2024-2025 Periodic Review Report (PRR) and Corrective Measures Report

Volunteers of America Back Lot Site

NYSDEC Site Number C828126

18 Ambrose Street and Portion of 214 Lake Avenue

Rochester, Monroe County, New York

August 20, 2025 | Terracon Project No. JA257007 Updated November 11, 2025

Prepared for:

Volunteers of America of Upstate New York 214 Lake Avenue, Rochester, New York

Prepared by:

Terracon Consultants - NY, Inc. Buffalo, New York

Environmental Geotechnical

November 6, 2025 New York State Department of Environmental Conservation 6274 East Avon-Lima Road Avon, New York 14414

Attn: Mr. James Mazzeo

Project Manager P: (585) 438-5282

E: james.mazzeo@dec.ny.gov

Re: 2023 Periodic Review Report

Volunteers of America - Back Lot Site 214 Lake Avenue and 18 Ambrose Street

NYSDEC Site # C828126

Rochester, New York

Terracon Job No. JA257007

Dear Mr. Mazzeo:

Terracon Consultants - NY, Inc. (Terracon) completed the Periodic Review Report (PRR) and Corrective Measures Report on behalf of Volunteers of America of Upstate New York, Inc. (VOA) for the VOA back lot site located at 18 Ambrose Street and portion of 214 Lake Avenue, City of Rochester, Monroe County, New York (Site). The Site is enrolled in the New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program (BCP) and identified as Site #C828126. This PRR and Corrective Measures Report is for reporting period is for June 1, 2023 through July 25, 2025, in accordance with the Site Management Plan (SMP). The PRR and Corrective Measures Report is being submitted for your review and comment.

Sincerely,

Terracon Consultants - NY, Inc.

Michele Patterson-Wittman, P.G. Operations Manager

Table of Contents

1.0	EXE	EXECUTIVE SUMMARY 3					
	1.1	Background and Remedial History	3				
	1.2	Effectiveness of the Remidial Program	4				
	1.3	Compliance 4					
	1.4	Recommendations	5				
2.0	SIT	E OVERVIEW	5				
3.0		ALUATE REMEDY PERFORMANCE, EFFECTIVENESS, AND OTECTIVENESS	6				
4.0	IC/E	EC COMPLIANCE	7				
	4.1	Institutional Controls	7				
	4.2	Engineering Controls	8				
5.0	МО	NITORING PLAN COMPLIANCE	8				
	5.1	Monitoring Plan Components	8				
	5.2	Groundwater Monitoring Data	9				
	5.3 V	Well Maintenance	9				
	5.3	Groundwater Field Monitoring and Sampling Activities	10				
	5.4	Site Groundwater Elevations and Flow Characterization	11				
6.0	МО	NITIORING WELL GROUNDWATER ANALYSIS	11				
7.0	OPI	ERATION AND MAINTENANCE COMPLIANCE	12				
8.0	COI	NCLUSIONS AND RECOMMENDATIONS	13				
	8.1	Compliance 13					
	8.2	Performance and Effectiveness of the Remedy	13				
	8.3	Recommendations for Future PRR	14				

APPENDIX C

APPENDIX D

8.4	Potential Change of Use14
Tables	
Table 1	Summary of Groundwater Elevations
Table 2	Summary of Groundwater Analytical Results
Figures	
Figure 1	Well Location Map
Figure 2	Overburden Groundwater Contour Map
Figure 3	Groundwater Exceedances
APPEND	ICES
APPENDIX A	Annual Engineering Controls Inspection Report
APPENDIX B	NYSDEC IC/EC Certification Form

Laboratory Data Report and Chain of Custody

Remedial Investigation Summary Tables for Groundwater Sampling

1.0 EXECUTIVE SUMMARY

1.1 Background and Remedial History

Terracon Consultants – NY, Inc. (Terracon) is pleased to submit this 2024-2025 Periodic Review Report (PRR) and Corrective Measures Report on behalf of Volunteers of America of Upstate New York, Inc. (VOA) for the VOA back lot site located at 214 Lake Avenue and 18 Ambrose Street, City of Rochester, Monroe County, New York (Site). The Site is enrolled in the New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program (BCP) as Site C828126 Terracon is retained by VOA for monitoring and reporting requirements in accordance with the Site Management Plan (SMP).

Based upon the results documented in the Remedial Investigation Report (RIR) dated January 4, 2012, the following types of contamination were identified that required remediation:

- Metals in overburden groundwater are the Contaminants of Concern (COC) sitewide;
- Metals and Semi-Volatile Organic Compounds (SVOCs) are the COC in historic fill materials site-wide; and
- Volatile Organic Compounds in a localized (hot spot) in an isolated area of historic fill materials.

Remedial actions completed at the site in accordance with the NYSDEC approved Alternatives Analysis Report/Remedial Action Work Plan (April 4, 2016) and the NYSDEC Decision Document (Mach 31, 2016) include the following cleanup tasks:

- Site clearing/grubbing, waste characterization, landfill approvals, excavation and transportation for disposal of source area (hot spot) contaminated soils, backfilling the source area excavation, and installation of the storm water management system from May 2016 through mid-June 2016.
- Site grading, construction of Site cover system (excluding Haidt Place), installation of fencing, and sealing of cracks in existing roadway and parking areas from mid-June through September 2016.
- Excavation of soil/fill material along the right-of-way of Haidt Place and the installation of a cover system from March through September 2017.
- Prepared a Final Engineering Report (FER) that documents the cleanup and a SMP for long term management of remaining contamination as required by the Environmental Easement;

- Execution and recording of an Environmental Easement to restrict land use and prevent future exposure to any contamination remaining at the Site;
- Periodic certification of the institutional and engineering controls (on-going); and,
- Implementation of a long-term groundwater monitoring plan (completed in 2022, pending confirmation from the Department).

The site remediation was completed under the NYSDEC BCP and presented in the Final Engineering Report (FER) and Site Management Plan (SMP) dated December 28, 2017. A SMP was prepared for long-term management of remaining contamination as required by the Environmental Easement. In accordance with the SMP, the following required work detailed in the SMP was completed during for the 2024-2025 reporting period:

- An annual inspection was conducted of Engineering Controls (EC) and Institutional Controls (IC) for the Site on March 19, 2025 for the 2024-2025 EC/IC Inspection report.
- Groundwater monitoring was completed in March 2025 as part of the 2024-2025 PRR.
- Repairs detailed in the Annual Engineering Controls Inspection Report were completed and verified in June 2025.

1.2 Effectiveness of the Remedial Program

Progress made during the reporting period toward meeting the remedial objectives for the site includes maintenance of the IC and EC in accordance with the SMP. VOA completed repairs to catch basin in Cover Type 2, pavement patch area in Cover Type 2, maintained the grass areas of Cover Type 3, and removed debris from the pavement surface of Cover Type 1. Additionally, MW-101, MW-101R, MW-102, and MW-102R were repaired. On-going maintenance for the institutional and engineering controls allowed for continued effectiveness of the post-remediation SMP requirements.

1.3 Compliance

The current Site conditions were generally in compliance with the requirements in the SMP. The repairs to the cover system (Cover Type 2) during 2022 maintained the integrity of the protectiveness of this EC. Repairs presented in the Annual Engineering Control Inspection Report were completed and reinspected in June of 2025 to ensure continued integrity of the cover system.

1.4 Recommendations

Recommendations include the following:

- Removal of vegetation that includes weeds, brush, and trees from Cover Type 1
 Areas.
- Repairs to sections of damaged site security fencing.

VOA has been made aware of these issues and will complete removal and repairs.

2.0 SITE OVERVIEW

VOA entered into a Brownfield Cleanup Agreement (BCA) with the NYSDEC on June 15, 2005, to investigate and remediate a 3.055-acre property located at 18 Ambrose Street (214 Lake Avenue Rear Lot), City of Rochester, Monroe County, New York (Site). The property was remediated to enable restricted-residential use. The BCA was amended on May 31, 2016, and September 27, 2017. The Site is in the City of Rochester, County of Monroe, New York and is identified as Tax Lot #105.60-2-59.003 (18 Ambrose Street) on the City of Rochester Tax Map, which constitutes 1.997 acres and comprises two-thirds of the Site. A portion of Tax Lot #105.60-2-1.002 (214 Lake Avenue), which constitutes 1.058 acres is the balance one-third of the Site. The Site is 3.055-acre area bounded by commercial properties (contractor's yard) to the north Ambrose Street to the south, a contractor's yard to the east and beyond is the Genesee River Gorge. The VOA Human Service Complex property adjoins the Site to the west. The boundaries of the Site are depicted on Figure 1.

The majority of the Site is located at 18 Ambrose Street, west of the former Raeco Oil Superfund Site, and south of a contractor's equipment storage yard, associated building, and a Monroe County right-of-way to the Pure Waters Tunnel Structure 41. The Site is comprised of portions of two (2) tax parcels of land, which are referred to as the eastern portion of Parcel A and all of Parcel B. The majority of the Site is undeveloped, and the western portion of the Site is improved with parking lot area and roadway.

The Site was at one time the southernmost portion of RG&E's approximately 20-plus-acre parcel known as the Ambrose Street or Lake Avenue Coal Yard. Part of former Ambrose Street Coal Yard that is currently VOA's property was used for surface coal storage from approximately 1918 through the mid-1960's. Subsequent to the use of the property for coal storage, the northeast portion of the Site was used by automobile dealerships from at least 1971 through 1997 for parking/storage of vehicles. Kaplan

Periodic Review Report VOA – Back Lot Site | Rochester, NY November 6, 2025 | Terracon Project No. JA257007

Container, a drum cleaning company, was also present on this portion of the Site. Prior to 1918, portions of the property had residential structures, which appear to have been demolished on Site into a large deep ravine, which traverses through the middle of the Site, from South to North. This large ravine was historically filled. Railroad tracks were then constructed on top of the historic fill to allow for the transport of coal from existing stockpiles.

Potential contaminants of concern (COC) at the site include metals and SVOCs based on the Remedial Investigation Report (RIR). Volatile Organic Compounds (VOCs) are also included as a COC based on the past presence of levels of VOCs on the off-site VOA Human Services Complex at 214 Lake Avenue. A bedrock groundwater investigation was included as part of the RI scope of work to confirm that off-site VOCs in groundwater had not impacted the Site's groundwater at levels that would require remediation. Low levels of VOCs have been detected in limited groundwater samples in Site monitoring wells. The primary COCs identified in Site media include heavy metals and SVOCs in soil and groundwater systems.

Elevated levels of heavy metal concentrations have been detected Site-wide in samples from the overburden groundwater and to a lesser extent in the bedrock groundwater. The overlying historic fill soils are the source of metals at the Site. Groundwater monitoring of the low-level impacts for metals in groundwater at the Site is part of the selected remedial alternative. The physical impacts to groundwater are partially suppressed by the cover system and storm water management sewer systems, which reduce the infiltration of surface water runoff into the subsurface at the Site, thus reducing further impacts to groundwater. Engineering Controls (EC), along with Institutional Controls (ICs) and Environmental Easements (EE), detailed in the SMP, are implemented to provide protection of human health and the environment. Groundwater quality will be monitored during a five (5) year period on Quarterly and Annual basis to evaluate the groundwater quality and groundwater flow direction for the duration of the post-remediation period. The methods and procedures for post-remediation groundwater monitoring are detailed in the SMP.

3.0 EVALUATE REMEDY PERFORMANCE, EFFECTIVENESS, AND PROTECTIVENESS

The results of the 2024-2025 Annual Engineering IC/EC Inspection certifies that the condition of the EC (cover system) and IC generally meets the objectives of the remedy for protectiveness of human health in the environment, see Appendix A. Continued implementation of the IC, EC and EE detailed in the SMP provides protection of human

health and the environment. The site cover system and groundwater monitoring wells were inspected during the annual periodic review in March 2025. Annual groundwater samples were collected and submitted in March 2025. Site repairs and reinspection took place in June 2025, and September 2025.

4.0 IC/EC COMPLIANCE

4.1 Institutional Controls

The IC boundaries are the same as the BCP Site boundaries as shown on Figure 1. The following IC are included in the SMP for the Site:

- The property may be used for restricted-residential, commercial, or industrial uses;
- All ECs must be operated and maintained as specified in the SMP;
- All ECs must be inspected at a frequency and in a manner defined in the SMP;
- The use of groundwater underlying the property is prohibited without necessary water quality treatment as determined by the NYSDOH or the Monroe County Department of Health to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the Department.
- Groundwater and other environmental or public health monitoring must be performed as defined in the SMP:
- Data and information pertinent to site management must be reported at the frequency and in a manner as defined in the SMP;
- All future activities that will disturb remaining contaminated material must be conducted in accordance with the SMP;
- Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in the SMP;
- Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical component of the remedy shall be performed as defined in the SMP;
- Access to the site must be provided to agents, employees or other representatives
 of the State of New York with reasonable prior notice to the property owner to assure
 compliance with the restrictions identified by the Environmental Easements.
- The potential for vapor intrusion must be evaluated for any buildings developed in the area within the IC boundaries (entire Site) noted on Figure 1. Areas of soil vapor concern and any potential impacts that are identified must be monitored or mitigated; and
- Vegetable gardens and farming on the site are prohibited.

The site-wide inspection determined that IC have been complied with including compliance with the EE and the SMP. There are no new conclusions or recommendations for change of IC at this time, see Annual Inspection Report for IC/EC in Appendix A – Annual Engineering Controls Inspection Report. The NYSDEC IC/EC certification form is presented in Appendix B – NYSDEC IC/EC Certification Form.

4.2 Engineering Controls

The EC at the site is the site-wide cover system. The cover system is a permanent EC, and the quality and integrity of this system will be maintained and inspected in accordance with maintenance items in the Maintenance Plan and defined inspection intervals in accordance with the SMP in perpetuity. The EC is generally in compliance based on the 2025 Annual Engineering Controls Inspection Report of IC/EC presented in Appendix A and EC/IC are certified, see Appendix B. Vegetation and fencing repairs are to be performed.

5.0 MONITORING PLAN COMPLIANCE

5.1 Monitoring Plan Components

Monitoring and laboratory analyses were completed in accordance with the SMP for the reporting period of June 1, 2023 – July 25, 2025 this reporting period. A summary of the routine monitoring and analyses is provided in the table below for the past groundwater sampling events from 2018 through 2025.

Compliance Monitoring	Frequency	Monitored/Inspected	Matrix	Analysis
Groundwater	Quarterly 2018 -2019, then three Annual events in 2020, 2022, and 2025	MWR-101, MW-101, MWR-102, MW-102, MW-103, MW-105, MW-106, and MW- 107	Groundwater	TCL VOCs & SVOCs, TAL Metals

Compliance Monitoring	Frequency	Monitored/Inspected	Matrix	Analysis
Site Cover / Property Use	Annually until otherwise approved by NYSDEC and NYSDOH	Inspection of Site Cover Condition, Property Use and Environmental Easements	Not Applicable	Not Applicable

5.2 Groundwater Monitoring Data

Groundwater monitoring was performed annually during the reporting period using low flow sampling methodology in accordance with the SMP. Previously, post-remediation groundwater sampling included eight (8) rounds of sampling and reporting to NYSDEC from 2018 and 2019 in addition to the original two (2) rounds of sampling included in the FER, as well as two (2) annual sampling events completed during the end of 2020 and beginning of 2022. The post-remediation 2022 annual groundwater sampling event (initial annual event) during the reporting period was completed in April 2022. Groundwater sampling was not completed for the 2023 PRR. Groundwater sampling was completed in March 2025 as part of the 2024-2025 PRR.

5.3 Well Maintenance

The integrity of the monitoring well network at the Site does not appear to be compromised.

Monitoring wells in the sampling network appear to be in good condition based on observations during the 2024 Annual Engineering Controls Inspection on June 23, 2025. Groundwater monitoring well conditions and field observations are summarized in the table below.

Well	Well Type	Well	Condition
Name		Location	(June 23, 2025)
MW-101	Overburden	Down -	Good (repaired
		gradient	casing and seal in
			2025)
MW-101R	Bedrock	Down -	Good (repaired
		gradient	casing and seal in
			2025)

Well	Well Type	Well	Condition
Name		Location	(June 23, 2025)
MW-102	Overburden	Cross -	Good (repaired
		gradient	casing and seal in 2025)
MW-102R	Overburden	Down -	Good (repaired
		gradient	casing and seal in
			2025)
MW-103	Overburden	Down -	Good
		gradient	
MW-105	Overburden	Up - gradient	Good
MW-106	Bedrock	Up - gradient	Good
MW-107	Overburden	Cross -	Good
		gradient	

5.3 Groundwater Field Monitoring and Sampling Activities

Groundwater measurements and sampling activities were conducted in accordance with Section 4.0 of the SMP. The depths to groundwater for monitoring wells are measured and recorded on a quarterly basis to track site-wide changes in the water table elevation. The sample collection procedures were generally consistent with Section 4.4.1 in the SMP. Groundwater samples were collected from monitoring wells after each well was gauged and purged of standing water via low flow methodology. It is noted that low flow purging and sampling methods did not work in previous attempts during historic sampling events due to the depth of the wells. Field readings were collected via YSI Quatro at each monitoring well location for pH, temperature, specific conductance, dissolved oxygen (DO), oxidation reduction potential (ORP), turbidity, pH, and temperature parameters. Wells were purged until field readings for groundwater quality indicator parameters stabilized for at least three (3) consecutive readings for the following parameters:

- Water Level Drawdown < 0.3 feet
- Temperature +/- 3%
- pH +/- 0.1 unit
- Dissolved Oxygen +/-10%
- Specific Conductance +/-3%
- Turbidity +/-10% for values greater than 1 NTU

Purge water from wells was discharged onto the asphalt cover system near each well, as detailed in the SMP. Groundwater samples for the wells were collected directly from the

Periodic Review Report VOA – Back Lot Site | Rochester, NY November 6, 2025 | Terracon Project No. JA257007

pump discharge line into vials and containers provided by the analytical laboratory. Samples were chemically and thermally preserved as specified by the methodology and/or laboratory and placed in a designated cooler, pre-chilled with ice. Samples were recorded on a chain-of-custody and delivered to Eurofins, Inc. of Rochester, New York for analysis, an Environmental Laboratory Accreditation Program (ELAP) certified laboratory. Duplicate samples and a trip blank were also collected during the event for quality assurance/quality control (QA/QC) purposes.

5.4 Site Groundwater Elevations and Flow Characterization

The depth to water measurements in the overburden groundwater monitoring wells was measured during the annual monitoring event on March 19, 2025. The depth to water measurements and calculated elevations are presented in Table 1. A current overburden groundwater flow contour map is included in Figure 2. The groundwater depths were generally consistent with previous sampling events with an overburden groundwater flow direction in a northeast direction.

6.0 MONITIORING WELL GROUNDWATER ANALYSIS

Groundwater analytical sample results from each monitoring well are compared to NYSDEC 703.5 Class GA groundwater standards and to concentrations from the baseline July 2009 RI event, presented in Appendix C – RI Summary Tables for Groundwater Sample Results. Groundwater analytical laboratory reports are presented in Appendix D - Laboratory Results. The results are summarized below for the 2024-2025 annual monitoring event.

2024-2025 Annual Groundwater Analytical Summary

Laboratory results for the groundwater samples analyzed are summarized below for Metals and SVOCs that are COCs. VOCs were also analyzed and summarized in the following section. The results by monitoring well are compared to NYSDEC 703.5 groundwater standards.

SVOCs were detected in the groundwater samples collected and submitted for analysis but below groundwater standard.

VOCs were detected in the groundwater samples collected and submitted for analysis at concentrations exceeding NYSDEC 703.5 groundwater standards. Parameters detected in

groundwater samples at concentrations exceeding NYSDEC 703.5 groundwater standards are listed below:

- Methyl turt-butyl ether at MWR-102
- Chlorobenzene at MW-106

Metals were detected in all of the groundwater samples collected and submitted for analysis at concentrations exceeding NYSDEC 703.5 groundwater standards. Parameters detected in groundwater samples at concentrations exceeding NYSDEC 703.5 groundwater standards are listed below:

- MW-101: Iron, magnesium, manganese, and sodium
- MWR-101: Iron, magnesium, and sodium
- MW-102: Iron, magnesium, manganese, and sodium
- MWR-102: Iron, magnesium, sodium, and thallium
- MW-103: Mercury, iron, lead, magnesium, manganese, and sodium
- MW-105: Iron, magnesium, manganese, and sodium
- MW-106: Iron, magnesium, manganese, and sodium
- MW-107: Iron, magnesium, manganese, sodium, and thallium

Metal analytical results from the recent sampling event are generally similar or lower than results from the 2022 sampling event.

7.0 OPERATION AND MAINTENANCE COMPLIANCE

Operation and maintenance activities were completed at the Site and include inspections of the EC and some repairs to the pavement surface of the cover system. The Annual Engineering Controls Inspection of EC/IC Inspection was completed on March 19, 2025, to assess the general condition of the Site as well as conditions of the cover system. A summary of the conditions and recommendations is provided below.

Overall, the EC are functional and IC in place for protection of human health and the environment.

The following action items for maintenance and repairs were noted from the Annual EC inspection on March 19, 2025:

- 1. Make repairs to the cracks in Cover Type 1. Crack sealer coat was applied in June 2025 where cracking has developed.
- 2. Made several repairs to potholes in the existing roadway Cover Type 2 installed in 1998. Asphalt patches were made to match material and elevation of existing pavement surface during 2019 and 2022. Patching of these areas was completed in 2024 and are included in the attached photographs.
- 3. Replaced the entire steel well cover, concrete road box and surface seal at monitoring well MW-102, MWR-102, MWR-101, and MW-101.

The aforementioned items for maintenance and repair were addressed and reinspected in June 2025.

The following action items for maintenance and repairs were recommended from the Annual EC inspection from 2023 and 2025 and have not yet been completed:

- 1. Recommendation for removal of vegetation that includes weeds, brush, and trees from Cover Type 1 areas.
- 2. Repairs to sections of damaged site security fencing.

The VOA was informed of these issues and will be addressed.

8.0 CONCLUSIONS AND RECOMMENDATIONS

8.1 Compliance

Annual inspection of the Site was performed on March 19, 2025, and reinspected June 19, 2025 and September 26, 2025, by Terracon as prescribed in the SMP. As a result, Terracon has determined that the Site is in general compliance with the elements of the SMP. The repairs to the cover system did not compromise the integrity of the protectiveness of this EC.

8.2 Performance and Effectiveness of the Remedy

As reflected by the IC/EC forms the required IC/ECs are in place, are performing properly, and remain effective; the SMP is being implemented; and the remedy continues to be protective of public health and the environment.

8.3 Recommendations for Future PRR

No changes to the inspection, reporting or certification frequency prescribed for the Site. In addition, groundwater monitoring should continue to be performed annually.

8.4 Potential Change of Use

There is no potential change in use planned for this Site at this time. A future sale or change of use at the site requires a 60-Day Advance Notification of Transfer of Ownership as required by 6NYCRR Part 375-1.11(d) and 375-1.9(f).

TABLE 1

Summary of Groundwater Elevations

Volunteers of America Back Lot | 214 Lake Ave, Rochester, New York 14608

Terracon Report No. JA257007

TABLE 1: Summary of Groundwater Elevations Post Remediation Annual Groundwater Monitoring April 29th, 2020 – March 24th, 2025

	MW-101	MWR-101	<u>MW-102</u>	MWR-102	<u>MW-103</u>	<u>MW-105</u>	<u>MW-106</u>	MW-107
Total	30	54.5	31	54	44	28	32	44
Ref Elev	481.89	481.84	490.61	490.16	486.34	483.85	483.53	485.17
Depth to Water 7/27/2009	24.48	24.8	23.5	31.69	43.14	18.41	25.58	
GW Elevation 7/1/2009	457.41	457.04	466.59	458.47	443.34	465.72	457.59	
Depth to Water 4/2/2019	15.78	19.58	22.24	26.8	33.06	17.93	15.85	29.81
GW Elevation 4/2/2019	466.11	462.26	468.37	463.36	453.28	465.92	467.68	455.36
Depth to Water 6/28/2019	19.74	21.1	22.67	28.37	36.64	18.32	20.56	32.93
GW Elevation 6/28/2019	462.15	460.74	467.94	461.79	449.7	465.53	462.97	452.92
Depth to Water 10/4/2019	21.49	21.95	23.98	29.2	39.53	18.73	22.49	34.92
GW Elevation 10/4/2019	460.4	459.89	466.18	460.96	446.81	465.12	461.04	450.25
Depth to Water 1/3/2020	21.01	21.55	23.45	28.71	39.03	18.18	21.98	34.44
GW Elevation 1/3/2020	460.88	460.29	467.16	461.45	447.31	465.67	461.55	450.73
Depth to Water 4/27/2022	21.8	22.3	22.3	28.0	39.6	18.6	22.85	34.4
GW Elevation 4/27/2022	460.09	459.54	468.31	462.16	446.74	465.25	460.68	450.77
Depth to Water 3/24/2025	20.7	22.2	23.02	29.25	38.28	18.2	21.82	33.93
GW Elevation 3/24/2025	439.39	437.34	445.29	432.91	408.46	447.05	438.86	416.84

TABLE 2

Summary of Groundwater Analytical Results

214 Lake Ave, Rochester, New York 14608

			MW-101	MWR-101	MW-102	MWR-102	MW-103	MW-105	MW-106	MW-107	DUPICATE
Analytes	NY-AWQS	Units	3/21/2025	3/21/2025	3/20/2025	3/20/2025	3/19/2025	3/21/2025	3/24/2025	3/19/2025	3/20/2025
			WATER								
Total Metals											
Mercury	0.0007	mg/L	0.000098	ND	ND	ND	0.00095	0.00011	ND	0.00014	ND
Aluminum	NV	mg/L	0.11	2.8	ND	1.4	0.14	20.1	ND	0.19	ND
Arsenic	0.025	mg/L	0.0082	ND	0.017	ND	ND	0.016	ND	ND	0.013
Barium	1.0	mg/L	0.28	0.087	0.77	0.10	0.28	0.082	0.28	0.16	0.75
Beryllium	0.003	mg/L	ND	ND	ND	ND	ND	0.00089	ND	ND	ND
Cadmium	0.005	mg/L	ND	ND	ND	ND	ND	ND	0.00051	ND	ND
Calcium	NV	mg/L	196	120	474	173	252	282	240	274	472
Chromium	0.05	mg/L	ND	0.0070	0.0013	0.015	0.0042	0.020	ND	0.0084	0.0014
Cobalt	NV	mg/L	ND	0.00094	0.0017	0.0032	0.0012	0.010	ND	ND	0.0011
Copper	0.2	mg/L	0.0030	0.0069	ND	0.0024	0.024	0.017	ND	0.0044	ND
Iron	0.3	mg/L	16.3	1.4	42.3	1.2	6.8	21.0	9.0	2.5	41.6
Lead	0.025	mg/L	0.018	0.0090	ND	0.0036	0.049	0.032	0.0034	0.023	ND
Magnesium	35.0	mg/L	50.6	42.1	130	99.9	46.9	176	48.2	47.4	128
Manganese	0.3	mg/L	0.95	0.072	1.3	0.25	0.49	0.32	0.98	0.34	1.3
Nickel	0.1	mg/L	0.0022	0.0087	0.0013	0.014	0.0045	0.022	0.0019	0.0064	0.0013
Potassium	NV	mg/L	15.6	7.3	41.4	13.4	13.4	22.9	12.1	12.6	41.6
Sodium	20	mg/L	329	187	2040	363	325	203	150	178	2080
Thallium	0.0005	mg/L	ND	ND	ND	0.011	ND	ND	ND	ND	0.012
Vanadium	NV	mg/L	ND	0.0044	ND	0.0024	ND	0.022	ND	0.0015	ND
Zinc	2.0	mg/L	ND	0.022	ND	0.024	0.020	0.0077	ND	0.010	ND
Volatile Organic Compounds (V	OCs)										
Chlorobenzene	5.0	ug/L	ND	ND	ND	ND	ND	ND	8.7	ND	ND
cis-1,2-Dichloroethene	5.0	ug/L	ND	2.6	ND	1.3	ND	ND	ND	ND	ND
Methyl tert-butyl ether	10.0	ug/L	ND	0.18	ND	13	ND	ND	ND	ND	ND
Semivolatile Organic Compoun	ds (SVOCs)										
Di-n-butyl phthalate	50.0	ug/L	-	-	0.90	0.99	0.91	-	0.61	0.99	5.0
Diethyl phthalate	50.0	ug/L	-	-	ND	0.54	ND	-	ND	0.53	ND

NV: No Value ND: Not Detected (-): Not Reported

NY-AWQS: New York TOGS 111 Ambient Water Quality Standards

Value measured exceeds NY-AWQS

EXHIBIT 1

Well Location Map

CSOAP Tunnel Easement

Monitoring Well (Bedrock)

Monitoring Well (Overburden)

Project No.: ierracon JA257007 Date: Nov 2025

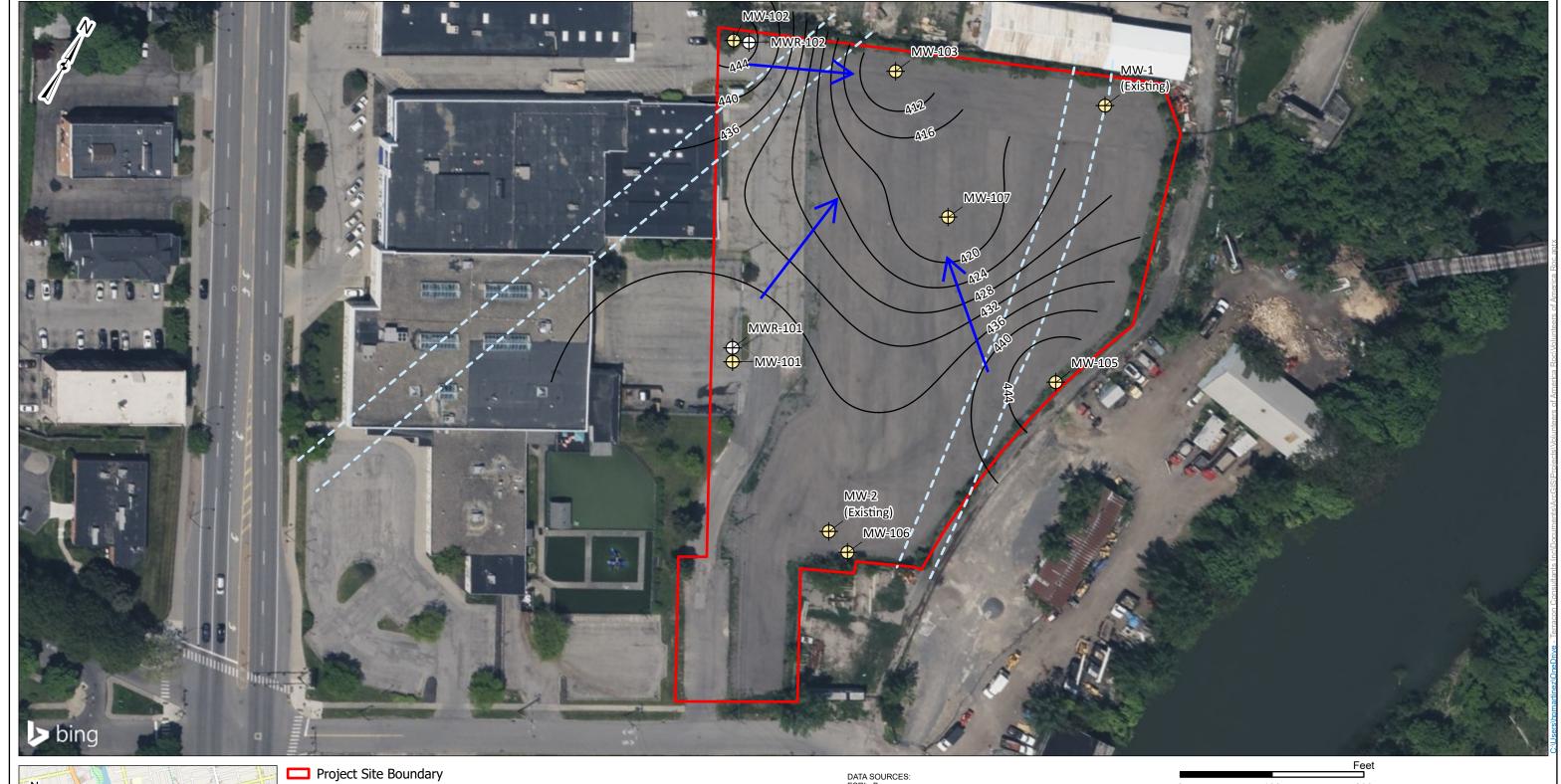
Drawn By:

Reviewed By:

HPM

2410 Walden Ave Ste 100 Cheektowaga, NY

PH. 716-398-7040 terracon.com


Volunteers of America 214 Lake Avenue Rochester, NY 14608

Exhibit

1

EXHIBIT 2

Overburden Groundwater Contour Map

CSOAP Tunnel Easement

— Contours (4 ft)

Monitoring Well (Bedrock)

Monitoring Well (Overburden)

DATA SOURCES: ESRI - Basemaps

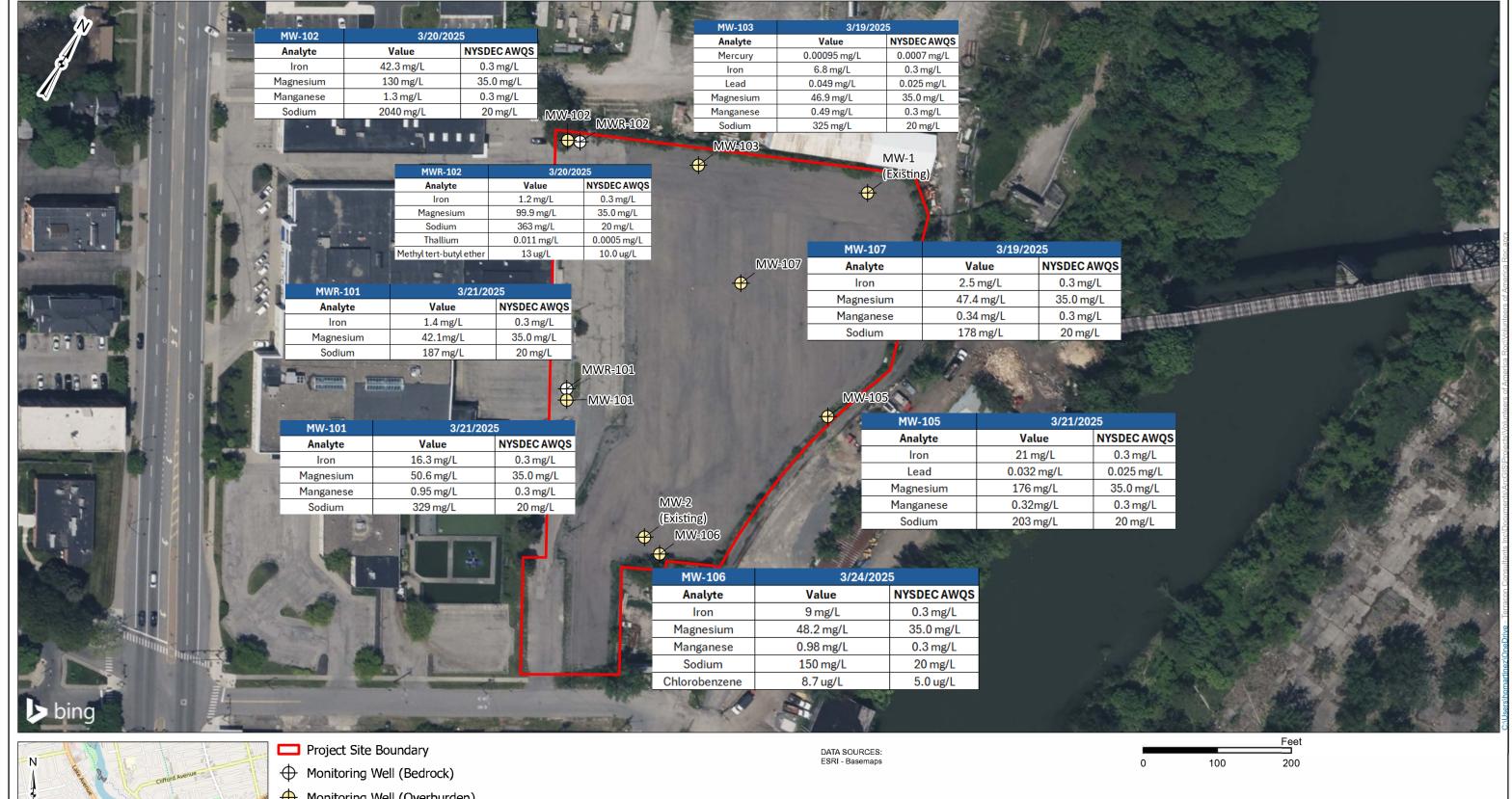
Reviewed By:

Project No.: JA257007 Date:	Terracon
Nov 2025	MICHACO
Drawn By:	2410 Wolden Ave Cte 100

2410 Walden Ave Ste 100 Cheektowaga, NY

PH. 716-398-7040 terracon.com

Overburden Groundwater Contour Map


Volunteers of America 214 Lake Avenue Rochester, NY 14608

Exhibit

2

EXHIBIT 3

Groundwater Exceedances

Project No.:

Drawn By:

Reviewed By:

Date

JA257007

Nov 2025

HPM

Monitoring Well (Overburden)

ierracon

2410 Walden Ave Ste 100 Cheektowaga, NY

PH. 716-398-7040 terracon.com

Ground	hwater.	Fyceer	lances
Giouii	avvalei	LACEEU	iaiices

Volunteers of America 214 Lake Avenue Rochester, NY 14608 **Exhibit**

3

APPENDIX A

Annual Engineering Controls Inspection Report

Annual Maintenance Inspection Form
Name of Inspector: Pat Colera
Date of Inspection: 3/19/25
Location of permeable pavement facility 18 Ambrose St Rochester NY (see map)
Surface/wearing course type
Address of Inspection
18 Ambrose St
Age of permeable payment area:

Site Skecth (Include curbs, islads, trees, north arrow, ect.) or insert Photographs from inspection date.

Based on visual assessment of the site, answer the following questions and take photograph of the site:

Surface/Wearing Course

- 1. Are there indications of any of the following on the surface of the permeable pavement facility? (If yes, mark on site sketch)
 - □ Excessive sediment ∩0

		Moss growth no			
	×	Cracks, trip hazards, or concrete spalling Moltigle Graks			
	A	Trash and debris Small amount of trash on coges of pavement			
		Leaf accumulation no loges of pavement			
		Settlement of surface PO			
	M	Other heaving in povement overgrown ussetation			
		None			
2.	Is there ponding on the surface of the permeable pavement?				
		Yes			
	X	No visible pandins next observed our day			
	If yes, describe the potential reason for ponded water below (leaf or debris build up, non-functional underdrain, groundwater input, illicit connection, inadequate capacity in facility, etc.)				
	Notes and or Photographs from inspection date:				

Inlets/Outlets/Pipes

- 3. How many inlet pipes are present?
- 4. Are any of the inlet pipes clogged? (If yes, mark the location on your site sketch and fill in the boxes below with the cause of the clogging (e.g., debris, sediment, vegetation, etc.)
 - □ No

Are any of the inlet pipes a maintenance? (If yes, write	Itered from the original of the in reason: frost heave,	lesign or otherwise in n vandalism, unknown)	eed of
Status	Inlet No.	Inlet No.	Inlet No.
Partially clogged			
Completely Clogged			
Reason for Maintenance			
□ No □ Partially			
 □ Partially □ Completely □ NA a. If yes, mark the local clogging (e.g., debt) b. Are any of the over 	cation on your site sketo oris, sediment, vegetation rflow structures altered f nce? (If yes, write in reas	n, moss, etc.) from the original design	or otherwise in
 □ Partially □ Completely □ NA a. If yes, mark the local clogging (e.g., debt) b. Are any of the over 	oris, sediment, vegetation rflow structures altered f	n, moss, etc.) from the original design	or otherwise in
□ Partially □ Completely □ NA a. If yes, mark the loclogging (e.g., debt) b. Are any of the over need of maintenar	oris, sediment, vegetation rflow structures altered face? (If yes, write in reas	n, moss, etc.) from the original design on: frost heave, vandal	or otherwise in lism, unknown)

Ob

□ Partially

a storm?	
□ Yes	
₩ No	
□ Unkn	own
	s, identify potential cause of extended ponding and mark the location of observed nded ponding on your site sketch.
Summary	
8. Inspectors Re	ecommendations. When is maintenance needed?
□ Imme	ediately
💢 Withi	n a month or two
□ Withi	n a year
□ No si	gn that any maintenance is required
9. Summarize t	ne results of this inspection and write any other observations in the box below.
Summary and	d other observations or Photographs from inspection date.
Multiple.	Craks observed throughout the court cyclem
Some lead	Craks observed throughout the cover system
France need	Is repair
Heavins pav	ement will be leveled off + sealed
Gate has no On pavemen	lock evidence of tractor tralors turning around + + over wells UOA will address
MW-101 n	eeds new concrete + road box
UOA plans t	o apply parment top coat on entire pared
Vesitation overg.	rowins + is cut back every spring by

7. Is water remaining in the storage aggregate longer than anticipated by design after the end of

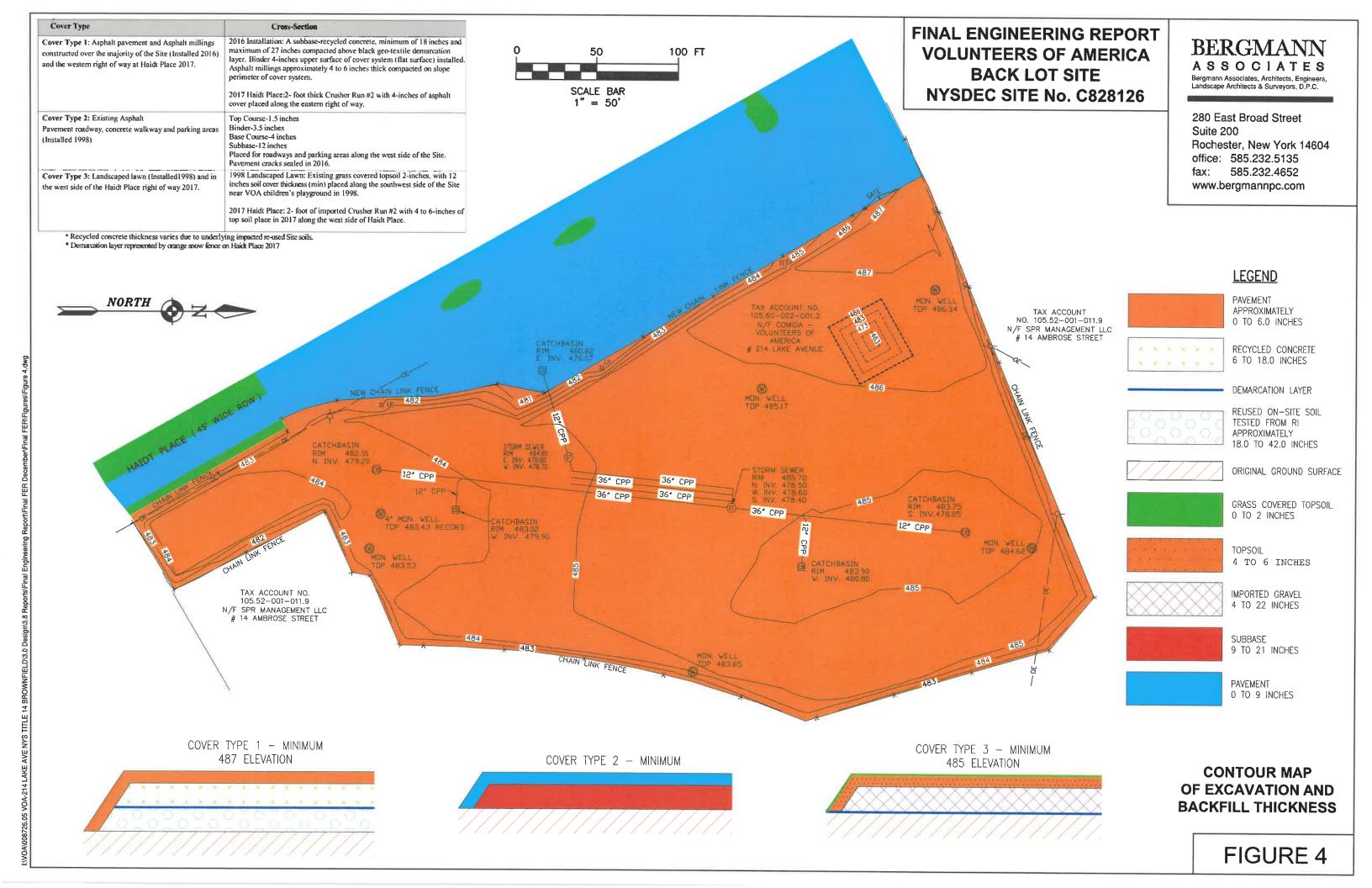


Photo 1: Facing north, new Cover Type 2 and 3 and grass to west central side of Site. Cover is in good condition. Small pot hole at the bottom of the photo.

Photo 3: Facing southwest, Cover Type 3, grass cover on Haidt Place ROW with areas of exposed soils.

Photo 2: Facing south, Cover Type 2 on west side of Site.

Photo 4: Type 2 Cover fully patched on west side of the Site. Facing south.

Explore with us

Photo 5: Type 2 Cover on Haidt Place with new pavement cover to the west side of the Site.

Photo 7: East side of Back Lot. Asphalt has a shallow and long crack visible.

Photo 6: Drain to west side of Site. Looks to be recently refurbished. Area surrounding the drain is clear of debris.

Photo 8: West side of site facing south, Refurbished drain, Haidt Place pavement covers visible. Some cracks in pavement.

Explore with us 2

Volunteers of America Back Lot ■ 214 Lake Ave, Rochester, NY 14608 Date Pictures Taken: March 24th, 2025 ■ Terracon Project No. JA257007

Photo 9: MW-1: Concrete well box is well maintained.

Photo 11: MW-101: Concrete well box is damaged with several large cracks. The seal has been compromised, allowing soil and vegetation into the well.

Photo 10: MW-2: Concrete well box is well maintained.

Photo 12: MWR-101: Concrete well box is damaged with multiple cracks.

Explore with us 3

Photo 13: MW-102: Concrete well box is well maintained.

Photo 15: MW-103: Concrete well box is well maintained.

Photo 14: MWR-102: Concrete well box has some small cracks.

Photo 16: MWR-105: Concrete well box is well maintained.

Photo 17: MW-106: Concrete well box is well maintained.

Photo 19: East side of Back Lot. Small cracks in pavement.

Photo 18: MW-107: Concrete well box is well maintained.

Photo 20- Northeast side of Back Lot. Tree root growing under pavement has cause a large crack to form in the asphalt.

Photo 21- South side of Back Lot. Long crack has been previously sealed but has begun to come apart again.

Photo 23 – East side of Back Lot. Asphalt seems to be intact.

Photo 22 – Back Lot. Previously sealed pavement has started to crack again and will require to be sealed again.

Photo 24 – Southeast corner of Back Lot. Asphalt is intact.

Photo 25: South side of Back Lot. Asphalt is in good condition.

Photo 26: Middle of Back Lot. Asphalt is in good condition and the drain is free of any debris.

Photo 1: MW-102 has been fixed with new concrete and a new lid.

Photo 3: MW-101 has been fixed with new concrete and a new lid.

Photo 2: MWR-102 has been fixed with new concrete and a new lid.

Photo 4: has been fixed with new concrete and a new lid.

Photo 5: Some divots in the pavement near the back lot entrance.

Photo 7: Close up of the crack shown in Photo 6.

Photo 6: Crack in the pavement, likely caused by a tree root, near the northeast corner of the back lot.

Photo 8: Close up of the crack shown in Photo 6.

Photo 9: Photo of back lot facing southeast.

Photo 11: MW-1

Photo 10: MW-103

Photo 12: MW-105

Photo 13: Photo of a drain and back lot facing west.

Photo 15: Storm drain in the center of the back lot.

Photo 14: Photo of back lot facing southwest.

Photo 16: MW-107

Photo 17: Manhole cover in the back lot.

Photo 19: Storm drain near the south side of the lot.

Photo 18: Photo of lot facing northeast.

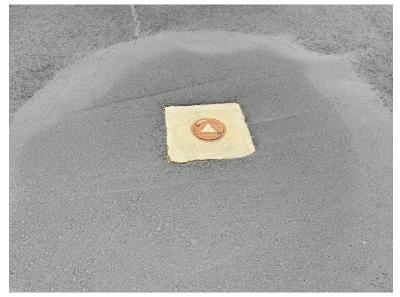


Photo 20: MW-2

Photo 21: MW-106

Photo 23: Southern part of the lot.

Photo 22: Drain at south side of the lot.

Photo 24: Photo facing north.

Photo 25: Photo of lot facing north.

Photo 26: Asphalt under the two dumpsters near the northwest corner in the back lot was not repaved.

APPENDIX B

NYSDEC IC/EC Certification Forms

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

		Site Details	Box 1	
Sit	e No.	C828126		
Sit	e Name Vo	olunteers of America Back Lot Site		
Cit Co	e Address: y/Town: Ro unty:Monro e Acreage:	oe e		
Re	porting Peri	iod: June 01, 2023 to July 25, 2025		
			YES	NO
1.	Is the infor	rmation above correct?	X	
	If NO, inclu	ude handwritten above or on a separate sheet.		
2.		or all of the site property been sold, subdivided, merged, or undergone a mendment during this Reporting Period?		X
3.		been any change of use at the site during this Reporting Period CRR 375-1.11(d))?		X
4.	Have any for or at th		X	
		swered YES to questions 2 thru 4, include documentation or evidence mentation has been previously submitted with this certification form.		
5.	Is the site	currently undergoing development?		x
			Box 2	
			YES	NO
6.		ent site use consistent with the use(s) listed below? -Residential, Commercial, and Industrial	X	
7.	Are all ICs	s in place and functioning as designed?		
	IF T	HE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below ar DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.	nd	
Α (Corrective N	Measures Work Plan must be submitted along with this form to address the	ese issı	ies.
Sic	nature of O	wner, Remedial Party or Designated Representative Date		

		Box 2	A			
		YES	NO			
8.	Has any new information revealed that assumptions made in the Qualitative Exposure Assessment regarding offsite contamination are no longer valid?		X			
	If you answered YES to question 8, include documentation or evidence that documentation has been previously submitted with this certification form.					
9.	Are the assumptions in the Qualitative Exposure Assessment still valid? (The Qualitative Exposure Assessment must be certified every five years)	X				
	If you answered NO to question 9, the Periodic Review Report must include an updated Qualitative Exposure Assessment based on the new assumptions.					
SITI	SITE NO. C828126					

<u>Parcel</u>	Owner	Institutional Control
105.60-2-1.002 (portion of)	County of Monroe Industrial Development	
		Ground Water Use Restriction
		Landuse Restriction

Imposition of an institutional control in the form of an environmental easement for the controlled property which will: requires the remedial party or site owner to complete and submit to the Department a periodic certification of institutional and engineering controls in accordance with Part 375-1.8 (h)(3); allows the use and development of the controlled property for restricted residential as defined by Part 375-1.8(g), although land use is subject to local zoning laws; restrict the use of groundwater as a source of potable or process water, without necessary water quality treatment as determined by the NYSDOH or County DOH; and require compliance with the Department approved Site Management Plan.

A Site Management Plan is required, which includes the following: an Institutional and Engineering Control Plan that identifies all use restrictions and engineering controls for the site and details the steps and media-specific requirements necessary to ensure the following institutional and/or engineering controls remain in place and effective.

This plan includes, but may not be limited to: an Excavation Plan which details the provisions for management of future excavations in areas of remaining contamination; descriptions of the provisions of the environmental easement including any land use and groundwater use restrictions; a provision for evaluation of the potential for soil vapor intrusion for any buildings developed on the site, including provision for implementing actions recommended to address exposures related to soil vapor intrusion; provisions for the management and inspection of the identified engineering controls; maintaining site access controls and Department notification; and the steps necessary for the periodic reviews and certification of the institutional and/or engineering controls. A Monitoring Plan to assess the performance and effectiveness of the remedy. The plan includes, but may not be limited to: monitoring of groundwater to assess the performance and effectiveness of the remedy; a schedule of monitoring and frequency of submittals to the Department; and monitoring for vapor intrusion for any future buildings developed on the site.

105.60-2-59.003

Volunteers of America of Western NY

Ground Water Use Restriction Landuse Restriction Monitoring Plan Site Management Plan IC/EC Plan

Monitoring Plan
Site Management Plan

IC/EC Plan

Imposition of an institutional control in the form of an environmental easement for the controlled property which will: requires the remedial party or site owner to complete and submit to the Department a periodic certification of institutional and engineering controls in accordance with Part 375-1.8 (h)(3); allows the use and development of the controlled property for restricted residential as defined by Part 375-1.8(g), although land use is subject to local zoning laws; restrict the use of groundwater as a source of potable or process water, without necessary water quality treatment as determined by the NYSDOH or County DOH; and require compliance with the Department approved Site Management Plan.

A Site Management Plan is required, which includes the following: an Institutional and Engineering Control Plan that identifies all use restrictions and engineering controls for the site and details the steps and media-specific requirements necessary to ensure the following institutional and/or engineering controls remain in place and effective.

This plan includes, but may not be limited to: an Excavation Plan which details the provisions for management of future excavations in areas of remaining contamination; descriptions of the provisions of the environmental easement including any land use and groundwater use restrictions; a provision for evaluation of the potential for soil vapor intrusion for any buildings developed on the site, including provision for implementing actions recommended to address exposures related to soil vapor intrusion; provisions for the management and inspection of the identified engineering controls; maintaining site access controls and Department notification; and the steps necessary for the periodic reviews and certification of the institutional and/or engineering controls. A Monitoring Plan to assess the performance and effectiveness of the remedy. The plan includes, but may not be limited to: monitoring of groundwater to assess the performance and effectiveness of the remedy; a schedule of monitoring and frequency of submittals to the Department; and monitoring for vapor intrusion for any future buildings developed on the site.

Box 4

Description of Engineering Controls

Parcel Engineering Control

105.60-2-1.002 (portion of)

Cover System

A site cover will be required to allow for restricted residential use of the site. The cover will consist either of the structures such as buildings, pavement, sidewalks comprising the site development or a soil cover in areas where the upper two feet of exposed surface soil will exceed the applicable soil cleanup objectives (SCOs). Where the soil cover is required it will be a minimum of two feet of soil placed over a demarcation layer, with the upper six inches of the soil of sufficient quality to maintain a vegetation layer. Soil cover material, including any fill material brought to the site, will meet the SCOs for cover material as set forth in 6 NYCRR Part 375-6.7(d).

105.60-2-59.003

Cover System

A site cover will be required to allow for restricted residential use of the site. The cover will consist either of the structures such as buildings, pavement, sidewalks comprising the site development or a soil cover in areas where the upper two feet of exposed surface soil will exceed the applicable soil cleanup objectives (SCOs). Where the soil cover is required it will be a minimum of two feet of soil placed over a demarcation layer, with the upper six inches of the soil of sufficient quality to maintain a vegetation layer. Soil cover material, including any fill material brought to the site, will meet the SCOs for cover material as set forth in 6 NYCRR Part 375-6.7(d).

Box 5	5
-------	---

	Periodic Review Report (PRR) Certification Statements									
1.	I certify by checking "YES" below that:									
 a) the Periodic Review report and all attachments were prepared under the direction of reviewed by, the party making the Engineering Control certification; 										
b) to the best of my knowledge and belief, the work and conclusions described in this care in accordance with the requirements of the site remedial program, and generally according programs and the information property										
	engineering practices; and the information presented is accurate and compete. YES NO									
	X \square									
2.	For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:									
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;									
(b) nothing has occurred that would impair the ability of such Control, to protect public health the environment;										
(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;										
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and									
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.									
	YES NO									
	X									
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.									
	A Corrective Measures Work Plan must be submitted along with this form to address these issues.									
	Signature of Owner, Remedial Party or Designated Representative Date									

IC CERTIFICATIONS SITE NO. C828126

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Michele Wittm	an at Terracon Consult	at Terracon Consultants 2410 Walden Ave, Buffalo, N						
print name	print busines	ss address						
am certifying as	Remedial Party	(Owner or Remedial Party)						
	Site Details Section of this form.							
Mahil M. U	letmar	11/6/2025						
Signature of Owner, Ren Rendering Certification	nedial Party, or Designated Representati	ve Date						

EC CERTIFICATIONS												
	Box 7											
I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.												
ι <u>Michele Wittman</u> print name	Valden Ave, Buffalo, NY											
am certifying as a for theR	(Owner or Ren	nedial Party)										
Signature of , for the Owner or Remediated Rendering Certification		Stamp (Required for PE)	11/6/2025 Date									

APPENDIX C Remedial Investigation Summary Tables for Groundwater Sampling	

	NYSDEC 703.5	MW-101	MW-101	MW-101	MW-101	MWR-101	MWR-101	MWR-101	MWR-101	MW-102	MW-102	MW-102	MW-102	MWR-102	MWR-102	MWR-102	MWR-102
			(6/11/2020)	(4/27/2022)	(3/24/2025)		(6/11/2020)	(4/17/2022)	(3/24/2025)		(6/11/2020)	(4/17/2022)	(3/24/2025)		(6/11/2020)	(4/17/2022)	(3/24/2025)
Metals	Standard	(7/27/09)	Annual 2020	Annual 2022	Annual 2025	(7/27/09)	Annual 2020	Annual 2022	Annual 2025	(7/29/09)	Annual 2020	Annual 2022	Annual 2025	(7/29/09)	Annual 2020	Annual 2022	Annual 2025
RCRA Metals																	
Aluminum	-	74.7	<100ND	5070	0.11	120B	1870	3640	2800	19400	<100ND	4120	ND	770	96.3J	1710	1400
Antimony	3	10B	<60ND	<60ND	<60ND	<60ND	<60ND	<60ND	<60ND	0.57ND	<60ND	<60ND	<60ND	<60ND	<60ND	<60ND	<60ND
Arsenic	25	144	9.32J	27.1	8.2	<10ND	9.10J	7.75	ND	13.5	12.2	20.2	17	<10ND	7.75J	<10ND	ND
Barium	1000	1840	216	407	280	20B	<100ND	78.2	87	457	484	839	770	696	71.2J	97.6	100
Beryllium	3	6	<5ND	<5ND	ND	<5ND	<5ND	<5ND	ND	0.84B	<5ND	<5ND	ND	<5ND	<5ND	<5ND	ND
Cadmium	5	5.6	<5ND	<5ND	ND	<5ND	<5ND	<5ND	ND	0.50B	<5ND	9.34	ND	<5ND	<5ND	2.85	ND
Calcium	-	381000	180000	244000	196000	222000	5540	158000	120000	269000	698000	766000	474000	24100	86800	148000	173000
Chromium	50	229	<10ND	16.1	ND	<10ND	<10ND	<10ND	7	25.1	<10ND	5.79	1.3	4B	<10ND	<10ND	15
Colbalt	-	60	<50ND	<50ND	ND	<50ND	<50ND	<50ND	0.94	5.0B	<50ND	<50ND	1.7	50ND	<50ND	<50ND	3.2
Copper	200	2050	<20ND	132	3.0	5B	<40ND	15.6	6.9	55.6	<40ND	17	ND	8B	<40ND	<20ND	2.4
Iron	300	140000	11810	30900	16300	220	1026	3630	1400	50900	10900	56800	42300	1300	1410	2810	1200
Lead	25	14100	<10ND	914	18	5B	13.5	26.1	9	109	<10ND	54.4	ND	8B	<10ND	7.9	3.6
Magnesium	300	152000	43400	61200	50600	88800	<25ND	69700	42100	107000	134000	201000	130000	3600	43600	82900	99900
Manganese	300	3840	725	1190	950	78	15.8	686	72	1120	1250	2440	1300	14B	102	247	250
Mercury	0.7	1.87	<0.2ND	40.7	0.098	0.20B	0.313	0.765	ND	0.93	<0.20ND	0.116	ND	0.02B	0.117	<.20ND	ND
Nickel	100	132	<40ND	<40ND	2.2	<40ND	<40ND	<40ND	8.7	13.8B	<40ND	<40ND	0.0013	<40ND	<40ND	<40ND	14
Potassium	-	23000	10300	13900	15600	12400	1,470J	9680	7300	33700	42800	59100	41.4	4,200B	10400	12500	13400
Selenium	10	11B	<20ND	<20ND	ND	6B	<20ND	<20ND	ND	1.5ND	<20ND	43.8	ND	35ND	<20ND	19.5	ND
Silver	50	16	<10ND	<10ND	ND	<10ND	<10ND	<10ND	ND	2.4B	<10ND	42	ND	<10ND	<20ND	10.9	ND
Sodium	20000	125000	176000	299000	329000	336000	158000	297000	187000	499100	1860000	2330000	2040000	102000	375000	326000	363000
Thallium	0.5	<25ND	<25ND	<25ND	ND	<25ND	<25ND	<25ND	ND	1.3ND	54.5	25.8	ND	25ND	<25ND	<25ND	11
Vanadium	-	252	<25ND	22.2	ND	50B	<25ND	<25ND	4.4	23.3B	<25ND	<25ND	ND	50B	<25ND	<25ND	2.4
Zinc	2000	3080	<60ND	470	ND	143	43.4	106	22	98.8	<60ND	95.9	ND	915	<60ND	90.3	24

- 1. NA = Not analyzed, ND = Less than laboratory detection limits. J = metals is estimated, = No standard.
- 2. Concentrations of metals are expressed in parts per billion (ppb) equivalent to ug/l.
- 3. Samples collected by GeoQuest Environmental, Inc. on July 27, 2009 (Remedial Investigation) analyzed by Columbia Analytical Services, Rochester, New York
- 4. Samples collected by Bergmann on June 11, 2020 and analyzed by Paradigm Environmental Services, Inc. in Rochester, New York
- 5. Samples collected by Bergmann on April 27, 2022 and analyzed by Paradigm Environmental Services, Inc. in Rochester, New York
- 6. NYSDEC groundwater standards 703.5 and June 1998 Division of Technical and Operational guidance series T.O.G.S. 1.1.1 and as amended April 2000.
- 7. Highlighted values exceed NYSDEC 703.5

	NYSDEC 703.5	MWR-103	MWR-103	MWR-103	MWR-103	MW-105	MW-105	MW-105	MWR-105	MWR-106	MWR-106	MWR-106	MWR-106	MW-107	MW-107	MW-107	MWR-107
			(6/11/2020)	(4/17/2022)	(3/24/2025)		(6/11/2020)	(4/27/2022)	(3/24/2025)		(6/11/2020)	(4/17/2022)	(3/24/2025)	(= (= () () ()	(6/11/2020)	(4/17/2022)	(3/24/2025)
Metals	Standard	(7/29/09)	Annual 2020	Annual 2022	Annual 2025	(7/27/09)	Annual 2020	Annual 2022	Annual 2025	(7/27/09)	Annual 2020	Annual 2022	Annual 2025	(7/29/09)	Annual 2020	Annual 2022	Annual 2025
RCRA Metals																	
Aluminum	-	31700	<100ND	1160	140	170000	9270	68700	20100	36900	2590	68700	ND	52100	<100ND	5970	190
Antimony	3	142	<60ND	<60ND	<60ND	<60ND	<60ND	<60ND	<60ND	9B	<60ND	39.8	<60ND	154	<60ND	33.4	<60ND
Arsenic	25	99.2	15.1	7.59	ND	102	<10ND	48	16	44	8.44J	109	ND	160	7.27J	25.8	ND
Barium	1000	1660	262	348	280	320	<100ND	214	82	790	192	1610	280	1,370Ј	121	309	160
Beryllium	3	3.8B	<5ND	<5ND	ND	8.9	<5ND	3.02	0.89	1.6B	<5ND	3.18	ND	<5ND	<5ND	<5ND	ND
Cadmium	5	4.7B	<5ND	<5ND	ND	3.7B	<5ND	7.08	ND	4.5B	<5ND	17.5	0.51	6.2	<5ND	2.56	ND
Calcium	-	368000	182000	272000	252000	1820000	115000	1080000	282000	229000	153000	367000	240000	393000	279000	334000	274000
Chromium	50	121	34.4	<10ND	4.2	177	<10ND	77.3	20	118	<10ND	192	ND	319	<10ND	32	8.4
Colbalt	-	35.7B	<50ND	<50ND	1.2	74	<50ND	44.2	10	19B	<50ND	42.9	ND	<50ND	<50ND	<5ND	ND
Copper	200	8840	<20ND	270	24	240	<40ND	88.3	17	1040	<20ND	1430	ND	1360	<40ND	172	4.4
Iron	300	80500	1260	7960	6800	210000	<100ND	102000	21000	60000	6310	173000	9000	127000	3800	16800	2500
Lead	25	6600	<10ND	232	49	327	<100ND	156	32	2010	55.4	2900	3.4	4230	<10ND	550	23
Magnesium	300	84300	37800	46900	46900	761000	107000	366000	176000	76000	29200	103000	48200	101000	44500	51700	47400
Manganese	300	1060	534	5.37	490	3810	44.2	2070	320	1690	472	3330	980	1920	394	590	340
Mercury	0.7	195	<0.2ND	506	0.95	<.20ND	<.20ND	0.543	110	1.24	0.274	26.1	ND	29.2	<0.2ND	8.42	0.14
Nickel	100	155	<20ND	<40ND	4.5	171	<40ND	73.7	22	57	<40ND	212	1.9	209	<40ND	159	6.4
Potassium	=	18000	11700	13500	13400	83500	9640	41600	22900	23200	9630	18300	12100	20,200J	9610	13000	12600
Selenium	10	11.4B	<20ND	<20ND	ND	<20ND	<20ND	18.7	ND	12B	<20ND	23.5	ND	21.8	<20ND	<20ND	ND
Silver	50	12.9	<10ND	<10ND	ND	<10ND	<10ND	<10ND	ND	<10ND	<10ND	<10ND	ND	<10ND	<10ND	<10ND	ND
Sodium	20000	188000	227000	306000	325000	58700	93640	199000	203000	351000	181000	207000	150000	178000	104000	194000	178000
Thallium	0.5	1.3ND	<25ND	<25ND	ND	<25ND	<25ND	<25ND	ND	<25ND	<25ND	<25ND	ND	<25ND	<25ND	<25ND	ND
Vanadium	-	125	<25ND	<25ND	ND	180	13.7J	90.9	22	<25ND	<25ND	140	ND	<25ND	<25ND	22.6	1.5
Zinc	2000	4070	38.9J	405	20	163	<60ND	136	7.7	133	74.8	3850	ND	33.8J	<60ND	470	10

- 1. NA = Not analyzed, ND = Less than laboratory detection limits. J = metals is estimated, -= No standard.
- 2. Concentrations of metals are expressed in parts per billion (ppb) equivalent to ug/l.
- 3. Samples collected by GeoQuest Environmental, Inc. on July 27, 2009 (Remedial Investigation) analyzed by Columbia Analytical Services, Rochester, New York (ELAP ID# 10145)
- $4. \ Samples \ collected \ by \ Bergmann \ on \ June \ 11, 2020 \ and \ analyzed \ by \ Paradigm \ Environmental \ Services, Inc. \ in \ Rochester, New \ York$
- 5. Samples collected by Bergmann on April 27, 2022 and analyzed by Paradigm Environmental Services, Inc. in Rochester, New York
- 6. NYSDEC groundwater standards 703.5 and June 1998 Division of Technical and Operational guidance series T.O.G.S. 1.1.1 and as amended April 2000.
- 7. Highlighted values exceed NYSDEC 703.5

	NYSDEC 703.5	MW-101	MWR-101	MW-102	MWR-102	MWR-102	MWR-102	MWR-102	MW-103	MW-105	MWR-106	MWR-106	MWR-106	MWR-106	MWR-107
Volatile Organic Compounds	Standard	3/24/2025	3/24/2025	3/24/2025	(7/29/09)				3/24/2025	3/24/2025	(7/27/09)			3/24/2025	3/24/2025
		Annual 2025	Annual 2025	Annual 2025	(1123103)	Annual 2020	Annual 2022	Annual 2025	Annual 2025	Annual 2025	(1121109)	Annual 2020	Annual 2022	Annual 2025	Annual 2025
VOCS															
Methyl tert-butyl Ether	10	ND	0.18	ND	13	10.6	14.8	ND	ND	ND	10ND	10ND	10ND	ND	ND
Cis-1,2-Dichloroethene	5	ND	2.6	ND	1	1	1.65	1.3	ND	ND	10ND	10ND	10ND	ND	ND
Chlorobenzene	5	ND	ND	ND	10ND	10ND	10ND	ND	ND	8.7	2.0J	4.93	9.49	ND	ND

- 1. NA = Not analyzed, ND
- 2. Concentrations are expressed in parts per billion (ppb) equivalent to ug/l.
- 3. Samples collected by GeoQuest Environmental, Inc. on July 27, 2009 (Remedial Investigation) analyzed by Columbia Analytical Services, Rochester, New York
- 4. Samples collected by Bergmann on June 11, 2020 and analyzed by Paradigm Environmental Services, Inc. in Rochester, New York
- 5. Samples collected by Bergmann on April 27, 2022 and analyzed by Paradigm Environmental Services, Inc. in Rochester, New York
- 6. Samples collected by Terracon on March 24th, 2025 and analyzed by Eurofins Scientific in Buffalo, New York.
- 7. NYSDEC groundwater standards 703.5 and June 1998 Division of Technical and Operational guidance series T.O.G.S. 1.1.1 and as amended April 2000
- 8. Results shown for July 2009 are for the Remedial Investigation.
- 9. Highlighted values exceed NYSDEC 703.5

APPENDIX D

Laboratory Data Report and Chain of Custody

PREPARED FOR

ANALYTICAL REPORT

Attn: Mr. Patrick Colern Terracon Consultants Inc 81 Benbro Drive Buffalo, New York 14225

Generated 4/1/2025 3:50:23 PM

JOB DESCRIPTION

Back Lot Lake Ave, Rochester, NY

JOB NUMBER

480-228104-1

Eurofins Buffalo 10 Hazelwood Drive Amherst NY 14228-2298

Eurofins Buffalo

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northeast, LLC Project Manager.

Authorization

Generated 4/1/2025 3:50:23 PM

Authorized for release by
Gale Prinster, Project Mgmt. Assistant
gale.prinster@et.eurofinsus.com
Designee for
John Beninati, Project Manager I
John.Beninati@et.eurofinsus.com
(716)504-9874

14

15

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	7
Client Sample Results	9
Surrogate Summary	21
QC Sample Results	22
QC Association Summary	32
Lab Chronicle	34
Certification Summary	35
Method Summary	36
Sample Summary	37
Chain of Custody	38
Receipt Checklists	39

3

4

6

0

9

10

12

IC

7

Definitions/Glossary

Client: Terracon Consultants Inc Job ID: 480-228104-1

Project/Site: Back Lot Lake Ave, Rochester, NY

Qualifiers

GC/MS VOA

Qualifier Qualifier Description

*+ LCS and/or LCSD is outside acceptance limits, high biased.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC/MS Semi VOA

*+ LCS and/or LCSD is outside acceptance limits, high biased.

B Compound was found in the blank and sample.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Metals

Qualifier	Qualifier Description
-----------	-----------------------

^2 Calibration Blank (ICB and/or CCB) is outside acceptance limits.

^5- Linear Range Check (LRC) is outside acceptance limits, low biased.

^5+ Linear Range Check (LRC) is outside acceptance limits, high biased.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Buffalo

Page 4 of 39 4/1/2025

Case Narrative

Client: Terracon Consultants Inc

Project: Back Lot Lake Ave, Rochester, NY

Job ID: 480-228104-1 Eurofins Buffalo

Job Narrative 480-228104-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these
 situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise
 specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed
 unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 3/22/2025 9:00 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 3.5°C.

GC/MS VOA

Method 8260C: The following volatiles samples were diluted due to foaming at the time of purging during the original sample analysis: MW-101 (480-228104-1) and MW-105 (480-228104-3). Elevated reporting limits (RLs) are provided.

Method 8260C: The continuing calibration verification (CCV) associated with batch 480-741783 recovered above the upper control limit for Tetrachloroethane. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated samples are impacted: MW-101 (480-228104-1), MWR-101 (480-228104-2) and MW-105 (480-228104-3).

Method 8260C: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for analytical batch 480-741783 recovered outside control limits for the following analytes: Dichlorodifluoromethane, Tetrachloroethane. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

Method 8260C: The continuing calibration verification (CCV) associated with batch 480-741783 recovered above the upper control limit for Trichlorofluoromethane. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated samples are impacted: MW-101 (480-228104-1), MWR-101 (480-228104-2) and MW-105 (480-228104-3).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC/MS Semi VOA

Method 8270D: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-741949.

Method 8270D: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for preparation batch 480-741949 and analytical batch 480-742017 recovered outside control limits for the following analytes: Atrazine. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

Method 8270D: The continuing calibration verification (CCV) associated with batches 480-742017 and 480-742178 recovered outside acceptance criteria, low biased, for 2,4-Dinitrophenol, 4,6-Dinitro-2-methylphenol, 4-Nitrophenol and Hexachlorocyclopentadiene. A reporting limit (RL) standard was analyzed, and the target analytes are detected. Since the associated samples were non-detect for the analyte(s), the data are reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Metals

Method 6010D: The linear range check (LRC) standard recovery associated with 480-742172 is outside the acceptance criteria for the following analytes: total Silver, Copper, and Lead. The concentration of these analyte(s) in the sample(s) are below the highest standard of the calibration curve; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Buffalo

Page 5 of 39 4/1/2025

Job ID: 480-228104-1

5

5

6

8

9

11

12

4 /

15

Case Narrative

Client: Terracon Consultants Inc

Project: Back Lot Lake Ave, Rochester, NY

Job ID: 480-228104-1

Job ID: 480-228104-1 (Continued) **Eurofins Buffalo**

Page 6 of 39

Client: Terracon Consultants Inc

Project/Site: Back Lot Lake Ave, Rochester, NY

Job ID: 480-228104-1

Client Sample ID: MW-101

Lab Sample ID: 480-228104-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Di-n-butyl phthalate	1.0	JB	5.0	0.31	ug/L	1	_	8270D	Total/NA
Aluminum	0.11	J	0.20	0.060	mg/L	1		6010D	Total/NA
Arsenic	0.0082	J	0.015	0.0056	mg/L	1		6010D	Total/NA
Barium	0.28		0.0020	0.00070	mg/L	1		6010D	Total/NA
Calcium	196		0.50	0.10	mg/L	1		6010D	Total/NA
Copper	0.0030	J ^5+	0.010	0.0016	mg/L	1		6010D	Total/NA
Iron	16.3		0.050	0.019	mg/L	1		6010D	Total/NA
Lead	0.018	^2 ^5+	0.010	0.0030	mg/L	1		6010D	Total/NA
Magnesium	50.6		0.20	0.043	mg/L	1		6010D	Total/NA
Manganese	0.95		0.0030	0.00040	mg/L	1		6010D	Total/NA
Nickel	0.0022	J	0.010	0.0013	mg/L	1		6010D	Total/NA
Potassium	15.6		0.50	0.10	mg/L	1		6010D	Total/NA
Sodium	329		1.0	0.32	mg/L	1		6010D	Total/NA
Mercury	0.000098	J	0.00020	0.000042	mg/L	1		7470A	Total/NA

Client Sample ID: MWR-101

Lab Sample ID: 480-228104-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	2.6		1.0	0.81	ug/L	1	_	8260C	Total/NA
Methyl tert-butyl ether	0.18	J	1.0	0.16	ug/L	1		8260C	Total/NA
Di-n-butyl phthalate	1.1	JB	5.0	0.31	ug/L	1		8270D	Total/NA
Aluminum	2.8		0.20	0.060	mg/L	1		6010D	Total/NA
Barium	0.087		0.0020	0.00070	mg/L	1		6010D	Total/NA
Calcium	120		0.50	0.10	mg/L	1		6010D	Total/NA
Chromium	0.0070		0.0040	0.0010	mg/L	1		6010D	Total/NA
Cobalt	0.00094	J	0.0040	0.00063	mg/L	1		6010D	Total/NA
Copper	0.0069	J ^5+	0.010	0.0016	mg/L	1		6010D	Total/NA
Iron	1.4		0.050	0.019	mg/L	1		6010D	Total/NA
Lead	0.0090	J ^2 ^5+	0.010	0.0030	mg/L	1		6010D	Total/NA
Magnesium	42.1		0.20	0.043	mg/L	1		6010D	Total/NA
Manganese	0.072		0.0030	0.00040	mg/L	1		6010D	Total/NA
Nickel	0.0087	J	0.010	0.0013	mg/L	1		6010D	Total/NA
Potassium	7.3		0.50	0.10	mg/L	1		6010D	Total/NA
Sodium	187		1.0	0.32	mg/L	1		6010D	Total/NA
Vanadium	0.0044	J	0.0050	0.0015	mg/L	1		6010D	Total/NA
Zinc	0.022		0.010	0.0015	mg/L	1		6010D	Total/NA

Client Sample ID: MW-105

Lab Sample ID: 480-228104-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Di-n-butyl phthalate	1.1	JB	5.0	0.31	ug/L	1	_	8270D	Total/NA
Aluminum	20.1		0.20	0.060	mg/L	1		6010D	Total/NA
Arsenic	0.016		0.015	0.0056	mg/L	1		6010D	Total/NA
Barium	0.082		0.0020	0.00070	mg/L	1		6010D	Total/NA
Beryllium	0.00089	J	0.0020	0.00030	mg/L	1		6010D	Total/NA
Calcium	282		0.50	0.10	mg/L	1		6010D	Total/NA
Chromium	0.020		0.0040	0.0010	mg/L	1		6010D	Total/NA
Cobalt	0.010		0.0040	0.00063	mg/L	1		6010D	Total/NA
Copper	0.017	^5+	0.010	0.0016	mg/L	1		6010D	Total/NA
Iron	21.0		0.050	0.019	mg/L	1		6010D	Total/NA
Lead	0.032	^2 ^5+	0.010	0.0030	mg/L	1		6010D	Total/NA
Magnesium	176		0.20	0.043	mg/L	1		6010D	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins Buffalo

Page 7 of 39

Detection Summary

Client: Terracon Consultants Inc

Project/Site: Back Lot Lake Ave, Rochester, NY

Client Sample ID: MW-105 (Continued)

Lab Sample ID: 480-228104-3

Job ID: 480-228104-1

Analyte	Result Q	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Manganese	0.32		0.0030	0.00040	mg/L		6010D	Total/NA
Nickel	0.022		0.010	0.0013	mg/L	1	6010D	Total/NA
Potassium	22.9		0.50	0.10	mg/L	1	6010D	Total/NA
Sodium	203		1.0	0.32	mg/L	1	6010D	Total/NA
Vanadium	0.022		0.0050	0.0015	mg/L	1	6010D	Total/NA
Zinc	0.0077 J		0.010	0.0015	mg/L	1	6010D	Total/NA
Mercury	0.00011 J	(0.00020	0.000042	mg/L	1	7470A	Total/NA

Client: Terracon Consultants Inc Job ID: 480-228104-1

Project/Site: Back Lot Lake Ave, Rochester, NY

Client Sample ID: MW-101

Lab Sample ID: 480-228104-1 Date Collected: 03/21/25 15:50

Matrix: Water

Date Received: 03/22/25 09:00

1,1,1-Trichloroethane								
	ND		2.0	1.6	ug/L		03/26/25 19:57	
1,1,2,2-Tetrachloroethane	ND		2.0	0.42	ug/L		03/26/25 19:57	2
1,1,2-Trichloroethane	ND		2.0	0.46	ug/L		03/26/25 19:57	2
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		2.0	0.62	ug/L		03/26/25 19:57	2
1,1-Dichloroethane	ND		2.0	0.76	ug/L		03/26/25 19:57	2
1,1-Dichloroethene	ND		2.0	0.58	ug/L		03/26/25 19:57	2
1,2,4-Trichlorobenzene	ND		2.0	0.82	ug/L		03/26/25 19:57	2
1,2-Dibromo-3-Chloropropane	ND		2.0	0.78	ug/L		03/26/25 19:57	2
1,2-Dichlorobenzene	ND		2.0	1.6	ug/L		03/26/25 19:57	2
1,2-Dichloroethane	ND		2.0	0.42			03/26/25 19:57	2
1,2-Dichloropropane	ND		2.0		ug/L		03/26/25 19:57	2
1,3-Dichlorobenzene	ND		2.0		ug/L		03/26/25 19:57	2
1,4-Dichlorobenzene	ND		2.0		ug/L		03/26/25 19:57	2
2-Butanone (MEK)	ND		20		ug/L		03/26/25 19:57	2
2-Hexanone	ND		10		ug/L		03/26/25 19:57	2
4-Methyl-2-pentanone (MIBK)	ND		10		ug/L		03/26/25 19:57	
Acetone	ND		20		ug/L		03/26/25 19:57	2
Benzene	ND		2.0		ug/L		03/26/25 19:57	2
Bromodichloromethane	ND		2.0		ug/L		03/26/25 19:57	
Bromoform	ND		2.0	0.52	-		03/26/25 19:57	2
Bromomethane	ND		2.0		ug/L		03/26/25 19:57	2
Carbon disulfide	ND		2.0		ug/L		03/26/25 19:57	2
Carbon tetrachloride	ND		2.0		ug/L		03/26/25 19:57	2
Chlorobenzene	ND		2.0		ug/L		03/26/25 19:57	2
Dibromochloromethane	ND		2.0		ug/L		03/26/25 19:57	
Chloroethane	ND		2.0		ug/L		03/26/25 19:57	2
Chloroform	ND		2.0	0.68	-		03/26/25 19:57	2
Chloromethane	ND		2.0		ug/L		03/26/25 19:57	
cis-1,2-Dichloroethene	ND		2.0		ug/L ug/L		03/26/25 19:57	2
cis-1,3-Dichloropropene	ND		2.0	0.72	-		03/26/25 19:57	2
	ND		2.0	0.72			03/26/25 19:57	
Cyclohexane Dichlorodifluoromethane	ND ND	*1	2.0		ug/L ug/L		03/26/25 19:57	2
	ND	т			-			
Ethylbenzene 1,2-Dibromoethane	ND		2.0		ug/L ug/L		03/26/25 19:57 03/26/25 19:57	
r,z-bibromoetriane Isopropylbenzene	ND ND		2.0		-		03/26/25 19:57	2
,					ug/L			
Methyl acetate	ND		5.0		ug/L		03/26/25 19:57	
Methyl tert-butyl ether	ND		2.0		ug/L		03/26/25 19:57	2
Methylcyclohexane	ND		2.0		ug/L		03/26/25 19:57	2
Methylene Chloride	ND		2.0		ug/L		03/26/25 19:57	
Styrene	ND	.	2.0		ug/L		03/26/25 19:57	2
Tetrachloroethene	ND	**+	2.0		ug/L		03/26/25 19:57	2
Toluene	ND		2.0		ug/L		03/26/25 19:57	
trans-1,2-Dichloroethene	ND		2.0		ug/L		03/26/25 19:57	2
trans-1,3-Dichloropropene	ND		2.0		ug/L		03/26/25 19:57	2
Trichloroethene	ND		2.0		ug/L		03/26/25 19:57	
Trichlorofluoromethane	ND		2.0		ug/L		03/26/25 19:57	2
Vinyl chloride	ND		2.0	1 2	ug/L		03/26/25 19:57	2

Eurofins Buffalo

Page 9 of 39 4/1/2025

Client: Terracon Consultants Inc Job ID: 480-228104-1

Project/Site: Back Lot Lake Ave, Rochester, NY

Client Sample ID: MW-101

Lab Sample ID: 480-228104-1

Matrix: Water

Date Collected: 03/21/25 15:50 Date Received: 03/22/25 09:00

Surrogate	%Recovery Qualifier	Limits	Prepared Analys	zed Dil Fac
Toluene-d8 (Surr)	95	80 - 120	03/26/25	19:57 2
1,2-Dichloroethane-d4 (Surr)	98	77 - 120	03/26/25	19:57 2
4-Bromofluorobenzene (Surr)	112	73 - 120	03/26/25	19:57 2
Dibromofluoromethane (Surr)	104	75 - 123	03/26/25	19:57 2

Analyte	Result Qua	alifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND ND	5.0	0.65	ug/L		03/27/25 13:37	03/28/25 15:22	1
bis (2-chloroisopropyl) ether	ND	5.0	0.52	ug/L		03/27/25 13:37	03/28/25 15:22	1
2,4,5-Trichlorophenol	ND	5.0	0.48	ug/L		03/27/25 13:37	03/28/25 15:22	1
2,4,6-Trichlorophenol	ND	5.0	0.61	ug/L		03/27/25 13:37	03/28/25 15:22	1
2,4-Dichlorophenol	ND	5.0	0.51	ug/L		03/27/25 13:37	03/28/25 15:22	1
2,4-Dimethylphenol	ND	5.0	0.50	ug/L		03/27/25 13:37	03/28/25 15:22	1
2,4-Dinitrophenol	ND	10	2.2	ug/L		03/27/25 13:37	03/28/25 15:22	1
2,4-Dinitrotoluene	ND	5.0	0.45	ug/L		03/27/25 13:37	03/28/25 15:22	1
2,6-Dinitrotoluene	ND	5.0	0.40	ug/L		03/27/25 13:37	03/28/25 15:22	1
2-Chloronaphthalene	ND	5.0	0.46	ug/L		03/27/25 13:37	03/28/25 15:22	1
2-Chlorophenol	ND	5.0	0.53	ug/L		03/27/25 13:37	03/28/25 15:22	1
2-Methylphenol	ND	5.0	0.40	ug/L		03/27/25 13:37	03/28/25 15:22	1
2-Methylnaphthalene	ND	5.0	0.60	ug/L		03/27/25 13:37	03/28/25 15:22	1
2-Nitroaniline	ND	10	0.42	-		03/27/25 13:37	03/28/25 15:22	1
2-Nitrophenol	ND	5.0	0.48	ug/L		03/27/25 13:37	03/28/25 15:22	1
3,3'-Dichlorobenzidine	ND	5.0	0.40	ug/L		03/27/25 13:37	03/28/25 15:22	1
3-Nitroaniline	ND	10	0.48	ug/L		03/27/25 13:37	03/28/25 15:22	1
4,6-Dinitro-2-methylphenol	ND	10	2.2	ug/L		03/27/25 13:37	03/28/25 15:22	1
4-Bromophenyl phenyl ether	ND	5.0	0.45	ug/L		03/27/25 13:37	03/28/25 15:22	1
4-Chloro-3-methylphenol	ND	5.0	0.45	ug/L		03/27/25 13:37	03/28/25 15:22	1
4-Chloroaniline	ND	5.0	0.59	ug/L		03/27/25 13:37	03/28/25 15:22	1
4-Chlorophenyl phenyl ether	ND	5.0	0.35	ug/L		03/27/25 13:37	03/28/25 15:22	1
4-Methylphenol	ND	10	0.36	ug/L		03/27/25 13:37	03/28/25 15:22	1
4-Nitroaniline	ND	10	0.25	ug/L		03/27/25 13:37	03/28/25 15:22	1
4-Nitrophenol	ND	10	1.5	ug/L		03/27/25 13:37	03/28/25 15:22	1
Acenaphthene	ND	5.0	0.41	ug/L		03/27/25 13:37	03/28/25 15:22	1
Acenaphthylene	ND	5.0	0.38	ug/L		03/27/25 13:37	03/28/25 15:22	1
Acetophenone	ND	5.0	0.54	ug/L		03/27/25 13:37	03/28/25 15:22	1
Anthracene	ND	5.0	0.28	ug/L		03/27/25 13:37	03/28/25 15:22	1
Atrazine	ND *+	5.0	0.46	ug/L		03/27/25 13:37	03/28/25 15:22	1
Benzaldehyde	ND	5.0	0.27	ug/L		03/27/25 13:37	03/28/25 15:22	1
Benzo[a]anthracene	ND	5.0	0.36	ug/L		03/27/25 13:37	03/28/25 15:22	1
Benzo[a]pyrene	ND	5.0	0.47	ug/L		03/27/25 13:37	03/28/25 15:22	1
Benzo[b]fluoranthene	ND	5.0	0.34	ug/L		03/27/25 13:37	03/28/25 15:22	1
Benzo[g,h,i]perylene	ND	5.0	0.35	ug/L		03/27/25 13:37	03/28/25 15:22	1
Benzo[k]fluoranthene	ND	5.0	0.73	ug/L		03/27/25 13:37	03/28/25 15:22	1
Bis(2-chloroethoxy)methane	ND	5.0	0.35	ug/L		03/27/25 13:37	03/28/25 15:22	1
Bis(2-chloroethyl)ether	ND	5.0	0.40	ug/L		03/27/25 13:37	03/28/25 15:22	1
Bis(2-ethylhexyl) phthalate	ND	5.0		ug/L		03/27/25 13:37	03/28/25 15:22	1
Butyl benzyl phthalate	ND	5.0	1.0	ug/L			03/28/25 15:22	1
Caprolactam	ND	5.0	2.2	ug/L		03/27/25 13:37	03/28/25 15:22	1
Carbazole	ND	5.0	0.30	-		03/27/25 13:37	03/28/25 15:22	1
Chrysene	ND	5.0		ug/L			03/28/25 15:22	1

Eurofins Buffalo

Client: Terracon Consultants Inc Job ID: 480-228104-1

Project/Site: Back Lot Lake Ave, Rochester, NY

Selenium

Client Sample ID: MW-101 Lab Sample ID: 480-228104-1

Date Collected: 03/21/25 15:50 Matrix: Water Date Received: 03/22/25 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Dibenz(a,h)anthracene	ND		5.0	0.42	ug/L		03/27/25 13:37	03/28/25 15:22	
Di-n-butyl phthalate	1.0	JB	5.0	0.31	ug/L		03/27/25 13:37	03/28/25 15:22	
Di-n-octyl phthalate	ND		5.0	0.47	ug/L		03/27/25 13:37	03/28/25 15:22	
Dibenzofuran	ND		10	0.51	ug/L		03/27/25 13:37	03/28/25 15:22	
Diethyl phthalate	ND		5.0	0.22	ug/L		03/27/25 13:37	03/28/25 15:22	
Dimethyl phthalate	ND		5.0	0.36	ug/L		03/27/25 13:37	03/28/25 15:22	
Fluoranthene	ND		5.0	0.40	ug/L		03/27/25 13:37	03/28/25 15:22	
Fluorene	ND		5.0	0.36	ug/L		03/27/25 13:37	03/28/25 15:22	
Hexachlorobenzene	ND		5.0	0.51	ug/L		03/27/25 13:37	03/28/25 15:22	
Hexachlorobutadiene	ND		5.0	0.68	ug/L		03/27/25 13:37	03/28/25 15:22	
Hexachlorocyclopentadiene	ND		5.0	0.59	ug/L		03/27/25 13:37	03/28/25 15:22	
Hexachloroethane	ND		5.0	0.59	ug/L		03/27/25 13:37	03/28/25 15:22	
Indeno[1,2,3-cd]pyrene	ND		5.0	0.47	ug/L		03/27/25 13:37	03/28/25 15:22	
Isophorone	ND		5.0	0.43	ug/L		03/27/25 13:37	03/28/25 15:22	
N-Nitrosodi-n-propylamine	ND		5.0		ug/L			03/28/25 15:22	
N-Nitrosodiphenylamine	ND		5.0		ug/L		03/27/25 13:37	03/28/25 15:22	
Naphthalene	ND		5.0		ug/L			03/28/25 15:22	
, Nitrobenzene	ND		5.0		ug/L			03/28/25 15:22	
Pentachlorophenol	ND		10		ug/L			03/28/25 15:22	
Phenanthrene	ND		5.0		ug/L			03/28/25 15:22	
Phenol	ND		5.0		ug/L			03/28/25 15:22	
Pyrene	ND		5.0		ug/L			03/28/25 15:22	
, yrene	112		0.0	0.01	ug/L		00/21/20 10:01	00/20/20 10:22	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5 (Surr)	62		29 - 129				03/27/25 13:37	03/28/25 15:22	
Phenol-d5 (Surr)	32		10 - 120				03/27/25 13:37	03/28/25 15:22	
p-Terphenyl-d14 (Surr)	83		33 - 132				03/27/25 13:37	03/28/25 15:22	
2,4,6-Tribromophenol (Surr)	82		25 - 144				03/27/25 13:37	03/28/25 15:22	
2-Fluorobiphenyl (Surr)	75		53 - 126				03/27/25 13:37	03/28/25 15:22	
2-Fluorophenol (Surr)	49		24 - 120				03/27/25 13:37	03/28/25 15:22	
Method: SW846 6010D - M	etals (ICP)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	0.11	J	0.20	0.060	mg/L		03/28/25 08:52	03/28/25 20:35	
Antimony	ND		0.020	0.0068	mg/L		03/28/25 08:52	03/28/25 20:35	
Arsenic	0.0082	J	0.015	0.0056	mg/L		03/28/25 08:52	03/28/25 20:35	
Barium	0.28		0.0020	0.00070	mg/L		03/28/25 08:52	04/01/25 12:35	
Beryllium	ND		0.0020	0.00030	mg/L		03/28/25 08:52	03/28/25 20:35	
	ND		0.0020	0.00050			03/28/25 08:52	03/28/25 20:35	
Cadmium			0.50		mg/L		03/28/25 08:52	03/28/25 20:35	
	196		0.50		-		02/20/25 00:52		
Calcium			0.0040	0.0010	mg/L		03/20/23 06.32	03/28/25 20:35	
Calcium Chromium	196			0.0010 0.00063	_			03/28/25 20:35 03/28/25 20:35	
Calcium Chromium Cobalt	196 ND ND	J ^5+	0.0040	0.00063	mg/L		03/28/25 08:52		
Calcium Chromium Cobalt Copper	196 ND ND 0.0030	J ^5+	0.0040 0.0040	0.00063 0.0016	mg/L mg/L		03/28/25 08:52 03/28/25 08:52	03/28/25 20:35	
Calcium Chromium Cobalt Copper Iron	196 ND ND 0.0030 16.3		0.0040 0.0040 0.010 0.050	0.00063 0.0016 0.019	mg/L mg/L mg/L		03/28/25 08:52 03/28/25 08:52 03/28/25 08:52	03/28/25 20:35 03/28/25 20:35 03/28/25 20:35	
Calcium Chromium Cobalt Copper Iron Lead	196 ND ND 0.0030 16.3 0.018	J ^5+ ^2 ^5+	0.0040 0.0040 0.010 0.050 0.010	0.00063 0.0016 0.019 0.0030	mg/L mg/L mg/L mg/L		03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52	03/28/25 20:35 03/28/25 20:35 03/28/25 20:35 03/28/25 20:35	
Calcium Chromium Cobalt Copper Iron Lead Magnesium	196 ND ND 0.0030 16.3 0.018		0.0040 0.0040 0.010 0.050 0.010 0.20	0.00063 0.0016 0.019 0.0030 0.043	mg/L mg/L mg/L mg/L mg/L		03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52	03/28/25 20:35 03/28/25 20:35 03/28/25 20:35 03/28/25 20:35 03/28/25 20:35	
Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Nickel	196 ND ND 0.0030 16.3 0.018	^2 ^5+	0.0040 0.0040 0.010 0.050 0.010	0.00063 0.0016 0.019 0.0030	mg/L mg/L mg/L mg/L mg/L mg/L		03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52	03/28/25 20:35 03/28/25 20:35 03/28/25 20:35 03/28/25 20:35	

Eurofins Buffalo

03/28/25 08:52 03/28/25 20:35

0.025

ND

0.0087 mg/L

3

6

8

10

12

14

15

Client: Terracon Consultants Inc Job ID: 480-228104-1

Project/Site: Back Lot Lake Ave, Rochester, NY

Client Sample ID: MW-101 Lab Sample ID: 480-228104-1

Date Collected: 03/21/25 15:50 **Matrix: Water** Date Received: 03/22/25 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	ND	^5-	0.0060	0.0017	mg/L		03/28/25 08:52	03/28/25 20:35	1
Sodium	329		1.0	0.32	mg/L		03/28/25 08:52	03/28/25 20:35	1
Thallium	ND		0.020	0.010	mg/L		03/28/25 08:52	04/01/25 12:35	1
Vanadium	ND		0.0050	0.0015	mg/L		03/28/25 08:52	03/28/25 20:35	1
Zinc	ND		0.010	0.0015	mg/L		03/28/25 08:52	03/28/25 20:35	1
Method: SW846 747	0A - Mercury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.000098	J	0.00020	0.000042	mg/L		03/26/25 07:55	03/26/25 14:44	1

Client: Terracon Consultants Inc Job ID: 480-228104-1

Project/Site: Back Lot Lake Ave, Rochester, NY

Client Sample ID: MWR-101

Lab Sample ID: 480-228104-2

Date Collected: 03/21/25 14:20 **Matrix: Water** Date Received: 03/22/25 09:00

Method: SW846 8260C - Volati Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L		<u> </u>	03/26/25 20:20	
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			03/26/25 20:20	
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			03/26/25 20:20	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			03/26/25 20:20	
1,1-Dichloroethane	ND		1.0	0.38	ug/L			03/26/25 20:20	
1,1-Dichloroethene	ND		1.0	0.29	ug/L			03/26/25 20:20	
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			03/26/25 20:20	
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			03/26/25 20:20	
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			03/26/25 20:20	
1,2-Dichloroethane	ND		1.0		ug/L			03/26/25 20:20	
1,2-Dichloropropane	ND		1.0	0.72	ug/L			03/26/25 20:20	
1,3-Dichlorobenzene	ND		1.0		ug/L			03/26/25 20:20	
1,4-Dichlorobenzene	ND		1.0		ug/L			03/26/25 20:20	
2-Butanone (MEK)	ND		10		ug/L			03/26/25 20:20	
2-Hexanone	ND		5.0		ug/L			03/26/25 20:20	
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			03/26/25 20:20	
Acetone	ND		10		ug/L			03/26/25 20:20	
Benzene	ND		1.0		ug/L			03/26/25 20:20	
Bromodichloromethane	ND		1.0		ug/L			03/26/25 20:20	
Bromoform	ND		1.0		ug/L			03/26/25 20:20	
Bromomethane	ND		1.0		ug/L			03/26/25 20:20	
Carbon disulfide	ND		1.0		ug/L			03/26/25 20:20	· · · · · · .
Carbon tetrachloride	ND		1.0		ug/L			03/26/25 20:20	
Chlorobenzene	ND		1.0		ug/L			03/26/25 20:20	
Dibromochloromethane	ND		1.0		ug/L			03/26/25 20:20	
Chloroethane	ND		1.0		ug/L			03/26/25 20:20	
Chloroform	ND		1.0		ug/L			03/26/25 20:20	
Chloromethane	ND		1.0		ug/L			03/26/25 20:20	
cis-1,2-Dichloroethene	2.6		1.0	0.81	-			03/26/25 20:20	
cis-1,3-Dichloropropene	ND		1.0	0.36	-			03/26/25 20:20	
Cyclohexane	ND		1.0	0.18				03/26/25 20:20	
Dichlorodifluoromethane	ND	*+	1.0	0.68	-			03/26/25 20:20	
Ethylbenzene	ND		1.0	0.74				03/26/25 20:20	
1,2-Dibromoethane	ND		1.0	0.73				03/26/25 20:20	
Isopropylbenzene	ND		1.0	0.79	-			03/26/25 20:20	
Methyl acetate	ND		2.5		ug/L			03/26/25 20:20	
Methyl tert-butyl ether	0.18	 J	1.0		ug/L			03/26/25 20:20	· · · · · · .
Methylcyclohexane	ND		1.0		ug/L			03/26/25 20:20	
Methylene Chloride	ND		1.0		ug/L			03/26/25 20:20	
Styrene	ND		1.0		ug/L			03/26/25 20:20	
Tetrachloroethene	ND	*+	1.0		ug/L			03/26/25 20:20	
Toluene	ND		1.0		ug/L			03/26/25 20:20	
trans-1,2-Dichloroethene	ND		1.0		ug/L			03/26/25 20:20	
trans-1,3-Dichloropropene	ND		1.0		ug/L			03/26/25 20:20	
Trichloroethene	ND		1.0		ug/L			03/26/25 20:20	
Trichlorofluoromethane	ND		1.0		ug/L			03/26/25 20:20	
Vinyl chloride	ND		1.0		ug/L			03/26/25 20:20	
Xylenes, Total	ND		2.0		ug/L			03/26/25 20:20	

Client: Terracon Consultants Inc Job ID: 480-228104-1

Project/Site: Back Lot Lake Ave, Rochester, NY

Client Sample ID: MWR-101

Lab Sample ID: 480-228104-2

Matrix: Water

Date Collected: 03/21/25 14:20 Date Received: 03/22/25 09:00

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	94	80 - 120		03/26/25 20:20	1
1,2-Dichloroethane-d4 (Surr)	98	77 - 120		03/26/25 20:20	1
4-Bromofluorobenzene (Surr)	112	73 - 120		03/26/25 20:20	1
Dibromofluoromethane (Surr)	101	75 - 123		03/26/25 20:20	1

Analyte	Result Qu	ıalifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND ND	5.0	0.65	ug/L		03/27/25 13:37	03/31/25 14:35	1
bis (2-chloroisopropyl) ether	ND	5.0	0.52	ug/L		03/27/25 13:37	03/31/25 14:35	1
2,4,5-Trichlorophenol	ND	5.0	0.48	ug/L		03/27/25 13:37	03/31/25 14:35	1
2,4,6-Trichlorophenol	ND	5.0	0.61	ug/L		03/27/25 13:37	03/31/25 14:35	1
2,4-Dichlorophenol	ND	5.0	0.51	ug/L		03/27/25 13:37	03/31/25 14:35	1
2,4-Dimethylphenol	ND	5.0	0.50	ug/L		03/27/25 13:37	03/31/25 14:35	1
2,4-Dinitrophenol	ND	10	2.2	ug/L		03/27/25 13:37	03/31/25 14:35	1
2,4-Dinitrotoluene	ND	5.0	0.45	ug/L		03/27/25 13:37	03/31/25 14:35	1
2,6-Dinitrotoluene	ND	5.0	0.40	ug/L		03/27/25 13:37	03/31/25 14:35	1
2-Chloronaphthalene	ND	5.0	0.46	ug/L		03/27/25 13:37	03/31/25 14:35	1
2-Chlorophenol	ND	5.0	0.53	ug/L		03/27/25 13:37	03/31/25 14:35	1
2-Methylphenol	ND	5.0	0.40	ug/L		03/27/25 13:37	03/31/25 14:35	1
2-Methylnaphthalene	ND	5.0	0.60	ug/L		03/27/25 13:37	03/31/25 14:35	1
2-Nitroaniline	ND	10	0.42	ug/L		03/27/25 13:37	03/31/25 14:35	1
2-Nitrophenol	ND	5.0	0.48	ug/L		03/27/25 13:37	03/31/25 14:35	1
3,3'-Dichlorobenzidine	ND	5.0	0.40	ug/L		03/27/25 13:37	03/31/25 14:35	1
3-Nitroaniline	ND	10		ug/L		03/27/25 13:37	03/31/25 14:35	1
4,6-Dinitro-2-methylphenol	ND	10		ug/L		03/27/25 13:37	03/31/25 14:35	1
4-Bromophenyl phenyl ether	ND	5.0		ug/L		03/27/25 13:37	03/31/25 14:35	1
4-Chloro-3-methylphenol	ND	5.0	0.45	-		03/27/25 13:37	03/31/25 14:35	1
4-Chloroaniline	ND	5.0	0.59	-		03/27/25 13:37	03/31/25 14:35	1
4-Chlorophenyl phenyl ether	ND	5.0	0.35			03/27/25 13:37	03/31/25 14:35	1
4-Methylphenol	ND	10	0.36	-		03/27/25 13:37	03/31/25 14:35	1
4-Nitroaniline	ND	10		ug/L		03/27/25 13:37	03/31/25 14:35	1
4-Nitrophenol	ND	10		ug/L		03/27/25 13:37	03/31/25 14:35	1
Acenaphthene	ND	5.0	0.41	-		03/27/25 13:37	03/31/25 14:35	1
Acenaphthylene	ND	5.0	0.38	ug/L		03/27/25 13:37	03/31/25 14:35	1
Acetophenone	ND	5.0	0.54			03/27/25 13:37	03/31/25 14:35	1
Anthracene	ND	5.0	0.28	-		03/27/25 13:37	03/31/25 14:35	1
Atrazine	ND *+	5.0		ug/L		03/27/25 13:37	03/31/25 14:35	1
Benzaldehyde	ND	5.0	0.27			03/27/25 13:37	03/31/25 14:35	1
Benzo[a]anthracene	ND	5.0	0.36	-		03/27/25 13:37	03/31/25 14:35	1
Benzo[a]pyrene	ND	5.0	0.47	•		03/27/25 13:37	03/31/25 14:35	1
Benzo[b]fluoranthene	ND	5.0		ug/L		03/27/25 13:37	03/31/25 14:35	1
Benzo[g,h,i]perylene	ND	5.0		ug/L		03/27/25 13:37	03/31/25 14:35	1
Benzo[k]fluoranthene	ND	5.0	0.73	_			03/31/25 14:35	1
Bis(2-chloroethoxy)methane	ND	5.0	0.35				03/31/25 14:35	1
Bis(2-chloroethyl)ether	ND	5.0		ug/L			03/31/25 14:35	1
Bis(2-ethylhexyl) phthalate	ND	5.0		ug/L			03/31/25 14:35	1
Butyl benzyl phthalate	ND	5.0		ug/L			03/31/25 14:35	
Caprolactam	ND	5.0		ug/L			03/31/25 14:35	1
Carbazole	ND	5.0	0.30	_			03/31/25 14:35	1
Chrysene	ND	5.0		ug/L			03/31/25 14:35	·

Client: Terracon Consultants Inc Job ID: 480-228104-1

Project/Site: Back Lot Lake Ave, Rochester, NY

Client Sample ID: MWR-101

Lab Sample ID: 480-228104-2

Date Collected: 03/21/25 14:20 **Matrix: Water** Date Received: 03/22/25 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Dibenz(a,h)anthracene	ND		5.0	0.42	ug/L		03/27/25 13:37	03/31/25 14:35	
Di-n-butyl phthalate	1.1	JB	5.0	0.31	ug/L		03/27/25 13:37	03/31/25 14:35	
Di-n-octyl phthalate	ND		5.0	0.47	ug/L		03/27/25 13:37	03/31/25 14:35	
Dibenzofuran	ND		10	0.51	ug/L		03/27/25 13:37	03/31/25 14:35	
Diethyl phthalate	ND		5.0	0.22	ug/L		03/27/25 13:37	03/31/25 14:35	
Dimethyl phthalate	ND		5.0	0.36	ug/L		03/27/25 13:37	03/31/25 14:35	
Fluoranthene	ND		5.0	0.40	ug/L		03/27/25 13:37	03/31/25 14:35	
Fluorene	ND		5.0	0.36	ug/L		03/27/25 13:37	03/31/25 14:35	
Hexachlorobenzene	ND		5.0	0.51	ug/L		03/27/25 13:37	03/31/25 14:35	
Hexachlorobutadiene	ND		5.0	0.68	ug/L		03/27/25 13:37	03/31/25 14:35	
Hexachlorocyclopentadiene	ND		5.0		ug/L		03/27/25 13:37	03/31/25 14:35	
Hexachloroethane	ND		5.0	0.59	ug/L		03/27/25 13:37	03/31/25 14:35	
Indeno[1,2,3-cd]pyrene	ND		5.0		ug/L		03/27/25 13:37	03/31/25 14:35	
Isophorone	ND		5.0		ug/L			03/31/25 14:35	
N-Nitrosodi-n-propylamine	ND		5.0		ug/L			03/31/25 14:35	
N-Nitrosodiphenylamine	ND		5.0		ug/L			03/31/25 14:35	
Naphthalene	ND		5.0		ug/L			03/31/25 14:35	
Nitrobenzene	ND		5.0		ug/L			03/31/25 14:35	
Pentachlorophenol	ND		10		ug/L			03/31/25 14:35	
Phenanthrene	ND		5.0		ug/L			03/31/25 14:35	
Phenol	ND		5.0		ug/L			03/31/25 14:35	
Pyrene	ND.		5.0		ug/L			03/31/25 14:35	
yrene	ND		3.0	0.04	ug/L		00/21/20 10:01	00/01/20 14:00	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5 (Surr)	58		29 - 129				03/27/25 13:37	03/31/25 14:35	
Phenol-d5 (Surr)	31		10 - 120				03/27/25 13:37	03/31/25 14:35	
o-Terphenyl-d14 (Surr)	87		33 - 132				03/27/25 13:37	03/31/25 14:35	
2,4,6-Tribromophenol (Surr)	84		25 - 144				03/27/25 13:37	03/31/25 14:35	
2-Fluorobiphenyl (Surr)	74		53 - 126				03/27/25 13:37	03/31/25 14:35	
2-Fluorophenol (Surr)	49		24 - 120				03/27/25 13:37	03/31/25 14:35	
Method: SW846 6010D - M	otale (ICP)								
Analyte	. ,	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	2.8		0.20	0.060	mg/L			03/28/25 20:38	
Antimony	ND		0.020	0.0068	•		03/28/25 08:52	03/28/25 20:38	
Arsenic	ND		0.015	0.0056	Ū			03/28/25 20:38	
Barium	0.087		0.0020	0.00070				04/01/25 12:37	
Beryllium	ND		0.0020	0.00030	-			03/28/25 20:38	
Cadmium	ND.		0.0020	0.00050	•			03/28/25 20:38	
Calcium	120		0.50		mg/L			03/28/25 20:38	
Chromium	0.0070		0.0040	0.0010	-			03/28/25 20:38	
Cobalt	0.0070	1	0.0040	0.0010	Ū			03/28/25 20:38	
				0.00063				03/28/25 20:38	
Copper	0.0069	J "5*	0.010		-				
ron	1.4	1.40.45	0.050	0.019	-			03/28/25 20:38	
_ead		J ^2 ^5+	0.010	0.0030				03/28/25 20:38	
Magnesium -	42.1		0.20	0.043	-			03/28/25 20:38	
	0.072		0.0030	0.00040	mg/L		03/28/25 08:52	03/28/25 20:38	
		_					0010015		
Manganese Nickel	0.0087	J	0.010	0.0013				03/28/25 20:38	
•		. J	0.010 0.50		mg/L		03/28/25 08:52	03/28/25 20:38 03/28/25 20:38	

Eurofins Buffalo

03/28/25 08:52 03/28/25 20:38

Page 15 of 39

0.025

0.0087 mg/L

ND

Selenium

Client: Terracon Consultants Inc Job ID: 480-228104-1

Project/Site: Back Lot Lake Ave, Rochester, NY

Mercury

Client Sample ID: MWR-101

ND

Lab Sample ID: 480-228104-2 Date Collected: 03/21/25 14:20 **Matrix: Water**

Date Received: 03/22/25 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	ND	^5-	0.0060	0.0017	mg/L		03/28/25 08:52	03/28/25 20:38	1
Sodium	187		1.0	0.32	mg/L		03/28/25 08:52	03/28/25 20:38	1
Thallium	ND		0.020	0.010	mg/L		03/28/25 08:52	04/01/25 12:37	1
Vanadium	0.0044	J	0.0050	0.0015	mg/L		03/28/25 08:52	03/28/25 20:38	1
Zinc	0.022		0.010	0.0015	mg/L		03/28/25 08:52	03/28/25 20:38	1
- Method: SW846 7470	A - Mercury (CVAA)								
Analyte	• • •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

0.00020

0.000042 mg/L

03/26/25 07:55 03/26/25 14:45

Client: Terracon Consultants Inc Job ID: 480-228104-1

Project/Site: Back Lot Lake Ave, Rochester, NY

Client Sample ID: MW-105

Lab Sample ID: 480-228104-3 Date Collected: 03/21/25 11:50

Matrix: Water

Date Received: 03/22/25 09:00

Analyte	Result Qualifier	RL	MDL		<u>D</u> .	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	2.0		ug/L			03/26/25 20:44	
1,1,2,2-Tetrachloroethane	ND	2.0		ug/L			03/26/25 20:44	
1,1,2-Trichloroethane	ND	2.0	0.46	ug/L			03/26/25 20:44	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	2.0	0.62	ug/L			03/26/25 20:44	
1,1-Dichloroethane	ND	2.0	0.76	ug/L			03/26/25 20:44	
1,1-Dichloroethene	ND	2.0	0.58	ug/L			03/26/25 20:44	
1,2,4-Trichlorobenzene	ND	2.0	0.82	ug/L			03/26/25 20:44	
1,2-Dibromo-3-Chloropropane	ND	2.0	0.78	ug/L			03/26/25 20:44	
1,2-Dichlorobenzene	ND	2.0	1.6	ug/L			03/26/25 20:44	
1,2-Dichloroethane	ND	2.0	0.42	ug/L			03/26/25 20:44	
1,2-Dichloropropane	ND	2.0	1.4	ug/L			03/26/25 20:44	
1,3-Dichlorobenzene	ND	2.0	1.6	ug/L			03/26/25 20:44	
1,4-Dichlorobenzene	ND	2.0	1.7	ug/L			03/26/25 20:44	
2-Butanone (MEK)	ND	20	2.6	ug/L			03/26/25 20:44	
2-Hexanone	ND	10	2.5	ug/L			03/26/25 20:44	
4-Methyl-2-pentanone (MIBK)	ND	10	4.2	ug/L			03/26/25 20:44	
Acetone	ND	20	6.0	ug/L			03/26/25 20:44	
Benzene	ND	2.0	0.82	ug/L			03/26/25 20:44	
Bromodichloromethane	ND	2.0	0.78	ug/L			03/26/25 20:44	
Bromoform	ND	2.0	0.52	ug/L			03/26/25 20:44	
Bromomethane	ND	2.0	1.4	ug/L			03/26/25 20:44	
Carbon disulfide	ND	2.0	0.38	ug/L			03/26/25 20:44	
Carbon tetrachloride	ND	2.0	0.54	ug/L			03/26/25 20:44	
Chlorobenzene	ND	2.0	1.5	ug/L			03/26/25 20:44	
Dibromochloromethane	ND	2.0	0.64	ug/L			03/26/25 20:44	
Chloroethane	ND	2.0	0.64	ug/L			03/26/25 20:44	
Chloroform	ND	2.0	0.68	ug/L			03/26/25 20:44	
Chloromethane	ND	2.0	0.70	ug/L			03/26/25 20:44	
cis-1,2-Dichloroethene	ND	2.0	1.6	ug/L			03/26/25 20:44	
cis-1,3-Dichloropropene	ND	2.0	0.72	ug/L			03/26/25 20:44	
Cyclohexane	ND	2.0	0.36	ug/L			03/26/25 20:44	
Dichlorodifluoromethane	ND *+	2.0	1.4	ug/L			03/26/25 20:44	
Ethylbenzene	ND	2.0	1.5	ug/L			03/26/25 20:44	
1,2-Dibromoethane	ND	2.0	1.5	ug/L			03/26/25 20:44	
Isopropylbenzene	ND	2.0	1.6	ug/L			03/26/25 20:44	
Methyl acetate	ND	5.0	2.6	ug/L			03/26/25 20:44	
Methyl tert-butyl ether	ND	2.0	0.32	ug/L			03/26/25 20:44	
Methylcyclohexane	ND	2.0	0.32	ug/L			03/26/25 20:44	
Methylene Chloride	ND	2.0	0.88	ug/L			03/26/25 20:44	
Styrene	ND	2.0	1.5	ug/L			03/26/25 20:44	
Tetrachloroethene	ND *+	2.0	0.72	ug/L			03/26/25 20:44	
Toluene	ND	2.0	1.0	ug/L			03/26/25 20:44	
trans-1,2-Dichloroethene	ND	2.0	1.8	ug/L			03/26/25 20:44	
trans-1,3-Dichloropropene	ND	2.0		ug/L			03/26/25 20:44	
Trichloroethene	ND	2.0	0.92	ug/L			03/26/25 20:44	
Trichlorofluoromethane	ND	2.0		ug/L			03/26/25 20:44	
Vinyl chloride	ND	2.0		ug/L			03/26/25 20:44	
Xylenes, Total	ND	4.0		ug/L			03/26/25 20:44	

Client: Terracon Consultants Inc Job ID: 480-228104-1

Project/Site: Back Lot Lake Ave, Rochester, NY

Client Sample ID: MW-105

Lab Sample ID: 480-228104-3

Matrix: Water

Date Collected: 03/21/25 11:50 Date Received: 03/22/25 09:00

Surrogate	%Recovery Qualified	Limits	Prepared Analyzed	Dil Fac
Toluene-d8 (Surr)	95	80 - 120	03/26/25 20:44	2
1,2-Dichloroethane-d4 (Surr)	99	77 - 120	03/26/25 20:44	2
4-Bromofluorobenzene (Surr)	113	73 - 120	03/26/25 20:44	2
Dibromofluoromethane (Surr)	102	75 - 123	03/26/25 20:44	2

Analyte	Result Qua	lifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND	5.0	0.65	ug/L		03/27/25 13:37	03/28/25 16:15	1
bis (2-chloroisopropyl) ether	ND	5.0	0.52	ug/L		03/27/25 13:37	03/28/25 16:15	1
2,4,5-Trichlorophenol	ND	5.0	0.48	ug/L		03/27/25 13:37	03/28/25 16:15	1
2,4,6-Trichlorophenol	ND	5.0	0.61	ug/L		03/27/25 13:37	03/28/25 16:15	1
2,4-Dichlorophenol	ND	5.0	0.51	ug/L		03/27/25 13:37	03/28/25 16:15	1
2,4-Dimethylphenol	ND	5.0	0.50	ug/L		03/27/25 13:37	03/28/25 16:15	1
2,4-Dinitrophenol	ND	10	2.2	ug/L		03/27/25 13:37	03/28/25 16:15	1
2,4-Dinitrotoluene	ND	5.0	0.45	ug/L		03/27/25 13:37	03/28/25 16:15	1
2,6-Dinitrotoluene	ND	5.0	0.40	ug/L		03/27/25 13:37	03/28/25 16:15	1
2-Chloronaphthalene	ND	5.0	0.46	ug/L		03/27/25 13:37	03/28/25 16:15	1
2-Chlorophenol	ND	5.0	0.53	ug/L		03/27/25 13:37	03/28/25 16:15	1
2-Methylphenol	ND	5.0	0.40	ug/L		03/27/25 13:37	03/28/25 16:15	1
2-Methylnaphthalene	ND	5.0	0.60	ug/L		03/27/25 13:37	03/28/25 16:15	1
2-Nitroaniline	ND	10	0.42	ug/L		03/27/25 13:37	03/28/25 16:15	1
2-Nitrophenol	ND	5.0	0.48	ug/L		03/27/25 13:37	03/28/25 16:15	1
3,3'-Dichlorobenzidine	ND	5.0	0.40	ug/L		03/27/25 13:37	03/28/25 16:15	1
3-Nitroaniline	ND	10	0.48	ug/L		03/27/25 13:37	03/28/25 16:15	1
4,6-Dinitro-2-methylphenol	ND	10	2.2	ug/L		03/27/25 13:37	03/28/25 16:15	1
4-Bromophenyl phenyl ether	ND	5.0	0.45	ug/L		03/27/25 13:37	03/28/25 16:15	1
4-Chloro-3-methylphenol	ND	5.0	0.45	ug/L		03/27/25 13:37	03/28/25 16:15	1
4-Chloroaniline	ND	5.0	0.59	ug/L		03/27/25 13:37	03/28/25 16:15	1
4-Chlorophenyl phenyl ether	ND	5.0	0.35	ug/L		03/27/25 13:37	03/28/25 16:15	1
4-Methylphenol	ND	10	0.36	ug/L		03/27/25 13:37	03/28/25 16:15	1
4-Nitroaniline	ND	10	0.25	ug/L		03/27/25 13:37	03/28/25 16:15	1
4-Nitrophenol	ND	10	1.5	ug/L		03/27/25 13:37	03/28/25 16:15	1
Acenaphthene	ND	5.0	0.41	ug/L		03/27/25 13:37	03/28/25 16:15	1
Acenaphthylene	ND	5.0	0.38	ug/L		03/27/25 13:37	03/28/25 16:15	1
Acetophenone	ND	5.0	0.54	ug/L		03/27/25 13:37	03/28/25 16:15	1
Anthracene	ND	5.0	0.28	ug/L		03/27/25 13:37	03/28/25 16:15	1
Atrazine	ND *+	5.0	0.46	ug/L		03/27/25 13:37	03/28/25 16:15	1
Benzaldehyde	ND	5.0	0.27	ug/L		03/27/25 13:37	03/28/25 16:15	1
Benzo[a]anthracene	ND	5.0	0.36	ug/L		03/27/25 13:37	03/28/25 16:15	1
Benzo[a]pyrene	ND	5.0	0.47	ug/L		03/27/25 13:37	03/28/25 16:15	1
Benzo[b]fluoranthene	ND	5.0	0.34	ug/L		03/27/25 13:37	03/28/25 16:15	1
Benzo[g,h,i]perylene	ND	5.0	0.35	ug/L		03/27/25 13:37	03/28/25 16:15	1
Benzo[k]fluoranthene	ND	5.0	0.73	ug/L		03/27/25 13:37	03/28/25 16:15	1
Bis(2-chloroethoxy)methane	ND	5.0	0.35	ug/L		03/27/25 13:37	03/28/25 16:15	1
Bis(2-chloroethyl)ether	ND	5.0		ug/L		03/27/25 13:37	03/28/25 16:15	1
Bis(2-ethylhexyl) phthalate	ND	5.0		ug/L		03/27/25 13:37	03/28/25 16:15	1
Butyl benzyl phthalate	ND	5.0	1.0	ug/L		03/27/25 13:37	03/28/25 16:15	1
Caprolactam	ND	5.0	2.2	ug/L		03/27/25 13:37	03/28/25 16:15	1
Carbazole	ND	5.0	0.30	-		03/27/25 13:37	03/28/25 16:15	1
Chrysene	ND	5.0		ug/L			03/28/25 16:15	1

Client: Terracon Consultants Inc Job ID: 480-228104-1

Project/Site: Back Lot Lake Ave, Rochester, NY

Client Sample ID: MW-105

Selenium

Lab Sample ID: 480-228104-3

Date Collected: 03/21/25 11:50 **Matrix: Water** Date Received: 03/22/25 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dibenz(a,h)anthracene	ND		5.0	0.42	ug/L		03/27/25 13:37	03/28/25 16:15	1
Di-n-butyl phthalate	1.1	JB	5.0	0.31	ug/L		03/27/25 13:37	03/28/25 16:15	1
Di-n-octyl phthalate	ND		5.0	0.47	ug/L		03/27/25 13:37	03/28/25 16:15	1
Dibenzofuran	ND		10	0.51	ug/L		03/27/25 13:37	03/28/25 16:15	1
Diethyl phthalate	ND		5.0	0.22	ug/L		03/27/25 13:37	03/28/25 16:15	1
Dimethyl phthalate	ND		5.0	0.36			03/27/25 13:37	03/28/25 16:15	
Fluoranthene	ND		5.0	0.40	-		03/27/25 13:37	03/28/25 16:15	1
Fluorene	ND		5.0	0.36	-		03/27/25 13:37	03/28/25 16:15	1
Hexachlorobenzene	ND		5.0	0.51			03/27/25 13:37	03/28/25 16:15	1
Hexachlorobutadiene	ND		5.0	0.68	-		03/27/25 13:37	03/28/25 16:15	1
Hexachlorocyclopentadiene	ND		5.0	0.59	-			03/28/25 16:15	1
Hexachloroethane	ND		5.0	0.59				03/28/25 16:15	
Indeno[1,2,3-cd]pyrene	ND.		5.0	0.47	-			03/28/25 16:15	1
Isophorone	ND ND		5.0	0.47	•			03/28/25 16:15	1
N-Nitrosodi-n-propylamine	ND		5.0	0.43	.			03/28/25 16:15	
					_				
N-Nitrosodiphenylamine	ND ND		5.0	0.51	-			03/28/25 16:15	1
Naphthalene			5.0	0.76				03/28/25 16:15	1
Nitrobenzene	ND		5.0	0.29	-			03/28/25 16:15	1
Pentachlorophenol	ND		10		ug/L			03/28/25 16:15	1
Phenanthrene	ND		5.0	0.44	.			03/28/25 16:15	1
Phenol	ND		5.0	0.39	-			03/28/25 16:15	1
Pyrene	ND		5.0	0.34	ug/L		03/27/25 13:37	03/28/25 16:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	56		29 - 129				03/27/25 13:37	03/28/25 16:15	1
Phenol-d5 (Surr)	30		10 - 120				03/27/25 13:37	03/28/25 16:15	1
p-Terphenyl-d14 (Surr)	63		33 - 132				03/27/25 13:37	03/28/25 16:15	1
2,4,6-Tribromophenol (Surr)	80		25 - 144				03/27/25 13:37	03/28/25 16:15	1
							03/27/25 13:37	02/29/25 16:15	-
2-Huorobiphenyl (Surr)	72		53 - 126				00/2//20 /0.0/	03/20/23 10.13	1
2-Fluorobiphenyl (Surr) 2-Fluorophenol (Surr)	72 46		53 - 126 24 - 120					03/28/25 16:15	1
2-Fluorophenol (Surr)	46								
2-Fluorophenol (Surr) Method: SW846 6010D - M	etals (ICP) Result		24 - 120 RL	MDL		<u>D</u>	03/27/25 13:37 Prepared	03/28/25 16:15 Analyzed	1
2-Fluorophenol (Surr) Method: SW846 6010D - M	etals (ICP) Result 20.1		24 - 120	0.060	mg/L	<u>D</u>	03/27/25 13:37 Prepared	03/28/25 16:15	Dil Fac
2-Fluorophenol (Surr) Method: SW846 6010D - Manalyte	etals (ICP) Result		24 - 120 RL		mg/L	<u>D</u>	03/27/25 13:37 Prepared 03/28/25 08:52	03/28/25 16:15 Analyzed	Dil Fac
2-Fluorophenol (Surr) Method: SW846 6010D - Manalyte Aluminum	etals (ICP) Result 20.1		24 - 120 RL 0.20	0.060	mg/L mg/L	<u>D</u>	03/27/25 13:37 Prepared 03/28/25 08:52 03/28/25 08:52	03/28/25 16:15 Analyzed 03/28/25 20:40	Dil Fac
2-Fluorophenol (Surr) Method: SW846 6010D - Manalyte Aluminum Antimony	etals (ICP) Result 20.1 ND		24 - 120 RL 0.20 0.020	0.060 0.0068	mg/L mg/L mg/L	<u>D</u>	03/27/25 13:37 Prepared 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52	03/28/25 16:15 Analyzed 03/28/25 20:40 03/28/25 20:40	Dil Fac
2-Fluorophenol (Surr) Method: SW846 6010D - Manalyte Aluminum Antimony Arsenic Barium	### ### ##############################	Qualifier	24 - 120 RL 0.20 0.020 0.015	0.060 0.0068 0.0056	mg/L mg/L mg/L mg/L	<u>D</u>	Prepared 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52	03/28/25 16:15 Analyzed 03/28/25 20:40 03/28/25 20:40 03/28/25 20:40	Dil Fac
2-Fluorophenol (Surr) Method: SW846 6010D - Manalyte Aluminum Antimony Arsenic Barium	46 etals (ICP) Result 20.1 ND 0.016 0.082	Qualifier	24 - 120 RL 0.20 0.020 0.015 0.0020	0.060 0.0068 0.0056 0.00070	mg/L mg/L mg/L mg/L mg/L	<u>D</u>	Prepared 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52	Analyzed 03/28/25 20:40 03/28/25 20:40 03/28/25 20:40 03/28/25 12:39	Dil Fac 1 1 1 1
2-Fluorophenol (Surr) Method: SW846 6010D - Method: Aluminum Antimony Arsenic Barium Beryllium	46 etals (ICP) Result 20.1 ND 0.016 0.082 0.00089	Qualifier	RL 0.20 0.020 0.015 0.0020 0.0020	0.060 0.0068 0.0056 0.00070 0.00030 0.00050	mg/L mg/L mg/L mg/L mg/L	<u>D</u>	Prepared 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52	Analyzed 03/28/25 20:40 03/28/25 20:40 03/28/25 20:40 04/01/25 12:39 03/28/25 20:40	Dil Fac 1 1 1 1 1 1 1
2-Fluorophenol (Surr) Method: SW846 6010D - Method: Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium	46 etals (ICP) Result 20.1 ND 0.016 0.082 0.00089 ND 282	Qualifier	RL 0.20 0.020 0.015 0.0020 0.0020 0.0020	0.060 0.0068 0.0056 0.00070 0.00030 0.00050	mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	Prepared 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52	Analyzed 03/28/25 20:40 03/28/25 20:40 03/28/25 20:40 04/01/25 12:39 03/28/25 20:40 03/28/25 20:40	Dil Fac 1 1 1 1 1 1 1 1 1 1 1
2-Fluorophenol (Surr) Method: SW846 6010D - Method: Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium	46 etals (ICP) Result 20.1 ND 0.016 0.082 0.00089 ND 282 0.020	Qualifier	RL 0.20 0.020 0.015 0.0020 0.0020 0.0020 0.0020 0.50	0.060 0.0068 0.0056 0.00070 0.00030 0.00050 0.10	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	Prepared 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52	Analyzed 03/28/25 20:40 03/28/25 20:40 03/28/25 20:40 04/01/25 12:39 03/28/25 20:40 03/28/25 20:40 03/28/25 20:40	Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2-Fluorophenol (Surr) Method: SW846 6010D - Method: Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt	46 etals (ICP) Result 20.1 ND 0.016 0.082 0.00089 ND 282 0.020 0.010	Qualifier	RL 0.20 0.020 0.015 0.0020 0.0020 0.0020 0.0020 0.50 0.0040 0.0040	0.060 0.0068 0.0056 0.00070 0.00030 0.00050 0.10 0.0010 0.00063	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	Prepared 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52	Analyzed 03/28/25 20:40 03/28/25 20:40 03/28/25 20:40 04/01/25 12:39 03/28/25 20:40 03/28/25 20:40 03/28/25 20:40 03/28/25 20:40 03/28/25 20:40	Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2-Fluorophenol (Surr) Method: SW846 6010D - Method: Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper	46 etals (ICP) Result 20.1 ND 0.016 0.082 0.00089 ND 282 0.020 0.010 0.017	Qualifier	RL 0.20 0.020 0.015 0.0020 0.0020 0.0020 0.0020 0.0040 0.0040 0.0010	0.060 0.0068 0.0056 0.00070 0.00030 0.00050 0.10 0.0010 0.00063 0.0016	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	Prepared 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52	Analyzed 03/28/25 20:40 03/28/25 20:40 03/28/25 20:40 04/01/25 12:39 03/28/25 20:40 03/28/25 20:40 03/28/25 20:40 03/28/25 20:40 03/28/25 20:40 03/28/25 20:40	Dil Face 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2-Fluorophenol (Surr) Method: SW846 6010D - Method: SW846 6010D - Method: Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron	46 etals (ICP) Result 20.1 ND 0.016 0.082 0.00089 ND 282 0.020 0.010 0.017 21.0	Qualifier J	RL 0.20 0.020 0.015 0.0020 0.0020 0.0020 0.0020 0.0040 0.0040 0.010 0.050	0.060 0.0068 0.0056 0.00070 0.00030 0.00050 0.10 0.0010 0.00063 0.0016 0.019	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	Prepared 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52	Analyzed 03/28/25 20:40 03/28/25 20:40 03/28/25 20:40 04/01/25 12:39 03/28/25 20:40 03/28/25 20:40 03/28/25 20:40 03/28/25 20:40 03/28/25 20:40 03/28/25 20:40 03/28/25 20:40	Dil Face 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2-Fluorophenol (Surr) Method: SW846 6010D - Method: Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium Chromium Chromium Cobalt Copper Iron Lead	46 etals (ICP) Result 20.1 ND 0.016 0.082 0.00089 ND 282 0.020 0.010 0.017 21.0 0.032	Qualifier	RL 0.20 0.020 0.015 0.0020 0.0020 0.0020 0.50 0.0040 0.0040 0.010 0.050 0.010	0.060 0.0068 0.0056 0.00070 0.00030 0.00050 0.10 0.0010 0.00063 0.0016 0.019	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	Prepared 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52	Analyzed 03/28/25 20:40 03/28/25 20:40 03/28/25 20:40 04/01/25 12:39 03/28/25 20:40 03/28/25 20:40 03/28/25 20:40 03/28/25 20:40 03/28/25 20:40 03/28/25 20:40 03/28/25 20:40 03/28/25 20:40 03/28/25 20:40	Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2-Fluorophenol (Surr) Method: SW846 6010D - Method: Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium	46 etals (ICP) Result 20.1 ND 0.016 0.082 0.00089 ND 282 0.020 0.010 0.017 21.0 0.032 176	Qualifier J	RL 0.20 0.020 0.015 0.0020 0.0020 0.0020 0.50 0.0040 0.0040 0.010 0.050 0.010 0.20	0.060 0.0068 0.0056 0.00070 0.00030 0.00050 0.10 0.0010 0.0016 0.019 0.0030	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	Prepared 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52	Analyzed 03/28/25 20:40 03/28/25 20:40 03/28/25 20:40 04/01/25 12:39 03/28/25 20:40 03/28/25 20:40 03/28/25 20:40 03/28/25 20:40 03/28/25 20:40 03/28/25 20:40 03/28/25 20:40 03/28/25 20:40 03/28/25 20:40 03/28/25 20:40	Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2-Fluorophenol (Surr) Method: SW846 6010D - Method: Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium	46 etals (ICP) Result 20.1 ND 0.016 0.082 0.00089 ND 282 0.020 0.010 0.017 21.0 0.032	Qualifier J	RL 0.20 0.020 0.015 0.0020 0.0020 0.0020 0.50 0.0040 0.0040 0.010 0.050 0.010	0.060 0.0068 0.0056 0.00070 0.00030 0.00050 0.10 0.0010 0.00063 0.0016 0.019	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	Prepared 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52 03/28/25 08:52	Analyzed 03/28/25 20:40 03/28/25 20:40 03/28/25 20:40 04/01/25 12:39 03/28/25 20:40 03/28/25 20:40 03/28/25 20:40 03/28/25 20:40 03/28/25 20:40 03/28/25 20:40 03/28/25 20:40 03/28/25 20:40 03/28/25 20:40	

Eurofins Buffalo

03/28/25 08:52 03/28/25 20:40

Page 19 of 39

0.025

ND

0.0087 mg/L

Client: Terracon Consultants Inc Job ID: 480-228104-1

Project/Site: Back Lot Lake Ave, Rochester, NY

Client Sample ID: MW-105 Lab Sample ID: 480-228104-3 Date Collected: 03/21/25 11:50

Matrix: Water

Date Received: 03/22/25 09:00

Method: SW846 6010D - Meta	ls (ICP) (Co	ontinued)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	ND	^5-	0.0060	0.0017	mg/L		03/28/25 08:52	03/28/25 20:40	1
Sodium	203		1.0	0.32	mg/L		03/28/25 08:52	03/28/25 20:40	1
Thallium	ND		0.020	0.010	mg/L		03/28/25 08:52	04/01/25 12:39	1
Vanadium	0.022		0.0050	0.0015	mg/L		03/28/25 08:52	03/28/25 20:40	1
Zinc	0.0077	J	0.010	0.0015	mg/L		03/28/25 08:52	03/28/25 20:40	1
- Method: SW846 7470A - Merc	ury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.00011	J	0.00020	0.000042	mg/L		03/26/25 07:55	03/26/25 14:47	1

Surrogate Summary

Client: Terracon Consultants Inc

Project/Site: Back Lot Lake Ave, Rochester, NY

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		TOL	DCA	BFB	DBFM
Lab Sample ID	Client Sample ID	(80-120)	(77-120)	(73-120)	(75-123)
480-228104-1	MW-101	95	98	112	104
480-228104-2	MWR-101	94	98	112	101
480-228104-3	MW-105	95	99	113	102
LCS 480-741783/6	Lab Control Sample	99	98	115	104
MB 480-741783/8	Method Blank	97	98	111	105

Surrogate Legend

TOL = Toluene-d8 (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

_			Pe	ercent Surre	ogate Reco	very (Acce	otance Lim
		NBZ	PHL	TPHd14	TBP	FBP	2FP
Lab Sample ID	Client Sample ID	(29-129)	(10-120)	(33-132)	(25-144)	(53-126)	(24-120)
480-228104-1	MW-101	62	32	83	82	75	49
480-228104-2	MWR-101	58	31	87	84	74	49
180-228104-3	MW-105	56	30	63	80	72	46
_CS 480-741949/2-A	Lab Control Sample	84	47	97	90	91	66
LCSD 480-741949/3-A	Lab Control Sample Dup	83	46	102	90	90	63
MB 480-741949/1-A	Method Blank	63	23	105	66	75	37

Surrogate Legend

NBZ = Nitrobenzene-d5 (Surr)

PHL = Phenol-d5 (Surr)

TPHd14 = p-Terphenyl-d14 (Surr)

TBP = 2,4,6-Tribromophenol (Surr)

FBP = 2-Fluorobiphenyl (Surr)

2FP = 2-Fluorophenol (Surr)

Eurofins Buffalo

Page 21 of 39

Job ID: 480-228104-1

Client: Terracon Consultants Inc Job ID: 480-228104-1

Project/Site: Back Lot Lake Ave, Rochester, NY

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-741783/8

Matrix: Water

Analysis Batch: 741783

Juent Sample	ID: Metr	nod Blank
Pr	ep Type	: Total/NA

Analyte		MB Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			03/26/25 12:51	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			03/26/25 12:51	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			03/26/25 12:51	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			03/26/25 12:51	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			03/26/25 12:51	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			03/26/25 12:51	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			03/26/25 12:51	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			03/26/25 12:51	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			03/26/25 12:51	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			03/26/25 12:51	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			03/26/25 12:51	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			03/26/25 12:51	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			03/26/25 12:51	1
2-Butanone (MEK)	ND		10	1.3	ug/L			03/26/25 12:51	1
2-Hexanone	ND		5.0	1.2	ug/L			03/26/25 12:51	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			03/26/25 12:51	1
Acetone	ND		10	3.0	ug/L			03/26/25 12:51	1
Benzene	ND		1.0	0.41	ug/L			03/26/25 12:51	1
Bromodichloromethane	ND		1.0	0.39	ug/L			03/26/25 12:51	1
Bromoform	ND		1.0	0.26	ug/L			03/26/25 12:51	1
Bromomethane	ND		1.0	0.69	ug/L			03/26/25 12:51	1
Carbon disulfide	ND		1.0	0.19	ug/L			03/26/25 12:51	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			03/26/25 12:51	1
Chlorobenzene	ND		1.0	0.75	ug/L			03/26/25 12:51	1
Dibromochloromethane	ND		1.0	0.32	ug/L			03/26/25 12:51	1
Chloroethane	ND		1.0	0.32	ug/L			03/26/25 12:51	1
Chloroform	ND		1.0	0.34	ug/L			03/26/25 12:51	1
Chloromethane	ND		1.0	0.35	ug/L			03/26/25 12:51	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			03/26/25 12:51	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			03/26/25 12:51	1
Cyclohexane	ND		1.0	0.18	ug/L			03/26/25 12:51	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			03/26/25 12:51	1
Ethylbenzene	ND		1.0	0.74	ug/L			03/26/25 12:51	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			03/26/25 12:51	1
Isopropylbenzene	ND		1.0	0.79	ug/L			03/26/25 12:51	1
Methyl acetate	ND		2.5	1.3	ug/L			03/26/25 12:51	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			03/26/25 12:51	1
Methylcyclohexane	ND		1.0	0.16	ug/L			03/26/25 12:51	1
Methylene Chloride	ND		1.0	0.44	ug/L			03/26/25 12:51	1
Styrene	ND		1.0	0.73	ug/L			03/26/25 12:51	1
Tetrachloroethene	ND		1.0	0.36	ug/L			03/26/25 12:51	1
Toluene	ND		1.0	0.51	ug/L			03/26/25 12:51	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			03/26/25 12:51	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			03/26/25 12:51	1
Trichloroethene	ND		1.0	0.46	ug/L			03/26/25 12:51	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			03/26/25 12:51	1
Vinyl chloride	ND		1.0	0.90	ug/L			03/26/25 12:51	1
Xylenes, Total	ND		2.0	0.66	ug/L			03/26/25 12:51	1

Client: Terracon Consultants Inc

Project/Site: Back Lot Lake Ave, Rochester, NY

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-741783/8

Matrix: Water

Analysis Batch: 741783

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 480-228104-1

MB MB Dil Fac Surrogate %Recovery Qualifier Limits Prepared Analyzed Toluene-d8 (Surr) 97 80 - 120 03/26/25 12:51 1,2-Dichloroethane-d4 (Surr) 98 77 - 120 03/26/25 12:51 73 - 120 03/26/25 12:51 4-Bromofluorobenzene (Surr) 111 Dibromofluoromethane (Surr) 105 75 - 123 03/26/25 12:51

Lab Sample ID: LCS 480-741783/6

Matrix: Water

Methylcyclohexane

Analysis Batch: 741783

Client Sample	ID: Lab Control Sample
	Prop Type: Total/NA

Prep Type: Total/NA

Analyte Added Result Qualifier Unit D %Rec Limits 1,1,2,7-Irchioroethane 25.0 28.8 ugil. 115 73.126 1,1,2,2-Tichioroethane 25.0 25.0 29.0 ugil. 104 76.122 1,1,2-Trichioroethane 25.0 26.1 ugil. 104 76.122 1,1,1-Dichioroethane 25.0 26.1 ugil. 110 66.127 1,1-Dichioroethane 25.0 28.1 ugil. 110 66.127 1,2-Artichiorobenzene 25.0 28.1 ugil. 110 66.127 1,2-Dichioroethane 25.0 28.1 ugil. 110 66.127 1,2-Dichioroethane 25.0 28.4 ugil. 196 66.134 1,2-Dichioroethane 25.0 28.4 ugil. 102 76.120 1,2-Dichioroethane 25.0 28.4 ugil. 102 77.120 1,2-Dichioroethane 25.0 25.7 ugil. 102 <th>Analysis Datch. 141103</th> <th>Spike</th> <th>LCS</th> <th>LCS</th> <th></th> <th>%Rec</th> <th></th>	Analysis Datch. 141103	Spike	LCS	LCS		%Rec	
1,1,1-Trichloroethane 25.0 28.8 ug/L 115 73.126 1,1,2,2-Trichloroethane 25.0 21.8 ug/L 87 76.120 1,1,2-Trichloroethane 25.0 25.9 ug/L 110 61.22 1,1,2-Trichloro-1,2,2-trifluoroetha 25.0 27.6 ug/L 110 61.148 1,1-Dichloroethane 25.0 27.6 ug/L 110 66.127 1,1-Dichloroethane 25.0 27.6 ug/L 110 66.127 1,1-Dichloroethane 25.0 28.1 ug/L 110 66.127 1,2-Dichloroethane 25.0 23.9 ug/L 106 66.124 1,2-Dichloroethane 25.0 23.9 ug/L 96 66.134 1,2-Dichloroethane 25.0 26.4 ug/L 106 80.124 1,2-Dichloroethane 25.0 26.4 ug/L 98 75.120 1,2-Dichloroethane 25.0 26.4 ug/L 106 77.120 1,2-Dichloroethane 25.0 26.4 ug/L 106 77.120	Analyte	· · · · · · · · · · · · · · · · · · ·	_		D %Rec		
1,1,2,2-Tirchloroethane 25.0 21.8 ug/L 87 75.120 1,1,2-Tirchloroethane 25.0 25.9 ug/L 110 61.148 1,1,2-Tirchloroethane 25.0 27.6 ug/L 110 61.148 1,1-Dichloroethane 25.0 26.1 ug/L 110 66.127 1,1-Dichloroethane 25.0 27.6 ug/L 110 66.127 1,2,4-Tirchlorobethane 25.0 28.1 ug/L 116 80.124 1,2-Dichloroethane 25.0 28.4 ug/L 106 80.124 1,2-Dichloroethane 25.0 26.4 ug/L 106 80.124 1,2-Dichloroethane 25.0 26.4 ug/L 106 77.120 1,3-Dichlorobethane 25.0 26.4 ug/L 106 77.120 1,3-Dichlorobethane 25.0 25.7 ug/L 103 80.120 2,3-Dichloroethane 25.0 25.7 ug/L 103 80.120 2,4-Dichloroethane 25.0 25.7 ug/L 103 80.120 2,4-Dichloroethane 25.0 25.7 ug/L 103 80.120 2,4-Dichloroethane 25.0 25.7 ug/L 108 77.120 2,4-Dichloroethane 25.0 25.7 ug/L 108 77.124 2,4-Dichloroethane 25.0 25.9 ug/L 110 80.124 2,4-Dichloroethane 25.0 25.9 ug/L 110 80.124 2,4-Dichloroethane 25.0 25.9 ug/L 110 80.124 2,4-Dichloroethane 25.0 25.7 ug/L 110 59.134 2,4-Dichloroethane 25.0 25.7 ug/L 110 59.134 2,4-Dichloroethane 25.0 25.7 ug/L 110 59.134 2,4-Dichloroethane 25.0 25.7 ug/L 110 75.125 2,4-Dichloroethane 25.0 25.7 ug/L 114 75.125 2,4-Dichloroethane 25.0 25.7 ug/L 114 75.125 2,4-Dichloroethane 25.0 25.7 ug/L 114 75.125 2,4-Dichloroethane 25.0 25.5 ug/L 114 75.125 2,4-Dichloroethane 25.0 25.7 ug/L 114 75.125 2,4-Dichlo	1,1,1-Trichloroethane					73 - 126	
1,1,2-Trichloroethane 25.0 25.9 ug/L 104 76.122 1,1,2-Trichloro-1,2,2-trifluoroethan 25.0 27.6 ug/L 100 61.148 1-1,1-Dichloroethane 25.0 26.1 ug/L 104 77.120 1,1-Dichloroethane 25.0 27.6 ug/L 110 66.127 1,2-Dichlorobenzene 25.0 28.1 ug/L 196 65.134 1,2-Dichloromo-3-Chloroproprane 25.0 28.4 ug/L 196 65.134 1,2-Dichloroethane 25.0 28.4 ug/L 198 75.120 1,2-Dichloropopane 25.0 28.4 ug/L 192 76.120 1,2-Dichloropopane 25.0 28.4 ug/L 106 77.120 1,2-Dichlorobenzene 25.0 28.5 ug/L 103 80.120 1,2-Dichlorobenzene 25.0 28.5 ug/L 103 80.120 1,2-Dichlorobenzene 25.0 28.5 ug/L 103 80.120 1,4-Dichlorobenzene 25.0 28.5 111 ug/L 80		25.0	21.8	_	87	76 - 120	
Ne	1,1,2-Trichloroethane			-	104	76 - 122	
Ne	1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	27.6	ug/L	110	61 - 148	
1,1-Dichloroethene 25.0 27.6 ug/L 110 66 - 127 1,2-A-Trichlorobenzene 25.0 28.1 ug/L 196 56 - 134 1,2-Dichlorophoropane 25.0 23.9 ug/L 196 56 - 134 1,2-Dichlorobenzene 25.0 26.4 ug/L 198 75 - 120 1,2-Dichlorophane 25.0 25.4 ug/L 102 76 - 120 1,3-Dichlorobenzene 25.0 26.4 ug/L 106 77 - 120 1,3-Dichlorobenzene 25.0 25.7 ug/L 103 80 - 120 2-Butanone (MEK) 125 115 ug/L 92 57 - 140 2-Butanone (MIBK) 125 113 ug/L 92 57 - 140 2-Hexanone 125 119 ug/L 95 56 - 142 2-Hexanone 125 119 ug/L 95 56 - 142 2-Hexanone 125 119 ug/L 95 56 - 142 2-Hexanone 125 119 ug/L 18 65 - 127 4-Methyl-2-pentanone (MIBK) <td></td> <td></td> <td></td> <td>· ·</td> <td></td> <td></td> <td></td>				· ·			
1,2,4-Trichlorobenzene 25.0 28.1 ug/L 112 79 - 122 1,2-Dichloropropane 25.0 23.9 ug/L 96 56. 134 1,2-Dichlorobenzene 25.0 26.4 ug/L 106 80 - 124 1,2-Dichlorobethane 25.0 24.4 ug/L 102 75 - 120 1,3-Dichlorobenzene 25.0 25.4 ug/L 106 77 - 120 1,3-Dichlorobenzene 25.0 26.4 ug/L 103 80 - 120 1,4-Dichlorobenzene 25.0 25.7 ug/L 103 80 - 120 2-Butanone (MEK) 125 115 ug/L 88 65 - 127 4-Methyl-2-pentanone (MIBK) 125 111 ug/L 88 65 - 127 4-Methyl-2-pentanone (MIBK) 125 119 ug/L 83 71 - 125 Acetone 125 119 ug/L 108 71 - 124 Benzene 25.0 26.9 ug/L 108 71 - 124 Bromodichloromethane 25.0 26.9 ug/L 110 59 - 134	1,1-Dichloroethane		26.1	-	104	77 - 120	
1,2-Dibromo-3-Chloropropane 25.0 23.9 ug/L 96 56 - 134 1,2-Dichlorobenzene 25.0 26.4 ug/L 106 80 - 124 1,2-Dichloroptopane 25.0 25.4 ug/L 102 76 - 120 1,3-Dichloroptopane 25.0 25.4 ug/L 106 77 - 120 1,3-Dichlorobenzene 25.0 25.7 ug/L 103 80 - 120 2-Butanone (MEK) 125 111 ug/L 88 65 - 127 4-Methyl-2-pentanone (MIBK) 125 111 ug/L 88 65 - 127 4-Methyl-2-pentanone (MIBK) 125 119 ug/L 88 65 - 127 4-Methyl-2-pentanone (MIBK) 125 119 ug/L 88 65 - 127 4-Methyl-2-pentanone (MIBK) 125 119 ug/L 108 71 - 124 4-Methyl-2-pentanone (MIBK) 125 119 ug/L 108 71 - 124 4-Methyl-2-pentanone (MIBK) 125 119 ug/L 108 65 - 127 4-Methyl-2-pentanone (MIBK) 125 119 ug/L	1,1-Dichloroethene	25.0	27.6	ug/L	110	66 - 127	
1,2-Dichlorobenzene 25.0 26.4 ug/L 106 80 - 124 1,2-Dichloroethane 25.0 24.4 ug/L 102 76 - 120 1,2-Dichloropenzene 25.0 25.4 ug/L 106 77 - 120 1,3-Dichlorobenzene 25.0 26.4 ug/L 106 77 - 120 1,4-Dichlorobenzene 25.0 25.7 ug/L 103 80 - 120 2-Butanone (MEK) 125 115 ug/L 88 65 - 127 4-Methyl-2-pentanone (MIBK) 125 111 ug/L 88 65 - 127 4-Methyl-2-pentanone (MIBK) 125 119 ug/L 198 56 - 142 Benzene 125 119 ug/L 198 56 - 142 Benzene 25.0 27.1 ug/L 108 80 - 122 Bromodichloromethane 25.0 27.1 ug/L 108 80 - 122 Bromodichloromethane 25.0 29.3 ug/L 110 55 - 144 Carbon tetrachloride 25.0 27.5 ug/L 110 59 - 134	1,2,4-Trichlorobenzene	25.0	28.1	ug/L	112	79 - 122	
1,2-Dichloroethane 25.0 24.4 ug/L 98 75 - 120 1,2-Dichloropropane 25.0 25.4 ug/L 102 76 - 120 1,3-Dichlorobenzene 25.0 26.4 ug/L 106 77 - 120 1,4-Dichlorobenzene 25.0 25.7 ug/L 103 80 - 120 2-Butanone (MEK) 125 1115 ug/L 88 65 - 127 4-Methyl-2-pentanone (MIBK) 125 111 ug/L 83 71 - 125 4-Methyl-2-pentanone (MIBK) 125 119 ug/L 83 71 - 126 4-Methyl-2-pentanone (MIBK) 125 119 ug/L 83 71 - 126 4-Methyl-2-pentanone (MIBK) 125 119 ug/L 95 56 - 142 4-Methyl-2-pentanone (MIBK) 125 119 ug/L 183 71 - 126 4-Methyl-2-pentanone (MIBK) 125 119 ug/L 183 71 - 126 4-Methyl-2-pentanone (MIBK) 125 119 ug/L 108 80 - 122 Benzene 25.0 26.9 ug/L 108 <t< td=""><td>1,2-Dibromo-3-Chloropropane</td><td></td><td>23.9</td><td>ug/L</td><td>96</td><td>56 - 134</td><td></td></t<>	1,2-Dibromo-3-Chloropropane		23.9	ug/L	96	56 - 134	
1,2-Dichloropropane 25.0 25.4 ug/L 102 76.120 1,3-Dichlorobenzene 25.0 26.4 ug/L 106 77.120 1,4-Dichlorobenzene 25.0 25.7 ug/L 103 80.120 2-Butanone (MEK) 125 1115 ug/L 88 65.127 4-Methyl-2-pentanone (MIBK) 125 110 ug/L 83 71.125 Acetone 125 119 ug/L 83 71.125 Acetone 125 119 ug/L 95 56.142 Benzene 25.0 27.1 ug/L 108 80.122 Bromodichloromethane 25.0 26.9 ug/L 108 80.122 Bromoform 25.0 26.9 ug/L 110 80.122 Bromodichloromethane 25.0 29.3 ug/L 117 55.144 Carbon disulfide 25.0 27.5 ug/L 110 59.134 Carbon tetrachloride 25.0 28.4 ug/L 114 75.125 Chlorobenzene 25.0 28.	1,2-Dichlorobenzene	25.0	26.4	ug/L	106	80 - 124	
1,3-Dichlorobenzene 25.0 26.4 ug/L 106 77.120 1,4-Dichlorobenzene 25.0 25.7 ug/L 103 80.120 2-Butanone (MEK) 125 115 ug/L 92 57.140 2-Hexanone 125 111 ug/L 88 65.127 4-Methyl-2-pentanone (MIBK) 125 103 ug/L 83 71.125 Acetone 125 119 ug/L 95 56.142 Benzene 25.0 27.1 ug/L 108 71.124 Bromoform 25.0 27.1 ug/L 108 80.122 Bromoform 25.0 29.3 ug/L 110 80.122 Bromoform 25.0 29.3 ug/L 110 80.122 Bromoform 25.0 29.3 ug/L 110 59.134 Carbon disulfide 25.0 27.5 ug/L 110 59.134 Carbon tetrachloride 25.0 28.4 ug/L 114 80.120 Dibromochloromethane 25.0 28.4 ug/L </td <td>1,2-Dichloroethane</td> <td>25.0</td> <td>24.4</td> <td>ug/L</td> <td>98</td> <td>75 - 120</td> <td></td>	1,2-Dichloroethane	25.0	24.4	ug/L	98	75 - 120	
1,4-Dichlorobenzene 25.0 25.7 ug/L 103 80.120 2-Butanone (MEK) 125 115 ug/L 92 57.140 2-Hexanone 125 111 ug/L 88 65.127 4-Methyl-2-pentanone (MIBK) 125 110 ug/L 83 71.125 Acetone 125 119 ug/L 108 71.124 Benzene 25.0 27.1 ug/L 108 71.124 Bromodichloromethane 25.0 26.9 ug/L 108 80.122 Bromoform 25.0 26.9 ug/L 108 80.122 Bromoform 25.0 26.9 ug/L 108 80.122 Bromoform 25.0 26.9 ug/L 110 80.122 Bromoform 25.0 29.3 ug/L 110 59.134 Carbon disulfide 25.0 29.9 ug/L 110 59.134 Carbon tetrachloride 25.0 29.9 ug/L 114 80.120 Dibromochloromethane 25.0 28.4 ug/L	1,2-Dichloropropane	25.0	25.4	ug/L	102	76 - 120	
2-Butanone (MEK) 2-Hexanone 125 1111 ug/L 88 65-127 4-Methyl-2-pentanone (MIBK) 125 1103 ug/L 83 71-125 Acetone 125 119 ug/L 83 71-124 Benzene 25.0 27.1 ug/L 108 71-124 Bromodichloromethane 25.0 26.9 ug/L 1108 80-122 Bromoform 25.0 25.0 27.5 ug/L 117 55-144 Carbon disulfide 25.0 27.5 ug/L 110 59-134 Carbon tetrachloride 25.0 27.5 ug/L 110 59-134 Carbon tetrachloride 25.0 27.5 ug/L 110 59-134 Carbon tetrachloride 25.0 28.4 ug/L 114 80.120 Dibromochloromethane 25.0 25.0 28.4 ug/L 114 80.120 Dibromochloromethane 25.0 25.0 28.4 ug/L 114 75-125 Chloroethane 25.0 25.0 27.0 ug/L 108 69-136 Chloroform 25.0 25.0 25.7 ug/L 108 69-136 Chloroformethane 25.0 25.0 28.4 ug/L 114 74-124 cis-1,2-Dibromoethane 25.0 28.5 ug/L 114 74-124 cis-1,3-Dichloropropene 25.0 28.5 ug/L 114 74-124 cis-1,3-Dichloropropene 25.0 28.6 ug/L 114 74-124 cis-1,3-Dichloropropene 25.0 28.7 ug/L 114 74-124 cis-1,3-Dichloropropene 25.0 28.8 ug/L 114 74-124 cis-1,3-Dichloropropene 25.0 28.8 ug/L 117 77-123 1,2-Dibromoethane 25.0 28.4 ug/L 117 77-123 1,2-Dibromoethane	1,3-Dichlorobenzene	25.0	26.4	ug/L	106	77 - 120	
2-Hexanone 125 111 ug/L 88 65 - 127 4-Methyl-2-pentanone (MIBK) 125 103 ug/L 83 71 - 125 Acetone 125 119 ug/L 95 56 - 142 Benzene 25.0 27.1 ug/L 108 71 - 124 Bromodichloromethane 25.0 26.9 ug/L 108 80 - 122 Bromoform 25.0 30.3 ug/L 117 65 - 144 Bromodichloromethane 25.0 29.3 ug/L 117 55 - 144 Carbon disulfide 25.0 29.3 ug/L 110 59 - 134 Carbon disulfide 25.0 27.5 ug/L 110 59 - 134 Carbon disulfide 25.0 29.9 ug/L 110 59 - 134 Chlorobenzene 25.0 28.4 ug/L 114 80 - 120 Chlorobenzene 25.0 28.4 ug/L 114 75 - 125 Chlorobethane 25.0 25.5 ug/L 108 69 - 136 Chlorobethane 25.0	1,4-Dichlorobenzene	25.0	25.7	ug/L	103	80 - 120	
4-Methyl-2-pentanone (MIBK) 125 103 ug/L 83 71 - 125 Acetone 125 119 ug/L 95 56 - 142 Benzene 25.0 27.1 ug/L 108 71 - 124 Bromodichloromethane 25.0 26.9 ug/L 108 80 - 122 Bromoform 25.0 30.3 ug/L 121 61 - 132 Bromomethane 25.0 29.3 ug/L 117 55 - 144 Carbon disulfide 25.0 27.5 ug/L 110 59 - 134 Carbon tetrachloride 25.0 29.9 ug/L 110 59 - 134 Chlorobenzene 25.0 28.4 ug/L 114 80 - 120 Dibromochloromethane 25.0 28.4 ug/L 114 75 - 125 Chlorochtane 25.0 28.4 ug/L 114 75 - 125 Chloromethane 25.0 25.5 ug/L 102 73 - 127 Chloromethane 25.0 25.5 ug/L 103 68 - 124 cis-1,3-Dichloroptopene <td< td=""><td>2-Butanone (MEK)</td><td>125</td><td>115</td><td>ug/L</td><td>92</td><td>57 - 140</td><td></td></td<>	2-Butanone (MEK)	125	115	ug/L	92	57 - 140	
Acetone 125 119 ug/L 95 56 - 142 Benzene 25.0 27.1 ug/L 108 71 - 124 Bromodichloromethane 25.0 26.9 ug/L 108 80 - 122 Bromoform 25.0 30.3 ug/L 121 61 - 132 Bromomethane 25.0 29.3 ug/L 117 55 - 144 Carbon disulfide 25.0 29.3 ug/L 110 59 - 134 Carbon disulfide 25.0 27.5 ug/L 110 59 - 134 Carbon disulfide 25.0 29.9 ug/L 120 72 - 134 Chlorobenzene 25.0 28.4 ug/L 114 80 - 120 Dibromochloromethane 25.0 28.4 ug/L 114 75 - 125 Chloroform 25.0 25.5 ug/L 108 69 - 136 Chloroform 25.0 25.7 ug/L 103 68 - 124 cis-1,2-Dichloroptehene 25.0 28.5 ug/L 114 74 - 124 cis-1,3-Dichloroptopene 25.0 </td <td>2-Hexanone</td> <td>125</td> <td>111</td> <td>ug/L</td> <td>88</td> <td>65 - 127</td> <td></td>	2-Hexanone	125	111	ug/L	88	65 - 127	
Benzene 25.0 27.1 ug/L 108 71.124 Bromodichloromethane 25.0 26.9 ug/L 108 80.122 Bromoform 25.0 30.3 ug/L 121 61.132 Bromomethane 25.0 29.3 ug/L 117 55.144 Carbon disulfide 25.0 29.9 ug/L 110 59.134 Carbon tetrachloride 25.0 29.9 ug/L 120 72.134 Chlorobenzene 25.0 28.4 ug/L 114 80.120 Dibromochloromethane 25.0 28.4 ug/L 114 75.125 Chlorobethane 25.0 27.0 ug/L 108 69.136 Chloroform 25.0 25.5 ug/L 102 73.127 Chloromethane 25.0 25.7 ug/L 103 68.124 cis-1,2-Dichloroethene 25.0 28.5 ug/L 114 74.124 Cyclohexane 25.0 28.5 ug/L 144 59.135 Dichlorodifluoromethane 25.0 28	4-Methyl-2-pentanone (MIBK)	125	103	ug/L	83	71 - 125	
Bromodichloromethane 25.0 26.9 ug/L 108 80 - 122 Bromoform 25.0 30.3 ug/L 121 61 - 132 Bromomethane 25.0 29.3 ug/L 117 55 - 144 Carbon disulfide 25.0 27.5 ug/L 110 59 - 134 Carbon tetrachloride 25.0 29.9 ug/L 120 72 - 134 Chlorobenzene 25.0 28.4 ug/L 114 80 - 120 Dibromochloromethane 25.0 28.4 ug/L 114 75 - 125 Chloroform 25.0 27.0 ug/L 108 69 - 136 Chloroform 25.0 25.5 ug/L 102 73 - 127 Chloromethane 25.0 25.7 ug/L 103 68 - 124 cis-1,3-Dichloropethene 25.0 28.5 ug/L 114 74 - 124 Cyclohexane 25.0 24.5 ug/L 144 59 - 135 Dichlorodifluoromethane 25.0<	Acetone	125	119	ug/L	95	56 - 142	
Bromoform 25.0 30.3 ug/L 121 61 - 132 Bromomethane 25.0 29.3 ug/L 117 55 - 144 Carbon disulfide 25.0 27.5 ug/L 110 59 - 134 Carbon tetrachloride 25.0 29.9 ug/L 120 72 - 134 Chlorobenzene 25.0 28.4 ug/L 114 80 - 120 Dibromochloromethane 25.0 28.4 ug/L 114 75 - 125 Chloroethane 25.0 27.0 ug/L 108 69 - 136 Chloroform 25.0 25.5 ug/L 102 73 - 127 Chloromethane 25.0 25.7 ug/L 103 68 - 124 cis-1,2-Dichloroethene 25.0 28.5 ug/L 114 74 - 124 cis-1,3-Dichloropropene 25.0 28.5 ug/L 112 74 - 124 Cyclohexane 25.0 24.5 ug/L 144 59 - 135 Ethylbenzene 25.0 28.4 ug/L 113 77 - 123 1,2-Dibromoethane	Benzene	25.0	27.1	ug/L	108	71 - 124	
Bromomethane 25.0 29.3 ug/L 117 55.144 Carbon disulfide 25.0 27.5 ug/L 110 59.134 Carbon tetrachloride 25.0 29.9 ug/L 120 72.134 Chlorobenzene 25.0 28.4 ug/L 114 80.120 Dibromochloromethane 25.0 28.4 ug/L 114 75.125 Chloroethane 25.0 27.0 ug/L 108 69.136 Chloroform 25.0 25.5 ug/L 102 73.127 Chloromethane 25.0 25.7 ug/L 103 68.124 cis-1,2-Dichloroethene 25.0 28.5 ug/L 114 74.124 cis-1,3-Dichloropropene 25.0 28.0 ug/L 112 74.124 Cyclohexane 25.0 24.5 ug/L 144 59.135 Dichlorodifluoromethane 25.0 28.4 ug/L 113 77.123 Ethylbenzene 25.0 28.1 ug/L 113 77.120 Isopropylbenzene 25.0 <td>Bromodichloromethane</td> <td>25.0</td> <td>26.9</td> <td>ug/L</td> <td>108</td> <td>80 - 122</td> <td></td>	Bromodichloromethane	25.0	26.9	ug/L	108	80 - 122	
Carbon disulfide 25.0 27.5 ug/L 110 59 - 134 Carbon tetrachloride 25.0 29.9 ug/L 120 72 - 134 Chlorobenzene 25.0 28.4 ug/L 114 80 - 120 Dibromochloromethane 25.0 28.4 ug/L 114 75 - 125 Chloroethane 25.0 27.0 ug/L 108 69 - 136 Chloroform 25.0 25.5 ug/L 102 73 - 127 Chloromethane 25.0 25.7 ug/L 103 68 - 124 cis-1,2-Dichloroethene 25.0 28.5 ug/L 114 74 - 124 cis-1,3-Dichloropropene 25.0 28.0 ug/L 112 74 - 124 Cyclohexane 25.0 24.5 ug/L 98 59 - 135 Dichlorodifluoromethane 25.0 28.4 ug/L 114 59 - 135 Ethylbenzene 25.0 28.4 ug/L 113 77 - 123 1,2-Dibromoethane 25.0 28.1 ug/L 112 77 - 120 Isopropylb	Bromoform	25.0	30.3	ug/L	121	61 - 132	
Carbon tetrachloride 25.0 29.9 ug/L 120 72 - 134 Chlorobenzene 25.0 28.4 ug/L 114 80 - 120 Dibromochloromethane 25.0 28.4 ug/L 114 75 - 125 Chloroethane 25.0 27.0 ug/L 108 69 - 136 Chloroform 25.0 25.5 ug/L 102 73 - 127 Chloromethane 25.0 25.7 ug/L 103 68 - 124 cis-1,2-Dichloroethene 25.0 28.5 ug/L 114 74 - 124 cis-1,3-Dichloropropene 25.0 28.0 ug/L 112 74 - 124 Cyclohexane 25.0 24.5 ug/L 98 59 - 135 Dichlorodifluoromethane 25.0 28.4 ug/L 144 59 - 135 Ethylbenzene 25.0 28.4 ug/L 113 77 - 123 1,2-Dibromoethane 25.0 28.1 ug/L 112 77 - 120 Isopropylbenzene 25.0 24.6 ug/L 98 77 - 122 Methyl acet	Bromomethane	25.0	29.3	ug/L	117	55 - 144	
Chlorobenzene 25.0 28.4 ug/L 114 80 - 120 Dibromochloromethane 25.0 28.4 ug/L 114 75 - 125 Chloroethane 25.0 27.0 ug/L 108 69 - 136 Chloroform 25.0 25.5 ug/L 102 73 - 127 Chloromethane 25.0 25.7 ug/L 103 68 - 124 cis-1,2-Dichloroethene 25.0 28.5 ug/L 114 74 - 124 cis-1,3-Dichloropropene 25.0 28.0 ug/L 112 74 - 124 Cyclohexane 25.0 24.5 ug/L 98 59 - 135 Dichlorodifluoromethane 25.0 36.1 *+ ug/L 144 59 - 135 Ethylbenzene 25.0 28.4 ug/L 113 77 - 123 1,2-Dibromoethane 25.0 28.1 ug/L 112 77 - 120 Isopropylbenzene 25.0 24.6 ug/L 98 77 - 122 Methyl acetate 50.0 44.7 ug/L 89 74 - 133	Carbon disulfide	25.0	27.5	ug/L	110	59 - 134	
Dibromochloromethane 25.0 28.4 ug/L 114 75 - 125 Chloroethane 25.0 27.0 ug/L 108 69 - 136 Chloroform 25.0 25.5 ug/L 102 73 - 127 Chloromethane 25.0 25.7 ug/L 103 68 - 124 cis-1,2-Dichloroethene 25.0 28.5 ug/L 114 74 - 124 cis-1,3-Dichloropropene 25.0 28.0 ug/L 112 74 - 124 Cyclohexane 25.0 24.5 ug/L 98 59 - 135 Dichlorodifluoromethane 25.0 36.1 *+ ug/L 144 59 - 135 Ethylbenzene 25.0 28.4 ug/L 113 77 - 123 1,2-Dibromoethane 25.0 28.1 ug/L 112 77 - 120 Isopropylbenzene 25.0 24.6 ug/L 98 77 - 122 Methyl acetate 50.0 44.7 ug/L 89 74 - 133	Carbon tetrachloride	25.0	29.9	ug/L	120	72 - 134	
Chloroethane 25.0 27.0 ug/L 108 69 - 136 Chloroform 25.0 25.5 ug/L 102 73 - 127 Chloromethane 25.0 25.7 ug/L 103 68 - 124 cis-1,2-Dichloroethene 25.0 28.5 ug/L 114 74 - 124 cis-1,3-Dichloropropene 25.0 28.0 ug/L 112 74 - 124 Cyclohexane 25.0 24.5 ug/L 98 59 - 135 Dichlorodifluoromethane 25.0 36.1 *+ ug/L 144 59 - 135 Ethylbenzene 25.0 28.4 ug/L 113 77 - 123 1,2-Dibromoethane 25.0 28.1 ug/L 112 77 - 120 Isopropylbenzene 25.0 24.6 ug/L 98 77 - 122 Methyl acetate 50.0 44.7 ug/L 89 74 - 133	Chlorobenzene	25.0	28.4	ug/L	114	80 - 120	
Chloroform 25.0 25.5 ug/L 102 73 - 127 Chloromethane 25.0 25.7 ug/L 103 68 - 124 cis-1,2-Dichloroethene 25.0 28.5 ug/L 114 74 - 124 cis-1,3-Dichloropropene 25.0 28.0 ug/L 112 74 - 124 Cyclohexane 25.0 24.5 ug/L 98 59 - 135 Dichlorodifluoromethane 25.0 36.1 *+ ug/L 144 59 - 135 Ethylbenzene 25.0 28.4 ug/L 113 77 - 123 1,2-Dibromoethane 25.0 28.1 ug/L 112 77 - 120 Isopropylbenzene 25.0 24.6 ug/L 98 77 - 122 Methyl acetate 50.0 44.7 ug/L 89 74 - 133	Dibromochloromethane	25.0	28.4	ug/L	114	75 - 125	
Chloromethane 25.0 25.7 ug/L 103 68 - 124 cis-1,2-Dichloroethene 25.0 28.5 ug/L 114 74 - 124 cis-1,3-Dichloropropene 25.0 28.0 ug/L 112 74 - 124 Cyclohexane 25.0 24.5 ug/L 98 59 - 135 Dichlorodifluoromethane 25.0 36.1 *+ ug/L 144 59 - 135 Ethylbenzene 25.0 28.4 ug/L 113 77 - 123 1,2-Dibromoethane 25.0 28.1 ug/L 112 77 - 120 Isopropylbenzene 25.0 24.6 ug/L 98 77 - 122 Methyl acetate 50.0 44.7 ug/L 89 74 - 133	Chloroethane	25.0	27.0	ug/L	108	69 - 136	
cis-1,2-Dichloroethene 25.0 28.5 ug/L 114 74 - 124 cis-1,3-Dichloropropene 25.0 28.0 ug/L 112 74 - 124 Cyclohexane 25.0 24.5 ug/L 98 59 - 135 Dichlorodifluoromethane 25.0 36.1 *+ ug/L 144 59 - 135 Ethylbenzene 25.0 28.4 ug/L 113 77 - 123 1,2-Dibromoethane 25.0 28.1 ug/L 112 77 - 120 Isopropylbenzene 25.0 24.6 ug/L 98 77 - 122 Methyl acetate 50.0 44.7 ug/L 89 74 - 133	Chloroform	25.0	25.5	ug/L	102	73 - 127	
cis-1,3-Dichloropropene 25.0 28.0 ug/L 112 74 - 124 Cyclohexane 25.0 24.5 ug/L 98 59 - 135 Dichlorodifluoromethane 25.0 36.1 *+ ug/L 144 59 - 135 Ethylbenzene 25.0 28.4 ug/L 113 77 - 123 1,2-Dibromoethane 25.0 28.1 ug/L 112 77 - 120 Isopropylbenzene 25.0 24.6 ug/L 98 77 - 122 Methyl acetate 50.0 44.7 ug/L 89 74 - 133	Chloromethane	25.0	25.7	ug/L	103	68 - 124	
Cyclohexane 25.0 24.5 ug/L 98 59 - 135 Dichlorodifluoromethane 25.0 36.1 *+ ug/L 144 59 - 135 Ethylbenzene 25.0 28.4 ug/L 113 77 - 123 1,2-Dibromoethane 25.0 28.1 ug/L 112 77 - 120 Isopropylbenzene 25.0 24.6 ug/L 98 77 - 122 Methyl acetate 50.0 44.7 ug/L 89 74 - 133	cis-1,2-Dichloroethene	25.0	28.5	ug/L	114	74 - 124	
Dichlorodifluoromethane 25.0 36.1 *+ ug/L 144 59 - 135 Ethylbenzene 25.0 28.4 ug/L 113 77 - 123 1,2-Dibromoethane 25.0 28.1 ug/L 112 77 - 120 Isopropylbenzene 25.0 24.6 ug/L 98 77 - 122 Methyl acetate 50.0 44.7 ug/L 89 74 - 133	cis-1,3-Dichloropropene	25.0	28.0	ug/L	112	74 - 124	
Ethylbenzene 25.0 28.4 ug/L 113 77 - 123 1,2-Dibromoethane 25.0 28.1 ug/L 112 77 - 120 Isopropylbenzene 25.0 24.6 ug/L 98 77 - 122 Methyl acetate 50.0 44.7 ug/L 89 74 - 133	Cyclohexane	25.0	24.5	ug/L	98	59 - 135	
Ethylbenzene 25.0 28.4 ug/L 113 77 - 123 1,2-Dibromoethane 25.0 28.1 ug/L 112 77 - 120 Isopropylbenzene 25.0 24.6 ug/L 98 77 - 122 Methyl acetate 50.0 44.7 ug/L 89 74 - 133	Dichlorodifluoromethane	25.0	36.1	-	144	59 - 135	
Isopropylbenzene 25.0 24.6 ug/L 98 77 - 122 Methyl acetate 50.0 44.7 ug/L 89 74 - 133	Ethylbenzene	25.0	28.4	-	113	77 - 123	
Isopropylbenzene 25.0 24.6 ug/L 98 77 - 122 Methyl acetate 50.0 44.7 ug/L 89 74 - 133	1,2-Dibromoethane	25.0	28.1	ug/L	112	77 - 120	
Methyl acetate 50.0 44.7 ug/L 89 74 - 133	Isopropylbenzene	25.0	24.6	_	98	77 - 122	
Methyl tert-butyl ether 25.0 25.7 ug/L 103 77 - 120		50.0	44.7	-	89	74 - 133	
	Methyl tert-butyl ether	25.0	25.7	ug/L	103	77 - 120	

Eurofins Buffalo

Page 23 of 39

28.2

ug/L

113

68 - 134

25.0

Client: Terracon Consultants Inc

Project/Site: Back Lot Lake Ave, Rochester, NY

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-741783/6

Matrix: Water

Analysis Batch: 741783

Client Sample ID: Lab Control Sample

Job ID: 480-228104-1

Prep Type: Total/NA

	Spike	LUS	LUS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methylene Chloride	25.0	27.1		ug/L		109	75 - 124	
Styrene	25.0	28.3		ug/L		113	80 - 120	
Tetrachloroethene	25.0	31.1	*+	ug/L		125	74 - 122	
Toluene	25.0	26.9		ug/L		108	80 - 122	
trans-1,2-Dichloroethene	25.0	28.3		ug/L		113	73 - 127	
trans-1,3-Dichloropropene	25.0	26.8		ug/L		107	80 - 120	
Trichloroethene	25.0	28.9		ug/L		116	74 - 123	
Trichlorofluoromethane	25.0	31.1		ug/L		125	62 - 150	
Vinyl chloride	25.0	28.5		ua/l		114	65 - 133	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	99		80 - 120
1,2-Dichloroethane-d4 (Surr)	98		77 - 120
4-Bromofluorobenzene (Surr)	115		73 - 120
Dibromofluoromethane (Surr)	104		75 - 123

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

ND

ND

Lab Sample ID: MB 480-741949/1-A

Matrix: Water

4-Nitrophenol

Acenaphthene

Analysis Batch: 742017

Client Sample ID: Method Blank

Prep Type: Total/NA **Prep Batch: 741949**

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND		5.0	0.65	ug/L		03/27/25 13:37	03/28/25 11:48	1
bis (2-chloroisopropyl) ether	ND		5.0	0.52	ug/L		03/27/25 13:37	03/28/25 11:48	1
2,4,5-Trichlorophenol	ND		5.0	0.48	ug/L		03/27/25 13:37	03/28/25 11:48	1
2,4,6-Trichlorophenol	ND		5.0	0.61	ug/L		03/27/25 13:37	03/28/25 11:48	1
2,4-Dichlorophenol	ND		5.0	0.51	ug/L		03/27/25 13:37	03/28/25 11:48	1
2,4-Dimethylphenol	ND		5.0	0.50	ug/L		03/27/25 13:37	03/28/25 11:48	1
2,4-Dinitrophenol	ND		10	2.2	ug/L		03/27/25 13:37	03/28/25 11:48	1
2,4-Dinitrotoluene	ND		5.0	0.45	ug/L		03/27/25 13:37	03/28/25 11:48	1
2,6-Dinitrotoluene	ND		5.0	0.40	ug/L		03/27/25 13:37	03/28/25 11:48	1
2-Chloronaphthalene	ND		5.0	0.46	ug/L		03/27/25 13:37	03/28/25 11:48	1
2-Chlorophenol	ND		5.0	0.53	ug/L		03/27/25 13:37	03/28/25 11:48	1
2-Methylphenol	ND		5.0	0.40	ug/L		03/27/25 13:37	03/28/25 11:48	1
2-Methylnaphthalene	ND		5.0	0.60	ug/L		03/27/25 13:37	03/28/25 11:48	1
2-Nitroaniline	ND		10	0.42	ug/L		03/27/25 13:37	03/28/25 11:48	1
2-Nitrophenol	ND		5.0	0.48	ug/L		03/27/25 13:37	03/28/25 11:48	1
3,3'-Dichlorobenzidine	ND		5.0	0.40	ug/L		03/27/25 13:37	03/28/25 11:48	1
3-Nitroaniline	ND		10	0.48	ug/L		03/27/25 13:37	03/28/25 11:48	1
4,6-Dinitro-2-methylphenol	ND		10	2.2	ug/L		03/27/25 13:37	03/28/25 11:48	1
4-Bromophenyl phenyl ether	ND		5.0	0.45	ug/L		03/27/25 13:37	03/28/25 11:48	1
4-Chloro-3-methylphenol	ND		5.0	0.45	ug/L		03/27/25 13:37	03/28/25 11:48	1
4-Chloroaniline	ND		5.0	0.59	ug/L		03/27/25 13:37	03/28/25 11:48	1
4-Chlorophenyl phenyl ether	ND		5.0	0.35	ug/L		03/27/25 13:37	03/28/25 11:48	1
4-Methylphenol	ND		10	0.36	ug/L		03/27/25 13:37	03/28/25 11:48	1
4-Nitroaniline	ND		10	0.25	ug/L		03/27/25 13:37	03/28/25 11:48	1

Eurofins Buffalo

03/27/25 13:37 03/28/25 11:48 03/27/25 13:37 03/28/25 11:48

Page 24 of 39

10

5.0

1.5 ug/L

0.41 ug/L

Client: Terracon Consultants Inc

Project/Site: Back Lot Lake Ave, Rochester, NY

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-741949/1-A

Matrix: Water

Analysis Batch: 742017

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 480-228104-1

Prep Batch: 741949

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthylene	ND		5.0	0.38	ug/L		03/27/25 13:37	03/28/25 11:48	1
Acetophenone	ND		5.0	0.54	ug/L		03/27/25 13:37	03/28/25 11:48	1
Anthracene	ND		5.0	0.28	ug/L		03/27/25 13:37	03/28/25 11:48	1
Atrazine	ND		5.0	0.46	ug/L		03/27/25 13:37	03/28/25 11:48	1
Benzaldehyde	ND		5.0	0.27	ug/L		03/27/25 13:37	03/28/25 11:48	1
Benzo[a]anthracene	ND		5.0	0.36	ug/L		03/27/25 13:37	03/28/25 11:48	1
Benzo[a]pyrene	ND		5.0	0.47	ug/L		03/27/25 13:37	03/28/25 11:48	1
Benzo[b]fluoranthene	ND		5.0	0.34	ug/L		03/27/25 13:37	03/28/25 11:48	1
Benzo[g,h,i]perylene	ND		5.0	0.35	ug/L		03/27/25 13:37	03/28/25 11:48	1
Benzo[k]fluoranthene	ND		5.0	0.73	ug/L		03/27/25 13:37	03/28/25 11:48	1
Bis(2-chloroethoxy)methane	ND		5.0	0.35	ug/L		03/27/25 13:37	03/28/25 11:48	1
Bis(2-chloroethyl)ether	ND		5.0	0.40	ug/L		03/27/25 13:37	03/28/25 11:48	1
Bis(2-ethylhexyl) phthalate	ND		5.0	2.2	ug/L		03/27/25 13:37	03/28/25 11:48	1
Butyl benzyl phthalate	ND		5.0	1.0	ug/L		03/27/25 13:37	03/28/25 11:48	1
Caprolactam	ND		5.0	2.2	ug/L		03/27/25 13:37	03/28/25 11:48	1
Carbazole	ND		5.0	0.30	ug/L		03/27/25 13:37	03/28/25 11:48	1
Chrysene	ND		5.0	0.33	ug/L		03/27/25 13:37	03/28/25 11:48	1
Dibenz(a,h)anthracene	ND		5.0	0.42	ug/L		03/27/25 13:37	03/28/25 11:48	1
Di-n-butyl phthalate	0.853	J	5.0	0.31	ug/L		03/27/25 13:37	03/28/25 11:48	1
Di-n-octyl phthalate	ND		5.0	0.47	ug/L		03/27/25 13:37	03/28/25 11:48	1
Dibenzofuran	ND		10	0.51	ug/L		03/27/25 13:37	03/28/25 11:48	1
Diethyl phthalate	ND		5.0	0.22	ug/L		03/27/25 13:37	03/28/25 11:48	1
Dimethyl phthalate	ND		5.0	0.36	ug/L		03/27/25 13:37	03/28/25 11:48	1
Fluoranthene	ND		5.0	0.40	ug/L		03/27/25 13:37	03/28/25 11:48	1
Fluorene	ND		5.0		ug/L		03/27/25 13:37	03/28/25 11:48	1
Hexachlorobenzene	ND		5.0	0.51	ug/L		03/27/25 13:37	03/28/25 11:48	1
Hexachlorobutadiene	ND		5.0		ug/L		03/27/25 13:37	03/28/25 11:48	1
Hexachlorocyclopentadiene	ND		5.0	0.59	ug/L			03/28/25 11:48	1
Hexachloroethane	ND		5.0	0.59	ug/L		03/27/25 13:37	03/28/25 11:48	1
Indeno[1,2,3-cd]pyrene	ND		5.0		ug/L		03/27/25 13:37	03/28/25 11:48	1
Isophorone	ND		5.0	0.43	ug/L		03/27/25 13:37	03/28/25 11:48	1
N-Nitrosodi-n-propylamine	ND		5.0	0.54	ug/L		03/27/25 13:37	03/28/25 11:48	1
N-Nitrosodiphenylamine	ND		5.0		ug/L		03/27/25 13:37	03/28/25 11:48	1
Naphthalene	ND		5.0		ug/L		03/27/25 13:37	03/28/25 11:48	1
Nitrobenzene	ND		5.0		ug/L		03/27/25 13:37	03/28/25 11:48	1
Pentachlorophenol	ND		10		ug/L			03/28/25 11:48	1
Phenanthrene	ND		5.0		ug/L			03/28/25 11:48	1
Phenol	ND		5.0		ug/L			03/28/25 11:48	
Pyrene	ND		5.0		ug/L			03/28/25 11:48	1
-					J				
	MB	MB							

IR	MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	63		29 - 129	03/27/25 13:37	03/28/25 11:48	1
Phenol-d5 (Surr)	23		10 - 120	03/27/25 13:37	03/28/25 11:48	1
p-Terphenyl-d14 (Surr)	105		33 - 132	03/27/25 13:37	03/28/25 11:48	1
2,4,6-Tribromophenol (Surr)	66		25 - 144	03/27/25 13:37	03/28/25 11:48	1
2-Fluorobiphenyl (Surr)	75		53 - 126	03/27/25 13:37	03/28/25 11:48	1
2-Fluorophenol (Surr)	37		24 - 120	03/27/25 13:37	03/28/25 11:48	1

Client: Terracon Consultants Inc

Project/Site: Back Lot Lake Ave, Rochester, NY

Job ID: 480-228104-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-741949/2-A

Matrix: Water

Analysis Batch: 742017

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Type: Total/NA Prep Batch: 741949

Analysis Batch: 742017	Spike	1.00	LCS				Prep Batch: 74194 %Rec	
Analyte	Added	_	Qualifier	Unit	D	%Rec	Limits	
Biphenyl	32.0	28.4	Qualifier	ug/L	=	89	59 - 120	
bis (2-chloroisopropyl) ether	32.0	28.4		ug/L		89	21 - 136	
2,4,5-Trichlorophenol	32.0	32.1		ug/L		100	65 - 126	
2,4,6-Trichlorophenol	32.0	31.4		ug/L		98	64 - 120	
2,4-Dichlorophenol	32.0	28.9		ug/L		90	63 - 120	
2,4-Dimethylphenol	32.0	28.8		ug/L		90	47 - 120	
2,4-Dinitrophenol	64.0	54.8		ug/L		86	31 - 137	
2,4-Dinitrotoluene	32.0	31.5		ug/L		98	69 - 120	
2,6-Dinitrotoluene	32.0	31.3		ug/L		98	68 - 120	
2-Chloronaphthalene	32.0	27.8		ug/L ug/L		87	58 - 120	
							48 - 120	
2-Chlorophenol	32.0	26.9		ug/L		84 95		
2-Methylphenol	32.0	27.2		ug/L		85	39 - 120	
2-Methylnaphthalene	32.0	28.4		ug/L		89	59 - 120 54 - 127	
2-Nitroaniline	32.0	27.8		ug/L		87	54 - 127	
2-Nitrophenol	32.0	28.7		ug/L		90	52 - 125	
3,3'-Dichlorobenzidine	32.0	28.2		ug/L		88	49 - 135	
3-Nitroaniline	32.0	25.7		ug/L		80	51 - 120	
4,6-Dinitro-2-methylphenol	64.0	57.9		ug/L		90	46 - 136	
4-Bromophenyl phenyl ether	32.0	29.7		ug/L		93	65 - 120	
4-Chloro-3-methylphenol	32.0	29.5		ug/L		92	61 - 123	
4-Chloroaniline	32.0	22.7		ug/L		71	30 - 120	
4-Chlorophenyl phenyl ether	32.0	30.0		ug/L		94	62 - 120	
4-Methylphenol	32.0	26.3		ug/L		82	29 - 131	
4-Nitroaniline	32.0	32.2		ug/L		101	65 - 120	
4-Nitrophenol	64.0	43.4		ug/L		68	45 - 120	
Acenaphthene	32.0	31.4		ug/L		98	60 - 120	
Acenaphthylene	32.0	30.4		ug/L		95	63 - 120	
Acetophenone	32.0	28.9		ug/L		90	45 - 120	
Anthracene	32.0	34.7		ug/L		108	67 - 120	
Atrazine	32.0	41.9	*+	ug/L		131	71 - 130	
Benzaldehyde	32.0	33.4		ug/L		104	10 - 140	
Benzo[a]anthracene	32.0	33.7		ug/L		105	70 - 121	
Benzo[a]pyrene	32.0	32.5		ug/L		102	60 - 123	
Benzo[b]fluoranthene	32.0	36.4		ug/L		114	66 - 126	
Benzo[g,h,i]perylene	32.0	31.5		ug/L		99	66 - 150	
Benzo[k]fluoranthene	32.0	34.5		ug/L		108	65 - 124	
Bis(2-chloroethoxy)methane	32.0	29.5		ug/L		92	50 - 128	
Bis(2-chloroethyl)ether	32.0	29.4		ug/L		92	44 - 120	
Bis(2-ethylhexyl) phthalate	32.0	29.6		ug/L		92	63 - 139	
Butyl benzyl phthalate	32.0	33.2		ug/L		104	70 - 129	
Caprolactam	32.0	9.75		ug/L		30	22 - 120	
Carbazole	32.0	38.2		ug/L		119	66 - 123	
Chrysene	32.0	33.6		ug/L		105	69 - 120	
Dibenz(a,h)anthracene	32.0	34.1		ug/L		106	65 - 135	
Di-n-butyl phthalate	32.0	33.2		ug/L		104	69 - 131	
Di-n-octyl phthalate	32.0	30.4		ug/L		95	63 - 140	
Dibenzofuran	32.0	31.2		ug/L		98	66 - 120	
Diethyl phthalate	32.0	32.9		ug/L		103	59 - 127	

Eurofins Buffalo

2

4

6

8

46

11

13

14

Client: Terracon Consultants Inc

Project/Site: Back Lot Lake Ave, Rochester, NY

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-741949/2-A

Matrix: Water

Analysis Batch: 742017

Client Sample ID: Lab Control Sample

Prep Type: Total/NA **Prep Batch: 741949**

Job ID: 480-228104-1

7 mary 516 2 at 511 7 120 17	Spike	LCS	LCS				%Rec
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
Dimethyl phthalate	32.0	32.2		ug/L		101	68 - 120
Fluoranthene	32.0	34.7		ug/L		108	69 - 126
Fluorene	32.0	33.9		ug/L		106	66 - 120
Hexachlorobenzene	32.0	31.1		ug/L		97	61 - 120
Hexachlorobutadiene	32.0	20.5		ug/L		64	35 - 120
Hexachlorocyclopentadiene	32.0	11.9		ug/L		37	31 - 120
Hexachloroethane	32.0	22.1		ug/L		69	33 - 120
Indeno[1,2,3-cd]pyrene	32.0	34.0		ug/L		106	69 - 146
Isophorone	32.0	29.8		ug/L		93	55 - 120
N-Nitrosodi-n-propylamine	32.0	28.7		ug/L		90	32 - 140
N-Nitrosodiphenylamine	32.0	31.3		ug/L		98	61 - 120
Naphthalene	32.0	28.6		ug/L		89	57 - 120
Nitrobenzene	32.0	27.4		ug/L		86	53 - 123
Pentachlorophenol	64.0	59.4		ug/L		93	10 - 136
Phenanthrene	32.0	33.0		ug/L		103	68 - 120
Phenol	32.0	15.4		ug/L		48	17 - 120
Pyrene	32.0	34.0		ug/L		106	70 - 125

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5 (Surr)	84		29 - 129
Phenol-d5 (Surr)	47		10 - 120
p-Terphenyl-d14 (Surr)	97		33 - 132
2,4,6-Tribromophenol (Surr)	90		25 - 144
2-Fluorobiphenyl (Surr)	91		53 - 126
2-Fluorophenol (Surr)	66		24 - 120

Lab Sample ID: LCSD 480-741949/3-A

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Matrix: Water Analysis Batch: 742017 Prep Batch: 741949 Spike LCSD LCSD %Rec **RPD** Added Result Qualifier Unit Limits RPD Limit **Analyte** D %Rec

Biphenyl	32.0	28.5	ug/L	89	59 - 120	0	20
bis (2-chloroisopropyl) ether	32.0	26.9	ug/L	84	21 - 136	5	24
2,4,5-Trichlorophenol	32.0	31.1	ug/L	97	65 - 126	3	18
2,4,6-Trichlorophenol	32.0	31.2	ug/L	98	64 - 120	0	19
2,4-Dichlorophenol	32.0	28.9	ug/L	90	63 - 120	0	19
2,4-Dimethylphenol	32.0	28.8	ug/L	90	47 - 120	0	42
2,4-Dinitrophenol	64.0	54.5	ug/L	85	31 - 137	0	22
2,4-Dinitrotoluene	32.0	32.0	ug/L	100	69 - 120	2	20
2,6-Dinitrotoluene	32.0	31.8	ug/L	99	68 - 120	2	15
2-Chloronaphthalene	32.0	27.4	ug/L	86	58 - 120	1	21
2-Chlorophenol	32.0	26.0	ug/L	81	48 - 120	3	25
2-Methylphenol	32.0	25.6	ug/L	80	39 - 120	6	27
2-Methylnaphthalene	32.0	28.0	ug/L	88	59 - 120	1	21
2-Nitroaniline	32.0	29.0	ug/L	91	54 - 127	4	15
2-Nitrophenol	32.0	29.4	ug/L	92	52 - 125	2	18
3,3'-Dichlorobenzidine	32.0	29.1	ug/L	91	49 - 135	3	25
3-Nitroaniline	32.0	25.0	ug/L	78	51 - 120	3	19

Eurofins Buffalo

Page 27 of 39

Client: Terracon Consultants Inc

Project/Site: Back Lot Lake Ave, Rochester, NY

Job ID: 480-228104-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 480-741949/3-A

Matrix: Water

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA
Prep Batch: 741949

Analysis Batch: 742017					_	Prep Batch: 741949			
Australia	Spike			1114	_	0/ D = =	%Rec	DDD	RPD
Analyte 4.6 Dinitro 2 methylphonel	Added 64.0	58.8	Qualifier	Unit	D	%Rec 92	46 - 136	RPD 2	Limit 15
4,6-Dinitro-2-methylphenol				ug/L					
4-Bromophenyl phenyl ether	32.0	30.3		ug/L		95	65 - 120	2	15
4-Chloro-3-methylphenol	32.0	30.0		ug/L		94	61 - 123	2	27
4-Chloroaniline	32.0	21.6		ug/L		67	30 - 120		22
4-Chlorophenyl phenyl ether	32.0	29.7		ug/L		93	62 - 120	1	16
4-Methylphenol	32.0	25.6		ug/L		80	29 - 131	3	24
4-Nitroaniline	32.0	34.2		ug/L		107	65 - 120	6	24
4-Nitrophenol	64.0	38.7		ug/L		60	45 - 120	11	48
Acenaphthene	32.0	31.5		ug/L		98	60 - 120	0	24
Acenaphthylene	32.0	30.1		ug/L		94	63 - 120	1	18
Acetophenone	32.0	28.1		ug/L		88	45 - 120	3	20
Anthracene	32.0	35.0		ug/L		109	67 - 120	1	15
Atrazine	32.0	43.6	*+	ug/L		136	71 - 130	4	20
Benzaldehyde	32.0	32.8		ug/L		102	10 - 140	2	20
Benzo[a]anthracene	32.0	35.1		ug/L		110	70 - 121	4	15
Benzo[a]pyrene	32.0	33.5		ug/L		105	60 - 123	3	15
Benzo[b]fluoranthene	32.0	36.6		ug/L		114	66 - 126	1	15
Benzo[g,h,i]perylene	32.0	32.4		ug/L		101	66 - 150	3	15
Benzo[k]fluoranthene	32.0	36.1		ug/L		113	65 - 124	4	22
Bis(2-chloroethoxy)methane	32.0	29.6		ug/L		92	50 - 128	0	17
Bis(2-chloroethyl)ether	32.0	28.1		ug/L		88	44 - 120	4	21
Bis(2-ethylhexyl) phthalate	32.0	32.1		ug/L		100	63 - 139	8	15
Butyl benzyl phthalate	32.0	34.2		ug/L		107	70 - 129		16
Caprolactam	32.0	10.1		ug/L		32	22 - 120	4	20
Carbazole	32.0	38.8		ug/L		121	66 - 123	2	20
Chrysene	32.0	34.4		ug/L		108	69 - 120	2	15
•	32.0	35.9				112	65 - 135	5	15
Dibenz(a,h)anthracene	32.0	34.4		ug/L ug/L		108	69 - 131	4	15
Di-n-butyl phthalate		32.2							
Di-n-octyl phthalate	32.0			ug/L		101	63 - 140	6	16
Dibenzofuran	32.0	31.5		ug/L		99	66 - 120	1	15
Diethyl phthalate	32.0	33.3		ug/L		104	59 - 127		15
Dimethyl phthalate	32.0	32.6		ug/L		102	68 - 120	1	15
Fluoranthene	32.0	35.3		ug/L		110	69 - 126	2	15
Fluorene	32.0	34.2		ug/L		107	66 - 120		15
Hexachlorobenzene	32.0	32.3		ug/L		101	61 - 120	4	15
Hexachlorobutadiene	32.0	20.0		ug/L		63	35 - 120	2	44
Hexachlorocyclopentadiene	32.0	10.3		ug/L		32	31 - 120	15	49
Hexachloroethane	32.0	21.6		ug/L		68	33 - 120	2	46
Indeno[1,2,3-cd]pyrene	32.0	35.4		ug/L		111	69 - 146	4	15
Isophorone	32.0	29.8		ug/L		93	55 - 120	0	17
N-Nitrosodi-n-propylamine	32.0	27.4		ug/L		86	32 - 140	4	31
N-Nitrosodiphenylamine	32.0	32.3		ug/L		101	61 - 120	3	15
Naphthalene	32.0	28.3		ug/L		88	57 - 120	1	29
Nitrobenzene	32.0	27.0		ug/L		84	53 - 123	1	24
Pentachlorophenol	64.0	63.2		ug/L		99	10 - 136	6	37
Phenanthrene	32.0	34.3		ug/L		107	68 - 120	4	15
Phenol	32.0	15.1		ug/L		47	17 - 120	2	34
Pyrene	32.0	35.6		ug/L		111	70 - 125	4	19

Client: Terracon Consultants Inc

Project/Site: Back Lot Lake Ave, Rochester, NY

Job ID: 480-228104-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 480-741949/3-A

Matrix: Water

Analysis Batch: 742017

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 741949

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5 (Surr)	83		29 - 129
Phenol-d5 (Surr)	46		10 - 120
p-Terphenyl-d14 (Surr)	102		33 - 132
2,4,6-Tribromophenol (Surr)	90		25 - 144
2-Fluorobiphenyl (Surr)	90		53 - 126
2-Fluorophenol (Surr)	63		24 - 120

Method: 6010D - Metals (ICP)

Lab Sample ID: MB 480-741928/1-A

Matrix: Water

Analysis Batch: 742172

Client Sample ID: Method Blank

Prep Type: Total/NA **Prep Batch: 741928**

Analysis batch: 742172								Prep Batch:	741920
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		0.20	0.060	mg/L		03/28/25 08:52	03/28/25 19:31	1
Antimony	ND		0.020	0.0068	mg/L		03/28/25 08:52	03/28/25 19:31	1
Arsenic	ND		0.015	0.0056	mg/L		03/28/25 08:52	03/28/25 19:31	1
Beryllium	ND		0.0020	0.00030	mg/L		03/28/25 08:52	03/28/25 19:31	1
Cadmium	ND		0.0020	0.00050	mg/L		03/28/25 08:52	03/28/25 19:31	1
Calcium	ND		0.50	0.10	mg/L		03/28/25 08:52	03/28/25 19:31	1
Chromium	ND		0.0040	0.0010	mg/L		03/28/25 08:52	03/28/25 19:31	1
Cobalt	ND		0.0040	0.00063	mg/L		03/28/25 08:52	03/28/25 19:31	1
Copper	ND	^5+	0.010	0.0016	mg/L		03/28/25 08:52	03/28/25 19:31	1
Iron	ND		0.050	0.019	mg/L		03/28/25 08:52	03/28/25 19:31	1
Lead	ND	^5+	0.010	0.0030	mg/L		03/28/25 08:52	03/28/25 19:31	1
Magnesium	ND		0.20	0.043	mg/L		03/28/25 08:52	03/28/25 19:31	1
Manganese	ND		0.0030	0.00040	mg/L		03/28/25 08:52	03/28/25 19:31	1
Nickel	ND		0.010	0.0013	mg/L		03/28/25 08:52	03/28/25 19:31	1
Potassium	ND		0.50	0.10	mg/L		03/28/25 08:52	03/28/25 19:31	1
Selenium	ND		0.025	0.0087	mg/L		03/28/25 08:52	03/28/25 19:31	1
Silver	ND	^5-	0.0060	0.0017	mg/L		03/28/25 08:52	03/28/25 19:31	1
Sodium	ND		1.0	0.32	mg/L		03/28/25 08:52	03/28/25 19:31	1
Vanadium	ND		0.0050	0.0015	mg/L		03/28/25 08:52	03/28/25 19:31	1
Zinc	ND		0.010	0.0015	mg/L		03/28/25 08:52	03/28/25 19:31	1

Lab Sample ID: MB 480-741928/1-A

Matrix: Water

Analyte

Barium

Analysis Batch: 742363

Client Sample ID: Method Blank Prep Type: Total/NA

Analyzed

03/28/25 08:52 04/01/25 12:25

03/28/25 08:52 04/01/25 12:25

Prepared

Prep Batch: 741928

Dil Fac

Thallium

Lab Sample ID: LCS 480-741928/2-A **Matrix: Water**

Analysis Batch: 742172

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 741928

MDL Unit

0.010 mg/L

0.00070 mg/L

Spike LCS LCS %Rec %Rec Analyte Added Result Qualifier Unit Limits 5.10 Aluminum 5.02 98 80 - 120 mg/L

MB MB

ND

ND

Result Qualifier

Eurofins Buffalo

Page 29 of 39

RL

0.0020

0.020

Client: Terracon Consultants Inc

Project/Site: Back Lot Lake Ave, Rochester, NY

Job ID: 480-228104-1

Method: 6010D - Metals (ICP) (Continued)

Lab Sample ID: LCS 480-741928/2-A

Matrix: Water

Analysis Batch: 742172

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 741928

Spike Added		LCS				%Rec
bebb∆						· · · · · ·
Audeu	Result	Qualifier	Unit	D	%Rec	Limits
0.500	0.484		mg/L		97	80 - 120
1.00	0.975		mg/L		97	80 - 120
0.496	0.526		mg/L		106	80 - 120
0.500	0.470		mg/L		94	80 - 120
25.0	25.18		mg/L		101	80 - 120
0.500	0.505		mg/L		101	80 - 120
0.500	0.499		mg/L		100	80 - 120
0.500	0.487	^5+	mg/L		97	80 - 120
5.10	5.18		mg/L		102	80 - 120
0.500	0.509	^5+	mg/L		102	80 - 120
25.0	23.94		mg/L		96	80 - 120
0.500	0.488		mg/L		98	80 - 120
0.500	0.507		mg/L		101	80 - 120
25.0	25.62		mg/L		102	80 - 120
1.00	0.970		mg/L		97	80 - 120
0.0500	0.0479	^5-	mg/L		96	80 - 120
25.0	24.64		mg/L		99	80 - 120
0.500	0.502		mg/L		100	80 - 120
0.500	0.494		mg/L		99	80 - 120
	0.500 1.00 0.496 0.500 25.0 0.500 0.500 0.500 0.500 25.0 0.500 25.0 0.500 0.500 25.0 1.00 0.0500 25.0 0.0500	0.500 0.484 1.00 0.975 0.496 0.526 0.500 0.470 25.0 25.18 0.500 0.505 0.500 0.499 0.500 0.487 5.10 5.18 0.500 0.509 25.0 23.94 0.500 0.488 0.500 0.507 25.0 25.62 1.00 0.970 0.0500 0.0479 25.0 24.64 0.500 0.502	0.500 0.484 1.00 0.975 0.496 0.526 0.500 0.470 25.0 25.18 0.500 0.505 0.500 0.499 0.500 0.487 *5+ 5.10 5.18 0.500 0.509 *5+ 25.0 23.94 0.500 0.488 0.500 0.507 25.0 25.62 1.00 0.970 0.0500 0.0479 *5- 25.0 24.64 0.500 0.502	0.500 0.484 mg/L 1.00 0.975 mg/L 0.496 0.526 mg/L 0.500 0.470 mg/L 25.0 25.18 mg/L 0.500 0.505 mg/L 0.500 0.499 mg/L 0.500 0.487 ^5+ mg/L 0.500 0.509 ^5+ mg/L 0.500 0.509 ^5+ mg/L 0.500 0.488 mg/L 0.500 0.507 mg/L 25.0 25.62 mg/L 1.00 0.970 mg/L 0.0500 0.0479 ^5- mg/L 25.0 24.64 mg/L 0.500 0.502 mg/L	0.500 0.484 mg/L 1.00 0.975 mg/L 0.496 0.526 mg/L 0.500 0.470 mg/L 25.0 25.18 mg/L 0.500 0.505 mg/L 0.500 0.499 mg/L 0.500 0.487 ^5+ mg/L 0.500 0.509 ^5+ mg/L 0.500 0.509 ^5+ mg/L 0.500 0.488 mg/L 0.500 0.507 mg/L 25.0 25.62 mg/L 1.00 0.970 mg/L 0.0500 0.0479 ^5- mg/L 0.500 0.502 mg/L	0.500 0.484 mg/L 97 1.00 0.975 mg/L 97 0.496 0.526 mg/L 106 0.500 0.470 mg/L 94 25.0 25.18 mg/L 101 0.500 0.505 mg/L 101 0.500 0.499 mg/L 100 0.500 0.487 ^5+ mg/L 97 5.10 5.18 mg/L 102 0.500 0.509 ^5+ mg/L 102 25.0 23.94 mg/L 96 0.500 0.488 mg/L 98 0.500 0.507 mg/L 101 25.0 25.62 mg/L 102 1.00 0.970 mg/L 97 0.0500 0.0479 ^5- mg/L 96 25.0 24.64 mg/L 99 0.500 0.502 mg/L 100

Spike

Added

1.00

1.00

LCS LCS

1.05

1.03

Result Qualifier

Lab Sample ID: LCS 480-741928/2-A

Matrix: Water

Analyte

Barium

Thallium

Potassium

Selenium

Analysis Batch: 742363

Prep Type: Total/NA **Prep Batch: 741928**

D

Unit

mg/L

mg/L

mg/L

mg/L

%Rec

Limits %Rec 80 - 120

80 - 120

Client Sample ID: Lab Control Sample

Lab Sample ID: LCSD 480-741928/3-A

Matrix: Water

Analysis Batch: 742172

Client Sample ID: Lab Control Sample Dup

105

103

104

98

80 - 120

80 - 120

Prep Type: Total/NA **Prep Batch: 741928**

Spike LCSD LCSD %Rec **RPD** Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit 5.10 5.05 mg/L 80 - 120 20 Aluminum 99 Antimony 0.500 0.492 98 80 - 120 20 mg/L 80 - 120 1.00 0.987 Arsenic mg/L 99 20 Beryllium 0.496 0.530 mg/L 107 80 - 120 20 Cadmium 0.500 0.474 mg/L 95 80 - 120 20 Calcium 25.0 25.42 mg/L 102 80 - 120 20 Chromium 0.500 0.508 mg/L 102 80 - 120 20 Cobalt 0.500 0.500 mg/L 100 80 - 120 20 Copper 0.500 0.490 ^5+ mg/L 98 80 - 120 20 Iron 5.10 5.24 mg/L 103 80 - 12020 Lead 0.500 0.511 ^5+ mg/L 102 80 - 120 20 25.0 24.22 97 80 - 120 20 Magnesium mg/L 0.500 0.492 Manganese mg/L 98 80 - 120 20 Nickel 0.500 0.511 mg/L 102 80 - 120 20

Eurofins Buffalo

Page 30 of 39

25.93

0.975

25.0

1.00

20

Client: Terracon Consultants Inc Job ID: 480-228104-1

Project/Site: Back Lot Lake Ave, Rochester, NY

Method: 6010D - Metals (ICP) (Continued)

Lab Sample ID: LCSD 480-741928/3-A **Matrix: Water**

Analysis Batch: 742172

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA **Prep Batch: 741928**

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Silver	0.0500	0.0492	^5-	mg/L		98	80 - 120	3	20
Sodium	25.0	24.82		mg/L		99	80 - 120	1	20
Vanadium	0.500	0.506		mg/L		101	80 - 120	1	20
Zinc	0.500	0.497		mg/L		99	80 - 120	1	20

Lab Sample ID: LCSD 480-741928/3-A

Matrix: Water

Analysis Batch: 742363

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Batch: 741928

Spike LCSD LCSD %Rec **RPD** Result Qualifier Limits RPD Limit Analyte Added Unit D %Rec Barium 1.00 1.05 mg/L 105 80 - 120 20 Thallium 1.00 1.03 103 20 mg/L 80 - 120

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 480-741760/1-A

Matrix: Water

Analysis Batch: 741860

Client Sample ID: Method Blank

Prep Type: Total/NA **Prep Batch: 741760**

MB MB

Analyte Result Qualifier RL **MDL** Unit **Prepared** Analyzed 0.00020 0.000042 mg/L Mercury ND 03/26/25 07:55 03/26/25 14:07

Lab Sample ID: LCS 480-741760/2-A

Matrix: Water

Analysis Batch: 741860

Client Sample ID: Lab Control Sample

Prep Type: Total/NA **Prep Batch: 741760**

%Rec

LCS LCS Spike Added Analyte Result Qualifier Unit %Rec Limits 0.00669 0.00659 Mercury 80 - 120 mg/L 99

QC Association Summary

Client: Terracon Consultants Inc

Project/Site: Back Lot Lake Ave, Rochester, NY

GC/MS VOA

Analysis Batch: 741783

Lab Sample ID 480-228104-1	Client Sample ID MW-101	Prep Type Total/NA	Matrix Water	Method 8260C	Prep Batch
480-228104-2	MWR-101	Total/NA	Water	8260C	
480-228104-3	MW-105	Total/NA	Water	8260C	
MB 480-741783/8	Method Blank	Total/NA	Water	8260C	
LCS 480-741783/6	Lab Control Sample	Total/NA	Water	8260C	

GC/MS Semi VOA

Prep Batch: 741949

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-228104-1	MW-101	Total/NA	Water	3510C	
480-228104-2	MWR-101	Total/NA	Water	3510C	
480-228104-3	MW-105	Total/NA	Water	3510C	
MB 480-741949/1-A	Method Blank	Total/NA	Water	3510C	
LCS 480-741949/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 480-741949/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	

Analysis Batch: 742017

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-228104-1	MW-101	Total/NA	Water	8270D	741949
480-228104-3	MW-105	Total/NA	Water	8270D	741949
MB 480-741949/1-A	Method Blank	Total/NA	Water	8270D	741949
LCS 480-741949/2-A	Lab Control Sample	Total/NA	Water	8270D	741949
LCSD 480-741949/3-A	Lab Control Sample Dup	Total/NA	Water	8270D	741949

Analysis Batch: 742178

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-228104-2	MWR-101	Total/NA	Water	8270D	741949

Metals

Prep Batch: 741760

Lab Sample ID 480-228104-1	Client Sample ID MW-101	Prep Type Total/NA	Matrix Water	Method 7470A	Prep Batch
480-228104-2	MWR-101	Total/NA	Water	7470A	
480-228104-3	MW-105	Total/NA	Water	7470A	
MB 480-741760/1-A	Method Blank	Total/NA	Water	7470A	
LCS 480-741760/2-A	Lab Control Sample	Total/NA	Water	7470A	

Analysis Batch: 741860

Lab Sample ID 480-228104-1	Client Sample ID MW-101	Prep Type Total/NA	Matrix Water	Method 7470A	Prep Batch 741760
480-228104-2	MWR-101	Total/NA	Water	7470A	741760
480-228104-3	MW-105	Total/NA	Water	7470A	741760
MB 480-741760/1-A	Method Blank	Total/NA	Water	7470A	741760
LCS 480-741760/2-A	Lab Control Sample	Total/NA	Water	7470A	741760

Prep Batch: 741928

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-228104-1	MW-101	Total/NA	Water	3005A	
480-228104-2	MWR-101	Total/NA	Water	3005A	
480-228104-3	MW-105	Total/NA	Water	3005A	

Eurofins Buffalo

Page 32 of 39 4/1/2025

3

Job ID: 480-228104-1

_

E

6

9

10

12

13

14

QC Association Summary

Client: Terracon Consultants Inc

Project/Site: Back Lot Lake Ave, Rochester, NY

Metals (Continued)

Prep Batch: 741928 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 480-741928/1-A	Method Blank	Total/NA	Water	3005A	
LCS 480-741928/2-A	Lab Control Sample	Total/NA	Water	3005A	
LCSD 480-741928/3-A	Lab Control Sample Dup	Total/NA	Water	3005A	

Analysis Batch: 742172

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-228104-1	MW-101	Total/NA	Water	6010D	741928
480-228104-2	MWR-101	Total/NA	Water	6010D	741928
480-228104-3	MW-105	Total/NA	Water	6010D	741928
MB 480-741928/1-A	Method Blank	Total/NA	Water	6010D	741928
LCS 480-741928/2-A	Lab Control Sample	Total/NA	Water	6010D	741928
LCSD 480-741928/3-A	Lab Control Sample Dup	Total/NA	Water	6010D	741928

Analysis Batch: 742363

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-228104-1	MW-101	Total/NA	Water	6010D	741928
480-228104-2	MWR-101	Total/NA	Water	6010D	741928
480-228104-3	MW-105	Total/NA	Water	6010D	741928
MB 480-741928/1-A	Method Blank	Total/NA	Water	6010D	741928
LCS 480-741928/2-A	Lab Control Sample	Total/NA	Water	6010D	741928
LCSD 480-741928/3-A	Lab Control Sample Dup	Total/NA	Water	6010D	741928

Job ID: 480-228104-1

Lab Chronicle

Client: Terracon Consultants Inc

Project/Site: Back Lot Lake Ave, Rochester, NY

Client Sample ID: MW-101

Date Collected: 03/21/25 15:50 Date Received: 03/22/25 09:00 Lab Sample ID: 480-228104-1

Matrix: Water

Job ID: 480-228104-1

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C			741783	ERS	EET BUF	03/26/25 19:57
Total/NA	Prep	3510C			741949	LSC	EET BUF	03/27/25 13:37
Total/NA	Analysis	8270D		1	742017	JMM	EET BUF	03/28/25 15:22
Total/NA	Prep	3005A			741928	EMO	EET BUF	03/28/25 08:52
Total/NA	Analysis	6010D		1	742363	BMB	EET BUF	04/01/25 12:35
Total/NA	Prep	3005A			741928	EMO	EET BUF	03/28/25 08:52
Total/NA	Analysis	6010D		1	742172	BMB	EET BUF	03/28/25 20:35
Total/NA	Prep	7470A			741760	ESB	EET BUF	03/26/25 07:55
Total/NA	Analysis	7470A		1	741860	ESB	EET BUF	03/26/25 14:44

Client Sample ID: MWR-101 Lab Samp
Date Collected: 03/21/25 14:20

Date Received: 03/22/25 09:00

Lab Sample ID: 480-228104-2

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		1	741783	ERS	EET BUF	03/26/25 20:20
Total/NA	Prep	3510C			741949	LSC	EET BUF	03/27/25 13:37
Total/NA	Analysis	8270D		1	742178	JMM	EET BUF	03/31/25 14:35
Total/NA	Prep	3005A			741928	EMO	EET BUF	03/28/25 08:52
Total/NA	Analysis	6010D		1	742363	BMB	EET BUF	04/01/25 12:37
Total/NA	Prep	3005A			741928	EMO	EET BUF	03/28/25 08:52
Total/NA	Analysis	6010D		1	742172	BMB	EET BUF	03/28/25 20:38
Total/NA	Prep	7470A			741760	ESB	EET BUF	03/26/25 07:55
Total/NA	Analysis	7470A		1	741860	ESB	EET BUF	03/26/25 14:45

Client Sample ID: MW-105 Lab Sample ID: 480-228104-3

Date Collected: 03/21/25 11:50 Date Received: 03/22/25 09:00

Dilution Batch Batch Batch Prepared Method **Factor Number Analyst** or Analyzed **Prep Type** Type Run Lab Total/NA Analysis 8260C 741783 ERS EET BUF 03/26/25 20:44 Total/NA 3510C 741949 LSC **EET BUF** 03/27/25 13:37 Prep Total/NA Analysis 8270D 742017 JMM **EET BUF** 03/28/25 16:15 1 Total/NA 3005A 741928 EMO **EET BUF** 03/28/25 08:52 Prep Total/NA 6010D Analysis 1 742363 BMB **EET BUF** 04/01/25 12:39 Total/NA Prep 3005A 741928 EMO **EET BUF** 03/28/25 08:52 Total/NA 6010D 1 742172 BMB **EET BUF** 03/28/25 20:40 Analysis 03/26/25 07:55 7470A Total/NA Prep 741760 ESB **EET BUF**

Laboratory References:

Analysis

Total/NA

EET BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

7470A

Eurofins Buffalo

1

741860 ESB

EET BUF

03/26/25 14:47

10

12

13

4

Matrix: Water

Accreditation/Certification Summary

Client: Terracon Consultants Inc

Project/Site: Back Lot Lake Ave, Rochester, NY

Job ID: 480-228104-1

Laboratory: Eurofins Buffalo

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Arkansas DEQ	State	88-00686	07-06-25
Georgia	State Program	N/A	03-31-09 *
Illinois	NELAP	200003	09-30-25
lowa	State Program	374	03-01-09 *
Kansas	NELAP	E-10187	01-31-26
Kentucky (UST)	State	108092	04-01-25
Kentucky (WW)	State	KY90029	12-31-25
Maine	State	NY00044	12-04-24 *
Maryland	State	294	06-30-25
Massachusetts	State	M-NY044	07-01-25
Michigan	State Program	9937	04-01-09 *
New Hampshire	NELAP	2973	09-11-19 *
New Hampshire	NELAP	2337	11-17-25
New Jersey	NELAP	NY455	07-02-25
Pennsylvania	NELAP	68-00281	08-31-25
Rhode Island	State	LAO00378	12-30-25
USDA	US Federal Programs	P330-18-00039	02-16-27
Virginia	NELAP	460185	09-14-25
Washington	State	C784	02-10-26
Wisconsin	State	998310390	08-31-25

16

4

5

9

12

13

 $^{{}^{\}star}\operatorname{Accreditation/Certification\ renewal\ pending\ -\ accreditation/certification\ considered\ valid}.$

Method Summary

Client: Terracon Consultants Inc

Project/Site: Back Lot Lake Ave, Rochester, NY

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	EET BUF
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	EET BUF
6010D	Metals (ICP)	SW846	EET BUF
7470A	Mercury (CVAA)	SW846	EET BUF
3005A	Preparation, Total Metals	SW846	EET BUF
3510C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	EET BUF
5030C	Purge and Trap	SW846	EET BUF
7470A	Preparation, Mercury	SW846	EET BUF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Job ID: 480-228104-1

3

4

5

7

8

4 4

12

1 <u>/</u>

Sample Summary

Client: Terracon Consultants Inc

Project/Site: Back Lot Lake Ave, Rochester, NY

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-228104-1	MW-101	Water	03/21/25 15:50	03/22/25 09:00
480-228104-2	MWR-101	Water	03/21/25 14:20	03/22/25 09:00
480-228104-3	MW-105	Water	03/21/25 11:50	03/22/25 09:00

Job ID: 480-228104-1

Address:

Environment Testing TestAmerica

	Regulatory Program:	DW NPDES	CRA Other:		4
Client Contact	Project Manager: Paterice	ice Rolern	끍	Date: 3/21/25	COC No:
Name: Te	Tel/Email: Patrick, col	o colerna terracona	Lab Contact:	1	of
Sen bro Dr	Analysis Turnaround Time	nd Time			
ite/Zip: Butfalo	CALENDAR DAYS	WORKING DAYS			For Jah Han Only:
Phone: 7/6-861-1512	TAT if different from Below Stanclus	stanctud	15		Walk-in Client:
	2 weeks		91		ob Complies:
7	1 week		101		ran camping.
AMBROSE ST	2 days		L -		Job / SDG No.:
100 V V V V V V V V V V V V V V V V V V	1 day		() ()		
	0)	# # of	61ed 5a TOT 2 010 010		
	ate Time	Matrix	9		Sample Specific Notes:
MW - 101	3/21 1550		× ×		
MWR-101	3/21 1420		> > >		
VC-132	2/71 1160		×		
	1		\rightarrow		
				480,000	
				20-228104 Chain of C	
				odsto	dy.
Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	5=NaOH; 6= Other				
		and discussions of the second	Т		
Are any samples from a listed EPA Hazardous Waste? Pleas Comments Section if the lab is to dispose of the sample	Please List any EPA Waste Codes for the sample in the	or the sample in th		anning of the second of the se	d longer than 1 month)
Non-Hazard Hammahle Skin Irritant	Boicon B				
ctions/OC Requirements & Con		UNKNOWN	Return to Client	Disposal by Lab	Months
011011100000000000000000000000000000000					35 106 12452
Custody Seals Intact: Yes No	Custody Seal No.:		Cooler Temp. (°C): Obs'd	s'd:	Therm CNO
Relinquished by:	Company:	Date/Time:	Received b	Comp	I DOWN THE WOLLD
A Common of	Terracon	3/11 1700			
Relinquisned by:	Company:	Date/Time:	Received by:	Company:	Date/Time:
Relinquished by:	Company:	Date/Time:	Received in Laboratory by:	Company:	
			1	R/s-	3/22/35 99

Client: Terracon Consultants Inc Job Number: 480-228104-1

Login Number: 228104 List Source: Eurofins Buffalo

List Number: 1

Creator: Stopa, Erik S

Creator. Stopa, Erik S		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	TERRACON
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

PREPARED FOR

Attn: Mr. Patrick Colern Terracon Consultants Inc 81 Benbro Drive Buffalo, New York 14225

Generated 4/1/2025 12:40:36 PM

JOB DESCRIPTION

Back Lot Lake Ave, Rochester, NY

JOB NUMBER

480-228185-1

Eurofins Buffalo 10 Hazelwood Drive Amherst NY 14228-2298

Eurofins Buffalo

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northeast, LLC Project Manager.

Authorization

Generated 4/1/2025 12:40:36 PM

Authorized for release by Gale Prinster, Project Mgmt. Assistant gale.prinster@et.eurofinsus.com Designee for John Beninati, Project Manager I John.Beninati@et.eurofinsus.com (716)504-9874

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
Surrogate Summary	11
QC Sample Results	12
QC Association Summary	20
Lab Chronicle	21
Certification Summary	22
Method Summary	23
Sample Summary	24
Chain of Custody	25
Receipt Checklists	26

Definitions/Glossary

Client: Terracon Consultants Inc Job ID: 480-228185-1

Project/Site: Back Lot Lake Ave, Rochester, NY

Qualifiers

001	BAC	C	: V/O A
G C/	IVIO	Sem	i VOA

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Metals

Qualifier Description
Continuing Calibration Verification (CCV) is outside acceptance limits, low biased.
inear Range Check (LRC) is outside acceptance limits, low biased.
inear Range Check (LRC) is outside acceptance limits, high biased.
Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
-

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
\(\phi\)	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit

MQL NC

ML

MPN

Not Calculated

ND

Not Detected at the reporting limit (or MDL or EDL if shown)

Negative / Absent NEG POS Positive / Present

Practical Quantitation Limit PQL

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

Minimum Level (Dioxin)

Most Probable Number

Method Quantitation Limit

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Buffalo

Page 4 of 26 4/1/2025

Case Narrative

Client: Terracon Consultants Inc

Project: Back Lot Lake Ave, Rochester, NY

Job ID: 480-228185-1 Eurofins Buffalo

Job Narrative 480-228185-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these
 situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise
 specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed
 unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The sample was received on 3/26/2025 9:30 AM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 1.7°C.

GC/MS VOA

Method 8260C: The continuing calibration verification (CCV) associated with batch 480-741889 recovered above the upper control limit for Trichlorofluoromethane. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated sample is impacted: MW-106 (480-228185-1).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC/MS Semi VOA

Method 8270D: The continuing calibration verification (CCV) associated with batch 480-742017 recovered outside acceptance criteria, low biased, for 2,4-Dinitrophenol, 4,6-Dinitro-2-methylphenol, 4-Nitrophenol and Hexachlorocyclopentadiene. A reporting limit (RL) standard was analyzed, and the target analytes are detected. Since the associated samples were non-detect for the analyte(s), the data are reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Metals

Method 6010D: The linear range check (LRC) standard recovery associated with 480-742032 is outside the acceptance criteria for the following analytes: silver, copper, iron, thalium, and zinc. The concentration of these analyte(s)in the sample(s) are below the highest standard of the calibration curve; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Buffalo

Job ID: 480-228185-1

Page 5 of 26 4/1/2025

Detection Summary

Client: Terracon Consultants Inc

Project/Site: Back Lot Lake Ave, Rochester, NY

Client Sample ID: MW-106

Lab Sample ID: 480-228185-1

Job ID: 480-228185-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chlorobenzene	8.7		1.0	0.75	ug/L	1	_	8260C	Total/NA
Di-n-butyl phthalate	0.61	J	5.0	0.31	ug/L	1		8270D	Total/NA
Barium	0.28		0.0020	0.00070	mg/L	1		6010D	Total/NA
Cadmium	0.00051	J	0.0020	0.00050	mg/L	1		6010D	Total/NA
Calcium	240		0.50	0.10	mg/L	1		6010D	Total/NA
Iron	9.0	^5-	0.050	0.019	mg/L	1		6010D	Total/NA
Lead	0.0034	J	0.010	0.0030	mg/L	1		6010D	Total/NA
Magnesium	48.2		0.20	0.043	mg/L	1		6010D	Total/NA
Manganese	0.98		0.0030	0.00040	mg/L	1		6010D	Total/NA
Nickel	0.0019	J	0.010	0.0013	mg/L	1		6010D	Total/NA
Potassium	12.1		0.50	0.10	mg/L	1		6010D	Total/NA
Sodium	150		1.0	0.32	mg/L	1		6010D	Total/NA

3

4

6

0

9

1 1

40

14

Client: Terracon Consultants Inc Job ID: 480-228185-1

Project/Site: Back Lot Lake Ave, Rochester, NY

Client Sample ID: MW-106 Date Collected: 03/24/25 11:40

Sample ID: MW-106 Lab Sample ID: 480-228185-1

Matrix: Water

Method: SW846 8260C - Volatile		-			_			
Analyte	Result Qual			Unit	<u>D</u> .	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0		ug/L			03/27/25 20:45	1
1,1,2,2-Tetrachloroethane	ND	1.0		ug/L			03/27/25 20:45	1
1,1,2-Trichloroethane	ND	1.0		ug/L			03/27/25 20:45	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0		ug/L			03/27/25 20:45	1
1,1-Dichloroethane	ND	1.0		ug/L			03/27/25 20:45	1
1,1-Dichloroethene	ND	1.0		ug/L			03/27/25 20:45	1
1,2,4-Trichlorobenzene	ND	1.0		ug/L			03/27/25 20:45	1
1,2-Dibromo-3-Chloropropane	ND	1.0		ug/L			03/27/25 20:45	1
1,2-Dichlorobenzene	ND	1.0		ug/L			03/27/25 20:45	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			03/27/25 20:45	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			03/27/25 20:45	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			03/27/25 20:45	1
1,4-Dichlorobenzene	ND	1.0		ug/L			03/27/25 20:45	1
2-Butanone (MEK)	ND	10		ug/L			03/27/25 20:45	1
2-Hexanone	ND	5.0	1.2	ug/L			03/27/25 20:45	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			03/27/25 20:45	1
Acetone	ND	10	3.0	ug/L			03/27/25 20:45	1
Benzene	ND	1.0	0.41	ug/L			03/27/25 20:45	1
Bromodichloromethane	ND	1.0	0.39	ug/L			03/27/25 20:45	1
Bromoform	ND	1.0	0.26	ug/L			03/27/25 20:45	1
Bromomethane	ND	1.0	0.69	ug/L			03/27/25 20:45	1
Carbon disulfide	ND	1.0	0.19	ug/L			03/27/25 20:45	1
Carbon tetrachloride	ND	1.0	0.27	ug/L			03/27/25 20:45	1
Chlorobenzene	8.7	1.0	0.75	ug/L			03/27/25 20:45	1
Dibromochloromethane	ND	1.0	0.32	ug/L			03/27/25 20:45	1
Chloroethane	ND	1.0	0.32	ug/L			03/27/25 20:45	1
Chloroform	ND	1.0		ug/L			03/27/25 20:45	1
Chloromethane	ND	1.0		ug/L			03/27/25 20:45	1
cis-1,2-Dichloroethene	ND	1.0		ug/L			03/27/25 20:45	1
cis-1,3-Dichloropropene	ND	1.0		ug/L			03/27/25 20:45	1
Cyclohexane	ND	1.0		ug/L			03/27/25 20:45	1
Dichlorodifluoromethane	ND	1.0		ug/L			03/27/25 20:45	1
Ethylbenzene	ND	1.0		ug/L			03/27/25 20:45	1
1,2-Dibromoethane	ND	1.0		ug/L			03/27/25 20:45	
lsopropylbenzene	ND	1.0		ug/L			03/27/25 20:45	1
Methyl acetate	ND	2.5		ug/L			03/27/25 20:45	
Methyl tert-butyl ether	ND	1.0		ug/L			03/27/25 20:45	
Methylcyclohexane	ND	1.0		ug/L			03/27/25 20:45	1
Methylene Chloride	ND	1.0		ug/L			03/27/25 20:45	4
Styrene	ND	1.0		ug/L			03/27/25 20:45	
Tetrachloroethene	ND	1.0		ug/L			03/27/25 20:45	,
Toluene	ND ND	1.0		ug/L ug/L			03/27/25 20:45	,
trans-1,2-Dichloroethene	ND			ug/L ug/L			03/27/25 20:45	
		1.0						1
trans-1,3-Dichloropropene	ND ND	1.0		ug/L			03/27/25 20:45	1
Trichloroethene	ND	1.0		ug/L			03/27/25 20:45	
Trichlorofluoromethane	ND	1.0		ug/L			03/27/25 20:45	1
Vinyl chloride Xylenes, Total	ND ND	1.0 2.0		ug/L ug/L			03/27/25 20:45 03/27/25 20:45	1

Eurofins Buffalo

Page 7 of 26 4/1/2025

Client: Terracon Consultants Inc Job ID: 480-228185-1

Project/Site: Back Lot Lake Ave, Rochester, NY

Client Sample ID: MW-106

Date Received: 03/26/25 09:30

Lab Sample ID: 480-228185-1 Date Collected: 03/24/25 11:40

Matrix: Water

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	96	80 - 120		03/27/25 20:45	1
1,2-Dichloroethane-d4 (Surr)	100	77 - 120		03/27/25 20:45	1
4-Bromofluorobenzene (Surr)	119	73 - 120		03/27/25 20:45	1
Dibromofluoromethane (Surr)	108	75 - 123		03/27/25 20:45	1

Analyte	Result Qua	lifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND ND	5.0	0.65	ug/L		03/27/25 06:39	03/28/25 20:16	1
bis (2-chloroisopropyl) ether	ND	5.0	0.52	ug/L		03/27/25 06:39	03/28/25 20:16	1
2,4,5-Trichlorophenol	ND	5.0	0.48	ug/L		03/27/25 06:39	03/28/25 20:16	1
2,4,6-Trichlorophenol	ND	5.0	0.61	ug/L		03/27/25 06:39	03/28/25 20:16	1
2,4-Dichlorophenol	ND	5.0	0.51	ug/L		03/27/25 06:39	03/28/25 20:16	1
2,4-Dimethylphenol	ND	5.0	0.50	ug/L		03/27/25 06:39	03/28/25 20:16	1
2,4-Dinitrophenol	ND	10	2.2	ug/L		03/27/25 06:39	03/28/25 20:16	1
2,4-Dinitrotoluene	ND	5.0	0.45	ug/L		03/27/25 06:39	03/28/25 20:16	1
2,6-Dinitrotoluene	ND	5.0	0.40	ug/L		03/27/25 06:39	03/28/25 20:16	1
2-Chloronaphthalene	ND	5.0	0.46	ug/L		03/27/25 06:39	03/28/25 20:16	1
2-Chlorophenol	ND	5.0	0.53	ug/L		03/27/25 06:39	03/28/25 20:16	1
2-Methylphenol	ND	5.0	0.40	ug/L		03/27/25 06:39	03/28/25 20:16	1
2-Methylnaphthalene	ND	5.0	0.60	ug/L		03/27/25 06:39	03/28/25 20:16	1
2-Nitroaniline	ND	10	0.42	ug/L		03/27/25 06:39	03/28/25 20:16	1
2-Nitrophenol	ND	5.0	0.48	ug/L		03/27/25 06:39	03/28/25 20:16	1
3,3'-Dichlorobenzidine	ND	5.0	0.40	ug/L		03/27/25 06:39	03/28/25 20:16	1
3-Nitroaniline	ND	10	0.48	ug/L		03/27/25 06:39	03/28/25 20:16	1
4,6-Dinitro-2-methylphenol	ND	10	2.2	ug/L		03/27/25 06:39	03/28/25 20:16	1
4-Bromophenyl phenyl ether	ND	5.0	0.45	ug/L		03/27/25 06:39	03/28/25 20:16	1
4-Chloro-3-methylphenol	ND	5.0	0.45	ug/L		03/27/25 06:39	03/28/25 20:16	1
4-Chloroaniline	ND	5.0	0.59	ug/L		03/27/25 06:39	03/28/25 20:16	1
4-Chlorophenyl phenyl ether	ND	5.0	0.35	ug/L		03/27/25 06:39	03/28/25 20:16	1
4-Methylphenol	ND	10	0.36	ug/L		03/27/25 06:39	03/28/25 20:16	1
4-Nitroaniline	ND	10	0.25	ug/L		03/27/25 06:39	03/28/25 20:16	1
4-Nitrophenol	ND	10	1.5	ug/L		03/27/25 06:39	03/28/25 20:16	1
Acenaphthene	ND	5.0	0.41	ug/L		03/27/25 06:39	03/28/25 20:16	1
Acenaphthylene	ND	5.0	0.38			03/27/25 06:39	03/28/25 20:16	1
Acetophenone	ND	5.0	0.54	ug/L		03/27/25 06:39	03/28/25 20:16	1
Anthracene	ND	5.0	0.28	ug/L		03/27/25 06:39	03/28/25 20:16	1
Atrazine	ND	5.0	0.46	ug/L		03/27/25 06:39	03/28/25 20:16	1
Benzaldehyde	ND	5.0	0.27	ug/L		03/27/25 06:39	03/28/25 20:16	1
Benzo[a]anthracene	ND	5.0	0.36	ug/L		03/27/25 06:39	03/28/25 20:16	1
Benzo[a]pyrene	ND	5.0	0.47	ug/L		03/27/25 06:39	03/28/25 20:16	1
Benzo[b]fluoranthene	ND	5.0	0.34	ug/L		03/27/25 06:39	03/28/25 20:16	1
Benzo[g,h,i]perylene	ND	5.0	0.35	ug/L		03/27/25 06:39	03/28/25 20:16	1
Benzo[k]fluoranthene	ND	5.0	0.73	ug/L		03/27/25 06:39	03/28/25 20:16	1
Bis(2-chloroethoxy)methane	ND	5.0	0.35	ug/L		03/27/25 06:39	03/28/25 20:16	1
Bis(2-chloroethyl)ether	ND	5.0	0.40			03/27/25 06:39	03/28/25 20:16	1
Bis(2-ethylhexyl) phthalate	ND	5.0		ug/L			03/28/25 20:16	1
Butyl benzyl phthalate	ND	5.0		ug/L			03/28/25 20:16	1
Caprolactam	ND	5.0		ug/L		03/27/25 06:39	03/28/25 20:16	1
Carbazole	ND	5.0	0.30	-		03/27/25 06:39		1
Chrysene	ND	5.0		ug/L			03/28/25 20:16	1

Eurofins Buffalo

Page 8 of 26 4/1/2025

Client: Terracon Consultants Inc Job ID: 480-228185-1

Project/Site: Back Lot Lake Ave, Rochester, NY

Client Sample ID: MW-106

Selenium

Lab Sample ID: 480-228185-1

Date Collected: 03/24/25 11:40 **Matrix: Water** Date Received: 03/26/25 09:30

Method: SW846 8270D - S Analyte		Qualifier	ŘL		Unit	D	Prepared	Analyzed	Dil Fac
Dibenz(a,h)anthracene	ND		5.0	0.42	ug/L		03/27/25 06:39	03/28/25 20:16	1
Di-n-butyl phthalate	0.61	J	5.0	0.31	ug/L		03/27/25 06:39	03/28/25 20:16	1
Di-n-octyl phthalate	ND		5.0		ug/L		03/27/25 06:39	03/28/25 20:16	1
Dibenzofuran	ND		10		ug/L		03/27/25 06:39	03/28/25 20:16	1
Diethyl phthalate	ND		5.0		ug/L			03/28/25 20:16	1
Dimethyl phthalate	ND		5.0		ug/L			03/28/25 20:16	1
Fluoranthene	ND		5.0		ug/L			03/28/25 20:16	1
Fluorene	ND		5.0		ug/L			03/28/25 20:16	1
Hexachlorobenzene	ND		5.0		ug/L			03/28/25 20:16	· · · · · · · · · · · · · · · · · · ·
Hexachlorobutadiene	ND		5.0		ug/L			03/28/25 20:16	1
Hexachlorocyclopentadiene	ND		5.0		ug/L			03/28/25 20:16	. 1
Hexachloroethane	ND		5.0		ug/L			03/28/25 20:16	· · · · · · · · · · · · · · · · · · ·
	ND ND		5.0		ug/L ug/L			03/28/25 20:16	
Indeno[1,2,3-cd]pyrene	ND ND				-				1
Isophorone			5.0		ug/L			03/28/25 20:16	
N-Nitrosodi-n-propylamine	ND		5.0		ug/L			03/28/25 20:16	1
N-Nitrosodiphenylamine	ND		5.0		ug/L			03/28/25 20:16	1
Naphthalene	ND		5.0		ug/L			03/28/25 20:16	1
Nitrobenzene	ND		5.0		ug/L			03/28/25 20:16	1
Pentachlorophenol	ND		10		ug/L			03/28/25 20:16	1
Phenanthrene	ND		5.0		ug/L			03/28/25 20:16	1
Phenol	ND		5.0		ug/L			03/28/25 20:16	1
Pyrene	ND		5.0	0.34	ug/L		03/27/25 06:39	03/28/25 20:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	68		29 - 129				03/27/25 06:39	03/28/25 20:16	1
Phenol-d5 (Surr)	36		10 - 120				03/27/25 06:39	03/28/25 20:16	1
p-Terphenyl-d14 (Surr)	61		33 - 132				03/27/25 06:39	03/28/25 20:16	1
2,4,6-Tribromophenol (Surr)	82		25 - 144				03/27/25 06:39	03/28/25 20:16	1
2-Fluorobiphenyl (Surr)	81		53 - 126				03/27/25 06:39	03/28/25 20:16	1
2-Fluorophenol (Surr)	56		24 - 120				03/27/25 06:39	03/28/25 20:16	1
Method: SW846 6010D - M	letals (ICP)								
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		0.20	0.060	mg/L			03/27/25 21:10	1
Antimony	ND		0.020	0.0068	-			03/27/25 21:10	1
Arsenic	ND		0.015	0.0056	mg/L		03/27/25 08:35	03/27/25 21:10	1
Barium	0.28		0.0020	0.00070	mg/L		03/27/25 08:35	03/27/25 21:10	1
Beryllium	ND		0.0020	0.00030	mg/L		03/27/25 08:35	03/27/25 21:10	1
Codmium		.1	0.0020	0.00050	mg/L		03/27/25 08:35	03/27/25 21:10	1
Cadmium	0.00051	•					03/27/25 08:35		
	0.00051 240		0.50	0.10	mg/L		03/21/23 00.33	03/27/25 21:10	1
Calcium			0.50 0.0040	0.10 0.0010	-			03/27/25 21:10 03/27/25 21:10	1
Calcium Chromium	240				mg/L		03/27/25 08:35		
Calcium Chromium Cobalt	240 ND ND	^- ^5+	0.0040 0.0040	0.0010 0.00063	mg/L mg/L		03/27/25 08:35 03/27/25 08:35	03/27/25 21:10 03/27/25 21:10	1
Calcium Chromium Cobalt Copper	240 ND ND ND	^- ^5+	0.0040 0.0040 0.010	0.0010 0.00063 0.0016	mg/L mg/L mg/L		03/27/25 08:35 03/27/25 08:35 03/27/25 08:35	03/27/25 21:10 03/27/25 21:10 03/27/25 21:10	1 1
Calcium Chromium Cobalt Copper Iron	240 ND ND ND 9.0	^- ^5+ ^5 -	0.0040 0.0040 0.010 0.050	0.0010 0.00063 0.0016 0.019	mg/L mg/L mg/L mg/L		03/27/25 08:35 03/27/25 08:35 03/27/25 08:35 03/27/25 08:35	03/27/25 21:10 03/27/25 21:10 03/27/25 21:10 03/27/25 21:10	1 1 1
Calcium Chromium Cobalt Copper Iron Lead	240 ND ND ND 9.0 0.0034	^- ^5+ ^5 -	0.0040 0.0040 0.010 0.050 0.010	0.0010 0.00063 0.0016 0.019 0.0030	mg/L mg/L mg/L mg/L mg/L		03/27/25 08:35 03/27/25 08:35 03/27/25 08:35 03/27/25 08:35 03/27/25 08:35	03/27/25 21:10 03/27/25 21:10 03/27/25 21:10 03/27/25 21:10 03/27/25 21:10	1 1 1 1
Calcium Chromium Cobalt Copper Iron Lead Magnesium	240 ND ND ND 9.0 0.0034 48.2	^- ^5+ ^5 -	0.0040 0.0040 0.010 0.050 0.010 0.20	0.0010 0.00063 0.0016 0.019 0.0030 0.043	mg/L mg/L mg/L mg/L mg/L mg/L		03/27/25 08:35 03/27/25 08:35 03/27/25 08:35 03/27/25 08:35 03/27/25 08:35 03/27/25 08:35	03/27/25 21:10 03/27/25 21:10 03/27/25 21:10 03/27/25 21:10 03/27/25 21:10 03/27/25 21:10	1 1 1 1
Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese	240 ND ND 9.0 0.0034 48.2 0.98	^- ^5- J	0.0040 0.0040 0.010 0.050 0.010 0.20 0.0030	0.0010 0.00063 0.0016 0.019 0.0030 0.043 0.00040	mg/L mg/L mg/L mg/L mg/L mg/L		03/27/25 08:35 03/27/25 08:35 03/27/25 08:35 03/27/25 08:35 03/27/25 08:35 03/27/25 08:35 03/27/25 08:35	03/27/25 21:10 03/27/25 21:10 03/27/25 21:10 03/27/25 21:10 03/27/25 21:10 03/27/25 21:10 03/27/25 21:10	1 1 1 1 1
Calcium Chromium Cobalt Copper Iron Lead Magnesium	240 ND ND ND 9.0 0.0034 48.2	^- ^5- J	0.0040 0.0040 0.010 0.050 0.010 0.20	0.0010 0.00063 0.0016 0.019 0.0030 0.043 0.00040 0.0013	mg/L mg/L mg/L mg/L mg/L mg/L		03/27/25 08:35 03/27/25 08:35 03/27/25 08:35 03/27/25 08:35 03/27/25 08:35 03/27/25 08:35 03/27/25 08:35 03/27/25 08:35	03/27/25 21:10 03/27/25 21:10 03/27/25 21:10 03/27/25 21:10 03/27/25 21:10 03/27/25 21:10	1 1 1 1

Eurofins Buffalo

03/27/25 08:35 03/27/25 21:10

Page 9 of 26 4/1/2025

0.0087 mg/L

0.025

ND

Client: Terracon Consultants Inc Job ID: 480-228185-1

Project/Site: Back Lot Lake Ave, Rochester, NY

Client Sample ID: MW-106

Date Collected: 03/24/25 11:40 Date Received: 03/26/25 09:30 Lab Sample ID: 480-228185-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	ND	^5-	0.0060	0.0017	mg/L		03/27/25 08:35	03/27/25 21:10	1
Sodium	150		1.0	0.32	mg/L		03/27/25 08:35	03/27/25 21:10	1
Thallium	ND	^_	0.020	0.010	mg/L		03/27/25 08:35	03/27/25 21:10	1
Vanadium	ND		0.0050	0.0015	mg/L		03/27/25 08:35	03/27/25 21:10	1
Zinc	ND	^5-	0.010	0.0015	mg/L		03/27/25 08:35	03/27/25 21:10	1

Method: SW846 7470A - Mercu	ıry (CVAA)								
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.000042	mg/L		03/28/25 09:12	03/28/25 12:07	1

Surrogate Summary

Client: Terracon Consultants Inc

Project/Site: Back Lot Lake Ave, Rochester, NY

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)				
		TOL	DCA	BFB	DBFM	
Lab Sample ID	Client Sample ID	(80-120)	(77-120)	(73-120)	(75-123)	
480-228185-1	MW-106	96	100	119	108	
LCS 480-741889/6	Lab Control Sample	103	96	118	107	
MB 480-741889/9	Method Blank	99	100	117	106	
Surrogate Legend						

TOL = Toluene-d8 (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)						
		NBZ	PHL	TPHd14	TBP	FBP	2FP	
Lab Sample ID	Client Sample ID	(29-129)	(10-120)	(33-132)	(25-144)	(53-126)	(24-120)	
480-228185-1	MW-106	68	36	61	82	81	56	
LCS 480-741874/2-A	Lab Control Sample	72	42	86	86	77	57	
MB 480-741874/1-A	Method Blank	61	31	98	67	71	49	
0								

Surrogate Legend

NBZ = Nitrobenzene-d5 (Surr)

PHL = Phenol-d5 (Surr)

TPHd14 = p-Terphenyl-d14 (Surr)

TBP = 2,4,6-Tribromophenol (Surr)

FBP = 2-Fluorobiphenyl (Surr)

2FP = 2-Fluorophenol (Surr)

Job ID: 480-228185-1

Client: Terracon Consultants Inc Job ID: 480-228185-1

Project/Site: Back Lot Lake Ave, Rochester, NY

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-741889/9

Matrix: Water

Analysis Batch: 741889

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			03/27/25 13:17	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			03/27/25 13:17	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			03/27/25 13:17	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			03/27/25 13:17	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			03/27/25 13:17	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			03/27/25 13:17	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			03/27/25 13:17	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			03/27/25 13:17	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			03/27/25 13:17	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			03/27/25 13:17	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			03/27/25 13:17	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			03/27/25 13:17	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			03/27/25 13:17	1
2-Butanone (MEK)	ND		10	1.3	ug/L			03/27/25 13:17	1
2-Hexanone	ND		5.0	1.2	ug/L			03/27/25 13:17	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			03/27/25 13:17	1
Acetone	ND		10	3.0	ug/L			03/27/25 13:17	1
Benzene	ND		1.0	0.41	ug/L			03/27/25 13:17	1
Bromodichloromethane	ND		1.0	0.39	ug/L			03/27/25 13:17	1
Bromoform	ND		1.0	0.26	-			03/27/25 13:17	1
Bromomethane	ND		1.0	0.69	ug/L			03/27/25 13:17	1
Carbon disulfide	ND		1.0		ug/L			03/27/25 13:17	1
Carbon tetrachloride	ND		1.0	0.27	_			03/27/25 13:17	1
Chlorobenzene	ND		1.0	0.75	-			03/27/25 13:17	1
Dibromochloromethane	ND		1.0	0.32				03/27/25 13:17	1
Chloroethane	ND		1.0	0.32				03/27/25 13:17	1
Chloroform	ND		1.0	0.34	ug/L			03/27/25 13:17	1
Chloromethane	ND		1.0	0.35	ug/L			03/27/25 13:17	1
cis-1,2-Dichloroethene	ND		1.0		ug/L			03/27/25 13:17	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			03/27/25 13:17	1
Cyclohexane	ND		1.0	0.18	ug/L			03/27/25 13:17	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			03/27/25 13:17	1
Ethylbenzene	ND		1.0	0.74	ug/L			03/27/25 13:17	1
1,2-Dibromoethane	ND		1.0		ug/L			03/27/25 13:17	1
Isopropylbenzene	ND		1.0		ug/L			03/27/25 13:17	1
Methyl acetate	ND		2.5		ug/L			03/27/25 13:17	1
Methyl tert-butyl ether	ND		1.0		ug/L			03/27/25 13:17	1
Methylcyclohexane	ND		1.0		ug/L			03/27/25 13:17	1
Methylene Chloride	ND		1.0		ug/L			03/27/25 13:17	1
Styrene	ND		1.0		ug/L			03/27/25 13:17	1
Tetrachloroethene	ND		1.0		ug/L			03/27/25 13:17	1
Toluene	ND		1.0		ug/L			03/27/25 13:17	1
trans-1,2-Dichloroethene	ND		1.0		ug/L			03/27/25 13:17	1
trans-1,3-Dichloropropene	ND		1.0		ug/L			03/27/25 13:17	1
Trichloroethene	ND		1.0		ug/L			03/27/25 13:17	1
Trichlorofluoromethane	ND		1.0		ug/L			03/27/25 13:17	1
Vinyl chloride	ND		1.0		ug/L			03/27/25 13:17	1
Xylenes, Total	ND		2.0		ug/L			03/27/25 13:17	1

Eurofins Buffalo

Client: Terracon Consultants Inc

Project/Site: Back Lot Lake Ave, Rochester, NY

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-741889/9

Matrix: Water

Analysis Batch: 741889

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 480-228185-1

MB MB %Recovery Qualifier Dil Fac Surrogate Limits Prepared Analyzed Toluene-d8 (Surr) 99 80 - 120 03/27/25 13:17 1,2-Dichloroethane-d4 (Surr) 100 77 - 120 03/27/25 13:17 4-Bromofluorobenzene (Surr) 73 - 120 03/27/25 13:17 117 Dibromofluoromethane (Surr) 106 75 - 123 03/27/25 13:17

Lab Sample ID: LCS 480-741889/6

Matrix: Water

Analysis Batch: 741889

Client Sample	ID: Lab Control Sample
	Pron Type: Total/NA

Prep Type: Total/NA

Analyte Added Result Qualifier Unit 0 %Rec Limits 1,1,1-Trichloroethane 25.0 27.6 ug/L 110 73.128 1,1,2-Teitcalchloroethane 25.0 25.2 ug/L 101 75.122 1,1,2-Trichloro-1,2,2-trifluoroethane 25.0 25.2 ug/L 101 76.122 1,1-Dichloroethane 25.0 24.9 ug/L 99 77.120 1,1-Dichloroethane 25.0 26.7 ug/L 107 66.127 1,2-Dichlorobenene 25.0 27.6 ug/L 101 79.122 1,2-Dichlorophoropropane 25.0 27.6 ug/L 87 56.134 1,2-Dichlorobenzene 25.0 25.2 ug/L 87 56.134 1,2-Dichlorobenzene 25.0 25.2 ug/L 97 76.120 1,2-Dichlorophorene 25.0 25.4 ug/L 197 76.120 1,2-Dichlorophorene 25.0 25.4 ug/L 197 76.120	7	Spike	LCS	LCS		%Rec	
1,1,2,2-Tetrachloroethane 25.0 21.0 ug/L 84 76.120 1,1,2-Trichloroethane 25.0 25.2 ug/L 101 76.122 1,1,2-Trichloroethane 25.0 27.1 ug/L 86 1.148 1,1-Dichloroethane 25.0 24.9 ug/L 99 77.120 1,1-Dichloroethane 25.0 26.7 ug/L 107 66.127 1,2-Artichloroethane 25.0 27.6 ug/L 110 79-122 1,2-Dichloroethane 25.0 27.6 ug/L 110 79-122 1,2-Dichloroethane 25.0 25.2 ug/L 87 56.134 1,2-Dichloroethane 25.0 25.0 23.0 ug/L 92 75-120 1,2-Dichloroethane 25.0 25.4 ug/L 97 76-120 1,2-Dichloroethane 25.0 25.4 ug/L 97 76-120 1,2-Dichloroethane 25.0 25.4 ug/L 97 76-120 1,3	Analyte	Added	Result	Qualifier Unit	D %Rec	Limits	
1,1,2-Trichloroethane 25.0 25.2 ug/L 101 76.122 1,1,2-Trichloro-1,2,2-trifluoroetha 25.0 27.1 ug/L 108 61.148 1,1-Dichloroethane 25.0 24.9 ug/L 99 77.120 1,1-Dichloroethane 25.0 27.6 ug/L 110 79.122 1,2-Dichloroeparen 25.0 27.6 ug/L 110 79.122 1,2-Dichloroethane 25.0 25.2 ug/L 10 80.134 1,2-Dichloroethane 25.0 25.2 ug/L 10 80.124 1,2-Dichloroethane 25.0 25.2 ug/L 10 77.120 1,2-Dichlorobenzene 25.0 25.2 ug/L 10 77.120 1,3-Dichlorobenzene 25.0 25.4 ug/L 10 77.120 1,3-Dichlorobenzene 25.0 25.4 ug/L 10 77.120 2-Butanone (MEK) 125 104 ug/L 83 57.140 2-Hexanone 125 103 ug/L 18 16 12 <td< td=""><td>1,1,1-Trichloroethane</td><td>25.0</td><td>27.6</td><td>ug/L</td><td></td><td>73 - 126</td><td></td></td<>	1,1,1-Trichloroethane	25.0	27.6	ug/L		73 - 126	
1,1,2-Trichloro-1,2,2-trifluoroetha ne 25.0 27.1 ug/L 108 61-148 1,1-Dichloroethane 25.0 24.9 ug/L 107 66-127 1,1-Dichloroethane 25.0 26.7 ug/L 110 66-127 1,2-Hirchlorobenzene 25.0 27.6 ug/L 110 79-122 1,2-Dichlorobenzene 25.0 25.2 ug/L 101 80-124 1,2-Dichlorobenzene 25.0 25.2 ug/L 92 75-120 1,2-Dichlorobenzene 25.0 23.0 ug/L 97 76-120 1,2-Dichlorobenzene 25.0 24.3 ug/L 97 76-120 1,2-Dichlorobenzene 25.0 24.8 ug/L 99 80-120 1,2-Dichlorobenzene 25.0 24.8 ug/L 99 80-120 1,2-Dichlorobenzene 25.0 24.8 ug/L 99 80-120 2-Butanone (MEK) 125 103 ug/L 83 57-140 2-Hexanone <td>1,1,2,2-Tetrachloroethane</td> <td>25.0</td> <td>21.0</td> <td>ug/L</td> <td>84</td> <td>76 - 120</td> <td></td>	1,1,2,2-Tetrachloroethane	25.0	21.0	ug/L	84	76 - 120	
Tell Tell	1,1,2-Trichloroethane	25.0	25.2	ug/L	101	76 - 122	
1,1-Dichloroethane 25.0 24.9 ug/L 99 77-120 1,1-Dichloroethane 25.0 26.7 ug/L 110 79-122 1,2-A-Trichlorobenzene 25.0 27.6 ug/L 110 79-122 1,2-Dichloroptopane 25.0 21.8 ug/L 101 80-124 1,2-Dichlorobenzene 25.0 25.2 ug/L 101 80-124 1,2-Dichloropthane 25.0 23.0 ug/L 97 76-120 1,3-Dichloroptopane 25.0 24.3 ug/L 102 77-120 1,3-Dichlorobenzene 25.0 24.8 ug/L 102 77-120 1,4-Dichlorobenzene 25.0 24.8 ug/L 99 80-120 2-Butanone (MEK) 125 104 ug/L 83 57-140 2-Hexanone 125 103 ug/L 83 57-140 2-Hexanone 125 103 ug/L 82 65-127 4-Methyl-2-pentanone (MIBK) 125 97.2 ug/L 78 71-125 Acetone 125<	1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	27.1	ug/L	108	61 - 148	
1,1-Dichloroethene 25.0 26.7 ug/L 107 66.127 1,2-A-Trichlorobenzene 25.0 27.6 ug/L 110 79.122 1,2-Dichloropopane 25.0 21.8 ug/L 87 56.134 1,2-Dichlorobenzene 25.0 25.2 ug/L 101 80.124 1,2-Dichloropenzene 25.0 23.0 ug/L 92 75.120 1,2-Dichloropenzene 25.0 24.3 ug/L 102 77.120 1,4-Dichlorobenzene 25.0 24.8 ug/L 99 80.120 2-Butanone (MEK) 126 104 ug/L 83 57.140 2-Hexanone 125 103 ug/L 82 65.127 4-Methyl-2-pentanone (MIBK) 125 97.2 ug/L 78 71.125 Acetone 125 112 ug/L 90 56.142 Benzene 25.0 25.8 ug/L 101 80.122 Bromofichromethane 25.0 25.8 ug/L 101 80.122 Bromofichromethane 25.0 <td>ne</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	ne						
1,2,4-Trichlorobenzene 25.0 27.6 ug/L 87 56-134 1,2-Dichloropropane 25.0 21.8 ug/L 87 56-134 1,2-Dichlorobenzene 25.0 25.2 ug/L 101 80-124 1,2-Dichloroptane 25.0 23.0 ug/L 97 76-120 1,3-Dichlorobenzene 25.0 24.3 ug/L 102 77-720 1,4-Dichlorobenzene 25.0 25.4 ug/L 199 80-120 2-Butanone (MEK) 125 104 ug/L 83 57-140 2-Hexanone (MIBK) 125 193 ug/L 78 71-125 4-Methyl-2-pentanone (MIBK) 125 97.2 ug/L 78 71-125 Acetone 125 112 ug/L 78 71-125 Benzene 25.0 25.8 ug/L 103 71-124 Bromofichloromethane 25.0 25.4 ug/L 101 80-122 Bromoform 25.0 25.4 ug/L 110 61-132 Bromomethane 25.0	•			•			
1,2-Dibromo-3-Chloropropane 25.0 21.8 ug/L 87 56.134 1,2-Dichlorobenzene 25.0 25.2 ug/L 101 80.124 1,2-Dichloroptane 25.0 23.0 ug/L 97 75.120 1,2-Dichloroptopane 25.0 24.3 ug/L 97 76.120 1,3-Dichlorobenzene 25.0 25.4 ug/L 99 80.120 2-Butanone (MEK) 125 104 ug/L 83 57.140 2-Hexanone 125 103 ug/L 82 65.127 4-Methyl-2-pentanone (MIBK) 125 97.2 ug/L 78 71.125 Acetone 125 112 ug/L 90 56.142 Benzene 25.0 25.8 ug/L 103 71.124 Bernzene 25.0 25.8 ug/L 101 80.122 Bromofichloromethane 25.0 25.4 ug/L 101 80.122 Bromofichloromethane 25.0 27.6 ug/L 103 59.134 Carbon tetrachloride 25.0	1,1-Dichloroethene	25.0	26.7	ug/L	107	66 - 127	
1,2-Dichlorobenzene 25.0 25.2 ug/L 101 80 - 124 1,2-Dichloroethane 25.0 23.0 ug/L 92 75 - 120 1,2-Dichloropropane 25.0 24.3 ug/L 97 76 - 120 1,3-Dichlorobenzene 25.0 24.8 ug/L 99 80 - 120 1,4-Dichlorobenzene 25.0 24.8 ug/L 99 80 - 120 2-Butanone (MEK) 125 104 ug/L 83 57 - 140 2-Hexanone 125 103 ug/L 82 65 - 127 4-Methyl-2-pentanone (MIBK) 125 97.2 ug/L 78 71 - 125 Acetone 125 112 ug/L 90 56 - 142 Benzene 25.0 25.8 ug/L 103 71 - 124 Bromodichloromethane 25.0 25.8 ug/L 101 80 - 122 Bromoform 25.0 25.4 ug/L 101 80 - 122 Bromoform 25.0 27.6 ug/L 10 61 - 132 Bromoform 25.0	1,2,4-Trichlorobenzene		27.6	ug/L	110	79 - 122	
1,2-Dichloroethane 25.0 23.0 ug/L 92 75.120 1,2-Dichloropropane 25.0 24.3 ug/L 97 76.120 1,3-Dichlorobenzene 25.0 25.4 ug/L 102 77.120 1,4-Dichlorobenzene 25.0 25.4 ug/L 99 80.120 2-Butanone (MEK) 125 104 ug/L 83 57.140 2-Hexanone 125 103 ug/L 82 65.127 4-Methyl-2-pentanone (MIBK) 125 97.2 ug/L 78 71.125 Acetone 125 97.2 ug/L 98 56.142 Benzene 25.0 25.8 ug/L 103 71.124 Bromodichloromethane 25.0 25.8 ug/L 101 80.122 Bromoferm 25.0 25.4 ug/L 110 61.132 Bromofethane 25.0 25.0 28.0 ug/L 110 61.132 Bromofethane 25.0 25.7 ug/L 103 59.134 Carbon tetrachloride 25.0	1,2-Dibromo-3-Chloropropane		21.8	-	87	56 - 134	
1,2-Dichloropropane 25.0 24.3 ug/L 97 76.120 1,3-Dichlorobenzene 25.0 25.4 ug/L 102 77.120 1,4-Dichlorobenzene 25.0 24.8 ug/L 99 80.120 2-Butanone (MEK) 125 104 ug/L 83 57.140 2-Hexanone 125 103 ug/L 82 65.127 4-Methyl-2-pentanone (MIBK) 125 97.2 ug/L 78 71.125 Acetone 125 112 ug/L 90 56.142 Benzene 25.0 25.8 ug/L 103 71.124 Bromoform 25.0 25.4 ug/L 101 80.122 Bromoform 25.0 25.4 ug/L 110 61.132 Bromoform 25.0 25.4 ug/L 110 61.132 Bromoformethane 25.0 27.6 ug/L 110 61.132 Carbon disulfide 25.0 25.7 ug/L 103 59.134 Chlorobenzene 25.0 27.0 ug/L	1,2-Dichlorobenzene	25.0	25.2		101	80 - 124	
1,3-Dichlorobenzene 25.0 25.4 ug/L 102 77 - 120 1,4-Dichlorobenzene 25.0 24.8 ug/L 99 80 - 120 2-Butanone (MEK) 125 104 ug/L 83 57 - 140 2-Hexanone 125 103 ug/L 82 65 - 127 4-Methyl-2-pentanone (MIBK) 125 97.2 ug/L 78 71 - 125 Acetone 125 112 ug/L 90 56 - 142 Benzene 25.0 25.8 ug/L 103 71 - 124 Bromodichloromethane 25.0 25.4 ug/L 101 80 - 122 Bromoform 25.0 27.6 ug/L 110 61 - 132 Bromomethane 25.0 27.6 ug/L 110 61 - 132 Bromothetrachloride 25.0 28.0 ug/L 110 61 - 132 Carbon disulfide 25.0 25.7 ug/L 103 59 - 134 Carbon tetrachloride 25.0 27.0 ug/L 116 72 - 134 Chloroethane 25.0	1,2-Dichloroethane	25.0	23.0	ug/L	92	75 - 120	
1,4-Dichlorobenzene 25.0 24.8 ug/L 99 80 - 120 2-Butanone (MEK) 125 104 ug/L 83 57 - 140 2-Hexanone 125 103 ug/L 82 65 - 127 4-Methyl-2-pentanone (MIBK) 125 97.2 ug/L 78 71 - 125 Acetone 125 112 ug/L 90 56 - 142 Benzene 25.0 25.8 ug/L 103 71 - 124 Bromodichloromethane 25.0 25.4 ug/L 101 80 - 122 Bromoform 25.0 27.6 ug/L 101 80 - 122 Bromomethane 25.0 27.6 ug/L 110 61 - 132 Bromomethane 25.0 28.0 ug/L 110 61 - 132 Carbon disulfide 25.0 25.7 ug/L 103 59 - 134 Carbon tetrachloride 25.0 27.0 ug/L 106 75 - 125 Chlorobenzene 25.0 27.0 ug/L 108 80 - 120 Dibromochloromethane 25.0	1,2-Dichloropropane	25.0	24.3	ug/L	97	76 - 120	
2-Butanone (MEK) 125 104 ug/L 83 57 - 140 2-Hexanone 125 103 ug/L 82 65 - 127 4-Methyl-2-pentanone (MIBK) 125 97.2 ug/L 78 71 - 125 Acetone 125 112 ug/L 90 56 - 142 Benzene 25.0 25.8 ug/L 103 71 - 124 Bromodichloromethane 25.0 25.4 ug/L 101 80 - 122 Bromoform 25.0 27.6 ug/L 101 80 - 122 Bromomethane 25.0 27.6 ug/L 110 61 - 132 Bromomethane 25.0 28.0 ug/L 110 61 - 132 Carbon disulfide 25.0 25.7 ug/L 103 59 - 134 Carbon tetrachloride 25.0 28.9 ug/L 116 72 - 134 Chlorobenzene 25.0 27.0 ug/L 108 80 - 120 Dibromochloromethane 25.0 26.1 ug/L 105 69 - 136 Chloroform 25.0 <	1,3-Dichlorobenzene	25.0	25.4	ug/L	102	77 - 120	
2-Hexanone 125 103 ug/L 82 65-127 4-Methyl-2-pentanone (MIBK) 125 97.2 ug/L 78 71-125 Acetone 125 112 ug/L 90 56-142 Benzene 25.0 25.8 ug/L 103 71.124 Bromodichloromethane 25.0 25.4 ug/L 101 80-122 Bromoform 25.0 27.6 ug/L 110 61-132 Bromomethane 25.0 28.0 ug/L 110 61-132 Bromomethane 25.0 28.0 ug/L 110 61-132 Carbon disulfide 25.0 25.7 ug/L 103 59-134 Carbon tetrachloride 25.0 28.9 ug/L 116 72-134 Chlorobenzene 25.0 27.0 ug/L 108 80-120 Dibromochloromethane 25.0 27.0 ug/L 108 75-125 Chloroform 25.0 26.1 ug/L 97 73-127 Chloromethane 25.0 23.8 ug/L	1,4-Dichlorobenzene	25.0	24.8	ug/L	99	80 - 120	
4-Methyl-2-pentanone (MIBK) 125 97.2 ug/L 78 71 - 125 Acetone 125 112 ug/L 90 56 - 142 Benzene 25.0 25.8 ug/L 103 71 - 124 Bromodichloromethane 25.0 25.4 ug/L 101 80 - 122 Bromoform 25.0 27.6 ug/L 110 61 - 132 Bromomethane 25.0 28.0 ug/L 112 55 - 144 Carbon disulfide 25.0 25.7 ug/L 103 59 - 134 Carbon tetrachloride 25.0 28.9 ug/L 116 72 - 134 Chlorobenzene 25.0 27.0 ug/L 108 80 - 120 Dibromochloromethane 25.0 27.0 ug/L 108 75 - 125 Chloroform 25.0 26.1 ug/L 105 69 - 136 Chloroform 25.0 23.8 ug/L 95 68 - 124 cis-1,2-Dichloroethene 25.0 23.8 ug/L 106 74 - 124 cis-1,3-Dichloropropene	2-Butanone (MEK)	125	104	ug/L	83	57 - 140	
Acetone 125 112 ug/L 90 56 - 142 Benzene 25.0 25.8 ug/L 103 71 - 124 Bromodichloromethane 25.0 25.4 ug/L 101 80 - 122 Bromoform 25.0 27.6 ug/L 110 61 - 132 Bromomethane 25.0 28.0 ug/L 112 55 - 144 Carbon disulfide 25.0 25.7 ug/L 103 59 - 134 Carbon tetrachloride 25.0 28.9 ug/L 116 72 - 134 Chlorobenzene 25.0 27.0 ug/L 108 80 - 120 Dibromochloromethane 25.0 27.0 ug/L 108 75 - 125 Chlorothane 25.0 27.0 ug/L 105 69 - 136 Chloroform 25.0 24.2 ug/L 97 73 - 127 Chloromethane 25.0 23.8 ug/L 95 68 - 124 cis-1,2-Dichloroethene 25.0 26.6 ug/L 106 74 - 124 cis-1,3-Dichloropropene 25.0 <td>2-Hexanone</td> <td>125</td> <td>103</td> <td>ug/L</td> <td>82</td> <td>65 - 127</td> <td></td>	2-Hexanone	125	103	ug/L	82	65 - 127	
Benzene 25.0 25.8 ug/L 103 71-124 Bromodichloromethane 25.0 25.4 ug/L 101 80-122 Bromoform 25.0 27.6 ug/L 110 61-132 Bromomethane 25.0 28.0 ug/L 112 55-144 Carbon disulfide 25.0 25.7 ug/L 103 59-134 Carbon tetrachloride 25.0 28.9 ug/L 116 72-134 Chlorobenzene 25.0 27.0 ug/L 108 80-120 Dibromochloromethane 25.0 27.0 ug/L 108 80-120 Dibromochloromethane 25.0 27.0 ug/L 108 75-125 Chloroform 25.0 26.1 ug/L 105 69-136 Chloromethane 25.0 24.2 ug/L 97 73-127 Chloromethane 25.0 23.8 ug/L 95 68-124 cis-1,2-Dichloropropene 25.0 27.1 ug/L 106 74-124 cis-1,3-Dichlorodethene 25.0	4-Methyl-2-pentanone (MIBK)	125	97.2	ug/L	78	71 - 125	
Bromodichloromethane 25.0 25.4 ug/L 101 80 - 122 Bromoform 25.0 27.6 ug/L 110 61 - 132 Bromomethane 25.0 28.0 ug/L 112 55 - 144 Carbon disulfide 25.0 25.7 ug/L 103 59 - 134 Carbon tetrachloride 25.0 28.9 ug/L 116 72 - 134 Chlorobenzene 25.0 27.0 ug/L 108 80 - 120 Dibromochloromethane 25.0 27.0 ug/L 108 75 - 125 Chloroethane 25.0 26.1 ug/L 105 69 - 136 Chloroform 25.0 24.2 ug/L 97 73 - 127 Chloromethane 25.0 23.8 ug/L 95 68 - 124 cis-1,2-Dichloroethene 25.0 26.6 ug/L 106 74 - 124 cis-1,3-Dichloropropene 25.0 27.1 ug/L 109 74 - 124 Cyclohexane 25.0 23.6 ug/L 95 59 - 135 Dichlorodifluoromethane	Acetone	125	112	ug/L	90	56 - 142	
Bromoform 25.0 27.6 ug/L 110 61 - 132 Bromomethane 25.0 28.0 ug/L 112 55 - 144 Carbon disulfide 25.0 25.7 ug/L 103 59 - 134 Carbon tetrachloride 25.0 28.9 ug/L 116 72 - 134 Chlorobenzene 25.0 27.0 ug/L 108 80 - 120 Dibromochloromethane 25.0 27.0 ug/L 108 75 - 125 Chloroethane 25.0 26.1 ug/L 105 69 - 136 Chloroform 25.0 24.2 ug/L 97 73 - 127 Chloromethane 25.0 23.8 ug/L 95 68 - 124 cis-1,2-Dichloroethene 25.0 26.6 ug/L 106 74 - 124 cis-1,3-Dichloropropene 25.0 27.1 ug/L 109 74 - 124 Cyclohexane 25.0 23.6 ug/L 95 59 - 135 Dichlorodifluoromethane 25.0 33.7 ug/L 135 59 - 135 Ethylbenzene	Benzene	25.0	25.8	ug/L	103	71 - 124	
Bromomethane 25.0 28.0 ug/L 112 55 - 144 Carbon disulfide 25.0 25.7 ug/L 103 59 - 134 Carbon tetrachloride 25.0 28.9 ug/L 116 72 - 134 Chlorobenzene 25.0 27.0 ug/L 108 80 - 120 Dibromochloromethane 25.0 27.0 ug/L 108 75 - 125 Chloroethane 25.0 26.1 ug/L 105 69 - 136 Chloroform 25.0 24.2 ug/L 97 73 - 127 Chloromethane 25.0 23.8 ug/L 95 68 - 124 cis-1,2-Dichloroethene 25.0 26.6 ug/L 106 74 - 124 cis-1,3-Dichloropropene 25.0 27.1 ug/L 109 74 - 124 Cyclohexane 25.0 23.6 ug/L 95 59 - 135 Dichlorodifluoromethane 25.0 33.7 ug/L 135 59 - 135 Ethylbenzene 25.0 26.8 ug/L 107 77 - 123	Bromodichloromethane	25.0	25.4	ug/L	101	80 - 122	
Carbon disulfide 25.0 25.7 ug/L 103 59 - 134 Carbon tetrachloride 25.0 28.9 ug/L 116 72 - 134 Chlorobenzene 25.0 27.0 ug/L 108 80 - 120 Dibromochloromethane 25.0 27.0 ug/L 108 75 - 125 Chloroethane 25.0 26.1 ug/L 105 69 - 136 Chloroform 25.0 24.2 ug/L 97 73 - 127 Chloromethane 25.0 23.8 ug/L 95 68 - 124 cis-1,2-Dichloroethene 25.0 26.6 ug/L 106 74 - 124 cis-1,3-Dichloropropene 25.0 27.1 ug/L 109 74 - 124 Cyclohexane 25.0 23.6 ug/L 95 59 - 135 Dichlorodifluoromethane 25.0 33.7 ug/L 135 59 - 135 Ethylbenzene 25.0 26.8 ug/L 107 77 - 123	Bromoform	25.0	27.6	ug/L	110	61 - 132	
Carbon tetrachloride 25.0 28.9 ug/L 116 72 - 134 Chlorobenzene 25.0 27.0 ug/L 108 80 - 120 Dibromochloromethane 25.0 27.0 ug/L 108 75 - 125 Chloroethane 25.0 26.1 ug/L 105 69 - 136 Chloroform 25.0 24.2 ug/L 97 73 - 127 Chloromethane 25.0 23.8 ug/L 95 68 - 124 cis-1,2-Dichloroethene 25.0 26.6 ug/L 106 74 - 124 cis-1,3-Dichloropropene 25.0 27.1 ug/L 109 74 - 124 Cyclohexane 25.0 23.6 ug/L 95 59 - 135 Dichlorodifluoromethane 25.0 33.7 ug/L 135 59 - 135 Ethylbenzene 25.0 26.8 ug/L 107 77 - 123	Bromomethane	25.0	28.0	ug/L	112	55 - 144	
Chlorobenzene 25.0 27.0 ug/L 108 80 - 120 Dibromochloromethane 25.0 27.0 ug/L 108 75 - 125 Chloroethane 25.0 26.1 ug/L 105 69 - 136 Chloroform 25.0 24.2 ug/L 97 73 - 127 Chloromethane 25.0 23.8 ug/L 95 68 - 124 cis-1,2-Dichloroethene 25.0 26.6 ug/L 106 74 - 124 cis-1,3-Dichloropropene 25.0 27.1 ug/L 109 74 - 124 Cyclohexane 25.0 23.6 ug/L 95 59 - 135 Dichlorodifluoromethane 25.0 33.7 ug/L 135 59 - 135 Ethylbenzene 25.0 26.8 ug/L 107 77 - 123	Carbon disulfide	25.0	25.7	ug/L	103	59 - 134	
Dibromochloromethane 25.0 27.0 ug/L 108 75 - 125 Chloroethane 25.0 26.1 ug/L 105 69 - 136 Chloroform 25.0 24.2 ug/L 97 73 - 127 Chloromethane 25.0 23.8 ug/L 95 68 - 124 cis-1,2-Dichloroethene 25.0 26.6 ug/L 106 74 - 124 cis-1,3-Dichloropropene 25.0 27.1 ug/L 109 74 - 124 Cyclohexane 25.0 23.6 ug/L 95 59 - 135 Dichlorodifluoromethane 25.0 33.7 ug/L 135 59 - 135 Ethylbenzene 25.0 26.8 ug/L 107 77 - 123	Carbon tetrachloride	25.0	28.9	ug/L	116	72 - 134	
Chloroethane 25.0 26.1 ug/L 105 69 - 136 Chloroform 25.0 24.2 ug/L 97 73 - 127 Chloromethane 25.0 23.8 ug/L 95 68 - 124 cis-1,2-Dichloroethene 25.0 26.6 ug/L 106 74 - 124 cis-1,3-Dichloropropene 25.0 27.1 ug/L 109 74 - 124 Cyclohexane 25.0 23.6 ug/L 95 59 - 135 Dichlorodifluoromethane 25.0 33.7 ug/L 135 59 - 135 Ethylbenzene 25.0 26.8 ug/L 107 77 - 123	Chlorobenzene	25.0	27.0	ug/L	108	80 - 120	
Chloroform 25.0 24.2 ug/L 97 73 - 127 Chloromethane 25.0 23.8 ug/L 95 68 - 124 cis-1,2-Dichloroethene 25.0 26.6 ug/L 106 74 - 124 cis-1,3-Dichloropropene 25.0 27.1 ug/L 109 74 - 124 Cyclohexane 25.0 23.6 ug/L 95 59 - 135 Dichlorodifluoromethane 25.0 33.7 ug/L 135 59 - 135 Ethylbenzene 25.0 26.8 ug/L 107 77 - 123	Dibromochloromethane	25.0	27.0	ug/L	108	75 - 125	
Chloromethane 25.0 23.8 ug/L 95 68 - 124 cis-1,2-Dichloroethene 25.0 26.6 ug/L 106 74 - 124 cis-1,3-Dichloropropene 25.0 27.1 ug/L 109 74 - 124 Cyclohexane 25.0 23.6 ug/L 95 59 - 135 Dichlorodifluoromethane 25.0 33.7 ug/L 135 59 - 135 Ethylbenzene 25.0 26.8 ug/L 107 77 - 123	Chloroethane	25.0	26.1	ug/L	105	69 - 136	
cis-1,2-Dichloroethene 25.0 26.6 ug/L 106 74 - 124 cis-1,3-Dichloropropene 25.0 27.1 ug/L 109 74 - 124 Cyclohexane 25.0 23.6 ug/L 95 59 - 135 Dichlorodifluoromethane 25.0 33.7 ug/L 135 59 - 135 Ethylbenzene 25.0 26.8 ug/L 107 77 - 123	Chloroform	25.0	24.2	ug/L	97	73 - 127	
cis-1,3-Dichloropropene 25.0 27.1 ug/L 109 74 - 124 Cyclohexane 25.0 23.6 ug/L 95 59 - 135 Dichlorodifluoromethane 25.0 33.7 ug/L 135 59 - 135 Ethylbenzene 25.0 26.8 ug/L 107 77 - 123	Chloromethane	25.0	23.8	ug/L	95	68 - 124	
Cyclohexane 25.0 23.6 ug/L 95 59 - 135 Dichlorodifluoromethane 25.0 33.7 ug/L 135 59 - 135 Ethylbenzene 25.0 26.8 ug/L 107 77 - 123	cis-1,2-Dichloroethene	25.0	26.6	ug/L	106	74 - 124	
Dichlorodifluoromethane 25.0 33.7 ug/L 135 59 - 135 Ethylbenzene 25.0 26.8 ug/L 107 77 - 123	cis-1,3-Dichloropropene	25.0	27.1	ug/L	109	74 - 124	
Ethylbenzene 25.0 26.8 ug/L 107 77 - 123	Cyclohexane	25.0	23.6	ug/L	95	59 - 135	
.,	Dichlorodifluoromethane	25.0	33.7	ug/L	135	59 - 135	
	Ethylbenzene	25.0	26.8		107	77 - 123	
1,2-Dibromoethane 25.0 27.1 ug/L 108 77 - 120	1,2-Dibromoethane	25.0	27.1	ug/L	108	77 - 120	
Isopropylbenzene 25.0 23.5 ug/L 94 77 - 122	Isopropylbenzene	25.0	23.5	-	94	77 - 122	
Methyl acetate 50.0 40.8 ug/L 82 74 - 133	• • • •		40.8		82	74 - 133	
Methyl tert-butyl ether 25.0 24.6 ug/L 99 77 - 120		25.0	24.6		99	77 - 120	
Methylcyclohexane 25.0 27.1 ug/L 108 68 - 134	Methylcyclohexane	25.0	27.1	_	108	68 - 134	

Eurofins Buffalo

Page 13 of 26

2

3

_

6

8

10

12

4 4

41

c. D. c. 1

Client: Terracon Consultants Inc

Project/Site: Back Lot Lake Ave, Rochester, NY

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-741889/6

Matrix: Water

Trichlorofluoromethane

Vinyl chloride

Analysis Batch: 741889

Client Sample ID: Lab Control Sample

119

109

Job ID: 480-228185-1

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methylene Chloride	25.0	25.7		ug/L		103	75 - 124	
Styrene	25.0	27.0		ug/L		108	80 - 120	
Tetrachloroethene	25.0	30.0		ug/L		120	74 - 122	
Toluene	25.0	25.2		ug/L		101	80 - 122	
trans-1,2-Dichloroethene	25.0	26.9		ug/L		107	73 - 127	
trans-1,3-Dichloropropene	25.0	25.9		ug/L		103	80 - 120	
Trichloroethene	25.0	27.5		ua/l		110	74 - 123	

29.8

27.2

ug/L

ug/L

25.0

25.0

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	103		80 - 120
1,2-Dichloroethane-d4 (Surr)	96		77 - 120
4-Bromofluorobenzene (Surr)	118		73 - 120
Dibromofluoromethane (Surr)	107		75 - 123

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-741874/1-A

Matrix: Water

Analysis Batch: 742017

Client Sample ID: Method Blank

62 - 150

65 - 133

Prep Type: Total/NA

Prep Batch: 741874

Analysis Daton: 142011								i icp Bateii.	141014
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND		5.0	0.65	ug/L		03/27/25 06:39	03/28/25 18:02	1
bis (2-chloroisopropyl) ether	ND		5.0	0.52	ug/L		03/27/25 06:39	03/28/25 18:02	1
2,4,5-Trichlorophenol	ND		5.0	0.48	ug/L		03/27/25 06:39	03/28/25 18:02	1
2,4,6-Trichlorophenol	ND		5.0	0.61	ug/L		03/27/25 06:39	03/28/25 18:02	1
2,4-Dichlorophenol	ND		5.0	0.51	ug/L		03/27/25 06:39	03/28/25 18:02	1
2,4-Dimethylphenol	ND		5.0	0.50	ug/L		03/27/25 06:39	03/28/25 18:02	1
2,4-Dinitrophenol	ND		10	2.2	ug/L		03/27/25 06:39	03/28/25 18:02	1
2,4-Dinitrotoluene	ND		5.0	0.45	ug/L		03/27/25 06:39	03/28/25 18:02	1
2,6-Dinitrotoluene	ND		5.0	0.40	ug/L		03/27/25 06:39	03/28/25 18:02	1
2-Chloronaphthalene	ND		5.0	0.46	ug/L		03/27/25 06:39	03/28/25 18:02	1
2-Chlorophenol	ND		5.0	0.53	ug/L		03/27/25 06:39	03/28/25 18:02	1
2-Methylphenol	ND		5.0	0.40	ug/L		03/27/25 06:39	03/28/25 18:02	1
2-Methylnaphthalene	ND		5.0	0.60	ug/L		03/27/25 06:39	03/28/25 18:02	1
2-Nitroaniline	ND		10	0.42	ug/L		03/27/25 06:39	03/28/25 18:02	1
2-Nitrophenol	ND		5.0	0.48	ug/L		03/27/25 06:39	03/28/25 18:02	1
3,3'-Dichlorobenzidine	ND		5.0	0.40	ug/L		03/27/25 06:39	03/28/25 18:02	1
3-Nitroaniline	ND		10	0.48	ug/L		03/27/25 06:39	03/28/25 18:02	1
4,6-Dinitro-2-methylphenol	ND		10	2.2	ug/L		03/27/25 06:39	03/28/25 18:02	1
4-Bromophenyl phenyl ether	ND		5.0	0.45	ug/L		03/27/25 06:39	03/28/25 18:02	1
4-Chloro-3-methylphenol	ND		5.0	0.45	ug/L		03/27/25 06:39	03/28/25 18:02	1
4-Chloroaniline	ND		5.0	0.59	ug/L		03/27/25 06:39	03/28/25 18:02	1
4-Chlorophenyl phenyl ether	ND		5.0	0.35	ug/L		03/27/25 06:39	03/28/25 18:02	1
4-Methylphenol	ND		10	0.36	ug/L		03/27/25 06:39	03/28/25 18:02	1
4-Nitroaniline	ND		10	0.25	ug/L		03/27/25 06:39	03/28/25 18:02	1
4-Nitrophenol	ND		10	1.5	ug/L		03/27/25 06:39	03/28/25 18:02	1
Acenaphthene	ND		5.0	0.41	ug/L		03/27/25 06:39	03/28/25 18:02	1

Eurofins Buffalo

Page 14 of 26

4/1/2025

Client: Terracon Consultants Inc

Project/Site: Back Lot Lake Ave, Rochester, NY

Job ID: 480-228185-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-741874/1-A

Matrix: Water

Analysis Batch: 742017

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 741874

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthylene	ND		5.0	0.38	ug/L		03/27/25 06:39	03/28/25 18:02	1
Acetophenone	ND		5.0	0.54	ug/L		03/27/25 06:39	03/28/25 18:02	1
Anthracene	ND		5.0	0.28	ug/L		03/27/25 06:39	03/28/25 18:02	1
Atrazine	ND		5.0	0.46	ug/L		03/27/25 06:39	03/28/25 18:02	1
Benzaldehyde	ND		5.0	0.27	ug/L		03/27/25 06:39	03/28/25 18:02	1
Benzo[a]anthracene	ND		5.0	0.36	ug/L		03/27/25 06:39	03/28/25 18:02	1
Benzo[a]pyrene	ND		5.0	0.47	ug/L		03/27/25 06:39	03/28/25 18:02	1
Benzo[b]fluoranthene	ND		5.0	0.34	ug/L		03/27/25 06:39	03/28/25 18:02	1
Benzo[g,h,i]perylene	ND		5.0	0.35	ug/L		03/27/25 06:39	03/28/25 18:02	1
Benzo[k]fluoranthene	ND		5.0	0.73	ug/L		03/27/25 06:39	03/28/25 18:02	1
Bis(2-chloroethoxy)methane	ND		5.0	0.35	ug/L		03/27/25 06:39	03/28/25 18:02	1
Bis(2-chloroethyl)ether	ND		5.0	0.40	ug/L		03/27/25 06:39	03/28/25 18:02	1
Bis(2-ethylhexyl) phthalate	ND		5.0	2.2	ug/L		03/27/25 06:39	03/28/25 18:02	1
Butyl benzyl phthalate	ND		5.0	1.0	ug/L		03/27/25 06:39	03/28/25 18:02	1
Caprolactam	ND		5.0	2.2	ug/L		03/27/25 06:39	03/28/25 18:02	1
Carbazole	ND		5.0	0.30	ug/L		03/27/25 06:39	03/28/25 18:02	1
Chrysene	ND		5.0	0.33	ug/L		03/27/25 06:39	03/28/25 18:02	1
Dibenz(a,h)anthracene	ND		5.0	0.42	ug/L		03/27/25 06:39	03/28/25 18:02	1
Di-n-butyl phthalate	ND		5.0	0.31	ug/L		03/27/25 06:39	03/28/25 18:02	1
Di-n-octyl phthalate	ND		5.0	0.47	ug/L		03/27/25 06:39	03/28/25 18:02	1
Dibenzofuran	ND		10	0.51	ug/L		03/27/25 06:39	03/28/25 18:02	1
Diethyl phthalate	ND		5.0	0.22	ug/L		03/27/25 06:39	03/28/25 18:02	1
Dimethyl phthalate	ND		5.0	0.36	ug/L		03/27/25 06:39	03/28/25 18:02	1
Fluoranthene	ND		5.0	0.40	ug/L		03/27/25 06:39	03/28/25 18:02	1
Fluorene	ND		5.0	0.36	ug/L		03/27/25 06:39	03/28/25 18:02	1
Hexachlorobenzene	ND		5.0	0.51	ug/L		03/27/25 06:39	03/28/25 18:02	1
Hexachlorobutadiene	ND		5.0	0.68	ug/L		03/27/25 06:39	03/28/25 18:02	1
Hexachlorocyclopentadiene	ND		5.0	0.59	ug/L		03/27/25 06:39	03/28/25 18:02	1
Hexachloroethane	ND		5.0	0.59	ug/L		03/27/25 06:39	03/28/25 18:02	1
Indeno[1,2,3-cd]pyrene	ND		5.0		ug/L		03/27/25 06:39	03/28/25 18:02	1
Isophorone	ND		5.0	0.43	ug/L		03/27/25 06:39	03/28/25 18:02	1
N-Nitrosodi-n-propylamine	ND		5.0	0.54	ug/L		03/27/25 06:39	03/28/25 18:02	1
N-Nitrosodiphenylamine	ND		5.0	0.51	ug/L		03/27/25 06:39	03/28/25 18:02	1
Naphthalene	ND		5.0	0.76	ug/L		03/27/25 06:39	03/28/25 18:02	1
Nitrobenzene	ND		5.0		ug/L		03/27/25 06:39	03/28/25 18:02	1
Pentachlorophenol	ND		10		ug/L			03/28/25 18:02	1
Phenanthrene	ND		5.0		ug/L			03/28/25 18:02	1
Phenol	ND		5.0		ug/L			03/28/25 18:02	1
Pyrene	ND		5.0		ug/L			03/28/25 18:02	1
	МВ	МВ							

ID	MD
D	IVID

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	61		29 - 129	03/27/25 06:39	03/28/25 18:02	1
Phenol-d5 (Surr)	31		10 - 120	03/27/25 06:39	03/28/25 18:02	1
p-Terphenyl-d14 (Surr)	98		33 - 132	03/27/25 06:39	03/28/25 18:02	1
2,4,6-Tribromophenol (Surr)	67		25 - 144	03/27/25 06:39	03/28/25 18:02	1
2-Fluorobiphenyl (Surr)	71		53 - 126	03/27/25 06:39	03/28/25 18:02	1
2-Fluorophenol (Surr)	49		24 - 120	03/27/25 06:39	03/28/25 18:02	1

Eurofins Buffalo

Page 15 of 26

Client: Terracon Consultants Inc

Project/Site: Back Lot Lake Ave, Rochester, NY

Job ID: 480-228185-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-741874/2-A

Matrix: Water

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 742017 Prep Batch: 741874 Spike LCS LCS %Rec Added Result Qualifier %Rec Limits Analyte Unit D Biphenyl 32.0 24.6 ug/L 77 59 - 120 bis (2-chloroisopropyl) ether 32.0 23.9 ug/L 75 21 - 136 32.0 2,4,5-Trichlorophenol 27.4 ug/L 86 65 - 126 2,4,6-Trichlorophenol 32.0 26.1 ug/L 82 64 - 1202,4-Dichlorophenol 32.0 23.8 ug/L 74 63 - 120 2,4-Dimethylphenol 32.0 24.2 76 47 - 120 ug/L 2,4-Dinitrophenol 64.0 42.5 66 31 - 137 ug/L 2,4-Dinitrotoluene 32.0 29.1 ug/L 91 69 - 120 ug/L 2,6-Dinitrotoluene 32.0 27 9 87 68 - 1202-Chloronaphthalene 32.0 24.0 ug/L 75 58 - 120 32.0 71 2-Chlorophenol 22.8 ug/L 48 - 120 2-Methylphenol 32.0 22.8 ug/L 71 39 - 120 ug/L 2-Methylnaphthalene 32.0 24.2 76 59 - 120 78 2-Nitroaniline 32.0 24.8 ug/L 54 - 127 32.0 75 2-Nitrophenol 24.0 ug/L 52 - 125 3,3'-Dichlorobenzidine 32.0 29.0 ug/L 91 49 - 135 71 3-Nitroaniline 32.0 22.7 ug/L 51 - 12075 4,6-Dinitro-2-methylphenol 64.0 47.9 ug/L 46 - 136 4-Bromophenyl phenyl ether 32.0 27.2 ug/L 85 65 - 1204-Chloro-3-methylphenol 32.0 25.5 ug/L 80 61 - 123 4-Chloroaniline 32.0 20.1 63 30 - 120 ug/L 32.0 26.5 83 4-Chlorophenyl phenyl ether ug/L 62 - 1204-Methylphenol 32.0 22.1 ug/L 69 29 - 131 4-Nitroaniline 32.0 29.2 91 65 - 120 ug/L 36.2 57 4-Nitrophenol 64.0 ug/L 45 - 120 Acenaphthene 32.0 27.2 ug/L 85 60 - 120Acenaphthylene 82 32.0 26.3 ug/L 63 - 120Acetophenone 32.0 24.8 ug/L 77 45 - 120 32.0 67 - 120 Anthracene 30.8 ug/L 96 Atrazine 32.0 38.2 ug/L 119 71 - 130 Benzaldehyde 32.0 28.8 90 10 - 140 ug/L Benzo[a]anthracene 32.0 29.9 ug/L 94 70 - 121 60 - 123 Benzo[a]pyrene 32.0 29.6 ug/L 93 Benzo[b]fluoranthene 32.0 32.6 ug/L 102 66 - 126 ug/L 32.0 29.2 91 66 - 150 Benzo[g,h,i]perylene Benzo[k]fluoranthene 32.0 30.7 ug/L 96 65 - 124ug/L Bis(2-chloroethoxy)methane 32.0 24.8 78 50 - 128 Bis(2-chloroethyl)ether 32.0 25.0 ug/L 78 44 - 120 Bis(2-ethylhexyl) phthalate 32.0 27.6 ug/L 86 63 - 139Butyl benzyl phthalate 32.0 29.3 ug/L 91 70 - 129 Caprolactam 32.0 9.48 ug/L 30 22 - 120 32.0 107 Carbazole 34.3 ug/L 66 - 123 Chrysene 32.0 29.9 ug/L 94 69 - 120 Dibenz(a,h)anthracene 32.0 31.5 ug/L 98 65 - 135Di-n-butyl phthalate 32.0 29.8 ug/L 93 69 - 131 32.0 87 Di-n-octyl phthalate 27.9 ug/L 63 - 140Dibenzofuran 32.0 27.0 ug/L 85 66 - 120 Diethyl phthalate 32.0 29.2 ug/L 91 59 - 127

Eurofins Buffalo

4

6

8

10

12

14

LCS LCS

29.7

13.3

30.9

ug/L

ug/L

ug/L

Client: Terracon Consultants Inc

Project/Site: Back Lot Lake Ave, Rochester, NY

Job ID: 480-228185-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-741874/2-A

Matrix: Water

Analysis Batch: 742017

Client Sample ID: Lab Control Sample

93

42

96

68 - 120

17 - 120

70 - 125

%Rec

Prep Type: Total/NA

Prep Batch: 741874

Added	Result	Qualifier Unit	D	%Rec	Limits	
32.0	28.2	ug/L		88	68 - 120	
32.0	31.5	ug/L		98	69 - 126	
32.0	30.1	ug/L		94	66 - 120	
32.0	28.6	ug/L		89	61 - 120	
32.0	17.9	ug/L		56	35 - 120	
32.0	12.2	ug/L		38	31 - 120	
32.0	18.4	ug/L		58	33 - 120	
32.0	31.5	ug/L		99	69 - 146	
32.0	25.2	ug/L		79	55 - 120	
32.0	23.8	ug/L		74	32 - 140	
32.0	28.6	ug/L		89	61 - 120	
32.0	24.2	ug/L		76	57 - 120	
32.0	23.5	ug/L		74	53 - 123	
64.0	49.8	ug/L		78	10 - 136	
	32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0	32.0 28.2 32.0 31.5 32.0 30.1 32.0 28.6 32.0 17.9 32.0 12.2 32.0 31.5 32.0 25.2 32.0 23.8 32.0 28.6 32.0 24.2 32.0 23.5	32.0 28.2 ug/L 32.0 31.5 ug/L 32.0 30.1 ug/L 32.0 28.6 ug/L 32.0 17.9 ug/L 32.0 12.2 ug/L 32.0 18.4 ug/L 32.0 31.5 ug/L 32.0 25.2 ug/L 32.0 23.8 ug/L 32.0 28.6 ug/L 32.0 24.2 ug/L 32.0 23.5 ug/L	32.0 28.2 ug/L 32.0 31.5 ug/L 32.0 30.1 ug/L 32.0 28.6 ug/L 32.0 17.9 ug/L 32.0 12.2 ug/L 32.0 18.4 ug/L 32.0 31.5 ug/L 32.0 25.2 ug/L 32.0 25.2 ug/L 32.0 24.2 ug/L 32.0 24.2 ug/L 32.0 23.5 ug/L	32.0 28.2 ug/L 88 32.0 31.5 ug/L 98 32.0 30.1 ug/L 94 32.0 28.6 ug/L 89 32.0 17.9 ug/L 56 32.0 12.2 ug/L 38 32.0 18.4 ug/L 58 32.0 31.5 ug/L 99 32.0 25.2 ug/L 79 32.0 23.8 ug/L 74 32.0 28.6 ug/L 89 32.0 24.2 ug/L 76 32.0 23.5 ug/L 74	32.0 28.2 ug/L 88 68 - 120 32.0 31.5 ug/L 98 69 - 126 32.0 30.1 ug/L 94 66 - 120 32.0 28.6 ug/L 89 61 - 120 32.0 17.9 ug/L 56 35 - 120 32.0 12.2 ug/L 38 31 - 120 32.0 18.4 ug/L 58 33 - 120 32.0 31.5 ug/L 99 69 - 146 32.0 25.2 ug/L 79 55 - 120 32.0 23.8 ug/L 74 32 - 140 32.0 28.6 ug/L 89 61 - 120 32.0 24.2 ug/L 76 57 - 120 32.0 23.5 ug/L 74 53 - 123

32.0

32.0

32.0

Spike

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5 (Surr)	72		29 - 129
Phenol-d5 (Surr)	42		10 - 120
p-Terphenyl-d14 (Surr)	86		33 - 132
2,4,6-Tribromophenol (Surr)	86		25 - 144
2-Fluorobiphenyl (Surr)	77		53 - 126
2-Fluorophenol (Surr)	57		24 - 120

Method: 6010D - Metals (ICP)

Lab Sample ID: MB 480-741852/1-A

Matrix: Water

Phenanthrene

Phenol

Pyrene

Analysis Batch: 742032

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 741852

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	0.0723	J	0.20	0.060	mg/L		03/27/25 08:35	03/27/25 20:34	1
Antimony	ND		0.020	0.0068	mg/L		03/27/25 08:35	03/27/25 20:34	1
Arsenic	ND		0.015	0.0056	mg/L		03/27/25 08:35	03/27/25 20:34	1
Barium	ND		0.0020	0.00070	mg/L		03/27/25 08:35	03/27/25 20:34	1
Beryllium	ND		0.0020	0.00030	mg/L		03/27/25 08:35	03/27/25 20:34	1
Cadmium	ND		0.0020	0.00050	mg/L		03/27/25 08:35	03/27/25 20:34	1
Calcium	ND		0.50	0.10	mg/L		03/27/25 08:35	03/27/25 20:34	1
Chromium	ND		0.0040	0.0010	mg/L		03/27/25 08:35	03/27/25 20:34	1
Cobalt	ND		0.0040	0.00063	mg/L		03/27/25 08:35	03/27/25 20:34	1
Copper	ND	^5+	0.010	0.0016	mg/L		03/27/25 08:35	03/27/25 20:34	1
Iron	ND	^5-	0.050	0.019	mg/L		03/27/25 08:35	03/27/25 20:34	1
Lead	ND		0.010	0.0030	mg/L		03/27/25 08:35	03/27/25 20:34	1
Magnesium	ND		0.20	0.043	mg/L		03/27/25 08:35	03/27/25 20:34	1
Manganese	ND		0.0030	0.00040	mg/L		03/27/25 08:35	03/27/25 20:34	1
Nickel	ND		0.010	0.0013	mg/L		03/27/25 08:35	03/27/25 20:34	1
Potassium	ND		0.50	0.10	mg/L		03/27/25 08:35	03/27/25 20:34	1

Eurofins Buffalo

Page 17 of 26

Client: Terracon Consultants Inc

Project/Site: Back Lot Lake Ave, Rochester, NY

Method: 6010D - Metals (ICP) (Continued)

Lab Sample ID: MB 480-741852/1-A

Matrix: Water

Analysis Batch: 742032

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 480-228185-1

Prep Batch: 741852

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Selenium	ND		0.025	0.0087	mg/L		03/27/25 08:35	03/27/25 20:34	1
Silver	ND	^5-	0.0060	0.0017	mg/L		03/27/25 08:35	03/27/25 20:34	1
Sodium	ND		1.0	0.32	mg/L		03/27/25 08:35	03/27/25 20:34	1
Thallium	ND		0.020	0.010	mg/L		03/27/25 08:35	03/27/25 20:34	1
Vanadium	ND		0.0050	0.0015	mg/L		03/27/25 08:35	03/27/25 20:34	1
7inc	0.00193	.l ^5-	0.010	0.0015	ma/l		03/27/25 08:35	03/27/25 20:34	1

Client Sample ID: Lab Control Sample

Lab Sample ID: LCS 480-741852/2-A **Matrix: Water**

Analysis Batch: 742032

Prep Type: Total/NA

Prep Batch: 741852

Analysis Buton: 142002	Codina	1.00	1.00				O/Pag
Ameliate	Spike Added		LCS Qualifier	Unit	D	%Rec	%Rec Limits
Analyte			Qualifier				
Aluminum	5.11	5.12		mg/L		100	80 - 120
Antimony	0.500	0.470		mg/L		94	80 - 120
Arsenic	1.00	1.01		mg/L		101	80 - 120
Barium	1.00	1.00		mg/L		100	80 - 120
Beryllium	0.496	0.519		mg/L		105	80 - 120
Cadmium	0.500	0.489		mg/L		98	80 - 120
Calcium	25.0	25.56		mg/L		102	80 - 120
Chromium	0.500	0.508		mg/L		102	80 - 120
Cobalt	0.500	0.524		mg/L		105	80 - 120
Copper	0.500	0.463	^5+	mg/L		93	80 - 120
Iron	5.12	5.36	^5-	mg/L		105	80 - 120
Lead	0.500	0.540		mg/L		108	80 - 120
Magnesium	25.0	24.99		mg/L		100	80 - 120
Manganese	0.500	0.504		mg/L		101	80 - 120
Nickel	0.500	0.541		mg/L		108	80 - 120
Potassium	25.0	25.60		mg/L		102	80 - 120
Selenium	1.00	0.947		mg/L		95	80 - 120
Sodium	25.0	24.89		mg/L		100	80 - 120
Thallium	1.00	1.03		mg/L		103	80 - 120
Vanadium	0.500	0.505		mg/L		101	80 - 120
Zinc	0.500	0.521	^5-	mg/L		104	80 - 120
-							

Lab Sample ID: LCSD 480-741852/3-A

Matrix: Water

Analysis Batch: 742032

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Batch: 741852

_	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aluminum	5.11	5.20		mg/L		102	80 - 120	2	20
Antimony	0.500	0.476		mg/L		95	80 - 120	1	20
Arsenic	1.00	1.03		mg/L		103	80 - 120	2	20
Barium	1.00	1.02		mg/L		102	80 - 120	2	20
Beryllium	0.496	0.527		mg/L		106	80 - 120	2	20
Cadmium	0.500	0.499		mg/L		100	80 - 120	2	20
Calcium	25.0	26.03		mg/L		104	80 - 120	2	20
Chromium	0.500	0.518		mg/L		104	80 - 120	2	20
Cobalt	0.500	0.532		mg/L		106	80 - 120	1	20
Copper	0.500	0.473	^5+	mg/L		95	80 - 120	2	20

Eurofins Buffalo

Page 18 of 26

Client: Terracon Consultants Inc

Project/Site: Back Lot Lake Ave, Rochester, NY

Method: 6010D - Metals (ICP) (Continued)

Lab Sample ID: LCSD 480-741852/3-A **Client Sample ID: Lab Control Sample Dup**

Matrix: Water

Analysis Batch: 742032

Prep Type: Total/NA

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 742009

Prep Batch: 741852

Job ID: 480-228185-1

•	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Iron	5.12	5.43	^5-	mg/L		106	80 - 120	1	20
Lead	0.500	0.546		mg/L		109	80 - 120	1	20
Magnesium	25.0	25.22		mg/L		101	80 - 120	1	20
Manganese	0.500	0.511		mg/L		102	80 - 120	1	20
Nickel	0.500	0.549		mg/L		110	80 - 120	2	20
Potassium	25.0	26.05		mg/L		104	80 - 120	2	20
Selenium	1.00	0.962		mg/L		96	80 - 120	2	20
Sodium	25.0	25.19		mg/L		101	80 - 120	1	20
Thallium	1.00	1.05		mg/L		105	80 - 120	2	20
Vanadium	0.500	0.515		mg/L		103	80 - 120	2	20
Zinc	0.500	0.531	^5-	mg/L		106	80 - 120	2	20

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 480-742009/1-A

Matrix: Water

Analysis Batch: 742076

MB MB

Analyte RL MDL Unit Result Qualifier Prepared Analyzed Dil Fac Mercury 0.00020 0.000042 mg/L 03/28/25 09:12 03/28/25 12:04 ND

Lab Sample ID: LCS 480-742009/2-A **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA Prep Batch: 742009**

Analysis Batch: 742076

Spike LCS LCS %Rec Added Analyte Result Qualifier Unit %Rec Limits 0.00669 80 - 120 Mercury 0.00636 mg/L

Lab Sample ID: 480-228185-1 MS Client Sample ID: MW-106 **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 742076** Prep Batch: 742009

%Rec Spike MS MS Sample Sample Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits ND 0.00669 80 - 120 Mercury 0.00626 mg/L

Lab Sample ID: 480-228185-1 MSD Client Sample ID: MW-106 **Matrix: Water Prep Type: Total/NA**

Analysis Batch: 742076

Prep Batch: 742009 %Rec **RPD** Sample Sample Spike MSD MSD Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits **RPD** Limit Mercury ND 0.00669 0.00629 mg/L 80 - 120 20

QC Association Summary

Client: Terracon Consultants Inc

Project/Site: Back Lot Lake Ave, Rochester, NY

GC/MS VOA

Analysis Batch: 741889

Lab Sample ID 480-228185-1	Client Sample ID MW-106	Prep Type Total/NA	Matrix Water	Method 8260C	Prep Batch
MB 480-741889/9	Method Blank	Total/NA	Water	8260C	
LCS 480-741889/6	Lab Control Sample	Total/NA	Water	8260C	

GC/MS Semi VOA

Prep Batch: 741874

Lab Sample ID 480-228185-1	Client Sample ID MW-106	Prep Type Total/NA	Matrix Water	Method 3510C	Prep Batch
MB 480-741874/1-A	Method Blank	Total/NA	Water	3510C	
LCS 480-741874/2-A	Lab Control Sample	Total/NA	Water	3510C	

Analysis Batch: 742017

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-228185-1	MW-106	Total/NA	Water	8270D	741874
MB 480-741874/1-A	Method Blank	Total/NA	Water	8270D	741874
LCS 480-741874/2-A	Lab Control Sample	Total/NA	Water	8270D	741874

Metals

Prep Batch: 741852

_	ab Sample ID 80-228185-1	Client Sample ID MW-106	Prep Type Total/NA	Matrix Water	Method Prep Batch
N	/IB 480-741852/1-A	Method Blank	Total/NA	Water	3005A
L	.CS 480-741852/2-A	Lab Control Sample	Total/NA	Water	3005A
L	.CSD 480-741852/3-A	Lab Control Sample Dup	Total/NA	Water	3005A

Prep Batch: 742009

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-228185-1	MW-106	Total/NA	Water	7470A	
MB 480-742009/1-A	Method Blank	Total/NA	Water	7470A	
LCS 480-742009/2-A	Lab Control Sample	Total/NA	Water	7470A	
480-228185-1 MS	MW-106	Total/NA	Water	7470A	
480-228185-1 MSD	MW-106	Total/NA	Water	7470A	

Analysis Batch: 742032

Lab Sample ID 480-228185-1	Client Sample ID MW-106	Prep Type Total/NA	Matrix Water	Method 6010D	Prep Batch 741852
MB 480-741852/1-A	Method Blank	Total/NA	Water	6010D	741852
LCS 480-741852/2-A	Lab Control Sample	Total/NA	Water	6010D	741852
LCSD 480-741852/3-A	Lab Control Sample Dup	Total/NA	Water	6010D	741852

Analysis Batch: 742076

Lab Sample ID 480-228185-1	Client Sample ID MW-106	Prep Type Total/NA	Matrix Water	Method 7470A	Prep Batch 742009
MB 480-742009/1-A	Method Blank	Total/NA	Water	7470A	742009
LCS 480-742009/2-A	Lab Control Sample	Total/NA	Water	7470A	742009
480-228185-1 MS	MW-106	Total/NA	Water	7470A	742009
480-228185-1 MSD	MW-106	Total/NA	Water	7470A	742009

Eurofins Buffalo

Page 20 of 26

2

Job ID: 480-228185-1

3

4

6

8

9

11

12

1 1

Lab Chronicle

Client: Terracon Consultants Inc Job ID: 480-228185-1

Project/Site: Back Lot Lake Ave, Rochester, NY

Client Sample ID: MW-106

Date Received: 03/26/25 09:30

Date Collected: 03/24/25 11:40

Lab Sample ID: 480-228185-1

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		1	741889	ERS	EET BUF	03/27/25 20:45
Total/NA	Prep	3510C			741874	DP	EET BUF	03/27/25 06:39
Total/NA	Analysis	8270D		1	742017	JMM	EET BUF	03/28/25 20:16
Total/NA	Prep	3005A			741852	ET	EET BUF	03/27/25 08:35
Total/NA	Analysis	6010D		1	742032	MP	EET BUF	03/27/25 21:10
Total/NA	Prep	7470A			742009	ESB	EET BUF	03/28/25 09:12
Total/NA	Analysis	7470A		1	742076	ESB	EET BUF	03/28/25 12:07

Laboratory References:

EET BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Accreditation/Certification Summary

Client: Terracon Consultants Inc Job ID: 480-228185-1

Project/Site: Back Lot Lake Ave, Rochester, NY

Laboratory: Eurofins Buffalo

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
New York	NELAP	10026	03-31-25

3

4

7

8

10

11

13

14

Method Summary

Client: Terracon Consultants Inc

Project/Site: Back Lot Lake Ave, Rochester, NY

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	EET BUF
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	EET BUF
6010D	Metals (ICP)	SW846	EET BUF
7470A	Mercury (CVAA)	SW846	EET BUF
3005A	Preparation, Total Metals	SW846	EET BUF
3510C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	EET BUF
5030C	Purge and Trap	SW846	EET BUF
7470A	Preparation, Mercury	SW846	EET BUF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Job ID: 480-228185-1

3

6

_

9

10

12

4 4

Sample Summary

Client: Terracon Consultants Inc

Project/Site: Back Lot Lake Ave, Rochester, NY

Job ID: 480-228185-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-228185-1	MW-106	Water	03/24/25 11:40	03/26/25 09:30

3

4

5

0

10

11

13

14

Date/Time: Received in Laboratory By:	Company: CV (ACOM 3(24(25 1230)) Received by. Company:	Date/Time: Becoived C bs'd: Corr'c		Non-Hazard Flammable Skin Irritant Poison B Unknown Return Disposal by Lab A	Nample Disposal (A Hazardous Waste? Please List any EPA Waste Codes for the sample in the dispose of the sample.			480-228185 Chain			MW-106 3/24 1140 XXX	Sample Sam	# JA25 7007 2days 1day mp./ Mar. D.D.	Sot Name: VOA Back Lot 2 weeks 2 Y J	5 V C	ate/Zip: Buffales Ny 174225 CALENDAR DAYS WORKING DAYS	V ՐԹ(ԹռՀ¤Lab Contact: Carrier:	Client Contact , Project Manager: Patrick Colern Site Contact: Worthow tager Date: 3/		
	Company: A Date Fine:	Therm II	TEMP 117 DE #SCICE	/ Lab Archive for Months	fee may be assessed if samples are retained longer than 1 month)			480-228185 Chain of Custody				Sample Specific Notes:	Job / SDG No.:	Lab Sampling:	Walk-in Client:	Sampler: For Lab Use Only:		[24125 COC NO:	TAL-8210	TestAmerica

Client: Terracon Consultants Inc Job Number: 480-228185-1

Login Number: 228185 List Source: Eurofins Buffalo

List Number: 1

Creator: Kolb, Chris M

Cleator. Roll, Cliris W		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	TERRACON
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

Eurofins Buffalo

ANALYTICAL REPORT

PREPARED FOR

Attn: Mr. Patrick Colern Terracon Consultants Inc 81 Benbro Drive Buffalo, New York 14225

Generated 4/1/2025 2:10:54 PM

JOB DESCRIPTION

Back Lot Lake Ave, Rochester, NY

JOB NUMBER

480-228086-1

Eurofins Buffalo 10 Hazelwood Drive Amherst NY 14228-2298

Eurofins Buffalo

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northeast, LLC Project Manager.

Authorization

Generated 4/1/2025 2:10:54 PM

Authorized for release by
Gale Prinster, Project Mgmt. Assistant
gale.prinster@et.eurofinsus.com
Designee for
John Beninati, Project Manager I
John.Beninati@et.eurofinsus.com
(716)504-9874

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	6
Detection Summary	8
Client Sample Results	10
Surrogate Summary	33
QC Sample Results	34
QC Association Summary	56
Lab Chronicle	59
Certification Summary	61
Method Summary	62
Sample Summary	63
Chain of Custody	64
Receipt Checklists	65

3

4

_

9

10

12

Definitions/Glossary

Client: Terracon Consultants Inc Job ID: 480-228086-1

Project/Site: Back Lot Lake Ave, Rochester, NY

Qualifiers

0			0	٠,	$\overline{}$	٨
G	U/	IV	S	v	U	А

Qualifier **Qualifier Description**

LCS and/or LCSD is outside acceptance limits, high biased.

F1 MS and/or MSD recovery exceeds control limits.

GC/MS Semi VOA

Qualifier	Qualifier Description
*_	LCS and/or LCSD is outside acceptance limits, low biased.
*+	LCS and/or LCSD is outside acceptance limits, high biased.
В	Compound was found in the blank and sample.
Н	Sample was prepped or analyzed beyond the specified holding time. This does not meet regulatory requirements.
J	Result is less than the RI, but greater than or equal to the MDI, and the concentration is an approximate value

Metals

Qualifier	Qualifier Description
^+	Continuing Calibration Verification (CCV) is outside acceptance limits, high biased.
^5-	Linear Range Check (LRC) is outside acceptance limits, low biased.
^5+	Linear Range Check (LRC) is outside acceptance limits, high biased.
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
☼	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) Limit of Detection (DoD/DOE) LOD LOQ Limit of Quantitation (DoD/DOE)

EPA recommended "Maximum Contaminant Level" MCL Minimum Detectable Activity (Radiochemistry) MDA MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit Minimum Level (Dioxin) MLMPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present **PQL Practical Quantitation Limit**

PRES Presumptive **Quality Control** QC

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)

Eurofins Buffalo

Page 4 of 65 4/1/2025

Definitions/Glossary

Client: Terracon Consultants Inc Job ID: 480-228086-1

Project/Site: Back Lot Lake Ave, Rochester, NY

Glossary (Continued)

Abbreviation
Abbreviation

TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

3

А

5

7

0

10

12

Case Narrative

Client: Terracon Consultants Inc

Project: Back Lot Lake Ave, Rochester, NY

Job ID: 480-228086-1 Eurofins Buffalo

Job Narrative 480-228086-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these
 situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise
 specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 3/21/2025 9:00 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 1.7°C.

GC/MS VOA

Method 8260C: The following volatiles samples were diluted due to foaming at the time of purging during the original sample analysis: MW-107 (480-228086-2), MW-107 (480-228086-2[MS]), MW-107 (480-228086-2[MSD]) and MW-102 (480-228086-4). Elevated reporting limits (RLs) are provided.

Method 8260C: The continuing calibration verification (CCV) associated with batch 480-741783 recovered above the upper control limit for Tetrachloroethane and Trichlorofluoromethane. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated samples are impacted: MW-103 (480-228086-1), MW-107 (480-228086-2), MW-107 (480-228086-2[MSD]), MWR-102 (480-228086-3), MW-102 (480-228086-4) and Duplicate (480-228086-5).

Method 8260C: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for analytical batch 480-741783 recovered outside control limits for the following analytes: Dichlorodifluoromethane and Tetrachloroethane. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

Method 8260C: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for analytical batch 480-741783 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC/MS Semi VOA

Method 8270D: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-741949.

Method 8270D: The following samples were re-prepared outside of preparation holding time due to low LCS recoveries: MW-103 (480-228086-1), MW-107 (480-228086-2) and MWR-102 (480-228086-3).

Method 8270D: Elevated reporting limits are provided for the following sample due to insufficient sample provided for preparation: Duplicate (480-228086-5).

Method 8270D: The laboratory control sample (LCS) for preparation batch 480-741634 and analytical batch 480-741781 recovered outside control limits for the following analytes: 2,4-Dinitrophenol and 4,6-Dinitro-2-methylphenol. The associated sample(s) was re-prepared and/or re-analyzed outside holding time in preparation batch 480-741949 and analytical batch 480-742017. Both sets of data have been reported.

Method 8270D: The continuing calibration verification (CCV) associated with batch 480-741781 recovered outside acceptance criteria, low biased, for 2,4-Dinitrophenol, 4-Nitrophenol and Hexachlorocyclopentadiene. A reporting limit (RL) standard was analyzed, and the target analytes are detected. Since the associated samples were non-detect for the analyte(s), the data are reported.

Eurofins Buffalo

Page 6 of 65 4/1/2025

Job ID: 480-228086-1

3

5

_

8

11

12

Case Narrative

Client: Terracon Consultants Inc

Project: Back Lot Lake Ave. Rochester, NY

Job ID: 480-228086-1 (Continued)

Eurofins Buffalo

Job ID: 480-228086-1

Method 8270D: The laboratory control sample (LCS) for preparation batch 480-741634 and analytical batch 480-741781 recovered outside control limits for the following analytes: Atrazine. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

Method 8270D: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for preparation batch 480-741949 and analytical batch 480-742017 recovered outside control limits for the following analytes: Atrazine. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

Method 8270D: The continuing calibration verification (CCV) associated with batch 480-742017 recovered outside acceptance criteria, low biased, for 2,4-Dinitrophenol, 4,6-Dinitro-2-methylphenol, 4-Nitrophenol and Hexachlorocyclopentadiene. A reporting limit (RL) standard was analyzed, and the target analytes are detected. Since the associated samples were non-detect for the analyte(s), the data are reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Method 6010D: The linear range check (LRC) standard recovery associated with 480-741793 is outside the acceptance criteria for the following analytes: silver, copper, iron, and lead. The concentration of these analyte(s)in the sample(s) are below the highest standard of the calibration curve:

therefore, the data have been reported.

Method 6010D: The linear range check (LRC) standard recovery associated with 480-742032 is outside the acceptance criteria for the following analytes: zinc. The concentration of these analyte(s)in the sample(s) are below the highest standard of the calibration

therefore, the data have been reported.

Method 7470A: Due to interference with the sample matrix, the standard mercury preparation procedure was inadequate for the following samples(s): MW-102 (480-228086-4) and Duplicate (480-228086-5). This was demonstrated when the potassium permanganate reagent was added and the characteristic purple color faded rapidly. This loss of color indicates oxidizing conditions were not maintained. The sample(s) was prepared and analyzed at a 2x dilution, which maintained the purple color during digestion.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Buffalo

Client: Terracon Consultants Inc

Project/Site: Back Lot Lake Ave, Rochester, NY

Job ID: 480-228086-1

Client Sample ID: MW-103

Lab Sample ID: 480-228086-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Di-n-butyl phthalate	0.71	J	5.0	0.31	ug/L	1	_	8270D	Total/NA
Di-n-butyl phthalate - RE	0.91	JHB	5.0	0.31	ug/L	1		8270D	Total/NA
Aluminum	0.14	J	0.20	0.060	mg/L	1		6010D	Total/NA
Barium	0.28		0.0020	0.00070	mg/L	1		6010D	Total/NA
Calcium	252	В	0.50	0.10	mg/L	1		6010D	Total/NA
Chromium	0.0042		0.0040	0.0010	mg/L	1		6010D	Total/NA
Cobalt	0.0012	JB	0.0040	0.00063	mg/L	1		6010D	Total/NA
Copper	0.024	^5+	0.010	0.0016	mg/L	1		6010D	Total/NA
Iron	6.8	^5-	0.050	0.019	mg/L	1		6010D	Total/NA
Lead	0.049	^5+ B	0.010	0.0030	mg/L	1		6010D	Total/NA
Magnesium	46.9		0.20	0.043	mg/L	1		6010D	Total/NA
Manganese	0.49		0.0030	0.00040	mg/L	1		6010D	Total/NA
Nickel	0.0045	J	0.010	0.0013	mg/L	1		6010D	Total/NA
Potassium	13.4		0.50	0.10	mg/L	1		6010D	Total/NA
Sodium	325	В	1.0	0.32	mg/L	1		6010D	Total/NA
Zinc	0.020		0.010	0.0015	mg/L	1		6010D	Total/NA
Mercury	0.00095		0.00020	0.000042	mg/L	1		7470A	Total/NA

Client Sample ID: MW-107

Lab Sample ID: 480-228086-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D M	lethod	Prep Type
Di-n-butyl phthalate	0.61	J	5.0	0.31	ug/L	1	82	270D	Total/NA
Di-n-butyl phthalate - RE	0.99	JHB	5.0	0.31	ug/L	1	82	270D	Total/NA
Diethyl phthalate - RE	0.53	JH	5.0	0.22	ug/L	1	82	270D	Total/NA
Aluminum	0.19	J	0.20	0.060	mg/L	1	60	010D	Total/NA
Barium	0.16		0.0020	0.00070	mg/L	1	60	010D	Total/NA
Calcium	274	В	0.50	0.10	mg/L	1	60	010D	Total/NA
Chromium	0.0084		0.0040	0.0010	mg/L	1	60	010D	Total/NA
Copper	0.0044	J ^5+	0.010	0.0016	mg/L	1	60	010D	Total/NA
Iron	2.5	^5-	0.050	0.019	mg/L	1	60	010D	Total/NA
Lead	0.023	^5+ B	0.010	0.0030	mg/L	1	60	010D	Total/NA
Magnesium	47.4		0.20	0.043	mg/L	1	60	010D	Total/NA
Manganese	0.34		0.0030	0.00040	mg/L	1	60	010D	Total/NA
Nickel	0.0064	J	0.010	0.0013	mg/L	1	60	010D	Total/NA
Potassium	12.6		0.50	0.10	mg/L	1	60	010D	Total/NA
Sodium	178	В	1.0	0.32	mg/L	1	60	010D	Total/NA
Vanadium	0.0015	J	0.0050	0.0015	mg/L	1	60	010D	Total/NA
Zinc	0.010		0.010	0.0015	mg/L	1	60	010D	Total/NA
Mercury	0.00014	J	0.00020	0.000042	mg/L	1	74	470A	Total/NA

Client Sample ID: MWR-102

Lab Sample ID: 480-228086-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	1.3		1.0	0.81	ug/L	1	_	8260C	Total/NA
Methyl tert-butyl ether	13		1.0	0.16	ug/L	1		8260C	Total/NA
Di-n-butyl phthalate	0.61	J	5.0	0.31	ug/L	1		8270D	Total/NA
Diethyl phthalate	0.54	J	5.0	0.22	ug/L	1		8270D	Total/NA
Di-n-butyl phthalate - RE	0.99	JHB	5.0	0.31	ug/L	1		8270D	Total/NA
Diethyl phthalate - RE	0.54	JH	5.0	0.22	ug/L	1		8270D	Total/NA
Aluminum	1.4		0.20	0.060	mg/L	1		6010D	Total/NA
Barium	0.10		0.0020	0.00070	mg/L	1		6010D	Total/NA
Calcium	173	В	0.50	0.10	mg/L	1		6010D	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins Buffalo

Page 8 of 65

4/1/2025

Detection Summary

Client: Terracon Consultants Inc

Project/Site: Back Lot Lake Ave, Rochester, NY

Client Sample ID: MWR-102 (Continued)

Lab Sample ID: 480-228086-3

Job ID: 480-228086-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chromium	0.015		0.0040	0.0010	mg/L	1	_	6010D	Total/NA
Cobalt	0.0032	JB	0.0040	0.00063	mg/L	1		6010D	Total/NA
Copper	0.0024	J ^5+	0.010	0.0016	mg/L	1		6010D	Total/NA
Iron	1.2	^5-	0.050	0.019	mg/L	1		6010D	Total/NA
Lead	0.0036	J ^5+ B ^+	0.010	0.0030	mg/L	1		6010D	Total/NA
Magnesium	99.9		0.20	0.043	mg/L	1		6010D	Total/NA
Manganese	0.25		0.0030	0.00040	mg/L	1		6010D	Total/NA
Nickel	0.014		0.010	0.0013	mg/L	1		6010D	Total/NA
Potassium	13.4		0.50	0.10	mg/L	1		6010D	Total/NA
Sodium	363	В	1.0	0.32	mg/L	1		6010D	Total/NA
Thallium	0.011	J	0.020	0.010	mg/L	1		6010D	Total/NA
Vanadium	0.0024	J	0.0050	0.0015	mg/L	1		6010D	Total/NA
Zinc	0.024		0.010	0.0015	mg/L	1		6010D	Total/NA

Client Sample ID: MW-102

Lab Sample ID: 480-228086-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Di-n-butyl phthalate	0.90	JB	5.0	0.31	ug/L	1	_	8270D	Total/NA
Arsenic	0.017		0.015	0.0056	mg/L	1		6010D	Total/NA
Barium	0.77		0.0020	0.00070	mg/L	1		6010D	Total/NA
Calcium	474	В	0.50	0.10	mg/L	1		6010D	Total/NA
Chromium	0.0013	J	0.0040	0.0010	mg/L	1		6010D	Total/NA
Cobalt	0.0017	JB	0.0040	0.00063	mg/L	1		6010D	Total/NA
Iron	42.3	^5-	0.050	0.019	mg/L	1		6010D	Total/NA
Magnesium	130		0.20	0.043	mg/L	1		6010D	Total/NA
Manganese	1.3		0.0030	0.00040	mg/L	1		6010D	Total/NA
Nickel	0.0013	J	0.010	0.0013	mg/L	1		6010D	Total/NA
Potassium	41.4		0.50	0.10	mg/L	1		6010D	Total/NA
Sodium	2040		5.0	1.6	mg/L	5		6010D	Total/NA

Client Sample ID: Duplicate

Lab Sample ID: 480-228086-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Di-n-butyl phthalate	5.0	J B	25	1.6	ug/L		_	8270D	Total/NA
Arsenic	0.013	J	0.015	0.0056	mg/L	1		6010D	Total/NA
Barium	0.75		0.0020	0.00070	mg/L	1		6010D	Total/NA
Calcium	472	В	0.50	0.10	mg/L	1		6010D	Total/NA
Chromium	0.0014	J	0.0040	0.0010	mg/L	1		6010D	Total/NA
Cobalt	0.0011	JB	0.0040	0.00063	mg/L	1		6010D	Total/NA
Iron	41.6	^5-	0.050	0.019	mg/L	1		6010D	Total/NA
Magnesium	128		0.20	0.043	mg/L	1		6010D	Total/NA
Manganese	1.3		0.0030	0.00040	mg/L	1		6010D	Total/NA
Nickel	0.0013	J	0.010	0.0013	mg/L	1		6010D	Total/NA
Potassium	41.6		0.50	0.10	mg/L	1		6010D	Total/NA
Sodium	2080		5.0	1.6	mg/L	5		6010D	Total/NA
Thallium	0.012	J	0.020	0.010	mg/L	1		6010D	Total/NA

This Detection Summary does not include radiochemical test results.

5

7

9

4 4

12

14

4 E

Client: Terracon Consultants Inc Job ID: 480-228086-1

Project/Site: Back Lot Lake Ave, Rochester, NY

Client Sample ID: MW-103

Lab Sample ID: 480-228086-1 Date Collected: 03/19/25 15:00

Matrix: Water

Date Received: 03/21/25 09:00

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	1.0		ug/L			03/26/25 16:50	
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			03/26/25 16:50	
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			03/26/25 16:50	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			03/26/25 16:50	
1,1-Dichloroethane	ND	1.0	0.38	ug/L			03/26/25 16:50	
1,1-Dichloroethene	ND	1.0	0.29	ug/L			03/26/25 16:50	
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			03/26/25 16:50	
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			03/26/25 16:50	
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			03/26/25 16:50	
1,2-Dichloroethane	ND	1.0	0.21	ug/L			03/26/25 16:50	
1,2-Dichloropropane	ND	1.0	0.72	ug/L			03/26/25 16:50	
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			03/26/25 16:50	
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			03/26/25 16:50	
2-Butanone (MEK)	ND	10		ug/L			03/26/25 16:50	
2-Hexanone	ND	5.0		ug/L			03/26/25 16:50	
4-Methyl-2-pentanone (MIBK)	ND	5.0		ug/L			03/26/25 16:50	
Acetone	ND	10		ug/L			03/26/25 16:50	
Benzene	ND	1.0	0.41	ug/L			03/26/25 16:50	
Bromodichloromethane	ND	1.0		ug/L			03/26/25 16:50	
Bromoform	ND	1.0		ug/L			03/26/25 16:50	
Bromomethane	ND	1.0		ug/L			03/26/25 16:50	
Carbon disulfide	ND	1.0		ug/L			03/26/25 16:50	
Carbon tetrachloride	ND	1.0		ug/L			03/26/25 16:50	
Chlorobenzene	ND	1.0		ug/L			03/26/25 16:50	
Dibromochloromethane	ND	1.0		ug/L			03/26/25 16:50	
Chloroethane	ND	1.0		ug/L			03/26/25 16:50	
Chloroform	ND	1.0		ug/L			03/26/25 16:50	
Chloromethane	ND	1.0		ug/L			03/26/25 16:50	
cis-1,2-Dichloroethene	ND	1.0		ug/L			03/26/25 16:50	
cis-1,3-Dichloropropene	ND	1.0		ug/L			03/26/25 16:50	
Cyclohexane	ND	1.0		ug/L			03/26/25 16:50	
Dichlorodifluoromethane	ND *+	1.0		ug/L			03/26/25 16:50	
Ethylbenzene	ND	1.0		ug/L			03/26/25 16:50	
1,2-Dibromoethane	ND	1.0		ug/L			03/26/25 16:50	
sopropylbenzene	ND	1.0		ug/L			03/26/25 16:50	
Methyl acetate	ND	2.5		ug/L			03/26/25 16:50	
Methyl tert-butyl ether	ND	1.0		ug/L			03/26/25 16:50	
Methylcyclohexane	ND	1.0		ug/L			03/26/25 16:50	
Methylene Chloride	ND	1.0		ug/L			03/26/25 16:50	
Styrene	ND	1.0		ug/L			03/26/25 16:50	
Tetrachloroethene	ND *+	1.0		ug/L			03/26/25 16:50	
Toluene	ND .	1.0		ug/L			03/26/25 16:50	
rans-1,2-Dichloroethene	ND	1.0		ug/L			03/26/25 16:50	
rans-1,3-Dichloropropene	ND ND	1.0		ug/L ug/L			03/26/25 16:50	
Frichloroethene	ND ND	1.0		ug/L ug/L			03/26/25 16:50	
Trichlorofluoromethane	ND			ug/L ug/L			03/26/25 16:50	
rnchlorondoromethane √inyl chloride	ND ND	1.0 1.0		ug/L ug/L			03/26/25 16:50	
Xylenes, Total	ND ND	2.0		ug/L ug/L			03/26/25 16:50	

Eurofins Buffalo

Client: Terracon Consultants Inc Job ID: 480-228086-1

Project/Site: Back Lot Lake Ave, Rochester, NY

Client Sample ID: MW-103

Date Collected: 03/19/25 15:00 Date Received: 03/21/25 09:00 Lab Sample ID: 480-228086-1

Matrix: Water

Surrogate	%Recovery Qualifi	er Limits	Prepared Analyzed	Dil Fac
Toluene-d8 (Surr)	96	80 - 120	03/26/25 16:50	1
1,2-Dichloroethane-d4 (Surr)	97	77 - 120	03/26/25 16:50	1
4-Bromofluorobenzene (Surr)	112	73 - 120	03/26/25 16:50	1
Dibromofluoromethane (Surr)	102	75 - 123	03/26/25 16:50	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND		5.0	0.65	ug/L		03/25/25 06:50	03/26/25 19:27	1
bis (2-chloroisopropyl) ether	ND		5.0	0.52	ug/L		03/25/25 06:50	03/26/25 19:27	1
2,4,5-Trichlorophenol	ND		5.0	0.48	ug/L		03/25/25 06:50	03/26/25 19:27	1
2,4,6-Trichlorophenol	ND		5.0	0.61	ug/L		03/25/25 06:50	03/26/25 19:27	1
2,4-Dichlorophenol	ND		5.0	0.51	ug/L		03/25/25 06:50	03/26/25 19:27	1
2,4-Dimethylphenol	ND		5.0	0.50	ug/L		03/25/25 06:50	03/26/25 19:27	1
2,4-Dinitrophenol	ND	*_	10	2.2	ug/L		03/25/25 06:50	03/26/25 19:27	1
2,4-Dinitrotoluene	ND		5.0	0.45	ug/L		03/25/25 06:50	03/26/25 19:27	1
2,6-Dinitrotoluene	ND		5.0	0.40	ug/L		03/25/25 06:50	03/26/25 19:27	1
2-Chloronaphthalene	ND		5.0	0.46	ug/L		03/25/25 06:50	03/26/25 19:27	1
2-Chlorophenol	ND		5.0	0.53	ug/L		03/25/25 06:50	03/26/25 19:27	1
2-Methylphenol	ND		5.0	0.40	ug/L		03/25/25 06:50	03/26/25 19:27	1
2-Methylnaphthalene	ND		5.0	0.60	ug/L		03/25/25 06:50	03/26/25 19:27	1
2-Nitroaniline	ND		10	0.42	ug/L		03/25/25 06:50	03/26/25 19:27	1
2-Nitrophenol	ND		5.0	0.48	ug/L		03/25/25 06:50	03/26/25 19:27	1
3,3'-Dichlorobenzidine	ND		5.0	0.40	ug/L		03/25/25 06:50	03/26/25 19:27	1
3-Nitroaniline	ND		10	0.48	ug/L		03/25/25 06:50	03/26/25 19:27	1
4,6-Dinitro-2-methylphenol	ND	*_	10	2.2	ug/L		03/25/25 06:50	03/26/25 19:27	1
4-Bromophenyl phenyl ether	ND		5.0	0.45	ug/L		03/25/25 06:50	03/26/25 19:27	1
4-Chloro-3-methylphenol	ND		5.0	0.45	ug/L		03/25/25 06:50	03/26/25 19:27	1
4-Chloroaniline	ND		5.0	0.59	ug/L		03/25/25 06:50	03/26/25 19:27	1
4-Chlorophenyl phenyl ether	ND		5.0	0.35	ug/L		03/25/25 06:50	03/26/25 19:27	1
4-Methylphenol	ND		10	0.36	ug/L		03/25/25 06:50	03/26/25 19:27	1
4-Nitroaniline	ND		10	0.25	ug/L		03/25/25 06:50	03/26/25 19:27	1
4-Nitrophenol	ND		10	1.5	ug/L		03/25/25 06:50	03/26/25 19:27	1
Acenaphthene	ND		5.0	0.41	ug/L		03/25/25 06:50	03/26/25 19:27	1
Acenaphthylene	ND		5.0	0.38	ug/L		03/25/25 06:50	03/26/25 19:27	1
Acetophenone	ND		5.0	0.54	ug/L		03/25/25 06:50	03/26/25 19:27	1
Anthracene	ND		5.0	0.28	ug/L		03/25/25 06:50	03/26/25 19:27	1
Atrazine	ND	*+	5.0	0.46	ug/L		03/25/25 06:50	03/26/25 19:27	1
Benzaldehyde	ND		5.0	0.27	ug/L		03/25/25 06:50	03/26/25 19:27	1
Benzo[a]anthracene	ND		5.0	0.36	ug/L		03/25/25 06:50	03/26/25 19:27	1
Benzo[a]pyrene	ND		5.0	0.47	ug/L		03/25/25 06:50	03/26/25 19:27	1
Benzo[b]fluoranthene	ND		5.0	0.34	ug/L		03/25/25 06:50	03/26/25 19:27	1
Benzo[g,h,i]perylene	ND		5.0	0.35	ug/L		03/25/25 06:50	03/26/25 19:27	1
Benzo[k]fluoranthene	ND		5.0	0.73	ug/L		03/25/25 06:50	03/26/25 19:27	1
Bis(2-chloroethoxy)methane	ND		5.0	0.35	ug/L		03/25/25 06:50	03/26/25 19:27	1
Bis(2-chloroethyl)ether	ND		5.0		ug/L		03/25/25 06:50	03/26/25 19:27	1
Bis(2-ethylhexyl) phthalate	ND		5.0		ug/L			03/26/25 19:27	1
Butyl benzyl phthalate	ND		5.0		ug/L			03/26/25 19:27	1
Caprolactam	ND		5.0	2.2	ug/L			03/26/25 19:27	1
Carbazole	ND		5.0	0.30	-			03/26/25 19:27	1
Chrysene	ND		5.0		ug/L			03/26/25 19:27	1

Eurofins Buffalo

3

7

9

1 U

13

14

Client: Terracon Consultants Inc Job ID: 480-228086-1

Project/Site: Back Lot Lake Ave, Rochester, NY

Client Sample ID: MW-103 Date Collected: 03/19/25 15:00

Date Received: 03/21/25 09:00

Lab Sample ID: 480-228086-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dibenz(a,h)anthracene	ND		5.0	0.42	ug/L		03/25/25 06:50	03/26/25 19:27	1
Di-n-butyl phthalate	0.71	J	5.0	0.31	ug/L		03/25/25 06:50	03/26/25 19:27	•
Di-n-octyl phthalate	ND		5.0	0.47	ug/L		03/25/25 06:50	03/26/25 19:27	
Dibenzofuran	ND		10	0.51	ug/L		03/25/25 06:50	03/26/25 19:27	
Diethyl phthalate	ND		5.0	0.22	ug/L		03/25/25 06:50	03/26/25 19:27	
Dimethyl phthalate	ND		5.0	0.36	ug/L		03/25/25 06:50	03/26/25 19:27	
Fluoranthene	ND		5.0	0.40	ug/L		03/25/25 06:50	03/26/25 19:27	
Fluorene	ND		5.0	0.36	ug/L		03/25/25 06:50	03/26/25 19:27	
Hexachlorobenzene	ND		5.0	0.51	ug/L		03/25/25 06:50	03/26/25 19:27	
Hexachlorobutadiene	ND		5.0	0.68	ug/L		03/25/25 06:50	03/26/25 19:27	
Hexachlorocyclopentadiene	ND		5.0	0.59	ug/L		03/25/25 06:50	03/26/25 19:27	
Hexachloroethane	ND		5.0	0.59	ug/L		03/25/25 06:50	03/26/25 19:27	
Indeno[1,2,3-cd]pyrene	ND		5.0	0.47	ug/L		03/25/25 06:50	03/26/25 19:27	
Isophorone	ND		5.0	0.43	ug/L		03/25/25 06:50	03/26/25 19:27	
N-Nitrosodi-n-propylamine	ND		5.0	0.54	ug/L		03/25/25 06:50	03/26/25 19:27	
N-Nitrosodiphenylamine	ND		5.0	0.51	ug/L		03/25/25 06:50	03/26/25 19:27	,
Naphthalene	ND		5.0	0.76	ug/L		03/25/25 06:50	03/26/25 19:27	,
Nitrobenzene	ND		5.0	0.29	ug/L		03/25/25 06:50	03/26/25 19:27	
Pentachlorophenol	ND		10	2.2	ug/L		03/25/25 06:50	03/26/25 19:27	,
Phenanthrene	ND		5.0	0.44			03/25/25 06:50	03/26/25 19:27	,
Phenol	ND		5.0	0.39	ug/L		03/25/25 06:50	03/26/25 19:27	
Pyrene	ND		5.0		ug/L		03/25/25 06:50	03/26/25 19:27	,

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	65		29 - 129	03/25/25 06:50	03/26/25 19:27	1
Phenol-d5 (Surr)	34		10 - 120	03/25/25 06:50	03/26/25 19:27	1
p-Terphenyl-d14 (Surr)	52		33 - 132	03/25/25 06:50	03/26/25 19:27	1
2,4,6-Tribromophenol (Surr)	76		25 - 144	03/25/25 06:50	03/26/25 19:27	1
2-Fluorobiphenyl (Surr)	75		53 - 126	03/25/25 06:50	03/26/25 19:27	1
2-Fluorophenol (Surr)	55		24 - 120	03/25/25 06:50	03/26/25 19:27	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND	H	5.0	0.65	ug/L		03/27/25 13:37	03/28/25 13:08	1
bis (2-chloroisopropyl) ether	ND	Н	5.0	0.52	ug/L		03/27/25 13:37	03/28/25 13:08	1
2,4,5-Trichlorophenol	ND	Н	5.0	0.48	ug/L		03/27/25 13:37	03/28/25 13:08	1
2,4,6-Trichlorophenol	ND	Н	5.0	0.61	ug/L		03/27/25 13:37	03/28/25 13:08	1
2,4-Dichlorophenol	ND	Н	5.0	0.51	ug/L		03/27/25 13:37	03/28/25 13:08	1
2,4-Dimethylphenol	ND	Н	5.0	0.50	ug/L		03/27/25 13:37	03/28/25 13:08	1
2,4-Dinitrophenol	ND	Н	10	2.2	ug/L		03/27/25 13:37	03/28/25 13:08	1
2,4-Dinitrotoluene	ND	Н	5.0	0.45	ug/L		03/27/25 13:37	03/28/25 13:08	1
2,6-Dinitrotoluene	ND	Н	5.0	0.40	ug/L		03/27/25 13:37	03/28/25 13:08	1
2-Chloronaphthalene	ND	Н	5.0	0.46	ug/L		03/27/25 13:37	03/28/25 13:08	1
2-Chlorophenol	ND	Н	5.0	0.53	ug/L		03/27/25 13:37	03/28/25 13:08	1
2-Methylphenol	ND	Н	5.0	0.40	ug/L		03/27/25 13:37	03/28/25 13:08	1
2-Methylnaphthalene	ND	Н	5.0	0.60	ug/L		03/27/25 13:37	03/28/25 13:08	1
2-Nitroaniline	ND	Н	10	0.42	ug/L		03/27/25 13:37	03/28/25 13:08	1
2-Nitrophenol	ND	Н	5.0	0.48	ug/L		03/27/25 13:37	03/28/25 13:08	1
3,3'-Dichlorobenzidine	ND	Н	5.0	0.40	ug/L		03/27/25 13:37	03/28/25 13:08	1
3-Nitroaniline	ND	Н	10	0.48	ug/L		03/27/25 13:37	03/28/25 13:08	1

Eurofins Buffalo

Page 12 of 65

Client: Terracon Consultants Inc Job ID: 480-228086-1

Project/Site: Back Lot Lake Ave, Rochester, NY

Client Sample ID: MW-103 Date Collected: 03/19/25 15:00

Indeno[1,2,3-cd]pyrene

N-Nitrosodi-n-propylamine

N-Nitrosodiphenylamine

Isophorone

Naphthalene

Nitrobenzene

Phenanthrene

Phenol

Pyrene

Pentachlorophenol

Lab Sample ID: 480-228086-1

Matrix: Water

Method: SW846 8270D - Sem			•	•	•				
Analyte		Qualifier	RL		Unit	D		Analyzed	Dil Fa
4,6-Dinitro-2-methylphenol	ND	Н	10		ug/L			03/28/25 13:08	
4-Bromophenyl phenyl ether	ND		5.0		ug/L			03/28/25 13:08	
4-Chloro-3-methylphenol	ND	Н	5.0	0.45	ug/L		03/27/25 13:37	03/28/25 13:08	
4-Chloroaniline	ND	Н	5.0	0.59	ug/L		03/27/25 13:37	03/28/25 13:08	
4-Chlorophenyl phenyl ether	ND	Н	5.0	0.35	ug/L		03/27/25 13:37	03/28/25 13:08	
4-Methylphenol	ND	Н	10	0.36	ug/L		03/27/25 13:37	03/28/25 13:08	
4-Nitroaniline	ND	Н	10	0.25	ug/L		03/27/25 13:37	03/28/25 13:08	
4-Nitrophenol	ND	Н	10	1.5	ug/L		03/27/25 13:37	03/28/25 13:08	
Acenaphthene	ND	Н	5.0	0.41	ug/L		03/27/25 13:37	03/28/25 13:08	
Acenaphthylene	ND	Н	5.0	0.38	ug/L		03/27/25 13:37	03/28/25 13:08	
Acetophenone	ND	Н	5.0	0.54	ug/L		03/27/25 13:37	03/28/25 13:08	
Anthracene	ND	Н	5.0	0.28	ug/L		03/27/25 13:37	03/28/25 13:08	
Atrazine	ND	H *+	5.0	0.46	ug/L		03/27/25 13:37	03/28/25 13:08	
Benzaldehyde	ND	Н	5.0	0.27	ug/L		03/27/25 13:37	03/28/25 13:08	
Benzo[a]anthracene	ND	Н	5.0	0.36	ug/L		03/27/25 13:37	03/28/25 13:08	
Benzo[a]pyrene	ND	Н	5.0	0.47	ug/L		03/27/25 13:37	03/28/25 13:08	
Benzo[b]fluoranthene	ND	Н	5.0	0.34	ug/L		03/27/25 13:37	03/28/25 13:08	
Benzo[g,h,i]perylene	ND	Н	5.0	0.35	ug/L		03/27/25 13:37	03/28/25 13:08	
Benzo[k]fluoranthene	ND	Н	5.0	0.73	ug/L		03/27/25 13:37	03/28/25 13:08	
Bis(2-chloroethoxy)methane	ND	H	5.0	0.35	ug/L		03/27/25 13:37	03/28/25 13:08	
Bis(2-chloroethyl)ether	ND	Н	5.0		ug/L		03/27/25 13:37	03/28/25 13:08	
Bis(2-ethylhexyl) phthalate	ND	Н	5.0		ug/L		03/27/25 13:37	03/28/25 13:08	
Butyl benzyl phthalate	ND	Н	5.0	1.0	ug/L		03/27/25 13:37	03/28/25 13:08	
Caprolactam	ND	Н	5.0		ug/L		03/27/25 13:37	03/28/25 13:08	
Carbazole	ND	Н	5.0		ug/L		03/27/25 13:37	03/28/25 13:08	
Chrysene	ND	Н	5.0		ug/L		03/27/25 13:37	03/28/25 13:08	
Dibenz(a,h)anthracene	ND	Н	5.0	0.42	-		03/27/25 13:37	03/28/25 13:08	
Di-n-butyl phthalate	0.91	JHB	5.0		ug/L		03/27/25 13:37	03/28/25 13:08	
Di-n-octyl phthalate	ND	Н	5.0	0.47	ug/L		03/27/25 13:37	03/28/25 13:08	
Dibenzofuran	ND	Н	10		ug/L		03/27/25 13:37	03/28/25 13:08	
Diethyl phthalate	ND	Н	5.0		ug/L		03/27/25 13:37	03/28/25 13:08	
Dimethyl phthalate	ND	Н	5.0		ug/L			03/28/25 13:08	
Fluoranthene	ND	Н	5.0		ug/L			03/28/25 13:08	
Fluorene	ND	Н	5.0		ug/L			03/28/25 13:08	
Hexachlorobenzene	ND	. : :	5.0	0.51				03/28/25 13:08	
Hexachlorobutadiene	ND	Н	5.0		ug/L			03/28/25 13:08	
Hexachlorocyclopentadiene	ND	Н	5.0	0.59				03/28/25 13:08	
Hexachloroethane	ND		5.0		ug/L			03/28/25 13:08	

Eurofins Buffalo

03/27/25 13:37 03/28/25 13:08

03/27/25 13:37 03/28/25 13:08

03/27/25 13:37 03/28/25 13:08

03/27/25 13:37 03/28/25 13:08

03/27/25 13:37 03/28/25 13:08

03/27/25 13:37 03/28/25 13:08

03/27/25 13:37 03/28/25 13:08

03/27/25 13:37 03/28/25 13:08

03/27/25 13:37 03/28/25 13:08

03/27/25 13:37 03/28/25 13:08

5.0

5.0

5.0

5.0

5.0

5.0

10

5.0

5.0

5.0

0.47 ug/L

0.43 ug/L

0.54 ug/L

0.51 ug/L

0.76 ug/L

0.29 ug/L

0.44 ug/L

0.39 ug/L

0.34 ug/L

2.2 ug/L

ND H

_

4

6

<u>a</u>

11

12

14

Client: Terracon Consultants Inc Job ID: 480-228086-1

Project/Site: Back Lot Lake Ave, Rochester, NY

Client Sample ID: MW-103 Lab Sample ID: 480-228086-1

Date Collected: 03/19/25 15:00 **Matrix: Water** Date Received: 03/21/25 09:00

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5 (Surr)	66		29 - 129				03/27/25 13:37	03/28/25 13:08	
Phenol-d5 (Surr)	34		10 - 120				03/27/25 13:37	03/28/25 13:08	1
p-Terphenyl-d14 (Surr)	99		33 - 132				03/27/25 13:37	03/28/25 13:08	7
2,4,6-Tribromophenol (Surr)	81		25 - 144				03/27/25 13:37	03/28/25 13:08	
2-Fluorobiphenyl (Surr)	84		53 - 126				03/27/25 13:37	03/28/25 13:08	1
2-Fluorophenol (Surr)	53		24 - 120				03/27/25 13:37	03/28/25 13:08	
Method: SW846 6010D - M	etals (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	0.14	J	0.20	0.060	mg/L		03/25/25 08:31	03/25/25 15:48	
Antimony	ND		0.020	0.0068	mg/L		03/25/25 08:31	03/25/25 15:48	•
Arsenic	ND		0.015	0.0056	mg/L		03/25/25 08:31	03/25/25 15:48	•
Barium	0.28		0.0020	0.00070	mg/L		03/25/25 08:31	03/25/25 15:48	
Beryllium	ND		0.0020	0.00030	mg/L		03/25/25 08:31	03/25/25 15:48	•
Cadmium	ND		0.0020	0.00050	mg/L		03/25/25 08:31	03/25/25 15:48	•
Calcium	252	В	0.50	0.10	mg/L		03/25/25 08:31	03/25/25 15:48	1
Chromium	0.0042		0.0040	0.0010	mg/L		03/25/25 08:31	03/25/25 15:48	•
Cobalt	0.0012	JB	0.0040	0.00063	mg/L		03/25/25 08:31	03/25/25 15:48	•
Copper	0.024	^5+	0.010	0.0016	mg/L		03/25/25 08:31	03/25/25 15:48	
Iron	6.8	^5-	0.050	0.019	mg/L		03/25/25 08:31	03/25/25 15:48	1
Lead	0.049	^5+ B	0.010	0.0030	mg/L		03/25/25 08:31	03/25/25 15:48	1
Magnesium	46.9		0.20	0.043	mg/L		03/25/25 08:31	03/25/25 15:48	1
Manganese	0.49		0.0030	0.00040	mg/L		03/25/25 08:31	03/25/25 15:48	1
Nickel	0.0045	J	0.010	0.0013	mg/L		03/25/25 08:31	03/25/25 15:48	1
Potassium	13.4		0.50	0.10	mg/L		03/25/25 08:31	03/25/25 15:48	1
Selenium	ND		0.025	0.0087	mg/L		03/25/25 08:31	03/25/25 15:48	1
Silver	ND	^5-	0.0060	0.0017	mg/L		03/25/25 08:31	03/25/25 15:48	•
Sodium	325	В	1.0	0.32	mg/L		03/25/25 08:31	03/25/25 15:48	
Thallium	ND		0.020	0.010	mg/L		03/25/25 08:31	03/25/25 15:48	
Vanadium	ND		0.0050	0.0015	mg/L		03/25/25 08:31	03/25/25 15:48	•
Zinc	0.020		0.010	0.0015	mg/L		03/25/25 08:31	03/25/25 15:48	1

Method. Swo46 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.00095		0.00020	0.000042	mg/L		03/26/25 07:55	03/26/25 14:28	1

Client: Terracon Consultants Inc Job ID: 480-228086-1

Project/Site: Back Lot Lake Ave, Rochester, NY

Client Sample ID: MW-107 Date Collected: 03/19/25 16:20 Lab Sample ID: 480-228086-2

Matrix: Water

Date Received: 03/21/25 09:00

Analyte	Result Qualifier	RL	MDL		<u>D</u> .	Prepared	Analyzed	Dil F
1,1,1-Trichloroethane	ND	2.0	1.6	ug/L			03/26/25 17:14	
1,1,2,2-Tetrachloroethane	ND	2.0	0.42	ug/L			03/26/25 17:14	
1,1,2-Trichloroethane	ND	2.0	0.46	ug/L			03/26/25 17:14	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	2.0	0.62	ug/L			03/26/25 17:14	
1,1-Dichloroethane	ND	2.0	0.76	ug/L			03/26/25 17:14	
1,1-Dichloroethene	ND	2.0	0.58	ug/L			03/26/25 17:14	
1,2,4-Trichlorobenzene	ND	2.0	0.82	ug/L			03/26/25 17:14	
1,2-Dibromo-3-Chloropropane	ND	2.0	0.78	ug/L			03/26/25 17:14	
1,2-Dichlorobenzene	ND	2.0	1.6	ug/L			03/26/25 17:14	
1,2-Dichloroethane	ND	2.0	0.42	ug/L			03/26/25 17:14	
1,2-Dichloropropane	ND	2.0	1.4	ug/L			03/26/25 17:14	
1,3-Dichlorobenzene	ND	2.0		ug/L			03/26/25 17:14	
1,4-Dichlorobenzene	ND	2.0		ug/L			03/26/25 17:14	
2-Butanone (MEK)	ND	20		ug/L			03/26/25 17:14	
2-Hexanone	ND	10		ug/L			03/26/25 17:14	
1-Methyl-2-pentanone (MIBK)	ND	10		ug/L			03/26/25 17:14	
Acetone	ND	20		ug/L			03/26/25 17:14	
Benzene	ND	2.0		ug/L			03/26/25 17:14	
Bromodichloromethane	ND	2.0		ug/L			03/26/25 17:14	
Bromoform	ND	2.0		ug/L			03/26/25 17:14	
Bromomethane	ND	2.0		ug/L			03/26/25 17:14	
Carbon disulfide	ND ND	2.0		ug/L			03/26/25 17:14	
Carbon tetrachloride	ND ND	2.0		ug/L ug/L			03/26/25 17:14	
Chlorobenzene	ND ND	2.0		ug/L ug/L			03/26/25 17:14	
Dibromochloromethane	ND	2.0		ug/L ug/L			03/26/25 17:14	
Chloroethane	ND ND	2.0		ug/L ug/L			03/26/25 17:14	
Chloroform	ND ND	2.0		-			03/26/25 17:14	
				ug/L				
Chloromethane	ND	2.0		ug/L			03/26/25 17:14	
sis-1,2-Dichloroethene	ND	2.0		ug/L			03/26/25 17:14	
sis-1,3-Dichloropropene	ND	2.0		ug/L			03/26/25 17:14	
Cyclohexane	ND	2.0		ug/L			03/26/25 17:14	
Dichlorodifluoromethane	ND F1*+	2.0		ug/L			03/26/25 17:14	
Ethylbenzene	ND	2.0		ug/L			03/26/25 17:14	
,2-Dibromoethane	ND	2.0		ug/L			03/26/25 17:14	
sopropylbenzene	ND	2.0		ug/L			03/26/25 17:14	
Methyl acetate	ND	5.0		ug/L			03/26/25 17:14	
Methyl tert-butyl ether	ND	2.0		ug/L			03/26/25 17:14	
Methylcyclohexane	ND	2.0		ug/L			03/26/25 17:14	
Methylene Chloride	ND	2.0		ug/L			03/26/25 17:14	
Styrene	ND	2.0		ug/L			03/26/25 17:14	
etrachloroethene	ND *+	2.0	0.72	ug/L			03/26/25 17:14	
oluene	ND	2.0	1.0	ug/L			03/26/25 17:14	
rans-1,2-Dichloroethene	ND	2.0	1.8	ug/L			03/26/25 17:14	
rans-1,3-Dichloropropene	ND	2.0	0.74	ug/L			03/26/25 17:14	
richloroethene	ND	2.0	0.92	ug/L			03/26/25 17:14	
richlorofluoromethane	ND	2.0	1.8	ug/L			03/26/25 17:14	
/inyl chloride	ND	2.0	1.8	ug/L			03/26/25 17:14	
Xylenes, Total	ND	4.0		ug/L			03/26/25 17:14	

Eurofins Buffalo

+

6

8

10

12

1 1

Client: Terracon Consultants Inc Job ID: 480-228086-1

Project/Site: Back Lot Lake Ave, Rochester, NY

Client Sample ID: MW-107

Date Received: 03/21/25 09:00

Lab Sample ID: 480-228086-2 Date Collected: 03/19/25 16:20

Matrix: Water

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	94	80 - 120		03/26/25 17:14	2
1,2-Dichloroethane-d4 (Surr)	97	77 - 120		03/26/25 17:14	2
4-Bromofluorobenzene (Surr)	114	73 - 120		03/26/25 17:14	2
Dibromofluoromethane (Surr)	100	75 - 123		03/26/25 17:14	2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Biphenyl	ND		5.0	0.65	ug/L		03/25/25 06:50	03/26/25 18:07	
ois (2-chloroisopropyl) ether	ND		5.0	0.52	ug/L		03/25/25 06:50	03/26/25 18:07	
2,4,5-Trichlorophenol	ND		5.0	0.48	ug/L		03/25/25 06:50	03/26/25 18:07	
2,4,6-Trichlorophenol	ND		5.0	0.61	ug/L		03/25/25 06:50	03/26/25 18:07	
2,4-Dichlorophenol	ND		5.0	0.51	ug/L		03/25/25 06:50	03/26/25 18:07	
2,4-Dimethylphenol	ND		5.0	0.50	ug/L		03/25/25 06:50	03/26/25 18:07	
2,4-Dinitrophenol	ND	*_	10	2.2	ug/L		03/25/25 06:50	03/26/25 18:07	
2,4-Dinitrotoluene	ND		5.0	0.45	ug/L		03/25/25 06:50	03/26/25 18:07	
2,6-Dinitrotoluene	ND		5.0	0.40	ug/L		03/25/25 06:50	03/26/25 18:07	
2-Chloronaphthalene	ND		5.0	0.46	ug/L		03/25/25 06:50	03/26/25 18:07	
2-Chlorophenol	ND		5.0	0.53	ug/L		03/25/25 06:50	03/26/25 18:07	
2-Methylphenol	ND		5.0	0.40	ug/L		03/25/25 06:50	03/26/25 18:07	
2-Methylnaphthalene	ND		5.0		ug/L		03/25/25 06:50	03/26/25 18:07	
2-Nitroaniline	ND		10	0.42	-		03/25/25 06:50	03/26/25 18:07	
2-Nitrophenol	ND		5.0	0.48	ug/L		03/25/25 06:50	03/26/25 18:07	
3,3'-Dichlorobenzidine	ND		5.0	0.40	ug/L		03/25/25 06:50	03/26/25 18:07	
3-Nitroaniline	ND		10	0.48	•		03/25/25 06:50	03/26/25 18:07	
,6-Dinitro-2-methylphenol	ND	*_	10		ug/L		03/25/25 06:50	03/26/25 18:07	
-Bromophenyl phenyl ether	ND		5.0		ug/L			03/26/25 18:07	
-Chloro-3-methylphenol	ND		5.0	0.45	-			03/26/25 18:07	
l-Chloroaniline	ND		5.0	0.59	_			03/26/25 18:07	
I-Chlorophenyl phenyl ether	ND		5.0	0.35				03/26/25 18:07	
I-Methylphenol	ND		10	0.36	_		03/25/25 06:50	03/26/25 18:07	
l-Nitroaniline	ND		10	0.25	-		03/25/25 06:50		
l-Nitrophenol	ND		10		ug/L			03/26/25 18:07	
Acenaphthene	ND		5.0		ug/L			03/26/25 18:07	
Acenaphthylene	ND		5.0		ug/L			03/26/25 18:07	
Acetophenone	ND		5.0		ug/L			03/26/25 18:07	
Anthracene	ND		5.0	0.28	-			03/26/25 18:07	
Atrazine	ND	*+	5.0	0.46	-			03/26/25 18:07	
Benzaldehyde	ND		5.0		ug/L			03/26/25 18:07	
Benzo[a]anthracene	ND		5.0	0.36	-			03/26/25 18:07	
Benzo[a]pyrene	ND		5.0		ug/L			03/26/25 18:07	
Benzo[b]fluoranthene	ND		5.0		ug/L			03/26/25 18:07	
Benzo[g,h,i]perylene	ND		5.0	0.35	-		03/25/25 06:50	03/26/25 18:07	
Benzo[k]fluoranthene	ND		5.0	0.73	-			03/26/25 18:07	
Bis(2-chloroethoxy)methane	ND		5.0	0.35				03/26/25 18:07	
Bis(2-chloroethyl)ether	ND		5.0		ug/L			03/26/25 18:07	
Bis(2-ethylhexyl) phthalate	ND		5.0		ug/L			03/26/25 18:07	
Butyl benzyl phthalate	ND		5.0		ug/L			03/26/25 18:07	
Caprolactam	ND		5.0		ug/L			03/26/25 18:07	
Carbazole	ND		5.0		ug/L			03/26/25 18:07	
Chrysene	ND		5.0		ug/L			03/26/25 18:07	

Eurofins Buffalo

Client: Terracon Consultants Inc Job ID: 480-228086-1

Project/Site: Back Lot Lake Ave, Rochester, NY

Client Sample ID: MW-107 Date Collected: 03/19/25 16:20

Date Received: 03/21/25 09:00

Lab Sample ID: 480-228086-2

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dibenz(a,h)anthracene	ND		5.0	0.42	ug/L		03/25/25 06:50	03/26/25 18:07	1
Di-n-butyl phthalate	0.61	J	5.0	0.31	ug/L		03/25/25 06:50	03/26/25 18:07	1
Di-n-octyl phthalate	ND		5.0	0.47	ug/L		03/25/25 06:50	03/26/25 18:07	1
Dibenzofuran	ND		10	0.51	ug/L		03/25/25 06:50	03/26/25 18:07	1
Diethyl phthalate	ND		5.0	0.22	ug/L		03/25/25 06:50	03/26/25 18:07	1
Dimethyl phthalate	ND		5.0	0.36	ug/L		03/25/25 06:50	03/26/25 18:07	1
Fluoranthene	ND		5.0	0.40	ug/L		03/25/25 06:50	03/26/25 18:07	1
Fluorene	ND		5.0	0.36	ug/L		03/25/25 06:50	03/26/25 18:07	1
Hexachlorobenzene	ND		5.0	0.51	ug/L		03/25/25 06:50	03/26/25 18:07	1
Hexachlorobutadiene	ND		5.0	0.68	ug/L		03/25/25 06:50	03/26/25 18:07	1
Hexachlorocyclopentadiene	ND		5.0	0.59	ug/L		03/25/25 06:50	03/26/25 18:07	1
Hexachloroethane	ND		5.0	0.59	ug/L		03/25/25 06:50	03/26/25 18:07	1
Indeno[1,2,3-cd]pyrene	ND		5.0	0.47	ug/L		03/25/25 06:50	03/26/25 18:07	1
Isophorone	ND		5.0	0.43	ug/L		03/25/25 06:50	03/26/25 18:07	1
N-Nitrosodi-n-propylamine	ND		5.0	0.54	ug/L		03/25/25 06:50	03/26/25 18:07	1
N-Nitrosodiphenylamine	ND		5.0	0.51	ug/L		03/25/25 06:50	03/26/25 18:07	1
Naphthalene	ND		5.0	0.76	ug/L		03/25/25 06:50	03/26/25 18:07	1
Nitrobenzene	ND		5.0	0.29	ug/L		03/25/25 06:50	03/26/25 18:07	1
Pentachlorophenol	ND		10	2.2	ug/L		03/25/25 06:50	03/26/25 18:07	1
Phenanthrene	ND		5.0	0.44	ug/L		03/25/25 06:50	03/26/25 18:07	1
Phenol	ND		5.0	0.39	ug/L		03/25/25 06:50	03/26/25 18:07	1
Pyrene	ND		5.0	0.34	ug/L		03/25/25 06:50	03/26/25 18:07	1
Surrogato	%Recovery	Qualifier	Limite				Propared	Analyzod	Dil Ead

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	63		29 - 129	03/25/25 06:50	03/26/25 18:07	1
Phenol-d5 (Surr)	33		10 - 120	03/25/25 06:50	03/26/25 18:07	1
p-Terphenyl-d14 (Surr)	48		33 - 132	03/25/25 06:50	03/26/25 18:07	1
2,4,6-Tribromophenol (Surr)	75		25 - 144	03/25/25 06:50	03/26/25 18:07	1
2-Fluorobiphenyl (Surr)	74		53 - 126	03/25/25 06:50	03/26/25 18:07	1
2-Fluorophenol (Surr)	52		24 - 120	03/25/25 06:50	03/26/25 18:07	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND	H	5.0	0.65	ug/L		03/27/25 13:37	03/28/25 13:35	1
bis (2-chloroisopropyl) ether	ND	Н	5.0	0.52	ug/L		03/27/25 13:37	03/28/25 13:35	1
2,4,5-Trichlorophenol	ND	Н	5.0	0.48	ug/L		03/27/25 13:37	03/28/25 13:35	1
2,4,6-Trichlorophenol	ND	Н	5.0	0.61	ug/L		03/27/25 13:37	03/28/25 13:35	1
2,4-Dichlorophenol	ND	Н	5.0	0.51	ug/L		03/27/25 13:37	03/28/25 13:35	1
2,4-Dimethylphenol	ND	Н	5.0	0.50	ug/L		03/27/25 13:37	03/28/25 13:35	1
2,4-Dinitrophenol	ND	Н	10	2.2	ug/L		03/27/25 13:37	03/28/25 13:35	1
2,4-Dinitrotoluene	ND	Н	5.0	0.45	ug/L		03/27/25 13:37	03/28/25 13:35	1
2,6-Dinitrotoluene	ND	Н	5.0	0.40	ug/L		03/27/25 13:37	03/28/25 13:35	1
2-Chloronaphthalene	ND	Н	5.0	0.46	ug/L		03/27/25 13:37	03/28/25 13:35	1
2-Chlorophenol	ND	Н	5.0	0.53	ug/L		03/27/25 13:37	03/28/25 13:35	1
2-Methylphenol	ND	Н	5.0	0.40	ug/L		03/27/25 13:37	03/28/25 13:35	1
2-Methylnaphthalene	ND	Н	5.0	0.60	ug/L		03/27/25 13:37	03/28/25 13:35	1
2-Nitroaniline	ND	Н	10	0.42	ug/L		03/27/25 13:37	03/28/25 13:35	1
2-Nitrophenol	ND	Н	5.0	0.48	ug/L		03/27/25 13:37	03/28/25 13:35	1
3,3'-Dichlorobenzidine	ND	Н	5.0	0.40	ug/L		03/27/25 13:37	03/28/25 13:35	1
3-Nitroaniline	ND	Н	10	0.48	ug/L		03/27/25 13:37	03/28/25 13:35	1

Eurofins Buffalo

Page 17 of 65

Client: Terracon Consultants Inc Job ID: 480-228086-1

Project/Site: Back Lot Lake Ave, Rochester, NY

Client Sample ID: MW-107
Date Collected: 03/19/25 16:20

Lab Sample ID: 480-228086-2

Matrix: Water

Method: SW846 8270D - Semivolatile Organic Compounds (GC	(MC)	
Date Received: 03/21/25 09:00		
Data Colloctod: 00/10/20 10:20		

Method: SW846 8270D - Semiv Analyte	olatile Orga Result (_	nas (GC/N RL		E (Contin Unit	iuea) D	Prepared	Analyzed	Dil Fac
4,6-Dinitro-2-methylphenol	ND H	<u> </u>	10		ug/L	_ =		03/28/25 13:35	1
4-Bromophenyl phenyl ether	ND H		5.0		ug/L			03/28/25 13:35	
4-Chloro-3-methylphenol	ND I		5.0	0.45	-			03/28/25 13:35	1
4-Chloroaniline	ND I		5.0		ug/L			03/28/25 13:35	1
4-Chlorophenyl phenyl ether	ND H		5.0		ug/L			03/28/25 13:35	
4-Methylphenol	ND I		10	0.36	_			03/28/25 13:35	1
4-Nitroaniline	ND I		10		ug/L ug/L			03/28/25 13:35	1
4-Nitrophenol	ND H		10		ug/L			03/28/25 13:35	
Acenaphthene	ND I		5.0	0.41	_			03/28/25 13:35	1
Acenaphthylene	ND I		5.0	0.41	J			03/28/25 13:35	1
Acetophenone	ND H		5.0		ug/L			03/28/25 13:35	· · · · · · · · · · · · · · · · · · ·
Anthracene	ND I		5.0	0.28	-			03/28/25 13:35	1
Atrazine		' - *+	5.0	0.46	_			03/28/25 13:35	1
Benzaldehyde	ND H		5.0	0.40				03/28/25 13:35	
Benzo[a]anthracene	ND I		5.0	0.27	-			03/28/25 13:35	1
Benzo[a]pyrene	ND I		5.0	0.30	-			03/28/25 13:35	1
Benzo[b]fluoranthene	ND H		5.0	0.47				03/28/25 13:35	
Benzo[g,h,i]perylene	ND I		5.0	0.35	_			03/28/25 13:35	1
Benzo[k]fluoranthene	ND I		5.0		ug/L ug/L			03/28/25 13:35	1
Bis(2-chloroethoxy)methane	ND H		5.0		ug/L ug/L			03/28/25 13:35	
Bis(2-chloroethyl)ether	ND I		5.0	0.40	•			03/28/25 13:35	1
Bis(2-ethylhexyl) phthalate	ND I		5.0		ug/L ug/L			03/28/25 13:35	1
Butyl benzyl phthalate	ND H		5.0		ug/L			03/28/25 13:35	
Caprolactam	ND I		5.0		ug/L ug/L			03/28/25 13:35	1
Carbazole	ND I		5.0	0.30	_			03/28/25 13:35	1
Chrysene	ND H		5.0	0.33				03/28/25 13:35	
Dibenz(a,h)anthracene	ND I		5.0	0.42	-			03/28/25 13:35	1
` ′		, J H B	5.0	0.42	-			03/28/25 13:35	1
Di-n-butyl phthalate Di-n-octyl phthalate	ND H		5.0		ug/L ug/L			03/28/25 13:35	' 1
Dibenzofuran	ND I		10	0.47	ug/L			03/28/25 13:35	1
Diethyl phthalate		J Н	5.0	0.22	-			03/28/25 13:35	1
Dimethyl phthalate	ND H		5.0	0.36				03/28/25 13:35	· · · · · · · · · · · · · · · · · · ·
Fluoranthene	ND I		5.0	0.40	-			03/28/25 13:35	1
Fluorene	ND F		5.0	0.36	_			03/28/25 13:35	1
Hexachlorobenzene	ND H		5.0	0.51				03/28/25 13:35	· · · · · · · · · · · · · · · · · · ·
Hexachlorobutadiene	ND I		5.0	0.68	•			03/28/25 13:35	1
Hexachlorocyclopentadiene	ND I		5.0	0.59	· ·			03/28/25 13:35	1
Hexachloroethane	ND H		5.0		ug/L			03/28/25 13:35	· · · · · · · · · · · · · · · · · · ·
Indeno[1,2,3-cd]pyrene	ND I		5.0		ug/L			03/28/25 13:35	1
Isophorone	ND F		5.0		ug/L			03/28/25 13:35	1
N-Nitrosodi-n-propylamine	ND H		5.0	0.54				03/28/25 13:35	· · · · · · · · · · · · · · · · · · ·
N-Nitrosodiphenylamine	ND I		5.0	0.54				03/28/25 13:35	1
Naphthalene	ND I		5.0	0.76				03/28/25 13:35	1
Nitrobenzene	ND H		5.0	0.70				03/28/25 13:35	
Pentachlorophenol	ND F		10		ug/L ug/L			03/28/25 13:35	1
Phenanthrene	ND F		5.0		ug/L ug/L			03/28/25 13:35	1
Phenol	ND H		5.0					03/28/25 13:35	1 1
Pyrene	ND F		5.0 5.0		ug/L ug/L			03/28/25 13:35	1
1,7.5.10	IND I	•	5.0	0.54	ug/∟		00121120 10.01	33/20/23 13.33	'

Eurofins Buffalo

Client: Terracon Consultants Inc Job ID: 480-228086-1

Project/Site: Back Lot Lake Ave, Rochester, NY

Client Sample ID: MW-107 Lab Sample ID: 480-228086-2

Date Collected: 03/19/25 16:20 Matrix: Water

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	61		29 - 129				03/27/25 13:37	03/28/25 13:35	
Phenol-d5 (Surr)	31		10 - 120				03/27/25 13:37	03/28/25 13:35	1
p-Terphenyl-d14 (Surr)	92		33 - 132				03/27/25 13:37	03/28/25 13:35	1
2,4,6-Tribromophenol (Surr)	81		25 - 144				03/27/25 13:37	03/28/25 13:35	1
2-Fluorobiphenyl (Surr)	78		53 - 126				03/27/25 13:37	03/28/25 13:35	1
2-Fluorophenol (Surr)	50		24 - 120				03/27/25 13:37	03/28/25 13:35	1
Method: SW846 6010D - M	letals (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	0.19	J	0.20	0.060	mg/L		03/25/25 08:31	03/25/25 15:50	1
Antimony	ND		0.020	0.0068	mg/L		03/25/25 08:31	03/25/25 15:50	1
Arsenic	ND		0.015	0.0056	mg/L		03/25/25 08:31	03/25/25 15:50	1
Barium	0.16		0.0020	0.00070	mg/L		03/25/25 08:31	03/25/25 15:50	1
Beryllium	ND		0.0020	0.00030	mg/L		03/25/25 08:31	03/25/25 15:50	1
Cadmium	ND		0.0020	0.00050	mg/L		03/25/25 08:31	03/25/25 15:50	1
Calcium	274	В	0.50	0.10	mg/L		03/25/25 08:31	03/25/25 15:50	1
Chromium	0.0084		0.0040	0.0010	mg/L		03/25/25 08:31	03/25/25 15:50	1
Cobalt	ND		0.0040	0.00063	mg/L		03/25/25 08:31	03/25/25 15:50	1
Copper	0.0044	J ^5+	0.010	0.0016	mg/L		03/25/25 08:31	03/25/25 15:50	1
Iron	2.5	^5-	0.050	0.019	mg/L		03/25/25 08:31	03/25/25 15:50	1
Lead	0.023	^5+ B	0.010	0.0030	J		03/25/25 08:31	03/25/25 15:50	1
Magnesium	47.4		0.20	0.043	mg/L		03/25/25 08:31	03/25/25 15:50	1
Manganese	0.34		0.0030	0.00040	mg/L		03/25/25 08:31	03/25/25 15:50	1
Nickel	0.0064	J	0.010	0.0013	mg/L		03/25/25 08:31	03/25/25 15:50	1
Potassium	12.6		0.50	0.10	mg/L		03/25/25 08:31	03/25/25 15:50	1
Selenium	ND		0.025	0.0087	mg/L		03/25/25 08:31	03/25/25 15:50	1
Silver	ND	^5-	0.0060	0.0017	mg/L		03/25/25 08:31	03/25/25 15:50	1
Sodium	178	В	1.0	0.32	mg/L		03/25/25 08:31	03/25/25 15:50	1
Thallium	ND		0.020	0.010	mg/L		03/25/25 08:31	03/25/25 15:50	1
Vanadium	0.0015	J	0.0050	0.0015	mg/L		03/25/25 08:31	03/25/25 15:50	1
Zinc	0.010		0.010	0.0015	mg/L		03/25/25 08:31	03/25/25 15:50	1

Method: SW846 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.00014	J	0.00020	0.000042	mg/L		03/26/25 07:55	03/26/25 14:30	1

2

3

4

6

8

10

12

14

Client: Terracon Consultants Inc Job ID: 480-228086-1

Project/Site: Back Lot Lake Ave, Rochester, NY

Client Sample ID: MWR-102

Lab Sample ID: 480-228086-3 Date Collected: 03/19/25 16:25 Date Received: 03/21/25 09:00

Matrix: Water

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L		-	03/26/25 17:37	
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			03/26/25 17:37	•
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			03/26/25 17:37	•
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			03/26/25 17:37	· · · · · · · · ·
1,1-Dichloroethane	ND		1.0	0.38	ug/L			03/26/25 17:37	
1,1-Dichloroethene	ND		1.0	0.29	ug/L			03/26/25 17:37	
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			03/26/25 17:37	
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	-			03/26/25 17:37	
1,2-Dichlorobenzene	ND		1.0		ug/L			03/26/25 17:37	
1,2-Dichloroethane	ND		1.0	0.21	ug/L			03/26/25 17:37	
1,2-Dichloropropane	ND		1.0		ug/L			03/26/25 17:37	
1,3-Dichlorobenzene	ND		1.0	0.78	•			03/26/25 17:37	
1,4-Dichlorobenzene	ND		1.0		ug/L			03/26/25 17:37	
2-Butanone (MEK)	ND		10		ug/L			03/26/25 17:37	
2-Hexanone	ND		5.0		ug/L			03/26/25 17:37	
4-Methyl-2-pentanone (MIBK)	ND		5.0		ug/L			03/26/25 17:37	,
Acetone	ND		10		ug/L			03/26/25 17:37	
Benzene	ND		1.0	0.41	-			03/26/25 17:37	
Bromodichloromethane	ND		1.0	0.39				03/26/25 17:37	
Bromoform	ND		1.0	0.26	-			03/26/25 17:37	
Bromomethane	ND		1.0		ug/L			03/26/25 17:37	
Carbon disulfide	ND		1.0	0.03				03/26/25 17:37	,
Carbon tetrachloride	ND ND		1.0	0.13	-			03/26/25 17:37	,
Chlorobenzene	ND ND		1.0	0.27	-			03/26/25 17:37	,
Dibromochloromethane	ND		1.0	0.73				03/26/25 17:37	
Chloroethane	ND ND		1.0	0.32	-			03/26/25 17:37	
Chloroform	ND ND		1.0	0.34	-			03/26/25 17:37	
Chloromethane									
	ND		1.0	0.35	-			03/26/25 17:37	,
cis-1,2-Dichloroethene	1.3 ND		1.0	0.81	-			03/26/25 17:37	,
cis-1,3-Dichloropropene			1.0	0.36				03/26/25 17:37	
Cyclohexane	ND ND	*.	1.0	0.18	-			03/26/25 17:37	
Dichlorodifluoromethane	ND '	~ +	1.0	0.68	-			03/26/25 17:37	
Ethylbenzene	ND		1.0	0.74				03/26/25 17:37	
1,2-Dibromoethane	ND		1.0	0.73	-			03/26/25 17:37	
Isopropylbenzene	ND		1.0	0.79	-			03/26/25 17:37	,
Methyl acetate	ND		2.5		ug/L			03/26/25 17:37	
Methyl tert-butyl ether	13		1.0		ug/L			03/26/25 17:37	•
Methylcyclohexane	ND		1.0		ug/L			03/26/25 17:37	,
Methylene Chloride	ND		1.0		ug/L			03/26/25 17:37	
Styrene	ND		1.0		ug/L			03/26/25 17:37	,
Tetrachloroethene	ND '	*+	1.0		ug/L			03/26/25 17:37	•
Toluene	ND		1.0		ug/L			03/26/25 17:37	
trans-1,2-Dichloroethene	ND		1.0		ug/L			03/26/25 17:37	,
trans-1,3-Dichloropropene	ND		1.0		ug/L			03/26/25 17:37	,
Trichloroethene	ND		1.0		ug/L			03/26/25 17:37	
Trichlorofluoromethane	ND		1.0	0.88	ug/L			03/26/25 17:37	
Vinyl chloride	ND		1.0	0.90	ug/L			03/26/25 17:37	•
Xylenes, Total	ND		2.0	0.66	ug/L			03/26/25 17:37	

Eurofins Buffalo

Client: Terracon Consultants Inc Job ID: 480-228086-1

Project/Site: Back Lot Lake Ave, Rochester, NY

Client Sample ID: MWR-102

Date Collected: 03/19/25 16:25 Date Received: 03/21/25 09:00 Lab Sample ID: 480-228086-3

Matrix: Water

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	96	80 - 120		03/26/25 17:37	1
1,2-Dichloroethane-d4 (Surr)	96	77 - 120		03/26/25 17:37	1
4-Bromofluorobenzene (Surr)	113	73 - 120		03/26/25 17:37	1
Dibromofluoromethane (Surr)	101	75 - 123		03/26/25 17:37	1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Biphenyl	ND	5.0	0.65	ug/L		03/25/25 06:50	03/26/25 19:54	
bis (2-chloroisopropyl) ether	ND	5.0	0.52	ug/L		03/25/25 06:50	03/26/25 19:54	
2,4,5-Trichlorophenol	ND	5.0	0.48	ug/L		03/25/25 06:50	03/26/25 19:54	
2,4,6-Trichlorophenol	ND	5.0	0.61	ug/L		03/25/25 06:50	03/26/25 19:54	
2,4-Dichlorophenol	ND	5.0	0.51	ug/L		03/25/25 06:50	03/26/25 19:54	
2,4-Dimethylphenol	ND	5.0	0.50	ug/L		03/25/25 06:50	03/26/25 19:54	
2,4-Dinitrophenol	ND *-	10	2.2	ug/L		03/25/25 06:50	03/26/25 19:54	
2,4-Dinitrotoluene	ND	5.0	0.45	ug/L		03/25/25 06:50	03/26/25 19:54	
2,6-Dinitrotoluene	ND	5.0	0.40	ug/L		03/25/25 06:50	03/26/25 19:54	
2-Chloronaphthalene	ND	5.0	0.46	ug/L		03/25/25 06:50	03/26/25 19:54	
2-Chlorophenol	ND	5.0	0.53	ug/L		03/25/25 06:50	03/26/25 19:54	
2-Methylphenol	ND	5.0	0.40	ug/L		03/25/25 06:50	03/26/25 19:54	
2-Methylnaphthalene	ND	5.0	0.60	ug/L		03/25/25 06:50	03/26/25 19:54	
2-Nitroaniline	ND	10	0.42	ug/L		03/25/25 06:50	03/26/25 19:54	
2-Nitrophenol	ND	5.0	0.48	ug/L		03/25/25 06:50	03/26/25 19:54	
3,3'-Dichlorobenzidine	ND	5.0	0.40	ug/L		03/25/25 06:50	03/26/25 19:54	
3-Nitroaniline	ND	10	0.48	ug/L			03/26/25 19:54	
4,6-Dinitro-2-methylphenol	ND *-	10	2.2	ug/L		03/25/25 06:50	03/26/25 19:54	
4-Bromophenyl phenyl ether	ND	5.0		ug/L			03/26/25 19:54	
4-Chloro-3-methylphenol	ND	5.0		ug/L			03/26/25 19:54	
4-Chloroaniline	ND	5.0		ug/L		03/25/25 06:50	03/26/25 19:54	
4-Chlorophenyl phenyl ether	ND	5.0		ug/L			03/26/25 19:54	
4-Methylphenol	ND	10		ug/L			03/26/25 19:54	
4-Nitroaniline	ND	10		ug/L			03/26/25 19:54	
4-Nitrophenol	ND	10		ug/L			03/26/25 19:54	
Acenaphthene	ND	5.0		ug/L			03/26/25 19:54	
Acenaphthylene	ND	5.0		ug/L			03/26/25 19:54	
Acetophenone	ND	5.0		ug/L			03/26/25 19:54	
Anthracene	ND	5.0	0.28	J			03/26/25 19:54	
Atrazine	ND *+	5.0		ug/L			03/26/25 19:54	
Benzaldehyde	ND	5.0		ug/L			03/26/25 19:54	
Benzo[a]anthracene	ND	5.0		ug/L			03/26/25 19:54	
Benzo[a]pyrene	ND	5.0		ug/L			03/26/25 19:54	
Benzo[b]fluoranthene	ND	5.0		ug/L			03/26/25 19:54	
Benzo[g,h,i]perylene	ND	5.0		ug/L			03/26/25 19:54	
Benzo[k]fluoranthene	ND	5.0	0.73	-			03/26/25 19:54	
Bis(2-chloroethoxy)methane	ND	5.0		ug/L			03/26/25 19:54	
Bis(2-chloroethyl)ether	ND	5.0		ug/L			03/26/25 19:54	
Bis(2-ethylhexyl) phthalate	ND	5.0		ug/L ug/L			03/26/25 19:54	
Butyl benzyl phthalate	ND	5.0		ug/L			03/26/25 19:54	
Caprolactam	ND	5.0		ug/L ug/L			03/26/25 19:54	
Carbazole	ND	5.0		ug/L ug/L			03/26/25 19:54	
Chrysene	ND	5.0		ug/L ug/L			03/26/25 19:54	

Eurofins Buffalo

Л

5

7

9

11

13

14

Client: Terracon Consultants Inc Job ID: 480-228086-1

Project/Site: Back Lot Lake Ave, Rochester, NY

Client Sample ID: MWR-102 Date Collected: 03/19/25 16:25

Date Received: 03/21/25 09:00

Pyrene

Lab Sample ID: 480-228086-3

03/25/25 06:50 03/26/25 19:54

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dibenz(a,h)anthracene	ND		5.0	0.42	ug/L		03/25/25 06:50	03/26/25 19:54	1
Di-n-butyl phthalate	0.61	J	5.0	0.31	ug/L		03/25/25 06:50	03/26/25 19:54	1
Di-n-octyl phthalate	ND		5.0	0.47	ug/L		03/25/25 06:50	03/26/25 19:54	1
Dibenzofuran	ND		10	0.51	ug/L		03/25/25 06:50	03/26/25 19:54	1
Diethyl phthalate	0.54	J	5.0	0.22	ug/L		03/25/25 06:50	03/26/25 19:54	1
Dimethyl phthalate	ND		5.0	0.36	ug/L		03/25/25 06:50	03/26/25 19:54	1
Fluoranthene	ND		5.0	0.40	ug/L		03/25/25 06:50	03/26/25 19:54	1
Fluorene	ND		5.0	0.36	ug/L		03/25/25 06:50	03/26/25 19:54	1
Hexachlorobenzene	ND		5.0	0.51	ug/L		03/25/25 06:50	03/26/25 19:54	1
Hexachlorobutadiene	ND		5.0	0.68	ug/L		03/25/25 06:50	03/26/25 19:54	1
Hexachlorocyclopentadiene	ND		5.0	0.59	ug/L		03/25/25 06:50	03/26/25 19:54	1
Hexachloroethane	ND		5.0	0.59	ug/L		03/25/25 06:50	03/26/25 19:54	1
Indeno[1,2,3-cd]pyrene	ND		5.0	0.47	ug/L		03/25/25 06:50	03/26/25 19:54	1
Isophorone	ND		5.0	0.43	ug/L		03/25/25 06:50	03/26/25 19:54	1
N-Nitrosodi-n-propylamine	ND		5.0	0.54	ug/L		03/25/25 06:50	03/26/25 19:54	1
N-Nitrosodiphenylamine	ND		5.0	0.51	ug/L		03/25/25 06:50	03/26/25 19:54	1
Naphthalene	ND		5.0	0.76	ug/L		03/25/25 06:50	03/26/25 19:54	1
Nitrobenzene	ND		5.0	0.29	ug/L		03/25/25 06:50	03/26/25 19:54	1
Pentachlorophenol	ND		10	2.2	ug/L		03/25/25 06:50	03/26/25 19:54	1
Phenanthrene	ND		5.0	0.44	ug/L		03/25/25 06:50	03/26/25 19:54	1
Phenol	ND		5.0	0.39	ug/L		03/25/25 06:50	03/26/25 19:54	1

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	54		29 - 129	03/25/25 06:50 03/26/25 19:54	1
Phenol-d5 (Surr)	27		10 - 120	03/25/25 06:50 03/26/25 19:54	1
p-Terphenyl-d14 (Surr)	50		33 - 132	03/25/25 06:50 03/26/25 19:54	1
2,4,6-Tribromophenol (Surr)	60		25 - 144	03/25/25 06:50 03/26/25 19:54	1
2-Fluorobiphenyl (Surr)	62		53 - 126	03/25/25 06:50 03/26/25 19:54	1
2-Fluorophenol (Surr)	43		24 - 120	03/25/25 06:50 03/26/25 19:54	1

5.0

0.34 ug/L

ND

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND	H	5.0	0.65	ug/L		03/27/25 13:37	03/28/25 14:01	1
bis (2-chloroisopropyl) ether	ND	Н	5.0	0.52	ug/L		03/27/25 13:37	03/28/25 14:01	1
2,4,5-Trichlorophenol	ND	Н	5.0	0.48	ug/L		03/27/25 13:37	03/28/25 14:01	1
2,4,6-Trichlorophenol	ND	Н	5.0	0.61	ug/L		03/27/25 13:37	03/28/25 14:01	1
2,4-Dichlorophenol	ND	Н	5.0	0.51	ug/L		03/27/25 13:37	03/28/25 14:01	1
2,4-Dimethylphenol	ND	Н	5.0	0.50	ug/L		03/27/25 13:37	03/28/25 14:01	1
2,4-Dinitrophenol	ND	Н	10	2.2	ug/L		03/27/25 13:37	03/28/25 14:01	1
2,4-Dinitrotoluene	ND	Н	5.0	0.45	ug/L		03/27/25 13:37	03/28/25 14:01	1
2,6-Dinitrotoluene	ND	Н	5.0	0.40	ug/L		03/27/25 13:37	03/28/25 14:01	1
2-Chloronaphthalene	ND	Н	5.0	0.46	ug/L		03/27/25 13:37	03/28/25 14:01	1
2-Chlorophenol	ND	Н	5.0	0.53	ug/L		03/27/25 13:37	03/28/25 14:01	1
2-Methylphenol	ND	Н	5.0	0.40	ug/L		03/27/25 13:37	03/28/25 14:01	1
2-Methylnaphthalene	ND	Н	5.0	0.60	ug/L		03/27/25 13:37	03/28/25 14:01	1
2-Nitroaniline	ND	Н	10	0.42	ug/L		03/27/25 13:37	03/28/25 14:01	1
2-Nitrophenol	ND	Н	5.0	0.48	ug/L		03/27/25 13:37	03/28/25 14:01	1
3,3'-Dichlorobenzidine	ND	Н	5.0	0.40	ug/L		03/27/25 13:37	03/28/25 14:01	1
3-Nitroaniline	ND	Н	10	0.48	ug/L		03/27/25 13:37	03/28/25 14:01	1

Page 22 of 65

Client: Terracon Consultants Inc Job ID: 480-228086-1

Project/Site: Back Lot Lake Ave, Rochester, NY

Client Sample ID: MWR-102

Lab Sample ID: 480-228086-3 Date Collected: 03/19/25 16:25

Matrix: Water Date Received: 03/21/25 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
4,6-Dinitro-2-methylphenol	ND	H	10	2.2	ug/L		03/27/25 13:37	03/28/25 14:01	
4-Bromophenyl phenyl ether	ND	Н	5.0	0.45	ug/L		03/27/25 13:37	03/28/25 14:01	
4-Chloro-3-methylphenol	ND	Н	5.0	0.45	ug/L		03/27/25 13:37	03/28/25 14:01	
4-Chloroaniline	ND	Н	5.0	0.59	ug/L		03/27/25 13:37	03/28/25 14:01	
4-Chlorophenyl phenyl ether	ND	Н	5.0	0.35	ug/L		03/27/25 13:37	03/28/25 14:01	
4-Methylphenol	ND	Н	10	0.36	ug/L		03/27/25 13:37	03/28/25 14:01	
4-Nitroaniline	ND	Н	10	0.25	ug/L		03/27/25 13:37	03/28/25 14:01	
4-Nitrophenol	ND	Н	10	1.5	ug/L		03/27/25 13:37	03/28/25 14:01	
Acenaphthene	ND	Н	5.0	0.41	ug/L		03/27/25 13:37	03/28/25 14:01	
Acenaphthylene	ND	Н	5.0	0.38			03/27/25 13:37	03/28/25 14:01	
Acetophenone	ND	Н	5.0		ug/L		03/27/25 13:37	03/28/25 14:01	
Anthracene	ND	Н	5.0		ug/L		03/27/25 13:37	03/28/25 14:01	
Atrazine	ND	H *+	5.0		ug/L		03/27/25 13:37	03/28/25 14:01	
Benzaldehyde	ND	Н	5.0		ug/L		03/27/25 13:37	03/28/25 14:01	
Benzo[a]anthracene	ND	Н	5.0		ug/L		03/27/25 13:37	03/28/25 14:01	
Benzo[a]pyrene	ND		5.0		ug/L			03/28/25 14:01	
Benzo[b]fluoranthene	ND	Н	5.0		ug/L		03/27/25 13:37	03/28/25 14:01	
Benzo[g,h,i]perylene	ND	Н	5.0		ug/L			03/28/25 14:01	
Benzo[k]fluoranthene	ND		5.0		ug/L			03/28/25 14:01	
Bis(2-chloroethoxy)methane	ND		5.0		ug/L			03/28/25 14:01	
Bis(2-chloroethyl)ether	ND		5.0	0.40	-			03/28/25 14:01	
Bis(2-ethylhexyl) phthalate	ND		5.0		ug/L			03/28/25 14:01	
Butyl benzyl phthalate	ND		5.0		ug/L			03/28/25 14:01	
Caprolactam	ND		5.0		ug/L			03/28/25 14:01	
Carbazole	ND		5.0		ug/L			03/28/25 14:01	
Chrysene	ND		5.0		ug/L			03/28/25 14:01	
Dibenz(a,h)anthracene		Н	5.0	0.42	-			03/28/25 14:01	
Di-n-butyl phthalate		JHB	5.0		ug/L			03/28/25 14:01	
Di-n-octyl phthalate	ND		5.0		ug/L			03/28/25 14:01	
Dibenzofuran	ND	н	10	0.51	•		03/27/25 13:37		
Diethyl phthalate	0.54		5.0	0.22	Ū			03/28/25 14:01	
Dimethyl phthalate	ND		5.0		ug/L			03/28/25 14:01	
Fluoranthene	ND		5.0	0.40	-		03/27/25 13:37		
Fluorene		H	5.0	0.36	_		03/27/25 13:37		
Hexachlorobenzene	ND		5.0	0.51				03/28/25 14:01	
Hexachlorobutadiene	ND		5.0	0.68	•			03/28/25 14:01	
Hexachlorocyclopentadiene	ND		5.0		ug/L		03/27/25 13:37		
Hexachloroethane	ND		5.0		ug/L			03/28/25 14:01	
	ND ND							03/28/25 14:01	
Indeno[1,2,3-cd]pyrene Isophorone	ND ND		5.0 5.0		ug/L ug/L			03/28/25 14:01	
N-Nitrosodi-n-propylamine								03/28/25 14:01	
N-Nitrosodi-n-propylamine N-Nitrosodiphenylamine	ND ND		5.0 5.0		ug/L			03/28/25 14:01	
					ug/L				
Naphthalene	ND ND		5.0		ug/L			03/28/25 14:01	
Nitrobenzene Pontachlerenhanel	ND ND		5.0		ug/L			03/28/25 14:01	
Pentachlorophenol			10		ug/L			03/28/25 14:01	
Phenanthrene	ND		5.0		ug/L			03/28/25 14:01	
Phenol Pyrene	ND ND		5.0 5.0		ug/L ug/L			03/28/25 14:01 03/28/25 14:01	

Client: Terracon Consultants Inc Job ID: 480-228086-1

Project/Site: Back Lot Lake Ave, Rochester, NY

Client Sample ID: MWR-102

Date Collected: 03/19/25 16:25 Date Received: 03/21/25 09:00 Lab Sample ID: 480-228086-3

Matrix: Water

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	59	29 - 129	03/27/25 13:37	03/28/25 14:01	1
Phenol-d5 (Surr)	30	10 - 120	03/27/25 13:37	03/28/25 14:01	1
p-Terphenyl-d14 (Surr)	91	33 - 132	03/27/25 13:37	03/28/25 14:01	1
2,4,6-Tribromophenol (Surr)	72	25 - 144	03/27/25 13:37	03/28/25 14:01	1
2-Fluorobiphenyl (Surr)	73	53 - 126	03/27/25 13:37	03/28/25 14:01	1
2-Fluorophenol (Surr)	48	24 - 120	03/27/25 13:37	03/28/25 14:01	1

Method:	SW846	6010D -	Metals	(ICP)
---------	-------	---------	--------	-------

Analyte Resu	lt Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum 1	4	0.20	0.060	mg/L		03/25/25 08:31	03/25/25 16:08	1
Antimony N	D	0.020	0.0068	mg/L		03/25/25 08:31	03/25/25 16:08	1
Arsenic N	D	0.015	0.0056	mg/L		03/25/25 08:31	03/25/25 16:08	1
Barium 0.1	0	0.0020	0.00070	mg/L		03/25/25 08:31	03/25/25 16:08	1
Beryllium N	D	0.0020	0.00030	mg/L		03/25/25 08:31	03/25/25 16:08	1
Cadmium N	D	0.0020	0.00050	mg/L		03/25/25 08:31	03/25/25 16:08	1
Calcium 17	3 B	0.50	0.10	mg/L		03/25/25 08:31	03/25/25 16:08	1
Chromium 0.01	5	0.0040	0.0010	mg/L		03/25/25 08:31	03/25/25 16:08	1
Cobalt 0.003	2 JB	0.0040	0.00063	mg/L		03/25/25 08:31	03/25/25 16:08	1
Copper 0.002	4 J ^5+	0.010	0.0016	mg/L		03/25/25 08:31	03/25/25 16:08	1
Iron 1	2 ^5-	0.050	0.019	mg/L		03/25/25 08:31	03/25/25 16:08	1
Lead 0.003	6 J ^5+ B ^+	0.010	0.0030	mg/L		03/25/25 08:31	03/25/25 16:08	1
Magnesium 99	9	0.20	0.043	mg/L		03/25/25 08:31	03/25/25 16:08	1
Manganese 0.2	5	0.0030	0.00040	mg/L		03/25/25 08:31	03/25/25 16:08	1
Nickel 0.01	4	0.010	0.0013	mg/L		03/25/25 08:31	03/25/25 16:08	1
Potassium 13	4	0.50	0.10	mg/L		03/25/25 08:31	03/25/25 16:08	1
Selenium N	D	0.025	0.0087	mg/L		03/25/25 08:31	03/25/25 16:08	1
Silver N	D ^5-	0.0060	0.0017	mg/L		03/25/25 08:31	03/25/25 16:08	1
Sodium 36	3 B	1.0	0.32	mg/L		03/25/25 08:31	03/25/25 16:08	1
Thallium 0.0°	1 J	0.020	0.010	mg/L		03/25/25 08:31	03/25/25 16:08	1
Vanadium 0.002	4 J	0.0050	0.0015	mg/L		03/25/25 08:31	03/25/25 16:08	1
Zinc 0.02	4	0.010	0.0015	mg/L		03/25/25 08:31	03/25/25 16:08	1

Method:	SW846	7470A -	Mercury	(CVAA)	

Analyte	• •	Qualifier	RL	MDL	Unit	D)	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.000042	mg/L		0	3/26/25 07:55	03/26/25 14:37	1

4/1/2025

Client: Terracon Consultants Inc Job ID: 480-228086-1

Project/Site: Back Lot Lake Ave, Rochester, NY

Client Sample ID: MW-102

Lab Sample ID: 480-228086-4

Matrix: Water

Date Collected: 03/20/25 10:40 Date Received: 03/21/25 09:00

1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane 1,1-Dichloroethane	ND ND ND		5.0	4.1	ug/L		03/26/25 18:01	
1,1,2-Trichloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane 1,1-Dichloroethane					9		00/20/20 10:01	
1,1,2-Trichloro-1,2,2-trifluoroethane 1,1-Dichloroethane	ND		5.0	1.1	ug/L		03/26/25 18:01	
1,1-Dichloroethane			5.0	1.2	ug/L		03/26/25 18:01	
	ND		5.0	1.6	ug/L		03/26/25 18:01	
	ND		5.0	1.9	ug/L		03/26/25 18:01	į
1,1-Dichloroethene	ND		5.0	1.5	ug/L		03/26/25 18:01	į
1,2,4-Trichlorobenzene	ND		5.0	2.1	ug/L		03/26/25 18:01	
1,2-Dibromo-3-Chloropropane	ND		5.0	2.0	ug/L		03/26/25 18:01	į
1,2-Dichlorobenzene	ND		5.0	4.0	ug/L		03/26/25 18:01	į
1,2-Dichloroethane	ND		5.0		ug/L		03/26/25 18:01	
1,2-Dichloropropane	ND		5.0		ug/L		03/26/25 18:01	į
1,3-Dichlorobenzene	ND		5.0		ug/L		03/26/25 18:01	į
1,4-Dichlorobenzene	ND		5.0		ug/L		03/26/25 18:01	
2-Butanone (MEK)	ND		50		ug/L		03/26/25 18:01	į
2-Hexanone	ND		25		ug/L		03/26/25 18:01	į
4-Methyl-2-pentanone (MIBK)	ND		25		ug/L		03/26/25 18:01	
Acetone	ND		50		ug/L		03/26/25 18:01	į
Benzene	ND		5.0		ug/L		03/26/25 18:01	į
Bromodichloromethane	ND		5.0		ug/L		03/26/25 18:01	
Bromoform	ND		5.0		ug/L		03/26/25 18:01	
Bromomethane	ND		5.0		ug/L		03/26/25 18:01	į
Carbon disulfide	ND		5.0		ug/L		03/26/25 18:01	
Carbon tetrachloride	ND		5.0		ug/L		03/26/25 18:01	į
Chlorobenzene	ND		5.0		ug/L		03/26/25 18:01	ì
Dibromochloromethane	ND		5.0		ug/L		03/26/25 18:01	
Chloroethane	ND		5.0		ug/L		03/26/25 18:01	į
Chloroform	ND		5.0		ug/L		03/26/25 18:01	į
Chloromethane	ND		5.0		ug/L		03/26/25 18:01	
cis-1,2-Dichloroethene	ND ND		5.0		ug/L ug/L		03/26/25 18:01	,
cis-1,3-Dichloropropene	ND		5.0		ug/L		03/26/25 18:01	į
Cyclohexane	ND		5.0		ug/L		03/26/25 18:01	
Dichlorodifluoromethane	ND ND	*.	5.0		ug/L ug/L		03/26/25 18:01	
	ND ND	•			-			
Ethylbenzene 1,2-Dibromoethane	ND		5.0 5.0		ug/L ug/L		03/26/25 18:01 03/26/25 18:01	
	ND ND		5.0		-		03/26/25 18:01	į
Isopropylbenzene					ug/L			
Methyl acetate	ND		13		ug/L		03/26/25 18:01	
Methyl tert-butyl ether	ND		5.0		ug/L		03/26/25 18:01	į
Methylcyclohexane	ND		5.0		ug/L		03/26/25 18:01	į
Methylene Chloride	ND		5.0		ug/L		03/26/25 18:01	
Styrene	ND	+ .	5.0		ug/L		03/26/25 18:01	į
Tetrachloroethene	ND	**+	5.0		ug/L		03/26/25 18:01	į
Toluene	ND		5.0		ug/L		03/26/25 18:01	
trans-1,2-Dichloroethene	ND		5.0		ug/L		03/26/25 18:01	į
trans-1,3-Dichloropropene	ND		5.0		ug/L		03/26/25 18:01	
Trichloroethene	ND		5.0		ug/L		03/26/25 18:01	
Trichlorofluoromethane	ND		5.0		ug/L		03/26/25 18:01	Ę
Vinyl chloride Xylenes, Total	ND ND		5.0 10		ug/L ug/L		03/26/25 18:01 03/26/25 18:01	į

Eurofins Buffalo

Client: Terracon Consultants Inc Job ID: 480-228086-1

Project/Site: Back Lot Lake Ave, Rochester, NY

Client Sample ID: MW-102

Lab Sample ID: 480-228086-4 Date Collected: 03/20/25 10:40

Matrix: Water

Dil Fac

Date Received: 03/21/25 09:00 Surrogate %Recovery Qualifier Limits Prepared Analyzed Toluene-d8 (Surr) 96 80 - 120 03/26/25 18:01

5

1,2-Dichloroethane-d4 (Surr) 101 77 - 120 03/26/25 18:01 5 4-Bromofluorobenzene (Surr) 114 73 - 120 03/26/25 18:01 Dibromofluoromethane (Surr) 104 75 - 123 03/26/25 18:01 5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND		5.0	0.65	ug/L		03/27/25 13:37	03/28/25 14:28	1
bis (2-chloroisopropyl) ether	ND		5.0	0.52	ug/L		03/27/25 13:37	03/28/25 14:28	1
2,4,5-Trichlorophenol	ND		5.0	0.48	ug/L		03/27/25 13:37	03/28/25 14:28	1
2,4,6-Trichlorophenol	ND		5.0	0.61	ug/L		03/27/25 13:37	03/28/25 14:28	1
2,4-Dichlorophenol	ND		5.0	0.51	ug/L		03/27/25 13:37	03/28/25 14:28	1
2,4-Dimethylphenol	ND		5.0	0.50	ug/L		03/27/25 13:37	03/28/25 14:28	1
2,4-Dinitrophenol	ND		10	2.2	ug/L		03/27/25 13:37	03/28/25 14:28	1
2,4-Dinitrotoluene	ND		5.0	0.45	ug/L		03/27/25 13:37	03/28/25 14:28	1
2,6-Dinitrotoluene	ND		5.0	0.40	ug/L		03/27/25 13:37	03/28/25 14:28	1
2-Chloronaphthalene	ND		5.0	0.46	ug/L		03/27/25 13:37	03/28/25 14:28	1
2-Chlorophenol	ND		5.0	0.53	ug/L		03/27/25 13:37	03/28/25 14:28	1
2-Methylphenol	ND		5.0	0.40	ug/L		03/27/25 13:37	03/28/25 14:28	1
2-Methylnaphthalene	ND		5.0	0.60	ug/L		03/27/25 13:37	03/28/25 14:28	1
2-Nitroaniline	ND		10	0.42	ug/L		03/27/25 13:37	03/28/25 14:28	1
2-Nitrophenol	ND		5.0	0.48	-		03/27/25 13:37	03/28/25 14:28	1
3,3'-Dichlorobenzidine	ND		5.0	0.40	ug/L		03/27/25 13:37	03/28/25 14:28	1
3-Nitroaniline	ND		10	0.48	-		03/27/25 13:37	03/28/25 14:28	1
4,6-Dinitro-2-methylphenol	ND		10		ug/L		03/27/25 13:37	03/28/25 14:28	1
4-Bromophenyl phenyl ether	ND		5.0	0.45			03/27/25 13:37	03/28/25 14:28	1
4-Chloro-3-methylphenol	ND		5.0	0.45	-		03/27/25 13:37	03/28/25 14:28	1
4-Chloroaniline	ND		5.0	0.59	_		03/27/25 13:37	03/28/25 14:28	1
4-Chlorophenyl phenyl ether	ND		5.0	0.35			03/27/25 13:37	03/28/25 14:28	1
4-Methylphenol	ND		10	0.36	_		03/27/25 13:37	03/28/25 14:28	1
4-Nitroaniline	ND		10	0.25	ug/L		03/27/25 13:37	03/28/25 14:28	1
4-Nitrophenol	ND		10		ug/L		03/27/25 13:37	03/28/25 14:28	1
Acenaphthene	ND		5.0	0.41	-		03/27/25 13:37	03/28/25 14:28	1
Acenaphthylene	ND		5.0	0.38	-		03/27/25 13:37	03/28/25 14:28	1
Acetophenone	ND		5.0	0.54			03/27/25 13:37	03/28/25 14:28	1
Anthracene	ND		5.0	0.28	-		03/27/25 13:37	03/28/25 14:28	1
Atrazine	ND	*+	5.0	0.46	-		03/27/25 13:37	03/28/25 14:28	1
Benzaldehyde	ND		5.0	0.27			03/27/25 13:37	03/28/25 14:28	1
Benzo[a]anthracene	ND		5.0	0.36	-		03/27/25 13:37	03/28/25 14:28	1
Benzo[a]pyrene	ND		5.0	0.47	•			03/28/25 14:28	1
Benzo[b]fluoranthene	ND		5.0	0.34				03/28/25 14:28	1
Benzo[g,h,i]perylene	ND		5.0	0.35	-			03/28/25 14:28	1
Benzo[k]fluoranthene	ND		5.0		ug/L			03/28/25 14:28	1
Bis(2-chloroethoxy)methane	ND		5.0	0.35				03/28/25 14:28	1
Bis(2-chloroethyl)ether	ND		5.0	0.40				03/28/25 14:28	1
Bis(2-ethylhexyl) phthalate	ND		5.0		ug/L			03/28/25 14:28	1
Butyl benzyl phthalate	ND		5.0		ug/L			03/28/25 14:28	·
Caprolactam	ND		5.0		ug/L			03/28/25 14:28	1
Carbazole	ND		5.0	0.30	-			03/28/25 14:28	1
Chrysene	ND		5.0		ug/L			03/28/25 14:28	· · · · · · · · · · · · · · · · · · ·

Client: Terracon Consultants Inc Job ID: 480-228086-1

Project/Site: Back Lot Lake Ave, Rochester, NY

Client Sample ID: MW-102

Lab Sample ID: 480-228086-4

Date Collected: 03/20/25 10:40 **Matrix: Water** Date Received: 03/21/25 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dibenz(a,h)anthracene	ND		5.0	0.42	ug/L		03/27/25 13:37	03/28/25 14:28	1
Di-n-butyl phthalate	0.90	JB	5.0	0.31	ug/L		03/27/25 13:37	03/28/25 14:28	1
Di-n-octyl phthalate	ND		5.0	0.47	ug/L		03/27/25 13:37	03/28/25 14:28	1
Dibenzofuran	ND		10	0.51	ug/L		03/27/25 13:37	03/28/25 14:28	1
Diethyl phthalate	ND		5.0	0.22	ug/L		03/27/25 13:37	03/28/25 14:28	1
Dimethyl phthalate	ND		5.0	0.36	ug/L		03/27/25 13:37	03/28/25 14:28	1
Fluoranthene	ND		5.0	0.40	ug/L		03/27/25 13:37	03/28/25 14:28	1
Fluorene	ND		5.0	0.36	ug/L		03/27/25 13:37	03/28/25 14:28	1
Hexachlorobenzene	ND		5.0	0.51	ug/L		03/27/25 13:37	03/28/25 14:28	1
Hexachlorobutadiene	ND		5.0		ug/L		03/27/25 13:37	03/28/25 14:28	1
Hexachlorocyclopentadiene	ND		5.0		ug/L		03/27/25 13:37	03/28/25 14:28	1
Hexachloroethane	ND		5.0		ug/L			03/28/25 14:28	1
Indeno[1,2,3-cd]pyrene	ND		5.0		ug/L			03/28/25 14:28	1
Isophorone	ND		5.0		ug/L			03/28/25 14:28	1
N-Nitrosodi-n-propylamine	ND		5.0		ug/L			03/28/25 14:28	· · · · · · · · · · · · · · · · · · ·
N-Nitrosodiphenylamine	ND		5.0		ug/L			03/28/25 14:28	. 1
Naphthalene	ND		5.0		ug/L			03/28/25 14:28	1
Nitrobenzene	ND		5.0		ug/L			03/28/25 14:28	· · · · · · · · · · · · · · · · · · ·
Pentachlorophenol	ND		10		ug/L			03/28/25 14:28	. 1
Phenanthrene	ND ND		5.0		ug/L ug/L			03/28/25 14:28	1
Phenol	ND		5.0		ug/L			03/28/25 14:28	· · · · · · · · · · · · · · · · · · ·
Pyrene	ND ND		5.0		ug/L ug/L			03/28/25 14:28	1
ryrene	ND		3.0	0.54	ug/L		03/21/23 13.31	03/20/23 14.20	'
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	68		29 - 129				03/27/25 13:37	03/28/25 14:28	1
Phenol-d5 (Surr)	36		10 - 120				03/27/25 13:37	03/28/25 14:28	1
p-Terphenyl-d14 (Surr)	73		33 - 132				03/27/25 13:37	03/28/25 14:28	1
2,4,6-Tribromophenol (Surr)	79		25 - 144				03/27/25 13:37	03/28/25 14:28	1
2-Fluorobiphenyl (Surr)	84		53 - 126				03/27/25 13:37	03/28/25 14:28	1
2-Fluorophenol (Surr)	56		24 - 120				03/27/25 13:37	03/28/25 14:28	1
Method: SW846 6010D - M	otals (ICP)								
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		0.20	0.060	mg/L		03/25/25 08:31	03/25/25 16:15	1
Antimony	ND		0.020	0.0068	mg/L		03/25/25 08:31	03/25/25 16:15	1
Arsenic	0.017		0.015	0.0056	mg/L		03/25/25 08:31	03/25/25 16:15	1
Barium	0.77		0.0020	0.00070				03/25/25 16:15	1
Beryllium	ND		0.0020	0.00030	-			03/25/25 16:15	1
Cadmium	ND		0.0020	0.00050	-			03/25/25 16:15	1
Calcium	474	R	0.50		mg/L			03/25/25 16:15	· · · · · · · · · · · · · · · · · · ·
Chromium	0.0013		0.0040	0.0010	-			03/25/25 16:15	. 1
Cobalt	0.0013		0.0040	0.00063	-			03/25/25 16:15	1
		^5+	0.010	0.0003					· · · · · · · · · · · · · · · · · · ·
Copper			0.010		-			03/25/25 16:15 03/25/25 16:15	
lron Lood	42.3	9-		0.019	-				1
Lead	ND		0.050	0.015				03/27/25 20:25 03/25/25 16:15	
Managarina			0.20	0.043	mg/L		113/25/25 DX:31		1
-	130				-				
Magnesium Manganese	1.3		0.0030	0.00040	mg/L		03/25/25 08:31	03/25/25 16:15	1
Manganese Nickel	1.3 0.0013	J	0.0030 0.010	0.00040 0.0013	mg/L mg/L		03/25/25 08:31 03/25/25 08:31	03/25/25 16:15 03/25/25 16:15	1
Manganese	1.3	J	0.0030	0.00040 0.0013	mg/L mg/L mg/L		03/25/25 08:31 03/25/25 08:31 03/25/25 08:31	03/25/25 16:15	1

Eurofins Buffalo

03/25/25 08:31 03/25/25 16:15

Page 27 of 65

0.025

0.0087 mg/L

ND

Selenium

Client: Terracon Consultants Inc Job ID: 480-228086-1

Project/Site: Back Lot Lake Ave, Rochester, NY

Lab Sample ID: 480-228086-4 Client Sample ID: MW-102

Date Collected: 03/20/25 10:40 **Matrix: Water** Date Received: 03/21/25 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	ND	^5-	0.0060	0.0017	mg/L		03/25/25 08:31	03/25/25 16:15	1
Sodium	2040		5.0	1.6	mg/L		03/25/25 08:31	03/27/25 20:25	5
Thallium	ND		0.020	0.010	mg/L		03/25/25 08:31	03/25/25 16:15	1
Vanadium	ND		0.0050	0.0015	mg/L		03/25/25 08:31	03/25/25 16:15	1
Zinc	ND	^5-	0.10	0.015	mg/L		03/25/25 08:31	03/27/25 20:27	10
- Method: SW846 7470	A - Mercury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00040	0.000084	ma/L		03/26/25 07:55	03/26/25 14:41	1

Client: Terracon Consultants Inc Job ID: 480-228086-1

Project/Site: Back Lot Lake Ave, Rochester, NY

Client Sample ID: Duplicate

Date Collected: 03/20/25 10:45
Date Received: 03/21/25 09:00

Lab Sample ID: 480-228086-5

Matrix: Water

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND —	1.0	0.82	ug/L			03/26/25 18:24	
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			03/26/25 18:24	
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			03/26/25 18:24	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			03/26/25 18:24	
1,1-Dichloroethane	ND	1.0	0.38	ug/L			03/26/25 18:24	
1,1-Dichloroethene	ND	1.0	0.29	ug/L			03/26/25 18:24	
1,2,4-Trichlorobenzene	ND	1.0		ug/L			03/26/25 18:24	
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			03/26/25 18:24	
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			03/26/25 18:24	
1,2-Dichloroethane	ND	1.0		ug/L			03/26/25 18:24	
1,2-Dichloropropane	ND	1.0		ug/L			03/26/25 18:24	
1,3-Dichlorobenzene	ND	1.0		ug/L			03/26/25 18:24	
1,4-Dichlorobenzene	ND	1.0		ug/L			03/26/25 18:24	
2-Butanone (MEK)	ND	10		ug/L			03/26/25 18:24	
2-Hexanone	ND	5.0		ug/L			03/26/25 18:24	
4-Methyl-2-pentanone (MIBK)	ND	5.0		ug/L			03/26/25 18:24	
Acetone	ND	10		ug/L			03/26/25 18:24	
Benzene	ND	1.0		ug/L			03/26/25 18:24	
Bromodichloromethane	ND	1.0		ug/L			03/26/25 18:24	
Bromoform	ND	1.0		ug/L			03/26/25 18:24	
Bromomethane	ND	1.0		ug/L			03/26/25 18:24	
Carbon disulfide	ND	1.0		ug/L			03/26/25 18:24	
Carbon tetrachloride	ND	1.0		ug/L			03/26/25 18:24	
Chlorobenzene	ND	1.0		ug/L			03/26/25 18:24	
Dibromochloromethane	ND	1.0		ug/L			03/26/25 18:24	
Chloroethane	ND	1.0		ug/L			03/26/25 18:24	
Chloroform	ND ND	1.0		ug/L ug/L			03/26/25 18:24	
Chloromethane	ND	1.0		ug/L			03/26/25 18:24	
cis-1,2-Dichloroethene	ND ND	1.0		ug/L ug/L			03/26/25 18:24	
cis-1,3-Dichloropropene	ND ND	1.0		ug/L ug/L			03/26/25 18:24	
	ND						03/26/25 18:24	
Cyclohexane Dichlorodifluoromethane	ND *+	1.0 1.0		ug/L ug/L			03/26/25 18:24	
				-				
Ethylbenzene	ND	1.0		ug/L			03/26/25 18:24	
1,2-Dibromoethane	ND	1.0		ug/L			03/26/25 18:24	
Isopropylbenzene	ND	1.0		ug/L			03/26/25 18:24	
Methyl acetate	ND	2.5		ug/L			03/26/25 18:24	
Methyl tert-butyl ether	ND	1.0		ug/L			03/26/25 18:24	
Methylcyclohexane	ND	1.0		ug/L			03/26/25 18:24	
Methylene Chloride	ND	1.0		ug/L			03/26/25 18:24	
Styrene	ND	1.0		ug/L			03/26/25 18:24	
Tetrachloroethene	ND *+	1.0		ug/L			03/26/25 18:24	
Toluene	ND	1.0		ug/L			03/26/25 18:24	
trans-1,2-Dichloroethene	ND	1.0		ug/L			03/26/25 18:24	
trans-1,3-Dichloropropene	ND	1.0		ug/L			03/26/25 18:24	
Trichloroethene	ND	1.0		ug/L			03/26/25 18:24	
Trichlorofluoromethane	ND	1.0		ug/L			03/26/25 18:24	
Vinyl chloride	ND	1.0		ug/L			03/26/25 18:24	
Xylenes, Total	ND	2.0	0.66	ug/L			03/26/25 18:24	

Eurofins Buffalo

2

<u>ی</u>

2

8

10

12

14

Client: Terracon Consultants Inc Job ID: 480-228086-1

Project/Site: Back Lot Lake Ave, Rochester, NY

Client Sample ID: Duplicate

Date Collected: 03/20/25 10:45 Date Received: 03/21/25 09:00 Lab Sample ID: 480-228086-5

Matrix: Water

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	96	80 - 120		3/26/25 18:24	1
1,2-Dichloroethane-d4 (Surr)	100	77 - 120	C	3/26/25 18:24	1
4-Bromofluorobenzene (Surr)	114	73 - 120	C	3/26/25 18:24	1
Dibromofluoromethane (Surr)	103	75 ₋ 123	(03/26/25 18:24	1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Biphenyl	ND	25	3.3	ug/L		03/27/25 13:37	03/28/25 14:55	
bis (2-chloroisopropyl) ether	ND	25	2.6	ug/L		03/27/25 13:37	03/28/25 14:55	
2,4,5-Trichlorophenol	ND	25	2.4	ug/L		03/27/25 13:37	03/28/25 14:55	
2,4,6-Trichlorophenol	ND	25	3.1	ug/L		03/27/25 13:37	03/28/25 14:55	
2,4-Dichlorophenol	ND	25	2.6	ug/L		03/27/25 13:37	03/28/25 14:55	
2,4-Dimethylphenol	ND	25	2.5	ug/L		03/27/25 13:37	03/28/25 14:55	
2,4-Dinitrophenol	ND	50	11	ug/L		03/27/25 13:37	03/28/25 14:55	
2,4-Dinitrotoluene	ND	25	2.2	ug/L		03/27/25 13:37	03/28/25 14:55	
2,6-Dinitrotoluene	ND	25	2.0	ug/L		03/27/25 13:37	03/28/25 14:55	
2-Chloronaphthalene	ND	25	2.3	ug/L		03/27/25 13:37	03/28/25 14:55	
2-Chlorophenol	ND	25	2.7	ug/L		03/27/25 13:37	03/28/25 14:55	
2-Methylphenol	ND	25	2.0	ug/L		03/27/25 13:37	03/28/25 14:55	
2-Methylnaphthalene	ND	25	3.0	ug/L		03/27/25 13:37	03/28/25 14:55	
2-Nitroaniline	ND	50		ug/L		03/27/25 13:37	03/28/25 14:55	
2-Nitrophenol	ND	25	2.4	ug/L		03/27/25 13:37	03/28/25 14:55	
3,3'-Dichlorobenzidine	ND	25	2.0	ug/L		03/27/25 13:37	03/28/25 14:55	
3-Nitroaniline	ND	50		ug/L		03/27/25 13:37	03/28/25 14:55	
4,6-Dinitro-2-methylphenol	ND	50		ug/L		03/27/25 13:37	03/28/25 14:55	
4-Bromophenyl phenyl ether	ND	25		ug/L		03/27/25 13:37	03/28/25 14:55	
4-Chloro-3-methylphenol	ND	25		ug/L			03/28/25 14:55	
4-Chloroaniline	ND	25		ug/L		03/27/25 13:37	03/28/25 14:55	
4-Chlorophenyl phenyl ether	ND	25		ug/L			03/28/25 14:55	
4-Methylphenol	ND	50		ug/L		03/27/25 13:37	03/28/25 14:55	
4-Nitroaniline	ND	50		ug/L			03/28/25 14:55	
4-Nitrophenol	ND	50		ug/L			03/28/25 14:55	
Acenaphthene	ND	25		ug/L			03/28/25 14:55	
Acenaphthylene	ND	25		ug/L			03/28/25 14:55	
Acetophenone	ND	25		ug/L			03/28/25 14:55	
Anthracene	ND	25		ug/L			03/28/25 14:55	
Atrazine	ND *+	25		ug/L			03/28/25 14:55	
Benzaldehyde	ND	25		ug/L			03/28/25 14:55	
Benzo[a]anthracene	ND	25		ug/L			03/28/25 14:55	
Benzo[a]pyrene	ND	25		ug/L			03/28/25 14:55	
Benzo[b]fluoranthene	ND	25		ug/L			03/28/25 14:55	
Benzo[g,h,i]perylene	ND	25		ug/L			03/28/25 14:55	
Benzo[k]fluoranthene	ND	25		ug/L			03/28/25 14:55	
Bis(2-chloroethoxy)methane	ND	25		ug/L			03/28/25 14:55	
Bis(2-chloroethyl)ether	ND	25		ug/L			03/28/25 14:55	
Bis(2-ethylhexyl) phthalate	ND	25		ug/L			03/28/25 14:55	
Butyl benzyl phthalate	ND	25		ug/L			03/28/25 14:55	
Caprolactam	ND	25		ug/L			03/28/25 14:55	
Carbazole	ND	25		ug/L			03/28/25 14:55	
Chrysene	ND	25		ug/L			03/28/25 14:55	

Eurofins Buffalo

2

5

6

8

10

12

14

Client: Terracon Consultants Inc Job ID: 480-228086-1

Project/Site: Back Lot Lake Ave, Rochester, NY

Client Sample ID: Duplicate

Selenium

Lab Sample ID: 480-228086-5

Date Collected: 03/20/25 10:45 **Matrix: Water** Date Received: 03/21/25 09:00

	_	-	oounds (GC/						
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Dibenz(a,h)anthracene	ND		25		ug/L		03/27/25 13:37	03/28/25 14:55	
Di-n-butyl phthalate		JB	25		ug/L			03/28/25 14:55	
Di-n-octyl phthalate	ND		25	2.4	ug/L		03/27/25 13:37	03/28/25 14:55	
Dibenzofuran	ND		50	2.6	ug/L		03/27/25 13:37	03/28/25 14:55	
Diethyl phthalate	ND		25	1.1	ug/L		03/27/25 13:37	03/28/25 14:55	
Dimethyl phthalate	ND		25	1.8	ug/L		03/27/25 13:37	03/28/25 14:55	
Fluoranthene	ND		25	2.0	ug/L		03/27/25 13:37	03/28/25 14:55	
Fluorene	ND		25	1.8	ug/L		03/27/25 13:37	03/28/25 14:55	
Hexachlorobenzene	ND		25	2.6	ug/L		03/27/25 13:37	03/28/25 14:55	
-lexachlorobutadiene	ND		25	3.4	ug/L		03/27/25 13:37	03/28/25 14:55	
Hexachlorocyclopentadiene	ND		25	3.0	ug/L		03/27/25 13:37	03/28/25 14:55	
-lexachloroethane	ND		25	3.0	ug/L		03/27/25 13:37	03/28/25 14:55	
ndeno[1,2,3-cd]pyrene	ND		25	2.4	ug/L		03/27/25 13:37	03/28/25 14:55	
sophorone	ND		25	2.2	ug/L		03/27/25 13:37	03/28/25 14:55	
N-Nitrosodi-n-propylamine	ND		25		ug/L		03/27/25 13:37	03/28/25 14:55	
N-Nitrosodiphenylamine	ND		25	2.6	ug/L		03/27/25 13:37	03/28/25 14:55	
Naphthalene	ND		25		ug/L		03/27/25 13:37	03/28/25 14:55	
Nitrobenzene	ND		25	1.5	ug/L		03/27/25 13:37	03/28/25 14:55	
Pentachlorophenol	ND		50		ug/L		03/27/25 13:37	03/28/25 14:55	
Phenanthrene	ND		25		ug/L			03/28/25 14:55	
Phenol	ND		25		ug/L			03/28/25 14:55	
Pyrene	ND		25		ug/L			03/28/25 14:55	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5 (Surr)	73		29 - 129				03/27/25 13:37	03/28/25 14:55	
Phenol-d5 (Surr)	78		10 - 120				03/27/25 13:37	03/28/25 14:55	
o-Terphenyl-d14 (Surr)	106		33 - 132				03/27/25 13:37	03/28/25 14:55	
2,4,6-Tribromophenol (Surr)	81		25 - 144				03/27/25 13:37	03/28/25 14:55	
2 Elyarahinhanyl (Curr)	90		53 - 126				03/27/25 13:37	03/28/25 14:55	
z-riuorobiprieriyi (Surr)	30								
2-Fluorobiphenyl (Surr) 2-Fluorophenol (Surr)	89		24 - 120				03/27/25 13:37	03/28/25 14:55	
	89						03/27/25 13:37	03/28/25 14:55	
2-Fluorophenol (Surr) Method: SW846 6010D	- Metals (ICP)	Qualifier		MDL	Unit	D	03/27/25 13:37 Prepared	03/28/25 14:55 Analyzed	Dil Fa
2-Fluorophenol (Surr) Method: SW846 6010D Analyte	- Metals (ICP)	Qualifier	24 - 120	MDL 0.060		<u>D</u>		Analyzed	Dil Fa
2-Fluorophenol (Surr) Method: SW846 6010D Analyte Aluminum	- Metals (ICP) Result	Qualifier	24 - 120 RL	0.060 0.0068	mg/L mg/L	. <u>D</u>	Prepared 03/25/25 08:31	Analyzed	Dil Fa
2-Fluorophenol (Surr) Method: SW846 6010D Analyte Aluminum Antimony	- Metals (ICP) - Result ND		24 - 120 RL 0.20	0.060	mg/L mg/L	<u>D</u>	Prepared 03/25/25 08:31 03/25/25 08:31	Analyzed 03/25/25 16:17	Dil Fa
2-Fluorophenol (Surr) Method: SW846 6010D Analyte Aluminum Antimony Arsenic	- Metals (ICP) Result ND ND		24 - 120 RL 0.20 0.020	0.060 0.0068	mg/L mg/L mg/L	<u>D</u>	Prepared 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31	Analyzed 03/25/25 16:17 03/25/25 16:17	Dil Fa
Method: SW846 6010D Analyte Aluminum Antimony Arsenic Barium	- Metals (ICP) Result ND ND 0.013		24 - 120 RL 0.20 0.020 0.015	0.060 0.0068 0.0056	mg/L mg/L mg/L mg/L	_ <u>D</u>	Prepared 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31	Analyzed 03/25/25 16:17 03/25/25 16:17 03/25/25 16:17	Dil Fa
2-Fluorophenol (Surr) Method: SW846 6010D Analyte Aluminum Antimony Arsenic Barium Beryllium	- Metals (ICP) Result ND ND 0.013		24 - 120 RL 0.20 0.020 0.015 0.0020	0.060 0.0068 0.0056 0.00070	mg/L mg/L mg/L mg/L mg/L	. <u>D</u>	Prepared 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31	Analyzed 03/25/25 16:17 03/25/25 16:17 03/25/25 16:17	Dil Fa
P-Fluorophenol (Surr) Method: SW846 6010D Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium	- Metals (ICP) Result ND ND 0.013 0.75 ND	J	RL 0.20 0.020 0.015 0.0020 0.0020	0.060 0.0068 0.0056 0.00070 0.00030 0.00050	mg/L mg/L mg/L mg/L mg/L	<u>D</u>	Prepared 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31	Analyzed 03/25/25 16:17 03/25/25 16:17 03/25/25 16:17 03/25/25 16:17	Dil Fa
Method: SW846 6010D Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium	- Metals (ICP) Result ND ND 0.013 0.75 ND ND	J	RL 0.20 0.020 0.015 0.0020 0.0020 0.0020	0.060 0.0068 0.0056 0.00070 0.00030 0.00050	mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	Prepared 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31	Analyzed 03/25/25 16:17 03/25/25 16:17 03/25/25 16:17 03/25/25 16:17 03/25/25 16:17	Dil Fa
Method: SW846 6010D Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium Chromium	- Metals (ICP) Result ND ND 0.013 0.75 ND ND ND 472	J B J	RL 0.20 0.020 0.015 0.0020 0.0020 0.0020 0.0020 0.0020	0.060 0.0068 0.0056 0.00070 0.00030 0.00050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	_ <u>D</u>	Prepared 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31	Analyzed 03/25/25 16:17 03/25/25 16:17 03/25/25 16:17 03/25/25 16:17 03/25/25 16:17 03/25/25 16:17	Dil Fa
Method: SW846 6010D Analyte Aluminum Antimony Arsenic Barium Beryllium Calcium Chromium Cobalt	89 - Metals (ICP) Result ND ND 0.013 0.75 ND ND ND 472 0.0014 0.0011	J B J JB	RL 0.20 0.020 0.015 0.0020 0.0020 0.0020 0.0020 0.0040 0.0040	0.060 0.0068 0.0056 0.00070 0.00030 0.00050 0.10 0.0010 0.00063	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	_ <u>D</u>	Prepared 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31	Analyzed 03/25/25 16:17 03/25/25 16:17 03/25/25 16:17 03/25/25 16:17 03/25/25 16:17 03/25/25 16:17 03/25/25 16:17 03/25/25 16:17	Dil F
Method: SW846 6010D Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper	89 - Metals (ICP) Result ND ND 0.013 0.75 ND ND ND A72 0.0014 0.0011 ND	J B J J B ^5+	RL 0.20 0.020 0.015 0.0020 0.0020 0.0020 0.0020 0.0040 0.0040 0.010	0.060 0.0068 0.0056 0.00070 0.00030 0.00050 0.10 0.0010 0.00063 0.0016	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	Prepared 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31	Analyzed 03/25/25 16:17 03/25/25 16:17 03/25/25 16:17 03/25/25 16:17 03/25/25 16:17 03/25/25 16:17 03/25/25 16:17 03/25/25 16:17 03/25/25 16:17	Dil F
Method: SW846 6010D Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper	89 - Metals (ICP) Result ND ND 0.013 0.75 ND ND ND 472 0.0014 0.0011 ND 41.6	J B J J B ^5+	RL 0.20 0.020 0.015 0.0020 0.0020 0.0020 0.0020 0.0040 0.0040 0.010 0.050	0.060 0.0068 0.0056 0.00070 0.00030 0.00050 0.10 0.0010 0.00063 0.0016 0.019	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	_ <u>D</u>	Prepared 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31	Analyzed 03/25/25 16:17 03/25/25 16:17 03/25/25 16:17 03/25/25 16:17 03/25/25 16:17 03/25/25 16:17 03/25/25 16:17 03/25/25 16:17 03/25/25 16:17 03/25/25 16:17	Dil F
Method: SW846 6010D Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium Chromium Chromium Cobalt Copper ron Lead	89 - Metals (ICP) Result ND ND 0.013 0.75 ND ND 472 0.0014 0.0011 ND 41.6 ND	J B J J B ^5+	RL 0.20 0.020 0.015 0.0020 0.0020 0.0020 0.50 0.0040 0.0040 0.010 0.050 0.050	0.060 0.0068 0.0056 0.00070 0.00030 0.00050 0.10 0.0010 0.00063 0.0016 0.019	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	_ <u>D</u>	Prepared 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31	Analyzed 03/25/25 16:17 03/25/25 16:17 03/25/25 16:17 03/25/25 16:17 03/25/25 16:17 03/25/25 16:17 03/25/25 16:17 03/25/25 16:17 03/25/25 16:17 03/25/25 16:17 03/25/25 16:17 03/25/25 16:17 03/25/25 16:17	Dil F
Method: SW846 6010D Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium Chromium Chromium Cobalt Copper ron Lead Magnesium	89 - Metals (ICP) Result ND ND 0.013 0.75 ND ND 472 0.0014 0.0011 ND 41.6 ND 128	J B J J B ^5+	RL 0.20 0.020 0.015 0.0020 0.0020 0.0020 0.0020 0.50 0.0040 0.0040 0.010 0.050 0.050 0.050	0.060 0.0068 0.0056 0.00070 0.00030 0.00050 0.10 0.0010 0.0016 0.0019 0.015	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	Prepared 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31	Analyzed 03/25/25 16:17 03/25/25 16:17 03/25/25 16:17 03/25/25 16:17 03/25/25 16:17 03/25/25 16:17 03/25/25 16:17 03/25/25 16:17 03/25/25 16:17 03/25/25 16:17 03/25/25 16:17 03/25/25 16:17 03/25/25 16:17 03/25/25 16:17	Dil Fi
2-Fluorophenol (Surr)	89 - Metals (ICP) Result ND ND 0.013 0.75 ND ND 472 0.0014 0.0011 ND 41.6 ND	J B J J B ^5+ ^5-	RL 0.20 0.020 0.015 0.0020 0.0020 0.0020 0.50 0.0040 0.0040 0.010 0.050 0.050	0.060 0.0068 0.0056 0.00070 0.00030 0.00050 0.10 0.0010 0.00063 0.0016 0.019	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	_ <u>D</u>	Prepared 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31 03/25/25 08:31	Analyzed 03/25/25 16:17 03/25/25 16:17 03/25/25 16:17 03/25/25 16:17 03/25/25 16:17 03/25/25 16:17 03/25/25 16:17 03/25/25 16:17 03/25/25 16:17 03/25/25 16:17 03/25/25 16:17 03/25/25 16:17 03/25/25 16:17	Dil Fa

Eurofins Buffalo

03/25/25 08:31 03/25/25 16:17

0.025

ND

0.0087 mg/L

Client: Terracon Consultants Inc Job ID: 480-228086-1

Project/Site: Back Lot Lake Ave, Rochester, NY

Client Sample ID: Duplicate

Date Received: 03/21/25 09:00

Date Collected: 03/20/25 10:45

Lab Sample ID: 480-228086-5

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	ND	^5-	0.0060	0.0017	mg/L		03/25/25 08:31	03/25/25 16:17	1
Sodium	2080		5.0	1.6	mg/L		03/25/25 08:31	03/27/25 20:28	5
Thallium	0.012	J	0.020	0.010	mg/L		03/25/25 08:31	03/25/25 16:17	1
Vanadium	ND		0.0050	0.0015	mg/L		03/25/25 08:31	03/25/25 16:17	1
Zinc	ND	^5-	0.10	0.015	mg/L		03/25/25 08:31	03/27/25 20:30	10
- Method: SW846 7470	A - Mercury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00040	0.000084	ma/L		03/26/25 07:55	03/26/25 14:43	1

Surrogate Summary

Client: Terracon Consultants Inc

Project/Site: Back Lot Lake Ave, Rochester, NY

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		TOL	DCA	BFB	DBFM
Lab Sample ID	Client Sample ID	(80-120)	(77-120)	(73-120)	(75-123)
480-228086-1	MW-103	96	97	112	102
480-228086-2	MW-107	94	97	114	100
480-228086-2 MS	MW-107	98	98	111	107
480-228086-2 MSD	MW-107	99	96	112	103
480-228086-3	MWR-102	96	96	113	101
480-228086-4	MW-102	96	101	114	104
480-228086-5	Duplicate	96	100	114	103
LCS 480-741783/6	Lab Control Sample	99	98	115	104
MB 480-741783/8	Method Blank	97	98	111	105

TOL = Toluene-d8 (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surro	ogate Reco	very (Accer	otance Limit
		NBZ	PHL	TPHd14	TBP	FBP	2FP
b Sample ID	Client Sample ID	(29-129)	(10-120)	(33-132)	(25-144)	(53-126)	(24-120)
0-228086-1	MW-103	65	34	52	76	75	55
0-228086-1 - RE	MW-103	66	34	99	81	84	53
0-228086-2	MW-107	63	33	48	75	74	52
0-228086-2 - RE	MW-107	61	31	92	81	78	50
0-228086-2 MS	MW-107	82	44	52	96	85	63
-228086-2 MSD	MW-107	75	41	53	85	79	57
-228086-3	MWR-102	54	27	50	60	62	43
-228086-3 - RE	MWR-102	59	30	91	72	73	48
-228086-4	MW-102	68	36	73	79	84	56
-228086-5	Duplicate	73	78	106	81	90	89
S 480-741634/2-A	Lab Control Sample	83	49	91	92	87	67
S 480-741949/2-A	Lab Control Sample	84	47	97	90	91	66
SD 480-741949/3-A	Lab Control Sample Dup	83	46	102	90	90	63
480-741634/1-A	Method Blank	63	35	86	67	71	52
480-741949/1-A	Method Blank	63	23	105	66	75	37

Surrogate Legend

NBZ = Nitrobenzene-d5 (Surr)

PHL = Phenol-d5 (Surr)

TPHd14 = p-Terphenyl-d14 (Surr)

TBP = 2,4,6-Tribromophenol (Surr)

FBP = 2-Fluorobiphenyl (Surr)

2FP = 2-Fluorophenol (Surr)

Page 33 of 65

Job ID: 480-228086-1

Client: Terracon Consultants Inc Job ID: 480-228086-1

Project/Site: Back Lot Lake Ave, Rochester, NY

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-741783/8

Matrix: Water

Analysis Batch: 741783

Client Sample ID: Method Blank

Prep Type: Total/NA

Analyte		MB Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	<u>uaiiiiei</u> _			ug/L		riepaied	03/26/25 12:51	Dil Fac
1,1,2,2-Tetrachloroethane	ND ND		1.0		ug/L ug/L			03/26/25 12:51	1
1,1,2-Trichloroethane	ND ND		1.0		ug/L ug/L			03/26/25 12:51	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0		ug/L ug/L			03/26/25 12:51	
1,1-Dichloroethane	ND ND		1.0		ug/L ug/L			03/26/25 12:51	1
1,1-Dichloroethane	ND ND		1.0		_			03/26/25 12:51	
	ND		1.0		ug/L			03/26/25 12:51	1
1,2,4-Trichlorobenzene	ND ND		1.0		ug/L			03/26/25 12:51	1
1,2-Dibromo-3-Chloropropane					ug/L				1
1,2-Dichlorobenzene	ND		1.0		ug/L			03/26/25 12:51	
1,2-Dichloroethane	ND		1.0		ug/L			03/26/25 12:51	1
1,2-Dichloropropane	ND		1.0		ug/L			03/26/25 12:51	1
1,3-Dichlorobenzene	ND		1.0		ug/L			03/26/25 12:51	1
1,4-Dichlorobenzene	ND		1.0		ug/L			03/26/25 12:51	1
2-Butanone (MEK)	ND		10		ug/L			03/26/25 12:51	1
2-Hexanone	ND		5.0		ug/L			03/26/25 12:51	1
4-Methyl-2-pentanone (MIBK)	ND		5.0		ug/L			03/26/25 12:51	1
Acetone	ND		10		ug/L			03/26/25 12:51	1
Benzene	ND		1.0		ug/L			03/26/25 12:51	1
Bromodichloromethane	ND		1.0		ug/L			03/26/25 12:51	1
Bromoform	ND		1.0	0.26	ug/L			03/26/25 12:51	1
Bromomethane	ND		1.0	0.69	ug/L			03/26/25 12:51	1
Carbon disulfide	ND		1.0	0.19	ug/L			03/26/25 12:51	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			03/26/25 12:51	1
Chlorobenzene	ND		1.0	0.75	ug/L			03/26/25 12:51	1
Dibromochloromethane	ND		1.0	0.32	ug/L			03/26/25 12:51	1
Chloroethane	ND		1.0	0.32	ug/L			03/26/25 12:51	1
Chloroform	ND		1.0	0.34	ug/L			03/26/25 12:51	1
Chloromethane	ND		1.0	0.35	ug/L			03/26/25 12:51	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			03/26/25 12:51	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			03/26/25 12:51	1
Cyclohexane	ND		1.0	0.18	ug/L			03/26/25 12:51	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			03/26/25 12:51	1
Ethylbenzene	ND		1.0		ug/L			03/26/25 12:51	1
1,2-Dibromoethane	ND		1.0		ug/L			03/26/25 12:51	1
Isopropylbenzene	ND		1.0		ug/L			03/26/25 12:51	1
Methyl acetate	ND		2.5		ug/L			03/26/25 12:51	1
Methyl tert-butyl ether	ND		1.0		ug/L			03/26/25 12:51	1
Methylcyclohexane	ND		1.0		ug/L			03/26/25 12:51	1
Methylene Chloride	ND		1.0		ug/L			03/26/25 12:51	1
Styrene	ND		1.0		ug/L			03/26/25 12:51	· · · · · · · · 1
Tetrachloroethene	ND		1.0		ug/L			03/26/25 12:51	1
Toluene	ND		1.0		ug/L			03/26/25 12:51	1
trans-1,2-Dichloroethene	ND		1.0		ug/L			03/26/25 12:51	· · · · · · · · · · · · · · · · · · ·
trans-1,3-Dichloropropene	ND		1.0		ug/L			03/26/25 12:51	1
Trichloroethene	ND		1.0		ug/L			03/26/25 12:51	1
Trichlorofluoromethane	ND		1.0		ug/L			03/26/25 12:51	
Vinyl chloride	ND ND		1.0		ug/L ug/L			03/26/25 12:51	1
Xylenes, Total	ND ND		2.0		ug/L ug/L			03/26/25 12:51	I

Eurofins Buffalo

Page 34 of 65

Client: Terracon Consultants Inc

Project/Site: Back Lot Lake Ave, Rochester, NY

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-741783/8

Matrix: Water

Analysis Batch: 741783

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 480-228086-1

	IVIB IVIB				
Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	97	80 - 120		03/26/25 12:51	1
1,2-Dichloroethane-d4 (Surr)	98	77 - 120		03/26/25 12:51	1
4-Bromofluorobenzene (Surr)	111	73 - 120		03/26/25 12:51	1
Dibromofluoromethane (Surr)	105	75 - 123		03/26/25 12:51	1

LCS LCS

Spike

Lab Sample ID: LCS 480-741783/6

Matrix: Water

cis-1,2-Dichloroethene

cis-1,3-Dichloropropene

Dichlorodifluoromethane

Cyclohexane

Ethylbenzene

1,2-Dibromoethane

Methyl tert-butyl ether

Methylcyclohexane

Isopropylbenzene

Methyl acetate

Analysis Batch: 741783

Client Sample	D:	Lab	Control	Sample
		Dro	a Tunai '	Total/NIA

%Rec

Prep Type: Total/NA

Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	25.0	28.8		ug/L		115	73 - 126	
1,1,2,2-Tetrachloroethane	25.0	21.8		ug/L		87	76 - 120	
1,1,2-Trichloroethane	25.0	25.9		ug/L		104	76 - 122	
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	27.6		ug/L		110	61 - 148	
ne								
1,1-Dichloroethane	25.0	26.1		ug/L		104	77 - 120	
1,1-Dichloroethene	25.0	27.6		ug/L		110	66 - 127	
1,2,4-Trichlorobenzene	25.0	28.1		ug/L		112	79 - 122	
1,2-Dibromo-3-Chloropropane	25.0	23.9		ug/L		96	56 - 134	
1,2-Dichlorobenzene	25.0	26.4		ug/L		106	80 - 124	
1,2-Dichloroethane	25.0	24.4		ug/L		98	75 - 120	
1,2-Dichloropropane	25.0	25.4		ug/L		102	76 - 120	
1,3-Dichlorobenzene	25.0	26.4		ug/L		106	77 - 120	
1,4-Dichlorobenzene	25.0	25.7		ug/L		103	80 - 120	
2-Butanone (MEK)	125	115		ug/L		92	57 - 140	
2-Hexanone	125	111		ug/L		88	65 - 127	
4-Methyl-2-pentanone (MIBK)	125	103		ug/L		83	71 - 125	
Acetone	125	119		ug/L		95	56 - 142	
Benzene	25.0	27.1		ug/L		108	71 - 124	
Bromodichloromethane	25.0	26.9		ug/L		108	80 - 122	
Bromoform	25.0	30.3		ug/L		121	61 - 132	
Bromomethane	25.0	29.3		ug/L		117	55 - 144	
Carbon disulfide	25.0	27.5		ug/L		110	59 - 134	
Carbon tetrachloride	25.0	29.9		ug/L		120	72 - 134	
Chlorobenzene	25.0	28.4		ug/L		114	80 - 120	
Dibromochloromethane	25.0	28.4		ug/L		114	75 - 125	
Chloroethane	25.0	27.0		ug/L		108	69 - 136	
Chloroform	25.0	25.5		ug/L		102	73 - 127	
Chloromethane	25.0	25.7		ug/L		103	68 - 124	

Eurofins Buffalo

74 - 124

74 - 124

59 - 135

59 - 135

77 - 123

77 - 120

77 - 122

74 - 133

77 - 120

68 - 134

114

112

98

144

113

112

98

89

103

113

Page 35 of 65

25.0

25.0

25.0

25.0

25.0

25.0

25.0

50.0

25.0

25.0

28.5

28.0

24.5

28.4

28.1

24.6

44.7

25.7

28.2

36.1 *+

ug/L

Client: Terracon Consultants Inc

Project/Site: Back Lot Lake Ave, Rochester, NY

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-741783/6

Matrix: Water

Analysis Batch: 741783

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 480-228086-1

LCS LCS Spike %Rec Added Result Qualifier Unit D %Rec Limits Methylene Chloride 25.0 27.1 ug/L 109 75 - 124 Styrene 25.0 28.3 ug/L 113 80 - 120 Tetrachloroethene 31.1 *+ 25.0 ug/L 125 74 - 122

Toluene 25.0 26.9 ug/L 108 80 - 122 trans-1,2-Dichloroethene 25.0 28.3 ug/L 113 73 - 127 25.0 trans-1,3-Dichloropropene 26.8 ug/L 107 80 - 120 Trichloroethene 25.0 28.9 ug/L 116 74 - 123

25.0 125 62 - 150 Trichlorofluoromethane 31.1 ug/L Vinyl chloride 25.0 28.5 114 65 - 133 ug/L

LCS LCS Surrogate %Recovery Qualifier Limits

Toluene-d8 (Surr) 80 - 120 99 1,2-Dichloroethane-d4 (Surr) 98 77 - 120 4-Bromofluorobenzene (Surr) 115 73 - 120 Dibromofluoromethane (Surr) 104 75 - 123

Lab Sample ID: 480-228086-2 MS

Matrix: Water

Analysis Batch: 741783

Client Sample ID: MW-107

Prep Type: Total/NA

Analysis Batch: 741783	0	0	Omiles	мо	мо				0/ D = =	
Analyte	•	Sample Qualifier	Spike Added		MS Qualifier	Unit	D	%Rec	%Rec Limits	
1,1,1-Trichloroethane	ND	<u>Quantier</u> _	50.0	54.7	Qualifier	ug/L		109	73 - 126	_
1,1,2,2-Tetrachloroethane	ND		50.0	44.4		ug/L		89	76 - 120	
1.1.2-Trichloroethane	ND		50.0	51.1		ug/L		102	76 - 122	
1,1,2-Trichloro-1,2,2-trifluoroetha	ND		50.0	55.3		ug/L		111	61 - 148	
ne	110		00.0	00.0		ug/L			01-110	
1,1-Dichloroethane	ND		50.0	50.6		ug/L		101	77 - 120	
1,1-Dichloroethene	ND		50.0	54.3		ug/L		109	66 - 127	
1,2,4-Trichlorobenzene	ND		50.0	55.5		ug/L		111	79 - 122	
1,2-Dibromo-3-Chloropropane	ND		50.0	45.1		ug/L		90	56 - 134	
1,2-Dichlorobenzene	ND		50.0	52.6		ug/L		105	80 - 124	
1,2-Dichloroethane	ND		50.0	49.8		ug/L		100	75 - 120	
1,2-Dichloropropane	ND		50.0	50.6		ug/L		101	76 - 120	
1,3-Dichlorobenzene	ND		50.0	52.2		ug/L		104	77 - 120	
1,4-Dichlorobenzene	ND		50.0	50.6		ug/L		101	78 - 124	
2-Butanone (MEK)	ND		250	248		ug/L		99	57 - 140	
2-Hexanone	ND		250	236		ug/L		95	65 - 127	
4-Methyl-2-pentanone (MIBK)	ND		250	213		ug/L		85	71 - 125	
Acetone	ND		250	257		ug/L		103	56 - 142	
Benzene	ND		50.0	53.0		ug/L		106	71 - 124	
Bromodichloromethane	ND		50.0	50.0		ug/L		100	80 - 122	
Bromoform	ND		50.0	48.6		ug/L		97	61 - 132	
Bromomethane	ND		50.0	51.3		ug/L		103	55 - 144	
Carbon disulfide	ND		50.0	49.4		ug/L		99	59 - 134	
Carbon tetrachloride	ND		50.0	55.7		ug/L		111	72 - 134	
Chlorobenzene	ND		50.0	54.4		ug/L		109	80 - 120	
Dibromochloromethane	ND		50.0	48.3		ug/L		97	75 - 125	
Chloroethane	ND		50.0	49.3		ug/L		99	69 - 136	
Chloroform	ND		50.0	48.9		ug/L		98	73 - 127	

Eurofins Buffalo

Spike

MS MS

Client: Terracon Consultants Inc

Project/Site: Back Lot Lake Ave, Rochester, NY

Job ID: 480-228086-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Sample Sample

Lab Sample ID: 480-228086-2 MS

Matrix: Water

Analysis Batch: 741783

Client Sample ID: MW-107

%Rec

74 - 123

62 - 150

65 - 133

Client Sample ID: MW-107

Prep Type: Total/NA

110

113

112

Prep Type: Total/NA

Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloromethane	ND		50.0	46.7		ug/L		93	68 - 124	
cis-1,2-Dichloroethene	ND		50.0	55.0		ug/L		110	74 - 124	
cis-1,3-Dichloropropene	ND		50.0	51.7		ug/L		103	74 - 124	
Cyclohexane	ND		50.0	48.8		ug/L		98	59 - 135	
Dichlorodifluoromethane	ND	F1 *+	50.0	70.1	F1	ug/L		140	59 - 135	
Ethylbenzene	ND		50.0	53.6		ug/L		107	77 - 123	
1,2-Dibromoethane	ND		50.0	55.3		ug/L		111	77 - 120	
Isopropylbenzene	ND		50.0	48.3		ug/L		97	77 - 122	
Methyl acetate	ND		100	90.6		ug/L		91	74 - 133	
Methyl tert-butyl ether	ND		50.0	51.8		ug/L		104	77 - 120	
Methylcyclohexane	ND		50.0	54.5		ug/L		109	68 - 134	
Methylene Chloride	ND		50.0	53.4		ug/L		107	75 - 124	
Styrene	ND		50.0	53.4		ug/L		107	80 - 120	
Tetrachloroethene	ND	*+	50.0	57.9		ug/L		116	74 - 122	
Toluene	ND		50.0	51.0		ug/L		102	80 - 122	
trans-1,2-Dichloroethene	ND		50.0	55.3		ug/L		111	73 - 127	
trans-1,3-Dichloropropene	ND		50.0	48.2		ug/L		96	80 - 120	

50.0

50.0

50.0

54.8

56.7

55.8

ug/L

ug/L

ug/L

MS MS

ND

ND

ND

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	98		80 - 120
1,2-Dichloroethane-d4 (Surr)	98		77 - 120
4-Bromofluorobenzene (Surr)	111		73 - 120
Dibromofluoromethane (Surr)	107		75 - 123

Lab Sample ID: 480-228086-2 MSD

Matrix: Water

Trichloroethene

Vinyl chloride

Trichlorofluoromethane

Analysis Batch: 741783

Analysis Daten. 141100											
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	ND		50.0	55.2		ug/L		110	73 - 126	1	15
1,1,2,2-Tetrachloroethane	ND		50.0	43.6		ug/L		87	76 - 120	2	15
1,1,2-Trichloroethane	ND		50.0	51.1		ug/L		102	76 - 122	0	15
1,1,2-Trichloro-1,2,2-trifluoroetha	ND		50.0	56.1		ug/L		112	61 - 148	1	20
ne											
1,1-Dichloroethane	ND		50.0	50.4		ug/L		101	77 - 120	1	20
1,1-Dichloroethene	ND		50.0	55.4		ug/L		111	66 - 127	2	16
1,2,4-Trichlorobenzene	ND		50.0	55.0		ug/L		110	79 - 122	1	20
1,2-Dibromo-3-Chloropropane	ND		50.0	44.7		ug/L		89	56 - 134	1	15
1,2-Dichlorobenzene	ND		50.0	50.9		ug/L		102	80 - 124	3	20
1,2-Dichloroethane	ND		50.0	47.9		ug/L		96	75 - 120	4	20
1,2-Dichloropropane	ND		50.0	49.1		ug/L		98	76 - 120	3	20
1,3-Dichlorobenzene	ND		50.0	51.8		ug/L		104	77 - 120	1	20
1,4-Dichlorobenzene	ND		50.0	49.5		ug/L		99	78 - 124	2	20
2-Butanone (MEK)	ND		250	242		ug/L		97	57 - 140	2	20
2-Hexanone	ND		250	239		ug/L		96	65 - 127	1	15
4-Methyl-2-pentanone (MIBK)	ND		250	217		ug/L		87	71 - 125	2	35

Eurofins Buffalo

Page 37 of 65

Client: Terracon Consultants Inc

Project/Site: Back Lot Lake Ave, Rochester, NY

Job ID: 480-228086-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-228086-2 MSD

Matrix: Water

Analysis Batch: 741783

Client Sample ID: MW-107

Prep Type: Total/NA

Analysis Buton: 141100	Sample S	ample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result Q	ualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acetone	ND		250	249		ug/L		100	56 - 142	3	15
Benzene	ND		50.0	52.2		ug/L		104	71 - 124	1	13
Bromodichloromethane	ND		50.0	50.0		ug/L		100	80 - 122	0	15
Bromoform	ND		50.0	49.0		ug/L		98	61 - 132	1	15
Bromomethane	ND		50.0	53.5		ug/L		107	55 - 144	4	15
Carbon disulfide	ND		50.0	50.1		ug/L		100	59 - 134	1	15
Carbon tetrachloride	ND		50.0	55.3		ug/L		111	72 - 134	1	15
Chlorobenzene	ND		50.0	54.6		ug/L		109	80 - 120	0	25
Dibromochloromethane	ND		50.0	50.5		ug/L		101	75 - 125	5	15
Chloroethane	ND		50.0	52.4		ug/L		105	69 - 136	6	15
Chloroform	ND		50.0	49.6		ug/L		99	73 - 127	1	20
Chloromethane	ND		50.0	45.4		ug/L		91	68 - 124	3	15
cis-1,2-Dichloroethene	ND		50.0	55.9		ug/L		112	74 - 124	2	15
cis-1,3-Dichloropropene	ND		50.0	51.3		ug/L		103	74 - 124	1	15
Cyclohexane	ND		50.0	48.1		ug/L		96	59 - 135	1	20
Dichlorodifluoromethane	ND F	1 *+	50.0	69.2	F1	ug/L		138	59 - 135	1	20
Ethylbenzene	ND		50.0	54.8		ug/L		110	77 - 123	2	15
1,2-Dibromoethane	ND		50.0	55.1		ug/L		110	77 - 120	0	15
Isopropylbenzene	ND		50.0	47.8		ug/L		96	77 - 122	1	20
Methyl acetate	ND		100	91.3		ug/L		91	74 - 133	1	20
Methyl tert-butyl ether	ND		50.0	50.9		ug/L		102	77 - 120	2	37
Methylcyclohexane	ND		50.0	54.7		ug/L		109	68 - 134	0	20
Methylene Chloride	ND		50.0	53.1		ug/L		106	75 - 124	0	15
Styrene	ND		50.0	53.8		ug/L		108	80 - 120	1	20
Tetrachloroethene	ND *+	+	50.0	59.6		ug/L		119	74 - 122	3	20
Toluene	ND		50.0	51.1		ug/L		102	80 - 122	0	15
trans-1,2-Dichloroethene	ND		50.0	54.7		ug/L		109	73 - 127	1	20
trans-1,3-Dichloropropene	ND		50.0	49.3		ug/L		99	80 - 120	2	15
Trichloroethene	ND		50.0	56.0		ug/L		112	74 - 123	2	16
Trichlorofluoromethane	ND		50.0	57.1		ug/L		114	62 - 150	1	20
Vinyl chloride	ND		50.0	55.8		ug/L		112	65 - 133	0	15

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	99		80 - 120
1,2-Dichloroethane-d4 (Surr)	96		77 - 120
4-Bromofluorobenzene (Surr)	112		73 - 120
Dibromofluoromethane (Surr)	103		75 - 123

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-741634/1-A

Matrix: Water

Analysis Batch: 741781

Client Sample ID: Method Blank Prep Type: Total/NA **Prep Batch: 741634**

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND		5.0	0.65	ug/L		03/25/25 06:50	03/26/25 16:21	1
bis (2-chloroisopropyl) ether	ND		5.0	0.52	ug/L		03/25/25 06:50	03/26/25 16:21	1
2,4,5-Trichlorophenol	ND		5.0	0.48	ug/L		03/25/25 06:50	03/26/25 16:21	1
2,4,6-Trichlorophenol	ND		5.0	0.61	ug/L		03/25/25 06:50	03/26/25 16:21	1
	Biphenyl bis (2-chloroisopropyl) ether 2,4,5-Trichlorophenol	Analyte Result Biphenyl ND bis (2-chloroisopropyl) ether ND 2,4,5-Trichlorophenol ND	Biphenyl ND bis (2-chloroisopropyl) ether ND 2,4,5-Trichlorophenol ND	Analyte Result Biphenyl Qualifier RL bis (2-chloroisopropyl) ether ND 5.0 2,4,5-Trichlorophenol ND 5.0	Analyte Result Biphenyl Qualifier RL St. MDL St. bis (2-chloroisopropyl) ether ND 5.0 0.52 2,4,5-Trichlorophenol ND 5.0 0.48	Analyte Result Qualifier RL MDL Unit Biphenyl ND 5.0 0.65 ug/L bis (2-chloroisopropyl) ether ND 5.0 0.52 ug/L 2,4,5-Trichlorophenol ND 5.0 0.48 ug/L	Analyte Result Biphenyl Qualifier RL St. MDL ug/L Wg/L Unit Ug/L D bis (2-chloroisopropyl) ether St. ND 5.0 0.52 ug/L 2,4,5-Trichlorophenol ND 5.0 0.48 ug/L	Analyte Result Biphenyl Qualifier RL State of the properties of	Analyte Result Biphenyl Qualifier RL Suppression MDL Suppression Unit Suppression D Prepared O3/25/25 06:50 Analyzed O3/25/25 16:21 bis (2-chloroisopropyl) ether ND 5.0 0.52 ug/L 03/25/25 06:50 03/26/25 16:21 2,4,5-Trichlorophenol ND 5.0 0.48 ug/L 03/25/25 06:50 03/26/25 16:21

Eurofins Buffalo

Page 38 of 65

Client: Terracon Consultants Inc

Project/Site: Back Lot Lake Ave, Rochester, NY

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-741634/1-A

Matrix: Water

Analysis Batch: 741781

Client Sample ID: Method Blank

Job ID: 480-228086-1

Prep Type: Total/NA
Prep Batch: 741634

	MB								
Analyte		Qualifier	RL	MDL		<u>D</u>	Prepared	Analyzed	Dil Fac
2,4-Dichlorophenol	ND		5.0		ug/L			03/26/25 16:21	1
2,4-Dimethylphenol	ND		5.0		ug/L			03/26/25 16:21	1
2,4-Dinitrophenol	ND		10		ug/L			03/26/25 16:21	1
2,4-Dinitrotoluene	ND		5.0	0.45	ug/L		03/25/25 06:50	03/26/25 16:21	1
2,6-Dinitrotoluene	ND		5.0		ug/L		03/25/25 06:50	03/26/25 16:21	1
2-Chloronaphthalene	ND		5.0	0.46	ug/L		03/25/25 06:50	03/26/25 16:21	1
2-Chlorophenol	ND		5.0	0.53	ug/L		03/25/25 06:50	03/26/25 16:21	1
2-Methylphenol	ND		5.0	0.40	ug/L		03/25/25 06:50	03/26/25 16:21	1
2-Methylnaphthalene	ND		5.0	0.60	ug/L		03/25/25 06:50	03/26/25 16:21	1
2-Nitroaniline	ND		10	0.42	ug/L		03/25/25 06:50	03/26/25 16:21	1
2-Nitrophenol	ND		5.0	0.48	ug/L		03/25/25 06:50	03/26/25 16:21	1
3,3'-Dichlorobenzidine	ND		5.0	0.40	ug/L		03/25/25 06:50	03/26/25 16:21	1
3-Nitroaniline	ND		10	0.48	ug/L		03/25/25 06:50	03/26/25 16:21	1
4,6-Dinitro-2-methylphenol	ND		10	2.2	ug/L		03/25/25 06:50	03/26/25 16:21	1
4-Bromophenyl phenyl ether	ND		5.0	0.45	ug/L		03/25/25 06:50	03/26/25 16:21	1
4-Chloro-3-methylphenol	ND		5.0	0.45	ug/L		03/25/25 06:50	03/26/25 16:21	1
4-Chloroaniline	ND		5.0	0.59	ug/L		03/25/25 06:50	03/26/25 16:21	1
4-Chlorophenyl phenyl ether	ND		5.0	0.35	ug/L		03/25/25 06:50	03/26/25 16:21	1
4-Methylphenol	ND		10	0.36	ug/L		03/25/25 06:50	03/26/25 16:21	1
4-Nitroaniline	ND		10	0.25	ug/L		03/25/25 06:50	03/26/25 16:21	1
4-Nitrophenol	ND		10		ug/L		03/25/25 06:50	03/26/25 16:21	1
Acenaphthene	ND		5.0		ug/L		03/25/25 06:50	03/26/25 16:21	1
Acenaphthylene	ND		5.0	0.38	ug/L		03/25/25 06:50	03/26/25 16:21	1
Acetophenone	ND		5.0	0.54	ug/L		03/25/25 06:50	03/26/25 16:21	1
Anthracene	ND		5.0		ug/L		03/25/25 06:50	03/26/25 16:21	1
Atrazine	ND		5.0		ug/L			03/26/25 16:21	1
Benzaldehyde	ND		5.0		ug/L			03/26/25 16:21	1
Benzo[a]anthracene	ND		5.0		ug/L			03/26/25 16:21	1
Benzo[a]pyrene	ND		5.0		ug/L			03/26/25 16:21	1
Benzo[b]fluoranthene	ND		5.0		ug/L			03/26/25 16:21	1
Benzo[g,h,i]perylene	ND		5.0		ug/L			03/26/25 16:21	1
Benzo[k]fluoranthene	ND		5.0		ug/L			03/26/25 16:21	1
Bis(2-chloroethoxy)methane	ND		5.0		ug/L			03/26/25 16:21	
Bis(2-chloroethyl)ether	ND		5.0		ug/L			03/26/25 16:21	1
Bis(2-ethylhexyl) phthalate	ND		5.0		ug/L			03/26/25 16:21	1
Butyl benzyl phthalate	ND		5.0		ug/L			03/26/25 16:21	· · · · · · · · · · · · · · · · · · ·
Caprolactam	ND		5.0		ug/L			03/26/25 16:21	1
Carbazole	ND		5.0		ug/L			03/26/25 16:21	1
Chrysene	ND		5.0		ug/L			03/26/25 16:21	· · · · · · · · · · · · · · · · · · ·
•	ND		5.0					03/26/25 16:21	_
Dibenz(a,h)anthracene	ND ND		5.0		ug/L				1
Di-n-butyl phthalate					ug/L			03/26/25 16:21	1
Di-n-octyl phthalate	ND		5.0		ug/L			03/26/25 16:21	1
Dibenzofuran	ND		10 5.0		ug/L			03/26/25 16:21	1
Diethyl phthalate	ND		5.0		ug/L			03/26/25 16:21	
Dimethyl phthalate	ND		5.0		ug/L			03/26/25 16:21	1
Fluoranthene	ND		5.0		ug/L			03/26/25 16:21	1
Fluorene	ND		5.0		ug/L			03/26/25 16:21	
Hexachlorobenzene	ND		5.0		ug/L			03/26/25 16:21	1
Hexachlorobutadiene	ND		5.0	0.68	ug/L		03/25/25 06:50	03/26/25 16:21	1

Eurofins Buffalo

Page 39 of 65

Client: Terracon Consultants Inc

Project/Site: Back Lot Lake Ave, Rochester, NY

Job ID: 480-228086-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-741634/1-A

Matrix: Water

Analysis Batch: 741781

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 741634

мв м	В						
Result Q	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ND ND	5.0	0.59	ug/L		03/25/25 06:50	03/26/25 16:21	1
ND	5.0	0.59	ug/L		03/25/25 06:50	03/26/25 16:21	1
ND	5.0	0.47	ug/L		03/25/25 06:50	03/26/25 16:21	1
ND	5.0	0.43	ug/L		03/25/25 06:50	03/26/25 16:21	1
ND	5.0	0.54	ug/L		03/25/25 06:50	03/26/25 16:21	1
ND	5.0	0.51	ug/L		03/25/25 06:50	03/26/25 16:21	1
ND	5.0	0.76	ug/L		03/25/25 06:50	03/26/25 16:21	1
ND	5.0	0.29	ug/L		03/25/25 06:50	03/26/25 16:21	1
ND	10	2.2	ug/L		03/25/25 06:50	03/26/25 16:21	1
ND	5.0	0.44	ug/L		03/25/25 06:50	03/26/25 16:21	1
ND	5.0	0.39	ug/L		03/25/25 06:50	03/26/25 16:21	1
ND	5.0	0.34	ug/L		03/25/25 06:50	03/26/25 16:21	1
	Result ND	Result Qualifier RL ND 5.0 ND 10 ND 5.0 ND 5.0 ND 5.0 ND 5.0 ND 5.0 ND 5.0	Result Qualifier RL MDL ND 5.0 0.59 ND 5.0 0.47 ND 5.0 0.43 ND 5.0 0.54 ND 5.0 0.51 ND 5.0 0.76 ND 5.0 0.29 ND 10 2.2 ND 5.0 0.44 ND 5.0 0.39	ND 5.0 0.59 ug/L ND 5.0 0.59 ug/L ND 5.0 0.47 ug/L ND 5.0 0.43 ug/L ND 5.0 0.54 ug/L ND 5.0 0.51 ug/L ND 5.0 0.76 ug/L ND 5.0 0.29 ug/L ND 10 2.2 ug/L ND 5.0 0.44 ug/L ND 5.0 0.39 ug/L	Result Qualifier RL MDL Unit D ND 5.0 0.59 ug/L ND 5.0 0.59 ug/L ND 5.0 0.47 ug/L ND 5.0 0.43 ug/L ND 5.0 0.54 ug/L ND 5.0 0.51 ug/L ND 5.0 0.29 ug/L ND 5.0 0.44 ug/L ND 5.0 0.44 ug/L ND 5.0 0.39 ug/L	Result Qualifier RL MDL Unit D Prepared ND 5.0 0.59 ug/L 03/25/25 06:50 ND 5.0 0.59 ug/L 03/25/25 06:50 ND 5.0 0.47 ug/L 03/25/25 06:50 ND 5.0 0.43 ug/L 03/25/25 06:50 ND 5.0 0.54 ug/L 03/25/25 06:50 ND 5.0 0.51 ug/L 03/25/25 06:50 ND 5.0 0.76 ug/L 03/25/25 06:50 ND 5.0 0.29 ug/L 03/25/25 06:50 ND 5.0 0.29 ug/L 03/25/25 06:50 ND 5.0 0.44 ug/L 03/25/25 06:50 ND 5.0 0.44 ug/L 03/25/25 06:50 ND 5.0 0.39 ug/L 03/25/25 06:50	Result Qualifier RL MDL Unit D Prepared Analyzed ND 5.0 0.59 ug/L 03/25/25 06:50 03/26/25 16:21 ND 5.0 0.59 ug/L 03/25/25 06:50 03/26/25 16:21 ND 5.0 0.47 ug/L 03/25/25 06:50 03/26/25 16:21 ND 5.0 0.43 ug/L 03/25/25 06:50 03/26/25 16:21 ND 5.0 0.54 ug/L 03/25/25 06:50 03/26/25 16:21 ND 5.0 0.51 ug/L 03/25/25 06:50 03/26/25 16:21 ND 5.0 0.76 ug/L 03/25/25 06:50 03/26/25 16:21 ND 5.0 0.29 ug/L 03/25/25 06:50 03/26/25 16:21 ND 5.0 0.29 ug/L 03/25/25 06:50 03/26/25 16:21 ND 5.0 0.44 ug/L 03/25/25 06:50 03/26/25 16:21 ND 5.0 0.44 ug/L 03/25/25 06:50 03/26/25 16:21

MB MB

Surrogate	%Recovery (Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	63		29 - 129	03/25/25 06:50	03/26/25 16:21	1
Phenol-d5 (Surr)	35		10 - 120	03/25/25 06:50	03/26/25 16:21	1
p-Terphenyl-d14 (Surr)	86		33 - 132	03/25/25 06:50	03/26/25 16:21	1
2,4,6-Tribromophenol (Surr)	67		25 - 144	03/25/25 06:50	03/26/25 16:21	1
2-Fluorobiphenyl (Surr)	71		53 - 126	03/25/25 06:50	03/26/25 16:21	1
2-Fluorophenol (Surr)	52		24 - 120	03/25/25 06:50	03/26/25 16:21	1

Lab Sample ID: LCS 480-741634/2-A

Matrix: Water

Analysis Batch: 741781

Client Sample ID: Lab Control Sample

Prep Type: Total/NA **Prep Batch: 741634**

Analysis Batom 141751	Spike	LCS	LCS				%Rec
Analyte	Added		Qualifier	Unit	D %	Rec	Limits
Biphenyl	32.0	27.0		ug/L		84	59 - 120
bis (2-chloroisopropyl) ether	32.0	27.6		ug/L		86	21 - 136
2,4,5-Trichlorophenol	32.0	31.0		ug/L		97	65 - 126
2,4,6-Trichlorophenol	32.0	28.3		ug/L		88	64 - 120
2,4-Dichlorophenol	32.0	28.2		ug/L		88	63 - 120
2,4-Dimethylphenol	32.0	28.2		ug/L		88	47 - 120
2,4-Dinitrophenol	64.0	13.8	*-	ug/L		22	31 - 137
2,4-Dinitrotoluene	32.0	30.8		ug/L		96	69 - 120
2,6-Dinitrotoluene	32.0	32.0		ug/L		100	68 - 120
2-Chloronaphthalene	32.0	26.1		ug/L		81	58 - 120
2-Chlorophenol	32.0	27.1		ug/L		85	48 - 120
2-Methylphenol	32.0	26.0		ug/L		81	39 - 120
2-Methylnaphthalene	32.0	26.4		ug/L		82	59 - 120
2-Nitroaniline	32.0	28.1		ug/L		88	54 - 127
2-Nitrophenol	32.0	23.9		ug/L		75	52 - 125
3,3'-Dichlorobenzidine	32.0	25.3		ug/L		79	49 - 135
3-Nitroaniline	32.0	24.0		ug/L		75	51 - 120
4,6-Dinitro-2-methylphenol	64.0	14.7	*_	ug/L		23	46 - 136
4-Bromophenyl phenyl ether	32.0	29.3		ug/L		92	65 - 120
4-Chloro-3-methylphenol	32.0	29.2		ug/L		91	61 - 123
4-Chloroaniline	32.0	21.9		ug/L		68	30 - 120
4-Chlorophenyl phenyl ether	32.0	28.9		ug/L		90	62 - 120

Eurofins Buffalo

Page 40 of 65

Client: Terracon Consultants Inc

Project/Site: Back Lot Lake Ave, Rochester, NY

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-741634/2-A

Matrix: Water

Benzo[a]anthracene

Benzo[b]fluoranthene

Benzo[g,h,i]perylene

Benzo[k]fluoranthene

Bis(2-chloroethyl)ether

Benzo[a]pyrene

Analysis Batch: 741781

Client Sample ID: Lab Control Sample

Prep Type: Total/NA **Prep Batch: 741634**

Job ID: 480-228086-1

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
4-Methylphenol	32.0	26.6		ug/L		83	29 - 131	
4-Nitroaniline	32.0	30.9		ug/L		97	65 - 120	
4-Nitrophenol	64.0	43.9		ug/L		69	45 - 120	
Acenaphthene	32.0	28.8		ug/L		90	60 - 120	
Acenaphthylene	32.0	30.9		ug/L		97	63 - 120	
Acetophenone	32.0	30.7		ug/L		96	45 - 120	
Anthracene	32.0	34.2		ug/L		107	67 - 120	
Atrazine	32.0	42.1	*+	ug/L		132	71 - 130	
Benzaldehvde	32.0	34.0		ua/L		106	10 - 140	

70 - 121 32.0 32.5 ug/L 102 32.0 32.5 102 60 - 123 ug/L 32.0 33.9 ug/L 106 66 - 126 32.0 33.4 104 66 - 150 ug/L 32.0 32.0 100 ug/L 65 - 124 Bis(2-chloroethoxy)methane 32.0 30.0 ug/L 94 50 - 128 32.0 97 44 - 120 31.1 ug/L

Bis(2-ethylhexyl) phthalate 32.0 32.4 ug/L 101 63 - 139 ug/L Butyl benzyl phthalate 32.0 32.8 103 70 - 129 Caprolactam 32.0 10.3 ug/L 32 22 - 120 Carbazole 32.0 36.7 ug/L 115 66 - 123 Chrysene 32.0 33.3 ug/L 104 69 - 120 Dibenz(a,h)anthracene 32.0 36.2 ug/L 113 65 - 135Di-n-butyl phthalate 32.0 33.0 ug/L 103 69 - 131 32.0 33.5 105 63 - 140 Di-n-octyl phthalate ug/L

32.0 29.7 93 Dibenzofuran ug/L 66 - 120 Diethyl phthalate 32.0 33.2 104 59 - 127 ug/L 31.5 Dimethyl phthalate 32.0 99 ug/L 68 - 120 Fluoranthene 32.0 33.5 ug/L 105 69 - 126 Fluorene 32.0 33.3 ug/L 104 66 - 120Hexachlorobenzene 32.0 30.8 ug/L 96 61 - 120Hexachlorobutadiene 32.0 20.0 ug/L 62 35 - 120 Hexachlorocyclopentadiene 32.0 10.8 ug/L 34 31 - 120

ug/L Hexachloroethane 32.0 20.3 63 33 - 120 32.0 35.6 ug/L 111 69 - 146 Indeno[1,2,3-cd]pyrene 32.0 Isophorone 29.7 ug/L 93 55 - 120 90 N-Nitrosodi-n-propylamine 32.0 28.9 ug/L 32 - 140 97 N-Nitrosodiphenylamine 32.0 31.0 ug/L 61 - 120Naphthalene 32.0 26.9 84 ug/L 57 - 120 Nitrobenzene 32.0 28.3 ug/L 88 53 - 123 Pentachlorophenol 64.0 64.6 101 10 - 136 ug/L

Phenanthrene 32.0 32.2 ug/L 101 68 - 120 Phenol 32.0 16.3 51 17 - 120 ug/L Pyrene 32.0 33.0 ug/L 103 70 - 125

LCS LCS

Surrogate	%Recovery Qual	lifier Limits
Nitrobenzene-d5 (Surr)	83	29 - 129
Phenol-d5 (Surr)	49	10 - 120
p-Terphenyl-d14 (Surr)	91	33 - 132

Eurofins Buffalo

Client: Terracon Consultants Inc

Project/Site: Back Lot Lake Ave, Rochester, NY

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Sample Sample

ND

ND

Lab Sample ID: LCS 480-741634/2-A

Matrix: Water

Analysis Batch: 741781

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 480-228086-1

Prep Batch: 741634

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol (Surr)	92		25 - 144
2-Fluorobiphenyl (Surr)	87		53 - 126
2-Fluorophenol (Surr)	67		24 - 120

Lab Sample ID: 480-228086-2 MS Client Sample ID: MW-107

MS MS

Spike

Matrix: Water

Analysis Batch: 741781

Bis(2-chloroethoxy)methane

Bis(2-ethylhexyl) phthalate

Bis(2-chloroethyl)ether

Prep Type: Total/NA

%Rec

Prep Batch: 741634

Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits Biphenyl ND 32.0 26.1 ug/L 82 57 - 120 ug/L ND 32.0 27.1 85 28 - 121 bis (2-chloroisopropyl) ether 2,4,5-Trichlorophenol ND 32.0 29.0 ug/L 91 65 - 126 2,4,6-Trichlorophenol ND 32.0 29.9 ug/L 93 64 - 120 2,4-Dichlorophenol ND 32.0 28.1 ug/L 88 48 - 132 32.0 28.2 88 2,4-Dimethylphenol ND ug/L 39 - 130 2,4-Dinitrophenol ND 64.0 21.2 ug/L 33 21 - 150 91 2,4-Dinitrotoluene ND 32.0 29.3 ug/L 54 - 138 2.6-Dinitrotoluene ND 32.0 29.0 ug/L 90 17 - 150 2-Chloronaphthalene ND 32.0 26.3 ug/L 82 52 - 124 48 - 120 2-Chlorophenol ND 32.0 25.9 ug/L 81 2-Methylphenol ND 32.0 24.5 76 46 - 120 ug/L ND 32.0 27.3 85 34 - 140 2-Methylnaphthalene ug/L 2-Nitroaniline ND 32.0 26.8 ug/L 84 44 - 136 2-Nitrophenol ND 32.0 28.1 88 38 - 141 ug/L 3,3'-Dichlorobenzidine ND 52 32.0 16.7 ug/L 10 - 150 3-Nitroaniline ND 32.0 15.5 ug/L 48 32 - 150 4,6-Dinitro-2-methylphenol ND ug/L 38 38 - 150 64.0 24.6 ND 32.0 92 63 - 126 4-Bromophenyl phenyl ether 29.4 ug/L 32.0 29.0 91 4-Chloro-3-methylphenol ND ug/L 64 - 127 4-Chloroaniline ND 32.0 12.2 ug/L 38 16 - 124 4-Chlorophenyl phenyl ether ND 32.0 28.0 88 61 - 120ug/L 4-Methylphenol ND 32.0 25.4 ug/L 79 36 - 120 ND 32.0 27.7 87 4-Nitroaniline ug/L 32 - 1504-Nitrophenol ND 64.0 41.3 ug/L 64 23 - 132 Acenaphthene ND 32.0 28.2 ug/L 88 48 - 120 Acenaphthylene ND 32.0 29.9 ug/L 93 63 - 120 Acetophenone ND 32.0 29.1 ug/L 91 53 - 120 Anthracene ND 32.0 32.8 102 65 - 122 ug/L Atrazine ND 32.0 35.2 ug/L 110 50 - 150 Benzaldehyde ND 32.0 32.0 ug/L 100 10 - 150 Benzo[a]anthracene ND 32.0 28.8 ug/L 90 43 - 124 ND 32.0 27.6 86 23 - 125 Benzo[a]pyrene ug/L Benzo[b]fluoranthene 89 27 - 127 ND 32.0 28.5 ug/L Benzo[g,h,i]perylene ND 32.0 27.6 ug/L 86 16 - 147 Benzo[k]fluoranthene ND 32.0 26.6 ug/L 83 20 - 124 ND 32.0 ug/L 91 44 - 128

Eurofins Buffalo

32.0

32.0

29.0

31.1

27.0

ug/L

ug/L

97

45 - 120

16 - 150

Client: Terracon Consultants Inc

Project/Site: Back Lot Lake Ave, Rochester, NY

Job ID: 480-228086-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 480-228086-2 MS

Matrix: Water

Analysis Batch: 741781

Client Sample ID: MW-107

Prep Type: Total/NA **Prep Batch: 741634**

Analyte	Sample S	Sample Qualifier	Spike Added	_	MS Qualifier	Unit	D	%Rec	%Rec Limits	
Butyl benzyl phthalate	ND	Qualifier	32.0	29.2	Qualifier	ug/L		91	51 ₋ 140	
Caprolactam	ND		32.0	9.77		ug/L		31	10 - 120	
Carbazole	ND		32.0	36.9		ug/L		115	16 - 148	
Chrysene	ND		32.0	28.2		ug/L		88	44 - 122	
Dibenz(a,h)anthracene	ND		32.0	30.0		ug/L		94	16 - 139	
Di-n-butyl phthalate	0.61	J	32.0	29.9		ug/L		92	65 - 129	
Di-n-octyl phthalate	ND		32.0	28.3		ug/L		88	16 - 150	
Dibenzofuran	ND		32.0	28.6		ug/L		89	60 - 120	
Diethyl phthalate	ND		32.0	30.8		ug/L		96	53 - 133	
Dimethyl phthalate	ND		32.0	29.9		ug/L		93	59 - 123	
Fluoranthene	ND		32.0	32.2		ug/L		101	63 - 129	
Fluorene	ND		32.0	31.6		ug/L		99	62 - 120	
Hexachlorobenzene	ND		32.0	29.1		ug/L		91	57 - 121	
Hexachlorobutadiene	ND		32.0	20.1		ug/L		63	37 - 120	
Hexachlorocyclopentadiene	ND		32.0	11.6		ug/L		36	21 - 120	
Hexachloroethane	ND		32.0	20.2		ug/L		63	16 - 130	
Indeno[1,2,3-cd]pyrene	ND		32.0	29.7		ug/L		93	16 - 140	
Isophorone	ND		32.0	29.6		ug/L		92	48 - 133	
N-Nitrosodi-n-propylamine	ND		32.0	28.3		ug/L		88	49 - 120	
N-Nitrosodiphenylamine	ND		32.0	30.2		ug/L		94	39 - 138	
Naphthalene	ND		32.0	27.2		ug/L		85	45 - 120	
Nitrobenzene	ND		32.0	27.8		ug/L		87	45 - 123	
Pentachlorophenol	ND		64.0	69.8		ug/L		109	10 - 149	
Phenanthrene	ND		32.0	35.7		ug/L		111	65 - 122	
Phenol	ND		32.0	14.8		ug/L		46	16 - 120	
Pyrene	ND		32.0	30.3		ug/L		95	58 - 128	

MS MS

Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5 (Surr)	82		29 - 129
Phenol-d5 (Surr)	44		10 - 120
p-Terphenyl-d14 (Surr)	52		33 - 132
2,4,6-Tribromophenol (Surr)	96		25 - 144
2-Fluorobiphenyl (Surr)	85		53 - 126
2-Fluorophenol (Surr)	63		24 - 120

Lab Sample ID: 480-228086-2 MSD Client Sample ID: MW-107 Prep Type: Total/NA

Matrix: Water **Analysis Batch: 741781**

Analysis Batch: 741781									Prep Ba	tch: 74	11634
-	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Biphenyl	ND		32.0	24.3		ug/L		76	57 - 120	7	20
bis (2-chloroisopropyl) ether	ND		32.0	23.8		ug/L		74	28 - 121	13	24
2,4,5-Trichlorophenol	ND		32.0	27.9		ug/L		87	65 - 126	4	18
2,4,6-Trichlorophenol	ND		32.0	26.9		ug/L		84	64 - 120	11	19
2,4-Dichlorophenol	ND		32.0	25.7		ug/L		80	48 - 132	9	19
2,4-Dimethylphenol	ND		32.0	25.3		ug/L		79	39 - 130	11	42
2,4-Dinitrophenol	ND	*_	64.0	22.9		ug/L		36	21 - 150	8	22
2,4-Dinitrotoluene	ND		32.0	29.2		ug/L		91	54 - 138	0	20

Eurofins Buffalo

Page 43 of 65

Client: Terracon Consultants Inc

Job ID: 480-228086-1 Project/Site: Back Lot Lake Ave, Rochester, NY

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 480-228086-2 MSD

Matrix: Water

Analysis Batch: 741781

Client Sample ID: MW-107

Prep Type: Total/NA Prep Batch: 741634

		Prep Batch:		
SD	D 9/ Baa	%Rec Limits	BBB	RPD
ualifier Unit	D %Rec	17 - 150	RPD 5	Limi 15
ug/L	86	52 - 124		
ug/L	76		8	2
ug/L	73	48 ₋ 120 46 ₋ 120	10	25
ug/L	69		10	27
ug/L	78	34 - 140	10	2′
ug/L	78 	44 - 136	7	15
ug/L	77	38 - 141	13	18
ug/L	57	10 - 150	9	25
ug/L	54	32 - 150	11	19
ug/L	43	38 - 150	10	15
ug/L	82	63 - 126	11	15
ug/L	83	64 - 127	9	27
ug/L	46	16 - 124	19	22
ug/L	83	61 - 120	6	16
ug/L	71	36 - 120	11	24
ug/L	87	32 - 150	0	24
ug/L	70	23 - 132	9	48
ug/L	83	48 - 120	6	24
ug/L	86	63 - 120	8	18
ug/L	82	53 - 120	10	20
ug/L	95	65 - 122	8	15
ug/L	111	50 - 150	0	20
ug/L	90	10 - 150	11	20
ug/L	85	43 - 124	6	15
ug/L	80	23 - 125	7	15
ug/L	84	27 - 127	6	15
ug/L	80	16 - 147	7	15
ug/L	80	20 - 124	4	22
ug/L	82	44 - 128	10	17
ug/L	85	45 - 120	13	21
ug/L	78	16 - 150	8	15
ug/L	84	51 - 140	8	16
ug/L	29	10 - 120	4	20
ug/L	108	16 - 148	7	20
ug/L	85	44 - 122	4	15
ug/L	86	16 - 139	8	15
ug/L	83	65 - 129	10	15
ug/L	82	16 - 150	8	16
ug/L	85	60 - 120	5	15
ug/L	93	53 - 133	4	15
	87	59 - 123	7	15
				15
				15
				15
				44
				49
				46
				15
				17
	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	ug/L 89 ug/L 93 ug/L 81 ug/L 61 ug/L 36 ug/L 60 ug/L 85	ug/L 89 63 - 129 ug/L 93 62 - 120 ug/L 81 57 - 121 ug/L 61 37 - 120 ug/L 36 21 - 120 ug/L 60 16 - 130 ug/L 85 16 - 140	ug/L 89 63 - 129 12 ug/L 93 62 - 120 6 ug/L 81 57 - 121 11 ug/L 61 37 - 120 2 ug/L 36 21 - 120 0 ug/L 60 16 - 130 5 ug/L 85 16 - 140 8

Eurofins Buffalo

Page 44 of 65

Client: Terracon Consultants Inc

Project/Site: Back Lot Lake Ave, Rochester, NY

Job ID: 480-228086-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 480-228086-2 MSD

Matrix: Water

Phenol

Pyrene

Analysis Batch: 741781									Prep Ba	itch: 74	11634	
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
N-Nitrosodi-n-propylamine	ND		32.0	25.2		ug/L		79	49 - 120	12	31	
N-Nitrosodiphenylamine	ND		32.0	27.1		ug/L		85	39 - 138	11	15	
Naphthalene	ND		32.0	24.9		ug/L		78	45 - 120	9	29	
Nitrobenzene	ND		32.0	25.1		ug/L		79	45 - 123	10	24	
Pentachlorophenol	ND		64.0	66.0		ug/L		103	10 - 149	6	37	
Phenanthrene	ND		32.0	31.6		ug/L		99	65 - 122	12	15	

13.6

28.5

ug/L

ug/L

32.0

32.0

MSD MSD

ND

ND

Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5 (Surr)	75		29 - 129
Phenol-d5 (Surr)	41		10 - 120
p-Terphenyl-d14 (Surr)	53		33 - 132
2,4,6-Tribromophenol (Surr)	85		25 - 144
2-Fluorobiphenyl (Surr)	79		53 - 126
2-Fluorophenol (Surr)	57		24 - 120

Lab Sample ID: MB 480-741949/1-A

Matrix: Water

Analysis Batch: 742017

Client Sample ID: Method Bla	nk
Prep Type: Total/I	A

42

89

16 - 120

58 - 128

Client Sample ID: MW-107

Prep Type: Total/NA

9

6

34

19

Prep Batch: 741949

7 maryolo Batom 1 420 11								. Top Batom	1 - 10 - 10
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND		5.0	0.65	ug/L		03/27/25 13:37	03/28/25 11:48	1
bis (2-chloroisopropyl) ether	ND		5.0	0.52	ug/L		03/27/25 13:37	03/28/25 11:48	1
2,4,5-Trichlorophenol	ND		5.0	0.48	ug/L		03/27/25 13:37	03/28/25 11:48	1
2,4,6-Trichlorophenol	ND		5.0	0.61	ug/L		03/27/25 13:37	03/28/25 11:48	1
2,4-Dichlorophenol	ND		5.0	0.51	ug/L		03/27/25 13:37	03/28/25 11:48	1
2,4-Dimethylphenol	ND		5.0	0.50	ug/L		03/27/25 13:37	03/28/25 11:48	1
2,4-Dinitrophenol	ND		10	2.2	ug/L		03/27/25 13:37	03/28/25 11:48	1
2,4-Dinitrotoluene	ND		5.0	0.45	ug/L		03/27/25 13:37	03/28/25 11:48	1
2,6-Dinitrotoluene	ND		5.0	0.40	ug/L		03/27/25 13:37	03/28/25 11:48	1
2-Chloronaphthalene	ND		5.0	0.46	ug/L		03/27/25 13:37	03/28/25 11:48	1
2-Chlorophenol	ND		5.0	0.53	ug/L		03/27/25 13:37	03/28/25 11:48	1
2-Methylphenol	ND		5.0	0.40	ug/L		03/27/25 13:37	03/28/25 11:48	1
2-Methylnaphthalene	ND		5.0	0.60	ug/L		03/27/25 13:37	03/28/25 11:48	1
2-Nitroaniline	ND		10	0.42	ug/L		03/27/25 13:37	03/28/25 11:48	1
2-Nitrophenol	ND		5.0	0.48	ug/L		03/27/25 13:37	03/28/25 11:48	1
3,3'-Dichlorobenzidine	ND		5.0	0.40	ug/L		03/27/25 13:37	03/28/25 11:48	1
3-Nitroaniline	ND		10	0.48	ug/L		03/27/25 13:37	03/28/25 11:48	1
4,6-Dinitro-2-methylphenol	ND		10	2.2	ug/L		03/27/25 13:37	03/28/25 11:48	1
4-Bromophenyl phenyl ether	ND		5.0	0.45	ug/L		03/27/25 13:37	03/28/25 11:48	1
4-Chloro-3-methylphenol	ND		5.0	0.45	ug/L		03/27/25 13:37	03/28/25 11:48	1
4-Chloroaniline	ND		5.0	0.59	ug/L		03/27/25 13:37	03/28/25 11:48	1
4-Chlorophenyl phenyl ether	ND		5.0	0.35	ug/L		03/27/25 13:37	03/28/25 11:48	1
4-Methylphenol	ND		10	0.36	ug/L		03/27/25 13:37	03/28/25 11:48	1
4-Nitroaniline	ND		10	0.25	ug/L		03/27/25 13:37	03/28/25 11:48	1
4-Nitrophenol	ND		10	1.5	ug/L		03/27/25 13:37	03/28/25 11:48	1
Acenaphthene	ND		5.0	0.41	ug/L		03/27/25 13:37	03/28/25 11:48	1

Page 45 of 65

Client: Terracon Consultants Inc

Project/Site: Back Lot Lake Ave, Rochester, NY

Job ID: 480-228086-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-741949/1-A

Matrix: Water

Analysis Batch: 742017

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 741949

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthylene	ND		5.0	0.38	ug/L		03/27/25 13:37	03/28/25 11:48	1
Acetophenone	ND		5.0	0.54	ug/L		03/27/25 13:37	03/28/25 11:48	1
Anthracene	ND		5.0	0.28	ug/L		03/27/25 13:37	03/28/25 11:48	1
Atrazine	ND		5.0	0.46	ug/L		03/27/25 13:37	03/28/25 11:48	1
Benzaldehyde	ND		5.0	0.27	ug/L		03/27/25 13:37	03/28/25 11:48	1
Benzo[a]anthracene	ND		5.0	0.36	ug/L		03/27/25 13:37	03/28/25 11:48	1
Benzo[a]pyrene	ND		5.0	0.47	ug/L		03/27/25 13:37	03/28/25 11:48	1
Benzo[b]fluoranthene	ND		5.0	0.34	ug/L		03/27/25 13:37	03/28/25 11:48	1
Benzo[g,h,i]perylene	ND		5.0	0.35	ug/L		03/27/25 13:37	03/28/25 11:48	1
Benzo[k]fluoranthene	ND		5.0	0.73	ug/L		03/27/25 13:37	03/28/25 11:48	1
Bis(2-chloroethoxy)methane	ND		5.0	0.35	ug/L		03/27/25 13:37	03/28/25 11:48	1
Bis(2-chloroethyl)ether	ND		5.0	0.40	ug/L		03/27/25 13:37	03/28/25 11:48	1
Bis(2-ethylhexyl) phthalate	ND		5.0	2.2	ug/L		03/27/25 13:37	03/28/25 11:48	1
Butyl benzyl phthalate	ND		5.0	1.0	ug/L		03/27/25 13:37	03/28/25 11:48	1
Caprolactam	ND		5.0	2.2	ug/L		03/27/25 13:37	03/28/25 11:48	1
Carbazole	ND		5.0	0.30	ug/L		03/27/25 13:37	03/28/25 11:48	1
Chrysene	ND		5.0	0.33	ug/L		03/27/25 13:37	03/28/25 11:48	1
Dibenz(a,h)anthracene	ND		5.0	0.42	ug/L		03/27/25 13:37	03/28/25 11:48	1
Di-n-butyl phthalate	0.853	J	5.0	0.31	ug/L		03/27/25 13:37	03/28/25 11:48	1
Di-n-octyl phthalate	ND		5.0	0.47	ug/L		03/27/25 13:37	03/28/25 11:48	1
Dibenzofuran	ND		10	0.51	ug/L		03/27/25 13:37	03/28/25 11:48	1
Diethyl phthalate	ND		5.0	0.22	ug/L		03/27/25 13:37	03/28/25 11:48	1
Dimethyl phthalate	ND		5.0	0.36	ug/L		03/27/25 13:37	03/28/25 11:48	1
Fluoranthene	ND		5.0	0.40	ug/L		03/27/25 13:37	03/28/25 11:48	1
Fluorene	ND		5.0	0.36	ug/L		03/27/25 13:37	03/28/25 11:48	1
Hexachlorobenzene	ND		5.0	0.51	ug/L		03/27/25 13:37	03/28/25 11:48	1
Hexachlorobutadiene	ND		5.0	0.68	ug/L		03/27/25 13:37	03/28/25 11:48	1
Hexachlorocyclopentadiene	ND		5.0	0.59	ug/L		03/27/25 13:37	03/28/25 11:48	1
Hexachloroethane	ND		5.0	0.59	ug/L		03/27/25 13:37	03/28/25 11:48	1
Indeno[1,2,3-cd]pyrene	ND		5.0	0.47	ug/L		03/27/25 13:37	03/28/25 11:48	1
Isophorone	ND		5.0	0.43	ug/L		03/27/25 13:37	03/28/25 11:48	1
N-Nitrosodi-n-propylamine	ND		5.0	0.54	ug/L		03/27/25 13:37	03/28/25 11:48	1
N-Nitrosodiphenylamine	ND		5.0	0.51	ug/L		03/27/25 13:37	03/28/25 11:48	1
Naphthalene	ND		5.0	0.76	ug/L		03/27/25 13:37	03/28/25 11:48	1
Nitrobenzene	ND		5.0	0.29	ug/L		03/27/25 13:37	03/28/25 11:48	1
Pentachlorophenol	ND		10		ug/L			03/28/25 11:48	1
Phenanthrene	ND		5.0		ug/L			03/28/25 11:48	1
Phenol	ND		5.0		ug/L		03/27/25 13:37	03/28/25 11:48	1
Pyrene	ND		5.0		ug/L			03/28/25 11:48	1
rylene	MR.	MR	5.0	0.34	ug/L		03/21/23 13.31	03/26/23 11.46	

ИB	MB
nd.	IVID

Surrogate	%Recovery Qua	alifier Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	63	29 - 129	03/27/25 13:37	03/28/25 11:48	1
Phenol-d5 (Surr)	23	10 - 120	03/27/25 13:37	03/28/25 11:48	1
p-Terphenyl-d14 (Surr)	105	33 - 132	03/27/25 13:37	03/28/25 11:48	1
2,4,6-Tribromophenol (Surr)	66	25 - 144	03/27/25 13:37	03/28/25 11:48	1
2-Fluorobiphenyl (Surr)	75	53 - 126	03/27/25 13:37	03/28/25 11:48	1
2-Fluorophenol (Surr)	37	24 - 120	03/27/25 13:37	03/28/25 11:48	1

Eurofins Buffalo

4

6

8

10

12

11

Client: Terracon Consultants Inc

Project/Site: Back Lot Lake Ave, Rochester, NY

Job ID: 480-228086-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-741949/2-A

Matrix: Water

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 742017						Prep Batch: 74194
	Spike	LCS				%Rec
Analyte	Added		Qualifier	Unit	D %Rec	Limits
Biphenyl	32.0	28.4		ug/L	89	59 - 120
bis (2-chloroisopropyl) ether	32.0	28.4		ug/L	89	21 - 136
2,4,5-Trichlorophenol	32.0	32.1		ug/L	100	65 - 126
2,4,6-Trichlorophenol	32.0	31.4		ug/L	98	64 - 120
2,4-Dichlorophenol	32.0	28.9		ug/L	90	63 - 120
2,4-Dimethylphenol	32.0	28.8		ug/L	90	47 - 120
2,4-Dinitrophenol	64.0	54.8		ug/L	86	31 - 137
2,4-Dinitrotoluene	32.0	31.5		ug/L	98	69 - 120
2,6-Dinitrotoluene	32.0	31.3		ug/L	98	68 - 120
2-Chloronaphthalene	32.0	27.8		ug/L	87	58 - 120
2-Chlorophenol	32.0	26.9		ug/L	84	48 - 120
2-Methylphenol	32.0	27.2		ug/L	85	39 - 120
2-Methylnaphthalene	32.0	28.4		ug/L	89	59 - 120
2-Nitroaniline	32.0	27.8		ug/L	87	54 - 127
2-Nitrophenol	32.0	28.7		ug/L	90	52 - 125
3,3'-Dichlorobenzidine	32.0	28.2		ug/L	88	49 - 135
3-Nitroaniline	32.0	25.7		ug/L	80	51 - 120
4,6-Dinitro-2-methylphenol	64.0	57.9		ug/L	90	46 - 136
4-Bromophenyl phenyl ether	32.0	29.7		ug/L	93	65 - 120
4-Chloro-3-methylphenol	32.0	29.5		ug/L	92	61 - 123
4-Chloroaniline	32.0	22.7		ug/L	71	30 - 120
4-Chlorophenyl phenyl ether	32.0	30.0		ug/L	94	62 - 120
4-Methylphenol	32.0	26.3		ug/L	82	29 - 131
4-Nitroaniline	32.0	32.2		ug/L	101	65 - 120
4-Nitrophenol	64.0	43.4		ug/L	68	45 - 120
Acenaphthene	32.0	31.4		ug/L	98	60 - 120
Acenaphthylene	32.0	30.4		ug/L	95	63 - 120
Acetophenone	32.0	28.9		ug/L	90	45 - 120
Anthracene	32.0	34.7		ug/L	108	67 - 120
Atrazine	32.0	41.9	*+	ug/L	131	71 - 130
Benzaldehyde	32.0	33.4		ug/L	104	10 - 140
Benzo[a]anthracene	32.0	33.7		ug/L	105	70 - 121
Benzo[a]pyrene	32.0	32.5		ug/L	102	60 - 123
Benzo[b]fluoranthene	32.0	36.4		ug/L	114	66 - 126
Benzo[g,h,i]perylene	32.0	31.5		ug/L ug/L	99	66 ₋ 150
Benzo[k]fluoranthene	32.0	34.5		ug/L ug/L	108	65 - 124
Bis(2-chloroethoxy)methane	32.0	29.5		ug/L	92	50 - 128
Bis(2-chloroethyl)ether	32.0	29.4		ug/L ug/L	92	44 - 120
Bis(2-ethylhexyl) phthalate	32.0			-	92 92	
		29.6		ug/L	104	63 ₋ 139 70 ₋ 129
Butyl benzyl phthalate	32.0	33.2		ug/L		
Carbonale	32.0	9.75		ug/L	30	22 - 120
Carbazole	32.0	38.2		ug/L	119	66 - 123
Chrysene	32.0	33.6		ug/L	105	69 - 120
Dibenz(a,h)anthracene	32.0	34.1		ug/L	106	65 - 135
Di-n-butyl phthalate	32.0	33.2		ug/L	104	69 - 131
Di-n-octyl phthalate	32.0	30.4		ug/L	95	63 - 140
Dibenzofuran	32.0	31.2		ug/L	98	66 - 120
Diethyl phthalate	32.0	32.9		ug/L	103	59 - 127

Eurofins Buffalo

Л

6

8

10

12

14

Client: Terracon Consultants Inc

Project/Site: Back Lot Lake Ave, Rochester, NY

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-741949/2-A

Matrix: Water

Nitrobenzene

Phenanthrene

Phenol

Pyrene

Pentachlorophenol

Matrix: Water

Analysis Batch: 742017

Client Sample ID: Lab Control Sample

%F

86

93

103

48

106

53 - 123

10 - 136

68 - 120

17 - 120

70 - 125

Job ID: 480-228086-1

Pr

вþ	Type. Total/NA
ер	Batch: 741949
Rec	

Analyte	Added	Result Qualifie	r Unit	D %Rec	Limits
Dimethyl phthalate	32.0	32.2	ug/L		68 - 120
Fluoranthene	32.0	34.7	ug/L	108	69 - 126
Fluorene	32.0	33.9	ug/L	106	66 - 120
Hexachlorobenzene	32.0	31.1	ug/L	97	61 - 120
Hexachlorobutadiene	32.0	20.5	ug/L	64	35 - 120
Hexachlorocyclopentadiene	32.0	11.9	ug/L	37	31 - 120
Hexachloroethane	32.0	22.1	ug/L	69	33 - 120
Indeno[1,2,3-cd]pyrene	32.0	34.0	ug/L	106	69 - 146
Isophorone	32.0	29.8	ug/L	93	55 - 120
N-Nitrosodi-n-propylamine	32.0	28.7	ug/L	90	32 - 140
N-Nitrosodiphenylamine	32.0	31.3	ug/L	98	61 - 120
Naphthalene	32.0	28.6	ug/L	89	57 - 120

32.0

64.0

32.0

32.0

32.0

Spike

LCS LCS

27.4

59.4

33.0

15.4

34.0

ug/L

ug/L

ug/L

ug/L

ug/L

LCS LCS

Qualifier Limits Surrogate %Recovery 29 - 129 Nitrobenzene-d5 (Surr) 84 Phenol-d5 (Surr) 47 10 - 120 97 33 - 132 p-Terphenyl-d14 (Surr) 2,4,6-Tribromophenol (Surr) 90 25 - 144 2-Fluorobiphenyl (Surr) 91 53 - 126 2-Fluorophenol (Surr) 66 24 - 120

Lab Sample ID: LCSD 480-741949/3-A

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA **Prep Batch: 741949**

Analysis Batch: 742017 Spike LCSD LCSD %Rec **RPD** Added Result Qualifier Limits RPD Limit **Analyte** Unit %Rec **Biphenyl** 32.0 28.5 ug/L 89 59 - 120 0 20 32.0 26.9 21 - 136 24 bis (2-chloroisopropyl) ether ug/L 84 5 2,4,5-Trichlorophenol 32.0 31.1 ug/L 97 65 - 126 3 18 ug/L 2,4,6-Trichlorophenol 32.0 31.2 98 64 - 120 0 19 2,4-Dichlorophenol 32.0 28.9 ug/L 90 63 - 120 0 19 2,4-Dimethylphenol 32.0 28.8 ug/L 90 47 - 120 0 42 2,4-Dinitrophenol 64.0 54.5 85 31 - 137 O 22 ug/L 2.4-Dinitrotoluene 32.0 32.0 ug/L 100 69 - 120 20 2,6-Dinitrotoluene 32.0 31.8 ug/L 99 68 - 120 15 2-Chloronaphthalene 32.0 27.4 ug/L 86 58 - 120 21 32.0 26.0 81 25 2-Chlorophenol ug/L 48 - 120 3 2-Methylphenol 32.0 25.6 ug/L 80 39 - 120 27 2-Methylnaphthalene 32.0 28.0 ug/L 88 59 - 12021 2-Nitroaniline 32.0 29.0 ug/L 91 54 - 127 15 2-Nitrophenol 32.0 29.4 ug/L 92 52 - 125 18 3,3'-Dichlorobenzidine 32.0 29.1 ug/L 91 49 - 135 25 3-Nitroaniline 32.0 25.0 ug/L 51 - 120 19

Eurofins Buffalo

Page 48 of 65

Client: Terracon Consultants Inc

Project/Site: Back Lot Lake Ave, Rochester, NY

Job ID: 480-228086-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 480-741949/3-A

Matrix: Water

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 741949

Analysis Batch: 742017							Prep Ba		
•	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
4,6-Dinitro-2-methylphenol	64.0	58.8		ug/L		92	46 - 136	2	15
4-Bromophenyl phenyl ether	32.0	30.3		ug/L		95	65 - 120	2	15
4-Chloro-3-methylphenol	32.0	30.0		ug/L		94	61 - 123	2	27
4-Chloroaniline	32.0	21.6		ug/L		67	30 - 120	5	22
4-Chlorophenyl phenyl ether	32.0	29.7		ug/L		93	62 - 120	1	16
4-Methylphenol	32.0	25.6		ug/L		80	29 - 131	3	24
4-Nitroaniline	32.0	34.2		ug/L		107	65 - 120	6	24
4-Nitrophenol	64.0	38.7		ug/L		60	45 - 120	11	48
Acenaphthene	32.0	31.5		ug/L		98	60 - 120	0	24
Acenaphthylene	32.0	30.1		ug/L		94	63 - 120	1	18
Acetophenone	32.0	28.1		ug/L		88	45 - 120	3	20
Anthracene	32.0	35.0		ug/L		109	67 - 120	1	15
Atrazine	32.0	43.6	*+	ug/L		136	71 - 130	4	20
Benzaldehyde	32.0	32.8		ug/L		102	10 - 140	2	20
Benzo[a]anthracene	32.0	35.1		ug/L		110	70 - 121	4	15
Benzo[a]pyrene	32.0	33.5		ug/L		105	60 - 123	3	15
Benzo[b]fluoranthene	32.0	36.6		ug/L		114	66 - 126	1	15
Benzo[g,h,i]perylene	32.0	32.4		ug/L		101	66 - 150	3	15
Benzo[k]fluoranthene	32.0	36.1		ug/L		113	65 - 124	4	22
Bis(2-chloroethoxy)methane	32.0	29.6		ug/L		92	50 - 128	0	17
Bis(2-chloroethyl)ether	32.0	28.1		ug/L		88	44 - 120	4	21
Bis(2-ethylhexyl) phthalate	32.0	32.1		ug/L		100	63 - 139	8	15
Butyl benzyl phthalate	32.0	34.2		ug/L		107	70 - 129	3	16
Caprolactam	32.0	10.1		ug/L		32	22 - 120	4	20
Carbazole	32.0	38.8		ug/L		121	66 - 123	2	20
Chrysene	32.0	34.4		ug/L		108	69 - 120	2	15
Dibenz(a,h)anthracene	32.0	35.9		ug/L		112	65 - 135	5	15
Di-n-butyl phthalate	32.0	34.4		ug/L		108	69 - 131	4	15
Di-n-octyl phthalate	32.0	32.2		ug/L		101	63 - 140	6	16
Dibenzofuran	32.0	31.5		ug/L		99	66 - 120	1	15
Diethyl phthalate	32.0	33.3		ug/L		104	59 - 127	1	15
Dimethyl phthalate	32.0	32.6		ug/L		102	68 - 120	1	15
Fluoranthene	32.0	35.3		ug/L		110	69 - 126	2	15
Fluorene	32.0	34.2		ug/L		107	66 - 120	1	15
Hexachlorobenzene	32.0	32.3		ug/L		101	61 - 120	4	15
Hexachlorobutadiene	32.0	20.0		ug/L		63	35 - 120	2	44
Hexachlorocyclopentadiene	32.0	10.3		ug/L		32	31 - 120	15	49
Hexachloroethane	32.0	21.6		ug/L		68	33 - 120	2	46
Indeno[1,2,3-cd]pyrene	32.0	35.4		ug/L		111	69 - 146	4	15
Isophorone	32.0	29.8		ug/L		93	55 - 120	0	17
N-Nitrosodi-n-propylamine	32.0	27.4		ug/L		86	32 - 140	4	31
N-Nitrosodiphenylamine	32.0	32.3		ug/L		101	61 - 120	3	15
Naphthalene	32.0	28.3		ug/L		88	57 ₋ 120	1	29
Nitrobenzene	32.0	27.0		ug/L		84	53 - 123	1	24
Pentachlorophenol	64.0	63.2		ug/L ug/L		99	10 - 136	6	37
Phenanthrene	32.0	34.3		ug/L ug/L		107	68 - 120	4	15
Phenol	32.0	15.1		ug/L		47	17 - 120	2	34
Pyrene	32.0	35.6		ug/L ug/L		111	70 - 125	4	19

Eurofins Buffalo

2

А

8

9

11

12

Client: Terracon Consultants Inc

Project/Site: Back Lot Lake Ave, Rochester, NY

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 480-741949/3-A **Matrix: Water**

Analysis Batch: 742017

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Job ID: 480-228086-1

Prep Batch: 741949

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5 (Surr)	83		29 - 129
Phenol-d5 (Surr)	46		10 - 120
p-Terphenyl-d14 (Surr)	102		33 - 132
2,4,6-Tribromophenol (Surr)	90		25 - 144
2-Fluorobiphenyl (Surr)	90		53 - 126
2-Fluorophenol (Surr)	63		24 - 120

Method: 6010D - Metals (ICP)

Lab Sample ID: MB 480-741609/1-A

Matrix: Water

Analysis Batch: 741793

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 741609

Alialysis Datcii. 141135								r rep Daten.	7 4 1 0 0 3
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		0.20	0.060	mg/L		03/25/25 08:31	03/25/25 15:41	1
Antimony	ND		0.020	0.0068	mg/L		03/25/25 08:31	03/25/25 15:41	1
Arsenic	ND		0.015	0.0056	mg/L		03/25/25 08:31	03/25/25 15:41	1
Barium	ND		0.0020	0.00070	mg/L		03/25/25 08:31	03/25/25 15:41	1
Beryllium	ND		0.0020	0.00030	mg/L		03/25/25 08:31	03/25/25 15:41	1
Cadmium	ND		0.0020	0.00050	mg/L		03/25/25 08:31	03/25/25 15:41	1
Calcium	0.136	J	0.50	0.10	mg/L		03/25/25 08:31	03/25/25 15:41	1
Chromium	ND		0.0040	0.0010	mg/L		03/25/25 08:31	03/25/25 15:41	1
Cobalt	0.000728	J	0.0040	0.00063	mg/L		03/25/25 08:31	03/25/25 15:41	1
Copper	ND	^5+	0.010	0.0016	mg/L		03/25/25 08:31	03/25/25 15:41	1
Iron	ND	^5-	0.050	0.019	mg/L		03/25/25 08:31	03/25/25 15:41	1
Lead	0.00410	J ^5+	0.010	0.0030	mg/L		03/25/25 08:31	03/25/25 15:41	1
Magnesium	ND		0.20	0.043	mg/L		03/25/25 08:31	03/25/25 15:41	1
Manganese	ND		0.0030	0.00040	mg/L		03/25/25 08:31	03/25/25 15:41	1
Nickel	ND		0.010	0.0013	mg/L		03/25/25 08:31	03/25/25 15:41	1
Potassium	ND		0.50	0.10	mg/L		03/25/25 08:31	03/25/25 15:41	1
Selenium	ND		0.025	0.0087	mg/L		03/25/25 08:31	03/25/25 15:41	1
Silver	ND	^5-	0.0060	0.0017	mg/L		03/25/25 08:31	03/25/25 15:41	1
Sodium	0.442	J	1.0	0.32	mg/L		03/25/25 08:31	03/25/25 15:41	1
Thallium	ND		0.020	0.010	mg/L		03/25/25 08:31	03/25/25 15:41	1
Vanadium	ND		0.0050	0.0015	mg/L		03/25/25 08:31	03/25/25 15:41	1
Zinc	ND		0.010	0.0015	mg/L		03/25/25 08:31	03/25/25 15:41	1

Lab Sample ID: MB 480-741609/1-A

Matrix: Water

Lead

Analysis Batch: 742032

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 741609

MB MB

Analyte

Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 0.010 0.0030 mg/L 03/25/25 08:31 03/27/25 20:23 ND

Client: Terracon Consultants Inc

Project/Site: Back Lot Lake Ave, Rochester, NY

Method: 6010D - Metals (ICP) (Continued)

Lab Sample ID: LCS 480-741609/2-A

Matrix: Water

Analysis Batch: 741793

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 741609

Job ID: 480-228086-1

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	5.11	4.85		mg/L		95	80 - 120	
Antimony	0.500	0.482		mg/L		96	80 - 120	
Arsenic	1.00	0.975		mg/L		98	80 - 120	
Barium	1.00	0.968		mg/L		97	80 - 120	
Beryllium	0.496	0.495		mg/L		100	80 - 120	
Cadmium	0.500	0.489		mg/L		98	80 - 120	
Calcium	25.0	24.53		mg/L		98	80 - 120	
Chromium	0.500	0.482		mg/L		96	80 - 120	
Cobalt	0.500	0.474		mg/L		95	80 - 120	
Copper	0.500	0.477	^5+	mg/L		95	80 - 120	
Iron	5.12	5.10	^5-	mg/L		100	80 - 120	
Lead	0.500	0.483	^5+	mg/L		97	80 - 120	
Magnesium	25.0	23.91		mg/L		96	80 - 120	
Manganese	0.500	0.484		mg/L		97	80 - 120	
Nickel	0.500	0.491		mg/L		98	80 - 120	
Potassium	25.0	24.58		mg/L		98	80 - 120	
Selenium	1.00	1.00		mg/L		100	80 - 120	
Silver	0.0500	0.0499	^5-	mg/L		100	80 - 120	
Sodium	25.0	24.56		mg/L		98	80 - 120	
Thallium	1.00	1.01		mg/L		101	80 - 120	
Vanadium	0.500	0.507		mg/L		101	80 - 120	
Zinc	0.500	0.521		mg/L		104	80 - 120	

Lab Sample ID: LCSD 480-741609/3-A

Matrix: Water

Analysis Batch: 741793

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 741609

Alialysis Dalcil. 141135							Lieb De	<i>i</i> ttii. <i>1</i> -	+1009
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aluminum	5.11	4.89		mg/L		96	80 - 120	1	20
Antimony	0.500	0.482		mg/L		96	80 - 120	0	20
Arsenic	1.00	0.977		mg/L		98	80 - 120	0	20
Barium	1.00	0.973		mg/L		97	80 - 120	0	20
Beryllium	0.496	0.496		mg/L		100	80 - 120	0	20
Cadmium	0.500	0.492		mg/L		98	80 - 120	1	20
Calcium	25.0	24.74		mg/L		99	80 - 120	1	20
Chromium	0.500	0.486		mg/L		97	80 - 120	1	20
Cobalt	0.500	0.478		mg/L		96	80 - 120	1	20
Copper	0.500	0.482	^5+	mg/L		96	80 - 120	1	20
Iron	5.12	5.15	^5-	mg/L		101	80 - 120	1	20
Lead	0.500	0.491	^5+	mg/L		98	80 - 120	2	20
Magnesium	25.0	24.08		mg/L		96	80 - 120	1	20
Manganese	0.500	0.487		mg/L		97	80 - 120	1	20
Nickel	0.500	0.495		mg/L		99	80 - 120	1	20
Potassium	25.0	24.76		mg/L		99	80 - 120	1	20
Selenium	1.00	0.999		mg/L		100	80 - 120	0	20
Silver	0.0500	0.0510	^5-	mg/L		102	80 - 120	2	20
Sodium	25.0	25.04		mg/L		100	80 - 120	2	20
Thallium	1.00	1.02		mg/L		102	80 - 120	1	20
Vanadium	0.500	0.510		mg/L		102	80 - 120	1	20

Eurofins Buffalo

Page 51 of 65

2

3

4

6

8

10

12

14

4/1/2025

Client: Terracon Consultants Inc

Project/Site: Back Lot Lake Ave, Rochester, NY

Method: 6010D - Metals (ICP) (Continued)

Lab Sample ID: LCSD 480-741609/3-A

Matrix: Water

Analysis Batch: 741793

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 741609

Job ID: 480-228086-1

LCSD LCSD Spike %Rec **RPD** Added Result Qualifier Unit D %Rec Limits RPD Limit Zinc 0.500 0.520 mg/L 104 80 - 120 0 20

Lab Sample ID: 480-228086-2 MS Client Sample ID: MW-107 **Matrix: Water**

Analysis Batch: 741793

Prep Type: Total/NA Prep Batch: 741609

Analysis Batch: 741793									Prep Batch: 74160
	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Aluminum	0.19	J	5.11	5.24		mg/L		99	75 - 125
Antimony	ND		0.500	0.497		mg/L		99	75 - 125
Arsenic	ND		1.00	0.998		mg/L		100	75 - 125
Barium	0.16		1.00	1.14		mg/L		98	75 - 125
Beryllium	ND		0.496	0.492		mg/L		99	75 - 125
Cadmium	ND		0.500	0.511		mg/L		102	75 - 125
Calcium	274	В	25.0	296.6	4	mg/L		92	75 - 125
Chromium	0.0084		0.500	0.484		mg/L		95	75 - 125
Cobalt	ND		0.500	0.467		mg/L		93	75 - 125
Copper	0.0044	J ^5+	0.500	0.527	^5+	mg/L		105	75 - 125
Iron	2.5	^5-	5.12	7.82	^5-	mg/L		104	75 - 125
Lead	0.023	^5+ B	0.500	0.518	^5+	mg/L		99	75 - 125
Magnesium	47.4		25.0	71.78		mg/L		98	75 - 125
Manganese	0.34		0.500	0.823		mg/L		96	75 - 125
Nickel	0.0064	J	0.500	0.494		mg/L		98	75 - 125
Potassium	12.6		25.0	38.16		mg/L		102	75 - 125
Selenium	ND		1.00	1.03		mg/L		103	75 - 125
Silver	ND	^5-	0.0500	0.0531	^5-	mg/L		106	75 - 125
Sodium	178	В	25.0	204.5	4	mg/L		105	75 - 125
Thallium	ND		1.00	1.08		mg/L		108	75 - 125
Vanadium	0.0015	J	0.500	0.504		mg/L		100	75 - 125
Zinc	0.010		0.500	0.498		ma/L		98	75 - 125

Lab Sample ID: 480-228086-2 MSD

Matrix: Water

Analysis Batch: 741793

Client Sample ID: MW-107 Prep Type: Total/NA

Prep Batch: 741609

-	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aluminum	0.19	J	5.11	5.29		mg/L		100	75 - 125	1	20
Antimony	ND		0.500	0.495		mg/L		99	75 - 125	0	20
Arsenic	ND		1.00	1.01		mg/L		101	75 - 125	1	20
Barium	0.16		1.00	1.15		mg/L		99	75 - 125	1	20
Beryllium	ND		0.496	0.497		mg/L		100	75 - 125	1	20
Cadmium	ND		0.500	0.516		mg/L		103	75 - 125	1	20
Calcium	274	В	25.0	302.5	4	mg/L		116	75 - 125	2	20
Chromium	0.0084		0.500	0.490		mg/L		96	75 - 125	1	20
Cobalt	ND		0.500	0.473		mg/L		95	75 - 125	1	20
Copper	0.0044	J ^5+	0.500	0.534	^5+	mg/L		106	75 - 125	1	20
Iron	2.5	^5-	5.12	7.90	^5-	mg/L		105	75 - 125	1	20
Lead	0.023	^5+ B	0.500	0.525	^5+	mg/L		100	75 - 125	1	20
Magnesium	47.4		25.0	72.79		mg/L		102	75 - 125	1	20
Manganese	0.34		0.500	0.835		mg/L		98	75 - 125	1	20

Eurofins Buffalo

Page 52 of 65

Client: Terracon Consultants Inc

Project/Site: Back Lot Lake Ave, Rochester, NY

Job ID: 480-228086-1

Method: 6010D - Metals (ICP) (Continued)

Lab Sample ID: 480-228086-2 MSD

Matrix: Water

Analysis Batch: 741793

Client Sample ID: MW-107 Prep Type: Total/NA

Prep Batch: 741609

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Nickel	0.0064	J	0.500	0.501		mg/L		99	75 - 125	1	20
Potassium	12.6		25.0	38.66		mg/L		104	75 - 125	1	20
Selenium	ND		1.00	1.05		mg/L		105	75 - 125	1	20
Silver	ND	^5-	0.0500	0.0539	^5-	mg/L		108	75 - 125	1	20
Sodium	178	В	25.0	208.1	4	mg/L		119	75 - 125	2	20
Thallium	ND		1.00	1.09		mg/L		109	75 - 125	1	20
Vanadium	0.0015	J	0.500	0.509		mg/L		102	75 - 125	1	20
Zinc	0.010		0.500	0.505		mg/L		99	75 - 125	1	20

Lab Sample ID: 480-228086-3 MS Client Sample ID: MWR-102 **Matrix: Water**

Prep Type: Total/NA

Analysis Batch: 741793	Sample	Sample	Spike	MS	MS				Prep Batch: 74160
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Aluminum	1.4		5.11	6.97		mg/L		109	75 - 125
Antimony	ND		0.500	0.498		mg/L		100	75 - 125
Arsenic	ND		1.00	1.02		mg/L		102	75 - 125
Barium	0.10		1.00	1.10		mg/L		100	75 - 125
Beryllium	ND		0.496	0.505		mg/L		102	75 - 125
Cadmium	ND		0.500	0.522		mg/L		104	75 - 125
Calcium	173	В	25.0	194.9	4	mg/L		89	75 - 125
Chromium	0.015		0.500	0.497		mg/L		96	75 - 125
Cobalt	0.0032	JB	0.500	0.479		mg/L		95	75 - 125
Copper	0.0024	J ^5+	0.500	0.543	^5+	mg/L		108	75 - 125
Iron	1.2	^5-	5.12	6.42	^5-	mg/L		102	75 - 125
Lead	0.0036	J ^5+ B ^+	0.500	0.508	^+ ^5+	mg/L		101	75 - 125
Magnesium	99.9		25.0	124.8		mg/L		100	75 - 125
Manganese	0.25		0.500	0.732		mg/L		97	75 - 125
Nickel	0.014		0.500	0.514		mg/L		100	75 - 125
Potassium	13.4		25.0	39.21		mg/L		103	75 - 125
Selenium	ND		1.00	1.06		mg/L		106	75 - 125
Silver	ND	^5-	0.0500	0.0548	^5-	mg/L		110	75 - 125
Sodium	363	В	25.0	387.1	4	mg/L		95	75 - 125
Sodium	362	В	25.0	384.3	4	mg/L		89	75 - 125
Thallium	0.011	J	1.00	1.13		mg/L		112	75 - 125

Lab Sample ID: 480-228086-3 MSD

0.0024 J

0.024

Matrix: Water

Vanadium

Zinc

Analysis Batch: 741793

Client Sample ID: MWR-102 Prep Type: Total/NA

75 - 125

75 - 125

103

Prep Batch: 741609

-	Sample	Sample	Spike	MSD	MSD				%Rec		RPD			
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit			
Aluminum	1.4		5.11	6.97		mg/L		109	75 - 125	0	20			
Antimony	ND		0.500	0.493		mg/L		99	75 - 125	1	20			
Arsenic	ND		1.00	0.989		mg/L		99	75 - 125	3	20			
Barium	0.10		1.00	1.09		mg/L		99	75 - 125	1	20			
Beryllium	ND		0.496	0.497		mg/L		100	75 - 125	2	20			

0.500

0.500

0.516

0.519

mg/L

mg/L

Eurofins Buffalo

Page 53 of 65

Client: Terracon Consultants Inc

Project/Site: Back Lot Lake Ave, Rochester, NY

Job ID: 480-228086-1

Method: 6010D - Metals (ICP) (Continued)

Lab Sample ID: 480-228086-3 MSD Client Sample ID: MWR-102

Matrix: Water Analysis Batch: 741793									Prep Ty Prep Ba	-	
Analysis Batch. 141700	Sample	Sample	Spike	MSD	MSD				%Rec	11011. 7-	RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Cadmium	ND		0.500	0.509		mg/L		102	75 - 125	3	20
Calcium	173	В	25.0	194.1	4	mg/L		86	75 - 125	0	20
Chromium	0.015		0.500	0.489		mg/L		95	75 - 125	2	20
Cobalt	0.0032	JB	0.500	0.471		mg/L		93	75 - 125	2	20
Copper	0.0024	J ^5+	0.500	0.532	^5+	mg/L		106	75 - 125	2	20
Iron	1.2	^5-	5.12	6.33	^5-	mg/L		100	75 - 125	1	20
Lead	0.0036	J ^5+ B ^+	0.500	0.505	^+ ^5+	mg/L		100	75 - 125	0	20
Magnesium	99.9		25.0	124.6		mg/L		99	75 - 125	0	20
Manganese	0.25		0.500	0.726		mg/L		96	75 - 125	1	20
Nickel	0.014		0.500	0.502		mg/L		98	75 - 125	2	20
Potassium	13.4		25.0	38.98		mg/L		102	75 - 125	1	20
Selenium	ND		1.00	1.03		mg/L		103	75 - 125	2	20
Silver	ND	^5-	0.0500	0.0534	^5-	mg/L		107	75 - 125	3	20
Sodium	363	В	25.0	386.6	4	mg/L		93	75 - 125	0	20
Sodium	362	В	25.0	383.7	4	mg/L		87	75 - 125	0	20
Thallium	0.011	J	1.00	1.10		mg/L		109	75 - 125	3	20

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 480-741760/1-A **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA

0.506

0.513

0.500

0.500

mg/L

mg/L

101

98

75 - 125

75 - 125

Analysis Batch: 741860

Vanadium

Zinc

MB MB

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Mercury	ND ND	0.00020	0.000042 mg/L	03/26/25 07:55	03/26/25 14:07	1

Lab Sample ID: LCS 480-741760/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 741860 Spike LCS LCS %Rec

Added Limits **Analyte** Result Qualifier Unit D %Rec 0.00669 80 - 120 Mercury 0.00659 mg/L 99

Lab Sample ID: 480-228086-2 MS

0.0024 J

0.024

Matrix: Water Prep Type: Total/NA **Analysis Batch: 741860 Prep Batch: 741760**

Sample Sample Spike MS MS %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Mercury 0.00014 J 0.00669 0.00659 mg/L 96

Lab Sample ID: 480-228086-2 MSD Client Sample ID: MW-107

Matrix: Water

Analysis Batch: 741860

Spike MSD MSD %Rec **RPD** Sample Sample **Analyte** Result Qualifier Added Result Qualifier Unit %Rec Limits **RPD** Limit Mercury 0.00014 J 0.00669 0.00647 95 80 - 120 mg/L

Eurofins Buffalo

20

20

Prep Batch: 741760

Prep Batch: 741760

2

Client Sample ID: MW-107

80 - 120

Prep Type: Total/NA

Prep Batch: 741760

Client: Terracon Consultants Inc Job ID: 480-228086-1

Project/Site: Back Lot Lake Ave, Rochester, NY

Method: 7470A - Mercury (CVAA) (Continued)

Lab Sample ID: 480-228086-3 MS **Matrix: Water**

Analysis Batch: 741860

Mercury ND Lab Sample ID: 480-228086-3 MSD

Matrix: Water

Analyte

Analysis Batch: 741860

Analyte Mercury

Sample Sample Result Qualifier ND

Sample Sample

Result Qualifier

Spike Added 0.00669

Spike

Added

0.00669

Result Qualifier 0.00624

0.00632

MS MS

MSD MSD

Result Qualifier

Unit

Unit

mg/L

mg/L

93

D %Rec

%Rec

94

Limits 80 - 120

%Rec

Client Sample ID: MWR-102

Client Sample ID: MWR-102

%Rec

Limits

80 - 120

Prep Type: Total/NA

Prep Batch: 741760

Prep Type: Total/NA

Prep Batch: 741760

RPD Limit 1

RPD

QC Association Summary

Client: Terracon Consultants Inc

Project/Site: Back Lot Lake Ave, Rochester, NY

GC/MS VOA

Analysis Batch: 741783

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-228086-1	MW-103	Total/NA	Water	8260C	
480-228086-2	MW-107	Total/NA	Water	8260C	
480-228086-3	MWR-102	Total/NA	Water	8260C	
480-228086-4	MW-102	Total/NA	Water	8260C	
480-228086-5	Duplicate	Total/NA	Water	8260C	
MB 480-741783/8	Method Blank	Total/NA	Water	8260C	
LCS 480-741783/6	Lab Control Sample	Total/NA	Water	8260C	
480-228086-2 MS	MW-107	Total/NA	Water	8260C	
480-228086-2 MSD	MW-107	Total/NA	Water	8260C	

GC/MS Semi VOA

Prep Batch: 741634

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-228086-1	MW-103	Total/NA	Water	3510C	
480-228086-2	MW-107	Total/NA	Water	3510C	
480-228086-3	MWR-102	Total/NA	Water	3510C	
MB 480-741634/1-A	Method Blank	Total/NA	Water	3510C	
LCS 480-741634/2-A	Lab Control Sample	Total/NA	Water	3510C	
480-228086-2 MS	MW-107	Total/NA	Water	3510C	
480-228086-2 MSD	MW-107	Total/NA	Water	3510C	

Analysis Batch: 741781

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-228086-1	MW-103	Total/NA	Water	8270D	741634
480-228086-2	MW-107	Total/NA	Water	8270D	741634
480-228086-3	MWR-102	Total/NA	Water	8270D	741634
MB 480-741634/1-A	Method Blank	Total/NA	Water	8270D	741634
LCS 480-741634/2-A	Lab Control Sample	Total/NA	Water	8270D	741634
480-228086-2 MS	MW-107	Total/NA	Water	8270D	741634
480-228086-2 MSD	MW-107	Total/NA	Water	8270D	741634

Prep Batch: 741949

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-228086-1 - RE	MW-103	Total/NA	Water	3510C	
480-228086-2 - RE	MW-107	Total/NA	Water	3510C	
480-228086-3 - RE	MWR-102	Total/NA	Water	3510C	
480-228086-4	MW-102	Total/NA	Water	3510C	
480-228086-5	Duplicate	Total/NA	Water	3510C	
MB 480-741949/1-A	Method Blank	Total/NA	Water	3510C	
LCS 480-741949/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 480-741949/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	

Analysis Batch: 742017

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-228086-1 - RE	MW-103	Total/NA	Water	8270D	741949
480-228086-2 - RE	MW-107	Total/NA	Water	8270D	741949
480-228086-3 - RE	MWR-102	Total/NA	Water	8270D	741949
480-228086-4	MW-102	Total/NA	Water	8270D	741949
480-228086-5	Duplicate	Total/NA	Water	8270D	741949
MB 480-741949/1-A	Method Blank	Total/NA	Water	8270D	741949

Eurofins Buffalo

Page 56 of 65 4/1/2025

Job ID: 480-228086-1

3

4

6

9

10

11

10

QC Association Summary

Client: Terracon Consultants Inc

Project/Site: Back Lot Lake Ave, Rochester, NY

GC/MS Semi VOA (Continued)

Analysis Batch: 742017 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 480-741949/2-A	Lab Control Sample	Total/NA	Water	8270D	741949
LCSD 480-741949/3-A	Lab Control Sample Dup	Total/NA	Water	8270D	741949

Metals

Prep Batch: 741609

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-228086-1	MW-103	Total/NA	Water	3005A	
480-228086-2	MW-107	Total/NA	Water	3005A	
480-228086-3	MWR-102	Total/NA	Water	3005A	
480-228086-4	MW-102	Total/NA	Water	3005A	
480-228086-5	Duplicate	Total/NA	Water	3005A	
MB 480-741609/1-A	Method Blank	Total/NA	Water	3005A	
LCS 480-741609/2-A	Lab Control Sample	Total/NA	Water	3005A	
LCSD 480-741609/3-A	Lab Control Sample Dup	Total/NA	Water	3005A	
480-228086-2 MS	MW-107	Total/NA	Water	3005A	
480-228086-2 MSD	MW-107	Total/NA	Water	3005A	
480-228086-3 MS	MWR-102	Total/NA	Water	3005A	
480-228086-3 MSD	MWR-102	Total/NA	Water	3005A	

Prep Batch: 741760

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-228086-1	MW-103	Total/NA	Water	7470A	
480-228086-2	MW-107	Total/NA	Water	7470A	
480-228086-3	MWR-102	Total/NA	Water	7470A	
480-228086-4	MW-102	Total/NA	Water	7470A	
480-228086-5	Duplicate	Total/NA	Water	7470A	
MB 480-741760/1-A	Method Blank	Total/NA	Water	7470A	
LCS 480-741760/2-A	Lab Control Sample	Total/NA	Water	7470A	
480-228086-2 MS	MW-107	Total/NA	Water	7470A	
480-228086-2 MSD	MW-107	Total/NA	Water	7470A	
480-228086-3 MS	MWR-102	Total/NA	Water	7470A	
480-228086-3 MSD	MWR-102	Total/NA	Water	7470A	

Analysis Batch: 741793

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-228086-1	MW-103	Total/NA	Water	6010D	741609
480-228086-2	MW-107	Total/NA	Water	6010D	741609
480-228086-3	MWR-102	Total/NA	Water	6010D	741609
480-228086-4	MW-102	Total/NA	Water	6010D	741609
180-228086-5	Duplicate	Total/NA	Water	6010D	741609
MB 480-741609/1-A	Method Blank	Total/NA	Water	6010D	741609
_CS 480-741609/2-A	Lab Control Sample	Total/NA	Water	6010D	741609
CSD 480-741609/3-A	Lab Control Sample Dup	Total/NA	Water	6010D	741609
480-228086-2 MS	MW-107	Total/NA	Water	6010D	741609
480-228086-2 MSD	MW-107	Total/NA	Water	6010D	741609
480-228086-3 MS	MWR-102	Total/NA	Water	6010D	741609
480-228086-3 MSD	MWR-102	Total/NA	Water	6010D	741609

Eurofins Buffalo

9

Job ID: 480-228086-1

3

5

6

9

10

12

13

QC Association Summary

Client: Terracon Consultants Inc

Project/Site: Back Lot Lake Ave, Rochester, NY

Job ID: 480-228086-1

Analysis Batch: 741860

Metals

n	
0	
0	5
0	
n	

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-228086-1	MW-103	Total/NA	Water	7470A	741760
480-228086-2	MW-107	Total/NA	Water	7470A	741760
480-228086-3	MWR-102	Total/NA	Water	7470A	741760
480-228086-4	MW-102	Total/NA	Water	7470A	741760
480-228086-5	Duplicate	Total/NA	Water	7470A	741760
MB 480-741760/1-A	Method Blank	Total/NA	Water	7470A	741760
LCS 480-741760/2-A	Lab Control Sample	Total/NA	Water	7470A	741760
480-228086-2 MS	MW-107	Total/NA	Water	7470A	741760
480-228086-2 MSD	MW-107	Total/NA	Water	7470A	741760
480-228086-3 MS	MWR-102	Total/NA	Water	7470A	741760
480-228086-3 MSD	MWR-102	Total/NA	Water	7470A	741760

Analysis	Batch:	742032

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-228086-4	MW-102	Total/NA	Water	6010D	741609
480-228086-4	MW-102	Total/NA	Water	6010D	741609
480-228086-5	Duplicate	Total/NA	Water	6010D	741609
480-228086-5	Duplicate	Total/NA	Water	6010D	741609
MB 480-741609/1-A	Method Blank	Total/NA	Water	6010D	741609

Lab Chronicle

Client: Terracon Consultants Inc

Project/Site: Back Lot Lake Ave, Rochester, NY

Lab Sample ID: 480-228086-1

Matrix: Water

Job ID: 480-228086-1

Client Sample ID: MW-103 Date Collected: 03/19/25 15:00 Date Received: 03/21/25 09:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number		Lab	or Analyzed
Total/NA	Analysis	8260C		1	741783	ERS	EET BUF	03/26/25 16:50
Total/NA	Prep	3510C			741634	DP	EET BUF	03/25/25 06:50
Total/NA	Analysis	8270D		1	741781	AF	EET BUF	03/26/25 19:27
Total/NA	Prep	3510C	RE		741949	LSC	EET BUF	03/27/25 13:37
Total/NA	Analysis	8270D	RE	1	742017	JMM	EET BUF	03/28/25 13:08
Total/NA	Prep	3005A			741609	EMO	EET BUF	03/25/25 08:31
Total/NA	Analysis	6010D		1	741793	BMB	EET BUF	03/25/25 15:48
Total/NA	Prep	7470A			741760	ESB	EET BUF	03/26/25 07:55
Total/NA	Analysis	7470A		1	741860	ESB	EET BUF	03/26/25 14:28

Client Sample ID: MW-107 Lab Sample ID: 480-228086-2

Date Collected: 03/19/25 16:20 **Matrix: Water** Date Received: 03/21/25 09:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		2	741783	ERS	EET BUF	03/26/25 17:14
Total/NA	Prep	3510C			741634	DP	EET BUF	03/25/25 06:50
Total/NA	Analysis	8270D		1	741781	AF	EET BUF	03/26/25 18:07
Total/NA	Prep	3510C	RE		741949	LSC	EET BUF	03/27/25 13:37
Total/NA	Analysis	8270D	RE	1	742017	JMM	EET BUF	03/28/25 13:35
Total/NA	Prep	3005A			741609	EMO	EET BUF	03/25/25 08:31
Total/NA	Analysis	6010D		1	741793	BMB	EET BUF	03/25/25 15:50
Total/NA	Prep	7470A			741760	ESB	EET BUF	03/26/25 07:55
Total/NA	Analysis	7470A		1	741860	ESB	EET BUF	03/26/25 14:30

Lab Sample ID: 480-228086-3 **Client Sample ID: MWR-102**

Date Collected: 03/19/25 16:25 **Matrix: Water** Date Received: 03/21/25 09:00

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C			741783	ERS	EET BUF	03/26/25 17:37
Total/NA	Prep	3510C			741634	DP	EET BUF	03/25/25 06:50
Total/NA	Analysis	8270D		1	741781	AF	EET BUF	03/26/25 19:54
Total/NA	Prep	3510C	RE		741949	LSC	EET BUF	03/27/25 13:37
Total/NA	Analysis	8270D	RE	1	742017	JMM	EET BUF	03/28/25 14:01
Total/NA	Prep	3005A			741609	EMO	EET BUF	03/25/25 08:31
Total/NA	Analysis	6010D		1	741793	BMB	EET BUF	03/25/25 16:08
Total/NA	Prep	7470A			741760	ESB	EET BUF	03/26/25 07:55
Total/NA	Analysis	7470A		1	741860	ESB	EET BUF	03/26/25 14:37

Lab Chronicle

Client: Terracon Consultants Inc Job ID: 480-228086-1

Project/Site: Back Lot Lake Ave, Rochester, NY

Client Sample ID: MW-102

Date Received: 03/21/25 09:00

Lab Sample ID: 480-228086-4 Date Collected: 03/20/25 10:40

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		5	741783	ERS	EET BUF	03/26/25 18:01
Total/NA	Prep	3510C			741949	LSC	EET BUF	03/27/25 13:37
Total/NA	Analysis	8270D		1	742017	JMM	EET BUF	03/28/25 14:28
Total/NA	Prep	3005A			741609	EMO	EET BUF	03/25/25 08:31
Total/NA	Analysis	6010D		5	742032	MP	EET BUF	03/27/25 20:25
Total/NA	Prep	3005A			741609	EMO	EET BUF	03/25/25 08:31
Total/NA	Analysis	6010D		10	742032	MP	EET BUF	03/27/25 20:27
Total/NA	Prep	3005A			741609	EMO	EET BUF	03/25/25 08:31
Total/NA	Analysis	6010D		1	741793	BMB	EET BUF	03/25/25 16:15
Total/NA	Prep	7470A			741760	ESB	EET BUF	03/26/25 07:55
Total/NA	Analysis	7470A		1	741860	ESB	EET BUF	03/26/25 14:41

Client Sample ID: Duplicate Date Collected: 03/20/25 10:45

Lab Sample ID: 480-228086-5

Matrix: Water

Date Received: 03/21/25 09:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C			741783	ERS	EET BUF	03/26/25 18:24
Total/NA	Prep	3510C			741949	LSC	EET BUF	03/27/25 13:37
Total/NA	Analysis	8270D		1	742017	JMM	EET BUF	03/28/25 14:55
Total/NA	Prep	3005A			741609	EMO	EET BUF	03/25/25 08:31
Total/NA	Analysis	6010D		5	742032	MP	EET BUF	03/27/25 20:28
Total/NA	Prep	3005A			741609	EMO	EET BUF	03/25/25 08:31
Total/NA	Analysis	6010D		10	742032	MP	EET BUF	03/27/25 20:30
Total/NA	Prep	3005A			741609	EMO	EET BUF	03/25/25 08:31
Total/NA	Analysis	6010D		1	741793	BMB	EET BUF	03/25/25 16:17
Total/NA	Prep	7470A			741760	ESB	EET BUF	03/26/25 07:55
Total/NA	Analysis	7470A		1	741860	ESB	EET BUF	03/26/25 14:43

Laboratory References:

EET BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Accreditation/Certification Summary

Client: Terracon Consultants Inc Job ID: 480-228086-1

Project/Site: Back Lot Lake Ave, Rochester, NY

Laboratory: Eurofins Buffalo

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
New York	NELAP	10026	03-31-25

ľ

3

4

6

8

11

14

14

Method Summary

Client: Terracon Consultants Inc

Project/Site: Back Lot Lake Ave, Rochester, NY

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	EET BUF
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	EET BUF
6010D	Metals (ICP)	SW846	EET BUF
7470A	Mercury (CVAA)	SW846	EET BUF
3005A	Preparation, Total Metals	SW846	EET BUF
3510C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	EET BUF
5030C	Purge and Trap	SW846	EET BUF
7470A	Preparation, Mercury	SW846	EET BUF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

2

Job ID: 480-228086-1

3

4

5

7

8

9

10

12

13

Sample Summary

Client: Terracon Consultants Inc

480-228086-5

Project/Site: Back Lot Lake Ave, Rochester, NY

Duplicate

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-228086-1	MW-103	Water	03/19/25 15:00	03/21/25 09:00
480-228086-2	MW-107	Water	03/19/25 16:20	03/21/25 09:00
480-228086-3	MWR-102	Water	03/19/25 16:25	03/21/25 09:00
480-228086-4	MW-102	Water	03/20/25 10:40	03/21/25 09:00

Water

03/20/25 10:45 03/21/25 09:00

Job ID: 480-228086-1

3

4

5

0

8

9

11

12

14

				Environment Testing
Client Information	Sampler Worthway 1695 Lab		No(s):	COC No:
Client Contact: Mr. Patrick Colern	500 844L	E-Mail: Seninati@et.eurofinsus.com	State of Origin: Page: Page:	490-2036 14-4 1623. I Page: Dog 1 of 1
Company. Terracon Consultants Inc	PWSID:	ic Boy		TAJE 7007
Address: 81 Benbro Drive	Due Date Requested:			arvation Codes:
City. Buffalo State Zin	TAT Requested (days): Stundor d		A - HC	N - NOTE D - HNO3 A - HCL
NY, 14225	Compliance Project: Δ Yes Δ No			
Phone: 716-861-1512(Tel)	PO#: Purchase Order not required			
Email: patrick.colern@terracon.com	WO#:	_		
Project Name: Back Lot Lake Ave, Rochester, NY	Project #: 48028593		stenli	
Site: JA25 7007	SSOW#:	SD (Ye	f contr	
Sample Identification	Sample Cacomp. Sample Cacomp. Sample Date Time Garab)	Fleid Filtered 5 Perform MS/MS 8270D - TCL SVC 6010D, 7470A 8260C - TCL list	o nedmuM lado	
	Preserva	Q Z	1	opecial instructions/Note:
MW-103	3/19/25 15 00 water	× ×		
101-mh	3/19/25 [620 Water	×		
MAN - 107 (MS)	3/14/25 1625 water	×××		
MWR-102	3/20/25 TONO Water	××		
MWR-102 (MSD)	3/20/15 1045 water	×		
	3/20/25 1445 water	×××		
000000	Water	* * * * * * * * * * * * * * * * * * *		
	Water		480-228086	480-228086 Chain of Custody
Possible Hazard Identification Non-Hazard Flammable Skin Irritant Deliverable Requested: I. III. IV, Other (specify)	☐ Poison B ☐ Unknown ☐ Radiological	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Archive For Mon	sessed if samples are retained long	rger than 1 month)
Empty Kit Relinquished by:	Date		District of Other	
4	1	Received by:	Method of Shipment:	
Relinquished by:	25 1600	3	3/20/15 J	6:20 Company
Relinquished by:	22 /6	Received by:	Date/Time:	Company
Custody Seals Intact: Custody Seal No.:		Cooler Temperature(s) ^o C and Other Remarks.	arks. + ()	7,1

Client: Terracon Consultants Inc

Job Number: 480-228086-1

List Source: Eurofins Buffalo

Login Number: 228086

List Number: 1 Creator: Yeager, Brian A

Answer Comment Question Radioactivity either was not measured or, if measured, is at or below True background The cooler's custody seal, if present, is intact. True The cooler or samples do not appear to have been compromised or True tampered with. True Samples were received on ice. Cooler Temperature is acceptable. True 1.7 ICE IR# SC Cooler Temperature is recorded. True COC is present. True COC is filled out in ink and legible. True COC is filled out with all pertinent information. True Is the Field Sampler's name present on COC? True There are no discrepancies between the sample IDs on the containers and True the COC. Samples are received within Holding Time (Excluding tests with immediate True HTs).. Sample containers have legible labels. True True Containers are not broken or leaking. True Sample collection date/times are provided. Appropriate sample containers are used. True Sample bottles are completely filled. True Sample Preservation Verified True There is sufficient vol. for all requested analyses, incl. any requested True MS/MSDs VOA sample vials do not have headspace or bubble is <6mm (1/4") in True diameter. If necessary, staff have been informed of any short hold time or quick TAT True needs Multiphasic samples are not present. True True Samples do not require splitting or compositing.

-0

6

7

9

11

12

11

15

Sampling Company provided.

Chlorine Residual checked.

Samples received within 48 hours of sampling.

Samples requiring field filtration have been filtered in the field.

True

True

True

N/A

TERRACON