Periodic Review Report NYSDEC BCP Site #C828115

Reporting Period: November 2018 to October 2019

Location: Former Rochester Drug Cooperative Building 320 North Goodman Street Rochester, New York 14607 Prepared for: Stern Properties 274 North Goodman Street #A201 Rochester, New York 14607 LaBella Project No. 211352

November 11, 2019

Table of Contents

1.0		.1
2.0	BACKGROUND	.1
3.0	PURPOSE AND SCOPE OF WORK	.2
4.0	ANNUAL MONITORING	.3
4.1	Sub Slab Depressurization System Monitoring	.3
4.2	Site Wide Inspection	.4
4.2 4.3	Site Wide Inspection Change of Use During Reporting Period	.4 .4
4.2 4.3 5.0	Site Wide Inspection Change of Use During Reporting Period INSTITUTIONAL AND ENGINEERING CONTROLS CERTIFICATION	.4 .4 .4

<u>Figures</u>

- Figure 1 Site Location Map
- Figure 2 Site Area Map
- Figure 3 Sub Slab Depressurization System
- Figure 4 Biocell Soil Placement Location

Appendices

- Appendix A Sub Slab Depressurization Inspection Forms and Photographs
- Appendix B Institutional and Engineering Controls Certification Form
- Appendix C 2019 Change of Use, Excavation Work Plan, and Material Reuse Request Form

1.0 INTRODUCTION

LaBella Associates, D.P.C. (LaBella) is pleased to submit this November 2018 through October 2019 Periodic Review Report (PRR) for the property located at 320 North Goodman Street, City of Rochester, Monroe County, New York, herein after referred to as the "Site". The Site is identified as New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program (BCP) Site #C828115. A Site Location Map is included as Figure 1.

The Site is located in the County of Monroe, New York and is identified as Block 084 and Lot 0001 on the City of Rochester Tax Map # 106. The Site is situated on an approximately 2.7-acre area bounded by the CSX Goodman Street Yards and railroad tracks to the north and east, the Village Gate Square Mall to the south, and residential properties are located adjacent to the west of the Site, across North Goodman Street (see Figure 2).

LaBella was retained by Stern Properties to assist in the monitoring and reporting requirements associated with the Site Management Plan (SMP) prepared for the Site.

2.0 BACKGROUND

Previous environmental investigations at the Site identified the nature and extent of contamination to be limited to petroleum contamination in soil, groundwater, and soil vapor. The apparent source of the petroleum impacts was four (4) petroleum underground storage tanks (USTs) that were formerly located in the eastern portion of the Site. Two (2) additional USTs were reportedly removed by others in the early 1970s, and another UST was removed by others in 1998. There was no closure documentation for the tanks removed from the Site. There are two (2) NYSDEC Spills associated with the Site (#9506933 and #0106407). Both spills have been closed by the NYSDEC, however, the investigation and remediation of the petroleum impacts were performed as part of the BCP project that are associated with NYSDEC Spill #0106407. The Site was entered into the NYSDEC BCP on May 18, 2004.

A Remedial Investigation (RI) was conducted by GeoQuest Environmental, Inc. (GeoQuest) in September 2003 to complete the delineation of the horizontal and vertical extent of petroleumimpacted soil and groundwater at the Site. This RI consisted of advancing seven (7) direct-push soil borings (designated MW-13 through MW-17 and B-18 and B-19) of which five (5) were converted into temporary groundwater monitoring wells (designated MW-13 through MW-17). GeoQuest's RI concluded that:

- the source of the petroleum impacts at the 320 North Goodman Street Site emanated from onsite petroleum storage tanks that had previously been removed from the Site;
- there were no current or reasonably foreseeable exposure pathways since the impacted area was to remain a parking lot; and,
- conditions at the Site required remediation in order to meet the NYSDEC BCP requirements

In April 2005, GeoQuest conducted an Interim Remedial Measure (IRM) Soil Removal program at the Site. As part of the IRM, an ex-situ treatment biocell was constructed, on the easterly adjacent Village Gate Square property, to treat approximately 2,103 cubic yards of petroleum-impacted soil that was excavated from the Site. This petroleum-impacted soil was placed in a "biocell" for remediation over time. Subsequent to screening and sampling the biocell soils, NYSDEC approved, in 2009, grading of the biocell soils into an existing soil berm to the east of the on-site building and covered with one (1) foot of clean soil at the former location shown on Figure 2 and subsequently the soil berm was graded and placed underneath an asphalt paved parking lot at the location shown on Figure 4.

An active Sub-Slab Depressurization System (SSDS) was installed beneath the concrete slab of the on-site building in November 2006. The SSDS was designed to depressurize the subsurface immediately below the concrete floor slab, thus restricting soil vapor intrusion into the on-site building from beneath the floor slab. Additional sub-slab depressurization fans were installed in the on-site building in 2009. Subsequent testing of these monitoring points (i.e. radius of influence testing) indicated negative pressures beneath the floor slab throughout the on-site building. The location of the SSDS components are depicted on Figure 3.

A Final Engineering Report (FER) dated December 2009 by LaBella documented the remedial work. A SMP dated December 2009 by LaBella provides the required monitoring and reporting for the Site. Based on the remedial work completed a certificate of completion was issued for the Site in 2009.

3.0 PURPOSE AND SCOPE OF WORK

The purpose of this report is to present the monitoring work completed at the Site since the last PRR. This work was completed in accordance with the provisions identified in the SMP. As required in the SMP, this report includes the following information:

- Identification, assessment and certification of all Engineering Controls/Institutional Controls (ECs/ICs) required by the remedy for the Site;
- Results of the required annual Site inspections and severe condition inspections, if applicable;
- All inspection forms and other records generated for the Site during the reporting period in electronic format (included in report);
- A summary of any discharge monitoring data and/or information generated during the reporting period with comments and conclusions; and
- A site evaluation, which includes the following:
 - The compliance of the remedy with the requirements of the site-specific RAWP;
 - Any new conclusions or observations regarding Site contamination based on inspections or data generated by the Monitoring Plan for the media being monitored;
 - Recommendations regarding any necessary changes to the remedy and/or Monitoring Plan; and
 - The overall performance and effectiveness of the remedy.

The NYSDEC has approved revisions to the operations, maintenance, and monitoring of the Site in a letter dated February 10, 2015. The NYSDEC approved to discontinue the groundwater monitoring program at the Site based on the last three monitoring events indicated that volatile organic compounds (VOCs) in wells MW-15R and MW-14R have decreased to levels below the New York State groundwater standard and VOC levels in wells MW-16R and MW-17R have decreased to non-detectable levels.

4.0 ANNUAL MONITORING

biocell) SSDS

The SMP indicated monitoring of the performance of the remedy and overall reduction in contamination on-site will be conducted for the first two (2) years, via semi-annual sampling of four (4) existing groundwater monitoring wells, and the frequency thereafter will be determined by NYSDEC. The trend in contaminant levels in groundwater in the affected area was evaluated to determine if the remedy continues to be effective in achieving remedial goals. As noted above, the NYSDEC approved the discontinuation of the groundwater portion of the monitoring as the contaminants of concerns are below the New York State groundwater standards. The current monitoring program is summarized in the following table and was included in the SMP:

Monitoring Program	Frequency	Matrix	Status
Groundwater Monitoring	Semi-annual	Groundwater	Discontinued
Site Wide Inspection/Soil Cover	Annual	Soil	Ongoing
Soil Berm (former	Annual	Soil	Discontinued

Monitoring/Inspection Schedule

A summary of the monitoring work completed is provided below.

Monthly

4.1 Sub Slab Depressurization System Monitoring

The sub-slab depressurization system was inspected on October 30, 2019 in order to verify proper operation of the system. There are six fans that operate the SSDS at the locations shown on Figure 3. At each fan location, the following inspections were made:

Vapor / Air

Ongoing

- the in-line U-tube manometer on the suction side of the piping system was observed to determine a pressure differential that would indicate the fan was operating properly.
- the piping condition was observed to determine if any portion of the piping required repair;
- labeling of the system was intact; and,
- descriptions of actions taken to address any concerns of the SSDS (if applicable).

According to the site owner, Fans #4 and #6 stopped working in October 2019 and were replaced within 30 days.

Based on the inspection, the SSDS appeared to be in good working order (e.g. each manometer indicated the SSDS was working, the fan was observed to be working, and the piping appeared in good condition). Copies of the inspection forms and photographs of pertinent portions of the system are included in Appendix A.

4.2 Site Wide Inspection

A site-wide inspection of the property was conducted on October 30, 2018 to assess the general condition of the site (e.g. commercial use, residential use, etc.) as well as asphalt paved areas located over the remedial excavations. Based on the results of the general site conditions inspection, the site remains utilized for commercial use only, and the asphalt paved areas over the remedial excavations remain in good condition. Photos of the asphalt paved area are included in Appendix A.

4.3 Change of Use During Reporting Period

A vacant portion of the interior building space (northeast area of site building) was remodeled that included minor excavations and concrete removal to install four new columns and plumbing beneath the building slab. Excavated soil encountered was screened for visual and olfactory impacts (i.e. staining and odors) and with a photoionization detector (PID) for evidence of impairment. Evidence of impairment was not observed in the material excavated. One composite soil sample was collected of the excavated soil (estimated to be less than 10 cubic yards) to determine potential reuse or disposal requirements. The sample results indicated the concentrations of chemicals of concern did not exceed the Restricted Use Soil Cleanup Objectives (SCOs) for a Commercial Site. Based on the results, the material was reused as backfill within the excavation and material unable to be used as backfill was placed in a landscaped exterior area of the site as shown on Figure 4.

A copy of the Change of Use Notification, Excavation Work Plan, and Material Reuse Request is included as Attachment C.

5.0 INSTITUTIONAL AND ENGINEERING CONTROLS CERTIFICATION

The NYSDEC Institutional and Engineering Controls Certification Form is included in Appendix B.

6.0 **RECOMMENDATIONS**

Based on that the monitoring during the previous periods has not identified any discrepancies and that only the SSDS and Site Wide Conditions and use of the property is not anticipated to change in the foreseeable future.

J:\STERN FAMILY LIMITED PARTNERSHIP (GARY & MARCIA)\211352\REPORTS\2019 PRR\RPT.2019-11-11.2019 PRR 320 N GOODMAN ST.DOCX

FIGURE 1

Site Location Map NYSDEC BCP Site #C828115 Former Rochester Drug Cooperative Building 320 North Goodman Street Rochester, New York

Path: J:\Stern Family Limited Partnership (Gary & Marcia)\211352\Drawings\2018\Figure 1 Site Location.mxd

Periodic Review Report NYSDEC BCP Site #C828115 Former Rochester Drug Cooperative Building Rochester, New York

Client: The Gary and Marcia Stern Family Limited Partnership

Title: Site Area Map

FIGURE 2

Periodic Review Report NYSDEC BCP Site #C828115 Former Rochester Drug Cooperative Building Rochester, New York

Client: The Gary and Marcia Stern Family Limited Partnership

> Title: **Biocell Soil** Placement Location

75 0 1 inch = 75 feet

211352

FIGURE 4

WBELIV	Project Name: NYSDEC BCP Site No. C828115
Associates, P.C	Location: 320 North Goodman Street, Rochester, New York
300 State Street	Project No.: 208613
Rochester, New York 14614	Inspected By: Anthony Valentine
Phone: (585) 454-6110	Date of Inspection: For 1 2019
Fax: (585) 454-3066	Weather Conditions: Madesale

SSDS VENT FAN & GENERAL LOCATION	FAN OPERATING PROPERLY (YES/NO)	PIPING IN GOOD CONDITION (YES/NO)	MANOMETER READING (INCHES OF WATER COLUMN)	LABELLING OF SYSTEM INTACT (YES/NO)	COMMENTS AND/OR ACTIONS TAKEN
FAN #1 Northern Wall, Near Center of Building	۲'	У	2.0	Y	// A
FAN #2 Near Northeastern Corner of Building	Y	Y	1.75	Y	 //A
FAN #3 Eastern Wall	У	Y	1.75	Y	NA
FAN #4 Southern Wall	Y	Y	2.0	γ	NA
Western Portion of Building, In Bathroom Utility Closet	У	у	1.75	Y	NA
FAN #6 Partial Basement, Southeastern Portion of Building	Y	Y	2.0	Y	NA

Site Management Plan NYSDEC BCP ID #C828115 320 North Goodman Street, Rochester, New York

300 State Street Rochester, New York Phone: (585) 454-6110 Fax: (585) 454-3066	Projec Locati Projec Inspec Date o	tt Name: NYS on: 320 North tt No.: 208613 tted By:	DEC BCP Site No Goodman Street, thoy VAlert: 2-1-2019	. C828115 Rochester, New	w York	
,		Weath	er Conditions:	Moderale	<u> </u>	
SSDS VENT FAN & GENERAL LOCATION	FAN OPERATING PROPERLY (YES/NO)		PIPING IN GOOD CONDITION (YES/NO)	MANOMETER READING (INCHES OF WATER COLUMN)	LABELLING OF SYSTEM INTACT (YES/NO)	COMMENTS AND/OR ACTIONS TAKEN
FAN #1 Northern Wall, Near Center of Building	7		Y	2.5	γ	NA
FAN #2 Near Northeastern Corner of Building	4		Y	1.75	γ	1/4
FAN #3 Eastern Wall	7		γ	1.5	Ŷ	NA
FAN #4 Southern Wall	Y		Y	2.0	γ	NA
FAN #5 Western Portion of Building, In Bathroom Utility Closet	γ		Y	1.75	Y	NA
FAN #6 Partial Basement, Southeastern Portion of Building	7		7	1.5	γ	NA

LABEL Associat	ES, PC.	Projec Locati Projec	t Name: NYS on: 320 North t No: 208613	DEC BCP Site No Goodman Street,	. C828115 Rochester, Ne	w York
Rochester, New York Phone: (585) 454-6116 Fax: (585) 454-3066	14614 Ir 0 D W	nspec Date o Veath	ted By: A f Inspection: er Conditions:	Hrong Valenti 3-1-2010 Moderal	ine	
SSDS VENT FAN & GENERAL LOCATION	FAN OPERAT PROPEF (YES/N	'ING RLY O)	PIPING IN GOOD CONDITION (YES/NO)	MANOMETER READING (INCHES OF WATER COLUMN)	LABELLING OF SYSTEM INTACT (YES/NO)	COMMENTS AND/OR ACTIONS TAKEN
Northern Wall, Near Center of Building FAN #2	X		Y	1.75	Y	NA
Near Northeastern Corner of Building	¥		Y	2.5	У	NA
FAN #3 Eastern Wall	+		Y	1.75	Y	NA
FAN #4 Southern Wall FAN #5	Y		Y	1.5	У	NA
Western Portion of Building, In Bathroom Utility Closet	Y		Y	2.0	Y	NA
Partial Basement, Southeastern Portion of Building	7		Y	3.0	7	NA

Associates, P.C. 300 State Street Project No.: 208613 Rochester, New York 14614 Inspected By: Arthon Valentine	chester, New York				
300 State Street Project No.: 208613 Rochester, New York 14614 Inspected By: Anthony Valentine	interest, new rork				
Rochester, New York 14614 Inspected By: Anthon Valentine					
	Inspected By: Anthon Valentine				
Phone: (585) 454-6110 Date of Inspection: 4-1-7.019					
Fax: (585) 454-3066 Weather Conditions:					

SSDS VENT FAN & GENERAL LOCATION	FAN OPERATING PROPERLY (YES/NO)	PIPING IN GOOD CONDITION (YES/NO)	MANOMETER READING (INCHES OF WATER COLUMN)	LABELLING OF SYSTEM INTACT (YES/NO)	COMMENTS AND/OR ACTIONS TAKEN
FAN #1 Northern Wall, Near Center of Building	Yes	¥	2.0	Y	1:1
FAN #2 Near Northeastern Corner of Building	Yes	¥	15	Y	NA
FAN #3 Eastern Wall	X	Y	1.5	Y	NA
FAN #4 Southern Wall	Y	×	20	Y	ALA
FAN #5 Western Portion of Building, In Bathroom Utility Closet	Y	7	1.75	+	NA
FAN #6 Partial Basement, Southeastern Portion of Building	Y	Y	2.0	7	NX

Site Management Plan NYSDEC BCP ID #C828115 320 North Goodman Street, Rochester, New York

LABEL	Projec	t Name: NYS	DEC BCP Site No.	. C828115						
Associat	Associates, P.C.			Location: 320 North Goodman Street Rochester New York						
300 State Street		Projec	t No.: 208613			W TOIK				
Rochester, New York	14614	Inspec	ted By: A	Alen Man	0.40					
Phone: (585) 454-6110	o [Date o	f Inspection:	5.1-7.010	l					
Fax: (585) 454-3066	ſ	Weath	er Conditions:	11	1					
		eutin	er conditions.	Thodert	ite.					
SSDS VENT FAN & GENERAL LOCATION	FAN OPERATING PROPERLY (YES/NO)		PIPING IN GOOD CONDITION (YES/NO)	MANOMETER READING (INCHES OF WATER COLUMN)	LABELLING OF SYSTEM INTACT (YES/NO)	COMMENTS AND/OR ACTIONS TAKEN				
FAN #1 Northern Wall, Near Center of Building	Yes		XY	1.5	у	111				
FAN #2 Near Northeastern Corner of Building	Yes		Y	2.0	Y	1/4				
FAN #3 Eastern Wall	Yes		У	1.75	Y	NA				
FAN #4 Southern Wall	\checkmark		Y	1.5	Y	NA				
FAN #5 Western Portion of Building, In Bathroom Utility Closet	Y		Y	2.0	у	1/4				
FAN #6 Partial Basement, Southeastern Portion of Building	4		Y	1.75	7	NA				

Associat 300 State Street Rochester, New York Phone: (585) 454-6110 Fax: (585) 454-3066	LA Pro Lo Pro Pro Da We	oject N cation: oject N pected te of In ather (Iame: NYS : 320 North : 0.: 208613 By: . By: . Spection: Conditions:	DEC BCP Site No Goodman Street, Multony Wa 6-1-2010 Moderale	C828115 Rochester, New	w York
SSDS VENT FAN & GENERAL LOCATION	FAN OPERATIN PROPERL (YES/NO	JG Y C)	PIPING IN GOOD CONDITION (YES/NO)	MANOMETER READING (INCHES OF WATER COLUMN)	LABELLING OF SYSTEM INTACT (YES/NO)	COMMENTS AND/OR ACTIONS TAKEN
FAN #1 Northern Wall, Near Center of Building	Y		Y	1.75	Y	111
FAN #2 Near Northeastern Corner of Building	Y		γ	Z.0	M	1/4
FAN #3 Eastern Wall	Y		Y	1.5	У	NA
FAN #4 Southern Wall	Y		Y	2.0	Y	NA
FAN #5 Western Portion of Building, In Bathroom Utility Closet	7		Y	1.75	Y	111
FAN #6 Partial Basement, Southeastern Portion of Building	Y		Y	2.0	5	A]A

Associat 300 State Street Rochester, New York Phone: (585) 454-6110 Fax: (585) 454-3066	Projec Locati Projec Inspec Date o Weath	t Name: NYS on: 320 North t No.: 208613 ted By: f Inspection: er Conditions:	DEC BCP Site No a Goodman Street, Anthony Value 7-1-201 Modera	C828115 Rochester, Ne Cy Le	w York	
SSDS VENT FAN & GENERAL LOCATION	FAN OPERATING PROPERLY (YES/NO)		PIPING IN GOOD CONDITION (YES/NO)	MANOMETER READING (INCHES OF WATER COLUMN)	LABELLING OF SYSTEM INTACT (YES/NO)	COMMENTS AND/OR ACTIONS TAKEN
FAN #1 Northern Wall, Near Center of Building	Y		γ	1.75	Y	NX
Near Northeastern Corner of Building	Y		¥	7.0	Y	NA
FAN #3 Eastern Wall	X		7	1.5	Ч	NA
FAN #4 Southern Wall	¥		Y	2.0	Y	NA.
Western Portion of Building, In Bathroom Utility Closet	У		¥	1.75	Yes	111
FAN #6 Partial Basement, Southeastern Portion of Building	γ		Y	2.0	Yes	NA

R/BELL/		Project Name: NYSDEC BCP Site No. C828115						
Associat	Lo	cation: 320 Nort	h Goodman Street,	Rochester Ne	w York			
300 State Street	Pro	oject No.: 20861.	3	,110	W TOIK			
Rochester, New York	14614 Ins	pected By:	Inthan Wale.	1				
Phone: (585) 454-611		te of Inspection:	0.1.5701	G				
Fax: (585) 454-3066	Wa	ether Carlin	8-1 201	-1				
		ather Conditions	Moleta	te.				
SSDS VENT FAN & GENERAL LOCATION	FAN OPERATIN PROPERL (YES/NO	PIPING IN GOOD Y CONDITION (YES/NO)	MANOMETER READING (INCHES OF WATER COLUMN)	LABELLING OF SYSTEM INTACT (YES/NO)	COMMENTS AND/OR ACTIONS TAKEN			
FAN #1 Northern Wall, Near Center of Building	Yes	Y	1.75	Y	NA			
Near Northeastern Corner of Building	Yes	Y	2,0	Y	NA			
FAN #3 Eastern Wall	Yes	У	1.5	y Y	NA			
FAN #4 Southern Wall	Yes	Y	2.0	¥	NA			
Western Portion of Building, In Bathroom Utility Closet	Ý	У	1.75	у	NA			
FAN #6 Partial Basement, Southeastern Portion of Building	Y	Y	2.0	γ	NA			

Site Management Plan NYSDEC BCP ID #C828115 320 North Goodman Street, Rochester, New York

LABELI	A Projec	t Name: NYS	DEC BCP Site No.	. C828115	
Associate	es, P.C. Locat	ion: 320 North	Goodman Street,	Rochester, Nev	w York
300 State Street	Projec	t No.: 208613		, , , , , , , , , , , , , , , , ,	- TOIK
Rochester, New York 1	14614 Inspec	ted By: A.	attron Vale	ativ,	
Phone: (585) 454-6110	Date o	of Inspection:	9-1-2010	1	
Fax: (585) 454-3066	Weath	er Conditions:	Moderal		
		1			
SSDS VENT FAN & GENERAL LOCATION	FAN OPERATING PROPERLY (YES/NO)	PIPING IN GOOD CONDITION (YES/NO)	MANOMETER READING (INCHES OF WATER COLUMN)	LABELLING OF SYSTEM INTACT (YES/NO)	COMMENTS AND/OR ACTIONS TAKEN
FAN #1 Northern Wall, Near Center of Building FAN #2	7e5	Yes	2.75	Y	NA
Near Northeastern Corner of Building	Yes	Yes	1.75	γ	ΛΙΔ
FAN #3 Eastern Wall	Yes	Yes	2.0	Y	NA
FAN #4 Southern Wall	Yes	Y	2.5	у	NIA
FAN #5 Western Portion of Building, In Bathroom Utility Closet FAN #6	Yes	7	1.75	γ	NA
Partial Basement, Southeastern Portion of Building	Yes	Y	2.0	Y	NA

		1		1.97			
LABEL	Г	Projec	et Name: NYS	DEC BCP Site No	. C828115]
Associat	tes, P.C.	Locati	ion: 320 North	Goodman Street	Rochester No		1
300 State Street		Projec	t No.: 208613		recenester, ive	W I OFK	-
Rochester, New York	14614	Inspec	ted By:		١.		1
Phone: (585) 454-611	0	Data	ft.	17100 VALE	Hine.		1
Fax: (585) 454-3066		Weath	er Conditions:	10-1201			-
				T			1
SSDS VENT FAN & GENERAL LOCATION	F OPEF PRO (YE	AN ATING PERLY S/NO)	PIPING IN GOOD CONDITION (YES/NO)	MANOMETER READING (INCHES OF WATER COLUMN)	LABELLING OF SYSTEM INTACT (YES/NO)	COMMEN AND/OR AC TAKEN	VTS TIONS V
FAN #1 Northern Wall, Near Center of Building	Y		Ŷ	2.75	Y	Dial	.)
Near Northeastern Corner of Building	Y		¥	1.75	Y	septer	20.
FAN #3 Eastern Wall	Y		Ŷ	2.0	У		
FAN #4 Southern Wall	Y		X	2.5	Ŷ	Fay Rei	raced
FAN #5 Western Portion of Building, In Bathroom Utility Closet	γ		Y	1.75	¥		
Partial Basement, Southeastern Portion of Building	Y		Y	2.0	7	Fan Rep	raical

Associat 300 State Street Rochester, New York Phone: (585) 454-6110 Fax: (585) 454-3066	Proj Loca Proj 14614 Insp 0 Date Wea	Project Name: NYSDEC BCP Site No. C828115 Location: 320 North Goodman Street, Rochester, New York Project No.: 208613 Inspected By: Authory Valenhine Date of Inspection: 11-1-2019 Weather Conditions: Cold.					
SSDS VENT FAN & GENERAL LOCATION	FAN OPERATING PROPERLY (YES/NO)	G PIPING IN GOOD CONDITION (YES/NO)	MANOMETER READING (INCHES OF WATER COLUMN)	LABELLING OF SYSTEM INTACT (YES/NO)	COMMENTS AND/OR ACTIONS TAKEN		
FAN #1 Northern Wall, Near Center of Building	γ	Y	2.75	Y			
FAN #2 Near Northeastern Corner of Building	Y	Y	1.75	Y			
FAN #3 Eastern Wall	Y	у	2.0	У			
FAN #4 Southern Wall	$\boldsymbol{\lambda}$	Ý	2.5	Y			
FAN #5 Western Portion of Building, In Bathroom Utility Closet	Y	Y	1.75	Ý			
FAN #6 Partial Basement, Southeastern Portion of Building	Y	7	2.0	Y			

ANNUAL SITE INSPECTION FORM

	PROJECT NAME:	Former Rochester Drug Cooperative Building, #C828115					
300 STATE STREET, SUITE 201	LOCTION:	320 N. Goodman St., Rochester, NY					
ROCHESTER, NEW YORK 14614	PROJECT NO.:	211352					
PHONE: (585) 454-6110	INSPECTED BY:	M. Pelychaty					
FAX: (585-454-3066	DATE:	10/30/2019					
	WEATHER:	Sun/clouds, ~50 F					
COVER TYPE		OVERALL CONDITION OR COMMENT					
GENERAL SITE	Otto surfaces						
CONDITIONS	CONDITIONS Site surface appears is good condition, concrete and asphalt paved appears appear in acceptable conditions						
SITE USE		Site is being currently used as office space by several different tenants.					
SSDS INSPECTION		All fans appear to be working properly. Visible piping in acceptable condition.					

SSDS #1 manometer.

SSDS #2 manometer.

SSDS #3 manometer.

SSDS #4 manometer.

SSDS #5 manometer.

SSDS #6 manometer.

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

1	NEW
2	YORK
,	Y

Site	e N	١٥.	C828115		Site Details			Box 1	
Site	e N	Name Ro	chester Drug	g Cooperative	Building				
Site City Cou Site	e A y/T uni e A	Address: own: Ro ty: Monroe Acreage: 2	320 N. Goodr chester e 2.699	nan Street	Zip Code: 14	4607			
Rej	ро	rting Perio	od: October 1	2, 2018 to Oct	ober 12, 2019				
								YES	NO
1.	ls	the infor	mation above	correct?				X	
	lf	NO, inclu	ide handwritte	n above or on	a separate sh	eet.			
2.	H ta	as some ax map an	or all of the si nendment dui	te property bee ing this Report	en sold, subdiv ling Period?	vided, merged, or un	ndergone a		Х
3.	H (s	las there l see 6NYC	been any cha RR 375-1.11	nge of use at tl (d))? * <mark>See bel</mark> d	ne site during ow	this Reporting Perio	d	X	
4.	H fo	lave any f or or at the	ederal, state, e property dur	and/or local pe ing this Report	ermits (e.g., bu ing Period?	uilding, discharge) be *See below	een issued	Х	1
	lf tř	you ans nat docur	wered YES to mentation ha	o questions 2 s been previo	thru 4, includ usly submitte	le documentation of ed with this certific	or evidence ation form.		
5.	ls	s the site o	currently unde	ergoing develop	oment?				X
								Box 2	
								YES	NO
6.	ls C	the curre commercia	ent site use co al and Industr	onsistent with t al	he use(s) liste	d below?		Х	Cł
7.	A	re all ICs/	ECs in place	and functionin	g as designed	?		X	
	IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.								
AC	Cor	rrective M	leasures Wor	k Plan must be	e submitted al	ong with this form t	o address th	nese issu	Jes.
Sig	gna	ture of Ov	vner, Remedia	l Party or Desig	nated Represe	entative	Date		

*A change of use and excavation work plan was submitted to and accepted by the NYSDEC in May 2019 that included the the installation of new columns, footings, and subgrade piping at the northeast portion of the site building for a new tenant. A copy of the relevant change of use information is included in the 2019 Periodic Review Report.

			Box 2/	4
8. Has any new information reveale Assessment regarding offsite cor	d that assumptions made in the Qu tamination are no longer valid?	alitative Exposure	YES	NO X
If you answered YES to question that documentation has been p	on 8, include documentation or e previously submitted with this ce	vidence rtification form.		
9. Are the assumptions in the Qualit (The Qualitative Exposure Asses	tative Exposure Assessment still va sment must be certified every five y	lid? /ears)	Х	
If you answered NO to question updated Qualitative Exposure A	n 9, the Periodic Review Report r Assessment based on the new as	nust include an ssumptions.		
SITE NO. C828115			Вож	: 3
Description of Institutional Cont	rols			
Parcel Owner 106.84-01-01 Gary and	Marcia Stern Fam. Ltd Partnersh	Institutional Contro Ground Water Use Soil Management F Landuse Restriction Site Management F O&M Plan IC/EC Plan	l Restrict Plan n Plan	ion
 Compliance with the environmental ea All asphalt surfaces and the on-site buresidual contamination in soil and must The SSDS must be monitored and op 	sement and the SMP; uilding are considered a cover syste be maintained; erate on a continuous basis;	em to prevent direct o	contact v	with
- Any future building must be evaluated	for soil vapor intrusion;			
- Groundwater use is as a potable sour	ce is prohibited;			
- The Site is restricted to commercial a	nd/or industrial uses; and			
- Periodic certification that all instutiona implemented.	l and engineering controls are in pl	ace and that the SM	P is beir	ng
			Вох	4
Description of Engineering Con Parcel 106.84-01-01	trols Engineering Control Vapor Mitigation Cover System			

	Box 5
	Periodic Review Report (PRR) Certification Statements
1.	I certify by checking "YES" below that:
	a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the certification;
	b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete
	YES NO
	X
2,	If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each Institutional or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of the following statements are true:
	(a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.
	YES NO
	X
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.
	A Corrective Measures Work Plan must be submitted along with this form to address these issues.
	11/1-/19
	Signature of Owner, Remedial Party or Designated Representative Date

IC CERTIFICATIONS SITE NO. C828115	
	Box 6
SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATE I certify that all information and statements in Boxes 1,2, and 3 are true. I underst statement made herein is punishable as a Class "A" misdemeanor, pursuant to Se Penal Law.	JRE and that a false action 210.45 of the
print name at 274 N Goodman	nst Reich Ny
am certifying as(Owr	ner or Remedial Party)
for the Site named in the Site Details Section of this form.	119
IC/EC CERTIFICATIONS	
--	------
Box 7	
Professional Engineer Signature	
I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.	ı is
DANJEL NOLL at 300 STATE ST. Rochester NY	ì
print name print business address	
am certifying as a Professional Engineer for the OWNER	
Signature of Professional Engineer, for the Owner or Demodial Darty Dendarian Cartification Channing	
Remedial Party, Rendering Certification (Required for PE)	

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation, Region 8 6274 East Avon-Lima Road, Avon, NY 14414-9516 P: (585) 226-5353 I F: (585) 226-8139 www.dec.ny.gov

May 3, 2019

Michael F. Pelychaty, P.G. Labella Associates, D.P.C. 300 State Street, Suite 201 Rochester, New York 14614

RE: Former Rochester Drug Cooperative C828115 Change-In-Use and Excavation Work Plan Monroe(C), Rochester(C)

Dear Mr. Pelychaty:

I have reviewed the referenced documents for the change-in-use at the referenced site. The work plan and associated change-in-use are hereby approved.

In the future, please be aware that there is a 60-day notification requirement prior to these types of activities being initiated. Please let me know if you have any questions or concerns.

Sincerely,

Low m

Todd M. Caffoe, P.E. Division of Environmental Remediation

New York State Department of Environmental Conservation 6274 East Avon-Lima Road, Avon, NY 14414 P: (585) 226-5350 |Todd.Caffoe@dec.ny.gov

- ec: B. Schilling
 - J. Biondolillo
 - C. Reid
 - A. Stern

Department of Environmental Conservation

	NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION
	60-Day Advance Notification of Site Change of Use, Transfer of Certificate of Completion, and/or Ownership Required by 6NYCRR Part 375-1.11(d) and 375-1.9(f)
Т	o be submitted at least 60 days prior to change of use to:
C N D A	Chief, Site Control Section New York State Department of Environmental Conservation Division of Environmental Remediation, 625 Broadway Albany NY 12233-7020
I.	Site Name: Former Rochester Drug Copperative DEC Site ID No. C828115
П.	Contact Information of Person Submitting Notification:
	Name: 300 State Street, Suite 201, Bochester, NY 14614
	Address1:
	Address2:
III.	Type of Change and Date: Indicate the Type of Change(s) (check all that apply): Change in Ownership or Change in Remedial Party(ies)
	Transfer of Certificate of Completion (CoC)
	Other (e.g., any physical alteration or other change of use)
	Proposed Date of Change (mm/dd/yyyy): 5/1/2019
IV.	Description: Describe proposed change(s) indicated above and attach maps, drawings, and/or parcel information.
	Four new interior columns with footings, and trenching of existing interior slab on grade for new underground plumbing. See attached plans for new columns and plumbing,
	If "Other," the description must explain <u>and</u> advise the Department how such change may or may not affect the site's proposed, ongoing, or completed remedial program (attach additional sheets if needed). Chang of Use is unlikely to affect ongoing remedial program.

Pelychaty, Mike

From:	Caffoe, Todd (DEC) <todd.caffoe@dec.ny.gov></todd.caffoe@dec.ny.gov>
Sent:	Friday, May 17, 2019 8:18 AM
То:	Pelychaty, Mike
Cc:	Allan Stern; Schilling, Bernette (DEC)
Subject:	RE: Material Reuse Request - NYSDEC BCP #C828115, Former Rochester Drug
-	Cooperative

Mike,

I have reviewed the analytical data for the excess soils generated during building renovations at the referenced site. The data indicate that these soils meet the unrestricted use SCOs.

These soils are acceptable for reuse anywhere on site. Please let me know if you have any questions.

-Todd

Todd M. Caffoe, P.E.

Division of Environmental Remediation

New York State Department of Environmental Conservation

6274 East Avon-Lima Road, Avon, NY 14414 P: (585) 226-5350 |Todd.Caffoe@dec.ny.gov

From: Pelychaty,Mike <mpelychaty@LaBellaPC.com>
Sent: Wednesday, May 15, 2019 8:55 AM
To: Caffoe, Todd (DEC) <todd.caffoe@dec.ny.gov>
Cc: Allan Stern <allan@sternproperties.com>
Subject: Material Reuse Request - NYSDEC BCP #C828115, Former Rochester Drug Cooperative

ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails.

Todd,

Attached is the material reuse request form for NYSDEC BCP #C828115, Former Rochester Drug Cooperative. One composite soil sample was collected from the material that was removed beneath the floor slab at the northeast portion of the site building. All the results are below the 6NYCRR Part 375-6.8(b) Restricted Use SCO for a Commercial Site. Please conform that this material is acceptable for reuse.

Regards,

Mike Pelychaty

Michael Pelychaty, PG LaBella Associates | Sr. Environmental Geologist

NOTE: PROVIDE CUTTING, CORING AND PATCHING OF ALL WALLS, SLABS AND DECKS AS REQUIRED FOR WORK SHOWN. COORDINATE ALL

1 CONNECT 4" SANITARY/WASTE TO EXISTING 4" SANITARY/WASTE. FIELD VERIFY EXACT SIZE, LOCATION AND INVERT OF EXISTING LINE. 2 1 1/2" WASTE UP TO SINK/LAVATORY. INCREASE TO 3" WASTE ON ALL UNDERGROUND HORIZONTAL RUNS.

4 1 1/2" WASTE UP TO ELECTRIC WATER COOLER. INCREASE TO 3" WASTE ON ALL UNDERGROUND HORIZONTAL RUNS.

8 UP TO DECK PLATE CLEANOUT.

ARCHITECTS 2 ELTON STREET | ROCHESTER NY 14607 585.586.0490

CONSULTANTS:

PROJECT:

COLGATE ROCHESTER CROZER DIVINITY SCHOOL 320 GOODMAN ST. SUITE 206, 207 ROCHESTER, NY 14607

DRAWING TITLE:

FOUNDATION PLAN

PROJECT NO. 2018-11-02

PROJECT DATE:

MARCH 6, 2019

NOTICE:

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS ACTING UNDER THE DIRECTION OF A LICENSED ARCHITECT, TO ALTER ANY ITEM ON THIS DOCUMENT IN ANY WAY. ANY LICENSEE WHO ALTERS THIS DOCUMENT IS REQUIRED BY LAW TO AFFIX HIS OR HER SEAL AND THE NOTATION "ALTERED BY" FOLLOWED BY HIS OR HER SIGNATURE AND A SPECIFIC DESCRIPTION OF ALTERATIONS.

P-100

COLUMN AND SLAB PLAN

1/8" = 1'-0"

NOTES

- DATUM ELEVATION = FINISHED GROUND FLOOR = 0'-0" (XXX' X")
 REFER TO S001 AND S002 FOR GENERAL NOTES.
- (+/-) X'-XX" DENOTES TOP OF FOOTING ELEVATION WITH RESPECT TO DATUM.
 CONCRETE SLAB ON GRADE IS 5" NORMAL WEIGHT CONCRETE COMPACTED
- SUBBASE. REINFORCE SLAB WITH W2.9XW2.9 6"X6" WWF OR 5 LBS/CY STRUX/90 (GRACE) OR FORTA-FERRO (FORTA) MACRO-FIBER REINFORCEMENT.

ARCHITECTS PROVIDE 1" DEEP x 1/8" WIDE CONTROL 2 ELTON STREET | ROCHESTER NY 14607 JOINTS AT 10'-0" o.c. MAX. SUBMIT 585.586.0490 INTENDED LAYOUT FOR REVIEW PRIOR TO POURING CONCRETE. FILL JOINTS AS DIRECTED BY ARCH AFTER CONCRETE CONSULTANTS: CURES. NEW OPENING. SEE LINTEL -(**AM**) ENGINEERING, PLLC Structural EngineeringConsultants 1653 EAST MAIN STREET ROCHESTER, NY 14609 phone: (585) 482-8130 CONT. 24" WIDE x 1" THICK STRIP FOOTING WITH (2) CONT. #5 BOTTOM BARS. PROVIDE CORNER BARS. DRILL AND GROUT BARS INTO EX. fax: (585) 482 0440 FOOTING (8" EMBED). PROVIDE web: www.jensenbrv.com DOWELS TO MATCH WALL VERTS. ==== 5" SLAB ON GRADE - (RAMP), SLOPE PER ARCH. ==== SEE ARCH FOR DIMS. S -<u>~</u>_/_ —**— М**.Е. 🖊 ==== В ____ 8" C.I.P. FOUNDATION WALL, ÷================ ____ REINFORCE WITH #4's AT 12" ===o.c. VERT. AND HORIZ (PROVIDE CORNER BARS). (TYP.) ທູທ === $\dot{\Box} = = = =$ _ REVISED OPENING. SEE LINTEL SCHEDULE ON S-002 S S Н Н ____ CM _____ COLD FORMED X-С +/- 5'-8" 🕇 _____ BRACING AT 12'-0" o.c. MAX. PERMIT, PRICING SET ______ **REVISIONS:** DESCRIPTION ISSUED BY FIELD COORDINATION 03/20/2019 (D

PROJECT: COLGATE ROCHESTER CROZER DIVINITY SCHOOL 320 GOODMAN ST. SUITE 206, 207

320 GOODMAN ST. SUITE 206, 207 ROCHESTER, NY 14607

DRAWING TITLE: FIRST FLOOR STRUCTURAL PLAN

PROJECT NO.
2018-11-02

PROJECT DATE:

MARCH 6, 2019

NOTICE:

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS ACTING UNDER THE DIRECTION OF A LICENSED ARCHITECT, TO ALTER ANY ITEM ON THIS DOCUMENT IN ANY WAY. ANY LICENSEE WHO ALTERS THIS DOCUMENT IS REQUIRED BY LAW TO AFFIX HIS OR HER SEAL AND THE NOTATION "ALTERED BY" FOLLOWED BY HIS OR HER SIGNATURE AND A SPECIFIC DESCRIPTION OF ALTERATIONS.

April 25, 2019

Mr. Todd Caffoe, P.E. New York State Department of Environmental Conservation Division of Environmental Remediation 6275 East Avon-Lima Road Avon, New York 14414

RE: Excavation Work Plan Former Rochester Drug Cooperative 320 North Goodman, Rochester, New York LaBella Project Number 211352

Dear Mr. Caffoe:

LaBella Associates, D.P.C. (LaBella) is submitting this Excavation Work Plan (EWP) and associated supporting documentation on behalf of Stern Properties in order to provide the 15-day notification of the activities that will be taking place at the Former Rochester Drug Cooperative building located at 320 North Goodman Street, City of Rochester, Monroe County, New York. A vacant portion of the interior building space is to be remodeled that includes minor excavations and concrete removal to install four new columns and plumbing beneath the slab. The work is anticipated to begin upon approval of the EWP.

Description of the Work

- <u>Installation of Four New Columns</u>: The northeast portion of the site building will be excavated to install four new columns. An estimated 3 cubic yards (CY) of soil and 5 CY of concrete is anticipated to be removed. The soil will be characterized and is anticipated to be disposed off-site at a NYSDEC Part 360 permitted landfill and the concrete will be sent to an off-site recycling facility. Refer to Attachment 1/Drawing S-100 for the columns locations. No material is anticipated to be imported for this work.
- <u>Installation of New Sub Slab Plumbing</u>: The northeast portion of the site building will be excavated to install new sub-slab plumbing. An estimated 2 CY of soil and 25 CY of concrete is anticipated to be removed. The soil will be characterized and is anticipated to be disposed off-site at a NYSDEC Part 360 permitted landfill and the concrete will be sent to an off-site recycling facility. Refer to Attachment 1/Drawing P-100 for the new plumbing locations. No material is anticipated to be imported for this work.

Groundwater is not expected to be encountered; however, if groundwater or stormwater accumulates in excavations and needs to be removed it will be containerized. All liquids to be removed from the site will be handled, transported and disposed in accordance with the Site Management Plan (SMP) and applicable local, State, and Federal regulations. It is anticipated that groundwater will be sampled, treated if necessary and discharged to the local sewer authority.

Summary of Environmental Conditions Anticipated to be Encountered

Based on previous assessments, the following conditions are anticipated:

- Soil and Fill Materials No data is known of the soil and fill materials beneath the slab in the work area. No impacts are anticipated as the area of soil impacts that were remediated were located outside the footprint of the building.
- *Groundwater* Groundwater is not anticipated to be encountered as the elevation of the proposed excavations is greater than 10 ft above the overburden groundwater table.
- Soil Vapor No soil vapor issues are anticipated within the work area.

Schedule

The current anticipated schedule is as follows (pending NYSDEC approval/concurrence):

- Plumbing and Columns Installation
 - As soon as approved by the NYSDEC

Excavation Work Plan (EWP)

All aspects of the existing Site Management Plan (SMP) will be followed for completing the excavation work. The most pertinent items from the SMP are summarized below; however, the full SMP should be referenced for all requirements.

During all soil/fill disturbances, soils will be assessed for visible and olfactory indications of impairment, including the presence of fill material by a qualified environmental professional. Types of fill materials and depths of such materials, if encountered, will be documented by a qualified environmental professional. Soils/fill encountered in contact with groundwater will be screened for indication of detectable VOCs with a photoionization detector (PID). Excavated materials will be placed in dumpster pending characterization and disposal.

The NYSDOH Generic Community Air Monitoring Plan (CAMP) will be followed during all ground intrusive work. Two air monitoring locations, one upwind and one downwind from the excavation activities will be set up preceding any intrusive work. Exceedances of action levels listed in the CAMP will be recorded. Dust suppression will be completed as necessary as defined in the SMP.

All necessary means will be employed to prevent on- and off-site odor nuisances. If necessary, area of open excavations will be limited; excavations will be shrouded with tarps or covers; and foams used to cover odorous soils. If odors cannot be controlled, soils will be directly loaded for off-site disposal; chemical odorants and sprays will be used; staff will monitor odors in surrounding areas; and a temporary containment structure can be constructed with air venting/filtering systems. If control cannot be achieved, intrusive work (excavation and soil management) will stop until effective measures are in place.

Compliance with the SMP

All parties working at the Site are aware of and have been provided a copy of the SMP and the requirements of 29 CFR 1910.120. All work will be completed in accordance with these requirements.

Disposal Facilities

Soil and fill materials that are anticipated to need to be disposed of off-site will be transported and disposed in accordance with all local, State and Federal Regulations. All transport of regulated materials and characterized wastes will be performed by licensed haulers in properly placarded trucks in accordance with appropriate local, State, and Federal regulations, including 6 NYCRR Part 364. Concrete is anticipated to be recycled at the Dolomite facility in Rochester, New York.

Imported Materials

No imported materials are anticipated as part of the project. If imported materials are brought to the Site, they will be documented and approved in accordance with the SMP and the type and quantity will be provided to the NYSDEC

If you have any questions, please do not hesitate to contact me at (585) 295-6253.

Sincerely,

LABELLA ASSOCIATES, D.P.C.

Michael F. Pekychaty

Michael F. Pelychaty, PG Sr. Environmental Geologist

cc: Allan Stern (Site Owner) Jessica Christensen (The Pike Company)

Attachment 1: Plumbing and Column Plans

ATTACHMENT 1

PLUMBING AND COLUMNS PLANS

NOTE: PROVIDE CUTTING, CORING AND PATCHING OF ALL WALLS, SLABS AND DECKS AS REQUIRED FOR WORK SHOWN. COORDINATE ALL

1 CONNECT 4" SANITARY/WASTE TO EXISTING 4" SANITARY/WASTE. FIELD VERIFY EXACT SIZE, LOCATION AND INVERT OF EXISTING LINE. 2 1 1/2" WASTE UP TO SINK/LAVATORY. INCREASE TO 3" WASTE ON ALL UNDERGROUND HORIZONTAL RUNS.

4 1 1/2" WASTE UP TO ELECTRIC WATER COOLER. INCREASE TO 3" WASTE ON ALL UNDERGROUND HORIZONTAL RUNS.

8 UP TO DECK PLATE CLEANOUT.

ARCHITECTS 2 ELTON STREET | ROCHESTER NY 14607 585.586.0490

CONSULTANTS:

PROJECT:

COLGATE ROCHESTER CROZER DIVINITY SCHOOL 320 GOODMAN ST. SUITE 206, 207 ROCHESTER, NY 14607

DRAWING TITLE:

FOUNDATION PLAN

PROJECT NO. 2018-11-02

PROJECT DATE:

MARCH 6, 2019

NOTICE:

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS ACTING UNDER THE DIRECTION OF A LICENSED ARCHITECT, TO ALTER ANY ITEM ON THIS DOCUMENT IN ANY WAY. ANY LICENSEE WHO ALTERS THIS DOCUMENT IS REQUIRED BY LAW TO AFFIX HIS OR HER SEAL AND THE NOTATION "ALTERED BY" FOLLOWED BY HIS OR HER SIGNATURE AND A SPECIFIC DESCRIPTION OF ALTERATIONS.

P-100

COLUMN AND SLAB PLAN

1/8" = 1'-0"

NOTES

- DATUM ELEVATION = FINISHED GROUND FLOOR = 0'-0" (XXX' X")
 REFER TO S001 AND S002 FOR GENERAL NOTES.
- (+/-) X'-XX" DENOTES TOP OF FOOTING ELEVATION WITH RESPECT TO DATUM.
 CONCRETE SLAB ON GRADE IS 5" NORMAL WEIGHT CONCRETE COMPACTED
- SUBBASE. REINFORCE SLAB WITH W2.9XW2.9 6"X6" WWF OR 5 LBS/CY STRUX/90 (GRACE) OR FORTA-FERRO (FORTA) MACRO-FIBER REINFORCEMENT.

ARCHITECTS PROVIDE 1" DEEP x 1/8" WIDE CONTROL 2 ELTON STREET | ROCHESTER NY 14607 JOINTS AT 10'-0" o.c. MAX. SUBMIT 585.586.0490 INTENDED LAYOUT FOR REVIEW PRIOR TO POURING CONCRETE. FILL JOINTS AS DIRECTED BY ARCH AFTER CONCRETE CONSULTANTS: CURES. NEW OPENING. SEE LINTEL -(**AM**) ENGINEERING, PLLC Structural EngineeringConsultants 1653 EAST MAIN STREET ROCHESTER, NY 14609 phone: (585) 482-8130 CONT. 24" WIDE x 1" THICK STRIP FOOTING WITH (2) CONT. #5 BOTTOM BARS. PROVIDE CORNER BARS. DRILL AND GROUT BARS INTO EX. fax: (585) 482 0440 FOOTING (8" EMBED). PROVIDE web: www.jensenbrv.com DOWELS TO MATCH WALL VERTS. ==== 5" SLAB ON GRADE - (RAMP), SLOPE PER ARCH. ==== SEE ARCH FOR DIMS. S -<u>~</u>_/_ —**— М**.Е. 🖊 ==== В ____ 8" C.I.P. FOUNDATION WALL, ÷================ ____ REINFORCE WITH #4's AT 12" ===o.c. VERT. AND HORIZ (PROVIDE CORNER BARS). (TYP.) ທູທ === $\dot{\Box} = = = =$ _ REVISED OPENING. SEE LINTEL SCHEDULE ON S-002 S S Н Н ____ CM _____ COLD FORMED X-С +/- 5'-8" 🕇 _____ BRACING AT 12'-0" o.c. MAX. PERMIT, PRICING SET ______ **REVISIONS:** DESCRIPTION ISSUED BY FIELD COORDINATION 03/20/2019 (D

PROJECT: COLGATE ROCHESTER CROZER DIVINITY SCHOOL 320 GOODMAN ST. SUITE 206, 207

320 GOODMAN ST. SUITE 206, 207 ROCHESTER, NY 14607

DRAWING TITLE: FIRST FLOOR STRUCTURAL PLAN

PROJECT NO.
2018-11-02

PROJECT DATE:

MARCH 6, 2019

NOTICE:

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS ACTING UNDER THE DIRECTION OF A LICENSED ARCHITECT, TO ALTER ANY ITEM ON THIS DOCUMENT IN ANY WAY. ANY LICENSEE WHO ALTERS THIS DOCUMENT IS REQUIRED BY LAW TO AFFIX HIS OR HER SEAL AND THE NOTATION "ALTERED BY" FOLLOWED BY HIS OR HER SIGNATURE AND A SPECIFIC DESCRIPTION OF ALTERATIONS.

<u>NEW YORK STATE</u> <u>DEPARTMENT OF ENVIRONMENTAL CONSERVATION</u>

Request to Import/Reuse Fill or Soil

This form is based on the information required by DER-10, Section 5.4(e). Use of this form is not a substitute for reading the applicable Technical Guidance document.

SECTION 1 – SITE BACKGROUND

The allowable site use is:

Have Ecological Resources been identified?

Is this soil originating from the site?

How many cubic yards of soil will be imported/reused?

If greater than 1000 cubic yards will be imported, enter volume to be imported:

SECTION 2 – MATERIAL OTHER THAN SOIL

Is the material to be imported gravel, rock or stone?

Does it contain less than 10%, by weight, material that would pass a size 80 sieve?

Is this virgin material from a permitted mine or quarry?

Is this material recycled concrete or brick from a DEC registered processing facility?

SECTION 3 - SAMPLING

Provide a brief description of the number and type of samples collected in the space below:

Example Text: 5 discrete samples were collected and analyzed for VOCs. 2 composite samples were collected and analyzed for SVOCs, Inorganics & PCBs/Pesticides.

If the material meets requirements of DER-10 section 5.5 (other material), no chemical testing needed.

SECTION 3 CONT'D - SAMPLING

Provide a brief written summary of the sampling results or attach evaluation tables (compare to DER-10, Appendix 5):

Example Text: Arsenic was detected up to 17 ppm in 1 (of 5) samples; the allowable level is 16 ppm.

If Ecological Resources have been identified use the "If Ecological Resources are Present" column in Appendix 5.

SECTION 4 – SOURCE OF FILL

Name of person providing fill and relationship to the source:

Location where fill was obtained:

Identification of any state or local approvals as a fill source:

If no approvals are available, provide a brief history of the use of the property that is the fill source:

Provide a list of supporting documentation included with this request:

The information provided on this form is accurate and complete.

Michel F. Polychin Signature

5/15/2019 Date

Michael F. Pelychaty Print Name LaBella Associates, DPC

Firm

Volatile Organic Compound Sample Results

NYSDEC BCP Site #C828115, Former Rochester Drug Cooperative

320 North Goodman Street, Rochester, New York

LOCATION			6NYCRR Part 375-6.8(b)		COMP01-2019050)3
SAMPLING DATE	CAS #	Units	Restricted Use Soil Cleanup Objectives for a	Unrestricted Use Soli Cleanup Objectives	5/3/2019	
LAB SAMPLE ID			Commercual Site		L1918492-01	
Volatile Organic Compounds						
Methylene chloride	75-09-2	mg/kg	500	0.05	0.0048	U
1,1-Dichloroethane	75-34-3	mg/kg	240	0.27	0.00095	U
Chloroform	67-66-3	mg/kg	350	0.37	0.0014	U
Carbon tetrachloride	56-23-5	mg/kg	22	0.76	0.00095	U
1,2-Dichloropropane	78-87-5	mg/kg	NL	NL	0.00095	U
Dibromochloromethane	124-48-1	mg/kg	NL	NL	0.00095	U
1,1,2-Trichloroethane	79-00-5	mg/kg	NL	NL	0.00095	U
Tetrachloroethene	127-18-4	mg/kg	150	1.3	0.00048	U
Chlorobenzene	108-90-7	mg/kg	500	1.1	0.00048	U
Trichlorofluoromethane	75-69-4	mg/kg	NL	NL	0.0038	U
1,2-Dichloroethane	107-06-2	mg/kg	30	0.02	0.00095	U
1,1,1-Trichloroethane	71-55-6	mg/kg	500	0.68	0.00048	U
Bromodichloromethane	75-27-4	mg/kg	NL	NL	0.00048	U
trans-1,3-Dichloropropene	10061-02-6	mg/kg	NL	NL	0.00095	U
cis-1,3-Dichloropropene	10061-01-5	mg/kg	NL	NL	0.00048	U
Bromoform	75-25-2	mg/kg	NL	NL	0.0038	U
1,1,2,2-Tetrachloroethane	79-34-5	mg/kg	NL	NL	0.00048	U
Benzene	71-43-2	mg/kg	44	0.06	0.00048	U
Toluene	108-88-3	mg/kg	500	0.7	0.00095	U
Ethylbenzene	100-41-4	mg/kg	390	1	0.00095	U
Chloromethane	74-87-3	mg/kg	NL	NL	0.0038	U
Bromomethane	74-83-9	mg/kg	NL	NL	0.0019	U
Vinyl chloride	75-01-4	mg/kg	13	0.02	0.00095	U
Chloroethane	75-00-3	mg/kg	NL	NL	0.0019	U
1,1-Dichloroethene	75-35-4	mg/kg	500	0.33	0.00095	U
trans-1,2-Dichloroethene	156-60-5	mg/kg	500	0.19	0.0014	U
Trichloroethene	79-01-6	mg/kg	200	0.47	0.00048	U
1,2-Dichlorobenzene	95-50-1	mg/kg	500	1.1	0.0019	U
1,3-Dichlorobenzene	541-73-1	mg/kg	280	2.4	0.0019	U
1,4-Dichlorobenzene	106-46-7	mg/kg	130	1.8	0.0019	<u> </u>
Methyl tert butyl ether	1634-04-4	mg/kg	500	0.93	0.00057	J
p/m-Xylene	179601-23-1	mg/kg	NL	NL	0.0019	U
o-xylene	95-47-6	mg/kg	NL	NL	0.00095	0
cls-1,2-Dichloroethene	156-59-2	mg/kg	500	0.25	0.00095	0
Styrene	100-42-5	mg/kg	NL	NL	0.00095	0
Dichlorodilluorometriane	15-11-8	mg/kg	NL 500	NL 0.05	0.0095	U
Acetone	67-64-1	mg/kg	500	0.05	0.019	
Carbon disulide	75-15-0	mg/kg	NL F00	NL 0.12	0.0095	0
2-Bularione	18-93-3	mg/kg	500	0.12	0.0095	0
4-Methyl-2-pentanone	108-10-1	mg/kg	NL NI	NL NI	0.0095	0
2-Readione	106.02.4	mg/kg	NL NI	NL NI	0.0095	0
n Putylbonzono	104 51 9	mg/kg	500	12	0.00095	0
	125.00.0	mg/kg	500	11	0.00095	
sec-Butylbenzene	135-98-8	mg/kg	500	 5.0	0.00095	0
1 2 Dibromo 2 obloropropano	96-00-0	mg/kg	500	5.9	0.0019	0
1,2-Dibioino-3-chioroproparie	90-12-0	mg/kg	INL NI	INL NI	0.0029	<u> </u>
n Isopropylteluene	90-02-0	mg/kg	NL	NL	0.00095	0
Nanhthalana	93-07-0	mg/kg	500	12	0.00095	1
n-Pronylbenzene	103 65 1	mg/kg	500	30	0.00001	<u>ر</u>
1.2 4-Trichlorobenzone	120 92 1	mg/kg	NI	5.9 NI	0.00095	11
	108 67 9	mg/kg	100		0.0019	11
1.2.4.Trimethylbenzono	100-07-0 Q5,62 6	mg/kg	100	3.4	0.0019	11
	70.000	mg/kg	T90	3.0 NI	0.0019	11
Cyclobeyane	110-82-7	mg/kg	NL	NL	0.0036	11
Freon-113	76,12,1	mø/kø	NI	NI	0.0035	11
Methyl cyclohexane	108-87-2	mg/kg	NL	NL	0.0038	Ŭ

Notes:

mg/kg - milligrams per kilogram U - Non Detect below laboratory method detection limit

J denotes the result is estimated

NL denotes Not Listed

Semi-Volatile Organic Compound Sample Results NYSDEC BCP Site #C828115, Former Rochester Drug Cooperative 320 North Goodman Street, Rochester, New York

LOCATION			6NYCRR Part 375-6.8(b)		COMP01-20190503 5/3/2019 L1918492-01	
SAMPLING DATE	CAS #	Units	Restricted Use Soll Cleanup Objectives for a	Unrestricted Use Soil Cleanup Objectives		
LAB SAMPLE ID			Commercual Site			
Semi-Volatile Organic Compounds (S	SVOCs)					
Acenaphthene	83-32-9	mg/kg	500	20	0.082	J
Hexachlorobenzene	118-74-1	mg/kg	6	0.33	0.1	U
Bis(2-chloroethyl)ether	111-44-4	mg/kg	NL	NL	0.15	U
2-Chloronaphthalene	91-58-7	mg/kg	NL	NL	0.17	U
3,3'-Dichlorobenzidine	91-94-1	mg/kg	NL	NL	0.17	U
2,4-Dinitrotoluene	121-14-2	mg/kg	NL	NL	0.17	U
2,6-Difficioluerie	206.44.0	mg/kg	INL 500	100	1.3	U
4-Chlorophenyl phenyl ether	7005-72-3	mø/kø	NI	NI	0.17	U
4-Bromophenyl phenyl ether	101-55-3	mg/kg	NL	NL	0.17	U
Bis(2-chloroisopropyl)ether	108-60-1	mg/kg	NL	NL	0.2	Ŭ
Bis(2-chloroethoxy)methane	111-91-1	mg/kg	NL	NL	0.18	U
Hexachlorobutadiene	87-68-3	mg/kg	NL	NL	0.17	U
Hexachlorocyclopentadiene	77-47-4	mg/kg	NL	NL	0.48	U
Hexachloroethane	67-72-1	mg/kg	NL	NL	0.14	U
Isophorone	78-59-1	mg/kg	NL	NL	0.15	U
Naphthalene	91-20-3	mg/kg	500	12	0.083	J
Nitrobenzene	98-95-3	mg/kg	NL	NL	0.15	U
NDPA/DPA	86-30-6	mg/kg	NL	NL	0.14	0
Bis(2-ethylbexyl)phthalate	117-81-7	mø/kø	NL	NL	0.075	1
Butyl benzyl phthalate	85-68-7	mg/kg	NL	NL	0.17	Ů
Di-n-butylphthalate	84-74-2	mg/kg	NL	NL	0.17	U
Di-n-octylphthalate	117-84-0	mg/kg	NL	NL	0.17	U
Diethyl phthalate	84-66-2	mg/kg	NL	NL	0.17	U
Dimethyl phthalate	131-11-3	mg/kg	NL	NL	0.17	U
Benzo(a)anthracene	56-55-3	mg/kg	5.6	1	0.58	
Benzo(a)pyrene	50-32-8	mg/kg	1	1	0.59	
Benzo(b)fluoranthene	205-99-2	mg/kg	5.6	1	0.73	
Benzo(k)fluoranthene	207-08-9	mg/kg	56	0.8	0.21	
Acenanhthylene	218-01-9	mg/kg	500	100	0.04	1
Anthracene	120-12-7	mg/kg	500	100	0.28	,
Benzo(ghi)perylene	191-24-2	mg/kg	500	100	0.36	
Fluorene	86-73-7	mg/kg	500	30	0.084	J
Phenanthrene	85-01-8	mg/kg	500	100	0.95	
Dibenzo(a,h)anthracene	53-70-3	mg/kg	0.56	0.33	0.089	J
Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	5.6	0.5	0.38	
Pyrene	129-00-0	mg/kg	500	100	1.1	
Biphenyl	92-52-4	mg/kg	NL	NL	0.38	U
4-Chloroaniline	106-47-8	mg/kg	NL	NL	0.17	U
2-Nitroaniline	88-74-4	mg/kg	NL	NL	0.17	0
4-Nitroaniline	100-01-6	mg/kg	NI	NL	0.17	11
Dibenzofuran	132-64-9	mg/kg	350	7	0.08	1
2-Methylnaphthalene	91-57-6	mg/kg	NL	NL	0.045	J
1,2,4,5-Tetrachlorobenzene	95-94-3	mg/kg	NL	NL	0.17	U
Acetophenone	98-86-2	mg/kg	NL	NL	0.17	U
2,4,6-Trichlorophenol	88-06-2	mg/kg	NL	NL	0.1	U
p-Chloro-m-cresol	59-50-7	mg/kg	NL	NL	0.17	U
2-Chlorophenol	95-57-8	mg/kg	NL	NL	0.17	U
2,4-Dichlorophenol	120-83-2	mg/kg	NL	NL	0.15	U
2,4-Dimethylphenol	105-67-9	mg/kg	NL	NL	0.17	U
4-Nitrophenol	00-70-0 100-02-7	mg/kg	NI	NL	0.30	U
2 4-Dinitrophenol	51-28-5	mg/kg	NI	NL	0.24	11
4,6-Dinitro-o-cresol	534-52-1	mg/kg	NL	NL	0.44	U
Pentachlorophenol	87-86-5	mg/kg	6.7	0.8	0.14	U
Phenol	108-95-2	mg/kg	500	0.33	0.17	U
2-Methylphenol	95-48-7	mg/kg	500	0.33	0.17	U
3-Methylphenol/4-Methylphenol	108-39-4/106-44-5	mg/kg	500	0.33	0.24	U
2,4,5-Trichlorophenol	95-95-4	mg/kg	NL	NL	0.17	U
Carbazole	86-74-8	mg/kg	NL	NL	0.11	J
Atrazine	1912-24-9	mg/kg	NL	NL	0.14	U
Denzaldenyde	100-52-7	mg/kg	NL	NL	0.22	U
2.3.4.6-Tetrachlorophenol	58-90-2	mg/kg	NL	NL	0.17	U

Notes:

Notes: mg/kg - milligrams per kilogram U - Non Detect below laboratory method detection limit J denotes the result is estimated NL denotes Not Listed

Metals Sample Results

NYSDEC BCP Site #C828115, Former Rochester Drug Cooperative

320 North Goodman Street, Rochester, New York

LOCATION			6NYCRR Part 375-6.8(b)		COMP01-20190503 5/3/2019	
SAMPLING DATE	CAS #	Units	Restricted Use Soil Cleanup Objectives for a	Unrestricted Use Soil Cleanup Objectives		
LAB SAMPLE ID			Commercual Site		L1918492-0)1
Metals	•					
Aluminum, Total	7429-90-5	mg/kg	NL	NL	4540	
Antimony, Total	7440-36-0	mg/kg	NL	NL	0.781	J
Arsenic, Total	7440-38-2	mg/kg	16	13	3.49	
Barium, Total	7440-39-3	mg/kg	400	350	41.8	
Beryllium, Total	7440-41-7	mg/kg	590	7.2	0.174	J
Cadmium, Total	7440-43-9	mg/kg	9.3	2.5	0.789	U
Calcium, Total	7440-70-2	mg/kg	NL	NL	29200	
Chromium, Total	7440-47-3	mg/kg	1500	30	7.5	
Cobalt, Total	7440-48-4	mg/kg	NL	NL	3.77	
Copper, Total	7440-50-8	mg/kg	270	50	47.4	
Iron, Total	7439-89-6	mg/kg	NL	NL	11600	
Lead, Total	7439-92-1	mg/kg	1000	63	55.8	
Magnesium, Total	7439-95-4	mg/kg	NL	NL	5990	
Manganese, Total	7439-96-5	mg/kg	10000	1600	414	
Mercury, Total	7439-97-6	mg/kg	2.8	0.18	0.348	
Nickel, Total	7440-02-0	mg/kg	310	30	7.09	
Potassium, Total	7440-09-7	mg/kg	NL	NL	713	
Selenium, Total	7782-49-2	mg/kg	1500	3.9	0.442	J
Silver, Total	7440-22-4	mg/kg	1500	2	0.789	U
Sodium, Total	7440-23-5	mg/kg	NL	NL	199	
Thallium, Total	7440-28-0	mg/kg	NL	NL	1.58	U
Vanadium, Total	7440-62-2	mg/kg	NL	NL	14	
Zinc, Total	7440-66-6	mg/kg	10000	109	93.2	

Notes:

mg/kg - milligrams per kilogram

U - Non Detect below laboratory method detection limit

J denotes the result is estimated

Bold denotes results was detected above the 6NYCRR Part 375-6.8(a) Unrestricted Use Soil Cleanup Objective NL denotes Not Listed

PCB Sample Results

NYSDEC BCP Site #C828115, Former Rochester Drug Cooperative

320 North Goodman Street, Rochester, New York

LOCATION			6NYCRR Part 375-6.8(b)		COMP01-20190503 5/3/2019 L1918492-01	
SAMPLING DATE	CAS #	Units	Restricted Use Soil Cleanup Objectives for a	Unrestricted Use Soil		
LAB SAMPLE ID			Commercual Site			
Polychlorinated Biphenyls (PCBs)						
Aroclor 1016	12674-11-2	mg/kg	1	0.1	0.034	U
Aroclor 1221	11104-28-2	mg/kg	1	0.1	0.034	U
Aroclor 1232	11141-16-5	mg/kg	1	0.1	0.034	U
Aroclor 1242	53469-21-9	mg/kg	1	0.1	0.034	U
Aroclor 1248	12672-29-6	mg/kg	1	0.1	0.0168	J
Aroclor 1254	11097-69-1	mg/kg	1	0.1	0.034	U
Aroclor 1260	11096-82-5	mg/kg	1	0.1	0.034	U
Aroclor 1262	37324-23-5	mg/kg	1	0.1	0.034	U
Aroclor 1268	11100-14-4	mg/kg	1	0.1	0.034	U
PCBs, Total	1336-36-3	mg/kg	1	0.1	0.0168	J

Notes:

mg/kg - milligrams per kilogram

U - Non Detect below laboratory method detection limit

J denotes the result is estimated

NL denotes Not Listed

Pesticide Sample Results

NYSDEC BCP Site #C828115, Former Rochester Drug Cooperative

320 North Goodman Street, Rochester, New York

LOCATION			6NYCRR Part 375-6.8(b)		COMP01-20190503 5/3/2019	
SAMPLING DATE	CAS #	Units Restricted Use Soil Cleanup Objectives for a		Unrestricted Use Soil Cleanup Objectives		
LAB SAMPLE ID			Commercual Site		L1918492-01	
Pesticides						
Delta-BHC	319-86-8	mg/kg	500	0.04	0.00162	U
Lindane	58-89-9	mg/kg	9.2	0.1	0.000676	U
Alpha-BHC	319-84-6	mg/kg	3.4	0.02	0.000676	U
Beta-BHC	319-85-7	mg/kg	3	0.036	0.00162	U
Heptachlor	76-44-8	mg/kg	15	0.042	0.000811	U
Aldrin	309-00-2	mg/kg	0.68	0.005	0.00162	U
Heptachlor epoxide	1024-57-3	mg/kg	NL	NL	0.00304	U
Endrin	72-20-8	mg/kg	89	0.014	0.000676	U
Endrin aldehyde	7421-93-4	mg/kg	NL	NL	0.00203	U
Endrin ketone	53494-70-5	mg/kg	NL	NL	0.00162	U
Dieldrin	60-57-1	mg/kg	1.4	0.005	0.00101	U
4,4'-DDE	72-55-9	mg/kg	62	0.0033	0.00162	U
4,4'-DDD	72-54-8	mg/kg	92	0.0033	0.00162	U
4,4'-DDT	50-29-3	mg/kg	47	0.0033	0.00304	U
Endosulfan I	959-98-8	mg/kg	200	2.4	0.00162	U
Endosulfan II	33213-65-9	mg/kg	200	2.4	0.00162	U
Endosulfan sulfate	1031-07-8	mg/kg	200	2.4	0.000676	U
Methoxychlor	72-43-5	mg/kg	NL	NL	0.00304	U
Toxaphene	8001-35-2	mg/kg	NL	NL	0.0304	U
cis-Chlordane	5103-71-9	mg/kg	24	0.094	0.00203	U
trans-Chlordane	5103-74-2	mg/kg	NL	NL	0.00203	U
Chlordane	57-74-9	mg/kg	NL	NL	0.0132	U

Notes:

mg/kg - milligrams per kilogram U - Non Detect below laboratory method detection limit

NL denotes Not Listed

ANALYTICAL REPORT

Lab Number:	L1918492
Client:	LaBella Associates, P.C. 300 State Street Suite 201 Rochester, NY, 14614
ATTN: Phone:	Mike Pelychaty (585) 295-6253
Project Name:	FMR ROCHESTER DRAG LOOP
Project Number: Report Date:	211352 05/14/19

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial N	lo:05141	918:51
----------	----------	--------

Project Name:FMR ROCHESTER DRAG LOOPProject Number:211352

 Lab Number:
 L1918492

 Report Date:
 05/14/19

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1918492-01	COMP01-20190503	SOIL	820 W. GOODMAN ST.	05/03/19 12:15	05/03/19

Project Name:FMR ROCHESTER DRAG LOOPProject Number:211352

 Lab Number:
 L1918492

 Report Date:
 05/14/19

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name:FMR ROCHESTER DRAG LOOPProject Number:211352

 Lab Number:
 L1918492

 Report Date:
 05/14/19

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

Any reported concentrations that are below 200 ug/kg may be low due to the sample not being collected according to 5035-L/5035A-L low-level specifications.

Total Metals

L1918492-01: The sample has elevated detection limits for all elements, with the exception of mercury, due to the dilution required by matrix interferences encountered during analysis.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Amita Naik

Authorized Signature:

Title: Technical Director/Representative

Date: 05/14/19

ORGANICS

VOLATILES

		Serial_No	0:05141918:51
Project Name:	FMR ROCHESTER DRAG LOOP	Lab Number:	L1918492
Project Number:	211352	Report Date:	05/14/19
	SAMPLE RE	ESULTS	
Lab ID:	L1918492-01	Date Collected:	05/03/19 12:15
Client ID:	COMP01-20190503	Date Received:	05/03/19
Sample Location:	820 W. GOODMAN ST.	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Soil		
Analytical Method:	1,8260C		
Analytical Date:	05/10/19 16:18		
Analyst:	РК		
Percent Solids:	97%		

Parameter	Result	Result Qualifier		RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/kg	4.8	2.2	1
1,1-Dichloroethane	ND		ug/kg	0.95	0.14	1
Chloroform	ND		ug/kg	1.4	0.13	1
Carbon tetrachloride	ND		ug/kg	0.95	0.22	1
1,2-Dichloropropane	ND		ug/kg	0.95	0.12	1
Dibromochloromethane	ND		ug/kg	0.95	0.13	1
1,1,2-Trichloroethane	ND		ug/kg	0.95	0.25	1
Tetrachloroethene	ND		ug/kg	0.48	0.19	1
Chlorobenzene	ND		ug/kg	0.48	0.12	1
Trichlorofluoromethane	ND		ug/kg	3.8	0.66	1
1,2-Dichloroethane	ND		ug/kg	0.95	0.24	1
1,1,1-Trichloroethane	ND		ug/kg	0.48	0.16	1
Bromodichloromethane	ND		ug/kg	0.48	0.10	1
trans-1,3-Dichloropropene	ND		ug/kg	0.95	0.26	1
cis-1,3-Dichloropropene	ND		ug/kg	0.48	0.15	1
Bromoform	ND		ug/kg	3.8	0.23	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.48	0.16	1
Benzene	ND		ug/kg	0.48	0.16	1
Toluene	ND		ug/kg	0.95	0.52	1
Ethylbenzene	ND		ug/kg	0.95	0.13	1
Chloromethane	ND		ug/kg	3.8	0.89	1
Bromomethane	ND		ug/kg	1.9	0.55	1
Vinyl chloride	ND		ug/kg	0.95	0.32	1
Chloroethane	ND		ug/kg	1.9	0.43	1
1,1-Dichloroethene	ND		ug/kg	0.95	0.23	1
trans-1,2-Dichloroethene	ND		ug/kg	1.4	0.13	1
Trichloroethene	ND		ug/kg	0.48	0.13	1
1,2-Dichlorobenzene	ND		ug/kg	1.9	0.14	1

					Serial_No:05141918:51					
Project Name:	FMR ROCHESTER DRA	G LOOP			Lab Nu	mber:	L1918492			
Project Number:	211352				Report Date:		05/14/19			
		SAMF	LE RESULTS	6						
Lab ID: Client ID: Sample Location:	L1918492-01 COMP01-20190503 820 W. GOODMAN ST.				Date Col Date Rec Field Pre	lected: ceived: p:	05/03/19 12:15 05/03/19 Not Specified			
Sample Depth:										
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics b	y GC/MS - Westborough La	ab								
1,3-Dichlorobenzene		ND		ug/kg	1.9	0.14	1			
1,4-Dichlorobenzene		ND		ug/kg	1.9	0.16	1			
Methyl tert butyl ether		0.57	J	ug/kg	1.9	0.19	1			
p/m-Xylene		ND		ug/kg	1.9	0.53	1			
o-Xylene		ND		ug/kg	0.95	0.28	1			
cis-1,2-Dichloroethene		ND		ug/kg	0.95	0.17	1			
Styrene		ND		ug/kg	0.95	0.19	1			
Dichlorodifluoromethane		ND		ug/kg	9.5	0.87	1			
Acetone		19		ug/kg	9.5	4.6	1			
Carbon disulfide		ND		ug/kg	9.5	4.3	1			
2-Butanone		ND		ug/kg	9.5	2.1	1			

ug/kg

% Recovery

102

100

104

101

J

ND

ND

ND

ND

ND

ND

ND

ND

ND

0.81

ND

ND

ND

ND

ND

ND

ND

ND

	ALPHA
4	ANALYTICAL

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1.2

1.1

0.27

0.16

0.14

0.11

0.95

0.10

0.10

0.62

0.16

0.26

0.18

0.32

0.91

0.52

0.66

0.58

Acceptance

Criteria

70-130

70-130

70-130

70-130

9.5

9.5

0.95

0.95

0.95

1.9

2.9

0.95

0.95

3.8

0.95

1.9

1.9

1.9

3.8

9.5

3.8

3.8

Qualifier

4-Methyl-2-pentanone

1,2-Dibromoethane

n-Butylbenzene

sec-Butylbenzene

tert-Butylbenzene

Isopropylbenzene

p-Isopropyltoluene

n-Propylbenzene

Methyl Acetate

Methyl cyclohexane

Surrogate

Toluene-d8

1,2-Dichloroethane-d4

4-Bromofluorobenzene

Dibromofluoromethane

Cyclohexane

Freon-113

1,2,4-Trichlorobenzene

1,3,5-Trimethylbenzene

1,2,4-Trimethylbenzene

Naphthalene

1,2-Dibromo-3-chloropropane

2-Hexanone

Project Name: FMR ROCHESTER DRAG LOOP

Project Number: 211352

Lab Number: L1918492 **Report Date:** 05/14/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/10/19 07:51 Analyst: JC

Parameter	Result	Qualifier	Units	RL		MDL
Volatile Organics by EPA 5035 Lov	v - Westbord	ough Lab fo	r sample(s):	01	Batch:	WG1235850-5
Methylene chloride	ND		ug/kg	5.0		2.3
1,1-Dichloroethane	ND		ug/kg	1.0		0.14
Chloroform	ND		ug/kg	1.5		0.14
Carbon tetrachloride	ND		ug/kg	1.0		0.23
1,2-Dichloropropane	ND		ug/kg	1.0		0.12
Dibromochloromethane	ND		ug/kg	1.0		0.14
1,1,2-Trichloroethane	ND		ug/kg	1.0		0.27
Tetrachloroethene	ND		ug/kg	0.50		0.20
Chlorobenzene	ND		ug/kg	0.50		0.13
Trichlorofluoromethane	ND		ug/kg	4.0		0.70
1,2-Dichloroethane	ND		ug/kg	1.0		0.26
1,1,1-Trichloroethane	ND		ug/kg	0.50		0.17
Bromodichloromethane	ND		ug/kg	0.50		0.11
trans-1,3-Dichloropropene	ND		ug/kg	1.0		0.27
cis-1,3-Dichloropropene	ND		ug/kg	0.50		0.16
Bromoform	ND		ug/kg	4.0		0.25
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.50		0.17
Benzene	ND		ug/kg	0.50		0.17
Toluene	ND		ug/kg	1.0		0.54
Ethylbenzene	ND		ug/kg	1.0		0.14
Chloromethane	ND		ug/kg	4.0		0.93
Bromomethane	ND		ug/kg	2.0		0.58
Vinyl chloride	ND		ug/kg	1.0		0.34
Chloroethane	ND		ug/kg	2.0		0.45
1,1-Dichloroethene	ND		ug/kg	1.0		0.24
trans-1,2-Dichloroethene	ND		ug/kg	1.5		0.14
Trichloroethene	ND		ug/kg	0.50		0.14
1,2-Dichlorobenzene	ND		ug/kg	2.0		0.14
1,3-Dichlorobenzene	ND		ug/kg	2.0		0.15

Project Name: FMR ROCHESTER DRAG LOOP

Project Number: 211352

Lab Number: L1918492 **Report Date:** 05/14/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/10/19 07:51 Analyst: JC

Parameter	Result	Qualifier	Units	RL		MDL
Volatile Organics by EPA 5035 Low	- Westboro	ugh Lab fo	r sample(s):	01	Batch:	WG1235850-5
1,4-Dichlorobenzene	ND		ug/kg	2.0		0.17
Methyl tert butyl ether	ND		ug/kg	2.0		0.20
p/m-Xylene	ND		ug/kg	2.0		0.56
o-Xylene	ND		ug/kg	1.0		0.29
cis-1,2-Dichloroethene	ND		ug/kg	1.0		0.18
Styrene	ND		ug/kg	1.0		0.20
Dichlorodifluoromethane	ND		ug/kg	10		0.92
Acetone	ND		ug/kg	10		4.8
Carbon disulfide	ND		ug/kg	10		4.6
2-Butanone	ND		ug/kg	10		2.2
4-Methyl-2-pentanone	ND		ug/kg	10		1.3
2-Hexanone	ND		ug/kg	10		1.2
1,2-Dibromoethane	ND		ug/kg	1.0		0.28
n-Butylbenzene	ND		ug/kg	1.0		0.17
sec-Butylbenzene	ND		ug/kg	1.0		0.15
tert-Butylbenzene	ND		ug/kg	2.0		0.12
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.0		1.0
Isopropylbenzene	ND		ug/kg	1.0		0.11
p-Isopropyltoluene	ND		ug/kg	1.0		0.11
Naphthalene	ND		ug/kg	4.0		0.65
n-Propylbenzene	ND		ug/kg	1.0		0.17
1,2,4-Trichlorobenzene	ND		ug/kg	2.0		0.27
1,3,5-Trimethylbenzene	ND		ug/kg	2.0		0.19
1,2,4-Trimethylbenzene	ND		ug/kg	2.0		0.33
Methyl Acetate	ND		ug/kg	4.0		0.95
Cyclohexane	ND		ug/kg	10		0.54
Freon-113	ND		ug/kg	4.0		0.69
Methyl cyclohexane	ND		ug/kg	4.0		0.60

L1918492

05/14/19

Project Name:	FMR ROCHESTER DRAG LOOP	Lab Number:
Project Number:	211352	Report Date:

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:05/10/19 07:51Analyst:JC

Parameter	Result	Qualifier	Units	RL		MDL	
Volatile Organics by EPA 5035 Low	- Westboro	ugh Lab fo	r sample(s):	01	Batch:	WG1235850-5	

	Acceptance				
Surrogate	%Recovery	Qualifier	Criteria		
1,2-Dichloroethane-d4	92		70-130		
Toluene-d8	99		70-130		
4-Bromofluorobenzene	101		70-130		
Dibromofluoromethane	95		70-130		

Lab Control Sample Analysis Batch Quality Control

Project Number: 211352

Lab Number: L1918492

Report Date: 05/14/19

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Volatile Organics by EPA 5035 Low	- Westborough Lab Ass	ociated sample	(s): 01 Batch	: WG123585	0-3 WG12358	50-4			
Methylene chloride	102		101		70-130	1		30	
1,1-Dichloroethane	102		100		70-130	2		30	
Chloroform	97		95		70-130	2		30	
Carbon tetrachloride	96		94		70-130	2		30	
1,2-Dichloropropane	102		101		70-130	1		30	
Dibromochloromethane	94		94		70-130	0		30	
1,1,2-Trichloroethane	100		100		70-130	0		30	
Tetrachloroethene	104		100		70-130	4		30	
Chlorobenzene	100		100		70-130	0		30	
Trichlorofluoromethane	98		96		70-139	2		30	
1,2-Dichloroethane	88		88		70-130	0		30	
1,1,1-Trichloroethane	98		96		70-130	2		30	
Bromodichloromethane	94		94		70-130	0		30	
trans-1,3-Dichloropropene	98		98		70-130	0		30	
cis-1,3-Dichloropropene	102		101		70-130	1		30	
Bromoform	94		94		70-130	0		30	
1,1,2,2-Tetrachloroethane	100		102		70-130	2		30	
Benzene	105		103		70-130	2		30	
Toluene	103		100		70-130	3		30	
Ethylbenzene	103		101		70-130	2		30	
Chloromethane	96		94		52-130	2		30	
Bromomethane	128		125		57-147	2		30	
Vinyl chloride	104		100		67-130	4		30	

Lab Control Sample Analysis Batch Quality Control

Project Number: 211352 Lab Number: L1918492

Report Date: 05/14/19

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Volatile Organics by EPA 5035 Low	- Westborough Lab Assoc	ciated sample	(s): 01 Batch:	WG1235	5850-3 WG123585	60-4			
Chloroethane	105		102		50-151	3		30	
1,1-Dichloroethene	110		107		65-135	3		30	
trans-1,2-Dichloroethene	106		104		70-130	2		30	
Trichloroethene	100		98		70-130	2		30	
1,2-Dichlorobenzene	99		98		70-130	1		30	
1,3-Dichlorobenzene	101		99		70-130	2		30	
1,4-Dichlorobenzene	99		98		70-130	1		30	
Methyl tert butyl ether	97		98		66-130	1		30	
p/m-Xylene	105		104		70-130	1		30	
o-Xylene	104		102		70-130	2		30	
cis-1,2-Dichloroethene	102		101		70-130	1		30	
Styrene	105		104		70-130	1		30	
Dichlorodifluoromethane	95		91		30-146	4		30	
Acetone	100		97		54-140	3		30	
Carbon disulfide	108		105		59-130	3		30	
2-Butanone	89		90		70-130	1		30	
4-Methyl-2-pentanone	101		101		70-130	0		30	
2-Hexanone	94		95		70-130	1		30	
1,2-Dibromoethane	97		98		70-130	1		30	
n-Butylbenzene	108		105		70-130	3		30	
sec-Butylbenzene	107		105		70-130	2		30	
tert-Butylbenzene	105		102		70-130	3		30	
1,2-Dibromo-3-chloropropane	94		93		68-130	1		30	

Lab Control Sample Analysis Batch Quality Control

Project Number: 211352

Lab Number: L1918492

Report Date: 05/14/19

	LCS		LCSD	%F	Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Volatile Organics by EPA 5035 Low - Westb	orough Lab Asso	ociated sample	(s): 01 Batch:	WG1235850-3	3 WG1235850-	4			
Isopropylbenzene	108		105		70-130	3		30	
p-Isopropyltoluene	107		104		70-130	3		30	
Naphthalene	99		99		70-130	0		30	
n-Propylbenzene	106		104		70-130	2		30	
1,2,4-Trichlorobenzene	102		101		70-130	1		30	
1,3,5-Trimethylbenzene	104		102		70-130	2		30	
1,2,4-Trimethylbenzene	105		102		70-130	3		30	
Methyl Acetate	93		95		51-146	2		30	
Cyclohexane	112		109		59-142	3		30	
Freon-113	109		104		50-139	5		30	
Methyl cyclohexane	110		106		70-130	4		30	

	LCS	LCSD	Acceptance	
Surrogate	%Recovery Q	Qual %Recovery	Qual Criteria	
1,2-Dichloroethane-d4	88	90	70-130	
Toluene-d8	100	100	70-130	
4-Bromofluorobenzene	101	102	70-130	
Dibromofluoromethane	94	94	70-130	

SEMIVOLATILES

		Serial_No:	05141918:51
Project Name:	FMR ROCHESTER DRAG LOOP	Lab Number:	L1918492
Project Number:	211352	Report Date:	05/14/19
	SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L1918492-01 COMP01-20190503 820 W. GOODMAN ST.	Date Collected: Date Received: Field Prep:	05/03/19 12:15 05/03/19 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	Soil 1,8270D 05/14/19 10:44 EK 97%	Extraction Method: Extraction Date:	EPA 3546 05/11/19 10:28

						Bildtion ractor	
Semivolatile Organics by GC/MS - Westborough Lab							
Acenaphthene	82	J	ug/kg	140	17.	1	
Hexachlorobenzene	ND		ug/kg	100	19.	1	
Bis(2-chloroethyl)ether	ND		ug/kg	150	23.	1	
2-Chloronaphthalene	ND		ug/kg	170	17.	1	
3,3'-Dichlorobenzidine	ND		ug/kg	170	45.	1	
2,4-Dinitrotoluene	ND		ug/kg	170	34.	1	
2,6-Dinitrotoluene	ND		ug/kg	170	29.	1	
Fluoranthene	1300		ug/kg	100	19.	1	
4-Chlorophenyl phenyl ether	ND		ug/kg	170	18.	1	
4-Bromophenyl phenyl ether	ND		ug/kg	170	26.	1	
Bis(2-chloroisopropyl)ether	ND		ug/kg	200	29.	1	
Bis(2-chloroethoxy)methane	ND		ug/kg	180	17.	1	
Hexachlorobutadiene	ND		ug/kg	170	25.	1	
Hexachlorocyclopentadiene	ND		ug/kg	480	150	1	
Hexachloroethane	ND		ug/kg	140	27.	1	
Isophorone	ND		ug/kg	150	22.	1	
Naphthalene	83	J	ug/kg	170	20.	1	
Nitrobenzene	ND		ug/kg	150	25.	1	
NDPA/DPA	ND		ug/kg	140	19.	1	
n-Nitrosodi-n-propylamine	ND		ug/kg	170	26.	1	
Bis(2-ethylhexyl)phthalate	75	J	ug/kg	170	58.	1	
Butyl benzyl phthalate	ND		ug/kg	170	42.	1	
Di-n-butylphthalate	ND		ug/kg	170	32.	1	
Di-n-octylphthalate	ND		ug/kg	170	57.	1	
Diethyl phthalate	ND		ug/kg	170	16.	1	
Dimethyl phthalate	ND		ug/kg	170	35.	1	
Benzo(a)anthracene	580		ug/kg	100	19.	1	
Benzo(a)pyrene	590		ug/kg	140	41.	1	

					Serial_No:05141918:51			
Project Name:	FMR ROCHESTER DRAG LOOP			Lab Nu	mber:	L1918492		
Project Number:	211352				Report	Date:	05/14/19	
	SAMPLE RESULTS							
Lab ID:	L1918492-01				Date Coll	ected:	05/03/19 12:15	
Client ID:	COMP01-20190503				Date Rec	eived:	05/03/19	
Sample Location:	820 W. GOODMAN ST.				Field Pre	p:	Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organi	ics by GC/MS - Westborou	gh Lab						
Benzo(b)fluoranthene		730		ug/kg	100	28.	1	
Benzo(k)fluoranthene		210		ug/kg	100	27.	1	
Chrysene		510		ug/kg	100	18.	1	
Acenaphthylene		40	J	ug/kg	140	26.	1	
Anthracene		280		ug/kg	100	33.	1	
Benzo(ghi)perylene		360		ug/kg	140	20.	1	
Fluorene		84	J	ug/kg	170	16.	1	
Phenanthrene		950		ug/kg	100	20.	1	
Dibenzo(a,h)anthracene		89	J	ug/kg	100	20.	1	
Indeno(1,2,3-cd)pyrene		380		ug/kg	140	24.	1	

ug/kg

ug/kg ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

J

J

J

100

380

170

170

170

170

170

200

170

170

100

170

170

150

170

360

240

810

440

140

170

170

240

170

170

140

220

17.

39.

31.

32.

32.

70.

16.

20.

18.

21.

32.

25.

20.

27.

56.

64.

69.

79.

81.

37.

26.

26.

26.

32.

16.

59.

46.

1100

ND

ND

ND

ND

ND

80

45

ND

110

ND

ND

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Carbazole

Benzaldehyde

Atrazine

Pyrene

Biphenyl

4-Chloroaniline

2-Nitroaniline

3-Nitroaniline

4-Nitroaniline

Dibenzofuran

Acetophenone

2-Methylnaphthalene

2,4,6-Trichlorophenol

p-Chloro-m-cresol

2,4-Dichlorophenol

2,4-Dimethylphenol

2-Chlorophenol

2-Nitrophenol

4-Nitrophenol

2,4-Dinitrophenol

4,6-Dinitro-o-cresol

Pentachlorophenol

2-Methylphenol

2,4,5-Trichlorophenol

3-Methylphenol/4-Methylphenol

Phenol

1,2,4,5-Tetrachlorobenzene

			Serial_No:05141918:51				
Project Name:	FMR ROCHESTER DRA	G LOOP			Lab Num	ber:	L1918492
Project Number:	211352				Report D	ate:	05/14/19
		SAMPL	E RESULT	S			
Lab ID:	L1918492-01				Date Colle	cted:	05/03/19 12:15
Client ID:	COMP01-20190503				Date Recei	ived:	05/03/19
Sample Location:	820 W. GOODMAN ST.				Field Prep:		Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Orgar	nics by GC/MS - Westborou	igh Lab					
Caprolactam		ND		ug/kg	170	51.	1
2,3,4,6-Tetrachloropheno	bl	ND		ug/kg	170	34.	1
Surrogate				% Recovery	Qualifier	Ac	ceptance Criteria
2-Fluorophenol				65			25-120
Phenol-d6				69		10-120	
Nitrobenzene-d5				68			23-120
2-Fluorobiphenyl				73			30-120
2,4,6-Tribromophe	enol			82			10-136

86

18-120

4-Terphenyl-d14

Project Name:	FMR ROCHESTER DRAG LOOP	Lab Number:	L1918492		
Project Number:	211352	Report Date:	05/14/19		
Method Blank Analysis					

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8270D	Extraction Method:	EPA 3546
Analytical Date:	05/13/19 13:42	Extraction Date:	05/11/19 04:31
Analyst:	SZ		

Parameter	Result	Qualifier	Units		RL	MDL
Semivolatile Organics by GC/MS	- Westboroug	h Lab for s	ample(s):	01	Batch:	WG1236055-1
Acenaphthene	ND		ug/kg		130	17.
Hexachlorobenzene	ND		ug/kg		97	18.
Bis(2-chloroethyl)ether	ND		ug/kg		140	22.
2-Chloronaphthalene	ND		ug/kg		160	16.
3,3'-Dichlorobenzidine	ND		ug/kg		160	43.
2,4-Dinitrotoluene	ND		ug/kg		160	32.
2,6-Dinitrotoluene	ND		ug/kg		160	28.
Fluoranthene	ND		ug/kg		97	18.
4-Chlorophenyl phenyl ether	ND		ug/kg		160	17.
4-Bromophenyl phenyl ether	ND		ug/kg		160	25.
Bis(2-chloroisopropyl)ether	ND		ug/kg		190	28.
Bis(2-chloroethoxy)methane	ND		ug/kg		170	16.
Hexachlorobutadiene	ND		ug/kg		160	24.
Hexachlorocyclopentadiene	ND		ug/kg		460	150
Hexachloroethane	ND		ug/kg		130	26.
Isophorone	ND		ug/kg		140	21.
Naphthalene	ND		ug/kg		160	20.
Nitrobenzene	ND		ug/kg		140	24.
NDPA/DPA	ND		ug/kg		130	18.
n-Nitrosodi-n-propylamine	ND		ug/kg		160	25.
Bis(2-ethylhexyl)phthalate	ND		ug/kg		160	56.
Butyl benzyl phthalate	ND		ug/kg		160	41.
Di-n-butylphthalate	ND		ug/kg		160	31.
Di-n-octylphthalate	ND		ug/kg		160	55.
Diethyl phthalate	ND		ug/kg		160	15.
Dimethyl phthalate	ND		ug/kg		160	34.
Benzo(a)anthracene	ND		ug/kg		97	18.
Benzo(a)pyrene	ND		ug/kg		130	39.
Benzo(b)fluoranthene	ND		ug/kg		97	27.

Project Name:	FMR ROCHESTER DRAG LOOP	Lab Number:	L1918492		
Project Number:	211352	Report Date:	05/14/19		
Method Blank Analysis					

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8270D	Extraction Method:	EPA 3546
Analytical Date:	05/13/19 13:42	Extraction Date:	05/11/19 04:31
Analyst:	SZ		

arameter	Result	Qualifier U	nits	RL	MDL
Semivolatile Organics by GC/MS	- Westboroug	h Lab for sam	ple(s): 01	Batch:	WG1236055-1
Benzo(k)fluoranthene	ND	u	g/kg	97	26.
Chrysene	ND	u	g/kg	97	17.
Acenaphthylene	ND	u	g/kg	130	25.
Anthracene	ND	u	g/kg	97	31.
Benzo(ghi)perylene	ND	u	g/kg	130	19.
Fluorene	ND	u	g/kg	160	16.
Phenanthrene	ND	u	g/kg	97	20.
Dibenzo(a,h)anthracene	ND	u	g/kg	97	19.
Indeno(1,2,3-cd)pyrene	ND	u	g/kg	130	22.
Pyrene	ND	u	g/kg	97	16.
Biphenyl	ND	u	g/kg	370	37.
4-Chloroaniline	ND	u	g/kg	160	29.
2-Nitroaniline	ND	u	g/kg	160	31.
3-Nitroaniline	ND	u	g/kg	160	30.
4-Nitroaniline	ND	u	g/kg	160	67.
Dibenzofuran	ND	u	g/kg	160	15.
2-Methylnaphthalene	ND	u	g/kg	190	20.
1,2,4,5-Tetrachlorobenzene	ND	u	g/kg	160	17.
Acetophenone	ND	u	g/kg	160	20.
2,4,6-Trichlorophenol	ND	u	g/kg	97	31.
p-Chloro-m-cresol	ND	u	g/kg	160	24.
2-Chlorophenol	ND	u	g/kg	160	19.
2,4-Dichlorophenol	ND	u	g/kg	140	26.
2,4-Dimethylphenol	ND	u	g/kg	160	53.
2-Nitrophenol	ND	u	g/kg	350	61.
4-Nitrophenol	ND	u	g/kg	230	66.
2,4-Dinitrophenol	ND	u	g/kg	770	75.
4,6-Dinitro-o-cresol	ND	u	g/kg	420	77.
Pentachlorophenol	ND	u	g/kg	130	36.

Project Name:	FMR ROCHESTER DRAG LOOP	Lab Number:	L1918492		
Project Number:	211352	Report Date:	05/14/19		
Method Blank Analysis					

Batch Quality Control

Analytical Method:	1,8270D	Extraction Method:	EPA 3546
Analytical Date:	05/13/19 13:42	Extraction Date:	05/11/19 04:31
Analyst:	SZ		

Parameter	Result	Qualifier	Units		RL	MDL	
Semivolatile Organics by GC/MS	- Westboroug	h Lab for s	ample(s):	01	Batch:	WG1236055-1	
Phenol	ND		ug/kg		160	24.	
2-Methylphenol	ND		ug/kg		160	25.	
3-Methylphenol/4-Methylphenol	ND		ug/kg	:	230	25.	
2,4,5-Trichlorophenol	ND		ug/kg		160	31.	
Carbazole	ND		ug/kg		160	16.	
Atrazine	ND		ug/kg		130	56.	
Benzaldehyde	ND		ug/kg	:	210	44.	
Caprolactam	ND		ug/kg		160	49.	
2,3,4,6-Tetrachlorophenol	ND		ug/kg		160	33.	

Surrogate	%Recovery Qualifie	Acceptance r Criteria
2-Fluorophenol	47	25-120
Phenol-d6	48	10-120
Nitrobenzene-d5	53	23-120
2-Fluorobiphenyl	55	30-120
2,4,6-Tribromophenol	58	10-136
4-Terphenyl-d14	58	18-120

Project Number: 211352

Lab Number: L1918492 05/14/19

Report Date:

Deremeter	LCS %Bacavary Qual	LCSD %Recovery	Qual	%Recovery	000	Qual	RPD Limite	
Parameter	%Recovery Quar	/artecovery	Quai	Lillins	RPD	Quai	LIIIIIIS	
Semivolatile Organics by GC/MS	- Westborough Lab Associated sample(s)	: 01 Batch:	WG1236055-2	WG1236055-3	3			
Acenaphthene	96	82		31-137	16		50	
Hexachlorobenzene	106	87		40-140	20		50	
Bis(2-chloroethyl)ether	95	80		40-140	17		50	
2-Chloronaphthalene	108	89		40-140	19		50	
3,3'-Dichlorobenzidine	82	70		40-140	16		50	
2,4-Dinitrotoluene	114	93		40-132	20		50	
2,6-Dinitrotoluene	118	95		40-140	22		50	
Fluoranthene	116	93		40-140	22		50	
4-Chlorophenyl phenyl ether	97	83		40-140	16		50	
4-Bromophenyl phenyl ether	103	88		40-140	16		50	
Bis(2-chloroisopropyl)ether	76	64		40-140	17		50	
Bis(2-chloroethoxy)methane	101	83		40-117	20		50	
Hexachlorobutadiene	100	88		40-140	13		50	
Hexachlorocyclopentadiene	120	105		40-140	13		50	
Hexachloroethane	96	85		40-140	12		50	
Isophorone	110	90		40-140	20		50	
Naphthalene	102	86		40-140	17		50	
Nitrobenzene	111	91		40-140	20		50	
NDPA/DPA	101	84		36-157	18		50	
n-Nitrosodi-n-propylamine	109	89		32-121	20		50	
Bis(2-ethylhexyl)phthalate	92	81		40-140	13		50	
Butyl benzyl phthalate	101	81		40-140	22		50	
Di-n-butylphthalate	116	99		40-140	16		50	

Project Number: 211352

Lab Number: L1918492

Report Date: 05/14/19

Paramotor	LCS %Recovery Qual	LCSD %Recovery	Qual	%Recovery	PPN	RPD Qual Limits	
		, and even only	Quui	Linits	Nr D		
Semivolatile Organics by GC/MS	- Westborough Lab Associated sample	(s): 01 Batch:	WG1236055-2	WG1236055-	3		
Di-n-octylphthalate	98	85		40-140	14	50	
Diethyl phthalate	98	82		40-140	18	50	
Dimethyl phthalate	114	92		40-140	21	50	
Benzo(a)anthracene	111	94		40-140	17	50	
Benzo(a)pyrene	106	91		40-140	15	50	
Benzo(b)fluoranthene	112	96		40-140	15	50	
Benzo(k)fluoranthene	104	89		40-140	16	50	
Chrysene	99	85		40-140	15	50	
Acenaphthylene	118	96		40-140	21	50	
Anthracene	113	96		40-140	16	50	
Benzo(ghi)perylene	108	97		40-140	11	50	
Fluorene	100	84		40-140	17	50	
Phenanthrene	103	88		40-140	16	50	
Dibenzo(a,h)anthracene	108	96		40-140	12	50	
Indeno(1,2,3-cd)pyrene	93	84		40-140	10	50	
Pyrene	113	90		35-142	23	50	
Biphenyl	111 Q	92		54-104	19	50	
4-Chloroaniline	76	58		40-140	27	50	
2-Nitroaniline	122	97		47-134	23	50	
3-Nitroaniline	85	70		26-129	19	50	
4-Nitroaniline	105	81		41-125	26	50	
Dibenzofuran	97	82		40-140	17	50	
2-Methylnaphthalene	107	89		40-140	18	50	

Project Number: 211352

Lab Number: L1918492 05/14/19

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westbo	orough Lab Associ	ated sample(s):	01 Batch:	WG1236055-2	2 WG1236055-3			
1,2,4,5-Tetrachlorobenzene	112		94		40-117	17		50
Acetophenone	113		93		14-144	19		50
2,4,6-Trichlorophenol	133	Q	108		30-130	21		50
p-Chloro-m-cresol	120	Q	96		26-103	22		50
2-Chlorophenol	109	Q	90		25-102	19		50
2,4-Dichlorophenol	121		96		30-130	23		50
2,4-Dimethylphenol	113		89		30-130	24		50
2-Nitrophenol	127		104		30-130	20		50
4-Nitrophenol	105		84		11-114	22		50
2,4-Dinitrophenol	110		96		4-130	14		50
4,6-Dinitro-o-cresol	140	Q	114		10-130	20		50
Pentachlorophenol	101		81		17-109	22		50
Phenol	100	Q	80		26-90	22		50
2-Methylphenol	109		88		30-130.	21		50
3-Methylphenol/4-Methylphenol	114		90		30-130	24		50
2,4,5-Trichlorophenol	125		100		30-130	22		50
Carbazole	111		92		54-128	19		50
Atrazine	115		94		40-140	20		50
Benzaldehyde	105		88		40-140	18		50
Caprolactam	101		80		15-130	23		50
2,3,4,6-Tetrachlorophenol	115		96		40-140	18		50

Project Name: FMR ROCHESTER DRAG LOOP

Project Number: 211352 Lab Number: L1918492

Report Date: 05/14/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	9 Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westborou	ugh Lab Associa	ted sample(s)	: 01 Batch:	WG1236055-2	WG1236055-3				

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	105	87	25-120
Phenol-d6	105	84	10-120
Nitrobenzene-d5	116	95	23-120
2-Fluorobiphenyl	106	89	30-120
2,4,6-Tribromophenol	120	98	10-136
4-Terphenyl-d14	109	87	18-120

PCBS

	Serial_No:05141918:51				
Project Name:	FMR ROCHESTER DRAG	LOOP	Lab Number:	L1918492	
Project Number:	211352		Report Date:	05/14/19	
		SAMPLE RESULTS			
Lab ID:	L1918492-01		Date Collected:	05/03/19 12:15	
Client ID:	COMP01-20190503		Date Received:	05/03/19	
Sample Location:	820 W. GOODMAN ST.		Field Prep:	Not Specified	
Sample Depth:					
Matrix:	Soil		Extraction Method:	EPA 3546	
Analytical Method:	1,8082A		Extraction Date:	05/11/19 10:41	
Analytical Date:	05/14/19 02:03		Cleanup Method:	EPA 3665A	
Analyst:	WR		Cleanup Date:	05/11/19	
Percent Solids:	97%		Cleanup Method:	EPA 3660B	
			Cleanup Date:	05/11/19	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - Westbo	rough Lab						
Aroclor 1016	ND		ug/kg	34.0	3.02	1	А
Aroclor 1221	ND		ug/kg	34.0	3.41	1	А
Aroclor 1232	ND		ug/kg	34.0	7.21	1	А
Aroclor 1242	ND		ug/kg	34.0	4.59	1	А
Aroclor 1248	16.8	J	ug/kg	34.0	5.10	1	В
Aroclor 1254	ND		ug/kg	34.0	3.72	1	А
Aroclor 1260	ND		ug/kg	34.0	6.29	1	А
Aroclor 1262	ND		ug/kg	34.0	4.32	1	А
Aroclor 1268	ND		ug/kg	34.0	3.52	1	А
PCBs, Total	16.8	J	ug/kg	34.0	3.02	1	В

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	58		30-150	А
Decachlorobiphenyl	64		30-150	А
2,4,5,6-Tetrachloro-m-xylene	62		30-150	В
Decachlorobiphenyl	75		30-150	В

Project Name:	FMR ROCHESTER DRAG LOOP	Lab Number:	L1918492
Project Number:	211352	Report Date:	05/14/19
Project Number:	211352	Report Date:	05/14/19

Method Blank Analysis Batch Quality Control

Analytical Method:	
Analytical Date:	
Analyst:	

1,8082A 05/11/19 19:05 WR Extraction Method:EPA 3546Extraction Date:05/11/19 01:59Cleanup Method:EPA 3665ACleanup Date:05/11/19Cleanup Method:EPA 3660BCleanup Date:05/11/19

Parameter	Result	Qualifier	Units		RL	MDL	Column
Polychlorinated Biphenyls by GC -	Westboroug	h Lab for s	ample(s):	01	Batch:	WG1236033-	-1
Aroclor 1016	ND		ug/kg	;	31.5	2.80	А
Aroclor 1221	ND		ug/kg	;	31.5	3.15	А
Aroclor 1232	ND		ug/kg	;	31.5	6.68	А
Aroclor 1242	ND		ug/kg	;	31.5	4.24	А
Aroclor 1248	ND		ug/kg	;	31.5	4.72	А
Aroclor 1254	ND		ug/kg	;	31.5	3.44	А
Aroclor 1260	ND		ug/kg	;	31.5	5.82	А
Aroclor 1262	ND		ug/kg	;	31.5	4.00	А
Aroclor 1268	ND		ug/kg	;	31.5	3.26	А
PCBs, Total	ND		ug/kg	;	31.5	2.80	А

	Acceptance					
Surrogate	%Recovery Q	ualifier	Criteria	Column		
2,4,5,6-Tetrachloro-m-xylene	81		30-150	А		
Decachlorobiphenyl	61		30-150	А		
2,4,5,6-Tetrachloro-m-xylene	75		30-150	В		
Decachlorobiphenyl	60		30-150	В		

Project Name: FMR ROCHESTER DRAG LOOP

Project Number: 211352

 Lab Number:
 L1918492

 Report Date:
 05/14/19

	LCS		LC	SD	9	6Recovery			RPD	
Parameter	%Recovery	Qual	%Rec	covery	Qual	Limits	RPD	Qual	Limits	Column
Polychlorinated Biphenyls by GC - Westborou	gh Lab Associa	ated sample(s):	01	Batch:	WG1236033-2	WG1236033-3				
Aroclor 1016	78			76		40-140	3		50	A
Aroclor 1260	60			63		40-140	5		50	А

	LCS	LCSD		Acceptance	
Surrogate	%Recovery	Qual %Recovery	Qual	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	81	79		30-150	А
Decachlorobiphenyl	61	67		30-150	A
2,4,5,6-Tetrachloro-m-xylene	73	71		30-150	В
Decachlorobiphenyl	63	59		30-150	В

PESTICIDES

		Serial_No:	05141918:51
FMR ROCHESTER DRAG	LOOP	Lab Number:	L1918492
211352		Report Date:	05/14/19
	SAMPLE RESULTS		
L1918492-01		Date Collected:	05/03/19 12:15
820 W. GOODMAN ST.		Field Prep:	Not Specified
Soil		Extraction Method:	EPA 3546
1,8081B		Extraction Date:	05/11/19 11:59
05/13/19 17:55		Cleanup Method:	EPA 3620B
KB 97%		Cleanup Date:	05/12/19
	FMR ROCHESTER DRAG 211352 L1918492-01 COMP01-20190503 820 W. GOODMAN ST. Soil 1,8081B 05/13/19 17:55 KB 97%	FMR ROCHESTER DRAG LOOP 211352 SAMPLE RESULTS L1918492-01 COMP01-20190503 820 W. GOODMAN ST. Soil 1,8081B 05/13/19 17:55 KB 97%	Serial_No:FMR ROCHESTER DRAG LOOPLab Number:211352Report Date:SAMPLE RESULTSL1918492-01 COMP01-20190503 820 W. GOODMAN ST.Date Collected: Date Received: Field Prep:Soil 1,8081B 05/13/19 17:55 KB 97%Extraction Method: Cleanup Method: Cleanup Date:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Organochlorine Pesticides by GC - V	Vestborough Lab						
Delta-BHC	ND		ug/kg	1.62	0.318	1	А
Lindane	ND		ug/kg	0.676	0.302	1	А
Alpha-BHC	ND		ug/kg	0.676	0.192	1	А
Beta-BHC	ND		ug/kg	1.62	0.615	1	А
Heptachlor	ND		ug/kg	0.811	0.363	1	А
Aldrin	ND		ug/kg	1.62	0.571	1	А
Heptachlor epoxide	ND		ug/kg	3.04	0.912	1	А
Endrin	ND		ug/kg	0.676	0.277	1	А
Endrin aldehyde	ND		ug/kg	2.03	0.709	1	А
Endrin ketone	ND		ug/kg	1.62	0.418	1	А
Dieldrin	ND		ug/kg	1.01	0.507	1	А
4,4'-DDE	ND		ug/kg	1.62	0.375	1	А
4,4'-DDD	ND		ug/kg	1.62	0.578	1	А
4,4'-DDT	ND		ug/kg	3.04	1.30	1	А
Endosulfan I	ND		ug/kg	1.62	0.383	1	А
Endosulfan II	ND		ug/kg	1.62	0.542	1	А
Endosulfan sulfate	ND		ug/kg	0.676	0.322	1	А
Methoxychlor	ND		ug/kg	3.04	0.946	1	А
Toxaphene	ND		ug/kg	30.4	8.51	1	А
cis-Chlordane	ND		ug/kg	2.03	0.565	1	А
trans-Chlordane	ND		ug/kg	2.03	0.535	1	А
Chlordane	ND		ug/kg	13.2	5.37	1	А

Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Sample Depth:								
Sample Location:	820 W. GOODMAN ST.				Field Pre	əp:	Not Specified	
Client ID:	COMP01-20190503				Date Re	ceived:	05/03/19	
Lab ID:	L1918492-01				Date Co	llected:	05/03/19 12:15	
		SAMP	LE RESULT	6				
Project Number:	211352				Report	t Date:	05/14/19	
Project Name:	FMR ROCHESTER DRA	G LOOP			Lab Nu	umber:	L1918492	
						Serial_No	0:05141918:51	

Organochlorine Pesticides by GC - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	67		30-150	В
Decachlorobiphenyl	69		30-150	В
2,4,5,6-Tetrachloro-m-xylene	64		30-150	А
Decachlorobiphenyl	80		30-150	А

Project Name:	FMR ROCHESTER DRAG LOOP	Lab Number:	L1918492
Project Number:	211352	Report Date:	05/14/19

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: Analyst: 1,8081B 05/13/19 12:44 KB Extraction Method:EPA 3546Extraction Date:05/11/19 00:38Cleanup Method:EPA 3620BCleanup Date:05/12/19

Parameter	Result	Qualifier	Units	RL		MDL	Column
Organochlorine Pesticides	by GC - Westborou	gh Lab for s	ample(s):	01 B	atch:	WG1236024	-1
Delta-BHC	ND		ug/kg	1.58		0.309	A
Lindane	ND		ug/kg	0.657	,	0.294	А
Alpha-BHC	ND		ug/kg	0.657	,	0.187	А
Beta-BHC	ND		ug/kg	1.58		0.598	А
Heptachlor	ND		ug/kg	0.789)	0.354	А
Aldrin	ND		ug/kg	1.58		0.556	А
Heptachlor epoxide	ND		ug/kg	2.96		0.888	А
Endrin	ND		ug/kg	0.657	,	0.270	А
Endrin aldehyde	ND		ug/kg	1.97		0.690	А
Endrin ketone	ND		ug/kg	1.58		0.406	А
Dieldrin	ND		ug/kg	0.986	6	0.493	А
4,4'-DDE	ND		ug/kg	1.58		0.365	А
4,4'-DDD	ND		ug/kg	1.58		0.563	А
4,4'-DDT	ND		ug/kg	2.96		1.27	А
Endosulfan I	ND		ug/kg	1.58		0.373	А
Endosulfan II	ND		ug/kg	1.58		0.527	А
Endosulfan sulfate	ND		ug/kg	0.657	7	0.313	А
Methoxychlor	ND		ug/kg	2.96		0.920	А
Toxaphene	ND		ug/kg	29.6		8.28	А
cis-Chlordane	ND		ug/kg	1.97		0.550	А
trans-Chlordane	ND		ug/kg	1.97		0.521	А
Chlordane	ND		ug/kg	12.8		5.23	А

Serial_No:05141918:51

Project Name:	FMR ROCHESTER DRAG LOOP	Lab Number:	L1918492
Project Number:	211352	Report Date:	05/14/19
	Method Blank Analysis		

Batch Quality Control

Analytical Method:	1,8081B	
Analytical Date:	05/13/19 12:44	
Analyst:	KB	

EPA 3546
05/11/19 00:38
EPA 3620B
05/12/19

Parameter	Result	Qualifier	Units		RL	MDL	Column
Organochlorine Pesticides by GC -	Westboroug	gh Lab for s	ample(s):	01	Batch:	WG1236024	l-1

			Acceptance				
Surrogate	%Recovery	Qualifier	Criteria	Column			
2,4,5,6-Tetrachloro-m-xylene	77		30-150	В			
Decachlorobiphenyl	93		30-150	В			
2,4,5,6-Tetrachloro-m-xylene	69		30-150	А			
Decachlorobiphenyl	55		30-150	А			

Project Number: 211352

Lab Number: L1918492

Report Date: 05/14/19

%Recovery borough Lab Assoc 86 83 84	Qual	%Recovery : 01 Batch: 96	Qual WG1236024-2	Limits WG1236024-3	RPD	Qual	Limits	Column
borough Lab Assoc 86 83 84	iated sample(s)	: 01 Batch:	WG1236024-2	WG1236024-3	3			
86 83		96						
83				30-150	11		30	А
84		89		30-150	7		30	А
04		91		30-150	8		30	А
78		84		30-150	7		30	А
50		56		30-150	11		30	А
63		70		30-150	11		30	А
64		72		30-150	12		30	А
78		85		30-150	9		30	А
66		73		30-150	10		30	А
82		88		30-150	7		30	А
76		84		30-150	10		30	А
69		74		30-150	7		30	А
78		83		30-150	6		30	А
80		87		30-150	8		30	А
65		70		30-150	7		30	А
75		81		30-150	8		30	А
84		85		30-150	1		30	А
72		75		30-150	4		30	А
60		65		30-150	8		30	А
76		81		30-150	6		30	А
	78 50 63 64 78 66 82 76 69 78 80 65 75 84 72 60 76	78 50 50 63 64 78 66 82 76 69 78 80 65 75 84 72 60 76	78 84 50 56 63 70 64 72 64 72 78 85 66 73 82 88 76 84 69 74 78 83 76 83 76 81 78 85 76 81 78 85 78 85 76 81 80 70 75 81 84 85 72 75 60 65 76 81	78 84 50 56 63 70 64 72 78 85 66 73 66 73 66 73 76 84 69 74 78 83 80 87 65 70 75 81 72 75 60 65 72 75 60 65 72 75 73 85 75 81 75 65 72 75 75 81 72 75 75 81	78 84 30-150 50 56 30-150 63 70 30-150 64 72 30-150 64 72 30-150 64 72 30-150 66 73 30-150 66 73 30-150 66 73 30-150 82 88 30-150 69 74 30-150 69 74 30-150 69 74 30-150 69 74 30-150 69 74 30-150 69 74 30-150 78 83 30-150 65 70 30-150 75 81 30-150 64 85 30-150 72 75 30-150 60 65 30-150 60 65 30-150 60 65 30-150 60 65 30-150	788430-1507505630-15011637030-15011647230-15012788530-1509667330-1509667330-15010828830-1507768430-15010697430-1507697430-1506808730-1506657030-1508758130-1508727530-1501606530-1504768130-1504	788430·1507505630·15011637030·15011647230·15012788530·1509667330·150106828830·15070788430·150706697430·150706997430·15066788330·15066788330·150706997430·150707808330·150667818330·150886557030·150707548530·150117558130·1504606530·15088768130·15068768130·15068768130·15068768130·15068768130·15068	788430-150730505630-1501130637030-1501130647230-1501230788530-150930667330-150930667330-1501030667330-1507030768830-1507030697430-150730697430-150630788330-150630697430-150730788330-150630788330-150630788330-1501030788330-150133078768330-1508798130-150130758130-150130727530-150430768130-150830768130-150430768130-150830768130-150430768130-150830768130-150630768130-150630768130-150630768130-150630768

Project Name: FMR ROCHESTER DRAG LOOP

Project Number: 211352

 Lab Number:
 L1918492

 Report Date:
 05/14/19

 LCS
 LCSD
 %Recovery
 RPD

 Parameter
 %Recovery
 Qual
 Main
 RPD
 Qual
 Limits

 Organochlorine Pesticides by GC - Westborough Lab
 Associated sample(s):
 01
 Batch:
 WG1236024-2
 WG1236024-3

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qua	al %Recovery Qual	Criteria Column
2,4,5,6-Tetrachloro-m-xylene	70	77	30-150 B
Decachlorobiphenyl	87	92	30-150 B
2,4,5,6-Tetrachloro-m-xylene	63	68	30-150 A
Decachlorobiphenyl	49	53	30-150 A

METALS

Serial_No:05141918:51

Project Name:	FMR ROCHESTER DRAG LOOP	Lab Number:	L1918492				
Project Number:	211352	Report Date:	05/14/19				
SAMPLE RESULTS							
Lab ID:	L1918492-01	Date Collected:	05/03/19 12:15				
Client ID:	COMP01-20190503	Date Received:	05/03/19				
Sample Location:	820 W. GOODMAN ST.	Field Prep:	Not Specified				

Sample Depth:

Matrix: Percent Solids: Soil 97%

Percent Solids. Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Aluminum, Total	4540		mg/kg	7.89	2.13	2	05/08/19 17:32	2 05/09/19 21:39	EPA 3050B	1,6010D	LC
Antimony, Total	0.781	J	mg/kg	3.95	0.300	2	05/08/19 17:32	2 05/09/19 21:39	EPA 3050B	1,6010D	LC
Arsenic, Total	3.49		mg/kg	0.789	0.164	2	05/08/19 17:32	2 05/09/19 21:39	EPA 3050B	1,6010D	LC
Barium, Total	41.8		mg/kg	0.789	0.137	2	05/08/19 17:32	2 05/09/19 21:39	EPA 3050B	1,6010D	LC
Beryllium, Total	0.174	J	mg/kg	0.395	0.026	2	05/08/19 17:32	2 05/09/19 21:39	EPA 3050B	1,6010D	LC
Cadmium, Total	ND		mg/kg	0.789	0.077	2	05/08/19 17:32	2 05/09/19 21:39	EPA 3050B	1,6010D	LC
Calcium, Total	29200		mg/kg	7.89	2.76	2	05/08/19 17:32	2 05/09/19 21:39	EPA 3050B	1,6010D	LC
Chromium, Total	7.50		mg/kg	0.789	0.076	2	05/08/19 17:32	2 05/09/19 21:39	EPA 3050B	1,6010D	LC
Cobalt, Total	3.77		mg/kg	1.58	0.131	2	05/08/19 17:32	2 05/09/19 21:39	EPA 3050B	1,6010D	LC
Copper, Total	47.4		mg/kg	0.789	0.204	2	05/08/19 17:32	2 05/09/19 21:39	EPA 3050B	1,6010D	LC
Iron, Total	11600		mg/kg	3.95	0.713	2	05/08/19 17:32	2 05/09/19 21:39	EPA 3050B	1,6010D	LC
Lead, Total	55.8		mg/kg	3.95	0.212	2	05/08/19 17:32	2 05/09/19 21:39	EPA 3050B	1,6010D	LC
Magnesium, Total	5990		mg/kg	7.89	1.22	2	05/08/19 17:32	2 05/09/19 21:39	EPA 3050B	1,6010D	LC
Manganese, Total	414		mg/kg	0.789	0.126	2	05/08/19 17:32	2 05/09/19 21:39	EPA 3050B	1,6010D	LC
Mercury, Total	0.348		mg/kg	0.065	0.014	1	05/07/19 05:00	05/07/19 15:07	EPA 7471B	1,7471B	GD
Nickel, Total	7.09		mg/kg	1.97	0.191	2	05/08/19 17:32	2 05/09/19 21:39	EPA 3050B	1,6010D	LC
Potassium, Total	713		mg/kg	197	11.4	2	05/08/19 17:32	2 05/09/19 21:39	EPA 3050B	1,6010D	LC
Selenium, Total	0.442	J	mg/kg	1.58	0.204	2	05/08/19 17:32	2 05/09/19 21:39	EPA 3050B	1,6010D	LC
Silver, Total	ND		mg/kg	0.789	0.223	2	05/08/19 17:32	2 05/09/19 21:39	EPA 3050B	1,6010D	LC
Sodium, Total	199		mg/kg	158	2.49	2	05/08/19 17:32	2 05/09/19 21:39	EPA 3050B	1,6010D	LC
Thallium, Total	ND		mg/kg	1.58	0.249	2	05/08/19 17:32	2 05/09/19 21:39	EPA 3050B	1,6010D	LC
Vanadium, Total	14.0		mg/kg	0.789	0.160	2	05/08/19 17:32	2 05/09/19 21:39	EPA 3050B	1,6010D	LC
Zinc, Total	93.2		mg/kg	3.95	0.231	2	05/08/19 17:32	2 05/09/19 21:39	EPA 3050B	1,6010D	LC

Project Name:FMR ROCHESTER DRAG LOOPProject Number:211352

 Lab Number:
 L1918492

 Report Date:
 05/14/19

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for sample(s):	01 Batch	: WG12	34238-	1				
Mercury, Total	ND	mg/kg	0.083	0.018	1	05/07/19 05:00	05/07/19 14:38	3 1,7471B	GD

Prep Information

Digestion Method: EPA 7471B

Parameter	Result Qua	lifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield I	_ab for samp	ole(s):	01 Batch	: WG12	235017-1	1				
Aluminum, Total	ND		mg/kg	4.00	1.08	1	05/08/19 17:32	05/09/19 20:23	1,6010D	LC
Antimony, Total	ND		mg/kg	2.00	0.152	1	05/08/19 17:32	05/09/19 20:23	1,6010D	LC
Arsenic, Total	ND		mg/kg	0.400	0.083	1	05/08/19 17:32	05/09/19 20:23	1,6010D	LC
Barium, Total	ND		mg/kg	0.400	0.070	1	05/08/19 17:32	05/09/19 20:23	1,6010D	LC
Beryllium, Total	ND		mg/kg	0.200	0.013	1	05/08/19 17:32	05/09/19 20:23	1,6010D	LC
Cadmium, Total	ND		mg/kg	0.400	0.039	1	05/08/19 17:32	05/09/19 20:23	1,6010D	LC
Calcium, Total	ND		mg/kg	4.00	1.40	1	05/08/19 17:32	05/09/19 20:23	1,6010D	LC
Chromium, Total	ND		mg/kg	0.400	0.038	1	05/08/19 17:32	05/09/19 20:23	1,6010D	LC
Cobalt, Total	ND		mg/kg	0.800	0.066	1	05/08/19 17:32	05/09/19 20:23	1,6010D	LC
Copper, Total	ND		mg/kg	0.400	0.103	1	05/08/19 17:32	05/09/19 20:23	1,6010D	LC
Iron, Total	0.704	J	mg/kg	2.00	0.361	1	05/08/19 17:32	05/09/19 20:23	1,6010D	LC
Lead, Total	ND		mg/kg	2.00	0.107	1	05/08/19 17:32	05/09/19 20:23	1,6010D	LC
Magnesium, Total	ND		mg/kg	4.00	0.616	1	05/08/19 17:32	05/09/19 20:23	1,6010D	LC
Manganese, Total	ND		mg/kg	0.400	0.064	1	05/08/19 17:32	05/09/19 20:23	1,6010D	LC
Nickel, Total	ND		mg/kg	1.00	0.097	1	05/08/19 17:32	05/09/19 20:23	1,6010D	LC
Potassium, Total	ND		mg/kg	100	5.76	1	05/08/19 17:32	05/09/19 20:23	1,6010D	LC
Selenium, Total	ND		mg/kg	0.800	0.103	1	05/08/19 17:32	05/09/19 20:23	1,6010D	LC
Silver, Total	ND		mg/kg	0.400	0.113	1	05/08/19 17:32	05/09/19 20:23	1,6010D	LC
Sodium, Total	1.60	J	mg/kg	80.0	1.26	1	05/08/19 17:32	05/09/19 20:23	1,6010D	LC
Thallium, Total	ND		mg/kg	0.800	0.126	1	05/08/19 17:32	05/09/19 20:23	1,6010D	LC
Vanadium, Total	ND		mg/kg	0.400	0.081	1	05/08/19 17:32	05/09/19 20:23	1,6010D	LC
Zinc, Total	ND		mg/kg	2.00	0.117	1	05/08/19 17:32	05/09/19 20:23	1,6010D	LC

Project Name: FMR ROCHESTER DRAG LOOP

 Lab Number:
 L1918492

 Report Date:
 05/14/19

Project Number: 211352

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 3050B

Project Name: FMR ROCHESTER DRAG LOOP

Project Number: 211352

 Lab Number:
 L1918492

 Report Date:
 05/14/19

Parameter	LCS %Recovery	Qual %I	LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch: V	VG1234238-2	SRM Lot Nu	ımber: D101	-540			
Mercury, Total	105		-		65-135	-		

Project Name: FMR ROCHESTER DRAG LOOP

Project Number: 211352

Lab Number: L1918492

Report Date: 05/14/19

_	LCS	LCSD	%Recovery		
Parameter	%Recovery	%Recovery	Limits	RPD	RPD Limits
Total Metals - Mansfield Lab Associated samp	ole(s): 01 Batch: WG1	235017-2 SRM Lot Number	er: D101-540		
Aluminum, Total	69	-	50-151	-	
Antimony, Total	144	-	3-196	-	
Arsenic, Total	96	-	83-117	-	
Barium, Total	89	-	83-118	-	
Beryllium, Total	90	-	83-117	-	
Cadmium, Total	91	-	83-117	-	
Calcium, Total	87	-	81-119	-	
Chromium, Total	90	-	81-118	-	
Cobalt, Total	94	-	84-116	-	
Copper, Total	88	-	83-116	-	
Iron, Total	91	-	62-138	-	
Lead, Total	93	-	83-117	-	
Magnesium, Total	83	-	76-124	-	
Manganese, Total	86	-	82-118	-	
Nickel, Total	93	-	82-117	-	
Potassium, Total	82	-	71-130	-	
Selenium, Total	96	-	79-121	-	
Silver, Total	89	-	80-120	-	
Sodium, Total	90	-	72-127	-	
Thallium, Total	94	-	81-119	-	
Vanadium, Total	90	-	79-121	-	

Project Name: FMR ROCHESTER DRAG LOOP

Project Number: 211352

 Lab Number:
 L1918492

 Report Date:
 05/14/19

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab Associated sa	mple(s): 01 Batch: WG12350	017-2 SRM Lot Number	: D101-540		
Zinc, Total	94	-	81-119	-	

Matrix Spike Analysis

Due is at Names		Batch Quality Control	Lab Number	1 4 9 4 9 4 9 9
Project Name:	FMR ROCHESTER DRAG LOOP		Lab Number:	L1918492
Project Number:	211352		Report Date:	05/14/19

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab As	sociated san	nple(s): 01	QC Batch	ID: WG123423	8-3 (QC Sample	: L1918594-01	Clier	nt ID: MS Sa	ample		
Mercury, Total	0.064J	0.14	0.285	203	Q	-	-		80-120	-		20

Matrix Spike Analysis Batch Quality Control

Project Name: FMR ROCHESTER DRAG LOOP

Project Number: 211352 Lab Number: L1918492

Report Date:

05/14/19

Parameter	Native Sample	MS Added	MS Found	MS %Recovery		MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield I	Lab Associated sar	mple(s): 01	QC Batch	ID: WG123501	7-3	QC Sample	: L1918348-01	Client ID: MS S	ample	
Aluminum, Total	2550	177	3370	464	Q	-	-	75-125	-	20
Antimony, Total	0.426J	44.2	41.6	94		-	-	75-125	-	20
Arsenic, Total	0.966	10.6	11.5	99		-	-	75-125	-	20
Barium, Total	6.72	177	189	103		-	-	75-125	-	20
Beryllium, Total	0.104J	4.42	4.44	100		-	-	75-125	-	20
Cadmium, Total	1.43	4.51	4.91	77		-	-	75-125	-	20
Calcium, Total	242	884	1190	107		-	-	75-125	-	20
Chromium, Total	4.52	17.7	22.6	102		-	-	75-125	-	20
Cobalt, Total	2.34	44.2	45.2	97		-	-	75-125	-	20
Copper, Total	4.75	22.1	27.2	102		-	-	75-125	-	20
Iron, Total	5990	88.4	7200	1370	Q	-	-	75-125	-	20
Lead, Total	8.07	45.1	51.9	97		-	-	75-125	-	20
Magnesium, Total	704	884	1700	113		-	-	75-125	-	20
Manganese, Total	93.0	44.2	152	134	Q	-	-	75-125	-	20
Nickel, Total	3.48	44.2	46.4	97		-	-	75-125	-	20
Potassium, Total	154J	884	1060	120		-	-	75-125	-	20
Selenium, Total	ND	10.6	10.4	98		-	-	75-125	-	20
Silver, Total	ND	26.5	25.5	96		-	-	75-125	-	20
Sodium, Total	76.7J	884	966	109		-	-	75-125	-	20
Thallium, Total	ND	10.6	9.62	91		-	-	75-125	-	20
Vanadium, Total	7.96	44.2	53.8	104		-	-	75-125	-	20

		Matrix Spike Analysis		
Project Name:	FMR ROCHESTER DRAG LOOP	Batch Quanty Control	Lab Number:	L1918492
Project Number:	211352		Report Date:	05/14/19

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab A	Associated sar	nple(s): 01	QC Batch	ID: WG1235017-3	QC Sample	e: L1918348-01	Client ID: MS Sa	ample	
Zinc, Total	11.2	44.2	57.9	106	-	-	75-125	-	20

20

NC

mg/kg

Project Name: Project Number:	FMR ROCHESTER DRAG LO 211352	OP	Lab Duplicate Analy Batch Quality Control	sis	La Re	ab Number: eport Date:	L1918492 05/14/19
Parameter		Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield	Lab Associated sample(s): 01	QC Batch ID: WG	1234238-4 QC Sample: L1	918594-01	Client ID: DI	JP Sample	

Mercury, Total	0.064J	0.131

Lab Duplicate Analysis Batch Quality Control

Project Name: FMR ROCHESTER DRAG LOOP Project Number: 211352

Lab Number:

L1918492 05/14/19 Report Date:

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG12350	017-4 QC Sample:	L1918348-01	Client ID: DI	JP Sample
Aluminum, Total	2550	2750	mg/kg	8	20
Antimony, Total	0.426J	0.452J	mg/kg	NC	20
Arsenic, Total	0.966	0.799J	mg/kg	NC	20
Barium, Total	6.72	7.49	mg/kg	11	20
Beryllium, Total	0.104J	0.113J	mg/kg	NC	20
Cadmium, Total	1.43	0.573J	mg/kg	NC	20
Calcium, Total	242	265	mg/kg	9	20
Chromium, Total	4.52	5.01	mg/kg	10	20
Cobalt, Total	2.34	2.25	mg/kg	4	20
Copper, Total	4.75	4.93	mg/kg	4	20
Iron, Total	5990	6320	mg/kg	5	20
Lead, Total	8.07	8.16	mg/kg	1	20
Magnesium, Total	704	796	mg/kg	12	20
Manganese, Total	93.0	106	mg/kg	13	20
Nickel, Total	3.48	3.63	mg/kg	4	20
Potassium, Total	154J	152J	mg/kg	NC	20
Selenium, Total	ND	ND	mg/kg	NC	20
Silver, Total	ND	ND	mg/kg	NC	20
Sodium, Total	76.7J	45.8J	mg/kg	NC	20

Lab Duplicate Analysis Batch Quality Control

Project Name:FMR ROCHESTER DRAG LOOPProject Number:211352

 Lab Number:
 L1918492

 Report Date:
 05/14/19

Parameter	Native Sample D	uplicate Sample	Units	RPD	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1235017-	4 QC Sample:	L1918348-01	Client ID: DUP S	Sample
Thallium, Total	ND	ND	mg/kg	NC	20
Vanadium, Total	7.96	8.21	mg/kg	3	20
Zinc, Total	11.2	11.2	mg/kg	0	20

INORGANICS & MISCELLANEOUS

Project Name: Project Number:	FMR ROCHESTER DRAG LOOP 211352						Lab N Repoi	umber: rt Date:	L1918492 05/14/19	
				SAMPLE I	RESUL	TS				
Lab ID: Client ID: Sample Location:	L1918492-01 COMP01-201 820 W. GOOI	90503 DMAN S	т.				Date (Date F Field F	Collected: Received: Prep:	05/03/19 12:15 05/03/19 Not Specified	
Sample Depth: Matrix: Parameter	Soil Result (Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lab									
Solids, Total	97.0		%	0.100	NA	1	-	05/04/19 13:1	1 121,2540G	RI

20

Project Name:	FMR ROCHESTER DRAG	G LOOP	Lab Duplicate An Batch Quality Con	alysis trol	L	ab Numbe	<i>r:</i> L1918492
Project Number:	211352				R	eport Date	e: 05/14/19
Parameter		Native Sample	Duplicate Sample	e Units	RPD	Qual	RPD Limits
General Chemistry - We	stborough Lab Associated	sample(s): 01 QC Ba	atch ID: WG1233633-1 Q	C Sample: L191	8468-01 C	lient ID: D	UP Sample

94.9

%

0

94.7

Solids, Total

Sample Receipt and Container Information

YES

Were project specific reporting limits specified?

Cooler Information

Cooler	Custody Seal
A	Absent

Container Information

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1918492-01A	Glass 120ml/4oz unpreserved	А	NA		3.2	Y	Absent		NYTCL-8260-R2(14)
L1918492-01B	Glass 120ml/4oz unpreserved	A	NA		3.2	Y	Absent		BE-TI(180),AS-TI(180),BA-TI(180),AG- TI(180),AL-TI(180),CR-TI(180),NI-TI(180),TL- TI(180),CU-TI(180),PB-TI(180),SB-TI(180),SE- TI(180),ZN-TI(180),CO-TI(180),V-TI(180),FE- TI(180),HG-T(28),MG-TI(180),MN-TI(180),CA- TI(180),CD-TI(180),K-TI(180),NA-TI(180)
L1918492-01C	Glass 120ml/4oz unpreserved	A	NA		3.2	Y	Absent		NYTCL-8270(14),TS(7),NYTCL- 8081(14),NYTCL-8082(14)
L1918492-01X	Vial MeOH preserved split	А	NA		3.2	Y	Absent		NYTCL-8260-R2(14)
L1918492-01Y	Vial Water preserved split	А	NA		3.2	Y	Absent	09-MAY-19 09:31	NYTCL-8260-R2(14)
L1918492-01Z	Vial Water preserved split	A	NA		3.2	Y	Absent	09-MAY-19 09:31	NYTCL-8260-R2(14)

Serial_No:05141918:51

Project Name: FMR ROCHESTER DRAG LOOP

Project Number: 211352

Lab Number: L1918492

Report Date: 05/14/19

GLOSSARY

Acronyms

DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
NA	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
	 Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit. N Nitrecodiphenylamine/Diphenylamine
	Not Ignitable
ND	Non Direction Terms is utilized for the analysis of Attenhane Limits in soil
	- Non-Plastic. Term is durized for the analysis of Atteroeng Limits in son.
KL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

Report Format: DU Report with 'J' Qualifiers

Project Name: FMR ROCHESTER DRAG LOOP

Project Number: 211352

Lab Number:	L1918492
Report Date:	05/14/19

1

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum. Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after

adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH. Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-

preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects (flag only applies to associated field samples that have detectable concentrations of the analyte which was detected above the reporting limit in the associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.

Project Name:FMR ROCHESTER DRAG LOOPProject Number:211352

 Lab Number:
 L1918492

 Report Date:
 05/14/19

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene **EPA 8260C:** <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. **EPA 8270D:** <u>NPW</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 6860: SCM: Perchlorate

SM4500: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS EPA 8082A: <u>NPW</u>: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics, EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil. Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Serial_No:05141918:51

	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W. Tonawanda, NY 14150: 275 Coo	Vice Centers wah, NJ 07430: 35 Whitney Rd, Suite 5 iny, NY 12205: 14 Walker Way awanda, NY 14150: 275 Cooper Ave, Suite 105				ſ	Date F in L	Rec'd ab	51	Edr	ALPHA Job # LIGBISZ				
Westborough, MA 01581	Mansfield, MA 02048 320 Forbes Blvd	Project Information					Delive	erables	ŧ.			Billing Information				
TEL: 508-898-9220	TEL: 508-822-9300	Project Name: Former	Rechaster	e prug	loop	,	ASP-A ASP-B							Same as Client Info		
FAX: 508-898-9193	FAX: 508-822-3288	Project Location: 32	roject Location: 320 N. Grading at St						EQuIS (1 File) EQuIS (4 File)							
Client Information		Project # 211	Other spulled													
Client: La Bella 14	ssariates	(Use Project name as Pro	(I so Project pame as Project #)							emen	t	Disposal Sit	e Information			
Addrass: Zors Sta	to St	Project Manager:	Desiget Manager Market Palaceter La									Please identify	Please identify below location of			
Roland AM	MAIN	AI PHAQuote #								ds		applicable dis	posal facilities.			
Phone: 585/201	-6253	Turn-Around Time			1		NY Restricted Use Other							Disposal Facil	Disposal Facility:	
For:		Standard	X	Due Date:										NJ NJ		
Email: MAR UCA	Olabella Br. Cat	Rush (only if pre approved)		# of Dave:			NYC Sewer Discharge							Other:		
These seconds have b	Ela-ti-li-te-	ad bu Alaba		ir or oays.										Sample Filtration		
Other project specific	requirements/comm	so by Alpha											°			
Please specify Metals	or TAL.	ients.					20 VOC	PSI SWC	peretals		tides			Lab to o Preservatio	io m io	-a- ao
							3	U		2	+		1	(Please Sp	ecify below)	t
ALPHA Lab ID (Lab Use Only) Sam		mple ID Collection Time		Sample Sampler's Matrix Initials	3	3	ž	2	3					1		
					Initials	2	F	て	-				Sample Spec	ific Comments	e	
1992-01	COMP @1 - 20	\$190503	5/3/19	1215	SOR	GR	×	×	X	X	X					3
						1.1		-								
A SALES YOVER																
In the second																
The second second																
SVALLE VIEW 1																
Preservative Code: Container Code Westboro: Certification No: MA935 $A = None$ $P = Plastic$ Westboro: Certification No: MA935 $B = HCI$ $A = Amber Glass$ Mansfield: Certification No: MA015 $C = HNO_3$ $V = Vial$ $D = H_2SO_4$ $D = H_2SO_4$ $B = Bacteria Cup$			Con								Please p and com not be log turnarour start until	Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are				
F = MeOH	C = Cube O = Other	Relinguished I	By:	Date/	Time	00	Recei	ved By	c .			Date	Time	resolved.	BY EXECUTING	à
$H = Na_2S_2O_3$ K/E = Zn Ac/NaOH O = Other	E = Encore D = BOD Bottle	in Correr 5/3/9 1			13:30	in Ve	erue)				5/3/19 13:30			HAS READ AND AGREES		
Form No: 01-25 HC (rev. 3	0-Sept-2013)											1		(See rev	erse side.)	

