NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation, Region 8 6274 East Avon-Lima Road, Avon, NY 14414-9516 P: (585) 226-5353 | F: (585) 226-8139 www.dec.ny.gov

Via E-mail

Mr. Dennis Maguire 770 Rock Beach Road Rochester, NY 14617 September 25, 2020

Re: IRM Work Plan – Soil Cover

Former Alliance Metal Stamping and Fabrication Site #c828101

Gates, Monroe County

The New York State Department of Environmental Conservation (NYSDEC), in consultation with New York State Department of Health, has completed its review of the document entitled "IRM Work Plan- Soil Cover" for Former Alliance Metal Stamping & Fabrication Facility Site #828101, dated July 2020, last revised 9 September 2020 and approve as modified below:

- 1) Section 3.1.2 Supplemental Soil Sampling and Analysis
 - a) Alternative 1 is not accepted

Notice to proceed is granted contingent upon receipt of an updated calendar schedule through completion. Please note that an approvable IRM Construction Completion Report must be received by 15 October to have the opportunity for a 2020 BCP Certificate of Completion. If you have questions regarding this letter please contact me at (585) 226-5480 or via email at timothy.schneider@dec.ny.gov.

Sincerely,

Timothy Schneider, P.E. Professional Engineer 1

D. Pratt

M. Cruden

D. Loew

J. Kenny / J. Deming

P. Sylvestri

T. Wells

IRM Work Plan - Cover System

Former Alliance Metal Stamping & Fabrication Facility Town of Gates, Monroe County, New York BCP Site # C828101

Revised September 2020

Prepared for:

NYS Department of Environmental Conservation 6274 East Avon-Lima Road Avon, New York 14414

Prepared on Behalf of:

Maguire Family Properties, Inc. 770 Rock Beach Road Rochester, NY 14617

Prepared by:

Stantec Consulting Services Inc. 61 Commercial Street, Suite 100 Rochester NY 14614-1009

IRM Work Plan - Cover System Former Alliance Metal Stamping & Fabrication Facility

Certification

I, Dwight A. Harrienger, certify that I am currently a NYS registered professional engineer and that this IRM Work Plan was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10).

	9/9/2020	
Signature	Date	

IRM Work Plan - Cover System Former Alliance Metal Stamping & Fabrication Facility

Table of Contents

ABB	REVIATIONS	III
1.0	INTRODUCTION	1.1
1.1	PURPOSE	
1.2	SITE DESCRIPTION	1.1
1.3	SITE HISTORY, PREVIOUS INVESTIGATIONS, AND ENVIRONMENTAL	
	CONDITIONS	1.2
	1.3.1 Site History	
	1.3.2 Previous Investigations and Environmental Conditions	1.2
1.4	SUMMARY OF THE COVER SYSTEM IRM	1.4
2.0	GOALS AND OBJECTIVES	2.1
2.1	STANDARDS, CRITERIA AND GUIDANCE	2.1
3.0	IRM WORK PLAN	3.1
3.1	TECHNICAL APPROACH AND PROJECT PLAN	3.1
	3.1.1 Parking Lot Expansion	3.1
	3.1.2 Supplemental Soil Sampling and Analysis	
	3.1.3 Remedial Decision Making	
	3.1.4 Soil Removal and Replacement	
	3.1.5 Documentation Sampling for Soil Removal Excavations	
	3.1.6 Excavated Soil Management	
	3.1.7 Interim Reporting and Construction Completion Report	
3.2	PERMITTING	
3.3	HEALTH & SAFETY PLAN	
3.4	COMMUNITY AIR MONITORING PROGRAM	
3.5	QUALITY ASSURANCE AND QUALITY CONTROL	
3.6	SITE-SPECIFIC COVID-19 RESPONSE PLAN	3.7
4.0	SCHEDULE	4.1
5.0	REFERENCES	5.1

i

IRM Work Plan - Cover System Former Alliance Metal Stamping & Fabrication Facility

LIST OF FIGURES

Figure 1 – Site Location Map

Figure 2 – Sample Location Plan - Cover System Pre-Design Investigation

Figure 3 – Site Plan Showing Proposed Cover System Sample Locations

LIST OF TABLES

Table 1 – Summary of Soil Sample Analysis Results, Cover System Pre-Design Investigation
Table 2 – Proposed Soil Sampling Summary

LIST OF APPENDICES

Appendix A – Summary of Previous Investigations and Environmental Conditions

Appendix B – Laboratory Analysis Report and Data Usability Summary Report, Cover System Pre-Design Investigation Samples

Appendix C – Fit for Duty Covid-19 Guidance

IRM Work Plan - Cover System Former Alliance Metal Stamping & Fabrication Facility

Abbreviations

AA and AAR Alternatives Analysis, AA Report

AMSF Alliance Metal Stamping & Fabrication

BCP Brownfield Cleanup Program

CAMP Community Air Monitoring Plan

CCR Construction Completion Report

CU Commercial Use

CVOC Chlorinated Volatile Organic Compound

DER-10 Division of Environmental Remediation Technical Guidance for Site

Investigation and Remediation, May 2010

DOT Department of Transportation

ELAP Environmental Laboratory Approval Program

ft bgs feet below ground surface

HASP Health and Safety Plan

IRM Interim Remedial Measure

ITT Corporation (ITT Inc.)

IU Industrial Use

MFP Maguire Family Properties, Inc.

NYSDEC New York State Department of Environmental Conservation

NYSDOH New York State Department of Health

OM&M Operation, Maintenance & Monitoring

OU Operable Unit

PCE or PERC Perchloroethylene, also tetrachloroethene, tetrachloroethylene

PID Photoionization Detector

POGW Protection of Groundwater

RFM Rochester Form Machine

(list continues on next page)

IRM Work Plan - Cover System Former Alliance Metal Stamping & Fabrication Facility

RI and RI/FS Remedial Investigation, Remedial Investigation/Feasibility Study

SCOs Soil Cleanup Objectives

SMP Site Management Plan

SGVs Standards and Guidance Values

SSDS Sub-Slab Depressurization System

SVI Soil Vapor Intrusion

TAL USEPA's Target Analyte List

TCA Trichloroethane

TCE Trichloroethene, also trichloroethylene

TCL USEPA's Target Compound List

TOGS Technical and Operational Guidance Series

USEPA United States Environmental Protection Agency

UU Unrestricted Use

VOC Volatile Organic Compound

Introduction

1.0 INTRODUCTION

This document presents a Work Plan for an Interim Remedial Measure (IRM) to be implemented at the Former Alliance Metal Stamping & Fabrication (AMSF) Facility Site located at 12 Pixley Industrial Parkway in the Town of Gates, Monroe County, New York. The Former AMSF Site (hereinafter the 'Site') is identified as site number C828101 under the Brownfield Cleanup Program (BCP) administered by the New York State Department of Environmental Conservation (NYSDEC). A Site Location Map is presented on Figure 1.

Stantec Consulting Services, Inc. (Stantec) has prepared this Work Plan at the request of Maguire Family Properties, Inc. (MFP), the current owner of the Site.

1.1 PURPOSE

The IRM will be implemented to address cover system conditions in lawn areas on the east and south sides of the Site. The poly-nuclear aromatic hydrocarbon (PAH) compound benzo(a)pyrene (abbreviated B(a)P) was detected in cover system pre-design investigation surface soil samples in those areas at concentrations above the NYSDEC soil cleanup objective (SCO) for protection of human health at commercial-use BCP sites.

The Restricted Use SCOs for Protection of Public Health at BCP sites where the current, intended and reasonably anticipated future use is for commercial purposes are set forth in 6NYCRR Part 375 Table 375-6.8(b). The Restricted Use Commercial SCO is 1 part per million (ppm) for B(a)P. Because the B(a)P concentrations detected in the pre-design samples collected in lawn areas on the east and south sides of the Site exceed the Commercial Use SCO, the existing conditions in these areas are not appropriate for a BCP Track 4 cover system at the Site. The IRM specified in this Work Plan will address the existing conditions in these areas and will result in a final cover system that meets NYSDEC's Track 4 cover system requirements.

1.2 SITE DESCRIPTION

The Site occupies an approximately 7-acre property identified as Monroe County Tax Parcel No. 119.17-1-2. The Site property is improved with a 120,000-square-foot slab-on-grade building surrounded by paved driveways, loading ramps and parking lots and unpaved lawn areas. Land uses in the surrounding area include a mix of vacant land and industrial facilities on the properties to the east, south and west of the Site and a multi-screen movie theater and its parking lot on the adjacent property to the north. A Site Plan is presented on Figure 2.

The town zoning code for the Site and the other properties located along Pixley Industrial Parkway is General Industrial. MFP has owned the Site since 1995 and has leased individual spaces in the facility to a variety of light manufacturing and commercial tenants. Current and reasonably anticipated future uses of the Site include commercial and light-manufacturing industrial uses.

Introduction

1.3 SITE HISTORY, PREVIOUS INVESTIGATIONS, AND ENVIRONMENTAL CONDITIONS

1.3.1 Site History

The original building at the Site was reportedly constructed in 1967, before which the property was undeveloped agricultural land. Historical records indicate the original Site building may have been operated as a warehouse by the Alcoa Aluminum Corporation. The facility was purchased by the Alliance Tool Corporation, a subsidiary of the Gleason Corporation, in 1973. Alliance operated the Alliance Metal Stamping & Fabrication facility at the Site until July 1994. The manufacturing operations included stamping, forming, grinding, cleaning, painting, phosphating, and deburring of metal piecework. Alliance decommissioned the manufacturing operation and sold the vacant facility to MFP in 1995.

Since 1995, MFP has been leasing subdivided spaces in the building to companies operating a variety of light manufacturing operations and commercial activities.

1.3.2 Previous Investigations and Environmental Conditions

MFP applied as a Volunteer under New York State's BCP and the Site was admitted into the BCP by NYSDEC in July 2011. A BCP Remedial Investigation (RI) was initiated at the Site in March 2012.

Section 1.3.2.1 describes the Cover System Pre-Design Investigation, which is the component of the BCP RI program which has the most relevance for the development of the Cover System IRM Work Plan. Other previous investigation and remedial activities completed at the Site prior to and during the BCP RI program are described in **Appendix A**.

1.3.2.1 Cover System Pre-Design Investigation

A surface soil sampling program was performed in September 2019 to assess whether existing surface soil conditions in the lawn areas of the Site are appropriate for the Site cover system. The cover system pre-design investigation was completed in accordance with Section 3.3 of the June 2019 IRM Work Plan¹. and the Department's requirements for verification of soil quality for a cover system.

NYSDEC guidance indicates that where an existing soil cover is proposed as a remedial cover system for a BCP Site, verification of soil quality consistent with site use is required. The guidance indicates that samples should be evenly distributed geographically in soil cover areas. The soil cover areas at the Site, which are shown on Figure 2, comprise 1.45 acres in total. The NYSDEC guidance indicates that for an area of that size, a minimum of six grab samples should be collected for volatile organic compound (VOC) analysis, and three or more representative composite samples should be collected for a full suite of non-VOC parameters including Target Analyte List (TAL) inorganic compounds and Target Compound List (TCL) semi-volatile organic compounds (SVOCs). For sites where the current and anticipated future uses are commercial or industrial, the guidance calls for collection of composite samples from 0"-2" and 2"-12"

¹ IRM Work Plan, Former Alliance Metal Stamping & Fabrication Facility, Town of Gates, Monroe County, New York, BCP Site # C828101. Stantec, June 28, 2019.

Introduction

below ground surface (bgs) for analysis of non-VOC parameters and grab samples from 2"- 6"bgs for analysis of TCL VOCs.

Cover System Pre-Design Investigation sampling locations are shown on Figure 2. The sampling included the following:

- Composite soil samples for analysis of TAL metals and TCL SVOCs, Pesticides and PCBs were collected for each of the four soil cover areas located along the western, northern, eastern, and southern sides of the Site. For each area (west, north east and south), one composite sample from the 0"-2" depth interval and a second composite sample of from 2"-12" bgs were collected, with each sample composited from five locations evenly distributed among and along the lawn areas on the respective side of the Site building. West side sample locations, for example, were designated WS-SS-1 through WS-SS-5 for west-side surface-soil locations 1 through 5.
- Grab samples for analysis of TCL VOCs: For each of the four soil cover areas, grab samples from the 2"- 6" bgs interval were collected from two of the five locations at which the material for the composite samples for non-VOC parameters was collected.

Sample analysis results for the Cover System Pre-Design Investigation surface soil samples are summarized on Table 1. A copy of the summary version of the laboratory analysis report and a copy the data usability summary report for the samples are both provided in **Appendix B**.

In accordance with the NYSDEC cover system verification guidance, the sample analysis results were compared to CU SCOs. As indicated on Table 1, of all the full suite of chemical compounds analyzed only one was detected at concentrations which exceeded its CU SCO. The single exception was the PAH benzo(a)pyrene, which was detected in the east side and south side composite samples for both the 0"-2" and 2"-12" bgs intervals at concentrations that ranged from 1.2 to 3.5 milligrams per kilogram (mg/kg, equivalent to parts per million, ppm). Those concentrations exceeded the CU SCO for B(a)P of 1.0 ppm. Exceedances of the B(a)P CU SCO were not detected in the north and west side composite samples. Summaries of the B(a)P results for the Pre-Design Investigation samples are presented on Figure 2.

The presence of B(a)P in surface soil in these areas of the Site is not considered to be a condition resulting from a Site-specific chemical release. The B(a)P concentrations detected in the samples from the east and south side lawn areas are within the range of background concentrations of PAHs in urban soil and represent a condition that is common for a commercial or industrial setting. PAH compounds including B(a)P are components of asphalt, tar, and driveway pavement sealing products and are common in residues of vehicle emissions. The occurrence of B(a)P at the concentrations detected in the surface soil along the east and south sides of the Site is most likely the result of deposition of PAH residues from decades of parking lot and driveway runoff and snow plowing and vehicle emissions.

Introduction

1.4 SUMMARY OF THE COVER SYSTEM IRM

The Cover System IRM will consist of the following elements:

- A new asphalt pavement will be constructed to serve as the final cover over a 40-foot by 80-foot
 (approximately) portion of the north section of the current east-side lawn area. The new pavement
 will be used as an expansion of the vehicle parking area at the northeast corner of the Site building.
 The technical approach for the construction of the new pavement and related components of the
 project plan are described in Section 3.1.1.
- Supplemental soil sampling will be conducted in the remainder of the lawn areas on the east and south sides of the Site. The purpose of the sampling will be to complete a delineation of areas of exceedance of the CU SCO for B(a)P. The technical approach for the sampling is described in Section 3.1.2.
- Practical considerations related to project schedule or facility operations may dictate that foregoing
 the supplemental sampling described herein is warranted. East- and south-side lawn areas for which
 supplemental sampling is not conducted will be addressed by the provisions for soil removal and
 replacement or installation of an overlying cover as specified herein for the entire lawn area.
- The results of the sampling will be used to delineate which portions of the east- and south-side lawn
 areas meet the requirements for a Track 4 cover system and which lawn areas do not meet the
 requirements.
 - For those sample points which are confirmed to meet CU SCOs for PAHs, no further remedial action will be performed.
 - For those points which are confirmed by the supplemental sampling to have CU SCO exceedances for PAHs, surface soil removal and replacement will be performed in the surrounding lawn area represented by that point.
 - O Grass cover will be re-established in the soil removal areas. Where feasible from a landscaping perspective, installation of an overlying soil cover may be performed as an alternative to soil removal and replacement. Where an overlying soil cover is to be used as an alternative to soil removal, it will be a minimum of one foot of soil placed over a demarcation layer, with the upper six inches of soil of sufficient quality to maintain a vegetative layer. Where grade elevation conditions dictate, the existing surface soil at edges of cover areas will be removed as needed to achieve the required one-foot cover thickness and key the edge of the remediated area to the surrounding grade.
 - Replacement or overlying cover material will be pre-characterized in accordance with applicable NYSDEC Part 375 regulations and DER-10 policy requirements to confirm that it is eligible for use as soil cover.

Introduction

- o The technical approach for remedial decision making is described in Section 3.1.3, and the approach for soil removal and replacement activities is described in Section 3.1.4.
- Soil removed from lawn areas will be transported off Site for disposal in a permitted solid waste landfill. The technical approach for the transport and disposal is described in Section 3.1.5.

Goals and Objectives

2.0 GOALS AND OBJECTIVES

The Cover System IRM activities are being implemented to make surface soil conditions in lawn areas at the Site consistent with Department objectives for cover systems at a BCP site with current and reasonably anticipated future uses that are commercial and industrial. Towards those ends, the goals and objectives of the IRM include the following:

- Goal: Determine whether existing surface soil in individual sections of the lawn areas on the south and east sides of the facility can remain in place to serve as part of the cover system for the final remedy for the Site.
 - Objective: Complete supplemental surface soil sampling in each east-side and south-side lawn area to delineate where exceedances of the CU SCO for B(a)P occur.
- Goal: Once the supplemental delineation sampling has defined the specific sections of the eastside and south-side lawn areas where exceedances of the CU SCO for B(a)P occur, perform remedial actions to cover or remove and replace the soils that currently exceed the CU SCO.

Objectives:

- Construct a new permanent asphalt-paved parking area to serve as the cover system for a portion of the north end of the existing east-side lawn area.
- Construct a new soil cover system in remaining areas of exceedance of the CU SCO for B(a)P by removing existing surface soil to the depth of exceedance (either to 2 inches) bgs or 12 inches, depending on the sampling results) and replacing the removed soil with soil that meets requirements for cover material of Section 5.4(e) of NYSDEC's DER-10 Technical Guidance. Where feasible from a landscaping perspective, installation of 12 inches of overlying soil cover that meets DER-10 requirements may be performed as an alternative to soil removal and replacement.
- Goal: Manage soil removed during the IRM in accordance with applicable NYSDEC regulations.
 - Objectives: Transport removed soil off Site for disposal at a permitted solid waste facility in accordance with applicable 6 NYCRR Part 360 regulations.

2.1 STANDARDS, CRITERIA AND GUIDANCE

This IRM Work Plan was developed in general accordance with the applicable standards, criteria, and guidance (SCGs) contained or referenced in the following:

- 6 NYCRR Part 375 Environmental Remediation Programs regulations.
- NYSDEC's "DER-10 Technical Guidance for Site Investigation and Remediation".
- Other applicable NYSDEC guidance on surface soil sampling for BCP remedial cover systems.

Goals and Objectives

• 6 NYCRR Part 360 Solid Waste Management Facilities regulations.

IRM Work Plan

3.0 IRM WORK PLAN

3.1 TECHNICAL APPROACH AND PROJECT PLAN

3.1.1 Parking Lot Expansion

MFP plans to construct an expansion of the paved parking lot in the area adjacent to the east side of the northeast corner of the Site building. The new parking lot section will serve as a replacement of the existing soil cover in this area. The area where the new pavement is to be constructed is shown on Figure 3.

The new parking area will be constructed using 8 to 12 inches of compacted coarse crushed stone aggregate sub-base and 3 to 3.5 inches of asphalt pavement. Construction will be completed by a professional pavement contractor in accordance with specifications acceptable to MFP. Materials, thickness, construction methods and performance of the new pavement will be consistent with those for existing parking lot pavements at the Site.

Should pre-construction grading of the construction area for the new pavement require removal of surface soil to achieve the appropriate grade for the new pavement, the soil to be removed will be managed by one of the following two methods:

- The soil may be direct loaded into dump trucks at the time of removal and transported off Site for disposal at a NYSDEC-permitted solid waste landfill. Requirements for off-Site transport and disposal of excavated soil are described below in Section 3.1.5.
- Alternatively, the soil to be removed may be sampled in place prior to removal and tested to
 confirm its eligibility for reuse as cover material elsewhere on Site in accordance with the
 requirements of 6NYCRR 375-6.7(d) and DER-10 Sections 5.4(e)4 and 5.4(e)10.

Based on the anticipated size of the new parking area (approximately 3,200 square feet) and the assumption that a soil removal depth of 16 inches or less will be required to achieve the necessary pre-construction grade for the new pavement sub-base, it is estimated that up to approximately 160 cubic yards of material may need to be removed prior to placement of the sub-base. As specified in DER-10 Table 5.4(e)10 for that volume of soil, the planned sampling and analysis of the soil that may need to be removed will therefore include the collection of 3 grab samples for analysis of Part 375-6.8(b)-listed VOCs and one composite sample for analysis of Part 375-6.8(b)-listed SVOCs, metals, total cyanide, PCBs and pesticides. The grab samples will be collected from the three locations shown on Figure 3, and the composite sample will be prepared from material collected in roughly equal amounts from the same three locations. Sample depth intervals will be from 0 to 16 inches.

IRM Work Plan

If testing results indicate the soil to be removed for construction of the new parking area pavement does not meet CU and POGW SCOs, it will be direct loaded for off-Site transport at the time of removal and transported off Site for disposal at a NYSDEC-permitted solid waste landfill.

If testing results indicate that the soil to be removed for the parking area meets both CU SCOs and POGW SCOs, it will be eligible for reuse on Site as cover material for the soil cover system. The eligible material will either be placed where needed for cover in a Cover System IRM soil removal area or reused elsewhere on Site as appropriate for landscaping and cover system maintenance purposes. The approach for reuse as replacement material is described in Section 3.1.4.

Cover-system-eligible soil to be removed from the new parking area prior to construction of the pavement may be stockpiled on Site in anticipation of on-Site reuse. Stockpiling will only be conducted if it is necessary to do so to accommodate the construction schedule for the new parking area. Stockpiling prior to reuse on Site will be conducted in accordance with the soil staging methods specified below in Section 3.1.1.1.

Stockpiled soil that has not been placed as soil cover by the end of the construction field activities specified in this IRM Work Plan will be transported off Site for disposal at a NYSDEC-permitted solid waste landfill.

Similarly, any soil removed for construction of the new pavement from a depth greater than the pre-testing sample depth of 16 inches will be transported off Site for disposal at a NYSDEC-permitted solid waste landfill.

3.1.1.1 Soil Staging Methods

The soil staging methods described in this section are in accordance with those specified in Section D3 (Soil Staging Methods) of the Excavation Work Plan (EWP) presented in Appendix D of the draft Site Management Plan (SMP, draft dated August 7, 2019).

Should excavated soil that is eligible for reuse in the soil cover system be stockpiled on Site, the stockpile will be placed on a liner of plastic sheeting and covered with an anchored plastic tarp until such time as it can be reused. Specific procedures are as follows:

- Soil stockpiles will be continuously encircled with a berm and/or silt fence. Hay bales will be used
 as needed near catch basins, surface waters and other discharge points.
- Stockpiles will be kept covered at all times with appropriately anchored tarps. Stockpiles will be routinely inspected, and damaged tarp covers will be promptly replaced.
- Stockpiles will be inspected at a minimum once each week and after every storm event. Results
 of inspections will be recorded in a logbook and maintained at the Site and available for
 inspection by the NYSDEC.

IRM Work Plan

3.1.2 Supplemental Soil Sampling and Analysis

In the remainder of the soil cover lawn areas on the east and south sides of the Site, supplemental surface soil sampling will be conducted to more precisely define the areas where and intervals in which (0-2 inches bgs and/or 2-12 inches bgs) exceedances of the Department's CU SCOs for benzo(a)pyrene occur in surface soil in the east- and south-side lawn areas at the Site. Samples will be submitted to the project laboratory for analysis of PAHs by EPA Method 8270. In addition to benzo(a)pyrene, the individual PAHs to be analyzed include:

- benzo(a)anthracene,
- benzo(b)fluoranthene,
- benzo(g,h,i)perylene,
- benzo(k)fluoranthene,
- chrysene,
- dibenz(a,h)anthracene, and
- indeno(1,2,3-cd)pyrene.

The planned sampling is designed to accomplish the following:

- Provide representative coverage of each individual lawn area on the east and south sides of the Site using samples collected at two to four widely spaced discrete sample points within each individual lawn area.
- Allow for differentiation between those individual lawn areas with exceedances of the CU SCO for B(a)P and those without exceedances of the CU SCO for B(a)P.
- Within each individual lawn area found to exhibit a CU SCO exceedance, define the limits and depths of the area in which an exceedance was detected.

Towards those ends, discrete samples will be collected at approximately 23 locations (²) on the east and south sides of the site. The proposed sample locations are shown on Figure 3. At each location, a pair of discrete samples will be collected: one from the 0"-2" bgs interval and one from the 2"-12" bgs interval.

Three alternative approaches for sample analysis are proposed:

Alternative 1

Using portions of each of the discrete samples, composite sample pairs (one composite for the 0"-2" bgs interval and one for the 2"-12" bgs interval) will be prepared for each of the eight (8) individual east- and south-side lawn areas. The discrete sample locations to be included in each of the eight composite groups are indicated on Figure 3. Both the composite samples and the discrete samples will be submitted to the project laboratory. Analysis will be performed first on the composite samples, and

² The proposed locations shown on Figure 3 are intended to provide representative coverage of each individual lawn area on the east and south sides of the Site. The proposed locations were randomly selected; the actual number and location of the sample points may be adjusted in the field.

IRM Work Plan

discrete samples will be placed on hold pending receipt of results for the composite samples. If an exceedance of a CU SCO is identified in one or both of the composite samples (0 to 2 inches or 2 to 12 inches) representing an individual lawn area, the discrete samples that were used to prepare the composites for that lawn area will each be analyzed. Discrete samples from lawn areas represented by composite samples that do not show an exceedance of a CU SCO will not be analyzed. Alternative 1 is the preferred approach because it represents a potential for reduction in project costs related to laboratory analysis and data evaluation.

Alternative 2

Under Alternative 2, the step of collecting and analyzing composite samples will be skipped, and all 23 discrete sample pairs will be analyzed (a total of 46 samples). Alternative 2 will be the selected approach if it is necessary to expedite IRM activities in order to meet the project milestone schedule for obtaining a certificate of completion in 2020.

Alternative 3

Under Alternative 3, supplemental soil sampling will be skipped altogether in some or all of the east-side and south-side lawn areas, and soil removal or cover placement will be performed in those areas as specified herein. Alternative 3 will be selected at the discretion of MFP.

3.1.3 Remedial Decision Making

Under Alternative 1, if a lawn area composite sample pair is found to not exhibit any exceedances of CU SCOs for any of the PAHs, such a result will confirm the suitability of the surface soil in that lawn area for a Track 4 cover system, and no further remedial action will be necessary for that specific lawn area. If one or both of the lawn area composite samples exhibit an exceedance, results of the follow-up analyses of discrete samples will be used for delineating the portions of the lawn area to be remediated. Discrete sample results will also be used for decision making under Alternative 2.

Under both Alternatives 1 and 2, results of discrete sample analyses will be used to determine which portions of a lawn area will require remediation. Where a discrete sample pair is found to not exhibit any exceedances of CU SCOs for any of the PAHs, such a result will confirm the suitability of the surface soil in the area represented by that sample pair for a Track 4 cover system, and no further remedial action will be necessary for that specific area. Should a discrete sample indicate the presence of a PAH at a concentration exceeding its CU SCO, the surface soil from the area represented by that sample will be removed to the depth of exceedance (either 2 inches or 12 inches) and replaced with soil that is documented through sampling in accordance with DER-10 Sections 5.4(e)4 and 5.4(e)10 to meet the cover system standards for a commercial use site. Where feasible from a landscaping perspective, installation of an overlying soil cover may be performed as an alternative to soil removal and replacement. Where an overlying soil cover is to be used as an alternative to soil removal, it will be a minimum of one foot of soil placed over a demarcation layer, with the upper six inches of soil of sufficient quality to maintain a vegetative layer.

IRM Work Plan

Under both Alternatives 1 and 2, the limits of the areas requiring remediation will extend outward from each discrete sample point exhibiting a CU SCO exceedance to the edge of adjacent sidewalks, pavements, retaining walls, the facility building or a line drawn midway between the exceeding point and an adjacent sample point that did not exhibit an exceedance.

Under Alternative 3, the remediation area will include all of the individual lawn area and extend to the edge of adjacent sidewalks, pavements, retaining walls, or the facility building.

3.1.4 Soil Removal and Replacement

A qualified environmental professional (QEP) or person under their supervision will oversee soil removal excavation activities, load-out of excavated material, and installation of replacement cover material. Similarly, if placement of an overlying soil cover is performed as an alternative to soil removal and replacement that activity will be conducted by or under the supervision of a QEP. Prior to placement of cover material, a demarcation layer consisting of orange snow fence, or equivalent geotextile, will be secured in place.

The soil removed will be direct loaded into dump trucks at the time of removal and transported off Site for disposal at a NYSDEC-permitted solid waste landfill. Requirements for off-Site transport and disposal of excavated soil are described below in Section 3.1.5.

Replacement soil and overlying soil cover material will either be eligible material, if any, to be removed from the new pavement pre-construction excavation described in Section 3.1.1 or imported soil that has been pre-characterized prior to import as specified in DER-10 Table 5.4(e)10. For imported soil, the required analysis will include Part 375-6.8(b)-listed VOCs, SVOCs, metals, total cyanide, PCBs, and pesticides. The number of grab samples (for VOC analysis) and composite samples (for other parameters) will be determined in accordance with Table 5.4(e)10 and will depend on the volume of material to be imported.

The remediated area will be seeded and protected to establish new lawn or other landscaping cover.

Where soil removal excavations are not backfilled with new cover material on the day of the excavation, the excavation area will be barricaded during off-work hours to prevent inadvertent entry by visitors or facility tenants.

Where a soil removal is to be performed directly adjacent to the off-Site drainage ditch located between the south Site boundary and Pixley Industrial Parkway or directly adjacent to the off-Site drainage ditch located east of the east Site boundary, a silt fence will be installed between the excavation area and the drainage ditch for the purposes of stormwater pollution prevention, and a fabric cover will be placed on any recharge well stormwater drain inlet in the immediately surrounding area. The silt fence and stormwater drain cover, if any, will be maintained until a grass cover is established on the newly installed soil cover in that area.

Where feasible from a landscaping perspective, installation of an overlying soil cover may be performed as an alternative to soil removal and replacement. Where an overlying soil cover is to be used as an

IRM Work Plan

alternative to soil removal, it will be a minimum of one foot of soil placed over a demarcation layer, with the upper six inches of soil of sufficient quality to maintain a vegetative layer. Where grade elevation conditions dictate, the existing surface soil at edges of cover areas will be removed as needed to achieve the required one-foot cover thickness and key the edge of the remediated area to the surrounding grade.

To protect the near surface root systems and viability of existing mature trees and shrubs, soil removal or placement of 12 inches of overlying soil cover may need to be minimized in existing well-established landscaping berms and areas within the driplines of mature trees and shrubs. Where it is necessary to minimize soil removal or cover placement in those areas to protect trees and shrubs from damage, measures such as placement of landscaping fabric over the roots and interstitial soil, wrapping the fabric over the edge of the adjacent soil removal excavation, and placement and annual maintenance of landscaping stone or 6 inches of mulch cover on top of the fabric will serve as the cover system where soil removal and soil cover placement cannot be achieved as specified above.

3.1.5 Documentation Sampling for Soil Removal Excavations

Documentation sampling will be performed along those sections of soil-removal excavation sidewalls that do not abut the Site building, retaining walls, sidewalks or parking lot / driveway pavements. Samples will be collected at a frequency of 1 sample per 30 linear feet of sidewall. The sample interval will extend from the top to the bottom of the sidewall to be representative of the full depth interval of the excavation. Excavation bottom samples will not be collected since the presence in the excavation area of one foot of cover material that meets the requirements for a Track 4 cover system will have been confirmed by the other activities described in this work plan.

3.1.6 Excavated Soil Management

Where soil removal is performed, removed soil will be transported off site for disposal at a NYSDEC-permitted solid waste landfill. Waste transport will be performed by appropriately licensed haulers in accordance with 6 NYCRR Part 364. Disposal will be performed in accordance with 6 NYCRR Part 360 regulations.

3.1.7 Interim Reporting and Construction Completion Report

Following receipt of laboratory analysis results for soil reuse eligibility samples from the new parking area and the supplemental surface soil composite (if any) and discrete samples, an interim report will be submitted to NYSDEC with a summary of the lab results and a map showing sample locations and proposed limits of excavations.

An IRM Construction Completion Report (CCR) will be prepared to document the Cover System IRM activities. The CCR will include tables and figures summarizing sampling activities and laboratory analysis results, copies of laboratory analytical and data usability summary reports, record drawings of the new pavement and soil cover components of the Site cover system, and documentation of waste disposal.

IRM Work Plan

3.2 PERMITTING

The pavement and excavation contractors will be responsible for obtaining any necessary permits for construction activities associated with the cover system IRM.

3.3 HEALTH & SAFETY PLAN

Health and safety procedures will be performed in accordance with the Health and Safety Plan (HASP) for the Site that was attached to the RI Work Plan. Contractors working on the site will be required to prepare and follow their own HASPs for the site.

3.4 COMMUNITY AIR MONITORING PROGRAM

The Community Air Monitoring Plan (CAMP) that was attached to the RI Work plan will be implemented during construction activities. Upwind and downwind monitoring requirements of the generic NYSDOH CAMP will be applied during surface-soil removal activities as appropriate for work on a small-scale outdoor excavation and landscaping project that is not anticipated to involve exposure of the Site contamination. VOC monitoring will be performed manually using a Photoionization detector (PID) with a 10.6 electronVolt (eV) lamp to periodically check and document ambient conditions within, upwind and downwind of the work area. Particulate monitoring will be performed by visual inspection. Real time measuring of particulates is not anticipated. Should airborne dust be generated, mitigation will be performed using a garden hose to spray water for dust suppression in the work area.

3.5 QUALITY ASSURANCE AND QUALITY CONTROL

Quality assurance and quality control methods and procedures will be as specified in the RI Work Plan for the Site. Field monitoring instrument calibration will be performed in accordance with DER-10 guidance. A NYSDOH ELAP certified analytical laboratory will be used for the analytical services of the project. A summary of sample types and analysis parameters and methods is presented in Table 2. With the exception of waste characterization samples which may be required for waste profiling by a disposal facility (if any are required), laboratory deliverables will be prepared in general accordance with NYSDOH ASP Category B guidelines and will be evaluated in a data usability summary report.

3.6 SITE-SPECIFIC COVID-19 RESPONSE PLAN

Social distancing and use of face coverings in general accordance with guidelines established by the Centers for Disease Control and Prevention and New York State Department of Health will be observed by Stantec, MFP and contractor personnel conducting or observing Cover System IRM field activities and by other visitors observing IRM activities at the Site. Stantec and contractor personnel performing the sampling and soil removal and replacement activities will be required to confirm their fitness for duty on a daily basis using the form presented in **Appendix C** as will visitors seeking to observe the IRM activities. Personnel and visitors who are unable to confirm their 'fitness for duty' will not be permitted access to the work areas. Personnel or visitors working at or visiting the Site will be asked during the daily briefing to

IRM Work Plan

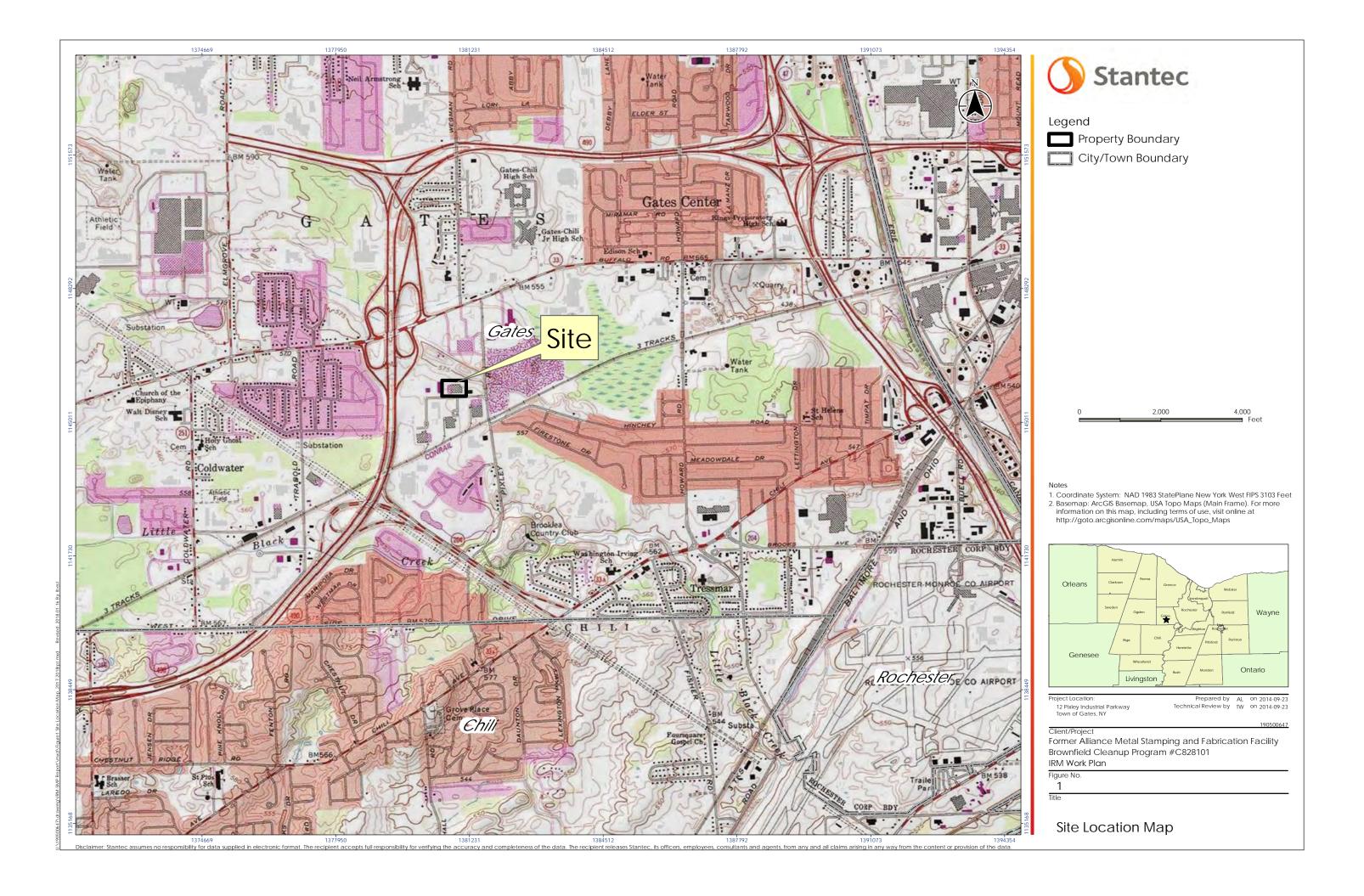
notify the Stantec Site contact if they become aware that they may be exhibiting symptoms of Covid-19 illness after being at the Site during the IRM activities.

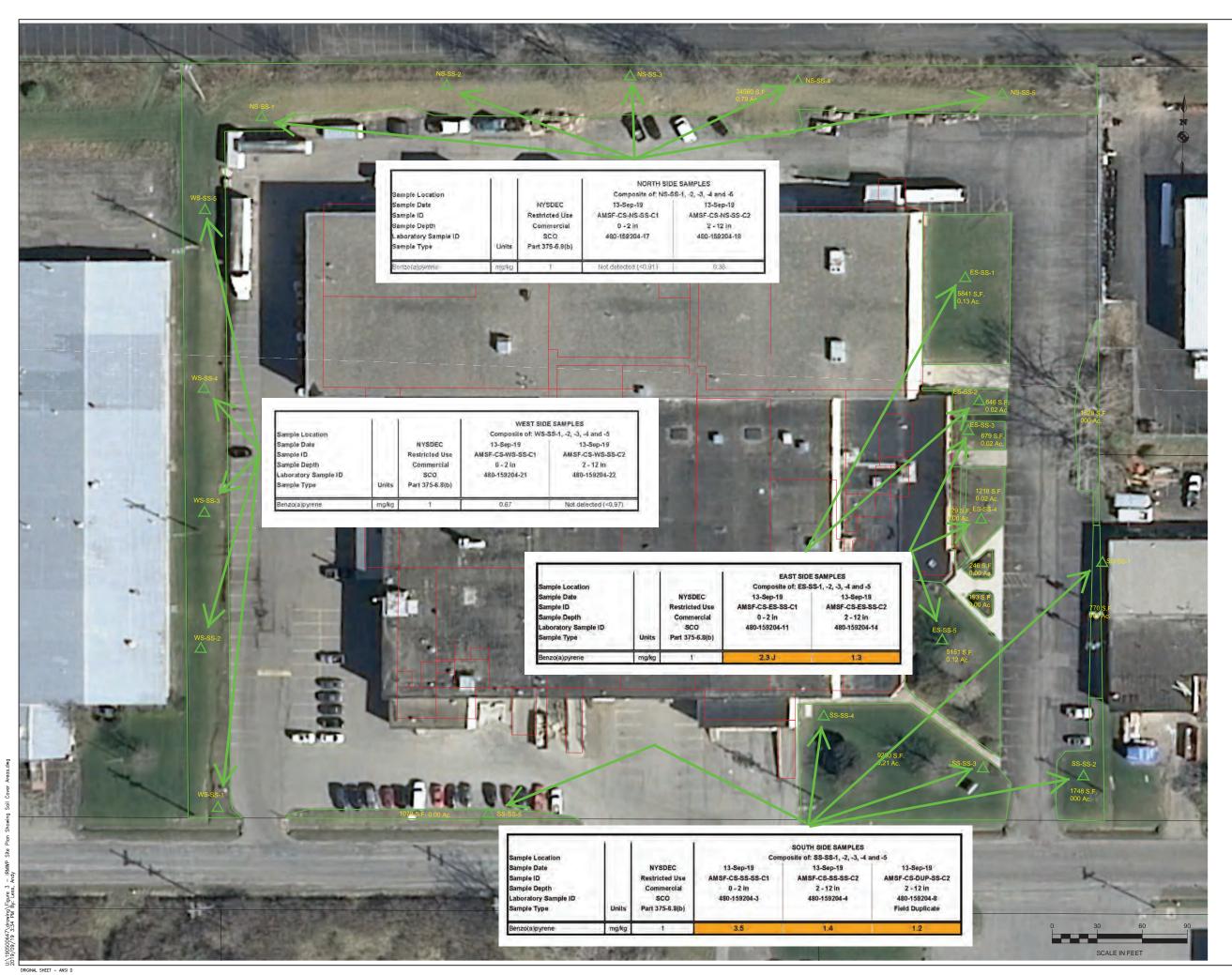
Schedule

4.0 SCHEDULE

Implementation of the Cover System IRM will begin immediately following approval of this IRM Work Plan by the NYSDOH and NYSDEC. A proposed timeline is as follows:

- Comments and conditional approval received from NYSDEC and NYSDOH by September 25, 2020.
- Supplemental soil sampling and analysis by October 16, 2020.
- Installation of new pavement, soil removal and installation of new soil cover by November 16, 2020.
- Draft CCR to be submitted to NYSDOH and NYSDEC by November 23, 2020.


The NYSDEC project manager will be notified at least 7 days in advance of all IRM-related field activities.


References

5.0 REFERENCES

- NYSDOH, 2006a. Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York. October 2006.
- NYSDEC, 2006b. 6 NYCRR Part 375 Environmental Remediation Programs. December 14, 2006.
- NYSDEC, 2010a. NYSDEC's DER-10, Technical Guidance for Site Investigation and Remediation. May 3, 2010.
- NYSDEC, 2010b. NYSDEC's Commissioner Policy CP-51 Soil Cleanup Guidance. October 21, 2010.
- NYSDOH, October 2006. Guidance for Evaluating Soil Vapor Intrusion in the State of New York.
- NYSDOH, 2017. Soil Vapor Intrusion Updates, May 2017: Updates to Soil Vapor/Indoor Air Decision Matrices. Website: https://health.ny.gov/environmental/indoors/vapor_intrusion/update.htm, accessed 7/26/2017.
- O'Brien & Gere Engineers, Inc., April 11, 2014. Remedial Investigation Report, Former ITT Rochester Form Machine Facility, Site # 8-28-112, Town of Gates, New York.
- Stantec Consulting Services Inc., December 2015. Remedial Investigation Report, Brownfield Cleanup Program Site #C828101, Former Alliance Metal Stamping & Fabrication Facility, 12 Pixley Industrial Parkway, Town of Gates, Monroe County, New York.
- Stantec Consulting Services Inc., Revised June 2016. Interim Remedial Measure Site Management Plan, Brownfield Cleanup Program Site #C828101, Former Alliance Metal Stamping & Fabrication Facility, 12 Pixley Industrial Parkway, Town of Gates, Monroe County, New York.
- Stantec Consulting Services Inc., June 2018. Alternatives Analysis Report, Brownfield Cleanup Program Site #C828101, Former Alliance Metal Stamping & Fabrication Facility, 12 Pixley Industrial Parkway, Town of Gates, Monroe County, New York.

FIGURES

61 Commercial Street Rochester , NY

14614 Tel. 585-475-1440 Fax. 585-272-1814 www.stantec.com

Copyright Reserved

pyright received.

The Contractor shall verify and be responsible for all dimensions. DO NOT scale the drawing — any errors or omissions shall be reported to Stantec without delay.

The Copyrights to all designs and drawings are the property of Stantec. Reproduction or use for any purpose other than that authorized by Stantec is forbidden.

Consultants

Legend

AREAS OF SOIL COVER SF — SQUARE FEET AC. — ACRES

△ES-SS-1

COVER SYSTEM SURFACE SOIL SAMPLING LOCATIONS

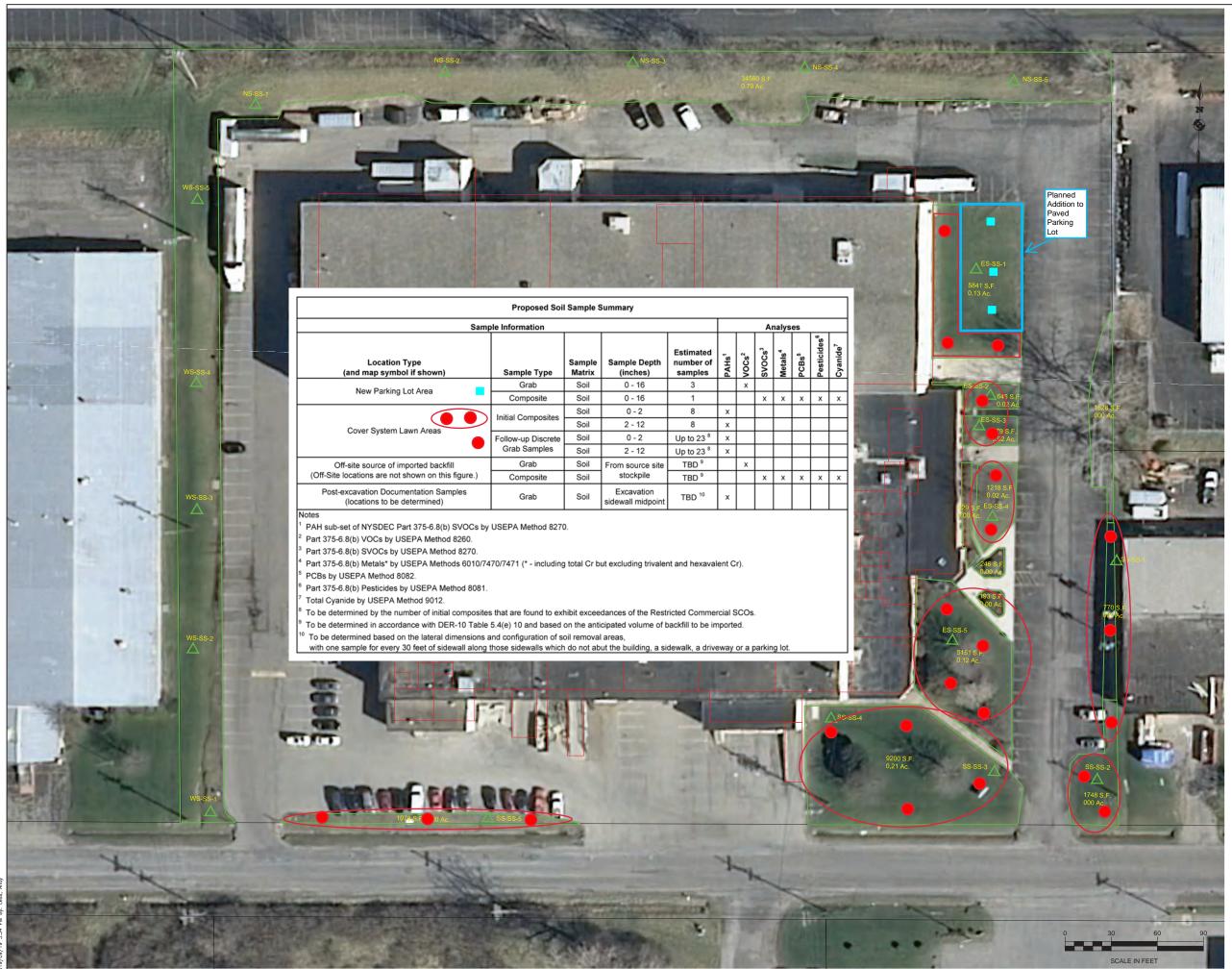
Notes

		=	<u></u>	
Revision		By	Appd.	YY.MM.DD
COVER SYSTEM IRM WORK PLAN ISSUED		By	MPS Appd.	2020.08 YY.MM.DD
File Name: Permit-Seal	APL Dwn.	TW Chkd.	TW Dsgn.	2014.10 YY.MM.DD

Client/Project

FORMER ALLIANCE METAL STAMPING & FABRICATION FACILTY BROWNFIELD CLEANUP PROGRAM SITE # C828101

12 PIXLEY INDUSTRIAL PARKWAY, GATES, NY


Tit

SAMPLE LOCATION PLAN - COVER SYSTEM PRE-DESIGN INVESTIGATION

Project No. 190500647	Scale AS SHOWN	
Drawing No.	Sheet	Revision

FIG. 2

of

61 Commercial Street Rochester , NY

14614 Tel. 585-475-1440 Fax. 585-272-1814 www.stantec.com

Copyright Reserved

pyright received.

The Contractor shall verify and be responsible for all dimensions. DO NOT scale the drawing — any errors or omissions shall be reported to Stantec without delay.

The Copyrights to all designs and drawings are the property of Stantec. Reproduction or use for any purpose other than that authorized by Stantec is forbidden.

Consultants

Legend

AREAS OF SOIL COVER SF — SQUARE FEET AC. — ACRES

△ES-SS

1 COVER SYSTEM SURFACE SOIL SAMPLING LOCATIONS, PRE-DESIGN INVESTIGATION, SEPT. 2019

PROPOSED SURFACE SOIL SAMPLING LOCATIONS AND COMPOSITE SAMPLE GROUP OUTLINE, COVER SYSTEM IRM

•

PROPOSED SOIL REUSE EVALUATION SAMPLING LOCATIONS, NEW PARKING AREA

Note

Client/Project

FORMER ALLIANCE METAL STAMPING & FABRICATION FACILTY BROWNFIELD CLEANUP PROGRAM SITE # C828101

12 PIXLEY INDUSTRIAL PARKWAY, GATES, NY COVER SYSTEM IRM WORK PLAN

Title

SITE PLAN SHOWING PROPOSED COVER SYSTEM SAMPLE LOCATIONS

Project No. Scale
190500647 AS SHOWN

FIG. 3

of

ORIGINAL SHEET ... ANSI D

TABLES

Table 1
Summary of Soil Sample Analysis Results, Cover System Pre-Design Investigation Former AMSF Facility BCP Site (C828101)
12 Pixley Industrial Parkway, Gates, New York

			1	EAST SIDE	SAMPLES			NORTH SID	E SAMPLES	
Sample Location			ES-SS-1	ES-SS-2	Composite of: ES-S	SS-1, -2, -3, -4 and -5	NS-SS-1	NS-SS-4	Composite of: NS-	SS-1, -2, -3, -4 and -5
Sample Date			13-Sep-19	13-Sep-19	13-Sep-19	13-Sep-19	13-Sep-19	13-Sep-19	13-Sep-19	13-Sep-19
Sample ID			AMSF-CS-ES-SS-G1	AMSF-CS-ES-SS-G2	AMSF-CS-ES-SS-C1	AMSF-CS-ES-SS-C2	AMSF-CS-NS-SS-G1	AMSF-CS-NS-SS-G2	AMSF-CS-NS-SS-C1	AMSF-CS-NS-SS-C2
Sample Depth			2 - 6 in	2 - 6 in	0 - 2 in	2 - 12 in	2 - 6 in	2 - 6 in	0 - 2 in	2 - 12 in
Sampling Company			STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC
Laboratory			TALBU	TALBU	TALBU	TALBU	TALBU	TALBU	TALBU	TALBU
Laboratory Work Order Laboratory Sample ID			480-159204-1 480-159204-9	480-159204-1 480-159204-10	480-159204-1 480-159204-11	480-159204-1 480-159204-14	480-159204-1 480-159204-15	480-159204-1 480-159204-16	480-159204-1 480-159204-17	480-159204-1 480-159204-18
Sample Type	Units	NYSDEC-Part 375	460-139204-9	400-139204-10	400-139204-11	400-139204-14	400-139204-13	460-139204-10	400-139204-17	400-139204-10
General Chemistry	00		1							
·			1			I		T		
Cyanide	mg/kg	27 _i ^A	-	-	1.2 U F1*	1.1 U F1*	-	-	1.0 U *	1.1 U
Metals										
Aluminum	mg/kg	n/v	-	-	13,500	14,800	-	-	9,170	9,310
Antimony	mg/kg	n/v	-	-	18.2 UJ	16.2 UJ	-	-	16.6 U	15.8 U
Arsenic	mg/kg	16 ^A	-	-	3.0	3.0	-	-	2.8	2.6
Barium	mg/kg	400 ^A	-	-	61.9 J	65.1 J	-	-	43.7	46.0
Beryllium Cadmium	mg/kg	590 ^A 9.3 ^A	-	-	0.51 0.24 U	0.53 0.22 U	-	-	0.37 0.22 U	0.39 0.21 U
Calcium	mg/kg mg/kg	9.3° n/v	-	•	9,210 F2F1	10,000	-	-	35,700	56,100
Chromium	mg/kg	1,500, ^A		-	16.5	17.6			12.3	12.8
Cobalt	mg/kg	1,500 _i		•	6.5	6.9	1 [5.4	5.4
Copper	mg/kg	270 ^A		-	11.2	8.6	1 -]	9.5	9.3
Iron	mg/kg	n/v	_	-	15,800	16,700	_	_	13,200	12,700
Lead	mg/kg	1,000 ^A	-	-	13.5	14.9	_	-	10.9	7.7
Magnesium	mg/kg	n/v	-	-	4,830 J	7,250 J	_	-	13,100	19,800 ^A
Manganese	mg/kg	n/v	-	-	404 B	434 BF2	-	-	332 B	340 B
Mercury	mg/kg	2.8 _k ^A	-	-	0.041	0.041	-	-	0.023 U	0.021 U
Nickel	mg/kg	310 ^A	-	-	13.7	13.8	-	-	11.8	11.9
Potassium	mg/kg	n/v	-	-	2,460 J	2,310 J	-	-	2,530	2,620
Selenium	mg/kg	1,500 ^A	-	-	4.8 U	4.3 U	-	-	4.4 U	4.2 U
Silver	mg/kg	1,500 ^A	-	-	0.73 U	0.65 U	-	-	0.66 U	0.63 U
Sodium	mg/kg	n/v	-	-	170 U	151 U	-	-	155 U	183
Thallium	mg/kg	n/v	-	-	7.3 U	6.5 U	-	-	6.6 U	6.3 U
Vanadium	mg/kg	n/v	-	-	25.9	28.0	-	-	20.2	21.2
Zinc Pesticides	mg/kg	n/v	-	-	52.4	52.2	-	-	34.9	29.4
Aldrin		A	1		0.00011	0.019 U	1	ı	0.00011	0.040.11
	mg/kg	0.68 ^A	-	-	0.020 U 0.020 U	0.019 U	-	-	0.036 U 0.036 U	0.018 U 0.018 U
BHC, alpha- BHC, beta-	mg/kg mg/kg	3.4 ^A 3 ^A	-	•	0.020 U	0.019 U	-	-	0.036 U	0.018 U
			_	•			_	-		0.018 U
BHC, delta-	mg/kg	500 _c ^A	-	•	0.020 U F2	0.019 U	-	-	0.036 U	
Camphechlor (Toxaphene)	mg/kg	500 _c ^A	-	-	0.20 U	0.19 U	-	-	0.36 U	0.18 U
Chlordane, alpha-	mg/kg	24 ^A	-	-	0.020 U	0.019 U	-	-	0.036 U	0.018 U
Chlordane, trans- (gamma-Chlordane) DDD (p,p'-DDD)	mg/kg	n/v 92 ^A	-	-	0.020 U 0.020 U	0.019 U 0.019 U	-	-	0.036 U 0.036 U	0.018 U 0.018 U
DDE (p,p'-DDE)	mg/kg mg/kg	62 ^A	-	•	0.020 U	0.019 U	-	-	0.036 U	0.018 U
DDT (p,p'-DDT)	mg/kg	62 47 ^A		-	0.020 U F2F1	0.019 U			0.036 U	0.018 U
Dieldrin	mg/kg	1.4 ^A			0.020 U	0.019 U			0.036 U	0.018 U
Endosulfan I	mg/kg	200 _i ^A		-	0.020 U	0.019 U	_	_	0.036 U	0.018 U
		, , , , , , , , , , , , , , , , , , ,	_	•			_	-		
Endosulfan II	mg/kg	200 _j ^A	_	-	0.020 U	0.019 U	1 -	_	0.036 U	0.018 U
Endosulfan Sulfate	mg/kg	200 _j ^A	-	-	0.020 U	0.019 U	-	-	0.036 U	0.018 U
Endrin	mg/kg	89 ^A	-	-	0.020 U	0.019 U	-	-	0.036 U	0.018 U
Endrin Aldehyde	mg/kg	500 _c ^A	-	-	0.020 U F1	0.019 U	-	-	0.036 U	0.018 U
Endrin Ketone	mg/kg	500 _c ^A	-	-	0.020 U	0.019 U	-	-	0.036 U	0.018 U
Heptachlor	mg/kg	15 ^A	-	-	0.020 U	0.019 U	-	-	0.036 U	0.018 U
Heptachlor Epoxide	mg/kg	500 _c ^A	-	-	0.020 U	0.019 U	-	-	0.036 U	0.018 U
Lindane (Hexachlorocyclohexane, gamma)	mg/kg	9.2 ^A	-	-	0.020 U F2	0.019 U	-	-	0.036 U	0.018 U
Methoxychlor (4,4'-Methoxychlor)	mg/kg	500 _c ^A	-	-	0.020 U F2	0.019 U	-	-	0.036 U	0.018 U
Polychlorinated Biphenyls										
Aroclor 1016	mg/kg	A o	-	-	0.23 U	0.21 U	-	-	0.24 U	0.24 U
Aroclor 1221	mg/kg	A	_	-	0.23 U	0.21 U	_	_	0.24 U	0.24 U
Aroclor 1232	mg/kg	A	_	-	0.23 U	0.21 U	_	_	0.24 U	0.24 U
Aroclor 1242	mg/kg	o A	_	_	0.23 U	0.21 U		_	0.24 U	0.24 U
		o A		•			1			
Aroclor 1248	mg/kg	0 A	_	-	0.23 U	0.21 U	1 -	_	0.24 U	0.24 U
Aroclor 1254	mg/kg	0	-	-	0.23 U	0.21 U	-	-	0.24 U	0.24 U
Aroclor 1260	mg/kg	0	-	-	0.23 U	0.21 U	-	-	0.24 U	0.24 U
Aroclor 1262	mg/kg	o .	-	-	0.23 U	0.21 U	-	-	0.24 U	0.24 U
Aroclor 1268	mg/kg	A 0	-	-	0.23 U	0.21 U	-	-	0.24 U	0.24 U
Polychlorinated Biphenyls (PCBs)	mg/kg	1 ^A	I -	-	ND	ND	-	-	ND	ND

Table 1
Summary of Soil Sample Analysis Results, Cover System Pre-Design Investigation Former AMSF Facility BCP Site (C828101)
12 Pixley Industrial Parkway, Gates, New York

	EAST SIDE SAMPLES					ĺ	NORTH SIDE SAMPLES				
Sample Location			ES-SS-1	ES-SS-2	Composite of: ES-S	SS-1, -2, -3, -4 and -5	NS-SS-1	NS-SS-4	Composite of: NS-	SS-1, -2, -3, -4 and -5	
Sample Date			13-Sep-19	13-Sep-19	13-Sep-19	13-Sep-19	13-Sep-19	13-Sep-19	13-Sep-19	13-Sep-19	
Sample ID			AMSF-CS-ES-SS-G1	AMSF-CS-ES-SS-G2	AMSF-CS-ES-SS-C1	AMSF-CS-ES-SS-C2	AMSF-CS-NS-SS-G1	AMSF-CS-NS-SS-G2	AMSF-CS-NS-SS-C1	AMSF-CS-NS-SS-C2	
Sample Depth			2 - 6 in	2 - 6 in	0 - 2 in	2 - 12 in	2 - 6 in	2 - 6 in	0 - 2 in	2 - 12 in	
Sampling Company			STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	
Laboratory Laboratory Work Order			TALBU 480-159204-1	TALBU 480-159204-1	TALBU 480-159204-1	TALBU 480-159204-1	TALBU 480-159204-1	TALBU 480-159204-1	TALBU 480-159204-1	TALBU 480-159204-1	
Laboratory Work Order Laboratory Sample ID			480-159204-9	480-159204-10	480-159204-11	480-159204-14	480-159204-15	480-159204-16	480-159204-17	480-159204-18	
Sample Type	Units	NYSDEC-Part 375			100 100201 11		100 100201 10	.00 .00200		100 100201 10	
Semi-Volatile Organic Compounds		•		•				•	•		
Acenaphthene	mg/kg	500 _c ^A	_	_	0.97 U	0.95 U	_	_	0.91 U	0.18 U	
Acenaphthylene	mg/kg	500 _c ^A	_	_	0.97 U	0.95 U	_	_	0.91 U	0.18 U	
Acetophenone	mg/kg	n/v	_	-	0.97 U	0.95 U	_	-	0.91 U	0.18 U	
Anthracene	mg/kg	500 _c ^A	_	-	0.97 U F2F1	0.95 U	_	-	0.91 U	0.18 U	
Atrazine	mg/kg	n/v	-	-	0.97 U	0.95 U	-	-	0.91 U	0.18 U	
Benzaldehyde	mg/kg	n/v	-	-	0.97 U	0.95 U	-	-	0.91 U	0.18 U	
Benzo(a)anthracene	mg/kg	5.6 ^A	-	-	2.3 J	1.2	-	-	0.91 U	0.29	
Benzo(a)pyrene	mg/kg	1 ^A	-	-	2.3 J ^A	1.3 ^A	-	-	0.91 U	0.36	
Benzo(b)fluoranthene	mg/kg	5.6 ^A	-	-	3.3 F2	1.6	-	-	1.2	0.51	
Benzo(g,h,i)perylene	mg/kg	500 _c ^A	-	-	1.7 F2	0.95 U	-	-	0.91 U	0.32	
Benzo(k)fluoranthene	mg/kg	56 ^A	-	-	1.2 F2	0.95 U	-	-	0.91 U	0.27	
Biphenyl	mg/kg	n/v	-	-	0.97 U	0.95 U	-	-	0.91 U	0.18 U	
Bis(2-Chloroethoxy)methane	mg/kg	500 _c ^A	-	-	0.97 U F2	0.95 U	-	-	0.91 U	0.18 U	
Bis(2-Chloroethyl)ether	mg/kg	500 _c ^A	-	-	0.97 U	0.95 U	-	-	0.91 U	0.18 U	
Bis(2-Chloroisopropyl)ether (2,2-oxybis(1-Chloropropane))	mg/kg	500 _c ^A	-	-	0.97 U	0.95 U	_	-	0.91 U	0.18 U	
Bis(2-Ethylhexyl)phthalate (DEHP)	mg/kg	500 _c ^A	_	-	0.97 U	0.95 U	_	_	0.91 U	0.18 U	
Bromophenyl Phenyl Ether, 4-	mg/kg	500 _c ^A	_	_	0.97 U	0.95 U	_	_	0.91 U	0.18 U	
Butyl Benzyl Phthalate	mg/kg	500 _c ^A	_	_	0.97 U	0.95 U	_	_	0.91 U	0.18 U	
Caprolactam	mg/kg	n/v	_	_	0.97 U	0.95 U	_	_	0.91 U	0.18 U	
Carbazole	mg/kg	500 _c ^A	_	-	0.97 U F1	0.95 U	_	-	0.91 U	0.18 U	
Chloro-3-methyl phenol, 4-	mg/kg	500 _c ^A	_	_	0.97 U	0.95 U	_	_	0.91 U	0.18 U	
Chloroaniline, 4-	mg/kg	500 _c ^A	_	_	0.97 U	0.95 U	_	_	0.91 U	0.18 U	
Chloronaphthalene, 2-	mg/kg	500 _c ^A	_	_	0.97 U	0.95 U	_	_	0.91 U	0.18 U	
Chlorophenol, 2- (ortho-Chlorophenol)		500 _c A	_	_	0.97 U	0.95 U	_	_	0.91 U	0.18 U	
	mg/kg		-	-			_	-			
Chlorophenyl Phenyl Ether, 4-	mg/kg	500 _c ^A	-	-	0.97 U	0.95 U	-	-	0.91 U	0.18 U	
Chrysene	mg/kg	56 ^A	-	-	2.6 J	1.6	-	-	0.95	0.44	
Cresol, o- (Methylphenol, 2-)	mg/kg	500 _c ^A	-	-	0.97 U	0.95 U	-	-	0.91 U	0.18 U	
Cresol, p- (Methylphenol, 4-)	mg/kg	500 _c ^A	-	-	1.9 U	1.9 U	-	-	1.8 U	0.36 U	
Dibenzo(a,h)anthracene	mg/kg	0.56 ^A	-	-	0.97 U	0.95 U	-	-	0.91 U	0.18 U	
Dibenzofuran	mg/kg	350 ^A 500 _c ^A	-	-	0.97 U	0.95 U	-	-	0.91 U	0.18 U	
Dibutyl Phthalate (DBP)	mg/kg		-	-	0.97 U	0.95 U	-	-	0.91 U	0.18 U	
Dichlorobenzidine, 3,3'-	mg/kg	500 _c ^A	-	-	0.97 U	0.95 U	-	-	0.91 U	0.18 U	
Dichlorophenol, 2,4-	mg/kg	500 _c ^A	-	-	0.97 U	0.95 U	-	-	0.91 U	0.18 U	
Diethyl Phthalate	mg/kg	500 _c ^A	-	-	0.97 U	0.95 U	-	-	0.91 U	0.18 U	
Dimethyl Phthalate	mg/kg	500 _c ^A	-	-	0.97 U	0.95 U	-	-	0.91 U	0.18 U	
Dimethylphenol, 2,4-	mg/kg	500 _c ^A	-	-	0.97 U	0.95 U	-	-	0.91 U	0.18 U	
Dinitro-o-cresol, 4,6-	mg/kg	500 _c ^A	-	-	1.9 U	1.9 U	-	-	1.8 U	0.36 U	
Dinitrophenol, 2,4-	mg/kg	500 _c ^A	-	-	1.9 U	1.9 U	-	-	1.8 U	0.36 U	
Dinitrotoluene, 2,4-	mg/kg	500 _c ^A	-	-	0.97 U	0.95 U	-	-	0.91 U	0.18 U	
Dinitrotoluene, 2,6-	mg/kg	500 _c ^A	-	-	0.97 U	0.95 U	-	-	0.91 U	0.18 U	
Di-n-Octyl phthalate	mg/kg	500 _c ^A	-	-	0.97 U F1	0.95 U	-	-	0.91 U	0.18 U	
Fluoranthene	mg/kg	500 _c ^A	-	-	5.5 J	3.1	-	-	1.8	0.79	
Fluorene	mg/kg	500 _c ^A	-	-	0.97 U	0.95 U	_	-	0.91 U	0.18 U	
Hexachlorobenzene	mg/kg	6 ^A	-	-	0.97 U	0.95 U	_	-	0.91 U	0.18 U	
Hexachlorobutadiene (Hexachloro-1,3-butadiene)	mg/kg	500 _c ^A	-	-	0.97 U	0.95 U	_	-	0.91 U	0.18 U	
Hexachlorocyclopentadiene	mg/kg	500 _c ^A	_	_	0.97 U	0.95 U	_	_	0.91 U	0.18 U	
Hexachloroethane	mg/kg	500 _c ^A	_	_	0.97 U	0.95 U	<u> </u>	_	0.91 U	0.18 U	
Indeno(1,2,3-cd)pyrene	mg/kg	5.6 ^A			1.3 J	0.95 U	1 -		0.91 U	0.18 0	
Isophorone	mg/kg	5.6 500 _c ^A		_	0.97 U	0.95 U	1		0.91 U	0.28 0.18 U	
Methylnaphthalene, 2-	mg/kg	500 _c 500 _c ^A	-	-	0.97 U	0.95 U	Ī	-	0.91 U	0.18 U	
•			-	-			-	-			
Naphthalene	mg/kg	500 _c ^A	-	-	0.97 U	0.95 U	-	-	0.91 U	0.18 U	
Nitroaniline, 2-	mg/kg	500 _c ^A	-	-	1.9 U	1.9 U	-	-	1.8 U	0.36 U	
Nitroaniline, 3-	mg/kg	500 _c ^A	-	-	1.9 U	1.9 U	-	-	1.8 U	0.36 U	
Nitroaniline, 4-	mg/kg	500 _c ^A	-	-	1.9 U	1.9 U	-	-	1.8 U	0.36 U	
Nitrobenzene	mg/kg	500 _c ^A	-	-	0.97 U	0.95 U	-	-	0.91 U	0.18 U	
Nitrophenol, 2-	mg/kg	500 _c ^A	-	-	0.97 U	0.95 U	-	-	0.91 U	0.18 U	
Nitrophenol, 4-	mg/kg	500 _c ^A	-	-	1.9 U	1.9 U	-	-	1.8 U	0.36 U	
N-Nitrosodi-n-Propylamine	mg/kg	500 _c ^A	-	-	0.97 U	0.95 U	-	-	0.91 U	0.18 U	
n-Nitrosodiphenylamine	mg/kg	500 _c ^A	-	-	0.97 U	0.95 U	-	-	0.91 U	0.18 U	
Pentachlorophenol	mg/kg	6.7 ^A	-	-	1.9 U	1.9 U	-	-	1.8 U	0.36 U	
Phenanthrene	mg/kg	500 _c ^A	-	-	3.1 J	1.8	-	-	0.91 U	0.27	
Phenol	mg/kg	500 _c ^A	-	-	0.97 U	0.95 U	-	-	0.91 U	0.18 U	
Pyrene	mg/kg	500 _c ^A	-	-	4.3 F1	2.4	_	-	1.4	0.60	
Trichlorophenol, 2,4,5-	mg/kg	500 _c ^A	-	-	0.97 U	0.95 U	-	_	0.91 U	0.18 U	
Trichlorophenol, 2,4,6-	mg/kg	500 ₆ ^A	_	_	0.97 U	0.95 U	_	_	0.91 U	0.18 U	
monorophonol, 2,7,0-	my/kg	JUU _C	<u> </u>	<u> </u>	0.87 0	0.55 0	<u> </u>	<u> </u>	0.810	0.100	

190500647 Page 2 of 6

Table 1
Summary of Soil Sample Analysis Results, Cover System Pre-Design Investigation Former AMSF Facility BCP Site (C828101)
12 Pixley Industrial Parkway, Gates, New York

				EAST SIDE	SAMPLES			NORTH SID	E SAMPLES	
Sample Location			ES-SS-1	ES-SS-2	Composite of: ES-	SS-1, -2, -3, -4 and -5	NS-SS-1	NS-SS-4	Composite of: NS-	SS-1, -2, -3, -4 and -5
Sample Date			13-Sep-19	13-Sep-19	13-Sep-19	13-Sep-19	13-Sep-19	13-Sep-19	13-Sep-19	13-Sep-19
Sample ID			AMSF-CS-ES-SS-G1	AMSF-CS-ES-SS-G2	AMSF-CS-ES-SS-C1	AMSF-CS-ES-SS-C2	AMSF-CS-NS-SS-G1	AMSF-CS-NS-SS-G2	AMSF-CS-NS-SS-C1	
Sample Depth			2 - 6 in	2 - 6 in	0 - 2 in	2 - 12 in	2 - 6 in	2 - 6 in	0 - 2 in	2 - 12 in
Sampling Company			STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC
Laboratory Laboratory Work Order			TALBU 480-159204-1	TALBU 480-159204-1	TALBU 480-159204-1	TALBU 480-159204-1	TALBU 480-159204-1	TALBU 480-159204-1	TALBU 480-159204-1	TALBU 480-159204-1
Laboratory Sample ID			480-159204-9	480-159204-10	480-159204-11	480-159204-14	480-159204-15	480-159204-16	480-159204-17	480-159204-18
Sample Type	Units	NYSDEC-Part 375								
Volatile Organic Compounds										
Acetone	mg/kg	500 _c ^A	0.029 UJ	0.027 U	-	-	0.026 U	0.026 U	-	-
Benzene	mg/kg	44 ^A	0.0059 U	0.0054 U	-	-	0.0053 U	0.0052 U	-	-
Bromodichloromethane	mg/kg	500 _c ^A	0.0059 U	0.0054 U	-	-	0.0053 U	0.0052 U	-	-
Bromoform (Tribromomethane)	mg/kg	500 _c ^A	0.0059 U *	0.0054 U *	-	-	0.0053 U *	0.0052 U *	-	-
Bromomethane (Methyl bromide)	mg/kg	500 _c ^A	0.0059 U	0.0054 U	-	-	0.0053 U	0.0052 U	-	-
Carbon Disulfide	mg/kg	500°A	0.0059 U	0.0054 U	-	-	0.0053 U	0.0052 U	-	-
Carbon Tetrachloride (Tetrachloromethane)	mg/kg	22 ^A	0.0059 U	0.0054 U	-	-	0.0053 U	0.0052 U	-	-
Chlorobenzene (Monochlorobenzene)	mg/kg	500 _c ^A	0.0059 U	0.0054 U	-	_	0.0053 U	0.0052 U	-	-
Chloroethane (Ethyl Chloride)	mg/kg	500 _c ^A	0.0059 U	0.0054 U	-	_	0.0053 U	0.0052 U	-	-
Chloroform (Trichloromethane)	mg/kg	350 ^A	0.0059 U	0.0054 U	-	_	0.0053 U	0.0052 U	-	-
Chloromethane	mg/kg	500 _c ^A	0.0059 U	0.0054 U	-	_	0.0053 U	0.0052 U	-	-
Cyclohexane	mg/kg	500 _c ^A	0.0059 U	0.0054 U	-	-	0.0053 U	0.0052 U	-	-
Dibromo-3-Chloropropane, 1,2- (DBCP)	mg/kg	500 _c ^A	0.0059 U	0.0054 U	-	-	0.0053 U	0.0052 U	-	-
Dibromochloromethane	mg/kg	500 _c ^A	0.0059 U *	0.0054 U *	-	-	0.0053 U *	0.0052 U *	-	-
Dichlorobenzene, 1,2-	mg/kg	500 _c ^A	0.0059 U	0.0054 U	-	_	0.0053 U	0.0052 U	-	_
Dichlorobenzene, 1,3-	mg/kg	280 ^A	0.0059 U	0.0054 U	_	_	0.0053 U	0.0052 U	_	_
Dichlorobenzene, 1,4-	mg/kg	130 ^A	0.0059 U	0.0054 U	-	-	0.0053 U	0.0052 U	-	-
Dichlorodifluoromethane (Freon 12)	mg/kg	500 _c ^A	0.0059 U	0.0054 U	-	-	0.0053 U	0.0052 U	-	-
Dichloroethane, 1,1-	mg/kg	240 ^A	0.0059 U	0.0054 U	-	-	0.0053 U	0.0052 U	-	-
Dichloroethane, 1,2-	mg/kg	30 ^A	0.0059 U	0.0054 U	-	-	0.0053 U	0.0052 U	-	-
Dichloroethene, 1,1-	mg/kg	500 _c ^A	0.0059 U	0.0054 U	-	-	0.0053 U	0.0052 U	-	-
Dichloroethene, cis-1,2-	mg/kg	500 _c ^A	0.0059 U	0.0054 U	-	-	0.0053 U	0.0052 U	-	-
Dichloroethene, trans-1,2-	mg/kg	500 _c ^A	0.0059 U	0.0054 U	-	-	0.0053 U	0.0052 U	-	-
Dichloropropane, 1,2-	mg/kg	500 _c ^A	0.0059 U	0.0054 U	-	-	0.0053 U	0.0052 U	-	-
Dichloropropene, cis-1,3-	mg/kg	500 _c ^A	0.0059 U F1	0.0054 U	-	-	0.0053 U	0.0052 U	-	-
Dichloropropene, trans-1,3-	mg/kg	500 _c ^A	0.0059 U	0.0054 U	-	-	0.0053 U	0.0052 U	-	-
Ethyl Acetate	mg/kg	n/v	0.0059 U	0.0054 U	-	-	0.0053 U	0.0052 U	-	-
Ethylbenzene	mg/kg	390 ^A	0.0059 U	0.0054 U	-	-	0.0053 U	0.0052 U	-	-
Ethylene Dibromide (Dibromoethane, 1,2-)	mg/kg	500 _c ^A	0.0059 U	0.0054 U	-	-	0.0053 U	0.0052 U	-	-
Hexanone, 2- (Methyl Butyl Ketone)	mg/kg	500 _c ^A	0.029 UJ	0.027 U	-	-	0.026 U	0.026 U	-	-
Isopropylbenzene	mg/kg	500 _c ^A	0.0059 U	0.0054 U	-	-	0.0053 U	0.0052 U	-	-
Methyl Acetate	mg/kg	500 _c ^A	0.029 UJ	0.027 U	-	-	0.026 U	0.026 U	-	-
Methyl Ethyl Ketone (MEK) (2-Butanone)	mg/kg	500 _c ^A	0.029 UJ	0.027 U	-	-	0.026 U	0.026 U	-	-
Methyl Isobutyl Ketone (MIBK)	mg/kg	500 _c ^A	0.029 U F1	0.027 U	-	-	0.026 U	0.026 U	-	-
Methyl tert-butyl ether (MTBE)	mg/kg	500 _c ^A	0.0059 U	0.0054 U	-	-	0.0053 U	0.0052 U	-	-
Methylcyclohexane	mg/kg	500 _c ^A	0.0059 U	0.0054 U	-	-	0.0053 U	0.0052 U	-	-
Methylene Chloride (Dichloromethane)	mg/kg	500 _c ^A	0.0059 U	0.0054 U	-	-	0.0053 U	0.0052 U	-	-
Styrene	mg/kg	500 _c ^A	0.0059 U	0.0054 U	-	-	0.0053 U	0.0052 U	-	-
Tetrachloroethane, 1,1,2,2-	mg/kg	500 _c ^A	0.0059 U F1	0.0054 U	-	-	0.0053 U	0.0052 U	-	-
Tetrachloroethene (PCE)	mg/kg	150 ^A	0.0059 U	0.0054 U	-	-	0.0053 U	0.0052 U	-	-
Toluene	mg/kg	500 _c ^A	0.0059 U	0.0054 U	-	-	0.0053 U	0.0052 U	-	-
Trichlorobenzene, 1,2,4-	mg/kg	500 _c ^A	0.0059 UJ	0.0054 U	-	-	0.0053 U	0.0052 U	-	-
Trichloroethane, 1,1,1-	mg/kg	500 _c ^A	0.0059 U	0.0054 U	-	-	0.0053 U	0.0052 U	-	-
Trichloroethane, 1,1,2-	mg/kg	500 _c ^A	0.0059 U	0.0054 U	-	-	0.0053 U	0.0052 U	-	-
Trichloroethene (TCE)	mg/kg	200 ^A	0.0059 U	0.0054 U	-	-	0.0053 U	0.0052 U	-	-
Trichlorofluoromethane (Freon 11)	mg/kg	500 _c ^A	0.0059 U	0.0054 U	-	-	0.0053 U	0.0052 U	-	-
Trichlorotrifluoroethane (Freon 113)	mg/kg	500 _c ^A	0.0059 U	0.0054 U	-	-	0.0053 U	0.0052 U	-	-
Vinyl Chloride	mg/kg	13 ^A	0.0059 U	0.0054 U	-	-	0.0053 U	0.0052 U	-	-
Xylenes, Total	mg/kg	500 _c ^A	0.012 U	0.011 U	-	<u> </u>	0.011 U	0.010 U		-

Table 1
Summary of Soil Sample Analysis Results, Cover System Pre-Design Investigation
Former AMSF Facility BCP Site (C828101)
12 Pixley Industrial Parkway, Gates, New York

State 1965		Ĩ	l	İ		SOUTH SIDI	E SAMDI ES			ĺ	WEST SIDE	SAMDIFS	
Second	Sample Location			99.99.2	99.	· ·		site of: \$5-\$5-1 -2 -3	-4 and -5	we ee a	i .	•	SS_1 _2 _3 _4 and _5
Samuel Sa	-						-					•	
Second S	Sample Depth												
March Marc	Sampling Company			STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC
	Laboratory												
Section Sect	Laboratory Work Order												
Second S		1		480-159204-2	480-159204-1		480-159204-3	480-159204-4		480-159204-19	480-159204-20	480-159204-21	480-159204-22
Section Sect		Units	NYSDEC-Part 375			Field Duplicate			Field Duplicate				
Model	General Chemistry												
American Professor Profe	Cyanide	mg/kg	27 _i ^A	-	-	-	1.1 U *	1.1 U *	1.1 U *	-	-	1.2 U	1.1 U
According Marging Ma	Metals												
Montest March Ma	Aluminum	mg/kg	n/v	-	-	-	14,500	16,100	14,600	-	-	14,000	16,100
The state	Antimony			-	-	-				-	-		
Section	Arsenic			-	-	-				-	-		
Carleting	Barium			-	-	-				-	-		
Calcum	-			-	-	-				-	-		
Circums				-	-	-				-	-		
Colabil				-	-	-				-	-		
Compare				· .	-	<u>-</u>				_	_		
Inches				· .	-	<u> </u>				_	_		
Lacard organic 1,000	• •				-								
Page]			
Marchen Property					_					_	_		
Name					_					_	_	· ·	
Node m/No 310" - - 10.0 17.4 14.8 - 10.0 19.4 Note m/No m/No				-	-	_				_	_		
Procession	Nickel			_	-	_				-	_		
Secretary 1 1 1 1 1 1 1 1 1	Potassium			-	-	_				-	-		
Silver	Selenium			-	-	-	4.7 U			-	-		
Traillum mg/mg n/v 7.1 U 6.7 U 6.9 U 7.3 U 7.1 U 6.7 U 6.9 U 7.3 U 7.1 U 7.1 U 6.7 U 6.9 U 7.3 U 7.1 U 7.1 U 6.7 U 6.9 U 7.3 U 7.1 U 7.1 U 7.2 U 7.2 U 7.3 U 7.1 U 7.2 U 7.2 U 7.3 U 7.1 U 7.3 U 7.3 U 7.1 U 7.3	Silver	mg/kg		-	-	-	0.71 U	0.67 U	0.69 U	-	-	0.73 U	0.71 U
Varietim Margin	Sodium	mg/kg	n/v	-	-	-	191			-	-		
Part	Thallium			-	-	-				-	-		
Pesticides				-	-	-				-	-		
Albert		mg/kg	n/v	-	-	-	101	88.9	/0.1	-	-	54.3	52.6
BBC, Apha- mg/kg		1 0	^	1			0.04011	0.040.11	0.040.11	ı	ı	0.000011	0.0040.11
PRC, Seles				-	-	-				-	-		
Section mg/lg 500,				-	-	-				-	-		
Camphenhor Troatphenhor Troatp				-	-	-				-	-		
Chinorfane, Jepha- Diff (p.2-DDF)				-	-	-				-	-		
Chilodane, frame (garms-Chilordane) mg/kg n/v - 0.018 U 0.018 U 0.018 U 0.0020 U 0.0019 U 0.0018 U 0.0018 U 0.0018 U 0.0020 U 0.0019 U 0.0018 U 0.0020 U 0.0019 U 0.0018 U 0.0020 U 0.0019 U 0.0018 U 0.0020 U 0.0019 U 0.0018 U 0.0018 U 0.0018 U 0.0018 U 0.0018 U 0.0020 U 0.0019 U 0.0018 U 0.0018 U 0.0018 U 0.0020 U 0.0019 U 0.0018 U 0.0018 U 0.0018 U 0.0020 U 0.0019 U 0.0018 U 0.0018 U 0.0018 U 0.0020 U 0.0019 U 0.0018 U 0.0018 U 0.0018 U 0.0020 U 0.0019 U 0.0018 U 0.0018 U 0.0018 U 0.0020 U 0.0019 U 0.0018 U 0.0018 U 0.0020 U 0.0019 U 0.0018 U 0.0018 U 0.0018 U 0.0020 U 0.0019 U 0.0018 U 0.0018 U 0.0018 U 0.0020 U 0.0019 U 0.0018 U 0.0018 U 0.0018 U 0.0020 U 0.0019 U 0.0018 U 0.0018 U 0.0018 U 0.0020 U 0.0019 U 0.0018 U 0.0018 U 0.0018 U 0.0020 U 0.0019 U 0.0018 U 0.0018 U 0.0018 U 0.0020 U 0.0019 U 0.0018 U 0.0018 U 0.0018 U 0.0020 U 0.0019 U 0.0018 U 0.0018 U 0.0018 U 0.0020 U 0.0019 U 0.0018 U 0.0018 U 0.0018 U 0.0018 U 0.0018 U 0.0020 U 0.0019 U 0.0018 U			7	-	-	-				-	-		
DDD (p.p-DDD)	· ·			-	-	-				-	-		
DEE (pp.) - DOES mg/kg	· · · · · · · · · · · · · · · · · · ·			-	-	-				-	-		
DOT (p.POT)					-	_							
Dieldrin					_	_							
Endosulfan I mg/kg 200/h 0.019 U 0.018 U 0.018 U 0.0020 U 0.0019 U 0.018 U 0.018 U 0.0020 U 0.0019 U 0.018 U 0.018 U 0.018 U 0.0020 U 0.0019 U 0.019 U 0.018 U 0.018 U 0.0020 U 0.0019 U 0.019 U 0.018 U 0.018 U 0.0020 U 0.0019 U 0.019 U 0.018 U 0.018 U 0.018 U 0.0020 U 0.0019 U 0.018 U 0.018 U 0.018 U 0.0020 U 0.0019 U 0.018 U 0.018 U 0.018 U 0.0020 U 0.0019 U 0.018 U 0.018 U 0.018 U 0.0020 U 0.0019 U 0.018 U 0.018 U 0.018 U 0.0020 U 0.0019 U 0.018 U 0.0020 U 0.0019 U 0.018 U 0.0020 U 0.0019 U 0.0019 U 0.0018 U 0.018 U 0.018 U 0.018 U 0.018 U 0.018 U 0.018 U 0.0020 U 0.0019 U 0.0019 U 0.0019 U 0.0018 U 0.018 U 0.018 U 0.018 U 0.018 U 0.0020 U 0.0019					_	_							
Endosulfan I mg/kg 200,				_	-	_				_	_		
Endosulfan Sulfate			*.	-	•	-				-	-		
Endrin Mehrode mg/kg 88			*.		-	<u>-</u>				_	_		
Endrin Aldehyde			,	· .	-	-				-	-		
Endrin Ketone				· .	-	-				-	-		
Heptachior mg/kg 15	•			· -	-	-				-	-		
Heptachlor Epoxide	Endrin Ketone			· .	-	-				-	-		
Lindane (Hexachlorocyclohexane, gamma) mg/kg 9.2 0.019 U 0.018 U 0.018 U 0.018 U 0.0020 U 0.0019 U 0.0019 U 0.018 U 0.018 U 0.0020 U 0.0019 U 0.0019 U 0.0019 U 0.0019 U 0.018 U 0.018 U 0.0020 U 0.0019 U 0.0019 U 0.0019 U 0.0019 U 0.0019 U 0.018 U 0.018 U 0.0020 U 0.0019 U 0.0018 U 0.0020 U 0.0019 U 0.0018 U 0.0019 U	Heptachlor		· .	-	-	-				-	-		
Methoxychlor (4,4*-Methoxychlor) mg/kg 500_c^h - - - 0.019 U 0.018 U 0.018 U - - 0.0020 U 0.0019 U	Heptachlor Epoxide			-	-	-				-	-		
Polychlorinated Biphenyls	Lindane (Hexachlorocyclohexane, gamma)			-	-	-				-	-		
Aroclor 1016	Methoxychlor (4,4'-Methoxychlor)	mg/kg	500 _c ^A	-	-	-	0.019 U	0.018 U	0.018 U	-	-	0.0020 U	0.0019 U
Aroclor 1221	Polychlorinated Biphenyls												
Aroclor 1221	Aroclor 1016	mg/kg	A o	-	=	-	0.27 U	0.25 U	0.28 U	-	-	0.28 U	0.28 U
Aroclor 1232 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1254 Aroclor 1260 Aroclor 1260 Aroclor 1260 Aroclor 1262 Aroclor 1268 Arocl	Aroclor 1221			-	-	-	0.27 U	0.25 U	0.28 U	-	-	0.28 U	0.28 U
Aroclor 1242	Aroclor 1232		A		-	<u>-</u>				_	_		
Aroclor 1248			A		_	_				_	_		
Aroclor 1254			o A] _ [_					_	_		
Aroclor 1260			o A										
Aroclor 1262			0 A	-	-	· .				· .	· .		
Aroclor 1268 mg/kg ^A 0.27 U 0.25 U 0.28 U - 0.28 U 0.28 U			0 A		-	<u>-</u>				_	_		
			0	· .	-	-				-	-		
Polychiorinated Biphenyis (PCBs) mg/kg 1° - - ND ND - - ND ND			0	· .	-	-				-	-		
	Polychlorinated Biphenyls (PCBs)	mg/kg	1 ^A	<u> </u>	-	-	ND	ND ND	ND ND	-	-	ND	ND

Table 1
Summary of Soil Sample Analysis Results, Cover System Pre-Design Investigation Former AMSF Facility BCP Site (C828101)
12 Pixley Industrial Parkway, Gates, New York

				SOUTH SID	E SAMPLES				Company			
Sample Location			SS-SS-2	ss	-SS-5		osite of: SS-SS-1, -2, -3,	-4 and -5	WS-SS-2	i .	1	SS-1, -2, -3, -4 and -5
Sample Date			13-Sep-19	13-Sep-19	13-Sep-19	13-Sep-19	13-Sep-19	13-Sep-19	13-Sep-19	13-Sep-19	13-Sep-19	13-Sep-19
Sample ID			AMSF-CS-SS-SS-G2	AMSF-CS-SS-SS-G1	AMSF-CS-DUP-SS-G1	AMSF-CS-SS-SS-C1	AMSF-CS-SS-SS-C2		AMSF-CS-WS-SS-G1			AMSF-CS-WS-SS-C2
Sample Depth			2 - 6 in	2 - 6 in	2 - 6 in	0 - 2 in	2 - 12 in	2 - 12 in	2 - 6 in			
Sampling Company			STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC			
Laboratory Work Order			TALBU 480-159204-1	TALBU	TALBU 480-159204-1	TALBU	TALBU 480-159204-1	TALBU 480-159204-1	TALBU			
Laboratory Work Order Laboratory Sample ID			480-159204-1	480-159204-1 480-159204-1	480-159204-1	480-159204-1 480-159204-3	480-159204-1	480-159204-8	480-159204-1 480-159204-19			
Sample Type	Units	NYSDEC-Part 375	400 100204 2	400 100204 1	Field Duplicate	400 100204 0	400 100204 4	Field Duplicate	400 100204 10	400 100204 20	400 100204 21	400 100204 22
Semi-Volatile Organic Compounds			•	·					1	•	•	
Acenaphthene	mg/kg	500 _c ^A	_	_	_	2.0 U	0.95 U	0.94 U	_	1 -	0.2111	0.9711
Acenaphthylene	mg/kg	500 _c ^A	_	_	_	2.0 U	0.95 U	0.94 U	_	_		
Acetophenone	mg/kg	n/v				2.0 U	0.95 U	0.94 U				
Anthracene	mg/kg	500 _c ^A	_	_	_	2.0 U	0.95 U	0.94 U	_	_		
Atrazine	mg/kg	n/v	_	-		2.0 U	0.95 U	0.94 U	-	_		
Benzaldehyde	mg/kg	n/v	-	-	_	2.0 U	0.95 U	0.94 U	-	-		
Benzo(a)anthracene	mg/kg	5.6 ^A	-	-	-	3.1	1.3	1.0	-	-		
Benzo(a)pyrene	mg/kg	1 ^A	-	-	-	3.5 ^A	1.4 ^A	1.2 ^A	-	-	0.67	0.97 U
Benzo(b)fluoranthene	mg/kg	5.6 ^A	-	-	_	4.8	2.1	1.6	-	-	0.93	1.1
Benzo(g,h,i)perylene	mg/kg	500 _c ^A	_	-	_	2.4	1.1	0.94 U	-	-	0.57	
Benzo(k)fluoranthene	mg/kg	56 ^A	_	-	_	2.0	0.95 U	0.94 U	-	_		
Biphenyl	mg/kg	n/v	-	-	_	2.0 U	0.95 U	0.94 U	-	-		
Bis(2-Chloroethoxy)methane	mg/kg	500 _c ^A	-	-	-	2.0 U	0.95 U	0.94 U	-	-		
Bis(2-Chloroethyl)ether	mg/kg	500 _c ^A	-	-	_	2.0 U	0.95 U	0.94 U	-	-		0.97 U
Bis(2-Chloroisopropyl)ether (2,2-oxybis(1-Chloropropane))	mg/kg	500 _c ^A	_	_	_	2.0 U	0.95 U	0.94 U	_	_		
Bis(2-Ethylhexyl)phthalate (DEHP)	mg/kg	500 _c ^A	_	-	_	2.0 U	0.95 U	0.94 U	-	_		
Bromophenyl Phenyl Ether, 4-	mg/kg	500 _c ^A		_	_	2.0 U	0.95 U	0.94 U	_	_		
Butyl Benzyl Phthalate	mg/kg	500 _c ^A				2.0 U	0.95 U	0.94 U				
Caprolactam	mg/kg	n/v				2.0 U	0.95 U	0.94 U				
Carbazole	mg/kg	500 _c ^A				2.0 U	0.95 U	0.94 U				
Chloro-3-methyl phenol, 4-	mg/kg	500 _c ^A	_	_	_	2.0 U	0.95 U	0.94 U	_	_		
		500 _c ^A	_	-		2.0 U	0.95 U	0.94 U	-	_		
Chloroaniline, 4-	mg/kg	-	-	-	-				-	-		
Chloronaphthalene, 2-	mg/kg	500 _c ^A	-	-	-	2.0 U	0.95 U	0.94 U	-	-		
Chlorophenol, 2- (ortho-Chlorophenol)	mg/kg	500 _c ^A	-	-	-	2.0 U	0.95 U	0.94 U	-	-		
Chlorophenyl Phenyl Ether, 4-	mg/kg	500 _c ^A	-	-	-	2.0 U	0.95 U	0.94 U	-	-		
Chrysene	mg/kg	56 ^A	-	-	-	4.0	1.5	1.3	-	-		
Cresol, o- (Methylphenol, 2-)	mg/kg	500 _c ^A	-	-	-	2.0 U	0.95 U	0.94 U	-	-		
Cresol, p- (Methylphenol, 4-)	mg/kg	500 _c ^A	-	-	-	3.8 U	1.8 U	1.8 U	-	-		
Dibenzo(a,h)anthracene	mg/kg	0.56 ^A	-	-	-	2.0 U	0.95 U	0.94 U	-	-		
Dibenzofuran	mg/kg	350 ^A	-	-	-	2.0 U	0.95 U	0.94 U	-	-		
Dibutyl Phthalate (DBP)	mg/kg	500 _c ^A	-	-	-	2.0 U	0.95 U	0.94 U	-	-	0.21 U	
Dichlorobenzidine, 3,3'-	mg/kg	500 _c ^A	-	-	-	2.0 U	0.95 U	0.94 U	-	-	0.21 U	0.97 U
Dichlorophenol, 2,4-	mg/kg	500 _c ^A	-	-	-	2.0 U	0.95 U	0.94 U	-	-	0.21 U	0.97 U
Diethyl Phthalate	mg/kg	500 _c ^A	-	-	-	2.0 U	0.95 U	0.94 U	-	-	0.21 U	0.97 U
Dimethyl Phthalate	mg/kg	500 _c ^A	-	-	-	2.0 U	0.95 U	0.94 U	-	-	0.21 U	0.97 U
Dimethylphenol, 2,4-	mg/kg	500 _c ^A	-	-	-	2.0 U	0.95 U	0.94 U	-	-	0.21 U	0.97 U
Dinitro-o-cresol, 4,6-	mg/kg	500 _c ^A	_	-	_	3.8 U	1.8 U	1.8 U	-	-	0.40 U	1.9 U
Dinitrophenol, 2,4-	mg/kg	500 _c ^A	_	_	_	3.8 U	1.8 U	1.8 U	_	_		
Dinitrotoluene, 2,4-	mg/kg	500 _c ^A	_	_	_	2.0 U	0.95 U	0.94 U	_	_		
Dinitrotoluene, 2,6-	mg/kg	500 _c ^A	_	_	_	2.0 U	0.95 U	0.94 U	_	_		
		500 _c		-	_	2.0 U	0.95 U	0.94 U	-	_		
Di-n-Octyl phthalate	mg/kg	-	_	-	_				-	-		
Fluoranthene	mg/kg	500 _c ^A	_	-	-	8.5	3.1	2.6	-	-		
Fluorene	mg/kg	500 _c ^A	_	-	-	2.0 U	0.95 U	0.94 U	-	-		
Hexachlorobenzene	mg/kg	6 ^A	-	-	-	2.0 U	0.95 U	0.94 U	-	-		
Hexachlorobutadiene (Hexachloro-1,3-butadiene)	mg/kg	500 _c ^A	-	-	_	2.0 U	0.95 U	0.94 U	-	-		
Hexachlorocyclopentadiene	mg/kg	500 _c ^A	-	-	-	2.0 U	0.95 U	0.94 U	-	-		
Hexachloroethane	mg/kg	500 _c ^A	-	-	-	2.0 U	0.95 U	0.94 U	-	-		
Indeno(1,2,3-cd)pyrene	mg/kg	5.6 ^A	-	-	-	2.1	0.95 U	0.94 U	-	-		
Isophorone	mg/kg	500 _c ^A	-	-	-	2.0 U	0.95 U	0.94 U	-	-	0.21 U	0.97 U
Methylnaphthalene, 2-	mg/kg	500 _c ^A	-	-	-	2.0 U	0.95 U	0.94 U	-	-	0.21 U	0.97 U
Naphthalene	mg/kg	500 _c ^A	-	-	-	2.0 U	0.95 U	0.94 U	-	-	0.21 U	0.97 U
Nitroaniline, 2-	mg/kg	500 _c ^A	-	-	-	3.8 U	1.8 U	1.8 U	-	-	0.40 U	1.9 U
Nitroaniline, 3-	mg/kg	500 _c ^A	-	-	-	3.8 U	1.8 U	1.8 U	-	-	0.40 U	1.9 U
Nitroaniline, 4-	mg/kg	500 _c ^A	-	-	-	3.8 U	1.8 U	1.8 U	-	-	0.40 U	1.9 U
Nitrobenzene	mg/kg	500 _c ^A	-	-	_	2.0 U	0.95 U	0.94 U	-	-	0.21 U	0.97 U
Nitrophenol, 2-	mg/kg	500 _c ^A	_	_	_	2.0 U	0.95 U	0.94 U	_	_	0.21 U	0.97 U
Nitrophenol, 4-	mg/kg	500 _c ^A	_	_	_	3.8 U	1.8 U	1.8 U	_	_	0.40 U	1.9 U
N-Nitrosodi-n-Propylamine	mg/kg	500 _c	· ·	_	_	3.8 U 2.0 U	0.95 U	0.94 U		_	0.40 U 0.21 U	0.97 U
			·	-	_				-	_		
n-Nitrosodiphenylamine	mg/kg	500 _c ^A	_	-	_	2.0 U	0.95 U	0.94 U	-	-	0.21 U	0.97 U
Pentachlorophenol	mg/kg	6.7 ^A	_	-	_	3.8 U	1.8 U	1.8 U	-	-	0.40 U	1.9 U
Phenanthrene	mg/kg	500 _c ^A	-	-	-	4.6	1.3	1.2	-	-	0.45	1.5
Phenol	mg/kg	500 _c ^A	-	-	-	2.0 U	0.95 U	0.94 U	-	-	0.21 U	0.97 U
Pyrene	mg/kg	500 _c ^A	-	-	-	6.2	2.3	2.0	-	-	1.1	1.6
Trichlorophenol, 2,4,5-	mg/kg	500 _c ^A	-	-	-	2.0 U	0.95 U	0.94 U	-	-	0.21 U	0.97 U
Trichlorophenol, 2,4,6-	mg/kg	500 _c ^A	-	-	-	2.0 U	0.95 U	0.94 U	-	-	0.21 U	0.97 U

190500647 Page 5 of 6

Table 1 Summary of Soil Sample Analysis Results, Cover System Pre-Design Investigation Former AMSF Facility BCP Site (C828101) 12 Pixley Industrial Parkway, Gates, New York

	ĺ		SOUTH SIDE SAMPLES				WEST SIDE SAMPLES					
Sample Location			SS-SS-2 SS-SS-5 Composite of: SS-SS-1, -2, -3, -4 and -5			-4 and -5	WS-SS-2 WS-SS-5 Composite of: WS-SS-1, -2, -3, -4 and -5					
Sample Date			13-Sep-19	13-Sep-19	13-Sep-19	13-Sep-19	13-Sep-19	13-Sep-19	13-Sep-19	13-Sep-19	13-Sep-19	13-Sep-19
Sample ID			AMSF-CS-SS-SS-G2	AMSF-CS-SS-SS-G1	AMSF-CS-DUP-SS-G1	AMSF-CS-SS-SS-C1	AMSF-CS-SS-SS-C2	AMSF-CS-DUP-SS-C2	AMSF-CS-WS-SS-G1	AMSF-CS-WS-SS-G2	AMSF-CS-WS-SS-C1	AMSF-CS-WS-SS-C2
Sample Depth			2 - 6 in	2 - 6 in	2 - 6 in	0 - 2 in	2 - 12 in	2 - 12 in	2 - 6 in	2 - 6 in	0 - 2 in	2 - 12 in
Sampling Company			STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC
Laboratory			TALBU	TALBU	TALBU	TALBU	TALBU	TALBU	TALBU	TALBU	TALBU	TALBU
Laboratory Work Order			480-159204-1	480-159204-1	480-159204-1	480-159204-1	480-159204-1	480-159204-1	480-159204-1	480-159204-1	480-159204-1	480-159204-1
Laboratory Sample ID			480-159204-2	480-159204-1	480-159204-5	480-159204-3	480-159204-4	480-159204-8	480-159204-19	480-159204-20	480-159204-21	480-159204-22
Sample Type	Units	NYSDEC-Part 375			Field Duplicate			Field Duplicate				
Volatile Organic Compounds	_			1		,				1	1	
Acetone	mg/kg	500 _c ^A	0.027 U	0.027 U	0.027 U	-	-	-	0.028 U	0.028 U	-	-
Benzene	mg/kg	44 ^A	0.0053 U	0.0054 U	0.0054 U	-	-	-	0.0055 U	0.0055 U	-	-
Bromodichloromethane	mg/kg	500 _c ^A	0.0053 U	0.0054 U	0.0054 U	-	-	-	0.0055 U	0.0055 U	-	-
Bromoform (Tribromomethane)	mg/kg	500 _c ^A	0.0053 U *	0.0054 U *	0.0054 U *	-	-	-	0.0055 U *	0.0055 U *	-	-
Bromomethane (Methyl bromide)	mg/kg	500 _c ^A	0.0053 U	0.0054 U	0.0054 U	-	-	-	0.0055 U	0.0055 U	-	-
Carbon Disulfide	mg/kg	500 _c ^A	0.0053 U	0.0054 U	0.0054 U	-	-	-	0.0055 U	0.0055 U	-	-
Carbon Tetrachloride (Tetrachloromethane)	mg/kg	22 ^A	0.0053 U	0.0054 U	0.0054 U	-	-	-	0.0055 U	0.0055 U	-	-
Chlorobenzene (Monochlorobenzene)	mg/kg	500 _c ^A	0.0053 U	0.0054 U	0.0054 U	-	-	-	0.0055 U	0.0055 U	-	_
Chloroethane (Ethyl Chloride)	mg/kg	500 _c ^A	0.0053 U	0.0054 U	0.0054 U	-	_	_	0.0055 U	0.0055 U	_	_
Chloroform (Trichloromethane)	mg/kg	350 ^A	0.0053 U	0.0054 U	0.0054 U	_	_	_	0.0055 U	0.0055 U	_	_
Chloromethane	mg/kg	500 _c ^A	0.0053 U	0.0054 U	0.0054 U	_	_	_	0.0055 U	0.0055 U	_	_
Cyclohexane	mg/kg	500 _c ^A	0.0053 U	0.0054 U	0.0054 U				0.0055 U	0.0055 U		
•		500 _c ^A	0.0053 U	0.0054 U	0.0054 U	-	_	•	0.0055 U	0.0055 U	_	_
Dibromo-3-Chloropropane, 1,2- (DBCP)	mg/kg	· .	0.0053 U *			-	-	-		0.0055 U *	-	-
Dibromochloromethane	mg/kg	500 _c ^A		0.0054 U *	0.0054 U *	-	-	-	0.0055 U *		-	-
Dichlorobenzene, 1,2-	mg/kg	500 _c ^A	0.0053 U	0.0054 U	0.0054 U	-	-	-	0.0055 U	0.0055 U	-	-
Dichlorobenzene, 1,3-	mg/kg	280 ^A	0.0053 U	0.0054 U	0.0054 U	-	-	-	0.0055 U	0.0055 U	-	-
Dichlorobenzene, 1,4-	mg/kg	130 ^A	0.0053 U	0.0054 U	0.0054 U	-	-	-	0.0055 U	0.0055 U	-	-
Dichlorodifluoromethane (Freon 12)	mg/kg	500 _c ^A	0.0053 U	0.0054 U	0.0054 U	-	-	-	0.0055 U	0.0055 U	-	-
Dichloroethane, 1,1-	mg/kg	240 ^A	0.0053 U	0.0054 U	0.0054 U	-	-	-	0.0055 U	0.0055 U	-	-
Dichloroethane, 1,2-	mg/kg	30 ^A	0.0053 U	0.0054 U	0.0054 U	-	-	-	0.0055 U	0.0055 U	-	-
Dichloroethene, 1,1-	mg/kg	500 _c ^A	0.0053 U	0.0054 U	0.0054 U	-	-	-	0.0055 U	0.0055 U	-	-
Dichloroethene, cis-1,2-	mg/kg	500 _c ^A	0.0053 U	0.0054 U	0.0054 U	-	-	-	0.0055 U	0.0055 U	-	-
Dichloroethene, trans-1,2-	mg/kg	500 _c ^A	0.0053 U	0.0054 U	0.0054 U	-	-	-	0.0055 U	0.0055 U	-	-
Dichloropropane, 1,2-	mg/kg	500 _c ^A	0.0053 U	0.0054 U	0.0054 U	-	-	-	0.0055 U	0.0055 U	-	-
Dichloropropene, cis-1,3-	mg/kg	500 _c ^A	0.0053 U	0.0054 U	0.0054 U	-	-	-	0.0055 U	0.0055 U	-	-
Dichloropropene, trans-1,3-	mg/kg	500 _c ^A	0.0053 U	0.0054 U	0.0054 U	-	-	-	0.0055 U	0.0055 U	-	-
Ethyl Acetate	mg/kg	n/v	0.0053 U	0.0054 U	0.0054 U	-	-	-	0.0055 U	0.0055 U	-	-
Ethylbenzene	mg/kg	390 ^A	0.0053 U	0.0054 U	0.0054 U	-	-	-	0.0055 U	0.0055 U	-	-
Ethylene Dibromide (Dibromoethane, 1,2-)	mg/kg	500 _c ^A	0.0053 U	0.0054 U	0.0054 U	-	-	-	0.0055 U	0.0055 U	-	-
Hexanone, 2- (Methyl Butyl Ketone)	mg/kg	500 _c ^A	0.027 U	0.027 U	0.027 U	-	-	-	0.028 U	0.028 U	-	-
Isopropylbenzene	mg/kg	500 _c ^A	0.0053 U	0.0054 U	0.0054 U	-	_	_	0.0055 U	0.0055 U	_	_
Methyl Acetate	mg/kg	500 _c ^A	0.027 U	0.027 U	0.027 U	_	_	_	0.028 U	0.028 U	_	_
Methyl Ethyl Ketone (MEK) (2-Butanone)	mg/kg	500 _c ^A	0.027 U	0.027 U	0.027 U	_	_	_	0.028 U	0.028 U	_	_
Methyl Isobutyl Ketone (MIBK)			0.027 U	0.027 U	0.027 U	-	-	•	0.028 U	0.028 U	_	_
	mg/kg	500 _c ^A				-	-	-			-	-
Methyl tert-butyl ether (MTBE)	mg/kg	500 _c ^A	0.0053 U	0.0054 U	0.0054 U	-	-	-	0.0055 U	0.0055 U	-	-
Methylcyclohexane	mg/kg	500 _c ^A	0.0053 U	0.0054 U	0.0054 U	-	-	-	0.0055 U	0.0055 U	-	-
Methylene Chloride (Dichloromethane)	mg/kg	500 _c ^A	0.0053 U	0.0054 U	0.0054 U	-	-	-	0.0055 U	0.0055 U	-	-
Styrene	mg/kg	500 _c ^A	0.0053 U	0.0054 U	0.0054 U	-	-	-	0.0055 U	0.0055 U	-	-
Tetrachloroethane, 1,1,2,2-	mg/kg	500 _c ^A	0.0053 U	0.0054 U	0.0054 U	-	-	-	0.0055 U	0.0055 U	-	-
Tetrachloroethene (PCE)	mg/kg	150 ^A	0.0053 U	0.0054 U	0.0054 U	-	-	-	0.0055 U	0.0055 U	-	-
Toluene	mg/kg	500 _c ^A	0.0053 U	0.0054 U	0.0054 U	-	-	-	0.0055 U	0.0055 U	-	-
Trichlorobenzene, 1,2,4-	mg/kg	500 _c ^A	0.0053 U	0.0054 U	0.0054 U	-	-	-	0.0055 U	0.0055 U	-	-
Trichloroethane, 1,1,1-	mg/kg	500 _c ^A	0.0053 U	0.0054 U	0.0054 U	-	-	-	0.0055 U	0.0055 U	-	-
Trichloroethane, 1,1,2-	mg/kg	500 _c ^A	0.0053 U	0.0054 U	0.0054 U	-	_	-	0.0055 U	0.0055 U	-	_
Trichloroethene (TCE)	mg/kg	200 ^A	0.0053 U	0.0054 U	0.0054 U	_	_	_	0.0055 U	0.0055 U	_	_
Trichlorofluoromethane (Freon 11)	mg/kg	500° y	0.0053 U	0.0054 U	0.0054 U	_	_	_	0.0055 U	0.0055 U	_	_
Trichlorotrifluoroethane (Freon 113)	mg/kg	500 _c ^A	0.0053 U	0.0054 U	0.0054 U	_	_	_	0.0055 U	0.0055 U	_	_
Vinyl Chloride	mg/kg	13 ^A	0.0053 U	0.0054 U	0.0054 U				0.0055 U	0.0055 U	1	
Xylenes, Total	mg/kg	500 _c ^A	0.0053 U 0.011 U	0.0054 U 0.011 U	0.0054 U 0.011 U	_			0.0055 U 0.011 U	0.0055 U 0.011 U	_	_
Aylettes, Total	mg/kg	500 _c	Notes:	0.0110	0.0110	<u>-</u>	-	-	0.0110	0.0110	<u> </u>	<u> </u>

ites:				
NYSDEC-Part 375	NYSDEC 6 NYCRF	R Part 375 Soil	Clean-up Objectives	(SCOs)

A	Protection of Human Health - Commercial SCO
6.5 ^A	Concentration exceeds the indicated standard.
15.2	Measured concentration did not exceed the indicated standard.
0.03 U	Analyte was not detected at a concentration greater than the laboratory reporting limit.
n/v	No standard/guideline value.
-	Parameter not analyzed.
c	The SCOs for commercial use were capped at a maximum value of 500 mg/kg.
е	The SCOS for metals were capped at a maximum value of 10,000 mg/kg.
i	The SCO is considered to be met if the total for all species of this contaminant is below the SCO.
j	This SCO is the sum of endosulfan I, endosulfan II, and endosulfan sulfate.

- This SCO is the lower of the values for mercury (elemental) or mercury (inorganic salts).
- Standard is applicable to total PCBs, and the individual Aroclors should be added for comparison.
- Indicates analysis is not within the quality control limits.
- Indicates analyte was found in associated blank as well as in the sample. MS and/or MSD Recovery is outside acceptance limits.
- F1 F2
- MS/MSD RPD exceeds control limits.
 The reported result is an estimated value.
- The analyte was positively identified; the result is an estimated quantity that may be biased high.
- ND Not detected.
- Indicates estimated non-detect.

190500647 Page 6 of 6

Table 2
Proposed Soil Samplling Summary
Cover System IRM Work Plan
Former AMSF Facility BCP Site (C828101)
12 Pixley Industrial Parkway, Gates, New York

Sample Information						Analyses						
Location type	Sample Type	Sample Matrix	Sample Depth (inches)	Estimated number of samples	PAHs ¹	VOCs ²	SVOCs	Metals ⁴	PCBs ⁵	Pesticides ⁶	Cyanide ⁷	
New Perking Let Area	Grab	Soil	0 - 16	3		х						
New Parking Lot Area	Composite	Soil	0 - 16	1			Х	Х	Х	Х	х	
	Initial Compositor	Soil	0 - 2	8	Х							
Cover System Levyn Areas	Initial Composites	Soil	2 - 12	8	Х							
Cover System Lawn Areas	Follow-up Discrete Grab Samples	Soil	0 - 2	Up to 23 ⁸	Х							
		Soil	2 - 12	Up to 23 ⁸	Х							
Off site and a financial backfill	Grab	Soil	From source site	TBD ⁹		Х						
Off-site source of imported backfill	Composite	Soil	stockpile	TBD ⁹			Х	Х	Х	Х	х	
Post-excavation Documentation Samples	Grab	Soil	Excavation sidewall midpoint	TBD ¹⁰	х							

Notes

¹ PAH sub-set of NYSDEC Part 375-6.8(b) SVOCs by USEPA Method 8270.

² Part 375-6.8(b) VOCs by USEPA Method 8260.

³ Part 375-6.8(b) SVOCs by USEPA Method 8270.

⁴ Part 375-6.8(b) Metals* by USEPA Methods 6010/7470/7471 (* - including total Cr but excluding trivalent and hexavalent Cr).

⁵ PCBs by USEPA Method 8082.

⁶ Part 375-6.8(b) Pesticides by USEPA Method 8081.

⁷ Total Cyanide by USEPA Method 9012.

⁸ To be determined by the number of initial composites that are found to exhibit exceedances of the Restricted Commercial SCOs.

⁹ To be determined in accordance with DER-10 Table 5.4(e) 10 and based on the anticipated volume of backfill to be imported.

To be determined based on the lateral dimensions and configuration of soil removal areas, with one sample for every 30 feet of sidewall along those sidewalls which do not abut the building, a sidewalk, a driveway or a parking lot.

APPENDIX A

Summary of Previous Investigations and Environmental Conditions

PREVIOUS INVESTIGATIONS AND ENVIRONMENTAL CONDITIONS

Previous investigation and remedial activities completed at the Site prior to and during the BCP RI program are described below in chronological order. The Cover System Pre-Design Investigation, which is the component of the BCP RI program which has the most relevance for the development of this Cover System IRM Work Plan, is described in Section 1.3.2.1 of the work plan.

Due-Diligence Investigations - 1990s

An initial assessment of the environmental history of the Site was performed in 1991 on behalf of Gleason Corporation. Related investigation of environmental conditions in exterior areas outside the facility building were conducted through 1994. The results of these investigations identified the presence of contamination of Site groundwater by 1,1,1-trichloroethane (1,1,1-TCA), a chlorinated VOC commonly used as a solvent in industrial degreasing operations. The highest levels of contamination were found at a well located at the northwest corner of the Site, and this occurrence was investigated further on behalf of ITT Corporation, the owner of the adjacent property to the west, as described below.

The 1990s-era investigations conducted for Gleason also identified contamination of groundwater by much lower concentrations of tetrachloroethylene, a chlorinated VOC commonly used as a degreasing or dry-cleaning solvent (also known as tetrachloroethene or perchloroethylene, and commonly abbreviated as PERC or PCE), was identified in groundwater along the southern boundary of the Site. Four occurrences of soil contamination identified at the Site were addressed in 1994 with remedial actions to remove the contaminated soil.

ITT Site RI/FS

The west boundary of the Site adjoins the site of the ITT Corporation Former Rochester Form Machine Facility located at 30 Pixley Industrial Parkway (the ITT or RFM site), an inactive hazardous waste site (NYSDEC Site # 828112). The ITT site, an adjacent portion of the movie theater parcel to the north, and the west/northwest portion of the Site (that portion of the Site property which is adjacent to the northeast corner of the ITT site) have been the subject of a Remedial Investigation (RI) and Feasibility Study (FS) program implemented by ITT under the oversight of NYSDEC. The focus of the ITT site RI/FS was contamination by 1,1,1-TCA and related VOCs related to past releases from degreasing operations at the ITT site. Data from the ITT site RI indicate that bedrock, groundwater and soil vapor in areas of the Site which are downgradient of the ITT site³ have been impacted by chlorinated solvent contamination, with 1,1,1-TCA being the principal contaminant. In Operable Unit 1 (OU-1), the northwest portion of the Site, contamination of the bedrock matrix by chlorinated VOCs appears to act as a source for VOC contamination in Site groundwater. The contamination of the bedrock matrix was found to extend

³ At most times, the direction of shallow groundwater flow along the western Site boundary is generally eastward from the ITT site towards the AMSF Site. However, during periods immediately following significant rain events, a temporary pattern of flow develops in the area immediately surrounding the stormwater recharge well (RW-2) located in the northwest corner of the AMSF Site. The groundwater flow direction during and immediately following significant rain events is radially outward from the recharge well.

vertically from the shallow to the deeper bedrock horizons intersected by the 149-foot deep stormwater recharge well (RW-2) located in the northwest corner of the Site.

In April 2009, ITT detected elevated concentrations of PCE in sub-slab vapor beneath the northeastern portion of the AMSF building when it performed an assessment of the potential for soil-vapor intrusion (SVI) in the AMSF building performed as part of the ITT RI. Historical records for the Site identified a degreaser that had been located in that portion of the AMSF facility during AMSF operations. The 2009 SVI data indicated a need for further investigation of the former degreaser area.

Remedial Investigation of the Site (the Former AMSF Site RI)

The need for further investigation of the subsurface conditions in the area of the former AMSF degreaser was the impetus for MFP to undertake an RI at the Site under the BCP. MFP applied as a Volunteer under New York State's BCP and the Site was admitted into the BCP by NYSDEC in July 2011.

The BCP RI was initiated in March 2012 and completed in December 2015. The findings of the RI concerning the nature and extent of contamination at the Site were as follows:

Soil

Occurrences of soil contamination exceeding NYSDEC's Soil Cleanup Objectives (SCOs) for protection of public health at commercial or industrial use sites were not identified at the Site.

VOC contamination exceeding NYSDEC's SCOs for protection of unrestricted site use (UU SCOs) and protection of groundwater (POGW SCOs) were detected in three areas of the Site:

- Former Degreaser Area Area of Concern AOC 1
- Former Waste Storage Area B AOC 5B
- Former Paint Shop Area AOC 6

All three areas are within the footprint of the Site building, and the contaminated soil is therefore covered by and contained beneath the building floor slab. In each area, the water table occurs below the top of bedrock. The cap provided by the floor slab, the unsaturated condition of the soil profile and the contaminant concentrations in both soil and groundwater together indicate that the soil contamination in these areas is unlikely to pose health risks to site workers or others from direct contact or ingestion or to be contributing to groundwater contamination at the Site.

The occurrence of benzo(a)pyrene in surface soil in the lawn areas located adjacent to facility parking areas and roadways on the east and south sides of the Site was identified after completion of the RI during the cover system pre-design investigation. The activities and findings of the cover system pre-design investigation are described in Section 1.3.2.1 of the work plan.

Groundwater

Chlorinated VOCs are present in Site groundwater at concentrations that exceed NYSDEC's groundwater quality standards in the shallow-bedrock zone across the entire Site and are also present in the intermediate- and deep-bedrock zones.

Concentrations of 1,1,1-TCA and the chlorinated VOCs which are the daughter products of the degradation of 1,1,1-TCA in the environment (including principally 1,1-dichloroethane and 1,1-dichloroethene) are highest in OU-1, located in the upgradient northwest corner of the Site. 1,1,1-TCA-related contamination above standards extends from OU-1 beneath the building to the eastern, downgradient Site boundary. Contamination by PCE and its degradation daughter products (including principally trichloroethene and cis-1,2-dichloroethene) is present at lower concentrations, with the highest levels found in the area of the former degreaser in AOC 1 and with exceedances of standards extending to the eastern Site boundary. As a BCP Volunteer, MFP was not responsible for delineation of the extent of off-Site groundwater contamination, and therefore groundwater sampling was not performed on the adjacent properties located east of the Site during the Site RI.

Soil Vapor

The results of the RI indicated the potential for chlorinated VOCs present in the subsurface at the Site to migrate by soil vapor intrusion (SVI) from below the floor of the facility building into the air inside the building. Concentrations of TCA, PCE and/or one or more related chlorinated VOC daughter products were detected in sub-slab vapor and indoor air sample pairs collected at locations throughout the building. Concentrations in sub-slab vapor at most of the locations sampled, including those locations throughout the high-ceiling sections of the building originally occupied by AMSF manufacturing operations, have exceeded 'No further action' SVI evaluation guidance values established by the New York State Department of Health (NYSDOH)⁴. The locations where the data met the NYSDOH guidance levels for 'No further action' recommended included:

- an office space in the Storage Shed Addition located on the west side of the building,
- an office area in the former Paint Storage Room addition located on the south side of the southwest corner of the building, and
- two locations in the office areas of the Original Administration Building section located at the southeast side of the facility.

Interim Remedial Measure Site Management Plan (IRM SMP)

An IRM Site Management Plan (IRM SMP, Stantec 2016) was instituted in 2016 which specified a monitoring program to be performed annually to assess whether the chlorinated VOCs (CVOCs) that are

⁴ The guidance values are those specified in the May 2017 matrices for assessing whether indoor air and sub-slab vapor sample analysis results would lead to a recommendation by NYSDOH for further action to address the potential for SVI at a site. The matrices are an updated element of the NYSDOH "Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York" (NYSDOH, October 2006).

present in the subsurface at the Site are intruding from below the floor into the air inside the building. The monitoring is performed during each heating season. The annual monitoring program specified in the IRM SMP involves:

- an inspection of the building to review conditions of the floor slab,
- a review of activities and operations conducted by the various occupants,
- an inventory of chemical products in use at the site, and
- collection of indoor air samples at more than 20 locations distributed throughout the entire building and covering the range of activity and occupancy conditions for each tenant's operation.

Initial IRM SMP monitoring activities were conducted in February 2016. The most recent monitoring was conducted in December 2019. Each year, results of the annual monitoring have been evaluated to determine whether other actions (actions in addition to the annual monitoring) are warranted to address potential exposure of building occupants to VOCs which may be detected in the samples.

March 2017 Sub-slab Vacuum Communication Testing

Comparison of AMSF RI sub-slab soil vapor sampling results to NYSDOH's SVI evaluation guidance criteria indicated that mitigation of the potential for SVI would be recommended for most areas of the AMSF building. Anticipating that mitigation of the potential for SVI using a sub-slab depressurization system (SSDS) was a possible option for the Site remedy, sub-slab vacuum communication testing was performed in 2017 to assess the feasibility of an SSDS approach.

This work was performed in accordance with the Revised Work Plan for Supplemental Activities dated March 2, 2017. The testing was performed with the intent of understanding the ability of the sub-slab substrate in three major sections of the building to propagate vacuum. Results of the testing were documented in AMSF RI Progress Report No. 61 (April 10, 2017).

Installation of Sub-Slab Depressurization System Components for the Excelsus Tenant Space

In late 2017 an approximately 35,000-square-foot portion of the building became vacant. The vacancy of the space, which included the former AMSF degreaser location, afforded MFP an opportunity to install SSDS suction points and risers in the space prior to occupancy by Excelsus, the current tenant in that space. A plan for installation of these SSDS components was submitted to NYSDEC in a Notification of IRM-SMP Activity letter dated January 31, 2018. The work involved construction of nine SSDS suction points and installation of related SSDS riser pipes up to a height of approximately 6 feet above floor grade. Riser pipes were capped with air-tight seals. The installation of these SSDS components was completed in February 2018 and documented in RI Progress Report No. 72 (Stantec, March 19, 2018).

Alternatives Analysis

Following completion of the RI and the implementation of the IRM SMP activities described above, an Alternatives Analysis (AA) was performed to evaluate remedial options for addressing the conditions indicated by the findings of the RI and the IRM SMP monitoring program. Among other criteria, remedial alternatives were screened under the assumption that an institutional control will be implemented that will restrict Site uses to commercial and industrial uses, the types of uses that have characterized the Site and surrounding area for the past 50 years. The AA also considered alternatives which could theoretically achieve conditions that would allow for unrestricted use of the Site relative to soil contamination.

A draft Alternatives Analysis Report (AAR) was submitted to NYSDEC for review in June 2018. The draft AAR recommended the following combination of remedial elements as the remedy for the contamination identified at the Site by the RI:

- Construction and operation of an SSDS for SVI mitigation throughout the entire building.
- Containment of VOC-contaminated soil exceeding UU and POGW SCOs by maintaining the
 existing building as cover in affected areas.
- Modification of an existing stormwater recharge well located in the northwest corner of the Site
 (recharge well RW-2) to eliminate direct recharge of stormwater into the deep bedrock horizons of
 the contaminated bedrock aquifer and thereby reduce the potential for mobilization and migration
 of VOC contaminants in these horizons.
- Development and implementation of a Site Management Plan (SMP) specifying, among other standard elements, the following:
 - o an operation, maintenance & monitoring (OM&M) plan for the SSDS,
 - o programs of periodic groundwater and indoor air monitoring for the Site,
 - o periodic Site inspection to assess the integrity and continued effectiveness of the various components of the remedy (including the cover system), and
 - o procedures for environmental monitoring during future excavations at the Site.
- Institutional Controls which will grant an environmental easement to NYSDEC, restrict future use
 of the Site to industrial and commercial uses, and prohibit use of Site groundwater.

The remedy recommended in the AAR also includes performance of initial SVI assessments at the buildings located on the two off-site properties (4 and 10 Pixley Industrial Parkway) adjacent to the downgradient eastern Site boundary, followed if and as necessary by additional actions such as SVI mitigation or monitoring at the off-site properties. Because MFP, as the BCP Volunteer, would not bear responsibility under BCP regulations for quantitative assessment of the potential for SVI exposures at adjacent off-Site downgradient properties, it is anticipated that this component of the recommended remedy would be undertaken by others.

2019 IRM - SSDS Installation and Modification of RW-2

An IRM was implemented in the fall of 2019 to construct the tangible components of the recommended remedy which were not already in place at the site. The IRM consisted of the following elements.

- An SSDS was installed to cover the entire building. Installation, commissioning and start-up of the SSDS were completed in October 2019, and verification of negative sub-slab pressure differential extension across the building footprint was completed in November 2019. Full-time operation of the system has continued to the present and will continue in the future.
- Plugging of the deep bedrock interval of recharge well RW-2 was completed in October 2019.

The IRM activities were completed in accordance with the IRM Work Plan dated June 28, 2019 and a Work Plan Amendment dated September 5, 2019. A Construction Completion Report (CCR) for the 2019 IRM is currently in preparation.

APPENDIX B

Laboratory Analysis Report and Data Usability
Summary Report
Cover System Pre-Design Investigation Samples

Data Validation Services

120 Cobble Creek Road P. O. Box 208 North Creek, NY 12853 Phone (518) 251-4429 harry@frontiernet.net

October 20, 2019

Thomas Wells Stantec 61 Commercial St. Rochester, NY 14614

RE: Validation of the Alliance, Gates, NY Site Analytical Laboratory Data

Data Usability Summary Report (DUSR) Eurofins TestAmerica SDG No. 480-159204-1

Dear Mr. Wells:

Review has been completed for the data package generated by Eurofins pertains to samples collected 09/13/19 at the Alliance, Gates, NY site. Eight soil samples and a field duplicate were processed for TCL semivolatiles, TCL pesticides, Aroclor PCBs, TAL metals, and total cyanide. Eight soil samples and a field duplicate were processed for TCL volatiles. A rinse blank and a trip blank were also processed. The analytical methodologies are those of the USEPA SW846.

The data packages submitted by the laboratory contain full deliverables for validation, and this usability report is generated from review of the QC summary form information, with full review of sample raw data and limited review of associated QC raw data. The reported QC summary forms and sample raw data have been reviewed for application of validation qualifiers, with guidance from the USEPA national and regional validation documents, and in consideration for the specific requirements of the analytical methodology. The following items were reviewed:

- * Data Completeness
- * Case Narrative
- * Custody Documentation
- * Holding Times
- * Surrogate and Internal Standard Recoveries
- * Method/Preparation Blanks
- * Matrix Spike Recoveries/Duplicate Correlations
- * Blind Field Duplicate Correlations
- * Laboratory Control Sample (LCS)
- * Instrumental Tunes
- * Initial and Continuing Calibration Standards
- * Serial Dilution Evaluation
- * Method Compliance
- * Sample Result Verification

Those items listed above which show deficiencies are discussed within the text of this narrative. All of the other items were determined to be acceptable for the DUSR level review, as discussed in NYS DER-10 Appendix B Section 2.0 (c). Documentation of the outlying parameters cited in this report can be found in the laboratory data package.

In summary, results for the samples are usable either as reported or with minor qualification.

Data completeness, accuracy, precision, representativeness, reproducibility, sensitivity, and comparability are acceptable.

Client sample identifications are attached to this text. Also included in this report are the client EDDs with recommended qualifiers/edits applied in red.

Blind Field Duplicates

The blind field duplicate evaluations were performed on AMSF-SS-SS-C2 and AMSF-SS-SS-G1. All correlations are within validation guidelines.

TCL Volatile Analyses by EPA 8260C

The matrix spikes of AMSF-CS-ES-SS-G1 show recoveries and duplicate correlations that are within validation guidelines, with the exception of the following that show low recoveries, results for which are qualified as estimated in the parent sample: 1,2,4-trichlorobenzene, 2-butanone, 2-hexanone, acetone, and methyl acetate.

Calibration standards showed acceptable responses, with the following exceptions, results for which are qualified as estimated in the indicated associated samples:

Holding times were met. Surrogate and internal standard recoveries are compliant. Blanks show no contamination.

TCL Semivolatile Analyses by EPA8270D

The matrix spikes of AMSF-CS-ES-SS-C1 show recoveries and duplicate correlations that are within validation guidelines, with the exception of the following, results for which are qualified as estimated in the parent sample: benzo(a)anthracene, benzo(a)pyrene, chrysene, fluoranthene, indeno(1,2,3-cd)pyrene, and phenanthrene.

Surrogate and internal standard recoveries are within validation guidelines. Blanks show no contamination.

Calibration standards show responses within validation action levels, with the exception of that for benzaldehyde (61%D) in the standard associated with AMSF-CS-RB-W-1. The result for that compound in that rinse blank has been qualified as estimated.

Some of the samples were diluted due to color and/or appearance. Reporting limits in those samples are elevated proportional to the dilution factor.

TCL Pesticide and Aroclor PCBs by EPA 8081 and 8082

The Aroclor 1016/1260 matrix spikes of AMSF-CS-ES-SS-C1 show recoveries and correlations within validation guidelines. The pesticide matrix spikes of that sample were diluted beyond the ability to have an applicable evaluation.

The result for a-BHC in AMSF-CS-WS-SS-C1 is qualified as estimated, with a high bias, due to elevated surrogate recoveries.

Holding times were met, and internal standard recoveries are compliant. Calibration standard responses are within validation guidelines.

Some samples were processed at dilution. This resulted in proportionally elevated reporting limits for those samples.

TAL Metals/CN Analyses by EPA 6010B, 7470A, and 9012

Matrix spikes/duplicate evaluations were performed on AMSF-CS-ES-SS-C1 and AMSF-CS-ES-SS-C2. They show recoveries and correlations within validation guidelines, with the following exceptions, which show outliers in both parent samples, and results for which are qualified as estimated in those parent samples: antimony, barium, magnesium, and potassium.

Total cyanide matrix spikes of AMSF-CS-ES-SS-C1, AMSF-CS-ES-SS-C2, and AMSF-CS-WS-SS-C1, and the laboratory duplicate of AMSF-CS-NS-SS-C2 show acceptable accuracy and precision.

The ICP serial dilution evaluation of AMSF-CS-ES-SS-C1 shows acceptable correlations.

Instrument performance was compliant.

Please do not hesitate to contact me if questions or comments arise during your review of this report.

Very truly yours,

Judy Harry

Judy Harry

Attachments: Validation Qualifier Definitions

Sample Identifications

Qualified Laboratory EQuIS EDDs

VALIDATION DATA QUALIFIER DEFINITIONS

- U The analyte was analyzed for, but was not detected above the level of the associated reported quantitation limit.
- J The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte in the sample.
- J- The analyte was positively identified; the associated numerical value is an estimated quantity that may be biased low.
- J+ The analyte was positively identified; the associated numerical value is an estimated quantity that may be biased high.
- UJ The analyte was analyzed for, but was not detected. The associated reported quantitation limit is approximate and may be inaccurate or imprecise.
- NJ The detection is tentative in identification and estimated in value. Although there is presumptive evidence of the analyte, the result should be used with caution as a potential false positive and/or elevated quantitative value.
- R The data are unusable. The sample results are rejected due to serious deficiencies in meeting Quality Control limits. The analyte may or may not be present.
- EMPC The results do not meet all criteria for a confirmed identification.

 The quantitative value represents the Estimated Maximum Possible Concentration of the analyte in the sample.

Sample Summaries

Sample Summary

Job ID: 480-159204-1

Client: Stantec Consulting Corp. Project/Site: Alliance BCP Site (AMSF)

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-159204-1	AMSF-CS-SS-SS-G1	Solid	09/13/19 15:30	09/14/19 09:00
480-159204-2	AMSF-CS-SS-SS-G2	Solid	09/13/19 15:30	09/14/19 09:00
480-159204-3	AMSF-CS-SS-SS-C1	Solid	09/13/19 15:30	09/14/19 09:00
480-159204-4	AMSF-CS-SS-SS-C2	Solid	09/13/19 15:30	09/14/19 09:00
480-159204-5	AMSF-CS-DUP-SS-G1	Solid	09/13/19 15:40	09/14/19 09:00
480-159204-8	AMSF-CS-DUP-SS-C2	Solid	09/13/19 15:40	09/14/19 09:00
480-159204-9	AMSF-CS-ES-SS-G1	Solid	09/13/19 14:00	09/14/19 09:00
480-159204-10	AMSF-CS-ES-SS-G2	Solid	09/13/19 14:00	09/14/19 09:00
480-159204-11	AMSF-CS-ES-SS-C1	Solid	09/13/19 14:00	09/14/19 09:00
480-159204-12	AMSF-CS-RB-W-1	Water	09/13/19 09:10	09/14/19 09:00
480-159204-13	TRIP BLANK	Water	09/13/19 09:00	09/14/19 09:00
480-159204-14	AMSF-CS-ES-SS-C2	Solid	09/13/19 14:00	09/14/19 09:00
480-159204-15	AMSF-CS-NS-SS-G1	Solid	09/13/19 11:30	09/14/19 09:00
480-159204-16	AMSF-CS-NS-SS-G2	Solid	09/13/19 11:30	09/14/19 09:00
480-159204-17	AMSF-CS-NS-SS-C1	Solid	09/13/19 11:30	09/14/19 09:00
480-159204-18	AMSF-CS-NS-SS-C2	Solid	09/13/19 11:30	09/14/19 09:00
480-159204-19	AMSF-CS-WS-SS-G1	Solid	09/13/19 10:00	09/14/19 09:00
480-159204-20	AMSF-CS-WS-SS-G2	Solid	09/13/19 10:00	09/14/19 09:00
480-159204-21	AMSF-CS-WS-SS-C1	Solid	09/13/19 10:00	09/14/19 09:00
480-159204-22	AMSF-CS-WS-SS-C2	Solid	09/13/19 10:00	09/14/19 09:00

Environment Testing TestAmerica

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-159204-1

Client Project/Site: Alliance BCP Site (AMSF)

For:

Stantec Consulting Corp. 61 Commercial Street Rochester, New York 14614

Attn: Mrs. Katherine Nelson

Authorized for release by: 10/4/2019 3:16:56 PM

Ryan VanDette, Project Manager II (716)504-9830

ryan.vandette@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

3

4

5

7

10

12

13

15

Laboratory Job ID: 480-159204-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	5
Detection Summary	8
Client Sample Results	14
Surrogate Summary	75
QC Sample Results	78
QC Association Summary	112
Lab Chronicle	120
Certification Summary	129
Method Summary	130
Sample Summary	131
Detection Limit Exceptions Summary	132
Chain of Custody	133
Receipt Checklists	135

11

12

14

Definitions/Glossary

Client: Stantec Consulting Corp. Job ID: 480-159204-1 Project/Site: Alliance BCP Site (AMSF)

Qualifiers

	VOA
171.	VUJA

Qualifier	Qualifier Description					
*	LCS or LCSD is outside acceptance limits.					

F1 MS and/or MSD Recovery is outside acceptance limits.

Reported analyte concentrations are below 200 ug/kg and may be biased low due to the sample not being collected according to 5035A-L

low-level specifications.

GC/MS Semi VOA

Qualifier Description
LCS or LCSD is outside acceptance limits.
MS and/or MSD Recovery is outside acceptance limits.
MS/MSD RPD exceeds control limits
Surrogate is outside control limits

GC Semi VOA

Qualifier	Qualifier Description
F1	MS and/or MSD Recovery is outside acceptance limits.
F2	MS/MSD RPD exceeds control limits
Χ	Surrogate is outside control limits

Metals

Qualifier	Qualifier Description
٨	ICV,CCV,ICB,CCB, ISA, ISB, CRI, CRA, DLCK or MRL standard: Instrument related QC is outside acceptance limits.
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.
В	Compound was found in the blank and sample.
F1	MS and/or MSD Recovery is outside acceptance limits.
F2	MS/MSD RPD exceeds control limits
General C	hemistry

Qualifier	Qualifier Description		
*	LCS or LCSD is outside acceptance limits.		
F1	MS and/or MSD Recovery is outside acceptance limits.		

Glossary

QC

RER

Quality Control

Relative Error Ratio (Radiochemistry)

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit

Eurofins TestAmerica, Buffalo

Page 3 of 135 10/4/2019

Definitions/Glossary

Job ID: 480-159204-1

Client: Stantec Consulting Corp. Project/Site: Alliance BCP Site (AMSF)

Glossary (Continued)

Abbreviation	These commonly used abbreviations may or may not be present in this report.
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Case Narrative

Client: Stantec Consulting Corp. Project/Site: Alliance BCP Site (AMSF) Job ID: 480-159204-1

Job ID: 480-159204-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-159204-1

Comments

No additional comments.

Receipt

The samples were received on 9/14/2019 9:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.6° C.

GC/MS VOA

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-492443 recovered above the upper control limit for Chlorodibromomethane. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: AMSF-CS-SS-SG (480-159204-1), AMSF-CS-SS-SG (480-159204-2), AMSF-CS-DUP-SS-G1 (480-159204-5), AMSF-CS-ES-SS-G1 (480-159204-9), AMSF-CS-ES-SS-G2 (480-159204-10), AMSF-CS-NS-SS-G1 (480-159204-15), AMSF-CS-NS-SS-G2 (480-159204-16), AMSF-CS-WS-SS-G1 (480-159204-19) and AMSF-CS-WS-SS-G2 (480-159204-20).

Method(s) 8260C: The laboratory control sample (LCS) for preparation batch 480-492516 and analytical batch 480-492443 recovered outside control limits for the following analytes: Bromoform and Chlorodibromomethane. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported. The following samples are impacted: AMSF-CS-SS-SS-G1 (480-159204-1), AMSF-CS-SS-SS-G2 (480-159204-2), AMSF-CS-DUP-SS-G1 (480-159204-5), AMSF-CS-ES-SS-G1 (480-159204-10), AMSF-CS-NS-SS-G1 (480-159204-15), AMSF-CS-NS-SS-G2 (480-159204-16), AMSF-CS-WS-SS-G1 (480-159204-19) and AMSF-CS-WS-SS-G2 (480-159204-20).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method(s) 8270D: The continuing calibration verification (CCV) associated with batch 480-492746 recovered above the upper control limit for 4-Nitrophenol and Atrazine. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following sample is impacted: AMSF-CS-RB-W-1 (480-159204-12).

Method(s) 8270D: The continuing calibration verification (CCV) associated with batch 480-492746 recovered outside acceptance criteria, low biased, for Carbazole, Benzaldehyde, Pentachlorophenol and bis (2-chloroisopropyl) ether. A reporting limit (RL) standard was analyzed, and the target analyte was detected. Since the associated samples were non-detect for this analyte, the data have been reported. The following sample is impacted:AMSF-CS-RB-W-1 (480-159204-12).

Method(s) 8270D: 2,4,6-Tribromophenol surrogate recovered above the upper control limit in the LCS (laboratory control sample) for preparation batch 480-492549. However, the associated samples are ND for acid extractable analytes. Therefore, re-extraction and re-analysis were not performed. The data has been reported and qualified. (LCS 480-492549/2-A)

Method(s) 8270D: The laboratory control sample (LCS) for preparation batch 480-492549 and analytical batch 480-492746 recovered outside control limits for the following analytes: Atrazine. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported. The following sample is impacted:AMSF-CS-RB-W-1 (480-159204-12).

Method(s) 8270D: The following samples were diluted due to color and appearance: AMSF-CS-SS-SS-C1 (480-159204-3), AMSF-CS-SS-SS-C2 (480-159204-4), AMSF-CS-DUP-SS-C2 (480-159204-8), AMSF-CS-ES-SS-C1 (480-159204-11), AMSF-CS-ES-SS-C1 (480-159204-11, AMSF-CS-ES-SS-C1 (480-159204-14), AMSF-CS-NS-SS-C1 (480-159204-17) and AMSF-CS-WS-SS-C2 (480-159204-22). Elevated reporting limits (RL) are provided.

Method(s) 8270D: Six surrogates are used for this analysis. The laboratory's SOP allows one acid and one base of these surrogates to be outside acceptance criteria without performing re-extraction/re-analysis. The following samples contained an allowable number of surrogate compounds outside limits: AMSF-CS-SS-SS-C1 (480-159204-3), AMSF-CS-ES-SS-C1 (480-159204-11[MS]) and AMSF-CS-ES-SS-C1 (480-159204-11[MSD]). These results have been reported and qualified.

1

6

9

10

12

13

15

Case Narrative

Client: Stantec Consulting Corp.
Project/Site: Alliance BCP Site (AMSF)

Job ID: 480-159204-1

Job ID: 480-159204-1 (Continued)

Laboratory: Eurofins TestAmerica, Buffalo (Continued)

Method(s) 8270D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 480-493581 and analytical batch 480-493753 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method(s) 8270D: The continuing calibration verification (CCV) associated with batch 480-493753 recovered above the upper control limit for 2,4-Dinitrophenol. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: AMSF-CS-SS-SS-C1 (480-159204-3), AMSF-CS-SS-SS-C2 (480-159204-4), AMSF-CS-DUP-SS-C2 (480-159204-8), AMSF-CS-ES-SS-C1 (480-159204-11), AMSF-CS-ES-SS-C2 (480-159204-14), AMSF-CS-NS-SS-C1 (480-159204-17), AMSF-CS-NS-SS-C2 (480-159204-21) and AMSF-CS-WS-SS-C2 (480-159204-22).

Method(s) 8270D: The continuing calibration verification (CCV) associated with batch 480-493753 recovered outside acceptance criteria, low biased, for Hexachlorocyclopentadiene. A reporting limit (RL) standard was analyzed, and the target analyte was detected. Since the associated samples were non-detect for this analyte, the data have been reported. The following samples are impacted:AMSF-CS-SS-SS-C1 (480-159204-3), AMSF-CS-SS-SS-C2 (480-159204-4), AMSF-CS-DUP-SS-C2 (480-159204-8), AMSF-CS-ES-SS-C1 (480-159204-11), AMSF-CS-ES-SS-C2 (480-159204-14), AMSF-CS-NS-SS-C1 (480-159204-17), AMSF-CS-NS-SS-C2 (480-159204-18), AMSF-CS-WS-SS-C1 (480-159204-21) and AMSF-CS-WS-SS-C2 (480-159204-22).

Method(s) 8270D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 480-493581 and analytical batch 480-493753 were diluted below the method detection limit (MDL) for 2,4-Dinitrophenol and therefore percent recovery and RPD were not calculated. The associated laboratory control sample (LCS) recovery was within acceptance limits.

Method(s) 8270D: The initial calibration curve analyzed in analytical batch 480-491423 and associated with analytical batch 480-493753 was outside method criteria for the analyte 2,4-Dinitrophenol. As indicated in the reference method, sample analysis may proceed; however, any detection or non-detection for this analyte is considered an estimated concentration.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

Method(s) 8081B: The following samples were diluted due to the nature of the sample matrix: AMSF-CS-SS-SS-C1 (480-159204-3), AMSF-CS-SS-SS-C2 (480-159204-4), AMSF-CS-DUP-SS-C2 (480-159204-8), AMSF-CS-ES-SS-C1 (480-159204-11), AMSF-CS-ES-SS-C2 (480-159204-14), AMSF-CS-NS-SS-C1 (480-159204-17) and AMSF-CS-NS-SS-C2 (480-159204-18). As such, surrogate recoveries are below the calibration range, estimated and not representative. Elevated reporting limits (RLs) are provided.

Method(s) 8081B: The following samples were diluted due to the nature of the sample matrix: AMSF-CS-ES-SS-C1 (480-159204-11[MS]) and AMSF-CS-ES-SS-C1 (480-159204-11[MSD]). As such, spike and surrogate recoveries are below the calibration range, estimated and not representative. Elevated reporting limits (RLs) are provided.

Method(s) 8081B: For method 8081, the recovery of the one surrogate in samples AMSF-CS-WS-SS-C1 (480-159204-21) exceeds quality control limits due to the sample matrix. The recovery of the secondary surrogate is within quality control criteria; no corrective action is required.

Method(s) 8081B: Surrogate recovery for the following sample was outside the upper control limit: AMSF-CS-WS-SS-C2 (480-159204-22). This sample did not contain any target analytes; therefore, re-extraction and/or re-analysis was not performed.

Method(s) 8081B: All primary data for analytical batch 492824 is reported from the RTX-CLPI column, while all primary data for analytical batches 493205 and 493333 is reported from the RTX-CLPII column.

Method(s) 8082A: The continuing calibration verification (CCV) associated with batch 480-494083 recovered above the upper control limit for PCB-1232 and PCB-1248. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following sample is impacted: AMSF-CS-RB-W-1 (480-159204-12).

Method(s) 8082A: The percent difference in a multi-component continuing calibration verification is assessed on the basis of the total amount, individual peak calculations are only listed for completeness.

4

Ė

7

8

3

11

13

14

Case Narrative

Client: Stantec Consulting Corp.
Project/Site: Alliance BCP Site (AMSF)

Job ID: 480-159204-1

Job ID: 480-159204-1 (Continued)

Laboratory: Eurofins TestAmerica, Buffalo (Continued)

Method(s) 8082A: All primary data for analytical batches 493822 and 494083 is reported from the ZB-5 column.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

Method(s) 6010C: The low level continuing calibration verification (CCVL 480-492839/29) recovered above the upper control limit for Total Zinc. The samples associated with this CCVL were either less than the reporting limit (RL) for this analyte or contained this analyte at a concentration greater than 10X the value found in the CCVL; therefore, re-analysis of samples AMSF-CS-RB-W-1 (480-159204-12), (LCS 480-492544/2-A), (MB 480-492544/1-A), (480-159204-E-12-B MS), (480-159204-E-12-C MSD), (480-159204-E-12-A PDS) and (480-159204-E-12-A SD ^5) was not performed.

Method(s) 6010C: The method blank for preparation batch 480-492504 and analytical batch 480-493083 contained Total Manganese above the reporting limit (RL). Associated samples AMSF-CS-SS-SS-C1 (480-159204-3), AMSF-CS-SS-SS-C2 (480-159204-4), AMSF-CS-DUP-SS-C2 (480-159204-8), AMSF-CS-ES-SS-C1 (480-159204-11), AMSF-CS-ES-SS-C2 (480-159204-14), AMSF-CS-NS-SS-C1 (480-159204-17), AMSF-CS-NS-SS-C1 (480-159204-18), AMSF-CS-WS-SS-C1 (480-159204-21) and AMSF-CS-WS-SS-C2 (480-159204-22) were not re-extracted and/or re-analyzed because results were greater than 10X the value found in the method blank.

Method(s) 6010C: The serial dilution and post spike (480-159204-A-11-A PDS) and (480-159204-A-11-A SD ^5), associated with batch 480-492504, exceeded the quality control limits for Total Calcium and Manganese. Sample matrix is suspected, therefore, no corrective action was necessary.

Method(s) 6010C: The serial dilution (480-159204-A-11-A SD ^5) associated with batch 480-493083, exhibited results outside the quality control limits for Total Barium, Magnesium, and Zinc. However, the post digestion spike (PDS) was compliant, therefore no corrective action was necessary.

Method(s) 6010C: The serial dilution and post spike (480-159204-A-11-A PDS) and (480-159204-A-11-A SD ^5), associated with batch 4840-492504, exceeded the quality control limits for Total Iron. Sample matrix is suspected, therefore, no corrective action was necessary.

Method(s) 6010C: The recovery of post spike, (480-159204-A-11-A PDS), associated with batch 480-493465, exhibited a result outside quality control limits for Total Aluminum. However, the serial dilution (SD) of this sample was compliant, therefore no corrective action was necessary.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

Method(s) 9012B: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for preparation batch 480-494182 and analytical batch 480-494364 recovered outside control limits for the following analytes: Cyanide. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported. AMSF-CS-SS-SC1 (480-159204-3), AMSF-CS-SS-SS-C2 (480-159204-4), AMSF-CS-DUP-SS-C2 (480-159204-8), AMSF-CS-ES-SS-C1 (480-159204-11), AMSF-CS-ES-SS-C2 (480-159204-14) and AMSF-CS-NS-SS-C1 (480-159204-17)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

Method(s) 3550C: For method 8081, organic prep batch 492848, the following samples required a Florisil clean-up, via EPA Method 3620C, to reduce matrix interferences: AMSF-CS-SS-SS-C1 (480-159204-3), AMSF-CS-SS-SS-C2 (480-159204-4), AMSF-CS-DUP-SS-C2 (480-159204-8), AMSF-CS-ES-SS-C1 (480-159204-11), AMSF-CS-ES-SS-C1 (480-159204-11[MSD]), AMSF-CS-ES-SS-C2 (480-159204-14), AMSF-CS-NS-SS-C1 (480-159204-17), AMSF-CS-NS-SS-C2 (480-159204-18), AMSF-CS-WS-SS-C1 (480-159204-21) and AMSF-CS-WS-SS-C2 (480-159204-22).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

4

a

7

Q

10

12

1 /

15

Job ID: 480-159204-1

Client Sample ID: AMSF-CS-SS-SS-G1

Lab Sample ID: 480-159204-1

No Detections.

Client Sample ID: AMSF-CS-SS-SS-G2

Lab Sample ID: 480-159204-2

No Detections.

Client Sample ID: AMSF-CS-SS-SS-C1

Lab Sample ID: 480-159204-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzo(a)anthracene	3.1		2.0		mg/Kg		₩	8270D	Total/NA
Benzo(a)pyrene	3.5		2.0		mg/Kg	10	₩	8270D	Total/NA
Benzo(b)fluoranthene	4.8		2.0		mg/Kg	10	₩	8270D	Total/NA
Benzo(g,h,i)perylene	2.4		2.0		mg/Kg	10	₩	8270D	Total/NA
Benzo(k)fluoranthene	2.0		2.0		mg/Kg	10	₩	8270D	Total/NA
Chrysene	4.0		2.0		mg/Kg	10	₩	8270D	Total/NA
Fluoranthene	8.5		2.0		mg/Kg	10		8270D	Total/NA
Indeno(1,2,3-cd)pyrene	2.1		2.0		mg/Kg	10	₩	8270D	Total/NA
Phenanthrene	4.6		2.0		mg/Kg	10	₩	8270D	Total/NA
Pyrene	6.2		2.0		mg/Kg	10	₩	8270D	Total/NA
Aluminum	14500		11.8		mg/Kg	1	₩	6010C	Total/NA
Arsenic	3.7		2.4		mg/Kg	1	₩	6010C	Total/NA
Barium	67.4		0.59		mg/Kg	1	₩	6010C	Total/NA
Beryllium	0.58		0.24		mg/Kg	1	₩	6010C	Total/NA
Calcium	6880		59.0		mg/Kg	1	₩	6010C	Total/NA
Chromium	43.3		0.59		mg/Kg	1	₩	6010C	Total/NA
Cobalt	7.2		0.59		mg/Kg	1	₩	6010C	Total/NA
Copper	17.0		1.2		mg/Kg	1	₩	6010C	Total/NA
Iron	18400		11.8		mg/Kg	1	₩	6010C	Total/NA
Lead	24.5		1.2		mg/Kg	1	₩	6010C	Total/NA
Magnesium	4830		23.6		mg/Kg	1	₩	6010C	Total/NA
Manganese	451	В	0.24		mg/Kg	1	₽	6010C	Total/NA
Nickel	16.0		5.9		mg/Kg	1	₩	6010C	Total/NA
Potassium	2490		35.4		mg/Kg	1	₩	6010C	Total/NA
Sodium	191		165		mg/Kg	1	₩.	6010C	Total/NA
Vanadium	29.1		0.59		mg/Kg	1	₩	6010C	Total/NA
Zinc	101		2.4		mg/Kg	1	₩	6010C	Total/NA
Mercury	0.049		0.024		mg/Kg	1	₩.	7471B	Total/NA

Client Sample ID: AMSF-CS-SS-SS-C2

Lab Sample ID: 480-159204-4

Analyte	Result Qu	ualifier RL	MDL Un	it	Dil Fac	D	Method	Prep Type
Benzo(a)anthracene	1.3	0.95	mg	ı/Kg	5	₩	8270D	Total/NA
Benzo(a)pyrene	1.4	0.95	mg.	ı/Kg	5	₩	8270D	Total/NA
Benzo(b)fluoranthene	2.1	0.95	mg.	ı/Kg	5	₩	8270D	Total/NA
Benzo(g,h,i)perylene	1.1	0.95	mg	ı/Kg	5	₽	8270D	Total/NA
Chrysene	1.5	0.95	mg.	ı/Kg	5	₩	8270D	Total/NA
Fluoranthene	3.1	0.95	mg.	ı/Kg	5	₩	8270D	Total/NA
Phenanthrene	1.3	0.95	mg	/Kg	5	₩	8270D	Total/NA
Pyrene	2.3	0.95	mg.	ı/Kg	5	₩	8270D	Total/NA
Aluminum	16100	11.2	mg.	ı/Kg	1	₩	6010C	Total/NA
Arsenic	3.3	2.2	mg	ı/Kg	1	₩	6010C	Total/NA
Barium	73.8	0.56	mg.	ı/Kg	1	₩	6010C	Total/NA
Beryllium	0.63	0.22	mg.	ı/Kg	1	₩	6010C	Total/NA
Calcium	12200	55.9	mg.	ı/Kg	1	Ď.	6010C	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Buffalo

Job ID: 480-159204-1

Lab Sample ID: 480-159204-5

Client Sample ID: AMSF-CS-SS-SS-C2 (Continued)

Lab Sample ID: 480-159204-4

Analyte	Result C	Qualifier RL	MDL Unit	Dil Fac	D	Method	Prep Type
Chromium	20.1	0.56	mg/Kg		₩	6010C	Total/NA
Cobalt	7.5	0.56	mg/Kg	1	₩	6010C	Total/NA
Copper	17.2	1.1	mg/Kg	1	₩	6010C	Total/NA
Iron	18400	11.2	mg/Kg	1	₩	6010C	Total/NA
Lead	30.5	1.1	mg/Kg	1	₩	6010C	Total/NA
Magnesium	7540	22.4	mg/Kg	1	₩	6010C	Total/NA
Manganese	367 B	3 0.22	mg/Kg	1	₩	6010C	Total/NA
Nickel	17.4	5.6	mg/Kg	1	₩	6010C	Total/NA
Potassium	2760	33.6	mg/Kg	1	₩	6010C	Total/NA
Sodium	601	157	mg/Kg	1	₩	6010C	Total/NA
Vanadium	31.0	0.56	mg/Kg	1	₩	6010C	Total/NA
Zinc	88.9	2.2	mg/Kg	1	₩	6010C	Total/NA
Mercury	0.050	0.022	mg/Kg	1	₩	7471B	Total/NA

Client Sample ID: AMSF-CS-DUP-SS-G1

No Detections.

Client Sample ID: AMSF-CS-DUP-SS-C2

Lab Sample ID: 480-159204-8

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzo(a)anthracene	1.0		0.94		mg/Kg	5	₩	8270D	Total/NA
Benzo(a)pyrene	1.2		0.94		mg/Kg	5	₽	8270D	Total/NA
Benzo(b)fluoranthene	1.6		0.94		mg/Kg	5	₩	8270D	Total/NA
Chrysene	1.3		0.94		mg/Kg	5	₩	8270D	Total/NA
Fluoranthene	2.6		0.94		mg/Kg	5	₩	8270D	Total/NA
Phenanthrene	1.2		0.94		mg/Kg	5	₩	8270D	Total/NA
Pyrene	2.0		0.94		mg/Kg	5	Φ.	8270D	Total/NA
Aluminum	14600		11.4		mg/Kg	1	₩	6010C	Total/NA
Arsenic	3.3		2.3		mg/Kg	1	₩	6010C	Total/NA
Barium	65.9		0.57		mg/Kg	1	₩.	6010C	Total/NA
Beryllium	0.54		0.23		mg/Kg	1	₩	6010C	Total/NA
Calcium	15300		57.2		mg/Kg	1	₩	6010C	Total/NA
Chromium	17.7		0.57		mg/Kg	1	ф	6010C	Total/NA
Cobalt	6.9		0.57		mg/Kg	1	₩	6010C	Total/NA
Copper	14.1		1.1		mg/Kg	1	₩	6010C	Total/NA
Iron	16500		11.4		mg/Kg	1	₩	6010C	Total/NA
Lead	24.3		1.1		mg/Kg	1	₩	6010C	Total/NA
Magnesium	9710		22.9		mg/Kg	1	₩	6010C	Total/NA
Manganese	412	В	0.23		mg/Kg	1	₩.	6010C	Total/NA
Nickel	14.8		5.7		mg/Kg	1	₩	6010C	Total/NA
Potassium	2390		34.3		mg/Kg	1	₩	6010C	Total/NA
Sodium	373		160		mg/Kg	1	Φ.	6010C	Total/NA
Vanadium	27.7		0.57		mg/Kg	1	₩	6010C	Total/NA
Zinc	70.1		2.3		mg/Kg	1	₩	6010C	Total/NA
Mercury	0.054		0.023		mg/Kg	1	₩.	7471B	Total/NA

Client Sample ID: AMSF-CS-ES-SS-G1

No Detections.

No Detections.

Client Sample ID: AMSF-CS-ES-SS-G2

This Detection Summary does not include radiochemical test results.

Lab Sample ID: 480-159204-10

Lab Sample ID: 480-159204-9

Eurofins TestAmerica, Buffalo

Job ID: 480-159204-1

Client Sample ID: AMSF-CS-ES-SS-C1

Lab Sample ID: 480-159204-11

Lab Sample ID: 480-159204-12

Lab Sample ID: 480-159204-13

Lab Sample ID: 480-159204-14

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzo(a)anthracene	2.3	F2 F1	0.97		mg/Kg	5	₩	8270D	Total/NA
Benzo(a)pyrene	2.3	F2 F1	0.97		mg/Kg	5	₩	8270D	Total/NA
Benzo(b)fluoranthene	3.3	F2	0.97		mg/Kg	5	₩	8270D	Total/NA
Benzo(g,h,i)perylene	1.7	F2	0.97		mg/Kg	5		8270D	Total/NA
Benzo(k)fluoranthene	1.2	F2	0.97		mg/Kg	5	₩	8270D	Total/NA
Chrysene	2.6	F2 F1	0.97		mg/Kg	5	₩	8270D	Total/NA
Fluoranthene	5.5	F2 F1	0.97		mg/Kg	5		8270D	Total/NA
Indeno(1,2,3-cd)pyrene	1.3	F2 F1	0.97		mg/Kg	5	₩	8270D	Total/NA
Phenanthrene	3.1	F2 F1	0.97		mg/Kg	5	₩	8270D	Total/NA
Pyrene	4.3	F1	0.97		mg/Kg	5	÷	8270D	Total/NA
Aluminum	13500		12.1		mg/Kg	1	₩	6010C	Total/NA
Arsenic	3.0		2.4		mg/Kg	1	₩	6010C	Total/NA
Barium	61.9	F1	0.61		mg/Kg	1	₩.	6010C	Total/NA
Beryllium	0.51		0.24		mg/Kg	1	₩	6010C	Total/NA
Calcium	9210	F2 F1	60.6		mg/Kg	1	₩	6010C	Total/NA
Chromium	16.5		0.61		mg/Kg	1	₩.	6010C	Total/NA
Cobalt	6.5		0.61		mg/Kg	1	₩	6010C	Total/NA
Copper	11.2		1.2		mg/Kg	1	₩	6010C	Total/NA
Iron	15800		12.1		mg/Kg	1	₩	6010C	Total/NA
Lead	13.5		1.2		mg/Kg	1	₩	6010C	Total/NA
Magnesium	4830	F1 F2	24.2		mg/Kg	1	₩	6010C	Total/NA
Manganese	404	В	0.24		mg/Kg	1	*	6010C	Total/NA
Nickel	13.7		6.1		mg/Kg	1	₩	6010C	Total/NA
Potassium	2460	F1	36.3		mg/Kg	1	₩	6010C	Total/NA
Vanadium	25.9		0.61		mg/Kg	1	₩	6010C	Total/NA
Zinc	52.4		2.4		mg/Kg	1	₽	6010C	Total/NA
Mercury	0.041		0.024		mg/Kg	1	₩	7471B	Total/NA

Client Sample ID: AMSF-CS-RB-W-1

No Detections.

Client Sample ID: TRIP BLANK

No Detections.

Client Sample ID: AMSF-CS-ES-SS-C2

<u> </u>					_		
Analyte	Result Q	ualifier RL	MDL Unit	Dil Fac	D	Method	Prep Type
Benzo(a)anthracene	1.2	0.95	mg/Kg	5	₩	8270D	Total/NA
Benzo(a)pyrene	1.3	0.95	mg/Kg	5	₩	8270D	Total/NA
Benzo(b)fluoranthene	1.6	0.95	mg/Kg	5	₩	8270D	Total/NA
Chrysene	1.6	0.95	mg/Kg	5	₩	8270D	Total/NA
Fluoranthene	3.1	0.95	mg/Kg	5	₩	8270D	Total/NA
Phenanthrene	1.8	0.95	mg/Kg	5	₩	8270D	Total/NA
Pyrene	2.4	0.95	mg/Kg	5	ф.	8270D	Total/NA
Aluminum	14800	10.8	mg/Kg	1	₩	6010C	Total/NA
Arsenic	3.0	2.2	mg/Kg	1	₩	6010C	Total/NA
Barium	65.1 F′	1 0.54	mg/Kg	1		6010C	Total/NA
Beryllium	0.53	0.22	mg/Kg	1	₩	6010C	Total/NA
Calcium	10000	54.1	mg/Kg	1	₩	6010C	Total/NA
Chromium	17.6	0.54	mg/Kg	1	₩.	6010C	Total/NA
Cobalt	6.9	0.54	ma/Ka	1	₩	6010C	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Buffalo

Δ

J

8

4.0

12

13

4 5

16

1

10/4/2019

Job ID: 480-159204-1

Client Sample ID: AMSF-CS-ES-SS-C2 (Continued)

Lab Sample ID: 480-159204-14

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Copper	8.6		1.1		mg/Kg	1	₩	6010C	Total/NA
Iron	16700		10.8		mg/Kg	1	₩	6010C	Total/NA
Lead	14.9		1.1		mg/Kg	1	₽	6010C	Total/NA
Magnesium	7250	F1 F2	21.6		mg/Kg	1	₩	6010C	Total/NA
Manganese	434	B F2	0.22		mg/Kg	1	₽	6010C	Total/NA
Nickel	13.8		5.4		mg/Kg	1	₽	6010C	Total/NA
Potassium	2310	F1	32.4		mg/Kg	1	₽	6010C	Total/NA
Vanadium	28.0		0.54		mg/Kg	1	₩	6010C	Total/NA
Zinc	52.2		2.2		mg/Kg	1	₩	6010C	Total/NA
Mercury	0.041		0.022		mg/Kg	1	₩	7471B	Total/NA

Client Sample ID: AMSF-CS-NS-SS-G1

Lab Sample ID: 480-159204-15

No Detections.

Client Sample ID: AMSF-CS-NS-SS-G2

Lab Sample ID: 480-159204-16

No Detections.

Client Sample ID: AMSF-CS-NS-SS-C1

Lab Sample ID: 480-159204-17

<u> </u>											
- Analyte	Result (Qualifier RL	MDL Unit	Dil Fac	D	Method	Prep Type				
Benzo(b)fluoranthene	1.2	0.91	mg/Kg		₩	8270D	Total/NA				
Chrysene	0.95	0.91	mg/Kg	5	₩	8270D	Total/NA				
Fluoranthene	1.8	0.91	mg/Kg	5	₩	8270D	Total/NA				
Pyrene	1.4	0.91	mg/Kg	5	₩	8270D	Total/NA				
Aluminum	9170	11.1	mg/Kg	1	₩	6010C	Total/NA				
Arsenic	2.8	2.2	mg/Kg	1	₩	6010C	Total/NA				
Barium	43.7	0.55	mg/Kg	1	₩	6010C	Total/NA				
Beryllium	0.37	0.22	mg/Kg	1	₩	6010C	Total/NA				
Calcium	35700	55.4	mg/Kg	1	₩	6010C	Total/NA				
Chromium	12.3	0.55	mg/Kg	1	₩	6010C	Total/NA				
Cobalt	5.4	0.55	mg/Kg	1	₩	6010C	Total/NA				
Copper	9.5	1.1	mg/Kg	1	₩	6010C	Total/NA				
Iron	13200	11.1	mg/Kg	1	₩	6010C	Total/NA				
Lead	10.9	1.1	mg/Kg	1	₩	6010C	Total/NA				
Magnesium	13100	22.1	mg/Kg	1	₩	6010C	Total/NA				
Manganese	332 E	3 0.22	mg/Kg	1	☼	6010C	Total/NA				
Nickel	11.8	5.5	mg/Kg	1	☼	6010C	Total/NA				
Potassium	2530	33.2	mg/Kg	1	₩	6010C	Total/NA				
Vanadium	20.2	0.55	mg/Kg	1	☼	6010C	Total/NA				
Zinc	34.9	2.2	mg/Kg	1	₩	6010C	Total/NA				

Client Sample ID: AMSF-CS-NS-SS-C2

Lab Sample ID: 480-159204-18

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac I	D Method	Prep Type
Benzo(a)anthracene	0.29	0.18	mg/Kg	<u> </u>	₹ 8270D	Total/NA
Benzo(a)pyrene	0.36	0.18	mg/Kg	1 -	[‡] 8270D	Total/NA
Benzo(b)fluoranthene	0.51	0.18	mg/Kg	1 -	[‡] 8270D	Total/NA
Benzo(g,h,i)perylene	0.32	0.18	mg/Kg	1	≆ 8270D	Total/NA
Benzo(k)fluoranthene	0.27	0.18	mg/Kg	1 -	⊅ 8270D	Total/NA
Chrysene	0.44	0.18	mg/Kg	1 -	[‡] 8270D	Total/NA
Fluoranthene	0.79	0.18	mg/Kg	1 -3	₹ 8270D	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Buffalo

Client Sample ID: AMSF-CS-NS-SS-C2 (Continued)

Lab Sample ID: 480-159204-18

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Indeno(1,2,3-cd)pyrene	0.28		0.18		mg/Kg		₩	8270D	Total/NA
Phenanthrene	0.27		0.18		mg/Kg	1	₩	8270D	Total/NA
Pyrene	0.60		0.18		mg/Kg	1	₽	8270D	Total/NA
Aluminum	9310		10.6		mg/Kg	1	₩	6010C	Total/NA
Arsenic	2.6		2.1		mg/Kg	1	₩	6010C	Total/NA
Barium	46.0		0.53		mg/Kg	1	₽	6010C	Total/NA
Beryllium	0.39		0.21		mg/Kg	1	₩	6010C	Total/NA
Calcium	56100		52.8		mg/Kg	1	₩	6010C	Total/NA
Chromium	12.8		0.53		mg/Kg	1	₩	6010C	Total/NA
Cobalt	5.4		0.53		mg/Kg	1	₩	6010C	Total/NA
Copper	9.3		1.1		mg/Kg	1	₩	6010C	Total/NA
Iron	12700		10.6		mg/Kg	1	₩	6010C	Total/NA
Lead	7.7		1.1		mg/Kg	1	₩	6010C	Total/NA
Magnesium	19800		21.1		mg/Kg	1	₩	6010C	Total/NA
Manganese	340	В	0.21		mg/Kg	1	ф.	6010C	Total/NA
Nickel	11.9		5.3		mg/Kg	1	₩	6010C	Total/NA
Potassium	2620		31.7		mg/Kg	1	₩	6010C	Total/NA
Sodium	183		148		mg/Kg	1	₩.	6010C	Total/NA
Vanadium	21.2		0.53		mg/Kg	1	₩	6010C	Total/NA
Zinc	29.4		2.1		mg/Kg	1	₩	6010C	Total/NA

Client Sample ID: AMSF-CS-WS-SS-G1

No Detections.

Client Sample ID: AMSF-CS-WS-SS-G2

No Detections.

Client Sample ID: AMSF-CS-WS-SS-C1

Lab Sample ID: 480-159204-20

Lab Sample ID: 480-159204-19

Client Sample ID: AMS	F-CS-WS-SS-C1				Lab Samp	ole ID: 48	0-159204-21
- Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Benzo(a)anthracene	0.49	0.21		mg/Kg	<u> </u>	8270D	Total/NA
Benzo(a)pyrene	0.67	0.21		mg/Kg	1 ❖	8270D	Total/NA
Benzo(b)fluoranthene	0.93	0.21		mg/Kg	1 🌣	8270D	Total/NA
Benzo(g,h,i)perylene	0.57	0.21		mg/Kg	1 🌣	8270D	Total/NA
Benzo(k)fluoranthene	0.47	0.21		mg/Kg	1 ❖	8270D	Total/NA
Chrysene	0.75	0.21		mg/Kg	1 🌣	8270D	Total/NA
Fluoranthene	1.4	0.21		mg/Kg	1 🌣	8270D	Total/NA
Indeno(1,2,3-cd)pyrene	0.45	0.21		mg/Kg	1 🌣	8270D	Total/NA
Phenanthrene	0.45	0.21		mg/Kg	1 🌣	8270D	Total/NA
Pyrene	1.1	0.21		mg/Kg	1 ❖	8270D	Total/NA
alpha-BHC	0.0037	0.0020		mg/Kg	1 🌣	8081B	Total/NA
Aluminum	14000	12.1		mg/Kg	1 🌣	6010C	Total/NA
Arsenic	3.5	2.4		mg/Kg	1 🌣	6010C	Total/NA
Barium	62.1	0.61		mg/Kg	1 🌣	6010C	Total/NA
Beryllium	0.57	0.24		mg/Kg	1 ⊅	6010C	Total/NA
Calcium	31200	60.7		mg/Kg	1 🌣	6010C	Total/NA
Chromium	16.8	0.61		mg/Kg	1 🌣	6010C	Total/NA
Cobalt	6.8	0.61		mg/Kg	1 ❖	6010C	Total/NA
Copper	12.0	1.2		mg/Kg	1 ❖	6010C	Total/NA
Iron	17100	12.1		mg/Kg	1 ❖	6010C	Total/NA
Lead	13.6	1.2		mg/Kg	1 ❖	6010C	Total/NA

This Detection Summary does not include radiochemical test results.

Page 12 of 135

Job ID: 480-159204-1

Detection Summary

Client: Stantec Consulting Corp. Project/Site: Alliance BCP Site (AMSF) Job ID: 480-159204-1

Client Sample ID: AMSF-CS-WS-SS-C1 (Continued)

Lab Sample ID: 480-159204-21

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Magnesium	19000		24.3		mg/Kg		₩	6010C	Total/NA
Manganese	375	В	0.24		mg/Kg	1	₩	6010C	Total/NA
Nickel	16.0		6.1		mg/Kg	1	₩	6010C	Total/NA
Potassium	3030		36.4		mg/Kg	1	₩	6010C	Total/NA
Vanadium	25.8		0.61		mg/Kg	1	₩	6010C	Total/NA
Zinc	54.3		2.4		mg/Kg	1	₩	6010C	Total/NA
Mercury	0.036		0.024		mg/Kg	1	₩	7471B	Total/NA

Client Sample ID: AMSF-CS-WS-SS-C2

Lab Sample ID: 480-159204-22

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzo(b)fluoranthene	1.1		0.97		mg/Kg	5	₩	8270D	Total/NA
Fluoranthene	2.1		0.97		mg/Kg	5	₩	8270D	Total/NA
Phenanthrene	1.5		0.97		mg/Kg	5	₩	8270D	Total/NA
Pyrene	1.6		0.97		mg/Kg	5	₩	8270D	Total/NA
Aluminum	16100		11.8		mg/Kg	1	₩	6010C	Total/NA
Arsenic	3.3		2.4		mg/Kg	1	₩	6010C	Total/NA
Barium	79.9		0.59		mg/Kg	1	₩	6010C	Total/NA
Beryllium	0.70		0.24		mg/Kg	1	₩	6010C	Total/NA
Calcium	4330		59.1		mg/Kg	1	₩	6010C	Total/NA
Chromium	21.1		0.59		mg/Kg	1	₩.	6010C	Total/NA
Cobalt	9.9		0.59		mg/Kg	1	₩	6010C	Total/NA
Copper	11.5		1.2		mg/Kg	1	₩	6010C	Total/NA
Iron	19800		11.8		mg/Kg	1	ф.	6010C	Total/NA
Lead	10.7		1.2		mg/Kg	1	₩	6010C	Total/NA
Magnesium	3780		23.6		mg/Kg	1	₩	6010C	Total/NA
Manganese	440	В	0.24		mg/Kg	1	₽	6010C	Total/NA
Nickel	19.4		5.9		mg/Kg	1	₩	6010C	Total/NA
Potassium	3120		35.5		mg/Kg	1	₩	6010C	Total/NA
Vanadium	31.0		0.59		mg/Kg	1	₩	6010C	Total/NA
Zinc	52.6		2.4		mg/Kg	1	₩	6010C	Total/NA
Mercury	0.039		0.023		mg/Kg	1	₩	7471B	Total/NA

This Detection Summary does not include radiochemical test results.

Client: Stantec Consulting Corp. Project/Site: Alliance BCP Site (AMSF)

Client Sample ID: AMSF-CS-SS-SS-G1 Lab Sample ID: 480-159204-1

Date Collected: 09/13/19 15:30

Date Received: 09/14/19 09:00

Matrix: Solid
Percent Solids: 89.9

Method: 8260C - Volatile Organ		Qualifier		MIDI	Unit	Б	Drongrad	Analyzad	Di E-
Analyte	ND		RL 0.0054	MDL	Unit	— D	Prepared 09/17/19 12:21	Analyzed 09/17/19 16:00	Dil Fa
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	ND ND	vs vs	0.0054		mg/Kg	₩	09/17/19 12:21		
1,1,2-Trichloro-1,2,2-trifluoroethane	ND ND		0.0054		mg/Kg	₩	09/17/19 12:21	09/17/19 16:00	
					mg/Kg	.			
1,1,2-Trichloroethane	ND	VS	0.0054		mg/Kg	₩		09/17/19 16:00	
1,1-Dichloroethane			0.0054		mg/Kg		09/17/19 12:21	09/17/19 16:00	
1,1-Dichloroethene	ND		0.0054		mg/Kg	¥.	09/17/19 12:21		
1,2,4-Trichlorobenzene	ND	VS	0.0054		mg/Kg	☆	09/17/19 12:21		
1,2-Dibromo-3-Chloropropane	ND	VS	0.0054		mg/Kg	☆	09/17/19 12:21	09/17/19 16:00	
I,2-Dichlorobenzene	ND		0.0054		mg/Kg	<u>"</u> .	09/17/19 12:21		
1,2-Dichloroethane			0.0054		mg/Kg			09/17/19 16:00	
1,2-Dichloropropane	ND		0.0054		mg/Kg	*	09/17/19 12:21	09/17/19 16:00	
1,3-Dichlorobenzene	ND		0.0054		mg/Kg	, .	09/17/19 12:21	09/17/19 16:00	
1,4-Dichlorobenzene	ND		0.0054		mg/Kg	*		09/17/19 16:00	
2-Butanone (MEK)	ND		0.027		mg/Kg	₩	09/17/19 12:21		
2-Hexanone	ND	vs	0.027		mg/Kg	.	09/17/19 12:21	09/17/19 16:00	
4-Methyl-2-pentanone (MIBK)	ND	VS	0.027		mg/Kg	₩	09/17/19 12:21	09/17/19 16:00	
Acetone	ND	VS	0.027		mg/Kg	₩	09/17/19 12:21	09/17/19 16:00	
Benzene	ND	vs	0.0054		mg/Kg	₩	09/17/19 12:21	09/17/19 16:00	
3romoform Sromoform	ND	* vs	0.0054		mg/Kg	₩	09/17/19 12:21	09/17/19 16:00	
Bromomethane	ND	vs	0.0054		mg/Kg	₩	09/17/19 12:21	09/17/19 16:00	
Carbon disulfide	ND	vs	0.0054		mg/Kg	₩	09/17/19 12:21	09/17/19 16:00	
Carbon tetrachloride	ND	VS	0.0054		mg/Kg	₩.	09/17/19 12:21	09/17/19 16:00	
Chlorobenzene	ND	vs	0.0054		mg/Kg	☼	09/17/19 12:21	09/17/19 16:00	
Dibromochloromethane	ND	* vs	0.0054		mg/Kg	☼	09/17/19 12:21	09/17/19 16:00	
Chloroethane	ND	VS	0.0054		mg/Kg		09/17/19 12:21	09/17/19 16:00	
Chloroform	ND	vs	0.0054		mg/Kg	₩	09/17/19 12:21	09/17/19 16:00	
Chloromethane	ND	vs	0.0054		mg/Kg	₽	09/17/19 12:21	09/17/19 16:00	
cis-1,2-Dichloroethene	ND	VS	0.0054		mg/Kg	 ☆	09/17/19 12:21	09/17/19 16:00	
Cyclohexane	ND	vs	0.0054		mg/Kg	₩	09/17/19 12:21	09/17/19 16:00	
3 Bromodichloromethane	ND	vs	0.0054		mg/Kg	₽	09/17/19 12:21	09/17/19 16:00	
Dichlorodifluoromethane	ND	VS	0.0054		mg/Kg			09/17/19 16:00	
Ethylbenzene	ND		0.0054		mg/Kg	₩		09/17/19 16:00	
1,2-Dibromoethane	ND		0.0054		mg/Kg	₩		09/17/19 16:00	
sopropylbenzene	ND	VS	0.0054		mg/Kg		09/17/19 12:21		
Methyl acetate	ND		0.027		mg/Kg	₩		09/17/19 16:00	
Methyl tert-butyl ether	ND		0.0054		mg/Kg	₩	09/17/19 12:21	09/17/19 16:00	
Methylcyclohexane	ND		0.0054		mg/Kg		09/17/19 12:21	09/17/19 16:00	
Methylene Chloride	ND ND		0.0054		mg/Kg	₽	09/17/19 12:21	09/17/19 16:00	
Tetrachloroethene	ND ND		0.0054			₽	09/17/19 12:21	09/17/19 16:00	
					mg/Kg				
Foluene	ND		0.0054		mg/Kg			09/17/19 16:00	
rans-1,2-Dichloroethene	ND		0.0054		mg/Kg	Ť.	09/17/19 12:21	09/17/19 16:00	
rans-1,3-Dichloropropene	ND		0.0054		mg/Kg		09/17/19 12:21	09/17/19 16:00	
Frichloroethene	ND		0.0054		mg/Kg	₽	09/17/19 12:21		
richlorofluoromethane	ND		0.0054		mg/Kg	φ.	09/17/19 12:21	09/17/19 16:00	
/inyl chloride	ND.		0.0054		mg/Kg	T.	09/17/19 12:21	09/17/19 16:00	
Kylenes, Total	ND		0.011		mg/Kg	₩	09/17/19 12:21	09/17/19 16:00	
cis-1,3-Dichloropropene	ND		0.0054		mg/Kg	*	09/17/19 12:21		
Styrene	ND	vs	0.0054		mg/Kg	₩	09/17/19 12:21	09/17/19 16:00	
Ethyl acetate	ND	VS	0.0054		mg/Kg	₽	09/17/19 12:21	09/17/19 16:00	

Eurofins TestAmerica, Buffalo

Page 14 of 135

2

Job ID: 480-159204-1

3

5

8

10

12

14

Client: Stantec Consulting Corp. Job ID: 480-159204-1

Project/Site: Alliance BCP Site (AMSF)

Client Sample ID: AMSF-CS-SS-SS-G1 Lab Sample ID: 480-159204-1

 Date Collected: 09/13/19 15:30
 Matrix: Solid

 Date Received: 09/14/19 09:00
 Percent Solids: 89.9

Surrogate	%Recovery Qualifi	er Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106	64 - 126	09/17/19 12:21	09/17/19 16:00	1
4-Bromofluorobenzene (Surr)	99	72 - 126	09/17/19 12:21	09/17/19 16:00	1
Toluene-d8 (Surr)	99	71 - 125	09/17/19 12:21	09/17/19 16:00	1

4

5

0

10

13

15

Client: Stantec Consulting Corp. Project/Site: Alliance BCP Site (AMSF)

Client Sample ID: AMSF-CS-SS-G2 Lab Sample ID: 480-159204-2

Method: 8260C - Volatile Organ Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	VS -	0.0053	IVIDE	mg/Kg	— =	09/17/19 12:21	09/17/19 16:26	
1,1,2,2-Tetrachloroethane	ND	VS	0.0053		mg/Kg	₩	09/17/19 12:21	09/17/19 16:26	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.0053		mg/Kg	₩	09/17/19 12:21	09/17/19 16:26	
1,1,2-Trichloroethane	ND		0.0053		mg/Kg		09/17/19 12:21		
I,1-Dichloroethane	ND		0.0053		mg/Kg	₩	09/17/19 12:21	09/17/19 16:26	
I,1-Dichloroethene	ND		0.0053		mg/Kg	₩	09/17/19 12:21		
1,2,4-Trichlorobenzene	ND		0.0053		mg/Kg	 .		09/17/19 16:26	
I,2-Dibromo-3-Chloropropane	ND ND		0.0053		mg/Kg		09/17/19 12:21	09/17/19 16:26	
I.2-Dictiono-3-Chloroproparie	ND ND		0.0053		mg/Kg	Ϋ́	09/17/19 12:21		
I,2-Dichloroethane	ND		0.0053		mg/Kg			09/17/19 16:26	
•						₽			
I,2-Dichloropropane	ND		0.0053		mg/Kg	₽	09/17/19 12:21	09/17/19 16:26	
I,3-Dichlorobenzene	ND		0.0053		mg/Kg		09/17/19 12:21	09/17/19 16:26	
I,4-Dichlorobenzene	ND		0.0053		mg/Kg	‡		09/17/19 16:26	
2-Butanone (MEK)	ND	VS	0.027		mg/Kg	‡	09/17/19 12:21	09/17/19 16:26	
2-Hexanone	ND		0.027		mg/Kg	<u>.</u>	09/17/19 12:21	09/17/19 16:26	
4-Methyl-2-pentanone (MIBK)	ND		0.027		mg/Kg	₩.	09/17/19 12:21		
Acetone	ND		0.027		mg/Kg	☆	09/17/19 12:21		
Benzene	ND		0.0053		mg/Kg			09/17/19 16:26	
Bromoform	ND	* vs	0.0053		mg/Kg	₽		09/17/19 16:26	
Bromomethane	ND	VS	0.0053		mg/Kg	₩	09/17/19 12:21	09/17/19 16:26	
Carbon disulfide	ND	VS	0.0053		mg/Kg	₩	09/17/19 12:21	09/17/19 16:26	
Carbon tetrachloride	ND	VS	0.0053		mg/Kg	₩	09/17/19 12:21	09/17/19 16:26	
Chlorobenzene	ND	vs	0.0053		mg/Kg	₩	09/17/19 12:21	09/17/19 16:26	
Dibromochloromethane	ND	* vs	0.0053		mg/Kg	₩	09/17/19 12:21	09/17/19 16:26	
Chloroethane	ND	vs	0.0053		mg/Kg	₩	09/17/19 12:21	09/17/19 16:26	
Chloroform	ND	vs	0.0053		mg/Kg	₩	09/17/19 12:21	09/17/19 16:26	
Chloromethane	ND	vs	0.0053		mg/Kg	₩	09/17/19 12:21	09/17/19 16:26	
cis-1,2-Dichloroethene	ND	VS	0.0053		mg/Kg	₽	09/17/19 12:21	09/17/19 16:26	
Cyclohexane	ND	VS	0.0053		mg/Kg	☼	09/17/19 12:21	09/17/19 16:26	
Bromodichloromethane	ND	VS	0.0053		mg/Kg	₩	09/17/19 12:21	09/17/19 16:26	
Dichlorodifluoromethane	ND	VS	0.0053		mg/Kg	₩	09/17/19 12:21	09/17/19 16:26	
Ethylbenzene	ND	vs	0.0053		mg/Kg	☼	09/17/19 12:21	09/17/19 16:26	
I,2-Dibromoethane	ND	vs	0.0053		mg/Kg	☼	09/17/19 12:21	09/17/19 16:26	
sopropylbenzene	ND	VS	0.0053		mg/Kg		09/17/19 12:21	09/17/19 16:26	
Methyl acetate	ND	vs	0.027		mg/Kg	₩	09/17/19 12:21	09/17/19 16:26	
Methyl tert-butyl ether	ND	vs	0.0053		mg/Kg	₩	09/17/19 12:21	09/17/19 16:26	
Methylcyclohexane	ND		0.0053		mg/Kg		09/17/19 12:21		
Methylene Chloride	ND		0.0053		mg/Kg	₩	09/17/19 12:21		
Tetrachloroethene	ND		0.0053		mg/Kg	₩		09/17/19 16:26	
Foluene	ND		0.0053		mg/Kg	<u>.</u> .		09/17/19 16:26	
rans-1,2-Dichloroethene	ND		0.0053		mg/Kg	₩	09/17/19 12:21		
rans-1,3-Dichloropropene	ND		0.0053		mg/Kg	₩	09/17/19 12:21		
Frichloroethene	ND		0.0053		mg/Kg			09/17/19 16:26	
Frichlorofluoromethane	ND ND		0.0053			≎	09/17/19 12:21		
	ND ND		0.0053		mg/Kg	₽		09/17/19 16:26	
/inyl chloride					mg/Kg				
(ylenes, Total	ND		0.011		mg/Kg	₩ ₩		09/17/19 16:26	
sis-1,3-Dichloropropene Styrene	ND ND		0.0053 0.0053		mg/Kg mg/Kg	₽		09/17/19 16:26 09/17/19 16:26	

Eurofins TestAmerica, Buffalo

Page 16 of 135

6

Job ID: 480-159204-1

3

4

6

8

10

12

14

Client: Stantec Consulting Corp. Job ID: 480-159204-1

Project/Site: Alliance BCP Site (AMSF)

Client Sample ID: AMSF-CS-SS-SS-G2 Lab Sample ID: 480-159204-2

Date Collected: 09/13/19 15:30 Matrix: Solid
Date Received: 09/14/19 09:00 Percent Solids: 91.0

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98	64 - 126	09/17/19 12:21	09/17/19 16:26	1
4-Bromofluorobenzene (Surr)	95	72 - 126	09/17/19 12:21	09/17/19 16:26	1
Toluene-d8 (Surr)	99	71 - 125	09/17/19 12:21	09/17/19 16:26	1

5

6

8

10

13

15

Client: Stantec Consulting Corp.
Project/Site: Alliance BCP Site (AMSF)

Client Sample ID: AMSF-CS-SS-SS-C1 Lab Sample ID: 480-159204-3

Date Collected: 09/13/19 15:30

Matrix: Solid
Date Received: 09/14/19 09:00

Percent Solids: 85.6

Method: 8270D - Semivolatilo Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fa
2,4,5-Trichlorophenol	ND Qualifier	2.0	mg/Kg	— ğ	09/23/19 14:27	09/24/19 19:48	1
2,4,6-Trichlorophenol	ND	2.0	mg/Kg	₽	09/23/19 14:27	09/24/19 19:48	1
2,4-Dichlorophenol	ND	2.0	mg/Kg	₽	09/23/19 14:27		1
2,4-Dimethylphenol	ND	2.0	mg/Kg			09/24/19 19:48	
2,4-Dinitrophenol	ND ND	3.8	mg/Kg		09/23/19 14:27		1
2,4-Dinitrophenol 2.4-Dinitrotoluene	ND ND	2.0			09/23/19 14:27		1
,	ND	2.0	mg/Kg	· · · · · · 🌴 ·		09/24/19 19:48	1
2,6-Dinitrotoluene	ND ND	2.0	mg/Kg	₩		09/24/19 19:48	
2-Chloronaphthalene			mg/Kg	≎			1
2-Chlorophenol	ND	2.0	mg/Kg		09/23/19 14:27		1
2-Methylnaphthalene	ND	2.0	mg/Kg	☆		09/24/19 19:48	1
2-Methylphenol	ND	2.0	mg/Kg	₩		09/24/19 19:48	1
2-Nitroaniline	ND	3.8	mg/Kg	<u>.</u> .	09/23/19 14:27		1
2-Nitrophenol	ND	2.0	mg/Kg		09/23/19 14:27		1
3,3'-Dichlorobenzidine	ND	2.0	mg/Kg	₩.	09/23/19 14:27		1
3-Nitroaniline	ND	3.8	mg/Kg		09/23/19 14:27		1
4,6-Dinitro-2-methylphenol	ND	3.8	mg/Kg	**	09/23/19 14:27		1
4-Bromophenyl phenyl ether	ND	2.0	mg/Kg	☼	09/23/19 14:27	09/24/19 19:48	1
4-Chloro-3-methylphenol	ND	2.0	mg/Kg	≎	09/23/19 14:27	09/24/19 19:48	1
4-Chloroaniline	ND	2.0	mg/Kg	₽	09/23/19 14:27	09/24/19 19:48	1
4-Chlorophenyl phenyl ether	ND	2.0	mg/Kg	₩	09/23/19 14:27	09/24/19 19:48	1
4-Methylphenol	ND	3.8	mg/Kg	₩	09/23/19 14:27	09/24/19 19:48	1
4-Nitroaniline	ND	3.8	mg/Kg	☼	09/23/19 14:27	09/24/19 19:48	1
4-Nitrophenol	ND	3.8	mg/Kg	☼	09/23/19 14:27	09/24/19 19:48	1
Acenaphthene	ND	2.0	mg/Kg	☼	09/23/19 14:27	09/24/19 19:48	1
Acenaphthylene	ND	2.0	mg/Kg	₩.	09/23/19 14:27	09/24/19 19:48	1
Acetophenone	ND	2.0	mg/Kg	☼	09/23/19 14:27	09/24/19 19:48	1
Anthracene	ND	2.0	mg/Kg	≎	09/23/19 14:27	09/24/19 19:48	1
Atrazine	ND	2.0	mg/Kg	φ.	09/23/19 14:27	09/24/19 19:48	1
Benzaldehyde	ND	2.0	mg/Kg	₽	09/23/19 14:27	09/24/19 19:48	1
Benzo(a)anthracene	3.1	2.0	mg/Kg	₩	09/23/19 14:27	09/24/19 19:48	1
Benzo(a)pyrene	3.5	2.0	mg/Kg	· · · · · · · · · · · · · · · · · · ·	09/23/19 14:27	09/24/19 19:48	1
Benzo(b)fluoranthene	4.8	2.0	mg/Kg	₩	09/23/19 14:27	09/24/19 19:48	1
Benzo(g,h,i)perylene	2.4	2.0	mg/Kg	₽		09/24/19 19:48	1
Benzo(k)fluoranthene	2.0	2.0	mg/Kg	 .		09/24/19 19:48	1
Biphenyl	ND	2.0	mg/Kg	₽		09/24/19 19:48	1
bis (2-chloroisopropyl) ether	ND	2.0	mg/Kg	₽	09/23/19 14:27		1
Bis(2-chloroethoxy)methane	ND	2.0	mg/Kg			09/24/19 19:48	
Bis(2-chloroethyl)ether	ND	2.0	mg/Kg	₽		09/24/19 19:48	1
Bis(2-ethylhexyl) phthalate	ND ND	2.0		₽		09/24/19 19:48	1
			mg/Kg				
Butyl benzyl phthalate	ND	2.0	mg/Kg	₩		09/24/19 19:48	1
Caprolactam	ND	2.0	mg/Kg	₩		09/24/19 19:48	1
Carbazole	ND	2.0	mg/Kg	. X .		09/24/19 19:48	1
Chrysene	4.0	2.0	mg/Kg	☆		09/24/19 19:48	1
Dibenz(a,h)anthracene	ND	2.0	mg/Kg	₩		09/24/19 19:48	
Dibenzofuran	ND	2.0	mg/Kg	<u>.</u> .		09/24/19 19:48	
Diethyl phthalate	ND	2.0	mg/Kg	₩.		09/24/19 19:48	•
Dimethyl phthalate	ND	2.0	mg/Kg	*		09/24/19 19:48	,
Di-n-butyl phthalate	ND	2.0	mg/Kg	₩	09/23/19 14:27	09/24/19 19:48	

Eurofins TestAmerica, Buffalo

Page 18 of 135

2

Job ID: 480-159204-1

3

5

10

12

14

15

Client: Stantec Consulting Corp. Project/Site: Alliance BCP Site (AMSF)

Lab Sample ID: 480-159204-3

09/23/19 14:27 09/24/19 19:48

Matrix: Solid

Percent Solids: 85.6

Job ID: 480-159204-1

Client Sample ID: AMSF-CS-SS-S	3S-C1
Deta Callanta de 00/40/40 45:00	

Date Collected: 09/13/19 15:30 Date Received: 09/14/19 09:00

p-Terphenyl-d14

Analyte	Result	Qualifier	RL	MDL Ur	nit	D	Prepared	Analyzed	Dil Fac
Fluoranthene	8.5		2.0	m(g/Kg	₩	09/23/19 14:27	09/24/19 19:48	10
Fluorene	ND		2.0	mç	g/Kg	☆	09/23/19 14:27	09/24/19 19:48	10
Hexachlorobenzene	ND		2.0	mç	g/Kg	₽	09/23/19 14:27	09/24/19 19:48	10
Hexachlorobutadiene	ND		2.0	m	g/Kg	≎	09/23/19 14:27	09/24/19 19:48	10
Hexachlorocyclopentadiene	ND		2.0	mç	g/Kg	☆	09/23/19 14:27	09/24/19 19:48	10
Hexachloroethane	ND		2.0	mç	g/Kg	₽	09/23/19 14:27	09/24/19 19:48	10
Indeno(1,2,3-cd)pyrene	2.1		2.0	m	g/Kg	≎	09/23/19 14:27	09/24/19 19:48	10
Isophorone	ND		2.0	mç	g/Kg	≎	09/23/19 14:27	09/24/19 19:48	10
Naphthalene	ND		2.0	mç	g/Kg	₩	09/23/19 14:27	09/24/19 19:48	10
Nitrobenzene	ND		2.0	mç	g/Kg	≎	09/23/19 14:27	09/24/19 19:48	10
N-Nitrosodi-n-propylamine	ND		2.0	m	g/Kg	₩	09/23/19 14:27	09/24/19 19:48	10
N-Nitrosodiphenylamine	ND		2.0	mç	g/Kg	₩	09/23/19 14:27	09/24/19 19:48	10
Pentachlorophenol	ND		3.8	m	g/Kg	₩	09/23/19 14:27	09/24/19 19:48	10
Phenanthrene	4.6		2.0	m	g/Kg	₩	09/23/19 14:27	09/24/19 19:48	10
Phenol	ND		2.0	mç	g/Kg	.	09/23/19 14:27	09/24/19 19:48	10
Pyrene	6.2		2.0	mç	g/Kg	☼	09/23/19 14:27	09/24/19 19:48	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	127	X	54 - 120				09/23/19 14:27	09/24/19 19:48	10
2-Fluorobiphenyl	98		60 - 120				09/23/19 14:27	09/24/19 19:48	10
2-Fluorophenol	85		52 - 120				09/23/19 14:27	09/24/19 19:48	10
Nitrobenzene-d5	84		53 - 120				09/23/19 14:27	09/24/19 19:48	10
Phenol-d5	86		54 - 120				09/23/19 14:27	09/24/19 19:48	10

79 - 130

115

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND ND	0.019		mg/Kg	₩	09/19/19 07:28	09/20/19 19:59	10
4,4'-DDE	ND	0.019		mg/Kg	₩	09/19/19 07:28	09/20/19 19:59	10
4,4'-DDT	ND	0.019		mg/Kg	₩	09/19/19 07:28	09/20/19 19:59	10
Aldrin	ND	0.019		mg/Kg		09/19/19 07:28	09/20/19 19:59	10
alpha-BHC	ND	0.019		mg/Kg	₩	09/19/19 07:28	09/20/19 19:59	10
cis-Chlordane	ND	0.019		mg/Kg	₩	09/19/19 07:28	09/20/19 19:59	10
beta-BHC	ND	0.019		mg/Kg	₩.	09/19/19 07:28	09/20/19 19:59	10
delta-BHC	ND	0.019		mg/Kg	₩	09/19/19 07:28	09/20/19 19:59	10
Dieldrin	ND	0.019		mg/Kg	₩	09/19/19 07:28	09/20/19 19:59	10
Endosulfan I	ND	0.019		mg/Kg	₩.	09/19/19 07:28	09/20/19 19:59	10
Endosulfan II	ND	0.019		mg/Kg	☼	09/19/19 07:28	09/20/19 19:59	10
Endosulfan sulfate	ND	0.019		mg/Kg	₩	09/19/19 07:28	09/20/19 19:59	10
Endrin	ND	0.019		mg/Kg	₩	09/19/19 07:28	09/20/19 19:59	10
Endrin aldehyde	ND	0.019		mg/Kg	₩	09/19/19 07:28	09/20/19 19:59	10
Endrin ketone	ND	0.019		mg/Kg	₩	09/19/19 07:28	09/20/19 19:59	10
gamma-BHC (Lindane)	ND	0.019		mg/Kg	₽	09/19/19 07:28	09/20/19 19:59	10
trans-Chlordane	ND	0.019		mg/Kg	₩	09/19/19 07:28	09/20/19 19:59	10
Heptachlor	ND	0.019		mg/Kg	₩	09/19/19 07:28	09/20/19 19:59	10
Heptachlor epoxide	ND	0.019		mg/Kg	₩.	09/19/19 07:28	09/20/19 19:59	10
Methoxychlor	ND	0.019		mg/Kg	₩	09/19/19 07:28	09/20/19 19:59	10
Toxaphene	ND	0.19		mg/Kg	≎	09/19/19 07:28	09/20/19 19:59	10

Eurofins TestAmerica, Buffalo

Page 19 of 135

Client: Stantec Consulting Corp. Project/Site: Alliance BCP Site (AMSF)

Client Sample ID: AMSF-CS-SS-SS-C1 Lab Sample ID: 480-159204-3

Date Collected: 09/13/19 15:30

Matrix: Solid

Date Received: 09/14/19 09:00

Percent Solids: 85.6

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	178	X	45 - 120	09/19/19 07:28	09/20/19 19:59	10
DCB Decachlorobiphenyl	211	Χ	45 - 120	09/19/19 07:28	09/20/19 19:59	10
Tetrachloro-m-xylene	104		30 - 124	09/19/19 07:28	09/20/19 19:59	10
Tetrachloro-m-xylene	108		30 - 124	09/19/19 07:28	09/20/19 19:59	10

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.27	mg/Kg	<u></u>	09/21/19 11:23	09/24/19 23:32	1
PCB-1221	ND		0.27	mg/Kg	☼	09/21/19 11:23	09/24/19 23:32	1
PCB-1232	ND		0.27	mg/Kg	☼	09/21/19 11:23	09/24/19 23:32	1
PCB-1242	ND		0.27	mg/Kg	φ.	09/21/19 11:23	09/24/19 23:32	1
PCB-1248	ND		0.27	mg/Kg	₽	09/21/19 11:23	09/24/19 23:32	1
PCB-1254	ND		0.27	mg/Kg	☼	09/21/19 11:23	09/24/19 23:32	1
PCB-1260	ND		0.27	mg/Kg	φ.	09/21/19 11:23	09/24/19 23:32	1
PCB-1262	ND		0.27	mg/Kg	☼	09/21/19 11:23	09/24/19 23:32	1
PCB-1268	ND		0.27	mg/Kg	₩	09/21/19 11:23	09/24/19 23:32	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	115		65 - 174			09/21/19 11:23	09/24/19 23:32	1
DCB Decachlorobiphenyl	81		65 ₋ 174			09/21/19 11:23	09/24/19 23:32	1
Tetrachloro-m-xylene	112		60 ₋ 154			09/21/19 11:23	09/24/19 23:32	1
Tetrachloro-m-xylene	102		60 - 154			09/21/19 11:23	09/24/19 23:32	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	14500		11.8		mg/Kg	<u> </u>	09/18/19 05:20	09/20/19 21:41	1
Antimony	ND		17.7		mg/Kg	₩	09/18/19 05:20	09/19/19 22:51	1
Arsenic	3.7		2.4		mg/Kg	₩	09/18/19 05:20	09/19/19 22:51	1
Barium	67.4		0.59		mg/Kg	₩.	09/18/19 05:20	09/19/19 22:51	1
Beryllium	0.58		0.24		mg/Kg	₩	09/18/19 05:20	09/19/19 22:51	1
Cadmium	ND		0.24		mg/Kg	₩	09/18/19 05:20	09/19/19 22:51	1
Calcium	6880		59.0		mg/Kg	₩	09/18/19 05:20	09/19/19 22:51	1
Chromium	43.3		0.59		mg/Kg	☼	09/18/19 05:20	09/19/19 22:51	1
Cobalt	7.2		0.59		mg/Kg	₩	09/18/19 05:20	09/19/19 22:51	1
Copper	17.0		1.2		mg/Kg	₽	09/18/19 05:20	09/19/19 22:51	1
Iron	18400		11.8		mg/Kg	☼	09/18/19 05:20	09/19/19 22:51	1
Lead	24.5		1.2		mg/Kg	☼	09/18/19 05:20	09/19/19 22:51	1
Magnesium	4830		23.6		mg/Kg		09/18/19 05:20	09/19/19 22:51	1
Manganese	451	В	0.24		mg/Kg	☼	09/18/19 05:20	09/19/19 22:51	1
Nickel	16.0		5.9		mg/Kg	☼	09/18/19 05:20	09/19/19 22:51	1
Potassium	2490		35.4		mg/Kg		09/18/19 05:20	09/19/19 22:51	1
Selenium	ND		4.7		mg/Kg	₩	09/18/19 05:20	09/19/19 22:51	1
Silver	ND		0.71		mg/Kg	☼	09/18/19 05:20	09/19/19 22:51	1
Sodium	191		165		mg/Kg	φ.	09/18/19 05:20	09/19/19 22:51	1
Thallium	ND		7.1		mg/Kg	₩	09/18/19 05:20	09/19/19 22:51	1
Vanadium	29.1		0.59		mg/Kg	₩	09/18/19 05:20	09/19/19 22:51	1
Zinc	101		2.4		mg/Kg		09/18/19 05:20	09/19/19 22:51	1

Method: 7471B - Mercury (CVA	NA)						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.049	0.024	mg/Kg	₩	09/26/19 11:26	09/26/19 13:26	1

Eurofins TestAmerica, Buffalo

Page 20 of 135

G

Job ID: 480-159204-1

3

Ē

7

8

10

12

13

15

Client: Stantec Consulting Corp. Job ID: 480-159204-1

Project/Site: Alliance BCP Site (AMSF)

Client Sample ID: AMSF-CS-SS-SS-C1 Lab Sample ID: 480-159204-3

Date Collected: 09/13/19 15:30 Matrix: Solid
Date Received: 09/14/19 09:00 Percent Solids: 85.6

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	ND	*	1.1		mg/Kg	\	09/25/19 22:25	09/26/19 15:22	1

2

4

5

7

9

11

13

15

Client: Stantec Consulting Corp.
Project/Site: Alliance BCP Site (AMSF)

Lab Sample ID: 480-159204-4

Matrix: Solid

Percent Solids: 89.5

Job ID: 480-159204-1

Client Sample ID: AMSF-CS-SS-SS-C2

Date Collected: 09/13/19 15:30 Date Received: 09/14/19 09:00

Analyte	e Organic Compounds (C Result Qualifier	RL	MDL (Unit	D	Prepared	Analyzed	Dil F
2,4,5-Trichlorophenol	ND Qualifier	0.95		mg/Kg	— -	09/23/19 14:27	09/24/19 20:13	
2,4,6-Trichlorophenol	ND	0.95		mg/Kg	₩		09/24/19 20:13	
2,4-Dichlorophenol	ND	0.95		mg/Kg	₩		09/24/19 20:13	
2,4-Dimethylphenol	ND	0.95		mg/Kg	☆-		09/24/19 20:13	
2,4-Dinitrophenol	ND	1.8		mg/Kg	₩		09/24/19 20:13	
2,4-Dinitrotoluene	ND	0.95		mg/Kg	₩		09/24/19 20:13	
2.6-Dinitrotoluene	ND	0.95		mg/Kg			09/24/19 20:13	
-Chloronaphthalene	ND	0.95		mg/Kg	₩		09/24/19 20:13	
-Chlorophenol	ND	0.95		mg/Kg	₩		09/24/19 20:13	
-Methylnaphthalene	ND	0.95		mg/Kg	.		09/24/19 20:13	
-Methylphenol	ND	0.95		mg/Kg	₩		09/24/19 20:13	
-Nitroaniline	ND	1.8		mg/Kg			09/24/19 20:13	
-Nitrophenol	ND	0.95		mg/Kg			09/24/19 20:13	
,3'-Dichlorobenzidine	ND ND	0.95			₽		09/24/19 20:13	
,3 -Dichiorobenzidine -Nitroaniline	ND ND	1.8		mg/Kg	₩		09/24/19 20:13	
	ND ND	1.8		mg/Kg			09/24/19 20:13	
,6-Dinitro-2-methylphenol	ND ND	0.95		mg/Kg	₩			
Bromophenyl phenyl ether				mg/Kg			09/24/19 20:13	
Chloro-3-methylphenol	ND	0.95		mg/Kg	<u>*</u> .		09/24/19 20:13	
Chloroaniline	ND	0.95		mg/Kg	☆		09/24/19 20:13	
Chlorophenyl phenyl ether	ND	0.95		mg/Kg	☆		09/24/19 20:13	
Methylphenol	ND	1.8		mg/Kg	<u>.</u> .		09/24/19 20:13	
Nitroaniline	ND	1.8		mg/Kg	₩		09/24/19 20:13	
Nitrophenol	ND	1.8		mg/Kg	**		09/24/19 20:13	
cenaphthene	ND	0.95		mg/Kg			09/24/19 20:13	
cenaphthylene	ND	0.95		mg/Kg	*		09/24/19 20:13	
cetophenone	ND	0.95		mg/Kg	*		09/24/19 20:13	
nthracene	ND	0.95		mg/Kg			09/24/19 20:13	
trazine	ND	0.95		mg/Kg	₽		09/24/19 20:13	
enzaldehyde	ND	0.95		mg/Kg	₩		09/24/19 20:13	
enzo(a)anthracene	1.3	0.95	r	mg/Kg	₩		09/24/19 20:13	
enzo(a)pyrene	1.4	0.95		mg/Kg	₩	09/23/19 14:27	09/24/19 20:13	
enzo(b)fluoranthene	2.1	0.95	r	mg/Kg	₩	09/23/19 14:27	09/24/19 20:13	
enzo(g,h,i)perylene	1.1	0.95	r	mg/Kg	₩	09/23/19 14:27	09/24/19 20:13	
enzo(k)fluoranthene	ND	0.95	r	mg/Kg	₩	09/23/19 14:27	09/24/19 20:13	
iphenyl	ND	0.95	r	mg/Kg	₩	09/23/19 14:27	09/24/19 20:13	
s (2-chloroisopropyl) ether	ND	0.95	r	mg/Kg	₩	09/23/19 14:27	09/24/19 20:13	
is(2-chloroethoxy)methane	ND	0.95	r	mg/Kg	₩	09/23/19 14:27	09/24/19 20:13	
is(2-chloroethyl)ether	ND	0.95	r	mg/Kg	₩	09/23/19 14:27	09/24/19 20:13	
is(2-ethylhexyl) phthalate	ND	0.95	r	mg/Kg	₩	09/23/19 14:27	09/24/19 20:13	
utyl benzyl phthalate	ND	0.95	r	mg/Kg	₽	09/23/19 14:27	09/24/19 20:13	
aprolactam	ND	0.95	r	mg/Kg	₩	09/23/19 14:27	09/24/19 20:13	
arbazole	ND	0.95	r	mg/Kg	☆	09/23/19 14:27	09/24/19 20:13	
hrysene	1.5	0.95		mg/Kg		09/23/19 14:27	09/24/19 20:13	
ibenz(a,h)anthracene	ND	0.95		mg/Kg	₩	09/23/19 14:27	09/24/19 20:13	
ibenzofuran	ND	0.95		mg/Kg	₩		09/24/19 20:13	
iethyl phthalate	ND	0.95		mg/Kg	 ☆		09/24/19 20:13	
imethyl phthalate	ND	0.95		mg/Kg	₽		09/24/19 20:13	
i-n-butyl phthalate	ND	0.95		mg/Kg	₩		09/24/19 20:13	
Di-n-octyl phthalate	ND	0.95		mg/Kg	 .		09/24/19 20:13	

Eurofins TestAmerica, Buffalo

Page 22 of 135

2

3

5

7

9

11

A A

15

1 (

Client: Stantec Consulting Corp. Project/Site: Alliance BCP Site (AMSF)

Lab Sample ID: 480-159204-4

Matrix: Solid

Percent Solids: 89.5

Job ID: 480-159204-1

Client Sample ID: AMSF-CS-SS-SS-C2

Date Collected: 09/13/19 15:30 Date Received: 09/14/19 09:00

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoranthene	3.1		0.95		mg/Kg	<u> </u>	09/23/19 14:27	09/24/19 20:13	5
Fluorene	ND		0.95		mg/Kg	☼	09/23/19 14:27	09/24/19 20:13	5
Hexachlorobenzene	ND		0.95		mg/Kg	₽	09/23/19 14:27	09/24/19 20:13	5
Hexachlorobutadiene	ND		0.95		mg/Kg	☼	09/23/19 14:27	09/24/19 20:13	5
Hexachlorocyclopentadiene	ND		0.95		mg/Kg	☼	09/23/19 14:27	09/24/19 20:13	5
Hexachloroethane	ND		0.95		mg/Kg	₽	09/23/19 14:27	09/24/19 20:13	5
Indeno(1,2,3-cd)pyrene	ND		0.95		mg/Kg	☼	09/23/19 14:27	09/24/19 20:13	5
Isophorone	ND		0.95		mg/Kg	☼	09/23/19 14:27	09/24/19 20:13	5
Naphthalene	ND		0.95		mg/Kg	₩	09/23/19 14:27	09/24/19 20:13	5
Nitrobenzene	ND		0.95		mg/Kg	☼	09/23/19 14:27	09/24/19 20:13	5
N-Nitrosodi-n-propylamine	ND		0.95		mg/Kg	☼	09/23/19 14:27	09/24/19 20:13	5
N-Nitrosodiphenylamine	ND		0.95		mg/Kg	.	09/23/19 14:27	09/24/19 20:13	5
Pentachlorophenol	ND		1.8		mg/Kg	☼	09/23/19 14:27	09/24/19 20:13	5
Phenanthrene	1.3		0.95		mg/Kg	☼	09/23/19 14:27	09/24/19 20:13	5
Phenol	ND		0.95		mg/Kg	₽	09/23/19 14:27	09/24/19 20:13	5
Pyrene	2.3		0.95		mg/Kg	₩	09/23/19 14:27	09/24/19 20:13	5
Surrogate	%Recovery 0	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	106		54 - 120				09/23/19 14:27	09/24/19 20:13	5
2-Fluorobiphenyl	97		60 - 120				09/23/19 14:27	09/24/19 20:13	5
2-Fluorophenol	84		52 - 120				09/23/19 14:27	09/24/19 20:13	5
Nitrobenzene-d5	81		53 - 120				09/23/19 14:27	09/24/19 20:13	5
Phenol-d5	81		54 - 120				09/23/19 14:27	09/24/19 20:13	5
p-Terphenyl-d14	112		79 - 130				09/23/19 14:27	09/24/19 20:13	5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND		0.018		mg/Kg	₩	09/19/19 07:28	09/20/19 20:18	10
4,4'-DDE	ND		0.018		mg/Kg	₩	09/19/19 07:28	09/20/19 20:18	10
4,4'-DDT	ND		0.018		mg/Kg	₩	09/19/19 07:28	09/20/19 20:18	10
Aldrin	ND		0.018		mg/Kg		09/19/19 07:28	09/20/19 20:18	10
alpha-BHC	ND		0.018		mg/Kg	₩	09/19/19 07:28	09/20/19 20:18	10
cis-Chlordane	ND		0.018		mg/Kg	₩	09/19/19 07:28	09/20/19 20:18	10
beta-BHC	ND		0.018		mg/Kg	₩.	09/19/19 07:28	09/20/19 20:18	10
delta-BHC	ND		0.018		mg/Kg	₩	09/19/19 07:28	09/20/19 20:18	10
Dieldrin	ND		0.018		mg/Kg	☼	09/19/19 07:28	09/20/19 20:18	10
Endosulfan I	ND		0.018		mg/Kg	₩.	09/19/19 07:28	09/20/19 20:18	10
Endosulfan II	ND		0.018		mg/Kg	☼	09/19/19 07:28	09/20/19 20:18	10
Endosulfan sulfate	ND		0.018		mg/Kg	₩	09/19/19 07:28	09/20/19 20:18	10
Endrin	ND		0.018		mg/Kg	₽	09/19/19 07:28	09/20/19 20:18	10
Endrin aldehyde	ND		0.018		mg/Kg	₩	09/19/19 07:28	09/20/19 20:18	10
Endrin ketone	ND		0.018		mg/Kg	₩	09/19/19 07:28	09/20/19 20:18	10
gamma-BHC (Lindane)	ND		0.018		mg/Kg		09/19/19 07:28	09/20/19 20:18	10
trans-Chlordane	ND		0.018		mg/Kg	☼	09/19/19 07:28	09/20/19 20:18	10
Heptachlor	ND		0.018		mg/Kg	₩	09/19/19 07:28	09/20/19 20:18	10
Heptachlor epoxide	ND		0.018		mg/Kg	₩.	09/19/19 07:28	09/20/19 20:18	10
Methoxychlor	ND		0.018		mg/Kg	☼	09/19/19 07:28	09/20/19 20:18	10
Toxaphene	ND		0.18		mg/Kg	≎	09/19/19 07:28	09/20/19 20:18	10

Page 23 of 135

Client: Stantec Consulting Corp. Project/Site: Alliance BCP Site (AMSF)

Client Sample ID: AMSF-CS-SS-SS-C2 Lab Sample ID: 480-159204-4

Date Collected: 09/13/19 15:30 Matrix: Solid
Date Received: 09/14/19 09:00 Percent Solids: 89.5

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	187	X	45 - 120	09/19/19 07:28	09/20/19 20:18	10
DCB Decachlorobiphenyl	230	X	45 - 120	09/19/19 07:28	09/20/19 20:18	10
Tetrachloro-m-xylene	138	X	30 - 124	09/19/19 07:28	09/20/19 20:18	10
Tetrachloro-m-xylene	120		30 - 124	09/19/19 07:28	09/20/19 20:18	10

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND ND	0.25		mg/Kg	<u> </u>	09/21/19 11:23	09/24/19 23:44	1
PCB-1221	ND	0.25		mg/Kg	₩	09/21/19 11:23	09/24/19 23:44	1
PCB-1232	ND	0.25		mg/Kg	☼	09/21/19 11:23	09/24/19 23:44	1
PCB-1242	ND	0.25		mg/Kg		09/21/19 11:23	09/24/19 23:44	1
PCB-1248	ND	0.25		mg/Kg	☼	09/21/19 11:23	09/24/19 23:44	1
PCB-1254	ND	0.25		mg/Kg	☼	09/21/19 11:23	09/24/19 23:44	1
PCB-1260	ND	0.25		mg/Kg		09/21/19 11:23	09/24/19 23:44	1
PCB-1262	ND	0.25		mg/Kg	☼	09/21/19 11:23	09/24/19 23:44	1
PCB-1268	ND	0.25		mg/Kg	₩	09/21/19 11:23	09/24/19 23:44	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	109	65 - 174				09/21/19 11:23	09/24/19 23:44	1
DCB Decachlorobiphenyl	67	65 - 174				09/21/19 11:23	09/24/19 23:44	1
Tetrachloro-m-xylene	106	60 - 154				09/21/19 11:23	09/24/19 23:44	1
Tetrachloro-m-xylene	93	60 - 154				09/21/19 11:23	09/24/19 23:44	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	16100		11.2		mg/Kg	<u> </u>	09/18/19 05:20	09/20/19 21:56	1
Antimony	ND		16.8		mg/Kg	☼	09/18/19 05:20	09/19/19 22:55	1
Arsenic	3.3		2.2		mg/Kg	☼	09/18/19 05:20	09/19/19 22:55	1
Barium	73.8		0.56		mg/Kg	₽	09/18/19 05:20	09/19/19 22:55	1
Beryllium	0.63		0.22		mg/Kg	☼	09/18/19 05:20	09/19/19 22:55	1
Cadmium	ND		0.22		mg/Kg	☼	09/18/19 05:20	09/19/19 22:55	1
Calcium	12200		55.9		mg/Kg	₽	09/18/19 05:20	09/19/19 22:55	1
Chromium	20.1		0.56		mg/Kg	☼	09/18/19 05:20	09/19/19 22:55	1
Cobalt	7.5		0.56		mg/Kg	☼	09/18/19 05:20	09/19/19 22:55	1
Copper	17.2		1.1		mg/Kg	₽	09/18/19 05:20	09/19/19 22:55	1
Iron	18400		11.2		mg/Kg	☼	09/18/19 05:20	09/19/19 22:55	1
Lead	30.5		1.1		mg/Kg	☼	09/18/19 05:20	09/19/19 22:55	1
Magnesium	7540		22.4		mg/Kg	₽	09/18/19 05:20	09/19/19 22:55	1
Manganese	367	В	0.22		mg/Kg	☼	09/18/19 05:20	09/19/19 22:55	1
Nickel	17.4		5.6		mg/Kg	☼	09/18/19 05:20	09/19/19 22:55	1
Potassium	2760		33.6		mg/Kg	φ.	09/18/19 05:20	09/19/19 22:55	1
Selenium	ND		4.5		mg/Kg	☼	09/18/19 05:20	09/19/19 22:55	1
Silver	ND		0.67		mg/Kg	☼	09/18/19 05:20	09/19/19 22:55	1
Sodium	601		157		mg/Kg	₽	09/18/19 05:20	09/19/19 22:55	1
Thallium	ND		6.7		mg/Kg	☼	09/18/19 05:20	09/19/19 22:55	1
Vanadium	31.0		0.56		mg/Kg	☼	09/18/19 05:20	09/19/19 22:55	1
Zinc	88.9		2.2		mg/Kg		09/18/19 05:20	09/19/19 22:55	1

Method: 7471B - Mercury (CVA	AA)						
Analyte	Result Qualifier	RL	MDL Un	it D	Prepared	Analyzed	Dil Fac
Mercury	0.050	0.022	mg	ı/Kg	09/26/19 11:26	09/26/19 13:27	1

Eurofins TestAmerica, Buffalo

Page 24 of 135

2

Job ID: 480-159204-1

3

5

7

9

11

13

14

16

ioa, Banaio

Client: Stantec Consulting Corp. Job ID: 480-159204-1

Project/Site: Alliance BCP Site (AMSF)

Client Sample ID: AMSF-CS-SS-SS-C2 Lab Sample ID: 480-159204-4

Date Collected: 09/13/19 15:30 Matrix: Solid
Date Received: 09/14/19 09:00 Percent Solids: 89.5

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	ND	*	1.1		mg/Kg		09/25/19 22:25	09/26/19 15:23	1

2

4

5

9

11

13

15

Client: Stantec Consulting Corp.
Project/Site: Alliance BCP Site (AMSF)

Client Sample ID: AMSF-CS-DUP-SS-G1 Lab Sample ID: 480-159204-5

Date Collected: 09/13/19 15:40

Date Received: 09/14/19 09:00

Matrix: Solid
Percent Solids: 90.4

Method: 8260C - Volatile Organ				BAD!	l lmi4	-	Duence	A mal:	ם יי
analyte		Qualifier	RL	MDL		— D	Prepared	Analyzed	Dil Fa
,1,1-Trichloroethane	ND		0.0054		mg/Kg	☆	09/17/19 12:21	09/17/19 16:51 09/17/19 16:51	
,1,2,2-Tetrachloroethane	ND	VS	0.0054		mg/Kg		09/17/19 12:21		
,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.0054		mg/Kg	<u>*</u> .	09/17/19 12:21	09/17/19 16:51	
,1,2-Trichloroethane	ND	VS	0.0054		mg/Kg	☆		09/17/19 16:51	
,1-Dichloroethane	ND		0.0054		mg/Kg	ψ.	09/17/19 12:21	09/17/19 16:51	
,1-Dichloroethene	ND		0.0054		mg/Kg	<u>.</u> .	09/17/19 12:21		
,2,4-Trichlorobenzene	ND	VS	0.0054		mg/Kg	*		09/17/19 16:51	
,2-Dibromo-3-Chloropropane	ND	vs	0.0054		mg/Kg	*	09/17/19 12:21		
,2-Dichlorobenzene	ND		0.0054		mg/Kg		09/17/19 12:21		
,2-Dichloroethane	ND	VS	0.0054		mg/Kg	₩	09/17/19 12:21	09/17/19 16:51	
,2-Dichloropropane	ND	VS	0.0054		mg/Kg	☼	09/17/19 12:21	09/17/19 16:51	
,3-Dichlorobenzene	ND	VS	0.0054		mg/Kg	₩	09/17/19 12:21	09/17/19 16:51	
,4-Dichlorobenzene	ND	vs	0.0054		mg/Kg	₩	09/17/19 12:21	09/17/19 16:51	
-Butanone (MEK)	ND	vs	0.027		mg/Kg	₩	09/17/19 12:21	09/17/19 16:51	
-Hexanone	ND	vs	0.027		mg/Kg	₩	09/17/19 12:21	09/17/19 16:51	
-Methyl-2-pentanone (MIBK)	ND	vs	0.027		mg/Kg	₩	09/17/19 12:21	09/17/19 16:51	
acetone	ND	vs	0.027		mg/Kg	₩	09/17/19 12:21	09/17/19 16:51	
Benzene	ND	vs	0.0054		mg/Kg	₩	09/17/19 12:21	09/17/19 16:51	
Bromoform	ND	* VS	0.0054		mg/Kg	ф	09/17/19 12:21	09/17/19 16:51	
Bromomethane	ND	vs	0.0054		mg/Kg	☼	09/17/19 12:21	09/17/19 16:51	
Carbon disulfide	ND	vs	0.0054		mg/Kg	₩	09/17/19 12:21	09/17/19 16:51	
Carbon tetrachloride	ND	VS	0.0054		mg/Kg		09/17/19 12:21	09/17/19 16:51	
Chlorobenzene	ND	vs	0.0054		mg/Kg	₩	09/17/19 12:21	09/17/19 16:51	
Dibromochloromethane	ND	* vs	0.0054		mg/Kg	₩	09/17/19 12:21	09/17/19 16:51	
Chloroethane	ND	VS	0.0054		mg/Kg		09/17/19 12:21	09/17/19 16:51	
Chloroform	ND	vs	0.0054		mg/Kg	₩	09/17/19 12:21	09/17/19 16:51	
Chloromethane	ND	vs	0.0054		mg/Kg	₩	09/17/19 12:21	09/17/19 16:51	
is-1,2-Dichloroethene	ND	VS	0.0054		mg/Kg	 ☆	09/17/19 12:21	09/17/19 16:51	
Cyclohexane	ND	vs	0.0054		mg/Kg	₩	09/17/19 12:21	09/17/19 16:51	
Bromodichloromethane	ND	vs	0.0054		mg/Kg	₽	09/17/19 12:21	09/17/19 16:51	
Dichlorodifluoromethane	ND	VS	0.0054		mg/Kg			09/17/19 16:51	
Ethylbenzene	ND		0.0054		mg/Kg	₩		09/17/19 16:51	
,2-Dibromoethane	ND		0.0054		mg/Kg	₩		09/17/19 16:51	
sopropylbenzene	ND	VS	0.0054		mg/Kg		09/17/19 12:21		
Methyl acetate	ND		0.027		mg/Kg	₩		09/17/19 16:51	
Nethyl tert-butyl ether	ND		0.0054		mg/Kg	₩	09/17/19 12:21	09/17/19 16:51	
Methylcyclohexane	ND		0.0054		mg/Kg		09/17/19 12:21	09/17/19 16:51	
Methylene Chloride	ND		0.0054		mg/Kg	₽	09/17/19 12:21	09/17/19 16:51	
etrachloroethene	ND ND		0.0054			₽	09/17/19 12:21	09/17/19 16:51	
					mg/Kg				
oluene	ND		0.0054		mg/Kg			09/17/19 16:51	
rans-1,2-Dichloroethene	ND		0.0054		mg/Kg	Ť.	09/17/19 12:21	09/17/19 16:51	
rans-1,3-Dichloropropene	ND		0.0054		mg/Kg	% .	09/17/19 12:21	09/17/19 16:51	
richloroethene	ND		0.0054		mg/Kg	₽		09/17/19 16:51	
richlorofluoromethane	ND		0.0054		mg/Kg	φ.	09/17/19 12:21	09/17/19 16:51	
/inyl chloride	ND		0.0054		mg/Kg	T.	09/17/19 12:21	09/17/19 16:51	
(ylenes, Total	ND		0.011		mg/Kg	₩	09/17/19 12:21	09/17/19 16:51	
is-1,3-Dichloropropene	ND		0.0054		mg/Kg	*	09/17/19 12:21		
Styrene	ND	VS	0.0054		mg/Kg	₩	09/17/19 12:21	09/17/19 16:51	

Eurofins TestAmerica, Buffalo

Page 26 of 135

9

Job ID: 480-159204-1

3

5

8

10

12

Client: Stantec Consulting Corp. Job ID: 480-159204-1

Project/Site: Alliance BCP Site (AMSF)

Client Sample ID: AMSF-CS-DUP-SS-G1 Lab Sample ID: 480-159204-5

 Date Collected: 09/13/19 15:40
 Matrix: Solid

 Date Received: 09/14/19 09:00
 Percent Solids: 90.4

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97	64 - 126	09/17/19 12:21	09/17/19 16:51	1
4-Bromofluorobenzene (Surr)	96	72 - 126	09/17/19 12:21	09/17/19 16:51	1
Toluene-d8 (Surr)	100	71 - 125	09/17/19 12:21	09/17/19 16:51	1

4

5

6

8

10

13

15

Client: Stantec Consulting Corp.
Project/Site: Alliance BCP Site (AMSF)

Client Sample ID: AMSF-CS-DUP-SS-C2

Date Collected: 09/13/19 15:40 Date Received: 09/14/19 09:00 Lab Sample ID: 480-159204-8

Matrix: Solid

Percent Solids: 89.7

Job ID: 480-159204-1

Method: 8270D - Semivolatile				11!4	_	D	A a ! !	D:: -
Analyte	Result Q	<u> </u>	MDL		D	Prepared	Analyzed	Dil Fa
2,4,5-Trichlorophenol	ND	0.94		mg/Kg	— <u>∓</u>	09/23/19 14:27	09/24/19 20:37	
2,4,6-Trichlorophenol	ND	0.94		mg/Kg			09/24/19 20:37	
2,4-Dichlorophenol	ND	0.94		mg/Kg	<u>.</u> .		09/24/19 20:37	
2,4-Dimethylphenol	ND	0.94		mg/Kg			09/24/19 20:37	
2,4-Dinitrophenol	ND	1.8		mg/Kg	₩		09/24/19 20:37	
2,4-Dinitrotoluene	ND	0.94		mg/Kg	₩		09/24/19 20:37	
2,6-Dinitrotoluene	ND	0.94		mg/Kg	*		09/24/19 20:37	
2-Chloronaphthalene	ND	0.94		mg/Kg	₽		09/24/19 20:37	
2-Chlorophenol	ND	0.94		mg/Kg	.	09/23/19 14:27	09/24/19 20:37	
2-Methylnaphthalene	ND	0.94	I	mg/Kg	₩	09/23/19 14:27	09/24/19 20:37	
2-Methylphenol	ND	0.94	1	mg/Kg	₩	09/23/19 14:27	09/24/19 20:37	
2-Nitroaniline	ND	1.8		mg/Kg	₩	09/23/19 14:27	09/24/19 20:37	
2-Nitrophenol	ND	0.94		mg/Kg	₩	09/23/19 14:27	09/24/19 20:37	
3,3'-Dichlorobenzidine	ND	0.94	I	mg/Kg	₩	09/23/19 14:27	09/24/19 20:37	
3-Nitroaniline	ND	1.8	I	mg/Kg	₩	09/23/19 14:27	09/24/19 20:37	
4,6-Dinitro-2-methylphenol	ND	1.8		mg/Kg		09/23/19 14:27	09/24/19 20:37	
4-Bromophenyl phenyl ether	ND	0.94	1	mg/Kg	₩	09/23/19 14:27	09/24/19 20:37	
4-Chloro-3-methylphenol	ND	0.94	I	mg/Kg	₩	09/23/19 14:27	09/24/19 20:37	
4-Chloroaniline	ND	0.94		mg/Kg		09/23/19 14:27	09/24/19 20:37	
4-Chlorophenyl phenyl ether	ND	0.94	I	mg/Kg	₩	09/23/19 14:27	09/24/19 20:37	
4-Methylphenol	ND	1.8	1	mg/Kg	₩	09/23/19 14:27	09/24/19 20:37	
4-Nitroaniline	ND	1.8		mg/Kg		09/23/19 14:27	09/24/19 20:37	
4-Nitrophenol	ND	1.8		mg/Kg	₽	09/23/19 14:27	09/24/19 20:37	
Acenaphthene	ND	0.94		mg/Kg	₽	09/23/19 14:27	09/24/19 20:37	
Acenaphthylene	ND	0.94		mg/Kg	 ф	09/23/19 14:27	09/24/19 20:37	
Acetophenone	ND	0.94		mg/Kg	₩	09/23/19 14:27	09/24/19 20:37	
Anthracene	ND	0.94		mg/Kg	₩	09/23/19 14:27	09/24/19 20:37	
Atrazine	ND	0.94		mg/Kg		09/23/19 14:27	09/24/19 20:37	
Benzaldehyde	ND	0.94		mg/Kg	₽		09/24/19 20:37	
Benzo(a)anthracene	1.0	0.94		mg/Kg	₩		09/24/19 20:37	
Benzo(a)pyrene	1.2	0.94		mg/Kg			09/24/19 20:37	
Benzo(b)fluoranthene	1.6	0.94		mg/Kg	₩		09/24/19 20:37	
Benzo(g,h,i)perylene	ND	0.94		mg/Kg	₩		09/24/19 20:37	
Benzo(k)fluoranthene	ND	0.94		mg/Kg			09/24/19 20:37	
Biphenyl	ND	0.94		mg/Kg	₩		09/24/19 20:37	
ois (2-chloroisopropyl) ether	ND	0.94		mg/Kg	₽		09/24/19 20:37	
Bis(2-chloroethoxy)methane	ND	0.94		mg/Kg			09/24/19 20:37	
• •					₽			
Bis(2-chloroethyl)ether	ND	0.94		mg/Kg			09/24/19 20:37	
Bis(2-ethylhexyl) phthalate	ND	0.94		mg/Kg	% .		09/24/19 20:37	
Butyl benzyl phthalate	ND	0.94		mg/Kg	**		09/24/19 20:37	
Caprolactam	ND	0.94		mg/Kg	₽		09/24/19 20:37	
Carbazole	ND	0.94		mg/Kg			09/24/19 20:37	
Chrysene	1.3	0.94		mg/Kg	₩ ₩		09/24/19 20:37	
Dibenz(a,h)anthracene	ND	0.94		mg/Kg	₩.		09/24/19 20:37	
Dibenzofuran	ND	0.94		mg/Kg	☆		09/24/19 20:37	
Diethyl phthalate	ND	0.94		mg/Kg	*		09/24/19 20:37	
Dimethyl phthalate	ND	0.94		mg/Kg	*		09/24/19 20:37	
Di-n-butyl phthalate	ND	0.94		mg/Kg	₩	09/23/19 14:27	09/24/19 20:37	

Eurofins TestAmerica, Buffalo

10/4/2019

Page 28 of 135

2

3

0

8

10

12

14

Client: Stantec Consulting Corp. Project/Site: Alliance BCP Site (AMSF)

Lab Sample ID: 480-159204-8

Matrix: Solid

Percent Solids: 89.7

Job ID: 480-159204-1

Client Sample	ID: AMSF-CS-DUP-SS-C2
---------------	-----------------------

Date Collected: 09/13/19 15:40 Date Received: 09/14/19 09:00

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoranthene	2.6	0.94		mg/Kg	<u> </u>	09/23/19 14:27	09/24/19 20:37	5
Fluorene	ND	0.94		mg/Kg	☼	09/23/19 14:27	09/24/19 20:37	5
Hexachlorobenzene	ND	0.94		mg/Kg	₽	09/23/19 14:27	09/24/19 20:37	5
Hexachlorobutadiene	ND	0.94		mg/Kg	☼	09/23/19 14:27	09/24/19 20:37	5
Hexachlorocyclopentadiene	ND	0.94		mg/Kg	☼	09/23/19 14:27	09/24/19 20:37	5
Hexachloroethane	ND	0.94		mg/Kg	₽	09/23/19 14:27	09/24/19 20:37	5
Indeno(1,2,3-cd)pyrene	ND	0.94		mg/Kg	☼	09/23/19 14:27	09/24/19 20:37	5
Isophorone	ND	0.94		mg/Kg	☼	09/23/19 14:27	09/24/19 20:37	5
Naphthalene	ND	0.94		mg/Kg	₽	09/23/19 14:27	09/24/19 20:37	5
Nitrobenzene	ND	0.94		mg/Kg	☼	09/23/19 14:27	09/24/19 20:37	5
N-Nitrosodi-n-propylamine	ND	0.94		mg/Kg	☼	09/23/19 14:27	09/24/19 20:37	5
N-Nitrosodiphenylamine	ND	0.94		mg/Kg		09/23/19 14:27	09/24/19 20:37	5
Pentachlorophenol	ND	1.8		mg/Kg	☼	09/23/19 14:27	09/24/19 20:37	5
Phenanthrene	1.2	0.94		mg/Kg	☼	09/23/19 14:27	09/24/19 20:37	5
Phenol	ND	0.94		mg/Kg	₽	09/23/19 14:27	09/24/19 20:37	5
Pyrene	2.0	0.94		mg/Kg	₩	09/23/19 14:27	09/24/19 20:37	5
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	100	54 - 120				09/23/19 14:27	09/24/19 20:37	5
2-Fluorobiphenyl	85	60 - 120				09/23/19 14:27	09/24/19 20:37	5
2-Fluorophenol	75	52 - 120				09/23/19 14:27	09/24/19 20:37	5
Nitrobenzene-d5	74	53 - 120				09/23/19 14:27	09/24/19 20:37	5
Phenol-d5	74	54 - 120				09/23/19 14:27	09/24/19 20:37	5
p-Terphenyl-d14	106	79 - 130				09/23/19 14:27	09/24/19 20:37	5

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND ND	0.018		mg/Kg	<u> </u>	09/19/19 07:28	09/20/19 20:38	10
4,4'-DDE	ND	0.018		mg/Kg	₩	09/19/19 07:28	09/20/19 20:38	10
4,4'-DDT	ND	0.018		mg/Kg	₩	09/19/19 07:28	09/20/19 20:38	10
Aldrin	ND	0.018		mg/Kg		09/19/19 07:28	09/20/19 20:38	10
alpha-BHC	ND	0.018		mg/Kg	₩	09/19/19 07:28	09/20/19 20:38	10
cis-Chlordane	ND	0.018		mg/Kg	₩	09/19/19 07:28	09/20/19 20:38	10
beta-BHC	ND	0.018		mg/Kg	₩.	09/19/19 07:28	09/20/19 20:38	10
delta-BHC	ND	0.018		mg/Kg	₩	09/19/19 07:28	09/20/19 20:38	10
Dieldrin	ND	0.018		mg/Kg	₩	09/19/19 07:28	09/20/19 20:38	10
Endosulfan I	ND	0.018		mg/Kg	₩.	09/19/19 07:28	09/20/19 20:38	10
Endosulfan II	ND	0.018		mg/Kg	₩	09/19/19 07:28	09/20/19 20:38	10
Endosulfan sulfate	ND	0.018		mg/Kg	₩	09/19/19 07:28	09/20/19 20:38	10
Endrin	ND	0.018		mg/Kg	₽	09/19/19 07:28	09/20/19 20:38	10
Endrin aldehyde	ND	0.018		mg/Kg	₩	09/19/19 07:28	09/20/19 20:38	10
Endrin ketone	ND	0.018		mg/Kg	₩	09/19/19 07:28	09/20/19 20:38	10
gamma-BHC (Lindane)	ND	0.018		mg/Kg	₽	09/19/19 07:28	09/20/19 20:38	10
trans-Chlordane	ND	0.018		mg/Kg	₩	09/19/19 07:28	09/20/19 20:38	10
Heptachlor	ND	0.018		mg/Kg	☼	09/19/19 07:28	09/20/19 20:38	10
Heptachlor epoxide	ND	0.018		mg/Kg		09/19/19 07:28	09/20/19 20:38	10
Methoxychlor	ND	0.018		mg/Kg	₩	09/19/19 07:28	09/20/19 20:38	10
Toxaphene	ND	0.18		mg/Kg	₩	09/19/19 07:28	09/20/19 20:38	10

Page 29 of 135

Client: Stantec Consulting Corp. Project/Site: Alliance BCP Site (AMSF)

Client Sample ID: AMSF-CS-DUP-SS-C2 Lab Sample ID: 480-159204-8

Date Collected: 09/13/19 15:40 **Matrix: Solid** Date Received: 09/14/19 09:00 Percent Solids: 89.7

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	185	X	45 - 120	09/19/19 07:28	09/20/19 20:38	10
DCB Decachlorobiphenyl	248	Χ	45 - 120	09/19/19 07:28	09/20/19 20:38	10
Tetrachloro-m-xylene	113		30 - 124	09/19/19 07:28	09/20/19 20:38	10
Tetrachloro-m-xylene	115		30 - 124	09/19/19 07:28	09/20/19 20:38	10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.28		mg/Kg	<u> </u>	09/21/19 11:23	09/24/19 23:57	1
PCB-1221	ND		0.28		mg/Kg	₩	09/21/19 11:23	09/24/19 23:57	1
PCB-1232	ND		0.28		mg/Kg	₩	09/21/19 11:23	09/24/19 23:57	1
PCB-1242	ND		0.28		mg/Kg	ф	09/21/19 11:23	09/24/19 23:57	1
PCB-1248	ND		0.28		mg/Kg	₩	09/21/19 11:23	09/24/19 23:57	1
PCB-1254	ND		0.28		mg/Kg	₩	09/21/19 11:23	09/24/19 23:57	1
PCB-1260	ND		0.28		mg/Kg		09/21/19 11:23	09/24/19 23:57	1
PCB-1262	ND		0.28		mg/Kg	₩	09/21/19 11:23	09/24/19 23:57	1
PCB-1268	ND		0.28		mg/Kg	₩	09/21/19 11:23	09/24/19 23:57	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	117		65 - 174				09/21/19 11:23	09/24/19 23:57	1
DCB Decachlorobiphenyl	80		65 - 174				09/21/19 11:23	09/24/19 23:57	1
Tetrachloro-m-xylene	107		60 - 154				09/21/19 11:23	09/24/19 23:57	1
Tetrachloro-m-xylene	103		60 - 154				09/21/19 11:23	09/24/19 23:57	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	14600		11.4		mg/Kg	<u> </u>	09/18/19 05:20	09/20/19 22:00	1
Antimony	ND		17.2		mg/Kg	₩	09/18/19 05:20	09/19/19 22:58	1
Arsenic	3.3		2.3		mg/Kg	₩	09/18/19 05:20	09/19/19 22:58	1
Barium	65.9		0.57		mg/Kg		09/18/19 05:20	09/19/19 22:58	1
Beryllium	0.54		0.23		mg/Kg	₩	09/18/19 05:20	09/19/19 22:58	1
Cadmium	ND		0.23		mg/Kg	₩	09/18/19 05:20	09/19/19 22:58	1
Calcium	15300		57.2		mg/Kg		09/18/19 05:20	09/19/19 22:58	1
Chromium	17.7		0.57		mg/Kg	₩	09/18/19 05:20	09/19/19 22:58	1
Cobalt	6.9		0.57		mg/Kg	₩	09/18/19 05:20	09/19/19 22:58	1
Copper	14.1		1.1		mg/Kg		09/18/19 05:20	09/19/19 22:58	1
Iron	16500		11.4		mg/Kg	₩	09/18/19 05:20	09/19/19 22:58	1
Lead	24.3		1.1		mg/Kg	₩	09/18/19 05:20	09/19/19 22:58	1
Magnesium	9710		22.9		mg/Kg	ф	09/18/19 05:20	09/19/19 22:58	1
Manganese	412	В	0.23		mg/Kg	₩	09/18/19 05:20	09/19/19 22:58	1
Nickel	14.8		5.7		mg/Kg	₩	09/18/19 05:20	09/19/19 22:58	1
Potassium	2390		34.3		mg/Kg	ф	09/18/19 05:20	09/19/19 22:58	1
Selenium	ND		4.6		mg/Kg	₩	09/18/19 05:20	09/19/19 22:58	1
Silver	ND		0.69		mg/Kg	₩	09/18/19 05:20	09/19/19 22:58	1
Sodium	373		160		mg/Kg		09/18/19 05:20	09/19/19 22:58	1
Thallium	ND		6.9		mg/Kg	₩	09/18/19 05:20	09/19/19 22:58	1
Vanadium	27.7		0.57		mg/Kg	₩	09/18/19 05:20	09/19/19 22:58	1
Zinc	70.1		2.3		mg/Kg	₽	09/18/19 05:20	09/19/19 22:58	1

Method: 7471B - Mercury (CVA	4A)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.054		0.023		mg/Kg	₩	09/26/19 11:26	09/26/19 13:28	1

Eurofins TestAmerica, Buffalo

Page 30 of 135

Job ID: 480-159204-1

Client: Stantec Consulting Corp. Job ID: 480-159204-1

Project/Site: Alliance BCP Site (AMSF)

Client Sample ID: AMSF-CS-DUP-SS-C2 Lab Sample ID: 480-159204-8

Date Collected: 09/13/19 15:40

Matrix: Solid
Date Received: 09/14/19 09:00

Percent Solids: 89.7

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	ND	*	1.1		mg/Kg	\	09/25/19 22:25	09/26/19 15:25	1

_

4

5

9

11

13

45

Client: Stantec Consulting Corp. Project/Site: Alliance BCP Site (AMSF)

Client Sample ID: AMSF-CS-ES-SS-G1 Lab Sample ID: 480-159204-9

Date Collected: 09/13/19 14:00

Matrix: Solid

Date Received: 09/14/19 09:00

Percent Solids: 83.8

Method: 8260C - Volatile Organ				BAD!	l lni4	_	Dramarrad	A mal	Dil E-
Analyte		Qualifier	RL	MDL	Unit	— D	Prepared	Analyzed	Dil Fa
,1,1-Trichloroethane	ND		0.0059		mg/Kg	₩ ₩	09/17/19 12:21	09/17/19 17:16	
I,1,2,2-Tetrachloroethane	ND	F1 vs	0.0059		mg/Kg			09/17/19 17:16	
I,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.0059		mg/Kg	% .	09/17/19 12:21		
I,1,2-Trichloroethane	ND	VS	0.0059		mg/Kg	‡		09/17/19 17:16	
I,1-Dichloroethane	ND		0.0059		mg/Kg	☆	09/17/19 12:21		
I,1-Dichloroethene	ND		0.0059		mg/Kg	<u>.</u> .		09/17/19 17:16	
1,2,4-Trichlorobenzene	ND	F1 vs	0.0059		mg/Kg	☆		09/17/19 17:16	
I,2-Dibromo-3-Chloropropane	ND		0.0059		mg/Kg	*	09/17/19 12:21		
I,2-Dichlorobenzene	ND		0.0059		mg/Kg		09/17/19 12:21		
I,2-Dichloroethane	ND	VS	0.0059		mg/Kg	☼	09/17/19 12:21	09/17/19 17:16	
1,2-Dichloropropane	ND	VS	0.0059		mg/Kg	₩	09/17/19 12:21	09/17/19 17:16	
1,3-Dichlorobenzene	ND	VS	0.0059		mg/Kg	₩	09/17/19 12:21	09/17/19 17:16	
1,4-Dichlorobenzene	ND	vs	0.0059		mg/Kg	₽	09/17/19 12:21	09/17/19 17:16	
2-Butanone (MEK)	ND	F1 vs	0.029		mg/Kg	₩	09/17/19 12:21	09/17/19 17:16	
2-Hexanone	ND	F1 vs	0.029		mg/Kg	₩	09/17/19 12:21	09/17/19 17:16	
I-Methyl-2-pentanone (MIBK)	ND	F1 vs	0.029		mg/Kg	₩	09/17/19 12:21	09/17/19 17:16	
Acetone	ND	F1 vs	0.029		mg/Kg	₩	09/17/19 12:21	09/17/19 17:16	
Benzene	ND	vs	0.0059		mg/Kg	☼	09/17/19 12:21	09/17/19 17:16	
Bromoform	ND	* VS	0.0059		mg/Kg	φ.	09/17/19 12:21	09/17/19 17:16	
Bromomethane	ND	vs	0.0059		mg/Kg	☼	09/17/19 12:21	09/17/19 17:16	
Carbon disulfide	ND	vs	0.0059		mg/Kg	☼	09/17/19 12:21	09/17/19 17:16	
Carbon tetrachloride	ND	VS	0.0059		mg/Kg		09/17/19 12:21	09/17/19 17:16	
Chlorobenzene	ND	vs	0.0059		mg/Kg	₩	09/17/19 12:21	09/17/19 17:16	
Dibromochloromethane	ND	* vs	0.0059		mg/Kg	☼	09/17/19 12:21	09/17/19 17:16	
Chloroethane	ND	VS	0.0059		mg/Kg	.	09/17/19 12:21	09/17/19 17:16	
Chloroform	ND	vs	0.0059		mg/Kg	₩	09/17/19 12:21	09/17/19 17:16	
Chloromethane	ND	vs	0.0059		mg/Kg	₩	09/17/19 12:21	09/17/19 17:16	
cis-1,2-Dichloroethene	ND	VS	0.0059		mg/Kg	 	09/17/19 12:21	09/17/19 17:16	
Cyclohexane	ND	vs	0.0059		mg/Kg	☼	09/17/19 12:21	09/17/19 17:16	
Bromodichloromethane	ND	vs	0.0059		mg/Kg	₩	09/17/19 12:21	09/17/19 17:16	
Dichlorodifluoromethane	ND	VS	0.0059		mg/Kg			09/17/19 17:16	
Ethylbenzene	ND		0.0059		mg/Kg	₩		09/17/19 17:16	
I,2-Dibromoethane	ND		0.0059		mg/Kg	₩		09/17/19 17:16	
sopropylbenzene	ND		0.0059		mg/Kg		09/17/19 12:21		
Methyl acetate		F1 vs	0.029		mg/Kg	₩		09/17/19 17:16	
Methyl tert-butyl ether	ND		0.0059		mg/Kg	₩	09/17/19 12:21	09/17/19 17:16	
Methylcyclohexane	ND		0.0059		mg/Kg		09/17/19 12:21	09/17/19 17:16	
Methylene Chloride	ND		0.0059		mg/Kg	₽	09/17/19 12:21	09/17/19 17:16	
Fetrachloroethene	ND ND		0.0059		mg/Kg	≎	09/17/19 12:21		
	ND		0.0059			 \$		09/17/19 17:16	
Foluene					mg/Kg				
rans-1,2-Dichloroethene	ND		0.0059		mg/Kg	₩ ₩	09/17/19 12:21	09/17/19 17:16	
rans-1,3-Dichloropropene	ND		0.0059		mg/Kg	¥.	09/17/19 12:21		
Frichloroethene	ND		0.0059		mg/Kg	₩		09/17/19 17:16	
Frichlorofluoromethane	ND		0.0059		mg/Kg	φ.	09/17/19 12:21	09/17/19 17:16	
/inyl chloride	ND		0.0059		mg/Kg		09/17/19 12:21	09/17/19 17:16	
Kylenes, Total	ND		0.012		mg/Kg	☆	09/17/19 12:21		
cis-1,3-Dichloropropene		F1 vs	0.0059		mg/Kg	*	09/17/19 12:21		
Styrene	ND	VS	0.0059		mg/Kg	₩	09/17/19 12:21	09/17/19 17:16	

Eurofins TestAmerica, Buffalo

Page 32 of 135

2

Job ID: 480-159204-1

3

5

7

9

11

1 /

15

1 (

Client: Stantec Consulting Corp.

Project/Site: Alliance BCP Site (AMSF)

Job ID: 480-159204-1

Client Sample ID: AMSF-CS-ES-SS-G1 Lab Sample ID: 480-159204-9

Date Collected: 09/13/19 14:00 Matrix: Solid
Date Received: 09/14/19 09:00 Percent Solids: 83.8

Surrog	ate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dicl	hloroethane-d4 (Surr)	105		64 - 126	09/17/19 12:21	09/17/19 17:16	1
4-Brom	ofluorobenzene (Surr)	97		72 - 126	09/17/19 12:21	09/17/19 17:16	1
Toluene	e-d8 (Surr)	99		71 - 125	09/17/19 12:21	09/17/19 17:16	1

3

5

6

8

10

12

1 A

15

Client: Stantec Consulting Corp. Project/Site: Alliance BCP Site (AMSF)

Client Sample ID: AMSF-CS-ES-SS-G2 Lab Sample ID: 480-159204-10

Date Collected: 09/13/19 14:00

Matrix: Solid

Date Received: 09/14/19 09:00

Percent Solids: 92.1

Method: 8260C - Volatile Organ Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		0.0054		mg/Kg	— ¯	09/17/19 12:21	09/17/19 17:42	
1,1,2,2-Tetrachloroethane	ND		0.0054		mg/Kg	☆	09/17/19 12:21	09/17/19 17:42	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.0054		mg/Kg	₩	09/17/19 12:21	09/17/19 17:42	
1,1,2-Trichloroethane	ND		0.0054		mg/Kg	 \$	09/17/19 12:21		
1,1-Dichloroethane	ND		0.0054		mg/Kg	₩		09/17/19 17:42	
1,1-Dichloroethene	ND		0.0054		mg/Kg	₩		09/17/19 17:42	
1,2,4-Trichlorobenzene	ND		0.0054		mg/Kg	.		09/17/19 17:42	
1,2-Dibromo-3-Chloropropane	ND		0.0054		mg/Kg	₩		09/17/19 17:42	
1,2-Dichlorobenzene	ND		0.0054		mg/Kg	₩		09/17/19 17:42	
1,2-Dichloroethane	ND	VS	0.0054		mg/Kg			09/17/19 17:42	
1,2-Dichloropropane	ND		0.0054		mg/Kg	₩		09/17/19 17:42	
1,3-Dichlorobenzene	ND		0.0054		mg/Kg	₩	09/17/19 12:21	09/17/19 17:42	
1,4-Dichlorobenzene	ND	VS	0.0054		mg/Kg			09/17/19 17:42	
<i>'</i>	ND ND	vs vs	0.0034			☆	09/17/19 12:21	09/17/19 17:42	
2-Butanone (MEK) 2-Hexanone	ND ND		0.027		mg/Kg mg/Kg	☆	09/17/19 12:21	09/17/19 17:42	
	ND ND		0.027			~ .	09/17/19 12:21		
4-Methyl-2-pentanone (MIBK) Acetone	ND ND	VS	0.027		mg/Kg	₩	09/17/19 12:21	09/17/19 17:42	
					mg/Kg	☆			
Benzene	ND	vs * vs	0.0054		mg/Kg	.	09/17/19 12:21		
Bromoform	ND		0.0054		mg/Kg		09/17/19 12:21		
Bromomethane	ND		0.0054		mg/Kg	☆	09/17/19 12:21		
Carbon disulfide	ND		0.0054		mg/Kg		09/17/19 12:21	09/17/19 17:42	
Carbon tetrachloride	ND		0.0054		mg/Kg	₩	09/17/19 12:21		
Chlorobenzene	ND		0.0054		mg/Kg	ψ.	09/17/19 12:21	09/17/19 17:42	
Dibromochloromethane	ND	* VS	0.0054		mg/Kg	<u></u>	09/17/19 12:21		
Chloroethane	ND		0.0054		mg/Kg	:D:		09/17/19 17:42	
Chloroform	ND		0.0054		mg/Kg	*	09/17/19 12:21	09/17/19 17:42	
Chloromethane	ND		0.0054		mg/Kg	, .	09/17/19 12:21	09/17/19 17:42	
cis-1,2-Dichloroethene	ND		0.0054		mg/Kg	*	09/17/19 12:21	09/17/19 17:42	
Cyclohexane	ND		0.0054		mg/Kg	₩	09/17/19 12:21	09/17/19 17:42	
Bromodichloromethane	ND	vs	0.0054		mg/Kg	☆	09/17/19 12:21	09/17/19 17:42	
Dichlorodifluoromethane	ND	VS	0.0054		mg/Kg	₩		09/17/19 17:42	
Ethylbenzene	ND	VS	0.0054		mg/Kg	☆	09/17/19 12:21	09/17/19 17:42	
,2-Dibromoethane	ND	vs	0.0054		mg/Kg	₩	09/17/19 12:21	09/17/19 17:42	
sopropylbenzene	ND	vs	0.0054		mg/Kg	₩	09/17/19 12:21	09/17/19 17:42	
Methyl acetate	ND	vs	0.027		mg/Kg	₩	09/17/19 12:21	09/17/19 17:42	
Methyl tert-butyl ether	ND	vs	0.0054		mg/Kg	₩	09/17/19 12:21	09/17/19 17:42	
Methylcyclohexane	ND	vs	0.0054		mg/Kg	☆	09/17/19 12:21	09/17/19 17:42	
Methylene Chloride	ND	VS	0.0054		mg/Kg	₩	09/17/19 12:21	09/17/19 17:42	
Tetrachloroethene	ND	vs	0.0054		mg/Kg	≎	09/17/19 12:21	09/17/19 17:42	
Toluene	ND	VS	0.0054		mg/Kg	₩	09/17/19 12:21	09/17/19 17:42	
rans-1,2-Dichloroethene	ND	vs	0.0054		mg/Kg	₩	09/17/19 12:21	09/17/19 17:42	
rans-1,3-Dichloropropene	ND	vs	0.0054		mg/Kg	≎	09/17/19 12:21	09/17/19 17:42	
richloroethene	ND	VS	0.0054		mg/Kg		09/17/19 12:21	09/17/19 17:42	
- Frichlorofluoromethane	ND	VS	0.0054		mg/Kg	₩	09/17/19 12:21	09/17/19 17:42	
/inyl chloride	ND		0.0054		mg/Kg	₩	09/17/19 12:21	09/17/19 17:42	
Kylenes, Total	ND	VS	0.011		mg/Kg	 \$		09/17/19 17:42	
sis-1,3-Dichloropropene	ND		0.0054		mg/Kg	≎		09/17/19 17:42	
Styrene	ND		0.0054		mg/Kg	≎		09/17/19 17:42	
Ethyl acetate	ND		0.0054		mg/Kg	.		09/17/19 17:42	

Eurofins TestAmerica, Buffalo

5

Job ID: 480-159204-1

3

5

0

3 10

. . 12

1 *1*

Client: Stantec Consulting Corp. Job ID: 480-159204-1

Project/Site: Alliance BCP Site (AMSF)

Client Sample ID: AMSF-CS-ES-SS-G2 Lab Sample ID: 480-159204-10

Date Collected: 09/13/19 14:00 Matrix: Solid
Date Received: 09/14/19 09:00 Percent Solids: 92.1

Surrogate	%Recovery Qualifie	r Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101	64 - 126	09/17/19 12:21	09/17/19 17:42	1
4-Bromofluorobenzene (Surr)	97	72 - 126	09/17/19 12:21	09/17/19 17:42	1
Toluene-d8 (Surr)	98	71 - 125	09/17/19 12:21	09/17/19 17:42	1

3

5

0

8

10

12

1 1

15

Client: Stantec Consulting Corp. Project/Site: Alliance BCP Site (AMSF)

Client Sample ID: AMSF-CS-ES-SS-C1

Date Collected: 09/13/19 14:00

Matrix: Solid Date Received: 09/14/19 09:00 Percent Solids: 84.8

Method: 8270D - Semivolatile Organic Compounds (GC/MS) RL Dil Fac Analyte Result Qualifier **MDL** Unit D Prepared Analyzed 2,4,5-Trichlorophenol $\overline{\mathsf{ND}}$ 0.97 mg/Kg 09/23/19 14:27 09/24/19 14:57 2,4,6-Trichlorophenol ND 0.97 mg/Kg 09/23/19 14:27 09/24/19 14:57 5 Ö 5 ND 2,4-Dichlorophenol 0.97 mg/Kg 09/23/19 14:27 09/24/19 14:57 2,4-Dimethylphenol ND 0.97 mg/Kg 09/23/19 14:27 09/24/19 14:57 5 2,4-Dinitrophenol ND 09/23/19 14:27 09/24/19 14:57 5 1.9 mg/Kg 5 2.4-Dinitrotoluene ND 0.97 mg/Kg 09/23/19 14:27 09/24/19 14:57 5 2,6-Dinitrotoluene ND 0.97 mg/Kg 09/23/19 14:27 09/24/19 14:57 2-Chloronaphthalene ND 0.97 mg/Kg 09/23/19 14:27 09/24/19 14:57 5 5 ND 09/23/19 14:27 09/24/19 14:57 2-Chlorophenol 0.97 mg/Kg 2-Methylnaphthalene ND 0.97 09/23/19 14:27 09/24/19 14:57 5 mg/Kg 5 2-Methylphenol ND 0.97 mg/Kg 09/23/19 14:27 09/24/19 14:57 2-Nitroaniline ND 1.9 mg/Kg ₽ 09/23/19 14:27 09/24/19 14:57 5 ND 0.97 5 2-Nitrophenol mg/Kg 09/23/19 14:27 09/24/19 14:57 3,3'-Dichlorobenzidine ND 0.97 mg/Kg 09/23/19 14:27 09/24/19 14:57 5 3-Nitroaniline ND mg/Kg ₩ 09/23/19 14:27 09/24/19 14:57 5 19 5 4,6-Dinitro-2-methylphenol ND 1.9 mg/Kg 09/23/19 14:27 09/24/19 14:57 4-Bromophenyl phenyl ether ND 0.97 09/23/19 14:27 09/24/19 14:57 5 mg/Kg ġ 4-Chloro-3-methylphenol ND 0.97 mg/Kg 09/23/19 14:27 09/24/19 14:57 5 4-Chloroaniline ND 0.97 mg/Kg 09/23/19 14:27 09/24/19 14:57 5 ₩ 5 4-Chlorophenyl phenyl ether ND 0.97 mg/Kg 09/23/19 14:27 09/24/19 14:57 5 4-Methylphenol ND 1.9 mg/Kg 09/23/19 14:27 09/24/19 14:57 4-Nitroaniline ND 1.9 09/23/19 14:27 09/24/19 14:57 5 mg/Kg 09/23/19 14:27 4-Nitrophenol 09/24/19 14:57 5 ND 19 mg/Kg 5 Acenaphthene ND 0.97 09/23/19 14:27 09/24/19 14:57 mg/Kg Acenaphthylene ND 0.97 mg/Kg 09/23/19 14:27 09/24/19 14:57 5 Acetophenone ND 0.97 09/23/19 14:27 09/24/19 14:57 5 mg/Kg 5 Anthracene ND F2 F1 0.97 mg/Kg 09/23/19 14:27 09/24/19 14:57 ND 09/23/19 14:27 5 Atrazine 0.97mg/Kg 09/24/19 14:57 ₩ 5 Benzaldehyde ND 0.97 mg/Kg 09/23/19 14:27 09/24/19 14:57 0.97 mg/Kg 09/23/19 14:27 09/24/19 14:57 5 Benzo(a)anthracene 2.3 F2 F1 à 5 0.97 Benzo(a)pyrene 2.3 F2 F1 mg/Kg 09/23/19 14:27 09/24/19 14:57 5 Benzo(b)fluoranthene 3.3 F2 0.97 mg/Kg 09/23/19 14:27 09/24/19 14:57 0.97 ₩ 09/23/19 14:27 09/24/19 14:57 5 Benzo(g,h,i)perylene 1.7 F2 mg/Kg 09/23/19 14:27 5 Benzo(k)fluoranthene 1.2 F2 0.97 mg/Kg 09/24/19 14:57 5 ND 0.97 09/23/19 14:27 09/24/19 14:57 Biphenyl mg/Kg bis (2-chloroisopropyl) ether ND 0.97 mg/Kg 09/23/19 14:27 09/24/19 14:57 5 5 Bis(2-chloroethoxy)methane ND F2 0.97 mg/Kg 09/23/19 14:27 09/24/19 14:57 Bis(2-chloroethyl)ether ND 0.97 09/23/19 14:27 09/24/19 14:57 5 mg/Kg ND 0.97 5 Bis(2-ethylhexyl) phthalate mg/Kg 09/23/19 14:27 09/24/19 14:57 Butyl benzyl phthalate ND 0.97 mg/Kg 09/23/19 14:27 09/24/19 14:57 5 ND 0.97 09/23/19 14:27 5 Caprolactam mg/Kg 09/24/19 14:57 ₩ 5 Carbazole ND F1 0.97 mg/Kg 09/23/19 14:27 09/24/19 14:57 0.97 mg/Kg 09/23/19 14:27 09/24/19 14:57 5 2.6 F2 F1 Chrysene 5 09/23/19 14:27 09/24/19 14:57 Dibenz(a,h)anthracene ND 0.97 mg/Kg Dibenzofuran 5 ND 0.97 mg/Kg 09/23/19 14:27 09/24/19 14:57 ₩ 5 ND Diethyl phthalate 0.97 mg/Kg 09/23/19 14:27 09/24/19 14:57 Dimethyl phthalate ND 0.97 mg/Kg 09/23/19 14:27 09/24/19 14:57 5 ND 5 Di-n-butyl phthalate 0.97 mg/Kg 09/23/19 14:27 09/24/19 14:57 Di-n-octyl phthalate ND F1 0.97 mg/Kg 09/23/19 14:27 09/24/19 14:57

Eurofins TestAmerica, Buffalo

Job ID: 480-159204-1

Lab Sample ID: 480-159204-11

Client: Stantec Consulting Corp. Project/Site: Alliance BCP Site (AMSF)

Lab Sample ID: 480-159204-11

Matrix: Solid

Percent Solids: 84.8

Job ID: 480-159204-1

Client Sample	ID: AMSF-	CS-ES-SS-C1
---------------	-----------	-------------

Date Collected: 09/13/19 14:00 Date Received: 09/14/19 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoranthene	5.5	F2 F1	0.97		mg/Kg	<u> </u>	09/23/19 14:27	09/24/19 14:57	5
Fluorene	ND		0.97		mg/Kg	☼	09/23/19 14:27	09/24/19 14:57	5
Hexachlorobenzene	ND		0.97		mg/Kg	₽	09/23/19 14:27	09/24/19 14:57	5
Hexachlorobutadiene	ND		0.97		mg/Kg	₩	09/23/19 14:27	09/24/19 14:57	5
Hexachlorocyclopentadiene	ND		0.97		mg/Kg	☼	09/23/19 14:27	09/24/19 14:57	5
Hexachloroethane	ND		0.97		mg/Kg	₩.	09/23/19 14:27	09/24/19 14:57	5
Indeno(1,2,3-cd)pyrene	1.3	F2 F1	0.97		mg/Kg	₩	09/23/19 14:27	09/24/19 14:57	5
Isophorone	ND		0.97		mg/Kg	☼	09/23/19 14:27	09/24/19 14:57	5
Naphthalene	ND		0.97		mg/Kg	₩	09/23/19 14:27	09/24/19 14:57	5
Nitrobenzene	ND		0.97		mg/Kg	☼	09/23/19 14:27	09/24/19 14:57	5
N-Nitrosodi-n-propylamine	ND		0.97		mg/Kg	☼	09/23/19 14:27	09/24/19 14:57	5
N-Nitrosodiphenylamine	ND		0.97		mg/Kg	₩.	09/23/19 14:27	09/24/19 14:57	5
Pentachlorophenol	ND		1.9		mg/Kg	☼	09/23/19 14:27	09/24/19 14:57	5
Phenanthrene	3.1	F2 F1	0.97		mg/Kg	☼	09/23/19 14:27	09/24/19 14:57	5
Phenol	ND		0.97		mg/Kg	₩.	09/23/19 14:27	09/24/19 14:57	5
Pyrene	4.3	F1	0.97		mg/Kg	₩	09/23/19 14:27	09/24/19 14:57	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	101		54 - 120				09/23/19 14:27	09/24/19 14:57	5
2-Fluorobiphenyl	87		60 - 120				09/23/19 14:27	09/24/19 14:57	5
2-Fluorophenol	73		52 - 120				09/23/19 14:27	09/24/19 14:57	5
Nitrobenzene-d5	72		53 - 120				09/23/19 14:27	09/24/19 14:57	5
Phenol-d5	73		54 - 120				09/23/19 14:27	09/24/19 14:57	5
p-Terphenyl-d14	112		79 - 130				09/23/19 14:27	09/24/19 14:57	5

	orine Pesticid	les (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND		0.020		mg/Kg	₩	09/19/19 07:28	09/20/19 18:21	10
4,4'-DDE	ND		0.020		mg/Kg	₩	09/19/19 07:28	09/20/19 18:21	10
4,4'-DDT	ND	F2 F1	0.020		mg/Kg	≎	09/19/19 07:28	09/20/19 18:21	10
Aldrin	ND		0.020		mg/Kg	₽	09/19/19 07:28	09/20/19 18:21	10
alpha-BHC	ND		0.020		mg/Kg	≎	09/19/19 07:28	09/20/19 18:21	10
cis-Chlordane	ND		0.020		mg/Kg	≎	09/19/19 07:28	09/20/19 18:21	10
beta-BHC	ND		0.020		mg/Kg	₽	09/19/19 07:28	09/20/19 18:21	10
delta-BHC	ND	F2	0.020		mg/Kg	₩	09/19/19 07:28	09/20/19 18:21	10
Dieldrin	ND		0.020		mg/Kg	₩	09/19/19 07:28	09/20/19 18:21	10
Endosulfan I	ND		0.020		mg/Kg	₽	09/19/19 07:28	09/20/19 18:21	10
Endosulfan II	ND		0.020		mg/Kg	₩	09/19/19 07:28	09/20/19 18:21	10
Endosulfan sulfate	ND		0.020		mg/Kg	₩	09/19/19 07:28	09/20/19 18:21	10
Endrin	ND		0.020		mg/Kg	₩	09/19/19 07:28	09/20/19 18:21	10
Endrin aldehyde	ND	F1	0.020		mg/Kg	₩	09/19/19 07:28	09/20/19 18:21	10
Endrin ketone	ND		0.020		mg/Kg	≎	09/19/19 07:28	09/20/19 18:21	10
gamma-BHC (Lindane)	ND	F2	0.020		mg/Kg	₩	09/19/19 07:28	09/20/19 18:21	10
trans-Chlordane	ND		0.020		mg/Kg	₩	09/19/19 07:28	09/20/19 18:21	10
Heptachlor	ND		0.020		mg/Kg	₩	09/19/19 07:28	09/20/19 18:21	10
Heptachlor epoxide	ND		0.020		mg/Kg	₩	09/19/19 07:28	09/20/19 18:21	10
Methoxychlor	ND	F2	0.020		mg/Kg	₩	09/19/19 07:28	09/20/19 18:21	10
Toxaphene	ND		0.20		mg/Kg	₩	09/19/19 07:28	09/20/19 18:21	10

Page 37 of 135

Client: Stantec Consulting Corp. Project/Site: Alliance BCP Site (AMSF)

Lab Sample ID: 480-159204-11

Client Sample ID: AMSF-CS-ES-SS-C1 Date Collected: 09/13/19 14:00 **Matrix: Solid** Date Received: 09/14/19 09:00 **Percent Solids: 84.8**

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	209	X	45 - 120	09/19/19 07:28	09/20/19 18:21	10
DCB Decachlorobiphenyl	213	Χ	45 - 120	09/19/19 07:28	09/20/19 18:21	10
Tetrachloro-m-xylene	144	X	30 - 124	09/19/19 07:28	09/20/19 18:21	10
Tetrachloro-m-xylene	117		30 - 124	09/19/19 07:28	09/20/19 18:21	10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.23		mg/Kg	<u> </u>	09/21/19 11:23	09/24/19 23:19	1
PCB-1221	ND		0.23		mg/Kg	₩	09/21/19 11:23	09/24/19 23:19	1
PCB-1232	ND		0.23		mg/Kg	₩	09/21/19 11:23	09/24/19 23:19	1
PCB-1242	ND		0.23		mg/Kg	ф	09/21/19 11:23	09/24/19 23:19	1
PCB-1248	ND		0.23		mg/Kg	₩	09/21/19 11:23	09/24/19 23:19	1
PCB-1254	ND		0.23		mg/Kg	₩	09/21/19 11:23	09/24/19 23:19	1
PCB-1260	ND		0.23		mg/Kg		09/21/19 11:23	09/24/19 23:19	1
PCB-1262	ND		0.23		mg/Kg	₩	09/21/19 11:23	09/24/19 23:19	1
PCB-1268	ND		0.23		mg/Kg	₩	09/21/19 11:23	09/24/19 23:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	117		65 - 174				09/21/19 11:23	09/24/19 23:19	1
DCB Decachlorobiphenyl	81		65 ₋ 174				09/21/19 11:23	09/24/19 23:19	1
Tetrachloro-m-xylene	119		60 ₋ 154				09/21/19 11:23	09/24/19 23:19	1
Tetrachloro-m-xylene	104		60 - 154				09/21/19 11:23	09/24/19 23:19	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	13500		12.1		mg/Kg	<u> </u>	09/18/19 05:20	09/20/19 22:04	1
Antimony	ND	F1	18.2		mg/Kg	₩	09/18/19 05:20	09/19/19 23:02	1
Arsenic	3.0		2.4		mg/Kg	₩	09/18/19 05:20	09/19/19 23:02	1
Barium	61.9	F1	0.61		mg/Kg	₽	09/18/19 05:20	09/19/19 23:02	1
Beryllium	0.51		0.24		mg/Kg	₩	09/18/19 05:20	09/19/19 23:02	1
Cadmium	ND		0.24		mg/Kg	₩	09/18/19 05:20	09/19/19 23:02	1
Calcium	9210	F2 F1	60.6		mg/Kg	₩.	09/18/19 05:20	09/19/19 23:02	1
Chromium	16.5		0.61		mg/Kg	☆	09/18/19 05:20	09/19/19 23:02	1
Cobalt	6.5		0.61		mg/Kg	₩	09/18/19 05:20	09/19/19 23:02	1
Copper	11.2		1.2		mg/Kg	₩	09/18/19 05:20	09/19/19 23:02	1
Iron	15800		12.1		mg/Kg	₩	09/18/19 05:20	09/20/19 22:04	1
Lead	13.5		1.2		mg/Kg	₩	09/18/19 05:20	09/19/19 23:02	1
Magnesium	4830	F1 F2	24.2		mg/Kg	.	09/18/19 05:20	09/19/19 23:02	1
Manganese	404	В	0.24		mg/Kg	₩	09/18/19 05:20	09/19/19 23:02	1
Nickel	13.7		6.1		mg/Kg	₩	09/18/19 05:20	09/19/19 23:02	1
Potassium	2460	F1	36.3		mg/Kg	.	09/18/19 05:20	09/19/19 23:02	1
Selenium	ND		4.8		mg/Kg	₩	09/18/19 05:20	09/19/19 23:02	1
Silver	ND		0.73		mg/Kg	₩	09/18/19 05:20	09/19/19 23:02	1
Sodium	ND		170		mg/Kg	₩.	09/18/19 05:20	09/19/19 23:02	1
Thallium	ND		7.3		mg/Kg	₩	09/18/19 05:20	09/19/19 23:02	1
Vanadium	25.9		0.61		mg/Kg	₩	09/18/19 05:20	09/19/19 23:02	1
Zinc	52.4		2.4		mg/Kg		09/18/19 05:20	09/19/19 23:02	1

Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.041		0.024		mg/Kg	\	09/26/19 11:26	09/26/19 13:30	1

Eurofins TestAmerica, Buffalo

Page 38 of 135

Job ID: 480-159204-1

Client: Stantec Consulting Corp.

Job ID: 480-159204-1

Project/Site: Alliance BCP Site (AMSF)

Client Sample ID: AMSF-CS-ES-SS-C1 Lab Sample ID: 480-159204-11

Date Collected: 09/13/19 14:00 Matrix: Solid
Date Received: 09/14/19 09:00 Percent Solids: 84.8

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	ND	F1 *	1.2		mg/Kg		09/25/19 22:25	09/26/19 15:00	1

2

4

5

9

11

13

15

Client: Stantec Consulting Corp. Job ID: 480-159204-1 Project/Site: Alliance BCP Site (AMSF)

Client Sample ID: AMSF-CS-RB-W-1

Date Collected: 09/13/19 09:10 Date Received: 09/14/19 09:00

Lab Sample ID: 480-159204-12 **Matrix: Water**

Analyte	Result Q	ualifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	1.0	ug/L			09/24/19 16:45	
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L			09/24/19 16:45	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	ug/L			09/24/19 16:45	
1,1,2-Trichloroethane	ND	1.0	ug/L			09/24/19 16:45	
1,1-Dichloroethane	ND	1.0	ug/L			09/24/19 16:45	
1,1-Dichloroethene	ND	1.0	ug/L			09/24/19 16:45	
1,2,3-Trichlorobenzene	ND	1.0	ug/L			09/24/19 16:45	
1,2,3-Trichloropropane	ND	1.0	ug/L			09/24/19 16:45	
1,2,4-Trichlorobenzene	ND	1.0	ug/L			09/24/19 16:45	
1,2,4-Trimethylbenzene	ND	1.0	ug/L			09/24/19 16:45	
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L			09/24/19 16:45	
1,2-Dichlorobenzene	ND	1.0	ug/L			09/24/19 16:45	
1,2-Dichloroethane	ND	1.0	ug/L			09/24/19 16:45	
1,2-Dichloropropane	ND	1.0	ug/L			09/24/19 16:45	
1,3,5-Trimethylbenzene	ND	1.0	ug/L			09/24/19 16:45	
1,3-Dichlorobenzene	ND	1.0	ug/L			09/24/19 16:45	
1,3-Dichloropenzene	ND ND	1.0	ug/L			09/24/19 16:45	
1,4-Dichlorobenzene	ND	1.0	_			09/24/19 16:45	
	ND	1.0	ug/L			09/24/19 16:45	
2-Butanone (MEK)	ND ND		ug/L				
2-Hexanone		5.0	ug/L			09/24/19 16:45	
I-Isopropyltoluene	ND	1.0	ug/L			09/24/19 16:45	
I-Methyl-2-pentanone (MIBK)	ND	5.0	ug/L			09/24/19 16:45	
Acetone	ND	10	ug/L			09/24/19 16:45	
Benzene	ND	1.0	ug/L			09/24/19 16:45	
Bromoform	ND	1.0	ug/L			09/24/19 16:45	
Bromomethane	ND	1.0	ug/L			09/24/19 16:45	
Carbon disulfide	ND	1.0	ug/L			09/24/19 16:45	
Carbon tetrachloride	ND	1.0	ug/L			09/24/19 16:45	
Chlorobenzene	ND	1.0	ug/L			09/24/19 16:45	
Dibromochloromethane	ND	1.0	ug/L			09/24/19 16:45	
Chloroethane	ND	1.0	ug/L			09/24/19 16:45	
Chloroform	ND	1.0	ug/L			09/24/19 16:45	
Chloromethane	ND	1.0	ug/L			09/24/19 16:45	
cis-1,2-Dichloroethene	ND	1.0	ug/L			09/24/19 16:45	
Cyclohexane	ND	1.0	ug/L			09/24/19 16:45	
Bromodichloromethane	ND	1.0	ug/L			09/24/19 16:45	
Dichlorodifluoromethane	ND	1.0	ug/L			09/24/19 16:45	
Ethyl acetate	ND	1.0	ug/L			09/24/19 16:45	
Ethylbenzene	ND	1.0	ug/L			09/24/19 16:45	
1,2-Dibromoethane	ND	1.0	ug/L			09/24/19 16:45	
sopropylbenzene	ND	1.0	ug/L			09/24/19 16:45	
Methyl acetate	ND	2.5	ug/L			09/24/19 16:45	
Methyl tert-butyl ether	ND	1.0	ug/L			09/24/19 16:45	
Methylcyclohexane	ND	1.0	ug/L			09/24/19 16:45	
Methylene Chloride	ND	1.0	ug/L			09/24/19 16:45	
Naphthalene	ND	1.0	ug/L			09/24/19 16:45	
n-Butylbenzene	ND	1.0	ug/L			09/24/19 16:45	
N-Propylbenzene	ND	1.0	ug/L			09/24/19 16:45	
sec-Butylbenzene	ND	1.0	ug/L			09/24/19 16:45	

Eurofins TestAmerica, Buffalo

Page 40 of 135

Client: Stantec Consulting Corp. Project/Site: Alliance BCP Site (AMSF)

Client Sample ID: AMSF-CS-RB-W-1 Lab Sample ID: 480-159204-12

Date Collected: 09/13/19 09:10

Date Received: 09/14/19 09:00

Matrix: Water

Method: 8260C - Volatile O	rganic Compo	unds by G	C/MS (Contir	nued)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	ND		1.0		ug/L			09/24/19 16:45	1
Toluene	ND		1.0		ug/L			09/24/19 16:45	1
trans-1,2-Dichloroethene	ND		1.0		ug/L			09/24/19 16:45	1
trans-1,3-Dichloropropene	ND		1.0		ug/L			09/24/19 16:45	1
Trichloroethene	ND		1.0		ug/L			09/24/19 16:45	1
Trichlorofluoromethane	ND		1.0		ug/L			09/24/19 16:45	1
Vinyl chloride	ND		1.0		ug/L			09/24/19 16:45	1
Xylenes, Total	ND		2.0		ug/L			09/24/19 16:45	1
cis-1,3-Dichloropropene	ND		1.0		ug/L			09/24/19 16:45	1
Styrene	ND		1.0		ug/L			09/24/19 16:45	1
tert-Butylbenzene	ND		1.0		ug/L			09/24/19 16:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		77 - 120			-		09/24/19 16:45	1
4-Bromofluorobenzene (Surr)	107		73 - 120					09/24/19 16:45	1
Toluene-d8 (Surr)	103		80 - 120					09/24/19 16:45	1
Dibromofluoromethane (Surr)	97		75 - 123					09/24/19 16:45	1

- Dibromondoromemane (Sun)	91	70-725					09/24/19 10.43	,
Method: 8270D - Semivolatile Analyte	e Organic Compound Result Qualifier	s (GC/MS) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	ND Qualities	5.0		ug/L	— <u>-</u>		09/18/19 20:16	1
2,4,6-Trichlorophenol	ND	5.0		ug/L		09/17/19 15:14	09/18/19 20:16	1
2,4-Dichlorophenol	ND	5.0		ug/L		09/17/19 15:14	09/18/19 20:16	1
2,4-Dimethylphenol	ND	5.0		ug/L		09/17/19 15:14	09/18/19 20:16	1
2,4-Dinitrophenol	ND	10		ug/L		09/17/19 15:14	09/18/19 20:16	1
2,4-Dinitrotoluene	ND	5.0		ug/L		09/17/19 15:14	09/18/19 20:16	1
2,6-Dinitrotoluene	ND	5.0		ug/L		09/17/19 15:14	09/18/19 20:16	1
2-Chloronaphthalene	ND	5.0		ug/L		09/17/19 15:14	09/18/19 20:16	1
2-Chlorophenol	ND	5.0		ug/L		09/17/19 15:14	09/18/19 20:16	1
2-Methylnaphthalene	ND	5.0		ug/L		09/17/19 15:14	09/18/19 20:16	1
2-Methylphenol	ND	5.0		ug/L		09/17/19 15:14	09/18/19 20:16	1
2-Nitroaniline	ND	10		ug/L		09/17/19 15:14	09/18/19 20:16	1
2-Nitrophenol	ND	5.0		ug/L		09/17/19 15:14	09/18/19 20:16	1
3,3'-Dichlorobenzidine	ND	5.0		ug/L		09/17/19 15:14	09/18/19 20:16	1
3-Nitroaniline	ND	10		ug/L		09/17/19 15:14	09/18/19 20:16	1
4,6-Dinitro-2-methylphenol	ND	10		ug/L		09/17/19 15:14	09/18/19 20:16	1
4-Bromophenyl phenyl ether	ND	5.0		ug/L		09/17/19 15:14	09/18/19 20:16	1
4-Chloro-3-methylphenol	ND	5.0		ug/L		09/17/19 15:14	09/18/19 20:16	1
4-Chloroaniline	ND	5.0		ug/L		09/17/19 15:14	09/18/19 20:16	1
4-Chlorophenyl phenyl ether	ND	5.0		ug/L		09/17/19 15:14	09/18/19 20:16	1
4-Methylphenol	ND	10		ug/L		09/17/19 15:14	09/18/19 20:16	1
4-Nitroaniline	ND	10		ug/L		09/17/19 15:14	09/18/19 20:16	1
4-Nitrophenol	ND	10		ug/L		09/17/19 15:14	09/18/19 20:16	1
Acenaphthene	ND	5.0		ug/L		09/17/19 15:14	09/18/19 20:16	1
Acenaphthylene	ND	5.0		ug/L		09/17/19 15:14	09/18/19 20:16	1
Acetophenone	ND	5.0		ug/L		09/17/19 15:14	09/18/19 20:16	1
Anthracene	ND	5.0		ug/L		09/17/19 15:14	09/18/19 20:16	1
Atrazine	ND *	5.0		ug/L		09/17/19 15:14	09/18/19 20:16	1
Benzaldehyde	ND	5.0		ug/L		09/17/19 15:14	09/18/19 20:16	1
Benzo[a]anthracene	ND	5.0		ug/L		09/17/19 15:14	09/18/19 20:16	1

Eurofins TestAmerica, Buffalo

Page 41 of 135

2

Job ID: 480-159204-1

3

5

7

9

11

12

14

15

Client: Stantec Consulting Corp. Project/Site: Alliance BCP Site (AMSF)

Lab Sample ID: 480-159204-12

Matrix: Water

Job ID: 480-159204-1

Client Sample ID: AMSF-CS-RB-W-1

Date Collected: 09/13/19 09:10 Date Received: 09/14/19 09:00

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]pyrene	ND		5.0	ug/L	<u>c</u>	09/17/19 15:14	09/18/19 20:16	1
Benzo[b]fluoranthene	ND		5.0	ug/L	C	09/17/19 15:14	09/18/19 20:16	1
Benzo[g,h,i]perylene	ND		5.0	ug/L	C	09/17/19 15:14	09/18/19 20:16	1
Benzo[k]fluoranthene	ND		5.0	ug/L	C	09/17/19 15:14	09/18/19 20:16	1
Biphenyl	ND		5.0	ug/L	C	09/17/19 15:14	09/18/19 20:16	1
bis (2-chloroisopropyl) ether	ND		5.0	ug/L	C	09/17/19 15:14	09/18/19 20:16	1
Bis(2-chloroethoxy)methane	ND		5.0	ug/L		09/17/19 15:14	09/18/19 20:16	1
Bis(2-chloroethyl)ether	ND		5.0	ug/L	C	09/17/19 15:14	09/18/19 20:16	1
Bis(2-ethylhexyl) phthalate	ND		5.0	ug/L	C	09/17/19 15:14	09/18/19 20:16	1
Butyl benzyl phthalate	ND		5.0	ug/L	0	09/17/19 15:14	09/18/19 20:16	1
Caprolactam	ND		5.0	ug/L	C	09/17/19 15:14	09/18/19 20:16	1
Carbazole	ND		5.0	ug/L	C	09/17/19 15:14	09/18/19 20:16	1
Chrysene	ND		5.0	ug/L		09/17/19 15:14	09/18/19 20:16	1
Dibenz(a,h)anthracene	ND		5.0	ug/L	C	09/17/19 15:14	09/18/19 20:16	1
Dibenzofuran	ND		10	ug/L	C	09/17/19 15:14	09/18/19 20:16	1
Diethyl phthalate	ND		5.0	ug/L		09/17/19 15:14	09/18/19 20:16	1
Dimethyl phthalate	ND		5.0	ug/L			09/18/19 20:16	1
Di-n-butyl phthalate	ND		5.0	ug/L			09/18/19 20:16	1
Di-n-octyl phthalate	ND		5.0	ug/L			09/18/19 20:16	· · · · · · · 1
Fluoranthene	ND		5.0	ug/L			09/18/19 20:16	1
Fluorene	ND		5.0	ug/L			09/18/19 20:16	1
Hexachlorobenzene	ND		5.0	ug/L			09/18/19 20:16	
Hexachlorobutadiene	ND		5.0	ug/L			09/18/19 20:16	1
Hexachlorocyclopentadiene	ND		5.0	ug/L			09/18/19 20:16	1
Hexachloroethane	ND		5.0	ug/L			09/18/19 20:16	
Indeno[1,2,3-cd]pyrene	ND		5.0	ug/L			09/18/19 20:16	1
Isophorone	ND ND		5.0	ug/L			09/18/19 20:16	1
Naphthalene	ND		5.0	ug/L			09/18/19 20:16	
Nitrobenzene	ND ND		5.0	ug/L ug/L			09/18/19 20:16	1
N-Nitrosodi-n-propylamine	ND ND		5.0	ug/L			09/18/19 20:16	1
							09/18/19 20:16	
N-Nitrosodiphenylamine	ND ND		5.0 10	ug/L			09/18/19 20:16	1
Pentachlorophenol				ug/L				1
Phenanthrene	ND		5.0	ug/L			09/18/19 20:16	1
Phenol	ND		5.0	ug/L			09/18/19 20:16	1
Pyrene	ND		5.0	ug/L	· ·)9/17/19 15:14	09/18/19 20:16	1
Surrogate	%Recovery	Qualifier	Limits		_	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	95		41 - 120		C	09/17/19 15:14	09/18/19 20:16	1
2-Fluorobiphenyl	88		48 - 120		C	09/17/19 15:14	09/18/19 20:16	1
2-Fluorophenol	55		35 - 120		C	09/17/19 15:14	09/18/19 20:16	1
Nitrobenzene-d5	82		46 - 120		(09/17/19 15:14	09/18/19 20:16	1
Phenol-d5	40		22 - 120		C	09/17/19 15:14	09/18/19 20:16	1
p-Terphenyl-d14	93		60 - 148		C	09/17/19 15:14	09/18/19 20:16	1
Method: 8081B - Organocl	hlorine Pesticide	es (GC)						
Analyte		Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac

4,4'-DDD ND 0.050 ug/L 09/17/19 15:04 09/19/19 15:12 4,4'-DDE ND 0.050 ug/L 09/17/19 15:04 09/19/19 15:12 4,4'-DDT ND 0.050 ug/L 09/17/19 15:04 09/19/19 15:12 Aldrin ND 0.050 ug/L 09/17/19 15:04 09/19/19 15:12

Eurofins TestAmerica, Buffalo

Page 42 of 135

Client: Stantec Consulting Corp. Project/Site: Alliance BCP Site (AMSF)

Lab Sample ID: 480-159204-12

Matrix: Water

Job ID: 480-159204-1

Client Sample ID: AMSF-CS-RB-W-1

Date Collected: 09/13/19 09:10 Date Received: 09/14/19 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
alpha-BHC	ND		0.050		ug/L		09/17/19 15:04	09/19/19 15:12	1
cis-Chlordane	ND		0.050		ug/L		09/17/19 15:04	09/19/19 15:12	1
beta-BHC	ND		0.050		ug/L		09/17/19 15:04	09/19/19 15:12	1
delta-BHC	ND		0.050		ug/L		09/17/19 15:04	09/19/19 15:12	1
Dieldrin	ND		0.050		ug/L		09/17/19 15:04	09/19/19 15:12	1
Endosulfan I	ND		0.050		ug/L		09/17/19 15:04	09/19/19 15:12	1
Endosulfan II	ND		0.050		ug/L		09/17/19 15:04	09/19/19 15:12	1
Endosulfan sulfate	ND		0.050		ug/L		09/17/19 15:04	09/19/19 15:12	1
Endrin	ND		0.050		ug/L		09/17/19 15:04	09/19/19 15:12	1
Endrin aldehyde	ND		0.050		ug/L		09/17/19 15:04	09/19/19 15:12	1
Endrin ketone	ND		0.050		ug/L		09/17/19 15:04	09/19/19 15:12	1
gamma-BHC (Lindane)	ND		0.050		ug/L		09/17/19 15:04	09/19/19 15:12	1
trans-Chlordane	ND		0.050		ug/L		09/17/19 15:04	09/19/19 15:12	1
Heptachlor	ND		0.050		ug/L		09/17/19 15:04	09/19/19 15:12	1
Heptachlor epoxide	ND		0.050		ug/L		09/17/19 15:04	09/19/19 15:12	1
Methoxychlor	ND		0.050		ug/L		09/17/19 15:04	09/19/19 15:12	1
Toxaphene	ND		0.50		ug/L		09/17/19 15:04	09/19/19 15:12	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	56		20 - 120				09/17/19 15:04	09/19/19 15:12	1
DCB Decachlorobiphenyl	59		20 - 120				09/17/19 15:04	09/19/19 15:12	1
Tetrachloro-m-xylene	79		44 - 120				09/17/19 15:04	09/19/19 15:12	1
Tetrachloro-m-xylene	76		44 - 120				09/17/19 15:04	09/19/19 15:12	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.50		ug/L		09/23/19 15:10	09/25/19 17:19	1
PCB-1221	ND		0.50		ug/L		09/23/19 15:10	09/25/19 17:19	1
PCB-1232	ND		0.50		ug/L		09/23/19 15:10	09/25/19 17:19	1
PCB-1242	ND		0.50		ug/L		09/23/19 15:10	09/25/19 17:19	1
PCB-1248	ND		0.50		ug/L		09/23/19 15:10	09/25/19 17:19	1
PCB-1254	ND		0.50		ug/L		09/23/19 15:10	09/25/19 17:19	1
PCB-1260	ND		0.50		ug/L		09/23/19 15:10	09/25/19 17:19	1
PCB-1262	ND		0.50		ug/L		09/23/19 15:10	09/25/19 17:19	1
PCB-1268	ND		0.50		ug/L		09/23/19 15:10	09/25/19 17:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	62		19 - 120				09/23/19 15:10	09/25/19 17:19	1
DCB Decachlorobiphenyl	39		19 - 120				09/23/19 15:10	09/25/19 17:19	1
Tetrachloro-m-xylene	92		39 - 121				09/23/19 15:10	09/25/19 17:19	1
Tetrachloro-m-xylene	78		39 - 121				00/23/10 15:10	09/25/19 17:19	1

Method: 6010C - Metals (ICP)								
Analyte	Result Q	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND	200		ug/L		09/18/19 08:54	09/18/19 23:16	1
Antimony	ND	20.0		ug/L		09/18/19 08:54	09/18/19 23:16	1
Arsenic	ND	15.0		ug/L		09/18/19 08:54	09/18/19 23:16	1
Barium	ND	2.0		ug/L		09/18/19 08:54	09/18/19 23:16	1
Beryllium	ND	2.0		ug/L		09/18/19 08:54	09/18/19 23:16	1
Cadmium	ND	2.0		ug/L		09/18/19 08:54	09/18/19 23:16	1

Eurofins TestAmerica, Buffalo

Page 43 of 135

10/4/2019

Client: Stantec Consulting Corp. Project/Site: Alliance BCP Site (AMSF)

Lab Sample ID: 480-159204-12

Matrix: Water

Job ID: 480-159204-1

Client Sample ID: AMSF-CS-RB-W-1 Date Collected: 09/13/19 09:10 Date Received: 09/14/19 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	ND		500		ug/L		09/18/19 08:54	09/18/19 23:16	1
Chromium	ND		4.0		ug/L		09/18/19 08:54	09/18/19 23:16	1
Cobalt	ND		4.0		ug/L		09/18/19 08:54	09/18/19 23:16	1
Copper	ND		10.0		ug/L		09/18/19 08:54	09/18/19 23:16	1
Iron	ND		50.0		ug/L		09/18/19 08:54	09/18/19 23:16	1
Lead	ND		10.0		ug/L		09/18/19 08:54	09/18/19 23:16	1
Magnesium	ND		200		ug/L		09/18/19 08:54	09/18/19 23:16	1
Manganese	ND		3.0		ug/L		09/18/19 08:54	09/18/19 23:16	1
Nickel	ND		10.0		ug/L		09/18/19 08:54	09/18/19 23:16	1
Potassium	ND		500		ug/L		09/18/19 08:54	09/18/19 23:16	1
Selenium	ND		25.0		ug/L		09/18/19 08:54	09/18/19 23:16	1
Silver	ND		6.0		ug/L		09/18/19 08:54	09/18/19 23:16	1
Sodium	ND		1000		ug/L		09/18/19 08:54	09/18/19 23:16	1
Thallium	ND		20.0		ug/L		09/18/19 08:54	09/18/19 23:16	1
Vanadium	ND		5.0		ug/L		09/18/19 08:54	09/18/19 23:16	1
Zinc	ND	٨	10.0		ug/L		09/18/19 08:54	09/18/19 23:16	1
Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.20		ug/L		09/23/19 11:57	09/23/19 16:32	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	ND		0.010		mg/L		09/25/19 20:35	09/26/19 13:00	1

Client: Stantec Consulting Corp. Job ID: 480-159204-1 Project/Site: Alliance BCP Site (AMSF)

Client Sample ID: TRIP BLANK

Date Received: 09/14/19 09:00

Lab Sample ID: 480-159204-13 Date Collected: 09/13/19 09:00

Matrix: Water

Method: 8260C - Volatile Organ ^{Analyte}		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		1.0		ug/L	— <u> </u>		09/24/19 17:10	
1,1,2,2-Tetrachloroethane	ND		1.0		ug/L			09/24/19 17:10	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0		ug/L			09/24/19 17:10	
1,1,2-Trichloroethane	ND		1.0		ug/L			09/24/19 17:10	
1,1-Dichloroethane	ND		1.0		ug/L			09/24/19 17:10	
1,1-Dichloroethene	ND		1.0		ug/L			09/24/19 17:10	
1,2,3-Trichlorobenzene	ND		1.0		ug/L			09/24/19 17:10	
1,2,3-Trichloropropane	ND		1.0		ug/L			09/24/19 17:10	
1,2,4-Trichlorobenzene	ND		1.0		ug/L			09/24/19 17:10	
1,2,4-Trimethylbenzene	ND		1.0		ug/L			09/24/19 17:10	
1,2-Dibromo-3-Chloropropane	ND		1.0		ug/L			09/24/19 17:10	
1,2-Dibromo-3-Chioropropane 1,2-Dichlorobenzene	ND ND		1.0		-			09/24/19 17:10	
					ug/L				
1,2-Dichloroethane	ND		1.0		ug/L			09/24/19 17:10	
1,2-Dichloropropane	ND		1.0		ug/L			09/24/19 17:10	
1,3,5-Trimethylbenzene	ND		1.0		ug/L			09/24/19 17:10	
1,3-Dichlorobenzene	ND		1.0		ug/L			09/24/19 17:10	
1,3-Dichloropropane	ND		1.0		ug/L			09/24/19 17:10	
1,4-Dichlorobenzene	ND		1.0		ug/L			09/24/19 17:10	
2-Butanone (MEK)	ND		10		ug/L			09/24/19 17:10	
2-Hexanone	ND		5.0		ug/L			09/24/19 17:10	
4-Isopropyltoluene	ND		1.0		ug/L			09/24/19 17:10	
1-Methyl-2-pentanone (MIBK)	ND		5.0		ug/L			09/24/19 17:10	
Acetone	ND		10		ug/L			09/24/19 17:10	
Benzene	ND		1.0		ug/L			09/24/19 17:10	
Bromoform	ND		1.0		ug/L			09/24/19 17:10	
Bromomethane	ND		1.0		ug/L			09/24/19 17:10	
Carbon disulfide	ND		1.0		ug/L			09/24/19 17:10	
Carbon tetrachloride	ND		1.0		ug/L			09/24/19 17:10	
Chlorobenzene	ND		1.0		ug/L			09/24/19 17:10	
Dibromochloromethane	ND		1.0		ug/L			09/24/19 17:10	
Chloroethane	ND		1.0		ug/L			09/24/19 17:10	
Chloroform	ND		1.0		ug/L			09/24/19 17:10	
Chloromethane	ND		1.0		ug/L			09/24/19 17:10	
cis-1,2-Dichloroethene	ND		1.0		ug/L			09/24/19 17:10	
Cyclohexane	ND		1.0		ug/L			09/24/19 17:10	
Bromodichloromethane	ND		1.0		ug/L			09/24/19 17:10	
Dichlorodifluoromethane	ND		1.0		ug/L			09/24/19 17:10	
Ethyl acetate	ND		1.0		ug/L			09/24/19 17:10	
Ethylbenzene	ND		1.0		ug/L			09/24/19 17:10	
1,2-Dibromoethane	ND		1.0		ug/L			09/24/19 17:10	
	ND		1.0					09/24/19 17:10	
sopropylbenzene					ug/L				
Methyl acetate	ND		2.5		ug/L			09/24/19 17:10	
Methyl tert-butyl ether	ND		1.0		ug/L			09/24/19 17:10	
Methylcyclohexane	ND		1.0		ug/L			09/24/19 17:10	
Methylene Chloride	ND		1.0		ug/L			09/24/19 17:10	
Naphthalene	ND		1.0		ug/L			09/24/19 17:10	
n-Butylbenzene	ND		1.0		ug/L			09/24/19 17:10	
N-Propylbenzene	ND		1.0		ug/L			09/24/19 17:10	

Eurofins TestAmerica, Buffalo

Page 45 of 135

Client: Stantec Consulting Corp. Project/Site: Alliance BCP Site (AMSF)

Client Sample ID: TRIP BLANK

Lab Sample ID: 480-159204-13

Job ID: 480-159204-1

Date Collected: 09/13/19 09:00 Date Received: 09/14/19 09:00 **Matrix: Water**

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	ND		1.0		ug/L			09/24/19 17:10	1
Toluene	ND		1.0		ug/L			09/24/19 17:10	1
trans-1,2-Dichloroethene	ND		1.0		ug/L			09/24/19 17:10	1
trans-1,3-Dichloropropene	ND		1.0		ug/L			09/24/19 17:10	1
Trichloroethene	ND		1.0		ug/L			09/24/19 17:10	1
Trichlorofluoromethane	ND		1.0		ug/L			09/24/19 17:10	1
Vinyl chloride	ND		1.0		ug/L			09/24/19 17:10	1
Xylenes, Total	ND		2.0		ug/L			09/24/19 17:10	1
cis-1,3-Dichloropropene	ND		1.0		ug/L			09/24/19 17:10	1
Styrene	ND		1.0		ug/L			09/24/19 17:10	1
tert-Butylbenzene	ND		1.0		ug/L			09/24/19 17:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	108		77 - 120					09/24/19 17:10	1
4-Bromofluorobenzene (Surr)	104		73 - 120					09/24/19 17:10	1
Toluene-d8 (Surr)	101		80 - 120					09/24/19 17:10	1
Dibromofluoromethane (Surr)	103		75 - 123					09/24/19 17:10	1

Client: Stantec Consulting Corp. Project/Site: Alliance BCP Site (AMSF)

Client Sample ID: AMSF-CS-ES-SS-C2

Date Collected: 09/13/19 14:00 **Matrix: Solid** Date Received: 09/14/19 09:00 Percent Solids: 88.4

Method: 8270D - Semivolatile Organic Compounds (GC/MS) RL Dil Fac Analyte Result Qualifier **MDL** Unit D Prepared Analyzed 2,4,5-Trichlorophenol $\overline{\mathsf{ND}}$ 0.95 mg/Kg 09/23/19 14:27 09/24/19 15:22 2,4,6-Trichlorophenol ND 0.95 mg/Kg 09/23/19 14:27 09/24/19 15:22 5 5 ND 0.95 Ö 2,4-Dichlorophenol mg/Kg 09/23/19 14:27 09/24/19 15:22 2,4-Dimethylphenol ND 0.95 mg/Kg 09/23/19 14:27 09/24/19 15:22 5 2,4-Dinitrophenol ND 09/23/19 14:27 09/24/19 15:22 5 1.9 mg/Kg 2.4-Dinitrotoluene ND 0.95 mg/Kg 09/23/19 14:27 09/24/19 15:22 5 2,6-Dinitrotoluene 5 ND 0.95 mg/Kg 09/23/19 14:27 09/24/19 15:22 2-Chloronaphthalene ND 0.95 mg/Kg 09/23/19 14:27 09/24/19 15:22 5 5 ND 0.95 09/23/19 14:27 09/24/19 15:22 2-Chlorophenol mg/Kg 2-Methylnaphthalene ND 0.95 09/23/19 14:27 09/24/19 15:22 5 mg/Kg 5 2-Methylphenol ND 0.95 mg/Kg 09/23/19 14:27 09/24/19 15:22 2-Nitroaniline ND 1.9 mg/Kg ₽ 09/23/19 14:27 09/24/19 15:22 5 ND 5 2-Nitrophenol 0.95 mg/Kg 09/23/19 14:27 09/24/19 15:22 3,3'-Dichlorobenzidine ND 0.95 mg/Kg 09/23/19 14:27 09/24/19 15:22 5 3-Nitroaniline ND mg/Kg ₽ 09/23/19 14:27 09/24/19 15:22 5 19 5 4,6-Dinitro-2-methylphenol ND 1.9 mg/Kg 09/23/19 14:27 09/24/19 15:22 4-Bromophenyl phenyl ether ND 0.95 09/23/19 14:27 09/24/19 15:22 5 mg/Kg 4-Chloro-3-methylphenol ND 0.95 mg/Kg 09/23/19 14:27 09/24/19 15:22 5 4-Chloroaniline ND 0.95 mg/Kg 09/23/19 14:27 09/24/19 15:22 5 ₩ 5 4-Chlorophenyl phenyl ether ND 0.95 09/23/19 14:27 09/24/19 15:22 mg/Kg 5 4-Methylphenol ND 1.9 mg/Kg 09/23/19 14:27 09/24/19 15:22 4-Nitroaniline ND 1.9 09/23/19 14:27 09/24/19 15:22 5 mg/Kg 09/23/19 14:27 09/24/19 15:22 5 4-Nitrophenol NΩ 1.9 mg/Kg 5 Acenaphthene ND 0.95 09/23/19 14:27 09/24/19 15:22 mg/Kg Acenaphthylene ND 0.95 mg/Kg 09/23/19 14:27 09/24/19 15:22 5 Acetophenone ND 0.95 09/23/19 14:27 09/24/19 15:22 5 mg/Kg Anthracene ND 0.95 mg/Kg 09/23/19 14:27 09/24/19 15:22 5 ND 0.95 09/23/19 14:27 5 Atrazine mg/Kg 09/24/19 15:22 ₩ 5 Benzaldehyde ND 0.95 mg/Kg 09/23/19 14:27 09/24/19 15:22 1.2 0.95 mg/Kg 09/23/19 14:27 09/24/19 15:22 5 Benzo(a)anthracene à 5 0.95 09/24/19 15:22 Benzo(a)pyrene 1.3 mg/Kg 09/23/19 14:27 Benzo(b)fluoranthene 1.6 0.95 mg/Kg 09/23/19 14:27 09/24/19 15:22 5 ND 0.95 ₩ 09/23/19 14:27 09/24/19 15:22 5 Benzo(g,h,i)perylene mg/Kg ND 09/23/19 14:27 5 Benzo(k)fluoranthene 0.95 mq/Kq 09/24/19 15:22 ND 5 0.95 09/23/19 14:27 09/24/19 15:22 Biphenyl mg/Kg bis (2-chloroisopropyl) ether ND 0.95 mg/Kg 09/23/19 14:27 09/24/19 15:22 5 5 Bis(2-chloroethoxy)methane ND 0.95 mg/Kg 09/23/19 14:27 09/24/19 15:22 Bis(2-chloroethyl)ether ND 0.95 09/23/19 14:27 09/24/19 15:22 5 mg/Kg ND 0.95 09/24/19 15:22 5 Bis(2-ethylhexyl) phthalate mg/Kg 09/23/19 14:27 Butyl benzyl phthalate ND 0.95 mg/Kg 09/23/19 14:27 09/24/19 15:22 5 ND 0.95 09/23/19 14:27 09/24/19 15:22 5 Caprolactam mg/Kg ₩ 5 Carbazole ND 0.95 mg/Kg 09/23/19 14:27 09/24/19 15:22 0.95 09/23/19 14:27 09/24/19 15:22 5 1.6 mg/Kg Chrysene 5 09/24/19 15:22 Dibenz(a,h)anthracene ND 0.95 mg/Kg 09/23/19 14:27 5 Dibenzofuran ND 0.95 mg/Kg 09/23/19 14:27 09/24/19 15:22 ₩ 5 ND 0.95 Diethyl phthalate mg/Kg 09/23/19 14:27 09/24/19 15:22 Dimethyl phthalate ND 0.95 mg/Kg 09/23/19 14:27 09/24/19 15:22 5 ND 0.95 09/23/19 14:27 09/24/19 15:22 5 Di-n-butyl phthalate mg/Kg Di-n-octyl phthalate ND 0.95 mg/Kg 09/23/19 14:27 09/24/19 15:22

Eurofins TestAmerica, Buffalo

Job ID: 480-159204-1

Lab Sample ID: 480-159204-14

Client: Stantec Consulting Corp. Project/Site: Alliance BCP Site (AMSF)

Lab Sample ID: 480-159204-14

Matrix: Solid

Percent Solids: 88.4

Job ID: 480-159204-1

Client	Sample	ID: AMSF	-CS-ES-SS-C2
--------	--------	----------	--------------

Date Collected: 09/13/19 14:00 Date Received: 09/14/19 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoranthene	3.1		0.95		mg/Kg	<u> </u>	09/23/19 14:27	09/24/19 15:22	5
Fluorene	ND		0.95		mg/Kg	₩	09/23/19 14:27	09/24/19 15:22	5
Hexachlorobenzene	ND		0.95		mg/Kg	₽	09/23/19 14:27	09/24/19 15:22	5
Hexachlorobutadiene	ND		0.95		mg/Kg	☼	09/23/19 14:27	09/24/19 15:22	5
Hexachlorocyclopentadiene	ND		0.95		mg/Kg	☼	09/23/19 14:27	09/24/19 15:22	5
Hexachloroethane	ND		0.95		mg/Kg	₽	09/23/19 14:27	09/24/19 15:22	5
Indeno(1,2,3-cd)pyrene	ND		0.95		mg/Kg	☼	09/23/19 14:27	09/24/19 15:22	5
Isophorone	ND		0.95		mg/Kg	☼	09/23/19 14:27	09/24/19 15:22	5
Naphthalene	ND		0.95		mg/Kg	₩	09/23/19 14:27	09/24/19 15:22	5
Nitrobenzene	ND		0.95		mg/Kg	☼	09/23/19 14:27	09/24/19 15:22	5
N-Nitrosodi-n-propylamine	ND		0.95		mg/Kg	☼	09/23/19 14:27	09/24/19 15:22	5
N-Nitrosodiphenylamine	ND		0.95		mg/Kg		09/23/19 14:27	09/24/19 15:22	5
Pentachlorophenol	ND		1.9		mg/Kg	☼	09/23/19 14:27	09/24/19 15:22	5
Phenanthrene	1.8		0.95		mg/Kg	☼	09/23/19 14:27	09/24/19 15:22	5
Phenol	ND		0.95		mg/Kg	₩.	09/23/19 14:27	09/24/19 15:22	5
Pyrene	2.4		0.95		mg/Kg	₽	09/23/19 14:27	09/24/19 15:22	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	97		54 - 120				09/23/19 14:27	09/24/19 15:22	5
2-Fluorobiphenyl	91		60 - 120				09/23/19 14:27	09/24/19 15:22	5
2-Fluorophenol	78		52 - 120				09/23/19 14:27	09/24/19 15:22	5
Nitrobenzene-d5	76		53 - 120				09/23/19 14:27	09/24/19 15:22	5
Phenol-d5	79		54 - 120				09/23/19 14:27	09/24/19 15:22	5
p-Terphenyl-d14	108		79 - 130				09/23/19 14:27	09/24/19 15:22	5

Method: 8081B - Organoch Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND ND	0.019		mg/Kg	₩	09/19/19 07:28	09/20/19 20:57	10
4,4'-DDE	ND	0.019		mg/Kg	₩	09/19/19 07:28	09/20/19 20:57	10
4,4'-DDT	ND	0.019		mg/Kg	☼	09/19/19 07:28	09/20/19 20:57	10
Aldrin	ND	0.019		mg/Kg	₽	09/19/19 07:28	09/20/19 20:57	10
alpha-BHC	ND	0.019		mg/Kg	₩	09/19/19 07:28	09/20/19 20:57	10
cis-Chlordane	ND	0.019		mg/Kg	₩	09/19/19 07:28	09/20/19 20:57	10
beta-BHC	ND	0.019		mg/Kg	ф	09/19/19 07:28	09/20/19 20:57	10
delta-BHC	ND	0.019		mg/Kg	₩	09/19/19 07:28	09/20/19 20:57	10
Dieldrin	ND	0.019		mg/Kg	₩	09/19/19 07:28	09/20/19 20:57	10
Endosulfan I	ND	0.019		mg/Kg	₽	09/19/19 07:28	09/20/19 20:57	10
Endosulfan II	ND	0.019		mg/Kg	₩	09/19/19 07:28	09/20/19 20:57	10
Endosulfan sulfate	ND	0.019		mg/Kg	₩	09/19/19 07:28	09/20/19 20:57	10
Endrin	ND	0.019		mg/Kg	₽	09/19/19 07:28	09/20/19 20:57	10
Endrin aldehyde	ND	0.019		mg/Kg	₩	09/19/19 07:28	09/20/19 20:57	10
Endrin ketone	ND	0.019		mg/Kg	☼	09/19/19 07:28	09/20/19 20:57	10
gamma-BHC (Lindane)	ND	0.019		mg/Kg	₽	09/19/19 07:28	09/20/19 20:57	10
trans-Chlordane	ND	0.019		mg/Kg	₩	09/19/19 07:28	09/20/19 20:57	10
Heptachlor	ND	0.019		mg/Kg	₩	09/19/19 07:28	09/20/19 20:57	10
Heptachlor epoxide	ND	0.019		mg/Kg	₽	09/19/19 07:28	09/20/19 20:57	10
Methoxychlor	ND	0.019		mg/Kg	₩	09/19/19 07:28	09/20/19 20:57	10
Toxaphene	ND	0.19		mg/Kg	≎	09/19/19 07:28	09/20/19 20:57	10

Page 48 of 135

Client: Stantec Consulting Corp. Project/Site: Alliance BCP Site (AMSF)

Method: 7471B - Mercury (CVAA)

Analyte

Mercury

Client Sample ID: AMSF-CS-ES-SS-C2 Lab Sample ID: 480-159204-14

Date Collected: 09/13/19 14:00 **Matrix: Solid** Date Received: 09/14/19 09:00 Percent Solids: 88.4

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	160	X	45 - 120	09/19/19 07:28	09/20/19 20:57	10
DCB Decachlorobiphenyl	139	X	45 - 120	09/19/19 07:28	09/20/19 20:57	10
Tetrachloro-m-xylene	91		30 - 124	09/19/19 07:28	09/20/19 20:57	10
Tetrachloro-m-xylene	102		30 - 124	09/19/19 07:28	09/20/19 20:57	10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.21		mg/Kg	<u> </u>	09/21/19 11:23	09/25/19 00:10	1
PCB-1221	ND		0.21		mg/Kg	₩	09/21/19 11:23	09/25/19 00:10	1
PCB-1232	ND		0.21		mg/Kg	₩	09/21/19 11:23	09/25/19 00:10	1
PCB-1242	ND		0.21		mg/Kg	ф	09/21/19 11:23	09/25/19 00:10	1
PCB-1248	ND		0.21		mg/Kg	₩	09/21/19 11:23	09/25/19 00:10	1
PCB-1254	ND		0.21		mg/Kg	₩	09/21/19 11:23	09/25/19 00:10	1
PCB-1260	ND		0.21		mg/Kg		09/21/19 11:23	09/25/19 00:10	1
PCB-1262	ND		0.21		mg/Kg	₩	09/21/19 11:23	09/25/19 00:10	1
PCB-1268	ND		0.21		mg/Kg	₩	09/21/19 11:23	09/25/19 00:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	111		65 - 174				09/21/19 11:23	09/25/19 00:10	1
DCB Decachlorobiphenyl	74		65 ₋ 174				09/21/19 11:23	09/25/19 00:10	1
Tetrachloro-m-xylene	115		60 - 154				09/21/19 11:23	09/25/19 00:10	1
Tetrachloro-m-xylene	103		60 - 154				09/21/19 11:23	09/25/19 00:10	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	14800		10.8		mg/Kg	<u> </u>	09/18/19 05:20	09/20/19 22:23	1
Antimony	ND	F1	16.2		mg/Kg	₩	09/18/19 05:20	09/19/19 23:31	1
Arsenic	3.0		2.2		mg/Kg	₩	09/18/19 05:20	09/19/19 23:31	1
Barium	65.1	F1	0.54		mg/Kg	₽	09/18/19 05:20	09/19/19 23:31	1
Beryllium	0.53		0.22		mg/Kg	₩	09/18/19 05:20	09/19/19 23:31	1
Cadmium	ND		0.22		mg/Kg	₩	09/18/19 05:20	09/19/19 23:31	1
Calcium	10000		54.1		mg/Kg	₩.	09/18/19 05:20	09/19/19 23:31	1
Chromium	17.6		0.54		mg/Kg	₩	09/18/19 05:20	09/19/19 23:31	1
Cobalt	6.9		0.54		mg/Kg	₩	09/18/19 05:20	09/19/19 23:31	1
Copper	8.6		1.1		mg/Kg	₩.	09/18/19 05:20	09/19/19 23:31	1
Iron	16700		10.8		mg/Kg	₩	09/18/19 05:20	09/20/19 22:23	1
Lead	14.9		1.1		mg/Kg	☼	09/18/19 05:20	09/19/19 23:31	1
Magnesium	7250	F1 F2	21.6		mg/Kg	₩.	09/18/19 05:20	09/19/19 23:31	1
Manganese	434	B F2	0.22		mg/Kg	₩	09/18/19 05:20	09/19/19 23:31	1
Nickel	13.8		5.4		mg/Kg	₩	09/18/19 05:20	09/19/19 23:31	1
Potassium	2310	F1	32.4		mg/Kg	₩.	09/18/19 05:20	09/19/19 23:31	1
Selenium	ND		4.3		mg/Kg	☼	09/18/19 05:20	09/19/19 23:31	1
Silver	ND		0.65		mg/Kg	₩	09/18/19 05:20	09/19/19 23:31	1
Sodium	ND		151		mg/Kg	₽	09/18/19 05:20	09/19/19 23:31	1
Thallium	ND		6.5		mg/Kg	₩	09/18/19 05:20	09/19/19 23:31	1
Vanadium	28.0		0.54		mg/Kg	☼	09/18/19 05:20	09/19/19 23:31	1
Zinc	52.2		2.2		mg/Kg		09/18/19 05:20	09/19/19 23:31	1

Eurofins TestAmerica, Buffalo

Analyzed

Prepared

Page 49 of 135

RL

0.022

MDL Unit

mg/Kg

Result Qualifier

0.041

Job ID: 480-159204-1

Dil Fac

Client: Stantec Consulting Corp. Job ID: 480-159204-1

Project/Site: Alliance BCP Site (AMSF)

Client Sample ID: AMSF-CS-ES-SS-C2 Lab Sample ID: 480-159204-14

Date Collected: 09/13/19 14:00 Matrix: Solid
Date Received: 09/14/19 09:00 Percent Solids: 88.4

General Chemistry										
Analyte	Result	Qualifier	RL	MDL	Unit	D)	Prepared	Analyzed	Dil Fac
Cyanide, Total	ND	F1 *	1.1		mg/Kg		£	09/25/19 22:25	09/26/19 15:29	1

А

Ī

_

8

10

11

13

15

Client: Stantec Consulting Corp. Project/Site: Alliance BCP Site (AMSF)

Client Sample ID: AMSF-CS-NS-SS-G1 Lab Sample ID: 480-159204-15

Date Collected: 09/13/19 11:30

Matrix: Solid
Date Received: 09/14/19 09:00

Percent Solids: 92.8

Analyte		Qualifier	RL	MDL		— ×	Prepared	Analyzed	Dil F
1,1,1-Trichloroethane	ND		0.0053		mg/Kg	<u>*</u>	09/17/19 12:21		
1,1,2,2-Tetrachloroethane	ND		0.0053		mg/Kg	₩	09/17/19 12:21	09/17/19 18:07	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.0053		mg/Kg	<u></u> .		09/17/19 18:07	
1,1,2-Trichloroethane	ND		0.0053		mg/Kg	ψ.	09/17/19 12:21		
1,1-Dichloroethane	ND		0.0053		mg/Kg	₩.		09/17/19 18:07	
1,1-Dichloroethene	ND		0.0053		mg/Kg			09/17/19 18:07	
1,2,4-Trichlorobenzene	ND		0.0053		mg/Kg	.		09/17/19 18:07	
1,2-Dibromo-3-Chloropropane	ND		0.0053		mg/Kg	*		09/17/19 18:07	
1,2-Dichlorobenzene	ND		0.0053		mg/Kg			09/17/19 18:07	
1,2-Dichloroethane	ND		0.0053		mg/Kg	*		09/17/19 18:07	
1,2-Dichloropropane	ND		0.0053		mg/Kg	*		09/17/19 18:07	
1,3-Dichlorobenzene	ND	VS	0.0053		mg/Kg	#	09/17/19 12:21	09/17/19 18:07	
1,4-Dichlorobenzene	ND	VS	0.0053		mg/Kg	₩	09/17/19 12:21	09/17/19 18:07	
2-Butanone (MEK)	ND	VS	0.026		mg/Kg	≎	09/17/19 12:21	09/17/19 18:07	
2-Hexanone	ND	vs	0.026		mg/Kg	₩	09/17/19 12:21	09/17/19 18:07	
4-Methyl-2-pentanone (MIBK)	ND	vs	0.026		mg/Kg	₩	09/17/19 12:21	09/17/19 18:07	
Acetone	ND	vs	0.026		mg/Kg	₩	09/17/19 12:21	09/17/19 18:07	
Benzene	ND	VS	0.0053		mg/Kg	₩	09/17/19 12:21	09/17/19 18:07	
Bromoform	ND	* VS	0.0053		mg/Kg	₩	09/17/19 12:21	09/17/19 18:07	
Bromomethane	ND	vs	0.0053		mg/Kg	☼	09/17/19 12:21	09/17/19 18:07	
Carbon disulfide	ND	vs	0.0053		mg/Kg	₩	09/17/19 12:21	09/17/19 18:07	
Carbon tetrachloride	ND	VS	0.0053		mg/Kg	φ.	09/17/19 12:21	09/17/19 18:07	
Chlorobenzene	ND	vs	0.0053		mg/Kg	₩	09/17/19 12:21	09/17/19 18:07	
Dibromochloromethane	ND	* vs	0.0053		mg/Kg	₩	09/17/19 12:21	09/17/19 18:07	
Chloroethane	ND	VS	0.0053		mg/Kg	ф.	09/17/19 12:21	09/17/19 18:07	
Chloroform	ND	vs	0.0053		mg/Kg	₩	09/17/19 12:21	09/17/19 18:07	
Chloromethane	ND	vs	0.0053		mg/Kg	≎	09/17/19 12:21	09/17/19 18:07	
cis-1,2-Dichloroethene	ND	VS	0.0053		mg/Kg		09/17/19 12:21	09/17/19 18:07	
Cyclohexane	ND		0.0053		mg/Kg	₽	09/17/19 12:21	09/17/19 18:07	
Bromodichloromethane	ND		0.0053		mg/Kg	₩	09/17/19 12:21		
Dichlorodifluoromethane	ND		0.0053		mg/Kg			09/17/19 18:07	
Ethylbenzene	ND		0.0053		mg/Kg	₩		09/17/19 18:07	
1,2-Dibromoethane	ND		0.0053		mg/Kg	₩		09/17/19 18:07	
sopropylbenzene	ND		0.0053		mg/Kg			09/17/19 18:07	
Methyl acetate	ND		0.026		mg/Kg	₩		09/17/19 18:07	
Methyl tert-butyl ether	ND		0.0053		mg/Kg		09/17/19 12:21		
Methylcyclohexane	ND		0.0053		mg/Kg	ф		09/17/19 18:07	
Methylene Chloride	ND		0.0053		mg/Kg	₽		09/17/19 18:07	
Tetrachloroethene	ND		0.0053			₩		09/17/19 18:07	
Toluene	ND		0.0053		mg/Kg			09/17/19 18:07	
			0.0053		mg/Kg	≎		09/17/19 18:07	
rans-1,2-Dichloroethene	ND ND				mg/Kg		09/17/19 12:21		
rans-1,3-Dichloropropene			0.0053		mg/Kg	ф. ф			
Trichloroethene	ND		0.0053		mg/Kg			09/17/19 18:07	
Frichlorofluoromethane	ND		0.0053		mg/Kg	φ. **		09/17/19 18:07	
/inyl chloride	ND		0.0053		mg/Kg	₩.		09/17/19 18:07	
Kylenes, Total	ND		0.011		mg/Kg	<i>₩</i>		09/17/19 18:07	
cis-1,3-Dichloropropene	ND		0.0053		mg/Kg	ή. Ω		09/17/19 18:07	
Styrene Ethyl acetate	ND	VS	0.0053		mg/Kg	₽	υ9/17/19 12:21	09/17/19 18:07	

Eurofins TestAmerica, Buffalo

Job ID: 480-159204-1

3

5

7

9

11 12

14

15

Client: Stantec Consulting Corp.

Job ID: 480-159204-1

Project/Site: Alliance BCP Site (AMSF)

Client Sample ID: AMSF-CS-NS-SS-G1 Lab Sample ID: 480-159204-15

Date Collected: 09/13/19 11:30 Matrix: Solid
Date Received: 09/14/19 09:00 Percent Solids: 92.8

Surrogate	%Recovery Qu	ualifier Limi	ts	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101	64 -	126	09/17/19 12:21	09/17/19 18:07	1
4-Bromofluorobenzene (Surr)	93	72 -	126	09/17/19 12:21	09/17/19 18:07	1
Toluene-d8 (Surr)	102	71 -	125	09/17/19 12:21	09/17/19 18:07	1

3

5

7

8

10

12

14

15

Client: Stantec Consulting Corp. Project/Site: Alliance BCP Site (AMSF)

Client Sample ID: AMSF-CS-NS-SS-G2 Lab Sample ID: 480-159204-16

Date Collected: 09/13/19 11:30

Matrix: Solid

Date Received: 09/14/19 09:00

Percent Solids: 95.2

Method: 8260C - Volatile Organ				MOI	l lni4	_	Dranarad	Analuss	Dil E-
Analyte		Qualifier	RL	MDL	Unit	— D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		0.0052		mg/Kg	☆		09/17/19 18:32	
1,1,2,2-Tetrachloroethane	ND	VS	0.0052		mg/Kg			09/17/19 18:32	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.0052		mg/Kg		09/17/19 13:21		
1,1,2-Trichloroethane	ND	VS	0.0052		mg/Kg	☆		09/17/19 18:32	
1,1-Dichloroethane	ND		0.0052		mg/Kg	ψ.	09/17/19 13:21		
1,1-Dichloroethene	ND		0.0052		mg/Kg	<u>.</u> .		09/17/19 18:32	
1,2,4-Trichlorobenzene	ND	VS	0.0052		mg/Kg	*		09/17/19 18:32	
1,2-Dibromo-3-Chloropropane	ND	vs	0.0052		mg/Kg	*	09/17/19 13:21		
1,2-Dichlorobenzene	ND		0.0052		mg/Kg		09/17/19 13:21		
I,2-Dichloroethane	ND	VS	0.0052		mg/Kg	₩	09/17/19 13:21	09/17/19 18:32	
1,2-Dichloropropane	ND	VS	0.0052		mg/Kg	☼	09/17/19 13:21	09/17/19 18:32	
1,3-Dichlorobenzene	ND	VS	0.0052		mg/Kg	₩	09/17/19 13:21	09/17/19 18:32	
1,4-Dichlorobenzene	ND	vs	0.0052		mg/Kg	₩	09/17/19 13:21	09/17/19 18:32	
2-Butanone (MEK)	ND	vs	0.026		mg/Kg	₩	09/17/19 13:21	09/17/19 18:32	
2-Hexanone	ND	vs	0.026		mg/Kg	₩	09/17/19 13:21	09/17/19 18:32	
4-Methyl-2-pentanone (MIBK)	ND	VS	0.026		mg/Kg	ф	09/17/19 13:21	09/17/19 18:32	
Acetone	ND	VS	0.026		mg/Kg	₩	09/17/19 13:21	09/17/19 18:32	
Benzene	ND	vs	0.0052		mg/Kg	☼	09/17/19 13:21	09/17/19 18:32	
Bromoform	ND	* VS	0.0052		mg/Kg	. ф.	09/17/19 13:21	09/17/19 18:32	
Bromomethane	ND	vs	0.0052		mg/Kg	₩	09/17/19 13:21	09/17/19 18:32	
Carbon disulfide	ND	vs	0.0052		mg/Kg	₩	09/17/19 13:21	09/17/19 18:32	
Carbon tetrachloride	ND	VS	0.0052		mg/Kg	_.	09/17/19 13:21	09/17/19 18:32	
Chlorobenzene	ND	vs	0.0052		mg/Kg	₩	09/17/19 13:21	09/17/19 18:32	
Dibromochloromethane	ND	* vs	0.0052		mg/Kg	₩		09/17/19 18:32	
Chloroethane	ND		0.0052		mg/Kg	 \$		09/17/19 18:32	
Chloroform	ND		0.0052		mg/Kg	₩		09/17/19 18:32	
Chloromethane	ND		0.0052		mg/Kg	₩		09/17/19 18:32	
sis-1,2-Dichloroethene	ND		0.0052		mg/Kg	 \$		09/17/19 18:32	
Cyclohexane	ND		0.0052		mg/Kg	₩		09/17/19 18:32	
Bromodichloromethane	ND		0.0052		mg/Kg	₩		09/17/19 18:32	
Dichlorodifluoromethane	ND	VS VS	0.0052		mg/Kg			09/17/19 18:32	
Ethylbenzene	ND		0.0052			☼		09/17/19 18:32	
•					mg/Kg	₩		09/17/19 18:32	
1,2-Dibromoethane	ND		0.0052		mg/Kg	.			
sopropylbenzene	ND	VS	0.0052		mg/Kg		09/17/19 13:21		
Methyl acetate	ND		0.026		mg/Kg	☆		09/17/19 18:32	
Methyl tert-butyl ether	ND		0.0052		mg/Kg		09/17/19 13:21		
Methylcyclohexane	ND		0.0052		mg/Kg	1,2	09/17/19 13:21		
Methylene Chloride	ND		0.0052		mg/Kg	.	09/17/19 13:21	09/17/19 18:32	
Tetrachloroethene	ND		0.0052		mg/Kg	<u>.</u> .		09/17/19 18:32	
Toluene	ND	vs	0.0052		mg/Kg	₩		09/17/19 18:32	
rans-1,2-Dichloroethene	ND	VS	0.0052		mg/Kg	₩	09/17/19 13:21	09/17/19 18:32	
rans-1,3-Dichloropropene	ND	VS	0.0052		mg/Kg	₩	09/17/19 13:21	09/17/19 18:32	
Trichloroethene	ND	vs	0.0052		mg/Kg	₩	09/17/19 13:21	09/17/19 18:32	
Frichlorofluoromethane	ND	vs	0.0052		mg/Kg	₩	09/17/19 13:21	09/17/19 18:32	
/inyl chloride	ND	vs	0.0052		mg/Kg	₩	09/17/19 13:21	09/17/19 18:32	
(ylenes, Total	ND	VS	0.010		mg/Kg		09/17/19 13:21	09/17/19 18:32	
cis-1,3-Dichloropropene	ND	vs	0.0052		mg/Kg	☼	09/17/19 13:21	09/17/19 18:32	
Styrene	ND	vs	0.0052		mg/Kg	₩	09/17/19 13:21	09/17/19 18:32	
Ethyl acetate	ND		0.0052		mg/Kg	 \$		09/17/19 18:32	

Eurofins TestAmerica, Buffalo

Job ID: 480-159204-1

3

5

7

9

11 12

14

Client: Stantec Consulting Corp. Job ID: 480-159204-1

Project/Site: Alliance BCP Site (AMSF)

Client Sample ID: AMSF-CS-NS-SS-G2 Lab Sample ID: 480-159204-16

Date Collected: 09/13/19 11:30 Matrix: Solid
Date Received: 09/14/19 09:00 Percent Solids: 95.2

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101	64 - 126	09/17/19 13:21	09/17/19 18:32	1
4-Bromofluorobenzene (Surr)	94	72 - 126	09/17/19 13:21	09/17/19 18:32	1
Toluene-d8 (Surr)	101	71 - 125	09/17/19 13:21	09/17/19 18:32	1

4

5

6

8

10

12

13

15

Client: Stantec Consulting Corp. Project/Site: Alliance BCP Site (AMSF)

Client Sample ID: AMSF-CS-NS-SS-C1

Lab Sample ID: 480-159204-17 Date Collected: 09/13/19 11:30 **Matrix: Solid** Date Received: 09/14/19 09:00 Percent Solids: 91.6

Analyte	ile Organic Compounds Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil F
2,4,5-Trichlorophenol	ND	0.91	mg/Kg	₩	09/23/19 14:27	09/24/19 15:46	
2,4,6-Trichlorophenol	ND	0.91	mg/Kg	₽	09/23/19 14:27		
2,4-Dichlorophenol	ND	0.91	mg/Kg			09/24/19 15:46	
2,4-Dimethylphenol	ND	0.91	mg/Kg	☼	09/23/19 14:27	09/24/19 15:46	
2,4-Dinitrophenol	ND	1.8	mg/Kg	₩	09/23/19 14:27	09/24/19 15:46	
2,4-Dinitrotoluene	ND	0.91	mg/Kg	☼	09/23/19 14:27	09/24/19 15:46	
2,6-Dinitrotoluene	ND	0.91	mg/Kg	₩	09/23/19 14:27	09/24/19 15:46	
2-Chloronaphthalene	ND	0.91	mg/Kg	₩	09/23/19 14:27	09/24/19 15:46	
2-Chlorophenol	ND	0.91	mg/Kg	₩	09/23/19 14:27	09/24/19 15:46	
2-Methylnaphthalene	ND	0.91	mg/Kg	₩	09/23/19 14:27	09/24/19 15:46	
2-Methylphenol	ND	0.91	mg/Kg	☼	09/23/19 14:27	09/24/19 15:46	
2-Nitroaniline	ND	1.8	mg/Kg	☼	09/23/19 14:27	09/24/19 15:46	
2-Nitrophenol	ND	0.91	mg/Kg	\$	09/23/19 14:27	09/24/19 15:46	
3,3'-Dichlorobenzidine	ND	0.91	mg/Kg	₽	09/23/19 14:27	09/24/19 15:46	
3-Nitroaniline	ND	1.8	mg/Kg	₩	09/23/19 14:27	09/24/19 15:46	
4,6-Dinitro-2-methylphenol	ND	1.8	mg/Kg			09/24/19 15:46	
4-Bromophenyl phenyl ether	ND	0.91	mg/Kg	₩		09/24/19 15:46	
4-Chloro-3-methylphenol	ND	0.91	mg/Kg	₽		09/24/19 15:46	
4-Chloroaniline	ND	0.91	mg/Kg			09/24/19 15:46	
I-Chlorophenyl phenyl ether	ND	0.91	mg/Kg	₩		09/24/19 15:46	
-Methylphenol	ND	1.8	mg/Kg	₩		09/24/19 15:46	
-Nitroaniline	ND	1.8	mg/Kg			09/24/19 15:46	
I-Nitrophenol	ND	1.8	mg/Kg			09/24/19 15:46	
	ND ND	0.91				09/24/19 15:46	
Acenaphthene			mg/Kg				
Acenaphthylene	ND	0.91	mg/Kg	≎		09/24/19 15:46	
Acetophenone	ND	0.91	mg/Kg			09/24/19 15:46	
Anthracene	ND	0.91	mg/Kg			09/24/19 15:46	
Atrazine	ND	0.91	mg/Kg	☆		09/24/19 15:46	
Benzaldehyde	ND	0.91	mg/Kg			09/24/19 15:46	
Benzo(a)anthracene	ND	0.91	mg/Kg	.		09/24/19 15:46	
Benzo(a)pyrene	ND	0.91	mg/Kg	₽		09/24/19 15:46	
Benzo(b)fluoranthene	1.2	0.91	mg/Kg	₽		09/24/19 15:46	
Benzo(g,h,i)perylene	ND	0.91	mg/Kg	₩	09/23/19 14:27	09/24/19 15:46	
Benzo(k)fluoranthene	ND	0.91	mg/Kg	☼		09/24/19 15:46	
Biphenyl	ND	0.91	mg/Kg	₩	09/23/19 14:27	09/24/19 15:46	
ois (2-chloroisopropyl) ether	ND	0.91	mg/Kg	₽	09/23/19 14:27	09/24/19 15:46	
3is(2-chloroethoxy)methane	ND	0.91	mg/Kg	₽	09/23/19 14:27	09/24/19 15:46	
Bis(2-chloroethyl)ether	ND	0.91	mg/Kg	₩	09/23/19 14:27	09/24/19 15:46	
Bis(2-ethylhexyl) phthalate	ND	0.91	mg/Kg	₩	09/23/19 14:27	09/24/19 15:46	
Butyl benzyl phthalate	ND	0.91	mg/Kg	₩	09/23/19 14:27	09/24/19 15:46	
Caprolactam	ND	0.91	mg/Kg	₩	09/23/19 14:27	09/24/19 15:46	
Carbazole	ND	0.91	mg/Kg	₩	09/23/19 14:27	09/24/19 15:46	
Chrysene	0.95	0.91	mg/Kg	ф.	09/23/19 14:27	09/24/19 15:46	
Dibenz(a,h)anthracene	ND	0.91	mg/Kg	₩		09/24/19 15:46	
Dibenzofuran	ND	0.91	mg/Kg	₽		09/24/19 15:46	
Diethyl phthalate	ND	0.91	mg/Kg			09/24/19 15:46	
Dimethyl phthalate	ND	0.91	mg/Kg	₩		09/24/19 15:46	
	ND ND	0.91		Φ		09/24/19 15:46	
Di-n-butyl phthalate Di-n-octyl phthalate	ND ND	0.91	mg/Kg mg/Kg			09/24/19 15:46	

Eurofins TestAmerica, Buffalo

Page 55 of 135

Job ID: 480-159204-1

Client: Stantec Consulting Corp. Project/Site: Alliance BCP Site (AMSF)

Lab Sample ID: 480-159204-17

Matrix: Solid

Percent Solids: 91.6

Job ID: 480-159204-1

Client Sample	ID: AMSF-CS-NS-SS-C1
---------------	----------------------

Date Collected: 09/13/19 11:30 Date Received: 09/14/19 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoranthene	1.8		0.91		mg/Kg	₩	09/23/19 14:27	09/24/19 15:46	5
Fluorene	ND		0.91		mg/Kg	₩	09/23/19 14:27	09/24/19 15:46	5
Hexachlorobenzene	ND		0.91		mg/Kg	₽	09/23/19 14:27	09/24/19 15:46	5
Hexachlorobutadiene	ND		0.91		mg/Kg	₩	09/23/19 14:27	09/24/19 15:46	5
Hexachlorocyclopentadiene	ND		0.91		mg/Kg	₩	09/23/19 14:27	09/24/19 15:46	5
Hexachloroethane	ND		0.91		mg/Kg	₩.	09/23/19 14:27	09/24/19 15:46	5
Indeno(1,2,3-cd)pyrene	ND		0.91		mg/Kg	₩	09/23/19 14:27	09/24/19 15:46	5
Isophorone	ND		0.91		mg/Kg	₩	09/23/19 14:27	09/24/19 15:46	5
Naphthalene	ND		0.91		mg/Kg	₩.	09/23/19 14:27	09/24/19 15:46	5
Nitrobenzene	ND		0.91		mg/Kg	₩	09/23/19 14:27	09/24/19 15:46	5
N-Nitrosodi-n-propylamine	ND		0.91		mg/Kg	₩	09/23/19 14:27	09/24/19 15:46	5
N-Nitrosodiphenylamine	ND		0.91		mg/Kg	φ.	09/23/19 14:27	09/24/19 15:46	5
Pentachlorophenol	ND		1.8		mg/Kg	₩	09/23/19 14:27	09/24/19 15:46	5
Phenanthrene	ND		0.91		mg/Kg	₩	09/23/19 14:27	09/24/19 15:46	5
Phenol	ND		0.91		mg/Kg	φ.	09/23/19 14:27	09/24/19 15:46	5
Pyrene	1.4		0.91		mg/Kg	₩	09/23/19 14:27	09/24/19 15:46	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	93		54 - 120				09/23/19 14:27	09/24/19 15:46	5
2-Fluorobiphenyl	94		60 - 120				09/23/19 14:27	09/24/19 15:46	5
2-Fluorophenol	82		52 - 120				09/23/19 14:27	09/24/19 15:46	5
Nitrobenzene-d5	77		53 - 120				09/23/19 14:27	09/24/19 15:46	5
Phenol-d5	81		54 - 120				09/23/19 14:27	09/24/19 15:46	5
p-Terphenyl-d14	110		79 - 130				09/23/19 14:27	09/24/19 15:46	5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND		0.036		mg/Kg	₩	09/19/19 07:28	09/20/19 21:17	20
4,4'-DDE	ND		0.036		mg/Kg	₩	09/19/19 07:28	09/20/19 21:17	20
4,4'-DDT	ND		0.036		mg/Kg	₩	09/19/19 07:28	09/20/19 21:17	20
Aldrin	ND		0.036		mg/Kg		09/19/19 07:28	09/20/19 21:17	20
alpha-BHC	ND		0.036		mg/Kg	₩	09/19/19 07:28	09/20/19 21:17	20
cis-Chlordane	ND		0.036		mg/Kg	₩	09/19/19 07:28	09/20/19 21:17	20
beta-BHC	ND		0.036		mg/Kg	₩.	09/19/19 07:28	09/20/19 21:17	20
delta-BHC	ND		0.036		mg/Kg	☼	09/19/19 07:28	09/20/19 21:17	20
Dieldrin	ND		0.036		mg/Kg	☼	09/19/19 07:28	09/20/19 21:17	20
Endosulfan I	ND		0.036		mg/Kg	₩.	09/19/19 07:28	09/20/19 21:17	20
Endosulfan II	ND		0.036		mg/Kg	☼	09/19/19 07:28	09/20/19 21:17	20
Endosulfan sulfate	ND		0.036		mg/Kg	₩	09/19/19 07:28	09/20/19 21:17	20
Endrin	ND		0.036		mg/Kg	₽	09/19/19 07:28	09/20/19 21:17	20
Endrin aldehyde	ND		0.036		mg/Kg	₩	09/19/19 07:28	09/20/19 21:17	20
Endrin ketone	ND		0.036		mg/Kg	₩	09/19/19 07:28	09/20/19 21:17	20
gamma-BHC (Lindane)	ND		0.036		mg/Kg	₽	09/19/19 07:28	09/20/19 21:17	20
trans-Chlordane	ND		0.036		mg/Kg	☼	09/19/19 07:28	09/20/19 21:17	20
Heptachlor	ND		0.036		mg/Kg	₩	09/19/19 07:28	09/20/19 21:17	20
Heptachlor epoxide	ND		0.036		mg/Kg		09/19/19 07:28	09/20/19 21:17	20
Methoxychlor	ND		0.036		mg/Kg	₩	09/19/19 07:28	09/20/19 21:17	20
Toxaphene	ND		0.36		mg/Kg	₩	09/19/19 07:28	09/20/19 21:17	20

Page 56 of 135

Client: Stantec Consulting Corp. Project/Site: Alliance BCP Site (AMSF)

Client Sample ID: AMSF-CS-NS-SS-C1 Lab Sample ID: 480-159204-17

Date Collected: 09/13/19 11:30

Matrix: Solid

Date Received: 09/14/19 09:00

Percent Solids: 91.6

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	275	X	45 - 120	09/19/19 07:28	09/20/19 21:17	20
DCB Decachlorobiphenyl	208	Χ	45 - 120	09/19/19 07:28	09/20/19 21:17	20
Tetrachloro-m-xylene	110		30 - 124	09/19/19 07:28	09/20/19 21:17	20
Tetrachloro-m-xylene	146	X	30 - 124	09/19/19 07:28	09/20/19 21:17	20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.24		mg/Kg	<u> </u>	09/21/19 11:23	09/25/19 00:23	1
PCB-1221	ND		0.24		mg/Kg	₩	09/21/19 11:23	09/25/19 00:23	1
PCB-1232	ND		0.24		mg/Kg	₩	09/21/19 11:23	09/25/19 00:23	1
PCB-1242	ND		0.24		mg/Kg	ф	09/21/19 11:23	09/25/19 00:23	1
PCB-1248	ND		0.24		mg/Kg	₩	09/21/19 11:23	09/25/19 00:23	1
PCB-1254	ND		0.24		mg/Kg	₩	09/21/19 11:23	09/25/19 00:23	1
PCB-1260	ND		0.24		mg/Kg		09/21/19 11:23	09/25/19 00:23	1
PCB-1262	ND		0.24		mg/Kg	₩	09/21/19 11:23	09/25/19 00:23	1
PCB-1268	ND		0.24		mg/Kg	₩	09/21/19 11:23	09/25/19 00:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	118		65 - 174				09/21/19 11:23	09/25/19 00:23	1
DCB Decachlorobiphenyl	73		65 - 174				09/21/19 11:23	09/25/19 00:23	1
Tetrachloro-m-xylene	115		60 - 154				09/21/19 11:23	09/25/19 00:23	1
Tetrachloro-m-xylene	102		60 - 154				09/21/19 11:23	09/25/19 00:23	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	9170		11.1		mg/Kg	<u> </u>	09/18/19 05:20	09/20/19 22:46	1
Antimony	ND		16.6		mg/Kg	☼	09/18/19 05:20	09/19/19 23:42	1
Arsenic	2.8		2.2		mg/Kg	₩	09/18/19 05:20	09/19/19 23:42	1
Barium	43.7		0.55		mg/Kg	₩.	09/18/19 05:20	09/19/19 23:42	1
Beryllium	0.37		0.22		mg/Kg	₩	09/18/19 05:20	09/19/19 23:42	1
Cadmium	ND		0.22		mg/Kg	₩	09/18/19 05:20	09/19/19 23:42	1
Calcium	35700		55.4		mg/Kg	₩	09/18/19 05:20	09/19/19 23:42	1
Chromium	12.3		0.55		mg/Kg	☼	09/18/19 05:20	09/19/19 23:42	1
Cobalt	5.4		0.55		mg/Kg	₩	09/18/19 05:20	09/19/19 23:42	1
Copper	9.5		1.1		mg/Kg	₩.	09/18/19 05:20	09/19/19 23:42	1
Iron	13200		11.1		mg/Kg	₩	09/18/19 05:20	09/20/19 22:46	1
Lead	10.9		1.1		mg/Kg	☼	09/18/19 05:20	09/19/19 23:42	1
Magnesium	13100		22.1		mg/Kg		09/18/19 05:20	09/19/19 23:42	1
Manganese	332	В	0.22		mg/Kg	₩	09/18/19 05:20	09/19/19 23:42	1
Nickel	11.8		5.5		mg/Kg	☼	09/18/19 05:20	09/19/19 23:42	1
Potassium	2530		33.2		mg/Kg		09/18/19 05:20	09/19/19 23:42	1
Selenium	ND		4.4		mg/Kg	₩	09/18/19 05:20	09/19/19 23:42	1
Silver	ND		0.66		mg/Kg	☼	09/18/19 05:20	09/19/19 23:42	1
Sodium	ND		155		mg/Kg	φ.	09/18/19 05:20	09/19/19 23:42	1
Thallium	ND		6.6		mg/Kg	₩	09/18/19 05:20	09/19/19 23:42	1
Vanadium	20.2		0.55		mg/Kg	☼	09/18/19 05:20	09/19/19 23:42	1
Zinc	34.9		2.2		mg/Kg		09/18/19 05:20	09/19/19 23:42	1

Method: 7471B - Mercury (CVA	.A)							
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac	
Mercury	ND	0.023	mg/Kg	-	09/26/19 11:26	09/26/19 13:36	1	

Eurofins TestAmerica, Buffalo

Page 57 of 135

2

Job ID: 480-159204-1

3

5

7

9

11 12

13

15

16

unichoa, Danaic

Client: Stantec Consulting Corp. Job ID: 480-159204-1

Project/Site: Alliance BCP Site (AMSF)

Client Sample ID: AMSF-CS-NS-SS-C1 Lab Sample ID: 480-159204-17

Date Collected: 09/13/19 11:30 Matrix: Solid
Date Received: 09/14/19 09:00 Percent Solids: 91.6

General Chemistry										
Analyte	Result	Qualifier	RL	MDL	Unit	D)	Prepared	Analyzed	Dil Fac
Cyanide, Total	ND	*	1.0		mg/Kg	\		09/25/19 22:25	09/26/19 15:35	1

4

5

8

10

15

13

15

Client: Stantec Consulting Corp. Project/Site: Alliance BCP Site (AMSF)

Client Sample ID: AMSF-CS-NS-SS-C2

Lab Sample ID: 480-159204-18 Date Collected: 09/13/19 11:30

Matrix: Solid Date Received: 09/14/19 09:00 **Percent Solids: 91.5**

Method: 8270D - Semivolatile Analyte	Result Qualifier	ŘL	MDL Unit	D	Prepared	Analyzed	Dil Fa
2,4,5-Trichlorophenol	ND	0.18	mg/Kg	<u>₩</u>	09/23/19 14:27		
2,4,6-Trichlorophenol	ND	0.18	mg/Kg	☼		09/24/19 16:10	
2,4-Dichlorophenol	ND	0.18	mg/Kg	*		09/24/19 16:10	
2,4-Dimethylphenol	ND	0.18	mg/Kg	☼		09/24/19 16:10	
2,4-Dinitrophenol	ND	0.36	mg/Kg	☼	09/23/19 14:27	09/24/19 16:10	
2,4-Dinitrotoluene	ND	0.18	mg/Kg	☼		09/24/19 16:10	
2,6-Dinitrotoluene	ND	0.18	mg/Kg	☼		09/24/19 16:10	
2-Chloronaphthalene	ND	0.18	mg/Kg	☼	09/23/19 14:27	09/24/19 16:10	
2-Chlorophenol	ND	0.18	mg/Kg	☼	09/23/19 14:27	09/24/19 16:10	
2-Methylnaphthalene	ND	0.18	mg/Kg	₽	09/23/19 14:27	09/24/19 16:10	
2-Methylphenol	ND	0.18	mg/Kg	☼	09/23/19 14:27	09/24/19 16:10	
2-Nitroaniline	ND	0.36	mg/Kg	₩	09/23/19 14:27	09/24/19 16:10	
2-Nitrophenol	ND	0.18	mg/Kg	₽	09/23/19 14:27	09/24/19 16:10	
3,3'-Dichlorobenzidine	ND	0.18	mg/Kg	≎	09/23/19 14:27	09/24/19 16:10	
3-Nitroaniline	ND	0.36	mg/Kg	₩	09/23/19 14:27	09/24/19 16:10	
4,6-Dinitro-2-methylphenol	ND	0.36	mg/Kg	₽	09/23/19 14:27	09/24/19 16:10	
4-Bromophenyl phenyl ether	ND	0.18	mg/Kg	☼	09/23/19 14:27	09/24/19 16:10	
4-Chloro-3-methylphenol	ND	0.18	mg/Kg	≎	09/23/19 14:27	09/24/19 16:10	
4-Chloroaniline	ND	0.18	mg/Kg		09/23/19 14:27	09/24/19 16:10	
4-Chlorophenyl phenyl ether	ND	0.18	mg/Kg	≎	09/23/19 14:27	09/24/19 16:10	
4-Methylphenol	ND	0.36	mg/Kg	☼	09/23/19 14:27	09/24/19 16:10	
4-Nitroaniline	ND	0.36	mg/Kg		09/23/19 14:27	09/24/19 16:10	
4-Nitrophenol	ND	0.36	mg/Kg	☼	09/23/19 14:27	09/24/19 16:10	
Acenaphthene	ND	0.18	mg/Kg	☼	09/23/19 14:27	09/24/19 16:10	
Acenaphthylene	ND	0.18	mg/Kg		09/23/19 14:27	09/24/19 16:10	
Acetophenone	ND	0.18	mg/Kg	☼	09/23/19 14:27	09/24/19 16:10	
Anthracene	ND	0.18	mg/Kg	☼		09/24/19 16:10	
Atrazine	ND	0.18	mg/Kg			09/24/19 16:10	
Benzaldehyde	ND	0.18	mg/Kg	≎		09/24/19 16:10	
Benzo(a)anthracene	0.29	0.18	mg/Kg	₽		09/24/19 16:10	
Benzo(a)pyrene	0.36	0.18	mg/Kg	 ☆		09/24/19 16:10	
Benzo(b)fluoranthene	0.51	0.18	mg/Kg	☼		09/24/19 16:10	
Benzo(g,h,i)perylene	0.32	0.18	mg/Kg	☆		09/24/19 16:10	
Benzo(k)fluoranthene	0.27	0.18	mg/Kg			09/24/19 16:10	
Biphenyl	ND	0.18	mg/Kg	₽		09/24/19 16:10	
bis (2-chloroisopropyl) ether	ND	0.18		Ť.		09/24/19 16:10	
Bis(2-chloroethoxy)methane	ND	0.18	mg/Kg	<u>Q</u> .		09/24/19 16:10	
, •,	ND ND	0.18	mg/Kg	т Ф		09/24/19 16:10	
Bis(2-chloroethyl)ether	ND ND	0.18	mg/Kg	≎		09/24/19 16:10	
Bis(2-ethylhexyl) phthalate	ND ND	0.18	mg/Kg			09/24/19 16:10	
Butyl benzyl phthalate			mg/Kg			09/24/19 16:10	
Carbazala	ND	0.18	mg/Kg	₩			
Carbazole	ND	0.18	mg/Kg	¥.		09/24/19 16:10	
Chrysene	0.44	0.18	mg/Kg	Ţ.		09/24/19 16:10	
Dibenz(a,h)anthracene	ND	0.18	mg/Kg	☆		09/24/19 16:10	
Dibenzofuran	ND	0.18	mg/Kg			09/24/19 16:10	
Diethyl phthalate	ND	0.18	mg/Kg	₩ ₩		09/24/19 16:10	
Dimethyl phthalate	ND	0.18	mg/Kg	т. Ф		09/24/19 16:10	
Di-n-butyl phthalate	ND	0.18	mg/Kg	<u>.</u>		09/24/19 16:10	
Di-n-octyl phthalate	ND	0.18	mg/Kg	₽	09/23/19 14:27	09/24/19 16:10	

Eurofins TestAmerica, Buffalo

Page 59 of 135

Job ID: 480-159204-1

Client: Stantec Consulting Corp. Project/Site: Alliance BCP Site (AMSF)

Client Sample ID: AMSF-CS-NS-SS-C2

Lab Sample ID: 480-159204-18

Matrix: Solid

Percent Solids: 91.5

Job ID: 480-159204-1

Date Collected: 09/13/19 11:30 Date Received: 09/14/19 09:00

Analyte	Result C	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoranthene	0.79	0.18		mg/Kg	<u> </u>	09/23/19 14:27	09/24/19 16:10	1
Fluorene	ND	0.18		mg/Kg	☼	09/23/19 14:27	09/24/19 16:10	1
Hexachlorobenzene	ND	0.18		mg/Kg	₩	09/23/19 14:27	09/24/19 16:10	1
Hexachlorobutadiene	ND	0.18		mg/Kg	☼	09/23/19 14:27	09/24/19 16:10	1
Hexachlorocyclopentadiene	ND	0.18		mg/Kg	☼	09/23/19 14:27	09/24/19 16:10	1
Hexachloroethane	ND	0.18		mg/Kg	₩.	09/23/19 14:27	09/24/19 16:10	1
Indeno(1,2,3-cd)pyrene	0.28	0.18		mg/Kg	☼	09/23/19 14:27	09/24/19 16:10	1
Isophorone	ND	0.18		mg/Kg	☼	09/23/19 14:27	09/24/19 16:10	1
Naphthalene	ND	0.18		mg/Kg	φ.	09/23/19 14:27	09/24/19 16:10	1
Nitrobenzene	ND	0.18		mg/Kg	☼	09/23/19 14:27	09/24/19 16:10	1
N-Nitrosodi-n-propylamine	ND	0.18		mg/Kg	☼	09/23/19 14:27	09/24/19 16:10	1
N-Nitrosodiphenylamine	ND	0.18		mg/Kg	φ.	09/23/19 14:27	09/24/19 16:10	1
Pentachlorophenol	ND	0.36		mg/Kg	☼	09/23/19 14:27	09/24/19 16:10	1
Phenanthrene	0.27	0.18		mg/Kg	☼	09/23/19 14:27	09/24/19 16:10	1
Phenol	ND	0.18		mg/Kg		09/23/19 14:27	09/24/19 16:10	1
Pyrene	0.60	0.18		mg/Kg	☼	09/23/19 14:27	09/24/19 16:10	1

Surrogate	%Recovery Qualifi	er Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	93	54 - 120	09/23/19 14:27	09/24/19 16:10	1
2-Fluorobiphenyl	87	60 - 120	09/23/19 14:27	09/24/19 16:10	1
2-Fluorophenol	77	52 - 120	09/23/19 14:27	09/24/19 16:10	1
Nitrobenzene-d5	75	53 - 120	09/23/19 14:27	09/24/19 16:10	1
Phenol-d5	73	54 - 120	09/23/19 14:27	09/24/19 16:10	1
p-Terphenyl-d14	103	79 - 130	09/23/19 14:27	09/24/19 16:10	1

_ Method: 8081B - Organoch	lorine Pesticide	es (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	MD		0.018		mg/Kg	₩	09/19/19 07:28	09/20/19 21:36	10
4,4'-DDE	ND		0.018		mg/Kg	☼	09/19/19 07:28	09/20/19 21:36	10
4,4'-DDT	ND		0.018		mg/Kg	☼	09/19/19 07:28	09/20/19 21:36	10
Aldrin	ND		0.018		mg/Kg	₽	09/19/19 07:28	09/20/19 21:36	10
alpha-BHC	ND		0.018		mg/Kg	☼	09/19/19 07:28	09/20/19 21:36	10
cis-Chlordane	ND		0.018		mg/Kg	☼	09/19/19 07:28	09/20/19 21:36	10
beta-BHC	ND		0.018		mg/Kg	₽	09/19/19 07:28	09/20/19 21:36	10
delta-BHC	ND		0.018		mg/Kg	☼	09/19/19 07:28	09/20/19 21:36	10
Dieldrin	ND		0.018		mg/Kg	☼	09/19/19 07:28	09/20/19 21:36	10
Endosulfan I	ND		0.018		mg/Kg	φ.	09/19/19 07:28	09/20/19 21:36	10
Endosulfan II	ND		0.018		mg/Kg	☼	09/19/19 07:28	09/20/19 21:36	10
Endosulfan sulfate	ND		0.018		mg/Kg	₩	09/19/19 07:28	09/20/19 21:36	10
Endrin	ND		0.018		mg/Kg	₽	09/19/19 07:28	09/20/19 21:36	10
Endrin aldehyde	ND		0.018		mg/Kg	₩	09/19/19 07:28	09/20/19 21:36	10
Endrin ketone	ND		0.018		mg/Kg	☼	09/19/19 07:28	09/20/19 21:36	10
gamma-BHC (Lindane)	ND		0.018		mg/Kg	₽	09/19/19 07:28	09/20/19 21:36	10
trans-Chlordane	ND		0.018		mg/Kg	☼	09/19/19 07:28	09/20/19 21:36	10
Heptachlor	ND		0.018		mg/Kg	₩	09/19/19 07:28	09/20/19 21:36	10
Heptachlor epoxide	ND		0.018		mg/Kg	\$	09/19/19 07:28	09/20/19 21:36	10
Methoxychlor	ND		0.018		mg/Kg	☼	09/19/19 07:28	09/20/19 21:36	10
Toxaphene	ND		0.18		mg/Kg	₽	09/19/19 07:28	09/20/19 21:36	10

Page 60 of 135

Client: Stantec Consulting Corp. Project/Site: Alliance BCP Site (AMSF)

Client Sample ID: AMSF-CS-NS-SS-C2 Lab Sample ID: 480-159204-18

Date Collected: 09/13/19 11:30

Matrix: Solid

Date Received: 09/14/19 09:00

Percent Solids: 91.5

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	182	X	45 - 120	09/19/19 07:28	09/20/19 21:36	10
DCB Decachlorobiphenyl	145	Χ	45 - 120	09/19/19 07:28	09/20/19 21:36	10
Tetrachloro-m-xylene	93		30 - 124	09/19/19 07:28	09/20/19 21:36	10
Tetrachloro-m-xylene	110		30 - 124	09/19/19 07:28	09/20/19 21:36	10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.24		mg/Kg	<u> </u>	09/21/19 11:23	09/25/19 00:36	1
PCB-1221	ND		0.24		mg/Kg	₩	09/21/19 11:23	09/25/19 00:36	1
PCB-1232	ND		0.24		mg/Kg	₩	09/21/19 11:23	09/25/19 00:36	1
PCB-1242	ND		0.24		mg/Kg	ф	09/21/19 11:23	09/25/19 00:36	1
PCB-1248	ND		0.24		mg/Kg	₩	09/21/19 11:23	09/25/19 00:36	1
PCB-1254	ND		0.24		mg/Kg	₩	09/21/19 11:23	09/25/19 00:36	1
PCB-1260	ND		0.24		mg/Kg		09/21/19 11:23	09/25/19 00:36	1
PCB-1262	ND		0.24		mg/Kg	₩	09/21/19 11:23	09/25/19 00:36	1
PCB-1268	ND		0.24		mg/Kg	₩	09/21/19 11:23	09/25/19 00:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	125		65 - 174				09/21/19 11:23	09/25/19 00:36	1
DCB Decachlorobiphenyl	81		65 - 174				09/21/19 11:23	09/25/19 00:36	1
Tetrachloro-m-xylene	121		60 - 154				09/21/19 11:23	09/25/19 00:36	1
Tetrachloro-m-xylene	105		60 - 154				09/21/19 11:23	09/25/19 00:36	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	9310		10.6		mg/Kg	<u> </u>	09/18/19 05:20	09/20/19 22:50	1
Antimony	ND		15.8		mg/Kg	₩	09/18/19 05:20	09/19/19 23:46	1
Arsenic	2.6		2.1		mg/Kg	₩	09/18/19 05:20	09/19/19 23:46	1
Barium	46.0		0.53		mg/Kg	₩.	09/18/19 05:20	09/19/19 23:46	1
Beryllium	0.39		0.21		mg/Kg	₩	09/18/19 05:20	09/19/19 23:46	1
Cadmium	ND		0.21		mg/Kg	₩	09/18/19 05:20	09/19/19 23:46	1
Calcium	56100		52.8		mg/Kg	₩.	09/18/19 05:20	09/19/19 23:46	1
Chromium	12.8		0.53		mg/Kg	₩	09/18/19 05:20	09/19/19 23:46	1
Cobalt	5.4		0.53		mg/Kg	₩	09/18/19 05:20	09/19/19 23:46	1
Copper	9.3		1.1		mg/Kg	₩.	09/18/19 05:20	09/19/19 23:46	1
Iron	12700		10.6		mg/Kg	₩	09/18/19 05:20	09/20/19 22:50	1
Lead	7.7		1.1		mg/Kg	₩	09/18/19 05:20	09/19/19 23:46	1
Magnesium	19800		21.1		mg/Kg	₩.	09/18/19 05:20	09/19/19 23:46	1
Manganese	340	В	0.21		mg/Kg	₩	09/18/19 05:20	09/19/19 23:46	1
Nickel	11.9		5.3		mg/Kg	₩	09/18/19 05:20	09/19/19 23:46	1
Potassium	2620		31.7		mg/Kg	₩.	09/18/19 05:20	09/19/19 23:46	1
Selenium	ND		4.2		mg/Kg	₩	09/18/19 05:20	09/19/19 23:46	1
Silver	ND		0.63		mg/Kg	₩	09/18/19 05:20	09/19/19 23:46	1
Sodium	183		148		mg/Kg	₽	09/18/19 05:20	09/19/19 23:46	1
Thallium	ND		6.3		mg/Kg	☼	09/18/19 05:20	09/19/19 23:46	1
Vanadium	21.2		0.53		mg/Kg	☼	09/18/19 05:20	09/19/19 23:46	1
Zinc	29.4		2.1		mg/Kg	☆	09/18/19 05:20	09/19/19 23:46	1

Method: 7471B - Mercury (CVA	AA)							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND	0.021		mg/Kg	\	09/26/19 11:26	09/26/19 13:40	1

Eurofins TestAmerica, Buffalo

Page 61 of 135

2

Job ID: 480-159204-1

3

5

4.0

11

13

15

16

10/4/2019

Client: Stantec Consulting Corp. Job ID: 480-159204-1

Project/Site: Alliance BCP Site (AMSF)

Client Sample ID: AMSF-CS-NS-SS-C2 Lab Sample ID: 480-159204-18

Date Collected: 09/13/19 11:30 Matrix: Solid
Date Received: 09/14/19 09:00 Percent Solids: 91.5

General Chemistry										
Analyte	Result	Qualifier	RL	MDL	Unit	D)	Prepared	Analyzed	Dil Fac
Cyanide, Total	ND		1.1		mg/Kg		-	09/26/19 20:30	09/27/19 11:17	1

5

7

9

11

13

Client: Stantec Consulting Corp. Project/Site: Alliance BCP Site (AMSF)

Client Sample ID: AMSF-CS-WS-SS-G1 Lab Sample ID: 480-159204-19

Date Collected: 09/13/19 10:00

Matrix: Solid
Date Received: 09/14/19 09:00

Percent Solids: 87.4

Method: 8260C - Volatile Organ				MDI	l lni4	_	Dranarad	Analumad	Dil E-
Analyte		Qualifier	RL	MDL	Unit	— D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		0.0055		mg/Kg	☆		09/17/19 18:58	
1,1,2,2-Tetrachloroethane	ND	VS	0.0055		mg/Kg			09/17/19 18:58	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.0055		mg/Kg			09/17/19 18:58	
1,1,2-Trichloroethane	ND	VS	0.0055		mg/Kg	☆		09/17/19 18:58	
1,1-Dichloroethane	ND		0.0055		mg/Kg	ψ.	09/17/19 13:21		
1,1-Dichloroethene	ND		0.0055		mg/Kg	<u>.</u> .		09/17/19 18:58	
1,2,4-Trichlorobenzene	ND	VS	0.0055		mg/Kg	*		09/17/19 18:58	
1,2-Dibromo-3-Chloropropane	ND	vs	0.0055		mg/Kg	*	09/17/19 13:21		
1,2-Dichlorobenzene	ND		0.0055		mg/Kg		09/17/19 13:21		
I,2-Dichloroethane	ND	VS	0.0055		mg/Kg	₩	09/17/19 13:21	09/17/19 18:58	
1,2-Dichloropropane	ND	VS	0.0055		mg/Kg	☼	09/17/19 13:21	09/17/19 18:58	
1,3-Dichlorobenzene	ND	VS	0.0055		mg/Kg	₩	09/17/19 13:21	09/17/19 18:58	
1,4-Dichlorobenzene	ND	vs	0.0055		mg/Kg	₩	09/17/19 13:21	09/17/19 18:58	
2-Butanone (MEK)	ND	vs	0.028		mg/Kg	₩	09/17/19 13:21	09/17/19 18:58	
2-Hexanone	ND	vs	0.028		mg/Kg	₩	09/17/19 13:21	09/17/19 18:58	
1-Methyl-2-pentanone (MIBK)	ND	VS	0.028		mg/Kg	₩	09/17/19 13:21	09/17/19 18:58	
Acetone	ND	vs	0.028		mg/Kg	₩	09/17/19 13:21	09/17/19 18:58	
Benzene	ND	vs	0.0055		mg/Kg	☼	09/17/19 13:21	09/17/19 18:58	
Bromoform	ND	* vs	0.0055		mg/Kg		09/17/19 13:21	09/17/19 18:58	
Bromomethane	ND	vs	0.0055		mg/Kg	₩	09/17/19 13:21	09/17/19 18:58	
Carbon disulfide	ND	vs	0.0055		mg/Kg	₩	09/17/19 13:21	09/17/19 18:58	
Carbon tetrachloride	ND	VS	0.0055		mg/Kg		09/17/19 13:21	09/17/19 18:58	
Chlorobenzene	ND	vs	0.0055		mg/Kg	₩	09/17/19 13:21	09/17/19 18:58	
Dibromochloromethane	ND	* vs	0.0055		mg/Kg	₩	09/17/19 13:21	09/17/19 18:58	
Chloroethane	ND	VS	0.0055		mg/Kg		09/17/19 13:21	09/17/19 18:58	
Chloroform	ND	vs	0.0055		mg/Kg	₽		09/17/19 18:58	
Chloromethane	ND		0.0055		mg/Kg	₽		09/17/19 18:58	
cis-1,2-Dichloroethene	ND		0.0055		mg/Kg	 \$		09/17/19 18:58	
Cyclohexane	ND		0.0055		mg/Kg	₩		09/17/19 18:58	
Bromodichloromethane	ND		0.0055		mg/Kg	☆		09/17/19 18:58	
Dichlorodifluoromethane	ND	VS	0.0055		mg/Kg			09/17/19 18:58	
Ethylbenzene	ND		0.0055		mg/Kg	₩		09/17/19 18:58	
1,2-Dibromoethane	ND		0.0055		mg/Kg	₩		09/17/19 18:58	
sopropylbenzene	ND	VS VS	0.0055			.	09/17/19 13:21		
Methyl acetate	ND ND		0.0033		mg/Kg mg/Kg			09/17/19 18:58	
•									
Methyl tert-butyl ether	ND		0.0055		mg/Kg	¥.	09/17/19 13:21		
Methylcyclohexane	ND		0.0055		mg/Kg	*	09/17/19 13:21		
Methylene Chloride	ND		0.0055		mg/Kg	₽	09/17/19 13:21	09/17/19 18:58	
Tetrachloroethene	ND		0.0055		mg/Kg	J.	09/17/19 13:21		
Toluene	ND		0.0055		mg/Kg			09/17/19 18:58	
rans-1,2-Dichloroethene	ND		0.0055		mg/Kg	ά. Έ	09/17/19 13:21	09/17/19 18:58	
rans-1,3-Dichloropropene	ND		0.0055		mg/Kg	::::::::::::::::::::::::::::::::::::::	09/17/19 13:21		
Trichloroethene	ND		0.0055		mg/Kg	₩		09/17/19 18:58	
Trichlorofluoromethane	ND		0.0055		mg/Kg	:	09/17/19 13:21	09/17/19 18:58	
/inyl chloride	ND	vs	0.0055		mg/Kg	*	09/17/19 13:21	09/17/19 18:58	
Xylenes, Total	ND	vs	0.011		mg/Kg	₩	09/17/19 13:21		
cis-1,3-Dichloropropene	ND	VS	0.0055		mg/Kg	☼	09/17/19 13:21		
Styrene	ND	vs	0.0055		mg/Kg	₩	09/17/19 13:21	09/17/19 18:58	
Ethyl acetate	ND	VS	0.0055		mg/Kg		09/17/19 13:21	09/17/19 18:58	

Eurofins TestAmerica, Buffalo

Page 63 of 135

2

Job ID: 480-159204-1

3

5

7

10

12

14

Client: Stantec Consulting Corp.

Job ID: 480-159204-1

Project/Site: Alliance BCP Site (AMSF)

Client Sample ID: AMSF-CS-WS-SS-G1 Lab Sample ID: 480-159204-19

Date Collected: 09/13/19 10:00 Matrix: Solid
Date Received: 09/14/19 09:00 Percent Solids: 87.4

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101	64 - 126	09/17/19 13:21	09/17/19 18:58	1
4-Bromofluorobenzene (Surr)	94	72 - 126	09/17/19 13:21	09/17/19 18:58	1
Toluene-d8 (Surr)	100	71 - 125	09/17/19 13:21	09/17/19 18:58	1

5

8

10

14

14

15

Client: Stantec Consulting Corp. Project/Site: Alliance BCP Site (AMSF)

Client Sample ID: AMSF-CS-WS-SS-G2 Lab Sample ID: 480-159204-20

Method: 8260C - Volatile Organ Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	vs	0.0055		mg/Kg	— -	09/17/19 13:21		
1,1,2,2-Tetrachloroethane	ND	vs	0.0055		mg/Kg	₩	09/17/19 13:21		
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.0055		mg/Kg	₩	09/17/19 13:21		
1,1,2-Trichloroethane	ND		0.0055		mg/Kg			09/17/19 19:23	
1,1-Dichloroethane	ND		0.0055		mg/Kg	₩	09/17/19 13:21		
1,1-Dichloroethene	ND		0.0055		mg/Kg	₩		09/17/19 19:23	
1,2,4-Trichlorobenzene	ND		0.0055		mg/Kg			09/17/19 19:23	
1,2-Dibromo-3-Chloropropane	ND		0.0055		mg/Kg	₩	09/17/19 13:21		
1.2-Dichlorobenzene	ND		0.0055		mg/Kg	₩	09/17/19 13:21		
1,2-Dichloroethane	ND		0.0055		mg/Kg			09/17/19 19:23	
1,2-Dichloropropane	ND.	VS	0.0055		mg/Kg		09/17/19 13:21		
·	ND	vs vs	0.0055			₽		09/17/19 19:23	
1,3-Dichlorobenzene					mg/Kg	~			
1,4-Dichlorobenzene	ND		0.0055		mg/Kg			09/17/19 19:23	
2-Butanone (MEK)	ND	VS	0.028		mg/Kg	☆		09/17/19 19:23	
2-Hexanone	ND	VS	0.028		mg/Kg	X .		09/17/19 19:23	
4-Methyl-2-pentanone (MIBK)	ND		0.028		mg/Kg	Ψ.	09/17/19 13:21		
Acetone	ND		0.028		mg/Kg			09/17/19 19:23	
Benzene	ND		0.0055		mg/Kg			09/17/19 19:23	
Bromoform	ND	* vs	0.0055		mg/Kg	÷.		09/17/19 19:23	
Bromomethane	ND		0.0055		mg/Kg	*		09/17/19 19:23	
Carbon disulfide	ND		0.0055		mg/Kg			09/17/19 19:23	
Carbon tetrachloride	ND	VS	0.0055		mg/Kg	☼	09/17/19 13:21	09/17/19 19:23	
Chlorobenzene	ND	VS	0.0055		mg/Kg	₩	09/17/19 13:21	09/17/19 19:23	
Dibromochloromethane	ND	* VS	0.0055		mg/Kg	₩	09/17/19 13:21	09/17/19 19:23	
Chloroethane	ND	VS	0.0055		mg/Kg	₽	09/17/19 13:21	09/17/19 19:23	
Chloroform	ND	VS	0.0055		mg/Kg	₩	09/17/19 13:21	09/17/19 19:23	
Chloromethane	ND	vs	0.0055		mg/Kg	₩	09/17/19 13:21	09/17/19 19:23	
cis-1,2-Dichloroethene	ND	vs	0.0055		mg/Kg	₩	09/17/19 13:21	09/17/19 19:23	
Cyclohexane	ND	vs	0.0055		mg/Kg	₩	09/17/19 13:21	09/17/19 19:23	
Bromodichloromethane	ND	VS	0.0055		mg/Kg	₩	09/17/19 13:21	09/17/19 19:23	
Dichlorodifluoromethane	ND	VS	0.0055		mg/Kg	₩	09/17/19 13:21	09/17/19 19:23	
Ethylbenzene	ND	vs	0.0055		mg/Kg	☼	09/17/19 13:21	09/17/19 19:23	
1,2-Dibromoethane	ND	vs	0.0055		mg/Kg	☼	09/17/19 13:21	09/17/19 19:23	
sopropylbenzene	ND	VS	0.0055		mg/Kg		09/17/19 13:21	09/17/19 19:23	
Methyl acetate	ND	vs	0.028		mg/Kg	₩	09/17/19 13:21	09/17/19 19:23	
Methyl tert-butyl ether	ND	vs	0.0055		mg/Kg	☼	09/17/19 13:21	09/17/19 19:23	
Methylcyclohexane	ND		0.0055		mg/Kg			09/17/19 19:23	
Methylene Chloride	ND		0.0055		mg/Kg	₩		09/17/19 19:23	
Tetrachloroethene	ND		0.0055		mg/Kg	₩		09/17/19 19:23	
Foluene	ND		0.0055		mg/Kg	<u>.</u> .		09/17/19 19:23	
rans-1,2-Dichloroethene	ND		0.0055		mg/Kg	☼		09/17/19 19:23	
rans-1,3-Dichloropropene	ND		0.0055		mg/Kg	₩		09/17/19 19:23	
Frichloroethene	ND		0.0055					09/17/19 19:23	
Frichlorofluoromethane	ND ND		0.0055		mg/Kg mg/Kg	≎		09/17/19 19:23	
	ND ND					≎		09/17/19 19:23	
/inyl chloride			0.0055		mg/Kg				
Kylenes, Total	ND		0.011		mg/Kg	₩ ₩		09/17/19 19:23	
cis-1,3-Dichloropropene Styrene	ND		0.0055		mg/Kg	₽		09/17/19 19:23	
	ND	VS	0.0055		mg/Kg		00/17/10 12:91	09/17/19 19:23	

Eurofins TestAmerica, Buffalo

Page 65 of 135

2

Job ID: 480-159204-1

3

5

7

9

11

1 1

Client: Stantec Consulting Corp.

Job ID: 480-159204-1

Project/Site: Alliance BCP Site (AMSF)

Client Sample ID: AMSF-CS-WS-SS-G2 Lab Sample ID: 480-159204-20

Date Collected: 09/13/19 10:00 Matrix: Solid
Date Received: 09/14/19 09:00 Percent Solids: 87.8

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106	64 - 126	09/17/19 13:21	09/17/19 19:23	1
4-Bromofluorobenzene (Surr)	99	72 - 126	09/17/19 13:21	09/17/19 19:23	1
Toluene-d8 (Surr)	100	71 - 125	09/17/19 13:21	09/17/19 19:23	1

5

6

R

9

11

13

Client: Stantec Consulting Corp.
Project/Site: Alliance BCP Site (AMSF)

Client Sample ID: AMSF-CS-WS-SS-C1

Date Collected: 09/13/19 10:00

Date Received: 09/14/19 09:00

Lab Sample ID: 480-159204-21

Matrix: Solid

Percent Solids: 81.7

Job ID: 480-159204-1

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	ND ND	0.21	mg/Kg	<u> </u>	09/23/19 14:27	09/24/19 16:34	1
2,4,6-Trichlorophenol	ND	0.21	mg/Kg	☼	09/23/19 14:27	09/24/19 16:34	1
2,4-Dichlorophenol	ND	0.21	mg/Kg	₩	09/23/19 14:27	09/24/19 16:34	1
2,4-Dimethylphenol	ND	0.21	mg/Kg	φ.	09/23/19 14:27	09/24/19 16:34	1
2,4-Dinitrophenol	ND	0.40	mg/Kg	₩	09/23/19 14:27	09/24/19 16:34	1
2,4-Dinitrotoluene	ND	0.21	mg/Kg	₩	09/23/19 14:27	09/24/19 16:34	1
2,6-Dinitrotoluene	ND	0.21	mg/Kg	₩.	09/23/19 14:27	09/24/19 16:34	1
2-Chloronaphthalene	ND	0.21	mg/Kg	₩	09/23/19 14:27	09/24/19 16:34	1
2-Chlorophenol	ND	0.21	mg/Kg	₩	09/23/19 14:27	09/24/19 16:34	1
2-Methylnaphthalene	ND	0.21	mg/Kg	φ.	09/23/19 14:27	09/24/19 16:34	1
2-Methylphenol	ND	0.21	mg/Kg	₩	09/23/19 14:27	09/24/19 16:34	1
2-Nitroaniline	ND	0.40	mg/Kg	₩	09/23/19 14:27	09/24/19 16:34	1
2-Nitrophenol	ND	0.21	mg/Kg		09/23/19 14:27	09/24/19 16:34	1
3,3'-Dichlorobenzidine	ND	0.21	mg/Kg	₽	09/23/19 14:27	09/24/19 16:34	1
3-Nitroaniline	ND	0.40	mg/Kg	₽	09/23/19 14:27	09/24/19 16:34	1
4,6-Dinitro-2-methylphenol	ND	0.40	mg/Kg	 ☆	09/23/19 14:27	09/24/19 16:34	1
4-Bromophenyl phenyl ether	ND	0.21	mg/Kg	₩	09/23/19 14:27	09/24/19 16:34	1
4-Chloro-3-methylphenol	ND	0.21	mg/Kg	₩	09/23/19 14:27	09/24/19 16:34	1
4-Chloroaniline	ND	0.21	mg/Kg			09/24/19 16:34	1
4-Chlorophenyl phenyl ether	ND	0.21	mg/Kg	₩		09/24/19 16:34	1
4-Methylphenol	ND	0.40	mg/Kg	₩		09/24/19 16:34	1
4-Nitroaniline	ND	0.40	mg/Kg			09/24/19 16:34	1
4-Nitrophenol	ND	0.40	mg/Kg	₩		09/24/19 16:34	1
Acenaphthene	ND	0.21	mg/Kg	₩		09/24/19 16:34	1
Acenaphthylene	ND	0.21	mg/Kg			09/24/19 16:34	· · · · · · · · 1
Acetophenone	ND	0.21	mg/Kg	₩		09/24/19 16:34	. 1
Anthracene	ND	0.21	mg/Kg	₩		09/24/19 16:34	1
Atrazine	ND	0.21	mg/Kg	<u>.</u> .		09/24/19 16:34	
Benzaldehyde	ND	0.21	mg/Kg	₩		09/24/19 16:34	1
Benzo(a)anthracene	0.49	0.21	mg/Kg	₩		09/24/19 16:34	1
Benzo(a)pyrene	0.67	0.21	mg/Kg			09/24/19 16:34	
Benzo(b)fluoranthene	0.93	0.21	mg/Kg	₩		09/24/19 16:34	1
Benzo(g,h,i)perylene	0.57	0.21	mg/Kg	₩		09/24/19 16:34	1
	0.47	0.21	mg/Kg			09/24/19 16:34	' 1
Benzo(k)fluoranthene Biphenyl	ND	0.21	mg/Kg	₹7-		09/24/19 16:34	1
bis (2-chloroisopropyl) ether	ND	0.21	mg/Kg	т Ф		09/24/19 16:34	1
Bis(2-chloroethoxy)methane	ND	0.21	. . .			09/24/19 16:34	 1
` ,	ND		mg/Kg	**		09/24/19 16:34	
Bis(2-chloroethyl)ether	ND ND	0.21 0.21	mg/Kg	**		09/24/19 16:34	1
Bis(2-ethylhexyl) phthalate			mg/Kg	¥ .Φ			1
Butyl benzyl phthalate	ND ND	0.21	mg/Kg	*		09/24/19 16:34	1
Caprolactam Carbazole	ND	0.21	mg/Kg	Ť.		09/24/19 16:34	1
	ND	0.21	mg/Kg			09/24/19 16:34	1
Chrysene	0.75	0.21	mg/Kg	74.		09/24/19 16:34	1
Dibenz(a,h)anthracene	ND	0.21	mg/Kg	₽		09/24/19 16:34	1
Dibenzofuran	ND	0.21	mg/Kg			09/24/19 16:34	1
Diethyl phthalate	ND	0.21	mg/Kg	φ.		09/24/19 16:34	1
Dimethyl phthalate	ND	0.21	mg/Kg	₩.		09/24/19 16:34	1
Di-n-butyl phthalate	ND	0.21	mg/Kg	₩		09/24/19 16:34	1 1
Di-n-octyl phthalate	ND	0.21	mg/Kg	Φ.	09/23/19 14:27	09/24/19 16:34	

Eurofins TestAmerica, Buffalo

Page 67 of 135

9

4

6

9

11

13

Client: Stantec Consulting Corp. Project/Site: Alliance BCP Site (AMSF)

Client Sample ID: AMSF-CS-WS-SS-C1 Lab Sample ID: 480-159204-21

Date Collected: 09/13/19 10:00 **Matrix: Solid** Date Received: 09/14/19 09:00 **Percent Solids: 81.7**

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoranthene	1.4		0.21		mg/Kg	<u> </u>	09/23/19 14:27	09/24/19 16:34	1
Fluorene	ND		0.21		mg/Kg	₩	09/23/19 14:27	09/24/19 16:34	1
Hexachlorobenzene	ND		0.21		mg/Kg	₽	09/23/19 14:27	09/24/19 16:34	1
Hexachlorobutadiene	ND		0.21		mg/Kg	₩	09/23/19 14:27	09/24/19 16:34	1
Hexachlorocyclopentadiene	ND		0.21		mg/Kg	☼	09/23/19 14:27	09/24/19 16:34	1
Hexachloroethane	ND		0.21		mg/Kg	₽	09/23/19 14:27	09/24/19 16:34	1
Indeno(1,2,3-cd)pyrene	0.45		0.21		mg/Kg	₩	09/23/19 14:27	09/24/19 16:34	1
Isophorone	ND		0.21		mg/Kg	₩	09/23/19 14:27	09/24/19 16:34	1
Naphthalene	ND		0.21		mg/Kg	.	09/23/19 14:27	09/24/19 16:34	1
Nitrobenzene	ND		0.21		mg/Kg	₩	09/23/19 14:27	09/24/19 16:34	1
N-Nitrosodi-n-propylamine	ND		0.21		mg/Kg	₩	09/23/19 14:27	09/24/19 16:34	1
N-Nitrosodiphenylamine	ND		0.21		mg/Kg	φ.	09/23/19 14:27	09/24/19 16:34	1
Pentachlorophenol	ND		0.40		mg/Kg	₩	09/23/19 14:27	09/24/19 16:34	1
Phenanthrene	0.45		0.21		mg/Kg	₩	09/23/19 14:27	09/24/19 16:34	1
Phenol	ND		0.21		mg/Kg	φ.	09/23/19 14:27	09/24/19 16:34	1
Pyrene	1.1		0.21		mg/Kg	₩	09/23/19 14:27	09/24/19 16:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	103		54 - 120				09/23/19 14:27	09/24/19 16:34	1
2-Fluorobiphenyl	90		60 - 120				09/23/19 14:27	09/24/19 16:34	1
2-Fluorophenol	83		52 - 120				09/23/19 14:27	09/24/19 16:34	1
Nitrobenzene-d5	79		53 - 120				09/23/19 14:27	09/24/19 16:34	1
Phenol-d5	79		54 - 120				09/23/19 14:27	09/24/19 16:34	1
p-Terphenyl-d14	107		79 - 130				09/23/19 14:27	09/24/19 16:34	1

Analyte	Result Qu	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND ND	0.0020		mg/Kg	₩	09/19/19 07:28	09/20/19 21:56	1
4,4'-DDE	ND	0.0020		mg/Kg	≎	09/19/19 07:28	09/20/19 21:56	1
4,4'-DDT	ND	0.0020		mg/Kg	≎	09/19/19 07:28	09/20/19 21:56	1
Aldrin	ND	0.0020		mg/Kg	₩	09/19/19 07:28	09/20/19 21:56	1
alpha-BHC	0.0037	0.0020		mg/Kg	₩	09/19/19 07:28	09/20/19 21:56	1
cis-Chlordane	ND	0.0020		mg/Kg	☆	09/19/19 07:28	09/20/19 21:56	1
beta-BHC	ND	0.0020		mg/Kg	₩	09/19/19 07:28	09/20/19 21:56	1
delta-BHC	ND	0.0020		mg/Kg	≎	09/19/19 07:28	09/20/19 21:56	1
Dieldrin	ND	0.0020		mg/Kg	☆	09/19/19 07:28	09/20/19 21:56	1
Endosulfan I	ND	0.0020		mg/Kg	₩	09/19/19 07:28	09/20/19 21:56	1
Endosulfan II	ND	0.0020		mg/Kg	₩	09/19/19 07:28	09/20/19 21:56	1
Endosulfan sulfate	ND	0.0020		mg/Kg	₩	09/19/19 07:28	09/20/19 21:56	1
Endrin	ND	0.0020		mg/Kg	₽	09/19/19 07:28	09/20/19 21:56	1
Endrin aldehyde	ND	0.0020		mg/Kg	₩	09/19/19 07:28	09/20/19 21:56	1
Endrin ketone	ND	0.0020		mg/Kg	₩	09/19/19 07:28	09/20/19 21:56	1
gamma-BHC (Lindane)	ND	0.0020		mg/Kg	₩	09/19/19 07:28	09/20/19 21:56	1
trans-Chlordane	ND	0.0020		mg/Kg	☆	09/19/19 07:28	09/20/19 21:56	1
Heptachlor	ND	0.0020		mg/Kg	₩	09/19/19 07:28	09/20/19 21:56	1
Heptachlor epoxide	ND	0.0020		mg/Kg	₩	09/19/19 07:28	09/20/19 21:56	1
Methoxychlor	ND	0.0020		mg/Kg	☆	09/19/19 07:28	09/20/19 21:56	1
Toxaphene	ND	0.020		mg/Kg	₩	09/19/19 07:28	09/20/19 21:56	1

10/4/2019

Page 68 of 135

Job ID: 480-159204-1

Client: Stantec Consulting Corp. Project/Site: Alliance BCP Site (AMSF)

Client Sample ID: AMSF-CS-WS-SS-C1 Lab Sample ID: 480-159204-21

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	79	45 - 120	09/19/19 07:28	09/20/19 21:56	1
DCB Decachlorobiphenyl	142 X	45 - 120	09/19/19 07:28	09/20/19 21:56	1
Tetrachloro-m-xylene	84	30 - 124	09/19/19 07:28	09/20/19 21:56	1
Tetrachloro-m-xylene	67	30 - 124	09/19/19 07:28	09/20/19 21:56	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.28		mg/Kg	<u> </u>	09/21/19 11:23	09/25/19 00:49	1
PCB-1221	ND		0.28		mg/Kg	☼	09/21/19 11:23	09/25/19 00:49	1
PCB-1232	ND		0.28		mg/Kg	☼	09/21/19 11:23	09/25/19 00:49	1
PCB-1242	ND		0.28		mg/Kg		09/21/19 11:23	09/25/19 00:49	1
PCB-1248	ND		0.28		mg/Kg	☼	09/21/19 11:23	09/25/19 00:49	1
PCB-1254	ND		0.28		mg/Kg	☼	09/21/19 11:23	09/25/19 00:49	1
PCB-1260	ND		0.28		mg/Kg		09/21/19 11:23	09/25/19 00:49	1
PCB-1262	ND		0.28		mg/Kg	☼	09/21/19 11:23	09/25/19 00:49	1
PCB-1268	ND		0.28		mg/Kg	₩	09/21/19 11:23	09/25/19 00:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	120		65 - 174				09/21/19 11:23	09/25/19 00:49	1
DCB Decachlorobiphenyl	75		65 ₋ 174				09/21/19 11:23	09/25/19 00:49	1
Tetrachloro-m-xylene	119		60 ₋ 154				09/21/19 11:23	09/25/19 00:49	1
Tetrachloro-m-xylene	100		60 - 154				09/21/19 11:23	09/25/19 00:49	1

Analyte	Result Q	(ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	14000	12.1		mg/Kg	<u> </u>	09/18/19 05:20	09/20/19 22:54	1
Antimony	ND	18.2		mg/Kg	₩	09/18/19 05:20	09/19/19 23:49	1
Arsenic	3.5	2.4		mg/Kg	₩	09/18/19 05:20	09/19/19 23:49	1
Barium	62.1	0.61		mg/Kg	₩	09/18/19 05:20	09/19/19 23:49	1
Beryllium	0.57	0.24		mg/Kg	₩	09/18/19 05:20	09/19/19 23:49	1
Cadmium	ND	0.24		mg/Kg	₩	09/18/19 05:20	09/19/19 23:49	1
Calcium	31200	60.7		mg/Kg	₩	09/18/19 05:20	09/19/19 23:49	1
Chromium	16.8	0.61		mg/Kg	₩	09/18/19 05:20	09/19/19 23:49	1
Cobalt	6.8	0.61		mg/Kg	₩	09/18/19 05:20	09/19/19 23:49	1
Copper	12.0	1.2		mg/Kg	₩.	09/18/19 05:20	09/19/19 23:49	1
Iron	17100	12.1		mg/Kg	₩	09/18/19 05:20	09/20/19 22:54	1
Lead	13.6	1.2		mg/Kg	₩	09/18/19 05:20	09/19/19 23:49	1
Magnesium	19000	24.3		mg/Kg	ф	09/18/19 05:20	09/19/19 23:49	1
Manganese	375 B	0.24		mg/Kg	₩	09/18/19 05:20	09/19/19 23:49	1
Nickel	16.0	6.1		mg/Kg	₩	09/18/19 05:20	09/19/19 23:49	1
Potassium	3030	36.4		mg/Kg	ф	09/18/19 05:20	09/19/19 23:49	1
Selenium	ND	4.9		mg/Kg	₩	09/18/19 05:20	09/19/19 23:49	1
Silver	ND	0.73		mg/Kg	₩	09/18/19 05:20	09/19/19 23:49	1
Sodium	ND	170		mg/Kg	₩	09/18/19 05:20	09/19/19 23:49	1
Thallium	ND	7.3		mg/Kg	₩	09/18/19 05:20	09/19/19 23:49	1
Vanadium	25.8	0.61		mg/Kg	₩	09/18/19 05:20	09/19/19 23:49	1
Zinc	54.3	2.4		mg/Kg	₽	09/18/19 05:20	09/19/19 23:49	1

Method: 7471B - Mercury (CVA	AA)						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.036	0.024	mg/Kg	₩	09/26/19 11:26	09/26/19 13:41	1

Eurofins TestAmerica, Buffalo

Page 69 of 135

2

Job ID: 480-159204-1

3

5

7

9

11

12

14

15

Client: Stantec Consulting Corp. Job ID: 480-159204-1

Project/Site: Alliance BCP Site (AMSF)

Client Sample ID: AMSF-CS-WS-SS-C1 Lab Sample ID: 480-159204-21

Date Collected: 09/13/19 10:00 Matrix: Solid
Date Received: 09/14/19 09:00 Percent Solids: 81.7

General Chemistry										
Analyte	Result	Qualifier	RL	MDL	Unit	D)	Prepared	Analyzed	Dil Fac
Cyanide, Total	ND		1.2		mg/Kg	Ţ.	[09/26/19 20:30	09/27/19 11:19	1

_

4

6

0

9

11

13

14

Client: Stantec Consulting Corp.
Project/Site: Alliance BCP Site (AMSF)

Client Sample ID: AMSF-CS-WS-SS-C2 Lab Sample ID: 480-159204-22

Date Collected: 09/13/19 10:00

Matrix: Solid
Date Received: 09/14/19 09:00

Percent Solids: 87.4

Method: 8270D - Semivolatile Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fa
2,4,5-Trichlorophenol	ND	0.97	mg/Kg	<u>.</u> ₽	09/23/19 14:27		
2,4,6-Trichlorophenol	ND	0.97	mg/Kg	₽		09/24/19 16:58	
2,4-Dichlorophenol	ND	0.97	mg/Kg	☼	09/23/19 14:27	09/24/19 16:58	
2,4-Dimethylphenol	ND	0.97	mg/Kg	☼	09/23/19 14:27	09/24/19 16:58	
2,4-Dinitrophenol	ND	1.9	mg/Kg	₩	09/23/19 14:27	09/24/19 16:58	
2,4-Dinitrotoluene	ND	0.97	mg/Kg	₩	09/23/19 14:27	09/24/19 16:58	
2,6-Dinitrotoluene	ND	0.97	mg/Kg	₩	09/23/19 14:27	09/24/19 16:58	
2-Chloronaphthalene	ND	0.97	mg/Kg	₩	09/23/19 14:27	09/24/19 16:58	
2-Chlorophenol	ND	0.97	mg/Kg	₩	09/23/19 14:27	09/24/19 16:58	
2-Methylnaphthalene	ND	0.97	mg/Kg	₩	09/23/19 14:27	09/24/19 16:58	
2-Methylphenol	ND	0.97	mg/Kg	₩	09/23/19 14:27	09/24/19 16:58	
2-Nitroaniline	ND	1.9	mg/Kg	₩	09/23/19 14:27	09/24/19 16:58	
2-Nitrophenol	ND	0.97	mg/Kg	₽	09/23/19 14:27	09/24/19 16:58	
3,3'-Dichlorobenzidine	ND	0.97	mg/Kg	☼	09/23/19 14:27	09/24/19 16:58	
3-Nitroaniline	ND	1.9	mg/Kg	☼	09/23/19 14:27	09/24/19 16:58	
4,6-Dinitro-2-methylphenol	ND	1.9	mg/Kg	₩	09/23/19 14:27	09/24/19 16:58	
4-Bromophenyl phenyl ether	ND	0.97	mg/Kg	☼	09/23/19 14:27	09/24/19 16:58	
4-Chloro-3-methylphenol	ND	0.97	mg/Kg	☼	09/23/19 14:27	09/24/19 16:58	
4-Chloroaniline	ND	0.97	mg/Kg	.	09/23/19 14:27	09/24/19 16:58	
4-Chlorophenyl phenyl ether	ND	0.97	mg/Kg	₩	09/23/19 14:27	09/24/19 16:58	
4-Methylphenol	ND	1.9	mg/Kg	₩	09/23/19 14:27	09/24/19 16:58	
4-Nitroaniline	ND	1.9	mg/Kg		09/23/19 14:27	09/24/19 16:58	
4-Nitrophenol	ND	1.9	mg/Kg	☼	09/23/19 14:27	09/24/19 16:58	
Acenaphthene	ND	0.97	mg/Kg	☼	09/23/19 14:27	09/24/19 16:58	
Acenaphthylene	ND	0.97	mg/Kg	· · · · · · · · · · · · · · · · · · ·	09/23/19 14:27	09/24/19 16:58	
Acetophenone	ND	0.97	mg/Kg	☼	09/23/19 14:27	09/24/19 16:58	
Anthracene	ND	0.97	mg/Kg	☼	09/23/19 14:27	09/24/19 16:58	
Atrazine	ND	0.97	mg/Kg		09/23/19 14:27	09/24/19 16:58	
Benzaldehyde	ND	0.97	mg/Kg	☼		09/24/19 16:58	
Benzo(a)anthracene	ND	0.97	mg/Kg	₩		09/24/19 16:58	
Benzo(a)pyrene	ND	0.97	mg/Kg			09/24/19 16:58	
Benzo(b)fluoranthene	1.1	0.97	mg/Kg	₩		09/24/19 16:58	
Benzo(g,h,i)perylene	ND	0.97	mg/Kg	₩		09/24/19 16:58	
Benzo(k)fluoranthene	ND	0.97	mg/Kg			09/24/19 16:58	
Biphenyl	ND	0.97	mg/Kg	₩		09/24/19 16:58	
bis (2-chloroisopropyl) ether	ND	0.97	mg/Kg	₩		09/24/19 16:58	
Bis(2-chloroethoxy)methane	ND	0.97	mg/Kg			09/24/19 16:58	
Bis(2-chloroethyl)ether	ND	0.97	mg/Kg	₩		09/24/19 16:58	
Bis(2-ethylhexyl) phthalate	ND	0.97	mg/Kg	₩		09/24/19 16:58	
Butyl benzyl phthalate	ND	0.97	mg/Kg			09/24/19 16:58	
Caprolactam	ND	0.97	mg/Kg	≎		09/24/19 16:58	
Carbazole	ND ND	0.97		≎		09/24/19 16:58	
			mg/Kg				
Chrysene Dibonz(a h)anthracene	ND ND	0.97	mg/Kg			09/24/19 16:58	
Dibenz(a,h)anthracene	ND	0.97	mg/Kg	₩ ₩		09/24/19 16:58	
Dibenzofuran	ND	0.97	mg/Kg	¥.		09/24/19 16:58	
Diethyl phthalate	ND	0.97	mg/Kg	₩		09/24/19 16:58	
Dimethyl phthalate	ND	0.97	mg/Kg	₩.		09/24/19 16:58	
Di-n-butyl phthalate	ND	0.97	mg/Kg			09/24/19 16:58	
Di-n-octyl phthalate	ND	0.97	mg/Kg	₽	09/23/19 14:27	09/24/19 16:58	

Eurofins TestAmerica, Buffalo

Page 71 of 135

2

Job ID: 480-159204-1

3

6

8

10

12

14

I

Client: Stantec Consulting Corp. Project/Site: Alliance BCP Site (AMSF)

Client Sample ID: AMSF-CS-WS-SS-C2

Lab Sample ID: 480-159204-22

Matrix: Solid

Percent Solids: 87.4

Job ID: 480-159204-1

Date Collected: 09/13/19 10:00	
Date Received: 09/14/19 09:00	

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoranthene	2.1	0.97		mg/Kg	₩	09/23/19 14:27	09/24/19 16:58	5
Fluorene	ND	0.97		mg/Kg	₩	09/23/19 14:27	09/24/19 16:58	5
Hexachlorobenzene	ND	0.97		mg/Kg	₩	09/23/19 14:27	09/24/19 16:58	5
Hexachlorobutadiene	ND	0.97		mg/Kg	₩	09/23/19 14:27	09/24/19 16:58	5
Hexachlorocyclopentadiene	ND	0.97		mg/Kg	₩	09/23/19 14:27	09/24/19 16:58	5
Hexachloroethane	ND	0.97		mg/Kg	₩	09/23/19 14:27	09/24/19 16:58	5
Indeno(1,2,3-cd)pyrene	ND	0.97		mg/Kg	₩	09/23/19 14:27	09/24/19 16:58	5
Isophorone	ND	0.97		mg/Kg	₩	09/23/19 14:27	09/24/19 16:58	5
Naphthalene	ND	0.97		mg/Kg	₩	09/23/19 14:27	09/24/19 16:58	5
Nitrobenzene	ND	0.97		mg/Kg	₩	09/23/19 14:27	09/24/19 16:58	5
N-Nitrosodi-n-propylamine	ND	0.97		mg/Kg	₩	09/23/19 14:27	09/24/19 16:58	5
N-Nitrosodiphenylamine	ND	0.97		mg/Kg		09/23/19 14:27	09/24/19 16:58	5
Pentachlorophenol	ND	1.9		mg/Kg	☆	09/23/19 14:27	09/24/19 16:58	5
Phenanthrene	1.5	0.97		mg/Kg	₩	09/23/19 14:27	09/24/19 16:58	5
Phenol	ND	0.97		mg/Kg	₩	09/23/19 14:27	09/24/19 16:58	5
Pyrene	1.6	0.97		mg/Kg	☼	09/23/19 14:27	09/24/19 16:58	5

Surrogate	%Recovery C	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	109		54 - 120	09/23/19 14:27	09/24/19 16:58	5
2-Fluorobiphenyl	100		60 - 120	09/23/19 14:27	09/24/19 16:58	5
2-Fluorophenol	84		52 - 120	09/23/19 14:27	09/24/19 16:58	5
Nitrobenzene-d5	81		53 - 120	09/23/19 14:27	09/24/19 16:58	5
Phenol-d5	82		54 - 120	09/23/19 14:27	09/24/19 16:58	5
p-Terphenyl-d14	110		79 - 130	09/23/19 14:27	09/24/19 16:58	5

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND ND	0.0019		mg/Kg	₩	09/19/19 07:28	09/21/19 15:49	1
4,4'-DDE	ND	0.0019		mg/Kg	₩	09/19/19 07:28	09/21/19 15:49	1
4,4'-DDT	ND	0.0019		mg/Kg	₩	09/19/19 07:28	09/21/19 15:49	1
Aldrin	ND	0.0019		mg/Kg	₩.	09/19/19 07:28	09/21/19 15:49	1
alpha-BHC	ND	0.0019		mg/Kg	☼	09/19/19 07:28	09/21/19 15:49	1
cis-Chlordane	ND	0.0019		mg/Kg	☼	09/19/19 07:28	09/21/19 15:49	1
beta-BHC	ND	0.0019		mg/Kg	₽	09/19/19 07:28	09/21/19 15:49	1
delta-BHC	ND	0.0019		mg/Kg	☼	09/19/19 07:28	09/21/19 15:49	1
Dieldrin	ND	0.0019		mg/Kg	☼	09/19/19 07:28	09/21/19 15:49	1
Endosulfan I	ND	0.0019		mg/Kg	₽	09/19/19 07:28	09/21/19 15:49	1
Endosulfan II	ND	0.0019		mg/Kg	☼	09/19/19 07:28	09/21/19 15:49	1
Endosulfan sulfate	ND	0.0019		mg/Kg	☼	09/19/19 07:28	09/21/19 15:49	1
Endrin	ND	0.0019		mg/Kg	₽	09/19/19 07:28	09/21/19 15:49	1
Endrin aldehyde	ND	0.0019		mg/Kg	☼	09/19/19 07:28	09/21/19 15:49	1
Endrin ketone	ND	0.0019		mg/Kg	☼	09/19/19 07:28	09/21/19 15:49	1
gamma-BHC (Lindane)	ND	0.0019		mg/Kg	₩	09/19/19 07:28	09/21/19 15:49	1
trans-Chlordane	ND	0.0019		mg/Kg	☼	09/19/19 07:28	09/21/19 15:49	1
Heptachlor	ND	0.0019		mg/Kg	☼	09/19/19 07:28	09/21/19 15:49	1
Heptachlor epoxide	ND	0.0019		mg/Kg	₽	09/19/19 07:28	09/21/19 15:49	1
Methoxychlor	ND	0.0019		mg/Kg	☼	09/19/19 07:28	09/21/19 15:49	1
Toxaphene	ND	0.019		mg/Kg	₩	09/19/19 07:28	09/21/19 15:49	1

Page 72 of 135

Client: Stantec Consulting Corp. Project/Site: Alliance BCP Site (AMSF)

Method: 7471B - Mercury (CVAA)

Analyte

Mercury

Lab Sample ID: 480-159204-22

Client Sample ID: AMSF-CS-WS-SS-C2 Date Collected: 09/13/19 10:00 **Matrix: Solid** Date Received: 09/14/19 09:00

Percent Solids: 87.4

Job ID: 480-159204-1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	94	45 - 120	09/19/19 07:28	09/21/19 15:49	1
DCB Decachlorobiphenyl	123 X	45 - 120	09/19/19 07:28	09/21/19 15:49	1
Tetrachloro-m-xylene	82	30 - 124	09/19/19 07:28	09/21/19 15:49	1
Tetrachloro-m-xylene	73	30 - 124	09/19/19 07:28	09/21/19 15:49	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.28		mg/Kg	<u> </u>	09/21/19 11:23	09/25/19 01:01	1
PCB-1221	ND		0.28		mg/Kg	☼	09/21/19 11:23	09/25/19 01:01	1
PCB-1232	ND		0.28		mg/Kg	☼	09/21/19 11:23	09/25/19 01:01	1
PCB-1242	ND		0.28		mg/Kg		09/21/19 11:23	09/25/19 01:01	1
PCB-1248	ND		0.28		mg/Kg	☼	09/21/19 11:23	09/25/19 01:01	1
PCB-1254	ND		0.28		mg/Kg	☼	09/21/19 11:23	09/25/19 01:01	1
PCB-1260	ND		0.28		mg/Kg		09/21/19 11:23	09/25/19 01:01	1
PCB-1262	ND		0.28		mg/Kg	☼	09/21/19 11:23	09/25/19 01:01	1
PCB-1268	ND		0.28		mg/Kg	₩	09/21/19 11:23	09/25/19 01:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	136		65 - 174				09/21/19 11:23	09/25/19 01:01	1
DCB Decachlorobiphenyl	91		65 ₋ 174				09/21/19 11:23	09/25/19 01:01	1
Tetrachloro-m-xylene	133		60 ₋ 154				09/21/19 11:23	09/25/19 01:01	1
Tetrachloro-m-xylene	108		60 - 154				09/21/19 11:23	09/25/19 01:01	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	16100		11.8		mg/Kg	<u> </u>	09/18/19 05:20	09/20/19 22:58	1
Antimony	ND		17.7		mg/Kg	₩	09/18/19 05:20	09/19/19 23:53	1
Arsenic	3.3		2.4		mg/Kg	₩	09/18/19 05:20	09/19/19 23:53	1
Barium	79.9		0.59		mg/Kg	₩.	09/18/19 05:20	09/19/19 23:53	1
Beryllium	0.70		0.24		mg/Kg	₩	09/18/19 05:20	09/19/19 23:53	1
Cadmium	ND		0.24		mg/Kg	₩	09/18/19 05:20	09/19/19 23:53	1
Calcium	4330		59.1		mg/Kg	₽	09/18/19 05:20	09/19/19 23:53	1
Chromium	21.1		0.59		mg/Kg	☼	09/18/19 05:20	09/19/19 23:53	1
Cobalt	9.9		0.59		mg/Kg	₩	09/18/19 05:20	09/19/19 23:53	1
Copper	11.5		1.2		mg/Kg	₽	09/18/19 05:20	09/19/19 23:53	1
Iron	19800		11.8		mg/Kg	☼	09/18/19 05:20	09/20/19 22:58	1
Lead	10.7		1.2		mg/Kg	☼	09/18/19 05:20	09/19/19 23:53	1
Magnesium	3780		23.6		mg/Kg		09/18/19 05:20	09/19/19 23:53	1
Manganese	440	В	0.24		mg/Kg	☼	09/18/19 05:20	09/19/19 23:53	1
Nickel	19.4		5.9		mg/Kg	☼	09/18/19 05:20	09/19/19 23:53	1
Potassium	3120		35.5		mg/Kg	₩.	09/18/19 05:20	09/19/19 23:53	1
Selenium	ND		4.7		mg/Kg	☼	09/18/19 05:20	09/19/19 23:53	1
Silver	ND		0.71		mg/Kg	☼	09/18/19 05:20	09/19/19 23:53	1
Sodium	ND		165		mg/Kg	φ.	09/18/19 05:20	09/19/19 23:53	1
Thallium	ND		7.1		mg/Kg	☼	09/18/19 05:20	09/19/19 23:53	1
Vanadium	31.0		0.59		mg/Kg	☼	09/18/19 05:20	09/19/19 23:53	1
Zinc	52.6		2.4		mg/Kg	☆	09/18/19 05:20	09/19/19 23:53	1

Analyzed

Prepared

Page 73 of 135

RL

0.023

MDL Unit

mg/Kg

Result Qualifier

0.039

Dil Fac

Client: Stantec Consulting Corp.

Job ID: 480-159204-1

Project/Site: Alliance BCP Site (AMSF)

Client Sample ID: AMSF-CS-WS-SS-C2 Lab Sample ID: 480-159204-22

Date Collected: 09/13/19 10:00 Matrix: Solid
Date Received: 09/14/19 09:00 Percent Solids: 87.4

General Chemistry										
Analyte	Result	Qualifier	RL	MDL	Unit	D)	Prepared	Analyzed	Dil Fac
Cyanide, Total	ND		1.1		mg/Kg		£	09/26/19 20:30	09/27/19 11:22	1

3

5

6

8

10

46

13

15

Client: Stantec Consulting Corp. Job ID: 480-159204-1

Project/Site: Alliance BCP Site (AMSF)

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Solid Prep Type: Total/NA

Lab Sample ID Client Sample ID (64-126) (72-126) (71-125) 480-159204-1 AMSF-CS-SS-SG-1 106 99 99 480-159204-2 AMSF-CS-SS-SG-2 98 95 99 480-159204-5 AMSF-CS-DUP-SS-G1 97 96 100
480-159204-1 AMSF-CS-SS-SS-G1 106 99 99 480-159204-2 AMSF-CS-SS-SS-G2 98 95 99
480-159204-2 AMSF-CS-SS-G2 98 95 99
480 150204 5 AMSE CS DUD SS C1 07 06 100
400-109204-0 AWIST-03-DUF-33-GT 97 90 100
480-159204-9 AMSF-CS-ES-SS-G1 105 97 99
480-159204-9 MSD AMSF-CS-ES-SS-G1 92 95 102
480-159204-9MS AMSF-CS-ES-SS-G1 88 93 101
480-159204-10 AMSF-CS-ES-SS-G2 101 97 98
480-159204-15 AMSF-CS-NS-SS-G1 101 93 102
480-159204-16 AMSF-CS-NS-SS-G2 101 94 101
480-159204-19 AMSF-CS-WS-SS-G1 101 94 100
480-159204-20 AMSF-CS-WS-SS-G2 106 99 100
LCS 480-492516/1-A Lab Control Sample 93 100 101
MB 480-492516/2-A Method Blank 83 96 100

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		DCA	BFB	TOL	DBFM
Lab Sample ID	Client Sample ID	(77-120)	(73-120)	(80-120)	(75-123)
480-159204-12	AMSF-CS-RB-W-1	97	107	103	97
480-159204-13	TRIP BLANK	108	104	101	103
LCS 480-493643/5	Lab Control Sample	104	105	103	106
MB 480-493643/8	Method Blank	99	107	104	100

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Solid Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)								
		TBP	FBP	2FP	NBZ	PHL	TPHd14				
Lab Sample ID	Client Sample ID	(54-120)	(60-120)	(52-120)	(53-120)	(54-120)	(79-130)				
480-159204-3	AMSF-CS-SS-SS-C1	127 X	98	85	84	86	115				
480-159204-4	AMSF-CS-SS-SS-C2	106	97	84	81	81	112				
480-159204-8	AMSF-CS-DUP-SS-C2	100	85	75	74	74	106				
480-159204-11	AMSF-CS-ES-SS-C1	101	87	73	72	73	112				
480-159204-11 MS	AMSF-CS-ES-SS-C1	129 X	87	67	68	70	126				
480-159204-11 MSD	AMSF-CS-ES-SS-C1	122 X	99	78	81	82	118				
480-159204-14	AMSF-CS-ES-SS-C2	97	91	78	76	79	108				
480-159204-17	AMSF-CS-NS-SS-C1	93	94	82	77	81	110				
480-159204-18	AMSF-CS-NS-SS-C2	93	87	77	75	73	103				

Eurofins TestAmerica, Buffalo

10/4/2019

Page 75 of 135

3

4

6

8

10

12

13

1 E

Client: Stantec Consulting Corp. Job ID: 480-159204-1

Project/Site: Alliance BCP Site (AMSF)

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Matrix: Solid Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)							
		ТВР	FBP	2FP	NBZ	PHL	TPHd14			
Lab Sample ID	Client Sample ID	(54-120)	(60-120)	(52-120)	(53-120)	(54-120)	(79-130)			
480-159204-21	AMSF-CS-WS-SS-C1	103	90	83	79	79	107			
480-159204-22	AMSF-CS-WS-SS-C2	109	100	84	81	82	110			
LCS 480-493581/2-A	Lab Control Sample	113	104	89	90	85	122			
MB 480-493581/1-A	Method Blank	90	95	89	86	82	108			

Surrogate Legend

TBP = 2,4,6-Tribromophenol

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol

NBZ = Nitrobenzene-d5

PHL = Phenol-d5

TPHd14 = p-Terphenyl-d14

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Pe	rcent Surro	ogate Reco	very (Acce	tance Limi
		ТВР	FBP	2FP	NBZ	PHL	TPHd14
Lab Sample ID	Client Sample ID	(41-120)	(48-120)	(35-120)	(46-120)	(22-120)	(60-148)
480-159204-12	AMSF-CS-RB-W-1	95	88	55	82	40	93
LCS 480-492549/2-A	Lab Control Sample	128 X	97	67	85	53	101
MB 480-492549/1-A	Method Blank	89	90	57	80	43	98

Surrogate Legend

TBP = 2,4,6-Tribromophenol

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol

NBZ = Nitrobenzene-d5

PHL = Phenol-d5

TPHd14 = p-Terphenyl-d14

Method: 8081B - Organochlorine Pesticides (GC)

Matrix: Solid Prep Type: Total/NA

			Pe	ercent Surro	ogate Recov
		DCBP1	DCBP2	TCX1	TCX2
Lab Sample ID	Client Sample ID	(45-120)	(45-120)	(30-124)	(30-124)
480-159204-3	AMSF-CS-SS-SS-C1	178 X	211 X	104	108
480-159204-4	AMSF-CS-SS-SS-C2	187 X	230 X	138 X	120
480-159204-8	AMSF-CS-DUP-SS-C2	185 X	248 X	113	115
480-159204-11	AMSF-CS-ES-SS-C1	209 X	213 X	144 X	117
480-159204-11 MS	AMSF-CS-ES-SS-C1	198 X	263 X	119	114
480-159204-11 MSD	AMSF-CS-ES-SS-C1	217 X	161 X	124	117
480-159204-14	AMSF-CS-ES-SS-C2	160 X	139 X	91	102
480-159204-17	AMSF-CS-NS-SS-C1	275 X	208 X	110	146 X
480-159204-18	AMSF-CS-NS-SS-C2	182 X	145 X	93	110
480-159204-21	AMSF-CS-WS-SS-C1	79	142 X	84	67
480-159204-22	AMSF-CS-WS-SS-C2	94	123 X	82	73
LCS 480-492848/2-A	Lab Control Sample	95	88	80	62
MB 480-492848/1-A	Method Blank	85	89	75	61

Eurofins TestAmerica, Buffalo

Page 76 of 135

9

3

7

10

12

14

15

16

Client: Stantec Consulting Corp. Project/Site: Alliance BCP Site (AMSF)

DCBP = DCB Decachlorobiphenyl TCX = Tetrachloro-m-xylene

Job ID: 480-159204-1

Method: 8081B - Organochlorine Pesticides (GC)

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Rec
		DCBP1	DCBP2	TCX1	TCX2
Lab Sample ID	Client Sample ID	(20-120)	(20-120)	(44-120)	(44-120)
480-159204-12	AMSF-CS-RB-W-1	56	59	79	76
LCS 480-492545/2-A	Lab Control Sample	65	68	81	78
LCSD 480-492545/3-A	Lab Control Sample Dup	56	57	82	71
MB 480-492545/1-A	Method Blank	68	72	95	85
Surrogata Lagand					

Surrogate Legend

DCBP = DCB Decachlorobiphenyl

TCX = Tetrachloro-m-xylene

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Solid Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		DCBP1	DCBP2	TCX1	TCX2
Lab Sample ID	Client Sample ID	(65-174)	(65-174)	(60-154)	(60-154)
480-159204-3	AMSF-CS-SS-SS-C1	115	81	112	102
480-159204-4	AMSF-CS-SS-SS-C2	109	67	106	93
480-159204-8	AMSF-CS-DUP-SS-C2	117	80	107	103
480-159204-11	AMSF-CS-ES-SS-C1	117	81	119	104
480-159204-11 MS	AMSF-CS-ES-SS-C1	135	87	115	101
480-159204-11 MSD	AMSF-CS-ES-SS-C1	110	69	106	93
480-159204-14	AMSF-CS-ES-SS-C2	111	74	115	103
480-159204-17	AMSF-CS-NS-SS-C1	118	73	115	102
480-159204-18	AMSF-CS-NS-SS-C2	125	81	121	105
480-159204-21	AMSF-CS-WS-SS-C1	120	75	119	100
480-159204-22	AMSF-CS-WS-SS-C2	136	91	133	108
LCS 480-493350/2-A	Lab Control Sample	145	96	130	117
MB 480-493350/1-A	Method Blank	120	79	116	100

Surrogate Legend

DCBP = DCB Decachlorobiphenyl

TCX = Tetrachloro-m-xylene

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Rec
		DCBP1	DCBP2	TCX1	TCX2
Lab Sample ID	Client Sample ID	(19-120)	(19-120)	(39-121)	(39-121)
480-159204-12	AMSF-CS-RB-W-1	62	39	92	78
LCS 480-493603/2-A	Lab Control Sample	53	35	99	76
MB 480-493603/1-A	Method Blank	55	34	73	66

DCBP = DCB Decachlorobiphenyl

TCX = Tetrachloro-m-xylene

Client: Stantec Consulting Corp. Job ID: 480-159204-1 Project/Site: Alliance BCP Site (AMSF)

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-492516/2-A

Matrix: Solid

Analysis Batch: 492443

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 492516

Analysis Batch: 492443	MB	MB						Prep Batch:	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		0.0050		mg/Kg		09/17/19 12:21	09/17/19 14:44	
1,1,2,2-Tetrachloroethane	ND		0.0050		mg/Kg		09/17/19 12:21	09/17/19 14:44	•
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.0050		mg/Kg		09/17/19 12:21	09/17/19 14:44	•
1,1,2-Trichloroethane	ND		0.0050		mg/Kg		09/17/19 12:21	09/17/19 14:44	
1,1-Dichloroethane	ND		0.0050		mg/Kg		09/17/19 12:21	09/17/19 14:44	
1,1-Dichloroethene	ND		0.0050		mg/Kg		09/17/19 12:21	09/17/19 14:44	
1,2,4-Trichlorobenzene	ND		0.0050		mg/Kg		09/17/19 12:21	09/17/19 14:44	
1,2-Dibromo-3-Chloropropane	ND		0.0050		mg/Kg		09/17/19 12:21	09/17/19 14:44	•
1,2-Dichlorobenzene	ND		0.0050		mg/Kg		09/17/19 12:21	09/17/19 14:44	
1,2-Dichloroethane	ND		0.0050		mg/Kg		09/17/19 12:21	09/17/19 14:44	
1,2-Dichloropropane	ND		0.0050		mg/Kg		09/17/19 12:21	09/17/19 14:44	•
1,3-Dichlorobenzene	ND		0.0050		mg/Kg		09/17/19 12:21	09/17/19 14:44	•
1,4-Dichlorobenzene	ND		0.0050		mg/Kg		09/17/19 12:21	09/17/19 14:44	
2-Butanone (MEK)	ND		0.025		mg/Kg		09/17/19 12:21	09/17/19 14:44	
2-Hexanone	ND		0.025		mg/Kg		09/17/19 12:21	09/17/19 14:44	
4-Methyl-2-pentanone (MIBK)	ND		0.025		mg/Kg		09/17/19 12:21	09/17/19 14:44	
Acetone	ND		0.025		mg/Kg		09/17/19 12:21	09/17/19 14:44	
Benzene	ND		0.0050		mg/Kg		09/17/19 12:21	09/17/19 14:44	
Bromoform	ND		0.0050		mg/Kg		09/17/19 12:21	09/17/19 14:44	
Bromomethane	ND		0.0050		mg/Kg		09/17/19 12:21	09/17/19 14:44	
Carbon disulfide	ND		0.0050		mg/Kg		09/17/19 12:21	09/17/19 14:44	
Carbon tetrachloride	ND		0.0050		mg/Kg		09/17/19 12:21	09/17/19 14:44	· · · · · · .
Chlorobenzene	ND		0.0050		mg/Kg		09/17/19 12:21	09/17/19 14:44	
Dibromochloromethane	ND		0.0050		mg/Kg		09/17/19 12:21	09/17/19 14:44	
Chloroethane	ND		0.0050		mg/Kg		09/17/19 12:21	09/17/19 14:44	
Chloroform	ND		0.0050		mg/Kg		09/17/19 12:21	09/17/19 14:44	
Chloromethane	ND		0.0050		mg/Kg		09/17/19 12:21	09/17/19 14:44	
cis-1,2-Dichloroethene	ND		0.0050		mg/Kg			09/17/19 14:44	· · · · · · .
Cyclohexane	ND		0.0050		mg/Kg			09/17/19 14:44	
Bromodichloromethane	ND		0.0050		mg/Kg			09/17/19 14:44	
Dichlorodifluoromethane	ND		0.0050		mg/Kg			09/17/19 14:44	
Ethylbenzene	ND		0.0050		mg/Kg			09/17/19 14:44	
1,2-Dibromoethane	ND		0.0050		mg/Kg			09/17/19 14:44	
Isopropylbenzene	ND		0.0050		mg/Kg			09/17/19 14:44	
Methyl acetate	ND		0.025		mg/Kg			09/17/19 14:44	
Methyl tert-butyl ether	ND		0.0050		mg/Kg			09/17/19 14:44	
Methylcyclohexane	ND		0.0050		mg/Kg			09/17/19 14:44	
Methylene Chloride	ND		0.0050		mg/Kg			09/17/19 14:44	
Tetrachloroethene	ND		0.0050		mg/Kg			09/17/19 14:44	
Toluene	ND		0.0050		mg/Kg			09/17/19 14:44	
trans-1,2-Dichloroethene	ND		0.0050		mg/Kg			09/17/19 14:44	
trans-1,3-Dichloropropene	ND		0.0050		mg/Kg			09/17/19 14:44	
Trichloroethene	ND		0.0050		mg/Kg			09/17/19 14:44	· · · · · .
Trichlorofluoromethane	ND ND		0.0050		mg/Kg			09/17/19 14:44	
Vinyl chloride	ND ND		0.0050		mg/Kg			09/17/19 14:44	
	ND							09/17/19 14:44	
Xylenes, Total			0.010		mg/Kg			09/17/19 14:44	
cis-1,3-Dichloropropene	ND		0.0050		mg/Kg				•
Styrene	ND		0.0050		mg/Kg		09/17/19 12:21	09/17/19 14:44	•

Eurofins TestAmerica, Buffalo

Page 78 of 135

Client: Stantec Consulting Corp. Project/Site: Alliance BCP Site (AMSF) Job ID: 480-159204-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

MB MB

Result Qualifier

Lab Sample ID: MB 480-492516/2-A

Matrix: Solid

Analyte

Analysis Batch: 492443

Client Sample ID: Method Blank **Prep Type: Total/NA**

Analyzed

Prep Batch: 492516

Dil Fac

Ethyl acetate	ND		0.0050	mg/Kg	09/17/19 12:21	09/17/19 14:44	1
	MB	МВ					
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	83		64 - 126		09/17/19 12:21	09/17/19 14:44	1
4-Bromofluorobenzene (Surr)	96		72 - 126		09/17/19 12:21	09/17/19 14:44	1
Toluene-d8 (Surr)	100		71 - 125		09/17/19 12:21	09/17/19 14:44	1

RL

Client Sample ID: Lab Control Sample

Prepared

Lab Sample ID: LCS 480-492516/1-A **Matrix: Solid**

	Prep Type: Total/NA
92443	Prep Batch: 492516

MDL Unit

Analysis Batch: 492443	Spike	LCS I	LCS				Prep Batch: 49251 %Rec.
Analyte	Added	Result (Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	0.0500	0.0520		mg/Kg		104	77 - 121
1,1,2,2-Tetrachloroethane	0.0500	0.0515		mg/Kg		103	80 - 120
1,1,2-Trichloro-1,2,2-trifluoroetha	0.0500	0.0506		mg/Kg		101	60 - 140
ne							
1,1,2-Trichloroethane	0.0500	0.0532		mg/Kg		106	78 - 122
1,1-Dichloroethane	0.0500	0.0503		mg/Kg		101	73 - 126
1,1-Dichloroethene	0.0500	0.0517		mg/Kg		103	59 - 125
1,2,4-Trichlorobenzene	0.0500	0.0485		mg/Kg		97	64 - 120
1,2-Dibromo-3-Chloropropane	0.0500	0.0524		mg/Kg		105	63 - 124
1,2-Dichlorobenzene	0.0500	0.0511		mg/Kg		102	75 ₋ 120
1,2-Dichloroethane	0.0500	0.0487		mg/Kg		97	77 ₋ 122
1,2-Dichloropropane	0.0500	0.0500		mg/Kg		100	75 - 124
1,3-Dichlorobenzene	0.0500	0.0520		mg/Kg		104	74 - 120
1,4-Dichlorobenzene	0.0500	0.0518		mg/Kg		104	73 - 120
2-Butanone (MEK)	0.250	0.246		mg/Kg		99	70 ₋ 134
2-Hexanone	0.250	0.263		mg/Kg		105	59 ₋ 130
4-Methyl-2-pentanone (MIBK)	0.250	0.253		mg/Kg		101	65 - 133
Acetone	0.250	0.228		mg/Kg		91	61 - 137
Benzene	0.0500	0.0510		mg/Kg		102	79 - 127
Bromoform	0.0500	0.0650 *	k	mg/Kg		130	68 - 126
Bromomethane	0.0500	0.0538		mg/Kg		108	37 - 149
Carbon disulfide	0.0500	0.0508		mg/Kg		102	64 - 131
Carbon tetrachloride	0.0500	0.0549		mg/Kg		110	75 ₋ 135
Chlorobenzene	0.0500	0.0527		mg/Kg		105	76 - 124
Dibromochloromethane	0.0500	0.0636 *	*	mg/Kg		127	76 ₋ 125
Chloroethane	0.0500	0.0532		mg/Kg		106	69 - 135
Chloroform	0.0500	0.0511		mg/Kg		102	80 - 120
Chloromethane	0.0500	0.0477		mg/Kg		95	63 - 127
cis-1,2-Dichloroethene	0.0500	0.0525		mg/Kg		105	81 - 120
Cyclohexane	0.0500	0.0487		mg/Kg		97	65 ₋ 120
Bromodichloromethane	0.0500	0.0559		mg/Kg		112	80 - 122
Dichlorodifluoromethane	0.0500	0.0406		mg/Kg		81	57 ₋ 142
Ethylbenzene	0.0500	0.0529		mg/Kg		106	80 - 120
1,2-Dibromoethane	0.0500	0.0544		mg/Kg		109	78 - 120
Isopropylbenzene	0.0500	0.0525		mg/Kg		105	72 - 120
Methyl acetate	0.100	0.0967		mg/Kg		97	55 - 136
Methyl tert-butyl ether	0.0500	0.0522		mg/Kg		104	63 - 125

Eurofins TestAmerica, Buffalo

Page 79 of 135

Client: Stantec Consulting Corp. Project/Site: Alliance BCP Site (AMSF)

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-492516/1-A

Matrix: Solid

Analysis Batch: 492443

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Job ID: 480-159204-1

Prep Batch: 492516

,	0						0/ 0	
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methylcyclohexane	0.0500	0.0510		mg/Kg		102	60 - 140	
Methylene Chloride	0.0500	0.0484		mg/Kg		97	61 - 127	
Tetrachloroethene	0.0500	0.0538		mg/Kg		108	74 - 122	
Toluene	0.0500	0.0528		mg/Kg		106	74 - 128	
trans-1,2-Dichloroethene	0.0500	0.0523		mg/Kg		105	78 ₋ 126	
trans-1,3-Dichloropropene	0.0500	0.0569		mg/Kg		114	73 - 123	
Trichloroethene	0.0500	0.0512		mg/Kg		102	77 - 129	
Trichlorofluoromethane	0.0500	0.0453		mg/Kg		91	65 - 146	
Vinyl chloride	0.0500	0.0522		mg/Kg		104	61 - 133	
cis-1,3-Dichloropropene	0.0500	0.0543		mg/Kg		109	80 - 120	
Styrene	0.0500	0.0535		mg/Kg		107	80 - 120	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	93		64 - 126
4-Bromofluorobenzene (Surr)	100		72 - 126
Toluene-d8 (Surr)	101		71 - 125

Lab Sample ID: 480-159204-9 MSD

Matrix: Solid

Client Sample ID: AMSF-CS-ES-SS-G1

			Prep Type: Total/NA							
			Prep Ba	itch: 49	2516					
			%Rec.		RPD					
nit	D	%Rec	Limits	RPD	Limit					
a/Ka	- 75	100	77 121		20					

Analysis Batch: 492443									Prep Ba	atch: 49	3 2516
	•	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	ND	vs	0.0592	0.0646	VS	mg/Kg	₩	109	77 - 121	3	30
1,1,2,2-Tetrachloroethane	ND	F1 vs	0.0592	0.0477	vs	mg/Kg	₩	81	80 - 120	6	30
1,1,2-Trichloro-1,2,2-trifluoroetha	ND	VS	0.0592	0.0638	VS	mg/Kg	₩	108	60 - 140	3	30
ne											
1,1,2-Trichloroethane	ND	VS	0.0592	0.0518		mg/Kg	☼	88	78 - 122	8	30
1,1-Dichloroethane	ND	VS	0.0592	0.0599	VS	mg/Kg	₽	101	73 - 126	2	30
1,1-Dichloroethene	ND	VS	0.0592	0.0624	VS	mg/Kg	☼	105	59 - 125	4	30
1,2,4-Trichlorobenzene	ND	F1 vs	0.0592	0.0325	F1 vs	mg/Kg	₽	55	64 - 120	2	30
1,2-Dibromo-3-Chloropropane	ND	vs	0.0592	0.0415	VS	mg/Kg	₩	70	63 - 124	13	30
1,2-Dichlorobenzene	ND	vs	0.0592	0.0475	VS	mg/Kg	₩	80	75 - 120	1	30
1,2-Dichloroethane	ND	VS	0.0592	0.0538	VS	mg/Kg	₩.	91	77 - 122	6	30
1,2-Dichloropropane	ND	vs	0.0592	0.0565	vs	mg/Kg	₩	95	75 - 124	2	30
1,3-Dichlorobenzene	ND	VS	0.0592	0.0501	VS	mg/Kg	₩	85	74 - 120	2	30
1,4-Dichlorobenzene	ND	VS	0.0592	0.0493	VS	mg/Kg	₩.	83	73 - 120	2	30
2-Butanone (MEK)	ND	F1 vs	0.296	0.178	F1 vs	mg/Kg	☼	60	70 - 134	11	30
2-Hexanone	ND	F1 vs	0.296	0.173	F1 vs	mg/Kg	₩	58	59 - 130	9	30
4-Methyl-2-pentanone (MIBK)	ND	F1 vs	0.296	0.198	VS	mg/Kg	₩	67	65 - 133	11	30
Acetone	ND	F1 vs	0.296	0.167	F1 vs	mg/Kg	₩	56	61 - 137	8	30
Benzene	ND	VS	0.0592	0.0581	VS	mg/Kg	₩	98	79 - 127	2	30
Bromoform	ND	* vs	0.0592	0.0522	VS	mg/Kg	₩.	88	68 - 126	3	30
Bromomethane	ND	vs	0.0592	0.0457	vs	mg/Kg	₩	77	37 - 149	5	30
Carbon disulfide	ND	VS	0.0592	0.0548	VS	mg/Kg	☼	93	64 - 131	1	30
Carbon tetrachloride	ND	VS	0.0592	0.0673	VS	mg/Kg	₩.	114	75 - 135	1	30
Chlorobenzene	ND	vs	0.0592	0.0541	vs	mg/Kg	☼	91	76 - 124	0	30
Dibromochloromethane	ND	* vs	0.0592	0.0613	VS	mg/Kg	₽	104	76 - 125	1	30
Chloroethane	ND	VS	0.0592	0.0654	VS	mg/Kg	₽	110	69 - 135	6	30
Chloroform	ND	VS	0.0592	0.0617	VS	mg/Kg	₩	104	80 - 120	4	30

Eurofins TestAmerica, Buffalo

Page 80 of 135

10/4/2019

Client: Stantec Consulting Corp. Job ID: 480-159204-1 Project/Site: Alliance BCP Site (AMSF)

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-159204-9 MSD

Matrix: Solid

Analysis Batch: 492443

Client Sample ID: AMSF-CS-ES-SS-G1

Prep Type: Total/NA

Prep Batch: 492516 RPD

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloromethane	ND	VS	0.0592	0.0484	VS	mg/Kg	₩	82	63 - 127	10	30
cis-1,2-Dichloroethene	ND	VS	0.0592	0.0588	VS	mg/Kg		99	80 - 120	2	30
Cyclohexane	ND	VS	0.0592	0.0553	VS	mg/Kg	☼	93	65 - 120	3	30
Bromodichloromethane	ND	VS	0.0592	0.0618	VS	mg/Kg	☼	104	80 - 122	1	30
Dichlorodifluoromethane	ND	VS	0.0592	0.0561	VS	mg/Kg	₩.	95	57 - 142	1	30
Ethylbenzene	ND	VS	0.0592	0.0564	VS	mg/Kg	₩	95	80 - 120	1	30
1,2-Dibromoethane	ND	VS	0.0592	0.0479	VS	mg/Kg	☼	81	78 - 120	4	30
Isopropylbenzene	ND	VS	0.0592	0.0598	VS	mg/Kg	₩.	101	72 - 120	1	30
Methyl acetate	ND	F1 vs	0.118	0.0576	F1 vs	mg/Kg	₩	49	55 ₋ 136	1	30
Methyl tert-butyl ether	ND	vs	0.0592	0.0526	VS	mg/Kg	☼	89	63 - 125	8	30
Methylcyclohexane	ND	VS	0.0592	0.0533	VS	mg/Kg		90	60 - 140	1	30
Methylene Chloride	ND	VS	0.0592	0.0577	VS	mg/Kg	☼	97	61 - 127	5	30
Tetrachloroethene	ND	vs	0.0592	0.0589	VS	mg/Kg	☼	100	74 - 122	2	30
Toluene	ND	VS	0.0592	0.0576	VS	mg/Kg	₩	97	74 - 128	1	30
trans-1,2-Dichloroethene	ND	vs	0.0592	0.0619	VS	mg/Kg	☼	105	78 ₋ 126	3	30
trans-1,3-Dichloropropene	ND	vs	0.0592	0.0488	VS	mg/Kg	☼	82	73 - 123	0	30
Trichloroethene	ND	VS	0.0592	0.0583	VS	mg/Kg	₩	99	77 - 129	2	30
Trichlorofluoromethane	ND	VS	0.0592	0.0658	VS	mg/Kg	☼	111	65 - 146	4	30
Vinyl chloride	ND	VS	0.0592	0.0601	VS	mg/Kg	☼	102	61 - 133	11	30
cis-1,3-Dichloropropene	ND	F1 vs	0.0592	0.0466	F1 vs	mg/Kg		79	80 - 120	5	30
Styrene	ND	vs	0.0592	0.0509	VS	mg/Kg	☼	86	80 - 120	1	30

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	92		64 - 126
4-Bromofluorobenzene (Surr)	95		72 - 126
Toluene-d8 (Surr)	102		71 - 125

Lab Sample ID: 480-159204-9MS

Matrix: Solid

Analysis Batch: 492443

Client Sample ID	: AMSF-CS-ES-SS-G1
	Prep Type: Total/NA

Prep Batch: 492516

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	ND	VS	0.0573	0.0630	VS	mg/Kg	₽	110	77 - 121	
1,1,2,2-Tetrachloroethane	ND	F1 vs	0.0573	0.0449	F1 vs	mg/Kg	₩	78	80 - 120	
1,1,2-Trichloro-1,2,2-trifluoroetha	ND	VS	0.0573	0.0618	VS	mg/Kg	₩	108	60 - 140	
ne										
1,1,2-Trichloroethane	ND	VS	0.0573	0.0480	VS	mg/Kg	₩	84	78 - 122	
1,1-Dichloroethane	ND	vs	0.0573	0.0586	VS	mg/Kg	₩	102	73 - 126	
1,1-Dichloroethene	ND	vs	0.0573	0.0600	VS	mg/Kg	₩	105	59 - 125	
1,2,4-Trichlorobenzene	ND	F1 vs	0.0573	0.0330	F1 vs	mg/Kg	\$	58	64 - 120	
1,2-Dibromo-3-Chloropropane	ND	vs	0.0573	0.0366	VS	mg/Kg	₩	64	63 - 124	
1,2-Dichlorobenzene	ND	VS	0.0573	0.0479	VS	mg/Kg	₩	84	75 - 120	
1,2-Dichloroethane	ND	VS	0.0573	0.0506	VS	mg/Kg	\$	88	77 - 122	
1,2-Dichloropropane	ND	vs	0.0573	0.0551	VS	mg/Kg	₩	96	75 - 124	
1,3-Dichlorobenzene	ND	VS	0.0573	0.0510	VS	mg/Kg	₩	89	74 - 120	
1,4-Dichlorobenzene	ND	VS	0.0573	0.0501	VS	mg/Kg	₩.	87	73 - 120	
2-Butanone (MEK)	ND	F1 vs	0.286	0.159	F1 vs	mg/Kg	₩	56	70 - 134	
2-Hexanone	ND	F1 vs	0.286	0.157	F1 vs	mg/Kg	≎	55	59 - 130	
4-Methyl-2-pentanone (MIBK)	ND	F1 vs	0.286	0.177	F1 vs	ma/Ka	₩.	62	65 - 133	

Eurofins TestAmerica, Buffalo

Page 81 of 135

MS MS

Result Qualifier Unit

Spike

Added

Job ID: 480-159204-1

Client: Stantec Consulting Corp. Project/Site: Alliance BCP Site (AMSF)

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Sample Sample

Result Qualifier

Lab Sample ID: 480-159204-9MS

Matrix: Solid

Analyte

Analysis Batch: 492443

Client Sample ID: AMSF-CS-ES-SS-G1

D %Rec

Limits

Prep Type: Total/NA

Prep Batch: 492516 %Rec.

Acetone	ND F1	vs 0.286	0.153	F1 vs	mg/Kg	-	54	61 - 137	
Benzene	ND vs	0.0573	0.0571	VS	mg/Kg	₩	100	79 - 127	
Bromoform	ND * vs	0.0573	0.0504	VS	mg/Kg	₩	88	68 - 126	
Bromomethane	ND vs	0.0573	0.0481	VS	mg/Kg	₩	84	37 - 149	
Carbon disulfide	ND vs	0.0573	0.0553	VS	mg/Kg	≎	97	64 - 131	
Carbon tetrachloride	ND vs	0.0573	0.0667	VS	mg/Kg	₽	116	75 - 135	
Chlorobenzene	ND vs	0.0573	0.0539	VS	mg/Kg	≎	94	76 - 124	
Dibromochloromethane	ND * vs	0.0573	0.0605	VS	mg/Kg	≎	106	76 - 125	
Chloroethane	ND vs	0.0573	0.0613	VS	mg/Kg	₽	107	69 - 135	
Chloroform	ND vs	0.0573	0.0592	VS	mg/Kg	≎	103	80 - 120	
Chloromethane	ND vs	0.0573	0.0440	VS	mg/Kg	≎	77	63 - 127	
cis-1,2-Dichloroethene	ND vs	0.0573	0.0576	VS	mg/Kg	₩	101	80 - 120	
Cyclohexane	ND vs	0.0573	0.0539	vs	mg/Kg	₩	94	65 - 120	
Bromodichloromethane	ND vs	0.0573	0.0611	VS	mg/Kg	≎	107	80 - 122	
Dichlorodifluoromethane	ND vs	0.0573	0.0557	VS	mg/Kg	₩	97	57 - 142	
Ethylbenzene	ND vs	0.0573	0.0559	VS	mg/Kg	≎	98	80 - 120	
1,2-Dibromoethane	ND vs	0.0573	0.0460	VS	mg/Kg	₩	80	78 - 120	
Isopropylbenzene	ND vs	0.0573	0.0606	VS	mg/Kg	₽	106	72 - 120	
Methyl acetate	ND F1	vs 0.115	0.0581	F1 vs	mg/Kg	₩	51	55 - 136	
Methyl tert-butyl ether	ND vs	0.0573	0.0485	VS	mg/Kg	≎	85	63 - 125	
Methylcyclohexane	ND vs	0.0573	0.0530	VS	mg/Kg	₽	92	60 - 140	
Methylene Chloride	ND vs	0.0573	0.0549	vs	mg/Kg	₩	96	61 - 127	
Tetrachloroethene	ND vs	0.0573	0.0580	vs	mg/Kg	₩	101	74 - 122	
Toluene	ND vs	0.0573	0.0573	VS	mg/Kg	₩	100	74 - 128	
trans-1,2-Dichloroethene	ND vs	0.0573	0.0603	vs	mg/Kg	₩	105	78 ₋ 126	
trans-1,3-Dichloropropene	ND vs	0.0573	0.0490	VS	mg/Kg	₩	85	73 - 123	
Trichloroethene	ND vs	0.0573	0.0573	VS	mg/Kg	₩	100	77 - 129	
Trichlorofluoromethane	ND vs	0.0573	0.0631	VS	mg/Kg	₩	110	65 - 146	
Vinyl chloride	ND vs	0.0573	0.0541	VS	mg/Kg	₩	94	61 - 133	
cis-1,3-Dichloropropene	ND F1	vs 0.0573	0.0490	VS	mg/Kg	₩	86	80 - 120	

0.0573

0.0512 vs

mg/Kg

₩

MS MS

ND vs

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	88		64 - 126
4-Bromofluorobenzene (Surr)	93		72 - 126
Toluene-d8 (Surr)	101		71 - 125

Lab Sample ID: MB 480-493643/8

Matrix: Water

Styrene

Analysis Batch: 493643

Client Sample ID: Method Blank

80 - 120

Prep Type: Total/NA

	MR	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0		ug/L			09/24/19 12:24	1
1,1,2,2-Tetrachloroethane	ND		1.0		ug/L			09/24/19 12:24	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0		ug/L			09/24/19 12:24	1
1,1,2-Trichloroethane	ND		1.0		ug/L			09/24/19 12:24	1
1,1-Dichloroethane	ND		1.0		ug/L			09/24/19 12:24	1
1,1-Dichloroethene	ND		1.0		ug/L			09/24/19 12:24	1

Eurofins TestAmerica, Buffalo

Client: Stantec Consulting Corp. Job ID: 480-159204-1

Project/Site: Alliance BCP Site (AMSF)

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-493643/8

Matrix: Water

Client	Sample	ID:	Metho	d Blank	
	Pre	ep 1	vpe: 1	Γotal/NA	

Analysis Batch: 493643	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,3-Trichlorobenzene	ND		1.0		ug/L			09/24/19 12:24	1
1,2,3-Trichloropropane	ND		1.0		ug/L			09/24/19 12:24	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			09/24/19 12:24	1
1,2,4-Trimethylbenzene	ND		1.0		ug/L			09/24/19 12:24	1
1,2-Dibromo-3-Chloropropane	ND		1.0		ug/L			09/24/19 12:24	1
1,2-Dichlorobenzene	ND		1.0		ug/L			09/24/19 12:24	1
1,2-Dichloroethane	ND		1.0		ug/L			09/24/19 12:24	1
1,2-Dichloropropane	ND		1.0		ug/L			09/24/19 12:24	1
1,3,5-Trimethylbenzene	ND		1.0		ug/L			09/24/19 12:24	1
1,3-Dichlorobenzene	ND		1.0		ug/L			09/24/19 12:24	1
1,3-Dichloropropane	ND		1.0		ug/L			09/24/19 12:24	1
1,4-Dichlorobenzene	ND		1.0		ug/L			09/24/19 12:24	1
2-Butanone (MEK)	ND		10		ug/L			09/24/19 12:24	
2-Hexanone	ND		5.0		ug/L			09/24/19 12:24	1
4-Isopropyltoluene	ND		1.0		ug/L			09/24/19 12:24	1
4-Methyl-2-pentanone (MIBK)	ND		5.0		ug/L			09/24/19 12:24	
Acetone (WIBIC)	ND		10		ug/L			09/24/19 12:24	1
Benzene	ND ND		1.0		ug/L ug/L			09/24/19 12:24	1
Bromoform	ND		1.0					09/24/19 12:24	' 1
	ND ND				ug/L			09/24/19 12:24	-
Bromomethane	ND ND		1.0		ug/L				1
Carbon disulfide			1.0		ug/L			09/24/19 12:24	1
Carbon tetrachloride	ND		1.0		ug/L			09/24/19 12:24	1
Chlorobenzene	ND		1.0		ug/L			09/24/19 12:24	1
Dibromochloromethane	ND		1.0		ug/L			09/24/19 12:24	
Chloroethane	ND		1.0		ug/L			09/24/19 12:24	1
Chloroform	ND		1.0		ug/L			09/24/19 12:24	1
Chloromethane	ND		1.0		ug/L			09/24/19 12:24	
cis-1,2-Dichloroethene	ND		1.0		ug/L			09/24/19 12:24	1
Cyclohexane	ND		1.0		ug/L			09/24/19 12:24	1
Bromodichloromethane	ND		1.0		ug/L			09/24/19 12:24	1
Dichlorodifluoromethane	ND		1.0		ug/L			09/24/19 12:24	1
Ethylbenzene	ND		1.0		ug/L			09/24/19 12:24	1
1,2-Dibromoethane	ND		1.0		ug/L			09/24/19 12:24	1
Isopropylbenzene	ND		1.0		ug/L			09/24/19 12:24	1
Methyl acetate	ND		2.5		ug/L			09/24/19 12:24	1
Methyl tert-butyl ether	ND		1.0		ug/L			09/24/19 12:24	1
Methylcyclohexane	ND		1.0		ug/L			09/24/19 12:24	1
Methylene Chloride	ND		1.0		ug/L			09/24/19 12:24	1
Naphthalene	ND		1.0		ug/L			09/24/19 12:24	1
n-Butylbenzene	ND		1.0		ug/L			09/24/19 12:24	1
N-Propylbenzene	ND		1.0		ug/L			09/24/19 12:24	1
sec-Butylbenzene	ND		1.0		ug/L			09/24/19 12:24	1
Tetrachloroethene	ND		1.0		ug/L			09/24/19 12:24	1
Toluene	ND		1.0		ug/L			09/24/19 12:24	1
trans-1,2-Dichloroethene	ND		1.0		ug/L			09/24/19 12:24	1
trans-1,3-Dichloropropene	ND		1.0		ug/L			09/24/19 12:24	1
Trichloroethene	ND		1.0		ug/L			09/24/19 12:24	1
Trichlorofluoromethane	ND		1.0		ug/L			09/24/19 12:24	1
Vinyl chloride	ND		1.0		ug/L			09/24/19 12:24	1

Eurofins TestAmerica, Buffalo

Page 83 of 135

Client: Stantec Consulting Corp. Project/Site: Alliance BCP Site (AMSF) Job ID: 480-159204-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-493643/8

Matrix: Water

Analysis Batch: 493643

Client Sample ID: Method Blank

Prep Type: Total/NA

	MR	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	ND		2.0		ug/L			09/24/19 12:24	1
cis-1,3-Dichloropropene	ND		1.0		ug/L			09/24/19 12:24	1
Styrene	ND		1.0		ug/L			09/24/19 12:24	1
tert-Butylbenzene	ND		1.0		ug/L			09/24/19 12:24	1
Ethyl acetate	ND		1.0		ug/L			09/24/19 12:24	1

MB MB Qualifier Limits Prepared Analyzed Dil Fac Surrogate %Recovery 77 - 120 1,2-Dichloroethane-d4 (Surr) 09/24/19 12:24 99 4-Bromofluorobenzene (Surr) 107 73 - 120 09/24/19 12:24 1 80 - 120 09/24/19 12:24 Toluene-d8 (Surr) 104 1 Dibromofluoromethane (Surr) 100 75 - 123 09/24/19 12:24

Lab Sample ID: LCS 480-493643/5

Matrix: Water

Client Sample	ID:	Lab	Co	ntrol	Sam	ple
		Prep	Ту	pe:	Total	/NA

Analysis Batch: 493643							Trop Type: Total/IVA
Analysis Batch. 493043	Spike	LCS	LCS				%Rec.
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	25.0	24.4		ug/L		97	73 - 126
1,1,2,2-Tetrachloroethane	25.0	22.6		ug/L		91	76 - 120
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	21.7		ug/L		87	61 - 148
ne							
1,1,2-Trichloroethane	25.0	24.0		ug/L		96	76 - 122
1,1-Dichloroethane	25.0	23.6		ug/L		94	77 - 120
1,1-Dichloroethene	25.0	22.8		ug/L		91	66 - 127
1,2,3-Trichlorobenzene	25.0	24.5		ug/L		98	75 - 123
1,2,3-Trichloropropane	25.0	23.0		ug/L		92	68 - 122
1,2,4-Trichlorobenzene	25.0	24.4		ug/L		98	79 ₋ 122
1,2,4-Trimethylbenzene	25.0	24.1		ug/L		96	76 ₋ 121
1,2-Dibromo-3-Chloropropane	25.0	20.6		ug/L		83	56 ₋ 134
1,2-Dichlorobenzene	25.0	24.6		ug/L		98	80 - 124
1,2-Dichloroethane	25.0	24.7		ug/L		99	75 - 120
1,2-Dichloropropane	25.0	25.3		ug/L		101	76 ₋ 120
1,3,5-Trimethylbenzene	25.0	24.0		ug/L		96	77 ₋ 121
1,3-Dichlorobenzene	25.0	24.5		ug/L		98	77 - 120
1,3-Dichloropropane	25.0	24.5		ug/L		98	75 ₋ 120
1,4-Dichlorobenzene	25.0	24.2		ug/L		97	80 - 120
2-Butanone (MEK)	125	137		ug/L		109	57 ₋ 140
2-Hexanone	125	117		ug/L		94	65 ₋ 127
4-Isopropyltoluene	25.0	24.4		ug/L		98	73 ₋ 120
4-Methyl-2-pentanone (MIBK)	125	116		ug/L		93	71 - 125
Acetone	125	162		ug/L		129	56 - 142
Benzene	25.0	25.1		ug/L		100	71 ₋ 124
Bromoform	25.0	22.9		ug/L		92	61 - 132
Bromomethane	25.0	22.8		ug/L		91	55 ₋ 144
Carbon disulfide	25.0	21.9		ug/L		87	59 ₋ 134
Carbon tetrachloride	25.0	22.8		ug/L		91	72 - 134
Chlorobenzene	25.0	24.9		ug/L		100	80 - 120
Dibromochloromethane	25.0	25.2		ug/L		101	75 - 125
Chloroethane	25.0	21.9		ug/L		88	69 - 136
=:::=:==:=:: ▼	20.0			g. -			

Eurofins TestAmerica, Buffalo

Client: Stantec Consulting Corp. Job ID: 480-159204-1

Project/Site: Alliance BCP Site (AMSF)

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-493643/5

Matrix: Water

Analysis Batch: 493643

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Spike LCS LCS %Rec.

Added Result Qualifier **Analyte** Unit %Rec Limits Chloroform 25.0 22.9 ug/L 92 73 - 127 Chloromethane 25.0 22.0 ug/L 88 68 - 124cis-1,2-Dichloroethene 25.0 25.0 ug/L 100 74 - 124 25.0 92 Cyclohexane 23.0 ug/L 59 - 135Bromodichloromethane 25.0 ug/L 100 80 - 122 24.9 Dichlorodifluoromethane 25.0 17.1 68 59 - 135 ug/L Ethylbenzene 25.0 99 77 - 123 24.7 ug/L 25.0 97 1,2-Dibromoethane 24.3 ug/L 77 - 120Isopropylbenzene 25.0 23.9 ug/L 96 77 - 122Methyl acetate 50.0 45 1 90 74 - 133 ug/L Methyl tert-butyl ether 25.0 24.2 ug/L 97 77 - 120ug/L Methylcyclohexane 25.0 23.1 92 68 - 134 Methylene Chloride 25.0 25.7 ug/L 103 75 - 124 Naphthalene 25.0 22.5 ug/L 90 66 - 125 25.0 71 - 128 n-Butylbenzene 23.0 ug/L 92 N-Propylbenzene 25.0 23.6 ug/L 94 75 - 127sec-Butylbenzene 25.0 95 74 - 127 23.7 ug/L Tetrachloroethene 25.0 25.1 100 74 - 122 ug/L Toluene 25.0 23.3 93 80 - 122 ug/L trans-1,2-Dichloroethene 25.0 23.4 94 73 - 127 ug/L 25.0 98 80 - 120 trans-1,3-Dichloropropene 24.4 ug/L Trichloroethene 25.0 24.4 ug/L 97 74 - 123 62 - 150 Trichlorofluoromethane 25.0 23.9 ug/L 96 Vinyl chloride 25.0 22.3 ug/L 89 65 - 133 cis-1,3-Dichloropropene 25.0 26.2 ug/L 105 74 - 124 Styrene 25.0 25.2 101 ug/L 80 - 120

25.0

23.8

ug/L

LCS LCS

MB MB

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	104		77 - 120
4-Bromofluorobenzene (Surr)	105		73 - 120
Toluene-d8 (Surr)	103		80 - 120
Dibromofluoromethane (Surr)	106		75 - 123

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-492549/1-A

Matrix: Water

tert-Butylbenzene

Analysis Batch: 492746

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 492549

75 - 123

95

Analyte	Result Q	Qualifier I	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	ND		5.0		ug/L		09/17/19 15:14	09/18/19 17:54	1
2,4,6-Trichlorophenol	ND	Į	5.0		ug/L		09/17/19 15:14	09/18/19 17:54	1
2,4-Dichlorophenol	ND	5	5.0		ug/L		09/17/19 15:14	09/18/19 17:54	1
2,4-Dimethylphenol	ND		5.0		ug/L		09/17/19 15:14	09/18/19 17:54	1
2,4-Dinitrophenol	ND		10		ug/L		09/17/19 15:14	09/18/19 17:54	1
2,4-Dinitrotoluene	ND	Ę	5.0		ug/L		09/17/19 15:14	09/18/19 17:54	1
2,6-Dinitrotoluene	ND		5.0		ug/L		09/17/19 15:14	09/18/19 17:54	1
2-Chloronaphthalene	ND	į	5.0		ug/L		09/17/19 15:14	09/18/19 17:54	1

Eurofins TestAmerica, Buffalo

Page 85 of 135

Job ID: 480-159204-1 Client: Stantec Consulting Corp. Project/Site: Alliance BCP Site (AMSF)

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-492549/1-A

Matrix: Water

Analysis Batch: 492746

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 492549

Analysis Batch: 492746	мь	MD						Prep Batch:	492549
Analyte		MB Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Chlorophenol	ND		5.0		ug/L		-	09/18/19 17:54	1
2-Methylnaphthalene	ND		5.0		ug/L		09/17/19 15:14	09/18/19 17:54	1
2-Methylphenol	ND		5.0		ug/L		09/17/19 15:14	09/18/19 17:54	1
2-Nitroaniline	ND		10		ug/L			09/18/19 17:54	1
2-Nitrophenol	ND		5.0		ug/L			09/18/19 17:54	1
3,3'-Dichlorobenzidine	ND		5.0		ug/L			09/18/19 17:54	1
3-Nitroaniline	ND		10		ug/L			09/18/19 17:54	1
4,6-Dinitro-2-methylphenol	ND		10		ug/L			09/18/19 17:54	1
4-Bromophenyl phenyl ether	ND		5.0		ug/L			09/18/19 17:54	1
4-Chloro-3-methylphenol	ND		5.0		ug/L			09/18/19 17:54	1
4-Chloroaniline	ND		5.0		ug/L			09/18/19 17:54	· · · · · · · · · · · 1
4-Chlorophenyl phenyl ether	ND		5.0		ug/L			09/18/19 17:54	1
4-Methylphenol	ND		10		ug/L			09/18/19 17:54	1
4-Nitroaniline	ND		10		ug/L			09/18/19 17:54	
4-Nitrophenol	ND		10		ug/L			09/18/19 17:54	1
Acenaphthene	ND ND		5.0		ug/L			09/18/19 17:54	1
	ND		5.0					09/18/19 17:54	
Acetaphanana	ND ND				ug/L				1
Actophenone			5.0		ug/L			09/18/19 17:54	1
Anthracene	ND		5.0		ug/L			09/18/19 17:54	1
Atrazine	ND		5.0		ug/L			09/18/19 17:54	1
Benzaldehyde	ND		5.0		ug/L			09/18/19 17:54	1
Benzo[a]anthracene	ND		5.0		ug/L			09/18/19 17:54	
Benzo[a]pyrene	ND		5.0		ug/L			09/18/19 17:54	1
Benzo[b]fluoranthene	ND		5.0		ug/L			09/18/19 17:54	1
Benzo[g,h,i]perylene	ND		5.0		ug/L			09/18/19 17:54	
Benzo[k]fluoranthene	ND		5.0		ug/L			09/18/19 17:54	1
Biphenyl	ND		5.0		ug/L			09/18/19 17:54	1
bis (2-chloroisopropyl) ether	ND		5.0		ug/L		09/17/19 15:14	09/18/19 17:54	1
Bis(2-chloroethoxy)methane	ND		5.0		ug/L			09/18/19 17:54	1
Bis(2-chloroethyl)ether	ND		5.0		ug/L			09/18/19 17:54	1
Bis(2-ethylhexyl) phthalate	ND		5.0		ug/L		09/17/19 15:14	09/18/19 17:54	1
Butyl benzyl phthalate	ND		5.0		ug/L		09/17/19 15:14	09/18/19 17:54	1
Caprolactam	ND		5.0		ug/L		09/17/19 15:14	09/18/19 17:54	1
Carbazole	ND		5.0		ug/L		09/17/19 15:14	09/18/19 17:54	1
Chrysene	ND		5.0		ug/L		09/17/19 15:14	09/18/19 17:54	1
Dibenz(a,h)anthracene	ND		5.0		ug/L		09/17/19 15:14	09/18/19 17:54	1
Dibenzofuran	ND		10		ug/L		09/17/19 15:14	09/18/19 17:54	1
Diethyl phthalate	ND		5.0		ug/L		09/17/19 15:14	09/18/19 17:54	1
Dimethyl phthalate	ND		5.0		ug/L		09/17/19 15:14	09/18/19 17:54	1
Di-n-butyl phthalate	ND		5.0		ug/L		09/17/19 15:14	09/18/19 17:54	1
Di-n-octyl phthalate	ND		5.0		ug/L		09/17/19 15:14	09/18/19 17:54	1
Fluoranthene	ND		5.0		ug/L			09/18/19 17:54	1
Fluorene	ND		5.0		ug/L			09/18/19 17:54	1
Hexachlorobenzene	ND		5.0		ug/L		09/17/19 15:14	09/18/19 17:54	1
Hexachlorobutadiene	ND		5.0		ug/L			09/18/19 17:54	1
Hexachlorocyclopentadiene	ND		5.0		ug/L			09/18/19 17:54	1
Hexachloroethane	ND		5.0		ug/L			09/18/19 17:54	
Indeno[1,2,3-cd]pyrene	ND		5.0		ug/L			09/18/19 17:54	1
Isophorone	ND		5.0		ug/L			09/18/19 17:54	1

Eurofins TestAmerica, Buffalo

Page 86 of 135

Client: Stantec Consulting Corp.
Project/Site: Alliance BCP Site (AMSF)

Job ID: 480-159204-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-492549/1-A

Matrix: Water

Analysis Batch: 492746

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 492549

	MB I	МВ							
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND ND		5.0		ug/L		09/17/19 15:14	09/18/19 17:54	1
Nitrobenzene	ND		5.0		ug/L		09/17/19 15:14	09/18/19 17:54	1
N-Nitrosodi-n-propylamine	ND		5.0		ug/L		09/17/19 15:14	09/18/19 17:54	1
N-Nitrosodiphenylamine	ND		5.0		ug/L		09/17/19 15:14	09/18/19 17:54	1
Pentachlorophenol	ND		10		ug/L		09/17/19 15:14	09/18/19 17:54	1
Phenanthrene	ND		5.0		ug/L		09/17/19 15:14	09/18/19 17:54	1
Phenol	ND		5.0		ug/L		09/17/19 15:14	09/18/19 17:54	1
Pyrene	ND		5.0		ug/L		09/17/19 15:14	09/18/19 17:54	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	89	41 - 120	09/17/19 15:14	09/18/19 17:54	1
2-Fluorobiphenyl	90	48 - 120	09/17/19 15:14	09/18/19 17:54	1
2-Fluorophenol	57	35 - 120	09/17/19 15:14	09/18/19 17:54	1
Nitrobenzene-d5	80	46 - 120	09/17/19 15:14	09/18/19 17:54	1
Phenol-d5	43	22 - 120	09/17/19 15:14	09/18/19 17:54	1
p-Terphenyl-d14	98	60 - 148	09/17/19 15:14	09/18/19 17:54	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 492549 %Rec.

Lab Sample ID: LCS 480-492549/2-A

Matrix: Water

Analysis Batch: 492746

Client Sample ID

Analysis Batch: 492746	Spike	LCS	LCS			Prep Batch: 4925 %Rec.
Analyte	Added	Result	Qualifier	Unit	D %Rec	Limits
2,4,5-Trichlorophenol	32.0	35.0		ug/L	109	65 - 126
2,4,6-Trichlorophenol	32.0	38.2		ug/L	119	64 - 120
2,4-Dichlorophenol	32.0	33.7		ug/L	105	63 - 120
2,4-Dimethylphenol	32.0	31.4		ug/L	98	47 - 120
2,4-Dinitrophenol	64.0	73.2		ug/L	114	31 - 137
2,4-Dinitrotoluene	32.0	36.2		ug/L	113	69 - 120
2,6-Dinitrotoluene	32.0	34.0		ug/L	106	68 - 120
2-Chloronaphthalene	32.0	30.9		ug/L	97	58 ₋ 120
2-Chlorophenol	32.0	28.1		ug/L	88	48 - 120
2-Methylnaphthalene	32.0	29.5		ug/L	92	59 - 120
2-Methylphenol	32.0	27.4		ug/L	86	39 - 120
2-Nitroaniline	32.0	34.2		ug/L	107	54 - 127
2-Nitrophenol	32.0	31.3		ug/L	98	52 - 125
3,3'-Dichlorobenzidine	64.0	71.7		ug/L	112	49 - 135
3-Nitroaniline	32.0	28.0		ug/L	87	51 ₋ 120
4,6-Dinitro-2-methylphenol	64.0	80.0		ug/L	125	46 - 136
4-Bromophenyl phenyl ether	32.0	35.0		ug/L	109	65 - 120
4-Chloro-3-methylphenol	32.0	32.8		ug/L	102	61 - 123
4-Chloroaniline	32.0	25.7		ug/L	80	30 - 120
4-Chlorophenyl phenyl ether	32.0	34.4		ug/L	108	62 - 120
4-Methylphenol	32.0	27.6		ug/L	86	29 - 131
4-Nitroaniline	32.0	38.1		ug/L	119	65 - 120
4-Nitrophenol	64.0	75.9		ug/L	119	45 - 120
Acenaphthene	32.0	31.6		ug/L	99	60 - 120
Acenaphthylene	32.0	31.7		ug/L	99	63 - 120
Acetophenone	32.0	30.6		ug/L	95	45 - 120

Eurofins TestAmerica, Buffalo

Page 87 of 135

2

3

b

8

10

12

14

15

Spike

Added

32.0

LCS LCS

33.4

Result Qualifier

Unit

ug/L

Client: Stantec Consulting Corp. Project/Site: Alliance BCP Site (AMSF) Job ID: 480-159204-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-492549/2-A

Matrix: Water

Analyte

Anthracene

Naphthalene Nitrobenzene

N-Nitrosodi-n-propylamine

N-Nitrosodiphenylamine

Pentachlorophenol

Phenanthrene

Phenol

Pyrene

Analysis Batch: 492746

Client Sample ID: Lab Control Sample Prep Type: Total/NA

D %Rec

104

Limits

67 - 120

Prep Batch: 492549 %Rec.

			•			
Atrazine	64.0	89.7 *	ug/L	140	71 - 130	
Benzaldehyde	64.0	56.1	ug/L	88	10 - 140	
Benzo[a]anthracene	32.0	32.4	ug/L	101	70 - 121	
Benzo[a]pyrene	32.0	30.2	ug/L	94	60 - 123	
Benzo[b]fluoranthene	32.0	33.7	ug/L	105	66 - 126	
Benzo[g,h,i]perylene	32.0	35.9	ug/L	112	66 - 150	
Benzo[k]fluoranthene	32.0	34.0	ug/L	106	65 - 124	
Biphenyl	32.0	31.4	ug/L	98	59 - 120	
bis (2-chloroisopropyl) ether	32.0	20.0	ug/L	63	21 - 136	
Bis(2-chloroethoxy)methane	32.0	28.0	ug/L	88	50 - 128	
Bis(2-chloroethyl)ether	32.0	25.2	ug/L	79	44 - 120	
Bis(2-ethylhexyl) phthalate	32.0	33.5	ug/L	105	63 - 139	
Butyl benzyl phthalate	32.0	32.9	ug/L	103	70 - 129	
Caprolactam	64.0	23.1	ug/L	36	22 - 120	
Carbazole	32.0	33.4	ug/L	104	66 - 123	
Chrysene	32.0	32.4	ug/L	101	69 - 120	
Dibenz(a,h)anthracene	32.0	36.5	ug/L	114	65 - 135	
Dibenzofuran	32.0	33.0	ug/L	103	66 - 120	
Diethyl phthalate	32.0	37.0	ug/L	116	59 - 127	
Dimethyl phthalate	32.0	35.1	ug/L	110	68 - 120	
Di-n-butyl phthalate	32.0	35.3	ug/L	110	69 - 131	
Di-n-octyl phthalate	32.0	34.2	ug/L	107	63 - 140	
Fluoranthene	32.0	34.5	ug/L	108	69 - 126	
Fluorene	32.0	33.9	ug/L	106	66 - 120	
Hexachlorobenzene	32.0	37.7	ug/L	118	61 - 120	
Hexachlorobutadiene	32.0	31.3	ug/L	98	35 - 120	
Hexachlorocyclopentadiene	32.0	24.5	ug/L	76	31 - 120	
Hexachloroethane	32.0	26.7	ug/L	83	43 - 120	
Indeno[1,2,3-cd]pyrene	32.0	35.5	ug/L	111	69 - 146	
Isophorone	32.0	28.8	ug/L	90	55 ₋ 120	

32.0

32.0

32.0

32.0

64.0

32.0

32.0

32.0

29.4

29.3

29.5

32.7

64.6

34.7

17.8

33.1

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

92

91

92

102

101

109

56

104

57 - 120

53 - 123

32 - 140

61 - 120

29 - 136

68 - 120

17 - 120

70 - 125

LCS LCS

	LUS	LUJ	
Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol	128	X	41 - 120
2-Fluorobiphenyl	97		48 - 120
2-Fluorophenol	67		35 - 120
Nitrobenzene-d5	85		46 - 120
Phenol-d5	53		22 - 120
p-Terphenyl-d14	101		60 - 148

Eurofins TestAmerica, Buffalo

Page 88 of 135

Client: Stantec Consulting Corp. Job ID: 480-159204-1

Project/Site: Alliance BCP Site (AMSF)

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-493581/1-A

Matrix: Solid

Analysis Batch: 493753

Client Sample ID: Method Blank **Prep Type: Total/NA** Prep Batch: 493581

Analysis Batch: 493753	MB MB					Prep Batch:	493581
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol		0.17	mg/Kg		09/23/19 14:27	09/24/19 13:20	1
2,4,6-Trichlorophenol	ND	0.17	mg/Kg		09/23/19 14:27	09/24/19 13:20	1
2,4-Dichlorophenol	ND	0.17	mg/Kg		09/23/19 14:27	09/24/19 13:20	1
2,4-Dimethylphenol	ND	0.17	mg/Kg		09/23/19 14:27	09/24/19 13:20	1
2,4-Dinitrophenol	ND	0.33	mg/Kg		09/23/19 14:27	09/24/19 13:20	1
2,4-Dinitrotoluene	ND	0.17	mg/Kg		09/23/19 14:27	09/24/19 13:20	1
2,6-Dinitrotoluene	ND	0.17	mg/Kg		09/23/19 14:27	09/24/19 13:20	1
2-Chloronaphthalene	ND	0.17	mg/Kg		09/23/19 14:27	09/24/19 13:20	1
2-Chlorophenol	ND	0.17	mg/Kg		09/23/19 14:27	09/24/19 13:20	1
2-Methylnaphthalene	ND	0.17	mg/Kg		09/23/19 14:27	09/24/19 13:20	1
2-Methylphenol	ND	0.17	mg/Kg		09/23/19 14:27	09/24/19 13:20	1
2-Nitroaniline	ND	0.33	mg/Kg		09/23/19 14:27	09/24/19 13:20	1
2-Nitrophenol	ND	0.17	mg/Kg		09/23/19 14:27	09/24/19 13:20	1
3,3'-Dichlorobenzidine	ND	0.17	mg/Kg		09/23/19 14:27	09/24/19 13:20	1
3-Nitroaniline	ND	0.33	mg/Kg		09/23/19 14:27	09/24/19 13:20	1
4,6-Dinitro-2-methylphenol	ND	0.33	mg/Kg		09/23/19 14:27	09/24/19 13:20	1
4-Bromophenyl phenyl ether	ND	0.17	mg/Kg		09/23/19 14:27	09/24/19 13:20	1
4-Chloro-3-methylphenol	ND	0.17	mg/Kg		09/23/19 14:27	09/24/19 13:20	1
4-Chloroaniline	ND	0.17	mg/Kg		09/23/19 14:27	09/24/19 13:20	1
4-Chlorophenyl phenyl ether	ND	0.17	mg/Kg		09/23/19 14:27	09/24/19 13:20	1
4-Methylphenol	ND	0.33	mg/Kg		09/23/19 14:27	09/24/19 13:20	1
4-Nitroaniline	ND	0.33	mg/Kg		09/23/19 14:27	09/24/19 13:20	1
4-Nitrophenol	ND	0.33	mg/Kg		09/23/19 14:27	09/24/19 13:20	1
Acenaphthene	ND	0.17	mg/Kg		09/23/19 14:27	09/24/19 13:20	1
Acenaphthylene	ND	0.17	mg/Kg		09/23/19 14:27	09/24/19 13:20	1
Acetophenone	ND	0.17	mg/Kg		09/23/19 14:27	09/24/19 13:20	1
Anthracene	ND	0.17	mg/Kg		09/23/19 14:27	09/24/19 13:20	1
Atrazine	ND	0.17	mg/Kg		09/23/19 14:27	09/24/19 13:20	1
Benzaldehyde	ND	0.17	mg/Kg		09/23/19 14:27	09/24/19 13:20	1
Benzo(a)anthracene	ND	0.17	mg/Kg		09/23/19 14:27	09/24/19 13:20	1
Benzo(a)pyrene	ND	0.17	mg/Kg		09/23/19 14:27	09/24/19 13:20	1
Benzo(b)fluoranthene	ND	0.17	mg/Kg		09/23/19 14:27	09/24/19 13:20	1
Benzo(g,h,i)perylene	ND	0.17	mg/Kg		09/23/19 14:27	09/24/19 13:20	1
Benzo(k)fluoranthene	ND	0.17	mg/Kg		09/23/19 14:27	09/24/19 13:20	1
Biphenyl	ND	0.17	mg/Kg		09/23/19 14:27	09/24/19 13:20	1
bis (2-chloroisopropyl) ether	ND	0.17	mg/Kg		09/23/19 14:27	09/24/19 13:20	1
Bis(2-chloroethoxy)methane	ND	0.17	mg/Kg			09/24/19 13:20	1
Bis(2-chloroethyl)ether	ND	0.17	mg/Kg		09/23/19 14:27	09/24/19 13:20	1
Bis(2-ethylhexyl) phthalate	ND	0.17	mg/Kg		09/23/19 14:27	09/24/19 13:20	1
Butyl benzyl phthalate	ND	0.17	mg/Kg			09/24/19 13:20	1
Caprolactam	ND	0.17	mg/Kg		09/23/19 14:27	09/24/19 13:20	1
Carbazole	ND	0.17	mg/Kg		09/23/19 14:27	09/24/19 13:20	1
Chrysene	ND	0.17	mg/Kg			09/24/19 13:20	1
Dibenz(a,h)anthracene	ND	0.17	mg/Kg			09/24/19 13:20	1
Dibenzofuran	ND	0.17	mg/Kg		09/23/19 14:27	09/24/19 13:20	1
Diethyl phthalate	ND	0.17	mg/Kg		09/23/19 14:27	09/24/19 13:20	1
Dimethyl phthalate	ND	0.17	mg/Kg			09/24/19 13:20	1
Di-n-butyl phthalate	ND	0.17	mg/Kg			09/24/19 13:20	1

Eurofins TestAmerica, Buffalo

Page 89 of 135

Client: Stantec Consulting Corp.

Job ID: 480-159204-1

Project/Site: Alliance BCP Site (AMSF)

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-493	581/1-A
---------------------------	---------

Matrix: Solid

Analysis Batch: 493753

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 493581

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Di-n-octyl phthalate	ND		0.17		mg/Kg		09/23/19 14:27	09/24/19 13:20	1
Fluoranthene	ND		0.17		mg/Kg		09/23/19 14:27	09/24/19 13:20	1
Fluorene	ND		0.17		mg/Kg		09/23/19 14:27	09/24/19 13:20	1
Hexachlorobenzene	ND		0.17		mg/Kg		09/23/19 14:27	09/24/19 13:20	1
Hexachlorobutadiene	ND		0.17		mg/Kg		09/23/19 14:27	09/24/19 13:20	1
Hexachlorocyclopentadiene	ND		0.17		mg/Kg		09/23/19 14:27	09/24/19 13:20	1
Hexachloroethane	ND		0.17		mg/Kg		09/23/19 14:27	09/24/19 13:20	1
Indeno(1,2,3-cd)pyrene	ND		0.17		mg/Kg		09/23/19 14:27	09/24/19 13:20	1
Isophorone	ND		0.17		mg/Kg		09/23/19 14:27	09/24/19 13:20	1
Naphthalene	ND		0.17		mg/Kg		09/23/19 14:27	09/24/19 13:20	1
Nitrobenzene	ND		0.17		mg/Kg		09/23/19 14:27	09/24/19 13:20	1
N-Nitrosodi-n-propylamine	ND		0.17		mg/Kg		09/23/19 14:27	09/24/19 13:20	1
N-Nitrosodiphenylamine	ND		0.17		mg/Kg		09/23/19 14:27	09/24/19 13:20	1
Pentachlorophenol	ND		0.33		mg/Kg		09/23/19 14:27	09/24/19 13:20	1
Phenanthrene	ND		0.17		mg/Kg		09/23/19 14:27	09/24/19 13:20	1
Phenol	ND		0.17		mg/Kg		09/23/19 14:27	09/24/19 13:20	1
Pyrene	ND		0.17		mg/Kg		09/23/19 14:27	09/24/19 13:20	1

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 2,4,6-Tribromophenol 90 54 - 120 09/23/19 14:27 09/24/19 13:20 95 2-Fluorobiphenyl 60 - 120 09/23/19 14:27 09/24/19 13:20 2-Fluorophenol 89 52 - 120 09/23/19 14:27 09/24/19 13:20 53 - 120 Nitrobenzene-d5 86 09/23/19 14:27 09/24/19 13:20 Phenol-d5 82 54 - 120 09/23/19 14:27 09/24/19 13:20 p-Terphenyl-d14 108 79 - 130 09/23/19 14:27 09/24/19 13:20

Lab Sample ID: LCS 480-493581/2-A

Matrix: Solid

Analysis Batch: 493753

Client Sample II	D: Lab Control Sample
	Pron Type: Total/NA

Prep Batch: 493581

Analysis Batch: 493753	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
2,4,5-Trichlorophenol	1.65	1.68		mg/Kg		102	59 - 126
2,4,6-Trichlorophenol	1.65	1.71		mg/Kg		104	59 - 123
2,4-Dichlorophenol	1.65	1.52		mg/Kg		92	61 - 120
2,4-Dimethylphenol	1.65	1.48		mg/Kg		90	59 - 120
2,4-Dinitrophenol	3.30	2.96		mg/Kg		90	41 - 146
2,4-Dinitrotoluene	1.65	1.68		mg/Kg		102	63 - 120
2,6-Dinitrotoluene	1.65	1.73		mg/Kg		105	66 - 120
2-Chloronaphthalene	1.65	1.60		mg/Kg		97	57 - 120
2-Chlorophenol	1.65	1.45		mg/Kg		88	53 - 120
2-Methylnaphthalene	1.65	1.47		mg/Kg		89	59 - 120
2-Methylphenol	1.65	1.33		mg/Kg		81	54 - 120
2-Nitroaniline	1.65	1.57		mg/Kg		95	61 - 120
2-Nitrophenol	1.65	1.61		mg/Kg		98	56 - 120
3,3'-Dichlorobenzidine	3.30	3.65		mg/Kg		110	54 - 120
3-Nitroaniline	1.65	1.49		mg/Kg		91	48 - 120
4,6-Dinitro-2-methylphenol	3.30	3.89		mg/Kg		118	49 - 122
4-Bromophenyl phenyl ether	1.65	1.73		mg/Kg		105	58 ₋ 120

Eurofins TestAmerica, Buffalo

Page 90 of 135

9

3

_

7

0

10

12

14

15

Client: Stantec Consulting Corp. Project/Site: Alliance BCP Site (AMSF) Job ID: 480-159204-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-493581/2-A

Matrix: Solid

Pyrene

Client Sample ID: Lab Control Sample

Prep Type: Total/NA 581

Analysis Batch: 493753	Spike	LCS	LCS				Prep Batch: 4935 %Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
4-Chloro-3-methylphenol	1.65	1.49		mg/Kg		90	61 - 120
4-Chloroaniline	1.65	1.38		mg/Kg		84	38 - 120
4-Chlorophenyl phenyl ether	1.65	1.58		mg/Kg		96	63 - 124
4-Methylphenol	1.65	1.40		mg/Kg		85	55 - 120
4-Nitroaniline	1.65	1.57		mg/Kg		95	56 - 120
4-Nitrophenol	3.30	2.78		mg/Kg		84	43 - 147
Acenaphthene	1.65	1.57		mg/Kg		95	62 - 120
Acenaphthylene	1.65	1.67		mg/Kg		101	58 - 121
Acetophenone	1.65	1.38		mg/Kg		84	54 ₋ 120
Anthracene	1.65	1.78		mg/Kg		108	62 - 120
Atrazine	3.30	3.21		mg/Kg		97	60 - 127
Benzaldehyde	3.30	2.58		mg/Kg		78	10 - 150
Benzo(a)anthracene	1.65	1.73		mg/Kg		105	65 ₋ 120
Benzo(a)pyrene	1.65	1.78		mg/Kg		108	64 - 120
Benzo(b)fluoranthene	1.65	1.76		mg/Kg		107	64 - 120
Benzo(g,h,i)perylene	1.65	1.88		mg/Kg		114	45 ₋ 145
Benzo(k)fluoranthene	1.65	1.88		mg/Kg		114	65 - 120
Biphenyl	1.65	1.64		mg/Kg		100	59 ₋ 120
bis (2-chloroisopropyl) ether	1.65	1.22		mg/Kg		74	44 - 120
Bis(2-chloroethoxy)methane	1.65	1.48		mg/Kg		90	55 - 120
Bis(2-chloroethyl)ether	1.65	1.39		mg/Kg		84	45 - 120
Bis(2-ethylhexyl) phthalate	1.65	1.87		mg/Kg		113	61 - 133
Butyl benzyl phthalate	1.65	1.88		mg/Kg		114	61 - 129
Caprolactam	3.30	3.19		mg/Kg		97	47 - 120
Carbazole	1.65	1.73		mg/Kg		105	65 - 120
Chrysene	1.65	1.85		mg/Kg		112	64 - 120
Dibenz(a,h)anthracene	1.65	1.84		mg/Kg		111	54 - 132
Dibenzofuran	1.65	1.63		mg/Kg		98	63 - 120
Diethyl phthalate	1.65	1.66		mg/Kg		101	66 - 120
Dimethyl phthalate	1.65	1.70		mg/Kg		103	65 ₋ 124
Di-n-butyl phthalate	1.65	1.82		mg/Kg		110	58 ₋ 130
Di-n-octyl phthalate	1.65	2.10		mg/Kg		127	57 - 133
Fluoranthene	1.65	1.75		mg/Kg		106	62 - 120
Fluorene	1.65	1.64		mg/Kg		99	63 - 120
Hexachlorobenzene	1.65	1.78		mg/Kg		108	60 - 120
Hexachlorobutadiene	1.65	1.43		mg/Kg		87	45 ₋ 120
Hexachlorocyclopentadiene	1.65	1.35		mg/Kg		82	47 - 120
Hexachloroethane	1.65	1.17		mg/Kg		71	41 - 120
Indeno(1,2,3-cd)pyrene	1.65	1.80		mg/Kg		109	56 - 134
Isophorone	1.65	1.51		mg/Kg		91	56 - 120
Naphthalene	1.65	1.49		mg/Kg		90	55 - 120
Nitrobenzene	1.65	1.43		mg/Kg		87	54 - 120
N-Nitrosodi-n-propylamine	1.65	1.31		mg/Kg		80	52 - 120
N-Nitrosodiphenylamine	1.65	1.76		mg/Kg		106	51 - 128
Pentachlorophenol	3.30	3.01		mg/Kg		91	51 - 120
Phenanthrene	1.65	1.72		mg/Kg		104	60 - 120
Phenol	1.65	1.28		mg/Kg		78	53 - 120
Durana	1.00	1.20		9,119		110	64 422

Eurofins TestAmerica, Buffalo

61 - 133

118

Page 91 of 135

1.95

mg/Kg

1.65

Client: Stantec Consulting Corp. Job ID: 480-159204-1 Project/Site: Alliance BCP Site (AMSF)

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-493581/2-A

Matrix: Solid

Biphenyl

bis (2-chloroisopropyl) ether

Analysis Batch: 493753

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 493581

	LUS	LUS	
Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol	113		54 - 120
2-Fluorobiphenyl	104		60 - 120
2-Fluorophenol	89		52 - 120
Nitrobenzene-d5	90		53 - 120
Phenol-d5	85		54 - 120
p-Terphenyl-d14	122		79 - 130

Lab Sample ID: 480-159204-11 MS Client Sample ID: AMSF-CS-ES-SS-C1

Lab Sample ID: 480-159204-11 MS						Client Sample ID: AMSF-CS-ES-SS-C						
Matrix: Solid									Prep Type: Total/NA			
Analysis Batch: 493753	0	0	Omilia		мо				Prep Batch: 493581			
Analyte	-	Sample Qualifier	Spike Added		MS Qualifier	Unit	D	%Rec	%Rec. Limits			
2,4,5-Trichlorophenol	ND	Qualifier	1.97	2.23	Qualifier	mg/Kg	— =	113	46 - 120			
·	ND ND		1.97	2.23			~ ☆	107				
2,4,6-Trichlorophenol	ND ND		1.97	1.63		mg/Kg	₩	83	41 - 123 45 - 120			
2,4-Dichlorophenol				1.03		mg/Kg	.		52 - 120			
2,4-Dimethylphenol	ND		1.97			mg/Kg	₩	73 NC				
2,4-Dinitrophenol	ND		3.93	3.88		mg/Kg	₩	NC	41 - 146			
2,4-Dinitrotoluene	ND		1.97	2.36		mg/Kg		120	63 - 125			
2,6-Dinitrotoluene	ND		1.97	2.16		mg/Kg	\$	110	66 - 120			
2-Chloronaphthalene	ND		1.97	1.65		mg/Kg	₩	84	57 - 120			
2-Chlorophenol	ND		1.97	1.29		mg/Kg		65	43 - 120			
2-Methylnaphthalene	ND		1.97	1.49		mg/Kg	₽	76	55 - 120			
2-Methylphenol	ND		1.97	1.32		mg/Kg	₽	67	48 - 120			
2-Nitroaniline	ND		1.97	1.98		mg/Kg	☼	101	61 - 120			
2-Nitrophenol	ND		1.97	1.55		mg/Kg	₽	79	37 - 120			
3,3'-Dichlorobenzidine	ND		3.93	4.83		mg/Kg	☼	123	37 - 126			
3-Nitroaniline	ND		1.97	2.14		mg/Kg	☼	109	48 - 120			
4,6-Dinitro-2-methylphenol	ND		3.93	4.78		mg/Kg	₽	122	23 - 149			
4-Bromophenyl phenyl ether	ND		1.97	2.06		mg/Kg	☼	105	58 - 120			
4-Chloro-3-methylphenol	ND		1.97	1.99		mg/Kg	☼	101	49 - 125			
4-Chloroaniline	ND		1.97	1.45		mg/Kg	₽	74	38 - 120			
4-Chlorophenyl phenyl ether	ND		1.97	2.03		mg/Kg	≎	103	63 - 124			
4-Methylphenol	ND		1.97	ND		mg/Kg	≎	73	50 - 120			
4-Nitroaniline	ND		1.97	2.23		mg/Kg	₩.	113	47 - 120			
4-Nitrophenol	ND		3.93	4.03		mg/Kg	☼	103	31 - 147			
Acenaphthene	ND		1.97	2.09		mg/Kg	☼	94	60 - 120			
Acenaphthylene	ND		1.97	1.98		mg/Kg	· · · · · · · · · · · · · · · · · · ·	101	58 - 121			
Acetophenone	ND		1.97	1.26		mg/Kg	☼	64	47 - 120			
Anthracene	ND	F2 F1	1.97	3.33	F1	mg/Kg	☼	137	62 - 120			
Atrazine	ND		3.93	4.66		mg/Kg		119	60 - 150			
Benzaldehyde	ND		3.93	2.36		mg/Kg	☼	60	10 - 150			
Benzo(a)anthracene		F2 F1	1.97	4.91	F1	mg/Kg	₩	134	65 - 120			
Benzo(a)pyrene		F2 F1	1.97	4.93		mg/Kg		132	64 - 120			
Benzo(b)fluoranthene	3.3		1.97	5.78	- •	mg/Kg	⊅	129	10 - 150			
Benzo(g,h,i)perylene		F2	1.97	4.33		mg/Kg	₽	134	45 - 145			
Benzo(k)fluoranthene	1.2		1.97	4.13		mg/Kg		148	23 - 150			
- · ·	1.2	1 4	1.31	7.13		mg/rtg	٠,٠	140	20 - 100			

Eurofins TestAmerica, Buffalo

58 - 120

31 - 120

₩

86

mg/Kg

mg/Kg

Page 92 of 135

1.70

1.09

1.97

1.97

ND

ND

Job ID: 480-159204-1

Client: Stantec Consulting Corp. Project/Site: Alliance BCP Site (AMSF)

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 480-159204-11 MS

Matrix: Solid

Analysis Batch: 493753

Client Sample ID: AMSF-CS-ES-SS-C1

Prep Type: Total/NA

Prep Batch: 493581 %Rec.

Analysis Daton. 430730	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Bis(2-chloroethoxy)methane	ND	F2	1.97	1.29	-	mg/Kg	<u> </u>	65	52 - 120
Bis(2-chloroethyl)ether	ND		1.97	1.23		mg/Kg	₩	63	45 - 120
Bis(2-ethylhexyl) phthalate	ND		1.97	2.45		mg/Kg	₩	125	61 - 133
Butyl benzyl phthalate	ND		1.97	2.37		mg/Kg	₽	120	61 - 120
Caprolactam	ND		3.93	4.49		mg/Kg	₩	114	37 - 133
Carbazole	ND	F1	1.97	3.09	F1	mg/Kg	☼	134	59 - 120
Chrysene	2.6	F2 F1	1.97	5.17	F1	mg/Kg	₩	132	64 - 120
Dibenz(a,h)anthracene	ND		1.97	2.89		mg/Kg	₩	122	54 - 132
Dibenzofuran	ND		1.97	2.19		mg/Kg	₩	105	62 - 120
Diethyl phthalate	ND		1.97	2.21		mg/Kg	₩.	112	66 - 120
Dimethyl phthalate	ND		1.97	2.10		mg/Kg	₩	107	65 - 124
Di-n-butyl phthalate	ND		1.97	2.55		mg/Kg	☼	130	58 - 130
Di-n-octyl phthalate	ND	F1	1.97	2.84	F1	mg/Kg		145	57 - 133
Fluoranthene	5.5	F2 F1	1.97	8.80	F1	mg/Kg	☼	169	62 - 120
Fluorene	ND		1.97	2.43		mg/Kg	☼	111	63 - 120
Hexachlorobenzene	ND		1.97	2.25		mg/Kg		115	60 - 120
Hexachlorobutadiene	ND		1.97	1.26		mg/Kg	☼	64	45 - 120
Hexachlorocyclopentadiene	ND		1.97	ND		mg/Kg	₩	48	31 - 120
Hexachloroethane	ND		1.97	ND		mg/Kg	₩.	50	21 - 120
Indeno(1,2,3-cd)pyrene	1.3	F2 F1	1.97	4.00	F1	mg/Kg	☼	137	56 - 134
Isophorone	ND		1.97	1.42		mg/Kg	₩	72	56 - 120
Naphthalene	ND		1.97	1.49		mg/Kg	₩.	76	46 - 120
Nitrobenzene	ND		1.97	1.28		mg/Kg	☼	65	49 - 120
N-Nitrosodi-n-propylamine	ND		1.97	1.26		mg/Kg	₩	64	46 - 120
N-Nitrosodiphenylamine	ND		1.97	2.19		mg/Kg	₩.	111	20 - 128
Pentachlorophenol	ND		3.93	3.71		mg/Kg	₩	94	25 - 136
Phenanthrene	3.1	F2 F1	1.97	6.43	F1	mg/Kg	₩	168	60 - 122
Phenol	ND		1.97	1.25		mg/Kg	₩.	64	50 - 120
Pyrene	4.3	F1	1.97	7.27	F1	mg/Kg	₩	152	61 - 133
	MS	MS							

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol	129	X	54 - 120
2-Fluorobiphenyl	87		60 - 120
2-Fluorophenol	67		52 - 120
Nitrobenzene-d5	68		53 - 120
Phenol-d5	70		54 - 120
p-Terphenyl-d14	126		79 - 130

Lab Sample ID: 480-159204-11 MSD

Matrix: Solid

Analysis Batch: 493753

Client Sample ID: AMSF-CS-ES-SS-C1

Prep Type: Total/NA **Prep Batch: 493581**

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
2,4,5-Trichlorophenol	ND		1.95	2.02		mg/Kg	<u> </u>	104	46 - 120	10	18
2,4,6-Trichlorophenol	ND		1.95	2.07		mg/Kg	₩	106	41 - 123	2	19
2,4-Dichlorophenol	ND		1.95	1.88		mg/Kg	☼	96	45 - 120	14	19
2,4-Dimethylphenol	ND		1.95	1.58		mg/Kg	₩.	81	52 - 120	9	42
2,4-Dinitrophenol	ND		3.89	3.94		mg/Kg	₩	NC	41 - 146	NC	22

Eurofins TestAmerica, Buffalo

Page 93 of 135

QC Sample Results

Client: Stantec Consulting Corp. Project/Site: Alliance BCP Site (AMSF)

Job ID: 480-159204-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 480-159204-11 MSD

Matrix: Solid

Client Sample ID: AMSF-CS-ES-SS-C1

Prep Type: Total/NA Prep Batch: 493581

Analysis Batch: 493753	Sample	Sample	Spike	MSD	MSD				Prep Ba	tch: 4	93581 RPD
Analyte		Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
2,4-Dinitrotoluene	ND		1.95	2.24		mg/Kg	<u>₩</u>	115	63 - 125	5	20
2,6-Dinitrotoluene	ND		1.95	2.18		mg/Kg	₩.	112	66 - 120	1	15
2-Chloronaphthalene	ND		1.95	1.83		mg/Kg	≎	94	57 ₋ 120	10	21
2-Chlorophenol	ND		1.95	1.53		mg/Kg	☆	79	43 - 120	18	25
2-Methylnaphthalene	ND		1.95	1.70		mg/Kg		87	55 - 120	13	21
2-Methylphenol	ND		1.95	1.56		mg/Kg	≎	80	48 - 120	17	27
2-Nitroaniline	ND		1.95	1.95		mg/Kg	≎	100	61 - 120	2	15
2-Nitrophenol	ND		1.95	1.72		mg/Kg		89	37 - 120	10	18
3,3'-Dichlorobenzidine	ND		3.89	4.48		mg/Kg	≎	115	37 - 126	8	25
3-Nitroaniline	ND		1.95	1.96		mg/Kg	≎	101	48 - 120	9	19
4,6-Dinitro-2-methylphenol	ND		3.89	4.75		mg/Kg		122	23 - 149	1	15
4-Bromophenyl phenyl ether	ND		1.95	2.02		mg/Kg	≎	104	58 - 120	2	15
4-Chloro-3-methylphenol	ND		1.95	1.94		mg/Kg	≎	100	49 - 125	3	27
4-Chloroaniline	ND		1.95	1.58		mg/Kg		81	38 - 120	9	22
4-Chlorophenyl phenyl ether	ND		1.95	1.99		mg/Kg	≎	102	63 - 124	2	16
4-Methylphenol	ND		1.95	ND		mg/Kg	₩	84	50 - 120	13	24
4-Nitroaniline	ND		1.95	2.11		mg/Kg	 -	109	47 - 120	5	24
4-Nitrophenol	ND		3.89	3.61		mg/Kg	₩	93	31 - 147	11	25
Acenaphthene	ND		1.95	2.07		mg/Kg	₩	94	60 - 120	1	35
Acenaphthylene	ND		1.95	2.04		mg/Kg	 \$	105	58 - 121		18
Acetophenone	ND		1.95	1.42		mg/Kg	₩	73	47 - 120	12	20
Anthracene	ND	F2 F1	1.95	2.85	E2	mg/Kg	≎	114	62 - 120	16	15
Atrazine	ND	1211	3.89	4.46		mg/Kg		115	60 - 150	4	20
Benzaldehyde	ND		3.89	2.87		mg/Kg	≎	74	10 - 150	19	20
•		F2 F1	1.95	3.87	EO	mg/Kg	≎	82	65 - 120	24	15
Benzo(a)anthracene Benzo(a)pyrene		F2 F1	1.95	4.01		mg/Kg		86	64 - 120	20	15
Benzo(b)fluoranthene	3.3		1.95	4.01			₽	85	10 - 150	16	15
` '		F2	1.95	3.64		mg/Kg	≎	100	45 ₋ 145	17	15
Benzo(g,h,i)perylene				3.14		mg/Kg	~ · · · · · · · · · · · · · · · · · · ·				
Benzo(k)fluoranthene	ND	F2	1.95 1.95	1.86	F2	mg/Kg	₩	99 95	23 - 150 58 - 120	27 9	22 20
Biphenyl						mg/Kg	≎				
bis (2-chloroisopropyl) ether	ND		1.95	1.31		mg/Kg		67	31 - 120	19	24
Bis(2-chloroethoxy)methane		F2	1.95	1.55	Γ2	mg/Kg	₩	80	52 - 120	19	17
Bis(2-chloroethyl)ether	ND		1.95	1.48		mg/Kg		76	45 - 120	18	21
Bis(2-ethylhexyl) phthalate	ND		1.95	2.23		mg/Kg		114	61 - 133	10	15
Butyl benzyl phthalate	ND		1.95	2.20		mg/Kg		113	61 - 120	7	16
Caprolactam	ND	F.4	3.89	4.05		mg/Kg	≎	104	37 - 133	10	20
Carbazole		F1	1.95	2.78		mg/Kg		120	59 - 120	10	20
Chrysene		F2 F1	1.95	4.33	F2	mg/Kg	\$	89	64 - 120	18	15
Dibenz(a,h)anthracene	ND		1.95	2.60		mg/Kg	<u></u>	108	54 - 132	11	15
Dibenzofuran	ND		1.95	2.18		mg/Kg		105	62 - 120	0	15
Diethyl phthalate	ND		1.95	2.09		mg/Kg	₩	107	66 - 120	6	15
Dimethyl phthalate	ND		1.95	2.09		mg/Kg	*	107	65 - 124	1	15
Di-n-butyl phthalate	ND		1.95	2.40		mg/Kg	*	123	58 - 130	6	15
Di-n-octyl phthalate		F1	1.95	2.61		mg/Kg	₩	134	57 - 133	8	16
Fluoranthene		F2 F1	1.95	6.73	F2	mg/Kg	☼	65	62 - 120	27	15
Fluorene	ND		1.95	2.30		mg/Kg	☼	105	63 - 120	6	15
Hexachlorobenzene	ND		1.95	2.11		mg/Kg	₩	109	60 - 120	6	15
Hexachlorobutadiene	ND		1.95	1.47		mg/Kg	₩	75	45 - 120	15	44
Hexachlorocyclopentadiene	ND		1.95	1.12		mg/Kg	₩	58	31 - 120	18	49

Eurofins TestAmerica, Buffalo

Page 94 of 135

2

3

4

6

8

10

12

1 A

15

QC Sample Results

Client: Stantec Consulting Corp.
Project/Site: Alliance BCP Site (AMSF)

Job ID: 480-159204-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 480-159204-11 MSD

Matrix: Solid

Analysis Batch: 493753

Client Sample ID: AMSF-CS-ES-SS-C1

Prep Type: Total/NA Prep Batch: 493581

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Hexachloroethane	ND		1.95	1.18		mg/Kg	₽	61	21 - 120	18	46
Indeno(1,2,3-cd)pyrene	1.3	F2 F1	1.95	3.29	F2	mg/Kg	₩.	102	56 - 134	20	15
Isophorone	ND		1.95	1.65		mg/Kg	₩	85	56 - 120	15	17
Naphthalene	ND		1.95	1.70		mg/Kg	₩.	87	46 - 120	13	29
Nitrobenzene	ND		1.95	1.51		mg/Kg	☼	77	49 - 120	16	24
N-Nitrosodi-n-propylamine	ND		1.95	1.43		mg/Kg	☼	73	46 - 120	12	31
N-Nitrosodiphenylamine	ND		1.95	2.10		mg/Kg	₩.	108	20 - 128	4	15
Pentachlorophenol	ND		3.89	3.40		mg/Kg	☼	87	25 - 136	9	35
Phenanthrene	3.1	F2 F1	1.95	4.81	F2	mg/Kg	₩	87	60 - 122	29	15
Phenol	ND		1.95	1.49		mg/Kg	₩.	77	50 - 120	18	35
Pyrene	4.3	F1	1.95	5.59		mg/Kg	₩	67	61 - 133	26	35

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol	122	X	54 - 120
2-Fluorobiphenyl	99		60 - 120
2-Fluorophenol	78		52 - 120
Nitrobenzene-d5	81		53 - 120
Phenol-d5	82		54 - 120
p-Terphenyl-d14	118		79 - 130

Method: 8081B - Organochlorine Pesticides (GC)

Lab Sample ID: MB 480-492545/1-A

Matrix: Water

Analysis Batch: 492824

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 492545

Alialysis Datell. 432024								r rep batch.	T323T3
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND		0.050		ug/L		09/17/19 15:04	09/19/19 09:18	1
4,4'-DDE	ND		0.050		ug/L		09/17/19 15:04	09/19/19 09:18	1
4,4'-DDT	ND		0.050		ug/L		09/17/19 15:04	09/19/19 09:18	1
Aldrin	ND		0.050		ug/L		09/17/19 15:04	09/19/19 09:18	1
alpha-BHC	ND		0.050		ug/L		09/17/19 15:04	09/19/19 09:18	1
cis-Chlordane	ND		0.050		ug/L		09/17/19 15:04	09/19/19 09:18	1
beta-BHC	ND		0.050		ug/L		09/17/19 15:04	09/19/19 09:18	1
delta-BHC	ND		0.050		ug/L		09/17/19 15:04	09/19/19 09:18	1
Dieldrin	ND		0.050		ug/L		09/17/19 15:04	09/19/19 09:18	1
Endosulfan I	ND		0.050		ug/L		09/17/19 15:04	09/19/19 09:18	1
Endosulfan II	ND		0.050		ug/L		09/17/19 15:04	09/19/19 09:18	1
Endosulfan sulfate	ND		0.050		ug/L		09/17/19 15:04	09/19/19 09:18	1
Endrin	ND		0.050		ug/L		09/17/19 15:04	09/19/19 09:18	1
Endrin aldehyde	ND		0.050		ug/L		09/17/19 15:04	09/19/19 09:18	1
Endrin ketone	ND		0.050		ug/L		09/17/19 15:04	09/19/19 09:18	1
gamma-BHC (Lindane)	ND		0.050		ug/L		09/17/19 15:04	09/19/19 09:18	1
trans-Chlordane	ND		0.050		ug/L		09/17/19 15:04	09/19/19 09:18	1
Heptachlor	ND		0.050		ug/L		09/17/19 15:04	09/19/19 09:18	1
Heptachlor epoxide	ND		0.050		ug/L		09/17/19 15:04	09/19/19 09:18	1
Methoxychlor	ND		0.050		ug/L		09/17/19 15:04	09/19/19 09:18	1
Toxaphene	ND		0.50		ug/L		09/17/19 15:04	09/19/19 09:18	1

Eurofins TestAmerica, Buffalo

Page 95 of 135

2

3

6

8

10

12

14

15

П

Client: Stantec Consulting Corp. Job ID: 480-159204-1

Project/Site: Alliance BCP Site (AMSF)

Method: 8081B - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: MB 480-492545/1-A

Matrix: Water

Analysis Batch: 492824

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 492545

	III D	W.D				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	68		20 - 120	09/17/19 15:04	09/19/19 09:18	1
DCB Decachlorobiphenyl	72		20 - 120	09/17/19 15:04	09/19/19 09:18	1
Tetrachloro-m-xylene	95		44 - 120	09/17/19 15:04	09/19/19 09:18	1
Tetrachloro-m-xylene	85		44 - 120	09/17/19 15:04	09/19/19 09:18	1

Lab Sample ID: LCS 480-492545/2-A

Matrix: Water

Analysis Batch: 492824

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 492545

	Spike	LCS L	CS		%Rec.	
Analyte	Added	Result Q	ualifier Unit	D %Rec	Limits	
4,4'-DDD	0.400	0.378	ug/L	95	64 - 129	
4,4'-DDE	0.400	0.324	ug/L	81	50 - 120	
4,4'-DDT	0.400	0.356	ug/L	89	59 - 120	
Aldrin	0.400	0.328	ug/L	82	40 - 125	
alpha-BHC	0.400	0.315	ug/L	79	52 - 125	
cis-Chlordane	0.400	0.344	ug/L	86	52 - 120	
beta-BHC	0.400	0.361	ug/L	90	51 - 120	
delta-BHC	0.400	0.383	ug/L	96	51 - 120	
Dieldrin	0.400	0.366	ug/L	91	66 - 128	
Endosulfan I	0.400	0.381	ug/L	95	57 ₋ 120	
Endosulfan II	0.400	0.424	ug/L	106	66 - 131	
Endosulfan sulfate	0.400	0.420	ug/L	105	66 - 136	
Endrin	0.400	0.385	ug/L	96	65 - 135	
Endrin aldehyde	0.400	0.341	ug/L	85	61 - 134	
Endrin ketone	0.400	0.427	ug/L	107	71 - 133	
gamma-BHC (Lindane)	0.400	0.352	ug/L	88	56 - 120	
trans-Chlordane	0.400	0.377	ug/L	94	54 - 120	
Heptachlor	0.400	0.377	ug/L	94	58 - 120	
Heptachlor epoxide	0.400	0.430	ug/L	107	65 - 125	
Methoxychlor	0.400	0.407	ug/L	102	50 - 150	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	65		20 - 120
DCB Decachlorobiphenyl	68		20 - 120
Tetrachloro-m-xylene	81		44 - 120
Tetrachloro-m-xylene	78		44 - 120

Client Sample ID: Lab Control Sample Dup

Matrix: Water

Analysis Batch: 492824

Lab Sample ID: LCSD 480-492545/3-A

Prep Type: Total/NA **Prep Batch: 492545**

	Spike	LCSD LC	CSD			%Rec.		RPD
Analyte	Added	Result Q	ualifier Unit	D	%Rec	Limits	RPD	Limit
4,4'-DDD	0.400	0.342	ug/L		85	64 - 129	10	23
4,4'-DDE	0.400	0.300	ug/L		75	50 - 120	8	22
4,4'-DDT	0.400	0.328	ug/L		82	59 - 120	8	24
Aldrin	0.400	0.303	ug/L		76	40 - 125	8	25
alpha-BHC	0.400	0.287	ug/L		72	52 - 125	9	24
cis-Chlordane	0.400	0.323	ug/L		81	52 - 120	6	23

Eurofins TestAmerica, Buffalo

Page 96 of 135

Client: Stantec Consulting Corp. Job ID: 480-159204-1 Project/Site: Alliance BCP Site (AMSF)

Method: 8081B - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: LCSD 480-492545/3-A

Matrix: Water

Analysis Batch: 492824

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 492545

7 mining 0.10 = 0.10 min 10=0= 1									
-	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
beta-BHC	0.400	0.331		ug/L		83	51 - 120	9	24
delta-BHC	0.400	0.355		ug/L		89	51 - 120	8	24
Dieldrin	0.400	0.351		ug/L		88	66 - 128	4	24
Endosulfan I	0.400	0.358		ug/L		89	57 - 120	6	30
Endosulfan II	0.400	0.387		ug/L		97	66 - 131	9	40
Endosulfan sulfate	0.400	0.385		ug/L		96	66 - 136	9	24
Endrin	0.400	0.353		ug/L		88	65 - 135	9	24
Endrin aldehyde	0.400	0.284		ug/L		71	61 - 134	18	28
Endrin ketone	0.400	0.386		ug/L		97	71 - 133	10	26
gamma-BHC (Lindane)	0.400	0.327		ug/L		82	56 - 120	8	24
trans-Chlordane	0.400	0.347		ug/L		87	54 - 120	8	24
Heptachlor	0.400	0.346		ug/L		86	58 - 120	9	25
Heptachlor epoxide	0.400	0.387		ug/L		97	65 - 125	11	23
Methoxychlor	0.400	0.374		ug/L		94	50 - 150	8	26

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	56		20 - 120
DCB Decachlorobiphenyl	57		20 - 120
Tetrachloro-m-xylene	82		44 - 120
Tetrachloro-m-xylene	71		44 - 120

Lab Sample ID: MB 480-492848/1-A

Matrix: Solid

Analysis Batch: 493205

Client Sample ID: Method Blank **Prep Type: Total/NA Prep Batch: 492848**

_	MB	MB						•	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND		0.0017		mg/Kg		09/19/19 07:28	09/20/19 15:45	1
4,4'-DDE	ND		0.0017		mg/Kg		09/19/19 07:28	09/20/19 15:45	1
4,4'-DDT	ND		0.0017		mg/Kg		09/19/19 07:28	09/20/19 15:45	1
Aldrin	ND		0.0017		mg/Kg		09/19/19 07:28	09/20/19 15:45	1
alpha-BHC	ND		0.0017		mg/Kg		09/19/19 07:28	09/20/19 15:45	1
cis-Chlordane	ND		0.0017		mg/Kg		09/19/19 07:28	09/20/19 15:45	1
beta-BHC	ND		0.0017		mg/Kg		09/19/19 07:28	09/20/19 15:45	1
delta-BHC	ND		0.0017		mg/Kg		09/19/19 07:28	09/20/19 15:45	1
Dieldrin	ND		0.0017		mg/Kg		09/19/19 07:28	09/20/19 15:45	1
Endosulfan I	ND		0.0017		mg/Kg		09/19/19 07:28	09/20/19 15:45	1
Endosulfan II	ND		0.0017		mg/Kg		09/19/19 07:28	09/20/19 15:45	1
Endosulfan sulfate	ND		0.0017		mg/Kg		09/19/19 07:28	09/20/19 15:45	1
Endrin	ND		0.0017		mg/Kg		09/19/19 07:28	09/20/19 15:45	1
Endrin aldehyde	ND		0.0017		mg/Kg		09/19/19 07:28	09/20/19 15:45	1
Endrin ketone	ND		0.0017		mg/Kg		09/19/19 07:28	09/20/19 15:45	1
gamma-BHC (Lindane)	ND		0.0017		mg/Kg		09/19/19 07:28	09/20/19 15:45	1
trans-Chlordane	ND		0.0017		mg/Kg		09/19/19 07:28	09/20/19 15:45	1
Heptachlor	ND		0.0017		mg/Kg		09/19/19 07:28	09/20/19 15:45	1
Heptachlor epoxide	ND		0.0017		mg/Kg		09/19/19 07:28	09/20/19 15:45	1
Methoxychlor	ND		0.0017		mg/Kg		09/19/19 07:28	09/20/19 15:45	1
Toxaphene	ND		0.017		mg/Kg		09/19/19 07:28	09/20/19 15:45	1
I and the second se									

Eurofins TestAmerica, Buffalo

Page 97 of 135

Job ID: 480-159204-1

Method: 8081B - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: MB 480-492848/1-A

Matrix: Solid

Analysis Batch: 493205

Client Sample ID: Method Blank

Prep Type: Total/NA **Prep Batch: 492848**

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	85	45 - 120	09/19/19 07:28	09/20/19 15:45	1
DCB Decachlorobiphenyl	89	45 - 120	09/19/19 07:28	09/20/19 15:45	1
Tetrachloro-m-xylene	75	30 - 124	09/19/19 07:28	09/20/19 15:45	1
Tetrachloro-m-xylene	61	30 - 124	09/19/19 07:28	09/20/19 15:45	1

Lab Sample ID: LCS 480-492848/2-A

Matrix: Solid

Analysis Batch: 493205

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 492848

, , , , , , , , , , , , , , , , , , , ,	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
4,4'-DDD	0.0162	0.0141		mg/Kg		87	56 - 120
4,4'-DDE	0.0162	0.0130		mg/Kg		81	44 - 120
4,4'-DDT	0.0162	0.0134		mg/Kg		83	38 - 120
Aldrin	0.0162	0.0113		mg/Kg		70	38 - 120
alpha-BHC	0.0162	0.00686		mg/Kg		42	39 - 120
cis-Chlordane	0.0162	0.0129		mg/Kg		80	47 - 120
beta-BHC	0.0162	0.0117		mg/Kg		72	40 - 120
delta-BHC	0.0162	0.0119		mg/Kg		74	45 - 120
Dieldrin	0.0162	0.0137		mg/Kg		84	58 - 120
Endosulfan I	0.0162	0.0128		mg/Kg		79	49 - 120
Endosulfan II	0.0162	0.0138		mg/Kg		85	55 - 120
Endosulfan sulfate	0.0162	0.0135		mg/Kg		83	49 - 124
Endrin	0.0162	0.0133		mg/Kg		82	58 - 120
Endrin aldehyde	0.0162	0.0132		mg/Kg		82	37 - 121
Endrin ketone	0.0162	0.0136		mg/Kg		84	46 - 123
gamma-BHC (Lindane)	0.0162	0.0117		mg/Kg		72	50 - 120
trans-Chlordane	0.0162	0.0127		mg/Kg		78	48 - 120
Heptachlor	0.0162	0.0128		mg/Kg		79	50 - 120
Heptachlor epoxide	0.0162	0.0133		mg/Kg		82	50 - 120
Methoxychlor	0.0162	0.0134		mg/Kg		83	58 - 133

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	95		45 - 120
DCB Decachlorobiphenyl	88		45 - 120
Tetrachloro-m-xylene	80		30 - 124
Tetrachloro-m-xylene	62		30 - 124

Lab Sample ID: 480-159204-11 MS

Matrix: Solid

Analysis Batch: 493205

Client Sample ID: AMSF-CS-ES-SS-C1

Prep Type: Total/NA

Prep Batch: 492848

-	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
4,4'-DDD	ND		0.0193	0.0196		mg/Kg	-	102	37 - 126	
4,4'-DDE	ND		0.0193	ND		mg/Kg	₩	96	34 - 120	
4,4'-DDT	ND	F2 F1	0.0193	0.0215		mg/Kg	₩	65	43 - 123	
Aldrin	ND		0.0193	ND		mg/Kg		81	37 - 125	
alpha-BHC	ND		0.0193	ND		mg/Kg	₩	83	39 - 120	
cis-Chlordane	ND		0.0193	0.0192		mg/Kg	≎	99	35 - 120	

Eurofins TestAmerica, Buffalo

Page 98 of 135

10/4/2019

Job ID: 480-159204-1

Method: 8081B - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: 480-159204-11 MS

Matrix: Solid

Analysis Batch: 493205

Client Sample ID: AMSF-CS-ES-SS-C1

Prep Type: Total/NA

Prep Batch: 492848

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
beta-BHC	ND		0.0193	ND		mg/Kg	<u> </u>	70	36 - 120	
delta-BHC	ND	F2	0.0193	ND		mg/Kg		71	34 - 120	
Dieldrin	ND		0.0193	ND		mg/Kg	☼	89	45 - 120	
Endosulfan I	ND		0.0193	ND		mg/Kg	₩.	86	39 - 120	
Endosulfan II	ND		0.0193	ND		mg/Kg	₩	98	34 - 126	
Endosulfan sulfate	ND		0.0193	0.0190		mg/Kg	☼	98	27 - 130	
Endrin	ND		0.0193	ND		mg/Kg		87	47 - 121	
Endrin aldehyde	ND	F1	0.0193	0.0296	F1	mg/Kg	☼	153	33 - 123	
Endrin ketone	ND		0.0193	ND		mg/Kg	₩	75	43 - 126	
gamma-BHC (Lindane)	ND	F2	0.0193	ND		mg/Kg		73	50 - 120	
trans-Chlordane	ND		0.0193	ND		mg/Kg	☼	92	31 - 120	
Heptachlor	ND		0.0193	ND		mg/Kg	₩	69	42 - 120	
Heptachlor epoxide	ND		0.0193	ND		mg/Kg		86	40 - 120	
Methoxychlor	ND	F2	0.0193	0.0210		mg/Kg	☼	109	44 - 150	

MS MS

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	198	X	45 - 120
DCB Decachlorobiphenyl	263	Χ	45 - 120
Tetrachloro-m-xylene	119		30 - 124
Tetrachloro-m-xylene	114		30 - 124

Lab Sample ID: 480-159204-11 MSD

Matrix: Solid

Client Sample ID: AMSF-CS-ES-SS-C1

Prep Type: Total/NA

Analysis Batch: 493205 **Prep Batch: 492848** MSD MSD **RPD** Sample Sample Spike %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits **RPD** Limit ₩ 4,4'-DDD ND 0.0193 0.0196 102 37 - 126 21 mg/Kg n 4,4'-DDE ₩ ND 0.0193 ND mg/Kg 97 34 - 120 0 18 ☼ 43 - 123 4,4'-DDT ND F2 F1 0.0193 ND F2F1 39 27 25 mg/Kg Ţ 90 37 - 125 Aldrin ND 0.0193 ND mg/Kg 11 12 ₩ alpha-BHC ND 0.0193 ND mg/Kg 91 39 - 120 9 15 ☼ 0.0193 100 23 cis-Chlordane ND 0.0193 mg/Kg 35 - 1201 beta-BHC ND ND ₩ 77 19 0.0193 mg/Kg 36 - 120 ₩ delta-BHC ND F2 0.0193 ND F2 mg/Kg 94 34 - 120 28 14 Dieldrin ND 0.0193 ND ₩ 96 45 - 120 12 mg/Kg . ₩ Endosulfan I ND 83 39 - 120 18 0.0193 ND mg/Kg ∜ Endosulfan II ND 0.0193 0.0191 99 34 - 126 26 mg/Kg Endosulfan sulfate ND ND 97 27 - 130 0.0193 mg/Kg 35 Ö Endrin ND 0.0193 ND mg/Kg 85 47 - 121 2 20 0.0202 ₩ 105 37 47 Endrin aldehyde ND F1 0.0193 mg/Kg 33 - 123₩ Endrin ketone ND 0.0193 ND mg/Kg 89 43 - 126 17 37 gamma-BHC (Lindane) ND 0.0193 ND F2 ₩ 92 50 - 120 22 12 F2 mg/Kg Ö ND 91 trans-Chlordane ND 0.0193 mg/Kg 31 - 120 15 ₩ Heptachlor ND 0.0193 ND mg/Kg 69 42 - 120 0 22 . Д 91 5 Heptachlor epoxide ND 0.0193 ND mg/Kg 40 - 120 15 Methoxychlor ND F2 0.0193 0.0277 F2 mg/Kg ₩ 144 44 - 150 27 24

Eurofins TestAmerica, Buffalo

Page 99 of 135

Job ID: 480-159204-1

Method: 8081B - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: 480-159204-11 MSD

Matrix: Solid

Analysis Batch: 493205

Client Sample ID: AMSF-CS-ES-SS-C1

Prep Type: Total/NA

Prep Batch: 492848

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	217	X	45 - 120
DCB Decachlorobiphenyl	161	X	45 - 120
Tetrachloro-m-xylene	124		30 - 124
Tetrachloro-m-xylene	117		30 - 124

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: MB 480-493350/1-A

Matrix: Solid

Analysis Batch: 493822

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 493350

	MB MB						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND ND	0.23	mg/Kg		09/21/19 11:23	09/24/19 22:02	1
PCB-1221	ND	0.23	mg/Kg		09/21/19 11:23	09/24/19 22:02	1
PCB-1232	ND	0.23	mg/Kg		09/21/19 11:23	09/24/19 22:02	1
PCB-1242	ND	0.23	mg/Kg		09/21/19 11:23	09/24/19 22:02	1
PCB-1248	ND	0.23	mg/Kg		09/21/19 11:23	09/24/19 22:02	1
PCB-1254	ND	0.23	mg/Kg		09/21/19 11:23	09/24/19 22:02	1
PCB-1260	ND	0.23	mg/Kg		09/21/19 11:23	09/24/19 22:02	1
PCB-1262	ND	0.23	mg/Kg		09/21/19 11:23	09/24/19 22:02	1
PCB-1268	ND	0.23	mg/Kg		09/21/19 11:23	09/24/19 22:02	1

MB	MB
IVID	IVID

1					
Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	120	65 - 174	09/21/19 11:23	09/24/19 22:02	1
DCB Decachlorobiphenyl	79	65 - 174	09/21/19 11:23	09/24/19 22:02	1
Tetrachloro-m-xylene	116	60 - 154	09/21/19 11:23	09/24/19 22:02	1
Tetrachloro-m-xylene	100	60 - 154	09/21/19 11:23	09/24/19 22:02	1

Lab Sample ID: LCS 480-493350/2-A

Matrix: Solid

Analysis Batch: 493822

Client Sample ID: Lab Control Sample Prep Type: Total/NA

%Rec.

Prep Batch: 493350

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
PCB-1016	2.20	3.65		mg/Kg		166	51 - 185	-
PCB-1260	2.20	3.15		mg/Kg		143	61 - 184	

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	145		65 - 174
DCB Decachlorobiphenyl	96		65 - 174
Tetrachloro-m-xylene	130		60 - 154
Tetrachloro-m-xylene	117		60 - 154

Lab Sample ID: 480-159204-11 MS

Matrix: Solid

Analyte PCB-1016

Analysis Batch: 493822

204	-11 MS					Clie	nt Sar	nple ID	: AMSF-C	S-ES-SS-C1	
									Prep Ty	pe: Total/NA	
)									Prep B	atch: 493350	
	Sample	Sample	Spike	MS	MS				%Rec.		
	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
	ND		2.39	3.16		mg/Kg		132	50 - 177		

Job ID: 480-159204-1

Client: Stantec Consulting Corp.

Project/Site: Alliance BCP Site (AMSF)

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Lab Sample ID: 480-15920 Matrix: Solid Analysis Batch: 493822		Sample	Spike	MS	MS	Clier	nt Sar	nple ID	: AMSF-CS-ES-SS-C1 Prep Type: Total/NA Prep Batch: 493350 %Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
PCB-1260	ND		2.39	2.87		mg/Kg	<u>₩</u>	120	33 - 200
	MS	MS							
Surrogate	%Recovery	Qualifier	Limits						
DCB Decachlorobiphenyl	135		65 - 174						
DCB Decachlorobiphenyl	87		65 - 174						
Tetrachloro-m-xylene	115		60 - 154						
Tetrachloro-m-xylene	101		60 - 154						

Lab Sample ID: 480-15920 Matrix: Solid Analysis Batch: 493822	4-11 MSD					Clier	nt Sar	nple ID	: AMSF-C Prep Typ Prep Ba	e: Tot	al/NA
-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
PCB-1016	ND		2.85	2.75		mg/Kg	<u>₩</u>	96	50 - 177	14	50
PCB-1260	ND		2.85	2.31		mg/Kg	₩	81	33 - 200	22	50
	Men	Men									

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	110		65 - 174
DCB Decachlorobiphenyl	69		65 - 174
Tetrachloro-m-xylene	106		60 - 154
Tetrachloro-m-xylene	93		60 - 154

Lab Sample ID: MB 480-493603/1-A Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 494083 Prep Batch: 493603 MB MB

	IVID	IAID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.50		ug/L		09/23/19 15:10	09/25/19 17:07	1
PCB-1221	ND		0.50		ug/L		09/23/19 15:10	09/25/19 17:07	1
PCB-1232	ND		0.50		ug/L		09/23/19 15:10	09/25/19 17:07	1
PCB-1242	ND		0.50		ug/L		09/23/19 15:10	09/25/19 17:07	1
PCB-1248	ND		0.50		ug/L		09/23/19 15:10	09/25/19 17:07	1
PCB-1254	ND		0.50		ug/L		09/23/19 15:10	09/25/19 17:07	1
PCB-1260	ND		0.50		ug/L		09/23/19 15:10	09/25/19 17:07	1
PCB-1262	ND		0.50		ug/L		09/23/19 15:10	09/25/19 17:07	1
PCB-1268	ND		0.50		ug/L		09/23/19 15:10	09/25/19 17:07	1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	55		19 - 120	09/23/19 15:10	09/25/19 17:07	1
DCB Decachlorobiphenyl	34		19 - 120	09/23/19 15:10	09/25/19 17:07	1
Tetrachloro-m-xylene	73		39 - 121	09/23/19 15:10	09/25/19 17:07	1
Tetrachloro-m-xylene	66		39 - 121	09/23/19 15:10	09/25/19 17:07	1

Job ID: 480-159204-1

Unit

ug/L

ug/L

LCS LCS

4.91

3.59

Result Qualifier

Client: Stantec Consulting Corp. Project/Site: Alliance BCP Site (AMSF)

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Spike

Added

4.00

4.00

Lab Sample ID: LCS 480-493603/2-A

Matrix: Water

Analyte

PCB-1016

PCB-1260

Analysis Batch: 493822

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 493603

%Rec. Limits 62 - 130

D %Rec 123 90 56 - 123

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	53		19 - 120
DCB Decachlorobiphenyl	35		19 - 120
Tetrachloro-m-xylene	99		39 - 121
Tetrachloro-m-xylene	76		39 - 121

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-492504/1-A

Matrix: Solid

Analysis Batch: 493083

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 492504

	MB	MB						
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		14.4	mg/Kg		09/18/19 05:20	09/19/19 22:44	1
Arsenic	ND		1.9	mg/Kg		09/18/19 05:20	09/19/19 22:44	1
Barium	ND		0.48	mg/Kg		09/18/19 05:20	09/19/19 22:44	1
Beryllium	ND		0.19	mg/Kg		09/18/19 05:20	09/19/19 22:44	1
Cadmium	ND		0.19	mg/Kg		09/18/19 05:20	09/19/19 22:44	1
Calcium	ND		47.9	mg/Kg		09/18/19 05:20	09/19/19 22:44	1
Chromium	ND		0.48	mg/Kg		09/18/19 05:20	09/19/19 22:44	1
Cobalt	ND		0.48	mg/Kg		09/18/19 05:20	09/19/19 22:44	1
Copper	ND		0.96	mg/Kg		09/18/19 05:20	09/19/19 22:44	1
Iron	ND		9.6	mg/Kg		09/18/19 05:20	09/19/19 22:44	1
Lead	ND		0.96	mg/Kg		09/18/19 05:20	09/19/19 22:44	1
Magnesium	ND		19.1	mg/Kg		09/18/19 05:20	09/19/19 22:44	1
Manganese	0.224		0.19	mg/Kg		09/18/19 05:20	09/19/19 22:44	1
Nickel	ND		4.8	mg/Kg		09/18/19 05:20	09/19/19 22:44	1
Potassium	ND		28.7	mg/Kg		09/18/19 05:20	09/19/19 22:44	1
Selenium	ND		3.8	mg/Kg		09/18/19 05:20	09/19/19 22:44	1
Silver	ND		0.57	mg/Kg		09/18/19 05:20	09/19/19 22:44	1
Sodium	ND		134	mg/Kg		09/18/19 05:20	09/19/19 22:44	1
Thallium	ND		5.7	mg/Kg		09/18/19 05:20	09/19/19 22:44	1
Vanadium	ND		0.48	mg/Kg		09/18/19 05:20	09/19/19 22:44	1
Zinc	ND		1.9	mg/Kg		09/18/19 05:20	09/19/19 22:44	1
I and the second								

Lab Sample ID: MB 480-492504/1-A

Matrix: Solid

Analysis Batch: 493465

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 492504

MB MB Analyte Result Qualifier RL MDL Unit **Prepared** Analyzed Aluminum ND 9.6 mg/Kg 09/18/19 05:20 09/20/19 21:33

10/4/2019

Client: Stantec Consulting Corp. Job ID: 480-159204-1

Project/Site: Alliance BCP Site (AMSF)

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LCSSRM 480-492504/2-A Matrix: Solid	04/2-A					Client Sample ID: Lab Contro Prep Type:					
Analysis Batch: 493083	Cuilco	LCCCDM	LCSSRM				Prep Batch: 492504 %Rec.				
Analyte	Spike Added		Qualifier	Unit	D	%Rec	%Rec. Limits				
Antimony	- Added -	62.05	Qualifier	mg/Kg	_ =	35.9	10.0 - 134.				
Antimorty	173	02.03		mg/rtg		33.3	10.0 - 134.				
Arsenic	221	182.1		mg/Kg		82.4	63.8 - 119.				
							0				
Barium	288	247.9		mg/Kg		86.1					
							4				
Beryllium	102	85.38		mg/Kg		83.7	71.2 - 118.				
							6				
Cadmium	153	122.5		mg/Kg		80.1	68.6 - 115.				
							0				
Calcium	5190	4226		mg/Kg		81.4	65.7 - 115.				
Chromium	179	154.8				86.5	6				
Chromium	179	154.6		mg/Kg		00.5	65.4 - 121.				
Cobalt	182	180.4		mg/Kg		99.1	2 71.4 - 119.				
Cobait	102	100.4		mg/rtg		33.1	71.4-119.				
Copper	113	94.15		mg/Kg		83.3	71.4 - 118.				
ooppo.		00		99		00.0	6				
Iron	15000	14950		mg/Kg		99.7	35.7 - 160.				
							7				
Lead	74.5	77.14		mg/Kg		103.5	67.8 - 130.				
							3				
Magnesium	2570	2169		mg/Kg		84.4	55.6 - 124.				
Manganese	348	305.2		mg/Kg		87.7	71.3 - 118.				
Nickel	98.0	94.56		mg/Kg		96.5	4 63.8 - 118.				
Nickei	90.0	94.50		ilig/Kg		90.5	4				
Potassium	2630	2290		mg/Kg		87.1	51.7 - 119.				
T Oldsold III	2000	2200		1119/119		01.1	0				
Selenium	54.4	43.87		mg/Kg		80.7					
				0 0			0				
Silver	75.5	63.97		mg/Kg		84.7	66.6 - 121.				
							7				
Sodium	226	208.9		mg/Kg		92.4	39.2 - 133.				
	<u>-</u>						2				
Thallium	64.7	62.99		mg/Kg		97.4					
Vanadium	60.7	64.40		ma/l/a		07.5	0				
Vanadium	62.7	61.13		mg/Kg		97.5	53.3 - 132.				
Zinc	281	239.7		mg/Kg		85.3	4 65.8 - 122.				
Ziilo	201	200.1		mg/rtg		00.0	4				
-							4				

Lab Sample ID:	LCSSRM 480-492504/2-A
----------------	-----------------------

Matrix: Solid

Analysis Batch: 493465	Spike	LCSSRM	LCSSRM				Prep Ba %Rec.	itch: 492504
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	
Aluminum	10100	9764		mg/Kg	_	96.7	41.6 - 123.	
							8	

Eurofins TestAmerica, Buffalo

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Page 103 of 135

Job ID: 480-159204-1

Client: Stantec Consulting Corp. Project/Site: Alliance BCP Site (AMSF)

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: 480-159204-11 MS

Matrix: Solid

Client	Sample	ID:	AMSF	-CS	ES-S	SS-C
--------	--------	-----	------	-----	------	------

Prep Type: Total/NA

Analysis Batch: 493083	0	O	0						Prep Batch: 492504
Analyta	•	Sample Qualifier	Spike		MS Qualifier	l Init	D	%Rec	%Rec. Limits
Analyte			Added			Unit			
Antimony	ND	F1	44.9	27.87	F1	mg/Kg	_ ₹	60	75 - 125
Arsenic	3.0		44.9	41.83		mg/Kg	₩	87	75 - 125
Barium	61.9	F1	44.9	128.7	F1	mg/Kg	☼	149	75 - 125
Beryllium	0.51		44.9	39.17		mg/Kg	₩	86	75 - 125
Cadmium	ND		44.9	39.01		mg/Kg	☼	87	75 ₋ 125
Calcium	9210	F2 F1	2240	12010	4	mg/Kg	₩	125	75 - 125
Chromium	16.5		44.9	60.69		mg/Kg	₩.	98	75 - 125
Cobalt	6.5		44.9	50.65		mg/Kg	☼	98	75 - 125
Copper	11.2		44.9	48.67		mg/Kg	☼	84	75 ₋ 125
Lead	13.5		44.9	57.56		mg/Kg	₩.	98	75 - 125
Magnesium	4830	F1 F2	2240	8393	F1	mg/Kg	☼	159	75 - 125
Manganese	404	В	44.9	503.9	4	mg/Kg	☼	223	75 ₋ 125
Nickel	13.7		44.9	60.32		mg/Kg	₩.	104	75 - 125
Potassium	2460	F1	2240	7117	F1	mg/Kg	☼	208	75 ₋ 125
Selenium	ND		44.9	38.03		mg/Kg	☼	84	75 ₋ 125
Silver	ND		11.2	10.46		mg/Kg	₩.	93	75 - 125
Sodium	ND		2250	2196		mg/Kg	₩	93	75 ₋ 125

Lab Sample ID: 480-159204-11 MS

ND

25.9

52.4

Matrix: Solid

Thallium

Zinc

Vanadium

Analysis Batch: 493465

75 - 125

75 - 125

75 - 125

97

114

₩

mg/Kg

mg/Kg

mg/Kg

Prep Type: Total/NA Prep Batch: 492504

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	13500		2240	22600	4	mg/Kg	₩	407	75 - 125	
Iron	15800		2240	19750	4	mg/Kg	₩	176	75 ₋ 125	

44.9

44.9

44.9

43.56

76.92

93.30

Lab Sample ID: 480-159204-11 MSD

Matrix: Solid

Prep Type: Total/NA

Analysis Batch: 493083									Prep Ba	atch: 49) 2504
_	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Antimony	ND	F1	47.9	29.64	F1	mg/Kg	₩	60	75 - 125	6	20
Arsenic	3.0		47.9	43.88		mg/Kg	☼	85	75 - 125	5	20
Barium	61.9	F1	47.9	132.0	F1	mg/Kg	≎	147	75 - 125	3	20
Beryllium	0.51		47.9	41.73		mg/Kg	₩.	86	75 - 125	6	20
Cadmium	ND		47.9	41.38		mg/Kg	≎	86	75 - 125	6	20
Calcium	9210	F2 F1	2390	7027	F1 F2	mg/Kg	≎	-91	75 - 125	52	20
Chromium	16.5		47.9	64.33		mg/Kg	₩.	100	75 - 125	6	20
Cobalt	6.5		47.9	52.15		mg/Kg	≎	95	75 - 125	3	20
Copper	11.2		47.9	50.07		mg/Kg	₩	81	75 - 125	3	20
Lead	13.5		47.9	59.53		mg/Kg	₩.	96	75 - 125	3	20
Magnesium	4830	F1 F2	2390	6784	F2	mg/Kg	≎	82	75 - 125	21	20
Manganese	404	В	47.9	456.4	4	mg/Kg	≎	110	75 - 125	10	20
Nickel	13.7		47.9	61.87		mg/Kg	₩.	101	75 - 125	3	20
Potassium	2460	F1	2390	7075	F1	mg/Kg	☼	193	75 - 125	1	20
Selenium	ND		47.9	40.58		mg/Kg	₩	84	75 ₋ 125	6	20

Eurofins TestAmerica, Buffalo

Page 104 of 135

Client: Stantec Consulting Corp. Job ID: 480-159204-1

MSD MSD

MSD MSD

23650 4

20000 4

Result Qualifier

10.80

2242

46.00

79.56

Result Qualifier

Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

Unit

mg/Kg

mg/Kg

mg/Kg

℧

. ₩

₩

₩

112

176

Project/Site: Alliance BCP Site (AMSF)

Method: 6010C - Metals (ICP) (Continued)

Sample Sample

ND

ND

ND

25.9

Sample Sample

13500

15800

52.2

Result Qualifier

Result Qualifier

Lab Sample ID: 480-159204-11 MSD

Matrix: Solid

Silver

Sodium

Thallium

Analyte

Iron

Aluminum

Vanadium

Analysis Batch: 493083

Client Sample	D: AMSF-CS-E	S-SS-C1
---------------	--------------	---------

Prep Type: Total/NA **Prep Batch: 492504**

%Rec. **RPD** RPD Limit %Rec Limits 75 - 125 3 20 89 75 - 125 20 2 96 75 - 125 5 20

20

20

20

Zinc 52.4 47.9 98.18 mg/Kg 75 - 125 Lab Sample ID: 480-159204-11 MSD

Spike

Added

12.0

2400

47.9

47.9

Spike

Added

2390

2390

Matrix: Solid

Analysis Batch: 493465

Client Sample ID: AMSF-CS-ES-SS-C1
Prep Type: Total/NA
Duam Bataka 402504

75 - 125

%Rec. **RPD** %Rec Limits **RPD** Limit 426 75 - 125 20 5

Lab Sample ID: 480-159204-14 MS

Chent Sample iD:	AWSF-03-E3-33-02
	Prep Type: Total/NA

75 - 125

Matrix: Solid Analysis Batch: 493083									Prep Type: Total/NA Prep Batch: 492504
	•	Sample	Spike		MS				%Rec.
Analyte		Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Antimony	ND	F1	44.6	27.97	F1	mg/Kg	☼	61	75 - 125
Arsenic	3.0		44.6	42.46		mg/Kg	₩	88	75 - 125
Barium	65.1	F1	44.6	139.7	F1	mg/Kg	₩	167	75 - 125
Beryllium	0.53		44.6	39.14		mg/Kg	₽	87	75 - 125
Cadmium	ND		44.6	39.72		mg/Kg	₩	89	75 ₋ 125
Calcium	10000		2230	21690	4	mg/Kg	₩	524	75 ₋ 125
Chromium	17.6		44.6	59.89		mg/Kg		95	75 - 125
Cobalt	6.9		44.6	51.12		mg/Kg	☼	99	75 ₋ 125
Copper	8.6		44.6	48.57		mg/Kg	₩	90	75 - 125
Lead	14.9		44.6	58.22		mg/Kg		97	75 - 125
Magnesium	7250	F1 F2	2230	13700	F1	mg/Kg	₩	289	75 ₋ 125
Manganese	434	B F2	44.6	927.4	4	mg/Kg	₩	1106	75 - 125
Nickel	13.8		44.6	60.71		mg/Kg		105	75 - 125
Potassium	2310	F1	2230	6842	F1	mg/Kg	☼	203	75 - 125
Selenium	ND		44.6	38.36		mg/Kg	☼	86	75 ₋ 125
Silver	ND		11.2	10.62		mg/Kg	₩	95	75 - 125
Sodium	ND		2230	2205		mg/Kg	☼	94	75 ₋ 125
Thallium	ND		44.6	43.45		mg/Kg	☼	97	75 ₋ 125
Vanadium	28.0		44.6	83.24		mg/Kg		124	75 - 125
						_			

Lab Sample ID: 480-159204-14 MS

Matrix: Solid

Zinc

Analysis Batch: 493465

Client Sample	ID: AMSF-CS	-ES-SS-C2

75 - 125

97

Prep Type: Total/NA Prep Batch: 492504

ı		Sample	Sample	Spike	MS	MS				%Rec.	
	Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
	Aluminum	14800		2230	21630	4	mg/Kg	\	304	75 - 125	
	Iron	16700		2230	18690	4	mg/Kg	≎	91	75 - 125	

44.6

95.67

Job ID: 480-159204-1

Client: Stantec Consulting Corp. Project/Site: Alliance BCP Site (AMSF)

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: 480-159204-14 MSD Client Sample ID: AMSF-CS-ES-SS-C2

Matrix: Solid

Prep Type: Total/NA Analysis Batch: 493083 Prep Batch: 492504 MSD MSD Sample Sample Spike **RPD** %Rec. Analyte Result Qualifier Added Result Qualifier %Rec Limits RPD Limit Unit D ₩ F1 57 75 - 125 20 **Antimony** ND 43.9 25.99 F1 mg/Kg Ö Arsenic 3.0 43.9 40.33 mg/Kg 85 75 - 125 5 20 ₩ Barium 65.1 F1 43.9 123.4 F1 mg/Kg 133 75 - 125 12 20 ₩ Beryllium 0.53 43.9 37.81 mg/Kg 85 75 - 1253 20 ₩ Cadmium ND 43.9 37.90 mg/Kg 86 75 - 125 5 20 ₩ Calcium 10000 2200 21520 4 mg/Kg 524 75 - 125 20 ₩ Chromium 17.6 43.9 58.06 mg/Kg 92 75 - 125 20 ₩ 93 Cobalt 6.9 43.9 47.67 mg/Kg 75 - 125 20 Ö 83 20 Copper 8.6 43.9 45.05 mg/Kg 75 - 125 8 . ₩ 89 Lead 43.9 53.99 mg/Kg 75 - 125 8 20 14.9 2200 ₩ -15 20 Magnesium 7250 F1 F2 6931 F1F2 mq/Kq 75 - 125 66 441.7 4 F2 BF2 43.9 18 75 - 125 71 20 Manganese 434 mg/Kg ₩ Nickel 13.8 43.9 56.33 mg/Kg 97 75 - 125 20 2200 ₩ 20 2310 F1 198 75 - 125 3 Potassium 6662 F1 mg/Kg Ö Selenium ND 43.9 36.97 mg/Kg 84 75 - 125 20 ₩ Silver ND 11.0 10.06 92 75 - 125 5 20 mg/Kg ₩ Sodium ND 2200 2096 mg/Kg 91 75 - 125 5 20 Thallium ND 43.9 41.57 ₩ 95 75 - 125 4 20 mg/Kg ₩ 43.9 103 20 Vanadium 28.0 73.32 mg/Kg 75 - 125 13

Lab Sample ID: 480-159204-14 MSD Client Sample ID: AMSF-CS-ES-SS-C2

43.9

Matrix: Solid

Zinc

Prep Batch: 492504 **Analysis Batch: 493465** MSD MSD **RPD** Sample Sample Spike %Rec. Analyte Qualifier Added Result Qualifier Unit %Rec Limits **RPD** Limit Result ₩ Aluminum 14800 2200 22130 4 332 75 - 125 20 mg/Kg 16700 2200 18460 4 Iron mg/Kg 82 75 - 12520

Lab Sample ID: MB 480-492544/1-A

52.2

Matrix: Water

Analysis Batch: 492839

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 492544

88.25

mg/Kg

82

75 - 125

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		200		ug/L		09/18/19 08:54	09/18/19 23:08	1
Antimony	ND		20.0		ug/L		09/18/19 08:54	09/18/19 23:08	1
Arsenic	ND		15.0		ug/L		09/18/19 08:54	09/18/19 23:08	1
Barium	ND		2.0		ug/L		09/18/19 08:54	09/18/19 23:08	1
Beryllium	ND		2.0		ug/L		09/18/19 08:54	09/18/19 23:08	1
Cadmium	ND		2.0		ug/L		09/18/19 08:54	09/18/19 23:08	1
Calcium	ND		500		ug/L		09/18/19 08:54	09/18/19 23:08	1
Chromium	ND		4.0		ug/L		09/18/19 08:54	09/18/19 23:08	1
Cobalt	ND		4.0		ug/L		09/18/19 08:54	09/18/19 23:08	1
Copper	ND		10.0		ug/L		09/18/19 08:54	09/18/19 23:08	1
Iron	ND		50.0		ug/L		09/18/19 08:54	09/18/19 23:08	1
Lead	ND		10.0		ug/L		09/18/19 08:54	09/18/19 23:08	1
Magnesium	ND		200		ug/L		09/18/19 08:54	09/18/19 23:08	1
Manganese	ND		3.0		ug/L		09/18/19 08:54	09/18/19 23:08	1
Nickel	ND		10.0		ug/L		09/18/19 08:54	09/18/19 23:08	1

Eurofins TestAmerica, Buffalo

Page 106 of 135

Client: Stantec Consulting Corp. Job ID: 480-159204-1

Project/Site: Alliance BCP Site (AMSF)

Method: 6010C - Metals (ICP) (Continued)

MR MR

Lab Sample ID: MB 480-492544/1-A

Matrix: Water

Analysis Batch: 492839

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 492544

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Potassium	ND		500		ug/L		09/18/19 08:54	09/18/19 23:08	1
Selenium	ND		25.0		ug/L		09/18/19 08:54	09/18/19 23:08	1
Silver	ND		6.0		ug/L		09/18/19 08:54	09/18/19 23:08	1
Sodium	ND		1000		ug/L		09/18/19 08:54	09/18/19 23:08	1
Thallium	ND		20.0		ug/L		09/18/19 08:54	09/18/19 23:08	1
Vanadium	ND		5.0		ug/L		09/18/19 08:54	09/18/19 23:08	1
Zinc	ND	^	10.0		ug/L		09/18/19 08:54	09/18/19 23:08	1

Lab Sample ID: LCS 480-492544/2-A

Matrix: Water

Analysis Batch: 492839

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 492544

Alialysis Balcii. 492039	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Aluminum	10000	9708	-	ug/L		97	80 - 120
Antimony	200	220.3		ug/L		110	80 - 120
Arsenic	200	199.8		ug/L		100	80 - 120
Barium	200	205.7		ug/L		103	80 - 120
Beryllium	200	202.8		ug/L		101	80 - 120
Cadmium	200	204.2		ug/L		102	80 - 120
Calcium	10000	10060		ug/L		101	80 - 120
Chromium	200	204.2		ug/L		102	80 - 120
Cobalt	200	191.7		ug/L		96	80 - 120
Copper	200	196.8		ug/L		98	80 - 120
Iron	10000	10060		ug/L		101	80 - 120
Lead	200	195.1		ug/L		98	80 - 120
Magnesium	10000	10020		ug/L		100	80 - 120
Manganese	200	203.0		ug/L		101	80 - 120
Nickel	200	200.0		ug/L		100	80 - 120
Potassium	10000	9505		ug/L		95	80 - 120
Selenium	200	191.3		ug/L		96	80 - 120
Silver	50.0	51.30		ug/L		103	80 - 120
Sodium	10000	9270		ug/L		93	80 - 120
Thallium	200	203.8		ug/L		102	80 - 120
Vanadium	200	204.4		ug/L		102	80 - 120
Zinc	200	209.2	^	ug/L		105	80 - 120
_				-			

Lab Sample ID: 480-159204-12 MS

Matrix: Water

Analysis Batch: 492839

Client Sample	ID: AM	SF-CS	5-RB-W-	1
	Pren	Tyne:	Total/NA	Δ

Prep Batch: 492544

	•	Sample	Sample	Spike	MS	MS				%Rec.	
	Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
	Aluminum	ND		10000	9461		ug/L		93	75 - 125	
	Antimony	ND		200	214.8		ug/L		107	75 - 125	
	Arsenic	ND		200	194.6		ug/L		97	75 - 125	
١	Barium	ND		200	199.9		ug/L		100	75 - 125	
	Beryllium	ND		200	198.4		ug/L		99	75 - 125	
	Cadmium	ND		200	198.8		ug/L		99	75 - 125	
١	Calcium	ND		10000	9845		ug/L		98	75 - 125	
١	Chromium	ND		200	200.5		ug/L		100	75 ₋ 125	

Eurofins TestAmerica, Buffalo

Page 107 of 135

QC Sample Results

Client: Stantec Consulting Corp. Project/Site: Alliance BCP Site (AMSF) Job ID: 480-159204-1

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: 480-159204-12 MS

Matrix: Water

Analysis Batch: 492839

Client Sample ID: AMSF-CS-RB-W-1

Prep Type: Total/NA

Prep Batch: 492544

-	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Cobalt	ND		200	187.1		ug/L		94	75 - 125	
Copper	ND		200	192.1		ug/L		96	75 - 125	
Iron	ND		10000	9806		ug/L		98	75 ₋ 125	
Lead	ND		200	191.6		ug/L		96	75 - 125	
Magnesium	ND		10000	9775		ug/L		98	75 - 125	
Manganese	ND		200	197.1		ug/L		98	75 ₋ 125	
Nickel	ND		200	194.8		ug/L		97	75 - 125	
Potassium	ND		10000	9239		ug/L		92	75 - 125	
Selenium	ND		200	185.5		ug/L		93	75 - 125	
Silver	ND		50.0	48.91		ug/L		98	75 - 125	
Sodium	ND		10000	9199		ug/L		92	75 - 125	
Thallium	ND		200	198.0		ug/L		99	75 - 125	
Vanadium	ND		200	198.9		ug/L		99	75 - 125	
Zinc	ND	٨	200	207.9	٨	ug/L		102	75 - 125	

Lab Sample ID: 480-159204-12 MSD

Client Sample ID: AMSF-CS-RB-W-1

Lab Campic 1D. 400-100204	I I IIIOD						Onche C	Jumpic	ID. AIIIOI		
Matrix: Water									Prep Ty		
Analysis Batch: 492839			-						Prep Ba	atch: 49	
	Sample	•	Spike		MSD				%Rec.		RPD
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aluminum	ND		10000	9087		ug/L		89	75 - 125	4	20
Antimony	ND		200	207.6		ug/L		104	75 - 125	3	20
Arsenic	ND		200	190.7		ug/L		95	75 - 125	2	20
Barium	ND		200	195.4		ug/L		98	75 - 125	2	20
Beryllium	ND		200	192.3		ug/L		96	75 - 125	3	20
Cadmium	ND		200	192.9		ug/L		96	75 - 125	3	20
Calcium	ND		10000	9532		ug/L		95	75 - 125	3	20
Chromium	ND		200	198.3		ug/L		99	75 - 125	1	20
Cobalt	ND		200	181.6		ug/L		91	75 - 125	3	20
Copper	ND		200	187.3		ug/L		94	75 - 125	3	20
Iron	ND		10000	9539		ug/L		95	75 - 125	3	20
Lead	ND		200	184.5		ug/L		92	75 - 125	4	20
Magnesium	ND		10000	9492		ug/L		95	75 - 125	3	20
Manganese	ND		200	193.3		ug/L		96	75 - 125	2	20
Nickel	ND		200	189.2		ug/L		95	75 - 125	3	20
Potassium	ND		10000	8895		ug/L		89	75 - 125	4	20
Selenium	ND		200	184.6		ug/L		92	75 - 125	1	20
Silver	ND		50.0	47.53		ug/L		95	75 ₋ 125	3	20
Sodium	ND		10000	8924		ug/L		89	75 - 125	3	20
Thallium	ND		200	193.5		ug/L		97	75 - 125	2	20
Vanadium	ND		200	193.5		ug/L		97	75 - 125	3	20
Zinc	ND	Λ	200	200.5	^	ug/L		99	75 - 125	4	20
						-					

Client: Stantec Consulting Corp. Job ID: 480-159204-1

RL

0.20

RL

0.020

Spike

Added

MB MB

 $\overline{\mathsf{ND}}$

Sample Sample

Sample Sample

Result Qualifier

MR MR

0.041

0.041

Method: 9012B - Cyanide, Total andor Amenable

Result Qualifier

Result Qualifier

6.67

Spike

Added

4.85

Spike

Added

0.368

Spike

Added

0.380

MDL Unit

LCS LCS

6.38

Result Qualifier

MDL Unit

LCSSRM LCSSRM

MS MS

MSD MSD

Result Qualifier

0.414

0.435

Result Qualifier

3.30

Result Qualifier

mg/Kg

ug/L

Unit

ug/L

Unit

Unit

Unit

mg/Kg

mg/Kg

mg/Kg

Project/Site: Alliance BCP Site (AMSF)

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 480-493531/1-A **Matrix: Water**

Analysis Batch: 493626

MB MB

Result Qualifier Analyte

Mercury ND Lab Sample ID: LCS 480-493531/2-A

Matrix: Water Analysis Batch: 493626

Analyte Mercury

Method: 7471B - Mercury (CVAA)

Lab Sample ID: MB 480-494125/1-A **Matrix: Solid**

Analysis Batch: 494349

Analyte

Mercury

Lab Sample ID: LCSSRM 480-494125/2-A ^5 **Matrix: Solid**

Analysis Batch: 494349

Analyte

Mercury

Lab Sample ID: 480-159204-11 MS

Analysis Batch: 494349

Matrix: Solid

Analyte Mercury

Lab Sample ID: 480-159204-11 MSD

Matrix: Solid

Analysis Batch: 494349

Analyte

Mercury

Lab Sample ID: MB 480-494152/1-A

Matrix: Water

Analysis Batch: 494307

Analyte

 $\overline{\mathsf{ND}}$

Cyanide, Total

Result Qualifier RL 0.010

MDL Unit mg/L

Prepared

D %Rec

Analyzed 09/25/19 20:35 09/26/19 12:30

Client Sample ID: Method Blank

Dil Fac

10/4/2019

Prep Type: Total/NA **Prep Batch: 494152**

Eurofins TestAmerica, Buffalo

Client Sample ID: Method Blank

09/23/19 11:57 09/23/19 15:59

Client Sample ID: Lab Control Sample

%Rec.

Limits

80 - 120

Client Sample ID: Method Blank

09/26/19 11:26 09/26/19 13:09

Client Sample ID: Lab Control Sample

%Rec.

Limits

46.0 - 107.

%Rec

Limits

80 - 120

Client Sample ID: AMSF-CS-ES-SS-C1

Analyzed

Prepared

D %Rec

Prepared

D %Rec

68.0

%Rec

101

104

96

Prep Type: Total/NA

Prep Batch: 493531

Prep Type: Total/NA

Prep Batch: 493531

Prep Type: Total/NA

Prep Batch: 494125

Prep Type: Total/NA

Prep Batch: 494125

Prep Type: Total/NA **Prep Batch: 494125**

Analyzed

Dil Fac

Dil Fac

Client Sample ID: AMSF-CS-ES-SS-C1

Prep Type: Total/NA

Prep Batch: 494125 %Rec. RPD

RPD Limit

04-1

Client: Stantec Consulting Corp. Project/Site: Alliance BCP Site (AMSF) Job ID: 480-159204-1

Froject/Site. Alliance BCF Site (AlviSF)

Lab Sample ID: LCS 480-494152/2-A				Clie	nt Sar	mple ID	: Lab Control Sample
Matrix: Water							Prep Type: Total/NA
Analysis Batch: 494307							Prep Batch: 494152
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Cyanide, Total	0.250	0.276		mg/L		110	90 - 110

Lab Sample ID: MB 480-494182/1-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA Analysis Batch: 494364 **Prep Batch: 494182** MB MB Analyte Result Qualifier RL **MDL** Unit **Prepared** Analyzed Dil Fac 0.94 Cyanide, Total ND mg/Kg 09/25/19 22:25 09/26/19 14:55

Lab Sample ID: LCS 480-494182/2-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA Analysis Batch: 494364 **Prep Batch: 494182** Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit Limits D %Rec Cyanide, Total 2.91 4.00 29 - 122 mg/Kg 138

Lab Sample ID: LCSD 480-494182/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid** Prep Type: Total/NA Analysis Batch: 494364 **Prep Batch: 494182** Spike LCSD LCSD %Rec. **RPD** Added Result Qualifier Limits Analyte D %Rec RPD Limit Unit Cyanide, Total 2.91 3.91 * 134 29 - 122 mg/Kg

Lab Sample ID: 480-159204-11 MS Client Sample ID: AMSF-CS-ES-SS-C1 **Matrix: Solid** Prep Type: Total/NA Analysis Batch: 494364 **Prep Batch: 494182** Sample Sample Spike MS MS %Rec. Result Qualifier Added Analyte Result Qualifier Unit %Rec Limits ₩ ND F1* 1.38 1.69 F1 122 85 - 115 Cyanide, Total mg/Kg

Lab Sample ID: 480-159204-11 MSD Client Sample ID: AMSF-CS-ES-SS-C1 **Matrix: Solid** Prep Type: Total/NA Analysis Batch: 494364 **Prep Batch: 494182** Spike MSD MSD Sample Sample %Rec. **RPD** Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Limit ND F1* mg/Ka Cyanide, Total 1.37 1.88 F1 137 85 - 115

Lab Sample ID: 480-159204-14 MS Client Sample ID: AMSF-CS-ES-SS-C2 **Matrix: Solid** Prep Type: Total/NA Analysis Batch: 494364 **Prep Batch: 494182** Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Cyanide, Total ND F1 1 34 1.83 F1 137 85 - 115 mg/Kg

Lab Sample ID: MB 480-494412/1-A

Matrix: Solid

Analysis Batch: 494533

MB MB

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 494412

 Analyte
 Result
 Qualifier
 RL
 MDL mg/kg
 Unit
 D mg/kg
 Prepared prepared
 Analyzed polyzofile
 Dil Fac polyzofile

 Cyanide, Total
 ND
 0.99
 mg/kg
 09/26/19 20:30
 09/27/19 11:11
 1

QC Sample Results

Client: Stantec Consulting Corp. Job ID: 480-159204-1

Project/Site: Alliance BCP Site (AMSF)

Lab Sample ID: 480-159204-18 DU

Matrix: Solid

Method: 9012B - Cyanide, Total andor Amenable

Lab Sample ID: LCS 480-494412/2-A				Clien	t Saı	mple ID	: Lab Control Sample
Matrix: Solid							Prep Type: Total/NA
Analysis Batch: 494533							Prep Batch: 494412
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Cyanide, Total	4.63	4.74		mg/Kg		102	29 - 122

Lab Sample ID: LCS 480-494412/3-A Matrix: Solid Analysis Batch: 494533		Spike	· · · · · · · · · · · · · · · · · · ·			Prep Type: Total/NA Prep Batch: 494412		
	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
	Cyanide, Total	2.87	3.09		mg/Kg		108	29 - 122

Lab Sample ID: 480-159204-21 MS Matrix: Solid Analysis Batch: 494533					Client Sample ID: AMSF-CS-WS-SS Prep Type: Tota Prep Batch: 49			pe: Total/NA		
-	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Cyanide, Total	ND		1.43	1.53		mg/Kg	_ <u>\$</u>	107	85 - 115	

Analysis Batch: 494533							Prep Batch: 49	94412
-	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Cyanide, Total	ND		ND		mg/Kg	<u></u>		15

10/4/2019

Client Sample ID: AMSF-CS-NS-SS-C2

Prep Type: Total/NA

Client: Stantec Consulting Corp. Job ID: 480-159204-1 Project/Site: Alliance BCP Site (AMSF)

GC/MS VOA

Analysis Batch: 492443

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-159204-1	AMSF-CS-SS-SS-G1	Total/NA	Solid	8260C	492516
480-159204-2	AMSF-CS-SS-SS-G2	Total/NA	Solid	8260C	492516
480-159204-5	AMSF-CS-DUP-SS-G1	Total/NA	Solid	8260C	492516
480-159204-9	AMSF-CS-ES-SS-G1	Total/NA	Solid	8260C	492516
480-159204-10	AMSF-CS-ES-SS-G2	Total/NA	Solid	8260C	492516
480-159204-15	AMSF-CS-NS-SS-G1	Total/NA	Solid	8260C	492516
480-159204-16	AMSF-CS-NS-SS-G2	Total/NA	Solid	8260C	492516
480-159204-19	AMSF-CS-WS-SS-G1	Total/NA	Solid	8260C	492516
480-159204-20	AMSF-CS-WS-SS-G2	Total/NA	Solid	8260C	492516
MB 480-492516/2-A	Method Blank	Total/NA	Solid	8260C	492516
LCS 480-492516/1-A	Lab Control Sample	Total/NA	Solid	8260C	492516
480-159204-9 MSD	AMSF-CS-ES-SS-G1	Total/NA	Solid	8260C	492516
480-159204-9MS	AMSF-CS-ES-SS-G1	Total/NA	Solid	8260C	492516

Prep Batch: 492516

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-159204-1	AMSF-CS-SS-SS-G1	Total/NA	Solid	5035A_L	
480-159204-2	AMSF-CS-SS-SS-G2	Total/NA	Solid	5035A_L	
480-159204-5	AMSF-CS-DUP-SS-G1	Total/NA	Solid	5035A_L	
480-159204-9	AMSF-CS-ES-SS-G1	Total/NA	Solid	5035A_L	
480-159204-10	AMSF-CS-ES-SS-G2	Total/NA	Solid	5035A_L	
480-159204-15	AMSF-CS-NS-SS-G1	Total/NA	Solid	5035A_L	
480-159204-16	AMSF-CS-NS-SS-G2	Total/NA	Solid	5035A_L	
480-159204-19	AMSF-CS-WS-SS-G1	Total/NA	Solid	5035A_L	
480-159204-20	AMSF-CS-WS-SS-G2	Total/NA	Solid	5035A_L	
MB 480-492516/2-A	Method Blank	Total/NA	Solid	5035A_L	
LCS 480-492516/1-A	Lab Control Sample	Total/NA	Solid	5035A_L	
480-159204-9 MSD	AMSF-CS-ES-SS-G1	Total/NA	Solid	5035A_L	
480-159204-9MS	AMSF-CS-ES-SS-G1	Total/NA	Solid	5035A_L	

Analysis Batch: 493643

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-159204-12	AMSF-CS-RB-W-1	Total/NA	Water	8260C	
480-159204-13	TRIP BLANK	Total/NA	Water	8260C	
MB 480-493643/8	Method Blank	Total/NA	Water	8260C	
LCS 480-493643/5	Lab Control Sample	Total/NA	Water	8260C	

GC/MS Semi VOA

Prep Batch: 492549

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-159204-12	AMSF-CS-RB-W-1	Total/NA	Water	3510C	
MB 480-492549/1-A	Method Blank	Total/NA	Water	3510C	
LCS 480-492549/2-A	Lab Control Sample	Total/NA	Water	3510C	

Analysis Batch: 492746

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-159204-12	AMSF-CS-RB-W-1	Total/NA	Water	8270D	492549
MB 480-492549/1-A	Method Blank	Total/NA	Water	8270D	492549
LCS 480-492549/2-A	Lab Control Sample	Total/NA	Water	8270D	492549

Page 112 of 135

Client: Stantec Consulting Corp. Project/Site: Alliance BCP Site (AMSF)

Job ID: 480-159204-1

GC/MS Semi VOA

Prep Batch: 493581

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-159204-3	AMSF-CS-SS-SS-C1	Total/NA	Solid	3550C	
480-159204-4	AMSF-CS-SS-SS-C2	Total/NA	Solid	3550C	
480-159204-8	AMSF-CS-DUP-SS-C2	Total/NA	Solid	3550C	
480-159204-11	AMSF-CS-ES-SS-C1	Total/NA	Solid	3550C	
480-159204-14	AMSF-CS-ES-SS-C2	Total/NA	Solid	3550C	
480-159204-17	AMSF-CS-NS-SS-C1	Total/NA	Solid	3550C	
480-159204-18	AMSF-CS-NS-SS-C2	Total/NA	Solid	3550C	
480-159204-21	AMSF-CS-WS-SS-C1	Total/NA	Solid	3550C	
480-159204-22	AMSF-CS-WS-SS-C2	Total/NA	Solid	3550C	
MB 480-493581/1-A	Method Blank	Total/NA	Solid	3550C	
LCS 480-493581/2-A	Lab Control Sample	Total/NA	Solid	3550C	
480-159204-11 MS	AMSF-CS-ES-SS-C1	Total/NA	Solid	3550C	
480-159204-11 MSD	AMSF-CS-ES-SS-C1	Total/NA	Solid	3550C	

Analysis Batch: 493753

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-159204-3	AMSF-CS-SS-SS-C1	Total/NA	Solid	8270D	493581
480-159204-4	AMSF-CS-SS-SS-C2	Total/NA	Solid	8270D	493581
480-159204-8	AMSF-CS-DUP-SS-C2	Total/NA	Solid	8270D	493581
480-159204-11	AMSF-CS-ES-SS-C1	Total/NA	Solid	8270D	493581
480-159204-14	AMSF-CS-ES-SS-C2	Total/NA	Solid	8270D	493581
480-159204-17	AMSF-CS-NS-SS-C1	Total/NA	Solid	8270D	493581
480-159204-18	AMSF-CS-NS-SS-C2	Total/NA	Solid	8270D	493581
480-159204-21	AMSF-CS-WS-SS-C1	Total/NA	Solid	8270D	493581
480-159204-22	AMSF-CS-WS-SS-C2	Total/NA	Solid	8270D	493581
MB 480-493581/1-A	Method Blank	Total/NA	Solid	8270D	493581
LCS 480-493581/2-A	Lab Control Sample	Total/NA	Solid	8270D	493581
480-159204-11 MS	AMSF-CS-ES-SS-C1	Total/NA	Solid	8270D	493581
480-159204-11 MSD	AMSF-CS-ES-SS-C1	Total/NA	Solid	8270D	493581

GC Semi VOA

Prep Batch: 492545

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-159204-12	AMSF-CS-RB-W-1	Total/NA	Water	3510C	
MB 480-492545/1-A	Method Blank	Total/NA	Water	3510C	
LCS 480-492545/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 480-492545/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	

Analysis Batch: 492824

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-159204-12	AMSF-CS-RB-W-1	Total/NA	Water	8081B	492545
MB 480-492545/1-A	Method Blank	Total/NA	Water	8081B	492545
LCS 480-492545/2-A	Lab Control Sample	Total/NA	Water	8081B	492545
LCSD 480-492545/3-A	Lab Control Sample Dup	Total/NA	Water	8081B	492545

Prep Batch: 492848

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-159204-3	AMSF-CS-SS-SS-C1	Total/NA	Solid	3550C	
480-159204-4	AMSF-CS-SS-SS-C2	Total/NA	Solid	3550C	
480-159204-8	AMSF-CS-DUP-SS-C2	Total/NA	Solid	3550C	

Eurofins TestAmerica, Buffalo

Page 113 of 135

Client: Stantec Consulting Corp. Project/Site: Alliance BCP Site (AMSF)

Job ID: 480-159204-1

GC Semi VOA (Continued)

Prep Batch: 492848 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-159204-11	AMSF-CS-ES-SS-C1	Total/NA	Solid	3550C	
480-159204-14	AMSF-CS-ES-SS-C2	Total/NA	Solid	3550C	
480-159204-17	AMSF-CS-NS-SS-C1	Total/NA	Solid	3550C	
480-159204-18	AMSF-CS-NS-SS-C2	Total/NA	Solid	3550C	
480-159204-21	AMSF-CS-WS-SS-C1	Total/NA	Solid	3550C	
480-159204-22	AMSF-CS-WS-SS-C2	Total/NA	Solid	3550C	
MB 480-492848/1-A	Method Blank	Total/NA	Solid	3550C	
LCS 480-492848/2-A	Lab Control Sample	Total/NA	Solid	3550C	
480-159204-11 MS	AMSF-CS-ES-SS-C1	Total/NA	Solid	3550C	
480-159204-11 MSD	AMSF-CS-ES-SS-C1	Total/NA	Solid	3550C	

Analysis Batch: 493205

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-159204-3	AMSF-CS-SS-SS-C1	Total/NA	Solid	8081B	492848
480-159204-4	AMSF-CS-SS-SS-C2	Total/NA	Solid	8081B	492848
480-159204-8	AMSF-CS-DUP-SS-C2	Total/NA	Solid	8081B	492848
480-159204-11	AMSF-CS-ES-SS-C1	Total/NA	Solid	8081B	492848
480-159204-14	AMSF-CS-ES-SS-C2	Total/NA	Solid	8081B	492848
480-159204-17	AMSF-CS-NS-SS-C1	Total/NA	Solid	8081B	492848
480-159204-18	AMSF-CS-NS-SS-C2	Total/NA	Solid	8081B	492848
480-159204-21	AMSF-CS-WS-SS-C1	Total/NA	Solid	8081B	492848
MB 480-492848/1-A	Method Blank	Total/NA	Solid	8081B	492848
LCS 480-492848/2-A	Lab Control Sample	Total/NA	Solid	8081B	492848
480-159204-11 MS	AMSF-CS-ES-SS-C1	Total/NA	Solid	8081B	492848
480-159204-11 MSD	AMSF-CS-ES-SS-C1	Total/NA	Solid	8081B	492848

Analysis Batch: 493333

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-159204-22	AMSF-CS-WS-SS-C2	Total/NA	Solid	8081B	492848

Prep Batch: 493350

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-159204-3	AMSF-CS-SS-SS-C1	Total/NA	Solid	3550C	
480-159204-4	AMSF-CS-SS-SS-C2	Total/NA	Solid	3550C	
480-159204-8	AMSF-CS-DUP-SS-C2	Total/NA	Solid	3550C	
480-159204-11	AMSF-CS-ES-SS-C1	Total/NA	Solid	3550C	
480-159204-14	AMSF-CS-ES-SS-C2	Total/NA	Solid	3550C	
480-159204-17	AMSF-CS-NS-SS-C1	Total/NA	Solid	3550C	
480-159204-18	AMSF-CS-NS-SS-C2	Total/NA	Solid	3550C	
480-159204-21	AMSF-CS-WS-SS-C1	Total/NA	Solid	3550C	
480-159204-22	AMSF-CS-WS-SS-C2	Total/NA	Solid	3550C	
MB 480-493350/1-A	Method Blank	Total/NA	Solid	3550C	
LCS 480-493350/2-A	Lab Control Sample	Total/NA	Solid	3550C	
480-159204-11 MS	AMSF-CS-ES-SS-C1	Total/NA	Solid	3550C	
480-159204-11 MSD	AMSF-CS-ES-SS-C1	Total/NA	Solid	3550C	

Prep Batch: 493603

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-159204-12	AMSF-CS-RB-W-1	Total/NA	Water	3510C	_
MB 480-493603/1-A	Method Blank	Total/NA	Water	3510C	
LCS 480-493603/2-A	Lab Control Sample	Total/NA	Water	3510C	

Eurofins TestAmerica, Buffalo

Page 114 of 135

Client: Stantec Consulting Corp. Project/Site: Alliance BCP Site (AMSF) Job ID: 480-159204-1

GC Semi VOA

Analysis Batch: 493822

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-159204-3	AMSF-CS-SS-SS-C1	Total/NA	Solid	8082A	493350
480-159204-4	AMSF-CS-SS-SS-C2	Total/NA	Solid	8082A	493350
480-159204-8	AMSF-CS-DUP-SS-C2	Total/NA	Solid	8082A	493350
480-159204-11	AMSF-CS-ES-SS-C1	Total/NA	Solid	8082A	493350
480-159204-14	AMSF-CS-ES-SS-C2	Total/NA	Solid	8082A	493350
480-159204-17	AMSF-CS-NS-SS-C1	Total/NA	Solid	8082A	493350
480-159204-18	AMSF-CS-NS-SS-C2	Total/NA	Solid	8082A	493350
480-159204-21	AMSF-CS-WS-SS-C1	Total/NA	Solid	8082A	493350
480-159204-22	AMSF-CS-WS-SS-C2	Total/NA	Solid	8082A	493350
MB 480-493350/1-A	Method Blank	Total/NA	Solid	8082A	493350
LCS 480-493350/2-A	Lab Control Sample	Total/NA	Solid	8082A	493350
LCS 480-493603/2-A	Lab Control Sample	Total/NA	Water	8082A	493603
480-159204-11 MS	AMSF-CS-ES-SS-C1	Total/NA	Solid	8082A	493350
480-159204-11 MSD	AMSF-CS-ES-SS-C1	Total/NA	Solid	8082A	493350

Analysis Batch: 494083

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-159204-12	AMSF-CS-RB-W-1	Total/NA	Water	8082A	493603
MB 480-493603/1-A	Method Blank	Total/NA	Water	8082A	493603

Metals

Prep Batch: 492504

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-159204-3	AMSF-CS-SS-SS-C1	Total/NA	Solid	3050B	
480-159204-4	AMSF-CS-SS-SS-C2	Total/NA	Solid	3050B	
480-159204-8	AMSF-CS-DUP-SS-C2	Total/NA	Solid	3050B	
480-159204-11	AMSF-CS-ES-SS-C1	Total/NA	Solid	3050B	
480-159204-14	AMSF-CS-ES-SS-C2	Total/NA	Solid	3050B	
480-159204-17	AMSF-CS-NS-SS-C1	Total/NA	Solid	3050B	
480-159204-18	AMSF-CS-NS-SS-C2	Total/NA	Solid	3050B	
480-159204-21	AMSF-CS-WS-SS-C1	Total/NA	Solid	3050B	
480-159204-22	AMSF-CS-WS-SS-C2	Total/NA	Solid	3050B	
MB 480-492504/1-A	Method Blank	Total/NA	Solid	3050B	
LCSSRM 480-492504/2-A	Lab Control Sample	Total/NA	Solid	3050B	
480-159204-11 MS	AMSF-CS-ES-SS-C1	Total/NA	Solid	3050B	
480-159204-11 MSD	AMSF-CS-ES-SS-C1	Total/NA	Solid	3050B	
480-159204-14 MS	AMSF-CS-ES-SS-C2	Total/NA	Solid	3050B	
480-159204-14 MSD	AMSF-CS-ES-SS-C2	Total/NA	Solid	3050B	

Prep Batch: 492544

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-159204-12	AMSF-CS-RB-W-1	Total/NA	Water	3005A	_
MB 480-492544/1-A	Method Blank	Total/NA	Water	3005A	
LCS 480-492544/2-A	Lab Control Sample	Total/NA	Water	3005A	
480-159204-12 MS	AMSF-CS-RB-W-1	Total/NA	Water	3005A	
480-159204-12 MSD	AMSF-CS-RB-W-1	Total/NA	Water	3005A	

Analysis Batch: 492839

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-159204-12	AMSF-CS-RB-W-1	Total/NA	Water	6010C	492544

Eurofins TestAmerica, Buffalo

Page 115 of 135 10/4/2019

Client: Stantec Consulting Corp. Project/Site: Alliance BCP Site (AMSF)

Metals (Continued)

Analysis Batch: 492839 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 480-492544/1-A	Method Blank	Total/NA	Water	6010C	492544
LCS 480-492544/2-A	Lab Control Sample	Total/NA	Water	6010C	492544
480-159204-12 MS	AMSF-CS-RB-W-1	Total/NA	Water	6010C	492544
480-159204-12 MSD	AMSF-CS-RB-W-1	Total/NA	Water	6010C	492544

Analysis Batch: 493083

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-159204-3	AMSF-CS-SS-SS-C1	Total/NA	Solid	6010C	492504
480-159204-4	AMSF-CS-SS-SS-C2	Total/NA	Solid	6010C	492504
480-159204-8	AMSF-CS-DUP-SS-C2	Total/NA	Solid	6010C	492504
480-159204-11	AMSF-CS-ES-SS-C1	Total/NA	Solid	6010C	492504
480-159204-14	AMSF-CS-ES-SS-C2	Total/NA	Solid	6010C	492504
480-159204-17	AMSF-CS-NS-SS-C1	Total/NA	Solid	6010C	492504
480-159204-18	AMSF-CS-NS-SS-C2	Total/NA	Solid	6010C	492504
480-159204-21	AMSF-CS-WS-SS-C1	Total/NA	Solid	6010C	492504
480-159204-22	AMSF-CS-WS-SS-C2	Total/NA	Solid	6010C	492504
MB 480-492504/1-A	Method Blank	Total/NA	Solid	6010C	492504
LCSSRM 480-492504/2-A	Lab Control Sample	Total/NA	Solid	6010C	492504
480-159204-11 MS	AMSF-CS-ES-SS-C1	Total/NA	Solid	6010C	492504
480-159204-11 MSD	AMSF-CS-ES-SS-C1	Total/NA	Solid	6010C	492504
480-159204-14 MS	AMSF-CS-ES-SS-C2	Total/NA	Solid	6010C	492504
480-159204-14 MSD	AMSF-CS-ES-SS-C2	Total/NA	Solid	6010C	492504

Analysis Batch: 493465

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-159204-3	AMSF-CS-SS-SS-C1	Total/NA	Solid	6010C	492504
480-159204-4	AMSF-CS-SS-SS-C2	Total/NA	Solid	6010C	492504
480-159204-8	AMSF-CS-DUP-SS-C2	Total/NA	Solid	6010C	492504
480-159204-11	AMSF-CS-ES-SS-C1	Total/NA	Solid	6010C	492504
480-159204-14	AMSF-CS-ES-SS-C2	Total/NA	Solid	6010C	492504
480-159204-17	AMSF-CS-NS-SS-C1	Total/NA	Solid	6010C	492504
480-159204-18	AMSF-CS-NS-SS-C2	Total/NA	Solid	6010C	492504
480-159204-21	AMSF-CS-WS-SS-C1	Total/NA	Solid	6010C	492504
480-159204-22	AMSF-CS-WS-SS-C2	Total/NA	Solid	6010C	492504
MB 480-492504/1-A	Method Blank	Total/NA	Solid	6010C	492504
LCSSRM 480-492504/2-A	Lab Control Sample	Total/NA	Solid	6010C	492504
480-159204-11 MS	AMSF-CS-ES-SS-C1	Total/NA	Solid	6010C	492504
480-159204-11 MSD	AMSF-CS-ES-SS-C1	Total/NA	Solid	6010C	492504
480-159204-14 MS	AMSF-CS-ES-SS-C2	Total/NA	Solid	6010C	492504
480-159204-14 MSD	AMSF-CS-ES-SS-C2	Total/NA	Solid	6010C	492504

Prep Batch: 493531

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-159204-12	AMSF-CS-RB-W-1	Total/NA	Water	7470A	
MB 480-493531/1-A	Method Blank	Total/NA	Water	7470A	
LCS 480-493531/2-A	Lab Control Sample	Total/NA	Water	7470A	

Analysis Batch: 493626

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-159204-12	AMSF-CS-RB-W-1	Total/NA	Water	7470A	493531
MB 480-493531/1-A	Method Blank	Total/NA	Water	7470A	493531

Job ID: 480-159204-1

Client: Stantec Consulting Corp. Project/Site: Alliance BCP Site (AMSF) Job ID: 480-159204-1

Metals (Continued)

Analysis Batch: 493626 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 480-493531/2-A	Lab Control Sample	Total/NA	Water	7470A	493531

Prep Batch: 494125

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-159204-3	AMSF-CS-SS-SS-C1	Total/NA	Solid	7471B	_
480-159204-4	AMSF-CS-SS-SS-C2	Total/NA	Solid	7471B	
480-159204-8	AMSF-CS-DUP-SS-C2	Total/NA	Solid	7471B	
480-159204-11	AMSF-CS-ES-SS-C1	Total/NA	Solid	7471B	
480-159204-14	AMSF-CS-ES-SS-C2	Total/NA	Solid	7471B	
480-159204-17	AMSF-CS-NS-SS-C1	Total/NA	Solid	7471B	
480-159204-18	AMSF-CS-NS-SS-C2	Total/NA	Solid	7471B	
480-159204-21	AMSF-CS-WS-SS-C1	Total/NA	Solid	7471B	
480-159204-22	AMSF-CS-WS-SS-C2	Total/NA	Solid	7471B	
MB 480-494125/1-A	Method Blank	Total/NA	Solid	7471B	
LCSSRM 480-494125/2-A ^5	Lab Control Sample	Total/NA	Solid	7471B	
480-159204-11 MS	AMSF-CS-ES-SS-C1	Total/NA	Solid	7471B	
480-159204-11 MSD	AMSF-CS-ES-SS-C1	Total/NA	Solid	7471B	

Analysis Batch: 494349

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-159204-3	AMSF-CS-SS-SS-C1	Total/NA	Solid	7471B	494125
480-159204-4	AMSF-CS-SS-SS-C2	Total/NA	Solid	7471B	494125
480-159204-8	AMSF-CS-DUP-SS-C2	Total/NA	Solid	7471B	494125
480-159204-11	AMSF-CS-ES-SS-C1	Total/NA	Solid	7471B	494125
480-159204-14	AMSF-CS-ES-SS-C2	Total/NA	Solid	7471B	494125
480-159204-17	AMSF-CS-NS-SS-C1	Total/NA	Solid	7471B	494125
480-159204-18	AMSF-CS-NS-SS-C2	Total/NA	Solid	7471B	494125
480-159204-21	AMSF-CS-WS-SS-C1	Total/NA	Solid	7471B	494125
480-159204-22	AMSF-CS-WS-SS-C2	Total/NA	Solid	7471B	494125
MB 480-494125/1-A	Method Blank	Total/NA	Solid	7471B	494125
LCSSRM 480-494125/2-A ^5	Lab Control Sample	Total/NA	Solid	7471B	494125
480-159204-11 MS	AMSF-CS-ES-SS-C1	Total/NA	Solid	7471B	494125
480-159204-11 MSD	AMSF-CS-ES-SS-C1	Total/NA	Solid	7471B	494125

General Chemistry

Analysis Batch: 492554

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-159204-3	AMSF-CS-SS-SS-C1	Total/NA	Solid	Moisture	-
480-159204-4	AMSF-CS-SS-SS-C2	Total/NA	Solid	Moisture	
480-159204-8	AMSF-CS-DUP-SS-C2	Total/NA	Solid	Moisture	
480-159204-11	AMSF-CS-ES-SS-C1	Total/NA	Solid	Moisture	
480-159204-14	AMSF-CS-ES-SS-C2	Total/NA	Solid	Moisture	
480-159204-17	AMSF-CS-NS-SS-C1	Total/NA	Solid	Moisture	
480-159204-18	AMSF-CS-NS-SS-C2	Total/NA	Solid	Moisture	
480-159204-21	AMSF-CS-WS-SS-C1	Total/NA	Solid	Moisture	
480-159204-22	AMSF-CS-WS-SS-C2	Total/NA	Solid	Moisture	
480-159204-11 MS	AMSF-CS-ES-SS-C1	Total/NA	Solid	Moisture	
480-159204-11 MSD	AMSF-CS-ES-SS-C1	Total/NA	Solid	Moisture	
480-159204-14 MS	AMSF-CS-ES-SS-C2	Total/NA	Solid	Moisture	
480-159204-14 MSD	AMSF-CS-ES-SS-C2	Total/NA	Solid	Moisture	

Eurofins TestAmerica, Buffalo

Page 117 of 135

Client: Stantec Consulting Corp.

Project/Site: Alliance BCP Site (AMSF)

Job ID: 480-159204-1

General Chemistry

Analysis Batch: 492739

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-159204-1	AMSF-CS-SS-SS-G1	Total/NA	Solid	Moisture	_
480-159204-2	AMSF-CS-SS-SS-G2	Total/NA	Solid	Moisture	
480-159204-5	AMSF-CS-DUP-SS-G1	Total/NA	Solid	Moisture	
480-159204-9	AMSF-CS-ES-SS-G1	Total/NA	Solid	Moisture	
480-159204-10	AMSF-CS-ES-SS-G2	Total/NA	Solid	Moisture	
480-159204-15	AMSF-CS-NS-SS-G1	Total/NA	Solid	Moisture	
480-159204-16	AMSF-CS-NS-SS-G2	Total/NA	Solid	Moisture	
480-159204-19	AMSF-CS-WS-SS-G1	Total/NA	Solid	Moisture	
480-159204-20	AMSF-CS-WS-SS-G2	Total/NA	Solid	Moisture	
480-159204-9 MSD	AMSF-CS-ES-SS-G1	Total/NA	Solid	Moisture	
480-159204-9MS	AMSF-CS-ES-SS-G1	Total/NA	Solid	Moisture	
480-159204-10 MS	AMSF-CS-ES-SS-G2	Total/NA	Solid	Moisture	
480-159204-10 MSD	AMSF-CS-ES-SS-G2	Total/NA	Solid	Moisture	

Prep Batch: 494152

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-159204-12	AMSF-CS-RB-W-1	Total/NA	Water	9012B	
MB 480-494152/1-A	Method Blank	Total/NA	Water	9012B	
LCS 480-494152/2-A	Lab Control Sample	Total/NA	Water	9012B	

Prep Batch: 494182

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-159204-3	AMSF-CS-SS-SS-C1	Total/NA	Solid	9012B	
480-159204-4	AMSF-CS-SS-SS-C2	Total/NA	Solid	9012B	
480-159204-8	AMSF-CS-DUP-SS-C2	Total/NA	Solid	9012B	
480-159204-11	AMSF-CS-ES-SS-C1	Total/NA	Solid	9012B	
480-159204-14	AMSF-CS-ES-SS-C2	Total/NA	Solid	9012B	
480-159204-17	AMSF-CS-NS-SS-C1	Total/NA	Solid	9012B	
MB 480-494182/1-A	Method Blank	Total/NA	Solid	9012B	
LCS 480-494182/2-A	Lab Control Sample	Total/NA	Solid	9012B	
LCSD 480-494182/3-A	Lab Control Sample Dup	Total/NA	Solid	9012B	
480-159204-11 MS	AMSF-CS-ES-SS-C1	Total/NA	Solid	9012B	
480-159204-11 MSD	AMSF-CS-ES-SS-C1	Total/NA	Solid	9012B	
480-159204-14 MS	AMSF-CS-ES-SS-C2	Total/NA	Solid	9012B	

Analysis Batch: 494307

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-159204-12	AMSF-CS-RB-W-1	Total/NA	Water	9012B	494152
MB 480-494152/1-A	Method Blank	Total/NA	Water	9012B	494152
LCS 480-494152/2-A	Lab Control Sample	Total/NA	Water	9012B	494152

Analysis Batch: 494364

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-159204-3	AMSF-CS-SS-SS-C1	Total/NA	Solid	9012B	494182
480-159204-4	AMSF-CS-SS-SS-C2	Total/NA	Solid	9012B	494182
480-159204-8	AMSF-CS-DUP-SS-C2	Total/NA	Solid	9012B	494182
480-159204-11	AMSF-CS-ES-SS-C1	Total/NA	Solid	9012B	494182
480-159204-14	AMSF-CS-ES-SS-C2	Total/NA	Solid	9012B	494182
480-159204-17	AMSF-CS-NS-SS-C1	Total/NA	Solid	9012B	494182
MB 480-494182/1-A	Method Blank	Total/NA	Solid	9012B	494182
LCS 480-494182/2-A	Lab Control Sample	Total/NA	Solid	9012B	494182

Eurofins TestAmerica, Buffalo

Page 118 of 135

3

4

_

46

11

13

14

15

Client: Stantec Consulting Corp.

Project/Site: Alliance BCP Site (AMSF)

Job ID: 480-159204-1

General Chemistry (Continued)

Analysis Batch: 494364 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCSD 480-494182/3-A	Lab Control Sample Dup	Total/NA	Solid	9012B	494182
480-159204-11 MS	AMSF-CS-ES-SS-C1	Total/NA	Solid	9012B	494182
480-159204-11 MSD	AMSF-CS-ES-SS-C1	Total/NA	Solid	9012B	494182
480-159204-14 MS	AMSF-CS-ES-SS-C2	Total/NA	Solid	9012B	494182

Prep Batch: 494412

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-159204-18	AMSF-CS-NS-SS-C2	Total/NA	Solid	9012B	_
480-159204-21	AMSF-CS-WS-SS-C1	Total/NA	Solid	9012B	
480-159204-22	AMSF-CS-WS-SS-C2	Total/NA	Solid	9012B	
MB 480-494412/1-A	Method Blank	Total/NA	Solid	9012B	
LCS 480-494412/2-A	Lab Control Sample	Total/NA	Solid	9012B	
LCS 480-494412/3-A	Lab Control Sample	Total/NA	Solid	9012B	
480-159204-21 MS	AMSF-CS-WS-SS-C1	Total/NA	Solid	9012B	
480-159204-18 DU	AMSF-CS-NS-SS-C2	Total/NA	Solid	9012B	

Analysis Batch: 494533

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-159204-18	AMSF-CS-NS-SS-C2	Total/NA	Solid	9012B	494412
480-159204-21	AMSF-CS-WS-SS-C1	Total/NA	Solid	9012B	494412
480-159204-22	AMSF-CS-WS-SS-C2	Total/NA	Solid	9012B	494412
MB 480-494412/1-A	Method Blank	Total/NA	Solid	9012B	494412
LCS 480-494412/2-A	Lab Control Sample	Total/NA	Solid	9012B	494412
LCS 480-494412/3-A	Lab Control Sample	Total/NA	Solid	9012B	494412
480-159204-21 MS	AMSF-CS-WS-SS-C1	Total/NA	Solid	9012B	494412
480-159204-18 DU	AMSF-CS-NS-SS-C2	Total/NA	Solid	9012B	494412

2

3

4

9

11

13

14

13

Lab Chronicle

Client: Stantec Consulting Corp. Project/Site: Alliance BCP Site (AMSF)

Client Sample ID: AMSF-CS-SS-SS-G1 Lab Sample ID: 480-159204-1 Date Collected: 09/13/19 15:30

Matrix: Solid

Job ID: 480-159204-1

Date Received: 09/14/19 09:00

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	Moisture		1	492739	09/18/19 14:03	S1V	TAL BUF	

Client Sample ID: AMSF-CS-SS-SS-G1 Lab Sample ID: 480-159204-1

Date Collected: 09/13/19 15:30 **Matrix: Solid** Date Received: 09/14/19 09:00 Percent Solids: 89.9

Batch Dilution Batch Batch Prepared **Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab

Prep Total/NA 5035A L 492516 09/17/19 12:21 LCH **TAL BUF** Total/NA Analysis 8260C 492443 09/17/19 16:00 LCH TAL BUF 1

Client Sample ID: AMSF-CS-SS-SS-G2 Lab Sample ID: 480-159204-2

Date Collected: 09/13/19 15:30 **Matrix: Solid**

Date Received: 09/14/19 09:00

Batch Dilution Batch Prepared Batch Method Factor or Analyzed **Prep Type** Type Run Number **Analyst** Lab Total/NA Moisture 492739 09/18/19 14:03 S₁V TAL BUF Analysis

Client Sample ID: AMSF-CS-SS-SS-G2 Lab Sample ID: 480-159204-2

Date Collected: 09/13/19 15:30 Matrix: Solid

Date Received: 09/14/19 09:00 Percent Solids: 91.0

Batch Batch Dilution Batch **Prepared Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Prep 5035A L 492516 09/17/19 12:21 LCH TAL BUF Total/NA Analysis 8260C 492443 09/17/19 16:26 LCH TAL BUF 1

Client Sample ID: AMSF-CS-SS-SS-C1 Lab Sample ID: 480-159204-3

Date Collected: 09/13/19 15:30 **Matrix: Solid**

Date Received: 09/14/19 09:00

Dilution Batch Batch Batch **Prepared** Prep Type Method Run Factor Number or Analyzed Type Analyst Lab Moisture Total/NA 492554 09/17/19 15:36 IMZ TAL BUF Analysis

Client Sample ID: AMSF-CS-SS-SS-C1 Lab Sample ID: 480-159204-3

Date Collected: 09/13/19 15:30 **Matrix: Solid** Date Received: 09/14/19 09:00 Percent Solids: 85.6

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			493581	09/23/19 14:27	SGD	TAL BUF
Total/NA	Analysis	8270D		10	493753	09/24/19 19:48	RJS	TAL BUF
Total/NA	Prep	3550C			492848	09/19/19 07:28	SMP	TAL BUF
Total/NA	Analysis	8081B		10	493205	09/20/19 19:59	JLS	TAL BUF
Total/NA	Prep	3550C			493350	09/21/19 11:23	SGD	TAL BUF
Total/NA	Analysis	8082A		1	493822	09/24/19 23:32	W1T	TAL BUF
Total/NA	Prep	3050B			492504	09/18/19 05:20	NSW	TAL BUF
Total/NA	Analysis	6010C		1	493465	09/20/19 21:41	LMH	TAL BUF

Eurofins TestAmerica, Buffalo

10

Lab Sample ID: 480-159204-3

Matrix: Solid

Percent Solids: 85.6

Client Sample ID: AMSF-CS-SS-SS-C1

Date Collected: 09/13/19 15:30 Date Received: 09/14/19 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			492504	09/18/19 05:20	NSW	TAL BUF
Total/NA	Analysis	6010C		1	493083	09/19/19 22:51	LMH	TAL BUF
Total/NA	Prep	7471B			494125	09/26/19 11:26	BMB	TAL BUF
Total/NA	Analysis	7471B		1	494349	09/26/19 13:26	BMB	TAL BUF
Total/NA	Prep	9012B			494182	09/25/19 22:25	LAW	TAL BUF
Total/NA	Analysis	9012B		1	494364	09/26/19 15:22	MDL	TAL BUF

Client Sample ID: AMSF-CS-SS-SS-C2

Date Collected: 09/13/19 15:30 Date Received: 09/14/19 09:00

Lab Sample ID: 480-159204-4

Matrix: Solid

Batch Batch Dilution **Batch** Prepared **Prep Type** Type Method Factor Number or Analyzed Analyst Run Lab 492554 09/17/19 15:36 IMZ TAL BUF Total/NA Analysis Moisture

Client Sample ID: AMSF-CS-SS-SS-C2

Date Collected: 09/13/19 15:30 Date Received: 09/14/19 09:00

Lab Sample ID: 480-159204-4

Matrix: Solid Percent Solids: 89.5

_	<u></u>	<u> </u>						
	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			493581	09/23/19 14:27	SGD	TAL BUF
Total/NA	Analysis	8270D		5	493753	09/24/19 20:13	RJS	TAL BUF
Total/NA	Prep	3550C			492848	09/19/19 07:28	SMP	TAL BUF
Total/NA	Analysis	8081B		10	493205	09/20/19 20:18	JLS	TAL BUF
Total/NA	Prep	3550C			493350	09/21/19 11:23	SGD	TAL BUF
Total/NA	Analysis	8082A		1	493822	09/24/19 23:44	W1T	TAL BUF
Total/NA	Prep	3050B			492504	09/18/19 05:20	NSW	TAL BUF
Total/NA	Analysis	6010C		1	493465	09/20/19 21:56	LMH	TAL BUF
Total/NA	Prep	3050B			492504	09/18/19 05:20	NSW	TAL BUF
Total/NA	Analysis	6010C		1	493083	09/19/19 22:55	LMH	TAL BUF
Total/NA	Prep	7471B			494125	09/26/19 11:26	BMB	TAL BUF
Total/NA	Analysis	7471B		1	494349	09/26/19 13:27	BMB	TAL BUF
Total/NA	Prep	9012B			494182	09/25/19 22:25	LAW	TAL BUF
Total/NA	Analysis	9012B		1	494364	09/26/19 15:23	MDL	TAL BUF

Client Sample ID: AMSF-CS-DUP-SS-G1

Date Collected: 09/13/19 15:40

Lab Sample ID: 480-159204-5 **Matrix: Solid** Date Received: 09/14/19 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	492739	09/18/19 14:03	S1V	TAL BUF

Job ID: 480-159204-1

Client: Stantec Consulting Corp. Project/Site: Alliance BCP Site (AMSF)

Client Sample ID: AMSF-CS-DUP-SS-G1

Lab Sample ID: 480-159204-5 Date Collected: 09/13/19 15:40 Date Received: 09/14/19 09:00

Matrix: Solid Percent Solids: 90.4

ı		Batch	Batch		Dilution	Batch	Prepared		
	Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
	Total/NA	Prep	5035A_L			492516	09/17/19 12:21	LCH	TAL BUF
	Total/NA	Analysis	8260C		1	492443	09/17/19 16:51	LCH	TAL BUF

Client Sample ID: AMSF-CS-DUP-SS-C2

Lab Sample ID: 480-159204-8

Matrix: Solid

Date Collected: 09/13/19 15:40 Date Received: 09/14/19 09:00

Date Collected: 09/13/19 15:40

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture			492554	09/17/19 15:36	IMZ	TAL BUF

Client Sample ID: AMSF-CS-DUP-SS-C2

Lab Sample ID: 480-159204-8

Matrix: Solid

Date Received: 09/14/19 09:00 Percent Solids: 89.7

Dilution Batch Batch **Batch Prepared** Method **Prep Type** Type Run **Factor** Number or Analyzed Analyst Lab Total/NA Prep 3550C 493581 09/23/19 14:27 SGD TAL BUF Total/NA 8270D 5 493753 09/24/19 20:37 RJS TAL BUF Analysis Total/NA 3550C Prep 492848 09/19/19 07:28 SMP TAL BUF Total/NA Analysis 8081B 10 493205 09/20/19 20:38 JLS TAL BUF Total/NA 3550C TAL BUF Prep 493350 09/21/19 11:23 SGD Total/NA Analysis 8082A 1 493822 09/24/19 23:57 W1T TAL BUF Total/NA Prep 3050B 492504 09/18/19 05:20 NSW TAL BUF Total/NA Analysis 6010C 1 493465 09/20/19 22:00 LMH **TAL BUF** Total/NA Prep 3050B 492504 09/18/19 05:20 NSW **TAL BUF** Total/NA Analysis 6010C 1 493083 09/19/19 22:58 LMH TAL BUF 7471B Total/NA Prep 494125 09/26/19 11:26 BMB TAL BUF 7471B 494349 09/26/19 13:28 BMB Total/NA Analysis TAL BUF TAL BUF Total/NA Prep 9012B 494182 09/25/19 22:25 LAW

Client Sample ID: AMSF-CS-ES-SS-G1

Analysis

9012B

Lab Sample ID: 480-159204-9

TAL BUF

Matrix: Solid

Date Collected: 09/13/19 14:00 Date Received: 09/14/19 09:00

Total/NA

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	492739	09/18/19 14:03	S1V	TAL BUF

Client Sample ID: AMSF-CS-ES-SS-G1

Lab Sample ID: 480-159204-9

Matrix: Solid

Date Collected: 09/13/19 14:00 Date Received: 09/14/19 09:00 Percent Solids: 83.8

1

494364 09/26/19 15:25 MDL

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A_L			492516	09/17/19 12:21	LCH	TAL BUF
Total/NA	Analysis	8260C		1	492443	09/17/19 17:16	LCH	TAL BUF

Lab Sample ID: 480-159204-10

Date Collected: 09/13/19 14:00 Date Received: 09/14/19 09:00 **Matrix: Solid**

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture			492739	09/18/19 14:03	S1V	TAL BUF

Client Sample ID: AMSF-CS-ES-SS-G2 Lab Sample ID: 480-159204-10

Date Collected: 09/13/19 14:00 **Matrix: Solid** Date Received: 09/14/19 09:00 Percent Solids: 92.1

<u></u>	Batch	Batch	_	Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A_L			492516	09/17/19 12:21	LCH	TAL BUF
Total/NA	Analysis	8260C		1	492443	09/17/19 17:42	LCH	TAL BUF

Client Sample ID: AMSF-CS-ES-SS-C1 Lab Sample ID: 480-159204-11

Date Collected: 09/13/19 14:00 **Matrix: Solid**

Date Received: 09/14/19 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	492554	09/17/19 15:36	IMZ	TAL BUF

Client Sample ID: AMSF-CS-ES-SS-C1 Lab Sample ID: 480-159204-11

Date Collected: 09/13/19 14:00 **Matrix: Solid** Date Received: 09/14/19 09:00 Percent Solids: 84.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			493581	09/23/19 14:27	SGD	TAL BUF
Total/NA	Analysis	8270D		5	493753	09/24/19 14:57	RJS	TAL BUF
Total/NA	Prep	3550C			492848	09/19/19 07:28	SMP	TAL BUF
Total/NA	Analysis	8081B		10	493205	09/20/19 18:21	JLS	TAL BUF
Total/NA	Prep	3550C			493350	09/21/19 11:23	SGD	TAL BUF
Total/NA	Analysis	8082A		1	493822	09/24/19 23:19	W1T	TAL BUF
Total/NA	Prep	3050B			492504	09/18/19 05:20	NSW	TAL BUF
Total/NA	Analysis	6010C		1	493465	09/20/19 22:04	LMH	TAL BUF
Total/NA	Prep	3050B			492504	09/18/19 05:20	NSW	TAL BUF
Total/NA	Analysis	6010C		1	493083	09/19/19 23:02	LMH	TAL BUF
Total/NA	Prep	7471B			494125	09/26/19 11:26	BMB	TAL BUF
Total/NA	Analysis	7471B		1	494349	09/26/19 13:30	BMB	TAL BUF
Total/NA	Prep	9012B			494182	09/25/19 22:25	LAW	TAL BUF
Total/NA	Analysis	9012B		1	494364	09/26/19 15:00	MDL	TAL BUF

Client Sample ID: AMSF-CS-RB-W-1 Lab Sample ID: 480-159204-12

Date Collected: 09/13/19 09:10 **Matrix: Water**

Date Received: 09/14/19 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	493643	09/24/19 16:45	AMM	TAL BUF
Total/NA	Prep	3510C			492549	09/17/19 15:14	AAP	TAL BUF
Total/NA	Analysis	8270D		1	492746	09/18/19 20:16	PJQ	TAL BUF

Client Sample ID: AMSF-CS-RB-W-1

Lab Sample ID: 480-159204-12

Matrix: Water

Job ID: 480-159204-1

Date Collected: 09/13/19 09:10 Date Received: 09/14/19 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			492545	09/17/19 15:04	AAP	TAL BUF
Total/NA	Analysis	8081B		1	492824	09/19/19 15:12	JLS	TAL BUF
Total/NA	Prep	3510C			493603	09/23/19 15:10	AAP	TAL BUF
Total/NA	Analysis	8082A		1	494083	09/25/19 17:19	DSC	TAL BUF
Total/NA	Prep	3005A			492544	09/18/19 08:54	BMB	TAL BUF
Total/NA	Analysis	6010C		1	492839	09/18/19 23:16	LMH	TAL BUF
Total/NA	Prep	7470A			493531	09/23/19 11:57	BMB	TAL BUF
Total/NA	Analysis	7470A		1	493626	09/23/19 16:32	BMB	TAL BUF
Total/NA	Prep	9012B			494152	09/25/19 20:35	LAW	TAL BUF
Total/NA	Analysis	9012B		1	494307	09/26/19 13:00	MDL	TAL BUF

Client Sample ID: TRIP BLANK

Lab Sample ID: 480-159204-13

Matrix: Water

Date Collected: 09/13/19 09:00 Date Received: 09/14/19 09:00

Batch **Batch** Dilution Batch **Prepared Prep Type** Method Factor Number or Analyzed Analyst Type Run Lab Total/NA 493643 09/24/19 17:10 AMM TAL BUF Analysis 8260C

Client Sample ID: AMSF-CS-ES-SS-C2

Lab Sample ID: 480-159204-14

Matrix: Solid

Date Collected: 09/13/19 14:00 Date Received: 09/14/19 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture			492554	09/17/19 15:36	IMZ	TAL BUF

Client Sample ID: AMSF-CS-ES-SS-C2

Lab Sample ID: 480-159204-14

Matrix: Solid

Date Collected: 09/13/19 14:00 Date Received: 09/14/19 09:00 Percent Solids: 88.4

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			493581	09/23/19 14:27	SGD	TAL BUF
Total/NA	Analysis	8270D		5	493753	09/24/19 15:22	RJS	TAL BUF
Total/NA	Prep	3550C			492848	09/19/19 07:28	SMP	TAL BUF
Total/NA	Analysis	8081B		10	493205	09/20/19 20:57	JLS	TAL BUF
Total/NA	Prep	3550C			493350	09/21/19 11:23	SGD	TAL BUF
Total/NA	Analysis	8082A		1	493822	09/25/19 00:10	W1T	TAL BUF
Total/NA	Prep	3050B			492504	09/18/19 05:20	NSW	TAL BUF
Total/NA	Analysis	6010C		1	493465	09/20/19 22:23	LMH	TAL BUF
Total/NA	Prep	3050B			492504	09/18/19 05:20	NSW	TAL BUF
Total/NA	Analysis	6010C		1	493083	09/19/19 23:31	LMH	TAL BUF
Total/NA	Prep	7471B			494125	09/26/19 11:26	BMB	TAL BUF
Total/NA	Analysis	7471B		1	494349	09/26/19 13:35	BMB	TAL BUF
Total/NA	Prep	9012B			494182	09/25/19 22:25	LAW	TAL BUF
Total/NA	Analysis	9012B		1	494364	09/26/19 15:29	MDL	TAL BUF

Lab Chronicle

Client: Stantec Consulting Corp. Project/Site: Alliance BCP Site (AMSF)

Client Sample ID: AMSF-CS-NS-SS-G1 Lab Sample ID: 480-159204-15

Date Collected: 09/13/19 11:30 **Matrix: Solid**

Date Received: 09/14/19 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	492739	09/18/19 14:03	S1V	TAL BUF

Client Sample ID: AMSF-CS-NS-SS-G1 Lab Sample ID: 480-159204-15

Date Collected: 09/13/19 11:30 **Matrix: Solid** Date Received: 09/14/19 09:00 Percent Solids: 92.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A_L			492516	09/17/19 12:21	LCH	TAL BUF
Total/NA	Analysis	8260C		1	492443	09/17/19 18:07	LCH	TAL BUF

Client Sample ID: AMSF-CS-NS-SS-G2

Lab Sample ID: 480-159204-16 Date Collected: 09/13/19 11:30 **Matrix: Solid**

Date Received: 09/14/19 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	492739	09/18/19 14:03	S1V	TAL BUF

Client Sample ID: AMSF-CS-NS-SS-G2 Lab Sample ID: 480-159204-16 Date Collected: 09/13/19 11:30 **Matrix: Solid**

Date Received: 09/14/19 09:00 Percent Solids: 95.2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A_L			492516	09/17/19 13:21	LCH	TAL BUF
Total/NA	Analysis	8260C		1	492443	09/17/19 18:32	LCH	TAL BUF

Client Sample ID: AMSF-CS-NS-SS-C1 Lab Sample ID: 480-159204-17

Date Collected: 09/13/19 11:30 Matrix: Solid

Date Received: 09/14/19 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture			492554	09/17/19 15:36	IMZ	TAL BUF

Client Sample ID: AMSF-CS-NS-SS-C1 Lab Sample ID: 480-159204-17

Date Collected: 09/13/19 11:30 **Matrix: Solid** Date Received: 09/14/19 09:00 Percent Solids: 91.6

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			493581	09/23/19 14:27	SGD	TAL BUF
Total/NA	Analysis	8270D		5	493753	09/24/19 15:46	RJS	TAL BUF
Total/NA	Prep	3550C			492848	09/19/19 07:28	SMP	TAL BUF
Total/NA	Analysis	8081B		20	493205	09/20/19 21:17	JLS	TAL BUF
Total/NA	Prep	3550C			493350	09/21/19 11:23	SGD	TAL BUF
Total/NA	Analysis	8082A		1	493822	09/25/19 00:23	W1T	TAL BUF
Total/NA	Prep	3050B			492504	09/18/19 05:20	NSW	TAL BUF
Total/NA	Analysis	6010C		1	493465	09/20/19 22:46	LMH	TAL BUF

Eurofins TestAmerica, Buffalo

Job ID: 480-159204-1

10

Client: Stantec Consulting Corp. Project/Site: Alliance BCP Site (AMSF)

Client Sample ID: AMSF-CS-NS-SS-C1

Date Collected: 09/13/19 11:30 Date Received: 09/14/19 09:00

Lab Sample ID: 480-159204-17

Matrix: Solid

Percent Solids: 91.6

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			492504	09/18/19 05:20	NSW	TAL BUF
Total/NA	Analysis	6010C		1	493083	09/19/19 23:42	LMH	TAL BUF
Total/NA	Prep	7471B			494125	09/26/19 11:26	BMB	TAL BUF
Total/NA	Analysis	7471B		1	494349	09/26/19 13:36	BMB	TAL BUF
Total/NA	Prep	9012B			494182	09/25/19 22:25	LAW	TAL BUF
Total/NA	Analysis	9012B		1	494364	09/26/19 15:35	MDL	TAL BUF

Client Sample ID: AMSF-CS-NS-SS-C2

Date Collected: 09/13/19 11:30 Date Received: 09/14/19 09:00

Lab Sample ID: 480-159204-18

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture			492554	09/17/19 15:36	IMZ	TAL BUF

Client Sample ID: AMSF-CS-NS-SS-C2

Date Collected: 09/13/19 11:30 Date Received: 09/14/19 09:00

Lab Sample ID: 480-159204-18

Matrix: Solid

Percent Solids: 91.5

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			493581	09/23/19 14:27	SGD	TAL BUF
Total/NA	Analysis	8270D		1	493753	09/24/19 16:10	RJS	TAL BUF
Total/NA	Prep	3550C			492848	09/19/19 07:28	SMP	TAL BUF
Total/NA	Analysis	8081B		10	493205	09/20/19 21:36	JLS	TAL BUF
Total/NA	Prep	3550C			493350	09/21/19 11:23	SGD	TAL BUF
Total/NA	Analysis	8082A		1	493822	09/25/19 00:36	W1T	TAL BUF
Total/NA	Prep	3050B			492504	09/18/19 05:20	NSW	TAL BUF
Total/NA	Analysis	6010C		1	493465	09/20/19 22:50	LMH	TAL BUF
Total/NA	Prep	3050B			492504	09/18/19 05:20	NSW	TAL BUF
Total/NA	Analysis	6010C		1	493083	09/19/19 23:46	LMH	TAL BUF
Total/NA	Prep	7471B			494125	09/26/19 11:26	BMB	TAL BUF
Total/NA	Analysis	7471B		1	494349	09/26/19 13:40	BMB	TAL BUF
Total/NA	Prep	9012B			494412	09/26/19 20:30	LAW	TAL BUF
Total/NA	Analysis	9012B		1	494533	09/27/19 11:17	CLT	TAL BUF

Client Sample ID: AMSF-CS-WS-SS-G1

Date Collected: 09/13/19 10:00 Date Received: 09/14/19 09:00

Lab Sample ID: 480-159204-19

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	492739	09/18/19 14:03	S1V	TAL BUF

Lab Chronicle

Client: Stantec Consulting Corp. Project/Site: Alliance BCP Site (AMSF)

Client Sample ID: AMSF-CS-WS-SS-G1

Lab Sample ID: 480-159204-19

Matrix: Solid

Percent Solids: 87.4

Job ID: 480-159204-1

Date Received:	09/14/19 (19:00					
	Batch	Batch		Dilution	Batch	Prepared	
Pron Tyne	Type	Mothod	Pun	Factor	Number	or Analyzod	

Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A_L			492516	09/17/19 13:21	LCH	TAL BUF
Total/NA	Analysis	8260C		1	492443	09/17/19 18:58	LCH	TAL BUF

Client Sample ID: AMSF-CS-WS-SS-G2

Lab Sample ID: 480-159204-20 Date Collected: 09/13/19 10:00 Matrix: Solid

Date Received: 09/14/19 09:00

Date Collected: 09/13/19 10:00

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	492739	09/18/19 14:03	S1V	TAL BUF

Client Sample ID: AMSF-CS-WS-SS-G2

Lab Sample ID: 480-159204-20

Date Collected: 09/13/19 10:00 **Matrix: Solid** Date Received: 09/14/19 09:00 Percent Solids: 87.8

Dilution Batch Prepared Batch **Batch** Method Number or Analyzed Analyst **Prep Type** Type Run **Factor** Lab Total/NA Prep 5035A L 492516 09/17/19 13:21 LCH TAL BUF Total/NA 492443 09/17/19 19:23 LCH TAL BUF Analysis 8260C 1

Client Sample ID: AMSF-CS-WS-SS-C1

Lab Sample ID: 480-159204-21

Date Collected: 09/13/19 10:00 **Matrix: Solid**

Date Received: 09/14/19 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	492554	09/17/19 15:36	IMZ	TAL BUF

Client Sample ID: AMSF-CS-WS-SS-C1 Lab Sample ID: 480-159204-21

Date Collected: 09/13/19 10:00 Matrix: Solid Date Received: 09/14/19 09:00 Percent Solids: 81.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			493581	09/23/19 14:27	SGD	TAL BUF
Total/NA	Analysis	8270D		1	493753	09/24/19 16:34	RJS	TAL BUF
Total/NA	Prep	3550C			492848	09/19/19 07:28	SMP	TAL BUF
Total/NA	Analysis	8081B		1	493205	09/20/19 21:56	JLS	TAL BUF
Total/NA	Prep	3550C			493350	09/21/19 11:23	SGD	TAL BUF
Total/NA	Analysis	8082A		1	493822	09/25/19 00:49	W1T	TAL BUF
Total/NA	Prep	3050B			492504	09/18/19 05:20	NSW	TAL BUF
Total/NA	Analysis	6010C		1	493465	09/20/19 22:54	LMH	TAL BUF
Total/NA	Prep	3050B			492504	09/18/19 05:20	NSW	TAL BUF
Total/NA	Analysis	6010C		1	493083	09/19/19 23:49	LMH	TAL BUF
Total/NA	Prep	7471B			494125	09/26/19 11:26	BMB	TAL BUF
Total/NA	Analysis	7471B		1	494349	09/26/19 13:41	BMB	TAL BUF
Total/NA	Prep	9012B			494412	09/26/19 20:30	LAW	TAL BUF
Total/NA	Analysis	9012B		1	494533	09/27/19 11:19	CLT	TAL BUF

Lab Chronicle

Client: Stantec Consulting Corp. Job ID: 480-159204-1

Project/Site: Alliance BCP Site (AMSF)

Client Sample ID: AMSF-CS-WS-SS-C2

Lab Sample ID: 480-159204-22 Date Collected: 09/13/19 10:00 **Matrix: Solid**

Date Received: 09/14/19 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture			492554	09/17/19 15:36	IMZ	TAL BUF

Client Sample ID: AMSF-CS-WS-SS-C2

Lab Sample ID: 480-159204-22 Date Collected: 09/13/19 10:00 **Matrix: Solid** Date Received: 09/14/19 09:00 Percent Solids: 87.4

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			493581	09/23/19 14:27	SGD	TAL BUF
Total/NA	Analysis	8270D		5	493753	09/24/19 16:58	RJS	TAL BUF
Total/NA	Prep	3550C			492848	09/19/19 07:28	SMP	TAL BUF
Total/NA	Analysis	8081B		1	493333	09/21/19 15:49	MAN	TAL BUF
Total/NA	Prep	3550C			493350	09/21/19 11:23	SGD	TAL BUF
Total/NA	Analysis	8082A		1	493822	09/25/19 01:01	W1T	TAL BUF
Total/NA	Prep	3050B			492504	09/18/19 05:20	NSW	TAL BUF
Total/NA	Analysis	6010C		1	493465	09/20/19 22:58	LMH	TAL BUF
Total/NA	Prep	3050B			492504	09/18/19 05:20	NSW	TAL BUF
Total/NA	Analysis	6010C		1	493083	09/19/19 23:53	LMH	TAL BUF
Total/NA	Prep	7471B			494125	09/26/19 11:26	BMB	TAL BUF
Total/NA	Analysis	7471B		1	494349	09/26/19 13:43	BMB	TAL BUF
Total/NA	Prep	9012B			494412	09/26/19 20:30	LAW	TAL BUF
Total/NA	Analysis	9012B		1	494533	09/27/19 11:22	CLT	TAL BUF

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Accreditation/Certification Summary

Client: Stantec Consulting Corp.
Project/Site: Alliance BCP Site (AMSF)

Laboratory: Eurofins TestAmerica, Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	!	Program	Identification Number	Expiration Date
New York		NELAP	10026	03-31-20
The following analytes the agency does not one		port, but the laboratory is r	not certified by the governing authority.	This list may include analytes for which
Analysis Method	Prep Method	Matrix	Analyte	
Moisture		Solid	Percent Moisture	
Moisture		Solid	Percent Solids	

1

Job ID: 480-159204-1

3

4

3

11

13

45

Method Summary

Client: Stantec Consulting Corp.

Job ID: 480-159204-1 Project/Site: Alliance BCP Site (AMSF)

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL BUF
8081B	Organochlorine Pesticides (GC)	SW846	TAL BUF
8082A	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	TAL BUF
6010C	Metals (ICP)	SW846	TAL BUF
7470A	Mercury (CVAA)	SW846	TAL BUF
7471B	Mercury (CVAA)	SW846	TAL BUF
9012B	Cyanide, Total andor Amenable	SW846	TAL BUF
Moisture	Percent Moisture	EPA	TAL BUF
3005A	Preparation, Total Metals	SW846	TAL BUF
3050B	Preparation, Metals	SW846	TAL BUF
3510C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	TAL BUF
3550C	Ultrasonic Extraction	SW846	TAL BUF
5030C	Purge and Trap	SW846	TAL BUF
5035A_L	Closed System Purge and Trap	SW846	TAL BUF
7470A	Preparation, Mercury	SW846	TAL BUF
7471B	Preparation, Mercury	SW846	TAL BUF
9012B	Cyanide, Total and/or Amenable, Distillation	SW846	TAL BUF

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Sample Summary

Client: Stantec Consulting Corp. Project/Site: Alliance BCP Site (AMSF) Job ID: 480-159204-1

ab Sample ID	Client Sample ID	Matrix	Collected	Received	Asse
180-159204-1	AMSF-CS-SS-SS-G1	Solid	09/13/19 15:30	09/14/19 09:00	
180-159204-2	AMSF-CS-SS-SS-G2	Solid	09/13/19 15:30	09/14/19 09:00	
180-159204-3	AMSF-CS-SS-SS-C1	Solid	09/13/19 15:30	09/14/19 09:00	
180-159204-4	AMSF-CS-SS-SS-C2	Solid	09/13/19 15:30	09/14/19 09:00	
180-159204-5	AMSF-CS-DUP-SS-G1	Solid	09/13/19 15:40	09/14/19 09:00	
180-159204-8	AMSF-CS-DUP-SS-C2	Solid	09/13/19 15:40	09/14/19 09:00	
180-159204-9	AMSF-CS-ES-SS-G1	Solid	09/13/19 14:00	09/14/19 09:00	
180-159204-10	AMSF-CS-ES-SS-G2	Solid	09/13/19 14:00	09/14/19 09:00	
80-159204-11	AMSF-CS-ES-SS-C1	Solid	09/13/19 14:00	09/14/19 09:00	
180-159204-12	AMSF-CS-RB-W-1	Water	09/13/19 09:10	09/14/19 09:00	
80-159204-13	TRIP BLANK	Water	09/13/19 09:00	09/14/19 09:00	
80-159204-14	AMSF-CS-ES-SS-C2	Solid	09/13/19 14:00	09/14/19 09:00	
80-159204-15	AMSF-CS-NS-SS-G1	Solid	09/13/19 11:30	09/14/19 09:00	
80-159204-16	AMSF-CS-NS-SS-G2	Solid	09/13/19 11:30	09/14/19 09:00	
180-159204-17	AMSF-CS-NS-SS-C1	Solid	09/13/19 11:30	09/14/19 09:00	
180-159204-18	AMSF-CS-NS-SS-C2	Solid	09/13/19 11:30	09/14/19 09:00	
180-159204-19	AMSF-CS-WS-SS-G1	Solid	09/13/19 10:00	09/14/19 09:00	
180-159204-20	AMSF-CS-WS-SS-G2	Solid	09/13/19 10:00	09/14/19 09:00	
180-159204-21	AMSF-CS-WS-SS-C1	Solid	09/13/19 10:00	09/14/19 09:00	
180-159204-22	AMSF-CS-WS-SS-C2	Solid	09/13/19 10:00	09/14/19 09:00	

4

a

10

11

13

14

Quantitation Limit Exceptions Summary

Client: Stantec Consulting Corp.

Project/Site: Alliance BCP Site (AMSF)

Job ID: 480-159204-1

The requested project specific reporting limits listed below were less than laboratory standard quantitation limits (PQL) but greater than or equal to the laboratory method detection limits (MDL). It must be noted that results reported below lab standard quantitation limits may result in false positive/false negative values and less accurate quantitation. Routine laboratory procedures do not indicate corrective action for detections below the laboratory's PQL.

Method	Analyte	Matrix	Prep Type	Unit	Client RL	Lab PQL
8270D	2,4-Dinitrophenol	Solid	Total/NA	mg/Kg	0.33	1.66
8270D	3,3'-Dichlorobenzidine	Solid	Total/NA	mg/Kg	0.17	0.33
8082A	PCB-1016	Solid	Total/NA	mg/Kg	0.017	0.25
8082A	PCB-1221	Solid	Total/NA	mg/Kg	0.017	0.25
8082A	PCB-1232	Solid	Total/NA	mg/Kg	0.017	0.25
8082A	PCB-1242	Solid	Total/NA	mg/Kg	0.017	0.25
8082A	PCB-1248	Solid	Total/NA	mg/Kg	0.017	0.25
8082A	PCB-1254	Solid	Total/NA	mg/Kg	0.017	0.25
8082A	PCB-1260	Solid	Total/NA	mg/Kg	0.017	0.25
8082A	PCB-1262	Solid	Total/NA	mg/Kg	0.017	0.25
8082A	PCB-1268	Solid	Total/NA	mg/Kg	0.017	0.25

3

4

5

7

8

11

12

14

15

Clear in fractions to a control fraction of the cont	Sample Date Sample Date Sample Date Sample Date Sample Date	10 Hazelwood Drive Amherst, NY 14228-2298 Draws, 746 604 2600 Equ. 746 604 7004	0	Chain o	f Cust	of Custody Record	ecord						eurofins Envir	Environment Testing TestAmerica
Sample Committee Committ	Sample Date	Client Information	Sampler:	A. Hose	17	VanD	ette, Ryan T			Car	rier Tracking	No(s):	COC No: 480-135136-30410.1	
Survices It.	Savoca lic	Client Contact: Mr. Thomas Wells	Phone:	1	302	E-Mail ryan.'	/andette@te	stamerical	пс.сош				Page: Page 1 of 2	
Common C	Comparison Com	Company: Stantec Consulting Services Inc							Analysis	Redue	sted		Job #:	
100 100	100 100	Address: 61 Commercial Street Suite100	Due Date Requeste	.jp.								-	Preservation Codes:	
100 100	100 100	City: Rochester State, Zip: NY, 14614	TAT Requested (da	ys):										
Common	Sample Date Sample Sample Date Sampl	Phone: 585-413-5310(Tel)	PO#: 190500647,280				(0)					48(0-159204 Chain of Custody	
Sample Matrix Matrix Sample Matrix Matrix Sample Matrix M	Sample Date Sample Sample Date Sampl	Emait: tom.wells@stantec.com	#OM								_	_	J - Di Water	4 4
Sample Date Sample Sample Matrix Sample Matrix Sample Matrix Sample Matrix Sample Matrix Sample Matrix Sample Corporal C	Sample Date Matrix Sample Co-comp Co-c	Project Name: Alliance BCP Site (AMSF)	Project#: 48019746				_				_		L-EDA	(specify)
1 1 1 1 1 1 1 1 1 1	100 100	Site: XIMSP	SSOW#:					əj			o - sac			
5 - 55 - 51 - C1 5 - 55 - 55 - C1 6 - 55 - 55 - C2 7 - 50 - 55 - 55 - C2 7 - 50 - 55 - 55 - C2 7 - 50 - 55 - 55 - C2 7 - 50 - 55 - 55 - C2 7 - 50 - 55 - 55 - C2 7 - 50 - 55 - 55 - C2 7 - 50 - 55 - 55 - C2 7 - 50 - 55 - 55 - C2 7 - 50 - 55 - 55 - C2 7 - 50 - 55 - 55 - C2 7 - 50 - 55 - 55 - C2 7 - 50 - 55 - 55 - C2 7 - 50 - 55 - 55 - C2 7 - 50 - 50 - 55 - C2 7 - 50 - 50 - 55 - C2 7 - 50 - 50 - 55 - C2 7 - 50 - 50 - 55 - C2 7 - 50 - 50 - 55 - C2 7 - 50 - 50 - 55 - C2 7 - 50 - 50 - 55 - C2 7 - 50 - 50 - 55 - C2 7 - 50 - 50 - 55 - C2 7 - 50 - 50 - 55 - C2 7 - 50 - 50 - 50 - 55 - C2 7 - 50 - 50 - 50 - 50 - C2 7 - 50 - 50 - 50 - 50 - C2 7 - 50	1	Samole Identification	Sample Date	Sample		1 0	Perform MS/M	9012B - Cyanid	A0147, 20106	_	8082A - TCL PC			ns/Note:
5 - 55 - 51 - C1 5 - 55 - 55 - C2 5 - 50 - 55 - C3 5 - 50 - 50 - 55 - C3 5 - 50 - 50 - 50 - 50 5 - 50 - 50 - 5	5-55-55-C1 5-55-C1 5-56-C1 5-67-C1			X	Preservat		z	z	Q	-	z			\setminus
5 - 55 - 55 - C1 5 - 55 - 55	5 - 55 - 55 - C.3 5 - 55 - 55 - C.2 5 - 55 - 55 - C.2 5 - 50 - 50 - C.2 5 - 50 - 50 - C.2 5 - 50 - 50 - C.2 5 - 50 - C.2		9113/19	1530	9	Solid		XXX					60	
5 - 55 - 55 - C.1 5 - 75 - 75 - C.2 7 - 75 - 75	5 - 55 - 55 - C1 5 - Dap - 55 - C2 5 - C5 - C5 - C2 5 - C5 - C5 - C5 6 - Solid C5 - C5 - 55 - C3 C5 - C5 - 55 - C5 C5 - C5 - C5 - C5 C5 - C5 -	3			ی	Solid							0	
5 - 55 - 55 - C1 5 - Day - 55 - C2 5 - C5 - C5 - C5 5 - C5 - C5 - C5 5 - C5 - C	5 - 55 - 52 C2 Solid 5 - 704 - 55 - C2 C3 5 - 704 - 55 - C2 C3 5 - 704 - 55 - C2 C4 6 - 50 C4 6 - 50 C4 7 C4	.5.			J	Solid	×						3	
1	5 - Dxp - 55 - Cs 6 - Solid 5 - Cs 5 - Cs 6 - Solid 6 - Solid 7 - Cs 6 - Solid 7 - Cs 7	53		7	J	Solid	×						7	
5 - Day - 55 - C2	5 - Dup - 55 - C1 5 - C5 - C5 - C5 5 - C5 - C5 - C5 6 - Solid C5 - C5 - C5 - C5 C5 - C5 - C5 - C5 C5 - C5 -	C5 - De		OFF C	6	Solid		*					1	
5 - Dug - 55 - CL	5 - Dug - 55 - CL 5 - C2 - C	ON P		_	0	Solid			~				-	
5 - Dxp - 55 - C2	5 - Dup - 55 - C2	25 - and			J	Solid	×	×					7	
14 15 15 15 15 15 15 15	5 - も5 - ら2 14 w G Solid 14 w G Solid 15 - も5 - も2 - も2 - も2 - も2 - も2 - も2 - も	- Dun- 55		7	2	Solid	x	×					7	
Cooler Temperatures	CS - E5 - 55 - C2 Identification Claimable Claimable Skin Irritant Claimable Company Time Company Castid J. II. III. N., Other (specify) Shocked by. A My Shocked Company Indect: Custody Seal No.: Company Company Company Company Company Company	-63-		1400	0	Solid	7	^					3	
Company Comp	Identification -64-53		-	9	Solid	7	_	-				3		
Sample Disposal (A fee may be assessed if samples are retained longer than 1 m Illin IV Other (specify) Date: Special Instructions/OC Requirements: Special Instructions/OC Requirements: Illin IV Other (specify) Date: Time: Instructions/OC Requirements: Illin IV Other (specify) Date: Illin IV Other (specify	identification Company	35-65-45	7	7	J	Solid	X	×					12	
Special instructions/OC Requirements: Shed by: Time: Time: Time: Method of Shipment	Special Instructions/OC Requirements: shed by: Shortect II. III. M. Other (specify) Shortect III. III. M. Other (specify) Shortect III. III. M. Other (specified by Shortect III. III. III. III. III. III. III. II	Skin Irritant	1993	. 0	diological		Sample I	Disposal (turn To Clie	A fee may	be asse	ssed if sa osal By La	imples are	Archive For Mon	hs
Shed by: / Stated by: 1 Date: Time: Accepted by: 1 Time: Accepted by: 1 Method of Shipment: Accepted by: 1 Date/Time: Accepted by: 1 Accepted by: 1 <th< td=""><td>Shed by: Date: Date: Time: Time: Method of Standard Method</td><td>Deliverable Requested: I, II, III, IV, Other (specify)</td><td></td><td></td><td></td><td></td><td>Special Ir</td><td>nstructions/</td><td>QC Requi</td><td>rements:</td><td></td><td></td><td></td><td></td></th<>	Shed by: Date: Date: Time: Time: Method of Standard Method	Deliverable Requested: I, II, III, IV, Other (specify)					Special Ir	nstructions/	QC Requi	rements:				
DaterTime: Company Received by Startine: Company Received by Cooler Temperature(s) "C and Other Remarks: ATT 2.1	Date-Time: Company Received by Strate. Company Received by Seal No.: Constant Repelved by Received by Received by Received by Received by Received by Cooler Temperature(s) "C and Other Remarks:			Date:			Time:				Method of	Shipment		
Date/Time: Conpany Received by: Dete/Time: Date/Time: D	Date/Time: Company Received by: Cooler Temperature(s)*C and Other Remarks:	Relinquished by. Relinquished by. Relinquished by.	Date/Time:	9/13		Stantec	Receive	Sell 3X	11			Date/Time:	Compar	y 0
Custody Seal No.:	Custody Seal No.:	Relinquished by:	Date/Time:			ompany	Receiv	Mad by:	23	1		Obtel/Time:	1/4 CAB 7	1
							Cooler	Temperature	(s) "C and O	ther Rema	Ks.		11/36	

Chain of Custody Record

Eurofins TestAmerica, Buffalo

Amherst, NY 14228-2298 Phone: 716-691-7991

eurofins Environment Testing TestAmerica

The control of the	Client Information	Sampler			Lab PM: VanDe	Lab PM: VanDette, Ryan T	Tu			Ü	rrier Track	Carrier Tracking No(s):	COC No.	COC No: 480-135136-30410.2	
13 12 12 13 14 15 15 15 15 15 15 15	Client Contact: Mr. Thomas Wells	Phone:			E-Mail	/andette	Dtestam	nericainc.	com				Page Page	2 of 2	
Street Solide 100	Company: Stanton Consultion Services Inc.							An	alveis	Regu	peted		# qor		
The contribution of the	Address 61 Commercial Street Suite100	Due Date Request	ed:					F	1 3	7	11		Pres	000	
Total	City: Rochester	TAT Requested (d	ays):			i the			-				C-Z		
Total Tota	State, Zp: NY, 14614								_				,		33
	Phone: 585-413-5310(Tel)	PO#: 190500647.280				(0	Ι						O I		decahydrate
Signature Sign	Email: tom.wells@stantec.com	#OM													
	Project Name: Alliance BCP Site (AMSF)	Project #: 48019746						2.40	2.40	-				5 4	secify)
		SSOW#:							I OFW) - s80	96			
C5 T2P - W N N N N N N N N N	Samole Identification	Sample Date	Sample	Sample Type (C=comp, G=grab)		Perform MS/A	AS808 , B1808				9082A - TCL P	anze - cyanic	edmuN lstoT	Special Instructions	Note:
	The second secon	$\langle \rangle$	X	Preserva		Ź	z	z	1	-	z		X	1	1
Disayth C C C C C C C C C	AMSP - C5 - 7273-10-1	9113/19	0910	9	Water						×	*	=		
(5 - 16 - 15 - 10 - 10 - 10 - 10 - 10 - 10 - 10	TV:0 Blunk	9113119	000	1	Water	<i>→</i>			*				3		
(5 - N5 - 55 - C6 1	C5-ES	-	1400	J	5	7	-	×					MS.		
(5 - N5 - 55 - C) - (5 - U5 - 55 - C) - (7 - U5 - 55 - C) - (8 - U15 V	CS-N5-55		1130	Ģ		2		×					_		
(25 - N5 - 55 - C) - (25 - N5 - 55 - C) - (25 - W5 -	AMSF- CS - NS- 55-62		_	৩		-		×					_		
CS - いち - ち5 - C2	AMSP - C5- NS-55-C1			J			X	×					4		
1. C5 - C5 - C5 - C6 2 C5 - C5 - C5 - C5 - C6 2 C5 - C5 - C5 - C5 - C6 2 C5 - C5 - C5 - C5 - C7 A V X X X X X X X X X X X X X X X X X X	Amsr. C5-N5-55-C2		7	၁				×					٦		
CS - US - 55 - C2	-65 - 50-		000	9				×					-		
Cooper Temperature Cooper	-65-50-		-	<u>ی</u>				X					_		
and Identification and Identific	1-152-53-			J		<u>X</u>	-	×					1		
Sample Disposal (A fee may kg assessed if samples are retained longer than 1 mard Identification Skin Instant Douglasted: 1.1f. III. N. Other (specify) Land Date: Recently Special Instructions/OC Requirements: Land Date: Time: Method of Shipment: Company C	AMSF- C5-W5-55-CZ	*	7	J	7	_	X	×					7		
Special Instructions/QC Requirements: Second of Shipment: Shipment: Second of Shipment: Shipment	ant	Ц		adiological		Samp	le Dispo	osal (A f	ee may	sse ass	essed if	samples ar Lab	a retained lo	rger than 1 month)	
Induished by: PaterTime: P	2	_				Specia	al Instruc	ctions/QC	Requir	ements	3	Day			
DaterTime: PALS 4 13 14 Company Received by All DaterTime: DaterTi			Date:			Time:					Method	ŏ			
Date/Time: Company Received by MWC Date/Time: Date/Time: Company Received by: Date/Time:	1	Date/Time: 19 H			S temps		3	2.5	11			Date/Time		Company	
als Intact: Custody Seal No.: Cooler Temperature(s) "C and Other Remarks.	Relinquished by:	Date/Time:			Company		Cerred by	Jal	tele	1		Date	-1	0	B
Custody Seal No.:	Relinquished by:	Date/Time:			Company	Re	ceived by					Date/Time		Company	
						ů	oler Temp	erature(s)	Cando	her Rem	arks:			#13:10	

Client: Stantec Consulting Corp.

Job Number: 480-159204-1

Login Number: 159204

List Number: 1 Creator: Kolb, Chris M List Source: Eurofins TestAmerica, Buffalo

Creator: Kolb, Chris M		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or ampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and he COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
ample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
f necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

APPENDIX C

Fit for Duty Covid-19 Guidance

Fit for Duty COVID-19 Guidance

Pre-mobilization fit for duty questions for Stantec field personnel

Please review the following statements and answer the question below:
You are not fit for duty if any of the following conditions are met.
You have a temperature above 100.4 °F (38 °C).
You have any symptoms associated with COVID-19 such as cough, sore throat, shortness of breath, chills, headache, repeated shaking with chills, muscle pain, new loss of taste or smell, or toes and extremities turning blue.
You have been exposed to someone in the last 14 days that has been diagnosed with COVID-19 or is presumptively positive.
You or any members of your household travelled internationally in the last 14 days.
Are you Fit for Duty?
Yes □ No □

If you answer **YES**, you can mobilize to the project field site.

If you answer **NO**, or you choose to not answer, please consult with your supervisor prior to mobilizing to the project field site.

Field Level Risk Assessment

Questions for non-Stantec personnel accessing field sites under Stantec control

"Hello. As you are aware, COVID-19, also known as the novel coronavirus, was declared a global pandemic on March 11, 2020 by the World Health Organization (WHO). The COVID-19 situation continues to evolve and Stantec is now conducting active fit for duty affirmations prior to allowing access to this site."

Please review the following statements and answer the question below:
You are not fit for duty if any of the following conditions are met.
You have a temperature above 100.4 °F (38 °C).
You have any symptoms associated with COVID-19 such as cough, sore throat, shortness of breath, chills, headache, repeated shaking with chills, muscle pain, new loss of taste or smell, or toes and extremities turning blue.
You have been exposed to someone in the last 14 days that has been diagnosed with COVID-19 or is presumptively positive.
You or any members of your household travelled internationally in the last 14 days.
Are you Fit for Duty?
Yes □ No □

If the individual answers **YES**, site access can be granted.

If the individual answers **NO**, or refuses to answer, do not allow them access.

Rev: May 11, 2020

Message for Contractor personnel and visitors to the project site:

"Thank you for your honesty and understanding. While at this Stantec project site please adhere to social distancing to the fullest extent possible. Social distancing means staying 2 metres (6 feet) away from others and avoiding crowds. Please advise Stantec if your task requires you to be within 2 metres (6 feet) of another individual."

- * Close contact is defined as a person who:
 - Provided care for the individual, including healthcare workers, family members or other caregivers, or who had other similar close physical contact with the person without consistent and appropriate use of personal protective equipment OR
 - Lived with or otherwise had close prolonged contact (within 2 metres / 6 feet) with the person while the person was infectious OR
 - Had direct contact with infectious bodily fluids of the person (e.g., was coughed or sneezed on) while not wearing recommended personal protective equipment.

Rev: May 11, 2020 Owner: HSSE