Stantec

Stantec Consulting Services Inc. 61 Commercial Street Suite 100, Rochester NY 14614-1009

December 13, 2019 File: 190500014

Attention: Todd Caffoe, P.E. New York State Department of Environmental Conservation Division of Environmental Remediation 6274 East Avon-Lima Road Avon NY 14414-9519

Reference: Periodic Review Report Ward Street Site, BCA Site No. C828117 and 8-28 Ward Street Site, BCA Site No. C828136 Rochester, New York

Dear Todd,

On behalf of Germanow-Simon Corporation (Germanow-Simon), Stantec Consulting Services Inc. (Stantec) has prepared the attached Periodic Review Report and completed the Institutional and Engineering Control Certification (IC/EC) Forms for the period November 15, 2018 to November 15, 2019 to fulfill Germanow-Simon's obligation as a Volunteer under the Brownfield Cleanup Agreement (BCA) for its properties known as the Ward Street Site (*BCA Site #C828117*) and the 8-28 Ward Street Site (*BCA Site #C828136*). These adjacent sites are located on Ward Street in the City of Rochester, Monroe County, New York.

In summary, the report concludes that groundwater conditions continue to improve; accordingly we are recommending modifying the groundwater monitoring program to a biannual frequency, and also discontinuing sampling in one monitoring well where VOCs remain below groundwater standards.

Please do not hesitate to call should you have any questions or require further information.

Regards,

Stantec Consulting Services Inc.

~ P. #

Michael P. Storonsky Managing Principal 585-413-5266 mike.storonsky@stantec.com

Kevin Ignaszak P.E. Principal 585-413-5355 kevin.ignaszak@stantec.com

Attachment: Periodic Review Report – Ward Street Site No. C828117 and No. C282136

c: John Dole, Germanow-Simon

Design with community in mind

PERIODIC REVIEW REPORT

BROWNFIELD CLEANUP PROGRAM WARD STREET SITE (SITE NO. C828117) and 8-28 WARD STREET (SITE NO. C828136)

December 13, 2019

Prepared on behalf of:

Germanow-Simon Corporation 408 St. Paul Street Rochester, New York 14601

Prepared by:

Stantec Consulting Services Inc. 61 Commercial Street, Suite 100 Rochester, New York 14614

Table of Contents

1.0	INTRO	ODUCTION AND OVERVIEW	2
	1.1	SUMMARY OF SITE CONTAMINATION AND REMEDIAL HISTORY	2
	1.2	SITE MANAGEMENT REQUIREMENTS	4
	1.3	EFFECTIVENESS OF THE REMEDIAL PROGRAM	5
	1.4	COMPLIANCE	5
	1.5	RECOMMENDATIONS	5
2.0	REM	EDY PERFORMANCE, EFFECTIVENESS, AND PROTECTIVENESS	6
3.0	СОМ	PLIANCE WITH IC/EC REQUIREMENTS AND THE OM&M PLAN	7
4.0	OVE	RALL CONCLUSIONS AND RECOMMENDATIONS	7

TABLES

1 – Summary of Volatile Organic Compounds in Groundwater – September 2011 to October 2018 2 – Summary of Field Parameters in Groundwater – September 2011 to October 2018

FIGURES

1 –	Site Location	Мар
-----	---------------	-----

- 2 Well Locations
- 3A-3C Dissolve-Phase VOC Concentrations vs. Time

APPENDICES

 \bigcirc

- A IC/EC Certification Forms
- **B NYSDEC Correspondence**
- C Laboratory Analytical Report

1.0 INTRODUCTION AND OVERVIEW

Stantec Consulting Services Inc. (Stantec) has prepared this Periodic Review Report (PRR) and the attached Institutional Control/Engineering Control (IC/EC) forms (Appendix A) to summarize Site Management (SM) activities at the contiguous Ward Street and 8-28 Ward Street Brownfield Cleanup Program sites (the Sites) for the period November 15, 2018 to November 15, 2019.

The PRR was prepared on behalf of Germanow-Simon Corporation (Germanow-Simon), the owner of the Sites, to fulfill the PRR requirements of the Brownfield Cleanup Program (BCP) of the New York State Department of Environmental Conservation (NYSDEC or the Department). The Ward Street Site is identified by NYSDEC as BCP Site No. C828117. The 8-28 Ward Street Site is identified as BCP Site No. C828136.

The Sites are located in the City of Rochester, Monroe County, New York along the north side of Ward Street between the intersection of Ward Street with St. Paul Street on the southwest and Emmett Street on the northeast. A map showing the locations of the Sites is presented on Figure 1.

1.1 SUMMARY OF SITE CONTAMINATION AND REMEDIAL HISTORY

Germanow-Simon and the Department agreed to pursue a program of environmental investigation and cleanup activities at the Sites to address past releases of industrial and dry-cleaning solvents and petroleum products that resulted in subsurface contamination by volatile organic compounds (VOCs). The BCP activities led to the implementation of a Multi-Phase Vacuum Extraction (MPVE) cleanup system for the Sites. MPVE is a contaminant remediation technology that uses a vacuum pump and extraction wells to simultaneously remove VOCs from subsurface soils, soil vapor and groundwater. The layout of the former MPVE system is provided in Figure 2 (Well Locations).

Construction, installation, and commissioning of the MPVE system at the Ward Street Site were completed in October 2006. The 8-28 Ward Street Site component of the MPVE system was added in October 2008. With NYSDEC approval, the MPVE system was shut down on February 22, 2011 and has not been restarted since that time. At that time, the previously installed sub-slab depressurization system (SSDS) beneath the Building B Annex Area was reactivated (as it had been during previous sampling or MPVE maintenance-related shut-down periods).

In accordance with the NYSDEC-approved *Remedial Program Supplement, Enhanced Reductive Dechlorination Work Plan*, dated March 2011 (Stantec, 2011) and NYSDEC's November 14, 2011 approval letter, an *in-situ* bioremediation groundwater polishing program was initiated in November/December 2011. This was followed by a supplemental injection program for Enhanced Reductive Dechlorination (ERD), which was proposed in correspondence dated October 2012, approved by NYSDEC on November 6, 2012, and conducted in November 2012. The results of that event were summarized in Stantec's December 21, 2012 *Enhanced Reductive Dechlorination Supplemental Injection Program Summary Report*.

Because groundwater in the former Lilac Laundry area was found to meet the Department's groundwater quality standards (refer to *Ward Street Site Semi-Annual Progress Report #8, Ward Street Site (Site #C828117) and 8-28 Ward Street Site (Site #C828136), Rochester, New York* (Stantec, February 2011), and in preparation for site improvements, and with NYSDEC approval, the following wells were decommissioned in October 2011 at the Ward Street Site: MW-3, -5, -9, -9R, -20, -21, -32, -213, -214, -215, -216, -217, -218, and -219. In addition, since no significant groundwater impacts were present on

the 8-28 Ward Street Site, and in preparation for site improvements, and with NYSDEC approval, the following wells were decommissioned in October 2011 at the 8-28 Ward Street Site: GQ1/MW-1, GQ2/MW-2, GQ4/MW-4, GQ8/MW-5, MW-19, -45, -46, -46R, and -47.

The results of the groundwater sampling event conducted in October 2013 indicated that significant dissolved-phase VOC reduction had occurred within the treatment area. Based on this observed reduction since the commencement of remedial measures, and the continued success of the ERD process, it was proposed in the 2015 PRR to: (1) discontinue the ERD groundwater treatment program; (2) reduce the number of wells that are monitored; (3) reduce the number of analytes that are monitored; and (4) reduce the frequency of monitoring. The PRR proposed that an annual groundwater sampling event be performed involving wells MW-16, -16R, -23, -23R, -105, -207R with analysis for VOCs by USEPA Method 8260 and total organic carbon (TOC) by USEPA Method 5310. This revised sampling and analysis approach was accepted in the NYSDEC February 4, 2016 letter to Germanow-Simon; a copy of the letter was included in Appendix B of the 2016 PRR.

The results of the annual groundwater sampling event completed in June 2015 showed that anaerobic and reducing geochemical conditions had been maintained at the wells sampled. Results at wells MW-16 and -23R indicated that the "parent" compounds tetrachloroethylene (PCE) and trichloroethylene (TCE) were below detection limits. Concentrations of daughter products at MW-16 had increased, suggesting that degradation was progressing but was incomplete. The only contaminant of concern detected at MW-23R was cis-dichloroethylene (cis-DCE) and the concentration was below the groundwater standard for that compound. Decreased concentrations were observed for all contaminants of concern at MW-105. However, increases in contaminants of concern were observed at MW-16R, -23, and -207R. After discussion with NYSDEC, it was proposed to complete another round of groundwater monitoring at these six wells in the spring of 2016 to assess the progress of the ERD process.

The groundwater parameters measured in the field during the March 2016 sampling event indicated that anaerobic and reducing geochemical conditions had been maintained or improved since 2015 at all sampled wells. This indicated that the ERD injection performed in November 2012 continued to promote an environment suitable for the breakdown of chlorinated VOCs. Measured groundwater parameters are provided on Table 2. The VOC data (Table 1) indicated that ERD continued under, and downgradient from, the Building B Annex shipping/receiving area. Low and decreasing concentrations of parent VOC compounds, PCE and TCE, were observed in MW-105; and only 'daughter' products, cis- and trans-1,2-Dichloroethene (DCE) and vinyl chloride (VC), were observed downgradient at wells MW-16 and - 16R. VOC concentrations at downgradient well MW-207R remained generally similar to those observed during the previous round of groundwater sampling in June 2015 with only "daughter" VOC compounds detected.

In 2016, favorable conditions at the 8-28 Ward Street Site were maintained within the bedrock zone as VOC concentrations were at or below laboratory detection limits for all compounds at MW-23R. The results from MW-23, however, showed increases in PCE and TCE concentrations compared to levels observed prior to the initial injection activities. The increases in the concentrations of parent compounds were indicative of additional residual source material that had not been effectively treated by past remedial efforts in the area of MW-23. The groundwater results were forwarded to the Department on April 14, 2016 (Appendix B of the 2016 PRR).

Following discussion with the Department, Stantec performed a two-day Geoprobe investigation (May 23-24, 2016) to investigate the potential source and extent of impacted soil in the vicinity of MW-23 which

was contributing to the groundwater results. The investigation was summarized in the 2016 PRR; based on the results, Stantec recommended performing an on-Site remedial excavation of source material. This remedial approach would be supplemented with the placement in the excavation of sodium lactate as an electron-donor to further facilitate the breakdown of residual contamination in groundwater within, and downgradient of the source area. The results of the soil boring program and the recommended remedial approach were proposed to the Department both in correspondence dated October 27, 2016 and the December 15, 2016 PRR. Included as a part of the remedial approach set forth in the 2016 PRR, the next groundwater monitoring event was proposed to be completed three months after completion of the excavation program.

As detailed in the December 2017 PRR, a relatively small, supplemental excavation of TCE-impacted source-area soils was performed in October 2017 on the southern boundary of the 8-28 Ward Street site, immediately north of Ward Street. An application of sodium lactate was placed in the excavation prior to backfill to facilitate *in situ* bioremediation via ERD of residual groundwater impacts. Due to the timing of the excavation program, and the commitment to conduct the next groundwater monitoring event three months after completion of the excavation program, no groundwater sampling continues to be performed, as discussed below.

1.2 SITE MANAGEMENT REQUIREMENTS

Site Management activities were implemented in accordance with the Department-approved Site Management Plans (SMPs) for each site. The SMPs for the Sites include the following required Institutional and Engineering Controls (ICs/ECs):

- Use of the Sites for commercial and industrial purposes is allowed as long as the following longterm controls are employed:
 - The MPVE system is operated in accordance with a Department-approved Operation, Maintenance & Monitoring (OM&M) plan until remedial requirements are achieved to the satisfaction of the Department. (*Note: this is no longer required; see below*)
 - An SSDS constructed in conjunction with the MPVE system is operated continuously in the Building B Annex Area to mitigate the potential for soil vapor intrusion (SVI) when the MPVE system is shut down.
 - Impervious surfaces covering specific areas of the Sites (building floor slabs and parking lot pavements) are maintained.
 - NYSDEC approval must be obtained in advance for activities which breach impervious surfaces or disturb soils in those same areas of the Sites, and those activities must be performed in accordance with the SMPs.
 - NYSDEC approval must be obtained in advance for use of groundwater for any purpose at the Sites.
- The Sites may not be used for purposes with a higher level of use than the commercial and industrial purposes described above.
- An environmental easement granted to the Department must be maintained on the property deeds and any subsequent instrument of land conveyance, lease, license, or other instruments granting rights of use of the Sites. At the request of the NYSDEC, the separate environmental

easement mapping for the two sites was combined into a single Environmental Easement map dated August 1, 2012.

• Annually (or as otherwise directed by the Department), Germanow-Simon must certify to the Department the continued presence and effectiveness of the controls described above.

The MPVE system OM&M Plan for the Sites specified a program of maintenance activities and provided for monthly system performance monitoring, periodic groundwater monitoring, and annual indoor/outdoor air testing. Indoor air testing was previously conducted in the Building B Annex and Building B along with outdoor testing to obtain background conditions; however, due to NYSDEC's approval in 2014 to forego this testing, it is no longer conducted. The OM&M Plan specifies periodic reporting on OM&M activities, monitoring results and remedial progress. However, with NYSDEC approval, the MPVE system was shut down on February 22, 2011 and it has not been operated since; the system was subsequently decommissioned. Therefore, OM&M activities related to the MPVE system have not been required since it was shut down. The SSDS was commissioned on February 22, 2011 and has operated continuously since. The facility manager has confirmed its continued proper operation.

Due to building expansion/renovation and site improvement activities at the Sites during the September 15, 2011 to September 15, 2012 reporting period, the SMPs for both Sites were revised. Revised versions of these documents were submitted to the NYSDEC along with the PRR for that reporting period.

1.3 EFFECTIVENESS OF THE REMEDIAL PROGRAM

The IC/ECs required under the SM program remained in place and were effective.

1.4 COMPLIANCE

Compliance with the SMPs for both Sites was maintained throughout the reporting period. On November 26, 2019, Stantec inspected the Site and made the following observations:

- The SSDS system was operating as intended.
- The Site cover materials (building floor slabs, asphalt pavement, concrete sidewalks and landscaped perimeter areas) are in excellent conditions and are well-maintained. No areas of disturbed or degraded site cover were observed. Some minor areas of bare soil were observed in the grass-covered, landscaped areas along the east and south Site perimeters; however, these are flat areas and no evidence of significant erosion were observed.

1.5 RECOMMENDATIONS

As noted in Section 1.2, the SMPs for both Sites were revised in 2012. It is recommended that the requirements specified within the updated SMPs continue to be fulfilled, with two exceptions:

- Given the positive results of the October 2019 groundwater sampling event, and the fact that no further remedial actions are planned at this time, we recommend that the groundwater monitoring be modified to a bi-annual event.
- Since VOCs in MW-23R have been below groundwater standards during each sampling event since 2015, we recommend discontinuing the sampling of this well.

This is discussed further in Section 4.0 below.

2.0 REMEDY PERFORMANCE, EFFECTIVENESS, AND PROTECTIVENESS

An annual monitoring event (as recommended in the 2018 PRR, and accepted by NYSDEC; see Appendix B) was performed on October 8, 2019. NYSDEC was notified in advance (see email, Appendix B). The following six wells were sampled: MW-16, 16R, -23, -23R, -105, and -207R. As with previous sampling events, low-flow sampling methodology was employed.

The analytical results are summarized on Table 1, along with all historical results for these six wells. Table 2 provides a summary of the field parameters measured in groundwater during the sampling events. Figures 3A through 3F present time-series plots of individual VOC concentrations for these six wells.

The following observations are made relative to groundwater levels and quality, based on the results of the 2019 sampling event:

- Groundwater levels showed only a slight drop (typically 0.1 to 0.3 ft) between October 2018 and October 2019.
- Field parameters measured during both sampling events indicate anaerobic groundwater conditions, with dissolved oxygen (DO) levels below 0.26 mg/L. All measured oxidation/reduction potential (ORP) values remain below zero, which continues to indicate reducing conditions.
- Wells MW-23 (overburden) and MW-23R (bedrock) are located in close proximity to the excavation (and associated sodium lactate application) performed in 2017. MW-23 had exhibited an increase in some of the VOCs of concern in the 2016 sampling event, most notably a significant "spike" in PCE. PCE concentrations in both 2018 sampling events showed a decrease; the October 2018 concentration had returned to its lowest detected level since 2013. Reduction in the concentrations of PCE, TCE and VC were observed in the 2019 results. PCE and TCE are at their lowest concentrations in this well since October 2013.

VOCs in well MW-23R have been below groundwater standards and essentially remained at non-detect levels since 2015.

These results continue to indicate the source excavation and lactate placement performed in late 2017 have had a positive effect on groundwater quality in this area.

Well MW-16R, located on the southern edge of the remedial area, exhibited an increase in concentrations of cis-1,2-DCE and VC between 2013 and 2018; however, both compounds dropped in concentration in the October 2019 event. Cis-1,2-DCE showed an increase and VC showed a drop in the 2019 sampling. PCE and TCE also showed a drop in the October 2018 event but had a slight increase in the 2019 sampling. These concentrations are all well below the historic highs for these compounds.

Well MW-16, located adjacent to MW-16R exhibited decreases in concentrations of cis-1,2-DCE and VC in the 2019 results. All other compounds were at non-detect levels.

- MW-105 has shown detection of several VOCs but levels have remained relatively consistent for the last four sampling events. Cis-1,2-DCE and trans-1,2-DCE showed slight increases in the October 2019 event, while TCE and VC showed notable decreases.
- Well MW-207R (the easternmost well location in these sampling events) showed noteworthy drops in the concentrations of cis-1,2-DCE and VC in 2019, continuing the decrease observed in the October 2018 event. Trans-1,2-DCE was reported at a concentration lower than the January 2018 results and comparable to the 2016 concentration. Other VOCs of interest were below detection levels.

3.0 COMPLIANCE WITH IC/EC REQUIREMENTS AND THE OM&M PLAN

During the reporting period, compliance with the required ICs and ECs was maintained.

- Use of the Sites has been limited to the industrial manufacturing and support activities conducted by the Germanow-Simon Corporation and its affiliated enterprises. There has been no change in Site use or operations.
- In accordance with NYSDEC approval, the MPVE system was operated until February 22, 2011, at which time it was shut down indefinitely. The MVPE system was decommissioned, cleaned out, and disconnected from the sewer during the 2014 reporting period.
- The sub-slab depressurization system (SSDS) constructed in conjunction with the MPVE system has continuously operated since February 2011 in the Building B Annex Area to mitigate the potential for soil vapor intrusion (SVI).
- No groundwater use has occurred at the Sites.
- The environmental easement granted to the Department has been maintained on the property deeds and any subsequent instrument of land conveyance, lease, license, or other instruments granting rights of use of the Sites.

Signed and stamped forms certifying the continued presence and effectiveness of the ICs and ECs described above are presented in Appendix A.

The MPVE system OM&M Plan for the Sites specifies a program of maintenance activities, provides for monthly system performance monitoring and periodic groundwater monitoring, and annual indoor/outdoor air testing. The OM&M Plan specifies periodic reporting on OM&M activities, monitoring results and remedial progress. However, because the MPVE system was shut down permanently in 2011, activities or certification related to this specific EC have not been required since then.

Sampling results from February 22, 2013 indicated that the SSDS system, which has been operating continuously since the MPVE system was shut down, continued to successfully mitigate potential SVI at the Building B Annex. Based on these results and discussion with and subsequent approval by NYSDEC, annual indoor and outdoor air sampling was discontinued in 2015. The system has been checked annually since 2015 to confirm proper operation.

4.0 OVERALL CONCLUSIONS AND RECOMMENDATIONS

The monitoring results indicate that some of the VOCs present in each sampled well decreased between October 2018 and October 2019. Any increases in VOC concentrations observed were relatively small in magnitude and these concentrations remain well below any historic highs. No significant "spikes" were

Periodic Review Report 2019 Brownfield Cleanup Program Ward Street Site (Site No. C828117) and 8-28 Ward Street (Site No. C828136)

observed, and the high concentration of PCE in well MW-23R observed in 2016 has returned to normal low levels. Accordingly, we recommend that the groundwater monitoring program be reduced to a biannual frequency. In addition, given the absence of VOCs at concentrations above groundwater standards in well MW-23R dating back to 2015, we recommend discontinuing the sampling of this well. If approved by NYSDEC, the next sampling would be performed in the third quarter of 2021. Submittal of the next PRR would mirror this biannual schedule (December 2021).

 \bigcirc

Periodic Review Report 2019 Brownfield Cleanup Program Ward Street Site (Site No. C828117) and 8-28 Ward Street (Site No. C828136)

TABLES

Table 1 Summary of Volatile Organic Compounds in Groundwater – September 2011 to October 2019 PERIODIC REVIEW REPORT, WARD STREET SITES GERMANOW-SIMON CORPORATION ROCHESTER, NY

Sample Location	1 1		I						MIA	16							
Sample Date			27-Sep-11	3-Feb-12	2-Mar-12	5-Jun-12	5-Sen-12	23-Jan-13	11-Apr-13	3-Jul-13	9-Oct-13	9-Oct-13	17-Jun-15	9-Mar-16	10-Jan-18	24-Oct-18	8-Oct-19
Sample ID			WSR-MW-16-GW-18	WSR-MW-16-GW-19	WSR-MW-16-GW-20	WSR-MW-16-GW-21	WSR-MW-16-GW-22	WSR-MW-16-GW	WSR-MW-16-GW	WSR-MW-16-GW	WSR-MW-16-GW	WSR-MW-16-GW	828-MW-16-GW	WSR-MW-16-GW	WSR-MW-16-GW	MW-16	WSR-MW-16-GW
Sampling Company			STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC
Laboratory			PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH
Laboratory Work Order			P11-4090	12:0472	12:0936	12:2364	12:3668	13:0353	131259	132490	133891	133926	152493	160970	180096	184937	194958
Laboratory Sample ID	Unite	TOCS	14083	12:0472-06	12:0936-02	12:2364-06	12:3668-05	130353-05	131259-05	132490-06	133891-05	133926-05	152493-03	160970-03	180096-02	184937-04	194958-02
Sample Type	Units	1065															
Volatile Organic Compounds																	
Acetone	µg/L	50 ^B	500 U	500 U	500 U	500 U	500 U	10 U	10.0 U	10.0 U	-	13.6 J	10.0 U	10.0 U	25.0 U	50.0 U	25.0 U
Benzene	µg/L	1 ^A	35.0 U	35.0 U	35.0 U	35.0 U	35.0 U	0.70 U	0.700 U	0.700 U	-	1 U	1.00 U	1.00 U	2.50 U	5.00 U	2.50 U
Bromobenzene	µg/L	5 ^A	-	-	-	-	-	5.0 U	5.00 U	-	-	-	-	-	-	-	-
Bromodichloromethane	µg/L	50 ^B	100 U	100 U	100 U	100 U	100 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	5.00 U	10.0 U	5.00 U
Bromotorm (Tribromomethane)	µg/L	50°	250 U	250 U	250 U	250 U	250 U	5.0 U	5.00 U	5.00 U	-	5.00 U	5.00 U	5.00 U	12.5 U	25.0 U	12.5 U
Butylbenzene, n-	µg/L	5 5 A	250 11	100 0	100 0	100 0	100 0	2.0 0	2.00 0	2.00 0	-	2.00 0	2.00 0	2.00 0	5.00 0	10.0 0	5.00 0
Butylbenzene, sec- (2-Phenylbutane)	ug/L	5 ^A	250 U	100 U	100 U	100 U	-	-	-	-	-	-	-	-	-	-	-
Butylbenzene, tert-	µg/L	5 ^A	250 U	100 U	100 U	100 U	-	-	-	-	-	-	-	-	-	-	-
Carbon Disulfide	µg/L	60 ^B	250 U	100 U	100 U	100 U	100 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	5.00 U	10.0 U	5.00 U
Carbon Tetrachloride (Tetrachloromethane)	µg/L	5 ^A	100 U	100 U	100 U	100 U	100 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	5.00 U	10.0 U	5.00 U
Chlorobenzene (Monochlorobenzene)	µg/L	5^	100 U	100 U	100 U	100 U	100 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	5.00 U	10.0 U	5.00 U
Chlorobromomethane	µg/L	5^	250 0	250 U	250 U	250 U	100.11	5.00	5.00 U	5.00 U	-	5.00 U	5.00 U	5.00 U	12.5 U	25.00	12.5 U
Chloroethyl Vinyl Ether 2-	µg/L µg/l	o⊷ n/v	100 0	100 0	100 0	100 0	500 U	2.0 0	2.00 0	2.00 0	-	2.00 0	2.00 0	2.00 0	5.00 0	10.0 0	5.00 0
Chloroform (Trichloromethane)	μg/L	7 ^A	100 U	100 U	100 U	100 U	100 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	5.00 U	10.0 U	5.00 U
Chloromethane	µg/L	5 ^A	100 U	100 U	100 U	100 U	100 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	5.00 U	10.0 U	5.00 U
Cyclohexane	µg/L	n/v	500 U	500 U	500 U	500 U	-	10 U	10.0 U	10.0 U	-	10.0 U	10.0 U	10.0 U	25.0 U	50.0 U	25.0 U
Dibromo-3-Chloropropane, 1,2- (DBCP)	µg/L	0.04 ^A	500 U	500 U	500 U	500 U		10 U	10.0 U	10.0 U	-	10.0 U	10.0 U	10.0 U	25.0 U	50.0 U	25.0 U
Dibromochloromethane	µg/L	50°	100 U	100 U	100 U	100 U	100 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	5.00 U	10.0 U	5.00 U
Dichlorobenzene 13-	µg/L	3 [^]	100 0	100 0	100 0	100 0	100 0	2.00	2.00 0	2.00 0	-	2.00 0	2.00 U	2.00 0	5.00 0	10.00	5.00 U
Dichlorobenzene, 1,4-	µg/L	3^	100 U	100 U	100 U	100 U	100 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	5.00 U	10.0 U	5.00 U
Dichlorodifluoromethane (Freon 12)	µg/L	5 ^A	250 U	100 U	100 U	100 U	-	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	5.00 U	10.0 U	5.00 U
Dichloroethane, 1,1-	µg/L	5 ^A	100 U	100 U	100 U	100 U	100 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	5.00 U	10.0 U	5.00 U
Dichloroethane, 1,2-	µg/L	0.6 ^A	100 U	100 U	100 U	100 U	100 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	5.00 U	10.0 U	5.00 U
Dichloroethene, 1,1-	µg/L	5 ^A	100 U	100 U	100 U	100 U	100 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	5.00 U	10.0 U	5.00 U
Dichloroethene, cis-1,2-	µg/L	5 ^A	1,790 ⁴	8,600 ^A	2,770	2,720	772*	8.3 ^A	23.6	9.39 ^A	-	2.89	165	118 ⁴	256	391^	295
Dichloroethene, trans-1,2-	µg/L	5 ^A	100 U	100 U	100 U	100 U	100 U	2.0 U	24.3 ^A	4.89	-	13.3 ^A	8.33 ^A	2.43	4.40 J	10.0 U	3.69 J
Dichloropropane, 1,2-	µg/L	10	100 U	100 U	100 U	100 U	100 U	-	-	2.00 U	-	2.00 U	2.00 U	2.00 U	5.00 U	10.0 U	5.00 U
Dichloropropane, 1,3-	µg/L µg/l	5 ^A	-		-	-		2.00	2.00 U	-	-	-	-	-	-	-	-
Dichloropropene, cis-1,3-	µg/L	0.4.	100 U	100 U	100 U	100 U	100 U	-	-	2.00 U	-	2.00 U	2.00 U	2.00 U	5.00 U	10.0 U	5.00 U
Dichloropropene, trans-1,3-	µg/L	0.4 ^A	100 U	100 U	100 U	100 U	100 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	5.00 U	10.0 U	5.00 U
Dioxane, 1,4-	µg/L	n/v	-	-	-	-	-	20 U	20.0 U	20.0 U	-	R	20.0 U	20.0 U	50.0 U	100 U	50.0 U
Ethylbenzene	µg/L	5 ^A	100 U	100 U	100 U	100 U	100 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	5.00 U	10.0 U	5.00 U
Ethylene Dibromide (Dibromoethane, 1,2-)	µg/L	0.0006 ⁿ	100 0	100 0	100 U	100 U	250.11	2.00	2.00 0	2.00 0	-	2.00 0	2.00 U	2.00 0	5.00 U	10.0 U	5.00 U
Isopropylbenzene	µg/L µg/l	50 5 ^A	250 0	250 0	250 0	250 0	250 0	5.00	2 00 U	2 00 U	-	2 00 11	2 00 U	2 00 11	5 00 U	25.00	5.00 U
Isopropyltoluene, p- (Cymene)	ua/L	5 ^A	100 U	100 U	100 U	100 U	-	-	-	-	-	-	-	-	-	-	-
Methyl Acetate	µg/L	n/v	100 U	100 U	100 U	100 U	-	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	5.00 U	10.0 U	5.00 U
Methyl Ethyl Ketone (MEK) (2-Butanone)	µg/L	50 ^B	500 U	500 U	500 U	500 U	500 U	33	10.0 U	10.0 U	-	9.98 J	10.0 U	10.0 U	25.0 U	50.0 U	25.0 U
Methyl Isobutyl Ketone (MIBK)	µg/L	n/v	250 U	250 U	250 U	250 U	250 U	5.0 U	5.00 U	5.00 U	-	5.00 U	5.00 U	5.00 U	12.5 U	25.0 U	12.5 U
Methyl tert-butyl ether (MTBE)	µg/L	10 ⁸	100 U	100 U	100 U	100 U	-	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	5.00 U	10.0 U	5.00 U
Methylene Chloride (Dichloromethane)	µg/L	5. A	250 11	250 []	250 []	250 []	250 11	2.00	2.00 0	2.00 0	-	2.00 0	2.00 0	2.00 0	12 5 11	25.0.11	5.00 U
Naphthalene	µg/L	10 ^A	250 U	250 U	250 U	250 U		-	-	-	-	-	-	-	-	-	-
Propylbenzene, n-	µg/L	5 ^A	250 U	100 U	100 U	100 U	-	-	-	-	-	-	-	-	-	-	-
Styrene	µg/L	5 ^A	250 U	250 U	250 U	250 U	250 U	5.0 U	5.00 U	5.00 U	-	5.00 U	5.00 U	5.00 U	12.5 U	25.0 U	12.5 U
Tetrachloroethane, 1,1,2,2-	µg/L	5 ^A	100 U	100 U	100 U	100 U	100 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	5.00 U	10.0 U	5.00 U
I etrachloroethene (PCE)	µg/L	5^	2,390	100 U	100 U	100 U	100 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	5.00 U	10.0 U	5.00 U
Trichlorobenzene 123-	µg/L	5+'` 5 A	100 U	100 U	100 U	100 U	100 U	2.0 0	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	5.00 U	10.0 U	5.00 U
Trichlorobenzene, 1,2,3-	µg/L	5 ^A	250 0	250 0	250 0	250 0		5.0 U	5.00 U	5.00 U	-	5.00 U	5.00 U	5.00 U	12.5 U	25.00	12.5 0
Trichloroethane, 1,1,1-	µg/L	5 ^A	100 U	100 U	100 U	100 U	100 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	5.00 U	10.0 U	5.00 U
Trichloroethane, 1,1,2-	µg/L	1 ^A	100 U	100 U	100 U	100 U	100 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	5.00 U	10.0 U	5.00 U
Trichloroethene (TCE)	µg/L	5 ^A	1,140 ^A	100 U	100 U	100 U	100 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	5.00 U	10.0 U	5.00 U
Trichlorofluoromethane (Freon 11)	µg/L	5 ^A	100 U	100 U	100 U	100 U	100 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	5.00 U	10.0 U	5.00 U
I richlorotrifluoroethane (Freon 113)	µg/L	5 ^A	100 U	100 U	100 U	100 U	-	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	5.00 U	10.0 U	5.00 U
Trimethylbenzene, 1,2,4-	µg/L	5. A	250 U	100 U	100 U 100 U	100 U 100 U			-	-	-	-	-	-	-	-	-
Vinvl Acetate	µg/L µg/L	n/v	2000				250 U		-	-	-	-	-	-	-	-	-
Vinyl Chloride	µg/L	2 ^A	100 U	100 U	183 ^A	945 ^A	879 ^A	13 ^A	81.8 ^A	6.65 ^A	-	3.52 ^A	140 ^A	135 ^A	365 ^A	914 ^A	430 ^A
Xylene, m & p-	μg/L	5 ^A	100 U	100 U	100 U	100 U	100 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	5.00 U	10.0 U	5.00 U
Xylene, o-	µg/L	5 ^A	100 U	100 U	100 U	100 U	100 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	5.00 U	10.0 U	5.00 U
Total VOC	µg/L	n/v	5,320	8,600	2,953	3,665	1,651	54.3	129.7	20.93	-	43.29	313.33	255.43	625.4	1,305	728.69
Miscellaneous Parameters			r				1										
Arsenic	mg/L	0.025 ^A	0.010 U	0.048 ^A	0.013	0.024	-	-	0.0432 ^A	-	-	-	-	-	-	-	-
Iron	mg/L	0.3. ^A	3.42 ^A	20.8 ^A	2.35 ^A	19.3 ^A	-	-	16.9 L ^A	-	-	-	-	-	-	-	-
Manganese	mg/L	0.3* ^A	0.294	0.117	0.155	0.109	-	-	0.218 L	-	-	-	-	-	-	-	-
Sodium	mg/L	20 ^A	1,270 ^A	1,250 ^A	407 ^A	1,280 ^A	2,290 ^A	2,000 ^A	1,160 ^A	-	-	-	-	-	-	-	-
Total Organic Carbon	mg/L	n/v	5.2	122	8.5	8.9	20.5	750	144	92.0	41.0	-	15	10.8	12.6	2.5	5.5
			See notes on last page.														

Norm Norm Land Land <th< th=""><th>Sample Location</th><th>1</th><th>1 1</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>MW16F</th><th>2</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>	Sample Location	1	1 1								MW16F	2								
Sharphing Northolds Sharphing Sharphing <t< th=""><th>Sample Date</th><th></th><th></th><th>28-Sep-11</th><th>5-Jan-12</th><th>3-Feb-12</th><th>1-Mar-12</th><th>1-Mar-12</th><th>5-Jun-12</th><th>5-Sep-12</th><th>23-Jan-13</th><th>11-Apr-13</th><th>3-Jul-13</th><th>9-Oct-13</th><th>9-Oct-13</th><th>18-Jun-15</th><th>9-Mar-16</th><th>10-Jan-18</th><th>24-Oct-18</th><th>8-Oct-19</th></t<>	Sample Date			28-Sep-11	5-Jan-12	3-Feb-12	1-Mar-12	1-Mar-12	5-Jun-12	5-Sep-12	23-Jan-13	11-Apr-13	3-Jul-13	9-Oct-13	9-Oct-13	18-Jun-15	9-Mar-16	10-Jan-18	24-Oct-18	8-Oct-19
Ditter Disk Disk <thdisk< th=""> Disk Disk <t< th=""><th>Sample ID</th><th></th><th></th><th>WSR-MW-16R-GW-18</th><th>WSR-MW-16R-GW-19</th><th>WSR-MW-16R-GW-20</th><th>WSR-MW-16R-GW-21</th><th>WSR-MW-DUP-GW-21</th><th>WSR-MW-16R-GW-22</th><th>WSR-MW-16R-GW-23</th><th>WSR-MW-16R-GW</th><th>WSR-MW-16R-GW</th><th>WSR-MW-16R-GW</th><th>WSR-MW-16R-GW</th><th>WSR-MW-16R-GW</th><th>828-MW-16R-GW</th><th>WSR-MW-16R-GW</th><th>WSR-MW-16R-GW</th><th>MW-16R</th><th>WSR-MW-16R-GW</th></t<></thdisk<>	Sample ID			WSR-MW-16R-GW-18	WSR-MW-16R-GW-19	WSR-MW-16R-GW-20	WSR-MW-16R-GW-21	WSR-MW-DUP-GW-21	WSR-MW-16R-GW-22	WSR-MW-16R-GW-23	WSR-MW-16R-GW	WSR-MW-16R-GW	WSR-MW-16R-GW	WSR-MW-16R-GW	WSR-MW-16R-GW	828-MW-16R-GW	WSR-MW-16R-GW	WSR-MW-16R-GW	MW-16R	WSR-MW-16R-GW
Differ Differ Table <	Sampling Company			PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH
math math <th< th=""><th>Laboratory Work Order</th><th></th><th></th><th>P11-4106</th><th>P12-0069</th><th>12:0472</th><th>12:0906</th><th>12:0906</th><th>12:2364</th><th>12:3668</th><th>13:0353</th><th>131259</th><th>132490</th><th>133891</th><th>133926</th><th>152493</th><th>160970</th><th>180096</th><th>184937</th><th>194958</th></th<>	Laboratory Work Order			P11-4106	P12-0069	12:0472	12:0906	12:0906	12:2364	12:3668	13:0353	131259	132490	133891	133926	152493	160970	180096	184937	194958
Image: second	Laboratory Sample ID Sample Type	Units	TOGS	14149	12:0069-02	12:0472-07	12:0906-05	12:0906-06 Field Duplicate	12:2364-05	12:3668-04	130353-04	131259-04	132490-05	133891-04	133926-04	152493-05	160970-04	180096-03	184937-03	194958-03
		onne						- Iola Bapiloato												
Addit	Volatile Organic Compounds																			
	Acetone	µg/L	50 ^B	50.0 U	25.0 U	500 U	100 U	100 U	500 U	500 U	250 U	100 U	100 U	-	100 U	100 U	250 U	250 U	250 U	250 U
Brank Mark Mark <	Bromobenzene	µg/L	5 ^A	5.50 0			7.00 0	7.000			130 U	50.0 U	7.00 0		-	-	25.0 0	25.0 0	25.00	25.0 0
Substration Single Single Single Single Sin	Bromodichloromethane	µg/L	50 ^B	10.0 U	5.00 U	100 U	20.0 U	20.0 U	100 U	100 U	50 U	20.0 U	20.0 U	-	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U	50.0 U
Schule Schule<	Bromoform (Tribromomethane)	µg/L	50 ^B	25.0 U	12.5 U	250 U	50.0 U	50.0 U	250 U	250 U	130 U	50.0 U	50.0 U	-	50.0 U	50.0 U	125 U	125 U	125 U	125 U
Subscripting Subscriping Subscripting Subscripting </td <td>Butylbenzene, n-</td> <td>µg/L</td> <td>5^A</td> <td>25.0 U</td> <td>12.5 U</td> <td>100 U</td> <td>20.0 U</td> <td>20.0 U</td> <td>100 U</td> <td></td> <td></td> <td>20.0 0</td> <td>20.0 0</td> <td>-</td> <td>20.0 0</td> <td>20.0 0</td> <td>50.0 0</td> <td>50.0 0</td> <td>50.00</td> <td>50.0 0</td>	Butylbenzene, n-	µg/L	5 ^A	25.0 U	12.5 U	100 U	20.0 U	20.0 U	100 U			20.0 0	20.0 0	-	20.0 0	20.0 0	50.0 0	50.0 0	50.00	50.0 0
Number Number<	Butylbenzene, sec- (2-Phenylbutane)	µg/L	5 ^A	25.0 U	12.5 U	100 U	20.0 U	20.0 U	100 U	-	-	-	-	-	-	-	-	-	-	-
Summary Markanes Sum P <	Butylbenzene, tert-	µg/L	5 ^A	25.0 U	12.5 U	100 U	20.0 U	20.0 U	100 U		-	-	-	-	-	-	-	-	-	-
Characterization	Carbon Tetrachloride (Tetrachloromethane)	µg/L µg/L	5 ^A	25.0 0 10.0 U	5.00 U	100 U	20.0 U	20.0 U	100 U	100 U	50 U	20.0 U	20.0 U	-	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U	50.0 U
Development and and a set of a se	Chlorobenzene (Monochlorobenzene)	µg/L	5 ^A	10.0 U	5.00 U	100 U	20.0 U	20.0 U	100 U	100 U	50 U	20.0 U	20.0 U	-	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U	50.0 U
Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>	Chlorobromomethane	µg/L	5 ^A	25.0 U	12.5 U	250 U	50.0 U	50.0 U	250 U		130 U	50.0 U	50.0 U	-	50.0 U	50.0 U	125 U	125 U	125 U	125 U
Dimensional manual product of the second s	Chloroethane (Ethyl Chloride) Chloroethyl Vinyl Ether 2-	µg/L	5'` n/v	10.0 0	5.00 0	100 0	20.0 0	20.0 0	100 0	500 U	250 U	20.0 U	20.0 0	-	20.0 0	20.0 0	50.0 0	50.0 0	50.0 0	50.0 U
Densem Disk Disk <thdisk< th=""> Disk Disk <t< td=""><td>Chloroform (Trichloromethane)</td><td>µg/L</td><td>7^A</td><td>10.0 U</td><td>5.00 U</td><td>100 U</td><td>20.0 U</td><td>20.0 U</td><td>100 U</td><td>100 U</td><td>50 U</td><td>20.0 U</td><td>20.0 U</td><td>-</td><td>20.0 U</td><td>20.0 U</td><td>50.0 U</td><td>50.0 U</td><td>50.0 U</td><td>50.0 U</td></t<></thdisk<>	Chloroform (Trichloromethane)	µg/L	7 ^A	10.0 U	5.00 U	100 U	20.0 U	20.0 U	100 U	100 U	50 U	20.0 U	20.0 U	-	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U	50.0 U
Displand	Chloromethane	µg/L	5 ^A	10.0 U	5.00 U	100 U	20.0 U	20.0 U	100 U	100 U	50 U	20.0 U	20.0 U	-	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U	50.0 U
Term Term <th< td=""><td>Cyclohexane Dibromo-3-Chloropropage 1.2- (DBCP)</td><td>µg/L</td><td>n/v</td><td>50.0 U</td><td>25.0 U</td><td>500 U</td><td>100 U</td><td>100 U</td><td>500 U</td><td>-</td><td>250 U</td><td>100 U</td><td>100 U</td><td>-</td><td>100 U</td><td>100 U</td><td>250 U</td><td>250 U</td><td>250 U</td><td>250 U</td></th<>	Cyclohexane Dibromo-3-Chloropropage 1.2- (DBCP)	µg/L	n/v	50.0 U	25.0 U	500 U	100 U	100 U	500 U	-	250 U	100 U	100 U	-	100 U	100 U	250 U	250 U	250 U	250 U
Line Line <thlin< th=""> Line Line L</thlin<>	Dibromochloromethane	µg/L	50 ^B	10.0 U	5.00 U	100 U	20.0 U	20.0 U	100 U	100 U	50 U	20.0 U	20.0 U	-	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U	50.0 U
Decision	Dichlorobenzene, 1,2-	µg/L	3 ^A	10.0 U	5.00 U	100 U	20.0 U	20.0 U	100 U	100 U	50 U	20.0 U	20.0 U	-	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U	50.0 U
Likeware	Dichlorobenzene, 1,3-	µg/L	3 ^A	10.0 U	5.00 U	100 U	20.0 U	20.0 U	100 U	100 U	50 U	20.0 U	20.0 U	-	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U	50.0 U
Disponsive is in the set of the	Dichlorodifluoromethane (Freon 12)	µg/L	5 ^A	25.0 U	12.5 U	100 U	20.0 U	20.0 U	100 U	-	50 U	20.0 U	20.0 U		20.0 U	20.0 U	50.0 U	50.0 U	50.0 U	50.0 U
Intervent Intervent <t< td=""><td>Dichloroethane, 1,1-</td><td>µg/L</td><td>5^A</td><td>10.0 U</td><td>5.00 U</td><td>100 U</td><td>20.0 U</td><td>20.0 U</td><td>100 U</td><td>100 U</td><td>50 U</td><td>20.0 U</td><td>20.0 U</td><td>-</td><td>20.0 U</td><td>20.0 U</td><td>50.0 U</td><td>50.0 U</td><td>50.0 U</td><td>50.0 U</td></t<>	Dichloroethane, 1,1-	µg/L	5 ^A	10.0 U	5.00 U	100 U	20.0 U	20.0 U	100 U	100 U	50 U	20.0 U	20.0 U	-	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U	50.0 U
Decomposition 1:1 Decomposition 1:1 <thdecomposition 1:1<="" th=""> Decomposition 1:1</thdecomposition>	Dichloroethane, 1,2-	µg/L	0.6 ^A	10.0 U	5.00 U	100 U	20.0 U	20.0 U	100 U	100 U	50 U	20.0 U	20.0 U	-	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U	50.0 U
Distant Distant Solution <	Dichloroethene, cis-1.2-	ua/L	5 ^A	1 150 ^A	110 ^A	3 810 ^A	20.0 0 2 260 ^A	20.00	2 630 ^A	1 410 ^A	1 000 ^A	20.0 0 841 ^A	20.0 0	-	20.0 0	1 520 ^A	1 610 ^A	3 330 ^A	1.080 ^A	1 420 ^A
Debicorgents 1-5 set 1 1 1 2 1 2 1 2 1 2 1	Dichloroethene, trans-1,2-	µg/L	5 ^A	10.6 ^A	5.00 U	100 U	20.0 U	20.0 U	100 U	100 U	50 U	20.0 U	20.0 U	-	20.0 U	36.0 ^A	50.0 U	50.0 U	50.0 U	50.0 U
Balence 13 Main	Dichloropropane, 1,2-	µg/L	1 ^A	10.0 U	5.00 U	100 U	20.0 U	20.0 U	100 U	100 U	-	-	20.0 U	-	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U	50.0 U
Decked processing Deck Part of the set of	Dichloropropane, 1,3-	µg/L	5 ^A	-	-	-	-	-	-	-	50 U	20.0 U	-	-	-	-	-	-	-	-
Decisionary and A Decisionary A Deci	Dichloropropene, cis-1,3-	µg/L	0.4 _n ^A	10.0 U	5.00 U	100 U	20.0 U	20.0 U	100 U	100 U		- 20.0 0	20.0 U		20.0 U	20.0 U	50.0 U	50.0 U	50.0 U	50.0 U
Deam Max PP A.S. PP	Dichloropropene, trans-1,3-	µg/L	0.4 ^A	10.0 U	5.00 U	100 U	20.0 U	20.0 U	100 U	100 U	50 U	20.0 U	20.0 U	-	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U	50.0 U
Ensign Decompany (1) Part	Dioxane, 1,4-	µg/L	n/v	10 0 11	5.00.11	100 11	20.0.11	20 0 11	100 11	100 11	500 U	200 U	200 U	-	R 20.0.11	200 U	500 U	500 U	500 U	500 U
interverse ist 25 Uth Base 250 U 250 U </td <td>Ethylene Dibromide (Dibromoethane, 1,2-)</td> <td>µg/L</td> <td>0.0006^A</td> <td>10.0 U</td> <td>5.00 U</td> <td>100 U</td> <td>20.0 U</td> <td>20.0 U</td> <td>100 U</td> <td></td> <td>50 U</td> <td>20.0 U</td> <td>20.0 U</td> <td></td> <td>20.0 U</td> <td>20.0 U</td> <td>50.0 U</td> <td>50.0 U</td> <td>50.0 U</td> <td>50.0 U</td>	Ethylene Dibromide (Dibromoethane, 1,2-)	µg/L	0.0006 ^A	10.0 U	5.00 U	100 U	20.0 U	20.0 U	100 U		50 U	20.0 U	20.0 U		20.0 U	20.0 U	50.0 U	50.0 U	50.0 U	50.0 U
Incomponent	Hexanone, 2- (Methyl Butyl Ketone)	µg/L	50 ^B	25.0 U	12.5 U	250 U	50.0 U	50.0 U	250 U	250 U	130 U	50.0 U	50.0 U	-	50.0 U	50.0 U	125 U	125 U	125 U	125 U
Interf Section interf	Isopropylbenzene	µg/L	5^ 5 A	25.0 U	12.5 U	100 U	20.0 U	20.0 U	100 U	-	-	20.0 U	20.0 U	-	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U	50.0 U
International line interna	Methyl Acetate	µg/L	n/v	10.0 U	5.00 U	100 U	20.0 U	20.0 U	100 U	_	50 U	20.0 U	20.0 U		20.0 U	20.0 U	50.0 U	50.0 U	50.0 U	50.0 U
Mehryleskol Keller, MER upt. N* Stolu 17.5 U <	Methyl Ethyl Ketone (MEK) (2-Butanone)	µg/L	50 ^B	50.0 U	25.0 U	500 U	100 U	100 U	500 U	500 U	250 U	100 U	100 U	-	100 UJ	100 U	250 U	250 U	250 U	250 U
methylyseksterie methylysterie	Methyl Isobutyl Ketone (MIBK)	µg/L	n/v	25.0 U	12.5 U	250 U	50.0 U	50.0 U	250 U	250 U	130 U	50.0 U	50.0 U	-	50.0 U	50.0 U	125 U	125 U	125 U	125 U
Mergine Choles Clockie	Methylcyclohexane	µg/L µg/L	10- n/v	10.0 U	5.00 U	100 U	20.0 U	20.0 U	100 U	-	50 U	20.0 U	20.0 U	-	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U	50.0 U
Nephrateme ypt 10 ¹ 125 U 125 U 200 U	Methylene Chloride (Dichloromethane)	µg/L	5 ^A	25.0 U	12.5 U	250 U	50.0 U	50.0 U	250 U	250 U	130 U	50.0 U	50.0 U	-	50.0 U	50.0 U	125 U	125 U	125 U	125 U
openal ipit 5-4 25.0 / 12.5 / 12	Naphthalene Bropythanzana, p	µg/L	10 ^A	25.0 U	12.5 U	250 U	50.0 U	50.0 U	250 U	-	-	-	-	-	-	-	-	-	-	-
Térneschoradhane, 1,1,2.2 jpi, 5.^h 10,0 U 50,0 U 20,0 U 20,0 U 20,0 U 20,0 U 20,0 U 20,0 U 50,0 U	Styrene	μg/L	5 ^A	25.0 U	12.5 U	250 U	50.0 U	50.0 U	250 U	250 U	130 U	50.0 U	50.0 U	.	50.0 U	50.0 U	125 U	125 U	125 U	125 U
Terrachonestheme (PCE) up1 5- ⁵ 832 ² 292 ⁴ 100 U 66.4 ⁴ 100 U 100 U 50 U 20.0 U 20.0 U - 20.0 U 68.4 ⁴ 50.0 U 50.	Tetrachloroethane, 1,1,2,2-	µg/L	5 ^A	10.0 U	5.00 U	100 U	20.0 U	20.0 U	100 U	100 U	50 U	20.0 U	20.0 U	-	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U	50.0 U
roume up1 5 T0.0 U 5.0.U T00 U 20.0 U	Tetrachloroethene (PCE)	µg/L	5 ^A	832 ^A	299 ^A	100 U	65.4 ^A	64.4 ^A	100 U	100 U	50 U	20.0 U	20.0 U	-	20.0 U	694 ^A	50.0 U	99.7 ^A	50.0 U	45.1 J ^A
The discrete state 5 all 5 all <td>roluene Trichlorobenzene, 1,2,3-</td> <td>µg/L µg/l</td> <td>5^ 5^A</td> <td>10.0 U 25 0 U</td> <td>5.00 U</td> <td>100 U 250 II</td> <td>20.0 U 50 0 U</td> <td>20.0 U 50 0 U</td> <td>100 U 250 U</td> <td>100 U</td> <td>50 U 130 U</td> <td>20.0 U</td> <td>20.0 U</td> <td>-</td> <td>20.0 U</td> <td>20.0 U</td> <td>50.0 U</td> <td>50.0 U</td> <td>50.0 U 125 U</td> <td>50.0 U 125 U</td>	roluene Trichlorobenzene, 1,2,3-	µg/L µg/l	5^ 5 ^A	10.0 U 25 0 U	5.00 U	100 U 250 II	20.0 U 50 0 U	20.0 U 50 0 U	100 U 250 U	100 U	50 U 130 U	20.0 U	20.0 U	-	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U 125 U	50.0 U 125 U
Tichlonderham, 1,1-1 yp1 5.^A 10.0 U 5.00 U 50.0	Trichlorobenzene, 1,2,4-	μg/L	5 ^A	25.0 U	12.5 U	250 U	50.0 U	50.0 U	250 U	-	130 U	50.0 U	50.0 U	-	50.0 U	50.0 U	125 U	125 U	125 U	125 U
Inchnorestane, 1, 1, 2 upl 1 1000 5,000 20,00 20,00 20,00 20,00 5,000 50,00	Trichloroethane, 1,1,1-	µg/L	5 ^A	10.0 U	5.00 U	100 U	20.0 U	20.0 U	100 U	100 U	50 U	20.0 U	20.0 U	-	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U	50.0 U
marked (b) ps- cs- bool for diamond (b) ps- cs- bool for diamond (b) ps- cs- for diamond (b) ps- cs- for diamond (b) f	richloroethane, 1,1,2-	µg/L	1" 5 ^A	10.0 U	5.00 U	100 U 100 U	20.0 U 20.0 U	20.0 U 20.0 U	100 U 100 U	100 U 100 U	50 U 50 U	20.0 U	20.0 U 20.0 U		20.0 U	20.0 U	50.0 U	50.0 U	50.0 U	50.0 U
Trichologithurogebane (Freen 113) µgL 5. ^A 10.0 U 50.0 U 20.0 U 20.0 U 20.0 U 20.0 U 20.0 U 50.0 U	Trichlorofluoromethane (Freon 11)	µg/L	5 ^A	10.0 U	5.00 U	100 U	20.0 U	20.0 U	100 U	100 U	50 U	20.0 U	20.0 U		20.0 U	20.0 U	50.0 U	50.0 U	50.0 U	50.0 U
Trimetyberzere, 1,2,4 ypl, 5-^h 25,0 U 12,5 U 100 U 20,0 U 100 U -	Trichlorotrifluoroethane (Freon 113)	μg/L	5 ^A	10.0 U	5.00 U	100 U	20.0 U	20.0 U	100 U	-	50 U	20.0 U	20.0 U	-	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U	50.0 U
Immergencient (not) Pyr L 0.7 20.0 1000 20.00 20.00 20.00 20.00 1000 20.00 10000 1000 10000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10	Trimethylbenzene, 1,2,4-	µg/L	5 ^A	25.0 U	12.5 U	100 U	20.0 U	20.0 U	100 U	-	-	-	-	-	-	-	-	-	-	-
Viryl Chloride Viryl C 2^A 23.3^A 5.00 U 717^A 997^A 1,00^A 700^A 1,100^A 558^A 1,040^A - 33.1^A 537^A 961^A 1,130^A 973^A 634^A Xylene, m & p- µg/L 5.^A 10.0 U 5.00 U 100 U 20.0 U 100 U 20.0 U 20.0 U 20.0 U 20.0 U 20.0 U 20.0 U 50.0 U	Vinyl Acetate	µg/L µa/L	5'' n/v	25.0 U	12.5 U	100 0	20.0 0	20.0 0	100 0	250 U	-	-	-		-			-		
Xylene, m & p- ygl, b - b - Colu ygl, b - ygl, b - mode $5 - A$ 10.0 U $100 U5.0 U$ $20.0 U20.0 U$ $20.0 U$ <td>Vinyl Chloride</td> <td>μg/L</td> <td>2^A</td> <td>23.3^A</td> <td>5.00 U</td> <td>717^A</td> <td>997[^]</td> <td>1,030^A</td> <td>1,060^A</td> <td>790^A</td> <td>1,100^A</td> <td>558^A</td> <td>1,040^A</td> <td>-</td> <td>33.1^A</td> <td>537^A</td> <td>961^A</td> <td>1,130^A</td> <td>973^A</td> <td>634^A</td>	Vinyl Chloride	μg/L	2 ^A	23.3 ^A	5.00 U	717 ^A	997 [^]	1,030 ^A	1,060 ^A	790 ^A	1,100 ^A	558 ^A	1,040 ^A	-	33.1 ^A	537 ^A	961 ^A	1,130 ^A	973 ^A	634 ^A
xynen, o- Total VOC yg/L 5.~ 10.0 U 50.0 U 20.0 U 20.0 U 20.0 U 20.0 U 20.0 U 50.0	Xylene, m & p-	µg/L	5 ^A	10.0 U	5.00 U	100 U	20.0 U	20.0 U	100 U	100 U	50 U	20.0 U	20.0 U	-	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U	50.0 U
Instruction	Xylene, o- Total VOC	µg/L	5 ^A	10.0 U 2 666 9	5.00 U 466 1	100 U 4 527	20.0 U 3 322 4	20.0 U 3 454 4	100 U 3 600	100 U 2 200	50 U 2 100	20.0 U 1 566	20.0 U 1 704		20.0 U	20.0 U 3 137	50.0 U 2 571	50.0 U	2 053	50.0 U 2 152 2
Mg/L 0.025 ^k 0.010 U 0.014 L 0.144 L 0.146 L 0.146 L 0.010 U	Miscellaneous Parameters	P9/L	1.7.4	2,000.0		7,021	0,022.7	0,404.4	0,000	2,200	2,100	1,000	1,704	-	110.0	0,107	,U/ I	-,, U.S. /	2,000	2,102.2
Ind 0.3 ^A 1.81 ^A 0.100 U 0.381 ^A 1.00 ^A 1.00 ^A 1.05 ^A 2.68 ^A - 0.144 L - <td>Arsenic</td> <td>mg/L</td> <td>0.025^A</td> <td>0.010 U</td> <td>0.010 U</td> <td>0.010 U</td> <td>0.010 U</td> <td>0.010 U</td> <td>0.010 U</td> <td>-</td> <td>-</td> <td>0.0100 U</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>	Arsenic	mg/L	0.025 ^A	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	-	-	0.0100 U	-	-	-	-	-	-	-	-
Manganese mg/L 0.3 ^A 0.068 0.015 U 0.072 0.287 0.242 0.109 - 0.146 L - <th< td=""><td>Iron</td><td>mg/L</td><td>0.3.^A</td><td>1.81^A</td><td>0.100 U</td><td>0.381^A</td><td>1.00^A</td><td>1.05^A</td><td>2.68^A</td><td>-</td><td>-</td><td>0.144 L</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>- </td><td>-</td></th<>	Iron	mg/L	0.3. ^A	1.81 ^A	0.100 U	0.381 ^A	1.00 ^A	1.05 ^A	2.68 ^A	-	-	0.144 L	-	-	-	-	-	-	-	-
Sodium mg/L 20° 461 ^A 675 ^A 1,070 ^A 590 ^A 598 ^A 659 ^A 758 ^A 820 ^A 340 ^A - -	Manganese	mg/L	0.3• ^A	0.068	0.015 U	0.072	0.287	0.242	0.109	-	-	0.146 L	-	-	-	-	-	-	-	-
Total sygning carbon Tigger (1) 41.0 41.0 42.0 11.0 - 5.9 10.3 5.49 3.5 1.0 See notes on last page See	Sodium	mg/L	20 ^A	461 ^A	675 ^A	1,070 ^A	590 ^A	598 ^A	659 ^A	758 ^A	820 ^A	340 ^A	- 42.0	- 11.0	-	-	- 10.2	-	- 3 -	- 10
	Total Organic Carbon	iiig/L	11/V	4.3 See notes on last page.	4.4	5./	3.9	0./	4.2	10.2	230	49.0	42.0	11.0	-	3.9	10.3	5.49	3.5	1.0

	Sample Location	1 1		1								MW23									
Name Name <th< th=""><th>Sample Date</th><th></th><th></th><th>28-Sep-11</th><th>5-Jan-12</th><th>6-Feb-12</th><th>2-Mar-12</th><th>5-Jun-12</th><th>5-Jun-12</th><th>6-Sep-12</th><th>24-Jan-13</th><th>10-Apr-13</th><th>5-Jul-13</th><th>10-Oct-13</th><th>10-Oct-13</th><th>10-Oct-13</th><th>17-Jun-15</th><th>9-Mar-16</th><th>10-Jan-18</th><th>24-Oct-18</th><th>8-Oct-19</th></th<>	Sample Date			28-Sep-11	5-Jan-12	6-Feb-12	2-Mar-12	5-Jun-12	5-Jun-12	6-Sep-12	24-Jan-13	10-Apr-13	5-Jul-13	10-Oct-13	10-Oct-13	10-Oct-13	17-Jun-15	9-Mar-16	10-Jan-18	24-Oct-18	8-Oct-19
	Sample ID			WSR-MW-23-GW-7	828-MW-23-GW-8	828-MW-23-GW-9	828-MW-23-GW-10	828-MW-23-GW-11	828-MW-DUP-GW-11	828-MW-23-GW-12	828-MW-23-GW	828-MW-23-GW	828-MW-23-GW	828-MW-23-GW	828-MW-23-GW	828-MW-DUP-GW	828-MW-23-GW	828-MW-23-GW	828-MW-23-GW	MW-23	828-MW-23-GW
strain strain bit bit bit bit <	Laboratory			PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH
DescriptionDescriptic	Laboratory Work Order			P11-4106	P12-0069	12:0488	12:0936	12:2364	12:2364	12:3694	13:0365	131242	132505	133909	133925	133925	152493	160970	180096	184937	194958
Description	Laboratory Sample ID Sample Type	Unite	TOGS	14150	12:0069-06	12:0488-02	12:0936-05	12:2364-02	12:2364-03 Field Duplicate	12:3694-05	130365-05	131242-02	132505-03	133909-01	133925-02	133925-03 Field Dunlicate	152493-02	160970-01	180096-05	184937-01	194958-05
CHARME CHARME Party <		onno	1000													Tield Bupileate					
Sind Sind Sind Sind Sind Sind Sind Sind	Volatile Organic Compounds		0											1							
Non-With Control No.P	Acetone Benzene	µg/L µg/L	50 ⁵ 1 ^A	100 U 7 00 U	500 U 35 0 U	500 U 35 0 U	500 U 35 0 U	1,000 U	1,000 0	1,000 0	1,000 0	7 00 11	7 00 11	-	100 0	100 0	100 0	250 U	250 0	250 U	250 U
Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>	Bromobenzene	µg/L	5 ^A	-	-	-	-	-	-	-	500 U	50.0 U	-	-	-	-	-	-	-	-	-
monome of probability B L <thl< th=""> L L L</thl<>	Bromodichloromethane	µg/L	50 ^B	20.0 U	100 U	100 U	100 U	200 U	200 U	200 U	200 U	20.0 U	20.0 U	-	20.0 U	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U	50.0 U
	Bromotorm (Tribromomethane) Bromomethane (Methyl bromide)	µg/L	50°	50.0 0	250 U	250 U	250 U	500 U 200 U	500 U 200 U	500 U 200 U	500 U 200 U	50.0 0	50.0 0	-	50.0 U	50.0 U	50.0 0	125 U	125 U	125 U 50 0 U	125 0
Number of Subsection No.	Butylbenzene, n-	µg/L	5 ^A	50.0 U	250 U	100 U	100 U	200 U	200 U	-	-		-	-	-	-	-	-	-	-	-
Control Contro <thcontrol< th=""> <thcontrol< th=""> <thco< td=""><td>Butylbenzene, sec- (2-Phenylbutane)</td><td>µg/L</td><td>5^A</td><td>50.0 U</td><td>250 U</td><td>100 U</td><td>100 U</td><td>200 U</td><td>200 U</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></thco<></thcontrol<></thcontrol<>	Butylbenzene, sec- (2-Phenylbutane)	µg/L	5 ^A	50.0 U	250 U	100 U	100 U	200 U	200 U	-	-	-	-	-	-	-	-	-	-	-	-
Schuler Schuler <t< td=""><td>Butylbenzene, tert- Carbon Disulfide</td><td>µg/L</td><td>5^</td><td>50.0 U</td><td>250 U</td><td>100 U</td><td>100 U</td><td>200 U 200 U</td><td>200 U 200 U</td><td>200.11</td><td>200 11</td><td>- 20.011</td><td>- 20.011</td><td>-</td><td>- 20.011</td><td>- 20.011</td><td>- 20.011</td><td>50.011</td><td>50.0.11</td><td>50.0.11</td><td>50.011</td></t<>	Butylbenzene, tert- Carbon Disulfide	µg/L	5^	50.0 U	250 U	100 U	100 U	200 U 200 U	200 U 200 U	200.11	200 11	- 20.011	- 20.011	-	- 20.011	- 20.011	- 20.011	50.011	50.0.11	50.0.11	50.011
Conversion Convers	Carbon Tetrachloride (Tetrachloromethane)	µg/L	5 ^A	20.0 U	100 U	100 U	100 U	200 U	200 U	200 U	200 U	20.0 U	20.0 U	-	20.0 U	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U	50.0 U
Disput state Disput state<	Chlorobenzene (Monochlorobenzene)	µg/L	5 ^A	20.0 U	100 U	100 U	100 U	200 U	200 U	200 U	200 U	20.0 U	20.0 U	-	20.0 U	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U	50.0 U
Schell with Schell	Chlorobromomethane	µg/L	5 ^A	50.0 U	250 U	250 U	250 U	500 U	500 U	200.11	500 U	50.0 U	50.0 U	-	50.0 U	50.0 U	50.0 U	125 U	125 U	125 U	125 U
Charlen Construct Ki P (1) Field (1)	Chloroethyl Vinyl Ether, 2-	µg/L	n/v	-	-				- 200 0	1,000 U	1,000 U	100 U	- 20.0 0			- 20.0 0					
Character Control Contro Control Control <	Chloroform (Trichloromethane)	µg/L	7 ^A	20.0 U	100 U	100 U	100 U	200 U	200 U	200 U	200 U	20.0 U	20.0 U	-	20.0 U	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U	50.0 U
Backersonsensensensensensensensensensensensensen	Chloromethane	µg/L	5 ^A	20.0 U	100 U	100 U	100 U	200 U	200 U	200 U	200 U	20.0 U	20.0 U	-	20.0 U	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U	50.0 U
margane <	Dibromo-3-Chloropropane, 1,2- (DBCP)	μg/L	0.04 ^A	100 U	500 U	500 U	500 U	1,000 U	1,000 U	-	1,000 U	100 U	100 U	-	100 U	100 U	100 U	250 U	250 U	250 U	250 U
Constraints	Dibromochloromethane	µg/L	50 ^B	20.0 U	100 U	100 U	100 U	200 U	200 U	200 U	200 U	20.0 U	20.0 U	-	20.0 U	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U	50.0 U
Construct Construct <t< td=""><td>Dichlorobenzene, 1,2-</td><td>µg/L</td><td>3^A</td><td>20.0 U</td><td>100 U</td><td>100 U</td><td>100 U</td><td>200 U</td><td>200 U</td><td>200 U</td><td>200 U</td><td>20.0 U</td><td>20.0 U</td><td>-</td><td>20.0 U</td><td>20.0 U</td><td>20.0 U</td><td>50.0 U</td><td>50.0 U</td><td>50.0 U</td><td>50.0 U</td></t<>	Dichlorobenzene, 1,2-	µg/L	3 ^A	20.0 U	100 U	100 U	100 U	200 U	200 U	200 U	200 U	20.0 U	20.0 U	-	20.0 U	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U	50.0 U
Construction of the field Co	Dichlorobenzene, 1,3-	µg/L µa/L	3 ^A	20.0 U	100 U	100 U	100 U	200 U	200 U 200 U	200 U	200 U	20.0 U	20.0 U	-	20.0 U	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U	50.0 U
CHARCHAND A.M. A.S. Display Di	Dichlorodifluoromethane (Freon 12)	µg/L	5 ^A	50.0 U	250 U	100 U	100 U	200 U	200 U		200 U	20.0 U	20.0 U	-	20.0 U	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U	50.0 U
namesere i.e. i.e. i.e. i.e. i.e. i.e. i.e. i	Dichloroethane, 1,1-	µg/L	5 ^A	20.0 U	100 U	100 U	100 U	200 U	200 U	200 U	200 U	20.0 U	20.0 U	-	20.0 U	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U	50.0 U
Distribution Distribution<	Dichloroethane, 1,2- Dichloroethene, 1,1-	µg/L µg/L	0.6 ^A	20.0 0	100 0	100 0	100 0	200 0	200 0	200 0	200 0	20.0 0	20.0 0	-	20.0 0	20.0 0	20.0 0	50.0 0	50.0 0	50.0 0	50.0 0
Deb Set Set Set Diff Set Diff Part Diff	Dichloroethene, cis-1,2-	µg/L	5 ^A	20.0 U	100 U	4.130 ^A	10.900 ^A	5.120 ^A	5.240 ^A	3.940 ^A	8.900 ^A	242 ^A	862 ^A	-	86.8 J ^A	142 J ^A	1.040 ^A	1.110 ^A	2.540 ^A	1.020 ^A	1.170 ^A
Concentral: 1.2 UN 1/r Shé U	Dichloroethene, trans-1,2-	µg/L	5 ^A	20.0 U	100 U	100 U	100 U	200 U	200 U	200 U	200 U	20.0 U	20.0 U	-	20.0 U	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U	50.0 U
Consistent 1.2 Let	Dichloropropane, 1,2-	µg/L	1^	20.0 U	100 U	100 U	100 U	200 U	200 U	200 U			20.0 U	-	20.0 U	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U	50.0 U
Diverse Diverse <t< td=""><td>Dichloropropane, 1,3- Dichloropropane, 2,2-</td><td>µg/L µg/l</td><td>5^</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>200 U</td><td>20.0 0</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>1 .</td><td>-</td></t<>	Dichloropropane, 1,3- Dichloropropane, 2,2-	µg/L µg/l	5^	-	-	-	-	-	-	-	200 U	20.0 0	-	-	-	-	-	-	-	1 .	-
District spin 1-3 at b.4 b.4 District spin 1-3 Distraterase District spin 1-3 Distre	Dichloropropene, cis-1,3-	µg/L	0.4 _p ^A	20.0 U	100 U	100 U	100 U	200 U	200 U	200 U	-		20.0 U	-	20.0 U	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U	50.0 U
Dote: PA PA PA PA PA<	Dichloropropene, trans-1,3-	µg/L	0.4 _p ^A	20.0 U	100 U	100 U	100 U	200 U	200 U	200 U	200 U	20.0 U	20.0 U	-	20.0 U	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U	50.0 U
Prime Prim Prim <td>Dioxane, 1,4- Ethylbenzene</td> <td>µg/L µg/l</td> <td>n/v 5^A</td> <td>20 0 11</td> <td>100 11</td> <td>100 11</td> <td>100 11</td> <td>200 11</td> <td>200 11</td> <td>200 11</td> <td>2,000 U</td> <td>200 U</td> <td>200 U</td> <td>-</td> <td>20 0 U</td> <td>20 0 U</td> <td>200 U</td> <td>500 U</td> <td>500 U</td> <td>500 U</td> <td>500 U</td>	Dioxane, 1,4- Ethylbenzene	µg/L µg/l	n/v 5 ^A	20 0 11	100 11	100 11	100 11	200 11	200 11	200 11	2,000 U	200 U	200 U	-	20 0 U	20 0 U	200 U	500 U	500 U	500 U	500 U
Hasesses	Ethylene Dibromide (Dibromoethane, 1,2-)	µg/L	0.0006 ^A	20.0 U	100 U	100 U	100 U	200 U	200 U	-	200 U	20.0 U	20.0 U	-	20.0 U	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U	50.0 U
open-protecting initial is an end of the second secon	Hexanone, 2- (Methyl Butyl Ketone)	µg/L	50 ^B	50.0 U	250 U	250 U	250 U	500 U	500 U	500 U	500 U	50.0 U	50.0 U	-	50.0 U	50.0 U	50.0 U	125 U	125 U	125 U	125 U
Methy Access Methy Access<	Isopropylbenzene	µg/L	5^	50.0 U 20 0 U	250 U	100 U	100 U 100 U	200 U	200 U 200 U	-	-	20.0 U	20.0 U	-	20.0 U	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U	50.0 U
Methy Eds. Medication	Methyl Acetate	µg/L	n/v	20.0 U	100 U	100 U	100 U	200 U	200 U	-	200 U	20.0 U	20.0 U	-	20.0 U	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U	50.0 U
Under Lander, L	Methyl Ethyl Ketone (MEK) (2-Butanone)	µg/L	50 ^B	100 U	500 U	500 U	500 U	1,000 U	1,000 U	1,000 U	1,000 U	100 U	100 U	-	100 UJ	100 UJ	100 U	250 U	250 U	250 U	250 U
methylysechologic starte ind ind 200 U 100 U 100 U 100 U 200 U </td <td>Methyl Isobutyl Ketone (MIBK)</td> <td>µg/L</td> <td>n/v 10^B</td> <td>50.0 U</td> <td>250 U</td> <td>250 U</td> <td>250 U</td> <td>500 U</td> <td>500 U</td> <td>500 U</td> <td>500 U</td> <td>50.0 U</td> <td>50.0 U</td> <td>-</td> <td>50.0 U</td> <td>50.0 U</td> <td>50.0 U</td> <td>125 U</td> <td>125 U</td> <td>125 U</td> <td>125 U</td>	Methyl Isobutyl Ketone (MIBK)	µg/L	n/v 10 ^B	50.0 U	250 U	250 U	250 U	500 U	500 U	500 U	500 U	50.0 U	50.0 U	-	50.0 U	50.0 U	50.0 U	125 U	125 U	125 U	125 U
Matry Set Division (Databounder Set Division)) Sol U	Methylcyclohexane	µg/L	n/v	20.0 U	100 U	100 U	100 U	200 U	200 U	_	200 U	20.0 U	20.0 U		20.0 U	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U	50.0 U
HageInflame Hold 10 ⁺ 50.0 // 200	Methylene Chloride (Dichloromethane)	µg/L	5 ^A	50.0 U	250 U	250 U	250 U	500 U	500 U	500 U	500 U	50.0 U	50.0 U	-	50.0 U	50.0 U	50.0 U	125 U	125 U	125 U	125 U
Some Ind Some Some Some Some Sone	Naphthalene Propulbenzene	µg/L	10 ⁴	50.0 U	250 U	250 U	250 U	500 U	500 U	-	-	-	-	-	-	-	-	-	-	-	-
Teindhordenne, 1,2,2 jp1 5.^ 20,0 100,0 100,0 100,0 200,0 20,0,0 - 20,0,0 20,0,0 20,0,0 50,0,0 <td>Styrene</td> <td>µg/L</td> <td>5^A</td> <td>50.0 U</td> <td>250 U</td> <td>250 U</td> <td>250 U</td> <td>500 U</td> <td>500 U</td> <td>500 U</td> <td>500 U</td> <td>50.0 U</td> <td>50.0 U</td> <td>-</td> <td>50.0 U</td> <td>50.0 U</td> <td>50.0 U</td> <td>125 U</td> <td>125 U</td> <td>125 U</td> <td>125 U</td>	Styrene	µg/L	5 ^A	50.0 U	250 U	250 U	250 U	500 U	500 U	500 U	500 U	50.0 U	50.0 U	-	50.0 U	50.0 U	50.0 U	125 U	125 U	125 U	125 U
Internationaliseme (PGE) up1 5.^{ 2.240 ⁺ 4.010 ⁺ 2.800 ⁺ 1.130 ⁺ 200 U 200 U 20.0 U - 20.0 U 200 U 20.0 U	Tetrachloroethane, 1,1,2,2-	µg/L	5 ^A	20.0 U	100 U	100 U	100 U	200 U	200 U	200 U	200 U	20.0 U	20.0 U	-	20.0 U	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U	50.0 U
upu b (michiocheanen, 1,3-) upu b (michiocheanen, 1,1-) upu b (michiocheanen, 1,2-) upu b (michiocheanenen, 1,2-) upu b (michiocheanenenenenenenenenenenenenenenenenenen	Tetrachloroethene (PCE)	µg/L	5 ^A	2,240 ^A	4,010 ^A	2,500 ^A	107^	1,150^	1,130 ^A	200 U	200 U	20.0 U	20.0 U	-	20.0 U	20.0 U	663 ^A	4,810 ^A	3,200 ^A	404 ^A	83.3 ^A
Trichlorebranes, 1,2,4 jugl 5,4 20,0 U 250,0 U	Trichlorobenzene, 1,2,3-	µg/L µa/L	5 ^A	20.0 0	100 U 250 II	250 11	250 11	200 0	200 U 500 H	200 0	200 0	20.0 0	20.0 0	-	20.0 0	20.0 0	20.0 U 50.0 II	50.0 U 125 U	50.0 U 125 II	50.0 U 125 II	50.0 U 125 U
Tirchionesthane, 1,1,1- ypt 5 20,0 U 100 U 100 U 100 U 100 U 200 U 200 U 20,0 U </td <td>Trichlorobenzene, 1,2,4-</td> <td>µg/L</td> <td>5^A</td> <td>50.0 U</td> <td>250 U</td> <td>250 U</td> <td>250 U</td> <td>500 U</td> <td>500 U</td> <td>-</td> <td>500 U</td> <td>50.0 U</td> <td>50.0 U</td> <td>-</td> <td>50.0 U</td> <td>50.0 U</td> <td>50.0 U</td> <td>125 U</td> <td>125 U</td> <td>125 U</td> <td>125 U</td>	Trichlorobenzene, 1,2,4-	µg/L	5 ^A	50.0 U	250 U	250 U	250 U	500 U	500 U	-	500 U	50.0 U	50.0 U	-	50.0 U	50.0 U	50.0 U	125 U	125 U	125 U	125 U
Includentane, 1,1.2- ypl 1 ⁿ 20.0 1000 1000 1000 2000 2000 2000 20.00	Trichloroethane, 1,1,1-	µg/L	5 ^A	20.0 U	100 U	100 U	100 U	200 U	200 U	200 U	200 U	20.0 U	20.0 U	-	20.0 U	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U	50.0 U
Inductionation (Columnation (Freen 11) Ippl. 0.0 30.0 100.0 35.2 34.9 20.0	Trichloroethane, 1,1,2-	µg/L	1° 5 A	20.0 0	100 U	100 0	100 U	200 0	200 0	200 U	200 U	20.0 0	20.0 U	-	20.0 0	20.0 U	20.0 0	50.0 U	50.0 U	50.0 U	50.0 U
Trichlorithurocethane (freen 113) µgL 5.^A 20.0 U 100 U 100 U 100 U 20.0 U 20.0 U 20.0 U 20.0 U 50.0 U	Trichlorofluoromethane (Freon 11)	µg/L	5 ^A	20.0 U	100 U	100 U	100 U	200 U	200 U	200 U	200 U	20.0 U	20.0 U	-	20.0 U	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U	50.0 U
Trimettylberzene, 1.2.4- µg/L 5/ bg/L 50.0 U 250 U 100 U 100 U 200 U 200 U - <	Trichlorotrifluoroethane (Freon 113)	μg/L	5 ^A	20.0 U	100 U	100 U	100 U	200 U	200 U	-	200 U	20.0 U	20.0 U	-	20.0 U	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U	50.0 U
Immentione upple n.* S0,00 2000 1000 2000 2000 1000 2000 <td>Trimethylbenzene, 1,2,4-</td> <td>µg/L</td> <td>5^A</td> <td>50.0 U</td> <td>250 U</td> <td>100 U</td> <td>100 U</td> <td>200 U</td> <td>200 U</td> <td>-</td>	Trimethylbenzene, 1,2,4-	µg/L	5 ^A	50.0 U	250 U	100 U	100 U	200 U	200 U	-	-	-	-	-	-	-	-	-	-	-	-
Vin/L Chride ju/jL 2^A 20.0 U 100 U 200 U	Vinvl Acetate	µg/L µa/L	5'` n/v	50.0 U	250 U	100 0	100 0	200 0	200 0	500 U											
Xylene, m & p- yg/L yg/L 5-A 20.0 U 100 U 100 U 100 U 100 U 200 U 200 U 200 U 20.0 U	Vinyl Chloride	µg/L	2 ^A	20.0 U	100 U	100 U	100 U	1,090 ^A	1,130 ^A	1,110 ^A	970 ^A	154 ^A	636 ^A	-	241 J ^A	399 J ^A	73.3 ^A	50.0 U	140 ^A	105 ^A	97.5 ^A
xylen yg/L 5 20.0 U 100 U 100 U 100 U 100 U 200 U 200 U 20.0 U 20	Xylene, m & p-	µg/L	5 ^A	20.0 U	100 U	100 U	100 U	200 U	200 U	200 U	200 U	20.0 U	20.0 U	-	20.0 U	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U	50.0 U
Note of the price price respective resp	Xylene, o-	µg/L	5 ^A	20.0 U	100 U	100 U	100 U	200 U	200 U	200 U	200 U	20.0 U	20.0 U	-	20.0 U	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U	50.0 U
mg/L 0.025 ^A 0.010 U 0.010 U 0.018 0.014 0.021 0.021 - 0.0217 - <th<< td=""><td>Miscellaneous Parameters</td><td>1 49/5</td><td>10.9</td><td>2,210.4</td><td>1,010</td><td>1,001</td><td>11,007</td><td>1,322</td><td>0,040</td><td>0,000</td><td>5,570</td><td>000</td><td>1,400</td><td>-</td><td>021.0</td><td></td><td>2,021.0</td><td>0,000</td><td>0,000</td><td>1,000.0</td><td>1,070.0</td></th<<>	Miscellaneous Parameters	1 49/5	10.9	2,210.4	1,010	1,001	11,007	1,322	0,040	0,000	5,570	000	1,400	-	021.0		2,021.0	0,000	0,000	1,000.0	1,070.0
nn 0.3. ^A 0.100 U 111 ^A 23.3 ^A 12.5 ^A 15.5 ^A - - 13.2 L ^A - - <th< td=""><td>Arsenic</td><td>mg/L</td><td>0.025^A</td><td>0.010 U</td><td>0.010 U</td><td>0.018</td><td>0.014</td><td>0.021</td><td>0.021</td><td>-</td><td>-</td><td>0.0217</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></th<>	Arsenic	mg/L	0.025 ^A	0.010 U	0.010 U	0.018	0.014	0.021	0.021	-	-	0.0217	-	-	-	-	-	-	-	-	-
Maganese mg/L 0.3 ^A 0.226 4.07 ^A 0.161 0.523 ^A 0.165 0.189 - - 0.445 L ^A - -	Iron	mg/L	0.3. ^A	0.100 U	111 ^A	23.3 ^A	12.5 ^A	15.7 ^A	15.5 ^A	-	-	13.2 L ^A	-	-	-	-	-	-	-	-	-
Sodium mg/L 20 ^A 1,450 ^A 1,660 ^A 1,090 ^A 1,090 ^A 1,130 ^A 1,120 ^A 1,300 ^A 1,000 ^A - - <t< td=""><td>Manganese</td><td>mg/L</td><td>0.3.^A</td><td>0.226</td><td>4.07^A</td><td>0.161</td><td>0.523^A</td><td>0.165</td><td>0.189</td><td>-</td><td>-</td><td>0.445 L^A</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></t<>	Manganese	mg/L	0.3. ^A	0.226	4.07 ^A	0.161	0.523 ^A	0.165	0.189	-	-	0.445 L ^A	-	-	-	-	-	-	-	-	-
Iotai Urganic Caroon mg/L m/V 3.7 1,880 118 68.4 6.0 6.0 64.3 560 165 23.0 8.50 3.5 9.17 J 6.67 2.8 3.6 See notes on last page.	Sodium	mg/L	20 ^A	1,450 ^A	1,660 ^A	1,090 ^A	1,090^	1,130 ^A	1,150 ^A	1,120 ^A	1,300 ^A	1,000^	-	-	-	-	-	-	-	-	-
	I otal Organic Carbon	mg/L	n/v	3.7 See notes on last nam	1,880 e.	118	68.4	6.0	6.0	64.3	560	165	23.0	8.50	-	-	3.5	9.17 J	6.67	2.8	3.6

Sample Location	1	1	1							MW23R								
Sample Date			28-Sep-11	5-Jan-12	6-Feb-12	2-Mar-12	5-Jun-12	6-Sep-12	24-Jan-13	10-Apr-13	5-Jul-13	10-Oct-13	10-Oct-13	17-Jun-15	9-Mar-16	10-Jan-18	24-Oct-18	8-Oct-19
Sample ID			WSR-MW-23R-GW-7	828-MW-23R-GW-8	828-MW-23R-GW-9	828-MW-23R-GW-10	828-MW-23R-GW-11	828-MW-23R-GW-12	828-MW-23R-GW	828-MW-23R-GW	828-MW-23R-GW	828-MW-23R-GW	828-MW-23R-GW	828-MW-23R-GW	828-MW-23R-GW	828-MW-23R-GW	MW-23R	828-MW-23R-GW
Sampling Company			STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC
Laboratory Work Order			P11-4106	P12-0069	12:0488	12:0936	12:2364	12:3694	13:0365	131242	132505	133909	133925	152493	160970	180096	184937	194958
Laboratory Sample ID			14151	12:0069-05	12:0488-03	12:0936-06	12:2364-04	12:3694-06	130365-04	131242-03	132505-02	133909-02	133925-04	152493-01	160970-02	180096-06	184937-02	194958-06
Sample Type	Units	TOGS																
Volatile Organic Compounds						1									1			
Acetone	µg/L	50 ^B	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	30.6	10 U	10.0 U	11.1	-	18.3 J	10.0 U				
Benzene	µg/L	1 ^A	0.700 U	0.700 U	0.700 U	0.700 U	0.700 U	0.700 U	0.70 U	0.700 U	0.700 U	-	1 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Bromodichloromethane	µg/L µa/L	5 50 ^B	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Bromoform (Tribromomethane)	µg/L	50 ^B	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.0 U	5.00 U	5.00 U	-	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Bromomethane (Methyl bromide)	µg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Butylbenzene, n-	µg/L	5^	5.00 U	5.00 U	2.00 U	2.00 U	2.00 U	-	-	-	-	-	-	-	-	-	-	-
Butylbenzene, tert-	μg/L	5 ^A	5.00 U	5.00 U	2.00 U	2.00 U	2.00 U	-	_	-	-	-	_		-	-		-
Carbon Disulfide	µg/L	60 ^B	5.00 U	5.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Carbon Tetrachloride (Tetrachloromethane)	µg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Chlorobromomethane	µg/L µg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 0	2.0 U	2.00 U	2.00 U	-	5.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Chloroethane (Ethyl Chloride)	µg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Chloroethyl Vinyl Ether, 2-	µg/L	n/v	-	-	-	-	-	10.0 U	10 U	10.0 U	-	-	-	-	-	-	-	-
Chloromethane	µg/L µa/L	5 ^A	2.00 U 2.00 U	2.00 U	2.00 U	2.00 U 2.00 U	2.00 U	2.00 U	2.0 U	2.00 U	2.00 U		2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Cyclohexane	µg/L	n/v	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	-	10 U	10.0 U	10.0 U	-	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U
Dibromo-3-Chloropropane, 1,2- (DBCP)	µg/L	0.04 ^A	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	-	10 U	10.0 U	10.0 U	-	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U
Dipromochloromethane Dichlorobenzene, 1,2-	µg/L µg/l	50° 3 ^A	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U	2.0 U	2.00 U 2.00 U	2.00 U 2.00 U	-	2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U
Dichlorobenzene, 1,3-	µg/L	3 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Dichlorobenzene, 1,4-	µg/L	3 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Dichlorodifluoromethane (Freon 12)	µg/L	5^ 5. A	5.00 U	5.00 U	2.00 U	2.00 U	2.00 U	- 2 00 11	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Dichloroethane, 1,2-	µg/L	0.6 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.00 U	2.00 U	_	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Dichloroethene, 1,1-	µg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Dichloroethene, cis-1,2-	µg/L	5 ^A	63.8 ^A	82.4 ^A	17.4 ^A	13.1 ^A	32.6 ^A	5.30 ^A	5.8 ^A	5.83 ^A	4.81	-	9.16 ^A	1.46 J	1.86 J	1.94 J	2.00 U	1.11 J
Dichloroethene, trans-1,2-	µg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Dichloropropane, 1,2-	µg/L µa/L	1 5 ^A	2.00 0	2.00 0	2.00 0	2.00 0	2.00 0	2.00 0	2.0 U	2.00 U	2.00 0	-	2.00 0	2.00 0	2.00 0	2.00 0	2.00 0	2.00 0
Dichloropropane, 2,2-	µg/L	5 ^A	-	-	-	-	-	-	2.0 U	2.00 U	-	-	-	-	-	-	-	-
Dichloropropene, cis-1,3-	µg/L	0.4 _p ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U		-	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Dichloropropene, trans-1,3- Dioxane, 1.4-	µg/L µg/l	0.4 _p ^	2.00 0	2.00 0	2.00 0	2.00 0	2.00 0	2.00 U	2.0 0	2.00 0	2000	-	2.00 U	2.00 0	2.00 0	2000	2.00 0	2000
Ethylbenzene	µg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Ethylene Dibromide (Dibromoethane, 1,2-)	µg/L	0.0006 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	-	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Hexanone, 2- (Methyl Butyl Ketone)	µg/L	50°	5.00 U	5.00 U	5.00 U 2.00 U	5.00 U 2.00 U	5.00 U 2.00 U	5.00 U	5.0 U	5.00 U 2.00 U	5.00 U	-	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U 2.00 U
Isopropyltoluene, p- (Cymene)	μg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	-	-	-	-	-	-	-	-	-	-	-
Methyl Acetate	µg/L	n/v	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	-	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Methyl Ethyl Ketone (MEK) (2-Butanone)	µg/L	50 ⁸	10.0 U	10.0 U	11.9	10.0 U	10.0 U	10.0 U	130 ^B	80.7 ^B	76.9 ^B	-	107 J ^B	10.0 U				
Methyl tert-butyl ether (MTBE)	µg/L µa/L	10 ^B	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5.00 0	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Methylcyclohexane	µg/L	n/v	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	-	2.0 U	2.00 U	2.00 U	-	2.00 U	1.59 J	1.37 J	2.00 U	2.00 U	2.00 U
Methylene Chloride (Dichloromethane)	µg/L	5 ^A	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.0 U	5.00 U	5.00 U	-	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Propylbenzene, n-	µg/L µg/L	10 ⁻¹	5.00 U	5.00 U	2.00 U	2.00 U	2.00 U	-	-	-	-	-	-	-	-	-	-	-
Styrene	µg/L	5 ^A	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.0 U	5.00 U	5.00 U	-	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Tetrachloroethane, 1,1,2,2-	µg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
retrachloroethene (PCE)	µg/L	5^ 5 A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Trichlorobenzene, 1,2,3-	μg/L μg/L	5 ^A	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	2.00 0	5.0 U	5.00 U	5.00 U	-	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Trichlorobenzene, 1,2,4-	µg/L	5 ^A	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	-	5.0 U	5.00 U	5.00 U	-	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Trichloroethane, 1,1,1-	µg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Trichloroethene (TCE)	µg/L µg/l	1 5 ^A	2.00 0	2.00 0	2.00 U	2.00 U	2.00 0	2.00 U	2.00	2.00 0	2.00 U	-	2.00 0	2.00 U	2.00 0	2.00 U	2.00 U	2.00 0
Trichlorofluoromethane (Freon 11)	µg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Trichlorotrifluoroethane (Freon 113)	µg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	-	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Trimethylbenzene, 1,2,4-	µg/L	5 ^A	5.00 U	5.00 U	2.00 U	2.00 U	2.00 U	-	-	-	-	-	-	-	-	-	-	-
Vinyl Acetate	μα/L	n/v		5.00 0	2.00 0	2.00 0	- 2.00 0	5.00 U	[-	.	.		[.	[.	
Vinyl Chloride	μg/L	2 ^A	2.21 ^A	2.00 U	2.00 U	2.00 U	5.95 ^A	3.46 ^A	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Xylene, m & p-	µg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Xylene, o-	µg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Miscellaneous Parameters	µg/L	11/1	00.01	02.4	29.3	13.1	30.00	39.30	133.0	00.00	32.01	-	134.40	3.05	3.23	1.94		6.11
Arsenic	mg/L	0.025 ^A	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	-	-	0.0100 U	-	-	-	-	-	-	-	-
Iron	mg/L	0.3. ^A	0.819 ^A	3.04 ^A	7.52 ^A	3.08 ^A	4.21 ^A	-	-	3.08 L ^A	-	-	-	-	-	-	-	-
Manganese	mg/L	0.3* ^A	0.040	0.129	0.053	0.081 M	0.034	-	-	0.0702 L	-	-	-	-	-	-	-	-
Sodium	mg/L	20 ^A	417 ^A	392 ^A	751 ^A	766 ^A	458 ^A	568 ^A	1,200 ^A	529 ^A	-	-	-	-	-	-	-	-
Total Organic Carbon	mg/L	n/v	3.6	38.4	33.0	31.1	4.0	58.6	670	368	86.0	175	-	6.8	12.0	6.17	2.9	0.97
			See notes on last page.															

Sample Location	1 1		1							MW105								
Sample Location			28-Sep-11	4-Jan-12	2-Feb-12	29-Feb-12	4-Jun-12	4-Sep-12	22-Jan-13	11-Apr-13	2-Jul-13	8-Oct-13	8-Oct-13	18-Jun-15	10-Mar-16	10-Jan-18	24-Oct-18	8-Oct-19
Sample ID			WSR-MW-105-GW-12	WSR-MW-105-GW-13	WSR-MW-105-GW-14	WSR-MW-105-GW-15	WSR-MW-105-GW-16	WSR-MW-105-GW-17	WSR-MW-105-GW	WSR-MW-105-GW	WSR-MW-105-GW	WSR-MW-105-GW	WSR-MW-105-GW	WSR-MW-105-GW	WSR-MW-105-GW	WSR-MW-105-GW	MW-105	WSR-MW-105-GW
Sampling Company			STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC
Laboratory			PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH
Laboratory Work Order			14152	12:0041-02	12:0443	12:0868-02	12:2335-05	12:3644-02	130329-05	131259-02	132471-02	133887-01	133927-02	152493	160970-06	180096-01	184937-06	194958-01
Sample Type	Units	TOGS																
Volatile Organic Compounds		r o ^B	50.011	50.011	25 4 D	20.0.11	10.011	20.0.11	50.11	22.0	10.0.11		10.011	10.0.11	10.011	10.011	10.0.11	20.011
Benzene	µg/L µg/L	50 ⁻ 1 ^A	3 50 11	3 50 11	30.4 B	20.0 0	0.700 U	20.0 0	3511	0.700 U	0.700 U		10.00	1.00 U	1.00 U	1.00 U	1.00 U	20.0 0
Bromobenzene	µg/L	5 ^A	-	-		-	-	-	25 U	5.00 U	-	-	-	-	-	-	-	-
Bromodichloromethane	µg/L	50 ^B	10.0 U	10.0 U	5.00 U	4.00 U	2.00 U	4.00 U	10 U	2.00 U	2.00 U	-	2.00 U	4.00 U				
Bromoform (Tribromomethane)	µg/L	50 ^B	25.0 U	25.0 U	12.5 U	10.0 U	5.00 U	10.0 U	25 U	5.00 U	5.00 U	-	5.00 U	10.0 U				
Bromomethane (Methyl bromide)	µg/L	5^	10.0 U	10.0 U	5.00 U	4.00 U	2.00 U	4.00 U	10 U	2.00 U	2.00 U	-	2.00 U	4.00 U				
Butylbenzene sec- (2-Phenylbutane)	ug/L	5 ^A	25.00	25.00	12.5 0	4.00 U	2.00 U	-	_		-			_		-	-	-
Butylbenzene, tert-	µg/L	5 ^A	25.0 U	25.0 U	12.5 U	4.00 U	2.00 U	-	-	-	-	-	-	-	-	-	-	-
Carbon Disulfide	µg/L	60 ^B	25.0 U	25.0 U	12.5 U	4.00 U	2.00 U	4.00 U	10 U	2.00 U	2.00 U	-	2.00 U	4.00 U				
Carbon Tetrachloride (Tetrachloromethane)	µg/L	5^	10.0 U	10.0 U	5.00 U	4.00 U	2.00 U	4.00 U	10 U	2.00 U	2.00 U	-	2.00 U	4.00 U				
Chlorobenzene (Monochlorobenzene)	µg/L	5^	10.0 U 25.0 U	10.0 U	5.00 0	4.00 U	2.00 U	4.00 U	10 U	2.00 U	2.00 U	-	2.00 U	4.00 U				
Chloroethane (Ethyl Chloride)	ua/L	5 ^A	10.0 U	10.0 U	5.00 U	4.00 U	2.00 U	4.00 U	10 U	2.00 U	2.00 U		2.00 U	4.00 U				
Chloroethyl Vinyl Ether, 2-	µg/L	n/v	-	_	-	-	-	20.0 U	50 U	10.0 U	-	-	-	-	-	-	-	-
Chloroform (Trichloromethane)	µg/L	7 ^A	10.0 U	10.0 U	5.00 U	4.00 U	2.00 U	4.00 U	10 U	2.00 U	2.00 U	-	2.00 U	4.00 U				
Chloromethane	µg/L	5 ^A	10.0 U	10.0 U	5.00 U	4.00 U	2.00 U	4.00 U	10 U	2.00 U	2.00 U	-	2.00 U	4.00 U				
Dibromo-3-Chloropropane, 1.2- (DBCP)	µg/L µa/L	0.04 ^A	50.0 U	50.0 U	25.0 U	20.0 U	10.0 U		50 U	10.0 11	10.0 U		10.0 1	10.0 1	10.0 11	10.0 U	10.0 U	20.0 0
Dibromochloromethane	μg/L	50 ^B	10.0 U	10.0 U	5.00 U	4.00 U	2.00 U	4.00 U	10 U	2.00 U	2.00 U	-	2.00 U	4.00 U				
Dichlorobenzene, 1,2-	µg/L	3 ^A	10.0 U	10.0 U	5.00 U	4.00 U	2.00 U	4.00 U	10 U	2.00 U	2.00 U	-	2.00 U	4.00 U				
Dichlorobenzene, 1,3-	µg/L	3^	10.0 U	10.0 U	5.00 U	4.00 U	2.00 U	4.00 U	10 U	2.00 U	2.00 U	-	2.00 U	4.00 U				
Dichlorobenzene, 1,4- Dichlorodifluoromethano (Freen 12)	µg/L	3	10.0 U	10.0 U	5.00 U	4.00 U	2.00 U	4.00 U	10 0	2.00 U	2.00 U	-	2.00 U	4.00 U				
Dichloroethane, 1.1-	µg/L µa/L	5 ^A	25.0 U	25.0 U	5.00 U	4.00 U	2.00 U	4.00 U	10 0	2.00 U	2.00 U		2.00 U	4.00 U				
Dichloroethane, 1,2-	µg/L	0.6 ^A	10.0 U	10.0 U	5.00 U	4.00 U	2.00 U	4.00 U	10 U	2.00 U	2.00 U	-	2.00 U	4.00 U				
Dichloroethene, 1,1-	µg/L	5 ^A	10.0 U	10.0 U	5.00 U	4.00 U	2.00 U	4.00 U	10 U	2.00 U	2.00 U	-	2.00 U	4.00 U				
Dichloroethene, cis-1,2-	µg/L	5 ^A	480 ^A	179 ^A	220 ^A	155 ^A	81.9 ^A	145 ^A	210 ^A	159 ^A	83.6 ^A	-	151^	111 ^A	129 ^A	131 ^A	188 ^A	212 ^A
Dichloroethene, trans-1,2-	µg/L	5 ^A	358 ^A	134 ^A	183 ^A	120 ^A	59.0 ^A	115^	120 ^A	83.6 ^A	86.4 ^A	-	196 ^A	130 ^A	115 ^A	100 ^A	98.9 ^A	111^
Dichloropropane, 1,2-	µg/L	1 [^]	10.0 U	10.0 U	5.00 U	4.00 U	2.00 U	4.00 U	10.11	- 2 00 11	2.00 U	-	2.00 U	4.00 U				
Dichloropropane, 2.2-	µg/L µa/L	5 ^A	-	-	_	-	-	-	10 0	2.00 U	-		-	-	-	-	-	-
Dichloropropene, cis-1,3-	µg/L	0.4 _p ^A	10.0 U	10.0 U	5.00 U	4.00 U	2.00 U	4.00 U	-		2.00 U	-	2.00 U	4.00 U				
Dichloropropene, trans-1,3-	µg/L	0.4 _p ^A	10.0 U	10.0 U	5.00 U	4.00 U	2.00 U	4.00 U	10 U	2.00 U	2.00 U	-	2.00 U	4.00 U				
Dioxane, 1,4-	µg/L	n/v			-	-	-	-	100 U	20.0 U	20.0 U	-	R	20.0 U	20.0 U	20.0 U	20.0 U	40.0 U
Ethylbenzene Ethylene Dibromide (Dibromoethane, 1.2-)	µg/L	5''	10.0 U	10.0 U	5.00 U	4.00 U	2.00 U	4.00 0	10 0	2.00 0	2.00 0		2.00 0	2.00 0	2.00 0	2.00 U	2.00 0	4.00 U
Hexanone, 2- (Methyl Butyl Ketone)	µg/L	50 ^B	25.0 U	25.0 U	12.5 U	10.0 U	5.00 U	10.0 U	25 U	5.00 U	5.00 U	-	5.00 U	10.0 U				
Isopropylbenzene	µg/L	5 ^A	25.0 U	25.0 U	12.5 U	4.00 U	2.00 U	-	-	2.00 U	2.00 U	-	2.00 U	4.00 U				
Isopropyltoluene, p- (Cymene)	µg/L	5 ^A	10.0 U	10.0 U	5.00 U	4.00 U	2.00 U	-	-	-	-	-	-	-	-	-	-	-
Methyl Acetate Methyl Ethyl Kotopo (MEK) (2 Butopopo)	µg/L	n/v	10.0 U	10.0 U	5.00 U	4.00 U	2.00 U	- 20.011	10 U	2.00 U	2.00 U	-	2.00 U	4.00 U				
Methyl Isobutyl Ketone (MIRK)	µg/L µg/l	50 n/v	25.0 U	25.0 U	12.5 U	10.0 U	5 00 U	10.0 U	25 U	5 00 U	5.00 U		5 00 U	5 00 U	5.00 U	5.00 U	5 00 U	10.0 U
Methyl tert-butyl ether (MTBE)	µg/L	10 ^B	10.0 U	10.0 U	5.00 U	4.00 U	2.00 U	-	10 U	2.00 U	2.00 U	-	2.00 U	4.00 U				
Methylcyclohexane	µg/L	n/v	10.0 U	10.0 U	5.00 U	4.00 U	2.00 U	-	10 U	2.00 U	2.00 U	-	2.00 U	4.00 U				
Methylene Chloride (Dichloromethane)	µg/L	5 ^A	25.0 U	25.0 U	12.5 U	10.0 U	5.00 U	10.0 U	25 U	5.00 U	5.00 U	-	5.00 U	10.0 U				
Propylbenzene n-	µg/L µg/l	10 ⁻⁴	25.0 0	25.0 0	12.5 U	4 00 U	2 00 U	-	-	-	-		-	-	-	-	-	-
Styrene	µg/L	5 ^A	25.0 U	25.0 U	12.5 U	10.0 U	5.00 U	10.0 U	25 U	5.00 U	5.00 U	-	5.00 U	10.0 U				
Tetrachloroethane, 1,1,2,2-	µg/L	5 ^A	10.0 U	10.0 U	5.00 U	4.00 U	2.00 U	4.00 U	10 U	2.00 U	2.00 U	-	2.00 U	4.00 U				
Tetrachloroethene (PCE)	µg/L	5 ^A	10.0 U	10.0 U	6.71 ^A	4.92	5.21 ^A	5.59 ^A	10 U	2.00 U	2.00 U	-	2.00 U	1.38 J	2.36	2.93	3.37	2.15 J
Toluene	µg/L	5 ^A	10.0 U	10.0 U	5.00 U	4.00 U	2.00 U	4.00 U	10 U	2.00 U	2.00 U	-	2.00 U	4.00 U				
Trichlorobenzene, 1,2,3-	µg/L µa/L	5 ^A	25.0 0	25.00	12.5 U	10.0 0	5.00 U		25 U	5.00 U	5.00 U		5.00 U	10.0 0				
Trichloroethane, 1,1,1-	µg/L	5 ^A	10.0 U	10.0 U	5.00 U	4.00 U	2.00 U	4.00 U	10 U	2.00 U	2.00 U	-	2.00 U	4.00 U				
Trichloroethane, 1,1,2-	µg/L	1 ^A	10.0 U	10.0 U	5.00 U	4.00 U	2.00 U	4.00 U	10 U	2.00 U	2.00 U	-	2.00 U	4.00 U				
Trichloroethene (TCE)	µg/L	5··- ^A	431 ^A	221 ^A	264 ^A	200 ^A	139 ^A	229 ^A	230 ^A	13.9 ^A	20.3 ^A	-	16.8 ^A	9.94 ^A	10.1	15.2 ^A	23.5 ^A	14.2 ^A
I richlorotiluoromethane (Freon 11)	µg/L	5^	10.0 U	10.0 U	5.00 U	4.00 U	2.00 U	4.00 U	10 U	2.00 U	2.00 U	-	2.00 U	4.00 U				
Trimethylbenzene. 1.2.4-	µg/L ua/l	5 ^A	25.0 1	25.0 11	12.5 U	4.00 U	2.00 U			2.00 0	2.00 0	[2.00 0	2.00 0	2.00 0	2.00 0	2.00 0	4.00 0
Trimethylbenzene, 1,3,5-	µg/L	5 ^A	25.0 U	25.0 U	12.5 U	4.00 U	2.00 U	-	-	-	-	-	-	-	-	-	-	-
Vinyl Acetate	μg/L	n/v	-	-	-	-	-	10.0 U	-	-	-	-	-	-	-	-	-	-
Vinyl Chloride	µg/L	2 ^A	10.0 U	10.0 U	5.00 U	4.00 U	2.00 U	4.00 U	10 U	23.6 ^A	18.8 ^A	-	78.3 ^A	48.5 ^A	55.5 ^A	48.7 ^A	75.8 ^A	46.6 ^A
Xylene, m & p-	µg/L	5·· [^]	10.0 U	10.0 U	5.00 U	4.00 U	2.00 U	4.00 U	10 U	2.00 U	2.00 U	-	2.00 U	4.00 U				
Aylene, 0- Total VOC	µg/L	5^^ n/v	10.0 U	10.0 U 534	5.00 U 709 11	4.00 U 479 92	2.00 U 285 11	4.00 U 494 59	670	2.00 U 345 1	2.00 U 209 1		2.00 U 442 1	2.00 0	2.00 U 311 96	2.00 U	2.00 U 389 57	4.00 U 385 95
Miscellaneous Parameters	P9/L	1 // V	1,203		100.11	713.32	200.11		010	040.1	200.1	-	774.1	000.02	011.00	201.00	000.07	000.00
Arsenic	ma/L	0.025 ^A	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	-	-	0.0194	-	-	-	-	-	-		_
Iron	ma/L	0.3.4	0.100 U	0.100 U	0.100 U	0.100 U	0.100 U		-	3.91 I ^A	-	-	-	-	-			-
Manganese	mg/L	0.3. ^A	0.092	0.021	0.033	0.041	0.015 U	-	-	0.0860 L	-	-	-	-	-	-	-	-
Sodium	mg/L	20 ^A	318 ^A	346 ^A	352 ^A	342 ^A	356 ^A	361^	1,100 ^A	302 ^A	-	-	-	-	-	-	-	-
Total Organic Carbon	mg/L	n/v	3.2	3	3.2	2.9	3.3	3.2	1,200	164	12.0	4.70		2.5	6.14	3.52	2.0	1.6
			See notes on last page.															

Sample Location	1 1		I							MW/207P								
Sample Location			27-Sep-11	27-Sep-11	6-Feb-12	2-Mar-12	6-Jun-12	6-Sep-12	24-Jan-13	12-Apr-13	5-Jul-13	10-Oct-13	10-Oct-13	18-Jun-15	10-Mar-16	10-Jan-18	24-Oct-18	8-Oct-19
Sample ID			WSR-MW-207R-GW-12	WSR-MW-Dup-GW-13	WSR-MW-207R-GW-13	WSR-MW-207R-GW-14	WSR-MW-207R-GW-15	WSR-MW-207R-GW-16	WSR-MW-207R-GW	WSR-MW-207R-GW	WSR-MW-207R-GW	WSR-MW-207R-GW	WSR-MW-207R-GW	WSR-MW-207R-GW	WSR-MW-207R-GW	WSR-MW-207R-GW	MW-207R	WSR-MW-207R-GW
Sampling Company			STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC
Laboratory			PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH
Laboratory Work Order			14074	14075	12:0488-04	12:0936-03	12:2392	12:3694-02	130365-02	131283-04	132505-04	133909-04	133925-06	152493	160970-05	180096-04	184937-05	194958-04
Sample Type	Units	TOGS		Field Duplicate														
	ug/l	FOB	50.011	50.0.11	100 11	100 11	50.0.11	50.011	50.11	50.011	200.11		200.11	200.11	100 //	100 11	200.11	100 //
Benzene	µg/L µg/l	50 ⁻	3 50 11	3 50 11	7 00 11	7.00 U	3 50 11	3 50 11	3.5.11	3 50 11	200 0	-	200 0	200 0	10.00	10.01	200 0	1000
Bromobenzene	µg/L	5 ^A	-	-	-	-	-	-	25 U	25.0 U	-	-	-	-	-	-	-	-
Bromodichloromethane	µg/L	50 ^B	10.0 U	10.0 U	20.0 U	20.0 U	10.0 U	10.0 U	10 U	10.0 U	40.0 U	-	40.0 U	40.0 U	20.0 U	20.0 U	40.0 U	20.0 U
Bromoform (Tribromomethane)	µg/L	50 ^B	25.0 U	25.0 U	50.0 U	50.0 U	25.0 U	25.0 U	25 U	25.0 U	100 U	-	100 U	100 U	50.0 U	50.0 U	100 U	50.0 U
Bromomethane (Methyl bromide)	µg/L	5^	10.0 U	10.0 U	20.0 U	20.0 U	10.0 U	10.0 U	10 U	10.0 U	40.0 U	-	40.0 U	40.0 U	20.0 U	20.0 U	40.0 U	20.0 U
Butylbenzene, n- Butylbenzene, sec- (2-Phenylbutane)	ug/L	5 ^A	25.0 0	25.0 0	20.00	20.0 0	10.0 0	_		-		-						-
Butylbenzene, tert-	µg/L	5 ^A	25.0 U	25.0 U	20.0 U	20.0 U	10.0 U	-	-	-	-	-	-	-	-	-	-	-
Carbon Disulfide	µg/L	60 ^B	25.0 U	25.0 U	20.0 U	20.0 U	10.0 U	10.0 U	10 U	10.0 U	40.0 U	-	40.0 U	40.0 U	20.0 U	20.0 U	40.0 U	20.0 U
Carbon Tetrachloride (Tetrachloromethane)	µg/L	5^	10.0 U	10.0 U	20.0 U	20.0 U	10.0 U	10.0 U	10 U	10.0 U	40.0 U	-	40.0 U	40.0 U	20.0 U	20.0 U	40.0 U	20.0 U
Chlorobenzene (Monochlorobenzene)	µg/L	5^	10.0 U	10.0 0	20.0 U	20.0 0	10.0 U	10.0 0	10 U	10.0 U	40.0 0	-	40.0 U	40.0 U	20.0 U	20.0 0	40.0 0	20.0 U
Chloroethane (Ethyl Chloride)	ua/L	5 ^A	25.0 U	10.0 U	20.0 U	20.0 U	25.0 U	10.0 U	10 U	25.0 U 10.0 U	40.0 U	-	40.0 U	40.0 U	20.0 U	20.0 U	40.0 U	20.0 U
Chloroethyl Vinyl Ether, 2-	µg/L	n/v	-	-				50.0 U	50 U	50.0 U	-	-	-	-			-	
Chloroform (Trichloromethane)	µg/L	7 ^A	10.0 U	10.0 U	20.0 U	20.0 U	10.0 U	10.0 U	10 U	10.0 U	40.0 U	-	40.0 U	40.0 U	20.0 U	20.0 U	40.0 U	20.0 U
Chloromethane	µg/L	5 ^A	10.0 U	10.0 U	20.0 U	20.0 U	10.0 U	10.0 U	10 U	10.0 U	40.0 U	-	40.0 U	40.0 U	20.0 U	20.0 U	40.0 U	20.0 U
Dibromo-3-Chloropropane, 1 2- (DRCP)	μg/L μα/I	0.04 ^A	50.0 U	50.0 0	100 0	100 0	50.0 U		50 U	50.0 U	200 0	-	200 0	200 0	100 0	100 0	200 0	100 0
Dibromochloromethane	µg/L	50 ^B	10.0 U	10.0 U	20.0 U	20.0 U	10.0 U	10.0 U	10 U	10.0 U	40.0 U	-	40.0 U	40.0 U	20.0 U	20.0 U	40.0 U	20.0 U
Dichlorobenzene, 1,2-	µg/L	3 ^A	10.0 U	10.0 U	20.0 U	20.0 U	10.0 U	10.0 U	10 U	10.0 U	40.0 U	-	40.0 U	40.0 U	20.0 U	20.0 U	40.0 U	20.0 U
Dichlorobenzene, 1,3-	µg/L	3 ^A	10.0 U	10.0 U	20.0 U	20.0 U	10.0 U	10.0 U	10 U	10.0 U	40.0 U	-	40.0 U	40.0 U	20.0 U	20.0 U	40.0 U	20.0 U
Dichlorobenzene, 1,4-	µg/L	3^	10.0 U	10.0 U	20.0 U	20.0 U	10.0 U	10.0 U	10 U	10.0 U	40.0 U	-	40.0 U	40.0 U	20.0 U	20.0 U	40.0 U	20.0 U
Dichloroethane 11-	µg/L µg/l	5 ^A	25.0 0	25.0 0	20.0 0	20.0 0	10.0 0	10 0 11	10 0	10.0 0	40.0 0	-	40.0 0	40.0 0	20.0 0	20.0 0	40.0 0	20.0 0
Dichloroethane, 1,2-	µg/L	0.6 ^A	10.0 U	10.0 U	20.0 U	20.0 U	10.0 U	10.0 U	10 U	10.0 U	40.0 U	-	40.0 U	40.0 U	20.0 U	20.0 U	40.0 U	20.0 U
Dichloroethene, 1,1-	µg/L	5 ^A	10.0 U	10.0 U	20.0 U	20.0 U	10.0 U	10.0 U	10 U	10.0 U	40.0 U	-	40.0 U	40.0 U	20.0 U	20.0 U	40.0 U	20.0 U
Dichloroethene, cis-1,2-	µg/L	5 ^A	908 ^A	913 ^A	1,330 ^A	1,480 ^A	432 ^A	98.4 ^A	500 ^A	250 ^A	193 ^A	-	40.0 U	537 ^A	690 ^A	1,940 ^A	1,070 ^A	932 ^A
Dichloroethene, trans-1,2-	µg/L	5 ^A	22.7 ^A	22.3 ^A	20.0 U	20.0 U	13.9 ^A	26.0 ^A	24 ^A	10.0 U	40.0 U	-	40.0 U	40.0 U	14.7 J ^A	25 ^A	40.0 U	15.5 J ^A
Dichloropropane, 1,2-	µg/L	1^	10.0 U	10.0 U	20.0 U	20.0 U	10.0 U	10.0 U	40.11	40.011	40.0 U	-	40.0 U	40.0 U	20.0 U	20.0 U	40.0 U	20.0 U
Dichloropropane, 1,3-	µg/L µg/l	5 ^A	-		-			_	10 0	10.0 0	-	-		-	-	-		-
Dichloropropene, cis-1,3-	µg/L	0.4 ^A	10.0 U	10.0 U	20.0 U	20.0 U	10.0 U	10.0 U	-	-	40.0 U	-	40.0 U	40.0 U	20.0 U	20.0 U	40.0 U	20.0 U
Dichloropropene, trans-1,3-	µg/L	0.4 ^{^A}	10.0 U	10.0 U	20.0 U	20.0 U	10.0 U	10.0 U	10 U	10.0 U	40.0 U	-	40.0 U	40.0 U	20.0 U	20.0 U	40.0 U	20.0 U
Dioxane, 1,4-	µg/L	n/v	-		-				100 U	100 U	400 U	-	R	400 U	200 U	200 U	400 U	200 U
Ethylbenzene	µg/L	5^	10.0 U	10.0 U	20.0 U	20.0 U	10.0 U	10.0 U	10 U	10.0 U	40.0 U	-	40.0 U	40.0 U	20.0 U	20.0 U	40.0 U	20.0 U
Hexanone, 2- (Methyl Butyl Ketone)	ua/L	0.0006 50 ^B	25.0 U	25.0 U	50.0 U	50.0 U	25.0 U	25.0 U	25 U	25.0 U	40.0 U	-	40.0 U	40.0 U	50.0 U	50.0 U	40.0 U	50.0 U
Isopropylbenzene	µg/L	5 ^A	25.0 U	25.0 U	20.0 U	20.0 U	10.0 U	-	-	10.0 U	40.0 U	-	40.0 U	40.0 U	20.0 U	20.0 U	40.0 U	20.0 U
Isopropyltoluene, p- (Cymene)	µg/L	5 ^A	10.0 U	10.0 U	20.0 U	20.0 U	10.0 U	-	-	-	-	-	-	-	-	-	-	-
Methyl Acetate	µg/L	n/v	10.0 U	10.0 U	20.0 U	20.0 U	10.0 U	-	10 U	10.0 U	40.0 U	-	40.0 U	40.0 U	20.0 U	20.0 U	40.0 U	20.0 U
Methyl Ethyl Ketone (MEK) (2-Butanone)	µg/L	50°	50.0 0	50.0 U	100 U	100 U	50.0 U	50.0 U	140 ⁰	61.0 ⁵	200 0	-	200 03	200 0	100 U	100 U	200 0	100 U
Methyl tert-butyl ether (MTBE)	ua/L	10 ^B	25.0 U	10.0 U	20.0 U	20.0 U	10.0 U	- 25.0 0	10 U	10.0 U	40.0 U	-	40.0 U	40.0 U	20.0 U	20.0 U	40.0 U	20.0 U
Methylcyclohexane	µg/L	n/v	10.0 U	10.0 U	20.0 U	20.0 U	10.0 U	-	10 U	10.0 U	40.0 U	-	40.0 U	40.0 U	20.0 U	20.0 U	40.0 U	20.0 U
Methylene Chloride (Dichloromethane)	µg/L	5 ^A	25.0 U	25.0 U	50.0 U	50.0 U	25.0 U	25.0 U	25 U	25.0 U	100 U	-	100 U	100 U	50.0 U	50.0 U	100 U	50.0 U
Naphthalene Bropythonzono, p	µg/L	10 ⁴	25.0 U	25.0 U	50.0 U	50.0 U	25.0 U	-	-	-	-	-	-	-	-	-	-	-
Styrene	ug/L	5 ^A	25.0 0	25.0 0	50.011	50.0 11	25.0.11	25 0 11	25 11	25 0 11	100 11	-	100 11	100 11	50 0 11	50 0 11	100 11	50 0 11
Tetrachloroethane, 1,1,2,2-	µg/L	5 ^A	10.0 U	10.0 U	20.0 U	20.0 U	10.0 U	10.0 U	10 U	10.0 U	40.0 U	-	40.0 U	40.0 U	20.0 U	20.0 U	40.0 U	20.0 U
Tetrachloroethene (PCE)	µg/L	5 ^A	132 ^A	130 ^A	20.0 U	20.0 U	10.0 U	10.0 U	19 ^A	10.0 U	40.0 U	-	40.0 U	40.0 U	20.0 U	20.0 U	40.0 U	20.0 U
Toluene	µg/L	5 ^A	10.0 U	10.0 U	20.0 U	20.0 U	10.0 U	10.0 U	10 U	10.0 U	40.0 U	-	40.0 U	40.0 U	20.0 U	20.0 U	40.0 U	20.0 U
I richlorobenzene, 1,2,3-	µg/L	5 ^A	25.0 U	25.0 U	50.0 U	50.0 U	25.0 U	-	25 U	25.0 U	100 U	-	100 U	100 U	50.0 U	50.0 U	100 U	50.0 U
Trichloroethane, 1,1,1-	µg/L µg/l	5 ^A	25.00	25.0 0	20 0 11	20.0 0	25.0 0	10.0 11	25 0	25.00	40.011	_	40.011	40.011	20.0 11	20 0 11	40.011	20.011
Trichloroethane, 1,1,2-	µg/L	1 ^A	10.0 U	10.0 U	20.0 U	20.0 U	10.0 U	10.0 U	10 U	10.0 U	40.0 U	-	40.0 U	40.0 U	20.0 U	20.0 U	40.0 U	20.0 U
Trichloroethene (TCE)	µg/L	5 ^A	182 ^A	184 ^A	20.0 U	20.0 U	10.0 U	10.0 U	55 ^A	10.0 U	40.0 U	-	40.0 U	20.5 J ^A	20.0 U	20.0 U	40.0 U	20.0 U
Trichlorofluoromethane (Freon 11)	µg/L	5 ^A	10.0 U	10.0 U	20.0 U	20.0 U	10.0 U	10.0 U	10 U	10.0 U	40.0 U	-	40.0 U	40.0 U	20.0 U	20.0 U	40.0 U	20.0 U
Trichlorotrifluoroethane (Freon 113)	µg/L	5 ^A	10.0 U	10.0 U	20.0 U	20.0 U	10.0 U	-	10 U	10.0 U	40.0 U	-	40.0 U	40.0 U	20.0 U	20.0 U	40.0 U	20.0 U
Trimethylbenzene, 1,2,4-	µg/L	5. A	25.0 U	25.0 U	20.0 0	20.0 U	10.0 U 10.0 U			-								-
Vinyl Acetate	µg/L	n/v						25.0 U		-							-	-
Vinyl Chloride	µg/L	2 ^A	203 ^A	213 ^A	1,010 ^A	936 ^A	627 ^A	184 ^A	1,000 ^A	327 ^A	1,850 ^A	-	451 ^A	829 ^A	582 ^A	2,000 ^A	1,700 ^A	1,140 ^A
Xylene, m & p-	µg/L	5 ^A	10.0 U	10.0 U	20.0 U	20.0 U	10.0 U	10.0 U	10 U	10.0 U	40.0 U	-	40.0 U	40.0 U	20.0 U	20.0 U	40.0 U	20.0 U
Xylene, o-	µg/L	5 ^A	10.0 U	10.0 U	20.0 U	20.0 U	10.0 U	10.0 U	10 U	10.0 U	40.0 U	-	40.0 U	40.0 U	20.0 U	20.0 U	40.0 U	20.0 U
	µg/L	n/v	1,447.7	1,462.3	2,340	2,416	1,072.9	308.4	1,738	638	2,043	-	451	1,386.5	1,286.7	3,965	2,770	-
	m=//	0.007 ^A			0.04011	0.014	0.010.11			0.0100.11								
Alsenic	ma/L	0.025	-	-	0.010 0	0.014	0.010 0	-	-	0.0100 0	-	-	-	-	-	-	-	-
Manganese	mg/L	0.3+**	-	-	0.100 0	0.100 0	0.100 0	-	-	0.100 0	-	-	-	-	-	-	-	-
Sodium	mg/L	0.3+ 20 ^A			5.040 549A	420 ^A	5.007	524 ^A	840 ^A	402A								-
Total Organic Carbon	ma/L	n/v	-		18.5	8.7	9.4	1.7	530	131	28.0	18.4	-	4.1	11.7	5.91	3.5	2.1
	<u>, </u>		See notes on last page.														-	

Sample Location Sample Date Sample ID			4-Jan-12 Trip Blank	5-Jan-12 Trip Blank	2-Feb-12 Trip Blank	3-Feb-12 Trip Blank	6-Feb-12 Trip Blank	29-Feb-12 Trip Blank	1-Mar-12 Trip Blank	2-Mar-12 Trip Blank	4-Jun-12 Trip Blank	5-Jun-12 Trip Blank	6-Jun-12 Trip Blank	Trip Blank 4-Sep-12 Trip Blank	5-Sep-12 Trip Blank	6-Sep-12 Trip Blank	22-Jan-13 Trip Blank	23-Jan-13 Trip Blank	24-Jan-13 Trip Blank	10-Apr-13 Trip Blank	11-Apr-13 Trip Blank	12-Apr-13 Trip Blank	2-Jul-13 Trip Blank	3-Jul-13 Trip Blank	5-Jul-13 Trip Blank
Laboratory			PARAROCH P12-0041	PARAROCH P12-0069	PARAROCH 12:0443	PARAROCH	PARAROCH 12:0488	PARAROCH	PARAROCH	PARAROCH 12:0936	PARAROCH 12:2335	PARAROCH 12:2364	PARAROCH	PARAROCH	PARAROCH 12:3668	PARAROCH	PARAROCH 13:0329	PARAROCH 13:0353	PARAROCH 13:0365	PARAROCH 131242	PARAROCH 131259	PARAROCH 131283	PARAROCH 132471	PARAROCH 132490	PARAROCH 132505
Laboratory Sample ID Sample Type	Units	TOGS	12:0041-01 Trip Blank	12:0069-01 Trip Blank	12:0443-01 Trip Blank	12:0472-01 Trip Blank	12:0488-01 Trip Blank	12:0868-01 Trip Blank	12:0906-01 Trip Blank	12:0936-01 Trip Blank	12:2335-01 Trip Blank	12:2364-01 Trip Blank	12:2392-01 Trip Blank	12:3644-01 Trip Blank	12:3668-01 Trip Blank	12:3694-01 Trip Blank	130329-01 Trip Blank	130353-01 Trip Blank	130365-01 Trip Blank	131242-01 Trip Blank	131259-01 Trip Blank	131283-01 Trip Blank	132471-01 Trip Blank	132490-01 Trip Blank	132505-01 Trip Blank
Veletile Ornenie Compounde																									
Acetone	µg/L	50 ^B	10.0 U	28.1 B	10.0 U	10.0 U	10 U	10 U	10 U	13.3	10.0 U														
Benzene	µg/L	1 ^A	0.700 U	0.700 U	0.700 U	0.70 U	0.70 U	0.70 U	0.700 U	0.700 U	0.700 U	0.700 U	0.700 U	0.700 U											
Bromobenzene Bromodichloromethane	μg/L μg/L	57 50 ^B	2.00 U	- 2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	- 2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	- 2.00 U	2.0 U	- 2.0 U	2.0 U	2.00 U	- 2.00 U	- 2.00 U	- 2.00 U	2.00 U	2.00 U
Bromoform (Tribromomethane)	µg/L	50 ^B	5.00 U	5.00 U	5.00 U	5.0 U	5.0 U	5.0 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U											
Bromomethane (Methyl bromide) Butylbenzene, n-	µg/L µa/L	5^ 5^	2.00 U 5.00 U	2.00 U 5.00 U	2.00 U 5.00 U	2.00 U 2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.0 U	2.0 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U							
Butylbenzene, sec- (2-Phenylbutane)	µg/L	5 ^A	5.00 U	5.00 U	5.00 U	2.00 U	-	-	-	-	-	-	-	-	-	-	-	-							
Butylbenzene, tert- Carbon Disulfide	µg/L µg/l	5 ^A 60 ^B	5.00 U 5.00 U	5.00 U 5.00 U	5.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2 00 U	2 00 U	2 00 11	2011	2011	2011	2 00 11	2 00 11	2 00 U	2 00 11	2 00 U	2 00 U
Carbon Tetrachloride (Tetrachloromethane)	µg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.0 U	2.0 U	2.0 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U											
Chlorobenzene (Monochlorobenzene)	µg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.0 U	2.0 U	2.0 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U											
Chloroethane (Ethyl Chloride)	μg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.0 U	2.0 U	2.0 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U											
Chloroethyl Vinyl Ether, 2-	µg/L	n/v		- 2 00 11	- 2.00.11	- 2.00.11	- 2.00.11	- 2 00 11	- 2.00.11	- 2 00 11	- 2 00 11	- 2 00 11	- 2.00.11	10.0 U	10.0 U	10.0 U	- 2011	- 2011	- 2011	- 2 00 11	- 2 00 11	- 2 00 11	- 2 00 11	- 2 00 11	- 2.00.11
Chloromethane	μg/L μg/L	5 ^A	2.00 U 2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.0 U	2.0 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Cyclohexane	µg/L	n/v	10.0 U	-	-	-	10 U	10 U	10 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U										
Dibromo-3-Chloropropane, 1,2- (DBCP) Dibromochloromethane	µg/L µa/L	0.04 [^] 50 ^B	10.0 U 2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	10.0 U 2.00 U	2.00 U	2.00 U	10.0 U 2.00 U	2.00 U	- 2.00 U	- 2.00 U	2.0 U	2.0 U	10 0 2.0 U	2.00 U	10.0 U 2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Dichlorobenzene, 1,2-	µg/L	3 ^A	2.00 U	2.00 U	2.00 U	2.0 U	2.0 U	2.0 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U											
Dichlorobenzene, 1,3- Dichlorobenzene, 1,4-	µg/L µg/L	3 ^A 3 ^A	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.0 U 2.0 U	2.0 U 2.0 U	2.0 U 2.0 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U											
Dichlorodifluoromethane (Freon 12)	µg/L	5 ^A	5.00 U	5.00 U	5.00 U	2.00 U	-	-	-	2.0 U	2.0 U	2.0 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U							
Dichloroethane, 1,1-	µg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.0 U	2.0 U	2.0 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U											
Dichloroethene, 1,1-	µg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.0 U	2.0 U	2.0 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U											
Dichloroethene, cis-1,2-	µg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.0 U	2.0 U	2.0 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U											
Dichloroethene, trans-1,2- Dichloropropage, 1,2-	µg/L	5^ 1 ^A	2.00 U	2.00 U	2.00 U	2.0 U	2.0 U	2.0 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U											
Dichloropropane, 1,3-	µg/L	5 ^A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dichloropropane, 2,2-	µg/L	5 ^A	2 00 11	2 00 11	2 00 11	2 00 11	2 00 11	2 00 11	2 00 11	2 00 11	2 00 11	2 00 11	2 00 11	2 00 11	2 00 11	2 00 11	2011	2011	2011	2 00 11	2 00 11	2 00 11	2 00 11	2 00 11	2 00 11
Dichloropropene, trans-1,3-	μg/L	0.4p 0.4p ^A	2.00 U	2.00 U	2.00 U	2.0 U	2.0 U	2.0 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U											
Dioxane, 1,4-	µg/L	n/v		- 2 00 11	- 2.00.11	- 2.00.11	- 2.00.11	- 2 00 11	- 2.00.11	- 2 00 11	- 2 00 11	- 2 00 11	- 2.00.11	- 2 00 11	- 2.00.11	- 2 00 11	20 U	20 U	20 U	20.0 U	20.0 U	20.0 U	20.0 U	20.0 U	20.0 U
Ethylene Dibromide (Dibromoethane, 1,2-)	µg/∟ µg/L	5⊷ 0.0006 ^A	2.00 U 2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 0	2.00 0	2.00 0	2.0 0 2.0 U	2.0 0 2.0 U	2.0 0 2.0 U	2.00 U	2.00 U	2.00 U	2.00 U 2.00 U	2.00 U	2.00 U
Hexanone, 2- (Methyl Butyl Ketone)	µg/L	50 ^B	5.00 U	5.00 U	5.00 U	5.0 U	5.0 U	5.0 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U											
Isopropyltoluene, p- (Cymene)	µg/L µg/L	5^ 5 ^A	5.00 U 2.00 U	2.00 U	2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	-	-		2.0 0	2.0 0	2.0 0	2.00 0	2.00 0	2.00 0	2.00 0	2.00 0	2.00 0
Methyl Acetate	µg/L	n/v	2.00 U	-	-	-	2.0 U	2.0 U	2.0 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U										
Methyl Ethyl Ketone (MEK) (2-Butanone) Methyl Isobutyl Ketone (MIBK)	µg/L µg/l	50°	10.0 U 5.00 U	10.0 U 5 00 U	10.0 U 5 00 U	10.0 U 5 00 U	10.0 U 5.00 U	10.0 U 5.00 U	10.0 U 5 00 U	10.0 U 5.00 U	10.0 U 5 00 U	10.0 U 5 00 U	10.0 U 5 00 U	10 U 5 0 U	10 U 5 0 U	10 U 5 0 U	10.0 U 5 00 U	10.0 U 5 00 U	10.0 U 5 00 U	10.0 U 5 00 U	10.0 U 5.00 U	10.0 U 5.00 U			
Methyl tert-butyl ether (MTBE)	µg/L	10 ^B	2.00 U	-	-	-	2.0 U	2.0 U	2.0 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U										
Methylcyclohexane Methylene Chloride (Dichloromethane)	µg/L µg/l	n/v 5 ^A	2.00 U 5.00 U	- 5 00 U	- 5 00 U	- 5 00 U	2.0 U 5 0 U	2.0 U 5 0 U	2.0 U 5 0 U	2.00 U 5.00 U	2.00 U 5.00 U	2.00 U 5.00 U	2.00 U 5.00 U	2.00 U 5.00 U	2.00 U 5.00 U										
Naphthalene	µg/L	10 ^A	5.00 U	-	-	-	-	-	-	-	-	-	-	-	-										
Propylbenzene, n-	µg/L	5 ^A	5.00 U	5.00 U	5.00 U	2.00 U	-	-	-	-	-	-	-	-	-	-	-	-							
Tetrachloroethane, 1,1,2,2-	μg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.0 U	2.0 U	2.0 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U											
Tetrachloroethene (PCE)	µg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.0 U	2.0 U	2.0 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U											
Toluene Trichlorobenzene, 1.2.3-	µg/L µa/L	5^ 5 ^A	2.00 U 5.00 U	2.00 U	2.00 U	2.00 U	2.0 U 5.0 U	2.0 U 5.0 U	2.0 U 5.0 U	2.00 U 5.00 U	2.00 U 5.00 U	2.00 U 5.00 U	2.00 U 5.00 U	2.00 U 5.00 U	2.00 U 5.00 U										
Trichlorobenzene, 1,2,4-	μg/L	5 ^A	5.00 U	-	-	-	5.0 U	5.0 U	5.0 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U										
Trichloroethane, 1,1,1- Trichloroethane, 1,1,2-	µg/L µa/L	5 ^A 1 ^A	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.0 U 2.0 U	2.0 U 2.0 U	2.0 U 2.0 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U											
Trichloroethene (TCE)	µg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.0 U	2.0 U	2.0 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U											
Trichlorofluoromethane (Freon 11)	µg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.0 U	2.0 U	2.0 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U											
Trimethylbenzene, 1,2,4-	μg/L μg/L	5^ 5 ^A	2.00 U 5.00 U	2.00 U 5.00 U	2.00 U	2.00 U	2.00 U	2.00 U 2.00 U	2.00 U	2.00 U 2.00 U	2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	-	-	-	2.0 0	2.0 0	2.0 U -	2.00 0	2.00 0	2.00 0	2.00 0	2.00 0	2.00 0
Trimethylbenzene, 1,3,5-	µg/L	5 ^A	5.00 U	5.00 U	5.00 U	2.00 U	-	-	-	-	-	-	-	-		-	-	-							
Vinyi Acetate Vinyi Chloride	µg/L µa/L	n/v 2 ^A	2.00 U	2.00 LJ	2.00 U	- 2.00 U	2.00 U	2.00 U	2.00 LJ	5.00 U 2.00 U	5.00 U 2.00 U	5.00 U 2.00 U	2.0 U	- 2.0 U	2.0 U	2.00 U	2.00 LJ	2.00 U	2.00 U	2.00 U	2.00 U				
Xylene, m & p-	μg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.0 U	2.0 U	2.0 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U											
Xylene, o-	µg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.0 U	2.0 U	2.0 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U											
Miscellaneous Parameters	µg/L	11/V	UN	UN	UNU	UN	טא	ND	UND	UN	UNU	טא	UN	20.1	UNU I	UN	UNU	UN	UN	13.3	UN	UNU	U	U	U
Arsenic	mg/L	0.025 ^A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Iron	mg/L	0.3. ^A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Manganese	mg/L	0.3+ ^A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Sourium Total Organic Carbon	mg/L ma/L	20^ n/v	-	_				-		-						-		-	-		_		-		
· · · · · · · · · · · · · · · · · · ·	. <i>a</i> = 1	•	See notes on la	ast page.																					

Ormale Location	ı.	1	1			Tuin	Diants			
Sample Location			8 Oct 12	9 Oct 12	10 Oct 12	17 Jun 15		10 Jan 19	16 Oct 19	2 Oct 19
Sample Date			o-Oct-13 Trin Blank	9-OCI-13 Trin Blank	Trin Blank	TRIP-06172015 T-633	9-War-16 Trin Blank (T-693)	Trin Blank T-803	Trin Blank	3-OCI-19 Trin Blank
Sampling Company			STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC
Laboratory			PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH
Laboratory Work Order			133927	133926	133925	152493	160970	180096	184937	194958
Laboratory Sample ID			133927-01	133926-01	133925-01	152493-04	160970-07	180096-07	184937-07	194958-07
Sample Type	Units	TOGS	I rip Blank	I rip Blank	I rip Blank	I rip Blank	I rip Blank	I rip Blank	I rip Blank	I rip Blank
Volatile Organic Compounds										
Acetone	ua/L	50 ^B	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U
Benzene	µg/L	1 ^A	1 U	10	10	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Bromobenzene	µg/L	5 ^A	-	-	-	-	-	-	-	-
Bromodichloromethane	µg/L	50 ^B	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Bromoform (Tribromomethane)	µg/L	50 ^B	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Bromomethane (Methyl bromide)	µg/L	5^	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Butylbenzene, n-	µg/L	5	-	-	-	-	-	-	-	-
Butylbenzene tert-	µg/L µg/l	5A	-	-	-	-	-	-	-	-
Carbon Disulfide	µg/L	60 ^B	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Carbon Tetrachloride (Tetrachloromethane)	µg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Chlorobenzene (Monochlorobenzene)	µg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Chlorobromomethane	µg/L	5 ^A	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Chloroethane (Ethyl Chloride)	µg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Chloroethyl Vinyl Ether, 2-	µg/L	n/v	-	-	-	-	-	-	-	-
Chloromethane	µg/L	A	2.00 U	2.00 0	2.00 U	2.00 0	2.00 U	2.00 U	2.00 U	2.00 0
Cyclobexane	ug/L	n/v	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U
Dibromo-3-Chloropropane, 1,2- (DBCP)	µg/L	0.04 ^A	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U
Dibromochloromethane	μg/L	50 ^B	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Dichlorobenzene, 1,2-	µg/L	3 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Dichlorobenzene, 1,3-	µg/L	3 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Dichlorobenzene, 1,4-	µg/L	3 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Dichlorodifluoromethane (Freon 12)	µg/L	5^	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Dichloroethane, 1,1-	µg/L	5	2.00 0	2.00 0	2.00 0	2.00 0	2.00 0	2.00 0	2.00 0	2.00 0
Dichloroethene 11-	µg/L µg/l	0.6 5. ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.000	2.00 U	2.000
Dichloroethene, cis-1.2-	ug/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Dichloroethene, trans-1.2-	ug/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Dichloropropane, 1.2-	µa/L	1 ^A	2.00 11	2.00 U	2.00 11	2.00 []	2.00 11	2.00 U	2.00 11	2.00 []
Dichloropropane, 1,3-	µg/L	5 ^A		-	-	-	-	-	-	-
Dichloropropane, 2,2-	µg/L	5 ^A	-	-	-	-	-	-	-	-
Dichloropropene, cis-1,3-	µg/L	0.4 _p ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Dichloropropene, trans-1,3-	µg/L	0.4 _p ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Dioxane, 1,4-	µg/L	n/v	R	R	R	20.0 U	20.0 U	20.0 U	20.0 U	20.0 U
Ethylene Dibromide (Dibromoethane, 1.2.)	µg/L	5A	2.00 0	2.00 0	2.00 0	2.00 0	2.00 0	2.00 0	2.00 0	2.00 0
Hexanone, 2- (Methyl Butyl Ketone)	ug/L	50 ^B	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Isopropylbenzene	µg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Isopropyltoluene, p- (Cymene)	µg/L	5 ^A	-	-	-	-	-	-	-	-
Methyl Acetate	µg/L	n/v	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Methyl Ethyl Ketone (MEK) (2-Butanone)	µg/L	50 ⁸	10.0 UJ	10.0 UJ	10.0 UJ	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U
Methyl Isobutyl Ketone (MIBK)	µg/L	n/v	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Methylcyclobexane	µg/L	10 ⁻	2.00 0	2.00 0	2.00 0	2.00 0	2.00 0	2.00 0	2.00 0	2.00 0
Methylene Chloride (Dichloromethane)	µg/L µa/L	5 ^A	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Naphthalene	µg/L	10 ^A	-	-	-	-	-	-	-	-
Propylbenzene, n-	µg/L	5 ^A	-	-	-	-	-	-	-	-
Styrene	µg/L	5 ^A	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Tetrachloroethane, 1,1,2,2-	µg/L	5^	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Tetrachloroethene (PCE)	µg/L	5^	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Toluene	µg/L	5^	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Trichlorobenzene, 1,2,3-	µg/L	5 ^A	5.00 U	5.00 U	5.00 U	5.00 0	5.00 U	5.00 U	5.00 U	5.00 U
Trichloroethane, 1,1,1-	ug/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Trichloroethane, 1,1,2-	µg/L	1 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Trichloroethene (TCE)	µg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Trichlorofluoromethane (Freon 11)	µg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Trichlorotrifluoroethane (Freon 113)	µg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Trimethylbenzene, 1,2,4-	µg/L	5 ^A	-	-	-	-	-	-	-	-
Trimethylbenzene, 1,3,5-	µg/L	5 ^A	-	-	-	-	-	-	-	-
Vinyi Acetate	µg/L	n/v	2 00 11	-	- 2 00 11	-	-	20011		
	µg/L	2" 5 A	2.00 0	2.00 0	2.00 0	2.00 U	2.00 U	2.00 U	2.00 0	2.00 0
Xvlene. 0-	µg/L µg/l	5. A	2.00 0	2.00 0	2.00 U	2.00 U	2.00 0	2.00 0	2.00 0	2.00 0
Total VOC	µg/L	n/v	ND	ND	ND	ND	ND	ND	ND	ND
Miscellaneous Parameters									-	-
Arsenic	mg/L	0.025 ^A	-	-	-	-	-	-	-	-
Iron	mg/L	0.3. ^A	-	-	-	-	-	-	-	-
Manganese	mg/L	0.3+ ^A	-	-	-	-	-	-	-	-
Sodium	mg/L	20 ^A	-	-	-	-	-	-	-	-
Total Organic Carbon	mg/L	n/v			-	-	-	-	-	-

Notes:

TOGS NYSDEC TOGS 1.1.1 (Reissued June 1998 with errata in January 1999 and addenda in April 2000 and June 2004)

- A TOGS 1.1.1 Table 1 Ambient Water Quality Standards and Guidance Values, Division of Water, Technical and Operational Guidance Series (TOGS 1.1.1); Standards
 B TOGS 1.1.1 Table 1 Ambient Water Quality Standards and Guidance Values, Division of Water, Technical and Operational Guidance Series (TOGS 1.1.1); Standards 6.5^A Concentration exceeds the indicated standard.

- 5.0
 Concentration exceeds the indicated standard.

 15.2
 Measured concentration did not exceed the indicated standard.

 0.50 U
 Laboratory reporting limit was greater than the applicable standard.

 0.03 U
 Analyte was not detected at a concentration greater than the laboratory reporting limit.
- n/v No standard/guideline value. Parameter not analyzed / not available.
 - The standard for Iron and Manganese is 500 ug/L, which applies to the sum of these substances. As individual standards, the standard is 300 ug/L.
- The principal organic contaminant standard for groundwater of 5 ug/L (described elsewhere in the TOGS table) applies to this substance.
 Applies to the sum of cis- and trans-1,3-dichloropropene.
 Indicates analyte was found in associated blank, as well as in the sample.
 The reported result is an estimated value.

- L Detection limit adjustment for sample matrix effects.
- M Denotes matrix spike recoveries outside QC limits. Matrix bias indicated.
- ND Not detected.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
- UJ Indicates estimated non-detect.

Ward Street Sites Germanow-Simoan Corporation Rochester, NY

Area of interest								On-Site	Area 1: Building	B Annex						
Sample Location									MW105							
Sample Date		28-Sep-11	4-Jan-12	2-Feb-12	29-Feb-12	4-Jun-12	4-Sep-12	22-Jan-13	11-Apr-13	2-Jul-13	8-Oct-13	18-Jun-15*	10-Mar-16	10-Jan-18*	24-Oct-18	08-Oct-19*
Sample ID		WSR-MW-105- GW-12	WSR-MW-105- GW-13	WSR-MW-105- GW-14	WSR-MW-105- GW-15	WSR-MW-105- GW-16	WSR-MW-105- GW-17	WSR-MW-105- GW	WSR-MW-105- GW	WSR-MW-105- GW	WSR-MW-105- GW	WSR-MW-105- GW	WSR-MW-105- GW	WSR-MW-105- GW	WSR-MW-105- GW	WSR-MW-105- GW
Sampling Company		STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC
Field Parameters	Units			•												
Color (Visual)	none	clear	clear	clear	clear	clear	cloudy	clear	Black precipitate	clear with some brown precipitate	clear	cloudy	clear	slightly cloudy		brown turbid (after bailing)
Conductivity, Field	mS/cm	2.50	2.72	0.267	2.36	0.318	2.60	4.66	2.71	2.55	2.76	2.24	2.31	2.08	2.02	2.039
Dissolved Oxygen, Field	mg/L	0.00	0.53	0.00	0.25	0.97	0.53	0.17	0.79	0.32	0.21	0.42	0.35	0.33	0.48	0.26
Odor	none	none	no odor	no odor	no odor	sulfur odor	no odor	sulfur odor	Strong sulfur odor	none	none	none	slight sulfur	none	none	none
Oxidation Reduction Potential	mV	111	227	297	235	-132	195.3	-199.2	-219.6	-152.6	-70.2	-28.0	-90.2	-27.5	-91.8	-8.4
pH, Field	S.U.	6.87	7.25	7.28	7.33	7.09	7.16	6.90	7.37	8.47	7.26	7.18	7.22	7.14	7.19	7.18
Temperature, Field	deg C	20.46	20.49	19.22	20.43	19.4	21.3	18.9	18.7	19.6	19.4	19.2	19.6	20.0	21.2	20.7
Turbidity, Field	NTU	58.5	31.3	3.44	9.75	4.41	17.6	4.99	4.36	5.56	3.56	47.8	13.0	20.3	25.8	91.19
Volume Purged	gal	0.6	3 ~	3.5 ~	2.0	1.0	1.1	2.7	1.3	1.35	1.0	0.3	1.3	1.2	0.7	0.6

Ward Street Sites Germanow-Simoan Corporation Rochester, NY

Area of interest		1						On-Site Area 1:	Building B Anne	x					
Sample Location								MW	207R						
Sample Date		27-Sep-11	6-Feb-12	2-Mar-12	6-Jun-12	6-Sep-12	24-Jan-13	12-Apr-13	5-Jul-13	10-Oct-13	18-Jun-15	10-Mar-16	10-Jan-18*	24-Oct-18	8-Oct-19
Sample ID		WSR-MW-207R GW-12	WSR-MW-207R GW-13	WSR-MW-207R GW-14	WSR-MW-207R GW-15	WSR-MW-207R GW-16	WSR-MW-207R GW	WSR-MW-207R GW	WSR-MW-207R GW	WSR-MW-207R GW	WSR-MW-207R GW	WSR-MW-207R GW	WSR-MW-207R GW	WSR-MW-207R GW	WSR-MW-207R GW
Sampling Company		STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC
Field Parameters	Units											1			
Color (Visual)	none	clear	clear w/ black flecks	clear w/ black flecks	clear	clear w/ black flecks	murky w/ black flecks	Black precipitate	clear with black precipitate	clear with black particulates	slightly yellow	clear	clear	clear	clear with black, fine suspended material
Conductivity, Field	mS/cm	0.50	0.541	4.32	0.490	4.59	49.93	3.85	4.00	3.57	3.84	3.48	3.36	3.60	4.648
Dissolved Oxygen, Field	mg/L	0.7	0.00	0.00	0.62	0.41	0.36	0.74	0.15	0.14	0.67	0.4	0.10	0.18	0.12
Odor	none	sulfur odor	odor	sulfur odor	strong sulfur odor	sulfur	sulfur odor	odor	strong sulfur odor	strong sulfur odor	sulfur odor	sulfur odor	sulfur odor	strong sulfur odor	sulfur odor
Oxidation Reduction Potential	mV	-134	-345	-374	-358	-301.6	-351.9	-346.1	-349.2	-288.8	-248.2	-67.0	-104.5	-278.4	-141.3
pH, Field	S.U.	6.93	6.73	7.22	6.68	6.87	6.77	8.04	6.78	6.93	6.79	7.00	6.93	7.06	6.76
Temperature, Field	deg C	17.9	14.27	13.28	15.9	20.1	14.0	11.7	18.7	18.6	15.0	14.2	14.0	16.0	16.2
Turbidity, Field	NTU	4.21	-0.29	5.79	0.70	3.92	1.72	2.31	3.53	3.66	1.52	2.29	2.40	1.0	55.04**
Volume Purged	gal	1.5	1.1	0.5	1.3	1.2	3.6	1.6	2.0	1.5	1.5	1.6	1.1	0.7	0.7

Ward Street Sites Germanow-Simoan Corporation Rochester, NY

_	T	1													
Area of interest	t l						C	Off-Site Area 1: M	W-16/ Ward Stre	eet					
Sample Location	1							MV	V16						
Sample Date		27-Sep-11	3-Feb-12	2-Mar-12	5-Jun-12	5-Sep-12	23-Jan-13	11-Apr-13	3-Jul-13	9-Oct-13	17-Jun-15*	9-Mar-16	10-Jan-18*	24-Oct-18	8-Oct-19
Sample ID		WSR-MW-16- GW-18	WSR-MW-16- GW-19	WSR-MW-16- GW-20	WSR-MW-16- GW-21	WSR-MW-16- GW-22	WSR-MW-16- GW	WSR-MW-16- GW	WSR-MW-16- GW	WSR-MW-16- GW	WSR-MW-16- GW	WSR-MW-16- GW	WSR-MW-16- GW	WSR-MW-16- GW	WSR-MW-16- GW
Sampling Company	r	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC
Field Parameters	Units			1	1		1		1	1			1		
Color (Visual)	none	sl.red	clear	slightly cloudy	clear	clear	clear	clear with black precipitate	clear with black precipitate	clear with black specks	clear with black sulfide deposits	clear with black sulfide deposits	slightly cloudy with light to dark colored suspended material	none	clear with black suspended material
Conductivity, Field	mS/cm	6.72	0.762	2.33	0.843	10.52	7.63	10.63	9.73	10.13	11.94	12.76	8.50	7.56	5.511
Dissolved Oxygen, Field	mg/L	0	0.0	0.00	1.09	0.40	0.51	0.8	0.19	0.10	0.35	0.13	0.17	0.26	0.13
Odor	none	0	no odor	no odor	no odor	sulfur	sewage odor	Sulfur odor	slight sulfur odor	sulfur odor	none	sulfur odor	slight sulfur odor	none	slight sulfur odor
Oxidation Reduction Potential	mV	-107	-259	-181	-291	-319.5	-208.0	-361.2	-207.6	-188.0	-150.0	-120.2	-115.1	-164.4	-140.3
pH, Field	S.U.	6.82	7.13	7.52	7.20	7.26	7.06	7.10	7.13	7.33	7.08	7.06	7.19	7.46	7.41
Temperature, Field	deg C	19.29	11.68	11.23	19.6	21.7	8.7	8.3	18.1	19.3	16.5	14.9	11.8	17.8	17.3
Turbidity, Field	NTU	30	11.1	17.6	37.0	7.11	1.01	4.55	8.59	11.4	8.98	11.55	15.0	1.89	17.27
Volume Purged	gal	0.9	3.0	1.9	0.5	1.1	2.8	3.3	1.3	0.8	1.0	1.1	0.4	0.3	1.2

Ward Street Sites Germanow-Simoan Corporation Rochester, NY

Area of interest	•	1						Off-Site A	roa 1 · MW-16/ W	ard Street						
	`															
Sample Location	1								WW16R							
Sample Date		28-Sep-11	5-Jan-12	3-Feb-12	1-Mar-12	5-Jun-12	5-Sep-12	23-Jan-13	11-Apr-13	3-Jul-13	9-Oct-13	17-June-15*	9-Mar-16	10-Jan-18*	24-Oct-18	08-Oct-19
Sample ID		WSR-MW-16R- GW-18	WSR-MW-16R- GW-19	WSR-MW-16R- GW-20	WSR-MW-16R- GW-21	WSR-MW-16R- GW-22	WSR-MW-16R- GW-23	WSR-MW-16R- GW	WSR-MW-16R- GW	WSR-MW-16R- GW	WSR-MW-16R- GW	WSR-MW-16R- GW	WSR-MW-16R- GW	WSR-MW-16R- GW	WSR-MW-16R- GW	WSR-MW-16R- GW
Sampling Company	,	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC
Field Parameters	Units		1		1		1						1	1		
Color (Visual)	none	clear	clear	clear	clear w/ black flecks	clear	clear	murky	Slightly clouded	clear with black precipitate	clear with black precipitate	clear with black particulate	clear with black particulate	clear with fine light to dark suspended material	clear	mostly clear with dark suspended material
Conductivity, Field	mS/cm	4.31	3.75	0.782	4.90	0.629	5.19	5.32	4.06	4.40	2.67	8.04	3.72	3.96	2.91	4.875
Dissolved Oxygen, Field	mg/L	1.12	2.63	0.00	0.00	1.00	0.16	0.90	0.76	0.25	0.14	0.16	0.11	0.34	1.35	0.14
Odor	none	none	no odor	no odor	stale odor	no odor	sulfur	sulfur	Sulfur odor	slight sulfur odor	sulfur odor	none	none	sulfur odor	none	none
Oxidation Reduction Potential	mV	-62	104	-247	-196	-247	-328.6	-346.8	-313.9	-354.5	-264.3	-205.9	-144.3	-143.1	-155.9	-163.5
pH, Field	S.U.	6.56	7.53	6.84	7.04	6.53	6.96	6.76	7.04	6.90	6.58	7.00	6.95	6.89	6.99	6.84
Temperature, Field	deg C	17.78	7.26	12.28	10.95	18.3	20.9	11.1	8.3	19.0	19.7	16.0	17.2	10.6	16.7	16.7
Turbidity, Field	NTU	37	44.3	12.7	29	15.0	11.48	3.97	13.9	12.50	6.42	9.79	3.76	14.1	3.92	26.33
Volume Purged	gal	1.0	0.6	2.7	2.1	0.8	1.9	1.2	2.8	2.0	1.1	0.3	1.4	0.8	1.6	1.3

Ward Street Sites Germanow-Simoan Corporation Rochester, NY

· · · · ·																
Area of interes	t								8-28 Ward St							
Sample Location	n								MW23							
Sample Date	9	28-Sep-11	5-Jan-12	6-Feb-12	2-Mar-12	5-Jun-12	6-Sep-12	24-Jan-13	10-Apr-13	5-Jul-13	10-Oct-13	17-Jun-15*	9-Mar-16	10-Jan-18*	24-Oct-18	8-Oct-19
Sample IE	þ	WSR-MW-23- GW-7	828-MW-23-GW 8	828-MW-23-GW 9	828-MW-23-GW 10	828-MW-23-GW 11	828-MW-23-GW 12	828-MW-23-GW	828-MW-23-GW	828-MW-23-GW	828-MW-23-GW	828-MW-23-GW	828-MW-23-GW	828-MW-23-GW	828-MW-23-GW	828-MW-23-GW
Sampling Company	'	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC
Field Parameters	Units		1				1					1	1	1		
Color (Visual)	none	clear	clear	clear w/ black flecks	clear w/ black flecks	clear, no black flecks	clear/black pieces	clear w/ black flecks	Black precipitate	clear with black precipitate	clear with black precipitate	slightly yellow, brown particulate		clear, few fine black suspended particles	clear	mostly clear with light- colored suspended material
Conductivity, Field	mS/cm	7.37	7.12	0.596	6.06	0.828	6.62	4.66	4.38	3.48	5.96	4.34	5.21	4.39	3.72	3.919
Dissolved Oxygen, Field	mg/L	0.0	2.61	0.00	0.00	0.42	0.16	0.35	0.22	0.11	0.13	0.47	0.32	0.28	0.25	0.06
Odor	none	none	no odor	no odor	no odor	no odor	no odor	sewage odor	No odor	slight sulfur odor	sulfur odor	none	none	none	none	none
Oxidation Reduction Potential	mV	31	-135	-187	-238	-211	-147.1	-232.0	-149.2	-271.7	-149.3	-101.3	-22.2	-76.6	-74.4	-739.8
pH, Field	S.U.	6.66	6.73	7.09	7.57	6.71	7.04	7.09	7.13	6.44	6.93	7.13	7.09	7.04	7.08	6.84
Temperature, Field	deg C	14.63	11.85	6.47	12.18	13.8	21.0	11.0	9.8	18.1	15.3	15.8	12.7	11.8	14.7	17.2
Turbidity, Field	NTU	45	12.2	9.78	24	1.35	9.14	3.72	9.72	9.23	3.66	25.3	8.52	37.0	23.9	150
Volume Purged	gal	2.1	1.6	0.5	0.6	2.5	1.6	0.9	1.0	1.1	1.2	0.8	1.7	0.8	0.8	1.3

Ward Street Sites Germanow-Simoan Corporation Rochester, NY

	1	1														
Area of interest	:								8-28 Ward St							
Sample Location	I								MW23R							
Sample Date		28-Sep-11	5-Jan-12	6-Feb-12	2-Mar-12	5-Jun-12	6-Sep-12	24-Jan-13	10-Apr-13	5-Jul-13	10-Oct-13	17-Jun-15	9-Mar-16	10-Jan-18*	24-Oct-18	8-Oct-19
Sample ID		WSR-MW-23R- GW-7	828-MW-23R- GW-8	828-MW-23R- GW-9	828-MW-23R- GW-10	828-MW-23R- GW-11	828-MW-23R- GW-12	828-MW-23R- GW	828-MW-23R- GW	828-MW-23R- GW	828-MW-23R- GW	828-MW-23R- GW	828-MW-23R- GW	828-MW-23R- GW	828-MW-23R- GW	828-MW-23R- GW
Sampling Company	,	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC
Field Parameters	Units															
Color (Visual)	none	clear	clear w/ black flecks	clear w/ black flecks	clear w/ black flecks	clear w/ black flecks	black	murky	0	clear with black precipitate	clear with black precipitate	clear, black sulfide deposits	clear, black sulfide deposits	clear, fine black suspended particles		
Conductivity, Field	mS/cm	3.44	4.24	0.671	7.03	0.635	4.74	6.34	6.52	6.45	5.28	5.18	4.78	4.14	3.86	3.896
Dissolved Oxygen, Field	mg/L	0.00	0.00	0.00	0.00	0.57	0.24	0.33	0.11	0.11	0.41	0.14	0.09	0.13	1.17	0.09
Odor	none	none	no odor	odor	sulfur odor	no odor	sulfur	slight sulfur odor	0	strong sulfur odor	strong sulfur odor	sulfur odor	sulfur odor	sulfur odor	none	none
Oxidation Reduction Potential	mV	-23	-168	-262	-317	-211	-375.3	-438.3	-358.9	-408.0	-347.1	-307.0	-138.5	-190.7	-122.2	-173.9
pH, Field	S.U.	6.63	7.38	6.71	6.86	6.59	7.02	6.65	6.67	6.79	6.97	7.16	7.25	7.26	7.25	6.96
Temperature, Field	deg C	22.26	12.61	11.12	12.97	16.1	19.7	11.5	10.8	17.5	15.5	14.3	14.2	11.1	14.6	15.7
Turbidity, Field	NTU	3.3	6.24	1.04	11.3	3.27	0.92	1.60	1.25	0.82	3.84	2.87	3.58	8.97	1.88	3.97
Volume Purged	gal	0.7	1.3	1.7	2.2	1.1	1.4	1.5	2.3	2.3	0.9	1.8	1.5	0.75	0.3	1.7

Periodic Review Report 2019 Brownfield Cleanup Program Ward Street Site (Site No. C828117) and 8-28 Ward Street (Site No. C828136)

FIGURES

Notes

NOTES 1. Coordinate System: NAD 1983 StatePlane New York West FIPS 3103 Feet 2. Base features produced under license with the Ontario Ministry of Natural Resources © Queen's Printer for Ontario, 2013. 3. Orthoimagery © First Base Solutions, 20xx.

Prepared by MB on 2011-02-XX Technical Review by AL on 2013-XX-XX Independent Review by MPS

Client/Project

Ward Street Site (C828117) and 8-28 Ward Street Site (C828136) Figure No.

1 Title

Site Location Map

Legend

Well Network

Ь	Monitoring Well Sampled in January and
	October 2018

- Other Monitoring Well
- Extraction Well (inactive)
- Excavation Area (October 2017)

8-28 Ward Street Site Property Line

- Ward Street Site Property Line
- As-Built Trenching Limits

Notes

Coordinate System: NAD 1983 StatePlane New York West FIPS 3103 Feet.
 Crithoimagery (2015) downloaded from gis.ny.gov. Key Map basemap: ArcGIS
World Street Map.

Client/Project Groundwater Monitoring Ward Street Site (C828117) and 8-28 Ward Street Site (C828136)

Figure No. **2**

Title

Well Locations

🚺 Stantec

GERMANOW-SIMON CORPORATION PERIODIC REVIEW REPORT, WARD STREET SITES ROCHESTER, NY

GERMANOW-SIMON CORPORATION PERIODIC REVIEW REPORT, WARD STREET SITE ROCHESTER, NY

Stantec

GERMANOW-SIMON CORPORATION PERIODIC REVIEW REPORT, WARD STREET SITE ROCHESTER, NY Periodic Review Report 2019 Brownfield Cleanup Program Ward Street Site (Site No. C828117) and 8-28 Ward Street (Site No. C828136)

APPENDIX A

IC/EC Certification Forms

Site No.	C828117	Site Details		Box 1	
Site Name	Ward Street Site				
Site Addres City/Town: County: Mo Site Acreag	ss: Corner of Ward St. & S Rochester onroe ge: 1.859	t. Paul St. Zip Code:	14605 14603-		
Reporting F	Period: November 15, 2018	8 to November 15, 2019			
				YES	NO
1. Is the ir	nformation above correct?				X
lf NO, i	nclude handwritten above o	or on a separate sheet. <mark>Se</mark>	e Address Correction	Above	
2. Has so tax map	me or all of the site propert p amendment during this R	y been sold, subdivided, r eporting Period?	nerged, or undergone a	D	X
3. Has the (see 6N	ere been any change of use NYCRR 375-1.11(d))?	e at the site during this Re	porting Period	۵	X
4. Have a for or a	ny federal, state, and/or loo t the property during this R	cal permits (e.g., building, eporting Period?	discharge) been issued	0	X
lf you a that do	answered YES to question ocumentation has been pr	ns 2 thru 4, include docu reviously submitted with	umentation or evidence this certification form.		
5. Is the s	ite currently undergoing de	evelopment?			X
				_	
				Box 2	
				YES	NO
5. Is the c Comme	current site use consistent v ercial and Industrial	vith the use(s) listed belov	V ?	X	
7. Are all	ICs/ECs in place and funct	ioning as designed?		X	۵
1	F THE ANSWER TO EITHE	R QUESTION 6 OR 7 IS N	O, sign and date below a	nd	
		Box 2	A		
-----	---	-------	-----		
		YES	NO		
8.	Has any new information revealed that assumptions made in the Qualitative Exposure Assessment regarding offsite contamination are no longer valid?		X		
5	If you answered YES to question 8, include documentation or evidence that documentation has been previously submitted with this certification form.				
9.	Are the assumptions in the Qualitative Exposure Assessment still valid? (The Qualitative Exposure Assessment must be certified every five years)	X			
	If you answered NO to question 9, the Periodic Review Report must include an updated Qualitative Exposure Assessment based on the new assumptions.				
SIT	E NO. C828117	Bo	k 3		
	Description of Institutional Controls				

Parcel	Owner	Institutional Control
106.62-01-028	Germanow-Simon Corporation	One di Materi Une Destriction
		Ground Water Use Restriction
		Soll Management Plan
		Landuse Restriction
		Site Management Plan
		Monitoring Plan
Restrict site usage to o	commercial or industrial Restrict groundwate	ruse Any on-site soil excavation shall
comply with the approv	/ed Soil Management Plan; and maintain Env	ironmental Easement Agreement.
100.02-01-029	Cermanow-Simon Corporation	Monitoring Plan
		Site Management Plan
		Ground Water Use Restriction
		Soil Management Plan
		Landuse Restriction
		a the set assessmention shall
Restrict site usage to c comply with the approv	commercial or industrial. Restrict groundwate ved Soil Management Plan; and maintain Env	r use. Any on-site soil excavation shall rironmental Easement Agreement.
106.62-01-030	Germanow-Simon Corporation	Site Management Plan
		Ground Water Use Restriction
		Soil Management Plan
		Landuse Restriction
		Monitoring Plan
Restrict site usage to c	commercial or industrial. Restrict groundwate	er use. Any on-site soil excavation shall
comply with the approv	ved Soil Management Plan; and maintain Env	vironmental Easement Agreement.
100.02-01-031	Germanow-Simon Corporation	Site Management Plan
		Monitoring Plan
		Ground Water Use Restriction
		Soil Management Plan
		Landuse Restriction
Restrict site usage to c comply with the approv	commercial or industrial. Restrict groundwate ved Soil Management Plan; and maintain Env	er use. Any on-site soil excavation shall vironmental Easement Agreement.
106.62-01-032	Germanow-Simon Corporation	O UM-tas Use Destriction
		Ground Water Use Restriction
		Soll Management Plan
		Languse Restriction
		Site Management Plan
		Monitoring Plan
Restrict site usage to c comply with the approv	commercial or industrial. Restrict groundwate ved Soil Management Plan; and maintain Env	er use. Any on-site soil excavation shall vironmental Easement Agreement.
106.62-01-057	Germanow-Simon Corporation	
		Soil Management Plan
		Site Management Plan
		Ground water Use Restriction
		Languse Restriction
		Montohing Flan
Restrict site usage to c comply with the appro	commercial or industrial. Restrict groundwate ved Soil Management Plan; and maintain En	er use. Any on-site soil excavation shall vironmental Easement Agreement.
106.62-01-21	Germanow-Simon Corporation	Oreund Mater Lles Destriction
		Ground Water Use Restriction
		Soil Management Plan
		Monitoring Dian
		Wonitoring Plan

Site Management Plan

Restrict site usage to commercial or industrial. Restrict groundwater use. Any on-site soil excavation shall comply with the approved Soil Management Plan; and maintain Environmental Easement Agreement.

Box 4

Description of Engineering Controls

Parcel 106.62-01-028

Engineering Control

Cover System

A multi-phase vacuum extraction system ("MPVE") was operated at the site until February 22, 2011. DEC has approved the shutdown and decommissioning of the system. An enhanced reductive dechlorination (ERD) program was implemented at the site in November 2011. Continued groundwater monitoring and periodic injections are required until cleanup goals are achieved or DEC approves program modifications; Maintain asphalt and concrete surfaces in the area of contamination. **106.62-01-029**

Cover System

A multi-phase vacuum extraction system ("MPVE") was operated at the site until February 22, 2011. DEC has approved the shutdown and decommissioning of the system. An enhanced reductive dechlorination (ERD) program was implemented at the site in November 2011. Continued groundwater monitoring and periodic injections are required until cleanup goals are achieved or DEC approves program modifications; Maintain asphalt and concrete surfaces in the area of contamination. **106.62-01-030**

Cover System

A multi-phase vacuum extraction system ("MPVE") was operated at the site until February 22, 2011. DEC has approved the shutdown and decommissioning of the system. An enhanced reductive dechlorination (ERD) program was implemented at the site in November 2011. Continued groundwater monitoring and periodic injections are required until cleanup goals are achieved or DEC approves program modifications; Maintain asphalt and concrete surfaces in the area of contamination. **106.62-01-031**

Cover System

A multi-phase vacuum extraction system ("MPVE") was operated at the site until February 22, 2011. DEC has approved the shutdown and decommissioning of the system. An enhanced reductive dechlorination (ERD) program was implemented at the site in November 2011. Continued groundwater monitoring and periodic injections are required until cleanup goals are achieved or DEC approves program modifications; Maintain asphalt and concrete surfaces in the area of contamination. **106.62-01-032**

Cover System

A multi-phase vacuum extraction system ("MPVE") was operated at the site until February 22, 2011. DEC has approved the shutdown and decommissioning of the system. An enhanced reductive dechlorination (ERD) program was implemented at the site in November 2011. Continued groundwater monitoring and periodic injections are required until cleanup goals are achieved or DEC approves program modifications; Operate a sub-slab depressurization system; Maintain asphalt and concrete surfaces in the area of contamination.

106.62-01-057

Cover System

A multi-phase vacuum extraction system ("MPVE") was operated at the site until February 22, 2011. DEC has approved the shutdown and decommissioning of the system. An enhanced reductive dechlorination (ERD) program was implemented at the site in November 2011. Continued groundwater monitoring and periodic injections are required until cleanup goals are achieved or DEC approves program modifications; Maintain asphalt and concrete surfaces in the area of contamination. **106.62-01-21**

Vapor Mitigation Cover System

Cover System

A multi-phase vacuum extraction system ("MPVE") was operated at the site until February 22, 2011. DEC has approved the shutdown and decommissioning of the system. An enhanced reductive dechlorination (ERD) program was implemented at the site in November 2011. Continued groundwater monitoring and periodic injections are required until cleanup goals are achieved or DEC approves program modifications; Maintain asphalt and concrete surfaces in the area of contamination.

Box 5

Periodic Review Report (PRR) Certification Statements

1. I certify by checking "YES" below that:

a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the certification;

 b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete.

YES NO

X D

 If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each Institutional or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of the following statements are true:

(a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;

(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;

(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;

(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and

(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.

YES NO

X 🗆

IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.

A Corrective Measures Work Plan must be submitted along with this form to address these issues.

Signature of Owner, Remedial Party or Designated Representative

Date

	IC CERTIFICATIONS SITE NO. C828117	
		Box 6
SITE OWNER OF I certify that all information and sta statement made herein is punisha Penal Law.	R DESIGNATED REPRESENT, atements in Boxes 1,2, and 3 ar able as a Class "A" misdemeand	ATIVE SIGNATURE re true. I understand that a false or, pursuant to Section 210.45 of the
I Andrew Germanow	at <u>Germanow-Sim</u> print busines	on Corporation ss address
am certifying as <u>Owner</u>		(Owner or Remedial Party
for the Site named in the Site Deta	ails Section of this form.	
Cola Alus da		11-21-19

	IC/EC CERTIFICATIONS
	Box 7
	Protessional Engineer Signature
I certify that all information in Boxes punishable as a Class "A" misdeme	; 4 and 5 are true. I understand that a false statement made herein i anor, pursuant to Section 210.45 of the Penal Law.
	Stantec, 61 Commercial St,
Kevin Ignaszak	at Suite 100, Rochester, NY 14614
print name	print business address
am certifying as a Professional Engi	ineer for the <u>Owner</u>

S.

ſ

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Si	te No.	C828136	Site	Details			Box 1	
Si	te Name 8-	28 Ward Street						
Sit Cit Cc Sit	te Address: ty/Town: Ro bunty: Monro te Acreage:	8-28 Ward Street ochester e 1.222	Zip Code:	14605 14603-1061 -				
Re	porting Peri	od: November 15	5, 2018 to Nove	mber 15, 2019				
							YES	NO
1.	Is the infor	mation above cor	rect?					$\bar{\mathbf{x}}$
	If NO, inclu	ude handwritten a	bove or on a se	parate sheet.	S <mark>ee Address C</mark> o	prrection	Above	
2.	Has some tax map ar	or all of the site p nendment during	roperty been so this Reporting I	old, subdivided, Period?	merged, or unde	ergone a		X
3.	Has there (see 6NYC)	been any change CRR 375-1.11(d))'	of use at the si ?	te during this F	eporting Period			X
4.	Have any f for or at the	ederal, state, and e property during	l/or local permit this Reporting I	s (e.g., building Period?	g, discharge) bee	n issued	D	X
	If you ans that docu	wered YES to qu mentation has b	uestions 2 thru een previously	4, include do submitted wi	cumentation or th this certificat	evidence ion form		
5.	Is the site	currently undergo	ing developmer	nt?				X
							Box 2	
							YES	NO
6.	Is the curre Commercia	ent site use consi al and Industrial	stent with the us	se(s) listed belo	w?		X	D
7.	Are all ICs	/ECs in place and	l functioning as	designed?			X	
	IF T	HE ANSWER TO DO NOT COMPL	EITHER QUEST .ETE THE RES1	TON 6 OR 7 IS OF THIS FOR	NO, sign and dat M. Otherwise co	te below a ontinue.	and	
A	Corrective N	leasures Work Pl	an must be sub	mitted along v	vith this form to a	address t	hese iss	ues.
Sic	inature of Ow	uner Remedial Pa	rty or Designate	d Representativ		Data		

				5	Box 2	A
					YES	NO
8.	Has any new info Assessment rega	rmation revealed that assum rding offsite contamination a	ptions made in the (are no longer valid?	Qualitative Exposure		X
	If you answered that documenta	YES to question 8, include ion has been previously s	e documentation or ubmitted with this	evidence certification form.	\$2	
9.	Are the assumption (The Qualitative B	ons in the Qualitative Exposi exposure Assessment must	ure Assessment still be certified every fiv	valid? e years)	X	
	lf you answered updated Qualita	NO to question 9, the Peri tive Exposure Assessment	odic Review Repor t based on the new	t must include an assumptions.		
SITE	E NO. C828136				Bo	x 3
	Description of Ins	titutional Controls				
Parce		Owner		Institutional Contro	<u>ol</u>	
106.6	3-1-16	Germanow-Simon Co	rporation	Ground Water Use Soil Management Landuse Restrictic	e Restric Plan on	tion
				Site Management Monitoring Plan	Plan	ġ?
Grour	ndwater use is prol	nibited;		54		
A Site	e Management Pla	n (SMP) must be implement	ted;			
Soils	shall be managed	in accordance with the SMF	с;			
The p	potential for vapor	intrusion for any new buildin	gs must be evaluate	d and mitigated as nee	cessary	
Peric	odic review is requi	red to certifiy all controls are	in place.			
		3			Bo	x 4
	Description of Er	gineering Controls				
Parce	el	Engineerir	ng Control			
106.6	53-1-16	Groundwa	tor Treatment Syste	m		
		Cover Sys	stem	411		
A mu 22, 20 reduc grour appro	Iti-phase vacuum e 011. DEC has app ctive dechlorinatior ndwater monitoring oves program mod	extraction system ("MP proved the shutdown and de (ERD) program was implen and periodic injections are n fications;	VE") was oper commissioning of the nented at the site in required until cleanu	rated at the site until Fo e system. An enhance November 2011. Con p goals are achieved o	ebruary ed tinued or DEC	
Existi existi	ing surface and ne	ar surface soils, asphalt-pav a cover system and must b	ed surfaces, concre e maintained;	te-paved surfaces, and	d any	

			Box	5
	Periodic Review Report (PRR) Certification Statements			
1.	I certify by checking "YES" below that:			
	 a) the Periodic Review report and all attachments were prepared under the direction reviewed by, the party making the certification; 	n of	, and	
	 b) to the best of my knowledge and belief, the work and conclusions described in the are in accordance with the requirements of the site remedial program, and generally engineering practices; and the information presented is accurate and competent 	nis c / acc	ertificat cepted	ior
	Y	ES	NO	
	X			
	If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for ea or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that al following statements are true:	ch Ir I of t	nstitutio he	na
	(a) the Institutional Control and/or Engineering Control(s) employed at this site is un since the date that the Control was put in-place, or was last approved by the Depart	ncha mer	inged it;	
	(b) nothing has occurred that would impair the ability of such Control, to protect put the environment;	lic h	ealth a	ind
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;	Э		
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and	ne		
	(e) if a financial assurance mechanism is required by the oversight document for th mechanism remains valid and sufficient for its intended purpose established in the c	e sit locu	e, the ment.	
	Y	ES	NO	
	X		C	
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.			
	A Corrective Measures Work Plan must be submitted along with this form to address thes	e is:	sues.	
3	Signature of Owner, Remedial Party or Designated Representative Date			

IC CERTIFICATIONS SITE NO. C828136 Box 6 SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. Germanow-Simon Corporation print business address I Andrew Germanow at print name am certifying as <u>Owner</u> (Owner or Remedial Party) for the Site named in the Site Details Section of this form. 11-21-19 Signature of Owner, Remedial Party, or Designated Representative Date

.

Rendering Certification

	IC/EC CERTIFICATIONS
	Box 7
Pr	rofessional Engineer Signature
certify that all information in Boxes 4 unishable as a Class "A" misdemear	and 5 are true. I understand that a false statement made herein nor, pursuant to Section 210.45 of the Penal Law.
	Stantec, 61 Commercial Street,
Kevin Ignaszak	at Suite 100, Rochester, NY 14614
Kevin Ignaszak print name m certifying as a Professional Engine	at Suite 100, Rochester, NY 14614 print business address eer for the Owner

Periodic Review Report 2019 Brownfield Cleanup Program Ward Street Site (Site No. C828117) and 8-28 Ward Street (Site No. C828136)

APPENDIX B

NYSDEC Correspondence

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation, Region 8 6274 East Avon-Lima Road, Avon, NY 14414-9516 P: (585) 226-5353 | F: (585) 226-8139 www.dec.ny.gov

March 4, 2019

Mr. Andrew Germanow Germanow-Simon Corporation 408 St. Paul Street, P.O. Box 1091 Rochester, New York 14603-1091

RE: Ward Street and 8-28 Ward Street Sites (C828117 and C828136) Periodic Review and IC/EC Certification Report Monroe(C), Rochester(C)

Dear Mr. Germanow:

The Department has reviewed your Periodic Review Report (PRR) and IC/EC Certification for the November 15, 2017 through November 15, 2018 period.

The Department hereby accepts the PRR and associated Certification. The frequencies of Periodic Reviews for these sites are annually, and your next PRR is due on *December 15, 2019*. As a courtesy, you may receive a reminder letter and updated certification form 45-days prior to the due date. If you do not receive a letter, the PRR and certification must be submitted to this office by the due date.

If you have any questions, or need additional forms, please contact me at 226-5350. Thank you for your continued cooperation.

Sincerely,

Todd M. Caffoe, P.E. Division of Environmental Remediation

New York State Department of Environmental Conservation 6274 East Avon-Lima Road, Avon, NY 14414 P: (585) 226-5350 |Todd.Caffoe@dec.ny.gov

ec: B. Schilling M. Storonsky

Mahoney, Robert

From:	Mahoney, Robert
Sent:	Monday, September 30, 2019 11:18 AM
То:	Caffoe, Todd (DEC)
Cc:	Storonsky, Mike; Best, Laura
Subject:	Sites # 828117 & 828136 - Ward Street

Todd – FYI we are planning to do a groundwater sampling event at Ward Street next week, probably on Tuesday, 10/8, and possibly Wednesday also, if needed. This will be a standard event, sampling 6 wells using low-flow.

Thanks

Bob

Bob Mahoney P.G.

Senior Environmental Geologist

Direct: 585-413-5301 Mobile: 585-645-2567 bob.mahoney@stantec.com

Stantec

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

Periodic Review Report 2019 Brownfield Cleanup Program Ward Street Site (Site No. C828117) and 8-28 Ward Street (Site No. C828136)

APPENDIX C

Laboratory Analytical Reports

Analytical Report For

Stantec

For Lab Project ID

194958

Referencing

Ward Street

Prepared

Tuesday, October 22, 2019

Any noncompliant QC parameters or other notes impacting data interpretation are flagged or documented on the final report or are noted below.

Certifies that this report has been approved by the Technical Director or Designee 179 Lake Avenue • Rochester, NY 14608 • (585) 647-2530 • Fax (585) 647-3311 • ELAP ID# 10958

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Report Prepared Tuesday, October 22, 2019

Client:	<u>Stantec</u>		
Project Reference:	Ward Street		_
Sample Identifier:	WSR-MW-105-GW		_
Lab Sample ID:	194958-01	Date Sampled: 10/8/2019	
Matrix:	Groundwater	Date Received: 10/9/2019	

Volatile Organics

Analyte	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 4.00	ug/L		10/17/2019 19:44
1,1,2,2-Tetrachloroethane	< 4.00	ug/L		10/17/2019 19:44
1,1,2-Trichloroethane	< 4.00	ug/L		10/17/2019 19:44
1,1-Dichloroethane	< 4.00	ug/L		10/17/2019 19:44
1,1-Dichloroethene	< 4.00	ug/L		10/17/2019 19:44
1,2,3-Trichlorobenzene	< 10.0	ug/L		10/17/2019 19:44
1,2,4-Trichlorobenzene	< 10.0	ug/L		10/17/2019 19:44
1,2-Dibromo-3-Chloropropane	< 20.0	ug/L		10/17/2019 19:44
1,2-Dibromoethane	< 4.00	ug/L		10/17/2019 19:44
1,2-Dichlorobenzene	< 4.00	ug/L		10/17/2019 19:44
1,2-Dichloroethane	< 4.00	ug/L		10/17/2019 19:44
1,2-Dichloropropane	< 4.00	ug/L		10/17/2019 19:44
1,3-Dichlorobenzene	< 4.00	ug/L		10/17/2019 19:44
1,4-Dichlorobenzene	< 4.00	ug/L		10/17/2019 19:44
1,4-Dioxane	< 40.0	ug/L		10/17/2019 19:44
2-Butanone	< 20.0	ug/L		10/17/2019 19:44
2-Hexanone	< 10.0	ug/L		10/17/2019 19:44
4-Methyl-2-pentanone	< 10.0	ug/L		10/17/2019 19:44
Acetone	< 20.0	ug/L		10/17/2019 19:44
Benzene	< 2.00	ug/L		10/17/2019 19:44
Bromochloromethane	< 10.0	ug/L		10/17/2019 19:44
Bromodichloromethane	< 4.00	ug/L		10/17/2019 19:44
Bromoform	< 10.0	ug/L		10/17/2019 19:44
Bromomethane	< 4.00	ug/L		10/17/2019 19:44
Carbon disulfide	< 4.00	ug/L		10/17/2019 19:44
Carbon Tetrachloride	< 4.00	ug/L		10/17/2019 19:44
Chlorobenzene	< 4.00	ug/L		10/17/2019 19:44
Chloroethane	< 4.00	ug/L		10/17/2019 19:44

Client:	<u>Stantec</u>					
Project Reference:	Ward Street					
Sample Identifier:	WSR-MW-1	05-GW				
Lab Sample ID:	194958-01			Date Sampled:	10/8/2019	
Matrix:	Groundwate	er		Date Received:	10/9/2019	
Chloroform		< 4.00	ug/L		10/17/2019	19:44
Chloromethane		< 4.00	ug/L		10/17/2019	19.44
cis-1 2-Dichloroethen	e	212	ug/L		10/17/2019	19.44
cis-1.3-Dichloroprope	ene	< 4.00	ug/L		10/17/2019	19:44
Cvclohexane		< 20.0	ug/L		10/17/2019	19:44
Dibromochlorometha	ne	< 4.00	ug/L		10/17/2019	19:44
Dichlorodifluorometh	iane	< 4.00	ug/L		10/17/2019	19:44
Ethylbenzene		< 4.00	ug/L		10/17/2019	19:44
Freon 113		< 4.00	ug/L		10/17/2019	19:44
Isopropylbenzene		< 4.00	ug/L		10/17/2019	19:44
m,p-Xylene		< 4.00	ug/L		10/17/2019	19:44
Methyl acetate		< 4.00	ug/L		10/17/2019	19:44
Methyl tert-butyl Eth	er	< 4.00	ug/L		10/17/2019	19:44
Methylcyclohexane		< 4.00	ug/L		10/17/2019	19:44
Methylene chloride		< 10.0	ug/L		10/17/2019	19:44
o-Xylene		< 4.00	ug/L		10/17/2019	19:44
Styrene		< 10.0	ug/L		10/17/2019	19:44
Tetrachloroethene		2.15	ug/L	J	10/17/2019	19:44
Toluene		< 4.00	ug/L		10/17/2019	19:44
trans-1,2-Dichloroeth	ene	111	ug/L		10/17/2019	19:44
trans-1,3-Dichloropro	opene	< 4.00	ug/L		10/17/2019	19:44
Trichloroethene		14.2	ug/L		10/17/2019	19:44
Trichlorofluorometha	ine	< 4.00	ug/L		10/17/2019	19:44
Vinyl chloride		46.6	ug/L		10/17/2019	19:44

Client:	<u>Stantec</u>	
Project Reference:	Ward Street	
Sample Identifier:	WSR-MW-105-GW	
Lab Sample ID:	194958-01	Date Sampled: 10/8/2019
Matrix:	Groundwater	Date Received: 10/9/2019

<u>Surrogate</u>		Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	<u>zed</u>
1,2-Dichloroethane-d4		123	70.5 - 135		10/17/2019	19:44
4-Bromofluorobenzene		86.1	62 - 127		10/17/2019	19:44
Pentafluorobenzene		95.1	87 - 113		10/17/2019	19:44
Toluene-D8		91.7	80.8 - 115		10/17/2019	19:44
Method Reference(s):	EPA 8260C					
Data File:	EPA 5030C x65420.D					

Client:	<u>Stantec</u>		
Project Reference:	Ward Street		
Sample Identifier:	WSR-MW-16-GW		
Lab Sample ID:	194958-02	Date Sampled:	10/8/2019
Matrix:	Groundwater	Date Received:	10/9/2019

Volatile Organics

Analyte	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 5.00	ug/L		10/17/2019 14:54
1,1,2,2-Tetrachloroethane	< 5.00	ug/L		10/17/2019 14:54
1,1,2-Trichloroethane	< 5.00	ug/L		10/17/2019 14:54
1,1-Dichloroethane	< 5.00	ug/L		10/17/2019 14:54
1,1-Dichloroethene	< 5.00	ug/L		10/17/2019 14:54
1,2,3-Trichlorobenzene	< 12.5	ug/L		10/17/2019 14:54
1,2,4-Trichlorobenzene	< 12.5	ug/L		10/17/2019 14:54
1,2-Dibromo-3-Chloropropane	< 25.0	ug/L		10/17/2019 14:54
1,2-Dibromoethane	< 5.00	ug/L		10/17/2019 14:54
1,2-Dichlorobenzene	< 5.00	ug/L		10/17/2019 14:54
1,2-Dichloroethane	< 5.00	ug/L		10/17/2019 14:54
1,2-Dichloropropane	< 5.00	ug/L		10/17/2019 14:54
1,3-Dichlorobenzene	< 5.00	ug/L		10/17/2019 14:54
1,4-Dichlorobenzene	< 5.00	ug/L		10/17/2019 14:54
1,4-Dioxane	< 50.0	ug/L		10/17/2019 14:54
2-Butanone	< 25.0	ug/L		10/17/2019 14:54
2-Hexanone	< 12.5	ug/L		10/17/2019 14:54
4-Methyl-2-pentanone	< 12.5	ug/L		10/17/2019 14:54
Acetone	< 25.0	ug/L		10/17/2019 14:54
Benzene	< 2.50	ug/L		10/17/2019 14:54
Bromochloromethane	< 12.5	ug/L		10/17/2019 14:54
Bromodichloromethane	< 5.00	ug/L		10/17/2019 14:54
Bromoform	< 12.5	ug/L		10/17/2019 14:54
Bromomethane	< 5.00	ug/L		10/17/2019 14:54
Carbon disulfide	< 5.00	ug/L		10/17/2019 14:54
Carbon Tetrachloride	< 5.00	ug/L		10/17/2019 14:54
Chlorobenzene	< 5.00	ug/L		10/17/2019 14:54
Chloroethane	< 5.00	ug/L		10/17/2019 14:54

Client:	<u>Stantec</u>					
Project Reference:	Ward Street					
Sample Identifier:	WSR-MW-1	6-GW				
Lab Sample ID:	194958-02			Date Sampled:	10/8/2019	
Matrix:	Groundwate	er		Date Received:	10/9/2019	
Chloroform		< 5.00	ug/L		10/17/2019	14:54
Chloromethane		< 5.00	ug/L		10/17/2019	14:54
cis-1,2-Dichloroethen	e	295	ug/L		10/17/2019	14:54
cis-1,3-Dichloroprope	ene	< 5.00	ug/L		10/17/2019	14:54
Cyclohexane		< 25.0	ug/L		10/17/2019	14:54
Dibromochlorometha	ne	< 5.00	ug/L		10/17/2019	14:54
Dichlorodifluorometh	ane	< 5.00	ug/L		10/17/2019	14:54
Ethylbenzene		< 5.00	ug/L		10/17/2019	14:54
Freon 113		< 5.00	ug/L		10/17/2019	14:54
Isopropylbenzene		< 5.00	ug/L		10/17/2019	14:54
m,p-Xylene		< 5.00	ug/L		10/17/2019	14:54
Methyl acetate		< 5.00	ug/L		10/17/2019	14:54
Methyl tert-butyl Ethe	er	< 5.00	ug/L		10/17/2019	14:54
Methylcyclohexane		< 5.00	ug/L		10/17/2019	14:54
Methylene chloride		< 12.5	ug/L		10/17/2019	14:54
o-Xylene		< 5.00	ug/L		10/17/2019	14:54
Styrene		< 12.5	ug/L		10/17/2019	14:54
Tetrachloroethene		< 5.00	ug/L		10/17/2019	14:54
Toluene		< 5.00	ug/L		10/17/2019	14:54
trans-1,2-Dichloroeth	ene	3.69	ug/L	J	10/17/2019	14:54
trans-1,3-Dichloropro	opene	< 5.00	ug/L		10/17/2019	14:54
Trichloroethene		< 5.00	ug/L		10/17/2019	14:54
Trichlorofluorometha	ine	< 5.00	ug/L		10/17/2019	14:54
Vinyl chloride		430	ug/L		10/17/2019	14:54

Client:	<u>Stantec</u>		
Project Reference:	Ward Street		
Sample Identifier:	WSR-MW-16-GW		
Lab Sample ID:	194958-02	Date Sampled:	10/8/2019
Matrix:	Groundwater	Date Received:	10/9/2019

<u>Surrogate</u>		Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4		107	70.5 - 135		10/17/2019	14:54
4-Bromofluorobenzene		87.7	62 - 127		10/17/2019	14:54
Pentafluorobenzene		98.5	87 - 113		10/17/2019	14:54
Toluene-D8		96.5	80.8 - 115		10/17/2019	14:54
Method Reference(s):	EPA 8260C					
Data File:	EPA 5030C x65407.D					

Client:	<u>Stantec</u>		
Project Reference:	Ward Street		
Sample Identifier:	WSR-MW-16R-GW		
Lab Sample ID:	194958-03	Date Sampled:	10/8/2019
Matrix:	Groundwater	Date Received:	10/9/2019

Volatile Organics

Analyte	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed	d
1,1,1-Trichloroethane	< 50.0	ug/L		10/17/2019 15:	:16
1,1,2,2-Tetrachloroethane	< 50.0	ug/L		10/17/2019 15:	:16
1,1,2-Trichloroethane	< 50.0	ug/L		10/17/2019 15:	:16
1,1-Dichloroethane	< 50.0	ug/L		10/17/2019 15:	:16
1,1-Dichloroethene	< 50.0	ug/L		10/17/2019 15:	:16
1,2,3-Trichlorobenzene	< 125	ug/L		10/17/2019 15:	:16
1,2,4-Trichlorobenzene	< 125	ug/L		10/17/2019 15:	:16
1,2-Dibromo-3-Chloropropane	< 250	ug/L		10/17/2019 15:	:16
1,2-Dibromoethane	< 50.0	ug/L		10/17/2019 15:	:16
1,2-Dichlorobenzene	< 50.0	ug/L		10/17/2019 15:	:16
1,2-Dichloroethane	< 50.0	ug/L		10/17/2019 15:	:16
1,2-Dichloropropane	< 50.0	ug/L		10/17/2019 15:	:16
1,3-Dichlorobenzene	< 50.0	ug/L		10/17/2019 15:	:16
1,4-Dichlorobenzene	< 50.0	ug/L		10/17/2019 15:	:16
1,4-Dioxane	< 500	ug/L		10/17/2019 15:	:16
2-Butanone	< 250	ug/L		10/17/2019 15:	:16
2-Hexanone	< 125	ug/L		10/17/2019 15:	:16
4-Methyl-2-pentanone	< 125	ug/L		10/17/2019 15:	:16
Acetone	< 250	ug/L		10/17/2019 15:	:16
Benzene	< 25.0	ug/L		10/17/2019 15:	:16
Bromochloromethane	< 125	ug/L		10/17/2019 15:	:16
Bromodichloromethane	< 50.0	ug/L		10/17/2019 15:	:16
Bromoform	< 125	ug/L		10/17/2019 15:	:16
Bromomethane	< 50.0	ug/L		10/17/2019 15:	:16
Carbon disulfide	< 50.0	ug/L		10/17/2019 15:	:16
Carbon Tetrachloride	< 50.0	ug/L		10/17/2019 15:	:16
Chlorobenzene	< 50.0	ug/L		10/17/2019 15:	:16
Chloroethane	< 50.0	ug/L		10/17/2019 15:	:16

Client:	<u>Stantec</u>					
Project Reference:	Ward Street					
Sample Identifier:	WSR-MW-16	R-GW				
Lab Sample ID:	194958-03			Date Sampled:	10/8/2019	
Matrix:	Groundwater			Date Received:	10/9/2019	
Chloroform		< 50.0	ug/L		10/17/2019	15:16
Chloromethane		< 50.0	ug/L		10/17/2019	15:16
cis-1,2-Dichloroethen	e	1420	ug/L		10/17/2019	15:16
cis-1,3-Dichloroprope	ene	< 50.0	ug/L		10/17/2019	15:16
Cyclohexane		< 250	ug/L		10/17/2019	15:16
Dibromochlorometha	ne	< 50.0	ug/L		10/17/2019	15:16
Dichlorodifluorometh	ane	< 50.0	ug/L		10/17/2019	15:16
Ethylbenzene		< 50.0	ug/L		10/17/2019	15:16
Freon 113		< 50.0	ug/L		10/17/2019	15:16
Isopropylbenzene		< 50.0	ug/L		10/17/2019	15:16
m,p-Xylene		< 50.0	ug/L		10/17/2019	15:16
Methyl acetate		< 50.0	ug/L		10/17/2019	15:16
Methyl tert-butyl Ethe	er	< 50.0	ug/L		10/17/2019	15:16
Methylcyclohexane		< 50.0	ug/L		10/17/2019	15:16
Methylene chloride		< 125	ug/L		10/17/2019	15:16
o-Xylene		< 50.0	ug/L		10/17/2019	15:16
Styrene		< 125	ug/L		10/17/2019	15:16
Tetrachloroethene		45.1	ug/L	J	10/17/2019	15:16
Toluene		< 50.0	ug/L		10/17/2019	15:16
trans-1,2-Dichloroeth	ene	< 50.0	ug/L		10/17/2019	15:16
trans-1,3-Dichloropro	opene	< 50.0	ug/L		10/17/2019	15:16
Trichloroethene		53.1	ug/L		10/17/2019	15:16
Trichlorofluorometha	ine	< 50.0	ug/L		10/17/2019	15:16
Vinyl chloride		634	ug/L		10/17/2019	15:16

Client:	<u>Stantec</u>	
Project Reference:	Ward Street	
Sample Identifier:	WSR-MW-16R-GW	
Lab Sample ID:	194958-03	Date Sampled: 10/8/2019
Matrix:	Groundwater	Date Received: 10/9/2019

Surrogate		Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4		108	70.5 - 135		10/17/2019	15:16
4-Bromofluorobenzene		83.0	62 - 127		10/17/2019	15:16
Pentafluorobenzene		97.7	87 - 113		10/17/2019	15:16
Toluene-D8		92.6	80.8 - 115		10/17/2019	15:16
Method Reference(s):	EPA 8260C					
Data File:	EPA 5030C x65408.D					

Client:	<u>Stantec</u>		
Project Reference:	Ward Street		
Sample Identifier:	WSR-MW-207R-GW		
Lab Sample ID:	194958-04	Date Sampled:	10/8/2019
Matrix:	Groundwater	Date Received:	10/9/2019

Volatile Organics

Analyte	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 20.0	ug/L		10/17/2019 15:38
1,1,2,2-Tetrachloroethane	< 20.0	ug/L		10/17/2019 15:38
1,1,2-Trichloroethane	< 20.0	ug/L		10/17/2019 15:38
1,1-Dichloroethane	< 20.0	ug/L		10/17/2019 15:38
1,1-Dichloroethene	< 20.0	ug/L		10/17/2019 15:38
1,2,3-Trichlorobenzene	< 50.0	ug/L		10/17/2019 15:38
1,2,4-Trichlorobenzene	< 50.0	ug/L		10/17/2019 15:38
1,2-Dibromo-3-Chloropropane	< 100	ug/L		10/17/2019 15:38
1,2-Dibromoethane	< 20.0	ug/L		10/17/2019 15:38
1,2-Dichlorobenzene	< 20.0	ug/L		10/17/2019 15:38
1,2-Dichloroethane	< 20.0	ug/L		10/17/2019 15:38
1,2-Dichloropropane	< 20.0	ug/L		10/17/2019 15:38
1,3-Dichlorobenzene	< 20.0	ug/L		10/17/2019 15:38
1,4-Dichlorobenzene	< 20.0	ug/L		10/17/2019 15:38
1,4-Dioxane	< 200	ug/L		10/17/2019 15:38
2-Butanone	< 100	ug/L		10/17/2019 15:38
2-Hexanone	< 50.0	ug/L		10/17/2019 15:38
4-Methyl-2-pentanone	< 50.0	ug/L		10/17/2019 15:38
Acetone	< 100	ug/L		10/17/2019 15:38
Benzene	< 10.0	ug/L		10/17/2019 15:38
Bromochloromethane	< 50.0	ug/L		10/17/2019 15:38
Bromodichloromethane	< 20.0	ug/L		10/17/2019 15:38
Bromoform	< 50.0	ug/L		10/17/2019 15:38
Bromomethane	< 20.0	ug/L		10/17/2019 15:38
Carbon disulfide	< 20.0	ug/L		10/17/2019 15:38
Carbon Tetrachloride	< 20.0	ug/L		10/17/2019 15:38
Chlorobenzene	< 20.0	ug/L		10/17/2019 15:38
Chloroethane	< 20.0	ug/L		10/17/2019 15:38

Client:	<u>Stantec</u>					
Project Reference:	Ward Street					
Sample Identifier:	WSR-MW-2	07R-GW				
Lab Sample ID:	194958-04			Date Sampled:	10/8/2019	
Matrix:	Groundwate	er		Date Received:	10/9/2019	
Chloroform		< 20.0	ug/L		10/17/2019	15:38
Chloromethane		< 20.0	ug/L		10/17/2019	15:38
cis-1,2-Dichloroethen	e	932	ug/L		10/17/2019	15:38
cis-1,3-Dichloroprope	ene	< 20.0	ug/L		10/17/2019	15:38
Cyclohexane		< 100	ug/L		10/17/2019	15:38
Dibromochlorometha	ne	< 20.0	ug/L		10/17/2019	15:38
Dichlorodifluorometh	iane	< 20.0	ug/L		10/17/2019	15:38
Ethylbenzene		< 20.0	ug/L		10/17/2019	15:38
Freon 113		< 20.0	ug/L		10/17/2019	15:38
Isopropylbenzene		< 20.0	ug/L		10/17/2019	15:38
m,p-Xylene		< 20.0	ug/L		10/17/2019	15:38
Methyl acetate		< 20.0	ug/L		10/17/2019	15:38
Methyl tert-butyl Eth	er	< 20.0	ug/L		10/17/2019	15:38
Methylcyclohexane		< 20.0	ug/L		10/17/2019	15:38
Methylene chloride		< 50.0	ug/L		10/17/2019	15:38
o-Xylene		< 20.0	ug/L		10/17/2019	15:38
Styrene		< 50.0	ug/L		10/17/2019	15:38
Tetrachloroethene		< 20.0	ug/L		10/17/2019	15:38
Toluene		< 20.0	ug/L		10/17/2019	15:38
trans-1,2-Dichloroeth	ene	15.5	ug/L	J	10/17/2019	15:38
trans-1,3-Dichloropro	opene	< 20.0	ug/L		10/17/2019	15:38
Trichloroethene		< 20.0	ug/L		10/17/2019	15:38
Trichlorofluorometha	ine	< 20.0	ug/L		10/17/2019	15:38
Vinyl chloride		1140	ug/L		10/17/2019	15:38

Client:	<u>Stantec</u>	
Project Reference:	Ward Street	
Sample Identifier:	WSR-MW-207R-GW	
Lab Sample ID:	194958-04	Date Sampled: 10/8/2019
Matrix:	Groundwater	Date Received: 10/9/2019

<u>Surrogate</u>		Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4		110	70.5 - 135		10/17/2019	15:38
4-Bromofluorobenzene		78.5	62 - 127		10/17/2019	15:38
Pentafluorobenzene		96.0	87 - 113		10/17/2019	15:38
Toluene-D8		93.1	80.8 - 115		10/17/2019	15:38
Method Reference(s):	EPA 8260C					
Data File:	EPA 5030C x65409.D					

Client:	<u>Stantec</u>		
Project Reference:	Ward Street		
Sample Identifier:	828-MW-23-GW		
Lab Sample ID:	194958-05	Date Sampled:	10/8/2019
Matrix:	Groundwater	Date Received:	10/9/2019

Volatile Organics

Analyte	<u>Result</u>	<u>Units</u>	Qualifier	Date Analy	<u>zed</u>
1,1,1-Trichloroethane	< 50.0	ug/L		10/17/2019	16:01
1,1,2,2-Tetrachloroethane	< 50.0	ug/L		10/17/2019	16:01
1,1,2-Trichloroethane	< 50.0	ug/L		10/17/2019	16:01
1,1-Dichloroethane	< 50.0	ug/L		10/17/2019	16:01
1,1-Dichloroethene	< 50.0	ug/L		10/17/2019	16:01
1,2,3-Trichlorobenzene	< 125	ug/L		10/17/2019	16:01
1,2,4-Trichlorobenzene	< 125	ug/L		10/17/2019	16:01
1,2-Dibromo-3-Chloropropane	< 250	ug/L		10/17/2019	16:01
1,2-Dibromoethane	< 50.0	ug/L		10/17/2019	16:01
1,2-Dichlorobenzene	< 50.0	ug/L		10/17/2019	16:01
1,2-Dichloroethane	< 50.0	ug/L		10/17/2019	16:01
1,2-Dichloropropane	< 50.0	ug/L		10/17/2019	16:01
1,3-Dichlorobenzene	< 50.0	ug/L		10/17/2019	16:01
1,4-Dichlorobenzene	< 50.0	ug/L		10/17/2019	16:01
1,4-Dioxane	< 500	ug/L		10/17/2019	16:01
2-Butanone	< 250	ug/L		10/17/2019	16:01
2-Hexanone	< 125	ug/L		10/17/2019	16:01
4-Methyl-2-pentanone	< 125	ug/L		10/17/2019	16:01
Acetone	< 250	ug/L		10/17/2019	16:01
Benzene	< 25.0	ug/L		10/17/2019	16:01
Bromochloromethane	< 125	ug/L		10/17/2019	16:01
Bromodichloromethane	< 50.0	ug/L		10/17/2019	16:01
Bromoform	< 125	ug/L		10/17/2019	16:01
Bromomethane	< 50.0	ug/L		10/17/2019	16:01
Carbon disulfide	< 50.0	ug/L		10/17/2019	16:01
Carbon Tetrachloride	< 50.0	ug/L		10/17/2019	16:01
Chlorobenzene	< 50.0	ug/L		10/17/2019	16:01
Chloroethane	< 50.0	ug/L		10/17/2019	16:01

Client:	<u>Stantec</u>					
Project Reference:	Ward Street					
Sample Identifier:	828-MW-23-0	GW				
Lab Sample ID:	194958-05			Date Sampled:	10/8/2019	
Matrix:	Groundwater			Date Received:	10/9/2019	
Chloroform		< 50.0	ug/L		10/17/2019	16:01
Chloromethane		< 50.0	ug/L		10/17/2019	16:01
cis-1,2-Dichloroethen	e	1170	ug/L		10/17/2019	16:01
cis-1,3-Dichloroprope	ene	< 50.0	ug/L		10/17/2019	16:01
Cyclohexane		< 250	ug/L		10/17/2019	16:01
Dibromochlorometha	ine	< 50.0	ug/L		10/17/2019	16:01
Dichlorodifluorometh	iane	< 50.0	ug/L		10/17/2019	16:01
Ethylbenzene		< 50.0	ug/L		10/17/2019	16:01
Freon 113		< 50.0	ug/L		10/17/2019	16:01
Isopropylbenzene		< 50.0	ug/L		10/17/2019	16:01
m,p-Xylene		< 50.0	ug/L		10/17/2019	16:01
Methyl acetate		< 50.0	ug/L		10/17/2019	16:01
Methyl tert-butyl Eth	er	< 50.0	ug/L		10/17/2019	16:01
Methylcyclohexane		< 50.0	ug/L		10/17/2019	16:01
Methylene chloride		< 125	ug/L		10/17/2019	16:01
o-Xylene		< 50.0	ug/L		10/17/2019	16:01
Styrene		< 125	ug/L		10/17/2019	16:01
Tetrachloroethene		83.3	ug/L		10/17/2019	16:01
Toluene		< 50.0	ug/L		10/17/2019	16:01
trans-1,2-Dichloroeth	iene	< 50.0	ug/L		10/17/2019	16:01
trans-1,3-Dichloropro	opene	< 50.0	ug/L		10/17/2019	16:01
Trichloroethene		28.1	ug/L	J	10/17/2019	16:01
Trichlorofluorometha	ine	< 50.0	ug/L		10/17/2019	16:01
Vinyl chloride		97.5	ug/L		10/17/2019	16:01

Client:	<u>Stantec</u>		
Project Reference:	Ward Street		
Sample Identifier:	828-MW-23-GW		
Lab Sample ID:	194958-05	Date Sampled:	10/8/2019
Matrix:	Groundwater	Date Received:	10/9/2019

<u>Surrogate</u>		Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4		109	70.5 - 135		10/17/2019	16:01
4-Bromofluorobenzene		83.1	62 - 127		10/17/2019	16:01
Pentafluorobenzene		98.5	87 - 113		10/17/2019	16:01
Toluene-D8		90.8	80.8 - 115		10/17/2019	16:01
Method Reference(s):	EPA 8260C					
Data File:	EPA 5030C x65410.D					

Client:	<u>Stantec</u>		
Project Reference:	Ward Street		
Sample Identifier:	828-MW-23R-GW		
Lab Sample ID:	194958-06	Date Sampled:	10/8/2019
Matrix:	Groundwater	Date Received:	10/9/2019

Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analy	<u>zed</u>
1,1,1-Trichloroethane	< 2.00	ug/L		10/17/2019	16:23
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		10/17/2019	16:23
1,1,2-Trichloroethane	< 2.00	ug/L		10/17/2019	16:23
1,1-Dichloroethane	< 2.00	ug/L		10/17/2019	16:23
1,1-Dichloroethene	< 2.00	ug/L		10/17/2019	16:23
1,2,3-Trichlorobenzene	< 5.00	ug/L		10/17/2019	16:23
1,2,4-Trichlorobenzene	< 5.00	ug/L		10/17/2019	16:23
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		10/17/2019	16:23
1,2-Dibromoethane	< 2.00	ug/L		10/17/2019	16:23
1,2-Dichlorobenzene	< 2.00	ug/L		10/17/2019	16:23
1,2-Dichloroethane	< 2.00	ug/L		10/17/2019	16:23
1,2-Dichloropropane	< 2.00	ug/L		10/17/2019	16:23
1,3-Dichlorobenzene	< 2.00	ug/L		10/17/2019	16:23
1,4-Dichlorobenzene	< 2.00	ug/L		10/17/2019	16:23
1,4-Dioxane	< 20.0	ug/L		10/17/2019	16:23
2-Butanone	< 10.0	ug/L		10/17/2019	16:23
2-Hexanone	< 5.00	ug/L		10/17/2019	16:23
4-Methyl-2-pentanone	< 5.00	ug/L		10/17/2019	16:23
Acetone	< 10.0	ug/L		10/17/2019	16:23
Benzene	< 1.00	ug/L		10/17/2019	16:23
Bromochloromethane	< 5.00	ug/L		10/17/2019	16:23
Bromodichloromethane	< 2.00	ug/L		10/17/2019	16:23
Bromoform	< 5.00	ug/L		10/17/2019	16:23
Bromomethane	< 2.00	ug/L		10/17/2019	16:23
Carbon disulfide	< 2.00	ug/L		10/17/2019	16:23
Carbon Tetrachloride	< 2.00	ug/L		10/17/2019	16:23
Chlorobenzene	< 2.00	ug/L		10/17/2019	16:23
Chloroethane	< 2.00	ug/L		10/17/2019	16:23

Client:	<u>Stantec</u>					
Project Reference:	Ward Street					
Sample Identifier:	828-MW-23	R-GW				
Lab Sample ID:	194958-06			Date Sampled:	10/8/2019	
Matrix:	Groundwate	er		Date Received:	10/9/2019	
Chloroform		< 2.00	ug/L		10/17/2019	16:23
Chloromethane		< 2.00	ug/L		10/17/2019	16:23
cis-1,2-Dichloroethen	e	1.11	ug/L	J	10/17/2019	16:23
cis-1,3-Dichloroprope	ene	< 2.00	ug/L		10/17/2019	16:23
Cyclohexane		< 10.0	ug/L		10/17/2019	16:23
Dibromochlorometha	ne	< 2.00	ug/L		10/17/2019	16:23
Dichlorodifluorometh	ane	< 2.00	ug/L		10/17/2019	16:23
Ethylbenzene		< 2.00	ug/L		10/17/2019	16:23
Freon 113		< 2.00	ug/L		10/17/2019	16:23
Isopropylbenzene		< 2.00	ug/L		10/17/2019	16:23
m,p-Xylene		< 2.00	ug/L		10/17/2019	16:23
Methyl acetate		< 2.00	ug/L		10/17/2019	16:23
Methyl tert-butyl Ethe	er	< 2.00	ug/L		10/17/2019	16:23
Methylcyclohexane		< 2.00	ug/L		10/17/2019	16:23
Methylene chloride		< 5.00	ug/L		10/17/2019	16:23
o-Xylene		< 2.00	ug/L		10/17/2019	16:23
Styrene		< 5.00	ug/L		10/17/2019	16:23
Tetrachloroethene		< 2.00	ug/L		10/17/2019	16:23
Toluene		< 2.00	ug/L		10/17/2019	16:23
trans-1,2-Dichloroeth	ene	< 2.00	ug/L		10/17/2019	16:23
trans-1,3-Dichloropro	pene	< 2.00	ug/L		10/17/2019	16:23
Trichloroethene		< 2.00	ug/L		10/17/2019	16:23
Trichlorofluorometha	ne	< 2.00	ug/L		10/17/2019	16:23
Vinyl chloride		< 2.00	ug/L		10/17/2019	16:23

Client:	<u>Stantec</u>		
Project Reference:	Ward Street		
Sample Identifier:	828-MW-23R-GW		
Lab Sample ID:	194958-06	Date Sampled:	10/8/2019
Matrix:	Groundwater	Date Received:	10/9/2019

Surrogate		Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4		115	70.5 - 135		10/17/2019	16:23
4-Bromofluorobenzene		84.2	62 - 127		10/17/2019	16:23
Pentafluorobenzene		93.0	87 - 113		10/17/2019	16:23
Toluene-D8		95.9	80.8 - 115		10/17/2019	16:23
Method Reference(s):	EPA 8260C					
Data File:	EPA 5030C x65411.D					

Client:	<u>Stantec</u>		
Project Reference:	Ward Street		
Sample Identifier:	Trip Blank		
Lab Sample ID:	194958-07	Date Sampled:	10/3/2019
Matrix:	Water	Date Received:	10/9/2019

Volatile Organics

Analyte	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		10/17/2019 19:22
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		10/17/2019 19:22
1,1,2-Trichloroethane	< 2.00	ug/L		10/17/2019 19:22
1,1-Dichloroethane	< 2.00	ug/L		10/17/2019 19:22
1,1-Dichloroethene	< 2.00	ug/L		10/17/2019 19:22
1,2,3-Trichlorobenzene	< 5.00	ug/L		10/17/2019 19:22
1,2,4-Trichlorobenzene	< 5.00	ug/L		10/17/2019 19:22
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		10/17/2019 19:22
1,2-Dibromoethane	< 2.00	ug/L		10/17/2019 19:22
1,2-Dichlorobenzene	< 2.00	ug/L		10/17/2019 19:22
1,2-Dichloroethane	< 2.00	ug/L		10/17/2019 19:22
1,2-Dichloropropane	< 2.00	ug/L		10/17/2019 19:22
1,3-Dichlorobenzene	< 2.00	ug/L		10/17/2019 19:22
1,4-Dichlorobenzene	< 2.00	ug/L		10/17/2019 19:22
1,4-Dioxane	< 20.0	ug/L		10/17/2019 19:22
2-Butanone	< 10.0	ug/L		10/17/2019 19:22
2-Hexanone	< 5.00	ug/L		10/17/2019 19:22
4-Methyl-2-pentanone	< 5.00	ug/L		10/17/2019 19:22
Acetone	< 10.0	ug/L		10/17/2019 19:22
Benzene	< 1.00	ug/L		10/17/2019 19:22
Bromochloromethane	< 5.00	ug/L		10/17/2019 19:22
Bromodichloromethane	< 2.00	ug/L		10/17/2019 19:22
Bromoform	< 5.00	ug/L		10/17/2019 19:22
Bromomethane	< 2.00	ug/L		10/17/2019 19:22
Carbon disulfide	< 2.00	ug/L		10/17/2019 19:22
Carbon Tetrachloride	< 2.00	ug/L		10/17/2019 19:22
Chlorobenzene	< 2.00	ug/L		10/17/2019 19:22
Chloroethane	< 2.00	ug/L		10/17/2019 19:22

Lab Project ID: 194958

Client:	<u>Stantec</u>					
Project Reference:	Ward Street					
Sample Identifier:	Trip Blank					=
Lab Sample ID:	194958-07			Date Sampled:	10/3/2019	
Matrix:	Water			Date Received:	10/9/2019	
Chloroform		< 2.00	ug/L		10/17/2019 19:22	2
Chloromethane		< 2.00	ug/L		10/17/2019 19:22	2
cis-1,2-Dichloroethen	e	< 2.00	ug/L		10/17/2019 19:22	2
cis-1,3-Dichloroprope	ene	< 2.00	ug/L		10/17/2019 19:22	2
Cyclohexane		< 10.0	ug/L		10/17/2019 19:22	2
Dibromochlorometha	ne	< 2.00	ug/L		10/17/2019 19:22	2
Dichlorodifluorometh	ane	< 2.00	ug/L		10/17/2019 19:22	2
Ethylbenzene		< 2.00	ug/L		10/17/2019 19:22	2
Freon 113		< 2.00	ug/L		10/17/2019 19:22	2
Isopropylbenzene		< 2.00	ug/L		10/17/2019 19:22	2
m,p-Xylene		< 2.00	ug/L		10/17/2019 19:22	2
Methyl acetate		< 2.00	ug/L		10/17/2019 19:22	2
Methyl tert-butyl Ethe	er	< 2.00	ug/L		10/17/2019 19:22	2
Methylcyclohexane		< 2.00	ug/L		10/17/2019 19:22	2
Methylene chloride		< 5.00	ug/L		10/17/2019 19:22	2
o-Xylene		< 2.00	ug/L		10/17/2019 19:22	2
Styrene		< 5.00	ug/L		10/17/2019 19:22	2
Tetrachloroethene		< 2.00	ug/L		10/17/2019 19:22	2
Toluene		< 2.00	ug/L		10/17/2019 19:22	2
trans-1,2-Dichloroeth	ene	< 2.00	ug/L		10/17/2019 19:22	2
trans-1,3-Dichloropro	opene	< 2.00	ug/L		10/17/2019 19:22	2
Trichloroethene		< 2.00	ug/L		10/17/2019 19:22	2
Trichlorofluorometha	ine	< 2.00	ug/L		10/17/2019 19:22	2
Vinyl chloride		< 2.00	ug/L		10/17/2019 19:22	2

Lab Project ID: 194958

Client:	<u>Stantec</u>		
Project Reference:	Ward Street		
Sample Identifier:	Trip Blank		
Lab Sample ID:	194958-07	Date Sampled:	10/3/2019
Matrix:	Water	Date Received:	10/9/2019

<u>Surrogate</u>		Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4		122	70.5 - 135		10/17/2019	19:22
4-Bromofluorobenzene		81.4	62 - 127		10/17/2019	19:22
Pentafluorobenzene		96.5	87 - 113		10/17/2019	19:22
Toluene-D8		93.1	80.8 - 115		10/17/2019	19:22
Method Reference(s):	EPA 8260C					
Data File:	EPA 5030C x65419.D					

Method Blank Report

Client:	<u>Stantec</u>
Project Reference:	Ward Street
Lab Project ID:	194958
SDG #:	4958-01
Matrix:	Groundwater

Volatile Organics

1.1.1-Tritchloroethane<2.00	Analyte	<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analy	zed
1.1.2,2-Tetrachloroethane <2.00 ug/L 10/17/2019 12:15 1.1,2-Trichloroethane <2.00 ug/L 10/17/2019 12:15 1.1-Dichloroethane <2.00 ug/L 10/17/2019 12:15 1.1-Dichloroethane <2.00 ug/L 10/17/2019 12:15 1.2,3-Trichloroethane <5.00 ug/L 10/17/2019 12:15 1.2,4-Trichlorobenzene <5.00 ug/L 10/17/2019 12:15 1.2,-Dihromo-3-Chloropropane <10.0 ug/L 10/17/2019 12:15 1.2-Dichloroethane <2.00 ug/L 10/17/2019 12:15 1.4-Dichloroethane <2.00 ug/L 10/17/2019 12:15 1.2-Dichloropopane <2.00 ug/L 10/17/2019 12:15 1.4-Dichlorobenzene <2.00 ug/L 10/17/2019 12:15 1.4-Dichlorop	1,1,1-Trichloroethane	<2.00	ug/L		10/17/2019	12:15
1,1,2-Trichloroethane <2.00 ug/L $10/17/2019$ $12:15$ $1,1$ -Dichloroethane <2.00 ug/L $10/17/2019$ $12:15$ $1,1$ -Dichloroethane <2.00 ug/L $10/17/2019$ $12:15$ $1,2,3$ -Trichlorobenzene <5.00 ug/L $10/17/2019$ $12:15$ $1,2,4$ -Trichlorobenzene <5.00 ug/L $10/17/2019$ $12:15$ $1,2$ -Dibromo-3-Chloropropane <10.0 ug/L $10/17/2019$ $12:15$ $1,2$ -Dibromo-3-Chloropropane <2.00 ug/L $10/17/2019$ $12:15$ $1,2$ -Dichlorobenzene <2.00 ug/L $10/17/2019$ $12:15$ $1,2$ -Dichlorobenzene <2.00 ug/L $10/17/2019$ $12:15$ $1,2$ -Dichlorophane <2.00 ug/L $10/17/2019$ $12:15$ $1,2$ -Dichlorophane <2.00 ug/L $10/17/2019$ $12:15$ $1,4$ -Dichlorobenzene <2.00 ug/L $10/17/2019$ $12:15$ $1,4$ -Dichlorobenzene <2.00 ug/L $10/17/2019$ $12:15$ $1,4$ -Dichlorobenzene <2.00 ug/L $10/17/2019$ $12:15$ 2 -Butanone <10.0 ug/L $10/17/2019$ $12:15$ 4 -Methyl-2-pentanone <5.00 ug/L $10/17/2019$ $12:15$ $Acetone$ <10.0 ug/L $10/17/2019$ $12:15$ $Bromodichloromethane$ <5.00 ug/L $10/17/2019$ $12:15$ $Bromodichloromethane<2.00ug/L10/17/201912:15$	1,1,2,2-Tetrachloroethane	<2.00	ug/L		10/17/2019	12:15
1,1-Dickhoroethane <2.00	1,1,2-Trichloroethane	<2.00	ug/L		10/17/2019	12:15
1,1-Dickhoroethene<2.00ug/L $10/17/2019$ 12:151,2,3-Trichlorobenzene<5.00	1,1-Dichloroethane	<2.00	ug/L		10/17/2019	12:15
1,2,3-Trichlorobenzene <5.00	1,1-Dichloroethene	<2.00	ug/L		10/17/2019	12:15
1.2,4-Trichlorobenzene <5.00	1,2,3-Trichlorobenzene	<5.00	ug/L		10/17/2019	12:15
1,2-Dibromo-3-Chloropropane <10.0	1,2,4-Trichlorobenzene	<5.00	ug/L		10/17/2019	12:15
1,2-Dibromoethane <2.00	1,2-Dibromo-3-Chloropropane	<10.0	ug/L		10/17/2019	12:15
1,2-Dichlorobenzene <2.00	1,2-Dibromoethane	<2.00	ug/L		10/17/2019	12:15
1,2-Dichloroethane <2.00	1,2-Dichlorobenzene	<2.00	ug/L		10/17/2019	12:15
1,2-Dichloropropane <2.00	1,2-Dichloroethane	<2.00	ug/L		10/17/2019	12:15
1,3-Dichlorobenzene<2.00ug/L10/17/201912:151,4-Dichlorobenzene<2.00	1,2-Dichloropropane	<2.00	ug/L		10/17/2019	12:15
1,4-Dichlorobenzene <2.00	1,3-Dichlorobenzene	<2.00	ug/L		10/17/2019	12:15
1,4-Dioxane<20.0ug/L10/17/201912:152-Butanone<10.0	1,4-Dichlorobenzene	<2.00	ug/L		10/17/2019	12:15
2-Butanone <10.0	1,4-Dioxane	<20.0	ug/L		10/17/2019	12:15
2-Hexanone <5.00	2-Butanone	<10.0	ug/L		10/17/2019	12:15
4-Methyl-2-pentanone<5.00ug/L10/17/201912:15Acetone<10.0	2-Hexanone	<5.00	ug/L		10/17/2019	12:15
Acetone <10.0	4-Methyl-2-pentanone	<5.00	ug/L		10/17/2019	12:15
Benzene <1.00	Acetone	<10.0	ug/L		10/17/2019	12:15
Bromochloromethane <5.00	Benzene	<1.00	ug/L		10/17/2019	12:15
Bromodichloromethane <2.00	Bromochloromethane	<5.00	ug/L		10/17/2019	12:15
Bromoform <5.00	Bromodichloromethane	<2.00	ug/L		10/17/2019	12:15
Bromomethane <2.00 ug/L 10/17/2019 12:15 Carbon disulfide <2.00	Bromoform	<5.00	ug/L		10/17/2019	12:15
Carbon disulfide <2.00 ug/L 10/17/2019 12:15 Carbon Tetrachloride <2.00	Bromomethane	<2.00	ug/L		10/17/2019	12:15
Carbon Tetrachloride <2.00 ug/L 10/17/2019 12:15 Chlorobenzene <2.00	Carbon disulfide	<2.00	ug/L		10/17/2019	12:15
Chlorobenzene <2.00 ug/L 10/17/2019 12:15	Carbon Tetrachloride	<2.00	ug/L		10/17/2019	12:15
	Chlorobenzene	<2.00	ug/L		10/17/2019	12:15

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Report Prepared Friday, October 18, 2019

Method Blank Report

Client:	<u>Stantec</u>
Project Reference:	Ward Street
Lab Project ID:	194958
SDG #:	4958-01
Matrix:	Groundwater

Volatile Organics

Analyte	Result	<u>Units</u>	Qualifier	Date Analy	zed
Chloroethane	<2.00	ug/L		10/17/2019	12:15
Chloroform	<2.00	ug/L		10/17/2019	12:15
Chloromethane	<2.00	ug/L)	10/17/2019	12:15
cis-1,2-Dichloroethene	<2.00	ug/L		10/17/2019	12:15
cis-1,3-Dichloropropene	<2.00	ug/L		10/17/2019	12:15
Cyclohexane	<10.0	ug/L		10/17/2019	12:15
Dibromochloromethane	<2.00	ug/L		10/17/2019	12:15
Dichlorodifluoromethane	<2.00	ug/L		10/17/2019	12:15
Ethylbenzene	<2.00	ug/L		10/17/2019	12:15
Freon 113	<2.00	ug/L		10/17/2019	12:15
Isopropylbenzene	<2.00	ug/L		10/17/2019	12:15
m,p-Xylene	<2.00	ug/L		10/17/2019	12:15
Methyl acetate	<2.00	ug/L		10/17/2019	12:15
Methyl tert-butyl Ether	<2.00	ug/L		10/17/2019	12:15
Methylcyclohexane	<2.00	ug/L		10/17/2019	12:15
Methylene chloride	<5.00	ug/L		10/17/2019	12:15
o-Xylene	<2.00	ug/L		10/17/2019	12:15
Styrene	<5.00	ug/L		10/17/2019	12:15
Tetrachloroethene	<2.00	ug/L		10/17/2019	12:15
Toluene	<2.00	ug/L		10/17/2019	12:15
trans-1,2-Dichloroethene	<2.00	ug/L		10/17/2019	12:15
trans-1,3-Dichloropropene	<2.00	ug/L		10/17/2019	12:15
Trichloroethene	<2.00	ug/L		10/17/2019	12:15
Trichlorofluoromethane	<2.00	ug/L		10/17/2019	12:15
Vinyl chloride	<2.00	ug/L		10/17/2019	12:15

Method Blank Report

Client:	Stantec
Project Reference:	Ward Street
Lab Project ID:	194958
SDG #:	4958-01
Matrix:	Groundwater

Volatile Organics

Analyte		Result	<u>Units</u>	Qualifier	Date Analyzed	
<u>Surrogate</u>		Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Anal	yzed
1,2-Dichloroethane-d4		118	70.5 - 135		10/17/2019	12:15
4-Bromofluorobenzene		85.1	62 - 127		10/17/2019	12:15
Pentafluorobenzene		98.8	87 - 113		10/17/2019	12:15
Toluene-D8		95.8	80.8 - 115		10/17/2019	12:15
Method Reference(s):	EPA 8260C EPA 5030C					
Data File:	x65400.D					
QC Batch ID:	voaw191017					
QC Number:	1					

<u>QC Report for Laboratory Control Sample</u>

Client:	Stantec	
Project Reference:	Ward Street	
Lab Project ID:	194958	
SDG #:	4958-01	
Matrix:	Groundwater	

Volatile Organics

	<u>Spike</u>	Spike	LCS	LCS %	<u>% Rec</u>	LCS	Date
Analyte	Added	Units	Result	Recovery	Limits	Outliers	Analyzed
1,1,1-Trichloroethane	20.0	ug/L	18.8	94.2	58.4 - 141		10/17/2019
1,1,2,2-Tetrachloroethane	20.0	ug/L	24.0	120	62.2 - 135		10/17/2019
1,1,2-Trichloroethane	20.0	ug/L	21.5	108	68.4 - 130		10/17/2019
1,1-Dichloroethane	20.0	ug/L	21.0	105	70.5 - 129		10/17/2019
1,1-Dichloroethene	20.0	ug/L	18.7	93.7	55.6 - 133		10/17/2019
1,2-Dichlorobenzene	20.0	ug/L	21.5	108	71.3 - 124		10/17/2019
1,2-Dichloroethane	20.0	ug/L	22.3	112	65.3 - 138		10/17/2019
1,2-Dichloropropane	20.0	ug/L	21.0	105	72.4 - 118		10/17/2019
1,3-Dichlorobenzene	20.0	ug/L	19.8	99.0	68.9 - 122		10/17/2019
1,4-Dichlorobenzene	20.0	ug/L	20.2	101	69.2 - 116		10/17/2019
Benzene	20.0	ug/L	21.0	105	75.3 - 126		10/17/2019
Bromodichloromethane	20.0	ug/L	21.3	107	67.8 - 126		10/17/2019
Bromoform	20.0	ug/L	21.5	107	57.7 - 123		10/17/2019
Bromomethane	20.0	ug/L	19.6	97.8	61.3 - 150		10/17/2019
Carbon Tetrachloride	20.0	ug/L	19.3	96.4	55 - 145		10/17/2019
Chlorobenzene	20.0	ug/L	20.9	105	73.5 - 122		10/17/2019

QC Report for Laboratory Control Sample

Client:	<u>Stantec</u>	
Project Reference:	Ward Street	
Lab Project ID:	194958	
SDG #:	4958-01	
Matrix:	Groundwater	

Volatile Organics

	<u>Spike</u>	Spike	LCS	LCS %	% Rec	LCS	Date
Analyte	Added	Units	Result	Recovery	<u>Limits</u>	Outliers	Analyzed
Chloroethane	20.0	ug/L	19.5	97.4	60.9 - 150		10/17/2019
Chloroform	20.0	ug/L	21.2	106	72.1 - 132		10/17/2019
Chloromethane	20.0	ug/L	17.9	89.3	43.2 - 171		10/17/2019
cis-1,3-Dichloropropene	20.0	ug/L	18.5	92.6	59.1 - 122		10/17/2019
Dibromochloromethane	20.0	ug/L	22.1	111	67 - 130		10/17/2019
Ethylbenzene	20.0	ug/L	22.0	110	66.3 - 127		10/17/2019
Methylene chloride	20.0	ug/L	21.3	106	65 - 144		10/17/2019
Tetrachloroethene	20.0	ug/L	19.3	96.4	68.1 - 137		10/17/2019
Toluene	20.0	ug/L	21.4	107	75.5 - 126		10/17/2019
trans-1,2-Dichloroethene	20.0	ug/L	20.7	103	62.8 - 136		10/17/2019
trans-1,3-Dichloropropene	20.0	ug/L	19.1	95.7	55.7 - 126		10/17/2019
Trichloroethene	20.0	ug/L	19.6	98.1	70 - 127		10/17/2019
Trichlorofluoromethane	20.0	ug/L	19.8	99.2	47.1 - 168		10/17/2019
Vinyl chloride	20.0	ug/L	19.0	95.1	50.9 - 163		10/17/2019

PARADIGM PARADIGM

<u>QC Report for Laboratory Control Sample</u>

Stantec
Ward Street
194958
4958-01
Groundwater

Volatile Organics

			<u>Spike</u>	<u>Spike</u>	LCS	LCS %	% Rec	LCS	Date
Analyte			Added	Units	Result	Recovery	Limits	Outliers	Analyzed
	Method Reference(s):	EPA 8260C							
		EPA 5030C							
	Data File:	x65399.D							
	QC Number:	1							
	QC Batch ID:	voaw191017							

Analytical Report Appendix

The reported results relate only to the samples as they have been received by the laboratory.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Low level Volatiles blank reports for soil/solid matrix are based on a nominal 5 gram weight. Sample results and reporting limits are based on actual weight, which may be more or less than 5 grams.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Aliquots separated for certain tests, such as TCLP, are indicated on the Chain of Custody and final reports with an "A" suffix.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of analyte-specific, frequently used data flags and their meaning:

"<" = Analyzed for but not detected at or above the quantitation limit.

"E" = Result has been estimated, calibration limit exceeded.

"Z" = See case narrative.

"D" = Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative Percent Difference limit.

"M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.

"B" = Method blank contained trace levels of analyte. Refer to included method blank report.

"J" = Result estimated between the quantitation limit and half the quantitation limit.

"L" = Laboratory Control Sample recovery outside accepted QC limits.

"P" = Concentration differs by more than 40% between the primary and secondary analytical columns. "NC" = Not calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to ten times the spike added. Applicable to sample surrogates or MS if sample dilution is 10x or higher.

"*" = Indicates any recoveries outside associated acceptance windows. Surrogate outliers in samples are presumed matrix effects. LCS demonstrates method compliance unless otherwise noted. "(1)" = Indicates data from primary column used for QC calculation.

"A" = denotes a parameter for which ELAP does not offer approval as part of their laboratory certification program.

"F" = denotes a parameter for which Paradigm does not carry certification, the results for which should therefore only be used where ELAP certification is not required, such as personal exposure assessment.

GENERAL TERMS AND CONDITIONS LABORATORY SERVICES

These Terms and Conditions embody the whole agreement of the parties in the absence of a signed and executed contract between the Laboratory (LAB) and Client. They shall supersede all previous communications, representations, or agreements, either verbal or written, between the parties. The LAB specifically rejects all additional, inconsistent, or conflicting terms, whether printed or otherwise set forth in any purchase order or other communication from the Client to the LAB. The invalidity or unenforceability in whole or in part of any provision, term or condition hereof shall not affect in any way the validity or enforceability of the remainder of the Terms and Conditions. No waiver by LAB of any provision, term, or condition hereof or of any breach by or obligation of the Client hereunder shall constitute a waiver of such provision, term, or condition on any other occasion or a waiver of any other breach by or obligation of the Client. This agreement shall be administered and interpreted under the laws of the state which services are procured.

Warranty.	Recognizing that the nature of many samples is unknown and that some may contain potentially hazardous components, LAB warrants only that it will perform testing services, obtain findings, and prepare reports in accordance with generally accepted analytical laboratory principles and practices at the time of performance of services. LAB makes no other warranty, express or implied
Scope and Compensation.	LAB agrees to perform the services described in the chain of custody to which these terms and conditions are attached. Unless the parties agree in writing to the contrary, the duties of LAB shall not be construed to exceed the services specifically described. LAB wi use LAB default method for all tests unless specified otherwise on the Work Order. Payment terms are net 30 days from the date of invoice. All overdue payments are subject to an interest charge of one and one-half percent (1-1/2%) per month or a portion thereof. Client shall also be responsible for costs of collection, including payment of reasonable attorney fees if such expense is incurred. The prices, unless stated, do not include any sale, use or other taxes. Such taxes will be added to invoice prices when required.
Prices.	Compensation for services performed will be based on the current Lab Analytical Fee Schedule or on quotations agreed to in writing by the parties. Turnaround time based charges are determined from the time of resolution of all work order questions. Testimony, court appearances or data compilation for legal action will be charged separately. Evaluation and reporting of initial screening runs may incur additional fees.
Limitations of Liability.	In the event of any error, omission, or other professional negligence, the sole and exclusive responsibility of LAB shall be to re- perform the deficient work at its own expense and LAB shall have no other liability whatsoever. All claims shall be deemed waived unless made in writing and received by LAB within ninety (90) days following completion of services. LAB shall have no liability, obligation, or responsibility of any kind for losses, costs, expenses, or other damages (including but not limited to any special, direct, incidental or consequential damages) with respect to LAB's services or results. All results provided by LAB are strictly for the use of its clients and LAB is in no way responsible for the use of such results by clients or third parties. All reports should be considered in their entirety, and LAB is not responsible for the separation, detachment, or other use of any portion of these reports. Client may not assign the lab report without the written consent of the LAB. Client covenants and agrees, at its/his/her sole expense, to indemnify, protect, defend, and save harmless the LAB from and against any and all damages, losses, liabilities, obligations, penalties, claims, litigation, demands, defenses, judgments, suits, actions, proceedings, costs, disbursements and/or expenses (including, without limitation attorneys' and experts' fees and disbursements) of any kind whatsoever which may at any time be imposed upon, incurred by or asserted or awarded against client relating to, resulting from or arising out of (a) the breach of this agreement by this client, (b) the negligence of the client in handling, delivering or disclosing any hazardous substance, (c) the violation of the Client of any applicable law, (d) non-compliance by the Client with any environmental permit or (e) a material misrepresentation in disclosing the materials to be tested.
Hazard Disclosure.	Client represents and warrants that any sample delivered to LAB will be preceded or accompanied by complete written disclosure of the presence of any hazardous substances known or suspected by Client. Client further warrants that any sample containing any hazardous substance that is to be delivered to LAB will be packaged, labeled, transported, and delivered properly and in accordance with applicable laws.
Sample Handling.	 Prior to LAB's acceptance of any sample (or after any revocation of acceptance), the entire risk of loss or of damage to such sample remains with Client. Samples are accepted when receipt is acknowledged on chain of custody documentation. In no event will LAB have any responsibility for the action or inaction of any carrier shipping or delivering any sample to or from LAB premises. Client authorizes LAB to proceed with the analysis of samples as received by the laboratory, recognizing that any samples not in compliance with all current DOH-ELAP-NELAP requirements for containers, preservation or holding time will be noted as such on the final report. Disposal of hazardous waste samples is the responsibility of the Client. If the Client does not wish such samples returned, LAB may add storage and disposal fees to the final invoice. Maximum storage time for samples is 30 days after completion of analysis unless modified by applicable state or federal laws. Client will be required to give the LAB written instructions concerning disposal of these samples. LAB reserves the absolute right, exercisable at any time, to refuse to receive delivery of, refuse to accept, or revoke acceptance of any sample, which, in the sole judgment of LAB (a) is of unsuitable volume, (b) may be or become unsuitable for or may pose a risk in handling, transport, or processing for any health, safety, environmental or other reason whether or not due to the presence in the sample of any hazardous substance, and whether or not such presence has been disclosed to LAB by Client or (c) if the condition or sample of any hazardous substance, and whether or not such presence has been disclosed to LAB by Client or (c) if the condition or sample date make the sample unsuitable for analysis
Legal Responsibility.	LAB is solely responsible for performance of this contract, and no affiliated company, director, officer, employee, or agent shall have any legal responsibility hereunder, whether in contract or tort including negligence.
Assignment.	LAB may assign its performance obligations under this contract to other parties, as it deems necessary. LAB shall disclose to Client any assignee (subcontractor) by ELAP ID # on the submitted final report.
Force Majeure.	LAB shall have no responsibility or liability to the Client for any failure or delay in performance by LAB, which results in whole or in part from any cause or circumstance beyond the reasonable control of LAB. Such causes and circumstances shall include, but not limited to, acts of God, acts or orders of any government authority, strikes or other labor disputes, natural disasters, accidents, wars, civil disturbances, difficulties or delays in transportation, mail or delivery services, inability to obtain sufficient services or supplies from LAB's usual suppliers, or any other cause beyond LAB's reasonable control.
Law.	This contract shall be continued under the laws of the State of New York without regard to its conflicts of laws provision.

ANALYTICAL REPORT

Lab Number:	L1947274
Client:	Paradigm Environmental Services 179 Lake Avenue Rochester, NY 14608
ATTN: Phone: Project Name: Project Number: Report Date:	Jane Daloia (585) 647-2530 194958 194958 10/15/19

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:10151915:08

 Project Name:
 194958

 Project Number:
 194958

 Lab Number:
 L1947274

 Report Date:
 10/15/19

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1947274-01	WSR-MW-105-GW 194958- 01	WATER	Not Specified	10/08/19 14:35	10/09/19
L1947274-02	WSR-MW-16-GW 194958-02	WATER	Not Specified	10/08/19 10:15	10/09/19
L1947274-03	WSR-MW-16R-GW 194958- 03	WATER	Not Specified	10/08/19 11:15	10/09/19
L1947274-04	WSR-MW-207R-GW 194958- 04	WATER	Not Specified	10/08/19 09:20	10/09/19
L1947274-05	828-MW-23-GW 194958-05	WATER	Not Specified	10/08/19 13:40	10/09/19
L1947274-06	828-MW-23R-GW 194958-06	WATER	Not Specified	10/08/19 12:35	10/09/19

 Project Name:
 194958

 Project Number:
 194958

Lab Number: L1947274 Report Date: 10/15/19

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

 Lab Number:
 L1947274

 Report Date:
 10/15/19

 Project Name:
 194958

 Project Number:
 194958

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Jufani Morrissey - Tiffani Morrissey

Title: Technical Director/Representative

Date: 10/15/19

INORGANICS & MISCELLANEOUS

				Serial_No:10	151915:08					
Project Name:	194958						Lab N	lumber:	L1947274	
Project Number:	194958						Repo	rt Date:	10/15/19	
			:	SAMPLE	RESUL	rs				
Lab ID:	L1947274-0	1					Date (Collected:	10/08/19 14:3	5
Client ID:	WSR-MW-1	05-GW 1	94958-0 ²	1			Date I	Received:	10/09/19	
Sample Location:	Not Specifie	d					Field	Prep:	Not Specified	
Sample Depth: Matrix:	Water									
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analys
eneral Chemistry - We	stborough Lat	C								
tal Organic Carbon	1.6		mg/l	0.50	0.11	1	_	10/10/19 11:3	1 1,9060A	AG

							2	Serial_No:10	151915:08	
Project Name:	194958						Lab N	lumber:	L1947274	
Project Number:	194958						Repor	rt Date:	10/15/19	
			ę	SAMPLE	RESUL	ſS				
Lab ID:	L1947274-0	2					Date (Collected:	10/08/19 10:1:	5
Client ID:	WSR-MW-1	6-GW 194	4958-02				Date I	Received:	10/09/19	
Sample Location:	Not Specifie	d					Field I	Prep:	Not Specified	
Sample Depth: Matrix:	Water									
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analys
eneral Chemistry - We	stborough Lat	D								
tal Organic Carbon	5.5		mg/l	2.5	0.57	5	-	10/10/19 11:3	1 1,9060A	AG

								Serial_No:10	151915:08	
Project Name:	194958						Lab N	lumber:	L1947274	
Project Number:	194958						Repo	rt Date:	10/15/19	
			:	SAMPLE	RESUL	rs				
Lab ID:	L1947274-0	3					Date	Collected:	10/08/19 11:1	5
Client ID:	WSR-MW-1	6R-GW 1	94958-0	3			Date	Received:	10/09/19	
Sample Location:	Not Specifie	d					Field	Prep:	Not Specified	
Sample Depth: Matrix:	Water									
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analys
eneral Chemistry - We	estborough Lat	0								
otal Organic Carbon	1.0		mg/l	0.50	0.11	1	-	10/10/19 11:3	1 1,9060A	AG

								Serial_No:10	151915:08	
Project Name:	194958						Lab N	lumber:	L1947274	
Project Number:	194958						Repo	rt Date:	10/15/19	
				SAMPLE	RESUL	rs				
Lab ID:	L1947274-0	4					Date	Collected:	10/08/19 09:20	C
Client ID:	WSR-MW-2	07R-GW	194958-	04			Date	Received:	10/09/19	
Sample Location:	Not Specifie	d					Field	Prep:	Not Specified	
Sample Depth: Matrix:	Water									
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analys
eneral Chemistry - We	stborough Lat	2								
otal Organic Carbon	2.1		mg/l	1.0	0.23	2	-	10/10/19 11:3	1 1,9060A	AG

									Serial_No:10151915:08				
Project Name:	194958						Lab N	lumber:	L1947274				
Project Number:	194958						Repo	rt Date:	10/15/19				
				SAMPLE	RESUL	rs							
Lab ID:	L1947274-0	5					Date	Collected:	10/08/19 13:4	0			
Client ID:	828-MW-23	-GW 1949	958-05				Date	Received:	10/09/19				
Sample Location:	Not Specifie	ed					Field	Prep:	Not Specified				
Sample Depth: Matrix:	Water												
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analys			
eneral Chemistry - We	estborough Lal	b											
otal Organic Carbon	3.6		mg/l	1.0	0.23	2	_	10/10/19 11:3	1 1,9060A	AG			

								Serial_No:10	151915:08	
Project Name:	194958						Lab N	lumber:	L1947274	
Project Number:	194958						Repo	rt Date:	10/15/19	
			5	SAMPLE	RESUL	rs				
Lab ID:	L1947274-0	6					Date	Collected:	10/08/19 12:3	5
Client ID:	828-MW-23	R-GW 194	4958-06				Date	Received:	10/09/19	
Sample Location:	Not Specifie	d					Field	Prep:	Not Specified	
Sample Depth: Matrix:	Water									
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analys
eneral Chemistry - We	stborough Lat)								
tal Organic Carbon	0.97		mg/l	0.50	0.11	1	-	10/10/19 11:3	1 1,9060A	AG

 Project Name:
 194958

 Project Number:
 194958

 Lab Number:
 L1947274

 Report Date:
 10/15/19

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab for sam	ple(s): 01	-06 Ba	tch: WO	G1294577-1				
Total Organic Carbon	ND	mg/l	0.50	0.11	1	-	10/10/19 11:31	1,9060A	AG

Page 43 of 54

		Lab Control Sample Analysis		
Project Name:	194958	Batch Quality Control	Lab Number:	L1947274
Project Number:	194958		Report Date:	10/15/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
General Chemistry - Westborough Lab	Associated sample(s):	01-06	Batch: WG1294	577-2					
Total Organic Carbon	98		-		90-110	-			

		Matrix Spike Analysis		
Project Name:	194958	Batch Quality Control	Lab Number:	L1947274
Project Number:	194958		Report Date:	10/15/19

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recove Qual Limits	ry S RPD	RPD Qual Limits
General Chemistry - Westborou	igh Lab Asso	ciated sam	ole(s): 01-06	QC Batch II	D: WG1294577-4	QC Sample:	L1947002-01	Client ID:	MS Sample
Total Organic Carbon	2300	6400	8500	97	-	-	80-120	-	20

Project Name: Project Number:	194958 194958		Lab D Bai	uplicate Ana tech Quality Conti	llysis ^{rol}	La Re	b Number eport Date	: L194727 : 10/15/19	'4)
Parameter		Native Sam	nple D	uplicate Sample	Units	RPD	Qual	RPD Limits	
General Chemistry - Wes	stborough Lab	Associated sample(s): 01-06	QC Batch ID:	WG1294577-3	QC Sample:	L1947002-01	Client ID:	DUP Sample	
Total Organic Carbon		2300		2300	mg/l	0		20	

Project Name: 194958 Project Number: 194958

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler	Custody Seal
A	Absent

Container Information

Container Info	rmation	Initial	Final	Temp			Frozen		
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1947274-01A	Vial H2SO4 preserved	А	NA		5.7	Y	Absent		TOC-9060(28)
L1947274-01B	Vial H2SO4 preserved	А	NA		5.7	Y	Absent		TOC-9060(28)
L1947274-02A	Vial H2SO4 preserved	А	NA		5.7	Y	Absent		TOC-9060(28)
L1947274-02B	Vial H2SO4 preserved	А	NA		5.7	Y	Absent		TOC-9060(28)
L1947274-03A	Vial H2SO4 preserved	А	NA		5.7	Y	Absent		TOC-9060(28)
L1947274-03B	Vial H2SO4 preserved	А	NA		5.7	Y	Absent		TOC-9060(28)
L1947274-04A	Vial H2SO4 preserved	А	NA		5.7	Y	Absent		TOC-9060(28)
L1947274-04B	Vial H2SO4 preserved	А	NA		5.7	Y	Absent		TOC-9060(28)
L1947274-05A	Vial H2SO4 preserved	А	NA		5.7	Y	Absent		TOC-9060(28)
L1947274-05B	Vial H2SO4 preserved	А	NA		5.7	Y	Absent		TOC-9060(28)
L1947274-06A	Vial H2SO4 preserved	А	NA		5.7	Y	Absent		TOC-9060(28)
L1947274-06B	Vial H2SO4 preserved	А	NA		5.7	Y	Absent		TOC-9060(28)

Serial_No:10151915:08 Lab Number: L1947274 Report Date: 10/15/19

ALPHA

Serial_No:10151915:08

Project Name: 194958

Project Number: 194958

Lab Number: L1947274

Report Date: 10/15/19

GLOSSARY

Acronyms

-	
DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

Report Format: DU Report with 'J' Qualifiers

Project Name:	194958	Lab Number:	L1947274
Project Number:	194958	Report Date:	10/15/19

1

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum. Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, (flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.

 Project Name:
 194958

 Project Number:
 194958

 Lab Number:
 L1947274

 Report Date:
 10/15/19

REFERENCES

1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. **SM4500**: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: <u>NPW</u>: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B**

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

DA	DADLO	M	Cont	REPORT TO		200	-72		INNICO	OF TO			1-1/	019
PA	RADIG		COMPA	NY: Paradigm Environ	mental	-	COMPAN	Y: Sa	me	GE TO:	18 1 18	LAB PROJECT #: C	LIENT PROJEC	от <i>а</i> :
1 30			ADDRES	ss: 179 Lake Avenue			ADDRES	5:						
	の目的ではないときます。	l'	CITY:	Rochester STATE	NY ZIP:	14606	CITY:			STATE:	2)P:	TURNAROUND TIME: (WOR)	(ING DAYS)	
	- ()		PHONE	FAX:			PHONES		F/	AN:		10000	STD	OTHER
PROJECT NAME/SIT	E NAME:		ATTNE	Reporting			ATTN:	Accou	nts Paya	ble			XIS	OTHER
			COMME	NTS: Please email results	s to reporti	ing@p	aradigr	nenv.com	-			Data Dura la la	2/10	
	para		100		201	23	1. 11-1	REQUE	STED A	NALYSIS	1000	Date Due: /0//	117	
DATE	TIME	0 M P 0 S ! T E	5 R 4 B	SAMPLE LOCATION/FIELD	D	M A T R I X	CONTAINE NUMBER	20			Report ASP	J Flojs CatA. REMARKS	SDG SW -8 PARADIS	closed : 46 HT 's , M LAB SAMPLE NUMBER
1 10/8/19	14:35	-	X	1015R - MW-105-	GU	Ground	2	2			100	0.00 -1	+	
2 1	10:15		1	14158 - Mul- 11 -	Ciul	white	1	~			177	958-01		
3	11:15			WSR - MWI-11 P-	GUI	+						-02		
1	09:20		11-	INSP MUL 207	000	-	-	$\left \right $			-	-05		-
5	13:40		11	818-144-22-1	Ch/	-	-	$\left\{ \left \right\rangle \right\}$			-	-04	+++	
1	12:35		1	828-MUI-12 0	GIU	+	+		-			- 05	+++	
,	10.00		1	COD THE ASK	GW	-	-	8				-06	+++	
		1				-								
)							-							
0													+++	
LAB USE O	NLY BELO	W THIS L	INE		State Mar (Mar	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	ile i i	1.1 (BACE)	1098-1298 (M	Station - 1	152.754 11 27 144	IT TRANSPORT SERVER		
ample Conditio	n: Per NELAC	/ELAP 210/	241/242/2	43/244			attr - mark to		00000000000	1983-1988 - 17	Contract of the Contract		- 1 A	Rab a se selfen
ommente:	Container Ty	pe			Sample	Client				Dato/Timo				
omments:	Preservatio	n;		Y 🗌 N 🗌	Beling		2		10	19/19	16:	00		
amments;	Holding Tim	e:		Y 🔲 N 🛄	Rodeive	low	une	thL.	10/0	1/19	16:3	0	_	
Summe site-	Temperatur	e:		Y D N D	Ju	le	ener	AAL	10/9	119	16:30))		

Page 51 of 54

				REPORT TO:		1		INVOICE TO	24			
PAR	ADIG	M.		CLIENT: Stawtec	C	LIENT:	SAME				LAB PROJECT I	D
1000				ADDRESS: 61 Commercial St., Suit	te 100 /	DDRESS	B:			19	-1958	
				Rochester NY 14	614	CITY:		STATE:	ZIP:	Quotation	#:	
				PHONE: (585) 413-5266	9	PHONE:	(385)4	113-532	7	Email:	toron silu le	a stanker:
PROJEC	T REFERE	NCE	13	ATTN: Mike Starmsky	A	ATTN:	aura	Best		laura.	best@st	antte. C
1. loud	Chan	+	18	Matrix Codes:	- Water		DW - Drin	king Water	SO - Soil	SD - Solid	WP - Wine	OL - Oil
wara	spee	1		NQ - Non-Aqueous Liquid WG	- Groundwate	er	WW - Wa	stewater	SL - Sludge	PT - Paint	CK - Caulk	AR - Air
			-			-	REQUES	STED ANAL	YSIS			
		c o			M	N O N	0)					
	TIME	P	G R		A C T O	BA	531			DEMARK	·e	PARADIGM LAB
ATE COLLECTED	COLLECTED	S	A B	SAMPLE IDEN IFFER	REIS	RN	83			KEMAKK		NUMBER
		TE		2	x	ORF	JP					
10/19	1425		x	1.150 - 1.05 - (71)	WA	4	YX					01
10/11	10:15		X	WSR - MW - i6 - (40)	WG	4	XX					02
	11.15		V	INSP-MIN - 16R- GW	ING	4	XX					03
	0920		X	WSR-MW -777P- (+N	INE	4	XX					04
	1340		X	828 - MW - 23 - GW	ING.	4	XX					05
	1235		X	828-MW-23R-GW	WG	4	XX					06
V 10/3/19	69.00		X	Trip Blank	WA	1	X					07
ARG	Taul					È.					/	-
persa	mple (abel)	61 10/	9/19	1 Samp	0						-	
				Xannibus	F	-		+1				
		-										

Availabi	lity continge	ent upon lab approva	al; additiona	I fees may apply.	Lawa Best formatilist 10/8/19
Standard 5 day	$\dot{\mathbf{X}}$	None Required		None Required	Sampled By Date/Time Total Cost:
10 day		Batch QC		Basic EDD	Relinquished By Date/Time
Rush 3 day		Category A			Referred By Dalota 10/8/19 1508
Rush 2 day		Category B			10/9/19 09:55
Rush 1 day					Received @ Lab By Date/Time
Date Needed	ed:	Other please indicate package a	needed:	Other EDD please indicate EDD needed :	8°C iced Started in field 10/8/19 15:41 By signing this form, client agrees to Paradigm Terms and Conditions (reverse). Custody Scal N/A, samples delivered by client, 5P 10/8/19 See additional page for sample conditions.

PARADIGM	ע סד <u>Chain of Custody Supplement</u>							
Client: Lab Project ID:	Stantec 194958	Completed by: Date:	Glenn Pezzulo 0/9/19					
	Per NELAC/ELAP	210/241/242/243/244						
Condition	NELAC compliance with the samp Yes	le condition requirements No	upon receipt N/A					
Container Type Comments								
ransferred to method- ompliant container			X					
eadspace <1 mL) Comments	X.VoA							
reservation Comments	X							
nlorine Absent 0.10 ppm per test strip) Comments								
olding Time Comments	Σ.	5						
emperature								
Comments -	& Ciced started in	5.6/9 						

				179 L	ake Ayenue, Roct	iester, N ^a	14608	office	(585) 647 DY	-2530 Fa	x (585) 647-	3311			No:1015	915:08	1148
			PE-385	PEROPT		1	Sugar		्यत्र स्व	Noine	an a	1		-L-l	1910	<u>+ 14</u>	
PA	RADIG	LAEL	COMPAN	A: Paradigm Env	vironmental	1950279	COMPAN	W:	Same	NVOICE	10:	(14)(14)(17)(16)(1 (14)(14)(17)(16)(1 (14)(14)(17)(16)(1 (14)(14)(14)(17)(16)(1 (14)(14)(14)(17)(16)(1 (14)(14)(14)(17)(16)(1 (14)(14)(14)(17)(16)(1 (14)(14)(14)(17)(16)(1 (14)(14)(14)(17)(16)(1 (14)(14)(14)(16)(16)(16)(16)(16)(16)(16)(16)(16)(16	LAB PROJEC	57#: CL	JENT PROJECT	A	
		ADDRESS: 179 Lake Avenue CITY: Rochester STATE: NY ZDP: 14508				ADDRESS: CITY: STATE: 219:					-	10 a 4			_		
											TURNAROUND TIME: (WORKING DAYS)						
1	The second		PHONE	FAXE	-		PHONE:			FAX:	-				STD		OTHER
ROJECT NAME/SIT	E NAME:		ATTN	Reporting			ATTN:	Ac	counts	Payable	6		ПГ		XI5	-	UTILI
		COMMENTS: Please email results to reporting@pa					aradigmenv.com					Data D	10/1-	2/10			
	and the state	den en pr	60 L.S.	Carden a Sila.		A state		REG	QUEST	ED ANA	LYSIS		IDate DL	ie: /0 //	111	5.02.000	1. E
DATE	тие	С 0 М Р 0 S I Т Е	G R A B	SAMPLE LOCATION/FIELD ID		M A T R 1 X	CONTAINER NUMBER	TOC				Report ASP	J FI Cat, REMARKS	A.	SDG CLASED. SW -846 HT'S PARADIGM LAB SAMPLE NUMBI		
1 10/8/19	14:35		X	WSR-MW-1	0.5- GW	Ground	2	X				194	955	2-01			
2 1	10:15		1	WSR-MW-1	6-GW	1	1	1				111	150	01			
3	11:15			WSR-MW-1	R-GW	11		111-		-				- 00		+	
4	09:20		1 71	WSR - MINI-	07 R - GW			11-				1		-03		+-	
5	13:40			828-MW-2	3-GW									- U 7 D E			
5 7	12:35		+	828-MW-23	R - Glal	+	+							000			
7					A OW			V						-00			
3												-	-				
3								\square									
0											+++						
*LAB USE C	ONLY BELO	W.THIS LI	NE** 1/242/2	43/244 NELAC Compliance		ived ave	UR DA			33.C.S				i The Walt			
omments:	Container Ty	vpe:			Sample	Client	:	_		D	ate/Time			Total Cos	t		
ommenis:	Preservatio	in:		Y 🗌 N 🗍	Reling		2	_	-	10	9 /19	16.	00				_
omments:	Holding Tin	16:		Y 🗌 N 🗌	rogeiv	ed By	m	<i>deil</i>		10/9/	19 late/Time	16:3	10	P.1.F.			
komments;	Temperatur Tevor	= 5.7°	C	Y 🗌 N 🗌	Receiv	ed By	la	AAL	C	10/9/		16:3	0				
Page 21	of 21		10/	22/19	Receiv	ed @ La	b By	4	ð		ate/Time	_00.7	U				

Page 54 of 54