromethane 1,1-Dichloroethene	0.31 0.21 0.35 1.3	U	0.31 0.21	0.31
Bromoethene(Vinyl Bromide) Trichlorofluoromethane	0.35		0.21	0.04
Trichlorofluoromethane			U. <u></u> .	0.21
	1.3	U	0.35	0.35
1.1-Dichloroethene			0.22	0.22
.,	0.16	U	0.16	0.16
3-Chloropropene	0.25	U	0.25	0.25
Methylene Chloride	1.4	U *	1.4	1.4
Methyl tert-butyl ether	0.14	U	0.14	0.14
trans-1,2-Dichloroethene	0.16	U	0.16	0.16
n-Hexane	0.28	U	0.28	0.28
1,1-Dichloroethane	0.16	U	0.16	0.16
cis-1,2-Dichloroethene	0.16	U	0.16	0.16
Chloroform	0.20	U	0.20	0.20
1,1,1-Trichloroethane	0.22	U	0.22	0.22
Cyclohexane	0.14	U	0.14	0.14
Carbon tetrachloride	0.44		0.25	0.25
Benzene	0.34		0.13	0.13
1,2-Dichloroethane	0.32	U	0.32	0.32
n-Heptane	0.16	U	0.16	0.16
Trichloroethene	0.21	U	0.21	0.21
1,2-Dichloropropane	0.37	U	0.37	0.37
Bromodichloromethane	0.27	U	0.27	0.27
cis-1,3-Dichloropropene	0.18	U	0.18	0.18
Toluene	0.42		0.15	0.15
trans-1,3-Dichloropropene	0.18	U	0.18	0.18
1,1,2-Trichloroethane	0.22	U	0.22	0.22
Tetrachloroethene	0.27	U	0.27	0.27
Dibromochloromethane	0.34	U	0.34	0.34
1,2-Dibromoethane	0.31	U	0.31	0.31
Ethylbenzene	0.17	U	0.17	0.17
o-Xylene	0.17	U	0.17	0.17
Bromoform	0.41	U	0.41	0.41
1,1,2,2-Tetrachloroethane	0.27	U	0.27	0.27
4-Ethyltoluene	0.20	U	0.20	0.20
1,3,5-Trimethylbenzene	0.39	U	0.39	0.39
m-Xylene & p-Xylene	0.35	U	0.35	0.35

TestAmerica Burlington

30 Community Drive Suite 11

South Burlington, VT 05403 phone 802-660-1990 fax 802-660-1919

Canister Samples Chain of Custody Record

TestAmerica Analytical Testing Corp. assumes no liability with respect to the collection and shipment of these samples

Client Contact Information	Project Manager.		Hape Mister	,		Samples Collected Bv:	ected Bv:	East Aconts	200	-	5	٥	500			ľ
Company: 0'13160 + Gere	Phone:	1 '. '	6100					(l
Address: 353 J WASHINGTON ST	Email: "	MANIC. DISTIET @ GOG. COM	1er @ 0'09	بره				(74)		L	Ě	,	L	L	┝	Г
telZip Symcuse NY 13221		- 1						/(?V		_		, () , () ((uc
8: 315-956-6100	Site Contact:	- 1	CHRISTY LOCKSONREN	SARREY				W J.S			ŋɔə	;	_			פכנו
30 463-7554	I A Contact	۵	DAU (K)					S 4	_		sə	. ;	_	_		5 5 9
Figlect Name: 35273 エマ ((Fr		Analysis	Analysis Turnaround Time	d Time				Ь ,			jou					lon
Site: Ausc	S	Standard (Sp	Specify) 🍑					?]			uį A				-,-	uı A
PO#		Rush (Specify)	(y)					1 /2			pecif				,,	noəd
Sample Identification	Sample Date(s)	Time Start	Time Stop	Canister Vacuum in Fleld, "Hg (Start)	Canister Vacuum in Fleid, 'Hg (Stop)	Flow Controller	Canister ID	21-OT	EPA 3C	EPA 25C	8 9889 q) 19410	Sample Type	Amblent Air	seD lioS	seD lliibne.	Please s
MSF-07-14-12001	12/11/51	129		79.24	3.9,	5205	×48	II .	╫╾	4	#—	₩	╫─		╫╌	
	-	(2)	27,7	70 22	222	1/2/15	the Th	· ' '-								Τ
14xx-01-30-15063	14/6/13	3	2	20.02	2002	157	127	-	+	+	† 	+	4	1	+	Т
AHSF-22-IA-120613	12/4/13	6 23	1405	14. th	5.80	3734	1523	·<								-
AMSF-22-55-12063	12/10/13	623	1410	29.50	12.39	5230	26.93	×					_			
			•						<u></u>		<u> </u>					
										_			_	_	-	Τ
				Temperature (Fahrenheit)	(Fahrenheit)					ł		1	1		1	Т
		Interior		Ambient												
	Start	282		~32ء						Water Company		1				
	Stop	~620		~38°												
				Pressure (inches of Hg)	hes of Hg)										l	Г
		Interior		Ambient				200-20018 Chair 60	18 Chair							
	Start	2		30.16				!	9	or Custo	S					
	Stop	14		30.01												
Special Instructions/QC Requirements & Comments:	Its: See Jun	ON DALLICE!	.ce.	tritia!	- test	run low	3	יין.	7015	١.١	3		Dicure	6.		
CHECK CALIBIATION OF FLOW CONTROLLEYS 5205	٧		٥(1274ct	S	9 .	δ,		ים פני ובין	t-90 7	ý		Inton	, · ~		
Sn21-1	۸		/)	ช	_ `	st	1515 to 1	S	4.75	anstituents	n net		וחכות	V		
	 - -			2 2	3	2/0/2						İ				7
Samples Shipped My	Date/Time:	19/13	//	140	Samples R	Samples Received by:	(S))	7-5	1-13	7	17:40	7			l
Samples Relinquished by / 12-9-13	Date/Firme:	,			Received by:	· · · ·)									
Relinquished by:	Date/Time:	(13	150		Received	22	1	1								
हे			***	The state of the s		, 1 , 1 to		* gg-7				100	, , , , , , , , , , , , , , , , , , ,	<i>j</i> ,		, , ,
Lab Use Only Shipper Name:		,		Opened by:	,	Condition		*	A C T TA DAMPED AND THE PARTY OF THE PARTY O	5			3 Í			

TestAmerica Burlington

30 Community Drive Suite 11

South Burlington, VT 05403 phone 802-660-1990 fax 802-660-1919

Canister Samples Chain of Custody Record

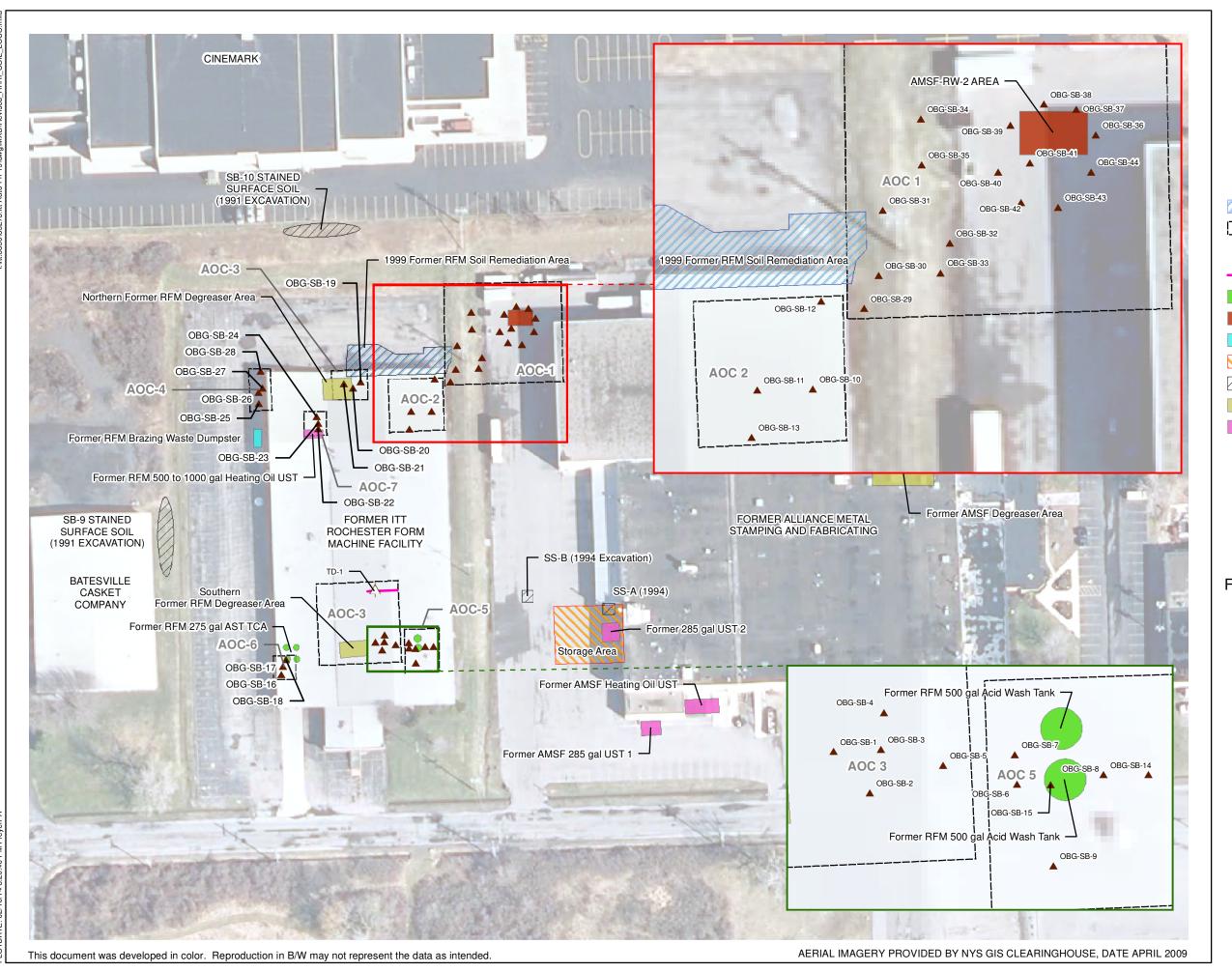
TestAmerica Analytical Testing Corp. assumes no liability with respect to the collection and shipment of these samples

Client Contact Information	Project Mar	Project Manager Han Nicthan	12.			Samples Collected By:		Guckoscist	7		7		٤	Ι,		
Company: OBIES + GER	Phone:	3,5-956-200	200	1				} / ('	ĝ V	È	5 		3			
Address: 333 W. WASHINGTON ST	Email: w	MANK. O.STLER	الله المحارضا	Į į				7	L		F		L	H	H	L
Suracure 24 13221		1 1						u _b		_	(uc	, <u>;</u>			_	(11
	Site Contact:	٦	ARISTY ROSENDAMEN	1201/Cerl				か			ecți					oiloe
- -	TA Contact	' 1	DANICICE					b		_	S S	`,`		_	_	\$
Project Name: 35273 In Rolm		Analysis	Turnaround Time	nd Time				1			əlou	` ,				ajot
Site: Aus of	0	Standard (Specify)	ecify) K					1			i uj A					ı ui A
PO#		Rush (Specify)	fy)					pra			hiseq					pecifi
Sample Identification	Sample Date(s)	Time Start	Time Stop	Canister Vacuum in Fleld, "Hg (Start)	Canister Vacuum in Field, 'Hg (Stop)	Flow Controller ID	Canister ID	JwJ) ðr-OT H9A-AM	EPA 3C	Eb¥ 52C	ASTM D-1946 ps esselq) 1943O	Sample Type	Indoor Alt	TiA JueidmA	Soil Gas Landfill Gas	Other (Please sp
AMSF-05-IA-120613	12/4/13	643	1327	59.82	3 %	3188	3792		_		<u> </u>	╟─╌		₩	₩	₩
AMSF- 05-55-120613	12/0/13	643	/ħħ/	73.38 18.38	6.67	3848	3340							\vdash		
	12/6/13	243	וחת/	29.61	11.11	4724/517	4550									
AMSF-06-57A-12003	12/16/13	\c24	<i>∱/ħ1</i>	58'32	8L'S	3171	265									-
AMSF-01-55-120013	12/4/13	hza)	hih!	Lh:62	162	3783	018h					·			-	
)			_	
			í	Temperature	Temperature (Fahrenheit)								1	l	1	
		Interior		Ambient												
	Start	2020		~350	1		-									
	Stop	292		~380			!									
				Pressure (Inches of Hg)	ches of Hg)											
		Interior		Ambient												
	Start	ð Ž		30.16												
	Stop	۵۵		30 01												
Special Instructions/QC Requirements & Comments:	its: See	Den 1	Davick		Initial	1 - 452	un tow	ger	<u> 1</u> 00	,	Da pur 7	l.	BILLITE	U		
CHECK CAUBIATION OF FLOW CONTROller 4724				Cont	Centact 080	sif di			re awired	٠ پۇر	(before		dilustin	3		
				Secon	nd / un -	4.4.00	1015 for		かれた	fuents	\$					
Samples Shippeday-	Date/Time:	_\(\varepsilon\)	1/46		Samples R			1 41	1							
Samples Relinquished-by / 2-7-13	Dates Trime:		2		Received by:				1	Ť	1).					
Relinquished by:	Date/Time:	13	1/3		Received by:		7413	1/2 (Τ						
	٠,	* ·	ş-			1, 2, 3, 4, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10		£.5		; ;			\.`\ \.``	: 	, j	
Lab use Only Snipper name.	***************************************	Andrew State		Opened o		Condition:	,			,	*	,				

TestAmerica Burlington

30 Community Drive

Suite 11


South Burlington, VT 05403 phone 802-660-1990 fax 802-660-1919

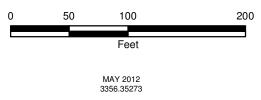
Canister Samples Chain of Custody Record

TestAmerica Analytical Testing Corp. assumes no liability with respect to the collection and shipment of these samples.

of cocs									TM D-1946 Jer (Please s) Apple Type Oor Air I Gas I Gas Idfill Gas	Sail Ind Soil													•	tou od	And Located Co. Marica	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7/10	> > > > > > > > > >			
				_					¥ 25C	' д Э														, 3	١ .	P		7	7		
41.	her	\vdash		_					¥ 3C	\dashv		_	_		-									Lava C	,	4	2				
ic Ala	Moche	H	رج	7 7	00 2_	b+	S 21,	<u>ゅ</u> わり	اة (كرور .HqA	\dashv	<u>~</u>	*	×											3 3	70.0	(6,4)	1-6			1/2	K w
ected By:	100			_						Canister ID	3569	3228	2553											7 L. H. C.	100	10 4:7	1 ~		,	1415,	
Samples Collected By: Clic Alary				_			ı		How Controller	Ω	53 पेप	1615	3238			۵				 				+cs+ -		(la ded		<u>مُ</u>		7	Condition:
		2000	5	Ler					Canister Vacuum in Field 'Ho		13.69	9.69	5.3%			Temperature (Fahrenheit)		~320	, 28°	Pressure (Inches of Hg)		و	1.	Frital	to de la constante de la const	10 to	Samples	Received by:		Kerelvoor	
Distler	0019	069		y Kescabaler	V	nd Time	×		Canister Vacuum In	(Start)	Sh.48	92.32	Sh'82			Temperatur	Ambient &	88	\ \rightarrow \(\rightarrow \)	Pressure (Ir	Ambient	30.16	30.01		•	,	0			0	Opened by:
Mark D	756-	25/100	, 3	1, K.S.	Davice	Analysis Turnaround Time	pecif _y)	ify)		Time Stop	1436	ESp1	1450											نعی سمل			Opii			173	*** *** ****
/	X.	MAYK di	<u>/</u>	# (Sec. 2)	Ä	Analysis	Standard (Specify)	Rush (Specify)		Time Start	ી દોમ્યા	্র কুণ	e te				Interior	~ 62b	₂₉ ~		Interior	స్ట	んろ	رخ ک			19/12		+	ر/زع	
Project Manager:	Phone: 3	Email: 0		Site Contac	TA Contact:		S		S. B. B. B. B. B. B. B. B. B. B. B. B. B.	Date(s)	हो भेटा	12/6/3	E1]9/2)					Start	Stop			Start		ζς ::			Date/Time:	Date/Time:			Street of the State of the Street of the State of the Sta
Client Contact Information	Company: 0'Bien Cele	66.20	13221			t Name. 35273, ITT RFM	Site: AMER			Sample Identification	AMSF-24-IA-12063	AMSF-24-55-120013	AMSF- 4A - 120613											Special Instructions/QC Requirements & Comments:			Samples Shipped by	Samples Religguished by: /) G / 2) [1,1-7]		Lab Use Only Shipper Name:

Pemedial Investigation Penort	Selected Figures and Tables from: Former ITT Rochester Form Machine Facility
	Site # 8-28-112, Town of Gates, New York. By Brien & Gere Engineers, Inc., April 11, 2014

FIGURE 3-1


LEGEND

- ▲ SOIL BORING (POST 2003)
- 1999 FORMER RFM SOIL REMEDIATION AREA
- AREA OF CONCERN (AOC)
- TRENCH DRAIN SAMPLE
 - TRENCH DRAIN
- FORMER ABOVE GROUND STORAGE TANK
- AMSF-RW-2 AREA
 - FORMER BRAZING WASTE DUMPSTER
- DRUM STORAGE AREA
- EXCAVATION AREA
- FORMER DEGREASER
- FORMER UNDERGROUND STORAGE TANK

NOTE: INVESTIGATION AREAS (AOCs)
ARE FROM THE 2004
REMEDIAL INVESTIGATION/FEASIBILITY
STUDY WORK PLAN.

FORMER ITT ROCHESTER FORM MACHINE FACILITY TOWN OF GATES, NEW YORK SITE #8-28-112

REMEDIAL INVESTIGATION SOIL SAMPLE LOCATIONS

						Location	APC2-1	APC2-2	APC3-1	APC3-2	BH-99-1	BH-99-4	BH-99-5	BH-99-11B	BH-99-13	BH-99-31	BH-99-31	BH-99-32	BH-99-37
						Sample Date:	10/23/1991	10/23/1991	10/23/1991	10/23/1991	4/12/1999	9/15/1999	9/15/1999	9/15/1999	9/15/1999	9/16/1999	9/16/1999	9/16/1999	10/1/1999
						Sample ID:	APC2-1	APC2-2	APC3-1	APC3-2	BH-99-1(6-6.9)	BH-99-4 (6-8)	BH-99-5 (6-8)	BH-99-11B (5-7)	BH-99-13 (8-10)	BH-99-31 (1-4)	BH-99-31 (4-6)	BH-99-32 (1-4)	BH-99-37 (6-8)
						art Depth (ft bgs):	6	6	6	6	6	6	6	5	8	1	4	1	6
						nd Depth (ft bgs):	8	8	8	8	6.9	8	8	7	10	4	6	4	8
		1	Dowt 27F	NY CP-51	S	Sample Type Code:	N	N	N	N	N	N	N	N	N	N	N	N	N
	Part 375	NY CP-51	Part 375 Protection of	Protection of	Part 375	NY CP-51													
Analyte	Unrestricted Use	Residential Use	Groundwater	Groundwater	Commercial Use	Commercial Use													
	SCOs ¹	SCOs ²	SCOs ³	SCOs ⁴	SCOs ⁵	SCOs ⁴													
1.1.1.2-Tetrachloroethane	NC	NC	NC	NC	NC	NC					5 U								
1,1,1-Trichloroethane	680	NC	680	NC	500000	NC	6 U	6 U	14	6 U		47	6 U	19	130	72	210	110	12
1,1,2,2-Tetrachloroethane	NC	35000	NC	600	NC	NC					5 U	6 U	6 U	7 U	27 U	10 U	9 U	10 U	10 U
1,1,2-Trichloroethane	NC	NC	NC	NC	NC	NC	6 U	6 U	6 U	6 U		6 U	6 U	7 U	27 U	10 U	9 U	10 U	10 U
1,1-Dichloroethane	270	NC	270	NC	240000	NC	6 U	6 U	6 U	6 U	5 U	6 U	6 U	7 U	27 U	10 U	9 U	10 U	10 U
1,1-Dichloroethylene	330	NC	330	NC	500000	NC NC	6 U	6 U	6 U	6 U		18	6 U	7 U	27 U	10 U	9 U	10 U	10 U
1,2,3-Trichloropropane	NC NG	80000	NC NC	340	NC NG	NC NG					5 U								
1,2-Dibromo-3-Chloropropane	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC					5 U 5 U								
1,2-Dibromoethane 1,2-Dichloroethane	NC 20	NC NC	NC 20	NC NC	30000	NC NC	6 U	6 U	6 U	6 U		6 U	6 U	7 U	27 U	10 U	9 U	10 U	10 U
1,2-Dichloroethene	NC	NC NC	NC	NC NC	NC	NC NC													
1,2-Dichloropropane	NC NC	NC NC	NC NC	NC	NC NC	NC NC					5 U	6 U	6 U	7 U	27 U	10 U	9 U	10 U	10 U
2-Butanone	120	100000	120	300	500000	NC						28 U	28 U	34 U	140 U	48 U	45 U	48 U	51 U
2-Chloroethyl vinyl ether	NC	NC	NC	NC	NC	NC					5 U								
2-Chlorotoluene	NC	NC	NC	NC	NC	NC					5 U								
2-Hexanone	NC	NC	NC	NC	NC	NC					10 U	11 U	11 U	7 U	54 U	19 U	18 U	19 U	20 U
4-Chlorotoluene	NC	NC	NC	NC	NC	NC					5 U								
4-Methyl-2-Pentanone	NC	NC	NC	1000	NC	NC					10 U	11 U	11 U	14 U	54 U	19 U	18 U	19 U	20 U
Acetone	50	NC NG	50	NC NG	500000	NC NG	12 U	12	14 B	8	25 U	28 U	28 U	34 U	140 U	48 U	45 U	48 U	51 U
Acrolein Acrylonitrile	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC					20 U 20 U								
Benzene	60	NC NC	60	NC NC	44000	NC NC					0.7 U	0.8 U	0.8 U	 1 U	 4 U	 1 U	 1 U	 1 U	 1 U
Bromobenzene	NC NC	NC NC	NC	NC	NC	NC NC					5 U	0.0 0							
Bromodichloromethane	NC	NC NC	NC.	NC	NC NC	NC NC					5 U	6 U	6 U	7 U	27 U	10 U	9 U	10 U	10 U
Bromoform	NC	NC	NC	NC	NC	NC					5 U	6 U	6 U	7 U	27 U	10 U	9 U	10 U	10 U
Bromomethane	NC	NC	NC	NC	NC	NC					5 U	6 U	6 U	7 U	27 U	10 U	9 U	10 U	10 U
Carbon Disulfide	NC	100000	NC	2700	NC	NC					5 U	6 U	6 U	7 U	27 U	10 U	9 U	10 U	10 U
Carbon Tetrachloride	760	NC	760	NC	22000	NC					5 U	6 U	6 U	7 U	27 U	10 U	9 U	10 U	10 U
Chlorobenzene	1100	NC	1100	NC	500000	NC					5 U	6 U	6 U	7 U	27 U	10 U	9 U	10 U	10 U
Chloroethane	NC 270	NC NG	NC 270	1900	NC 250000	NC NG					5 U	6 U	6 U	7 U	27 U	10 U	9 U	10 U	10 U
Chloroform Chloromethane	370 NC	NC NC	370 NC	NC NC	350000 NC	NC NC					5 U 5 U	6 U	6 U 6 U	7 U	27 U 27 U	10 U 10 U	9 U 9 U	10 U 10 U	10 U 10 U
cis-1,2-Dichloroethylene	250	NC NC	250	NC NC	500000	NC NC					5 U	6 U	6 U	7 U	27 U	10 U	9 U	10 U	10 U
cis-1,3-Dichloropropylene	NC	NC NC	NC	NC NC	NC	NC NC					5 U	6 U	6 U	7 U	27 U	10 U	9 U	10 U	10 U
Dibromochloromethane	NC	NC	NC	NC	NC	NC					5 U	6 U	6 U	7 U	27 U	10 U	9 U	10 U	10 U
Dichlorodifluoromethane	NC	NC	NC	NC	NC	NC					5 U								
Ethylbenzene	1000	NC	1000	NC	390000	NC	6 U	6 U	6 U	6 U		6 U	6 U	7 U	27 U	10 U	9 U	10 U	10 U
Methylene chloride	50	NC	50	NC	500000	NC	4	4	3	4	5 U	6 U	6 U	7 U	27 U	10 U	9 U	10 U	10 U
o-Xylene	NC	NC	NC	NC	NC	NC					5 U	6 U	6 U	7 U	27 U	10 U	9 U	10 U	10 U
Styrene	NC 1200	NC NG	NC 1200	NC NG	NC 4F0000	NC NC					5 U	6 U	6 U	7 U	27 U	10 U	9 U	10 U	10 U
Tetrachloroethene	1300 700	NC NC	1300 700	NC NC	150000 500000	NC NC	6 U	6 U	6 U	6 U		6 U	6 U	7 U 7 U	27 U 27 U	28 10 U	69	10 U 10 U	10 U 10 U
Toluene Total BTEX	700 NC	NC NC	NC	NC NC	NC	NC NC	6 U	6 U 	6 U 	6 U 		6 U 	6 U 	7.0		10 0	9 U 	10 0	10 0
trans-1,2-Dichloroethylene	190	NC NC	190	NC NC	500000	NC NC					5 U	6 U	6 U	7 U	27 U	10 U	9 U	10 U	10 U
trans-1,3-Dichloropropylene	NC	NC NC	NC	NC NC	NC	NC NC					5 U	6 U	6 U	7 U	27 U	10 U	9 U	10 U	10 U
Trichloroethylene	470	NC NC	470	NC NC	200000	NC	6 U	6 U	6 U	6 U		6 U	6 U	7 U	27 U	10 U	9 U	10 U	10 U
Trichlorofluoromethane	NC	NC	NC	NC	NC	NC					5 U								
Vinyl Acetate	NC	NC	NC	NC	NC	NC							-						
Vinyl Chloride	20	NC	20	NC	13000	NC					2 U	2 U	2 U	3 U	11 U	4 U	4 U	4 U	4 U
Xylene (m,p)	NC	NC	NC	NC	NC	NC						6 U	6 U	7 U	27 U	10 U	9 U	10 U	10 U
Xylene (total)	260	NC	1600	NC	500000	NC	6 U	6 U	6 U	6 U									

All units in micrograms per kilogram (μg/kg)

Bold - Exceeds 6 NYCRR Part 375 or CP-51 Protection of Groundwater Soil Cleanup Objectives

- Exceeds 6 NYCRR Part 375 Unrestricted Soil Cleanup Objectives or CP-51 Residential Soil Cleanup Objectives

6 NYCRR Part 375 and CP-51 Commercial Soil Cleanup Objectives were not exceeded.

NC - No criteria exists

Sample Type Code: N - Normal, FD - Field Duplicate

ft bgs - feet below ground surface

U - Not Detected at the Detection Limit shown, J - Estimated value, UJ - Approximate Non-detect

B - Blank Contamination, BJ - Estimated Value Detected in Blank

--- Not Analyzed

¹ 6 NYCRR Part 375, Table 375-6.8(b): Restricted Use Soil Cleanup Objectives, Protection of Public Health, Commercial, December 14, 2006.

² Final Commissioner Policy CP-51, Table 1: Supplimental Soil Cleanup Objectives, Residential, October 21, 2010.

³ 6 NYCRR Part 375, Table 375-6.8(b): Restricted Use Soil Cleanup Objectives, Protection of Public Health, Protection of Groundwater, December 14, 2006.

Final Commissioner Policy (P-51, Table 1: Supplimental Soil Cleanup Objectives, Protection of Audit Health, December 14, 2006.
 6 NYCRR Part 375, Table 375-6.8(b): Unrestricted Use Soil Cleanup Objectives, Protection of Public Health, December 14, 2006.

⁶ Final Commissioner Policy CP-51, Table 1: Supplimental Soil Cleanup Objectives, Commercial, October 21, 2010.

I:\Itt.3356\35273.Itt-Auto-Fh-19\5_rpts\RI Report_Revised 2013\Revised_Tables\Soil_VOC_Crosstab-Formatted AP.xlsx Page 1 of 11

						Location	BH-99-42	BH-99-44	BH-99-45	ITT-MW-1	ITT-MW-3	ITT-MW-4	ITT-MW-4	ITT-SBW-1A	ITT-SBW-2	ITT-SBW-2	ITT-SBW-4	ITT-SBW-5A	ITT-SBW-6
						Sample Date:	10/1/1999	10/1/1999	10/1/1999	10/22/1991	10/22/1991	10/23/1991	10/23/1991	8/17/1998	8/17/1998	8/17/1998	3/1/1999	3/2/1999	3/3/1999
						Sample ID:	BH-99-42 (4-6)	BH-99-44 (8-10)	BH-99-45 (6-8)	MW-1(SOIL)10-22-91	1MW-3(SOIL)10-22-91	MW-4 (1-2)10-23-91	MW-4 (6-8)10-23-9	1 ITT-SBW-1A (10-12)	ITT-SBW-2 (4-6)	ITT-SBW-2 (6-8)	ITT-SBW-4 (7-8.7)	ITT-SBW-5A (8-9.8)) ITT-SBW-6 (8-9)
						art Depth (ft bgs):	4	8	6	8	4	1	6	10	4	6	7	8	8
						nd Depth (ft bgs):	6	10	8	10	6	2	8	12	6	8	8.7	9.8	9
		1		NV CD E4	S	Sample Type Code:	N	N	N	N	N	N	N	N	N	N	N	N	N
	Part 375	NY CP-51	Part 375	NY CP-51	Part 375	NY CP-51													
Analyte	Unrestricted Use	Residential Use	Protection of Groundwater	Protection of Groundwater	Commercial Use	Commercial Use													
	SCOs ¹	SCOs ²	SCOs ³	SCOs ⁴	SCOs ⁵	SCOs⁴													
1,1,1,2-Tetrachloroethane	NC.	NC	NC.	NC NC	NC.	NC													
1,1,1-Trichloroethane	680	NC	680	NC	500000	NC	12	920	16	4 J	6 U	1 J	6 U	63	11 U	70	6 U	15	5 U
1,1,2,2-Tetrachloroethane	NC	35000	NC	600	NC	NC	10 U	26 U	10 U	6 U	6 U	6 U	6 U	11 U	11 U	11 U	6 U	5 U	5 U
1,1,2-Trichloroethane	NC	NC	NC	NC	NC	NC	10 U	26 U	10 U	6 U	6 U	6 U	6 U	11 U	11 U	11 U	6 U	5 U	5 U
1,1-Dichloroethane	270	NC	270	NC	240000	NC	10 U	26 U	10 U	6 U	6 U	6 U	6 U	11 U	11 U	11 U	6 U	5 U	5 U
1,1-Dichloroethylene	330	NC	330	NC 240	500000	NC NC	10 U	26 U	10 U	6 U	6 U	6 U	6 U	11 U	11 U	2 J	6 U	5 U	5 U
1,2,3-Trichloropropane	NC NC	80000 NC	NC NC	340 NC	NC NC	NC NC													
1,2-Dibromo-3-Chloropropane 1,2-Dibromoethane	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC													
1,2-Dichloroethane	20	NC NC	20	NC NC	30000	NC NC	10 U	26 U	10 U	6 U	6 U	6 U	6 U	11 U	11 U	11 U	6 U	5 U	5 U
1,2-Dichloroethene	NC NC	NC NC	NC NC	NC NC	NC NC	NC				6 U	6 U	6 U	6 U	11 U	11 U	11 U			
1,2-Dichloropropane	NC	NC	NC	NC	NC	NC	10 U	26 U	10 U	6 U	6 U	6 U	6 U	11 U	11 U	11 U	6 U	5 U	5 U
2-Butanone	120	100000	120	300	500000	NC	49 U	130 U	48 U	11 U	12 U	12 U	13 U	11 U	11 U	11 U	28 U	26 U	26 U
2-Chloroethyl vinyl ether	NC	NC	NC	NC	NC	NC													
2-Chlorotoluene	NC NG	NC NC	NC NC	NC NC	NC NC	NC NC					42.11							40.11	
2-Hexanone 4-Chlorotoluene	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	20 U 	52 U 	19 U 	11 U	12 U	12 U 	13 U	11 U	11 U 	11 U 	11 U 	10 U	11 U
4-Methyl-2-Pentanone	NC NC	NC NC	NC NC	1000	NC NC	NC NC	20 U	52 U	19 U	11 U	12 U	12 U	13 U				11 U	10 U	11 U
Acetone	50	NC NC	50	NC	500000	NC NC	49 U	130 U	48 U	3 BJ	7 BJ	3 BJ	6 BJ	9 J	11 U	11 U	28 U	26 U	26 U
Acrolein	NC	NC	NC	NC	NC	NC													
Acrylonitrile	NC	NC	NC	NC	NC	NC													
Benzene	60	NC	60	NC	44000	NC	1 U	4 U	1 U	6 U	6 U	6 U	6 U	1 J	11 U	11 U	.8 U	.7 U	0.7 U
Bromobenzene	NC	NC	NC	NC	NC	NC													
Bromodichloromethane	NC NG	NC NC	NC NG	NC NG	NC NC	NC NC	10 U	26 U	10 U	6 U	6 U	6 U	6 U	11 U	11 U	11 U	6 U	5 U	5 U
Bromoform Bromomothano	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	10 U 10 U	26 U 26 U	10 U 10 U	6 U 11 U	6 U 12 U	6 U 12 U	6 U 13 U	11 U 11 U	11 U 11 U	11 U 11 U	6 U	5 U 5 U	5 U 5 U
Bromomethane Carbon Disulfide	NC NC	100000	NC NC	2700	NC NC	NC NC	10 U	26 U	10 U	6 U	6 U	6 U	6 U	11 U	11 U	11 U	6 U	5 U	5 U
Carbon Tetrachloride	760	NC NC	760	NC NC	22000	NC NC	10 U	26 U	10 U	6 U	6 U	6 U	6 U	11 U	11 U	11 U	6 U	5 U	5 U
Chlorobenzene	1100	NC	1100	NC	500000	NC	10 U	26 U	10 U	6 U	6 U	6 U	6 U	11 U	11 U	11 U	6 U	5 U	5 U
Chloroethane	NC	NC	NC	1900	NC	NC	10 U	26 U	10 U	11 U	12 U	12 U	13 U	11 U	11 U	11 U	6 U	5 U	5 U
Chloroform	370	NC	370	NC	350000	NC	10 U	26 U	10 U	6 U	6 U	6 U	6 U	11 U	11 U	11 U	6 U	5 U	5 U
Chloromethane	NC	NC	NC	NC	NC	NC	10 U	26 U	10 U	11 U	12 U	12 U	13 U	11 U	11 U	11 U	6 U	5 U	5 U
cis-1,2-Dichloroethylene	250	NC NC	250	NC NC	500000	NC NC	10 U	26 U	10 U								6 U	5 U	5 U
cis-1,3-Dichloropropylene Dibromochloromethane	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	10 U 10 U	26 U 26 U	10 U 10 U	6 U 6 U	6 U	6 U 6 U	6 U	11 U 11 U	11 U 11 U	11 U 11 U	6 U	5 U 5 U	5 U 5 U
Dichlorodifluoromethane	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC		20 0											
Ethylbenzene	1000	NC NC	1000	NC NC	390000	NC NC	10 U	26 U	10 U	6 U	6 U	6 U	6 U	11 U	11 U	11 U	6 U	5 U	5 U
Methylene chloride	50	NC	50	NC	500000	NC	10 U	26 U	10 U	3 BJ	3 BJ	2 BJ	3 BJ	11 U	11 U	11 U	6 U	5 U	5 U
o-Xylene	NC	NC	NC	NC	NC	NC	10 U	26 U	10 U								6 U	5 U	5 U
Styrene	NC	NC	NC	NC	NC	NC	10 U	26 U	10 U	6 U	6 U	6 U	6 U	11 U	11 U	11 U	6 U	5 U	5 U
Tetrachloroethene	1300	NC	1300	NC	150000	NC	10 U	26 U	10 U	6 U	6 U	6 U	2 J	4 J	11 U	11 U	6 U	5 U	5 U
Toluene	700	NC NC	700	NC NC	500000	NC NC	10 U	26 U	10 U	6 U	6 U	3 BJ	3 BJ	6 J	11 U	1 J	6 U	5 U	5 U
Total BTEX	NC 190	NC NC	NC 100	NC NC	NC 500000	NC NC	10 U	 26 U	10.11	6 U	6 U	3	3	13	11 U	1	6.11	 E.U	 5 U
trans-1,2-Dichloroethylene trans-1,3-Dichloropropylene	NC	NC NC	190 NC	NC NC	NC	NC NC	10 U	26 U	10 U 10 U	6 U	 6 U	 6 U	6 U	11 U	 11 U	 11 U	6 U	5 U 5 U	5 U
Trichloroethylene	470	NC NC	470	NC NC	200000	NC NC	10 U	26 U	10 U	6 U	6 U	6 U	6 U	8 J	11 U	2 J	6 U	5 U	5 U
Trichlorofluoromethane	NC	NC NC	NC	NC NC	NC	NC NC													
Vinyl Acetate	NC	NC	NC	NC	NC	NC				11 U	12 U	12 U	13 U						
Vinyl Chloride	20	NC	20	NC	13000	NC	4 U	10 U	4 U	11 U	12 U	12 U	13 U	11 U	11 U	11 U	2 U	2 U	2 U
Xylene (m,p)	NC	NC	NC	NC	NC	NC	10 U	26 U	10 U								6 U	5 U	5 U
Xylene (total)	260	NC	1600	NC	500000	NC				6 U	6 U	6 U	6 U	6 J	11 U	11 U			

All units in micrograms per kilogram (μg/kg)

Bold - Exceeds 6 NYCRR Part 375 or CP-51 Protection of Groundwater Soil Cleanup Objectives

- Exceeds 6 NYCRR Part 375 Unrestricted Soil Cleanup Objectives or CP-51 Residential Soil Cleanup Objectives

6 NYCRR Part 375 and CP-51 Commercial Soil Cleanup Objectives were not exceeded.

NC - No criteria exists

Sample Type Code: N - Normal, FD - Field Duplicate

ft bgs - feet below ground surface

U - Not Detected at the Detection Limit shown, J - Estimated value, UJ - Approximate Non-detect

B - Blank Contamination, BJ - Estimated Value Detected in Blank

--- Not Analyzed

I:\Itt.3356\35273.Itt-Auto-Fh-19\5_rpts\RI Report_Revised 2013\Revised_Tables\Soil_VOC_Crosstab-Formatted AP.xlsx Page 2 of 11

¹ 6 NYCRR Part 375, Table 375-6.8(b): Restricted Use Soil Cleanup Objectives, Protection of Public Health, Commercial, December 14, 2006.

² Final Commissioner Policy CP-51, Table 1: Supplimental Soil Cleanup Objectives, Residential, October 21, 2010.

³ 6 NYCRR Part 375, Table 375-6.8(b): Restricted Use Soil Cleanup Objectives, Protection of Public Health, Protection of Groundwater, December 14, 2006.

Final Commissioner Policy (P-51, Table 1: Supplimental Soil Cleanup Objectives, Protection of Audit Health, December 14, 2006.
 6 NYCRR Part 375, Table 375-6.8(b): Unrestricted Use Soil Cleanup Objectives, Protection of Public Health, December 14, 2006.

⁶ Final Commissioner Policy CP-51, Table 1: Supplimental Soil Cleanup Objectives, Commercial, October 21, 2010.

						Location	ITT-SBW-7	ITT-SBW-8	OBG-SB-1	OBG-SB-1	OBG-SB-2	OBG-SB-2	OBG-SB-3	OBG-SB-3	OBG-SB-4	OBG-SB-4	OBG-SB-5	OBG-SB-5	OBG-SB-6
						Sample Date:	3/3/1999	4/12/1999	8/30/2004	8/30/2004	8/30/2004	8/30/2004	8/30/2004	8/30/2004	8/30/2004	8/30/2004	8/30/2004	8/30/2004	8/31/2004
						Sample ID:	SBW-7(8-9.8)	ITT-SBW-8 (8-9.1)	OBG-SB-1 (0-2)	OBG-SB-1 (9-10)	OBG-SB-2 (2-4)	OBG-SB-2 (9-10)	OBG-SB-3 (2-4)	OBG-SB-3 (7-9'	OBG-SB-4 (4-6')	OBG-SB-4 (9.5-10.5)	OBG-SB-5 (7.5-9)	OBG-SB-5 (9-10.5)	OBG-SB-6 (0-2)
						art Depth (ft bgs):	8	8	0	9	2	9	2	7	4	9.5	7.5	9	0
						ind Depth (ft bgs):	9.8	9.1	2	10	4	10	4	9	6	10.5	9	10.5	2
			Part 375	NY CP-51		Sample Type Code:	N	N	N	N	N	N	N	N	N	N	N	N	N
	Part 375	NY CP-51	Protection of	Protection of	Part 375	NY CP-51													1
Analyte U	Unrestricted Use	Residential Use	Groundwater	Groundwater	Commercial Use	Commercial Use													1
	SCOs ¹	SCOs ²	SCOs ³	SCOs ⁴	SCOs ⁵	SCOs ⁴													1
1.1.1.2-Tetrachloroethane	NC	NC	NC NC	NC NC	NC	NC		5 U											
1,1,1-Trichloroethane	680	NC	680	NC	500000	NC	39	5 U	1 J	170	3 U	21	3 U	22	1 J	6	3 U	13	3 U
1,1,2,2-Tetrachloroethane	NC	35000	NC	600	NC	NC	6 U	5 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
1,1,2-Trichloroethane	NC	NC	NC	NC	NC	NC	6 U	5 U	3 U	3 U	3 U	3 U	3 U	3 U	0.8 J	3 U	3 U	3 U	3 U
1,1-Dichloroethane	270	NC	270	NC	240000	NC	6 U	5 U	3 U	7	3 U	3 U	3 U	0.9 J	3 U	3 U	3 U	3 U	3 U
1,1-Dichloroethylene	330	NC	330	NC	500000	NC	6 U	5 U	3 U	430	3 U	28	3 U	69	1 J	11	3 U	21	3 U
1,2,3-Trichloropropane	NC NG	80000	NC NG	340	NC NG	NC NG		5 U											
1,2-Dibromo-3-Chloropropane	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC		5 U											
1,2-Dibromoethane 1,2-Dichloroethane	NC 20	NC NC	NC 20	NC NC	30000	NC NC	6 U	5 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
1,2-Dichloroethane	NC	NC NC	NC	NC NC	NC	NC NC			3 U 	3 U 	3 0	3 0	3 U 	3 U 	3 0				3 0
1,2-Dichloropropane	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	6 U	5 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
2-Butanone	120	100000	120	300	500000	NC NC	28 U	26 U	10 U	11 U	11 U	11 U	11 U	13 U	12 U	11 U	12 U	11 U	12 U
2-Chloroethyl vinyl ether	NC	NC	NC	NC	NC	NC		5 U											
2-Chlorotoluene	NC	NC	NC	NC	NC	NC		5 U											
2-Hexanone	NC	NC	NC	NC	NC	NC	11 U	11 U	5 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U
4-Chlorotoluene	NC	NC	NC	NC	NC	NC		5 U											
4-Methyl-2-Pentanone	NC	NC	NC	1000	NC	NC	11 U	11 U	5 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U
Acetone	50	NC NG	50	NC NG	500000	NC NC	28 U	26 U	10 U	11 U	11 J	11 J	11 U	6 J	12 U	11 U	12 U	11 U	12 U
Acrolein Acrylonitrile	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC		21 U 21 U											
Benzene	60	NC NC	60	NC NC	44000	NC NC	.8 U	0.7 U	 3 U	 3 U	 3 U	 3 U	 3 U	 3 U	 3 U	 3 U	 3 U	 3 U	 3 U
Bromobenzene	NC	NC NC	NC NC	NC NC	NC	NC NC	.00	5 U	J 0										
Bromodichloromethane	NC	NC NC	NC NC	NC NC	NC NC	NC NC	6 U	5 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Bromoform	NC	NC	NC	NC	NC	NC	6 U	5 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Bromomethane	NC	NC	NC	NC	NC	NC	6 U	5 U	5 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U
Carbon Disulfide	NC	100000	NC	2700	NC	NC	6 U	5 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Carbon Tetrachloride	760	NC	760	NC	22000	NC	6 U	5 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Chlorobenzene	1100	NC	1100	NC	500000	NC	6 U	5 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Chloroethane	NC	NC NG	NC NC	1900	NC NC	NC NG	6 U	5 U	5 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U
Chloroform Chloromethane	370 NC	NC NC	370 NC	NC NC	350000 NC	NC NC	6 U	5 U	3 U 5 U	3 U 6 U	3 U 6 U	3 U 6 U	3 U 6 U	3 U 6 U	3 U 6 U	3 U 6 U	3 U 6 U	3 U 6 U	3 U 6 U
cis-1,2-Dichloroethylene	250	NC NC	250	NC NC	500000	NC NC	6 U	5 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
cis-1,3-Dichloropropylene	NC	NC NC	NC	NC NC	NC	NC NC	6 U	5 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Dibromochloromethane	NC	NC	NC NC	NC NC	NC	NC	6 U	5 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Dichlorodifluoromethane	NC	NC	NC	NC	NC	NC		5 U											
Ethylbenzene	1000	NC	1000	NC	390000	NC	6 U	5 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Methylene chloride	50	NC	50	NC	500000	NC	6 U	5 U	5 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U
o-Xylene	NC	NC	NC	NC	NC	NC	6 U	5 U											
Styrene	NC 1200	NC NG	NC 1200	NC NC	NC 150000	NC NC	6 U	5 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Tetrachloroethene	1300 700	NC NC	1300 700	NC NC	150000 500000	NC NC	10	5 U	3 U 3 U	25 3 U	3 U 3 U	1 J 3 U	1 J 3 U	15 3 U	15 3 U	8 3 U	3 U 3 U	3 U 3 U	3 U 3 U
Toluene Total BTEX	700 NC	NC NC	700 NC	NC NC	NC	NC NC	6 U		3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
trans-1,2-Dichloroethylene	190	NC NC	190	NC NC	500000	NC NC	6 U	5 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
trans-1,3-Dichloropropylene	NC	NC NC	NC	NC NC	NC	NC NC	6 U	5 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Trichloroethylene	470	NC NC	470	NC NC	200000	NC NC	6 U	5 U	3 U	15	3 U	3	3 U	5	0.9 J	13	3 U	3 U	3 U
Trichlorofluoromethane	NC	NC	NC	NC	NC	NC		5 U											
Vinyl Acetate	NC	NC	NC	NC	NC	NC													
Vinyl Chloride	20	NC	20	NC	13000	NC	2 U	2 U	5 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U
Xylene (m,p)	NC	NC	NC	NC	NC	NC	6 U												
Xylene (total)	260	NC	1600	NC	500000	NC			3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U

All units in micrograms per kilogram (μg/kg)

Bold - Exceeds 6 NYCRR Part 375 or CP-51 Protection of Groundwater Soil Cleanup Objectives

- Exceeds 6 NYCRR Part 375 Unrestricted Soil Cleanup Objectives or CP-51 Residential Soil Cleanup Objectives

6 NYCRR Part 375 and CP-51 Commercial Soil Cleanup Objectives were not exceeded.

NC - No criteria exists

Sample Type Code: N - Normal, FD - Field Duplicate

ft bgs - feet below ground surface

U - Not Detected at the Detection Limit shown, J - Estimated value, UJ - Approximate Non-detect

B - Blank Contamination, BJ - Estimated Value Detected in Blank

--- Not Analyzed

I:\Itt.3356\35273.Itt-Auto-Fh-19\5_rpts\RI Report_Revised 2013\Revised_Tables\Soil_VOC_Crosstab-Formatted AP.xlsx Page 3 of 11

¹ 6 NYCRR Part 375, Table 375-6.8(b): Restricted Use Soil Cleanup Objectives, Protection of Public Health, Commercial, December 14, 2006.

² Final Commissioner Policy CP-51, Table 1: Supplimental Soil Cleanup Objectives, Residential, October 21, 2010.

³ 6 NYCRR Part 375, Table 375-6.8(b): Restricted Use Soil Cleanup Objectives, Protection of Public Health, Protection of Groundwater, December 14, 2006.

Final Commissioner Policy (P-51, Table 1: Supplimental Soil Cleanup Objectives, Protection of Audit Health, December 14, 2006.
 6 NYCRR Part 375, Table 375-6.8(b): Unrestricted Use Soil Cleanup Objectives, Protection of Public Health, December 14, 2006.

⁶ Final Commissioner Policy CP-51, Table 1: Supplimental Soil Cleanup Objectives, Commercial, October 21, 2010.

						Location	OBG-SB-6	OBG-SB-7	OBG-SB-7	OBG-SB-8	OBG-SB-8	OBG-SB-8	OBG-SB-9	OBG-SB-9	OBG-SB-10	OBG-SB-10	OBG-SB-11	OBG-SB-11	OBG-SB-12
						Sample Date:	8/31/2004	8/31/2004	8/31/2004	8/31/2004	8/31/2004	8/31/2004	8/31/2004	8/31/2004	8/31/2004	8/31/2004	8/31/2004	8/31/2004	8/31/2004
					-		OBG-SB-6 (8.5-10.5)	OBG-SB-7 (4-6)	OBG-SB-7 (8.5-10.5)	OBG-SB-8 (0-2)	OBG-SB-8 (1.5-3)	OBG-SB-8 (7-9)	OBG-SB-9 (2-4)	OBG-SB-9 (8-10)	OBG-SB-10 (4-6)	OBG-SB-10 (7-9)	OBG-SB-11 (10-11)	OBG-SB-11 (9-10)	OBG-SB-12 (4-5)
						art Depth (ft bgs): and Depth (ft bgs):	8.5 10.5	4	8.5 10.5	0	1.5 3	9	2	8 10	4	7	10	9 10	4 5
						Sample Type Code:	10.5 N	N N	10.5 N	N N	N N	N N	N N	N N	N N	N N	11 N	N N	N N
			Part 375	NY CP-51			IN	IN .	IN	IN	IN	IN	IN	IN	IN	IN	IN	IN	IN
	Part 375	NY CP-51	Protection of	Protection of	Part 375	NY CP-51													
Analyte	Unrestricted Use	Residential Use	Groundwater	Groundwater		Commercial Use													
	SCOs ¹	SCOs ²	SCOs ³	SCOs ⁴	SCOs⁵	SCOs ⁴													
1,1,1,2-Tetrachloroethane	NC	NC	NC NC	NC NC	NC	NC													
1,1,1-Trichloroethane	680	NC	680	NC	500000	NC	5	2 J	10		4	2 J	3	7	98	59	230	220	290
1,1,2,2-Tetrachloroethane	NC	35000	NC	600	NC	NC	3 U	3 U	3 U		3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	6 U
1,1,2-Trichloroethane	NC	NC	NC	NC	NC	NC	3 U	3 U	3 U		3 U	3 U	3 U	3 U	3 U	3 U	1 J	3 U	6 U
1,1-Dichloroethane	270	NC	270	NC	240000	NC	3 U	1 J	3		4	7	1 J	8	3 U	3 U	3 U	3 U	6 U
1,1-Dichloroethylene	330	NC	330	NC	500000	NC	4	3 U	13		1 J	3 U	3 U	2 J	23	3	26	28	6 J
1,2,3-Trichloropropane	NC	80000	NC	340	NC	NC													
1,2-Dibromo-3-Chloropropane	NC NC	NC NC	NC NC	NC NG	NC NC	NC NG													
1,2-Dibromoethane	NC 20	NC NC	NC 20	NC NC	NC 30000	NC NC	2.11	2.11	2.11		2.11	2.11	2.11	2.11	2.11	2.11	2.11	2.11	
1,2-Dichloroethane 1,2-Dichloroethene	NC	NC NC	20 NC	NC NC	30000 NC	NC NC	3 U 	3 U 	3 U 		3 U 	3 U	3 U 	3 U	3 U	3 U 	3 U	3 U	6 U
1,2-Dichloropropane	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	3 U	3 U	3 U		3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	6 U
2-Butanone	120	100000	120	300	500000	NC NC	11 U	12 U	11 U		37	12 U	12 U	11 U	11 U	11 U	1 J	11 U	24 U
2-Chloroethyl vinyl ether	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC													
2-Chlorotoluene	NC	NC	NC	NC	NC	NC													
2-Hexanone	NC	NC	NC	NC	NC	NC	6 U	6 U	6 U		6 U	6 U	6 U	6 U	6 U	5 U	6 U	6 U	12 U
4-Chlorotoluene	NC	NC	NC	NC	NC	NC													
4-Methyl-2-Pentanone	NC	NC	NC	1000	NC	NC	6 U	6 U	6 U		6 U	6 U	6 U	6 U	6 U	5 U	6 U	6 U	12 U
Acetone	50	NC	50	NC	500000	NC	11 U	12 U	11 J		140	12 U	12 U	11 U	11 U	11 U	11 J	11 U	24 J
Acrolein	NC NC	NC NC	NC NC	NC NG	NC NG	NC NG													
Acrylonitrile	NC CO	NC NC	NC CO	NC NC	NC 44000	NC NC		2.11	2.11		2.11		2.11				2.11		
Benzene	60 NC	NC NC	60 NC	NC NC	44000 NC	NC NC	3 U 	3 U	3 U		3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	6 U
Bromobenzene Bromodichloromethane	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	3 U	3 U	3 U		3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	6 U
Bromoform	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	3 U	3 U	3 U		3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	6 U
Bromomethane	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	6 U	6 U	6 U		6 U	6 U	6 U	6 U	6 U	5 U	6 U	6 U	12 U
Carbon Disulfide	NC	100000	NC	2700	NC	NC	3 U	3 U	3 U		3	3 U	3 U	3 U	3 U	3 U	3 U	3 U	6 U
Carbon Tetrachloride	760	NC	760	NC	22000	NC	3 U	3 U	3 U		3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	6 U
Chlorobenzene	1100	NC	1100	NC	500000	NC	3 U	3 U	3 U		3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	6 U
Chloroethane	NC	NC	NC	1900	NC	NC	6 U	6 U	6 U		6 U	6 U	6 U	6 U	6 U	5 U	6 U	6 U	12 U
Chloroform	370	NC	370	NC	350000	NC	3 U	3 U	3 U		3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	6 U
Chloromethane	NC NC	NC NC	NC NC	NC	NC	NC	6 U	6 U	6 U		6 U	6 U	6 U	6 U	6 U	5 U	6 U	6 U	12 U
cis-1,2-Dichloroethylene	250	NC NC	250	NC NC	500000	NC NC	3 U	3 U	3 U		3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	6 U
cis-1,3-Dichloropropylene Dibromochloromethane	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	3 U 3 U	3 U 3 U	3 U 3 U		3 U 3 U	3 U 3 U	3 U 3 U	3 U 3 U	3 U 3 U	3 U 3 U	3 U 3 U	3 U 3 U	6 U
Dichlorodifluoromethane	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	3 U 	3 U 			3 U 	3 U	3 U	3 0		3 U 	3 U	3 0	
Ethylbenzene	1000	NC NC	1000	NC NC	390000	NC NC	3 U	3 U	3 U		3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	6 U
Methylene chloride	50	NC NC	50	NC NC	500000	NC NC	6 U	6 U	6 J		6 U	6 U	6 U	6 U	6 U	5 U	6 J	6 U	12 J
o-Xylene	NC	NC	NC	NC	NC	NC													
Styrene	NC	NC	NC	NC	NC	NC	3 U	3 U	3 U		3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	6 U
Tetrachloroethene	1300	NC	1300	NC	150000	NC	3 U	0.7 J	3 U		1 J	5	3 U	3 U	7	5	3 U	3 U	6 U
Toluene	700	NC	700	NC	500000	NC	3 U	3 U	3 U		3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	6 U
Total BTEX	NC 122	NC NC	NC 100	NC	NC	NC	3 U	3 U	3 U		3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	6 U
trans-1,2-Dichloroethylene	190	NC NC	190	NC NG	500000	NC NC	3 U	3 U	3 U		3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	6 U
trans-1,3-Dichloropropylene	NC 470	NC NC	NC 470	NC NC	NC 200000	NC NC	3 U 3 U	3 U 3 U	3 U		3 U 1 J	3 U 0.6 J	3 U 3 U	3 U 3 U	3 U 2 J	3 U 0.7 J	3 U	3 U	6 U 2 J
Trichloroethylene Trichlorofluoromethane	470 NC	NC NC	4/0 NC	NC NC	200000 NC	NC NC	3 U 	3 U 	0.8 J		1 J	0.6 J	3 U 	3 U 	2 J	0.7 J 	3	6	2 J
Vinyl Acetate	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC													
Vinyl Chloride	20	NC NC	20	NC NC	13000	NC NC	6 U	6 U	6 U		6 U	6 U	6 U	6 U	6 U	5 U	6 U	6 U	12 U
Xylene (m,p)	NC	NC NC	NC	NC NC	NC	NC NC													
Xylene (total)	260	NC NC	1600	NC NC	500000	NC	3 U	3 U	3 U		3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	6 U
,					555000		5.0				, ,			, , ,			, 50		, ,

All units in micrograms per kilogram (μg/kg)

Bold - Exceeds 6 NYCRR Part 375 or CP-51 Protection of Groundwater Soil Cleanup Objectives

- Exceeds 6 NYCRR Part 375 Unrestricted Soil Cleanup Objectives or CP-51 Residential Soil Cleanup Objectives

6 NYCRR Part 375 and CP-51 Commercial Soil Cleanup Objectives were not exceeded.

NC - No criteria exists

Sample Type Code: N - Normal, FD - Field Duplicate

ft bgs - feet below ground surface

U - Not Detected at the Detection Limit shown, J - Estimated value, UJ - Approximate Non-detect

B - Blank Contamination, BJ - Estimated Value Detected in Blank

--- Not Analyzed

I:\Itt.3356\35273.Itt-Auto-Fh-19\5_rpts\RI Report_Revised 2013\Revised_Tables\Soil_VOC_Crosstab-Formatted AP.xlsx Page 4 of 11

¹ 6 NYCRR Part 375, Table 375-6.8(b): Restricted Use Soil Cleanup Objectives, Protection of Public Health, Commercial, December 14, 2006.

² Final Commissioner Policy CP-51, Table 1: Supplimental Soil Cleanup Objectives, Residential, October 21, 2010.

³ 6 NYCRR Part 375, Table 375-6.8(b): Restricted Use Soil Cleanup Objectives, Protection of Public Health, Protection of Groundwater, December 14, 2006.

Final Commissioner Policy (P-51, Table 1: Supplimental Soil Cleanup Objectives, Protection of Audit Health, December 14, 2006.
 6 NYCRR Part 375, Table 375-6.8(b): Unrestricted Use Soil Cleanup Objectives, Protection of Public Health, December 14, 2006.

⁶ Final Commissioner Policy CP-51, Table 1: Supplimental Soil Cleanup Objectives, Commercial, October 21, 2010.

						Location	OBG-SB-12	OBG-SB-13	OBG-SB-13	OBG-SB-14	OBG-SB-14	OBG-SB-15	OBG-SB-15	OBG-SB-16	OBG-SB-16	OBG-SB-16	OBG-SB-17	OBG-SB-17	OBG-SB-18
						Sample Date:	8/31/2004	8/31/2004	8/31/2004	8/31/2004	8/31/2004	8/31/2004	8/31/2004	9/1/2004	9/1/2004	9/1/2004	9/1/2004	9/1/2004	9/1/2004
						Sample ID:	OBG-SB-12 (5-7)	OBG-SB-13 (7-8)		OBG-SB-14 (2-3)	OBG-SB-14 (9-10.5)	OBG-SB-15 (0-2)	OBG-SB-15 (8-9)	DUP-1_09012004	OBG-SB-16 (5-7.5)	OBG-SB-16 (7.5-9)	OBG-SB-17 (4-7)	OBG-SB-17 (8-9)	OBG-SB-18 (6-7)
						art Depth (ft bgs):	5 7	7 8	9.5	2	9	0	8 9	5	5	7.5 9	4	8 9	6 7
						nd Depth (ft bgs): Sample Type Code:	/ N	8 N	10.5 N	N N	10.5 N	N N	9 N	7.5 FD	7.5 N	N N	/ N	N N	N N
			Part 375	NY CP-51			IN	IN	IN	IN	IN	IN	IN	T D	IN	IN	IN	IN .	IN
	Part 375	NY CP-51	Protection of	Protection of	Part 375	NY CP-51													
Analyte	Unrestricted Use	Residential Use	Groundwater	Groundwater	Commercial Use	_													
	SCOs ¹	SCOs ²	SCOs ³	SCOs ⁴	SCOs⁵	SCOs⁴													
1,1,1,2-Tetrachloroethane	NC	NC	NC	NC	NC	NC													
1,1,1-Trichloroethane	680	NC 25000	680	NC .	500000	NC NC	400	100	710	7	4	1 J	4	79	130	12	9	460	39
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	NC NC	35000 NC	NC NC	600 NC	NC NC	NC NC	7 U 7 U	3 U 3 U	3 U 3 U	3 U 3 U	3 U 3 U	3 U 3 U	3 U 3 U	3 U 3 U	3 U 3 U	3 U 3 U	3 U 3 U	3 U 3 U	3 U 3 U
1,1-Dichloroethane	270	NC NC	270	NC NC	240000	NC NC	7 U	1.]	4	7	4	3 U	<u> </u>	74	110	2.1	3 U	110	39
1.1-Dichloroethylene	330	NC NC	330	NC NC	500000	NC	8	11	82	2 J	3 U	3 U	2 J	1]	1 J	3 U	3 U	39	2 J
1,2,3-Trichloropropane	NC	80000	NC	340	NC	NC													
1,2-Dibromo-3-Chloropropane	NC	NC	NC	NC	NC	NC													
1,2-Dibromoethane	NC	NC	NC	NC	NC	NC													
1,2-Dichloroethane	20	NC NC	20	NC NG	30000	NC NC	7 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	1 J	5
1,2-Dichloroethene	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	7 U	 3 U	3 U	 3 U	 3 U	 3 U	 3 U	 3 U	3 U	 3 U	 3 U	 3 U	 3 U
1,2-Dichloropropane 2-Butanone	NC 120	100000	NC 120	300	500000	NC NC	7 U 27 U	3 U 12 U	3 U 12 U	3 U 47	3 U 12 U	3 U 11 U	12 U	3 U 4 J	3 U 2 J	3 U 11 U	3 U 12 U	3 U 11 U	3 U 12 U
2-Chloroethyl vinyl ether	NC	NC	NC	NC	NC	NC NC													
2-Chlorotoluene	NC	NC	NC	NC	NC	NC													
2-Hexanone	NC	NC	NC	NC	NC	NC	14 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U
4-Chlorotoluene	NC	NC	NC	NC	NC	NC													
4-Methyl-2-Pentanone	NC	NC	NC	1000	NC	NC	14 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U
Acetone	50 NC	NC NC	50 NC	NC NC	500000	NC NC	27 J 	12 J 	12 J	150 	12 J	11 U	12 U 	23	13	11 J	12 U 	11 U 	12 U
Acrolein Acrylonitrile	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC													
Benzene	60	NC NC	60	NC NC	44000	NC NC	7 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Bromobenzene	NC	NC	NC	NC	NC	NC													
Bromodichloromethane	NC	NC	NC	NC	NC	NC	7 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Bromoform	NC	NC	NC	NC	NC	NC	7 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Bromomethane	NC	NC	NC	NC	NC	NC	14 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U
Carbon Disulfide	NC 760	100000 NC	NC 760	2700 NC	NC 22000	NC NC	7 U 7 U	3 U 3 U	3 U 3 U	11 3 U	3 U 3 U	3 U 3 U	3 U 3 U	3 U 3 U	3 U 3 U	3 U 3 U	3 U 3 U	3 U 3 U	3 U 3 U
Carbon Tetrachloride Chlorobenzene	1100	NC NC	1100	NC NC	500000	NC NC	7 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Chloroethane	NC NC	NC NC	NC NC	1900	NC	NC NC	14 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U
Chloroform	370	NC	370	NC	350000	NC	7 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Chloromethane	NC	NC	NC	NC	NC	NC	14 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U
cis-1,2-Dichloroethylene	250	NC	250	NC	500000	NC	7 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
cis-1,3-Dichloropropylene	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	7 U	3 U	3 U	3 U	3 U	3 U 3 U	3 U	3 U 3 U	3 U	3 U	3 U	3 U	3 U
Dibromochloromethane Dichlorodifluoromethane	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	7 U 	3 U 	3 U	3 U 	3 U	3 0	3 U 	3 0	3 U 	3 U	3 U 	3 U 	3 U
Ethylbenzene	1000	NC NC	1000	NC NC	390000	NC NC	7 U	3 U	0.6 J	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Methylene chloride	50	NC NC	50	NC	500000	NC NC	14 J	6 J	6 J	6 U	6 U	6 U	6 U	2 J	6 J	6 U	6 U	6 J	6 J
o-Xylene	NC	NC	NC	NC	NC	NC													
Styrene	NC	NC	NC	NC	NC	NC	7 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Tetrachloroethene	1300	NC	1300	NC	150000	NC	7 U	3 J	7	3 U	9	3 U	2 J	46	75	9	13	20	8
Toluene Total BTEV	700	NC NC	700	NC NC	500000	NC NC	7 U	3 U	3	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Total BTEX trans-1,2-Dichloroethylene	NC 190	NC NC	NC 190	NC NC	NC 500000	NC NC	7 U 7 U	3 U 3 U	9.6 3 U	3 U 3 U	3 U 3 U	3 U 3 U	3 U 3 U	3 U 3 U	3 U 3 U	3 U 3 U	3 U 3 U	3 U 3 U	3 U 3 U
trans-1,3-Dichloropropylene	NC	NC NC	NC	NC NC	NC	NC NC	7 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Trichloroethylene	470	NC NC	470	NC NC	200000	NC NC	2 J	4	11	2 J	1 J	3 U	3 U	1]	2 J	3 U	3 U	5	3 J
Trichlorofluoromethane	NC	NC	NC	NC	NC	NC													
Vinyl Acetate	NC	NC	NC	NC	NC	NC													
Vinyl Chloride	20	NC	20	NC	13000	NC	14 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U
Xylene (m,p)	NC 2C0	NC NC	NC 1600	NC NC	NC F00000	NC NC	7.11												
Xylene (total)	260	NC	1600	NC	500000	NC	7 U	3 U	ь	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U

All units in micrograms per kilogram (μg/kg)

Bold - Exceeds 6 NYCRR Part 375 or CP-51 Protection of Groundwater Soil Cleanup Objectives

- Exceeds 6 NYCRR Part 375 Unrestricted Soil Cleanup Objectives or CP-51 Residential Soil Cleanup Objectives

6 NYCRR Part 375 and CP-51 Commercial Soil Cleanup Objectives were not exceeded.

NC - No criteria exists

Sample Type Code: N - Normal, FD - Field Duplicate

ft bgs - feet below ground surface

U - Not Detected at the Detection Limit shown, J - Estimated value, UJ - Approximate Non-detect

B - Blank Contamination, BJ - Estimated Value Detected in Blank

--- Not Analyzed

I:\Itt.3356\35273.Itt-Auto-Fh-19\5_rpts\RI Report_Revised 2013\Revised_Tables\Soil_VOC_Crosstab-Formatted AP.xlsx Page 5 of 11

¹ 6 NYCRR Part 375, Table 375-6.8(b): Restricted Use Soil Cleanup Objectives, Protection of Public Health, Commercial, December 14, 2006.

² Final Commissioner Policy CP-51, Table 1: Supplimental Soil Cleanup Objectives, Residential, October 21, 2010.

³ 6 NYCRR Part 375, Table 375-6.8(b): Restricted Use Soil Cleanup Objectives, Protection of Public Health, Protection of Groundwater, December 14, 2006.

Final Commissioner Policy (P-51, Table 1: Supplimental Soil Cleanup Objectives, Protection of Audit Health, December 14, 2006.
 6 NYCRR Part 375, Table 375-6.8(b): Unrestricted Use Soil Cleanup Objectives, Protection of Public Health, December 14, 2006.

⁶ Final Commissioner Policy CP-51, Table 1: Supplimental Soil Cleanup Objectives, Commercial, October 21, 2010.

						Location	OBG-SB-18	OBG-SB-19	OBG-SB-19	OBG-SB-20	OBG-SB-20	OBG-SB-20	OBG-SB-21	OBG-SB-21	OBG-SB-22	OBG-SB-22	OBG-SB-23	OBG-SB-23	OBG-SB-24
						Sample Date:	9/1/2004	9/1/2004	9/1/2004	9/1/2004	9/1/2004	9/1/2004	9/1/2004	9/1/2004	9/1/2004	9/1/2004	9/1/2004	9/1/2004	9/1/2004
						Sample ID:	OBG-SB-18 (7-9.5)	OBG-SB-19 (4-7)	OBG-SB-19 (8.5-10)	DUP-2_09012004	OBG-SB-20 (2-4)	OBG-SB-20 (6-7)	OBG-SB-21 (4-6)	OBG-SB-21 (9-10)	OBG-SB-22 (1-2)	OBG-SB-22 (6-7)	OBG-SB-23 (1-2)	OBG-SB-23 (6-7)	OBG-SB-24 (1-2)
						art Depth (ft bgs):	7	4 7	8.5	2	2	6 7	4	9	1 2	6 7	1	6	1
						ind Depth (ft bgs): Sample Type Code:	9.5 N	/ N	10 N	FD	N N	N N	N N	10 N	N N	N N	N N	N N	2 N
			Part 375	NY CP-51			IN	IN	IN	10	IN	IN .	IN	IN	IN .	IN	IN IN	IN	IN .
	Part 375	NY CP-51	Protection of	Protection of	Part 375	NY CP-51													
Analyte	Unrestricted Use	Residential Use	Groundwater	Groundwater	Commercial Use SCOs ⁵	_													
	SCOs ¹	SCOs ²	SCOs ³	SCOs ⁴	SCOs	SCOs⁴													
1,1,1,2-Tetrachloroethane	NC	NC	NC	NC	NC	NC													
1,1,1-Trichloroethane	680	NC 25000	680	NC 600	500000	NC NG	120	90	620	2 J	20	440	220	410	3	3	1 J	23	0.8 J
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	NC NC	35000 NC	NC NC	600 NC	NC NC	NC NC	3 U 3 U	3 U 1 J	3 U 2 J	3 U 3 U	3 U 1 J	3 U 5	3 U 3 U	3 U 3 J	3 U 3 U				
1,1-Dichloroethane	270	NC NC	270	NC NC	240000	NC NC	41	0.6 J	13	3 U	3 U	2 J	2.1	1.1	4	0.8 J	9	2.1	10
1.1-Dichloroethylene	330	NC NC	330	NC NC	500000	NC	24	1 J	5	3 U	3 U	28	3 J	2 J	3 U	3 U	4	1]	6
1,2,3-Trichloropropane	NC	80000	NC	340	NC	NC													
1,2-Dibromo-3-Chloropropane	NC	NC	NC	NC	NC	NC													
1,2-Dibromoethane	NC	NC	NC	NC	NC	NC													
1,2-Dichloroethane	20	NC NC	20	NC NG	30000	NC NC	4	3 U	0.7 J	3 U	3 U	1 J	3 U	3 U	3 U	3 U	3 U	3 U	3 U
1,2-Dichloroethene	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	3 U	 3 U	 3 U	 3 U	 3 U	 3 U	 3 U	 3 U	 3 U	 3 U	 3 U	 3 U	 3 U
1,2-Dichloropropane 2-Butanone	NC 120	100000	NC 120	300	NC 500000	NC NC	3 U 11 U	3 U 11 U	3 U 11 U	3 U 12 U	12 U	3 U 11 U	3 U 11 U	13 U	25	3 U 11 U	76	3 U 11 U	3 U 41
2-Chloroethyl vinyl ether	NC	NC	NC	NC	NC	NC NC													41
2-Chlorotoluene	NC	NC	NC	NC	NC	NC													
2-Hexanone	NC	NC	NC	NC	NC	NC	5 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U
4-Chlorotoluene	NC	NC	NC	NC	NC	NC													
4-Methyl-2-Pentanone	NC	NC	NC	1000	NC	NC	5 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U
Acetone	50	NC NC	50	NC NC	500000	NC NC	11 U	11 J	11 U	12 U	12 U	11 U	11 U	13 U	93	11 U	200	11 U	120
Acrolein Acrylonitrile	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC													
Benzene	60	NC NC	60	NC NC	44000	NC NC	3 U	3 U	1 J	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Bromobenzene	NC	NC	NC	NC	NC	NC													
Bromodichloromethane	NC	NC	NC	NC	NC	NC	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Bromoform	NC	NC	NC	NC	NC	NC	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Bromomethane	NC	NC	NC	NC	NC	NC	5 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U
Carbon Disulfide Carbon Tetrachloride	NC 760	100000 NC	NC 760	2700 NC	NC 22000	NC NC	3 U 3 U	3 U 3 U	3 U 3 U	3 U 3 U	3 U 3 U	3 U 3 U	3 U 3 U	3 U 3 U	3 U 3 U	3 U 3 U	5 3 U	3 U 3 U	2 J 3 U
Chlorobenzene	1100	NC NC	1100	NC NC	500000	NC NC	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Chloroethane	NC NC	NC NC	NC NC	1900	NC	NC NC	5 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	2 J	6 U	6 U
Chloroform	370	NC	370	NC	350000	NC	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Chloromethane	NC	NC	NC	NC	NC	NC	5 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U
cis-1,2-Dichloroethylene	250	NC	250	NC	500000	NC	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
cis-1,3-Dichloropropylene	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	3 U 3 U	3 U 3 U	3 U 3 U	3 U 3 U	3 U 3 U	3 U 3 U	3 U 3 U	3 U 3 U	3 U 3 U	3 U 3 U	3 U 3 U	3 U 3 U	3 U 3 U
Dibromochloromethane Dichlorodifluoromethane	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	3 U	3 U	3 0	3 U 	3 0	3 0	3 U 	3 0	3 0	3 0	3 0	3 0	3 0
Ethylbenzene	1000	NC NC	1000	NC NC	390000	NC NC	3 U	3 U	1 J	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Methylene chloride	50	NC NC	50	NC	500000	NC NC	5 J	6 J	6 J	6 U	6 J	6 J	6 J	6 J	6 J	6 J	6 J	6 J	6 J
o-Xylene	NC	NC	NC	NC	NC	NC													
Styrene	NC	NC	NC	NC	NC	NC	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Tetrachloroethene	1300	NC	1300	NC	150000	NC	10	29	100	3 J	21	200	85	450	1 J	2 J	1 J	4	0.6 J
Toluene Total BTEV	700	NC NC	700	NC NC	500000	NC NC	3 U	3 U	5	3 U	3 U	3 U	2 J	3 J	3 U	3 U	3 U	3 U	3 U
Total BTEX trans-1,2-Dichloroethylene	NC 190	NC NC	NC 190	NC NC	NC 500000	NC NC	3 U 3 U	3 U 3 U	16 3 U	3 U 3 U	3 U 3 U	3 U 3 U	7 3 U	8 3 U	3 U 3 U	3 U 3 U	3 U 3 U	3 U 3 U	3 U 3 U
trans-1,3-Dichloropropylene	NC	NC NC	NC.	NC NC	NC	NC NC	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Trichloroethylene	470	NC NC	470	NC	200000	NC NC	8	3	15	3 U	2 J	16	6	20	3 U	3 U	2 J	1]	1 J
Trichlorofluoromethane	NC	NC	NC	NC	NC	NC													
Vinyl Acetate	NC	NC	NC	NC	NC	NC													
Vinyl Chloride	20	NC	20	NC	13000	NC	5 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U
Xylene (m,p)	NC 260	NC NC	NC 1600	NC NG	NC FORGO	NC NC													
Xylene (total)	260	NC	1600	NC	500000	NC	3 U	3 U	9	3 U	3 U	3 U	5	5	3 U	3 U	3 U	3 U	3 U

All units in micrograms per kilogram (μg/kg)

Bold - Exceeds 6 NYCRR Part 375 or CP-51 Protection of Groundwater Soil Cleanup Objectives

- Exceeds 6 NYCRR Part 375 Unrestricted Soil Cleanup Objectives or CP-51 Residential Soil Cleanup Objectives

6 NYCRR Part 375 and CP-51 Commercial Soil Cleanup Objectives were not exceeded.

NC - No criteria exists

Sample Type Code: N - Normal, FD - Field Duplicate

ft bgs - feet below ground surface

U - Not Detected at the Detection Limit shown, J - Estimated value, UJ - Approximate Non-detect

B - Blank Contamination, BJ - Estimated Value Detected in Blank

--- Not Analyzed

I:\Itt.3356\35273.Itt-Auto-Fh-19\5_rpts\RI Report_Revised 2013\Revised_Tables\Soil_VOC_Crosstab-Formatted AP.xlsx Page 6 of 11

¹ 6 NYCRR Part 375, Table 375-6.8(b): Restricted Use Soil Cleanup Objectives, Protection of Public Health, Commercial, December 14, 2006.

² Final Commissioner Policy CP-51, Table 1: Supplimental Soil Cleanup Objectives, Residential, October 21, 2010.

³ 6 NYCRR Part 375, Table 375-6.8(b): Restricted Use Soil Cleanup Objectives, Protection of Public Health, Protection of Groundwater, December 14, 2006.

Final Commissioner Policy (P-51, Table 1: Supplimental Soil Cleanup Objectives, Protection of Audit Health, December 14, 2006.
 6 NYCRR Part 375, Table 375-6.8(b): Unrestricted Use Soil Cleanup Objectives, Protection of Public Health, December 14, 2006.

⁶ Final Commissioner Policy CP-51, Table 1: Supplimental Soil Cleanup Objectives, Commercial, October 21, 2010.

						Location	OBG-SB-24	OBG-SB-25	OBG-SB-25	OBG-SB-26	OBG-SB-26	OBG-SB-27	OBG-SB-27	OBG-SB-28	OBG-SB-28	OBG-SB-28	OBG-SB-29	OBG-SB-30	OBG-SB-30
						Sample Date:	9/1/2004	9/1/2004	9/1/2004	9/1/2004	9/1/2004	9/1/2004	9/1/2004	9/1/2004	9/1/2004	9/2/2004	9/2/2004	9/2/2004	9/2/2004
					-	Sample ID:	OBG-SB-24 (8-9)	OBG-SB-25 (4-6)	OBG-SB-25 (6-8)			OBG-SB-27 (1-2)			OBG-SB-28 (1-2)	OBG-SB-29 (2-4)	OBG-SB-29 (5-6.5)	DUP-3_09022004	OBG-SB-30 (4-8)
						art Depth (ft bgs): ind Depth (ft bgs):	8	4	6	0.5	4 5	2	6.5 7.5	10	2	4	5 6.5	10	8
						Sample Type Code:	N N	N N	N N	1.5 N	N N	N N	7.5 N	11 N	N N	N N	0.5 N	FD FD	N N
			Part 375	NY CP-51			IN	IN	IN	IN	IN .	IN	IN	IN	IN	IN	IN	FD	IN IN
	Part 375	NY CP-51	Protection of	Protection of	Part 375	NY CP-51													1
Analyte	Unrestricted Use	Residential Use	Groundwater	Groundwater		Commercial Use													1
	SCOs ¹	SCOs ²	SCOs ³	SCOs ⁴	SCOs⁵	SCOs ⁴													1
1,1,1,2-Tetrachloroethane	NC	NC	NC NC	NC NC	NC	NC													
1,1,1-Trichloroethane	680	NC	680	NC NC	500000	NC	120	1.]	3 J	1 J	2.1	3 U	4	16	3 U	32	21	12	6
1,1,2,2-Tetrachloroethane	NC	35000	NC	600	NC	NC	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
1,1,2-Trichloroethane	NC	NC	NC	NC	NC	NC	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
1,1-Dichloroethane	270	NC	270	NC	240000	NC	5	1 J	2 J	1 J	1 J	4	1 J	3	3	0.8 J	3 U	3 U	3 U
1,1-Dichloroethylene	330	NC	330	NC	500000	NC	2 J	3 U	3 U	3 U	3 U	3 U	3 U	0.8 J	3 U	2 J	2 J	2 J	2 J
1,2,3-Trichloropropane	NC	80000	NC	340	NC	NC													
1,2-Dibromo-3-Chloropropane	NC	NC	NC	NC	NC	NC													
1,2-Dibromoethane	NC 30	NC NG	NC 20	NC NC	NC 20000	NC NC													
1,2-Dichloroethane	20 NG	NC NC	20	NC NC	30000	NC NC	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
1,2-Dichloroethene	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	3 U	3 U	3 U	 3 U	3 U	3 U	 3 U	 3 U	3 U	 3 U	 3 U	 3 U	3 U
1,2-Dichloropropane 2-Butanone	NC 120	100000	NC 120	NC 300	NC 500000	NC NC	3 U 13 U	12 U	3 U 12 U	12 U	3 U 12 U	3 U 5 J	12 U	3 U 11 U	9.1	12 U	3 U 11 U	3 U 11 U	3 U 12 U
2-Chloroethyl vinyl ether	NC.	NC.	NC	NC	NC.	NC NC						2.7			9.7				
2-Chlorotoluene	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC													
2-Hexanone	NC	NC	NC	NC	NC	NC	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U
4-Chlorotoluene	NC	NC	NC	NC	NC	NC													
4-Methyl-2-Pentanone	NC	NC	NC	1000	NC	NC	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U
Acetone	50	NC	50	NC	500000	NC	13 U	12 U	12 U	12 U	12 U	12	12 U	11 U	12	12 U	11 U	11 U	12 U
Acrolein	NC	NC	NC	NC	NC	NC													
Acrylonitrile	NC	NC	NC	NC	NC	NC													
Benzene	60	NC	60	NC	44000	NC	0.8 J	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Bromobenzene	NC	NC	NC NC	NC	NC	NC NG													
Bromodichloromethane	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Bromoform Bromomethane	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	3 U 6 U	3 U 6 U	3 U 6 U	3 U 6 U	3 U 6 U	3 U 6 U	3 U 6 U	3 U 6 U	3 U 6 U	3 U 6 U	3 U 6 U	3 U 6 U	3 U 6 U
Carbon Disulfide	NC NC	100000	NC NC	2700	NC NC	NC NC	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	1 J	3 U	3 U	3 U	3 U
Carbon Tetrachloride	760	NC	760	NC	22000	NC NC	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Chlorobenzene	1100	NC NC	1100	NC NC	500000	NC	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Chloroethane	NC	NC	NC	1900	NC	NC	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U
Chloroform	370	NC	370	NC	350000	NC	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Chloromethane	NC	NC	NC	NC	NC	NC	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U
cis-1,2-Dichloroethylene	250	NC	250	NC	500000	NC	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
cis-1,3-Dichloropropylene	NC	NC	NC	NC	NC	NC	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Dibromochloromethane	NC NG	NC NG	NC NC	NC NC	NC NC	NC NG	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Dichlorodifluoromethane Ethylbograpa	NC 1000	NC NC	NC 1000	NC NC	NC 300000	NC NC	2.11	2.11	2.11	2.11	2.11	2.11	2.11	2.11	2.11	2.11	2.11	2.11	2.11
Ethylbenzene Mothylona chlorida	1000 50	NC NC	1000 50	NC NC	390000 500000	NC NC	3 U	3 U	3 U	3 U	3 U	3 U 6 J	3 U	3 U 6 J	3 U 6 J	3 U 6 J	3 U	3 U 0.8 J	3 U
Methylene chloride o-Xylene	NC.	NC NC	NC	NC NC	NC	NC NC	6 U 	6 J 	6 J 	6 J	6 J	6 J	6 J	6 J	6 J	6 J	6 U 	0.8 J	6 U
Styrene	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Tetrachloroethene	1300	NC NC	1300	NC NC	150000	NC NC	76	3 U	3 U	3 U	3 U	3 U	2 J	8	3 U	3 U	3 U	3 U	3 U
Toluene	700	NC NC	700	NC NC	500000	NC	2 J	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Total BTEX	NC	NC	NC	NC	NC	NC	2.8	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	0.7	3 U
trans-1,2-Dichloroethylene	190	NC	190	NC	500000	NC	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
trans-1,3-Dichloropropylene	NC	NC	NC	NC	NC	NC	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Trichloroethylene	470	NC	470	NC	200000	NC	10	3 U	3 U	3 U	3 U	3 U	3 U	0.7 J	3 U	2 J	3 U	3 U	3 U
Trichlorofluoromethane	NC	NC	NC	NC	NC	NC													
Vinyl Acetate	NC	NC	NC	NC	NC	NC													
Vinyl Chloride	20	NC	20	NC	13000	NC NG	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U
Xylene (m,p)	NC 260	NC NG	NC 1600	NC NC	NC F00000	NC NC													
Xylene (total)	260	NC	1600	NC	500000	NC	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	0.7 J	3 U

All units in micrograms per kilogram (μg/kg)

Bold - Exceeds 6 NYCRR Part 375 or CP-51 Protection of Groundwater Soil Cleanup Objectives

- Exceeds 6 NYCRR Part 375 Unrestricted Soil Cleanup Objectives or CP-51 Residential Soil Cleanup Objectives

6 NYCRR Part 375 and CP-51 Commercial Soil Cleanup Objectives were not exceeded.

NC - No criteria exists

Sample Type Code: N - Normal, FD - Field Duplicate

ft bgs - feet below ground surface

U - Not Detected at the Detection Limit shown, J - Estimated value, UJ - Approximate Non-detect

B - Blank Contamination, BJ - Estimated Value Detected in Blank

--- Not Analyzed

I:\Itt.3356\35273.Itt-Auto-Fh-19\5_rpts\RI Report_Revised 2013\Revised_Tables\Soil_VOC_Crosstab-Formatted AP.xlsx Page 7 of 11

¹ 6 NYCRR Part 375, Table 375-6.8(b): Restricted Use Soil Cleanup Objectives, Protection of Public Health, Commercial, December 14, 2006.

² Final Commissioner Policy CP-51, Table 1: Supplimental Soil Cleanup Objectives, Residential, October 21, 2010.

³ 6 NYCRR Part 375, Table 375-6.8(b): Restricted Use Soil Cleanup Objectives, Protection of Public Health, Protection of Groundwater, December 14, 2006.

Final Commissioner Policy (P-51, Table 1: Supplimental Soil Cleanup Objectives, Protection of Audit Health, December 14, 2006.
 6 NYCRR Part 375, Table 375-6.8(b): Unrestricted Use Soil Cleanup Objectives, Protection of Public Health, December 14, 2006.

⁶ Final Commissioner Policy CP-51, Table 1: Supplimental Soil Cleanup Objectives, Commercial, October 21, 2010.

						Location	OBG-SB-30	OBG-SB-31	OBG-SB-31	OBG-SB-32	OBG-SB-32	OBG-SB-33	OBG-SB-33	OBG-SB-34	OBG-SB-34	OBG-SB-35	OBG-SB-35	OBG-SB-35	OBG-SB-36
						Sample Date:	9/2/2004	9/2/2004	9/2/2004	9/2/2004	9/2/2004	9/2/2004	9/2/2004	9/2/2004	9/2/2004	9/2/2004	9/2/2004	9/2/2004	9/2/2004
					-	Sample ID:	OBG-SB-30 (8-10)	OBG-SB-31 (4-6)	OBG-SB-31 (7-8.5)	OBG-SB-32 (6-7)	OBG-SB-32 (7-8.5)	OBG-SB-33 (0-2)	OBG-SB-33 (4-6)	OBG-SB-34 (2-4)	OBG-SB-34 (6-8)	DUP-4_09022004	OBG-SB-35 (2-4)	OBG-SB-35 (5-7)	OBG-SB-36 (2-4)
						art Depth (ft bgs):	8	4	7	6	7	0	4	2	6	5	2	5	2
						ind Depth (ft bgs): Sample Type Code:	10 N	N N	8.5 N	/ N	8.5 N	2 N	b N	4 N	8 N	5 FD	4 N	/ N	4 N
			Part 375	NY CP-51			IN	IN .	IN	IN .	IN	IN	IN	IN	IN	Γυ	IN	IN	IN .
	Part 375	NY CP-51	Protection of	Protection of	Part 375	NY CP-51													
Analyte	Unrestricted Use	Residential Use	Groundwater	Groundwater	Commercial Use	_													
	SCOs ¹	SCOs ²	SCOs ³	SCOs ⁴	SCOs⁵	SCOs⁴													
1,1,1,2-Tetrachloroethane	NC	NC	NC	NC	NC	NC													
1,1,1-Trichloroethane	680	NC	680	NC	500000	NC	2 J	3 U	73	7	3 U	3 U	3 U	3 U	46	1 J	1 J	2 J	3 U
1,1,2,2-Tetrachloroethane	NC	35000	NC	600	NC	NC	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
1,1,2-Trichloroethane	NC	NC	NC	NC	NC	NC	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
1,1-Dichloroethane	270	NC NC	270	NC	240000	NC NG	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
1,1-Dichloroethylene	330 NC	NC 80000	330 NC	NC 340	500000 NC	NC NC	1 J	3 U 	13	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
1,2,3-Trichloropropane 1,2-Dibromo-3-Chloropropane	NC NC	NC	NC NC	NC	NC NC	NC NC													
1,2-Dibromoethane	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC													
1,2-Dichloroethane	20	NC NC	20	NC NC	30000	NC NC	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
1,2-Dichloroethene	NC	NC NC	NC	NC	NC	NC NC													
1,2-Dichloropropane	NC	NC	NC	NC	NC	NC	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
2-Butanone	120	100000	120	300	500000	NC	11 U	11 U	11 U	13 U	11 U	11 U	11 U	11 U	12 U	11 U	11 U	11 U	11 U
2-Chloroethyl vinyl ether	NC	NC	NC	NC	NC	NC													
2-Chlorotoluene	NC	NC	NC	NC	NC	NC													
2-Hexanone	NC	NC	NC	NC	NC	NC	6 U	6 U	5 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U
4-Chlorotoluene	NC NC	NC NC	NC	NC	NC NC	NC													
4-Methyl-2-Pentanone	NC 50	NC NC	NC 50	1000 NC	NC 500000	NC NC	6 U 11 U	6 U 11 U	5 U 11 U	6 U 13 U	6 U 11 U	6 U 11 U	6 U 11 U	6 U 11 U	6 U 12 U	6 U 11 U	6 U 11 U	6 U 11 U	6 U 11 U
Acetone Acrolein	NC	NC NC	NC	NC NC	NC	NC NC				13 U 					12 U				
Acrylonitrile	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC													
Benzene	60	NC NC	60	NC NC	44000	NC NC	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Bromobenzene	NC	NC	NC	NC	NC	NC NC													
Bromodichloromethane	NC	NC	NC	NC	NC	NC	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Bromoform	NC	NC	NC	NC	NC	NC	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Bromomethane	NC	NC	NC	NC	NC	NC	6 U	6 U	5 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U
Carbon Disulfide	NC	100000	NC	2700	NC	NC	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Carbon Tetrachloride	760	NC NC	760	NC	22000	NC NG	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Chlorobenzene	1100 NC	NC NC	1100	NC 1900	500000	NC NC	3 U 6 U	3 U 6 U	3 U 5 U	3 U 6 U	3 U 6 U	3 U 6 U	3 U 6 U	3 U 6 U	3 U 6 U	3 U	3 U	3 U 6 U	3 U 6 U
Chloroethane Chloroform	370	NC NC	NC 370	NC	NC 350000	NC NC	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	6 U 3 U	6 U 3 U	3 U	3 U
Chloromethane	NC.	NC NC	NC.	NC NC	NC	NC NC	6 U	6 U	5 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U
cis-1,2-Dichloroethylene	250	NC NC	250	NC NC	500000	NC NC	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
cis-1,3-Dichloropropylene	NC	NC	NC NC	NC	NC	NC	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Dibromochloromethane	NC	NC	NC	NC	NC	NC	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Dichlorodifluoromethane	NC	NC	NC	NC	NC	NC													
Ethylbenzene	1000	NC	1000	NC	390000	NC	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Methylene chloride	50	NC NC	50	NC	500000	NC	6 U	6 J	5 J	6 J	6 U	6 J	6 U	6 U	6 U	6 U	6 U	6 U	6 U
o-Xylene	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC		2.11		2.11			2.11	2.11			2.11		
Styrene	NC 1300	NC NC	NC 1300	NC NC	NC 150000	NC NC	3 U 3 U	3 U 3 U	3 U 3 U	3 U 3 U	3 U 3 U	3 U 3 U	3 U 3 U	3 U 3 U	3 U 0.7 J	3 U 3 U	3 U 3 U	3 U 3 U	3 U 3 U
Tetrachloroethene Toluene	700	NC NC	700	NC NC	500000	NC NC	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	0.7 J 3 U	3 U	3 U	3 U	3 U
Total BTEX	NC	NC NC	NC	NC	NC	NC NC	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
trans-1,2-Dichloroethylene	190	NC NC	190	NC	500000	NC NC	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
trans-1,3-Dichloropropylene	NC	NC	NC	NC	NC	NC	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Trichloroethylene	470	NC	470	NC	200000	NC	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	0.7 J	3 U	3 U	3 U	3 U
Trichlorofluoromethane	NC	NC	NC	NC	NC	NC													
Vinyl Acetate	NC	NC	NC	NC	NC	NC													
Vinyl Chloride	20	NC	20	NC	13000	NC	6 U	6 U	5 U	4 J	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U
Xylene (m,p)	NC	NC	NC 1500	NC	NC	NC NG													
Xylene (total)	260	NC	1600	NC	500000	NC	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U

All units in micrograms per kilogram (μg/kg)

Bold - Exceeds 6 NYCRR Part 375 or CP-51 Protection of Groundwater Soil Cleanup Objectives

- Exceeds 6 NYCRR Part 375 Unrestricted Soil Cleanup Objectives or CP-51 Residential Soil Cleanup Objectives

6 NYCRR Part 375 and CP-51 Commercial Soil Cleanup Objectives were not exceeded.

NC - No criteria exists

Sample Type Code: N - Normal, FD - Field Duplicate

ft bgs - feet below ground surface

U - Not Detected at the Detection Limit shown, J - Estimated value, UJ - Approximate Non-detect

B - Blank Contamination, BJ - Estimated Value Detected in Blank

--- Not Analyzed

I:\Itt.3356\35273.Itt-Auto-Fh-19\5_rpts\RI Report_Revised 2013\Revised_Tables\Soil_VOC_Crosstab-Formatted AP.xlsx Page 8 of 11

¹ 6 NYCRR Part 375, Table 375-6.8(b): Restricted Use Soil Cleanup Objectives, Protection of Public Health, Commercial, December 14, 2006.

² Final Commissioner Policy CP-51, Table 1: Supplimental Soil Cleanup Objectives, Residential, October 21, 2010.

³ 6 NYCRR Part 375, Table 375-6.8(b): Restricted Use Soil Cleanup Objectives, Protection of Public Health, Protection of Groundwater, December 14, 2006.

Final Commissioner Policy (P-51, Table 1: Supplimental Soil Cleanup Objectives, Protection of Audit Health, December 14, 2006.
 6 NYCRR Part 375, Table 375-6.8(b): Unrestricted Use Soil Cleanup Objectives, Protection of Public Health, December 14, 2006.

⁶ Final Commissioner Policy CP-51, Table 1: Supplimental Soil Cleanup Objectives, Commercial, October 21, 2010.

						Location	OBG-SB-36	OBG-SB-37	OBG-SB-37	OBG-SB-38	OBG-SB-38	OBG-SB-39	OBG-SB-39	OBG-SB-39	OBG-SB-40	OBG-SB-40	OBG-SB-41	OBG-SB-41	OBG-SB-42
						Sample Date:	9/2/2004	9/2/2004	9/2/2004	9/2/2004	9/2/2004	9/2/2004	9/2/2004	9/2/2004	9/2/2004	9/2/2004	9/2/2004	9/2/2004	9/2/2004
						Sample ID:	OBG-SB-36 (5-7)	OBG-SB-37 (3-5)	OBG-SB-37 (5-7)	OBG-SB-38 (2-4)	OBG-SB-38 (4-7.5)	DUP-5_09022004	OBG-SB-39 (2-4)	OBG-SB-39 (6-8)	OBG-SB-40 (2-4)	OBG-SB-40 (6-7)	OBG-SB-41 (1-3)	OBG-SB-41 (5.5-7.5)	OBG-SB-42 (2-4)
						art Depth (ft bgs):	5	3	5	2	4	6	2	6	2	6	1	5.5	2
						nd Depth (ft bgs):	7	5	7	4	7.5	8	4	8	4	7	3	7.5	4
			Part 375	NY CP-51	3	Sample Type Code:	N	N	N	N	N	FD	N	N	N	N	N	N	N
	Part 375	NY CP-51	Protection of	Protection of	Part 375	NY CP-51													, ,
Analyte	Unrestricted Use	Residential Use	Groundwater	Groundwater	Commercial Use	Commercial Use													, ,
	SCOs ¹	SCOs ²	SCOs ³	SCOs ⁴	SCOs ⁵	SCOs ⁴													1
1.1.1.2-Tetrachloroethane	NC.	NC.	NC.	NC NC	NC.	NC													
1,1,1-Trichloroethane	680	NC	680	NC	500000	NC	3 U	3 U	3 U	3 U	1 J	9	3 U	3 J	1 J	32	0.9 J	3 U	2 J
1,1,2,2-Tetrachloroethane	NC	35000	NC	600	NC	NC	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
1,1,2-Trichloroethane	NC	NC	NC	NC	NC	NC	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
1,1-Dichloroethane	270	NC	270	NC	240000	NC	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
1,1-Dichloroethylene	330	NC	330	NC	500000	NC	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
1,2,3-Trichloropropane	NC NG	80000	NC NC	340	NC NG	NC NC													
1,2-Dibromo-3-Chloropropane	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC													
1,2-Dibromoethane 1,2-Dichloroethane	NC 20	NC NC	NC 20	NC NC	30000	NC NC	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
1,2-Dichloroethane	NC	NC NC	NC	NC NC	NC	NC NC			3.0										
1,2-Dichloropropane	NC NC	NC NC	NC NC	NC	NC NC	NC NC	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
2-Butanone	120	100000	120	300	500000	NC	11 U	11 U	11 U	11 U	12 U	11 U	11 U	12 U	11 U	12 U	11 U	11 U	12 U
2-Chloroethyl vinyl ether	NC	NC	NC	NC	NC	NC													
2-Chlorotoluene	NC	NC	NC	NC	NC	NC													
2-Hexanone	NC	NC	NC	NC	NC	NC	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U
4-Chlorotoluene	NC	NC	NC	NC	NC	NC													
4-Methyl-2-Pentanone	NC	NC	NC	1000	NC	NC	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U
Acetone	50	NC NG	50	NC NG	500000	NC NC	11 U	11 U	11 U	11 J	12 U	11 U	11 J	12 U	11 U	12 U	11 U	11 U	12 U
Acrolein Acrylonitrile	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC													
Benzene	60	NC NC	60	NC NC	44000	NC NC	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	1 J	3 U	3 U	3 U
Bromobenzene	NC	NC NC	NC	NC	NC	NC NC													
Bromodichloromethane	NC NC	NC NC	NC.	NC	NC NC	NC NC	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Bromoform	NC	NC	NC	NC	NC	NC	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Bromomethane	NC	NC	NC	NC	NC	NC	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U
Carbon Disulfide	NC	100000	NC	2700	NC	NC	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Carbon Tetrachloride	760	NC	760	NC	22000	NC	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Chlorobenzene	1100	NC	1100	NC	500000	NC	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Chloroethane	NC 270	NC NC	NC 270	1900	NC 3F0000	NC NC	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U
Chloroform Chloromethane	370 NC	NC NC	370 NC	NC NC	350000 NC	NC NC	3 U 6 U	3 U 6 U	3 U 6 U	3 U 6 U	3 U 6 U	3 U 6 U	3 U 6 U	3 U 6 U	3 U 6 U				
cis-1,2-Dichloroethylene	NC 250	NC NC	250	NC NC	500000	NC NC	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
cis-1,3-Dichloropropylene	NC	NC NC	NC	NC NC	NC	NC NC	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Dibromochloromethane	NC NC	NC NC	NC NC	NC	NC NC	NC	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Dichlorodifluoromethane	NC	NC	NC	NC	NC	NC													
Ethylbenzene	1000	NC	1000	NC	390000	NC	3 U	3 U	3 U	3 U	3 U	0.7 J	3 U	3 U	3 U	0.6 J	3 U	3 U	3 U
Methylene chloride	50	NC	50	NC	500000	NC	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U
o-Xylene	NC	NC	NC	NC	NC	NC													
Styrene	NC 1300	NC NG	NC 1200	NC NG	NC 4F0000	NC NC	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Tetrachloroethene	1300 700	NC NC	1300 700	NC NC	150000 500000	NC NC	3 U 3 U	1 J 2 J	3 U 3 U	3 U 3 U	3 U 3 U	1 J 3 J	3 U 3 U	3 U 3 U	3 U 3 U				
Toluene Total BTEX	NC	NC NC	700 NC	NC NC	500000 NC	NC NC	3 U	3 U	3 U	3 U	3 U	7.7	3 U	3 U	3 U	7.6	3 U	3 U	3 U
trans-1,2-Dichloroethylene	190	NC NC	190	NC NC	500000	NC NC	3 U	3 U	3 U	3 U	3 U	7.7 3 U	3 U	3 U	3 U	7.6 3 U	3 U	3 U	3 U
trans-1,3-Dichloropropylene	NC	NC NC	NC.	NC	NC	NC NC	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Trichloroethylene	470	NC NC	470	NC	200000	NC	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Trichlorofluoromethane	NC	NC	NC	NC	NC	NC													
Vinyl Acetate	NC	NC	NC	NC	NC	NC													
Vinyl Chloride	20	NC	20	NC	13000	NC	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U	6 U
Xylene (m,p)	NC	NC	NC	NC	NC	NC													
Xylene (total)	260	NC	1600	NC	500000	NC	3 U	3 U	3 U	3 U	3 U	5	3 U	3 U	3 U	3 J	3 U	3 U	3 U

All units in micrograms per kilogram (μg/kg)

Bold - Exceeds 6 NYCRR Part 375 or CP-51 Protection of Groundwater Soil Cleanup Objectives

- Exceeds 6 NYCRR Part 375 Unrestricted Soil Cleanup Objectives or CP-51 Residential Soil Cleanup Objectives

6 NYCRR Part 375 and CP-51 Commercial Soil Cleanup Objectives were not exceeded.

NC - No criteria exists

Sample Type Code: N - Normal, FD - Field Duplicate

ft bgs - feet below ground surface

U - Not Detected at the Detection Limit shown, J - Estimated value, UJ - Approximate Non-detect

B - Blank Contamination, BJ - Estimated Value Detected in Blank

--- Not Analyzed

I:\Itt.3356\35273.Itt-Auto-Fh-19\5_rpts\RI Report_Revised 2013\Revised_Tables\Soil_VOC_Crosstab-Formatted AP.xlsx Page 9 of 11

¹ 6 NYCRR Part 375, Table 375-6.8(b): Restricted Use Soil Cleanup Objectives, Protection of Public Health, Commercial, December 14, 2006.

² Final Commissioner Policy CP-51, Table 1: Supplimental Soil Cleanup Objectives, Residential, October 21, 2010.

³ 6 NYCRR Part 375, Table 375-6.8(b): Restricted Use Soil Cleanup Objectives, Protection of Public Health, Protection of Groundwater, December 14, 2006.

Final Commissioner Policy (P-51, Table 1: Supplimental Soil Cleanup Objectives, Protection of Audit Health, December 14, 2006.
 6 NYCRR Part 375, Table 375-6.8(b): Unrestricted Use Soil Cleanup Objectives, Protection of Public Health, December 14, 2006.

⁶ Final Commissioner Policy CP-51, Table 1: Supplimental Soil Cleanup Objectives, Commercial, October 21, 2010.

						Location	OBG-SB-42	OBG-SB-43	OBG-SB-43	OBG-SB-44	OBG-SB-44	SB-1	SB-2	SB-3	SB-3	SB-4	SB-5	SB-6	SB-7
						Sample Date:	9/2/2004	9/2/2004	9/2/2004	9/2/2004	9/2/2004	10/22/1991	10/22/1991	10/23/1991	10/23/1991	10/23/1991	10/23/1991	10/23/1991	10/22/1991
						Sample ID:	OBG-SB-42 (6-7.5)	OBG-SB-43 (2-4)	OBG-SB-43 (5-7.5)	OBG-SB-44 (2-4)	OBG-SB-44 (5-7)	SB-1_10-22-91	SB-2_10-23-04	SB-3 (1-2)10-23-91	SB-3 (5-7)10-23-91	SB-4 (1-2)10-23-91	SB-5 (1-2)10-23-91	SB-6 (1-2)10-23-91	SB-7_10-22-91
						art Depth (ft bgs):	6	2	5	2	5	0.5	0.5	1	5	1	1	1	0.5
						nd Depth (ft bgs): Sample Type Code:	7.5 N	4 N	7.5 N	4 N	7 N	1 N	1 N	2 N	7 N	2 N	2 N	2 N	1 N
			Part 375	NY CP-51		1 1	IN	IN IN	N	IN .	IN IN	IN .	IN	IN .	IN IN	IN IN	IN	IN	IN
	Part 375	NY CP-51	Protection of	Protection of	Part 375	NY CP-51													ı
Analyte	Unrestricted Use	Residential Use	Groundwater	Groundwater	Commercial Use	_													ı
	SCOs ¹	SCOs ²	SCOs ³	SCOs⁴	SCOs⁵	SCOs⁴													I
1,1,1,2-Tetrachloroethane	NC	NC	NC	NC	NC	NC													
1,1,1-Trichloroethane	680	NC	680	NC	500000	NC	4	0.7 J	3	1 J	3	6 U	6 U	53	6 U	230	6 U	6 U	6 U
1,1,2,2-Tetrachloroethane	NC	35000	NC	600	NC	NC	3 U	3 U	3 U	3 U	3 U	6 U	6 U	6 U	6 U	8 U	6 U	6 U	6 U
1,1,2-Trichloroethane	NC 270	NC NC	NC 270	NC NC	NC 240000	NC NC	3 U 3 U	3 U 3 U	3 U	3 U 0.9 J	3 U 0.6 J	6 U	6 U 6 U	6 U	6 U	8 U 21	6 U	6 U	6 U
1,1-Dichloroethane 1,1-Dichloroethylene	330	NC NC	330	NC NC	500000	NC NC	3 U	3 U	3 U	0.9 J 3 U	3 U	6 U	6 U	6 U	6 U	8 U	6 U	6 U	6 U
1,2,3-Trichloropropane	NC	80000	NC	340	NC	NC NC													
1,2-Dibromo-3-Chloropropane	NC NC	NC	NC	NC	NC	NC NC													
1,2-Dibromoethane	NC	NC	NC	NC	NC	NC													
1,2-Dichloroethane	20	NC	20	NC	30000	NC	3 U	3 U	3 U	3 U	3 U	6 U	6 U	6 U	6 U	8 U	6 U	6 U	6 U
1,2-Dichloroethene	NC	NC	NC	NC	NC	NC						6 U	6 U	6 U	6 U	8 U	6 U	6 U	6 U
1,2-Dichloropropane	NC 120	NC 100000	NC 120	NC 200	NC FORGO	NC NC	3 U	3 U	3 U	3 U	3 U	6 U	6 U	6 U	6 U	8 U	6 U	6 U	6 U
2-Butanone	120	100000	120	300	500000	NC NC	11 U	11 U	11 U	11 U	11 U	13 U	13 U	3 J	12 U	15 U	12 U	12 U	12 U
2-Chloroethyl vinyl ether 2-Chlorotoluene	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC													
2-Hexanone	NC NC	NC NC	NC NC	NC	NC NC	NC NC	6 U	6 U	6 U	6 U	5 U	13 U	13 U	12 U	12 U	15 U	12 U	12 U	12 U
4-Chlorotoluene	NC	NC	NC	NC	NC	NC													
4-Methyl-2-Pentanone	NC	NC	NC	1000	NC	NC	6 U	6 U	6 U	6 U	5 U	13 U	13 U	12 U	12 U	15 U	12 U	12 U	12 U
Acetone	50	NC	50	NC	500000	NC	11 U	11 U	11 U	11 J	11 J	4 BJ	4 BJ	20 B	2 BJ	4 BJ	12 U	12 U	5 BJ
Acrolein	NC	NC	NC	NC	NC	NC													
Acrylonitrile	NC CO	NC NC	NC CO	NC NC	NC 44000	NC NC			2.11	2.11									
Benzene Bromobenzene	60 NC	NC NC	60 NC	NC NC	44000 NC	NC NC	3 U 	3 U 	3 U	3 U	3 U 	6 U	6 U 	6 U	6 U	8 U	6 U	6 U	6 U
Bromodichloromethane	NC NC	NC NC	NC NC	NC	NC NC	NC NC	3 U	3 U	3 U	3 U	3 U	6 U	6 U	6 U	6 U	8 U	6 U	6 U	6 U
Bromoform	NC	NC	NC	NC	NC	NC	3 U	3 U	3 U	3 U	3 U	6 U	6 U	6 U	6 U	8 U	6 U	6 U	6 U
Bromomethane	NC	NC	NC	NC	NC	NC	6 U	6 U	6 U	6 U	5 U	13 U	13 U	12 U	12 U	15 U	12 U	12 U	12 U
Carbon Disulfide	NC	100000	NC	2700	NC	NC	3 U	3 U	3 U	3 U	3 U	6 U	6 U	6 U	6 U	8 U	6 U	6 U	6 U
Carbon Tetrachloride	760	NC	760	NC	22000	NC	3 U	3 U	3 U	3 U	3 U	6 U	6 U	6 U	6 U	8 U	6 U	6 U	6 U
Chlorobenzene	1100	NC NC	1100	NC 1900	500000	NC NC	3 U	3 U 6 U	3 U	3 U	3 U 5 U	6 U 13 U	6 U	6 U	6 U 12 U	8 U 15 U	6 U	6 U 12 U	6 U 12 U
Chloroethane Chloroform	NC 370	NC NC	NC 370	NC	NC 350000	NC NC	6 U 3 U	3 U	6 U 3 U	6 U 3 U	3 U	6 U	13 U 6 U	12 U 6 U	6 U	8 U	12 U 6 U	6 U	6 U
Chloromethane	NC.	NC NC	NC.	NC	NC	NC NC	6 U	6 U	6 U	6 U	5 U	13 U	13 U	12 U	12 U	15 U	12 U	12 U	12 U
cis-1.2-Dichloroethylene	250	NC	250	NC	500000	NC NC	3 U	3 U	3 U	3 U	3 U								
cis-1,3-Dichloropropylene	NC	NC	NC	NC	NC	NC	3 U	3 U	3 U	3 U	3 U	6 U	6 U	6 U	6 U	8 U	6 U	6 U	6 U
Dibromochloromethane	NC	NC	NC	NC	NC	NC	3 U	3 U	3 U	3 U	3 U	6 U	6 U	6 U	6 U	8 U	6 U	6 U	6 U
Dichlorodifluoromethane	NC 1000	NC NC	NC 1000	NC NG	NC 200000	NC NC													
Ethylbenzene Methylana ablasida	1000	NC NC	1000	NC NC	390000	NC NC	3 U	3 U	3 U	3 U	3 U	6 U 3 BJ	6 U	2 J	6 U 2 BJ	8 U	6 U	6 U	6 U 2 BJ
Methylene chloride o-Xylene	50 NC	NC NC	50 NC	NC NC	500000 NC	NC NC	6 U	6 J	6 J	6 J 	5 J 	3 BJ	2 BJ	2 BJ	2 BJ	2 BJ	2 BJ	2 BJ	2 BJ
Styrene	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	3 U	3 U	3 U	3 U	3 U	6 U	6 U	6 U	6 U	8 U	6 U	6 U	6 U
Tetrachloroethene	1300	NC NC	1300	NC	150000	NC	3 U	3 U	3 U	3 U	3 U	6 U	6 U	4 J	6 U	110	6 U	6 U	6 U
Toluene	700	NC	700	NC	500000	NC	3 U	3 U	3 U	3 U	3 U	6 U	6 U	4 J	6 U	8 U	6 U	6 U	6 U
Total BTEX	NC	NC	NC	NC	NC	NC	3 U	3 U	3 U	3 U	3 U	6 U	6 U	20	6 U	8 U	6 U	6 U	6 U
trans-1,2-Dichloroethylene	190	NC NC	190	NC	500000	NC NC	3 U	3 U	3 U	3 U	3 U								
trans-1,3-Dichloropropylene	NC 470	NC NC	NC 470	NC NC	NC 200000	NC NC	3 U	3 U	3 U	3 U	3 U	6 U	6 U	6 U	6 U	8 U	6 U	6 U	6 U
Trichloroethylene Trichlorofluoromethane	470 NC	NC NC	470 NC	NC NC	200000 NC	NC NC	3 U	3 U 	3 U	3 U 	3 U	6 U	6 U 	6 U 	6 U	7 J 	6 U 	6 U	6 U
Vinyl Acetate	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC						13 U	13 U	12 U	12 U	15 U	12 U	12 U	12 U
Vinyl Chloride	20	NC NC	20	NC	13000	NC NC	6 U	6 U	6 U	6 U	5 U	13 U	13 U	12 U	12 U	15 U	12 U	12 U	12 U
Xylene (m,p)	NC NC	NC	NC	NC	NC	NC													
Xylene (total)	260	NC	1600	NC	500000	NC	3 U	3 U	3 U	3 U	3 U	6 U	6 U	14	6 U	8 U	6 U	6 U	6 U
Ayrene (total)	200	, iic	1000	110	300000														

All units in micrograms per kilogram (μg/kg)

Bold - Exceeds 6 NYCRR Part 375 or CP-51 Protection of Groundwater Soil Cleanup Objectives

- Exceeds 6 NYCRR Part 375 Unrestricted Soil Cleanup Objectives or CP-51 Residential Soil Cleanup Objectives

6 NYCRR Part 375 and CP-51 Commercial Soil Cleanup Objectives were not exceeded.

NC - No criteria exists

Sample Type Code: N - Normal, FD - Field Duplicate

ft bgs - feet below ground surface

U - Not Detected at the Detection Limit shown, J - Estimated value, UJ - Approximate Non-detect

B - Blank Contamination, BJ - Estimated Value Detected in Blank

--- Not Analyzed

I:\Itt.3356\35273.Itt-Auto-Fh-19\5_rpts\RI Report_Revised 2013\Revised_Tables\Soil_VOC_Crosstab-Formatted AP.xlsx Page 10 of 11

¹ 6 NYCRR Part 375, Table 375-6.8(b): Restricted Use Soil Cleanup Objectives, Protection of Public Health, Commercial, December 14, 2006.

² Final Commissioner Policy CP-51, Table 1: Supplimental Soil Cleanup Objectives, Residential, October 21, 2010.

³ 6 NYCRR Part 375, Table 375-6.8(b): Restricted Use Soil Cleanup Objectives, Protection of Public Health, Protection of Groundwater, December 14, 2006.

Final Commissioner Policy (P-51, Table 1: Supplimental Soil Cleanup Objectives, Protection of Audit Health, December 14, 2006.
 6 NYCRR Part 375, Table 375-6.8(b): Unrestricted Use Soil Cleanup Objectives, Protection of Public Health, December 14, 2006.

⁶ Final Commissioner Policy CP-51, Table 1: Supplimental Soil Cleanup Objectives, Commercial, October 21, 2010.

						Location	SB-9	SB-10	SS-1	SS-2	TD-1
						Sample Date:		10/22/1991	7/28/1998	7/28/1998	9/3/2004
						•	11/13/1991	, , ,		, ,	
					C+-	Sample ID: ort Depth (ft bgs):	SB-9_11-13-91 2	SB-10_10-22-91 2	SS-1 7/28/98 0	SS-2 7/28/98 0	TD-1 0
						nd Depth (ft bgs):	3	3	0.17	0.17	0.5
						ample Type Code:	3 N	N N	0.17 N	0.17 N	0.5 N
			Part 375	NY CP-51	<u> </u>	ampie Type Code:	IN	IN	IN .	IN .	IN
	Part 375	NY CP-51	Protection of	Protection of	Part 375	NY CP-51					
Analyte	Unrestricted Use	Residential Use	Groundwater	Groundwater	Commercial Use	Commercial Use					
_	SCOs1	SCOs ²			SCOs⁵	SCOs⁴					
1 1 1 2 T-t	NC	NC	SCOs ³	SCOs ⁴	NC	NC					
1,1,1,2-Tetrachloroethane	680	NC NC	NC 680	NC NC	NC 500000	NC NC	 6 U	100	10 U	 11 U	3 J
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	NC	35000	NC	600	NC	NC NC	6 U	32 U	10 U	11 U	3 U
1,1,2-Trichloroethane	NC NC	NC	NC NC	NC	NC NC	NC NC	6 U	32 U	10 U	11 U	3 U
1,1,2-11ichloroethane	270	NC NC	270	NC NC	240000	NC NC	6 U	66	10 U	11 U	3 U
1,1-Dichloroethylene	330	NC NC	330	NC NC	500000	NC NC	6 U	17 J	10 U	11 U	9
1,1-Dichloroethylene 1,2,3-Trichloropropane	NC	80000	NC	340	NC	NC NC		1/ J 			
1,2-Dibromo-3-Chloropropane	NC NC	NC	NC NC	NC	NC NC	NC NC					
1,2-Dibromoethane	NC.	NC NC	NC NC	NC NC	NC NC	NC NC					
1,2-Dichloroethane	20	NC NC	20	NC NC	30000	NC NC	6 U	32 U	10 U	11 U	3 U
1,2-Dichloroethene	NC	NC NC	NC	NC NC	NC	NC NC	6 U	32 U	10 U	11 U	
1,2-Dichloropropane	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	6 U	32 U	10 U	11 U	3 U
2-Butanone	120	100000	120	300	500000	NC NC	12 U	65 U	10 U	11 U	11 U
2-Chloroethyl vinyl ether	NC	NC	NC	NC	NC	NC NC					
2-Chlorotoluene	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC					
2-Hexanone	NC	NC	NC	NC	NC	NC NC	12 U	65 U	10 U	11 U	5 U
4-Chlorotoluene	NC	NC	NC	NC NC	NC NC	NC NC					
4-Methyl-2-Pentanone	NC	NC	NC	1000	NC	NC NC	12 U	65 U			5 U
Acetone	50	NC	50	NC NC	500000	NC	12 U	21 BJ	10 U	11 U	11 J
Acrolein	NC	NC	NC	NC	NC	NC					
Acrylonitrile	NC	NC	NC	NC	NC	NC					
Benzene	60	NC	60	NC	44000	NC	6 U	32 U	10 U	11 U	3 U
Bromobenzene	NC	NC	NC	NC	NC	NC					
Bromodichloromethane	NC	NC	NC	NC	NC	NC	6 U	32 U	10 U	11 U	3 U
Bromoform	NC	NC	NC	NC	NC	NC	6 U	32 U	10 U	11 U	3 U
Bromomethane	NC	NC	NC	NC	NC	NC	12 U	65 U	10 U	11 U	5 U
Carbon Disulfide	NC	100000	NC	2700	NC	NC	6 U	32 U	10 U	11 U	3 U
Carbon Tetrachloride	760	NC	760	NC	22000	NC	6 U	32 U	10 U	11 U	3 U
Chlorobenzene	1100	NC	1100	NC	500000	NC	6 U	32 U	10 U	11 U	3 U
Chloroethane	NC	NC	NC	1900	NC	NC	12 U	65 U	10 U	11 U	5 U
Chloroform	370	NC	370	NC	350000	NC	2 J	32 U	10 U	11 U	3 U
Chloromethane	NC	NC	NC	NC	NC	NC	12 U	65 U	10 U	11 U	5 U
cis-1,2-Dichloroethylene	250	NC	250	NC	500000	NC					3 U
cis-1,3-Dichloropropylene	NC	NC	NC	NC	NC	NC	6 U	32 U	10 U	11 U	3 U
Dibromochloromethane	NC	NC	NC	NC	NC	NC	6 U	32 U	10 U	11 U	3 U
Dichlorodifluoromethane	NC	NC	NC	NC	NC	NC					
Ethylbenzene	1000	NC	1000	NC	390000	NC	6 U	32 U	10 U	11 U	57
Methylene chloride	50	NC	50	NC	500000	NC	2 BJ	10 BJ	31	19	5 U
o-Xylene	NC	NC	NC	NC	NC	NC NC					
Styrene	NC	NC	NC	NC	NC	NC NC	6 U	32 U	10 U	11 U	3 U
Tetrachloroethene	1300	NC NC	1300	NC	150000	NC NC	6 U	7 J	10 U	11 U	3
Toluene	700	NC NC	700	NC	500000	NC NG	6 U	32 U	10 U	11 U	3 U
Total BTEX	NC 100	NC NC	NC 100	NC NG	NC FORGO	NC NC	6 U	32 U	10 U	11 U	257
trans-1,2-Dichloroethylene	190	NC NC	190	NC NG	500000	NC NC					3 U
trans-1,3-Dichloropropylene	NC 470	NC NC	NC 470	NC NG	NC 200000	NC NC	6 U	32 U	10 U	11 U	3 U
Trichloroethylene	470	NC NC	470	NC NG	200000	NC NG	6 U	32 U	10 U	11 U	4
Trichlorofluoromethane	NC NG	NC NG	NC NC	NC NG	NC NG	NC NC					
Vinyl Acetate	NC 20	NC NC	NC 20	NC NC	NC 12000	NC NC	12 U	65 U	10.11		
Vinyl Chloride	20 NG	NC NC	20 NG	NC NC	13000	NC NC	12 U	65 U	10 U	11 U	5 U
Xylene (m,p)	NC 2C0	NC NC	NC 1600	NC NC	NC F00000	NC NC			10.11		200
Xylene (total)	260	NC	1600	NC	500000	NC	6 U	32 U	10 U	11 U	200

All units in micrograms per kilogram (μg/kg)

Bold - Exceeds 6 NYCRR Part 375 or CP-51 Protection of Groundwater Soil Cleanup Objectives

- Exceeds 6 NYCRR Part 375 Unrestricted Soil Cleanup Objectives or CP-51 Residential Soil Cleanup Objectives

6 NYCRR Part 375 and CP-51 Commercial Soil Cleanup Objectives were not exceeded.

NC - No criteria exists

Sample Type Code: N - Normal, FD - Field Duplicate

ft bgs - feet below ground surface

U - Not Detected at the Detection Limit shown, J - Estimated value, UJ - Approximate Non-detect

B - Blank Contamination, BJ - Estimated Value Detected in Blank

--- Not Analyzed

I:\Itt.3356\35273.Itt-Auto-Fh-19\5_rpts\RI Report_Revised 2013\Revised_Tables\Soil_VOC_Crosstab-Formatted AP.xlsx Page 11 of 11

¹ 6 NYCRR Part 375, Table 375-6.8(b): Restricted Use Soil Cleanup Objectives, Protection of Public Health, Commercial, December 14, 2006.

² Final Commissioner Policy CP-51, Table 1: Supplimental Soil Cleanup Objectives, Residential, October 21, 2010.

³ 6 NYCRR Part 375, Table 375-6.8(b): Restricted Use Soil Cleanup Objectives, Protection of Public Health, Protection of Groundwater, December 14, 2006.

⁴ Final Commissioner Policy CP-51, Table 1: Supplimental Soil Cleanup Objectives, Protection of Groundwater, October 21, 2010.
⁵ 6 NYCRR Part 375, Table 375-6.8(b): Unrestricted Use Soil Cleanup Objectives, Protection of Public Health, December 14, 2006.
⁶ Final Commissioner Policy CP-51, Table 1: Supplimental Soil Cleanup Objectives, Commercial, October 21, 2010.

		T				T							T						T	T
	Location Code	AMSF-MW-1D	AMSF-MW-1D	AMSF-MW-1D	AMSF-MW-1D	AMSF-MW-1D	AMSF-MW-1S	AMSF-MW-2	AMSF-MW-2	AMSF-MW-3D										
	Sample Date	6/12/1992	7/29/1998	11/16/2000	2/8/2005	10/4/2005	11/1/1991	6/11/1992	7/28/1998	11/15/2000	11/16/2000	2/8/2005	8/31/2005	10/4/2005	4/23/2010	9/10/2010	11/1/1991	6/11/1992	6/11/1992	11/16/2000
	Start Depth (ft) End Depth (ft)	_																		
Analyte	Criteria 1						Į.								L					
1.1.1.2-Tetrachloroethane	NC	25 U						0.5 U										0.5 U	0.5 U	
1.1.1-Trichloroethane	5	233	6 J	50 U	5 U	10 U	3400	2200	3400	950	10 U	680	338	3030	35	27	1600	13.1	644	4 J
1,1,2,2-Tetrachloroethane	5		50 U	50 U	5 U	10 U			10 U	10U	10 U	0.5 U	10 U	10 U	1 U	1 U		13.1		10 U
1.1.2-Trichloroethane	1	25 U	50 U	50 U	5 U	10 U		0.5 U	10 U	10 U	10 U	0.5 U	10 U	10 U	1 U	1 U		0.5 U	0.5 U	10 U
1,1-Dichloroethane		25 U	34 J	17 J	10	5 J	51	41.1	260	92	10 U	35	7.2 J	87.4	22	19	37	30.8	17.8	10 U
1.1-Dichloroethene	5	25 U	50 U	50 U	5 U	10 U	20	22.4	36	59	10 U	15	7.23	17.6	1.9	1.6	19	1.4	30.3	10 U
1,2,3-Trichloropropane	0.04	25 0	30 0												1.5	1.0				
1.2-Dibromo-3-chloropropane (DBCP)	0.04														2 U	2 U				
1,2-Dibromoethane (Ethylene Dibromide)	0.0006														1 U	1 U				
1,2-Dichloroethane	0.6	25 U	50 U	50 U	5 U	10 U		3.2	10 U	10 U	10 U	0.5 U	10 U	10 U	1 U	1 U		0.5 U	1.2	10 U
1,2-Dichloroethene (total)	NC		50 U	50 U			5 U		10 U	10 U	10 U						5 U	0.5 U		10 U
1,2-Dichloropropane	1	25 U	50 U	50 U	5 U	10 U		0.5 U	10 U	10 U	10 U	0.5 U	10 U	10 U	1 U	1 U		0.5 U	0.5 U	10 U
2-Butanone (Methyl Ethyl Ketone)	50		50 U	60	60 J	69.6 J			10 U	10 U	10 U	10 U	200 U	200 U	5 U	5 U				10 U
2-Hexanone	50		50 U	50 U	50 U	100 U			10 U	10 U	10 U	5 U	100 U	100 U	5 U	5 U				10 U
4-Methyl-2-pentanone (Methyl Isobutyl Ketone)	NC		50 U	50 U	50 U	100 U				10 U	10 U	5 U	100 UJ	100 U	5 U	5 U				10 U
Acetone	50		50 U	160	140	88 J	10 U		10 U	4	10 U	10 U	200 UJ	200 U	5 U	5 U	12			10 U
Acrylonitrile	NC																			
Benzene	1		510	380	390	176			10 U	10 U	10 U	1	10 U	10 U	1 U	1 U				10 U
Bromodichloromethane	50	25 U	50 U	50 U	5 U	10 U		0.5 U	10 U	10 U	10 U	0.5 U	10 U	10 U	1 U	1 U		0.5 U	0.5 U	10 U
Bromoform	50	25 U	50 U	50 U	5 U	10 U		0.5 U	10 U	10 U	10 U	0.5 U	10 U	10 U	1 U	1 U		0.5 U	0.5 U	10 U
Bromomethane (Methyl Bromide)	5	25 U	50 U	50 U	10 U	20 U		0.5 U	10 U	10 U	10 U	1 U	20 U	20 U	1 U	1 U		0.5 U	0.5 U	10 U
Carbon disulfide	60		50 U	50 U	3 J	2.4 J			10 U	10 U	10 U	0.5 U	10 U	10 U	1 U	1 U				10 U
Carbon tetrachloride	5	25 U	50 U	50 U	5 U	10 U		0.5 U	10 U	10 U	10 U	0.5 U	10 U	10 U	1 U	1 U		0.5 U	0.5 U	10 U
Chlorobenzene	5	25 U	50 U	50 U	5 U	10 U		0.5 U	10 U	10 U	10 U	0.5 U	10 U	10 U	1 U	1 U		0.5 U	0.5 U	10 U
Chlorobromomethane	5																			
Chloroethane	5	25 U	50 U	50 U	10 U	20 U		0.5 U	10 U	10 U	10 U	0.4 J	20 U	20 U	1.3	1.1		0.5 U	0.5 U	10 U
Chloroform (Trichloromethane)	7	25 U	50 U	50 U	5 U	10 U		0.5 U	10 U	10 U	10 U	0.5 U	10 U	10 U	1 U	1 U		0.5 U	0.5 U	10 U
Chloromethane (Methyl Chloride)	5	25 U	50 U	50 U	10 U	20 U		0.5 U	10 U	10 U	10 U	1 U	20 U	20 U	1 U	1 U		0.5 U	0.5 U	10 U
cis-1,2-Dichloroethene	5				5 U	10 U						0.1 J	10 U	10 U	0.48 J	0.38 J				
cis-1,3-Dichloropropene	0.4	25 U	50 U	50 U	5 U	10 U		0.5 U	10 U	10 U	10 U	0.5 U	10 U	10 U	1 U	1 U		0.5 U	0.5 U	10 U
Dibromochloromethane	50	25 U	50 U	50 U	5 U	10 U		0.5 U	10 U	10 U	10 U	0.5 U	10 U	10 U	1 U	1 U		0.5 U	0.5 U	10 U
Dibromomethane	NC																			
Ethane	NC																			
Ethylbenzene	5		37 J	24 J	33	18.2			10 U	10 U	10 U	0.2 J	10 U	10 U	1 U	1 U				10 U
Ethene	NC																			
lodomethane	NC																			
Methane	NC																			
Methylene chloride	5	222	50 U	40 BJ	20 U	40 U		2.1	10 U	5	4	2 U	6.4 J	40 U	1 U	1 U		1.9	17.8	4
o-Xylene	NC														1 U	1 U				
Styrene	5		50 U	50 U	5 U	10 U			10 U	10 U	10 U	0.5 U	10 U	10 U	1 U	1 U				10 U
Tetrachloroethene	5	25 U	50 U	50 U	5 U	10 U	5 U	0.92	2 J	10 U	10 U	0.7	10 U	10 U	1 U	1 U	5 U	0.5 U	3.5	10 U
Toluene	5		490	330	400	226			10 U	10 U	10 U	5	10 U	10 U	1 U	1 U				10 U
Total Btex	NC		1106	904	243	526.2			10 U	10 U	10 U	7.2	20 U	20 U						20 U
trans-1,2-Dichloroethene	5	25 U			5 U	10 U		0.5 U				0.5 U	10 U	10 U	1 U	1 U		0.5 U	0.5 U	
trans-1,3-Dichloropropene	0.4	25 U	50 U	50 U	5 U	10 U		0.5 U	10 U	10 U	10 U	0.5 U	10 U	10 U	1 U	1 U		0.5 U	0.5 U	10 U
Trans-1,4-dichlorobutene	NC																			
Trichloroethene	5	25 U	50 U	50 U	5 U	10 U	20	18.6	21	81	10 U	2	2.2 J	12.4	1.2	1	5 U	0.76	5	10 U
Trichlorofluoromethane (CFC-11)	5	25 U						0.5 U							1 U	1 U		0.5 U	0.5 U	
Vinyl Acetate	NC																			
Vinyl chloride	2	25 U	50 U	50 U	10 U	20 U		0.5 U	10 U	10 U	10 U	1 U	20 U	20 U	1.7	1.1		0.5 U	0.5 U	10 U
Xylene (m,p)	NC														2 U	2U				
Xylene (total)	5	Notes:	69	170	210	106			10 U	10 U	10 U	11	20 U	20 U						10 U

All units in micrograms per liter (μg/L)

¹ New York State Department of Environmental Conservation, Technical and Operational Guidance Series (1.1.1), Class GA Standards and Guidance Values, Revised June 1998. BOLD - Exceedes New York State Department of Environmental Conservation, Technical and Operational Guidance Series (1.1.1), Class GA Standards and Guidance Values.

* - Elevation - ft amsl (ft bgs) [ft amsl - feet above mean sea level, ft bgs - feet below ground surface]

NC - No criteria exists

U - Not Detected at the Detection Limit shown, J - Estimated value, UJ - Approximate Non-detect, B - Blank Contamination, BJ - Estimated Value Detected in Blank

1 of 16

Passive diffusion bags deployed 12/2/2005 and retrieved on 12/22/2005.

Only wells with a discrete fracture or sampling interval have start and end depths.

Well AMSF-MW-12S was found to be obstructed prior to the April/May 2010 sampling event. The obstruction was cleared prior to the September 2010 sampling event

⁻ Well ITT-SBW-9 was inadvertently missed during the April/May 2010 Sampling Event.

- Well ITT-SBW-9 was inadvertently missed during sampling in April 2010 and consequently sampled in May 2010 when the mistake was identified.

⁻⁻⁻ Not Analyzed

	Location Code	AMSF-MW-3D	AMSF-MW-3D	AMSF-MW-3D	AMSF-MW-3D	AMSF-MW-3S	AMSF-MW-3S	AMSF-MW-3S	AMSF-MW-3S	AMSF-MW-3S	AMSF-MW-3S	AMSF-MW-3S	AMSF-MW-3S	AMSF-MW-4	AMSF-MW-4	AMSF-MW-4	AMSF-MW-4	AMSF-MW-5D	AMSF-MW-5D	AMSF-MW-5D
	Sample Date	2/9/2005	9/28/2005	4/26/2010	9/13/2010	11/1/1991	6/11/1992	7/29/1998	11/15/2000	2/9/2005	9/30/2005	4/21/2010	9/8/2010	11/1/1991	6/11/1992	11/15/2000	10/4/2005	6/11/1992	11/16/2000	2/9/2005
	Start Depth (ft)	2/3/2003	3/28/2003	4/20/2010	3/13/2010	11/1/1551	0/11/1332	7/23/1330	11/15/2000	2/3/2003	3/30/2003	4/21/2010	3/8/2010	11/1/1331	0/11/1332	11/13/2000	10/4/2003	0/11/1552	11/10/2000	2/3/2003
	End Depth (ft)																		+	+
Analyte	Criteria 1													-					-	-
1,1,1,2-Tetrachloroethane	NC						0.5 U								0.5 U			0.5 U		
1,1,1-Trichloroethane	5	770	2460	4.6	2.8	27	16.6	4 J	5 J	0.7 J	1.3 J	4.6	4.8	700	40.6	14	12.1	210	130	48
1,1,2,2-Tetrachloroethane	5	10 U	10 U	1 U	1 U			10 U	50 U	1 U	5 U	1 U	1 U			10 U	0.5 U		10 U	1 U
1,1,2-Trichloroethane	1	10 U	10 U	1 U	1 U		0.5 U	10 U	50 U	1 U	5 U	1 U	1 U		0.5 U	10 U	0.25 J	0.5 U	10 U	1 U
1,1-Dichloroethane	5	26	188	4.6	4.8	6	1.9	1 J	50 U	1 U	5 U	0.86 J	0.66 J	55	22.5	3 J	4.83	23.2	6 J	2
1,1-Dichloroethene	5	12	34.8	1 U	1 U	5 U	0.5 U	10 U	50 U	1 U	5 U	1 U	1 U	15	0.5 U	10 U	0.35 J	26.4	4 J	1
1,2,3-Trichloropropane	0.04																			
1,2-Dibromo-3-chloropropane (DBCP)	0.04			2 U	2 U							2 U	2 UJ							
1,2-Dibromoethane (Ethylene Dibromide)	0.0006			1 U	1 U							1 U	1 U							
1,2-Dichloroethane	0.6	10 U	10 U	1 U	1 U		0.5 U	10 U	50 U	1 U	5 U	1 U	1 U		0.5 U	10 U	0.5 U	0.5 U	10 U	1 U
1,2-Dichloroethene (total)	NC					5 U		10 U	5 J					35		10 U			10 U	
1,2-Dichloropropane	1	10 U	10 U	1 U	1 U		0.5U	10 U	50 U	1 U	5 U	1 U	1 U		0.5 U	10 U	0.5 U	0.5 U	10 U	1 U
2-Butanone (Methyl Ethyl Ketone)	50	200 U	200 U	5 U	5 U			10 U	50 U	20 U	100 U	5 U	5 UJ			10 U	10 U		10 U	25 U
2-Hexanone	50	100 U	100 U	5 U	5 U			10 U	50 U	10 U	50 U	5 U	5 UJ			10 U	5 U		10 U	12 U
4-Methyl-2-pentanone (Methyl Isobutyl Ketone)	NC	100 U	100 U	5 U	5 U			10 U	50 U	10 U	50 U	5 U	5 U			10 U	5 U		10 U	12 U
Acetone	50	200 U	200 U	2.7 J	5 U	10 U		10 U	12	20 U	100 U	5 U	5 U	10 U		4	10 U		10 U	25 U
Acrylonitrile	NC																			
Benzene	1	10 U	10 U	1 U	1 U			10 U	50 U	1 U	5 U	1 U	1 U			10 U	0.5 U		10 U	1 U
Bromodichloromethane	50	10 U	10 U	1 U	1 U		0.5 U	10 U	50 U	1 U	5 U	1 U	1 U		0.5 U	10 U	0.5 U	0.5 U	10 U	1 U
Bromoform	50	10 U	10 U	1 U	1 U		0.5 U	10 U	50 U	1 U	5 U	1 U	1 U		0.5 U	10 U	0.5 U	0.5 U	10 U	1 U
Bromomethane (Methyl Bromide)	5	20 U	20 U	1 U	1 U		0.5 U	10 U	50 U	2 U	10 U	1 U	1 U		0.5 U	10 U	1 U	0.5 U	10 U	2 U
Carbon disulfide	60	3 J	10 U	1 U	1 U			10 U	50 U	0.4 J	1.6 J	1 U	1 U			10 U	0.5 U		10 U	1 U
Carbon tetrachloride	5	10 U	10 U	1 U	1 U		0.5 U	10 U	50 U	1 U	5 U	1 U	1 U		0.5 U	10 U	0.5 U	0.5 U	10 U	1 U
Chlorobenzene	5	10 U	10 U	1 U	1 U		0.5 U	10 U	50 U	1 U	5 U	1 U	1 U		0.5 U	10 U	0.5 U	0.5 U	10 U	1 U
Chlorobromomethane	5																			
Chloroethane	5	20 U	20 U	1 U	1 U		0.5 U	10 U	50 U	2 U	10 U	1 U	1 U		0.5 U	10 U	1 U	0.5 U	10 U	2 U
Chloroform (Trichloromethane)	7	10 U	10 U	1 U	1 U		0.5 U	10 U	50 U	1 U	5 U	1 U	1 U		0.5 U	10 U	0.17 J	0.5 U	10 U	1 U
Chloromethane (Methyl Chloride)	5	20 U	20 U	1 U	1 U		0.5 U	10 U	50 U	2 U	10 U	1 U	1 U		0.5 U	10 U	1 U	0.5 U	10 U	2 U
cis-1,2-Dichloroethene	5	10 U	10 U	2.2	3.1					0.4 J	2.6 J	2.2	1.8				1.38			1 U
cis-1,3-Dichloropropene	0.4	10 U	10 U	1 U	1 U		0.5 U	10 U	50 U	1 U	5 U	1 U	1 U		0.5 U	10 U	0.5 U	0.5 U	10 U	1 U
Dibromochloromethane	50	10 U	10 U	1 U	1 U		0.5 U	10 U	50 U	1 U	5 U	1 U	1 U		0.5 U	10 U	0.5 U	0.5 U	10 U	1 U
Dibromomethane	NC NC																			
Ethane	NC 5		40.11																	
Ethylbenzene Ethene	NC	10 U	10 U	1 U	1 U			10 U	50 U	1 U	5 U	1 U	1 U			10 U	0.5 U		10 U	1 U
Iodomethane	NC NC	-	1																1	
	NC NC																			
Methane																				
Methylene chloride	5	40 U	40 U	1 U	1 U		19.4	10 U	33	4 U	6 J	1 U	1 U		17.2	5	2 U	18.5	2 BJ	5 U
o-Xylene	NC .			1 U	1 U							1 U	1 U							
Styrene	5	10 U	10 U	1 U	1 U			10 U	50 U	1 U	5 U	1 U	1 U			10 U	0.5 U		10 U	1 U
<u>Tetrachloroethene</u>	5	5 J	11 10 U	5.1	4.1	630	413	350	480	73	223	92	97	9	4.3	3 J	9	11.2	1 J	17
Toluene		10 U		1 U	1 U			10 U	50 U	1 U	5 U	1 U	1 U	1	1	10 U	0.5 U	1	10 U	1 U
Total Btex	NC 5	10 U	20 U	111	0.21 J		0.5.11	10 U	50 U	1 U	5 U	1.11	1.11		0.5.11	10 U	1 U	0.5.11	10 U	1 U
trans-1,2-Dichloroethene	0.4	10 U 10 U	10 U 10 U	1 U 1 U	0.21 J 1 U		0.5 U	10 U	50 U	1 U 1 U	5 U 5 U	1 U	1 U		0.5 U	10.11	0.5 U 0.5 U	0.5 U	10 U	1 U
trans-1,3-Dichloropropene	NC	10 0	10 0	10	10		0.5 U	10 0	50 0	10	5 0	1 U	10		0.5 0	10 U	0.5 0	0.5 U	10 0	10
Trans-1,4-dichlorobutene	NC 5		14.4	2.4	2.4					2	6.1			0.5 U		10.11				0.8 J
Trichloroethene	5	4 J		2.4 1 U	2.4 1 U	<u>6</u> 	5.1	4 J	5 J 	2	6.1	2.4 1 U	2.2 1 U	0.5 U	1.8 0.5 U	10 U	0.95	4.5 0.5 U	2 J	0.8 J
Trichlorofluoromethane (CFC-11)	NC	-		10							1									
Vinyl chlorida	NC 2	20 U	20 U	0.68 J	1.1		0.5 U	10 U	50 U	2 U	10 U	0.68 J	0.48 J		0.5 U	10 U	111	0.5 U	10 U	2 U
Vinyl chloride	NC NC	20 0						10 0	50 U								1 U		10 0	
Xylene (m,p)	NC 5	10.11	20.11	2 U	2 U					4.11	10.11	2 U	2 UJ			10.11	4.11			
Xylene (total)	5	10 U Notes:	20 U					10 U	50 U	1 U	10 U					10 U	1 U		10 U	1 U

All units in micrograms per liter (μg/L)

¹ New York State Department of Environmental Conservation, Technical and Operational Guidance Series (1.1.1), Class GA Standards and Guidance Values, Revised June 1998. BOLD - Exceedes New York State Department of Environmental Conservation, Technical and Operational Guidance Series (1.1.1), Class GA Standards and Guidance Values.

NC - No criteria exists

U - Not Detected at the Detection Limit shown, J - Estimated value, UJ - Approximate Non-detect, B - Blank Contamination, BJ - Estimated Value Detected in Blank

^{* -} Elevation - ft amsl (ft bgs) [ft amsl - feet above mean sea level, ft bgs - feet below ground surface]

Passive diffusion bags deployed 12/2/2005 and retrieved on 12/22/2005.

Only wells with a discrete fracture or sampling interval have start and end depths.

Well AMSF-MW-12S was found to be obstructed prior to the April/May 2010 sampling event. The obstruction was cleared prior to the September 2010 sampling event

⁻ Well ITT-SBW-9 was inadvertently missed during the April/May 2010 Sampling Event.

- Well ITT-SBW-9 was inadvertently missed during sampling in April 2010 and consequently sampled in May 2010 when the mistake was identified.

⁻⁻⁻ Not Analyzed

	Location Code	AMSF-MW-5D	AMSF-MW-5D	AMSF-MW-5D	AMSF-MW-5S	AMSF-MW-5S	AMSF-MW-5S	AMSF-MW-6	AMSF-MW-6	AMSF-MW-7	AMSF-MW-7	AMSF-MW-7	AMSF-MW-7	AMSF-MW-7	AMSF-MW-7	AMSF-MW-7	AMSF-MW-7	AMSF-MW-7	AMSF-MW-7	AMSF-MW-7
	Sample Date	9/28/2005	4/26/2010	9/13/2010	1/3/1900	11/15/2000	11/16/2000	6/11/1992	7/28/1998	6/11/1992	7/29/1998	5/4/1999	11/16/2000	2/8/2005	8/31/2005	10/4/2005	12/22/2005	12/22/2005	12/22/2005	4/26/2010
	Start Depth (ft)	3/20/2003	4/20/2010	3/13/2010	1/3/1300	11/15/2000	11/10/2000	0/11/1332	7/20/1330	0/11/1332	1/25/1550	3/4/1333	11/10/2000	2/0/2003	0/31/2003	10/4/2003	552.5 (10.7)*	547.5 (15.7)*	542.5 (20.7)*	4/20/2010
	End Depth (ft)																550.5 (12.7)*	545.5 (17.7)*	540.5 (22.7)*	+
Analyte	Criteria 1															-				
1,1,1,2-Tetrachloroethane	NC				0.5 U			0.5 U		5 U										
1,1,1-Trichloroethane	5	240	310	390	43.5		41	815	180	75800	72000	110000	76000	95000	22900	65600	3170	92200	82700	30000
1,1,2,2-Tetrachloroethane	5	5 U	1 U	2.5 U			10 U		10 U		4,000 U	10,000 U	50 U	1,000 U	500 U	500 U	50 U	500 U	500 U	25 U
1,1,2-Trichloroethane	1	5 U	1 U	2.5 U	0.5 U		10 U	0.5 U	10 U	5 U	4,000 U	10,000 U	50 U	1,000 U	500 U	500 U	50 U	500 U	500 U	25 U
1,1-Dichloroethane	5	10.2	13	16	3.9		2 J	22.9	7 J	421	900 J	2,700 J	1600	930 J	550	980	77	1110	1090	600
1,1-Dichloroethene	5	6.8	9	13	1.4		2 J	71.6	5 J	301	4,000 U	1,100 J	790	1,000 U	110 J	150 J	50 U	170 J	170 J	56
1,2,3-Trichloropropane	0.04						***	***												
1,2-Dibromo-3-chloropropane (DBCP)	0.04		2 U	5 U			***	***												50 U
1,2-Dibromoethane (Ethylene Dibromide)	0.0006		1 U	2.5 U																25 U
1,2-Dichloroethane	0.6	5 U	1 U	2.5 U	0.5 U		10 U	0.5 U	10 U	68.9	4,000 U	10,000 U	11 J	1,000 U	500 U	500 U	50 U	500 U	500 U	25 U
1,2-Dichloroethene (total)	NC						10 U		10 U		4,000 U	10,000 U	50 U							
1,2-Dichloropropane	1	5 U	1 U	2.5 U	0.5 U		10 U	0.5 U	10 U	5 U	4,000 U	10,000 U	50 U	1,000 U	500 U	500 U	50 U	500 U	500 U	25 U
2-Butanone (Methyl Ethyl Ketone)	50	100 U	5 U	13 U			10 U		10 U		4,000 U	10,000 U	45 J	20,000 U	10,000 UJ	10,000 U	1,000 U	10,000 U	10,000 U	130 U
2-Hexanone	50	50 U	5 U	13 U			10 U		10 U		4,000 U	10,000 U	50 U	10,000 U	5,000 U	5,000 U	500 U	5,000 U	5,000 U	130 U
4-Methyl-2-pentanone (Methyl Isobutyl Ketone)	NC 50	50 U	5 U	13 U			10 U		40.11		4,000 U	40.000.11	50 U	10,000 U	5,000 U	5,000 U	500 U	5,000 U	5,000 U	130 U
Acetone	50	100 U	5 U	13 U			10 U		10 U		4,000 U	10,000 U	50 U	20,000 U	10,000 UJ	10,000 U	1,000 U	10,000 U	10,000 U	130 U
Acrylonitrile	NC																			
Benzene	1 50	5 U	1 U	2.5 U			10 U		10 U		4,000 U	10,000 U	50 U	1,000 U	500 U	500 U	50 U	500 U	500 U	25 U
Bromodichloromethane	50	5 U	1 U	2.5 U	0.5 U		10 U	0.5 U	10 U	5 U	4,000 U	10,000 U	50 U	1,000 U	500 U	500 U	50 U	500 U	500 U	25 U
Bromoform Bromomethane (Methyl Bromide)	50 5	5 U 10 U	1 U 1 U	2.5 U	0.5 U 0.5 U		10 U 10 U	0.5 U 0.5 U	10 U 10 U	5 U 5 U	4,000 U 4.000 U	10,000 U 10.000 U	50 U 50 U	1,000 U 2,000 U	500 U 1.000 U	500 U 1.000 U	50 U 100 U	500 U 1,000 U	500 U 1.000 U	25 U 25 U
Carbon disulfide	60	5 U	1 U	2.5 U	0.5 0		10 U	0.5 0	10 U		4,000 U	10,000 U	50 U	1,000 U	500 U	500 U	50 U	500 U	500 U	25 U
Carbon distillide Carbon tetrachloride	5	5 U	1 U	2.5 U	0.5 U		10 U	0.5 U	10 U	5 U	4,000 U	10,000 U	50 U	1,000 U	500 U	500 U	50 U	500 U	500 U	25 U
	5	5 U	1 U	2.5 U	0.5 U		10 U	0.5 U	10 U	5 U	4,000 U	10,000 U	50 U	1,000 U	500 U	500 U	50 U	500 U	500 U	25 U
Chlorobenzene Chlorobromomethane	5	3.0		2.5 0	0.5 0			0.5 0			4,000 0	10,000 0	50 0	1,000 0	500 0	500 0	30 0	500 0	300 0	25 0
Chloroethane	5	10 U	1 U	2.5 U	0.5 U		10 U	0.5 U	10 U	5 U	4,000 U	10,000 U	50 U	2,000 U	1,000 U	1,000 U	100 U	1,000 U	1,000 U	25 U
Chloroform (Trichloromethane)	7	5 U	1 U	2.5 U	0.5 U		10 U	0.5 U	10 U	5 U	4,000 U	10,000 U	50 U	1,000 U	500 U	500 U	50 U	500 U	500 U	25 U
Chloromethane (Methyl Chloride)	5	10 U	1 U	2.5 U	0.5 U		10 U	0.5 U	10 U	5 U	4,000 U	10,000 U	50 U	2,000 U	1,000 U	1,000 U	100 U	1,000 U	1,000 U	25 U
cis-1,2-Dichloroethene	5	5 U	1 U	0.8 J										1,000 U	500 U	500 U	50 U	500 U	500 U	25 U
cis-1.3-Dichloropropene	0.4	5 U	1 U	2.5 U	0.5 U		10 U	0.5 U	10 U	5 U	4.000 U	10.000 U	50 U	1.000 U	500 U	500 U	50 U	500 U	500 U	25 U
Dibromochloromethane	50	5 U	1 U	2.5 U	0.5 U		10 U	0.5 U	10 U	5 U	4,000 U	10,000 U	50 U	1.000 U	500 U	500 U	50 U	500 U	500 U	25 U
Dibromomethane	NC																			
Ethane	NC																			
Ethylbenzene	5	5 U	1 U	2.5 U			10 U		10 U		4.000 U	10.000 U	50 U	1.000 U	500 U	500 U	50 U	500 U	500 U	25 U
Ethene	NC																			
Iodomethane	NC																			
Methane	NC																			
Methylene chloride	5	1.1 J	1 U	2.5 U	2.5		4	18.4	10 U	11.4	620 J	10.000 U	52 B	4.000 U	320 J	2.000 U	200 U	2.000 U	2.000 U	25 U
o-Xylene	NC		1 U	2.5 U																25 U
Styrene	5	5 U	1 U	2.5 U			10 U		10 U		4.000 U	10.000 U	50 U	1,000 U	500 U	500 U	50 U	500 U	500 U	25 U
Tetrachloroethene	5	11.9	3.7	3.8	1.4		2 J	14.4	4 J	5 U	4,000 U	10,000 U	50 U	1,000 U	500 U	500 U	50 UJ	500 UJ	500 UJ	25 U
Toluene	5	5 U	1 U	2.5 U			10 U		10 U		4,000 U	10,000 U	50 U	1,000 U	500 U	500 U	50 U	500 U	500 U	25 U
Total Btex	NC	5 U					10 U		10 U		4,000 U	10,000 U	50 U	1,000 U	500 U	500 U				
trans-1,2-Dichloroethene	5	5 U	1 U	2.5 U	0.5 U			0.5 U		5 U				1,000 U	500 U	500 U	50 UJ	500 UJ	500 UJ	25 U
trans-1,3-Dichloropropene	0.4	5 U	1 U	2.5 U	0.5 U		10 U	0.5 U	10 U	5 U	4,000 U	10,000 U	50 U	1,000 U	500 U	500 U	50 U	500 U	500 U	25 U
Trans-1,4-dichlorobutene	NC																			
Trichloroethene	5	1.6 J	1.7	2.6	0.5 U		10 U	6.8	2 J	349	420 J	10,000 U	500	430 J	100 J	300 J	14 J	370 J	340 J	120
Trichlorofluoromethane (CFC-11)	5		1 U	2.5 U	0.5 U			0.5 U		5 U										25 U
Vinyl Acetate	NC																			
Vinyl chloride	2	10 U	1 U	2.5 U	0.5 U		10 U	0.5 U	10 U	5 U	4,000 U	10,000 U	50 U	2,000 U	1,000 U	1,000 U	100 U	1,000 U	1,000 U	25 U
Xylene (m,p)	NC		2 U	5 U								10,000 U								50 U
Xylene (total)	5	10 U					10 U		10 U		4,000 U	10,000 U	50 U	1,000 U	1,000 U	1,000 U	100 U	1,000 U	1,000 U	

All units in micrograms per liter (μg/L)

¹ New York State Department of Environmental Conservation, Technical and Operational Guidance Series (1.1.1), Class GA Standards and Guidance Values, Revised June 1998. BOLD - Exceedes New York State Department of Environmental Conservation, Technical and Operational Guidance Series (1.1.1), Class GA Standards and Guidance Values.

* - Elevation - ft amsl (ft bgs) [ft amsl - feet above mean sea level, ft bgs - feet below ground surface]

NC - No criteria exists

U - Not Detected at the Detection Limit shown, J - Estimated value, UJ - Approximate Non-detect, B - Blank Contamination, BJ - Estimated Value Detected in Blank

Passive diffusion bags deployed 12/2/2005 and retrieved on 12/22/2005.

Only wells with a discrete fracture or sampling interval have start and end depths.

Well AMSF-MW-12S was found to be obstructed prior to the April/May 2010 sampling event. The obstruction was cleared prior to the September 2010 sampling event

⁻ Well ITT-SBW-9 was inadvertently missed during the April/May 2010 Sampling Event.

- Well ITT-SBW-9 was inadvertently missed during sampling in April 2010 and consequently sampled in May 2010 when the mistake was identified.

⁻⁻⁻ Not Analyzed

		_																		
	Location Code	AMSF-MW-7	AMSF-MW-8D	AMSF-MW-8D	AMSF-MW-8D	AMSF-MW-8D	AMSF-MW-8S	AMSF-MW-9D	AMSF-MW-9S	AMSF-MW-9S	AMSF-MW-9S	AMSF-MW-9S	AMSF-MW-9S	AMSF-MW-9S	AMSF-MW-9S	AMSF-MW-10	AMSF-MW-10	AMSF-MW-10	AMSF-MW-10	AMSF-MW-11S
	Sample Date	9/9/2010	6/11/1992	11/16/2000	2/8/2005	9/27/2005	6/11/1992	6/11/1992	6/11/1992	11/15/2000	2/8/2005	8/31/2005	10/4/2005	4/21/2010	9/15/2010	6/11/1992	11/15/2000	2/9/2005	10/4/2005	2/8/2005
	Start Depth (ft)																			
	End Depth (ft)											1		1	l .	l				
Analyte	Criteria 1	_			1						1	1	1	1	1				1	
1,1,1,2-Tetrachloroethane	NC .		0.5 U				0.5 U	5U	0.5 U							0.5 U				
1,1,1-Trichloroethane	5	8300	6.5	10 U	0.6	0.5 U	22.6	273	909	610	1100	1100	8.39	200	800	4	6	5 U	10 U	220
1,1,2,2-Tetrachloroethane	5	50 U		10 U	0.5 U	0.5 U	0.5.11		0.5.11	50 U	20 U	25 U	0.5 U	1 U	5 U		10 U	5 U	10 U	0.5 U
1,1,2-Trichloroethane	1 -	50 U	0.5 U	10 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	50 U	20 U	25 U	0.5 U	4.9	4.1 J	0.5 U	10 U	5 U	10 U	0.5 U
1,1-Dichloroethane	5	230 30 J	25.3	12	10	2.21	2.5 1.9	50.6 88.8	91.2 86.3	25 J	62 38	85.5	0.74	46 39	89 58	0.5 U	3	5 U	10 U	80
1,1-Dichloroethene	0.04		1.6	10 U	0.3 J	0.1 J				34 J		95.5		39	58	0.5 U	10 U	1 7 7	10 U	
1,2,3-Trichloropropane 1,2-Dibromo-3-chloropropane (DBCP)	0.04	100 U												2 U	10 U					
1,2-Dibromo-3-Chloropropane (DBCP) 1,2-Dibromoethane (Ethylene Dibromide)	0.006	50 U	1				1					1		1 U	5 U		†	†		+
1.2-Dichloroethane	0.0006	50 U	0.5 U	10 U	0.5 U	0.5 U	0.5 U	 5U	2.8	 50 U	20 U	25 U	0.5 U	0.63 J	1.2 J	0.5.11	10 U	 5 U	10 U	0.5 U
,																0.5 U	10 0			
1,2-Dichloroethene (total)	NC 1	50 U	0.5.11	10 U	0.5.11	0.5.11	0.5.11	 5U	0.5.11	9 J 50 U	20.11	25 U	0.5 U	1 U		0.5.11	10 U	 5 U	10 U	0.5.11
1,2-Dichloropropane	50	250 U	0.5 U	10 U 9 J	0.5 U 10 U	0.5 U	0.5 U		0.5 U	50 U	20 U 400 U	500 U	10 U	5 U	5 U 25 U	0.5 U	10 U	100 U	200 U	0.5 U 10 U
2-Butanone (Methyl Ethyl Ketone) 2-Hexanone	50	250 U		9 J 10 U	10 U	10 U				50 U	200 U	250 U	10 U	5 U	25 U		10 U	50 U	200 U	10 U
4-Methyl-2-pentanone (Methyl Isobutyl Ketone)	NC	250 U		10 U	5 U	5 U				50 U	200 U	250 U 250 UJ	5 U	5 U	25 U		10 U	50 U	100 U	5 U
Acetone Acetone	50	250 U		45	10 U	10 U				18	400 U	500 UJ	10 U	5 U	25 U		3	100 U	200 U	10 U
Acrylonitrile	NC	250 0		45							400 0	500 03			12 J				200 0	
-	1	50 U		5 J	2	1.05				50 U	20 U	25 U	0.5 U	1 U	5 U		10 U	5 U	10 U	0.4 J
Benzene Bromodishloromothana	50	50 U	0.5 U	10 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	50 U	20 U	25 U	0.5 U	1 U	5 U	0.5 U	10 U	5 U	10 U	0.4 J
Bromodichloromethane Bromoform	50	50 U	0.5 U	10 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	50 U	20 U	25 U	0.5 U	1 U	5 U	0.5 U	10 U	5 U	10 U	0.5 U
Bromoform Bromomethane (Methyl Bromide)	50	50 U	0.5 U	10 U	0.5 U 1 UJ	1 U	0.5 U	5 U	0.5 U	50 U	40 U	50 U	0.5 U	1 U	5 U	0.5 U	10 U	10 UJ	20 U	1 U
Carbon disulfide	60	50 U	0.5 0	10 U	0.4 J	0.47 J	0.5 0	3.0	0.5 0	50 U	20 U	25 U	0.5 U	1 U	5 U	0.5 0	10 U	5 U	10 U	0.5 U
Carbon tetrachloride	5	50 U	0.5 U	10 U	0.4 J	0.47 J	0.5 U	5 U	0.5 U	50 U	20 U	25 U	0.5 U	1 U	5 U	0.5 U	10 U	5 U	10 U	0.5 U
	5	50 U	0.5 U	10 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	50 U	20 U	25 U	0.5 U	1 U	5 U	0.5 U	10 U	5 U	10 U	0.5 U
Chlorobenzene	5	30 0	0.5 0		0.5 0		0.5 0		0.5 0			25 0	0.5 0			0.5 0				0.5 0
<u>Chlorobromomethane</u> Chloroethane	5	50 U	0.5 U	10 U	1	1.06	0.5 U	5 U	0.5 U	50 U	40 U	50 U	1 U	1 U	5 U	0.5 U	10 U	10 U	20 U	0.6 J
Chloroform (Trichloromethane)	7	50 U	0.5 U	10 U	0.5 U	0.5 U	0.5 U	5 U	0.93	50 U	20 U	25 U	0.5 U	0.31 J	5 U	0.5 U	10 U	5 U	10 U	0.5 U
Chloromethane (Methyl Chloride)	5	50 U	0.5 U	10 U	1 U	1 U	0.5 U	5 U	0.5 U	50 U	40 U	50 U	1 U	1 U	5 U	0.5 U	10 U	10 U	20 U	1 U
cis-1,2-Dichloroethene	5	50 U	0.5 0		0.5 U	0.5 U	0.5 0				21	49	0.35 J	28	52			2 J	10 U	0.5
cis-1,3-Dichloropropene	0.4	50 U	0.5 U	10 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	50 U	20 U	25 U	0.5 U	1 U	5 U	0.5 U	10 U	5 U	10 U	0.5 U
Dibromochloromethane	50	50 U	0.5 U	10 U	0.5 U	0.5 U	0.5 U	5 U	0.67	50 U	20 U	25 U	0.5 U	1 U	5 U	0.5 U	10 U	5 U	10 U	0.5 U
Dibromomethane	NC NC	30 0					0.5 0													
Ethane	NC NC																			
Ethylbenzene	5	50 U		2 J	0.8	0.28 J				50 U	20 U	25 U	0.5 U	1 U	5 U		10 U	5 U	10 U	0.2 J
Ethene	NC NC																			
lodomethane	NC NC																			
Methane	NC NC																			
Methylene chloride	5	50 U	2.9	3 BJ	2 U	2 U	1.6	32.8	5.9	34	80 U	17 J	2 U	1 U	5 U	1.7	5	20 U	40 U	2 U
o-Xylene	NC	50 U	2.3				1.0	J2.0	J.J	J 4				1 U	5 U			200	400	
Styrene	5	50 U		10 U	0.5 U	0.5 U				50 U	20 U	25 U	0.5 U	1 U	5 U		10 U	5 U	10 U	0.5 U
Tetrachloroethene	5	50 U	0.5 U	10 U	0.5 U	0.5 U	1.7	7.7	90.2	21 J	96	138	1.8	35	52	117	60	270	417	0.5 0
Toluene	5	50 U	0.5 0	2 J	0.5 0	0.5 U	1.7		90.2	50 U	20 U	25 U	0.5 U	1 U	5 U		10 U	5 U	10 U	2
Total Btex	NC NC			15	8.8	1.88				50 U	20 U	50 U	1 U				10 U	5 U	20 U	3.3
trans-1,2-Dichloroethene	5	50 U	0.5 U		0.5 U	0.5 U	0.5 U	5 U	0.5 U		20 U	25 U	0.5 U	1 U	2.3 J	0.5 U		5 U	10 U	0.5 U
trans-1,3-Dichloropropene	0.4	50 U	0.5 U	10 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	50 U	20 U	25 U	0.5 U	1 U	5 U	0.5 U	10 U	5 U	10 U	0.5 U
Trans-1,4-dichlorobutene	NC	300	5.5 0		0.5 0		0.5 0		5.5 0	500			0.5 0							0.5 0
Trichloroethene	INC 5	77	0.69	10 U	0.5 U	0.5 U	1.5	13.5	20.7	50 U	12 J	26	0.23 J	10	37	1.9	2	3 J	4.8 J	3
Trichlorofluoromethane (CFC-11)	5	50 U	0.69 0.5 U		0.5 0		0.5 U	5 U	0.5 U		123		0.23 J	1 U	5 U	0.5 U			4.0 J	
Vinyl Acetate	NC NC	30 0	0.5 0				0.5 0	J U	0.5 0							U.J U				
Vinyl chloride	2	50 U	0.5 U	10 U	1 U	1 U	0.5 U	5 U	0.5 U	50 U	40 U	50 U	1 U	1.3	5 U	0.5 U	10 U	10 U	20 U	1
Xylene (m,p)	NC NC	100 U	0.5 0				0.5 0		0.5 0	50 0	40 0	50 0		2 U	10 U		100	100	200	1
Xylene (total)	INC 5	100 0		6.1	2	0.4 J				50 U	20 U	50 U	1 U	20	10 0		10 U	5 U	20 U	0.7
Ayrene (LULAI)) 3	Notes:		υJ		U.4 J				JU U	2U U	JU U	1 10				10.0	30	20 U	U./

All units in micrograms per liter (μg/L)

¹ New York State Department of Environmental Conservation, Technical and Operational Guidance Series (1.1.1), Class GA Standards and Guidance Values, Revised June 1998. BOLD - Exceedes New York State Department of Environmental Conservation, Technical and Operational Guidance Series (1.1.1), Class GA Standards and Guidance Values.

* - Elevation - ft amsl (ft bgs) [ft amsl - feet above mean sea level, ft bgs - feet below ground surface]

NC - No criteria exists

U - Not Detected at the Detection Limit shown, J - Estimated value, UJ - Approximate Non-detect, B - Blank Contamination, BJ - Estimated Value Detected in Blank

Passive diffusion bags deployed 12/2/2005 and retrieved on 12/22/2005.

Only wells with a discrete fracture or sampling interval have start and end depths.

Well AMSF-MW-12S was found to be obstructed prior to the April/May 2010 sampling event. The obstruction was cleared prior to the September 2010 sampling event

⁻ Well ITT-SBW-9 was inadvertently missed during the April/May 2010 Sampling Event.

- Well ITT-SBW-9 was inadvertently missed during sampling in April 2010 and consequently sampled in May 2010 when the mistake was identified.

⁻⁻⁻ Not Analyzed

T			1												T	T		T		T
	Location Code	AMSF-MW-11S	AMSF-MW-11S	AMSF-MW-11S		AMSF-MW-12S	AMSF-MW-12S	AMSF-MW-12S	AMSF-MW-13S	AMSF-MW-13S	AMSF-MW-13S				AMSF-MW-13S	AMSF-MW-13S	AMSF-MW-13S			_
	Sample Date	10/4/2005	4/23/2010	9/9/2010	2/8/2005	8/31/2005	10/4/2005	9/9/2010	2/8/2005	8/31/2005	8/31/2005	10/4/2005	12/22/2005	12/22/2005	12/22/2005	4/23/2010	9/10/2010	12/8/2004	12/9/2004	12/13/2004
	Start Depth (ft)												552 (12.5)*	547 (17.5)*	542 (22.5)*			534.9 (28.5)* 524.6 (38.9)*	529.2 (34.2)*	514.9 (48.5)*
Analyte	End Depth (ft) Criteria 1												550 (14.5)*	545 (19.5)*	540 (24.5)*			524.6 (38.9)*	518.9 (44.6)*	504.6 (58.9)*
1,1,1,2-Tetrachloroethane	NC									150 U	I			1			ı			Т
1.1.1-Trichloroethane	- NC	6160	110	930	1500	125	4380	2000	25000	5800	5470	8690	1670	46300	71600	3400	3000	1300	1300	420
1.1.2.2-Tetrachloroethane	5	5 U	110 1 U	930 1 U	0.5 U	2.5 U	2.5 U	2000 5 U	500 U	150 U	100 U	100 U	50 U	1.000 U	1.250 U	1 U	20 U	20 U	20 U	12 U
1.1.2-Trichloroethane	1					2.5 U			500 U	150 U	100 U		50 U	1,000 U	1,250 U	0.59 J			20 U	
, ,	1	5 U	1 U	1 U	0.5		0.95 J	5 U				100 U			,		20 U	20 U		12 U
1,1-Dichloroethane	5	168	50	92	47	4.8	118	84	400 J	150 U	106	234	118	1820	2720	280	210	170	61	32
1,1-Dichloroethene		32.6	3.4	6.6	12	2.85	35.8	12	500 U	150 U	40 J	56 J	11 J	1,000 U	1,250 U	33	18 J	18 J	17 J	7.9 J
1,2,3-Trichloropropane	0.04		2.11					40.111		150 U							40.11			
1,2-Dibromo-3-chloropropane (DBCP)	0.04		2 U	2 UJ		†		10 UJ		500 U			1			2 U	40 U		†	1
1,2-Dibromoethane (Ethylene Dibromide)	0.0006		1 U	1 U				5 U		150 U						1 U	20 U			
1,2-Dichloroethane	0.6	5 U	1 U	1 U	0.2 J	2.5 U	2.5 U	5 U	500 U	150 U	100 U	100 U	50 U	1,000 U	1,250 U	1 U	20 U	20 U	20 U	12 U
1,2-Dichloroethene (total)	NC																			
1,2-Dichloropropane	1	5 U	1 U	1 U	0.5 U	2.5 U	2.5 U	5 U	500 U	150 U	100 U	100 U	50 U	1,000 U	1,250 U	1 U	20 U	20 U	20 U	12 U
2-Butanone (Methyl Ethyl Ketone)	50	100 U	5 U	5 UJ	10 U	50 U	50 U	25 UJ	10,000 U	500 U	2,000 U	2,000 U	1,000 U	20,000 U	25,000 U	2.6 J	100 U	400 U	400 U	250 U
2-Hexanone	50	50 U	5 U	5 UJ	5 U	25 U	25 U	25 UJ	5,000 U	500 U	1,000 U	1,000 U	500 U	10,000 U	12,500 U	5 U	100 U	200 U	200 U	120 U
4-Methyl-2-pentanone (Methyl Isobutyl Ketone)	NC	50 U	5 U	5 U	5 U	25 U	25 U	25 U	5,000 U	500 U	1,000 U	1,000 U	500 U	10,000 U	12,500 U	5 U	100 U	200 U	200 U	120 U
Acetone	50	100 U	5 U	5 U	10 U	50 UJ	50 U	25 U	10,000 U	500 UJ	2,000 U	2,000 U	1,000 U	20,000 U	25,000 U	5 U	100 U	400 U	400 U	250 U
Acrylonitrile	NC									150 U										
Benzene	1	5 U	1 U	1 U	2	2.5 U	2.5 U	5 U	500 U		100 U	100 U	50 U	1,000 U	1,250 U	1 U	20 U	20 U	20 U	12 U
Bromodichloromethane	50	5 U	1 U	1 U	0.5 U	2.5 U	2.5 U	5 U	500 U	150 U	100 U	100 U	50 U	1,000 U	1,250 U	1 U	20 U	20 U	20 U	12 U
Bromoform	50	5 U	1 U	1 U	0.5 U	2.5 U	2.5 U	5 U	500 U	150 U	100 U	100 U	50 U	1,000 U	1,250 U	1 UJ	20 U	20 U	20 U	12 U
Bromomethane (Methyl Bromide)	5	10 U	1 U	1 U	1 U	5 U	5 U	5 U	1,000 U	150 U	200 U	200 U	100 U	2,000 U	2,500 U	1 U	20 U	40 U	40 U	25 U
Carbon disulfide	60	5 U	1 U	1 U	0.5 U	2.5 U	2.5 U	5 U	500 U	150 U	100 U	100 J	50 U	1,000 U	1,250 U	1 UJ	20 U	20 U	20 U	12 U
Carbon tetrachloride	5	5 U	1 U	1 U	0.5 U	2.5 U	2.5 U	5 U	500 U	150 U	100 U	100 U	50 U	1,000 U	1,250 U	1 U	20 U	20 U	20 U	12 U
Chlorobenzene	5	5 U	1 U	1 U	0.5 U	2.5 U	2.5 U	5 U	500 U	150 U	100 U	100 U	50 U	1,000 U	1,250 U	1 U	20 U	20 U	20 U	12 U
Chlorobromomethane	5									150 U										
Chloroethane	5	10 U	2.3	2.8	1 U	5 U	5 U	5 U	1,000 U	150 U	200 U	200 U	100 U	2,000 U	2,500 U	5	5.8 J	9 J	40 U	25 U
Chloroform (Trichloromethane)	7	5 U	1 U	1 U	0.5 U	2.5 U	2.5 U	5 U	500 U	150 U	100 U	100 U	50 U	1,000 U	1,250 U	1 U	20 U	20 U	20 U	12 U
Chloromethane (Methyl Chloride)	5	10 U	1 U	1 U	1 U	5 U	5 U	5 U	1,000 U	150 U	200 U	200 U	100 U	2,000 U	2,500 U	1 U	20 U	40 U	40 U	25 U
cis-1,2-Dichloroethene	5	2.7 J	0.8 J	0.8 J	2	2.5 U	3.2	1.7 J	500 U	150 U	100 U	100 U	50 U	1,000 U	1,250 U	6.8	20 U	20 U	20 U	12 U
cis-1,3-Dichloropropene	0.4	5 U	1 U	1 U	0.5 U	2.5 U	2.5 U	5 U	500 U	150 U	100 U	100 U	50 U	1,000 U	1,250 U	1 U	20 U	20 U	20 U	12 U
Dibromochloromethane	50	5 U	1 U	1 U	0.5 U	2.5 U	2.5 U	5 U	500 U	150 U	100 U	100 U	50 U	1,000 U	1,250 U	1 U	20 U	20 U	20 U	12 U
Dibromomethane	NC									150 U										
Ethane	NC																			
Ethylbenzene	5	5 U	1 U	1 U	0.5 J	2.5 U	2.5 U	5 U	500 U	150 U	100 U	100 U	50 U	1,000 U	1,250 U	1 U	20 U	20 U	20 U	12 U
Ethene	NC																			
Iodomethane	NC									150 U										
Methane	NC																			
Methylene chloride	5	20 U	1 U	1 U	2 U	1.5 J	10 U	5 U	2,000 U	150 U	60 J	400 U	200 U	4,000 U	5,000 U	1 U	20 U	80 U	80 U	50 U
o-Xylene	NC		1 U	1 U				5 U		150 U						1 U	20 U			
Styrene	5	5 U	1 U	1 U	0.5 U	2.5 U	2.5 U	5 U	500 U	150 U	100 U	100 U	50 U	1,000 U	1,250 U	1 U	20 U	20 U	20 U	12 U
Tetrachloroethene	5	11.2	1 U	1 U	12	3	14.7	5 U	500 U	150 U	100 U	100 U	50 UJ	1,000 UJ	1,250 UJ	8.3	20 U	20 U	20 U	12 U
Toluene	5	5 U	1 U	1 U	9	2.5 U	2.5 U	5 U	500 U	150 U	100 U	100 U	50 U	1,000 U	1,250 U	1 U	20 U	28	12 J	33
Total Btex	NC				13.5	5 U	5 U		500 U		200 U	200 U						28	12	33
trans-1,2-Dichloroethene	5	5 U	1 U	1 U	0.5 U	2.5 U	2.5 U	5 U	500 U	150 U	100 U	100 U	50 UJ	1,000 UJ	1,250 UJ	1 U	20 U	20 U	20 U	12 U
trans-1,3-Dichloropropene	0.4	5 U	1 U	1 U	0.5 U	2.5 U	2.5 U	5 U	500 U	150 U	100 U	100 U	50 U	1,000 U	1,250 U	1 U	20 U	20 U	20 U	12 U
Trans-1,4-dichlorobutene	NC									500 U										
Trichloroethene	5	26.5	2.6	8.5	7	1 J	19.9	8.8	130 J	150 U	38 J	54 J	50 U	1,000 U	300 J	26	21	6 J	7.1	12 U
Trichlorofluoromethane (CFC-11)	5		1 U	1 U				5 U		150 U						1 U	20 U			
Vinyl Acetate	NC NC									2,500 U										
Vinyl chloride	2	10 U	3.4	3.3	0.1 J	5 U	5 U	5 U	1.000 U	100 U	200 U	200 U	100 U	2.000 U	2.500 U	2.7	20 U	40 U	40 U	25 U
Xylene (m,p)	NC NC		2 U	2 U	0.13			10 U							2,300 0	2 U	4 U			
Xylene (total)	5	10 U			2	5 U	5 U		500 U		200 U	200 U	100 U	2.000 U	2.500 U			20 U	20 U	12 U
Ayrene (total)	, ,	Notes:				30	30		300 0		200 0	2000	100 0	2,000 0	2,300 0			200		1 12 0

All units in micrograms per liter (μg/L)

¹ New York State Department of Environmental Conservation, Technical and Operational Guidance Series (1.1.1), Class GA Standards and Guidance Values, Revised June 1998.

BOLD - Exceedes New York State Department of Environmental Conservation, Technical and Operational Guidance Series (1.1.1), Class GA Standards and Guidance Values.

NC - No criteria exists

U - Not Detected at the Detection Limit shown, J - Estimated value, UJ - Approximate Non-detect, B - Blank Contamination, BJ - Estimated Value Detected in Blank

^{* -} Elevation - ft amsl (ft bgs) [ft amsl - feet above mean sea level, ft bgs - feet below ground surface]

Passive diffusion bags deployed 12/2/2005 and retrieved on 12/22/2005.

Only wells with a discrete fracture or sampling interval have start and end depths.

Well AMSF-MW-12S was found to be obstructed prior to the April/May 2010 sampling event. The obstruction was cleared prior to the September 2010 sampling event

⁻ Well ITT-SBW-9 was inadvertently missed during the April/May 2010 Sampling Event.

- Well ITT-SBW-9 was inadvertently missed during sampling in April 2010 and consequently sampled in May 2010 when the mistake was identified.

⁻⁻⁻ Not Analyzed

	Location Code	AMSF-MW-14D	AMSF-MW-14D	AMSF-MW-14D	AMSF-MW-14D	AMSF-MW-14D	AMSF-MW-14D	AMSF-MW-14D	AMSF-MW-14D	AMSF-MW-14D	AMSF-MW-15I	AMSF-MW-15I	AMSF-MW-16I	AMSF-MW-16I	AMSF-MW-17MI	P AMSF-MW-18M	P AMSF-MW-19MP	AMSF-RW-1	AMSF-RW-1	AMSF-RW-1
	Sample Date	12/13/2004	12/14/2004	12/15/2004	12/15/2004	12/16/2004	12/16/2004	12/17/2004	12/23/2004	12/23/2004	4/26/2010	9/9/2010	4/23/2010	9/9/2010	3/18/2008	3/1/2010	2/22/2008	11/16/2000	11/16/2000	11/16/2000
	Start Depth (ft)	504.9 (58.5)*	494.9 (68.5)*	485.1 (78.3)*	476.2 (87.2)*	464.9 (98.5)*	454.9 (108.5)*	445.9 (117.5)*	434.9 (128.5)*	425.4 (138)*	1/20/2010	3/3/2010	1,25,2010	3/3/2010	424.4 (139)*	419.4 (144)*	513.3 (50.0)*	522.3 (36)*	493.3 (65)*	463.3 (95)*
	End Depth (ft)	494.6 (68.9)*	486.1 (77.3)*	474.8 (88.7)*	465.9 (97.6)*	454.6 (108.9)*	444.6 (118.9)	435.6 (127.9)	426.1 (137.3)*	415.1 (148.4)*					414.4 (149)*	419.4(144)*	483.3 (80)*	522.3 (36)*	493.3 (65)*	463.3 (95)*
Analyte	Criteria 1																			
1,1,1,2-Tetrachloroethane	NC																			
1,1,1-Trichloroethane	5	790	510	360	440	280	250	410	5900	7900	660	1100	920	1200	62000	2500	27	10 U	10 U	10 U
1,1,2,2-Tetrachloroethane	5	25 U	12 U	10 U	10 U	5 U	5 U	5 U	5 U	5 U	1 U	5 U	1 U	5 U	100 U	50 U	1 U	10 U	10 U	10 U
1,1,2-Trichloroethane	1	25 U	12 U	10 U	10 U	5 U	5 U	5 U	2.5 J	1.9 J	1 U	5 U	1 U	5 U	100 U	50 U	1 U	10 U	10 U	10 U
1,1-Dichloroethane	5	41	46	32	33	38	40	38	8300	5000	32	73	95	61	16000	8400	5.9	10 U	10 U	4 J
1,1-Dichloroethene	5	13 J	9.2 J	8.6 J	8.9 J	5.7	4.7 J	7.4	230	210	2.7	4.6 J	6.1	3.9 J	300	210	1 U	10 U	10 U	10 U
1,2,3-Trichloropropane	0.04																			
1,2-Dibromo-3-chloropropane (DBCP)	0.04										2 U	10 UJ	2 U	10 UJ	200 U	100 U	2 U			
1,2-Dibromoethane (Ethylene Dibromide)	0.0006										1 U	5 U	1 U	5 U	100 U	50 U	1 U			
1,2-Dichloroethane	0.6	25 U	12 U	10 U	10 U	5 U	5 U	5 U	7.6	7.1	1 U	5 U	1 U	5 U	100 U	50 U	1 U	10 U	10 U	10 U
1,2-Dichloroethene (total)	NC																	10 U	10 U	10 U
1,2-Dichloropropane	1	25 U	12 U	10 U	10 U	5 U	5 U	5 U	5 U	5 U	1 U	5 U	1 U	5 U	100 U	50 U	1 U	10 U	10 U	10 U
2-Butanone (Methyl Ethyl Ketone)	50	500 U	250 U	200 U	200 U	100 U	100 U	100 U	180	93 J	5 U	25 UJ	5 U	25 UJ	500 U	250 U	5 U	10 U	10 U	10 U
2-Hexanone	50	250 U	120 U	100 U	100 U	50 U	50 U	50 U	50 U	50 U	5 U	25 UJ	5 U	25 UJ	500 U	250 U	5 U	10 U	10 U	10 U
4-Methyl-2-pentanone (Methyl Isobutyl Ketone)	NC	250 U	120 U	100 U	100 U	50 U	50 U	50 U	50 U	50 U	5 U	25 U	5 U	25 U	500 U	250 U	5 U	10 U	10 U	10 U
Acetone	50	500 U	250 U	200 U	200 U	100 U	11 J	100 U	77 J	43 J	5 U	25 U	5 U	25 U	1000 U	250 U	10 U	10 U	10 U	10 U
Acrylonitrile	NC																			
Benzene	1	25 U	12 U	10 U	10 U	5 U	5 U	2.5 J	160	100	1 U	5 U	1 U	5 U	470	470	1 U	10 U	10 U	35
Bromodichloromethane	50	25 U	12 U	10 U	10 U	5 U	5 U	5 U	5 U	5 U	1 U	5 U	1 U	5 U	100 U	50 U	1 U	10 U	10 U	10 U
Bromoform	50	25 U	12 U	10 U	10 U	5 U	5 U	5 U	5 U	5 U	1 U	5 U	1 U	5 U	100 U	50 U	1 U	10 U	10 U	10 U
Bromomethane (Methyl Bromide)	5	50 U	25 U	20 U	20 U	10 U	10 U	10 U	10 U	10 U	1 U	5 U	1 U	5 U	200 U	50 U	2 U	10 U	10 U	10 U
Carbon disulfide	60	25 U	12 U	10 U	10 U	5 U	5 U	5 U	1.5 J	5 U	1 U	5 U	1 U	5 U	100 U	50 U	1 U	10 U	10 U	10 U
Carbon tetrachloride	5	25 U	12 U	10 U	10 U	5 U	5 U	5 U	5 U	5 U	1 U	5 U	1 U	5 U	100 U	50 U	1 U	10 U	10 U	10 U
Chlorobenzene	5	25 U	12 U	10 U	10 U	5 U	5 U	5 U	5 U	5 U	1 U	5 U	1 U	5 U	100 U	50 U	1 U	10 U	10 U	10 U
Chlorobromomethane	5																			
Chloroethane	5	50 U	6.3 J	20 U	20 U	2.3 J	5.3 J	10 U	5.6 J	4 J	1 U	5 U	0.72 J	5 U	200 U	50 U	2 U	10 U	10 U	1 J
Chloroform (Trichloromethane)	7	25 U	12 U	10 U	10 U	5 U	5 U	5 U	1.8 J	1.8 J	1 U	5 U	1 U	5 U	100 U	50 U	1 U	10 U	10 U	10 U
Chloromethane (Methyl Chloride)	5	50 U	25 U	20 U	20 U	10 U	10 U	10 U	10 U	10 U	1 U	5 U	1 U	5 U	200 U	50 U	2 U	10 U	10 U	10 U
cis-1,2-Dichloroethene	5	25 U	12 U	10 U	10 U	5 U	5 U	5 U	5 U	5 U	0.6 J	5 U	0.66 J	5 U	100 U	50 U	1 U			
cis-1,3-Dichloropropene	0.4	25 U	12 U	10 U	10 U	5 U	5 U	5 U	5 U	5 U	1 U	5 U	1 U	5 U	100 U	50 U	1 U	10 U	10 U	10 U
Dibromochloromethane	50	25 U	12 U	10 U	10 U	5 U	5 U	5 U	5 U	5 U	1 U	5 U	1 U	5 U	100 U	50 U	1 U	10 U	10 U	10 U
Dibromomethane	NC																			
Ethane	NC																			
Ethylbenzene	5	25 U	12 U	10 U	10 U	5 U	5 U	5 U	4.5 J	2.6 J	1 U	5 U	1 U	5 U	100 U	50 U	1 U	10 U	10 U	10 U
Ethene	NC																			
Iodomethane	NC																			
Methane	NC																			
Methylene chloride	5	100 U	50 U	40 U	40 U	20 U	20 U	20 U	20 U	20 U	1 U	5 U	1 U	5 U	100 U	50 U	1 U	4	3	6 BJ
o-Xylene	NC										1 U	5 U	1 U	5 U	100 U	50 U	1 U			
Styrene	5	25 U	12 U	10 U	10 U	5 U	5 U	5 U	5 U	5 U	1 U	5 U	1 U	5 U	100 U	50 U	10	10 U	10 U	10 U
Tetrachloroethene	5	25 U	12 U	10 U	2.6 J	1.5 J	1.3 J	1.6 J	5 U	5 U	1 U	5 U	1 U	5 U	100 U	50 U	10	10 U	10 U	10 U
Toluene	5	28	8.1	11	11	1.5 J	5.5	47	100	67	1 U	5 U	1 U	5 U	440	430	10	10 U	10 U	10 U
Total Btex	NC	28	8	11	11	1.5	5.5	51.6	297.5	186.6								10 U	10 U	35
trans-1,2-Dichloroethene	5	25 U	12 U	10 U	10 U	5 U	5.5 5 U	5 U	5 U	5 U	1 U	5 U	1 U	5 U	100 U	50 U	1 U			
trans-1,3-Dichloropropene	0.4	25 U	12 U	10 U	10 U	5 U	5 U	5 U	41	1.9 J	1 U	5 U	1 U	5 U	100 U	50 U	10	10 U	10 U	10 U
Trans-1,4-dichlorobutene	NC	25 0																		
Trichloroethene	5	25 U	3 J	2.4 J	2.3 J	1.9 J	1.9 J	2 J	63	54	3.5	7.3	4.8	4.6 J	500	140	1 U	10 U	10 U	10 U
Trichlorofluoromethane (CFC-11)	5	23 0	3.1	2.4 J	2.3 J	1.91	1.91	Z J			3.5 1 U	7.3 5 U	4.6 1 U	4.6 J	100 U	50 U	1 U			
Vinyl Acetate	NC																			
Vinyl chloride	2	50 U	25 U	20 U	20 U	10 U	10 U	10 U	5.7 J	3.3 J	1 U	5 U	1 U	5 U	100 U	50 U	1 U	10 U	10 U	10 U
Xylene (m,p)	NC NC	30 0	23 0	20 0					3./ J	2.2.1	2 U	10 U	10 U	2 U	160	140	1 U			
Ayrene (III,p)	INC	25 U	12 U	10 U	10 U	5 U	5 U	2.1 J	33	17	20	10.0	10.0	20	100		10	10 U	10 U	10 U

All units in micrograms per liter (μg/L)

¹ New York State Department of Environmental Conservation, Technical and Operational Guidance Series (1.1.1), Class GA Standards and Guidance Values, Revised June 1998. BOLD - Exceedes New York State Department of Environmental Conservation, Technical and Operational Guidance Series (1.1.1), Class GA Standards and Guidance Values.

NC - No criteria exists

U - Not Detected at the Detection Limit shown, J - Estimated value, UJ - Approximate Non-detect, B - Blank Contamination, BJ - Estimated Value Detected in Blank

--- Not Analyzed

^{* -} Elevation - ft amsl (ft bgs) [ft amsl - feet above mean sea level, ft bgs - feet below ground surface]

Passive diffusion bags deployed 12/2/2005 and retrieved on 12/22/2005.

Only wells with a discrete fracture or sampling interval have start and end depths.

Well AMSF-MW-12S was found to be obstructed prior to the April/May 2010 sampling event. The obstruction was cleared prior to the September 2010 sampling event

⁻ Well ITT-SBW-9 was inadvertently missed during the April/May 2010 Sampling Event.

- Well ITT-SBW-9 was inadvertently missed during sampling in April 2010 and consequently sampled in May 2010 when the mistake was identified.

	Location Code	AMSF-RW-1	AMSF-RW-2	AMSF-RW-2	AMSF-RW-2	AMSF-RW-2	AMSF-RW-2	AMSF-RW-2	AMSF-RW-2	AMSF-RW-2	AMSF-RW-2	AMSF-RW-2	AMSF-RW-2	AMSF-RW-3						
	Sample Date	2/10/2005	2/10/2005	2/10/2005	2/16/2005	2/16/2005	10/3/2005	10/3/2005	5/4/1999	5/4/1999	5/4/1999	5/4/1999	11/16/2000	11/16/2000	11/16/2000	11/16/2000	11/16/2000	11/16/2000	8/31/2005	11/16/2000
	Start Depth (ft)	546.3 (12)*	530.3 (28)*	499.3 (59)*	483.3 (75)*	476.3 (82)*	546.3 (12)*	476.3 (82)*	462.1 (101)*	428.1 (135)*	538.1 (25)*	526.1 (37)*	462.1 (101)*	414.1 (149)*	538.1 (25)*	526.1 (37)*	493.1 (70)*	563.1 (0)*	554.4 (9)*	546.2 (19)*
	End Depth (ft)	546.3 (12)*	530.3 (28)*	499.3 (59)*	483.3 (75)*	476.3 (82)*	546.3 (12)*	476.3 (82)*	462.1 (101)*	428.1 (135)*	538.1 (25)*	526.1 (37)*	462.1 (101)*	414.1 (149)*	538.1 (25)*	526.1 (37)*	493.1 (70)*	563.1 (0)*	552.4 (11)*	546.2 (19)*
Analyte	Criteria 1																			
1,1,1,2-Tetrachloroethane	NC																			
1,1,1-Trichloroethane	5	3	3	1 U	0.3 J	0.3 J	0.17 J	0.18 J	6600	55000	3100	3000	56000	21000	4400	4500	34000	680	7.58	53
1,1,2,2-Tetrachloroethane	5	2 U	2 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	500 U	5,000 U	100 U	250 U	2,000 U	2,000 U	10 U	10 U	10 U	10 U	0.5 U	10 U
1,1,2-Trichloroethane	1	2 U	2 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	500 U	5,000 U	100 U	250 U	2,000 U	2,000 U	1 J	2 J	15	10 U	0.5 U	10 U
1,1-Dichloroethane	5	0.7 J	0.6 J	1 U	0.5 U	0.3 J	0.34 J	27.6	570	7800	68 J	52 J	20000	17000	46	78	6000	13	0.5 U	6 J
1,1-Dichloroethene	5	2 U	2 U	1 U	0.5 U	0.5 U	0.5 U	0.24 J	230 J	1,200 J	160	100 J	3000	1,400 J	190	180	1500	30	0.32 J	3 J
1,2,3-Trichloropropane	0.04																			
1,2-Dibromo-3-chloropropane (DBCP)	0.04																			
1,2-Dibromoethane (Ethylene Dibromide)	0.0006																			
1,2-Dichloroethane	0.6	2 U	2 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	500 U	5,000 U	100 U	250 U	2,000 U	2,000 U	2 J	2 J	36	10 U	0.5 U	10 U
1,2-Dichloroethene (total)	NC					-			500 U	5,000 U	12 J	250 U	2,000 U	2,000 U	4 J	4 J	6 J	10 U		10 U
1,2-Dichloropropane	1	2 U	2 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	500 U	5,000 U	100 U	250 U	2,000 U	2,000 U	10 U	10 U	10 U	10 U	0.5 U	10 U
2-Butanone (Methyl Ethyl Ketone)	50	50 U	50 U	25 U	10 U	10 U	10 U	10 U	500 U	5,000 U	100 U	250 U	2,000 U	2,000 U	10 U	10 U	2,000 U	10 U	10 U	10 U
2-Hexanone	50	25 U	25 U	12 U	5 U	5 U	5 U	5 U	500 U	5,000 U	100 U	250 U	2,000 U	2,000 U	10 U	10 U	2 J	10 U	5 U	10 U
4-Methyl-2-pentanone (Methyl Isobutyl Ketone)	NC	25 U	25 U	12 U	5 U	5 U	5 U	5 U					5,000 U	2,000 U	10 U	10 U	1 J	10 U	5 U	10 U
Acetone	50	50 U	50 U	25 U	10 U	10 U	10 U	10 U	500 U	5,000 U	100 U	250 U	5800	2,000 U	10 U	10 U	130	10 U	2.69 J	10 U
Acrylonitrile	NC																			
Benzene	1	11	14	12	2	6	0.5 U	146	500 U	5,000 U	100 U	250 U	390 J	500 J	10 U	10 U	150	10 U	0.5 U	10 U
Bromodichloromethane	50	2 U	2 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	500 U	5,000 U	100 U	250 U	2,000 U	2,000 U	10 U	10 U	10 U	10 U	0.5 U	10 U
Bromoform	50	2 U	2 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	500 U	5,000 U	100 U	250 U	2,000 U	2,000 U	10 U	10 U	10 U	10 U	0.5 U	10 U
Bromomethane (Methyl Bromide)	5	5 U	5 U	2 U	1 U	1 U	1 U	1 U	500 U	5,000 U	100 U	250 U	2,000 U	2,000 U	10 U	10 U	10 U	10 U	1 U	10 U
Carbon disulfide	60	2 U	2 U	1 U	0.5 U	0.5 U	0.5 U	0.36 J	500 U	5,000 U	100 U	250 U	2,000 U	2,000 U	10 U	10 U	10 U	10 U	0.5 U	10 U
Carbon tetrachloride	5	2 U	2 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	500 U	5,000 U	100 U	250 U	2,000 U	2,000 U	10 U	10 U	10 U	10 U	0.5 U	10 U
Chlorobenzene	5	2 U	2 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	500 U	5,000 U	100 U	250 U	2,000 U	2,000 U	10 U	10 U	10 U	10 U	0.5 U	10 U
Chlorobromomethane	5																			
Chloroethane	5	5 U	5 U	2 U	1 U	1 U	1 U	1 U	500 U	5,000 U	100 U	250 U	2,000 U	2,000 U	10 U	10 U	41	10 U	1 U	10 U
Chloroform (Trichloromethane)	7	2 U	2 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	500 U	5,000 U	100 U	250 U	2,000 U	2,000 U	10 U	10 U	9 J	10 U	0.5 U	10 U
Chloromethane (Methyl Chloride)	5	5 U	5 U	2 U	1 U	1 U	1 U	1 U	500 U	5,000 U	100 U	250 U	2,000 U	2,000 U	10 U	10 U	6 J	10 U	1 U	10 U
cis-1,2-Dichloroethene	5	2 U	2 U	1 U	0.5 U	0.5 U	0.5 U	0.85											0.5 U	
cis-1,3-Dichloropropene	0.4	2 U	2 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	500 U	5,000 U	100 U	250 U	2,000 U	2,000 U	10 U	10 U	10 U	10 U	0.5 U	10 U
Dibromochloromethane	50	2 U	2 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	500 U	5,000 U	100 U	250 U	2,000 U	2,000 U	10 U	10 U	10 U	10 U	0.5 U	10 U
Dibromomethane	NC						***													
Ethane	NC																			
Ethylbenzene	5	7	9	5	1	2	0.5 U	0.5 U	500 U	5,000 U	100 U	250 U	5,000 U	2,000 U	10 U	10 U	12	10 U	0.5 U	10 U
Ethene	NC																			
Iodomethane	NC																			
Methane	NC																			
Methylene chloride	5	10 U	10 U	5 U	2 U	2 U	2 U	2 U	500 U	5,000 U	100 U	250 U	2,500 B	3,100 B	7	7 BJ	16 B	7	2 U	3 BJ
o-Xylene	NC																			
Styrene	5	2 U	2 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	500 U	5,000 U	100 U	250 U	2,000 U	2,000 U	10 U	10 U	10 U	10 U	0.5 U	10 U
Tetrachloroethene	5	0.6 J	0.7 J	1 U	0.5 U	0.1 J	0.5 U	0.5 U	500 U	5,000 U	35 J	25 J	5,000 U	2,000 U	14	16	13	3 J	0.5 U	1 J
Toluene	5	76	100	66	15	24	0.5 U	0.2 J	500 U	5,000 U	100 U	250 U	210 J	340 J	10 U	10 U	120	10 U	0.5 U	10 U
Total Btex	NC	132	179	107	26	42	1 U	0.2	500 U	5,000 U	100 U	250 U	600	840	10 U	10 U	362	10 U	1 U	10 U
trans-1,2-Dichloroethene	5	2 U	2 U	1 U	0.5 U	0.5 U	0.5 U	0.36 J											0.5 U	
trans-1,3-Dichloropropene	0.4	2 U	2 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	500 U	5,000 U	100 U	250 U	2,000 U	2,000 U	10 U	10 U	10 U	10 U	0.5 U	10 U
Trans-1,4-dichlorobutene	NC																			
Trichloroethene	5	2 U	2 U	1 U	0.5 U	0.5 U	0.5 U	0.48 J	52 J	5,000 U	12 J	250 U	680 J	430 J	13	15	340	2 J	0.5 U	10 U
Trichlorofluoromethane (CFC-11)	5																			
Vinyl Acetate	NC																			
Vinyl chloride	2	5 U	5 U	2 U	1 U	1 U	1 U	1 U	500 U	5,000 U	100 U	250 U	2,000 U	2,000 U	10 U	10 U	10 U	10 U	1 U	10 U
Xylene (m,p)	NC								500 U	5,000 U	100 U	250 U								
Xylene (total)	5	38	56	24	8	10	1 U	1 U	500 U	5,000 U	100 U	250 U	5,000 U	2,000 U	10 U	10 U	80	10 U	1 U	10 U

All units in micrograms per liter (μg/L)

¹ New York State Department of Environmental Conservation, Technical and Operational Guidance Series (1.1.1), Class GA Standards and Guidance Values, Revised June 1998. BOLD - Exceedes New York State Department of Environmental Conservation, Technical and Operational Guidance Series (1.1.1), Class GA Standards and Guidance Values.

NC - No criteria exists

U - Not Detected at the Detection Limit shown, J - Estimated value, UJ - Approximate Non-detect, B - Blank Contamination, BJ - Estimated Value Detected in Blank

--- Not Analyzed

^{* -} Elevation - ft amsl (ft bgs) [ft amsl - feet above mean sea level, ft bgs - feet below ground surface]

Passive diffusion bags deployed 12/2/2005 and retrieved on 12/22/2005.

Only wells with a discrete fracture or sampling interval have start and end depths.

Well AMSF-MW-12S was found to be obstructed prior to the April/May 2010 sampling event. The obstruction was cleared prior to the September 2010 sampling event

⁻ Well ITT-SBW-9 was inadvertently missed during the April/May 2010 Sampling Event.

- Well ITT-SBW-9 was inadvertently missed during sampling in April 2010 and consequently sampled in May 2010 when the mistake was identified.

	Location Code	AMSF-RW-3	AMSF-RW-3	AMSF-RW-3	AMSF-RW-3	AMSF-RW-4	AMSF-RW-4	AMSF-RW-4	AMSF-RW-4	AMSF-RW-5	AMSF-RW-5	AMSF-RW-5	ITT-DBW-2	ITT-DBW-2	ITT-DBW-2	ITT-DBW-2	ITT-DBW-2	ITT-DBW-2	ITT-DBW-2	ITT-DBW-5
	Sample Date	2/17/2005	2/17/2005	10/3/2005	10/3/2005	11/16/2000	2/18/2005	2/18/2005	10/4/2005	2/10/2005	2/10/2005	10/4/2005	6/30/1999	9/23/1999	11/16/2000	2/7/2005	9/28/2005	4/28/2010	9/14/2010	6/30/1999
	Start Depth (ft)	549.2 (8)*	549.2 (16)*	552.2 (13)*	549.2 (16)*	547.4 (19)*	559.4 (7)*	551.9 (14.5)*	551.9 (14.5)*	556.4 (9)*	554.4 (11)*	554.4 (11)*	2,00,200	0,20,200	,,		2,20,200	., ==, ====	0,2.,2020	2,23,200
	End Depth (ft)	549.2 (8)*	549.2 (16)*	552.2 (13)*	549.2 (16)*	547.4 (19)*	559.4 (7)*	551.9 (14.5)*	551.9 (14.5)*	556.4 (9)*	554.4 (11)*	554.4 (11)*								
Analyte	Criteria 1																			
1,1,1,2-Tetrachloroethane	NC																			
1,1,1-Trichloroethane	5	3	20	877	894	54	0.5 U	0.5 U	0.58	0.5 U	0.5 U	0.25 J	9		3 J	2 U	2.5 U	1 U	1 U	5
1,1,2,2-Tetrachloroethane	5	0.5 U	0.5 U	0.5 U	0.5 U	10 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U		10 U	2 U	2.5 U	1 U	1 U	5 U
1,1,2-Trichloroethane	1	0.5 U	0.5 U	0.35 J	0.32 J	10 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U		10 U	2 U	2.5 U	1 U	1 U	5 U
1,1-Dichloroethane	5	0.6	1	38.8	39.8	3 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	13		15	1 J	9.5	4.8	6.2	5 U
1,1-Dichloroethene	5	0.1 J	0.6	19.5	20.7	2 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U		10 U	2 U	2.5 U	1 U	1 U	5 U
1,2,3-Trichloropropane	0.04																			
1,2-Dibromo-3-chloropropane (DBCP)	0.04																	2 U	2 U	
1,2-Dibromoethane (Ethylene Dibromide)	0.0006																	1 U	1 U	
1,2-Dichloroethane	0.6	0.5 U	0.5 U	0.5 U	0.5 U	10 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U		10 U	2 U	2.5 U	1 U	1 U	5 U
1,2-Dichloroethene (total)	NC					10 U									10 U					
1,2-Dichloropropane	1	0.5 U	0.5 U	0.5 U	0.5 U	10 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U		10 U	2 U	2.5 U	1 U	1 U	5 U
2-Butanone (Methyl Ethyl Ketone)	50	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	25 U		24	50 U	48.8 J	44	82	25 U
2-Hexanone	50	5 U	5 U	5 U	5 U	10 U	5 U	5 U	5 U	5 U	5 U	5 U	10 U		10 U	25 U	25 U	1.8 J	2.8 J	10 U
4-Methyl-2-pentanone (Methyl Isobutyl Ketone)	NC	5 U	5 U	5 U	5 U	10 U	5 U	5 U	5 U	5 U	5 U	5 U			10 U	25 U	25 U	1.9 J	8.8	
Acetone	50	10 U	10 U	6.55 J	2.52 J	10 U	10 U	1 J	10 U	10 U	10 U	10 U	25 U		51	50 U	110	90 J	180 J	25 U
Acrylonitrile	NC																			
Benzene	1	0.5 U	0.5 U	0.16 J	0.5 U	10 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	51		60	150	180	170	180	20
Bromodichloromethane	50	0.5 U	0.5 U	0.5 U	0.5 U	10 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U		10 U	2 U	2.5 U	1 U	1 U	5 U
Bromoform	50	0.5 U	0.5 U	0.5 U	0.5 U	10 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U		10 U	2 U	2.5 U	1 U	1 U	5 U
Bromomethane (Methyl Bromide)	5	1 U	1 U	1 U	1 U	10 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U		10 U	5 U	5 U	1 U	1 U	5 U
Carbon disulfide	60	0.5 U	0.5 U	0.5 U	0.5 U	10 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U		10 U	2 U	2.5 U	1 U	1 U	5 U
Carbon tetrachloride	5	0.5 U	0.5 U	0.5 U	0.5 U	10 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U		10 U	2 U	2.5 U	1 U	1 U	5 U
Chlorobenzene	5	0.5 U	0.5 U	0.5 U	0.5 U	10 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U		10 U	2 U	2.5 U	1 U	1 U	5 U
Chlorobromomethane	5																			
Chloroethane	5	1 U	1 U	1 U	0.89 J	10 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U		10 U	5 U	5 U	1 U	1 U	5 U
Chloroform (Trichloromethane)	7	0.5 U	0.5 U	0.5 U	0.5 U	10 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U		10 U	2 U	2.5 U	1 U	1 U	5 U
Chloromethane (Methyl Chloride)	5	1 U	1 U	1 U	1 U	10 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U		10 U	5 U	5 U	1 U	1 U	5 U
cis-1,2-Dichloroethene	5	0.5 U	0.5 U	0.78	0.81		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U				2 U	2.5 U	1 U	1 U	5 U
cis-1,3-Dichloropropene	0.4	0.5 U	0.5 U	0.5 U	0.5 U	10 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U		10 U	2 U	2.5 U	1 U	1 U	5 U
Dibromochloromethane	50	0.5 U	0.5 U	0.5 U	0.5 U	10 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U		10 U	2 U	2.5 U	1 U	1 U	5 U
Dibromomethane	NC																			
Ethane	NC													1410						
Ethylbenzene	5	0.5 U	0.5 U	0.5 U	0.5 U	10 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U		6 J	15	15	11	11	5 U
Ethene	NC													100 U						
Iodomethane	NC																			
Methane	NC													1850						
Methylene chloride	5	2 U	2 U	2 U	2 U	4 BJ	2 U	2 U	2 U	2 U	2 U	2 U	5 U		4 BJ	10 U	10 U	1 U	1 U	5 U
o-Xylene	NC												5 U					15	20	5 U
Styrene	5	0.5 U	0.5 U	0.5 U	0.5 U	10 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U		10 U	2 U	2.5 U	1 U	1 U	5 U
Tetrachloroethene	5	0.5 U	0.4 J	11.9	13	4 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.8	5 U		10 U	2 U	2.5 U	1 U	1 U	5 U
Toluene	5	0.5 U	0.5 U	0.5 U	0.5 U	10 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	16		14	1 J	67.9	64	83	30
Total Btex	NC	0.5 U	0.5 U	0.16	1 U	10 U	0.5 U	0.1	1 U	0.5 U	0.5 U	1 U			101	188	316.1			
trans-1,2-Dichloroethene	5	0.5 U	0.5 U	0.5 U	0.5 U		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U			2 U	2.5 U	1 U	1 U	5 U
trans-1,3-Dichloropropene	0.4	0.5 U	0.5 U	0.5 U	0.5 U	10 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U		10 U	2 U	2.5 U	1 U	1 U	5 U
Trans-1,4-dichlorobutene	NC																			
Trichloroethene	5	0.5 U	0.2 J	4.17	4.44	10 U	3	3	0.5 U	0.5 U	0.5 U	0.5 U	5 U		10 U	2 U	2.5 U	1 U	1 U	5 U
Trichlorofluoromethane (CFC-11)	5																	1 U	1 U	
Vinyl Acetate	NC																			
Vinyl chloride	2	1 U	1 U	1 U	1 U	10 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U		10 U	5 U	5 U	1 U	1 U	2 U
Xylene (m,p)	NC												5 U					25	33	12
Xylene (total)	5	0.5 U	0.5 U	1 U	1 U	10 U	0.5 U	0.1 J	1 U	0.5 U	0.5 U	1 U			21	22	53.2			

All units in micrograms per liter (μg/L)

¹ New York State Department of Environmental Conservation, Technical and Operational Guidance Series (1.1.1), Class GA Standards and Guidance Values, Revised June 1998. BOLD - Exceedes New York State Department of Environmental Conservation, Technical and Operational Guidance Series (1.1.1), Class GA Standards and Guidance Values.

NC - No criteria exists

U - Not Detected at the Detection Limit shown, J - Estimated value, UJ - Approximate Non-detect, B - Blank Contamination, BJ - Estimated Value Detected in Blank

^{* -} Elevation - ft amsl (ft bgs) [ft amsl - feet above mean sea level, ft bgs - feet below ground surface]

Passive diffusion bags deployed 12/2/2005 and retrieved on 12/22/2005.

Only wells with a discrete fracture or sampling interval have start and end depths.

Well AMSF-MW-12S was found to be obstructed prior to the April/May 2010 sampling event. The obstruction was cleared prior to the September 2010 sampling event

⁻ Well ITT-SBW-9 was inadvertently missed during the April/May 2010 Sampling Event.

- Well ITT-SBW-9 was inadvertently missed during sampling in April 2010 and consequently sampled in May 2010 when the mistake was identified.

⁻⁻⁻ Not Analyzed

	Location Code	ITT-DBW-5	ITT-DBW-5	ITT-DBW-5	ITT-DBW-5	ITT-DBW-5	ITT-DBW-8	ITT-DBW-8	ITT-DBW-8	ITT-DBW-8	ITT-DBW-8	ITT-IBW-19	ITT-IBW-19	ITT-IBW-20	ITT-IBW-20	ITT-MW-1	ITT-MW-1	ITT-MW-1	ITT-MW-2	ITT-MW-2
	Sample Date	9/23/1999	11/16/2000	2/7/2005	9/28/2005	10/4/2005	6/29/1999	9/21/1999	2/9/2005	9/30/2005	9/15/2010	4/20/2010	9/14/2010	4/22/2010	9/10/2010	8/3/1998	2/8/2005	9/30/2005	5/4/1999	5/4/1999
	Start Depth (ft)																			
Auglide	End Depth (ft)											l								
Analyte	Criteria 1		ı		1							I	1	1	I	1	1	1	1	1
1,1,1,2-Tetrachloroethane	NC 5		4.1	5.11	5.11		5.11				4.11		0.67.1	700	400	40.11	0.2.1	0.441	44000	40000
1,1,1-Trichloroethane			4 J	5 U	5 U		5 U		5 U	5 U	1 U	3.2	0.67 J	700	180	10 U	0.2 J	0.14 J	14000	18000
1,1,2,2-Tetrachloroethane	5		20 U	5 U	5 U		5 U		5 U	5 U	1 U	1 U	1 U	1 U	1 U	10 U	0.5 U	0.5 U	1,300 U	500 U
1,1,2-Trichloroethane	1		20 U	5 U	5 U		5 U		5 U	5 U	1 U	1 U	1 U	1 U	1 U	10 U	0.5 U	0.5 U	1,300 U	500 U
1,1-Dichloroethane	5		20 U	5 U	5 U		8		5 U	1.6 J	54	3.1	1.6	43	17	10 U	0.5 U	0.12 J	1,300 U	84 J
1,1-Dichloroethene	5		20 U	5 U	5 U		5 U		5 U	5 U	1 U	1 U	1 U	3.7	1.5	10 U	0.5 U	0.5 U	1000	1100
1,2,3-Trichloropropane	0.04																			
1,2-Dibromo-3-chloropropane (DBCP)	0.04										2 U	2 U	2 U	2 U	2 U					
1,2-Dibromoethane (Ethylene Dibromide)	0.0006										1 U	1 U	1 U	1 U	1 U					
1,2-Dichloroethane	0.6		20 U	5 U	5 U		5 U		5 U	5 U	1 U	1 U	1 U	1 U	1 U	10 U	0.5 U	0.5 U	1,300 U	500 U
1,2-Dichloroethene (total)	NC		20 U													10 U				500 U
1,2-Dichloropropane	1		20 U	5 U	5 U		5 U		5 U	5 U	1 U	1 U	1 U	1 U	1 U	10 U	0.5 U	0.5 U	1,300 U	500 U
2-Butanone (Methyl Ethyl Ketone)	50		210	55 J	91.5 J		25 U		15 J	34.1 J	3.7 J	5 U	5 U	5 U	5 U		10 U	10 U	6,300 U	500 U
2-Hexanone	50		9 J	50 U	50 U		10 U		50 U	50 U	5 U	5 U	5 U	5 U	5 UJ	10 U	5 U	5 U	2,500 U	500 U
4-Methyl-2-pentanone (Methyl Isobutyl Ketone)	NC		11 J	50 U	50 U				50 U	50 U	0.48 J	5 U	5 U	5 U	5 U	10 U	5 U	5 U		
Acetone	50		580	280	281		25 U		100 U	366	25 J	5 U	5 UJ	5 U	5 U	10 U	10 U	10 U	6,300 U	500 U
Acrylonitrile	NC																			
Benzene	1		200	300	179		3		240	289	110	1 U	1 U	1 U	1 U	10 U	0.1 J	0.5 U	180 U	500 U
Bromodichloromethane	50		20 U	5 U	5 U		5 U		5 U	5 U	1 U	1 U	1 U	1 U	1 U	10 U	0.5 U	0.5 U	1,300 U	500 U
Bromoform	50		20 U	5 U	5 U		5 U		5 U	5 U	1 U	1 U	1 U	1 U	1 U	10 U	0.5 U	0.5 U	1,300 U	500 U
Bromomethane (Methyl Bromide)	5		20 U	10 U	10 U		5 U		10 U	10 U	1 U	1 U	1 U	1 U	1 U	10 U	1 U	1 U	1,300 U	500 U
Carbon disulfide	60		2 J	2 J	2.2 J		5 U		5 U	3.9 J	1.3	1 U	1 U	1 U	1 U	10 U	0.4 J	0.5 U	1,300 U	500 U
Carbon tetrachloride	5		20 U	5 U	5 U		5 U		5 U	5 U	1 U	1 U	1 U	1 U	1 U	10 U	0.5 U	0.5 U	1,300 U	500 U
Chlorobenzene	5		20 U	5 U	5 U		5 U		5 U	5 U	1 U	1 U	1 U	1 U	1 U	10 U	0.5 U	0.5 U	1,300 U	500 U
Chlorobromomethane	5																			
Chloroethane	5		20 U	10 U	10 U		5 U		10 U	10 U	1 U	1 U	1 U	0.56 J	1 U	10 U	1 U	1 U	1,300 U	500 U
Chloroform (Trichloromethane)	7		20 U	5 U	5 U		5 U		5 U	5 U	1 U	1 U	1 U	1 U	1 U	10 U	0.5 U	0.5 U	1,300 U	500 U
Chloromethane (Methyl Chloride)	5		20 U	10 U	10 U		5 U		10 U	10 U	1 U	1 U	1 U	1 U	1 U	10 U	1 U	1 U	1,300 U	500 U
cis-1,2-Dichloroethene	5			5 U	5 U		5 U		5 U	5 U	0.35 J	1 U	1 U	0.48 J	1 U		0.5 U	0.5 U	1,300 U	
cis-1,3-Dichloropropene	0.4		20 U	5 U	5 U		5 U		5 U	5 U	1 U	1 U	1 U	1 U	1 U	10 U	0.5 U	0.5 U	1,300 U	500 U
Dibromochloromethane	50		20 U	5 U	5 U		5 U		5 U	5 U	1 U	1 U	1 U	1 U	1 U	10 U	0.5 U	0.5 U	1,300 U	500 U
Dibromomethane	NC																			
Ethane	NC	6220						1020												
Ethylbenzene	5		7 J	9	6.1		5 U		10	13.3	0.97 J	1 U	1 U	1 U	1 U	10 U	0.5 U	0.5 U	1,300 U	500 U
Ethene	NC	100 U						100 U												
lodomethane	NC																			
Methane	NC	9210						2700												
Methylene chloride	5		19 BJ	20 U	20 U		5 U		20 U	12.7 J	1 U	1 U	1 U	1 U	1 U	10 U	2 U	2 U	1,300 U	500 U
o-Xylene	NC						5 U				0.9 J	1 U	1 U	1 U	1 U				1,300 U	
Styrene	5		20 U	5 U	5 U		5 U		5 U	5 U	1 U	1 UJ	1 U	1 U	1 U	10 U	0.5 U	0.5 U	1,300 U	500 U
Tetrachloroethene	5		20 U	5 U	5 U		5 U		5 U	5 U	1 U	1 U	1 U	1 U	1 U	10 U	0.5 U	0.5 U	1,300 U	500 U
Toluene	5		130	200	115		5 U		130	217	6.4	1 U	1 U	1 U	1 U	10 U	0.2 J	0.5 U	1,300 U	500 U
Total Btex	NC		386	568	338.4				441	601.6						10 U	0.5	1 U		500 U
trans-1,2-Dichloroethene	5			5 U	5 U		5 U		5 U	5 U	1 U	1 U	1 U	1 U	1 U		0.5 U	0.5 U	1,300 U	
trans-1,3-Dichloropropene	0.4		20 U	5 U	5 U		5 U		5 U	5 U	1 U	1 U	1 U	1 U	1 U	10 U	0.5 U	0.5 U	1,300 U	500 U
Trans-1,4-dichlorobutene	NC																			
Trichloroethene	5		20 U	5 U	5 U		5 U		5 U	5 U	0.29 J	1 U	1 U	3.2	1.8	10 U	0.5 U	0.5 U	1,300 U	500 U
Trichlorofluoromethane (CFC-11)	5										1 U	1 U	1 U	1 U	1 U					
Vinyl Acetate	NC																			
Vinyl chloride	2		20 U	10 U	10 U		2 U		10 U	10 U	1 U	1 U	1 U	1 U	1 U	10 U	1 U	1 U	500 U	500 U
Xylene (m,p)	NC						5 U				2.2	2 U	2 U	2 U	2 U				1,300 U	500 U
Xylene (total)	5		49	59	38.3				61	82.3		l	1	I		10 U	0.2 J	1 U		500 U

All units in micrograms per liter (μg/L)

¹ New York State Department of Environmental Conservation, Technical and Operational Guidance Series (1.1.1), Class GA Standards and Guidance Values, Revised June 1998. BOLD - Exceedes New York State Department of Environmental Conservation, Technical and Operational Guidance Series (1.1.1), Class GA Standards and Guidance Values.

NC - No criteria exists

U - Not Detected at the Detection Limit shown, J - Estimated value, UJ - Approximate Non-detect, B - Blank Contamination, BJ - Estimated Value Detected in Blank

--- Not Analyzed

^{* -} Elevation - ft amsl (ft bgs) [ft amsl - feet above mean sea level, ft bgs - feet below ground surface]

Passive diffusion bags deployed 12/2/2005 and retrieved on 12/22/2005.

Only wells with a discrete fracture or sampling interval have start and end depths.

Well AMSF-MW-12S was found to be obstructed prior to the April/May 2010 sampling event. The obstruction was cleared prior to the September 2010 sampling event

⁻ Well ITT-SBW-9 was inadvertently missed during the April/May 2010 Sampling Event.

- Well ITT-SBW-9 was inadvertently missed during sampling in April 2010 and consequently sampled in May 2010 when the mistake was identified.

	Location Code	ITT-MPBW-21	ITT-MPBW-22	ITT-MW-4	ITT-SBW-1A	ITT-SBW-1A	ITT-SBW-1A	ITT-SBW-1A	ITT-SBW-1A	ITT-SBW-1A	ITT-SBW-1A	ITT-SBW-1A	ITT-SBW-2	ITT-SBW-2	ITT-SBW-2	ITT-SBW-2	ITT-SBW-2	ITT-SBW-2	ITT-SBW-2	ITT-SBW-2
	Sample Date	2/20/2008	2/21/2008	2/9/2005	9/10/1998	5/3/1999	5/4/1999	6/29/1999	9/21/1999	11/16/2000	2/9/2005	9/30/2005	9/10/1998	5/4/1999	5/4/1999	6/30/1999	9/22/1999	11/16/2000	2/7/2005	8/31/2005
	Start Depth (ft)	491.6 (70.0)*	510.5 (62.5)*	2/3/2003	3/10/1336	3/3/1333	3/4/1999	0/23/1333	3/21/1333	11/10/2000	2/3/2003	3/30/2003	3/10/1336	3/4/1333	3/4/1999	0/30/1999	3/22/1333	11/10/2000	2/1/2003	6/31/2003
	End Depth (ft)	481.6 (80)*	493 (80)*																	+
Analyte	Criteria 1	` '	. , , ,				•	•		•			•		•	•	•			
1,1,1,2-Tetrachloroethane	NC																			
1,1,1-Trichloroethane	5	1 U	1 U	7	1200	1200	1300	390		89	11	430	1800	1200	1000	4400		7400	560	894
1,1,2,2-Tetrachloroethane	5	1 U	1 U	0.5 U	10 U	50 U	100 U	25 U		10 U	0.5 U	0.5 U	20 U	50 U	100 U	250 U		10 U	10 U	10 U
1,1,2-Trichloroethane	1	1 U	1 U	0.5 U	10 U	50 U	100 U	25 U		10 U	0.5 U	0.5 U	20 U	50 U	100 U	250 U		2 J	10 U	10 U
1,1-Dichloroethane	5	1 U	1 U	5	19	50 U	17 J	25 U		10	8	8.26	26	50 U	20 J	250 U		360	6 J	2.8 J
1,1-Dichloroethene	5	1 U	1 U	0.5	40	50 U	49 J	27		6 J	3	16.7	60	50 U	45 J	260		430	14	17.4
1,2,3-Trichloropropane	0.04																			
1,2-Dibromo-3-chloropropane (DBCP)	0.04	2 U	2 U																	
1,2-Dibromoethane (Ethylene Dibromide)	0.0006	1 U	1 U																	
1,2-Dichloroethane	0.6	1 U	1 U	0.5 U	10 U	50 U	100 U	25 U		10 U	0.5 U	0.14 J	20 U	50 U	100 U	250 U		12	10 U	10 U
1,2-Dichloroethene (total)	NC				10 U		100 U			10 U			20 U		100 U			10 U		
1,2-Dichloropropane	1	1 U	1 U	0.5 U	10 U	50 U	100 U	25 U		10 U	0.5 U	0.5 U	20 U	50 U	100 U	250 U		10 U	10 U	10 U
2-Butanone (Methyl Ethyl Ketone)	50	5 U	5 U	10 U	10 U	250 U	100 U	130 U		10 U	10 U	10 U	20 U	250 U	100 U	1,300 U		10 U	200 U	200 U
2-Hexanone	50	5 U	5 U	5 U	10 U	100 U	100 U	50 U		10 U	5 U	5 U	20 U	100 U	100 U	500 U		10 U	100 U	100 U
4-Methyl-2-pentanone (Methyl Isobutyl Ketone)	NC	5 U	5 U	5 U						10 U	5 U	5 U						2,000 U	100 U	100 U
Acetone	50	10 U	10 U	10 U	10 U	250 U	100 U	130 U		10 U	10 U	10 U	20 U	250 U	43 J	1,300 U		10 U	200 U	200 U
Acrylonitrile	NC																			
Benzene	1	1 U	1 U	0.5 U	10 U	7 U	100 U	4 U		10 U	0.5 U	0.5 U	20 U	7 U	100 U	35 U		2,000 U	10 U	10 U
Bromodichloromethane	50	1 U	1 U	0.5 U	10 U	50 U	100 U	25 U		10 U	0.5 U	0.5 U	20 U	50 U	100 U	250 U		10 U	10 U	10 U
Bromoform (A4 H LB H H)	50 5	1 U	1 U	0.5 U	10 U	50 U	100 U	25 U		10 U	0.5 U	0.5 U	20 U	50 U	100 U	250 U		10 U	10 U	10 U
Bromomethane (Methyl Bromide)	60	2 U 1 U	2 U 1 U	1 U	10 U	50 U	100 U 100 U	25 U		10 U	10	1 U 0.5 U	20 U	50 U	100 U	250 U		10 U 10 U	20 U 3 J	20 U
Carbon disulfide	5	1 U	1 U	0.5 U 0.5 U	10 U 10 U	50 U 50 U	100 U	25 U 25 U		10 U 10 U	0.2 J	0.5 U	20 U 20 U	50 U	100 U 100 U	250 U 250 U		10 U	10 U	10 U 10 U
Carbon tetrachloride	5	1 U									0.5 U									_
Chlorobenzene	5		1 U	0.5 U	10 U	50 U 	100 U	25 U		10 U	0.5 U	0.5 U	20 U	50 U	100 U	250 U		10 U	10 U	10 U
Chlorobromomethane Chloroethane	5	2 U	2 U	1 U	10 U	50 U	100 U	25 U		10 U	0.6 J	0.25 J	20 U	50 U	100 U	250 U		10 U	20 U	20 U
Chloroform (Trichloromethane)	7	1 U	1 U	0.5 U	10 U	50 U	100 U	25 U		10 U	0.5 U	0.5 U	20 U	50 U	100 U	250 U		10 U	10 U	10 U
Chloromethane (Methyl Chloride)	5			1 U	10 U	50 U	100 U	25 U		10 U	1 U	1 U	20 U	50 U	100 U	250 U		10 U	20 U	20 U
cis-1,2-Dichloroethene	5	1 U	1 U	0.5 U		50 U		25 U			0.5 U	0.5 U		50 U		250 U			10 U	10 U
cis-1,3-Dichloropropene	0.4	1 U	1 U	0.5 U	10 U	50 U	100 U	25 U		10 U	0.5 U	0.5 U	20 U	50 U	100 U	250 U		10 U	10 U	10 U
Dibromochloromethane	50	1 U	1 U	0.5 U	10 U	50 U	100 U	25 U		10 U	0.5 U	0.5 U	20 U	50 U	100 U	250 U		10 U	10 U	10 U
Dibromomethane	NC.																			
Ethane	NC								100 U								100 U			
Ethylbenzene	5	1 U	1 U	0.5 U	10 U	50 U	100 U	25 U		10 U	0.5 U	0.5 U	20 U	50 U	100 U	250 U		2.000 U	10 U	10 U
Ethene	NC								100 U								100 U			
Iodomethane	NC																			
Methane	NC								60 U								82.6			
Methylene chloride	5	1 U	1 U	2 U	10 U	50 U	100 U	25 U		13 B	2 U	2 U	20 U	50 U	100 U	250 U		14 B	40 U	6.8 J
o-Xylene	NC	1 U	1 U			50 U		25 U						50 U		250 U				
Styrene	5	1 U	1 U	0.5 U	10 U	50 U	100 U	25 U		10 U	0.5 U	0.5 U	20 U	50 U	100 U	250 U		10 U	10 U	10 U
Tetrachloroethene	5	1 U	1 U	0.3 J	11	50 U	100 U	25 U		10 U	0.3 J	1.61	12 J	50 U	100 U	250 U		2,000 U	10 U	10 U
Toluene	5	1 U	1 U	0.1 J	10 U	50 U	100 U	25 U		10 U	0.2 J	0.5 U	20 U	50 U	100 U	250 U		2,000 U	10 U	10 U
Total Btex	NC			0.1	10 U		100 U			10 U	0.4	1 U	20 U		100 U			2,000 U	10 U	20 U
trans-1,2-Dichloroethene	5	1 U	1 U	0.5 U		50 U		25 U			0.5 U	0.5 U		50 U		250 U			10 U	10 U
trans-1,3-Dichloropropene	0.4	1 U	1 U	0.5 U	10 U	50 U	100 U	25 U		10 U	0.5 U	0.5 U	20 U	50 U	100 U	250 U		10 U	10 U	10 U
Trans-1,4-dichlorobutene	NC																			
Trichloroethene	5	1 U	1 U	0.3 J	9 J	50 U	100 U	25 U		10 U	0.3 J	2.69	13 J	50 U	100 U	250 U		5 J	10 U	10 U
Trichlorofluoromethane (CFC-11)	5	1 U	1 U																	
Vinyl Acetate	NC																			
Vinyl chloride	2	1 U	1 U	1 U	10 U	20 U	100 U	10 U		10 U	1 U	1 U	20 U	20 U	100 U	100 U		10 U	20 U	20 U
Xylene (m,p)	NC	1 U	1 U			50 U	100 U	25 U						50 U	100 U	250 U				
Xylene (total)	5			0.5 U	10 U		100 U			10 U	0.2 J	1 U	20 U		100 U			2,000 U	10 U	20 U

All units in micrograms per liter (μg/L)

¹ New York State Department of Environmental Conservation, Technical and Operational Guidance Series (1.1.1), Class GA Standards and Guidance Values, Revised June 1998. BOLD - Exceedes New York State Department of Environmental Conservation, Technical and Operational Guidance Series (1.1.1), Class GA Standards and Guidance Values.

NC - No criteria exists

U - Not Detected at the Detection Limit shown, J - Estimated value, UJ - Approximate Non-detect, B - Blank Contamination, BJ - Estimated Value Detected in Blank

^{* -} Elevation - ft amsl (ft bgs) [ft amsl - feet above mean sea level, ft bgs - feet below ground surface]

Passive diffusion bags deployed 12/2/2005 and retrieved on 12/22/2005.

Only wells with a discrete fracture or sampling interval have start and end depths.

Well AMSF-MW-12S was found to be obstructed prior to the April/May 2010 sampling event. The obstruction was cleared prior to the September 2010 sampling event

⁻ Well ITT-SBW-9 was inadvertently missed during the April/May 2010 Sampling Event.

- Well ITT-SBW-9 was inadvertently missed during sampling in April 2010 and consequently sampled in May 2010 when the mistake was identified.

⁻⁻⁻ Not Analyzed

	Location Code	ITT-SBW-2	ITT-SBW-2	ITT-SBW-2	ITT-SBW-2	ITT-SBW-2	ITT-SBW-2	ITT-SBW-2	ITT-SBW-3	ITT-SBW-3	ITT-SBW-3	ITT-SBW-3	ITT-SBW-3	ITT-SBW-3	ITT-SBW-4	ITT-SBW-4	ITT-SBW-4	ITT-SBW-4	ITT-SBW-4	ITT-SBW-4
	Sample Date	9/30/2005	9/30/2005	12/22/2005	12/22/2005	12/22/2005	4/22/2010	9/10/2010	9/10/1998	9/10/1998	5/3/1999	5/4/1999	6/30/1999	9/23/1999	5/3/1999	6/29/1999	9/20/1999	11/16/2000	2/8/2005	9/30/2005
	Start Depth (ft)	3/30/2003	3/30/2003	551 (14.3)*	546 (19.3)*	542 (23.3)*	4/22/2010	3/10/2010	3/10/1338	3/10/1338	3/3/1333	3/4/1333	0/30/1333	3/23/1333	3/3/1333	0/23/1333	3/20/1333	11/10/2000	2/6/2003	3/30/2003
	End Depth (ft)			549 (16.3)*	544 (21.3)*	540 (25.3)*														
Analyte	Criteria 1			. , ,	,	, ,			•		•		•	•				•		•
1,1,1,2-Tetrachloroethane	NC	15 U																		
1,1,1-Trichloroethane	5	240	218	2070	0.37 J	0.5 U	0.88 J	1.3	1600	1500	210	1800	4700		5 U	5 U		10 U	2	0.12 J
1,1,2,2-Tetrachloroethane	5	15 U	5 U	50 U	0.5 U	0.5 U	1 U	1 U	50 U	20 U	130 U	100 U	250 U		5 U	5 U		10 U	0.5 U	0.5 U
1,1,2-Trichloroethane	1	15 U	5 U	50 U	0.5 U	0.5 U	1 U	1 U	50 U	20 U	130 U	100 U	250 U		5 U	5 U		10 U	0.5 U	0.5 U
1,1-Dichloroethane	5	15 U	5.1	144	5.22	4.36	5.7	2.9	24 J	22	350	330	250 U		5 U	5 U		10 U	0.2 J	0.11 J
1,1-Dichloroethene	5	15 U	11.2	109	1.56	1.38	1 U	0.68 J	50 J	44	130 U	76 J	250 U		5 U	5 U		10 U	0.1 J	0.5 U
1,2,3-Trichloropropane	0.04	15 U																		
1,2-Dibromo-3-chloropropane (DBCP)	0.04	50 U					2 U	2 U												
1,2-Dibromoethane (Ethylene Dibromide)	0.0006	15 U					1 U	1 U												
1,2-Dichloroethane	0.6	15 U	5 U	50 U	0.5 U	0.5 U	1 U	1 U	50 U	20 U	130 U	100 U	250 U		5 U	5 U		10 U	0.5 U	0.5 U
1,2-Dichloroethene (total)	NC								50 U	20 U		100 U						10 U		
1,2-Dichloropropane	1	15 U	5 U	50 U	0.5 U	0.5 U	1 U	1 U	50 U	20 U	130 U	100 U	250 U		5 U	5 U		10 U	0.5 U	0.5 U
2-Butanone (Methyl Ethyl Ketone)	50	50 U	100 U	1,000 U	10 U	10 U	5 U	5 U	50 U	20 U	630 U	100 U	1,300 U		25 U	25 U		10 U	10 U	10 U
2-Hexanone	50	50 U	50 U	500 U	5 U	5 U	5 U	5 UJ	50 U	20 U	250 U	100 U	500 U		10 U	10 U		10 U	5 U	5 U
4-Methyl-2-pentanone (Methyl Isobutyl Ketone)	NC	50 U	50 U	500 U	5 U	5 U	5 U	5 U		20 U								10 U	5 U	5 U
Acetone	50	50 U	100 U	1,000 U	10 U	1.1 J	5 U	5 U	50 U	20 U	630 U	49 J	1,300 U		25 U	25 U		10 U	10 U	10 U
Acrylonitrile	NC	250 U																		
Benzene	1		5 U	50 U	0.5 U	0.5 U	1 U	1 U	50 U	20 U	18 U	100 U	35 U		0.7 U	0.7 U		10 U	0.5 U	0.5 U
Bromodichloromethane	50	15 U	5 U	50 U	0.5 U	0.5 U	1 U	1 U	50 U	20 U	130 U	100 U	250 U		5 U	5 U		10 U	0.5 U	0.5 U
Bromoform	50	15 U	5 U	50 U	0.5 U	0.5 U	1 U	1 U	50 U	20 U	130 U	100 U	250 U		5 U	5 U		10 U	0.5 U	0.5 U
Bromomethane (Methyl Bromide)	5	15 U	10 U	100 U	1 U	1 U	1 U	1 U	50 U	20 U	130 U	100 U	250 U		5 U	5 U		10 U	1 U	1 U
Carbon disulfide	60	15 U	5 U	50 U	0.5 U	0.5 U	1 U	1 U	50 U	20 U	130 U	100 U	250 U		5 U	5 U		10 U	0.5 U	0.2 J
Carbon tetrachloride	5	15 U	5 U	50 U	0.5 U	0.5 U	1 U	1 U	50 U	20 U	130 U	100 U	250 U		5 U	5 U		10 U	0.5 U	0.5 U
Chlorobenzene	5	15 U	5 U	50 U	0.5 U	0.5 U	1 U	1 U	50 U	20 U	130 U	100 U	250 U		5 U	5 U		10 U	0.5 U	0.5 U
Chlorobromomethane	5	15 U																		
Chloroethane	5	15 U	10 U	100 U	0.7 J	0.83 J	0.96 J	1 U	50 U	20 U	130 U	100 U	250 U		5 U	5 U		10 U	1 U	1 U
Chloroform (Trichloromethane)	7	15 U	5 U	50 U	0.5 U	0.5 U	1 U	1 U	50 U	20 U	130 U	100 U	250 U		5 U	5 U		10 U	0.5 U	0.5 U
Chloromethane (Methyl Chloride)	5	15 U	10 U	100 U	1 U	1 U	1 U	1 U	50 U	20 U	130 U	100 U	250 U		5 U	5 U		10 U	1 U	1 U
cis-1,2-Dichloroethene	5	15 U	5 U	50 U	0.5 U	0.5 U	0.53 J	0.42 J			130 U		250 U		5 U	5 U			0.5 U	0.5 U
cis-1,3-Dichloropropene	0.4	15 U	5 U	50 U	0.5 U	0.5 U	1 U	1 U	50 U	20 U	130 U	100 U	250 U		5 U	5 U		10 U	0.5 U	0.5 U
Dibromochloromethane	50	15 U	5 U	50 U	0.5 U	0.5 U	1 U	1 U	50 U	20 U	130 U	100 U	250 U		5 U	5 U		10 U	0.5 U	0.5 U
Dibromomethane	NC	15 U																		
Ethane	NC													100 U			100 U			
Ethylbenzene	5	15 U	5 U	50 U	0.5 U	0.5 U	1 U	1 U	50 U	20 U	130 U	100 U	250 U		5 U	5 U		10 U	0.5 U	0.5 U
Ethene	NC													100 U			100 U			
Iodomethane	NC	15 U																		
Methane	NC													70 U			219			
Methylene chloride	5	15 U	20 U	200 U	2 U	2 U	1 U	1 U	50 U	20 U	130 U	100 U	250 U		5 U	5 U		4	2 U	2 U
o-Xylene	NC	15 U					1 U	1 U			130 U		250 U		5 U	5 U				
Styrene	5	15 U	5 U	50 U	0.5 U	0.5 U	1 U	1 U	50 U	20 U	130 U	100 U	250 U		5 U	5 U		10 U	0.5 U	0.5 U
Tetrachloroethene	5	15 U	5 U	50 UJ	0.5 UJ	0.5 UJ	1 U	1 U	13 J	12 J	130 U	100 U	250 U		5 U	5 U		10 U	0.5 U	0.5 U
Toluene	5	15 U	5 U	50 U	0.5 U	0.5 U	1 U	1 U	50 U	20 U	130 U	100 U	250 U		5 U	5 U		10 U	0.5 U	0.5 U
Total Btex	NC		5 U						50 U	20 U		100 U						10 U	0.5 U	1 U
trans-1,2-Dichloroethene	5	15 U	5 U	50 UJ	0.5 UJ	0.5 UJ	1 U	1 U			130 U		250 U		5 U	5 U			0.5 U	0.5 U
trans-1,3-Dichloropropene	0.4	15 U	5 U	50 U	0.5 U	0.5 U	1 U	1 U	50 U	20 U	130 U	100 U	250 U		5 U	5 U		10 U	0.5 U	0.5 U
Trans-1,4-dichlorobutene	NC	50 U																		
Trichloroethene	5	15 U	1.1 J	50 U	0.29 J	0.26 J	1 U	1 U	12 J	10 J	130 U	27 J	250 U		5 U	5 U		10 U	0.1 J	0.5 U
Trichlorofluoromethane (CFC-11)	5	15 U					1 U	1 U												
Vinyl Acetate	NC	250 U																		
Vinyl chloride	2	10 U	10 U	100 U	1 U	0.14 J	2.3	0.94 J	50 U	20 U	50 U	100 U	100 U		5 U	2 U		10 U	1 U	1 U
Xylene (m,p)	NC	15 U					2 U	2 U			130 U	100 U	250 U		5 U	5 U				
Xylene (total)	5		10 U	100 U	1 U	1 U			50 U	20 U		100 U						10 U	0.5 U	1 U

All units in micrograms per liter (μg/L)

¹ New York State Department of Environmental Conservation, Technical and Operational Guidance Series (1.1.1), Class GA Standards and Guidance Values, Revised June 1998. BOLD - Exceedes New York State Department of Environmental Conservation, Technical and Operational Guidance Series (1.1.1), Class GA Standards and Guidance Values.

NC - No criteria exists

U - Not Detected at the Detection Limit shown, J - Estimated value, UJ - Approximate Non-detect, B - Blank Contamination, BJ - Estimated Value Detected in Blank

^{* -} Elevation - ft amsl (ft bgs) [ft amsl - feet above mean sea level, ft bgs - feet below ground surface]

Passive diffusion bags deployed 12/2/2005 and retrieved on 12/22/2005.

Only wells with a discrete fracture or sampling interval have start and end depths.

Well AMSF-MW-12S was found to be obstructed prior to the April/May 2010 sampling event. The obstruction was cleared prior to the September 2010 sampling event

⁻ Well ITT-SBW-9 was inadvertently missed during the April/May 2010 Sampling Event.

- Well ITT-SBW-9 was inadvertently missed during sampling in April 2010 and consequently sampled in May 2010 when the mistake was identified.

⁻⁻⁻ Not Analyzed

	1																			
1	Location Code	ITT-SBW-4	ITT-SBW-4	ITT-SBW-5A	ITT-SBW-6	ITT-SBW-6	ITT-SBW-6	ITT-SBW-6	ITT-SBW-6	ITT-SBW-6	ITT-SBW-6	ITT-SBW-7	ITT-SBW-7							
	Sample Date	4/21/2010	9/10/2010	5/3/1999	6/29/1999	9/20/1999	11/16/2000	2/7/2005	9/27/2005	4/22/2010	9/15/2010	5/3/1999	5/4/1999	6/30/1999	9/22/1999	11/16/2000	2/9/2005	9/30/2005	5/3/1999	5/4/1999
1	Start Depth (ft)																			
	End Depth (ft)																			
Analyte	Criteria 1																			
1,1,1,2-Tetrachloroethane	NC																			
1,1,1-Trichloroethane	5	1 U	1 U	170	16		19	6	4.72	16	34	850	760	200		180	22 J	19	37000	28000
1,1,2,2-Tetrachloroethane	5	1 U	1 U	5 U	5 U		10 U	0.5 U	0.5 U	1 U	1 U	25 U	50 U	5 U		10 U	1 U	0.5 U	2,500 U	2,500 U
1,1,2-Trichloroethane	1	1 U	1 U	5 U	5 U		10 U	0.5 U	0.5 U	1 U	1 U	25 U	50 U	5 U		10 U	1 U	0.5 U	2,500 U	2,500 U
1,1-Dichloroethane	5	1 U	1 U	5 U	5U		2 J	2	1.49	1	2.3	140	110	23		12	9	5.53	3100	2600
1,1-Dichloroethene	5	1 U	1 U	17	5U		2 J	2	1.24	1.6	2.2	50	48 J	92		54	5	7.43	2,500 U	260 J
1,2,3-Trichloropropane	0.04																			
1,2-Dibromo-3-chloropropane (DBCP)	0.04	2 U	2 U							2 U	2 U									
1,2-Dibromoethane (Ethylene Dibromide)	0.0006	1 U	1 U							1 U	1 U									
1.2-Dichloroethane	0.6	1 U	1 U	5 U	5 U		10 U	0.5 U	0.5 U	1 U	1 U	25 U	50 U	5 U		10 U	1 U	0.5 U	2.500 U	2,500 U
1,2-Dichloroethene (total)	NC						10 U						50 U			10 U				2,500 U
1.2-Dichloropropane	1	1 U	1 U	5 U	5 U		10 U	0.5 U	0.5 U	1 U	1 U	25 U	50 U	5 U		10 U	1 U	0.5 U	2.500 U	2,500 U
2-Butanone (Methyl Ethyl Ketone)	50	5 U	5 U	25 U	25 U		10 U	10 U	10 U	5 U	5 U	130 U	50 U	25 U		10 U	20 U	10 U	13.000 U	2,500 U
2-Hexanone	50	5 U	5 U	10 U	10 U		10 U	5 U	5 U	5 U	5 U	10 U	50 U	10 U		10 U	10 U	5 U	5.000 U	2,500 U
4-Methyl-2-pentanone (Methyl Isobutyl Ketone)	NC NC	5 U	5 U				10 U	5 U	5 U	5 U	5 U					10 U	10 U	5 U		
Acetone	50	5 U	5 U	25 U	25 U		10 U	10 U	1.21 J	5 U	5 UJ	130 U	50 U	25 U		10 U	20 U	10 U	13,000 U	2,500 U
Acrylonitrile	NC																			
Benzene	1	1 U	1 U	0.7 U	0.7 U		10 U	0.1 J	0.5 U	1 U	1 U	4 U	50 U	0.7 U		10 U	13	0.5 U	350 U	2,500 U
Bromodichloromethane	50	1 U	1 U	5 U	5 U		10 U	0.5 U	0.5 U	1 U	1 U	25 U	50 U	5.7 G		10 U	1 U	0.5 U	2,500 U	2,500 U
Bromoform	50	1 U	1 U	5 U	5 U		10 U	0.5 U	0.5 U	1 U	1 U	25 U	50 U	5 U		10 U	1 U	0.5 U	2,500 U	2,500 U
Bromomethane (Methyl Bromide)	5	1 U	1 U	5 U	5 U		10 U	1 UJ	1 U	1 U	1 U	25 U	50 U	5 U		10 U	2 U	1 U	2,500 U	2,500 U
Carbon disulfide	60	1 U	1 U	5 U	5 U		10 U	0.6	0.5 U	1 U	1 U	25 U	50 U	5 U		10 U	0.5 J	0.5 U	2,500 U	2,500 U
Carbon tetrachloride	5	1 U	1 U	5 U	5 U		10 U	0.5 U	0.5 U	1 U	1 U	25 U	50 U	5 U		10 U	1 U	0.5 U	2,500 U	2,500 U
Chlorobenzene	5	1 U	1 U	5 U	5 U		10 U	0.5 U	0.5 U	1 U	1 U	25 U	50 U	5 U		10 U	1 U	0.5 U	2,500 U	2,500 U
Chlorobromomethane	5							0.5 0											2,300 0	2,300 0
Chloroethane	5	1 U	1 U	5 U	5 U		10 U	1 U	1 U	1 U	1 U	25 U	50 U	5 U		10 U	2 U	1 U	2,500 U	2,500 U
Chloroform (Trichloromethane)	7	1 U	1 U	5 U	5 U		10 U	0.5 U	0.5 U	1 U	1 U	25 U	50 U	5 U		10 U	1 U	0.5 U	2,500 U	2,500 U
Chloromethane (Methyl Chloride)	5	1 U	1 U	5 U	5 U		10 U	1 U	1 U	1 U	1 U	25 U	50 U	5 U		10 U	2 U	1 U	2,500 U	2,500 U
cis-1,2-Dichloroethene	5	1 U	1 U	5 U	5 U			0.5 U	0.5 U	1 U	1 U	25 U		5 U			0.3 J	0.36 J	2,500 U	
cis-1,3-Dichloropropene	0.4	1 U	1 U	5 U	5 U		10 U	0.5 U	0.5 U	1 U	1 U	25 U	50 U	5 U		10 U	1 U	0.5 U	2,500 U	2,500 U
Dibromochloromethane	50	1 U	1 U	5 U	5 U		10 U	0.5 U	0.5 U	1 U	1 U	50 U	50 U	5 U		10 U	1 U	0.5 U	2,500 U	2,500 U
Dibromomethane	NC NC							0.5 0											2,300 0	2,300 0
Ethane	NC NC					100 U									100 U					
Ethylbenzene	5	1 U	1 U	5 U	5 U		10 U	0.5 U	0.5 U	1 U	1 U	25 U	50 U	5 U		10 U	5	0.5 U	2,500 U	2,500 U
Ethene	NC NC					100 U									100 U				2,300 0	2,300 0
Iodomethane	NC NC					100 0									100 0					
Methane	NC NC					60 U									60 U					
Methylene chloride	5	1 U	1 U	5 U	5 U		5	2 U	2 U	1 U	1 U	25 U	50 U	5 U		12 B	4 U	2 U	2,500 U	2,500 U
o-Xylene	NC	1 U	1 U	5 U	5 U					1 U	1 U	25 U		5 U					2,500 U	
Styrene	5	1 U	1 U	5 U	5 U		10 U	0.5 U	0.5 U	1 U	10	25 U	50 U	5 U		10 U	1 U	0.5 U	2,500 U	2,500 U
Tetrachloroethene	5	1 U	1 U	5 U	5 U		10 U	0.4 J	0.35 J	0.91 J	1.1	U	7 J	6		3 J	5	2.54	2,500 U	2,500 U
Toluene	5	1 U	1 U	5 U	5 U		10 U	0.5 J	0.5 U	1 U	1 U	25 U	50 U	5 U		10 U	78	0.5 U	2,500 U	2,500 U
Total Btex	NC						10 U	1	1 U				50 U			10 U	128	1 U		2,500 U
trans-1,2-Dichloroethene	5	1 U	1 U	5 U	5 U			0.5 U	0.5 U	1 U	1 U	25 U		5 U			1 U	0.5 U	2,500 U	
trans-1,3-Dichloropropene	0.4	1 U	1 U	5 U	5 U		10 U	0.5 U	0.5 U	1 U	1 U	25 U	50 U	5 U		10 U	1 U	0.5 U	2,500 U	2,500 U
Trans-1,4-dichlorobutene	NC																			
Trichloroethene	5	1 U	1 U	5 U	5 U		10 U	0.1 J	0.19 J	1 U	0.33 J	U	81	6		5 J	1	1.26	2,500 U	2,500 U
Trichlorofluoromethane (CFC-11)	5	1 U	1 U							1 U	1 U									
Vinyl Acetate	NC																			
Vinyl chloride	2	1 U	1 U	2 U	2 U		10 U	1 U	1 U	1 U	1 U	10 U	50 U	2 U		10 U	2 U	1 U	1,000 U	2,500 U
Xylene (m,p)	NC	2 U	2 U	5 U	5 U					2 U	2 U	25 U	50 U	5 U					2,500 U	2,500 U
Xylene (total)	5						10 U	0.4 J	1 U				50 U			10 U	32	1 U		2.500 U

All units in micrograms per liter (μg/L)

¹ New York State Department of Environmental Conservation, Technical and Operational Guidance Series (1.1.1), Class GA Standards and Guidance Values, Revised June 1998. BOLD - Exceedes New York State Department of Environmental Conservation, Technical and Operational Guidance Series (1.1.1), Class GA Standards and Guidance Values.

NC - No criteria exists

U - Not Detected at the Detection Limit shown, J - Estimated value, UJ - Approximate Non-detect, B - Blank Contamination, BJ - Estimated Value Detected in Blank

--- Not Analyzed

^{* -} Elevation - ft amsl (ft bgs) [ft amsl - feet above mean sea level, ft bgs - feet below ground surface]

Passive diffusion bags deployed 12/2/2005 and retrieved on 12/22/2005.

Only wells with a discrete fracture or sampling interval have start and end depths.

Well AMSF-MW-12S was found to be obstructed prior to the April/May 2010 sampling event. The obstruction was cleared prior to the September 2010 sampling event

⁻ Well ITT-SBW-9 was inadvertently missed during the April/May 2010 Sampling Event.

- Well ITT-SBW-9 was inadvertently missed during sampling in April 2010 and consequently sampled in May 2010 when the mistake was identified.

	Location Code	ITT-SBW-7	ITT-SBW-7	ITT-SBW-7	ITT-SBW-7	ITT-SBW-7	ITT-SBW-7	ITT-SBW-7	ITT-SBW-7	ITT-SBW-8	ITT-SBW-8	ITT-SBW-8	ITT-SBW-8	ITT-SBW-8	ITT-SBW-8	ITT-SBW-8	ITT-SBW-8	ITT-SBW-9	ITT-SBW-9	ITT-SBW-9
	Sample Date	6/30/1999	9/22/1999	11/16/2000	2/9/2005	8/31/2005	9/30/2005	4/22/2010	9/16/2010	5/3/1999	6/29/1999	9/21/1999	11/16/2000	2/8/2005	9/30/2005	4/21/2010	9/15/2010	2/7/2005	8/31/2005	9/30/2005
	Start Depth (ft)	0/30/1333	3/22/1333	11/10/2000	2/3/2003	8/31/2003	3/30/2003	4/22/2010	3/10/2010	3/3/1333	0/23/1333	3/21/1333	11/10/2000	2/6/2003	3/30/2003	4/21/2010	3/13/2010	2/1/2003	6/31/2003	3/30/2003
	End Depth (ft)																		 	1
Analyte	Criteria 1			•	•								•		•			•		
1,1,1,2-Tetrachloroethane	NC																			
1,1,1-Trichloroethane	5	3100		340	3500	406	2960	2000	5.1	11	5 U		4 J	0.7 J	0.17 J	1 U	1 U	460	687	1750
1,1,2,2-Tetrachloroethane	5	250 U		10 U	50 U	10 U	10 U	1 U	1 U	5 U	5 U		10 U	2 U	0.5 U	1 U	1 U	10 U	10 U	10 U
1,1,2-Trichloroethane	1	250 U		10 U	50 U	10 U	10 U	1 U	1 U	5 U	5 U		10 U	2 U	0.5 U	1 U	1 U	10 U	10 U	10 U
1,1-Dichloroethane	5	250 U		340	58	11.2	69.4	130	7.2	5 U	5 U		4 J	2 U	0.39 J	1 U	0.29 J	13	7.2 J	16.6
1,1-Dichloroethene	5	250 U		83	50 U	4.2 J	6.6 J	8.7	2.3	6	5 U		3 J	2 U	0.5 U	1 U	1 U	8 J	13	89.4
1,2,3-Trichloropropane	0.04																			
1,2-Dibromo-3-chloropropane (DBCP)	0.04							2 U	2 U							2 U	2 U			
1,2-Dibromoethane (Ethylene Dibromide)	0.0006							1 U	1 U							1 U	1 U			
1,2-Dichloroethane	0.6	250 U		10 U	50 U	10 U	10 U	1 U	1 U	5 U	5 U		10 U	2 U	0.5 U	1 U	1 U	10 U	10 U	10 U
1,2-Dichloroethene (total)	NC			2 J									10 U							
1,2-Dichloropropane	1	250 U		10 U	50 U	10 U	10 U	1 U	1 U	5 U	5 U		10 U	2 U	0.5 U	1 U	1 U	10 U	10 U	10 U
2-Butanone (Methyl Ethyl Ketone)	50	1300 U		10 U	1,000 U	200 UJ	200 U	1.6 J	5 U	25 U	25 U		10 U	40 U	10 U	5 U	5 U	200 U	200 U	200 U
2-Hexanone	50	500 U		10 U	500 U	100 U	100 U	5 U	5 U	10 U	10 U		10 U	20 U	5 U	5 U	5 U	100 U	100 U	100 U
4-Methyl-2-pentanone (Methyl Isobutyl Ketone)	NC			10 U	500 U	100 U	100 U	5 U	5 U				10 U	20 U	5 U	5 U	5 U	100 U	100 UJ	100 U
Acetone	50	1300 U		10 U	1,000 U	200 UJ	200 U	5 U	5 UJ	25 U	25 U		10 U	40 U	10 U	5 U	3 J	200 U	200 UJ	200 U
Acrylonitrile	NC																			
Benzene	1	35 U		10 U	14 J	10 U	10 U	1 U	1 U	0.7 U	0.7 U		10 U	10	0.5 U	1 U	1 U	10 U	10 U	10 U
Bromodichloromethane	50	250 U		10 U	50 U	10 U	10 U	1 U	1 U	5 U	5 U		10 U	2 U	0.5 U	1 U	1 U	10 U	10 U	10 U
Bromoform	50	250 U		10 U	50 U	10 U	10 U	1 U	1 U	5 U	5 U		10 U	2 U	0.5 U	1 U	1 U	10 U	10 U	10 U
Bromomethane (Methyl Bromide)	5	250 U		10 U	100 U	20 U	20 U	1 U	1 U	5 U	5 U		10 U	4 UJ	1 U	1 U	1 U	20 UJ	20 U	20 U
Carbon disulfide	60	250 U		10 U	14 J	10 U	10 U	1 U	1 U	5 U	5 U		10 U	0.5 J	0.5 U	1 U	1 U	10 U	10 U	10 U
Carbon tetrachloride	5	250 U		10 U	50 U	10 U	10 U	1 U	1 U	5 U	5 U		10 U	2 U	0.5 U	1 U	1 U	10 U	10 U	10 U
Chlorobenzene	5	250 U		10 U	50 U	10 U	10 U	1 U	1 U	5 U	5 U		10 U	2 U	0.5 U	1 U	1 U	10 U	10 U	10 U
Chlorobromomethane	5																			
Chloroethane	5	250 U		28	100 U	20 U	20 U	8.7	1 U	5 U	5 U		10 U	4 U	1 U	1 U	1 U	20 U	20 U	20 U
Chloroform (Trichloromethane)	7	250 U		10 U	50 U	10 U	10 U	1 U	1 U	5 U	5 U		10 U	2 U	0.5 U	1 U	1 U	10 U	10 U	10 U
Chloromethane (Methyl Chloride)	5	250 U		10 U	100 U	20 U	20 U	1 U	1 U	5 U	5 U		10 U	4 U	1 U	1 U	1 U	20 U	20 U	20 U
cis-1,2-Dichloroethene	5	250 U			50 U	10 U	10 U	1.4	0.22 J	5 U	5 U			2 U	0.5 U	1 U	1 U	10 U	10 U	10 U
cis-1,3-Dichloropropene	0.4	250 U		10 U	50 U	10 U	10 U	1 U	1 U	5 U	5 U		10 U	2 U	0.5 U	1 U	1 U	10 U	10 U	10 U
<u>Dibromochloromethane</u>	50 NC	250 U		10 U	50 U	10 U	10 U	1 U	1 U	5 U	5 U		10 U	2 U	0.5 U	1 U	1 U	10 U	10 U	10 U
Dibromomethane			400.11									400.11								
Ethane	NC 5	250 U	100 U	10 U	 50 U	10 U	10 U	4.11	4.11	 5 U		100 U	10 U		0.5 U	1 U	4.11	10 U	10 U	10 U
Ethylbenzene Ethene	NC		100 U					1 U 	1 U	5 0	5 U	100 U		11	0.5 0	_	1 U			
lodomethane	NC NC		100 0											ł					1	
			70.11									147								
Methane	NC	25011	70 U		200.11							147								
Methylene chloride	5	250 U		12 B	200 U	5 J	40 U	1 U	1 U	5 U	5 U		4	8 U	2 U	1 U	10	40 U	7 J	40 U
o-Xylene	NC F	250 U		10.11		10.11	1011	1 U	1 U	5 U	5 U		10.11	2.11	0.5.11	1 U	10	10.11	10.11	10.11
Styrene	5	250 U		10 U	50 U	10 U	10 U	1 U	1 U	5 U	5 U		10 U	2 U	0.5 U	1 U	10	10 U	10 U	10 U
Tetrachloroethene	5	250 U 250 U		10 U	50 U 88	10 U 10 U	10 U 10 U	1 U	1 U 1 U	5 U	5 U 5 U		10 U	2 U	0.5 U 0.5 U	1 U 1 U	10	10 U	10 U 10 U	4.6 J
Toluene Total Phay	NC	250 U		10 U 10 U	88 154	10 U 20 U	10 U 20 U	1 U	1 0	5 0	5 0		10 U	100 186	0.5 U	10	1 U		10 U 20 U	10 U 20 U
Total Btex trans-1,2-Dichloroethene	NC 5	250 U		10 0	154 50 U	20 U	20 U	1 U	1 U	5 U	5 U		10 0	186 2 U	0.5 U	1 U	1 U	10 U	20 U	20 U
trans-1,2-Dichloroethene trans-1,3-Dichloropropene	0.4	250 U		10 U	50 U	10 U	10 U	1 U	1 U	5 U	5 U		10 U	2 U	0.5 U	1 U	1 U	10 U	10 U	10 U
	NC	250 0		10 0	50 0	10 0	10 0	10	10	5 0	5 0		10 0	20	0.5 0		10	10 0	10 0	10 0
Trans-1,4-dichlorobutene Trichloroethene	NC 5	250 U	1	3 J	23 J	2.8 J		22	0.54 J	5 U	 5 U		10 U	2 U	0.12 J	1 U			5.2 J	5.4 J
Trichlorofluoromethane (CFC-11)	5	250 0		3 J	23 J	2.8 J	16.6	1 U	0.54 J 1 U	5 0	5 0		10 0		0.12 J	1 U	1 U 1 U	10 U	5.2 J	5.4 J
	NC		1					10	10			1						1		
Vinyl chlorida	NC 2	100 U		10 U	100 U	20 U	20 U	2.1	1 U	2 U	2 U		10 U	4 U	1 U	1 U	1 U	20 U	20 U	20 U
Vinyl chloride	NC	250 U		10 0	100 0	20 0	20 0	2.1 2 U	2 U	5 U	5 U		10 0	4 0		2 U	_	20 0	20 0	20 0
Xylene (m,p)	NC 5	23U U						2 0	∠ U	3 U	3 U					20	2 U			1
Xylene (total)	5	Notes:		10 U	52	20 U	20 U						10 U	65	1 U			10 U	20 U	20 U

All units in micrograms per liter (μg/L)

¹ New York State Department of Environmental Conservation, Technical and Operational Guidance Series (1.1.1), Class GA Standards and Guidance Values, Revised June 1998. BOLD - Exceedes New York State Department of Environmental Conservation, Technical and Operational Guidance Series (1.1.1), Class GA Standards and Guidance Values.

* - Elevation - ft amsl (ft bgs) [ft amsl - feet above mean sea level, ft bgs - feet below ground surface]

NC - No criteria exists

U - Not Detected at the Detection Limit shown, J - Estimated value, UJ - Approximate Non-detect, B - Blank Contamination, BJ - Estimated Value Detected in Blank

--- Not Analyzed

Passive diffusion bags deployed 12/2/2005 and retrieved on 12/22/2005.

Only wells with a discrete fracture or sampling interval have start and end depths.

Well AMSF-MW-12S was found to be obstructed prior to the April/May 2010 sampling event. The obstruction was cleared prior to the September 2010 sampling event

⁻ Well ITT-SBW-9 was inadvertently missed during the April/May 2010 Sampling Event.

- Well ITT-SBW-9 was inadvertently missed during sampling in April 2010 and consequently sampled in May 2010 when the mistake was identified.

		T										T		T						T
	Location Code	ITT-SBW-9	ITT-SBW-9	ITT-SBW-10	ITT-SBW-10	ITT-SBW-10	ITT-SBW-10	ITT-SBW-11	ITT-SBW-11	ITT-SBW-12	ITT-SBW-12	ITT-SBW-13	ITT-SBW-13	ITT-SBW-13	ITT-SBW-13	ITT-SBW-13	ITT-SBW-14	ITT-SBW-14	ITT-SBW-14	ITT-SBW-14
	Sample Date	5/12/2010	9/15/2010	2/7/2005	9/27/2005	4/21/2010	9/14/2010	2/9/2005	10/4/2005	2/9/2005	10/4/2005	2/11/2005	8/31/2005	9/28/2005	4/20/2010	9/14/2010	2/11/2005	9/28/2005	4/20/2010	9/14/2010
	Start Depth (ft) End Depth (ft)																			
Analyte	Criteria 1		l .			l l		L			l .	J.	L.	J.	l .	L	1	L		
1,1,1,2-Tetrachloroethane	NC																			
1,1,1-Trichloroethane	5	11	0.9 J	32	161	110	260	7	13.2	13	17.8	12	296	321	2	1.1	7	21.1	1.2	0.47 J
1,1,2,2-Tetrachloroethane	5	1 U	1 U	0.5 U	0.5 U	1 U	2 U	2 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U	1 U	1.1 1 U	0.5 U	0.5 U	1 U	1 U
1.1.2-Trichloroethane	1	1 U	1 U	0.5 U	0.5 U	1 U	2 U	2 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U	1 U	1 U	0.5 U	0.5 U	1 U	1 U
1.1-Dichloroethane	5	2.8	2.9	2	4.55	6.4	6.3	0.8 J	1.07	2	1.95	9	4.06	7.6 J	3.6	3.9	5	6.66	4.8	3.5
1.1-Dichloroethene	5	1.1	0.71 J	2	6.27	3.3	3.3	3	15.8	1	5.66	2	8.93	13.6	1 U	0.62 J	0.6	1.77	1 U	1 U
1,2,3-Trichloropropane	0.04																			
1.2-Dibromo-3-chloropropane (DBCP)	0.04	2 U	2 U			2 U	4 U								2 U	2 U			2 U	2 U
1.2-Dibromoethane (Ethylene Dibromide)	0.0006	1 U	1 U			1 U	2 U								1 U	1 U			1 U	1 U
1.2-Dichloroethane	0.6	1 U	1 U	0.5 U	0.5 U	1 U	2 U	2 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U	1 U	1 U	0.5 U	0.5 U	1 U	1 U
1,2-Dichloroethene (total)	NC																			
1,2-Dichloropropane	1	1 U	1 U	0.5 U	0.5 U	1 U	2 U	2 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U	1 U	1 U	0.5 U	0.5 U	1 U	1 U
2-Butanone (Methyl Ethyl Ketone)	50	5 UJ	5 U	10 U	10 U	5 U	10 U	50 U	10 U	200 U	5 U	5 U	10 U	10 U	5 U	5 U				
2-Hexanone	50	5 U	5 U	5 U	5 U	5 U	10 U	25 U	5 U	5 U	5 U	5 U	5 U	100 U	5 U	5 U	5 U	5 U	5 U	5 U
4-Methyl-2-pentanone (Methyl Isobutyl Ketone)	NC	5 U	5 U	5 U	5 U	5 U	10 U	25 U	5 U	5 U	5 U	5 U	5 UJ	100 U	5 U	5 U	5 U	5 U	5 U	5 U
Acetone	50	5 U	5 UJ	10 U	1.08 J	5 U	10 UJ	50 U	10 UJ	200 U	5 U	5 U	1 J	10 U	5 U	5 UJ				
Acrylonitrile	NC																			
Benzene	1	1 U	1 U	0.5 U	0.5 U	1 U	2 U	12	0.5 U	10 U	1 U	1 U	0.5 U	0.5 U	1 U	1 U				
Bromodichloromethane	50	1 U	1 U	0.5 U	0.5 U	1 U	2 U	2 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U	1 U	1 U	0.5 U	0.5 U	1 U	1 U
Bromoform	50	1 U	1 U	0.5 U	0.5 U	1 U	2 U	2 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U	1 U	1 U	0.5 U	0.5 U	1 U	1 U
Bromomethane (Methyl Bromide)	5	1 U	1 U	1 U	1 U	1 U	2 U	5 U	1 U	1 U	1 U	1 U	1 U	20 U	1 U	1 U	1 U	1 U	1 U	1 U
Carbon disulfide	60	5 U	1 U	0.5 U	0.5 U	1 U	2 U	2 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U	1 U	1 U	0.1 J	0.5 U	1 U	1 U
Carbon tetrachloride	5	1 U	1 U	0.5 U	0.5 U	1 U	2 U	2 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U	1 U	1 U	0.5 U	0.5 U	1 U	1 U
Chlorobenzene	5	1 U	1 U	0.5 U	0.5 U	1 U	2 U	2 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U	1 U	1 U	0.5 U	0.5 U	1 U	1 U
Chlorobromomethane	5																			
Chloroethane	5	1 U	1 U	1 U	1 U	1 U	2 U	5 U	1 U	1 U	1 U	1 U	1 U	20 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloroform (Trichloromethane)	7	1 U	1 U	0.5 U	0.5 U	1 U	2 U	2 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U	1 U	1 U	0.5 U	0.5 U	1 U	1 U
Chloromethane (Methyl Chloride)	5	1 U	1 U	1 U	1 U	1 U	2 U	5 U	1 U	1 U	1 U	1 U	1 U	20 U	1 U	1 U	1 U	1 U	1 U	1 U
cis-1,2-Dichloroethene	5	1 U	0.45 J	0.5 U	0.5 U	0.51 J	2 U	2 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U	1 U	0.34 J	0.5 U	0.5 U	0.55 J	0.28 J
cis-1,3-Dichloropropene	0.4	1 U	1 U	0.5 U	0.5 U	1 U	2 U	2 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U	1 U	1 U	0.5 U	0.5 U	1 U	1 U
Dibromochloromethane	50	1 U	1 U	0.5 U	0.5 U	1 U	2 U	2 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U	1 U	1 U	0.5 U	0.5 U	1 U	1 U
Dibromomethane	NC																			
Ethane	NC																			
Ethylbenzene	5	1 U	1 U	0.5 U	0.5 U	1 U	2 U	9	0.5 U	10 U	1 U	1 U	0.5 U	0.5 U	1 U	1 U				
Ethene	NC NC																			
lodomethane	NC NC																			
Methane	NC																			
Methylene chloride	5	1 U	1 U	2 U	2 U	1 U	2 U	10 U	2 U	2 U	2 U	2 U	2 U	40 U	1 U	1 U	2 U	2 U	1 U	1 U
o-Xylene -	NC	1 U	1 U			1 U	2 U								1 U	1 U			1 U	1 U
Styrene	5	1 U	1 U	0.5 U	0.5 U	1 U	2 U	2 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U	1 U	1 U	0.5 U	0.5 U	1 U	1 U
<u>Tetrachloroethene</u>	5	1 U	1 U	0.9	1.56	6.4	4.1	0.6 J	0.26 J	0.6	0.63	0.3 J	1.07	10 U	1 U	10	0.5 U	0.31 J	1 U	1 U
Toluene	5	1 U	1 U	0.5 U	0.5 U	1 U	2 U	78	0.5 U	10 U	1 U	1 U	0.1 J	0.12 J	1 U	1 U				
Total Btex	NC .	1.11	4.11	0.5 U	1 U	4.11	2.11	157	1 U	0.5 U	1 U	0.5 U	1 U	20 U	4.11	4.11	0.1	0.12	4 ***	4.11
trans-1,2-Dichloroethene	5	1 U	1 U	0.5 U	0.5 U	1 U	2 U	2 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U	1 U	1 U	0.5 U	0.5 U	1 U	1 U
trans-1,3-Dichloropropene	0.4	1 U	1 U	0.5 U	0.5 U	1 U	2 U	2 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U	1 U	1 U	0.5 U	0.5 U	1 U	1 U
Trans-1,4-dichlorobutene	NC 5	1.11	4.11	0.41	1.10		2.4	2.11	0.00	0.2.1	0.26.1	0.7	1.02	10.11	4.11	4.11		0.57	4.11	4.11
Trichloroethene	5	1 U	1 U	0.4 J	1.19	2.3	2.4	2 U	0.66	0.3 J	0.36 J	0.7	1.03	10 U	1 U	10	0.4 J	0.57	1 U	1 U
Trichlorofluoromethane (CFC-11)		1 U	1 U			1 U	2 U								1 U	1 U			1 U	1 U
Vinyl Acetate	NC 2	1.11	0.041	4.11	4.11	4.11	2.11		1.11	4.11	1.11	4.11	4.11	20.11	4.5	1.2	1.11	1.11	1.5	0.07.1
Vinyl chloride	2	1 U	0.84 J	1 U	1 U	1 U	2 U	5 U	1 U	1 U	1 U	1 U	1 U	20 U	1.5	1.3	1 U	1 U	1.5	0.97 J
Xylene (m,p)	NC	2 U	2 U	0.5.11	4.11	2 U	4 U		4.11	0.511	4.11	0.5.11	4.11	20.11	2 U	2 U		4.11	2 U	2 U
Xylene (total)	5	Notes:		0.5 U	1 U			58	1 U	0.5 U	1 U	0.5 U	1 U	20 U			0.5 U	1 U		

All units in micrograms per liter (μg/L)

¹ New York State Department of Environmental Conservation, Technical and Operational Guidance Series (1.1.1), Class GA Standards and Guidance Values, Revised June 1998. BOLD - Exceedes New York State Department of Environmental Conservation, Technical and Operational Guidance Series (1.1.1), Class GA Standards and Guidance Values.

NC - No criteria exists

U - Not Detected at the Detection Limit shown, J - Estimated value, UJ - Approximate Non-detect, B - Blank Contamination, BJ - Estimated Value Detected in Blank

^{* -} Elevation - ft amsl (ft bgs) [ft amsl - feet above mean sea level, ft bgs - feet below ground surface]

Passive diffusion bags deployed 12/2/2005 and retrieved on 12/22/2005.

Only wells with a discrete fracture or sampling interval have start and end depths.

Well AMSF-MW-12S was found to be obstructed prior to the April/May 2010 sampling event. The obstruction was cleared prior to the September 2010 sampling event

⁻ Well ITT-SBW-9 was inadvertently missed during the April/May 2010 Sampling Event.

- Well ITT-SBW-9 was inadvertently missed during sampling in April 2010 and consequently sampled in May 2010 when the mistake was identified.

⁻⁻⁻ Not Analyzed

Sample Date 2/11/2005 9/Start Depth (ft) End Depth (ft)	9/28/2005 4/2 32.1 0.5 U 0.5 U 1.28 1.12 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 5 U 5 U 5 U	3.6 1U 1U 1	9/8/2010 2/ 24 1 U 1 U 0.78 J 1 2 UJ 1 U	0.2 J 0.5 U	1.74 0.5 U 0.65 0.28 J	 1 U 1 U 1 U 1 U 1 U	 1 U 1 U 0.59 J	1TT-SBW-17 4/19/2010 1 U 1 U 1 U	9/8/2010 9/8/2010 1 U 1 U	 1 U 1 U	9/8/2010 1 U 1 U	ITT-SBW-23 4/21/2010 1 U	9/14/2010 1 U	ITT-W-1 11/13/1991 6	9/10/1998 536.3 (25)* 536.3 (25)*	1TT-W-1 5/3/1999 536.3 (25)* 536.3 (25)* 77	ITT-W-1 6/29/1999 536.3 (25)* 536.3 (25)*	9/20/1999 568.3 (18)* 568.3 (18)*
Start Depth (ft) End Depth (ft) End Depth (ft) Criteria	32.1 0.5 U 0.5 U 1.28 1.12 1.12 1.13 1.14 1.15	3.6 1 U 1 U 1 U 1 U 2 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 5 U 5 U 5 U	24 1 U 1 U 0.78 J 1 I 2 U 1 U 1 U	0.2 J 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U	1.74 0.5 U 0.5 U 0.65 0.28 J	1 U 1 U 1 U 1 U	1 U 1 U 1 U	 1 U 1 U	 1 U 1 U	 1 U	 1 U	 1 U	 1 U	6	536.3 (25)* 536.3 (25)* 31	536.3 (25)* 536.3 (25)*	536.3 (25)* 536.3 (25)*	568.3 (18)*
Analyte	0.5 U 0.5 U 1.28 1.12 0.5 U 0.5 U 10 U 5 U 5 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 0.78 J 1 2 UJ 1 U	0.5 U 0.5 U 0.5 U 0.5 U	0.5 U 0.5 U 0.65 0.28 J	1 U 1 U 1 U	1 U 1 U	1 U	1 U						536.3 (25)* 31	536.3 (25)* 77	536.3 (25)*	
Analyte	0.5 U 0.5 U 1.28 1.12 0.5 U 0.5 U 10 U 5 U 5 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 0.78 J 1 2 UJ 1 U	0.5 U 0.5 U 0.5 U 0.5 U	0.5 U 0.5 U 0.65 0.28 J	1 U 1 U 1 U	1 U 1 U	1 U	1 U						 31	 77		568.3 (18)*
1,1,1,2-Tetrachloroethane	0.5 U 0.5 U 1.28 1.12 0.5 U 0.5 U 10 U 5 U 5 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 0.78 J 1 2 UJ 1 U	0.5 U 0.5 U 0.5 U 0.5 U	0.5 U 0.5 U 0.65 0.28 J	1 U 1 U 1 U	1 U 1 U	1 U	1 U								 81	
1,1,1-Trichloroethane 5 4 1,1,2-Trichloroethane 5 0.5 U 1,1,2-Trichloroethane 1 0.5 U 1,1-Dichloroethane 5 0.2 J 1,1-Dichloroethene 5 0.1 J 1,2-Jichloropropane 0.04 1,2-Dibromoethane (Ethylene Dibromide) 0.0006 1,2-Dichloroethane (Ethylene Dibromide) 0.6 0.5 U 1,2-Dichloroethane (total) NC 1,2-Dichloropropane 1 0.5 U 2-Butanone (Methyl Ethyl Ketone) 50 10 U 2-Hexanone 50 10 U 2-Hexanone (Methyl Isobutyl Ketone) NC 5 U Acetone 50 1 J Acrylonitrile NC Benzene 1 0.5 U Bromodichloromethane 50 0.5 U Bromodichloromethane 50 0.5 U Bromodichloromethane (Methyl Bromide) 5 1 U Carbon disulfide 60 0.5 U Chlo	0.5 U 0.5 U 1.28 1.12 0.5 U 0.5 U 10 U 5 U 5 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 0.78 J 1 2 UJ 1 U	0.5 U 0.5 U 0.5 U 0.5 U	0.5 U 0.5 U 0.65 0.28 J	1 U 1 U 1 U	1 U 1 U	1 U	1 U								81	
1,1,2,2-Tetrachloroethane	0.5 U 0.5 U 1.28 1.12 0.5 U 0.5 U 10 U 5 U 5 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 0.78 J 1 2 UJ 1 U	0.5 U 0.5 U 0.5 U 0.5 U	0.5 U 0.5 U 0.65 0.28 J	1 U 1 U 1 U	1 U 1 U	1 U	1 U								81	
1,1,2-Trichloroethane	0.5 U 1.28 1.12 0.5 U 0.5 U 0.5 U 5 U 5 U 5 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 0.78 J 1 2 UJ 1 U 1 U	0.5 U 0.5 U 0.5 U 	0.5 U 0.65 0.28 J	1 U 1 U	1 U			1 U I								
1,1-Dichloroethane	1.28 1.12 0.5 U 0.5 U 0.5 U 10 U 5 U	1 U 1 U 2 U 1 U 1 U 1 U 1 U 1 U 5 U 5 U	0.78 J 1 2 UJ 1 U 1 U	0.5 U 0.5 U 	0.65 0.28 J	1 U		1 U I				1 U	1 U	5 U	10 U	5 U	5 U	
1,1-Dichloroethene	1.12	1 U 2 U 1 U 1 U 1 U 5 U 5 U	1 2 UJ 1 U 1 U	0.5 U	0.28 J 		0.59 J		1 U	1 U	1 U	1 U	1 U	5 U	10 U	5 U	5 U	
1,2,3-Trichloropropane 0.04 1,2-Dibromo-3-chloropropane (DBCP) 0.04 1,2-Dibromoethane (Ethylene Dibromide) 0.006 1,2-Dichloroethane 0.6 0.5 U 1,2-Dichloropropane 1 0.5 U 1,2-Butanone (Methyl Ethyl Ketone) 50 10 U 2-Hexanone 50 5 U 4-Methyl-2-pentanone (Methyl Isobutyl Ketone) NC 5 U Acetone 50 1 J Acrylonitrile NC Benzene 1 0.5 U Bromodichloromethane 50 0.5 U Bromomform 50 0.5 U Bromomethane (Methyl Bromide) 5 1 U Carbon disulfide 60 0.5 U Carbon disulfide 60 0.5 U Carbon disulfide 5 1 U Carbon tetrachloride 5 0.5 U Carbon disulfide 60 0.5 U Chlorobenzene 5 0.5 U Chlorobromomethane 5	 0.5 U 0.5 U 10 U 5 U 5 U	2 U 1 U 1 U 5 U 5 U 5 U	2 UJ 1 U 1 U			1 U		1 U	0.29 J	1 U	1 U	4.2	3.3	5 U	2 J	5 U	5 U	
1,2-Dibromo-3-chloropropane (DBCP) 0.04 1,2-Dibromoethane (Ethylene Dibromide) 0.0006 1,2-Dichloroethane 0.6 0.5 U 1,2-Dichloropropane 1 0.5 U 2-Butanone (Methyl Ethyl Ketone) 50 10 U 2-Hexanone 50 5 U 4-Methyl-2-pentanone (Methyl Isobutyl Ketone) NC 5 U Acetone 50 1 J Acrylonitrile NC Benzene 1 0.5 U Bromodichloromethane 50 0.5 U Bromoform 50 0.5 U Bromomethane (Methyl Bromide) 5 1 U Carbon tetrachloride 5 0.5 U Carbon tetrachloride 5 0.5 U Chlorobenzene 5 0.5 U Chlorobromomethane 5 Chloroform (Trichloromethane) 7 0.5 U Chloroform (Trichloromethane) 7 0.5 U Chloromethane 5 0.5 U Chloromethane	0.5 U	2 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	2 UJ 1 U 1 U				1 U	1 U	1 U	1 U	1 U	1 U	0.56 J	5 U	10 U	5 U	5 U	
1,2-Dibromoethane (Ethylene Dibromide) 0.0006 1,2-Dichloroethane 0.6 0.5 U 1,2-Dichloroethene (total) NC 1,2-Dichloropropane 1 0.5 U 2-Butanone (Methyl Ethyl Ketone) 50 10 U 2-Hexanone 50 5 U 4-Methyl-2-pentanone (Methyl Isobutyl Ketone) NC 5 U Acetone 50 1 J Acrylonitrile NC Benzene 1 0.5 U Bromodichloromethane 50 0.5 U Bromodichloromethane 50 0.5 U Bromomethane (Methyl Bromide) 5 1 U Carbon disulfide 60 0.5 U Carbon tetrachloride 5 0.5 U Chlorobromethane 5 0.5 U Chlorobromethane 5 0.5 U Chlorobromethane 5 1 U Chloroform (Trichloromethane) 7 0.5 U Chloromethane (Methyl Chloride) 5 1 U Cis-1,2-Dichloropr	0.5 U 0.5 U 0.5 U 5 U	1 U 1 U 1 U 1 U 5 U 5 U	1 U 1 U															
1,2-Dichloroethane 0.6 0.5 U 1,2-Dichloroethene (total) NC 1,2-Dichloropropane 1 0.5 U 2-Butanone (Methyl Ethyl Ketone) 50 10 U 2-Hexanone 50 5 U 4-Methyl-2-pentanone (Methyl Isobutyl Ketone) NC 5 U Acetone 50 1 J Acrylonitrile NC Benzene 1 0.5 U Bromodichloromethane 50 0.5 U Bromoform 50 0.5 U Bromomethane (Methyl Bromide) 5 1 U Carbon disulfide 60 0.5 U Carbon tetrachloride 5 0.5 U Carbon tetrachloride 5 0.5 U Chlorobenzene 5 0.5 U Chlorobromomethane 5 Chlorobromomethane 5 Chloroform (Trichloromethane) 7 0.5 U Chloroform (Trichloromethane) 7 0.5 U Chloromethane 5 0	0.5 U 0.5 U 10 U 5 U 5 U	1 U 1 U 5 U 5 U	1 U			2 U	2 U	2 U	2 UJ	2 U	2 UJ	2 U	2 U					
1,2-Dichloroethene (total)	0.5 U 10 U 5 U 5 U	1 U 5 U 5 U				1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U					
1,2-Dichloropropane 1	0.5 U 10 U 5 U 5 U	1 U 5 U 5 U		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	10 U	5 U	5 U	
2-Butanone (Methyl Ethyl Ketone) 50 10 U 2-Hexanone 50 5 U 4-Methyl-2-pentanone (Methyl Isobutyl Ketone) NC 5 U Acetone 50 1 J Acetone 50 1 J Acrylonitrile NC Benzene 1 0.5 U Bromodichloromethane 50 0.5 U Bromoform 50 0.5 U Bromomethane (Methyl Bromide) 5 1 U Carbon disulfide 60 0.5 U Carbon tetrachloride 5 0.5 U Chlorobromomethane 5 0.5 U Chlorobromomethane 5 0.5 U Chloroform (Trichloromethane) 7 0.5 U Chloroformethane (Methyl Chloride) 5 1 U cis-1,2-Dichloroethene 5 0.5 U cis-1,2-Dichloroethene 5 0.5 U cis-1,3-Dichloropropene 0.4 0.5 U Dibromomethane NC Ethane NC <td>10 U 5 U 5 U</td> <td>5 U 5 U</td> <td></td> <td>5 U</td> <td>10 U</td> <td></td> <td></td> <td></td>	10 U 5 U 5 U	5 U 5 U												5 U	10 U			
2-Hexanone 50 5 U 4-Methyl-2-pentanone (Methyl Isobutyl Ketone) NC 5 U Acetone 50 1 J Acrylonitrile NC Benzene 1 0.5 U Bromodichloromethane 50 0.5 U Bromoform 50 0.5 U Bromomethane (Methyl Bromide) 5 1 U Carbon disulfide 60 0.5 U Carbon disulfide 60 0.5 U Carbon tetrachloride 5 0.5 U Chlorobenzene 5 0.5 U Chlorobromomethane 5 Chlorobromomethane 5 Chloroform (Trichloromethane) 7 0.5 U Chloromethane (Methyl Chloride) 5 1 U cis-1,2-Dichloroethene 5 0.5 U cis-1,3-Dichloropropene 0.4 0.5 U Dibromomethane 50 0.5 U Dibromomethane NC Ethane NC	5 U 5 U	5 U		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	10 U	5 U	5 U	
A-Methyl-2-pentanone (Methyl Isobutyl Ketone) NC 5 U Acetone 50	5 U			10 U	10 U	5 U	5 U	5 U	5 UJ	5 U	5 UJ	5 U	5 U	15	10 U	25 U	25 U	
Acetone			* **	5 U	5 U	5 U	5 U	5 U	5 UJ	5 U	5 UJ	5 U	5 U	10 U	10 U	10 U	10 U	
Acrylonitrile	10 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	10 U				
Benzene 1 0.5 U Bromodichloromethane 50 0.5 U Bromoform 50 0.5 U Bromomethane (Methyl Bromide) 5 1 U Carbon disulfide 60 0.5 U Carbon tetrachloride 5 0.5 U Chlorobenzene 5 0.5 U Chlorobromomethane 5 Chlorobromomethane 5 1 U Chloroform (Trichloromethane) 7 0.5 U Chloromethane (Methyl Chloride) 5 1 U cis-1,2-Dichloroethene 5 0.5 U cis-1,2-Dichloropropene 0.4 0.5 U Dibromochloromethane 50 0.5 U Dibromomethane NC Ethane NC Ethylbenzene 5 0.5 U Ethene NC Iodomethane NC Methane NC Methylene chloride 5 2 U		5 U		10 U	10 U	5 U	5 UJ	5 U	5 U	5 U	5 U	5 U	5 UJ	14	9 J		25 U	
Bromodichloromethane 50 0.5 U Bromoform 50 0.5 U Bromomethane (Methyl Bromide) 5 1 U Carbon disulfide 60 0.5 U Carbon tetrachloride 5 0.5 U Chlorobenzene 5 0.5 U Chlorobromomethane 5 Chlorobromomethane 5 1 U Chloroform (Trichloromethane) 7 0.5 U Chloromethane (Methyl Chloride) 5 1 U Cis-1,2-Dichloroethene 5 0.5 U cis-1,2-Dichloropropene 0.4 0.5 U Dibromochloromethane 50 0.5 U Dibromomethane NC Ethane NC Ethylbenzene 5 0.5 U Ethene NC Iodomethane NC Methylene chloride 5 2 U																		
Bromoform 50 0.5 U Bromomethane (Methyl Bromide) 5 1 U Carbon disulfide 60 0.5 U Carbon tetrachloride 5 0.5 U Chlorobenzene 5 0.5 U Chlorobromomethane 5 Chloroform (Trichloromethane) 7 0.5 U Chloroform (Trichloromethane) 5 1 U Chloromethane (Methyl Chloride) 5 1 U cis-1,2-Dichloroethene 5 0.5 U cis-1,3-Dichloropropene 0.4 0.5 U Dibromochloromethane 50 0.5 U Dibromomethane NC Ethane NC Ethylbenzene 5 0.5 U Ethene NC Iodomethane NC Methane NC Methylene chloride 5 2 U		1 U		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	10 U	0.7 U	0.7 U	
Bromomethane (Methyl Bromide) 5 1 U Carbon disulfide 60 0.5 U Carbon tetrachloride 5 0.5 U Chlorobenzene 5 0.5 U Chlorobromomethane 5 Chloroform (Trichloromethane) 7 0.5 U Chloromethane (Methyl Chloride) 5 1 U cis-1,2-Dichloroethene 5 0.5 U cis-1,2-Dichloropropene 0.4 0.5 U Dibromochloromethane 50 0.5 U Dibromomethane NC Ethane NC Ethylbenzene 5 0.5 U Ethene NC Iodomethane NC Methane NC Methylene chloride 5 2 U		1 U		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	10 U	5 U	5 U	
Carbon disulfide 60 0.5 U Carbon tetrachloride 5 0.5 U Chlorobenzene 5 0.5 U Chlorobromomethane 5 Chloroform (Trichloromethane) 7 0.5 U Chloroform (Trichloromethane) 7 0.5 U Chloromethane (Methyl Chloride) 5 1 U cis-1,2-Dichloropropene 0.4 0.5 U Dibromochloromethane 50 0.5 U Dibromomethane NC Ethane NC Ethylbenzene 5 0.5 U Ethene NC Iodomethane NC Methane NC Methylene chloride 5 2 U		1 U		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	10 U	5 U	5 U	
Carbon tetrachloride 5 0.5 U Chlorobenzene 5 0.5 U Chlorobromomethane 5 Chlorobromomethane 5 1 U Chloroform (Trichloromethane) 7 0.5 U Chloromethane (Methyl Chloride) 5 1 U cis-1,2-Dichloroethene 5 0.5 U cis-1,2-Dichloropropene 0.4 0.5 U Dibromochloromethane 50 0.5 U Dibromomethane NC Ethane NC Ethylbenzene 5 0.5 U Ethene NC Iodomethane NC Methane NC Methylene chloride 5 2 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	10 U	10 U	5 U	5 U	
Chlorobenzene 5 0.5 U Chlorobromomethane 5 Chloroethane 5 1 U Chloroform (Trichloromethane) 7 0.5 U Chloromethane (Methyl Chloride) 5 1 U cis-1,2-Dichloroethene 5 0.5 U cis-1,3-Dichloropropene 0.4 0.5 U Dibromochloromethane 50 0.5 U Dibromomethane NC Ethane NC Ethylbenzene 5 0.5 U Ethene NC Iodomethane NC Methane NC Methylene chloride 5 2 U		1 U		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	10 U	5 U	5 U	
Chlorobrimomethane		1 U		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	10 U	5 U	5 U	
Chlorosthane	0.5 U	1 U	1 U	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	10 U	5 U	5 U	
Chloroform (Trichloromethane) 7 0.5 U																		
Chloromethane (Methyl Chloride) S		1 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.1	1 U	10 U	10 U	5 U	5 U	
cis-1,2-Dichloroethene 5 0.5 U cis-1,3-Dichloropropene 0.4 0.5 U Dibromochloromethane 50 0.5 U Dibromomethane NC Ethane NC Ethylbenzene 5 0.5 U Ethene NC Iodomethane NC Methane NC Methylene chloride 5 2 U		1 U		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	10 U	5 U	5 U	
cis-1,3-Dichloropropene 0.4 0.5 U Dibromochloromethane 50 0.5 U Dibromomethane NC Ethane NC Ethylbenzene 5 0.5 U Ethene NC Iodomethane NC Methane NC Methylene chloride 5 2 U		1 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	10 U	10 U	5 U	5 U	
Dibromochloromethane 50 0.5 U Dibromomethane NC Ethane NC Ethylbenzene 5 0.5 U Ethene NC lodomethane NC Methane NC Methylene chloride 5 2 U		1 U		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.28 J			5 U	5 U	
Dibromomethane NC Ethane NC Ethylbenzene 5 0.5 U Ethene NC lodomethane NC Methane NC Methylene chloride 5 2 U		1 U		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	10 U	5 U	5 U	
Ethane NC Ethylbenzene 5 0.5 U Ethene NC lodomethane NC Methane NC Methylene chloride 5 2 U		1 U		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	10 U	5 U	5 U	
Ethylbenzene 5 0.5 U Ethene NC lodomethane NC Methane NC Methylene chloride 5 2 U																		
Ethene NC lodomethane NC Methane NC Methylene chloride 5 2 U																		100 U
Iodomethane NC Methane NC Methylene chloride 5 2 U		1 U		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	10 U	5 U	5 U	
Methane NC Methylene chloride 5 2 U																		100 U
Methylene chloride 5 2 U																		
																		231
o-Yylene NC	2 U	1 U	1 U	2 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	10 U	5 U	5 U	
		1 U	1 U			1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U			5 U	5 U	
		1 U		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	10 U	5 U	5 U	
		1 U		0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	10 U	5 U	5 U	
		1 U		0.5 U	0.19 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	10 U	5 U	5 U	
Total Btex NC 0.5 U				0.5 U	0.19									5 U	10 U			
	0.5 U 1 U	1 U	1 U	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U			5 U	5 U	
trans-1,3-Dichloropropene 0.4 0.5 U	1 U	1 U	1 U	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	10 U	5 U	5 U	
Trans-1,4-dichlorobutene NC	1 U 0.5 U																	
Trichloroethene 5 0.5 U	1 U 0.5 U	1 U	1 U	0.5 U	0.5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	10 U	5 U	5 U	
Trichlorofluoromethane (CFC-11) 5	1 U 0.5 U 0.5 U	1 U	1 U			1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U					
Vinyl Acetate NC	1 U 0.5 U 0.5 U 0.28 J													10 U				
Vinyl chloride 2 1 U	1 U 0.5 U 0.5 U 0.28 J		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2.1	0.89 J	10 U	10 U	5 U	2 U	
Xylene (m,p) NC	1 U 0.5 U 0.5 U 0.28 J	1 U	2 U			2 U	2 U			2 U	2 U	2 U	2 U			5 U	5 U	
Xylene (total) 5 0.5 U	1 U 0.5 U 0.5 U 0.28 J	1 U 2 U			1 U	1		i		i				5 U	10 U			

All units in micrograms per liter (μg/L)

¹ New York State Department of Environmental Conservation, Technical and Operational Guidance Series (1.1.1), Class GA Standards and Guidance Values, Revised June 1998. BOLD - Exceedes New York State Department of Environmental Conservation, Technical and Operational Guidance Series (1.1.1), Class GA Standards and Guidance Values.

NC - No criteria exists

U - Not Detected at the Detection Limit shown, J - Estimated value, UJ - Approximate Non-detect, B - Blank Contamination, BJ - Estimated Value Detected in Blank

^{* -} Elevation - ft amsl (ft bgs) [ft amsl - feet above mean sea level, ft bgs - feet below ground surface]

Passive diffusion bags deployed 12/2/2005 and retrieved on 12/22/2005.

Only wells with a discrete fracture or sampling interval have start and end depths.

Well AMSF-MW-12S was found to be obstructed prior to the April/May 2010 sampling event. The obstruction was cleared prior to the September 2010 sampling event

⁻ Well ITT-SBW-9 was inadvertently missed during the April/May 2010 Sampling Event.

- Well ITT-SBW-9 was inadvertently missed during sampling in April 2010 and consequently sampled in May 2010 when the mistake was identified.

⁻⁻⁻ Not Analyzed

								1					
	Location Code	ITT-W-1	ITT-W-1	ITT-W-1	ITT-W-1	ITT-W-1	ITT-W-1	ITT-W-1	ITT-W-1	ITT-W-1	ITT-W-1	ITT-W-1	ITT-W-1
	Sample Date	9/20/1999	11/16/2000	11/16/2000	11/16/2000	11/16/2000	2/10/2005	2/10/2005	2/17/2005	2/17/2005	2/17/2005	10/3/2005	10/3/2005
	Start Depth (ft)	476.3 (110)*	525.3 (36)*	496.3 (65)*	466.3 (95)*	446.3 (140)*	540.3 (21)*	523.3 (38)*	466.3 (95)*	443.3 (118)*	428.8 (132.5)*	546.3 (15)*	428.8(132.5)*
	End Depth (ft)	476.3 (110)*	525.3 (36)*	496.3 (65)*	466.3 (95)*	446.3 (140)*	540.3 (21)*	523.3 (38)*	466.3 (95)*	443.3 (118)*	428.8 (132.5)*	546.3 (15)*	428.8 (132.5)*
Analyte	Criteria 1			ı	1				ı		1		T
1,1,1,2-Tetrachloroethane	NC												
1,1,1-Trichloroethane	5		10 U	10 U	1 J	510	0.5 U	0.5 U	0.5 U	22	810	0.5 U	685
1,1,2,2-Tetrachloroethane	5		10 U	10 U	10 U	100 U	0.5 U	0.5 U	0.5 U	2 U	50 U	0.5 U	0.5 U
1,1,2-Trichloroethane	1		10 U	10 U	10 U	100 U	0.5 U	0.5 U	0.5 U	2 U	50 U	0.5 U	0.5 U
1,1-Dichloroethane	5		10 U	10 U	10 U	1400	0.5 U	0.5 U	2	78	1300	0.5 U	1240
1,1-Dichloroethene	5 0.04		10 U	10 U	10 U	29 J	0.5 U	0.5 U	0.5 U	3	28 J	0.5 U	21.1
1,2,3-Trichloropropane													
1,2-Dibromo-3-chloropropane (DBCP)	0.04 0.0006												
1,2-Dibromoethane (Ethylene Dibromide)			40.11			400.11							
1,2-Dichloroethane	0.6		10 U	10 U	10 U	100 U	0.5 U	0.5 U	0.5 U	2 U	50 U	0.5 U	0.5 U
1,2-Dichloroethene (total)	NC .		10 U	10 U	10 U	100 U							
1,2-Dichloropropane	1 50		10 U	10 U	10 U	100 U	0.5 U	0.5 U	0.5 U	2 U	50 U	0.5 U	0.5 U
2-Butanone (Methyl Ethyl Ketone)	50 50		10 U 10 U	10 U 10 U	10 U 10 U	1000 100 U	10 U 5 U	10 U 5 U	10 U 5 U	50 U 25 U	130 J 500 U	10 U 5 U	145 J 5 U
2-Hexanone 4-Methyl-2-pentanone (Methyl Isobutyl Ketone)	NC		10 U	10 U	10 U	100 U	5 U	5 U	5 U	25 U	500 U	5 U	5.42
4-Metnyi-2-pentanone (Metnyi Isobutyi Ketone) Acetone	50		10 U	10 U	10 U	450	10 U	10 U	10 U	25 U	130 J	10 U	5.42 207 J
Acrylonitrile	NC					450				50 0	130 J		207 J
Benzene	1		10 U	10 U	10 U	350	0.5 U	0.5 U	3	40	460	0.5 U	472
Bromodichloromethane	50		10 U	10 U	10 U	100 U	0.5 U	0.5 U	0.5 U	2 U	50 U	0.5 U	0.5 U
Bromoform Bromoform	50		10 U	10 U	10 U	100 U	0.5 U	0.5 U	0.5 U	2 U	50 U	0.5 U	0.5 U
Bromomethane (Methyl Bromide)	5		10 U	10 U	10 U	100 U	0.5 U	1 U	1 U	5 U	100 U	1 U	0.5 U
Carbon disulfide	60		10 U	10 U	10 U	100 U	0.5 U	0.5 U	0.5 U	2 U	50 U	0.5 U	0.5 U
Carbon distinde Carbon tetrachloride	5		10 U	10 U	10 U	100 U	0.5 U	0.5 U	0.5 U	2 U	50 U	0.5 U	0.5 U
Chlorobenzene	5		10 U	10 U	10 U	100 U	0.5 U	0.5 U	0.5 U	2 U	50 U	0.5 U	0.5 U
Chlorobromomethane	5						0.5 0		0.5 0			0.5 0	0.5 0
Chloroethane	5		10 U	10 U	10 U	100 U	1 U	1 U	0.5 J	2 J	100 U	1 U	1.75
Chloroform (Trichloromethane)	7		10 U	10 U	10 U	100 U	0.5 U	0.5 U	0.5 U	2 U	50 U	0.5 U	0.5 U
Chloromethane (Methyl Chloride)	5		10 U	10 U	10 U	100 U	1 U	1 U	1 U	5 U	100 U	1 U	1 U
cis-1,2-Dichloroethene	5						0.5 U	0.5 U	0.5 U	2 J	50 U	0.5 U	0.5 U
cis-1,3-Dichloropropene	0.4		10 U	10 U	10 U	100 U	0.5 U	0.5 U	0.5 U	2 U	50 U	0.5 U	0.5 U
Dibromochloromethane	50		10 U	10 U	10 U	100 U	0.5 U	0.5 U	0.5 U	2 U	50 U	0.5 U	0.5 U
Dibromomethane	NC NC												
Ethane	NC	11500											
Ethylbenzene	5		10 U	10 U	10 U	12 J	0.5 U	0.5 U	0.5 U	5	18 J	0.5 U	17.4
Ethene	NC	100 U											
Iodomethane	NC NC												
Methane	NC	11100											
Methylene chloride	5		4	4	7 BJ	140 B	2 U	2 U	2 U	10 U	200 U	2 U	2 U
o-Xylene	NC												
Styrene	5		10 U	10 U	10 U	100 U	0.5 U	0.5 U	0.5 U	2 U	50 U	0.5 U	0.5 U
Tetrachloroethene	5		10 U	10 U	10 U	54 J	0.5 U	0.5 U	0.5 U	2 U	71	0.5 U	77
Toluene	5		10 U	10 U	10 U	230	0.5 U	0.5 U	0.5 U	2 U	340	0.5 U	358
Total Btex	NC NC		10 U	10 U	10 U	682	0.5 U	0.5 U	3	60	918	1 U	
trans-1,2-Dichloroethene	5						0.5 U	0.5 U	0.2 J	5	50 U	0.5 U	0.5 U
trans-1,3-Dichloropropene	0.4		10 U	10 U	10 U	100 U	0.5 U	0.5 U	0.5 U	2 U	50 U	0.5 U	0.5 U
Trans-1.4-dichlorobutene	NC												
Trichloroethene	5		10 U	10 U	10 U	22 J	0.5 U	0.5 U	0.5 U	4	26 J	0.5 U	19.2
Trichlorofluoromethane (CFC-11)	5												
Vinyl Acetate	NC												
Vinyl chloride	2		10 U	10 U	10 U	100 U	1 U	1 U	1 U	5 U	100 U	1 U	3.38
Xylene (m,p)	NC NC												
7 3 707	5		10 U	10 U	10 U	90 J	0.5 U	0.5 U	0.5 U	10	100	1 U	108

All units in micrograms per liter (µg/L)

1 New York State Department of Environmental Conservation, Technical and Operational Guidance Series (1.1.1), Class GA Standards and Guidance Values, Revised June 1998. BOLD - Exceedes New York State Department of Environmental Conservation, Technical and Operational Guidance Series (1.1.1), Class GA Standards and Guidance Values.

* - Elevation - ft amsl (ft bgs) [ft amsl - feet above mean sea level, ft bgs - feet below ground surface]

Passive diffusion bags deployed 12/2/2005 and retrieved on 12/22/2005.

Only wells with a discrete fracture or sampling interval have start and end depths.

- Well AMSF-MW-12S was found to be obstructed prior to the April/May 2010 sampling event. The obstruction was cleared prior to the September 2010 sampling event

⁻ Well ITT-DBW-8 was inadvertently missed during the April/May 2010 Sampling Event.

⁻ Well ITT-SBW-9 was inadvertently missed during sampling in April 2010 and consequently sampled in May 2010 when the mistake was identified.

NC - No criteria exists

U - Not Detected at the Detection Limit shown, J - Estimated value, UJ - Approximate Non-detect, B - Blank Contamination, BJ - Estimated Value Detected in Blank

⁻⁻⁻ Not Analyzed

	Location Code	AMSF-MW-1D	AMSF-MW-1S	AMSF-MW-1S	AMSF-MW-1S	AMSF-MW-1S	AMSF-MW-1S	AMSF-MW-1S	AMSF-MW-1S	AMSF-MW-3D	AMSF-MW-3D	AMSF-MW-3D	AMSF-MW-3D	AMSF-MW-3D	AMSF-MW-3S
	Sample Date	11/16/2000	11/15/2000	11/16/2000	2/8/2005	8/31/2005	10/4/2005	4/23/2010	9/10/2010	11/16/2000	2/9/2005	9/28/2005	4/26/2010	9/13/2010	11/15/2000
	Start Depth (ft)														
	End Depth (ft)														
Analyte	Criteria ¹						,		•	1				•	
1,4-Dioxane	NC	81	6 J	10 U	2 J	1.1 J	2 J	1.1	2 U	10 U	3 J	12	0.16 J	2 U	0.9 J
	Location Code	AMSF-MW-3S	AMSF-MW-3S	AMSF-MW-3S	AMSF-MW-3S	AMSF-MW-4	AMSF-MW-4	AMSF-MW-5D	AMSF-MW-5D	AMSF-MW-5D	AMSF-MW-5D	AMSF-MW-5D	AMSF-MW-5S	AMSF-MW-7	AMSF-MW-7
	Sample Date	2/9/2005	9/30/2005	4/21/2010	9/8/2010	11/15/2000	10/4/2005	11/16/2000	2/9/2005	9/28/2005	4/26/2010	9/13/2010	11/15/2000	11/16/2000	2/8/2005
	Start Depth (ft)														
	End Depth (ft)														
Analyte	Criteria 1														
1,4-Dioxane	NC	10 U	10 U	0.69	1.6 J	5 J	23	3 J	10 U	4.1 J	8.3	9.2	10	12	3 J
				1	1				1	1	1	T		1	
	Location Code	AMSF-MW-7	AMSF-MW-7	AMSF-MW-7	AMSF-MW-7	AMSF-MW-8D	AMSF-MW-8D	AMSF-MW-8D	AMSF-MW-9S	AMSF-MW-9S	AMSF-MW-9S	AMSF-MW-9S	AMSF-MW-9S	AMSF-MW-9S	AMSF-MW-10
	Sample Date	8/31/2005	10/4/2005	4/26/2010	9/9/2010	11/16/2000	2/8/2005	9/27/2005	11/15/2000	2/8/2005	8/31/2005	10/4/2005	4/21/2010	9/15/2010	11/15/2000
	Start Depth (ft)														
	End Depth (ft)								L						
Analyte	Criteria 1			1			1011	40.11		1 00	150	140	400	250	1011
1,4-Dioxane	NC	3.4 J	2.2 J	1.1	3	2 J	10 U	10 U	75	39	160	110	130	250	10 U
	Location Code	AMSF-MW-10	AMSF-MW-10	AMSF-MW-11S	AMSF-MW-11S	AMSF-MW-11S	AMSF-MW-11S	AMSF-MW-12S	AMSF-MW-12S	AMSF-MW-12S	AMSF-MW-12S	AMSF-MW-13S	AMSF-MW-13S	AMSF-MW-13S	AMSF-MW-13S
	Sample Date	2/9/2005	10/4/2005	2/8/2005	10/4/2005	4/23/2010	9/9/2010	2/8/2005	8/31/2005	10/4/2005	9/9/2010	2/8/2005	8/31/2005	10/4/2005	4/23/2010
	Start Depth (ft)	2/3/2003	10/4/2003	2/6/2003	10/4/2003	4/23/2010	3/3/2010	2/0/2003	0/31/2003	10/4/2003	3/3/2010	2/0/2003	0/31/2003	10/4/2003	4/23/2010
	End Depth (ft)														
Analyte	Criteria 1			1					l		I			<u> </u>	· I
1,4-Dioxane	NC	10 U	10 U	2 J	16	3	2 U	17	2.6 J	26	3.7	15	8.2 J	15	33
												•			
	Location Code	AMSF-MW-13S	AMSF-MW-15I	AMSF-MW-15I	AMSF-MW-16I	AMSF-MW-16I	AMSF-MW-18MP	AMSF-RW-1							
	Sample Date	9/10/2010	4/26/2010	9/9/2010	4/23/2010	9/9/2010	3/1/2010	11/16/2000	11/16/2000	11/16/2000	2/10/2005	2/10/2005	2/10/2005	2/16/2005	2/16/2005
	Start Depth (ft)						419.4 (144)	522.3 (36)*	493.3 (65)*	463.3 (95)*	546.3 (12)*	530.3 (28)*	499.3 (59)*	483.3 (75)*	476.3 (82)*
	End Depth (ft)						419.4(144)	522.3 (36)*	493.3 (65)*	463.3 (95)*	546.3 (12)*	530.3 (28)*	499.3 (59)*	483.3 (75)*	476.3 (82)*
Analyte	Criteria ¹														
1,4-Dioxane	NC	2 U	0.23	2 U	0.21	2 U	6.8	11 U	12 U	12 U	10 U				
	Location Code	AMSF-RW-1	AMSF-RW-1	AMSF-RW-2	AMSF-RW-2	AMSF-RW-2	AMSF-RW-2	AMSF-RW-2	AMSF-RW-2	AMSF-RW-2	AMSF-RW-3	AMSF-RW-3	AMSF-RW-3	AMSF-RW-3	AMSF-RW-3
	Sample Date	10/3/2005	10/3/2005	11/16/2000	11/16/2000	11/16/2000	11/16/2000	11/16/2000	11/16/2000	8/31/2005	11/16/2000	2/17/2005	2/17/2005	10/3/2005	10/3/2005
	Start Depth (ft)	546.3 (12)*	476.3 (82)*	462.1 (101)*	414.1 (149)*	538.1 (25)*	526.1 (37)*	493.1 (70)*	563.1 (0)*	5,52,255	546.2 (19)*	549.2 (16)*	557.2 (8)*	552.2 (13)*	549.2 (16)*
	End Depth (ft)	546.3 (12)*	476.3 (82)*	462.1 (101)*	414.1 (149)*	538.1 (25)*	526.1 (37)*	493.1 (70)*	563.1 (0)*		546.2 (19)*	549.2 (16)*	557.2 (8)*	552.2 (13)*	549.2 (16)*
Analyte	Criteria ¹									•					
1,4-Dioxane	NC	10 U	10 U	49	71 J	20	11	20 J	18	10 U	2 J	10 U	10 U	15	14
	.	•		+	•		•		•	•	•	•		•	•
	Location Code	AMSF-RW-4	AMSF-RW-4	AMSF-RW-4	AMSF-RW-4	AMSF-RW-5	AMSF-RW-5	AMSF-RW-5	ITT-DBW-2	ITT-DBW-2	ITT-DBW-2	ITT-DBW-2	ITT-DBW-2	ITT-DBW-5	ITT-DBW-5
	Sample Date	11/16/2000	2/18/2005	2/18/2005	10/4/2005	2/10/2005	2/10/2005	10/4/2005	11/16/2000	2/7/2005	9/28/2005	4/28/2010	9/14/2010	11/16/2000	2/7/2005
	Start Depth (ft)	547.4 (19)*	551.9 (14.5)*	559.4 (7)*		554.4 (11)*	556.4 (9)*	554.4 (11)*		-			<u> </u>		
	End Depth (ft)	547.4 (19)*	551.9 (14.5)*	559.4 (7)*		554.4 (11)*	556.4 (9)*	554.4 (11)*							
Analyte	Criteria 1														

All units in micrograms per liter (μg/L)

* - Elevation - ft amsl (ft bgs) [ft amsl - feet above mean sea level, ft bgs - feet below ground surface

NC - No criteria exists

- NC No criteria exists
 U Not Detected at the Detection Limit shown
 Well AMSF-MW-12S was found to be obstructed prior to the April/May 2010 sampling event. The obstruction was cleared prior to the September 2010 sampling event
 Well ITT-DBW-8 was inadvertently missed during the April/May 2010 Sampling Event
 Well ITT-SBW-9 was inadvertently missed during sampling in April 2010 and consequently sampled in May 2010 when the mistake was identifiec
 Only wells with a discrete fracture or sampling interval have start and end depths

¹ There is no criteria under New York State Department of Environmental Conservation, Technical and Operational Guidance Series (1.1.1), Class GA Standards and Guidance Values, Revised June 1998

J - Estimated value

	Location Code	ITT-DBW-5	ITT-DBW-8	ITT-DBW-8	ITT-DBW-8	ITT-DBW-8	ITT-IBW-19	ITT-IBW-19	ITT-IBW-20	ITT-IBW-20	ITT-MW-1	ITT-MW-1	ITT-MW-1	ITT-MW-2	ITT-MW-4
	Sample Date	10/4/2005	6/29/1999	2/9/2005	9/30/2005	9/15/2010	4/20/2010	9/14/2010	4/22/2010	9/10/2010	8/3/1998	2/8/2005	9/30/2005	5/4/1999	2/9/2005
	Start Depth (ft)														
	End Depth (ft)														
Analyte	Criteria ¹														
1,4-Dioxane	NC	10 U	180 U	10 U	10 U	2 U	0.19 U	2 U	0.25 J	2 U	10 U	10 U	10 U	1,300 U	8 J
														.== .== .	
	Location Code	ITT-SBW-1A	ITT-SBW-1A	ITT-SBW-1A	ITT-SBW-1A	ITT-SBW-1A	ITT-SBW-2	ITT-SBW-2	ITT-SBW-2	ITT-SBW-2	ITT-SBW-2	ITT-SBW-2	ITT-SBW-2	ITT-SBW-2	ITT-SBW-3
	Sample Date	5/3/1999	6/29/1999	11/16/2000	2/9/2005	9/30/2005	5/4/1999	6/30/1999	11/16/2000	2/7/2005	8/31/2005	9/30/2005	4/22/2010	9/10/2010	6/30/1999
	Start Depth (ft) End Depth (ft)														
	· · · · · · · · · · · · · · · · · · ·						L		L						
Analyte	Criteria 1			T	1			T					1		
1,4-Dioxane	NC	1,800 U	250 U	140	10 U	6.8 J	1,800 U	2,500 U	2,400	3 J	5 J	10 U	1.8	2 U	2,500 U
	Landing Carlo	ITT CDW/ 4	ITT CDW 4	ITT CDW 4	ITT CDW 4	ITT CDM/ 4	ITT CDW 4	ITT CDM/ 4	ITT CDW/ FA	ITT CDW/ FA	ITT CDW/ FA	ITT CDW FA	ITT CDIA/ FA	ITT CDW/ FA	ITT CDW/ FA
	Location Code Sample Date	ITT-SBW-4 5/3/1999	ITT-SBW-4 6/29/1999	1TT-SBW-4 11/16/2000	ITT-SBW-4 2/8/2005	ITT-SBW-4 9/30/2005	ITT-SBW-4 4/21/2010	ITT-SBW-4 9/10/2010	ITT-SBW-5A 5/3/1999	ITT-SBW-5A 6/29/1999	11/16/2000	ITT-SBW-5A 2/7/2005	ITT-SBW-5A 9/27/2005	ITT-SBW-5A 4/22/2010	ITT-SBW-5A 9/15/2010
	Start Depth (ft)	5/5/1999	0/29/1999	11/10/2000	2/6/2003	9/30/2003	4/21/2010	9/10/2010	3/3/1999	0/29/1999	11/16/2000	2/1/2003	9/27/2003	4/22/2010	9/13/2010
	End Depth (ft)														
Analyte	Criteria 1		l		1		l	1	l	l		l			
. ,		180 U	50 U	44.11	1 44.11	10 U	0.4011	1 211	180 U	50 U		1 41	4011	0.36 J	2 U
1,4-Dioxane	NC	180 U	50 0	11 U	11 U	10 0	0.19 U	2 U	180 U	50 0	3 J	1 J	10 U	0.36 J	20
	Location Code	ITT-SBW-6	ITT-SBW-6	ITT-SBW-6	ITT-SBW-6	ITT-SBW-6	ITT-SBW-7	ITT-SBW-7	ITT-SBW-7	ITT-SBW-7	ITT-SBW-7	ITT-SBW-7	ITT-SBW-7	ITT-SBW-7	ITT-SBW-8
	Sample Date	5/3/1999	6/30/1999	11/16/2000	2/9/2005	9/30/2005	5/3/1999	6/30/1999	11/16/2000	2/9/2005	8/31/2005	9/30/2005	4/22/2010	9/16/2010	5/3/1999
	Start Depth (ft)	5/5/1999	0/30/1999	11/10/2000	2/9/2003	9/30/2003	3/3/1999	0/30/1999	11/10/2000	2/9/2005	6/31/2003	9/30/2003	4/22/2010	9/16/2010	3/3/1999
	End Depth (ft)														
A l l .	Criteria 1		l	<u>I</u>	l		l	l	l	l		l	l		
Analyte	NC	900 U	50 U	17	31	4.1	00 000 11	2.500.11	1.100	10 U	40.11	10 U	0.6 J	2 U	180 U
1,4-Dioxane	NC	900 0	50 0	1/	3 J	4 J	90,000 U	2,500 U	1,100	10 0	10 U	10 0	0.6 J	2 0	180 0
	Location Code	ITT-SBW-8	ITT-SBW-8	ITT-SBW-8	ITT-SBW-8	ITT-SBW-8	ITT-SBW-9	ITT-SBW-9	ITT-SBW-9	ITT-SBW-9	ITT-SBW-9	ITT-SBW-10	ITT-SBW-10	ITT-SBW-10	ITT-SBW-10
	Sample Date	6/29/1999	2/8/2005	9/30/2005	4/21/2010	9/15/2010	2/7/2005	8/31/2005	9/30/2005	5/12/2010	9/15/2010	2/7/2005	9/27/2005	4/21/2010	9/14/2010
	Start Depth (ft)	5, 25, 255	_, _, _, _	5,55,255	.,==,===	5,25,2525	_,,,	5,52,255	5,55,255	0, = , = 0	5,25,252	-,.,	2,2.,200	., ==, ====	0, 1, 1, 1010
	End Depth (ft)														
Analyte	Criteria ¹			·L	I	L		I			· ·		I		
1.4-Dioxane	NC	50 U	10 U	10 U	0.19 U	2 U	2 J	11	14	0.28	2 U	2 J	3 J	2.4	2 U
1,4-Dioxane	IVC	300	100	100	0.130	2.0	2,	11	14	0.20	20	2,	J 31	2.4	2.0
	Location Code	ITT-SBW-11	ITT-SBW-11	ITT-SBW-12	ITT-SBW-12	ITT-SBW-13	ITT-SBW-13	ITT-SBW-13	ITT-SBW-13	ITT-SBW-13	ITT-SBW-14	ITT-SBW-14	ITT-SBW-14	ITT-SBW-14	ITT-SBW-15
	Sample Date	2/9/2005	10/4/2005	2/9/2005	10/4/2005	2/11/2005	8/31/2005	9/28/2005	4/20/2010	9/14/2010	2/11/2005	9/28/2005	4/20/2010	9/14/2010	2/11/2005
	Start Depth (ft)	, , , , , , ,	, ,	7-7	., ,	, ,	-,-,	, ,	, ,, , ,	-, , -	, , , , , , , , , , , , , , , , , , , ,	-, -,	, ,,	. , ,	, ,
	End Depth (ft)														
Analyte	Criteria ¹					I .					1.				
1,4-Dioxane	NC	10 U	2.6 J	2 J	3.7 J	10 U	3.4 J	4.8 J	0.72	2 U	10 U	10 U	0.64	2 U	10 U
_, : _ : - : - : - : - : - : - : - : - : -		100			5	100					100	100			100
	Location Code	ITT-SBW-15	ITT-SBW-15	ITT-SBW-15	ITT-SBW-16	ITT-SBW-16	ITT-SBW-16	ITT-SBW-16	ITT-SBW-17	ITT-SBW-17	ITT-SBW-18	ITT-SBW-18	ITT-SBW-23	ITT-SBW-23	ITT-W-1
	Sample Date	9/28/2005	4/20/2010	9/8/2010	2/11/2005	9/28/2005	4/20/2010	9/14/2010	4/19/2010	9/8/2010	4/19/2010	9/8/2010	4/21/2010	9/14/2010	11/11/1991
	Start Depth (ft)	-, -,	, -,	-,-,	, ,	-, -,	, -,	-, ,	, -,	-,-,	, -,	-, -,	, ,	-, ,	,, 1
	End Depth (ft)														
Analyte	Criteria ¹		•	•			•		•	•	•	•			
1.4-Dioxane	NC NC	10 U	0.18 J	2 U	10 U	10 U	0.19 U	2 UJ	0.23	2 U	0.23	2 U	0.92 J	2 U	1.600
1, . D.OAUTIC	110	Notes:	0.103		100	100	0.15 0	2 03	0.23		0.25		0.523		1,000

All units in micrograms per liter (µg/L)

* - Elevation - ft amsl (ft bgs) [ft amsl - feet above mean sea level, ft bgs - feet below ground surface]

¹ There is no criteria under New York State Department of Environmental Conservation, Technical and Operational Guidance Series (1.1.1), Class GA Standards and Guidance Values, Revised June 1998

J - Estimated value

NC - No criteria exists

U - Not Detected at the Detection Limit shown
- Well AMSF-MW-12S was found to be obstructed prior to the April/May 2010 sampling event. The obstruction was cleared prior to the September 2010 sampling event
- Well ITT-DBW-8 was inadvertently missed during the April/May 2010 Sampling Event
- Well ITT-SBW-9 was inadvertently missed during sampling in April 2010 and consequently sampled in May 2010 when the mistake was identifiec
- Only wells with a discrete fracture or sampling interval have start and end depths

	Location Code	ITT-W-1	ITT-W-1	ITT-W-1	ITT-W-1	ITT-W-1	ITT-W-1	ITT-W-1	ITT-W-1	ITT-W-1	ITT-W-1	ITT-W-1	ITT-W-1	ITT-W-1
	Sample Date	5/3/1999	6/29/1999	11/16/2000	11/16/2000	11/16/2000	11/16/2000	2/10/2005	2/10/2005	2/17/2005	2/17/2005	2/17/2005	10/3/2005	10/3/2005
	Start Depth (ft)	536.3 (25)*	536.3 (25)*	446.3 (140)*	525.3 (36)*	496.3 (65)*	466.3 (95)*	540.3 (21)*	523.3 (38)*	466.3 (95)*	443.3 (118)*	428.8 (132.5)*	546.3 (15)*	428.8 (132.5)*
	End Depth (ft)	536.3 (25)*	536.3 (25)*	446.3 (140)*	525.3 (36)*	496.3 (65)*	466.3 (95)*	540.3 (21)*	523.3 (38)*	466.3 (95)*	443.3 (118)*	428.8 (132.5)*	546.3 (15)*	428.8 (132.5)*
Analyte	Criteria 1													
1,4-Dioxane	NC	180 U	50 U	4 J	11 U	11 U	12 U	10 U	10 U	10 U	10 U	10 U	10 U	10

All units in micrograms per liter (μg/L)

* - Elevation - ft amsl (ft bgs) [ft amsl - feet above mean sea level, ft bgs - feet below ground surface

¹ There is no criteria under New York State Department of Environmental Conservation, Technical and Operational Guidance Series (1.1.1), Class GA Standards and Guidance Values, Revised June 1998

J - Estimated value

NC - No criteria exists

NC - Not Detected at the Detection Limit shown

- Well AMSF-MW-12S was found to be obstructed prior to the April/May 2010 sampling event. The obstruction was cleared prior to the September 2010 sampling event

- Well ITT-DBW-8 was inadvertently missed during the April/May 2010 Sampling Event

- Well ITT-SBW-9 was inadvertently missed during sampling in April 2010 and consequently sampled in May 2010 when the mistake was identifiec

- Only wells with a discrete fracture or sampling interval have start and end depths